Analysis

February 20, 2021

Contents

1 Linear Algebra 25
1.1 L2 Norm 25
1.2 Inner Product Spaces and Gradient Derivative 28
1.2.1 Real inner product spaces 28
1.2.2 Class instances 33
1.2.3 Gradient derivative 36
1.3 Cartesian Products as Vector Spaces 37
1.3.1 Product is a Module 38
1.3.2 Product is a Real Vector Space 38
1.3.3 Product is a Metric Space 39
1.3.4 Product is a Complete Metric Space 42
1.3.5 Product is a Normed Vector Space 43
1.3.6 Product is Finite Dimensional 47
1.4 Finite-Dimensional Inner Product Spaces 48
1.4.1 Interlude: Some properties of real sets 48
1.4.2 Type class of Euclidean spaces 49
1.4.3 Subclass relationships 53
1.4.4 Class instances 53
1.4.5 Locale instances 56
1.5 Elementary Linear Algebra on Euclidean Spaces 57
1.5.1 More interesting properties of the norm 59
1.5.2 Substandard Basis 61
1.5.3 Orthogonality 61
1.5.4 Orthogonality of a transformation 63
1.5.5 Bilinear functions 64
1.5.6 Adjoints 65
1.5.7 Euclidean Spaces as Typeclass 67
1.5.8 Linearity and Bilinearity continued 67
1.5.9 We continue 71
1.5.10 Infinity norm 76
1.5.11 Collinearity 80
1.5.12 Properties of special hyperplanes 83
1.5.13 Orthogonal bases and Gram-Schmidt process 85
1.5.14 Decomposing a vector into parts in orthogonal subspaces 88
1.5.15 Linear functions are (uniformly) continuous on any set 94
1.5.16 Topological properties of linear functions 94
1.6 Affine Sets 96
1.6.1 Affine set and affine hull 97
1.6.2 Affine Dependence 110
1.6.3 Some Properties of Affine Dependent Sets 113
1.6.4 Affine Dimension of a Set 118
1.7 Convex Sets and Functions 130
1.7.1 Convex Sets 130
1.7.2 Explicit expressions for convexity in terms of arbitrary sums 134
1.7.3 Convex Functions on a Set 137
1.7.4 Arithmetic operations on sets preserve convexity 140
1.7.5 Convexity of real functions 149
1.7.6 Cones 152
1.7.7 Connectedness of convex sets 156
1.7.8 Convex hull 157
1.7.9 Relations among closure notions and corresponding hulls 167
1.7.10 Caratheodory's theorem 168
1.7.11 Some Properties of subset of standard basis 171
1.7.12 Moving and scaling convex hulls 171
1.7.13 Convexity of cone hulls 171
1.7.14 Radon's theorem 173
1.7.15 Helly's theorem 176
1.7.16 Epigraphs of convex functions 177
1.7.17 A bound within a convex hull 178
1.8 Definition of Finite Cartesian Product Type 180
1.8.1 Finite Cartesian products, with indexing and lambdas 180
1.8.2 Cardinality of vectors 182
1.8.3 Group operations and class instances 184
1.8.4 Basic componentwise operations on vectors 185
1.8.5 Real vector space 186
1.8.6 Topological space 186
1.8.7 Metric space 189
1.8.8 Normed vector space 192
1.8.9 Inner product space 193
1.8.10 Euclidean space 194
1.8.11 A naive proof procedure to lift really trivial arithmetic stuff from the basis of the vector space 196
1.8.12 Some frequently useful arithmetic lemmas over vectors 197
1.8.13 Matrix operations 200
1.8.14 Inverse matrices (not necessarily square) 205
1.9 Linear Algebra on Finite Cartesian Products 206
1.9.1 Type (' a, ' n) vec and fields as vector spaces 207
1.9.2 Rank of a matrix 217
1.9.3 Lemmas for working on real^1/2/3/4 221
1.9.4 The collapse of the general concepts to dimension one 222
1.9.5 Routine results connecting the types (real, 1) vec and real 222
1.9.6 Explicit vector construction from lists 223
1.9.7 lambda skolemization on cartesian products 224
1.9.8 Explicit formulas for low dimensions 226
1.9.9 Orthogonality of a matrix 226
1.9.10 Finding an Orthogonal Matrix 228
1.9.11 Scaling and isometry 230
1.9.12 Induction on matrix row operations 231
1.10 Traces and Determinants of Square Matrices 237
1.10.1 Trace 237
1.10.2 Relation to invertibility 252
1.10.3 Cramer's rule 255
1.10.4 Rotation, reflection, rotoinversion 258
2 Topology 261
2.1 Elementary Topology 261
2.1.1 Topological Basis 262
2.1.2 Countable Basis 264
2.1.3 Polish spaces 273
2.1.4 Limit Points 273
2.1.5 Interior of a Set 277
2.1.6 Closure of a Set 281
2.1.7 Frontier (also known as boundary) 284
2.1.8 Filters and the "eventually true" quantifier 286
2.1.9 Limits 287
2.1.10 Compactness 291
2.1.11 Cartesian products 305
2.1.12 Continuity 308
2.1.13 Homeomorphisms 310
2.1.14 On Linorder Topologies 315
2.2 Operators involving abstract topology 317
2.2.1 General notion of a topology as a value 317
2.2.2 The discrete topology 320
2.2.3 Subspace topology 321
2.2.4 The canonical topology from the underlying type class 325
2.2.5 Basic "localization" results are handy for connectedness. 326
2.2.6 Derived set (set of limit points) 329
2.2.7 Closure with respect to a topological space 331
2.2.8 Frontier with respect to topological space 340
2.2.9 Locally finite collections 344
2.2.10 Continuous maps 347
2.2.11 Open and closed maps (not a priori assumed continuous) 354
2.2.12 Quotient maps 358
2.2.13 Separated Sets 365
2.2.14 Homeomorphisms 367
2.2.15 Relation of homeomorphism between topological spaces 376
2.2.16 Connected topological spaces 377
2.2.17 Compact sets 387
2.2.18 Embedding maps 396
2.2.19 Retraction and section maps 397
2.2.20 Continuity 400
2.2.21 Half-global and completely global cases 401
2.2.22 The topology generated by some (open) subsets 405
2.2.23 Topology bases and sub-bases 407
2.2.24 Pullback topology 410
2.2.25 Proper maps (not a priori assumed continuous) 412
2.2.26 Perfect maps (proper, continuous and surjective) 416
2.3 Abstract Topology 2 417
2.3.1 Closure 420
2.3.2 Frontier 421
2.3.3 Compactness 421
2.3.4 Continuity 422
2.3.5 Equality of continuous functions on closure and related results 423
2.3.6 A function constant on a set 424
2.3.7 Continuity relative to a union. 424
2.3.8 Inverse function property for open/closed maps 425
2.3.9 Seperability 427
2.3.10 Closed Maps 428
2.3.11 Open Maps 429
2.3.12 Quotient maps 429
2.3.13 Pasting lemmas for functions, for of casewise definitions 431
2.3.14 Retractions 436
2.3.15 Retractions on a topological space 440
2.3.16 Paths and path-connectedness 442
2.3.17 Connected components 446
2.4 Connected Components 451
2.4.1 Connectedness 451
2.4.2 Connected components, considered as a connectedness relation or a set 453
2.4.3 The set of connected components of a set 457
2.4.4 Proving a function is constant on a connected set by proving that a level set is open 461
2.4.5 Preservation of Connectedness 461
2.4.6 Lemmas about components 464
2.4.7 Constancy of a function from a connected set into a finite, disconnected or discrete set 466
2.4.8 nhdsin and atin 468
2.4.9 Limits in a topological space 468
2.4.10 Pointwise continuity in topological spaces 471
2.4.11 Combining theorems for continuous functions into the reals 472
3 Functional Analysis 475
3.1 A decision procedure for metric spaces 475
3.2 Elementary Metric Spaces 477
3.2.1 Open and closed balls 477
3.2.2 Limit Points 483
3.2.3 Perfect Metric Spaces 484
3.2.4 ? 484
3.2.5 Interior 485
3.2.6 Frontier 485
3.2.7 Limits 486
3.2.8 Continuity 488
3.2.9 Closure and Limit Characterization 491
3.2.10 Boundedness 493
3.2.11 Compactness 495
3.2.12 Banach fixed point theorem 498
3.2.13 Edelstein fixed point theorem 501
3.2.14 The diameter of a set 502
3.2.15 Metric spaces with the Heine-Borel property 507
3.2.16 Completeness 510
3.2.17 Finite intersection property 516
3.2.18 Properties of Balls and Spheres 517
3.2.19 Distance from a Set 517
3.2.20 Infimum Distance 518
3.2.21 Separation between Points and Sets 523
3.2.22 Uniform Continuity 525
3.2.23 Continuity on a Compact Domain Implies Uniform Con- tinuity 526
3.2.24 Theorems relating continuity and uniform continuity to closures 528
3.2.25 With Abstract Topology (TODO: move and remove de- pendency?) 534
3.2.26 Closed Nest 535
3.2.27 Making a continuous function avoid some value in a neighbourhood 537
3.2.28 Consequences for Real Numbers 538
3.2.29 The infimum of the distance between two sets 541
3.3 Elementary Normed Vector Spaces 545
3.3.1 Orthogonal Transformation of Balls 545
3.3.2 Various Lemmas Combining Imports 545
3.3.3 Support 547
3.3.4 Intervals 548
3.3.5 Limit Points 548
3.3.6 Balls and Spheres in Normed Spaces 551
3.3.7 Various Lemmas on Normed Algebras 554
3.3.8 Filters 555
3.3.9 Trivial Limits 555
3.3.10 Limits 555
3.3.11 Limit Point of Filter 558
3.3.12 Boundedness 558
3.3.13 Relations among convergence and absolute convergence for power series 561
3.3.14 Normed spaces with the Heine-Borel property 562
3.3.15 Intersecting chains of compact sets and the Baire property 562
3.3.16 Continuity 566
3.3.17 Arithmetic Preserves Topological Properties 568
3.3.18 Homeomorphisms 575
3.3.19 Discrete 577
3.3.20 Completeness of "Isometry" (up to constant bounds) 578
3.3.21 Connected Normed Spaces 579
3.4 Linear Decision Procedure for Normed Spaces 581
4 Vector Analysis 585
4.1 Elementary Topology in Euclidean Space 585
4.1.1 Continuity of the representation WRT an orthogonal basis 585
4.1.2 Balls in Euclidean Space 587
4.1.3 Boxes 592
4.1.4 General Intervals 605
4.1.5 Bounded Projections 609
4.1.6 Structural rules for pointwise continuity 609
4.1.7 Structural rules for setwise continuity 609
4.1.8 Openness of halfspaces. 610
4.1.9 Closure and Interior of halfspaces and hyperplanes 610
4.1.10 Some more convenient intermediate-value theorem for- mulations 613
4.1.11 Limit Component Bounds 613
4.1.12 Class Instances 619
4.1.13 Compact Boxes 621
4.1.14 Componentwise limits and continuity 623
4.1.15 Continuous Extension 625
4.1.16 Separability 627
4.1.17 Diameter 629
4.1.18 Relating linear images to open/closed/interior/closure/con- nected 630
4.1.19 "Isometry" (up to constant bounds) of Injective Linear Map 633
4.1.20 Some properties of a canonical subspace 636
4.1.21 Set Distance 637
4.2 Convex Sets and Functions on (Normed) Euclidean Spaces 639
4.2.1 Topological Properties of Convex Sets and Functions 640
4.2.2 Relative interior of a set 641
4.2.3 Openness and compactness are preserved by convex hull operation 655
4.2.4 Extremal points of a simplex are some vertices 659
4.2.5 Closest point of a convex set is unique, with a continu- ous projection 663
4.2.6 More convexity generalities 671
4.2.7 Convex set as intersection of halfspaces 672
4.2.8 Convexity of general and special intervals 673
4.2.9 On real, is_interval, convex and connected are all equiv- alent 674
4.2.10 Another intermediate value theorem formulation 675
4.2.11 A bound within an interval 676
4.2.12 Representation of any interval as a finite convex hull 678
4.2.13 Bounded convex function on open set is continuous 680
4.2.14 Upper bound on a ball implies upper and lower bounds 682
4.3 Operator Norm 684
4.4 Line Segment 689
4.4.1 Topological Properties of Convex Sets, Metric Spaces and Functions 689
4.4.2 Midpoint 692
4.4.3 Open and closed segments 694
4.4.4 Betweenness 710
4.5 Limits on the Extended Real Number Line 714
4.5.1 Extended-Real.thy 721
4.5.2 Extended-Nonnegative-Real.thy 735
4.5.3 monoset 735
4.5.4 Relate extended reals and the indicator function 754
4.6 Radius of Convergence and Summation Tests 754
4.6.1 Convergence tests for infinite sums 754
4.6.2 Radius of convergence 764
4.7 Uniform Limit and Uniform Convergence 774
4.7.1 Definition 774
4.7.2 Exchange limits 775
4.7.3 Uniform limit theorem 776
4.7.4 Weierstrass M-Test 781
4.7.5 Structural introduction rules 782
4.7.6 Power series and uniform convergence 789
4.8 Function Topology 790
4.8.1 The product topology 791
4.8.2 The Alexander subbase theorem 809
4.8.3 Open Pi-sets in the product topology 817
4.8.4 Relationship with connected spaces, paths, etc. 820
4.8.5 Projections from a function topology to a component 826
4.9 Bounded Linear Function 827
4.9.1 Intro rules for bounded_linear 828
4.9.2 declaration of derivative/continuous/tendsto introduc- tion rules for bounded linear functions 829
4.9.3 Type of bounded linear functions 829
4.9.4 Type class instantiations 830
4.9.5 On Euclidean Space 835
4.9.6 concrete bounded linear functions 839
4.9.7 The strong operator topology on continuous linear op- erators 843
4.10 Derivative 845
4.10.1 Derivatives 845
4.10.2 Derivative with composed bilinear function 845
4.10.3 Differentiability 847
4.10.4 Frechet derivative and Jacobian matrix 849
4.10.5 Differentiability implies continuity 850
4.10.6 The chain rule 851
4.10.7 Composition rules stated just for differentiability 852
4.10.8 Uniqueness of derivative 852
4.10.9 Derivatives of local minima and maxima are zero 855
4.10.10 One-dimensional mean value theorem 857
4.10.11 More general bound theorems 858
4.10.12 Differentiability of inverse function (most basic form) 867
4.10.13 Uniformly convergent sequence of derivatives 872
4.10.14 Differentiation of a series 879
4.10.15 Derivative as a vector 882
4.10.16 Field differentiability 887
4.10.17 Field derivative 892
4.10.18 Relation between convexity and derivative 895
4.10.19 Partial derivatives 897
4.10.20 Differentiable case distinction 901
4.10.21 The Inverse Function Theorem 902
4.10.22 Piecewise differentiable functions 910
4.10.23 The concept of continuously differentiable 913
4.11 Finite Cartesian Products of Euclidean Spaces 920
4.11.1 Closures and interiors of halfspaces 921
4.11.2 Bounds on components etc. relative to operator norm 922
4.11.3 Convex Euclidean Space 929
4.11.4 Derivative 929
4.11.5 Routine results connecting the types (real, 1) vec and real 930
5 Unsorted 933
5.0.1 Shrinking towards the interior of a convex set 934
5.0.2 Some obvious but surprisingly hard simplex lemmas 938
5.0.3 Relative interior of convex set 946
5.0.4 The relative frontier of a set 953
5.0.5 Convexity on direct sums 984
5.0.6 Explicit formulas for interior and relative interior of con- vex hull 990
5.0.7 Similar results for closure and (relative or absolute) frontier 998
5.0.8 Coplanarity, and collinearity in terms of affine hull 1002
5.0.9 Basic lemmas about hyperplanes and halfspaces 1012
5.0.10 Use set distance for an easy proof of separation properties1 1013
5.0.11 Connectedness of the intersection of a chain 1014
5.0.12 Proper maps, including projections out of compact sets 1017
5.0.13 Trivial fact: convexity equals connectedness for collinear sets 1019
5.0.14 Some stepping theorems 1029
5.0.15 General case without assuming closure and getting non- strict separation 1032
5.0.16 Some results on decomposing convex hulls: intersec- tions, simplicial subdivision 1036
5.0.17 Lower-dimensional affine subsets are nowhere dense 1048
5.0.18 Parallel slices, etc 1050
5.0.19 Paracompactness 1054
5.0.20 Closed-graph characterization of continuity 1057
5.0.21 The union of two collinear segments is another segment 1059
5.0.22 Covering an open set by a countable chain of compact sets 1062
5.0.23 Orthogonal complement 1065
5.0.24 A non-injective linear function maps into a hyperplane. 1067
5.1 The binary product topology 1069
5.2 Product Topology 1069
5.2.1 Definition 1069
5.2.2 Continuity 1072
5.2.3 Homeomorphic maps 1079
5.3 T1 and Hausdorff spaces 1082
5.4 T1 spaces with equivalences to many naturally "nice" properties. 1083
5.4.1 Hausdorff Spaces 1087
5.5 Path-Connectedness 1098
5.5.1 Paths and Arcs 1098
5.5.2 Invariance theorems 1099
5.5.3 Basic lemmas about paths 1101
5.5.4 Path Images 1104
5.5.5 Simple paths with the endpoints removed 1106
5.5.6 The operations on paths 1107
5.5.7 Some reversed and "if and only if" versions of joining theorems 1109
5.5.8 The joining of paths is associative 1112
5.5.9 Subpath 1114
5.5.10 There is a subpath to the frontier 1117
5.5.11 Shift Path to Start at Some Given Point 1120
5.5.12 Straight-Line Paths 1123
5.5.13 Segments via convex hulls 1126
5.5.14 Bounding a point away from a path 1129
5.5.15 Path component 1129
5.5.16 Path connectedness of a space 1131
5.5.17 Lemmas about path-connectedness 1137
5.5.18 Path components 1140
5.5.19 Path components 1141
5.5.20 Sphere is path-connected 1151
5.5.21 Every annulus is a connected set 1158
5.5.22 Relations between components and path components 1159
5.5.23 Existence of unbounded components 1161
5.5.24 The inside and outside of a Set 1163
5.5.25 Condition for an open map's image to contain a ball 1180
5.5.26 Rectangular paths 1186
5.6 Bernstein-Weierstrass and Stone-Weierstrass 1187
5.6.1 Bernstein polynomials 1187
5.6.2 Explicit Bernstein version of the 1D Weierstrass approx- imation theorem 1188
5.6.3 General Stone-Weierstrass theorem 1191
5.6.4 Polynomial functions 1203
5.6.5 Stone-Weierstrass theorem for polynomial functions 1208
5.6.6 Polynomial functions as paths 1212
6 Measure and Integration Theory 1219
6.1 Sigma Algebra 1219
6.1.1 Families of sets 1219
6.1.2 Measure type 1249
6.1.3 The smallest σ-algebra regarding a function 1262
6.2 Measurability Prover 1268
6.2.1 Measurability for (co)inductive predicates 1276
6.3 Measure Spaces 1282
6.3.1 Relate extended reals and the indicator function 1282
6.3.2 Extend binary sets 1283
6.3.3 Properties of a premeasure μ 1284
6.3.4 Properties of emeasure 1291
6.3.5 $\quad \mu$-null sets 1301
6.3.6 The almost everywhere filter (i.e. quantifier) 1304
6.3.7 $\quad \sigma$-finite Measures 1310
6.3.8 Measure space induced by distribution of $\left(\rightarrow_{M}\right)$-functions1 1312
6.3.9 Real measure values 1315
6.3.10 Set of measurable sets with finite measure 1320
6.3.11 Measurable sets formed by unions and intersections 1321
6.3.12 Measure spaces with emeasure M (space M) $<\infty$ 1328
6.3.13 Counting space 1333
6.3.14 Measure restricted to space 1336
6.3.15 Null measure 1339
6.3.16 Scaling a measure 1340
6.3.17 Complete lattice structure on measures 1341
6.4 Ordered Euclidean Space 1367
6.5 Borel Space 1373
6.5.1 Generic Borel spaces 1377
6.5.2 Borel spaces on order topologies 1385
6.5.3 Borel spaces on topological monoids 1392
6.5.4 Borel spaces on Euclidean spaces 1392
6.5.5 Borel measurable operators 1400
6.5.6 Borel space on the extended reals 1404
6.5.7 Borel space on the extended non-negative reals 1408
6.5.8 LIMSEQ is borel measurable 1409
6.6 Lebesgue Integration for Nonnegative Functions 1419
6.6.1 Approximating functions 1419
6.6.2 Simple function 1421
6.6.3 Simple integral 1431
6.6.4 Integral on nonnegative functions 1436
6.6.5 Integral under concrete measures 1454
6.7 Binary Product Measure 1474
6.7.1 Binary products 1474
6.7.2 Binary products of σ-finite emeasure spaces 1481
6.7.3 Fubinis theorem 1486
6.7.4 Products on counting spaces, densities and distributions 1488
6.7.5 Product of Borel spaces 1499
6.8 Finite Product Measure 1500
6.8.1 More about Function restricted by extensional 1500
6.8.2 Finite product spaces 1502
6.8.3 Measurability 1527
6.9 Caratheodory Extension Theorem 1530
6.9.1 Characterizations of Measures 1531
6.9.2 Caratheodory's theorem 1540
6.9.3 Volumes 1541
6.10 Bochner Integration for Vector-Valued Functions 1549
6.10.1 Restricted measure spaces 1598
6.10.2 Measure spaces with an associated density 1599
6.10.3 Distributions 1601
6.10.4 Lebesgue integration on count_space 1603
6.10.5 Point measure 1605
6.10.6 Lebesgue integration on null_measure 1605
6.10.7 Legacy lemmas for the real-valued Lebesgue integral 1605
6.10.8 Product measure 1612
6.11 Complete Measures 1623
6.12 Regularity of Measures 1649
6.13 Lebesgue Measure 1658
6.13.1 Measures defined by monotonous functions 1659
6.13.2 Lebesgue-Borel measure 1666
6.13.3 Borel measurability 1669
6.13.4 Measurability of continuous functions 1673
6.13.5 Affine transformation on the Lebesgue-Borel 1680
6.13.6 Lebesgue measurable sets 1687
6.13.7 Translation preserves Lebesgue measure 1689
6.13.8 A nice lemma for negligibility proofs 1691
6.13.9 $\quad F_{-}$sigma and $G_{-} d e l t a$ sets. 1696
6.14 Tagged Divisions for Henstock-Kurzweil Integration 1698
6.14.1 Sundries 1699
6.14.2 Some useful lemmas about intervals 1699
6.14.3 Bounds on intervals where they exist 1701
6.14.4 The notion of a gauge - simply an open set containing the point 1703
6.14.5 Attempt a systematic general set of "offset" results for components 1704
6.14.6 Divisions 1704
6.14.7 Tagged (partial) divisions 1719
6.14.8 Functions closed on boxes: morphisms from boxes to monoids 1726
6.14.9 Special case of additivity we need for the FTC 1737
6.14.10 Fine-ness of a partition w.r.t. a gauge 1738
6.14.11 Some basic combining lemmas 1739
6.14.12 The set we're concerned with must be closed 1739
6.14.13 General bisection principle for intervals; might be useful elsewhere 1739
6.14.14 Cousin's lemma 1745
6.14.15 A technical lemma about "refinement" of division 1746
6.14.16 Division filter 1754
6.15 Henstock-Kurzweil Gauge Integration in Many Dimensions 1754
6.15.1 Content (length, area, volume...) of an interval 1755
6.15.2 Gauge integral 1760
6.15.3 Basic theorems about integrals 1762
6.15.4 Cauchy-type criterion for integrability 1775
6.15.5 Additivity of integral on abutting intervals 1777
6.15.6 A sort of converse, integrability on subintervals 1783
6.15.7 Bounds on the norm of Riemann sums and the integral itself 1787
6.15.8 Similar theorems about relationship among components 1789
6.15.9 Uniform limit of integrable functions is integrable 1793
6.15.10 Negligible sets 1796
6.15.11 Some other trivialities about negligible sets 1805
6.15.12 Finite case of the spike theorem is quite commonly needed1 806
6.15.13 In particular, the boundary of an interval is negligible 1807
6.15.14 Integrability of continuous functions 1808
6.15.15 Specialization of additivity to one dimension 1811
6.15.16 A useful lemma allowing us to factor out the content size181 1811
6.15.17 Fundamental theorem of calculus 1812
6.15.18 Taylor series expansion 1815
6.15.19 Only need trivial subintervals if the interval itself is trivial1818
6.15.20 Integrability on subintervals 1820
6.15.21 Combining adjacent intervals in 1 dimension 1821
6.15.22 Reduce integrability to "local" integrability 1823
6.15.23 Second FTC or existence of antiderivative 1823
6.15.24 Combined fundamental theorem of calculus 1825
6.15.25 General "twiddling" for interval-to-interval function image1826
6.15.26 Special case of a basic affine transformation 1828
6.15.27 Special case of stretching coordinate axes separately 1832
6.15.28 even more special cases 1833
6.15.29 Stronger form of FCT; quite a tedious proof 1835
6.15.30 Stronger form with finite number of exceptional points 1843
6.15.31 This doesn't directly involve integration, but that gives an easy proof 1850
6.15.32 Generalize a bit to any convex set 1850
6.15.33 Integrating characteristic function of an interval 1853
6.15.34 Integrals on set differences 1859
6.15.35 More lemmas that are useful later 1862
6.15.36 Continuity of the integral (for a 1-dimensional interval) 1864
6.15.37 A straddling criterion for integrability 1868
6.15.38 Adding integrals over several sets 1872
6.15.39 Also tagged divisions 1875
6.15.40 Henstock's lemma 1876
6.15.41 Monotone convergence (bounded interval first) 1881
6.15.42 differentiation under the integral sign 1895
6.15.43 Exchange uniform limit and integral 1900
6.15.44 Integration by parts 1901
6.15.45 Integration by substitution 1903
6.15.46 Compute a double integral using iterated integrals and switching the order of integration 1905
6.15.47 Definite integrals for exponential and power function 1913
6.16 Radon-Nikodým Derivative 1919
6.16.1 Absolutely continuous 1923
6.16.2 Existence of the Radon-Nikodym derivative 1924
6.16.3 Uniqueness of densities 1933
6.16.4 Radon-Nikodym derivative 1939
6.17 Non-Denumerability of the Continuum 1968
6.17.1 Abstract 1968
6.18 Homotopy of Maps 1972
6.18.1 Trivial properties 1973
6.18.2 Homotopy with P is an equivalence relation 1975
6.18.3 Continuity lemmas 1977
6.18.4 Homotopy of paths, maintaining the same endpoints 1983
6.18.5 Group properties for homotopy of paths 1986
6.18.6 Homotopy of loops without requiring preservation of endpoints 1988
6.18.7 Relations between the two variants of homotopy 1989
6.18.8 Homotopy of "nearby" function, paths and loops 1994
6.18.9 Homotopy and subpaths 1996
6.18.10 Simply connected sets 1998
6.18.11 Contractible sets 2002
6.18.12 Starlike sets 2005
6.18.13 Local versions of topological properties in general 2008
6.18.14 An induction principle for connected sets 2013
6.18.15 Basic properties of local compactness 2015
6.18.16 Sura-Bura's results about compact components of sets 2023
6.18.17 Special cases of local connectedness and path connect- edness 2028
6.18.18 Relations between components and path components 2034
6.18.19 Components, continuity, openin, closedin 2038
6.18.20 Existence of isometry between subspaces of same dimen- sion 2040
6.18.21 Retracts, in a general sense, preserve (co)homotopic triviality) 2045
6.18.22 Homotopy equivalence 2048
6.18.23 Homotopy equivalence of topological spaces. 2048
6.18.24 Contractible spaces 2051
6.18.25 Misc other results 2062
6.18.26 Some Uncountable Sets 2063
6.18.27 Some simple positive connection theorems 2066
6.18.28 Self-homeomorphisms shuffling points about 2072
6.18.29 Nullhomotopic mappings 2091
6.19 Homeomorphism Theorems 2095
6.19.1 Homeomorphism of all convex compact sets with nonempty interior 2096
6.19.2 Homeomorphisms between punctured spheres and affine sets 2106
6.19.3 Locally compact sets in an open set 2112
6.19.4 Covering spaces and lifting results for them 2117
6.19.5 Lifting of general functions to covering space 2133
6.19.6 Homeomorphisms of arc images 2143
6.19.7 Equivalence Lebesgue integral on lborel and HK-integral 2152
6.19.8 Absolute integrability (this is the same as Lebesgue in- tegrability) 2163
6.19.9 Applications to Negligibility 2172
6.19.10 Negligibility of image under non-injective linear map 2179
6.19.11 Negligibility of a Lipschitz image of a negligible set 2180
6.19.12 Measurability of countable unions and intersections of various kinds. 2188
6.19.13 Negligibility is a local property 2191
6.19.14 Integral bounds 2192
6.19.15 Outer and inner approximation of measurable sets by well-behaved sets 2204
6.19.16 Transformation of measure by linear maps 2208
6.19.17 Lemmas about absolute integrability 2214
6.19.18 Componentwise 2216
6.19.19 Dominated convergence 2225
6.19.20 Fundamental Theorem of Calculus for the Lebesgue in- tegral 2228
6.19.21 Integration by parts 2232
6.19.22 Various common equivalent forms of function measura- bility 2235
6.19.23 Lebesgue sets and continuous images 2239
6.19.24 Affine lemmas 2242
6.19.25 More results on integrability 2244
6.19.26 Relation between Borel measurability and integrability. 2247
6.20 Complex Analysis Basics 2255
6.20.1 General lemmas 2255
6.20.2 Holomorphic functions 2257
6.20.3 Analyticity on a set 2262
6.20.4 Analyticity at a point 2266
6.20.5 Combining theorems for derivative with "analytic at" hypotheses 2267
6.20.6 Complex differentiation of sequences and series 2268
6.20.7 Taylor on Complex Numbers 2269
6.21 Complex Transcendental Functions 2273
6.21.1 Mbius transformations 2274
6.21.2 The Exponential Function 2275
6.21.3 Euler and de Moivre formulas 2275
6.21.4 Relationships between real and complex trigonometric and hyperbolic functions 2277
6.21.5 More on the Polar Representation of Complex Numbers 2278
6.21.6 Taylor series for complex exponential, sine and cosine 2289
6.21.7 The argument of a complex number (HOL Light version) 2293
6.21.8 Analytic properties of tangent function 2299
6.21.9 The principal branch of the Complex logarithm 2299
6.21.10 Relation to Real Logarithm 2300
6.21.11 Derivative of Ln away from the branch cut 2301
6.21.12 Quadrant-type results for Ln 2307
6.21.13 More Properties of Ln 2309
6.21.14 The Argument of a Complex Number 2312
6.21.15 The Unwinding Number and the Ln product Formula 2317
6.21.16 Relation between Ln and Arg2pi, and hence continuity of $\operatorname{Arg} 2 \mathrm{pi}$ 2318
6.21.17 Complex Powers 2321
6.21.18 Some Limits involving Logarithms 2329
6.21.19 Relation between Square Root and \exp / \ln, hence its derivative 2332
6.21.20 Complex arctangent 2335
6.21.21 Real arctangent 2340
6.21.22 Bounds on pi using real arctangent 2343
6.21.23 Inverse Sine 2344
6.21.24 Inverse Cosine 2347
6.21.25 Upper and Lower Bounds for Inverse Sine and Cosine 2351
6.21.26 Interrelations between Arcsin and Arccos 2352
6.21.27 Relationship with Arcsin on the Real Numbers 2354
6.21.28 Relationship with Arccos on the Real Numbers 2355
6.21.29 Some interrelationships among the real inverse trig func- tions 2356
6.21.30 Continuity results for arcsin and arccos 2357
6.21.31 Roots of unity 2359
6.22 Harmonic Numbers 2361
6.22.1 The Harmonic numbers 2361
6.22.2 The Euler-Mascheroni constant 2363
6.22.3 Bounds on the Euler-Mascheroni constant 2367
6.23 The Gamma Function 2373
6.23.1 The Euler form and the logarithmic Gamma function 2378
6.23.2 The Polygamma functions 2386
6.23.3 Basic properties 2396
6.23.4 Differentiability 2400
6.23.5 The complex Gamma function 2401
6.23.6 The real Gamma function 2408
6.23.7 The uniqueness of the real Gamma function 2414
6.23.8 The Beta function 2417
6.23.9 Legendre duplication theorem 2418
6.23.10 Limits and residues 2431
6.23.11 Alternative definitions 2432
6.23.12 The Weierstraß product formula for the sine 2449
6.23.13 The Solution to the Basel problem 2450
6.23.14 Approximating a (possibly infinite) interval 2453
6.23.15 Basic properties of integration over an interval 2456
6.23.16 Basic properties of integration over an interval wrt lebesgue measure 2459
6.23.17 General limit approximation arguments 2463
6.23.18 A slightly stronger Fundamental Theorem of Calculus 2465
6.23.19 The substitution theorem 2470
6.24 Integration by Substition for the Lebesgue Integral 2477
6.25 The Volume of an n-Dimensional Ball 2486
6.26 Integral Test for Summability 2493
6.27 Continuity of the indefinite integral; improper integral theorem 2496
6.27.1 Equiintegrability 2496
6.27.2 Subinterval restrictions for equiintegrable families 2505
6.27.3 Continuity of the indefinite integral 2531
6.27.4 Second mean value theorem and corollaries 2539
6.28 Continuous Extensions of Functions 2548
6.28.1 Partitions of unity subordinate to locally finite open coverings 2548
6.28.2 Urysohn's Lemma for Euclidean Spaces 2550
6.28.3 Dugundji's Extension Theorem and Tietze Variants 2554
6.29 Equivalence Between Classical Borel Measurability and HOL Light's 2559
6.29.1 Austin's Lemma 2560
6.29.2 A differentiability-like property of the indefinite integral. 2562
6.29.3 HOL Light measurability 2570
6.29.4 Composing continuous and measurable functions; a few variants 2575
6.29.5 Measurability on generalisations of the binary product 2594
6.30 Embedding Measure Spaces with a Function 2597
6.31 Brouwer's Fixed Point Theorem 2606
6.31.1 Retractions 2607
6.31.2 Kuhn Simplices 2611
6.31.3 Brouwer's fixed point theorem 2639
6.31.4 Applications 2646
6.32 Fashoda Meet Theorem 2661
6.32.1 Bijections between intervals 2661
6.32.2 Fashoda meet theorem 2662
6.32.3 Some slightly ad hoc lemmas I use below 2671
6.32.4 Useful Fashoda corollary pointed out to me by Tom Hales 2674
6.33 Vector Cross Products in 3 Dimensions 2678
6.33.1 Basic lemmas 2678
6.33.2 Preservation by rotation, or other orthogonal transfor- mation up to sign 2681
6.33.3 Continuity 2682
6.34 Bounded Continuous Functions 2682
6.34.1 Definition 2683
6.34.2 Complete Space 2686
6.34.3 Supremum norm for a normed vector space 2686
6.34.4 (bounded) continuous extenstion 2689
6.35 Lindelöf spaces 2689
6.36 Infinite Products 2695
6.36.1 Preliminaries 2695
6.36.2 Definitions and basic properties 2696
6.36.3 Absolutely convergent products 2698
6.36.4 Ignoring initial segments 2704
6.36.5 More elementary properties 2705
6.36.6 Infinite products on ordered topological monoids 2714
6.36.7 Infinite products on topological spaces 2718
6.36.8 Infinite summability on real normed fields 2721
6.36.9 Exponentials and logarithms 2726
6.36.10 Embeddings from the reals into some complete real normed field 2734
6.37 Sums over Infinite Sets 2734
6.38 Faces, Extreme Points, Polytopes, Polyhedra etc 2753
6.38.1 Faces of a (usually convex) set 2753
6.38.2 Exposed faces 2767
6.38.3 Extreme points of a set: its singleton faces 2772
6.38.4 Facets 2774
6.38.5 Edges: faces of affine dimension 1 2775
6.38.6 Existence of extreme points 2775
6.38.7 Krein-Milman, the weaker form 2776
6.38.8 Applying it to convex hulls of explicitly indicated finite sets 2779
6.38.9 Polytopes 2787
6.38.10 Polyhedra 2789
6.38.11 Canonical polyhedron representation making facial struc- ture explicit 2791
6.38.12 More general corollaries from the explicit representation 2802
6.38.13 Relation between polytopes and polyhedra 2809
6.38.14 Relative and absolute frontier of a polytope 2810
6.38.15 Special case of a triangle 2812
6.38.16 Subdividing a cell complex 2813
6.38.17 Simplexes 2817
6.38.18 Simplicial complexes and triangulations 2820
6.38.19 Refining a cell complex to a simplicial complex 2820
6.38.20 Some results on cell division with full-dimensional cells only 2835
6.39 Arcwise-Connected Sets 2837
6.39.1 The Brouwer reduction theorem 2838
6.39.2 Arcwise Connections 2840
6.39.3 Density of points with dyadic rational coordinates 2840
6.39.4 Accessibility of frontier points 2883
6.40 Absolute Retracts, Absolute Neighbourhood Retracts and Eu- clidean Neighbourhood Retracts 2887
6.40.1 Analogous properties of ENRs 2895
6.40.2 More advanced properties of ANRs and ENRs 2915
6.40.3 Original ANR material, now for ENRs 2920
6.40.4 Finally, spheres are ANRs and ENRs 2922
6.40.5 Spheres are connected, etc 2923
6.40.6 Borsuk homotopy extension theorem 2924
6.40.7 More extension theorems 2931
6.40.8 The complement of a set and path-connectedness 2939
6.41 Extending Continous Maps, Invariance of Domain, etc 2941
6.41.1 A map from a sphere to a higher dimensional sphere is nullhomotopic 2942
6.41.2 Some technical lemmas about extending maps from cell complexes 2950
6.41.3 Special cases and corollaries involving spheres 2963
6.41.4 Extending maps to spheres 2966
6.41.5 Invariance of domain and corollaries 2983
6.41.6 Formulation of loop homotopy in terms of maps out of type complex 3001
6.41.7 Homeomorphism of simple closed curves to circles 3005
6.41.8 Dimension-based conditions for various homeomorphisms 3007
6.41.9 more invariance of domain 3008
6.41.10 The power, squaring and exponential functions as cov- ering maps 3015
6.41.11 Hence the Borsukian results about mappings into circles 3023
6.41.12 Upper and lower hemicontinuous functions 3026
6.41.13 Complex logs exist on various "well-behaved" sets 3030
6.41.14 Another simple case where sphere maps are nullhomotopic3032
6.41.15 Holomorphic logarithms and square roots 3033
6.41.16 The "Borsukian" property of sets 3037
6.41.17 Unicoherence (closed) 3050
6.41.18 Several common variants of unicoherence 3055
6.41.19 Some separation results 3056
6.42 The Jordan Curve Theorem and Applications 3064
6.42.1 Janiszewski's theorem 3064
6.42.2 The Jordan Curve theorem 3067
6.43 Polynomial Functions: Extremal Behaviour and Root Counts 3079
6.43.1 Basics about polynomial functions: extremal behaviour and root counts 3079
6.44 Generalised Binomial Theorem 3084
6.45 Vitali Covering Theorem and an Application to Negligibility 3090
6.45.1 Vitali covering theorem 3095
6.46 Change of Variables Theorems 3104
6.46.1 Measurable Shear and Stretch 3105
6.46.2 Borel measurable Jacobian determinant 3130
6.46.3 Simplest case of Sard's theorem (we don't need conti- nuity of derivative) 3149
6.46.4 A one-way version of change-of-variables not assuming injectivity. 3156
6.46.5 Change-of-variables theorem 3166
6.46.6 Change of variables for integrals: special case of linear function 3181
6.46.7 Change of variable for measure 3182
6.47 Lipschitz Continuity 3183
6.47.1 Local Lipschitz continuity 3191
6.47.2 Local Lipschitz continuity (uniform for a family of func- tions) 3194
6.48 Volume of a Simplex 3202
6.49 Convergence of Formal Power Series 3207
6.49.1 Balls with extended real radius 3208
6.49.2 Basic properties of convergent power series 3208
6.49.3 Lower bounds on radius of convergence 3211
6.49.4 Evaluating power series 3216
6.49.5 Power series expansions of analytic functions 3220
6.50 Smooth paths 3229
6.50.1 Homeomorphisms of arc images 3229
6.50.2 Piecewise differentiability of paths 3230
6.50.3 Valid paths, and their start and finish 3235
6.51 Neighbourhood bases and Locally path-connected spaces 3239
6.51.1 Neighbourhood Bases 3240
6.51.2 Locally path-connected spaces 3242
6.52 Euclidean space and n-spheres, as subtopologies of n-dimensional space 3250
6.52.1 Euclidean spaces as abstract topologies 3250
6.52.2 n-dimensional spheres 3254
6.53 Metrics on product spaces 3259

Chapter 1

Linear Algebra

theory L2_Norm
imports Complex_Main
begin

1.1 L2 Norm

definition L2_set :: ('a \Rightarrow real $) \Rightarrow{ }^{\prime}$ a set \Rightarrow real where
L2_set f $A=\operatorname{sqrt}\left(\sum i \in A .(f i)^{2}\right)$
lemma L2_set_cong:
$\llbracket A=B ; \bigwedge x . x \in B \Longrightarrow f x=g x \rrbracket \Longrightarrow$ L2_set $f A=$ L2_set $g B$ unfolding L2_set_def by simp
lemma L2_set_cong_simp:
$\llbracket A=B ; \bigwedge x . x \in B=\operatorname{simp}=>f x=g x \rrbracket \Longrightarrow$ L2_set $f A=L 2 _$set $g B$ unfolding L2_set_def simp_implies_def by simp
lemma L2_set_infinite [simp]: \neg finite $A \Longrightarrow$ L2_set f $A=0$
unfolding L2_set_def by simp
lemma L2_set_empty [simp]: L2_set $f\}=0$
unfolding L2_set_def by simp
lemma L2_set_insert [simp]:
\llbracket finite $F ; a \notin F \rrbracket \Longrightarrow$ L2_set $f($ insert a $F)=\operatorname{sqrt}\left((f a)^{2}+(\text { L2_set } f F)^{2}\right)$
unfolding L2_set_def by (simp add: sum_nonneg)
lemma L2_set_nonneg [simp]: $0 \leq$ L2_set f A
unfolding L2_set_def by (simp add: sum_nonneg)
lemma L2_set_0': $\forall a \in A . f a=0 \Longrightarrow$ L2_set $f A=0$
unfolding L2_set_def by simp
lemma L2_set_constant: L2_set $(\lambda x . y) A=\operatorname{sqrt}($ of_nat $($ card $A)) *|y|$ unfolding L2_set_def by (simp add: real_sqrt_mult)
lemma L2_set_mono:
assumes $\bigwedge i . i \in K \Longrightarrow f i \leq g i$
assumes $\bigwedge i . i \in K \Longrightarrow 0 \leq f i$
shows L2_set f $K \leq$ L2_set $g K$
unfolding L2_set_def
by (simp add: sum_nonneg sum_mono power_mono assms)
lemma L2_set_strict_mono:
assumes finite K and $K \neq\{ \}$
assumes $\bigwedge i . i \in K \Longrightarrow f i<g i$
assumes $\bigwedge i . i \in K \Longrightarrow 0 \leq f i$
shows L2_set f $K<L 2 _$set $g K$
unfolding L2_set_def
by (simp add: sum_strict_mono power_strict_mono assms)
lemma L2_set_right_distrib:
$0 \leq r \Longrightarrow r *$ L2_set $f A=$ L2_set $(\lambda x . r * f x) A$
unfolding L2_set_def
apply (simp add: power_mult_distrib)
apply (simp add: sum_distrib_left [symmetric])
apply (simp add: real_sqrt_mult sum_nonneg)
done
lemma L2_set_left_distrib:
$0 \leq r \Longrightarrow$ L2_set $f A * r=$ L2_set $(\lambda x . f x * r) A$
unfolding L2_set_def
apply (simp add: power_mult_distrib)
apply (simp add: sum_distrib_right [symmetric])
apply (simp add: real_sqrt_mult sum_nonneg)
done
lemma L2_set_eq_0_iff: finite $A \Longrightarrow$ L2_set $f A=0 \longleftrightarrow(\forall x \in A . f x=0)$
unfolding L2_set_def
by (simp add: sum_nonneg sum_nonneg_eq_0_iff)
proposition L2_set_triangle_ineq:
L2_set $(\lambda i . f i+g i) A \leq L 2 _$set $f A+$ L2_set $g A$
proof (cases finite A)
case False
thus ?thesis by simp
next
case True
thus ?thesis
proof (induct set: finite)
case empty
show ?case by simp

```
next
    case (insert x F)
    hence sqrt ((fx+gx\mp@subsup{)}{}{2}+(L2_set (\lambdai.fi+gi)F\mp@subsup{)}{}{2})\leq
                sqrt ((fx+gx )}\mp@subsup{}{2}{+}(L2_set fF+L2_set g F ) 2) 
        by (intro real_sqrt_le_mono add_left_mono power_mono insert
                            L2_set_nonneg add_increasing zero_le_power2)
    also have
        .. \leq sqrt ((fx\mp@subsup{)}{}{2}+(L2_set fF\mp@subsup{)}{}{2})+\operatorname{sqrt}((gx\mp@subsup{)}{}{2}+(L2_set g F)}\mp@subsup{)}{}{2}
        by (rule real_sqrt_sum_squares_triangle_ineq)
    finally show ?case
        using insert by simp
    qed
qed
lemma L2_set_le_sum [rule_format]:
    (\foralli\inA.0 \leqfi)\longrightarrowL2_set f A \leq sumf f
    apply (cases finite A)
    apply (induct set: finite)
    apply simp
    apply clarsimp
    apply (erule order_trans [OF sqrt_sum_squares_le_sum])
    apply simp
    apply simp
    apply simp
    done
lemma L2_set_le_sum_abs: L2_set f A \leq (\sumi\inA.|fi|)
    apply (cases finite A)
    apply (induct set: finite)
    apply simp
    apply simp
    apply (rule order_trans [OF sqrt_sum_squares_le_sum_abs])
    apply simp
    apply simp
    done
lemma L2_set_mult_ineq: (\sumi\inA. |f i| * |g i|) \leqL2_set f A * L2_set g A
    apply (cases finite A)
    apply (induct set: finite)
    apply simp
    apply (rule power2_le_imp_le, simp)
    apply (rule order_trans)
    apply (rule power_mono)
    apply (erule add_left_mono)
    apply (simp add: sum_nonneg)
    apply (simp add: power2_sum)
    apply (simp add: power_mult_distrib)
    apply (simp add: distrib_left distrib_right)
    apply (rule ord_le_eq_trans)
```

```
    apply (rule L2_set_mult_ineq_lemma)
    apply simp_all
    done
```

lemma member_le_L2_set: \llbracket finite $A ; i \in A \rrbracket \Longrightarrow f i \leq L 2 _s e t f A$
unfolding L2_set_def
by (auto intro!: member_le_sum real_le_rsqrt)
end

1．2 Inner Product Spaces and Gradient Derivative

theory Inner＿Product
imports Complex＿Main
begin

1．2．1 Real inner product spaces

Temporarily relax type constraints for open，uniformity，dist，and norm． setup 〈Sign．add＿const＿constraint
（const＿name $\langle o p e n\rangle, S O M E$ typ ${ }^{\text {＇}}$ a：：open set \Rightarrow bool $\left.)\right\rangle$
setup 〈Sign．add＿const＿constraint
（const＿name $\langle d i s t\rangle$ ，SOME typ $\left\langle{ }^{\prime} a:: d i s t \Rightarrow{ }^{\prime} a \Rightarrow\right.$ real $\left.)\right\rangle$
setup 〈Sign．add＿const＿constraint
（const＿name \langle uniformity \rangle ，SOME typ $\langle($＇a：：uniformity \times＇a）filter $)\rangle$
setup 〈Sign．add＿const＿constraint
（const＿name \langle norm \rangle ，SOME typ ${ }^{\prime} a:: n o r m \Rightarrow$ real $)$ ）
class real＿inner $=$ real＿vector + sgn＿div＿norm + dist＿norm + uniformity＿dist +
open＿uniformity＋
fixes inner ：：＇$a \Rightarrow{ }^{\prime} a \Rightarrow$ real
assumes inner＿commute：inner $x y=$ inner $y x$
and inner＿add＿left：inner $(x+y) z=$ inner $x z+$ inner $y z$
and inner＿scaleR＿left［simp］：inner（scaleR rx）$y=r *($ inner $x y)$
and inner＿ge＿zero［simp］： $0 \leq i n n e r x x$
and inner＿eq＿zero＿iff［simp］：inner $x x=0 \longleftrightarrow x=0$
and norm＿eq＿sqrt＿inner：norm $x=$ sqrt（inner $x x$ ）
begin
lemma inner＿zero＿left［simp］：inner $0 x=0$
using inner＿add＿left［of $00 x$ ］by simp
lemma inner＿minus＿left［simp］：inner $(-x) y=-$ inner $x y$
using inner＿add＿left $[$ of $x-x y]$ by simp
lemma inner_diff_left: inner $(x-y) z=$ inner $x z-i n n e r y z$ using inner_add_left [of $x-y z]$ by simp
lemma inner_sum_left: inner $\left(\sum x \in A . f x\right) y=\left(\sum x \in A\right.$. inner $\left.(f x) y\right)$ by (cases finite A, induct set: finite, simp_all add: inner_add_left)
lemma all_zero_iff [simp]: $(\forall u$. inner $x u=0) \longleftrightarrow(x=0)$ by auto (use inner_eq_zero_iff in blast)

Transfer distributivity rules to right argument.
lemma inner_add_right: inner $x(y+z)=$ inner $x y+$ inner $x z$ using inner_add_left [of $y z x]$ by (simp only: inner_commute)
lemma inner_scaleR_right [simp]: inner $x($ scale R ry) $=r *($ inner $x y)$ using inner_scaleR_left [of r y x] by (simp only: inner_commute)
lemma inner_zero_right [simp]: inner x $0=0$ using inner_zero_left [of x] by (simp only: inner_commute)
lemma inner_minus_right $[$ simp $]$: inner $x(-y)=-$ inner $x y$ using inner_minus_left [of $y x]$ by (simp only: inner_commute)
lemma inner_diff_right: inner $x(y-z)=$ inner $x y-i n n e r x z$ using inner_diff_left $[$ of $y z x]$ by (simp only: inner_commute)
lemma inner_sum_right: inner $x\left(\sum y \in A . f y\right)=\left(\sum y \in A\right.$. inner $\left.x(f y)\right)$ using inner_sum_left [off A x] by (simp only: inner_commute)
lemmas inner_add [algebra_simps] = inner_add_left inner_add_right
lemmas inner_diff [algebra_simps] = inner_diff_left inner_diff_right
lemmas inner_scale $R=$ inner_scale R _left inner_scale R_right
Legacy theorem names
lemmas inner_left_distrib $=$ inner_add_left
lemmas inner_right_distrib $=$ inner_add_right
lemmas inner_distrib $=$ inner_left_distrib inner_right_distrib
lemma inner_gt_zero_iff [simp]: $0<$ inner $x x \longleftrightarrow x \neq 0$ by (simp add: order_less_le)
lemma power2_norm_eq_inner: $(\text { norm } x)^{2}=$ inner $x x$ by (simp add: norm_eq_sqrt_inner)

Identities involving real multiplication and division.
lemma inner_mult_left: inner $($ of_real $m * a) b=m *($ inner ab)
by (metis real_inner_class.inner_scaleR_left scaleR_conv_of_real)
lemma inner_mult_right: inner $a($ of_real $m * b)=m *($ inner ab) by (metis real_inner_class.inner_scale R_{-}right scale R_{-}conv_of_real)

```
lemma inner_mult_left': inner \((a *\) of_real m) \(b=m *(\) inner ab)
    by (simp add: of_real_def)
lemma inner_mult_right': inner \(a(b *\) of_real \(m)=(\) inner \(a b) * m\)
    by (simp add: of_real_def real_inner_class.inner_scaleR_right)
lemma Cauchy_Schwarz_ineq:
    (inner \(x y)^{2} \leq\) inner \(x x *\) inner \(y y\)
proof (cases)
    assume \(y=0\)
    thus ?thesis by simp
next
    assume \(y\) : \(y \neq 0\)
    let ? \(r=\) inner \(x y /\) inner \(y y\)
    have \(0 \leq \operatorname{inner}(x-\) scale \(R\) ?r \(y)(x-\) scale \(R\) ?r \(y)\)
        by (rule inner_ge_zero)
    also have \(\ldots=\) inner \(x x-\) inner \(y x\) ? ?
        by (simp add: inner_diff)
    also have \(\ldots=\operatorname{inner} x x-(\text { inner } x y)^{2} /\) inner \(y y\)
        by (simp add: power2_eq_square inner_commute)
    finally have \(0 \leq\) inner \(x x-(\text { inner } x y)^{2} /\) inner \(y y\).
    hence \((\text { inner } x \bar{y})^{2} /\) inner \(y y \leq i n n e r ~ x ~ x ~\)
        by (simp add: le_diff_eq)
    thus (inner \(x y)^{2} \leq\) inner \(x x *\) inner \(y y\)
        by (simp add: pos_divide_le_eq y)
qed
lemma Cauchy_Schwarz_ineq2:
    \(\mid\) inner \(x y \mid \leq\) norm \(x *\) norm \(y\)
proof (rule power2_le_imp_le)
    have (inner \(x y)^{2} \leq\) inner \(x x *\) inner \(y y\)
        using Cauchy_Schwarz_ineq.
    thus \(\mid\) inner \(\left.x y\right|^{2} \leq(\text { norm } x * \text { norm } y)^{2}\)
        by (simp add: power_mult_distrib power2_norm_eq_inner)
    show \(0 \leq\) norm \(x *\) norm \(y\)
        unfolding norm_eq_sqrt_inner
        by (intro mult_nonneg_nonneg real_sqrt_ge_zero inner_ge_zero)
qed
lemma norm_cauchy_schwarz: inner \(x\) y norm \(x *\) norm \(y\)
    using Cauchy_Schwarz_ineq2 [of \(x y\) ] by auto
subclass real_normed_vector
proof
    fix \(a\) :: real and \(x y::{ }^{\prime} a\)
    show norm \(x=0 \longleftrightarrow x=0\)
        unfolding norm_eq_sqrt_inner by simp
        show norm \((x+y) \leq\) norm \(x+\) norm \(y\)
```

```
    proof (rule power2_le_imp_le)
        have inner x y \leqnorm x * norm y
        by (rule norm_cauchy_schwarz)
    thus (norm (x+y))}\mp@subsup{)}{}{2}\leq(\mathrm{ norm x + norm y)
        unfolding power2_sum power2_norm_eq_inner
        by (simp add: inner_add inner_commute)
    show 0}\leq\mathrm{ norm x + norm y
        unfolding norm_eq_sqrt_inner by simp
    qed
have sqrt (a}\mp@subsup{a}{}{2}*\mathrm{ inner x x ) = |a|* sqrt (inner x x )
    by (simp add: real_sqrt_mult)
    then show norm ( }a\mp@subsup{*}{R}{}x)=|a|*\mathrm{ norm x
    unfolding norm_eq_sqrt_inner
    by (simp add: power2_eq_square mult.assoc)
qed
end
lemma square_bound_lemma:
    fixes }x\mathrm{ :: real
    shows }x<(1+x)*(1+x
proof -
    have (x+1/2) 2}+3/4>
        using zero_le_power2[of x+1/2] by arith
    then show ?thesis
        by (simp add: field_simps power2_eq_square)
qed
lemma square_continuous:
    fixes e :: real
    shows }e>0\Longrightarrow\existsd.0<d\wedge(\forally.|y-x|<d\longrightarrow|y*y-x*x|<e
    using isCont_power[OF continuous_ident, of x, unfolded isCont_def LIM_eq, rule_format,
of e 2]
    by (force simp add: power2_eq_square)
lemma norm_le: norm x \leq norm y \longleftrightarrow inner x }x\leqinner y y
    by (simp add: norm_eq_sqrt_inner)
lemma norm_lt: norm x< norm y \longleftrightarrow inner x x < inner y y
    by (simp add: norm_eq_sqrt_inner)
lemma norm_eq: norm x = norm y \longleftrightarrow inner }x=\mathrm{ inner y y
    apply (subst order_eq_iff)
    apply (auto simp: norm_le)
    done
lemma norm_eq_1: norm x=1 \longleftrightarrow inner x x = 1
    by (simp add: norm_eq_sqrt_inner)
```

lemma inner＿divide＿left：
fixes a ：：＇a ：：\｛real＿inner，real＿div＿algebra $\}$
shows inner（ $a /$ of＿real m ）$b=($ inner $a b) / m$
by（metis（no＿types）divide＿inverse inner＿commute inner＿scaleR＿right mult．left＿neutral mult．right＿neutral mult＿scaleR＿right of＿real＿inverse scaleR＿conv＿of＿real times＿divide＿eq＿left）
lemma inner＿divide＿right：
fixes a ：：＇a ：：\｛real＿inner，real＿div＿algebra $\}$
shows inner $a(b /$ of＿real $m)=($ inner $a b) / m$
by（metis inner＿commute inner＿divide＿left）
Re－enable constraints for open，uniformity，dist，and norm．
setup 〈Sign．add＿const＿constraint
（const＿name 〈open〉，SOME typ ${ }^{\wedge} a::$ topological＿space set \Rightarrow bool〉）〉
setup 〈Sign．add＿const＿constraint
（const＿name＜uniformity），SOME typ $\left\langle\left({ }^{\prime} a::\right.\right.$ uniform＿space $\left.\times{ }^{\prime} a\right)$ filter $\left.\left.\rangle\right)\right\rangle$
setup 〈Sign．add＿const＿constraint
（const＿name $\langle d i s t\rangle, S O M E$ typ $\left.\left.\left.{ }^{\prime} a:: m e t r i c _s p a c e ~ \Rightarrow ' a \Rightarrow r e a l\right\rangle\right)\right\rangle$
setup 〈Sign．add＿const＿constraint
（const＿name $\left\langle\right.$ norm, SOME typ $\left\langle{ }^{\prime} a::\right.$ real＿normed＿vector \Rightarrow real $\left.)\right\rangle$
lemma bounded＿bilinear＿inner：
bounded＿bilinear（inner：：＇$a::$ real＿inner $\Rightarrow{ }^{\prime} a \Rightarrow$ real）
proof
fix $x y z:: ' a$ and $r::$ real
show inner $(x+y) z=$ inner $x z+$ inner $y z$ by（rule inner＿add＿left）
show inner $x(y+z)=$ inner $x y+$ inner $x z$ by（rule inner＿add＿right）
show inner（scale R r x ）$y=\operatorname{scaleR} r($ inner $x y)$ unfolding real＿scaleR＿def by（rule inner＿scaleR＿left）
show inner $x($ scale R ry）$=\operatorname{scaleR} r($ inner $x y)$
unfolding real＿scaleR＿def by（rule inner＿scaleR＿right）
show $\exists K . \forall x y::^{\prime} a$ ．norm（inner $x y$ ）\leq norm $x *$ norm $y * K$
proof show $\forall x y::^{\prime}$ a．norm（inner $x y$ ）\leq norm $x *$ norm $y * 1$
by（simp add：Cauchy＿Schwarz＿ineq2）
qed
qed
lemmas tendsto＿inner $[$ tendsto＿intros $]=$ bounded＿bilinear．tendsto［OF bounded＿bilinear＿inner］
lemmas isCont＿inner $[$ simp $]=$
bounded＿bilinear．isCont［OF bounded＿bilinear＿inner］

```
lemmas has_derivative_inner [derivative_intros] =
    bounded_bilinear.FDERIV [OF bounded_bilinear_inner]
lemmas bounded_linear_inner_left =
    bounded_bilinear.bounded_linear_left [OF bounded_bilinear_inner]
lemmas bounded_linear_inner_right =
    bounded_bilinear.bounded_linear_right [OF bounded_bilinear_inner]
lemmas bounded_linear_inner_left_comp = bounded_linear_inner_left[THEN bounded_linear_compose]
lemmas bounded_linear_inner_right_comp = bounded_linear_inner_right[THEN bounded_linear_compose]
lemmas has_derivative_inner_right [derivative_intros] =
    bounded_linear.has_derivative [OF bounded_linear_inner_right]
lemmas has_derivative_inner_left [derivative_intros] =
    bounded_linear.has_derivative [OF bounded_linear_inner_left]
lemma differentiable_inner [simp]:
    f differentiable (at x within s)\Longrightarrowgdifferentiable at x within s \Longrightarrow ( }\lambda\mathrm{ x. inner ( }
x) (gx)) differentiable at x within s
    unfolding differentiable_def by (blast intro: has_derivative_inner)
```


1.2.2 Class instances

instantiation real :: real_inner
begin
definition inner_real_def $[$ simp $]:$ inner $=(*)$
instance
proof
fix $x y z r$:: real
show inner $x y=$ inner $y x$ unfolding inner_real_def by (rule mult.commute)
show inner $(x+y) z=$ inner $x z+$ inner $y z$ unfolding inner_real_def by (rule distrib_right)
show inner (scaleR $r x$) $y=r *$ inner $x y$ unfolding inner_real_def real_scaleR_def by (rule mult.assoc)
show $0 \leq$ inner $x x$ unfolding inner_real_def by simp
show inner $x x=0 \longleftrightarrow x=0$ unfolding inner_real_def by simp
show norm $x=$ sqrt (inner $x x$) unfolding inner_real_def by simp
qed
end

```
lemma
    shows real_inner_1_left[simp]: inner 1 x = x
    and real_inner_1_right[simp]: inner x 1 =x
    by simp_all
instantiation complex :: real_inner
begin
definition inner_complex_def:
    inner x y = Rex*Re y + Im x*\operatorname{Im}y
instance
proof
    fix x y z :: complex and r :: real
    show inner x y = inner y }
        unfolding inner_complex_def by (simp add: mult.commute)
    show inner }(x+y)z=\mathrm{ inner }xz+\mathrm{ inner y z
        unfolding inner_complex_def by (simp add: distrib_right)
    show inner (scaleR r x) y =r* inner x y
        unfolding inner_complex_def by (simp add: distrib_left)
    show 0 \leq inner x x
        unfolding inner_complex_def by simp
    show inner }x\mathrm{ x }=0\longleftrightarrowx=
        unfolding inner_complex_def
        by (simp add: add_nonneg_eq_0_iff complex_eq_iff)
    show norm x = sqrt (inner x x)
        unfolding inner_complex_def norm_complex_def
        by (simp add: power2_eq_square)
qed
end
lemma complex_inner_1 [simp]: inner 1 x = Re x
    unfolding inner_complex_def by simp
lemma complex_inner_1_right [simp]: inner x 1 = Re x
    unfolding inner_complex_def by simp
lemma complex_inner_i_left [simp]: inner i x = Im x
    unfolding inner_complex_def by simp
lemma complex_inner_i_right [simp]: inner x i = Im x
    unfolding inner_complex_def by simp
lemma dot_square_norm: inner x x = (norm x )
    by (simp only: power2_norm_eq_inner)
```

```
lemma norm_eq_square: norm \(x=a \longleftrightarrow 0 \leq a \wedge\) inner \(x x=a^{2}\)
    by (auto simp add: norm_eq_sqrt_inner)
lemma norm_le_square: \(n o r m ~ x \leq a \longleftrightarrow 0 \leq a \wedge\) inner \(x \leq a^{2}\)
    apply (simp add: dot_square_norm abs_le_square_iff [symmetric])
    using norm_ge_zero[of \(x]\)
    apply arith
    done
```

lemma norm_ge_square: norm $x \geq a \longleftrightarrow a \leq 0 \vee$ inner $x \geq a^{2}$
apply (simp add: dot_square_norm abs_le_square_iff[symmetric])
using norm_ge_zero[of x]
apply arith
done
lemma norm_lt_square: norm $x<a \longleftrightarrow 0<a \wedge$ inner $x x<a^{2}$
by (metis not_le norm_ge_square)
lemma norm_gt_square: norm $x>a \longleftrightarrow a<0 \vee$ inner $x x>a^{2}$
by (metis norm_le_square not_less)

Dot product in terms of the norm rather than conversely.
lemmas inner_simps $=$ inner_add_left inner_add_right inner_diff_right inner_diff_left inner_scaleR_left inner_scaleR_right
lemma dot_norm: inner $x y=\left((\text { norm }(x+y))^{2}-(\text { norm } x)^{2}-(\text { norm } y)^{2}\right) / 2$ by (simp only: power2_norm_eq_inner inner_simps inner_commute) auto
lemma dot_norm_neg: inner $x y=\left(\left((\operatorname{norm} x)^{2}+(\operatorname{norm} y)^{2}\right)-(\operatorname{norm}(x-y))^{2}\right)$
/ 2
by (simp only: power2_norm_eq_inner inner_simps inner_commute) (auto simp add: algebra_simps)
lemma of_real_inner_1 [simp]:
inner (of_real x) ($1::$ ' a :: \{real_inner, real_normed_algebra_1 $\})=x$ by (simp add: of_real_def dot_square_norm)
lemma summable_of_real_iff:
summable (λx. of_real ($f x$) :: 'a :: \{real_normed_algebra_1,real_inner $\}$) \longleftrightarrow
summable f
proof
assume $*$: summable (λx. of_real ($f x$) :: 'a)
interpret bounded_linear $\lambda x::^{\prime} a$. inner $x 1$
by (rule bounded_linear_inner_left)
from summable $[O F *]$ show summable f by simp
qed (auto intro: summable_of_real)

1.2.3 Gradient derivative

definition

gderiv ::
$\left[{ }^{\prime} a::\right.$ real_inner \Rightarrow real, $\left.{ }^{\prime} a,{ }^{\prime} a\right] \Rightarrow$ bool

$$
((\operatorname{GDERIV}(-) /(-) /:>(-))[1000,1000,60] 60)
$$

where GDERIV $f x:>D \longleftrightarrow$ FDERIV $f x:>(\lambda h$. inner $h D)$
lemma gderiv_deriv [simp]: GDERIV f $x:>D \longleftrightarrow D E R I V f x:>D$
by (simp only: gderiv_def has_field_derivative_def inner_real_def mult_commute_abs)

```
lemma GDERIV_DERIV_compose:
    \llbracketGDERIV fx :> df;DERIV g (fx) :> dg\rrbracket
    CGDERIV (\lambdax.g (f x)) x :> scaleR dg df
    unfolding gderiv_def has_field_derivative_def
    apply (drule (1) has_derivative_compose)
    apply (simp add: ac_simps)
    done
```

lemma has_derivative_subst: $\llbracket F D E R I V f x:>d f ; d f=d \rrbracket \Longrightarrow F D E R I V f x:>d$
by simp
lemma GDERIV_subst: $\llbracket G D E R I V f x:>d f ; d f=d \rrbracket \Longrightarrow G D E R I V f x:>d$
by simp
lemma GDERIV_const: GDERIV ($\lambda x . k) x:>0$
unfolding gderiv_def inner_zero_right by (rule has_derivative_const)
lemma GDERIV_add:
$\llbracket G D E R I V f x:>d f ; G D E R I V g x:>d g \rrbracket$
$\Longrightarrow \operatorname{GDERIV}(\lambda x . f x+g x) x:>d f+d g$
unfolding gderiv_def inner_add_right by (rule has_derivative_add)
lemma GDERIV_minus:
GDERIV $f x:>d f \Longrightarrow G D E R I V(\lambda x .-f x) x:>-d f$
unfolding gderiv_def inner_minus_right by (rule has_derivative_minus)
lemma GDERIV_diff:
$\llbracket G D E R I V f x:>d f ; G D E R I V g x:>d g \rrbracket$
$\Longrightarrow \operatorname{GDERIV}(\lambda x . f x-g x) x:>d f-d g$
unfolding gderiv_def inner_diff_right by (rule has_derivative_diff)
lemma GDERIV_scaleR:
$\llbracket D E R I V f x:>d f ; G D E R I V g x:>d g \rrbracket$
$\Longrightarrow \operatorname{GDERIV}(\lambda x$. scaleR $(f x)(g x)) x$
$:>(\operatorname{scale} R(f x) d g+$ scale $R d f(g x))$
unfolding gderiv_def has_field_derivative_def inner_add_right inner_scaleR_right
apply (rule has_derivative_subst)
apply (erule (1) has_derivative_scaleR)

```
apply (simp add: ac_simps)
done
lemma GDERIV_mult:
    \llbracketGDERIV f x :> df;GDERIV g x :> dg\rrbracket
    \Longrightarrow G D E R I V ~ ( \lambda x . f x * g x ) x : > ~ s c a l e R ~ ( f x ) d g + s c a l e R ~ ( g x ) d f
    unfolding gderiv_def
    apply (rule has_derivative_subst)
    apply (erule (1) has_derivative_mult)
    apply (simp add: inner_add ac_simps)
    done
lemma GDERIV_inverse:
        \llbracketGDERIV f x :> df; fx\not=0\rrbracket
        CGERIV (\lambdax. inverse (f x)) x :> - (inverse (fx) )}\mp@subsup{)}{}{*}\mp@subsup{*}{R}{}d
    by (metis DERIV_inverse GDERIV_DERIV_compose numerals(2))
lemma GDERIV_norm:
    assumes }x\not=0\mathrm{ shows GDERIV ( }\lambdax\mathrm{ . norm x) x :> sgn x
        unfolding gderiv_def norm_eq_sqrt_inner
        by (rule derivative_eq_intros | force simp add: inner_commute sgn_div_norm
norm_eq_sqrt_inner assms)+
lemmas has_derivative_norm = GDERIV_norm [unfolded gderiv_def]
bundle inner_syntax begin
notation inner (infix • 70)
end
bundle no_inner_syntax begin
no_notation inner (infix • 70)
end
end
```


1.3 Cartesian Products as Vector Spaces

theory Product_Vector imports Complex_Main HOL-Library.Product_Plus
begin
lemma Times_eq_image_sum:
fixes S :: ' a :: comm_monoid_add set and $T::{ }^{\prime} b::$ comm_monoid_add set shows $S \times T=\{u+v \mid u v . u \in(\lambda x .(x, 0)) ' S \wedge v \in \operatorname{Pair} 0 ' T\}$
by force

1.3.1 Product is a Module

locale module_prod $=$ module_pair begin
definition scale :: ' $a \Rightarrow{ }^{\prime} b \times{ }^{\prime} c \Rightarrow{ }^{\prime} b \times{ }^{\prime} c$
where scale a $v=(s 1 a(f s t v)$, s2 a (snd $v))$
lemma scale_prod: scale $x(a, b)=(s 1 x a, s 2 x b)$
by (auto simp: scale_def)
sublocale p : module scale
proof qed (simp_all add: scale_def
m1.scale_left_distrib m1.scale_right_distrib m2.scale_left_distrib m2.scale_right_distrib)
lemma subspace_Times: m1.subspace $A \Longrightarrow$ m2.subspace $B \Longrightarrow$ p.subspace $(A \times$ B)
unfolding m1.subspace_def m2.subspace_def p.subspace_def by (auto simp: zero_prod_def scale_def)
lemma module_hom_fst: module_hom scale s1 fst
by unfold_locales (auto simp: scale_def)
lemma module_hom_snd: module_hom scale s2 snd
by unfold_locales (auto simp: scale_def)
end
locale vector_space_prod $=$ vector_space_pair begin
sublocale module_prod s1 s2
rewrites module_hom $=$ Vector_Spaces.linear
by unfold_locales (fact module_hom_eq_linear)
sublocale p : vector_space scale by unfold_locales (auto simp: algebra_simps)
lemmas linear_fst $_{-}=$module_hom_fst
and linear_snd $=$ module_hom_snd
end

1.3.2 Product is a Real Vector Space

instantiation prod :: (real_vector, real_vector) real_vector
begin
definition scaleR_prod_def:
scale R r A $=($ scale $r(f s t A)$, scaleR $r($ snd $A))$
lemma fst_scale $R[$ simp $]:$ fst (scaleR r A) $=$ scaleR $r(f s t A)$
unfolding scaleR_prod_def by simp

```
lemma snd_scaleR [simp]: snd (scaleR r A) \(=\operatorname{scaleR} \operatorname{r}(\) snd A)
    unfolding scaleR_prod_def by simp
proposition scaleR_Pair [simp]: scaleR r \((a, b)=(\) scaleR ra, scaleR rb \()\)
    unfolding scaleR_prod_def by simp
instance
proof
    fix \(a b::\) real and \(x y::{ }^{\prime} a \times{ }^{\prime} b\)
    show scale \(R a(x+y)=\) scaleR \(a x+\) scaleR a \(y\)
        by (simp add: prod_eq_iff scaleR_right_distrib)
    show scale \(R(a+b) x=\) scaleR \(a x+\) scaleR \(b x\)
        by (simp add: prod_eq_iff scaleR_left_distrib)
    show scaleR a \((\) scale \(R b x)=\operatorname{scaleR}(a * b) x\)
        by (simp add: prod_eq_iff)
    show scaleR \(1 x=x\)
        by (simp add: prod_eq_iff)
qed
end
lemma module_prod_scale_eq_scaleR: module_prod.scale \(\left(*_{R}\right)\left(*_{R}\right)=s c a l e R\)
    apply (rule ext) apply (rule ext)
    apply (subst module_prod.scale_def)
    subgoal by unfold_locales
    by (simp add: scaleR_prod_def)
interpretation real_vector?: vector_space_prod scale \(R::_{-} \Rightarrow_{-} \Rightarrow^{\prime} a::\) real_vector scale \(R:: \boldsymbol{A}_{-} \Rightarrow_{-}{ }^{\prime} b::\) real_vector
    rewrites scale \(=\left(\left(*_{R}\right):: \Rightarrow_{-} \Rightarrow\left({ }^{\prime} a \times{ }^{\prime} b\right)\right)\)
        and module.dependent \(\left(*_{R}\right)=\) dependent
        and module.representation \(\left(*_{R}\right)=\) representation
        and module.subspace \(\left(*_{R}\right)=\) subspace
        and module.span \(\left(*_{R}\right)=\) span
        and vector_space.extend_basis \(\left(*_{R}\right)=\) extend_basis
        and vector_space.dim \(\left(*_{R}\right)=\operatorname{dim}\)
        and Vector_Spaces.linear \(\left(*_{R}\right)\left(*_{R}\right)=\) linear
    subgoal by unfold_locales
    subgoal by (fact module_prod_scale_eq_scaleR)
    unfolding dependent_raw_def representation_raw_def subspace_raw_def span_raw_def
        extend_basis_raw_def dim_raw_def linear_def
    by (rule refl) +
```


1.3.3 Product is a Metric Space

instantiation prod :: (metric_space, metric_space) dist
begin
definition dist_prod_def[code del]:

```
dist x y = sqrt ((dist (fst x) (fst y))}\mp@subsup{)}{}{2}+(\mathrm{ dist (snd x) (snd y))}\mp@subsup{)}{}{2}
instance ..
end
instantiation prod :: (metric_space, metric_space) uniformity_dist
begin
definition [code del]:
    (uniformity :: (('a > 'b) < ('a > 'b)) filter) =
        (INF e\in{0<..}.principal {(x,y). dist x y <e})
instance
    by standard (rule uniformity_prod_def)
end
declare uniformity_Abort[where ' }a=\mp@subsup{=}{}{\prime}a\mathrm{ :: metric_space × ' b :: metric_space, code]
instantiation prod :: (metric_space, metric_space) metric_space
begin
proposition dist_Pair_Pair: dist (a,b) (c,d) =sqrt ((dist a c) 2}+(\begin{array}{llcrl}{\mathrm{ d d d )}}\end{array}
    unfolding dist_prod_def by simp
lemma dist_fst_le:dist (fst x) (fst y) \leq dist x y
    unfolding dist_prod_def by (rule real_sqrt_sum_squares_ge1)
lemma dist_snd_le: dist (snd x) (snd y) \leq dist x y
    unfolding dist_prod_def by (rule real_sqrt_sum_squares_ge2)
instance
proof
    fix }xy:: 'a\times'
    show dist }xy=0\longleftrightarrowx=
        unfolding dist_prod_def prod_eq_iff by simp
next
    fix x y z :: 'a > 'b
    show dist x y\leqdist xz+dist yz
        unfolding dist_prod_def
        by (intro order_trans [OF _ real_sqrt_sum_squares_triangle_ineq]
            real_sqrt_le_mono add_mono power_mono dist_triangle2 zero_le_dist)
next
    fix S :: (' }a\times\mp@subsup{}{}{\prime}b) se
    have *: open S \longleftrightarrow(\forallx\inS.\existse>0.\forally. dist y x<e\longrightarrowy\inS)
    proof
        assume open S show }\forallx\inS.\existse>0.\forally. dist y x<e < y f 
        proof
            fix x assume x GS
            obtain A B where open A open B x}\inA\timesBA\timesB\subseteq
```

```
    using <open S` and }\langlex\inS\rangle by (rule open_prod_elim
    obtain r where r: 0<r\forally. dist y (fst x)<r\longrightarrowy\inA
    using <open A}\mathrm{ \ and <x 位 < B unfolding open_dist by auto
    obtain s where s: 0<s\forally. dist y (snd x)<s\longrightarrowy\inB
    using <open }B\mathrm{ ` and }\langlex\inA\timesB\rangle\mathrm{ unfolding open_dist by auto
    let ?e = min rs
    have 0<?e ^(\forally. dist y x<?e }\longrightarrowy\inS
    proof (intro allI impI conjI)
    show 0<min rs by (simp add: r(1) s(1))
    next
    fix y assume dist y x<min rs
    hence dist y x<r and dist y x<s
        by simp_all
    hence dist (fst y) (fst x) <r and dist (snd y) (snd x) < s
        by (auto intro:le_less_trans dist_fst_le dist_snd_le)
    hence fst }y\inA\mathrm{ and snd }y\in
        by (simp_all add: r(2) s(2))
    hence }y\inA\timesB\mathrm{ by (induct y, simp)
    with }\langleA\timesB\subseteqS\rangle\mathrm{ show }y\inS.
    qed
    thus \existse>0.\forally. dist y x<e\longrightarrowy G S ..
    qed
next
    assume *: }\forallx\inS.\existse>0.\forally. dist y x<e\longrightarrowy\inS show open 
    proof (rule open_prod_intro)
    fix x assume x 
    then obtain e where 0<e and S:\forally. dist y x<e\longrightarrowy\inS
        using * by fast
    define r where r=e/sqrt 2
    define s where s=e/ sqrt 2
    from <0<e〉 have 0<r and 0<s
        unfolding r_def s_def by simp_all
    from }\langle0<e\rangle\mathrm{ have }e=\operatorname{sqrt}(\mp@subsup{r}{}{2}+\mp@subsup{s}{}{2}
        unfolding r_def s_def by (simp add: power_divide)
    define }A\mathrm{ where }A={y\mathrm{ . dist (fst x) y<r}
    define B where B={y.dist (snd x) y<s}
    have open A and open B
        unfolding A_def B_def by (simp_all add: open_ball)
    moreover have }x\inA\times
        unfolding A_def B_def mem_Times_iff
        using }\langle0<r\rangle\mathrm{ and }\langle0<s\rangle\mathrm{ by simp
    moreover have A}\timesB\subseteq
    proof (clarify)
    fix ab assume }a\inA\mathrm{ and }b\in
    hence dist a (fst x)<r and dist b (snd x)<s
        unfolding A_def B_def by (simp_all add:dist_commute)
        hence dist (a,b) x<e
            unfolding dist_prod_def <e =sqrt ( }\mp@subsup{r}{}{2}+\mp@subsup{s}{}{2})
            by (simp add: add_strict_mono power_strict_mono)
```

```
            thus (a,b) \inS
            by (simp add: S)
        qed
        ultimately show }\existsAB\mathrm{ . open }A\wedge\mathrm{ open }B\wedgex\inA\timesB\wedgeA\timesB\subseteqS\mathrm{ by
fast
        qed
    qed
    show open S =(\forallx\inS.\forall}\mp@subsup{|}{F}{}(\mp@subsup{x}{}{\prime},y)\mathrm{ in uniformity. }\mp@subsup{x}{}{\prime}=x\longrightarrowy\inS
        unfolding * eventually_uniformity_metric
        by (simp del: split_paired_All add: dist_prod_def dist_commute)
qed
end
declare [[code abort: dist::('a::metric_space*'b::metric_space) =('a*'b) = real]]
lemma Cauch_fsst: Cauchy X C Cauchy (\lambdan.fst (X n))
    unfolding Cauchy_def by (fast elim: le_less_trans [OF dist_fst_le])
lemma Cauchy_snd: Cauchy X Cauchy (\lambdan. snd (X n))
    unfolding Cauchy_def by (fast elim: le_less_trans [OF dist_snd_le])
lemma Cauchy_Pair:
    assumes Cauchy X and Cauchy Y
    shows Cauchy (\lambdan.(X n, Y n))
proof (rule metric_CauchyI)
    fix r :: real assume 0<r
    hence 0<r / sqrt 2 (is 0<?s) by simp
    obtain M where M:\forallm\geqM.\foralln\geqM. dist (X m) (X n)<?s
        using metric_CauchyD [OF \Cauchy X`\langle0< ?S\] ..
    obtain N where N:\forallm\geqN.\foralln\geqN.dist (Ym) (Yn)<?s
        using metric_CauchyD [OF \Cauchy Y> <0< ?s>].
    have }\forallm\geq\operatorname{max MN.}\foralln\geqmax MN. dist (Xm,Ym) (X n,Yn)<
        using MN by (simp add: real_sqrt_sum_squares_less dist_Pair_Pair)
    then show \existsn0.\forallm\geqn0.\foralln\geqn0. dist (X m,Y m) (X n,Y n)<r..
qed
```


1．3．4 Product is a Complete Metric Space

```
instance prod ：：（complete＿space，complete＿space）complete＿space proof
fix \(X\) ：：nat \(\Rightarrow{ }^{\prime} a \times{ }^{\prime} b\) assume Cauchy \(X\)
have 1：\((\lambda n . f s t(X n)) \longrightarrow \lim (\lambda n . f s t(X n))\)
using Cauchy＿fst［OF 〈Cauchy X〉］
by（simp add：Cauchy＿convergent＿iff convergent＿LIMSEQ＿iff）
have 2：\((\lambda n\) ．snd \((X n)) \longrightarrow \lim (\lambda n\) ．snd \((X n))\)
using Cauchy＿snd［OF 〈Cauchy X〉］
by（simp add：Cauchy＿convergent＿iff convergent＿LIMSEQ＿iff）
have \(X \longrightarrow(\lim (\lambda n . f s t(X n)), \lim (\lambda n\). snd \((X n)))\)
```

```
    using tendsto_Pair [OF 1 2] by simp
    then show convergent X
    by (rule convergentI)
qed
```


1.3.5 Product is a Normed Vector Space

instantiation prod :: (real_normed_vector, real_normed_vector) real_normed_vector begin
definition norm_prod_def $[$ code del]:
norm $x=\operatorname{sqrt}\left((\text { norm }(\text { fst } x))^{2}+(\operatorname{norm}(\text { snd } x))^{2}\right)$
definition sgn_prod_def:
$\operatorname{sgn}\left(x::^{\prime} a \times\right.$ ' $\left.b\right)=\operatorname{scale} R($ inverse $($ norm $x)) x$
proposition norm_Pair: norm $(a, b)=\operatorname{sqrt}\left((\text { norm } a)^{2}+(\text { norm } b)^{2}\right)$
unfolding norm_prod_def by simp
instance
proof
fix $r::$ real and $x y::{ }^{\prime} a \times{ }^{\prime} b$
show norm $x=0 \longleftrightarrow x=0$
unfolding norm_prod_def
by (simp add: prod_eq_iff)
show norm $(x+y) \leq$ norm $x+$ norm y
unfolding norm_prod_def
apply (rule order_trans [OF _ real_sqrt_sum_squares_triangle_ineq])
apply (simp add: add_mono power_mono norm_triangle_ineq)
done
show norm (scaleR r x) $=|r| *$ norm x
unfolding norm_prod_def
apply (simp add: power_mult_distrib)
apply (simp add: distrib_left [symmetric])
apply (simp add: real_sqrt_mult)
done
show $\operatorname{sgn} x=$ scale $R($ inverse $($ norm $x)) x$ by (rule sgn_prod_def)
show dist $x y=\operatorname{norm}(x-y)$
unfolding dist_prod_def norm_prod_def
by (simp add: dist_norm)
qed
end
declare [[code abort: norm::('a::real_normed_vector*'b::real_normed_vector) \Rightarrow real]]
instance prod :: (banach, banach) banach ..

```
Pair operations are linear
lemma bounded_linear_fst: bounded_linear fst
    using fst_add fst_scaleR
    by (rule bounded_linear_intro [where K=1], simp add: norm_prod_def)
lemma bounded_linear_snd: bounded_linear snd
    using snd_add snd_scaleR
    by (rule bounded_linear_intro [where K=1], simp add: norm_prod_def)
lemmas bounded_linear_fst_comp = bounded_linear_fst[THEN bounded_linear_compose]
lemmas bounded_linear_snd_comp = bounded_linear_snd[THEN bounded_linear_compose]
lemma bounded_linear_Pair:
    assumes f:bounded_linear f
    assumes g: bounded_linear g
    shows bounded_linear ( }\lambdax.(fx,gx)
proof
    interpret f: bounded_linear f by fact
    interpret g: bounded_linear g}\mathrm{ by fact
    fix }x\mathrm{ y and }r\mathrm{ :: real
    show }(f(x+y),g(x+y))=(fx,gx)+(fy,gy
        by (simp add: f.add g.add)
    show (f(r**R x),g(r**R x)) =r*R
        by (simp add: f.scale g.scale)
    obtain Kf where 0<Kf and norm_f: \x. norm (f x) \leqnorm x *Kf
        using f.pos_bounded by fast
    obtain Kg where 0<Kg and norm_g: \x.norm (g x) \leqnorm x * Kg
        using g.pos_bounded by fast
    have \forallx.norm (fx,gx)\leqnorm x* (Kf +Kg)
        apply (rule allI)
        apply (simp add: norm_Pair)
        apply (rule order_trans [OF sqrt_add_le_add_sqrt], simp, simp)
        apply (simp add: distrib_left)
        apply (rule add_mono [OF norm_f norm_g])
        done
    then show }\exists\textrm{K}.\forallx.\operatorname{norm}(fx,gx)\leqnorm x*K.
qed
```


Frechet derivatives involving pairs

proposition has_derivative_Pair [derivative_intros]:
assumes f : (f has_derivative $\left.f^{\prime}\right)($ at x within $s)$ and $g:\left(g\right.$ has_derivative $\left.g^{\prime}\right)($ at x within $s)$
shows $\left((\lambda x .(f x, g x))\right.$ has_derivative $\left.\left(\lambda h .\left(f^{\prime} h, g^{\prime} h\right)\right)\right)($ at x within $s)$
proof (rule has_derivativeI_sandwich[of 1])
show bounded_linear $\left(\lambda h .\left(f^{\prime} h, g^{\prime} h\right)\right)$
using $f g$ by (intro bounded_linear_Pair has_derivative_bounded_linear)
let ? $R f=\lambda y . f y-f x-f^{\prime}(y-x)$
let $? R g=\lambda y . g y-g x-g^{\prime}(y-x)$
let $? R=\lambda y$. $\left((f y, g y)-(f x, g x)-\left(f^{\prime}(y-x), g^{\prime}(y-x)\right)\right)$
show $((\lambda y$. norm $(? R f y) / \operatorname{norm}(y-x)+\operatorname{norm}(? R g y) / \operatorname{norm}(y-x))$
$\longrightarrow 0)($ at x within $s)$
using $f g$ by (intro tendsto_add_zero) (auto simp: has_derivative_iff_norm)
fix $y::$ ' a assume $y \neq x$
show norm $(? R y) / \operatorname{norm}(y-x) \leq$ norm $(? R f y) / \operatorname{norm}(y-x)+$ norm (?Rg y) / norm ($y-x$)
unfolding add_divide_distrib [symmetric]
by (simp add: norm_Pair divide_right_mono order_trans [OF sqrt_add_le_add_sqrt]) qed simp
lemma differentiable_Pair [simp, derivative_intros]:
f differentiable at x within $s \Longrightarrow g$ differentiable at x within $s \Longrightarrow$
(λx. $(f x, g x)$) differentiable at x within s
unfolding differentiable_def by (blast intro: has_derivative_Pair)
lemmas has_derivative_fst $[$ derivative_intros $]=$ bounded_linear.has_derivative $[$ OF bounded_linear_fst]
lemmas has_derivative_snd $[$ derivative_intros $]=$ bounded_linear.has_derivative $[$ OF
bounded_linear_snd]
lemma has_derivative_split [derivative_intros]:
$\left((\lambda p . f(f s t p)(\right.$ snd $p))$ has_derivative $\left.f^{\prime}\right) F \Longrightarrow((\lambda(a, b) . f a b)$ has_derivative
$\left.f^{\prime}\right) F$
unfolding split_beta ${ }^{\prime}$.

Vector derivatives involving pairs

lemma has_vector_derivative_Pair[derivative_intros]:
assumes (f has_vector_derivative f^{\prime}) (at x within $\left.s\right)$
(g has_vector_derivative g^{\prime}) (at x within s)
shows $\left((\lambda x .(f x, g x))\right.$ has_vector_derivative $\left.\left(f^{\prime}, g^{\prime}\right)\right)($ at x within $s)$
using assms
by (auto simp: has_vector_derivative_def intro!: derivative_eq_intros)

lemma

fixes x :: 'a::real_normed_vector
shows norm_Pair1 [simp]: norm $(0, x)=$ norm x
and norm_Pair2 [simp]: norm $(x, 0)=$ norm x
by (auto simp: norm_Pair)
lemma norm_commute: norm $(x, y)=$ norm (y, x)
by (simp add: norm_Pair)
lemma norm_fst_le: $n o r m x \leq n o r m ~(x, y)$
by (metis dist_fst_le fst_conv fst_zero norm_conv_dist)

```
lemma norm_snd_le: norm \(y \leq n o r m ~(x, y)\)
    by (metis dist_snd_le snd_conv snd_zero norm_conv_dist)
```

```
lemma norm_Pair_le:
    shows norm \((x, y) \leq\) norm \(x+\) norm \(y\)
    unfolding norm_Pair
    by (metis norm_ge_zero sqrt_sum_squares_le_sum)
```

```
lemma (in vector_space_prod) span_Times_sing1: p.span \((\{0\} \times B)=\{0\} \times\)
vs2.span B
    apply (rule p.span_unique)
    subgoal by (auto intro!: vs1.span_base vs2.span_base)
    subgoal using vs1.subspace_single_0 vs2.subspace_span by (rule subspace_Times)
    subgoal for \(T\)
    proof safe
        fix \(b\)
        assume subset_T: \(\{0\} \times B \subseteq T\) and subspace: p.subspace \(T\) and \(b_{\text {_span }} b \in\)
vs2.span B
            then obtain \(t r\) where \(b: b=\left(\sum a \in t . r a * b a\right)\) and \(t:\) finite \(t t \subseteq B\)
            by (auto simp: vs2.span_explicit)
        have \((0, b)=\left(\sum b \in t\right.\). scale \(\left.(r b)(0, b)\right)\)
            unfolding \(b\) scale_prod sum_prod
            by \(\operatorname{simp}\)
        also have \(\ldots \in T\)
            using \(\langle t \subseteq B\rangle\) subset_T
            by (auto intro!: p.subspace_sum p.subspace_scale subspace)
        finally show \((0, b) \in T\).
    qed
    done
```

lemma (in vector_space_prod) span_Times_sing2: p.span $(A \times\{0\})=v s 1 . s p a n A$
$\times\{0\}$
apply (rule p.span_unique)
subgoal by (auto intro!: vs1.span_base vs2.span_base)
subgoal using vs1.subspace_span vs2.subspace_single_0 by (rule subspace_Times)
subgoal for T
proof safe
fix a
assume subset_T: $A \times\{0\} \subseteq T$ and subspace: p.subspace T and a_span: $a \in$
vs1.span A
then obtain $t r$ where $a: a=\left(\sum a \in t . r a * a a\right)$ and t : finite $t t \subseteq A$
by (auto simp: vs1.span_explicit)
have $(a, 0)=\left(\sum a \in t\right.$. scale $\left.(r a)(a, 0)\right)$
unfolding a scale_prod sum_prod
by simp
also have $\ldots \in T$
using $\langle t \subseteq A\rangle$ subset_T
by (auto intro!: p.subspace_sum p.subspace_scale subspace)

```
    finally show \((a, 0) \in T\).
qed
done
```


1.3.6 Product is Finite Dimensional

lemma (in finite_dimensional_vector_space) zero_not_in_Basis[simp]: $0 \notin$ Basis using dependent_zero local.independent_Basis by blast
locale finite_dimensional_vector_space_prod $=$ vector_space_prod + finite_dimensional_vector_space_pair begin
definition Basis_pair $=B 1 \times\{0\} \cup\{0\} \times B 2$
sublocale p: finite_dimensional_vector_space scale Basis_pair
proof unfold_locales
show finite Basis_pair
by (auto intro!: finite_cartesian_product vs1.finite_Basis vs2.finite_Basis simp:
Basis_pair_def)
show p.independent Basis_pair
unfolding p.dependent_def Basis_pair_def
proof safe
fix a
assume $a: a \in B 1$
assume $(a, 0) \in p . \operatorname{span}(B 1 \times\{0\} \cup\{0\} \times B 2-\{(a, 0)\})$
also have $B 1 \times\{0\} \cup\{0\} \times B 2-\{(a, 0)\}=(B 1-\{a\}) \times\{0\} \cup\{0\} \times$
B2
by auto
finally show False
using a vs1.dependent_def vs1.independent_Basis
by (auto simp: p.span_Un span_Times_sing1 span_Times_sing2)
next
fix b
assume $b: b \in B 2$
assume $(0, b) \in p . \operatorname{span}(B 1 \times\{0\} \cup\{0\} \times B 2-\{(0, b)\})$
also have $(B 1 \times\{0\} \cup\{0\} \times B 2-\{(0, b)\})=B 1 \times\{0\} \cup\{0\} \times(B 2-$
$\{b\})$
by auto
finally show False
using b vs2.dependent_def vs2.independent_Basis
by (auto simp: p.span_Un span_Times_sing1 span_Times_sing2)
qed
show p.span Basis_pair $=$ UNIV
by (auto simp: p.span_Un span_Times_sing2 span_Times_sing1 vs1.span_Basis vs2.span_Basis

Basis_pair_def)
qed
proposition dim_Times:

```
    assumes vs1.subspace \(S\) vs2.subspace \(T\)
    shows \(p \cdot \operatorname{dim}(S \times T)=\) vs1.dim \(S+v s 2 . \operatorname{dim} T\)
proof -
    interpret p1: Vector_Spaces.linear s1 scale \((\lambda x .(x, 0))\)
        by unfold_locales (auto simp: scale_def)
    interpret pair1: finite_dimensional_vector_space_pair (*a) B1 scale Basis_pair
        by unfold_locales
    interpret p2: Vector_Spaces.linear s2 scale \((\lambda x .(0, x))\)
        by unfold_locales (auto simp: scale_def)
    interpret pair2: finite_dimensional_vector_space_pair (*b) B2 scale Basis_pair
        by unfold_locales
    have ss: p.subspace \(((\lambda x .(x, 0))\) ' \(S\) ) p.subspace (Pair 0'T)
        by (rule p1.subspace_image p2.subspace_image assms)+
    have \(p \cdot \operatorname{dim}(S \times T)=p \cdot \operatorname{dim}(\{u+v \mid u v \cdot u \in(\lambda x .(x, 0)) ' S \wedge v \in \operatorname{Pair} 0\) '
T\})
        by (simp add: Times_eq_image_sum)
    moreover have \(p \cdot \operatorname{dim}\left(\left(\lambda x .\left(x, 0::^{\prime} c\right)\right) ' S\right)=v s 1 . \operatorname{dim} S\) p.dim (Pair \(\left(0::^{\prime} b\right) ‘\)
\(T)=v s 2 \cdot \operatorname{dim} T\)
    by (simp_all add: inj_on_def p1.linear_axioms pair1.dim_image_eq p2.linear_axioms
pair2.dim_image_eq)
    moreover have \(p \cdot \operatorname{dim}((\lambda x .(x, 0))\) ' \(S \cap \operatorname{Pair} 0 ‘ T)=0\)
        by (subst \(p\).dim_eq_0) auto
    ultimately show ?thesis
        using p.dim_sums_Int [OF ss] by linarith
qed
lemma dimension_pair: p.dimension \(=\) vs1.dimension + vs2.dimension
    using dim_Times[OF vs1.subspace_UNIV vs2.subspace_UNIV]
    by (auto simp: p.dimension_def vs1.dimension_def vs2.dimension_def)
end
end
```


1.4 Finite-Dimensional Inner Product Spaces

theory Euclidean_Space
imports
L2_Norm
Inner_Product
Product_Vector
begin

1.4.1 Interlude: Some properties of real sets

lemma seq_mono_lemma:
assumes $\forall(n:: n a t) \geq m$. $(d n::$ real $)<e n$
and $\forall n \geq m$. e $n \leq e m$
shows $\forall n \geq m$. $d n<e m$
using assms by force

1.4.2 Type class of Euclidean spaces

```
class euclidean_space = real_inner +
    fixes Basis :: 'a set
    assumes nonempty_Basis [simp]: Basis }\not={
    assumes finite_Basis [simp]: finite Basis
    assumes inner_Basis:
        |u\inBasis;v\inBasis\rrbracket\Longrightarrow inner }uv=(\mathrm{ if }u=v\mathrm{ then 1 else 0)
    assumes euclidean_all_zero_iff:
        (\forallu\inBasis. inner x u=0) \longleftrightarrow(x=0)
syntax _type_dimension :: type }=>\mathrm{ nat ((1DIM/(1'(_-))))
translations DIM('a) \rightharpoonup CONST card (CONST Basis :: 'a set)
typed_print_translation
    [(const_syntax <card\rangle,
    fn ctxt => fn_ => fn [Const (const_syntax <Basis), Type (type_name <set),
[T]))] =>
    Syntax.const syntax_const<_type_dimension` $ Syntax_Phases.term_of_typ
ctxt T)]
,
lemma (in euclidean_space) norm_Basis[simp]: u \in Basis \Longrightarrow norm u=1
    unfolding norm_eq_sqrt_inner by (simp add: inner_Basis)
lemma (in euclidean_space) inner_same_Basis[simp]:u B Basis \Longrightarrow inner u u=
1
    by (simp add: inner_Basis)
lemma (in euclidean_space) inner_not_same_Basis:u\in Basis \Longrightarrowv\in Basis \Longrightarrow
u}=v\Longrightarrow inner u v=
    by (simp add: inner_Basis)
lemma (in euclidean_space) sgn_Basis:u\in Basis \Longrightarrow sgn u=u
    unfolding sgn_div_norm by (simp add: scaleR_one)
lemma (in euclidean_space) Basis_zero [simp]: 0 # Basis
proof
    assume 0 \in Basis thus False
        using inner_Basis [of 0 0] by simp
qed
lemma (in euclidean_space) nonzero_Basis: }u\in\mathrm{ Basis \u}=
    by clarsimp
lemma (in euclidean_space) SOME_Basis: (SOME i. i \in Basis) \in Basis
    by (metis ex_in_conv nonempty_Basis someI_ex)
```

lemma norm_some_Basis $[$ simp $]:$ norm (SOME i. $i \in$ Basis $)=1$
by (simp add: SOME_Basis)
lemma (in euclidean_space) inner_sum_left_Basis[simp]:
$b \in$ Basis \Longrightarrow inner $\left(\sum i \in\right.$ Basis. $\left.f i *_{R} i\right) b=f b$
by (simp add: inner_sum_left inner_Basis if_distrib comm_monoid_add_class.sum.If_cases)
lemma (in euclidean_space) euclidean_eqI:
assumes $b: \bigwedge b . b \in$ Basis \Longrightarrow inner $x b=$ inner $y b$ shows $x=y$
proof -
from b have $\forall b \in$ Basis. inner $(x-y) b=0$
by (simp add: inner_diff_left)
then show $x=y$ by (simp add: euclidean_all_zero_iff)
qed
lemma (in euclidean_space) euclidean_eq_iff:
$x=y \longleftrightarrow(\forall b \in$ Basis. inner $x b=$ inner $y b)$
by (auto intro: euclidean_eqI)
lemma (in euclidean_space) euclidean_representation_sum:
$\left(\sum i \in\right.$ Basis. $\left.f i *_{R} i\right)=b \longleftrightarrow(\forall i \in$ Basis. $f i=$ inner $b i)$
by (subst euclidean_eq_iff) simp
lemma (in euclidean_space) euclidean_representation_sum':
$b=\left(\sum i \in\right.$ Basis. $\left.f i *_{R} i\right) \longleftrightarrow(\forall i \in$ Basis. $f i=$ inner $b i)$
by (auto simp add: euclidean_representation_sum[symmetric])
lemma (in euclidean_space) euclidean_representation: ($\sum \mathrm{b} \in$ Basis. inner $x b *_{R}$
b) $=x$
unfolding euclidean_representation_sum by simp
lemma (in euclidean_space) euclidean_inner: inner $x y=\left(\sum b \in\right.$ Basis. (inner $\left.x b\right)$

* (inner y b))
by (subst (1 2) euclidean_representation [symmetric])
(simp add: inner_sum_right inner_Basis ac_simps)
lemma (in euclidean_space) choice_Basis_iff:
fixes P :: ' $a \Rightarrow$ real \Rightarrow bool
shows $(\forall i \in$ Basis. $\exists x . P i x) \longleftrightarrow(\exists x . \forall i \in$ Basis. $P i($ inner $x i))$
unfolding bchoice_iff
proof safe
fix f assume $\forall i \in$ Basis. $P i(f i)$
then show $\exists x . \forall i \in$ Basis. $P i($ inner $x i)$
by (auto intro!: exI[of - $\sum i \in$ Basis. $\left.f i *_{R} i\right]$)
qed auto
lemma (in euclidean_space) bchoice_Basis_iff:
fixes P :: ' $a \Rightarrow$ real \Rightarrow bool
shows $(\forall i \in$ Basis. $\exists x \in A . P i x) \longleftrightarrow(\exists x . \forall i \in$ Basis. inner $x i \in A \wedge P i$ (inner $x i)$)
by (simp add: choice_Basis_iff Bex_def)
lemma (in euclidean_space) euclidean_representation_sum_fun:
$\left(\lambda x . \sum b \in\right.$ Basis. inner $\left.(f x) b *_{R} b\right)=f$
by (rule ext) (simp add: euclidean_representation_sum)
lemma euclidean_isCont:
assumes $\bigwedge b . b \in$ Basis \Longrightarrow isCont $\left(\lambda x\right.$. $\operatorname{\text {inner}(fx)b)*_{R}b)x}$
shows isCont $f x$
apply (subst euclidean_representation_sum_fun [symmetric])
apply (rule isCont_sum)
apply (blast intro: assms)
done
lemma DIM_positive [simp]: $0<$ DIM ('a::euclidean_space)
by (simp add: card_gt_0_iff)
lemma DIM_ge_Suc0 [simp]: Suc $0 \leq$ card Basis
by (meson DIM_positive Suc_leI)
lemma sum_inner_Basis_scaleR [simp]:
fixes $f::$ 'a::euclidean_space \Rightarrow 'b::real_vector
assumes $b \in$ Basis shows $\left(\sum i \in\right.$ Basis. (inner $\left.\left.i b\right) *_{R} f i\right)=f b$
by (simp add: comm_monoid_add_class.sum.remove [OF finite_Basis assms]
assms inner_not_same_Basis comm_monoid_add_class.sum.neutral)
lemma sum_inner_Basis_eq [simp]:
assumes $b \in$ Basis shows $\left(\sum i \in\right.$ Basis. (inner $\left.\left.i b\right) * f i\right)=f b$
by (simp add: comm_monoid_add_class.sum.remove [OF finite_Basis assms] assms inner_not_same_Basis comm_monoid_add_class.sum.neutral)
lemma sum_if_inner [simp]:
assumes $i \in$ Basis $j \in$ Basis
shows inner $\left(\sum k \in\right.$ Basis. if $k=i$ then $f i *_{R}$ i else $\left.g k *_{R} k\right) j=($ if $j=i$ then
f j else g j)
proof (cases $i=j$)
case True
with assms show ?thesis
by (auto simp: inner_sum_left if_distrib $[$ of λx. inner $x j$]inner_Basis cong:
if_cong)
next
case False
have $\left(\sum k \in\right.$ Basis. inner (if $k=i$ then $f i *_{R} i$ else $\left.g k *_{R} k\right) j$) $=$
($\sum k \in$ Basis. if $k=j$ then $g k$ else 0)
apply (rule sum.cong)
using False assms by (auto simp: inner_Basis)

```
    also have ... = g j
    using assms by auto
    finally show ?thesis
    using False by (auto simp: inner_sum_left)
qed
lemma norm_le_componentwise:
    (\bigwedgeb.b Basis \Longrightarrowabs(inner x b) \leqabs(inner y b)) \Longrightarrow norm x \leq norm y
    by (auto simp: norm_le euclidean_inner [of x x] euclidean_inner [of y y] abs_le_square_iff
power2_eq_square intro!: sum_mono)
lemma Basis_le_norm: b E Basis \Longrightarrow |inner x b | \leq norm x
    by (rule order_trans [OF Cauchy_Schwarz_ineq2]) simp
lemma norm_bound_Basis_le: b \in Basis \Longrightarrow norm x \leqe\Longrightarrow | inner x b | \leqe
    by (metis Basis_le_norm order_trans)
lemma norm_bound_Basis_lt: b B Basis \Longrightarrow norm x <e \Longrightarrow |inner x b | <e
    by (metis Basis_le_norm le_less_trans)
```

```
lemma norm_le_l1: norm \(x \leq\left(\sum b \in\right.\) Basis. \(\mid\) inner \(\left.x b \mid\right)\)
```

lemma norm_le_l1: norm $x \leq\left(\sum b \in\right.$ Basis. \mid inner $\left.x b \mid\right)$
apply (subst euclidean_representation[of x, symmetric])
apply (subst euclidean_representation[of x, symmetric])
apply (rule order_trans[OF norm_sum])
apply (rule order_trans[OF norm_sum])
apply (auto intro!: sum_mono)
apply (auto intro!: sum_mono)
done
done
lemma sum_norm_allsubsets_bound:
fixes f :: ' }a=>\mathrm{ ' ' }n::\mathrm{ :uclidean_space
assumes fP: finite P
and fPs: }\Q.Q\subseteqP\Longrightarrow\mathrm{ norm (sum f Q)
shows}(\sumx\inP.\operatorname{norm}(fx))\leq2* real DIM('n)*
proof -
have (\sumx\inP.norm (fx))\leq(\sumx\inP. \sumb\inBasis. |inner (fx)b|)
by (rule sum_mono) (rule norm_le_l1)

```

```

(fx)b|)
by (rule sum.swap)
also have ... \leq of_nat (card (Basis :: 'n set))*(2 * e)
proof (rule sum_bounded_above)
fix }i\mathrm{ :: ' }
assume i: i\in Basis
have norm (}\sumx\inP.|\mathrm{ inner (f x) i|) }
norm (inner (}\sumx\inP\cap-{x. inner (fx)i<0}.fx) i) + norm (inner
(\sumx\inP\cap{x. inner (fx) i<0}.fx) i)
by (simp add: abs_real_def sum.If_cases[OF fP] sum_negf norm_triangle_ineq4
inner_sum_left
del: real_norm_def)
also have ... \leqe+e
unfolding real_norm_def

```
```

 by (intro add_mono norm_bound_Basis_le i fPs) auto
 finally show (}\sumx\inP.|\mathrm{ inner (fx) i|) }22*e by simp
 qed
 also have ... = 2 * real DIM(' n) * e by simp
 finally show ?thesis.
 qed

```

\subsection*{1.4.3 Subclass relationships}
```

instance euclidean_space }\subseteq\mathrm{ perfect_space
proof
fix }x:: 'a show \neg open {x
proof
assume open {x}
then obtain e where 0<e and e: }\forally.\mathrm{ dist }yx<e\longrightarrowy=
unfolding open_dist by fast
define y where y=x+scaleR (e/2) (SOME b.b B Basis)
have [simp]:(SOME b.b\in Basis) \in Basis
by (rule someI_ex) (auto simp: ex_in_conv)
from }\langle0<e\rangle\mathrm{ have }y\not=
unfolding y_def by (auto intro!: nonzero_Basis)
from {0<e\rangle have dist y x<e
unfolding y_def by (simp add: dist_norm)
from }\langley\not=x\rangle\mathrm{ and <dist y x<e> show False
using e by simp
qed
qed

```

\subsection*{1.4.4 Class instances}

Type real
instantiation real :: euclidean_space
begin
definition
\([\) simp \(]:\) Basis \(=\{1::\) real \(\}\)
instance
by standard auto
end
lemma DIM_real[simp]: \(\operatorname{DIM}(\) real \()=1\)
by \(\operatorname{simp}\)

Type complex
instantiation complex :: euclidean_space
begin
```

definition Basis_complex_def: Basis $=\{1, \mathrm{i}\}$
instance
by standard (auto simp add: Basis_complex_def intro: complex_eqI split: if_split_asm)
end
lemma DIM_complex[simp]: DIM(complex) = 2
unfolding Basis_complex_def by simp
lemma complex_Basis_1 [iff]: $(1::$ complex $) \in$ Basis
by (simp add: Basis_complex_def)
lemma complex_Basis_i [iff]: i \in Basis
by (simp add: Basis_complex_def)
Type ${ }^{\prime} a \times{ }^{\prime} b$
instantiation prod :: (real_inner, real_inner) real_inner
begin
definition inner_prod_def:
inner $x y=$ inner $($ fst $x)($ fst $y)+$ inner $($ snd $x)($ snd $y)$
lemma inner_Pair $[\operatorname{simp}]:$ inner $(a, b)(c, d)=$ inner $a c+i n n e r b d$
unfolding inner_prod_def by simp
instance
proof
fix r :: real
fix $x y z::$ ' $a::$ real_inner \times 'b::real_inner
show inner $x y=$ inner $y x$
unfolding inner_prod_def
by (simp add: inner_commute)
show inner $(x+y) z=$ inner $x z+$ inner $y z$
unfolding inner_prod_def
by (simp add: inner_add_left)
show inner (scaleR r x) y=r*inner $x y$
unfolding inner_prod_def
by (simp add: distrib_left)
show $0 \leq$ inner $x x$
unfolding inner_prod_def
by (intro add_nonneg_nonneg inner_ge_zero)
show inner $x x=0 \longleftrightarrow x=0$
unfolding inner_prod_def prod_eq_iff
by (simp add: add_nonneg_eq_0_iff)
show norm $x=\operatorname{sqrt}($ inner $x x$)
unfolding norm_prod_def inner_prod_def

```
```

 by (simp add: power2_norm_eq_inner)
 qed
end
lemma inner_Pair_0: inner x (0,b) = inner (snd x)b inner x (a,0) = inner (fst
x) a
by (cases x, simp)+
instantiation prod :: (euclidean_space, euclidean_space) euclidean_space
begin
definition
Basis = (\lambdau.(u,0))'Basis \cup (\lambdav.(0,v))'Basis
lemma sum_Basis_prod_eq:
fixes f::('a*'b)=>('a*'b)
shows sum f Basis = sum (\lambdai.f(i,0)) Basis + sum (\lambdai.f(0,i)) Basis
proof -
have inj_on (\lambdau. (u::'a, 0::'b)) Basis inj_on (\lambdau. (0::'a, u::'b)) Basis
by (auto intro!: inj_onI Pair_inject)
thus ?thesis
unfolding Basis_prod_def
by (subst sum.union_disjoint) (auto simp: Basis_prod_def sum.reindex)
qed
instance proof
show (Basis :: ('a\times'b) set) }\not={{
unfolding Basis_prod_def by simp
next
show finite (Basis :: ('a < 'b) set)
unfolding Basis_prod_def by simp
next
fix uv :: 'a > 'b
assume }u\in\mathrm{ Basis and v}\mathrm{ 覀asis
thus inner }uv=(\mathrm{ if }u=v\mathrm{ then 1 else 0)
unfolding Basis_prod_def inner_prod_def
by (auto simp add: inner_Basis split: if_split_asm)
next
fix }x::''a\times'
show (\forallu\inBasis. inner }xu=0)\longleftrightarrowx=
unfolding Basis_prod_def ball_Un ball_simps
by (simp add: inner_prod_def prod_eq_iff euclidean_all_zero_iff)
qed
lemma DIM_prod[simp]: DIM(' }a\times\mp@subsup{}{}{\prime}b)=\operatorname{DIM}('a)+DIM('b
unfolding Basis_prod_def
by (subst card_Un_disjoint) (auto intro!: card_image arg_cong2[where f=(+)]
inj_onI)

```
end

\subsection*{1.4.5 Locale instances}
lemma finite_dimensional_vector_space_euclidean:
finite_dimensional_vector_space \(\left(*_{R}\right)\) Basis
proof unfold_locales
show finite (Basis::'a set) by (metis finite_Basis)
show real_vector.independent (Basis::'a set)
unfolding dependent_def dependent_raw_def [symmetric]
apply (subst span_finite)
apply simp
apply clarify
apply (drule_tac \(f=\) inner a in arg_cong)
apply (simp add: inner_Basis inner_sum_right eq_commute)
done
show module.span \(\left(*_{R}\right)\) Basis \(=\) UNIV
unfolding span_finite [OF finite_Basis] span_raw_def[symmetric]
by (auto intro!: euclidean_representation[symmetric])
qed
interpretation eucl?: finite_dimensional_vector_space scale \(R\) :: real \(=>{ }^{\prime} a=>\)
'a::euclidean_space Basis
rewrites module.dependent \(\left(*_{R}\right)=\) dependent
and module.representation \(\left(*_{R}\right)=\) representation
and module.subspace \(\left(*_{R}\right)=\) subspace
and module.span \(\left(*_{R}\right)=\) span
and vector_space.extend_basis \(\left(*_{R}\right)=\) extend_basis
and vector_space.dim \(\left(*_{R}\right)=\operatorname{dim}\)
and Vector_Spaces.linear \(\left(*_{R}\right)\left(*_{R}\right)=\) linear
and Vector_Spaces.linear \((*)\left(*_{R}\right)=\) linear
and finite_dimensional_vector_space.dimension Basis \(=\operatorname{DIM}\left({ }^{\prime} a\right)\)
and dimension \(=D I M\left({ }^{\prime} a\right)\)
by (auto simp add: dependent_raw_def representation_raw_def
subspace_raw_def span_raw_def extend_basis_raw_def dim_raw_def linear_def
real_scaleR_def[abs_def]
finite_dimensional_vector_space.dimension_def
intro!: finite_dimensional_vector_space.dimension_def
finite_dimensional_vector_space_euclidean)
interpretation eucl?: finite_dimensional_vector_space_pair_1
scaleR::real \(\Rightarrow^{\prime} a::\) euclidean_space \(\Rightarrow^{\prime} a\) Basis
scale \(R:\) :real \(\Rightarrow^{\prime} b::\) real_vector \(\Rightarrow ' b\)
by unfold_locales
interpretation eucl?: finite_dimensional_vector_space_prod scaleR scaleR Basis Basis rewrites Basis_pair = Basis
and module_prod.scale \(\left(*_{R}\right)\left(*_{R}\right)=\left(\right.\) scale \(\left.R::_{-} \Rightarrow_{-} \Rightarrow\left({ }^{\prime} a \times{ }^{\prime} b\right)\right)\)
```

proof -
show finite_dimensional_vector_space_prod (* *) (*) Basis Basis
by unfold_locales
interpret finite_dimensional_vector_space_prod (*R) (*)
set
by fact
show Basis_pair = Basis
unfolding Basis_pair_def Basis_prod_def by auto
show module_prod.scale (*R) (**R)= scaleR
by (fact module_prod_scale_eq_scaleR)
qed
end

```

\subsection*{1.5 Elementary Linear Algebra on Euclidean Spaces}
```

theory Linear_Algebra
imports
Euclidean_Space
HOL-Library.Infinite_Set
begin
lemma linear_simps:
assumes bounded_linear f
shows
f(a+b)=fa+fb
f(a-b)=fa-fb
f0=0
f(-a)=-fa
f(s**Rv)=s**}(fv
proof -
interpret f:bounded_linear f by fact
show f(a+b)=fa+fb by (rule f.add)
show f(a-b)=fa-fb by (rule f.diff)
show f 0 = 0 by (rule f.zero)
show f (-a) =-fa by (rule f.neg)
show f(s** v)=s **R(fv) by (rule f.scale)
qed
lemma finite_Atleast_Atmost_nat[simp]: finite {fx |x. x ((UNIV::'a::finite set)}
using finite finite_image_set by blast
lemma substdbasis_expansion_unique:
includes inner_syntax
assumes d:d\subseteqBasis
shows (\sumi\ind.fi**}i)=(x::'a::euclidean_space) \longleftrightarrow <
(\foralli\inBasis. (}i\ind\longrightarrowfi=x\cdoti)\wedge(i\not\ind\longrightarrowx \cdot i=0))
proof -
have *: \x a b P. x * (if P then a else b) =(if P then x*a else x * b)

```
```

 by auto
 have \(* *\) : finite \(d\)
 by (auto intro: finite_subset[OF assms])
 have \(* * *: ~ \bigwedge i . i \in\) Basis \(\Longrightarrow\left(\sum i \in d . f i *_{R} i\right) \cdot i=\left(\sum x \in d\right.\). if \(x=i\) then \(f x\)
 else 0)
using d
by (auto intro!: sum.cong simp: inner_Basis inner_sum_left)
show ?thesis
unfolding euclidean_eq_iff [where ${ }^{\prime} a={ }^{\prime} a$] by (auto simp: sum.delta[OF **]
***)
qed
lemma independent_substdbasis: $d \subseteq$ Basis \Longrightarrow independent d
by (rule independent_mono[OF independent_Basis])
lemma subset_translation_eq [simp]:
fixes $a::$ ' $a::$ real_vector shows $(+) a^{\prime} s \subseteq(+) a^{\prime} t \longleftrightarrow s \subseteq t$
by auto
lemma translate_inj_on:
fixes A :: 'a::ab_group_add set
shows inj_on $(\lambda x . a+x) A$
unfolding inj_on_def by auto
lemma translation_assoc:
fixes $a b$:: 'a::ab_group_add
shows $(\lambda x . b+x)^{\prime}((\lambda x . a+x) ' S)=(\lambda x .(a+b)+x) \cdot S$
by auto
lemma translation_invert:
fixes a :: 'a::ab_group_add
assumes $(\lambda x . a+x)^{\prime} A=(\lambda x . a+x)$ ' B
shows $A=B$
proof -
have $(\lambda x .-a+x)^{\prime}\left((\lambda x . a+x)^{\prime} A\right)=(\lambda x .-a+x)^{\prime}\left((\lambda x . a+x)^{\prime} B\right)$
using assms by auto
then show ?thesis
using translation_assoc[of -a a A] translation_assoc $[o f-a \operatorname{a} B]$ by auto
qed
lemma translation_galois:
fixes a :: ' $a::$ ab_group_add
shows $T=((\lambda x . a+x) ' S) \longleftrightarrow S=\left((\lambda x .(-a)+x)^{\prime} T\right)$
using translation_assoc[of -a a S]
apply auto
using translation_assoc[of $a-a T]$
apply auto
done

```
```

lemma translation_inverse_subset
assumes $\left((\lambda x .-a+x)^{'} V\right) \leq\left(S::{ }^{\prime} n:: b_{1}\right.$ group_add set $)$
shows $V \leq((\lambda x . a+x) \cdot S)$
proof -
\{
fix x
assume $x \in V$
then have $x-a \in S$ using assms by auto
then have $x \in\{a+v \mid v . v \in S\}$
apply auto
apply (rule exI[of $-x-a]$, simp)
done
then have $x \in((\lambda x \cdot a+x)$ ' S) by auto
\}
then show ?thesis by auto
qed

```
1.5.1 More interesting properties of the norm
unbundle inner_syntax
Equality of vectors in terms of \((\cdot)\) products.
lemma linear_componentwise:
fixes \(f\) :: 'a::euclidean_space \(\Rightarrow\) 'b::real_inner
assumes lf: linear \(f\)
shows \((f x) \cdot j=\left(\sum i \in\right.\) Basis. \(\left.(x \cdot i) *(f i \cdot j)\right)(\) is ? \(? \mathrm{lhs}=\) ? \(r h s)\)
proof -
interpret linear \(f\) by fact
have ? rhs \(=\left(\sum i \in\right.\) Basis. \(\left.(x \cdot i) *_{R}(f i)\right) \cdot j\)
by (simp add: inner_sum_left)
then show ?thesis
by (simp add: euclidean_representation sum[symmetric] scale [symmetric])
qed
lemma vector_eq: \(x=y \longleftrightarrow x \cdot x=x \cdot y \wedge y \cdot y=x \cdot x\)
(is ?lhs \(\longleftrightarrow\) ? \(r h s\) )
proof
assume ?lhs
then show ?rhs by simp
next
assume ?rhs
then have \(x \cdot x-x \cdot y=0 \wedge x \cdot y-y \cdot y=0\)
by \(\operatorname{simp}\)
then have \(x \cdot(x-y)=0 \wedge y \cdot(x-y)=0\)
by (simp add: inner_diff inner_commute)
then have \((x-y) \cdot(x-y)=0\)
by (simp add: field_simps inner_diff inner_commute)
then show \(x=y\) by simp
qed
lemma norm_triangle_half_r:
\(\operatorname{norm}(y-x 1)<e / 2 \Longrightarrow \operatorname{norm}(y-x 2)<e / 2 \Longrightarrow \operatorname{norm}(x 1-x 2)<e\) using dist_triangle_half_r unfolding dist_norm[symmetric] by auto
```

lemma norm_triangle_half_l:
assumes norm (x-y)<e/2
and norm (x'-y)<e/2
shows norm (x-x')<e
using dist_triangle_half_l[OF assms[unfolded dist_norm[symmetric]]]
unfolding dist_norm[symmetric].
lemma abs_triangle_half_r:
fixes y :: 'a::linordered_field
shows abs (y-x1)<e/ 2 \Longrightarrowabs (y-x2)<e/ 2 \Longrightarrowabs (x1 - x2) <e
by linarith
lemma abs_triangle_half_l:
fixes y :: 'a::linordered_field
assumes abs (x-y)<e/2
and abs (x'-y)<e/2
shows abs (x-x')<e
using assms by linarith
lemma sum_clauses:
shows sum f {}=0
and finite S\Longrightarrowsumf(insert x S)=(if x S S then sum f S else f x + sum f
S)
by (auto simp add: insert_absorb)

```
lemma vector_eq_ldot: \((\forall x . x \cdot y=x \cdot z) \longleftrightarrow y=z\)
proof
    assume \(\forall x . x \cdot y=x \cdot z\)
    then have \(\forall x . x \cdot(y-z)=0\)
        by (simp add: inner_diff)
    then have \((y-z) \cdot(y-z)=0\)..
    then show \(y=z\) by simp
qed \(\operatorname{simp}\)
lemma vector_eq_rdot: \((\forall z . x \cdot z=y \cdot z) \longleftrightarrow x=y\)
proof
    assume \(\forall z . x \cdot z=y \cdot z\)
    then have \(\forall z .(x-y) \cdot z=0\)
        by (simp add: inner_diff)
    then have \((x-y) \cdot(x-y)=0\)..
    then show \(x=y\) by simp
qed \(\operatorname{simp}\)

\subsection*{1.5.2 Substandard Basis}
```

lemma ex_card:
assumes n\leqcard A
shows }\existsS\subseteqA.card S=
proof (cases finite A)
case True
from ex_bij_betw_nat_finite[OF this] obtain f where f:bij_betw f {0..<card A}
A ..
moreover from f<n\leqcard A> have {..< n}\subseteq{..< card A} inj_on f {..< n}
by (auto simp: bij_betw_def intro: subset_inj_on)
ultimately have f'{..<n}\subseteqA card (f'{..< n})=n
by (auto simp: bij_betw_def card_image)
then show ?thesis by blast
next
case False
with <n\leq card A` show ?thesis by force
qed
lemma subspace_substandard: subspace {x::'a::euclidean_space. (\forall i\inBasis. P i \longrightarrow
x\cdoti=0)}
by (auto simp: subspace_def inner_add_left)
lemma dim_substandard:
assumes d:d\subseteq Basis
shows dim {x::'a::euclidean_space. }\foralli\inBasis. i\not\ind\longrightarrowx\bulleti=0}=card d (i
dim ?A = _)
proof (rule dim_unique)
from d show d}\subseteq?
by (auto simp: inner_Basis)
from d show independent d
by (rule independent_mono [OF independent_Basis])
have}x\in\operatorname{span}d\mathrm{ if }\foralli\in\mathrm{ Basis. }i\not\ind\longrightarrowx \cdot i=0 for x
proof -
have finite d
by (rule finite_subset [OF d finite_Basis])
then have (\sumi\ind. (x | i)**}i)\in\operatorname{span d
by (simp add: span_sum span_clauses)

```

```

 by (rule sum.mono_neutral_cong_left [OF finite_Basis d]) (auto simp: that)
 finally show }x\in\mathrm{ span d
 by (simp only: euclidean_representation)
 qed
 then show ?A \subseteq span d by auto
 qed simp

```

\subsection*{1.5.3 Orthogonality}
definition (in real_inner) orthogonal \(x y \longleftrightarrow x \cdot y=0\)
```

context real_inner
begin
lemma orthogonal_self: orthogonal $x x \longleftrightarrow x=0$
by (simp add: orthogonal_def)
lemma orthogonal_clauses:
orthogonal a 0
orthogonal $a x \Longrightarrow$ orthogonal $a\left(c *_{R} x\right)$
orthogonal a $x \Longrightarrow$ orthogonal $a(-x)$
orthogonal $a x \Longrightarrow$ orthogonal a $y \Longrightarrow$ orthogonal $a(x+y)$
orthogonal a $x \Longrightarrow$ orthogonal a $y \Longrightarrow$ orthogonal $a(x-y)$
orthogonal 0 a
orthogonal $x a \Longrightarrow$ orthogonal $\left(c *_{R} x\right) a$
orthogonal $x a \Longrightarrow$ orthogonal $(-x) a$
orthogonal $x a \Longrightarrow$ orthogonal $y a \Longrightarrow$ orthogonal $(x+y) a$
orthogonal $x a \Longrightarrow$ orthogonal $y a \Longrightarrow$ orthogonal $(x-y) a$
unfolding orthogonal_def inner_add inner_diff by auto
end
lemma orthogonal_commute: orthogonal $x y \longleftrightarrow$ orthogonal y x
by (simp add: orthogonal_def inner_commute)
lemma orthogonal_scale $R[\operatorname{simp}]: c \neq 0 \Longrightarrow$ orthogonal $\left(c *_{R} x\right)=$ orthogonal x
by (rule ext) (simp add: orthogonal_def)
lemma pairwise_ortho_scaleR:
pairwise ($\lambda i j$. orthogonal $(f i)(g j)) B$
\Longrightarrow pairwise ($\lambda i j$. orthogonal $\left.\left(a i *_{R} f i\right)\left(a j *_{R} g j\right)\right) B$
by (auto simp: pairwise_def orthogonal_clauses)
lemma orthogonal_rvsum:
\llbracket finite $s ; \bigwedge y . y \in s \Longrightarrow$ orthogonal $x(f y) \rrbracket \Longrightarrow$ orthogonal $x(s u m f s)$
by (induction s rule: finite_induct) (auto simp: orthogonal_clauses)
lemma orthogonal_lvsum:
\llbracket finite $s ; \bigwedge x . x \in s \Longrightarrow$ orthogonal $(f x) y \rrbracket \Longrightarrow$ orthogonal $(s u m f s) y$
by (induction s rule: finite_induct) (auto simp: orthogonal_clauses)
lemma norm_add_Pythagorean:
assumes orthogonal $a b$
shows norm $(a+b)$ ^2 $=$ norm a^{\wedge} 2 + norm b ^ 2
proof -
from assms have $(a-(0-b)) \cdot(a-(0-b))=a \cdot a-(0-b \cdot b)$
by (simp add: algebra_simps orthogonal_def inner_commute)
then show ?thesis by (simp add: power2_norm_eq_inner)
qed

```
```

lemma norm_sum_Pythagorean:
assumes finite I pairwise ($\lambda i j$. orthogonal $(f i)(f j)) I$
shows $(\text { norm }(\operatorname{sum} f I))^{2}=\left(\sum i \in I .(\operatorname{norm}(f i))^{2}\right)$
using assms
proof (induction I rule: finite_induct)
case empty then show? ?ase by simp
next
case (insert x I)
then have orthogonal $(f x)(\operatorname{sum} f I)$
by (metis pairwise_insert orthogonal_rvsum)
with insert show ?case
by (simp add: pairwise_insert norm_add_Pythagorean)
qed

```

\subsection*{1.5.4 Orthogonality of a transformation}
definition orthogonal_transformation \(f \longleftrightarrow\) linear \(f \wedge(\forall v w . f v \cdot f w=v \cdot w)\)
lemma orthogonal_transformation:
orthogonal_transformation \(f \longleftrightarrow\) linear \(f \wedge(\forall v . \operatorname{norm}(f v)=\) norm \(v)\)
unfolding orthogonal_transformation_def
apply auto
apply (erule_tac \(x=v\) in allE) +
apply (simp add: norm_eq_sqrt_inner)
apply (simp add: dot_norm linear_add[symmetric])
done
lemma orthogonal_transformation_id [simp]: orthogonal_transformation ( \(\lambda x . x\) )
by (simp add: linear_iff orthogonal_transformation_def)
lemma orthogonal_orthogonal_transformation:
orthogonal_transformation \(f \Longrightarrow\) orthogonal \((f x)(f y) \longleftrightarrow\) orthogonal \(x y\)
by (simp add: orthogonal_def orthogonal_transformation_def)
lemma orthogonal_transformation_compose:
【orthogonal_transformation \(f\); orthogonal_transformation \(g \rrbracket \Longrightarrow\) orthogonal_transformation \((f\)
- g)
by (auto simp: orthogonal_transformation_def linear_compose)
lemma orthogonal_transformation_neg:
orthogonal_transformation \((\lambda x .-(f x)) \longleftrightarrow\) orthogonal_transformation \(f\)
by (auto simp: orthogonal_transformation_def dest: linear_compose_neg)
lemma orthogonal_transformation_scaleR: orthogonal_transformation \(f \Longrightarrow f(c\)
\(\left.*_{R} v\right)=c *_{R} f v\)
by (simp add: linear_iff orthogonal_transformation_def)
lemma orthogonal_transformation_linear:
```

 orthogonal_transformation f \Longrightarrow linear f
 by (simp add: orthogonal_transformation_def)
 lemma orthogonal_transformation_inj:
orthogonal_transformation f}\Longrightarrow\mathrm{ inj f
unfolding orthogonal_transformation_def inj_on_def
by (metis vector_eq)
lemma orthogonal_transformation_surj:
orthogonal_transformation }f\Longrightarrow\mathrm{ surj f
for f :: 'a::euclidean_space = ' 'a::euclidean_space
by (simp add: linear_injective_imp_surjective orthogonal_transformation_inj or-
thogonal_transformation_linear)
lemma orthogonal_transformation_bij:
orthogonal_transformation f}\Longrightarrow\mathrm{ bij f
for f :: 'a::euclidean_space }=>\mp@subsup{}{}{\prime}'a::euclidean_space
by (simp add: bij_def orthogonal_transformation_inj orthogonal_transformation_surj)
lemma orthogonal_transformation_inv:
orthogonal_transformation f \Longrightarrow orthogonal_transformation (inv f)
for f :: 'a::euclidean_space = ' 'a::euclidean_space
by (metis (no_types, hide_lams) bijection.inv_right bijection_def inj_linear_imp_inv_linear
orthogonal_transformation orthogonal_transformation_bij orthogonal_transformation_inj)
lemma orthogonal_transformation_norm:
orthogonal_transformation }f\Longrightarrow\mathrm{ norm (}fx)=\mathrm{ norm x
by (metis orthogonal_transformation)

```

\subsection*{1.5.5 Bilinear functions}

\section*{definition}
bilinear : : (' \(a::\) real_vector \(\Rightarrow{ }^{\prime} b::\) real_vector \(\Rightarrow{ }^{\prime} c::\) real_vector \() \Rightarrow\) bool where
bilinear \(f \longleftrightarrow(\forall x\). linear \((\lambda y . f x y)) \wedge(\forall y\). linear \((\lambda x . f x y))\)
lemma bilinear_ladd: bilinear \(h \Longrightarrow h(x+y) z=h x z+h y z\) by (simp add: bilinear_def linear_iff)
lemma bilinear_radd: bilinear \(h \Longrightarrow h x(y+z)=h x y+h x z\) by (simp add: bilinear_def linear_iff)
lemma bilinear_times:
fixes \(c::^{\prime} a:\) :real_algebra shows bilinear ( \(\lambda x y::^{\prime} a . x * y\) )
by (auto simp: bilinear_def distrib_left distrib_right intro!: linearI)
lemma bilinear_lmul: bilinear \(h \Longrightarrow h\left(c *_{R} x\right) y=c *_{R} h x y\)
by (simp add: bilinear_def linear_iff)
lemma bilinear_rmul: bilinear \(h \Longrightarrow h x\left(c *_{R} y\right)=c *_{R} h x y\)
```

by (simp add: bilinear_def linear_iff)

```
lemma bilinear_lneg: bilinear \(h \Longrightarrow h(-x) y=-h x y\)
    by (drule bilinear_lmul [of _ - 1]) simp
lemma bilinear_rneg: bilinear \(h \Longrightarrow h x(-y)=-h x y\)
    by (drule bilinear_rmul \([\) of _ _ 1]) simp
lemma (in ab_group_add) eq_add_iff: \(x=x+y \longleftrightarrow y=0\)
    using add_left_imp_eq[of \(x\) y 0 ] by auto
lemma bilinear_lzero:
    assumes bilinear \(h\)
    shows \(h 0 x=0\)
    using bilinear_ladd [OF assms, of \(00 x]\) by (simp add: eq_add_iff field_simps)
lemma bilinear_rzero:
    assumes bilinear \(h\)
    shows \(h\) x \(0=0\)
    using bilinear_radd [OF assms, of x 000\(]\) by (simp add: eq_add_iff field_simps)
lemma bilinear_lsub: bilinear \(h \Longrightarrow h(x-y) z=h x z-h y z\)
    using bilinear_ladd [of \(h x-y]\) by (simp add: bilinear_lneg)
lemma bilinear_rsub: bilinear \(h \Longrightarrow h z(x-y)=h z x-h z y\)
    using bilinear_radd [of \(\left.h_{-} x-y\right]\) by (simp add: bilinear_rneg)
lemma bilinear_sum:
    assumes bilinear \(h\)
    shows \(h(\operatorname{sum} f S)(\operatorname{sumg} T)=\operatorname{sum}(\lambda(i, j) . h(f i)(g j))(S \times T)\)
proof -
    interpret \(l\) : linear \(\lambda x . h x y\) for \(y\) using assms by (simp add: bilinear_def)
    interpret \(r\) : linear \(\lambda y . h x y\) for \(x\) using assms by (simp add: bilinear_def)
    have \(h(\operatorname{sum} f S)(\operatorname{sum} g T)=\operatorname{sum}(\lambda x . h(f x)(\operatorname{sum} g T)) S\)
        by (simp add: l.sum)
    also have \(\ldots=\operatorname{sum}(\lambda x \cdot \operatorname{sum}(\lambda y \cdot h(f x)(g y)) T) S\)
        by (rule sum.cong) (simp_all add: r.sum)
    finally show ?thesis
        unfolding sum.cartesian_product .
qed

\subsection*{1.5.6 Adjoints}
definition adjoint \(::\left(\left({ }^{\prime} a::\right.\right.\) real_inner \() \Rightarrow(' b::\) real_inner \(\left.)\right) \Rightarrow{ }^{\prime} b \Rightarrow^{\prime} a\) where adjoint \(f=\left(S O M E f^{\prime} . \forall x y . f x \cdot y=x \cdot f^{\prime} y\right)\)
lemma adjoint_unique:
assumes \(\forall x y\).inner \((f x) y=\operatorname{inner} x(g y)\)
shows adjoint \(f=g\)
```

 unfolding adjoint_def
 proof (rule some_equality)
show $\forall x y$. inner $(f x) y=$ inner $x(g y)$
by (rule assms)
next
fix h
assume $\forall x y$. inner $(f x) y=$ inner $x(h y)$
then have $\forall x y$. inner $x(g y)=$ inner $x(h y)$
using assms by simp
then have $\forall x y$. inner $x(g y-h y)=0$
by (simp add: inner_diff_right)
then have $\forall y$. inner $(g y-h y)(g y-h y)=0$
by simp
then have $\forall y . h y=g y$
by simp
then show $h=g$ by (simp add: ext)
qed

```

TODO: The following lemmas about adjoints should hold for any Hilbert space (i.e. complete inner product space). (see https://en.wikipedia.org/ wiki/Hermitian_adjoint)
lemma adjoint_works:
fixes \(f\) :: ' \(n::\) euclidean_space \(\Rightarrow\) ' \(m\) ::euclidean_space
assumes lf: linear \(f\)
shows \(x \cdot\) adjoint \(f y=f x \cdot y\)
proof -
interpret linear \(f\) by fact
have \(\forall y . \exists w . \forall x . f x \cdot y=x \cdot w\)
proof (intro all exI)
fix \(y:: ' m\) and \(x\)
let \(? w=\left(\sum i \in\right.\) Basis. \(\left.(f i \cdot y) *_{R} i\right)::\) 'n
have \(f x \cdot y=f\left(\sum i \in\right.\) Basis. \(\left.(x \cdot i) *_{R} i\right) \cdot y\)
by (simp add: euclidean_representation)
also have \(\ldots=\left(\sum i \in\right.\) Basis. \(\left.(x \cdot i) *_{R} f i\right) \cdot y\)
by (simp add: sum scale)
finally show \(f x \cdot y=x \cdot ? w\)
by (simp add: inner_sum_left inner_sum_right mult.commute)
qed
then show? ?hesis
unfolding adjoint_def choice_iff
by (intro someI2_ex[where \(\left.Q=\lambda f^{\prime} . x \cdot f^{\prime} y=f x \cdot y\right]\) ) auto
qed
lemma adjoint_clauses:
fixes \(f::\) ' \(n::\) euclidean_space \(\Rightarrow\) ' \(m\) ::euclidean_space
assumes \(l f\) : linear \(f\)
shows \(x \cdot\) adjoint \(f y=f x \cdot y\)
and adjoint \(f y \cdot x=y \cdot f x\)
by (simp_all add: adjoint_works[OF lf] inner_commute)
```

lemma adjoint_linear:
fixes $f::$ ' $n::$ euclidean_space \Rightarrow 'm::euclidean_space
assumes lf: linear f
shows linear (adjoint f)
by (simp add: lf linear_iff euclidean_eq_iff $\left[\mathbf{w h e r e}{ }^{\prime} a=' n\right]$ euclidean_eq_iff $[$ where
' $a=$ ' m]
adjoint_clauses[OF lf] inner_distrib)
lemma adjoint_adjoint:
fixes f :: ' $n::$ euclidean_space \Rightarrow ' $m::$ euclidean_space
assumes lf: linear f
shows adjoint $($ adjoint $f)=f$
by (rule adjoint_unique, simp add: adjoint_clauses [OF lf])

```

\subsection*{1.5.7 Euclidean Spaces as Typeclass}
lemma independent_Basis: independent Basis
by (rule independent_Basis)
lemma span_Basis \([\) simp]: span Basis \(=\) UNIV
by (rule span_Basis)
lemma in_span_Basis: \(x \in\) span Basis
unfolding span_Basis ..

\subsection*{1.5.8 Linearity and Bilinearity continued}
```

lemma linear bounded:
fixes f :: 'a::euclidean_space => 'b::real_normed_vector
assumes lf: linear f
shows \existsB.\forallx.norm (fx)\leqB* norm x
proof
interpret linear f by fact
let ?B = \sumb\inBasis.norm (f b)
show }\forallx\mathrm{ . norm (fx) < ?B * norm }
proof
fix }x:: '
let ?g = \lambdab. (x | b) *R f b
have norm (f x) = norm (f (\sumb\inBasis. (x | b) *R b))
unfolding euclidean_representation ..
also have ... = norm (sum ?g Basis)
by (simp add: sum scale)
finally have th0: norm (f x) = norm (sum ?g Basis).
have th: norm (?g i)\leqnorm (fi)* norm x if i\in Basis for }
proof -
from Basis_le_norm[OF that, of x]
show norm (?g i) \leqnorm (f i)* norm x
unfolding norm_scaleR by (metis mult.commute mult_left_mono norm_ge_zero)
qed

```
```

 from sum_norm_le[of _ ?g, OF th]
 show norm (f x) \leq? B * norm x
 unfolding th0 sum_distrib_right by metis
 qed
 qed
lemma linear_conv_bounded_linear:
fixes f :: 'a::euclidean_space => 'b::real_normed_vector
shows linear }f\longleftrightarrow\mathrm{ bounded_linear }
proof
assume linear f
then interpret f:linear f .
show bounded_linear f
proof
have }\existsB.\forallx.norm (fx)\leqB* norm x
using 〈linear f> by (rule linear_bounded)
then show }\existsK.\forallx.\operatorname{norm}(fx)\leqnorm x*
by (simp add: mult.commute)
qed
next
assume bounded_linear f
then interpret f: bounded_linear f .
show linear f ..
qed
lemmas linear_linear = linear_conv_bounded_linear[symmetric]
lemma inj_linear_imp_inv_bounded_linear:
fixes f::'a::euclidean_space = 'a
shows \llbracketbounded_linear f;inj f\rrbracket\Longrightarrow bounded_linear (inv f)
by (simp add: inj_linear_imp_inv_linear linear_linear)
lemma linear_bounded_pos:
fixes f :: 'a::euclidean_space => 'b::real_normed_vector
assumes lf: linear f
obtains B where B>0\bigwedgex.norm (fx)\leqB* norm x
proof -
have }\existsB>0.\forallx.norm (fx)\leqnorm x*
using lf unfolding linear_conv_bounded_linear
by (rule bounded_linear.pos_bounded)
with that show ?thesis
by (auto simp: mult.commute)
qed
lemma linear_invertible_bounded_below_pos:
fixes f :: 'a::real_normed_vector }=>\mp@subsup{}{}{\prime}b::euclidean_spac
assumes linear f linear g g\circf=id
obtains B where B>0 \x. B* norm x \leqnorm(fx)
proof -

```
```

 obtain \(B\) where \(B>0\) and \(B: \bigwedge x\). norm \((g x) \leq B *\) norm \(x\)
 using linear_bounded_pos [OF 〈linear \(g\rangle\)] by blast
 show thesis
 proof
 show \(0<1 / B\)
 by (simp add: \(\langle B>0\rangle\))
 show \(1 / B *\) norm \(x \leq \operatorname{norm}(f x)\) for \(x\)
 proof -
 have \(1 / B * \operatorname{norm} x=1 / B * \operatorname{norm}(g(f x))\)
 using assms by (simp add: pointfree_idE)
 also have \(\ldots \leq \operatorname{norm}(f x)\)
 using \(B[\) of \(f x]\) by (simp add: \(\langle B>0\rangle\) mult.commute pos_divide_le_eq)
 finally show ?thesis.
 qed
 qed
 qed

```
lemma linear_inj_bounded_below_pos:
    fixes \(f\) :: 'a::real_normed_vector \(\Rightarrow{ }^{\prime} b::\) euclidean_space
    assumes linear \(f\) inj \(f\)
    obtains \(B\) where \(B>0 \bigwedge x . B * \operatorname{norm} x \leq \operatorname{norm}(f x)\)
    using linear_injective_left_inverse [OF assms]
        linear_invertible_bounded_below_pos assms by blast
lemma bounded_linearI':
    fixes \(f::\) 'a::euclidean_space \(\Rightarrow\) ' \(b::\) real_normed_vector
    assumes \(\bigwedge x y . f(x+y)=f x+f y\)
        and \(\Lambda c x . f\left(c *_{R} x\right)=c *_{R} f x\)
    shows bounded_linear \(f\)
    using assms linearI linear_conv_bounded_linear by blast
lemma bilinear_bounded:
    fixes \(h::\) ' \(m:: e u c l i d e a n \_s p a c e ~ \Rightarrow ' ~ n:: e u c l i d e a n \_s p a c e ~ \Rightarrow ~ ' ~ k:: r e a l \_n o r m e d \_v e c t o r ~\)
    assumes bh: bilinear \(h\)
    shows \(\exists B . \forall x y\). norm \((h x y) \leq B *\) norm \(x *\) norm \(y\)
proof (clarify intro!: exI[of - \(\sum i \in\) Basis. \(\sum j \in\) Basis. norm ( \(h i j\) ) \(]\) )
    fix \(x::\) ' \(m\)
    fix \(y::\) ' \(n\)
    have norm \((h x y)=\operatorname{norm}\left(h\left(\operatorname{sum}\left(\lambda i .(x \cdot i) *_{R} i\right) B a s i s\right)(\operatorname{sum}(\lambda i .(y \cdot i)\right.\)
\(*_{R}\) i) Basis))
        by (simp add: euclidean_representation)
    also have \(\ldots=\operatorname{norm}\left(\operatorname{sum}\left(\lambda(i, j) . h\left((x \cdot i) *_{R} i\right)\left((y \cdot j) *_{R} j\right)\right)(\right.\) Basis \(\times\)
Basis))
    unfolding bilinear_sum [OF bh] ..
    finally have th: norm \((h x y)=\ldots\).
    have \(\bigwedge i j . \llbracket i \in\) Basis; \(j \in\) Basis \(\rrbracket\)
        \(\Longrightarrow|x \cdot i| *(|y \cdot j| * \operatorname{norm}(h i j)) \leq \operatorname{norm} x *(\operatorname{norm} y * \operatorname{norm}(h i j))\)
        by (auto simp add: zero_le_mult_iff Basis_le_norm mult_mono)
    then show norm \((h x y) \leq\left(\sum i \in\right.\) Basis. \(\sum j \in\) Basis. norm \(\left.(h i j)\right) *\) norm \(x *\)
```

norm y
unfolding sum_distrib_right th sum.cartesian_product
by (clarsimp simp add: bilinear_rmul[OF bh] bilinear_lmul[OF bh]
field_simps simp del: scaleR_scaleR intro!: sum_norm_le)
qed
lemma bilinear_conv_bounded_bilinear:
fixes $h::$ 'a::euclidean_space \Rightarrow ' $b::$ euclidean_space $\Rightarrow{ }^{\prime} c::$ real_normed_vector
shows bilinear $h \longleftrightarrow$ bounded_bilinear h
proof
assume bilinear h
show bounded_bilinear h
proof
fix $x y z$
show $h(x+y) z=h x z+h y z$
using 〈bilinear h 〉 unfolding bilinear_def linear_iff by simp
next
fix $x y z$
show $h x(y+z)=h x y+h x z$
using 〈bilinear h 〉 unfolding bilinear_def linear_iff by simp
next
show $h($ scale R r $x) y=\operatorname{scaleR} r(h x y) h x(s c a l e R r y)=s c a l e R r(h x y)$
for $r x y$
using 〈bilinear h 〉unfolding bilinear_def linear_iff
by simp_all
next
have $\exists B . \forall x y$. norm $(h x y) \leq B *$ norm $x *$ norm y
using 〈bilinear h 〉 by (rule bilinear_bounded)
then show $\exists K . \forall x y$ norm $(h x y) \leq$ norm $x *$ norm $y * K$
by (simp add: ac_simps)
qed
next
assume bounded_bilinear h
then interpret h : bounded_bilinear h.
show bilinear h
unfolding bilinear_def linear_conv_bounded_linear
using h.bounded_linear_left h.bounded_linear_right by simp
qed
lemma bilinear_bounded_pos:
fixes h :: ' $a::$ euclidean_space \Rightarrow ' $b::$ euclidean_space $\Rightarrow{ }^{\prime} c::$ real_normed_vector
assumes bh: bilinear h
shows $\exists B>0 . \forall x y$ norm $(h x y) \leq B *$ norm $x *$ norm y
proof -
have $\exists B>0 . \forall x y$ norm $\left(\begin{array}{ll} & x y) \leq \text { norm } x * \text { norm } y * B\end{array}\right.$
using bh [unfolded bilinear_conv_bounded_bilinear]
by (rule bounded_bilinear.pos_bounded)
then show ?thesis
by (simp only: ac_simps)

```

\section*{qed}
lemma bounded_linear_imp_has_derivative: bounded_linear \(f \Longrightarrow(f\) has_derivative
f) net
by (auto simp add: has_derivative_def linear_diff linear_linear linear_def dest: bounded_linear.linear)
lemma linear_imp_has_derivative:
fixes \(f\) :: ' \(a::\) euclidean_space \(\Rightarrow\) ' \(b::\) real_normed_vector
shows linear \(f \Longrightarrow(f\) has_derivative \(f)\) net
by (simp add: bounded_linear_imp_has_derivative linear_conv_bounded_linear)
lemma bounded_linear_imp_differentiable: bounded_linear \(f \Longrightarrow f\) differentiable net using bounded_linear_imp_has_derivative differentiable_def by blast
lemma linear_imp_differentiable:
fixes \(f::\) ' \(a::\) euclidean_space \(\Rightarrow\) ' \(b::\) real_normed_vector
shows linear \(f \Longrightarrow f\) differentiable net
by (metis linear_imp_has_derivative differentiable_def)

\subsection*{1.5.9 We continue}
lemma independent_bound:
fixes \(S\) :: 'a::euclidean_space set
shows independent \(S \Longrightarrow\) finite \(S \wedge \operatorname{card} S \leq D I M\left({ }^{\prime} a\right)\)
by (metis dim_subset_UNIV finiteI_independent dim_span_eq_card_independent)
lemmas independent_imp_finite \(=\) finiteI_independent
corollary independent_card_le:
fixes \(S\) :: 'a::euclidean_space set
assumes independent \(S\)
shows card \(S \leq D I M\left({ }^{\prime} a\right)\)
using assms independent_bound by auto
lemma dependent_biggerset:
fixes \(S\) :: 'a::euclidean_space set
shows (finite \(S \Longrightarrow\) card \(\left.S>\operatorname{DIM}\left({ }^{\prime} a\right)\right) \Longrightarrow\) dependent \(S\)
by (metis independent_bound not_less)
Picking an orthogonal replacement for a spanning set.
lemma vector_sub_project_orthogonal:
fixes \(b x\) :: 'a::euclidean_space
shows \(b \cdot\left(x-((b \cdot x) /(b \cdot b)) *_{R} b\right)=0\)
unfolding inner_simps by auto
lemma pairwise_orthogonal_insert:
assumes pairwise orthogonal \(S\) and \(\bigwedge y . y \in S \Longrightarrow\) orthogonal \(x y\)
shows pairwise orthogonal (insert \(x S\) )
using assms unfolding pairwise_def
by (auto simp add: orthogonal_commute)
```

lemma basis_orthogonal:
fixes B :: ' a ::real_inner set
assumes $f B$: finite B
shows $\exists C$. finite $C \wedge$ card $C \leq$ card $B \wedge$ span $C=$ span $B \wedge$ pairwise orthogonal
C
(is $\exists C$.? $P B C$)
using $f B$
proof (induct rule: finite_induct)
case empty
then show ?case
apply (rule exI[where $x=\{ \}]$)
apply (auto simp add: pairwise_def)
done
next
case (insert a B)
note $f B=\langle$ finite $B\rangle$ and $a B=\langle a \notin B\rangle$
from $\exists C$. finite $C \wedge$ card $C \leq \operatorname{card} B \wedge \operatorname{span} C=\operatorname{span} B \wedge$ pairwise orthogonal
C)
obtain C where C : finite C card $C \leq \operatorname{card} B$
span $C=$ span B pairwise orthogonal C by blast
let ? $a=a-\operatorname{sum}\left(\lambda x .(x \cdot a /(x \cdot x)) *_{R} x\right) C$
let ? $C=$ insert ?a C
from $C(1)$ have $f C$: finite ? C
by simp
from $f B a B C(1,2)$ have $c C$: card ? $C \leq$ card (insert a B)
by (simp add: card_insert_if)
\{
fix $x k$
have th0: $\bigwedge\left(a::^{\prime} a\right) b c . a-(b-c)=c+(a-b)$
by (simp add: field_simps)
have $x-k *_{R}\left(a-\left(\sum x \in C .(x \cdot a /(x \cdot x)) *_{R} x\right)\right) \in \operatorname{span} C \longleftrightarrow x-k$
$*_{R} a \in \operatorname{span} C$
apply (simp only: scaleR_right_diff_distrib th0)
apply (rule span_add_eq)
apply (rule span_scale)
apply (rule span_sum)
apply (rule span_scale)
apply (rule span_base)
apply assumption
done
\}
then have $S C$: span ? $C=$ span (insert a B)
unfolding set_eq_iff span_breakdown_eq C(3)[symmetric] by auto
\{
fix y

```
```

 assume \(y C: y \in C\)
 then have \(C y: C=\) insert \(y(C-\{y\})\)
 by blast
 have fth: finite (\(C-\{y\}\))
 using \(C\) by simp
 have orthogonal ?a y
 unfolding orthogonal_def
 unfolding inner_diff inner_sum_left right_minus_eq
 unfolding sum.remove [OF 〈finite \(C\rangle\langle y \in C\rangle\)]
 apply (clarsimp simp add: inner_commute[of ya])
 apply (rule sum.neutral)
 apply clarsimp
 apply (rule \(C\) (4)[unfolded pairwise_def orthogonal_def, rule_format])
 using \(\langle y \in C\rangle\) by auto
 \}
with 〈pairwise orthogonal C 〉 have CPO: pairwise orthogonal ?C
by (rule pairwise_orthogonal_insert)
from $f C c C S C C P O$ have ?P (insert a B) ?C
by blast
then show? ?case by blast
qed
lemma orthogonal_basis_exists:
fixes V :: ('a::euclidean_space) set
shows $\exists B$. independent $B \wedge B \subseteq$ span $V \wedge V \subseteq$ span $B \wedge$
(card $B=\operatorname{dim} V) \wedge$ pairwise orthogonal B
proof -
from basis_exists[of V] obtain B where
$B: B \subseteq V$ independent $B V$ span B card $B=\operatorname{dim} V$
by force
from B have $f B$: finite B card $B=\operatorname{dim} V$
using independent_bound by auto
from basis_orthogonal $[O F f B(1)]$ obtain C where
C : finite C card $C \leq$ card B span $C=$ span B pairwise orthogonal C
by blast
from $C B$ have $C S V: C \subseteq$ span V
by (metis span_superset span_mono subset_trans)
from span_mono[OF $B(3)] C$ have $S V C$: span $V \subseteq$ span C
by (simp add: span_span)
from card_le_dim_spanning[OF CSV SVC $C(1)] C(2,3) f B$
have $i C$: independent C
by (simp)
from $C f B$ have card $C \leq \operatorname{dim} V$
by simp
moreover have $\operatorname{dim} V \leq \operatorname{card} C$
using span_card_ge_dim[OF CSV SVC C(1)]
by simp
ultimately have $C d V$: card $C=\operatorname{dim} V$
using $C(1)$ by simp

```
```

 from C B CSV CdV iC show ?thesis
 by auto
 qed

```

Low-dimensional subset is in a hyperplane (weak orthogonal complement).
```

lemma span_not_univ_orthogonal:
fixes S :: 'a::euclidean_space set
assumes $s U$: span $S \neq U N I V$
shows $\exists a::^{\prime} a . a \neq 0 \wedge(\forall x \in \operatorname{span} S . a \cdot x=0)$
proof -
from $s U$ obtain a where $a: a \notin \operatorname{span} S$
by blast
from orthogonal_basis_exists obtain B where
B : independent $B B \subseteq \operatorname{span} S S \subseteq \operatorname{span} B$
card $B=\operatorname{dim} S$ pairwise orthogonal B
by blast
from B have $f B$: finite B card $B=\operatorname{dim} S$
using independent_bound by auto
from span_mono[OF B(2)] span_mono[OF B(3)]
have $s S B$: span $S=\operatorname{span} B$
by (simp add: span_span)
let ? $a=a-\operatorname{sum}\left(\lambda b .(a \cdot b /(b \cdot b)) *_{R} b\right) B$
have $\operatorname{sum}\left(\lambda b .(a \cdot b /(b \cdot b)) *_{R} b\right) B \in \operatorname{span} S$
unfolding $s S B$
apply (rule span_sum)
apply (rule span_scale)
apply (rule span_base)
apply assumption
done
with a have $a 0: ? a \neq 0$
by auto
have ? $a \cdot x=0$ if $x \in \operatorname{span} B$ for x
proof (rule span_induct [OF that])
show subspace $\{x . ? a \cdot x=0\}$
by (auto simp add: subspace_def inner_add)
next
\{
fix x
assume $x: x \in B$
from x have $B^{\prime}: B=\operatorname{insert} x(B-\{x\})$
by blast
have fth: finite ($B-\{x\}$)
using $f B$ by simp
have ? $a \cdot x=0$
apply (subst B^{\prime})
using $f B$ fth
unfolding sum_clauses(2)[OF fth]
apply simp unfolding inner_simps
apply (clarsimp simp add: inner_add inner_sum_left)

```
```

 apply (rule sum.neutral, rule ballI)
 apply (simp only: inner_commute)
 apply (auto simp add: x field_simps
 intro: B(5)[unfolded pairwise_def orthogonal_def,rule_format])
 done
 }
 then show ? a \cdot x=0 if x\inB for x
 using that by blast
 qed
 with a0 show ?thesis
 unfolding }sSB\mathrm{ by (auto intro: exI[where }x=?=?]\mathrm{)
 qed
lemma span_not_univ_subset_hyperplane:
fixes S :: 'a::euclidean_space set
assumes SU: span S}\not=UNI
shows \existsa.a\not=0^ span S\subseteq{x.a\cdotx=0}
using span_not_univ_orthogonal[OF SU] by auto
lemma lowdim_subset_hyperplane:
fixes S :: 'a::euclidean_space set
assumes d: dim S<DIM('a)
shows \existsa::'a.a\not=0^ span S\subseteq{x.a\cdotx=0}
proof -
{
assume span S = UNIV
then have dim (span S)=\operatorname{dim}(UNIV :: ('a) set)
by simp
then have dim S=DIM('a)
by (metis Euclidean_Space.dim_UNIV dim_span)
with d have False by arith
}
then have th: span S = UNIV
by blast
from span_not_univ_subset_hyperplane[OF th] show ?thesis .
qed
lemma linear_eq_stdbasis:
fixes f :: 'a::euclidean_space = _
assumes lf: linear f
and lg: linear g
and fg: \bigwedgeb.b B Basis \Longrightarrowfb=gb
shows f}=
using linear_eq_on_span[OF lf lg,of Basis] fg
by auto
Similar results for bilinear functions.

```
```

lemma bilinear_eq:

```
lemma bilinear_eq:
    assumes bf: bilinear f
```

 assumes bf: bilinear f
    ```
```

 and bg: bilinear g
 and SB:S\subseteq span B
 and TC:T\subseteq span C
 and}x\inSy\in
 and fg: \xy.\llbracketx\inB;y\inC\rrbracket\Longrightarrowfxy=gxy
 shows f x y = gxy
 proof -
let ?P}={x.\forally\in\operatorname{span}C.fxy=gxy
from bf bg have sp: subspace ?P
unfolding bilinear_def linear_iff subspace_def bf bg
by (auto simp add: span_zero bilinear_lzero[OF bf] bilinear_lzero[OF bg]
span_add Ball_def
intro: bilinear_ladd[OF bf])
have sfg: \x. x 隹\Longrightarrow subspace {a.f f a = g x a}
apply (auto simp add: subspace_def)
using bf bg unfolding bilinear_def linear_iff
apply (auto simp add: span_zero bilinear_rzero[OF bf] bilinear_rzero[OF bg]
span_add Ball_def
intro: bilinear_ladd[OF bf])
done
have }\forally\in\operatorname{span C.fxy=gxy if x f span B for }
apply (rule span_induct [OF that sp])
using fg sfg span_induct by blast
then show ?thesis
using SB TC assms by auto
qed
lemma bilinear_eq_stdbasis:
fixes f :: 'a::euclidean_space => 'b::euclidean_space => _
assumes bf: bilinear f
and bg: bilinear g
and fg:\ij.i G Basis \Longrightarrowj\in Basis \Longrightarrowfij=gij
shows f=g
using bilinear_eq[OF bf bg equalityD2[OF span_Basis] equalityD2[OF span_Basis]]
fg by blast

```

\subsection*{1.5.10 Infinity norm}
definition infnorm \(\left(x::^{\prime} a::\right.\) euclidean_space \()=\operatorname{Sup}\{|x \cdot b| \mid b . b \in\) Basis \(\}\)
lemma infnorm_set_image:
fixes \(x\) :: ' \(a::\) euclidean_space
shows \(\{|x \cdot i| \mid i . i \in\) Basis \(\}=(\lambda i .|x \cdot i|) \cdot\) Basis
by blast
lemma infnorm_Max:
fixes \(x\) :: ' \(a::\) euclidean_space
shows infnorm \(x=\operatorname{Max}((\lambda i .|x \cdot i|)\) ' Basis \()\)
by (simp add: infnorm_def infnorm_set_image cSup_eq_Max)
```

lemma infnorm_set_lemma:
fixes x :: ' a ::euclidean_space
shows finite $\{|x \cdot i| \mid i . i \in$ Basis $\}$
and $\{|x \cdot i| \mid i . i \in$ Basis $\} \neq\{ \}$
unfolding infnorm_set_image
by auto
lemma infnorm_pos_le:
fixes x :: ' $a::$ euclidean_space
shows $0 \leq$ infnorm x
by (simp add: infnorm_Max Max_ge_iff ex_in_conv)
lemma infnorm_triangle:
fixes x :: ' $a::$ euclidean_space
shows infnorm $(x+y) \leq$ infnorm $x+i n f n o r m y$
proof -
have $*: \bigwedge a b c d::$ real. $|a| \leq c \Longrightarrow|b| \leq d \Longrightarrow|a+b| \leq c+d$
by simp
show ?thesis
by (auto simp: infnorm_Max inner_add_left intro!: *)
qed
lemma infnorm_eq_ 0 :
fixes x :: ' $a::$ euclidean_space
shows infnorm $x=0 \longleftrightarrow x=0$
proof -
have infnorm $x \leq 0 \longleftrightarrow x=0$
unfolding infnorm_Max by (simp add: euclidean_all_zero_iff)
then show ?thesis
using infnorm_pos_le[of $x]$ by simp
qed
lemma infnorm_0: infnorm $0=0$
by (simp add: infnorm_eq_0)
lemma infnorm_neg: infnorm $(-x)=$ infnorm x
unfolding infnorm_def by simp
lemma infnorm_sub: infnorm $(x-y)=$ infnorm $(y-x)$
by (metis infnorm_neg minus_diff_eq)
lemma absdiff_infnorm: \mid infnorm $x-\operatorname{infnorm} y \mid \leq \operatorname{infnorm}(x-y)$
proof -
have $*: \bigwedge(n x::$ real $) n n y . n x \leq n+n y \Longrightarrow n y \leq n+n x \Longrightarrow|n x-n y| \leq n$
by arith
show ?thesis
proof (rule *)
from infnorm_triangle[of $x-y \quad y]$ infnorm_triangle $[$ of $x-y-x]$

```
```

 show infnorm \(x \leq \operatorname{infnorm}(x-y)+\operatorname{infnorm} y\) infnorm \(y \leq i n f n o r m(x-\)
 $y)+$ infnorm x
by (simp_all add: field_simps infnorm_neg)
qed
qed
lemma real_abs_infnorm: \mid infnorm $x \mid=$ infnorm x
using infnorm_pos_le[of $x]$ by arith
lemma Basis_le_infnorm:
fixes x :: ' $a::$ euclidean_space
shows $b \in$ Basis $\Longrightarrow|x \cdot b| \leq$ infnorm x
by (simp add: infnorm_Max)
lemma infnorm_mul: infnorm $\left(a *_{R} x\right)=|a| *$ infnorm x
unfolding infnorm_Max
proof (safe intro!: Max_eqI)
let ? $B=(\lambda i .|x \cdot i|)$ 'Basis
\{ fix $b::{ }^{\prime} a$
assume $b \in$ Basis
then show $\left|a *_{R} x \cdot b\right| \leq|a| * \operatorname{Max} ? B$
by (simp add: abs_mult mult_left_mono)
next
from Max_in $[o f ? B]$ obtain b where $b \in$ Basis Max ? $B=|x \cdot b|$
by (auto simp del: Max_in)
then show $|a| * \operatorname{Max}((\lambda i .|x \cdot i|)$ 'Basis $) \in\left(\lambda i .\left|a *_{R} x \cdot i\right|\right)$ 'Basis
by (intro image_eq $I[$ where $x=b]$) (auto simp: abs_mult)
\}
qed simp
lemma infnorm_mul_lemma: infnorm $\left(a *_{R} x\right) \leq|a| *$ infnorm x
unfolding infnorm_mul ..
lemma infnorm_pos_lt: infnorm $x>0 \longleftrightarrow x \neq 0$
using infnorm_pos_le[of $x]$ infnorm_eq_ $0[$ of $x]$ by arith
Prove that it differs only up to a bound from Euclidean norm.
lemma infnorm_le_norm: infnorm $x \leq$ norm x
by (simp add: Basis_le_norm infnorm_Max)
lemma norm_le_infnorm:
fixes x :: ' a ::euclidean_space
shows norm $x \leq \operatorname{sqrt} D I M\left({ }^{\prime} a\right) *$ infnorm x
unfolding norm_eq_sqrt_inner id_def
proof (rule real_le_lsqrt[OF inner_ge_zero])
show sqrt DIM ('a) * infnorm $x \geq 0$
by (simp add: zero_le_mult_iff infnorm_pos_le)
have $x \cdot x \leq\left(\sum b \in\right.$ Basis. $\left.x \cdot b *(x \cdot b)\right)$
by (metis euclidean_inner order_refl)

```
```

 also have \(\ldots \leq \operatorname{DIM}\left({ }^{\prime} a\right) * \mid\) infnorm \(\left.x\right|^{2}\)
 by (rule sum_bounded_above) (metis Basis_le_infnorm abs_le_square_iff power2_eq_square
 real_abs_infnorm)
also have $\ldots \leq\left(\text { sqrt } D I M\left({ }^{\prime} a\right) * \text { infnorm } x\right)^{2}$
by (simp add: power_mult_distrib)
finally show $x \cdot x \leq\left(\text { sqrt } \operatorname{DIM}\left({ }^{\prime} a\right) * \text { infnorm } x\right)^{2}$.
qed
lemma tendsto_infnorm [tendsto_intros]:
assumes $(f \longrightarrow a) F$
shows $((\lambda x$. infnorm $(f x)) \longrightarrow$ infnorm a) F
proof (rule tendsto_compose [OF LIM_I assms])
fix r :: real
assume $r>0$
then show $\exists s>0 . \forall x . x \neq a \wedge$ norm $(x-a)<s \longrightarrow$ norm (infnorm $x-$
infnorm a) <r
by (metis real_norm_def le_less_trans absdiff_infnorm infnorm_le_norm)
qed
Equality in Cauchy-Schwarz and triangle inequalities.
lemma norm_cauchy_schwarz_eq: $x \cdot y=$ norm $x *$ norm $y \longleftrightarrow$ norm $x *_{R} y=$
norm $y *_{R}{ }^{x}$
(is ?lhs \longleftrightarrow ? $r h s$)
proof (cases $x=0$)
case True
then show ?thesis
by auto
next
case False
from inner_eq_zero_iff[of norm $y *_{R} x-\operatorname{norm} x *_{R} y$]
have ? $r h s \longleftrightarrow$
(norm $y *($ norm $y *$ norm $x *$ norm $x-\operatorname{norm} x *(x \cdot y))-$
norm $x *($ norm $y *(y \cdot x)-$ norm $x *$ norm $y *$ norm $y)=0)$
using False unfolding inner_simps
by (auto simp add: power2_norm_eq_inner[symmetric] power2_eq_square in-
ner_commute field_simps)
also have $\ldots \longleftrightarrow(2 *$ norm $x *$ norm $y *($ norm $x *$ norm $y-x \cdot y)=0)$
using False by (simp add: field_simps inner_commute)
also have $\ldots \longleftrightarrow$?lhs
using False by auto
finally show ?thesis by metis
qed
lemma norm_cauchy_schwarz_abs_eq:
$|x \cdot y|=$ norm $x *$ norm $y \longleftrightarrow$
norm $x *_{R} y=$ norm $y *_{R} x \vee$ norm $x *_{R} y=-\operatorname{norm} y *_{R} x$
(is?lhs \longleftrightarrow ? $r h s$)
proof -
have th: $\bigwedge(x::$ real $) a . a \geq 0 \Longrightarrow|x|=a \longleftrightarrow x=a \vee x=-a$

```
by arith
have ? \(r\) hs \(\longleftrightarrow\) norm \(x *_{R} y=\) norm \(y *_{R} x \vee \operatorname{norm}(-x) *_{R} y=\) norm \(y *_{R}\) \((-x)\)
by \(\operatorname{simp}\)
also have \(\ldots \longleftrightarrow(x \cdot y=\) norm \(x *\) norm \(y \vee(-x) \cdot y=\) norm \(x *\) norm \(y)\)
unfolding norm_cauchy_schwarz_eq[symmetric]
unfolding norm_minus_cancel norm_scaleR ..
also have \(\ldots \longleftrightarrow\) ?lhs
unfolding th[OF mult_nonneg_nonneg, OF norm_ge_zero[of x] norm_ge_zero[of
y]] inner_simps
by auto
finally show ?thesis ..
qed
lemma norm_triangle_eq:
fixes \(x\) y :: 'a::real_inner
shows norm \((x+y)=\) norm \(x+\) norm \(y \longleftrightarrow\) norm \(x *_{R} y=\) norm \(y *_{R} x\)
proof (cases \(x=0 \vee y=0\) )
case True
then show ?thesis
by force
next
case False
then have \(n\) : norm \(x>0\) norm \(y>0\)
by auto
have norm \((x+y)=\) norm \(x+\) norm \(y \longleftrightarrow(\text { norm }(x+y))^{2}=(\) norm \(x+\)
norm \(y)^{2}\)
by simp
also have \(\ldots \longleftrightarrow\) norm \(x *_{R} y=\) norm \(y *_{R} x\)
unfolding norm_cauchy_schwarz_eq[symmetric]
unfolding power2_norm_eq_inner inner_simps
by (simp add: power2_norm_eq_inner[symmetric] power2_eq_square inner_commute field_simps)
finally show ?thesis .
qed

\subsection*{1.5.11 Collinearity}
definition collinear \(::\) ' \(a:\) :real_vector set \(\Rightarrow\) bool
\[
\text { where collinear } S \longleftrightarrow\left(\exists u . \forall x \in S . \forall y \in S . \exists c . x-y=c *_{R} u\right)
\]
lemma collinear_alt: collinear \(S \longleftrightarrow\left(\exists u v . \forall x \in S . \exists c . x=u+c *_{R} v\right)(\) is ? lhs \(=\) ? \(r h s)\)
proof
assume? lhs
then show ?rhs
unfolding collinear_def by (metis Groups.add_ac(2) diff_add_cancel)
next
assume ?rhs
```

 then obtain \(u v\) where \(*: \bigwedge x . x \in S \Longrightarrow \exists c . x=u+c *_{R} v\)
 by (auto simp:)
 have \(\exists c . x-y=c *_{R} v\) if \(x \in S y \in S\) for \(x y\)
 by (metis \(*[O F\langle x \in S\rangle] *[O F\langle y \in S\rangle]\) scaleR_left.diff add_diff_cancel_left)
 then show? \({ }^{\text {lhs }}\)
 using collinear_def by blast
 qed
lemma collinear:
fixes S :: ' $a::\{$ perfect_space,real_vector $\}$ set
shows collinear $S \longleftrightarrow\left(\exists u . u \neq 0 \wedge\left(\forall x \in S . \forall y \in S . \exists c . x-y=c *_{R} u\right)\right)$
proof -
have $\exists v . v \neq 0 \wedge\left(\forall x \in S . \forall y \in S . \exists c . x-y=c *_{R} v\right)$
if $\forall x \in S . \forall y \in S . \exists c . x-y=c *_{R} u u=0$ for u
proof -
have $\forall x \in S . \forall y \in S . x=y$
using that by auto
moreover
obtain $v::^{\prime} a$ where $v \neq 0$
using UNIV_not_singleton [of 0] by auto
ultimately have $\forall x \in S . \forall y \in S . \exists c . x-y=c *_{R} v$
by auto
then show ?thesis
using $\langle v \neq 0\rangle$ by blast
qed
then show ?thesis
apply (clarsimp simp: collinear_def)
by (metis scaleR_zero_right vector_fraction_eq_iff)
qed
lemma collinear_subset: \llbracket collinear $T ; S \subseteq T \rrbracket \Longrightarrow$ collinear S
by (meson collinear_def subsetCE)
lemma collinear_empty [iff]: collinear \{\}
by (simp add: collinear_def)
lemma collinear_sing [iff]: collinear $\{x\}$
by (simp add: collinear_def)
lemma collinear_2 [iff]: collinear $\{x, y\}$
apply (simp add: collinear_def)
apply (rule exI[where $x=x-y]$)
by (metis minus_diff_eq scaleR_left.minus scaleR_one)
lemma collinear_lemma: collinear $\{0, x, y\} \longleftrightarrow x=0 \vee y=0 \vee(\exists c . y=c$
$\left.{ }^{*}{ }_{R} x\right)$
(is ?lhs \longleftrightarrow ?rhs)
proof (cases $x=0 \vee y=0$)
case True

```
```

 then show ?thesis
 by (auto simp: insert_commute)
 next
case False
show ?thesis
proof
assume h : ?lhs
then obtain u where $u: \forall x \in\{0, x, y\} . \forall y \in\{0, x, y\} . \exists c . x-y=c *_{R} u$
unfolding collinear_def by blast
from $u[$ rule_format, of $x 0] u[$ rule_format, of $y 0]$
obtain $c x$ and $c y$ where
$c x: x=c x *_{R} u$ and $c y: y=c y *_{R} u$
by auto
from $c x$ cy False have $c x 0: c x \neq 0$ and $c y 0: c y \neq 0$ by auto
let ? $d=c y / c x$
from $c x c y c x 0$ have $y=? d *_{R} x$
by simp
then show ?rhs using False by blast
next
assume h :?rhs
then obtain c where $c: y=c *_{R} x$
using False by blast
show ?lhs
unfolding collinear_def c
apply (rule exI[where $x=x]$)
apply auto
apply (rule exI[where $x=-1], \operatorname{simp}$)
apply (rule exI[where $x=-c$], simp)
apply (rule exI[where $x=1$], simp)
apply (rule exI[where $x=1-c]$, simp add: scaleR_left_diff_distrib)
apply (rule exI[where $x=c-1]$, simp add: scaleR_left_diff_distrib)
done
qed
qed
lemma norm_cauchy_schwarz_equal: $|x \cdot y|=$ norm $x *$ norm $y \longleftrightarrow$ collinear $\{0$,
$x, y\}$
proof (cases $x=0$)
case True
then show ?thesis
by (auto simp: insert_commute)
next
case False
then have nnz: norm $x \neq 0$
by auto
show ?thesis
proof
assume $|x \cdot y|=$ norm $x *$ norm y
then show collinear $\{0, x, y\}$

```
```

 unfolding norm_cauchy_schwarz_abs_eq collinear_lemma
 by (meson eq_vector_fraction_iff nnz)
 next
assume collinear {0,x,y}
with False show |x | y = norm x * norm y
unfolding norm_cauchy_schwarz_abs_eq collinear_lemma by (auto simp:
abs_if)
qed
qed

```

\subsection*{1.5.12 Properties of special hyperplanes}
lemma subspace_hyperplane: subspace \(\{x . a \cdot x=0\}\)
by (simp add: subspace_def inner_right_distrib)
lemma subspace_hyperplane2: subspace \(\{x . x \cdot a=0\}\)
by (simp add: inner_commute inner_right_distrib subspace_def)
lemma special_hyperplane_span:
fixes \(S\) :: ' \(n::\) euclidean_space set
assumes \(k \in\) Basis
shows \(\{x . k \cdot x=0\}=\operatorname{span}(\) Basis \(-\{k\})\)
proof -
have \(*: x \in \operatorname{span}(\) Basis \(-\{k\})\) if \(k \cdot x=0\) for \(x\)
proof -
have \(x=\left(\sum b \in\right.\) Basis. \(\left.(x \cdot b) *_{R} b\right)\)
by (simp add: euclidean_representation)
also have \(\ldots=\left(\sum b \in\right.\) Basis \(\left.-\{k\} .(x \cdot b) *_{R} b\right)\)
by (auto simp: sum.remove \(\left[o f_{-} k\right]\) inner_commute assms that)
finally have \(x=\left(\sum b \in\right.\) Basis \(\left.-\{k\} .(x \cdot b) *_{R} b\right)\).
then show ?thesis
by (simp add: span_finite)
qed
show ?thesis
apply (rule span_subspace [symmetric])
using assms
apply (auto simp: inner_not_same_Basis intro: * subspace_hyperplane)
done
qed
lemma dim_special_hyperplane:
fixes \(k::\) ' \(n::\) euclidean_space
shows \(k \in\) Basis \(\Longrightarrow \operatorname{dim}\{x . k \cdot x=0\}=\operatorname{DIM}\left({ }^{\prime} n\right)-1\)
apply (simp add: special_hyperplane_span)
apply (rule dim_unique [OF subset_refl])
apply (auto simp: independent_substdbasis)
apply (metis member_remove remove_def span_base)
done
```

proposition dim_hyperplane:
fixes a :: ' $a:$:euclidean_space
assumes $a \neq 0$
shows $\operatorname{dim}\{x . a \cdot x=0\}=\operatorname{DIM}(' a)-1$
proof -
have span0: span $\{x . a \cdot x=0\}=\{x . a \cdot x=0\}$
by (rule span_unique) (auto simp: subspace_hyperplane)
then obtain B where independent B
and Bsub: $B \subseteq\{x . a \cdot x=0\}$
and subsp $B:\{x . a \cdot x=0\} \subseteq \operatorname{span} B$
and card0: $(\operatorname{card} B=\operatorname{dim}\{x . a \cdot x=0\})$
and ortho: pairwise orthogonal B
using orthogonal_basis_exists by metis
with assms have $a \notin$ span B
by (metis (mono_tags, lifting) span_eq inner_eq_zero_iff mem_Collect_eq span0)
then have ind: independent (insert a B)
by (simp add: <independent B 〉independent_insert)
have finite B
using «independent B 〉independent_bound by blast
have $U N I V \subseteq \operatorname{span}$ (insert a B)
proof fix $y::^{\prime} a$
obtain $r z$ where $z: y=r *_{R} a+z a \cdot z=0$
apply (rule_tac $r=(a \cdot y) /(a \cdot a)$ and $z=y-((a \cdot y) /(a \cdot a)) *_{R} a$ in
that)
using assms
by (auto simp: algebra_simps)
show $y \in \operatorname{span}$ (insert a B)
by (metis (mono_tags, lifting) z Bsub span_eq_iff
add_diff_cancel_left' mem_Collect_eq span0 span_breakdown_eq span_subspace
subspB)
qed
then have $\operatorname{dima}: \operatorname{DIM}\left({ }^{\prime} a\right)=\operatorname{dim}($ insert a $B)$
by (metis independent_Basis span_Basis dim_eq_card top.extremum_uniqueI)
then show?thesis
by (metis (mono_tags, lifting) Bsub Diff_insert_absorb $\langle a \notin$ span B 〉ind card0
card_Diff_singleton dim_span indep_card_eq_dim_span insertI1 subsetCE
subspB)
qed
lemma lowdim_eq_hyperplane:
fixes S :: 'a::euclidean_space set
assumes $\operatorname{dim} S=\operatorname{DIM}\left({ }^{\prime} a\right)-1$
obtains a where $a \neq 0$ and $\operatorname{span} S=\{x . a \cdot x=0\}$
proof -
have $\operatorname{dim} S: \operatorname{dim} S<D I M(' a)$
by (simp add: assms)
then obtain b where $b: b \neq 0$ span $S \subseteq\{a . b \cdot a=0\}$
using lowdim_subset_hyperplane [of S] by fastforce
show ?thesis

```
```

 apply (rule that[OF b(1)])
 apply (rule subspace_dim_equal)
 by (auto simp: assms b dim_hyperplane subspace_hyperplane)
 qed
lemma dim_eq_hyperplane:
fixes S :: ' }n::\mathrm{ euclidean_space set
shows }\operatorname{dim}S=DIM('n)-1\longleftrightarrow(\existsa.a\not=0^\operatorname{span}S={x.a\cdotx=0}
by (metis One_nat_def dim_hyperplane dim_span lowdim_eq_hyperplane)

```

\subsection*{1.5.13 Orthogonal bases and Gram-Schmidt process}
lemma pairwise_orthogonal_independent:
assumes pairwise orthogonal \(S\) and \(0 \notin S\)
shows independent \(S\)
proof -
have \(0: \bigwedge x y . \llbracket x \neq y ; x \in S ; y \in S \rrbracket \Longrightarrow x \cdot y=0\)
using assms by (simp add: pairwise_def orthogonal_def)
have False if \(a \in S\) and \(a: a \in \operatorname{span}(S-\{a\})\) for \(a\)
proof -
obtain \(T U\) where \(T \subseteq S-\{a\} a=\left(\sum v \in T . U v *_{R} v\right)\)
using \(a\) by (force simp: span_explicit)
then have \(a \cdot a=a \cdot\left(\sum v \in T . U v *_{R} v\right)\)
by \(\operatorname{simp}\)
also have...\(=0\)
apply (simp add: inner_sum_right)
apply (rule comm_monoid_add_class.sum.neutral)
by (metis 0 Diffe \(\langle T \subseteq S-\{a\}\rangle\) mult_not_zero singletonI subset \(C E\langle a \in S\rangle\) )
finally show ?thesis
using \(\langle 0 \notin S\rangle\langle a \in S\rangle\) by auto
qed
then show ?thesis
by (force simp: dependent_def)
qed
lemma pairwise_orthogonal_imp_finite:
fixes \(S\) :: 'a::euclidean_space set
assumes pairwise orthogonal \(S\) shows finite \(S\)
proof -
have independent ( \(S-\{0\}\) )
apply (rule pairwise_orthogonal_independent)
apply (metis Diff_iff assms pairwise_def)
by blast
then show ?thesis by (meson independent_imp_finite infinite_remove)
qed
lemma subspace_orthogonal_to_vector: subspace \(\{y\). orthogonal \(x y\}\)
by (simp add: subspace_def orthogonal_clauses)
lemma subspace_orthogonal_to_vectors: subspace \(\{y . \forall x \in S\). orthogonal \(x y\}\) by (simp add: subspace_def orthogonal_clauses)
lemma orthogonal_to_span:
assumes \(a: a \in \operatorname{span} S\) and \(x: \bigwedge y . y \in S \Longrightarrow\) orthogonal \(x y\)
shows orthogonal \(x\) a
by (metis a orthogonal_clauses \((1,2,4)\)
span_induct_alt \(x\) )
proposition Gram_Schmidt_step:
fixes \(S\) :: 'a::euclidean_space set
assumes \(S\) : pairwise orthogonal \(S\) and \(x: x \in \operatorname{span} S\) shows orthogonal \(x\left(a-\left(\sum b \in S .(b \cdot a /(b \cdot b)) *_{R} b\right)\right)\)

\section*{proof -}
have finite \(S\)
by (simp add: S pairwise_orthogonal_imp_finite)
have orthogonal \(\left(a-\left(\sum b \in S .(b \cdot a /(b \cdot b)) *_{R} b\right)\right) x\) if \(x \in S\) for \(x\)
proof -
have \(a \cdot x=\left(\sum y \in S\right.\). if \(y=x\) then \(y \cdot a\) else 0\()\)
by (simp add: 〈finite \(S\rangle\) inner_commute that)
also have \(\ldots=\left(\sum b \in S . b \cdot a *(b \cdot x) /(b \cdot b)\right)\)
apply (rule sum.cong [OF refl], simp) by (meson S orthogonal_def pairwise_def that)
finally show ?thesis
by (simp add: orthogonal_def algebra_simps inner_sum_left)
qed
then show ?thesis
using orthogonal_to_span orthogonal_commute \(x\) by blast
qed
lemma orthogonal_extension_aux:
fixes \(S\) :: 'a::euclidean_space set
assumes finite \(T\) finite \(S\) pairwise orthogonal \(S\)
shows \(\exists U\). pairwise orthogonal \((S \cup U) \wedge \operatorname{span}(S \cup U)=\operatorname{span}(S \cup T)\)
using assms
proof (induction arbitrary: \(S\) )
case empty then show ?case
by simp (metis sup_bot_right)
next
case (insert a \(T\) )
have \(0: \bigwedge x y . \llbracket x \neq y ; x \in S ; y \in S \rrbracket \Longrightarrow x \cdot y=0\)
using insert by (simp add: pairwise_def orthogonal_def)
define \(a^{\prime}\) where \(a^{\prime}=a-\left(\sum b \in S .(b \cdot a /(b \cdot b)) *_{R} b\right)\)
obtain \(U\) where orth \(U\) : pairwise orthogonal \(\left(S \cup\right.\) insert \(\left.a^{\prime} U\right)\)
and span \(U\) : span (insert \(\left.a^{\prime} S \cup U\right)=\) span (insert \(\left.a^{\prime} S \cup T\right)\)
```

 by (rule exE [OF insert.IH [of insert a' S]])
 (auto simp:Gram_Schmidt_step a'_def insert.prems orthogonal_commute
 pairwise_orthogonal_insert span_clauses)
 have orthS: \x. x }\inS\Longrightarrow\mp@subsup{a}{}{\prime}\cdotx=
 apply (simp add: a a_def)
 using Gram_Schmidt_step [OF <pairwise orthogonal S`]
 apply (force simp: orthogonal_def inner_commute span_superset [THEN sub-
 setD])
done
have span (S\cup insert a' U) = span (insert a' (S\cupT))
using spanU by simp
also have ... = span (insert a (S\cupT))
apply (rule eq_span_insert_eq)
apply (simp add: a'_def span_neg span_sum span_base span_mul)
done
also have ... = span (S ⿺ insert a T)
by simp
finally show ?case
by (rule_tac x=insert a' U in exI) (use orth U in auto)
qed
proposition orthogonal＿extension：
fixes S ：：＇a：：euclidean＿space set
assumes S ：pairwise orthogonal S
obtains U where pairwise orthogonal $(S \cup U) \operatorname{span}(S \cup U)=\operatorname{span}(S \cup T)$
proof－
obtain B where finite B span $B=$ span T
using basis＿subspace＿exists［of span T］subspace＿span by metis
with orthogonal＿extension＿aux［of B S］
obtain U where pairwise orthogonal $(S \cup U) \operatorname{span}(S \cup U)=\operatorname{span}(S \cup B)$
using assms pairwise＿orthogonal＿imp＿finite by auto
with 〈span $B=$ span T 〉 show ？thesis
by（rule＿tac $U=U$ in that）（auto simp：span＿Un）
qed
corollary orthogonal＿extension＿strong：
fixes S ：：＇a：：euclidean＿space set
assumes S ：pairwise orthogonal S
obtains U where $U \cap$（insert $0 S)=\{ \}$ pairwise orthogonal $(S \cup U)$

$$
\operatorname{span}(S \cup U)=\operatorname{span}(S \cup T)
$$

proof－
obtain U where pairwise orthogonal $(S \cup U) \operatorname{span}(S \cup U)=\operatorname{span}(S \cup T)$
using orthogonal＿extension assms by blast
then show？thesis
apply（rule＿tac $U=U-($ insert $0 S)$ in that $)$
apply blast
apply（force simp：pairwise＿def）
apply（metis Un＿Diff＿cancel Un＿insert＿left span＿redundant span＿zero）

```

\section*{done \\ qed}

\subsection*{1.5.14 Decomposing a vector into parts in orthogonal subspaces}
existence of orthonormal basis for a subspace.
```

lemma orthogonal_spanningset_subspace:
fixes S :: ' a :: euclidean_space set
assumes subspace S
obtains B where $B \subseteq S$ pairwise orthogonal B span $B=S$
proof -
obtain B where $B \subseteq S$ independent $B S \subseteq \operatorname{span} B$ card $B=\operatorname{dim} S$
using basis_exists by blast
with orthogonal_extension $[$ of $\} B]$
show ?thesis
by (metis Un_empty_left assms pairwise_empty span_superset span_subspace that)
qed
lemma orthogonal_basis_subspace:
fixes S :: ' a :: euclidean_space set
assumes subspace S
obtains B where $0 \notin B B \subseteq S$ pairwise orthogonal B independent B
card $B=\operatorname{dim} S \operatorname{span} B=S$
proof -
obtain B where $B \subseteq S$ pairwise orthogonal B span $B=S$
using assms orthogonal_spanningset_subspace by blast
then show? ?thesis
apply (rule_tac $B=B-\{0\}$ in that)
apply (auto simp: indep_card_eq_dim_span pairwise_subset pairwise_orthogonal_independent
elim: pairwise_subset)
done
qed
proposition orthonormal_basis_subspace:
fixes S ::' a :: euclidean_space set
assumes subspace S
obtains B where $B \subseteq S$ pairwise orthogonal B
and $\bigwedge x . x \in B \Longrightarrow$ norm $x=1$
and independent B card $B=\operatorname{dim} S$ span $B=S$
proof -
obtain B where $0 \notin B B \subseteq S$
and orth: pairwise orthogonal B
and independent B card $B=\operatorname{dim} S$ span $B=S$
by (blast intro: orthogonal_basis_subspace [OF assms])
have 1: $(\lambda x . x / R$ norm $x)$ ' $B \subseteq S$
using \langle span $B=S\rangle$ span_superset span_mul by fastforce
have 2: pairwise orthogonal $((\lambda x . x / R$ norm $x)$ ' $B)$
using orth by (force simp: pairwise_def orthogonal_clauses)

```
```

have 3: $\Lambda x . x \in(\lambda x . x / R$ norm $x)$ ' $B \Longrightarrow$ norm $x=1$
by (metis (no_types, lifting) $\langle 0 \notin B\rangle$ image_iff norm_sgn sgn_div_norm)
have 4: independent $((\lambda x . x / R$ norm $x)$ ' $B)$
by (metis 23 norm_zero pairwise_orthogonal_independent zero_neq_one)
have inj_on $(\lambda x . x / R$ norm $x) B$
proof
fix $x y$
assume $x \in B y \in B x / R$ norm $x=y / R$ norm y
moreover have $\bigwedge i . i \in B \Longrightarrow \operatorname{norm}(i / R$ norm $i)=1$
using 3 by blast
ultimately show $x=y$
by (metis norm_eq_1 orth orthogonal_clauses(7) orthogonal_commute orthog-
onal_def pairwise_def zero_neq_one)
qed
then have 5: card $((\lambda x . x / R$ norm $x) \cdot B)=\operatorname{dim} S$
by (metis 〈card $B=$ dim $S\rangle$ card_image)
have $6: \operatorname{span}((\lambda x . x / R$ norm $x) ' B)=S$
by (metis 145 assms card_eq_dim independent_imp_finite span_subspace)
show ?thesis
by (rule that $[$ OF 123456$]$)
qed
proposition orthogonal_to_subspace_exists_gen:
fixes S :: ' a :: euclidean_space set
assumes span $S \subset$ span T
obtains x where $x \neq 0 x \in \operatorname{span} T \bigwedge y . y \in \operatorname{span} S \Longrightarrow$ orthogonal $x y$
proof -
obtain B where $B \subseteq$ span S and orthB: pairwise orthogonal B
and $\bigwedge x . x \in B \Longrightarrow$ norm $x=1$
and independent B card $B=\operatorname{dim} S$ span $B=\operatorname{span} S$
by (rule orthonormal_basis_subspace [of span S, OF subspace_span]) (auto)
with assms obtain u where spanBT: span $B \subseteq \operatorname{span} T$ and $u \notin \operatorname{span} B u \in$
span T
by auto
obtain C where orth $B C$: pairwise orthogonal $(B \cup C)$ and spanBC: span $(B$
$\cup C)=\operatorname{span}(B \cup\{u\})$
by (blast intro: orthogonal_extension [OF orthB])
show thesis
proof (cases $C \subseteq$ insert $0 B$)
case True
then have $C \subseteq \operatorname{span} B$
using span_eq
by (metis span_insert_0 subset_trans)
moreover have $u \in \operatorname{span}(B \cup C)$
using \langle span $(B \cup C)=\operatorname{span}(B \cup\{u\})\rangle$ span_superset by force
ultimately show ?thesis
using True $\langle u \notin$ span $B\rangle$
by (metis Un_insert_left span_insert_0 sup.orderE)

```
```

 next
 case False
 then obtain x where }x\inCx\not=0x\not\in
 by blast
 then have }x\in\operatorname{span}
 by (metis (no_types, lifting) Un_insert_right Un_upper2 <u \in span T\rangle spanBT
 spanBC
<u \in span T> insert_subset span_superset span_mono
span_span subsetCE subset_trans sup_bot.comm_neutral)
moreover have orthogonal x y if y\in span B for y
using that
proof (rule span_induct)
show subspace {a. orthogonal x a }
by (simp add: subspace_orthogonal_to_vector)
show }\bigwedgeb.b\inB\Longrightarrow\mathrm{ orthogonal x b
by (metis Un_iff }\langlex\inC\rangle\langlex\not\inB\rangle\mathrm{ orthBC pairwise_def)
qed
ultimately show ?thesis
using \langlex }\not=0\rangle\mathrm{ that <span B = span S〉 by auto
qed
qed
corollary orthogonal_to_subspace_exists:
fixes S :: ' }a\mathrm{ :: euclidean_space set
assumes }\operatorname{dim}S<\operatorname{DIM('a)
obtains }x\mathrm{ where }x\not=0\y.y\in\operatorname{span}S\Longrightarrow\mathrm{ orthogonal }x
proof -
have span S \subset UNIV
by (metis (mono_tags) UNIV_I assms inner_eq_zero_iff less_le lowdim_subset_hyperplane
mem_Collect_eq top.extremum_strict top.not_eq_extremum)
with orthogonal_to_subspace_exists_gen [of S UNIV] that show ?thesis
by (auto)
qed
corollary orthogonal_to_vector_exists:
fixes x :: 'a :: euclidean_space
assumes 2 \leq DIM('a)
obtains }y\mathrm{ where }y\not=0\mathrm{ orthogonal }x
proof -
have }\operatorname{dim}{x}<DIM('a
using assms by auto
then show thesis
by (rule orthogonal_to_subspace_exists) (simp add: orthogonal_commute span_base
that)
qed
proposition orthogonal_subspace_decomp_exists:
fixes S :: 'a :: euclidean_space set
obtains yz

```
```

 where y f span S
 and }\bigwedgew.w\in\operatorname{span}S\Longrightarrow\mathrm{ orthogonal }z
 and}x=y+
 proof -
obtain T where 0}\not=TT\subseteq\mathrm{ span S pairwise orthogonal T independent T
card T = dim (span S) span T = span S
using orthogonal_basis_subspace subspace_span by blast
let ?a = \sumb\inT.(b | x/(b b)) *R
have orth: orthogonal (x-?a)w if w\in span S for w
by (simp add:Gram_Schmidt_step \pairwise orthogonal T\rangle\langlespan T = span S\rangle
orthogonal_commute that)
show ?thesis
apply (rule_tac y=?a and z=x - ?a in that)
apply (meson<T\subseteq span S〉 span_scale span_sum subsetCE)
apply (fact orth, simp)
done
qed
lemma orthogonal_subspace_decomp_unique:
fixes }S::\mp@subsup{}{}{\prime}a\mathrm{ :: euclidean_space set
assumes }x+y=\mp@subsup{x}{}{\prime}+\mp@subsup{y}{}{\prime
and ST:x}\in\operatorname{span}S\mp@subsup{x}{}{\prime}\in\operatorname{span}Sy\in\operatorname{span}T\mp@subsup{y}{}{\prime}\in\operatorname{span}
and orth: \bigwedge}\ab.\llbracketa\inS;b\inT\rrbracket\Longrightarrow orthogonal a b
shows }x=\mp@subsup{x}{}{\prime}\wedgey=\mp@subsup{y}{}{\prime
proof -
have }x+y-\mp@subsup{y}{}{\prime}=\mp@subsup{x}{}{\prime
by (simp add: assms)
moreover have \}\ab.\llbracketa\in\operatorname{span}S;b\in\operatorname{span}T\rrbracket\Longrightarrow\mathrm{ orthogonal a b
by (meson orth orthogonal_commute orthogonal_to_span)
ultimately have 0= 㐍-x
by (metis (full_types) add_diff_cancel_left' ST diff_right_commute orthogonal_clauses(10)
orthogonal_clauses(5) orthogonal_self)
with assms show ?thesis by auto
qed
lemma vector_in_orthogonal_spanningset:
fixes a :: 'a::euclidean_space
obtains S where a}\inS\mathrm{ pairwise orthogonal S span S = UNIV
by (metis UNIV_I Un_iff empty_iff insert_subset orthogonal_extension pairwise_def
pairwise_orthogonal_insert span_UNIV subsetI subset_antisym)
lemma vector_in_orthogonal_basis:
fixes a :: 'a::euclidean_space
assumes }a\not=
obtains S where a}\inS0\not\inS\mathrm{ pairwise orthogonal S independent S finite S
span S = UNIV card S = DIM('a)
proof -
obtain S where S:a \inS pairwise orthogonal S span S = UNIV
using vector_in_orthogonal_spanningset .

```
```

 show thesis
 proof
 show pairwise orthogonal (\(S-\{0\}\))
 using pairwise_mono \(S(2)\) by blast
 show independent (\(S-\{0\}\))
 by (simp add: <pairwise orthogonal \((S-\{0\})\rangle\) pairwise_orthogonal_independent)
 show finite \((S-\{0\})\)
 using «independent (\(S-\{0\}\)) 〉 independent_imp_finite by blast
 show \(\operatorname{card}(S-\{0\})=\operatorname{DIM}\left({ }^{\prime} a\right)\)
 using span_delete_0 [of S] S
 by (simp add: <independent \((S-\{0\})\rangle\) indep_card_eq_dim_span)
 qed (use \(S\langle a \neq 0\rangle\) in auto)
 qed
lemma vector_in_orthonormal_basis:
fixes a :: ' $a::$ euclidean_space
assumes norm $a=1$
obtains S where $a \in S$ pairwise orthogonal $S \wedge x . x \in S \Longrightarrow$ norm $x=1$
independent S card $S=D I M\left({ }^{\prime} a\right)$ span $S=U N I V$
proof -
have $a \neq 0$
using assms by auto
then obtain S where $a \in S 0 \notin S$ finite S
and S : pairwise orthogonal S independent S span $S=U N I V$ card $S=$
DIM (' ${ }^{\prime}$)
by (metis vector_in_orthogonal_basis)
let ? $S=(\lambda x . x / R$ norm $x)$ ' S
show thesis
proof
show $a \in$? S
using $\langle a \in S\rangle$ assms image_iff by fastforce
next
show pairwise orthogonal ?S
using 〈pairwise orthogonal S 〉 by (auto simp: pairwise_def orthogonal_def)
show $\bigwedge x . x \in(\lambda x . x / R$ norm $x)$ ' $S \Longrightarrow$ norm $x=1$
using $\langle 0 \notin S\rangle$ by (auto simp: field_split_simps)
then show independent? S
by (metis <pairwise orthogonal $((\lambda x . x / R$ norm $x)$ ‘ $S)$ 〉 norm_zero pair-
wise_orthogonal_independent zero_neq_one)
have inj_on $(\lambda x . x / R$ norm $x) S$
unfolding inj_on_def
by (metis (full_types) $S(1)\langle 0 \notin S\rangle$ inverse_nonzero_iff_nonzero norm_eq_zero
orthogonal_scaleR orthogonal_self pairwise_def)
then show card ? $S=\operatorname{DIM}\left({ }^{\prime} a\right)$
by (simp add: card_image S)
show span ? $S=U N I V$
by (metis (no_types) $\langle 0 \notin S\rangle\langle$ finite $S\rangle\langle s p a n ~ S=U N I V\rangle$
field_class.field_inverse_zero inverse_inverse_eq less_irrefl span_image_scale
zero_less_norm_iff)

```
```

 qed
 qed
proposition dim_orthogonal_sum:
fixes A :: 'a::euclidean_space set
assumes }\xy.\llbracketx\inA;y\inB\rrbracket\Longrightarrowx y y=
shows }\operatorname{dim}(A\cupB)=\operatorname{dim}A+\operatorname{dim}
proof -
have 1: \bigwedgexy.\llbracketx\in\operatorname{span}A;y\inB\rrbracket\Longrightarrowx \ y=0
by (erule span_induct [OF _ subspace_hyperplane2]; simp add: assms)
have }\xy.\llbracketx\in\operatorname{span}A;y\in\operatorname{span}B\rrbracket\Longrightarrowx\cdoty=
using 1 by (simp add: span_induct [OF _ subspace_hyperplane])
then have 0: \xy.\llbracketx\in\operatorname{span}A;y\in\operatorname{span}B\rrbracket\Longrightarrowx\cdoty=0
by simp
have dim(A\cupB)=\operatorname{dim}(\operatorname{span}(A\cupB))
by (simp)
also have span }(A\cupB)=((\lambda(a,b).a+b)'(span A\times span B)
by (auto simp add: span_Un image_def)
also have dim ... = dim {x+y|xy.x\in\operatorname{span}A\wedgey\in\operatorname{span}B}
by (auto intro!: arg_cong [where f=dim])
also have ... = dim {x+y|xy.x\in span A\wedgey\in\operatorname{span}B}+\operatorname{dim}(\operatorname{span}A\cap
span B)
by (auto simp: dest: 0)
also have ... = dim (\operatorname{span}A)+\operatorname{dim}(\operatorname{span}B)
by (rule dim_sums_Int) (auto)
also have ... = dim A+\operatorname{dim}B
by (simp)
finally show ?thesis.
qed
lemma dim_subspace_orthogonal_to_vectors:
fixes A :: 'a::euclidean_space set
assumes subspace A subspace B A\subseteqB
shows }\operatorname{dim}{y\inB.\forallx\inA.orthogonal x y} + dim A=\operatorname{dim}
proof -
have dim (span ({y\inB.\forallx\inA. orthogonal x y} \cup A)) = dim (span B)
proof (rule arg_cong [where f=dim,OF subset_antisym])
show span ({y\inB.\forallx\inA. orthogonal }xy}\cupA)\subseteq\operatorname{span}
by (simp add: <A\subseteqB`Collect_restrict span_mono) next have *: x \in span ({y\inB.\forallx\inA. orthogonal x y} \cupA) if }x\inB\mathrm{ for } proof - obtain yz where x=y+zy\in span A and orth: }\w.w\in\operatorname{span}A orthogonal z w using orthogonal_subspace_decomp_exists [of A x] that by auto have }y\in\operatorname{span} using < }y\in\mathrm{ span A` assms(3) span_mono by blast
then have z \in{a\inB.\forallx.x\inA\longrightarrow orthogonal xa}

```
```

 apply simp
 using <x = y +z\rangleassms(1) assms(2) orth orthogonal_commute span_add_eq
 span_eq_iff that by blast
 then have z:z\in\operatorname{span}{y\inB.\forallx\inA. orthogonal x y}
 by (meson span_superset subset_iff)
 then show ?thesis
 apply (auto simp: span_Un image_def \langlex=y+z\rangle\langley\in span A\rangle)
 using <y \in span A` add.commute by blast
 qed
 show span B\subseteq\operatorname{span}({y\inB.\forallx\inA. orthogonal x y} \cupA)
 by (rule span_minimal) (auto intro: * span_minimal)
 qed
then show ?thesis
by (metis (no_types, lifting) dim_orthogonal_sum dim_span mem_Collect_eq
orthogonal_commute orthogonal_def)
qed

```

\subsection*{1.5.15 Linear functions are (uniformly) continuous on any set}

\subsection*{1.5.16 Topological properties of linear functions}
```

lemma linear_lim_0:
assumes bounded_linear f
shows (f\longrightarrow0)(at (0))
proof -
interpret f: bounded_linear f by fact
have (f\longrightarrowf0)(at 0)
using tendsto_ident_at by (rule f.tendsto)
then show ?thesis unfolding f.zero .
qed
lemma linear_continuous_at:
assumes bounded_linear f
shows continuous (at a)f
unfolding continuous_at using assms
apply (rule bounded_linear.tendsto)
apply (rule tendsto_ident_at)
done
lemma linear_continuous_within:
bounded_linear f}\Longrightarrow\mathrm{ continuous (at x within s) f
using continuous_at_imp_continuous_at_within linear_continuous_at by blast
lemma linear_continuous_on:
bounded_linear }f\Longrightarrow\mathrm{ continuous_on s }
using continuous_at_imp_continuous_on[of s f] using linear_continuous_at[of f]
by auto
lemma Lim_linear:

```
```

fixes $f::$ ' $a::$ euclidean_space \Rightarrow ' $b::$ euclidean_space and $h::{ }^{\prime} b \Rightarrow^{\prime} c::$ real_normed_vector
assumes $(f \longrightarrow l) F$ linear h
shows $((\lambda x . h(f x)) \longrightarrow h l) F$
proof -
obtain B where $B: B>0 \bigwedge x$. norm $(h x) \leq B *$ norm x
using linear_bounded_pos [OF 〈linear $h\rangle$] by blast
show ?thesis
unfolding tendsto_iff
proof (intro allI impI)
show $\forall_{F} x$ in F. dist $(h(f x))(h l)<e$ if $e>0$ for e
proof -
have $\forall_{F} x$ in F. dist $(f x) l<e / B$
by (simp add: $\langle 0<B\rangle \operatorname{assms}(1)$ tendstoD that)
then show ?thesis
unfolding dist_norm
proof (rule eventually_mono)
show norm $(h(f x)-h l)<e$ if $\operatorname{norm}(f x-l)<e / B$ for x
using that B
apply (simp add: field_split_simps)
by (metis 〈linear $h>$ le_less_trans linear_diff)
qed
qed
qed
qed
lemma linear_continuous_compose:
fixes $f::$ ' $a::$ euclidean_space \Rightarrow ' $b::$ euclidean_space and $g:: ' b \Rightarrow^{\prime} c::$ real_normed_vector assumes continuous F flinear g
shows continuous $F(\lambda x . g(f x))$
using assms unfolding continuous_def by (rule Lim_linear)
lemma linear_continuous_on_compose:
fixes $f::$ 'a::euclidean_space $\Rightarrow^{\prime} b::$ euclidean_space and $g::{ }^{\prime} b{ }^{\prime} c::$:real_normed_vector assumes continuous_on $S f$ linear g
shows continuous_on $S(\lambda x . g(f x))$
using assms by (simp add: continuous_on_eq_continuous_within linear_continuous_compose)

```

Also bilinear functions, in composition form
lemma bilinear_continuous_compose:
fixes \(h\) :: ' \(a::\) euclidean_space \(\Rightarrow{ }^{\prime} b::\) euclidean_space \(\Rightarrow{ }^{\prime} c::\) real_normed_vector
assumes continuous \(F f\) continuous \(F g\) bilinear \(h\)
shows continuous \(F(\lambda x . h(f x)(g x))\)
using assms bilinear_conv_bounded_bilinear bounded_bilinear.continuous by blast
lemma bilinear_continuous_on_compose:
fixes \(h\) :: ' \(a::\) euclidean_space \(\Rightarrow{ }^{\prime} b::\) euclidean_space \(\Rightarrow{ }^{\prime} c::\) real_normed_vector and \(f::{ }^{\prime} d::\) t2_space \(\Rightarrow{ }^{\prime} a\)
assumes continuous_on \(S f\) continuous_on \(S g\) bilinear \(h\)
shows continuous_on \(S(\lambda x . h(f x)(g x))\)
using assms by (simp add: continuous_on_eq_continuous_within bilinear_continuous_compose)
end

\subsection*{1.6 Affine Sets}
```

theory Affine
imports Linear_Algebra
begin
lemma if_smult: (if P then x else (y::real)) *R
by (fact if_distrib)
lemma sum_delta_notmem:
assumes }x\not\in
shows sum (}\lambday.\mathrm{ if (}y=x\mathrm{) then P x else Q y) s= sum Q s
and sum (\lambday. if (x=y) then P x else Q y) s=sum Q s
and sum (}\lambday\mathrm{ . if (}y=x\mathrm{) then P y else Q y) s=sum Q s
and sum (}\lambday\mathrm{ . if (}x=y\mathrm{) then P y else Q y) s=sum Q s
apply (rule_tac [!] sum.cong)
using assms
apply auto
done
lemmas independent_finite = independent_imp_finite
lemma span_substd_basis:
assumes d:d\subseteq Basis
shows span d}={x.\foralli\in\mathrm{ Basis. }i\not\ind\longrightarrowx\bulleti=0
(is - = ?B)
proof -
have d}\subseteq\mathrm{ ? B
using d by (auto simp: inner_Basis)
moreover have s: subspace ?B
using subspace_substandard[of \lambdai. i\not\ind].
ultimately have span d}\subseteq?
using span_mono[of d ?B] span_eq_iff[of ?B] by blast
moreover have *: card d \leq dim (span d)
using independent_card_le_dim[of d span d] independent_substdbasis[OF assms]
span_superset[of d]
by auto
moreover from * have dim ?B \leq dim (span d)
using dim_substandard[OF assms] by auto
ultimately show ?thesis
using s subspace_dim_equal[of span d ?B] subspace_span[of d] by auto
qed

```
lemma basis_to_substdbasis_subspace_isomorphism:
```

fixes B :: ' $a::$ euclidean_space set
assumes independent B
shows $\exists f d::^{\prime}$ a set. card $d=\operatorname{card} B \wedge$ linear $f \wedge f^{\prime} B=d \wedge$
$f ' \operatorname{span} B=\{x . \forall i \in$ Basis. $i \notin d \longrightarrow x \cdot i=0\} \wedge$ inj_on $f(\operatorname{span} B) \wedge d \subseteq$
Basis
proof -
have B : card $B=\operatorname{dim} B$
using dim_unique $[$ of B B card B] assms span_superset $[$ of $B]$ by auto
have $\operatorname{dim} B \leq \operatorname{card}$ (Basis :: 'a set)
using dim_subset_UNIV[of B] by simp
from ex_card $[$ OF this] obtain $d::$ 'a set where $d: d \subseteq$ Basis and t : card $d=$
$\operatorname{dim} B$
by auto
let ?t $=\left\{x::^{\prime} a::\right.$ euclidean_space. $\forall i \in$ Basis. $\left.i \notin d \longrightarrow x \cdot i=0\right\}$
have $\exists f$. linear $f \wedge f$ ' $B=d \wedge f^{\prime}$ span $B=$? $t \wedge \operatorname{inj}$ on $f($ span $B)$
proof (intro basis_to_basis_subspace_isomorphism subspace_span subspace_substandard
span_superset)
show $d \subseteq\{x . \forall i \in$ Basis. $i \notin d \longrightarrow x \cdot i=0\}$
using d inner_not_same_Basis by blast
qed (auto simp: span_substd_basis independent_substdbasis dim_substandard d t B
assms)
with t (card $B=\operatorname{dim} B\rangle d$ show ?thesis by auto
qed

```

\subsection*{1.6.1 Affine set and affine hull}
definition affine :: ' \(a:\) :real_vector set \(\Rightarrow\) bool where affine \(s \longleftrightarrow\left(\forall x \in s . \forall y \in s . \forall u v . u+v=1 \longrightarrow u *_{R} x+v *_{R} y \in s\right)\)
lemma affine_alt: affine \(s \longleftrightarrow\left(\forall x \in s . \forall y \in s . \forall u::\right.\) real. \((1-u) *_{R} x+u *_{R} y \in\) s)
unfolding affine_def by (metis eq_diff_eq')
lemma affine_empty [iff]: affine \{\}
unfolding affine_def by auto
lemma affine_sing [iff]: affine \(\{x\}\)
unfolding affine_alt by (auto simp: scaleR_left_distrib [symmetric])
lemma affine_UNIV [iff]: affine UNIV
unfolding affine_def by auto
lemma affine_Inter \([\) intro \(]:(\bigwedge s . s \in f \Longrightarrow\) affine \(s) \Longrightarrow\) affine \((\bigcap f)\)
unfolding affine_def by auto
lemma affine_Int[intro]: affine \(s \Longrightarrow\) affine \(t \Longrightarrow\) affine \((s \cap t)\)
unfolding affine_def by auto
lemma affine_scaling: affine \(s \Longrightarrow\) affine \(\left(\right.\) image \(\left.\left(\lambda x . c *_{R} x\right) s\right)\)
```

 apply (clarsimp simp add: affine_def)
 apply (rule_tac \(x=u *_{R} x+v *_{R} y\) in image_eqI)
 apply (auto simp: algebra_simps)
 done
 lemma affine_affine_hull [simp]: affine(affine hull s)
unfolding hull_def
using affine_Inter $[o f\{t$. affine $t \wedge s \subseteq t\}]$ by auto
lemma affine_hull_eq[simp]: (affine hull $s=s) \longleftrightarrow$ affine s
by (metis affine_affine_hull hull_same)
lemma affine_hyperplane: affine $\{x . a \cdot x=b\}$
by (simp add: affine_def algebra_simps) (metis distrib_right mult.left_neutral)

```

\section*{Some explicit formulations}

Formalized by Lars Schewe.
```

lemma affine:
fixes $V:: ' a::$ real_vector set
shows affine $V \longleftrightarrow$
$\left(\forall S\right.$ u. finite $S \wedge S \neq\{ \} \wedge S \subseteq V \wedge$ sum $u S=1 \longrightarrow\left(\sum x \in S . u x *_{R}\right.$
$x) \in V)$
proof -
have $u *_{R} x+v *_{R} y \in V$ if $x \in V y \in V u+v=(1::$ real $)$
and $*: \bigwedge S u$. \llbracket finite $S ; S \neq\{ \} ; S \subseteq V ;$ sum $u S=1 \rrbracket \Longrightarrow\left(\sum x \in S . u x *_{R} x\right)$
$\in V$ for $x y u v$
proof (cases $x=y$)
case True
then show?thesis
using that by (metis scaleR_add_left scaleR_one)
next
case False
then show ?thesis
using that $*[o f\{x, y\} \lambda w$. if $w=x$ then u else $v]$ by auto
qed
moreover have $\left(\sum x \in S . u x *_{R} x\right) \in V$
if $*: \bigwedge x y u v . \llbracket x \in V ; y \in V ; u+v=1 \rrbracket \Longrightarrow u *_{R} x+v *_{R} y \in V$
and finite $S S \neq\{ \} S \subseteq V$ sum $u S=1$ for $S u$
proof -
define n where $n=\operatorname{card} S$
consider card $S=0 \mid$ card $S=1 \mid$ card $S=2 \mid$ card $S>2$ by linarith
then show $\left(\sum x \in S . u x *_{R} x\right) \in V$
proof cases
assume card $S=1$
then obtain a where $S=\{a\}$
by (auto simp: card_Suc_eq)
then show?thesis
using that by simp

```
```

next
assume card $S=2$
then obtain $a b$ where $S=\{a, b\}$
by (metis Suc_1 card_1_singletonE card_Suc_eq)
then show ?thesis
using $*\left[\begin{array}{lll}o f & a b\end{array}\right.$ that
by (auto simp: sum_clauses(2))
next
assume card $S>2$
then show ?thesis using that n_def
proof (induct n arbitrary: u S)
case 0
then show ?case by auto
next
case (Suc n u S)
have sum $u S=\operatorname{card} S$ if $\neg(\exists x \in S . u x \neq 1)$
using that unfolding card_eq_sum by auto
with Suc.prems obtain x where $x \in S$ and $x: u x \neq 1$ by force
have c : card $(S-\{x\})=\operatorname{card} S-1$
by (simp add: Suc.prems(3) $\langle x \in S\rangle)$
have sum $u(S-\{x\})=1-u x$
by (simp add: Suc.prems sum_diff1 $\langle x \in S\rangle$)
with x have eq1: inverse $(1-u x) * \operatorname{sum} u(S-\{x\})=1$
by auto
have in $V:\left(\sum y \in S-\{x\}\right.$. (inverse $\left.\left.(1-u x) * u y\right) *_{R} y\right) \in V$
proof (cases card $(S-\{x\})>$ 2)
case True
then have $S: S-\{x\} \neq\{ \} \operatorname{card}(S-\{x\})=n$
using Suc.prems c by force+
show ?thesis
proof (rule Suc.hyps)
show $\left(\sum a \in S-\{x\}\right.$. inverse $\left.(1-u x) * u a\right)=1$
by (auto simp: eq1 sum_distrib_left[symmetric])
qed (use S Suc.prems True in auto)
next
case False
then have card $(S-\{x\})=$ Suc (Suc 0)
using Suc.prems c by auto
then obtain $a b$ where $a b:(S-\{x\})=\{a, b\} a \neq b$
unfolding card_Suc_eq by auto
then show ?thesis
using eq1 $\langle S \subseteq V\rangle$
by (auto simp: sum_distrib_left distrib_left intro!: Suc.prems(2)[of a b])
qed
have $u x+(1-u x)=1 \Longrightarrow$
$u x *_{R} x+(1-u x) *_{R}\left(\left(\sum y \in S-\{x\} . u y *_{R} y\right) /_{R}(1-u x)\right) \in V$
by (rule Suc.prems) (use $\langle x \in S\rangle$ Suc.prems in V in 〈auto simp: scaleR_right.sum〉)
moreover have $\left(\sum a \in S . u a *_{R} a\right)=u x *_{R} x+\left(\sum a \in S-\{x\} . u a *_{R}\right.$

```
a)
```

 by (meson Suc.prems(3) sum.remove \langlex }\inS\\mathrm{)
 ultimately show (\sumx\inS.ux*R}x)\in
 by (simp add: x)
 qed
 qed (use \langleS\not={}\rangle\langlefinite S> in auto)
 qed
 ultimately show ?thesis
 unfolding affine_def by meson
 qed

```
lemma affine_hull_explicit:
affine hull \(p=\{y . \exists S\). finite \(S \wedge S \neq\{ \} \wedge S \subseteq p \wedge\) sum \(u S=1 \wedge \operatorname{sum}(\lambda v\). \(\left.\left.u v *_{R} v\right) S=y\right\}\)
(is \({ }_{-}=\)?rhs \()\)
proof (rule hull_unique)
show \(p \subseteq\) ?rhs
proof (intro subsetI CollectI exI conjI)
show \(\bigwedge x \operatorname{sum}(\lambda z .1)\{x\}=1\)
by auto
qed auto
show ?rhs \(\subseteq T\) if \(p \subseteq T\) affine \(T\) for \(T\)
using that unfolding affine by blast
show affine? rhs
unfolding affine_def
proof clarify
fix \(u v\) :: real and \(s x u x\) sy \(u y\)
assume \(u v: u+v=1\)
and \(x:\) finite \(s x s x \neq\{ \} s x \subseteq p\) sum \(u x s x=(1::\) real \()\)
and \(y:\) finite sy \(s y \neq\{ \}\) sy \(\subseteq p\) sum uy sy \(=(1::\) real \()\)
have \(* *:(s x \cup s y) \cap s x=s x(s x \cup s y) \cap s y=s y\)
by auto
show \(\exists S\). finite \(S \wedge S \neq\{ \} \wedge S \subseteq p \wedge\)
sum \(w S=1 \wedge\left(\sum v \in S . w v *_{R} v\right)=u *_{R}\left(\sum v \in s x . u x v *_{R} v\right)+v *_{R}\)
( \(\sum v \in s y . u y v *_{R} v\) )
proof (intro exI conjI)
show finite \((s x \cup s y)\)
using \(x y\) by auto
show sum \((\lambda i\). (if \(i \in s x\) then \(u * u x i\) else 0\()+(\) if \(i \in s y\) then \(v * u y\) i else 0\())\)
\((s x \cup s y)=1\)
using \(x y u v\)
by (simp add: sum_Un sum.distrib sum.inter_restrict[symmetric] sum_distrib_left [symmetric] **)
have \(\left(\sum i \in s x \cup s y\right.\). ( \((\) if \(i \in s x\) then \(u * u x i\) else 0\()+(\) if \(i \in\) sy then \(v * u y\)
\(i\) else 0)) \(*_{R} i\) )
\[
=\left(\sum i \in s x .(u * u x i) *_{R} i\right)+\left(\sum i \in s y .(v * u y i) *_{R} i\right)
\]
using \(x y\)
unfolding scaleR_left_distrib scaleR_zero_left if_smult
by (simp add: sum_Un sum.distrib sum.inter_restrict[symmetric] **)
```

 also have ... =u*R (\sumv\insx.ux v** v) +v**R (\sumv\insy.uy v** v
 unfolding scaleR_scaleR[symmetric] scaleR_right.sum [symmetric] by blast
 finally show (\sumi\insx\cupsy.((if i\insx then u*ux i else 0) + (if i\in sy then
 v*uy i else 0)) * *R i)
=u**}(\sumv\insx.uxv**Rv)+v\mp@subsup{*}{R}{}(\sumv\insy.uyv** v)
qed (use x y in auto)
qed
qed
lemma affine_hull_finite:
assumes finite S
shows affine hull S={y.\existsu. sum u S=1^\operatorname{sum}(\lambdav.uv** v)S=y}
proof -
have *: \existsh. sum h S=1^(\sumv\inS.hv*R v)=x
if F\subseteqS finite FF\not={} and sum: sum u F=1 and x:(\sumv\inF.uv** v)
= x for }xF
proof -
have}S\capF=
using that by auto
show ?thesis
proof (intro exI conjI)
show (\sumx\inS. if }x\inF\mathrm{ then u x else 0) = 1
by (metis (mono_tags, lifting) }\langleS\capF=F`\mathrm{ assms sum.inter_restrict sum)
show (}\sumv\inS\mathrm{ . (if }v\inF\mathrm{ then u v else 0) *R}v)=
by (simp add: if_smult cong: if_cong) (metis (no_types) }\langleS\capF=F\rangle\mathrm{ assms
sum.inter_restrict x)
qed
qed
show ?thesis
unfolding affine_hull_explicit using assms
by (fastforce dest:*)
qed

```

\section*{Stepping theorems and hence small special cases}
lemma affine_hull_empty[simp]: affine hull \(\}=\{ \}\)
by \(\operatorname{simp}\)
lemma affine_hull_finite_step:
fixes \(y\) :: ' \(a:\) :real_vector
shows finite \(S \Longrightarrow\)
\(\left(\exists\right.\) u. sum \(u(\) insert \(a S)=w \wedge \operatorname{sum}\left(\lambda x . u x *_{R} x\right)(\) insert \(\left.a S)=y\right) \longleftrightarrow\)
\(\left(\exists v u\right.\). sum \(\left.u S=w-v \wedge \operatorname{sum}\left(\lambda x . u x *_{R} x\right) S=y-v *_{R} a\right)\left(\right.\) is \({ }_{-} \Longrightarrow\) ?lhs = ?rhs)
proof -
assume fin: finite \(S\)
show ?lhs = ?rhs
proof
assume? lhs
then obtain \(u\) where \(u\) : sum \(u(\) insert \(a S)=w \wedge\left(\sum x \in\right.\) insert a S. u \(x *_{R}\) \(x)=y\)
by auto
show ?rhs
proof (cases a \(\in S\) )
case True
then show ?thesis
using \(u\) by (simp add: insert_absorb) (metis diff_zero real_vector.scale_zero_left)
next
case False
show ?thesis
by (rule exI [where \(x=u a]\) ) (use \(u\) fin False in auto)
qed
next
assume ?rhs
then obtain \(v u\) where \(v u\) : sum \(u S=w-v\left(\sum x \in S . u x *_{R} x\right)=y-v\) \(*_{R} a\)
by auto
have \(*: \bigwedge x M\). (if \(x=a\) then \(v\) else \(M) *_{R} x=\left(\right.\) if \(x=a\) then \(v *_{R} x\) else \(M\) \(*_{R} x\) )
by auto
show? lhs
proof (cases \(a \in S\) )
case True
show ?thesis
by (rule exI [where \(x=\lambda x\). (if \(x=a\) then \(v\) else 0\()+u x])\)
(simp add: True scaleR_left_distrib sum.distrib sum_clauses fin vu \(*\) cong:
if_cong)
next
case False
then show ?thesis
apply (rule_tac \(x=\lambda x\). if \(x=a\) then \(v\) else \(u x\) in exI)
apply (simp add: vu sum_clauses(2)[OF fin] *)
by (simp add: sum_delta_notmem(3) vu)
qed
qed
qed
lemma affine_hull_2:
fixes \(a b::\) ' \(a:\) :real_vector
shows affine hull \(\{a, b\}=\left\{u *_{R} a+v *_{R} b \mid u v .(u+v=1)\right\}\)
(is? \(\mathrm{lh} s=\) ? \(r h s\) )
proof -
have \(*\) :
\(\bigwedge x y z . z=x-y \longleftrightarrow y+z=(x::\) real \()\)
\(\bigwedge x y z . z=x-y \longleftrightarrow y+z=\left(x:^{\prime} a\right)\) by auto
have ? lhs \(=\left\{y . \exists u\right.\). sum \(\left.u\{a, b\}=1 \wedge\left(\sum v \in\{a, b\} . u v *_{R} v\right)=y\right\}\)
using affine_hull_finite \([o f\{a, b\}]\) by auto
also have \(\ldots=\left\{y . \exists v u . u b=1-v \wedge u b *_{R} b=y-v *_{R} a\right\}\)
```

 by (simp add: affine_hull_finite_step[of {b} a])
 also have ... = ?rhs unfolding * by auto
 finally show ?thesis by auto
 qed
lemma affine_hull_3:
fixes ab c :: 'a::real_vector
shows affine hull {a,b,c} ={u*\mp@subsup{*}{R}{}a+v\mp@subsup{*}{R}{}b+w\mp@subsup{*}{R}{}c|uvw.u+v+w=
1}
proof -
have *:
\xyz.z=x-y\longleftrightarrowy+z=(x::real)
\xyz.z=x-y\longleftrightarrowy+z=(x::'a) by auto
show ?thesis
apply (simp add:affine_hull_finite affine_hull_finite_step)
unfolding *
apply safe
apply (metis add.assoc)
apply (rule_tac x=u in exI, force)
done
qed
lemma mem_affine:
assumes affine Sx\inS y\inSu+v=1
shows }u\mp@subsup{*}{R}{}x+v\mp@subsup{*}{R}{}y\in
using assms affine_def[of S] by auto
lemma mem_affine_3:
assumes affine S x GS y\inSz\inSu+v+w=1
shows}u\mp@subsup{*}{R}{}x+v\mp@subsup{*}{R}{}y+w\mp@subsup{*}{R}{}z\in
proof -
have }u\mp@subsup{*}{R}{}x+v\mp@subsup{*}{R}{}y+w\mp@subsup{*}{R}{}z\in\mathrm{ affine hull {x,y,z}
using affine_hull_3[of x y z] assms by auto
moreover
have affine hull {x,y,z}\subseteq affine hull S
using hull_mono[of {x,y,z} S] assms by auto
moreover
have affine hull S=S
using assms affine_hull_eq[of S] by auto
ultimately show ?thesis by auto
qed
lemma mem_affine_3_minus:
assumes affine Sx\inS y \inSz\inS
shows }x+v\mp@subsup{*}{R}{}(y-z)\in
using mem_affine_3[of S x y z 1v v v] assms
by (simp add: algebra_simps)
corollary mem_affine_3_minus2:

```
\(\llbracket\) affine \(S ; x \in S ; y \in S ; z \in S \rrbracket \Longrightarrow x-v *_{R}(y-z) \in S\)
by (metis add_uminus_conv_diff mem_affine_3_minus real_vector.scale_minus_left)

\section*{Some relations between affine hull and subspaces}
lemma affine_hull_insert_subset_span:
\[
\text { affine hull }(\text { insert } a S) \subseteq\{a+v \mid v . v \in \operatorname{span}\{x-a \mid x \cdot x \in S\}\}
\]
proof -
have \(\exists v T u . x=a+v \wedge\left(\right.\) finite \(T \wedge T \subseteq\{x-a \mid x . x \in S\} \wedge\left(\sum v \in T . u v\right.\) \(\left.*_{R} v\right)=v\) )
if finite \(F F \neq\{ \} F \subseteq\) insert a \(S\) sum \(u F=1\left(\sum v \in F . u v *_{R} v\right)=x\)
for \(x F u\)
proof -
have \(*:(\lambda x . x-a)^{\prime}(F-\{a\}) \subseteq\{x-a \mid x . x \in S\}\)
using that by auto
show ?thesis
proof (intro exI conjI)
show finite \(\left((\lambda x . x-a)^{\prime}(F-\{a\})\right)\)
by (simp add: that(1))
show \(\left(\sum v \in(\lambda x \cdot x-a) '(F-\{a\}) \cdot u(v+a) *_{R} v\right)=x-a\)
by (simp add: sum.reindex[unfolded inj_on_def] algebra_simps sum_subtractf scaleR_left.sum [symmetric] sum_diff1 that)
qed (use \(\langle F \subseteq\) insert \(a S\rangle\) in auto)
qed
then show?thesis
unfolding affine_hull_explicit span_explicit by fast
qed
lemma affine_hull_insert_span:
assumes \(a \notin S\)
shows affine hull (insert \(a S)=\{a+v \mid v . v \in \operatorname{span}\{x-a \mid x . x \in S\}\}\)
proof -
have \(*: \exists G\). finite \(G \wedge G \neq\{ \} \wedge G \subseteq\) insert a \(S \wedge\) sum \(u G=1 \wedge\left(\sum v \in G\right.\).
\(\left.u v *_{R} v\right)=y\)
if \(v \in \operatorname{span}\{x-a \mid x . x \in S\} y=a+v\) for \(y v\)
proof -
from that
obtain \(T u\) where \(u\) : finite \(T T \subseteq\{x-a \mid x . x \in S\} a+\left(\sum v \in T . u v *_{R}\right.\)
\(v)=y\)
unfolding span_explicit by auto
define \(F\) where \(F=(\lambda x \cdot x+a)^{\prime} T\)
have \(F\) : finite \(F F \subseteq S\left(\sum v \in F . u(v-a) *_{R}(v-a)\right)=y-a\)
unfolding \(F_{-} d e f\) using \(u\) by (auto simp: sum.reindex[unfolded inj_on_def])
have \(*: F \cap\{a\}=\{ \} F \cap-\{a\}=F\)
using \(F\) assms by auto
show \(\exists G\). finite \(G \wedge G \neq\{ \} \wedge G \subseteq\) insert a \(S \wedge\) sum \(u G=1 \wedge\left(\sum v \in G\right.\).
\(\left.u v *_{R} v\right)=y\)
apply (rule_tac \(x=\) insert a \(F\) in exI)
apply \((\) rule_tac \(x=\lambda x\). if \(x=a\) then \(1-\operatorname{sum}(\lambda x . u(x-a)) F\) else \(u(x-\)
```

a) in exI)
using assms F
apply (auto simp: sum_clauses sum.If_cases if_smult sum_subtractf scaleR_left.sum
algebra_simps *)
done
qed
show ?thesis
by (intro subset_antisym affine_hull_insert_subset_span) (auto simp: affine_hull_explicit
dest!: *)
qed
lemma affine_hull_span:
assumes }a\in
shows affine hull S ={a+v|v.v\in span {x-a|x.x\inS-{a}}}
using affine_hull_insert_span[of a S - {a}, unfolded insert_Diff[OF assms]] by
auto

```

\section*{Parallel affine sets}
```

definition affine_parallel :: 'a::real_vector set \Rightarrow ' $a::$ real_vector set \Rightarrow bool where affine_parallel $S T \longleftrightarrow\left(\exists a . T=(\lambda x . a+x)^{\prime} S\right)$
lemma affine_parallel_expl_aux:
fixes $S T$:: 'a::real_vector set
assumes $\bigwedge x . x \in S \longleftrightarrow a+x \in T$
shows $T=(\lambda x \cdot a+x) \cdot S$
proof -
have $x \in\left((\lambda x . a+x)^{\prime} S\right)$ if $x \in T$ for x
using that
by (simp add: image_iff) (metis add.commute diff_add_cancel assms)
moreover have $T \geq(\lambda x . a+x)$ ' S
using assms by auto
ultimately show ?thesis by auto
qed
lemma affine_parallel_expl: affine_parallel $S T \longleftrightarrow(\exists a . \forall x . x \in S \longleftrightarrow a+x \in$ T)
by (auto simp add: affine_parallel_def)
(use affine_parallel_expl_aux [of $S_{-} T$] in blast)
lemma affine_parallel_reflex: affine_parallel S S
unfolding affine_parallel_def
using image_add_0 by blast
lemma affine_parallel_commut:
assumes affine_parallel $A B$
shows affine_parallel $B A$
proof -
from assms obtain a where $B: B=(\lambda x . a+x)^{\prime} A$

```
unfolding affine_parallel_def by auto
have \([\operatorname{simp}]:(\lambda x . x-a)=\) plus \((-a)\) by (simp add: fun_eq_iff)
from \(B\) show ?thesis
using translation_galois [of B a \(A\) ]
unfolding affine_parallel_def by blast
qed
lemma affine_parallel_assoc:
assumes affine_parallel \(A B\)
and affine_parallel B C
shows affine_parallel \(A C\)
proof -
from assms obtain \(a b\) where \(B=(\lambda x . a b+x)^{\prime} A\)
unfolding affine_parallel_def by auto
moreover
from assms obtain \(b c\) where \(C=(\lambda x . b c+x)^{\prime} B\)
unfolding affine_parallel_def by auto
ultimately show ?thesis
using translation_assoc[of bc ab A] unfolding affine_parallel_def by auto
qed
lemma affine_translation_aux:
fixes \(a\) :: ' \(a\) ::real_vector
assumes affine \(((\lambda x, a+x) \cdot S)\)
shows affine \(S\)
proof -
\{
fix \(x\) y \(u v\)
assume \(x y: x \in S y \in S(u::\) real \()+v=1\)
then have \((a+x) \in((\lambda x . a+x)\) ' \(S)(a+y) \in\left((\lambda x \cdot a+x)^{\prime} S\right)\)
by auto
then have \(h 1: u *_{R}(a+x)+v *_{R}(a+y) \in(\lambda x . a+x) \cdot S\)
using xy assms unfolding affine_def by auto
have \(u *_{R}(a+x)+v *_{R}(a+y)=(u+v) *_{R} a+\left(u *_{R} x+v *_{R} y\right)\)
by (simp add: algebra_simps)
also have \(\ldots=a+\left(u *_{R} x+v *_{R} y\right)\)
using \(\langle u+v=1\rangle\) by auto
ultimately have \(a+\left(u *_{R} x+v *_{R} y\right) \in(\lambda x . a+x)^{\prime} S\)
using \(h 1\) by auto
then have \(u *_{R} x+v *_{R} y \in S\) by auto
\}
then show ?thesis unfolding affine_def by auto
qed
lemma affine_translation:
affine \(S \longleftrightarrow\) affine \(\left((+) a^{\prime} S\right)\) for \(a::{ }^{\prime} a::\) real_vector
proof
show affine \(((+) a r S)\) if affine \(S\)
using that translation_assoc [of - a a \(S\) ]
```

 by (auto intro: affine_translation_aux [of - a ((+) a'S)])
 show affine S if affine ((+) a
 using that by (rule affine_translation_aux)
 qed
lemma parallel_is_affine:
fixes S T :: 'a::real_vector set
assumes affine S affine_parallel S T
shows affine T
proof -
from assms obtain a where T=(\lambdax.a+x)'S
unfolding affine_parallel_def by auto
then show ?thesis
using affine_translation assms by auto
qed
lemma subspace_imp_affine: subspace s \Longrightarrow affine s
unfolding subspace_def affine_def by auto
lemma affine_hull_subset_span: (affine hull s)\subseteq(span s)
by (metis hull_minimal span_superset subspace_imp_affine subspace_span)

```

\section*{Subspace parallel to an affine set}
lemma subspace_affine: subspace \(S \longleftrightarrow\) affine \(S \wedge 0 \in S\)
proof -
    have \(h 0\) : subspace \(S \Longrightarrow\) affine \(S \wedge 0 \in S\)
        using subspace_imp_affine \([\) of \(S]\) subspace_0 by auto
    \{
    assume assm: affine \(S \wedge 0 \in S\)
    \{
        fix \(c::\) real
        fix \(x\)
        assume \(x: x \in S\)
        have \(c *_{R} x=(1-c) *_{R} 0+c *_{R} x\) by auto
        moreover
        have \((1-c) *_{R} 0+c *_{R} x \in S\)
            using affine_alt \([\) of \(S\) ] assm \(x\) by auto
        ultimately have \(c *_{R} x \in S\) by auto
    \}
    then have \(h 1: \forall c . \forall x \in S . c *_{R} x \in S\) by auto
    \{
        fix \(x y\)
        assume \(x y: x \in S y \in S\)
        define \(u\) where \(u=(1::\) real \() / 2\)
        have \((1 / 2) *_{R}(x+y)=(1 / \mathcal{Z}) *_{R}(x+y)\)
            by auto
        moreover
```

 have (1/2) *R (x+y)=(1/2) **
 by (simp add: algebra_simps)
 moreover
 have (1-u)*R}x+u\mp@subsup{*}{R}{}y\in
 using affine_alt[of S] assm xy by auto
 ultimately
 have (1/2) **
 using u_def by auto
 moreover
 have}x+y=2\mp@subsup{*}{R}{}((1/2)\mp@subsup{*}{R}{}(x+y)
 by auto
 ultimately
 have }x+y\in
 using h1[rule_format, of (1/2) *R (x+y) 2] by auto
 }
 then have }\forallx\inS.\forally\inS.x+y\in
 by auto
 then have subspace S
 using h1 assm unfolding subspace_def by auto
 }
 then show ?thesis using h0 by metis
 qed
lemma affine_diffs_subspace:
assumes affine S a\inS
shows subspace ((\lambdax. (-a)+x)'S)
proof -
have [simp]: (\lambdax.x-a)=plus (-a) by (simp add: fun_eq_iff)
have affine ((}\lambdax.(-a)+x)'S
using affine_translation assms by blast
moreover have 0 \in ((\lambdax. (-a)+x)'S)
using assms exI[of (}\lambdax.x\inS\wedge-a+x=0) a] by aut
ultimately show ?thesis using subspace_affine by auto
qed
lemma affine_diffs_subspace_subtract:
subspace ((\lambdax.x-a)'S) if affine S a }\in
using that affine_diffs_subspace [of _ a] by simp
lemma parallel_subspace_explicit:
assumes affine S
and a\inS
assumes L}\equiv{y.\existsx\inS.(-a)+x=y
shows subspace L ^ affine_parallel S L
proof -
from assms have L = plus (-a)'S by auto
then have par:affine_parallel S L
unfolding affine_parallel_def ..
then have affine L using assms parallel_is_affine by auto

```
```

 moreover have \(0 \in L\)
 using assms by auto
 ultimately show ?thesis
 using subspace_affine par by auto
 qed
lemma parallel_subspace_aux:
assumes subspace A
and subspace B
and affine_parallel $A B$
shows $A \supseteq B$
proof -
from assms obtain a where $a: \forall x . x \in A \longleftrightarrow a+x \in B$
using affine_parallel_expl[of $A B]$ by auto
then have $-a \in A$
using assms subspace_0[of B] by auto
then have $a \in A$
using assms subspace_neg[of $A-a]$ by auto
then show ?thesis
using assms a unfolding subspace_def by auto
qed
lemma parallel_subspace:
assumes subspace A
and subspace B
and affine_parallel $A B$
shows $A=B$
proof
show $A \supseteq B$
using assms parallel_subspace_aux by auto
show $A \subseteq B$
using assms parallel_subspace_aux[of B A] affine_parallel_commut by auto
qed
lemma affine_parallel_subspace:
assumes affine $S S \neq\{ \}$
shows \exists !L. subspace $L \wedge$ affine_parallel $S L$
proof -
have ex: \exists L. subspace $L \wedge$ affine_parallel $S L$
using assms parallel_subspace_explicit by auto
\{
fix L1 L2
assume ass: subspace L1 \wedge affine_parallel S L1 subspace L2 \wedge affine_parallel S
L2
then have affine_parallel L1 L2
using affine_parallel_commut[of S L1] affine_parallel_assoc[of L1 S L2] by
auto
then have $L 1=L 2$
using ass parallel_subspace by auto

```
```

}
then show ?thesis using ex by auto
qed

```

\subsection*{1.6.2 Affine Dependence}

Formalized by Lars Schewe.
```

definition affine_dependent :: 'a::real_vector set \Rightarrow bool
where affine_dependent $s \longleftrightarrow(\exists x \in s . x \in$ affine hull $(s-\{x\}))$

```
```

lemma affine_dependent_imp_dependent: affine_dependent $s \Longrightarrow$ dependent s
unfolding affine_dependent_def dependent_def
using affine_hull_subset_span by auto

```
lemma affine_dependent_subset:
    \(\llbracket\) affine_dependent \(s ; s \subseteq t \rrbracket \Longrightarrow\) affine_dependent \(t\)
apply (simp add: affine_dependent_def Bex_def)
apply (blast dest: hull_mono [OF Diff_mono [OF - subset_refl]])
done
lemma affine_independent_subset:
    shows \(\llbracket\urcorner\) affine_dependent \(t ; s \subseteq t \rrbracket \Longrightarrow \neg\) affine_dependent \(s\)
by (metis affine_dependent_subset)
lemma affine_independent_Diff:
    \(\neg\) affine_dependent \(s \Longrightarrow \neg\) affine_dependent \((s-t)\)
by (meson Diff_subset affine_dependent_subset)
proposition affine_dependent_explicit:
    affine_dependent \(p \longleftrightarrow\)
        \((\exists S\). finite \(S \wedge S \subseteq p \wedge \operatorname{sum} u S=0 \wedge(\exists v \in S . u v \neq 0) \wedge \operatorname{sum}(\lambda v . u v\)
\(\left.*_{R} v\right) S=0\) )
proof -
    have \(\exists S u\). finite \(S \wedge S \subseteq p \wedge\) sum \(u S=0 \wedge(\exists v \in S . u v \neq 0) \wedge\left(\sum w \in S . u\right.\)
\(\left.w *_{R} w\right)=0\)
            if \(\left(\sum w \in S . u w *_{R} w\right)=x x \in p\) finite \(S S \neq\{ \} S \subseteq p-\{x\}\) sum \(u S=1\)
for \(x S u\)
    proof (intro exI conjI)
        have \(x \notin S\)
            using that by auto
            then show \(\left(\sum v \in\right.\) insert \(x S\). if \(v=x\) then -1 else \(\left.u v\right)=0\)
                using that by (simp add: sum_delta_notmem)
            show \(\left(\sum w \in\right.\) insert \(x S\). (if \(w=x\) then -1 else \(\left.\left.u w\right) *_{R} w\right)=0\)
                using that \(\langle x \notin S\rangle\) by (simp add: if_smult sum_delta_notmem cong: if_cong)
    qed (use that in auto)
    moreover have \(\exists x \in p\). \(\exists S\) u. finite \(S \wedge S \neq\{ \} \wedge S \subseteq p-\{x\} \wedge\) sum u \(S=\)
\(1 \wedge\left(\sum v \in S . u v *_{R} v\right)=x\)
            if \(\left(\sum v \in S . u v *_{R} v\right)=0\) finite \(S S \subseteq p\) sum \(u S=0 v \in S u v \neq 0\) for \(S u v\)
    proof (intro bexI exI conjI)
```

 have \(S \neq\{v\}\)
 using that by auto
 then show \(S-\{v\} \neq\{ \}\)
 using that by auto
 show \(\left(\sum x \in S-\{v\}\right.\). \(\left.-(1 / u v) * u x\right)=1\)
 unfolding sum_distrib_left[symmetric] sum_diff1[OF〈finite \(S\) 〉] by (simp add:
 that)
show $\left(\sum x \in S-\{v\} .(-(1 / u v) * u x) *_{R} x\right)=v$
unfolding sum_distrib_left [symmetric] scaleR_scaleR[symmetric]
scaleR_right.sum [symmetric] sum_diff1[OF〈finite S〉]
using that by auto
show $S-\{v\} \subseteq p-\{v\}$
using that by auto
qed (use that in auto)
ultimately show ?thesis
unfolding affine_dependent_def affine_hull_explicit by auto
qed
lemma affine_dependent_explicit_finite:
fixes $S:$: 'a::real_vector set
assumes finite S
shows affine_dependent $S \longleftrightarrow$
$\left(\exists u\right.$. sum $\left.u S=0 \wedge(\exists v \in S . u v \neq 0) \wedge \operatorname{sum}\left(\lambda v . u v *_{R} v\right) S=0\right)$
(is? ${ }^{\text {ins }=? ~} \mathrm{rhs}$)
proof
have $*: \bigwedge v t u v$. (if vt then u v else 0$) *_{R} v=\left(\right.$ if vt then $(u v) *_{R} v$ else $\left.0::^{\prime} a\right)$
by auto
assume ?lhs
then obtain $t u v$ where
finite $t \in S$ sum $u t=0 v \in t u v \neq 0\left(\sum v \in t . u v *_{R} v\right)=0$
unfolding affine_dependent_explicit by auto
then show ?rhs
apply (rule_tac $x=\lambda x$. if $x \in t$ then $u x$ else 0 in exI)
apply (auto simp: * sum.inter_restrict $[$ OF assms, symmetric $]$ Int_absorb1[OF
$\langle t \subseteq S\rangle]$)
done
next
assume ?rhs
then obtain $u v$ where sum $u S=0 \quad v \in S u v \neq 0\left(\sum v \in S . u v *_{R} v\right)=0$
by auto
then show ?lhs unfolding affine_dependent_explicit
using assms by auto
qed
lemma dependent_imp_affine_dependent:
assumes dependent $\{x-a \mid x . x \in s\}$
and $a \notin s$
shows affine_dependent (insert a s)
proof -

```
```

 from assms(1)[unfolded dependent_explicit] obtain \(S u v\)
 where obt: finite \(S S \subseteq\{x-a \mid x . x \in s\} v \in S u v \neq 0\left(\sum v \in S . u v *_{R} v\right)\)
 $=0$
by auto
define t where $t=(\lambda x . x+a)$ ' S
have inj: inj_on $(\lambda x . x+a) S$
unfolding inj_on_def by auto
have $0 \notin S$
using obt(2) assms(2) unfolding subset_eq by auto
have fin: finite t and $t \subseteq s$
unfolding $t_{\text {_ }}$ def using $\operatorname{obt}(1,2)$ by auto
then have finite (insert at) and insert a $t \subseteq$ insert as
by auto
moreover have $*: \bigwedge P Q .\left(\sum x \in t\right.$. (if $x=a$ then $P x$ else $\left.\left.Q x\right)\right)=\left(\sum x \in t . Q\right.$
x)
apply (rule sum.cong)
using $\langle a \notin s\rangle\langle t \subseteq s\rangle$
apply auto
done
have $\left(\sum x \in\right.$ insert $a t$. if $x=a$ then $-\left(\sum x \in t . u(x-a)\right)$ else $\left.u(x-a)\right)=0$
unfolding sum_clauses(2)[OF fin] * using $\langle a \notin s\rangle\langle t \subseteq s\rangle$ by auto
moreover have $\exists v \in$ insert $a t$. (if $v=a$ then $-\left(\sum x \in t\right.$. $u(x-a)$) else $u(v$
$-a)) \neq 0$
using obt $(3,4)\langle 0 \notin S\rangle$
by (rule_tac $x=v+a$ in bexI) (auto simp: t_def)
moreover have $*: \bigwedge P Q .\left(\sum x \in t\right.$. (if $x=a$ then $P x$ else $\left.\left.Q x\right) *_{R} x\right)=\left(\sum x \in t\right.$.
$\left.Q x *_{R} x\right)$
using $\langle a \notin s\rangle\langle t \subseteq s\rangle$ by (auto intro!: sum.cong)
have $\left(\sum x \in t . u(x-a)\right) *_{R} a=\left(\sum v \in t . u(v-a) *_{R} v\right)$
unfolding scaleR_left.sum
unfolding $t_{-} d e f$ and sum.reindex $[O F$ inj] and o_def
using obt(5)
by (auto simp: sum.distrib scaleR_right_distrib)
then have $\left(\sum v \in\right.$ insert a . (if $v=a$ then $-\left(\sum x \in t . u(x-a)\right)$ else $u(v-$
a)) $\left.*_{R} v\right)=0$
unfolding sum_clauses(2)[OF fin]
using $\langle a \notin s\rangle\langle t \subseteq s\rangle$
by (auto simp: *)
ultimately show ?thesis
unfolding affine_dependent_explicit
apply (rule_tac $x=$ insert a t in exI, auto)
done
qed
lemma affine_dependent_biggerset:
fixes $s::$ ' $a::$ euclidean_space set
assumes finite s card $s \geq \operatorname{DIM}\left({ }^{\prime} a\right)+2$
shows affine_dependent s

```
```

proof -
have s\not={} using assms by auto
then obtain a where a\ins by auto
have *: {x-a|x.x 的 - {a}} = (\lambdax.x-a)'(s-{a})
by auto
have card {x-a|x.x\ins-{a}} = card (s-{a})
unfolding * by (simp add: card_image inj_on_def)
also have ... > DIM('a) using assms(2)
unfolding card_Diff_singleton[OF assms(1) <a\ins`] by auto finally show ?thesis apply (subst insert_Diff[OF <a\ins\rangle, symmetric]) apply (rule dependent_imp_affine_dependent) apply (rule dependent_biggerset, auto) done qed lemma affine_dependent_biggerset_general: assumes finite (S :: 'a::euclidean_space set) and card S\geq\operatorname{dim}S+2 shows affine_dependent S proof - from assms(2) have S}={{}\mathrm{ by auto then obtain a where a\inS by auto have *: {x-a|x.x\inS-{a}}=(\lambdax.x-a)'(S-{a}) by auto have **: card {x-a |x. x 仿 - {a}} = card (S - {a}) by (metis (no_types, lifting) * card_image diff_add_cancel inj_on_def) have }\operatorname{dim}{x-a|x.x\inS-{a}}\leq\operatorname{dim} using \langlea\inS\rangle by (auto simp: span_base span_diff intro: subset_le_dim) also have \ldots< dim S+1 by auto also have .. S card (S-{a}) using assms using card_Diff_singleton[OF assms(1) <a\inS〉] by auto finally show ?thesis apply (subst insert_Diff [OF <a\inS`, symmetric])
apply (rule dependent_imp_affine_dependent)
apply (rule dependent_biggerset_general)
unfolding **
apply auto
done
qed

```

\section*{1．6．3 Some Properties of Affine Dependent Sets}
lemma affine＿independent＿0［simp］：\(\neg\) affine＿dependent \(\}\)
by（simp add：affine＿dependent＿def）
lemma affine＿independent＿1 \([\) simp \(]: \neg\) affine＿dependent \(\{a\}\)
by (simp add: affine_dependent_def)
lemma affine_independent_2 [simp]: \(\neg\) affine_dependent \(\{a, b\}\)
by (simp add: affine_dependent_def insert_Diff_if hull_same)
```

lemma affine_hull_translation: affine hull $((\lambda x . a+x)$ ' $S)=(\lambda x \cdot a+x)$ '
(affine hull S)
proof -
have affine $((\lambda x . a+x)$ ' $($ affine hull $S))$
using affine_translation affine_affine_hull by blast
moreover have $(\lambda x . a+x)$ ' $S \subseteq(\lambda x . a+x)$ ' (affine hull $S)$
using hull_subset [of S] by auto
ultimately have h1: affine hull $((\lambda x . a+x)$ ' $S) \subseteq(\lambda x . a+x)$ ' (affine hull
S)
by (metis hull_minimal)
have affine $((\lambda x .-a+x)$ ' $($ affine hull $((\lambda x . a+x)$ ‘ $S)))$
using affine_translation affine_affine_hull by blast
moreover have $(\lambda x .-a+x)^{\prime}(\lambda x . a+x)$ ' $S \subseteq(\lambda x .-a+x)$ ' (affine hull
$\left.\left((\lambda x \cdot a+x)^{\prime} S\right)\right)$
using hull_subset $[$ of $(\lambda x . a+x)$ ' $S]$ by auto
moreover have $S=(\lambda x .-a+x)^{\prime}(\lambda x . a+x)$ ' S
using translation_assoc $[o f-a$ a] by auto
ultimately have $(\lambda x .-a+x)$ '(affine hull $((\lambda x . a+x)$ 'S)) >=(affine hull
S)
by (metis hull_minimal)
then have affine hull $((\lambda x . a+x) ' S)>=(\lambda x . a+x)$ ' (affine hull $S)$
by auto
then show ?thesis using $h 1$ by auto
qed
lemma affine_dependent_translation:
assumes affine_dependent S
shows affine_dependent $((\lambda x . a+x)$ ' $S)$
proof -
obtain x where $x: x \in S \wedge x \in$ affine hull $(S-\{x\})$
using assms affine_dependent_def by auto
have $(+) a^{\prime}(S-\{x\})=(+) a^{\prime} S-\{a+x\}$
by auto
then have $a+x \in$ affine hull $((\lambda x . a+x)$ ' $S-\{a+x\})$
using affine_hull_translation[of a $S-\{x\}] x$ by auto
moreover have $a+x \in(\lambda x . a+x)$ ' S
using x by auto
ultimately show ?thesis
unfolding affine_dependent_def by auto
qed
lemma affine_dependent_translation_eq:
affine_dependent $S \longleftrightarrow$ affine_dependent $\left((\lambda x . a+x)^{\prime} S\right)$
proof -

```
```

 {
 assume affine_dependent ((}\lambdax.a+x)'S
 then have affine_dependent S
 using affine_dependent_translation[of ((\lambdax.a+x)'S) -a] translation_assoc[of
 -a a]
by auto
}
then show ?thesis
using affine_dependent_translation by auto
qed
lemma affine_hull_0_dependent:
assumes 0\inaffine hull S
shows dependent S
proof -
obtain s u where s_u: finite s}\wedges\not={}\wedges\subseteqS\wedge sum us=1^(\sumv\ins.
v**
using assms affine_hull_explicit[of S] by auto
then have }\existsv\ins.uv\not=0\mathrm{ by auto
then have finite s ^ s\subseteqS^(\existsv\ins.uv\not=0^(\sumv\ins.uv** v)=0)
using s_u by auto
then show ?thesis
unfolding dependent_explicit[of S] by auto
qed
lemma affine_dependent_imp_dependent2:
assumes affine_dependent (insert 0S)
shows dependent S
proof -
obtain x where x: x\in insert 0 S ^x\in affine hull (insert 0S-{x})
using affine_dependent_def[of (insert 0 S)] assms by blast
then have }x\in\operatorname{span}(\mathrm{ insert 0 S-{x})
using affine_hull_subset_span by auto
moreover have span (insert 0S-{x})= span (S-{x})
using insert_Diff_if[of 0 S {x}] span_insert_0[of S-{x}] by auto
ultimately have }x\in\operatorname{span}(S-{x})\mathrm{ by auto
then have }x\not=0\Longrightarrow\mathrm{ dependent S
using x dependent_def by auto
moreover
{
assume }x=
then have 0 G affine hull S
using x hull_mono[of S - {0} S] by auto
then have dependent S
using affine_hull_0_dependent by auto
}
ultimately show ?thesis by auto
qed

```
```

lemma affine_dependent_iff_dependent:
assumes $a \notin S$
shows affine_dependent (insert a S) \longleftrightarrow dependent $((\lambda x .-a+x)$ ' S)
proof -
have $((+)(-a) \cdot S)=\{x-a \mid x \cdot x \in S\}$ by auto
then show ?thesis
using affine_dependent_translation_eq[of (insert a S) -a]
affine_dependent_imp_dependent2 assms
dependent_imp_affine_dependent[of a S]
by (auto simp del: uminus_add_conv_diff)
qed
lemma affine_dependent_iff_dependent2:
assumes $a \in S$
shows affine_dependent $S \longleftrightarrow$ dependent $((\lambda x .-a+x)$ ' $(S-\{a\}))$
proof -
have insert a $(S-\{a\})=S$
using assms by auto
then show ?thesis
using assms affine_dependent_iff_dependent[of a $S-\{a\}]$ by auto
qed
lemma affine_hull_insert_span_gen:
affine hull (insert a s) $=(\lambda x . a+x)^{\prime} \operatorname{span}((\lambda x .-a+x) ' s)$
proof -
have $h 1:\{x-a \mid x . x \in s\}=\left((\lambda x .-a+x)^{\prime} s\right)$
by auto
\{
assume $a \notin s$
then have ?thesis
using affine_hull_insert_span $[o f$ a s] h1 by auto
\}
moreover
\{
assume $a 1: a \in s$
have $\exists x . x \in s \wedge-a+x=0$
apply (rule exI[of - a])
using a1
apply auto
done
then have insert $0((\lambda x .-a+x) \cdot(s-\{a\}))=(\lambda x .-a+x)$'s
by auto
then have span $((\lambda x .-a+x) '(s-\{a\}))=\operatorname{span}\left((\lambda x .-a+x)^{\prime} s\right)$
using span_insert_ $0[$ of $(+)(-a)$ ' $(s-\{a\})]$ by (auto simp del: umi-
nus_add_conv_diff)
moreover have $\{x-a \mid x . x \in(s-\{a\})\}=((\lambda x .-a+x) \cdot(s-\{a\}))$
by auto
moreover have insert $a(s-\{a\})=$ insert $a s$
by auto

```
```

 ultimately have ?thesis
 using affine_hull_insert_span[of a s-{a}] by auto
 }
 ultimately show ?thesis by auto
 qed
lemma affine_hull_span2:
assumes a\ins
shows affine hull s = (\lambdax.a+x)' span ((\lambdax. -a+x)'(s-{a}))
using affine_hull_insert_span_gen[of a s - {a},unfolded insert_Diff[OF assms]]
by auto
lemma affine_hull_span_gen:
assumes }a\in\mathrm{ affine hull s
shows affine hull s = (\lambdax.a+x)' span ((\lambdax. -a+x)'s)
proof -
have affine hull (insert a s) = affine hull s
using hull_redundant[of a affine s] assms by auto
then show ?thesis
using affine_hull_insert_span_gen[of a s] by auto
qed
lemma affine_hull_span_0:
assumes 0\inaffine hull S
shows affine hull S= span S
using affine_hull_span_gen[of 0 S] assms by auto
lemma extend_to_affine_basis_nonempty:
fixes S V :: 'n::real_vector set
assumes \negaffine_dependent SS\subseteqVS\not={}
shows \existsT.\negaffine_dependent T}\wedgeS\subseteqT\wedgeT\subseteqV\wedge affine hull T = affin
hull V
proof -
obtain a where a: a\inS
using assms by auto
then have h0: independent ((}\lambdax.-a+x)'(S-{a})
using affine_dependent_iff_dependent2 assms by auto
obtain B where B
(\lambdax. -a+x)'(S-{a})\subseteqB\wedgeB\subseteq(\lambdax. -a+x)'V ^ independent B\wedge (\lambdax.
-a+x)'}V\subseteq\operatorname{span}
using assms
by (blast intro: maximal_independent_subset_extend[OF_h0, of (}\lambdax.-a+x
'V])
define T where T=(}\lambdax.a+x)' insert 0 B
then have T = insert a ((\lambdax.a+x)'B)
by auto
then have affine hull T = (\lambdax.a+x)' span B
using affine_hull_insert_span_gen[of a ((\lambdax.a+x)` B)] translation_assoc[of -a
a B]

```
```

 by auto
 then have \(V \subseteq\) affine hull \(T\)
 using \(B\) assms translation_inverse_subset \([\) of a \(V\) span \(B]\)
 by auto
 moreover have \(T \subseteq V\)
 using \(T_{-}\)def \(B\) a assms by auto
 ultimately have affine hull \(T=\) affine hull \(V\)
 by (metis Int_absorb1 Int_absorb2 hull_hull hull_mono)
 moreover have \(S \subseteq T\)
 using T_def \(B\) translation_inverse_subset \([\) of \(a \operatorname{S}-\{a\} B]\)
 by auto
 moreover have \(\neg\) affine_dependent \(T\)
 using T_def affine_dependent_translation_eq[of insert \(0 B]\)
 affine_dependent_imp_dependent2 B
 by auto
 ultimately show ?thesis using \(\langle T \subseteq V\) by auto
 qed
lemma affine_basis_exists:
fixes $V::$ ' $n:$ rreal_vector set
shows $\exists B . B \subseteq V \wedge \neg$ affine_dependent $B \wedge$ affine hull $V=$ affine hull B
proof (cases $V=\{ \}$)
case True
then show ?thesis
using affine_independent_0 by auto
next
case False
then obtain x where $x \in V$ by auto
then show ?thesis
using affine_dependent_def[of $\{x\}]$ extend_to_affine_basis_nonempty[of $\{x\} V]$
by auto
qed
proposition extend_to_affine_basis:
fixes $S V$:: ' n ::real_vector set
assumes \neg affine_dependent $S S \subseteq V$
obtains T where \neg affine_dependent $T S \subseteq T T T$ affine hull $T=$ affine
hull V
proof (cases $S=\{ \}$)
case True then show ?thesis
using affine_basis_exists by (metis empty_subsetI that)
next
case False
then show ?thesis by (metis assms extend_to_affine_basis_nonempty that)
qed

```

\subsection*{1.6.4 Affine Dimension of a Set}
definition aff_dim :: ('a::euclidean_space) set \(\Rightarrow\) int
```

 where aff_dim \(V=\)
 (SOME d :: int.
 \(\exists B\) affine hull \(B=\) affine hull \(V \wedge \neg\) affine_dependent \(B \wedge\) of_nat \((\) card \(B)=\)
 $d+1)$

```
lemma aff_dim_basis_exists:
    fixes \(V::\left({ }^{\prime} n::\right.\) euclidean_space) set
    shows \(\exists B\). affine hull \(B=\) affine hull \(V \wedge \neg\) affine_dependent \(B \wedge\) of_nat (card
\(B)=\) aff_dim \(V+1\)
proof -
    obtain \(B\) where \(\neg\) affine_dependent \(B \wedge\) affine hull \(B=\) affine hull \(V\)
        using affine_basis_exists[of \(V\) ] by auto
    then show? ?thesis
        unfolding aff_dim_def
            some_eq_ex \([\) of \(\lambda d . \exists B\). affine hull \(B=\) affine hull \(V \wedge \neg\) affine_dependent \(B\)
\(\wedge\) of_nat \((\) card \(B)=d+1]\)
        apply auto
        apply (rule exI[of _ int (card B) - (1 :: int \()])\)
        apply (rule exI[of _ B], auto)
        done
qed
lemma affine_hull_eq_empty [simp]: affine hull \(S=\{ \} \longleftrightarrow S=\{ \}\)
by (metis affine_empty subset_empty subset_hull)
lemma empty_eq_affine_hull[simp]: \{\}=affine hull \(S \longleftrightarrow S=\{ \}\)
by (metis affine_hull_eq_empty)
lemma aff_dim_parallel_subspace_aux:
    fixes \(B::\) ' \(n::\) euclidean_space set
    assumes \(\neg\) affine_dependent \(B a \in B\)
    shows finite \(B \wedge\left((\operatorname{card} B)-1=\operatorname{dim}\left(\operatorname{span}\left((\lambda x .-a+x)^{\prime}(B-\{a\})\right)\right)\right)\)
proof -
    have independent \(((\lambda x .-a+x) \cdot(B-\{a\}))\)
        using affine_dependent_iff_dependent2 assms by auto
    then have fin: dim \((\operatorname{span}((\lambda x .-a+x) \cdot(B-\{a\})))=\operatorname{card}((\lambda x .-a+x) ‘\)
( \(B-\{a\})\) )
    finite \(((\lambda x .-a+x)\) ' \((B-\{a\}))\)
    using indep_card_eq_dim_span \([\) of \((\lambda x .-a+x) '(B-\{a\})]\) by auto
    show ?thesis
    proof \(\left(\right.\) cases \(\left.(\lambda x .-a+x)^{\prime}(B-\{a\})=\{ \}\right)\)
    case True
    have \(B=\operatorname{insert} a\left((\lambda x . a+x)^{\prime}(\lambda x .-a+x)^{\prime}(B-\{a\})\right)\)
            using translation_assoc[of \(a-a(B-\{a\})]\) assms by auto
    then have \(B=\{a\}\) using True by auto
    then show ?thesis using assms fin by auto
    next
    case False
    then have \(\operatorname{card}\left((\lambda x .-a+x)^{\prime}(B-\{a\})\right)>0\)
```

 using fin by auto
 moreover have h1: card ((\lambdax. -a+x)'(B-{a})) = card (B-{a})
 by (rule card_image) (use translate_inj_on in blast)
 ultimately have card (}B-{a})>0\mathrm{ by auto
 then have *: finite (B-{a})
 using card_gt_0_iff[of (B - {a})] by auto
 then have card (B-{a})= card B-1
 using card_Diff_singleton assms by auto
 with * show ?thesis using fin h1 by auto
 qed
 qed
lemma aff_dim_parallel_subspace:
fixes V L :: ' n::euclidean_space set
assumes V\not={}
and subspace L
and affine_parallel (affine hull V) L
shows aff_dim V = int (dim L)
proof -
obtain B where
B: affine hull B = affine hull V ^ ᄀaffine_dependent B ^ int (card B) =
aff_dim V + 1
using aff_dim_basis_exists by auto
then have B}\not={
using assms B
by auto
then obtain a where a: a\inB by auto
define Lb where Lb = span ((\lambdax. -a+x)'(B-{a}))
moreover have affine_parallel (affine hull B) Lb
using Lb_def B assms affine_hull_span2[of a B] a
affine_parallel_commut[of Lb (affine hull B)]
unfolding affine_parallel_def
by auto
moreover have subspace Lb
using Lb_def subspace_span by auto
moreover have affine hull B}\not={
using assms B by auto
ultimately have L=Lb
using assms affine_parallel_subspace[of affine hull B] affine_affine_hull[of B] B
by auto
then have }\operatorname{dim}L=\operatorname{dim}L
by auto
moreover have card B - 1 = dim Lb and finite B
using Lb_def aff_dim_parallel_subspace_aux a B by auto
ultimately show ?thesis
using B\langleB\not={}\rangle card_gt_0_iff [of B] by auto
qed
lemma aff_independent_finite:

```
```

 fixes \(B\) :: ' \(n::\) euclidean_space set
 assumes \(\neg\) affine_dependent \(B\)
 shows finite \(B\)
 proof -
\{
assume $B \neq\{ \}$
then obtain a where $a \in B$ by auto
then have ?thesis
using aff_dim_parallel_subspace_aux assms by auto
\}
then show ?thesis by auto
qed
lemma aff_dim_empty:
fixes $S::$ ' $n::$ euclidean_space set
shows $S=\{ \} \longleftrightarrow$ aff_dim $S=-1$
proof -
obtain B where $*$: affine hull $B=$ affine hull S
and \neg affine_dependent B
and int $($ card $B)=$ aff_dim $S+1$
using aff_dim_basis_exists by auto
moreover
from $*$ have $S=\{ \} \longleftrightarrow B=\{ \}$
by auto
ultimately show ?thesis
using aff_independent_finite[of B] card_gt_0_iff $[$ of B] by auto
qed
lemma aff_dim_empty_eq [simp]: aff_dim $\left(\left\}::{ }^{\prime} a::\right.\right.$ euclidean_space set $)=-1$
by (simp add: aff_dim_empty [symmetric])
lemma aff_dim_affine_hull [simp]: aff_dim (affine hull S) $=$ aff_dim S
unfolding aff_dim_def using hull_hull $[$ of _ S] by auto
lemma aff_dim_affine_hull2:
assumes affine hull $S=$ affine hull T
shows aff_dim $S=$ aff_dim T
unfolding aff_dim_def using assms by auto
lemma aff_dim_unique:
fixes $B V$:: ' $n::$ euclidean_space set
assumes affine hull $B=$ affine hull $V \wedge \neg$ affine_dependent B
shows of_nat $($ card $B)=$ aff_dim $V+1$
proof (cases $B=\{ \}$)
case True
then have $V=\{ \}$
using assms
by auto

```
```

 then have aff_dim \(V=(-1::\) int \()\)
 using aff_dim_empty by auto
 then show ?thesis
 using \(\langle B=\{ \}\rangle\) by auto
 next
case False
then obtain a where $a: a \in B$ by auto
define $L b$ where $L b=\operatorname{span}\left((\lambda x .-a+x)^{\prime}(B-\{a\})\right)$
have affine_parallel (affine hull B) Lb
using Lb_def affine_hull_span2[of a B] a
affine_parallel_commut[of Lb (affine hull B)]
unfolding affine_parallel_def by auto
moreover have subspace $L b$
using Lb_def subspace_span by auto
ultimately have aff_dim $B=\operatorname{int}(\operatorname{dim} L b)$
using aff_dim_parallel_subspace $[$ of $B L b]\langle B \neq\{ \}\rangle$ by auto
moreover have $(\operatorname{card} B)-1=\operatorname{dim} L b$ finite B
using Lb_def aff_dim_parallel_subspace_aux a assms by auto
ultimately have of_nat $($ card $B)=$ aff_dim $B+1$
using $\langle B \neq\{ \}\rangle$ card_gt_0_iff $[$ of $B]$ by auto
then show ?thesis
using aff_dim_affine_hull2 assms by auto
qed
lemma aff_dim_affine_independent:
fixes B :: ' $n::$ euclidean_space set
assumes \neg affine_dependent B
shows of_nat $($ card $B)=a f f_{-} \operatorname{dim} B+1$
using aff_dim_unique $[$ of $B \quad B]$ assms by auto
lemma affine_independent_iff_card:
fixes $s::$ 'a::euclidean_space set
shows \neg affine_dependent $s \longleftrightarrow$ finite $s \wedge$ aff_dim $s=\operatorname{int}($ card $s)-1$
apply (rule iffI)
apply (simp add: aff_dim_affine_independent aff_independent_finite)
by (metis affine_basis_exists [of s] aff_dim_unique card_subset_eq diff_add_cancel
of_nat_eq_iff)
lemma aff_dim_sing [simp]:
fixes $a::$ ' $n:$:euclidean_space
shows aff_dim $\{a\}=0$
using aff_dim_affine_independent[of \{a\}] affine_independent_1 by auto
lemma aff_dim_2 [simp]:
fixes $a::$ ' $n::$ euclidean_space
shows aff_dim $\{a, b\}=($ if $a=b$ then 0 else 1$)$
proof (clarsimp)
assume $a \neq b$
then have aff_dim $\{a, b\}=\operatorname{card}\{a, b\}-1$

```
using affine_independent_2 [of a b] aff_dim_affine_independent by fastforce also have \(\ldots=1\)
using \(\langle a \neq b\rangle\) by \(\operatorname{simp}\)
finally show aff_dim \(\{a, b\}=1\).
qed
lemma aff_dim_inner_basis_exists:
fixes \(V::\) (' \(n::\) euclidean_space) set
shows \(\exists B . B \subseteq V \wedge\) affine hull \(B=\) affine hull \(V \wedge\)
\(\neg\) affine_dependent \(B \wedge\) of_nat \((\) card \(B)=\) aff_dim \(V+1\)
proof -
obtain \(B\) where \(B: \neg\) affine_dependent \(B B \subseteq V\) affine hull \(B=\) affine hull \(V\) using affine_basis_exists \([o f ~ V]\) by auto
then have of_nat (card B) \(=\) aff_dim \(V+1\) using aff_dim_unique by auto
with \(B\) show ?thesis by auto
qed
lemma aff_dim_le_card:
fixes \(V\) :: ' \(n::\) euclidean_space set
assumes finite \(V\)
shows aff_dim \(V \leq\) of_nat (card \(V)-1\)
proof -
obtain \(B\) where \(B: B \subseteq V\) of_nat \((\) card \(B)=a f f \_d i m ~ V+1\)
using aff_dim_inner_basis_exists[of \(V\) ] by auto
then have card \(B \leq\) card \(V\)
using assms card_mono by auto
with \(B\) show ?thesis by auto
qed
lemma aff_dim_parallel_eq:
fixes \(S T\) :: ' \(n::\) euclidean_space set
assumes affine_parallel (affine hull S) (affine hull T)
shows aff_dim \(S=\) aff_dim \(T\)
proof -
\{
assume \(T \neq\{ \} S \neq\{ \}\)
then obtain \(L\) where \(L\) : subspace \(L \wedge\) affine_parallel (affine hull \(T\) ) \(L\)
using affine_parallel_subspace[of affine hull T]
affine_affine_hull[of T]
by auto
then have aff_dim \(T=\operatorname{int}(\operatorname{dim} L)\)
using aff_dim_parallel_subspace \(\langle T \neq\{ \}\rangle\) by auto
moreover have *: subspace \(L \wedge\) affine_parallel (affine hull S) \(L\)
using \(L\) affine_parallel_assoc[of affine hull \(S\) affine hull T L] assms by auto
moreover from \(*\) have aff_dim \(S=\operatorname{int}(\operatorname{dim} L)\)
using aff_dim_parallel_subspace \(\langle S \neq\{ \}\rangle\) by auto
ultimately have ?thesis by auto
\}
moreover
```

 {
 assume S={}
 then have S={} and T={}
 using assms
 unfolding affine_parallel_def
 by auto
 then have ?thesis using aff_dim_empty by auto
 }
moreover
{
assume T={}
then have S={} and T={}
using assms
unfolding affine_parallel_def
by auto
then have ?thesis
using aff_dim_empty by auto
}
ultimately show ?thesis by blast
qed
lemma aff_dim_translation_eq:
aff_dim ((+) a'S) = aff_dim S for a :: 'n::euclidean_space
proof -
have affine_parallel (affine hull S) (affine hull ((\lambdax.a+x)'S))
unfolding affine_parallel_def
apply (rule exI[of - a])
using affine_hull_translation[of a S]
apply auto
done
then show ?thesis
using aff_dim_parallel_eq[of S (\lambdax.a+x)'S] by auto
qed
lemma aff_dim_translation_eq_subtract:
aff_dim ((\lambdax.x - a)'S) = aff_dim S for a :: ' }n::\mathrm{ :euclidean_space
using aff_dim_translation_eq [of - a] by (simp cong: image_cong_simp)
lemma aff_dim_affine:
fixes SL :: ' }n::\mathrm{ :euclidean_space set
assumes S\not={}
and affine S
and subspace L
and affine_parallel S L
shows aff_dim S = int (dim L)
proof -
have *: affine hull S = S
using assms affine_hull_eq[of S] by auto
then have affine_parallel (affine hull S) L

```
```

 using assms by (simp add:*)
 then show ?thesis
 using assms aff_dim_parallel_subspace[of S L] by blast
 qed
lemma dim_affine_hull:
fixes S :: ' }n::\mathrm{ euclidean_space set
shows dim (affine hull S)=\operatorname{dim}S
proof -
have dim (affine hull S)\geq\operatorname{dim}S
using dim_subset by auto
moreover have dim (span S)\geq\operatorname{dim}(affine hull S)
using dim_subset affine_hull_subset_span by blast
moreover have dim (span S) = dim S
using dim_span by auto
ultimately show ?thesis by auto
qed
lemma aff_dim_subspace:
fixes S :: 'n::euclidean_space set
assumes subspace S
shows aff_dim S = int (dim S)
proof (cases S={})
case True with assms show ?thesis
by (simp add: subspace_affine)
next
case False
with aff_dim_affine[of S S] assms subspace_imp_affine[of S] affine_parallel_reflex[of
S] subspace_affine
show ?thesis by auto
qed
lemma aff_dim_zero:
fixes }S:: 'n::euclidean_space se
assumes 0 \in affine hull S
shows aff_dim S= int (dim S)
proof -
have subspace (affine hull S)
using subspace_affine[of affine hull S] affine_affine_hull assms
by auto
then have aff_dim (affine hull S) = int (dim (affine hull S))
using assms aff_dim_subspace[of affine hull S] by auto
then show ?thesis
using aff_dim_affine_hull[of S] dim_affine_hull[of S]
by auto
qed
lemma aff_dim_eq_dim:
aff_dim $S=\operatorname{int}\left(\operatorname{dim}\left((+)(-a){ }^{\prime} S\right)\right)$ if $a \in$ affine hull S

```
for \(S\) :: ' \(n::\) euclidean_space set
proof -
have \(0 \in\) affine hull \((+)(-a)\) ' \(S\)
unfolding affine_hull_translation
using that by (simp add: ac_simps)
with aff_dim_zero show ?thesis
by (metis aff_dim_translation_eq)
qed
lemma aff_dim_eq_dim_subtract:
aff_dim \(S=\operatorname{int}(\operatorname{dim}((\lambda x . x-a) ' S))\) if \(a \in\) affine hull \(S\)
for \(S\) :: ' \(n::\) euclidean_space set
using aff_dim_eq_dim [of a] that by (simp cong: image_cong_simp)
lemma aff_dim_UNIV [simp]: aff_dim (UNIV :: ' \(n::\) euclidean_space set \()=\operatorname{int}(D I M(' n))\)
using aff_dim_subspace[of (UNIV :: ' \(n::\) euclidean_space set)]
dim_UNIV [where ' \(a=\) ' \(n::\) euclidean_space]
by auto
lemma aff_dim_geq:
fixes \(V\) :: ' \(n::\) euclidean_space set
shows aff_dim \(V \geq-1\)
proof -
obtain \(B\) where affine hull \(B=\) affine hull \(V\)
and \(\neg\) affine_dependent \(B\)
and int \((\) card \(B)=\) aff_dim \(V+1\)
using aff_dim_basis_exists by auto
then show ?thesis by auto
qed
lemma aff_dim_negative_iff [simp]:
fixes \(S\) :: ' \(n::\) euclidean_space set
shows aff_dim \(S<0 \longleftrightarrow S=\{ \}\)
by (metis aff_dim_empty aff_dim_geq diff_0 eq_iff zle_diff1_eq)
lemma aff_lowdim_subset_hyperplane:
fixes \(S\) :: 'a::euclidean_space set
assumes aff_dim \(S<D I M\left({ }^{\prime} a\right)\)
obtains \(a b\) where \(a \neq 0 S \subseteq\{x . a \cdot x=b\}\)
proof (cases \(S=\{ \}\) )
case True
moreover
have (SOME b. \(b \in\) Basis) \(\neq 0\)
by (metis norm_some_Basis norm_zero zero_neq_one)
ultimately show ?thesis
using that by blast
next
case False
then obtain \(c S^{\prime}\) where \(c \notin S^{\prime} S=\) insert \(c S^{\prime}\)
```

 by (meson equals0I mk_disjoint_insert)
 have \(\operatorname{dim}((+)(-c) \cdot S)<\operatorname{DIM}(' a)\)
 by (metis \(\left\langle S=\right.\) insert \(\left.c S^{\prime}\right\rangle\) aff_dim_eq_dim assms hull_inc insertI1 of_nat_less_imp_less)
 then obtain \(a\) where \(a \neq 0\) span \(\left((+)(-c)^{\prime} S\right) \subseteq\{x . a \cdot x=0\}\)
 using lowdim_subset_hyperplane by blast
 moreover
 have \(a \cdot w=a \cdot c\) if \(\operatorname{span}((+)(-c) \cdot S) \subseteq\{x . a \cdot x=0\} w \in S\) for \(w\)
 proof -
 have \(w-c \in \operatorname{span}((+)(-c) \cdot S)\)
 by (simp add: span_base \(\langle w \in S\rangle)\)
 with that have \(w-c \in\{x, a \cdot x=0\}\)
 by blast
 then show ?thesis
 by (auto simp: algebra_simps)
 qed
 ultimately have \(S \subseteq\{x . a \cdot x=a \cdot c\}\)
 by blast
 then show ?thesis
 by (rule that \([\) OF \(\langle a \neq 0\rangle]\))
 qed
lemma affine_independent_card_dim_diffs:
fixes S :: ' a :: euclidean_space set
assumes \neg affine_dependent $S a \in S$
shows $\operatorname{card} S=\operatorname{dim}((\lambda x . x-a) \cdot S)+1$
proof -
have non: \neg affine_dependent (insert a S)
by (simp add: assms insert_absorb)
have finite S
by (meson assms aff_independent_finite)
with $\langle a \in S\rangle$ have card $S \neq 0$ by auto
moreover have $\operatorname{dim}((\lambda x . x-a)$ ' $S)=\operatorname{card} S-1$
using aff_dim_eq_dim_subtract aff_dim_unique $\langle a \in S\rangle$ hull_inc insert_absorb non
by fastforce
ultimately show ?thesis
by auto
qed
lemma independent_card_le_aff_dim:
fixes B :: ' n ::euclidean_space set
assumes $B \subseteq V$
assumes \neg affine_dependent B
shows int $($ card $B) \leq$ aff_dim $V+1$
proof -
obtain T where $T: \neg$ affine_dependent $T \wedge B \subseteq T \wedge T \subseteq V \wedge$ affine hull T
= affine hull V
by (metis assms extend_to_affine_basis[of B V])
then have of_nat $($ card $T)=$ aff_dim $V+1$
using aff_dim_unique by auto

```
```

 then show ?thesis
 using T card_mono[of T B] aff_independent_finite[of T] by auto
 qed
lemma aff_dim_subset:
fixes ST :: ' n::euclidean_space set
assumes S\subseteqT
shows aff_dim S \leq aff_dim T
proof -
obtain B where B: ᄀaffine_dependent B B\subseteqS affine hull B = affine hull S
of_nat (card B) = aff_dim S + 1
using aff_dim_inner_basis_exists[of S] by auto
then have int (card B)\leqaff_dim T + 1
using assms independent_card_le_aff_dim[of B T] by auto
with B show ?thesis by auto
qed
lemma aff_dim_le_DIM:
fixes S :: ' }n::\mathrm{ euclidean_space set
shows aff_dim S \leq int (DIM('n))
proof -
have aff_dim (UNIV :: 'n::euclidean_space set) = int(DIM('n))
using aff_dim_UNIV by auto
then show aff_dim (S:: ' }n::\mathrm{ euclidean_space set) }\leq\operatorname{int}(DIM(' n)
using aff_dim_subset[of S (UNIV :: ('n::euclidean_space) set)] subset_UNIV by
auto
qed
lemma affine_dim_equal:
fixes }S::' 'n::euclidean_space se
assumes affine S affine TS\not={}S\subseteqT aff_dim S=aff_dim T
shows S=T
proof -
obtain a where a\inS using assms by auto
then have a\inT using assms by auto
define LS where LS ={y.\existsx\inS.(-a)+x=y}
then have ls: subspace LS affine_parallel S LS
using assms parallel_subspace_explicit[of S a LS]<a \inS` by auto then have h1: int (dim LS) =aff_dim S using assms aff_dim_affine[of S LS] by auto have T\not={} using assms by auto define LT where LT ={y.\existsx\inT.(-a)+x=y} then have lt: subspace LT ^affine_parallel T LT using assms parallel_subspace_explicit[of T a LT] \langlea \inT\rangle by auto then have int (dim LT) =aff_dim T using assms aff_dim_affine[of T LT]<T \={}` by auto
then have }\operatorname{dim}LS=\operatorname{dim}L
using h1 assms by auto
moreover have LS \leqLT

```
```

using $L S$ _def $L T$ _def assms by auto

```
ultimately have \(L S=L T\)
using subspace_dim_equal[of LS LT] ls lt by auto
moreover have \(S=\{x . \exists y \in L S . a+y=x\}\)
using \(L S\) _def by auto
moreover have \(T=\{x . \exists y \in L T . a+y=x\}\)
using \(L T\) _def by auto
ultimately show ?thesis by auto
qed
lemma aff_dim_eq_0:
fixes \(S::{ }^{\prime} a::\) euclidean_space set
shows aff_dim \(S=0 \longleftrightarrow(\exists a . S=\{a\})\)
proof (cases \(S=\{ \}\) )
case True
then show ?thesis
by auto
next
case False
then obtain \(a\) where \(a \in S\) by auto
show ?thesis
proof safe
assume 0: aff_dim \(S=0\)
have \(\neg\{a, b\} \subseteq S\) if \(b \neq a\) for \(b\)
by (metis 0 aff_dim_2 aff_dim_subset not_one_le_zero that)
then show \(\exists a . S=\{a\}\)
using \(\langle a \in S\rangle\) by blast
qed auto
qed
lemma affine_hull_UNIV:
fixes \(S:: ~ ' n:: e u c l i d e a n \_s p a c e ~ s e t\)
assumes aff_dim \(S=\operatorname{int}\left(\operatorname{DIM}\left({ }^{\prime} n\right)\right)\)
shows affine hull \(S=(\) UNIV :: ('n::euclidean_space) set)
proof -
have \(S \neq\{ \}\)
using assms aff_dim_empty[of \(S\) ] by auto
have h0: \(S \subseteq\) affine hull \(S\)
using hull_subset[of S -] by auto
have h1: aff_dim (UNIV :: (' \(n::\) euclidean_space) set) \(=\) aff_dim \(S\)
using aff_dim_UNIV assms by auto
then have h2: aff_dim (affine hull \(S\) ) \(\leq\) aff_dim (UNIV :: (' \(n::\) euclidean_space)
set)
using aff_dim_le_DIM[of affine hull S] assms h0 by auto
have h3: aff_dim \(S \leq\) aff_dim (affine hull \(S\) )
using h0 aff_dim_subset[of \(S\) affine hull \(S\) ] assms by auto
then have h4: aff_dim (affine hull \(S\) ) = aff_dim (UNIV :: (' \(\left.n:: e u c l i d e a n \_s p a c e\right) ~\)
set)
using h0 h1 h2 by auto
```

 then show ?thesis
 using affine_dim_equal[of affine hull \(S\) (UNIV :: (' \(n::\) euclidean_space) set)]
 affine_affine_hull[of S] affine_UNIV assms h4 h0 \(\langle S \neq\{ \}\rangle\)
 by auto
 qed
lemma disjoint_affine_hull:
fixes $s::$ ' $n::$ euclidean_space set
assumes \neg affine_dependent $s t \subseteq s u \subseteq s t \cap u=\{ \}$
shows (affine hull $t) \cap($ affine hull $u)=\{ \}$
proof -
have finite s using assms by (simp add: aff_independent_finite)
then have finite t finite u using assms finite_subset by blast+
\{ fix y
assume $y t: y \in$ affine hull t and $y u: y \in$ affine hull u
then obtain $a b$
where $a 1$ [simp]: sum a $t=1$ and [simp]: sum $\left(\lambda v . a v *_{R} v\right) t=y$
and [simp]: sum $b u=1 \operatorname{sum}\left(\lambda v . b v *_{R} v\right) u=y$
by (auto simp: affine_hull_finite \langle finite $t\rangle\langle$ finite $u\rangle$)
define c where $c x=($ if $x \in t$ then $a x$ else if $x \in u$ then $-(b x)$ else 0$)$ for x
have $[\operatorname{simp}]: s \cap t=t s \cap-t \cap u=u$ using assms by auto
have sum cs=0
by (simp add: c_def comm_monoid_add_class.sum.If_cases 〈finite s〉sum_negf)
moreover have $\neg(\forall v \in s . c v=0)$
by (metis (no_types) IntD1 $\langle s \cap t=t\rangle$ a1 c_def sum.neutral zero_neq_one)
moreover have $\left(\sum v \in s . c v *_{R} v\right)=0$
by (simp add: c_def if_smult sum_negf
comm_monoid_add_class.sum.If_cases 〈finite s〉)
ultimately have False
using assms 〈finite s〉 by (auto simp: affine_dependent_explicit)
\}
then show ?thesis by blast
qed
end

```

\section*{1．7 Convex Sets and Functions}
```

theory Convex
imports
Affine
HOL-Library.Set_Algebras

```
begin

\section*{1．7．1 Convex Sets}
definition convex ：：＇a：：real＿vector set \(\Rightarrow\) bool where convex \(s \longleftrightarrow\left(\forall x \in s . \forall y \in s . \forall u \geq 0 . \forall v \geq 0 . u+v=1 \longrightarrow u *_{R} x+v\right.\) \(\left.*_{R} y \in s\right)\)
lemma convexI:
assumes \(\bigwedge x y u v . x \in s \Longrightarrow y \in s \Longrightarrow 0 \leq u \Longrightarrow 0 \leq v \Longrightarrow u+v=1 \Longrightarrow\) \(u *_{R} x+v *_{R} y \in s\)
shows convex \(s\)
using assms unfolding convex_def by fast
lemma convexD:
assumes convex \(s\) and \(x \in s\) and \(y \in s\) and \(0 \leq u\) and \(0 \leq v\) and \(u+v=1\) shows \(u *_{R} x+v *_{R} y \in s\)
using assms unfolding convex_def by fast
lemma convex_alt: convex \(s \longleftrightarrow(\forall x \in s . \forall y \in s . \forall u .0 \leq u \wedge u \leq 1 \longrightarrow((1-\) \(\left.\left.u) *_{R} x+u *_{R} y\right) \in s\right)\) (is \(\_\longleftrightarrow\) ?alt)
proof
show convex \(s\) if alt: ?alt
proof \{
fix \(x y\) and \(u v::\) real
assume mem: \(x \in s y \in s\)
assume \(0 \leq u 0 \leq v\)
moreover
assume \(u+v=1\)
then have \(u=1-v\) by auto
ultimately have \(u *_{R} x+v *_{R} y \in s\)
using alt [rule_format, OF mem] by auto
\}
then show ?thesis
unfolding convex_def by auto
qed
show ?alt if convex \(s\)
using that by (auto simp: convex_def)
qed
lemma convexD_alt:
assumes convex \(s a \in s b \in s 0 \leq u u \leq 1\)
shows \(\left((1-u) *_{R} a+u *_{R} b\right) \in s\)
using assms unfolding convex_alt by auto
lemma mem_convex_alt:
assumes convex \(S x \in S y \in S u \geq 0 v \geq 0 u+v>0\)
shows \(\left((u /(u+v)) *_{R} x+(v /(u+v)) *_{R} y\right) \in S\)
using assms
by (simp add: convex_def zero_le_divide_iff add_divide_distrib [symmetric])
lemma convex_empty[intro,simp]: convex \{\}
unfolding convex_def by simp
```

lemma convex_singleton[intro,simp]: convex $\{a\}$
unfolding convex_def by (auto simp: scaleR_left_distrib[symmetric])
lemma convex_UNIV[intro,simp]: convex UNIV
unfolding convex_def by auto
lemma convex_Inter: $(\bigwedge s . s \in f \Longrightarrow$ convex $s) \Longrightarrow \operatorname{convex}(\bigcap f)$
unfolding convex_def by auto
lemma convex_Int: convex $s \Longrightarrow$ convex $t \Longrightarrow$ convex $(s \cap t)$
unfolding convex_def by auto
lemma convex_INT: $(\bigwedge i . i \in A \Longrightarrow \operatorname{convex}(B i)) \Longrightarrow \operatorname{convex}(\bigcap i \in A . B i)$
unfolding convex_def by auto
lemma convex_Times: convex $s \Longrightarrow$ convex $t \Longrightarrow$ convex $(s \times t)$
unfolding convex_def by auto
lemma convex_halfspace_le: convex $\{x$. inner $a x \leq b\}$
unfolding convex_def
by (auto simp: inner_add intro!: convex_bound_le)
lemma convex_halfspace_ge: convex $\{x$. inner $a x \geq b\}$
proof -
have $*:\{x$. inner a $x \geq b\}=\{x$. inner $(-a) x \leq-b\}$
by auto
show ?thesis
unfolding * using convex_halfspace_le $[o f-a-b]$ by auto
qed
lemma convex_halfspace_abs_le: convex $\{x . \mid$ inner a $x \mid \leq b\}$
proof -
have $*:\{x$. \mid inner a $x \mid \leq b\}=\{x$. inner a $x \leq b\} \cap\{x .-b \leq$ inner a $x\}$
by auto
show ?thesis
unfolding * by (simp add: convex_Int convex_halfspace_ge convex_halfspace_le)
qed
lemma convex_hyperplane: convex $\{x$. inner $a x=b\}$
proof -
have $*:\{x$. inner a $x=b\}=\{x$. inner a $x \leq b\} \cap\{x$. inner a $x \geq b\}$
by auto
show ?thesis using convex_halfspace_le convex_halfspace_ge
by (auto intro!: convex_Int simp: *)
qed
lemma convex_halfspace_lt: convex $\{x$. inner a $x<b\}$
unfolding convex_def
by (auto simp: convex_bound_lt inner_add)

```
```

lemma convex_halfspace_gt: convex $\{x$. inner $a x>b\}$
using convex_halfspace_lt $[$ of $-a-b]$ by auto
lemma convex_halfspace_Re_ge: convex $\{x . \operatorname{Re} x \geq b\}$
using convex_halfspace_ge[of b $1::$ complex] by simp
lemma convex_halfspace_Re_le: convex $\{x$. Re $x \leq b\}$
using convex_halfspace_le[of 1 ::complex b] by simp
lemma convex_halfspace_Im_ge: convex $\{x . \operatorname{Im} x \geq b\}$
using convex_halfspace_ge[of bi] by simp
lemma convex_halfspace_Im_le: convex $\{x$. Im $x \leq b\}$
using convex_halfspace_le[of i b] by simp
lemma convex_halfspace_Re_gt: convex $\{x . \operatorname{Re} x>b\}$
using convex_halfspace_gt[of b $1::$ complex] by simp
lemma convex_halfspace_Re_lt: convex $\{x . \operatorname{Re} x<b\}$
using convex_halfspace_lt[of $1::$ complex $b]$ by simp
lemma convex_halfspace_Im_gt: convex $\{x . \operatorname{Im} x>b\}$
using convex_halfspace_gt[of bi] by simp
lemma convex_halfspace_Im_lt: convex $\{x . \operatorname{Im} x<b\}$
using convex_halfspace_lt[of i b] by simp
lemma convex_real_interval [iff]:
fixes $a b$:: real
shows convex $\{a .$.$\} and convex \{. . b\}$
and convex $\{a<.$.$\} and convex \{. .<b\}$
and convex $\{a . . b\}$ and convex $\{a<. . b\}$
and convex $\{a . .<b\}$ and convex $\{a<. .<b\}$
proof -
have $\{a .\}=.\{x . a \leq$ inner $1 x\}$
by auto
then show 1: convex $\{a .$.
by (simp only: convex_halfspace_ge)
have $\{. . b\}=\{x$. inner $1 x \leq b\}$
by auto
then show 2: convex $\{. . b\}$
by (simp only: convex_halfspace_le)
have $\{a<.\}=.\{x . a<$ inner $1 x\}$
by auto
then show 3: convex $\{a<.$.
by (simp only: convex_halfspace_gt)
have $\{. .<b\}=\{x$. inner $1 x<b\}$
by auto

```
```

 then show 4: convex \(\{. .<b\}\)
 by (simp only: convex_halfspace_lt)
 have \(\{a . . b\}=\{a ..\} \cap\{. . b\}\)
 by auto
 then show convex \(\{a . . b\}\)
 by (simp only: convex_Int 1 2)
 have \(\{a<. . b\}=\{a<..\} \cap\{. . b\}\)
 by auto
 then show convex $\{a<. . b\}$
by (simp only: convex_Int 3 2)
have $\{a . .<b\}=\{a ..\} \cap\{. .<b\}$
by auto
then show convex $\{a . .<b\}$
by (simp only: convex_Int 1 4)
have $\{a<. .<b\}=\{a<..\} \cap\{. .<b\}$
by auto
then show convex $\{a<. .<b\}$
by (simp only: convex_Int 3 4)
qed
lemma convex_Reals: convex \mathbb{R}
by (simp add: convex_def scaleR_conv_of_real)

```

\subsection*{1.7.2 Explicit expressions for convexity in terms of arbitrary sums}
lemma convex_sum:
fixes \(C\) :: 'a::real_vector set
assumes finite \(S\)
and convex \(C\)
and \(\left(\sum i \in S . a i\right)=1\)
assumes \(\wedge i . i \in S \Longrightarrow a i \geq 0\)
and \(\bigwedge i . i \in S \Longrightarrow y i \in C\)
shows \(\left(\sum j \in S . a j *_{R} y j\right) \in C\)
using assms ( \(1,3,4,5\) )
proof (induct arbitrary: a set: finite)
case empty
then show ?case by simp
next
case (insert i \(S\) ) note \(I H=\) this(3)
have \(a i+\) sum a \(S=1\)
and \(0 \leq a i\)
and \(\forall j \in S .0 \leq a j\)
and \(y i \in C\)
and \(\forall j \in S . y j \in C\)
using insert.hyps (1,2) insert.prems by simp_all
then have \(0 \leq\) sum a \(S\)
by (simp add: sum_nonneg)
have \(a i *_{R} y i+\left(\sum j \in S . a j *_{R} y j\right) \in C\)
```

 proof (cases sum a \(S=0\))
 case True
 with \(\langle a i+\operatorname{sum} a S=1\rangle\) have \(a i=1\)
 by simp
 from sum_nonneg_0 [OF〈finite \(S\rangle\) _ True] \(\langle\forall j \in S .0 \leq a j\rangle\) have \(\forall j \in S . a j=\)
 0
by simp
show ?thesis using $\langle a i=1\rangle$ and $\langle\forall j \in S . a j=0\rangle$ and $\langle y i \in C\rangle$
by simp
next
case False
with $\langle 0 \leq$ sum a $S\rangle$ have $0<$ sum a S
by simp
then have $\left(\sum j \in S .(a j / \operatorname{sum} a S) *_{R} y j\right) \in C$
using $\langle\forall j \in S .0 \leq a j\rangle$ and $\langle\forall j \in S . y j \in C\rangle$
by (simp add: IH sum_divide_distrib [symmetric])
from \langle convex $C\rangle$ and $\langle y i \in C\rangle$ and this and $\langle 0 \leq a i\rangle$
and $\langle 0 \leq \operatorname{sum} a S\rangle$ and $\langle a i+\operatorname{sum} a S=1\rangle$
have $a i *_{R} y i+\operatorname{sum} a S *_{R}\left(\sum j \in S .(a j / \operatorname{sum} a S) *_{R} y j\right) \in C$
by (rule convexD)
then show ?thesis
by (simp add: scaleR_sum_right False)
qed
then show ?case using 〈finite $S\rangle$ and $\langle i \notin S\rangle$
by simp
qed
lemma convex:
convex $S \longleftrightarrow(\forall(k::$ nat $) u x .(\forall i .1 \leq i \wedge i \leq k \longrightarrow 0 \leq u i \wedge x i \in S) \wedge($ sum u $\{1 . . k\}=1$)
$\left.\longrightarrow \operatorname{sum}\left(\lambda i . u i *_{R} x i\right)\{1 . . k\} \in S\right)$
proof safe
fix k :: nat
fix $u::$ nat \Rightarrow real
fix x
assume convex S
$\forall i .1 \leq i \wedge i \leq k \longrightarrow 0 \leq u i \wedge x i \in S$ sum $u\{1 . . k\}=1$
with convex_sum $[$ of $\{1 . . k\} S]$ show $\left(\sum j \in\{1 . . k\} . u j *_{R} x j\right) \in S$ by auto
next
assume $*: \forall k u x$. $(\forall i::$ nat. $1 \leq i \wedge i \leq k \longrightarrow 0 \leq u i \wedge x i \in S) \wedge \operatorname{sum} u$ $\{1 . . k\}=1$
$\longrightarrow\left(\sum i=1 . . k . u i *_{R}\left(x i::{ }^{\prime} a\right)\right) \in S$
\{
fix μ :: real
fix $x y$:: ' a
assume $x y: x \in S y \in S$
assume $m u: \mu \geq 0 \mu \leq 1$

```
let \(? u=\lambda\). if \((i::\) nat \()=1\) then \(\mu\) else \(1-\mu\)
let \(? x=\lambda\). if \((i::\) nat \()=1\) then \(x\) else \(y\)
have \(\{1::\) nat .. 2\(\} \cap-\{x . x=1\}=\{2\}\) by auto
then have card: card \((\{1::\) nat .. 2\(\} \cap-\{x . x=1\})=1\)
by \(\operatorname{simp}\)
then have sum ? \(u\{1\).. 2 \(\}=1\)
using sum.If_cases[of \(\{(1::\) nat \()\).. 2 \(\} \lambda x . x=1 \lambda x . \mu \lambda x .1-\mu]\) by auto
with \(*[\) rule_format, of 2 ? \(u\) ? \(x]\) have \(S:\left(\sum j \in\{1 . .2\}\right.\). ?u \(j *_{R}\) ? \(\left.x j\right) \in S\) using mu xy by auto
have grarr: \(\left(\sum j \in\{\operatorname{Suc}(S u c ~ 0) . .2\}\right.\). ? \(u j *_{R}\) ? \(\left.x j\right)=(1-\mu) *_{R} y\) using sum.atLeast_Suc_atMost[of Suc (Suc 0) 2 \(\left.\lambda j .(1-\mu) *_{R} y\right]\) by auto
from sum.atLeast_Suc_atMost[of Suc \(02 \lambda j\). ?u \(j *_{R}\) ? \({ }^{2} j\), simplified this]
have \(\left(\sum j \in\{1 . .2\}\right.\). ? \(u j *_{R}\) ? \(\left.x j\right)=\mu *_{R} x+(1-\mu) *_{R} y\) by auto
then have \((1-\mu) *_{R} y+\mu *_{R} x \in S\) using \(S\) by (auto simp: add.commute)
\}
then show convex \(S\)
unfolding convex_alt by auto
qed
lemma convex_explicit:
fixes \(S\) :: 'a::real_vector set
shows convex \(S \longleftrightarrow\)
\((\forall t u\). finite \(t \wedge t \subseteq S \wedge(\forall x \in t .0 \leq u x) \wedge \operatorname{sum} u t=1 \longrightarrow \operatorname{sum}(\lambda x . u x\) \(\left.\left.*_{R} x\right) t \in S\right)\)
proof safe
fix \(t\)
fix \(u:{ }^{\prime}{ }^{\prime} a \Rightarrow\) real
assume convex \(S\)
and finite \(t\)
and \(t \subseteq S \forall x \in t .0 \leq u x\) sum \(u t=1\)
then show \(\left(\sum x \in t . u x *_{R} x\right) \in S\)
using convex_sum \([\) of \(t S u \lambda x . x]\) by auto
next
assume \(*: \forall t . \forall u\). finite \(t \wedge t \subseteq S \wedge(\forall x \in t .0 \leq u x) \wedge\)
sum \(u t=1 \longrightarrow\left(\sum x \in t . u x *_{R} x\right) \in S\)
show convex \(S\)
unfolding convex_alt
proof safe
fix \(x y\)
fix \(\mu::\) real
assume \(* *: x \in S y \in S 0 \leq \mu \mu \leq 1\)
show \((1-\mu) *_{R} x+\mu *_{R} y \in S\)
proof (cases \(x=y\) )
case False
```

 then show ?thesis
 using *[rule_format, of {x,y} \lambda z. if z=x then 1-\mu else }\mu]*
 by auto
 next
 case True
 then show ?thesis
 using *[rule_format, of {x,y} \lambdaz.1] **
 by (auto simp: field_simps real_vector.scale_left_diff_distrib)
 qed
 qed
 qed
lemma convex_finite:
assumes finite S
shows convex S \longleftrightarrow(\forallu. (\forallx\inS.0\lequx)\wedge sum uS=1 \longrightarrow sum (\lambdax.ux
*R}x)S\inS
(is ?lhs = ?rhs)
proof
{ have if_distrib_arg: \Pfgx. (if P then f else g) x = (if P then f x else g x)
by simp
fix T :: 'a set and u :: 'a m real
assume sum: }\forallu.(\forallx\inS.0\lequx)\wedge sum uS=1\longrightarrow(\sumx\inS.ux\mp@subsup{*}{R}{}x
G
assume *: }\forallx\inT.0\lequx sum uT=
assume T\subseteqS
then have S\capT=T by auto
with sum[THEN spec[where x=\lambdax. if x\inT then u x else 0]] * have (\sumx\inT.
ux*R x) \inS
by (auto simp: assms sum.If_cases if_distrib if_distrib_arg) }
moreover assume ?rhs
ultimately show ?lhs
unfolding convex_explicit by auto
qed (auto simp: convex_explicit assms)

```

\subsection*{1.7.3 Convex Functions on a Set}
definition convex_on \(::\) 'a::real_vector set \(\Rightarrow(' a \Rightarrow\) real \() \Rightarrow\) bool
    where convex_on \(S f \longleftrightarrow\)
    \(\left(\forall x \in S . \forall y \in S . \forall u \geq 0 . \forall v \geq 0 . u+v=1 \longrightarrow f\left(u *_{R} x+v *_{R} y\right) \leq u * f x\right.\)
\(+v * f y)\)
lemma convex_onI [intro?]:
assumes \(\bigwedge t x y . t>0 \Longrightarrow t<1 \Longrightarrow x \in A \Longrightarrow y \in A \Longrightarrow\)
\(f\left((1-t) *_{R} x+t *_{R} y\right) \leq(1-t) * f x+t * f y\)
shows convex_on A \(f\)
unfolding convex_on_def
proof clarify
fix \(x y\)
fix \(u v\) :: real
```

 assume \(A: x \in A y \in A u \geq 0 v \geq 0 u+v=1\)
 from \(A(5)\) have [simp]: \(v=1-u\)
 by (simp add: algebra_simps)
 from \(A(1-4)\) show \(f\left(u *_{R} x+v *_{R} y\right) \leq u * f x+v * f y\)
 using assms[of uy \(x\)]
 by (cases \(u=0 \vee u=1\)) (auto simp: algebra_simps)
 qed
lemma convex_on_linorderI [intro?]:
fixes $A::(' a::\{$ linorder, real_vector $\}$) set
assumes $\wedge t x y . t>0 \Longrightarrow t<1 \Longrightarrow x \in A \Longrightarrow y \in A \Longrightarrow x<y \Longrightarrow$
$f\left((1-t) *_{R} x+t *_{R} y\right) \leq(1-t) * f x+t * f y$
shows convex_on Af
proof
fix $x y$
fix $t::$ real
assume $A: x \in A y \in A t>0 t<1$
with assms [of $t x y$]assms [of $1-t y x]$
show $f\left((1-t) *_{R} x+t *_{R} y\right) \leq(1-t) * f x+t * f y$
by (cases x y rule: linorder_cases) (auto simp: algebra_simps)
qed
lemma convex_onD:
assumes convex_on $A f$
shows $\wedge t x y . t \geq 0 \Longrightarrow t \leq 1 \Longrightarrow x \in A \Longrightarrow y \in A \Longrightarrow$
$f\left((1-t) *_{R} x+t *_{R} y\right) \leq(1-t) * f x+t * f y$
using assms by (auto simp: convex_on_def)
lemma convex_onD_Icc:

```

```

 shows \(\wedge t . t \geq 0 \Longrightarrow t \leq 1 \Longrightarrow\)
 \(f\left((1-t) *_{R} x+t *_{R} y\right) \leq(1-t) * f x+t * f y\)
 using assms(2) by (intro convex_onD [OF assms(1)]) simp_all
 lemma convex_on_subset: convex_on $t f \Longrightarrow S \subseteq t \Longrightarrow$ convex_on $S f$
unfolding convex_on_def by auto
lemma convex_on_add [intro]:
assumes convex_on $S f$
and convex_on $S g$
shows convex_on $S(\lambda x . f x+g x)$
proof -
\{
fix $x y$
assume $x \in S y \in S$
moreover
fix $u v$:: real
assume $0 \leq u 0 \leq v u+v=1$
ultimately

```
have \(f\left(u *_{R} x+v *_{R} y\right)+g\left(u *_{R} x+v *_{R} y\right) \leq(u * f x+v * f y)+(u\) * \(g x+v * g y)\)
using assms unfolding convex_on_def by (auto simp: add_mono)
then have \(f\left(u *_{R} x+v *_{R} y\right)+g\left(u *_{R} x+v *_{R} y\right) \leq u *(f x+g x)+\) \(v *(f y+g y)\)
by (simp add: field_simps)
\}
then show ?thesis
unfolding convex_on_def by auto
qed
lemma convex_on_cmul [intro]:
fixes \(c:\) real
assumes \(0 \leq c\)
and convex_on \(S f\)
shows convex_on \(S(\lambda x . c * f x)\)
proof -
have \(*: u *(c * f x)+v *(c * f y)=c *(u * f x+v * f y)\)
for \(u c f x v f y\) :: real
by (simp add: field_simps)
show ?thesis using assms(2) and mult_left_mono [OF_assms(1)]
unfolding convex_on_def and \(*\) by auto
qed
lemma convex_lower:
assumes convex_on \(S f\)
and \(x \in S\)
and \(y \in S\)
and \(0 \leq u\)
and \(0 \leq v\)
and \(u+v=1\)
shows \(f\left(u *_{R} x+v *_{R} y\right) \leq \max (f x)(f y)\)
proof -
let \({ }^{2} m=\max (f x)(f y)\)
have \(u * f x+v * f y \leq u * \max (f x)(f y)+v * \max (f x)(f y)\)
using assms \((4,5)\) by (auto simp: mult_left_mono add_mono)
also have \(\ldots=\max (f x)(f y)\)
using assms( 6 ) by (simp add: distrib_right [symmetric])
finally show ?thesis
using assms unfolding convex_on_def by fastforce
qed
lemma convex_on_dist [intro]:
fixes \(S\) :: ' \(a:\) :real_normed_vector set
shows convex_on \(S(\lambda x\). dist a \(x)\)
proof (auto simp: convex_on_def dist_norm)
fix \(x y\)
assume \(x \in S y \in S\)
fix \(u v\) :: real
```

 assume \(0 \leq u\)
 assume \(0 \leq v\)
 assume \(u+v=1\)
 have \(a=u *_{R} a+v *_{R} a\)
 unfolding scaleR_left_distrib[symmetric] and \(\langle u+v=1\rangle\) by simp
 then have \(*: a-\left(u *_{R} x+v *_{R} y\right)=\left(u *_{R}(a-x)\right)+\left(v *_{R}(a-y)\right)\)
 by (auto simp: algebra_simps)
 show norm \(\left(a-\left(u *_{R} x+v *_{R} y\right)\right) \leq u * \operatorname{norm}(a-x)+v * \operatorname{norm}(a-y)\)
 unfolding \(*\) using norm_triangle_ineq[of \(\left.u *_{R}(a-x) v *_{R}(a-y)\right]\)
 using \(\langle 0 \leq u\rangle\langle 0 \leq v\rangle\) by auto
 qed

```

\section*{1．7．4 Arithmetic operations on sets preserve convexity}
lemma convex＿linear＿image：
assumes linear \(f\)
and convex \(S\)
shows convex（ \(f\)＇\(S\) ）
proof－
interpret \(f\) ：linear \(f\) by fact
from 〈convex \(S\) 〉 show convex（ \(f\)＇\(S\) ）
by（simp add：convex＿def f．scaleR［symmetric］f．add［symmetric］）
qed
lemma convex＿linear＿vimage：
assumes linear \(f\)
and convex \(S\)
shows convex \((f-' S)\)
proof－
interpret \(f\) ：linear \(f\) by fact
from 〈convex \(S\) 〉 show convex \(\left(f-{ }^{\prime} S\right.\) ）
by（simp add：convex＿def f．add f．scaleR）
qed
lemma convex＿scaling：
assumes convex \(S\)
shows convex \(\left(\left(\lambda x . c *_{R} x\right)\right.\)＇\(\left.S\right)\)
proof－
have linear \(\left(\lambda x . c *_{R} x\right)\)
by（simp add：linearI scaleR＿add＿right）
then show ？thesis
using \(\langle\) convex \(S\) 〉 by（rule convex＿linear＿image）
qed
lemma convex＿scaled：
assumes convex \(S\)
shows convex \(\left(\left(\lambda x . x *_{R} c\right)\right.\)＇\(\left.S\right)\)
proof－
have linear \(\left(\lambda x . x *_{R} c\right)\)
```

 by (simp add: linearI scaleR_add_left)
 then show ?thesis
 using <convex S` by (rule convex_linear_image)
 qed
lemma convex_negations:
assumes convex S
shows convex ((\lambdax. - x)`S) proof - have linear (}\lambdax.-x by (simp add: linearI) then show ?thesis using <convex S` by (rule convex_linear_image)
qed
lemma convex_sums:
assumes convex S
and convex T
shows convex (\bigcupx\inS. \bigcupy \inT. {x+y})
proof -
have linear (}\lambda(x,y).x+y
by (auto intro: linearI simp: scaleR_add_right)
with assms have convex ((\lambda(x,y). x + y)' (S\timesT))
by (intro convex_linear_image convex_Times)
also have ((\lambda(x,y).x+y)'(S\timesT))=(\bigcupx\inS.\bigcupy\inT.{x+y})
by auto
finally show ?thesis.
qed
lemma convex_differences:
assumes convex S convex T
shows convex (}\bigcupx\inS.\bigcupy\inT.{x-y}
proof -
have {x-y|xy.x\inS\wedgey\inT}={x+y|xy.x\inS\wedge y fuminus 'T}
by (auto simp: diff_conv_add_uminus simp del: add_uminus_conv_diff)
then show ?thesis
using convex_sums[OF assms(1) convex_negations[OF assms(2)]] by auto
qed
lemma convex_translation:
convex ((+) a'S) if convex S
proof -
have (Ux\in{a}. \bigcupy f S.{x+y})=(+) a'S
by auto
then show ?thesis
using convex_sums [OF convex_singleton [of a] that] by auto
qed
lemma convex_translation_subtract:

```
```

 convex \(\left((\lambda b . b-a)^{\prime} S\right)\) if convex \(S\)
 using convex_translation [of \(S-a]\) that by (simp cong: image_cong_simp)
 lemma convex_affinity:
assumes convex S
shows convex $\left(\left(\lambda x . a+c *_{R} x\right)\right.$ ' S)
proof -
have $\left(\lambda x . a+c *_{R} x\right)^{\prime} S=(+) a^{\prime}\left(*_{R}\right) c^{\prime} S$
by auto
then show?thesis
using convex_translation $[O F$ convex_scaling $[O F$ assms $]$, of a c] by auto
qed
lemma convex_on_sum:
fixes $a::{ }^{\prime} a \Rightarrow$ real
and $y::{ }^{\prime} a \Rightarrow$ ' $b::$ real_vector
and $f:: ' b \Rightarrow$ real
assumes finite s $s \neq\{ \}$
and convex_on $C f$
and convex C
and $\left(\sum i \in s . a i\right)=1$
and $\bigwedge i . i \in s \Longrightarrow a i \geq 0$
and $\bigwedge i . i \in s \Longrightarrow y i \in C$
shows $f\left(\sum i \in s . a i *_{R} y i\right) \leq\left(\sum i \in s . a i * f(y i)\right)$
using assms
proof (induct s arbitrary: a rule: finite_ne_induct)
case (singleton i)
then have ai: a $i=1$
by auto
then show ?case
by auto
next
case (insert is)
then have convex_on $C f$
by simp
from this[unfolded convex_on_def, rule_format]
have conv: $\backslash x y \mu . x \in C \Longrightarrow y \in C \Longrightarrow 0 \leq \mu \Longrightarrow \mu \leq 1 \Longrightarrow$
$f\left(\mu *_{R} x+(1-\mu) *_{R} y\right) \leq \mu * f x+(1-\mu) * f y$
by simp
show ?case
proof (cases a $i=1$)
case True
then have $\left(\sum j \in s . a j\right)=0$
using insert by auto
then have $\bigwedge j . j \in s \Longrightarrow a j=0$
using insert by (fastforce simp: sum_nonneg_eq_0_iff)
then show ?thesis
using insert by auto
next

```
```

 case False
 from insert have yai:y i\inCai\geq0
 by auto
 have fis: finite (insert i s)
 using insert by auto
 then have ai1: a i\leq1
 using sum_nonneg_leq_bound[of insert i s a] insert by simp
 then have a i<1
 using False by auto
 then have i0:1-ai>0
 by auto
 let ?a = \lambdaj. a j / (1-ai)
 have a_nonneg: ?a j \geq0 if j\ins for j
 using i0 insert that by fastforce
 have (\sumj\in insert i s.aj)=1
 using insert by auto
 then have (\sumj\ins.aj)=1-ai
 using sum.insert insert by fastforce
 then have (\sumj\ins.aj)/(1-ai)=1
 using i0 by auto
 then have a1: (\sumj\ins.?a j)=1
 unfolding sum_divide_distrib by simp
 have convex C using insert by auto
 then have asum: (\sumj\ins.?a j * *
 using insert convex_sum [OF〈finite s\rangle\langleconvex C> a1 a_nonneg] by auto
 have asum_le: f(\sumj\ins. ?a j }\mp@subsup{*}{R}{}yj)\leq(\sumj\ins.?aj*f(yj)
 using a_nonneg a1 insert by blast
    ```

```

 using sum.insert[of si \lambdaj.aj** y j,OF<finite s〉〈i\not\ins\rangle] insert
 by (auto simp only: add.commute)
    ```

```

+ai**R y i)
using i0 by auto
also have ···.. =f((1-ai)** (\sumj\ins. (aj*inverse (1-ai))** (y j)

+ ai**R y i)
using scaleR_right.sum[of inverse (1-ai)\lambdaj.aj * * y j s, symmetric]
by (auto simp: algebra_simps)
also have ... =f ((1-ai) *R (\sumj\ins. ?a j * *R y j) +ai * *R y i)
by (auto simp: divide_inverse)
also have ... \leq (1-ai) *R f ((\sumj\ins.?aj * *R y j)) +ai*f(yi)
using conv[of y i (\sumj\ins. ?a j ** y j) a i,OF yai(1) asum yai(2) ai1]
by (auto simp: add.commute)
also have .. S (1-ai)*(\sumj\ins.?aj*f(yj))+ai*f(yi)
using add_right_mono [OF mult_left_mono [of _ _ 1 - a i,
OF asum_le less_imp_le[OF iO]], of a i * f(y i)]
by simp
also have ... =(\sumj\ins. (1-ai)*?aj*f(yj))+ai*f(yi)
unfolding sum_distrib_left[of 1-ai \lambda j. ?a j *f(yj)]
using i0 by auto

```
```

 also have ... = (\sumj\ins.aj*f(yj))+ai*f(yi)
 using i0 by auto
 also have ... = (\sumj\in insert i s.aj*f(yj))
 using insert by auto
 finally show ?thesis
 by simp
 qed
 qed
lemma convex_on_alt:
fixes C :: 'a::real_vector set
shows convex_on C f \longleftrightarrow
(}\forallx\inC.\forally\inC.\forall\mu:: real. \mu\geq0\wedge < < < \longrightarrow
f(\mu**R}x+(1-\mu)\mp@subsup{*}{R}{}y)\leq\mu*fx+(1-\mu)*fy
proof safe
fix x y
fix }\mu\mathrm{ :: real
assume *: convex_on C f x C C y C C 0 \leq < \mu\leq1
from this[unfolded convex_on_def, rule_format]
have 0\lequ\Longrightarrow0\leqv\Longrightarrowu+v=1\Longrightarrowf(u*R}x>v+v\mp@subsup{*}{R}{}y)\lequ*fx+

* fy for uv
by auto
from this [of \mu 1-\mu, simplified]*
show f(\mu**R}x+(1-\mu)*R多)\leq\mu*fx+(1-\mu)*f
by auto
next
assume *: }\forallx\inC.\forally\inC.\forall\mu.0\leq\mu\wedge\mu\leq1
f(\mu*R
{
fix }x
fix }uv\mathrm{ :: real
assume **: x \inC y \inCu\geq0v\geq0u+v=1
then have[simp]: 1-u=v by auto
from *[rule_format, of x y u
have f(u**R}x+v\mp@subsup{*}{R}{}y)\lequ*fx+v*f
using ** by auto
}
then show convex_on C f
unfolding convex_on_def by auto
qed
lemma convex_on_diff:
fixes f :: real \# real
assumes f:convex_on If
and I:x\inIy\inI
and t:x<tt<y
shows (fx-ft)/(x-t)\leq(fx-fy)/(x-y)
and (fx-fy)/(x-y)\leq(ft-fy)/(t-y)
proof -

```
```

define a where $a \equiv(t-y) /(x-y)$
with t have $0 \leq a 0 \leq 1-a$
by (auto simp: field_simps)
with $f\langle x \in I\rangle\langle y \in I\rangle$ have $c v x: f(a * x+(1-a) * y) \leq a * f x+(1-a)$

* $f y$
by (auto simp: convex_on_def)
have $a * x+(1-a) * y=a *(x-y)+y$
by (simp add: field_simps)
also have $\ldots=t$
unfolding $a _d e f$ using $\langle x<t\rangle\langle t<y\rangle$ by simp
finally have $f t \leq a * f x+(1-a) * f y$
using $c v x$ by simp
also have $\ldots=a *(f x-f y)+f y$
by (simp add: field_simps)
finally have $f t-f y \leq a *(f x-f y)$
by simp
with t show $(f x-f t) /(x-t) \leq(f x-f y) /(x-y)$
by (simp add: le_divide_eq divide_le_eq field_simps a_def)
with t show $(f x-f y) /(x-y) \leq(f t-f y) /(t-y)$
by (simp add: le_divide_eq divide_le_eq field_simps)
qed
lemma pos_convex_function:
fixes $f::$ real \Rightarrow real
assumes convex C
and leq: $\bigwedge x y . x \in C \Longrightarrow y \in C \Longrightarrow f^{\prime} x *(y-x) \leq f y-f x$
shows convex_on $C f$
unfolding convex_on_alt
using assms
proof safe
fix x y μ :: real
let ? $x=\mu *_{R} x+(1-\mu) *_{R} y$
assume $*$: convex $C x \in C y \in C \mu \geq 0 \mu \leq 1$
then have $1-\mu \geq 0$ by auto
then have xpos: $? x \in C$
using * unfolding convex_alt by fastforce
have geq: $\mu *(f x-f ? x)+(1-\mu) *(f y-f ? x) \geq$
$\mu * f^{\prime} ? x *(x-? x)+(1-\mu) * f^{\prime} ? x *(y-? x)$
using add_mono [OF mult_left_mono [OF leq [OF xpos $*(2)]\langle\mu \geq 0\rangle]$
mult_left_mono [OF leq [OF xpos *(3)] <1- $-\mu \geq 0\rangle]]$
by auto
then have $\mu * f x+(1-\mu) * f y-f ? x \geq 0$
by (auto simp: field_simps)
then show $f\left(\mu *_{R} x+(1-\mu) *_{R} y\right) \leq \mu * f x+(1-\mu) * f y$
by auto
qed
lemma atMostAtLeast_subset_convex:
fixes C :: real set

```
```

 assumes convex \(C\)
 and \(x \in C y \in C x<y\)
 shows \(\{x . . y\} \subseteq C\)
 proof safe
fix z assume $z: z \in\{x . . y\}$
have less: $z \in C$ if $*: x<z z<y$
proof -
let ? $\mu=(y-z) /(y-x)$
have $0 \leq ? \mu ? \mu \leq 1$
using assms $*$ by (auto simp: field_simps)
then have comb: ? $\mu * x+(1-? \mu) * y \in C$
using assms iffD1[OF convex_alt, rule_format, of C y x ? μ]
by (simp add: algebra_simps)
have $? \mu * x+(1-? \mu) * y=(y-z) * x /(y-x)+(1-(y-z) /(y-$
$x)) * y$
by (auto simp: field_simps)
also have $\ldots=((y-z) * x+(y-x-(y-z)) * y) /(y-x)$
using assms by (simp only: add_divide_distrib) (auto simp: field_simps)
also have $\ldots=z$
using assms by (auto simp: field_simps)
finally show ?thesis
using comb by auto
qed
show $z \in C$
using z less assms by (auto simp: le_less)
qed
lemma $f^{\prime \prime}$ _imp_f f^{\prime}
fixes $f::$ real \Rightarrow real
assumes convex C
and $f^{\prime}: \bigwedge x . x \in C \Longrightarrow D E R I V f x:>\left(f^{\prime} x\right)$
and $f^{\prime \prime}: \bigwedge x . x \in C \Longrightarrow D E R I V f^{\prime} x:>\left(f^{\prime \prime} x\right)$
and pos: $\wedge x . x \in C \Longrightarrow f^{\prime \prime} x \geq 0$
and $x: x \in C$
and $y: y \in C$
shows $f^{\prime} x *(y-x) \leq f y-f x$
using assms
proof -
have less_imp: $f y-f x \geq f^{\prime} x *(y-x) f^{\prime} y *(x-y) \leq f x-f y$
if $*: x \in C y \in C y>x$ for $x y$:: real
proof -
from * have $g e: y-x>0 y-x \geq 0$
by auto
from $*$ have $l e: x-y<0 x-y \leq 0$
by auto
then obtain $z 1$ where $z 1: z 1>x z 1<y f y-f x=(y-x) * f^{\prime} z 1$
using subsetD[OF atMostAtLeast_subset_convex $[O F\langle$ convex $C\rangle\langle x \in C\rangle\langle y \in$
$C\rangle\langle x<y\rangle]$,
THEN f^{\prime}, THEN MVT2[OF $\langle x<y\rangle$, rule_format, unfolded atLeastAt-

```

Most_iff[symmetric]]]
by auto
then have \(z 1 \in C\)
using atMostAtLeast_subset_convex \(\langle\) convex \(C\rangle\langle x \in C\rangle\langle y \in C\rangle\langle x<y\rangle\)
by fastforce
from \(z 1\) have \(z 1^{\prime}: f x-f y=(x-y) * f^{\prime} z 1\)
by (simp add: field_simps)
obtain \(z 2\) where \(z 2: z 2>x z 2<z 1 f^{\prime} z 1-f^{\prime} x=(z 1-x) * f^{\prime \prime} z 2\)
using subsetD[OF atMostAtLeast_subset_convex[OF \(\langle\) convex \(C\rangle\langle x \in C\rangle\langle z 1\)
\(\in C\rangle\langle x<z 1\rangle]\),
THEN f", THEN MVT2[OF \(\langle x<z 1\rangle\), rule_format, unfolded atLeastAt-
Most_iff [symmetric]]] z1
by auto
obtain \(z 3\) where \(z 3: z 3>z 1 z 3<y f^{\prime} y-f^{\prime} z 1=(y-z 1) * f^{\prime \prime} z 3\)
using subsetD[OF atMostAtLeast_subset_convex[OF \(\langle\) convex \(C\rangle\langle z 1 \in C\rangle\langle y\)
\(\in C\rangle\langle z 1<y\rangle]\),
THEN \(f^{\prime \prime}\), THEN MVT2[OF \(\langle z 1<y\rangle\), rule_format, unfolded atLeastAt-
Most_iff [symmetric]]] z1
by auto
have \(f^{\prime} y-(f x-f y) /(x-y)=f^{\prime} y-f^{\prime} z 1\)
using \(* z 1^{\prime}\) by auto
also have \(\ldots=(y-z 1) * f^{\prime \prime} z 3\)
using \(z 3\) by auto
finally have \(\operatorname{cool}^{\prime}: f^{\prime} y-(f x-f y) /(x-y)=(y-z 1) * f^{\prime \prime} z 3\) by simp
have \(A^{\prime}: y-z 1 \geq 0\)
using \(z 1\) by auto
have \(z 3 \in C\)
using \(z 3\) * atMostAtLeast_subset_convex \(\langle\) convex \(C\rangle\langle x \in C\rangle\langle z 1 \in C\rangle\langle x<\) z1)
by fastforce
then have \(B^{\prime}: f^{\prime \prime} z 3 \geq 0\)
using assms by auto
from \(A^{\prime} B^{\prime}\) have \((y-z 1) * f^{\prime \prime} z 3 \geq 0\)
by auto
from cool' this have \(f^{\prime} y-(f x-f y) /(x-y) \geq 0\)
by auto
from mult_right_mono_neg[OF this le(2)]
have \(f^{\prime} y *(x-y)-(f x-f y) /(x-y) *(x-y) \leq 0 *(x-y)\) by (simp add: algebra_simps)
then have \(f^{\prime} y *(x-y)-(f x-f y) \leq 0\)
using le by auto
then have res: \(f^{\prime} y *(x-y) \leq f x-f y\)
by auto
have \((f y-f x) /(y-x)-f^{\prime} x=f^{\prime} z 1-f^{\prime} x\)
using \(* z 1\) by auto
also have \(\ldots=(z 1-x) * f^{\prime \prime} z 2\)
using \(z 2\) by auto
finally have cool: \((f y-f x) /(y-x)-f^{\prime} x=(z 1-x) * f^{\prime \prime} z 2\)
```

 by simp
 have A:z1-x\geq0
 using z1 by auto
 have z2 \inC
 using z2 z1 * atMostAtLeast_subset_convex <convex C\rangle\langlez1 \inC\rangle\langley\inC\rangle\langlez1
 < y>
by fastforce
then have B: f" z2 \geq0
using assms by auto
from A B have (z1-x)*\mp@subsup{f}{}{\prime\prime}z2\geq0
by auto
with cool have (fy-fx)/(y-x)-\mp@subsup{f}{}{\prime}x\geq0
by auto
from mult_right_mono[OF this ge(2)]
have (fy-fx) / (y-x)* (y-x)-\mp@subsup{f}{}{\prime}x*(y-x)\geq0* (y-x)
by (simp add: algebra_simps)
then have fy-fx-\mp@subsup{f}{}{\prime}x*(y-x)\geq0
using ge by auto
then show fy-fx\geq\mp@subsup{f}{}{\prime}x*(y-x) f
using res by auto
qed
show ?thesis
proof (cases x=y)
case True
with x y show ?thesis by auto
next
case False
with less_imp x y show ?thesis
by (auto simp: neq_iff)
qed
qed
lemma f"_ge0_imp_convex:
fixes f :: real =>real
assumes conv: convex C
and \mp@subsup{f}{}{\prime}:\bigwedgex.x\inC\LongrightarrowDERIV f x :> (f'
and \mp@subsup{f}{}{\prime\prime}:\bigwedgex.x\inC\LongrightarrowDERIV f' }x:>(\mp@subsup{f}{}{\prime\prime}x
and pos: }\x.x\inC\Longrightarrow\mp@subsup{f}{}{\prime\prime}x\geq
shows convex_on C f
using \mp@subsup{f}{}{\prime\prime}_imp_f}\mp@subsup{f}{}{\prime}[OF conv f' f'l pos] assms pos_convex_function
by fastforce
lemma minus_log_convex:
fixes b :: real
assumes b>1
shows convex_on {0<..} (\lambdax. - log b x)
proof -
have \z.z>0\LongrightarrowDERIV (log b) z:> 1 / (ln b*z)
using DERIV_log by auto

```
```

then have $f^{\prime}: \bigwedge z . z>0 \Longrightarrow \operatorname{DERIV}(\lambda z .-\log b z) z:>-1 /(\ln b * z)$
by (auto simp: DERIV_minus)
have $\bigwedge z:$:real. $z>0 \Longrightarrow$ DERIV inverse $z:>-($ inverse z ^Suc (Suc 0))
using less_imp_neq[THEN not_sym, THEN DERIV_inverse] by auto
from this[THEN DERIV_cmult, of _ - $1 / \ln b]$
have $\wedge z:$ real. $z>0 \Longrightarrow$
$\operatorname{DERIV}(\lambda z .(-1 / \ln b) *$ inverse $z) z:>(-1 / \ln b) *\left(-\left(\right.\right.$ inverse $z{ }^{\wedge}$ Suc
(Suc 0)))
by auto
then have $f^{\prime \prime} 0: \bigwedge z::$ real. $z>0 \Longrightarrow$
$\operatorname{DERIV}(\lambda z .-1 /(\ln b * z)) z:>1 /(\ln b * z * z)$
unfolding inverse_eq_divide by (auto simp: mult.assoc)
have $f^{\prime \prime}$ _ge0: $\bigwedge z::$ real. $z>0 \Longrightarrow 1 /(\ln b * z * z) \geq 0$
using $\langle b>1\rangle$ by (auto intro!: less_imp_le)
from $f^{\prime \prime}$ _ge0_imp_convex[OF convex_real_interval(3), unfolded greaterThan_iff,
$O F f^{\prime} f^{\prime \prime} 0 f^{\prime \prime}$ _ge0]
show ?thesis
by auto
qed

```

\subsection*{1.7.5 Convexity of real functions}
lemma convex_on_realI:
assumes connected \(A\) and \(\bigwedge x . x \in A \Longrightarrow\left(f\right.\) has_real_derivative \(\left.f^{\prime} x\right)(\) at \(x)\) and \(\bigwedge x y, x \in A \Longrightarrow y \in A \Longrightarrow x \leq y \Longrightarrow f^{\prime} x \leq f^{\prime} y\)
shows convex_on \(A f\)
proof (rule convex_on_linorderI)
fix \(t x y\) :: real
assume \(t: t>0 t<1\)
assume \(x y: x \in A y \in A x<y\)
define \(z\) where \(z=(1-t) * x+t * y\)
with <connected \(A\) 〉 and \(x y\) have ivl: \(\{x . . y\} \subseteq A\) using connected_contains_Icc by blast
from \(x y t\) have \(x z: z>x\) by (simp add: z_def algebra_simps)
have \(y-z=(1-t) *(y-x)\)
by (simp add: z_def algebra_simps)
also from \(x y t\) have ...>0
by (intro mult_pos_pos) simp_all
finally have \(y z: z<y\)
by \(\operatorname{simp}\)
from assms xz yz ivl \(t\) have \(\exists \xi . \xi>x \wedge \xi<z \wedge f z-f x=(z-x) * f^{\prime} \xi\) by (intro MVT2) (auto intro!: assms(2))
then obtain \(\xi\) where \(\xi: \xi>x \xi<z f^{\prime} \xi=(f z-f x) /(z-x)\)
by auto
from assms xz yz ivl \(t\) have \(\exists \eta . \eta>z \wedge \eta<y \wedge f y-f z=(y-z) * f^{\prime} \eta\)
by (intro MVT2) (auto intro!: assms(2))
then obtain \(\eta\) where \(\eta: \eta>z \eta<y f^{\prime} \eta=(f y-f z) /(y-z)\)
by auto
from \(\eta(3)\) have \((f y-f z) /(y-z)=f^{\prime} \eta\)..
also from \(\xi \eta\) ivl have \(\xi \in A \eta \in A\)
by auto
with \(\xi \eta\) have \(f^{\prime} \eta \geq f^{\prime} \xi\)
by (intro assms(3)) auto
also from \(\xi(3)\) have \(f^{\prime} \xi=(f z-f x) /(z-x)\).
finally have \((f y-f z) *(z-x) \geq(f z-f x) *(y-z)\)
using \(x z\) yz by (simp add: field_simps)
also have \(z-x=t *(y-x)\)
by (simp add: z_def algebra_simps)
also have \(y-z=(1-t) *(y-x)\)
by (simp add: z_def algebra_simps)
finally have \((f y-f z) * t \geq(f z-f x) *(1-t)\)
using \(x y\) by simp
then show \((1-t) * f x+t * f y \geq f\left((1-t) *_{R} x+t *_{R} y\right)\)
by (simp add: z_def algebra_simps)
qed
lemma convex_on_inverse:
assumes \(A \subseteq\{0<.\).
shows convex_on \(A\) (inverse :: real \(\Rightarrow\) real)
proof (rule convex_on_subset[OF_assms], intro convex_on_reall \(\left[o f_{-} \quad \lambda x\right.\). - inverse
( \(x^{\wedge}\) 2)] \(]\)
fix \(u v\) :: real
assume \(u \in\{0<.\}. v \in\{0<.\} u \leq\).
with assms show -inverse ( \(\left.u^{\wedge} 2\right) \leq-i n v e r s e ~\left(v^{\wedge} 2\right)\)
by (intro le_imp_neg_le le_imp_inverse_le power_mono) (simp_all)
qed (insert assms, auto intro!: derivative_eq_intros simp: field_split_simps power2_eq_square)
lemma convex_onD_Icc':
assumes convex_on \(\{x . . y\} f c \in\{x . . y\}\)
defines \(d \equiv y-x\)
shows \(f c \leq(f y-f x) / d *(c-x)+f x\)
proof (cases \(x\) y rule: linorder_cases)
case less
then have \(d: d>0\)
by (simp add: d_def)
from \(\operatorname{assms}(2)\) less have \(A: 0 \leq(c-x) / d(c-x) / d \leq 1\)
by (simp_all add: d_def field_split_simps)
have \(f c=f(x+(c-x) * 1)\)
by \(\operatorname{simp}\)
also from less have \(1=((y-x) / d)\)
by (simp add: d_def)
also from \(d\) have \(x+(c-x) * \ldots=(1-(c-x) / d) *_{R} x+((c-x) /\)
d) \(*_{R} y\)
```

 by (simp add: field_simps)
 also have f_. \leq (1-(c-x)/d)*fx+(c-x)/d*fy
 using assms less by (intro convex_onD_Icc) simp_all
 also from d have ... = (fy-fx)/d*(c-x)+fx
 by (simp add: field_simps)
 finally show ?thesis.
 qed (insert assms(2), simp_all)
lemma convex_onD_Icc'':
assumes convex_on {x..y} f c\in{x..y}
defines d}\equivy-
shows fc\leq(fx-fy)/d*(y-c)+fy
proof (cases x y rule: linorder_cases)
case less
then have d:d>0
by (simp add: d_def)
from assms(2) less have A: 0\leq (y-c)/d (y-c)/d\leq1
by (simp_all add: d_def field_split_simps)
have fc=f(y-(y-c)*1)
by simp
also from less have 1 = ((y-x)/d)
by (simp add: d_def)
also from d have y-(y-c)*···=(1-(1-(y-c)/d))**R}x+(1
(y-c)/d)**
by (simp add: field_simps)
also have f···\leq(1-(1-(y-c)/d))*fx+(1-(y-c)/d)*fy
using assms less by (intro convex_onD_Icc) (simp_all add: field_simps)
also from d have ... = (fx-fy)/d*(y-c)+fy
by (simp add: field_simps)
finally show ?thesis.
qed (insert assms(2), simp_all)
lemma convex_translation_eq [simp]:
convex }((+)a's)\longleftrightarrow convex
by (metis convex_translation translation_galois)
lemma convex_translation_subtract_eq [simp]:
convex ((\lambdab.b - a)'s)\longleftrightarrow convex s
using convex_translation_eq [of - a] by (simp cong: image_cong_simp)
lemma convex_linear_image_eq [simp]:
fixes f :: 'a::real_vector }=>\mathrm{ 'b::real_vector
shows \llbracketlinear f; inj f\rrbracket\Longrightarrow convex (f's) \longleftrightarrow convex s
by (metis (no_types) convex_linear_image convex_linear_vimage inj_vimage_image_eq)
lemma fst_snd_linear: linear (}\lambda(x,y).x+y
unfolding linear_iff by (simp add:algebra_simps)
lemma vector_choose_size:

```
```

 assumes \(0 \leq c\)
 obtains \(x::\) ' \(a::\{\) real_normed_vector, perfect_space \(\}\) where norm \(x=c\)
 proof -
obtain $a::^{\prime} a$ where $a \neq 0$
using UNIV_not_singleton UNIV_eq_I set_zero singletonI by fastforce
then show ?thesis
by (rule_tac $x=s c a l e R(c / n o r m a) a$ in that) (simp add: assms)
qed
lemma vector_choose_dist:
assumes $0 \leq c$
obtains y :: 'a::\{real_normed_vector, perfect_space $\}$ where dist $x y=c$
by (metis add_diff_cancel_left' assms dist_commute dist_norm vector_choose_size)
lemma sum_delta ${ }^{\prime \prime}$:
fixes $s::^{\prime} a$::real_vector set
assumes finite s
shows $\left(\sum x \in s\right.$. (if $y=x$ then $f x$ else 0$\left.) *_{R} x\right)=\left(\right.$ if $y \in s$ then $(f y) *_{R} y$ else 0$)$
proof -
have $*: \bigwedge x y$. (if $y=x$ then $f x$ else $(0::$ real $)) *_{R} x=\left(\right.$ if $x=y$ then $(f x) *_{R} x$
else 0)
by auto
show ?thesis
unfolding $*$ using sum.delta $\left[O F\right.$ assms, of $\left.y \lambda x . f x *_{R} x\right]$ by auto
qed
lemma dist_triangle_eq:
fixes x y $z::$ 'a::real_inner
shows dist $x z=$ dist $x y+$ dist $y z \longleftrightarrow$
norm $(x-y) *_{R}(y-z)=\operatorname{norm}(y-z) *_{R}(x-y)$
proof -
have $*: x-y+(y-z)=x-z$ by auto
show ?thesis unfolding dist_norm norm_triangle_eq[of $x-y y-z$, unfolded $*$]
by (auto simp:norm_minus_commute)
qed

```

\subsection*{1.7.6 Cones}
definition cone :: 'a::real_vector set \(\Rightarrow\) bool where cone \(s \longleftrightarrow\left(\forall x \in s . \forall c \geq 0 . c *_{R} x \in s\right)\)
lemma cone_empty[intro, simp]: cone \(\}\) unfolding cone_def by auto
lemma cone_univ[intro, simp]: cone UNIV unfolding cone_def by auto
lemma cone_Inter[intro]: \(\forall s \in f\). cone \(s \Longrightarrow\) cone \((\bigcap f)\) unfolding cone_def by auto
lemma subspace_imp_cone: subspace \(S \Longrightarrow\) cone \(S\)
by (simp add: cone_def subspace_scale)

\section*{Conic hull}
lemma cone_cone_hull: cone (cone hull S)
unfolding hull_def by auto
lemma cone_hull_eq: cone hull \(S=S \longleftrightarrow\) cone \(S\)
by (metis cone_cone_hull hull_same)
lemma mem_cone:
assumes cone \(S x \in S c \geq 0\)
shows \(c *_{R} x \in S\)
using assms cone_def \([\) of \(S]\) by auto
lemma cone_contains_0:
assumes cone \(S\)
shows \(S \neq\{ \} \longleftrightarrow 0 \in S\)
using assms mem_cone by fastforce
lemma cone_0: cone \(\{0\}\)
unfolding cone_def by auto
lemma cone_Union[intro]: \((\forall s \in f\). cone \(s) \longrightarrow\) cone \((\bigcup f)\)
unfolding cone_def by blast
lemma cone_iff:
assumes \(S \neq\{ \}\)
shows cone \(S \longleftrightarrow 0 \in S \wedge\left(\forall c . c>0 \longrightarrow\left(\left(*_{R}\right) c\right) ' S=S\right)\)
proof -
\{
assume cone \(S\)
\{
fix \(c\) :: real
assume \(c>0\)
\{
fix \(x\)
assume \(x \in S\)
then have \(x \in\left(\left(*_{R}\right) c\right)\) ' \(S\)
unfolding image_def
using 〈cone \(S\rangle\langle c>0\rangle\) mem_cone[of S x 1/c]
\(\operatorname{exI}\left[o f\left(\lambda t . t \in S \wedge x=c *_{R} t\right)(1 / c) *_{R} x\right]\)
by auto
\}
moreover
\{
fix \(x\)
```

 assume \(x \in\left(\left(*_{R}\right) c\right)\) ' \(S\)
 then have \(x \in S\)
 using \(\langle 0<c\rangle\langle c o n e ~ S\rangle\) mem_cone by fastforce
 \}
 ultimately have \(\left(\left(*_{R}\right) c\right)^{\prime} S=S\) by blast
 \}
 then have \(0 \in S \wedge\left(\forall c . c>0 \longrightarrow\left(\left(*_{R}\right) c\right) \cdot S=S\right)\)
 using 〈cone \(S\rangle\) cone_contains_0[of \(S\)] assms by auto
 \}
 moreover
 \{
 assume \(a: 0 \in S \wedge\left(\forall c . c>0 \longrightarrow\left(\left(*_{R}\right) c\right) ' S=S\right)\)
 \{
 fix \(x\)
 assume \(x \in S\)
 fix \(c 1\) :: real
 assume \(c 1 \geq 0\)
 then have \(c 1=0 \vee c 1>0\) by auto
 then have \(c 1 *_{R} x \in S\) using \(a\langle x \in S\rangle\) by auto
 \}
 then have cone \(S\) unfolding cone_def by auto
 \}
ultimately show ?thesis by blast
qed
lemma cone_hull_empty: cone hull $\}=\{ \}$
by (metis cone_empty cone_hull_eq)
lemma cone_hull_empty_iff: $S=\{ \} \longleftrightarrow$ cone hull $S=\{ \}$
by (metis bot_least cone_hull_empty hull_subset xtrans(5))
lemma cone_hull_contains_ $0: S \neq\{ \} \longleftrightarrow 0 \in$ cone hull S
using cone_cone_hull $[$ of $S]$ cone_contains_O[of cone hull S] cone_hull_empty_iff [of
$S]$
by auto
lemma mem_cone_hull:
assumes $x \in S c \geq 0$
shows $c *_{R} x \in$ cone hull S
by (metis assms cone_cone_hull hull_inc mem_cone)
proposition cone_hull_expl: cone hull $S=\left\{c *_{R} x \mid c x . c \geq 0 \wedge x \in S\right\}$
(is ?lhs =? r rs $)$
proof -
\{
fix x
assume $x \in$?rhs
then obtain $c x::$ real and $x x$ where $x: x=c x *_{R} x x c x \geq 0 x x \in S$
by auto

```
```

 fix c :: real
 assume c:c\geq0
 then have c**R}x=(c*cx)*\mp@subsup{*}{R}{}x
 using }x\mathrm{ by (simp add: algebra_simps)
 moreover
 have c* cx \geq0 using cx by auto
 ultimately
 have c**}\mp@subsup{*}{R}{}x\in\mathrm{ ?rhs using }x\mathrm{ by auto
 }
then have cone ?rhs
unfolding cone_def by auto
then have ?rhs }\in\mathrm{ Collect cone
unfolding mem_Collect_eq by auto
{
fix }
assume }x\in
then have 1 * *}
using zero_le_one by blast
then have }x\in\mathrm{ ?rhs by auto
}
then have S\subseteq?rhs by auto
then have ?lhs \subseteq? ?rhs
using〈?rhs \in\overline{Collect cone〉 hull_minimal [of S ?rhs cone] by auto}
moreover
{
fix }
assume x f ?rhs
then obtain cx :: real and xx where }x:x=cx\mp@subsup{*}{R}{}xxcx\geq0 xx\in
by auto
then have }xx\in\mathrm{ cone hull S
using hull_subset[of S] by auto
then have x e?lhs
using x cone_cone_hull[of S] cone_def[of cone hull S] by auto
}
ultimately show ?thesis by auto
qed
lemma convex_cone:
convex s}\wedge\mathrm{ cone s «(}\forallx\ins.\forally\ins. (x+y)\ins)\wedge(\forallx\ins.\forallc\geq0. (c**R x)
s)
(is ?lhs = ?rhs)
proof -
{
fix x y
assume }x\ins\quady\ins\mathrm{ and ?lhs
then have 2 * *
unfolding cone_def by auto
then have }x+y\in
using <?lhs`[unfolded convex_def,THEN conjunct1]

```
```

 apply (erule_tac x=2**}x\mathrm{ in ballE)
 apply (erule_tac x=2*R}y\mathrm{ in ballE)
 apply (erule_tac x=1/2 in allE, simp)
 apply (erule_tac x=1/2 in allE, auto)
 done
 }
 then show ?thesis
 unfolding convex_def cone_def by blast
 qed

```

\subsection*{1.7.7 Connectedness of convex sets}
lemma convex_connected:
fixes \(S\) :: 'a::real_normed_vector set
assumes convex \(S\)
shows connected \(S\)
proof (rule connectedI)
fix \(A B\)
assume open \(A\) open \(B A \cap B \cap S=\{ \} S \subseteq A \cup B\)
moreover
assume \(A \cap S \neq\{ \} B \cap S \neq\{ \}\)
then obtain \(a b\) where \(a: a \in A a \in S\) and \(b: b \in B b \in S\) by auto
define \(f\) where [abs_def]: \(f u=u *_{R} a+(1-u) *_{R} b\) for \(u\)
then have continuous_on \(\left\{\begin{array}{l}0 . . \\ \hline\end{array}\right\} f\)
by (auto intro!: continuous_intros)
then have connected ( \(f\) ' \(\{0\).. 1\(\}\) )
by (auto intro!: connected_continuous_image)
note connected \(D[\) OF this, of \(A B]\)
moreover have \(a \in A \cap f\) ' \(\{0\).. 1\(\}\)
using \(a\) by (auto intro!: image_eqI[of _ _ 1] simp: \(f_{-} d e f\) )
moreover have \(b \in B \cap f\) ' \(\{0\).. 1\(\}\)
using \(b\) by (auto intro!: image_eqI \([\) of _ _ 0\(]\) simp: \(f_{-} d e f\) )
moreover have \(f\) ' \(\left\{\begin{array}{lll}0 . . & 1\end{array}\right\} \subseteq S\)
using 〈convex \(S\) 〉 a b unfolding convex_def f_def by auto
ultimately show False by auto
qed
corollary connected_UNIV[intro]: connected (UNIV :: 'a::real_normed_vector set) by (simp add: convex_connected)
lemma convex_prod:
assumes \(\bigwedge i . i \in\) Basis \(\Longrightarrow\) convex \(\{x . P i x\}\)
shows convex \(\{x . \forall i \in\) Basis. \(P i(x \cdot i)\}\)
using assms unfolding convex_def
by (auto simp: inner_add_left)
lemma convex_positive_orthant: convex \(\left\{x::^{\prime} a::\right.\) euclidean_space. \((\forall i \in\) Basis. \(0 \leq\) \(x \cdot i)\}\)
by (rule convex_prod) (simp flip: atLeast_def)

\subsection*{1.7.8 Convex hull}
lemma convex_convex_hull [iff]: convex (convex hull s) unfolding hull_def
using convex_Inter \([\) of \(\{t\). convex \(t \wedge s \subseteq t\}]\)
by auto
lemma convex_hull_subset:
\(s \subseteq\) convex hull \(t \Longrightarrow\) convex hull \(s \subseteq\) convex hull \(t\)
by (simp add: subset_hull)
lemma convex_hull_eq: convex hull \(s=s \longleftrightarrow\) convex \(s\)
by (metis convex_convex_hull hull_same)

\section*{Convex hull is "preserved" by a linear function}
```

lemma convex_hull_linear_image:
assumes f: linear f
shows f'(convex hull s) = convex hull (f's)
proof
show convex hull (f's)\subseteqf'(convex hull s)
by (intro hull_minimal image_mono hull_subset convex_linear_image assms con-
vex_convex_hull)
show f'(convex hull s)\subseteq convex hull (f's)
proof (unfold image_subset_iff_subset_vimage, rule hull_minimal)
show s\subseteqf-'(convex hull (f's))
by (fast intro: hull_inc)
show convex (f -'(convex hull (f's)))
by (intro convex_linear_vimage [OF f] convex_convex_hull)
qed
qed

```
lemma in_convex_hull_linear_image:
    assumes linear \(f\)
        and \(x \in\) convex hull \(s\)
    shows \(f x \in\) convex hull ( \(f\) ' \(s\) )
    using convex_hull_linear_image \([\) OF assms(1)] assms(2) by auto
lemma convex_hull_Times:
    convex hull \((s \times t)=(\) convex hull \(s) \times(\) convex hull \(t)\)
proof
    show convex hull \((s \times t) \subseteq(\) convex hull \(s) \times(\) convex hull \(t)\)
    by (intro hull_minimal Sigma_mono hull_subset convex_Times convex_convex_hull)
    have \((x, y) \in\) convex hull \((s \times t)\) if \(x: x \in\) convex hull \(s\) and \(y: y \in\) convex hull
\(t\) for \(x y\)
    proof (rule hull_induct [OF \(x\) ], rule hull_induct [OF \(y]\) )
    fix \(x y\) assume \(x \in s\) and \(y \in t\)
    then show \((x, y) \in\) convex hull \((s \times t)\)
        by (simp add: hull_inc)
    next
```

 fix x let ?S = ((\lambday. (0,y)) -'(\lambdap. (-x,0) + p)'(convex hull s > t))
 have convex ?S
 by (intro convex_linear_vimage convex_translation convex_convex_hull,
 simp add: linear_iff)
 also have ?S = {y. (x,y)\in convex hull (s\timest)}
 by (auto simp: image_def Bex_def)
 finally show convex {y.(x,y)\in convex hull (s\timest)}.
 next
show convex {x. (x,y)\in convex hull s }\timest
proof -
fix y let ?S = ((\lambdax. (x,0)) -'((\lambdap. (0,-y) + p)'(convex hull s > t))
have convex?S
by (intro convex_linear_vimage convex_translation convex_convex_hull,
simp add: linear_iff)
also have ?S ={x. (x,y)\in convex hull (s\timest)}
by (auto simp: image_def Bex_def)
finally show convex {x. (x,y)\in convex hull (s\timest)}.
qed
qed
then show (convex hull s) }\times(\mathrm{ convex hull t) }\subseteq\mathrm{ convex hull (s }\timest
unfolding subset_eq split_paired_Ball_Sigma by blast
qed

```

\section*{Stepping theorems for convex hulls of finite sets}
lemma convex_hull_empty[simp]: convex hull \(\}=\{ \}\)
    by (rule hull_unique) auto
lemma convex_hull_singleton[simp]: convex hull \(\{a\}=\{a\}\)
    by (rule hull_unique) auto
lemma convex_hull_insert:
    fixes \(S\) :: 'a::real_vector set
    assumes \(S \neq\{ \}\)
    shows convex hull (insert a \(S\) ) =
        \(\left\{x . \exists u \geq 0 . \exists v \geq 0 . \exists b .(u+v=1) \wedge b \in(\right.\) convex hull \(S) \wedge\left(x=u *_{R} a\right.\)
\(\left.\left.+v *_{R} b\right)\right\}\)
    (is \({ }_{-}=?\) hull \()\)
proof (intro equalityI hull_minimal subsetI)
    fix \(x\)
    assume \(x \in\) insert a \(S\)
    then have \(\exists u \geq 0 . \exists v \geq 0 . u+v=1 \wedge\left(\exists b . b \in\right.\) convex hull \(S \wedge x=u *_{R} a\)
\(+v *_{R} b\) )
    unfolding insert_iff
    proof
        assume \(x=a\)
        then show ?thesis
            by (rule_tac \(x=1\) in exI) (use assms hull_subset in fastforce)
    next
```

assume x }\in
with hull_subset[of S convex] show ?thesis
by force
qed
then show }x\in\mathrm{ ?hull
by simp
next
fix }
assume x \& ?hull
then obtain uvb where obt: u\geq0 v\geq0u+v=1b\in convex hull S x = u**
a+v**}
by auto
have a\in convex hull insert a Sb\inconvex hull insert a S
using hull_mono[of S insert a S convex] hull_mono[of {a} insert a S convex]
and obt(4)
by auto
then show }x\in\mathrm{ convex hull insert a S
unfolding obt(5) using obt(1-3)
by (rule convexD [OF convex_convex_hull])
next
show convex ?hull
proof (rule convexI)
fix x y uv
assume as: (0::real)\lequ
leqvu+v=1 and x:x\in?hull and y:y\in?hull
from x obtain u1 v1 b1 where
obt1:u1\geq0 v1\geq0u1 + v1=1 b1 \in convex hull S and xeq: x=u1 *Ra+
v1 * *R b1
by auto
from y obtain u2 v2 b2 where
obt2:u2 \geq0 v2 \geq0 u2 + v2 = 1 b2 \in convex hull S and yeq: y = u2 *R a +
v2 *R
by auto

```

```

 by (auto simp: algebra_simps)
 have }\existsb\in\mathrm{ convex hull S. u * *
 (u*u1)*R
 proof (cases u*v1 +v*v2 = 0)
 case True
 have *: \bigwedge(x::'a) s1 s2. x - s1 *R }x-s2*\mp@subsup{*}{R}{}x=((1::real) - (s1 + s2))
 *R
 by (auto simp: algebra_simps)
 have eq0: u*v1 = 0 v * v2 = 0
 using True mult_nonneg_nonneg[OF \langleu\geq0\rangle\langlev1\geq0\rangle] mult_nonneg_nonneg[OF
 \langlev\geq0\rangle\langlev2\geq0\rangle]
 by arith+
 then have }u*u1+v*u2=
 using as(3) obt1(3) obt2(3) by auto
 then show ?thesis
 using * eq0 as obt1(4) xeq yeq by auto
    ```

\section*{next}
case False
have \(1-(u * u 1+v * u 2)=(u+v)-(u * u 1+v * u 2)\) using as(3) obt1(3) obt2(3) by (auto simp: field_simps)
also have \(\ldots=u *(v 1+u 1-u 1)+v *(v 2+u 2-u 2)\)
using as(3) obt1(3) obt2(3) by (auto simp: field_simps)
also have \(\ldots=u * v 1+v * v 2\)
by \(\operatorname{simp}\)
finally have \(* *\) : \(1-(u * u 1+v * u 2)=u * v 1+v * v 2\) by auto
let \(? b=((u * v 1) /(u * v 1+v * v 2)) *_{R} b 1+((v * v 2) /(u * v 1+v *\) v2)) \(*_{R}\) b2
have zeroes: \(0 \leq u * v 1+v * v 20 \leq u * v 10 \leq u * v 1+v * v 20 \leq v *\) v2
using as(1,2) obt1 (1,2) obt2(1,2) by auto
show ?thesis
proof
show \(u *_{R} x+v *_{R} y=(u * u 1) *_{R} a+(v * u 2) *_{R} a+(? b-(u *\) \(\left.u 1) *_{R} ? b-(v * u 2) *_{R} ? b\right)\)
unfolding xeq yeq ***
using False by (auto simp: scaleR_left_distrib scaleR_right_distrib)
show ?b \(\in\) convex hull \(S\)
using False zeroes obt1(4) obt2(4)
by (auto simp: convexD [OF convex_convex_hull] scaleR_left_distrib scaleR_right_distrib add_divide_distrib[symmetric] zero_le_divide_iff)
qed
qed
then obtain \(b\) where \(b: b \in\) convex hull \(S\)
\(u *_{R} x+v *_{R} y=(u * u 1) *_{R} a+(v * u 2) *_{R} a+\left(b-(u * u 1) *_{R} b\right.\) \(\left.-(v * u 2) *_{R} b\right) .\).
have \(u 1: u 1 \leq 1\)
unfolding obt1(3)[symmetric] and not_le using obt1(2) by auto have \(u 2: 42 \leq 1\)
unfolding obt2(3)[symmetric] and not_le using obt2(2) by auto
have \(u 1 * u+u 2 * v \leq \max u 1 u 2 * u+\max u 1 u 2 * v\)
proof (rule add_mono)
show \(u 1 * u \leq \max u 1 u 2 * u\) u2 \(* v \leq \max u 1 u 2 * v\)
by (simp_all add: as mult_right_mono)
qed
also have ... \(\leq 1\)
unfolding distrib_left[symmetric] and as(3) using u1 u2 by auto
finally have le1: \(u 1 * u+u 2 * v \leq 1\).
show \(u *_{R} x+v *_{R} y \in\) ?hull
proof (intro CollectI exI conjI)
show \(0 \leq u * u 1+v * u 2\)
by (simp add: as(1) as(2) obt1(1) obt2(1))
show \(0 \leq 1-u * u 1-v * u 2\)
by (simp add: le1 diff_diff_add mult.commute)
qed (use bin sauto simp: algebra_simps〉)
```

qed
qed
lemma convex_hull_insert_alt:
convex hull (insert a S)=
(if S={} then {a}
else {(1-u)*R a +u*R x |xu. 0\lequ^u\leq1^x\in convex hull S})
apply (auto simp: convex_hull_insert)
using diff_eq_eq apply fastforce
using diff_add_cancel diff_ge_0_iff_ge by blast

```

\section*{Explicit expression for convex hull}
proposition convex_hull_indexed:
fixes \(S\) :: 'a::real_vector set
shows convex hull \(S=\)
\(\{y . \exists k u x .(\forall i \in\{1::\) nat .. \(k\} .0 \leq u i \wedge x i \in S) \wedge\)
\(\left.(\operatorname{sum} u\{1 . . k\}=1) \wedge\left(\sum i=1 . . k . u i *_{R} x i\right)=y\right\}\)
(is ? \(x y z=\) ? hull)
proof (rule hull_unique [OF _ convexI])
show \(S \subseteq\) ?hull
by (clarsimp, rule_tac \(x=1\) in exI, rule_tac \(x=\lambda x .1\) in exI, auto)
next
fix \(T\)
assume \(S \subseteq T\) convex \(T\)
then show ?hull \(\subseteq T\)
by (blast intro: convex_sum)
next
fix \(x\) y \(u v\)
assume \(u v: 0 \leq u 0 \leq v u+v=(1::\) real \()\)
assume \(x y: x \in\) ?hull \(y \in\) ?hull
from \(x y\) obtain \(k 1 u 1 x 1\) where
\(x[\) rule_format]: \(\forall i \in\{1::\) nat..k1 \(\} .0 \leq u 1 i \wedge x 1 i \in S\)
sum u1 \(\{\) Suc 0..k1 \(\}=1\left(\sum i=\right.\) Suc 0..k1.u1 \(\left.i *_{R} x 1 i\right)=x\)
by auto
from \(x y\) obtain \(k 2\) u2 \(x 2\) where
\(y[\) rule_format \(]: \forall i \in\{1::\) nat..k2 \(\} .0 \leq u 2 i \wedge x 2 i \in S\)
sum u2 \(\{\) Suc 0..k2 \(\}=1\left(\sum i=\right.\) Suc 0..k2. u2 \(\left.i *_{R} x 2 i\right)=y\)
by auto
have \(*: \bigwedge P\left(x::^{\prime} a\right)\) y sti. (if \(P\) ithen selse \(\left.t\right) *_{R}(\) if \(P\) ithen \(x\) else \(y)=(\) if \(P\)
\(i\) then \(s *_{R} x\) else \(t *_{R} y\) )
\[
\{1 . . k 1+k \mathscr{2}\} \cap\{1 . . k 1\}=\{1 . . k 1\}\{1 . . k 1+k 2\} \cap-\{1 . . k 1\}=(\lambda i . i+
\]
k1)' \(\{1 . . \mathrm{k} 2\}\)
by auto
have \(i n j: i n j \_o n(\lambda i . i+k 1)\{1 . . k 2\}\)
unfolding inj_on_def by auto
let ? \(u u=\lambda i\). if \(i \in\{1 . . k 1\}\) then \(u * u 1\) i else \(v * u 2(i-k 1)\)
let \(? x x=\lambda i\). if \(i \in\{1 . . k 1\}\) then \(x 1\) i else \(x 2(i-k 1)\)
show \(u *_{R} x+v *_{R} y \in\) ?hull
```

 proof (intro CollectI exI conjI ballI)
 show \(0 \leq\) ? uu \(i\) ? \(x x i \in S\) if \(i \in\{1\).. \(k 1+k 2\}\) for \(i\)
 using that by (auto simp add: le_diff_conv uv(1) \(x\) (1) uv(2) \(y(1)\))
 show \(\left(\sum i=1 . . k 1+k 2\right.\). ?uu \(\left.i\right)=1 \quad\left(\sum i=1 . . k 1+k 2\right.\). ? uu \(i *_{R}\) ? \(\left.x x i\right)=\)
 $u *_{R} x+v *_{R} y$
unfolding $*$ sum.If_cases[OF finite_atLeastAtMost[of $1 k 1+k 2]]$
sum.reindex $[O F$ inj] Collect_mem_eq o_def
unfolding scaleR_scaleR[symmetric] scaleR_right.sum [symmetric] sum_distrib_left[symmetric]
by (simp_all add: sum_distrib_left[symmetric] $x(2,3) y(2,3) u v(3))$
qed
qed
lemma convex_hull_finite:
fixes S :: 'a::real_vector set
assumes finite S
shows convex hull $S=\{y . \exists u .(\forall x \in S .0 \leq u x) \wedge \operatorname{sum} u S=1 \wedge \operatorname{sum}(\lambda x . u$
$\left.\left.x *_{R} x\right) S=y\right\}$
(is ? $H U L L={ }_{-}$)
proof (rule hull_unique [OF _ convexI]; clarify)
fix x
assume $x \in S$
then show $\exists u$. $(\forall x \in S .0 \leq u x) \wedge$ sum $u S=1 \wedge\left(\sum x \in S . u x *_{R} x\right)=x$
by (rule_tac $x=\lambda y$. if $x=y$ then 1 else 0 in exI) (auto simp: sum. $\operatorname{delta}^{\prime}[O F$
assms] sum_delta ${ }^{\prime \prime}$ [OF assms])
next
fix $u v$:: real
assume $u v: 0 \leq u 0 \leq v u+v=1$
fix $u x$ assume $u x\left[r u l e _\right.$format $]: \forall x \in S .0 \leq u x x$ sum $u x S=(1::$ real $)$
fix $u y$ assume $u y[$ rule_format $]: \forall x \in S .0 \leq$ uy x sum uy $S=(1::$ real $)$
have $0 \leq u * u x x+v * u y x$ if $x \in S$ for x
by (simp add: that uv ux(1) uy(1))
moreover
have $\left(\sum x \in S . u * u x x+v * u y x\right)=1$
unfolding sum.distrib and sum_distrib_left[symmetric] ux(2) uy(2)
using uv(3) by auto
moreover
have $\left(\sum x \in S .(u * u x x+v * u y x) *_{R} x\right)=u *_{R}\left(\sum x \in S . u x x *_{R} x\right)+v *_{R}$
$\left(\sum x \in S . u y x *_{R} x\right)$
unfolding scaleR_left_distrib sum.distrib scaleR_scaleR[symmetric] scaleR_right.sum
[symmetric]
by auto
ultimately
show $\exists u c$. $(\forall x \in S .0 \leq u c x) \wedge$ sum uc $S=1 \wedge$
$\left(\sum x \in S . u c x *_{R} x\right)=u *_{R}\left(\sum x \in S . u x x *_{R} x\right)+v *_{R}\left(\sum x \in S . u y x\right.$
$\left.*_{R} x\right)$
by (rule_tac $x=\lambda x . u * u x x+v * u y x$ in exI, auto)
qed (use assms in (auto simp: convex_explicit〉)

```

\section*{Another formulation}

Formalized by Lars Schewe.
```

lemma convex_hull_explicit:
fixes p :: 'a::real_vector set
shows convex hull p=
{y.\existsSu. finite S\wedgeS\subseteqp^(\forallx\inS.0\lequx)^\operatorname{sum}uS=1\wedge sum (\lambdav.u
v*R}v)S=y
(is ?lhs = ?rhs)
proof -
{
fix }
assume x\in?lhs
then obtain kuy where
obt: \foralli\in{1::nat..k}. 0 \leq u i^ y i\in p sum u{1..k}=1(\sumi=1..k.ui
*R y i) = x
unfolding convex_hull_indexed by auto
have fin: finite {1..k} by auto
have fin': \bigwedgev. finite {i\in{1..k}.y i=v} by auto
{
fix }
assume j\in{1..k}
then have y j\in p\wedge 0\leqsum u{i.Suc 0\leqi^i\leqk^yi=yj}
using obt(1)[THEN bspec[where x=j]] and obt(2)
by (metis (no_types, lifting) One_nat_def atLeastAtMost_iff mem_Collect_eq
obt(1) sum_nonneg)
}
moreover
have (\sumv\iny'{1..k}. sum u{i\in{1..k}.yi=v})=1
unfolding sum.image_gen[OF fin, symmetric] using obt(2) by auto
moreover have (\sumv\iny'{1..k}. sum u{i\in{1..k}. y i=v} ** v)=x
using sum.image_gen[OF fin, of \lambdai.ui **R y i y,symmetric]
unfolding scaleR_left.sum using obt(3) by auto
ultimately
have \existsS u. finite S ^S\subseteqp^(\forallx\inS.0\lequx)^ sum u S=1^(\sumv\inS.
uv*R
apply (rule_tac x=y'{1..k} in exI)
apply (rule_tac x=\lambdav. sum u {i\in{1..k}. yi=v} in exI, auto)
done
then have x\in?rhs by auto
}
moreover
{
fix y
assume y\in?rhs
then obtain Su where
obt: finite S S\subseteqp\forallx\inS. 0 \lequx sum uS=1 (\sumv\inS.uv*Rv)=y
by auto

```
obtain \(f\) where \(f\) : inj_on \(f\{1\)..card \(S\} f\) ' \(\{1\)..card \(S\}=S\)
using ex_bij_betw_nat_finite_1[OF obt(1)] unfolding bij_betw_def by auto
\{
fix \(i\) :: nat
assume \(i \in\{1\)..card \(S\}\)
then have \(f i \in S\)
using \(f(2)\) by blast
then have \(0 \leq u(f i) f i \in p\) using obt(2,3) by auto
\}
moreover have \(*\) : finite \(\{1\)..card \(S\}\) by auto
\{
fix \(y\)
assume \(y \in S\)
then obtain \(i\) where \(i \in\{1\)..card \(S\} f i=y\)
using \(f\) using image_iff \([\) of \(y f\) \{1...card \(S\}\) ]
by auto
then have \(\{x\). Suc \(0 \leq x \wedge x \leq \operatorname{card} S \wedge f x=y\}=\{i\}\)
using \(f(1)\) inj_onD by fastforce
then have card \(\{x\). Suc \(0 \leq x \wedge x \leq \operatorname{card} S \wedge f x=y\}=1\) by auto
then have \(\left(\sum x \in\{x \in\{1\right.\)..card \(\left.S\} . f x=y\} . u(f x)\right)=u y\)
\(\left(\sum x \in\{x \in\{1 . . c a r d S\} . f x=y\} . u(f x) *_{R} f x\right)=u y *_{R} y\)
by (auto simp: sum_constant_scaleR)
\}
then have \(\left(\sum x=1 . . \operatorname{card} S . u(f x)\right)=1\left(\sum i=1 . . \operatorname{card} S . u(f i) *_{R} f i\right)=\)
unfolding sum.image_gen \(\left[O F *(1)\right.\), of \(\left.\lambda x . u(f x) *_{R} f x f\right]\)
and sum.image_gen \([O F *(1)\), of \(\lambda x\). \(u(f x) f]\)
unfolding \(f\)
using sum.cong [of \(S S \lambda y .\left(\sum x \in\{x \in\{1\right.\)..card \(S\} . f x=y\} . u(f x) *_{R} f\)
x) \(\lambda v . u v *_{R} v\) ]
using sum.cong [of \(\left.S S \lambda y .\left(\sum x \in\{x \in\{1 . . \operatorname{card} S\} . f x=y\} . u(f x)\right) u\right]\)
unfolding obt \((4,5)\)
by auto
ultimately
have \(\exists k u x .(\forall i \in\{1 . . k\} .0 \leq u i \wedge x i \in p) \wedge \operatorname{sum} u\{1 . . k\}=1 \wedge\)
\(\left(\sum i:: n a t=1 . . k . u i *_{R} x i\right)=y\)
apply (rule_tac \(x=\) card \(S\) in \(e x I\) )
apply (rule_tac \(x=u \circ f\) in exI)
apply (rule_tac \(x=f\) in exI, fastforce)
done
then have \(y \in\) ? lhs
unfolding convex_hull_indexed by auto
\(\}\)
ultimately show ?thesis
unfolding set_eq_iff by blast
qed

\section*{A stepping theorem for that expansion}
lemma convex_hull_finite_step:
fixes \(S\) :: 'a::real_vector set
assumes finite \(S\)
shows
\(\left(\exists u .(\forall x \in\right.\) insert \(a S .0 \leq u x) \wedge \operatorname{sum} u(\) insert \(a S)=w \wedge \operatorname{sum}\left(\lambda x . u x *_{R}\right.\) x) \((\) insert \(a S)=y)\)
\(\longleftrightarrow\left(\exists v \geq 0 . \exists u .(\forall x \in S .0 \leq u x) \wedge \operatorname{sum} u S=w-v \wedge \operatorname{sum}\left(\lambda x . u x *_{R}\right.\right.\)
x) \(\left.S=y-v *_{R} a\right)\)
(is ?lhs \(=\) ? \(r\) rhs \()\)
proof (cases \(a \in S\) )
case True
then have \(*\) : insert \(a S=S\) by auto
show ?thesis
proof
assume ?lhs
then show ? rhs
unfolding \(*\) by force
next
have fin: finite (insert a \(S\) ) using assms by auto
assume ?rhs
then obtain \(v u\) where \(u v: v \geq 0 \forall x \in S .0 \leq u x\) sum \(u S=w-v\left(\sum x \in S\right.\).
\(\left.u x *_{R} x\right)=y-v *_{R} a\)
by auto
then show? ?hs
using uv True assms
apply (rule_tac \(x=\lambda x\). (if \(a=x\) then \(v\) else 0\()+u x\) in exI)
apply (auto simp: sum_clauses scaleR_left_distrib sum.distrib sum_delta \({ }^{\prime \prime}[O F\) fin])
done
qed
next
case False
show ?thesis
proof
assume ?lhs
then obtain \(u\) where \(u: \forall x \in\) insert \(a S .0 \leq u x\) sum \(u(\) insert \(a S)=w\)
\(\left(\sum x \in\right.\) insert a \(\left.S . u x *_{R} x\right)=y\)
by auto
then show ?rhs
using \(u\langle a \notin S\rangle\) by (rule_tac \(x=u a\) in exI) (auto simp: sum_clauses assms)
next
assume ?rhs
then obtain \(v u\) where \(u v: v \geq 0 \forall x \in S .0 \leq u x\) sum \(u S=w-v\left(\sum x \in S\right.\).
\(\left.u x *_{R} x\right)=y-v *_{R} a\)
by auto
moreover
have \(\left(\sum x \in S\right.\). if \(a=x\) then \(v\) else \(\left.u x\right)=\operatorname{sum} u S \quad\left(\sum x \in S\right.\). (if \(a=x\) then \(v\) else \(\left.u x) *_{R} x\right)=\left(\sum x \in S . u x *_{R} x\right)\)
using False by (auto intro!: sum.cong)
ultimately show ?lhs
using False by (rule_tac \(x=\lambda x\). if \(a=x\) then \(v\) else \(u x\) in exI) (auto simp: sum_clauses(2)[OF assms])
qed
qed

\section*{Hence some special cases}
lemma convex_hull_2: convex hull \(\{a, b\}=\left\{u *_{R} a+v *_{R} b \mid u v .0 \leq u \wedge 0 \leq\right.\) \(v \wedge u+v=1\}\)
(is ?lhs =?rhs)
proof -
have \(* *\) : finite \(\{b\}\) by auto
have \(\bigwedge x v u . \llbracket 0 \leq v ; v \leq 1 ;(1-v) *_{R} b=x-v *_{R} a \rrbracket\)
\[
\Longrightarrow \exists \bar{u} v \cdot x=u *_{R} a+v *_{R} b \wedge 0 \leq u \wedge 0 \leq v \wedge u+v=1
\]
by (metis add.commute diff_add_cancel diff_ge_0_iff_ge)
moreover
have \(\bigwedge u v . \llbracket 0 \leq u ; 0 \leq v ; u+v=1 \rrbracket\)
\[
\Longrightarrow \exists p \geq 0 . \exists q .0 \leq q b \wedge q b=1-p \wedge q b *_{R} b=u *_{R} a+v *_{R}
\]
\(b-p *_{R} a\)
apply (rule_tac \(x=u\) in exI, simp)
apply (rule_tac \(x=\lambda x . v\) in exI, simp)
done
ultimately show ?thesis
using convex_hull_finite_step[OF **, of a 1]
by (auto simp add: convex_hull_finite)
qed
lemma convex_hull_2_alt: convex hull \(\{a, b\}=\left\{a+u *_{R}(b-a) \mid u . \quad 0 \leq u \wedge\right.\) \(u \leq 1\}\)
unfolding convex_hull_2
proof (rule Collect_cong)
have \(*: \bigwedge x y::\) real. \(x+y=1 \longleftrightarrow x=1-y\)
by auto
fix \(x\)
show \(\left(\exists v u . x=v *_{R} a+u *_{R} b \wedge 0 \leq v \wedge 0 \leq u \wedge v+u=1\right) \longleftrightarrow\)
\(\left(\exists u . x=a+u *_{R}(b-a) \wedge 0 \leq u \wedge u \leq 1\right)\)
apply (simp add:*)
by (rule ex_cong1) (auto simp: algebra_simps)
qed
lemma convex_hull_3:
convex hull \(\{a, b, c\}=\left\{u *_{R} a+v *_{R} b+w *_{R} c \mid u v w .0 \leq u \wedge 0 \leq v \wedge\right.\)
\(0 \leq w \wedge u+v+w=1\}\)
proof -
have fin: finite \(\{a, b, c\}\) finite \(\{b, c\}\) finite \(\{c\}\)
by auto
have \(*: \bigwedge x y z::\) real. \(x+y+z=1 \longleftrightarrow x=1-y-z\)
```

 by (auto simp: field_simps)
 show ?thesis
 unfolding convex_hull_finite[OF fin(1)] and convex_hull_finite_step[OF fin(2)]
 and *
unfolding convex_hull_finite_step[OF fin(3)]
apply (rule Collect_cong, simp)
apply auto
apply (rule_tac x=va in exI)
apply (rule_tac x=u c in exI, simp)
apply (rule_tac x=1 - v-w in exI, simp)
apply (rule_tac x=v in exI, simp)
apply (rule_tac x=\lambdax.w in exI, simp)
done
qed
lemma convex_hull_3_alt:
convex hull {a,b,c}={a+u**R (b-a)+v*R}(c-a)|uv.0\lequ^0\leq
v\wedgeu+v\leq1}
proof -
have *: \bigwedgex y z ::real. }x+y+z=1\longleftrightarrowx=1-y-
by auto
show ?thesis
unfolding convex_hull_3
apply (auto simp:*)
apply (rule_tac x=v in exI)
apply (rule_tac x=w in exI)
apply (simp add: algebra_simps)
apply (rule_tac x=u in exI)
apply (rule_tac x=v in exI)
apply (simp add:algebra_simps)
done
qed

```

\subsection*{1.7.9 Relations among closure notions and corresponding hulls}
lemma affine_imp_convex: affine \(s \Longrightarrow\) convex \(s\)
unfolding affine_def convex_def by auto
lemma convex_affine_hull [simp]: convex (affine hull S)
by (simp add: affine_imp_convex)
lemma subspace_imp_convex: subspace \(s \Longrightarrow\) convex \(s\)
using subspace_imp_affine affine_imp_convex by auto
lemma convex_hull_subset_span: \((\) convex hull \(s) \subseteq(\) span s)
by (metis hull_minimal span_superset subspace_imp_convex subspace_span)
lemma convex_hull_subset_affine_hull: \((\) convex hull s) \(\subseteq(\) affine hull s)
by (metis affine_affine_hull affine_imp_convex hull_minimal hull_subset)
```

lemma aff_dim_convex_hull:
fixes S :: ' n::euclidean_space set
shows aff_dim (convex hull S) = aff_dim S
using aff_dim_affine_hull[of S] convex_hull_subset_affine_hull[of S]
hull_subset[of S convex] aff_dim_subset[of S convex hull S]
aff_dim_subset[of convex hull S affine hull S]
by auto

```

\subsection*{1.7.10 Caratheodory's theorem}
lemma convex_hull_caratheodory_aff_dim:
fixes \(p::\) ('a::euclidean_space) set
shows convex hull \(p=\)
\(\{y . \exists S\). finite \(S \wedge S \subseteq p \wedge\) card \(S \leq\) aff_dim \(p+1 \wedge\)
\(\left.(\forall x \in S .0 \leq u x) \wedge \operatorname{sum} u S=1 \wedge \operatorname{sum}\left(\lambda v . u v *_{R} v\right) S=y\right\}\)
unfolding convex_hull_explicit set_eq_iff mem_Collect_eq
proof (intro allI iffI)
fix \(y\)
let \(? P=\lambda n . \exists S\). finite \(S \wedge \operatorname{card} S=n \wedge S \subseteq p \wedge(\forall x \in S .0 \leq u x) \wedge\) sum \(u S=1 \wedge\left(\sum v \in S . u v *_{R} v\right)=y\)
assume \(\exists S\). finite \(S \wedge S \subseteq p \wedge(\forall x \in S .0 \leq u x) \wedge\) sum \(u S=1 \wedge\left(\sum v \in S\right.\).
\(\left.u v *_{R} v\right)=y\)
then obtain \(N\) where ?P \(N\) by auto
then have \(\exists n \leq N .(\forall k<n . \neg ? P k) \wedge ? P n\)
by (rule_tac ex_least_nat_le, auto)
then obtain \(n\) where ? \(P n\) and smallest: \(\forall k<n\). \(\neg\) ? \(P k\) by blast
then obtain \(S u\) where obt: finite \(S\) card \(S=n S \subseteq p \forall x \in S .0 \leq u x\) sum \(u S=1\left(\sum v \in S . u v *_{R} v\right)=y\) by auto
have card \(S \leq\) aff_dim \(p+1\)
proof (rule ccontr, simp only: not_le)
assume aff_dim \(p+1<\operatorname{card} S\)
then have affine_dependent \(S\)
using affine_dependent_biggerset[OF obt(1)] independent_card_le_aff_dim not_less obt(3)
by blast
then obtain \(w v\) where \(w v: \operatorname{sum} w S=0 v \in S w v \neq 0\left(\sum v \in S . w v *_{R} v\right)\) \(=0\)
using affine_dependent_explicit_finite[OF obt(1)] by auto
define \(i\) where \(i=(\lambda v .(u v) /(-w v))\) ' \(\{v \in S . w v<0\}\)
define \(t\) where \(t=\operatorname{Min} i\)
have \(\exists x \in S . w x<0\)
proof (rule ccontr, simp add: not_less)
assume \(a s: \forall x \in S .0 \leq w x\)
then have sum \(w(S-\{v\}) \geq 0\)
by (meson Diff_iff sum_nonneg)
```

 then have sum \(w S>0\)
 using as obt(1) sum_nonneg_eq_0_iff wv by blast
 then show False using wv(1) by auto
 qed
 then have \(i \neq\{ \}\) unfolding \(i_{-}\)def by auto
 then have \(t \geq 0\)
 using Min_ge_iff [of \(i 0]\) and obt(1)
 unfolding \(t_{-}\)def \(i_{-} d e f\)
 using obt(4)[unfolded le_less]
 by (auto simp: divide_le_0_iff)
 have \(t\) : \(\forall v \in S . u v+t * w v \geq 0\)
 proof
 fix \(v\)
 assume \(v \in S\)
 then have \(v: 0 \leq u v\)
 using obt(4)[THEN bspec[where \(x=v]]\) by auto
 show \(0 \leq u v+t * w v\)
 proof (cases \(w v<0\))
 case False
 thus ?thesis using \(v\langle t \geq 0\rangle\) by auto
 next
 case True
 then have \(t \leq u v /(-w v)\)
 using \(\langle v \in S\rangle\) obt unfolding \(t_{-} d e f i_{-} d e f\) by (auto intro: Min_le)
 then show ?thesis
 unfolding real_0_le_add_iff
 using True neg_le_minus_divide_eq by auto
 qed
 qed
 obtain \(a\) where \(a \in S\) and \(t=(\lambda v .(u v) /(-w v)) a\) and \(w a<0\)
 using Min_in \(\left[O F_{-}\langle i \neq\{ \}\rangle\right]\) and obt(1) unfolding \(i_{-} d e f t_{-} d e f\) by auto
 then have \(a: a \in S u a+t * w a=0\) by auto
 have \(*: ~ \bigwedge f . \operatorname{sum} f(S-\{a\})=\operatorname{sum} f S-\left((f a):::^{\prime} b:: b_{-}\right.\)_group_add \()\)
 unfolding sum.remove \([O F\) obt (1) \(\langle a \in S\rangle\) by auto
 have \(\left(\sum v \in S . u v+t * w v\right)=1\)
 unfolding sum.distrib wv(1) sum_distrib_left[symmetric] obt(5) by auto
 moreover have \(\left(\sum v \in S . u v *_{R} v+(t * w v) *_{R} v\right)-\left(u a *_{R} a+(t * w\right.\)
 a) $\left.*_{R} a\right)=y$
unfolding sum.distrib obt(6) scaleR_scaleR[symmetric] scaleR_right.sum
[symmetric] $w v(4)$
using a(2) [THEN eq_neg_iff_add_eq_0 [THEN iffD2]] by simp
ultimately have ? $P(n-1)$
apply (rule_tac $x=(S-\{a\})$ in $e x I)$
apply (rule_tac $x=\lambda v . u v+t * w v$ in $e x I)$
using obt $(1-3)$ and t and a
apply (auto simp: * scaleR_left_distrib)
done
then show False
using smallest $[$ THEN $\operatorname{spec}[$ where $x=n-1]]$ by auto

```
```

 qed
 then show }\existsS\mathrm{ u. finite }S\wedgeS\subseteqp\wedge card S\leqaff_dim p+1^
 (\forallx\inS.0 \lequx)^ sum uS=1^(\sumv\inS.uv v*Rv)=y
 using obt by auto
 qed auto
lemma caratheodory_aff_dim:
fixes p :: ('a::euclidean_space) set
shows convex hull p ={x.\existsS. finite S}\wedgeS\subseteqp\wedge card S\leqaff_dim p + 1\wedge
\in convex hull S}
(is ?lhs = ?rhs)
proof
have }\xSu.\llbracketfinite S;S\subseteqp; int (card S)\leqaff_dim p + 1; \forallx\inS.0\lequx;
sum uS=1\rrbracket
\Longrightarrow (\sum v \in S . u v * * ~ v) ~ \in ~ c o n v e x ~ h u l l ~ S ~
by (simp add: hull_subset convex_explicit [THEN iffD1, OF convex_convex_hull])
then show ?lhs \subseteq? ?rhs
by (subst convex_hull_caratheodory_aff_dim, auto)
qed (use hull_mono in auto)
lemma convex_hull_caratheodory:
fixes p :: ('a::euclidean_space) set
shows convex hull p=
{y.\existsSu. finite S ^S\subseteqp^card S\leqDIM('a)+1^

```

```

 (is ?lhs = ?rhs)
 proof (intro set_eqI iffI)
fix }
assume x}\in\mathrm{ ?lhs then show }x\in\mathrm{ ?rhs
unfolding convex_hull_caratheodory_aff_dim
using aff_dim_le_DIM [of p] by fastforce
qed (auto simp: convex_hull_explicit)
theorem caratheodory:
convex hull p=
{x::'a::euclidean_space. \existsS. finite S\wedgeS\subseteqp^card S\leqDIM('a) + 1^x\in
convex hull S}
proof safe
fix }
assume x\in convex hull p
then obtain Su where finite SS\subseteqp card S\leqDIM('a)+1
\forallx\inS.0 \lequx sum uS=1 (\sumv\inS.uv*Rv)=x
unfolding convex_hull_caratheodory by auto
then show }\exists\mathrm{ S. finite }S\wedgeS\subseteqp\wedge\mathrm{ card S S DIM('a)+1^x convex hull S
using convex_hull_finite by fastforce
qed (use hull_mono in force)

```

\subsection*{1.7.11 Some Properties of subset of standard basis}
lemma affine_hull_substd_basis:
assumes \(d \subseteq\) Basis
shows affine hull (insert \(0 d)=\left\{x::^{\prime} a::\right.\) euclidean_space. \(\forall i \in\) Basis. \(i \notin d \longrightarrow x \cdot i\)
\(=0\}\)
(is affine hull (insert 0?A) \(=\) ? \(B\) )
proof -
have \(*: \bigwedge A .(+)\left(0::^{\prime} a\right)^{\prime} A=A \bigwedge A .(+)\left(-\left(0::^{\prime} a\right)\right)^{\prime} A=A\)
by auto
show ?thesis
unfolding affine_hull_insert_span_gen span_substd_basis[OF assms,symmetric]
* ..
qed
lemma affine_hull_convex_hull [simp]: affine hull (convex hull S) = affine hull S by (metis Int_absorb1 Int_absorb2 convex_hull_subset_affine_hull hull_hull hull_mono hull_subset)

\subsection*{1.7.12 Moving and scaling convex hulls}
lemma convex_hull_set_plus:
convex hull \((S+T)=\) convex hull \(S+\) convex hull \(T\)
unfolding set_plus_image
apply (subst convex_hull_linear_image [symmetric])
apply (simp add: linear_iff scaleR_right_distrib)
apply (simp add: convex_hull_Times)
done
lemma translation_eq_singleton_plus: \((\lambda x . a+x) \cdot T=\{a\}+T\)
unfolding set_plus_def by auto
lemma convex_hull_translation:
convex hull \(((\lambda x . a+x) ' S)=(\lambda x . a+x)\) '( convex hull \(S)\)
unfolding translation_eq_singleton_plus
by (simp only: convex_hull_set_plus convex_hull_singleton)
lemma convex_hull_scaling:
convex hull \(\left(\left(\lambda x . c *_{R} x\right)\right.\) ' \(\left.S\right)=\left(\lambda x . c *_{R} x\right)\) ' \((\) convex hull \(S)\)
using linear_scaleR by (rule convex_hull_linear_image [symmetric])
lemma convex_hull_affinity:
convex hull \(\left(\left(\lambda x . a+c *_{R} x\right)\right.\) ' \(\left.S\right)=\left(\lambda x . a+c *_{R} x\right)\) ‘(convex hull \(\left.S\right)\)
by (metis convex_hull_scaling convex_hull_translation image_image)

\subsection*{1.7.13 Convexity of cone hulls}
lemma convex_cone_hull:
assumes convex \(S\)
shows convex (cone hull \(S\) )
```

proof (rule convexI)
fix $x y$
assume $x y: x \in$ cone hull $S y \in$ cone hull S
then have $S \neq\{ \}$
using cone_hull_empty_iff [of S] by auto
fix $u v$:: real
assume $u v: u \geq 0 v \geq 0 u+v=1$
then have $*: u *_{R} x \in$ cone hull $S v *_{R} y \in$ cone hull S
using cone_cone_hull[of S] xy cone_def[of cone hull S] by auto
from $*$ obtain $c x::$ real and $x x$ where $x: u *_{R} x=c x *_{R} x x c x \geq 0 x x \in S$
using cone_hull_expl[of $S]$ by auto
from * obtain $c y::$ real and $y y$ where $y: v *_{R} y=c y *_{R} y y c y \geq 0 y y \in S$
using cone_hull_expl $[$ of $S]$ by auto
\{
assume $c x+c y \leq 0$
then have $u *_{R} x=0$ and $v *_{R} y=0$
using $x y$ by auto
then have $u *_{R} x+v *_{R} y=0$
by auto
then have $u *_{R} x+v *_{R} y \in$ cone hull S
using cone_hull_contains_0[of $S]\langle S \neq\{ \}\rangle$ by auto
\}
moreover
\{
assume $c x+c y>0$
then have $(c x /(c x+c y)) *_{R} x x+(c y /(c x+c y)) *_{R} y y \in S$
using assms mem_convex_alt[of $S x x$ yy cx cy] $x y$ by auto
then have $c x *_{R} x x+c y *_{R} y y \in$ cone hull S
using mem_cone_hull $\left[o f(c x /(c x+c y)) *_{R} x x+(c y /(c x+c y)) *_{R} y y S c x+c y\right]$
〈 $c x+c y>0$ 〉
by (auto simp: scaleR_right_distrib)
then have $u *_{R} x+v *_{R} y \in$ cone hull S
using $x y$ by auto
\}
moreover have $c x+c y \leq 0 \vee c x+c y>0$ by auto
ultimately show $u *_{R} x+v *_{R} y \in$ cone hull S by blast
qed
lemma cone_convex_hull:
assumes cone S
shows cone (convex hull S)
proof (cases $S=\{ \}$)
case True
then show ?thesis by auto
next
case False
then have $*: 0 \in S \wedge\left(\forall c . c>0 \longrightarrow\left(*_{R}\right) c\right.$ ' $\left.S=S\right)$
using cone_iff $[$ of $S]$ assms by auto
\{

```
```

 fix c :: real
 assume c>0
 then have (**R)c`(convex hull S) = convex hull ((*R)c`S)
 using convex_hull_scaling[of_S] by auto
 also have ... = convex hull S
 using * <c> 0\rangle by auto
 finally have (*R)c'(convex hull S)= convex hull S
 by auto
 }
 then have 0 convex hull S \c. c>0\Longrightarrow((*R)c`(convex hull S)) = (convex
 hull S)
using * hull_subset[of S convex] by auto
then show ?thesis
using <S \# {}> cone_iff[of convex hull S] by auto
qed

```

\subsection*{1.7.14 Radon's theorem}

Formalized by Lars Schewe.
lemma Radon_ex_lemma:
assumes finite c affine_dependent c
shows \(\exists u\). sum \(u c=0 \wedge(\exists v \in c . u v \neq 0) \wedge \operatorname{sum}\left(\lambda v . u v *_{R} v\right) c=0\)
proof -
from assms(2)[unfolded affine_dependent_explicit]
obtain \(S u\) where
finite \(S S \subseteq\) c sum u \(S=0 \exists v \in S . u v \neq 0\left(\sum v \in S . u v *_{R} v\right)=0\) by blast
then show ?thesis
apply (rule_tac \(x=\lambda v\). if \(v \in S\) then \(u v\) else 0 in exI)
unfolding if_smult scale R_zero_left
by (auto simp: Int_absorb1 sum.inter_restrict[OF 〈finite c \(c\), symmetric])
qed
lemma Radon_s_lemma:
assumes finite \(S\)
and \(\operatorname{sum} f S=(0:\) :real \()\)
shows sum \(f\{x \in S .0<f x\}=-\operatorname{sum} f\{x \in S . f x<0\}\)
proof -
have \(*: \wedge x\). (if f \(x<0\) then \(f x\) else 0\()+(\) if \(0<f x\) then \(f x\) else 0\()=f x\) by auto
show ?thesis
unfolding add_eq_O_iff [symmetric] and sum.inter_filter[OF assms(1)] and sum.distrib[symmetric] and *
using assms(2)
by assumption
qed
lemma Radon_v_lemma:
assumes finite \(S\)
and sum f \(S=0\)
and \(\forall x . g x=(0::\) real \() \longrightarrow f x=\left(0::^{\prime} a::\right.\) euclidean_space \()\)
shows \((\operatorname{sum} f\{x \in S .0<g x\})=-\operatorname{sum} f\{x \in S . g x<0\}\)
proof -
have \(*: \bigwedge x\). (if \(0<g x\) then \(f x\) else 0\()+(\) if \(g x<0\) then \(f x\) else 0\()=f x\) using assms(3) by auto
show ?thesis
unfolding eq_neg_iff_add_eq_0 and sum.inter_filter[OF assms(1)]
and sum.distrib[symmetric] and *
using assms(2)
apply assumption
done
qed
lemma Radon_partition:
assumes finite \(C\) affine_dependent \(C\)
shows \(\exists m p . m \cap p=\{ \} \wedge m \cup p=C \wedge(\) convex hull \(m) \cap(\) convex hull \(p) \neq\) \{\}
proof -
obtain \(u v\) where \(u v\) : sum \(u C=0 v \in C u v \neq 0\left(\sum v \in C . u v *_{R} v\right)=0\)
using Radon_ex_lemma[OF assms] by auto
have fin: finite \(\{x \in C .0<u x\}\) finite \(\{x \in C .0>u x\}\)
using assms(1) by auto
define \(z\) where \(z=\) inverse \((\operatorname{sum} u\{x \in C . u x>0\}) *_{R} \operatorname{sum}\left(\lambda x . u x *_{R} x\right)\)
\(\{x \in C . u x>0\}\)
have sum \(u\{x \in C .0<u x\} \neq 0\)
proof (cases \(u v \geq 0\) )
case False
then have \(u v<0\) by auto
then show?thesis
proof (cases \(\exists w \in\{x \in C .0<u x\} . u w>0\) )
case True
then show ?thesis
using sum_nonneg_eq_0_iff \([o f\) _ \(u\), OF fin(1)] by auto
next
case False
then have sum \(u C \leq \operatorname{sum}(\lambda x\). if \(x=v\) then \(u v\) else 0\() C\)
by (rule_tac sum_mono, auto)
then show ?thesis
unfolding sum.delta[OF assms(1)] using \(u v(2)\) and \(\langle u v<0\rangle\) and \(u v(1)\)
by auto
qed
qed (insert sum_nonneg_eq_0_iff[of _ u, OF fin(1)] uv(2-3), auto)
then have \(*\) : sum \(u\{x \in C . u x>0\}>0\)
unfolding less_le by (metis (no_types, lifting) mem_Collect_eq sum_nonneg)
moreover have sum \(u(\{x \in C .0<u x\} \cup\{x \in C . u x<0\})=\) sum u \(C\) \(\left(\sum x \in\{x \in C .0<u x\} \cup\{x \in C . u x<0\} . u x *_{R} x\right)=\left(\sum x \in C . u x *_{R} x\right)\) using assms(1)
by (rule_tac[!] sum.mono_neutral_left, auto)
then have sum \(u\{x \in C .0<u x\}=-\operatorname{sum} u\{x \in C .0>u x\}\)
\(\left(\sum x \in\{x \in C .0<u x\} . u x *_{R} x\right)=-\left(\sum x \in\{x \in C .0>u x\} . u x *_{R} x\right)\)
unfolding eq_neg_iff_add_eq_0
using \(u v(1,4)\)
by (auto simp: sum.union_inter_neutral[OF fin, symmetric])
moreover have \(\forall x \in\{v \in C . u v<0\} .0 \leq\) inverse (sum \(u\{x \in C .0<u x\}\) )
* - ux
using * by (fastforce intro: mult_nonneg_nonneg)
ultimately have \(z \in\) convex hull \(\{v \in C . u v \leq 0\}\)
unfolding convex_hull_explicit mem_Collect_eq
apply (rule_tac \(x=\{v \in C . u v<0\}\) in \(e x I\) )
apply (rule_tac \(x=\lambda y\). inverse (sum \(u\{x \in C . u x>0\}) *-u y\) in exI)
using assms(1) unfolding scaleR_scaleR[symmetric] scaleR_right.sum [symmetric]
by (auto simp: z_def sum_negf sum_distrib_left[symmetric])
moreover have \(\forall x \in\{v \in C .0<u v\} .0 \leq\) inverse (sum \(u\{x \in C .0<u x\}\) )
* \(u x\)
using * by (fastforce intro: mult_nonneg_nonneg)
then have \(z \in\) convex hull \(\{v \in C . u v>0\}\)
unfolding convex_hull_explicit mem_Collect_eq
apply (rule_tac \(x=\{v \in C .0<u v\}\) in \(e x I\) )
apply (rule_tac \(x=\lambda y\). inverse (sum \(u\{x \in C . u x>0\}) * u y\) in exI)
using assms(1)
unfolding scaleR_scaleR[symmetric] scaleR_right.sum [symmetric]
using * by (auto simp: z_def sum_negf sum_distrib_left[symmetric])
ultimately show ?thesis
apply (rule_tac \(x=\{v \in C . u v \leq 0\}\) in exI)
apply (rule_tac \(x=\{v \in C . u v>0\}\) in exI, auto)
done
qed
theorem Radon:
assumes affine_dependent \(c\)
obtains \(m p\) where \(m \subseteq c p \subseteq c m \cap p=\{ \}(\) convex hull \(m) \cap(\) convex hull
\(p) \neq\{ \}\)
proof -
from assms[unfolded affine_dependent_explicit]
obtain \(S u\) where
finite \(S S \subseteq c\) sum \(u S=0 \exists v \in S . u v \neq 0\left(\sum v \in S . u v *_{R} v\right)=0\)
by blast
then have \(*\) : finite \(S\) affine_dependent \(S\) and \(S: S \subseteq c\)
unfolding affine_dependent_explicit by auto
from Radon_partition[OF *]
obtain \(m p\) where \(m \cap p=\{ \} m \cup p=S\) convex hull \(m \cap\) convex hull \(p \neq\{ \}\) by blast
with \(S\) show ?thesis
by (force intro: that [of \(p m]\) )
qed

\section*{1．7．15 Helly＇s theorem}
lemma Helly＿induct：
fixes \(f\) ：：＇a：：euclidean＿space set set
assumes card \(f=n\)
and \(n \geq D I M(' a)+1\)
and \(\forall s \in f\) ．convex \(s \forall t \subseteq f\) ．card \(t=\operatorname{DIM}\left({ }^{\prime} a\right)+1 \longrightarrow \bigcap t \neq\{ \}\)
shows \(\bigcap f \neq\{ \}\)
using assms
proof（induction \(n\) arbitrary：\(f\) ）
case 0
then show ？case by auto
next
case（Suc n）
have finite \(f\)
using＜card \(f=S u c\) \(n\) 〉 by（auto intro：card＿ge＿0＿finite）
show \(\bigcap f \neq\{ \}\)
proof \(\left(\right.\) cases \(\left.n=D I M\left({ }^{\prime} a\right)\right)\)
case True
then show ？thesis
by（simp add：Suc．prems（1）Suc．prems（4））
next
case False
have \(\bigcap(f-\{s\}) \neq\{ \}\) if \(s \in f\) for \(s\)
proof（rule Suc．IH［rule＿format］）
show \(\operatorname{card}(f-\{s\})=n\)
by（simp add：Suc．prems（1）〈finite \(f\) 〉that）
show \(\operatorname{DIM}\left({ }^{\prime} a\right)+1 \leq n\)
using False Suc．prems（2）by linarith
show \(\wedge t . \llbracket t \subseteq f-\{s\} ;\) card \(t=\operatorname{DIM}\left({ }^{\prime} a\right)+1 \rrbracket \Longrightarrow \bigcap t \neq\{ \}\)
by（simp add：Suc．prems（4）subset＿Diff＿insert）
qed（use Suc in auto）
then have \(\forall s \in f . \exists x . x \in \bigcap(f-\{s\})\)
by blast
then obtain \(X\) where \(X: \bigwedge s . s \in f \Longrightarrow X s \in \bigcap(f-\{s\})\)
by metis
show ？thesis
proof（cases inj＿on \(X f\) ）
case False
then obtain \(s t\) where \(s \neq t\) and \(s t: s \in f t \in f X s=X t\)
unfolding inj＿on＿def by auto
then have \(*: \bigcap f=\bigcap(f-\{s\}) \cap \bigcap(f-\{t\})\) by auto
show ？thesis
by（metis \(* X\) disjoint＿iff＿not＿equal st）

\section*{next}
case True
then obtain \(m p\) where \(m p: m \cap p=\{ \} m \cup p=X\)＇\(f\) convex hull \(m \cap\)
convex hull \(p \neq\{ \}\)
using Radon＿partition \([\) of \(X\) ‘ \(f]\) and affine＿dependent＿biggerset \([o f ~ X ‘ f]\)
unfolding card＿image［OF True］and \(\langle\) card \(f=\) Suc n〉
```

 using Suc(3)〈finite f> and False
 by auto
 have m\subseteqX'f p\subseteqX`f
 using mp(2) by auto
 then obtain gh where gh:m=X'g p = X'hg\subseteqfh\subseteqf
 unfolding subset_image_iff by auto
 then have }f\cup(g\cuph)=f\mathrm{ by auto
 then have f:f=g\cuph
 using inj_on_Un_image_eq_iff[of Xfg\cuph] and True
 unfolding mp(2)[unfolded image_Un[symmetric] gh]
 by auto
 have *: g\caph={}
 using gh(1) gh(2) local.mp(1) by blast
 have convex hull (}\mp@subsup{X}{}{\prime}/h)\subseteq\bigcapg\mathrm{ convex hull (}\mp@subsup{X}{}{\prime
 by (rule hull_minimal; use X *f in <auto simp:Suc.prems(3) convex_Inter`)+
 then show ?thesis
 unfolding f using mp(3)[unfolded gh] by blast
 qed
 qed
qed
theorem Helly:
fixes f :: 'a::euclidean_space set set
assumes card f \geqDIM('a)+1\foralls\inf.convex s
and }\wedget.\llbrackett\subseteqf; card t=DIM('a)+1\rrbracket\Longrightarrow\bigcapt\not={
shows \bigcapf}={{
using Helly_induct assms by blast

```

\subsection*{1.7.16 Epigraphs of convex functions}
```

definition epigraph $S\left(f::_{-} \Rightarrow\right.$ real $)=\left\{x y . f_{s t} x y \in S \wedge f\left(f_{s t} x y\right) \leq\right.$ snd $\left.x y\right\}$
lemma mem_epigraph: $(x, y) \in$ epigraph $S f \longleftrightarrow x \in S \wedge f x \leq y$
unfolding epigraph_def by auto
lemma convex_epigraph: convex (epigraph $S f) \longleftrightarrow$ convex_on $S f \wedge$ convex S proof safe
assume L : convex (epigraph $S f$)
then show convex_on $S f$
by (auto simp: convex_def convex_on_def epigraph_def)
show convex S
using L by (fastforce simp: convex_def convex_on_def epigraph_def)
next
assume convex_on $S f$ convex S
then show convex (epigraph $S f$)
unfolding convex_def convex_on_def epigraph_def
apply safe
apply (rule_tac [2] $y=u * f a+v * f a a$ in order_trans)
apply (auto intro!:mult_left_mono add_mono)

```
```

 done
 qed
lemma convex_epigraphI: convex_on S f convex S convex (epigraph S f)
unfolding convex_epigraph by auto
lemma convex_epigraph_convex: convex S convex_on S f \longleftrightarrow convex(epigraph
S f)
by (simp add: convex_epigraph)

```

\section*{Use this to derive general bound property of convex function}
lemma convex_on:
assumes convex \(S\)
shows convex_on \(S f \longleftrightarrow\)
\((\forall k u x .(\forall i \in\{1 . . k:: n a t\} .0 \leq u i \wedge x i \in S) \wedge \operatorname{sum} u\{1 . . k\}=1 \longrightarrow\) \(\left.f\left(\operatorname{sum}\left(\lambda i . u i *_{R} x i\right)\{1 . . k\}\right) \leq \operatorname{sum}(\lambda i . u i * f(x i))\{1 . . k\}\right)\)
(is ?lhs \(=(\forall k u x\). ?rhs \(k u x))\)
proof
assume ?lhs
then have §: convex \(\{x y . f s t x y \in S \wedge f(f s t x y) \leq\) snd \(x y\}\)
by (metis assms convex_epigraph epigraph_def)
show \(\forall k u x\). ?rhs \(k u x\)
proof (intro allI)
fix \(k u x\)
show ?rhs \(k u x\)
using §
unfolding convex mem_Collect_eq fst_sum snd_sum
apply safe
apply (drule_tac \(x=k\) in spec)
apply (drule_tac \(x=u\) in spec)
apply (drule_tac \(x=\lambda i .(x i, f(x i))\) in spec)
apply simp done
qed
next
assume \(\forall k u x\). ?rhs \(k u x\)
then show? \(\mathrm{lh} s\)
unfolding convex_epigraph_convex[OF assms] convex epigraph_def Ball_def mem_Collect_eq
fst_sum snd_sum
using assms[unfolded convex] apply clarsimp
apply (rule_tac \(y=\sum i=1 . . k . u i * f(f s t(x i))\) in order_trans \()\)
by (auto simp add: mult_left_mono intro: sum_mono)
qed

\subsection*{1.7.17 A bound within a convex hull}
```

lemma convex_on_convex_hull_bound:
assumes convex_on (convex hull S) f
and $\forall x \in S . f x \leq b$

```
```

 shows \(\forall x \in\) convex hull \(S\). \(f x \leq b\)
    ```
proof
    fix \(x\)
    assume \(x \in\) convex hull \(S\)
    then obtain \(k u v\) where
        \(u: \forall i \in\{1 . . k:: n a t\} .0 \leq u i \wedge v i \in S \operatorname{sum} u\{1 . . k\}=1\left(\sum i=1 . . k . u i *_{R} v\right.\)
    i) \(=x\)
        unfolding convex_hull_indexed mem_Collect_eq by auto
    have \(\left(\sum i=1 . . k . u i * f(v i)\right) \leq b\)
        using sum_mono[of \{1..k\} \(\lambda i . u i * f(v i) \lambda i . u i * b]\)
        unfolding sum_distrib_right[symmetric] \(u\) (2) mult_1
        using assms(2) mult_left_mono \(u(1)\) by blast
    then show \(f x \leq b\)
        using assms(1)[unfolded convex_on[OF convex_convex_hull], rule_format, of \(k\)
    \(u v\) ]
        using hull_inc \(u\) by fastforce
qed
lemma inner_sum_Basis[simp]: \(i \in\) Basis \(\Longrightarrow\left(\sum\right.\) Basis \() \cdot i=1\)
    by (simp add: inner_sum_left sum.If_cases inner_Basis)
lemma convex_set_plus:
    assumes convex \(S\) and convex \(T\) shows convex \((S+T)\)
proof -
    have convex \((\bigcup x \in S . \bigcup y \in T .\{x+y\})\)
        using assms by (rule convex_sums)
    moreover have \((\bigcup x \in S . \bigcup y \in T .\{x+y\})=S+T\)
        unfolding set_plus_def by auto
    finally show convex \((S+T)\).
qed
lemma convex_set_sum:
    assumes \(\bigwedge i . i \in A \Longrightarrow\) convex \((B i)\)
    shows convex \(\left(\sum i \in A . B i\right)\)
proof (cases finite \(A\) )
    case True then show ?thesis using assms
        by induct (auto simp: convex_set_plus)
    qed auto
    lemma finite_set_sum:
    assumes finite \(A\) and \(\forall i \in A\). finite \((B i)\) shows finite \(\left(\sum i \in A . B i\right)\)
    using assms by (induct set: finite, simp, simp add: finite_set_plus)
    lemma box_eq_set_sum_Basis:
    \(\{x . \forall i \in\) Basis. \(x \cdot i \in B i\}=\left(\sum i \in\right.\) Basis. \(\left.\left(\lambda x . x *_{R} i\right) \cdot(B i)\right)(\) is ?lhs = ? \(r\) rhs \()\)
proof -
    have \(\bigwedge x . \forall i \in\) Basis. \(x \cdot i \in B i \Longrightarrow\)
        \(\exists s . x=\operatorname{sum} s\) Basis \(\wedge\left(\forall i \in\right.\) Basis.s \(i \in\left(\lambda x . x *_{R} i\right)\) ' \(\left.B i\right)\)
        by (metis (mono_tags, lifting) euclidean_representation image_iff)
```

 moreover
 have sum f Basis . i\inB i if i\inBasis and f: \foralli\inBasis. fi\in(\lambdax. x **R i)
 Bi}\mathrm{ for if
proof -
have (\sumx\inBasis - {i}.fx . i)=0
proof (rule sum.neutral, intro strip)
show fx}\cdoti=0\mathrm{ if }x\in\mathrm{ Basis - {i} for x
using that f}\langlei\in\mathrm{ Basis〉inner_Basis that by fastforce
qed
then have (\sumx\inBasis. fx | i) = fi | i
by (metis (no_types) <i \in Basis` add.right_neutral sum.remove [OF fi-
nite_Basis])
then have (}\sumx\in\mathrm{ Basis. fx}\cdoti)\inB
using f that(1) by auto
then show ?thesis
by (simp add: inner_sum_left)
qed
ultimately show ?thesis
by (subst set_sum_alt [OF finite_Basis]) auto
qed
lemma convex_hull_set_sum:
convex hull (\sumi\inA. B i)=(\sumi\inA. convex hull (Bi))
proof (cases finite A)
assume finite }A\mathrm{ then show ?thesis
by (induct set: finite, simp, simp add: convex_hull_set_plus)
qed simp
end

```

\subsection*{1.8 Definition of Finite Cartesian Product Type}
```

theory Finite_Cartesian_Product
imports
Euclidean_Space
L2_Norm
HOL-Library.Numeral_Type
HOL-Library.Countable_Set
HOL-Library.FuncSet
begin

```

\subsection*{1.8.1 Finite Cartesian products, with indexing and lambdas}
typedef ('a, 'b) vec \(=\) UNIV :: ('b::finite \(\Rightarrow\) 'a) set
    morphisms vec_nth vec_lambda ..
declare vec_lambda_inject [simplified, simp]
```

bundle vec_syntax begin
notation
vec_nth (infixl \$ 90) and
vec_lambda (binder \chi 10)
end
bundle no_vec_syntax begin
no_notation
vec_nth (infixl \$ 90) and
vec_lambda (binder \chi 10)

```
end
unbundle vec_syntax
Concrete syntax for \(\left({ }^{\prime} a,{ }^{\prime} b\right)\) vec:
- ' \(a^{\wedge}{ }^{\prime} b\) becomes ( \({ }^{\prime} a\), ' \(b::\) finite) vec
- ' \(a^{\wedge} b::\) _ becomes \(\left({ }^{\prime} a,{ }^{\prime} b\right)\) vec without extra sort-constraint
```

syntax _vec_type :: type \Rightarrow type \Rightarrow type (infixl ^ 15)
parse_translation <
let
fun vec $t u=$ Syntax.const type_syntax $\langle v e c\rangle \$ t \$ u$;
fun finite_vec_tr $[t, u]=$
(case Term_Position.strip_positions u of
v as Free ($x,,_{-}$) =>
if Lexicon.is_tid x then
vec t (Syntax.const syntax_const __ofsort $\$ \mathrm{v} \$$
Syntax.const class_syntax \langle finite〉)
else vec $t u$
| $\quad=>$ vec $t u)$
in
[(syntax_const <_vec_type $^{\text {s }}$, K finite_vec_tr $)$]
end

```
)
lemma vec_eq_iff: \((x=y) \longleftrightarrow(\forall i . x \$ i=y \$ i)\)
by (simp add: vec_nth_inject [symmetric] fun_eq_iff)
lemma vec_lambda_beta [simp]: vec_lambda \(g \$ i=g i\) by (simp add: vec_lambda_inverse)
lemma vec_lambda_unique: \((\forall i . f \$ i=g i) \longleftrightarrow\) vec_lambda \(g=f\) by (auto simp add: vec_eq_iff)
lemma vec_lambda_eta \([s i m p]:(\chi \quad i .(g \$ i))=g\)
by (simp add: vec_eq_iff)

\subsection*{1.8.2 Cardinality of vectors}
instance vec :: (finite, finite) finite
proof
show finite (UNIV :: ('a, 'b) vec set)
proof (subst bij_betw_finite)
show bij_betw vec_nth UNIV (Pi (UNIV :: 'b set) ( \(\lambda_{-}\). UNIV :: 'a set))
by (intro bij_betwI[of _ _ _ vec_lambda]) (auto simp: vec_eq_iff)
have finite (PiE (UNIV :: 'b set) ( \(\lambda_{-}\). UNIV :: 'a set))
by (intro finite_PiE) auto
also have (PiE (UNIV :: 'b set) ( \(\lambda_{-}\)UNIV :: 'a set)) = Pi UNIV ( \(\lambda_{-}\). UNIV) by auto
finally show finite ... .
qed
qed
lemma countable_PiE:
finite \(I \Longrightarrow(\bigwedge i . i \in I \Longrightarrow\) countable \((F i)) \Longrightarrow\) countable \(\left(P i_{E} I F\right)\)
by (induct I arbitrary: F rule: finite_induct) (auto simp: PiE_insert_eq)
```

instance vec :: (countable, finite) countable
proof
have countable (UNIV :: ('a, 'b) vec set)
proof (rule countableI_bij2)
show bij_betw vec_nth UNIV (Pi (UNIV :: 'b set) ($\lambda_{_}$. UNIV :: 'a set))
by (intro bij_betwI[of _ _ vec_lambda]) (auto simp: vec_eq_iff)
have countable (PiE (UNIV :: 'b set) (λ_{-}. UNIV :: 'a set))
by (intro countable_PiE) auto
also have (PiE (UNIV :: 'b set) ($\left.\left.\lambda_{_} . U N I V ~:: ~ ' a ~ s e t\right)\right)=P i U N I V\left(\lambda_{_} . U N I V\right)$
by auto
finally show countable
qed
thus $\exists t::\left({ }^{\prime} a,{ }^{\prime} b\right)$ vec \Rightarrow nat. inj t
by (auto elim!: countableE)
qed
lemma infinite_UNIV_vec:
assumes infinite (UNIV :: 'a set)
shows infinite (UNIV :: ('a^'b) set)
proof (subst bij_betw_finite)
show bij_betw vec_nth UNIV (Pi (UNIV :: 'b set) (λ _. UNIV :: 'a set))
by (intro bij_betwI[of _ _ vec_lambda]) (auto simp: vec_eq_iff)

```

```

 proof
 assume finite ?A
 hence finite \(((\lambda f . f\) undefined \()\) '?A)
 by (rule finite_imageI)
 also have \((\lambda f . f\) undefined \()\) ' \(? A=U N I V\)
 by auto
 finally show False
    ```
```

 using<infinite (UNIV :: 'a set)> by contradiction
 qed
 also have ?A = Pi UNIV (\lambda_. UNIV)
 by auto
 finally show infinite (Pi (UNIV :: 'b set) (}\mp@subsup{\lambda}{~}{\prime}\mathrm{ . UNIV :: 'a set)) .
 qed
proposition CARD_vec [simp]:
CARD('a^'b) = CARD('a) ^ CARD('b)
proof (cases finite (UNIV :: 'a set))
case True
show ?thesis
proof (subst bij_betw_same_card)
show bij_betw vec_nth UNIV (Pi (UNIV ::'b set) (\lambda_. UNIV :: 'a set))
by (intro bij_betwI[of _ _ vec_lambda]) (auto simp: vec_eq_iff)
have CARD('a) ^ CARD('b) = card (PiE (UNIV :: 'b set) (\lambda.. UNIV :: 'a
set))
(is _ = card?A)
by (subst card_PiE) (auto)
also have ?A = Pi UNIV (\lambda_. UNIV)
by auto
finally show card ... = CARD('a) ^ CARD('b) ..
qed
qed (simp_all add: infinite_UNIV_vec)
lemma countable_vector:
fixes }B:: ' n::finite => 'a se
assumes \i. countable (Bi)
shows countable {V.\foralli::'n::finite.V \$ i\inBi}
proof -
have f}\in($)'{V.\foralli.V$i\inBi} if f\inP\mp@subsup{i}{E}{}UNIV B for
proof -
have }\exists\textrm{W}.(\foralli.W$i\inBi)^($)W=
by (metis that PiE_iff UNIV_I vec_lambda_inverse)
then show f\in($)'{v.\foralli.v$i\inBi}
by blast
qed
then have Pi }\mp@subsup{i}{E}{}\mathrm{ UNIV B = vec_nth'{V.}\i::'n. V\$i\inBi
by blast
then have countable (vec_nth'{V.\foralli.V \$i\inBi})
by (metis finite_class.finite_UNIV countable_PiE assms)
then have countable (vec_lambda' vec_nth'{V.\foralli.V \$i\inBi})
by auto
then show ?thesis
by (simp add: image_comp o_def vec_nth_inverse)
qed

```

\subsection*{1.8.3 Group operations and class instances}
instantiation vec :: (zero, finite) zero
begin
definition \(0 \equiv(\chi i .0)\)
instance ..
end
instantiation vec :: (plus, finite) plus
begin
definition \((+) \equiv(\lambda x y .(\chi i . x \$ i+y \$ i))\)
instance ..
end
instantiation vec :: (minus, finite) minus
begin
definition \((-) \equiv(\lambda x y .(\chi i . x \$ i-y \$ i))\)
instance ..
end
instantiation vec :: (uminus, finite) uminus
begin
definition uminus \(\equiv(\lambda x .(\chi i .-(x \$ i)))\)
instance ..
end
lemma zero_index [simp]: \(0 \$ i=0\)
unfolding zero_vec_def by simp
lemma vector_add_component \([\) simp \(]:(x+y) \$ i=x \$ i+y \$ i\) unfolding plus_vec_def by simp
lemma vector_minus_component \([\) simp \(]:(x-y) \$ i=x \$ i-y \$ i\) unfolding minus_vec_def by simp
lemma vector_uminus_component \([\) simp \(]:(-x) \$ i=-(x \$ i)\) unfolding uminus_vec_def by simp
instance vec :: (semigroup_add, finite) semigroup_add by standard (simp add: vec_eq_iff add.assoc)
instance vec :: (ab_semigroup_add, finite) ab_semigroup_add by standard (simp add: vec_eq_iff add.commute)
instance vec :: (monoid_add, finite) monoid_add
by standard (simp_all add: vec_eq_iff)
instance vec :: (comm_monoid_add, finite) comm_monoid_add by standard (simp add: vec_eq_iff)
```

instance vec :: (cancel_semigroup_add, finite) cancel_semigroup_add
by standard (simp_all add: vec_eq_iff)
instance vec :: (cancel_ab_semigroup_add, finite) cancel_ab_semigroup_add
by standard (simp_all add: vec_eq_iff diff_diff_eq)
instance vec :: (cancel_comm_monoid_add, finite) cancel_comm_monoid_add ..
instance vec :: (group_add, finite) group_add
by standard (simp_all add: vec_eq_iff)
instance vec :: (ab_group_add, finite) ab_group_add
by standard (simp_all add: vec_eq_iff)

```

\subsection*{1.8.4 Basic componentwise operations on vectors}
instantiation vec :: (times, finite) times
begin
definition \((*) \equiv(\lambda x y .(\chi i .(x \$ i) *(y \$ i)))\)
instance ..
end
instantiation vec :: (one, finite) one
begin
definition \(1 \equiv(\chi i .1)\)
instance ..
end
instantiation vec :: (ord, finite) ord
begin
definition \(x \leq y \longleftrightarrow(\forall i . x \$ i \leq y \$ i)\)
definition \(x<\left(y::^{\prime} a^{\wedge} b\right) \longleftrightarrow x \leq y \wedge \neg y \leq x\)
instance ..
end
The ordering on one-dimensional vectors is linear.
instance vec:: (order, finite) order
by standard (auto simp: less_eq_vec_def less_vec_def vec_eq_iff intro: order.trans order.antisym order.strict_implies_order)
instance vec :: (linorder, CARD_1) linorder
proof
obtain \(a::{ }^{\prime} b\) where all: \(\Lambda P .(\forall i . P i) \longleftrightarrow P a\)
```

proof -
have $C A R D\left({ }^{\prime} b\right)=1$ by (rule CARD_1)
then obtain $b::{ }^{\prime} b$ where $U N I V=\{b\}$ by (auto iff:card_Suc_eq)
then have $\wedge P .(\forall i \in U N I V . P i) \longleftrightarrow P b$ by auto
then show thesis by (auto intro: that)
qed
fix $x y::^{\prime} a^{\wedge} b:: C A R D _1$
note $[$ simp $]=$ less_eq_vec_def less_vec_def all vec_eq_iff field_simps
show $x \leq y \vee y \leq x$ by auto
qed
Constant Vectors
definition vec $x=(\chi$ i. $x)$

```

Also the scalar-vector multiplication.
definition vector_scalar_mult:: ' \(a\) ::times \(\Rightarrow{ }^{\prime} a{ }^{\wedge} ' n \Rightarrow{ }^{\prime} a{ }^{\text {^ }}\) ' \(n(\) infixl \(* s\) 70)
    where \(c * s x=(\chi i . c *(x \$ i))\)
scalar product
definition scalar_product :: ' \(a\) :: semiring_1 ^ ' \(n \Rightarrow\) ' \(^{\prime} a{ }^{\text {^ }} n \Rightarrow\) ' \(a\) where scalar_product \(v w=\left(\sum i \in U N I V . v \$ i * w \$ i\right)\)

\subsection*{1.8.5 Real vector space}
instantiation vec :: (real_vector, finite) real_vector begin
definition scale \(R \equiv(\lambda r x .(\chi\) i.scale \(R r(x \$ i)))\)
lemma vector_scale \(R_{-}\)component \([\)simp \(]:(s c a l e R ~ r x) \$ i=s c a l e R r(x \$ i)\) unfolding scaleR_vec_def by simp

\section*{instance}
by standard (simp_all add: vec_eq_iff scaleR_left_distrib scaleR_right_distrib)
end

\subsection*{1.8.6 Topological space}
instantiation vec :: (topological_space, finite) topological_space
begin
definition [code del]:
open \(\left(S::\left({ }^{\prime} a^{\wedge} b\right)\right.\) set \() \longleftrightarrow\)
\((\forall x \in S . \exists A\). \((\forall i\). open \((A i) \wedge x \$ i \in A i) \wedge\)
\((\forall y .(\forall i . y \$ i \in A i) \longrightarrow y \in S))\)

\section*{instance proof}
show open (UNIV :: ('a ^ 'b) set)
```

 unfolding open_vec_def by auto
 next
fix $S T::\left({ }^{\prime} a^{\wedge} \quad b\right)$ set
assume open S open T thus open $(S \cap T)$
unfolding open_vec_def
apply clarify
apply (drule (1) bspec)+
apply (clarify, rename_tac Sa Ta)
apply (rule_tac $x=\lambda i$. Sa $i \cap$ Ta i in $e x I)$
apply (simp add: open_Int)
done
next
fix $K::\left({ }^{\prime} a^{\wedge}\right.$ ' $\left.b\right)$ set set
assume $\forall S \in K$. open S thus open $(\bigcup K)$
unfolding open_vec_def
apply clarify
apply (drule (1) bspec)
apply (drule (1) bspec)
apply clarify
apply (rule_tac $x=A$ in exI)
apply fast
done
qed
end
lemma open_vector_box: $\forall i$. open $(S i) \Longrightarrow$ open $\{x . \forall i . x \$ i \in S i\}$
unfolding open_vec_def by auto
lemma open_vimage_vec_nth: open $S \Longrightarrow$ open $((\lambda x . x \$ i)-' S)$
unfolding open_vec_def
apply clarify
apply (rule_tac $x=\lambda k$. if $k=i$ then S else UNIV in exI, simp)
done
lemma closed_vimage_vec_nth: closed $S \Longrightarrow$ closed $((\lambda x . x \$ i)-‘ S)$
unfolding closed_open vimage_Compl [symmetric]
by (rule open_vimage_vec_nth)
lemma closed_vector_box: $\forall i$. closed $(S i) \Longrightarrow$ closed $\{x . \forall i . x \$ i \in S i\}$
proof -
have $\{x . \forall i . x \$ i \in S i\}=\left(\bigcap i .(\lambda x . x \$ i)-{ }^{\prime} S i\right)$ by auto
thus $\forall i$. closed $(S i) \Longrightarrow$ closed $\{x . \forall i . x \$ i \in S i\}$
by (simp add: closed_INT closed_vimage_vec_nth)
qed
lemma tendsto_vec_nth [tendsto_intros]:
assumes $((\lambda x . f x) \longrightarrow a)$ net
shows $((\lambda x . f x \$ i) \longrightarrow a \$ i)$ net

```
```

proof (rule topological_tendstoI)
fix S assume open S a $i\inS
 then have open ((\lambday.y$i)-'S) a\in((\lambday.y$i) -'S)
 by (simp_all add:open_vimage_vec_nth)
 with assms have eventually (}\lambdax.fx\in(\lambday.y$i)-'S) ne
by (rule topological_tendstoD)
then show eventually (}\lambdax.fx$i\inS)\mathrm{ net
 by simp
qed
lemma isCont_vec_nth [simp]: isCont fa\Longrightarrow isCont (}\lambdax.fx$ i)
unfolding isCont_def by (rule tendsto_vec_nth)
lemma vec_tendstoI:
assumes \bigwedgei. ((\lambdax.fx\$ i)\longrightarrowa\$ \longrightarrow) net
shows ((\lambdax.fx)\longrightarrowa) net
proof (rule topological_tendstoI)
fix S assume open S and a\inS
then obtain A where A: \bigwedgei. open (A i) \bigwedgei.a$i\inAi
 and S:\bigwedgey.\foralli.y$i\inAi\Longrightarrowy\inS
unfolding open_vec_def by metis
have \bigwedgei. eventually (}\lambdax.fx$i\inA i) ne
 using assms A by (rule topological_tendstoD)
 hence eventually (}\lambdax.\foralli.fx$i\inA i) ne
by (rule eventually_all_finite)
thus eventually (}\lambdax.fx\inS)\mathrm{ net
by (rule eventually_mono, simp add: S)
qed
lemma tendsto_vec_lambda [tendsto_intros]:
assumes \bigwedgei. ((\lambdax.fxi)\longrightarrowai) net
shows}((\lambdax.\chi i.fxi)\longrightarrow(\chi <. a i)) ne
using assms by (simp add: vec_tendstoI)

```
lemma open_image_vec_nth: assumes open \(S\) shows open \(((\lambda x . x \$ i)\) ' \(S\) )
proof (rule openI)
    fix \(a\) assume \(a \in(\lambda x . x \$ i)\) ' \(S\)
    then obtain \(z\) where \(a=z \$ i\) and \(z \in S\)..
    then obtain \(A\) where \(A: \forall i\). open \((A i) \wedge z \$ i \in A i\)
        and \(S: \forall y .(\forall i . y \$ i \in A i) \longrightarrow y \in S\)
        using «open \(S\) 〉 unfolding open_vec_def by auto
    hence \(A i \subseteq(\lambda x . x \$ i)\) ' \(S\)
        by (clarsimp, rule_tac \(x=\chi j\). if \(j=i\) then \(x\) else \(z \$ j\) in image_eq ,
            simp_all)
    hence open \((A i) \wedge a \in A i \wedge A i \subseteq(\lambda x . x \$ i)\) ' \(S\)
        using \(A\langle a=z \$ i\rangle\) by simp
    then show \(\exists T\). open \(T \wedge a \in T \wedge T \subseteq(\lambda x . x \$ i) ' S\) by \(-(\) rule exI \()\)
qed
```

instance vec :: (perfect_space, finite) perfect_space
proof
fix $x::{ }^{\prime} a{ }^{\wedge} ' b$ show \neg open $\{x\}$
proof
assume open $\{x\}$
hence $\forall i$. open $((\lambda x . x \$ i)$ ' $\{x\})$ by (fast intro: open_image_vec_nth)
hence $\forall i$. open $\{x \$ i\}$ by simp
thus False by (simp add: not_open_singleton)
qed
qed

```

\subsection*{1.8.7 Metric space}
instantiation vec :: (metric_space, finite) dist
begin
definition
dist \(x y=\) L2_set \((\lambda i\). dist \((x \$ i)(y \$ i))\) UNIV
instance ..
end
instantiation vec :: (metric_space, finite) uniformity_dist
begin
definition [code del]:
(uniformity :: (('a ^\(\left.\left.{ }^{\wedge} b::-\right) \times\left({ }^{\prime} a^{\wedge}{ }^{\prime} b::-\right)\right)\) filter \()=\) (INF \(e \in\{0<.\).\(\} . principal \{(x, y)\). dist \(x y<e\}\) )
instance
by standard (rule uniformity_vec_def)
end
declare uniformity_Abort[where \({ }^{\prime} a=^{\prime} a::\) metric_space ^ ' \(b::\) finite, code]
instantiation vec :: (metric_space, finite) metric_space
begin
proposition dist_vec_nth_le: dist \((x \$ i)(y \$ i) \leq d i s t x y\)
unfolding dist_vec_def by (rule member_le_L2_set) simp_all
instance proof
fix \(x y::^{\prime} a{ }^{\wedge}\) 'b
show dist \(x y=0 \longleftrightarrow x=y\)
unfolding dist_vec_def
by (simp add: L2_set_eq_0_iff vec_eq_iff)
next
fix \(x y z::^{\prime} a^{\wedge} ' b\)
show dist \(x y \leq \operatorname{dist} x z+\operatorname{dist} y z\)
```

 unfolding dist_vec_def
 apply (rule order_trans [OF _ L2_set_triangle_ineq])
 apply (simp add: L2_set_mono dist_triangle2)
 done
 next
fix S :: ('a ^ 'b) set
have *: open }S\longleftrightarrow(\forallx\inS.\existse>0.\forally. dist y x<e\longrightarrowy\inS
proof
assume open S show }\forallx\inS.\existse>0.\forally. dist y x<e\longrightarrowy\in
proof
fix x assume }x\in
obtain A where A: \foralli.open (A i)}\foralli.x$i\inA
 and S: \forally.(\foralli.y$i\inAi)\longrightarrowy\inS
using <open S> and \langlex \inS\rangle unfolding open_vec_def by metis
have \foralli\inUNIV. \existsr>0.\forally. dist y (x$i)<r\longrightarrowy\inAi
 using A unfolding open_dist by simp
 hence }\existsr.\foralli\inUNIV. 0<ri^(\forally.dist y (x$ i)<ri\longrightarrowy\inAi
by (rule finite_set_choice [OF finite])
then obtain r where r1: \foralli.0<ri
and r2: \foralli y.dist y (x$i)<ri\longrightarrowy\inA i by fast
 have 0<Min (range r)^(\forally.dist y x<Min(range r)\longrightarrowy\inS)
 by (simp add: r1 r2 S le_less_trans [OF dist_vec_nth_le])
 thus \existse>0.\forally. dist y }x<e\longrightarrowy\inS.
 qed
 next
 assume *: }\forallx\inS.\existse>0.\forally.dist y x<e\longrightarrowy\inS show open S
 proof (unfold open_vec_def,rule)
 fix }x\mathrm{ assume }x\in
 then obtain e where 0<e and S:\forally. dist y x<e
 using * by fast
 define r where [abs_def]: ri=e / sqrt (of_nat CARD('b)) for i :: 'b
 from <0<e\rangle have r: \foralli. 0<ri
 unfolding r_def by simp_all
 from }\langle0<e\rangle\mathrm{ have e: e= L2_set r UNIV
 unfolding r_def by (simp add: L2_set_constant)
 define A where A i}={y.dist (x$i) y<ri} for
have }\foralli\mathrm{ . open (Ai)}\wedgex$i\inA
 unfolding A_def by (simp add: open_ball r)
 moreover have }\forally.(\foralli.y$i\inAi)\longrightarrowy\in
by (simp add: A_def S dist_vec_def e L2_set_strict_mono dist_commute)
ultimately show }\exists\mathrm{ A. (}\forall\mathrm{ i. open }(Ai)\wedgex$i\inAi)
 (\forally.(\foralli.y$i\inAi)\longrightarrowy\inS) by metis
qed
qed
show open S = (\forallx\inS. \forallF (}\mp@subsup{x}{}{\prime},y)\mathrm{ in uniformity. }\mp@subsup{x}{}{\prime}=x\longrightarrowy\inS
unfolding * eventually_uniformity_metric
by (simp del: split_paired_All add: dist_vec_def dist_commute)
qed

```
end
lemma Cauchy_vec_nth:
Cauchy \((\lambda n . X n) \Longrightarrow\) Cauchy \((\lambda n . X n \$ i)\)
unfolding Cauchy_def by (fast intro: le_less_trans [OF dist_vec_nth_le])
lemma vec_CauchyI:
fixes \(X\) :: nat \(\Rightarrow{ }^{\prime} a::\) metric_space \({ }^{\text {' }} n\)
assumes \(X: \bigwedge i\). Cauchy \((\lambda n . X n \$ i)\)
shows Cauchy ( \(\lambda n . X n\) )
proof (rule metric_CauchyI)
fix \(r\) :: real assume \(0<r\)
hence \(0<r /\) of_nat \(C A R D\left({ }^{\prime} n\right)\) (is \(0<\) ?s) by simp
define \(N\) where \(N i=(L E A S T N . \forall m \geq N . \forall n \geq N . \operatorname{dist}(X m \$ i)(X n \$ i)\)
\(<\) ?s) for \(i\)
define \(M\) where \(M=\operatorname{Max}(\) range \(N\) )
have \(\bigwedge i . \exists N . \forall m \geq N . \forall n \geq N . \operatorname{dist}(X m \$ i)(X n \$ i)<\) ? \(s\) using \(X\langle 0<\) ? \(s\rangle\) by (rule metric_CauchyD)
hence \(\bigwedge i . \forall m \geq N i . \forall n \geq N i\). dist \((X m \$ i)(X n \$ i)<\) ?s unfolding \(N_{-}\)def by (rule LeastI_ex)
hence \(M: \bigwedge i . \forall m \geq M . \forall n \geq M\). dist \((X m \$ i)(X n \$ i)<? s\) unfolding M_def by simp
    \{
        fix \(m n\) :: nat
        assume \(M \leq m M \leq n\)
        have dist \((X m)(X n)=L 2 \_s e t(\lambda i . \operatorname{dist}(X m \$ i)(X n \$ i))\) UNIV
        unfolding dist_vec_def ..
        also have \(\ldots \leq \operatorname{sum}(\lambda i\). dist \((X m \$ i)(X n \$ i))\) UNIV
            by (rule L2_set_le_sum [OF zero_le_dist])
        also have \(\ldots<\operatorname{sum}(\lambda i:: ' n\). ?s) UNIV
            by (rule sum_strict_mono, simp_all add: \(M\langle M \leq m\rangle\langle M \leq n\rangle\) )
        also have ... \(=r\)
        by \(\operatorname{simp}\)
    finally have \(\operatorname{dist}(X m)(X n)<r\).
    \}
    hence \(\forall m \geq M . \forall n \geq M\). dist \((X m)(X n)<r\)
        by \(\operatorname{simp}\)
    then show \(\exists M . \forall m \geq M . \forall n \geq M\). dist \((X m)(X n)<r .\).
qed
instance vec :: (complete_space, finite) complete_space
proof
    fix \(X::\) nat \(\Rightarrow{ }^{\prime} a^{\wedge}\) ' \(b\) assume Cauchy \(X\)
    have \(\Lambda i .(\lambda n . X n \$ i) \longrightarrow \lim (\lambda n . X n \$ i)\)
        using Cauchy_vec_nth [OF 〈Cauchy X〉]
        by (simp add: Cauchy_convergent_iff convergent_LIMSEQ_iff)
    hence \(X \longrightarrow\) vec_lambda \((\lambda i . \lim (\lambda n . X n \$ i))\)
        by (simp add: vec_tendstoI)
    then show convergent \(X\)
```

 by (rule convergentI)
 qed

```

\subsection*{1.8.8 Normed vector space}
instantiation vec :: (real_normed_vector, finite) real_normed_vector begin
definition norm \(x=\) L2_set ( \(\lambda\) i. norm ( \(x \$ i\) ) UNIV
definition \(\operatorname{sgn}\left(x::^{\prime} a^{\wedge} b\right)=\operatorname{scale} R(\) inverse \((\operatorname{norm} x)) x\)
instance proof
fix \(a::\) real and \(x y::{ }^{\prime} a^{\wedge} b\)
show norm \(x=0 \longleftrightarrow x=0\)
unfolding norm_vec_def
by (simp add: L2_set_eq_0_iff vec_eq_iff)
show norm \((x+y) \leq\) norm \(x+\) norm \(y\) unfolding norm_vec_def apply (rule order_trans [OF_ L2_set_triangle_ineq]) apply (simp add: L2_set_mono norm_triangle_ineq) done
show norm (scaleR a \(x\) ) \(=|a| *\) norm \(x\) unfolding norm_vec_def by (simp add: L2_set_right_distrib)
show \(\operatorname{sgn} x=\operatorname{scaleR}(\) inverse \((\) norm \(x)) x\)
by (rule sgn_vec_def)
show dist \(x y=\operatorname{norm}(x-y)\)
unfolding dist_vec_def norm_vec_def by (simp add: dist_norm)
qed
end
lemma norm_nth_le: norm \((x \$ i) \leq n o r m ~ x\)
unfolding norm_vec_def
by (rule member_le_L2_set) simp_all
lemma norm_le_componentwise_cart:
fixes \(x\) :: 'a::real_normed_vector \({ }^{\wedge} n\)
assumes \(\bigwedge i\). norm \((x \$ i) \leq \operatorname{norm}(y \$ i)\)
shows norm \(x \leq n o r m ~ y\)
unfolding norm_vec_def
by (rule L2_set_mono) (auto simp: assms)
lemma component_le_norm_cart: \(|x \$ i| \leq\) norm \(x\)
apply (simp add: norm_vec_def)
apply (rule member_le_L2_set, simp_all)
done
```

lemma norm_bound_component_le_cart: norm x \leqe==> |x$i|}\leq
 by (metis component_le_norm_cart order_trans)
lemma norm_bound_component_l__cart: norm x <e==> |x$i|<e
by (metis component_le_norm_cart le_less_trans)
lemma norm_le_l1_cart: norm x \leq sum(\lambdai. |x$i|) UNIV
 by (simp add: norm_vec_def L2_set_le_sum)
lemma bounded_linear_vec_nth[intro]: bounded_linear (}\lambdax.x$ i
apply standard
apply (rule vector_add_component)
apply (rule vector_scaleR_component)
apply (rule_tac x=1 in exI, simp add: norm_nth_le)
done
instance vec :: (banach, finite) banach ..

```

\subsection*{1.8.9 Inner product space}
instantiation vec :: (real_inner, finite) real_inner
begin
definition inner \(x y=\operatorname{sum}(\lambda i\). inner \((x \$ i)(y \$ i))\) UNIV
instance proof
fix \(r\) :: real and \(x y z::{ }^{\prime} a{ }^{\wedge}\) 'b
show inner \(x y=\) inner \(y x\) unfolding inner_vec_def by (simp add: inner_commute)
show inner \((x+y) z=\) inner \(x z+\) inner \(y z\)
unfolding inner_vec_def by (simp add: inner_add_left sum.distrib)
show inner (scaleR rx)y=r*inner \(x y\) unfolding inner_vec_def by (simp add: sum_distrib_left)
show \(0 \leq\) inner \(x x\)
unfolding inner_vec_def by (simp add: sum_nonneg)
show inner \(x x=0 \longleftrightarrow x=0\)
unfolding inner_vec_def by (simp add: vec_eq_iff sum_nonneg_eq_0_iff)
show norm \(x=\operatorname{sqrt}\) (inner \(x x\) )
unfolding inner_vec_def norm_vec_def L2_set_def by (simp add: power2_norm_eq_inner)
qed
end

\subsection*{1.8.10 Euclidean space}

Vectors pointing along a single axis.
definition axis \(k x=(\chi\) i. if \(i=k\) then \(x\) else 0\()\)
lemma axis_nth [simp]: axis ix \(\$ i=x\)
unfolding axis_def by simp
```

lemma axis_eq_axis: axis $i x=$ axis $j y \longleftrightarrow x=y \wedge i=j \vee x=0 \wedge y=0$
unfolding axis_def vec_eq_iff by auto
lemma inner_axis_axis:
inner (axis ix) (axis $j y)=($ if $i=j$ then inner $x y$ else 0$)$
unfolding inner_vec_def
apply (cases $i=j$)
apply clarsimp
apply (subst sum.remove $\left[o f_{-} j\right.$], simp_all)
apply (rule sum.neutral, simp add: axis_def)
apply (rule sum.neutral, simp add: axis_def)
done

```
lemma inner_axis: inner \(x\) (axis i \(y\) ) \(=\) inner \((x \$ i) y\)
    by (simp add: inner_vec_def axis_def sum.remove [where \(x=i]\) )
lemma inner_axis': inner(axis \(i y) x=\operatorname{inner} y(x \$ i)\)
    by (simp add: inner_axis inner_commute)
instantiation vec :: (euclidean_space, finite) euclidean_space
begin
definition Basis \(=(\bigcup i . \bigcup u \in\) Basis. \(\{\) axis \(i u\})\)
instance proof
    show (Basis :: ('a ^ 'b) set) \(\neq\{ \}\)
        unfolding Basis_vec_def by simp
next
    show finite (Basis :: ( \({ }^{\prime} a^{\wedge}\) 'b) set)
        unfolding Basis_vec_def by simp
next
    fix \(u v::{ }^{\prime} a{ }^{\wedge} \quad b\)
    assume \(u \in\) Basis and \(v \in\) Basis
    thus inner \(u v=(\) if \(u=v\) then 1 else 0\()\)
        unfolding Basis_vec_def
        by (auto simp add: inner_axis_axis axis_eq_axis inner_Basis)
next
    fix \(x::^{\prime} a{ }^{\text {^ }} b\)
    show \((\forall u \in\) Basis. inner \(x u=0) \longleftrightarrow x=0\)
        unfolding Basis_vec_def
        by (simp add: inner_axis euclidean_all_zero_iff vec_eq_iff)
```

qed
proposition DIM_cart [simp]: DIM(' ' a^'b) = CARD('b)* DIM('a)
proof -
have card (\i::'b. \u::'a\inBasis. { axis i u}) = (\sumi::'b\inUNIV.card (\bigcup u::'a\inBasis.
{axis iu}))
by (rule card_UN_disjoint) (auto simp: axis_eq_axis)
also have ... = CARD('b)* DIM('a)
by (subst card_UN_disjoint) (auto simp:axis_eq_axis)
finally show ?thesis
by (simp add: Basis_vec_def)
qed
end
lemma norm_axis_1 [simp]: norm (axis m (1::real)) = 1
by (simp add: inner_axis' norm_eq_1)
lemma sum_norm_allsubsets_bound_cart:
fixes f:: ' }a=>\mathrm{ real `'}
assumes fP: finite P and fPs: \Q. Q\subseteqP\Longrightarrow norm (sum f Q) \leqe
shows sum (}\lambda\mathrm{ x. norm (fx)) P}\leq2*\mathrm{ real CARD('n) * e
using sum_norm_allsubsets_bound[OF assms]
by simp
lemma cart_eq_inner_axis: a \$ i = inner a (axis i 1)
by (simp add: inner_axis)
lemma axis_eq_0_iff [simp]:
shows axis mx=0 \longleftrightarrowx=0
by (simp add: axis_def vec_eq_iff)
lemma axis_in_Basis_iff [simp]: axis i a }\in\mathrm{ Basis }\longleftrightarrowa\inBasi
by (auto simp: Basis_vec_def axis_eq_axis)
Mapping each basis element to the corresponding finite index
definition axis_index :: ('a::comm_ring_1) ^'}n=>\mp@subsup{}{}{\prime}n\mathrm{ where axis_index v 三SOME
i.v=axis i 1
lemma axis_inverse:
fixes }v\mathrm{ :: real^^}
assumes v\in Basis
shows }\existsi.v=\mathrm{ axis i }
proof -
have v}\in(\bigcupn.\r\in\mathrm{ Basis. {axis n r})
using assms Basis_vec_def by blast
then show ?thesis
by (force simp add: vec_eq_iff)
qed

```
```

lemma axis_index
fixes $v::$ real $^{\wedge} n$
assumes $v \in$ Basis
shows $v=$ axis (axis_index v) 1
by (metis (mono_tags) assms axis_inverse axis_index_def someI_ex)
lemma axis_index_axis [simp]:
fixes $U U$:: real ${ }^{\wedge} n$
shows (axis_index (axis u 1 :: real $\left.{ }^{\wedge} n\right)$) $=(u:: ' n)$
by (simp add: axis_eq_axis axis_index_def)

```

\subsection*{1.8.11 A naive proof procedure to lift really trivial arithmetic stuff from the basis of the vector space}
```

lemma sum_cong_aux:
$(\bigwedge x . x \in A \Longrightarrow f x=g x) \Longrightarrow \operatorname{sum} f A=\operatorname{sum} g A$
by (auto intro: sum.cong)
hide_fact (open) sum_cong_aux
method_setup vector $=$ <
let
val ss1 =
simpset_of (put_simpset HOL_basic_ss context
addsimps $[@\{$ thm sum.distrib $\}$ RS sym,
@ $\{$ thm sum_subtractf $\}$ RS sym, @ $\{$ thm sum_distrib_left $\}$,
$@\{t h m$ sum_distrib_right $\}, @\{t h m$ sum_negf $\}$ RS sym])
val ss2 $=$
simpset_of (context addsimps
[@\{thm plus_vec_def $\}, @\{t h m$ times_vec_def $\}$,
$@\{t h m$ minus_vec_def $\}, @\{t h m$ uminus_vec_def $\}$,
$@\{t h m$ one_vec_def $\}, @\left\{t h m z e r o _v e c _d e f\right\}, @\{t h m$ vec_def $\}$,
$@\{t h m$ scaleR_vec_def $\}, @\{t h m$ vector_scalar_mult_def $\}])$
fun vector_arith_tac ctxt ths $=$
simp_tac (put_simpset ss1 ctxt)
THEN ${ }^{\prime}($ fn $i=>$ resolve_tac ctxt @\{thms Finite_Cartesian_Product.sum_cong_aux\}
i
ORELSE resolve_tac ctrt @\{thms sum.neutral\} i
ORELSE simp_tac (put_simpset HOL_basic_ss ctxt addsimps $@\{$ thm
vec_eq_iff \}]) i)
(* THEN' TRY o clarify_tac HOL_cs THEN' (TRY o rtac @\{thm iffI\}) *)
THEN' asm_full_simp_tac (put_simpset ss2 ctxt addsimps ths)
in
Attrib.thms \gg (fn ths $=>$ fn ctxt $=>$ SIMPLE_METHOD' (vector_arith_tac
ctxt ths))
end
> lift trivial vector statements to real arith statements

```
```

lemma vec_ $0[$ simp $]$: vec $0=0$ by vector
lemma vec_1 $[$ simp $]$: vec $1=1$ by vector
lemma vec_inj $[$ simp $]:$ vec $x=$ vec $y \longleftrightarrow x=y$ by vector
lemma vec_in_image_vec: vec $x \in(v e c ' S) \longleftrightarrow x \in S$ by auto
lemma vec_add: vec $(x+y)=$ vec $x+$ vec y by vector
lemma vec_sub: vec $(x-y)=$ vec $x-v e c y$ by vector
lemma vec_cmul: vec $(c * x)=c * s$ vec x by vector
lemma vec_neg: $\operatorname{vec}(-x)=-$ vec x by vector
lemma vec_scale $R: \operatorname{vec}(c * x)=c *_{R}$ vec x
by vector
lemma vec_sum:
assumes finite S
shows $\operatorname{vec}(\operatorname{sum} f S)=\operatorname{sum}(\operatorname{vec} \circ f) S$
using assms
proof induct
case empty
then show? case by simp
next
case insert
then show ?case by (auto simp add: vec_add)
qed
Obvious "component-pushing".
lemma vec_component [simp]: vec $x \$ i=x$
by vector
lemma vector_mult_component $[$ simp $]:(x * y) \$ i=x \$ i * y \$ i$
by vector
lemma vector_smult_component $[$ simp $]:(c * s y) \$ i=c *(y \$ i)$
by vector
lemma cond_component: (if b then x else $y) \$ i=($ if b then $x \$ i$ else $y \$ i)$ by vector
lemmas vector_component $=$
vec_component vector_add_component vector_mult_component
vector_smult_component vector_minus_component vector_uminus_component
vector_scaleR_component cond_component

```

\subsection*{1.8.12 Some frequently useful arithmetic lemmas over vectors}
instance vec :: (semigroup_mult, finite) semigroup_mult
by standard (vector mult.assoc)
```

instance vec :: (monoid_mult, finite) monoid_mult
by standard vector +
instance vec :: (ab_semigroup_mult, finite) ab_semigroup_mult
by standard (vector mult.commute)
instance vec :: (comm_monoid_mult, finite) comm_monoid_mult
by standard vector
instance vec :: (semiring, finite) semiring
by standard (vector field_simps)+
instance vec :: (semiring_0, finite) semiring_0
by standard (vector field_simps)+
instance vec :: (semiring_1, finite) semiring_1
by standard vector
instance vec :: (comm_semiring, finite) comm_semiring
by standard (vector field_simps)+
instance vec :: (comm_semiring_0, finite) comm_semiring_0 ..
instance vec :: (semiring_0_cancel, finite) semiring_0_cancel ..
instance vec :: (comm_semiring_0_cancel, finite) comm_semiring_0_cancel ..
instance vec :: (ring, finite) ring ..
instance vec :: (semiring_1_cancel, finite) semiring_1_cancel ..
instance vec :: (comm_semiring_1, finite) comm_semiring_1 ..
instance vec :: (ring_1, finite) ring_1 ..
instance vec :: (real_algebra, finite) real_algebra
by standard (simp_all add: vec_eq_iff)
instance vec :: (real_algebra_1, finite) real_algebra_1 ..
lemma of_nat_index: (of_nat $n::{ }^{\prime} a::$ semiring_1 ${ }^{\wedge} n$) $\$ i=$ of_nat n
proof (induct n)
case 0
then show? case by vector
next
case Suc
then show? case by vector
qed
lemma one_index [simp]: (1 :: ' a :: one $\left.{ }^{\prime} n\right) \$ i=1$
by vector
lemma neg_one_index [simp]: (-1 :: 'a :: \{one, uminus $\}$ ^' $n) \$ i=-1$
by vector

```
instance vec :: (semiring_char_0, finite) semiring_char_0
proof
fix \(m n::\) nat
show inj (of_nat :: nat \(\Rightarrow{ }^{\prime} a{ }^{\wedge}\) 'b)
by (auto intro!: injI simp add: vec_eq_iff of_nat_index)
qed
instance vec :: (numeral, finite) numeral ..
instance vec :: (semiring_numeral, finite) semiring_numeral ..
lemma numeral_index [simp]: numeral \(w \$ i=\) numeral \(w\)
by (induct \(w\) ) (simp_all only: numeral.simps vector_add_component one_index)
lemma neg_numeral_index [simp]: - numeral \(w \$ i=-n u m e r a l ~ w\) by (simp only: vector_uminus_component numeral_index)
instance vec :: (comm_ring_1, finite) comm_ring_1 ..
instance vec :: (ring_char_0, finite) ring_char_0 ..
lemma vector_smult_assoc: \(a * s(b * s x)=\left(\left(a::^{\prime} a:: s e m i g r o u p \_m u l t\right) * b\right) * s x\) by (vector mult.assoc)
lemma vector_sadd_rdistrib: \(\left(\left(a::{ }^{\prime} a::\right.\right.\) semiring \(\left.)+b\right) * s x=a * s x+b * s x\) by (vector field_simps)
lemma vector_add_ldistrib: ( \(c::\) 'a::semiring \() * s(x+y)=c * s x+c * s y\) by (vector field_simps)
lemma vector_smult_lzero[simp]: ( \(0::\) 'a::mult_zero \() * s x=0\) by vector
lemma vector_smult_lid[simp]: ( \(1:: ' a::\) monoid_mult \() * s x=x\) by vector
lemma vector_ssub_ldistrib: \(\left(c::^{\prime} a::\right.\) ring \() * s(x-y)=c * s x-c * s y\) by (vector field_simps)
lemma vector_smult_rneg: \(\left(c::^{\prime} a::\right.\) ring \() * s-x=-(c * s x)\) by vector
lemma vector_smult_lneg: - ( \(c::^{\prime} a::\) ring \() * s x=-(c * s x)\) by vector
lemma vector_sneg_minus1: \(-x=\left(-1::{ }^{\prime} a::\right.\) ring_1 \() * s x\) by vector
lemma vector_smult_rzero \([\) simp \(]: c * s \quad 0=\left(0::{ }^{\prime} a::\right.\) mult_zero ^' \(n\) ) by vector
lemma vector_sub_rdistrib: \(\left(\left(a::^{\prime} a::\right.\right.\) ring \(\left.)-b\right) * s x=a * s x-b * s x\) by (vector field_simps)
lemma vec_eq[simp]: (vec \(m=\) vec \(n) \longleftrightarrow(m=n)\)
by (simp add: vec_eq_iff)
lemma Vector_Spaces_linear_vec [simp]: Vector_Spaces.linear (*) vector_scalar_mult vec
by unfold_locales (vector algebra_simps)+
lemma vector_mul_eq_ \(0[\) simp \(]:(a * s x=0) \longleftrightarrow a=\left(0:::^{\prime} a:: i d o m\right) \vee x=0\) by vector
lemma vector_mul_lcancel[simp]: \(a * s x=a * s y \longleftrightarrow a=\left(0::{ }^{\prime} a:: f i e l d\right) \vee x=y\) by (metis eq_iff_diff_eq_0 vector_mul_eq_0 vector_ssub_ldistrib)
```

lemma vector_mul_rcancel[simp]: $a * s x=b * s x \longleftrightarrow\left(a::^{\prime} a:: f i e l d\right)=b \vee x=0$
by (subst eq_iff_diff_eq_0, subst vector_sub_rdistrib [symmetric]) simp
lemma scalar_mult_eq_scaleR $\left[a b s_{-} d e f\right]: c * s x=c *_{R} x$
unfolding scaleR_vec_def vector_scalar_mult_def by simp
lemma dist_mul[simp]: dist $(c * s x)(c * s y)=|c| * \operatorname{dist} x y$
unfolding dist_norm scalar_mult_eq_scaleR
unfolding scaleR_right_diff_distrib[symmetric] by simp
lemma sum_component [simp]:
fixes $f:$: ' $a \Rightarrow(' b:: \text { comm_monoid_add })^{\wedge} n$
shows $($ sum $f S) \$ i=\operatorname{sum}(\lambda x .(f x) \$ i) S$
proof (cases finite S)
case True
then show ?thesis by induct simp_all
next
case False
then show? ?hesis by simp
qed
lemma sum_eq: sum $f S=(\chi$ i.sum $(\lambda x .(f x) \$ i) S)$
by (simp add: vec_eq_iff)
lemma sum_cmul:
fixes $f::{ }^{\prime} c \Rightarrow\left({ }^{\prime} a:: \text { semiring_1 }\right)^{\wedge} n$
shows $\operatorname{sum}(\lambda x . c * s f x) S=c * s \operatorname{sum} f S$
by (simp add: vec_eq_iff sum_distrib_left)
lemma linear_vec [simp]: linear vec
using Vector_Spaces_linear_vec
apply (auto)
by unfold_locales (vector algebra_simps)+

```

\subsection*{1.8.13 Matrix operations}

Matrix notation. NB: an MxN matrix is of type (('a, ' \(n\) ) vec, 'm) vec, not (('a, 'm) vec, ' \(n\) ) vec
definition map_matrix::('a \(\left.{ }^{\prime} b\right) \Rightarrow\left(\left({ }^{\prime} a,{ }^{\prime} i:: f i n i t e\right) v e c,{ }^{\prime} j:: f i n i t e\right)\) vec \(\Rightarrow((' b\), 'i)vec, 'j) vec where
\[
\text { map_matrix } f x=(\chi i j . f(x \$ i \$ j))
\]
lemma nth_map_matrix[simp]: map_matrix f \(x \$ i \$ j=f(x \$ i \$ j)\)
by (simp add: map_matrix_def)
```

definition matrix_matrix_mult :: ('a::semiring_1) ${ }^{\wedge} n n^{\wedge} m \Rightarrow{ }^{\prime} a{ }^{\wedge} p{ }^{\wedge} n \Rightarrow{ }^{\prime} a{ }^{\wedge} \mid p$
' m
(infixl ** 70)
where $m * * m^{\prime}==\left(\chi i j . \operatorname{sum}\left(\lambda k .((m \$ i) \$ k) *\left(\left(m^{\prime} \$ k\right) \$ j\right)\right)\left(U N I V::{ }^{\prime} n\right.\right.$ set $\left.)\right)$

```
```

$::^{\prime} a^{\wedge} p^{\wedge} m$
definition matrix_vector_mult :: ('a::semiring_1) ${ }^{\wedge} n^{\wedge} m \Rightarrow{ }^{\prime} a^{\wedge} n \Rightarrow{ }^{\prime} a{ }^{\wedge} m$
(infixl $* v$ 70)
where $m * v x \equiv(\chi i . \operatorname{sum}(\lambda j .((m \$ i) \$ j) *(x \$ j))(U N I V:: ' n$ set $))::{ }^{\prime} a^{\wedge}{ }^{\prime} m$
definition vector_matrix_mult $::^{\prime} a{ }^{\wedge} ' m \Rightarrow\left({ }^{\prime} a:: \text { semiring_1 }\right)^{\wedge} n^{\wedge} m \Rightarrow{ }^{\prime} a{ }^{\wedge} n$
(infixl $v * 70$)
where $v v * m==(\chi j$.sum $(\lambda i .((m \$ i) \$ j) *(v \$ i))(U N I V:: ' m$ set $))::{ }^{\prime} a^{\wedge} n$
definition (mat::'a::zero $\left.=>{ }^{\prime} a^{\wedge} n^{\wedge} n\right) k=(\chi i j$. if $i=j$ then k else 0$)$
definition transpose where
(transpose: : ' $\left.a^{\wedge \prime} n^{\wedge \prime} m \Rightarrow{ }^{\prime} a^{\wedge} m^{\wedge \prime} n\right) A=(\chi i j .((A \$ j) \$ i))$
definition (row::' $\left.m=>{ }^{\prime} a^{\wedge} n^{\wedge \prime} m \Rightarrow{ }^{\prime} a^{\wedge} n\right)$ i $A=(\chi j .((A \$ i) \$ j))$
definition (column :: ' $\left.n=>^{\prime} a^{\wedge \prime} n^{\wedge \prime} m=>^{\prime} a^{\wedge \prime} m\right) j A=(\chi i .((A \$ i) \$ j))$
definition $\operatorname{rows}\left(A::^{\prime} a^{\wedge} \prime n^{\wedge} m\right)=\left\{\right.$ row $i A \mid i . i \in\left(U N I V::{ }^{\prime} m\right.$ set $\left.)\right\}$
definition columns $\left(A::^{\prime} a^{\wedge} n^{\wedge} m\right)=\{$ column $i A \mid i . i \in(U N I V:: ' n$ set $)\}$
lemma times0_left [simp]: ($0::^{\prime} a::$ semiring_1 $\left.1{ }^{\prime} n^{\wedge} m\right) * *\left(A::^{\prime} a^{\wedge} p^{\wedge} n\right)=0$
by (simp add: matrix_matrix_mult_def zero_vec_def)
lemma times0_right $[$ simp $]:\left(A::^{\prime} a::\right.$ semiring_ $\left.1^{\wedge} \prime n^{\wedge} m\right) * *\left(0::^{\prime} a{ }^{\wedge} p^{\wedge \prime} n\right)=0$
by (simp add: matrix_matrix_mult_def zero_vec_def)
lemma mat_O[simp]: mat $0=0$ by (vector mat_def)
lemma matrix_add_ldistrib: $(A * *(B+C))=(A * * B)+(A * * C)$
by (vector matrix_matrix_mult_def sum.distrib[symmetric] field_simps)
lemma matrix_mul_lid [simp]:
fixes $A::$ ' $a:$:semiring_1 ${ }^{\wedge}$ ' m ^ n
shows mat 1 ** $A=A$
apply (simp add: matrix_matrix_mult_def mat_def)
apply vector
apply (auto simp only: if_distrib if_distribR sum.delta' ${ }^{[}$OF finite $]$
mult_1_left mult_zero_left if_True UNIV_I)
done
lemma matrix_mul_rid [simp]:
fixes $A::$ ' $a::$ semiring_ $1{ }^{\wedge} / m{ }^{\wedge} \prime n$
shows $A * *$ mat $1=A$
apply (simp add: matrix_matrix_mult_def mat_def)
apply vector
apply (auto simp only: if_distrib if_distribR sum.delta[OF finite]
mult_1_right mult_zero_right if_True UNIV_I cong: if_cong)
done

```
proposition matrix_mul_assoc: \(A * *(B * * C)=(A * * B) * * C\)
    apply (vector matrix_matrix_mult_def sum_distrib_left sum_distrib_right mult.assoc)
    apply (subst sum.swap)
```

 apply simp
 done
    ```
proposition matrix_vector_mul_assoc: \(A * v(B * v x)=(A * * B) * v x\)
    apply (vector matrix_matrix_mult_def matrix_vector_mult_def
        sum_distrib_left sum_distrib_right mult.assoc)
    apply (subst sum.swap)
    apply simp
    done
proposition scalar_matrix_assoc:
    fixes \(A::\left({ }^{\text {a }} \text { :: real_algebra_1 }\right)^{\wedge} m^{\wedge}{ }^{\wedge} n\)
    shows \(k *_{R}(A * * B)=\left(k *_{R} A\right) * * B\)
    by (simp add: matrix_matrix_mult_def sum_distrib_left mult_ac vec_eq_iff scaleR_sum_right)
proposition matrix_scalar_ac:
    fixes \(A::(\text { 'a::real_algebra_1 })^{\wedge} m^{\wedge} n\)
    shows \(A * *\left(k *_{R} B\right)=k *_{R} A * * B\)
    by (simp add: matrix_matrix_mult_def sum_distrib_left mult_ac vec_eq_iff)

```

 apply (vector matrix_vector_mul_def mat_def)
 apply (simp add: if_distrib if_distribR cong del: if_weak_cong)
 done
    ```
lemma matrix_transpose_mul:
        transpose \((A * * B)=\) transpose \(B * *\) transpose ( \(A::{ }^{\prime} a::\) :comm_semiring_1^_^)
    by (simp add: matrix_matrix_mult_def transpose_def vec_eq_iff mult.commute)
lemma matrix_mult_transpose_dot_column:
    shows transpose \(A\) ** \(A=(\chi i j\). inner (column i \(A)(\) column \(j A))\)
    by (simp add: matrix_matrix_mult_def vec_eq_iff transpose_def column_def in-
ner_vec_def)
lemma matrix_mult_transpose_dot_row:
    shows \(A\) ** transpose \(A=(\chi i j\). inner (row \(i A)(\) row \(j A))\)
    by (simp add: matrix_matrix_mult_def vec_eq_iff transpose_def row_def inner_vec_def)
lemma matrix_eq:
    fixes \(A B::\) ' \(a::\) :semiring_ \(1{ }^{\wedge}{ }^{\prime} n{ }^{\wedge}\) ' \(m\)
    shows \(A=B \longleftrightarrow(\forall x . A * v x=B * v x)\) (is ?lhs \(\longleftrightarrow\) ? \(r h s\) )
    apply auto
    apply (subst vec_eq_iff)
    apply clarify
    apply (clarsimp simp add: matrix_vector_mult_def if_distrib if_distribR vec_eq_iff
cong del: if_weak_cong)
    apply (erule_tac \(x=\) axis ia 1 in allE)
    apply (erule_tac \(x=i\) in allE)
    apply (auto simp add: if_distrib if_distribR axis_def
```

 sum.delta[OF finite] cong del: if_weak_cong)
 done

```
lemma matrix_vector_mul_component: \((A * v x) \$ k=\operatorname{inner}(A \$ k) x\)
by (simp add: matrix_vector_mult_def inner_vec_def)
lemma dot_lmul_matrix: inner \(\left(\left(x::\right.\right.\) real \(\left.\left.{ }^{\wedge}\right) ~ v * A\right) y=\) inner \(x(A * v y)\)
apply (simp add: inner_vec_def matrix_vector_mult_def vector_matrix_mult_def
sum_distrib_right sum_distrib_left ac_simps)
apply (subst sum.swap)
apply simp
done
lemma transpose_mat [simp]: transpose (mat \(n\) ) \(=\) mat \(n\)
by (vector transpose_def mat_def)
lemma transpose_transpose \([\) simp \(]\) : transpose \((\) transpose \(A)=A\) by (vector transpose_def)
lemma row_transpose \([\) simp \(]\) : row \(i(\) transpose \(A)=\) column i \(A\) by (simp add: row_def column_def transpose_def vec_eq_iff)
lemma column_transpose [simp]: column \(i(\) transpose \(A)=\) row \(i A\) by (simp add: row_def column_def transpose_def vec_eq_iff)
lemma rows_transpose \([\) simp \(]\) : rows \((\) transpose \(A)=\) columns \(A\) by (auto simp add: rows_def columns_def intro: set_eqI)
lemma columns_transpose \([\) simp \(]\) : columns(transpose \(A)=\) rows \(A\) by (metis transpose_transpose rows_transpose)
lemma transpose_scalar: transpose \(\left(k *_{R} A\right)=k *_{R}\) transpose \(A\)
unfolding transpose_def
by (simp add: vec_eq_iff)
lemma transpose_iff [iff]: transpose \(A=\) transpose \(B \longleftrightarrow A=B\)
by (metis transpose_transpose)
lemma matrix_mult_sum:
( \(A::^{\prime} a::\) comm_semiring_1 \(\left.\wedge^{\wedge} n^{\wedge} m\right) * v x=\operatorname{sum}(\lambda i .(x \$ i) * s\) column \(i A)(U N I V::\)
' \(n\) set)
by (simp add: matrix_vector_mult_def vec_eq_iff column_def mult.commute)
lemma vector_componentwise:
\(\left(x::^{\prime} a::\right.\) ring_ \(\left._{-} \wedge^{\prime \prime} n\right)=\left(\chi j . \sum i \in U N I V .(x \$ i) *\left(\right.\right.\) axis \(\left.\left.i 1::{ }^{\prime} a^{\wedge} n\right) \$ j\right)\)
by (simp add: axis_def if_distrib sum.If_cases vec_eq_iff)
lemma basis_expansion: sum \(\left(\lambda i .(x \$ i) * s\right.\) axis i 1) \(U N I V=\left(x::\left({ }^{\prime} a:: \text { ring_1 }^{\prime}\right)^{\wedge} n\right)\) by (auto simp add: axis_def vec_eq_iff if_distrib sum.If_cases cong del: if_weak_cong)

Correspondence between matrices and linear operators.
```

definition matrix :: ('a::{plus,times, one, zero} `'}m=>\mp@subsup{|}{}{\prime}a\mp@subsup{|}{}{\wedge}n)=>\mp@subsup{}{}{\prime}\mp@subsup{a}{}{\wedge}\primem\mp@subsup{m}{}{\wedge}
where matrix f = (\chiij.(f(axis j 1))\$i)
lemma matrix_id_mat_1: matrix id = mat 1
by (simp add: mat_def matrix_def axis_def)
lemma matrix_scaleR: (matrix ((*R) r)) = mat r
by (simp add: mat_def matrix_def axis_def if_distrib cong: if_cong)

```
lemma matrix_vector_mul_linear[intro, simp]: linear \(\left(\lambda x . A * v\left(x::^{\prime} a:: r e a l \_a l g e b r a \_1\right.\right.\)
    ( _))
    by (simp add: linear_iff matrix_vector_mult_def vec_eq_iff field_simps sum_distrib_left
        sum.distrib scaleR_right.sum)
lemma vector_matrix_left_distrib [algebra_simps]:
    shows \((x+y) v * A=x v * A+y v * A\)
    unfolding vector_matrix_mult_def
    by (simp add: algebra_simps sum.distrib vec_eq_iff)
lemma matrix_vector_right_distrib [algebra_simps]:
    \(A * v(x+y)=A * v x+A * v y\)
    by (vector matrix_vector_mult_def sum.distrib distrib_left)
lemma matrix_vector_mult_diff_distrib [algebra_simps]:
    fixes \(A\) :: ' \(a::\) ring_ \(_{1} \wedge^{\wedge} n n^{\wedge} m\)
    shows \(A * v(x-y)=A * v x-A * v y\)
    by (vector matrix_vector_mult_def sum_subtractf right_diff_distrib)
lemma matrix_vector_mult_scale \(R[\) algebra_simps]:
    fixes \(A\) :: real \({ }^{\wedge} n^{\wedge}{ }^{\wedge} m\)
    shows \(A * v\left(c *_{R} x\right)=c *_{R}(A * v x)\)
    using linear_iff matrix_vector_mul_linear by blast
lemma matrix_vector_mult_0_right \([\) simp \(]: A * v 0=0\)
    by (simp add: matrix_vector_mult_def vec_eq_iff)
lemma matrix_vector_mult_0 [simp]: \(0 * v w=0\)
    by (simp add: matrix_vector_mult_def vec_eq_iff)
lemma matrix_vector_mult_add_rdistrib [algebra_simps]:
    \((A+B) * v x=(A * v x)+(B * v x)\)
    by (vector matrix_vector_mult_def sum.distrib distrib_right)
lemma matrix_vector_mult_diff_rdistrib [algebra_simps]:
    fixes \(A::{ }^{\prime} a:: \operatorname{ring}_{-} 1^{\wedge} n^{\wedge}{ }^{\prime} m\)
    shows \((A-B) * v x=(A * v x)-(B * v x)\)
    by (vector matrix_vector_mult_def sum_subtractf left_diff_distrib)
lemma matrix_vector_column:
\(\left(A::^{\prime} a::\right.\) comm_semiring_ \(\left.1{ }^{\wedge} n^{\wedge}{ }^{\wedge}\right) * v x=\operatorname{sum}(\lambda i .(x \$ i) * s((\) transpose \(A) \$ i))\) (UNIV:: 'n set)
by (simp add: matrix_vector_mult_def transpose_def vec_eq_iff mult.commute)

\subsection*{1.8.14 Inverse matrices (not necessarily square)}
```

definition

```

```

** A = mat 1)
definition
matrix_inv(A:: 'a::semiring_1 ^' }n\mathrm{ ^'m) =
(SOME A'::'a^^m^'n. A ** A' = mat 1 ^ A' ** A = mat 1)
lemma inj_matrix_vector_mult:
fixes }A::'a::field^' n^'
assumes invertible A
shows inj ((*v)A)
by (metis assms inj_on_inverseI invertible_def matrix_vector_mul_assoc matrix_vector_mul_lid)
lemma scalar_invertible:
fixes }A::('a::real_algebra_1) ^' m ^'n
assumes k\not=0 and invertible A
shows invertible (}k\mp@subsup{*}{R}{}A
proof -
obtain }\mp@subsup{A}{}{\prime}\mathrm{ where }A**\mp@subsup{A}{}{\prime}=mat1 and \mp@subsup{A}{}{\prime}**A=mat
using assms unfolding invertible_def by auto
with <k\not=0\rangle
have (k*\mp@subsup{*}{R}{}A)** ((1/k)\mp@subsup{*}{R}{}\mp@subsup{A}{}{\prime})=m\mathrm{ mat 1 ((1/k)*RA A')** (k**R A) = mat 1}
by (simp_all add: assms matrix_scalar_ac)
thus invertible (}k\mp@subsup{*}{R}{}A\mathrm{)
unfolding invertible_def by auto
qed
proposition scalar_invertible_iff:
fixes }A::('a::real_algebra_1) ^' m ^'n
assumes k\not=0 and invertible A
shows invertible (}k\mp@subsup{*}{R}{}A)\longleftrightarrowk\not=0\wedge invertible
by (simp add: assms scalar_invertible)
lemma vector_transpose_matrix [simp]: x v* transpose A=A*vx
unfolding transpose_def vector_matrix_mult_def matrix_vector_mult_def
by simp
lemma transpose_matrix_vector [simp]: transpose A *v x =x v* A
unfolding transpose_def vector_matrix_mult_def matrix_vector_mult_def
by simp

```
```

lemma vector_scalar_commute:
fixes }A::' 'a::{field} `' m ^' n
shows A*v(c*s x)=c*s(A*vx)
by (simp add: vector_scalar_mult_def matrix_vector_mult_def mult_ac sum_distrib_left)
lemma scalar_vector_matrix_assoc:
fixes }k::'a::{field} and x :: 'a::{field } ^' n and A :: ' a ^' m ^' n
shows (k*sx)v*A=k*s(xv*A)
by (metis transpose_matrix_vector vector_scalar_commute)
lemma vector_matrix_mult_0 [simp]: 0 v* A = 0
unfolding vector_matrix_mult_def by (simp add:zero_vec_def)
lemma vector_matrix_mult_0_right [simp]: x v* 0=0
unfolding vector_matrix_mult_def by (simp add:zero_vec_def)
lemma vector_matrix_mul_rid [simp]:
fixes v :: ('a::semiring_1) ^'n
shows v v* mat 1 = v
by (metis matrix_vector_mul_lid transpose_mat vector_transpose_matrix)
lemma scaleR_vector_matrix_assoc:
fixes }k:: real and x :: real ^^ n and A :: real ^'m ^^'
shows (k\mp@subsup{*}{R}{}x)v*A=k\mp@subsup{*}{R}{}(xv*A)
by (metis matrix_vector_mult_scaleR transpose_matrix_vector)
proposition vector_scaleR_matrix_ac:
fixes }k::\mathrm{ real and }x::\mp@subsup{\mathrm{ real }}{}{\wedge}n\mathrm{ and }A:: real ^' m ^' n
shows xv* (k*RA)=k**
proof -
have x v* (k*R}A)=(k\mp@subsup{*}{R}{}x)v*
unfolding vector_matrix_mult_def
by (simp add: algebra_simps)
with scaleR_vector_matrix_assoc
show x v* (k**RA)=k*R}(xv*A
by auto
qed
end

```

\subsection*{1.9 Linear Algebra on Finite Cartesian Products}

\author{
theory Cartesian_Space \\ imports \\ Finite_Cartesian_Product Linear_Algebra \\ begin
}
```

1.9.1 Type ('a, ' }n\mathrm{) vec and fields as vector spaces
definition cart_basis ={axis i 1 | i. i\inUNIV }
lemma finite_cart_basis: finite (cart_basis) unfolding cart_basis_def
using finite_Atleast_Atmost_nat by fastforce
lemma card_cart_basis: card (cart_basis::('a::zero_neq_one ^'i) set) = CARD('i)
unfolding cart_basis_def Setcompr_eq_image
by (rule card_image) (auto simp: inj_on_def axis_eq_axis)
interpretation vec: vector_space (*s)
by unfold_locales (vector algebra_simps)+
lemma independent_cart_basis:
vec.independent (cart_basis)
proof (rule vec.independent_if_scalars_zero)
show finite (cart_basis) using finite_cart_basis .
fix f::('a, 'b) vec => ' ' a and x::('a,'b) vec
assume eq_0:(\sumx\incart_basis. f x *s x) = 0 and x_in: x f cart_basis
obtain i}\mathrm{ where x: x= axis i 1 using x_in unfolding cart_basis_def by auto
have sum_eq_0: (\sumx\in(cart_basis) - {x}.f x* (x \$ i)) = 0
proof (rule sum.neutral, rule ballI)
fix xa assume xa: xa \in cart_basis - {x}
obtain }a\mathrm{ where a:xa=axis a 1 and a_not_i: a}\not=
using xa x unfolding cart_basis_def by auto
have xa \$ i=0 unfolding a axis_def using a_not_i by auto
thus f xa*xa \$ i=0 by simp
qed
have 0=(\sumx\incart_basis.f }x*sx)$i\mathrm{ using eq_0 by simp
 also have ... = (\sumx\incart_basis. (fx*s x)$ i) unfolding sum_component ..
also have ... =(\sumx\incart_basis. f x* (x\$ i)) unfolding vector_smult_component
also have ... =fx*(x\$ i)+(\sumx\in(cart_basis) - {x}.fx*(x\$ i))
by (rule sum.remove[OF finite_cart_basis x_in])
also have ... = fx*(x\$i) unfolding sum_eq_0 by simp
also have ... =fx unfolding x axis_def by auto
finally show f x = 0 ..
qed
lemma span_cart_basis:
vec.span (cart_basis) = UNIV
proof (auto)
fix }x::('a,'b) ve
let ?f=\lambdav. x \$(THE i.v=axis i 1)
show }x\in\mathrm{ vec.span (cart_basis)
apply (unfold vec.span_finite[OF finite_cart_basis])
apply (rule image_eqI[of _ _ ?f])
apply (subst vec_eq_iff)
apply clarify

```
```

 proof -
 fix }i::'
 let ?w = axis i (1::'a)
 have the_eq_i: (THE a.?w = axis a 1) = i
 by (rule the_equality, auto simp: axis_eq_axis)
 have sum_eq_0:(\sumv\in(cart_basis) - {?w}.x $(THE i.v=axis i 1)*v$i)
 =0
proof (rule sum.neutral, rule ballI)
fix xa::('a, 'b) vec
assume xa: xa \incart_basis - {?w}
obtain j where j: xa = axis j 1 and i_not_j: i\not=j using xa unfolding
cart_basis_def by auto
have the_eq_j: (THE i. xa= axis i 1) =j
proof (rule the_equality)
show xa = axis j 1 using j .
show \i. xa = axis i 1 \Longrightarrowi=j by (metis axis_eq_axis j zero_neq_one)
qed
show x \$(THE i. xa=axis i 1)*xa \$ i=0
apply (subst (2) j)
unfolding the_eq_j unfolding axis_def using i_not_j by simp
qed
have (\sumv\incart_basis. x \$ (THE i.v=axis i 1)*s v)\$i=
(\sumv\incart_basis. (x \$ (THE i.v = axis i 1)*s v)\$ i) unfolding sum_component
also have ... =(\sumv\incart_basis. x $(THE i.v=axis i 1)*v$ i)
unfolding vector_smult_component ..
also have ···.. =x $(THE a.?w = axis a 1)*?w$ i+(\sumv\in(cart_basis) -
{?w}.x $(THE i.v=axis i 1)*v$ i)
by (rule sum.remove[OF finite_cart_basis], auto simp add: cart_basis_def)
also have ... = x \$(THE a. ?w = axis a 1)* ?w \$ i unfolding sum_eq_0 by
simp
also have ... = x \$ i unfolding the_eq_i unfolding axis_def by auto
finally show x \$ i=(\sumv\incart_basis. x $(THE i.v=axis i 1)*sv)$ i by
simp
qed simp
qed
interpretation vec: finite_dimensional_vector_space ($* s$) cart_basis
by (unfold_locales, auto simp add: finite_cart_basis independent_cart_basis span_cart_basis)
lemma matrix_vector_mul_linear_gen[intro, simp]:
Vector_Spaces.linear $(* s)(* s)((* v)$ A)
by unfold_locales
(vector matrix_vector_mult_def sum.distrib algebra_simps)+
lemma span_vec_eq: vec.span $X=$ span X
and dim_vec_eq: vec.dim $X=\operatorname{dim} X$
and dependent_vec_eq: vec.dependent $X=$ dependent X

```
```

and subspace_vec_eq: vec.subspace X = subspace X
for }X::(real ^^ n) se
unfolding span_raw_def dim_raw_def dependent_raw_def subspace_raw_def
by (auto simp: scalar_mult_eq_scaleR)
lemma linear_componentwise:
fixes f:: 'a::field ^'}m=>'a\mp@subsup{}{}{\wedge}'
assumes lf:Vector_Spaces.linear (*s) (*s)f
shows (fx)$j = sum (\lambdai. (x$i)* (f (axis i 1)$j)) (UNIV :: 'm set) (is ?lhs =
?rhs)
proof -
 interpret lf:Vector_Spaces.linear (*s) (*s)f
 using lf .
 let ?M = (UNIV :: 'm set)
 let ?N = (UNIV :: 'n set)
 have fM: finite ?M by simp
 have ?rhs = (sum (\lambdai. (x$i)*s(f(axis i 1))) ?M)\$j
unfolding sum_component by simp
then show ?thesis
unfolding lf.sum[symmetric] lf.scale[symmetric]
unfolding basis_expansion by auto
qed
interpretation vec: Vector_Spaces.linear (*s) (*s) (*v) A
using matrix_vector_mul_linear_gen.

```
interpretation vec: finite_dimensional_vector_space_pair (*s) cart_basis (*s) cart_basis
..
lemma matrix_works:
    assumes lf: Vector_Spaces.linear \((* s)(* s) f\)
    shows matrix \(f * v x=f\left(x::{ }^{\prime} a::\right.\) field \(\left.{ }^{\wedge} ' n\right)\)
    apply (simp add: matrix_def matrix_vector_mult_def vec_eq_iff mult.commute)
    apply clarify
    apply (rule linear_componentwise[OF lf, symmetric])
    done
lemma matrix_of_matrix_vector_mul[simp]: matrix \(\left(\lambda x . A * v\left(x::{ }^{\prime} a::\right.\right.\) field \(\left.\left.{ }^{\wedge} ' n\right)\right)\)
\(=A\)
    by (simp add: matrix_eq matrix_works)
lemma matrix_compose_gen:
    assumes \(l f\) : Vector_Spaces.linear \((* s)(* s)\left(f::^{\prime} a::\{\right.\) field \(\left.\}{ }^{\wedge} n \Rightarrow{ }^{\prime} a^{\wedge} m\right)\)
        and \(l g\) : Vector_Spaces.linear \((* s)(* s)\left(g::^{\prime} a^{\wedge} m \Rightarrow{ }^{\prime} a^{\wedge}{ }^{\wedge}\right)\)
    shows matrix \((g \circ f)=\) matrix \(g * *\) matrix \(f\)
    using lf lg Vector_Spaces.linear_compose[OF lf lg] matrix_works[OF Vector_Spaces.linear_compose[OF
lf \(l g]\) ]
    by (simp add: matrix_eq matrix_works matrix_vector_mul_assoc[symmetric] o_def)
```

lemma matrix_compose:
assumes linear (}f::\mathrm{ :real ^}n=>\mp@subsup{raal ^}{}{\wedge}m\mathrm{) linear (}g::\mp@subsup{\mathrm{ real^'}}{}{\prime}m=>\mp@subsup{\mathrm{ real }}{}{\wedge}-
shows matrix (gof)= matrix g ** matrix f
using matrix_compose_gen[of f g] assms
by (simp add: linear_def scalar_mult_eq_scaleR)

```
lemma left_invertible_transpose:
    \((\exists(B) . B\) ** transpose \((A)=\) mat \((1:: ' a::\) comm_semiring_1 \()) \longleftrightarrow(\exists(B) . A * *\)
\(B=\) mat 1)
    by (metis matrix_transpose_mul transpose_mat transpose_transpose)
lemma right_invertible_transpose:
    \((\exists(B)\). transpose \((A) * * B=\) mat \((1:: ' a::\) comm_semiring_1 1\()) \longleftrightarrow(\exists(B) . B * *\)
\(A=\) mat 1)
    by (metis matrix_transpose_mul transpose_mat transpose_transpose)
lemma linear_matrix_vector_mul_eq:
    Vector_Spaces.linear \((* s)(* s) f \longleftrightarrow\) linear \(\left(f::\right.\) real \({ }^{\prime} n \Rightarrow\) real \({ }^{\wedge} m\) )
    by (simp add: scalar_mult_eq_scaleR linear_def)
lemma matrix_vector_mul[simp]:
    Vector_Spaces.linear \((* s)(* s) g \Longrightarrow(\lambda y\). matrix \(g * v y)=g\)
    linear \(f \Longrightarrow(\lambda x\). matrix \(f * v x)=f\)
    bounded_linear \(f \Longrightarrow(\lambda x\). matrix \(f * v x)=f\)
    for \(f::\) real \({ }^{\wedge} n \Rightarrow\) real \({ }^{\wedge} m\)
    by (simp_all add: ext matrix_works linear_matrix_vector_mul_eq linear_linear)
lemma matrix_left_invertible_injective:
    fixes \(A\) :: ' \(a::\) field \({ }^{\wedge} n^{\wedge}{ }^{\prime} m\)
    shows \((\exists B . B * * A=\) mat 1\() \longleftrightarrow \operatorname{inj}((* v) A)\)
proof safe
    fix \(B\)
    assume \(B: B * * A=\) mat 1
    show inj \(((* v) A)\)
        unfolding inj_on_def
            by (metis B matrix_vector_mul_assoc matrix_vector_mul_lid)
next
    assume \(i n j((* v) A)\)
    from vec.linear_injective_left_inverse[OF matrix_vector_mul_linear_gen this]
    obtain \(g\) where Vector_Spaces.linear \((* s)(* s) g\) and \(g: g \circ(* v) A=i d\)
        by blast
    have matrix \(g * * A=\) mat 1
        by (metis matrix_vector_mul_linear_gen 〈Vector_Spaces.linear (*s) (*s) g) g
matrix_compose_gen
                matrix_eq matrix_id_mat_1 matrix_vector_mul(1))
    then show \(\exists B . B * * A=\) mat 1
        by metis
qed
lemma matrix_left_invertible_ker:
\(\left(\exists B .\left(B::^{\prime} a::\{\right.\right.\) field \(\left.\}{ }^{\wedge \prime} m^{\wedge} n\right) * *\left(A::^{\prime} a::\{\text { field }\}^{\wedge} n^{\wedge} n^{\prime} m\right)=\) mat 1\() \longleftrightarrow(\forall x . A * v\) \(x=0 \longrightarrow x=0\) )
unfolding matrix_left_invertible_injective
using vec.inj_on_iff_eq_ \(O[\) OF vec.subspace_UNIV, of \(A]\)
by (simp add: inj_on_def)
lemma matrix_right_invertible_surjective:
\(\left(\exists B .\left(A::^{\prime} a::\right.\right.\) field \(\left.^{\wedge \prime} n^{\wedge \prime} m\right) * *\left(B::^{\prime} a:: f i e l{ }^{\wedge} m^{\wedge} n\right)=\) mat 1\() \longleftrightarrow \operatorname{surj}(\lambda x . A * v x)\)
proof -
\(\left\{\operatorname{fix} B::{ }^{\prime} a{ }^{\wedge}{ }^{\prime} m^{\wedge} n\right.\)
assume \(A B: A * * B=\) mat 1
\{ fix \(x::^{\prime} a^{\wedge}{ }^{\prime} m\) have \(A * v(B * v x)=x\)
by (simp add: matrix_vector_mul_assoc \(A B)\}\)
hence \(\operatorname{surj}((* v) A)\) unfolding surj_def by metis \(\}\)
moreover
\{ assume sf: surj \(((* v) A)\)
from vec.linear_surjective_right_inverse \([O F\) _ this]
obtain \(g::{ }^{\prime} a{ }^{\wedge} m \Rightarrow{ }^{\prime} a^{\wedge} n\) where \(g\) : Vector_Spaces.linear \((* s)(* s) g(* v) A\)
- \(g=i d\)
by blast
have \(A * *(\) matrix \(g)=\) mat 1
unfolding matrix_eq matrix_vector_mul_lid
matrix_vector_mul_assoc[symmetric] matrix_works[OF g(1)]
using \(g(2)\) unfolding o_def fun_eq_iff id_def
hence \(\exists B . A\) ** \(\left(B::^{\prime} a^{\wedge} m^{\wedge} n\right)=\) mat 1 by blast
\}
ultimately show ?thesis unfolding surj_def by blast
qed
lemma matrix_left_invertible_independent_columns:
fixes \(A::^{\prime} a::\{\) field \(\}{ }^{\wedge} n^{\wedge}{ }^{\prime} m\)
shows \(\left(\exists\left(B::^{\prime} a{ }^{\wedge} m^{\wedge} n\right) . B * * A=\right.\) mat 1\() \longleftrightarrow\)
\((\forall c \operatorname{sum}(\lambda i . c i * s\) column \(i A)(U N I V:: ' n\) set \()=0 \longrightarrow(\forall i . c i=0))\)
(is?lhs \(\longleftrightarrow\) ? \(r h s\) )
proof -
let ? \(U=U N I V::\) ' \(n\) set
\{ assume \(k: \forall x . A * v x=0 \longrightarrow x=0\)
\{ fix \(c i\)
assume \(c: \operatorname{sum}(\lambda i . c i * s\) column \(i A) ? U=0\) and \(i: i \in ? U\)
let ? \(x=\chi\) i. c \(i\)
have th \(0: A * v ? x=0\)
using \(c\)
by (vector matrix_mult_sum)
from \(k[\) rule_format, OF th0] \(i\)
have \(c i=0\) by (vector vec_eq_iff)\}
```

 hence ?rhs by blast \}
 moreover
 \{ assume \(H\) : ?rhs
 \{ fix \(x\) assume \(x: A * v x=0\)
 let \(? c=\lambda i\). \(\left((x \$ i)::^{\prime} a\right)\)
 from \(H\) [rule_format, of ? \(c\), unfolded matrix_mult_sum[symmetric], OF \(x]\)
 have \(x=0\) by vector \(\}\)
 \}
 ultimately show ?thesis unfolding matrix_left_invertible_ker by auto
 qed
lemma matrix_right_invertible_independent_rows:
fixes $A:: ' a::\{$ field $\}{ }^{\wedge} n^{\wedge \prime} m$
shows $\left(\exists\left(B::^{\prime} a^{\wedge} m^{\wedge} n\right) . A * * B=\right.$ mat 1$) \longleftrightarrow$
$(\forall c . \operatorname{sum}(\lambda i . c i * s$ row $i A)(U N I V:: ' m$ set $)=0 \longrightarrow(\forall i . c i=0))$
unfolding left_invertible_transpose[symmetric]
matrix_left_invertible_independent_columns
by (simp add:)
lemma matrix_right_invertible_span_columns:
$\left(\exists\left(B::^{\prime} a::\right.\right.$ field $\left.{ }^{\wedge} n^{\wedge} m\right) .\left(A::^{\prime} a^{\wedge} m^{\wedge} n\right) * * B=$ mat 1$) \longleftrightarrow$
vec.span $($ columns $A)=$ UNIV $($ is ?lhs $=$? $r h s)$
proof -
let ? $U=U N I V ~:: ~ ' m ~ s e t ~$
have $f U$: finite? U by simp
have lhseq: ?lhs $\longleftrightarrow\left(\forall y . \exists\left(x::^{\prime} a^{\wedge} m\right)\right.$. sum $(\lambda i .(x \$ i) * s$ column $\left.i A) ? U=y\right)$
unfolding matrix_right_invertible_surjective matrix_mult_sum surj_def
by (simp add: eq_commute)
have rhseq: ? $r h s \longleftrightarrow(\forall x . x \in$ vec.span (columns $A))$ by blast
\{ assume h : ?lhs
\{ fix $x::^{\prime} a{ }^{\wedge} n$
from $h[$ unfolded lhseq, rule_format, of $x]$ obtain $y::{ }^{\prime} a{ }^{\wedge} / m$
where $y: \operatorname{sum}(\lambda i .(y \$ i) * s$ column $i A)$? $U=x$ by blast
have $x \in$ vec.span (columns A)
unfolding y [symmetric] scalar_mult_eq_scaleR
proof (rule vec.span_sum [OF vec.span_scale])
show column i $A \in$ vec.span (columns A) for i
using columns_def vec.span_superset by auto
qed
\}
then have ?rhs unfolding rhseq by blast \}
moreover
\{ assume h :?rhs
let ? $P=\lambda\left(y::^{\prime} a{ }^{\wedge} n\right) . \exists\left(x::^{\prime} a^{\wedge} m\right)$. sum $(\lambda i .(x \$ i) * s$ column $i A)$? $U=y$
$\{$ fix y
have $y \in$ vec.span (columns A)
unfolding h by blast
then have ? P y
proof (induction rule: vec.span_induct_alt)

```
```

 case base
 then show ?case
 by (metis (full_types) matrix_mult_sum matrix_vector_mult_0_right)
 next
case (step c y1 y2)
from step obtain i where i: i\in?U y1= column i A
unfolding columns_def by blast
obtain x:: 'a ^'m where x: sum (\lambdai. (x$i)*s column i A) ?U = y2
 using step by blast
 let ? }x=(\chij.\mathrm{ if }j=i\mathrm{ then }c+(x$i) else (x$j))::'\mp@subsup{a}{}{\prime\prime}
 show ?case
 proof (rule exI[where x= ? x], vector, auto simp add: i x[symmetric]
if_distrib distrib_left if_distribR cong del: if_weak_cong)
 fix j
 have th: }\forallxa\in?U.(if xa=i then (c+(x$i))*((column xa A)$j
 else (x$xa) * ((column xa A$j))) = (if xa=i then c * ((column i A)$j)
else 0) + ((x$xa) * ((column xa A)$j))
using i(1) by (simp add: field_simps)
have sum (\lambdaxa. if xa = i then (c+(x$i))*((column xa A)$j)
else (x$xa)* ((column xa A$j))) ?U = sum (\lambdaxa. (if xa=i then c *
((column i A)$j) else 0) + ((x$xa)*((column xa A)$j))) ?U
 by (rule sum.cong[OF refl]) (use th in blast)
 also have ... = sum (\lambdaxa. if xa=i then c*((column i A)$j) else 0) ?U

+ sum (\lambdaxa. ((x$xa)* ((column xa A)$j))) ?U
by (simp add: sum.distrib)
also have ... =c*((column i A)$j) + sum (\lambdaxa. ((x$xa) * ((column xa
A)$j))) ?U
 unfolding sum.delta[OF fU]
 using i(1) by simp
 finally show sum (}\lambdaxa.\mathrm{ if xa = i then (c+(x$i))*((column xa A)$j)
 else (x$xa)* ((column xa A$j))) ?U = c * ((column i A)$j) + sum
(\lambdaxa. ((x$xa) * ((column xa A)$j))) ?U .
qed
qed
}
then have ?lhs unfolding lhseq ..
}
ultimately show ?thesis by blast
qed
lemma matrix_left_invertible_span_rows_gen:
(\exists(B::'a^'m^'n). B ** (A::'a::field}\mp@subsup{|}{}{\prime}\mp@subsup{n}{}{\wedge\prime}m)=\mathrm{ mat 1) 山 vec.span (rows A) =
UNIV
unfolding right_invertible_transpose[symmetric]
unfolding columns_transpose[symmetric]
unfolding matrix_right_invertible_span_columns

```
lemma matrix_left_invertible_span_rows:
\(\left(\exists\left(B::\right.\right.\) real \(\left.^{\wedge \prime} m^{\wedge} n\right) . B * *\left(A::\right.\) real \(\left.{ }^{\wedge} n^{\wedge} n^{\prime} m\right)=\) mat 1\() \longleftrightarrow\) span \((\) rows \(A)=\) UNIV using matrix_left_invertible_span_rows_gen \([\) of \(A]\) by (simp add: span_vec_eq)
lemma matrix_left_right_inverse:
fixes \(A A^{\prime}::{ }^{\prime} a::\{\text { field }\}^{\wedge} n^{\wedge} n\)
shows \(A * * A^{\prime}=\) mat \(1 \longleftrightarrow A^{\prime} * * A=\) mat 1
proof -
\(\left\{\right.\) fix \(A A^{\prime}::{ }^{\prime} a{ }^{\wedge} n^{\wedge} n\)
assume \(A A^{\prime}: A * * A^{\prime}=\) mat 1
have \(s A: \operatorname{surj}((* v) A)\)
using \(A A^{\prime}\) matrix_right_invertible_surjective by auto
from vec.linear_surjective_isomorphism[OF matrix_vector_mul_linear_gen sA]
obtain \(f^{\prime}::^{\prime} a{ }^{\wedge \prime} n \Rightarrow{ }^{\prime} a{ }^{\wedge \prime} n\)
where \(f^{\prime}:\) Vector_Spaces.linear \((* s)(* s) f^{\prime} \forall x . f^{\prime}(A * v x)=x \forall x . A * v f^{\prime}\)
\(x=x\) by blast
have th: matrix \(f^{\prime} * * A=\) mat 1
by (simp add: matrix_eq matrix_works \(\left[O F f^{\prime}(1)\right]\)
matrix_vector_mul_assoc \([\) symmetric \(] f^{\prime}(2)[\) rule_format \(\left.]\right)\)
hence (matrix \(f^{\prime}\) ** \(A\) ) ** \(A^{\prime}=\) mat \(1 * * A^{\prime}\) by simp
hence matrix \(f^{\prime}=A^{\prime}\)
by (simp add: matrix_mul_assoc[symmetric] \(A A^{\prime}\) )
hence matrix \(f^{\prime} * * A=A^{\prime} * * A\) by simp
hence \(A^{\prime} * * A=\) mat 1 by (simp add: th)
\}
then show ?thesis by blast
qed
lemma invertible_left_inverse:
fixes \(A::\) ' \(a::\{\) field \(\}{ }^{\wedge} n^{\wedge} n\)
shows invertible \(A \longleftrightarrow\left(\exists\left(B::^{\prime} a^{\wedge} n^{\wedge} n\right) . B * * A=\right.\) mat 1\()\)
by (metis invertible_def matrix_left_right_inverse)
lemma invertible_right_inverse:
fixes \(A::{ }^{\prime} a::\{\) field \(\}{ }^{\wedge} n^{\wedge} n\)
shows invertible \(A \longleftrightarrow\left(\exists\left(B::^{\prime} a^{\wedge} n^{\wedge} n^{\prime} n\right) . A * * B=\right.\) mat 1\()\)
by (metis invertible_def matrix_left_right_inverse)
lemma invertible_mult:
assumes inv_A: invertible \(A\)
and inv_B: invertible \(B\)
shows invertible \((A * * B)\)
proof -
obtain \(A^{\prime}\) where \(A A^{\prime}: A * * A^{\prime}=\) mat 1 and \(A^{\prime} A: A^{\prime} * * A=\) mat 1
using inv_A unfolding invertible_def by blast
obtain \(B^{\prime}\) where \(B B^{\prime}: B * * B^{\prime}=\) mat 1 and \(B^{\prime} B: B^{\prime} * * B=\) mat 1
using inv_ \(B\) unfolding invertible_def by blast
show ?thesis
proof (unfold invertible_def, rule exI[of _ \(\left.B^{\prime} * * A^{\prime}\right]\), rule conjI)
have \(A * * B * *\left(B^{\prime} * * A^{\prime}\right)=A * *\left(B * *\left(B^{\prime} * * A^{\prime}\right)\right)\)
using matrix_mul_assoc[of \(A B\left(B^{\prime} * * A^{\prime}\right)\), symmetric \(]\).
also have \(\ldots=A * *\left(B * * B^{\prime} * * A^{\prime}\right)\) unfolding matrix_mul_assoc \(\left[\right.\) of \(\left.B B^{\prime} A^{\prime}\right]\)
also have \(\ldots=A * *\left(\right.\) mat \(\left.1 * * A^{\prime}\right)\) unfolding \(B B^{\prime}\)..
also have \(\ldots=A * * A^{\prime}\) unfolding matrix_mul_lid ..
also have \(\ldots=\) mat 1 unfolding \(A A^{\prime}\)..
finally show \(A * * B * *\left(B^{\prime} * * A^{\prime}\right)=\operatorname{mat}\left(1::^{\prime} a\right)\).
have \(B^{\prime}{ }^{* *} A^{\prime} * *(A * * B)=B^{\prime} * *\left(A^{\prime} * *(A * * B)\right)\) using matrix_mul_assoc[of \(B^{\prime} A^{\prime}(A * * B)\), symmetric \(]\).
also have \(\ldots=B^{\prime} * *\left(A^{\prime} * * A * * B\right)\) unfolding matrix_mul_assoc[of \(\left.A^{\prime} A B\right]\)
..
also have \(\ldots=B^{\prime} * *(\) mat \(1 * * B)\) unfolding \(A^{\prime} A\)..
also have \(\ldots=B^{\prime} * * B\) unfolding matrix_mul_lid ..
also have \(\ldots=\) mat 1 unfolding \(B^{\prime} B .\).
finally show \(B^{\prime} * * A^{\prime} * *(A * * B)=\) mat 1 .
qed
qed
lemma transpose_invertible:
fixes \(A\) :: real \({ }^{\wedge} n n^{\wedge} n\)
assumes invertible \(A\)
shows invertible (transpose A)
by (meson assms invertible_def matrix_left_right_inverse right_invertible_transpose)
lemma vector_matrix_mul_assoc:
fixes \(v::\left({ }^{\prime} a:: \text { comm_semiring_1 }\right)^{\wedge} n\)
shows \((v v * M) v * N=v v *(M * * N)\)
proof -
from matrix_vector_mul_assoc
have transpose \(N * v(\) transpose \(M * v v)=(\) transpose \(N * *\) transpose \(M) * v v\)
by fast
thus \((v v * M) v * N=v v *(M * * N)\)
by (simp add: matrix_transpose_mul [symmetric])
qed
lemma matrix_scaleR_vector_ac:
fixes \(A::\) real \(^{\wedge}\left({ }^{\prime} m:: f i n i t e\right)^{\wedge} n\)
shows \(A * v\left(k *_{R} v\right)=k *_{R} A * v v\)
by (metis matrix_vector_mult_scaleR transpose_scalar vector_scaleR_matrix_ac vec-
tor_transpose_matrix)
lemma scaleR_matrix_vector_assoc:
fixes \(A::\) real \(^{\wedge}(\text { ' } m:: \text { finite })^{\wedge} n\)
shows \(k *_{R}(A * v v)=k *_{R} A * v v\)
by (metis matrix_scaleR_vector_ac matrix_vector_mult_scaleR)
locale linear_first_finite_dimensional_vector_space \(=\)
```

 l?: Vector_Spaces.linear scaleB scaleC f +
 B?: finite_dimensional_vector_space scaleB BasisB
 for scaleB :: ('a::field => 'b::ab_group_add => 'b) (infixr *b 75)
 and scaleC :: (' }a=>>'c::ab_group_add => 'c)(infixr *c 75)
 and BasisB :: ('b set)
 and f ::('b=>'c)
 lemma vec_dim_card: vec.dim (UNIV::('a::{field} ^' n) set) = CARD ('n)
proof -
let ?f=\lambdai::'n. axis i (1::'a)
have vec.dim (UNIV::('a::{field} ^'}n) set) = card (cart_basis::('a^'n) set
unfolding vec.dim_UNIV ..
also have ... = \operatorname{card}({i.i\inUNIV}::('n) set)
proof (rule bij_betw_same_card[of ?f, symmetric], unfold bij_betw_def, auto)
show inj (\lambdai::'n. axis i (1::'a)) by (simp add: inj_on_def axis_eq_axis)
fix }i::'
show axis i 1 \in cart_basis unfolding cart_basis_def by auto
fix }x::\mp@subsup{:}{}{\prime}\mp@subsup{a}{}{\wedge}
assume x \in cart_basis
thus }x\in\mathrm{ range (}\lambdai\mathrm{ . axis i 1) unfolding cart_basis_def by auto
qed
also have ... = CARD('n) by auto
finally show ?thesis .
qed
interpretation vector_space_over_itself:vector_space (*) :: 'a::field = ' }a>>'\mp@code{'a
by unfold_locales (simp_all add: algebra_simps)
lemmas [simp del] = vector_space_over_itself.scale_scale
interpretation vector_space_over_itself: finite_dimensional_vector_space
(*) :: 'a::field => ' }a=> 'a{1
by unfold_locales (auto simp: vector_space_over_itself.span_singleton)
lemma dimension_eq_1 [code_unfold]: vector_space_over_itself.dimension TYPE('a::field)=
1
unfolding vector_space_over_itself.dimension_def by simp
lemma dim_subset_UNIV_cart_gen:
fixes }S::('a::field^'n) se
shows vec.dim S \leqCARD(' }n
by (metis vec.dim_eq_full vec.dim_subset_UNIV vec.span_UNIV vec_dim_card)
lemma dim_subset_UNIV_cart:
fixes S :: (real^'n) set
shows }\operatorname{dim}S\leqCARD('n
using dim_subset_UNIV_cart_gen[of S] by (simp add: dim_vec_eq)
Two sometimes fruitful ways of looking at matrix-vector multiplication.

```
```

lemma matrix_mult_dot: }A*vx=(\chi\mathrm{ i. inner (A\$i) x)
by (simp add: matrix_vector_mult_def inner_vec_def)
lemma adjoint_matrix: adjoint (}\lambdax.(A::\mp@subsup{real }{}{\wedge\prime}\mp@subsup{n}{}{\wedge\prime}m)*vx)=(\lambdax. transpose A *
x)
apply (rule adjoint_unique)
apply (simp add: transpose_def inner_vec_def matrix_vector_mult_def
sum_distrib_right sum_distrib_left)
apply (subst sum.swap)
apply (simp add: ac_simps)
done
lemma matrix_adjoint: assumes lf: linear (}f:: real^\prime n=> real ^' m
shows matrix(adjoint f)=transpose(matrix f)
proof -
have matrix(adjoint f)= matrix(adjoint ((*v) (matrix f)))
by (simp add:lf)
also have ... = transpose(matrix f)
unfolding adjoint_matrix matrix_of_matrix_vector_mul
apply rule
done
finally show ?thesis .
qed

```

\subsection*{1.9.2 Rank of a matrix}

Equivalence of row and column rank is taken from George Mackiw's paper, Mathematics Magazine 1995, p. 285.
lemma matrix_vector_mult_in_columnspace_gen:
fixes \(A::\) ' \(a:: f i e l d{ }^{\wedge} n{ }^{\wedge}{ }^{\wedge} m\)
shows \((A * v x) \in\) vec.span(columns \(A\) )
apply (simp add: matrix_vector_column columns_def transpose_def column_def) apply (intro vec.span_sum vec.span_scale) apply (force intro: vec.span_base) done
lemma matrix_vector_mult_in_columnspace:
fixes \(A\) :: real^^ \(n^{\wedge}{ }^{\wedge} m\)
shows \((A * v x) \in \operatorname{span}(\) columns \(A)\)
using matrix_vector_mult_in_columnspace_gen[of \(A x]\) by (simp add: span_vec_eq)
lemma subspace_orthogonal_to_vector: subspace \(\{y\). orthogonal \(x y\}\)
by (simp add: subspace_def orthogonal_clauses)
lemma orthogonal_nullspace_rowspace:
fixes \(A::\) real \(^{\wedge} n^{\wedge}{ }^{\prime} m\)
assumes \(0: A * v x=0\) and \(y: y \in \operatorname{span}(\) rows \(A)\)
shows orthogonal \(x\) y
using \(y\)
```

proof (induction rule: span_induct)
case base
then show ?case
by (simp add: subspace_orthogonal_to_vector)
next
case (step v)
then obtain i where $v=$ row $i A$
by (auto simp: rows_def)
with 0 show ?case
unfolding orthogonal_def inner_vec_def matrix_vector_mult_def row_def
by (simp add: mult.commute) (metis (no_types) vec_lambda_beta zero_index)
qed
lemma nullspace_inter_rowspace:
fixes A :: real ${ }^{\wedge} n^{\wedge}{ }^{\wedge} m$
shows $A * v x=0 \wedge x \in \operatorname{span}($ rows $A) \longleftrightarrow x=0$
using orthogonal_nullspace_rowspace orthogonal_self span_zero matrix_vector_mult_0_right
by blast
lemma matrix_vector_mul_injective_on_rowspace:
fixes A :: real^' $n{ }^{\wedge} m$
shows $\llbracket A * v x=A * v y ; x \in \operatorname{span}($ rows $A) ; y \in \operatorname{span}($ rows $A) \rrbracket \Longrightarrow x=y$
using nullspace_inter_rowspace [of $A x-y$]
by (metis diff_eq_diff_eq diff_self matrix_vector_mult_diff_distrib span_diff)
definition rank :: 'a::field ${ }^{\wedge} n^{\wedge}{ }^{\prime} m=>n a t$
where row_rank_def_gen: rank $A \equiv$ vec.dim(rows A)
lemma row_rank_def: rank $A=\operatorname{dim}($ rows $A)$ for $A::$ real^ ${ }^{\wedge} n^{\wedge} m$
by (auto simp: row_rank_def_gen dim_vec_eq)
lemma dim_rows_le_dim_columns:
fixes A :: real^' $n{ }^{\wedge} m$
shows $\operatorname{dim}($ rows $A) \leq \operatorname{dim}($ columns $A)$
proof -
have $\operatorname{dim}(\operatorname{span}($ rows $A)) \leq \operatorname{dim}(\operatorname{span}($ columns $A))$
proof -
obtain B where independent $B \operatorname{span}($ rows $A) \subseteq \operatorname{span} B$
and $B: B \subseteq \operatorname{span}($ rows $A) \operatorname{card} B=\operatorname{dim}(\operatorname{span}($ rows $A))$
using basis_exists $[$ of span(rows A)] by metis
with span_subspace have eq: span $B=\operatorname{span}($ rows $A)$
by auto
then have inj: inj_on $((* v) A)(\operatorname{span} B)$
by (simp add: inj_on_def matrix_vector_mul_injective_on_rowspace)
then have ind: independent $((* v) A$ ' $B)$
by (rule linear_independent_injective_image [OF Finite_Cartesian_Product.matrix_vector_mul_linear
<independent B〉])
have $\operatorname{dim}($ span $($ rows $A)) \leq \operatorname{card}((* v) A \cdot B)$
unfolding $B(2)[$ symmetric]

```
```

 using inj
 by (auto simp: card_image inj_on_subset span_superset)
 also have ... \leq dim (span (columns A))
 using - ind
 by (rule independent_card_le_dim) (auto intro!: matrix_vector_mult_in_columnspace)
 finally show ?thesis .
 qed
 then show ?thesis
 by (simp)
 qed
lemma column_rank_def:
fixes }A\mathrm{ :: real^' }\mp@subsup{n}{}{\wedge}
shows rank A = dim(columns A)
unfolding row_rank_def
by (metis columns_transpose dim_rows_le_dim_columns le_antisym rows_transpose)
lemma rank_transpose:
fixes }A\mathrm{ :: real^' }n\mathrm{ ^' }
shows rank(transpose A) = rank A
by (metis column_rank_def row_rank_def rows_transpose)
lemma matrix_vector_mult_basis:
fixes }A:: real^' n^'
shows A*v (axis k 1) = column k A
by (simp add: cart_eq_inner_axis column_def matrix_mult_dot)
lemma columns_image_basis:
fixes }A:: real^^ n ^'
shows columns A=(*v) A'(range (\lambdai.axis i 1))
by (force simp: columns_def matrix_vector_mult_basis [symmetric])
lemma rank_dim_range:
fixes }A:: real^^ n ^'m
shows rank A = dim(range (}\lambdax.A*vx)
unfolding column_rank_def
proof (rule span_eq_dim)
have span (columns A)\subseteq span (range ((*v)A)) (is ?l \subseteq?r)
by (simp add: columns_image_basis image_subsetI span_mono)
then show ?l = ?r
by (metis (no_types, lifting) image_subset_iff matrix_vector_mult_in_columnspace
span_eq span_span)
qed
lemma rank_bound:
fixes }A\mathrm{ :: real^' }\mp@subsup{n}{}{\wedge\prime}
shows rank A \leq min CARD('m) (CARD('n))
by (metis (mono_tags, lifting) dim_subset_UNIV_cart min.bounded_iff
column_rank_def row_rank_def)

```
```

lemma full_rank_injective:
fixes A :: real^' $n^{\wedge} m$
shows rank $A=C A R D\left({ }^{\prime} n\right) \longleftrightarrow i n j((* v) A)$

```
    by (simp add: matrix_left_invertible_injective [symmetric] matrix_left_invertible_span_rows
row_rank_def
        dim_eq_full [symmetric] card_cart_basis vec.dimension_def)
lemma full_rank_surjective:
    fixes \(A\) :: real^' \(n{ }^{\wedge} m\)
    shows rank \(A=C A R D(' m) \longleftrightarrow \operatorname{surj}((* v) A)\)
    by (simp add: matrix_right_invertible_surjective [symmetric] left_invertible_transpose
[symmetric]
                matrix_left_invertible_injective full_rank_injective [symmetric] rank_transpose)
lemma rank_I: rank(mat \(1::\) real \(\left.^{\wedge} n^{\wedge}{ }^{\prime} n\right)=C A R D\left({ }^{\prime} n\right)\)
    by (simp add: full_rank_injective inj_on_def)
lemma less_rank_noninjective:
    fixes \(A\) :: real^' \(n{ }^{\wedge} m\)
    shows rank \(A<C A R D\left({ }^{\prime} n\right) \longleftrightarrow \neg i n j((* v) A)\)
using less_le rank_bound by (auto simp: full_rank_injective [symmetric])
lemma matrix_nonfull_linear_equations_eq:
    fixes \(A\) :: real^' \(n^{\wedge} m\)
    shows \((\exists x .(x \neq 0) \wedge A * v x=0) \longleftrightarrow \operatorname{rank} A \neq C A R D(' n)\)
    by (meson matrix_left_invertible_injective full_rank_injective matrix_left_invertible_ker)
lemma rank_eq_ \(0: \operatorname{rank} A=0 \longleftrightarrow A=0\) and \(\operatorname{rank} 0\) [simp]: \(\operatorname{rank}\left(0::\right.\) real \(^{\wedge} n^{\wedge}{ }^{\wedge} m\) )
\(=0\)
    for \(A\) :: real \({ }^{\wedge} n^{\wedge \prime} m\)
    by (auto simp: rank_dim_range matrix_eq)
lemma rank_mul_le_right:
    fixes \(A\) :: real \({ }^{\wedge} n^{\wedge} m\) and \(B::\) real \({ }^{\wedge} p^{\wedge} n\)
    shows \(\operatorname{rank}(A * * B) \leq \operatorname{rank} B\)
proof -
    have \(\operatorname{rank}(A * * B) \leq \operatorname{dim}((* v) A\) 'range \(((* v) B))\)
        by (auto simp: rank_dim_range image_comp o_def matrix_vector_mul_assoc)
    also have \(\ldots \leq \operatorname{rank} B\)
        by (simp add: rank_dim_range dim_image_le)
    finally show ?thesis.
qed
lemma rank_mul_le_left:
    fixes \(A\) :: real \({ }^{\wedge} n^{\wedge}{ }^{\wedge} m\) and \(B::\) real \({ }^{\wedge} p^{\wedge} n\)
    shows \(\operatorname{rank}(A * * B) \leq \operatorname{rank} A\)
    by (metis matrix_transpose_mul rank_mul_le_right rank_transpose)

\subsection*{1.9.3 Lemmas for working on real^1/2/3/4}
lemma exhaust_2:
```

 fixes \(x\) :: 2
    ```
    shows \(x=1 \vee x=2\)
proof (induct \(x\) )
    case (of_int \(z\) )
    then have \(0 \leq z\) and \(z<2\) by simp_all
    then have \(z=0 \mid z=1\) by arith
    then show? ?ase by auto
qed
lemma forall_2: \((\forall i:: 2 . P i) \longleftrightarrow P 1 \wedge P 2\)
    by (metis exhaust_2)
lemma exhaust_3:
    fixes \(x:: 3\)
    shows \(x=1 \vee x=2 \vee x=3\)
proof (induct \(x\) )
    case (of_int z)
    then have \(0 \leq z\) and \(z<3\) by simp_all
    then have \(z=0 \vee z=1 \vee z=2\) by arith
    then show? case by auto
qed
lemma forall_3: \((\forall i:: 3 . P i) \longleftrightarrow P 1 \wedge P 2 \wedge P 3\)
    by (metis exhaust_3)
lemma exhaust_4:
    fixes \(x:: 4\)
    shows \(x=1 \vee x=2 \vee x=3 \vee x=4\)
proof (induct \(x\) )
    case (of_int z)
    then have \(0 \leq z\) and \(z<4\) by simp_all
    then have \(z=0 \vee z=1 \vee z=2 \vee z=3\) by arith
    then show ?case by auto
qed
lemma forall_4: \((\forall i:: 4 . P i) \longleftrightarrow P 1 \wedge P 2 \wedge P 3 \wedge P 4\)
    by (metis exhaust_4)
lemma UNIV_1 [simp]: UNIV \(=\{1:: 1\}\)
    by (auto simp add: num1_eq_iff)
lemma UNIV_2: \(U N I V=\{1:: 2,2:: 2\}\)
    using exhaust_2 by auto
lemma UNIV_3: UNIV \(=\{1:: 3,2:: 3,3:: 3\}\)
    using exhaust_3 by auto
```

lemma UNIV_4:UNIV ={1::4, 2::4, 3::4,4::4}
using exhaust_4 by auto
lemma sum_1: sum f(UNIV::1 set) = f 1
unfolding UNIV_1 by simp

```
lemma sum_2: sum \(f(U N I V:: 2\) set \()=f 1+f 2\)
    unfolding UNIV_2 by simp
lemma sum_3: sum \(f(\) UNIV ::3 set \()=f 1+f 2+f 3\)
    unfolding \(U N I V \_3\) by (simp add: ac_simps)
lemma sum_4: sum \(f(U N I V:: 4\) set \()=f 1+f 2+f 3+f 4\)
    unfolding \(U N I V \_4\) by (simp add: ac_simps)

\subsection*{1.9.4 The collapse of the general concepts to dimension one}
lemma vector_one: \(\left(x::^{\prime} a{ }^{\wedge} 1\right)=(\chi\) i. \((x \$ 1))\)
    by (simp add: vec_eq_iff)
```

lemma forall_one: $\left(\forall\left(x::^{\prime} a^{\wedge} 1\right) . P x\right) \longleftrightarrow(\forall x . P(\chi$ i. $x))$
apply auto
apply (erule_tac $x=x \$ 1$ in allE)
apply (simp only: vector_one[symmetric])
done

```
lemma norm_vector_1: norm ( \(x::\) _ \(\left.^{\wedge} 1\right)=\operatorname{norm}(x \$ 1)\)
    by (simp add: norm_vec_def)
lemma dist_vector_1:
    fixes \(x\) :: 'a::real_normed_vector^1
    shows dist \(x y=\operatorname{dist}(x \$ 1)(y \$ 1)\)
    by (simp add: dist_norm norm_vector_1)
lemma norm_real: norm \((x::\) real ^ 1\()=|x \$ 1|\)
    by (simp add: norm_vector_1)
lemma dist_real: dist \(\left(x::\right.\) real \(\left.{ }^{\wedge} 1\right) y=|(x \$ 1)-(y \$ 1)|\)
    by (auto simp add: norm_real dist_norm)
1.9.5 Routine results connecting the types (real, 1) vec and real
lemma vector_one_nth [simp]:
fixes \(x::\) ' \(a\) ^1 shows vec \((x \$ 1)=x\) by (metis vec_def vector_one)
lemma tendsto_at_within_vector_1:
fixes \(S\) :: 'a :: metric_space set
```

assumes $(f \longrightarrow f x)$ (at x within S)
shows $\left(\left(\lambda y::^{\prime} a^{\wedge} 1 . \chi\right.\right.$ i. $\left.f(y \$ 1)\right) \longrightarrow\left(\right.$ vec $\left.\left.f x::^{\prime} a^{\wedge} 1\right)\right)\left(\right.$ at $($ vec $x)$ within vec ${ }^{\prime}$
S)
proof (rule topological_tendstoI)
fix $T::\left({ }^{\prime} a^{\wedge} 1\right)$ set
assume open T vec $f x \in T$
have $\forall_{F} x$ in at x within S. $f x \in(\lambda x . x \$ 1)$ ' T
using <open $T\rangle\langle v e c f x \in T\rangle$ assms open_image_vec_nth tendsto_def by fastforce
then show $\forall_{F} x::^{\prime} a^{\wedge} 1$ in at (vec $\left.x\right)$ within vec ' $S .(\chi i . f(x \$ 1)) \in T$
unfolding eventually_at dist_norm [symmetric]
by (rule ex_forward)
(use 〈open $T\rangle$ in
〈fastforce simp: dist_norm dist_vec_def L2_set_def image_iff vector_one
open_vec_def $〉$)
qed
lemma has_derivative_vector_1:
assumes der_g: (g has_derivative $\left.\left(\lambda x . x * g^{\prime} a\right)\right)($ at a within $S)$
shows $\left((\lambda x\right.$ vec $(g(x \$ 1)))$ has_derivative $\left.\left(*_{R}\right)\left(g^{\prime} a\right)\right)$
(at ((vec a)::real^1) within vec ‘ S)
using $d e r_{-} g$
apply (auto simp: Deriv.has_derivative_within bounded_linear_scaleR_right norm_vector_1)
apply (drule tendsto_at_within_vector_1, vector)
apply (auto simp: algebra_simps eventually_at tendsto_def)
done

```

\section*{1．9．6 Explicit vector construction from lists}
definition vector \(l=(\chi\) i．foldr \((\lambda x f n\) ．fun＿upd \((f(n+1)) n x) l(\lambda n x .0) 1 i)\)
lemma vector＿1［simp］：（vector \([x]) \$ 1=x\)
unfolding vector＿def by simp
lemma vector＿2 \([\) simp \(]:(\) vector \([x, y]) \$ 1=x\left(v e c t o r[x, y]::{ }^{\prime} a^{\wedge} 2\right) \$ 2=\left(y::^{\prime} a:: z e r o\right)\)
unfolding vector＿def by simp＿all
lemma vector＿3［simp］：
（vector \(\left.[x, y, z]::\left({ }^{\prime} a:: \text { zero }\right)^{\wedge} 3\right) \$ 1=x\)
（vector \(\left.[x, y, z]::\left({ }^{\prime} a:: \text { zero }\right)^{\wedge} 3\right) \$ 2=y\)
（vector \(\left.[x, y, z]::(' a:: \text { zero })^{\wedge} 3\right) \$ 3=z\)
unfolding vector＿def by simp＿all
lemma forall＿vector＿1：\(\left(\forall v::^{\prime} a::\right.\) zero \(\left.^{\wedge} 1 . P v\right) \longleftrightarrow(\forall x . P(\) vector \([x]))\)
by（metis vector＿1 vector＿one）
lemma forall＿vector＿2：\(\left(\forall v::^{\prime} a::\right.\) zero \(\left.^{\wedge} 2 . P v\right) \longleftrightarrow(\forall x y . P(v e c t o r[x, y]))\)
apply auto
apply（erule＿tac \(x=v \$ 1\) in allE）
apply（erule＿tac \(x=v \$ 2\) in allE）
```

 apply (subgoal_tac vector \([v \$ 1, v \$ 2]=v\))
 apply simp
 apply (vector vector_def)
 apply (simp add: forall_2)
 done
 lemma forall_vector_3: $\left(\forall v::^{\prime} a::\right.$ zero $\left.^{\wedge} 3 . P v\right) \longleftrightarrow(\forall x y z . P(v e c t o r[x, y, z]))$
apply auto
apply (erule_tac $x=v \$ 1$ in allE)
apply (erule_tac $x=v \$ 2$ in allE)
apply (erule_tac $x=v \$ 3$ in allE)
apply (subgoal_tac vector $[v \$ 1, v \$ 2, v \$ 3]=v$)
apply simp
apply (vector vector_def)
apply (simp add: forall_3)
done

```

\subsection*{1.9.7 lambda skolemization on cartesian products}
```

lemma lambda_skolem: $(\forall i . \exists x . P i x) \longleftrightarrow$
$\left(\exists x::^{\prime} a^{\wedge}\right.$ ' $\left.n . \forall i . P i(x \$ i)\right)($ is ?lhs \longleftrightarrow ? $r h s)$
proof -
let $? S=(U N I V::$ ' n set $)$
\{ assume H : ? rhs
then have ?lhs by auto \}
moreover
\{ assume H : ?lhs
then obtain f where $f: \forall i . P i(f i)$ unfolding choice_iff by metis
let ? $x=\left(\chi i\right.$. $(f i)$) :: ${ }^{\prime} a^{\wedge}{ }^{\prime} n$
$\{\operatorname{fix} i$
from f have $P i(f i)$ by metis
then have $P i(? x \$ i)$ by auto
\}
hence $\forall i . P i(? x \$ i)$ by metis
hence ?rhs by metis \}
ultimately show ?thesis by metis
qed

```

The same result in terms of square matrices.
Considering an n -element vector as an n-by-1 or 1-by-n matrix.
definition rowvector \(v=(\chi i j .(v \$ j))\)
definition columnvector \(v=(\chi i j .(v \$ i))\)
lemma transpose_columnvector: transpose(columnvector \(v\) ) \(=\) rowvector \(v\) by (simp add: transpose_def rowvector_def columnvector_def vec_eq_iff)
lemma transpose_rowvector: transpose(rowvector \(v\) ) \(=\) columnvector \(v\) by (simp add: transpose_def columnvector_def rowvector_def vec_eq_iff)
lemma dot_rowvector_columnvector: columnvector \((A * v v)=A * *\) columnvector \(v\)
by (vector columnvector_def matrix_matrix_mult_def matrix_vector_mult_def)
lemma dot_matrix_product:
\(\left(x::\right.\) real \(\left.\wedge^{\wedge} n\right) \cdot y=\left(\left(\left(\right.\right.\right.\) rowvector \(x::\) real \(\left.{ }^{\wedge} n \wedge 1\right) * *\left(\right.\) columnvector \(y::\) real \(\left.\left.\left.{ }^{\wedge} 1^{\wedge} n\right)\right) \$ 1\right) \$ 1\) by (vector matrix_matrix_mult_def rowvector_def columnvector_def inner_vec_def)
lemma dot_matrix_vector_mul:
fixes \(A B::\) real \({ }^{\wedge \prime} n{ }^{\wedge \prime} n\) and \(x y::\) real \({ }^{\wedge \prime} n\)
shows \((A * v x) \cdot(B * v y)=\)
\(\left(\left(\left(\right.\right.\right.\) rowvector \(x::\) real \(\left.{ }^{\wedge} n^{\wedge} 1\right)\) ** ((transpose \(\left.A * * B\right){ }^{* *}\) (columnvector \(y\) :: real \(\left.\left.{ }^{\wedge} 1^{\wedge} n\right)\right)((1) \$ 1\)
unfolding dot_matrix_product transpose_columnvector[symmetric]
dot_rowvector_columnvector matrix_transpose_mul matrix_mul_assoc ..
lemma dim_substandard_cart: vec.dim \(\left\{x::^{\prime} a::\right.\) field \(\left.^{\wedge} n . \forall i . i \notin d \longrightarrow x \$ i=0\right\}=\) card d
(is vec.dim ? \(A=\) _)
proof (rule vec.dim_unique)
let ? \(B=\left((\lambda \text { x. axis } x 1)^{\prime} d\right)\)
have subset_basis: ? \(B \subseteq\) cart_basis
by (auto simp: cart_basis_def)
show ? \(B \subseteq\) ? \(A\)
by (auto simp: axis_def)
show vec.independent \(((\lambda x\). axis \(x 1)\) ' \(d)\)
using subset_basis
by (rule vec.independent_mono[OF vec.independent_Basis])
have \(x \in\) vec.span ? \(B\) if \(\forall i . i \notin d \longrightarrow x \$ i=0\) for \(x::^{\prime} a^{\wedge} n\)
proof -
have finite ?B
using subset_basis finite_cart_basis by (rule finite_subset)
have \(x=\left(\sum i \in U N I V . x \$ i * s\right.\) axis \(\left.i 1\right)\)
by (rule basis_expansion \([\) symmetric])
also have \(\ldots=\left(\sum i \in d .(x \$ i) * s\right.\) axis \(\left.i 1\right)\)
by (rule sum.mono_neutral_cong_right) (auto simp: that)
also have ... \(\in\) vec.span ? \(B\)
by (simp add: vec.span_sum vec.span_clauses)
finally show \(x \in\) vec.span ? \(B\).
qed
then show ? \(A \subseteq\) vec.span ? \(B\) by auto
qed (simp add: card_image inj_on_def axis_eq_axis)
lemma affinity_inverses:
assumes \(m 0: m \neq\left(0:::^{\prime} a::\right.\) field \()\)
shows \((\lambda x . m * s x+c) \circ(\lambda x\). inverse \((m) * s x+(-(\operatorname{inverse}(m) * s c)))=i d\)
```

 \((\lambda x\). inverse \((m) * s x+(-(\operatorname{inverse}(m) * s c))) \circ(\lambda x . m * s x+c)=i d\)
 using \(m 0\)
 by (auto simp add: fun_eq_iff vector_add_ldistrib diff_conv_add_uminus simp del:
 add_uminus_conv_diff)
lemma vector_affinity_eq:
assumes $m 0:\left(m::^{\prime} a:: f i e l d\right) \neq 0$
shows $m * s x+c=y \longleftrightarrow x=$ inverse $m * s y+-($ inverse $m * s c)$
proof
assume $h: m * s x+c=y$
hence $m * s x=y-c$ by (simp add: field_simps)
hence inverse $m * s(m * s x)=$ inverse $m * s(y-c)$ by simp
then show $x=$ inverse $m * s y+-($ inverse $m * s c)$
using $m 0$ by (simp add: vector_smult_assoc vector_ssub_ldistrib)
next
assume $h: x=$ inverse $m * s y+-($ inverse $m * s c)$
show $m * s x+c=y$ unfolding h
using $m 0$ by (simp add: vector_smult_assoc vector_ssub_ldistrib)
qed

```
lemma vector_eq_affinity:
    \(\left(m::{ }^{\prime} a::\right.\) field \() \neq 0==>(y=m * s x+c \longleftrightarrow\) inverse \((m) * s y+-(\) inverse \((m)\)
\(* s c)=x\) )
    using vector_affinity_eq[where \(m=m\) and \(x=x\) and \(y=y\) and \(c=c\) ]
    by metis
lemma vector_cart:
    fixes \(f::\) real \({ }^{\wedge} n \Rightarrow\) real
    shows \((\chi\) i. \(f(\) axis i 1\())=\left(\sum i \in\right.\) Basis. \(\left.f i *_{R} i\right)\)
    unfolding euclidean_eq_iff [where ' \(a=\) real \({ }^{\wedge} n\) ]
    by simp (simp add: Basis_vec_def inner_axis)
lemma const_vector_cart: \(\left((\chi\right.\) i. \(d)::\) real \(\left.^{\wedge} n\right)=\left(\sum i \in\right.\) Basis. \(\left.d *_{R} i\right)\)
    by (rule vector_cart)

\subsection*{1.9.8 Explicit formulas for low dimensions}
lemma prod_neutral_const: prod \(f\{(1:: n a t) . .1\}=f 1\)
by \(\operatorname{simp}\)
lemma prod_2: prod \(f\{(1:: n a t) . .2\}=f 1 * f 2\)
by (simp add: eval_nat_numeral atLeastAtMostSuc_conv mult.commute)
lemma prod_3: prod \(f\{(1::\) nat \() . .3\}=f 1 * f 2 * f 3\)
by (simp add: eval_nat_numeral atLeastAtMostSuc_conv mult.commute)

\subsection*{1.9.9 Orthogonality of a matrix}
definition orthogonal_matrix ( \(Q::^{\prime} a::\) semiring_ \(\left.1^{\wedge} n^{\wedge} n\right) \longleftrightarrow\) transpose \(Q * * Q=\) mat \(1 \wedge Q * *\) transpose \(Q=\) mat 1
lemma orthogonal_matrix: orthogonal_matrix \(\left(Q::\right.\) real \(\left.{ }^{\wedge} n^{\wedge} n\right) \longleftrightarrow\) transpose \(Q\) ** \(Q=\) mat 1
by (metis matrix_left_right_inverse orthogonal_matrix_def)
lemma orthogonal_matrix_id: orthogonal_matrix (mat 1 :: _ \({ }^{\prime} n{ }^{\wedge} n\) )
by (simp add: orthogonal_matrix_def)
proposition orthogonal_matrix_mul:
fixes \(A\) :: real \({ }^{\wedge} n^{\wedge} n\)
assumes orthogonal_matrix \(A\) orthogonal_matrix \(B\)
shows orthogonal_matrix \((A * * B)\)
using assms
by (simp add: orthogonal_matrix matrix_transpose_mul matrix_left_right_inverse matrix_mul_assoc)
proposition orthogonal_transformation_matrix:
fixes \(f::\) real \(^{\wedge} n \Rightarrow\) real \(^{\wedge} n\)
shows orthogonal_transformation \(f \longleftrightarrow\) linear \(f \wedge\) orthogonal_matrix (matrix \(f\) )
(is?lhs \(\longleftrightarrow\) ? \(r h s\) )
proof -
let \(? m f=\) matrix \(f\)
let ?ot \(=\) orthogonal_transformation \(f\)
let ? \(U=U N I V\) :: ' \(n\) set
have \(f U\) : finite? \(U\) by simp
let ?m1 = mat \(1::\) real \({ }^{\wedge} n n^{\wedge \prime} n\)
\{
assume ot: ?ot
from ot have lf: Vector_Spaces.linear \((* s)(* s) f\) and \(f d: \Lambda v w . f v \cdot f w=v\)
- \(w\)
unfolding orthogonal_transformation_def orthogonal_matrix linear_def scalar_mult_eq_scaleR by blast+

\section*{\{}
fix \(i j\)
let ? \(A=\) transpose ? \(m f * *\) ? \(m f\)
have th \(0: \bigwedge b\left(x::^{\prime} a::\right.\) comm_ring_1 \()\). (if \(b\) then 1 else 0\() * x=(\) if \(b\) then \(x\) else
0)
\(\bigwedge b\left(x::^{\prime} a::\right.\) comm_ring_ 1\() . x *(\) if \(b\) then 1 else 0\()=(\) if \(b\) then \(x\) else 0\()\)
by simp_all
from fd[of axis i 1 axis j1,
simplified matrix_works[OF lf, symmetric] dot_matrix_vector_mul]
have ? \(A \$ i \$ j=? m 1 \$ i \$ j\)
by (simp add: inner_vec_def matrix_matrix_mult_def columnvector_def rowvec-
tor_def th0 sum.delta[OF fU] mat_def axis_def)
\}
then have orthogonal_matrix ?mf
unfolding orthogonal_matrix
by vector
```

 with lf have ?rhs
 unfolding linear_def scalar_mult_eq_scaleR
 by blast
 }
 moreover
 {
 assume lf:Vector_Spaces.linear (*s) (*s)f}\mp@code{\mathrm{ and om: orthogonal_matrix ?mf}
 from lf om have ?lhs
 unfolding orthogonal_matrix_def norm_eq orthogonal_transformation
 apply (simp only: matrix_works[OF lf, symmetric] dot_matrix_vector_mul)
 apply (simp add: dot_matrix_product linear_def scalar_mult_eq_scaleR)
 done
 }
 ultimately show ?thesis
 by (auto simp: linear_def scalar_mult_eq_scaleR)
 qed

```

\subsection*{1.9.10 Finding an Orthogonal Matrix}

We can find an orthogonal matrix taking any unit vector to any other.
lemma orthogonal_matrix_transpose [simp]:
orthogonal_matrix(transpose \(A\) ) \(\longleftrightarrow\) orthogonal_matrix \(A\)
by (auto simp: orthogonal_matrix_def)
lemma orthogonal_matrix_orthonormal_columns:
fixes \(A\) :: real \({ }^{\wedge} n^{\wedge} n\)
shows orthogonal_matrix \(A \longleftrightarrow\)
\((\forall\) i. norm \((\) column \(i A)=1) \wedge\)
\((\forall i j . i \neq j \longrightarrow\) orthogonal (column iA) (column \(j A)\) )
by (auto simp: orthogonal_matrix matrix_mult_transpose_dot_column vec_eq_iff mat_def norm_eq_1 orthogonal_def)
lemma orthogonal_matrix_orthonormal_rows:
fixes \(A::\) real \(^{\wedge} n^{\wedge} n\)
shows orthogonal_matrix \(A \longleftrightarrow\)
\((\forall i\). norm \((\) row \(i A)=1) \wedge\)
\((\forall i j . i \neq j \longrightarrow\) orthogonal (row \(i A)(\) row \(j A))\)
using orthogonal_matrix_orthonormal_columns [of transpose A] by simp
proposition orthogonal_matrix_exists_basis:
fixes \(a::\) real \(^{\wedge} n\)
assumes norm \(a=1\)
obtains \(A\) where orthogonal_matrix \(A A * v(\) axis \(k 1)=a\)
proof -
obtain \(S\) where \(a \in S\) pairwise orthogonal \(S\) and noS: \(\wedge x . x \in S \Longrightarrow\) norm \(x\)
\(=1\)
and independent \(S\) card \(S=\operatorname{CARD}\left({ }^{\prime} n\right)\) span \(S=U N I V\)
using vector_in_orthonormal_basis assms by force
then obtain f0 where bij_betw f0 (UNIV::'n set) \(S\)
by（metis finite＿class．finite＿UNIV finite＿same＿card＿bij finiteI＿independent）
then obtain \(f\) where \(f\) ：bij＿betw \(f(U N I V:: ' n\) set）\(S\) and \(a: a=f k\)
using bij＿swap＿iff［of \(k\) inv f0 a f0］
by（metis UNIV＿I \(\langle a \in S\rangle\) bij＿betw＿inv＿into＿right bij＿betw＿swap＿iff swap＿apply（1））
show thesis
proof
have \([\) simp \(]: \bigwedge i\) ．norm \((f i)=1\)
using bij＿betwE［OF〈bij＿betw \(f\) UNIV S〉］by（blast intro：noS）
have \([\) simp \(]: ~ \bigwedge i j . i \neq j \Longrightarrow\) orthogonal \((f i)(f j)\)
using 〈pairwise orthogonal \(S\rangle\left\langle b i j \_b e t w f\right.\) UNIV \(\left.S\right\rangle\)
by（auto simp：pairwise＿def bij＿betw＿def inj＿on＿def）
show orthogonal＿matrix（ \(\chi\) ij．fj\＄i）
by（simp add：orthogonal＿matrix＿orthonormal＿columns column＿def）
show \((\chi i j . f j \$ i) * v\) axis \(k 1=a\)
by（simp add：matrix＿vector＿mult＿def axis＿def a if＿distrib cong：if＿cong）
qed
qed
lemma orthogonal＿transformation＿exists＿1：
fixes \(a b::\) real \(^{\wedge} n\)
assumes norm \(a=1\) norm \(b=1\)
obtains \(f\) where orthogonal＿transformation ffa＝b
proof－
obtain \(k:: ' n\) where True
by simp
obtain \(A B\) where \(A B\) ：orthogonal＿matrix \(A\) orthogonal＿matrix \(B\) and eq：\(A * v\)
\((\) axis \(k 1)=a B * v(\) axis \(k 1)=b\)
using orthogonal＿matrix＿exists＿basis assms by metis
let ？f \(=\lambda x .(B * *\) transpose \(A) * v x\)
show thesis
proof
show orthogonal＿transformation？？
by（subst orthogonal＿transformation＿matrix）
（auto simp：AB orthogonal＿matrix＿mul）
next
show ？f \(a=b\)
using＜orthogonal＿matrix \(A\) 〉 unfolding orthogonal＿matrix＿def
by（metis eq matrix＿mul＿rid matrix＿vector＿mul＿assoc）
qed
qed
proposition orthogonal＿transformation＿exists：
fixes \(a b::\) real \(^{\wedge} n\)
assumes norm \(a=\) norm \(b\)
obtains \(f\) where orthogonal＿transformation ffa＝b
proof（cases \(a=0 \vee b=0\) ）
case True
with assms show ？thesis
using that by force
```

next
case False
then obtain f}\mathrm{ where f:orthogonal_transformation f and eq: f(a/R norm a)
=(b/R norm b)
by (auto intro: orthogonal_transformation_exists_1 [of a/R norm a b/R norm
b])
show ?thesis
proof
interpret linear f
using f by (simp add: orthogonal_transformation_linear)
have fa/R norm a =f (a/R norm a)
by (simp add: scale)
also have ···.. = b/R norm a
by (simp add: eq assms [symmetric])
finally show fa=b
using False by auto
qed (use f in auto)
qed

```

\subsection*{1.9.11 Scaling and isometry}
proposition scaling_linear:
fixes \(f\) :: ' \(a:\) :real_inner \(\Rightarrow{ }^{\prime} a:\) :real_inner
assumes f0: f0=0
and \(f d: \forall x y\). dist \((f x)(f y)=c * \operatorname{dist} x y\)
shows linear \(f\)
proof -
\{
fix \(v w\)
have norm \((f x)=c *\) norm \(x\) for \(x\)
by (metis dist_0_norm f0 fd)
then have \(f v \cdot f w=c^{2} *(v \cdot w)\)
unfolding dot_norm_neg dist_norm[symmetric]
by (simp add: fd power2_eq_square field_simps)
\}
then show ?thesis
unfolding linear_iff vector_eq[where ' \(a=\) ' \(a\) ] scalar_mult_eq_scale \(R\)
by (simp add: inner_add field_simps)
qed
lemma isometry_linear:
\(f\left(0::^{\prime} a::\right.\) real_inner \()=\left(0::^{\prime} a\right) \Longrightarrow \forall x y\). \(\operatorname{dist}(f x)(f y)=\operatorname{dist} x y \Longrightarrow\) linear \(f\) by (rule scaling_linear[where \(c=1]\) ) simp_all

Hence another formulation of orthogonal transformation
proposition orthogonal_transformation_isometry:
orthogonal_transformation \(f \longleftrightarrow f\left(0::^{\prime} a::\right.\) real_inner \()=\left(0::^{\prime} a\right) \wedge(\forall x y . \operatorname{dist}(f x)\)
\((f y)=\operatorname{dist} x y)\)
unfolding orthogonal_transformation
apply (auto simp: linear_0 isometry_linear)
apply (metis (no_types, hide_lams) dist_norm linear_diff)
by (metis dist_0_norm)
Can extend an isometry from unit sphere:
```

lemma isometry_sphere_extend:
fixes $f::$ 'a::real_inner \Rightarrow ' a
assumes $f 1: \bigwedge x$. norm $x=1 \Longrightarrow \operatorname{norm}(f x)=1$
and $f d 1: \bigwedge x y . \llbracket$ norm $x=1 ;$ norm $y=1 \rrbracket \Longrightarrow \operatorname{dist}(f x)(f y)=$ dist $x y$
shows $\exists g$. orthogonal_transformation $g \wedge(\forall x$. norm $x=1 \longrightarrow g x=f x)$
proof -
\{
fix x y $x^{\prime} y^{\prime} u v u^{\prime} v^{\prime}::^{\prime} a$
assume $H: x=$ norm $x *_{R} u y=\operatorname{norm} y *_{R} v$
$x^{\prime}=\operatorname{norm} x *_{R} u^{\prime} y^{\prime}=$ norm $y *_{R} v^{\prime}$
and J : norm $u=1$ norm $u^{\prime}=1$ norm $v=1$ norm $v^{\prime}=1 \operatorname{norm}\left(u^{\prime}-v^{\prime}\right)=$
norm $(u-v)$
then have $*: u \cdot v=u^{\prime} \cdot v^{\prime}+v^{\prime} \cdot u^{\prime}-v \cdot u$
by (simp add: norm_eq norm_eq_1 inner_add inner_diff)
have norm (norm $\left.x *_{R} u^{\prime}-\operatorname{norm} y *_{R} v^{\prime}\right)=\operatorname{norm}\left(\right.$ norm $x *_{R} u-\operatorname{norm} y$
$*_{R} v$)
using J by (simp add: norm_eq norm_eq_1 inner_diff $*$ field_simps $)$
then have $\operatorname{norm}\left(x^{\prime}-y^{\prime}\right)=\operatorname{norm}(x-y)$
using H by metis
\}
note norm_eq $=$ this
let ? $g=\lambda x$. if $x=0$ then 0 else norm $x *_{R} f(x / R$ norm $x)$
have thfg: ? $x=f x$ if norm $x=1$ for x
using that by auto
have thd: dist $(? g x)(? g y)=\operatorname{dist} x y$ for $x y$
proof (cases $x=0 \vee y=0$)
case False
show dist $(? g x)(? g y)=$ dist $x y$
unfolding dist_norm
proof (rule norm_eq)
show $x=\operatorname{norm} x *_{R}(x / R$ norm $x) y=\operatorname{norm} y *_{R}(y / R$ norm $y)$
$\operatorname{norm}(f(x / R \operatorname{norm} x))=1 \operatorname{norm}(f(y / R$ norm $y))=1$
using False f1 by auto
qed (use False in 〈auto simp: field_simps intro: f1 fd1[unfolded dist_norm]))
qed (auto simp: f1)
show ?thesis
unfolding orthogonal_transformation_isometry
by (rule exI[where $x=? g]$) (metis thfg thd)
qed

```

\subsection*{1.9.12 Induction on matrix row operations}
lemma induct_matrix_row_operations:
fixes \(P\) :: real^ \({ }^{\wedge} \wedge^{\wedge} n \Rightarrow\) bool
```

 assumes zero_row: \(\bigwedge A\) i. row \(i A=0 \Longrightarrow P A\)
 and diagonal: \(\bigwedge A .(\bigwedge i j . i \neq j \Longrightarrow A \$ i \$ j=0) \Longrightarrow P A\)
 and swap_cols: \(\bigwedge A m n . \llbracket P A ; m \neq n \rrbracket \Longrightarrow P(\chi i j . A \$ i \$\) Fun.swap \(m n i d\)
 j)
and row_op: $\bigwedge A m n c . \llbracket P A ; m \neq n \rrbracket$
$\Longrightarrow P\left(\chi\right.$ i. if $i=m$ then row $m A+c *_{R}$ row $n A$ else row $\left.i A\right)$
shows $P A$
proof -
have $P A$ if $(\bigwedge i j . \llbracket j \in-K ; i \neq j \rrbracket \Longrightarrow A \$ i \$ j=0)$ for $A K$
proof -
have finite K
by simp
then show ?thesis using that
proof (induction arbitrary: A rule: finite_induct)
case empty
with diagonal show ?case
by simp
next
case (insert $k K$)
note insertK = insert
have $P A$ if $k k: A \$ k \$ k \neq 0$
and $0: \bigwedge i j . \llbracket j \in-$ insert $k K ; i \neq j \rrbracket \Longrightarrow A \$ i \$ j=0$
$\bigwedge i . \llbracket i \in-L ; i \neq k \rrbracket \Longrightarrow A \$ i \$ k=0$ for $A L$
proof -
have finite L
by simp
then show ?thesis using $0 k k$
proof (induction arbitrary: A rule: finite_induct)
case (empty B)
show ?case
proof (rule insertK)
fix $i j$
assume $i \in-K j \neq i$
show $B \$ j \$ i=0$
using $\langle j \neq i\rangle\langle i \in-K\rangle$ empty
by (metis ComplD ComplI Compl_eq_Diff_UNIV Diff_empty UNIV_I
insert_iff)
qed
next
case (insert l L B)
show ?case
proof (cases $k=l$)
case True
with insert show ?thesis
by auto
next
case False
let ? $C=\chi$. if $i=l$ then row $l B-(B \$ l \$ k / B \$ k \$ k) *_{R}$ row k

```
\(B\) else row \(i B\)
```

 have 1: \llbracketj\in- insert k K;i\not=j\rrbracket\Longrightarrow?C $ i$j=0 for ji
 by (auto simp: insert.prems(1) row_def)
 have 2:? C $ i$k=0
 if i\in-Li\not=k for i
 proof (cases i=l)
case True
with that insert.prems show ?thesis
by (simp add: row_def)
next
case False
with that show ?thesis
by (simp add: insert.prems(2) row_def)
qed
have 3:?C \$ k$k\not=0
 by (auto simp: insert.prems row_def <k}\not=l\rangle
have PC: P ?C
 using insert.IH [OF}
have eqB:(\chi i. if i=l then row l ?C + (Blk/Bkk)**
k ?C else row i ?C }=
 using }\langlek\not=l\rangle\mathrm{ by (simp add: vec_eq_iff row_def)
 show ?thesis
 using row_op [OF PC, of l k, where c = Blk/Bkk]eqB\langlek\not=l>
 by (simp add: cong: if_cong)
 qed
 qed
 qed
 then have nonzero_hyp: P A
 if kk:Akk = 0 and zeroes: \ij.j\in- insert k K ^i\not=j\LongrightarrowAij=
O for A
 by (auto simp: intro!: kk zeroes)
 show ?case
 proof (cases row k A=0)
 case True
 with zero_row show ?thesis by auto
 next
 case False
 then obtain l where l:A$k\$l\not=0
by (auto simp: row_def zero_vec_def vec_eq_iff)
show ?thesis
proof (cases k=l)
case True
with l nonzero_hyp insert.prems show ?thesis
by blast
next
case False
have *:A \$ i\$ Fun.swap k l id j=0 if j\not=kj\not\inKi\not=j for ij
using False l insert.prems that
by (auto simp: swap_def insert split: if_split_asm)
have P(\chiij. (\chiij. A \$ i \$ Fun.swap klid j)\$ i \$ Fun.swap klid j)

```
```

 by (rule swap_cols [OF nonzero_hyp False]) (auto simp:l *)
 moreover
 have (\chiij.(\chiij. Ai Fun.swap k l id j) $ i $ Fun.swap kl lid j)=A
 by (vector Fun.swap_def)
 ultimately show ?thesis
 by simp
 qed
 qed
 qed
 qed
 then show ?thesis
 by blast
 qed
lemma induct_matrix_elementary:
fixes }P\mathrm{ :: real^' }n\mp@subsup{}{}{\wedge}n=>\mathrm{ bool
assumes mult: }\bigwedgeAB.\llbracketPA;PB\rrbracket\LongrightarrowP(A**B
and zero_row: }\bigwedgeA\mathrm{ i. row i }A=0\LongrightarrowP
and diagonal: }\bigwedgeA.(\bigwedgeij.i\not=j\LongrightarrowAij=0)\LongrightarrowP
and swap1: \bigwedgem n. m\not=n\LongrightarrowP(\chiij. mat 1 \$ i \$ Fun.swap m n id j)
and idplus: \m n c. m\not=n\LongrightarrowP(\chi ij. if i=m ^j=n then c else of_bool
(i=j))
shows P A
proof -
have swap: P(\chiij. A i Fun.swap m n id j) (is P?C)
if PAm\not=n for Amn
proof -
have A ** (\chi i j. mat 1 \$ i \$ Fun.swap m n id j) = ?C
by (simp add: matrix_matrix_mult_def mat_def vec_eq_iff if_distrib sum.delta_remove)
then show ?thesis
using mult swap1 that by metis
qed
have row: P(\chi i. if i=m then row m A +c**R row n A else row i A) (is P
?C)
if PAm\not=n for Amnc
proof -
let ?B = \chi ij. if i=m^j=n then c else of_bool (}i=j
have ? B ** A =? C
using }\langlem\not=n\rangle\mathrm{ unfolding matrix_matrix_mult_def row_def of_bool_def
by (auto simp: vec_eq_iff if_distrib [of \lambdax. x*y for y] sum.remove cong:
if_cong)
then show ?thesis
by (rule subst) (auto simp: that mult idplus)
qed
show ?thesis
by (rule induct_matrix_row_operations [OF zero_row diagonal swap row])
qed
lemma induct_matrix_elementary_alt:

```
```

 fixes \(P\) :: real^^ \(n^{\wedge} n \Rightarrow\) bool
 assumes mult: \(\bigwedge A B . \llbracket P A ; P B \rrbracket \Longrightarrow P(A * * B)\)
 and zero_row: \(\lfloor A\) i. row i \(A=0 \Longrightarrow P A\)
 and diagonal: \(\bigwedge A .(\bigwedge i j . i \neq j \Longrightarrow A \$ i \$ j=0) \Longrightarrow P A\)
 and swap1: \(\bigwedge m n . m \neq n \Longrightarrow P(\chi i j\). mat \(1 \$ i \$\) Fun.swap \(m n i d j)\)
 and idplus: \(\bigwedge m n . m \neq n \Longrightarrow P(\chi i j\). of_bool \((i=m \wedge j=n \vee i=j))\)
 shows \(P A\)
 proof -
have $*: P(\chi i j$. if $i=m \wedge j=n$ then c else of_bool $(i=j))$
if $m \neq n$ for $m n c$
proof (cases $c=0$)
case True
with diagonal show ?thesis by auto
next
case False
then have eq: $(\chi i j$. if $i=m \wedge j=n$ then c else of_bool $(i=j))=$
(χ i j. if $i=j$ then $\left(\right.$ if $j=n$ then inverse c else 1) else 0) ${ }^{* *}$
($\chi i j$. of_bool $(i=m \wedge j=n \vee i=j)) * *$
($\chi i j$. if $i=j$ then if $j=n$ then c else 1 else 0)
using $\langle m \neq n\rangle$
apply (simp add: matrix_matrix_mult_def vec_eq_iff of_bool_def if_distrib [of
$\lambda x . y * x$ for $y]$ cong: if_cong)
apply (simp add: if_if_eq_conj sum.neutral conj_commute cong: conj_cong)
done
show ?thesis
apply (subst eq)
apply (intro mult idplus that)
apply (auto intro: diagonal)
done
qed
show ?thesis
by (rule induct_matrix_elementary) (auto intro: assms *)
qed
lemma matrix_vector_mult_matrix_matrix_mult_compose:
$(* v)(A * * B)=(* v) A \circ(* v) B$
by (auto simp: matrix_vector_mul_assoc)
lemma induct_linear_elementary:
fixes $f::$ real $^{\wedge} n \Rightarrow$ real $^{\wedge} n$
assumes linear f
and comp: $\wedge f g . \llbracket$ linear f; linear $g ; P f ; P g \rrbracket \Longrightarrow P(f \circ g)$
and zeroes: $\wedge f i . \llbracket$ linear $f ; \wedge x .(f x) \$ i=0 \rrbracket \Longrightarrow P f$
and const: $\bigwedge c . P(\lambda x . \chi$ i. $c i * x \$ i)$
and swap: $\bigwedge m n:::^{\prime} n . m \neq n \Longrightarrow P(\lambda x . \chi$ i. $x \$$ Fun.swap $m n$ id $i)$
and idplus: $\bigwedge m n::{ }^{\prime} n . m \neq n \Longrightarrow P(\lambda x . \chi$ i. if $i=m$ then $x \$ m+x \$ n$ else
$x \$ i)$
shows $P f$
proof -

```
```

 have \(P((* v) A)\) for \(A\)
 proof (rule induct_matrix_elementary_alt)
 fix \(A B\)
 assume \(P((* v) A)\) and \(P((* v) B)\)
 then show \(P((* v)(A * * B))\)
 by (auto simp add: matrix_vector_mult_matrix_matrix_mult_compose intro!:
 comp)
next
fix $A::$ real $^{\wedge \prime} n^{\wedge} n$ and i
assume row i $A=0$
show $P((* v) A)$
using matrix_vector_mul_linear
by (rule zeroes $[$ where $i=i]$)
(metis \langle row i $A=0\rangle$ inner_zero_left matrix_vector_mul_component row_def
vec_lambda_eta)
next
fix $A::$ real $^{\wedge}{ }^{\prime} n^{\wedge} n$
assume $0: \bigwedge i j . i \neq j \Longrightarrow A \$ i \$ j=0$
have $A \$ i \$ i * x \$ i=\left(\sum j \in U N I V . A \$ i \$ j * x \$ j\right)$ for x and $i::$ ' n
by (simp add: 0 comm_monoid_add_class.sum.remove [where $x=i]$)
then have $(\lambda x . \chi i . A \$ i \$ i * x \$ i)=((* v) A)$
by (auto simp: 0 matrix_vector_mult_def)
then show $P((* v) A)$
using const $[$ of λi. $A \$ i \$ i]$ by simp
next
fix $m n::$ ' n
assume $m \neq n$
have eq: $\left(\sum j \in U N I V\right.$. if $i=$ Fun.swap $m n$ id j then $x \$$ else 0$)=$
($\sum j \in$ UNIV. if $j=$ Fun.swap $m n$ id i then $x \$ j$ else 0$)$
for i and $x::$ real $^{\wedge \prime} n$
unfolding swap_def by (rule sum.cong) auto
have $\left(\lambda x::\right.$ real $^{\wedge} n . \chi$ i. x \$ Fun.swap m id $\left.i\right)=((* v)(\chi$ ij. if $i=$ Fun.swap
$m n$ id j then 1 else 0))
by (auto simp: mat_def matrix_vector_mult_def eq if_distrib [of $\lambda x . x * y$ for
y] cong: if_cong)
with swap $[O F\langle m \neq n\rangle]$ show $P((* v)(\chi i j$. mat $1 \$ i \$$ Fun.swap $m n i d$
j))
by (simp add: mat_def matrix_vector_mult_def)
next
fix $m n::$ ' n
assume $m \neq n$
then have $x \$ m+x \$ n=\left(\sum j \in U N I V\right.$. of_bool $\left.(j=n \vee m=j) * x \$ j\right)$
for $x::$ real $^{\wedge} n$
by (auto simp: of_bool_def if_distrib [of $\lambda x . x * y$ for $y]$ sum.remove cong:
if_cong)
then have $\left(\lambda x::\right.$ real ${ }^{\wedge} n$. χ i. if $i=m$ then $x \$ m+x \$ n$ else $\left.x \$ i\right)=$
$((* v)(\chi i j$. of_bool $(i=m \wedge j=n \vee i=j)))$
unfolding matrix_vector_mult_def of_bool_def
by (auto simp: vec_eq_iff if_distrib [of $\lambda x . x * y$ for y] cong: if_cong)

```
```

 then show P}P((*v)(\chiij. of_bool (i=m\wedgej=n\veei=j))
 using idplus [OF〈m\not= n)] by simp
 qed
then show ?thesis
by (metis 〈linear f` matrix_vector_mul(2))
qed
end

```

\subsection*{1.10 Traces and Determinants of Square Matrices}
```

theory Determinants
imports
Cartesian_Space
HOL-Library.Permutations
begin

```

\subsection*{1.10.1 Trace}
definition trace :: 'a::semiring_1 \({ }^{\prime} n n^{\wedge} n \Rightarrow{ }^{\prime} a\)
where trace \(A=\operatorname{sum}(\lambda i .((A \$ i) \$ i))(U N I V::\) 'n set)
lemma trace_0: trace \((\operatorname{mat} 0)=0\)
by (simp add: trace_def mat_def)
lemma trace_I: trace (mat 1 :: 'a::semiring_ \(\left.1 \wedge^{\wedge} n^{\wedge} n\right)=o f \_n a t(C A R D(' n))\)
by (simp add: trace_def mat_def)
lemma trace_add: trace (( \(A::^{\prime} a::\) comm_semiring_ \(\left.\left.1^{\wedge} n^{\wedge \prime} n\right)+B\right)=\) trace \(A+\) trace B
by (simp add: trace_def sum.distrib)
lemma trace_sub: trace ( \(\left(A::^{\prime} a::\right.\) comm_ring_ \(\left.\left.1^{\wedge \prime} n^{\wedge} n\right)-B\right)=\) trace \(A-\operatorname{trace} B\) by (simp add: trace_def sum_subtractf)
lemma trace_mul_sym: trace \(\left(\left(A::^{\prime} a::\right.\right.\) comm_semiring_ \(\left.\left.1{ }^{\wedge \prime} n^{\wedge} m\right) * * B\right)=\operatorname{trace}(B * * A)\)
apply (simp add: trace_def matrix_matrix_mult_def)
apply (subst sum.swap)
apply (simp add: mult.commute)
done

\section*{Definition of determinant}
definition det:: ' \(a::\) comm_ring_ \(1{ }^{\wedge} n^{\wedge} n \Rightarrow\) ' \(a\) where
\(\operatorname{det} A=\) \(\operatorname{sum}(\lambda p\). of_int \((\operatorname{sign} p) * \operatorname{prod}(\lambda i . A \$ i \$ p i)(U N I V::\) ' \(n\) set \())\)
\(\{p . p\) permutes (UNIV :: ' \(n\) set \()\}\)
Basic determinant properties
```

lemma det_transpose $[$ simp $]: \operatorname{det}($ transpose $A)=\operatorname{det}\left(A::^{\prime} a:: \operatorname{comm}_{-} r i n g _1{ }^{\wedge} n^{\wedge} n\right)$
proof -
let ? $d i=\lambda A i j . A \$ i \$ j$
let ? $U=(U N I V::$ ' n set $)$
have $f U$: finite? U by simp
\{
fix p
assume $p: p \in\{p . p$ permutes ? $U\}$
from p have $p U: p$ permutes ? U
by blast
have sth: $\operatorname{sign}(\operatorname{inv} p)=\operatorname{sign} p$
by (metis sign_inverse fU p mem_Collect_eq permutation_permutes)
from permutes_inj[OF $p U]$
have $p i$: inj_on p ? U
by (blast intro: subset_inj_on)
from permutes_image $[O F p U]$
have $\operatorname{prod}(\lambda i$. ?di $($ transpose $A) i($ inv $p i)) ? U=$
prod $(\lambda i$. ?di $($ transpose $A) i($ inv $p i))(p$? $U)$
by simp
also have $\ldots=\operatorname{prod}((\lambda i$. ?di $($ transpose $A) i($ inv $p i)) \circ p)$? U
unfolding prod.reindex[OF pi] ..
also have $\ldots=\operatorname{prod}(\lambda i$. ?di $A i(p i))$? U
proof -
have $((\lambda i$. ? di (transpose $A) i($ inv $p i)) \circ p) i=$? di $A i(p i)$ if $i \in$? U for
i
using that permutes_inv_o $[O F$ pU] permutes_in_image $[O F p U]$
unfolding transpose_def by (simp add: fun_eq_iff)
then show $\operatorname{prod}((\lambda i$. ? di $($ transpose $A) i(i n v p i)) \circ p) ? U=\operatorname{prod}(\lambda i$. ?di
Ai $(p i))$? U
by (auto intro: prod.cong)
qed
finally have of_int $(\operatorname{sign}(\operatorname{inv} p)) *(\operatorname{prod}(\lambda i$. ?di $($ transpose $A) i(\operatorname{inv} p i))$
? $U)=$
of_int $(\operatorname{sign} p) *(\operatorname{prod}(\lambda i$. ?di $A i(p i))$? $U)$
using sth by simp
\}
then show ?thesis
unfolding det_def
by (subst sum_permutations_inverse) (blast intro: sum.cong)
qed
lemma det_lowerdiagonal:
fixes A :: 'a::comm_ring_1^('n::\{finite,wellorder $\})^{\wedge}\left({ }^{\prime} n::\{\right.$ finite,wellorder $\left.\}\right)$
assumes $l d: \bigwedge i j . i<j \Longrightarrow A \$ i \$ j=0$
shows $\operatorname{det} A=\operatorname{prod}(\lambda i . A \$ i \$ i)(U N I V:: ' n$ set $)$
proof -
let ? $U=U N I V::$ ' n set
let ? $P U=\{p . p$ permutes ? $U\}$
let ?pp $=\lambda p$. of_int $($ sign $p) * \operatorname{prod}(\lambda i . A \$ i \$ p i)(U N I V::$ 'n set $)$

```
```

 have \(f U\) : finite ? \(U\)
 by simp
 have \(i d 0:\{i d\} \subseteq ? P U\)
 by (auto simp: permutes_id)
 have \(p 0: \forall p \in ? P U-\{i d\} . ? p p p=0\)
 proof
 fix \(p\)
 assume \(p \in ? P U-\{i d\}\)
 then obtain \(i\) where \(i: p i>i\)
 by clarify (meson leI permutes_natset_le)
 from \(l d[O F i]\) have \(\exists i \in ? U . A \$ i \$ p i=0\)
 by blast
 with prod_zero \([O F f U]\) show ? \(p p\) p \(=0\)
 by force
 qed
 from sum.mono_neutral_cong_left \([O F\) finite_permutations[OF fU] id0 p0] show
 ?thesis
unfolding det_def by (simp add: sign_id)
qed
lemma det_upperdiagonal:
fixes A :: ' $a::$ comm_ring_1^' $n::\{\text { finite,wellorder }\}^{\wedge}{ }^{\prime} n::\{$ finite,wellorder $\}$
assumes $l d: \bigwedge i j . i>j \Longrightarrow A \$ i \$ j=0$
shows $\operatorname{det} A=\operatorname{prod}(\lambda i . A \$ i \$ i)\left(U N I V::{ }^{\prime} n\right.$ set $)$
proof -
let ? $U=U N I V::$ ' n set
let ? $P U=\{p . p$ permutes ? $U\}$
let ? $p p=(\lambda p$. of_int $(\operatorname{sign} p) * \operatorname{prod}(\lambda i . A \$ i \$ p i)(U N I V::$ ' n set $))$
have $f U$: finite ? U
by simp
have $i d 0:\{i d\} \subseteq ? P U$
by (auto simp: permutes_id)
have $p 0$: $\forall p \in$? $P U-\{i d\}$. ? $p p p=0$
proof
fix p
assume $p: p \in ? P U-\{i d\}$
then obtain i where $i: p i<i$
by clarify (meson leI permutes_natset_ge)
from $l d[O F i]$ have $\exists i \in ? U . A \$ i \$ p i=0$
by blast
with prod_zero[OF fU] show ?pp $p=0$
by force
qed
from sum.mono_neutral_cong_left $[O F$ finite_permutations $[O F$ fU] id0 p0] show
?thesis
unfolding det_def by (simp add: sign_id)
qed
proposition det_diagonal:

```
```

 fixes \(A::{ }^{\prime} a::\) comm_ring_ \(1^{\wedge} n^{\wedge}{ }^{\prime} n\)
 assumes \(l d: \bigwedge i j . i \neq j \Longrightarrow A \$ i \$ j=0\)
 shows \(\operatorname{det} A=\operatorname{prod}(\lambda i . A \$ i \$ i)(U N I V:: ' n\) set \()\)
 proof -
let ? $U=U N I V:$: ' n set
let ? $P U=\{p . p$ permutes ? $U\}$
let ?pp $=\lambda p$. of_int $($ sign $p) * \operatorname{prod}(\lambda i . A \$ i \$ p i)(U N I V:: ~ ' n ~ s e t)$
have $f U$: finite? U by simp
from finite_permutations $[O F f U]$ have $f P U$: finite ?PU .
have id0: $\{i d\} \subseteq ? P U$
by (auto simp: permutes_id)
have $p 0: \forall p \in ? P U-\{i d\}$. ?pp $p=0$
proof
fix p
assume $p: p \in ? P U-\{i d\}$
then obtain i where $i: p i \neq i$
by fastforce
with ld have $\exists i \in$? $U . A \$ i \$ p i=0$
by (metis UNIV_I)
with prod_zero [OF fU] show ? p p $p=0$
by force
qed
from sum.mono_neutral_cong_left [OF fPU id0 p0] show ?thesis
unfolding det_def by (simp add: sign_id)
qed
lemma det_I $[$ simp $]: \operatorname{det}\left(\right.$ mat 1 :: 'a::comm_ring_1 $\left.{ }^{\wedge} n^{\wedge} n\right)=1$
by (simp add: det_diagonal mat_def)
lemma det_0 [simp]: $\operatorname{det}\left(\right.$ mat $0:: ' a::$ comm_ring_1 $\left.^{\wedge} n^{\wedge} n\right)=0$
by (simp add: det_def prod_zero power_0_left)
lemma det_permute_rows:
fixes $A::{ }^{\prime} a::$ comm_ring_ $1{ }^{\wedge} n^{\wedge} n$
assumes $p: p$ permutes (UNIV :: ' $n::$ finite set)
shows $\operatorname{det}\left(\chi i . A \$ p i::{ }^{\prime} a^{\wedge} n^{\wedge} n\right)=o f=i n t(\operatorname{sign} p) * \operatorname{det} A$
proof -
let ? $U=U N I V ~:: ~ ' n ~ s e t ~$
let ? $P U=\{p . p$ permutes ? $U\}$
have $*:\left(\sum q \in ? P U\right.$. of_int $\left.(\operatorname{sign}(q \circ p)) *\left(\prod i \in ? U . A \$ p i \$(q \circ p) i\right)\right)=$
$\left(\sum n \in ? P U\right.$. of_int $($ sign $p) *$ of_int $\left.(\operatorname{sign} n) *\left(\prod i \in ? U . A \$ i \$ n i\right)\right)$
proof (rule sum.cong)
fix q
assume $q P U: q \in ? P U$
have $f U$: finite? U
by simp
from $q P U$ have $q: q$ permutes ? U
by blast
have $\operatorname{prod}(\lambda i . A \$ p i \$(q \circ p) i) ? U=\operatorname{prod}((\lambda i . A \$ p i \$(q \circ p) i) \circ i n v p) ? U$

```
```

 by (simp only: prod.permute[OF permutes_inv[OF p], symmetric])
 also have \ldots.. = prod (\lambdai.A$(p\circ\operatorname{inv p)i$(q\circ(p\circinv p))i) ?U}
 by (simp only: o_def)
 also have ... = prod (}\lambdai.Aiq i)?
 by (simp only: o_def permutes_inverses[OF p])
 finally have thp: prod (\lambdai. Api (q\circp)i)?U = prod (\lambdai. Aiqi) ?U
 by blast
 from p q have pp: permutation p and qp: permutation q
 by (metis fU permutation_permutes)+
 show of_int (sign (q\circp))* prod (\lambdai. A$ pi$(q\circp) i)?U =
 of_int (sign p)* of_int (sign q) * prod (\lambdai. Aiq i) ?U
 by (simp only: thp sign_compose[OF qp pp] mult.commute of_int_mult)
 qed auto
show ?thesis
apply (simp add: det_def sum_distrib_left mult.assoc[symmetric])
apply (subst sum_permutations_compose_right[OF p])
apply (rule *)
done
qed
lemma det_permute_columns:
fixes A :: 'a::comm_ring_1 }\mp@subsup{}{}{\wedge}\mp@subsup{n}{}{\wedge}\mp@subsup{}{}{\prime}
assumes p: p permutes (UNIV :: ' n set)
shows }\operatorname{det}(\chiij.Aipj:: ' 'a^'n''n)=of_int (sign p) * det
proof -
let ?Ap = \chi ij. Ai pj :: ' a^' n^'n
let ?At = transpose A
have of_int (sign p)*\operatorname{det}A=\operatorname{det}(transpose (\chi i. transpose A \$ p i))
unfolding det_permute_rows[OF p, of ?At] det_transpose ..
moreover
have ?Ap = transpose (}\chi\mathrm{ i. transpose A \$ p i)
by (simp add: transpose_def vec_eq_iff)
ultimately show ?thesis
by simp
qed
lemma det_identical_columns:
fixes }A\mathrm{ :: 'a::comm_ring_1 ^' n^'n
assumes jk: j\not=k
and r: column j A = column k A
shows }\operatorname{det}A=
proof -
let ?U=UNIV::'n set
let ?t_jk=Fun.swap j k id
let ?PU={p.p permutes?U}
let ?S1 ={p.p\in?PU ^ evenperm p}
let ?S2={(?t_jk\circp) |p.p\in?S1}
let ?f=\lambdap.of_int (sign p)*(\prodi\inUNIV.A i p i)
let ?g=\lambdap. ?t_jk\circp

```
```

 have \(g_{-}\)S1: ? S2 \(=? g^{6}\) ? S1 by auto
 have inj_g: inj_on ?g ?S1
 proof (unfold inj_on_def, auto)
 fix \(x y\) assume \(x: x\) permutes ? \(U\) and even_x: evenperm \(x\)
 and \(y: y\) permutes ? \(U\) and even_y: evenperm \(y\) and eq: ?t_jk \(\circ x=? t_{-} j k \circ y\)
 show \(x=y\) by (metis (hide_lams, no_types) comp_assoc eq id_comp swap_id_idempotent)
 qed
 have tjk_permutes: ?t_jk permutes ?U unfolding permutes_def swap_id_eq by
 (auto,metis)
have tjk_eq: $\forall i l . A \$ i \$? t_{-} j k l=A \$ i \$ l$
using $r j k$
unfolding column_def vec_eq_iff swap_id_eq by fastforce
have sign_tjk: sign ?t_jk $=-1$ using sign_swap_id $[o f j k] j k$ by auto
$\{$ fix x
assume $x: x \in$? $S 1$
have $\operatorname{sign}\left(? t_{j} j k \circ x\right)=\operatorname{sign}\left(? t_{-} j k\right) * \operatorname{sign} x$
by (metis (lifting) finite_class.finite_UNIV mem_Collect_eq
permutation_permutes permutation_swap_id sign_compose x)
also have $\ldots=-\operatorname{sign} x$ using sign_tjk by simp
also have $\ldots \neq \operatorname{sign} x$ unfolding sign_def by simp
finally have $\operatorname{sign}\left(? t_{-} j k \circ x\right) \neq \operatorname{sign} x$ and $\left(? t_{-} j k \circ x\right) \in ? S 2$
using x by force +
\}
hence disjoint: ? $S 1 \cap$?S2 $=\{ \}$
by (force simp: sign_def)
have $P U_{-}$decomposition: ?PU $=$? $S 1 \cup$?S2
proof (auto)
fix x
assume x : x permutes ? U and $\forall p$. p permutes ? $U \longrightarrow x=$ Fun.swap $j k i d \circ$
$p \longrightarrow \neg$ evenperm p
then obtain p where $p: p$ permutes UNIV and $x_{-} e q: x=$ Fun.swap $j k i d \circ p$
and odd_p: \neg evenperm p
by (metis (mono_tags) id_o o_assoc permutes_compose swap_id_idempotent
tjk_permutes)
thus evenperm x
by (meson evenperm_comp evenperm_swap finite_class.finite_UNIV
$j k$ permutation_permutes permutation_swap_id)
next
fix p assume $p: p$ permutes ? U
show Fun.swap $j k$ id $\circ p$ permutes UNIV by (metis p permutes_compose
tjk_permutes)
qed
have sum ?f ?S2 $=$ sum $\left(\left(\lambda p\right.\right.$. of_int $\left.(\operatorname{sign} p) *\left(\prod i \in U N I V . A \$ i \$ p i\right)\right)$
- (○) (Fun.swap $j k i d))\{p \in\{p$. p permutes UNIV $\}$. evenperm $p\}$
unfolding $g_{-} S 1$ by (rule sum.reindex $[$ OF inj_g])
also have $\ldots=\operatorname{sum}\left(\lambda p\right.$. of_int $\left.\left(\operatorname{sign}\left(? t_{-} j k \circ p\right)\right) *\left(\prod i \in U N I V . A \$ i \$ p i\right)\right)$
?S1
unfolding o_def by (rule sum.cong, auto simp: tjk_eq)
also have $\ldots=\operatorname{sum}(\lambda p .-$?f $p)$?S1

```
```

proof (rule sum.cong, auto)
fix x assume x : x permutes ? U
and even_x: evenperm x
hence perm_x: permutation x and perm_tjk: permutation ?t_jk
using permutation_permutes[of x] permutation_permutes $[o f$?t_jk] permuta-
tion_swap_id
by (metis finite_code)+
have $\left(\operatorname{sign}\left(? t_{-} j k \circ x\right)\right)=-(\operatorname{sign} x)$
unfolding sign_compose $[O F$ perm_tjk perm_x] sign_tjk by auto
thus of_int $\left(\operatorname{sign}\left(? t_{-} j k \circ x\right)\right) *\left(\prod i \in U N I V . A \$ i \$ x i\right)$
$=-\left(o f_{-} i n t(\operatorname{sign} x) *\left(\prod i \in U N I V . A \$ i \$ x i\right)\right)$
by auto
qed
also have $\ldots=-$ sum ?f ?S1 unfolding sum_negf ..
finally have $*$: sum ?f ?S2 $=-$ sum ?f ?S1.
have $\operatorname{det} A=\left(\sum p \mid p\right.$ permutes UNIV. of_int $(\operatorname{sign} p) *\left(\prod i \in U N I V . A \$ i \$\right.$
$p i)$)
unfolding det_def ..
also have $\ldots=$ sum ?f ? S1 + sum ?f ?S2
by (subst PU_decomposition, rule sum.union_disjoint $\left[O F_{\text {_ _ disjoint }] \text {, auto) }}\right.$
also have $\ldots=$ sum ?f ?S1 - sum ?f ?S1 unfolding $*$ by auto
also have $\ldots=0$ by simp
finally show $\operatorname{det} A=0$ by simp
qed
lemma det_identical_rows:
fixes A :: 'a::comm_ring_ $1{ }^{\wedge} n^{\wedge} n^{\prime} n$
assumes $i j: i \neq j$ and r : row i $A=$ row $j A$
shows $\operatorname{det} A=0$
by (metis column_transpose det_identical_columns det_transpose ij r)
lemma det_zero_row:
fixes $A::{ }^{\prime} a::\{\text { idom, ring_char_ } 0\}^{\wedge} n^{\wedge} n$ and $F::{ }^{\prime} b::\{\text { field }\}^{\wedge}{ }^{\prime} m^{\wedge \prime} m$
shows row $i A=0 \Longrightarrow \operatorname{det} A=0$ and row $j F=0 \Longrightarrow \operatorname{det} F=0$
by (force simp: row_def det_def vec_eq_iff sign_nz intro!: sum.neutral)+
lemma det_zero_column:
fixes $A::{ }^{\prime} a::\{\text { idom, ring_char_ } 0\}^{\wedge}{ }^{\prime} n^{\wedge} n$ and $F::{ }^{\prime} b::\{$ field $\}{ }^{\wedge} m^{\prime \prime} m$
shows column i $A=0 \Longrightarrow \operatorname{det} A=0$ and column $j F=0 \Longrightarrow \operatorname{det} F=0$
unfolding atomize_conj atomize_imp
by (metis det_transpose det_zero_row row_transpose)
lemma det_row_add:
fixes $a b c::$ ' $n::$ finite $\Rightarrow{ }^{\text {- }}{ }^{\prime} n$
shows $\operatorname{det}\left((\chi\right.$. if $i=k$ then $a i+b i$ else $c i)::^{\prime} a::$ comm_ring_ $\left.^{\wedge} \wedge^{\prime} n{ }^{\wedge} n\right)=$
$\operatorname{det}\left((\chi\right.$ i. if $i=k$ then a i else $c i)::^{\prime} a::$ comm_ring_ $\left.^{1^{\wedge}} n^{\wedge \prime} n\right)+$
$\operatorname{det}\left((\chi\right.$ i. if $i=k$ then b i else $c i)::{ }^{\prime} a::$ comm_ring_ $\left.1^{\wedge \prime} n^{\wedge} n\right)$
unfolding det_def vec_lambda_beta sum.distrib[symmetric]
proof (rule sum.cong)

```
```

 let ? \(U=U N I V\) :: ' \(n\) set
 let \(? p U=\{p . p\) permutes ? \(U\}\)
 let ?f \(=(\lambda i\). if \(i=k\) then \(a i+b\) i else \(c i):: ' n \Rightarrow{ }^{\prime} a::\) comm_ring_ \(^{\wedge}{ }^{\wedge} n\)
 let \(? g=(\lambda i\). if \(i=k\) then a \(i\) else \(c i)::{ }^{\prime} n \Rightarrow{ }^{\prime} a::\) comm_ring_ \(1^{\wedge} n\)
 let \(? h=(\lambda\). if \(i=k\) then \(b\) i else \(c i)::{ }^{\prime} n \Rightarrow{ }^{\prime} a::\) comm_ring_ \(1{ }^{\wedge} n\)
 fix \(p\)
 assume \(p: p \in ? p U\)
 let ? \(U k=\) ? \(U-\{k\}\)
 from \(p\) have \(p U: p\) permutes ? \(U\)
 by blast
 have \(k U\) : ? \(U=\) insert \(k\) ? \(U k\)
 by blast
 have eq: prod (\(\lambda i\). ?f \(i \$ p i)\) ? \(U k=\operatorname{prod}(\lambda i\). ? \(g i \$ p i)\) ? \(U k\)
 \(\operatorname{prod}(\lambda i\). ?f \(i \$ p i) ? U k=\operatorname{prod}(\lambda i\). ?h \(i \$ p i) ? U k\)
 by auto
 have \(U k\) : finite ? \(U k k \notin\) ? \(U k\)
 by auto
 have \(\operatorname{prod}(\lambda i\). ?f \(i \$ p i)\) ? \(U=\operatorname{prod}(\lambda i\). ?f \(i \$ p i)(\) insert \(k\) ? \(U k)\)
 unfolding \(k U\) [symmetric] ..
 also have \(\ldots=\) ? \(f k \$ p k * \operatorname{prod}(\lambda i\). ?f \(i \$ p i)\) ? \(U k\)
 by (rule prod.insert) auto
 also have \(\ldots=(a k \$ p k * \operatorname{prod}(\lambda i\). ?f \(i \$ p i)\) ? \(U k)+(b k \$ p k * \operatorname{prod}(\lambda i\).
 ?f $i \$ p i)$? $U k)$
by (simp add: field_simps)
also have $\ldots=(a k \$ p k * \operatorname{prod}(\lambda i . ? g i \$ p i) ? U k)+(b k \$ p k * \operatorname{prod}(\lambda i$.
? $\mathrm{h} i \$ p i)$? Uk)
by (metis eq)
also have $\ldots=\operatorname{prod}(\lambda i$. ?g $i \$ p i)($ insert $k ? U k)+\operatorname{prod}(\lambda i$. ?h $i \$ p i)$
(insert k ? Uk)
unfolding prod.insert[OF Uk] by simp
finally have $\operatorname{prod}(\lambda i$. ?f $i \$ p i)$? $U=\operatorname{prod}(\lambda i$. ?g $i \$ p i) ? U+\operatorname{prod}(\lambda i . ? h$
$i \$ p i)$? U
unfolding $k U$ [symmetric].
then show of_int $(\operatorname{sign} p) * \operatorname{prod}(\lambda i$. ?f $i \$ p i) ? U=$
of_int $(\operatorname{sign} p) * \operatorname{prod}(\lambda i . ? g i \$ p i) ? U+o f _i n t(\operatorname{sign} p) * \operatorname{prod}(\lambda i . ? h i \$$
pi)? U
by (simp add: field_simps)
qed auto
lemma det_row_mul:
fixes $a b::$ ' $n::$ finite \Rightarrow - $^{\prime} ' n$
shows $\operatorname{det}\left((\chi\right.$. if $i=k$ then $c * s$ a i else $b i)::^{\prime} a::$ comm_ring_ $\left.^{\wedge}{ }^{\wedge} n^{\wedge} n\right)=$
$c * \operatorname{det}\left((\chi\right.$. if $i=k$ then a i else $b i)::{ }^{\prime} a::$ comm_ring_ $\left.^{\wedge} 1^{\prime} n^{\wedge} \prime n\right)$
unfolding det_def vec_lambda_beta sum_distrib_left
proof (rule sum.cong)
let ? $U=U N I V ~:: ~ ' n ~ s e t$
let ? $p U=\{p . p$ permutes ? $U\}$
let ?f $=(\lambda i$. if $i=k$ then $c * s$ a i else $b i):: ' n \Rightarrow{ }^{\prime} a::$ comm_ring_ $^{1}{ }^{\wedge} n$
let $? g=(\lambda$. if $i=k$ then a i else $b i)::^{\prime} n \Rightarrow{ }^{\prime} a::$ comm_ring_ $1{ }^{\wedge} n$

```
```

fix p
assume $p: p \in ? p U$
let ? $U k=$? $U-\{k\}$
from p have $p U: p$ permutes ? U
by blast
have $k U:$? $U=$ insert k ? $U k$
by blast
have eq: prod (λi. ?f $i \$ p i)$? $U k=\operatorname{prod}(\lambda i$. ?g $i \$ p i)$?Uk
by auto
have $U k$: finite ? $U k k \notin$? Uk
by auto
have $\operatorname{prod}(\lambda i$. ?f $i \$ p i)$? $U=\operatorname{prod}(\lambda i$. ?f $i \$ p i)($ insert k ? $U k)$
unfolding $k U$ [symmetric]..
also have $\ldots=$? $k \$ p k * \operatorname{prod}(\lambda i$. ?f $i \$ p i)$? $U k$
by (rule prod.insert) auto
also have $\ldots=(c * s a k) \$ p k * \operatorname{prod}(\lambda i$. ?f $i \$ p i)$? Uk
by (simp add: field_simps)
also have $\ldots=c *(a k \$ p k * \operatorname{prod}(\lambda i$. ? $g i \$ p i)$? $U k)$
unfolding eq by (simp add: ac_simps)
also have $\ldots=c *(\operatorname{prod}(\lambda i$. ? $g i \$ p i)($ insert k ? Uk $))$
unfolding prod.insert $[O F U k]$ by simp
finally have $\operatorname{prod}(\lambda i$. ?f $i \$ p i)$? $U=c *(\operatorname{prod}(\lambda i$. ?g $i \$ p i)$? $U)$
unfolding $k U$ [symmetric].
then show of_int $($ sign $p) * \operatorname{prod}(\lambda i$. ?f $i \$ p i) ? U=c *\left(o f _i n t(\operatorname{sign} p) *\right.$
prod (λi. ? g i \$ pi) ? U)
by (simp add: field_simps)
qed auto
lemma det_row_0:
fixes $b::$ ' $n::$ finite \Rightarrow - $^{\prime} n$
shows $\operatorname{det}\left((\chi\right.$ i. if $i=k$ then 0 else $b i)::{ }^{\prime} a::$ comm_ring_ $\left.^{\wedge} 1^{\prime} n^{\wedge} n\right)=0$
using det_row_mul[of $k 0 \lambda i .1 \mathrm{~b}]$
apply simp
apply (simp only: vector_smult_lzero)
done
lemma det_row_operation:
fixes $A::$ 'a::\{comm_ring_1 $\}^{\wedge} n^{\wedge} n$
assumes $i j: i \neq j$
shows $\operatorname{det}(\chi k$. if $k=i$ then row $i A+c * s$ row $j A$ else row $k A)=\operatorname{det} A$
proof -
let ? $Z=(\chi k$. if $k=i$ then row $j A$ else row $k A)::{ }^{\prime} a^{\wedge} n^{\wedge} n$
have th: row $i ? Z=$ row $j ? Z$ by (vector row_def)
have th2: $\left((\chi\right.$. if $k=i$ then row $i A$ else row $\left.k A)::{ }^{\prime} a^{\wedge} n^{\wedge \prime} n\right)=A$
by (vector row_def)
show ?thesis
unfolding det_row_add [of i] det_row_mul[of i] det_identical_rows[OF ij th] th2
by simp
qed

```
lemma det_row_span:
fixes \(A\) :: ' \(a::\{\) field \(\}{ }^{\wedge} n^{\wedge} n\)
assumes \(x: x \in\) vec.span \(\{\) row \(j A \mid j . j \neq i\}\)
shows \(\operatorname{det}(\chi k\). if \(k=i\) then row \(i A+x\) else row \(k A)=\operatorname{det} A\)
using \(x\)
proof (induction rule: vec.span_induct_alt)
case base
have (if \(k=i\) then row \(i A+0\) else row \(k A)=\) row \(k A\) for \(k\) by \(\operatorname{simp}\)
then show ?case by (simp add: row_def)
next
case (step c \(z y\) )
then obtain \(j\) where \(j: z=\) row \(j A i \neq j\) by blast
let ? \(w=\) row \(i A+y\)
have th0: row i \(A+(c * s z+y)=? w+c * s z\) by vector
let ? \(d=\lambda x\). \(\operatorname{det}(\chi k\). if \(k=i\) then \(x\) else row \(k A)\)
have thz: ? \(d z=0\)
apply (rule det_identical_rows[OF j(2)])
using \(j\)
apply (vector row_def)
done
have ?d (row i \(A+(c * s z+y))=? d(? w+c * s z)\)
unfolding th0 ..
then have ?d \((\) row \(i A+(c * s z+y))=\operatorname{det} A\)
unfolding thz step.IH det_row_mul[ of \(i]\) det_row_add \([\) of \(i]\) by simp
then show ?case
unfolding scalar_mult_eq_scaleR .
qed
lemma matrix_id [simp]: det \((\) matrix id \()=1\)
by (simp add: matrix_id_mat_1)
proposition det_matrix_scale \(R[\operatorname{simp}]: \operatorname{det}\left(\operatorname{matrix}\left(\left(\left(*_{R}\right) r\right)\right)::\right.\) real^\(\left.{ }^{\wedge} n^{\wedge} n\right)=r\)
^ CARD (' \(n::\) finite \()\)
apply (subst det_diagonal)
apply (auto simp: matrix_def mat_def)
apply (simp add: cart_eq_inner_axis inner_axis_axis)
done
May as well do this, though it's a bit unsatisfactory since it ignores exact duplicates by considering the rows/columns as a set.
```

lemma det_dependent_rows:
fixes $A::{ }^{\prime} a::\{\text { field }\}^{\wedge} n^{\wedge \prime} n$
assumes d : vec.dependent (rows A)
shows $\operatorname{det} A=0$

```
```

proof -
let ? $U=U N I V ~:: ~ ' n ~ s e t$
from d obtain i where i : row i $A \in$ vec.span (rows $A-\{$ row i $A\}$)
unfolding vec.dependent_def rows_def by blast
show ?thesis
proof (cases $\forall i j . i \neq j \longrightarrow$ row $i A \neq$ row $j A$)
case True
with i have vec.span (rows $A-\{$ row $i A\}$) \subseteq vec.span $\{$ row $j A \mid j . j \neq i\}$
by (auto simp: rows_def intro!: vec.span_mono)
then have - row i $A \in$ vec.span $\{$ row $j A \mid j . j \neq i\}$
by (meson i subsetCE vec.span_neg)
from det_row_span[OF this]
have $\operatorname{det} A=\operatorname{det}(\chi k$. if $k=i$ then $0 * s 1$ else row $k A)$
unfolding right_minus vector_smult_lzero ..
with det_row_mul[of i $0 \lambda i .1]$
show ?thesis by simp
next
case False
then obtain $j k$ where $j k: j \neq k$ row $j A=$ row $k A$
by auto
from det_identical_rows $[O F j k]$ show ?thesis.
qed
qed
lemma det_dependent_columns:
assumes d : vec.dependent (columns ($A::$ real $\left.{ }^{\wedge} n^{\wedge} n\right)$)
shows $\operatorname{det} A=0$
by (metis d det_dependent_rows rows_transpose det_transpose)

```

Multilinearity and the multiplication formula
lemma Cart_lambda_cong: \((\bigwedge x . f x=g x) \Longrightarrow\left(v e c \_l a m b d a f::^{\prime} a^{\wedge} n\right)=\left(v e c \_l a m b d a\right.\) \(\left.g:: ' a^{\wedge} n\right)\)
by auto
lemma det_linear_row_sum:
assumes \(f S\) : finite \(S\)
shows det \(\left(\left(\chi\right.\right.\) i. if \(i=k\) then sum ( \(a\) i) S else ci)::'a::comm_ring_ \(\left.1{ }^{\wedge} n^{\wedge}{ }^{\wedge} n\right)=\) sum \(\left(\lambda j\right.\). det \(\left((\chi i\right.\). if \(i=k\) then \(a \quad i j\) else \(\left.\left.c i)::^{\prime} a^{\wedge} n^{\wedge} n\right)\right) S\)
using \(f S\) by (induct rule: finite_induct; simp add: det_row_0 det_row_add cong: if_cong)
lemma finite_bounded_functions:
assumes \(f S\) : finite \(S\)
shows finite \(\{f .(\forall i \in\{1 . .(k:: n a t)\} . f i \in S) \wedge(\forall i . i \notin\{1 . . k\} \longrightarrow f i=i)\}\)
proof (induct \(k\) )
case 0
have \(*:\{f . \forall i . f i=i\}=\{i d\}\)
by auto
show ?case
```

 by (auto simp: *)
 next
case (Suc k)
let ?f $=\lambda(y:: n a t, g)$ i. if $i=S u c k$ then y else $g i$
let ? $S=$? f ' $(S \times\{f .(\forall i \in\{1 . . k\} . f i \in S) \wedge(\forall i . i \notin\{1 . . k\} \longrightarrow f i=i)\})$
have $? S=\{f .(\forall i \in\{1 . . S u c k\} . f i \in S) \wedge(\forall i . i \notin\{1 . . S u c k\} \longrightarrow f i=i)\}$
apply (auto simp: image_iff)
apply (rename_tac f)
apply (rule_tac $x=f(S u c k)$ in bexI)
apply (rule_tac $x=\lambda i$. if $i=S u c k$ then i else $f i$ in exI, auto)
done
with finite_imageI[OF finite_cartesian_product[OF fS Suc.hyps(1)], of ?f]
show ? case
by metis
qed
lemma det_linear_rows_sum_lemma:
assumes $f S$: finite S
and $f T$: finite T
shows det $\left(\left(\chi\right.\right.$ i. if $i \in T$ then sum $(a$ i) S else $\left.c i):: ' a:: c o m m _r i n g _1^{\wedge} n^{\wedge} n\right)=$
$\operatorname{sum}\left(\lambda f . \operatorname{det}\left((\chi i\right.\right.$. if $i \in T$ then a $i(f i)$ else $\left.\left.c i)::^{\prime} a^{\wedge} n^{\wedge} n\right)\right)$
$\{f .(\forall i \in T . f i \in S) \wedge(\forall i . i \notin T \longrightarrow f i=i)\}$
using $f T$
proof (induct T arbitrary: a c set: finite)
case empty
have th $0: \bigwedge x y .(\chi$ i. if $i \in\{ \}$ then $x i$ else $y i)=\left(\begin{array}{l}\chi i . y i\end{array}\right)$
by vector
from empty.prems show ?case
unfolding th0 by (simp add: eq_id_iff)
next
case (insert z T a c)
let ? $F=\lambda T .\{f .(\forall i \in T . f i \in S) \wedge(\forall i . i \notin T \longrightarrow f i=i)\}$
let ? $h=\lambda(y, g)$. if $i=z$ then y else $g i$
let $? k=\lambda h .(h(z),(\lambda i$. if $i=z$ then i else $h i))$
let ?s $=\lambda k a c f$. $\operatorname{det}\left((\chi\right.$. if $i \in T$ then $a i(f i)$ else $\left.c i)::^{\prime} a^{\wedge \prime} n^{\wedge \prime} n\right)$
let $? c=\lambda j$. if $i=z$ then a $i j$ else $c i$
have thif: $\wedge a b c d$. (if $a \vee b$ then c else $d)=($ if a then c else if b then c else $d)$
by simp
have thif2: $\bigwedge a b c d e$. (if a then b else if c then d else $e)=$
(if c then (if a then b else d) else (if a then b else e))
by simp
from $\langle z \notin T\rangle$ have $n z: \bigwedge i . i \in T \Longrightarrow i \neq z$
by auto
have $\operatorname{det}(\chi$ i. if $i \in$ insert $z T$ then sum (a i) S else $c i)=$
$\operatorname{det}(\chi$ i. if $i=z$ then sum $(a i) S$ else if $i \in T$ then sum ($a i$) S else $c i)$
unfolding insert_iff thif ..
also have $\ldots=\left(\sum j \in S\right.$. det $(\chi$ i. if $i \in T$ then sum $(a$ i) S else if $i=z$ then
a ijelse ci))

```
unfolding det_linear_row_sum [OF fS]
by (subst thif2) (simp add: nz cong: if_cong)
finally have tha:
\(\operatorname{det}(\chi\) i. if \(i \in\) insert \(z T\) then sum ( \(a\) i) \(S\) else \(c i)=\)
\(\left(\sum(j, f) \in S \times ? F T\right.\). det \((\chi i\). if \(i \in T\) then a \(i(f i)\)
else if \(i=z\) then \(a i j\)
else \(c i\) ))
unfolding insert.hyps unfolding sum.cartesian_product by blast
show ?case unfolding tha
using \(\langle z \notin T\rangle\)
by (intro sum.reindex_bij_witness[where \(i=? k\) and \(j=? h]\) )
(auto intro!: cong[OF refl[of det]] simp: vec_eq_iff)
qed
lemma det_linear_rows_sum:
fixes \(S::{ }^{\prime} n::\) finite set
assumes \(f S\) : finite \(S\)
shows \(\operatorname{det}(\chi\) i. sum \((a i) S)=\)
\(\operatorname{sum}\left(\lambda f . \operatorname{det}\left(\chi\right.\right.\) i. a \(i(f i)::{ }^{\prime} a::\) comm_ring_1 \(\left.\left.{ }^{\wedge} ' n^{\wedge} n\right)\right)\{f . \forall i . f i \in S\}\)
proof -
 i. \(x i\) )
by vector
from det_linear_rows_sum_lemma[OF fS, of UNIV :: 'n set a, unfolded th0, OF finite]
show?thesis by simp
qed
lemma matrix_mul_sum_alt:
fixes \(A B\) :: 'a::comm_ring_1 \({ }^{\wedge} n^{\wedge} n\)
shows \(A * * B=(\chi i \operatorname{sum}(\lambda k . A \$ i \$ k * s B \$ k)(U N I V:: ' n\) set \()\) )
by (vector matrix_matrix_mult_def sum_component)
lemma det_rows_mul:
\(\operatorname{det}\left((\chi\right.\) i. c \(i\) *s a \(i)::^{\prime} a::\) comm_ring_ \(\left.^{\wedge^{\wedge}} n^{\wedge} \prime n\right)=\)
prod ( \(\lambda i\). c i) (UNIV:: 'n set) * \(\operatorname{det}\left((\chi\right.\) i. a \(\left.i)::^{\prime} a^{\wedge} n^{\wedge} n\right)\)
proof (simp add: det_def sum_distrib_left cong add: prod.cong, rule sum.cong)
let ? \(U=U N I V ~:: ~ ' n ~ s e t ~\)
let \(? P U=\{p . p\) permutes ? \(U\}\)
fix \(p\)
assume \(p U: p \in ? P U\)
let ?s \(=o f\) _int \((\operatorname{sign} p)\)
from \(p U\) have \(p: p\) permutes ? \(U\) by blast
have \(\operatorname{prod}(\lambda i . c i * a i \$ p i) ? U=\operatorname{prod} c ? U * \operatorname{prod}(\lambda i . a i \$ p i) ? U\)
unfolding prod.distrib ..
then show?s * (Пxá? U. c xa*a xa \$pxa)= prod \(c\) ? \(U *\left(? s *\left(\prod x a \in ? U . a x a \$ p x a\right)\right)\)
by (simp add: field_simps)
```

qed rule
proposition det_mul:
fixes $A B$:: 'a::comm_ring_1 ${ }^{\wedge} n^{\wedge \prime} n$
shows $\operatorname{det}(A * * B)=\operatorname{det} A * \operatorname{det} B$
proof -
let ? $U=U N I V ~:: ~ ' n ~ s e t$
let ? $F=\{f .(\forall i \in$? $U . f i \in$? $U) \wedge(\forall i . i \notin ? U \longrightarrow f i=i)\}$
let ? $P U=\{p . p$ permutes ? $U\}$
have $p \in ? F$ if p permutes ? U for p
by simp
then have $P U F: ? P U \subseteq ? F$ by blast
\{
fix f
assume $f P U: f \in ? F-? P U$
have $f U U: f$ ' ? $U \subseteq$? U
using $f P U$ by auto
from $f P U$ have $f: \forall i \in ? U . f i \in ? U \forall i . i \notin ? U \longrightarrow f i=i \neg(\forall y . \exists!x . f x$
$=y$)
unfolding permutes_def by auto
let ? $A=(\chi$ i. $A \$ i \$ f i * s B \$ f i)::{ }^{\prime} a^{\wedge \prime} n^{\wedge} n$
let ? $B=(\chi i . B \$ f i)::{ }^{\prime} a^{\wedge} n^{\wedge} n$
\{
assume fni: $\neg \operatorname{inj}$ _on f ? U
then obtain $i j$ where $i j: f i=f j i \neq j$
unfolding inj_on_def by blast
then have row $i ? B=$ row j ? B
by (vector row_def)
with det_identical_rows[OF ij(2)]
have $\operatorname{det}(\chi i . A \$ i \$ f i * s B \$ f i)=0$
unfolding det_rows_mul by force
\}
moreover
\{
assume fi: inj_on f ? U
from $f f$ have fith: $\bigwedge i j . f i=f j \Longrightarrow i=j$
unfolding inj_on_def by metis
note $f s=f i[$ unfolded surjective_iff_injective_gen $[O F$ finite finite refl $f U U$,
symmetric]]
have $\exists!x . f x=y$ for y
using fith fs by blast
with $f(3)$ have $\operatorname{det}(\chi i . A \$ i \$ f i * s B \$ f i)=0$
by blast
\}
ultimately have $\operatorname{det}(\chi i . A \$ i \$ f i * s B \$ f i)=0$
by blast
\}
then have zth: $\forall f \in ? F-? P U . \operatorname{det}(\chi i . A \$ i \$ f i * s B \$ f i)=0$

```
```

 by simp
 {
 fix p
 assume pU:p\in?PU
 from pU have p: p permutes ? U
 by blast
 let ?s = \lambdap.of_int (sign p)
 let ?f = \lambdaq. ?s p*(\prodi\in?U.A $ i$pi)*(?s q*(\prodi\in?U.B$ i$qi))
 have (sum (}\lambdaq\mathrm{ . ?s q *
 (\prodi\in?U.(\chii.A $ i$pi*s B $pi::' 'a^'n^'n)$ i$qi)) ?PU)=
 (sum (\lambdaq. ?s p *(\prodi\in?U.A$ $ $pi)*(?s q*(\prodi\in?U.B $ i$qi)))
 ?PU)
unfolding sum_permutations_compose_right[OF permutes_inv[OF p], of ?f]
proof (rule sum.cong)
fix q
assume qU:q\in?PU
then have q:q permutes ?U
by blast
from pq have pp: permutation p and pq: permutation q
unfolding permutation_permutes by auto
have th00:of_int (sign p)* of_int (sign p) = (1::'a)
\a.of_int (sign p)*(of_int (sign p)*a)=a
unfolding mult.assoc[symmetric]
unfolding of_int_mult[symmetric]
by (simp_all add: sign_idempotent)
have ths:?s q=?s p * ?s (q\circinv p)
using pp pq permutation_inverse[OF pp] sign_inverse[OF pp]
by (simp add: th00 ac_simps sign_idempotent sign_compose)
have th001: prod (\lambdai. Biq(inv p i)) ? U = prod ((\lambdai. Bi q (inv p i)) ○
p) ?U
by (rule prod.permute[OF p])
have thp: prod (\lambdai. (\chi i. Aipi*s B\$pi::' 'a^'n^'n) \$i \$ q i)?U =
prod (\lambdai. Aipi) ?U* prod (\lambdai. Biq(inv pi))?U
unfolding th001 prod.distrib[symmetric] o_def permutes_inverses[OF p]
apply (rule prod.cong[OF refl])
using permutes_in_image[OF q]
apply vector
done
show ?s q * prod (\lambdai. (((\chi i. Aipi*s B$pi) :: 'a^' n^'n)$i$qi)) ? U =
 ?s p * (prod (\lambdai. Aipi) ?U)*(?s (q\circinv p)* prod (\lambdai. Bi(q\circinv
p) i) ?U)
 using ths thp pp pq permutation_inverse[OF pp] sign_inverse[OF pp]
 by (simp add: sign_nz th00 field_simps sign_idempotent sign_compose)
 qed rule
}
then have th2: sum (}\lambdaf.\operatorname{det}(\chii.Aifi*s B$fi))?PU=\operatorname{det}A*\operatorname{det}
unfolding det_def sum_product
by (rule sum.cong [OF refl])
have det (A**B)=\operatorname{sum}(\lambdaf.\operatorname{det}(\chii.Aifi*sB\$fi))?F

```
```

 unfolding matrix_mul_sum_alt det_linear_rows_sum[OF finite]
 by simp
 also have ... = sum (}\lambdaf.\operatorname{det}(\chii.Aifi*s B$fi))?P
 using sum.mono_neutral_cong_left[OF finite PUF zth, symmetric]
 unfolding det_rows_mul by auto
 finally show ?thesis unfolding th2 .
 qed

```

\subsection*{1.10.2 Relation to invertibility}
proposition invertible_det_nz:
fixes \(A::^{\prime} a::\{\text { field }\}^{\wedge} n^{\wedge} n\)
shows invertible \(A \longleftrightarrow \operatorname{det} A \neq 0\)
proof (cases invertible A)
case True
then obtain \(B::{ }^{\prime} a^{\wedge} \prime n^{\wedge} n\) where \(B: A * * B=\) mat 1 unfolding invertible_right_inverse by blast
then have \(\operatorname{det}(A * * B)=\operatorname{det}\left(\right.\) mat \(\left.1::{ }^{\prime} a^{\wedge \prime} n^{\wedge} n\right)\) by simp
then show ?thesis
by (metis True det_I det_mul mult_zero_left one_neq_zero)
next
case False
let ? \(U=U N I V ~:: ~ ' n ~ s e t\)
have \(f U\) : finite ? \(U\)
by \(\operatorname{simp}\)
from False obtain \(c i\) where \(c\) : sum \((\lambda i . c i * s\) row \(i A) ? U=0\) and \(i U: i \in\)
? \(U\) and \(c i: c i \neq 0\)
unfolding invertible_right_inverse matrix_right_invertible_independent_rows
by blast
have thr0: - row \(i A=\operatorname{sum}(\lambda j .(1 / c i) * s(c j * s\) row \(j A))(? U-\{i\})\)
unfolding sum_cmul using \(c\) ci
by (auto simp: sum.remove \([O F\) fU iU] eq_vector_fraction_iff add_eq_0_iff)
have thr: - row i \(A \in\) vec.span \(\{\) row \(j A \mid j . j \neq i\}\)
unfolding thr0 by (auto intro: vec.span_base vec.span_scale vec.span_sum)
let ? \(B=(\chi k\). if \(k=i\) then 0 else row \(k A)::{ }^{\prime} a^{\wedge} n^{\wedge} n\)
have thrb: row \(i\) ? \(B=0\) using \(i U\) by (vector row_def)
have \(\operatorname{det} A=0\)
unfolding det_row_span[OF thr, symmetric] right_minus
unfolding det_zero_row(2)[OF thrb] ..
then show ?thesis
by (simp add: False)
qed
lemma det_nz_iff_inj_gen:
fixes \(f::{ }^{\prime} a:: f i e l{ }^{\wedge}{ }^{\prime} n \Rightarrow{ }^{\prime} a::\) field \(^{\wedge} n\)
assumes Vector_Spaces.linear \((* s)(* s) f\)
shows \(\operatorname{det}(\) matrix \(f) \neq 0 \longleftrightarrow \operatorname{inj} f\)
```

proof
assume det (matrix f)}\not=
then show injf
using assms invertible_det_nz inj_matrix_vector_mult by force
next
assume inj f
show det (matrix f)}\not=
using vec.linear_injective_left_inverse [OF assms <inj f`]
by (metis assms invertible_det_nz invertible_left_inverse matrix_compose_gen ma-
trix_id_mat_1)
qed
lemma det_nz_iff_inj:
fixes f :: real^'}n=>\mp@subsup{reall}{}{\wedge}
assumes linear f
shows det (matrix f)}\not=0\longleftrightarrow\mp@code{inj}
using det_nz_iff_inj_gen[of f] assms
unfolding linear_matrix_vector_mul_eq .
lemma det_eq_0_rank:
fixes }A\mathrm{ :: real^' }n^^
shows }\operatorname{det}A=0\longleftrightarrow\operatorname{rank}A<CARD('n
using invertible_det_nz [of A]
by (auto simp: matrix_left_invertible_injective invertible_left_inverse less_rank_noninjective)

```

\section*{Invertibility of matrices and corresponding linear functions}
lemma matrix_left_invertible_gen:
fixes \(f::\) ' \(a:: f i e l d{ }^{\wedge} m \Rightarrow{ }^{\prime} a::\) field^' \(n\)
assumes Vector_Spaces.linear \((* s)(* s) f\)
shows \(((\exists B . B * *\) matrix \(f=\) mat 1\() \longleftrightarrow(\exists g\). Vector_Spaces.linear \((* s)(* s)\)
\(g \wedge g \circ f=i d))\)
proof safe
fix \(B\)
assume 1: \(B\) ** matrix \(f=\) mat 1
show \(\exists g\). Vector_Spaces.linear \((* s)(* s) g \wedge g \circ f=i d\)
proof (intro exI conjI)
show Vector_Spaces.linear \((* s)(* s)(\lambda y . B * v y)\)
by simp
show \(((* v) B) \circ f=i d\)
unfolding o_def
by (metis assms 1 eq_id_iff matrix_vector_mul(1) matrix_vector_mul_assoc
matrix_vector_mul_lid)
qed
next
fix \(g\)
assume Vector_Spaces.linear \((* s)(* s) g g \circ f=i d\)
then have matrix \(g * *\) matrix \(f=\) mat 1
by (metis assms matrix_compose_gen matrix_id_mat_1)
```

 then show \(\exists B . B * *\) matrix \(f=\) mat \(1 .\).
 qed
lemma matrix_left_invertible:
linear $f \Longrightarrow((\exists B . B * *$ matrix $f=$ mat 1$) \longleftrightarrow(\exists g$. linear $g \wedge g \circ f=i d))$
for $f:$:real ${ }^{\wedge} m \Rightarrow$ real $^{\wedge} n$
using matrix_left_invertible_gen[of f]
by (auto simp: linear_matrix_vector_mul_eq)
lemma matrix_right_invertible_gen:
fixes $f::$ ' $a::$ field ${ }^{\wedge} m \Rightarrow{ }^{\prime} a^{\wedge} n$
assumes Vector_Spaces.linear $(* s)(* s) f$
shows $((\exists B$. matrix $f * * B=$ mat 1$) \longleftrightarrow(\exists$ g. Vector_Spaces.linear $(* s)(* s)$
$g \wedge f \circ g=i d))$
proof safe
fix B
assume 1: matrix $f * * B=$ mat 1
show $\exists g$. Vector_Spaces.linear $(* s)(* s) g \wedge f \circ g=i d$
proof (intro exI conjI)
show Vector_Spaces.linear $(* s)(* s)((* v) B)$
by simp
show $f \circ(* v) B=i d$
using 1 assms comp_apply eq_id_iff vec.linear_id matrix_id_mat_1 matrix_vector_mul_assoc
matrix_works
by (metis (no_types, hide_lams))
qed
next
fix g
assume Vector_Spaces.linear $(* s)(* s) g$ and $f \circ g=i d$
then have matrix $f * *$ matrix $g=$ mat 1
by (metis assms matrix_compose_gen matrix_id_mat_1)
then show $\exists B$. matrix $f * * B=$ mat 1 ..
qed
lemma matrix_right_invertible:
linear $f \Longrightarrow((\exists B$. matrix $f * * B=$ mat 1$) \longleftrightarrow(\exists g$. linear $g \wedge f \circ g=i d))$
for $f:$: real ${ }^{\wedge} m \Rightarrow$ real $^{\wedge} n$
using matrix_right_invertible_gen[of f]
by (auto simp: linear_matrix_vector_mul_eq)
lemma matrix_invertible_gen:
fixes $f::{ }^{\prime} a:: f i e l d{ }^{\wedge} m \Rightarrow{ }^{\prime} a:: f i e l{ }^{\wedge}{ }^{\prime} n$
assumes Vector_Spaces.linear $(* s)(* s) f$
shows invertible $($ matrix $f) \longleftrightarrow(\exists g$. Vector_Spaces.linear $(* s)(* s) g \wedge f \circ g$
$=i d \wedge g \circ f=i d)$
(is ?lhs = ? $r h s$)
proof
assume ?lhs then show ?rhs
by (metis assms invertible_def left_right_inverse_eq matrix_left_invertible_gen

```
```

matrix_right_invertible_gen)
next
assume ?rhs then show ?lhs
by (metis assms invertible_def matrix_compose_gen matrix_id_mat_1)
qed
lemma matrix_invertible:
linear $f \Longrightarrow$ invertible $($ matrix $f) \longleftrightarrow(\exists g$. linear $g \wedge f \circ g=i d \wedge g \circ f=i d)$
for $f::$ real ${ }^{\wedge} m \Rightarrow$ real $^{\wedge \prime} n$
using matrix_invertible_gen[of f]
by (auto simp: linear_matrix_vector_mul_eq)
lemma invertible_eq_bij:
fixes $m::{ }^{\prime} a::$ field $^{\wedge \prime} m^{\wedge} n$
shows invertible $m \longleftrightarrow$ bij $((* v) m)$
using matrix_invertible_gen[OF matrix_vector_mul_linear_gen, of m, simplified
matrix_of_matrix_vector_mul]
by (metis bij_betw_def left_right_inverse_eq matrix_vector_mul_linear_gen o_bij
vec.linear_injective_left_inverse vec.linear_surjective_right_inverse)

```

\subsection*{1.10.3 Cramer's rule}
lemma cramer_lemma_transpose:
fixes \(A::\) ' \(a::\{\text { field }\}^{\wedge}{ }^{\prime} n^{\wedge \prime} n\)
and \(x::{ }^{\prime} a::\{\text { field }\}^{\wedge}{ }^{\wedge} n\)
shows \(\operatorname{det}((\chi\) i. if \(i=k\) then sum \((\lambda i . x \$ i * s\) row \(i A)(U N I V:: ' n\) set \()\)
else row \(i A)::^{\prime} a::\{\) field \(\left.\}{ }^{\wedge} n^{\wedge} n\right)=x \$ k * \operatorname{det} A\)
(is ? \(l h s=\) ? \(r h s\) )
proof -
let ? \(U=U N I V ~:: ~ ' n ~ s e t ~\)
let ? \(U k=\) ? \(U-\{k\}\)
have \(U\) : ? \(U=\) insert \(k\) ? Uk
by blast
have \(k U k\) : \(k \notin\) ? Uk
by simp
have th00: \(\bigwedge k s . x \$ k * s\) row \(k A+s=(x \$ k-1) * s\) row \(k A+\) row \(k A+s\) by (vector field_simps)
have th001: \(\bigwedge f k\). \((\lambda x\). if \(x=k\) then \(f k\) else \(f x)=f\)
by auto
have \((\chi\) i. row \(i A)=A\) by (vector row_def)
then have thd1: \(\operatorname{det}(\chi i\). row \(i A)=\operatorname{det} A\) by simp
have thd0: \(\operatorname{det}\left(\chi i\right.\). if \(i=k\) then row \(k A+\left(\sum i \in ? U k . x \$ i * s\right.\) row \(\left.i A\right)\) else
row \(i A)=\operatorname{det} A\)
by (force intro: det_row_span vec.span_sum vec.span_scale vec.span_base)
show ?lhs \(=x \$ k * \operatorname{det} A\)
apply (subst \(U\) )
unfolding sum.insert[OF finite \(k U k\) ]
apply (subst th00)
```

 unfolding add.assoc
 apply (subst det_row_add)
 unfolding thd0
 unfolding det_row_mul
 unfolding th001[of k \lambdai. row i A]
 unfolding thd1
 apply (simp add: field_simps)
 done
 qed
proposition cramer_lemma:
fixes }A:: 'a::{field} `' n^'
shows det((\chi i j. if j = k then (}A*vx)$i else A$i$j):: 'a::{field } ^' n' n) = x$k

* det A
proof -
let ?U = UNIV :: 'n set
have *: \bigwedgec.sum (\lambdai.ci*s row i(transpose A)) ? U = sum (\lambdai.ci*s column
i A) ?U
by (auto intro: sum.cong)
show ?thesis
unfolding matrix_mult_sum
unfolding cramer_lemma_transpose[of k x transpose A, unfolded det_transpose,
symmetric]
unfolding *[of \lambdai. x$i]
 apply (subst det_transpose[symmetric])
 apply (rule cong[OF refl[of det]])
 apply (vector transpose_def column_def row_def)
 done
qed
proposition cramer:
 fixes }A::'a::{field} `` n^'
 assumes d0: det A\not=0
 shows A*v x = b \longleftrightarrowx=(\chik.\operatorname{det}(\chiij. if j=k then b$i else A$i$j) / det A)
proof -
from d0 obtain B where B:A** B= mat 1 B ** A = mat 1
unfolding invertible_det_nz[symmetric] invertible_def
by blast
have (A** B)*vb=b
by (simp add: B)
then have A*v (B*vb)=b
by (simp add: matrix_vector_mul_assoc)
then have xe: \existsx.A*vx=b
by blast
{
fix }
assume x:A*vx=b
have }x=(\chik.\operatorname{det}(\chiij.if j=k then b$i else A$i\$j) / det A
unfolding x[symmetric]

```
```

 using d0 by (simp add: vec_eq_iff cramer_lemma field_simps)
 }
 with xe show ?thesis
 by auto
 qed
lemma det_1: det (A::'a::comm_ring_1^1^1) = A\$1\$1
by (simp add: det_def sign_id)
lemma det_2: det (A::'a::comm_ring_1^2^2) = A\$1\$1*A\$2\$2 - A\$1\$2 *
A\$2\$1
proof -
have f12: finite {2::2} 1 \&{2::2} by auto
show ?thesis
unfolding det_def UNIV_2
unfolding sum_over_permutations_insert[OF f12]
unfolding permutes_sing
by (simp add: sign_swap_id sign_id swap_id_eq)
qed
lemma det_3:
det (A::'a::comm_ring_1^3^3) =
A\$1\$1*A\$2\$2 * A\$3\$3+
A\$1\$2 * A\$2\$3 * A\$3\$1+
A\$1\$3*A\$2\$1 * A\$3\$2 -
A\$1\$1*A\$2\$3 * A\$3\$2 -
A\$1\$2 * A\$2\$1 * A\$3\$3 -
A\$1\$3*A\$2\$2*A\$3\$1
proof -
have f123: finite {2::3, 3} 1 \& {2::3, 3}
by auto
have f23: finite {3::3} 2 \& {3::3}
by auto
show ?thesis
unfolding det_def UNIV_3
unfolding sum_over_permutations_insert[OF f123]
unfolding sum_over_permutations_insert[OF f23]
unfolding permutes_sing
by (simp add: sign_swap_id permutation_swap_id sign_compose sign_id swap_id_eq)
qed
proposition det_orthogonal_matrix:
fixes }Q:: ' a::linordered_idom^' n^ n
assumes oQ:orthogonal_matrix Q
shows }\operatorname{det}Q=1\vee\operatorname{det}Q=-
proof -
have Q ** transpose Q = mat 1
by (metis oQ orthogonal_matrix_def)

```
```

 then have \(\operatorname{det}(Q * *\) transpose \(Q)=\operatorname{det}\left(\right.\) mat \(\left.1::{ }^{\prime} a^{\wedge \prime} n^{\wedge} n\right)\)
 by simp
 then have \(\operatorname{det} Q * \operatorname{det} Q=1\)
 by (simp add: det_mul)
 then show? thesis
 by (simp add: square_eq_1_iff)
 qed
proposition orthogonal_transformation_det [simp]:
fixes $f::$ real $^{\wedge} n \Rightarrow$ real $^{\wedge} n$
shows orthogonal_transformation $f \Longrightarrow|\operatorname{det}(\operatorname{matrix} f)|=1$
using det_orthogonal_matrix orthogonal_transformation_matrix by fastforce

```

\subsection*{1.10.4 Rotation, reflection, rotoinversion}
```

definition rotation_matrix }Q\longleftrightarrow\mathrm{ orthogonal_matrix Q ^ det Q = 1
definition rotoinversion_matrix }Q\longleftrightarrow\mathrm{ orthogonal_matrix }Q\wedge\operatorname{det}Q=-
lemma orthogonal_rotation_or_rotoinversion:
fixes }Q :: 'a::linordered_idom ^' n^'
shows orthogonal_matrix }Q\longleftrightarrow\mathrm{ rotation_matrix }Q\vee rotoinversion_matrix Q
by (metis rotoinversion_matrix_def rotation_matrix_def det_orthogonal_matrix)

```

Slightly stronger results giving rotation, but only in two or more dimensions
```

lemma rotation_matrix_exists_basis:
fixes $a::$ real $^{\wedge} n$
assumes 2: $2 \leq C A R D\left({ }^{\prime} n\right)$ and norm $a=1$
obtains A where rotation_matrix $A A * v($ axis $k 1)=a$
proof -
obtain A where orthogonal_matrix A and $A: A * v($ axis $k 1)=a$
using orthogonal_matrix_exists_basis assms by metis
with orthogonal_rotation_or_rotoinversion
consider rotation_matrix $A \mid$ rotoinversion_matrix A
by metis
then show thesis
proof cases
assume rotation_matrix A
then show?thesis
using $\langle A * v$ axis $k 1=a\rangle$ that by auto
next
from ex_card[OF 2] obtain $h i:: ' n$ where $h \neq i$
by (auto simp add: eval_nat_numeral card_Suc_eq)
then obtain j where $j \neq k$
by (metis (full_types))
let ?TA = transpose A
let ? $A=\chi$. if $i=j$ then $-1 *_{R}(? T A \$ i)$ else ?TA $\$ i$
assume rotoinversion_matrix A
then have $[\operatorname{simp}]: \operatorname{det} A=-1$
by (simp add: rotoinversion_matrix_def)

```
```

 show ?thesis
 proof
 have [simp]: row i (\chi i. if i=j then - 1 *R ?TA $ i else?TA $ i)=(if i
 = j then - row i ?TA else row i?TA) for i
by (auto simp: row_def)
have orthogonal_matrix ?A
unfolding orthogonal_matrix_orthonormal_rows
using <orthogonal_matrix A> by (auto simp: orthogonal_matrix_orthonormal_columns
orthogonal_clauses)
then show rotation_matrix (transpose ?A)
unfolding rotation_matrix_def
by (simp add: det_row_mul[of j_ _i. ?TA \$ i, unfolded scalar_mult_eq_scaleR])
show transpose?A *v axis k 1 = a
using }\langlej\not=k\rangleA\mathrm{ by (simp add: matrix_vector_column axis_def scalar_mult_eq_scaleR
if_distrib [of \lambdaz. z**R c for c] cong: if_cong)
qed
qed
qed
lemma rotation_exists_1:
fixes a :: real^'}
assumes 2 \leqCARD(' n) norm a = 1 norm b = 1
obtains f where orthogonal_transformation f det(matrix f)=1fa=b
proof -
obtain k::'n where True
by simp
obtain A B where AB: rotation_matrix A rotation_matrix B
and eq:A*v (axis k 1)=a B*v (axis k 1)=b
using rotation_matrix_exists_basis assms by metis
let ?f = \lambdax. (B** transpose }A)*v
show thesis
proof
show orthogonal_transformation ?f
using AB orthogonal_matrix_mul orthogonal_transformation_matrix rotation_matrix_def
matrix_vector_mul_linear by force
show det (matrix ?f) = 1
using AB by (auto simp: det_mul rotation_matrix_def)
show ?f }a=
using AB unfolding orthogonal_matrix_def rotation_matrix_def
by (metis eq matrix_mul_rid matrix_vector_mul_assoc)
qed
qed
lemma rotation_exists:
fixes a :: real^^}
assumes 2: 2 \leq CARD('n) and eq: norm a = norm b
obtains f}\mathrm{ where orthogonal_transformation f det(matrix f)=1fa=b
proof (cases a = 0\veeb=0)
case True

```
```

 with assms have \(a=0 b=0\)
 by auto
 then show? ?thesis
 by (metis eq_id_iff matrix_id orthogonal_transformation_id that)
 next
case False
then obtain f where f : orthogonal_transformation $f \operatorname{det}(\operatorname{matrix} f)=1$
and $f^{\prime}: f(a / R$ norm $a)=b / R$ norm b
using rotation_exists_1 [of a / R norm $a b / R$ norm b, OF 2] by auto
then interpret linear f by (simp add: orthogonal_transformation)
have $f a=b$
using f^{\prime} False
by (simp add: eq scale)
with f show thesis ..
qed
lemma rotation_rightward_line:
fixes a :: real^^ n
obtains f where orthogonal_transformation $f 2 \leq C A R D(' n) \Longrightarrow \operatorname{det}($ matrix $f)$
= 1
$f\left(\right.$ norm $a *_{R}$ axis $\left.k 1\right)=a$
proof (cases CARD (' n) $=1$)
case True
obtain f where orthogonal_transformation $f f\left(\right.$ norm $a *_{R}$ axis $k(1::$ real $\left.)\right)=a$
proof (rule orthogonal_transformation_exists)
show norm (norm $a *_{R}$ axis $k(1::$ real $\left.)\right)=$ norm a
by simp
qed auto
then show thesis
using True that by auto
next
case False
obtain f where orthogonal_transformation $f \operatorname{det}($ matrix $f)=1 f\left(\right.$ norm $a *_{R}$
axis k 1) $=a$
proof (rule rotation_exists)
show $2 \leq C A R D\left({ }^{\prime} n\right)$
using False one_le_card_finite [where ' $a=$ ' n] by linarith
show norm (norm $a *_{R}$ axis $k(1::$ real $\left.)\right)=$ norm a
by simp
qed auto
then show thesis
using that by blast
qed
end

```

\section*{Chapter 2}

\section*{Topology}

\author{
theory Elementary_Topology imports \\ HOL-Library.Set_Idioms \\ HOL-Library.Disjoint_Sets \\ Product_Vector \\ begin
}

\subsection*{2.1 Elementary Topology}

\section*{Affine transformations of intervals}
lemma real_affinity_le: \(0<m \Longrightarrow m * x+c \leq y \longleftrightarrow x \leq\) inverse \(m * y+-\) ( \(c / m\) )
for \(m\) :: 'a::linordered_field
by (simp add: field_simps)
lemma real_le_affinity: \(0<m \Longrightarrow y \leq m * x+c \longleftrightarrow\) inverse \(m * y+-(c /\) \(m) \leq x\)
for \(m::{ }^{\prime} a::\) linordered_field
by (simp add: field_simps)
lemma real_affinity_lt: \(0<m \Longrightarrow m * x+c<y \longleftrightarrow x<\) inverse \(m * y+-\) ( \(c / m\) )
for \(m\) :: 'a::linordered_field
by (simp add: field_simps)
lemma real_lt_affinity: \(0<m \Longrightarrow y<m * x+c \longleftrightarrow\) inverse \(m * y+-(c /\) \(m)<x\)
for \(m::{ }^{\prime} a::\) linordered_field
by (simp add: field_simps)
lemma real_affinity_eq: \(m \neq 0 \Longrightarrow m * x+c=y \longleftrightarrow x=\) inverse \(m * y+-\) ( \(c / m\) )
for \(m\) :: 'a::linordered_field
by (simp add: field_simps)
lemma real_eq_affinity: \(m \neq 0 \Longrightarrow y=m * x+c \longleftrightarrow\) inverse \(m * y+-(c /\) \(m)=x\)
for \(m\) :: 'a::linordered_field
by (simp add: field_simps)

\subsection*{2.1.1 Topological Basis}
context topological_space
begin
definition topological_basis \(B \longleftrightarrow\) \((\forall b \in B\). open \(b) \wedge\left(\forall x\right.\). open \(\left.x \longrightarrow\left(\exists B^{\prime} . B^{\prime} \subseteq B \wedge \bigcup B^{\prime}=x\right)\right)\)
```

lemma topological_basis:
topological_basis $B \longleftrightarrow\left(\forall x\right.$. open $\left.x \longleftrightarrow\left(\exists B^{\prime} . B^{\prime} \subseteq B \wedge \bigcup B^{\prime}=x\right)\right)$
unfolding topological_basis_def
apply safe
apply fastforce
apply fastforce
apply (erule_tac $x=x$ in allE, simp)
apply (rule_tac $x=\{x\}$ in exI, auto)
done
lemma topological_basis_iff:
assumes $\bigwedge B^{\prime} . B^{\prime} \in B \Longrightarrow$ open B^{\prime}
shows topological_basis $B \longleftrightarrow\left(\forall O^{\prime}\right.$. open $O^{\prime} \longrightarrow\left(\forall x \in O^{\prime} . \exists B^{\prime} \in B . x \in B^{\prime} \wedge\right.$
$\left.B^{\prime} \subseteq O^{\prime}\right)$)
(is _ \longleftrightarrow ? $r h s$)
proof safe
fix O^{\prime} and $x::^{\prime} a$
assume H : topological_basis B open $O^{\prime} x \in O^{\prime}$
then have $\left(\exists B^{\prime} \subseteq B . \bigcup B^{\prime}=O^{\prime}\right)$ by (simp add: topological_basis_def)
then obtain B^{\prime} where $B^{\prime} \subseteq B O^{\prime}=\bigcup B^{\prime}$ by auto
then show $\exists B^{\prime} \in B . x \in B^{\prime} \wedge B^{\prime} \subseteq O^{\prime}$ using H by auto
next
assume H : ?rhs
show topological_basis B
using assms unfolding topological_basis_def
proof safe
fix $O^{\prime}::$ 'a set
assume open O^{\prime}
with H obtain f where $\forall x \in O^{\prime} . f x \in B \wedge x \in f x \wedge f x \subseteq O^{\prime}$
by (force intro: bchoice simp: Bex_def)
then show $\exists B^{\prime} \subseteq B . \bigcup B^{\prime}=O^{\prime}$
by (auto intro: exI[where $\left.x=\left\{f x \mid x . x \in O^{\prime}\right\}\right]$)
qed
qed

```
```

lemma topological_basisI:
assumes $\bigwedge B^{\prime} . B^{\prime} \in B \Longrightarrow$ open B^{\prime}
and $\bigwedge O^{\prime}$ x. open $O^{\prime} \Longrightarrow x \in O^{\prime} \Longrightarrow \exists B^{\prime} \in B . x \in B^{\prime} \wedge B^{\prime} \subseteq O^{\prime}$
shows topological_basis B
using assms by (subst topological_basis_iff) auto
lemma topological_basisE:
fixes O^{\prime}
assumes topological_basis B
and open O^{\prime}
and $x \in O^{\prime}$
obtains B^{\prime} where $B^{\prime} \in B x \in B^{\prime} B^{\prime} \subseteq O^{\prime}$
proof atomize_elim
from assms have $\bigwedge B^{\prime} . B^{\prime} \in B \Longrightarrow$ open B^{\prime}
by (simp add: topological_basis_def)
with topological_basis_iff assms
show $\exists B^{\prime} . B^{\prime} \in B \wedge x \in B^{\prime} \wedge B^{\prime} \subseteq O^{\prime}$
using assms by (simp add: Bex_def)
qed
lemma topological_basis_open:
assumes topological_basis B
and $X \in B$
shows open X
using assms by (simp add: topological_basis_def)
lemma topological_basis_imp_subbasis:
assumes B : topological_basis B
shows open $=$ generate_topology B
proof (intro ext iffI)
fix S :: 'a set
assume open S
with B obtain B^{\prime} where $B^{\prime} \subseteq B S=\bigcup B^{\prime}$
unfolding topological_basis_def by blast
then show generate_topology $B S$
by (auto intro: generate_topology.intros dest: topological_basis_open)
next
fix S :: 'a set
assume generate_topology $B S$
then show open S
by induct (auto dest: topological_basis_open[OF B])
qed
lemma basis_dense:
fixes B :: ' a set set
and $f::$ 'a set $\Rightarrow{ }^{\prime} a$
assumes topological_basis B
and choosefrom_basis: $\bigwedge B^{\prime} . B^{\prime} \neq\{ \} \Longrightarrow f B^{\prime} \in B^{\prime}$

```
```

 shows \(\forall X\). open \(X \longrightarrow X \neq\{ \} \longrightarrow\left(\exists B^{\prime} \in B . f B^{\prime} \in X\right)\)
 proof (intro allI impI)
fix X :: 'a set
assume open X and $X \neq\{ \}$
from topological_basisE[OF 〈topological_basis B〉〈open X〉 choosefrom_basis[OF
$\langle X \neq\{ \}\rangle]]$
obtain B^{\prime} where $B^{\prime} \in B f X \in B^{\prime} B^{\prime} \subseteq X$.
then show $\exists B^{\prime} \in B . f B^{\prime} \in X$
by (auto intro!: choosefrom_basis)
qed
end
lemma topological_basis_prod:
assumes A : topological_basis A
and B: topological_basis B
shows topological_basis $((\lambda(a, b) . a \times b) '(A \times B))$
unfolding topological_basis_def
proof (safe, simp_all del: ex_simps add: subset_image_iff ex_simps(1)[symmetric])
fix $S::\left({ }^{\prime} a \times{ }^{\prime} b\right)$ set
assume open S
then show $\exists X \subseteq A \times B .(\bigcup(a, b) \in X . a \times b)=S$
proof (safe intro!: exI[of - $\{x \in A \times B$. fst $x \times$ snd $x \subseteq S\}]$)
fix $x y$
assume $(x, y) \in S$
from open_prod_elim [OF 〈open S 〉this]
obtain $a b$ where a : open $a x \in a$ and b : open $b y \in b$ and $a \times b \subseteq S$
by (metis mem_Sigma_iff)
moreover
from A abtain $A 0$ where $A 0 \in A x \in A 0 A 0 \subseteq a$
by (rule topological_basisE)
moreover
from $B b$ obtain $B 0$ where $B 0 \in B y \in B 0 B 0 \subseteq b$
by (rule topological_basisE)
ultimately show $(x, y) \in(\bigcup(a, b) \in\{X \in A \times B$. fst $X \times$ snd $X \subseteq S\}$. $a \times$
b)
by (intro UN_I[of (A0, B0)]) auto
qed auto
qed (metis $A B$ topological_basis_open open_Times)

```

\section*{2．1．2 Countable Basis}
locale countable＿basis＝topological＿space \(p\) for \(p::^{\prime}\) a set \(\Rightarrow\) bool +
fixes \(B\) ：：＇\(a\) set set
assumes is＿basis：topological＿basis B and countable＿basis：countable \(B\)
begin
lemma open＿countable＿basis＿ex：
```

 assumes p X
 shows }\exists\mp@subsup{B}{}{\prime}\subseteqB.X=\bigcup\mp@subsup{B}{}{\prime
 using assms countable_basis is_basis
 unfolding topological_basis_def by blast
 lemma open_countable_basisE:
assumes p X
obtains B' where }\mp@subsup{B}{}{\prime}\subseteqBX=\bigcup\mp@subsup{B}{}{\prime
using assms open_countable_basis_ex
by atomize_elim simp
lemma countable_dense_exists:
\existsD::'a set. countable D\wedge(}\forallX.pX\longrightarrowX\not={}\longrightarrow(\existsd\inD.d\inX)
proof -
let ?f = (}\lambda\mp@subsup{B}{}{\prime}.\mathrm{ SOME x. x 隹)
have countable (?f ' B) using countable_basis by simp
with basis_dense[OF is_basis, of ?f] show ?thesis
by (intro exI[where x=?f ' B]) (metis (mono_tags) all_not_in_conv imageI
someI)
qed
lemma countable_dense_setE:
obtains D :: 'a set
where countable D \X.pX\LongrightarrowX\not={}\Longrightarrow\existsd\inD.d\inX
using countable_dense_exists by blast
end
lemma countable_basis_openI: countable_basis open B
if countable B topological_basis B
using that
by unfold_locales
(simp_all add: topological_basis topological_space.topological_basis topological_space_axioms)
lemma (in first_countable_topology) first_countable_basisE:
fixes x :: 'a
obtains \mathcal{A where countable }\mathcal{A}\bigwedgeA.A\in\mathcal{A \Longrightarrow }\Longrightarrowx\inA\bigwedgeA.A\in\mathcal{A \Longrightarrow}\Longrightarrow\mathrm{ open }A
\ S . ~ o p e n ~ S \Longrightarrow x \in S \Longrightarrow (\exists A \in \mathcal { A } . A \subseteq S)
proof -
obtain \mathcal{A where \mathcal{A}:(\foralli::nat. x }\in\mathcal{A}i\wedge\mathrm{ open (A i)) (}\forallS\mathrm{ . open }S\wedgex\inS\longrightarrow
(\existsi.\mathcal{A i}\subseteqS))
using first_countable_basis[of x] by metis
show thesis
proof
show countable (range \mathcal{A}
by simp
qed (use \mathcal{A in auto)}
qed

```
lemma (in first_countable_topology) first_countable_basis_Int_stableE:
obtains \(\mathcal{A}\) where countable \(\mathcal{A} \bigwedge A . A \in \mathcal{A} \Longrightarrow x \in A \bigwedge A . A \in \mathcal{A} \Longrightarrow\) open \(A\) \(\bigwedge S\). open \(S \Longrightarrow x \in S \Longrightarrow(\exists A \in \mathcal{A} . A \subseteq S)\)
\(\bigwedge A B . A \in \mathcal{A} \Longrightarrow B \in \mathcal{A} \Longrightarrow A \cap B \in \mathcal{A}\)
proof atomize_elim
obtain \(\mathcal{B}\) where \(\mathcal{B}\) :
countable \(\mathcal{B}\)
\(\wedge B . B \in \mathcal{B} \Longrightarrow x \in B\)
\(\wedge B . B \in \mathcal{B} \Longrightarrow\) open \(B\)
\(\wedge S\). open \(S \Longrightarrow x \in S \Longrightarrow \exists B \in \mathcal{B} . B \subseteq S\)
by (rule first_countable_basisE) blast
define \(\mathcal{A}\) where [abs_def]:
\(\mathcal{A}=(\lambda N . \bigcap((\lambda n \text {. from_nat_into } \mathcal{B} n) ' N))^{\prime}(\) Collect finite::nat set set \()\)
then show \(\exists \mathcal{A}\). countable \(\mathcal{A} \wedge(\forall A . A \in \mathcal{A} \longrightarrow x \in A) \wedge(\forall A . A \in \mathcal{A} \longrightarrow\) open A) \(\wedge\)
\((\forall S\). open \(S \longrightarrow x \in S \longrightarrow(\exists A \in \mathcal{A} . A \subseteq S)) \wedge(\forall A B . A \in \mathcal{A} \longrightarrow B \in\) \(\mathcal{A} \longrightarrow A \cap B \in \mathcal{A})\)
proof (safe intro!: exI [where \(x=\mathcal{A}]\) )
show countable \(\mathcal{A}\)
unfolding \(\mathcal{A}_{\_}\)def by (intro countable_image countable_Collect_finite)
fix \(A\)
assume \(A \in \mathcal{A}\)
then show \(x \in A\) open \(A\)
using \(\mathcal{B}(4)[\) OF open_UNIV \(]\) by (auto simp: \(\mathcal{A} \_\)def intro: \(\mathcal{B}\) from_nat_into)
next
let ? int \(=\lambda N\). (from_nat_into \(\left.\mathcal{B}{ }^{\prime} N\right)\)
fix \(A B\)
assume \(A \in \mathcal{A} B \in \mathcal{A}\)
then obtain \(N M\) where \(A=\) ?int \(N B=\) ? int \(M\) finite \((N \cup M)\)
by (auto simp: \(\mathcal{A}\) _def)
then show \(A \cap B \in \mathcal{A}\)
by (auto simp: \(\mathcal{A} \_\)def intro!: image_eq \(I[\) where \(x=N \cup M]\) )
next
fix \(S\)
assume open \(S x \in S\)
then obtain \(a\) where \(a: a \in \mathcal{B} a \subseteq S\) using \(\mathcal{B}\) by blast
then show \(\exists a \in \mathcal{A}\). \(a \subseteq S\) using \(a \mathcal{B}\)
by (intro bexI \([\) where \(x=a]\) ) (auto simp: \(\mathcal{A}_{\_}\)def intro: image_eq \(I[\) where \(x=\{\) to_nat_on \(\mathcal{B} a\}]\) )
qed
qed
lemma (in topological_space) first_countableI:
assumes countable \(\mathcal{A}\)
and 1: \(\bigwedge A . A \in \mathcal{A} \Longrightarrow x \in A \bigwedge A . A \in \mathcal{A} \Longrightarrow\) open \(A\)
and 2: \(\bigwedge S\). open \(S \Longrightarrow x \in S \Longrightarrow \exists A \in \mathcal{A} . A \subseteq S\)
shows \(\exists \mathcal{A}\) :: nat \(\Rightarrow{ }^{\prime}\) a set. \((\forall i . x \in \mathcal{A} i \wedge\) open \((\mathcal{A} i)) \wedge(\forall S\). open \(S \wedge x \in S\)
\(\longrightarrow(\exists i . \mathcal{A} i \subseteq S))\)
proof (safe intro!: exI[of _ from_nat_into \(\mathcal{A}]\) )
fix \(i\)
have \(\mathcal{A} \neq\{ \}\) using \(2[\) of UNIV] by auto
show \(x \in\) from_nat_into \(\mathcal{A} i\) open (from_nat_into \(\mathcal{A} i\) )
using range_from_nat_into_subset \([O F\langle\mathcal{A} \neq\{ \}\rangle] 1\) by auto
next
fix \(S\)
assume open \(S x \in S\) from \(2[O F\) this]
show \(\exists i\). from_nat_into \(\mathcal{A} i \subseteq S\)
using subset_range_from_nat_into[OF <countable \(\mathcal{A}\rangle]\) by auto
qed
instance prod :: (first_countable_topology, first_countable_topology) first_countable_topology proof
fix \(x::{ }^{\prime} a \times{ }^{\prime} b\)
obtain \(\mathcal{A}\) where \(\mathcal{A}\)
countable \(\mathcal{A}\)
\(\bigwedge a . a \in \mathcal{A} \Longrightarrow f s t x \in a\)
\(\bigwedge a . a \in \mathcal{A} \Longrightarrow\) open \(a\)
\(\bigwedge S\). open \(S \Longrightarrow f s t x \in S \Longrightarrow \exists a \in \mathcal{A} . a \subseteq S\)
by (rule first_countable_basisE[of fst x]) blast
obtain \(B\) where \(B\) :
countable \(B\)
\(\bigwedge a . a \in B \Longrightarrow\) snd \(x \in a\)
\(\bigwedge a . a \in B \Longrightarrow\) open \(a\)
\(\bigwedge S\). open \(S \Longrightarrow\) snd \(x \in S \Longrightarrow \exists a \in B . a \subseteq S\)
by (rule first_countable_basisE[of snd x]) blast
show \(\exists \mathcal{A}\) ::nat \(\Rightarrow\left({ }^{\prime} a \times{ }^{\prime} b\right)\) set.
\((\forall i . x \in \mathcal{A} i \wedge \operatorname{open}(\mathcal{A} i)) \wedge(\forall S\). open \(S \wedge x \in S \longrightarrow(\exists i . \mathcal{A} i \subseteq S))\)
proof (rule first_countableI \([\) of \((\lambda(a, b) . a \times b)\) ' \((\mathcal{A} \times B)]\), safe \()\)
fix \(a b\)
assume \(x: a \in \mathcal{A} b \in B\)
show \(x \in a \times b\)
by (simp add: \(\mathcal{A}(2) B(2)\) mem_Times_iff \(x)\)
show open \((a \times b)\)
by (simp add: \(\mathcal{A}(3) B(3)\) open_Times \(x)\)
next
fix \(S\)
assume open \(S x \in S\)
then obtain \(a^{\prime} b^{\prime}\) where \(a^{\prime} b^{\prime}\) : open \(a^{\prime}\) open \(b^{\prime} x \in a^{\prime} \times b^{\prime} a^{\prime} \times b^{\prime} \subseteq S\)
by (rule open_prod_elim)
moreover
from \(a^{\prime} b^{\prime} \mathcal{A}(4)[\) of \(a] B(4)\left[o f b^{\prime}\right]\)
obtain \(a b\) where \(a \in \mathcal{A} a \subseteq a^{\prime} b \in B b \subseteq b^{\prime}\)
by auto
ultimately
show \(\exists a \in(\lambda(a, b) . a \times b)\) ' \((\mathcal{A} \times B) . a \subseteq S\)
by (auto intro!: bexI[of _ \(a \times b]\) bexI[of _ \(a]\) bexI[of _ \(b]\) )
qed (simp add: \(\mathcal{A} B\) )
qed
```

class second_countable_topology $=$ topological_space +
assumes ex_countable_subbasis:
$\exists B::^{\prime} a$ set set. countable $B \wedge$ open $=$ generate_topology B
begin

```
lemma ex_countable_basis: \(\exists B::^{\prime}\) a set set. countable \(B \wedge\) topological_basis \(B\)
proof -
    from ex_countable_subbasis obtain \(B\) where \(B\) : countable \(B\) open \(=\) gener-
ate_topology \(B\)
    by blast
    let ? \(B=\) Inter ' \(\{b\). finite \(b \wedge b \subseteq B\}\)
    show ?thesis
    proof (intro exI conjI)
        show countable? \(B\)
        by (intro countable_image countable_Collect_finite_subset B)
        \{
            fix \(S\)
            assume open \(S\)
            then have \(\exists B^{\prime} \subseteq\{b\). finite \(b \wedge b \subseteq B\} .\left(\bigcup b \in B^{\prime} . \bigcap b\right)=S\)
            unfolding \(B\)
            proof induct
            case UNIV
            show ? case by (intro exI[of - \{\{\}\}]) simp
            next
                    case (Int ab)
                    then obtain \(x y\) where \(x: a=\bigcup(\) Inter ' \(x) \wedge i . i \in x \Longrightarrow\) finite \(i \wedge i \subseteq B\)
                    and \(y: b=\bigcup(\) Inter ' \(y) \bigwedge i . i \in y \Longrightarrow\) finite \(i \wedge i \subseteq B\)
                    by blast
            show ? case
                    unfolding \(x\) y Int_UN_distrib2
                    by (intro exI[of \(-\{i \cup j \mid i j . \quad i \in x \wedge j \in y\}]\) ) (auto dest: x(2) y(2))
        next
            case ( \(U N K\) )
            then have \(\forall k \in K . \exists B^{\prime} \subseteq\{b\). finite \(b \wedge b \subseteq B\} . \cup\left(\right.\) Inter ' \(\left.B^{\prime}\right)=k\) by auto
            then obtain \(k\) where
                    \(\forall k a \in K . k k a \subseteq\{b\). finite \(b \wedge b \subseteq B\} \wedge \bigcup(\) Inter ' \((k k a))=k a\)
                    unfolding bchoice_iff ..
            then show \(\exists B^{\prime} \subseteq\{b\). finite \(b \wedge b \subseteq B\}\). \(\cup\left(\right.\) Inter \(\left.{ }^{\prime} B^{\prime}\right)=\bigcup K\)
                    by (intro exI \(\left.\left[o f-\bigcup\left(k^{\prime} K\right)\right]\right)\) auto
        next
            case (Basis S)
            then show ?case
                    by (intro exI \([\) of - \(\{\{S\}\}]\) ) auto
        qed
        then have \(\left(\exists B^{\prime} \subseteq\right.\) Inter ' \(\{b\). finite \(\left.b \wedge b \subseteq B\} . \bigcup B^{\prime}=S\right)\)
            unfolding subset_image_iff by blast \(\}\)
        then show topological_basis ?B
```

 unfolding topological_basis_def
 by (safe intro!: open_Inter)
 (simp_all add: B generate_topology.Basis subset_eq)
 qed
 qed
end
lemma univ_second_countable:
obtains \mathcal{B :: 'a::second_countable_topology set set}
where countable \mathcal{B}\C.C\in\mathcal{B}\Longrightarrow\mathrm{ open C}
S. open S\Longrightarrow\existsU.U\subseteq\mathcal{B}\wedgeS=\bigcupU
by (metis ex_countable_basis topological_basis_def)
proposition Lindelof:
fixes \mathcal{F :: 'a::second_countable_topology set set}
assumes \mathcal{F}:\bigwedgeS.S\in\mathcal{F}\Longrightarrow
obtains }\mp@subsup{\mathcal{F}}{}{\prime}\mathrm{ where }\mp@subsup{\mathcal{F}}{}{\prime}\subseteq\mathcal{F}\mathrm{ countable }\mp@subsup{\mathcal{F}}{}{\prime}\cup\mp@subsup{\mathcal{F}}{}{\prime}=\bigcup\mathcal{F
proof -
obtain \mathcal{B :: 'a set set}
where countable \mathcal{B }\C.C\in\mathcal{B}\Longrightarrow
and \mathcal{B}:\wedgeS. open S\Longrightarrow\existsU.U\subseteq\mathcal{B}\wedgeS=\bigcupU
using univ_second_countable by blast
define \mathcal{D}\mathrm{ where }\mathcal{D}\equiv{S.S\in\mathcal{B}\wedge(\existsU.U\in\mathcal{F}\wedgeS\subseteqU)}
have countable \mathcal{D}
apply (rule countable_subset [OF _ <countable \mathcal{B}]])
apply (force simp: D_def)
done
have }\S.\existsU.S\in\mathcal{D}\longrightarrowU\in\mathcal{F}\wedgeS\subseteq
by (simp add: D_def)
then obtain G where G: \S.S\in\mathcal{D}\longrightarrowGS\in\mathcal{F}\wedgeS\subseteqGS
by metis
have }\bigcup\mathcal{F}\subseteq\bigcup\mathcal{D
unfolding \mathcal{D_def by (blast dest: \mathcal{F B}})=\mp@code{*}
moreover have
mathcal{D}\subseteq\bigcup\mathcal{F}
using D_def by blast
ultimately have eq1: \bigcup\mathcal{F}=
mathcal{D}..
have eq2:
mathcal{D}=\bigcup(G'\mathcal{D})
using G eq1 by auto
show ?thesis
apply (rule_tac \mathcal{F}
using G <countable \mathcal{D}
by (auto simp: eq1 eq2)
qed
lemma countable_disjoint_open_subsets:
fixes \mathcal{F :: 'a::second_countable_topology set set}
assumes }\bigwedgeS.S\in\mathcal{F}\Longrightarrow\mathrm{ open S and pw: pairwise disjnt }\mathcal{F

```
```

 shows countable \(\mathcal{F}\)
 proof -
obtain \mathcal{F}^{\prime} where $\mathcal{F}^{\prime} \subseteq \mathcal{F}$ countable $\mathcal{F}^{\prime} \cup \mathcal{F}^{\prime}=\bigcup \mathcal{F}$
by (meson assms Lindelof)
with $p w$ have $\mathcal{F} \subseteq$ insert $\left\} \mathcal{F}^{\prime}\right.$
by (fastforce simp add: pairwise_def disjnt_iff)
then show ?thesis
by (simp add: 〈countable \mathcal{F}^{\prime} 〉 countable_subset)
qed
sublocale second_countable_topology <
countable_basis open SOME B. countable $B \wedge$ topological_basis B
using someI_ex[OF ex_countable_basis]
by unfold_locales safe

```
```

instance prod :: (second_countable_topology, second_countable_topology) second_countable_topology
proof
obtain A :: ' a set set where countable A topological_basis A
using ex_countable_basis by auto
moreover
obtain B :: 'b set set where countable B topological_basis B
using ex_countable_basis by auto
ultimately show $\exists B::\left({ }^{\prime} a \times{ }^{\prime} b\right)$ set set. countable $B \wedge$ open $=$ generate_topology
B
by (auto intro!: exI[of $-(\lambda(a, b) . a \times b)$ ' $(A \times B)]$ topological_basis_prod
topological_basis_imp_subbasis)
qed
instance second_countable_topology \subseteq first_countable_topology
proof
fix $x::^{\prime} a$
define $B::{ }^{\prime} a$ set set where $B=($ SOME B. countable $B \wedge$ topological_basis $B)$
then have B : countable B topological_basis B
using countable_basis is_basis
by (auto simp: countable_basis is_basis)
then show $\exists A:: n a t \Rightarrow{ }^{\prime} a$ set.
$(\forall i . x \in A i \wedge$ open $(A i)) \wedge(\forall S$. open $S \wedge x \in S \longrightarrow(\exists i . A i \subseteq S))$
by (intro first_countableI $[$ of $\{b \in B . x \in b\}]$)
(fastforce simp: topological_space_class.topological_basis_def)+
qed
instance nat :: second_countable_topology
proof
show $\exists B$::nat set set. countable $B \wedge$ open $=$ generate_topology B
by (intro exI[of_range lessThan \cup range greaterThan]) (auto simp: open_nat_def)
qed
lemma countable_separating_set_linorder1:

```
shows \(\exists B::\left({ }^{\prime} a::\{\right.\) linorder＿topology，second＿countable＿topology\} set). countable \(B\) \(\wedge(\forall x y . x<y \longrightarrow(\exists b \in B . x<b \wedge b \leq y))\) proof－
obtain \(A::\)＇a set set where countable \(A\) topological＿basis \(A\) using ex＿countable＿basis by auto
define \(B 1\) where \(B 1=\{(L E A S T x . x \in U) \mid U . U \in A\}\)
then have countable B1 using（countable \(A\) ）by（simp add：Setcompr＿eq＿image）
define B2 where \(B 2=\{(S O M E x . x \in U) \mid U . U \in A\}\)
then have countable B2 using＜countable \(A\) ）by（simp add：Setcompr＿eq＿image）
have \(\exists b \in B 1 \cup B 2 . x<b \wedge b \leq y\) if \(x<y\) for \(x y\)
proof（cases）
assume \(\exists z . x<z \wedge z<y\)
then obtain \(z\) where \(z: x<z \wedge z<y\) by auto
define \(U\) where \(U=\{x<. .<y\}\)
then have open \(U\) by simp
moreover have \(z \in U\) using \(z U \_\)def by simp
ultimately obtain \(V\) where \(V \in A z \in V V \subseteq U\)
using topological＿basisE［OF 〈topological＿basis \(A\rangle]\) by auto
define \(w\) where \(w=(S O M E x . x \in V)\)
then have \(w \in V\) using \(\langle z \in V\rangle\) by（metis someI2）
then have \(x<w \wedge w \leq y\) using \(\langle w \in V\rangle\langle V \subseteq U\rangle U_{-} d e f\) by fastforce
moreover have \(w \in B 1 \cup B 2\) using \(w_{-} \operatorname{def} B 2_{-} \operatorname{def}\langle V \in A\rangle\) by auto
ultimately show ？thesis by auto
next
assume \(\neg(\exists z . x<z \wedge z<y)\)
then have \(*: \bigwedge z . z>x \Longrightarrow z \geq y\) by auto
define \(U\) where \(U=\{x<.\).
then have open \(U\) by simp
moreover have \(y \in U\) using \(\langle x<y\rangle U_{-}\)def by simp
ultimately obtain \(V\) where \(V \in A y \in V V \subseteq U\)
using topological＿basisE［OF 〈topological＿basis A〉］by auto
have \(U=\{y .\).\(\} unfolding U \_\)def using \(*\langle x\langle y\rangle\) by auto
then have \(V \subseteq\{y .\).\(\} using \langle V \subseteq U\rangle\) by simp
then have \((L E A S T\) w．\(w \in V)=y\) using \(\langle y \in V\rangle\) by（meson Least＿equality atLeast＿iff subsetCE）
then have \(y \in B 1 \cup B 2\) using \(\langle V \in A\rangle\) B1＿def by auto
moreover have \(x<y \wedge y \leq y\) using \(\langle x<y\rangle\) by \(\operatorname{simp}\)
ultimately show ？thesis by auto
qed
moreover have countable \((B 1 \cup B 2)\) using 〈countable B1〉〈countable B2〉 by simp
ultimately show ？thesis by auto
qed
lemma countable＿separating＿set＿linorder2：
shows \(\exists B::\left(' a::\left\{l i n o r d e r \_t o p o l o g y, ~ s e c o n d \_c o u n t a b l e \_t o p o l o g y\right\} ~ s e t\right) . ~ c o u n t a b l e ~ B ~\) \(\wedge(\forall x y . x<y \longrightarrow(\exists b \in B . x \leq b \wedge b<y))\)
proof－
obtain \(A::\)＇a set set where countable \(A\) topological＿basis \(A\) using ex＿countable＿basis
```

by auto
define B1 where $B 1=\{(G R E A T E S T$ x. $x \in U) \mid U . U \in A\}$
then have countable B1 using <countable A 〉 by (simp add: Setcompr_eq_image)
define $B 2$ where $B 2=\{(S O M E x . x \in U) \mid U . U \in A\}$
then have countable B2 using (countable A〉 by (simp add: Setcompr_eq_image)
have $\exists b \in B 1 \cup$ B2. $x \leq b \wedge b<y$ if $x<y$ for $x y$
proof (cases)
assume $\exists z . x<z \wedge z<y$
then obtain z where $z: x<z \wedge z<y$ by auto
define U where $U=\{x<. .<y\}$
then have open U by simp
moreover have $z \in U$ using $z U_{-}$def by simp
ultimately obtain V where $V \in A z \in V V \subseteq U$
using topological_basisE[OF 〈topological_basis A〉] by auto
define w where $w=(S O M E x . x \in V)$
then have $w \in V$ using $\langle z \in V\rangle$ by (metis someI2)
then have $x \leq w \wedge w<y$ using $\langle w \in V\rangle\langle V \subseteq U\rangle U_{-} d e f$ by fastforce
moreover have $w \in B 1 \cup B 2$ using w_def B2_def $\langle V \in A\rangle$ by auto
ultimately show ?thesis by auto
next
assume $\neg(\exists z . x<z \wedge z<y)$
then have $*: ~ \bigwedge z . z<y \Longrightarrow z \leq x$ using leI by blast
define U where $U=\{. .<y\}$
then have open U by simp
moreover have $x \in U$ using $\langle x<y\rangle U_{-}$def by simp
ultimately obtain V where $V \in A x \in V V \subseteq U$
using topological_basisE[OF 〈topological_basis A〉] by auto
have $U=\{. . x\}$ unfolding $U_{-} d e f$ using $*\langle x\langle y\rangle$ by auto
then have $V \subseteq\{. . x\}$ using $\langle V \subseteq U\rangle$ by simp
then have (GREATEST $x . x \in V$) $=x$ using $\langle x \in V\rangle$ by (meson Great-
est_equality atMost_iff subsetCE)
then have $x \in B 1 \cup B 2$ using $\langle V \in A\rangle$ B1_def by auto
moreover have $x \leq x \wedge x<y$ using $\langle x<y\rangle$ by simp
ultimately show ?thesis by auto
qed
moreover have countable $($ B1 \cup B2) using 〈countable B1〉〈countable B2〉 by
simp
ultimately show ?thesis by auto
qed
lemma countable_separating_set_dense_linorder:
shows $\exists B::(' a::\{$ linorder_topology, dense_linorder, second_countable_topology\} set).
countable $B \wedge(\forall x y . x<y \longrightarrow(\exists b \in B . x<b \wedge b<y))$
proof -
obtain $B::^{\prime} a$ set where B : countable $B \bigwedge x y . x<y \Longrightarrow(\exists b \in B . x<b \wedge b$
$\leq y$)
using countable_separating_set_linorder1 by auto
have $\exists b \in B . x<b \wedge b<y$ if $x<y$ for $x y$
proof -

```
```

 obtain z where }x<zz<y\mathrm{ using <x< < > dense by blast
 then obtain b where b\inBx<b\wedgeb\leqz using B(2) by auto
 then have }x<b\wedgeb<y\mathrm{ using }\langlez<y>\mathrm{ by auto
 then show ?thesis using < }b\inB\rangle\mathrm{ by auto
 qed
 then show ?thesis using B(1) by auto
 qed

```

\subsection*{2.1.3 Polish spaces}

Textbooks define Polish spaces as completely metrizable. We assume the topology to be complete for a given metric.
class polish_space \(=\) complete_space + second_countable_topology

\subsection*{2.1.4 Limit Points}
definition (in topological_space) islimpt:: ' \(a \Rightarrow{ }^{\prime}\) 'a set \(\Rightarrow\) bool (infixr islimpt 60) where \(x\) islimpt \(S \longleftrightarrow(\forall T . x \in T \longrightarrow\) open \(T \longrightarrow(\exists y \in S . y \in T \wedge y \neq x))\)
lemma islimptI:
assumes \(\bigwedge T . x \in T \Longrightarrow\) open \(T \Longrightarrow \exists y \in S . y \in T \wedge y \neq x\)
shows \(x\) islimpt \(S\)
using assms unfolding islimpt_def by auto
lemma islimptE:
assumes \(x\) islimpt \(S\) and \(x \in T\) and open \(T\)
obtains \(y\) where \(y \in S\) and \(y \in T\) and \(y \neq x\)
using assms unfolding islimpt_def by auto
lemma islimpt_iff_eventually: \(x\) islimpt \(S \longleftrightarrow \neg\) eventually \((\lambda y . y \notin S\) ) (at \(x\) )
unfolding islimpt_def eventually_at_topological by auto
lemma islimpt_subset: \(x\) islimpt \(S \Longrightarrow S \subseteq T \Longrightarrow x\) islimpt \(T\)
unfolding islimpt_def by fast
lemma islimpt_UNIV_iff: \(x\) islimpt UNIV \(\longleftrightarrow \neg\) open \(\{x\}\)
unfolding islimpt_def by (safe, fast, case_tac \(T=\{x\}\), fast, fast)
lemma islimpt_punctured: \(x\) islimpt \(S=x \operatorname{islimpt}(S-\{x\})\)
unfolding islimpt_def by blast
A perfect space has no isolated points
lemma islimpt_UNIV [simp, intro]: x islimpt UNIV
for \(x\) :: 'a::perfect_space
unfolding islimpt_UNIV_iff by (rule not_open_singleton)
lemma closed_limpt: closed \(S \longleftrightarrow(\forall x . x\) islimpt \(S \longrightarrow x \in S)\)
unfolding closed_def
apply (subst open_subopen)
```

 apply (simp add: islimpt_def subset_eq)
 apply (metis ComplE ComplI)
 done
    ```
lemma islimpt_EMPTY[simp]: \(\neg x\) islimpt \(\}\)
    by (auto simp: islimpt_def)
lemma islimpt_Un: \(x\) islimpt \((S \cup T) \longleftrightarrow x\) islimpt \(S \vee x\) islimpt \(T\)
    by (simp add: islimpt_iff_eventually eventually_conj_iff)
```

lemma islimpt_insert:
fixes x :: 'a::t1_space
shows x islimpt (insert as) $\longleftrightarrow x$ islimpt s
proof
assume $*: x$ islimpt (insert a s)
show x islimpt s
proof (rule islimptI)
fix t
assume $t: x \in t$ open t
show $\exists y \in s . y \in t \wedge y \neq x$
proof (cases $x=a$)
case True
obtain y where $y \in$ insert as $y \in t y \neq x$
using $* t$ by (rule islimptE)
with $\langle x=a\rangle$ show ?thesis by auto
next
case False
with t have $t^{\prime}: x \in t-\{a\}$ open $(t-\{a\})$
by (simp_all add: open_Diff)
obtain y where $y \in$ insert a s $y \in t-\{a\} y \neq x$
using $* t^{\prime}$ by (rule islimptE)
then show ?thesis by auto
qed
qed
next
assume x islimpt s
then show x islimpt (insert as)
by (rule islimpt_subset) auto
qed
lemma islimpt_finite:
fixes x :: 'a::t1_space
shows finite $s \Longrightarrow \neg x$ islimpt s
by (induct set: finite) (simp_all add: islimpt_insert)
lemma islimpt_Un_finite:
fixes x :: ' a ::t1_space
shows finite $s \Longrightarrow x$ islimpt $(s \cup t) \longleftrightarrow x$ islimpt t

```
```

by (simp add: islimpt_Un islimpt_finite)
lemma islimpt_eq_acc_point
fixes $l::$ ' a :: t1_space
shows l islimpt $S \longleftrightarrow(\forall U . l \in U \longrightarrow$ open $U \longrightarrow$ infinite $(U \cap S))$
proof (safe intro!: islimptI)
fix U
assume l islimpt $S l \in U$ open U finite $(U \cap S)$
then have l islimpt $S l \in(U-(U \cap S-\{l\}))$ open $(U-(U \cap S-\{l\}))$
by (auto intro: finite_imp_closed)
then show False
by (rule islimptE) auto
next
fix T
assume $*: \forall U . l \in U \longrightarrow$ open $U \longrightarrow$ infinite $(U \cap S) l \in T$ open T
then have infinite $(T \cap S-\{l\})$
by auto
then have $\exists x . x \in(T \cap S-\{l\})$
unfolding ex_in_conv by (intro notI) simp
then show $\exists y \in S . y \in T \wedge y \neq l$
by auto
qed
lemma acc_point_range_imp_convergent_subsequence:
fixes $l::$ ' a :: first_countable_topology
assumes $l: \forall U . l \in U \longrightarrow$ open $U \longrightarrow$ infinite $(U \cap$ range $f)$
shows $\exists r:: n a t \Rightarrow$ nat. strict_mono $r \wedge(f \circ r) \longrightarrow l$
proof -
from countable_basis_at_decseq[of l]
obtain A where A :
\i. open ($A i$)
$\wedge i . l \in A i$
$\wedge S$. open $S \Longrightarrow l \in S \Longrightarrow$ eventually $(\lambda i . A i \subseteq S$) sequentially
by blast
define s where $s n i=(S O M E j . i<j \wedge f j \in A(S u c n))$ for $n i$
\{
fix $n i$
have infinite $\left(A(S u c ~ n) \cap\right.$ range $\left.f-f^{〔}\{. . i\}\right)$
using $l A$ by auto
then have $\exists x . x \in A($ Suc $n) \cap$ range $f-f^{\iota}\{. . i\}$
unfolding ex_in_conv by (intro notI) simp
then have $\exists j . f j \in A($ Suc $n) \wedge j \notin\{. . i\}$
by auto
then have $\exists a . i<a \wedge f a \in A($ Suc $n)$
by (auto simp: not_le)
then have $i<s n i f(s n i) \in A(S u c n)$
unfolding s_def by (auto intro: someI2_ex)
\}
note $s=$ this

```
```

 define \(r\) where \(r=\) rec_nat \(\left(\begin{array}{lll}s & 0 & 0\end{array}\right) s\)
 have strict_mono \(r\)
 by (auto simp: r_def s strict_mono_Suc_iff)
 moreover
 have \((\lambda n . f(r n)) \longrightarrow l\)
 proof (rule topological_tendstoI)
 fix \(S\)
 assume open \(S l \in S\)
 with \(A(3)\) have eventually (\(\lambda i . A i \subseteq S\)) sequentially
 by auto
 moreover
 \{
 fix \(i\)
 assume Suc \(0 \leq i\)
 then have \(f(r i) \in A i\)
 by (cases i) (simp_all add: \(r_{-}\)def \(s\))
 \}
 then have eventually \((\lambda i . f(r i) \in A\) i) sequentially
 by (auto simp: eventually_sequentially)
 ultimately show eventually \((\lambda i . f(r i) \in S)\) sequentially
 by eventually_elim auto
 qed
 ultimately show \(\exists r::\) nat \(\Rightarrow\) nat. strict_mono \(r \wedge(f \circ r) \longrightarrow l\)
 by (auto simp: convergent_def comp_def)
 qed
lemma islimpt_range_imp_convergent_subsequence:
fixes $l::$ ' a :: \{t1_space, first_countable_topology $\}$
assumes l : l islimpt (range f)
shows $\exists r:: n a t \Rightarrow$ nat. strict_mono $r \wedge(f \circ r) \longrightarrow l$
using l unfolding islimpt_eq_acc_point
by (rule acc_point_range_imp_convergent_subsequence)
lemma sequence_unique_limpt:
fixes $f::$ nat $\Rightarrow{ }^{\prime} a::$ t2_space
assumes $(f \longrightarrow l)$ sequentially
and l^{\prime} islimpt (range f)
shows $l^{\prime}=l$
proof (rule ccontr)
assume $l^{\prime} \neq l$
obtain $s t$ where open sopen $t l^{\prime} \in s l \in t s \cap t=\{ \}$
using hausdorff $\left[O F\left\langle l^{\prime} \neq l\right\rangle\right]$ by auto
have eventually ($\lambda n . f n \in t$) sequentially
using assms(1) <open $t\rangle\langle l \in t\rangle$ by (rule topological_tendstoD)
then obtain N where $\forall n \geq N . f n \in t$
unfolding eventually_sequentially by auto
have $U N I V=\{. .<N\} \cup\{N .$.
by auto

```
```

 then have \(l^{\prime}\) islimpt \((f\) ' \((\{. .<N\} \cup\{N .\})\).
 using assms(2) by simp
 then have \(l^{\prime}\) islimpt \((f\) ' \(\{. .<N\} \cup f\) ' \(\{N .\}\).
 by (simp add: image_Un)
 then have \(l^{\prime}\) islimpt (\(f\) ' \(\{N .\).\(\})\)
 by (simp add: islimpt_Un_finite)
 then obtain \(y\) where \(y \in f\) ' \(\{N .\}. y \in s y \neq l^{\prime}\)
 using \(\left\langle l^{\prime} \in s\right\rangle\langle\) open \(s\rangle\) by (rule islimptE)
 then obtain \(n\) where \(N \leq n f n \in s f n \neq l^{\prime}\)
 by auto
 with \(\langle\forall n \geq N\). \(f n \in t\rangle\) have \(f n \in s \cap t\)
 by \(\operatorname{simp}\)
 with \(\langle s \cap t=\{ \}\) 〉show False
 by simp
 qed

```

\subsection*{2.1.5 Interior of a Set}
definition interior :: ('a::topological_space) set \(\Rightarrow{ }^{\prime} a\) set where
interior \(S=\bigcup\{T\). open \(T \wedge T \subseteq S\}\)
lemma interior I [intro?]:
assumes open \(T\) and \(x \in T\) and \(T \subseteq S\)
shows \(x \in\) interior \(S\)
using assms unfolding interior_def by fast
lemma interiorE [elim?]:
assumes \(x \in\) interior \(S\)
obtains \(T\) where open \(T\) and \(x \in T\) and \(T \subseteq S\)
using assms unfolding interior_def by fast
lemma open_interior [simp, intro]: open (interior \(S\) )
by (simp add: interior_def open_Union)
lemma interior_subset: interior \(S \subseteq S\)
by (auto simp: interior_def)
lemma interior_maximal: \(T \subseteq S \Longrightarrow\) open \(T \Longrightarrow T \subseteq\) interior \(S\) by (auto simp: interior_def)
lemma interior_open: open \(S \Longrightarrow\) interior \(S=S\)
by (intro equalityI interior_subset interior_maximal subset_refl)
lemma interior_eq: interior \(S=S \longleftrightarrow\) open \(S\)
by (metis open_interior interior_open)
lemma open_subset_interior: open \(S \Longrightarrow S \subseteq\) interior \(T \longleftrightarrow S \subseteq T\)
by (metis interior_maximal interior_subset subset_trans)
```

lemma interior_empty [simp]: interior {} = {}
using open_empty by (rule interior_open)
lemma interior_UNIV [simp]: interior UNIV = UNIV
using open_UNIV by (rule interior_open)
lemma interior_interior [simp]: interior (interior S)= interior S
using open_interior by (rule interior_open)
lemma interior_mono: S\subseteqT\Longrightarrow interior S\subseteq interior T
by (auto simp: interior_def)
lemma interior_unique:
assumes T\subseteqS and open T
assumes }\bigwedge\mp@subsup{T}{}{\prime}.\mp@subsup{T}{}{\prime}\subseteqS\Longrightarrow\mathrm{ open }\mp@subsup{T}{}{\prime}\Longrightarrow\mp@subsup{T}{}{\prime}\subseteq
shows interior S=T
by (intro equalityI assms interior_subset open_interior interior_maximal)
lemma interior_singleton [simp]: interior {a}={}
for a :: 'a::perfect_space
by (meson interior_eq interior_subset not_open_singleton subset_singletonD)
lemma interior_Int [simp]: interior (S\capT) = interior S \cap interior T
by (meson Int_mono Int_subset_iff antisym_conv interior_maximal interior_subset
open_Int open_interior)
lemma eventually_nhds_in_nhd: x \in interior s \Longrightarrow eventually (}\lambday.y\ins)(nhd
x)
using interior_subset[of s] by (subst eventually_nhds) blast
lemma interior_limit_point [intro]:
fixes x :: 'a::perfect_space
assumes x: x \in interior S
shows x islimpt S
using x islimpt_UNIV [of x]
unfolding interior_def islimpt_def
apply (clarsimp, rename_tac T T')
apply (drule_tac x=T\cap T' in spec)
apply (auto simp: open_Int)
done
lemma interior_closed_Un_empty_interior:
assumes cS: closed S
and iT: interior T={}
shows interior }(S\cupT)=\mathrm{ interior }
proof
show interior S\subseteq interior (S\cupT)
by (rule interior_mono) (rule Un_upper1)
show interior (S\cupT)\subseteq interior S

```
```

 proof
 fix }
 assume x interior (S\cupT)
 then obtain R where open R x f R R\subseteqS\cupT ..
 show x}\in\mathrm{ interior }
 proof (rule ccontr)
 assume }x\not\in\mathrm{ interior S
 with \langlex\inR\rangle\langleopen R\rangle obtain y where y}\inR-
 unfolding interior_def by fast
 from <open R`<closed S> have open (}R-S\mathrm{)
 by (rule open_Diff)
 from <R\subseteqS\cupT\rangle have R-S\subseteqT
 by fast
 from }\langley\inR-S\rangle\langleopen (R-S)\rangle\langleR-S\subseteqT\rangle\langleinterior T={}\rangle show Fals
 unfolding interior_def by fast
 qed
 qed
 qed
lemma interior_Times: interior (}A\timesB)=\mathrm{ interior }A\times\mathrm{ interior }
proof (rule interior_unique)
show interior }A\times\mathrm{ interior B}\subseteqA\times
by (intro Sigma_mono interior_subset)
show open (interior A }\times\mathrm{ interior B)
by (intro open_Times open_interior)
fix T
assume T\subseteqA\timesB and open T
then show T\subseteq interior A}\times\mathrm{ interior B
proof safe
fix x y
assume (x,y)\inT
then obtain CD where open C open D C x D\subseteqTx\inCy\inD
using <open T` unfolding open_prod_def by fast
then have open C open DC\subseteqAD\subseteqBx\inCy\inD
using }\langleT\subseteqA\timesB\rangle\mathrm{ by auto
then show }x\in\mathrm{ interior }A\mathrm{ and }y\in\mathrm{ interior }
by (auto intro: interiorI)
qed
qed
lemma interior_Ici:
fixes }x :: ' a :: {dense_linorder,linorder_topology
assumes b < x
shows interior {x .. } = {x<..}
proof (rule interior_unique)
fix }
assume T\subseteq{x ..} open T
moreover have x\not\inT
proof

```
```

 assume }x\in
 obtain }y\mathrm{ where }y<x{y<.. x}\subseteq
 using open_left[OF <open T\rangle\langlex\inT\rangle\langleb<x\rangle] by auto
 with dense[OF <y<x\rangle] obtain z where z G Tz<x
 by (auto simp: subset_eq Ball_def)
 with }\langleT\subseteq{x...}\rangle\mathrm{ show False by auto
 qed
 ultimately show T\subseteq{x<..}
 by (auto simp: subset_eq less_le)
 qed auto
lemma interior_Iic:
fixes x :: ' }a\mathrm{ ::{dense_linorder,linorder_topology}
assumes x<b
shows interior {.. x} ={..<x}
proof (rule interior_unique)
fix T
assume T\subseteq{.. x} open T
moreover have x}\not\in
proof
assume }x\in
obtain }y\mathrm{ where }x<y{x..<y}\subseteq
using open_right[OF <open T\rangle\langlex\inT\rangle\langlex< b\rangle] by auto
with dense[OF <x< y\rangle] obtain z where z\inT x<z
by (auto simp: subset_eq Ball_def less_le)
with \langleT\subseteq{.. x}\rangle show False by auto
qed
ultimately show T\subseteq{..<x}
by (auto simp: subset_eq less_le)
qed auto
lemma countable_disjoint_nonempty_interior_subsets:
fixes \mathcal{F :: 'a::second_countable_topology set set}
assumes pw: pairwise disjnt \mathcal{F}}\mathrm{ and int: }\S.\llbracketS\in\mathcal{F};\mathrm{ interior S={}】"S=
{}
shows countable \mathcal{F}
proof (rule countable_image_inj_on)
have disjoint (interior ' \mathcal{F}
using pw by (simp add: disjoint_image_subset interior_subset)
then show countable (interior ' \mathcal{F}
by (auto intro: countable_disjoint_open_subsets)
show inj_on interior \mathcal{F}
using pw apply (clarsimp simp: inj_on_def pairwise_def)
apply (metis disjnt_def disjnt_subset1 inf.orderE int interior_subset)
done
qed

```

\subsection*{2.1.6 Closure of a Set}
definition closure :: ('a::topological_space) set \(\Rightarrow\) 'a set where closure \(S=S \cup\{x . x\) islimpt \(S\}\)
lemma interior_closure: interior \(S=-(\) closure \((-S))\)
by (auto simp: interior_def closure_def islimpt_def)
lemma closure_interior: closure \(S=-\operatorname{interior}(-S)\)
by (simp add: interior_closure)
lemma closed_closure[simp, intro]: closed (closure S)
by (simp add: closure_interior closed_Compl)
lemma closure_subset: \(S \subseteq\) closure \(S\)
by (simp add: closure_def)
lemma closure_hull: closure \(S=\) closed hull \(S\)
by (auto simp: hull_def closure_interior interior_def)
lemma closure_eq: closure \(S=S \longleftrightarrow\) closed \(S\)
unfolding closure_hull using closed_Inter by (rule hull_eq)
lemma closure_closed [simp]: closed \(S \Longrightarrow\) closure \(S=S\)
by (simp only: closure_eq)
lemma closure_closure [simp]: closure (closure \(S\) ) \(=\) closure \(S\) unfolding closure_hull by (rule hull_hull)
lemma closure_mono: \(S \subseteq T \Longrightarrow\) closure \(S \subseteq\) closure \(T\) unfolding closure_hull by (rule hull_mono)
lemma closure_minimal: \(S \subseteq T \Longrightarrow\) closed \(T \Longrightarrow\) closure \(S \subseteq T\) unfolding closure_hull by (rule hull_minimal)
lemma closure_unique:
assumes \(S \subseteq T\)
and closed \(T\)
and \(\bigwedge T^{\prime} . S \subseteq T^{\prime} \Longrightarrow\) closed \(T^{\prime} \Longrightarrow T \subseteq T^{\prime}\)
shows closure \(S=T\)
using assms unfolding closure_hull by (rule hull_unique)
lemma closure_empty [simp]: closure \(\}=\{ \}\)
using closed_empty by (rule closure_closed)
lemma closure_UNIV [simp]: closure UNIV \(=\) UNIV
using closed_UNIV by (rule closure_closed)
lemma closure_Un [simp]: closure \((S \cup T)=\) closure \(S \cup\) closure \(T\) by (simp add: closure_interior)
lemma closure_eq_empty [iff]: closure \(S=\{ \} \longleftrightarrow S=\{ \}\)
using closure_empty closure_subset[of S] by blast
lemma closure_subset_eq: closure \(S \subseteq S \longleftrightarrow\) closed \(S\)
using closure_eq[of \(S]\) closure_subset \([\) of \(S]\) by simp
lemma open_Int_closure_eq_empty: open \(S \Longrightarrow(S \cap\) closure \(T)=\{ \} \longleftrightarrow S \cap T\) \(=\{ \}\)
using open_subset_interior[of \(S-T]\)
using interior_subset[of - T]
by (auto simp: closure_interior)
lemma open_Int_closure_subset: open \(S \Longrightarrow S \cap\) closure \(T \subseteq\) closure \((S \cap T)\)
proof
fix \(x\)
assume *: open \(S x \in S \cap\) closure \(T\)
have \(x\) islimpt \((S \cap T)\) if \(* *\) : \(x\) islimpt \(T\)
proof (rule islimptI)
fix \(A\)
assume \(x \in A\) open \(A\)
with \(*\) have \(x \in A \cap S\) open \((A \cap S)\)
by (simp_all add: open_Int)
with \(* *\) obtain \(y\) where \(y \in T y \in A \cap S y \neq x\)
by (rule islimptE)
then have \(y \in S \cap T y \in A \wedge y \neq x\)
by simp_all
then show \(\exists y \in(S \cap T) . y \in A \wedge y \neq x .\).
qed
with \(*\) show \(x \in\) closure \((S \cap T)\)
unfolding closure_def by blast
qed
lemma closure_complement: closure \((-S)=-\) interior \(S\)
by (simp add: closure_interior)
lemma interior_complement: interior \((-S)=-\) closure \(S\)
by (simp add: closure_interior)
lemma interior_diff: interior \((S-T)=\) interior \(S-\) closure \(T\)
by (simp add: Diff_eq interior_complement)
lemma closure_Times: closure \((A \times B)=\) closure \(A \times\) closure \(B\)
proof (rule closure_unique)
show \(A \times B \subseteq\) closure \(A \times\) closure \(B\)
by (intro Sigma_mono closure_subset)
show closed (closure \(A \times\) closure \(B\) )
by (intro closed_Times closed_closure)
fix \(T\)
```

assume $A \times B \subseteq T$ and closed T
then show closure $A \times$ closure $B \subseteq T$
apply (simp add: closed_def open_prod_def, clarify)
apply (rule ccontr)
apply (drule_tac $x=(a, b)$ in bspec, simp, clarify, rename_tac C D)
apply (simp add: closure_interior interior_def)
apply (drule_tac $x=C$ in spec)
apply (drule_tac $x=D$ in spec, auto)
done
qed
lemma closure_open_Int_superset:
assumes open $S S \subseteq$ closure T
shows closure $(S \cap T)=$ closure S
proof -
have closure $S \subseteq$ closure $(S \cap T)$
by (metis assms closed_closure closure_minimal inf.orderE open_Int_closure_subset)
then show ?thesis
by (simp add: closure_mono dual_order.antisym)
qed
lemma closure_Int: closure $(\bigcap I) \leq \bigcap\{$ closure $S \mid S . S \in I\}$
proof -
\{
fix y
assume $y \in \bigcap I$
then have $y: \forall S \in I . y \in S$ by auto
\{
fix S
assume $S \in I$
then have $y \in$ closure S
using closure_subset y by auto
\}
then have $y \in \bigcap\{$ closure $S \mid S . S \in I\}$
by auto
\}
then have $\bigcap I \subseteq \bigcap\{$ closure $S \mid S . S \in I\}$
by auto
moreover have closed $(\bigcap\{$ closure $S \mid S . S \in I\})$
unfolding closed_Inter closed_closure by auto
ultimately show ?thesis using closure_hull $[$ of $\bigcap I]$
hull_minimal $[$ of $\bigcap I \bigcap$ \{closure $S \mid S . S \in I\}$ closed] by auto
qed
lemma islimpt_in_closure: $(x$ islimpt $S)=(x \in \operatorname{closure}(S-\{x\}))$
unfolding closure_def using islimpt_punctured by blast
lemma connected_imp_connected_closure: connected $S \Longrightarrow$ connected (closure S)
by (rule connectedI) (meson closure_subset open_Int open_Int_closure_eq_empty

```
```

subset_trans connectedD)
lemma bdd_below_closure:
fixes A :: real set
assumes bdd_below A
shows bdd_below (closure A)
proof -
from assms obtain m}\mathrm{ where }\bigwedgex.x\inA\Longrightarrowm\leq
by (auto simp: bdd_below_def)
then have }A\subseteq{m..} by aut
then have closure A\subseteq{m..}
using closed_real_atLeast by (rule closure_minimal)
then show ?thesis
by (auto simp: bdd_below_def)
qed

```

\subsection*{2.1.7 Frontier (also known as boundary)}
definition frontier :: ('a::topological_space) set \(\Rightarrow\) ' \(a\) set where
frontier \(S=\) closure \(S-\) interior \(S\)
lemma frontier_closed [iff]: closed (frontier S)
by (simp add: frontier_def closed_Diff)
lemma frontier_closures: frontier \(S=\) closure \(S \cap\) closure \((-S)\)
by (auto simp: frontier_def interior_closure)
lemma frontier_Int: frontier \((S \cap T)=\operatorname{closure}(S \cap T) \cap(\) frontier \(S \cup\) frontier T) proof -
have closure \((S \cap T) \subseteq\) closure \(S\) closure \((S \cap T) \subseteq\) closure \(T\)
by (simp_all add: closure_mono)
then show ?thesis by (auto simp: frontier_closures)
qed
lemma frontier_Int_subset: frontier \((S \cap T) \subseteq\) frontier \(S \cup\) frontier \(T\) by (auto simp: frontier_Int)
lemma frontier_Int_closed:
assumes closed \(S\) closed \(T\)
shows frontier \((S \cap T)=(\) frontier \(S \cap T) \cup(S \cap\) frontier \(T)\)
proof -
have closure \((S \cap T)=T \cap S\)
using assms by (simp add: Int_commute closed_Int)
moreover have \(T \cap\) (closure \(S \cap\) closure \((-S))=\) frontier \(S \cap T\)
by (simp add: Int_commute frontier_closures)
ultimately show ?thesis
by (simp add: Int_Un_distrib Int_assoc Int_left_commute assms frontier_closures)
```

qed
lemma frontier_subset_closed:closed S\Longrightarrow frontier S\subseteqS
by (metis frontier_def closure_closed Diff_subset)
lemma frontier_empty [simp]: frontier {}={}
by (simp add: frontier_def)
lemma frontier_subset_eq: frontier S\subseteqS\longleftrightarrow closed S
proof -
{
assume frontier S\subseteqS
then have closure S\subseteqS
using interior_subset unfolding frontier_def by auto
then have closed S
using closure_subset_eq by auto
}
then show ?thesis using frontier_subset_closed[of S] ..
qed
lemma frontier_complement [simp]: frontier (-S) = frontier S
by (auto simp: frontier_def closure_complement interior_complement)
lemma frontier_Un_subset: frontier }(S\cupT)\subseteq\mathrm{ frontier S U frontier T
by (metis compl_sup frontier_Int_subset frontier_complement)
lemma frontier_disjoint_eq: frontier S \capS={}\longleftrightarrow open S
using frontier_complement frontier_subset_eq[of - S]
unfolding open_closed by auto
lemma frontier_UNIV [simp]: frontier UNIV ={}
using frontier_complement frontier_empty by fastforce
lemma frontier_interiors: frontier s = - interior(s) - interior (-s)
by (simp add: Int_commute frontier_def interior_closure)
lemma frontier_interior_subset: frontier(interior S) \subseteq frontier S
by (simp add: Diff_mono frontier_interiors interior_mono interior_subset)
lemma closure_Un_frontier: closure S=S\cup frontier S
proof -
have S\cup interior S=S
using interior_subset by auto
then show ?thesis
using closure_subset by (auto simp: frontier_def)
qed

```

\subsection*{2.1.8 Filters and the "eventually true" quantifier}

Identify Trivial limits, where we can't approach arbitrarily closely.
```

lemma trivial_limit_within: trivial_limit (at a within S) $\longleftrightarrow \neg a$ islimpt S
proof
assume trivial_limit (at a within S)
then show $\neg a$ islimpt S
unfolding trivial_limit_def
unfolding eventually_at_topological
unfolding islimpt_def
apply (clarsimp simp add: set_eq_iff)
apply (rename_tac T, rule_tac $x=T$ in exI)
apply (clarsimp, drule_tac $x=y$ in bspec, simp_all)
done
next
assume $\neg a$ islimpt S
then show trivial_limit (at a within S)
unfolding trivial_limit_def eventually_at_topological islimpt_def
by metis
qed
lemma trivial_limit_at_iff: trivial_limit $($ at a) $\longleftrightarrow \neg a$ islimpt UNIV
using trivial_limit_within [of a UNIV] by simp
lemma trivial_limit_at: \neg trivial_limit (at a)
for a :: ' $a::$ perfect_space
by (rule at_neq_bot)
lemma not_trivial_limit_within: \neg trivial_limit (at x within $S)=(x \in$ closure $(S$
$-\{x\})$)
using islimpt_in_closure by (metis trivial_limit_within)
lemma not_in_closure_trivial_limitI:
$x \notin$ closure $s \Longrightarrow$ trivial_limit (at x within s)
using not_trivial_limit_within[of $x s$]
by safe (metis Diff_empty Diff_insert0 closure_subset contra_subsetD)
lemma filterlim_at_within_closure_implies_filterlim: filterlim fl(at x within s)
if $x \in$ closure $s \Longrightarrow$ filterlim $f l$ (at x within s)
by (metis bot.extremum filterlim_filtercomap filterlim_mono not_in_closure_trivial_limitI
that)
lemma at_within_eq_bot_iff: at c within $A=$ bot $\longleftrightarrow c \notin$ closure $(A-\{c\})$
using not_trivial_limit_within [of $c A]$ by blast
Some property holds "sufficiently close" to the limit point.
lemma trivial_limit_eventually: trivial_limit net \Longrightarrow eventually P net by simp

```
```

lemma trivial_limit_eq: trivial_limit net $\longleftrightarrow(\forall P$. eventually P net $)$
by (simp add: filter_eq_iff)
lemma Lim_topological:
$(f \longrightarrow l)$ net \longleftrightarrow
trivial_limit net $\vee(\forall S$. open $S \longrightarrow l \in S \longrightarrow$ eventually $(\lambda x . f x \in S)$ net $)$
unfolding tendsto_def trivial_limit_eq by auto
lemma eventually_within_Un:
eventually $P($ at x within $(s \cup t)) \longleftrightarrow$
eventually $P($ at x within $s) \wedge$ eventually $P($ at x within $t)$
unfolding eventually_at_filter
by (auto elim!: eventually_rev_mp)
lemma Lim_within_union:
$(f \longrightarrow l)($ at x within $(s \cup t)) \longleftrightarrow$
$(f \longrightarrow l)($ at x within $s) \wedge(f \longrightarrow l)($ at x within $t)$
unfolding tendsto_def
by (auto simp: eventually_within_Un)

```

\subsection*{2.1.9 Limits}

The expected monotonicity property.
```

lemma Lim_Un:
assumes $(f \longrightarrow l)($ at x within $S)(f \longrightarrow l)($ at x within $T)$
shows $(f \longrightarrow l)($ at x within $(S \cup T))$
using assms unfolding at_within_union by (rule filterlim_sup)
lemma Lim_Un_univ:
$(f \longrightarrow l)($ at x within $S) \Longrightarrow(f \longrightarrow l)($ at x within $T) \Longrightarrow$
$S \cup T=U N I V \Longrightarrow(f \longrightarrow l)($ at $x)$
by (metis Lim_Un)

```

Interrelations between restricted and unrestricted limits.
lemma Lim_at_imp_Lim_at_within \(:(f \longrightarrow l)(\) at \(x) \Longrightarrow(f \longrightarrow l)\) (at \(x\) within S) by (metis order_refl filterlim_mono subset_UNIV at_le)
lemma eventually_within_interior:
assumes \(x \in\) interior \(S\)
shows eventually \(P(\) at \(x\) within \(S) \longleftrightarrow\) eventually \(P(\) at \(x)\)
(is? \({ }^{\text {is }}=\) ? \(r h s\) )
proof
from assms obtain \(T\) where \(T\) : open \(T x \in T T \subseteq S\)..
\{
assume ?lhs
then obtain \(A\) where open \(A\) and \(x \in A\) and \(\forall y \in A . y \neq x \longrightarrow y \in S \longrightarrow\) P \(y\)
by (auto simp: eventually_at_topological)
```

 with \(T\) have open \((A \cap T)\) and \(x \in A \cap T\) and \(\forall y \in A \cap T . y \neq x \longrightarrow P y\)
 by auto
 then show? ?rhs
 by (auto simp: eventually_at_topological)
 next
 assume ?rhs
 then show? lhs
 by (auto elim: eventually_mono simp: eventually_at_filter)
 \}
 qed
lemma at_within_interior: $x \in$ interior $S \Longrightarrow$ at x within $S=$ at x
unfolding filter_eq_iff by (intro allI eventually_within_interior)
lemma Lim_within_LIMSEQ:
fixes a :: ' $a::$ first_countable_topology
assumes $\forall S .(\forall n . S n \neq a \wedge S n \in T) \wedge S \longrightarrow a \longrightarrow(\lambda n . X(S n)) \longrightarrow$
L
shows $(X \longrightarrow L)($ at a within $T)$
using assms unfolding tendsto_def [where $l=L]$
by (simp add: sequentially_imp_eventually_within)
lemma Lim_right_bound:
fixes $f::$ ' $a::\{$ linorder_topology, conditionally_complete_linorder, no_top $\} \Rightarrow$
'b::\{linorder_topology, conditionally_complete_linorder \}
assumes mono: $\bigwedge a b . a \in I \Longrightarrow b \in I \Longrightarrow x<a \Longrightarrow a \leq b \Longrightarrow f a \leq f b$
and bnd: $\wedge a . a \in I \Longrightarrow x<a \Longrightarrow K \leq f a$
shows $\left(f \longrightarrow \operatorname{Inf}\left(f^{\prime}(\{x<..\} \cap I)\right)\right)($ at x within $(\{x<..\} \cap I))$
proof (cases $\{x<..\} \cap I=\{ \})$
case True
then show ?thesis by simp
next
case False
show ?thesis
proof (rule order_tendstoI)
fix a
assume $a: a<\operatorname{Inf}\left(f^{\prime}(\{x<..\} \cap I)\right)$
\{
fix y
assume $y \in\{x<..\} \cap I$
with False bnd have Inf $(f \cdot(\{x<..\} \cap I)) \leq f y$
by (auto intro!: cInf_lower bdd_belowI2)
with a have $a<f y$
by (blast intro: less_le_trans)
\}
then show eventually $(\lambda x . a<f x)($ at x within $(\{x<..\} \cap I))$
by (auto simp: eventually_at_filter intro: exI[of _ 1] zero_less_one)
next
fix a

```
```

 assume Inf (f' ({x<..} \cap I)) <a
 from cInf_lessD[OF _ this] False obtain y where y: x<y y\inIf y<a
 by auto
 then have eventually (}\lambdax.x\inI\longrightarrowfx<a)(at_right x
 unfolding eventually_at_right[OF〈x<y\rangle] by (metis less_imp_le le_less_trans
 mono)
then show eventually (}\lambdax.fx<a)(\mathrm{ at }x\mathrm{ within }({x<..}\capI)
unfolding eventually_at_filter by eventually_elim simp
qed
qed
lemma islimpt_sequential:
fixes x :: 'a::first_countable_topology
shows }x\mathrm{ islimpt S }\longleftrightarrow(\existsf.(\foralln::nat.f n GS-{x})\wedge(f\longrightarrowx) sequentially
(is ?lhs = ?rhs)
proof
assume ?lhs
from countable_basis_at_decseq[of x] obtain }A\mathrm{ where A:
\i.open (A i)
\i.x\inAi
\ S . ~ o p e n ~ S \Longrightarrow x \in S \Longrightarrow ~ e v e n t u a l l y ~ (\lambda i . ~ A ~ i \subseteq S) ~ s e q u e n t i a l l y ~
by blast
define f}\mathrm{ where f n=(SOME y. y GS^y GA n^x\#y) for n
{
fix }
from〈?lhs` have }\existsy.y\inS\wedgey\inAn\wedgex\not=
unfolding islimpt_def using A(1,2)[of n] by auto
then have fn\inS\wedgefn\inAn\wedgex\not=fn
unfolding f_def by (rule someI_ex)
then have fn\inSfn\inA nx\not=fn by auto
}
then have }\foralln.fn\inS-{x} by aut
moreover have (}\lambdan.fn)\longrightarrow
proof (rule topological_tendstoI)
fix }
assume open Sx\inS
from A(3)[OF this]<\n.fn\inAn
show eventually (}\lambdax.fx\inS)\mathrm{ sequentially
by (auto elim!: eventually_mono)
qed
ultimately show ?rhs by fast
next
assume ?rhs
then obtain f:: nat =>''a where f:\bigwedgen.fn\inS-{x} and lim: f\longrightarrow}\longrightarrow
by auto
show ?lhs
unfolding islimpt_def
proof safe

```
```

 fix T
 assume open T x \inT
 from lim[THEN topological_tendstoD,OF this] f
 show \existsy\inS. y \inT^y\not=x
 unfolding eventually_sequentially by auto
 qed
 qed

```

These are special for limits out of the same topological space.
lemma Lim_within_id: \((i d \longrightarrow a)\) (at a within \(s\) )
unfolding id_def by (rule tendsto_ident_at)
```

lemma Lim_at_id: $(i d \longrightarrow a)(a t a)$
unfolding id_def by (rule tendsto_ident_at)

```

It's also sometimes useful to extract the limit point from the filter.
```

abbreviation netlimit :: ' $a::$ t2_space filter \Rightarrow ' a
where netlimit $F \equiv \operatorname{Lim} F(\lambda x, x)$
lemma netlimit_at [simp]:
fixes a :: 'a::\{perfect_space,t2_space\}
shows netlimit (at a) $=a$
using Lim_ident_at [of a UNIV] by simp
lemma lim_within_interior:
$x \in$ interior $S \Longrightarrow(f \longrightarrow l)($ at x within $S) \longleftrightarrow(f \longrightarrow l)($ at $x)$
by (metis at_within_interior)
lemma netlimit_within_interior:
fixes $x::{ }^{\prime} a::\left\{t 2 _s p a c e, p e r f e c t _s p a c e\right\}$
assumes $x \in$ interior S
shows netlimit (at x within S) $=x$
using assms by (metis at_within_interior netlimit_at)
Useful lemmas on closure and set of possible sequential limits.

```
```

lemma closure_sequential:

```
lemma closure_sequential:
    fixes \(l::\) 'a::first_countable_topology
    fixes \(l::\) 'a::first_countable_topology
    shows \(l \in\) closure \(S \longleftrightarrow(\exists x .(\forall n . x n \in S) \wedge(x \longrightarrow l)\) sequentially \()\)
    shows \(l \in\) closure \(S \longleftrightarrow(\exists x .(\forall n . x n \in S) \wedge(x \longrightarrow l)\) sequentially \()\)
    (is ?lhs =? \(r h s\) )
    (is ?lhs =? \(r h s\) )
proof
proof
    assume? lhs
    assume? lhs
    moreover
    moreover
    \{
    \{
        assume \(l \in S\)
        assume \(l \in S\)
        then have ?rhs using tendsto_const[of l sequentially] by auto
        then have ?rhs using tendsto_const[of l sequentially] by auto
    \}
    \}
    moreover
    moreover
    \{
    \{
        assume \(l\) islimpt \(S\)
```

 assume \(l\) islimpt \(S\)
    ```
```

 then have ?rhs unfolding islimpt_sequential by auto
 }
 ultimately show ?rhs
 unfolding closure_def by auto
 next
assume ?rhs
then show ?lhs unfolding closure_def islimpt_sequential by auto
qed
lemma closed_sequential_limits:
fixes S :: 'a::first_countable_topology set
shows closed S \longleftrightarrow(\forallxl. (\foralln.x n \inS)^(x\longrightarrowl) sequentially \longrightarrowl\inS)
by (metis closure_sequential closure_subset_eq subset_iff)
lemma tendsto_If_within_closures:
assumes f:x\ins\cup(closure s\cap closure t)\Longrightarrow
(f\longrightarrowlx)(at x within s \cup(closure s \cap closure t))
assumes g:x\int\cup(closure s\cap closure t)\Longrightarrow
(g\longrightarrowl l)(at x within t (closure s\cap closure t))
assumes }x\ins\cup
shows ((}\lambdax.\mathrm{ if }x\ins\mathrm{ then f x else g x) }\longrightarrowlx)(at x within s\cupt
proof -
have *:}(s\cupt)\cap{x.x\ins}=s(s\cupt)\cap{x.x\not\ins}=t-
by auto
have (f\longrightarrowlx)(at x within s)
by (rule filterlim_at_within_closure_implies_filterlim)
(use 〈x \in _> in <auto simp: inf_commute closure_def intro: tendsto_within_subset[OF
f]`) moreover have (g\longrightarrowl x) (at x within t - s) by (rule filterlim_at_within_closure_implies_filterlim) (use 〈x \in > in <auto intro!: tendsto_within_subset[OF g] simp: closure_def intro: islimpt_subset`)
ultimately show ?thesis
by (intro filterlim_at_within_If) (simp_all only:*)
qed

```

\subsection*{2.1.10 Compactness}
```

lemma brouwer_compactness_lemma:
fixes f :: 'a::topological_space $\Rightarrow{ }^{\prime} b:$:real_normed_vector
assumes compact s
and continuous_on s f
and $\neg(\exists x \in s . f x=0)$
obtains d where $0<d$ and $\forall x \in s . d \leq \operatorname{norm}(f x)$
proof (cases $s=\{ \}$)
case True
show thesis
by (rule that [of 1]) (auto simp: True)

```
```

next
case False
have continuous_on s (norm ○f)
by (rule continuous_intros continuous_on_norm assms(2))+
with False obtain x where x: x\ins\forally\ins.(norm \circf) x\leq(norm\circf) y
using continuous_attains_inf[OF assms(1), of norm \circf]
unfolding o_def
by auto
have (norm \circf) x>0
using assms(3) and x(1)
by auto
then show ?thesis
by (rule that) (insert x(2), auto simp: o_def)
qed

```

\section*{Bolzano-Weierstrass property}
proposition Heine_Borel_imp_Bolzano_Weierstrass:
    assumes compact s
        and infinite \(t\)
        and \(t \subseteq s\)
    shows \(\exists x \in\) s. \(x\) islimpt \(t\)
proof (rule ccontr)
    assume \(\neg(\exists x \in\) s. \(x\) islimpt \(t)\)
    then obtain \(f\) where \(f: \forall x \in s . x \in f x \wedge\) open \((f x) \wedge(\forall y \in t . y \in f x \longrightarrow y=\)
\(x)\)
    unfolding islimpt_def
    using bchoice[of s \(\lambda x T . x \in T \wedge\) open \(T \wedge(\forall y \in t . y \in T \longrightarrow y=x)]\)
    by auto
    obtain \(g\) where \(g: g \subseteq\{t . \exists x . x \in s \wedge t=f x\}\) finite \(g s \subseteq \bigcup g\)
        using assms(1)[unfolded compact_eq_Heine_Borel, THEN spec[where \(x=\{t\).
\(\exists x . x \in s \wedge t=f x\}]]\)
        using \(f\) by auto
    from \(g(1,3)\) have \(g^{\prime}: \forall x \in g . \exists x a \in s . x=f x a\)
        by auto
    \{
        fix \(x y\)
        assume \(x \in t y \in t f x=f y\)
        then have \(x \in f x \quad y \in f x \longrightarrow y=x\)
            using \(f[\) THEN bspec[where \(x=x]]\) and \(\langle t \subseteq s\rangle\) by auto
        then have \(x=y\)
            using \(\langle f x=f y\rangle\) and \(f[T H E N\) bspec \([\) where \(x=y]]\) and \(\langle y \in t\rangle\) and \(\langle t \subseteq s\rangle\)
            by auto
    \}
    then have inj_on \(f t\)
        unfolding inj_on_def by simp
    then have infinite ( \(f\) ' \(t\) )
        using assms(2) using finite_imageD by auto
    moreover
```

 {
 fix }
 assume x \intfx\not\ing
 from g(3) assms(3)\langlex\int\rangle obtain h}\mathrm{ where }h\ing\mathrm{ and }x\in
 by auto
 then obtain }y\mathrm{ where }y\insh=f
 using g}\mp@subsup{g}{}{\prime}[THEN bspec[where x=h]] by aut
 then have }y=
 using f[THEN bspec[where x=y]] and \langlex\int\rangle and \langlex\inh\rangle[unfolded \langleh = f y>]
 by auto
 then have False
    ```

```

 by auto
 }
 then have f' t\subseteqg by auto
 ultimately show False
 using g(2) using finite_subset by auto
 qed
lemma sequence_infinite_lemma:
fixes f :: nat = 'a::t1_space
assumes }\foralln.fn\not=
and (}f\longrightarrowl)\mathrm{ sequentially
shows infinite (range f)
proof
assume finite (range f)
then have l \& range f ^ closed (range f)
using <finite (range f)〉 assms(1) finite_imp_closed by blast
then have eventually (}\lambdan.fn\in-\mathrm{ range f) sequentially
by (metis Compl_iff assms(2) open_Compl topological_tendstoD)
then show False
unfolding eventually_sequentially by auto
qed
lemma Bolzano_Weierstrass_imp_closed:
fixes s :: 'a::{first_countable_topology,t2_space} set
assumes }\forallt\mathrm{ . infinite }t\wedget\subseteqs--> (\existsx\ins.x islimpt t
shows closed s
proof -
{
fix x l
assume as:\foralln::nat. x n f s(x\longrightarrowl) sequentially
then havel l\ins
proof (cases }\foralln.xn\not=l
case False
then show l\ins using as(1) by auto
next
case True note cas = this
with as(2) have infinite (range x)

```
```

 using sequence_infinite_lemma[of x l] by auto
 then obtain l' where l'\ins l' islimpt (range x)
 using assms[THEN spec[where x=range x]] as(1) by auto
 then show l\ins using sequence_unique_limpt[of x l l]
 using as cas by auto
 qed
 }
 then show ?thesis
 unfolding closed_sequential_limits by fast
 qed
lemma closure_insert:
fixes }x\mathrm{ :: ' }a::t1_space
shows closure (insert x s) = insert x (closure s)
apply (rule closure_unique)
apply (rule insert_mono [OF closure_subset])
apply (rule closed_insert [OF closed_closure])
apply (simp add: closure_minimal)
done

```

In particular, some common special cases.
```

lemma compact_Un [intro]:
assumes compact s
and compact t
shows compact (}s\cupt
proof (rule compactI)
fix f
assume *: Ball f open s \cupt\subseteq \bigcupf
from * <compact s` obtain s' where s'\subseteqf^ finite s'^s\subseteq\bigcup s
unfolding compact_eq_Heine_Borel by (auto elim!: allE[of _ f])
moreover
from * {compact t\rangle obtain t' where t'\subseteqf^ finite t'^t\subseteq\bigcup t'
unfolding compact_eq_Heine_Borel by (auto elim!: allE[of _ f])
ultimately show }\exists\mp@subsup{f}{}{\prime}\subseteqf\mathrm{ . finite f}\mp@subsup{f}{}{\prime}\wedges\cupt\subseteq\bigcup\mp@subsup{f}{}{\prime
by (auto intro!: exI[of - s'\cupt])
qed
lemma compact_Union [intro]: finite S\Longrightarrow(\T.T }\=S\Longrightarrow\mathrm{ compact T) }
compact (US)
by (induct set: finite) auto
lemma compact_UN [intro]:
finite }A\Longrightarrow(\x.x\inA\Longrightarrow\operatorname{compact}(Bx))\Longrightarrow\operatorname{compact}(\bigcupx\inA.Bx
by (rule compact_Union) auto
lemma closed_Int_compact [intro]:
assumes closed s
and compact t
shows compact (s\capt)

```
```

using compact_Int_closed [of t s] assms
by (simp add: Int_commute)
lemma compact_Int [intro]:
fixes $s t$:: ' a :: t2_space set
assumes compact s
and compact t
shows compact ($s \cap t$)
using assms by (intro compact_Int_closed compact_imp_closed)
lemma compact_sing [simp]: compact $\{a\}$
unfolding compact_eq_Heine_Borel by auto
lemma compact_insert [simp]:
assumes compact s
shows compact (insert x)
proof -
have compact $(\{x\} \cup s)$
using compact_sing assms by (rule compact_Un)
then show? ?thesis by simp
qed
lemma finite_imp_compact: finite $s \Longrightarrow$ compact s
by (induct set: finite) simp_all
lemma open_delete:
fixes $s::$ ' $a:: t 1 _$space set
shows open $s \Longrightarrow$ open $(s-\{x\})$
by (simp add: open_Diff)
Compactness expressed with filters
lemma closure_iff_nhds_not_empty:
$x \in$ closure $X \longleftrightarrow(\forall A . \forall S \subseteq A$. open $S \longrightarrow x \in S \longrightarrow X \cap A \neq\{ \})$
proof safe
assume $x: x \in$ closure X
fix $S A$
assume open $S x \in S X \cap A=\{ \} S \subseteq A$
then have $x \notin$ closure $(-S)$
by (auto simp: closure_complement subset_eq[symmetric] intro: interiorI)
with x have $x \in$ closure $X-\operatorname{closure}(-S)$
by auto
also have $\ldots \subseteq$ closure $(X \cap S)$
using <open S 〉 open_Int_closure_subset $[$ of $S X]$ by (simp add: closed_Compl
ac_simps)
finally have $X \cap S \neq\{ \}$ by auto
then show False using $\langle X \cap A=\{ \}\rangle\langle S \subseteq A\rangle$ by auto
next
assume $\forall A S . S \subseteq A \longrightarrow$ open $S \longrightarrow x \in S \longrightarrow X \cap A \neq\{ \}$
from this[THEN spec, of $-X$, THEN spec, of - closure $X]$

```
```

 show }x\in\mathrm{ closure X
 by (simp add: closure_subset open_Compl)
 qed
lemma compact_filter:
compact U}\longleftrightarrow(\forallF.F\not=\mathrm{ bot }\longrightarrow\mathrm{ eventually (}\lambdax.x\inU)F\longrightarrow(\existsx\inU.in
(nhds x) F\not=bot))
proof (intro allI iffI impI compact_fip[THEN iffD2] notI)
fix }
assume compact U
assume F:F\not= bot eventually (}\lambdax.x\inU)
then have }U\not={
by (auto simp: eventually_False)
define Z where Z = closure '{A. eventually (}\lambdax.x\inA)F
then have }\forallz\inZ. closed
by auto
moreover
have ev_Z: \bigwedgez. z\inZ\Longrightarrow eventually (}\lambdax.x\inz)
unfolding Z_def by (auto elim: eventually_mono intro: subsetD[OF closure_subset])
have (}\forallB\subseteqZ\mathrm{ . finite }B\longrightarrowU\cap\bigcapB\not={}
proof (intro allI impI)
fix B assume finite B B\subseteqZ
with 〈finite B\rangleev_Z F(2) have eventually (}\lambdax.x\inU\cap(\capB))
by (auto simp: eventually_ball_finite_distrib eventually_conj_iff)
with }F\mathrm{ show }U\cap\bigcapB\not={
by (intro notI) (simp add: eventually_False)
qed
ultimately have }U\cap\capZ\not={
using <compact U> unfolding compact_fip by blast
then obtain x where }x\inU\mathrm{ and }x:\bigwedgez.z\inZ\Longrightarrowx\in
by auto

```
    have \(\wedge P\). eventually \(P(\inf (n h d s x) F) \Longrightarrow P \neq \operatorname{bot}\)
        unfolding eventually_inf eventually_nhds
    proof safe
        fix \(P Q R S\)
        assume eventually \(R\) Fopen \(S x \in S\)
        with open_Int_closure_eq_empty[of \(S\{x . R x\}] x[\) of closure \(\{x . R x\}]\)
        have \(S \cap\{x . R x\} \neq\{ \}\) by (auto simp: Z_def)
        moreover assume Ball \(S Q \forall x . Q x \wedge R x \longrightarrow\) bot \(x\)
        ultimately show False by (auto simp: set_eq_iff)
    qed
    with \(\langle x \in U\rangle\) show \(\exists x \in U\). inf (nhds \(x) F \neq b o t\)
        by (metis eventually_bot)
next
    fix \(A\)
    assume \(A: \forall a \in A\). closed \(a \forall B \subseteq A\). finite \(B \longrightarrow U \cap \bigcap B \neq\{ \} U \cap \bigcap A=\{ \}\)
    define \(F\) where \(F=(I N F a \in\) insert \(U\) A. principal \(a)\)
```

have $F \neq b o t$
unfolding $F_{-} d e f$
proof (rule INF_filter_not_bot)
fix X
assume $X: X \subseteq$ insert U A finite X
with $A(2)[$ THEN spec, of $X-\{U\}]$ have $U \cap \bigcap(X-\{U\}) \neq\{ \}$
by auto
with X show (INF $a \in X$. principal $a) \neq b o t$
by (auto simp: INF_principal_finite principal_eq_bot_iff)
qed
moreover
have $F \leq$ principal U
unfolding $F_{-} d e f$ by auto
then have eventually $(\lambda x . x \in U) F$
by (auto simp: le_filter_def eventually_principal)
moreover
assume $\forall F . F \neq$ bot \longrightarrow eventually $(\lambda x . x \in U) F \longrightarrow(\exists x \in U . \inf (n h d s x)$
$F \neq b o t)$
ultimately obtain x where $x \in U$ and $x: \inf (n h d s x) F \neq b o t$
by auto
\{ fix V assume $V \in A$
then have $F \leq$ principal V
unfolding F_{-}def by (intro INF_lower2[of V]) auto
then have V : eventually $(\lambda x . x \in V) F$
by (auto simp: le_filter_def eventually_principal)
have $x \in$ closure V
unfolding closure_iff_nhds_not_empty
proof (intro impI allI)
fix $S A$
assume open $S x \in S S \subseteq A$
then have eventually $(\lambda x . x \in A)(n h d s x)$
by (auto simp: eventually_nhds)
with V have eventually $(\lambda x . x \in V \cap A)(\inf (n h d s x) F)$
by (auto simp: eventually_inf)
with x show $V \cap A \neq\{ \}$
by (auto simp del: Int_iff simp add: trivial_limit_def)
qed
then have $x \in V$
using $\langle V \in A\rangle A(1)$ by simp
\}
with $\langle x \in U\rangle$ have $x \in U \cap \bigcap A$ by auto
with $\langle U \cap \bigcap A=\{ \}\rangle$ show False by auto
qed
definition countably_compact :: ('a::topological_space) set \Rightarrow bool where
countably_compact $U \longleftrightarrow$
$(\forall$ A. countable $A \longrightarrow(\forall a \in A$. open $a) \longrightarrow U \subseteq \bigcup A$
$\longrightarrow(\exists T \subseteq$ A. finite $T \wedge U \subseteq \bigcup T))$

```
```

lemma countably_compactE:
assumes countably_compact s and $\forall t \in C$. open t and $s \subseteq \bigcup C$ countable C
obtains C^{\prime} where $C^{\prime} \subseteq C$ and finite C^{\prime} and $s \subseteq \bigcup C^{\prime}$
using assms unfolding countably_compact_def by metis
lemma countably_compactI:
assumes $\bigwedge C . \forall t \in C$. open $t \Longrightarrow s \subseteq \bigcup C \Longrightarrow$ countable $C \Longrightarrow\left(\exists C^{\prime} \subseteq C\right.$. finite
$\left.C^{\prime} \wedge s \subseteq \bigcup C^{\prime}\right)$
shows countably_compact s
using assms unfolding countably_compact_def by metis
lemma compact_imp_countably_compact: compact $U \Longrightarrow$ countably_compact U
by (auto simp: compact_eq_Heine_Borel countably_compact_def)
lemma countably_compact_imp_compact:
assumes countably_compact U
and ccover: countable $B \forall b \in B$. open b
and basis: $\bigwedge T x$. open $T \Longrightarrow x \in T \Longrightarrow x \in U \Longrightarrow \exists b \in B . x \in b \wedge b \cap U \subseteq$
T
shows compact U
using 〈countably_compact U 〉
unfolding compact_eq_Heine_Borel countably_compact_def
proof safe
fix A
assume $A: \forall a \in A$. open a $U \subseteq \bigcup A$
assume $*: \forall A$. countable $A \longrightarrow(\forall a \in A$. open $a) \longrightarrow U \subseteq \bigcup A \longrightarrow(\exists T \subseteq A$.
finite $T \wedge U \subseteq \bigcup T$)
moreover define C where $C=\{b \in B . \exists a \in A . b \cap U \subseteq a\}$
ultimately have countable $C \forall a \in C$. open a
unfolding C_def using ccover by auto
moreover
have $\bigcup A \cap U \subseteq \bigcup C$
proof safe
fix $x a$
assume $x \in U x \in a a \in A$
with basis[of $a x] A$ obtain b where $b \in B x \in b b \cap U \subseteq a$
by blast
with $\langle a \in A\rangle$ show $x \in \bigcup C$
unfolding C_{-}def by auto
qed
then have $U \subseteq \bigcup C$ using $\langle U \subseteq \bigcup A\rangle$ by auto
ultimately obtain T where T : $T \subseteq C$ finite $T U \subseteq \bigcup T$
using * by metis
then have $\forall t \in T . \exists a \in A . t \cap U \subseteq a$
by (auto simp: C_def)
then obtain f where $\forall t \in T . f t \in A \wedge t \cap U \subseteq f t$
unfolding bchoice_iff Bex_def ..
with T show $\exists T \subseteq A$. finite $T \wedge U \subseteq \bigcup T$

```
```

 unfolding C_def by (intro exI[of _ f`T]) fastforce
 qed
proposition countably_compact_imp_compact_second_countable:
countably_compact U \Longrightarrow compact (U :: 'a :: second_countable_topology set)
proof (rule countably_compact_imp_compact)
fix T and }x:: ' a a
assume open Tx\inT
from topological_basisE[OF is_basis this] obtain b where
b\in(SOME B. countable B ^ topological_basis B) x \in b b\subseteqT.
then show \existsb\inSOME B. countable B\wedge topological_basis B. }x\inb\wedgeb\capU
T
by blast
qed (insert countable_basis topological_basis_open[OF is_basis], auto)
lemma countably_compact_eq_compact:
countably_compact }U\longleftrightarrow\mathrm{ compact (U :: 'a :: second_countable_topology set)
using countably_compact_imp_compact_second_countable compact_imp_countably_compact
by blast

```

\section*{Sequential compactness}
definition seq_compact :: 'a::topological_space set \(\Rightarrow\) bool where
seq_compact \(S \longleftrightarrow\)
\[
(\forall f .(\forall n . f n \in S)
\]
\[
\longrightarrow(\exists l \in S . \exists r:: \text { nat } \Rightarrow \text { nat. strict_mono } r \wedge((f \circ r) \longrightarrow l) \text { sequentially }))
\]
lemma seq_compactI:
assumes \(\bigwedge f . \forall n . f n \in S \Longrightarrow \exists l \in S . \exists r:: n a t \Rightarrow n a t\). strict_mono \(r \wedge((f \circ r)\)
\(\longrightarrow l)\) sequentially
shows seq_compact \(S\)
unfolding seq_compact_def using assms by fast
lemma seq_compactE:
assumes seq_compact \(S \forall n . f n \in S\)
obtains \(l r\) where \(l \in S\) strict_mono \((r::\) nat \(\Rightarrow\) nat \()((f \circ r) \longrightarrow l)\)
sequentially
using assms unfolding seq_compact_def by fast
lemma closed_sequentially:
assumes closed \(s\) and \(\forall n . f n \in s\) and \(f \longrightarrow l\)
shows \(l \in s\)
proof (rule ccontr)
assume \(l \notin s\)
with \(\langle\) closed \(s\rangle\) and \(\langle f \longrightarrow l\rangle\) have eventually \((\lambda n . f n \in-s)\) sequentially by (fast intro: topological_tendstoD)
with \(\langle\forall n . f n \in s\rangle\) show False by \(\operatorname{simp}\)
qed
```

lemma seq_compact_Int_closed:
assumes seq_compact s and closed t
shows seq_compact $(s \cap t)$
proof (rule seq_compactI)
fix f assume $\forall n:: n a t . f n \in s \cap t$
hence $\forall n . f n \in s$ and $\forall n . f n \in t$
by simp_all
from \langle seq_compact $s\rangle$ and $\langle\forall n . f n \in s\rangle$
obtain $l r$ where $l \in s$ and $r:$ strict_mono r and $l:(f \circ r) \longrightarrow l$
by (rule seq_compactE)
from $\langle\forall n . f n \in t\rangle$ have $\forall n$. $(f \circ r) n \in t$
by simp
from \langle closed $t\rangle$ and this and l have $l \in t$
by (rule closed_sequentially)
with $\langle l \in s\rangle$ and r and l show $\exists l \in s \cap t . \exists r$. strict_mono $r \wedge(f \circ r) \longrightarrow l$
by fast
qed
lemma seq_compact_closed_subset:
assumes closed s and $s \subseteq t$ and seq_compact t
shows seq_compact s
using assms seq_compact_Int_closed $[$ of $t s]$ by (simp add: Int_absorb1)
lemma seq_compact_imp_countably_compact:
fixes U :: 'a :: first_countable_topology set
assumes seq_compact U
shows countably_compact U
proof (safe intro!: countably_compactI)
fix A
assume A : $\forall a \in A$. open a $U \subseteq \bigcup A$ countable A
have subseq: $\bigwedge X$. range $X \subseteq U \Longrightarrow \exists r x . x \in U \wedge$ strict_mono ($r::$ nat \Rightarrow
$n a t) \wedge(X \circ r) \longrightarrow x$
using 〈seq_compact U 〉 by (fastforce simp: seq_compact_def subset_eq)
show $\exists T \subseteq A$. finite $T \wedge U \subseteq \bigcup T$
proof cases
assume finite A
with A show ?thesis by auto
next
assume infinite A
then have $A \neq\{ \}$ by auto
show ?thesis
proof (rule ccontr)
assume $\neg(\exists T \subseteq A$. finite $T \wedge U \subseteq \bigcup T)$
then have $\forall T . \exists x . T \subseteq A \wedge$ finite $T \longrightarrow(x \in U-\bigcup T)$
by auto
then obtain X^{\prime} where $T: \wedge T . T \subseteq A \Longrightarrow$ finite $T \Longrightarrow X^{\prime} T \in U-\bigcup T$
by metis
define X where $X n=X^{\prime}($ from_nat_into A ' $\{. . n\})$ for n

```
```

 have }X:\n.Xn\inU-(\bigcupi\leqn. from_nat_into A i
 using }\langleA\not={}\rangle\mathrm{ unfolding }\mp@subsup{X}{_}{\prime}def by (intro T) (auto intro: from_nat_into
 then have range X\subseteqU
 by auto
 with subseq[of X] obtain rx where x \inU and r: strict_mono r (}X\mathrm{ O or)
 x
 by auto
 from }\langlex\inU\rangle\langleU\subseteq\bigcupA\rangle\mathrm{ from_nat_into_surj[OF <countable A〉]
 obtain n where }x\in\mathrm{ from_nat_into }An\mathrm{ by auto
 with r(2) A(1) from_nat_into[OF 〈A = {}〉, of n]
 have eventually (\lambdai. X (r i) \in from_nat_into A n) sequentially
 unfolding tendsto_def by (auto simp: comp_def)
 then obtain N where }\bigwedgei.N\leqi\LongrightarrowX(ri)\infrom_nat_into A n
 by (auto simp: eventually_sequentially)
 moreover from X have \i. n \leqri \LongrightarrowX(ri)\not\in from_nat_into A n
 by auto
 moreover from <strict_mono r>[THEN seq_suble, of max n N] have \existsi.n \leq
 ri\wedgeN\leqi
by (auto intro!: exI[of _ max n N])
ultimately show False
by auto
qed
qed
qed
lemma compact_imp_seq_compact:
fixes U :: 'a :: first_countable_topology set
assumes compact U
shows seq_compact U
unfolding seq_compact_def
proof safe
fix }X\mathrm{ :: nat }=>\mp@subsup{}{}{\prime}
assume }\foralln.Xn\in
then have eventually (}\lambdax.x\inU)\mathrm{ (filtermap X sequentially)
by (auto simp: eventually_filtermap)
moreover
have filtermap X sequentially }\not=\mathrm{ bot
by (simp add: trivial_limit_def eventually_filtermap)
ultimately
obtain x where }x\inU\mathrm{ and }x:\operatorname{inf}(nhdsx)(filtermap X sequentially) = bot (i
?F}\not= -
using <compact U\ by (auto simp: compact_filter)
from countable_basis_at_decseq[of x]
obtain A where A:
\i. open (A i)
\i. x\inA i
\. open S\Longrightarrowx\inS\Longrightarrow eventually (\lambdai.A i\subseteqS) sequentially
by blast

```
```

 define \(s\) where \(s n i=(S O M E j . i<j \wedge X j \in A(\) Suc n) \()\) for \(n i\)
 \{
 fix \(n i\)
 have \(\exists a . i<a \wedge X a \in A(\) Suc \(n)\)
 proof (rule ccontr)
 assume \(\neg(\exists a>i . X a \in A(\) Suc \(n))\)
 then have \(\wedge\) a. Suc \(i \leq a \Longrightarrow X a \notin A(\) Suc \(n)\)
 by auto
 then have eventually (\(\lambda x . x \notin A\) (Suc \(n\))) (filtermap \(X\) sequentially)
 by (auto simp: eventually_filtermap eventually_sequentially)
 moreover have eventually (\(\lambda x . x \in A\) (Suc n)) (nhds \(x\))
 using \(A(1,2)\) [of Suc \(n]\) by (auto simp: eventually_nhds)
 ultimately have eventually (\(\lambda x\). False) ?F
 by (auto simp: eventually_inf)
 with \(x\) show False
 by (simp add: eventually_False)
 qed
 then have \(i<\operatorname{sniX}(s n i) \in A(\) Suc \(n)\)
 unfolding s_def by (auto intro: someI2_ex)
 \}
 note \(s=\) this
 define \(r\) where \(r=r e c _n a t\left(\begin{array}{lll}l & 0 & 0\end{array}\right) s\)
 have strict_mono \(r\)
 by (auto simp: r_def s strict_mono_Suc_iff)
 moreover
 have \((\lambda n . X(r n)) \longrightarrow x\)
 proof (rule topological_tendstoI)
 fix \(S\)
 assume open \(S x \in S\)
 with \(A(3)\) have eventually (\(\lambda i\). \(A i \subseteq S\)) sequentially
 by auto
 moreover
 \{
 fix \(i\)
 assume Suc \(0 \leq i\)
 then have \(X(r i) \in A i\)
 by (cases \(i\)) (simp_all add: \(r_{-}\)def \(s\))
 \}
 then have eventually \((\lambda i . X(r i) \in A\) i) sequentially
 by (auto simp: eventually_sequentially)
 ultimately show eventually \((\lambda i . X(r i) \in S)\) sequentially
 by eventually_elim auto
 qed
 ultimately show \(\exists x \in U . \exists r\). strict_mono \(r \wedge(X \circ r) \longrightarrow x\)
 using \(\langle x \in U\rangle\) by (auto simp: convergent_def comp_def)
 qed
lemma countably_compact_imp_acc_point:
assumes countably_compact s

```
and countable \(t\)
and infinite \(t\)
and \(t \subseteq s\)
shows \(\exists x \in s . \forall U . x \in U \wedge\) open \(U \longrightarrow\) infinite \((U \cap t)\)
proof（rule ccontr）
define \(C\) where \(C=(\lambda F\) ．interior \((F \cup(-t)))\)＇\(\{F\) ．finite \(F \wedge F \subseteq t\}\)
note \(\langle\) countably＿compact \(s\) 〉
moreover have \(\forall t \in C\) ．open \(t\)
by（auto simp：C＿def）
moreover
assume \(\neg(\exists x \in s . \forall U . x \in U \wedge\) open \(U \longrightarrow\) infinite \((U \cap t))\)
then have \(s: \bigwedge x . x \in s \Longrightarrow \exists U . x \in U \wedge\) open \(U \wedge\) finite \((U \cap t)\) by metis
have \(s \subseteq \bigcup C\)
using \(\langle t \subseteq s\rangle\)
unfolding C＿def
apply（safe dest！：s）
apply（rule＿tac \(a=U \cap t\) in \(U N_{-} I\) ）
apply（auto intro！：interiorI simp add：finite＿subset）
done
moreover
from 〈countable \(t\rangle\) have countable \(C\)
unfolding C＿def by（auto intro：countable＿Collect＿finite＿subset）
ultimately
obtain \(D\) where \(D \subseteq C\) finite \(D s \subseteq \bigcup D\)
by（rule countably＿compactE）
then obtain \(E\) where \(E: E \subseteq\{F\) ．finite \(F \wedge F \subseteq t\}\) finite \(E\)
and \(s: s \subseteq(\bigcup F \in E\) ．interior \((F \cup(-t)))\)
by（metis（lifting）finite＿subset＿image C＿def）
from \(s\langle t \subseteq s\rangle\) have \(t \subseteq \bigcup E\)
using interior＿subset by blast
moreover have finite（ \(\bigcup E\) ）
using \(E\) by auto
ultimately show False using＜infinite \(t\) 〉
by（auto simp：finite＿subset）
qed
lemma countable＿acc＿point＿imp＿seq＿compact：
fixes \(s::\)＇\(a::\) first＿countable＿topology set
assumes \(\forall t\) ．infinite \(t \wedge\) countable \(t \wedge t \subseteq s \longrightarrow\)
\((\exists x \in s . \forall U . x \in U \wedge\) open \(U \longrightarrow\) infinite \((U \cap t))\)
shows seq＿compact \(s\)
proof－
\｛
fix \(f::\) nat \(\Rightarrow{ }^{\prime} a\)
assume \(f: \forall n . f n \in s\)
have \(\exists l \in s . \exists r\) ．strict＿mono \(r \wedge((f \circ r) \longrightarrow l)\) sequentially
proof（cases finite（range f））
case True
obtain \(l\) where infinite \(\{n . f n=f l\}\)
```

 using pigeonhole_infinite[OF _ True] by auto
 then obtain r :: nat => nat where strict_mono r and fr:\foralln.f(rn)=fl
 using infinite_enumerate by blast
 then have strict_mono r ^ (f\circr)\longrightarrowfl
 by (simp add: fr o_def)
 with f show }\existsl\ins.\existsr. strict_mono r ^ (f\circr)\longrightarrow
 by auto
 next
 case False
 with f assms have }\existsx\ins.\forallU.x\inU\wedge open U \longrightarrow infinite (U\cap range f
 by auto
 then obtain l where l\ins\forallU.l\inU\wedge open U\longrightarrow\mathrm{ infinite (}U\cap\mathrm{ range f)}
 ..
from this(2) have \existsr. strict_mono r ^ ((f\circr)\longrightarrowl) sequentially
using acc_point_range_imp_convergent_subsequence[of l f] by auto
with }\langlel\ins\rangle\mathrm{ show }\existsl\ins.\existsr.strict_mono r ^((f\circr)\longrightarrowl) sequentially ..
qed
}
then show ?thesis
unfolding seq_compact_def by auto
qed
lemma seq_compact_eq_countably_compact:
fixes }U\mathrm{ :: ' a :: first_countable_topology set
shows seq_compact U}\longleftrightarrow\mathrm{ countably_compact }
using
countable_acc_point_imp_seq_compact
countably_compact_imp_acc_point
seq_compact_imp_countably_compact
by metis
lemma seq_compact_eq_acc_point:
fixes s :: 'a :: first_countable_topology set
shows seq_compact s \longleftrightarrow
(\forallt. infinite t ^ countable t ^t\subseteqs--> (\existsx\ins.\forallU. x\inU\wedge open U \longrightarrow
infinite (}U\capt))\mathrm{)
using
countable_acc_point_imp_seq_compact[of s]
countably_compact_imp_acc_point[of s]
seq_compact_imp_countably_compact[of s]
by metis
lemma seq_compact_eq_compact:
fixes U :: ' }a\mathrm{ :: second_countable_topology set
shows seq_compact }U\longleftrightarrow\mathrm{ compact }
using seq_compact_eq_countably_compact countably_compact_eq_compact by blast
proposition Bolzano_Weierstrass_imp_seq_compact:
fixes s :: 'a::{t1_space, first_countable_topology} set

```
shows \(\forall t\). infinite \(t \wedge t \subseteq s \longrightarrow(\exists x \in s . x\) islimpt \(t) \Longrightarrow\) seq_compact \(s\)
by (rule countable_acc_point_imp_seq_compact) (metis islimpt_eq_acc_point)

\subsection*{2.1.11 Cartesian products}
```

lemma seq_compact_Times: seq_compact s < seq_compact t\Longrightarrow seq_compact (s

* t)
unfolding seq_compact_def
apply clarify
apply (drule_tac x=fst \circf in spec)
apply (drule mp, simp add: mem_Times_iff)
apply (clarify, rename_tac l1 r1)
apply (drule_tac x=snd \circf\circr1 in spec)
apply (drule mp, simp add: mem_Times_iff)
apply (clarify, rename_tac l2 r2)
apply (rule_tac x=(l1, l2) in rev_bexI, simp)
apply (rule_tac x=r1 \circ r2 in exI)
apply (rule conjI, simp add: strict_mono_def)
apply (drule_tac f=r2 in LIMSEQ_subseq_LIMSEQ, assumption)
apply (drule (1) tendsto_Pair) back
apply (simp add: o_def)
done
lemma compact_Times:
assumes compact s compact t
shows compact (s\timest)
proof (rule compactI)
fix C
assume C:}\forallt\inC\mathrm{ . open t s < t}\subseteq\bigcup
have }\forallx\ins.\existsa. open a ^x\ina\wedge(\existsd\subseteqC. finite d ^a>t\subseteq\bigcupd
proof
fix }
assume x \ins
have }\forally\int.\existsabc.c\inC\wedge\mathrm{ open a ^open b}\wedgex\ina\wedgey\inb\wedgea\timesb\subseteq
(is }\forally\int.?Py
proof
fix }
assume y\int
with \langlex\ins\rangleC obtain c where c\inC (x,y)\inc open c by auto
then show ?P y by (auto elim!: open_prod_elim)
qed
then obtain abc where b: \y.y\int\Longrightarrowopen (by)
and c:\bigwedgey.y\int\Longrightarrowcy\inC^open (ay)\wedgeopen (by)\wedgex\inay^y\inb
y^ay x by\subseteqcy
by metis
then have }\forally\int\mathrm{ .open (b y)t}\subseteq(\bigcupy\int.b y) by aut
with compactE_image[OF <compact t\rangle] obtain D where D: D\subseteqt finite D t
\subseteq (\bigcup y \in D . b y)
by metis

```
```

 moreover from \(D c\) have \((\bigcap y \in D . a y) \times t \subseteq(\bigcup y \in D . c y)\)
 by (fastforce simp: subset_eq)
 ultimately show \(\exists a\). open \(a \wedge x \in a \wedge(\exists d \subseteq C\). finite \(d \wedge a \times t \subseteq \bigcup d)\)
 using \(c\) by (intro exI \(\left[o f_{-} c^{`} D\right] \operatorname{exI}\left[o f_{-} \bigcap\left(a^{`} D\right)\right]\) conjI) (auto intro!: open_INT)
 qed
 then obtain \(a d\) where \(a: \bigwedge x . x \in s \Longrightarrow\) open \((a x) s \subseteq(\bigcup x \in s . a x)\)
 and \(d: \wedge x . x \in s \Longrightarrow d x \subseteq C \wedge\) finite \((d x) \wedge a x \times t \subseteq \bigcup(d x)\)
 unfolding subset_eq UN_iff by metis
 moreover
 from compactE_image \([O F\langle\) compact s〉a]
 obtain \(e\) where \(e: e \subseteq s\) finite \(e\) and \(s: s \subseteq(\bigcup x \in e\). a \(x)\)
 by auto
 moreover
 \{
 from \(s\) have \(s \times t \subseteq(\bigcup x \in e\). \(a x \times t)\)
 by auto
 also have \(\ldots \subseteq(\bigcup x \in e . \bigcup(d x))\)
 using \(d\langle e \subseteq s\rangle\) by (intro UN_mono) auto
 finally have \(s \times t \subseteq(\bigcup x \in e . \bigcup(d x))\).
 \}
ultimately show $\exists C^{\prime} \subseteq C$. finite $C^{\prime} \wedge s \times t \subseteq \bigcup C^{\prime}$
by (intro exI[of $-(\bigcup x \in e . d x)]$) (auto simp: subset_eq)
qed
lemma tube_lemma:
assumes compact K
assumes open W
assumes $\{x 0\} \times K \subseteq W$
shows $\exists X 0 . x 0 \in X 0 \wedge$ open $X 0 \wedge X 0 \times K \subseteq W$
proof -
\{
fix y assume $y \in K$
then have $(x 0, y) \in W$ using assms by auto
with 〈open W 〉
have $\exists X 0 Y$. open $X 0 \wedge$ open $Y \wedge x 0 \in X 0 \wedge y \in Y \wedge X 0 \times Y \subseteq W$
by (rule open_prod_elim) blast
\}
then obtain $X 0 Y$ where
$*: \forall y \in K$. open $(X 0 y) \wedge$ open $(Y y) \wedge x 0 \in X 0 y \wedge y \in Y y \wedge X 0 y \times Y y$
$\subseteq W$
by metis
from $*$ have $\forall t \in Y^{\text {' }} K$. open $t K \subseteq \bigcup\left(Y^{\text {' }} K\right)$ by auto
with (compact K) obtain $C C$ where $C C: C C \subseteq Y^{`} K$ finite $C C K \subseteq \bigcup C C$
by (meson compactE)
then obtain c where $c: \wedge C . C \in C C \Longrightarrow c C \in K \wedge C=Y(c C)$
by (force intro!: choice)
with $* C C$ show ?thesis
by (force intro!: exI[where $x=\bigcap C \in C C . X 0(c C)])$

```
```

qed
lemma continuous_on_prod_compactE:
fixes $f x::$ 'a::topological_space \times ' $b::$ topological_space $\Rightarrow{ }^{\prime} c::$ metric_space
and $e::$ real
assumes cont_fx: continuous_on $(U \times C) f x$
assumes compact C
assumes [intro]: $x 0 \in U$
notes $[$ continuous_intros $]=$ continuous_on_compose2 $[$ OF cont_fx]
assumes $e>0$
obtains $X 0$ where $x 0 \in X 0$ open $X 0$
$\forall x \in X 0 \cap U . \forall t \in C . \operatorname{dist}(f x(x, t))(f x(x 0, t)) \leq e$
proof -
define psi where psi $=(\lambda(x, t)$. dist $(f x(x, t))(f x(x 0, t)))$
define $W 0$ where $W 0=\{(x, t) \in U \times C . p s i(x, t)<e\}$
have W0_eq: W0 $=$ psi -' $\{. .<e\} \cap U \times C$
by (auto simp: vimage_def W0_def)
have open $\{. .<e\}$ by simp
have continuous_on $(U \times C)$ psi
by (auto intro!: continuous_intros simp: psi_def split_beta')
from this[unfolded continuous_on_open_invariant, rule_format, OF <open $\{. .<e\}$ 〉]
obtain W where W : open $W W \cap U \times C=W 0 \cap U \times C$
unfolding W0_eq by blast
have $\{x 0\} \times C \subseteq W \cap U \times C$
unfolding W
by (auto simp: W0_def psi_def $\langle 0<e\rangle$)
then have $\{x 0\} \times C \subseteq W$ by blast
from tube_lemma $[O F$ compact C 〉open $W\rangle$ this]
obtain $X 0$ where $X 0: x 0 \in X 0$ open XO XO $\times C \subseteq W$
by blast
have $\forall x \in X 0 \cap U . \forall t \in C . \operatorname{dist}(f x(x, t))(f x(x 0, t)) \leq e$
proof safe
fix x assume $x: x \in X 0 x \in U$
fix t assume $t: t \in C$
have dist $(f x(x, t))(f x(x 0, t))=p s i(x, t)$
by (auto simp: psi_def)
also
\{
have $(x, t) \in X 0 \times C$
using $t x$
by auto
also note $\langle\ldots \subseteq W$ 〉
finally have $(x, t) \in W$.
with $t x$ have $(x, t) \in W \cap U \times C$
by blast
also note $\langle W \cap U \times C=W 0 \cap U \times C\rangle$
finally have psi $(x, t)<e$
by (auto simp: W0_def)

```
```

 }
 finally show dist (fx (x,t)) (fx (x0,t)) \leqe by simp
 qed
 from X0(1,2) this show ?thesis ..
 qed

```

\subsection*{2.1.12 Continuity}
lemma continuous_at_imp_continuous_within:
continuous (at \(x\) ) \(f \Longrightarrow\) continuous (at \(x\) within s) \(f\)
unfolding continuous_within continuous_at using Lim_at_imp_Lim_at_within by auto
lemma Lim_trivial_limit: trivial_limit net \(\Longrightarrow(f \longrightarrow l)\) net by \(\operatorname{simp}\)
lemmas continuous_on \(=\) continuous_on_def - legacy theorem name
lemma continuous_within_subset:
continuous (at \(x\) within s) \(f \Longrightarrow t \subseteq s \Longrightarrow\) continuous (at \(x\) within \(t\) ) \(f\) unfolding continuous_within by (metis tendsto_within_subset)
lemma continuous_on_interior:
continuous_on sf \(f\) cinterior \(s \Longrightarrow\) continuous (at \(x) f\)
by (metis continuous_on_eq_continuous_at continuous_on_subset interiorE)
lemma continuous_on_eq:
\(\llbracket\) continuous_on s \(f ; \bigwedge x . x \in s \Longrightarrow f x=g x \rrbracket \Longrightarrow\) continuous_on sg unfolding continuous_on_def tendsto_def eventually_at_topological by simp

Characterization of various kinds of continuity in terms of sequences.
lemma continuous_within_sequentiallyI:
fixes \(f:: ' a::\{\) first_countable_topology, t2_space \(\} \Rightarrow{ }^{\prime} b::\) topological_space
assumes \(\bigwedge u:: n a t \Rightarrow{ }^{\prime} a . u \longrightarrow a \Longrightarrow(\forall n . u n \in s) \Longrightarrow(\lambda n . f(u n)) \longrightarrow\) \(f a\)
shows continuous (at a within s) \(f\)
using assms unfolding continuous_within tendsto_def[where \(l=f a]\)
by (auto intro!: sequentially_imp_eventually_within)
lemma continuous_within_tendsto_compose:
fixes \(f::\) 'a::t2_space \(\Rightarrow\) ' \(b:\) :topological_space
assumes continuous (at a within s) \(f\) eventually ( \(\lambda n . x n \in s) F\) \((x \longrightarrow a) F\)
shows \(((\lambda n . f(x n)) \longrightarrow f a) F\)
proof -
have *: filterlim \(x\) (inf ( \(n h d s\) a) (principal s)) F
using assms(2) assms(3) unfolding at_within_def filterlim_inf by (auto simp:
```

filterlim_principal eventually_mono)
show ?thesis
by (auto simp: assms(1) continuous_within[symmetric] tendsto_at_within_iff_tendsto_nhds[symmetric]
intro!: filterlim_compose[OF _ *])
qed
lemma continuous_within_tendsto_compose':
fixes $f::$ 'a::t2_space \Rightarrow ' $b:$:topological_space
assumes continuous (at a within s) f
$\bigwedge n . x n \in s$
$(x \longrightarrow a) F$
shows $((\lambda n . f(x n)) \longrightarrow f a) F$
by (auto intro!: continuous_within_tendsto_compose[OF assms(1)] simp add: assms)
lemma continuous_within_sequentially:
fixes f :: ' $a::\{$ first_countable_topology, t2_space $\} \Rightarrow{ }^{\prime} b::$ topological_space
shows continuous (at a within s) $f \longleftrightarrow$
$(\forall x .(\forall n::$ nat. $x n \in s) \wedge(x \longrightarrow a)$ sequentially
$\longrightarrow((f \circ x) \longrightarrow f a)$ sequentially $)$
using continuous_within_tendsto_compose'[of a sf_sequentially]
continuous_within_sequentiallyI[of asf]
by (auto simp: o_def)
lemma continuous_at_sequentiallyI:
fixes f :: ' $a::\{$ first_countable_topology, t2_space $\} \Rightarrow{ }^{\prime} b::$ topological_space
assumes $\wedge u . u \longrightarrow a \Longrightarrow(\lambda n . f(u n)) \longrightarrow f a$
shows continuous (at a) f
using continuous_within_sequentiallyI[of a UNIV f] assms by auto
lemma continuous_at_sequentially:
fixes f :: 'a::metric_space \Rightarrow ' $b::$ topological_space
shows continuous (at a) $f \longleftrightarrow$
$(\forall x .(x \longrightarrow a)$ sequentially $-->((f \circ x) \longrightarrow f a)$ sequentially $)$
using continuous_within_sequentially[of a UNIV f] by simp
lemma continuous_on_sequentiallyI:
fixes f :: ' $a::\{$ first_countable_topology, t2_space $\} \Rightarrow{ }^{\prime} b::$ topological_space
assumes $\bigwedge u a .(\forall n . u n \in s) \Longrightarrow a \in s \Longrightarrow u \longrightarrow a \Longrightarrow(\lambda n . f(u n))$
$\rightarrow a$
shows continuous_on sf
using assms unfolding continuous_on_eq_continuous_within
using continuous_within_sequentiallyI $\left[o f ~ _~ s f\right]$ by auto
lemma continuous_on_sequentially:
fixes $f:: ' a::\{$ first_countable_topology, t2_space $\} \Rightarrow{ }^{\prime} b::$ topological_space
shows continuous_on s $f \longleftrightarrow$
$(\forall x . \forall a \in s .(\forall n . x(n) \in s) \wedge(x \longrightarrow a)$ sequentially
$-->((f \circ x) \longrightarrow f a)$ sequentially $)$
(is ?lhs $=$? $r h s)$

```
```

proof
assume ?rhs
then show?lhs
using continuous_within_sequentially[of _ s f]
unfolding continuous_on_eq_continuous_within
by auto
next
assume ?lhs
then show?rhs
unfolding continuous_on_eq_continuous_within
using continuous_within_sequentially[of _ sf]
by auto
qed
Continuity in terms of open preimages.
lemma continuous_at_open:
continuous (at x) f\longleftrightarrow \longleftrightarrow (\forallt. open t\wedgefx\int --> (\exists s. open s\wedgex\ins\wedge(\forall\mp@subsup{x}{}{\prime}
\ins.(fx')\int)))
unfolding continuous_within_topological [of x UNIV f]
unfolding imp_conjL
by (intro all_cong imp_cong ex_cong conj_cong refl) auto
lemma continuous_imp_tendsto:
assumes continuous (at x0) f
and }x\longrightarrowx
shows (f\circx)\longrightarrow(fx0)
proof (rule topological_tendstoI)
fix }
assume open S f x0 \inS
then obtain T where T_def:open Tx0 \inT \forallx\inT.fx\inS
using assms continuous_at_open by metis
then have eventually (}\lambdan.xn\inT)\mathrm{ sequentially
using assms T_def by (auto simp: tendsto_def)
then show eventually (}\lambdan.(f\circx)n\inS)\mathrm{ sequentially
using T-def by (auto elim!: eventually_mono)
qed

```

\subsection*{2.1.13 Homeomorphisms}
definition homeomorphism stfg \(\longleftrightarrow\)
\((\forall x \in s .(g(f x)=x)) \wedge(f ' s=t) \wedge\) continuous_on \(s f \wedge\)
\((\forall y \in t .(f(g y)=y)) \wedge\left(g^{\prime} t=s\right) \wedge\) continuous_on \(t g\)
lemma homeomorphismI [intro?]:
assumes continuous_on \(S f\) continuous_on \(T g\)
\[
f^{\prime} S \subseteq T g^{\prime} T \subseteq S \bigwedge x . x \in S \Longrightarrow g(f x)=x \bigwedge y . y \in T \Longrightarrow f(g y)=y
\]
shows homeomorphism \(S T f g\)
using assms by (force simp: homeomorphism_def)
```

lemma homeomorphism_translation:
fixes a :: ' }a\mathrm{ :: real_normed_vector
shows homeomorphism ((+) a`'S)S ((+) (-a)) ((+) a)
unfolding homeomorphism_def by (auto simp: algebra_simps continuous_intros)
lemma homeomorphism_ident: homeomorphism T T (\lambdaa.a) (\lambdaa.a)
by (rule homeomorphismI) auto
lemma homeomorphism_compose:
assumes homeomorphism ST fg homeomorphism T Uhk
shows homeomorphism S U (hof)(gok)
using assms
unfolding homeomorphism_def
by (intro conjI ballI continuous_on_compose) (auto simp: image_iff)
lemma homeomorphism_cong:
homeomorphism X' Y' f' g'
if homeomorphism X Yfg X '}=X \mp@subsup{Y}{}{\prime}=Y\x.x\inX\Longrightarrow\mp@subsup{f}{}{\prime}x=fx\bigwedgey.
\inY\Longrightarrow g
using that by (auto simp add: homeomorphism_def)
lemma homeomorphism_empty [simp]:
homeomorphism {} {} fg
unfolding homeomorphism_def by auto
lemma homeomorphism_symD: homeomorphism Stfg\Longrightarrow homeomorphism t S
gf
by (simp add: homeomorphism_def)
lemma homeomorphism_sym: homeomorphism Stfg= homeomorphism t Sgf
by (force simp: homeomorphism_def)
definition homeomorphic :: 'a::topological_space set }=>\mathrm{ ' 'b::topological_space set }
bool
(infixr homeomorphic 60)
where s homeomorphic t}\equiv(\existsfg\mathrm{ . homeomorphism stfg)
lemma homeomorphic_empty [iff]:
S homeomorphic {}\longleftrightarrowS={} {} homeomorphic S \longleftrightarrowS={}
by (auto simp: homeomorphic_def homeomorphism_def)
lemma homeomorphic_refl: s homeomorphic s
unfolding homeomorphic_def homeomorphism_def
using continuous_on_id
apply (rule_tac x = (}\lambdax.x)\mathrm{ in exI)
apply (rule_tac x = (}\lambdax.x)\mathrm{ in exI)
apply blast
done

```
lemma homeomorphic_sym: s homeomorphic \(t \longleftrightarrow t\) homeomorphic \(s\) unfolding homeomorphic_def homeomorphism_def by blast
lemma homeomorphic_trans [trans]:
assumes \(S\) homeomorphic \(T\)
and \(T\) homeomorphic \(U\)
shows \(S\) homeomorphic \(U\)
using assms
unfolding homeomorphic_def
by (metis homeomorphism_compose)
lemma homeomorphic_minimal:
\(s\) homeomorphic \(t \longleftrightarrow\)
\((\exists f g .(\forall x \in s . f(x) \in t \wedge(g(f(x))=x)) \wedge\)
\((\forall y \in t . g(y) \in s \wedge(f(g(y))=y)) \wedge\)
continuous_on s \(f \wedge\) continuous_on \(t g)\)
(is? \(l h s=\) ? \(r h s\) )
proof
assume ?lhs
then show ?rhs
by (fastforce simp: homeomorphic_def homeomorphism_def)

\section*{next}
assume ?rhs
then show ?lhs
apply clarify
unfolding homeomorphic_def homeomorphism_def
by (metis equalityI image_subset_iff subsetI)
qed
lemma homeomorphicI [intro?]:
\(\llbracket f^{\prime} S=T ; g^{\prime} T=S\);
continuous_on \(S f\); continuous_on \(T\) g;
\(\bigwedge x . x \in S \Longrightarrow g(f(x))=x\);
\(\wedge y . y \in T \Longrightarrow f(g(y))=y \rrbracket \Longrightarrow S\) homeomorphic \(T\)
unfolding homeomorphic_def homeomorphism_def by metis
lemma homeomorphism_of_subsets:
\(\llbracket h o m e o m o r p h i s m ~ S T f g ; S^{\prime} \subseteq S ; T^{\prime \prime} \subseteq T ; f^{\prime} S^{\prime}=T \rrbracket\)
\(\Longrightarrow\) homeomorphism \(S^{\prime} T^{\prime} f g\)
apply (auto simp: homeomorphism_def elim!: continuous_on_subset)
by (metis subsetD imageI)
lemma homeomorphism_apply1: 【homeomorphism \(S T f g ; x \in S \rrbracket \Longrightarrow g(f x)=x\) by (simp add: homeomorphism_def)
lemma homeomorphism_apply2: 【homeomorphism STfg; \(x \in T \rrbracket \Longrightarrow f(g x)=\) \(x\)
by (simp add: homeomorphism_def)
lemma homeomorphism_image1: homeomorphism \(S T f g \Longrightarrow f^{\prime} S=T\) by (simp add: homeomorphism_def)
lemma homeomorphism_image2: homeomorphism \(S T f g \Longrightarrow g ‘ T=S\) by (simp add: homeomorphism_def)
lemma homeomorphism_cont1: homeomorphism \(S T f g \Longrightarrow\) continuous_on \(S f\) by (simp add: homeomorphism_def)
lemma homeomorphism_cont2: homeomorphism \(S T f g \Longrightarrow\) continuous_on \(T g\)
by (simp add: homeomorphism_def)
lemma continuous_on_no_limpt:
\((\bigwedge x . \neg x\) islimpt \(S) \Longrightarrow\) continuous_on \(S f\)
unfolding continuous_on_def
by (metis UNIV_I empty_iff eventually_at_topological islimptE open_UNIV tendsto_def trivial_limit_within)
lemma continuous_on_finite:
fixes \(S\) :: ' \(a:: t 1 \_\)space set
shows finite \(S \Longrightarrow\) continuous_on \(S f\)
by (metis continuous_on_no_limpt islimpt_finite)
lemma homeomorphic_finite:
fixes \(S\) :: ' \(a::\) t1_space set and \(T::\) ' \(b::\) t1_space set
assumes finite \(T\)
shows \(S\) homeomorphic \(T \longleftrightarrow\) finite \(S \wedge\) finite \(T \wedge\) card \(S=\) card \(T\) (is?lhs
\(=\) ? \(r h s\) )
proof
assume \(S\) homeomorphic \(T\)
with assms show ?rhs
apply (auto simp: homeomorphic_def homeomorphism_def) apply (metis finite_imageI)
by (metis card_image_le finite_imageI le_antisym)
next
assume \(R\) : ?rhs
with finite_same_card_bij obtain \(h\) where bij_betw \(h S T\)
by auto
with \(R\) show? ?hs
apply (auto simp: homeomorphic_def homeomorphism_def continuous_on_finite)
apply (rule_tac \(x=h\) in \(e x I\) )
apply (rule_tac \(x=\) inv_into \(S h\) in exI)
apply (auto simp: bij_betw_inv_into_left bij_betw_inv_into_right bij_betw_imp_surj_on inv_into_into bij_betwE)
apply (metis bij_betw_def bij_betw_inv_into)
done
qed
Relatively weak hypotheses if a set is compact.
```

lemma homeomorphism_compact:
fixes $f::$ 'a::topological_space \Rightarrow ' $b::$ t2_space
assumes compact scontinuous_on sf f ' $s=t$ inj_on $f s$
shows $\exists g$. homeomorphism stfg
proof -
define g where $g x=($ SOME $y . y \in s \wedge f y=x)$ for x
have $g: \forall x \in s . g(f x)=x$
using assms(3) assms(4)[unfolded inj_on_def] unfolding g_def by auto
\{
fix y
assume $y \in t$
then obtain x where $x: f x=y x \in s$
using assms(3) by auto
then have $g(f x)=x$ using g by auto
then have $f(g y)=y$ unfolding $x(1)$ [symmetric] by auto
\}
then have $g^{\prime}: \forall x \in t . f(g x)=x$ by auto
moreover
\{
fix x
have $x \in s \Longrightarrow x \in g^{\prime} t$
using $g[$ THEN bspec[where $x=x]$]
unfolding image_iff
using assms(3)
by (auto intro!: bexI[where $x=f x]$)
moreover
\{
assume $x \in g$ ' t
then obtain y where $y: y \in t g y=x$ by auto
then obtain x^{\prime} where $x^{\prime}: x^{\prime} \in s f x^{\prime}=y$
using assms(3) by auto
then have $x \in s$
unfolding $g_{-} d e f$
using someI2 $\left[\right.$ of $\left.\lambda b, b \in s \wedge f b=y x^{\prime} \lambda x . x \in s\right]$
unfolding y (2)[symmetric] and $g_{-} d e f$
by auto
\}
ultimately have $x \in s \longleftrightarrow x \in g^{\prime} t$..
\}
then have $g^{\prime} t=s$ by auto
ultimately show ?thesis
unfolding homeomorphism_def homeomorphic_def
using assms continuous_on_inv by fastforce
qed
lemma homeomorphic_compact:
fixes f :: ' $a::$ topological_space \Rightarrow ' $b::$ t2_space
shows compact $s \Longrightarrow$ continuous_on $s f \Longrightarrow(f$ ' $s=t) \Longrightarrow$ inj_on $f s \Longrightarrow s$
homeomorphic t

```
```

unfolding homeomorphic_def by (metis homeomorphism_compact)

```

Preservation of topological properties.
lemma homeomorphic_compactness: s homeomorphic \(t \Longrightarrow\) (compact \(s \longleftrightarrow\) compact \(t\) )
unfolding homeomorphic_def homeomorphism_def
by (metis compact_continuous_image)

\subsection*{2.1.14 On Linorder Topologies}
lemma islimpt_greaterThanLessThan1:
fixes a \(b:: ' a::\{\) linorder_topology, dense_order \(\}\)
assumes \(a<b\)
shows a islimpt \(\{a<. .<b\}\)
proof (rule islimptI)
fix \(T\)
assume open \(T a \in T\)
from open_right \([O F\) this \(\langle a<b\rangle]\)
obtain \(c\) where \(c: a<c\{a . .<c\} \subseteq T\) by auto
with assms dense[of a min \(c b]\)
show \(\exists y \in\{a<. .<b\} . y \in T \wedge y \neq a\)
by (metis atLeastLessThan_iff greaterThanLessThan_iff min_less_iff_conj not_le order.strict_implies_order subset_eq)
qed
lemma islimpt_greaterThanLessThan2:
fixes a \(b::^{\prime} a::\{\) linorder_topology, dense_order \(\}\)
assumes \(a<b\)
shows \(b\) islimpt \(\{a<. .<b\}\)
proof (rule islimptI)
fix \(T\)
assume open \(T b \in T\)
from open_left[OF this \(\langle a<b\rangle]\)
obtain \(c\) where \(c: c<b\{c<. . b\} \subseteq T\) by auto
with assms dense[of max acb]
show \(\exists y \in\{a<. .<b\} . y \in T \wedge y \neq b\)
by (metis greaterThanAtMost_iff greaterThanLessThan_iff max_less_iff_conj not_le order.strict_implies_order subset_eq)
qed
lemma closure_greaterThanLessThan[simp]:
fixes a \(b::^{\prime} a::\{\) linorder_topology, dense_order \(\}\)
shows \(a<b \Longrightarrow\) closure \(\{a<. .<b\}=\{a . . b\}\left(\right.\) is \(\left.{ }_{-} \Longrightarrow ? l=? r\right)\)
proof
have ?l \(\subseteq\) closure ? \(r\)
by (rule closure_mono) auto
thus closure \(\{a<. .<b\} \subseteq\{a . . b\}\) by simp
qed (auto simp: closure_def order.order_iff_strict islimpt_greaterThanLessThan1 islimpt_greaterThanLessThan2)
```

lemma closure_greaterThan [simp]:
fixes $a b:$: $^{\prime} a::\{$ no_top, linorder_topology, dense_order $\}$
shows closure $\{a<.\}=.\{a .$.
proof -
from $g t_{-} e x$ obtain b where $a<b$ by auto
hence $\{a<.\}=.\{a<. .<b\} \cup\{b .$.$\} by auto$
also have closure $\ldots=\{a .$.$\} using \langle a<b\rangle$ unfolding closure_Un
by auto
finally show? ?thesis.
qed
lemma closure_lessThan[simp]:
fixes $b:: ' a::\{$ no_bot, linorder_topology, dense_order $\}$
shows closure $\{. .<b\}=\{. . b\}$
proof -
from $l t_{-} e x$ obtain a where $a<b$ by auto
hence $\{. .<b\}=\{a<. .<b\} \cup\{. . a\}$ by auto
also have closure $\ldots=\{. . b\}$ using $\langle a<b\rangle$ unfolding closure_ $_{-} U n$
by auto
finally show ?thesis .
qed
lemma closure_atLeastLessThan [simp]:
fixes $a b::{ }^{\prime} a::\{$ linorder_topology, dense_order $\}$
assumes $a<b$
shows closure $\{a . .<b\}=\{a . . b\}$
proof -
from assms have $\{a . .<b\}=\{a\} \cup\{a<. .<b\}$ by auto
also have closure $\ldots=\{a . . b\}$ unfolding closure_ $_{-} U n$
by (auto simp: assms less_imp_le)
finally show? ?thesis.
qed
lemma closure_greaterThanAtMost[simp]:
fixes a $b::^{\prime} a::\{$ linorder_topology, dense_order $\}$
assumes $a<b$
shows closure $\{a<. . b\}=\{a . . b\}$
proof -
from assms have $\{a<. . b\}=\{b\} \cup\{a<. .<b\}$ by auto
also have closure $\ldots=\{a . . b\}$ unfolding closure_ $_{-} U n$
by (auto simp: assms less_imp_le)
finally show? ?thesis .
qed
end

```

\subsection*{2.2 Operators involving abstract topology}

\author{
theory Abstract_Topology imports \\ Complex_Main HOL-Library.Set_Idioms HOL-Library.FuncSet \\ begin
}

\subsection*{2.2.1 General notion of a topology as a value}
definition istopology :: ('a set \(\Rightarrow\) bool) \(\Rightarrow\) bool where
istopology \(L \equiv(\forall S T . L S \longrightarrow L T \longrightarrow L(S \cap T)) \wedge(\forall \mathcal{K} .(\forall K \in \mathcal{K} . L K) \longrightarrow\) \(L(\bigcup \mathcal{K}))\)
typedef 'a topology \(=\{L::(' a\) set \() \Rightarrow\) bool. istopology \(L\}\)
morphisms openin topology
unfolding istopology_def by blast
lemma istopology_openin [intro]: istopology(openin \(U\) )
using openin \([\) of \(U]\) by blast
lemma istopology_open: istopology open
by (auto simp: istopology_def)
lemma topology_inverse': istopology \(U \Longrightarrow\) openin \((\) topology \(U\) ) \(=U\) using topology_inverse[unfolded mem_Collect_eq].
lemma topology_inverse_iff: istopology \(U \longleftrightarrow\) openin (topology \(U\) ) \(=U\)
using topology_inverse[of \(U\) ] istopology_openin[of topology \(U\) ] by auto
lemma topology_eq: \(T 1=T 2 \longleftrightarrow(\forall S\). openin \(T 1 S \longleftrightarrow\) openin \(T 2 S)\)
proof
assume \(T 1=T 2\)
then show \(\forall S\). openin \(T 1 S \longleftrightarrow\) openin T2 \(S\) by simp
next
assume \(H: \forall S\). openin \(T 1 S \longleftrightarrow\) openin T2 \(S\)
then have openin \(T 1=\) openin \(T 2\) by (simp add: fun_eq_iff)
then have topology (openin T1) = topology (openin T2) by simp
then show T1 = T2 unfolding openin_inverse .
qed
The "universe": the union of all sets in the topology.
definition topspace \(T=\bigcup\{S\). openin \(T S\}\)
Main properties of open sets
proposition openin_clauses:
fixes \(U\) :: 'a topology
shows
openin \(U\}\)
\(\wedge S T\). openin \(U S \Longrightarrow\) openin \(U T \Longrightarrow\) openin \(U(S \cap T)\)
\(\bigwedge K .(\forall S \in K\). openin \(U S) \Longrightarrow\) openin \(U(\bigcup K)\)
using openin[of \(U\) ] unfolding istopology_def by auto
lemma openin_subset: openin \(U S \Longrightarrow S \subseteq\) topspace \(U\) unfolding topspace_def by blast
lemma openin_empty[simp]: openin \(U\) \{\}
by (rule openin_clauses)
lemma openin_Int[intro]: openin \(U S \Longrightarrow\) openin \(U T \Longrightarrow\) openin \(U(S \cap T)\) by (rule openin_clauses)
lemma openin_Union[intro]: \((\bigwedge S . S \in K \Longrightarrow\) openin \(U S) \Longrightarrow\) openin \(U(\bigcup K)\) using openin_clauses by blast
lemma openin_Un[intro]: openin \(U S \Longrightarrow\) openin \(U T \Longrightarrow\) openin \(U(S \cup T)\) using openin_Union \([\) of \(\{S, T\} U]\) by auto
lemma openin_topspace[intro, simp]: openin \(U\) (topspace \(U\) )
by (force simp: openin_Union topspace_def)
lemma openin_subopen: openin \(U S \longleftrightarrow(\forall x \in S . \exists T\). openin \(U T \wedge x \in T \wedge\) \(T \subseteq S\) )
(is?lhs \(\longleftrightarrow\) ? rhs)
proof
assume ?lhs
then show? rhs by auto
next
assume \(H\) : ? rhs
let \(? t=\bigcup\{T\). openin \(U T \wedge T \subseteq S\}\)
have openin \(U\) ?t by (force simp: openin_Union)
also have ? \(t=S\) using \(H\) by auto
finally show openin \(U S\).
qed
lemma openin_INT [intro]:
assumes finite I
\(\bigwedge i . i \in I \Longrightarrow\) openin \(T(U i)\)
shows openin \(T((\bigcap i \in I . U i) \cap\) topspace \(T)\)
using assms by (induct, auto simp: inf_sup_aci(2) openin_Int)
lemma openin_INT2 [intro]:
assumes finite \(I I \neq\{ \}\)
\(\bigwedge i . i \in I \Longrightarrow\) openin \(T(U i)\)
shows openin \(T(\bigcap i \in I . U i)\)
proof -
have \((\bigcap i \in I . U i) \subseteq\) topspace \(T\)
using \(\langle I \neq\{ \}\rangle\) openin_subset[OF assms(3)] by auto
then show ?thesis
using openin_INT[of _ _ U, OF assms(1) assms(3)] by (simp add: inf.absorb2 inf_commute)
qed
lemma openin_Inter [intro]:
assumes finite \(\mathcal{F} \mathcal{F} \neq\{ \} \bigwedge X . X \in \mathcal{F} \Longrightarrow\) openin \(T X\) shows openin \(T(\bigcap \mathcal{F})\)
by (metis (full_types) assms openin_INT2 image_ident)
lemma openin_Int_Inter:
assumes finite \(\mathcal{F}\) openin \(T U \bigwedge X . X \in \mathcal{F} \Longrightarrow\) openin \(T X\) shows openin \(T\) \((U \cap \bigcap \mathcal{F})\)
using openin_Inter [of insert \(U \mathcal{F}\) ] assms by auto

\section*{Closed sets}
definition closedin :: ' \(a\) topology \(\Rightarrow\) ' \(a\) set \(\Rightarrow\) bool where
closedin \(U S \longleftrightarrow S \subseteq\) topspace \(U \wedge\) openin \(U\) (topspace \(U-S)\)
lemma closedin_subset: closedin \(U S \Longrightarrow S \subseteq\) topspace \(U\)
by (metis closedin_def)
lemma closedin_empty[simp]: closedin \(U\) \{\}
by (simp add: closedin_def)
lemma closedin_topspace [intro, simp]: closedin \(U\) (topspace \(U\) )
by (simp add: closedin_def)
lemma closedin_Un[intro]: closedin \(U S \Longrightarrow\) closedin \(U T \Longrightarrow\) closedin \(U(S \cup\) T)
by (auto simp: Diff_Un closedin_def)
lemma Diff_Inter[intro]: \(A-\bigcap S=\bigcup\{A-s \mid s . s \in S\}\)
by auto
lemma closedin_Union:
assumes finite \(S \bigwedge T . T \in S \Longrightarrow\) closedin \(U T\)
shows closedin \(U(\bigcup S)\)
using assms by induction auto
lemma closedin_Inter[intro]:
assumes \(K e: K \neq\{ \}\)
and \(K c: \wedge S . S \in K \Longrightarrow\) closedin \(U S\)
shows closedin \(U(\bigcap K)\)
using Ke Kc unfolding closedin_def Diff_Inter by auto
lemma closedin_INT[intro]:
assumes \(A \neq\{ \} \bigwedge x . x \in A \Longrightarrow\) closedin \(U(B x)\)
shows closedin \(U(\bigcap x \in A . B x)\)
using assms by blast
lemma closedin_Int[intro]: closedin \(U S \Longrightarrow\) closedin \(U T \Longrightarrow\) closedin \(U(S \cap\) T)
using closedin_Inter \([o f\{S, T\} U]\) by auto
lemma openin_closedin_eq: openin \(U S \longleftrightarrow S \subseteq\) topspace \(U \wedge\) closedin \(U\) (topspace \(U-S\) )
by (metis Diff_subset closedin_def double_diff equalityD1 openin_subset)
lemma topology_finer_closedin:
topspace \(X=\) topspace \(Y \Longrightarrow(\forall S\). openin \(Y S \longrightarrow\) openin \(X S) \longleftrightarrow(\forall S\). closedin Y \(S \longrightarrow\) closedin \(X S\) )
by (metis closedin_def openin_closedin_eq)
lemma openin_closedin: \(S \subseteq\) topspace \(U \Longrightarrow\) (openin \(U S \longleftrightarrow\) closedin \(U\) (topspace \(U-S)\) )
by (simp add: openin_closedin_eq)
lemma openin_diff [intro]:
assumes \(o S\) : openin \(U S\)
and \(c T\) : closedin \(U T\)
shows openin \(U(S-T)\)
proof -
have \(S-T=S \cap(\) topspace \(U-T)\) using openin_subset[of \(U S]\) oS cT by (auto simp: topspace_def openin_subset)
then show ?thesis using \(o S c T\) by (auto simp: closedin_def)
qed
lemma closedin_diff[intro]:
assumes \(o S\) : closedin \(U S\) and \(c T\) : openin \(U T\)
shows closedin \(U(S-T)\)
proof -
have \(S-T=S \cap(\) topspace \(U-T)\)
using closedin_subset[of \(U S\) ] oS cT by (auto simp: topspace_def)
then show ?thesis
using \(o S c T\) by (auto simp: openin_closedin_eq)
qed

\subsection*{2.2.2 The discrete topology}
definition discrete_topology where discrete_topology \(U \equiv\) topology \((\lambda S . S \subseteq U)\)
lemma openin_discrete_topology [simp]: openin (discrete_topology \(U\) ) \(S \longleftrightarrow S \subseteq\) U
proof -
```

 have istopology (}\lambdaS.S\subseteqU
 by (auto simp: istopology_def)
 then show ?thesis
 by (simp add: discrete_topology_def topology_inverse')
 qed
lemma topspace_discrete_topology [simp]: topspace(discrete_topology U) =U
by (meson openin_discrete_topology openin_subset openin_topspace order_refl sub-
set_antisym)
lemma closedin_discrete_topology [simp]: closedin (discrete_topology U)S S
\subseteq U
by (simp add: closedin_def)
lemma discrete_topology_unique:
discrete_topology }U=X\longleftrightarrow\mathrm{ topspace }X=U\wedge(\forallx\inU. openin X {x})(i
?lhs = ?rhs)
proof
assume R: ?rhs
then have openin X S if S\subseteqU for S
using openin_subopen subsetD that by fastforce
moreover have x\in topspace X if openin X S and x\inS for x S
using openin_subset that by blast
ultimately
show ?lhs
using R by (auto simp: topology_eq)
qed auto
lemma discrete_topology_unique_alt:
discrete_topology }U=X\longleftrightarrow\mathrm{ topspace }X\subseteqU\wedge(\forallx\inU. openin X{x}
using openin_subset
by (auto simp: discrete_topology_unique)
lemma subtopology_eq_discrete_topology_empty:
X= discrete_topology {}\longleftrightarrow topspace }X={
using discrete_topology_unique [of {} X] by auto
lemma subtopology_eq_discrete_topology_sing:
X= discrete_topology {a}\longleftrightarrow topspace X = {a}
by (metis discrete_topology_unique openin_topspace singletonD)

```

\subsection*{2.2.3 Subspace topology}
definition subtopology :: 'a topology \(\Rightarrow\) 'a set \(\Rightarrow\) 'a topology where
subtopology \(U V=\) topology \((\lambda T . \exists S . T=S \cap V \wedge\) openin \(U S)\)
lemma istopology_subtopology: istopology \((\lambda T . \exists S . T=S \cap V \wedge\) openin \(U S)\)
(is istopology ? \(L\) )
proof -
```

 have ?L {} by blast
 {
 fix A B
 assume A:?L A and B:?L B
 from A B obtain Sa and Sb where Sa: openin USaA=Sa\capV and Sb:
 openin USb B=Sb\capV
by blast
have }A\capB=(Sa\capSb)\capV\mathrm{ openin U (Sa คSb)
using Sa Sb by blast+
then have ?L (A\capB) by blast
}
moreover
{
fix }
assume K:K\subseteq Collect ?L
have th0: Collect ?L = (\lambdaS.S\capV)'Collect (openin U)
by blast
from K[unfolded th0 subset_image_iff]
obtain Sk where Sk:Sk\subseteqCollect (openin U)K=(\lambdaS.S\capV)'Sk
by blast
have }\cupK=(\bigcupSk)\cap
using Sk by auto
moreover have openin U(\bigcupSk)
using Sk by (auto simp: subset_eq)
ultimately have ?L (\bigcupK) by blast
}
ultimately show ?thesis
unfolding subset_eq mem_Collect_eq istopology_def by auto
qed
lemma openin_subtopology: openin (subtopology U V)S }\longleftrightarrow(\existsT\mathrm{ . openin U T^
S=T\capV)
unfolding subtopology_def topology_inverse'[OF istopology_subtopology]
by auto
lemma openin_subtopology_Int:
openin X S\Longrightarrow openin (subtopology X T) (S\capT)
using openin_subtopology by auto
lemma openin_subtopology_Int2:
openin X T\Longrightarrow openin (subtopology X S)(S\capT)
using openin_subtopology by auto
lemma openin_subtopology_diff_closed:
\llbracket S \subseteq topspace X; closedin X T】 ב openin (subtopology X S) (S - T)
unfolding closedin_def openin_subtopology
by (rule_tac x=topspace }X-T\mathrm{ in exI) auto
lemma openin_relative_to: (openin X relative_to S)=openin (subtopology X S)

```
```

 by (force simp: relative_to_def openin_subtopology)
 lemma topspace_subtopology [simp]: topspace (subtopology U V)= topspace U \cap
V
by (auto simp: topspace_def openin_subtopology)
lemma topspace_subtopology_subset:
S\subseteq topspace X\Longrightarrowtopspace(subtopology X S)=S
by (simp add: inf.absorb_iff2)
lemma closedin_subtopology: closedin (subtopology U V)S\longleftrightarrow(\existsT. closedin U
T^S=T\capV)
unfolding closedin_def topspace_subtopology
by (auto simp: openin_subtopology)
lemma openin_subtopology_ref: openin (subtopology U V) V \longleftrightarrowV\subseteq topspace
U
unfolding openin_subtopology
by auto (metis IntD1 in_mono openin_subset)
lemma subtopology_subtopology:
subtopology (subtopology X S) T = subtopology X (S\capT)
proof -
have eq: }
mp@subsup{T}{}{\prime}.(\exists\mp@subsup{S}{}{\prime}.\mp@subsup{T}{}{\prime}=\mp@subsup{S}{}{\prime}\capT\wedge(\existsT.\mathrm{ openin }XT\wedge\mp@subsup{S}{}{\prime}=T\capS))=(\existsSa
T'}=Sa\cap(S\capT)\wedge\mathrm{ openin X Sa)
by (metis inf_assoc)
have subtopology (subtopology X S)T= topology (\lambdaTa.\existsSa.Ta=Sa\capT^
openin (subtopology X S) Sa)
by (simp add: subtopology_def)
also have }···=\mathrm{ subtopology X(S }\capT
by (simp add: openin_subtopology eq) (simp add: subtopology_def)
finally show ?thesis.
qed
lemma openin_subtopology_alt:
openin (subtopology X U)S\longleftrightarrow }\longleftrightarrowS\in(\lambdaT.U\capT)`Collect (openin X)
by (simp add: image_iff inf_commute openin_subtopology)
lemma closedin_subtopology_alt:
closedin (subtopology X U)S \longleftrightarrowS\in(\lambdaT.U\capT)'Collect (closedin X)
by (simp add: image_iff inf_commute closedin_subtopology)
lemma subtopology_superset:
assumes UV: topspace U\subseteqV
shows subtopology }U\mathrm{ V }=
proof -
{
fix S
{

```
fix \(T\)
assume \(T\) : openin \(U T S=T \cap V\)
from \(T\) openin_subset[OF \(T(1)] U V\) have eq: \(S=T\)
by blast
have openin \(U S\)
unfolding \(e q\) using \(T\) by blast
\}
moreover
\{
assume \(S\) : openin \(U S\)
then have \(\exists T\). openin \(U T \wedge S=T \cap V\)
using openin_subset \([O F S] U V\) by auto
\}
ultimately have \((\exists T\). openin \(U T \wedge S=T \cap V) \longleftrightarrow\) openin \(U S\) by blast
\}
then show ?thesis
unfolding topology_eq openin_subtopology by blast
qed
lemma subtopology_topspace \([\) simp \(]\) : subtopology \(U(\) topspace \(U)=U\)
by (simp add: subtopology_superset)
lemma subtopology_UNIV[simp]: subtopology \(U\) UNIV \(=U\)
by (simp add: subtopology_superset)
lemma subtopology_restrict:
subtopology \(X\) (topspace \(X \cap S\) ) \(=\) subtopology \(X S\)
by (metis subtopology_subtopology subtopology_topspace)
lemma openin_subtopology_empty:
openin (subtopology \(U\) \{\}) \(S \longleftrightarrow S=\{ \}\)
by (metis Int_empty_right openin_empty openin_subtopology)
lemma closedin_subtopology_empty:
closedin (subtopology \(U\) \{\}) \(S \longleftrightarrow S=\{ \}\)
by (metis Int_empty_right closedin_empty closedin_subtopology)
lemma closedin_subtopology_refl [simp]:
closedin (subtopology \(U X\) ) \(X \longleftrightarrow X \subseteq\) topspace \(U\)
by (metis closedin_def closedin_topspace inf.absorb_iff2 le_inf_iff topspace_subtopology)
lemma closedin_topspace_empty: topspace \(T=\{ \} \Longrightarrow(\) closedin \(T S \longleftrightarrow S=\{ \})\) by ( simp add: closedin_def)
lemma open_in_topspace_empty:
topspace \(X=\{ \} \Longrightarrow\) openin \(X S \longleftrightarrow S=\{ \}\)
by (simp add: openin_closedin_eq)
lemma openin_imp_subset:
openin (subtopology \(U S\) ) \(T \Longrightarrow T \subseteq S\)
by (metis Int_iff openin_subtopology subsetI)
lemma closedin_imp_subset:
closedin (subtopology \(U S\) ) \(T \Longrightarrow T \subseteq S\)
by (simp add: closedin_def)
lemma openin_open_subtopology:
openin \(X S \Longrightarrow\) openin (subtopology \(X S\) ) \(T \longleftrightarrow\) openin \(X T \wedge T \subseteq S\)
by (metis inf.orderE openin_Int openin_imp_subset openin_subtopology)
lemma closedin_closed_subtopology:
closedin \(X S \Longrightarrow(\) closedin \((\) subtopology \(X S) T \longleftrightarrow\) closedin \(X T \wedge T \subseteq S)\)
by (metis closedin_Int closedin_imp_subset closedin_subtopology inf.orderE)
lemma openin_subtopology_Un:
\(\llbracket o p e n i n(\) subtopology \(X T) S\); openin (subtopology \(X U\) ) \(S \rrbracket\)
\(\Longrightarrow\) openin (subtopology \(X(T \cup U)) S\)
by (simp add: openin_subtopology) blast
lemma closedin_subtopology_Un:
\(\llbracket\) closedin (subtopology X T) S; closedin (subtopology X U) S】 \(\Longrightarrow\) closedin (subtopology \(X(T \cup U)) S\)
by (simp add: closedin_subtopology) blast
lemma openin_trans_full:
\(\llbracket\) openin (subtopology \(X U\) ) \(S\); openin \(X U \rrbracket \Longrightarrow\) openin \(X S\)
by (simp add: openin_open_subtopology)

\subsection*{2.2.4 The canonical topology from the underlying type class}
abbreviation euclidean :: 'a::topological_space topology where euclidean \(\equiv\) topology open
abbreviation top_of_set :: 'a::topological_space set \(\Rightarrow\) ' 'a topology
where top_of_set \(\equiv\) subtopology (topology open)
lemma open_openin: open \(S \longleftrightarrow\) openin euclidean \(S\)
by (simp add: istopology_open topology_inverse')
declare open_openin [symmetric, simp]
lemma topspace_euclidean [simp]: topspace euclidean \(=\) UNIV
by (force simp: topspace_def)
lemma topspace_euclidean_subtopology[simp]: topspace (top_of_set \(S\) ) \(=S\)
by ( \(\operatorname{simp}\) )
```

lemma closed_closedin: closed S \longleftrightarrow closedin euclidean S
by (simp add: closed_def closedin_def Compl_eq_Diff_UNIV)
declare closed_closedin [symmetric, simp]
lemma openin_subtopology_self [simp]:openin (top_of_set S) S
by (metis openin_topspace topspace_euclidean_subtopology)

```

The most basic facts about the usual topology and metric on \(R\)
abbreviation euclideanreal :: real topology
where euclideanreal \(\equiv\) topology open

\subsection*{2.2.5 Basic "localization" results are handy for connectedness.}
lemma openin_open: openin (top_of_set \(U) S \longleftrightarrow(\exists T\). open \(T \wedge(S=U \cap T))\) by (auto simp: openin_subtopology)
lemma openin_Int_open:
【openin (top_of_set \(U\) ) \(S\); open \(T \rrbracket\)
\(\Longrightarrow\) openin (top_of_set \(U)(S \cap T)\)
by (metis open_Int Int_assoc openin_open)
lemma openin_open_Int[intro]: open \(S \Longrightarrow\) openin (top_of_set \(U\) ) \((U \cap S)\)
by (auto simp: openin_open)
lemma open_openin_trans[trans]:
open \(S \Longrightarrow\) open \(T \Longrightarrow T \subseteq S \Longrightarrow\) openin (top_of_set \(S\) ) \(T\)
by (metis Int_absorb1 openin_open_Int)
lemma open_subset: \(S \subseteq T \Longrightarrow\) open \(S \Longrightarrow\) openin (top_of_set \(T\) ) \(S\)
by (auto simp: openin_open)
lemma closedin_closed: closedin (top_of_set \(U) S \longleftrightarrow(\exists T\). closed \(T \wedge S=U \cap\) T)
by (simp add: closedin_subtopology Int_ac)
lemma closedin_closed_Int: closed \(S \Longrightarrow\) closedin (top_of_set \(U\) ) \((U \cap S)\)
by (metis closedin_closed)
lemma closed_subset: \(S \subseteq T \Longrightarrow\) closed \(S \Longrightarrow\) closedin (top_of_set \(T\) ) \(S\)
by (auto simp: closedin_closed)
lemma closedin_closed_subset:
\(\llbracket\) closedin (top_of_set \(U\) ) \(V ; T \subseteq U ; S=V \cap T \rrbracket\)
\(\Longrightarrow\) closedin (top_of_set \(T\) ) \(S\)
by (metis (no_types, lifting) Int_assoc Int_commute closedin_closed inf.orderE)
lemma finite_imp_closedin:
```

 fixes \(S\) :: 'a::1_-space set
 shows \(\llbracket\) finite \(S ; S \subseteq T \rrbracket \Longrightarrow\) closedin (top_of_set \(T\)) \(S\)
 by (simp add: finite_imp_closed closed_subset)
 lemma closedin_singleton [simp]:
fixes a :: 'a::1__space
shows closedin (top_of_set U) $\{a\} \longleftrightarrow a \in U$
using closedin_subset by (force intro: closed_subset)
lemma openin_euclidean_subtopology_iff:
fixes S U :: 'a::metric_space set
shows openin (top_of_set U) $S \longleftrightarrow$
$S \subseteq U \wedge\left(\forall x \in S . \exists e>0 . \forall x^{\prime} \in U\right.$. dist $\left.x^{\prime} x<e \longrightarrow x^{\prime} \in S\right)$
(is ?lhs \longleftrightarrow ? $r h s$)
proof
assume ?lhs
then show? rhs
unfolding openin_open open_dist by blast
next
define T where $T=\{x . \exists a \in S . \exists d>0 .(\forall y \in U$. dist $y a<d \longrightarrow y \in S) \wedge$
dist $x a<d\}$
have 1: $\forall x \in T . \exists e>0 . \forall y$. dist $y x<e \longrightarrow y \in T$
unfolding T_def
apply clarsimp
apply (rule_tac $x=d-$ dist x a in exI)
by (metis add_0_left dist_commute dist_triangle_lt less_diff_eq)
assume ?rhs then have 2: $S=U \cap T$
unfolding T_def
by auto (metis dist_self)
from 12 show? ?hs
unfolding openin_open open_dist by fast
qed
lemma connected_openin:
connected $S \longleftrightarrow$
$\neg(\exists$ E1 E2. openin (top_of_set S) E1 \wedge
openin (top_of_set S) ER \wedge
$S \subseteq E 1 \cup E 2 \wedge E 1 \cap E 2=\{ \} \wedge E 1 \neq\{ \} \wedge E 2 \neq\{ \})$
unfolding connected_def openin_open disjoint_iff_not_equal by blast
lemma connected_openin_eq:
connected $S \longleftrightarrow$

```

```

unfolding connected_openin
by (metis (no_types, lifting) Un_subset_iff openin_imp_subset subset_antisym)

```
```

lemma connected_closedin:
connected S}
(\# E1 E2.
closedin (top_of_set S) E1 ^
closedin (top_of_set S) E2 ^
S\subseteqE1\cupE2\wedge E1 \cap E2 = {}^E1 f {}^E2
(is ?lhs = ?rhs)
proof
assume ?lhs
then show ?rhs
by (auto simp add: connected_closed closedin_closed)
next
assume R: ?rhs
then show ?lhs
proof (clarsimp simp add: connected_closed closedin_closed)
fix }A
assume s_sub: S\subseteqA\cupBB\capS\not={}
and disj: }A\capB\capS={
and cl: closed A closed B
have}S\cap(A\cupB)=
using s_sub(1) by auto
have S-A=B\capS
using Diff_subset_conv Un_Diff_Int disj s_sub(1) by auto
then have S\capA={}
by (metis Diff_Diff_Int Diff_disjoint Un_Diff_Int R cl closedin_closed_Int
inf_commute order_refl s_sub(2))
then show }A\capS={
by blast
qed
qed
lemma connected_closedin_eq:
connected S}
\neg(\existsE1 E2.
closedin (top_of_set S) E1 ^
closedin (top_of_set S) E2 ^
E1\cupE2 = S^E1\capE2 = {}^
E1 }\not={}\^E2\not={}
unfolding connected_closedin
by (metis Un_subset_iff closedin_imp_subset subset_antisym)
These "transitivity" results are handy too
lemma openin_trans[trans]:
openin (top_of_set T)S \Longrightarrowopenin (top_of_set U)T\Longrightarrow
openin (top_of_set U) S
by (metis openin_Int_open openin_open)
lemma openin_open_trans: openin (top_of_set T)S\Longrightarrowopen T\Longrightarrow open S
by (auto simp: openin_open intro: openin_trans)

```
```

lemma closedin_trans[trans]:
closedin (top_of_set T) $S \Longrightarrow$ closedin (top_of_set U) $T \Longrightarrow$
closedin (top_of_set U) S
by (auto simp: closedin_closed closed_Inter Int_assoc)
lemma closedin_closed_trans: closedin (top_of_set $T) S \Longrightarrow$ closed $T \Longrightarrow$ closed S
by (auto simp: closedin_closed intro: closedin_trans)
lemma openin_subtopology_Int_subset:
$\llbracket o p e n i n\left(t o p_{-} o f_{-} s e t u\right)(u \cap S) ; v \subseteq u \rrbracket \Longrightarrow$ openin $($ top_of_set $v)(v \cap S)$
by (auto simp: openin_subtopology)
lemma openin_open_eq: open $s \Longrightarrow$ (openin (top_of_set $s) t \longleftrightarrow$ open $t \wedge t \subseteq s$)
using open_subset openin_open_trans openin_subset by fastforce

```

\subsection*{2.2.6 Derived set (set of limit points)}
definition derived_set_of :: 'a topology \(\Rightarrow\) ' \(a\) set \(\Rightarrow{ }^{\prime} a\) set (infixl derived'_set \({ }^{\prime}\) _of 80)
        where \(X\) derived_set_of \(S \equiv\)
            \(\{x \in\) topspace \(X\).
            \((\forall T . x \in T \wedge\) openin \(X T \longrightarrow(\exists y \neq x . y \in S \wedge y \in T))\}\)
lemma derived_set_of_restrict [simp]:
\(X\) derived_set_of (topspace \(X \cap S)=X\) derived_set_of \(S\)
by (simp add: derived_set_of_def) (metis openin_subset subset_iff)
lemma in_derived_set_of:
\(x \in X\) derived_set_of \(S \longleftrightarrow x \in\) topspace \(X \wedge(\forall T . x \in T \wedge\) openin \(X T \longrightarrow\) \((\exists y \neq x . y \in S \wedge y \in T))\)
by (simp add: derived_set_of_def)
lemma derived_set_of_subset_topspace:
\(X\) derived_set_of \(S \subseteq\) topspace \(X\)
by (auto simp add: derived_set_of_def)
lemma derived_set_of_subtopology: (subtopology \(X U)\) derived_set_of \(S=U \cap(X\) derived_set_of \((U \cap S))\)
by (simp add: derived_set_of_def openin_subtopology) blast
lemma derived_set_of_subset_subtopology:
(subtopology \(X S\) ) derived_set_of \(T \subseteq S\)
by (simp add: derived_set_of_subtopology)
lemma derived_set_of_empty \([\) simp \(]: X\) derived_set_of \(\}=\{ \}\)
by (auto simp: derived_set_of_def)
lemma derived_set_of_mono:
\(S \subseteq T \Longrightarrow X\) derived_set_of \(S \subseteq X\) derived_set_of \(T\)
unfolding derived_set_of_def by blast
lemma derived_set_of_Un:
\(X\) derived_set_of \((S \cup T)=X\) derived_set_of \(S \cup X\) derived_set_of \(T\) (is ?lhs \(=\)
?rhs)
proof
show ?lhs \(\subseteq\) ? rhs
by (clarsimp simp: in_derived_set_of) (metis IntE IntI openin_Int)
show ?rhs \(\subseteq\) ?lhs
by (simp add: derived_set_of_mono)
qed
lemma derived_set_of_Union:
finite \(\mathcal{F} \Longrightarrow X\) derived_set_of \((\bigcup \mathcal{F})=(\bigcup S \in \mathcal{F} . X\) derived_set_of \(S)\)
proof (induction \(\mathcal{F}\) rule: finite_induct)
case (insert \(S \mathcal{F}\) )
then show? case
by (simp add: derived_set_of_Un)
qed auto
lemma derived_set_of_topspace:
\(X\) derived_set_of (topspace \(X)=\{x \in\) topspace \(X\). \(\neg\) openin \(X\{x\}\}\) (is ?lhs \(=\) ?rhs)
proof
show ?lhs \(\subseteq\) ? rhs
by (auto simp: in_derived_set_of)
show ?rhs \(\subseteq\) ?lhs
by (clarsimp simp: in_derived_set_of) (metis openin_closedin_eq openin_subopen singletonD subset_eq)
qed
lemma discrete_topology_unique_derived_set:
discrete_topology \(U=X \longleftrightarrow\) topspace \(X=U \wedge X\) derived_set_of \(U=\{ \}\)
by (auto simp: discrete_topology_unique derived_set_of_topspace)
lemma subtopology_eq_discrete_topology_eq:
subtopology \(X U=\) discrete_topology \(U \longleftrightarrow U \subseteq\) topspace \(X \wedge U \cap X\) derived_set_of \(U=\{ \}\)
using discrete_topology_unique_derived_set [of U subtopology X U]
by (auto simp: eq_commute derived_set_of_subtopology)
lemma subtopology_eq_discrete_topology:
\(S \subseteq\) topspace \(X \wedge S \cap X\) derived_set_of \(S=\{ \}\)
\(\Longrightarrow\) subtopology \(X S=\) discrete_topology \(S\)
by (simp add: subtopology_eq_discrete_topology_eq)
lemma subtopology_eq_discrete_topology_gen:
\(S \cap X\) derived_set_of \(S=\{ \} \Longrightarrow\) subtopology \(X S=\) discrete_topology(topspace
```

$X \cap S)$
by (metis Int_lower1 derived_set_of_restrict inf_assoc inf_bot_right subtopology_eq_discrete_topology_eq
subtopology_subtopology subtopology_topspace)
lemma subtopology_discrete_topology [simp]:
subtopology (discrete_topology U) $S=$ discrete_topology $(U \cap S)$
proof -
have $(\lambda T . \exists S a . T=S a \cap S \wedge S a \subseteq U)=(\lambda S a . S a \subseteq U \wedge S a \subseteq S)$
by force
then show ?thesis
by (simp add: subtopology_def) (simp add: discrete_topology_def)
qed
lemma openin_Int_derived_set_of_subset:
openin $X S \Longrightarrow S \cap X$ derived_set_of $T \subseteq X$ derived_set_of $(S \cap T)$
by (auto simp: derived_set_of_def)
lemma openin_Int_derived_set_of_eq:
assumes openin $X S$
shows $S \cap X$ derived_set_of $T=S \cap X$ derived_set_of $(S \cap T)$ (is ?lhs = ?rhs)
proof
show ?lhs \subseteq ?rhs
by (simp add: assms openin_Int_derived_set_of_subset)
show ?rhs \subseteq ? lhs
by (metis derived_set_of_mono inf_commute inf_le1 inf_mono order_refl)
qed

```

\subsection*{2.2.7 Closure with respect to a topological space}
```

definition closure_of $::$ 'a topology \Rightarrow 'a set \Rightarrow 'a set (infixr closure'_of 80)
where X closure_of $S \equiv\{x \in$ topspace $X . \forall T . x \in T \wedge$ openin $X T \longrightarrow(\exists y \in$
S. $y \in T)\}$
lemma closure_of_restrict: X closure_of $S=X$ closure_of (topspace $X \cap S$)
unfolding closure_of_def
using openin_subset by blast
lemma in_closure_of:
$x \in X$ closure_of $S \longleftrightarrow$
$x \in$ topspace $X \wedge(\forall T . x \in T \wedge$ openin $X T \longrightarrow(\exists y . y \in S \wedge y \in T))$
by (auto simp: closure_of_def)
lemma closure_of: X closure_of $S=$ topspace $X \cap(S \cup X$ derived_set_of $S)$ by (fastforce simp: in_closure_of in_derived_set_of)
lemma closure_of_alt: X closure_of $S=$ topspace $X \cap S \cup X$ derived_set_of S
using derived_set_of_subset_topspace [of X S]
unfolding closure_of_def in_derived_set_of
by safe (auto simp: in_derived_set_of)

```
lemma derived_set_of_subset_closure_of
\(X\) derived_set_of \(S \subseteq X\) closure_of \(S\)
by (fastforce simp: closure_of_def in_derived_set_of)
lemma closure_of_subtopology:
(subtopology \(X U\) ) closure_of \(S=U \cap(X\) closure_of \((U \cap S))\)
unfolding closure_of_def topspace_subtopology openin_subtopology by safe (metis (full_types) IntI Int_iff inf.commute)+
lemma closure_of_empty [simp]: X closure_of \(\}=\{ \}\)
by (simp add: closure_of_alt)
lemma closure_of_topspace [simp]: \(X\) closure_of topspace \(X=\) topspace \(X\) by ( simp add: closure_of)
lemma closure_of_UNIV [simp]: X closure_of UNIV \(=\) topspace \(X\) by (simp add: closure_of)
lemma closure_of_subset_topspace: \(X\) closure_of \(S \subseteq\) topspace \(X\) by ( simp add: closure_of)
lemma closure_of_subset_subtopology: (subtopology X S) closure_of \(T \subseteq S\) by (simp add: closure_of_subtopology)
lemma closure_of_mono: \(S \subseteq T \Longrightarrow X\) closure_of \(S \subseteq X\) closure_of \(T\)
by (fastforce simp add: closure_of_def)
lemma closure_of_subtopology_subset:
(subtopology \(X U)\) closure_of \(S \subseteq(X\) closure_of \(S)\)
unfolding closure_of_subtopology
by clarsimp (meson closure_of_mono contra_subsetD inf.cobounded2)
lemma closure_of_subtopology_mono:
\(T \subseteq U \Longrightarrow(\) subtopology \(X T)\) closure_of \(S \subseteq\) (subtopology \(X U)\) closure_of \(S\)
unfolding closure_of_subtopology
by auto (meson closure_of_mono inf_mono subset_iff)
lemma closure_of_Un [simp]: \(X\) closure_of \((S \cup T)=X\) closure_of \(S \cup X\) closure_of \(T\)
by (simp add: Un_assoc Un_left_commute closure_of_alt derived_set_of_Un inf_sup_distrib1)
lemma closure_of_Union:
finite \(\mathcal{F} \Longrightarrow X\) closure_of \((\bigcup \mathcal{F})=(\bigcup S \in \mathcal{F}\). X closure_of \(S)\)
by (induction \(\mathcal{F}\) rule: finite_induct) auto
lemma closure_of_subset: \(S \subseteq\) topspace \(X \Longrightarrow S \subseteq X\) closure_of \(S\) by (auto simp: closure_of_def)
lemma closure_of_subset_Int: topspace \(X \cap S \subseteq X\) closure_of \(S\)
by (auto simp: closure_of_def)
lemma closure_of_subset_eq: \(S \subseteq\) topspace \(X \wedge X\) closure_of \(S \subseteq S \longleftrightarrow\) closedin X S
proof -
have openin \(X\) (topspace \(X-S)\)
if \(\bigwedge x . \llbracket x \in\) topspace \(X ; \forall T . x \in T \wedge\) openin \(X T \longrightarrow S \cap T \neq\{ \} \rrbracket \Longrightarrow x \in\)
\(S\)
apply (subst openin_subopen)
by (metis Diff_iff Diff_mono Diff_triv inf.commute openin_subset order_refl that)
then show ?thesis
by (auto simp: closedin_def closure_of_def disjoint_iff_not_equal)
qed
lemma closure_of_eq: \(X\) closure_of \(S=S \longleftrightarrow\) closedin \(X S\)
proof (cases \(S \subseteq\) topspace \(X\) )
case True
then show ?thesis
by (metis closure_of_subset closure_of_subset_eq set_eq_subset)
next
case False
then show ?thesis
using closure_of closure_of_subset_eq by fastforce
qed
lemma closedin_contains_derived_set:
closedin \(X S \longleftrightarrow X\) derived_set_of \(S \subseteq S \wedge S \subseteq\) topspace \(X\)
proof (intro iffI conjI)
show closedin \(X S \Longrightarrow X\) derived_set_of \(S \subseteq S\)
using closure_of_eq derived_set_of_subset_closure_of by fastforce
show closedin \(X S \Longrightarrow S \subseteq\) topspace \(X\)
using closedin_subset by blast
show \(X\) derived_set_of \(S \subseteq S \wedge S \subseteq\) topspace \(X \Longrightarrow\) closedin \(X S\)
by (metis closure_of closure_of_eq inf.absorb_iff2 sup.orderE)
qed
lemma derived_set_subset_gen:
\(X\) derived_set_of \(S \subseteq S \longleftrightarrow\) closedin \(X\) (topspace \(X \cap S\) )
by (simp add: closedin_contains_derived_set derived_set_of_restrict derived_set_of_subset_topspace)
lemma derived_set_subset: \(S \subseteq\) topspace \(X \Longrightarrow(X\) derived_set_of \(S \subseteq S \longleftrightarrow\)
closedin \(X\) )
by (simp add: closedin_contains_derived_set)
lemma closedin_derived_set:
closedin (subtopology \(X T\) ) \(S \longleftrightarrow\)
\(S \subseteq\) topspace \(X \wedge S \subseteq T \wedge(\forall x . x \in X\) derived_set_of \(S \wedge x \in T \longrightarrow x \in S)\)
by (auto simp: closedin_contains_derived_set derived_set_of_subtopology Int_absorb1)
lemma closedin_Int_closure_of:
closedin (subtopology \(X S\) ) \(T \longleftrightarrow S \cap X\) closure_of \(T=T\)
by (metis Int_left_absorb closure_of_eq closure_of_subtopology)
lemma closure_of_closedin: closedin \(X S \Longrightarrow X\) closure_of \(S=S\)
by (simp add: closure_of_eq)
lemma closure_of_eq_diff: \(X\) closure_of \(S=\) topspace \(X-\bigcup\{T\). openin \(X T \wedge\) disjnt \(S T\}\)
by (auto simp: closure_of_def disjnt_iff)
lemma closedin_closure_of [simp]: closedin \(X\) ( \(X\) closure_of \(S\) )
unfolding closure_of_eq_diff by blast
lemma closure_of_closure_of [simp]: X closure_of \((X\) closure_of \(S)=X\) closure_of S
by (simp add: closure_of_eq)
lemma closure_of_hull:
assumes \(S \subseteq\) topspace \(X\) shows \(X\) closure_of \(S=(\) closedin \(X)\) hull \(S\)
proof (rule hull_unique [THEN sym])
show \(S \subseteq X\) closure_of \(S\)
by (simp add: closure_of_subset assms)
next
show closedin \(X(X\) closure_of \(S)\)
by \(\operatorname{simp}\)
show \(\bigwedge T . \llbracket S \subseteq T ;\) closedin \(X T \rrbracket \Longrightarrow X\) closure_of \(S \subseteq T\)
by (metis closure_of_eq closure_of_mono)
qed
lemma closure_of_minimal:
\(\llbracket S \subseteq T ;\) closedin \(X T \rrbracket \Longrightarrow(X\) closure_of \(S) \subseteq T\)
by (metis closure_of_eq closure_of_mono)
lemma closure_of_minimal_eq:
\(\llbracket S \subseteq\) topspace \(X ;\) closedin \(X T \rrbracket \Longrightarrow(X\) closure_of \(S) \subseteq T \longleftrightarrow S \subseteq T\)
by (meson closure_of_minimal closure_of_subset subset_trans)
lemma closure_of_unique:
\(\llbracket S \subseteq T\); closedin \(X T\);
\(\wedge T^{\prime} . \llbracket S \subseteq T^{\prime} ;\) closedin \(X T^{\dagger} \rrbracket T \subseteq T^{\top}\)
\(\Longrightarrow X\) closure_of \(S=T\)
by (meson closedin_closure_of closedin_subset closure_of_minimal closure_of_subset eq_iff order.trans)
lemma closure_of_eq_empty_gen: \(X\) closure_of \(S=\{ \} \longleftrightarrow\) disjnt (topspace \(X\) ) \(S\) unfolding disjnt_def closure_of_restrict [where \(S=S\) ]
using closure_of by fastforce
```

lemma closure_of_eq_empty: S\subseteq topspace }X\LongrightarrowX\mathrm{ closure_of S={} }\longleftrightarrowS
{}
using closure_of_subset by fastforce
lemma openin_Int_closure_of_subset:
assumes openin XS
shows S\capX closure_of T}\subseteqX\mathrm{ closure_of (S }\capT
proof -
have S \capX derived_set_of T = S \cap X derived_set_of (}S\capT
by (meson assms openin_Int_derived_set_of_eq)
moreover have S\cap(S\capT)=S\capT
by fastforce
ultimately show ?thesis
by (metis closure_of_alt inf.cobounded2 inf_left_commute inf_sup_distrib1)
qed
lemma closure_of_openin_Int_closure_of:
assumes openin XS
shows X closure_of (S\capX closure_of T) = X closure_of (S\capT)
proof
show X closure_of (}S\capX\mathrm{ closure_of T) }\subseteqX\mathrm{ closure_of (}S\capT
by (simp add: assms closure_of_minimal openin_Int_closure_of_subset)
next
show X closure_of (S\capT)\subseteqX closure_of (S \cap X closure_of T)
by (metis Int_lower1 Int_subset_iff assms closedin_closure_of closure_of_minimal_eq
closure_of_mono inf_le2 le_infI1 openin_subset)
qed
lemma openin_Int_closure_of_eq:
assumes openin X S shows S\capX closure_of T = S \cap X closure_of (S\capT)
(is ?lhs = ?rhs)
proof
show ?lhs \subseteq?rhs
by (simp add: assms openin_Int_closure_of_subset)
show ?rhs \subseteq?lhs
by (metis closure_of_mono inf_commute inf_le1 inf_mono order_refl)
qed
lemma openin_Int_closure_of_eq_empty:
assumes openin X S shows S\capX closure_of T={}\longleftrightarrowS\capT={} (is ?lhs
= ?rhs)
proof
show ?lhs \Longrightarrow?rhs
unfolding disjoint_iff
by (meson assms in_closure_of in_mono openin_subset)
show ?rhs \Longrightarrow ?lhs
by (simp add: assms openin_Int_closure_of_eq)
qed

```
```

lemma closure_of_openin_Int_superset:
openin X S^S\subseteqX closure_of T
C closure_of }(S\capT)=X closure_of S
by (metis closure_of_openin_Int_closure_of inf.orderE)
lemma closure_of_openin_subtopology_Int_closure_of:
assumes S: openin (subtopology X U)S and T\subseteqU
shows X closure_of (}S\capX\mathrm{ closure_of T) = X closure_of (}S\capT)\mathrm{ (is ?lhs =
?rhs)
proof
obtain S0 where S0: openin X SOS=S0\capU
using assms by (auto simp: openin_subtopology)
show ?lhs \subseteq? ?rhs
proof -
have S0\capX closure_of T = S0\cap X closure_of (SO\cap T)
by (meson SO(1) openin_Int_closure_of_eq)
moreover have SO\capT=SO\capU\capT
using }\langleT\subseteqU\rangle\mathrm{ by fastforce
ultimately have S \cap X closure_of T\subseteqX closure_of (S\capT)
using SO(2) by auto
then show ?thesis
by (meson closedin_closure_of closure_of_minimal)
qed
next
show ?rhs \subseteq?lhs
proof -
have T\capS\subseteqT\cupX derived_set_of T
by force
then show ?thesis
by (metis Int_subset_iff S closure_of closure_of_mono inf.cobounded2 inf.coboundedI2
inf_commute openin_closedin_eq topspace_subtopology)
qed
qed
lemma closure_of_subtopology_open:
openin X U\veeS\subseteqU\Longrightarrow (subtopology X U) closure_of S = U \cap X closure_of
S
by (metis closure_of_subtopology inf_absorb2 openin_Int_closure_of_eq)

```
lemma discrete_topology_closure_of:
            (discrete_topology \(U\) ) closure_of \(S=U \cap S\)
    by (metis closedin_discrete_topology closure_of_restrict closure_of_unique discrete_topology_unique
inf_sup_ord(1) order_refl)

Interior with respect to a topological space.
definition interior_of :: 'a topology \(\Rightarrow{ }^{\prime} a\) set \(\Rightarrow\) 'a set (infixr interior'_of 80)
where \(X\) interior_of \(S \equiv\{x . \exists T\). openin \(X T \wedge x \in T \wedge T \subseteq S\}\)
lemma interior_of_restrict:
\(X\) interior_of \(S=X\) interior_of (topspace \(X \cap S\) )
using openin_subset by (auto simp: interior_of_def)
lemma interior_of_eq: \((X\) interior_of \(S=S) \longleftrightarrow\) openin \(X S\)
unfolding interior_of_def using openin_subopen by blast
lemma interior_of_openin: openin \(X S \Longrightarrow X\) interior_of \(S=S\)
by (simp add: interior_of_eq)
lemma interior_of_empty \([\) simp \(]\) : \(X\) interior_of \(\}=\{ \}\)
by (simp add: interior_of_eq)
lemma interior_of_topspace [simp]: \(X\) interior_of (topspace \(X\) ) \(=\) topspace \(X\)
by (simp add: interior_of_eq)
lemma openin_interior_of [simp]: openin \(X\) ( \(X\) interior_of \(S\) )
unfolding interior_of_def
using openin_subopen by fastforce
lemma interior_of_interior_of [simp]:
\(X\) interior_of \(X\) interior_of \(S=X\) interior_of \(S\)
by (simp add: interior_of_eq)
lemma interior_of_subset: X interior_of \(S \subseteq S\)
by (auto simp: interior_of_def)
lemma interior_of_subset_closure_of: X interior_of \(S \subseteq X\) closure_of \(S\)
by (metis closure_of_subset_Int dual_order.trans interior_of_restrict interior_of_subset)
lemma subset_interior_of_eq: \(S \subseteq X\) interior_of \(S \longleftrightarrow\) openin \(X S\)
by (metis interior_of_eq interior_of_subset subset_antisym)
lemma interior_of_mono: \(S \subseteq T \Longrightarrow X\) interior_of \(S \subseteq X\) interior_of \(T\)
by (auto simp: interior_of_def)
lemma interior_of_maximal: \(\llbracket T \subseteq S\); openin \(X T \rrbracket \Longrightarrow T \subseteq X\) interior_of \(S\)
by (auto simp: interior_of_def)
lemma interior_of_maximal_eq: openin \(X T \Longrightarrow T \subseteq X\) interior_of \(S \longleftrightarrow T \subseteq S\)
by (meson interior_of_maximal interior_of_subset order_trans)
lemma interior_of_unique:
\(\llbracket T \subseteq S ;\) openin \(X T ; \wedge T^{\prime} . \llbracket T^{\prime} \subseteq S ;\) openin \(X T \rrbracket \Longrightarrow T^{\prime} \subseteq T \rrbracket \Longrightarrow X\) interior_of \(S=T\)
by (simp add: interior_of_maximal_eq interior_of_subset subset_antisym)
lemma interior_of_subset_topspace: \(X\) interior_of \(S \subseteq\) topspace \(X\)
by (simp add: openin_subset)
```

lemma interior_of_subset_subtopology: (subtopology X S) interior_of $T \subseteq S$
by (meson openin_imp_subset openin_interior_of)
lemma interior_of_Int: X interior_of $(S \cap T)=X$ interior_of $S \cap X$ interior_of
T (is ? $\mathrm{lh} s=$? $r h s$)
proof
show ?lhs \subseteq ? rhs
by (simp add: interior_of_mono)
show ?rhs \subseteq ?lhs
by (meson inf_mono interior_of_maximal interior_of_subset openin_Int openin_interior_of)
qed
lemma interior_of_Inter_subset: X interior_of $(\bigcap \mathcal{F}) \subseteq(\bigcap S \in \mathcal{F}$. X interior_of
S)
by (simp add: INT_greatest Inf_lower interior_of_mono)
lemma union_interior_of_subset:
X interior_of $S \cup X$ interior_of $T \subseteq X$ interior_of $(S \cup T)$
by (simp add: interior_of_mono)
lemma interior_of_eq_empty:
X interior_of $S=\{ \} \longleftrightarrow(\forall T$. openin $X T \wedge T \subseteq S \longrightarrow T=\{ \})$
by (metis bot.extremum_uniqueI interior_of_maximal interior_of_subset openin_interior_of)
lemma interior_of_eq_empty_alt:
X interior_of $S=\{ \} \longleftrightarrow(\forall T$. openin $X T \wedge T \neq\{ \} \longrightarrow T-S \neq\{ \})$
by (auto simp: interior_of_eq_empty)
lemma interior_of_Union_openin_subsets:
$\bigcup\{T$. openin $X T \wedge T \subseteq S\}=X$ interior_of S
by (rule interior_of_unique [symmetric]) auto
lemma interior_of_complement:
X interior_of (topspace $X-S)=$ topspace $X-X$ closure_of S
by (auto simp: interior_of_def closure_of_def)
lemma interior_of_closure_of:
X interior_of $S=$ topspace $X-X$ closure_of (topspace $X-S$)
unfolding interior_of_complement [symmetric]
by (metis Diff_Diff_Int interior_of_restrict)
lemma closure_of_interior_of:
X closure_of $S=$ topspace $X-X$ interior_of (topspace $X-S)$
by (simp add: interior_of_complement Diff_Diff_Int closure_of)
lemma closure_of_complement: X closure_of (topspace $X-S)=$ topspace $X-X$
interior_of S
unfolding interior_of_def closure_of_def
by (blast dest: openin_subset)

```
lemma interior_of_eq_empty_complement:
\(X\) interior_of \(S=\{ \} \longleftrightarrow X\) closure_of (topspace \(X-S)=\) topspace \(X\)
using interior_of_subset_topspace [of X S] closure_of_complement by fastforce
lemma closure_of_eq_topspace:
\(X\) closure_of \(S=\) topspace \(X \longleftrightarrow X\) interior_of (topspace \(X-S)=\{ \}\)
using closure_of_subset_topspace [of X S] interior_of_complement by fastforce
lemma interior_of_subtopology_subset:
\(U \cap X\) interior_of \(S \subseteq(\) subtopology \(X U)\) interior_of \(S\)
by (auto simp: interior_of_def openin_subtopology)
lemma interior_of_subtopology_subsets:
\(T \subseteq U \Longrightarrow T \cap(\) subtopology \(X U)\) interior_of \(S \subseteq(\) subtopology \(X T)\) interior_of \(S\)
by (metis inf.absorb_iff2 interior_of_subtopology_subset subtopology_subtopology)
lemma interior_of_subtopology_mono:
\(\llbracket S \subseteq T ; T \subseteq U \rrbracket \Longrightarrow(\) subtopology \(X U)\) interior_of \(S \subseteq(\) subtopology \(X T)\)
interior_of \(S\)
by (metis dual_order.trans inf.orderE inf_commute interior_of_subset interior_of_subtopology_subsets)
lemma interior_of_subtopology_open:
assumes openin \(X U\)
shows (subtopology \(X U\) ) interior_of \(S=U \cap X\) interior_of \(S\)
proof -
have \(\forall A . U \cap X\) closure_of \((U \cap A)=U \cap X\) closure_of \(A\) using assms openin_Int_closure_of_eq by blast
then have topspace \(X \cap U-U \cap X\) closure_of (topspace \(X \cap U-S)=U \cap\)
(topspace \(X-X\) closure_of (topspace \(X-S)\) ) by (metis (no_types) Diff_Int_distrib Int_Diff inf_commute)
then show ?thesis
unfolding interior_of_closure_of closure_of_subtopology_open topspace_subtopology using openin_Int_closure_of_eq [OF assms] by (metis assms closure_of_subtopology_open)
qed
lemma dense_intersects_open:
\(X\) closure_of \(S=\) topspace \(X \longleftrightarrow(\forall T\). openin \(X T \wedge T \neq\{ \} \longrightarrow S \cap T \neq\)
\{\})
proof -
have \(X\) closure_of \(S=\) topspace \(X \longleftrightarrow\) (topspace \(X-X\) interior_of (topspace
\(X-S)=\) topspace \(X\) )
by (simp add: closure_of_interior_of)
also have \(\ldots \longleftrightarrow X\) interior_of (topspace \(X-S)=\{ \}\)
by (simp add: closure_of_complement interior_of_eq_empty_complement)
also have \(\ldots \longleftrightarrow(\forall T\). openin \(X T \wedge T \neq\{ \} \longrightarrow S \cap T \neq\{ \})\)
unfolding interior_of_eq_empty_alt
```

 using openin_subset by fastforce
 finally show ?thesis .
 qed

```
lemma interior_of_closedin_union_empty_interior_of:
    assumes closedin \(X S\) and disj: \(X\) interior_of \(T=\{ \}\)
    shows \(X\) interior_of \((S \cup T)=X\) interior_of \(S\)
proof -
    have \(X\) closure_of (topspace \(X-T)=\) topspace \(X\)
    by (metis Diff_Diff_Int disj closure_of_eq_topspace closure_of_restrict interior_of_closure_of)
    then show ?thesis
        unfolding interior_of_closure_of
    by (metis Diff_Un Diff_subset assms(1) closedin_def closure_of_openin_Int_superset)
qed
lemma interior_of_union_eq_empty:
    closedin \(X S\)
        \(\Longrightarrow(X\) interior_of \((S \cup T)=\{ \} \longleftrightarrow\)
    \(X\) interior_of \(S=\{ \} \wedge X\) interior_of \(T=\{ \})\)
    by (metis interior_of_closedin_union_empty_interior_of le_sup_iff subset_empty union_interior_of_subset)
lemma discrete_topology_interior_of [simp]:
    (discrete_topology \(U\) ) interior_of \(S=U \cap S\)
    by (simp add: interior_of_restrict [of _ S] interior_of_eq)

\subsection*{2.2.8 Frontier with respect to topological space}
definition frontier_of :: 'a topology \(\Rightarrow\) ' \(a\) set \(\Rightarrow\) 'a set (infixr frontier'_of 80)
where \(X\) frontier_of \(S \equiv X\) closure_of \(S-X\) interior_of \(S\)
lemma frontier_of_closures:
\(X\) frontier_of \(S=X\) closure_of \(S \cap X\) closure_of (topspace \(X-S\) )
by (metis Diff_Diff_Int closure_of_complement closure_of_subset_topspace double_diff
frontier_of_def interior_of_subset_closure_of)
lemma interior_of_union_frontier_of [simp]:
\(X\) interior_of \(S \cup X\) frontier_of \(S=X\) closure_of \(S\)
by (simp add: frontier_of_def interior_of_subset_closure_of subset_antisym)
lemma frontier_of_restrict: \(X\) frontier_of \(S=X\) frontier_of (topspace \(X \cap S\) )
by (metis closure_of_restrict frontier_of_def interior_of_restrict)
lemma closedin_frontier_of: closedin \(X\) ( \(X\) frontier_of \(S\) )
by (simp add: closedin_Int frontier_of_closures)
lemma frontier_of_subset_topspace: \(X\) frontier_of \(S \subseteq\) topspace \(X\)
by (simp add: closedin_frontier_of closedin_subset)
lemma frontier_of_subset_subtopology: (subtopology X S) frontier_of \(T \subseteq S\) by (metis (no_types) closedin_derived_set closedin_frontier_of)
lemma frontier_of_subtopology_subset:
\(U \cap(\) subtopology \(X U)\) frontier_of \(S \subseteq(X\) frontier_of \(S)\)
proof -
have \(U \cap X\) interior_of \(S-\) subtopology \(X U\) interior_of \(S=\{ \}\)
by (simp add: interior_of_subtopology_subset)
moreover have \(X\) closure_of \(S \cap\) subtopology \(X U\) closure_of \(S=\) subtopology \(X\)
\(U\) closure_of \(S\)
by (meson closure_of_subtopology_subset inf.absorb_iff2)
ultimately show ?thesis
unfolding frontier_of_def
by blast
qed
lemma frontier_of_subtopology_mono:
\(\llbracket S \subseteq T ; T \subseteq U \rrbracket \Longrightarrow(\) subtopology \(X T)\) frontier_of \(S \subseteq(\) subtopology \(X \quad U)\)
frontier_of \(S\)
by (simp add: frontier_of_def Diff_mono closure_of_subtopology_mono interior_of_subtopology_mono)
lemma clopenin_eq_frontier_of:
closedin \(X S \wedge\) openin \(X S \longleftrightarrow S \subseteq\) topspace \(X \wedge X\) frontier_of \(S=\{ \}\)
proof (cases \(S \subseteq\) topspace \(X\) )
case True
then show? ?thesis
by (metis Diff_eq_empty_iff closure_of_eq closure_of_subset_eq frontier_of_def in-
terior_of_eq interior_of_subset interior_of_union_frontier_of sup_bot_right)
next
case False
then show? thesis
by (simp add: frontier_of_closures openin_closedin_eq)
qed
lemma frontier_of_eq_empty:
\(S \subseteq\) topspace \(X \Longrightarrow(X\) frontier_of \(S=\{ \} \longleftrightarrow\) closedin \(X S \wedge\) openin \(X S)\)
by (simp add: clopenin_eq_frontier_of)
lemma frontier_of_openin:
openin \(X S \Longrightarrow X\) frontier_of \(S=X\) closure_of \(S-S\)
by (metis (no_types) frontier_of_def interior_of_eq)
lemma frontier_of_openin_straddle_Int:
assumes openin \(X U U \cap X\) frontier_of \(S \neq\{ \}\)
shows \(U \cap S \neq\{ \} U-S \neq\{ \}\)
proof -
have \(U \cap(X\) closure_of \(S \cap X\) closure_of (topspace \(X-S)) \neq\{ \}\)
using assms by (simp add: frontier_of_closures)
then show \(U \cap S \neq\{ \}\)
using assms openin_Int_closure_of_eq_empty by fastforce
show \(U-S \neq\{ \}\)
proof -
have \(\exists A\). \(X\) closure_of \((A-S) \cap U \neq\{ \}\)
using \(\langle U \cap(X\) closure_of \(S \cap X\) closure_of (topspace \(X-S)) \neq\{ \}\) by blast
then have \(\neg U \subseteq S\)
by (metis Diff_disjoint Diff_eq_empty_iff Int_Diff assms(1) inf_commute openin_Int_closure_of_eq_empt
then show?thesis
by blast
qed
qed
lemma frontier_of_subset_closedin: closedin \(X S \Longrightarrow(X\) frontier_of \(S) \subseteq S\)
using closure_of_eq frontier_of_def by fastforce
lemma frontier_of_empty [simp]: X frontier_of \(\}=\{ \}\)
by (simp add: frontier_of_def)
lemma frontier_of_topspace [simp]: X frontier_of topspace \(X=\{ \}\)
by (simp add: frontier_of_def)
lemma frontier_of_subset_eq:
assumes \(S \subseteq\) topspace \(X\)
shows \((X\) frontier_of \(S) \subseteq S \longleftrightarrow\) closedin \(X S\)
proof
show \(X\) frontier_of \(S \subseteq S \Longrightarrow\) closedin \(X S\)
by (metis assms closure_of_subset_eq interior_of_subset interior_of_union_frontier_of
le_sup_iff)
show closedin \(X S \Longrightarrow X\) frontier_of \(S \subseteq S\)
by (simp add: frontier_of_subset_closedin)
qed
lemma frontier_of_complement: \(X\) frontier_of (topspace \(X-S)=X\) frontier_of \(S\) by (metis Diff_Diff_Int closure_of_restrict frontier_of_closures inf_commute)
lemma frontier_of_disjoint_eq:
assumes \(S \subseteq\) topspace \(X\)
shows \(((X\) frontier_of \(S) \cap S=\{ \} \longleftrightarrow\) openin \(X S)\)
proof
assume \(X\) frontier_of \(S \cap S=\{ \}\)
then have closedin \(X\) (topspace \(X-S)\)
using assms closure_of_subset frontier_of_def interior_of_eq interior_of_subset by
fastforce
then show openin \(X S\)
using assms by (simp add: openin_closedin)
next
show openin \(X S \Longrightarrow X\) frontier_of \(S \cap S=\{ \}\)
by (simp add: Diff_Diff_Int closedin_def frontier_of_openin inf.absorb_iff2 inf_commute)
qed
lemma frontier_of_disjoint_eq_alt:
\(S \subseteq(\) topspace \(X-X\) frontier_of \(S) \longleftrightarrow\) openin \(X S\)
proof (cases \(S \subseteq\) topspace \(X\) )
case True
show ?thesis
using True frontier_of_disjoint_eq by auto
next
case False
then show? ?thesis by (meson Diff_subset openin_subset subset_trans)
qed
lemma frontier_of_Int:
\(X\) frontier_of \((S \cap T)=\)
\(X\) closure_of \((S \cap T) \cap(X\) frontier_of \(S \cup X\) frontier_of \(T)\)
proof -
have \(*: U \subseteq S \wedge U \subseteq T \Longrightarrow U \cap(S \cap A \cup T \cap B)=U \cap(A \cup B)\) for \(U S\)
\(T A B\) :: 'a set by blast
show ?thesis
by (simp add: frontier_of_closures closure_of_mono Diff_Int * flip: closure_of_Un)
qed
lemma frontier_of_Int_subset: \(X\) frontier_of \((S \cap T) \subseteq X\) frontier_of \(S \cup X\) fron-
tier_of T
by (simp add: frontier_of_Int)
lemma frontier_of_Int_closedin:
assumes closedin \(X S\) closedin \(X T\)
shows \(X\) frontier_of \((S \cap T)=X\) frontier_of \(S \cap T \cup S \cap X\) frontier_of \(T\) (is
?lhs = ?rhs)
proof
show ?lhs \(\subseteq\) ?rhs
using assms by (force simp add: frontier_of_Int closedin_Int closure_of_closedin)
show ?rhs \(\subseteq\) ?lhs
using assms frontier_of_subset_closedin
by (auto simp add: frontier_of_Int closedin_Int closure_of_closedin)
qed
lemma frontier_of_Un_subset: \(X\) frontier_of \((S \cup T) \subseteq X\) frontier_of \(S \cup X\) fron-
tier_of T
by (metis Diff_Un frontier_of_Int_subset frontier_of_complement)
lemma frontier_of_Union_subset:
finite \(\mathcal{F} \Longrightarrow X\) frontier_of \((\bigcup \mathcal{F}) \subseteq(\bigcup T \in \mathcal{F} . X\) frontier_of \(T)\)
proof (induction \(\mathcal{F}\) rule: finite_induct)
case (insert \(A \mathcal{F}\) )
then show ?case
```

 using frontier_of_Un_subset by fastforce
 qed simp
lemma frontier_of_frontier_of_subset:
X frontier_of (X frontier_of S)\subseteqX frontier_of S
by (simp add: closedin_frontier_of frontier_of_subset_closedin)

```
lemma frontier_of_subtopology_open:
        openin \(X U \Longrightarrow\) (subtopology \(X U\) ) frontier_of \(S=U \cap X\) frontier_of \(S\)
    by (simp add: Diff_Int_distrib closure_of_subtopology_open frontier_of_def inte-
rior_of_subtopology_open)
lemma discrete_topology_frontier_of [simp]:
    (discrete_topology U) frontier_of \(S=\{ \}\)
    by (simp add: Diff_eq discrete_topology_closure_of frontier_of_closures)

\subsection*{2.2.9 Locally finite collections}
definition locally_finite_in

\section*{where}
locally_finite_in \(X \mathcal{A} \longleftrightarrow\)
\((\cup \mathcal{A} \subseteq\) topspace \(X) \wedge\)
\((\forall x \in\) topspace \(X . \exists V\). openin \(X V \wedge x \in V \wedge\) finite \(\{U \in \mathcal{A} . U \cap V \neq\) \{\}\})
lemma finite_imp_locally_finite_in:
\(\llbracket\) finite \(\mathcal{A} ; \cup \mathcal{A} \subseteq\) topspace \(X \rrbracket \Longrightarrow\) locally_finite_in \(X \mathcal{A}\)
by (auto simp: locally_finite_in_def)
lemma locally_finite_in_subset:
assumes locally_finite_in \(X \mathcal{A} \mathcal{B} \subseteq \mathcal{A}\)
shows locally_finite_in \(X \mathcal{B}\)
proof -
have finite \((\mathcal{A} \cap\{U . U \cap V \neq\{ \}\}) \Longrightarrow\) finite \((\mathcal{B} \cap\{U . U \cap V \neq\{ \}\})\) for \(V\) by (meson \(\langle\mathcal{B} \subseteq \mathcal{A}\rangle\) finite_subset inf_le1 inf_le2 le_inf_iff subset_trans)
then show ?thesis
using assms unfolding locally_finite_in_def Int_def by fastforce
qed
lemma locally_finite_in_refinement:
assumes \(\mathcal{A}\) : locally_finite_in \(X \mathcal{A}\) and \(f: \wedge S . S \in \mathcal{A} \Longrightarrow f S \subseteq S\)
shows locally_finite_in \(X\left(f^{\prime} \mathcal{A}\right)\)
proof -
show ?thesis
unfolding locally_finite_in_def
proof safe
fix \(x\)
assume \(x \in\) topspace \(X\)
then obtain \(V\) where openin \(X V x \in V\) finite \(\{U \in \mathcal{A} . U \cap V \neq\{ \}\}\)
```

 using }\mathcal{A}\mathrm{ unfolding locally_finite_in_def by blast
 moreover have {U\in\mathcal{A}.fU\capV\not={}}\subseteq{U\in\mathcal{A}.U\capV\not={}} for V
 using f by blast
 ultimately have finite {U\in\mathcal{A. f U\capV}\not={}}
 using finite_subset by blast
    ```

```

 by blast
 ultimately have finite {U\in f`\mathcal{A. U \cap V }={}}
 by (metis (no_types, lifting) finite_imageI)
 then show \existsV. openin }XV\wedgex\inV\wedge finite {U\inf`\mathcal{A}.U\capV\not={}
 using <openin X V\rangle\langlex\inV\rangle by blast
 next
 show \x xa.\llbracketxa\in\mathcal{A; x }\infxa\rrbracket\Longrightarrowx\in topspace X
 by (meson Sup_upper \mathcal{A f locally_finite_in_def subset_iff)}
 qed
 qed
lemma locally_finite_in_subtopology:
assumes }\mathcal{A}\mathrm{ : locally_finite_in X A}\cup\mathcal{A}\subseteq
shows locally_finite_in (subtopology X S) \mathcal{A}
unfolding locally_finite_in_def
proof safe
fix }
assume x: x f topspace (subtopology X S)
then obtain V where openin X V x\inV and fin: finite {U\in\mathcal{A.}U\capV\not=
{}}
using \mathcal{A unfolding locally_finite_in_def topspace_subtopology by blast}
show }\existsV\mathrm{ . openin (subtopology X S) V^x G V^ finite {U
{}}
proof (intro exI conjI)
show openin (subtopology X S) (S\capV)
by (simp add: <openin X V` openin_subtopology_Int2)
have {U\in\mathcal{A.}U\cap(S\capV)\not={}}\subseteq{U\in\mathcal{A.}U\capV\not={}}
by auto
with fin show finite {U\in\mathcal{A}.U\cap(S\capV)\not={}}
using finite_subset by auto
show }x\inS\cap
using x}\langlex\inV\rangle\mathrm{ by (simp)
qed
next
show }\bigwedgexA.\llbracketx\inA;A\in\mathcal{A\rrbracket\Longrightarrowx\in topspace (subtopology X S)
using assms unfolding locally_finite_in_def topspace_subtopology by blast
qed
lemma closedin_locally_finite_Union:
assumes clo: $\bigwedge S . S \in \mathcal{A} \Longrightarrow$ closedin $X S$ and \mathcal{A} : locally_finite_in $X \mathcal{A}$
shows closedin $X(\bigcup \mathcal{A})$
using \mathcal{A} unfolding locally_finite_in_def closedin_def

```
```

proof clarify
show openin X (topspace X - \bigcup\mathcal{A})
proof (subst openin_subopen, clarify)
fix }
assume }x\in\mathrm{ topspace X and }x\not\in\bigcup\mathcal{A
then obtain V where openin}XVx\inV\mathrm{ and fin: finite {U }U\mathcal{A}.U\capV\not
{}}
using }\mathcal{A}\mathrm{ unfolding locally_finite_in_def by blast
let ?T = V - \bigcup{S\in\mathcal{A.S }SVV\not={}}
show \exists}T\mathrm{ . openin X T}\wedgex\inT\wedgeT\subseteq topspace X - \bigcup\mathcal{A
proof (intro exI conjI)
show openin X ?T
by (metis (no_types,lifting) fin <openin X V` clo closedin_Union mem_Collect_eq openin_diff) show }x\in using }\langlex\not\in\bigcup\mathcal{A}\rangle\langlex\inV\rangle\mathrm{ by auto show ?T\subseteq topspace X - \bigcup\mathcal{A} using <openin X V` openin_subset by auto
qed
qed
qed
lemma locally_finite_in_closure:
assumes }\mathcal{A}\mathrm{ : locally_finite_in X A
shows locally_finite_in X ((}\lambda\mathrm{ S. X closure_of S)` A}
using \mathcal{A unfolding locally_finite_in_def}
proof (intro conjI; clarsimp)
fix }x
assume }x\inX\mathrm{ closure_of }
then show }x\in\mathrm{ topspace }
by (meson in_closure_of)
next
fix }
assume x topspace X and }\cup\mathcal{A}\subseteq\mathrm{ topspace X
then obtain V where V: openin X V x 僤 and fin: finite {U\in\mathcal{A}.U\capV

{}}

 using \mathcal{A unfolding locally_finite_in_def by blast}
    ```

```

 by blast
 have eq2: {A\in\mathcal{A. X closure_of A\capV}={{}}={A\in\mathcal{A. A\capV}\={}}
 using openin_Int_closure_of_eq_empty V by blast
 have finite {U\in(closure_of) X``\mathcal{A.}U\capV\not={}}
 by (simp add: eq eq2 fin)
 with V show \existsV. openin X V ^x\inV ^ finite {U\in(closure_of) X'\mathcal{A. U}
 \capV\not={}}
by blast
qed
lemma closedin_Union_locally_finite_closure:

```
locally_finite_in \(X \mathcal{A} \Longrightarrow\) closedin \(X(\bigcup((\lambda S . X\) closure_of \(S) ‘ \mathcal{A}))\)
by (metis (mono_tags) closedin_closure_of closedin_locally_finite_Union imageE locally_finite_in_closure)
lemma closure_of_Union_subset: \(\bigcup\left((\lambda S . X \text { closure_of } S)^{\prime} \mathcal{A}\right) \subseteq X\) closure_of \((\bigcup \mathcal{A})\)
by clarify (meson Union_upper closure_of_mono subsetD)
lemma closure_of_locally_finite_Union:
assumes locally_finite_in \(X \mathcal{A}\)
shows \(X\) closure_of \((\bigcup \mathcal{A})=\bigcup((\lambda S\). X closure_of \(S)\) ' \(\mathcal{A})\)
proof (rule closure_of_unique)
show \(\bigcup \mathcal{A} \subseteq \bigcup\left(\left(\right.\right.\) closure_of) \(\left.X^{‘} \mathcal{A}\right)\)
using assms by (simp add: SUP_upper2 Sup_le_iff closure_of_subset locally_finite_in_def)
show closedin \(X\left(\bigcup\left((\right.\right.\) closure_of \(\left.\left.) X^{‘} \mathcal{A}\right)\right)\)
using assms by (simp add: closedin_Union_locally_finite_closure)
show \(\wedge T^{\prime} . \llbracket \cup \mathcal{A} \subseteq T^{\prime} ;\) closedin \(X T \rrbracket \Longrightarrow \bigcup\left(\left(\right.\right.\) closure_of) \(\left.X^{\prime} \mathcal{A}\right) \subseteq T^{\prime}\)
by (simp add: Sup_le_iff closure_of_minimal)
qed

\subsection*{2.2.10 Continuous maps}

We will need to deal with continuous maps in terms of topologies and not in terms of type classes, as defined below.
```

definition continuous_map where
continuous_map X Yf \equiv
(\forallx\in topspace X.fx\in topspace Y)^
(\forallU. openin Y U \longrightarrow openin X {x\in topspace X.fx\inU})

```
lemma continuous_map:
continuous_map \(X Y f \longleftrightarrow\)
\(f\) ' \((\) topspace \(X) \subseteq\) topspace \(Y \wedge(\forall U\). openin \(Y U \longrightarrow\) openin \(X\{x \in\)
topspace \(X . f x \in U\})\)
by (auto simp: continuous_map_def)
lemma continuous_map_image_subset_topspace:
continuous_map \(X Y f \Longrightarrow f\) ' (topspace \(X) \subseteq\) topspace \(Y\)
by (auto simp: continuous_map_def)
lemma continuous_map_on_empty: topspace \(X=\{ \} \Longrightarrow\) continuous_map \(X Y f\)
by (auto simp: continuous_map_def)
lemma continuous_map_closedin:
continuous_map \(X Y f \longleftrightarrow\)
\((\forall x \in\) topspace \(X . f x \in\) topspace \(Y) \wedge\)
\((\forall C\). closedin \(Y C \longrightarrow\) closedin \(X\{x \in\) topspace \(X . f x \in C\})\)
proof -
have \((\forall U\). openin \(Y U \longrightarrow\) openin \(X\{x \in\) topspace \(X . f x \in U\})=\)
\((\forall C\). closedin \(Y C \longrightarrow\) closedin \(X\{x \in\) topspace \(X . f x \in C\})\)
if \(\bigwedge x . x \in\) topspace \(X \Longrightarrow f x \in\) topspace \(Y\)

\section*{proof -}
have eq: \(\{x \in\) topspace \(X . f x \in\) topspace \(Y \wedge f x \notin C\}=(\) topspace \(X-\{x\) \(\in\) topspace \(X . f x \in C\}\) ) for \(C\)

> using that by blast
show ?thesis
proof (intro iffI allI impI)
fix \(C\)
assume \(\forall U\). openin \(Y U \longrightarrow\) openin \(X\{x \in\) topspace \(X . f x \in U\}\) and closedin Y C
then have openin \(X\{x \in\) topspace \(X . f x \in\) topspace \(Y-C\}\) by blast
then show closedin \(X\{x \in\) topspace \(X . f x \in C\}\)
by (auto simp add: closedin_def eq)
next
fix \(U\)
assume \(\forall C\). closedin \(Y C \longrightarrow\) closedin \(X\{x \in\) topspace \(X . f x \in C\}\) and openin \(Y U\)
then have closedin \(X\{x \in\) topspace \(X . f x \in\) topspace \(Y-U\}\) by blast then show openin \(X\{x \in\) topspace \(X . f x \in U\}\)
by (auto simp add: openin_closedin_eq eq)
qed
qed
then show ?thesis
by (auto simp: continuous_map_def)
qed
lemma openin_continuous_map_preimage:
\(\llbracket\) continuous_map \(X Y f ;\) openin \(Y U \rrbracket \Longrightarrow\) openin \(X\{x \in\) topspace \(X . f x \in U\}\)
by (simp add: continuous_map_def)
lemma closedin_continuous_map_preimage:
\(\llbracket\) continuous_map \(X Y f ;\) closedin \(Y C \rrbracket \Longrightarrow\) closedin \(X\{x \in\) topspace \(X . f x \in\) C \(\}\)
by (simp add: continuous_map_closedin)
lemma openin_continuous_map_preimage_gen:
assumes continuous_map X Yfopenin \(X\) U openin \(Y V\)
shows openin \(X\{x \in U . f x \in V\}\)
proof -
have eq: \(\{x \in U . f x \in V\}=U \cap\{x \in\) topspace \(X . f x \in V\}\)
using assms(2) openin_closedin_eq by fastforce
show ?thesis
unfolding \(e q\)
using assms openin_continuous_map_preimage by fastforce
qed
lemma closedin_continuous_map_preimage_gen:
assumes continuous_map X Yf closedin X \(U\) closedin \(Y\) V
shows closedin \(X\{x \in U . f x \in V\}\)
proof -
```

have eq:{x\inU.fx\inV}=U\cap{x\in topspace X. fx\inV}
using assms(2) closedin_def by fastforce
show ?thesis
unfolding eq
using assms closedin_continuous_map_preimage by fastforce
qed
lemma continuous_map_image_closure_subset:
assumes continuous_map X Y f
shows f'(X closure_of S)\subseteqY closure_of f'S
proof -
have *: f'(topspace X)\subseteq topspace Y
by (meson assms continuous_map)
have X closure_of T\subseteq{x\inX closure_of T. f x G Y closure_of (f'T)} if T\subseteq
topspace X for T
proof (rule closure_of_minimal)
show T\subseteq{x\inX closure_of T. fx\in Y closure_of f'T}
using closure_of_subset * that by (fastforce simp: in_closure_of)
next

```

```

 using assms closedin_continuous_map_preimage_gen by fastforce
 qed
 then have f' (X closure_of (topspace X \capS))\subseteqY closure_of (f'(topspace X
 \capS))
by blast
also have ...\subseteqY closure_of (topspace Y\capf'S)
using * by (blast intro!: closure_of_mono)
finally have f'(X closure_of (topspace X \capS))\subseteqY closure_of (topspace Y }
f'S).
then show ?thesis
by (metis closure_of_restrict)
qed
lemma continuous_map_subset_aux1: continuous_map X Yf \Longrightarrow
(\forallS.f'(X closure_of S)\subseteqY closure_of f'S)
using continuous_map_image_closure_subset by blast
lemma continuous_map_subset_aux2:
assumes }\forallS.S\subseteqtopspace X \longrightarrowf'(X closure_of S)\subseteqY closure_of f'
shows continuous_map X Yf
unfolding continuous_map_closedin
proof (intro conjI ballI allI impI)
fix }
assume x t topspace X
then show fx\in topspace Y
using assms closure_of_subset_topspace by fastforce
next
fix C
assume closedin Y C

```
```

 then show closedin \(X\{x \in\) topspace \(X . f x \in C\}\)
 proof (clarsimp simp flip: closure_of_subset_eq, intro conjI)
 fix \(x\)
 assume \(x: x \in X\) closure_of \(\{x \in\) topspace \(X . f x \in C\}\)
 and \(C \subseteq\) topspace \(Y\) and \(Y\) closure_of \(C \subseteq C\)
 show \(x \in\) topspace \(X\)
 by (meson \(x\) in_closure_of)
 have \(\{a \in\) topspace \(X . f a \in C\} \subseteq\) topspace \(X\)
 by \(\operatorname{simp}\)
 moreover have \(Y\) closure_of \(f\) ' \(\{a \in\) topspace \(X . f a \in C\} \subseteq C\)
 by (simp add: 〈closedin Y C〉closure_of_minimal image_subset_iff)
 ultimately have \(f\) ' \((X\) closure_of \(\{a \in\) topspace \(X . f a \in C\}) \subseteq C\)
 using assms by blast
 then show \(f x \in C\)
 using \(x\) by auto
 qed
 qed
lemma continuous_map_eq_image_closure_subset:
continuous_map $X Y f \longleftrightarrow\left(\forall S . f^{\prime}(X\right.$ closure_of $S) \subseteq Y$ closure_of f ' $\left.S\right)$
using continuous_map_subset_aux1 continuous_map_subset_aux2 by metis
lemma continuous_map_eq_image_closure_subset_alt:
continuous_map $X Y f \longleftrightarrow\left(\forall S . S \subseteq\right.$ topspace $X \longrightarrow f^{\prime}(X$ closure_of $S) \subseteq$
Y closure_of f ' S)
using continuous_map_subset_aux1 continuous_map_subset_aux2 by metis
lemma continuous_map_eq_image_closure_subset_gen:
continuous_map $X Y f \longleftrightarrow$
$f^{\prime}($ topspace $X) \subseteq$ topspace $Y \wedge$
$(\forall S . f$ ' $(X$ closure_of $S) \subseteq Y$ closure_of f ' $S)$

```
    using continuous_map_subset_aux1 continuous_map_subset_aux2 continuous_map_image_subset_topspace
by metis
lemma continuous_map_closure_preimage_subset:
    continuous_map \(X Y f\)
        \(\Longrightarrow X\) closure_of \(\{x \in\) topspace \(X . f x \in T\}\)
        \(\subseteq\{x \in\) topspace \(X . f x \in Y\) closure_of \(T\}\)
    unfolding continuous_map_closedin
    by (rule closure_of_minimal) (use in_closure_of in 〈fastforce +\(\rangle\) )
lemma continuous_map_frontier_frontier_preimage_subset:
    assumes continuous_map \(X Y f\)
    shows \(X\) frontier_of \(\{x \in\) topspace \(X . f x \in T\} \subseteq\{x \in\) topspace \(X . f x \in Y\)
frontier_of \(T\) \}
proof -
    have eq: topspace \(X-\{x \in\) topspace \(X . f x \in T\}=\{x \in\) topspace \(X . f x \in\)
topspace \(Y-T\}\)
using assms unfolding continuous_map_def by blast
have \(X\) closure_of \(\{x \in\) topspace \(X . f x \in T\} \subseteq\{x \in\) topspace \(X . f x \in Y\) closure_of \(T\}\) by (simp add: assms continuous_map_closure_preimage_subset)
moreover
have \(X\) closure_of (topspace \(X-\{x \in\) topspace \(X . f x \in T\}) \subseteq\{x \in\) topspace
\(X . f x \in Y\) closure_of (topspace \(Y-T)\}\)
using continuous_map_closure_preimage_subset [OF assms] eq by presburger
ultimately show ?thesis
by (auto simp: frontier_of_closures)
qed
lemma topology_finer_continuous_id:
assumes topspace \(X=\) topspace \(Y\)
shows \((\forall S\). openin \(X S \longrightarrow\) openin \(Y S) \longleftrightarrow\) continuous_map \(Y X\) id (is ?lhs
= ?rhs)
proof
show ?lhs \(\Longrightarrow\) ?rhs
unfolding continuous_map_def
using assms openin_subopen openin_subset by fastforce
show ?rhs \(\Longrightarrow\) ?lhs
unfolding continuous_map_def
using assms openin_subopen topspace_def by fastforce
qed
lemma continuous_map_const [simp]:
continuous_map \(X Y(\lambda x . C) \longleftrightarrow\) topspace \(X=\{ \} \vee C \in\) topspace \(Y\)
proof (cases topspace \(X=\{ \}\) )
case False
show ?thesis
proof (cases \(C \in\) topspace \(Y\) )
case True
with openin_subopen show ?thesis
by (auto simp: continuous_map_def)
next
case False
then show ?thesis
unfolding continuous_map_def by fastforce
qed
qed (auto simp: continuous_map_on_empty)
declare continuous_map_const [THEN iffD2, continuous_intros]
lemma continuous_map_compose [continuous_intros]:
assumes \(f\) : continuous_map \(X X^{\prime} f\) and \(g\) : continuous_map \(X^{\prime} X^{\prime \prime} g\)
shows continuous_map \(X X^{\prime \prime}(g \circ f)\)
unfolding continuous_map_def
proof (intro conjI ballI allI impI)
fix \(x\)
assume \(x \in\) topspace \(X\)
then show \((g \circ f) x \in\) topspace \(X^{\prime \prime}\)
using assms unfolding continuous_map_def by force
next
fix \(U\)
assume openin \(X^{\prime \prime} U\)
have eq: \(\{x \in\) topspace \(X .(g \circ f) x \in U\}=\{x \in\) topspace \(X . f x \in\{y . y \in\) topspace \(\left.\left.X^{\prime} \wedge g y \in U\right\}\right\}\)
by auto (meson \(f\) continuous_map_def)
show openin \(X\{x \in\) topspace \(X .(g \circ f) x \in U\}\)
unfolding \(e q\)
using assms unfolding continuous_map_def
using <openin \(X^{\prime \prime} U\) 〉by blast
qed
lemma continuous_map_eq:
assumes continuous_map \(X X^{\prime} f\) and \(\bigwedge x . x \in\) topspace \(X \Longrightarrow f x=g x\) shows
continuous_map \(X X^{\prime} g\)
proof -
have eq: \(\{x \in\) topspace \(X . f x \in U\}=\{x \in\) topspace \(X . g x \in U\}\) for \(U\)
using assms by auto
show ?thesis
using assms by (simp add: continuous_map_def eq)
qed
lemma restrict_continuous_map [simp]:
topspace \(X \subseteq S \Longrightarrow\) continuous_map \(X X^{\prime}(\) restrict \(f S) \longleftrightarrow\) continuous_map \(X X^{\prime} f\)
by (auto simp: elim!: continuous_map_eq)
lemma continuous_map_in_subtopology:
continuous_map \(X\) (subtopology \(\left.X^{\prime} S\right) f \longleftrightarrow\) continuous_map \(X X^{\prime} f \wedge f\) '
\((\) topspace \(X) \subseteq S\)
(is? \(l h s=\) ? \(r h s\) )
proof
assume \(L\) :?lhs
show ?rhs
proof -
have \(\bigwedge A . f\) ' \((X\) closure_of \(A) \subseteq\) subtopology \(X^{\prime} S\) closure_of \(f\) ' \(A\)
by (meson L continuous_map_image_closure_subset)
then show ?thesis
by (metis (no_types) closure_of_subset_subtopology closure_of_subtopology_subset closure_of_topspace continuous_map_eq_image_closure_subset dual_order.trans)
qed
next
assume \(R\) : ?rhs
then have eq: \(\{x \in\) topspace \(X . f x \in U\}=\{x \in\) topspace \(X\). \(f x \in U \wedge f x \in\)
\(S\}\) for \(U\)
by auto
```

 show ?lhs
 using R
 unfolding continuous_map
 by (auto simp: openin_subtopology eq)
 qed
lemma continuous_map_from_subtopology:
continuous_map X X' }f\Longrightarrow\mathrm{ continuous_map (subtopology X S) X'f
by (auto simp: continuous_map openin_subtopology)
lemma continuous_map_into_fulltopology:
continuous_map X (subtopology \mp@subsup{X}{}{\prime}T) f\Longrightarrow continuous_map X X'f
by (auto simp: continuous_map_in_subtopology)
lemma continuous_map_into_subtopology:
|continuous_map X X'f; f'topspace X \subseteqT\rrbracket\Longrightarrow continuous_map X (subtopology
X'T) f
by (auto simp: continuous_map_in_subtopology)
lemma continuous_map_from_subtopology_mono:
\llbracketcontinuous_map (subtopology X T) X'f}f;S\subseteqT
Continuous_map (subtopology X S) X'f
by (metis inf.absorb_iff2 continuous_map_from_subtopology subtopology_subtopology)
lemma continuous_map_from_discrete_topology [simp]:
continuous_map (discrete_topology U) Xf\longleftrightarrow < ' U\subseteq topspace X
by (auto simp: continuous_map_def)
lemma continuous_map_iff_continuous [simp]: continuous_map (top_of_set S) euclidean $g=$ continuous_on $S g$
by (fastforce simp add: continuous_map openin_subtopology continuous_on_open_invariant)
lemma continuous_map_iff_continuous2 [simp]: continuous_map euclidean euclidean $g=$ continuous_on UNIV g
by (metis continuous_map_iff_continuous subtopology_UNIV)
lemma continuous_map_openin_preimage_eq:
continuous_map $X Y f \longleftrightarrow$
f ' (topspace $X) \subseteq$ topspace $Y \wedge(\forall U$. openin $Y U \longrightarrow$ openin X (topspace
$\left.\left.X \cap f-{ }^{\prime} U\right)\right)$
by (auto simp: continuous_map_def vimage_def Int_def)
lemma continuous_map_closedin_preimage_eq:
continuous_map $X Y f \longleftrightarrow$
f ' $($ topspace $X) \subseteq$ topspace $Y \wedge(\forall U$. closedin $Y U \longrightarrow$ closedin X (topspace
$\left.\left.X \cap f-{ }^{\prime} U\right)\right)$
by (auto simp: continuous_map_closedin vimage_def Int_def)

```
lemma continuous_map_square_root: continuous_map euclideanreal euclideanreal sqrt by (simp add: continuous_at_imp_continuous_on isCont_real_sqrt)
lemma continuous_map_sqrt [continuous_intros]:
continuous_map \(X\) euclideanreal \(f \Longrightarrow\) continuous_map \(X\) euclideanreal \((\lambda x\). sqrt \((f\) x))
by (meson continuous_map_compose continuous_map_eq continuous_map_square_root o_apply)
lemma continuous_map_id [simp, continuous_intros]: continuous_map X X id unfolding continuous_map_def using openin_subopen topspace_def by fastforce
declare continuous_map_id [unfolded id_def, simp, continuous_intros]
lemma continuous_map_id_subt [simp]: continuous_map (subtopology X S) X id by (simp add: continuous_map_from_subtopology)
declare continuous_map_id_subt [unfolded id_def, simp]
lemma continuous_map_alt:
continuous_map T1 T2 \(f\)
\(=\left(\left(\forall U\right.\right.\). openin T2 \(U \longrightarrow\) openin \(T 1\left(f-{ }^{\prime} U \cap\right.\) topspace \(\left.\left.T 1\right)\right) \wedge f^{\prime}\) topspace
\(T 1 \subseteq\) topspace T2)
by (auto simp: continuous_map_def vimage_def image_def Collect_conj_eq inf_commute)
lemma continuous_map_open [intro]:
continuous_map T1 T2 \(f \Longrightarrow\) openin T2 \(U \Longrightarrow\) openin T1 \(\left(f-{ }^{\prime} U \cap\right.\) topspace \(\left.(T 1)\right)\) unfolding continuous_map_alt by auto
lemma continuous_map_preimage_topspace [intro]:
assumes continuous_map T1 T2 f
shows \(f\)-‘(topspace T2) \(\cap\) topspace \(T 1=\) topspace \(T 1\)
using assms unfolding continuous_map_def by auto

\subsection*{2.2.11 Open and closed maps (not a priori assumed continuous)}
definition open_map :: 'a topology \(\Rightarrow\) 'b topology \(\Rightarrow\left({ }^{\prime} a \Rightarrow{ }^{\prime} b\right) \Rightarrow\) bool where open_map X1 X2 \(f \equiv \forall U\). openin \(X 1 U \longrightarrow\) openin \(X 2\left(f^{\prime} U\right)\)
definition closed_map :: 'a topology \(\Rightarrow{ }^{\prime} b\) topology \(\Rightarrow\left({ }^{\prime} a \Rightarrow\right.\) ' \(\left.b\right) \Rightarrow\) bool where closed_map X1 X2 \(f \equiv \forall U\). closedin X1 \(U \longrightarrow\) closedin X2 \(\left(f^{\prime} U\right)\)
lemma open_map_imp_subset_topspace:
open_map X1 X2 \(f \Longrightarrow f\) '(topspace \(X 1) \subseteq\) topspace X2
unfolding open_map_def by (simp add: openin_subset)
lemma open_map_on_empty:
```

 topspace \(X=\{ \} \Longrightarrow\) open_map \(X Y f\)
 by (metis empty_iff imageE in_mono open_map_def openin_subopen openin_subset)
lemma closed_map_on_empty:
topspace $X=\{ \} \Longrightarrow$ closed_map $X Y f$
by (simp add: closed_map_def closedin_topspace_empty)
lemma closed_map_const:
closed_map $X Y(\lambda x . c) \longleftrightarrow$ topspace $X=\{ \} \vee$ closedin $Y\{c\}$
proof (cases topspace $X=\{ \}$)
case True
then show ?thesis
by (simp add: closed_map_on_empty)
next
case False
then show ?thesis
by (auto simp: closed_map_def image_constant_conv)
qed
lemma open_map_imp_subset:
$\llbracket o p e n _m a p ~ X 1 ~ X 2 ~ f ; ~ S \subseteq$ topspace X1】 $\Longrightarrow f$ ' $S \subseteq$ topspace X2
by (meson order_trans open_map_imp_subset_topspace subset_image_iff)
lemma topology_finer_open_id:
$\left(\forall S\right.$. openin $X S \longrightarrow$ openin $\left.X^{\prime} S\right) \longleftrightarrow$ open_map $X X^{\prime}$ id
unfolding open_map_def by auto
lemma open_map_id: open_map $X X$ id
unfolding open_map_def by auto
lemma open_map_eq:
$\llbracket o p e n _m a p X X^{\prime} f ; \bigwedge x . x \in$ topspace $X \Longrightarrow f x=g x \rrbracket \Longrightarrow$ open_map $X X^{\prime} g$
unfolding open_map_def
by (metis image_cong openin_subset subset_iff)
lemma open_map_inclusion_eq:
open_map (subtopology X S) X id \longleftrightarrow openin $X($ topspace $X \cap S)$
proof -
have *: openin $X(T \cap S)$ if openin $X(S \cap$ topspace $X)$ openin $X T$ for T
proof -
have $T \subseteq$ topspace X
using that by (simp add: openin_subset)
with that show openin $X(T \cap S)$
by (metis inf.absorb1 inf.left_commute inf_commute openin_Int)
qed
show ?thesis
by (fastforce simp add: open_map_def Int_commute openin_subtopology_alt intro:
*)
qed

```
lemma open_map_inclusion:
openin \(X S \Longrightarrow\) open_map (subtopology \(X S\) ) X id
by (simp add: open_map_inclusion_eq openin_Int)
lemma open_map_compose:
\(\llbracket o p e n \_m a p X X^{\prime} f ;\) open_map \(X^{\prime} X^{\prime \prime} g \rrbracket \Longrightarrow\) open_map \(X X^{\prime \prime}(g \circ f)\)
by (metis (no_types, lifting) image_comp open_map_def)
lemma closed_map_imp_subset_topspace:
closed_map X1 X2 \(f \Longrightarrow f^{\prime}(\) topspace X1) \(\subseteq\) topspace X2
by (simp add: closed_map_def closedin_subset)
lemma closed_map_imp_subset:
\(\llbracket\) closed_map X1 X2 \(f ; S \subseteq\) topspace \(X 1 \rrbracket \Longrightarrow f\) ' \(S \subseteq\) topspace X2
using closed_map_imp_subset_topspace by blast
lemma topology_finer_closed_id:
\(\left(\forall S\right.\). closedin \(X S \longrightarrow\) closedin \(\left.X^{\prime} S\right) \longleftrightarrow\) closed_map \(X X^{\prime}\) id
by (simp add: closed_map_def)
lemma closed_map_id: closed_map X X id
by (simp add: closed_map_def)
lemma closed_map_eq:
\(\llbracket\) closed_map \(X X^{\prime} f ; \bigwedge x . x \in\) topspace \(X \Longrightarrow f x=g x \rrbracket \Longrightarrow\) closed_map \(X X^{\prime} g\)
unfolding closed_map_def
by (metis image_cong closedin_subset subset_iff)
lemma closed_map_compose:
\(\llbracket c l o s e d \_m a p ~ X X^{\prime} f ;\) closed_map \(X^{\prime} X^{\prime \prime} g \rrbracket \Longrightarrow\) closed_map \(X X^{\prime \prime}(g \circ f)\)
by (metis (no_types, lifting) closed_map_def image_comp)
lemma closed_map_inclusion_eq:
closed_map (subtopology X S) X id \(\longleftrightarrow\)
closedin \(X\) (topspace \(X \cap S\) )
proof -
have *: closedin \(X(T \cap S)\) if closedin \(X(S \cap\) topspace \(X)\) closedin \(X T\) for \(T\)
proof -
have \(T \subseteq\) topspace \(X\)
using that by (simp add: closedin_subset)
with that show closedin \(X(T \cap S)\)
by (metis inf.absorb1 inf.left_commute inf_commute closedin_Int)
qed
show ?thesis
by (fastforce simp add: closed_map_def Int_commute closedin_subtopology_alt intro: *)
qed
lemma closed_map_inclusion: closedin \(X S \Longrightarrow\) closed_map (subtopology \(X S\) ) \(X\) id
by (simp add: closed_map_inclusion_eq closedin_Int)
lemma open_map_into_subtopology:
\(\llbracket o p e n \_m a p \quad X X^{\prime} f ; f^{\prime}\) topspace \(X \subseteq S \rrbracket \Longrightarrow\) open_map \(X\left(\right.\) subtopology \(\left.X^{\prime} S\right) f\)
unfolding open_map_def openin_subtopology
using openin_subset by fastforce
lemma closed_map_into_subtopology:
\(\llbracket\) closed_map \(X X^{\prime} f ; f^{\prime}\) topspace \(X \subseteq S \rrbracket \Longrightarrow\) closed_map \(X\left(\right.\) subtopology \(\left.X^{\prime} S\right)\)
\(f\)
unfolding closed_map_def closedin_subtopology
using closedin_subset by fastforce
lemma open_map_into_discrete_topology:
open_map \(X\) (discrete_topology \(U) f \longleftrightarrow f\) ' topspace \(X) \subseteq U\)
unfolding open_map_def openin_discrete_topology using openin_subset by blast
lemma closed_map_into_discrete_topology:
closed_map \(X(\) discrete_topology \(U) f \longleftrightarrow f\) ' \((\) topspace \(X) \subseteq U\)
unfolding closed_map_def closedin_discrete_topology using closedin_subset by blast
lemma bijective_open_imp_closed_map:
\(\llbracket o p e n \_m a p X X^{\prime} f ; f^{\prime}(\) topspace \(X)=\) topspace \(X^{\prime} ; \operatorname{inj}\) _on \(f(\) topspace \(X) \rrbracket \Longrightarrow\) closed_map \(X X^{\prime} f\)
unfolding open_map_def closed_map_def closedin_def
by auto (metis Diff_subset inj_on_image_set_diff)
lemma bijective_closed_imp_open_map:
\(\llbracket\) closed_map \(X X^{\prime} f ; f^{\prime}(\) topspace \(X)=\) topspace \(X^{\prime} ;\) inj_on \(f(\) topspace \(X) \rrbracket\)
\(\Longrightarrow\) open_map \(X X^{\prime} f\)
unfolding closed_map_def open_map_def openin_closedin_eq
by auto (metis Diff_subset inj_on_image_set_diff)
lemma open_map_from_subtopology:
\(\llbracket o p e n \_m a p X X^{\prime} f\); openin \(X U \rrbracket \Longrightarrow\) open_map (subtopology \(X U\) ) \(X^{\prime} f\)
unfolding open_map_def openin_subtopology_alt by blast
lemma closed_map_from_subtopology:
\(\llbracket c l o s e d \_m a p X X^{\prime} f ;\) closedin \(X U \rrbracket \Longrightarrow\) closed_map (subtopology X U) \(X^{\prime} f\)
unfolding closed_map_def closedin_subtopology_alt by blast
lemma open_map_restriction:
assumes \(f\) : open_map \(X X^{\prime} f\) and \(U:\{x \in\) topspace \(X . f x \in V\}=U\)
shows open_map (subtopology \(X\) ) (subtopology \(\left.X^{\prime} V\right) f\)
unfolding open_map_def
proof clarsimp
```

 fix \(W\)
 assume openin (subtopology \(X U\)) \(W\)
 then obtain \(T\) where openin \(X T W=T \cap U\)
 by (meson openin_subtopology)
 with \(f U\) have \(f\) ' \(W=\left(f^{\prime} T\right) \cap V\)
 unfolding open_map_def openin_closedin_eq by auto
 then show openin (subtopology \(\left.X^{\prime} V\right)\left(f^{\prime} W\right)\)
 by (metis 〈openin \(X T\rangle f\) open_map_def openin_subtopology_Int)
 qed
lemma closed_map_restriction:
assumes f : closed_map $X X^{\prime} f$ and $U:\{x \in$ topspace $X . f x \in V\}=U$
shows closed_map (subtopology $X U$) (subtopology $\left.X^{\prime} V\right) f$
unfolding closed_map_def
proof clarsimp
fix W
assume closedin (subtopology $X U$) W
then obtain T where closedin $X T W=T \cap U$
by (meson closedin_subtopology)
with $f U$ have f ' $W=\left(f^{\prime} T\right) \cap V$
unfolding closed_map_def closedin_def by auto
then show closedin (subtopology $\left.X^{\prime} V\right)\left(f^{\prime} W\right)$
by (metis 〈closedin $X T\rangle$ closed_map_def closedin_subtopology f)
qed

```

\subsection*{2.2.12 Quotient maps}
definition quotient_map where
\[
\text { quotient_map } X X^{\prime} f \longleftrightarrow
\]
\(f^{\prime}(\) topspace \(X)=\) topspace \(X^{\prime} \wedge\)
\(\left(\forall U . U \subseteq\right.\) topspace \(X^{\prime} \longrightarrow(\) openin \(X\{x . x \in\) topspace \(X \wedge f x \in U\} \longleftrightarrow\)
openin \(\left.X^{\prime} U\right)\) )
lemma quotient_map_eq:
assumes quotient_map \(X X^{\prime} f \bigwedge x . x \in\) topspace \(X \Longrightarrow f x=g x\)
shows quotient_map \(X X^{\prime} g\)
proof -
have eq: \(\{x \in\) topspace \(X . f x \in U\}=\{x \in\) topspace \(X . g x \in U\}\) for \(U\)
using assms by auto
show ?thesis
using assms
unfolding quotient_map_def
by (metis (mono_tags, lifting) eq image_cong)
qed
lemma quotient_map_compose:
assumes \(f\) : quotient_map \(X X^{\prime} f\) and \(g\) :quotient_map \(X^{\prime} X^{\prime \prime} g\)
shows quotient_map \(X X^{\prime \prime}(g \circ f)\)
unfolding quotient_map_def
```

proof (intro conjI allI impI)
show (g\circf)'topspace X = topspace X'
using assms by (simp only: image_comp [symmetric]) (simp add: quotient_map_def)
next
fix }\mp@subsup{U}{}{\prime\prime
assume }\mp@subsup{U}{}{\prime\prime}\subseteq\mathrm{ topspace }\mp@subsup{X}{}{\prime\prime
define }\mp@subsup{U}{}{\prime}\mathrm{ where }\mp@subsup{U}{}{\prime}\equiv{y\in\mathrm{ topspace }\mp@subsup{X}{}{\prime}.gy\in\mp@subsup{U}{}{\prime}
have }\mp@subsup{U}{}{\prime}\subseteq\mathrm{ topspace }\mp@subsup{X}{}{\prime
by (auto simp add: U'_def)
then have U': openin X {x\in topspace X.fx\in U'} =openin \mp@subsup{X}{}{\prime}\mp@subsup{U}{}{\prime}
using assms unfolding quotient_map_def by simp
have eq:{x\in topspace X.fx\in topspace \mp@subsup{X}{}{\prime}\wedgeg(fx)\in\mp@subsup{U}{}{\prime}}={x\in\mathrm{ topspace}
X.(g\circf) x f (U'}
using f quotient_map_def by fastforce

```

```

X.f f}\in\mp@subsup{|}{\prime}{\prime}
using assms by (simp add:quotient_map_def U'_def eq)
also have }···=\mathrm{ openin }\mp@subsup{X}{}{\prime\prime}\mp@subsup{U}{}{\prime\prime
using U'_def \langleU''\subseteq topspace }\mp@subsup{X}{}{\prime\prime}\rangle\mp@subsup{U}{}{\prime}g\mathrm{ quotient_map_def by fastforce
finally show openin X{x\in topspace X.(g\circf) x\in U'^}}=\mathrm{ openin }\mp@subsup{X}{}{\prime\prime}\mp@subsup{U}{}{\prime\prime}
qed
lemma quotient_map_from_composition:

```

```

quotient_map X X''(g\circf)
shows quotient_map X' X''g
unfolding quotient_map_def
proof (intro conjI allI impI)
show g'topspace }\mp@subsup{X}{}{\prime}=\mathrm{ topspace }\mp@subsup{X}{}{\prime\prime
using assms unfolding continuous_map_def quotient_map_def by fastforce
next
fix U' :: 'c set
assume U':}\mp@subsup{U}{}{\prime\prime}\mp@subsup{U}{}{\prime\prime}\subseteq\mathrm{ topspace }\mp@subsup{X}{}{\prime\prime
have eq: {x \in topspace X.g(fx)\in\mp@subsup{U}{}{\prime\prime}}={x\in topspace X.fx\in{y.y\in
topspace }\mp@subsup{X}{}{\prime}\wedgegy\in\mp@subsup{U}{}{\prime\prime}}
using continuous_map_def f by fastforce
show openin X' {x\in topspace }\mp@subsup{X}{}{\prime}.gx\in\mp@subsup{U}{}{\prime\prime}}=\mathrm{ openin }\mp@subsup{X}{}{\prime\prime}\mp@subsup{U}{}{\prime\prime
using assms unfolding continuous_map_def quotient_map_def
by (metis (mono_tags, lifting) Collect_cong U" comp_apply eq)
qed
lemma quotient_imp_continuous_map:
quotient_map X X'f}\Longrightarrow\mathrm{ continuous_map X X'f
by (simp add: continuous_map openin_subset quotient_map_def)
lemma quotient_imp_surjective_map:
quotient_map X X'f\Longrightarrowf'(topspace X) = topspace X'
by (simp add: quotient_map_def)

```
```

lemma quotient_map_closedin:
quotient_map X X'f}
f'(topspace X) = topspace X'^

```

```

\longleftrightarrowclosedin X'U))
proof -
have eq:(topspace X - {x\in topspace X. fx\in U'})={x\in topspace X.fx\in
topspace \mp@subsup{X}{}{\prime}\wedgefx\not\in\mp@subsup{U}{}{\prime}}
if f'topspace }X=\mathrm{ topspace }\mp@subsup{X}{}{\prime}\mp@subsup{U}{}{\prime}\subseteq\mathrm{ topspace }\mp@subsup{X}{}{\prime}\mathrm{ for }\mp@subsup{U}{}{\prime
using that by auto
have (\forallU\subseteqtopspace X'. openin X {x\in topspace X.fx\inU}=openin X'}U
=
(\forallU\subseteqtopspace }\mp@subsup{X}{}{\prime}.\mathrm{ .closedin }X{x\in\mathrm{ topspace X.fx
U)
if f'topspace X = topspace X'
proof (rule iffI; intro allI impI subsetI)
fix }\mp@subsup{U}{}{\prime
assume *[rule_format]: }\forallU\subseteq\mathrm{ topspace }\mp@subsup{X}{}{\prime}\mathrm{ . openin X {x 的的space X.fx}
U}= openin }\mp@subsup{X}{}{\prime}
and }\mp@subsup{U}{}{\prime}:\mp@subsup{U}{}{\prime}\subseteq\mathrm{ topspace }\mp@subsup{X}{}{\prime
show closedin X {x\in topspace X.fx\in U'}= closedin X' U'
using U' by (auto simp add: closedin_def simp flip: * [of topspace X' - U']
eq [OF that])
next
fix }\mp@subsup{U}{}{\prime}:: 'b se
assume *[rule_format]: \forallU\subseteqtopspace }\mp@subsup{X}{}{\prime}\mathrm{ . closedin X {x topspace X.fx}
U}= closedin X'U
and }\mp@subsup{U}{}{\prime}:\mp@subsup{U}{}{\prime}\subseteq\mathrm{ topspace }\mp@subsup{X}{}{\prime
show openin X {x\in topspace X.fx\in U'}=openin X' U'
using U' by (auto simp add: openin_closedin_eq simp flip: * [of topspace X'

- U\ eq [OF that])
qed
then show ?thesis
unfolding quotient_map_def by force
qed

```
lemma continuous_open_imp_quotient_map:
    assumes continuous_map \(X X^{\prime} f\) and om: open_map \(X X^{\prime} f\) and feq: f (topspace
\(X)=\) topspace \(X^{\prime}\)
    shows quotient_map \(X X^{\prime} f\)
proof -
    \(\{\) fix \(U\)
        assume \(U: U \subseteq\) topspace \(X^{\prime}\) and openin \(X\{x \in\) topspace \(X . f x \in U\}\)
        then have ope: openin \(X^{\prime}(f\) ' \(\{x \in\) topspace \(X . f x \in U\})\)
        using om unfolding open_map_def by blast
            then have openin \(X^{\prime} U\)
                using \(U\) feq by (subst openin_subopen) force
    \}
    moreover have openin \(X\{x \in\) topspace \(X . f x \in U\}\) if \(U \subseteq\) topspace \(X^{\prime}\) and
```

openin $X^{\prime} U$ for U
using that assms unfolding continuous_map_def by blast
ultimately show ?thesis
unfolding quotient_map_def using assms by blast
qed
lemma continuous_closed_imp_quotient_map:
assumes continuous_map $X X^{\prime} f$ and om: closed_map $X X^{\prime} f$ and feq: f '
(topspace X) $=$ topspace X^{\prime}
shows quotient_map $X X^{\prime} f$
proof -
have f ' $\{x \in$ topspace $X . f x \in U\}=U$ if $U \subseteq$ topspace X^{\prime} for U
using that feq by auto
with assms show ?thesis
unfolding quotient_map_closedin closed_map_def continuous_map_closedin by
auto
qed
lemma continuous_open_quotient_map
\llbracket continuous_map $X X^{\prime} f ;$ open_map $X X^{\prime} f \rrbracket \Longrightarrow$ quotient_map $X X^{\prime} f \longleftrightarrow f$ '
(topspace X) $=$ topspace X^{\prime}
by (meson continuous_open_imp_quotient_map quotient_map_def)
lemma continuous_closed_quotient_map:
\llbracket continuous_map $X X^{\prime} f ;$ closed_map $X X^{\prime} f \rrbracket \Longrightarrow$ quotient_map $X X^{\prime} f \longleftrightarrow f$
' $($ topspace $X)=$ topspace X^{\prime}
by (meson continuous_closed_imp_quotient_map quotient_map_def)
lemma injective_quotient_map:
assumes inj_on f (topspace X)
shows quotient_map $X X^{\prime} f \longleftrightarrow$
continuous_map $X X^{\prime} f \wedge$ open_map $X X^{\prime} f \wedge$ closed_map $X X^{\prime} f \wedge f$
(topspace X) $=$ topspace X^{\prime}
(is?lhs =?rhs)
proof
assume L : ?lhs
have open_map $X X^{\prime} f$
proof (clarsimp simp add: open_map_def)
fix U
assume openin $X U$
then have $U \subseteq$ topspace X
by (simp add: openin_subset)
moreover have $\left\{x \in\right.$ topspace $\left.X . f x \in f^{‘} U\right\}=U$
using $\langle U \subseteq$ topspace $X\rangle$ assms inj_onD by fastforce
ultimately show openin $X^{\prime}\left(f^{\prime} U\right)$
using L unfolding quotient_map_def
by (metis (no_types, lifting) Collect_cong 〔openin X U〉image_mono)
qed
moreover have closed_map $X X^{\prime} f$

```
```

 proof (clarsimp simp add: closed_map_def)
 fix \(U\)
 assume closedin \(X U\)
 then have \(U \subseteq\) topspace \(X\)
 by (simp add: closedin_subset)
 moreover have \(\left\{x \in\right.\) topspace \(\left.X . f x \in f^{\prime} U\right\}=U\)
 using \(\langle U \subseteq\) topspace \(X\rangle\) assms inj_onD by fastforce
 ultimately show closedin \(X^{\prime}\left(f^{\prime} U\right)\)
 using \(L\) unfolding quotient_map_closedin
 by (metis (no_types, lifting) Collect_cong 〈closedin X U〉 image_mono)
 qed
 ultimately show ?rhs
 using \(L\) by (simp add: quotient_imp_continuous_map quotient_imp_surjective_map)
 next
assume ?rhs
then show? ?hs
by (simp add: continuous_closed_imp_quotient_map)
qed
lemma continuous_compose_quotient_map:
assumes f : quotient_map $X X^{\prime} f$ and g : continuous_map $X X^{\prime \prime}(g \circ f)$
shows continuous_map $X^{\prime} X^{\prime \prime} g$
unfolding quotient_map_def continuous_map_def
proof (intro conjI ballI allI impI)
show $\bigwedge x^{\prime} . x^{\prime} \in$ topspace $X^{\prime} \Longrightarrow g x^{\prime} \in$ topspace $X^{\prime \prime}$
using assms unfolding quotient_map_def
by (metis (no_types, hide_lams) continuous_map_image_subset_topspace im-
age_comp image_subset_iff)
next
fix $U^{\prime \prime}::{ }^{\prime} c$ set
assume $U^{\prime \prime}$: openin $X^{\prime \prime} U^{\prime \prime}$
have f ' topspace $X=$ topspace X^{\prime}
by (simp add: f quotient_imp_surjective_map)
then have eq: $\left\{x \in\right.$ topspace $X . f x \in$ topspace $\left.X^{\prime} \wedge g(f x) \in U\right\}=\{x \in$
topspace $X . g(f x) \in U\}$ for U
by auto
have openin $X\left\{x \in\right.$ topspace $X . f x \in$ topspace $\left.X^{\prime} \wedge g(f x) \in U^{\prime \prime}\right\}$
unfolding eq using $U^{\prime \prime} g$ openin_continuous_map_preimage by fastforce
then have $*$: openin $X\left\{x \in\right.$ topspace $X . f x \in\left\{x \in\right.$ topspace $\left.\left.X^{\prime} . g x \in U^{\prime \prime}\right\}\right\}$
by auto
show openin $X^{\prime}\left\{x \in\right.$ topspace $\left.X^{\prime} . g x \in U^{\prime \prime}\right\}$
using f unfolding quotient_map_def
by (metis (no_types) Collect_subset *)
qed
lemma continuous_compose_quotient_map_eq:
quotient_map $X X^{\prime} f \Longrightarrow$ continuous_map $X X^{\prime \prime}(g \circ f) \longleftrightarrow$ continuous_map
$X^{\prime} X^{\prime \prime} g$
using continuous_compose_quotient_map continuous_map_compose quotient_imp_continuous_map

```
by blast
lemma quotient_map_compose_eq:
quotient_map \(X X^{\prime} f \Longrightarrow\) quotient_map \(X X^{\prime \prime}(g \circ f) \longleftrightarrow\) quotient_map \(X^{\prime} X^{\prime \prime}\) \(g\)
by (meson continuous_compose_quotient_map_eq quotient_imp_continuous_map quotient_map_compose quotient_map_from_composition)
lemma quotient_map_restriction:
assumes quo: quotient_map \(X Y f\) and \(U:\{x \in\) topspace \(X . f x \in V\}=U\) and disj: openin \(Y V \vee\) closedin \(Y V\)
shows quotient_map (subtopology X U) (subtopology \(Y\) V) f
using disj
proof
assume \(V\) : openin \(Y V\)
with \(U\) have sub: \(U \subseteq\) topspace \(X V \subseteq\) topspace \(Y\)
by (auto simp: openin_subset)
have fim: \(f\) ' topspace \(X=\) topspace \(Y\)
and \(Y: \wedge U . U \subseteq\) topspace \(Y \Longrightarrow\) openin \(X\{x \in\) topspace \(X . f x \in U\}=\) openin \(Y U\)
using quo unfolding quotient_map_def by auto
have openin \(X U\)
using \(U V Y\) sub(2) by blast
show ?thesis
unfolding quotient_map_def
proof (intro conjI allI impI)
show \(f\) 'topspace (subtopology \(X U\) ) \(=\) topspace (subtopology \(Y\) V)
using sub U fim by (auto)
next
fix \(Y^{\prime}:: \quad\) ' set
assume \(Y^{\prime} \subseteq\) topspace (subtopology \(Y\) V)
then have \(Y^{\prime} \subseteq\) topspace \(Y Y^{\prime} \subseteq V\)
by (simp_all)
then have eq: \(\left\{x \in\right.\) topspace \(\left.X . x \in U \wedge f x \in Y^{\prime}\right\}=\{x \in\) topspace \(X . f x\)
\(\left.\in Y^{\prime}\right\}\)
using \(U\) by blast
then show openin (subtopology \(X U\) ) \(\{x \in\) topspace (subtopology \(X U\) ). \(f x \in\)
\(\left.Y^{\prime}\right\}=\) openin (subtopology \(Y V\) ) \(Y^{\prime}\)
using \(U V Y\) «openin \(X U\rangle\left\langle Y^{\prime} \subseteq\right.\) topspace \(\left.Y\right\rangle\left\langle Y^{\prime} \subseteq V\right\rangle\)
by (simp add: openin_open_subtopology eq) (auto simp: openin_closedin_eq)
qed
next
assume \(V\) : closedin \(Y\) V
with \(U\) have sub: \(U \subseteq\) topspace \(X V \subseteq\) topspace \(Y\)
by (auto simp: closedin_subset)
have fim: \(f\) 'topspace \(X=\) topspace \(Y\)
and \(Y: \wedge U . U \subseteq\) topspace \(Y \Longrightarrow\) closedin \(X\{x \in\) topspace \(X . f x \in U\}=\)
closedin Y U
using quo unfolding quotient_map_closedin by auto
```

 have closedin X U
 using UV Y sub(2) by blast
 show ?thesis
 unfolding quotient_map_closedin
 proof (intro conjI allI impI)
 show f'topspace (subtopology X U)= topspace (subtopology Y V)
 using sub U fim by (auto)
 next
 fix }\mp@subsup{Y}{}{\prime}:: 'b se
 assume Y'\subseteqtopspace (subtopology Y V)
 then have }\mp@subsup{Y}{}{\prime}\subseteq\mathrm{ topspace }Y\mp@subsup{Y}{}{\prime}\subseteq
 by (simp_all)
 then have eq: {x\in topspace X.x\inU\wedgefx\in Y'}={x\in topspace X.fx
 \in Y'}
using U by blast
then show closedin (subtopology X U) {x topspace (subtopology X U). fx
\in Y'} = closedin (subtopology Y V) Y'
using UV Y <closedin X U\rangle\langleY'` topspace Y\rangle\langleY'` }\subseteqV
by (simp add: closedin_closed_subtopology eq) (auto simp: closedin_def)
qed
qed
lemma quotient_map_saturated_open:
quotient_map X Yf \longleftrightarrow
continuous_map X Y f ^f'(topspace X) = topspace Y ^
(\forallU. openin X U^{x\in topspace X.fx\inf'U}\subseteqU\longrightarrow openin Y (f` U)) (is ?lhs = ?rhs) proof assume L:?lhs then have fim: f'topspace X = topspace Y and Y:\bigwedgeU.U\subseteq topspace Y\Longrightarrowopenin Y U =openin X {x\in topspace X. fx\inU} unfolding quotient_map_def by auto show ?rhs proof (intro conjI allI impI) show continuous_map X Yf by (simp add: L quotient_imp_continuous_map) show f'topspace X = topspace Y by (simp add: fim) next fix U :: 'a set assume U: openin X U^{x\in topspace X.fx\inf'U}\subseteqU then have sub: f'U\subseteq topspace Y and eq:{x\intopspace X. fx\in 'f}U} U using fim openin_subset by fastforce+ show openin Y (f`}U
by (simp add: sub Y eq U)
qed

```
```

next
assume ?rhs
then have YX:\U. openin Y U\Longrightarrow openin X {x\in topspace X.fx\inU}
and fim: f'topspace }X=\mathrm{ topspace }
and XY:\U.\llbracketopenin X U;{x\in topspace X.fx\inf`U}\subseteqU\rrbracket\Longrightarrow openin Y(f`U)
by (auto simp: quotient_map_def continuous_map_def)
show ?lhs
proof (simp add: quotient_map_def fim, intro allI impI iffI)
fix U :: 'b set
assume U\subseteq topspace Y and X: openin X {x\in topspace X.fx\inU}
have feq: f' {x\in topspace X.fx\inU}=U
using }\langleU\subseteq\mathrm{ topspace }Y\mathrm{ \ fim by auto
show openin Y U
using XY [OF X] by (simp add: feq)
next
fix U :: 'b set
assume U\subseteq topspace Y and Y: openin Y U
show openin X {x\in topspace X.fx\inU}
by (metis YX [OF Y])
qed
qed

```

\subsection*{2.2.13 Separated Sets}
definition separatedin :: 'a topology \(\Rightarrow{ }^{\prime} a\) set \(\Rightarrow{ }^{\prime} a\) set \(\Rightarrow\) bool
where separatedin \(X S T \equiv\)
\(S \subseteq\) topspace \(X \wedge T \subseteq\) topspace \(X \wedge\) \(S \cap X\) closure_of \(T=\{ \} \wedge T \cap X\) closure_of \(S=\{ \}\)
lemma separatedin_empty [simp]:
separatedin \(X S\} \longleftrightarrow S \subseteq\) topspace \(X\)
separatedin \(X\} S \longleftrightarrow S \subseteq\) topspace \(X\)
by (simp_all add: separatedin_def)
lemma separatedin_refl [simp]:
separatedin \(X S S \longleftrightarrow S=\{ \}\)
proof -
have \(\bigwedge x . \llbracket\) separatedin \(X S S ; x \in S \rrbracket \Longrightarrow\) False
by (metis all_not_in_conv closure_of_subset inf.orderE separatedin_def)
then show ?thesis
by auto
qed
lemma separatedin_sym:
separatedin \(X S T \longleftrightarrow\) separatedin \(X T S\)
by (auto simp: separatedin_def)
lemma separatedin_imp_disjoint:
separatedin \(X S T \Longrightarrow\) disjnt \(S T\)
by (meson closure_of_subset disjnt_def disjnt_subset2 separatedin_def)
lemma separatedin_mono:
\(\llbracket\) separatedin \(X S T ; S^{\prime} \subseteq S ; T^{\prime} \subseteq T \rrbracket \Longrightarrow\) separatedin \(X S^{\prime} T^{\prime}\)
unfolding separatedin_def
using closure_of_mono by blast
lemma separatedin_open_sets:
\(\llbracket\) openin \(X S\); openin \(X T \rrbracket \Longrightarrow\) separatedin \(X S T \longleftrightarrow\) disjnt \(S T\)
unfolding disjnt_def separatedin_def
by (auto simp: openin_Int_closure_of_eq_empty openin_subset)
lemma separatedin_closed_sets:
\(\llbracket\) closedin \(X S\); closedin \(X T \rrbracket \Longrightarrow\) separatedin \(X S T \longleftrightarrow\) disjnt \(S T\)
unfolding closure_of_eq disjnt_def separatedin_def
by (metis closedin_def closure_of_eq inf_commute)
lemma separatedin_subtopology:
separatedin (subtopology \(X U\) ) \(S T \longleftrightarrow S \subseteq U \wedge T \subseteq U \wedge\) separatedin \(X S\)
\(T\) (is ?lhs =? \(r\) hs \()\)
by (auto simp: separatedin_def closure_of_subtopology Int_ac disjoint_iff elim!:
inf.orderE)
lemma separatedin_discrete_topology:
separatedin (discrete_topology \(U\) ) \(S T \longleftrightarrow S \subseteq U \wedge T \subseteq U \wedge\) disjnt \(S T\)
by (metis openin_discrete_topology separatedin_def separatedin_open_sets topspace_discrete_topology)
lemma separated_eq_distinguishable:
separatedin \(X\{x\}\{y\} \longleftrightarrow\)
\(x \in\) topspace \(X \wedge y \in\) topspace \(X \wedge\)
\((\exists U\). openin \(X U \wedge x \in U \wedge(y \notin U)) \wedge\)
\((\exists v\). openin \(X v \wedge y \in v \wedge(x \notin v))\)
by (force simp: separatedin_def closure_of_def)
lemma separatedin_Un [simp]:
separatedin \(X S(T \cup U) \longleftrightarrow\) separatedin \(X S T \wedge\) separatedin \(X S U\)
separatedin \(X(S \cup T) U \longleftrightarrow\) separatedin \(X S U \wedge\) separatedin \(X T U\)
by (auto simp: separatedin_def)
lemma separatedin_Union:
finite \(\mathcal{F} \Longrightarrow\) separatedin \(X S(\bigcup \mathcal{F}) \longleftrightarrow S \subseteq\) topspace \(X \wedge(\forall T \in \mathcal{F}\). separatedin X ST)
finite \(\mathcal{F} \Longrightarrow\) separatedin \(X(\bigcup \mathcal{F}) S \longleftrightarrow(\forall T \in \mathcal{F}\). separatedin \(X S T) \wedge S \subseteq\) topspace \(X\)
by (auto simp: separatedin_def closure_of_Union)
lemma separatedin_openin_diff:
\(\llbracket\) openin \(X S\); openin \(X T \rrbracket \Longrightarrow\) separatedin \(X(S-T)(T-S)\)
```

unfolding separatedin_def
by (metis Diff_Int_distrib2 Diff_disjoint Diff_empty Diff_mono empty_Diff empty_subsetI
openin_Int_closure_of_eq_empty openin_subset)
lemma separatedin_closedin_diff:
assumes closedin $X S$ closedin $X T$
shows separatedin $X(S-T)(T-S)$
proof -
have $S-T \subseteq$ topspace $X T-S \subseteq$ topspace X
using assms closedin_subset by auto
with assms show ?thesis
by (simp add: separatedin_def Diff_Int_distrib2 closure_of_minimal inf_absorb2)
qed
lemma separation_closedin_Un_gen:
separatedin $X S T \longleftrightarrow$
$S \subseteq$ topspace $X \wedge T \subseteq$ topspace $X \wedge$ disjnt $S T \wedge$
closedin (subtopology $X(S \cup T)) S \wedge$
closedin (subtopology $X(S \cup T)) T$
by (auto simp add: separatedin_def closedin_Int_closure_of disjnt_iff dest: clo-
sure_of_subset)
lemma separation_openin_Un_gen:
separatedin $X S T \longleftrightarrow$
$S \subseteq$ topspace $X \wedge T \subseteq$ topspace $X \wedge$ disjnt $S T \wedge$
openin (subtopology $X(S \cup T)) S \wedge$
openin (subtopology $X(S \cup T)) T$
unfolding openin_closedin_eq topspace_subtopology separation_closedin_Un_gen dis-
jnt_def
by (auto simp: Diff_triv Int_commute Un_Diff inf_absorb1 topspace_def)

```

\subsection*{2.2.14 Homeomorphisms}
(1-way and 2 -way versions may be useful in places)
```

definition homeomorphic_map :: 'a topology \Rightarrow 'b topology $\Rightarrow\left({ }^{\prime} a \Rightarrow{ }^{\prime} b\right) \Rightarrow$ bool
where
homeomorphic_map $X Y f \equiv q u o t i e n t _m a p ~ X Y f \wedge i n j _o n f(t o p s p a c e ~ X)$
definition homeomorphic_maps $::$ ' a topology \Rightarrow 'b topology $\Rightarrow\left(' a \Rightarrow{ }^{\prime} b\right) \Rightarrow(' b$
$\left.\Rightarrow{ }^{\prime} a\right) \Rightarrow$ bool
where
homeomorphic_maps X Yfg \equiv
continuous_map $X Y f \wedge$ continuous_map $Y X g \wedge$
$(\forall x \in$ topspace $X . g(f x)=x) \wedge(\forall y \in$ topspace $Y . f(g y)=y)$

```
    lemma homeomorphic_map_eq:
    \(\llbracket h o m e o m o r p h i c \_m a p X Y f ; \bigwedge x . x \in\) topspace \(X \Longrightarrow f x=g x \rrbracket \Longrightarrow\) homeomor-
phic_map X Y g
by (meson homeomorphic_map_def inj_on_cong quotient_map_eq)
lemma homeomorphic_maps_eq:
【homeomorphic_maps X Yfg;
\(\bigwedge x . x \in\) topspace \(X \Longrightarrow f x=f^{\prime} x ; \bigwedge y . y \in\) topspace \(Y \Longrightarrow g y=g^{\prime} y \rrbracket\) \(\Longrightarrow\) homeomorphic_maps \(X Y f^{\prime} g^{\prime}\)
unfolding homeomorphic_maps_def
by (metis continuous_map_eq continuous_map_eq_image_closure_subset_gen image_subset_iff)
lemma homeomorphic_maps_sym:
homeomorphic_maps \(X Y f g \longleftrightarrow\) homeomorphic_maps \(Y X g f\)
by (auto simp: homeomorphic_maps_def)
lemma homeomorphic_maps_id:
homeomorphic_maps \(X\) Yid id \(\longleftrightarrow Y=X \quad\) (is ?lhs \(=\) ? \(r h s)\)
proof
assume \(L\) : ?lhs
then have topspace \(X=\) topspace \(Y\)
by (auto simp: homeomorphic_maps_def continuous_map_def)
with \(L\) show ? rhs
unfolding homeomorphic_maps_def
by (metis topology_finer_continuous_id topology_eq)
next
assume ?rhs
then show? lhs
unfolding homeomorphic_maps_def by auto
qed
lemma homeomorphic_map_id [simp]: homeomorphic_map \(X Y\) id \(\longleftrightarrow Y=X\)
(is ?lhs =? rhs )
proof
assume \(L\) : ?lhs
then have eq: topspace \(X=\) topspace \(Y\)
by (auto simp: homeomorphic_map_def continuous_map_def quotient_map_def)
then have \(\wedge S\). openin \(X S \longrightarrow\) openin \(Y S\)
by (meson L homeomorphic_map_def injective_quotient_map topology_finer_open_id)
then show ?rhs
using \(L\) unfolding homeomorphic_map_def
by (metis eq quotient_imp_continuous_map topology_eq topology_finer_continuous_id)
next
assume ?rhs
then show? \({ }^{\text {lhs }}\)
unfolding homeomorphic_map_def
by (simp add: closed_map_id continuous_closed_imp_quotient_map)
qed
lemma homeomorphic_map_compose:
assumes homeomorphic_map \(X\) f homeomorphic_map \(Y X^{\prime \prime} g\)
```

 shows homeomorphic_map \(X X^{\prime \prime}(g \circ f)\)
 proof -
have inj_on $g(f$ 'topspace $X)$
by (metis (no_types) assms homeomorphic_map_def quotient_imp_surjective_map)
then show ?thesis
using assms by (meson comp_inj_on homeomorphic_map_def quotient_map_compose_eq)
qed
lemma homeomorphic_maps_compose:
homeomorphic_maps X Yfh \wedge
homeomorphic_maps $Y X^{\prime \prime} g k$
\Longrightarrow homeomorphic_maps $X X^{\prime \prime}(g \circ f)(h \circ k)$
unfolding homeomorphic_maps_def
by (auto simp: continuous_map_compose; simp add: continuous_map_def)
lemma homeomorphic_eq_everything_map:
homeomorphic_map $X Y f \longleftrightarrow$
continuous_map $X Y f \wedge$ open_map $X Y f \wedge$ closed_map $X Y f \wedge$
$f^{\prime}($ topspace $X)=$ topspace $Y \wedge$ inj_on $f($ topspace $X)$
unfolding homeomorphic_map_def
by (force simp: injective_quotient_map intro: injective_quotient_map)
lemma homeomorphic_imp_continuous_map:
homeomorphic_map $X Y f \Longrightarrow$ continuous_map $X Y f$
by (simp add: homeomorphic_eq_everything_map)
lemma homeomorphic_imp_open_map:
homeomorphic_map $X Y f \Longrightarrow$ open_map $X Y f$
by (simp add: homeomorphic_eq_everything_map)
lemma homeomorphic_imp_closed_map:
homeomorphic_map X Yf closed_map X Yf
by (simp add: homeomorphic_eq_everything_map)
lemma homeomorphic_imp_surjective_map:
homeomorphic_map $X Y f \Longrightarrow f$ ' topspace $X)=$ topspace Y
by (simp add: homeomorphic_eq_everything_map)
lemma homeomorphic_imp_injective_map:
homeomorphic_map $X Y f \Longrightarrow \operatorname{inj}_{-}$on f (topspace X)
by (simp add: homeomorphic_eq_everything_map)
lemma bijective_open_imp_homeomorphic_map:
\llbracket continuous_map $X Y f ;$ open_map $X Y f ; f^{\prime}($ topspace $X)=$ topspace Y; inj_on
$f($ topspace $X) \rrbracket$
\Longrightarrow homeomorphic_map X Yf
by (simp add: homeomorphic_map_def continuous_open_imp_quotient_map)

```
lemma bijective_closed_imp_homeomorphic_map:
\(\llbracket\) continuous_map \(X Y f ;\) closed_map \(X Y f ; f^{\prime}(\) topspace \(X)=\) topspace \(Y\); inj_on \(f\) (topspace \(X\) )】
\(\Longrightarrow\) homeomorphic_map XYf
by (simp add: continuous_closed_quotient_map homeomorphic_map_def)
```

lemma open_eq_continuous_inverse_map:
assumes }X:\bigwedgex.x\intopspace X\Longrightarrowfx\intopspace Y\wedgeg(fx)=
and Y:^y.y\in topspace Y\Longrightarrowgy\intopspace X ^f(gy)=y
shows open_map X Yf \longleftrightarrow continuous_map YXg
proof -

```

```

 using openin_subset [OF that] by (force simp: X Y image_iff)
 show ?thesis
 by (auto simp: Y open_map_def continuous_map_def eq)
 qed
lemma closed_eq_continuous_inverse_map:
assumes X:\bigwedgex. x topspace }X\Longrightarrowfx\in\mathrm{ topspace }Y\wedgeg(fx)=
and Y:^y.y\intopspace Y\Longrightarrowgy\intopspace }X\wedgef(gy)=
shows closed_map X Yf \longleftrightarrow continuous_map YX g
proof -
have eq:{x\in topspace Y.gx\inU}=f'}U\mathrm{ if closedin }XU\mathrm{ for }
using closedin_subset [OF that] by (force simp: X Y image_iff)
show ?thesis
by (auto simp: Y closed_map_def continuous_map_closedin eq)
qed
lemma homeomorphic_maps_map:
homeomorphic_maps X Yfg\longleftrightarrow
homeomorphic_map X Yf^homeomorphic_map Y Xg^
(\forallx\intopspace X.g(fx)=x)\wedge(\forally\intopspace Y.f(gy)=y)
(is ?lhs = ?rhs)
proof
assume ?lhs
then have L: continuous_map X Y f continuous_map Y X g\forallx\intopspace X.g
(fx)=x\forall\mp@subsup{x}{}{\prime}\intopspace Y.f(g x')=\mp@subsup{x}{}{\prime}
by (auto simp: homeomorphic_maps_def)
show ?rhs
proof (intro conjI bijective_open_imp_homeomorphic_map L)
show open_map X Y f
using L using open_eq_continuous_inverse_map [of concl: X Y f g] by (simp
add: continuous_map_def)
show open_map Y X g
using L using open_eq_continuous_inverse_map [of concl: YX g f] by (simp
add: continuous_map_def)
show f'topspace }X=\mathrm{ topspace Yg'topspace }Y=\mathrm{ topspace }
using L by (force simp: continuous_map_closedin)+
show inj_on f (topspace X) inj_on g (topspace Y)
using L unfolding inj_on_def by metis+

```

\section*{qed}
next
assume ?rhs
then show? \(1 h s\)
by (auto simp: homeomorphic_maps_def homeomorphic_imp_continuous_map)
qed
lemma homeomorphic_maps_imp_map:
homeomorphic_maps \(X Y f g \Longrightarrow\) homeomorphic_map \(X Y f\)
using homeomorphic_maps_map by blast
lemma homeomorphic_map_maps:
homeomorphic_map \(X Y f \longleftrightarrow(\exists g\). homeomorphic_maps \(X Y f g)\)
(is ? \(\mathrm{lhs}=\) ? \(r h s\) )
proof
assume ?lhs
then have \(L\) : continuous_map \(X\) Y open_map \(X Y\) closed_map \(X Y f\)
\(f\) ' \((\) topspace \(X)=\) topspace \(Y\) inj_on \(f\) (topspace \(X\) )
by (auto simp: homeomorphic_eq_everything_map)
have \(X: \bigwedge x . x \in\) topspace \(X \Longrightarrow f x \in\) topspace \(Y \wedge\) inv_into (topspace \(X) f(f\)
\(x)=x\)
using \(L\) by auto
have \(Y: \bigwedge y . y \in\) topspace \(Y \Longrightarrow\) inv_into (topspace \(X) f y \in\) topspace \(X \wedge f\)
(inv_into (topspace \(X) f y)=y\)
by (simp add: L f_inv_into_f inv_into_into)
have homeomorphic_maps \(X Y f(\) inv_into \((\) topspace \(X) f)\)
unfolding homeomorphic_maps_def
proof (intro conjI L)
show continuous_map \(Y\) X (inv_into (topspace X)f)
by (simp add: L X Y flip: open_eq_continuous_inverse_map [where \(f=f]\) )
next
show \(\forall x \in\) topspace \(X\). inv_into (topspace \(X) f(f x)=x\)
\(\forall y \in\) topspace \(Y . f(\) inv_into \((\) topspace \(X) f y)=y\)
using \(X Y\) by auto
qed
then show ?rhs
by metis
next
assume ?rhs
then show? lhs
using homeomorphic_maps_map by blast
qed
lemma homeomorphic_maps_involution:
\(\llbracket\) continuous_map \(X X f ; \bigwedge x . x \in\) topspace \(X \Longrightarrow f(f x)=x \rrbracket \Longrightarrow\) homeomorphic_maps \(X X f f\)
by (auto simp: homeomorphic_maps_def)
lemma homeomorphic_map_involution:
\(\llbracket\) continuous_map \(X X f ; \wedge x . x \in\) topspace \(X \Longrightarrow f(f x)=x \rrbracket \Longrightarrow\) homeomorphic_map \(X X f\)
using homeomorphic_maps_involution homeomorphic_maps_map by blast
```

lemma homeomorphic_map_openness:
assumes hom: homeomorphic_map $X Y f$ and $U: U \subseteq$ topspace X
shows openin $Y\left(f^{\prime} U\right) \longleftrightarrow$ openin $X U$
proof -
obtain g where homeomorphic_maps $X Y f g$
using assms by (auto simp: homeomorphic_map_maps)
then have g : homeomorphic_map $Y X g$ and $g f: \wedge x . x \in$ topspace $X \Longrightarrow g(f$
$x)=x$
by (auto simp: homeomorphic_maps_map)
then have openin $X U \Longrightarrow$ openin $Y\left(f^{\prime} U\right)$
using hom homeomorphic_imp_open_map open_map_def by blast
show openin $Y\left(f^{\prime} U\right)=$ openin $X U$
proof
assume L : openin $Y\left(f^{\prime} U\right)$
have $U=g^{\prime}\left(f^{\prime} U\right)$
using U gf by force
then show openin $X U$
by (metis L homeomorphic_imp_open_map open_map_def g)
next
assume openin $X U$
then show openin $Y\left(f^{\prime} U\right)$
using hom homeomorphic_imp_open_map open_map_def by blast
qed
qed

```
lemma homeomorphic_map_closedness:
    assumes hom: homeomorphic_map \(X Y f\) and \(U: U \subseteq\) topspace \(X\)
    shows closedin \(Y\left(f^{\prime} U\right) \longleftrightarrow\) closedin \(X U\)
proof -
    obtain \(g\) where homeomorphic_maps \(X Y f g\)
        using assms by (auto simp: homeomorphic_map_maps)
    then have \(g\) : homeomorphic_map \(Y X g\) and \(g f: \bigwedge x . x \in\) topspace \(X \Longrightarrow g(f\)
\(x)=x\)
    by (auto simp: homeomorphic_maps_map)
    then have closedin \(X U \Longrightarrow\) closedin \(Y\left(f^{\prime} U\right)\)
            using hom homeomorphic_imp_closed_map closed_map_def by blast
    show closedin \(Y\left(f^{\prime} U\right)=\) closedin \(X U\)
    proof
        assume \(L\) : closedin \(Y\left(f^{\prime} U\right)\)
        have \(U=g^{\prime}\left(f^{\prime} U\right)\)
            using \(U\) gf by force
        then show closedin \(X U\)
            by (metis L homeomorphic_imp_closed_map closed_map_def g)
next
```

 assume closedin X U
 then show closedin Y (f`}U
 using hom homeomorphic_imp_closed_map closed_map_def by blast
 qed
 qed

```
lemma homeomorphic_map_openness_eq:
    homeomorphic_map \(X Y f \Longrightarrow\) openin \(X U \longleftrightarrow U \subseteq\) topspace \(X \wedge\) openin \(Y\)
\((f\) ' \(U\) )
    by (meson homeomorphic_map_openness openin_closedin_eq)
lemma homeomorphic_map_closedness_eq:
            homeomorphic_map \(X Y f \Longrightarrow\) closedin \(X U \longleftrightarrow U \subseteq\) topspace \(X \wedge\) closedin
\(Y\left(f^{\prime} U\right)\)
    by (meson closedin_subset homeomorphic_map_closedness)
lemma all_openin_homeomorphic_image:
    assumes homeomorphic_map \(X Y f\)
    shows \((\forall V\). openin \(Y V \longrightarrow P V) \longleftrightarrow\left(\forall U\right.\). openin \(\left.X U \longrightarrow P\left(f^{\prime} U\right)\right)\) (is
?lhs = ?rhs)
proof
    assume ?lhs
    then show ?rhs
        by (meson assms homeomorphic_map_openness_eq)
next
    assume ?rhs
    then show? \(1 h s\)
        by (metis (no_types, lifting) assms homeomorphic_imp_surjective_map homeo-
morphic_map_openness openin_subset subset_image_iff)
qed
lemma all_closedin_homeomorphic_image:
    assumes homeomorphic_map XYf
    shows \((\forall V\). closedin \(Y V \longrightarrow P V) \longleftrightarrow\left(\forall U\right.\). closedin \(\left.X U \longrightarrow P\left(f^{\prime} U\right)\right)\) (is
?lhs = ?rhs)
proof
    assume ?lhs
    then show ?rhs
        by (meson assms homeomorphic_map_closedness_eq)
next
    assume ?rhs
    then show? \(1 h s\)
        by (metis (no_types, lifting) assms homeomorphic_imp_surjective_map homeo-
    morphic_map_closedness closedin_subset subset_image_iff)
    qed
lemma homeomorphic_map_derived_set_of:
    assumes hom: homeomorphic_map \(X Y f\) and \(S: S \subseteq\) topspace \(X\)
```

 shows \(Y\) derived_set_of \(\left(f^{\prime} S\right)=f^{\prime}(X\) derived_set_of \(S)\)
 proof -
have fim: f ' (topspace $X)=$ topspace Y and inj: inj_on f (topspace X)
using hom by (auto simp: homeomorphic_eq_everything_map)
have iff: $(\forall T . x \in T \wedge$ openin $X T \longrightarrow(\exists y . y \neq x \wedge y \in S \wedge y \in T))=$
$(\forall T . T \subseteq$ topspace $Y \longrightarrow f x \in T \longrightarrow$ openin $Y T \longrightarrow(\exists y . y \neq f x \wedge$
$y \in f$ ' $S \wedge y \in T)$)
if $x \in$ topspace X for x
proof -
have $\S:(x \in T \wedge$ openin $X T)=\left(T \subseteq\right.$ topspace $X \wedge f x \in f^{\prime} T \wedge$ openin Y
$\left.\left(f^{\text {‘ }} T\right)\right)$ for T
by (meson hom homeomorphic_map_openness_eq inj inj_on_image_mem_iff
that)
moreover have $(\exists y . y \neq x \wedge y \in S \wedge y \in T)=(\exists y . y \neq f x \wedge y \in f ' S \wedge$
$y \in f^{\prime} T$) (is ?lhs = ? r rhs)
if $T \subseteq$ topspace $X \wedge f x \in f^{\prime} T \wedge$ openin $Y\left(f^{\prime} T\right)$ for T
proof
show ?lhs \Longrightarrow ?rhs
by (meson § imageI inj inj_on_eq_iff inj_on_subset that)
show ? $\mathrm{rhs} \Longrightarrow$?lhs
using S inj inj_onD that by fastforce
qed
ultimately show ?thesis
by (auto simp flip: fim simp: all_subset_image)
qed
have $*: \llbracket T=f^{\prime} S ; \wedge x . x \in S \Longrightarrow P x \longleftrightarrow Q(f x) \rrbracket \Longrightarrow\{y . y \in T \wedge Q y\}=$
$f^{\prime}\{x \in S . P x\}$ for $T S P Q$
by auto
show ?thesis
unfolding derived_set_of_def
by (rule *) (use fim iff openin_subset in force)+
qed

```
lemma homeomorphic_map_closure_of:
assumes hom: homeomorphic_map \(X Y f\) and \(S: S \subseteq\) topspace \(X\)
shows \(Y\) closure_of \((f\) ' \(S)=f\) ' \((X\) closure_of \(S)\)
unfolding closure_of
using homeomorphic_imp_surjective_map [OF hom] S
by (auto simp: in_derived_set_of homeomorphic_map_derived_set_of [OF assms])
lemma homeomorphic_map_interior_of:
assumes hom: homeomorphic_map \(X Y f\) and \(S: S \subseteq\) topspace \(X\)
shows \(Y\) interior_of \((f\) ' \(S)=f\) ' \((X\) interior_of \(S)\)
proof -
\(\{\) fix \(y\)
assume \(y \in\) topspace \(Y\) and \(y \notin Y\) closure_of (topspace \(Y-f\) 'S)
then have \(y \in f\) ' (topspace \(X-X\) closure_of (topspace \(X-S)\) )
using homeomorphic_eq_everything_map [THEN iffD1, OF hom] homeomor-
```

phic_map_closure_of [OF hom]
by (metis DiffI Diff_subset S closure_of_subset_topspace inj_on_image_set_diff)
}
moreover
{fix }
assume x t topspace X
then have f}x\in\mathrm{ topspace }
using hom homeomorphic_imp_surjective_map by blast }
moreover
{fix x
assume x\in topspace X and x\not\inX closure_of (topspace X - S) and fx\inY
closure_of (topspace Y - f'S)
then have False
using homeomorphic_map_closure_of [OF hom] hom
unfolding homeomorphic_eq_everything_map
by (metis Diff_subset S closure_of_subset_topspace inj_on_image_mem_iff inj_on_image_set_diff)
}
ultimately show ?thesis
by (auto simp: interior_of_closure_of)
qed
lemma homeomorphic_map_frontier_of:
assumes hom: homeomorphic_map X Yf and S:S\subseteqtopspace X
shows Y frontier_of (f'S)=f'(X frontier_of S)
unfolding frontier_of_def
proof (intro equalityI subsetI DiffI)
fix y
assume y }\inY\mathrm{ closure_of f'S - Y interior_of f'S
then show y f '(X closure_of S - X interior_of S)
using S hom homeomorphic_map_closure_of homeomorphic_map_interior_of by
fastforce
next
fix y
assume y f f'(X closure_of S - X interior_of S)
then show }y\inY\mathrm{ closure_of f'S
using S hom homeomorphic_map_closure_of by fastforce
next
fix }
assume x f f'(X closure_of S-X interior_of S)
then obtain y where y: x=fy y\inX closure_of S y \#X interior_of S
by blast
then have y t topspace X
by (simp add: in_closure_of)
then have fy\not\inf'(X interior_of S)
by (meson hom homeomorphic_map_def inj_on_image_mem_iff interior_of_subset_topspace
y(3))
then show }x\not\inY\mathrm{ interior_of f'S
using S hom homeomorphic_map_interior_of y(1) by blast
qed

```
lemma homeomorphic_maps_subtopologies:
\(\llbracket h o m e o m o r p h i c \_m a p s \quad X Y g ; f^{\prime}(\) topspace \(X \cap S)=\) topspace \(Y \cap T \rrbracket\) \(\Longrightarrow\) homeomorphic_maps (subtopology X \(S\) ) (subtopology YT) \(f g\)
unfolding homeomorphic_maps_def
by (force simp: continuous_map_from_subtopology continuous_map_in_subtopology)
lemma homeomorphic_maps_subtopologies_alt:
\(\llbracket h o m e o m o r p h i c \_m a p s X Y f ; f^{\prime}(\) topspace \(X \cap S) \subseteq T ; g\) ' \((\) topspace \(Y \cap\)
\(T) \subseteq S \rrbracket\)
\(\Longrightarrow\) homeomorphic_maps (subtopology X S) (subtopology YT)fg
unfolding homeomorphic_maps_def
by (force simp: continuous_map_from_subtopology continuous_map_in_subtopology)
lemma homeomorphic_map_subtopologies:
\(\llbracket h o m e o m o r p h i c \_m a p X Y f ; f\) ' (topspace \(\left.X \cap S\right)=\) topspace \(Y \cap T \rrbracket\)
\(\Longrightarrow\) homeomorphic_map (subtopology X S) (subtopology Y T) \(f\)
by (meson homeomorphic_map_maps homeomorphic_maps_subtopologies)
lemma homeomorphic_map_subtopologies_alt:
assumes hom: homeomorphic_map X Yf
and \(S: \bigwedge x . \llbracket x \in\) topspace \(X ; f x \in\) topspace \(Y \rrbracket \Longrightarrow f x \in T \longleftrightarrow x \in S\) shows homeomorphic_map (subtopology X S) (subtopology Y T) f
proof -
have homeomorphic_maps (subtopology X S) (subtopology YT) fg if homeomorphic_maps \(X Y f g\) for \(g\)
proof (rule homeomorphic_maps_subtopologies [OF that]) show \(f\) ' (topspace \(X \cap S)=\) topspace \(Y \cap T\) using that \(S\) apply (auto simp: homeomorphic_maps_def continuous_map_def) by (metis IntI image_iff)
qed
then show ?thesis using hom by (meson homeomorphic_map_maps)
qed

\subsection*{2.2.15 Relation of homeomorphism between topological spaces}
definition homeomorphic_space (infixr homeomorphic'_space 50)
where \(X\) homeomorphic_space \(Y \equiv \exists f g\). homeomorphic_maps X Yfg
lemma homeomorphic_space_refl: \(X\) homeomorphic_space \(X\) by (meson homeomorphic_maps_id homeomorphic_space_def)
lemma homeomorphic_space_sym:
\(X\) homeomorphic_space \(Y \longleftrightarrow Y\) homeomorphic_space \(X\)
unfolding homeomorphic_space_def by (metis homeomorphic_maps_sym)
lemma homeomorphic_space_trans [trans]:
\(\llbracket X 1\) homeomorphic_space X2; X2 homeomorphic_space X3】 \(\Longrightarrow\) X1 homeomorphic_space X3
unfolding homeomorphic_space_def by (metis homeomorphic_maps_compose)
lemma homeomorphic_space:
\(X\) homeomorphic_space \(Y \longleftrightarrow(\exists f\). homeomorphic_map \(X Y f)\)
by (simp add: homeomorphic_map_maps homeomorphic_space_def)
lemma homeomorphic_maps_imp_homeomorphic_space:
homeomorphic_maps \(X Y f g \Longrightarrow X\) homeomorphic_space \(Y\)
unfolding homeomorphic_space_def by metis
lemma homeomorphic_map_imp_homeomorphic_space:
homeomorphic_map \(X Y f \Longrightarrow X\) homeomorphic_space \(Y\)
unfolding homeomorphic_map_maps
using homeomorphic_space_def by blast
lemma homeomorphic_empty_space:
\(X\) homeomorphic_space \(Y \Longrightarrow\) topspace \(X=\{ \} \longleftrightarrow\) topspace \(Y=\{ \}\)
by (metis homeomorphic_imp_surjective_map homeomorphic_space image_is_empty)
lemma homeomorphic_empty_space_eq:
assumes topspace \(X=\{ \}\)
shows \(X\) homeomorphic_space \(Y \longleftrightarrow\) topspace \(Y=\{ \}\)
proof -
have \(\forall f\). continuous_map \(X\) ( \(t::\) 'b topology) \(f\)
using assms continuous_map_on_empty by blast
then show?thesis
by (metis (no_types) assms continuous_map_on_empty empty_iff homeomor-
phic_empty_space homeomorphic_maps_def homeomorphic_space_def)
qed

\subsection*{2.2.16 Connected topological spaces}
definition connected_space :: 'a topology \(\Rightarrow\) bool where connected_space \(X \equiv\)
\(\neg(\exists\) E1 E2. openin \(X\) E1 \(\wedge\) openin \(X\) E2 \(\wedge\)
\[
\text { topspace } X \subseteq E 1 \cup E 2 \wedge E 1 \cap E 2=\{ \} \wedge E 1 \neq\{ \} \wedge E 2 \neq\{ \})
\]
definition connectedin :: 'a topology \(\Rightarrow\) 'a set \(\Rightarrow\) bool where connectedin \(X S \equiv S \subseteq\) topspace \(X \wedge\) connected_space (subtopology \(X S\) )
lemma connected_spaceD:
【connected_space \(X\);
openin \(X U\); openin \(X V ;\) topspace \(X \subseteq U \cup V ; U \cap V=\{ \} ; U \neq\{ \} ; V \neq\)
\(\} \rrbracket \Longrightarrow\) False
by (auto simp: connected_space_def)
lemma connectedin_subset_topspace: connectedin \(X S \Longrightarrow S \subseteq\) topspace \(X\)
by（simp add：connectedin＿def）
lemma connectedin＿topspace：
connectedin \(X(\) topspace \(X) \longleftrightarrow\) connected＿space \(X\)
by（simp add：connectedin＿def）
lemma connected＿space＿subtopology：
connectedin \(X S \Longrightarrow\) connected＿space（subtopology X \(S\) ）
by（simp add：connectedin＿def）
lemma connectedin＿subtopology：
connectedin（subtopology \(X S\) ）\(T \longleftrightarrow\) connectedin \(X T \wedge T \subseteq S\)
by（force simp：connectedin＿def subtopology＿subtopology inf＿absorb2）
lemma connected＿space＿eq：
connected＿space \(X \longleftrightarrow\)
（ \(\ddagger\) E1 E2．openin \(X E 1 \wedge\) openin \(X E 2 \wedge E 1 \cup E 2=\) topspace \(X \wedge E 1 \cap E 2\)
\(=\{ \} \wedge E 1 \neq\{ \} \wedge E 2 \neq\{ \})\)
unfolding connected＿space＿def
by（metis openin＿Un openin＿subset subset＿antisym）
lemma connected＿space＿closedin：
connected＿space \(X \longleftrightarrow\)
（ \(\nexists E 1\) E2．closedin \(X E 1 \wedge\) closedin \(X E 2 \wedge\) topspace \(X \subseteq E 1 \cup E 2 \wedge\)
\[
E 1 \cap E 2=\{ \} \wedge E 1 \neq\{ \} \wedge E 2 \neq\{ \})(\text { is } ? l h s=? r h s)
\]
proof
assume？lhs
then have \(L: \backslash E 1 E 2 . \llbracket\) openin \(X E 1 ; E 1 \cap E 2=\{ \} ;\) topspace \(X \subseteq E 1 \cup E 2\) ；
openin \(X E 2 \rrbracket \Longrightarrow E 1=\{ \} \vee E 2=\{ \}\)
by（simp add：connected＿space＿def）
show ？rhs unfolding connected＿space＿def
proof clarify
fix E1 E2
assume closedin \(X E 1\) and closedin \(X E 2\) and topspace \(X \subseteq E 1 \cup E 2\) and
\(E 1 \cap E 2=\{ \}\)
and \(E 1 \neq\{ \}\) and \(E 2 \neq\{ \}\)
have \(E 1 \cup E 2\)＝topspace \(X\)
by（meson Un＿subset＿iff〈closedin X E1〉〈closedin X E2〉〈topspace \(X \subseteq E 1\)
\(\cup\) E2）closedin＿def subset＿antisym）
then have topspace \(X-E 2=E 1\)
using \(\langle E 1 \cap E 2=\{ \}\rangle\) by fastforce
then have topspace \(X=E 1\)
using 〈E1 \(\neq\{ \}\rangle L\langle\) closedin \(X\) E1〉〈closedin \(X\) E2〉 by blast
then show False
using \(\langle E 1 \cap E 2=\{ \}\rangle\langle E 1 \cup E 2=\) topspace \(X\rangle\langle E 2 \neq\{ \}\rangle\) by blast
qed
next
assume \(R\) ：？rhs
```

show ?lhs
unfolding connected_space_def
proof clarify
fix E1 E2
assume openin X E1 and openin X E2 and topspace X\subseteqE1\cupE2 and E1
\cap2 = {}
and E1 ={} and E2 \# {}
have E1\cupE2 = topspace X
by (meson Un_subset_iff \openin X E1) openin X EQ) \topspace X \subseteqE1\cup
E2` openin_closedin_eq subset_antisym) then have topspace X - E2 = E1 using \E1\capE2 = {}` by fastforce
then have topspace X=E1
using \E1 }\not={}\rangleR\openin X E1`<openin X E2` by blas
then show False
using 〈E1\capE2 = {}\rangle\langleE1 \cup E2 = topspace X\rangle\langleE2 \#= {}\rangle by blast
qed
qed
lemma connected_space_closedin_eq:
connected_space X \longleftrightarrow

```
        ( \(\nexists E 1\) E2. closedin \(X E 1 \wedge\) closedin \(X\) E2 \(\wedge\)
                        \(E 1 \cup E 2=\) topspace \(X \wedge E 1 \cap E 2=\{ \} \wedge E 1 \neq\{ \} \wedge E 2 \neq\{ \})\)
    by (metis closedin_Un closedin_def connected_space_closedin subset_antisym)
lemma connected_space_clopen_in:
    connected_space \(X \longleftrightarrow\)
        \((\forall T\). openin \(X T \wedge\) closedin \(X T \longrightarrow T=\{ \} \vee T=\) topspace \(X)\)
proof -
    have eq: openin \(X E 1 \wedge\) openin \(X\) E2 \(\wedge\) E1 \(\cup\) E2 \(=\) topspace \(X \wedge E 1 \cap\) E2 \(=\)
\(\} \wedge P\)
        \(\longleftrightarrow\) E2 \(=\) topspace \(X-E 1 \wedge\) openin \(X\) E1 \(\wedge\) openin \(X E 2 \wedge P\) for E1 E2
\(P\)
    using openin_subset by blast
    show ?thesis
    unfolding connected_space_eq eq closedin_def
    by (auto simp: openin_closedin_eq)
qed
lemma connectedin:
    connectedin \(X S \longleftrightarrow\)
        \(S \subseteq\) topspace \(X \wedge\)
            (\#E1 E2.
                    openin X E1 \(\wedge\) openin X E2 \(\wedge\)
                    \(S \subseteq E 1 \cup E 2 \wedge E 1 \cap E 2 \cap S=\{ \} \wedge E 1 \cap S \neq\{ \} \wedge E 2 \cap S \neq\{ \})\)
(is ? \(/ h s=\) ? \(r h s\) )
proof -
    have *: ( \(\exists\) E1:: 'a set. \(\exists E 2::{ }^{\prime}\) a set. \((\exists\) T1:: 'a set. P1 T1 \(\wedge E 1=f 1 T 1) \wedge\)
( \(\exists\) T2:: 'a set. P2 T2 \(\wedge E 2=\) f2 T2 \() \wedge\)
```

 RE1 E2) \longleftrightarrow(\existsT1 T2.P1 T1 ^P2 T2 ^R(f1 T1) (f2 T2)) for P1
 f1 P2 f2 R
by auto
show ?thesis
unfolding connectedin_def connected_space_def openin_subtopology topspace_subtopology
*
by (intro conj_cong arg_cong [where f=Not] ex_cong1; blast dest!: openin_subset)
qed
lemma connectedin_iff_connected [simp]: connectedin euclidean S < connected S
by (simp add: connected_def connectedin)
lemma connectedin_closedin:
connectedin X S \longleftrightarrow
S\subseteqtopspace X ^
\neg(\existsE1 E2. closedin X E1 ^ closedin X E2 ^
S\subseteq(E1\cupE2)^
(E1\capE2\capS={})^
\neg(E1\capS={})\wedge ᄀ(E2\capS={}))
proof -
have *:(\existsE1:: 'a set. \existsE2:: 'a set. (\existsT1:: 'a set. P1 T1 ^E1 = f1 T1) ^
(\exists T2:: 'a set. P2 T2 ^ E2 = f2 T2) ^
RE1E2) \longleftrightarrow(\existsT1 T2.P1T1^P2 T2 ^R(f1 T1) (f2 T2)) for P1
f1 P2 f2 R
by auto
show ?thesis
unfolding connectedin_def connected_space_closedin closedin_subtopology topspace_subtopology
*
by (intro conj_cong arg_cong [where f=Not] ex_cong1; blast dest!: openin_subset)
qed
lemma connectedin_empty [simp]: connectedin X {}
by (simp add: connectedin)
lemma connected_space_topspace_empty:
topspace }X={}\Longrightarrow\mathrm{ connected_space }
using connectedin_topspace by fastforce
lemma connectedin_sing [simp]: connectedin X {a}\longleftrightarrowa\in topspace X
by (simp add: connectedin)
lemma connectedin_absolute [simp]:
connectedin (subtopology X S)S\longleftrightarrow connectedin X S
by (simp add: connectedin_subtopology)
lemma connectedin_Union:
assumes }\mathcal{U}:\bigwedgeS.S\in\mathcal{U}\Longrightarrow\mathrm{ connectedin X S and ne: \U
shows connectedin X (\bigcup\mathcal{U})
proof -

```
```

 have \(\cup \mathcal{U} \subseteq\) topspace \(X\)
 using \(\mathcal{U}\) by (simp add: Union_least connectedin_def)
 moreover have False
 if openin \(X\) E1 openin \(X\) E2 and cover: \(\bigcup \mathcal{U} \subseteq E 1 \cup\) E2 and disj: E1 \(\cap\) E2
 $\cap \cup \mathcal{U}=\{ \}$
and overlap $1: E 1 \cap \bigcup \mathcal{U} \neq\{ \}$ and overlap 2: $E \mathbb{2} \cap \bigcup \mathcal{U} \neq\{ \}$
for $E 1 E 2$
proof -
have disjS: $E 1 \cap E 2 \cap S=\{ \}$ if $S \in \mathcal{U}$ for S
using Diff-triv that disj by auto
have cover $S: S \subseteq E 1 \cup E 2$ if $S \in \mathcal{U}$ for S
using that cover by blast
have $\mathcal{U} \neq\{ \}$
using overlap 1 by blast
obtain a where $a: \wedge U . U \in \mathcal{U} \Longrightarrow a \in U$
using ne by force
with $\mathcal{U} \neq\{ \}$) have $a \in \bigcup \mathcal{U}$
by blast
then consider $a \in E 1 \mid a \in E 2$
using $\cup \mathcal{U} \subseteq E 1 \cup E 2\rangle$ by auto
then show False
proof cases
case 1
then obtain $b S$ where $b \in E 2 b \in S S \in \mathcal{U}$
using overlap2 by blast
then show ? thesis
using 1 〔openin X E1〉 <openin X E2〉 disjS coverS a $[O F\langle S \in \mathcal{U}\rangle] \mathcal{U}[O F$
$\left.\left.{ }^{\langle } S \in \mathcal{U}\right\rangle\right]$
unfolding connectedin
by (meson disjoint_iff_not_equal)
next
case 2
then obtain $b S$ where $b \in E 1 b \in S S \in \mathcal{U}$
using overlap 1 by blast
then show ? thesis
using 2 (openin X E1〉 (openin X E2 \backslash disjS coverS $a[O F\langle S \in \mathcal{U}] \mathcal{U}[O F$
$\langle S \in \mathcal{U}\rangle]$
unfolding connectedin
by (meson disjoint_iff_not_equal)
qed
qed
ultimately show ?thesis
unfolding connectedin by blast
qed
lemma connectedin_Un:
\llbracket connectedin $X S$; connectedin $X T ; S \cap T \neq\{ \} \rrbracket \Longrightarrow$ connectedin $X(S \cup T)$
using connectedin_Union [of $\{S, T\}]$ by auto

```
```

lemma connected_space_subconnected:
connected_space }X\longleftrightarrow(\forallx\in\mathrm{ topspace X.}\forally\in\mathrm{ topspace X. ヨS.connectedin X
S\wedgex\inS\wedge y\inS)(is ?lhs = ?rhs)
proof
assume ?lhs
then show ?rhs
using connectedin_topspace by blast
next
assume R [rule_format]: ?rhs
have False if openin X U openin X V and disj: U\capV={} and cover:topspace
X\subseteqU\cupV
and}U\not={}V\not={}\mathrm{ for }U
proof -
obtain }uv\mathrm{ where }u\inUv\in
using <U\not={}>\langleV\not={}> by auto
then obtain T where }u\inTv\inT\mathrm{ and T: connectedin X T
using R [of uv] that
by (meson <openin X U`<openin X V` subsetD openin_subset)
then show False
using that unfolding connectedin
by (metis IntI }\langleu\inU\rangle\langlev\inV\rangle empty_iff inf_bot_left subset_trans
qed
then show ?lhs
by (auto simp: connected_space_def)
qed
lemma connectedin_intermediate_closure_of:
assumes connectedin X SS\subseteqT T\subseteqX closure_of S
shows connectedin X T
proof -
have S:S\subseteq topspace X and T:T\subseteq topspace X
using assms by (meson closure_of_subset_topspace dual_order.trans)+
have §: \E1 E2. \llbracketopenin X E1; openin X E2; E1 \cap S = {} \vee E2 \cap S = {}\rrbracket
\Longrightarrow 1 \cap T={}\vee E2 \cap T={}
using assms unfolding disjoint_iff by (meson in_closure_of subsetD)
then show ?thesis
using assms
unfolding connectedin closure_of_subset_topspace S T
by (metis Int_empty_right T dual_order.trans inf.orderE inf_left_commute)
qed
lemma connectedin_closure_of:
connectedin X S connectedin X (X closure_of S)
by (meson closure_of_subset connectedin_def connectedin_intermediate_closure_of
subset_refl)
lemma connectedin_separation:
connectedin X S \longleftrightarrow
S\subseteqtopspace X ^

```
\((\nexists C 1 C 2 . C 1 \cup C 2=S \wedge C 1 \neq\{ \} \wedge C 2 \neq\{ \} \wedge C 1 \cap X\) closure_of \(C 2\) \(=\{ \} \wedge C 2 \cap X\) closure_of \(C 1=\{ \}\) ) (is ?lhs \(=\) ? rhs \()\)
unfolding connectedin_def connected_space_closedin_eq closedin_Int_closure_of topspace_subtopology apply (intro conj_cong refl arg_cong [where \(f=\) Not] apply (intro ex_cong1 iffI, blast) using closure_of_subset_Int by force
lemma connectedin_eq_not_separated:
connectedin \(X S \longleftrightarrow\)
\(S \subseteq\) topspace \(X \wedge\)
( \(\ddagger C 1 C 2 . C 1 \cup C 2=S \wedge C 1 \neq\{ \} \wedge C 2 \neq\{ \} \wedge\) separatedin \(X C 1 C 2)\)
unfolding separatedin_def by (metis connectedin_separation sup.boundedE)
lemma connectedin_eq_not_separated_subset:
connectedin \(X S \longleftrightarrow\)
\(S \subseteq\) topspace \(X \wedge(\nexists C 1 C 2 . S \subseteq C 1 \cup C 2 \wedge S \cap C 1 \neq\{ \} \wedge S \cap C 2 \neq\{ \}\)
\(\wedge\) separatedin X C1 C2)
proof -
have \(\forall C 1 C 2 . S \subseteq C 1 \cup C 2 \longrightarrow S \cap C 1=\{ \} \vee S \cap C 2=\{ \} \vee \neg\) separatedin
X C1 C2
if \(\wedge C 1 C 2 . C 1 \cup C 2=S \longrightarrow C 1=\{ \} \vee C 2=\{ \} \vee \neg\) separatedin \(X C 1 C 2\)
proof (intro allI)
fix C1 C2
show \(S \subseteq C 1 \cup C 2 \longrightarrow S \cap C 1=\{ \} \vee S \cap C 2=\{ \} \vee \neg\) separatedin \(X C 1\)
C2
using that [of \(S \cap C 1 S \cap C 2]\)
by (auto simp: separatedin_mono)
qed
then show ?thesis
by (metis Un_Int_eq(1) Un_Int_eq(2) connectedin_eq_not_separated order_refl)
qed
lemma connected_space_eq_not_separated:
connected_space \(X \longleftrightarrow\)
\((\nexists C 1 C 2 . C 1 \cup C 2=\) topspace \(X \wedge C 1 \neq\{ \} \wedge C 2 \neq\{ \} \wedge\) separatedin \(X\)
C1 C2)
by (simp add: connectedin_eq_not_separated flip: connectedin_topspace)
lemma connected_space_eq_not_separated_subset:
connected_space \(X \longleftrightarrow\)
\((\nexists C 1 C 2\). topspace \(X \subseteq C 1 \cup C 2 \wedge C 1 \neq\{ \} \wedge C 2 \neq\{ \} \wedge\) separatedin \(X C 1\) C2)
by (metis connected_space_eq_not_separated le_sup_iff separatedin_def subset_antisym)
lemma connectedin_subset_separated_union:
\(\llbracket\) connectedin \(X C\); separatedin \(X S T ; C \subseteq S \cup T \rrbracket \Longrightarrow C \subseteq S \vee C \subseteq T\)
unfolding connectedin_eq_not_separated_subset by blast
lemma connectedin_nonseparated_union:
```

 assumes connectedin \(X S\) connectedin \(X T \neg\) separatedin \(X S T\)
 shows connectedin \(X(S \cup T)\)
 proof -
have $\wedge C 1 C 2 . \llbracket T \subseteq C 1 \cup C 2 ; S \subseteq C 1 \cup C 2 \rrbracket \Longrightarrow$
$S \cap C 1=\{ \} \wedge T \cap C 1=\{ \} \vee S \cap C 2=\{ \} \wedge T \cap C 2=\{ \} \vee \neg$
separatedin X C1 C2
using assms
unfolding connectedin_eq_not_separated_subset
by (metis (no_types, lifting) assms connectedin_subset_separated_union inf.orderE
separatedin_empty(1) separatedin_mono separatedin_sym)
then show ?thesis
unfolding connectedin_eq_not_separated_subset
by (simp add: assms(1) assms(2) connectedin_subset_topspace Int_Un_distrib2)
qed
lemma connected_space_closures:
connected_space $X \longleftrightarrow$
$(\nexists e 1$ e2. e1 \cup e2 $=$ topspace $X \wedge X$ closure_of e1 $\cap X$ closure_of e2 $=\{ \}$
$\wedge e 1 \neq\{ \} \wedge e 2 \neq\{ \})$
(is ? lhs $=$? r rhs)
proof
assume ?lhs
then show ?rhs
unfolding connected_space_closedin_eq
by (metis Un_upper1 Un_upper2 closedin_closure_of closure_of_Un closure_of_eq_empty
closure_of_topspace)
next
assume ?rhs
then show? lhs
unfolding connected_space_closedin_eq
by (metis closure_of_eq)
qed
lemma connectedin_inter_frontier_of:
assumes connectedin $X S S \cap T \neq\{ \} S-T \neq\{ \}$
shows $S \cap X$ frontier_of $T \neq\{ \}$
proof -
have $S \subseteq$ topspace X and $*$:
$\wedge E 1$ E2. openin $X E 1 \longrightarrow$ openin $X E 2 \longrightarrow E 1 \cap E 2 \cap S=\{ \} \longrightarrow S \subseteq E 1$
$\cup E 2 \longrightarrow E 1 \cap S=\{ \} \vee E 2 \cap S=\{ \}$
using <connectedin $X S$ by (auto simp: connectedin)
moreover
have $S-($ topspace $X \cap T) \neq\{ \}$
using assms(3) by blast
moreover
have $S \cap$ topspace $X \cap T \neq\{ \}$
using assms(1) assms(2) connectedin by fastforce
moreover
have False if $S \cap T \neq\{ \} S-T \neq\{ \} T \subseteq$ topspace $X S \cap X$ frontier_of $T=$

```
```

$\}$ for T
proof -
have null: $S \cap(X$ closure_of $T-X$ interior_of $T)=\{ \}$
using that unfolding frontier_of_def by blast
have X interior_of $T \cap($ topspace $X-X$ closure_of $T) \cap S=\{ \}$
by (metis Diff_disjoint inf_bot_left interior_of_Int interior_of_complement inte-
rior_of_empty)
moreover have $S \subseteq X$ interior_of $T \cup($ topspace $X-X$ closure_of $T)$
using that $\langle S \subseteq$ topspace X 〉 null by auto
moreover have $S \cap X$ interior_of $T \neq\{ \}$
using closure_of_subset that(1) that(3) null by fastforce
ultimately have $S \cap X$ interior_of (topspace $X-T)=\{ \}$
by (metis * inf_commute interior_of_complement openin_interior_of)
then have topspace (subtopology $X S$) $\cap X$ interior_of $T=S$
using $\langle S \subseteq$ topspace X 〉 interior_of_complement null by fastforce
then show? thesis
using that by (metis Diff_eq_empty_iff inf_le2 interior_of_subset subset_trans)
qed
ultimately show ?thesis
by (metis Int_lower1 frontier_of_restrict inf_assoc)
qed
lemma connectedin_continuous_map_image:
assumes f : continuous_map $X Y f$ and connectedin $X S$
shows connectedin $Y\left(f^{\prime} S\right)$
proof -
have $S \subseteq$ topspace X and $*$:
$\bigwedge E 1$ E2. openin $X E 1 \longrightarrow$ openin $X E 2 \longrightarrow E 1 \cap E 2 \cap S=\{ \} \longrightarrow S \subseteq E 1$
$\cup E 2 \longrightarrow E 1 \cap S=\{ \} \vee E 2 \cap S=\{ \}$
using 〈connectedin $X S$ by (auto simp: connectedin)
show ?thesis
unfolding connectedin connected_space_def
proof (intro conjI notI; clarify)
show $f x \in$ topspace Y if $x \in S$ for x
using $\langle S \subseteq$ topspace X 〉 continuous_map_image_subset_topspace f that by blast
next
fix $U V$
let ? $U=\{x \in$ topspace $X . f x \in U\}$
let $? V=\{x \in$ topspace $X . f x \in V\}$
assume $U V$: openin $Y U$ openin $Y V f^{\prime} S \subseteq U \cup V U \cap V \cap f$ ' $S=\{ \} U$
$\cap f^{\prime} S \neq\{ \} V \cap f^{\prime} S \neq\{ \}$
then have 1:? $U \cap$? $V \cap S=\{ \}$
by auto
have 2: openin X ? U openin X ? V
using <openin $Y U\rangle\langle o p e n i n ~ Y V\rangle$ continuous_map f by fastforce+
show False
using * $[o f$? U ? $V] U V\langle S \subseteq$ topspace $X\rangle$
by (auto simp: 1 2)
qed

```

\section*{qed}
lemma homeomorphic_connected_space:
\(X\) homeomorphic_space \(Y \Longrightarrow\) connected_space \(X \longleftrightarrow\) connected_space \(Y\)
unfolding homeomorphic_space_def homeomorphic_maps_def
by (metis connected_space_subconnected connectedin_continuous_map_image con-
nectedin_topspace continuous_map_image_subset_topspace image_eqI image_subset_iff)
lemma homeomorphic_map_connectedness:
assumes \(f\) : homeomorphic_map \(X Y f\) and \(U: U \subseteq\) topspace \(X\)
shows connectedin \(Y\left(f^{\prime} U\right) \longleftrightarrow\) connectedin \(X U\)
proof -
have 1: \(f\) ' \(U \subseteq\) topspace \(Y \longleftrightarrow U \subseteq\) topspace \(X\)
using \(U\) f homeomorphic_imp_surjective_map by blast
moreover have connected_space (subtopology \(\left.Y\left(f^{\prime} U\right)\right) \longleftrightarrow\) connected_space
(subtopology \(X U\) )
proof (rule homeomorphic_connected_space)
have \(f\) ' \(U \subseteq\) topspace \(Y\)
by (simp add: U 1)
then have topspace \(Y \cap f^{\prime} U=f^{\prime} U\)
by (simp add: subset_antisym)
then show subtopology \(Y\left(f^{\prime} U\right)\) homeomorphic_space subtopology \(X U\)
by (metis (no_types) Int_subset_iff \(U\) f homeomorphic_map_imp_homeomorphic_space
homeomorphic_map_subtopologies homeomorphic_space_sym subset_antisym subset_refl)
qed
ultimately show ?thesis
by (auto simp: connectedin_def)
qed
lemma homeomorphic_map_connectedness_eq:
homeomorphic_map X Yf
\(\Longrightarrow\) connectedin \(X U \longleftrightarrow\)
\(U \subseteq\) topspace \(X \wedge\) connectedin \(Y\left(f^{\prime} U\right)\)
using homeomorphic_map_connectedness connectedin_subset_topspace by metis
lemma connectedin_discrete_topology:
connectedin (discrete_topology \(U) S \longleftrightarrow S \subseteq U \wedge(\exists a . S \subseteq\{a\})\)
proof (cases \(S \subseteq U\) )
case True
show ?thesis
proof (cases \(S=\{ \}\) )
case False
moreover have connectedin (discrete_topology \(U) S \longleftrightarrow(\exists a . S=\{a\})\)
proof
show connectedin (discrete_topology \(U\) ) \(S \Longrightarrow \exists a . S=\{a\}\)
using False connectedin_inter_frontier_of insert_Diff by fastforce
qed (use True in auto)
ultimately show ?thesis
by auto
qed \(\operatorname{simp}\)
next
case False
then show? ?thesis
by (simp add: connectedin_def)
qed
lemma connected_space_discrete_topology:
connected_space (discrete_topology \(U) \longleftrightarrow(\exists a . U \subseteq\{a\})\)
by (metis connectedin_discrete_topology connectedin_topspace order_refl topspace_discrete_topology)

\subsection*{2.2.17 Compact sets}
definition compactin where
compactin \(X S \longleftrightarrow\)
\(S \subseteq\) topspace \(X \wedge\)
\((\forall \mathcal{U} .(\forall U \in \mathcal{U}\). openin \(X U) \wedge S \subseteq \bigcup \mathcal{U}\)
\[
\longrightarrow(\exists \mathcal{F} . \text { finite } \mathcal{F} \wedge \mathcal{F} \subseteq \mathcal{U} \wedge S \subseteq \bigcup \mathcal{F}))
\]
definition compact_space where
```

compact_space X \equiv compactin X (topspace X)

```
lemma compact_space_alt: compact_space \(X \longleftrightarrow\)
\((\forall \mathcal{U} .(\forall U \in \mathcal{U}\). openin \(X U) \wedge\) topspace \(X \subseteq \bigcup \mathcal{U}\)
\(\longrightarrow(\exists \mathcal{F}\). finite \(\mathcal{F} \wedge \mathcal{F} \subseteq \mathcal{U} \wedge\) topspace \(X \subseteq \bigcup \mathcal{F}))\)
by (simp add: compact_space_def compactin_def)
lemma compact_space:
compact_space \(X \longleftrightarrow\)
\((\forall \mathcal{U} .(\forall U \in \mathcal{U}\). openin \(X U) \wedge \bigcup \mathcal{U}=\) topspace \(X\)
\(\longrightarrow(\exists \mathcal{F}\). finite \(\mathcal{F} \wedge \mathcal{F} \subseteq \mathcal{U} \wedge \bigcup \mathcal{F}=\) topspace \(X))\)
unfolding compact_space_alt
using openin_subset by fastforce
lemma compactinD
\(\llbracket\) compactin \(X S ; \wedge U . U \in \mathcal{U} \Longrightarrow\) openin \(X U ; S \subseteq \bigcup \mathcal{U} \rrbracket \Longrightarrow \exists \mathcal{F}\). finite \(\mathcal{F} \wedge \mathcal{F}\)
\(\subseteq \mathcal{U} \wedge S \subseteq \bigcup \mathcal{F}\)
by (auto simp: compactin_def)
lemma compactin_euclidean_iff [simp]: compactin euclidean \(S \longleftrightarrow\) compact \(S\)
by (simp add: compact_eq_Heine_Borel compactin_def) meson
lemma compactin_absolute [simp]:
compactin (subtopology \(X S\) ) \(S \longleftrightarrow\) compactin \(X S\)
proof -
have eq: \((\forall U \in \mathcal{U} . \exists Y\). openin \(X Y \wedge U=Y \cap S) \longleftrightarrow \mathcal{U} \subseteq(\lambda Y . Y \cap S) \cdot\)
\(\{y\). openin \(X y\}\) for \(\mathcal{U}\)
by auto
```

 show ?thesis
 by (auto simp: compactin_def openin_subtopology eq imp_conjL all_subset_image
 ex_finite_subset_image)
qed

```
lemma compactin_subspace: compactin \(X S \longleftrightarrow S \subseteq\) topspace \(X \wedge\) compact_space (subtopology X S)
unfolding compact_space_def topspace_subtopology
by (metis compactin_absolute compactin_def inf.absorb2)
lemma compact_space_subtopology: compactin \(X S \Longrightarrow\) compact_space (subtopology \(X S\) )
by (simp add: compactin_subspace)
lemma compactin_subtopology: compactin (subtopology \(X S\) ) \(T \longleftrightarrow\) compactin \(X\) \(T \wedge T \subseteq S\)
by (metis compactin_subspace inf.absorb_iff2 le_inf_iff subtopology_subtopology topspace_subtopology)
lemma compactin_subset_topspace: compactin \(X S \Longrightarrow S \subseteq\) topspace \(X\) by (simp add: compactin_subspace)
lemma compactin_contractive:
\(\llbracket\) compactin \(X^{\prime} S\); topspace \(X^{\prime}=\) topspace \(X\);
\(\bigwedge U\). openin \(X U \Longrightarrow\) openin \(X^{\prime} U \rrbracket \Longrightarrow\) compactin \(X S\)
by (simp add: compactin_def)
lemma finite_imp_compactin:
\(\llbracket S \subseteq\) topspace \(X\); finite \(S \rrbracket \Longrightarrow\) compactin \(X S\)
by (metis compactin_subspace compact_space finite_UnionD inf.absorb_iff2 order_refl topspace_subtopology)
lemma compactin_empty [iff]: compactin \(X\}\) by (simp add: finite_imp_compactin)
lemma compact_space_topspace_empty: topspace \(X=\{ \} \Longrightarrow\) compact_space \(X\)
by (simp add: compact_space_def)
lemma finite_imp_compactin_eq:
finite \(S \Longrightarrow\) (compactin \(X S \longleftrightarrow S \subseteq\) topspace \(X\) )
using compactin_subset_topspace finite_imp_compactin by blast
lemma compactin_sing [simp]: compactin \(X\{a\} \longleftrightarrow a \in\) topspace \(X\) by (simp add: finite_imp_compactin_eq)
lemma closed_compactin:
assumes \(X K\) : compactin \(X K\) and \(C \subseteq K\) and \(X C\) : closedin \(X C\)
shows compactin \(X C\)
```

 unfolding compactin_def
 proof (intro conjI allI impI)
show $C \subseteq$ topspace X
by (simp add: XC closedin_subset)
next
fix $\mathcal{U}::{ }^{\prime} a$ set set
assume \mathcal{U} : Ball $\mathcal{U}($ openin $X) \wedge C \subseteq \bigcup \mathcal{U}$
have $(\forall U \in$ insert (topspace $X-C) \mathcal{U}$. openin $X U)$
using $X C \mathcal{U}$ by blast
moreover have $K \subseteq \bigcup($ insert (topspace $X-C) \mathcal{U})$
using \mathcal{U} XK compactin_subset_topspace by fastforce
ultimately obtain \mathcal{F} where finite $\mathcal{F} \mathcal{F} \subseteq$ insert (topspace $X-C$) $\mathcal{U} K \subseteq$
$\bigcup \mathcal{F}$
using assms unfolding compactin_def by metis
moreover have openin X (topspace $X-C$)
using $X C$ by auto
ultimately show $\exists \mathcal{F}$. finite $\mathcal{F} \wedge \mathcal{F} \subseteq \mathcal{U} \wedge C \subseteq \bigcup \mathcal{F}$
using $\langle C \subseteq K$ 〉
by (rule_tac $x=\mathcal{F}-\{$ topspace $X-C\}$ in exI) auto
qed
lemma closedin_compact_space:
\llbracket compact_space X; closedin $X S \rrbracket \Longrightarrow$ compactin X S
by (simp add: closed_compactin closedin_subset compact_space_def)
lemma compact_Int_closedin:
assumes compactin $X S$ closedin $X T$ shows compactin $X(S \cap T)$
proof -
have compactin (subtopology $X S)(S \cap T)$
by (metis assms closedin_compact_space closedin_subtopology compactin_subspace
inf_commute)
then show ?thesis
by (simp add: compactin_subtopology)
qed
lemma closed_Int_compactin: \llbracket closedin $X S$; compactin $X T \rrbracket \Longrightarrow$ compactin X (S
$\cap T$)
by (metis compact_Int_closedin inf_commute)
lemma compactin_Un:
assumes S : compactin $X S$ and T : compactin $X T$ shows compactin $X(S \cup$
T)
unfolding compactin_def
proof (intro conjI allI impI)
show $S \cup T \subseteq$ topspace X
using assms by (auto simp: compactin_def)
next
fix $\mathcal{U}::{ }^{\prime} a$ set set
assume \mathcal{U} : Ball $\mathcal{U}($ openin $X) \wedge S \cup T \subseteq \bigcup \mathcal{U}$

```
with \(S\) obtain \(\mathcal{F}\) where \(\mathcal{V}\) : finite \(\mathcal{F} \mathcal{F} \subseteq \mathcal{U} S \subseteq \bigcup \mathcal{F}\)
unfolding compactin_def by (meson sup.bounded_iff)
obtain \(\mathcal{W}\) where finite \(\mathcal{W} \mathcal{W} \subseteq \mathcal{U} T \subseteq \bigcup \mathcal{W}\) using \(\mathcal{U} T\) unfolding compactin_def by (meson sup.bounded_iff)
with \(\mathcal{V}\) show \(\exists \mathcal{V}\). finite \(\mathcal{V} \wedge \mathcal{V} \subseteq \mathcal{U} \wedge S \cup T \subseteq \bigcup \mathcal{V}\)
by (rule_tac \(x=\mathcal{F} \cup \mathcal{W}\) in exI) auto
qed
lemma compactin_Union:
\(\llbracket\) finite \(\mathcal{F} ; \backslash S . S \in \mathcal{F} \Longrightarrow\) compactin \(X S \rrbracket \Longrightarrow\) compactin \(X(\bigcup \mathcal{F})\)
by (induction rule: finite_induct) (simp_all add: compactin_Un)
```

lemma compactin_subtopology_imp_compact:
assumes compactin (subtopology $X S$) K shows compactin $X K$
using assms
proof (clarsimp simp add: compactin_def)
fix \mathcal{U}
define \mathcal{V} where $\mathcal{V} \equiv(\lambda U . U \cap S)$ ' \mathcal{U}
assume $K \subseteq$ topspace X and $K \subseteq S$ and $\forall x \in \mathcal{U}$. openin $X x$ and $K \subseteq \cup \mathcal{U}$
then have $\forall V \in \mathcal{V}$. openin (subtopology $X S$) $V K \subseteq \bigcup \mathcal{V}$
unfolding \mathcal{V}_{-}def by (auto simp: openin_subtopology)
moreover
assume $\forall \mathcal{U}$. $(\forall x \in \mathcal{U}$. openin (subtopology $X S) x) \wedge K \subseteq \bigcup \mathcal{U} \longrightarrow(\exists \mathcal{F}$. finite
$\mathcal{F} \wedge \mathcal{F} \subseteq \mathcal{U} \wedge K \subseteq \bigcup \mathcal{F})$
ultimately obtain \mathcal{F} where finite $\mathcal{F} \mathcal{F} \subseteq \mathcal{V} K \subseteq \bigcup \mathcal{F}$
by meson
then have $\mathcal{F}: \exists U . U \in \mathcal{U} \wedge V=U \cap S$ if $V \in \mathcal{F}$ for V
unfolding \mathcal{V}_{-}def using that by blast
let ? $\mathcal{F}=(\lambda F \text {. @ } U . U \in \mathcal{U} \wedge F=U \cap S)^{\prime} \mathcal{F}$
show $\exists \mathcal{F}$. finite $\mathcal{F} \wedge \mathcal{F} \subseteq \mathcal{U} \wedge K \subseteq \bigcup \mathcal{F}$
proof (intro exI conjI)
show finite ? \mathcal{F}
using $\langle f i n i t e ~ \mathcal{F}\rangle$ by blast
show ? $\mathcal{F} \subseteq \mathcal{U}$
using someI_ex $[O F \mathcal{F}]$ by blast
show $K \subseteq \bigcup$? \mathcal{F}
proof clarsimp
fix x
assume $x \in K$
then show $\exists V \in \mathcal{F} . x \in(S O M E U . U \in \mathcal{U} \wedge V=U \cap S)$
using $\langle K \subseteq \bigcup \mathcal{F}\rangle$ someI_ex $[$ OF $\mathcal{F}]$
by (metis (no_types, lifting) IntD1 Union_iff subsetCE)
qed
qed
qed

```
lemma compact_imp_compactin_subtopology:
assumes compactin \(X K K \subseteq S\) shows compactin (subtopology X S) K
```

using assms
proof (clarsimp simp add: compactin_def)
fix \mathcal{U} :: ' a set set
define \mathcal{V} where $\mathcal{V} \equiv\{V$. openin $X V \wedge(\exists U \in \mathcal{U} . U=V \cap S)\}$
assume $K \subseteq S$ and $K \subseteq$ topspace X and $\forall U \in \mathcal{U}$. openin (subtopology $X S$) U
and $K \subseteq \bigcup \mathcal{U}$
then have $\forall V \in \mathcal{V}$. openin $X V K \subseteq \bigcup \mathcal{V}$
unfolding $\mathcal{V}_{\text {_ }}$ def by (fastforce simp: subset_eq openin_subtopology)+
moreover
assume $\forall \mathcal{U}$. $(\forall U \in \mathcal{U}$. openin $X U) \wedge K \subseteq \bigcup \mathcal{U} \longrightarrow(\exists \mathcal{F}$. finite $\mathcal{F} \wedge \mathcal{F} \subseteq \mathcal{U} \wedge$
$K \subseteq \bigcup \mathcal{F})$
ultimately obtain \mathcal{F} where finite $\mathcal{F} \mathcal{F} \subseteq \mathcal{V} K \subseteq \bigcup \mathcal{F}$
by meson
let $? \mathcal{F}=(\lambda F . F \cap S)^{\prime} \mathcal{F}$
show $\exists \mathcal{F}$. finite $\mathcal{F} \wedge \mathcal{F} \subseteq \mathcal{U} \wedge K \subseteq \bigcup \mathcal{F}$
proof (intro exI conjI)
show finite ? \mathcal{F}
using 〈finite \mathcal{F} 〉 by blast
show ? $\mathcal{F} \subseteq \mathcal{U}$
using \mathcal{V}_{-}def $\langle\mathcal{F} \subseteq \mathcal{V}\rangle$ by blast
show $K \subseteq \bigcup$? \mathcal{F}
using $\langle K \subseteq \bigcup \mathcal{F}\rangle$ assms(2) by auto
qed
qed

```
proposition compact_space_fip:
    compact_space \(X \longleftrightarrow\)
            \((\forall \mathcal{U} .(\forall C \in \mathcal{U}\). closedin \(X C) \wedge(\forall \mathcal{F}\). finite \(\mathcal{F} \wedge \mathcal{F} \subseteq \mathcal{U} \longrightarrow \bigcap \mathcal{F} \neq\{ \}) \longrightarrow\)
\(\bigcap \mathcal{U} \neq\{ \})\)
    (is _ = ?rhs)
proof (cases topspace \(X=\{ \}\) )
    case True
    then show ?thesis
unfolding compact_space_def
    by (metis Sup_bot_conv(1) closedin_topspace_empty compactin_empty finite.emptyI
finite_UnionD order_refl)
next
    case False
    show ?thesis
    proof safe
        fix \(\mathcal{U}\) :: ' \(a\) set set
        assume \(*[\) rule_format \(]: \forall \mathcal{F}\). finite \(\mathcal{F} \wedge \mathcal{F} \subseteq \mathcal{U} \longrightarrow \bigcap \mathcal{F} \neq\{ \}\)
        define \(\mathcal{V}\) where \(\mathcal{V} \equiv(\lambda S\). topspace \(X-S)\) ' \(\mathcal{U}\)
        assume clo: \(\forall C \in \mathcal{U}\). closedin \(X C\) and \([\) simp \(]: \bigcap \mathcal{U}=\{ \}\)
        then have \(\forall V \in \mathcal{V}\). openin \(X V\) topspace \(X \subseteq \bigcup \mathcal{V}\)
        by (auto simp: \(\mathcal{V}_{\text {_ }}\) def)
    moreover assume [unfolded compact_space_alt, rule_format, of \(\mathcal{V}\) ]: compact_space
X
ultimately obtain \(\mathcal{F}\) where \(\mathcal{F}\) ：finite \(\mathcal{F} \mathcal{F} \subseteq \mathcal{U}\) topspace \(X \subseteq\) topspace \(X-\) \(\bigcap \mathcal{F}\)
by（auto simp：ex＿finite＿subset＿image \(\mathcal{V} \_d e f\) ）
moreover have \(\mathcal{F} \neq\{ \}\)
using \(\mathcal{F}\) 〈topspace \(X \neq\{ \}\) 〉 by blast
ultimately show False
using \(*[o f \mathcal{F}]\)
by auto（metis Diff＿iff Inter＿iff clo closedin＿def subsetD）
next
assume \(R\)［rule＿format］：？rhs
show compact＿space \(X\)
unfolding compact＿space＿alt
proof clarify
fix \(\mathcal{U}\) ：：＇\(a\) set set
define \(\mathcal{V}\) where \(\mathcal{V} \equiv(\lambda S\) ．topspace \(X-S)\)＇ \(\mathcal{U}\)
assume \(\forall C \in \mathcal{U}\) ．openin \(X C\) and topspace \(X \subseteq \bigcup \mathcal{U}\)
with 〈topspace \(X \neq\{ \}\) 〉 have \(*: \forall V \in \mathcal{V}\) ．closedin \(X\) V \(\mathcal{U} \neq\{ \}\)
by（auto simp： \(\mathcal{V}_{\text {＿def }}\) ）
show \(\exists \mathcal{F}\) ．finite \(\mathcal{F} \wedge \mathcal{F} \subseteq \mathcal{U} \wedge\) topspace \(X \subseteq \bigcup \mathcal{F}\)
proof（rule ccontr；simp）
assume \(\forall \mathcal{F} \subseteq \mathcal{U}\) ．finite \(\mathcal{F} \longrightarrow \neg\) topspace \(X \subseteq \bigcup \mathcal{F}\)
then have \(\forall \mathcal{F}\) ．finite \(\mathcal{F} \wedge \mathcal{F} \subseteq \mathcal{V} \longrightarrow \bigcap \mathcal{F} \neq\{ \}\)
by（simp add： \(\mathcal{V}_{-}\)def all＿finite＿subset＿image）
with 〈topspace \(X \subseteq \bigcup \mathcal{U}\) 〉 show False
using \(R[\) of \(\mathcal{V}] *\) by（simp add： \(\mathcal{V}_{-} d e f\) ）
qed
qed
qed
qed
corollary compactin＿fip：
compactin \(X S \longleftrightarrow\)
\(S \subseteq\) topspace \(X \wedge\)
\((\forall \mathcal{U} .(\forall C \in \mathcal{U}\) ．closedin \(X C) \wedge(\forall \mathcal{F}\) ．finite \(\mathcal{F} \wedge \mathcal{F} \subseteq \mathcal{U} \longrightarrow S \cap \bigcap \mathcal{F} \neq\{ \})\)
\(\longrightarrow S \cap \bigcap \mathcal{U} \neq\{ \})\)
proof（cases \(S=\{ \}\) ）
case False
show ？thesis
proof（cases \(S \subseteq\) topspace \(X\) ）
case True
then have compactin \(X S \longleftrightarrow\)
\(\left(\forall \mathcal{U} . \mathcal{U} \subseteq(\lambda T . S \cap T)^{\prime}\{T\right.\). closedin \(X T\} \longrightarrow\)
\((\forall \mathcal{F}\) ．finite \(\mathcal{F} \longrightarrow \mathcal{F} \subseteq \mathcal{U} \longrightarrow \bigcap \mathcal{F} \neq\{ \}) \longrightarrow \bigcap \mathcal{U} \neq\{ \})\)
by（simp add：compact＿space＿fip compactin＿subspace closedin＿subtopology im－ age＿def subset＿eq Int＿commute imp＿conjL）
also have \(\ldots=(\forall \mathcal{U} \subseteq\) Collect（closedin \(X) .(\forall \mathcal{F}\) ．finite \(\mathcal{F} \longrightarrow \mathcal{F} \subseteq(\cap) S ' \mathcal{U}\) \(\left.\longrightarrow \bigcap \mathcal{F} \neq\{ \}) \longrightarrow \bigcap\left((\cap) S^{\prime} \mathcal{U}\right) \neq\{ \}\right)\)
by（simp add：all＿subset＿image）
also have \(\ldots=(\forall \mathcal{U} .(\forall C \in \mathcal{U}\) ．closedin \(X C) \wedge(\forall \mathcal{F}\) ．finite \(\mathcal{F} \wedge \mathcal{F} \subseteq \mathcal{U} \longrightarrow\)
```

S\cap\cap\mathcal{F}\not={})\longrightarrowS\cap\cap\mathcal{U}\not={})
proof -
have eq:((\forall\mathcal{F}.f\mathrm{ finite }\mathcal{F}\wedge\mathcal{F}\subseteq\mathcal{U}\longrightarrow\cap((\cap)S'\mathcal{F})\not={})\longrightarrow\cap((\cap)S'
U) }\not={})
((\forall\mathcal{F}.f\mathrm{ finite }\mathcal{F}\wedge\mathcal{F}\subseteq\mathcal{U}\longrightarrowS\cap\cap\mathcal{F}\not={})\longrightarrowS\cap\cap\mathcal{U}\not={}) for
U
by simp (use \S\not={}` in blast) show ?thesis unfolding imp_conjL [symmetric] all_finite_subset_image eq by blast qed finally show ?thesis using True by simp qed (simp add: compactin_subspace) qed force corollary compact_space_imp_nest: fixes C :: nat # 'a set assumes compact_space X and clo: \n. closedin X (C n) and ne:\n.Cn\not={} and inc: \mn.m\leqn\LongrightarrowCn\subseteqCm shows (}\capn.Cn)\not={ proof - let ?\mathcal{U}=\operatorname{range}(\lambdan.\capm\leqn.C m) have closedin XA if A\in? U for } using that clo by auto moreover have (}\capn\inK.\capm\leqn.Cm)\not={}\mathrm{ if finite K for K proof - obtain n where }\k.k\inK\Longrightarrowk\leq using Max.coboundedI \{inite K` by blast
with inc have Cn\subseteq(\capn\inK.\capm\leqn.C m)
by blast
with ne [of n] show ?thesis
by blast
qed
ultimately show ?thesis
using (compact_space X) [unfolded compact_space_fip,rule_format, of ?U]
by (simp add: all_finit_subset_image INT_extend_simps UN_atMost_UNIV del:
INT_simps)
qed
lemma compactin_discrete_topology:
compactin (discrete_topology X) S\longleftrightarrowS\subseteqX finite S (is ?lhs =?rhs)
proof (intro iffI conjI)
assume L: ?lhs
then show S\subseteqX
by (auto simp: compactin_def)
have *:
mathcal{U}.\mathrm{ Ball UU (openin (discrete_topology X))}\wedgeS\subseteq\cup\mathcal{U}\Longrightarrow
(\exists\mathcal{F}. finite \mathcal{F}\wedge\mathcal{F}\subseteq\mathcal{U}\wedgeS\subseteq\bigcup\mathcal{F})
using L by (auto simp: compactin_def)
show finite S

```
```

 using * [of (}\lambdax.{x})'X]\langleS\subseteqX
 by clarsimp (metis UN_singleton finite_subset_image infinite_super)
 next
assume ?rhs
then show?lhs
by (simp add: finite_imp_compactin)
qed
lemma compact_space_discrete_topology: compact_space(discrete_topology X)}
finite X
by (simp add: compactin_discrete_topology compact_space_def)
lemma compact_space_imp_Bolzano_Weierstrass:
assumes compact_space X infinite S S\subseteqtopspace X
shows X derived_set_of S}\not={
proof
assume X: X derived_set_of S={}
then have closedin X S
by (simp add: closedin_contains_derived_set assms)
then have compactin X S
by (rule closedin_compact_space [OF <compact_space X\])

 with X show False
 by (metis <infinite S` compactin_subspace compact_space_discrete_topology inf_bot_right
 subtopology_eq_discrete_topology_eq)
qed
lemma compactin_imp_Bolzano_Weierstrass:
\llbracketcompactin X S; infinite T}\wedgeT\subseteqS\rrbracket\LongrightarrowS\capX derived_set_of T\not={
using compact_space_imp_Bolzano_Weierstrass [of subtopology X S]
by (simp add: compactin_subspace derived_set_of_subtopology inf_absorb2)
lemma compact_closure_of_imp_Bolzano_Weierstrass:
\llbracketcompactin X (X closure_of S); infinite T;T\subseteqS;T\subseteq topspace X\rrbracket\LongrightarrowX
derived_set_of T}\not={
using closure_of_mono closure_of_subset compactin_imp_Bolzano_Weierstrass by
fastforce
lemma discrete_compactin_eq_finite:
S\capX derived_set_of S={} \Longrightarrowompactin X S \longleftrightarrow S\subseteq topspace X ^ finite S
by (meson compactin_imp_Bolzano_Weierstrass finite_imp_compactin_eq order_refl)
lemma discrete_compact_space_eq_finite:
X derived_set_of (topspace X) = {} \Longrightarrow(compact_space X \longleftrightarrow finite(topspace
X))
by (metis compact_space_discrete_topology discrete_topology_unique_derived_set)
lemma image_compactin:
assumes cpt:compactin XS and cont:continuous_map X Yf
shows compactin Y (f'S)

```
```

 unfolding compactin_def
 proof (intro conjI allI impI)
show f ' $S \subseteq$ topspace Y
using compactin_subset_topspace cont continuous_map_image_subset_topspace cpt
by blast
next
fix $\mathcal{U}::$ ' b set set
assume \mathcal{U} : Ball $\mathcal{U}($ openin $Y) \wedge f^{\prime} S \subseteq \bigcup \mathcal{U}$
define \mathcal{V} where $\mathcal{V} \equiv(\lambda U .\{x \in$ topspace $X . f x \in U\})$ ' \mathcal{U}
have $S \subseteq$ topspace X
and $*: \bigwedge \mathcal{U}$. $\llbracket U \in \mathcal{U}$. openin $X U ; S \subseteq \bigcup \mathcal{U} \rrbracket \Longrightarrow \exists \mathcal{F}$. finite $\mathcal{F} \wedge \mathcal{F} \subseteq \mathcal{U} \wedge S$
$\subseteq \bigcup \mathcal{F}$
using cpt by (auto simp: compactin_def)
obtain \mathcal{F} where \mathcal{F} : finite $\mathcal{F} \mathcal{F} \subseteq \mathcal{V} S \subseteq \bigcup \mathcal{F}$
proof -
have 1: $\forall U \in \mathcal{V}$. openin $X U$
unfolding \mathcal{V}_{-}def using \mathcal{U} cont[unfolded continuous_map] by blast
have 2: $S \subseteq \cup \mathcal{V}$
unfolding $\mathcal{V}_{\text {_ }}$ def using compactin_subset_topspace cpt \mathcal{U} by fastforce
show thesis
using $*\left[\begin{array}{lll}O F & 1 & 2\end{array}\right]$ that by metis
qed
have $\forall v \in \mathcal{V} . \exists U . U \in \mathcal{U} \wedge v=\{x \in$ topspace $X . f x \in U\}$
using $\mathcal{V}_{\text {_ def }}$ by blast
then obtain U where $U: \forall v \in \mathcal{V} . U v \in \mathcal{U} \wedge v=\{x \in$ topspace $X . f x \in U$
$v\}$
by metis
show $\exists \mathcal{F}$. finite $\mathcal{F} \wedge \mathcal{F} \subseteq \mathcal{U} \wedge f^{\prime} S \subseteq \bigcup \mathcal{F}$
proof (intro conjI exI)
show finite $\left(U^{\prime} \mathcal{F}\right)$
by (simp add: 〈finite $\mathcal{F}\rangle)$
next
show $U{ }^{\prime} \mathcal{F} \subseteq \mathcal{U}$
using $\langle\mathcal{F} \subseteq \mathcal{V}\rangle U$ by auto
next
show f ' $S \subseteq \bigcup(U ' \mathcal{F})$
using $\mathcal{F}(2-3)$ UnionE subset_eq U by fastforce
qed
qed

```
lemma homeomorphic_compact_space:
    assumes \(X\) homeomorphic_space \(Y\)
    shows compact_space \(X \longleftrightarrow\) compact_space \(Y\)
        using homeomorphic_space_sym
            by (metis assms compact_space_def homeomorphic_eq_everything_map homeo-
morphic_space image_compactin)
lemma homeomorphic_map_compactness:
```

 assumes hom: homeomorphic_map \(X Y f\) and \(U: U \subseteq\) topspace \(X\)
 shows compactin \(Y\left(f^{\prime} U\right) \longleftrightarrow\) compactin \(X U\)
 proof -
have f ' $U \subseteq$ topspace Y
using hom U homeomorphic_imp_surjective_map by blast
moreover have homeomorphic_map (subtopology X U) (subtopology $Y\left(f^{\prime} U\right)$)
f
using U hom homeomorphic_imp_surjective_map by (blast intro: homeomor-
phic_map_subtopologies)
then have compact_space (subtopology $\left.Y\left(f^{\prime} U\right)\right)=$ compact_space (subtopology
$X U)$
using homeomorphic_compact_space homeomorphic_map_imp_homeomorphic_space
by blast
ultimately show ?thesis
by (simp add: compactin_subspace U)
qed
lemma homeomorphic_map_compactness_eq:
homeomorphic_map X Yf
\Longrightarrow compactin $X U \longleftrightarrow U \subseteq$ topspace $X \wedge$ compactin $Y\left(f^{\prime} U\right)$
by (meson compactin_subset_topspace homeomorphic_map_compactness)

```

\subsection*{2.2.18 Embedding maps}
definition embedding_map
where embedding_map \(X \quad Y f \equiv\) homeomorphic_map \(X\) (subtopology \(Y\) (f' (topspace \(X\) ))) \(f\)
```

lemma embedding_map_eq:
$\llbracket e m b e d d i n g _m a p \quad X Y f ; \bigwedge x . x \in$ topspace $X \Longrightarrow f x=g x \rrbracket \Longrightarrow$ embedding_map
X Yg
unfolding embedding_map_def
by (metis homeomorphic_map_eq image_cong)
lemma embedding_map_compose:
assumes embedding_map $X X^{\prime} f$ embedding_map $X^{\prime} X^{\prime \prime} g$
shows embedding_map $X X^{\prime \prime}(g \circ f)$
proof -
have hm: homeomorphic_map X (subtopology $X^{\prime}(f$ 'topspace $\left.X)\right) f$ homeomor-
phic_map $X^{\prime}\left(\right.$ subtopology $X^{\prime \prime}\left(g\right.$ 'topspace $\left.\left.X^{\prime}\right)\right) g$
using assms by (auto simp: embedding_map_def)
then obtain C where g 'topspace $X^{\prime} \cap C=(g \circ f)$ 'topspace X
by (metis (no_types) Int_absorb1 continuous_map_image_subset_topspace contin-
uous_map_in_subtopology homeomorphic_eq_everything_map image_comp image_mono)
then have homeomorphic_map (subtopology $X^{\prime}(f$ 'topspace $X)$) (subtopology
$X^{\prime \prime}((g \circ f)$ ' topspace $\left.X)\right) g$
by (metis hm homeomorphic_imp_surjective_map homeomorphic_map_subtopologies
image_comp subtopology_subtopology topspace_subtopology)
then show ?thesis

```
unfolding embedding_map_def
using \(h m(1)\) homeomorphic_map_compose by blast
qed
lemma surjective_embedding_map:
embedding_map \(X Y f \wedge f^{\prime}(\) topspace \(X)=\) topspace \(Y \longleftrightarrow\) homeomorphic_map X Yf
by (force simp: embedding_map_def homeomorphic_eq_everything_map)
lemma embedding_map_in_subtopology:
embedding_map \(X\) (subtopology \(Y S\) ) \(f \longleftrightarrow\) embedding_map \(X Y f \wedge f^{\prime}(\) topspace
\(X) \subseteq S \quad(\) is ? lhs \(=? r h s)\)
proof
show ?lhs \(\Longrightarrow\) ?rhs
unfolding embedding_map_def
by (metis continuous_map_in_subtopology homeomorphic_imp_continuous_map inf_absorb2 subtopology_subtopology)
qed (simp add: embedding_map_def inf.absorb_iff2 subtopology_subtopology)
lemma injective_open_imp_embedding_map:
\(\llbracket\) continuous_map \(X\) Yf; open_map \(X Y f ;\) inj_on \(f(\) topspace \(X) \rrbracket \Longrightarrow\) embedding_map X Yf
unfolding embedding_map_def
by (simp add: continuous_map_in_subtopology continuous_open_quotient_map eq_iff homeomorphic_map_def open_map_imp_subset open_map_into_subtopology)
lemma injective_closed_imp_embedding_map:
\(\llbracket\) continuous_map \(X Y f ;\) closed_map \(X Y f ;\) inj_on \(f(\) topspace \(X) \rrbracket \Longrightarrow\) embedding_map \(X Y f\)
unfolding embedding_map_def
by (simp add: closed_map_imp_subset closed_map_into_subtopology continuous_closed_quotient_map continuous_map_in_subtopology dual_order.eq_iff homeomorphic_map_def)
lemma embedding_map_imp_homeomorphic_space:
embedding_map \(X Y f \Longrightarrow X\) homeomorphic_space (subtopology \(Y\) ( \(f\) ' topspace \(X)\) )
unfolding embedding_map_def
using homeomorphic_space by blast
lemma embedding_imp_closed_map:
\(\llbracket e m b e d d i n g \_m a p X Y f ;\) closedin \(Y(f\) 'topspace \(X) \rrbracket \Longrightarrow\) closed_map \(X Y f\)
unfolding closed_map_def
by (auto simp: closedin_closed_subtopology embedding_map_def homeomorphic_map_closedness_eq)

\subsection*{2.2.19 Retraction and section maps}
definition retraction_maps \(::\) ' \(a\) topology \(\Rightarrow\) ' \(b\) topology \(\Rightarrow\left({ }^{\prime} a \Rightarrow{ }^{\prime} b\right) \Rightarrow\left({ }^{\prime} b \Rightarrow{ }^{\prime} a\right)\)
\(\Rightarrow\) bool
where retraction_maps \(X Y f g \equiv\)
continuous_map \(X Y f \wedge\) continuous_map \(Y X g \wedge(\forall x \in\) topspace \(Y . f(g\) \(x)=x\) )
definition section_map :: 'a topology \(\Rightarrow\) 'b topology \(\Rightarrow\left({ }^{\prime} a \Rightarrow{ }^{\prime} b\right) \Rightarrow\) bool
where section_map \(X Y f \equiv \exists g\). retraction_maps \(Y X g f\)
definition retraction_map :: 'a topology \(\Rightarrow\) ' b topology \(\Rightarrow\left({ }^{\prime} a \Rightarrow\right.\) ' \(\left.b\right) \Rightarrow\) bool where retraction_map \(X Y f \equiv \exists g\). retraction_maps \(X Y f g\)
lemma retraction_maps_eq:
\(\llbracket\) retraction_maps \(X Y f g ; \bigwedge x . x \in\) topspace \(X \Longrightarrow f x=f^{\prime} x ; \bigwedge x . x \in\) topspace \(Y \Longrightarrow g x=g^{\prime} x \rrbracket\)
\(\Longrightarrow\) retraction_maps \(X Y f^{\prime} g^{\prime}\)
unfolding retraction_maps_def by (metis (no_types, lifting) continuous_map_def
continuous_map_eq)
lemma section_map_eq:
\(\llbracket\) section_map \(X Y f ; \bigwedge x . x \in\) topspace \(X \Longrightarrow f x=g x \rrbracket \Longrightarrow\) section_map \(X Y g\) unfolding section_map_def using retraction_maps_eq by blast
lemma retraction_map_eq:
\(\llbracket\) retraction_map \(X Y f ; \bigwedge x . x \in\) topspace \(X \Longrightarrow f x=g x \rrbracket \Longrightarrow\) retraction_map XYg
unfolding retraction_map_def using retraction_maps_eq by blast
lemma homeomorphic_imp_retraction_maps:
homeomorphic_maps \(X Y f g \Longrightarrow\) retraction_maps \(X Y f g\)
by (simp add: homeomorphic_maps_def retraction_maps_def)
lemma section_and_retraction_eq_homeomorphic_map:
section_map \(X Y f \wedge\) retraction_map \(X Y f \longleftrightarrow\) homeomorphic_map \(X Y f\) (is
\(? l h s=? r h s)\)
proof
assume ?lhs
then obtain \(g g^{\prime}\) where \(f\) : continuous_map \(X Y f\) and \(g\) : continuous_map \(Y X g \forall x \in\) topspace \(X . g(f x)=x\) and \(g^{\prime}\) : continuous_map \(Y X g^{\prime} \forall x \in\) topspace \(Y . f\left(g^{\prime} x\right)=x\) by (auto simp: retraction_map_def retraction_maps_def section_map_def)
then have homeomorphic_maps XYfg
by (force simp add: homeomorphic_maps_def continuous_map_def)
then show ? rhs
using homeomorphic_map_maps by blast
next
assume ?rhs
then show? ?hs unfolding retraction_map_def section_map_def
by (meson homeomorphic_imp_retraction_maps homeomorphic_map_maps homeomorphic_maps_sym)

\section*{qed}
lemma section_imp_embedding_map:
section_map \(X Y f \Longrightarrow\) embedding_map \(X Y f\)
unfolding section_map_def embedding_map_def homeomorphic_map_maps retrac-
tion_maps_def homeomorphic_maps_def
by (force simp: continuous_map_in_subtopology continuous_map_from_subtopology)
lemma retraction_imp_quotient_map:
assumes retraction_map X Yf
shows quotient_map X Y f
unfolding quotient_map_def
proof (intro conjI subsetI allI impI)
show \(f\) 'topspace \(X=\) topspace \(Y\)
using assms by (force simp: retraction_map_def retraction_maps_def continu-
ous_map_def)
next
fix \(U\)
assume \(U: U \subseteq\) topspace \(Y\)
have openin \(Y U\)
if \(\forall x \in\) topspace \(Y . g x \in\) topspace \(X \forall x \in\) topspace \(Y . f(g x)=x\) openin \(Y\{x \in\) topspace \(Y\). \(g x \in\{x \in\) topspace \(X\). \(f x \in U\}\}\) for \(g\)
using openin_subopen \(U\) that by fastforce
then show openin \(X\{x \in\) topspace \(X . f x \in U\}=\) openin \(Y U\)
using assms by (auto simp: retraction_map_def retraction_maps_def continuous_map_def)
qed
lemma retraction_maps_compose:
\(\llbracket\) retraction_maps \(X\) Y \(f^{\prime}\); retraction_maps \(Y Z g g \rrbracket \Longrightarrow\) retraction_maps \(X Z\) \((g \circ f)\left(f^{\prime} \circ g^{\prime}\right)\)
by (clarsimp simp: retraction_maps_def continuous_map_compose) (simp add: continuous_map_def)
lemma retraction_map_compose:
【retraction_map X Yf;retraction_map \(Y Z g \rrbracket \Longrightarrow\) retraction_map \(X Z(g \circ f)\)
by (meson retraction_map_def retraction_maps_compose)
lemma section_map_compose:
\(\llbracket\) section_map \(X Y f ;\) section_map \(Y Z g \rrbracket \Longrightarrow\) section_map \(X Z(g \circ f)\)
by (meson retraction_maps_compose section_map_def)
lemma surjective_section_eq_homeomorphic_map:
section_map \(X Y f \wedge f\) ' \((\) topspace \(X)=\) topspace \(Y \longleftrightarrow\) homeomorphic_map \(X\) Yf
by (meson section_and_retraction_eq_homeomorphic_map section_imp_embedding_map surjective_embedding_map)
lemma surjective_retraction_or_section_map:
\(f^{\prime}(\) topspace \(X)=\) topspace \(Y \Longrightarrow\) retraction_map \(X Y f \vee\) section_map \(X Y f\) \(\longleftrightarrow\) retraction_map \(X Y f\)
using section_and_retraction_eq_homeomorphic_map surjective_section_eq_homeomorphic_map by fastforce
lemma retraction_imp_surjective_map:
retraction_map \(X Y f \Longrightarrow f\) '(topspace \(X)=\) topspace \(Y\)
by (simp add: retraction_imp_quotient_map quotient_imp_surjective_map)
lemma section_imp_injective_map:
\(\llbracket\) section_map \(X Y f ; x \in\) topspace \(X ; y \in\) topspace \(X \rrbracket \Longrightarrow f x=f y \longleftrightarrow x=y\)
by (metis (mono_tags, hide_lams) retraction_maps_def section_map_def)
lemma retraction_maps_to_retract_maps:
retraction_maps X Yrs
\(\Longrightarrow\) retraction_maps \(X\) (subtopology \(X\left(s^{\prime}(\right.\) topspace \(\left.\left.Y)\right)\right)(s \circ r)\) id
unfolding retraction_maps_def
by (auto simp: continuous_map_compose continuous_map_into_subtopology continuous_map_from_subtopology)

\subsection*{2.2.20 Continuity}
lemma continuous_on_open:
continuous_on \(S f \longleftrightarrow\)
\(\left(\forall\right.\) T. openin \(\left(t o p_{-} o f_{-} s e t(f ' S)\right) T \longrightarrow\) openin (top_of_set \(\left.S)\left(S \cap f-{ }^{`} T\right)\right)\)
unfolding continuous_on_open_invariant openin_open Int_def vimage_def Int_commute by (simp add: imp_ex imageI conj_commute eq_commute cong: conj_cong)
lemma continuous_on_closed:
continuous_on \(S f \longleftrightarrow\)
\(\left(\forall T\right.\). closedin (top_of_set \(\left.\left(f^{\prime} S\right)\right) T \longrightarrow\) closedin (top_of_set \(S)(S \cap f-‘ T))\)
unfolding continuous_on_closed_invariant closedin_closed Int_def vimage_def Int_commute by (simp add: imp_ex imageI conj_commute eq_commute cong: conj_cong)
lemma continuous_on_imp_closedin:
assumes continuous_on S f closedin (top_of_set (f'S)) T
shows closedin (top_of_set \(S\) ) \(\left(S \cap f-^{\prime} T\right)\)
using assms continuous_on_closed by blast
lemma continuous_map_subtopology_eu [simp]:
continuous_map (top_of_set \(S\) ) (subtopology euclidean \(T\) ) \(h \longleftrightarrow\) continuous_on \(S\)
\(h \wedge h^{\prime} S \subseteq T\)
by (simp add: continuous_map_in_subtopology)
lemma continuous_map_euclidean_top_of_set:
assumes eq: \(f-{ }^{\prime} S=U N I V\) and cont: continuous_on UNIV \(f\)
shows continuous_map euclidean (top_of_set \(S\) ) \(f\)
by (simp add: cont continuous_map_into_subtopology eq image_subset_iff_subset_vimage)

\subsection*{2.2.21 Half-global and completely global cases}
```

lemma continuous_openin_preimage_gen:
assumes continuous_on $S f$ open T
shows openin (top_of_set S) $\left(S \cap f-{ }^{\prime} T\right)$
proof -
have $*:(S \cap f-‘ T)=(S \cap f-‘(T \cap f ‘ S))$
by auto
have openin (top_of_set $(f$ ' $S)$) $(T \cap f$ ' S)
using openin_open_Int[of $T f^{\prime} S$, OF assms(2)] unfolding openin_open by
auto
then show ?thesis
using assms(1)[unfolded continuous_on_open, THEN spec[where $x=T \cap f$ '
$S]$]
using $*$ by auto
qed

```
lemma continuous_closedin_preimage:
    assumes continuous_on \(S f\) and closed \(T\)
    shows closedin (top_of_set \(S\) ) \(\left.(S \cap f)^{\prime} T\right)\)
proof -
    have \(*:(S \cap f-‘ T)=(S \cap f-‘(T \cap f ‘ S))\)
        by auto
    have closedin (top_of_set \((f\) ' \(S)\) ) ( \(T \cap f^{\prime} S\) )
        using closedin_closed_Int[of \(T f^{\prime} S\), OF assms(2)]
        by (simp add: Int_commute)
    then show? ?thesis
        using assms(1)[unfolded continuous_on_closed, THEN \(\operatorname{spec}[\) where \(x=T \cap f\)
\(S\) ]]
    using * by auto
qed
lemma continuous_openin_preimage_eq:
    continuous_on \(S f \longleftrightarrow(\forall T\). open \(T \longrightarrow\) openin (top_of_set \(S)(S \cap f-‘ T))\)
    by (metis Int_commute continuous_on_open_invariant open_openin openin_subtopology)
lemma continuous_closedin_preimage_eq:
continuous_on \(S f \longleftrightarrow\)
\(\left(\forall T\right.\). closed \(T \longrightarrow\) closedin \(\left(t o p_{-} o f\right.\) _set \(\left.\left.S\right)(S \cap f-‘ T)\right)\)
by (metis Int_commute closedin_closed continuous_on_closed_invariant)
lemma continuous_open_preimage:
assumes contf: continuous_on \(S f\) and open \(S\) open \(T\)
shows open ( \(S \cap f-{ }^{‘} T\) )
proof-
obtain \(U\) where open \(U(S \cap f-‘ T)=S \cap U\) using continuous_openin_preimage_gen[OF contf 〈open \(T\rangle\) ]
```

 unfolding openin_open by auto
 then show ?thesis
 using open_Int[of S U,OF <open S`] by auto
 qed
lemma continuous_closed_preimage:
assumes contf:continuous_on Sf and closed S closed T
shows closed (}S\capf-`T proof- obtain U where closed U(S\capf-'`T)=S\capU
using continuous_closedin_preimage[OF contf <closed T\rangle]
unfolding closedin_closed by auto
then show ?thesis using closed_Int[of S U,OF〈closed S〉] by auto
qed
lemma continuous_open_vimage: open S \Longrightarrow(\x.continuous (at x) f)\Longrightarrowopen
(f-'S)
by (metis continuous_on_eq_continuous_within open_vimage)
lemma continuous_closed_vimage: closed S \Longrightarrow(\x. continuous (at x) f) \Longrightarrow
closed (f -' S)
by (simp add: closed_vimage continuous_on_eq_continuous_within)
lemma Times_in_interior_subtopology:
assumes (x,y)\inU openin (top_of_set (S\timesT))U
obtains V W where openin (top_of_set S) Vx\inV
openin (top_of_set T) Wy G W (V 人W)\subseteqU
proof -
from assms obtain E where open E U =S \ T\capE (x,y) \inEx\inSy\inT
by (auto simp: openin_open)
from open_prod_elim[OF <open E\rangle<(x,y) \inE\rangle]
obtain E1 E2 where open E1 open E2 (x,y) GE1 x E2 E1 }\times\mathrm{ E2 }\subseteq
by blast
show ?thesis
proof
show openin (top_of_set S) (E1 \capS)
openin (top_of_set T) (E2 \cap T)
using <open E1> <open E2`
by (auto simp: openin_open)
show }x\inE1\capSy\inE2\cap
using }\langle(x,y)\inE1\timesE2\rangle\langlex\inS\rangle\langley\inT\rangle\mathrm{ by auto
show }(E1\capS)\times(E2\capT)\subseteq
using \langleE1 < E2 \subseteqE\rangle\langleU = _\rangle
by (auto simp:)
qed
qed
lemma closedin＿Times：
closedin（top＿of＿set S ）$S^{\prime} \Longrightarrow$ closedin（top＿of＿set T ）$T^{\prime} \Longrightarrow$

```
```

 closedin (top_of_set \((S \times T))\left(S^{\prime} \times T^{\prime}\right)\)
    ```
unfolding closedin＿closed using closed＿Times by blast
lemma openin＿Times：
openin（top＿of＿set \(S\) ）\(S^{\prime} \Longrightarrow\) openin（top＿of＿set \(\left.T\right) T^{\prime} \Longrightarrow\) openin（top＿of＿set \((S \times T))\left(S^{\prime} \times T^{\prime}\right)\)
unfolding openin＿open using open＿Times by blast
lemma openin＿Times＿eq：
fixes \(S\) ：：＇a：：topological＿space set and \(T\) ：：＇\(b::\) topological＿space set
shows
openin \((\) top＿of＿set \((S \times T))\left(S^{\prime} \times T^{\prime}\right) \longleftrightarrow\) \(S^{\prime}=\{ \} \vee T^{\prime}=\{ \} \vee\) openin \((\) top＿of＿set \(S) S^{\prime} \wedge\) openin \((\) top＿of＿set \(T) T^{\prime}\)
（is ？lhs＝？rhs）
proof（cases \(S^{\prime}=\{ \} \vee T^{\prime}=\{ \}\) ）
case True
then show ？thesis by auto
next
case False
then obtain \(x y\) where \(x \in S^{\prime} y \in T^{\prime}\)
by blast
show ？thesis
proof
assume ？lhs
have openin（top＿of＿set S）\(S^{\prime}\)
proof（subst openin＿subopen，clarify）
show \(\exists U\) ．openin（top＿of＿set \(S) U \wedge x \in U \wedge U \subseteq S^{\prime}\) if \(x \in S^{\prime}\) for \(x\)
using that \(\left\langle y \in T^{\prime}\right\rangle\) Times＿in＿interior＿subtopology［OF＿〈？lhs〉，of \(\left.x y\right]\)
by simp（metis mem＿Sigma＿iff subsetD subsetI）
qed
moreover have openin（top＿of＿set T）\(T^{\prime}\)
proof（subst openin＿subopen，clarify）
show \(\exists U\) ．openin（top＿of＿set \(T) U \wedge y \in U \wedge U \subseteq T^{\prime}\) if \(y \in T^{\prime}\) for \(y\) using that \(\left\langle x \in S^{\prime}\right\rangle\) Times＿in＿interior＿subtopology［OF＿〈？lhs \(\rangle\) ，of \(\left.x y\right]\) by simp（metis mem＿Sigma＿iff subsetD subsetI）
qed
ultimately show ？rhs
by \(\operatorname{simp}\)
next
assume？rhs
with False show ？lhs
by（simp add：openin＿Times）
qed
qed
lemma Lim＿transform＿within＿openin：
assumes \(f:(f \longrightarrow l)(\) at a within \(T)\)
and openin（top＿of＿set T）Sa
and \(e q: \wedge x . \llbracket x \in S ; x \neq a \rrbracket \Longrightarrow f x=g x\)
```

 shows \((g \longrightarrow l)(\) at a within \(T)\)
 proof -
have $\forall_{F} x$ in at a within $T . x \in T \wedge x \neq a$
by (simp add: eventually_at_filter)
moreover
from <openin _ _ obtain U where open $U S=T \cap U$
by (auto simp: openin_open)
then have $a \in U$ using $\langle a \in S\rangle$ by auto
from topological_tendsto $D[O F$ tendsto_ident_at 〈open $U\rangle\langle a \in U\rangle]$
have $\forall_{F} x$ in at a within $T . x \in U$ by auto
ultimately
have $\forall_{F} x$ in at a within T. $f x=g x$
by eventually_elim (auto simp: $\langle S=$ _ eq)
with f show ?thesis
by (rule Lim_transform_eventually)
qed
lemma continuous_on_open_gen:
assumes f ' $S \subseteq T$
shows continuous_on $S f \longleftrightarrow$
$(\forall$ U. openin (top_of_set $T) U$
\longrightarrow openin (top_of_set S) $(S \cap f-‘ U))$
(is? $? \mathrm{lh} s=? r h s)$
proof
assume ?lhs
then show ?rhs
by (clarsimp simp add: continuous_openin_preimage_eq openin_open)
(metis Int_assoc assms image_subset_iff_subset_vimage inf.absorb_iff1)
next
assume R [rule_format]: ?rhs
show ?lhs
proof (clarsimp simp add: continuous_openin_preimage_eq)
fix $U::^{\prime} a$ set
assume open U
then have openin (top_of_set $S)(S \cap f-'(U \cap T))$
by (metis R inf_commute openin_open)
then show openin (top_of_set S) $\left(S \cap f-{ }^{\prime} U\right)$
by (metis Int_assoc Int_commute assms image_subset_iff_subset_vimage inf.absorb_iff2
vimage_Int)
qed
qed
lemma continuous_openin_preimage:
\llbracket continuous_on $S f ; f^{\prime} S \subseteq T$; openin (top_of_set $\left.T\right) U \rrbracket$
\Longrightarrow openin (top_of_set $S)\left(S \cap f-{ }^{\prime} U\right)$
by (simp add: continuous_on_open_gen)
lemma continuous_on_closed_gen:
assumes f ' $S \subseteq T$

```
```

shows continuous_on S f}
(\forallU. closedin (top_of_set T) U
closedin (top_of_set S)}(S\capf-'U)
(is ?lhs = ?rhs)
proof -
have *: U\subseteqT\LongrightarrowS\capf-'(T-U)=S-(S\capf-'}U)\mathrm{ for }
using assms by blast
show ?thesis
proof
assume L:?lhs
show ?rhs
proof clarify
fix }
assume closedin (top_of_set T) U
then show closedin (top_of_set S) (S\capf -` U)
using L unfolding continuous_on_open_gen [OF assms]
by (metis * closedin_def inf_le1 topspace_euclidean_subtopology)
qed
next
assume R [rule_format]: ?rhs
show ?lhs
unfolding continuous_on_open_gen [OF assms]
by (metis * R inf_le1 openin_closedin_eq topspace_euclidean_subtopology)
qed
qed
lemma continuous_closedin_preimage_gen:
assumes continuous_on Sff'S\subseteqT closedin(top_of_set T) U
shows closedin (top_of_set S)(S\capf -' U)
using assms continuous_on_closed_gen by blast
lemma continuous_transform_within_openin:
assumes continuous (at a within T) f
and openin (top_of_set T) Sa\inS
and eq: \x. x \inS\Longrightarrowfx=gx
shows continuous (at a within T) g
using assms by (simp add: Lim_transform_within_openin continuous_within)

```

\subsection*{2.2.22 The topology generated by some (open) subsets}

In the definition below of a generated topology, the Empty case is not necessary, as it follows from \(U N\) taking for \(K\) the empty set. However, it is convenient to have, and is never a problem in proofs, so I prefer to write it down explicitly.
We do not require \(U N I V\) to be an open set, as this will not be the case in applications. (We are thinking of a topology on a subset of UNIV, the remaining part of \(U N I V\) being irrelevant.)
inductive generate_topology_on for \(S\) where

Empty: generate_topology_on \(S\}\)
| Int: generate_topology_on \(S a \Longrightarrow\) generate_topology_on \(S b \Longrightarrow\) generate_topology_on \(S(a \cap b)\)
| UN: \((\bigwedge k . k \in K \Longrightarrow\) generate_topology_on \(S k) \Longrightarrow\) generate_topology_on \(S(\bigcup K)\)
| Basis: \(s \in S \Longrightarrow\) generate_topology_on \(S\) s
lemma istopology_generate_topology_on:
istopology (generate_topology_on S)
unfolding istopology_def by (auto intro: generate_topology_on.intros)
The basic property of the topology generated by a set \(S\) is that it is the smallest topology containing all the elements of \(S\) :
lemma generate_topology_on_coarsest:
assumes \(T\) : istopology \(T \bigwedge s . s \in S \Longrightarrow T s\)
and gen: generate_topology_on \(S\) s0
shows \(T\) s 0
using gen
by (induct rule: generate_topology_on.induct) (use \(T\) in 〈auto simp: istopology_def〉)
abbreviation topology_generated_by::('a set set) \(\Rightarrow\) ('a topology)
where topology_generated_by \(S \equiv\) topology (generate_topology_on \(S\) )
lemma openin_topology_generated_by_iff:
openin (topology_generated_by \(S\) ) \(s \longleftrightarrow\) generate_topology_on \(S s\)
using topology_inverse'[OF istopology_generate_topology_on[of S]] by simp
lemma openin_topology_generated_by:
openin (topology_generated_by \(S\) ) \(s \Longrightarrow\) generate_topology_on \(S\)
using openin_topology_generated_by_iff by auto
lemma topology_generated_by_topspace [simp]:
topspace (topology_generated_by \(S)=(\bigcup S)\)
proof
\{
fix \(s\) assume openin (topology_generated_by \(S\) ) \(s\)
then have generate_topology_on \(S\) s by (rule openin_topology_generated_by)
then have \(s \subseteq(\bigcup S)\) by (induct, auto)
\}
then show topspace (topology_generated_by \(S) \subseteq(\bigcup S)\)
unfolding topspace_def by auto
next
have generate_topology_on \(S(\bigcup S)\)
using generate_topology_on.UN[OF generate_topology_on.Basis, of S S] by simp
then show \((\bigcup S) \subseteq\) topspace (topology_generated_by \(S\) )
unfolding topspace_def using openin_topology_generated_by_iff by auto
qed
lemma topology_generated_by_Basis:
\(s \in S \Longrightarrow\) openin (topology_generated_by \(S\) ) \(s\)
by (simp only: openin_topology_generated_by_iff, auto simp: generate_topology_on.Basis)
lemma generate_topology_on_Inter:
\(\llbracket\) finite \(\mathcal{F} ; \wedge K . K \in \mathcal{F} \Longrightarrow\) generate_topology_on \(\mathcal{S} K ; \mathcal{F} \neq\{ \} \rrbracket \Longrightarrow\) generate_topology_on \(\mathcal{S}(\bigcap \mathcal{F})\)
by (induction \(\mathcal{F}\) rule: finite_induct; force intro: generate_topology_on.intros)

\subsection*{2.2.23 Topology bases and sub-bases}
lemma istopology_base_alt:
istopology (arbitrary union_of \(P\) ) \(\longleftrightarrow\)
\((\forall S T\). (arbitrary union_of \(P) S \wedge(\) arbitrary union_of \(P) T\)
\(\longrightarrow(\) arbitrary union_of \(P)(S \cap T))\)
by (simp add: istopology_def) (blast intro: arbitrary_union_of_Union)
lemma istopology_base_eq:
istopology (arbitrary union_of \(P\) ) \(\longleftrightarrow\)
\((\forall S T . P S \wedge P T \longrightarrow(\) arbitrary union_of \(P)(S \cap T))\)
by (simp add: istopology_base_alt arbitrary_union_of_Int_eq)
lemma istopology_base:
\((\bigwedge S T . \llbracket P S ; P T \rrbracket \Longrightarrow P(S \cap T)) \Longrightarrow\) istopology (arbitrary union_of \(P\) )
by (simp add: arbitrary_def istopology_base_eq union_of_inc)
lemma openin_topology_base_unique:
openin \(X=\) arbitrary union_of \(P \longleftrightarrow\)
\((\forall V . P V \longrightarrow\) openin \(X V) \wedge(\forall U x\). openin \(X U \wedge x \in U \longrightarrow(\exists V . P\)
\(V \wedge x \in V \wedge V \subseteq U))\)
(is ?lhs \(=\) ? \(r h s\) )
proof
assume ?lhs
then show ?rhs
by (auto simp: union_of_def arbitrary_def)
next
assume \(R\) : ?rhs
then have \(*: \exists \mathcal{U} \subseteq\) Collect \(P . \cup \mathcal{U}=S\) if openin \(X S\) for \(S\)
using that by (rule_tac \(x=\{V . P V \wedge V \subseteq S\}\) in exI) fastforce
from \(R\) show? ?hs
by (fastforce simp add: union_of_def arbitrary_def intro: *)
qed
lemma topology_base_unique:
assumes \(\wedge S . P S \Longrightarrow\) openin \(X S\) \(\wedge U x . \llbracket\) openin \(X U ; x \in U \rrbracket \Longrightarrow \exists B . P B \wedge x \in B \wedge B \subseteq U\)
shows topology (arbitrary union_of \(P\) ) \(=X\)
proof -
have \(X=\) topology (openin \(X\) )
by (simp add: openin_inverse)
also from assms have openin \(X=\) arbitrary union_of \(P\)
by (subst openin_topology_base_unique) auto
finally show ?thesis ..
qed
lemma topology_bases_eq_aux:
\(\llbracket(\) arbitrary union_of \(P) S\);
\(\wedge U x . \llbracket P U ; x \in U \rrbracket \Longrightarrow \exists V . Q V \wedge x \in V \wedge V \subseteq U \rrbracket\)
\(\Longrightarrow(\) arbitrary union_of \(Q) S\)
by (metis arbitrary_union_of_alt arbitrary_union_of_idempot)
lemma topology_bases_eq:
\(\llbracket \wedge U x . \llbracket P U ; x \in U \rrbracket \Longrightarrow \exists V . Q V \wedge x \in V \wedge V \subseteq U ;\)
\(\wedge V x . \llbracket Q V ; x \in V \rrbracket \Longrightarrow \exists U . P U \wedge x \in U \wedge U \subseteq V \rrbracket\)
\(\Longrightarrow\) topology (arbitrary union_of \(P\) ) \(=\)
topology (arbitrary union_of \(Q\) )
by (fastforce intro: arg_cong [where \(f=\) topology] elim: topology_bases_eq_aux)
lemma istopology_subbase:
istopology (arbitrary union_of (finite intersection_of Prelative_to S))
by (simp add: finite_intersection_of_Int istopology_base relative_to_Int)
lemma openin_subbase:
openin (topology (arbitrary union_of (finite intersection_of Brelative_to \(U\) )) ) \(S\) \(\longleftrightarrow\) ( arbitrary union_of (finite intersection_of \(B\) relative_to \(U\) )) \(S\)
by (simp add: istopology_subbase topology_inverse')
lemma topspace_subbase [simp]:
topspace (topology (arbitrary union_of \((\) finite intersection_of \(B\) relative_to \(U)))=\)
\(U\) (is?lhs = _)
proof
show ?lhs \(\subseteq U\)
by (metis arbitrary_union_of_relative_to openin_subbase openin_topspace rela-
tive_to_imp_subset)
show \(U \subseteq\) ? lhs
by (metis arbitrary_union_of_inc finite_intersection_of_empty inf.orderE istopology_subbase openin_subset relative_to_inc subset_UNIV topology_inverse')
qed
lemma minimal_topology_subbase:
assumes \(X: \bigwedge S . P S \Longrightarrow\) openin \(X S\) and openin \(X U\)
and \(S\) : openin(topology(arbitrary union_of (finite intersection_of \(P\) relative_to U))) \(S\)
shows openin \(X S\)
proof -
have (arbitrary union_of (finite intersection_of \(P\) relative_to \(U\) )) \(S\)
using \(S\) openin_subbase by blast
with \(X\) <openin \(X U\) show ?thesis
by (force simp add: union_of_def intersection_of_def relative_to_def intro: openin_Int_Inter)
qed
lemma istopology_subbase_UNIV:
istopology (arbitrary union_of (finite intersection_of P))
by (simp add: istopology_base finite_intersection_of_Int)
lemma generate_topology_on_eq:
generate_topology_on \(S=\) arbitrary union_of finite' intersection_of \((\lambda x . x \in S)\)
(is ?lhs =?rhs)
proof (intro ext iffI)
fix \(A\)
assume ?lhs \(A\)
then show ?rhs \(A\)
proof induction
case (Int ab)
then show? case
by (metis (mono_tags, lifting) istopology_base_alt finite'_intersection_of_Int istopology_base)
next
case (UN K)
then show ?case
by (simp add: arbitrary_union_of_Union)
next
case (Basis s)
then show? case
by (simp add: Sup_upper arbitrary_union_of_inc finité_intersection_of_inc relative_to_subset)
qed auto
next
fix \(A\)
assume ?rhs \(A\)
then obtain \(\mathcal{U}\) where \(\mathcal{U}: \wedge T . T \in \mathcal{U} \Longrightarrow \exists \mathcal{F}\). finite \({ }^{\prime} \mathcal{F} \wedge \mathcal{F} \subseteq S \wedge \bigcap \mathcal{F}=T\)
and \(e q: A=\bigcup \mathcal{U}\)
unfolding union_of_def intersection_of_def by auto
show ?lhs \(A\)
unfolding \(e q\)
proof (rule generate_topology_on.UN)
fix \(T\)
assume \(T \in \mathcal{U}\)
with \(\mathcal{U}\) obtain \(\mathcal{F}\) where finite \(\mathcal{F} \mathcal{F} \subseteq S \bigcap \mathcal{F}=T\)
by blast
have generate_topology_on \(S(\bigcap \mathcal{F})\)
proof (rule generate_topology_on_Inter)
show finite \(\mathcal{F} \mathcal{F} \neq\{ \}\)
by (auto simp: \(\left\langle\right.\) finite \(\left.{ }^{\prime} \mathcal{F}\right\rangle\) )
show \(\bigwedge K . K \in \mathcal{F} \Longrightarrow\) generate_topology_on \(S K\)
by (metis \(\langle\mathcal{F} \subseteq S\rangle\) generate_topology_on.simps subset_iff)
qed
```

 then show generate_topology_on S T
 using }\bigcap\mathcal{F}=T\rangle\mathrm{ by blast
 qed
 qed
lemma continuous_on_generated_topo_iff:
continuous_map T1 (topology_generated_by S) f}
((\forallU.U\inS\longrightarrow openin T1 (f-'U\cap topspace(T1))) ^ (f'(topspace T1) \subseteq
(US)))
unfolding continuous_map_alt topology_generated_by_topspace
proof (auto simp add: topology_generated_by_Basis)
assume H:\forallU.U\inS\longrightarrow openin T1 (f-'U\cap topspace T1)
fix U assume openin (topology_generated_by S) U
then have generate_topology_on S U by (rule openin_topology_generated_by)
then show openin T1 (f-`}U\cap\mathrm{ topspace T1) proof (induct) fix ab assume H: openin T1 (f-`}a\cap\mathrm{ topspace T1) openin T1 (f-`'b П topspace T1) have f-`(}a\capb)\cap\mathrm{ topspace T1 = (f-`'a ค topspace T1) }\cap(f-`b\cap topspac
T1)
by auto
then show openin T1 (f-`}(a\capb)\cap\mathrm{ topspace T1) using H by auto next fix } assume H: openin T1 (f -` k \cap topspace T1) if k\inK for k

```

```

 have *: openin T1 l if l\inL for l using that H unfolding L_def by auto
 have openin T1 (\bigcupL) using openin_Union[OF *] by simp
 moreover have (UL) =(f-` \K\cap topspace T1) unfolding L_def by auto
 ultimately show openin T1 (}f-`\cup\K\cap\mathrm{ topspace T1) by simp
 qed (auto simp add:H)
 qed
lemma continuous_on_generated_topo:
assumes }\U.U\inS\Longrightarrow\mathrm{ openin T1 (f-' }U\cap\mathrm{ topspace(T1))
f}(topspace T1)\subseteq(US
shows continuous_map T1 (topology_generated_by S) f
using assms continuous_on_generated_topo_iff by blast

```

\subsection*{2.2.24 Pullback topology}

Pulling back a topology by map gives again a topology. subtopology is a special case of this notion, pulling back by the identity. We introduce the general notion as we will need it to define the strong operator topology on the space of continuous linear operators, by pulling back the product topology on the space of all functions.
pullback_topology \(A f T\) is the pullback of the topology \(T\) by the map \(f\) on
the set \(A\).
```

definition pullback_topology::('a set) $\Rightarrow\left({ }^{\prime} a \Rightarrow{ }^{\prime} b\right) \Rightarrow\left({ }^{\prime} b\right.$ topology $) \Rightarrow(' a ~ t o p o l o g y) ~$
where pullback_topology A f $T=$ topology $\left(\lambda S . \exists U\right.$. openin $T U \wedge S=f-{ }^{\prime} U$
$\cap A$)

```
lemma istopology_pullback_topology:
    istopology \(\left(\lambda S . \exists U\right.\). openin \(\left.T U \wedge S=f-{ }^{\prime} U \cap A\right)\)
    unfolding istopology_def proof (auto)
    fix \(K\) assume \(\forall S \in K . \exists U\). openin \(T U \wedge S=f-{ }^{\prime} U \cap A\)
    then have \(\exists U . \forall S \in K\). openin \(T(U S) \wedge S=f-‘(U S) \cap A\)
        by (rule bchoice)
    then obtain \(U\) where \(U: \forall S \in K\). openin \(T(U S) \wedge S=f-‘(U S) \cap A\)
        by blast
    define \(V\) where \(V=(\bigcup S \in K . U S)\)
    have openin \(T V \bigcup K=f-{ }^{\prime} V \cap A\) unfolding \(V_{-} \operatorname{def}\) using \(U\) by auto
    then show \(\exists V\). openin \(T V \wedge \bigcup K=f-‘ V \cap A\) by auto
qed
lemma openin_pullback_topology:
openin (pullback_topology \(A f T) S \longleftrightarrow\left(\exists U\right.\). openin \(\left.T U \wedge S=f-{ }^{\prime} U \cap A\right)\)
unfolding pullback_topology_def topology_inverse'[OF istopology_pullback_topology]
by auto
lemma topspace_pullback_topology:
topspace (pullback_topology A fT) \(=f-^{`}(\) topspace \(T) \cap A\)
by (auto simp add: topspace_def openin_pullback_topology)
proposition continuous_map_pullback [intro]:
assumes continuous_map T1 T2 g
shows continuous_map (pullback_topology A f T1) T2 ( \(g\) of )
unfolding continuous_map_alt
proof (auto)
fix \(U:: ' b\) set assume openin T2 \(U\)
then have openin \(T 1\) ( \(g-{ }^{\prime} U \cap\) topspace \(T 1\) )
using assms unfolding continuous_map_alt by auto
have \((g \circ f)-' U \cap\) topspace (pullback_topology A fT1) \(=\left(\begin{array}{ll}g o f)-' U \cap A \cap \\ \hline\end{array}\right.\)
\(f\)-'(topspace T1)
unfolding topspace_pullback_topology by auto
also have \(\ldots=f-‘(g-' U \cap\) topspace \(T 1) \cap A\)
by auto
also have openin (pullback_topology A f T1) (...)
unfolding openin_pullback_topology using <openin \(T 1\) ( \(g-{ }^{\text {' } U} \cap\) topspace \(T 1\) )〉
by auto
finally show openin (pullback_topology A \(f\) T1) ( \((g \circ f)\)-‘ \(U \cap\) topspace (pullback_topology A f T1))
by auto
next
fix \(x\) assume \(x \in\) topspace (pullback_topology A f T1)
then have \(f x \in\) topspace T1
unfolding topspace＿pullback＿topology by auto
then show \(g(f x) \in\) topspace T2
using assms unfolding continuous＿map＿def by auto
qed
proposition continuous＿map＿pullback＇［intro］：
assumes continuous＿map T1 T2（ \(f \circ g\) ）topspace \(T 1 \subseteq g-' A\)
shows continuous＿map T1（pullback＿topology Af T2）\(g\)
unfolding continuous＿map＿alt
proof（auto）
fix \(U\) assume openin（pullback＿topology A f TZ）\(U\)
then have \(\exists V\) ．openin T2 \(V \wedge U=f-' V \cap A\) unfolding openin＿pullback＿topology by auto
then obtain \(V\) where openin \(T 2 V U=f-‘ V \cap A\) by blast
then have \(g-{ }^{\prime} U \cap\) topspace \(T 1=g-‘\left(f-{ }^{`} V \cap A\right) \cap\) topspace \(T 1\)
by blast
also have \(\ldots=(f \circ g)-^{'} V \cap(g-' A \cap\) topspace \(T 1)\)
by auto
also have \(\ldots=(f\) o \(g)-{ }^{`} V \cap\) topspace \(T 1\)
using assms（2）by auto
also have openin T1（．．．）
using assms（1）＜openin T2 \(V\) 〉 by auto
finally show openin \(T 1\left(g-{ }^{\prime} U \cap\right.\) topspace \(\left.T 1\right)\) by simp
next
fix \(x\) assume \(x \in\) topspace T1
have \((f \circ g) x \in\) topspace T2
using assms（1）\(\langle x \in\) topspace T1〉unfolding continuous＿map＿def by auto
then have \(g x \in f-\)＇（topspace T2）
unfolding comp＿def by blast
moreover have \(g x \in A\) using \(\operatorname{assms}(2)\langle x \in\) topspace T1〉 by blast
ultimately show \(g x \in\) topspace（pullback＿topology A \(f\) T2）
unfolding topspace＿pullback＿topology by blast
qed

\section*{2．2．25 Proper maps（not a priori assumed continuous）}
definition proper＿map
where
proper＿map \(X Y f \equiv\)
closed＿map \(X Y f \wedge(\forall y \in\) topspace \(Y\) ．compactin \(X\{x \in\) topspace \(X . f x\)
\(=y\}\) ）
lemma proper＿imp＿closed＿map：
proper＿map \(X Y f \Longrightarrow\) closed＿map \(X Y f\)
by（simp add：proper＿map＿def）
lemma proper＿map＿imp＿subset＿topspace：
proper＿map \(X Y f \Longrightarrow f^{\prime}(\) topspace \(X) \subseteq\) topspace \(Y\)
by (simp add: closed_map_imp_subset_topspace proper_map_def)
lemma closed_injective_imp_proper_map:
assumes \(f\) : closed_map \(X Y f\) and inj: inj_on \(f\) (topspace \(X\) )
shows proper_map \(X Y f\)
unfolding proper_map_def
proof (clarsimp simp: f)
show compactin \(X\{x \in\) topspace \(X . f x=y\}\) if \(y \in\) topspace \(Y\) for \(y\)
proof -
have \(\{x \in\) topspace \(X . f x=y\}=\{ \} \vee(\exists a \in\) topspace \(X .\{x \in\) topspace \(X\).
\(f x=y\}=\{a\}\) )
using inj_on_eq_iff [OF inj] by auto
then show ?thesis
using that by (metis (no_types, lifting) compactin_empty compactin_sing)
qed
qed
lemma injective_imp_proper_eq_closed_map:
inj_on \(f(\) topspace \(X) \Longrightarrow(\) proper_map \(X Y f \longleftrightarrow\) closed_map \(X Y f)\)
using closed_injective_imp_proper_map proper_imp_closed_map by blast
lemma homeomorphic_imp_proper_map:
homeomorphic_map \(X Y f \Longrightarrow\) proper_map \(X Y f\)
by (simp add: closed_injective_imp_proper_map homeomorphic_eq_everything_map)
lemma compactin_proper_map_preimage:
assumes \(f\) : proper_map \(X Y f\) and compactin \(Y K\)
shows compactin \(X\{x . x \in\) topspace \(X \wedge f x \in K\}\)
proof -
have \(f\) ' (topspace \(X) \subseteq\) topspace \(Y\)
by (simp add: f proper_map_imp_subset_topspace)
have \(*: \bigwedge y . y \in\) topspace \(Y \Longrightarrow\) compactin \(X\{x \in\) topspace \(X . f x=y\}\) using \(f\) by (auto simp: proper_map_def)
show ?thesis unfolding compactin_def
proof clarsimp
show \(\exists \mathcal{F}\). finite \(\mathcal{F} \wedge \mathcal{F} \subseteq \mathcal{U} \wedge\{x \in\) topspace \(X . f x \in K\} \subseteq \bigcup \mathcal{F}\)
if \(\mathcal{U}: \forall U \in \mathcal{U}\). openin \(X U\) and sub: \(\{x \in\) topspace \(X . f x \in K\} \subseteq \bigcup \mathcal{U}\)
for \(\mathcal{U}\)
proof -
have \(\forall y \in K . \exists \mathcal{V}\). finite \(\mathcal{V} \wedge \mathcal{V} \subseteq \mathcal{U} \wedge\{x \in\) topspace \(X . f x=y\} \subseteq \cup \mathcal{V}\)
proof
fix \(y\)
assume \(y \in K\)
then have compactin \(X\{x \in\) topspace \(X . f x=y\}\)
by (metis * (compactin Y K〉 compactin_subspace subsetD)
with \(\langle y \in K\rangle\) show \(\exists \mathcal{V}\). finite \(\mathcal{V} \wedge \mathcal{V} \subseteq \mathcal{U} \wedge\{x \in\) topspace \(X . f x=y\} \subseteq\)
```

 unfolding compactin_def using }\mathcal{U}\mathrm{ sub by fastforce
 qed
 then obtain \mathcal{V}\mathrm{ where }\mathcal{V}:\bigwedgey.y\inK\Longrightarrowfinite (\mathcal{V}y)\wedge\mathcal{V}y\subseteq\mathcal{U}\wedge{x\in
 topspace X.fx=y}\subseteq\bigcup(\mathcal{V}y)
by (metis (full_types))
define F where F\equiv\lambday. topspace Y-f'(topspace }X-\bigcup(\mathcal{V}y)
have \exists\mathcal{F}.finite \mathcal{F}\wedge\mathcal{F}\subseteqF'K}
K\subseteq\bigcup\mathcal{F
proof (rule compactinD [OF <compactin Y K\])

 have }\x.x\inK\Longrightarrow\mathrm{ closedin Y (f'(topspace X - U(V)
 using f unfolding proper_map_def closed_map_def
 by (meson \mathcal{U V openin_Union openin_closedin_eq subsetD)}
 then show openin Y U if U\inF'K for U
 using that by (auto simp: F_def)
 show K\subseteq\bigcup(F'K)
 using \mathcal{V}}<compactin Y K> unfolding F_def compactin_def by fastforce
 qed
 then obtain J where finite J J\subseteqK and J:K\subseteq\bigcup(F'J)
 by (auto simp: ex_finite_subset_image)
 show ?thesis
 unfolding F_def
 proof (intro exI conjI)
 show finite (U(\mathcal{V}`J))
 using}\mathcal{V}\langleJ\subseteqK\rangle\langlefinite J\rangle by blas
 show }\bigcup(\mathcal{V}'J)\subseteq\mathcal{U
 using \mathcal{V}\langleJ\subseteqK` by blast
 show {x\in topspace X.fx\inK}\subseteq\bigcup(U(\mathcal{V}`J))
 using J \langleJ\subseteqK\rangle unfolding F_def by auto
 qed
 qed
 qed
 qed
lemma compact_space_proper_map_preimage:
assumes f: proper_map X Yf and fim: f'(topspace X)= topspace Y and
compact_space Y
shows compact_space X
proof -
have eq: topspace }X={x\in\mathrm{ topspace X.fx topspace Y }
using fim by blast
moreover have compactin Y (topspace Y)
using <compact_space Y> compact_space_def by auto
ultimately show ?thesis
unfolding compact_space_def
using eq f compactin_proper_map_preimage by fastforce
qed
lemma proper_map_alt:
proper_map X Yf \longleftrightarrow

```
```

 closed_map X Y f ^(\forallK.compactin Y K compactin X {x. x \in topspace
 X\wedgefx\inK})
proof (intro iffI conjI allI impI)
show compactin X {x\in topspace X.fx\inK}
if proper_map X Yf and compactin YK for K
using that by (simp add: compactin_proper_map_preimage)
show proper_map X Yf
if f: closed_map X Yf^(\forallK.compactin Y K compactin X {x\in topspace
X.f }x\inK}
proof -
have compactin X{x\in topspace X.fx=y} if y\in topspace Y for y
proof -
have compactin X {x\in topspace X. fx\in{y}}
using f compactin_sing that by fastforce
then show ?thesis
by auto
qed
with f show ?thesis
by (auto simp: proper_map_def)
qed
qed (simp add: proper_imp_closed_map)

```
lemma proper_map_on_empty:
    topspace \(X=\{ \} \Longrightarrow\) proper_map \(X Y f\)
    by (auto simp: proper_map_def closed_map_on_empty)
lemma proper_map_id [simp]:
    proper_map X X id
proof (clarsimp simp: proper_map_alt closed_map_id)
    fix \(K\)
    assume \(K\) : compactin \(X K\)
    then have \(\{a \in\) topspace \(X . a \in K\}=K\)
        by (simp add: compactin_subspace subset_antisym subset_iff)
    then show compactin \(X\{a \in\) topspace \(X . a \in K\}\)
        using \(K\) by auto
qed
lemma proper_map_compose:
    assumes proper_map \(X\) Yf proper_map \(Y Z g\)
    shows proper_map \(X Z(g \circ f)\)
proof -
    have closed_map \(X Y f\) and \(f: \bigwedge K\). compactin \(Y K \Longrightarrow\) compactin \(X\{x \in\)
topspace \(X . f x \in K\}\)
        and closed_map \(Y Z g\) and \(g: \bigwedge K\). compactin \(Z K \Longrightarrow \operatorname{compactin} Y\{x \in\)
topspace \(Y . g x \in K\}\)
        using assms by (auto simp: proper_map_alt)
    show ?thesis
        unfolding proper_map_alt
    proof (intro conjI allI impI)
```

 show closed_map X Z (g\circf)
 using <closed_map X Y f`\closed_map Y Z g> closed_map_compose by blast
 have {x\in topspace X.g(fx)\inK}={x\in topspace X.fx\in{b\in topspace
 Y.gb\inK}} for K
using <closed_map X Y f> closed_map_imp_subset_topspace by blast
then show compactin X {x\in topspace X. (g\circf)x\inK}
if compactin Z K for K
using f[OF g [OF that]] by auto
qed
qed
lemma proper_map_const:
proper_map X Y (\lambdax.c)\longleftrightarrow compact_space X ^(topspace X = {} \vee closedin
Y{c})
proof (cases topspace X={})
case True
then show ?thesis
by (simp add: compact_space_topspace_empty proper_map_on_empty)
next
case False
have *: compactin X {x\in topspace X.c=y} if compact_space X for y
proof (cases c=y)
case True
then show ?thesis
using compact_space_def <compact_space X \ by auto
qed auto
then show ?thesis
using closed_compactin closedin_subset
by (force simp: False proper_map_def closed_map_const compact_space_def)
qed
lemma proper_map_inclusion:
s\subseteqtopspace X
\Longrightarrow proper_map (subtopology X s) X id \longleftrightarrow closedin X s ^ (\forall k . compactin
Xk\longrightarrow compactin X (s\capk))
by (auto simp: proper_map_alt closed_map_inclusion_eq inf.absorb_iff2 Collect_conj_eq
compactin_subtopology intro: closed_Int_compactin)

```

\subsection*{2.2.26 Perfect maps (proper, continuous and surjective)}
definition perfect_map
where perfect_map \(X Y f \equiv\) continuous_map \(X Y f \wedge\) proper_map \(X Y f \wedge f\) ' (topspace \(X\) ) \(=\) topspace \(Y\)
lemma homeomorphic_imp_perfect_map:
homeomorphic_map \(X Y f \Longrightarrow\) perfect_map \(X Y f\)
by (simp add: homeomorphic_eq_everything_map homeomorphic_imp_proper_map perfect_map_def)
```

lemma perfect_imp_quotient_map:
perfect_map X Yf \Longrightarrow quotient_map X Yf
by (simp add: continuous_closed_imp_quotient_map perfect_map_def proper_map_def)
lemma homeomorphic_eq_injective_perfect_map:
homeomorphic_map X Yf \longleftrightarrow perfect_map X Yf^inj_onf (topspace X)
using homeomorphic_imp_perfect_map homeomorphic_map_def perfect_imp_quotient_map
by blast
lemma perfect_injective_eq_homeomorphic_map:
perfect_map X Y f ^ inj_on f (topspace X) \longleftrightarrow homeomorphic_map X Yf
by (simp add: homeomorphic_eq_injective_perfect_map)
lemma perfect_map_id [simp]: perfect_map X X id
by (simp add: homeomorphic_imp_perfect_map)
lemma perfect_map_compose:
|erfect_map X Y f; perfect_map Y Z g\rrbracket\Longrightarrow perfect_map X Z (g\circf)
by (meson continuous_map_compose perfect_imp_quotient_map perfect_map_def
proper_map_compose quotient_map_compose_eq quotient_map_def)
lemma perfect_imp_continuous_map:
perfect_map X Yf \Longrightarrow continuous_map X Yf
using perfect_map_def by blast
lemma perfect_imp_closed_map:
perfect_map X Yf \Longrightarrow closed_map X Yf
by (simp add: perfect_map_def proper_map_def)
lemma perfect_imp_proper_map:
perfect_map X Yf \Longrightarrow proper_map X Yf
by (simp add: perfect_map_def)
lemma perfect_imp_surjective_map:
perfect_map X Yf\Longrightarrowf'(topspace X)= topspace Y
by (simp add: perfect_map_def)
end

```

\subsection*{2.3 Abstract Topology 2}
```

theory Abstract_Topology_2
imports
Elementary_Topology
Abstract_Topology
HOL-Library.Indicator_Function
begin

```

Combination of Elementary and Abstract Topology
lemma approachable_lt_le2:
```

 \((\exists(d::\) real \()>0 . \forall x . Q x \longrightarrow f x<d \longrightarrow P x) \longleftrightarrow(\exists d>0 . \forall x . f x \leq d \longrightarrow\)
 $Q x \longrightarrow P x)$
apply auto
apply (rule_tac $x=d / 2$ in exI, auto)
done

```
lemma triangle_lemma:
    fixes \(x\) y \(z\) :: real
    assumes \(x: 0 \leq x\)
        and \(y: 0 \leq y\)
        and \(z: 0 \leq z\)
        and \(x y: x^{\overline{2}} \leq y^{2}+z^{2}\)
    shows \(x \leq y+z\)
proof -
    have \(y^{2}+z^{2} \leq y^{2}+2 * y * z+z^{2}\)
        using \(z y\) by simp
    with \(x y\) have th: \(x^{2} \leq(y+z)^{2}\)
        by (simp add: power2_eq_square field_simps)
    from \(y z\) have \(y z: y+z \geq 0\)
        by arith
    from power2_le_imp_le[OF th yz] show ?thesis.
qed
lemma isCont_indicator:
    fixes \(x\) :: ' \(a\) ::t2_space
    shows isCont (indicator \(A::^{\prime} a \Rightarrow\) real \() x=(x \notin\) frontier \(A)\)
proof auto
    fix \(x\)
    assume cts_at: isCont (indicator \(A::^{\prime} a \Rightarrow\) real) \(x\) and \(f r: x \in\) frontier \(A\)
    with continuous_at_open have \(1: \forall V\) :: real set. open \(V \wedge\) indicator \(A x \in V \longrightarrow\)
        \(\left(\exists U::^{\prime} a\right.\) set. open \(U \wedge x \in U \wedge(\forall y \in U\). indicator \(\left.A y \in V)\right)\) by auto
    show False
    proof (cases \(x \in A\) )
        assume \(x: x \in A\)
        hence indicator \(A x \in(\{0<. .<2\}::\) real set \()\) by simp
        hence \(\exists U\). open \(U \wedge x \in U \wedge(\forall y \in U\). indicator \(A y \in(\{0<. .<2\}::\) real set \())\)
            using 1 open_greaterThanLessThan by blast
        then guess \(U\).. note \(U=\) this
        hence \(\forall y \in U\). indicator \(A y>(0::\) real \()\)
            unfolding greaterThanLessThan_def by auto
            hence \(U \subseteq A\) using indicator_eq_0_iff by force
            hence \(x \in\) interior \(A\) using \(U\) interiorI by auto
            thus ?thesis using fr unfolding frontier_def by simp
    next
            assume \(x: x \notin A\)
            hence indicator \(A x \in(\{-1<. .<1\}::\) real set \()\) by simp
            hence \(\exists U\). open \(U \wedge x \in U \wedge(\forall y \in U\). indicator \(A y \in(\{-1<. .<1\}::\) real
set))
```

 using 1 open_greaterThanLessThan by blast
 then guess U .. note U = this
 hence }\forally\inU\mathrm{ . indicator A y < (1::real)
 unfolding greaterThanLessThan_def by auto
 hence }U\subseteq-A\mathrm{ by auto
 hence }x\in\mathrm{ interior (}-A\mathrm{) using }U\mathrm{ interiorI by auto
 thus ?thesis using fr interior_complement unfolding frontier_def by auto
 qed
 next
assume nfr: x \& frontier A
hence }x\in\mathrm{ interior }A\veex\in\mathrm{ interior (}-A\mathrm{)
by (auto simp: frontier_def closure_interior)
thus isCont ((indicator A)::'a m real) x
proof
assume int: x \in interior A
then obtain U where U: open }Ux\inUU\subseteqA\mathrm{ unfolding interior_def by
auto
hence }\forally\inU\mathrm{ . indicator A y = (1::real) unfolding indicator_def by auto
hence continuous_on U (indicator A) by (simp add: indicator_eq_1_iff)
thus ?thesis using U continuous_on_eq_continuous_at by auto
next
assume ext:x\in interior (-A)
then obtain U where U: open }Ux\inUU\subseteq-A\mathrm{ unfolding interior_def by
auto
then have continuous_on U (indicator A)
using continuous_on_topological by (auto simp: subset_iff)
thus ?thesis using U continuous_on_eq_continuous_at by auto
qed
qed
lemma closedin_limpt:
closedin (top_of_set T) S \longleftrightarrowS\subseteqT^(\forallx.x islimpt S\wedgex\inT
apply (simp add: closedin_closed, safe)
apply (simp add: closed_limpt islimpt_subset)
apply (rule_tac x=closure S in exI, simp)
apply (force simp: closure_def)
done

```
lemma closedin_closed_eq: closed \(S \Longrightarrow\) closedin \(\left(t o p_{-} o f \_s e t ~ S\right) T \longleftrightarrow\) closed \(T \wedge\)
\(T \subseteq S\)
    by (meson closedin_limpt closed_subset closedin_closed_trans)
lemma connected_closed_set:
    closed \(S\)
        \(\Longrightarrow\) connected \(S \longleftrightarrow(\nexists A B\). closed \(A \wedge\) closed \(B \wedge A \neq\{ \} \wedge B \neq\{ \} \wedge A \cup\)
\(B=S \wedge A \cap B=\{ \})\)
    unfolding connected_closedin_eq closedin_closed_eq connected_closedin_eq by blast

If a connnected set is written as the union of two nonempty closed sets, then
these sets have to intersect.
lemma connected_as_closed_union:
```

 assumes connected \(C C=A \cup B\) closed \(A\) closed \(B A \neq\{ \} B \neq\{ \}\)
    ```
    shows \(A \cap B \neq\{ \}\)
by (metis assms closed_Un connected_closed_set)
lemma closedin_subset_trans:
\[
\text { closedin (top_of_set } U) S \Longrightarrow S \subseteq T \Longrightarrow T \subseteq U \Longrightarrow
\] closedin (top_of_set \(T\) ) \(S\)
by (meson closedin_limpt subset_iff)
lemma openin_subset_trans:
openin (top_of_set \(U\) ) \(S \Longrightarrow S \subseteq T \Longrightarrow T \subseteq U \Longrightarrow\) openin (top_of_set \(T\) ) \(S\)
by (auto simp: openin_open)
lemma closedin_compact:
\(\llbracket\) compact \(S\); closedin (top_of_set \(S\) ) \(T \rrbracket \Longrightarrow\) compact \(T\)
by (metis closedin_closed compact_Int_closed)
lemma closedin_compact_eq:
fixes \(S\) :: ' \(a::\) t2_space set
shows
```

compact S
\Longrightarrow (closedin (top_of_set S) $T \longleftrightarrow$
compact $T \wedge T \subseteq S$)

```
by (metis closedin_imp_subset closedin_compact closed_subset compact_imp_closed)

\subsection*{2.3.1 Closure}
lemma euclidean_closure_of [simp]: euclidean closure_of \(S=\) closure \(S\)
by (auto simp: closure_of_def closure_def islimpt_def)
lemma closure_openin_Int_closure:
assumes ope: openin (top_of_set \(U\) ) \(S\) and \(T \subseteq U\)
shows closure \((S \cap\) closure \(T)=\operatorname{closure}(S \cap T)\)
proof
obtain \(V\) where open \(V\) and \(S: S=U \cap V\)
using ope using openin_open by metis
show closure \((S \cap\) closure \(T) \subseteq\) closure \((S \cap T)\)
proof (clarsimp simp: \(S\) )
fix \(x\)
assume \(x \in\) closure \((U \cap V \cap\) closure \(T)\) then have \(V \cap\) closure \(T \subseteq A \Longrightarrow x \in\) closure \(A\) for \(A\)
by (metis closure_mono subsetD inf.coboundedI2 inf_assoc)
then have \(x \in\) closure \((T \cap V)\)
by (metis 〈open \(V\) 〉 closure_closure inf_commute open_Int_closure_subset)
then show \(x \in\) closure ( \(U \cap V \cap T\) )
by (metis \(\langle T \subseteq U\rangle\) inf.absorb_iff2 inf_assoc inf_commute)
```

 qed
 next
show closure (S\capT)\subseteqclosure (S \cap closure T)
by (meson Int_mono closure_mono closure_subset order_refl)
qed
corollary infinite_openin:
fixes S :: ' }a\mathrm{ :: t1_space set
shows \llbracketopenin (top_of_set U)S;x\inS;x islimpt U\rrbracket\Longrightarrow \infinite S
by (clarsimp simp add: openin_open islimpt_eq_acc_point inf_commute)
lemma closure_Int_ballI:
assumes \U.\llbracketopenin(top_of_set S) U;U\not={}\rrbracket\LongrightarrowT\capU
shows S\subseteq closure T
proof (clarsimp simp: closure_iff_nhds_not_empty)
fix }x\mathrm{ and }A\mathrm{ and }
assume }x\inSV\subseteqA\mathrm{ open V x G VT คA={}
then have openin (top_of_set S)(A\capV\capS)
by (auto simp: openin_open intro!: exI[where x=V])
moreover have }A\capV\capS\not={}\mathrm{ using }\langlex\inV\rangle\langleV\subseteqA\rangle\langlex\inS
by auto
ultimately have}T\cap(A\capV\capS)\not={
by (rule assms)
with }\langleT\capA={}`\mathrm{ show False by auto
qed

```

\subsection*{2.3.2 Frontier}
```

lemma euclidean_interior_of [simp]: euclidean interior_of $S=$ interior S by (auto simp: interior_of_def interior_def)
lemma euclidean_frontier_of [simp]: euclidean frontier_of $S=$ frontier S by (auto simp: frontier_of_def frontier_def)
lemma connected_Int_frontier:
\llbracket connected $s ; s \cap t \neq\{ \} ; s-t \neq\{ \} \rrbracket \Longrightarrow(s \cap$ frontier $t \neq\{ \})$
apply (simp add: frontier_interiors connected_openin, safe)
apply (drule_tac $x=s \cap$ interior t in spec, safe)
apply (drule_tac [2] $x=s \cap$ interior ($-t$) in spec)
apply (auto simp: disjoint_eq_subset_Compl dest: interior_subset [THEN sub$\operatorname{set} D])$
done

```

\subsection*{2.3.3 Compactness}
lemma openin_delete:
fixes \(a\) :: ' \(a\) :: t1_space
shows openin (top_of_set u) s
\(\Longrightarrow\) openin \((\) top_of_set \(u)(s-\{a\})\)
by (metis Int_Diff open_delete openin_open)
```

lemma compact_eq_openin_cover:
compact $S \longleftrightarrow$
$(\forall C .(\forall c \in C$. openin (top_of_set $S) c) \wedge S \subseteq \bigcup C \longrightarrow$
$(\exists D \subseteq C$. finite $D \wedge S \subseteq \bigcup D))$
proof safe
fix C
assume compact S and $\forall c \in C$. openin (top_of_set S) c and $S \subseteq \bigcup C$
then have $\forall c \in\{T$. open $T \wedge S \cap T \in C\}$. open c and $S \subseteq \bigcup\{T$. open $T \wedge$
$S \cap T \in C\}$
unfolding openin_open by force+
with 〈compact $S\rangle$ obtain D where $D \subseteq\{T$. open $T \wedge S \cap T \in C\}$ and finite
D and $S \subseteq \bigcup D$
by (meson compactE)
then have image $(\lambda T . S \cap T) D \subseteq C \wedge$ finite (image $(\lambda T . S \cap T) D) \wedge S \subseteq$
$\bigcup($ image $(\lambda T . S \cap T) D)$
by auto
then show $\exists D \subseteq C$. finite $D \wedge S \subseteq \bigcup D$..
next
assume 1: $\forall C .\left(\forall c \in C\right.$. openin $\left.\left(t o p_{-} o f_{-} s e t ~ S\right) c\right) \wedge S \subseteq \bigcup C \longrightarrow$
$(\exists D \subseteq C$. finite $D \wedge S \subseteq \bigcup D)$
show compact S
proof (rule compactI)
fix C
let ? $C=$ image $(\lambda T . S \cap T) C$
assume $\forall t \in C$. open t and $S \subseteq \bigcup C$
then have $(\forall c \in ? C$. openin $($ top_of_set $S) c) \wedge S \subseteq \bigcup ? C$
unfolding openin_open by auto
with 1 obtain D where $D \subseteq ? C$ and finite D and $S \subseteq \bigcup D$
by metis
let ? $D=$ inv_into $C(\lambda T . S \cap T)$ ' D
have $? D \subseteq C \wedge$ finite $? D \wedge S \subseteq \bigcup ? D$
proof (intro conjI)
from $\langle D \subseteq$? C 〉 show ? $D \subseteq C$
by (fast intro: inv_into_into)
from 〈finite D 〉 show finite ? D
by (rule finite_imageI)
from $\langle S \subseteq \bigcup D$ show $S \subseteq \bigcup$? D
apply (rule subset_trans)
by (metis Int_Union Int_lower2 $\langle D \subseteq(\cap) S$ ' C 〉image_inv_into_cancel)
qed
then show $\exists D \subseteq C$. finite $D \wedge S \subseteq \bigcup D$..
qed
qed

```

\section*{2．3．4 Continuity}
lemma interior＿image＿subset：
assumes \(\operatorname{inj} f \bigwedge x\) ．continuous（at \(x) f\)
```

 shows interior (f'S)\subseteqf'(interior S)
 proof
fix }x\mathrm{ assume }x\in\mathrm{ interior (f'S)
then obtain T where as: open Tx\inT T\subseteqf'S ..
then have }x\inf'S\mathrm{ by auto
then obtain y where y:y\inSx=fy by auto
have open (f -'T)
using assms <open T> by (simp add: continuous_at_imp_continuous_on open_vimage)
moreover have }y\in\mathrm{ vimage f T
using \langlex = fy\rangle\langlex\inT\rangle by simp
moreover have vimage f T\subseteqS
using 〈T\subseteq image f S
langleinj f\rangle unfolding inj_on_def subset_eq by auto
ultimately have }y\in\mathrm{ interior S ..
with \langlex = f y` show }x\inf`\mathrm{ ' interior S ..
qed

```

\subsection*{2.3.5 Equality of continuous functions on closure and related results}
lemma continuous_closedin_preimage_constant:
fixes \(f::\) _ \(\Rightarrow\) ' \(b::\) t1_space
shows continuous_on \(S f \Longrightarrow\) closedin (top_of_set \(S\) ) \(\{x \in S . f x=a\}\)
using continuous_closedin_preimage \([\) of \(S f\{a\}]\) by (simp add: vimage_def Collect_conj_eq)
lemma continuous_closed_preimage_constant:
fixes \(f::\) _ \(\Rightarrow\) ' \(b::\) t1_space
shows continuous_on \(S f \Longrightarrow\) closed \(S \Longrightarrow\) closed \(\{x \in S . f x=a\}\)
using continuous_closed_preimage \([\) of \(S f\{a\}]\) by (simp add: vimage_def Col-
lect_conj_eq)
lemma continuous_constant_on_closure:
fixes \(f::\) _ \(\Rightarrow\) ' \(b:: t 1 \_\)space
assumes continuous_on (closure \(S\) ) \(f\)
and \(\bigwedge x . x \in S \Longrightarrow f x=a\)
and \(x \in\) closure \(S\)
shows \(f x=a\)
using continuous_closed_preimage_constant[of closure S fa]
assms closure_minimal[of \(S\{x \in\) closure \(S . f x=a\}]\) closure_subset
unfolding subset_eq
by auto
lemma image_closure_subset:
assumes contf: continuous_on (closure \(S\) ) \(f\)
and closed \(T\)
and \((f\) ' \(S) \subseteq T\)
shows \(f\) ' \((\) closure \(S) \subseteq T\)
proof -
have \(S \subseteq\{x \in\) closure \(S . f x \in T\}\)
using assms(3) closure_subset by auto
moreover have closed (closure \(S \cap f-‘ T\) )
using continuous_closed_preimage \([O F\) contf] 〈closed \(T\rangle\) by auto
ultimately have closure \(S=\left(\right.\) closure \(\left.S \cap f-{ }^{\prime} T\right)\)
using closure_minimal[of \(S\) (closure \(S \cap f-‘ T)]\) by auto
then show ?thesis by auto
qed

\subsection*{2.3.6 A function constant on a set}
definition constant_on (infixl (constant \({ }^{\prime}\) _on) 50) where \(f\) constant_on \(A \equiv \exists y . \forall x \in A . f x=y\)
lemma constant_on_subset: \(\llbracket f\) constant_on \(A ; B \subseteq A \rrbracket \Longrightarrow f\) constant_on \(B\) unfolding constant_on_def by blast
lemma injective_not_constant:
fixes \(S::{ }^{\prime} a::\left\{p e r f e c t \_s p a c e\right\} ~ s e t\)
shows \(\llbracket\) open \(S\); inj_on \(f S ; f\) constant_on \(S \rrbracket \Longrightarrow S=\{ \}\)
unfolding constant_on_def
by (metis equalsOI inj_on_contraD islimpt_UNIV islimpt_def)
lemma constant_on_closureI:
fixes \(f::\) _ \(\Rightarrow\) 'b::t1_space
assumes cof: \(f\) constant_on \(S\) and contf:continuous_on (closure \(S\) ) \(f\)
shows \(f\) constant_on (closure \(S\) )
using continuous_constant_on_closure [OF contf] cof unfolding constant_on_def
by metis

\subsection*{2.3.7 Continuity relative to a union.}
lemma continuous_on_Un_local:
\(\llbracket c l o s e d i n\left(t o p_{-} o f \_s e t(s \cup t)\right) s\); closedin \(\left(t o p_{-} o f \_s e t(s \cup t)\right) t\);
continuous_on sf; continuous_on \(t f\) §
\(\Longrightarrow\) continuous_on \((s \cup t) f\)
unfolding continuous_on closedin_limpt
by (metis Lim_trivial_limit Lim_within_union Un_iff trivial_limit_within)
lemma continuous_on_cases_local:
【closedin (top_of_set \((s \cup t)) s\); closedin \(\left(t o p_{-} o f_{-} s e t(s \cup t)\right) t\); continuous_on s \(f\); continuous_on \(t g\);
\(\wedge x . \llbracket x \in s \wedge \neg P x \vee x \in t \wedge P x \rrbracket \Longrightarrow f x=g x \rrbracket\)
\(\Longrightarrow\) continuous_on \((s \cup t)(\lambda x\). if \(P x\) then \(f x\) else \(g x)\)
by (rule continuous_on_Un_local) (auto intro: continuous_on_eq)
lemma continuous_on_cases_le:
fixes \(h::{ }^{\prime} a\) :: topological_space \(\Rightarrow\) real
assumes continuous_on \(\{t \in s . h t \leq a\} f\)
and continuous_on \(\{t \in s . a \leq h t\} g\)
and \(h\) : continuous_on s \(h\)
```

 and \(\bigwedge t . \llbracket t \in s ; h t=a \rrbracket \Longrightarrow f t=g t\)
 shows continuous_on \(s(\lambda t\). if \(h t \leq a\) then \(f(t)\) else \(g(t))\)
 proof -
have $s: s=\left(s \cap h-{ }^{\prime}\right.$ atMost $\left.a\right) \cup\left(s \cap h-{ }^{\prime}\right.$ atLeast $\left.a\right)$
by force
have 1: closedin (top_of_set s) ($s \cap h-‘$ atMost a)
by (rule continuous_closedin_preimage [OF h closed_atMost])
have 2: closedin (top_of_set $s)(s \cap h-‘$ atLeast a)
by (rule continuous_closedin_preimage [OF h closed_atLeast])
have eq: $s \cap h-‘\{. . a\}=\{t \in s . h t \leq a\} s \cap h-‘\{a .\}=.\{t \in s . a \leq h t\}$
by auto
show ?thesis
apply (rule continuous_on_subset [of s, OF _ order_refl])
apply (subst s)
apply (rule continuous_on_cases_local)
using 12 s assms apply (auto simp: eq)
done
qed
lemma continuous_on_cases_1:
fixes $s::$ real set
assumes continuous_on $\{t \in s . t \leq a\} f$
and continuous_on $\{t \in s . a \leq t\} g$
and $a \in s \Longrightarrow f a=g a$
shows continuous_on $s(\lambda t$. if $t \leq a$ then $f(t)$ else $g(t))$
using assms
by (auto intro: continuous_on_cases_le [where $h=i d$, simplified])

```

\subsection*{2.3.8 Inverse function property for open/closed maps}
lemma continuous_on_inverse_open_map:
assumes contf: continuous_on \(S f\)
and imf: \(f\) ' \(S=T\)
and injf: \(\bigwedge x . x \in S \Longrightarrow g(f x)=x\)
and oo: \(\bigwedge U\). openin (top_of_set \(S) U \Longrightarrow\) openin \((\) top_of_set \(T)\left(f^{\prime} U\right)\)
shows continuous_on \(T\) g
proof -
from imf injf have \(g T S: g ' T=S\)
by force
from imf injf have \(f U: U \subseteq S \Longrightarrow(f ' U)=T \cap g-{ }^{\prime} U\) for \(U\)
by force
show ?thesis
by (simp add: continuous_on_open \([\) of \(T g] g T S\) ) (metis openin_imp_subset fU
oo)
qed
lemma continuous_on_inverse_closed_map:
assumes contf: continuous_on \(S f\)
and \(i m f: f\) ' \(S=T\)
and injf: \(\wedge x . x \in S \Longrightarrow g(f x)=x\)
and oo: \(\bigwedge U\). closedin (top_of_set \(S) U \Longrightarrow\) closedin (top_of_set \(T)\left(f^{\prime} U\right)\)
shows continuous_on \(T g\)
proof -
from imf injf have \(g T S: g\) ' \(T=S\)
by force
from imf injf have \(f U: U \subseteq S \Longrightarrow(f\) ' \(U)=T \cap g-{ }^{\prime} U\) for \(U\)
by force
show ?thesis
by (simp add: continuous_on_closed \([o f ~ T g] g T S)\) (metis closedin_imp_subset \(f U\) oo)
qed
lemma homeomorphism_injective_open_map:
assumes contf: continuous_on \(S f\)
and imf: \(f\) ' \(S=T\)
and injf: inj_on \(f S\)
and oo: \(\bigwedge U\). openin (top_of_set \(S) U \Longrightarrow\) openin (top_of_set \(T)\left(f^{\prime} U\right)\)
obtains \(g\) where homeomorphism \(S T f g\)
proof
have continuous_on \(T\) (inv_into \(S\) f)
by (metis contf continuous_on_inverse_open_map imf injf inv_into_f_f oo)
with imf injf contf show homeomorphism \(S T f\) (inv_into \(S f\) )
by (auto simp: homeomorphism_def)
qed
lemma homeomorphism_injective_closed_map:
assumes contf: continuous_on \(S f\)
and imf: \(f\) ' \(S=T\)
and injf: inj_on f \(S\)
and oo: \(\bigwedge U\). closedin (top_of_set \(S) U \Longrightarrow\) closedin (top_of_set \(T)\left(f^{\prime} U\right)\)
obtains \(g\) where homeomorphism \(S T f g\)
proof
have continuous_on \(T\) (inv_into \(S\) f)
by (metis contf continuous_on_inverse_closed_map imf injf inv_into_f_f oo)
with imf injf contf show homeomorphism \(S T f\) (inv_into \(S f\) ) by (auto simp: homeomorphism_def)
qed
lemma homeomorphism_imp_open_map:
assumes hom: homeomorphism \(S T f g\)
and oo: openin (top_of_set \(S\) ) \(U\)
shows openin (top_of_set \(T)\left(f^{\prime} U\right)\)
proof -
from hom oo have [simp]: \(f\) ' \(U=T \cap g-' U\)
using openin_subset by (fastforce simp: homeomorphism_def rev_image_eqI)
from hom have continuous_on \(T g\)
unfolding homeomorphism_def by blast
moreover have \(g{ }^{\prime} T=S\)
```

 by (metis hom homeomorphism_def)
 ultimately show ?thesis
 by (simp add: continuous_on_open oo)
 qed
lemma homeomorphism_imp_closed_map:
assumes hom: homeomorphism STfg
and oo: closedin (top_of_set S) U
shows closedin (top_of_set T) (f`U)
proof -
from hom oo have [simp]: f' U = T\cap g-' U
using closedin_subset by (fastforce simp: homeomorphism_def rev_image_eqI)
from hom have continuous_on T g
unfolding homeomorphism_def by blast
moreover have g'T=S
by (metis hom homeomorphism_def)
ultimately show ?thesis
by (simp add: continuous_on_closed oo)
qed

```

\subsection*{2.3.9 Seperability}
lemma subset_second_countable:
obtains \(\mathcal{B}\) :: ' \(a\) :: second_countable_topology set set
where countable \(\mathcal{B}\)
\(\} \notin \mathcal{B}\)
\(\bigwedge C . C \in \mathcal{B} \Longrightarrow \operatorname{openin}(\) top_of_set \(S) C\)
\(\bigwedge T\). openin(top_of_set \(S) T \Longrightarrow \exists \mathcal{U} . \mathcal{U} \subseteq \mathcal{B} \wedge T=\bigcup \mathcal{U}\)
proof -
obtain \(\mathcal{B}::{ }^{\prime}\) a set set
where countable \(\mathcal{B}\)
and opeB: \(\wedge C . C \in \mathcal{B} \Longrightarrow\) openin(top_of_set \(S\) ) \(C\)
and \(\mathcal{B}: \quad \bigwedge T\). openin(top_of_set \(S) T \Longrightarrow \exists \mathcal{U} . \mathcal{U} \subseteq \mathcal{B} \wedge T=\bigcup \mathcal{U}\)
proof -
obtain \(\mathcal{C}\) :: 'a set set
where countable \(\mathcal{C}\) and ope: \(\bigwedge C . C \in \mathcal{C} \Longrightarrow\) open \(C\)
and \(\mathcal{C}: \wedge S\). open \(S \Longrightarrow \exists U . U \subseteq \mathcal{C} \wedge S=\bigcup U\)
by (metis univ_second_countable that)
show ?thesis
proof
show countable \(((\lambda C . S \cap C)\) ' \(\mathcal{C})\) by (simp add: 〈countable \(\mathcal{C}\) )
show \(\bigwedge C . C \in(\cap) S{ }^{\prime} \mathcal{C} \Longrightarrow\) openin (top_of_set \(S\) ) \(C\) using ope by auto
show \(\wedge T\). openin (top_of_set \(S) T \Longrightarrow \exists \mathcal{U} \subseteq(\cap) S{ }^{\prime} \mathcal{C} . T=\bigcup \mathcal{U}\) by (metis \(\mathcal{C}\) image_mono inf_Sup openin_open)
qed
qed
show ?thesis
```

 proof
 show countable (\(\mathcal{B}-\{\{ \}\}\))
 using 〈countable \(\mathcal{B}\) 〉 by blast
 show \(\bigwedge C . \llbracket C \in \mathcal{B}-\{\{ \}\} \rrbracket \Longrightarrow\) openin (top_of_set \(S\)) \(C\)
 by (simp add: \(\langle\bigwedge C . C \in \mathcal{B} \Longrightarrow\) openin (top_of_set \(S\)) \(C\rangle\))
 show \(\exists \mathcal{U} \subseteq \mathcal{B}-\{\{ \}\} . T=\bigcup \mathcal{U}\) if openin (top_of_set \(S\)) \(T\) for \(T\)
 using \(\mathcal{B}[\) OF that \(]\)
 apply clarify
 apply (rule_tac \(x=\mathcal{U}-\{\{ \}\}\) in exI, auto)
 done
 qed auto
 qed
lemma Lindelof_openin:
fixes \mathcal{F} :: 'a::second_countable_topology set set
assumes $\wedge S . S \in \mathcal{F} \Longrightarrow$ openin (top_of_set U) S
obtains \mathcal{F}^{\prime} where $\mathcal{F}^{\prime} \subseteq \mathcal{F}$ countable $\mathcal{F}^{\prime} \cup \mathcal{F}^{\prime}=\bigcup \mathcal{F}$
proof -
have $\wedge S . S \in \mathcal{F} \Longrightarrow \exists T$. open $T \wedge S=U \cap T$
using assms by (simp add: openin_open)
then obtain $t f$ where $t f: \wedge S . S \in \mathcal{F} \Longrightarrow$ open $(t f S) \wedge(S=U \cap t f S)$
by metis
have $[$ simp $]: \bigwedge \mathcal{F}^{\prime} . \mathcal{F}^{\prime} \subseteq \mathcal{F} \Longrightarrow \bigcup \mathcal{F}^{\prime}=U \cap \bigcup\left(t f{ }^{\prime} \mathcal{F}^{\prime}\right)$
using $t f$ by fastforce
obtain \mathcal{G} where countable $\mathcal{G} \wedge \mathcal{G} \subseteq t f$ ' $\mathcal{F} \bigcup \mathcal{G}=\bigcup\left(t f^{\prime} \mathcal{F}\right)$
using $t f$ by (force intro: Lindelof [of tf ' $\mathcal{F}]$)
then obtain \mathcal{F}^{\prime} where $\mathcal{F}^{\prime}: \mathcal{F}^{\prime} \subseteq \mathcal{F}$ countable $\mathcal{F}^{\prime} \cup \mathcal{F}^{\prime}=\bigcup \mathcal{F}$
by (clarsimp simp add: countable_subset_image)
then show ?thesis ..
qed

```

\subsection*{2.3.10 Closed Maps}
lemma continuous_imp_closed_map:
fixes \(f\) :: 'a::t2_space \(\Rightarrow\) ' \(b::\) t2_space
assumes closedin (top_of_set \(S\) ) \(U\)
continuous_on \(S\) ff' \(S=T\) compact \(S\)
shows closedin (top_of_set \(T)\left(f^{\prime} U\right)\)
by (metis assms closedin_compact_eq compact_continuous_image continuous_on_subset
subset_image_iff)
lemma closed_map_restrict:
assumes cloU: closedin (top_of_set \((S \cap f-‘ T ')) U\)
and \(c c: \bigwedge U\). closedin (top_of_set \(S) U \Longrightarrow\) closedin (top_of_set \(T)\left(f^{\prime} U\right)\)
and \(T^{\prime} \subseteq T\)
shows closedin (top_of_set \(\left.T^{\prime}\right)\left(f^{\prime} U\right)\)
proof -
obtain \(V\) where closed \(V U=S \cap f-{ }^{\prime} T^{\prime} \cap V\) using cloU by (auto simp: closedin_closed)
```

 with cc \([\) of \(S \cap V]\left\langle T^{\prime} \subseteq T\right\rangle\) show ?thesis
 by (fastforce simp add: closedin_closed)
 qed

```

\subsection*{2.3.11 Open Maps}
lemma open_map_restrict:
assumes ope \(U\) : openin (top_of_set \((S \cap f-‘ T \prime)\) ) \(U\)
and oo: \(\bigwedge U\). openin (top_of_set \(S\) ) \(U \Longrightarrow\) openin (top_of_set \(T\) ) ( \(f^{\prime} U\) )
and \(T^{\prime} \subseteq T\)
shows openin (top_of_set \(\left.T^{\prime}\right)\left(f^{\prime} U\right)\)
proof -
obtain \(V\) where open \(V U=S \cap f-{ }^{\prime} T^{\prime} \cap V\)
using ope \(U\) by (auto simp: openin_open)
with oo [of \(S \cap V]\left\langle T^{\prime} \subseteq T\right\rangle\) show ?thesis
by (fastforce simp add: openin_open)
qed

\subsection*{2.3.12 Quotient maps}
lemma quotient_map_imp_continuous_open:
assumes \(T: f^{\prime} S \subseteq T\)
and ope: \(\bigwedge U . U \subseteq T\)
\[
\begin{aligned}
& \Longrightarrow \quad(\text { openin }(\text { top_of_set } S)(S \cap f-‘ U) \longleftrightarrow \\
& \quad \text { openin }(\text { top_of_set } T) U)
\end{aligned}
\]
shows continuous_on \(S f\)
proof -
have [simp]: \(S \cap f-‘ f\) ' \(S=S\) by auto
show ?thesis
by (meson \(T\) continuous_on_open_gen ope openin_imp_subset)
qed
lemma quotient_map_imp_continuous_closed:
assumes \(T: f^{\prime} S \subseteq T\)
and ope: \(\bigwedge U . U \subseteq T\)
\[
\begin{aligned}
& \Longrightarrow \quad(\text { closedin }(\text { top_of_set } S)(S \cap f-‘ U) \longleftrightarrow \\
& \quad \text { closedin }(\text { top_of_set } T) U)
\end{aligned}
\]
shows continuous_on \(S f\)
proof -
have [simp]: \(S \cap f-{ }^{\prime} f\) ' \(S=S\) by auto
show ?thesis
by (meson T closedin_imp_subset continuous_on_closed_gen ope)
qed
lemma open_map_imp_quotient_map:
assumes contf: continuous_on \(S f\)
and \(T: T \subseteq f^{\prime} S\)
and ope: \(\wedge T\). openin (top_of_set \(S\) ) \(T\)
\(\Longrightarrow\) openin \(\left(\right.\) top_of_set \(\left.\left(f^{\prime} S\right)\right)\left(f^{\prime} T\right)\)
shows openin (top_of_set \(S)(S \cap f-‘ T)=\)
```

 openin (top_of_set (f`}S))
 proof -
have T=f`(S\capf-`}T
using T by blast
then show ?thesis
using ope contf continuous_on_open by metis
qed
lemma closed_map_imp_quotient_map:
assumes contf:continuous_on S f
and T:T\subseteqf'S
and ope: }\bigwedgeT\mathrm{ . closedin (top_of_set S)T
closedin (top_of_set (f'S))(f`T) shows openin (top_of_set S) (S\capf-'}T) openin (top_of_set (f`S)) T
(is ?lhs = ?rhs)
proof
assume ?lhs
then have *: closedin (top_of_set S) (S-(S\capf -` T)) using closedin_diff by fastforce have [simp]: (f'S-f'(S-(S\capf-`}T)))=
using T by blast
show ?rhs
using ope [OF *, unfolded closedin_def] by auto
next
assume ?rhs
with contf show ?lhs
by (auto simp: continuous_on_open)
qed
lemma continuous_right_inverse_imp_quotient_map:
assumes contf:continuous_on S f and imf: f'S\subseteqT
and contg:continuous_on T g and img: g' T\subseteqS
and fg[simp]: \bigwedgey. y \inT\Longrightarrowf(gy)=y
and U:U\subseteqT
shows openin (top_of_set S)(S\capf-`}U) openin (top_of_set T) U (is ?lhs = ?rhs) proof - have f:\Z. openin (top_of_set (f'S)) Z\Longrightarrow openin (top_of_set S) (S\capf-`Z)
and g:\bigwedgeZ. openin (top_of_set (g`T)) Z\Longrightarrow openin (top_of_set T) (T\capg-'}Z using contf contg by (auto simp: continuous_on_open) show ?thesis proof have T\capg-`(g'T\cap(S\capf-`U))}={x\inT.f(gx)\inU
using imf img by blast
also have ... = U

```
```

 using U by auto
 finally have eq:T\capg-'(g'}T\cap(S\capf-'U))=U
 assume ?lhs
 then have *: openin (top_of_set (g`}T))(g'T\cap(S\capf-'U)
 by (meson img openin_Int openin_subtopology_Int_subset openin_subtopology_self)
 show ?rhs
 using g[OF*] eq by auto
 next
 assume rhs: ?rhs
 show ?lhs
 by (metis ffg image_eqI image_subset_iff imf img openin_subopen openin_subtopology_self
 openin_trans rhs)
qed
qed
lemma continuous_left_inverse_imp_quotient_map:
assumes continuous_on S f
and continuous_on (f'S)g
and }\x.x\inS\Longrightarrowg(fx)=
and U\subseteqf'S
shows openin (top_of_set S) (S\capf -` U)\longleftrightarrow
openin (top_of_set (f'S)) U
apply (rule continuous_right_inverse_imp_quotient_map)
using assms apply force+
done
lemma continuous_imp_quotient_map:
fixes f :: 'a::t2_space => 'b::t2_space
assumes continuous_on Sff'S=T compact SU\subseteqT
shows openin (top_of_set S) (S\capf-'}U)
openin (top_of_set T) U
by (metis (no_types, lifting) assms closed_map_imp_quotient_map continuous_imp_closed_map)

```

\subsection*{2.3.13 Pasting lemmas for functions, for of casewise definitions}

\section*{on open sets}
lemma pasting_lemma:
assumes ope: \(\bigwedge i . i \in I \Longrightarrow\) openin \(X(T i)\)
and cont: \(\bigwedge i . i \in I \Longrightarrow\) continuous_map(subtopology \(X(T i)) Y(f i)\)
and \(f: \bigwedge i j x\). \(\llbracket i \in I ; j \in I ; x \in\) topspace \(X \cap T i \cap T j \rrbracket \Longrightarrow f i x=f j x\)
and \(g: \bigwedge x . x \in\) topspace \(X \Longrightarrow \exists j . j \in I \wedge x \in T j \wedge g x=f j x\)
shows continuous_map X Yg
unfolding continuous_map_openin_preimage_eq
proof (intro conjI allI impI)
show \(g\) 'topspace \(X \subseteq\) topspace \(Y\)
using \(g\) cont continuous_map_image_subset_topspace by fastforce
next
fix \(U\)
```

 assume \(Y\) : openin \(Y U\)
 have \(T\) : \(T i \subseteq\) topspace \(X\) if \(i \in I\) for \(i\)
 using ope by (simp add: openin_subset that)
 have \(*\) : topspace \(X \cap g-{ }^{\prime} U=\left(\bigcup i \in I . T i \cap f i-{ }^{\prime} U\right)\)
 using \(f g T\) by fastforce
 have \(\bigwedge i . i \in I \Longrightarrow\) openin \(X\left(T i \cap f i-{ }^{\prime} U\right)\)
 using cont unfolding continuous_map_openin_preimage_eq
 by (metis Y T inf.commute inf_absorb1 ope topspace_subtopology openin_trans_full)
 then show openin \(X\) (topspace \(X \cap g-{ }^{\prime} U\))
 by (auto simp: *)
 qed
lemma pasting_lemma_exists:
assumes X : topspace $X \subseteq(\bigcup i \in I . T i)$
and ope: $\bigwedge i . i \in I \Longrightarrow$ openin $X(T i)$
and cont: $\bigwedge i . i \in I \Longrightarrow$ continuous_map (subtopology $X(T i)) Y(f i)$
and $f: \bigwedge i j x . \llbracket i \in I ; j \in I ; x \in$ topspace $X \cap T i \cap T j \rrbracket \Longrightarrow f i x=f j x$
obtains g where continuous_map $X Y g \bigwedge x i . \llbracket i \in I ; x \in$ topspace $X \cap T i \rrbracket$
$\Longrightarrow g x=f i x$
proof
let $? h=\lambda x . f($ SOME $i . i \in I \wedge x \in T i) x$
show continuous_map X Y ?h
apply (rule pasting_lemma [OF ope cont])
apply (blast intro: f)+
by (metis (no_types, lifting) UN_E X subsetD someI_ex)
show $f(S O M E$ i. $i \in I \wedge x \in T i) x=f i x$ if $i \in I x \in$ topspace $X \cap T i$ for
i x
by (metis (no_types, lifting) IntD2 IntI f someI_ex that)
qed
lemma pasting_lemma_locally_finite:
assumes fin: $\bigwedge x . x \in$ topspace $X \Longrightarrow \exists V$. openin $X V \wedge x \in V \wedge$ finite $\{i \in$
I. $T i \cap V \neq\{ \}\}$
and clo: $\bigwedge i . i \in I \Longrightarrow$ closedin $X(T i)$
and cont: $\bigwedge i . i \in I \Longrightarrow$ continuous_map(subtopology $X(T i)) Y(f i)$
and $f: \bigwedge i j x . \llbracket i \in I ; j \in I ; x \in$ topspace $X \cap T i \cap T j \rrbracket \Longrightarrow f i x=f j x$
and $g: \bigwedge x . x \in$ topspace $X \Longrightarrow \exists j . j \in I \wedge x \in T j \wedge g x=f j x$
shows continuous_map X Y g
unfolding continuous_map_closedin_preimage_eq
proof (intro conjI allI impI)
show g 'topspace $X \subseteq$ topspace Y
using g cont continuous_map_image_subset_topspace by fastforce
next
fix U
assume Y : closedin $Y U$
have T : $T i \subseteq$ topspace X if $i \in I$ for i
using clo by (simp add: closedin_subset that)
have *: topspace $X \cap g-{ }^{\prime} U=\left(\bigcup i \in I . T i \cap f i-{ }^{`} U\right)$
using $f g T$ by fastforce

```
```

have cTf: \i. i\inI\Longrightarrow closedin X (Ti\capfi-' U)
using cont unfolding continuous_map_closedin_preimage_eq topspace_subtopology
by (simp add: Int_absorb1 T Y clo closedin_closed_subtopology)
have sub: {Z\in(\lambdai.Ti\capfi-'U)'I.Z\capV\not={}}
\subseteq (\lambda i . T i \cap f i - ' U) ' \{ i \in I . T i \cap V \neq \{ \} \} ~ f o r ~ V ~
by auto
have 1:(\bigcupi\inI.Ti\capfi-'U)\subseteqtopspace X
using T by blast
then have lf:locally_finite_in X ((\lambdai.Ti\capfi-'U)'I)
unfolding locally_finite_in_def
using finite_subset [OF sub] fin by force
show closedin X (topspace X\capg-'U)
apply (subst *)
apply (rule closedin_locally_finite_Union)
apply (auto intro: cTf lf)
done
qed

```

\section*{Likewise on closed sets, with a finiteness assumption}
```

lemma pasting_lemma_closed:
assumes fin: finite I
and clo: $\bigwedge i . i \in I \Longrightarrow$ closedin $X(T i)$
and cont: $\bigwedge i . i \in I \Longrightarrow$ continuous_map(subtopology $X(T i)) Y(f i)$
and $f: \bigwedge i j x . \llbracket i \in I ; j \in I ; x \in$ topspace $X \cap T i \cap T j \rrbracket \Longrightarrow f i x=f j x$
and $g: \wedge x . x \in$ topspace $X \Longrightarrow \exists j . j \in I \wedge x \in T j \wedge g x=f j x$
shows continuous_map X Yg
using pasting_lemma_locally_finite [$O F_{\text {_ }}$ clo cont $f g$] fin by auto
lemma pasting_lemma_exists_locally_finite:
assumes fin: $\bigwedge x . x \in$ topspace $X \Longrightarrow \exists V$. openin $X V \wedge x \in V \wedge$ finite $\{i \in$
I. $T i \cap V \neq\{ \}\}$
and X : topspace $X \subseteq \bigcup\left(T^{\prime} I\right)$
and clo: $\bigwedge i . i \in I \Longrightarrow$ closedin $X(T i)$
and cont: $\bigwedge i . i \in I \Longrightarrow$ continuous_map(subtopology $X(T i)) Y(f i)$
and $f: \bigwedge i j x . \llbracket i \in I ; j \in I ; x \in$ topspace $X \cap T i \cap T j \rrbracket \Longrightarrow f i x=f j x$
and $g: \bigwedge x . x \in$ topspace $X \Longrightarrow \exists j . j \in I \wedge x \in T j \wedge g x=f j x$
obtains g where continuous_map $X Y g \bigwedge x i . \llbracket i \in I ; x \in$ topspace $X \cap T i \rrbracket$
$\Longrightarrow g x=f i x$
proof
show continuous_map $X Y(\lambda x . f(@ i . i \in I \wedge x \in T i) x)$
apply (rule pasting_lemma_locally_finite [OF fin])
apply (blast intro: assms) +
by (metis (no_types, lifting) UN_E X set_rev_mp someI_ex)
next
fix $x i$
assume $i \in I$ and $x \in$ topspace $X \cap T i$
show f (SOME $i . i \in I \wedge x \in T i) x=f i x$
apply (rule someI2_ex)

```
using \(\langle i \in I\rangle\langle x \in\) topspace \(X \cap T i\rangle\) apply blast
by (meson Int_iff \(\langle i \in I\rangle\langle x \in\) topspace \(X \cap T i\rangle f\) )
qed
lemma pasting_lemma_exists_closed:
assumes fin: finite \(I\)
and \(X\) : topspace \(X \subseteq \bigcup\left(T^{\prime} I\right)\)
and clo: \(\bigwedge i . i \in I \Longrightarrow\) closedin \(X(T i)\)
and cont: \(\bigwedge i . i \in I \Longrightarrow\) continuous_map(subtopology \(X(T i)) Y(f i)\)
and \(f: \bigwedge i j x . \llbracket i \in I ; j \in I ; x \in\) topspace \(X \cap T i \cap T j \rrbracket \Longrightarrow f i x=f j x\)
obtains \(g\) where continuous_map \(X Y g \wedge x i . \llbracket i \in I ; x \in\) topspace \(X \cap T i \rrbracket\)
\(\Longrightarrow g x=f i x\)
proof
show continuous_map \(X Y(\lambda x . f(S O M E i . i \in I \wedge x \in T i) x)\)
apply (rule pasting_lemma_closed [OF 〈finite I〉clo cont])
apply (blast intro: \(f\) ) +
by (metis (mono_tags, lifting) UN_iff X someI_ex subset_iff)
next
fix \(x i\)
assume \(i \in I x \in\) topspace \(X \cap T i\)
then show \(f(S O M E i . i \in I \wedge x \in T i) x=f i x\)
by (metis (no_types, lifting) IntD2 IntI f someI_ex)
qed
lemma continuous_map_cases:
assumes \(f\) : continuous_map (subtopology \(X(X\) closure_of \(\{x . P x\})) Y f\)
and \(g\) : continuous_map (subtopology \(X(X\) closure_of \(\{x . \neg P x\})) Y g\)
and \(f g: \bigwedge x . x \in X\) frontier_of \(\{x . P x\} \Longrightarrow f x=g x\)
shows continuous_map \(X Y(\lambda x\). if \(P x\) then \(f x\) else \(g x)\)
proof (rule pasting_lemma_closed)
let ? \(f=\lambda b\). if \(b\) then \(f\) else \(g\)
let ? \(g=\lambda x\). if \(P x\) then \(f x\) else \(g x\)
let \(? T=\lambda b\). if \(b\) then \(X\) closure_of \(\{x . P x\}\) else \(X\) closure_of \(\left\{x .{ }^{\sim} P x\right\}\)
show finite \(\{\) True, False \(\}\) by auto
have eq: topspace \(X-\) Collect \(P=\) topspace \(X \cap\{x . \neg P x\}\)
by blast
show ?f \(i x=\) ?f \(j x\)
if \(i \in\{\) True,False \(\} j \in\{\) True,False \(\}\) and \(x: x \in\) topspace \(X \cap ? T i \cap ? T j\)
for \(i j x\)
proof -
have \(f x=g x\)
if \(i \neg j\)
apply (rule fg)
unfolding frontier_of_closures eq
using \(x\) that closure_of_restrict by fastforce
moreover
have \(g x=f x\)
if \(x \in X\) closure_of \(\{x . \neg P x\} x \in X\) closure_of Collect \(P \neg i j\) for \(x\) apply (rule fg [symmetric])
```

 unfolding frontier_of_closures eq
 using x that closure_of_restrict by fastforce
 ultimately show ?thesis
 using that by (auto simp flip: closure_of_restrict)
 qed
show \existsj.j\in{True,False} \wedge x \in?T j^(if P x then f x else g x)=?f j x
if }x\in\mathrm{ topspace }X\mathrm{ for }
apply simp
apply safe
apply (metis Int_iff closure_of inf_sup_absorb mem_Collect_eq that)
by (metis DiffI eq closure_of_subset_Int contra_subsetD mem_Collect_eq that)
qed (auto simp: fg)
lemma continuous_map_cases_alt:
assumes f:continuous_map (subtopology X (X closure_of {x { topspace X. P
x})) Y f
and g:continuous_map (subtopology X (X closure_of {x\in topspace X. ~P
x})) Yg
and fg: \x. x \in X frontier_of {x\in topspace X. P x} \Longrightarrowfx=gx
shows continuous_map X Y (}\lambdax\mathrm{ . if P x then f x else g x)
apply (rule continuous_map_cases)
using assms
apply (simp_all add: Collect_conj_eq closure_of_restrict [symmetric] frontier_of_restrict
[symmetric])
done
lemma continuous_map_cases_function:
assumes contp: continuous_map X Z p
and contf:continuous_map (subtopology X {x\in topspace X. p x \inZ closure_of
U}) Yf
and contg: continuous_map (subtopology X {x\in topspace X.px\inZ closure_of
(topspace Z - U)}) Yg
and fg:\x.\llbracketx topspace X; px\inZ frontier_of U\rrbracket\Longrightarrowfx=gx
shows continuous_map X Y (}\lambdax\mathrm{ . if }px\inU\mathrm{ then f x else g x)
proof (rule continuous_map_cases_alt)
show continuous_map (subtopology X (X closure_of {x\in topspace X.p x 的U}))
Yf
proof (rule continuous_map_from_subtopology_mono)

```

```

 show continuous_map (subtopology X ?T) Yf
 by (simp add: contf)
 show X closure_of {x\in topspace X.px\inU}\subseteq?T
 by (rule continuous_map_closure_preimage_subset [OF contp])
 qed
 show continuous_map (subtopology X (X closure_of {x\in topspace X . p x\not\inU}))
 Yg
proof (rule continuous_map_from_subtopology_mono)
let ?T = {x\in topspace X.px\inZ closure_of (topspace Z - U)}
show continuous_map (subtopology X ?T) Y g

```
by (simp add: contg)
have \(X\) closure_of \(\{x \in\) topspace \(X . p x \notin U\} \subseteq X\) closure_of \(\{x \in\) topspace \(X . p x \in\) topspace \(Z-U\}\)
apply (rule closure_of_mono)
using continuous_map_closedin contp by fastforce
then show \(X\) closure_of \(\{x \in\) topspace \(X . p x \notin U\} \subseteq ? T\)
by (rule order_trans \([O F\) _ continuous_map_closure_preimage_subset [OF contp]])
qed
next
show \(f x=g x\) if \(x \in X\) frontier_of \(\{x \in\) topspace \(X . p x \in U\}\) for \(x\)
using that continuous_map_frontier_frontier_preimage_subset [OF contp, of \(U\) ] \(f g\) by blast
qed

\subsection*{2.3.14 Retractions}
definition retraction :: ('a::topological_space) set \(\Rightarrow^{\prime} a\) set \(\Rightarrow\left({ }^{\prime} a \Rightarrow{ }^{\prime} a\right) \Rightarrow\) bool where retraction \(S T r \longleftrightarrow\)
\[
T \subseteq S \wedge \text { continuous_on } S r \wedge r^{\prime} S \subseteq T \wedge(\forall x \in T . r x=x)
\]
definition retract_of (infixl retract'_of 50) where
\(T\) retract_of \(S \longleftrightarrow(\exists r\). retraction \(S T r)\)
lemma retraction_idempotent: retraction \(S T r \Longrightarrow x \in S \Longrightarrow r(r x)=r x\) unfolding retraction_def by auto

Preservation of fixpoints under (more general notion of) retraction
```

lemma invertible_fixpoint_property:
fixes $S::{ }^{\prime} a$::topological_space set
and T :: 'b::topological_space set
assumes contt: continuous_on $T i$
and i ' $T \subseteq S$
and contr: continuous_on $S r$
and $r^{\prime} S \subseteq T$
and $r i: \bigwedge \bar{y} . y \in T \Longrightarrow r(i y)=y$
and $F P: \bigwedge f . \llbracket$ continuous_on $S f ; f^{\prime} S \subseteq S \rrbracket \Longrightarrow \exists x \in S . f x=x$
and contg: continuous_on $T g$
and g ' $T \subseteq T$
obtains y where $y \in T$ and $g y=y$
proof -
have $\exists x \in S .(i \circ g \circ r) x=x$
proof (rule FP)
show continuous_on $S(i \circ g \circ r)$
by (meson contt contr assms(4) contg assms(8) continuous_on_compose con-
tinuous_on_subset)
show $(i \circ g \circ r)$ ' $S \subseteq S$
using assms (2,4,8) by force
qed

```
```

 then obtain x where x:x\inS(i\circg\circr)x=x..
 then have *:g(rx)\inT
 using assms (4,8) by auto
 have r ((i\circg\circr)x)=rx
 using x by auto
 then show ?thesis
 using * ri that by auto
 qed
lemma homeomorphic_fixpoint_property:
fixes S :: 'a::topological_space set
and T :: 'b::topological_space set
assumes S homeomorphic T
shows (\forallf.continuous_on S f^f'S\subseteqS\longrightarrow(\existsx\inS.fx=x))\longleftrightarrow
(\forallg.continuous_on T g ^ g'T\subseteqT\longrightarrow (\existsy\inT.g y=y))
(is ?lhs = ?rhs)
proof -
obtain ri where r:
\forallx\inS.i i r x) = x r'` S = T continuous_on S r
\forally\inT.r (i y) = y i' }T=S\mathrm{ continuous_on T i
using assms unfolding homeomorphic_def homeomorphism_def by blast
show ?thesis
proof
assume ?lhs
with r show ?rhs
by (metis invertible_fixpoint_property[of T i S r] order_refl)
next
assume ?rhs
with r show ?lhs
by (metis invertible_fixpoint_property[of S r T i] order_refl)
qed
qed
lemma retract_fixpoint_property:
fixes f :: 'a::topological_space = 'b::topological_space
and S :: 'a set
assumes T retract_of S
and FP: \f.\llbracketcontinuous_on S f; f'S\subseteqS\rrbracket\Longrightarrow\exists \ \ S S.fx=x
and contg: continuous_on T g
and g'T\subseteqT
obtains }y\mathrm{ where }y\inT\mathrm{ and g y=y
proof -
obtain h where retraction S Th
using assms(1) unfolding retract_of_def ..
then show ?thesis
unfolding retraction_def
using invertible_fixpoint_property[OF continuous_on_id _ _ _ _ FP]
by (metis assms(4) contg image_ident that)
qed

```
```

lemma retraction:
retraction $S T r \longleftrightarrow$
$T \subseteq S \wedge$ continuous_on $S r \wedge r^{\prime} S=T \wedge(\forall x \in T . r x=x)$
by (force simp: retraction_def)

```
lemma retractionE: - yields properties normalized wrt. simp - less likely to loop assumes retraction \(S T r\)
    obtains \(T=r^{\prime} S r^{\prime} S \subseteq S\) continuous_on \(S r \bigwedge x . x \in S \Longrightarrow r(r x)=r x\)
proof (rule that)
    from retraction [of \(S T r\) ] assms
    have \(T \subseteq S\) continuous_on \(S r r^{\prime} S=T\) and \(\forall x \in T\). \(r x=x\)
        by simp_all
    then show \(T=r\) ' \(S r^{\prime} S \subseteq S\) continuous_on \(S r\)
        by simp_all
    from \(\langle\forall x \in T\). \(r x=x\rangle\) have \(r x=x\) if \(x \in T\) for \(x\)
        using that by simp
    with \(\langle r ' S=T\rangle\) show \(r(r x)=r x\) if \(x \in S\) for \(x\)
        using that by auto
qed
lemma retract_ofE: - yields properties normalized wrt. simp - less likely to loop
    assumes \(T\) retract_of \(S\)
    obtains \(r\) where \(T=r^{\prime} S r^{\prime} S \subseteq S\) continuous_on \(S r \bigwedge x . x \in S \Longrightarrow r(r x)\)
\(=r x\)
proof -
    from assms obtain \(r\) where retraction \(S T r\)
        by (auto simp add: retract_of_def)
    with that show thesis
        by (auto elim: retractionE)
qed
lemma retract_of_imp_extensible:
    assumes \(S\) retract_of \(T\) and continuous_on \(S f\) and \(f\) ' \(S \subseteq U\)
    obtains \(g\) where continuous_on \(T g g^{\prime} T \subseteq U \bigwedge x . x \in S \Longrightarrow g x=f x\)
proof -
    from \(\langle S\) retract_of \(T\rangle\) obtain \(r\) where retraction \(T S r\)
        by (auto simp add: retract_of_def)
    show thesis
        by (rule that \([\) of \(f \circ r]\) )
                            (use 〈continuous_on \(S f\rangle\langle f\) ' \(S \subseteq U\rangle\langle r e t r a c t i o n ~ T S r\rangle\) in 〈auto simp:
continuous_on_compose2 retraction))
qed
lemma idempotent_imp_retraction:
assumes continuous_on \(S f\) and \(f\) ' \(S \subseteq S\) and \(\bigwedge x . x \in S \Longrightarrow f(f x)=f x\) shows retraction \(S(f\) ' \(S\) ) \(f\)
by (simp add: assms retraction)
lemma retraction_subset:
assumes retraction \(S T r\) and \(T \subseteq s^{\prime}\) and \(s^{\prime} \subseteq S\)
shows retraction \(s^{\prime} T r\)
unfolding retraction_def
by (metis assms continuous_on_subset image_mono retraction)
lemma retract_of_subset:
assumes \(T\) retract_of \(S\) and \(T \subseteq s^{\prime}\) and \(s^{\prime} \subseteq S\)
shows \(T\) retract_of \(s^{\prime}\)
by (meson assms retract_of_def retraction_subset)
lemma retraction_refl \([\) simp \(]\) : retraction \(S S(\lambda x . x)\)
by (simp add: retraction)
lemma retract_of_refl [iff]: S retract_of S
unfolding retract_of_def retraction_def
using continuous_on_id by blast
lemma retract_of_imp_subset:
\(S\) retract_of \(T \Longrightarrow S \subseteq T\)
by (simp add: retract_of_def retraction_def)
lemma retract_of_empty [simp]:
\((\}\) retract_of \(S) \longleftrightarrow S=\{ \} \quad(S\) retract_of \(\{ \}) \longleftrightarrow S=\{ \}\)
by (auto simp: retract_of_def retraction_def)
lemma retract_of_singleton [iff]: \((\{x\}\) retract_of \(S) \longleftrightarrow x \in S\)
unfolding retract_of_def retraction_def by force
lemma retraction_comp:
【retraction \(S T f\); retraction \(T U g \rrbracket\)
\(\Longrightarrow\) retraction \(S U(g \circ f)\)
apply (auto simp: retraction_def intro: continuous_on_compose2)
by blast
lemma retract_of_trans [trans]:
assumes \(S\) retract_of \(T\) and \(T\) retract_of \(U\)
shows \(S\) retract_of \(U\)
using assms by (auto simp: retract_of_def intro: retraction_comp)
lemma closedin_retract:
fixes \(S\) :: ' \(a\) :: t2_space set
assumes \(S\) retract_of \(T\)
shows closedin (top_of_set T) \(S\)
proof -
obtain \(r\) where \(r: S \subseteq T\) continuous_on \(T r r^{`} T \subseteq S \bigwedge x . x \in S \Longrightarrow r x=x\)
using assms by (auto simp: retract_of_def retraction_def)
have \(S=\{x \in T . x=r x\}\)
using \(r\) by auto
```

 also have ... = T\cap ((\lambdax. (x,rx)) -` ({y.\exists x. y = (x, x)}))
 unfolding vimage_def mem_Times_iff fst_conv snd_conv
 using r
 by auto
 also have closedin (top_of_set T) ...
 by (rule continuous_closedin_preimage) (auto intro!: closed_diagonal continu-
 ous_on_Pair r)
finally show ?thesis .
qed
lemma closedin_self [simp]: closedin (top_of_set S)S
by simp
lemma retract_of_closed:
fixes S :: 'a :: t2_space set
shows \llbracketclosed T; S retract_of T\rrbracket\Longrightarrow closed S
by (metis closedin_retract closedin_closed_eq)
lemma retract_of_compact:
\llbracketcompact T; S retract_of T\rrbracket\Longrightarrow compact S
by (metis compact_continuous_image retract_of_def retraction)
lemma retract_of_connected:
\llbracketconnected T; S retract_of T\rrbracket \Longrightarrow connected S
by (metis Topological_Spaces.connected_continuous_image retract_of_def retrac-
tion)
lemma retraction_openin_vimage_iff:
openin (top_of_set S)(S\capr-'}U)\longleftrightarrow\mathrm{ openin (top_of_set T) U
if retraction: retraction STr and U\subseteqT
using retraction apply (rule retractionE)
apply (rule continuous_right_inverse_imp_quotient_map [where g=r])
using \langleU\subseteqT\rangle apply (auto elim: continuous_on_subset)
done
lemma retract_of_Times:
\llbracketS retract_of s'; T retract_of t \rrbracket\Longrightarrow(S\timesT) retract_of (s'\times '
apply (simp add: retract_of_def retraction_def Sigma_mono, clarify)
apply (rename_tac fg)
apply (rule_tac x=\lambdaz. ((f\circfst) z,(g\circsnd)z) in exI)
apply (rule conjI continuous_intros | erule continuous_on_subset | force)+
done

```

\subsection*{2.3.15 Retractions on a topological space}
definition retract_of_space :: 'a set \(\Rightarrow\) 'a topology \(\Rightarrow\) bool (infix retract'_of '_space 50)
where \(S\) retract_of_space \(X\)
        \(\equiv S \subseteq\) topspace \(X \wedge(\exists r\). continuous_map \(X\) (subtopology \(X S) r \wedge(\forall x \in\)
```

S.r }x=x)
lemma retract_of_space_retraction_maps:
S retract_of_space }X\longleftrightarrowS\subseteq\mathrm{ topspace X ^ (}\exists\mathrm{ r.retraction_maps X (subtopology
X S)rid)
by (auto simp: retract_of_space_def retraction_maps_def)
lemma retract_of_space_section_map:
S retract_of_space X \longleftrightarrowS\subseteq topspace X ^ section_map (subtopology X S)X id
unfolding retract_of_space_def retraction_maps_def section_map_def
by (auto simp: continuous_map_from_subtopology)
lemma retract_of_space_imp_subset:
S retract_of_space X \LongrightarrowS\subseteq topspace X
by (simp add: retract_of_space_def)
lemma retract_of_space_topspace:
topspace X retract_of_space X
using retract_of_space_def by force
lemma retract_of_space_empty [simp]:
{} retract_of_space }X\longleftrightarrow\mathrm{ topspace }X={
by (auto simp: continuous_map_def retract_of_space_def)
lemma retract_of_space_singleton [simp]:
{a} retract_of_space }X\longleftrightarrowa\in\mathrm{ topspace X
proof -
have continuous_map X (subtopology X {a}) (\lambdax.a)\wedge (\lambdax.a) a=a if a\in
topspace X
using that by simp
then show ?thesis
by (force simp: retract_of_space_def)
qed
lemma retract_of_space_clopen:
assumes openin X S closedin X SS={}\Longrightarrow topspace X={}
shows S retract_of_space X
proof (cases S={})
case False
then obtain a}\mathrm{ where }a\in
by blast
show ?thesis
unfolding retract_of_space_def
proof (intro exI conjI)
show S\subseteq topspace X
by (simp add: assms closedin_subset)
have continuous_map X X (}\lambdax\mathrm{ . if }x\inS\mathrm{ then x else a)
proof (rule continuous_map_cases)

```

by (simp add: continuous_map_from_subtopology)
show continuous_map (subtopology \(X(X\) closure_of \(\{x . x \notin S\})) X(\lambda x, a)\)
using \(\langle S \subseteq\) topspace \(X\rangle\langle a \in S\rangle\) by force
show \(x=a\) if \(x \in X\) frontier_of \(\{x . x \in S\}\) for \(x\)
using assms that clopenin_eq_frontier_of by fastforce
qed
then show continuous_map \(X\) (subtopology \(X S)(\lambda x\). if \(x \in S\) then \(x\) else a)
using \(\langle S \subseteq\) topspace \(X\rangle\langle a \in S\rangle\) by (auto simp: continuous_map_in_subtopology)
qed auto
qed (use assms in auto)
lemma retract_of_space_disjoint_union:
assumes openin \(X S\) openin \(X T\) and \(S T\) : disjnt \(S T S \cup T=\) topspace \(X\) and
\(S=\{ \} \Longrightarrow\) topspace \(X=\{ \}\)
shows \(S\) retract_of_space \(X\)
proof (rule retract_of_space_clopen)
have \(S \cap T=\{ \}\)
by (meson ST disjnt_def)
then have \(S=\) topspace \(X-T\)
using \(S T\) by auto
then show closedin \(X S\)
using «openin \(X T\) by blast
qed (auto simp: assms)
lemma retraction_maps_section_image1:
assumes retraction_maps X Yrs
shows \(s\) ' (topspace \(Y\) ) retract_of_space \(X\)
unfolding retract_of_space_section_map
proof
show \(s\) ' topspace \(Y \subseteq\) topspace \(X\) using assms continuous_map_image_subset_topspace retraction_maps_def by
blast
show section_map (subtopology \(X(s\) 'topspace \(Y)) X\) id
unfolding section_map_def
using assms retraction_maps_to_retract_maps by blast
qed
lemma retraction_maps_section_image2:
retraction_maps \(X\) Y rs
\(\Longrightarrow\) subtopology \(X\) (s'(topspace \(Y)\) ) homeomorphic_space \(Y\)
using embedding_map_imp_homeomorphic_space homeomorphic_space_sym section_imp_embedding_map section_map_def by blast

\subsection*{2.3.16 Paths and path-connectedness}
definition pathin \(::\) ' \(a\) topology \(\Rightarrow\left(\right.\) real \(\left.\Rightarrow{ }^{\prime} a\right) \Rightarrow\) bool where pathin \(X g \equiv\) continuous_map (subtopology euclideanreal \{0..1\}) \(X g\)
lemma pathin_compose:
\(\llbracket\) pathin \(X\) g; continuous_map \(X Y f \rrbracket \Longrightarrow\) pathin \(Y(f \circ g)\)
by (simp add: continuous_map_compose pathin_def)
lemma pathin_subtopology:
pathin (subtopology \(X S) g \longleftrightarrow\) pathin \(X g \wedge(\forall x \in\{0 . .1\} . g x \in S)\)
by (auto simp: pathin_def continuous_map_in_subtopology)
lemma pathin_const:
pathin \(X(\lambda x, a) \longleftrightarrow a \in\) topspace \(X\)
by (simp add: pathin_def)
lemma path_start_in_topspace: pathin \(X g \Longrightarrow g 0 \in\) topspace \(X\)
by (force simp: pathin_def continuous_map)
lemma path_finish_in_topspace: pathin \(X g \Longrightarrow g 1 \in\) topspace \(X\)
by (force simp: pathin_def continuous_map)
lemma path_image_subset_topspace: pathin \(X g \Longrightarrow g^{\prime}(\{0 . .1\}) \subseteq\) topspace \(X\)
by (force simp: pathin_def continuous_map)
definition path_connected_space :: 'a topology \(\Rightarrow\) bool
where path_connected_space \(X \equiv \forall x \in\) topspace \(X . \forall y \in\) topspace \(X . \exists g\). pathin
\(X g \wedge g 0=x \wedge g 1=y\)
definition path_connectedin :: 'a topology \(\Rightarrow\) 'a set \(\Rightarrow\) bool
where path_connectedin \(X S \equiv S \subseteq\) topspace \(X \wedge\) path_connected_space(subtopology
X S)
lemma path_connectedin_absolute [simp]:
path_connectedin (subtopology \(X S\) ) \(S \longleftrightarrow\) path_connectedin \(X S\)
by (simp add: path_connectedin_def subtopology_subtopology)
lemma path_connectedin_subset_topspace: path_connectedin \(X S \Longrightarrow S \subseteq\) topspace \(X\)
by (simp add: path_connectedin_def)
lemma path_connectedin_subtopology: path_connectedin (subtopology \(X S\) ) \(T \longleftrightarrow\) path_connectedin \(X T \wedge T \subseteq S\)
by (auto simp: path_connectedin_def subtopology_subtopology inf.absorb2)
lemma path_connectedin: path_connectedin \(X S \longleftrightarrow\)
\(S \subseteq\) topspace \(X \wedge\)
\((\forall \bar{x} \in S . \forall y \in S . \exists g\). pathin \(X g \wedge g '\{0 . .1\} \subseteq S \wedge g 0=x \wedge g 1=y)\)
unfolding path_connectedin_def path_connected_space_def pathin_def continuous_map_in_subtopology by (intro conj_cong refl ball_cong) (simp_all add: inf.absorb_iff2)
lemma path_connectedin_topspace: path_connectedin \(X\) (topspace \(X) \longleftrightarrow\) path_connected_space \(X\)
```

 by (simp add: path_connectedin_def)
 lemma path_connected_imp_connected_space:
assumes path_connected_space X
shows connected_space X
proof -
have *: \existsS. connectedin X S^g0\inS^g1\inS if pathin X g for g
proof (intro exI conjI)
have continuous_map (subtopology euclideanreal {0..1}) Xg
using connectedin_absolute that by (simp add: pathin_def)
then show connectedin X (g'{0..1})
by (rule connectedin_continuous_map_image) auto
qed auto
show ?thesis
using assms
by (auto intro: * simp add: path_connected_space_def connected_space_subconnected
Ball_def)
qed
lemma path_connectedin_imp_connectedin:
path_connectedin X S \Longrightarrow connectedin X S
by (simp add: connectedin_def path_connected_imp_connected_space path_connectedin_def)
lemma path_connected_space_topspace_empty:
topspace }X={}\Longrightarrow\mathrm{ path_connected_space X
by (simp add: path_connected_space_def)
lemma path_connectedin_empty [simp]: path_connectedin X {}
by (simp add: path_connectedin)
lemma path_connectedin_singleton [simp]: path_connectedin X {a}\longleftrightarrowa\in topspace
X
proof
show path_connectedin X{a}\Longrightarrowa\in topspace X
by (simp add: path_connectedin)
show a topspace X\Longrightarrow path_connectedin X {a}
unfolding path_connectedin
using pathin_const by fastforce
qed
lemma path_connectedin_continuous_map_image:
assumes f:continuous_map X Yf and S: path_connectedin X S
shows path_connectedin Y (f'S)
proof -
have fX:f'(topspace X)\subseteq topspace Y
by (metis f continuous_map_image_subset_topspace)
show ?thesis
unfolding path_connectedin
proof (intro conjI ballI; clarify?)

```
```

 fix }
 assume }x\in
 show fx\in topspace Y
 by (meson S fX <x \inS\rangleimage_subset_iff path_connectedin_subset_topspace
 set_mp)
next
fix x y
assume }x\inS\mathrm{ and }y\in
then obtain g}\mathrm{ where g: pathin Xgg'`{0..1}}\subseteqSg0=xg1= using S by (force simp: path_connectedin) show \existsg. pathin Yg\wedgeg'{0..1}\subseteqf'S\wedgeg0=fx\wedgeg1=fy proof (intro exI conjI) show pathin Y (f\circg) using \langlepathin X g` f pathin_compose by auto
qed (use g in auto)
qed
qed
lemma path_connectedin_discrete_topology:
path_connectedin (discrete_topology U)S\longleftrightarrowS\subseteqU\wedge(\existsa.S\subseteq{a})
apply safe
using path_connectedin_subset_topspace apply fastforce
apply (meson connectedin_discrete_topology path_connectedin_imp_connectedin)
using subset_singletonD by fastforce
lemma path_connected_space_discrete_topology:
path_connected_space (discrete_topology U) \longleftrightarrow(\existsa.U\subseteq{a})
by (metis path_connectedin_discrete_topology path_connectedin_topspace path_connected_space_topspace_empty
subset_singletonD topspace_discrete_topology)
lemma homeomorphic_path_connected_space_imp:
\llbracketpath_connected_space X; X homeomorphic_space Y\rrbracket\Longrightarrow path_connected_space
Y
unfolding homeomorphic_space_def homeomorphic_maps_def
by (metis (no_types, hide_lams) continuous_map_closedin continuous_map_image_subset_topspace
imageI order_class.order.antisym path_connectedin_continuous_map_image path_connectedin_topspace
subsetI)
lemma homeomorphic_path_connected_space:
X homeomorphic_space Y path_connected_space }X\longleftrightarrow\mathrm{ path_connected_space
Y
by (meson homeomorphic_path_connected_space_imp homeomorphic_space_sym)
lemma homeomorphic_map_path_connectedness:
assumes homeomorphic_map X Yf U\subseteq topspace X
shows path_connectedin Y (f'U)\longleftrightarrow path_connectedin X U
unfolding path_connectedin_def
proof (intro conj_cong homeomorphic_path_connected_space)

```
```

 show \((f\) ' \(U \subseteq\) topspace \(Y)=(U \subseteq\) topspace \(X)\)
 using assms homeomorphic_imp_surjective_map by blast
 next
assume $U \subseteq$ topspace X
show subtopology $Y\left(f^{\prime} U\right)$ homeomorphic_space subtopology $X U$
using assms unfolding homeomorphic_eq_everything_map
by (metis (no_types, hide_lams) assms homeomorphic_map_subtopologies home-
omorphic_space homeomorphic_space_sym image_mono inf.absorb_iff2)
qed
lemma homeomorphic_map_path_connectedness_eq:
homeomorphic_map $X Y f \Longrightarrow$ path_connectedin $X U \longleftrightarrow U \subseteq$ topspace $X \wedge$
path_connectedin $Y\left(f^{\prime} U\right)$
by (meson homeomorphic_map_path_connectedness path_connectedin_def)

```

\subsection*{2.3.17 Connected components}
definition connected_component_of :: 'a topology \(\Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow\) bool where connected_component_of \(X x y \equiv\) \(\exists T\). connectedin \(X T \wedge x \in T \wedge y \in T\)
abbreviation connected_component_of_set where connected_component_of_set \(X x \equiv\) Collect (connected_component_of \(X x\) )
definition connected_components_of :: 'a topology \(\Rightarrow\) ('a set) set where connected_components_of \(X \equiv\) connected_component_of_set \(X\) ' topspace \(X\)
lemma connected_component_in_topspace:
connected_component_of \(X x y \Longrightarrow x \in\) topspace \(X \wedge y \in\) topspace \(X\)
by (meson connected_component_of_def connectedin_subset_topspace in_mono)
lemma connected_component_of_refl:
connected_component_of \(X x x \longleftrightarrow x \in\) topspace \(X\)
by (meson connected_component_in_topspace connected_component_of_def connecte-
din_sing insertI1)
lemma connected_component_of_sym:
connected_component_of \(X x y \longleftrightarrow\) connected_component_of \(X\) y \(x\)
by (meson connected_component_of_def)
lemma connected_component_of_trans:
\(\llbracket\) connected_component_of \(X x y\); connected_component_of \(X y z \rrbracket\)
\(\Longrightarrow\) connected_component_of \(X x z\)
unfolding connected_component_of_def
using connectedin_Un by blast
lemma connected_component_of_mono:
\(\llbracket\) connected_component_of (subtopology X S) xy;S \(\subseteq T \rrbracket\)
\(\Longrightarrow\) connected_component_of (subtopology \(X T\) ) \(x y\)
by (metis connected_component_of_def connectedin_subtopology inf.absorb_iff2 subtopology_subtopology)
lemma connected_component_of_set:
connected_component_of_set \(X x=\{y . \exists T\). connectedin \(X T \wedge x \in T \wedge y \in T\}\)
by (meson connected_component_of_def)
lemma connected_component_of_subset_topspace: connected_component_of_set \(X x \subseteq\) topspace \(X\) using connected_component_in_topspace by force
lemma connected_component_of_eq_empty:
connected_component_of_set \(X x=\{ \} \longleftrightarrow(x \notin\) topspace \(X)\)
using connected_component_in_topspace connected_component_of_refl by fastforce
lemma connected_space_iff_connected_component:
connected_space \(X \longleftrightarrow(\forall x \in\) topspace \(X . \forall y \in\) topspace \(X\). connected_component_of \(X x y)\)
by (simp add: connected_component_of_def connected_space_subconnected)
lemma connected_space_imp_connected_component_of:
\(\llbracket\) connected_space \(X ; a \in\) topspace \(X ; b \in\) topspace \(X \rrbracket\)
\(\Longrightarrow\) connected_component_of X ab
by (simp add: connected_space_iff_connected_component)
lemma connected_space_connected_component_set:
connected_space \(X \longleftrightarrow(\forall x \in\) topspace \(X\). connected_component_of_set \(X x=\) topspace \(X\) )
using connected_component_of_subset_topspace connected_space_iff_connected_component
by fastforce
lemma connected_component_of_maximal:
\(\llbracket\) connectedin \(X S ; x \in S \rrbracket \Longrightarrow S \subseteq\) connected_component_of_set \(X x\)
by (meson Ball_Collect connected_component_of_def)
lemma connected_component_of_equiv:
connected_component_of \(X x y \longleftrightarrow\)
\(x \in\) topspace \(X \wedge y \in\) topspace \(X \wedge\) connected_component_of \(X x=\) con-
nected_component_of \(X y\)
apply (simp add: connected_component_in_topspace fun_eq_iff)
by (meson connected_component_of_refl connected_component_of_sym connected_component_of_trans)
lemma connected_component_of_disjoint:
disjnt (connected_component_of_set \(X\) x) (connected_component_of_set X y)
\(\longleftrightarrow{ }^{\sim}(\) connected_component_of \(X x y)\)
using connected_component_of_equiv unfolding disjnt_iff by force
lemma connected_component_of_eq:
connected_component_of \(X x=\) connected_component_of \(X y \longleftrightarrow\)
\((x \notin\) topspace \(X) \wedge(y \notin\) topspace \(X) \vee\)
\(x \in\) topspace \(X \wedge y \in\) topspace \(X \wedge\)
connected_component_of \(X x y\)
by (metis Collect_empty_eq_bot connected_component_of_eq_empty connected_component_of_equiv)
lemma connectedin_connected_component_of:
connectedin \(X\) (connected_component_of_set \(X x\) )
proof -
have connected_component_of_set \(X x=\bigcup\{T\). connectedin \(X T \wedge x \in T\}\) by (auto simp: connected_component_of_def)
then show ?thesis apply (rule ssubst) by (blast intro: connectedin_Union)
qed
lemma Union_connected_components_of:
\(\cup(\) connected_components_of \(X)=\) topspace \(X\)
unfolding connected_components_of_def
apply (rule equalityI)
apply (simp add: SUP_least connected_component_of_subset_topspace)
using connected_component_of_refl by fastforce
lemma connected_components_of_maximal:
\(\llbracket C \in\) connected_components_of \(X\); connectedin \(X S ;{ }^{\sim}\) disjnt \(C S \rrbracket \Longrightarrow S \subseteq C\)
unfolding connected_components_of_def disjnt_def
apply clarify
by (metis Int_emptyI connected_component_of_def connected_component_of_trans
mem_Collect_eq)
lemma pairwise_disjoint_connected_components_of:
pairwise disjnt (connected_components_of X)
unfolding connected_components_of_def pairwise_def
apply clarify
by (metis connected_component_of_disjoint connected_component_of_equiv)
lemma complement_connected_components_of_Union:
\(C \in\) connected_components_of \(X\)
\(\Longrightarrow\) topspace \(X-C=\bigcup\) (connected_components_of \(X-\{C\}\) )
apply (rule equalityI)
using Union_connected_components_of apply fastforce
by (metis Diff_cancel Diff_subset Union_connected_components_of cSup_singleton
diff_Union_pairwise_disjoint equalityE insert_subsetI pairwise_disjoint_connected_components_of)
lemma nonempty_connected_components_of:
\(C \in\) connected_components_of \(X \Longrightarrow C \neq\{ \}\)
unfolding connected_components_of_def
by (metis (no_types, lifting) connected_component_of_eq_empty imageE)
```

lemma connected_components_of_subset
C\in connected_components_of }X\LongrightarrowC\subseteqtopspace X
using Union_connected_components_of by fastforce
lemma connectedin_connected_components_of:
assumes }C\in\mathrm{ connected_components_of X
shows connectedin X C
proof -
have C\in connected_component_of_set X 'topspace X
using assms connected_components_of_def by blast
then show ?thesis
using connectedin_connected_component_of by fastforce
qed
lemma connected_component_in_connected_components_of:
connected_component_of_set X a \in connected_components_of X \longleftrightarrow a\in topspace
X
apply (rule iffI)
using connected_component_of_eq_empty nonempty_connected_components_of ap-
ply fastforce
by (simp add: connected_components_of_def)
lemma connected_space_iff_components_eq:
connected_space X \longleftrightarrow(\forallC\in connected_components_of X.}\forall\mp@subsup{C}{}{\prime}\in\mathrm{ connected_components_of
X.C=C')
apply (rule iffI)
apply (force simp: connected_components_of_def connected_space_connected_component_set
image_iff)
by (metis connected_component_in_connected_components_of connected_component_of_refl
connected_space_iff_connected_component mem_Collect_eq)
lemma connected_components_of_eq_empty:
connected_components_of X={}\longleftrightarrow topspace }X={
by (simp add: connected_components_of_def)
lemma connected_components_of_empty_space:
topspace }X={}\Longrightarrow\mathrm{ connected_components_of }X={
by (simp add: connected_components_of_eq_empty)
lemma connected_components_of_subset_sing:
connected_components_of X\subseteq{S}\longleftrightarrow connected_space }X\wedge\mathrm{ (topspace }X={
vopspace X = S)
proof (cases topspace X={})
case True
then show ?thesis
by (simp add: connected_components_of_empty_space connected_space_topspace_empty)
next
case False
then show ?thesis

```
by (metis (no_types, hide_lams) Union_connected_components_of ccpo_Sup_singleton connected_components_of_eq_empty connected_space_iff_components_eq insertI1
singletonD subsetI subset_singleton_iff)
qed
lemma connected_space_iff_components_subset_singleton:
connected_space \(X \longleftrightarrow(\exists a\). connected_components_of \(X \subseteq\{a\})\)
by (simp add: connected_components_of_subset_sing)
lemma connected_components_of_eq_singleton: connected_components_of \(X=\{S\}\)
\(\longleftrightarrow\) connected_space \(X \wedge\) topspace \(X \neq\{ \} \wedge S=\) topspace \(X\)
by (metis ccpo_Sup_singleton connected_components_of_subset_sing insert_not_empty
subset_singleton_iff)
lemma connected_components_of_connected_space:
connected_space \(X \Longrightarrow\) connected_components_of \(X=\) (if topspace \(X=\{ \}\) then
\{\} else \(\{\) topspace \(X\}\) )
by (simp add: connected_components_of_eq_empty connected_components_of_eq_singleton)
lemma exists_connected_component_of_superset:
assumes connectedin \(X S\) and ne: topspace \(X \neq\{ \}\)
shows \(\exists C . C \in\) connected_components_of \(X \wedge S \subseteq C\)
proof (cases \(S=\{ \}\) )
case True
then show ?thesis
using ne connected_components_of_def by blast
next
case False
then show ?thesis
by (meson all_not_in_conv assms (1) connected_component_in_connected_components_of connected_component_of_maximal connectedin_subset_topspace in_mono)
qed
lemma closedin_connected_components_of:
assumes \(C \in\) connected_components_of \(X\)
shows closedin \(X C\)
proof -
obtain \(x\) where \(x \in\) topspace \(X\) and \(x\) : \(C\) connected_component_of_set \(X x\) using assms by (auto simp: connected_components_of_def)
have connected_component_of_set \(X x \subseteq\) topspace \(X\) by (simp add: connected_component_of_subset_topspace)
moreover have \(X\) closure_of connected_component_of_set \(X x \subseteq\) connected_component_of_set X \(x\)
proof (rule connected_component_of_maximal)
show connectedin \(X\) ( \(X\) closure_of connected_component_of_set \(X x)\)
by (simp add: connectedin_closure_of connectedin_connected_component_of) show \(x \in X\) closure_of connected_component_of_set \(X x\)
```

 by (simp add: <x \in topspace X> closure_of connected_component_of_refl)
 qed
ultimately
show ?thesis
using closure_of_subset_eq x by auto
qed
lemma closedin_connected_component_of:
closedin X (connected_component_of_set X x)
by (metis closedin_connected_components_of closedin_empty connected_component_in_connected_components_of
connected_component_of_eq_empty)
lemma connected_component_of_eq_overlap:
connected_component_of_set X x = connected_component_of_set X y \longleftrightarrow
(x\not\intopspace X)}\wedge(y\not\intopspace X)\vee
~(connected_component_of_set X x \cap connected_component_of_set X y = {})
using connected_component_of_equiv by fastforce
lemma connected_component_of_nonoverlap:
connected_component_of_set X x \cap connected_component_of_set X y ={} \longleftrightarrow
(x\not\intopspace X)\vee (y\not\intopspace X)\vee
~ (connected_component_of_set X x = connected_component_of_set X y)
by (metis connected_component_of_eq_empty connected_component_of_eq_overlap
inf.idem)
lemma connected_component_of_overlap:
~}(\mathrm{ connected_component_of_set X }x\cap\mathrm{ connected_component_of_set X y = {}) }
x\in topspace }X\wedgey\in\mathrm{ topspace }X
connected_component_of_set X x = connected_component_of_set X y
by (meson connected_component_of_nonoverlap)
end

```

\subsection*{2.4 Connected Components}
```

theory Connected
imports
Abstract_Topology_2
begin

```

\subsection*{2.4.1 Connectedness}
lemma connected_local:
```

connected S}
\neg (\existse1 e2.
openin (top_of_set S) e1 ^
openin (top_of_set S) e2 ^
S\subseteqe1\cupe2 ^
e1\cape\mathcal{Z}={}^

```
\(e 1 \neq\{ \} \wedge\)
\(e 2 \neq\{ \})\)
unfolding connected_def openin_open
by safe blast+
lemma exists_diff:
fixes \(P\) :: 'a set \(\Rightarrow\) bool
shows \((\exists S . P(-S)) \longleftrightarrow(\exists S . P S)\)
(is ?lhs \(\longleftrightarrow\) ? rhs)
proof -
have ?rhs if ?lhs
using that by blast
moreover have \(P(-(-S))\) if \(P S\) for \(S\)
proof -
have \(S=-(-S)\) by simp
with that show ?thesis by metis
qed
ultimately show ?thesis by metis
qed
lemma connected_clopen: connected \(S \longleftrightarrow\)
\((\forall\) T. openin (top_of_set \(S) T \wedge\)
closedin (top_of_set \(S\) ) \(T \longrightarrow T=\{ \} \vee T=S\) ) (is?lhs \(\longleftrightarrow\) ?rhs)
proof -
have \(\neg\) connected \(S \longleftrightarrow\)
\((\exists e 1 e 2\). open e1 \(\wedge\) open \((-e 2) \wedge S \subseteq e 1 \cup(-e 2) \wedge e 1 \cap(-e 2) \cap S=\{ \}\)
\(\wedge e 1 \cap S \neq\{ \} \wedge(-e 2) \cap S \neq\{ \})\)
unfolding connected_def openin_open closedin_closed
by (metis double_complement)
then have th0: connected \(S \longleftrightarrow\)
\(\neg(\exists e 2 e 1\). closed \(e 2 \wedge\) open \(e 1 \wedge S \subseteq e 1 \cup(-e 2) \wedge e 1 \cap(-e 2) \cap S=\{ \}\)
\(\wedge e 1 \cap S \neq\{ \} \wedge(-e 2) \cap S \neq\{ \})\)
(is \(-\longleftrightarrow \neg(\exists e 2 e 1\). ?P e2 e1) \()\)
by (simp add: closed_def) metis
have th1: ? \(r h s \longleftrightarrow \neg\left(\exists t^{\prime} t\right.\). closed \(t^{\prime} \wedge t=S \cap t^{\prime} \wedge t \neq\{ \} \wedge t \neq S \wedge\left(\exists t^{\prime}\right.\). open \(t^{\prime}\)
\(\left.\wedge t=S \cap t^{\prime}\right)\) )
\(\left(\right.\) is \({ }_{-} \longleftrightarrow \neg\left(\exists t^{\prime} t\right.\).? \(\left.\left.Q t^{\prime} t\right)\right)\)
unfolding connected_def openin_open closedin_closed by auto
have \((\exists e 1\). ? \(P e 2 e 1) \longleftrightarrow(\exists t\). ?Q \(e 2 t)\) for \(e 2\)
proof -
have ? P e2 e1 \(\longleftrightarrow(\exists t\). closed \(e 2 \wedge t=S \cap e 2 \wedge\) open \(e 1 \wedge t=S \cap e 1 \wedge t \neq\{ \}\)
\(\wedge t \neq S)\) for \(e 1\)
by auto
then show? ?thesis
by metis
qed
then have \(\forall e 2 .(\exists e 1 . ? P e 2 e 1) \longleftrightarrow(\exists t\). ?Q \(e 2 t)\)
by blast
then show ?thesis

\subsection*{2.4.2 Connected components, considered as a connectedness relation or a set}
definition connected_component \(S x y \equiv \exists T\). connected \(T \wedge T \subseteq S \wedge x \in T \wedge\) \(y \in T\)
abbreviation connected_component_set \(S x \equiv\) Collect (connected_component \(S x\) )
lemma connected_componentI:
connected \(T \Longrightarrow T \subseteq S \Longrightarrow x \in T \Longrightarrow y \in T \Longrightarrow\) connected_component \(S x y\) by (auto simp: connected_component_def)
lemma connected_component_in: connected_component Sxy \(\operatorname{l} \boldsymbol{x} \in S \wedge y \in S\) by (auto simp: connected_component_def)
lemma connected_component_refl: \(x \in S \Longrightarrow\) connected_component \(S x x\) by (auto simp: connected_component_def) (use connected_sing in blast)
lemma connected_component_refl_eq [simp]: connected_component Sxx S . \(\mathrm{x} \in\) \(S\)
by (auto simp: connected_component_refl) (auto simp: connected_component_def)
lemma connected_component_sym: connected_component \(S x y \Longrightarrow\) connected_component Syx
by (auto simp: connected_component_def)
lemma connected_component_trans:
connected_component \(S x y \Longrightarrow\) connected_component \(S y z \Longrightarrow\) connected_component \(S x z\)
unfolding connected_component_def by (metis Int_iff Un_iff Un_subset_iff equals0D connected_Un)
lemma connected_component_of_subset:
connected_component \(S x y \Longrightarrow S \subseteq T \Longrightarrow\) connected_component \(T x\) y by (auto simp: connected_component_def)
lemma connected_component_Union: connected_component_set \(S x=\bigcup\{T\). connected \(T \wedge x \in T \wedge T \subseteq S\}\)
by (auto simp: connected_component_def)
lemma connected_connected_component [iff]: connected (connected_component_set \(S x\) )
by (auto simp: connected_component_Union intro: connected_Union)
lemma connected_iff_eq_connected_component_set:
connected \(S \longleftrightarrow(\forall x \in S\). connected_component_set \(S x=S)\)
```

proof (cases S={})
case True
then show ?thesis by simp
next
case False
then obtain x where }x\inS\mathrm{ by auto
show ?thesis
proof
assume connected S
then show }\forallx\inS\mathrm{ . connected_component_set Sx=S
by (force simp: connected_component_def)
next
assume }\forallx\inS.connected_component_set S x = S
then show connected S
by (metis }\langlex\inS\rangle\mathrm{ connected_connected_component)
qed
qed

```
lemma connected_component_subset: connected_component_set \(S x \subseteq S\)
    using connected_component_in by blast
lemma connected_component_eq_self: connected \(S \Longrightarrow x \in S \Longrightarrow\) connected_component_set
\(S x=S\)
    by (simp add: connected_iff_eq_connected_component_set)
lemma connected_iff_connected_component:
    connected \(S \longleftrightarrow(\forall x \in S . \forall y \in S\). connected_component \(S x y)\)
    using connected_component_in by (auto simp: connected_iff_eq_connected_component_set)
lemma connected_component_maximal:
    \(x \in T \Longrightarrow\) connected \(T \Longrightarrow T \subseteq S \Longrightarrow T \subseteq\) (connected_component_set \(S x\) )
    using connected_component_eq_self connected_component_of_subset by blast
lemma connected_component_mono:
    \(S \subseteq T \Longrightarrow\) connected_component_set \(S x \subseteq\) connected_component_set \(T x\)
    by (simp add: Collect_mono connected_component_of_subset)
lemma connected_component_eq_empty [simp]: connected_component_set \(S x=\{ \}\)
\(\longleftrightarrow x \notin S\)
    using connected_component_refl by (fastforce simp: connected_component_in)
lemma connected_component_set_empty [simp]: connected_component_set \(\} x=\)
\{\}
    using connected_component_eq_empty by blast
lemma connected_component_eq:
    \(y \in\) connected_component_set \(S x \Longrightarrow\) (connected_component_set \(S y=\) con-
nected_component_set \(S x\) )
    by (metis (no_types, lifting)

Collect_cong connected_component_sym connected_component_trans mem_Collect_eq)
```

lemma closed_connected_component:
assumes S: closed S
shows closed (connected_component_set S x)
proof (cases x }\inS\mathrm{)
case False
then show ?thesis
by (metis connected_component_eq_empty closed_empty)
next
case True
show ?thesis
unfolding closure_eq [symmetric]
proof
show closure (connected_component_set S x)\subseteq connected_component_set S x
apply (rule connected_component_maximal)
apply (simp add: closure_def True)
apply (simp add: connected_imp_connected_closure)
apply (simp add: S closure_minimal connected_component_subset)
done
next
show connected_component_set S x\subseteq closure (connected_component_set S x)
by (simp add: closure_subset)
qed
qed
lemma connected_component_disjoint:
connected_component_set S a \cap connected_component_set Sb={}\longleftrightarrow
a\not\in connected_component_set S b
apply (auto simp: connected_component_eq)
using connected_component_eq connected_component_sym
apply blast
done

```
lemma connected_component_nonoverlap:
    connected_component_set \(S a \cap\) connected_component_set \(S b=\{ \} \longleftrightarrow\)
        \(a \notin S \vee b \notin S \vee\) connected_component_set \(S a \neq\) connected_component_set \(S b\)
    apply (auto simp: connected_component_in)
    using connected_component_refl_eq
        apply blast
    apply (metis connected_component_eq mem_Collect_eq)
    apply (metis connected_component_eq mem_Collect_eq)
    done
lemma connected_component_overlap:
    connected_component_set \(S a \cap\) connected_component_set \(S b \neq\{ \} \longleftrightarrow\)
        \(a \in S \wedge b \in S \wedge\) connected_component_set \(S a=\) connected_component_set \(S b\)
    by (auto simp: connected_component_nonoverlap)
lemma connected_component_sym_eq: connected_component Sxy connected_component Sy \(x\)
using connected_component_sym by blast
lemma connected_component_eq_eq:
connected_component_set \(S x=\) connected_component_set \(S y \longleftrightarrow\)
\(x \notin S \wedge y \notin S \vee x \in S \wedge y \in S \wedge\) connected_component \(S x y\)
apply (cases \(y \in S\), simp)
apply (metis connected_component_eq connected_component_eq_empty connected_component_refl_eq
mem_Collect_eq)
apply (cases \(x \in S\), simp)
apply (metis connected_component_eq_empty)
using connected_component_eq_empty
apply blast
done
lemma connected_iff_connected_component_eq:
connected \(S \longleftrightarrow(\forall x \in S . \forall y \in S\). connected_component_set \(S x=\) connected_component_set Sy)
by (simp add: connected_component_eq_eq connected_iff_connected_component)
lemma connected_component_idemp:
connected_component_set (connected_component_set S \(x\) ) \(x=\) connected_component_set
S x
apply (rule subset_antisym)
apply (simp add: connected_component_subset)
apply (metis connected_component_eq_empty connected_component_maximal
connected_component_refl_eq connected_connected_component mem_Collect_eq
set_eq_subset)
done
lemma connected_component_unique:
\(\llbracket x \in c ; c \subseteq S ;\) connected \(c\);
\(\bigwedge c^{\prime} . \llbracket x \in c^{\prime} ; c^{\prime} \subseteq S ;\) connected \(c \rrbracket \Longrightarrow c^{\prime} \subseteq c \rrbracket\)
\(\Longrightarrow\) connected_component_set \(S x=c\)
apply (rule subset_antisym)
apply (meson connected_component_maximal connected_component_subset con-
nected_connected_component contra_subsetD)
by (simp add: connected_component_maximal)
lemma joinable_connected_component_eq:
【connected \(T ; T \subseteq S\);
connected_component_set \(S x \cap T \neq\{ \}\);
connected_component_set \(S y \cap T \neq\{ \} \rrbracket\)
\(\Longrightarrow\) connected_component_set \(S x=\) connected_component_set \(S y\)
apply (simp add: ex_in_conv [symmetric])
apply (rule connected_component_eq)
by (metis (no_types, hide_lams) connected_component_eq_eq connected_component_in
connected_component_maximal subsetD mem_Collect_eq)
```

lemma Union_connected_component: $\bigcup($ connected_component_set $S ' S)=S$
apply (rule subset_antisym)
apply (simp add: SUP_least connected_component_subset)
using connected_component_refl_eq
by force

```
lemma complement_connected_component_unions:
    \(S\) - connected_component_set \(S x=\)
    \(\bigcup\) (connected_component_set \(S\) ' \(S-\{\) connected_component_set \(S x\})\)
    apply (subst Union_connected_component [symmetric], auto)
    apply (metis connected_component_eq_eq connected_component_in)
    by (metis connected_component_eq mem_Collect_eq)
lemma connected_component_intermediate_subset:
    \(\llbracket\) connected_component_set \(U a \subseteq T ; T \subseteq U \rrbracket\)
    \(\Longrightarrow\) connected_component_set Ta=connected_component_set \(U\) a
    apply (case_tac \(a \in U\) )
    apply (simp add: connected_component_maximal connected_component_mono sub-
set_antisym)
    using connected_component_eq_empty by blast

\subsection*{2.4.3 The set of connected components of a set}
definition components:: 'a::topological_space set \(\Rightarrow{ }^{\prime} a\) set set where components \(S \equiv\) connected_component_set \(S\) ' \(S\)
lemma components_iff: \(S \in\) components \(U \longleftrightarrow(\exists x . x \in U \wedge S=\) connected_component_set \(U x\) ) by (auto simp: components_def)
lemma componentsI: \(x \in U \Longrightarrow\) connected_component_set \(U x \in\) components \(U\) by (auto simp: components_def)
lemma componentsE: assumes \(S \in\) components \(U\) obtains \(x\) where \(x \in U S=\) connected_component_set \(U x\) using assms by (auto simp: components_def)
lemma Union_components \([\) simp \(]: ~ \bigcup(\) components \(u)=u\)
apply (rule subset_antisym)
using Union_connected_component components_def apply fastforce
apply (metis Union_connected_component components_def set_eq_subset)
done
lemma pairwise_disjoint_components: pairwise \((\lambda X Y . X \cap Y=\{ \})\) (components u)
apply (simp add: pairwise_def)
apply (auto simp: components_iff)
apply (metis connected_component_eq_eq connected_component_in)+ done
lemma in_components_nonempty: \(c \in\) components \(s \Longrightarrow c \neq\{ \}\)
by (metis components_iff connected_component_eq_empty)
lemma in_components_subset: \(c \in\) components \(s \Longrightarrow c \subseteq s\)
using Union_components by blast
lemma in_components_connected: \(c \in\) components \(s \Longrightarrow\) connected \(c\) by (metis components_iff connected_connected_component)
lemma in_components_maximal:
\(c \in\) components \(s \longleftrightarrow\)
\(c \neq\{ \} \wedge c \subseteq s \wedge\) connected \(c \wedge(\forall d . d \neq\{ \} \wedge c \subseteq d \wedge d \subseteq s \wedge\) connected \(d\) \(\longrightarrow d=c\) )
apply (rule iffI)
apply (simp add: in_components_nonempty in_components_connected)
apply (metis (full_types) components_iff connected_component_eq_self connected_component_intermediat connected_component_refl in_components_subset mem_Collect_eq rev_subsetD)
apply (metis bot.extremum_uniqueI components_iff connected_component_eq_empty
connected_component_maximal connected_component_subset connected_connected_component
subset_emptyI)
done
lemma joinable_components_eq:
connected \(t \wedge t \subseteq s \wedge c 1 \in\) components \(s \wedge c \mathcal{Z} \in\) components \(s \wedge c 1 \cap t \neq\{ \}\)
\(\wedge c 2 \cap t \neq\{ \} \Longrightarrow c 1=c 2\)
by (metis (full_types) components_iff joinable_connected_component_eq)
lemma closed_components: \(\llbracket\) closed \(s ; c \in\) components \(s \rrbracket \Longrightarrow\) closed \(c\) by (metis closed_connected_component components_iff)
lemma components_nonoverlap:
\(\llbracket c \in\) components \(s ; c^{\prime} \in\) components \(s \rrbracket \Longrightarrow\left(c \cap c^{\prime}=\{ \}\right) \longleftrightarrow\left(c \neq c^{\prime}\right)\)
apply (auto simp: in_components_nonempty components_iff)
using connected_component_refl apply blast
apply (metis connected_component_eq_eq connected_component_in)
by (metis connected_component_eq mem_Collect_eq)
lemma components_eq: \(\llbracket c \in\) components \(s ; c^{\prime} \in\) components \(s \rrbracket \Longrightarrow\left(c=c^{\prime} \longleftrightarrow\right.\)
\(\left.c \cap c^{\prime} \neq\{ \}\right)\)
by (metis components_nonoverlap)
lemma components_eq_empty [simp]: components \(s=\{ \} \longleftrightarrow s=\{ \}\)
by (simp add: components_def)
lemma components_empty [simp]: components \(\}=\{ \}\)
by simp
lemma connected_eq_connected_components_eq: connected \(s \longleftrightarrow(\forall c \in\) components s. \(\forall c^{\prime} \in\) components s. \(c=c^{\prime}\) )
by (metis (no_types, hide_lams) components_iff connected_component_eq_eq connected_iff_connected_component)
```

lemma components_eq_sing_iff: components $s=\{s\} \longleftrightarrow$ connected $s \wedge s \neq\{ \}$
apply (rule iffI)
using in_components_connected apply fastforce
apply safe
using Union_components apply fastforce
apply (metis components_iff connected_component_eq_self)
using in_components_maximal
apply auto
done

```
lemma components_eq_sing_exists: \((\exists\) a. components \(s=\{a\}) \longleftrightarrow\) connected \(s \wedge\)
\(s \neq\{ \}\)
    apply (rule iffI)
    using connected_eq_connected_components_eq apply fastforce
    apply (metis components_eq_sing_iff)
    done
lemma connected_eq_components_subset_sing: connected \(s \longleftrightarrow\) components \(s \subseteq\{s\}\) by (metis Union_components components_empty components_eq_sing_iff connected_empty insert_subset order_refl subset_singletonD)
lemma connected_eq_components_subset_sing_exists: connected \(s \longleftrightarrow(\exists a\). components \(s \subseteq\{a\}\) )
by (metis components_eq_sing_exists connected_eq_components_subset_sing empty_iff subset_iff subset_singletonD)
lemma in_components_self: \(s \in\) components \(s \longleftrightarrow\) connected \(s \wedge s \neq\{ \}\)
by (metis components_empty components_eq_sing_iff empty_iff in_components_connected insertI1)
lemma components_maximal: \(\llbracket c \in\) components \(s ;\) connected \(t ; t \subseteq s ; c \cap t \neq\{ \} \rrbracket\) \(\Longrightarrow t \subseteq c\)
apply (simp add: components_def ex_in_conv [symmetric], clarify)
by (meson connected_component_def connected_component_trans)
lemma exists_component_superset: \(\llbracket t \subseteq s ; s \neq\{ \} ;\) connected \(t \rrbracket \Longrightarrow \exists c . c \in\) components \(s \wedge t \subseteq c\)
apply (cases \(t=\{ \}\), force)
apply (metis components_def ex_in_conv connected_component_maximal contra_subsetD
image_eqI)
done
lemma components_intermediate_subset: \(\llbracket s \in\) components \(u ; s \subseteq t ; t \subseteq u \rrbracket \Longrightarrow s\)
\(\in\) components \(t\)
apply (auto simp: components_iff)
apply (metis connected_component_eq_empty connected_component_intermediate_subset)
done
lemma in_components_unions_complement: \(c \in\) components \(s \Longrightarrow s-c=\bigcup\) (components \(s-\{c\})\)
by (metis complement_connected_component_unions components_def components_iff)
lemma connected_intermediate_closure:
assumes cs: connected \(s\) and \(s t: s \subseteq t\) and \(t s: t \subseteq\) closure \(s\)
shows connected \(t\)
proof (rule connectedI)
fix \(A B\)
assume \(A\) : open \(A\) and \(B\) : open \(B\) and Alap: \(A \cap t \neq\{ \}\) and Blap: \(B \cap t \neq\) \{\}
and disj: \(A \cap B \cap t=\{ \}\) and cover: \(t \subseteq A \cup B\)
have disjs: \(A \cap B \cap s=\{ \}\)
using disj st by auto
have \(A \cap\) closure \(s \neq\{ \}\) using Alap Int_absorb1 ts by blast
then have Alaps: \(A \cap s \neq\{ \}\) by (simp add: A open_Int_closure_eq_empty)
have \(B \cap\) closure \(s \neq\{ \}\) using Blap Int_absorb1 ts by blast
then have Blaps: \(B \cap s \neq\{ \}\) by (simp add: B open_Int_closure_eq_empty)
then show False using cs [unfolded connected_def] A B disjs Alaps Blaps cover st by blast
qed
lemma closedin_connected_component: closedin (top_of_set s) (connected_component_set \(s x\) )
proof (cases connected_component_set s \(x=\{ \}\) )
case True
then show ?thesis
by (metis closedin_empty)
next
case False
then obtain \(y\) where \(y\) : connected_component s \(x y\)
by blast
have \(*\) : connected_component_set \(s x \subseteq s \cap\) closure (connected_component_set \(s\)
x)
by (auto simp: closure_def connected_component_in)
have connected_component sxy \(x \Longrightarrow\) closure (connected_component_set \(s x\) )
\(\subseteq\) connected_component_set s \(x\)
```

 apply (rule connected_component_maximal, simp)
 using closure_subset connected_component_in apply fastforce
 using * connected_intermediate_closure apply blast+
 done
 with y * show ?thesis
 by (auto simp: closedin_closed)
 qed
lemma closedin_component:
C\in components s \Longrightarrow closedin (top_of_set s) C
using closedin_connected_component componentsE by blast

```

\subsection*{2.4.4 Proving a function is constant on a connected set by proving that a level set is open}
lemma continuous_levelset_openin_cases:
fixes \(f::\) _ \(\Rightarrow\) ' \(b::\) t1_space
shows connected \(s \Longrightarrow\) continuous_on \(s f \Longrightarrow\) openin (top_of_set s) \(\{x \in s . f x=a\}\)
\(\Longrightarrow(\forall x \in s . f x \neq a) \vee(\forall x \in s . f x=a)\)
unfolding connected_clopen
using continuous_closedin_preimage_constant by auto
lemma continuous_levelset_openin:
fixes \(f::\) _ \(\Rightarrow\) ' \(b::\) t1_space
shows connected \(s \Longrightarrow\) continuous_on s \(f \Longrightarrow\)
openin (top_of_set s) \(\{x \in s . f x=a\} \Longrightarrow\)
\((\exists x \in s . f x=a) \Longrightarrow(\forall x \in s . f x=a)\)
using continuous_levelset_openin_cases[of sf]
by meson
lemma continuous_levelset_open:
fixes \(f::\) _ \(\Rightarrow\) ' \(b::\) t1_space
assumes connected \(s\)
and continuous_on sf
and open \(\{x \in\) s. \(f x=a\}\)
and \(\exists x \in s . f x=a\)
shows \(\forall x \in s\). \(f x=a\)
using continuous_levelset_openin[OF assms(1,2), of a, unfolded openin_open]
using assms (3,4)
by fast

\subsection*{2.4.5 Preservation of Connectedness}
lemma homeomorphic_connectedness:
assumes \(s\) homeomorphic \(t\)
shows connected \(s \longleftrightarrow\) connected \(t\)
using assms unfolding homeomorphic_def homeomorphism_def by (metis connected_continuous_image)
```

lemma connected_monotone_quotient_preimage:
assumes connected T
and contf: continuous_on $S f$ and fim: f ' $S=T$
and $o p T: \bigwedge U . U \subseteq T$
\Longrightarrow openin (top_of_set S) $\left(S \cap f-^{`} U\right) \longleftrightarrow$
openin (top_of_set T) U
and connT: $\bigwedge y . y \in T \Longrightarrow$ connected $(S \cap f-‘\{y\})$
shows connected S
proof (rule connectedI)
fix $U V$
assume open U and open V and $U \cap S \neq\{ \}$ and $V \cap S \neq\{ \}$
and $U \cap V \cap S=\{ \}$ and $S \subseteq U \cup V$
moreover
have disjoint: f ' $(S \cap U) \cap f^{\prime}(S \cap V)=\{ \}$
proof -
have False if $y \in f^{\prime}(S \cap U) \cap f$ ' $(S \cap V)$ for y
proof -
have $y \in T$
using fim that by blast
show ?thesis
using connectedD $[$ OF connT $[O F\langle y \in T\rangle]$ open $U\rangle\langle$ open $V\rangle]$
$\langle S \subseteq U \cup V\rangle\langle U \cap V \cap S=\{ \}\rangle$ that by fastforce
qed
then show?thesis by blast
qed
ultimately have $U U:\left(S \cap f-{ }^{\prime} f ‘(S \cap U)\right)=S \cap U$ and $V V:\left(S \cap f-{ }^{\prime} f\right.$

* $(S \cap V)$) $=S \cap V$
by auto
have ope U : openin (top_of_set $T)\left(f^{\prime}(S \cap U)\right)$
by (metis UU 〈open U〉 fim image_Int_subset le_inf_iff opT openin_open_Int)
have opeV: openin (top_of_set $T)(f$ ' $(S \cap V))$
by (metis opT fim $V V$ sopen $V\rangle$ openin_open_Int image_Int_subset inf.bounded_iff)
have $T \subseteq f^{\prime}(S \cap U) \cup f^{\prime}(S \cap V)$
using $\langle S \subseteq U \cup V\rangle$ fim by auto
then show False
using 〈connected $T\rangle$ disjoint ope U ope $V\langle U \cap S \neq\{ \}\rangle\langle V \cap S \neq\{ \}\rangle$
by (auto simp: connected_openin)
qed
lemma connected_open_monotone_preimage:
assumes contf: continuous_on $S f$ and fim: f ' $S=T$
and $S T: \bigwedge C$. openin (top_of_set $S) C \Longrightarrow$ openin (top_of_set $T)\left(f^{\prime} C\right)$
and connT: $\bigwedge y . y \in T \Longrightarrow$ connected $(S \cap f-‘\{y\})$
and connected $C C \subseteq T$
shows connected $\left(S \cap f-{ }^{\prime} C\right)$
proof -
have contf': continuous_on $\left(S \cap f-{ }^{\prime} C\right) f$
by (meson contf continuous_on_subset inf_le1)

```
```

 have \(e q C\) : \(f\) ' \(\left(S \cap f-{ }^{\prime} C\right)=C\)
 using \(\langle C \subseteq T\rangle\) fim by blast
 show ?thesis
 proof (rule connected_monotone_quotient_preimage [OF 〈connected C〉contf'
 $e q C]$)
show connected $\left(S \cap f-{ }^{\prime} C \cap f-‘\{y\}\right)$ if $y \in C$ for y
proof -
have $S \cap f-{ }^{\prime} C \cap f-‘\{y\}=S \cap f-‘\{y\}$
using that by blast
moreover have connected $(S \cap f-‘\{y\})$
using $\langle C \subseteq T\rangle$ conn T that by blast
ultimately show ?thesis
by metis
qed
have $\wedge U$. openin (top_of_set $\left.\left(S \cap f-{ }^{\prime} C\right)\right) U$
\Longrightarrow openin (top_of_set $C)\left(f^{\prime} U\right)$
using open_map_restrict $\left[O F _S T\langle C \subseteq T\rangle\right]$ by metis
then show $\wedge D . D \subseteq C$
\Longrightarrow openin (top_of_set $\left.\left(S \cap f-{ }^{\prime} C\right)\right)\left(S \cap f-{ }^{\prime} C \cap f-{ }^{\prime} D\right)=$
openin (top_of_set C) D
using open_map_imp_quotient_map $[o f(S \cap f-' C) f]$ contf' by (simp add:
$e q C)$
qed
qed
lemma connected＿closed＿monotone＿preimage：
assumes contf：continuous＿on $S f$ and fim：f＇$S=T$
and $S T: \wedge C$ ．closedin（top＿of＿set $S) C \Longrightarrow$ closedin（top＿of＿set $T)\left(f^{\prime} C\right)$
and connT：$\bigwedge y . y \in T \Longrightarrow$ connected $(S \cap f-‘\{y\})$
and connected $C C \subseteq T$
shows connected $\left(S \cap f-{ }^{\prime} C\right)$
proof－
have contf＇：continuous＿on $\left(S \cap f-{ }^{\prime} C\right) f$
by（meson contf continuous＿on＿subset inf＿le1）
have eqC：f＇$\left(S \cap f-{ }^{\prime} C\right)=C$
using $\langle C \subseteq T\rangle$ fim by blast
show ？thesis
proof（rule connected＿monotone＿quotient＿preimage［OF 〈connected C 〉contf＇ $e q C]$ ）
show connected $\left(S \cap f-{ }^{\prime} C \cap f-'\{y\}\right)$ if $y \in C$ for y
proof－
have $S \cap f-{ }^{\prime} C \cap f-‘\{y\}=S \cap f-‘\{y\}$
using that by blast
moreover have connected（ $S \cap f-‘\{y\}$ ）
using $\langle C \subseteq T\rangle$ conn T that by blast
ultimately show ？thesis
by metis
qed

```
\[
\begin{aligned}
\text { have } & \wedge U . \text { closedin (top_of_set }(S \cap f-' C)) U \\
& \Longrightarrow \text { closedin (top_of_set } C)\left(f^{\prime} U\right)
\end{aligned}
\]
using closed＿map＿restrict \([O F-S T 〈 C \subseteq T\rangle]\) by metis
then show \(\wedge D . D \subseteq C\)
\[
\Longrightarrow \text { openin (top_of_set }(S \cap f-' C))(S \cap f-' C \cap f-' D)=
\] openin（top＿of＿set C）D
using closed＿map＿imp＿quotient＿map \([o f(S \cap f-' C) f]\) contf＇by（simp add： \(e q C\) ）
qed
qed

\section*{2．4．6 Lemmas about components}

See Newman IV， 3.3 and 3．4．
lemma connected＿Un＿clopen＿in＿complement：
fixes \(S\) U ：：＇a：：metric＿space set
assumes connected \(S\) connected \(U S \subseteq U\)
and ope \(T\) ：openin（top＿of＿set \((U-S)) T\)
and cloT：closedin（top＿of＿set \((U-S)) T\)
shows connected \((S \cup T)\)
proof－
have \(:\) ：\(\llbracket \wedge x y . P x y \longleftrightarrow P y x ; \wedge x y . P x y \Longrightarrow S \subseteq x \vee S \subseteq y ;\)
\(\wedge x y . \llbracket P x y ; S \subseteq x \rrbracket \Longrightarrow\) Fals \(\rrbracket \Longrightarrow \neg(\exists x y .(P x y))\) for \(P\)
by metis
show ？thesis
unfolding connected＿closedin＿eq
proof（rule＊）
fix H1 H2
assume \(H\) ：closedin（top＿of＿set \((S \cup T)) H 1 \wedge\)
closedin（top＿of＿set \((S \cup T))\) H2＾
\(H 1 \cup H 2=S \cup T \wedge H 1 \cap H 2=\{ \} \wedge H 1 \neq\{ \} \wedge H 2 \neq\{ \}\)
then have clo：closedin（top＿of＿set \(S\) ）\((S \cap H 1)\) closedin（top＿of＿set \(S\) ）\((S \cap H 2)\)
by（metis Un＿upper1 closedin＿closed＿subset inf＿commute）＋
have \(S e q: S \cap(H 1 \cup H 2)=S\)
by（simp add：\(H\) ）
have \(S \cap((S \cup T) \cap H 1) \cup S \cap((S \cup T) \cap H 2)=S\)
using Seq by auto
moreover have \(H 1 \cap(S \cap((S \cup T) \cap H 2))=\{ \}\)
using \(H\) by blast
ultimately have \(S \cap H 1=\{ \} \vee S \cap H 2=\{ \}\)
by（metis（no＿types）H Int＿assoc \(\langle S \cap(H 1 \cup H 2)=S\rangle\langle\) connected \(S\rangle\)
clo Seq connected＿closedin inf＿bot＿right inf＿le1）
then show \(S \subseteq H 1 \vee S \subseteq H 2\)
using \(H\) 〈connected \(S\) 〉 unfolding connected＿closedin by blast

\section*{next}
fix H1 H2
assume \(H\) ：closedin（top＿of＿set \((S \cup T)) H 1 \wedge\) closedin（top＿of＿set \((S \cup T))\) H2 \(\wedge\)
```

 H1 \cupH2 = S \cupT^H1 \cap H2 = {} ^ H1 \not= {}^ H2 \not= {}
 and S\subseteqH1
 then have H2T:H2 \subseteqT
 by auto
 have T\subseteqU
 using Diff_iff opeT openin_imp_subset by auto
 with }\langleS\subseteqU\rangle\mathrm{ have Ueq: U=(U-S) U(S UT)
 by auto
 have openin (top_of_set ((U - S)\cup(S\cupT))) H2
 proof (rule openin_subtopology_Un)
 show openin (top_of_set (S \cupT)) H2
 using 〈H2 \subseteqT> apply (auto simp: openin_closedin_eq)
 by (metis Diff_Diff_Int Diff_disjoint Diff_partition Diff_subset H Int_absorb1
 Un_Diff)
then show openin (top_of_set (U - S)) H2
by (meson H2T Un_upper2 opeT openin_subset_trans openin_trans)
qed
moreover have closedin (top_of_set ((U-S)\cup(S\cupT))) H2
proof (rule closedin_subtopology_Un)
show closedin (top_of_set (U - S)) H2
using H H2T cloT closedin_subset_trans
by (blast intro: closedin_subtopology_Un closedin_trans)
qed (simp add: H)
ultimately
have H2: H2 = {} \vee H2 = U
using Ueq \connected U` unfolding connected_clopen by metis then have H2 \subseteqS by (metis Diff_partition H Un_Diff_cancel Un_subset_iff 〈H2 \subseteq T〉 assms(3) inf.orderE opeT openin_imp_subset) moreover have T\subseteqH2 - S by (metis (no_types) H2 H opeT openin_closedin_eq topspace_euclidean_subtopology) ultimately show False using H〈S\subseteqH1` by blast
qed blast
qed
proposition component_diff_connected:
fixes S :: 'a::metric_space set
assumes connected S connected US\subseteqU and C:C \in components (U-S)
shows connected (U - C)
using <connected S> unfolding connected_closedin_eq not_ex de_Morgan_conj
proof clarify
fix H3 H4
assume clo3: closedin (top_of_set (U - C)) H3
and clo4: closedin (top_of_set (U - C)) H4
and H3\cup H4 = U - C and H3\cap H4 = {} and H3 f {} and H4 自{}
and * [rule_format]:
\forall H1 H2. ᄀ closedin (top_of_set S) H1 \vee

```
```

\neg closedin (top_of_set S) H2 \vee
$H 1 \cup H 2 \neq S \vee H 1 \cap H 2 \neq\{ \} \vee \neg H 1 \neq\{ \} \vee \neg H 2 \neq\{ \}$

```
then have \(H 3 \subseteq U-C\) and ope3: openin (top_of_set \((U-C))(U-C-H 3)\)
    and \(H_{4} \subseteq U-C\) and ope4: openin (top_of_set \(\left.(U-C)\right)\left(U-C-H_{4}\right)\)
    by (auto simp: closedin_def)
    have \(C \neq\{ \} C \subseteq U-S\) connected \(C\)
    using \(C\) in_components_nonempty in_components_subset in_components_maximal
by blast+
    have \(c \mathrm{CH} 3\) : connected \((C \cup H 3)\)
    proof (rule connected_Un_clopen_in_complement [OF 〈connected \(C\) 〉<connected
U〉 _ _ clo3])
    show openin (top_of_set \((U-C))\) H3
        apply (simp add: openin_closedin_eq 〈H3 \(\subseteq U-C\) )
        apply (simp add: closedin_subtopology)
        by (metis Diff_cancel Diff_triv Un_Diff clo4 〈H3 \(\left.\cap H_{4}=\{ \}\right\rangle H_{3} \cup H_{4}=U\)
- C> closedin_closed inf_commute sup_bot.left_neutral)
    qed (use clo3 \(\langle C \subseteq U-S\rangle\) in auto)
    have \(\mathrm{cCH}_{4}\) : connected \(\left(\mathrm{C} \cup \mathrm{H}_{4}\right)\)
    proof (rule connected_Un_clopen_in_complement [OF〈connected \(C\) 〉connected
U _ _ clo4])
    show openin (top_of_set \((U-C)) H_{4}\)
            apply (simp add: openin_closedin_eq \(\left\langle H_{4} \subseteq U-C 〉\right.\) )
            apply (simp add: closedin_subtopology)
            by (metis Diff_cancel Int_commute Un_Diff Un_Diff_Int \(\left\langle H 3 \cap H_{4}=\{ \}\right\rangle\langle H 3\)
\(\cup H_{4}=U-C\) clo3 closedin_closed \()\)
    qed (use clo4 \(\langle C \subseteq U-S\rangle\) in auto)
    have closedin (top_of_set \(S\) ) \((S \cap H 3)\) closedin (top_of_set \(S)\left(S \cap H_{4}\right)\)
        using clo3 clo4 \(\langle S \subseteq U\rangle\langle C \subseteq U-S\rangle\) by (auto simp: closedin_closed)
    moreover have \(S \cap H 3 \neq\{ \}\)
    using components_maximal \([\) OF \(C\) cCH3] \(\langle C \neq\{ \}\rangle\langle C \subseteq U-S\rangle\langle H 3 \neq\{ \}\rangle\)
\(\langle H 3 \subseteq U-C\rangle\) by auto
    moreover have \(S \cap H_{4} \neq\{ \}\)
    using components_maximal \(\left[\right.\) OF \(C\) cCH4] \(\langle C \neq\{ \}\rangle\langle C \subseteq U-S\rangle\left\langle H_{4} \neq\{ \}\right\rangle\)
\(\left\langle H_{4} \subseteq U-C\right\rangle\) by auto
    ultimately show False
    using * [of \(\left.S \cap H_{3} S \cap H_{4}\right]\left\langle H 3 \cap H_{4}=\{ \}\right\rangle\langle C \subseteq U-S\rangle\left\langle H 3 \cup H_{4}=U-\right.\)
\(C\rangle\langle S \subseteq U\rangle\)
    by auto
qed

\section*{2．4．7 Constancy of a function from a connected set into a finite，disconnected or discrete set}

Still missing：versions for a set that is smaller than \(R\) ，or countable．
```

lemma continuous_disconnected_range_constant:
assumes S: connected S
and conf:continuous_on S f
and fim: f'S\subseteqt
and cct: \bigwedgey. y \int\Longrightarrow connected_component_set t y = {y}

```
```

 shows \(f\) constant_on \(S\)
 proof (cases $S=\{ \}$)
case True then show ?thesis
by (simp add: constant_on_def)
next
case False
$\{$ fix x assume $x \in S$
then have $f^{\prime} S \subseteq\{f x\}$
by (metis connected_continuous_image conf connected_component_maximal fim
image_subset_iff rev_image_eqI S cct)
\}
with False show ?thesis
unfolding constant_on_def by blast
qed

```

This proof requires the existence of two separate values of the range type.
lemma finite_range_constant_imp_connected:
assumes \(\bigwedge f::\) 'a::topological_space \(\Rightarrow\) 'b::real_normed_algebra_1. \(\llbracket\) continuous_on \(S\) f; finite \((f\) ' \(S) \rrbracket \Longrightarrow f\) constant_on \(S\)
shows connected \(S\)
proof -
\{ fix \(t u\)
assume clt: closedin (top_of_set \(S\) ) \(t\)
and clu: closedin (top_of_set S) u
and tue: \(t \cap u=\{ \}\) and tus: \(t \cup u=S\)
have conif: continuous_on \(S(\lambda x\). if \(x \in t\) then 0 else 1\()\)
apply (subst tus [symmetric])
apply (rule continuous_on_cases_local)
using clt clu tue
apply (auto simp: tus)
done
have \(f\) : finite \(((\lambda x\). if \(x \in t\) then 0 else 1)' \(S\) )
by (rule finite_subset \([\) of \(\{0,1\}]\) ) auto
have \(t=\{ \} \vee u=\{ \}\)
using assms [OF conif fi] tus [symmetric]
by (auto simp: Ball_def constant_on_def) (metis IntI empty_iff one_neq_zero
tue)
\}
then show ?thesis
by (simp add: connected_closedin_eq)
qed
end
theory Abstract_Limits
imports
Abstract_Topology
begin

\subsection*{2.4.8 nhdsin and atin}
definition nhdsin \(::\) 'a topology \(\Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a\) filter
where nhdsin \(X a=\)
(if \(a \in\) topspace \(X\) then (INF \(S \in\{S\). openin \(X S \wedge a \in S\}\). principal \(S\) )
else bot)
definition atin \(::\) 'a topology \(\Rightarrow{ }^{\prime} a \Rightarrow\) 'a filter
where atin \(X a \equiv \inf (n h d s i n X a)(\) principal \((t o p s p a c e ~ X-\{a\}))\)
lemma nhdsin_degenerate \([\) simp \(]: a \notin\) topspace \(X \Longrightarrow\) nhdsin \(X a=b o t\) and atin_degenerate \([\) simp \(]: a \notin\) topspace \(X \Longrightarrow\) atin \(X a=b o t\) by (simp_all add: nhdsin_def atin_def)
lemma eventually_nhdsin:
eventually \(P(n h d s i n X a) \longleftrightarrow a \notin\) topspace \(X \vee(\exists S\). openin \(X S \wedge a \in S \wedge\)
\((\forall x \in S . P x))\)
proof (cases a topspace \(X\) )
case True
hence nhdsin \(X a=(I N F S \in\{S\). openin \(X S \wedge a \in S\}\). principal \(S)\)
by (simp add: nhdsin_def)
also have eventually \(P \ldots \longleftrightarrow(\exists S\). openin \(X S \wedge a \in S \wedge(\forall x \in S . P x))\)
using True by (subst eventually_INF_base) (auto simp: eventually_principal)
finally show ?thesis using True by simp
qed auto
lemma eventually_atin:
eventually \(P(\) atin \(X a) \longleftrightarrow a \notin\) topspace \(X \vee\)
\((\exists U\). openin \(X U \wedge a \in U \wedge(\forall x \in U-\{a\} . P x))\)
proof (cases \(a \in\) topspace \(X\) )
case True
hence eventually \(P(\) atin \(X a) \longleftrightarrow(\exists S\). openin \(X S \wedge\)
\[
a \in S \wedge(\forall x \in S . x \in \text { topspace } X \wedge x \neq a \longrightarrow P x))
\]
by (simp add: atin_def eventually_inf_principal eventually_nhdsin)
also have \(\ldots \longleftrightarrow(\exists U\). openin \(X U \wedge a \in U \wedge(\forall x \in U-\{a\} . P x))\)
using openin_subset by (intro ex_cong) auto
finally show ?thesis by (simp add: True)
qed auto

\subsection*{2.4.9 Limits in a topological space}
definition limitin :: 'a topology \(\Rightarrow\left(' b \Rightarrow{ }^{\prime} a\right) \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} b\) filter \(\Rightarrow\) bool where limitin \(X f l F \equiv l \in\) topspace \(X \wedge(\forall U\). openin \(X U \wedge l \in U \longrightarrow\) eventually \((\lambda x . f x \in U) F)\)
lemma limitin_canonical_iff [simp]: limitin euclidean \(f l F \longleftrightarrow(f \longrightarrow l) F\) by (auto simp: limitin_def tendsto_def)
lemma limitin_topspace: limitin \(X f l F \Longrightarrow l \in\) topspace \(X\)
```

by (simp add: limitin_def)

```
lemma limitin_const_iff [simp]: limitin \(X(\lambda a . l) l F \longleftrightarrow l \in\) topspace \(X\)
by (simp add: limitin_def)
lemma limitin_const: limitin euclidean ( \(\lambda a . l\) ) lF
by \(\operatorname{simp}\)
lemma limitin_eventually:
\(\llbracket l \in\) topspace \(X\); eventually \((\lambda x . f x=l) F \rrbracket \Longrightarrow\) limitin \(X f l F\)
by (auto simp: limitin_def eventually_mono)
lemma limitin_subsequence:
\(\llbracket\) strict_mono r; limitin \(X f l\) sequentially \(\Longrightarrow\) limitin \(X(f \circ r) l\) sequentially unfolding limitin_def using eventually_subseq by fastforce
lemma limitin_subtopology:
limitin (subtopology \(X S\) ) flF
\(\longleftrightarrow l \in S \wedge\) eventually \((\lambda a . f a \in S) F \wedge\) limitin \(X f l F\) (is ?lhs \(=\) ?rhs)
proof (cases \(l \in S \cap\) topspace \(X\) )
case True
show ?thesis
proof
assume \(L\) : ?lhs
with True
have \(\forall_{F} b\) in \(F . f b \in\) topspace \(X \cap S\)
by (metis (no_types) limitin_def openin_topspace topspace_subtopology)
with \(L\) show ?rhs
apply (clarsimp simp add: limitin_def eventually_mono openin_subtopology_alt)
apply (drule_tac \(x=S \cap U\) in spec, force simp: elim: eventually_mono) done
next
assume? rhs
then show?lhs
using eventually_elim2
by (fastforce simp add: limitin_def openin_subtopology_alt)
qed
qed (auto simp: limitin_def)
lemma limitin_canonical_iff_gen [simp]:
assumes open \(S\)
shows limitin (top_of_set \(S) f l F \longleftrightarrow(f \longrightarrow l) F \wedge l \in S\)
using assms by (auto simp: limitin_subtopology tendsto_def)
lemma limitin_sequentially:
limitin \(X S l\) sequentially \(\longleftrightarrow\) \(l \in\) topspace \(X \wedge(\forall U\). openin \(X U \wedge l \in U \longrightarrow(\exists N . \forall n . N \leq n \longrightarrow S n\) \(\in U)\) )
by (simp add: limitin_def eventually_sequentially)
lemma limitin_sequentially_offset:
limitin \(X f l\) sequentially \(\Longrightarrow\) limitin \(X(\lambda i . f(i+k)) l\) sequentially
unfolding limitin_sequentially
by (metis add.commute le_add2 order_trans)
lemma limitin_sequentially_offset_rev:
assumes limitin \(X(\lambda i . f(i+k)) l\) sequentially
shows limitin \(X f l\) sequentially
proof -
have \(\exists N . \forall n \geq N . f n \in U\) if \(U\) : openin \(X U l \in U\) for \(U\)
proof -
obtain \(N\) where \(\bigwedge n . n \geq N \Longrightarrow f(n+k) \in U\)
using assms \(U\) unfolding limitin_sequentially by blast
then have \(\forall n \geq N+k\). \(f n \in U\)
by (metis add_leD2 le_add_diff_inverse ordered_cancel_comm_monoid_diff_class.le_diff_conv2 add.commute)
then show ?thesis ..
qed
with assms show ?thesis
unfolding limitin_sequentially
by \(\operatorname{simp}\)
qed
lemma limitin_atin:
limitin Yfy \((\) atin \(X x) \longleftrightarrow\)
\(y \in\) topspace \(Y \wedge\)
\((x \in\) topspace \(X\)
\(\longrightarrow(\forall V\). openin \(Y V \wedge y \in V\)
\(\longrightarrow\left(\exists U\right.\). openin \(\left.\left.\left.X U \wedge x \in U \wedge f^{\prime}(U-\{x\}) \subseteq V\right)\right)\right)\)
by (auto simp: limitin_def eventually_atin image_subset_iff)
lemma limitin_atin_self:
\(\operatorname{limitin} Y f(f a)(\) atin \(X a) \longleftrightarrow\)
fa topspace \(Y \wedge\)
( \(a \in\) topspace \(X\)
\(\longrightarrow(\forall V\). openin \(Y V \wedge f a \in V\)
\(\longrightarrow\left(\exists U\right.\). openin \(\left.\left.\left.X U \wedge a \in U \wedge f^{\prime} U \subseteq V\right)\right)\right)\)
unfolding limitin_atin by fastforce
lemma limitin_trivial:
\(\llbracket\) trivial_limit \(F ; y \in\) topspace \(X \rrbracket \Longrightarrow \operatorname{limitin} X f y F\)
by (simp add: limitin_def)
lemma limitin_transform_eventually:
\(\llbracket\) eventually \((\lambda x . f x=g x) F ;\) limitin \(X f l F \rrbracket \Longrightarrow\) limitin \(X g l F\)
unfolding limitin_def using eventually_elim2 by fastforce
```

lemma continuous_map_limit:
assumes continuous_map X Yg and f:limitin XflF
shows limitin Y (g\circf) (gl)F
proof -
have gl\in topspace Y
by (meson assms continuous_map_def limitin_topspace)
moreover
have }^U.\llbracket\forallV. openin X V^l\inV\longrightarrow(\forall\mp@subsup{|}{F}{}x\mathrm{ in F.fx f V V); openin Y U;
gl\inU\rrbracket
\Longrightarrow\forallF x in F.g(fx)\inU
using assms eventually_mono
by (fastforce simp: limitin_def dest!: openin_continuous_map_preimage)
ultimately show ?thesis
using f by (fastforce simp add:limitin_def)
qed

```

\subsection*{2.4.10 Pointwise continuity in topological spaces}
```

definition topcontinuous_at where
topcontinuous_at $X Y f x \longleftrightarrow$
$x \in$ topspace $X \wedge$
$(\forall x \in$ topspace $X . f x \in$ topspace $Y) \wedge$
$(\forall V$. openin $Y V \wedge f x \in V$
$\longrightarrow(\exists U$. openin $X U \wedge x \in U \wedge(\forall y \in U . f y \in V)))$

```
lemma topcontinuous_at_atin:
    topcontinuous_at \(X Y f x \longleftrightarrow\)
        \(x \in\) topspace \(X \wedge\)
        \((\forall x \in\) topspace \(X . f x \in\) topspace \(Y) \wedge\)
        limitin \(Y f(f x)(\) atin \(X x)\)
    unfolding topcontinuous_at_def
    by (fastforce simp add: limitin_atin)+
lemma continuous_map_eq_topcontinuous_at:
    continuous_map \(X Y f \longleftrightarrow(\forall x \in\) topspace \(X\). topcontinuous_at \(X Y f x)\)
    (is ?lhs =? ?rhs)
proof
    assume? lhs
    then show ?rhs
        by (auto simp: continuous_map_def topcontinuous_at_def)
next
    assume \(R\) : ?rhs
    then show? lhs
        apply (auto simp: continuous_map_def topcontinuous_at_def)
        apply (subst openin_subopen, safe)
        apply (drule bspec, assumption)
        using openin_subset[of \(X\) ] apply (auto simp: subset_iff dest!: spec)
        done
qed
lemma continuous_map_atin:
continuous_map \(X Y f \longleftrightarrow(\forall x \in\) topspace \(X\). limitin \(Y f(f x)(\) atin \(X x))\)
by (auto simp: limitin_def topcontinuous_at_atin continuous_map_eq_topcontinuous_at)
lemma limitin_continuous_map:
\(\llbracket\) continuous_map \(X Y f ; a \in\) topspace \(X ; f a=b \rrbracket \Longrightarrow \operatorname{limitin} Y f b(\) atin \(X a)\)
by (auto simp: continuous_map_atin)

\subsection*{2.4.11 Combining theorems for continuous functions into the reals}
lemma continuous_map_canonical_const [continuous_intros]: continuous_map \(X\) euclidean \((\lambda x . c)\)
by \(\operatorname{simp}\)
lemma continuous_map_real_mult [continuous_intros]: \(\llbracket\) continuous_map \(X\) euclideanreal \(f\); continuous_map \(X\) euclideanreal \(g \rrbracket\) \(\Longrightarrow\) continuous_map \(X\) euclideanreal \((\lambda x . f x * g x)\)
by (simp add: continuous_map_atin tendsto_mult)
lemma continuous_map_real_pow [continuous_intros]: continuous_map \(X\) euclideanreal \(f \Longrightarrow\) continuous_map \(X\) euclideanreal \((\lambda x . f x\) ^n)
by (induction \(n\) ) (auto simp: continuous_map_real_mult)
lemma continuous_map_real_mult_left:
continuous_map \(X\) euclideanreal \(f \Longrightarrow\) continuous_map \(X\) euclideanreal \((\lambda x, c *\) \(f x\) )
by (simp add: continuous_map_atin tendsto_mult)
lemma continuous_map_real_mult_left_eq:
continuous_map \(X\) euclideanreal \((\lambda x . c * f x) \longleftrightarrow c=0 \vee\) continuous_map \(X\) euclideanreal \(f\)
proof (cases \(c=0\) )
case False
have continuous_map \(X\) euclideanreal \((\lambda x . c * f x) \Longrightarrow\) continuous_map \(X\) euclideanreal f
apply (frule continuous_map_real_mult_left [where \(c=\) inverse \(c]\) )
apply (simp add: field_simps False)
done
with False show ?thesis
using continuous_map_real_mult_left by blast
qed \(\operatorname{simp}\)
lemma continuous_map_real_mult_right:
continuous_map \(X\) euclideanreal \(f \Longrightarrow\) continuous_map \(X\) euclideanreal \((\lambda x . f x\) * c)
by (simp add: continuous_map_atin tendsto_mult)
lemma continuous_map_real_mult_right_eq:
continuous_map \(X\) euclideanreal \((\lambda x . f x * c) \longleftrightarrow c=0 \vee\) continuous_map \(X\) euclideanreal \(f\)
by (simp add: mult.commute flip: continuous_map_real_mult_left_eq)
lemma continuous_map_minus [continuous_intros]:
fixes \(f::{ }^{\prime} a \Rightarrow{ }^{\prime} b:\) :real_normed_vector
shows continuous_map \(X\) euclidean \(f \Longrightarrow\) continuous_map \(X\) euclidean \((\lambda x .-f\)
\(x)\)
by (simp add: continuous_map_atin tendsto_minus)
lemma continuous_map_minus_eq [simp]:
fixes \(f::{ }^{\prime} a \Rightarrow^{\prime} b::\) real_normed_vector
shows continuous_map \(X\) euclidean \((\lambda x .-f x) \longleftrightarrow\) continuous_map \(X\) euclidean \(f\)
using continuous_map_minus add.inverse_inverse continuous_map_eq by fastforce
lemma continuous_map_add [continuous_intros]:
fixes \(f::^{\prime} a \Rightarrow{ }^{\prime} b:\) :real_normed_vector
shows \(\llbracket\) continuous_map \(X\) euclidean \(f\); continuous_map \(X\) euclidean \(g \rrbracket \Longrightarrow\) continuous_map \(X\) euclidean \((\lambda x . f x+g x)\)
by (simp add: continuous_map_atin tendsto_add)
lemma continuous_map_diff [continuous_intros]:
fixes \(f::^{\prime} a \Rightarrow ' b:\) :real_normed_vector
shows \(\llbracket\) continuous_map \(X\) euclidean \(f ;\) continuous_map \(X\) euclidean \(g \rrbracket \Longrightarrow\) con-
tinuous_map \(X\) euclidean \((\lambda x . f x-g x)\)
by (simp add: continuous_map_atin tendsto_diff)
lemma continuous_map_norm [continuous_intros]:
fixes \(f::^{\prime} a \Rightarrow^{\prime} b::\) real_normed_vector
shows continuous_map \(X\) euclidean \(f \Longrightarrow\) continuous_map \(X\) euclidean \((\lambda x\). \(\operatorname{norm}(f x))\)
by (simp add: continuous_map_atin tendsto_norm)
lemma continuous_map_real_abs [continuous_intros]:
continuous_map \(X\) euclideanreal \(f \Longrightarrow\) continuous_map \(X\) euclideanreal \((\lambda x\) abs \((f\) x))
by (simp add: continuous_map_atin tendsto_rabs)
lemma continuous_map_real_max [continuous_intros]:
\(\llbracket\) continuous_map \(X\) euclideanreal \(f\); continuous_map \(X\) euclideanreal \(g \rrbracket\)
\(\Longrightarrow\) continuous_map \(X\) euclideanreal \((\lambda x . \max (f x)(g x))\)
by (simp add: continuous_map_atin tendsto_max)
lemma continuous_map_real_min [continuous_intros]:
\(\llbracket\) continuous_map \(X\) euclideanreal \(f\); continuous_map \(X\) euclideanreal \(g \rrbracket\)
\(\Longrightarrow\) continuous_map \(X\) euclideanreal \((\lambda x . \min (f x)(g x))\)
```

 by (simp add: continuous_map_atin tendsto_min)
 lemma continuous_map_sum [continuous_intros]:
fixes f:: ' }a\mp@subsup{=>}{}{\prime}b\mp@subsup{|}{}{\prime}c::\mathrm{ real_normed_vector
shows \llbracketfinite I; \i. i
continuous_map X euclidean (}\lambdax\mathrm{ . sum (f x) I)
by (simp add: continuous_map_atin tendsto_sum)
lemma continuous_map_prod [continuous_intros]:
|finite I;
\ i . i \in I \Longrightarrow continuous_map X euclideanreal (\lambda x . f x i) \rrbracket
\Longrightarrow continuous_map X euclideanreal (\lambda x . \operatorname { p r o d } (f x) I)
by (simp add: continuous_map_atin tendsto_prod)
lemma continuous_map_real_inverse [continuous_intros]:
\llbracketcontinuous_map X euclideanreal f; \x. x\in topspace X\Longrightarrowfx\not=0\rrbracket
\Longrightarrow continuous_map X euclideanreal (\lambda x . inverse (f x))
by (simp add: continuous_map_atin tendsto_inverse)
lemma continuous_map_real_divide [continuous_intros]:
|continuous_map X euclideanreal f; continuous_map X euclideanreal g; \x. x \in
topspace }X\Longrightarrowgx\not=0
\Longrightarrow continuous_map X euclideanreal (\lambda x . f x / g x)
by (simp add: continuous_map_atin tendsto_divide)
end

```

\section*{Chapter 3}

\section*{Functional Analysis}

\subsection*{3.1 A decision procedure for metric spaces}

\author{
theory Metric_Arith \\ imports HOL.Real_Vector_Spaces \\ begin
}

A port of the decision procedure "Formalization of metric spaces in HOL Light" [3] for the type class metric_space, with the Argo solver as backend.
named_theorems metric_prenex
named_theorems metric_nnf
named_theorems metric_unfold
named_theorems metric_pre_arith
lemmas pre_arith_simps \(=\)
max.bounded_iff max_less_iff_conj
le_max_iff_disj less_max_iff_disj
simp_thms HOL.eq_commute
declare pre_arith_simps [metric_pre_arith]
lemmas unfold_simps \(=\)
Un_iff subset_iff disjoint_iff_not_equal
Ball_def Bex_def
declare unfold_simps [metric_unfold]
declare HOL.nnf_simps(4) [metric_prenex]
lemma imp_prenex [metric_prenex]:
\(\wedge P Q .(\exists x . P x) \longrightarrow Q \equiv \forall x .(P x \longrightarrow Q)\)
\(\wedge P Q . P \longrightarrow(\exists x . Q x) \equiv \exists x .(P \longrightarrow Q x)\)
\(\wedge P Q .(\forall x . P x) \longrightarrow Q \equiv \exists x .(P x \longrightarrow Q)\)
\(\bigwedge P Q . P \longrightarrow(\forall x . Q x) \equiv \forall x .(P \longrightarrow Q x)\)
by simp_all
lemma ex_prenex [metric_prenex]:
```

\bigwedgePQ. (\existsx. P x)^Q \equiv\existsx. (Px\wedgeQ)
\bigwedgePQ.P^(\existsx.Q x) \equiv\existsx. (P\wedgeQ)
\PQ. (\existsx.Px)\veeQ \equiv\existsx. (Px\veeQ)
\bigwedgePQ.P\vee (\existsx.Q 位 \equiv\existsx.(P\veeQ (P)
\P.\neg(\existsx.P P) \equiv\forallx.\negPx
by simp_all
lemma all_prenex [metric_prenex]:
\bigwedgePQ. (\forallx.P 片^Q \equiv\forallx. (Px\wedgeQ)

```

```

 \bigwedgePQ. (\forallx.P 片\veeQ \equiv\forallx. (Px\veeQ)
 \bigwedgePQ.P\vee (\forallx.Q 位 \equiv\forallx.(P\veeQx)
 \P.\neg(\forallx.P 位 \equiv\existsx.\negPx
 by simp_all
 lemma nnf_thms [metric_nnf]:
(\neg(P\wedgeQ)) =(\negP\vee\negQ)
(\neg(P\veeQ)) =(\negP\wedge\negQ)
(P\longrightarrowQ)}=(\negP\veeQ
(P=Q)\longleftrightarrow(P\vee\negQ)\wedge(\negP\veeQ)
(\neg(P=Q))\longleftrightarrow(\negP\vee\negQ)\wedge(P\veeQ)
(\neg\negP)=P
by blast+
lemmas nnf_simps = nnf_thms linorder_not_less linorder_not_le
declare nnf_simps[metric_nnf]
lemma ball_insert: (}\forallx\in\mathrm{ insert a B. P x) =(P a ^(}\forallx\inB.P x)
by blast
lemma Sup_insert_insert:
fixes a::real
shows Sup (insert a (insert b s)) = Sup (insert (max a b) s)
by (simp add: Sup_real_def)
lemma real_abs_dist: }|\mathrm{ dist x y | = dist x y
by simp
lemma maxdist_thm [THEN HOL.eq_reflection]:
assumes finite s }x\insy\in
defines \a.fa\equiv|dist x a - dist a y
shows dist x y = Sup (f's)
proof -
have dist x y \leqSup (f`s)
proof -
have finite (f's)
by (simp add: <finite s〉)
moreover have |dist x y - dist y y| f's
by (metis }\langley\ins\rangle\mp@subsup{f}{-}{\prime}def imageI

```
```

 ultimately show ?thesis
 using le_cSup_finite by simp
 qed
 also have Sup (f's)\leqdist x y
 using \langlex \in s\ranglecSUP_least[of s f] abs_dist_diff_le
 unfolding f_def
 by blast
 finally show ?thesis .
 qed
theorem metric_eq_thm [THEN HOL.eq_reflection]:
x\ins\Longrightarrowy\ins\Longrightarrowx=y\longleftrightarrow(\foralla\ins.dist x a = dist y a)
by auto
ML_file metric_arith.ML
method_setup metric = <
Scan.succeed (SIMPLE_METHOD' o MetricArith.metric_arith_tac)
) prove simple linear statements in metric spaces (}\forall\exists\mp@subsup{\exists}{p}{}\mathrm{ fragment)
end

```

\subsection*{3.2 Elementary Metric Spaces}
theory Elementary_Metric_Spaces
imports
Abstract_Topology_2
Metric_Arith
begin

\subsection*{3.2.1 Open and closed balls}
definition ball :: 'a::metric_space \(\Rightarrow\) real \(\Rightarrow\) 'a set where ball \(x e=\{y\). dist \(x y<e\}\)
definition cball :: 'a::metric_space \(\Rightarrow\) real \(\Rightarrow\) ' \(a\) set where cball \(x e=\{y\). dist \(x y \leq e\}\)
definition sphere \(::\) ' \(a::\) metric_space \(\Rightarrow\) real \(\Rightarrow\) 'a set where sphere \(x e=\{y\). dist \(x y=e\}\)
lemma mem_ball [simp, metric_unfold]: \(y \in\) ball \(x e \longleftrightarrow\) dist \(x y<e\) by (simp add: ball_def)
lemma mem_cball [simp, metric_unfold]: \(y \in \operatorname{cball} x e \longleftrightarrow\) dist \(x y \leq e\) by (simp add: cball_def)
lemma mem_sphere [simp]: \(y \in\) sphere \(x e \longleftrightarrow\) dist \(x y=e\)
by (simp add: sphere_def)
lemma ball_trivial [simp]: ball x \(0=\{ \}\)
by (simp add: ball_def)
lemma cball_trivial [simp]: cball x \(0=\{x\}\)
by (simp add: cball_def)
lemma sphere_trivial [simp]: sphere x \(0=\{x\}\)
by (simp add: sphere_def)
lemma disjoint_ballI: dist \(x y \geq r+s \Longrightarrow\) ball \(x r \cap\) ball \(y s=\{ \}\)
using dist_triangle_less_add not_le by fastforce
lemma disjoint_cballI: dist \(x y>r+s \Longrightarrow\) cball \(x r \cap\) cball \(y s=\{ \}\)
by (metis add_mono disjoint_iff_not_equal dist_triangle2 dual_order.trans leD mem_cball)
lemma sphere_empty \([\) simp \(]: r<0 \Longrightarrow\) sphere a \(r=\{ \}\)
for \(a\) :: ' \(a:\) :metric_space
by auto
lemma centre_in_ball [simp]: \(x \in\) ball \(x e \longleftrightarrow 0<e\)
by \(\operatorname{simp}\)
lemma centre_in_cball [simp]: \(x \in\) cball \(x e \longleftrightarrow 0 \leq e\) by \(\operatorname{simp}\)
lemma ball_subset_cball [simp, intro]: ball \(x e \subseteq\) cball \(x e\) by (simp add: subset_eq)
lemma mem_ball_imp_mem_cball: \(x \in\) ball \(y e \Longrightarrow x \in c b a l l y e\) by auto
lemma sphere_cball [simp,intro]: sphere \(z r \subseteq\) cball \(z r\) by force
lemma cball_diff_sphere: cball a \(r\) - sphere a \(r=\) ball a \(r\) by auto
lemma subset_ball[intro]: \(d \leq e \Longrightarrow\) ball \(x d \subseteq\) ball \(x e\) by auto
lemma subset_cball[intro]: \(d \leq e \Longrightarrow\) cball \(x d \subseteq\) cball \(x e\) by auto
lemma mem_ball_leI: \(x \in\) ball \(y e \Longrightarrow e \leq f \Longrightarrow x \in\) ball \(y f\) by auto
lemma mem_cball_leI: \(x \in\) cball \(y e \Longrightarrow e \leq f \Longrightarrow x \in\) cball \(y f\) by auto
lemma cball_trans: \(y \in\) cball \(z b \Longrightarrow x \in \operatorname{cball} y a \Longrightarrow x \in \operatorname{cball} z(b+a)\) by metric
lemma ball_max_Un: ball \(a(\max r s)=\) ball a \(r \cup\) ball a s by auto
lemma ball_min_Int: ball \(a(\min r s)=b a l l a r \cap\) ball a \(s\) by auto
lemma cball_max_Un: cball \(a(\max r s)=\) cball a \(r \cup\) cball a \(s\) by auto
lemma cball_min_Int: cball \(a(\min r s)=c b a l l ~ a r \cap c b a l l ~ a s\) by auto
lemma cball_diff_eq_sphere: cball a \(r\) - ball a \(r=\) sphere a \(r\) by auto
lemma open_ball [intro, simp]: open (ball x e)
proof -
have open (dist \(x-‘\{. .<e\}\) )
by (intro open_vimage open_lessThan continuous_intros)
also have dist \(x-‘\{. .<e\}=\) ball \(x e\) by auto
finally show ?thesis.
qed
lemma open_contains_ball: open \(S \longleftrightarrow(\forall x \in S . \exists e>0\). ball \(x e \subseteq S)\)
by (simp add: open_dist subset_eq Ball_def dist_commute)
lemma openI [intro?]: \((\bigwedge x . x \in S \Longrightarrow \exists e>0\). ball \(x e \subseteq S) \Longrightarrow\) open \(S\) by (auto simp: open_contains_ball)
lemma openE[elim?]:
assumes open \(S x \in S\)
obtains \(e\) where \(e>0\) ball \(x e \subseteq S\)
using assms unfolding open_contains_ball by auto
lemma open_contains_ball_eq: open \(S \Longrightarrow x \in S \longleftrightarrow(\exists e>0\). ball \(x e \subseteq S)\)
by (metis open_contains_ball subset_eq centre_in_ball)
lemma ball_eq_empty[simp]: ball \(x e=\{ \} \longleftrightarrow e \leq 0\)
unfolding mem_ball set_eq_iff
by (simp add: not_less) metric
lemma ball_empty: \(e \leq 0 \Longrightarrow\) ball \(x e=\{ \}\)
by simp
```

lemma closed_cball [iff]: closed (cball x e)
proof -
have closed (dist $x-$ ' $\{. . e\}$)
by (intro closed_vimage closed_atMost continuous_intros)
also have dist $x-‘\{. . e\}=\operatorname{cball} x e$
by auto
finally show ?thesis .
qed

```
lemma open_contains_cball: open \(S \longleftrightarrow(\forall x \in S . \exists e>0\). cball \(x e \subseteq S)\)
proof -
    \{
        fix \(x\) and \(e:\) :real
        assume \(x \in S\) e>0 ball \(x e \subseteq S\)
        then have \(\exists d>0\). cball \(x d \subseteq S\)
            unfolding subset_eq by (rule_tac \(x=e / 2\) in exI, auto)
    \}
    moreover
    \{
        fix \(x\) and \(e::\) real
        assume \(x \in S\) e>0 cball \(x e \subseteq S\)
        then have \(\exists d>0\). ball \(x d \subseteq S\)
        using mem_ball_imp_mem_cball by blast
    \}
    ultimately show ?thesis
    unfolding open_contains_ball by auto
qed
lemma open_contains_cball_eq: open \(S \Longrightarrow(\forall x . x \in S \longleftrightarrow(\exists e>0\). cball \(x e \subseteq\)
S))
    by (metis open_contains_cball subset_eq order_less_imp_le centre_in_cball)
lemma eventually_nhds_ball: \(d>0 \Longrightarrow\) eventually \((\lambda x . x \in\) ball \(z d)(n h d s z)\)
    by (rule eventually_nhds_in_open) simp_all
lemma eventually_at_ball: \(d>0 \Longrightarrow\) eventually \((\lambda t . t \in\) ball \(z d \wedge t \in A)(\) at \(z\)
within A)
    unfolding eventually_at by (intro exI[of_d]) (simp_all add: dist_commute)
lemma eventually_at_ball': \(d>0 \Longrightarrow\) eventually \((\lambda t . t \in\) ball \(z d \wedge t \neq z \wedge t \in\)
A) (at \(z\) within A)
    unfolding eventually_at by (intro exI[of_d]) (simp_all add: dist_commute)
lemma at_within_ball: \(e>0 \Longrightarrow\) dist \(x y<e \Longrightarrow\) at \(y\) within ball \(x e=\) at \(y\)
    by (subst at_within_open) auto
lemma atLeastAtMost_eq_cball:
    fixes \(a b\) ::real
    shows \(\{a . . b\}=\operatorname{cball}((a+b) / \mathcal{Z})((b-a) / \mathcal{Z})\)
```

 by (auto simp: dist_real_def field_simps)
 lemma cball_eq_atLeastAtMost:
fixes a b::real
shows cball a b = {a-b .. a+b}
by (auto simp: dist_real_def)
lemma greaterThanLessThan_eq_ball:
fixes a b::real
shows {a<..< b} = ball ((a+b)/2) ((b-a)/2)
by (auto simp: dist_real_def field_simps)
lemma ball_eq_greaterThanLessThan:
fixes a b::real
shows ball a b = {a-b<..<a+b}
by (auto simp: dist_real_def)
lemma interior_ball [simp]: interior (ball x e) = ball x e
by (simp add: interior_open)
lemma cball_eq_empty [simp]: cball x e={}\longleftrightarrowe<0
apply (simp add: set_eq_iff not_le)
apply (metis zero_le_dist dist_self order_less_le_trans)
done
lemma cball_empty [simp]: e<0\Longrightarrow cball x e = {}
by simp
lemma cball_sing:
fixes x :: 'a::metric_space
shows e=0\Longrightarrow cball x e = {x}
by simp
lemma ball_divide_subset: d \geq 1 \Longrightarrow ball x (e/d)\subseteqball x e
by (metis ball_eq_empty div_by_1 frac_le linear subset_ball zero_less_one)
lemma ball_divide_subset_numeral: ball x (e / numeral w) \subseteq ball x e
using ball_divide_subset one_le_numeral by blast
lemma cball_divide_subset: d \geq 1 \Longrightarrow cball x (e/d)\subseteqcball x e
apply (cases e<0, simp add: field_split_simps)
by (metis div_by_1 frac_le less_numeral_extra(1) not_le order_refl subset_cball)
lemma cball_divide_subset_numeral: cball x (e / numeral w)\subseteqcball x e
using cball_divide_subset one_le_numeral by blast
lemma cball_scale:
assumes a\not=0
shows (\lambdax.a** x)'cball c r = cball (}a\mp@subsup{*}{R}{}c::''a :: real_normed_vector) (|a

```
* \(r\) )
proof -
    have 1: \(\left(\lambda x . a *_{R} x\right)\) 'cball \(c r \subseteq \operatorname{cball}\left(a *_{R} c\right)(|a| * r)\) if \(a \neq 0\) for \(a r\) and
\(c::^{\prime} a\)
    proof safe
        fix \(x\)
        assume \(x: x \in\) cball \(c r\)
        have dist \(\left(a *_{R} c\right)\left(a *_{R} x\right)=\operatorname{norm}\left(a *_{R} c-a *_{R} x\right)\)
        by (auto simp: dist_norm)
        also have \(a *_{R} c-a *_{R} x=a *_{R}(c-x)\)
        by (simp add: algebra_simps)
        finally show \(a *_{R} x \in \operatorname{cball}\left(a *_{R} c\right)(|a| * r)\)
        using that \(x\) by (auto simp: dist_norm)
    qed
    have cball \(\left(a *_{R} c\right)(|a| * r)=\left(\lambda x . a *_{R} x\right)\) ' \(\left(\lambda x\right.\). inverse \(\left.a *_{R} x\right)\) ' \(\operatorname{cball}\left(a *_{R}\right.\)
c) \((|a| * r)\)
    unfolding image_image using assms by simp
    also have \(\ldots \subseteq\left(\lambda x . a *_{R} x\right)\) ' cball (inverse \(\left.a *_{R}\left(a *_{R} c\right)\right)(\mid\) inverse \(a \mid *(|a|\)
* \(r\) ))
            using assms by (intro image_mono 1) auto
    also have \(\ldots=\left(\lambda x . a *_{R} x\right)\) ' cball cr
        using assms by (simp add: algebra_simps)
    finally have cball \(\left(a *_{R} c\right)(|a| * r) \subseteq\left(\lambda x . a *_{R} x\right)\) ' cball cr.
    moreover from assms have \(\left(\lambda x . a *_{R} x\right)\) 'cball cr \(r \subseteq\) cball \(\left(a *_{R} c\right)(|a| * r)\)
        by (intro 1) auto
    ultimately show ?thesis by blast
qed
lemma ball_scale:
    assumes \(a \neq 0\)
    shows \(\left(\lambda x . a *_{R} x\right)\) 'ball \(c r=\) ball \(\left(a *_{R} c::{ }^{\prime} a\right.\) :: real_normed_vector \()(|a| *\)
\(r\) )
proof -
    have 1: \(\left(\lambda x . a *_{R} x\right)\) 'ball \(c r \subseteq \operatorname{ball}\left(a *_{R} c\right)(|a| * r)\) if \(a \neq 0\) for \(a r\) and \(c\)
:: 'a
    proof safe
        fix \(x\)
        assume \(x: x \in\) ball \(c r\)
        have \(\operatorname{dist}\left(a *_{R} c\right)\left(a *_{R} x\right)=\operatorname{norm}\left(a *_{R} c-a *_{R} x\right)\)
        by (auto simp: dist_norm)
        also have \(a *_{R} c-a *_{R} x=a *_{R}(c-x)\)
        by (simp add: algebra_simps)
        finally show \(a *_{R} x \in \operatorname{ball}\left(a *_{R} c\right)(|a| * r)\)
        using that \(x\) by (auto simp: dist_norm)
    qed
    have ball \(\left(a *_{R} c\right)(|a| * r)=\left(\lambda x\right.\). \(\left.a *_{R} x\right) ‘\left(\lambda x\right.\). inverse \(\left.a *_{R} x\right)\) 'ball \(\left(a *_{R}\right.\)
c) \((|a| * r)\)
unfolding image_image using assms by simp
also have \(\ldots \subseteq\left(\lambda x . a *_{R} x\right)\) ' ball (inverse \(\left.a *_{R}\left(a *_{R} c\right)\right)(\mid\) inverse \(a \mid *(|a| *\) r))
using assms by (intro image_mono 1) auto
also have \(\ldots=\left(\lambda x . a *_{R} x\right)\) ' ball c r
using assms by (simp add: algebra_simps)
finally have ball \(\left(a *_{R} c\right)(|a| * r) \subseteq\left(\lambda x . a *_{R} x\right)\) ' ball c r .
moreover from assms have \(\left(\lambda x . a *_{R} x\right)\) 'ball cr \(r \subseteq\) ball \(\left(a *_{R} c\right)(|a| * r)\)
by (intro 1) auto
ultimately show ?thesis by blast
qed

\subsection*{3.2.2 Limit Points}
lemma islimpt_approachable:
fixes \(x\) :: 'a::metric_space
shows \(x\) islimpt \(S \longleftrightarrow\left(\forall e>0 . \exists x^{\prime} \in S . x^{\prime} \neq x \wedge\right.\) dist \(\left.x^{\prime} x<e\right)\)
unfolding islimpt_iff_eventually eventually_at by fast
lemma islimpt_approachable_le: \(x\) islimpt \(S \longleftrightarrow\left(\forall e>0 . \exists x^{\prime} \in S . x^{\prime} \neq x \wedge\right.\) dist \(x^{\prime}\) \(x \leq e\) )
for \(x\) :: ' \(a::\) metric_space
unfolding islimpt_approachable
using approachable_lt_le2 [where \(f=\lambda y\). dist \(y x\) and \(P=\lambda y . y \notin S \vee y=x\)
and \(Q=\lambda x\). True]
by auto
lemma limpt_of_limpts: \(x\) islimpt \(\{y . y\) islimpt \(S\} \Longrightarrow x\) islimpt \(S\)
for \(x\) :: ' \(a\) ::metric_space
apply (clarsimp simp add: islimpt_approachable)
apply (drule_tac \(x=e / 2\) in spec)
apply (auto simp: simp del: less_divide_eq_numeral1)
apply (drule_tac \(x=\) dist \(x^{\prime} x\) in spec)
apply (auto simp del: less_divide_eq_numeral1)
apply metric
done
lemma closed_limpts: closed \(\{x:: ' a::\) metric_space. \(x\) islimpt \(S\}\)
using closed_limpt limpt_of_limpts by blast
lemma limpt_of_closure: \(x\) islimpt closure \(S \longleftrightarrow x\) islimpt \(S\)
for \(x\) :: ' \(a::\) metric_space
by (auto simp: closure_def islimpt_Un dest: limpt_of_limpts)
lemma islimpt_eq_infinite_ball: \(x\) islimpt \(S \longleftrightarrow(\forall e>0\).infinite \((S \cap\) ball \(x e))\)
apply (simp add: islimpt_eq_acc_point, safe)
apply (metis Int_commute open_ball centre_in_ball)
by (metis open_contains_ball Int_mono finite_subset inf_commute subset_refl)
```

lemma islimpt_eq_infinite_cball: x islimpt S \longleftrightarrow(\foralle>0.infinite(S \cap cball x e))
apply (simp add: islimpt_eq_infinite_ball, safe)
apply (meson Int_mono ball_subset_cball finite_subset order_refl)
by (metis open_ball centre_in_ball finite_Int inf.absorb_iff2 inf_assoc open_contains_cball_eq)

```

\subsection*{3.2.3 Perfect Metric Spaces}
lemma perfect_choose_dist: \(0<r \Longrightarrow \exists a . a \neq x \wedge\) dist \(a x<r\)
for \(x::\) ' \(a::\{\) perfect_space,metric_space \(\}\)
using islimpt_UNIV [of \(x]\) by (simp add: islimpt_approachable)
lemma cball_eq_sing:
fixes \(x::{ }^{\prime} a::\{\) metric_space,perfect_space \(\}\)
shows cball \(x e=\{x\} \longleftrightarrow e=0\)
proof (rule linorder_cases)
assume \(e\) : \(0<e\)
obtain \(a\) where \(a \neq x\) dist \(a x<e\)
using perfect_choose_dist [OF e] by auto
then have \(a \neq x\) dist \(x a \leq e\) by (auto simp: dist_commute)
with \(e\) show ?thesis by (auto simp: set_eq_iff)
qed auto

\subsection*{3.2.4 ?}
lemma finite_ball_include:
fixes \(a\) :: ' \(a::\) metric_space
assumes finite \(S\)
shows \(\exists e>0 . S \subseteq\) ball a \(e\)
using assms
proof induction
case (insert \(x S\) )
then obtain \(e 0\) where \(e 0>0\) and \(e 0: S \subseteq\) ball a e0 by auto
define \(e\) where \(e=\max e 0(2 *\) dist \(a x)\)
have \(e>0\) unfolding \(e_{-}\)def using \(\langle e 0>0\rangle\) by auto
moreover have insert \(x S \subseteq\) ball a e
using \(e 0\langle e>0\rangle\) unfolding \(e_{\text {_def }}\) by auto
ultimately show ?case by auto
qed (auto intro: zero_less_one)
lemma finite_set_avoid:
fixes \(a\) :: ' \(a::\) metric_space
assumes finite \(S\)
shows \(\exists d>0 . \forall x \in S . x \neq a \longrightarrow d \leq\) dist \(a x\)
using assms
proof induction
case (insert \(x S\) )
then obtain \(d\) where \(d>0\) and \(d: \forall x \in S . x \neq a \longrightarrow d \leq\) dist \(a x\) by blast
show ?case
```

 proof (cases x =a)
 case True
 with <d>> 0 \d show ?thesis by auto
 next
 case False
 let ?d = min d (dist a x)
 from False \langled> 0\rangle have dp:?d>0
 by auto
 from d have d':}\forallx\inS.x\not=a\longrightarrow??d\leq dist a x
 by auto
 with dp False show ?thesis
 by (metis insert_iff le_less min_less_iff_conj not_less)
 qed
 qed (auto intro: zero_less_one)
lemma discrete_imp_closed:
fixes S :: 'a::metric_space set
assumes e:0<e
and d:\forallx\inS.\forally\inS. dist y }x<e\longrightarrowy=
shows closed S
proof -
have False if C: \bigwedgee. e>0\Longrightarrow\exists\mp@subsup{x}{}{\prime}\inS. \mp@subsup{x}{}{\prime}\not=x\wedge dist \mp@subsup{x}{}{\prime}x<e for x
proof -
from e have e2: e/2 > 0 by arith
from C[rule_format,OF e2] obtain y where y: y\inS y\not=x dist y x<e/2
by blast
from e2 y(2) have mp: min (e/2) (dist x y)>0
by simp
from d y C[OF mp] show ?thesis
by metric
qed
then show ?thesis
by (metis islimpt_approachable closed_limpt [where ' }a='='a]
qed

```

\subsection*{3.2.5 Interior}
lemma mem_interior: \(x \in\) interior \(S \longleftrightarrow(\exists e>0\). ball \(x e \subseteq S)\)
using open_contains_ball_eq [where \(S=\) interior \(S\) ]
by (simp add: open_subset_interior)
lemma mem_interior_cball: \(x \in\) interior \(S \longleftrightarrow(\exists e>0 . c b a l l ~ x e \subseteq S)\)
by (meson ball_subset_cball interior_subset mem_interior open_contains_cball open_interior subset_trans)

\subsection*{3.2.6 Frontier}
lemma frontier_straddle:
fixes \(a\) :: ' \(a\) ::metric_space
shows \(a \in\) frontier \(S \longleftrightarrow(\forall e>0 .(\exists x \in S\). dist \(a x<e) \wedge(\exists x . x \notin S \wedge\) dist \(a\) \(x<e\) ))
unfolding frontier_def closure_interior
by (auto simp: mem_interior subset_eq ball_def)

\subsection*{3.2.7 Limits}
proposition Lim: \((f \longrightarrow l)\) net \(\longleftrightarrow\) trivial_limit \(n e t \vee(\forall e>0\). eventually \((\lambda x\). \(\operatorname{dist}(f x) l<e)\) net \()\) by (auto simp: tendsto_iff trivial_limit_eq)

Show that they yield usual definitions in the various cases.
proposition Lim_within_le: \((f \longrightarrow l)(\) at a within \(S) \longleftrightarrow\) \((\forall e>0 . \exists d>0 . \forall x \in S .0<\operatorname{dist} x a \wedge\) dist \(x a \leq d \longrightarrow \operatorname{dist}(f x) l<e)\)
by (auto simp: tendsto_iff eventually_at_le)
proposition Lim_within: \((f \longrightarrow l)(\) at a within \(S) \longleftrightarrow\) ( \(\forall e>0 . \exists d>0 . \forall x \in S .0<\operatorname{dist} x a \wedge\) dist \(x a<d \longrightarrow \operatorname{dist}(f x) l<e)\)
by (auto simp: tendsto_iff eventually_at)
corollary Lim_withinI [intro?]:
assumes \(\bigwedge e . e>0 \Longrightarrow \exists d>0 . \forall x \in S .0<\) dist \(x a \wedge\) dist \(x a<d \longrightarrow\) dist \((f x) l \leq e\)
shows \((f \longrightarrow l)(\) at a within \(S)\)
apply (simp add: Lim_within, clarify)
apply (rule ex_forward [OF assms [OF half_gt_zero]], auto)
done
proposition Lim_at: \((f \longrightarrow l)(\) at \(a) \longleftrightarrow\) \((\forall e>0 . \exists d>0 . \forall x .0<\) dist \(x a \wedge\) dist \(x a<d \longrightarrow \operatorname{dist}(f x) l<e)\)
by (auto simp: tendsto_iff eventually_at)
lemma Lim_transform_within_set:
fixes \(a::\) ' \(a::\) metric_space and \(l::\) ' \(b::\) metric_space
shows \(\llbracket(f \longrightarrow l)(\) at a within \(S)\); eventually \((\lambda x . x \in S \longleftrightarrow x \in T)(\) at a) \(\rrbracket\) \(\Longrightarrow(f \longrightarrow l)(\) at a within \(T)\)
apply (clarsimp simp: eventually_at Lim_within)
apply (drule_tac \(x=e\) in spec, clarify)
apply (rename_tac \(k\) )
apply (rule_tac \(x=\min d k\) in \(e x I, \operatorname{simp})\)
done
Another limit point characterization.
lemma limpt_sequential_inj:
fixes \(x\) :: ' \(a::\) metric_space
shows \(x\) islimpt \(S \longleftrightarrow\)
\((\exists f .(\forall n:: n a t . f n \in S-\{x\}) \wedge \operatorname{inj} f \wedge(f \longrightarrow x)\) sequentially \()\)
(is ?lhs =? ?rhs)
proof
```

assume ?lhs
then have $\forall e>0 . \exists x^{\prime} \in S . x^{\prime} \neq x \wedge$ dist $x^{\prime} x<e$
by (force simp: islimpt_approachable)
then obtain y where $y: \wedge e . e>0 \Longrightarrow y e \in S \wedge y e \neq x \wedge \operatorname{dist}(y e) x<e$
by metis
define f where $f \equiv$ rec_nat (y 1) $(\lambda n$ fn. $y(\min ($ inverse(2 ^ $(S u c n)))($ dist
$f n x)$))
have $[$ simp $]: f 0=y 1$
$f($ Suc $n)=y\left(\min \left(\right.\right.$ inverse $\left(2^{\wedge}(\right.$ Suc $\left.\left.\left.n)\right)\right)(\operatorname{dist}(f n) x)\right)$ for n
by (simp_all add: $f_{-} d e f$)
have $f: f n \in S \wedge(f n \neq x) \wedge \operatorname{dist}(f n) x<\operatorname{inverse}\left(2^{\wedge} n\right)$ for n
proof (induction n)
case 0 show ?case
by (simp add: y)
next
case (Suc n) then show ?case
apply (auto simp: y)
by (metis half_gt_zero_iff inverse_positive_iff_positive less_divide_eq_numeral1 (1)
min_less_iff_conj y zero_less_dist_iff zero_less_numeral zero_less_power)
qed
show ?rhs
proof (rule_tac $x=f$ in exI, intro conjI allI)
show $\bigwedge n$. $f n \in S-\{x\}$
using f by blast
have $\operatorname{dist}(f n) x<\operatorname{dist}(f m) x$ if $m<n$ for $m n$
using that
proof (induction n)
case 0 then show? case by simp
next
case (Suc n)
then consider $m<n \mid m=n$ using less_Suc_eq by blast
then show ?case
proof cases
assume $m<n$
have $\operatorname{dist}(f($ Suc $n)) x=\operatorname{dist}\left(y\left(\min \left(\right.\right.\right.$ inverse $\left.\left.\left(2^{\wedge}\right)(S u c n)\right)\right)(d i s t(f n)$
x))) x
by simp
also have $\ldots<\operatorname{dist}(f n) x$
by (metis dist_pos_lt f min.strict_order_iff min_less_iff_conj y)
also have $\ldots<\operatorname{dist}(f m) x$
using Suc.IH $\langle m<n\rangle$ by blast
finally show ?thesis.
next
assume $m=n$ then show ?case
by simp (metis dist_pos_lt f half_gt_zero_iff inverse_positive_iff_positive
min_less_iff_conj y zero_less_numeral zero_less_power)
qed
qed
then show $\operatorname{inj} f$

```
```

 by (metis less_irrefl linorder_injI)
 show }f\longrightarrow
 apply (rule tendstoI)
 apply (rule_tac c=nat (ceiling(1/e)) in eventually_sequentiallyI)
 apply (rule less_trans [OF f [THEN conjunct2, THEN conjunct2]])
 apply (simp add: field_simps)
 by (meson le_less_trans mult_less_cancel_left not_le of_nat_less_two_power)
 qed
 next
assume ?rhs
then show ?lhs
by (fastforce simp add: islimpt_approachable lim_sequentially)
qed
lemma Lim_dist_ubound:
assumes }\neg\mathrm{ (trivial_limit net)
and (f\longrightarrowl) net
and eventually (}\lambdax\mathrm{ . dist a (fx) <e) net
shows dist a l\leqe
using assms by (fast intro: tendsto_le tendsto_intros)

```

\subsection*{3.2.8 Continuity}

Derive the epsilon-delta forms, which we often use as "definitions"
proposition continuous_within_eps_delta:
continuous (at \(x\) within s) \(f \longleftrightarrow\left(\forall e>0 . \exists d>0 . \forall x^{\prime} \in s . \quad\right.\) dist \(x^{\prime} x<d-->\) \(\left.\operatorname{dist}\left(f x^{\prime}\right)(f x)<e\right)\)
unfolding continuous_within and Lim_within by fastforce
corollary continuous_at_eps_delta:
continuous \((\) at \(x) f \longleftrightarrow\left(\forall e>0 . \exists d>0 . \forall x^{\prime}\right.\). dist \(x^{\prime} x<d \longrightarrow \operatorname{dist}\left(f x^{\prime}\right)(f\)
\(x)<e\) )
using continuous_within_eps_delta [of \(x\) UNIV f] by simp
lemma continuous_at_right_real_increasing:
fixes \(f:\) real \(\Rightarrow\) real
assumes nondecF: \(\bigwedge x y . x \leq y \Longrightarrow f x \leq f y\)
shows continuous (at_right a) \(f \longleftrightarrow(\forall e>0 . \exists d>0 . f(a+d)-f a<e)\)
apply (simp add: greaterThan_def dist_real_def continuous_within Lim_within_le)
apply (intro all_cong ex_cong, safe)
apply (erule_tac \(x=a+d\) in allE, simp)
apply (simp add: nondecF field_simps)
apply (drule nondecF, simp)
done
lemma continuous_at_left_real_increasing:
assumes nondecF: \(\bigwedge x y . x \leq y \Longrightarrow f x \leq((f y)::\) real \()\)
shows \((\) continuous \((\) at_left \((a::\) real \()) f)=(\forall e>0 . \exists\) delta \(>0 . f a-f(a-\) delta) \(<e\) )
```

apply (simp add: lessThan_def dist_real_def continuous_within Lim_within_le)
apply (intro all_cong ex_cong, safe)
apply (erule_tac x=a - d in allE, simp)
apply (simp add: nondecF field_simps)
apply (cut_tac }x=a-d\mathrm{ and }y=x\mathrm{ in nondecF, simp_all)
done

```

Versions in terms of open balls.
```

lemma continuous_within_ball:
continuous (at x within s) $f \longleftrightarrow$
$\left(\forall e>0 . \exists d>0 . f^{\prime}(\right.$ ball $x d \cap s) \subseteq$ ball $\left.(f x) e\right)$
(is ?lhs = ? rhs)
proof
assume? lhs
\{
fix e :: real
assume $e>0$
then obtain d where $d: d>0 \forall x a \in s .0<d i s t x a x \wedge$ dist $x a x<d \longrightarrow d i s t$
$(f x a)(f x)<e$
using 〈?lhs〉[unfolded continuous_within Lim_within] by auto
\{
fix y
assume $y \in f$ ' (ball $x d \cap s)$
then have $y \in$ ball $(f x) e$
using $d(2)$
using $\langle e>0\rangle$
by (auto simp: dist_commute)
\}
then have $\exists d>0 . f^{\prime}($ ball $x d \cap s) \subseteq \operatorname{ball}(f x) e$
using $\langle d>0\rangle$
unfolding subset_eq ball_def by (auto simp: dist_commute)
\}
then show ?rhs by auto
next
assume ?rhs
then show? lhs
unfolding continuous_within Lim_within ball_def subset_eq
apply (auto simp: dist_commute)
apply (erule_tac $x=e$ in allE, auto)
done
qed

```
lemma continuous_at_ball:
    continuous (at \(x) f \longleftrightarrow\left(\forall e>0 . \exists d>0 . f^{\prime}(\right.\) ball \(x d) \subseteq\) ball \(\left.(f x) e\right)(\) is ?lhs \(=\)
?rhs)
proof
    assume ?lhs
    then show ?rhs
        unfolding continuous_at Lim_at subset_eq Ball_def Bex_def image_iff mem_ball
```

 by (metis dist_commute dist_pos_lt dist_self)
 next
assume ?rhs
then show ?lhs
unfolding continuous_at Lim_at subset_eq Ball_def Bex_def image_iff mem_ball
by (metis dist_commute)
qed

```

Define setwise continuity in terms of limits within the set.
lemma continuous_on_iff:
continuous_on s \(f \longleftrightarrow\)
\(\left(\forall x \in s . \forall e>0 . \exists d>0 . \forall x^{\prime} \in s\right.\). dist \(\left.x^{\prime} x<d \longrightarrow \operatorname{dist}\left(f x^{\prime}\right)(f x)<e\right)\)
unfolding continuous_on_def Lim_within
by (metis dist_pos_lt dist_self)
lemma continuous_within_E:
assumes continuous (at \(x\) within s) \(f e>0\)
obtains \(d\) where \(d>0 \bigwedge x^{\prime} . \llbracket x^{\prime} \in s ;\) dist \(x^{\prime} x \leq d \rrbracket \Longrightarrow \operatorname{dist}\left(f x^{\prime}\right)(f x)<e\)
using assms apply (simp add: continuous_within_eps_delta)
apply (drule spec \([o f-e]\), clarify)
apply (rule_tac \(d=d / 2\) in that, auto)
done
lemma continuous_onI [intro?]:
assumes \(\bigwedge x e . \llbracket e>0 ; x \in s \rrbracket \Longrightarrow \exists d>0 . \forall x^{\prime} \in s\). dist \(x^{\prime} x<d \longrightarrow \operatorname{dist}\left(f x^{\prime}\right)\)
\((f x) \leq e\)
shows continuous_on sf
apply (simp add: continuous_on_iff, clarify)
apply (rule ex_forward [OF assms [OF half_gt_zero]], auto)
done
Some simple consequential lemmas.
```

lemma continuous_onE:
assumes continuous_on s f x\ins e>0
obtains d where d>0 \x'. \llbracketx'\ins; dist \mp@subsup{x}{}{\prime}x\leqd\rrbracket\Longrightarrowdist (fx') (fx)<e
using assms
apply (simp add: continuous_on_iff)
apply (elim ballE allE)
apply (auto intro: that [where d=d/2 for d])
done

```

The usual transformation theorems.
lemma continuous_transform_within:
fixes \(f g\) :: ' \(a:\) :metric_space \(\Rightarrow\) ' \(b::\) topological_space
assumes continuous (at \(x\) within s) \(f\)
and \(0<d\)
and \(x \in s\)
and \(\bigwedge x^{\prime} . \llbracket x^{\prime} \in s ;\) dist \(x^{\prime} x<d \rrbracket \Longrightarrow f x^{\prime}=g x^{\prime}\)
shows continuous (at \(x\) within \(s\) ) \(g\)
```

using assms
unfolding continuous_within
by (force intro: Lim_transform_within)

```

\subsection*{3.2.9 Closure and Limit Characterization}
```

lemma closure_approachable:
fixes S :: 'a::metric_space set
shows }x\in\mathrm{ closure S }\longleftrightarrow(\foralle>0.\existsy\inS.dist y x<e
apply (auto simp: closure_def islimpt_approachable)
apply (metis dist_self)
done
lemma closure_approachable_le:
fixes S :: 'a::metric_space set
shows }x\in\mathrm{ closure }S\longleftrightarrow(\foralle>0.\existsy\inS. dist y x \leqe
unfolding closure_approachable
using dense by force

```
lemma closure_approachableD:
    assumes \(x \in\) closure \(S\) e>0
    shows \(\exists y \in S\). dist \(x y<e\)
    using assms unfolding closure_approachable by (auto simp: dist_commute)
lemma closed_approachable:
    fixes \(S\) :: 'a::metric_space set
    shows closed \(S \Longrightarrow(\forall e>0 . \exists y \in S\). dist \(y x<e) \longleftrightarrow x \in S\)
    by (metis closure_closed closure_approachable)
lemma closure_contains_Inf:
    fixes \(S\) :: real set
    assumes \(S \neq\{ \}\) bdd_below \(S\)
    shows Inf \(S \in\) closure \(S\)
proof -
    have \(*: \forall x \in S\). Inf \(S \leq x\)
        using cInf_lower[of _ \(S\) ] assms by metis
    \{
        fix \(e\) :: real
        assume \(e>0\)
        then have Inf \(S<\operatorname{Inf} S+e\) by \(\operatorname{simp}\)
        with assms obtain \(x\) where \(x \in S x<\operatorname{Inf} S+e\)
            by (subst (asm) cInf_less_iff) auto
        with \(*\) have \(\exists x \in S\). dist \(x(\operatorname{Inf} S)<e\)
            by (intro bexI[of - x]) (auto simp: dist_real_def)
    \}
    then show ?thesis unfolding closure_approachable by auto
qed
lemma closure_contains_Sup:
```

 fixes \(S\) :: real set
 assumes \(S \neq\{ \}\) bdd_above \(S\)
 shows Sup \(S \in\) closure \(S\)
 proof -
have $*: \forall x \in S . x \leq S u p S$
using cSup_upper [of _ S] assms by metis
\{
fix e :: real
assume $e>0$
then have Sup $S-e<\operatorname{Sup} S$ by simp
with assms obtain x where $x \in S$ Sup $S-e<x$
by (subst (asm) less_cSup_iff) auto
with $*$ have $\exists x \in S$. dist x (Sup S) $<e$
by (intro bexI[of _ x]) (auto simp: dist_real_def)
\}
then show ?thesis unfolding closure_approachable by auto
qed
lemma not_trivial_limit_within_ball:
\neg trivial_limit $($ at x within $S) \longleftrightarrow(\forall e>0 . S \cap$ ball $x e-\{x\} \neq\{ \})$
(is ?lhs \longleftrightarrow ?rhs)
proof
show? ?hs if ?lhs
proof -
\{
fix e :: real
assume $e>0$
then obtain y where $y \in S-\{x\}$ and dist $y x<e$
using〈?lhs〉not_trivial_limit_within[of x S] closure_approachable[of x S -
$\{x\}]$
by auto
then have $y \in S \cap$ ball $x e-\{x\}$
unfolding ball_def by (simp add: dist_commute)
then have $S \cap$ ball $x e-\{x\} \neq\{ \}$ by blast
\}
then show ?thesis by auto
qed
show ?lhs if ?rhs
proof -
\{
fix e :: real
assume $e>0$
then obtain y where $y \in S \cap$ ball $x e-\{x\}$
using 〈?rhs〉 by blast
then have $y \in S-\{x\}$ and dist $y x<e$
unfolding ball_def by (simp_all add: dist_commute)
then have $\exists y \in S-\{x\}$. dist $y x<e$
by auto
\}

```
```

 then show ?thesis
 using not_trivial_limit_within[of x S] closure_approachable[of x S - {x}]
 by auto
 qed
 qed

```

\subsection*{3.2.10 Boundedness}
definition (in metric_space) bounded \(::\) 'a set \(\Rightarrow\) bool
where bounded \(S \longleftrightarrow(\exists x e . \forall y \in S\). dist \(x y \leq e)\)
lemma bounded_subset_cball: bounded \(S \longleftrightarrow(\exists e x . S \subseteq\) cball \(x e \wedge 0 \leq e)\)
unfolding bounded_def subset_eq by auto (meson order_trans zero_le_dist)
lemma bounded_any_center: bounded \(S \longleftrightarrow(\exists e . \forall y \in S\). dist a \(y \leq e)\)
unfolding bounded_def
by auto (metis add.commute add_le_cancel_right dist_commute dist_triangle_le)
lemma bounded_iff: bounded \(S \longleftrightarrow(\exists a . \forall x \in S\). norm \(x \leq a)\)
unfolding bounded_any_center [where \(a=0\) ]
by (simp add: dist_norm)
lemma bdd_above_norm: bdd_above \((\) norm ' \(X) \longleftrightarrow\) bounded \(X\)
by (simp add: bounded_iff bdd_above_def)
lemma bounded_norm_comp: bounded \(((\lambda x\). norm \((f x))\) ' \(S)=\) bounded \((f\) ' \(S)\)
by (simp add: bounded_iff)
lemma boundedI:
assumes \(\bigwedge x . x \in S \Longrightarrow\) norm \(x \leq B\)
shows bounded \(S\)
using assms bounded_iff by blast
lemma bounded_empty [simp]: bounded \{\}
by (simp add: bounded_def)
lemma bounded_subset: bounded \(T \Longrightarrow S \subseteq T \Longrightarrow\) bounded \(S\)
by (metis bounded_def subset_eq)
lemma bounded_interior[intro]: bounded \(S \Longrightarrow\) bounded(interior \(S\) )
by (metis bounded_subset interior_subset)
lemma bounded_closure[intro]:
assumes bounded \(S\)
shows bounded (closure \(S\) )
proof -
from assms obtain \(x\) and \(a\) where \(a\) : \(\forall y \in S\). dist \(x y \leq a\) unfolding bounded_def by auto
\{
```

 fix y
 assume y \in closure S
 then obtain f}\mathrm{ where f:}\foralln.fn\inS(f\longrightarrowy) sequentiall
 unfolding closure_sequential by auto
 have }\foralln.fn\inS\longrightarrow\operatorname{dist}x(fn)\leqa\mathrm{ using a by simp
 then have eventually (}\lambdan\mathrm{ . dist }x(fn)\leqa) sequentially
 by (simp add: f(1))
 then have dist x y \leqa
 using Lim_dist_ubound f(2) trivial_limit_sequentially by blast
 }
 then show ?thesis
 unfolding bounded_def by auto
 qed
lemma bounded_closure_image: bounded (f`closure S)\Longrightarrow bounded (f'S)
by (simp add: bounded_subset closure_subset image_mono)
lemma bounded_cball[simp,intro]: bounded (cball x e)
unfolding bounded_def using mem_cball by blast
lemma bounded_ball[simp,intro]: bounded (ball x e)
by (metis ball_subset_cball bounded_cball bounded_subset)
lemma bounded_Un[simp]: bounded (S\cupT) \longleftrightarrow bounded S ^ bounded T
by (auto simp: bounded_def) (metis Un_iff bounded_any_center le_max_iff_disj)
lemma bounded_Union[intro]: finite F\Longrightarrow\forallS\inF.bounded S\Longrightarrowbounded (UF)
by (induct rule: finite_induct[of F]) auto
lemma bounded_UN [intro]: finite }A\Longrightarrow\forallx\inA.bounded (B x) \Longrightarrow bounded
(\bigcupx\inA.B x)
by auto
lemma bounded_insert [simp]: bounded (insert x S) \longleftrightarrow bounded S
proof -
have }\forally\in{x}. dist x y\leq
by simp
then have bounded {x}
unfolding bounded_def by fast
then show ?thesis
by (metis insert_is_Un bounded_Un)
qed
lemma bounded_subset_ballI: S\subseteq ball x r \Longrightarrow bounded S
by (meson bounded_ball bounded_subset)
lemma bounded_subset_ballD:
assumes bounded S shows \existsr.0<r\wedgeS\subseteqball x r
proof -

```
```

 obtain e::real and y where S\subseteqcball y e 0\leqe
 using assms by (auto simp: bounded_subset_cball)
 then show ?thesis
 by (intro exI[where x=dist x y +e+1]) metric
 qed
lemma finite_imp_bounded [intro]: finite S \Longrightarrow bounded S
by (induct set: finite) simp_all
lemma bounded_Int[intro]: bounded S \vee bounded T\Longrightarrow bounded (S\capT)
by (metis Int_lower1 Int_lower2 bounded_subset)
lemma bounded_diff[intro]: bounded S\Longrightarrow bounded (S - T)
by (metis Diff_subset bounded_subset)
lemma bounded_dist_comp:
assumes bounded (f'S) bounded (g'S)
shows bounded ((\lambdax. dist (fx) (gx))'S)
proof -
from assms obtain M1 M2 where *: dist (}fx\mathrm{ () undefined }\leqM1\mathrm{ dist undefined
(gx)\leqM2 if }x\inS\mathrm{ for }
by (auto simp: bounded_any_center[of _ undefined] dist_commute)
have dist (fx) (gx)\leqM1 +M2 if }x\inS\mathrm{ for }
using *[OF that]
by metric
then show ?thesis
by (auto intro!: boundedI)
qed
lemma bounded_Times:
assumes bounded s bounded t
shows bounded (s\timest)
proof -
obtain x y a b where }\forallz\ins.dist xz\leqa\forallz\int. dist y z\leq
using assms [unfolded bounded_def] by auto
then have }\forallz\ins\timest.dist (x,y)z\leq\operatorname{sqrt (a }\mp@subsup{a}{}{2}+\mp@subsup{b}{}{2}
by (auto simp: dist_Pair_Pair real_sqrt_le_mono add_mono power_mono)
then show ?thesis unfolding bounded_any_center [where a=(x,y)] by auto
qed

```

\subsection*{3.2.11 Compactness}
lemma compact_imp_bounded:
assumes compact \(U\)
shows bounded \(U\)
proof -
have compact \(U \forall x \in U\). open (ball \(x\) 1) \(U \subseteq(\bigcup x \in U\). ball \(x\) 1) using assms by auto
then obtain \(D\) where \(D: D \subseteq U\) finite \(D U \subseteq(\bigcup x \in D\). ball \(x\) 1)
```

 by (metis compactE_image)
 from <finite D> have bounded (}\bigcupx\inD.ball x 1)
 by (simp add: bounded_UN)
 then show bounded U using <U\subseteq(Ux\inD. ball x 1)>
 by (rule bounded_subset)
 qed
lemma closure_Int_ball_not_empty:
assumes S\subseteq closure T x G Sr>0
shows T\cap ball x r}\not={
using assms centre_in_ball closure_iff_nhds_not_empty by blast
lemma compact_sup_maxdistance:
fixes S :: 'a::metric_space set
assumes compact }
and S\not={}
shows }\existsx\inS.\existsy\inS.\forallu\inS.\forallv\inS. dist uv\leqdist x y
proof -
have compact (S\timesS)
using <compact S> by (intro compact_Times)
moreover have S }\timesS\not={
using \S \not={}` by auto
moreover have continuous_on (S\timesS) (\lambdax. dist (fst x) (snd x))
by (intro continuous_at_imp_continuous_on ballI continuous_intros)
ultimately show ?thesis
using continuous_attains_sup[of S > S \lambdax. dist (fst x) (snd x)] by auto
qed

```

\section*{Totally bounded}
lemma cauchy_def: Cauchy \(S \longleftrightarrow(\forall e>0 . \exists N . \forall m n . m \geq N \wedge n \geq N \longrightarrow\) dist \((S m)(S n)<e)\) unfolding Cauchy_def by metis
proposition seq_compact_imp_totally_bounded:
assumes seq_compact \(S\)
shows \(\forall e>0 . \exists k\). finite \(k \wedge k \subseteq S \wedge S \subseteq(\bigcup x \in k\). ball \(x e)\)
proof -
\{ fix \(e:\) :real assume \(e>0\) assume \(*\) : \(\wedge k\). finite \(k \Longrightarrow k \subseteq S \Longrightarrow \neg S \subseteq\) ( \(\bigcup x \in k\). ball \(x e)\)
let ? \(Q=\lambda x n r . r \in S \wedge(\forall m<(n:: n a t) . \neg(\operatorname{dist}(x m) r<e))\)
have \(\exists x\). \(\forall n::\) nat. ? \(Q x n(x n)\)
proof (rule dependent_wellorder_choice)
fix \(n x\) assume \(\bigwedge y . y<n \Longrightarrow ? Q x y(x y)\)
then have \(\neg S \subseteq(\bigcup x \in x\) ‘ \(\{0 . .<n\}\). ball \(x e)\)
using \(*[\) of \(x\) ' \(\{0 . .<n\}]\) by (auto simp: subset_eq)
then obtain \(z\) where \(z: z \in S z \notin(\bigcup x \in x\) ' \(\{0 . .<n\}\). ball \(x e)\)
unfolding subset_eq by auto
show \(\exists r\). ? \(Q x n r\)
```

 using z by auto
 qed simp
 then obtain x where \foralln::nat. x n }\inS\mathrm{ and }x:\nm.m<n\Longrightarrow\neg(dist (
 m) (x n)<e)
by blast
then obtain lr where l
sequentially
using assms by (metis seq_compact_def)
then have Cauchy (}x\circr\mathrm{)
using LIMSEQ_imp_Cauchy by auto
then obtain N::nat where \mn.N\leqm\LongrightarrowN\leqn\Longrightarrowdist((x\circr)m)
((x\circr)n)<e
unfolding cauchy_def using <e> 0` by blast
then have False
using x[ofrNr(N+1)]r by (auto simp: strict_mono_def) }
then show ?thesis
by metis
qed

```

\section*{Heine-Borel theorem}
proposition seq_compact_imp_Heine_Borel:
fixes \(S\) :: ' \(a\) :: metric_space set
assumes seq_compact \(S\)
shows compact \(S\)
proof -
from seq_compact_imp_totally_bounded \([\) OF 〈seq_compact \(S\rangle]\)
obtain \(f\) where \(f: \forall e>0\). finite \((f e) \wedge f e \subseteq S \wedge S \subseteq(\bigcup x \in f e\). ball \(x e)\) unfolding choice_iff'...
define \(K\) where \(K=(\lambda(x, r)\). ball \(x r)\) ' \(((\bigcup e \in \mathbb{Q} \cap\{0<..\} . f e) \times \mathbb{Q})\)
have countably_compact \(S\)
using «seq_compact \(S\) 〉 by (rule seq_compact_imp_countably_compact)
then show compact \(S\)
proof (rule countably_compact_imp_compact)
show countable \(K\)
unfolding \(K_{-}\)def using \(f\)
by (auto intro: countable_finite countable_subset countable_rat intro!: countable_image countable_SIGMA countable_UN)
show \(\forall b \in K\). open \(b\) by (auto simp: \(K_{-}\)def)
next
fix \(T x\)
assume \(T\) : open \(T x \in T\) and \(x: x \in S\)
from open \(E[O F T]\) obtain \(e\) where \(0<e\) ball \(x e \subseteq T\) by auto
then have \(0<e / 2\) ball \(x(e / 2) \subseteq T\)
by auto
from Rats_dense_in_real[ \([\) FF \(\langle 0<e /\) 2 \(\rangle\) ] obtain \(r\) where \(r \in \mathbb{Q} 0<r r<e /\) 2 by auto
from \(f[\) rule_format, of \(r]\langle 0<r\rangle\langle x \in S\rangle\) obtain \(k\) where \(k \in f r x \in\) ball \(k r\)
```

 by auto
 from \langler\in\mathbb{Q}\rangle\langle0<r\rangle\langlek\infr\rangle have ball kr\inK
 by (auto simp: K_def)
 then show \existsb\inK.x\inb\wedgeb\capS\subseteqT
 proof (rule bexI[rotated], safe)
 fix }
 assume y f ball kr
 with \langler<e/2\rangle\langlex\in ball kr\rangle have dist x y <e
 by (intro dist_triangle_half_r [of k_e]) (auto simp: dist_commute)
 with \langleball x e\subseteqT\rangle show y}\in
 by auto
 next
 show }x\in\mathrm{ ball kr by fact
 qed
 qed
 qed
proposition compact_eq_seq_compact_metric:
compact (S :: 'a::metric_space set) \longleftrightarrow seq_compact S
using compact_imp_seq_compact seq_compact_imp_Heine_Borel by blast

```
proposition compact_def: - this is the definition of compactness in HOL Light
    compact ( \(S\) :: 'a::metric_space set) \(\longleftrightarrow\)
        \((\forall f .(\forall n . f n \in S) \longrightarrow(\exists l \in S . \exists r:: n a t \Rightarrow\) nat. strict_mono \(r \wedge(f \circ r) \longrightarrow\)
l))
    unfolding compact_eq_seq_compact_metric seq_compact_def by auto

\section*{Complete the chain of compactness variants}
proposition compact_eq_Bolzano_Weierstrass:
fixes \(S\) :: 'a::metric_space set
shows compact \(S \longleftrightarrow(\forall T\). infinite \(T \wedge T \subseteq S \longrightarrow(\exists x \in S . x\) islimpt \(T))\)
using Bolzano_Weierstrass_imp_seq_compact Heine_Borel_imp_Bolzano_Weierstrass
compact_eq_seq_compact_metric
by blast
proposition Bolzano_Weierstrass_imp_bounded:
\((\bigwedge T\). \(\llbracket\) infinite \(T ; T \subseteq S \rrbracket \Longrightarrow(\exists x \in S . x\) islimpt \(T)) \Longrightarrow\) bounded \(S\)
using compact_imp_bounded unfolding compact_eq_Bolzano_Weierstrass by metis

\subsection*{3.2.12 Banach fixed point theorem}
theorem banach_fix:- TODO: rename to Banach_fix
assumes \(s\) : complete \(s s \neq\{ \}\)
and \(c: 0 \leq c c<1\)
and \(f: f\) ' \(s \subseteq s\)
and lipschitz: \(\forall x \in s . \forall y \in s\). dist \((f x)(f y) \leq c *\) dist \(x y\)
shows \(\exists!x \in s . f x=x\)
proof -
from \(c\) have \(1-c>0\) by simp
```

from $s(2)$ obtain $z 0$ where $z 0: z 0 \in s$ by blast
define z where $z n=\left(f^{\wedge}{ }^{\wedge} n\right) z 0$ for n
with $f z 0$ have $z_{-} i n_{-} s: z n \in s$ for $n::$ nat
by (induct n) auto
define d where $d=\operatorname{dist}\left(\begin{array}{ll}z & 0\end{array}\right)\left(\begin{array}{ll}z & 1\end{array}\right)$
have $f z n$: $f(z n)=z($ Suc $n)$ for n
by (simp add: z_def)
have $c f_{-} z$: dist $(z n)(z($ Suc $n)) \leq\left(c^{\wedge} n\right) * d$ for $n::$ nat
proof (induct n)
case 0
then show? case
by (simp add: d_def)
next
case (Suc m)
with $\langle 0 \leq c\rangle$ have $c * \operatorname{dist}(z m)(z($ Suc $m)) \leq c^{\wedge}$ Suc $m * d$
using mult_left_mono[of dist $\left.(z m)(z(S u c m)) c^{\wedge} m * d c\right]$ by simp
then show ?case
using lipschitz[THEN bspec[where $x=z$ m], OF $z_{-} i n_{-} s$, THEN bspec[where
$x=z$ (Suc m)], OF z_{-}in_s]
by (simp add: fzn mult_le_cancel_left)
qed
have $c f_{-} z 2:(1-c) * \operatorname{dist}(z m)(z(m+n)) \leq\left(c^{\wedge} m\right) * d *\left(1-c{ }^{\wedge} n\right)$ for
$n m$:: nat
proof (induct n)
case 0
show? case by simp
next
case (Suc k)
from c have $(1-c) * \operatorname{dist}(z m)(z(m+$ Suc $k)) \leq$
$(1-c) *(\operatorname{dist}(z m)(z(m+k))+\operatorname{dist}(z(m+k))(z(\operatorname{Suc}(m+k))))$
by (simp add: dist_triangle)
also from $c c f_{-} z[$ of $m+k]$ have $\ldots \leq(1-c) *(\operatorname{dist}(z m)(z(m+k))+$
$\left.c^{\wedge}(m+k) * d\right)$
by simp
also from Suc have $\ldots \leq c^{\wedge} m * d *\left(1-c^{\wedge} k\right)+(1-c) * c^{\wedge}(m+k)$

* d
by (simp add: field_simps)
also have $\ldots=\left(c^{\wedge} m\right) *\left(d *\left(1-c^{\wedge} k\right)+(1-c) * c^{\wedge} k * d\right)$
by (simp add: power_add field_simps)
also from c have $\ldots \leq\left(c^{\wedge} m\right) * d *\left(1-c^{\wedge}\right.$ Suc $\left.k\right)$
by (simp add: field_simps)
finally show? case by simp
qed
have $\exists N . \forall m n . N \leq m \wedge N \leq n \longrightarrow \operatorname{dist}(z m)(z n)<e$ if $e>0$ for e
proof (cases $d=0$)

```
```

 case True
 from \(\langle 1-c>0\rangle\) have \((1-c) * x \leq 0 \longleftrightarrow x \leq 0\) for \(x\)
 by (simp add: mult_le_0_iff)
 with \(c\) cf_z2[of 0] True have \(z n=z 0\) for \(n\)
 by (simp add: z_def)
 with \(\langle e>0\rangle\) show ?thesis by simp
 next
case False
with zero_le_dist[of $z 00 z 1]$ have $d>0$
by (metis d_def less_le)
with $\langle 1-c>0\rangle\langle e>0\rangle$ have $0<e *(1-c) / d$
by simp
with c obtain N where $N: c^{\wedge} N<e *(1-c) / d$
using real_arch_pow_inv[of $e *(1-c) / d c]$ by auto
have $*$: dist $(z m)(z n)<e$ if $m>n$ and $a s: m \geq N n \geq N$ for $m n$:: nat
proof -
from $c\langle n \geq N\rangle$ have $*: c^{\wedge} n \leq c^{\wedge} N$
using power_decreasing $[$ OF $\langle n \geq N\rangle$, of $c]$ by simp
from $c\langle m>n\rangle$ have $1-c^{\wedge}(m-n)>0$
using power_strict_mono[of c $1 m-n]$ by simp
with $\langle d>0\rangle\langle 0<1-c\rangle$ have $* *: d *\left(1-c{ }^{\wedge}(m-n)\right) /(1-c)>0$
by simp
from $c f_{-} z 2[$ of $n m-n]\langle m>n\rangle$
have dist $(z m)(z n) \leq c^{\wedge} n * d *\left(1-c^{\wedge}(m-n)\right) /(1-c)$
by (simp add: pos_le_divide_eq[OF $\langle 1-c>0\rangle]$ mult.commute dist_commute)
also have $\ldots \leq c^{\wedge} N * d *\left(1-c^{\wedge}(m-n)\right) /(1-c)$
using mult_right_mono[OF * order_less_imp_le[OF **]]
by (simp add: mult.assoc)
also have $\ldots<(e *(1-c) / d) * d *\left(1-c^{\wedge}(m-n)\right) /(1-c)$
using mult_strict_right_mono[OF N**] by (auto simp: mult.assoc)
also from $c\langle d>0\rangle\langle 1-c>0\rangle$ have $\ldots=e *\left(1-c{ }^{\wedge}(m-n)\right)$
by simp
also from $c\left\langle 1-c^{\wedge}(m-n)>0\right\rangle\langle e>0\rangle$ have $\ldots \leq e$
using mult_right_le_one_le[of e $\left.1-c^{\wedge}(m-n)\right]$ by auto
finally show? ?hesis by simp
qed
have dist $(z n)(z m)<e$ if $N \leq m N \leq n$ for $m n$:: nat
proof (cases $n=m$)
case True
with $\langle e>0\rangle$ show ?thesis by simp
next
case False
with $*[$ of $n m] *[o f m n]$ and that show ?thesis
by (auto simp: dist_commute nat_neq_iff)
qed
then show ?thesis by auto
qed
then have Cauchy z
by (simp add: cauchy_def)

```
```

 then obtain x where }x\ins\mathrm{ and }x:(z\longrightarrowx)\mathrm{ sequentially
 using s(1)[unfolded compact_def complete_def,THEN spec[where x=z]] and
 z_in_s by auto
define e where e= dist (fx)x
have e=0
proof (rule ccontr)
assume e\not=0
then have e>0
unfolding e_def using zero_le_dist[of f x x]
by (metis dist_eq_0_iff dist_nz e_def)
then obtain N where N:\foralln\geqN. dist (zn)x<e/2
using x[unfolded lim_sequentially,THEN spec[where x=e/2]] by auto
then have }\mp@subsup{N}{}{\prime}:\operatorname{dist}(zN)x<e/2 by aut
have *: c * dist (zN) x \leq dist (zN) x
unfolding mult_le_cancel_right2
using zero_le_dist[of z Nx] and c
by (metis dist_eq_0_iff dist_nz order_less_asym less_le)
have dist (f (zN)) (fx)\leqc* dist (zN)x
using lipschitz[THEN bspec[where x=z N],THEN bspec[where x=x]]
using z_in_s[of N] \langlex\ins\rangle
using c
by auto
also have ...<e/2
using N' and c using * by auto
finally show False
unfolding fzn
using N[THEN spec[where x=Suc N]] and dist_triangle_half_r[of z (Suc N)
fxex]
unfolding e_def
by auto
qed
then have f x = x by (auto simp: e_def)
moreover have y=x if fy=y y\ins for y
proof -
from \langlex\ins\rangle\langlef x=x\rangle that have dist x y sc* dist x y
using lipschitz[THEN bspec[where x=x], THEN bspec[where x=y]] by simp
with c and zero_le_dist[of x y] have dist x y = 0
by (simp add: mult_le_cancel_right1)
then show ?thesis by simp
qed
ultimately show ?thesis
using \langlex\ins\rangle by blast
qed

```

\subsection*{3.2.13 Edelstein fixed point theorem}
theorem Edelstein_fix:
fixes \(S\) :: 'a::metric_space set
assumes \(S\) : compact \(S S \neq\{ \}\)
and \(g s:(g ' S) \subseteq S\)
and dist: \(\forall x \in S . \forall y \in S . x \neq y \longrightarrow \operatorname{dist}(g x)(g y)<d i s t x y\)
shows \(\exists!x \in S . g x=x\)
proof -
let ? \(D=(\lambda x .(x, x))\) ' \(S\)
have \(D\) : compact ? \(D ? D \neq\{ \}\)
by (rule compact_continuous_image)
(auto intro!: S continuous_Pair continuous_ident simp: continuous_on_eq_continuous_within)
have \(\bigwedge x y\) e. \(x \in S \Longrightarrow y \in S \Longrightarrow 0<e \Longrightarrow\) dist \(y x<e \Longrightarrow d i s t(g y)(g x)\)
\(<e\)
using dist by fastforce
then have continuous_on \(S g\) by (auto simp: continuous_on_iff)
then have cont: continuous_on ? \(D(\lambda x\). dist \(((g \circ f s t) x)(s n d x))\)
unfolding continuous_on_eq_continuous_within
by (intro continuous_dist ballI continuous_within_compose)
(auto intro!: continuous_fst continuous_snd continuous_ident simp: image_image)
obtain \(a\) where \(a \in S\) and \(l e: \bigwedge x . x \in S \Longrightarrow \operatorname{dist}(g a) a \leq \operatorname{dist}(g x) x\) using continuous_attains_inf \([O F D\) cont \(]\) by auto
have \(g a=a\)
proof (rule ccontr)
assume \(g a \neq a\)
with \(\langle a \in S\rangle g s\) have \(\operatorname{dist}(g(g a))(g a)<\operatorname{dist}(g a) a\)
by (intro dist \([\) rule_format \(]\) ) auto
moreover have dist \((g a) a \leq \operatorname{dist}(g(g a))(g a)\)
using \(\langle a \in S\rangle g s\) by (intro le) auto
ultimately show False by auto
qed
moreover have \(\bigwedge x . x \in S \Longrightarrow g x=x \Longrightarrow x=a\) using dist \([\) THEN \(b \operatorname{spec}[\) where \(x=a]]\langle g a=a\rangle\) and \(\langle a \in S\rangle\) by auto
ultimately show \(\exists!x \in S . g x=x\)
using \(\langle a \in S\rangle\) by blast
qed

\subsection*{3.2.14 The diameter of a set}
definition diameter :: 'a::metric_space set \(\Rightarrow\) real where diameter \(S=(\) if \(S=\{ \}\) then 0 else \(S U P(x, y) \in S \times S\). dist \(x\) y \()\)
lemma diameter_empty \([\) simp \(]\) : diameter \(\}=0\) by (auto simp: diameter_def)
lemma diameter_singleton \([\) simp \(]\) : diameter \(\{x\}=0\)
by (auto simp: diameter_def)
```

lemma diameter_le:
assumes $S \neq\{ \} \vee 0 \leq d$
and no: $\bigwedge x y . \llbracket x \in S ; y \in S \rrbracket \Longrightarrow \operatorname{norm}(x-y) \leq d$
shows diameter $S \leq d$
using assms
by (auto simp: dist_norm diameter_def intro: cSUP_least)
lemma diameter_bounded_bound:
fixes S :: ' a :: metric_space set
assumes S : bounded $S x \in S y \in S$
shows dist $x y \leq$ diameter S
proof -
from S obtain $z d$ where $z: \bigwedge x . x \in S \Longrightarrow$ dist $z x \leq d$
unfolding bounded_def by auto
have bdd_above (case_prod dist ' $(S \times S)$)
proof (intro bdd_aboveI, safe)
fix $a b$
assume $a \in S b \in S$
with $z[$ of $a] z[o f b]$ dist_triangle $[o f a b l]$
show dist $a b \leq 2 * d$
by (simp add: dist_commute)
qed
moreover have $(x, y) \in S \times S$ using S by auto
ultimately have dist $x y \leq(S U P(x, y) \in S \times S$. dist $x y)$
by (rule cSUP_upper2) simp
with $\langle x \in S$ 〉 show ?thesis
by (auto simp: diameter_def)
qed
lemma diameter_lower_bounded:
fixes S :: ' a :: metric_space set
assumes S : bounded S
and $d: 0<d d<$ diameter S
shows $\exists x \in S . \exists y \in S . d<$ dist $x y$
proof (rule ccontr)
assume contr: \neg ?thesis
moreover have $S \neq\{ \}$
using d by (auto simp: diameter_def)
ultimately have diameter $S \leq d$
by (auto simp: not_less diameter_def intro!: cSUP_least)
with $\langle d<$ diameter $S\rangle$ show False by auto
qed
lemma diameter_bounded:
assumes bounded S
shows $\forall x \in S . \forall y \in S$. dist $x y \leq$ diameter S
and $\forall d>0 . d<$ diameter $S \longrightarrow(\exists x \in S . \exists y \in S$. dist $x y>d)$
using diameter_bounded_bound [of S] diameter_lower_bounded[of S] assms
by auto

```
lemma bounded_two_points: bounded \(S \longleftrightarrow(\exists e . \forall x \in S . \forall y \in S\). dist \(x y \leq e)\) by (meson bounded_def diameter_bounded(1))
lemma diameter_compact_attained:
assumes compact \(S\)
and \(S \neq\{ \}\)
shows \(\exists x \in S . \exists y \in S\). dist \(x y=\) diameter \(S\)
proof -
have b: bounded \(S\) using assms(1)
by (rule compact_imp_bounded)
then obtain \(x y\) where xys: \(x \in S y \in S\) and \(x y: \forall u \in S . \forall v \in S\). dist \(u v \leq\) dist \(x y\)
using compact_sup_maxdistance \([O F\) assms \(]\) by auto
then have diameter \(S \leq\) dist \(x y\)
unfolding diameter_def
apply clarsimp apply (rule cSUP_least, fast+) done
then show ?thesis by (metis b diameter_bounded_bound order_antisym xys)
qed
lemma diameter_ge_0:
assumes bounded \(S\) shows \(0 \leq\) diameter \(S\)
by (metis all_not_in_conv assms diameter_bounded_bound diameter_empty dist_self
order_refl)
lemma diameter_subset:
assumes \(S \subseteq T\) bounded \(T\)
shows diameter \(S \leq\) diameter \(T\)
proof (cases \(S=\{ \} \vee T=\{ \}\) )
case True
with assms show ?thesis by (force simp: diameter_ge_0)
next
case False
then have bdd_above \(((\lambda x\). case \(x\) of \((x, x a) \Rightarrow\) dist \(x x a)\) ' \((T \times T))\)
using 〈bounded \(T\) 〉diameter_bounded_bound by (force simp: bdd_above_def)
with False \(\langle S \subseteq T\rangle\) show ?thesis apply (simp add: diameter_def) apply (rule cSUP_subset_mono, auto) done
qed
lemma diameter_closure:
assumes bounded \(S\)
shows diameter \((\) closure \(S)=\) diameter \(S\)
proof (rule order_antisym)
```

 have False if diameter \(S<\) diameter (closure \(S\))
 proof -
 define \(d\) where \(d=\operatorname{diameter}(\) closure \(S)-\operatorname{diameter}(S)\)
 have \(d>0\)
 using that by (simp add: d_def)
 then have diameter \((\) closure \((S))-d / 2<\operatorname{diameter}(\operatorname{closure}(S))\)
 by \(\operatorname{simp}\)
 have \(d d\) : diameter \((\) closure \(S)-d / 2=(\operatorname{diameter}(\operatorname{closure}(S))+\operatorname{diameter}(S))\)
 12
by (simp add: d_def field_split_simps)
have bocl: bounded (closure S)
using assms by blast
moreover have $0 \leq$ diameter S
using assms diameter_ge_0 by blast
ultimately obtain $x y$ where $x \in$ closure $S y \in$ closure S and $x y$: diame-
$\operatorname{ter}(\operatorname{closure}(S))-d / 2<\operatorname{dist} x y$
using diameter_bounded(2) [OF bocl, rule_format, of diameter(closure(S)) -
$d / 2]\langle d>0\rangle d _d e f$ by auto
then obtain $x^{\prime} y^{\prime}$ where $x^{\prime} y^{\prime}: x^{\prime} \in S$ dist $x^{\prime} x<d / 4 y^{\prime} \in S$ dist $y^{\prime} y<d / 4$
using closure_approachable
by (metis $\langle 0<d\rangle$ zero_less_divide_iff zero_less_numeral)
then have dist $x^{\prime} y^{\prime} \leq$ diameter S
using assms diameter_bounded_bound by blast
with $x^{\prime} y^{\prime}$ have dist $x y \leq d / 4+$ diameter $S+d / 4$
by (meson add_mono_thms_linordered_semiring(1) dist_triangle dist_triangle3
less_eq_real_def order_trans)
then show ?thesis
using $x y$ d_def by linarith
qed
then show diameter (closure S) \leq diameter S
by fastforce
next
show diameter $S \leq$ diameter (closure S)
by (simp add: assms bounded_closure closure_subset diameter_subset)
qed
proposition Lebesgue_number_lemma:
assumes compact $S \mathcal{C} \neq\{ \} S \subseteq \bigcup \mathcal{C}$ and ope: $\bigwedge B . B \in \mathcal{C} \Longrightarrow$ open B
obtains δ where $0<\delta \bigwedge T . \llbracket T \subseteq S ;$ diameter $T<\delta \rrbracket \Longrightarrow \exists B \in \mathcal{C} . T \subseteq B$
proof (cases $S=\{ \}$)
case True
then show ?thesis
by (metis $\langle\mathcal{C} \neq\{ \}\rangle$ zero_less_one empty_subsetI equals0I subset_trans that)
next
case False
\{ fix x assume $x \in S$
then obtain C where $C: x \in C C \in \mathcal{C}$
using $\langle S \subseteq \bigcup \mathcal{C}\rangle$ by blast
then obtain r where $r: r>0$ ball $x(2 * r) \subseteq C$

```
by（metis mult．commute mult＿2＿right not＿le ope openE field＿sum＿of＿halves zero＿le＿numeral zero＿less＿mult＿iff）
then have \(\exists r C . r>0 \wedge\) ball \(x(2 * r) \subseteq C \wedge C \in \mathcal{C}\)
using \(C\) by blast
\}
then obtain \(r\) where \(r: \bigwedge x . x \in S \Longrightarrow r x>0 \wedge(\exists C \in \mathcal{C}\) ．ball \(x(2 * r x) \subseteq\) C）
by metis
then have \(S \subseteq(\bigcup x \in S\) ．ball \(x(r x))\)
by auto
then obtain \(\mathcal{T}\) where finite \(\mathcal{T} S \subseteq \bigcup \mathcal{T}\) and \(\mathcal{T}: \mathcal{T} \subseteq(\lambda x\) ．ball \(x(r x))\)＇\(S\)
by（rule compactE［OF 〈compact \(S\rangle]\) ）auto
then obtain \(S 0\) where \(S 0 \subseteq S\) finite \(S 0\) and \(S 0: \mathcal{T}=(\lambda x\) ．ball \(x(r x))\)＇S0 by（meson finite＿subset＿image）
then have \(S 0 \neq\{ \}\)
using False \(\langle S \subseteq \bigcup \mathcal{T}\rangle\) by auto
define \(\delta\) where \(\delta=\operatorname{Inf}\left(r^{\prime} S 0\right)\)
have \(\delta>0\)
using 〈finite \(S 0\rangle\langle S 0 \subseteq S\rangle\langle S 0 \neq\{ \}\rangle r\) by（auto simp：\(\delta_{-} d e f\) finite＿less＿Inf＿iff）
show ？thesis
proof
show \(0<\delta\)
by（ simp add：\(\langle 0<\delta\rangle\) ）
show \(\exists B \in \mathcal{C} . T \subseteq B\) if \(T \subseteq S\) and dia：diameter \(T<\delta\) for \(T\)
proof（cases \(T=\{ \}\) ）
case True
then show ？thesis
using 〈C \(\neq\{ \}\) 〉 by blast
next
case False
then obtain \(y\) where \(y \in T\) by blast
then have \(y \in S\)
using \(\langle T \subseteq S\rangle\) by auto
then obtain \(x\) where \(x \in S 0\) and \(x: y \in\) ball \(x(r x)\)
using \(\langle S \subseteq \bigcup \mathcal{T}\rangle S 0\) that by blast
have ball \(y \delta \subseteq\) ball \(y(r x)\)
by（metis \(\delta_{-} d e f\langle S O \neq\{ \}\rangle\langle\) finite \(S 0\rangle\langle x \in S 0\rangle\) empty＿is＿image finite＿imageI
finite＿less＿Inf＿iff imageI less＿irrefl not＿le subset＿ball）
also have \(\ldots \subseteq\) ball \(x(2 * r x)\)
using \(x\) by metric
finally obtain \(C\) where \(C \in \mathcal{C}\) ball \(y \delta \subseteq C\)
by（meson \(r\langle S 0 \subseteq S\rangle\langle x \in S 0\rangle\) dual＿order．trans subsetCE）
have bounded \(T\)
using 〈compact \(S\rangle\) bounded＿subset compact＿imp＿bounded \(\langle T \subseteq S\rangle\) by blast
then have \(T \subseteq\) ball \(y \delta\)
using \(\langle y \in T\rangle\) dia diameter＿bounded＿bound by fastforce
then show ？thesis
apply（rule＿tac \(x=C\) in bexI）
using 〈ball \(y \delta \subseteq C\rangle\langle C \in \mathcal{C}\rangle\) by auto
```

 qed
 qed
 qed

```

\section*{3．2．15 Metric spaces with the Heine－Borel property}

A metric space（or topological vector space）is said to have the Heine－Borel property if every closed and bounded subset is compact．
```

class heine_borel $=$ metric_space +
assumes bounded_imp_convergent_subsequence:
bounded $($ range $f) \Longrightarrow \exists l$ r. strict_mono $(r:: n a t \Rightarrow n a t) \wedge((f \circ r) \longrightarrow l)$
sequentially
proposition bounded_closed_imp_seq_compact:
fixes S ::'a::heine_borel set
assumes bounded S
and closed S
shows seq_compact S
proof (unfold seq_compact_def, clarify)
fix $f::$ nat $\Rightarrow{ }^{\prime} a$
assume $f: \forall n$. $f n \in S$
with 〈bounded S 〉 have bounded (range f)
by (auto intro: bounded_subset)
obtain $l r$ where $r:$ strict_mono $(r::$ nat $\Rightarrow n a t)$ and $l:((f \circ r) \longrightarrow l)$
sequentially
using bounded_imp_convergent_subsequence $[O F\langle$ bounded (range f) 〉] by auto
from f have $f r: \forall n$. $(f \circ r) n \in S$
by simp
have $l \in S$ using 〈closed S 〉 fr l
by (rule closed_sequentially)
show $\exists l \in S . \exists r$. strict_mono $r \wedge((f \circ r) \longrightarrow l)$ sequentially
using $\langle l \in S\rangle r l$ by blast
qed
lemma compact_eq_bounded_closed:
fixes S :: ' $a:$:heine_borel set
shows compact $S \longleftrightarrow$ bounded $S \wedge$ closed S
using bounded_closed_imp_seq_compact compact_eq_seq_compact_metric compact_imp_bounded
compact_imp_closed
by auto
lemma compact_Inter:
fixes \mathcal{F} :: ' a :: heine_borel set set
assumes com: $\bigwedge S . S \in \mathcal{F} \Longrightarrow$ compact S and $\mathcal{F} \neq\{ \}$
shows compact $(\bigcap \mathcal{F})$
using assms
by (meson Inf_lower all_not_in_conv bounded_subset closed_Inter compact_eq_bounded_closed)
lemma compact_closure [simp]:

```
fixes \(S\) :: 'a::heine_borel set
shows compact(closure \(S) \longleftrightarrow\) bounded \(S\)
by (meson bounded_closure bounded_subset closed_closure closure_subset compact_eq_bounded_closed)
```

instance real :: heine_borel
proof
fix $f::$ nat \Rightarrow real
assume f : bounded (range f)
obtain $r::$ nat \Rightarrow nat where r : strict_mono r monoseq $(f \circ r)$
unfolding comp_def by (metis seq_monosub)
then have Bseq ($f \circ r$)
unfolding Bseq_eq_bounded using f
by (metis BseqI' bounded_iff comp_apply rangeI)
with r show $\exists l r$. strict_mono $r \wedge(f \circ r) \longrightarrow l$
using Bseq_monoseq_convergent $[$ of $f \circ r]$ by (auto simp: convergent_def)
qed
lemma compact_lemma_general:
fixes $f::$ nat $\Rightarrow{ }^{\prime} a$
fixes $p r o j::{ }^{\prime} a \Rightarrow{ }^{\prime} b \Rightarrow^{\prime} c::$ heine_borel (infixl proj 60)
fixes unproj:: $\left(' b \Rightarrow{ }^{\prime} c\right) \Rightarrow^{\prime} a$
assumes finite_basis: finite basis
assumes bounded_proj: $\bigwedge k . k \in$ basis \Longrightarrow bounded $((\lambda x . x$ proj $k)$ 'range $f)$
assumes proj_unproj: \e $k . k \in$ basis $\Longrightarrow(u n p r o j e) p r o j k=e k$
assumes unproj_proj: $\bigwedge x$. unproj ($\lambda k . x$ proj k) $=x$
shows $\forall d \subseteq$ basis. $\exists l::^{\prime} a . \exists r:: n a t \Rightarrow$ nat.
strict_mono $r \wedge(\forall e>0$. eventually $(\lambda n . \forall i \in d . \operatorname{dist}(f(r n)$ proj $i)(l$ proj $i)$
$<e)$ sequentially)
proof safe
fix $d::$ ' b set
assume $d: d \subseteq$ basis
with finite_basis have finite d
by (blast intro: finite_subset)
from this d show $\exists l:::^{\prime} a . \exists r:: n a t \Rightarrow$ nat. strict_mono $r \wedge$
($\forall e>0$. eventually $(\lambda n . \forall i \in d . \operatorname{dist}(f(r n)$ proj $i)(l \operatorname{proj} i)<e)$ sequentially $)$
proof (induct d)
case empty
then show ?case
unfolding strict_mono_def by auto
next
case (insert $k d$)
have $k[$ intro $]: k \in$ basis
using insert by auto
have s^{\prime} : bounded $((\lambda x . x$ proj $k)$ 'range $f)$
using k
by (rule bounded_proj)
obtain $l 1::^{\prime} a$ and $r 1$ where $r 1$: strict_mono r1
and lr1: $\forall e>0$. eventually $(\lambda n . \forall i \in d . \operatorname{dist}(f(r 1 n)$ proj $i)(l 1$ proj $i)<$
e) sequentially

```
using insert(3) using insert(4) by auto
have \(f^{\prime}: \forall n . f(r 1 n)\) proj \(k \in(\lambda x . x\) proj \(k)\) 'range \(f\)
by \(\operatorname{simp}\)
have bounded (range ( \(\lambda i . f\) (r1 i) proj k))
by (metis (lifting) bounded_subset f' image_subsetI s')
then obtain 12 r2 where r2:strict_mono r2 and lr2:(( \(\lambda i . f\) (r1 (r2 i)) proj
\(k) \longrightarrow\) I2) sequentially
using bounded_imp_convergent_subsequence[of \(\lambda i . f(r 1 i)\) proj \(k]\)
by (auto simp: o_def)
define \(r\) where \(r=r 1 \circ r 2\)
have \(r\) :strict_mono \(r\)
using \(r 1\) and \(r 2\) unfolding \(r_{-}\)def o_def strict_mono_def by auto
moreover
define \(l\) where \(l=\) unproj \((\lambda i\). if \(i=k\) then l2 else l1 proj \(i)\)
\{
fix \(e\) ::real
assume \(e>0\)
from lr1 \(\langle e\rangle 0\rangle\) have \(N 1\) : eventually \((\lambda n . \forall i \in d\). dist \((f(r 1 n)\) proj \(i)(l 1\) proj \(i)<e\) ) sequentially by blast
from lr2 \(\langle e>0\rangle\) have N2:eventually \((\lambda n\). dist \((f(r 1(r 2 n))\) proj \(k) l 2<\)
e) sequentially
by (rule tendstoD)
from r2 N1 have \(N 1^{\prime}\) : eventually \((\lambda n . \forall i \in d\). dist \((f(r 1(r 2 n))\) proj i) (l1
proj \(i)<e)\) sequentially by (rule eventually_subseq)
have eventually \((\lambda n . \forall i \in(\) insert \(k d)\). dist \((f(r n)\) proj \(i)(l \operatorname{proj} i)<e)\)
sequentially using \(N 1^{\prime} N 2\)
by eventually_elim (insert insert.prems, auto simp: l_def r_def o_def proj_unproj) \}
ultimately show ?case by auto
qed
qed
lemma bounded_fst: bounded \(s \Longrightarrow\) bounded ( \(f s t\) ' \(s\) )
unfolding bounded_def
by (metis (erased, hide_lams) dist_fst_le image_iff order_trans)
lemma bounded_snd: bounded \(s \Longrightarrow\) bounded (snd's)
unfolding bounded_def
by (metis (no_types, hide_lams) dist_snd_le image_iff order.trans)
instance prod :: (heine_borel, heine_borel) heine_borel
proof
fix \(f::\) nat \(\Rightarrow{ }^{\prime} a \times{ }^{\prime} b\)
assume \(f\) : bounded (range f)
then have bounded (fst' range f)
by (rule bounded_fst)
```

 then have s1: bounded (range \((f s t \circ f)\))
 by (simp add: image_comp)
 obtain \(l 1 r 1\) where \(r 1\) : strict_mono \(r 1\) and \(l 1:(\lambda n\). \(f s t(f(r 1 n))) \longrightarrow l 1\)
 using bounded_imp_convergent_subsequence [OF s1] unfolding o_def by fast
 from f have 52 : bounded (range (snd $\circ f \circ r 1$))
by (auto simp: image_comp intro: bounded_snd bounded_subset)
obtain 12 r2 where r2: strict_mono r2 and l2: $((\lambda n$. snd $(f(r 1(r 2 n)))) \longrightarrow$
l2) sequentially
using bounded_imp_convergent_subsequence [OF s2]
unfolding o_def by fast
have $l 1^{\prime}:((\lambda n$. fst $(f(r 1(r 2 n)))) \longrightarrow l 1)$ sequentially
using LIMSEQ_subseq_LIMSEQ [OF l1 r2] unfolding o_def .
have $l:((f \circ(r 1 \circ r 2)) \longrightarrow(l 1, l 2))$ sequentially
using tendsto_Pair [OF l1' l2] unfolding o_def by simp
have r : strict_mono ($r 1 \circ r$ 2)
using r1 r2 unfolding strict_mono_def by simp
show $\exists l r$. strict_mono $r \wedge((f \circ r) \longrightarrow l)$ sequentially
using $l r$ by fast
qed

```

\subsection*{3.2.16 Completeness}
proposition (in metric_space) completeI:
    assumes \(\bigwedge f . \forall n . f n \in s \Longrightarrow\) Cauchy \(f \Longrightarrow \exists l \in s . f \longrightarrow l\)
    shows complete s
    using assms unfolding complete_def by fast
proposition (in metric_space) completeE:
    assumes complete \(s\) and \(\forall n . f n \in s\) and Cauchy \(f\)
    obtains \(l\) where \(l \in s\) and \(f \longrightarrow l\)
    using assms unfolding complete_def by fast
lemma compact_imp_complete:
    fixes \(s::\) 'a::metric_space set
    assumes compact \(s\)
    shows complete \(s\)
proof -
    \{
        fix \(f\)
        assume as: \((\forall n::\) nat. \(f n \in s)\) Cauchy \(f\)
        from \(a s(1)\) obtain \(l r\) where \(l r: l \in s\) strict_mono \(r(f \circ r) \longrightarrow l\)
            using assms unfolding compact_def by blast
        note \(l r^{\prime}=\) seq_suble \([\) OF \(\operatorname{lr}(2)]\)
        \{
            fix \(e\) :: real
            assume \(e>0\)
            from \(a s(2)\) obtain \(N\) where \(N: \forall m n . N \leq m \wedge N \leq n \longrightarrow \operatorname{dist}(f m)(f\)
```

n)<e/2
unfolding cauchy_def
using <e> 0\rangle
apply (erule_tac x=e/2 in allE, auto)
done
from lr(3)[unfolded lim_sequentially,THEN spec[where x=e/2]]
obtain M where M:\foralln\geqM. dist ((f\circr)n)l<e/2
using <e> 0\rangle by auto
{
fix n :: nat
assume n: n \geq max N M
have dist ((f\circr)n)l<e/2
using n M by auto
moreover have r n\geqN
using lr'[of n] n by auto
then have dist (fn)((f\circr)n)<e/2
using N}N\mathrm{ and }n\mathrm{ by auto
ultimately have dist (fn)l<e using n M
by metric
}
then have }\existsN.\foralln\geqN.\operatorname{dist}(fn)l<e by blas
}
then have }\existsl\ins.(f\longrightarrowl) sequentially using <l\ins
unfolding lim_sequentially by auto
}
then show ?thesis unfolding complete_def by auto
qed
proposition compact_eq_totally_bounded:
compact s \longleftrightarrow complete s ^(\foralle>0.\existsk. finite }k\wedges\subseteq(\bigcupx\ink.ball x e)
(is_\longleftrightarrow ?rhs)
proof
assume assms:?rhs
then obtain k where k: \bigwedgee. }0<e\Longrightarrow\mathrm{ finite (ke) \e. 0<eఋs`(\x<k
e. ball x e)
by (auto simp: choice_iff ')
show compact s
proof cases
assume s={}
then show compact s by (simp add: compact_def)
next
assume s\not={}
show ?thesis
unfolding compact_def
proof safe
fix f :: nat \# 'a
assume f:\foralln.fn}\in

```
define \(e\) where \(e n=1 /(2 *\) Suc \(n)\) for \(n\)
then have [simp]: \(\bigwedge n .0<e n\) by auto
define \(B\) where \(B n=(S O M E b\). infinite \(\{n . f n \in b\} \wedge(\exists x . b \subseteq\) ball \(x\) \((e n) \cap U)\) ) for \(n U\)
\{
fix \(n U\)
assume infinite \(\{n . f n \in U\}\)
then have \(\exists b \in k\) (en). infinite \(\{i \in\{n . f n \in U\}\). \(f i \in\) ball \(b(e n)\}\) using \(k f\) by (intro pigeonhole_infinite_rel) (auto simp: subset_eq)
then obtain \(a\) where
\(a \in k(e n)\)
infinite \(\{i \in\{n . f n \in U\} . f i \in\) ball a \((e n)\} .\).
then have \(\exists b\). infinite \(\{i . f i \in b\} \wedge(\exists x . b \subseteq\) ball \(x(e n) \cap U)\)
by (intro exI \([\) of _ ball \(a(e n) \cap U]\) exI \([o f\) _ a]) (auto simp: ac_simps)
from someI_ex[OF this]
have infinite \(\{i . f i \in B n U\} \exists x . B n U \subseteq\) ball \(x(e n) \cap U\)
unfolding \(B_{-} d e f\) by auto
\}
note \(B=\) this
define \(F\) where \(F=\) rec_nat \((B 0\) UNIV) \(B\)
\{
fix \(n\)
have infinite \(\{i . f i \in F n\}\)
by (induct \(n\) ) (auto simp: F_def B)
\}
then have \(F: \bigwedge n . \exists x . F(S u c n) \subseteq b a l l x(e n) \cap F n\)
using \(B\) by (simp add: \(F_{-} d e f\) )
then have \(F_{-} d e c: \bigwedge m n . m \leq n \Longrightarrow F n \subseteq F m\) using decseq-SucI[of F] by (auto simp: decseq_def)
obtain sel where sel: \(\bigwedge k i . i<\operatorname{sel} k i \bigwedge k i . f(\operatorname{sel} k i) \in F k\)
proof (atomize_elim, unfold all_conj_distrib[symmetric], intro choice allI) fix \(k i\)
have infinite \((\{n . f n \in F k\}-\{. . i\})\)
using «infinite \(\{n . f n \in F k\}\) by auto
from infinite_imp_nonempty[OF this]
show \(\exists x>i . f x \in F k\)
by (simp add: set_eq_iff not_le conj_commute)
qed
define \(t\) where \(t=\) rec_nat (sel 00 ) ( \(\left.\left.\begin{array}{ll}\lambda n i . s e l \\ (S u c & n\end{array}\right) i\right)\)
have strict_mono \(t\)
unfolding strict_mono_Suc_iff by (simp add: t_def sel)
moreover have \(\forall i\). \((f \circ t) i \in s\)
using \(f\) by auto
moreover
have \(t:(f \circ t) n \in F n\) for \(n\)
by (cases \(n\) ) (simp_all add: t_def sel)
```

 have Cauchy (f\circt)
 proof (safe intro!: metric_CauchyI exI elim!: nat_approx_posE)
 fix r :: real and N n m
 assume 1 / Suc N<r Suc N\leqn Suc N\leqm
 then have (f\circt)n\inF(SucN) (f\circt)m\inF(SucN) 2*eN<r
 using F_dec t by (auto simp: e_def field_simps)
 with F[of N] obtain x where dist x ((f\circt)n)<eN dist x ((f\circt)m)
 < eN
by (auto simp: subset_eq)
with <2 *e N<r\rangle show dist ((f\circt)m) ((f\circt) n)<r
by metric
qed
ultimately show \existsl\ins.\existsr.strict_mono r ^ (f\circr)\longrightarrowl
using assms unfolding complete_def by blast
qed
qed
qed (metis compact_imp_complete compact_imp_seq_compact seq_compact_imp_totally_bounded)
lemma cauchy_imp_bounded:
assumes Cauchy s
shows bounded (range s)
proof -
from assms obtain N :: nat where \forallm n.N\leqm^N\leqn\longrightarrowdist (s m)(s
n)<1
unfolding cauchy_def by force
then have N:\foralln.N\leqn\longrightarrow\operatorname{dist}(sN)(sn)<1 by auto
moreover
have bounded (s '{0..N})
using finite_imp_bounded[of s'{1..N}] by auto
then obtain a where a:\forallx\ins'{0..N}.dist (sN) x \leqa
unfolding bounded_any_center [where a=s N] by auto
ultimately show ?thesis
unfolding bounded_any_center [where a=s N]
apply (rule_tac x=max a 1 in exI, auto)
apply (erule_tac x=y in allE)
apply (erule_tac x=y in ballE, auto)
done
qed
instance heine_borel < complete_space
proof
fix f :: nat }=>\mp@subsup{}{}{\prime}a\mathrm{ assume Cauchy f
then have bounded (range f)
by (rule cauchy_imp_bounded)
then have compact (closure (range f))
unfolding compact_eq_bounded_closed by auto
then have complete (closure (range f))

```
```

 by (rule compact_imp_complete)
 moreover have \(\forall n\). \(f n \in\) closure (range \(f\))
 using closure_subset [of range \(f\)] by auto
 ultimately have \(\exists l \in\) closure (range \(f) .(f \longrightarrow l)\) sequentially
 using 〈Cauchy \(f\) 〉 unfolding complete_def by auto
 then show convergent \(f\)
 unfolding convergent_def by auto
 qed
lemma complete_UNIV: complete (UNIV :: ('a::complete_space) set)
proof (rule completeI)
fix $f::$ nat $\Rightarrow^{\prime} a$ assume Cauchy f
then have convergent f by (rule Cauchy_convergent)
then show $\exists l \in U N I V . f \longrightarrow l$ unfolding convergent_def by simp
qed
lemma complete_imp_closed:
fixes S :: ' $a::$ metric_space set
assumes complete S
shows closed S
proof (unfold closed_sequential_limits, clarify)
fix $f x$ assume $\forall n$. $f n \in S$ and $f \longrightarrow x$
from $\langle f \longrightarrow x\rangle$ have Cauchy f
by (rule LIMSEQ_imp_Cauchy)
with \langle complete $S\rangle$ and $\langle\forall n . f n \in S\rangle$ obtain l where $l \in S$ and $f \longrightarrow l$
by (rule completeE)
from $\langle f \longrightarrow x\rangle$ and $\langle f \longrightarrow l\rangle$ have $x=l$
by (rule LIMSEQ_unique)
with $\langle l \in S\rangle$ show $x \in S$
by simp
qed
lemma complete_Int_closed:
fixes S :: 'a::metric_space set
assumes complete S and closed t
shows complete $(S \cap t)$
proof (rule completeI)
fix f assume $\forall n$. $f n \in S \cap t$ and Cauchy f
then have $\forall n$. $f n \in S$ and $\forall n . f n \in t$
by simp_all
from 〈complete $S\rangle$ obtain l where $l \in S$ and $f \longrightarrow l$
using $\langle\forall n . f n \in S\rangle$ and $\langle C a u c h y ~ f\rangle$ by (rule completeE)
from \langle closed $t\rangle$ and $\langle\forall n . f n \in t\rangle$ and $\langle f \longrightarrow l\rangle$ have $l \in t$
by (rule closed_sequentially)
with $\langle l \in S\rangle$ and $\langle f \longrightarrow l\rangle$ show $\exists l \in S \cap t . f \longrightarrow l$
by fast
qed
lemma complete＿closed＿subset：

```
```

 fixes S :: 'a::metric_space set
 assumes closed S and S\subseteqt and complete t
 shows complete S
 using assms complete_Int_closed [of t S] by (simp add: Int_absorb1)
 lemma complete_eq_closed:
fixes S :: ('a::complete_space) set
shows complete }S\longleftrightarrow\mathrm{ closed S
proof
assume closed S then show complete S
using subset_UNIV complete_UNIV by (rule complete_closed_subset)
next
assume complete S then show closed S
by (rule complete_imp_closed)
qed
lemma convergent_eq_Cauchy:
fixes S :: nat }=>\mp@subsup{}{}{\prime}a::=complete_space
shows}(\existsl.(S\longrightarrowl) sequentially) \longleftrightarrowCauchy
unfolding Cauchy_convergent_iff convergent_def ..
lemma convergent_imp_bounded:
fixes S :: nat => 'a::metric_space
shows (S\longrightarrowl) sequentially \Longrightarrow bounded (range S)
by (intro cauchy_imp_bounded LIMSEQ_imp_Cauchy)
lemma frontier_subset_compact:
fixes S :: 'a::heine_borel set
shows compact S\Longrightarrow frontier S\subseteqS
using frontier_subset_closed compact_eq_bounded_closed
by blast
lemma continuous_closed_imp_Cauchy_continuous:
fixes S :: ('a::complete_space) set
shows \llbracketcontinuous_on S f; closed S; Cauchy \sigma;\bigwedgen. (\sigma n) \inS\rrbracket\LongrightarrowCauchy (f\circ
\sigma)
apply (simp add: complete_eq_closed [symmetric] continuous_on_sequentially)
by (meson LIMSEQ_imp_Cauchy complete_def)
lemma banach_fix_type:
fixes f::'a::complete_space }\mp@subsup{=>}{}{\prime}
assumes c:0\leqcc<1
and lipschitz:\forallx.\forally.dist (f x) (fy)\leqc* dist x y
shows }\exists\mathrm{ ! x. (f x = x)
using assms banach_fix[OF complete_UNIV UNIV_not_empty assms(1,2) sub-
set_UNIV,of f]
by auto

```

\subsection*{3.2.17 Finite intersection property}

Also developed in HOL's toplogical spaces theory, but the Heine-Borel type class isn't available there.
lemma closed_imp_fip:
fixes \(S\) :: 'a::heine_borel set
assumes closed \(S\) and \(T: T \in \mathcal{F}\) bounded \(T\) and clof: \(\wedge T . T \in \mathcal{F} \Longrightarrow\) closed \(T\) and none: \(\wedge \mathcal{F}^{\prime}\). \(\llbracket\) finite \(\mathcal{F}^{\prime} ; \mathcal{F}^{\prime} \subseteq \mathcal{F} \rrbracket \Longrightarrow S \cap \cap \mathcal{F}^{\prime} \neq\{ \}\)
shows \(S \cap \cap \mathcal{F} \neq\{ \}\)
proof -
have compact ( \(S \cap T\) ) using 〈closed \(S\) 〉 clof compact_eq_bounded_closed \(T\) by blast
then have \((S \cap T) \cap \cap \mathcal{F} \neq\{ \}\)
apply (rule compact_imp_fip)
apply (simp add: clof)
by (metis Int_assoc complete_lattice_class.Inf_insert finite_insert insert_subset none \(\langle T \in \mathcal{F}\) )
then show ?thesis by blast
qed
lemma closed_imp_fip_compact:
fixes \(S\) :: 'a::heine_borel set
shows
\(\llbracket\) closed \(S ; \wedge T . T \in \mathcal{F} \Longrightarrow\) compact \(T\);
\(\wedge \mathcal{F}^{\prime} . \llbracket\) finite \(\mathcal{F}^{\prime} ; \mathcal{F}^{\prime} \subseteq \mathcal{F} \rrbracket \Longrightarrow S \cap \cap \mathcal{F}^{\prime} \neq\{ \} \rrbracket\)
\(\Longrightarrow S \cap \cap \mathcal{F} \neq\{ \}\)
by (metis Inf_greatest closed_imp_fip compact_e__bounded_closed empty_subsetI finite.emptyI inf.orderE)
lemma closed_fip_Heine_Borel:
fixes \(\mathcal{F}\) :: 'a::heine_borel set set
assumes closed \(S T \in \mathcal{F}\) bounded \(T\)
and \(\wedge T . T \in \mathcal{F} \Longrightarrow\) closed \(T\)
and \(\bigwedge \mathcal{F}^{\prime}\). \(\llbracket\) finite \(\mathcal{F}^{\prime} ; \mathcal{F}^{\prime} \subseteq \mathcal{F} \rrbracket \Longrightarrow \cap \mathcal{F}^{\prime} \neq\{ \}\)
shows \(\cap \mathcal{F} \neq\{ \}\)
proof -
have \(U N I V \cap \cap \mathcal{F} \neq\{ \}\)
using assms closed_imp_fip [OF closed_UNIV] by auto
then show ?thesis by simp
qed
lemma compact_fip_Heine_Borel:
fixes \(\mathcal{F}\) :: 'a::heine_borel set set
assumes clof: \(\wedge T . T \in \mathcal{F} \Longrightarrow\) compact \(T\)
and none: \(\wedge \mathcal{F}^{\prime}\). \(\llbracket\) finite \(\mathcal{F}^{\prime} ; \mathcal{F}^{\prime} \subseteq \mathcal{F} \rrbracket \Longrightarrow \bigcap \mathcal{F}^{\prime} \neq\{ \}\)
shows \(\cap \mathcal{F} \neq\{ \}\)
by (metis InterI all_not_in_conv clof closed_fip_Heine_Borel compact_eq_bounded_closed
```

none)
lemma compact_sequence_with_limit:
fixes $f::$ nat $\Rightarrow{ }^{\prime} a::$ heine_borel
shows $(f \longrightarrow l)$ sequentially \Longrightarrow compact (insert $l($ range $f)$)
apply (simp add: compact_eq_bounded_closed, auto)
apply (simp add: convergent_imp_bounded)
by (simp add: closed_limpt islimpt_insert sequence_unique_limpt)

```

\subsection*{3.2.18 Properties of Balls and Spheres}
lemma compact_cball[simp]:
fixes \(x::{ }^{\prime} a::\) heine_borel
shows compact (cball x e)
using compact_eq_bounded_closed bounded_cball closed_cball
by blast
lemma compact_frontier_bounded[intro]:
fixes \(S\) :: 'a::heine_borel set
shows bounded \(S \Longrightarrow\) compact (frontier \(S\) )
unfolding frontier_def
using compact_eq_bounded_closed
by blast
lemma compact_frontier[intro]:
fixes \(S\) :: ' \(a:\) :heine_borel set
shows compact \(S \Longrightarrow\) compact (frontier \(S\) )
using compact_eq_bounded_closed compact_frontier_bounded
by blast

\subsection*{3.2.19 Distance from a Set}
lemma distance_attains_sup:
assumes compact s \(s \neq\{ \}\)
shows \(\exists x \in s . \forall y \in s\). dist \(a y \leq d i s t ~ a x\)
proof (rule continuous_attains_sup [OF assms])
\{
fix \(x\)
assume \(x \in s\)
have (dist \(a \longrightarrow\) dist \(a x\) ) (at \(x\) within \(s\) )
by (intro tendsto_dist tendsto_const tendsto_ident_at)
\}
then show continuous_on \(s\) (dist a)
unfolding continuous_on ..
qed
For minimal distance, we only need closure, not compactness.
lemma distance_attains_inf:
fixes \(a\) :: 'a::heine_borel
```

 assumes closed s and s\not={}
 obtains }x\mathrm{ where }x\ins\y.y\ins\Longrightarrow\mathrm{ dist a x < dist a y
 proof -
from assms obtain b}\mathrm{ where b}\ins\mathrm{ by auto
let ? B=s\cap cball a (dist b a)
have ?B}\not={}\mathrm{ using }\langleb\ins
by (auto simp: dist_commute)
moreover have continuous_on ?B (dist a)
by (auto intro!: continuous_at_imp_continuous_on continuous_dist continuous_ident
continuous_const)
moreover have compact ?B
by (intro closed_Int_compact 〈closed s\rangle compact_cball)
ultimately obtain }x\mathrm{ where }x\in?B\forally\in?B\mathrm{ . dist a }x\leq\mathrm{ dist a y
by (metis continuous_attains_inf)
with that show ?thesis by fastforce
qed

```

\subsection*{3.2.20 Infimum Distance}
definition infdist \(x A=(\) if \(A=\{ \}\) then 0 else INF \(a \in A\). dist \(x\) a)
lemma bdd_below_image_dist[intro, simp]: bdd_below (dist x ' A) by (auto intro!: zero_le_dist)
lemma infdist_notempty: \(A \neq\{ \} \Longrightarrow\) infdist \(x A=(\) INF \(a \in A\). dist \(x a)\) by (simp add: infdist_def)
lemma infdist_nonneg: \(0 \leq\) infdist \(x\) A
by (auto simp: infdist_def intro: cINF_greatest)
lemma infdist_le: \(a \in A \Longrightarrow\) infdist \(x A \leq\) dist \(x a\) by (auto intro: cINF_lower simp add: infdist_def)
lemma infdist_le2: \(a \in A \Longrightarrow\) dist \(x a \leq d \Longrightarrow\) infdist \(x A \leq d\) by (auto intro!: cINF_lower2 simp add: infdist_def)
lemma infdist_zero \([\) simp \(]: a \in A \Longrightarrow\) infdist \(a A=0\) by (auto intro!: antisym infdist_nonneg infdist_le2)
lemma infdist_Un_min:
assumes \(A \neq\{ \} B \neq\{ \}\)
shows infdist \(x(A \cup B)=\min (\) infdist \(x A)(\) infdist \(x B)\)
using assms by (simp add: infdist_def cINF_union inf_real_def)
lemma infdist_triangle: infdist \(x A \leq\) infdist \(y A+\) dist \(x y\)
proof (cases \(A=\{ \}\) )
case True
then show ?thesis by (simp add: infdist_def)
next
```

case False
then obtain a where a\inA by auto
have infdist x A\leqInf {dist x y + dist y a |a.a\inA}
proof (rule cInf_greatest)
from <A\not={}> show {dist x y + dist y a |a.a\inA}\not={}
by simp
fix }
assume d\in{dist x y + dist y a |a.a\inA}
then obtain a where d:d=dist x y + dist y a a\inA
by auto
show infdist x A\leqd
unfolding infdist_notempty[OF <A\not={}>]
proof (rule cINF_lower2)
show }a\inA\mathrm{ by fact
show dist x a\leqd
unfolding d by (rule dist_triangle)
qed simp
qed
also have ... = dist x y + infdist y A
proof (rule cInf_eq, safe)
fix a
assume a\inA
then show dist x y + infdist y A\leqdist x y + dist y a
by (auto intro: infdist_le)
next
fix }
assume inf: \d. d \in{dist x y + dist y a |a.a\inA}\Longrightarrowi\leqd
then have i - dist x y minfdist y A
unfolding infdist_notempty[OF \langleA\not={}\rangle] using <a \inA>
by (intro cINF_greatest) (auto simp: field_simps)
then show }i\leq\mathrm{ dist }xy+\mathrm{ infdist y A
by simp
qed
finally show ?thesis by simp
qed
lemma infdist_triangle_abs: |infdist x A - infdist y A | \leq dist x y
by (metis (full_types) abs_diff_le_iff diff_le_eq dist_commute infdist_triangle)
lemma in_closure_iff_infdist_zero:
assumes A\not={}
shows }x\in\mathrm{ closure }A\longleftrightarrow\mathrm{ infdist }xA=
proof
assume }x\in\mathrm{ closure }
show infdist x A = 0
proof (rule ccontr)
assume infdist x A}\not=
with infdist_nonneg[of x A] have infdist x A > 0
by auto

```
```

 then have ball x (infdist x A) \cap closure A={}
 apply auto
 apply (metis }\langlex\in\mathrm{ closure A` closure_approachable dist_commute infdist_le
 not_less)
done
then have }x\not\in\mathrm{ closure A
by (metis }\langle0<infdist x A> centre_in_ball disjoint_iff_not_equal)
then show False using <x closure A> by simp
qed
next
assume x: infdist x A = 0
then obtain a}\mathrm{ where }a\in
by atomize_elim (metis all_not_in_conv assms)
show }x\in\mathrm{ closure A
unfolding closure_approachable
apply safe
proof (rule ccontr)
fix e :: real
assume e>0
assume }\neg(\existsy\inA.dist y x<e
then have infdist x A\geqe using <a\inA\rangle
unfolding infdist_def
by (force simp: dist_commute intro: cINF_greatest)
with x}\langlee>0\rangle\mathrm{ show False by auto
qed
qed
lemma in_closed_iff_infdist_zero:
assumes closed A A}\not={
shows }x\inA\longleftrightarrow\mathrm{ infdist }xA=
proof -
have }x\in\mathrm{ closure }A\longleftrightarrow\mathrm{ infdist }xA=
by (rule in_closure_iff_infdist_zero) fact
with assms show ?thesis by simp
qed
lemma infdist_pos_not_in_closed:
assumes closed SS\not={} x\not\inS
shows infdist x S>0
using in_closed_iff_infdist_zero[OF assms(1) assms(2), of x] assms(3) infdist_nonneg
le_less by fastforce

```

\section*{lemma}
```

 infdist_attains_inf:
 fixes X::'a::heine_borel set
 assumes closed X
 assumes X \not={}
 obtains }x\mathrm{ where }x\inX\mathrm{ infdist y }X=\operatorname{dist}y
 proof -

```
```

have bdd_below (dist y'X)
by auto
from distance_attains_inf [OF assms, of $y]$
obtain x where INF: $x \in X \wedge z . z \in X \Longrightarrow$ dist $y x \leq$ dist $y z$ by auto
have infdist $y X=$ dist $y x$
by (auto simp: infdist_def assms
intro!: antisym cINF_lower $\left[O F_{-}\langle x \in X\rangle\right]$ cINF_greatest $\left.[O F \operatorname{assms}(2) \operatorname{INF}(2)]\right)$
with $\langle x \in X\rangle$ show ?thesis ..
qed
Every metric space is a T4 space:
instance metric_space \subseteq t4_space
proof
fix $S T::{ }^{\prime}$ a set assume H : closed S closed $T S \cap T=\{ \}$
consider $S=\{ \}|T=\{ \}| S \neq\{ \} \wedge T \neq\{ \}$ by auto
then show $\exists U V$. open $U \wedge$ open $V \wedge S \subseteq U \wedge T \subseteq V \wedge U \cap V=\{ \}$
proof (cases)
case 1
show ?thesis
apply (rule exI[of _ \{\}], rule exI[of _ UNIV]) using 1 by auto
next
case 2
show ?thesis
apply (rule exI[of _ UNIV], rule exI[of _ \{\}]) using 2 by auto
next
case 3
define U where $U=(\bigcup x \in S$. ball $x(($ infdist $x T) / \mathcal{Z}))$
have A : open U unfolding U_{-}def by auto
have infdist $x T>0$ if $x \in S$ for x
using H that 3 by (auto intro!: infdist_pos_not_in_closed)
then have $B: S \subseteq U$ unfolding U _def by auto
define V where $V=(\bigcup x \in T$. ball $x(($ infdist $x S) /$ 2) $)$
have C : open V unfolding $V_{-} d e f$ by auto
have infdist $x S>0$ if $x \in T$ for x
using H that 3 by (auto intro!: infdist_pos_not_in_closed)
then have $D: T \subseteq V$ unfolding $V_{-} d e f$ by auto
have $($ ball $x(($ infdist $x T) / \mathcal{Z})) \cap($ ball $y(($ infdist $y S) / \mathcal{Z}))=\{ \}$ if $x \in S y \in$
T for $x y$
proof auto
fix z assume $H:$ dist $x z * 2<\operatorname{infdist} x T$ dist $y z * 2<$ infdist $y S$
have $2 *$ dist $x y \leq 2 *$ dist $x z+2 *$ dist $y z$
by metric
also have $\ldots<$ infdist $x T+$ infdist $y S$
using H by auto
finally have dist $x y<\operatorname{infdist} x T \vee \operatorname{dist} x y<\operatorname{infdist} y S$ by auto
then show False
using infdist_le[OF $\langle x \in S\rangle$, of $y]$ infdist_le $[O F\langle y \in T\rangle$, of $x]$ by (auto simp

```
```

add: dist_commute)
qed
then have $E: U \cap V=\{ \}$
unfolding $U_{-} d e f V_{-} d e f$ by auto
show ?thesis
apply (rule exI $[$ of _ $U]$, rule exI $\left[o f f_{-} V\right]$) using $A B C D E$ by auto
qed
qed
lemma tendsto_infdist [tendsto_intros]:
assumes $f:(f \longrightarrow l) F$
shows $((\lambda x$. infdist $(f x) A) \longrightarrow$ infdist $l A) F$
proof (rule tendstoI)
fix e ::real
assume $e>0$
from tendstoD[OF f this]
show eventually $(\lambda x$. dist $($ infdist $(f x) A)($ infdist $l A)<e) F$
proof (eventually_elim)
fix x
from infdist_triangle[of lAfx] infdist_triangle[offxAl]
have dist (infdist $(f x) A)($ infdist $l A) \leq \operatorname{dist}(f x) l$
by (simp add: dist_commute dist_real_def)
also assume dist $(f x) l<e$
finally show $\operatorname{dist}(\operatorname{infdist}(f x) A)(\operatorname{infdist} l A)<e$.
qed
qed
lemma continuous_infdist[continuous_intros]:
assumes continuous $F f$
shows continuous F (λx. infdist $(f x) A$)
using assms unfolding continuous_def by (rule tendsto_infdist)
lemma continuous_on_infdist [continuous_intros]:
assumes continuous_on $S f$
shows continuous_on $S(\lambda x$. infdist $(f x) A)$
using assms unfolding continuous_on by (auto intro: tendsto_infdist)
lemma compact_infdist_le:
fixes $A:$:'a::heine_borel set
assumes $A \neq\{ \}$
assumes compact A
assumes $e>0$
shows compact $\{x$. infdist $x A \leq e\}$
proof -
from continuous_closed_vimage $[$ of $\{0 . . e\} \quad \lambda x$.infdist $x A]$
continuous_infdist[OF continuous_ident, of _ UNIV A]
have closed $\{x$. infdist $x A \leq e\}$ by (auto simp: vimage_def infdist_nonneg)
moreover
from assms obtain $x 0 b$ where $b: \bigwedge x . x \in A \Longrightarrow$ dist $x 0 x \leq b$ closed A

```
```

 by (auto simp: compact_eq_bounded_closed bounded_def)
 \{
 fix \(y\)
 assume infdist y \(A \leq e\)
 moreover
 from infdist_attains_inf \([O F\langle\) closed \(A\rangle\langle A \neq\{ \}\rangle\), of \(y]\)
 obtain \(z\) where \(z \in A\) infdist \(y A=\) dist \(y z\) by blast
 ultimately
 have dist \(x 0 y \leq b+e\) using \(b\) by metric
 \} then
 have bounded \(\{x\). infdist \(x A \leq e\}\)
 by (auto simp: bounded_any_center[where \(a=x 0]\) intro!: exI [where \(x=b+e]\))
 ultimately show compact \(\{x\). infdist \(x A \leq e\}\)
 by (simp add: compact_eq_bounded_closed)
 qed

```

\subsection*{3.2.21 Separation between Points and Sets}
```

proposition separate_point_closed:
fixes s :: ' $a:$:heine_borel set
assumes closed s and $a \notin s$
shows $\exists d>0 . \forall x \in s . d \leq$ dist $a x$
proof (cases $s=\{ \}$)
case True
then show ?thesis by(auto intro!: exI[where $x=1]$)
next
case False
from assms obtain x where $x \in s \forall y \in s$. dist $a x \leq$ dist a y
using $\langle s \neq\{ \}$ 〉 by (blast intro: distance_attains_inf [of sa])
with $\langle x \in s\rangle$ show ?thesis using dist_pos_lt $[o f a x]$ and $\langle a \notin s\rangle$ by blast
qed
proposition separate_compact_closed:
fixes $s t::{ }^{\prime} a:$:heine_borel set
assumes compact s
and t : closed $t s \cap t=\{ \}$
shows $\exists d>0 . \forall x \in s . \forall y \in t . d \leq$ dist $x y$
proof cases
assume $s \neq\{ \} \wedge t \neq\{ \}$
then have $s \neq\{ \} t \neq\{ \}$ by auto
let ? inf $=\lambda x$. infdist $x t$
have continuous_on s ? inf
by (auto intro!: continuous_at_imp_continuous_on continuous_infdist continuous_ident)
then obtain x where $x: x \in s \forall y \in s$. ?inf $x \leq$?inf y using continuous_attains_inf $[O F\langle$ compact $s\rangle\langle s \neq\{ \}\rangle]$ by auto
then have $0<$? inf x
using $t\langle t \neq\{ \}\rangle$ in_closed_iff_infdist_zero by (auto simp: less_le infdist_nonneg)

```
```

 moreover have \(\forall x^{\prime} \in s . \forall y \in t\). ?inf \(x \leq\) dist \(x^{\prime} y\)
 using \(x\) by (auto intro: order_trans infdist_le)
 ultimately show ?thesis by auto
 qed (auto intro!: exI[of - 1])
proposition separate_closed_compact:
fixes $s t::$ ' $a:$:heine_borel set
assumes closed s
and compact t
and $s \cap t=\{ \}$
shows $\exists d>0 . \forall x \in s . \forall y \in t . d \leq \operatorname{dist} x y$
proof -
have $*: t \cap s=\{ \}$
using assms(3) by auto
show ?thesis
using separate_compact_closed[OF assms(2,1) *] by (force simp: dist_commute)
qed
proposition compact_in_open_separated:
fixes $A:$:' $^{\prime} a:$:heine_borel set
assumes $A \neq\{ \}$
assumes compact A
assumes open B
assumes $A \subseteq B$
obtains e where $e>0\{x$. infdist $x A \leq e\} \subseteq B$
proof atomize_elim
have closed $(-B)$ compact $A-B \cap A=\{ \}$
using assms by (auto simp: open_Diff compact_eq_bounded_closed)
from separate_closed_compact[OF this]
obtain $d^{\prime}::$ real where $d^{\prime}: d^{\prime}>0 \bigwedge x y . x \notin B \Longrightarrow y \in A \Longrightarrow d^{\prime} \leq$ dist $x y$
by auto
define d where $d=d^{\prime} / 2$
hence $d>0 d<d^{\prime}$ using d^{\prime} by auto
with d^{\prime} have $d: \bigwedge x y . x \notin B \Longrightarrow y \in A \Longrightarrow d<$ dist $x y$
by force
show $\exists e>0 .\{x$. infdist $x A \leq e\} \subseteq B$
proof (rule ccontr)
assume $\nexists e .0<e \wedge\{x$. infdist $x A \leq e\} \subseteq B$
with $\langle d>0\rangle$ obtain x where x : infdist $x A \leq d x \notin B$
by auto
from assms have closed $A A \neq\{ \}$ by (auto simp: compact_eq_bounded_closed)
from infdist_attains_inf[OF this]
obtain y where $y: y \in A$ infdist $x A=\operatorname{dist} x y$
by auto
have dist $x y \leq d$ using $x y$ by simp
also have $\ldots<$ dist $x y$ using $y d x$ by auto
finally show False by simp
qed
qed

```

\subsection*{3.2.22 Uniform Continuity}
lemma uniformly_continuous_onE:
assumes uniformly_continuous_on sf \(0<e\)
obtains \(d\) where \(d>0 \bigwedge x x^{\prime} . \llbracket x \in s ; x^{\prime} \in s ;\) dist \(x^{\prime} x<d \rrbracket \Longrightarrow \operatorname{dist}\left(f x^{\prime}\right)(f x)<\) \(e\)
using assms
by (auto simp: uniformly_continuous_on_def)
lemma uniformly_continuous_on_sequentially:
uniformly_continuous_on \(s f \longleftrightarrow(\forall x y .(\forall n . x n \in s) \wedge(\forall n . y n \in s) \wedge\)
\((\lambda n . \operatorname{dist}(x n)(y n)) \longrightarrow 0 \longrightarrow(\lambda n . \operatorname{dist}(f(x n))(f(y n))) \longrightarrow 0)\) (is \(? l h s=? r h s)\)
proof
assume ?lhs
\{
fix \(x y\)
assume \(x: \forall n . x n \in s\)
and \(y: \forall n . y n \in s\)
and \(x y:((\lambda n\). dist \((x n)(y n)) \longrightarrow 0)\) sequentially
\{
fix \(e\) :: real
assume \(e>0\)
then obtain \(d\) where \(d>0\) and \(d: \forall x \in s . \forall x^{\prime} \in s\). dist \(x^{\prime} x<d \longrightarrow \operatorname{dist}(f\)
\(\left.x^{\prime}\right)(f x)<e\)
using 〈?lhs〉[unfolded uniformly_continuous_on_def, THEN spec[where \(x=e]\) ]
by auto
obtain \(N\) where \(N: \forall n \geq N\). dist \((x n)(y n)<d\)
using \(x y[\) unfolded lim_sequentially dist_norm] and \(\langle d>0\rangle\) by auto
\{
fix \(n\)
assume \(n \geq N\)
then have \(\operatorname{dist}(f(x n))(f(y n))<e\)
using \(N[\) THEN spec[where \(x=n]\) ].
using \(d[\) THEN bspec \([\) where \(x=x \quad n]\), THEN bspec \([\) where \(x=y n]]\)
using \(x\) and \(y\)
by (simp add: dist_commute)
\}
then have \(\exists N . \forall n \geq N . \operatorname{dist}(f(x n))(f(y n))<e\)
by auto
\}
then have \(((\lambda n\). dist \((f(x n))(f(y n))) \longrightarrow 0)\) sequentially
unfolding lim_sequentially and dist_real_def by auto
\}
then show ?rhs by auto
next
assume ?rhs
\{
assume \(\neg\) ? lhs
then obtain \(e\) where \(e>0 \forall d>0 . \exists x \in s . \exists x^{\prime} \in s\). dist \(x^{\prime} x<d \wedge \neg \operatorname{dist}(f\)
```

x)}(fx)<
unfolding uniformly_continuous_on_def by auto
then obtain fa where fa:
\forallx.0<x\longrightarrowfst (fax) \ins^ snd (fa x) \ins^dist (fst (fa x)) (snd (fa x))

```

```

 using choice[of \lambdad x.d>0\longrightarrowfst x\ins^ snd x < s \ dist (snd x) (fst x)
 <d\wedge\neg\operatorname{dist}(f(snd x))(f(fst x))<e]
unfolding Bex_def
by (auto simp: dist_commute)
define }x\mathrm{ where x n=fst (fa (inverse (real n+1))) for n
define y where yn= snd (fa(inverse(real n+1))) for n
have xyn: \foralln. xn\ins^yn\ins
and xy0:\foralln. dist (xn)(yn)< inverse (real n + 1)

```

```

 unfolding x_def and y_def using fa
 by auto
 {
 fix e :: real
 assume e>0
 then obtain N :: nat where N\not=0 and N:0< inverse (real N)^ inverse
 (real N)<e
unfolding real_arch_inverse[of e] by auto
{
fix n :: nat
assume n\geqN
then have inverse (real n+1)< inverse (real N)
using of_nat_0_le_iff and \N\not=0\rangle by auto
also have ...<e using N by auto
finally have inverse (real n}+1)<e\mathrm{ by auto
then have dist (xn)(yn)<e
using xyO[THEN spec[where x=n]] by auto
}
then have }\existsN.\foralln\geqN.dist (xn)(yn)<e by aut
}
then have }\foralle>0.\existsN.\foralln\geqN.\operatorname{dist}(f(xn))(f(yn))<
using \?rhs`[THEN spec[where x=x], THEN spec[where x=y]] and xyn
unfolding lim_sequentially dist_real_def by auto
then have False using fxy and \langlee>0\rangle by auto
}
then show?lhs
unfolding uniformly_continuous_on_def by blast
qed

```

\subsection*{3.2.23 Continuity on a Compact Domain Implies Uniform Continuity}

From the proof of the Heine-Borel theorem: Lemma 2 in section 3.7, page 69 of J. C. Burkill and H. Burkill. A Second Course in Mathematical Analysis (CUP, 2002)
```

lemma Heine_Borel_lemma:
assumes compact S and S sub: $S \subseteq \bigcup \mathcal{G}$ and opn: $\bigwedge G . G \in \mathcal{G} \Longrightarrow$ open G
obtains e where $0<e \bigwedge x . x \in S \Longrightarrow \exists G \in \mathcal{G}$. ball $x e \subseteq G$
proof -
have False if neg: $\bigwedge e .0<e \Longrightarrow \exists x \in S . \forall G \in \mathcal{G} . \neg$ ball $x e \subseteq G$
proof -
have $\exists x \in S . \forall G \in \mathcal{G}$. \neg ball $x(1 /$ Suc $n) \subseteq G$ for n
using neg by simp
then obtain f where $\bigwedge n . f n \in S$ and $f G: \bigwedge G n . G \in \mathcal{G} \Longrightarrow \neg$ ball $(f n)(1$
$/$ Suc n) $\subseteq G$
by metis
then obtain $l r$ where $l \in S$ strict_mono r and to_l: $(f \circ r) \longrightarrow l$
using 〈compact S 〉compact_def that by metis
then obtain G where $l \in G G \in \mathcal{G}$
using Ssub by auto
then obtain e where $0<e$ and $e: \bigwedge z$. dist $z l<e \Longrightarrow z \in G$
using opn open_dist by blast
obtain $N 1$ where $N 1: \bigwedge n . n \geq N 1 \Longrightarrow \operatorname{dist}(f(r n)) l<e / 2$
using to_l apply (simp add: lim_sequentially)
using $\langle 0<e\rangle$ half_gt_zero that by blast
obtain N2 where N2: of_nat N2 > 2/e
using reals_Archimedean2 by blast
obtain x where $x \in \operatorname{ball}(f(r(\max$ N1 N2) $))(1 / \operatorname{real}(S u c(r(\max N 1$
N2)))) and $x \notin G$
using $f G[O F\langle G \in \mathcal{G}\rangle$, of $r(\max N 1 N 2)]$ by blast
then have $\operatorname{dist}(f(r(\max N 1 N 2))) x<1 / \operatorname{real}(\operatorname{Suc}(r(\max N 1 N 2)))$
by simp
also have $\ldots \leq 1 / \operatorname{real}(S u c(\max$ N1 N2) $)$
apply (simp add: field_split_simps del: max.bounded_iff)
using 〈strict_mono r〉 seq_suble by blast
also have $\ldots \leq 1 /$ real (Suc N2)
by (simp add: field_simps)
also have ... $<e / 2$
using $N 2\langle 0<e\rangle$ by (simp add: field_simps)
finally have $\operatorname{dist}(f(r(\max N 1 N 2))) x<e / 2$.
moreover have $\operatorname{dist}(f(r(\max N 1 N 2))) l<e / 2$
using N1 max.cobounded1 by blast
ultimately have dist $x l<e$
by metric
then show ?thesis
using $e\langle x \notin G\rangle$ by blast
qed
then show ?thesis
by (meson that)
qed
lemma compact_uniformly_equicontinuous:
assumes compact S
and cont: $\bigwedge x e . \llbracket x \in S ; 0<e \rrbracket$

```
\[
\begin{aligned}
\Longrightarrow & \exists d .0<d \wedge \\
& \left(\forall f \in \mathcal{F} . \forall x^{\prime} \in S . \text { dist } x^{\prime} x<d \longrightarrow \operatorname{dist}\left(f x^{\prime}\right)(f x)<e\right)
\end{aligned}
\]
and \(0<e\)
obtains \(d\) where \(0<d\)
\[
\bigwedge f x x^{\prime} . \llbracket f \in \mathcal{F} ; x \in S ; x^{\prime} \in S ; \text { dist } x^{\prime} x<d \rrbracket \Longrightarrow \operatorname{dist}\left(f x^{\prime}\right)(f x)
\]
```

< e
proof -

```
    obtain \(d\) where d_pos: \(\bigwedge x e . \llbracket x \in S ; 0<e \rrbracket \Longrightarrow 0<d x e\)
        and d_dist : \(\bigwedge x x^{\prime}\) ef. \(\llbracket\) dist \(x^{\prime} x<d x e ; x \in S ; x^{\prime} \in S ; 0<e ; f \in \mathcal{F} \rrbracket \Longrightarrow\)
\(\operatorname{dist}\left(f x^{\prime}\right)(f x)<e\)
    using cont by metis
    let \(? \mathcal{G}=((\lambda x\). ball \(x(d x(e / \mathcal{Z}))) \cdot S)\)
    have \(S\) sub: \(S \subseteq \bigcup\) ?G
        by clarsimp (metis d_pos \(\langle 0<e\rangle\) dist_self half_gt_zero_iff)
    then obtain \(k\) where \(0<k\) and \(k: \bigwedge x . x \in S \Longrightarrow \exists G \in ? \mathcal{G}\). ball \(x k \subseteq G\)
        by (rule Heine_Borel_lemma [OF <compact \(S\) 〉]) auto
    moreover have dist \((f v)(f u)<e\) if \(f \in \mathcal{F} u \in S v \in S\) dist \(v u<k\) for \(f u v\)
    proof -
        obtain \(G\) where \(G \in\) ? \(\mathcal{G} u \in G v \in G\)
            using \(k\) that
            by (metis \(\langle\) dist \(v u<k\rangle\langle u \in S\rangle\langle 0<k\rangle\) centre_in_ball subsetD dist_commute
mem_ball)
            then obtain \(w\) where \(w\) : dist \(w u<d w(e /\) 2) dist \(w v<d w(e / 2) w \in S\)
            by auto
            with that d_dist have dist \((f w)(f v)<e / 2\)
                by (metis \(\langle 0<e\rangle\) dist_commute half_gt_zero)
            moreover
            have dist \((f w)(f u)<e / 2\)
            using that d_dist \(w\) by (metis \(\langle 0<e\rangle\) dist_commute divide_pos_pos zero_less_numeral)
            ultimately show ?thesis
            using dist_triangle_half_r by blast
    qed
    ultimately show ?thesis using that by blast
qed
corollary compact_uniformly_continuous:
    fixes \(f::\) ' \(a\) :: metric_space \(\Rightarrow\) ' \(b::\) metric_space
    assumes \(f\) : continuous_on \(S f\) and \(S\) : compact \(S\)
    shows uniformly_continuous_on \(S f\)
    using \(f\)
        unfolding continuous_on_iff uniformly_continuous_on_def
            by (force intro: compact_uniformly_equicontinuous [OF \(S\), of \(\{f\}]\) )

\subsection*{3.2.24 Theorems relating continuity and uniform continuity to closures}
lemma continuous_on_closure:
continuous_on (closure \(S\) ) \(f \longleftrightarrow\)
( \(\forall x\) e. \(x \in\) closure \(S \wedge 0<e\)
```

 \longrightarrow (\exists d . 0 < d \wedge (\forall y . y \in S \wedge ~ d i s t ~ y ~ x ~ < ~ d ~ \longrightarrow ~ d i s t ~ (f y) ~ (f x) < e))) ~
 (is ?lhs = ?rhs)
 proof
assume ?lhs then show ?rhs
unfolding continuous_on_iff by (metis Un_iff closure_def)
next
assume R [rule_format]: ?rhs
show ?lhs
proof
fix }x\mathrm{ and e::real
assume 0<e and x:x\in closure S
obtain }\delta::\mathrm{ real where }\delta>
and \delta: \bigwedgey.\llbrackety\inS; dist y x<\delta\rrbracket\Longrightarrow dist (fy) (fx)<e/\mathcal{Z}
using R [of x e/2]<0< e〉x by auto
have dist (fy)(fx)\leqe if y: y closure S and dyx: dist y x<\delta/2 for y
proof -
obtain }\mp@subsup{\delta}{}{\prime}::\mathrm{ real where }\mp@subsup{\delta}{}{\prime}>
and \mp@subsup{\delta}{}{\prime}:\bigwedgez.\llbracketz\inS; dist zy<\delta\rrbracket\Longrightarrow dist (fz) (fy)<e/2
using R [of y e/2]<0<e〉 y by auto
obtain z where z\inS and z: dist zy<min \delta' \delta/2
using closure_approachable y
by (metis }\langle0<\mp@subsup{\delta}{}{\prime}\rangle\langle0<\delta\rangle\mathrm{ divide_pos_pos min_less_iff_conj zero_less_numeral)
have dist (fz) (fy)<e/2
using \mp@subsup{\delta}{}{\prime}}[OF\langlez\inS\rangle]z\langle0<\mp@subsup{\delta}{}{\prime}\rangle by metri
moreover have dist (fz) (fx)<e/2
using }\delta[OF<z\inS`]z dyx by metric
ultimately show ?thesis
by metric
qed
then show \existsd>0.\forall\mp@subsup{x}{}{\prime}\in\mathrm{ closure S. dist }\mp@subsup{x}{}{\prime}x<d\longrightarrow\operatorname{dist}(f\mp@subsup{x}{}{\prime})(fx)\leqe
by (rule_tac x= //2 in exI) (simp add: < < > 0\rangle)
qed
qed
lemma continuous_on_closure_sequentially:
fixes f :: 'a::metric_space = 'b :: metric_space
shows
continuous_on (closure S) f}
(\forallxa.a\in closure S ^(\foralln.x n\inS)\wedgex\longrightarrowa\longrightarrow(f\circx)\longrightarrow \longrightarrowa)
(is ?lhs = ?rhs)
proof -
have continuous_on (closure S) f\longleftrightarrow
(\forallx \in closure S.continuous (at x within S) f)
by (force simp: continuous_on_closure continuous_within_eps_delta)
also have ... = ?rhs
by (force simp: continuous_within_sequentially)
finally show ?thesis.
qed

```
```

lemma uniformly_continuous_on_closure:
fixes f :: 'a::metric_space => 'b::metric_space
assumes ucont: uniformly_continuous_on S f
and cont: continuous_on (closure S) f
shows uniformly_continuous_on (closure S) f
unfolding uniformly_continuous_on_def
proof (intro allI impI)
fix e::real
assume 0<e
 then obtain d::real
 where d>0
and d: \bigwedgex x'. \llbracketx\inS; x'\inS; dist }\mp@subsup{x}{}{\prime}x<d\rrbracket\Longrightarrow\operatorname{dist}(fx)(fx)<e/
using ucont [unfolded uniformly_continuous_on_def, rule_format, of e/3] by
auto
show \existsd>0.\forallx\inclosure S. \forall\mp@subsup{x}{}{\prime}\in\mathrm{ closure S. dist }\mp@subsup{x}{}{\prime}x<d\longrightarrow\operatorname{dist}(f\mp@subsup{x}{}{\prime})(fx)
< e
proof (rule exI [where x=d/3], clarsimp simp: <d > 0))
fix }x
assume x:x\in closure S and y:y\inclosure S and dyx: dist y x* 3<d
 obtain d1::real where d1>0
and d1: \bigwedgew. \llbracketw\in closure S; dist wx<d1\rrbracket\Longrightarrow dist (fw) (fx)<e/3
using cont [unfolded continuous_on_iff, rule_format, of x e/3] <0<e\ranglex by
auto
obtain }\mp@subsup{x}{}{\prime}\mathrm{ where }\mp@subsup{x}{}{\prime}\inS\mathrm{ and }\mp@subsup{x}{}{\prime}:\mathrm{ dist }\mp@subsup{x}{}{\prime}x<\operatorname{min}d1(d/3
using closure_approachable [of x S]
by (metis <0 < d1><0<d> divide_pos_pos min_less_iff_conj x zero_less_numeral)
obtain d2::real where d2 > 0
and d2: \forallw c closure S. dist w y<d2 \longrightarrow dist (fw) (fy)<e/3
using cont [unfolded continuous_on_iff,rule_format, of y e/3] <0<e\rangle y by
auto
obtain }\mp@subsup{y}{}{\prime}\mathrm{ where }\mp@subsup{y}{}{\prime}\inS\mathrm{ and }\mp@subsup{y}{}{\prime}:\mathrm{ dist }\mp@subsup{y}{}{\prime}y<\operatorname{min}d2(d/3
using closure_approachable [of y S]
by (metis }\langle0<d2\rangle\langle0<d\rangle divide_pos_pos min_less_iff_conj y zero_less_numeral)
have dist }\mp@subsup{x}{}{\prime}x<d/3 using \mp@subsup{x}{}{\prime}\mathrm{ by auto
then have dist x' y'<d
using dyx y' by metric
then have dist (f f ') (f y')<e/3
by (rule d [OF \langle\mp@subsup{y}{}{\prime}\inS\rangle\langle\mp@subsup{x}{}{\prime}\inS\rangle])
moreover have dist (f x') (fx)<e/3 using \langlex' \inS> closure_subset x'd1
by (simp add: closure_def)
moreover have dist (f y')}(fy)<e/3 using < < ' | S` closure_subset y y d2
by (simp add: closure_def)
ultimately show dist (fy)(fx)<e by metric
qed
qed
lemma uniformly_continuous_on_extension_at_closure:
fixes f::'a::metric_space = 'b::complete_space
assumes uc:uniformly_continuous_on X f

```
```

assumes $x \in$ closure X
obtains l where $(f \longrightarrow l)$ (at x within X)
proof -
from assms obtain $x s$ where $x s: x s \longrightarrow x \bigwedge n$. xs $n \in X$
by (auto simp: closure_sequential)
from uniformly_continuous_on_Cauchy[OF uc LIMSEQ_imp_Cauchy, OF xs]
obtain l where $l:(\lambda n . f(x s n)) \longrightarrow l$
by atomize_elim (simp only: convergent_eq_Cauchy)
have $(f \longrightarrow l)($ at x within $X)$
proof (safe intro!: Lim_within_LIMSEQ)
fix $x s^{\prime}$
assume $\forall n$. $x s^{\prime} n \neq x \wedge x s^{\prime} n \in X$
and $x s^{\prime}: x s^{\prime} \longrightarrow x$
then have $x s^{\prime} n \neq x x s^{\prime} n \in X$ for n by auto
from uniformly_continuous_on_Cauchy[OF uc LIMSEQ_imp_Cauchy, OF 〈xs'
$\left.\rightarrow x\rangle\left\langle x s^{\prime}{ }_{-} \in X\right\rangle\right]$
obtain l^{\prime} where $l^{\prime}:\left(\lambda n . f\left(x s^{\prime} n\right)\right) \longrightarrow l^{\prime}$
by atomize_elim (simp only: convergent_eq_Cauchy)
show $\left(\lambda n . f\left(x s^{\prime} n\right)\right) \longrightarrow l$
proof (rule tendstoI)
fix $e:$:real assume $e>0$
define e^{\prime} where $e^{\prime} \equiv e / 2$
have $e^{\prime}>0$ using $\langle e>0\rangle$ by (simp add: $e^{\prime} _d e f$)
have $\forall_{F} n$ in sequentially. dist $(f(x s n)) l<e^{\prime}$
by (simp add: $\left\langle 0<e^{〉}\right\rangle$ l tendstoD)
moreover
from uc[unfolded uniformly_continuous_on_def, rule_format, $O F\left\langle e^{\prime}>0\right\rangle$]
obtain d where $d: d>0 \bigwedge x x^{\prime} . x \in X \Longrightarrow x^{\prime} \in X \Longrightarrow$ dist $x x^{\prime}<d \Longrightarrow$
dist $(f x)\left(f x^{\prime}\right)<e^{\prime}$
by auto
have $\forall_{F} n$ in sequentially. dist (xs n) $\left(x s^{\prime} n\right)<d$
by (auto intro!: $\langle 0<d\rangle$ order_tendstoD tendsto_eq_intros xs xs ${ }^{\prime}$)
ultimately
show $\forall_{F} n$ in sequentially. $\operatorname{dist}\left(f\left(x s^{\prime} n\right)\right) l<e$
proof eventually_elim
case (elim n)
have $\operatorname{dist}\left(f\left(x s^{\prime} n\right)\right) l \leq \operatorname{dist}(f(x s n))\left(f\left(x s^{\prime} n\right)\right)+\operatorname{dist}(f(x s n)) l$
by metric
also have $\operatorname{dist}(f(x s n))\left(f\left(x s^{\prime} n\right)\right)<e^{\prime}$
by (auto intro!: $d x s\left\langle x s^{\prime} \in_{-}\right\rangle$elim)
also note $\left\langle\operatorname{dist}(f(x s n)) l<e^{\prime}\right\rangle$
also have $e^{\prime}+e^{\prime}=e$ by (simp add: $\left.e^{\prime} _d e f\right)$
finally show? case by simp
qed

```
```

 qed
 qed
 thus ?thesis ..
 qed

```
lemma uniformly_continuous_on_extension_on_closure:
fixes \(f::\) 'a::metric_space \(\Rightarrow\) ' \(b::\) complete_space
assumes uc: uniformly_continuous_on \(X f\)
obtains \(g\) where uniformly_continuous_on (closure \(X\) ) \(g \bigwedge x . x \in X \Longrightarrow f x=\) \(g x\)
\(\bigwedge Y h x . X \subseteq Y \Longrightarrow Y \subseteq\) closure \(X \Longrightarrow\) continuous_on \(Y h \Longrightarrow(\bigwedge x . x \in X\) \(\Longrightarrow f x=h x) \Longrightarrow x \in Y \Longrightarrow h x=g x\)
proof -
from uc have cont_f: continuous_on \(X f\) by (simp add: uniformly_continuous_imp_continuous)
obtain \(y\) where \(y:(f \longrightarrow y x)(\) at \(x\) within \(X)\) if \(x \in\) closure \(X\) for \(x\) apply atomize_elim apply (rule choice) using uniformly_continuous_on_extension_at_closure[OF assms] by metis
let \(? g=\lambda x\). if \(x \in X\) then \(f x\) else \(y x\)
have uniformly_continuous_on (closure X) ?g unfolding uniformly_continuous_on_def
proof safe
fix \(e\) :: real assume \(e>0\)
define \(e^{\prime}\) where \(e^{\prime} \equiv e / 3\)
have \(e^{\prime}>0\) using \(\langle e>0\rangle\) by (simp add: \(e^{\prime}{ }_{\text {_ }}\) def)
from uc[unfolded uniformly_continuous_on_def, rule_format, \(\left.O F<0<e^{\prime}\right\rangle\) ]
obtain \(d\) where \(d>0\) and \(d: \bigwedge x x^{\prime} . x \in X \Longrightarrow x^{\prime} \in X \Longrightarrow\) dist \(x^{\prime} x<d\)
\(\Longrightarrow \operatorname{dist}\left(f x^{\prime}\right)(f x)<e^{\prime}\)
by auto
define \(d^{\prime}\) where \(d^{\prime}=d / 3\)
have \(d^{\prime}>0\) using \(\langle d>0\rangle\) by (simp add: \(d^{\prime} \_d e f\) )
show \(\exists d>0 . \forall x \in\) closure \(X . \forall x^{\prime} \in\) closure \(X\). dist \(x^{\prime} x<d \longrightarrow \operatorname{dist}\left(? g x^{\prime}\right)(? g\)
\(x)<e\)
proof (safe intro!: exI[where \(\left.x=d^{\prime}\right]\left\langle d^{\prime}>0\right\rangle\) )
fix \(x x^{\prime}\) assume \(x: x \in\) closure \(X\) and \(x^{\prime}: x^{\prime} \in\) closure \(X\) and dist: dist \(x^{\prime} x\) \(<d^{\prime}\)
then obtain \(x s x s^{\prime}\) where \(x s: x s \longrightarrow x \bigwedge n\). xs \(n \in X\)
and \(x s^{\prime}: x s^{\prime} \longrightarrow x^{\prime} \bigwedge n . x s^{\prime} n \in X\)
by (auto simp: closure_sequential)
have \(\forall_{F} n\) in sequentially. dist \(\left(x s^{\prime} n\right) x^{\prime}<d^{\prime}\)
and \(\forall_{F} n\) in sequentially. dist ( \(x s n\) ) \(x<d^{\prime}\)
by (auto intro!: \(\left\langle 0<d^{\prime}\right\rangle\) order_tendsto \(D\) tendsto_eq_intros \(x s x s^{\prime}\) )
moreover
have \((\lambda x . f(x s x)) \longrightarrow y x\) if \(x \in\) closure \(X x \notin X x s \longrightarrow x \wedge n . x s n\)
\(\in X\) for \(x s x\)
using that not_eventually \(D\)
by (force intro!: filterlim_compose \([O F y[O F\langle x \in\) closure \(X\rangle]]\) simp: filterlim_at)
then have \(\left(\lambda x . f\left(x s^{\prime} x\right)\right) \longrightarrow ? g x^{\prime}(\lambda x . f(x s x)) \longrightarrow ? g x\)
using \(x x^{\prime}\)
by (auto intro!: continuous_on_tendsto_compose[OF cont_f] simp: xs' xs)
then have \(\forall_{F} n\) in sequentially. dist \(\left(f\left(x s^{\prime} n\right)\right)\left(? g x^{\prime}\right)<e^{\prime}\)
\(\forall_{F} n\) in sequentially. dist \((f(x s n))(? g x)<e^{\prime}\)
by (auto intro!: \(\left\langle 0<e^{\prime}\right\rangle\) order_tendstoD tendsto_eq_intros)
ultimately
have \(\forall_{F} n\) in sequentially. dist \(\left(? g x^{\prime}\right)(? g x)<e\)
proof eventually_elim
case (elim n)
have dist \(\left(? g x^{\prime}\right)(? g x) \leq\)
\[
\operatorname{dist}\left(f\left(x s^{\prime} n\right)\right)\left(? g x^{\prime}\right)+\operatorname{dist}\left(f\left(x s^{\prime} n\right)\right)(f(x s n))+\operatorname{dist}(f(x s n))(? g
\]
x)
by (metis add.commute add_le_cancel_left dist_commute dist_triangle dist_triangle_le)
also
from 〈dist \(\left.\left(x s^{\prime} n\right) x^{\prime}<d^{\prime}\right\rangle\left\langle d i s t x^{\prime} x<d^{\prime}\right\rangle\left\langle d i s t\right.\) (xs n) \(\left.x<d^{\prime}\right\rangle\)
have dist \(\left(x s^{\prime} n\right)(x s n)<d\) unfolding \(d^{\prime}{ }^{\prime} d e f\) by metric
with \(\left\langle x s_{-} \in X\right\rangle\left\langle x s^{\prime}{ }_{-} \in X\right\rangle\) have \(\operatorname{dist}\left(f\left(x s^{\prime} n\right)\right)(f(x s n))<e^{\prime}\) by (rule d)
also note \(\left\langle\operatorname{dist}\left(f\left(x s^{\prime} n\right)\right)\left(? g x^{\prime}\right)<e^{\prime}\right\rangle\)
also note \(\left\langle\operatorname{dist}(f(x s n))(? g x)<e^{\prime}\right\rangle\)
finally show? ?case by (simp add: \(e^{\prime}\) _def)
qed
then show dist \(\left(? g x^{\prime}\right)(? g x)<e\) by simp
qed
qed
moreover have \(f x=? g x\) if \(x \in X\) for \(x\) using that by simp moreover
\{
fix \(Y h x\)
assume \(Y: x \in Y X \subseteq Y Y \subseteq\) closure \(X\) and cont_h: continuous_on \(Y h\) and extension: \((\bigwedge x . x \in X \Longrightarrow f x=h x)\)
\{
assume \(x \notin X\)
have \(x \in\) closure \(X\) using \(Y\) by auto
then obtain \(x s\) where \(x s: x s \longrightarrow x \bigwedge n\). xs \(n \in X\)
by (auto simp: closure_sequential)
from continuous_on_tendsto_compose[OF cont_h xs(1)] xs(2) Y
have \(h x:(\lambda x . f(x s x)) \longrightarrow h x\)
by (auto simp: subsetD extension)
then have \((\lambda x . f(x s x)) \longrightarrow y x\)
using \(\langle x \notin X\rangle\) not_eventuallyD \(x s(2)\)
by (force intro!: filterlim_compose[OF y[OF 〈x closure \(X\rangle]]\) simp: filterlim_at xs)
with \(h x\) have \(h x=y x\) by (rule LIMSEQ_unique)
\} then
```

 have hx=?g x
 using extension by auto
 }
ultimately show ?thesis ..
qed
lemma bounded_uniformly_continuous_image:
fixes f :: ' }a\mathrm{ :: heine_borel }=>\mathrm{ ' 'b :: heine_borel
assumes uniformly_continuous_on S f bounded S
shows bounded(f 'S)
by (metis (no_types, lifting) assms bounded_closure_image compact_closure com-
pact_continuous_image compact_eq_bounded_closed image_cong uniformly_continuous_imp_continuous
uniformly_continuous_on_extension_on_closure)

```

\subsection*{3.2.25 With Abstract Topology (TODO: move and remove dependency?)}
lemma openin_contains_ball:
openin (top_of_set \(T) S \longleftrightarrow\)
\(S \subseteq T \wedge(\forall x \in S . \exists e .0<e \wedge\) ball \(x e \cap T \subseteq S)\)
(is ?lhs \(=\) ? \(r h s\) )
proof
assume ?lhs
then show? ?rhs
apply (simp add: openin_open)
apply (metis Int_commute Int_mono inf.cobounded2 open_contains_ball or-
der_refl subsetCE)
done
next
assume ?rhs
then show ?lhs
apply (simp add: openin_euclidean_subtopology_iff)
by (metis (no_types) Int_iff dist_commute inf.absorb_iff2 mem_ball)
qed
lemma openin_contains_cball:
openin (top_of_set \(T) S \longleftrightarrow\)
\(S \subseteq T \wedge(\forall x \in S . \exists e .0<e \wedge\) cball \(x e \cap T \subseteq S)\)
(is ? lhs = ? \(r h s\) )
proof
assume ?lhs
then show? ?hs
by (force simp add: openin_contains_ball intro: exI [where \(x=-/ 2]\) )
next
assume ?rhs
then show? ?hs
by (force simp add: openin_contains_ball)
qed

\subsection*{3.2.26 Closed Nest}

Bounded closed nest property (proof does not use Heine-Borel)
```

lemma bounded_closed_nest:
fixes }S:: nat => ('a::heine_borel) se
assumes \n. closed (S n)
and }\bigwedgen.Sn\not={
and }\mn.m\leqn\LongrightarrowSn\subseteqS
and bounded (S O)
obtains a where \n.a\inS n
proof -
from assms(2) obtain x where x: }\foralln.xn\inS
using choice[of \lambdan x. x \inS n] by auto
from assms(4,1) have seq_compact (S 0)
by (simp add: bounded_closed_imp_seq_compact)
then obtain lr where lr:l\inS 0 strict_mono r (x\circr)\longrightarrowl
using x and assms(3) unfolding seq_compact_def by blast
have }\foralln.l\inS
proof
fix n :: nat
have closed (S n)
using assms(1) by simp
moreover have }\foralli.(x\circr)i\inS
using x and assms(3) and lr(2) [THEN seq_suble] by auto
then have }\foralli.(x\circr)(i+n)\inS
using assms(3) by (fast intro!: le_add2)
moreover have (\lambdai. (x\circr)(i+n))\longrightarrowl
using lr(3) by (rule LIMSEQ_ignore_initial_segment)
ultimately show l \inS n
by (rule closed_sequentially)
qed
then show ?thesis
using that by blast
qed

```

Decreasing case does not even need compactness, just completeness.
lemma decreasing_closed_nest:
fixes \(S::\) nat \(\Rightarrow\) ('a::complete_space) set
assumes \(\bigwedge n\). closed ( \(S n\) )
\(\wedge n . S n \neq\{ \}\)
\(\bigwedge m n . m \leq n \Longrightarrow S n \subseteq S m\)
\(\bigwedge e . e>0 \Longrightarrow \exists n . \forall x \in S n . \forall y \in S n\). dist \(x y<e\)
obtains \(a\) where \(\bigwedge n . a \in S n\)
proof -
have \(\forall n . \exists x . x \in S n\)
using assms(2) by auto
then have \(\exists t . \forall n . t n \in S n\)
using choice \([o f \lambda n x . x \in S n]\) by auto
then obtain \(t\) where \(t: \forall n\). \(t n \in S n\) by auto
```

 {
    ```
        fix \(e\) :: real
        assume \(e>0\)
        then obtain \(N\) where \(N: \forall x \in S N . \forall y \in S N\). dist \(x y<e\)
            using assms(4) by blast
        \{
            fix \(m n\) :: nat
            assume \(N \leq m \wedge N \leq n\)
            then have \(t m \in S N t n \in S N\)
                using assms(3) \(t\) unfolding subset_eq \(t\) by blast+
            then have dist \((t m)(t n)<e\)
                using \(N\) by auto
    \}
    then have \(\exists N . \forall m n . N \leq m \wedge N \leq n \longrightarrow \operatorname{dist}(t m)(t n)<e\)
        by auto
    \}
    then have Cauchy \(t\)
        unfolding cauchy_def by auto
    then obtain \(l\) where \(l:(t \longrightarrow l)\) sequentially
        using complete_UNIV unfolding complete_def by auto
    \{ fix \(n::\) nat
        \{ fix \(e\) :: real
        assume \(e>0\)
        then obtain \(N::\) nat where \(N: \forall n \geq N\). dist \((t n) l<e\)
            using l[unfolded lim_sequentially] by auto
            have \(t(\max n N) \in S n\)
                by (meson assms(3) contra_subsetD max.cobounded1 \(t\) )
        then have \(\exists y \in S n\). dist \(y l<e\)
            using \(N\) max.cobounded2 by blast
    \}
    then have \(l \in S n\)
        using closed_approachable[of \(S n l\) assms(1) by auto
    \}
    then show ?thesis
        using that by blast
qed

Strengthen it to the intersection actually being a singleton.
```

lemma decreasing_closed_nest_sing:
fixes $S::$ nat $\Rightarrow{ }^{\prime} a::$ complete_space set
assumes $\bigwedge n . \operatorname{closed}(S n)$
$\wedge n . S n \neq\{ \}$
$\bigwedge m n . m \leq n \Longrightarrow S n \subseteq S m$
$\bigwedge e . e>0 \Longrightarrow \exists n . \forall x \in(S n) . \forall y \in(S n)$. dist $x y<e$
shows $\exists a$. $\bigcap($ range $S)=\{a\}$
proof -
obtain a where $a: \forall n . a \in S n$
using decreasing_closed_nest $[$ of $S]$ using assms by auto
$\{$ fix b

```
```

 assume b:b\in\bigcap(range S)
 {fix e :: real
 assume e>0
 then have dist a b<e
 using assms(4) and b and a by blast
 }
 then have dist a b=0
 by (metis dist_eq_0_iff dist_nz less_le)
 }
 with a have }\bigcap(\mathrm{ range S)={a}
 unfolding image_def by auto
 then show ?thesis ..
 qed

```

\subsection*{3.2.27 Making a continuous function avoid some value in a neighbourhood}
lemma continuous_within_avoid:
fixes \(f::\) ' \(a::\) metric_space \(\Rightarrow{ }^{\prime} b::\) t1_space
assumes continuous (at \(x\) within s) \(f\)
and \(f x \neq a\)
shows \(\exists e>0 . \forall y \in s\). dist \(x y<e-->f y \neq a\)
proof -
obtain \(U\) where open \(U\) and \(f x \in U\) and \(a \notin U\)
using t1_space \([O F\langle f x \neq a\rangle]\) by fast
have \((f \longrightarrow f x)\) (at \(x\) within \(s\) )
using assms(1) by (simp add: continuous_within)
then have eventually \((\lambda y . f y \in U)(\) at \(x\) within \(s)\)
using 〈open \(U\rangle\) and \(\langle f x \in U\rangle\)
unfolding tendsto_def by fast
then have eventually \((\lambda y . f y \neq a)\) (at \(x\) within \(s\) )
using \(\langle a \notin U\rangle\) by (fast elim: eventually_mono)
then show ?thesis
using \(\langle f x \neq a\rangle\) by (auto simp: dist_commute eventually_at)
qed
lemma continuous_at_avoid:
fixes \(f::\) ' \(a::\) metric_space \(\Rightarrow\) ' \(b::\) t1_space
assumes continuous (at \(x\) ) \(f\)
and \(f x \neq a\)
shows \(\exists e>0 . \forall y\). dist \(x y<e \longrightarrow f y \neq a\)
using assms continuous_within_avoid \([\) of \(x\) UNIV fa] by simp
lemma continuous_on_avoid:
fixes \(f::\) ' \(a::\) metric_space \(\Rightarrow^{\prime} b::\) t1_space
assumes continuous_on sf
and \(x \in s\)
and \(f x \neq a\)
shows \(\exists e>0 . \forall y \in s\). dist \(x y<e \longrightarrow f y \neq a\)
using assms(1)[unfolded continuous_on_eq_continuous_within, THEN bspec[where \(x=x]\),

OF assms(2)] continuous_within_avoid[of \(x\) s \(f a]\)
using assms(3)
by auto
lemma continuous_on_open_avoid:
fixes \(f::\) ' \(a::\) metric_space \(\Rightarrow\) 'b::t1_space
assumes continuous_on \(s f\)
and open \(s\)
and \(x \in s\)
and \(f x \neq a\)
shows \(\exists e>0 . \forall y\). dist \(x y<e \longrightarrow f y \neq a\)
using assms(1)[unfolded continuous_on_eq_continuous_at[OF assms(2)], THEN
bspec[where \(x=x]\), OF assms(3)]
using continuous_at_avoid \([\) of \(x f\) a] assms(4)
by auto

\subsection*{3.2.28 Consequences for Real Numbers}
lemma closed_contains_Inf:
fixes \(S\) :: real set
shows \(S \neq\{ \} \Longrightarrow\) bdd_below \(S \Longrightarrow\) closed \(S \Longrightarrow\) Inf \(S \in S\)
by (metis closure_contains_Inf closure_closed)
lemma closed_subset_contains_Inf:
fixes \(A C\) :: real set
shows closed \(C \Longrightarrow A \subseteq C \Longrightarrow A \neq\{ \} \Longrightarrow\) bdd_below \(A \Longrightarrow \operatorname{Inf} A \in C\)
by (metis closure_contains_Inf closure_minimal subset_eq)
lemma closed_contains_Sup:
fixes \(S\) :: real set
shows \(S \neq\{ \} \Longrightarrow\) bdd_above \(S \Longrightarrow\) closed \(S \Longrightarrow\) Sup \(S \in S\)
by (subst closure_closed[symmetric], assumption, rule closure_contains_Sup)
lemma closed_subset_contains_Sup:
fixes \(A C\) :: real set
shows closed \(C \Longrightarrow A \subseteq C \Longrightarrow A \neq\{ \} \Longrightarrow\) bdd_above \(A \Longrightarrow\) Sup \(A \in C\)
by (metis closure_contains_Sup closure_minimal subset_eq)
lemma atLeastAtMost_subset_contains_Inf:
fixes \(A\) :: real set and \(a b\) :: real
shows \(A \neq\{ \} \Longrightarrow a \leq b \Longrightarrow A \subseteq\{a . . b\} \Longrightarrow \operatorname{Inf} A \in\{a . . b\}\)
by (rule closed_subset_contains_Inf)
(auto intro: closed_real_atLeastAtMost intro!: bdd_belowI[of A a])
lemma bounded_real: bounded \((S::\) real set \() \longleftrightarrow(\exists a . \forall x \in S .|x| \leq a)\)
by (simp add: bounded_iff)
```

lemma bounded_imp_bdd_above: bounded $S \Longrightarrow$ bdd_above (S :: real set)
by (auto simp: bounded_def bdd_above_def dist_real_def)
(metis abs_le_D1 abs_minus_commute diff_le_eq)
lemma bounded_imp_bdd_below: bounded $S \Longrightarrow$ bdd_below (S :: real set)
by (auto simp: bounded_def bdd_below_def dist_real_def)
(metis abs_le_D1 add.commute diff_le_eq)
lemma bounded_has_Sup:
fixes S :: real set
assumes bounded S
and $S \neq\{ \}$
shows $\forall x \in S . x \leq S u p S$
and $\forall b .(\forall x \in S . x \leq b) \longrightarrow S u p S \leq b$
proof
show $\forall b .(\forall x \in S . x \leq b) \longrightarrow S u p S \leq b$
using assms by (metis cSup_least)
qed (metis cSup_upper assms(1) bounded_imp_bdd_above)
lemma Sup_insert:
fixes S :: real set
shows bounded $S \Longrightarrow$ Sup (insert $x S)=($ if $S=\{ \}$ then x else max $x(S u p S)$)
by (auto simp: bounded_imp_bdd_above sup_max cSup_insert_If)
lemma bounded_has_Inf:
fixes S :: real set
assumes bounded S
and $S \neq\{ \}$
shows $\forall x \in S . x \geq \operatorname{Inf} S$
and $\forall b .(\forall x \in S . x \geq b) \longrightarrow \operatorname{Inf} S \geq b$
proof
show $\forall b .(\forall x \in S . x \geq b) \longrightarrow$ Inf $S \geq b$
using assms by (metis cInf_greatest)
qed (metis cInf_lower assms(1) bounded_imp_bdd_below)
lemma Inf_insert:
fixes S :: real set
shows bounded $S \Longrightarrow$ Inf $($ insert $x S)=($ if $S=\{ \}$ then x else $\min x(\operatorname{Inf} S))$
by (auto simp: bounded_imp_bdd_below inf_min cInf_insert_If)
lemma open_real:
fixes s :: real set
shows open $s \longleftrightarrow\left(\forall x \in s . \exists e>0 . \forall x^{\prime} .\left|x^{\prime}-x\right|<e-->x^{\prime} \in s\right)$
unfolding open_dist dist_norm by simp
lemma islimpt_approachable_real:
fixes $s:$: real set
shows x islimpt $s \longleftrightarrow\left(\forall e>0 . \exists x^{\prime} \in s . x^{\prime} \neq x \wedge\left|x^{\prime}-x\right|<e\right)$
unfolding islimpt_approachable dist_norm by simp

```
```

lemma closed_real:
fixes $s:$ real set
shows closed $s \longleftrightarrow\left(\forall x .\left(\forall e>0 . \exists x^{\prime} \in s . x^{\prime} \neq x \wedge\left|x^{\prime}-x\right|<e\right) \longrightarrow x \in s\right)$
unfolding closed_limpt islimpt_approachable dist_norm by simp
lemma continuous_at_real_range:
fixes f :: 'a::real_normed_vector \Rightarrow real
shows continuous (at $x) f \longleftrightarrow\left(\forall e>0 . \exists d>0 . \forall x^{\prime} . \operatorname{norm}\left(x^{\prime}-x\right)<d-->\mid f\right.$
$\left.x^{\prime}-f x \mid<e\right)$
unfolding continuous_at
unfolding Lim_at
unfolding dist_norm
apply auto
apply (erule_tac $x=e$ in allE, auto)
apply (rule_tac $x=d$ in exI, auto)
apply (erule_tac $x=x^{\prime}$ in allE, auto)
apply (erule_tac $x=e$ in allE, auto)
done
lemma continuous_on_real_range:
fixes f :: 'a::real_normed_vector \Rightarrow real
shows continuous_on s $f \longleftrightarrow$
$\left(\forall x \in s . \forall e>0 . \exists d>0 .\left(\forall x^{\prime} \in \operatorname{s.} \operatorname{norm}\left(x^{\prime}-x\right)<d \longrightarrow\left|f x^{\prime}-f x\right|<e\right)\right)$
unfolding continuous_on_iff dist_norm by simp
lemma continuous_on_closed_Collect_le:
fixes $f g$:: 'a::topological_space \Rightarrow real
assumes f : continuous_on sf and g : continuous_on sgand s : closed s
shows closed $\{x \in$ s. $f x \leq g x\}$
proof -
have closed $((\lambda x . g x-f x)-‘\{0 ..\} \cap s)$
using closed_real_atLeast continuous_on_diff $[$ OF $g f]$
by (simp add: continuous_on_closed_vimage $[O F s]$)
also have $((\lambda x . g x-f x)-'\{0 ..\} \cap s)=\{x \in s . f x \leq g x\}$
by auto
finally show ?thesis.
qed
lemma continuous_le_on_closure:
fixes a ::real
assumes f : continuous_on (closure s) f
and $x: x \in$ closure (s)
and xlo: $\bigwedge x . x \in s==>f(x) \leq a$
shows $f(x) \leq a$
using image_closure_subset [OF f, where $T=\{x . x \leq a\}$] assms
continuous_on_closed_Collect_le[of UNIV $\lambda x . x \lambda x$. a]
by auto

```
```

lemma continuous_ge_on_closure:
fixes a ::real
assumes f : continuous_on (closure s) f
and $x: x \in \operatorname{closure}(s)$
and xlo: $\wedge x . x \in s==>f(x) \geq a$
shows $f(x) \geq a$
using image_closure_subset $[O F f$, where $T=\{x . a \leq x\}]$ assms
continuous_on_closed_Collect_le[of UNIV λx. $a \lambda x . x]$
by auto

```

\subsection*{3.2.29 The infimum of the distance between two sets}
definition setdist \(::\) ' \(a::\) metric_space set \(\Rightarrow\) ' \(a\) set \(\Rightarrow\) real where setdist \(s t \equiv\)
(if \(s=\{ \} \vee t=\{ \}\) then 0 else Inf \(\{\) dist \(x y \mid x y . x \in s \wedge y \in t\})\)
lemma setdist_empty1 [simp]: setdist \(\} t=0\)
by (simp add: setdist_def)
lemma setdist_empty2 [simp]: setdist \(t\}=0\)
by (simp add: setdist_def)
lemma setdist_pos_le [simp]: \(0 \leq\) setdist s t
by (auto simp: setdist_def ex_in_conv [symmetric] intro: cInf_greatest)
lemma le_setdistI:
assumes \(s \neq\{ \} t \neq\{ \} \bigwedge x y . \llbracket x \in s ; y \in t \rrbracket \Longrightarrow d \leq \operatorname{dist} x y\)
shows \(d \leq\) setdist \(s t\)
using assms
by (auto simp: setdist_def Set.ex_in_conv [symmetric] intro: cInf_greatest)
lemma setdist_le_dist: \(\llbracket x \in s ; y \in t \rrbracket \Longrightarrow\) setdist \(s t \leq\) dist \(x y\)
unfolding setdist_def
by (auto intro!: bdd_belowI [where \(m=0\) ] cInf_lower)
lemma le_setdist_iff:
\(d \leq\) setdist \(S T \longleftrightarrow\)
\((\forall x \in S . \forall y \in T . d \leq\) dist \(x y) \wedge(S=\{ \} \vee T=\{ \} \longrightarrow d \leq 0)\)
apply (cases \(S=\{ \} \vee T=\{ \}\) )
apply (force simp add: setdist_def)
apply (intro iffI conjI)
using setdist_le_dist apply fastforce
apply (auto simp: intro: le_setdistI)
done
lemma setdist_ltE
assumes setdist \(S T<b S \neq\{ \} T \neq\{ \}\)
obtains \(x y\) where \(x \in S y \in T\) dist \(x y<b\)
```

using assms
by (auto simp: not_le [symmetric] le_setdist_iff)
lemma setdist_refl: setdist $S S=0$
apply (cases $S=\{ \}$)
apply (force simp add: setdist_def)
apply (rule antisym [OF _ setdist_pos_le])
apply (metis all_not_in_conv dist_self setdist_le_dist)
done
lemma setdist_sym: setdist $S T=$ setdist $T S$
by (force simp: setdist_def dist_commute intro!: arg_cong [where $f=$ Inf] $)$
lemma setdist_triangle: setdist $S T \leq$ setdist $S\{a\}+$ setdist $\{a\} T$
proof (cases $S=\{ \} \vee T=\{ \}$)
case True then show ?thesis
using setdist_pos_le by fastforce
next
case False
then have $\Lambda x . x \in S \Longrightarrow$ setdist $S T-\operatorname{dist} x a \leq \operatorname{setdist}\{a\} T$
apply (intro le_setdistI)
apply (simp_all add: algebra_simps)
apply (metis dist_commute dist_triangle3 order_trans $[$ OF setdist_le_dist $]$)
done
then have setdist $S T-$ setdist $\{a\} T \leq$ setdist $S\{a\}$
using False by (fastforce intro: le_setdistI)
then show ?thesis
by (simp add: algebra_simps)
qed
lemma setdist_singletons $[$ simp $]$: setdist $\{x\}\{y\}=$ dist $x y$
by (simp add: setdist_def)
lemma setdist_Lipschitz: \mid setdist $\{x\} S-$ setdist $\{y\} S \mid \leq$ dist $x y$
apply (subst setdist_singletons [symmetric])
by (metis abs_diff_le_iff diff_le_eq setdist_triangle setdist_sym)

```
lemma continuous_at_setdist [continuous_intros]: continuous (at \(x)\) ( \(\lambda y\). (setdist \(\{y\} S)\) )
by (force simp: continuous_at_eps_delta dist_real_def intro: le_less_trans [OF setdist_Lipschitz])
lemma continuous_on_setdist [continuous_intros]: continuous_on \(T\) ( \(\lambda y\). (setdist \(\{y\} S)\) )
by (metis continuous_at_setdist continuous_at_imp_continuous_on)
lemma uniformly_continuous_on_setdist: uniformly_continuous_on \(T\) ( \(\lambda y\). (setdist \(\{y\} S)\) )
by (force simp: uniformly_continuous_on_def dist_real_def intro: le_less_trans [OF
```

setdist_Lipschitz])
lemma setdist_subset_right: $\llbracket T \neq\{ \} ; T \subseteq u \rrbracket \Longrightarrow$ setdist $S u \leq$ setdist $S T$
apply (cases $S=\{ \} \vee u=\{ \}$, force)
apply (auto simp: setdist_def intro!: bdd_below $[$ where $m=0$] cInf_superset_mono)
done
lemma setdist_subset_left: $\llbracket S \neq\{ \} ; S \subseteq T \rrbracket \Longrightarrow$ setdist $T u \leq$ setdist $S u$
by (metis setdist_subset_right setdist_sym)
lemma setdist_closure_1 [simp]: setdist (closure S) $T=$ setdist $S T$
proof (cases $S=\{ \} \vee T=\{ \}$)
case True then show?thesis by force
next
case False
\{ fix y
assume $y \in T$
have continuous_on (closure $S)(\lambda a$. dist a y)
by (auto simp: continuous_intros dist_norm)
then have $*: \bigwedge x . x \in$ closure $S \Longrightarrow$ setdist $S T \leq$ dist $x y$
by (fast intro: setdist_le_dist $\langle y \in T\rangle$ continuous_ge_on_closure)
\} note $*=$ this
show ?thesis
apply (rule antisym)
using False closure_subset apply (blast intro: setdist_subset_left)
using False * apply (force intro!: le_setdistI)
done
qed
lemma setdist_closure_2 [simp]: setdist $T($ closure $S)=$ setdist $T S$
by (metis setdist_closure_1 setdist_sym)
lemma setdist_eq_0I: $\llbracket x \in S ; x \in T \rrbracket \Longrightarrow$ setdist $S T=0$
by (metis antisym dist_self setdist_le_dist setdist_pos_le)
lemma setdist_unique:
$\llbracket a \in S ; b \in T ; \bigwedge x y . x \in S \wedge y \in T==>$ dist $a b \leq d i s t x y \rrbracket$
\Longrightarrow setdist $S T=$ dist $a b$
by (force simp add: setdist_le_dist le_setdist_iff intro: antisym)
lemma setdist_le_sing: $x \in S==>$ setdist $S T \leq$ setdist $\{x\} T$
using setdist_subset_left by auto
lemma infdist_eq_setdist: infdist $x A=$ setdist $\{x\} A$
by (simp add: infdist_def setdist_def Setcompr_eq_image)
lemma setdist_eq_infdist: setdist $A B=($ if $A=\{ \}$ then 0 else INF $a \in A$. infdist a
B)
proof -

```
```

 have Inf \(\{\) dist \(x y \mid x y . x \in A \wedge y \in B\}=(\operatorname{INF} x \in A . \operatorname{Inf}(\) dist \(x\) ' \(B))\)
 if \(b \in B a \in A\) for \(a b\)
 proof (rule order_antisym)
 have Inf \(\{\) dist \(x y \mid x y . x \in A \wedge y \in B\} \leq \operatorname{Inf}(\) dist \(x\) ' \(B)\)
 if \(b \in B a \in A x \in A\) for \(x\)
 proof -
 have \(*: \bigwedge b^{\prime} . b^{\prime} \in B \Longrightarrow \operatorname{Inf}\{\) dist \(x y \mid x y . x \in A \wedge y \in B\} \leq \operatorname{dist} x b^{\prime}\)
 by (metis (mono_tags, lifting) ex_in_conv setdist_def setdist_le_dist that(3))
 show ?thesis
 using that by (subst conditionally_complete_lattice_class.le_cInf_iff) (auto
 simp: *) +
qed
then show Inf $\{$ dist $x y \mid x y . x \in A \wedge y \in B\} \leq(\operatorname{INF} x \in A . \operatorname{Inf}(\operatorname{dist} x$ ' $B))$
using that
by (subst conditionally_complete_lattice_class.le_cInf_iff) (auto simp: bdd_below_def)
next
have $*: \bigwedge x y . \llbracket b \in B ; a \in A ; x \in A ; y \in B \rrbracket \Longrightarrow \exists a \in A . \operatorname{Inf}\left(\right.$ dist $\left.a{ }^{\prime} B\right) \leq$
dist $x y$
by (meson bdd_below_image_dist cINF_lower)
show $\left(\operatorname{INF} x \in A . \operatorname{Inf}\left(\operatorname{dist} x{ }^{\prime} B\right)\right) \leq \operatorname{Inf}\{\operatorname{dist} x y \mid x y . x \in A \wedge y \in B\}$
proof (rule conditionally_complete_lattice_class.cInf_mono)
show bdd_below $((\lambda x$. Inf $($ dist x ' $B))$ ' $A)$
by (metis (no_types, lifting) bdd_belowI2 ex_in_conv infdist_def infdist_nonneg
that(1))
qed (use that in «auto simp: *))
qed
then show ?thesis
by (auto simp: setdist_def infdist_def)
qed
lemma infdist_mono:
assumes $A \subseteq B A \neq\{ \}$
shows infdist $x B \leq$ infdist $x A$
by (simp add: assms infdist_eq_setdist setdist_subset_right)
lemma infdist_singleton [simp]:
infdist $x\{y\}=$ dist $x y$
by (simp add: infdist_eq_setdist)
proposition setdist_attains_inf:
assumes compact $B B \neq\{ \}$
obtains y where $y \in B$ setdist $A B=$ infdist $y A$
proof (cases $A=\{ \}$)
case True
then show thesis
by (metis assms diameter_compact_attained infdist_def setdist_def that)
next
case False
obtain y where $y \in B$ and min: $\bigwedge y^{\prime} . y^{\prime} \in B \Longrightarrow$ infdist $y A \leq$ infdist $y^{\prime} A$

```
```

 by (metis continuous_attains_inf [OF assms continuous_on_infdist] continu-
 ous_on_id)
show thesis
proof
have setdist A B = (INF y\inB. infdist y A)
by (metis 〈B\not={}> setdist_eq_infdist setdist_sym)
also have ... = infdist y }
proof (rule order_antisym)
show (INF y\inB. infdist y A) \leqinfdist y A
proof (rule cInf_lower)
show infdist y }A\in(\lambday.\mathrm{ infdist y A)' B
using }\langley\inB\rangle\mathrm{ by blast
show bdd_below ((}\lambday.\mathrm{ infdist y A)' B)
by (meson bdd_belowI2 infdist_nonneg)
qed
next
show infdist y A \leq(INF y\inB. infdist y A)
by (simp add: \B}\not={}\ranglecINF_greatest min)
qed
finally show setdist A B = infdist y A.
qed (fact }\langley\inB\rangle
qed
end

```

\subsection*{3.3 Elementary Normed Vector Spaces}
```

theory Elementary_Normed_Spaces
imports
HOL-Library.FuncSet
Elementary_Metric_Spaces Cartesian_Space
Connected
begin

```

\subsection*{3.3.1 Orthogonal Transformation of Balls}

\subsection*{3.3.2 Various Lemmas Combining Imports}
lemma open_sums:
fixes \(T::(' b::\) real_normed_vector) set
assumes open \(S \vee\) open \(T\)
shows open \((\bigcup x \in S . \bigcup y \in T .\{x+y\})\)
using assms
proof
assume \(S\) : open \(S\)
show ?thesis
proof (clarsimp simp: open_dist)
fix \(x y\)
assume \(x \in S y \in T\)

```

 by (auto simp: open_dist)
 then have \{. dist z(x+y)<e\Longrightarrow\existsx\inS.\existsy\inT.z=x+y
 by (metis }\langley\inT\rangle\mathrm{ diff_add_cancel dist_add_cancel2)
 then show \existse>0.\forallz. dist z(x+y)<e\longrightarrow(\existsx\inS.\existsy\inT.z=x+y)
 using <0<e\rangle\langlex\inS\rangle by blast
 qed
 next
assume T: open T
show ?thesis
proof (clarsimp simp: open_dist)
fix }x
assume x GS y \inT
with T obtain e where e>0 and e: \x\mp@subsup{x}{}{\prime}.\mathrm{ dist x'}y<e\Longrightarrow\mp@subsup{x}{}{\prime}\inT
by (auto simp: open_dist)

```

```

 by (metis 〈x \inS` add_diff_cancel_left' add_diff_eq diff_diff_add dist_norm)
 then show }\existse>0.\forallz.dist z(x+y)<e\longrightarrow(\existsx\inS.\existsy\inT.z=x+y
 using <0 <e\rangle\langley\inT\rangle by blast
 qed
 qed
lemma image_orthogonal_transformation_ball:
fixes f :: 'a::euclidean_space = ' }
assumes orthogonal_transformation }
shows f 'ball x r = ball (}fx\mathrm{) r
proof (intro equalityI subsetI)
fix y assume y ff' ball x r
with assms show y ball (fx)r
by (auto simp: orthogonal_transformation_isometry)
next
fix y assume y: y f ball (fx)r
then obtain z where z:y=fz
using assms orthogonal_transformation_surj by blast
with y assms show y ff'ball x r
by (auto simp: orthogonal_transformation_isometry)
qed
lemma image_orthogonal_transformation_cball:
fixes f:: 'a::euclidean_space = ' }
assumes orthogonal_transformation }
shows f'cball x r = cball (fx)r
proof (intro equalityI subsetI)
fix y assume y ff'cball xr
with assms show }y\in\mathrm{ cball (fx)r
by (auto simp: orthogonal_transformation_isometry)
next
fix y assume y: y\in cball (fx)r
then obtain z where z:y=fz

```
using assms orthogonal_transformation_surj by blast
with \(y\) assms show \(y \in f\) ' cball \(x r\)
by (auto simp: orthogonal_transformation_isometry)
qed

\subsection*{3.3.3 Support}
definition (in monoid_add) support_on \(::\) ' \(b\) set \(\Rightarrow\left(' b \Rightarrow{ }^{\prime} a\right) \Rightarrow\) ' \(b\) set where support_on \(S f=\{x \in S . f x \neq 0\}\)
lemma in_support_on: \(x \in\) support_on \(S f \longleftrightarrow x \in S \wedge f x \neq 0\)
by ( simp add: support_on_def)
lemma support_on_simps[simp]:
support_on \(\} f=\{ \}\)
support_on (insert x \(S\) ) \(f=\)
(if \(f x=0\) then support_on \(S\) felse insert \(x\) (support_on \(S f\) ))
support_on \((S \cup T) f=\) support_on \(S f \cup\) support_on \(T f\)
support_on \((S \cap T) f=\) support_on \(S f \cap\) support_on \(T f\)
support_on \((S-T) f=\) support_on \(S f-\) support_on \(T f\)
support_on \((f\) ' \(S) g=f^{\prime}(\) support_on \(S(g \circ f))\)
unfolding support_on_def by auto
lemma support_on_cong:
\((\bigwedge x . x \in S \Longrightarrow f x=0 \longleftrightarrow g x=0) \Longrightarrow\) support_on \(S f=\) support_on \(S g\)
by (auto simp: support_on_def)
lemma support_on_if: \(a \neq 0 \Longrightarrow\) support_on \(A(\lambda x\). if \(P\) x then a else 0\()=\{x \in A\).
\(P x\}\)
by (auto simp: support_on_def)
lemma support_on_if_subset: support_on \(A(\lambda x\). if \(P x\) then a else 0\() \subseteq\{x \in A . P\) \(x\}\)
by (auto simp: support_on_def)
lemma finite_support[intro]: finite \(S \Longrightarrow\) finite (support_on \(S f\) )
unfolding support_on_def by auto
definition (in comm_monoid_add) supp_sum :: \((' b \Rightarrow\) ' \(a) \Rightarrow{ }^{\prime} b\) set \(\Rightarrow{ }^{\prime} a\) where supp_sum \(f S=\left(\sum x \in\right.\) support_on \(\left.S f . f x\right)\)
lemma supp_sum_empty[simp]: supp_sum \(f\}=0\) unfolding supp_sum_def by auto
lemma supp_sum_insert[simp]:
finite (support_on \(S f\) ) \(\Longrightarrow\)
supp_sum \(f(\) insert \(x S)=(\) if \(x \in S\) then supp_sum \(f S\) else \(f x+\) supp_sum \(f S)\) by (simp add: supp_sum_def in_support_on insert_absorb)
lemma supp_sum_divide_distrib: supp_sum \(f A /\left(r::{ }^{\prime} a:: f i e l d\right)=s u p p \_s u m ~(\lambda n . f n\) /r) \(A\)
by (cases \(r=0\) )
(auto simp: supp_sum_def sum_divide_distrib intro!: sum.cong support_on_cong)

\subsection*{3.3.4 Intervals}
lemma image_affinity_interval:
fixes \(c::{ }^{\prime} a::\) ordered_real_vector
shows \(\left(\left(\lambda x . m *_{R} x+c\right) '\{a . . b\}\right)=\) (if \(\{a . . b\}=\{ \}\) then \(\}\) else if \(0 \leq m\) then \(\left\{m *_{R} a+c . . m *_{R} b+c\right\}\) else \(\left.\left\{m *_{R} b+c . . m *_{R} a+c\right\}\right)\)
(is ?lhs =? \(r h s\) )
proof (cases \(m=0\) )
case True
then show ?thesis
by force
next
case False
show ?thesis
proof
show ?lhs \(\subseteq\) ? rhs
by (auto simp: scaleR_left_mono scaleR_left_mono_neg)
show ? \(r h s \subseteq\) ?lhs
proof (clarsimp, intro conjI impI subsetI)
show \(\llbracket 0 \leq m ; a \leq b ; x \in\left\{m *_{R} a+c . . m *_{R} b+c\right\} \rrbracket\) \(\Longrightarrow x \in\left(\lambda x . m *_{R} x+c\right) '\{a . . b\}\) for \(x\)
using False
by (rule_tac \(x=\) inverse \(m *_{R}(x-c)\) in image_eq \(I\) )
(auto simp: pos_le_divideR_eq pos_divide \(R_{-} l e_{-} e q l_{-} d i f f_{-} e q d i f f_{-} l e_{-} e q\) )
show \(\llbracket \neg 0 \leq m ; a \leq b ; x \in\left\{m *_{R} b+c . . m *_{R} a+c\right\} \rrbracket\)
\(\Longrightarrow x \in\left(\lambda x . m *_{R} x+c\right)\) ' \(\{a . . b\}\) for \(x\)
by (rule_tac \(x=\) inverse \(m *_{R}(x-c)\) in image_eqI)
(auto simp add: neg_le_divide \(R_{-} e q\) neg_divideR_le_eq le_diff_eq diff_le_eq)
qed
qed
qed

\subsection*{3.3.5 Limit Points}
lemma islimpt_ball:
fixes \(x\) y :: 'a::\{real_normed_vector,perfect_space\}
shows \(y\) islimpt ball \(x e \longleftrightarrow 0<e \wedge y \in \operatorname{cball} x e\)
(is?lhs \(\longleftrightarrow\) ? \(r h s\) )
proof
show? rhs if ?lhs
proof
\{
```

 assume \(e \leq 0\)
 then have \(*\) : ball \(x e=\{ \}\)
 using ball_eq_empty[of \(x e]\) by auto
 have False using 〈?lhs〉
 unfolding * using islimpt_EMPTY[of y] by auto
 \}
 then show \(e>0\) by (metis not_less)
 show \(y \in\) cball \(x e\)
 using closed_cball[of \(x\) e] islimpt_subset[of y ball \(x\) e cball \(x e]\)
 ball_subset_cball[of x e] 〈?lhs〉
 unfolding closed_limpt by auto
 qed
show? lhs if ?rhs
proof -
from that have $e>0$ by auto
\{
fix d :: real
assume $d>0$
have $\exists x^{\prime} \in$ ball x e. $x^{\prime} \neq y \wedge$ dist $x^{\prime} y<d$
proof (cases $d \leq$ dist $x y$)
case True
then show ?thesis
proof (cases $x=y$)
case True
then have False
using $\langle d \leq$ dist $x y\rangle\langle d\rangle 0\rangle$ by auto
then show ?thesis
by auto
next
case False
have dist $x\left(y-(d /(2 * \operatorname{dist} y x)) *_{R}(y-x)\right)=$
$\operatorname{norm}\left(x-y+(d /(2 * \operatorname{norm}(y-x))) *_{R}(y-x)\right)$
unfolding mem_cball mem_ball dist_norm diff_diff_eq2 diff_add_eq[symmetric]
by auto
also have $\ldots=|-1+d /(2 * \operatorname{norm}(x-y))| * \operatorname{norm}(x-y)$
using scaleR_left_distrib[of $-1 d /(2 * \operatorname{norm}(y-x))$, symmetric, of
$y-x]$
unfolding scaleR_minus_left scaleR_one
by (auto simp: norm_minus_commute)
also have $\ldots=|-\operatorname{norm}(x-y)+d / \mathcal{Z}|$
unfolding abs_mult_pos[of norm $(x-y)$, OF norm_ge_zero[of $x-y]$]
unfolding distrib_right using $\langle x \neq y\rangle$ by auto
also have $\ldots \leq e-d / 2$ using $\langle d \leq d i s t x y\rangle$ and $\langle d>0\rangle$ and $\langle ? r h s\rangle$
by (auto simp: dist_norm)
finally have $y-(d /(2 *$ dist $y x)) *_{R}(y-x) \in$ ball x e using $\langle d>0\rangle$
by auto
moreover
have $(d /(2 *$ dist $y x)) *_{R}(y-x) \neq 0$
using $\langle x \neq y\rangle[$ unfolded dist_nz] $\langle d\rangle 0\rangle$ unfolding scaleR_eq_0_iff

```
```

 by (auto simp: dist_commute)
 moreover
 have dist (y- (d / (2* dist y x)) *R (y-x)) y<d
 using <0 < d` by (fastforce simp: dist_norm)
 ultimately show ?thesis
 by (rule_tac x = y - (d/(2*dist y x)) *R (y-x) in bexI) auto
 qed
 next
 case False
 then have d> dist x y by auto
 show }\exists\mp@subsup{x}{}{\prime}\in\mathrm{ ball x e. }\mp@subsup{x}{}{\prime}\not=y\wedge\mathrm{ dist }\mp@subsup{x}{}{\prime}y<
 proof (cases x = y)
 case True
 obtain z where z:z\not=y dist z y<min e d
 using perfect_choose_dist[of min e d y]
 using \langled> >0\rangle\langlee>0\rangle by auto
 show ?thesis
 by (metis True z dist_commute mem_ball min_less_iff_conj)
 next
 case False
 then show ?thesis
 using \langled>0\rangle\langled > dist x y\rangle\langle?rhs\rangle by force
 qed
 qed
 }
 then show ?thesis
 unfolding mem_cball islimpt_approachable mem_ball by auto
 qed
 qed
lemma closure_ball_lemma:
fixes x y :: 'a::real_normed_vector
assumes }x\not=
shows y islimpt ball x (dist x y)
proof (rule islimptI)
fix T
assume y \inT open T
then obtain r where 0<r\forallz. dist zy<r\longrightarrowz
unfolding open_dist by fast
- choose point between x and y, within distance r of y.
define k where k=min 1 (r / (2* dist x y))
define z where z=y+scaleR k (x-y)
have z_def2: z = x + scaleR (1-k) (y-x)
unfolding z_def by (simp add: algebra_simps)
have dist z y<r
unfolding z_def k_def using < 0 < r>
by (simp add: dist_norm min_def)
then have z\inT
using \&\forall z. dist z y<r\longrightarrow

```
```

have dist $x z<$ dist $x y$
using $\langle 0<r\rangle$ assms by (simp add: z_def2 k_def dist_norm norm_minus_commute)
then have $z \in$ ball x (dist $x y$)
by simp
have $z \neq y$
unfolding $z_{-} d e f k_{-} d e f$ using $\langle x \neq y\rangle\langle 0<r\rangle$
by (simp add: min_def)
show $\exists z \in$ ball x (dist $x y$). $z \in T \wedge z \neq y$
using $\langle z \in$ ball $x($ dist $x y)\rangle\langle z \in T\rangle\langle z \neq y\rangle$
by fast
qed

```

\subsection*{3.3.6 Balls and Spheres in Normed Spaces}
```

lemma mem_ball_0 [simp]: $x \in$ ball $0 e \longleftrightarrow$ norm $x<e$
for x :: ' $a:$:real_normed_vector
by simp
lemma mem_cball_0 [simp]: $x \in$ cball $0 e \longleftrightarrow$ norm $x \leq e$
for x :: ' $a:$:real_normed_vector
by simp
lemma closure_ball [simp]:
fixes x :: 'a::real_normed_vector
assumes $0<e$
shows closure (ball x e) $=$ cball $x e$
proof
show closure $(b a l l x e) \subseteq$ cball $x e$
using closed_cball closure_minimal by blast
have $\bigwedge y$. dist $x y<e \vee$ dist $x y=e \Longrightarrow y \in \operatorname{closure~(ball~} x e$)
by (metis Un_iff assms closure_ball_lemma closure_def dist_eq_0_iff mem_Collect_eq
mem_ball)
then show cball $x e \subseteq$ closure (ball $x e$)
by force
qed
lemma mem_sphere_0 [simp]: $x \in$ sphere $0 e \longleftrightarrow$ norm $x=e$
for x :: 'a::real_normed_vector
by simp
lemma interior_cball [simp]:
fixes $x::$ ' $a::\{$ real_normed_vector, perfect_space\}
shows interior (cball $x e)=$ ball $x e$
proof (cases $e \geq 0$)
case False note $c s=$ this
from cs have null: ball $x e=\{ \}$
using ball_empty[of ex] by auto

```
```

 moreover
 have cball \(x e=\{ \}\)
 proof (rule equals0I)
 fix \(y\)
 assume \(y \in \operatorname{cball} x e\)
 then show False
 by (metis ball_eq_empty null cs dist_eq_0_iff dist_le_zero_iff empty_subsetI
 mem_cball
subset_antisym subset_ball)
qed
then have interior $(\operatorname{cball} x e)=\{ \}$
using interior_empty by auto
ultimately show ?thesis by blast
next
case True note $c s=$ this
have ball $x e \subseteq$ cball $x e$
using ball_subset_cball by auto
moreover
\{
fix $S y$
assume as: $S \subseteq$ cball x e open $S y \in S$
then obtain d where $d>0$ and $d: \forall x^{\prime}$. dist $x^{\prime} y<d \longrightarrow x^{\prime} \in S$
unfolding open_dist by blast
then obtain $x a$ where $x a _y: x a \neq y$ and $x a:$ dist $x a y<d$
using perfect_choose_dist [of d] by auto
have $x a \in S$
using $d[$ THEN $\operatorname{spec}[$ where $x=x a]]$
using xa by (auto simp: dist_commute)
then have xa_cball: xa \in cball $x e$
using as (1) by auto
then have $y \in$ ball $x e$
proof (cases $x=y$)
case True
then have $e>0$ using cs order.order_iff_strict xa_cball xa_y by fastforce
then show $y \in$ ball $x e$
using $\langle x=y\rangle$ by simp
next
case False
have $\operatorname{dist}\left(y+(d / 2 / \operatorname{dist} y x) *_{R}(y-x)\right) y<d$
unfolding dist_norm
using $\langle d>0\rangle$ norm_ge_zero $[$ of $y-x]\langle x \neq y\rangle$ by auto
then have $*: y+(d / 2 / \operatorname{dist} y x) *_{R}(y-x) \in \operatorname{cball} x e$
using d as(1)[unfolded subset_eq] by blast
have $y-x \neq 0$ using $\langle x \neq y\rangle$ by auto
hence $* *: d /(2 * \operatorname{norm}(y-x))>0$
unfolding zero_less_norm_iff [symmetric] using $\langle d>0\rangle$ by auto
have $\operatorname{dist}\left(y+(d / 2 / \operatorname{dist} y x) *_{R}(y-x)\right) x=$
$\operatorname{norm}\left(y+(d /(2 * \operatorname{norm}(y-x))) *_{R} y-(d /(2 * \operatorname{norm}(y-x))) *_{R}\right.$
$x-x)$

```
```

 by (auto simp: dist_norm algebra_simps)
 also have ... = norm ((1+d/(2* norm (y-x))) ** (y-x))
 by (auto simp: algebra_simps)
 also have \ldots= | | + d/ (2 * norm (y-x))|*\operatorname{norm}(y-x)
 using ** by auto
 also have ... = (dist y x) +d/2
 using ** by (auto simp: distrib_right dist_norm)
 finally have }e\geq\mathrm{ dist x y +d/2
 using *[unfolded mem_cball] by (auto simp: dist_commute)
 then show }y\inball x
 unfolding mem_ball using <d>0\rangle by auto
 qed
 }
then have }\forallS\subseteq\mathrm{ cball x e. open S }\longrightarrowS\subseteq\mathrm{ ball x e
by auto
ultimately show ?thesis
using interior_unique[of ball x e cball x e]
using open_ball[of x e]
by auto
qed
lemma frontier_ball [simp]:
fixes a :: 'a::real_normed_vector
shows 0<e\Longrightarrowfrontier (ball a e) = sphere a e
by (force simp: frontier_def)
lemma frontier_cball [simp]:
fixes a :: 'a::{real_normed_vector, perfect_space}
shows frontier (cball a e)= sphere a e
by (force simp: frontier_def)
corollary compact_sphere [simp]:
fixes a :: 'a::{real_normed_vector,perfect_space,heine_borel}
shows compact (sphere a r)
using compact_frontier [of cball a r] by simp
corollary bounded_sphere [simp]:
fixes a :: 'a::{real_normed_vector,perfect_space,heine_borel}
shows bounded (sphere a r)
by (simp add: compact_imp_bounded)
corollary closed_sphere [simp]:
fixes a :: 'a::{real_normed_vector,perfect_space,heine_borel}
shows closed (sphere a r)
by (simp add: compact_imp_closed)
lemma image_add_ball [simp]:
fixes a :: 'a::real_normed_vector
shows (+) b'ball a r = ball (a+b) r

```
```

proof -
{ fix x :: 'a
assume dist (a+b)x<r
moreover
have }b+(x-b)=
by simp
ultimately have }x\in(+)b\mathrm{ ' ball a r
by (metis add.commute dist_add_cancel image_eqI mem_ball) }
then show ?thesis
by (auto simp: add.commute)
qed
lemma image_add_cball [simp]:
fixes a :: 'a::real_normed_vector
shows (+) b'cball a r = cball (a+b)r
proof -
have }\bigwedgex.\operatorname{dist}(a+b)x\leqr\Longrightarrow\existsy\incball a r. x = b + y
by (metis (no_types) add.commute diff_add_cancel dist_add_cancel2 mem_cball)
then show ?thesis
by (force simp: add.commute)
qed

```

\subsection*{3.3.7 Various Lemmas on Normed Algebras}
lemma closed_of_nat_image: closed (of_nat ‘ A :: 'a::real_normed_algebra_1 set) by (rule discrete_imp_closed[of 1]) (auto simp: dist_of_nat)
lemma closed_of_int_image: closed (of_int ' \(A\) :: ' \(a:\) : real_normed_algebra_1 set) by (rule discrete_imp_closed[of 1]) (auto simp: dist_of_int)
lemma closed_Nats [simp]: closed ( \(\mathbb{N}\) :: 'a :: real_normed_algebra_1 set)
unfolding Nats_def by (rule closed_of_nat_image)
lemma closed_Ints [simp]: closed ( \(\mathbb{Z}\) :: 'a :: real_normed_algebra_1 set)
unfolding Ints_def by (rule closed_of_int_image)
lemma closed_subset_Ints:
fixes \(A\) :: ' \(a\) :: real_normed_algebra_1 set
assumes \(A \subseteq \mathbb{Z}\)
shows closed \(A\)
proof (intro discrete_imp_closed[OF zero_less_one] ballI impI, goal_cases)
case (1 \(x y\) )
with assms have \(x \in \mathbb{Z}\) and \(y \in \mathbb{Z}\) by auto
with \(\langle\) dist \(y x<1\) ) show \(y=x\) by (auto elim!: Ints_cases simp: dist_of_int)
qed

\subsection*{3.3.8 Filters}
definition indirection :: ' \(a\) :: real_normed_vector \(\Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a\) filter (infixr indirection 70)
where \(a\) indirection \(v=a t\) a within \(\{b . \exists c \geq 0 . b-a=s c a l e R ~ c v\}\)

\subsection*{3.3.9 Trivial Limits}
```

lemma trivial_limit_at_infinity:
\neg trivial_limit (at_infinity :: ('a::{real_normed_vector,perfect_space}) filter)
proof -
obtain x::' }a\mathrm{ where }x\not=
by (meson perfect_choose_dist zero_less_one)
then have b\leqnorm ((b/norm x)*R x) for b
by simp
then show ?thesis
unfolding trivial_limit_def eventually_at_infinity
by blast
qed
lemma at_within_ball_bot_iff:
fixes x y :: 'a::{real_normed_vector,perfect_space}
shows at x within ball y r=bot \longleftrightarrow(r=0\veex\not\in cball y r)
unfolding trivial_limit_within
by (metis (no_types) cball_empty equals0D islimpt_ball less_linear)

```

\subsection*{3.3.10 Limits}
proposition Lim_at_infinity: \((f \longrightarrow l)\) at_infinity \(\longleftrightarrow(\forall e>0 . \exists b . \forall x\). norm \(x\) \(\geq b \longrightarrow \operatorname{dist}(f x) l<e)\)
by (auto simp: tendsto_iff eventually_at_infinity)
corollary Lim_at_infinityI [intro?]:
assumes \(\bigwedge e . e>0 \Longrightarrow \exists B . \forall x . \operatorname{norm} x \geq B \longrightarrow \operatorname{dist}(f x) l \leq e\)
shows \((f \longrightarrow l)\) at_infinity
proof -
have \(\bigwedge e . e>0 \Longrightarrow \exists B . \forall x\). norm \(x \geq B \longrightarrow \operatorname{dist}(f x) l<e\)
by (meson assms dense le_less_trans)
then show ?thesis
using Lim_at_infinity by blast
qed
lemma Lim_transform_within_set_eq:
fixes \(a::{ }^{\prime} a::\) metric_space and \(l::{ }^{\prime} b::\) metric_space
shows eventually \((\lambda x, x \in S \longleftrightarrow x \in T)\) (at a)
\(\Longrightarrow((f \longrightarrow l)(\) at a within \(S) \longleftrightarrow(f \longrightarrow l)(\) at a within \(T))\)
by (force intro: Lim_transform_within_set elim: eventually_mono)
lemma Lim_null:
fixes \(f:: ' a \Rightarrow\) ' \(b::\) real_normed_vector
```

 shows \((f \longrightarrow l)\) net \(\longleftrightarrow((\lambda x . f(x)-l) \longrightarrow 0)\) net
 by (simp add: Lim dist_norm)
 lemma Lim_null_comparison:
 fixes \(f::\) ' \(a \Rightarrow\) ' \(b::\) real_normed_vector
 assumes eventually \((\lambda x\). norm \((f x) \leq g x)\) net \((g \longrightarrow 0)\) net
 shows \((f \longrightarrow 0)\) net
 using assms(2)
 proof (rule metric_tendsto_imp_tendsto)
show eventually $(\lambda x$. dist $(f x) 0 \leq \operatorname{dist}(g x) 0)$ net
using assms(1) by (rule eventually_mono) (simp add: dist_norm)
qed
lemma Lim_transform_bound:
fixes $f::$ ' $a \Rightarrow$ ' $b::$ real_normed_vector
and $g::{ }^{\prime} a \Rightarrow$ ' $c::$ real_normed_vector
assumes eventually $(\lambda n$. norm $(f n) \leq \operatorname{norm}(g n))$ net
and $(g \longrightarrow 0)$ net
shows $(f \longrightarrow 0)$ net
using assms(1) tendsto_norm_zero [OF assms(2)]
by (rule Lim_null_comparison)
lemma lim_null_mult_right_bounded:
fixes $f::{ }^{\prime} a \Rightarrow$ ' $b::$ real_normed_div_algebra
assumes $f:(f \longrightarrow 0) F$ and $g:$ eventually $(\lambda x \operatorname{norm}(g x) \leq B) F$
shows $((\lambda z . f z * g z) \longrightarrow 0) F$
proof -
have $((\lambda x$. norm $(f x) * \operatorname{norm}(g x)) \longrightarrow 0) F$
proof (rule Lim_null_comparison)
show $\forall_{F} x$ in F. norm $(\operatorname{norm}(f x) * \operatorname{norm}(g x)) \leq \operatorname{norm}(f x) * B$
by (simp add: eventually_mono [OF g] mult_left_mono)
show $((\lambda x$. norm $(f x) * B) \longrightarrow 0) F$
by (simp add: f tendsto_mult_left_zero tendsto_norm_zero)
qed
then show? ?thesis
by (subst tendsto_norm_zero_iff [symmetric]) (simp add: norm_mult)
qed
lemma lim_null_mult_left_bounded:
fixes $f::{ }^{\prime} a \Rightarrow$ ' $b::$ real_normed_div_algebra
assumes g : eventually $(\lambda x$. $\operatorname{norm}(g x) \leq B) F$ and $f:(f \longrightarrow 0) F$
shows $((\lambda z . g z * f z) \longrightarrow 0) F$
proof -
have $((\lambda x$. norm $(g x) * \operatorname{norm}(f x)) \longrightarrow 0) F$
proof (rule Lim_null_comparison)
show $\forall_{F} x$ in F. norm (norm $\left.(g x) * \operatorname{norm}(f x)\right) \leq B * \operatorname{norm}(f x)$
by (simp add: eventually_mono [OF g] mult_right_mono)
show $((\lambda x . B * \operatorname{norm}(f x)) \longrightarrow 0) F$
by (simp add: f tendsto_mult_right_zero tendsto_norm_zero)

```
```

 qed
 then show ?thesis
 by (subst tendsto_norm_zero_iff [symmetric]) (simp add: norm_mult)
 qed
lemma lim_null_scaleR_bounded:
assumes f:(f\longrightarrow0) net and gB: eventually (\lambdaa.fa=0\veenorm(ga)\leq
B) net
shows ((\lambdan.fn*Rg n |)\longrightarrow0) net
proof
fix \varepsilon::real
assume 0<\varepsilon
then have B:0<\varepsilon/(abs B+1) by simp
have *: |fx|* norm (gx)<\varepsilon if f: |fx|* (|B| +1)<\varepsilon and g: norm (g x)\leq
B for x
proof -
have }|fx|*\operatorname{norm}(gx)\leq|fx|*
by (simp add: mult_left_mono g)
also have ... \leq |f x | * (|B| + 1)
by (simp add: mult_left_mono)
also have ... < <
by (rule f)
finally show ?thesis.
qed
have }\x.\llbracket|fx|<\varepsilon/(|B|+1);norm (gx)\leqB\rrbracket\Longrightarrow \ | x * norm (gx)<
by (simp add:* pos_less_divide_eq)
then show }\mp@subsup{\forall}{F}{}x\mathrm{ in net. dist (fx**Rg x) 0< <
using <0< < by (auto intro: eventually_mono [OF eventually_conj [OF tend-
stoD [OF f B] gB]])
qed
lemma Lim_norm_ubound:
fixes f :: ' }a=>\mathrm{ 'b::real_normed_vector
assumes }\neg\mathrm{ (trivial_limit net) (f lul) net eventually (}\lambdax.\operatorname{norm}(fx)\leqe) ne
shows norm(l) \leqe
using assms by (fast intro: tendsto_le tendsto_intros)
lemma Lim_norm_lbound:
fixes f :: ' }a=>\mathrm{ ' 'b::real_normed_vector
assumes }\neg\mathrm{ trivial_limit net
and (f\longrightarrowl) net
and eventually (}\lambdax.e\leq\operatorname{norm}(fx)) ne
shows e\leqnorm l
using assms by (fast intro: tendsto_le tendsto_intros)

```

Limit under bilinear function

\section*{lemma Lim_bilinear:}
assumes \((f \longrightarrow l)\) net and \((g \longrightarrow m)\) net
and bounded_bilinear \(h\)
shows \(((\lambda x . h(f x)(g x)) \longrightarrow(h l m))\) net
using 〈bounded_bilinear \(h\rangle\langle(f \longrightarrow l)\) net \(\langle(g \longrightarrow m)\) net \((g\)
by (rule bounded_bilinear.tendsto)
lemma Lim_at_zero:
fixes \(a\) :: 'a::real_normed_vector
and \(l::\) ' \(b:\) :topological_space
shows \((f \longrightarrow l)(\) at \(a) \longleftrightarrow((\lambda x . f(a+x)) \longrightarrow l)(\) at 0\()\)
using LIM_offset_zero LIM_offset_zero_cancel ..

\subsection*{3.3.11 Limit Point of Filter}
```

lemma netlimit_at_vector:
fixes a :: 'a::real_normed_vector
shows netlimit (at a) =a
proof (cases $\exists x . x \neq a)$
case True then obtain x where $x: x \neq a$..
have $\wedge d .0<d \Longrightarrow \exists x . x \neq a \wedge \operatorname{norm}(x-a)<d$
by (rule_tac $x=a+\operatorname{scaleR}(d / 2)(\operatorname{sgn}(x-a))$ in exI) (simp add: norm_sgn
sgn_zero_iff x)
then have \neg trivial_limit (at a)
by (auto simp: trivial_limit_def eventually_at dist_norm)
then show ?thesis
by (rule Lim_ident_at [of a UNIV])
qed simp

```

\subsection*{3.3.12 Boundedness}
lemma continuous_on_closure_norm_le:
fixes \(f::\) 'a::metric_space \(\Rightarrow\) ' \(b::\) real_normed_vector
assumes continuous_on (closure s) \(f\)
and \(\forall y \in s . \operatorname{norm}(f y) \leq b\)
and \(x \in\) (closure \(s)\)
shows norm \((f x) \leq b\)
proof -
have \(*: f\) ' \(s \subseteq\) cball \(0 b\)
using assms(2)[unfolded mem_cball_0[symmetric]] by auto
show ?thesis
by (meson * assms(1) assms(3) closed_cball image_closure_subset image_subset_iff
mem_cball_0)
qed
lemma bounded_pos: bounded \(S \longleftrightarrow(\exists b>0 . \forall x \in S\). norm \(x \leq b)\)
unfolding bounded_iff
by (meson less_imp_le not_le order_trans zero_less_one)
lemma bounded_pos_less: bounded \(S \longleftrightarrow(\exists b>0 . \forall x \in S\). norm \(x<b)\)
by (metis bounded_pos le_less_trans less_imp_le linordered_field_no_ub)
```

lemma Bseq_eq_bounded:
fixes $f::$ nat \Rightarrow ' $a::$ real_normed_vector
shows Bseq $f \longleftrightarrow$ bounded (range f)
unfolding Bseq_def bounded_pos by auto
lemma bounded_linear_image:
assumes bounded S
and bounded_linear f
shows bounded (f ' S)
proof -
from assms(1) obtain b where $b>0$ and $b: \forall x \in S$. norm $x \leq b$
unfolding bounded_pos by auto
from $\operatorname{assms}(2)$ obtain B where $B: B>0 \forall x$. norm $(f x) \leq B *$ norm x
using bounded_linear.pos_bounded by (auto simp: ac_simps)
show ?thesis
unfolding bounded_pos
proof (intro exI, safe)
show norm $(f x) \leq B * b$ if $x \in S$ for x
by (meson B b less_imp_le mult_left_mono order_trans that)
qed (use $\langle b>0\rangle\langle B>0\rangle$ in auto)
qed
lemma bounded_scaling:
fixes S :: 'a::real_normed_vector set
shows bounded $S \Longrightarrow$ bounded $\left(\left(\lambda x . c *_{R} x\right)\right.$ ' S)
by (simp add: bounded_linear_image bounded_linear_scaleR_right)
lemma bounded_scaleR_comp:
fixes $f::{ }^{\prime} a \Rightarrow$ ' $b::$ real_normed_vector
assumes bounded (f ' S)
shows bounded $\left(\left(\lambda x . r *_{R} f x\right)\right.$ ' $\left.S\right)$
using bounded_scaling $[$ of f ' S r] assms
by (auto simp: image_image)
lemma bounded_translation:
fixes S :: 'a::real_normed_vector set
assumes bounded S
shows bounded $((\lambda x . a+x)$ ' $S)$
proof -
from assms obtain b where $b: b>0 \forall x \in S$. norm $x \leq b$
unfolding bounded_pos by auto
\{
fix x
assume $x \in S$
then have norm $(a+x) \leq b+$ norm a
using norm_triangle_ineq $[$ of $a x] b$ by auto
\}
then show ?thesis
unfolding bounded_pos

```
```

 using norm_ge_zero[of a] b(1) and add_strict_increasing[of b 0 norm a]
 by (auto intro!: exI[of - b + norm a])
 qed
lemma bounded_translation_minus:
fixes S :: 'a::real_normed_vector set
shows bounded S\Longrightarrow bounded ((\lambdax.x-a)'}S
using bounded_translation [of S-a] by simp
lemma bounded_uminus [simp]:
fixes X :: 'a::real_normed_vector set
shows bounded (uminus' }X\mathrm{) }\longleftrightarrow\mathrm{ bounded X
by (auto simp: bounded_def dist_norm; rule_tac x =-x in exI; force simp: add.commute
norm_minus_commute)
lemma uminus_bounded_comp [simp]:
fixes f :: ' }a>>'\mp@code{'::real_normed_vector
shows bounded }((\lambdax.-fx)'S)\longleftrightarrow \longleftrightarrow bounded (f'S
using bounded_uminus[of f'S]
by (auto simp: image_image)
lemma bounded_plus_comp:
fixes f g::'a = 'b::real_normed_vector
assumes bounded (f'S)
assumes bounded (g'S)
shows bounded ((\lambdax.fx+gx)'S)
proof -
{
fix B C
assume \x. x\inS\Longrightarrownorm (f x) \leq B \x. x\inS\Longrightarrow norm (gx) \leqC
then have \}\x.x\inS\Longrightarrow\operatorname{norm}(fx+gx)\leqB+
by (auto intro!: norm_triangle_le add_mono)
} then show ?thesis
using assms by (fastforce simp: bounded_iff)
qed
lemma bounded_plus:
fixes S ::'a::real_normed_vector set
assumes bounded S bounded T
shows bounded ((\lambda(x,y). x+y)'(S\timesT))
using bounded_plus_comp [of fst S }\timesT\mathrm{ snd] assms
by (auto simp: split_def split: if_split_asm)
lemma bounded_minus_comp:
bounded }(f'S)\Longrightarrow\mathrm{ bounded (g'S) > bounded ((}\lambdax.fx-gx)'S
for f g::'a m 'b::real_normed_vector
using bounded_plus_comp[of f S \lambdax.-g x]
by auto

```
```

lemma bounded_minus:
fixes S ::'a::real_normed_vector set
assumes bounded S bounded T
shows bounded ((\lambda(x,y). x-y)'(S\timesT))
using bounded_minus_comp [of fst S < T snd] assms
by (auto simp: split_def split: if_split_asm)
lemma not_bounded_UNIV[simp]:
\neg bounded (UNIV :: 'a::{real_normed_vector, perfect_space} set)
proof (auto simp: bounded_pos not_le)
obtain }x:: ' 'a where x\not=
using perfect_choose_dist [OF zero_less_one] by fast
fix b :: real
assume b:b>0
have b1:b+1\geq0
using b by simp
with }\langlex\not=0\rangle\mathrm{ have }b<\operatorname{norm}(\operatorname{scaleR}(b+1)(\operatorname{sgn}x)
by (simp add: norm_sgn)
then show \existsx::'a.b<norm x ..
qed
corollary cobounded_imp_unbounded:
fixes S :: 'a::{real_normed_vector, perfect_space} set
shows bounded }(-S)\Longrightarrow\neg\mathrm{ bounded S
using bounded_Un [of S-S] by (simp)

```

\subsection*{3.3.13 Relations among convergence and absolute convergence for power series}
lemma summable_imp_bounded:
fixes \(f::\) nat \(\Rightarrow{ }^{\prime} a::\) real_normed_vector
shows summable \(f \Longrightarrow\) bounded (range f)
by (frule summable_LIMSEQ_zero) (simp add: convergent_imp_bounded)
lemma summable_imp_sums_bounded:
summable \(f \Longrightarrow\) bounded (range \((\lambda n\). sum \(f\{. .<n\})\) )
by (auto simp: summable_def sums_def dest: convergent_imp_bounded)
lemma power_series_conv_imp_absconv_weak:
fixes \(a::\) nat \(\Rightarrow\) ' \(a::\{\) real_normed_div_algebra,banach \(\}\) and \(w::\) 'a
assumes sum: summable ( \(\lambda n . a n * z^{\wedge} n\) ) and no: norm \(w<n o r m ~ z\)
shows summable \(\left(\lambda n\right.\). of_real \(\left.(\operatorname{norm}(a n)) * w^{\wedge} n\right)\)
proof -
obtain \(M\) where \(M: \bigwedge x\). norm \(\left(a x * z^{\wedge} x\right) \leq M\)
using summable_imp_bounded [OF sum] by (force simp: bounded_iff)
show ?thesis
proof (rule series_comparison_complex)
have \(\bigwedge n\). norm (an)*norm \(z^{\wedge} n \leq M\)
by (metis (no_types) M norm_mult norm_power)
```

 then show summable (}\lambda\mathrm{ n. complex_of_real (norm (a n) * norm w ^ n))
 using Abel_lemma no norm_ge_zero summable_of_real by blast
 qed (auto simp: norm_mult norm_power)
 qed

```

\subsection*{3.3.14 Normed spaces with the Heine-Borel property}
```

lemma not_compact_UNIV[simp]:
fixes s :: 'a::{real_normed_vector,perfect_space,heine_borel} set
shows \neg compact (UNIV ::'a set)
by (simp add: compact_eq_bounded_closed)
lemma not_compact_space_euclideanreal [simp]: ᄀ compact_space euclideanreal
by (simp add: compact_space_def)

```

Representing sets as the union of a chain of compact sets.
```

lemma closed_Union_compact_subsets:
fixes S :: 'a::\{heine_borel,real_normed_vector\} set
assumes closed S
obtains F where $\bigwedge n$. compact $(F n) \bigwedge n . F n \subseteq S \bigwedge n . F n \subseteq F(S u c n)$
$(\bigcup n . F n)=S \bigwedge K . \llbracket$ compact $K ; K \subseteq S \rrbracket \Longrightarrow \exists N . \forall n \geq N . K \subseteq$
F n
proof
show compact ($S \cap$ cball 0 (of_nat n)) for n
using assms compact_eq_bounded_closed by auto
next
show $(\bigcup n . S \cap \operatorname{cball} 0($ real $n))=S$
by (auto simp: real_arch_simple)
next
fix K :: 'a set
assume compact $K K \subseteq S$
then obtain N where $K \subseteq$ cball $0 N$
by (meson bounded_pos mem_cball_0 compact_imp_bounded subsetI)
then show $\exists N . \forall n \geq N . K \subseteq S \cap$ cball 0 (real n)
by (metis of_nat_le_iff Int_subset_iff $\langle K \subseteq S\rangle$ real_arch_simple subset_cball sub-
set_trans)
qed auto

```

\subsection*{3.3.15 Intersecting chains of compact sets and the Baire property}
proposition bounded_closed_chain:
fixes \(\mathcal{F}\) :: ' \(a\) ::heine_borel set set
assumes \(B \in \mathcal{F}\) bounded \(B\) and \(\mathcal{F}: \wedge S . S \in \mathcal{F} \Longrightarrow\) closed \(S\) and \(\} \notin \mathcal{F}\)
and chain: \(\wedge S T . S \in \mathcal{F} \wedge T \in \mathcal{F} \Longrightarrow S \subseteq T \vee T \subseteq S\)
shows \(\bigcap \mathcal{F} \neq\{ \}\)
proof -
have \(B \cap \bigcap \mathcal{F} \neq\{ \}\)
proof (rule compact_imp_fip)
```

 show compact B}\bigwedgeT.T\in\mathcal{F}\Longrightarrow\mathrm{ closed T
 by (simp_all add: assms compact_eq_bounded_closed)
 show \llbracketfinite \mathcal{G;G}\subseteq\mathcal{F}\\LongrightarrowB\cap\bigcap\mathcal{G}\not={} for \mathcal{G}
 proof (induction \mathcal{G rule: finite_induct)}
 case empty
 with assms show ?case by force
 next
 case (insert U G)
 then have U\in\mathcal{F}\mathrm{ and ne: }B\cap\bigcap\mathcal{G}\not={} by auto
 then consider B\subseteqU|U\subseteqB
 using }\langleB\in\mathcal{F}\rangle\mathrm{ chain by blast
 then show ?case
 proof cases
 case 1
 then show ?thesis
 using Int_left_commute ne by auto
 next
 case 2
 have }U\not={
 using}\langleU\in\mathcal{F}\rangle\langle{}\not\in\mathcal{F}\rangle\mathrm{ by blast
 moreover
 have False if }\x.x\inU\Longrightarrow\existsY\in\mathcal{G.}x\not\in
 proof -
 have }\x.x\inU\Longrightarrow\existsY\in\mathcal{G}.Y\subseteq
 by (metis chain contra_subsetD insert.prems insert_subset that)
 then obtain Y where Y\in\mathcal{G Y}\subseteqU
 by (metis all_not_in_conv <U\not={}>)
 moreover obtain }x\mathrm{ where }x\in\bigcap\mathcal{G
 by (metis Int_emptyI ne)
 ultimately show ?thesis
 by (metis Inf_lower subset_eq that)
 qed
 with 2 show ?thesis
 by blast
 qed
 qed
 qed
then show ?thesis by blast
qed
corollary compact_chain:
fixes \mathcal{F :: 'a::heine_borel set set}
assumes \S.S \in\mathcal{F}\Longrightarrow compact S {}\not\in\mathcal{F}
\ST.S\in\mathcal{F}\wedgeT\in\mathcal{F}\LongrightarrowS\subseteqT\veeT\subseteqS
shows \bigcap\mathcal{F}\not={}
proof (cases \mathcal{F}={})
case True
then show ?thesis by auto
next

```
```

 case False
 show ?thesis
 by (metis False all_not_in_conv assms compact_imp_bounded compact_imp_closed
 bounded_closed_chain)
qed
lemma compact_nest:
fixes F :: 'a::linorder }=>\mp@subsup{}{}{\prime}b::/heine_borel se
assumes F:\bigwedgen.compact(Fn) \n.Fn\not={} and mono: \m n.m\leqn\LongrightarrowF
n\subseteqFm
shows }\bigcap(\mathrm{ range F)}\not={
proof -
have *: \bigwedgeS T. S\in range F^T\in range F\LongrightarrowS\subseteqT\vee T\subseteqS
by (metis mono image_iff le_cases)
show ?thesis
using F by (intro compact_chain [OF _ _ *]; blast dest: *)
qed
The Baire property of dense sets
theorem Baire:
fixes $S::{ }^{\prime} a::\{$ real_normed_vector, heine_borel $\}$ set
assumes closed S countable \mathcal{G}
and ope: $\wedge T . T \in \mathcal{G} \Longrightarrow$ openin (top_of_set S) $T \wedge S \subseteq$ closure T
shows $S \subseteq$ closure $(\bigcap \mathcal{G})$
proof (cases $\mathcal{G}=\{ \}$)
case True
then show? ?thesis
using closure_subset by auto
next
let $? g=$ from_nat_into \mathcal{G}
case False
then have gin: ? $g n \in \mathcal{G}$ for n
by (simp add: from_nat_into)
show ?thesis
proof (clarsimp simp: closure_approachable)
fix x and $e::$ real
assume $x \in S 0<e$
obtain TF where opeF: $\bigwedge n$. openin (top_of_set S) (TF n)
and $n e: \bigwedge n$. TF $n \neq\{ \}$
and subg: $\bigwedge n . S \cap \operatorname{closure}(T F n) \subseteq ? g n$
and subball: $\bigwedge n$. closure $(T F n) \subseteq$ ball $x e$
and decr: $\wedge n . T F(S u c n) \subseteq T F n$
proof -
have $*: \exists Y$. (openin (top_of_set $S) Y \wedge Y \neq\{ \} \wedge$
$S \cap$ closure $Y \subseteq$? $g n \wedge$ closure $Y \subseteq$ ball x e) $\wedge Y \subseteq U$
if ope U : openin (top_of_set S) U and $U \neq\{ \}$ and clo U : closure $U \subseteq$ ball
$x e$ for $U n$
proof -
obtain T where T : open $T U=T \cap S$

```
```

 using <openin (top_of_set S) U` by (auto simp:openin_subtopology)
 with \langleU\not={}\rangle have T\cap closure (?g n) \not= {}
 using gin ope by fastforce
 then have T\cap?g n\not={}
 using <open T> open_Int_closure_eq_empty by blast
 then obtain }y\mathrm{ where }y\inUy\in?g
 using T ope [of ?g n,OF gin] by (blast dest: openin_imp_subset)
 moreover have openin (top_of_set S)(U\cap?g n)
 using gin ope opeU by blast
 ultimately obtain d}\mathrm{ where U:U }\cap?gn\subseteqS\mathrm{ and d>0 and d: ball y
 d\capS\subseteqU\cap?g n
by (force simp: openin_contains_ball)
show ?thesis
proof (intro exI conjI)
show openin (top_of_set S) (S\cap ball y (d/2))
by (simp add: openin_open_Int)
show }S\cap\mathrm{ ball y }(d/2)\not={
using }\langle0<d\rangle\langley\inU\rangle\mathrm{ opeU openin_imp_subset by fastforce
have}S\cap\mathrm{ closure (S @ ball y (d/2)) }\subseteqS\cap\mathrm{ closure (ball y (d/2))
using closure_mono by blast
also have ...\subseteq?g n
using \langled > 0\rangle d by force
finally show }S\cap\mathrm{ closure (S }\cap\mathrm{ ball y (d/2)) }\subseteq??gn
have closure (S\cap\mathrm{ ball y (d/2))}\subseteqS\cap\mathrm{ ball y d}
proof -
have closure (ball y (d/2)) \subseteq ball y d
using <d > 0\rangle by auto
then have closure (S\capball y (d/2))\subseteq ball y d
by (meson closure_mono inf.cobounded2 subset_trans)
then show ?thesis
by (simp add:\closed S` closure_minimal)
qed
also have ... \subseteqball x e
using cloU closure_subset d by blast
finally show closure (S\cap ball y (d/2))\subseteq ball x e .
show }S\cap\mathrm{ ball y (d/2) }\subseteq
using ball_divide_subset_numeral d by blast
qed
qed
let ?\Phi = \lambdan X. openin (top_of_set S) X ^ X\not={}^
S\cap closure X \subseteq?g n ^ closure X \subseteq ball x e
have closure (S\cap ball x (e/2))\subseteq closure(ball x (e/2))
by (simp add: closure_mono)
also have ... \subseteq ball x e
using <e> 0\rangle by auto
finally have closure (S\cap ball x (e/\mathcal{Z}))\subseteq ball x e .
moreover haveopenin (top_of_set S) (S\capball x (e/2)) S\capball x (e/2) \#
{}
using }\langle0<e\rangle\langlex\inS\rangle\mathrm{ by auto

```
ultimately obtain \(Y\) where \(Y:\) ？\(\Phi 0 Y \wedge Y \subseteq S \cap\) ball \(x(e / 2)\) using＊［of \(S \cap\) ball \(x\)（e／2） 0\(]\) by metis
show thesis
proof（rule exE［OF dependent＿nat＿choice］）
show \(\exists x\) ．？\(\Phi 0 x\)
using \(Y\) by auto
show \(\exists Y\) ．？\(\Phi(\) Suc \(n) ~ Y \wedge Y \subseteq X\) if ？\(\Phi n X\) for \(X n\)
using that by（blast intro：＊）
qed（use that in metis）
qed
have \((\cap n . S \cap\) closure \((T F n)) \neq\{ \}\)
proof（rule compact＿nest）
show \(\bigwedge n\) ．compact \((S \cap\) closure \((T F n))\)
by（metis closed＿closure subball bounded＿subset＿ballI compact＿eq＿bounded＿closed closed＿Int＿compact［OF 〈closed S〉］）
show \(\wedge n . S \cap\) closure \((T F n) \neq\{ \}\)
by（metis Int＿absorb1 opeF 〈closed \(S\) 〉closure＿eq＿empty closure＿minimal ne openin＿imp＿subset）
show \(\bigwedge m n . m \leq n \Longrightarrow S \cap\) closure \((T F n) \subseteq S \cap\) closure \((T F m)\)
by（meson closure＿mono decr dual＿order．refl inf＿mono lift＿Suc＿antimono＿le）
qed
moreover have \((\bigcap n . S \cap\) closure \((T F n)) \subseteq\{y \in \bigcap \mathcal{G}\) ．dist \(y x<e\}\)
proof（clarsimp，intro conjI）
fix \(y\)
assume \(y \in S\) and \(y: \forall n . y \in \operatorname{closure}(T F n)\)
then show \(\forall T \in \mathcal{G} . y \in T\)
by（metis Int＿iff from＿nat＿into＿surj［OF 〈countable \(\mathcal{G}\rangle]\) subsetD subg）
show dist \(y x<e\)
by（metis y dist＿commute mem＿ball subball subsetCE）
qed
ultimately show \(\exists y \in \bigcap \mathcal{G}\) ．dist \(y x<e\)
by auto
qed
qed

\section*{3．3．16 Continuity}

\section*{Structural rules for uniform continuity}
lemma（in bounded＿linear）uniformly＿continuous＿on［continuous＿intros］：
fixes \(g\) ：：＿：：metric＿space \(\Rightarrow\)＿
assumes uniformly＿continuous＿on s g
shows uniformly＿continuous＿on s \((\lambda x . f(g x))\)
using assms unfolding uniformly＿continuous＿on＿sequentially
unfolding dist＿norm tendsto＿norm＿zero＿iff diff［symmetric］
by（auto intro：tendsto＿zero）
lemma uniformly＿continuous＿on＿dist［continuous＿intros］：
fixes \(f g\) ：：＇\(a::\) metric＿space \(\Rightarrow\)＇b：：metric＿space
assumes uniformly＿continuous＿on s \(f\)
    and uniformly_continuous_on sg
    shows uniformly_continuous_on s \((\lambda x\). dist \((f x)(g x))\)
proof -
    \{
        fix \(a b c d:: \quad b\)
        have \(\mid\) dist \(a b-\) dist \(c d \mid \leq\) dist \(a c+\) dist \(b d\)
            using dist_triangle2 [ 0 of \(a b c c\) dist_triangle2 \(\left[\begin{array}{lll}o f & b & c \\ d\end{array}\right]\)
            using dist_triangle3 [of ccla] dist_triangle [of ald \(\left.\begin{array}{lll} & d\end{array}\right]\)
            by arith
    \(\}\) note \(l e=\) this
    \{
        fix \(x y\)
        assume \(f:(\lambda n\). \(\operatorname{dist}(f(x n))(f(y n))) \longrightarrow 0\)
        assume \(g:(\lambda n\). dist \((g(x n))(g(y n))) \longrightarrow 0\)
        have \((\lambda n\). \(|\operatorname{dist}(f(x n))(g(x n))-\operatorname{dist}(f(y n))(g(y n))|) \longrightarrow 0\)
        by (rule Lim_transform_bound [OF _ tendsto_add_zero [OF f g]],
            simp add: le)
    \}
    then show ?thesis
        using assms unfolding uniformly_continuous_on_sequentially
        unfolding dist_real_def by simp
qed
lemma uniformly_continuous_on_cmul_right [continuous_intros]:
    fixes \(f::\) ' \(a::\) real_normed_vector \(\Rightarrow\) ' \(b::\) real_normed_algebra
    shows uniformly_continuous_on s \(f \Longrightarrow\) uniformly_continuous_on s \((\lambda x . f x * c)\)
    using bounded_linear.uniformly_continuous_on[OF bounded_linear_mult_left].
lemma uniformly_continuous_on_cmul_left[continuous_intros]:
    fixes \(f\) :: 'a::real_normed_vector \(\Rightarrow\) 'b::real_normed_algebra
    assumes uniformly_continuous_on s \(f\)
        shows uniformly_continuous_on s \((\lambda x . c * f x)\)
by (metis assms bounded_linear.uniformly_continuous_on bounded_linear_mult_right)
lemma uniformly_continuous_on_norm[continuous_intros]:
    fixes \(f::\) ' \(a\) :: metric_space \(\Rightarrow\) ' \(b\) :: real_normed_vector
    assumes uniformly_continuous_on s \(f\)
    shows uniformly_continuous_on s ( \(\lambda\) x. norm \((f x)\) )
    unfolding norm_conv_dist using assms
    by (intro uniformly_continuous_on_dist uniformly_continuous_on_const)
lemma uniformly_continuous_on_cmul[continuous_intros]:
    fixes \(f::\) 'a::metric_space \(\Rightarrow\) ' \(b::\) real_normed_vector
    assumes uniformly_continuous_on s \(f\)
    shows uniformly_continuous_on \(s\left(\lambda x . c *_{R} f(x)\right)\)
    using bounded_linear_scaleR_right assms
    by (rule bounded_linear.uniformly_continuous_on)
lemma dist_minus:
```

 fixes \(x\) y :: ' \(a\) ::real_normed_vector
 shows dist \((-x)(-y)=\) dist \(x y\)
 unfolding dist_norm minus_diff_minus norm_minus_cancel ..
 lemma uniformly_continuous_on_minus[continuous_intros]:
fixes $f::$ 'a::metric_space \Rightarrow ' $b::$ real_normed_vector
shows uniformly_continuous_on s $f \Longrightarrow$ uniformly_continuous_on s $(\lambda x .-f x)$
unfolding uniformly_continuous_on_def dist_minus.
lemma uniformly_continuous_on_add[continuous_intros]:
fixes $f g$:: ' a ::metric_space $\Rightarrow{ }^{\prime} b::$ real_normed_vector
assumes uniformly_continuous_on s f
and uniformly_continuous_on s g
shows uniformly_continuous_on s $(\lambda x . f x+g x)$
using assms
unfolding uniformly_continuous_on_sequentially
unfolding dist_norm tendsto_norm_zero_iff add_diff_add
by (auto intro: tendsto_add_zero)
lemma uniformly_continuous_on_diff[continuous_intros]:
fixes $f::$ 'a::metric_space \Rightarrow ' $b::$ real_normed_vector
assumes uniformly_continuous_on s f
and uniformly_continuous_on s g
shows uniformly_continuous_on $s(\lambda x . f x-g x)$
using assms uniformly_continuous_on_add [of sf-g]
by (simp add: fun_Compl_def uniformly_continuous_on_minus)

```

\subsection*{3.3.17 Arithmetic Preserves Topological Properties}
```

lemma open_scaling[intro]:
fixes s :: ' a ::real_normed_vector set
assumes $c \neq 0$
and open s
shows $\operatorname{open}\left(\left(\lambda x . c *_{R} x\right){ }^{\prime} s\right)$
proof -
\{
fix x
assume $x \in s$
then obtain e where $e>0$
and $e: \forall x^{\prime}$. dist $x^{\prime} x<e \longrightarrow x^{\prime} \in s$ using assms(2)[unfolded open_dist,
THEN bspec[where $x=x]$]
by auto
have $e *|c|>0$
using assms(1)[unfolded zero_less_abs_iff [symmetric]] $\langle e\rangle 0\rangle$ by auto
moreover
\{
fix y
assume dist $y\left(c *_{R} x\right)<e *|c|$
then have norm $\left(c *_{R}\left((1 / c) *_{R} y-x\right)\right)<e *$ norm c

```
```

 by (simp add: <c \not= 0\rangle dist_norm scale_right_diff_distrib)
 then have norm ((1/c)*R}y-x)<
 by (simp add: <c \not=0`)
 then have }y\in(\mp@subsup{*}{R}{\prime})c'
 using rev_image_eqI[of (1/c)**R y s y (*R)c]
 by (simp add: <c\not=0\rangle dist_norm e)
 }
 ultimately have }\existse>0.\forall\mp@subsup{x}{}{\prime}.\mathrm{ dist }\mp@subsup{x}{}{\prime}(c\mp@subsup{*}{R}{}x)<e\longrightarrow\mp@subsup{x}{}{\prime}\in(\mp@subsup{*}{R}{})c'
 by (rule_tac x=e* |c| in exI, auto)
 }
then show ?thesis unfolding open_dist by auto
qed
lemma minus_image_eq_vimage:
fixes A :: 'a::ab_group_add set
shows (\lambdax.-x)'}A=(\lambdax.-x) -'
by (auto intro!: image_eqI [where f=\lambdax. - x])
lemma open_negations:
fixes S :: 'a::real_normed_vector set
shows open S\Longrightarrow open ((\lambdax.-x)'S)
using open_scaling [of - 1S] by simp
lemma open_translation:
fixes S :: 'a::real_normed_vector set
assumes open S
shows open((\lambdax.a+x)'S)
proof -
{
fix }
have continuous (at x) (}\lambdax.x-a
by (intro continuous_diff continuous_ident continuous_const)
}
moreover have {x.x-a\inS}=(+)a'S
by force
ultimately show ?thesis
by (metis assms continuous_open_vimage vimage_def)
qed
lemma open_translation_subtract:
fixes S :: 'a::real_normed_vector set
assumes open S
shows open ((\lambdax. x-a)'S)
using assms open_translation [of S - a] by (simp cong: image_cong_simp)
lemma open_neg_translation:
fixes S :: 'a::real_normed_vector set
assumes open S
shows open((\lambdax.a-x)'S)

```
```

 using open_translation[OF open_negations[OF assms], of a]
 by (auto simp: image_image)
 lemma open_affinity:
fixes S :: ' a ::real_normed_vector set
assumes open $S \quad c \neq 0$
shows open $\left(\left(\lambda x . a+c *_{R} x\right)\right.$ ' $\left.S\right)$
proof -
have $*:\left(\lambda x \cdot a+c *_{R} x\right)=(\lambda x \cdot a+x) \circ\left(\lambda x \cdot c *_{R} x\right)$
unfolding o_def ..
have $(+) a^{\prime}\left(*_{R}\right) c \cdot S=\left((+) a \circ\left(*_{R}\right) c\right)^{\prime} S$
by auto
then show ?thesis
using assms open_translation $\left[o f\left(*_{R}\right) c\right.$ 'S a]
unfolding *
by auto
qed
lemma interior_translation:
interior $\left((+) a^{\prime} S\right)=(+) a^{\prime}($ interior $S)$ for S :: ' $a::$ real_normed_vector set
proof (rule set_eqI, rule)
fix x
assume $x \in$ interior $\left((+) a^{\prime} S\right)$
then obtain e where $e>0$ and e : ball $x e \subseteq(+) a$ ' S
unfolding mem_interior by auto
then have ball $(x-a) e \subseteq S$
unfolding subset_eq Ball_def mem_ball dist_norm
by (auto simp: diff_diff_eq)
then show $x \in(+) a$ 'interior S
unfolding image_iff
by (metis $\langle 0<e\rangle$ add.commute diff_add_cancel mem_interior)
next
fix x
assume $x \in(+) a^{\prime}$ interior S
then obtain $y e$ where $e>0$ and e : ball $y e \subseteq S$ and $y: x=a+y$
unfolding image_iff Bex_def mem_interior by auto
\{
fix z
have $*: a+y-z=y+a-z$ by auto
assume $z \in$ ball $x e$
then have $z-a \in S$
using e[unfolded subset_eq, THEN bspec[where $x=z-a]]$
unfolding mem_ball dist_norm y group_add_class.diff_diff_eq2 *
by auto
then have $z \in(+) a$ ' S
unfolding image_iff by (auto intro!: bexI $[$ where $x=z-a]$)
\}
then have ball $x e \subseteq(+) a$ ' S
unfolding subset_eq by auto

```
```

 then show }x\in\mathrm{ interior ((+) a'S)
 unfolding mem_interior using }\langlee>0\rangle\mathrm{ by auto
 qed
lemma interior_translation_subtract:
interior ((\lambdax. x-a)'S) = (\lambdax.x-a)'interior S for S :: 'a::real_normed_vector
set
using interior_translation [of - a] by (simp cong: image_cong_simp)
lemma compact_scaling:
fixes s :: ' }a::\mathrm{ :real_normed_vector set
assumes compact s
shows compact ((\lambdax.c**R x)'s)
proof -
let ?f = \lambdax. scaleR c x
have *: bounded_linear ?f by (rule bounded_linear_scaleR_right)
show ?thesis
using compact_continuous_image[of s ?f] continuous_at_imp_continuous_on[of s
?f]
using linear_continuous_at[OF *] assms
by auto
qed
lemma compact_negations:
fixes s :: 'a::real_normed_vector set
assumes compact s
shows compact ((\lambdax. - x)'s)
using compact_scaling [OF assms, of - 1] by auto
lemma compact_sums:
fixes s t::'a::real_normed_vector set
assumes compact s
and compact t
shows compact {x+y|xy.x\ins\wedgey\int}
proof -
have *: {x+y|xy.x\ins^y\int}=(\lambdaz.fstz+ sndz)'(s\timest)
by (fastforce simp: image_iff)
have continuous_on (s\timest)(\lambdaz.fstz+snd z)
unfolding continuous_on by (rule ballI) (intro tendsto_intros)
then show ?thesis
unfolding * using compact_continuous_image compact_Times [OF assms] by
auto
qed
lemma compact_differences:
fixes s t:: 'a::real_normed_vector set
assumes compact s
and compact t

```
```

 shows compact \(\{x-y \mid x y . x \in s \wedge y \in t\}\)
 proof-
have $\{x-y \mid x y . x \in s \wedge y \in t\}=\{x+y \mid x y . x \in s \wedge y \in($ uminus' $t)\}$
using diff_conv_add_uminus by force
then show ?thesis
using compact_sums[OF assms(1) compact_negations[OF assms(2)]] by auto
qed
lemma compact_translation:
compact $((+) a$ ' $s)$ if compact s for $s::$ ' $a::$ real_normed_vector set
proof -
have $\{x+y \mid x y . x \in s \wedge y \in\{a\}\}=(\lambda x . a+x) \cdot s$
by auto
then show?thesis
using compact_sums [OF that compact_sing [of a]] by auto
qed
lemma compact_translation_subtract:
compact $\left((\lambda x . x-a)^{\prime} s\right)$ if compact s for $s::$ 'a::real_normed_vector set
using that compact_translation $[0 f s-a]$ by (simp cong: image_cong_simp)
lemma compact_affinity:
fixes $s::$ ' $a:$:real_normed_vector set
assumes compact s
shows compact $\left(\left(\lambda x . a+c *_{R} x\right)\right.$ ' $\left.s\right)$
proof -
have $(+) a{ }^{\prime}\left(*_{R}\right) c$ ' $s=\left(\lambda x . a+c *_{R} x\right) ' s$
by auto
then show ?thesis
using compact_translation[OF compact_scaling[OF assms], of a c] by auto
qed
lemma closed_scaling:
fixes S :: 'a::real_normed_vector set
assumes closed S
shows closed $\left(\left(\lambda x . c *_{R} x\right)\right.$ 'S)
proof (cases $c=0$)
case True then show ?thesis
by (auto simp: image_constant_conv)
next
case False
from assms have closed $\left(\left(\lambda x\right.\right.$. inverse $\left.\left.c *_{R} x\right)-{ }^{\prime} S\right)$
by (simp add: continuous_closed_vimage)
also have $\left(\lambda x\right.$. inverse $\left.c *_{R} x\right)-' S=\left(\lambda x . c *_{R} x\right) ' S$
using $\langle c \neq 0\rangle$ by (auto elim: image_eqI [rotated])
finally show ?thesis.
qed
lemma closed_negations:

```
```

 fixes \(S\) :: 'a::real_normed_vector set
 assumes closed \(S\)
 shows closed \(((\lambda x .-x)\) ' \(S\))
 using closed_scaling[OF assms, of - 1] by simp
 lemma compact_closed_sums:
fixes S :: 'a::real_normed_vector set
assumes compact S and closed T
shows closed $(\bigcup x \in S . \bigcup y \in T .\{x+y\})$
proof -
let $? S=\{x+y \mid x y . x \in S \wedge y \in T\}$
\{
fix $x l$
assume as: $\forall n . x n \in ? S(x \longrightarrow l)$ sequentially
from $\operatorname{as}(1)$ obtain f where $f: \forall n . x n=f s t(f n)+\operatorname{snd}(f n) \forall n . f s t(f n)$
$\in S \forall n$. snd $(f n) \in T$
using choice $[$ of $\lambda n y . x n=($ fst $y)+($ snd $y) \wedge f s t y \in S \wedge$ snd $y \in T]$ by
auto
obtain $l^{\prime} r$ where $l^{\prime} \in S$ and r : strict_mono r and $l r:(((\lambda n . f s t(f n)) \circ r)$
$\longrightarrow l^{\prime}$) sequentially
using assms(1)[unfolded compact_def, THEN spec[where $x=\lambda n$. fst ($f n)]$]
using $f(2)$ by auto
have $\left((\lambda n\right.$. snd $\left.(f(r n))) \longrightarrow l-l^{\prime}\right)$ sequentially
using tendsto_diff $[O F$ LIMSEQ_subseq_LIMSEQ[OF as(2) r] lr] and $f(1)$
unfolding o_def
by auto
then have $l-l^{\prime} \in T$
using assms(2)[unfolded closed_sequential_limits,
THEN spec [where $x=\lambda n$. snd $(f(r n))]$,
THEN spec[where $x=l-l$]]
using $f(3)$
by auto
then have $l \in$? S
using $\left\langle l^{\prime} \in S\right\rangle$ by force
\}
moreover have $? S=(\bigcup x \in S . \bigcup y \in T .\{x+y\})$
by force
ultimately show ?thesis
unfolding closed_sequential_limits
by (metis (no_types, lifting))
qed
lemma closed_compact_sums:
fixes $S T$:: ' $a::$ real_normed_vector set
assumes closed S compact T
shows closed $(\bigcup x \in S . \bigcup y \in T .\{x+y\})$
proof -
have $(\bigcup x \in T . \bigcup y \in S .\{x+y\})=(\bigcup x \in S . \bigcup y \in T .\{x+y\})$
by auto

```
```

 then show ?thesis
 using compact_closed_sums[OF assms(2,1)] by simp
 qed
lemma compact_closed_differences:
fixes S T :: 'a::real_normed_vector set
assumes compact S closed T
shows closed (\bigcupx\inS.\bigcupy\inT.{x-y})
proof -
have (\bigcupx\inS.\bigcupy\inuminus'T. {x+y})=(\bigcupx\inS.\bigcupy\inT.{x-y})
by force
then show ?thesis
by (metis assms closed_negations compact_closed_sums)
qed
lemma closed_compact_differences:
fixes S T :: 'a::real_normed_vector set
assumes closed S compact T
shows closed (\bigcupx\inS.\bigcupy\inT.{x-y})
proof -
have (\bigcupx\inS.\bigcupy {uminus'T. {x+y})={x-y|xy.x\inS^y\inT}
by auto
then show ?thesis
using closed_compact_sums[OF assms(1) compact_negations[OF assms(2)]] by
simp
qed
lemma closed_translation:
closed ((+) a'S) if closed S for a :: 'a::real_normed_vector
proof -
have (\bigcupx\in{a}. \bigcupy f S. {x+y})=((+) a'S) by auto
then show ?thesis
using compact_closed_sums [OF compact_sing [of a] that] by auto
qed
lemma closed_translation_subtract:
closed ((\lambdax. x - a)'S) if closed S for a :: 'a::real_normed_vector
using that closed_translation [of S - a] by (simp cong: image_cong_simp)
lemma closure_translation:
closure ((+) a's) = (+) a'closure s for a :: 'a::real_normed_vector
proof -
have *:(+) a'(- s) = - (+) a's
by (auto intro!: image_eqI [where }x=x-a\mathrm{ for }x]\mathrm{)
show ?thesis
using interior_translation [of a-s,symmetric]
by (simp add: closure_interior translation_Compl *)
qed

```
lemma closure_translation_subtract:
closure \(\left((\lambda x . x-a)^{\prime} s\right)=(\lambda x . x-a)\) 'closure \(s\) for \(a::\) 'a::real_normed_vector using closure_translation \([o f-a s]\) by (simp cong: image_cong_simp)
lemma frontier_translation:
frontier \(((+) a ' s)=(+) a\) 'frontier \(s\) for \(a::\) ' \(a::\) real_normed_vector by (auto simp add: frontier_def translation_diff interior_translation closure_translation)
lemma frontier_translation_subtract:
frontier \(((+) a\) ' \(s)=(+) a\) 'frontier \(s\) for \(a\) :: 'a::real_normed_vector
by (auto simp add: frontier_def translation_diff interior_translation closure_translation)
lemma sphere_translation:
sphere \((a+c) r=(+) a\) 'sphere c \(r\) for \(a::\) ' \(n::\) real_normed_vector
by (auto simp: dist_norm algebra_simps intro!: image_eqI [where \(x=x-a\) for \(x]\) )
lemma sphere_translation_subtract:
sphere \((c-a) r=(\lambda x . x-a)\) 'sphere \(c r\) for \(a::\) ' \(n::\) real_normed_vector using sphere_translation \([o f-a c]\) by (simp cong: image_cong_simp)
lemma cball_translation:
cball \((a+c) r=(+) a\) 'cball c \(r\) for \(a::\) ' \(n\) ::real_normed_vector
by (auto simp: dist_norm algebra_simps intro!: image_eqI [where \(x=x-a\) for \(x]\) )
lemma cball_translation_subtract:
cball \((c-a) r=(\lambda x . x-a)\) 'cball \(c r\) for \(a::\) ' \(n::\) real_normed_vector using cball_translation \([o f-a c]\) by (simp cong: image_cong_simp)
lemma ball_translation:
ball \((a+c) r=(+) a\) 'ball \(c r\) for \(a:: ' n::\) real_normed_vector
by (auto simp: dist_norm algebra_simps intro!: image_eqI [where \(x=x-a\) for \(x]\) )
lemma ball_translation_subtract:
ball \((c-a) r=(\lambda x . x-a)\) 'ball \(c r\) for \(a::\) ' \(n::\) real_normed_vector
using ball_translation \([o f-a c]\) by (simp cong: image_cong_simp)

\subsection*{3.3.18 Homeomorphisms}
lemma homeomorphic_scaling:
fixes \(S\) :: ' \(a:\) :real_normed_vector set
assumes \(c \neq 0\)
shows \(S\) homeomorphic \(\left(\left(\lambda x . c *_{R} x\right)\right.\) ' \(\left.S\right)\)
unfolding homeomorphic_minimal
apply (rule_tac \(x=\lambda x . c *_{R} x\) in \(e x I\) )
apply (rule_tac \(x=\lambda x .(1 / c) *_{R} x\) in \(\left.e x I\right)\)
using assms by (auto simp: continuous_intros)
lemma homeomorphic_translation:
fixes \(S\) :: 'a::real_normed_vector set
shows \(S\) homeomorphic \(((\lambda x . a+x)\) ' \(S)\)
unfolding homeomorphic_minimal
apply (rule_tac \(x=\lambda x . a+x\) in \(e x I\) )
apply (rule_tac \(x=\lambda x .-a+x\) in exI)
by (auto simp: continuous_intros)
lemma homeomorphic_affinity:
fixes \(S\) :: ' \(a:\) ::real_normed_vector set
assumes \(c \neq 0\)
shows \(S\) homeomorphic \(\left(\left(\lambda x . a+c *_{R} x\right)\right.\) ' \(\left.S\right)\)
proof -
have \(*:(+) a{ }^{\prime}\left(*_{R}\right) c ‘ S=\left(\lambda x . a+c *_{R} x\right)^{\prime} S\) by auto
show ?thesis
by (metis \(*\) assms homeomorphic_scaling homeomorphic_trans homeomorphic_translation)
qed
lemma homeomorphic_balls:
fixes \(a b::\) 'a:: real_normed_vector
assumes \(0<d \quad 0<e\)
shows (ball a d) homeomorphic (ball be) (is ?th)
and (cball ad) homeomorphic (cball be) (is ?cth)
proof -
show ?th unfolding homeomorphic_minimal
apply \(\left(\right.\) rule_tac \(x=\lambda x . b+(e / d) *_{R}(x-a)\) in exI)
\(\operatorname{apply}\left(\right.\) rule_tac \(x=\lambda x . a+(d / e) *_{R}(x-b)\) in \(\left.e x I\right)\)
using assms
by (auto intro!: continuous_intros simp: dist_commute dist_norm pos_divide_less_eq)
show ?cth unfolding homeomorphic_minimal
apply \(\left(\right.\) rule_tac \(x=\lambda x . b+(e / d) *_{R}(x-a)\) in exI)
\(\operatorname{apply}\left(\right.\) rule_tac \(x=\lambda x . a+(d / e) *_{R}(x-b)\) in exI)
using assms
by (auto intro!: continuous_intros simp: dist_commute dist_norm pos_divide_le_eq)
qed
lemma homeomorphic_spheres:
fixes \(a b\) ::'a::real_normed_vector
assumes \(0<d \quad 0<e\)
shows (sphere a d) homeomorphic (sphere be)
unfolding homeomorphic_minimal
apply \(\left(\right.\) rule_tac \(x=\lambda x . b+(e / d) *_{R}(x-a)\) in exI)
\(\operatorname{apply}\left(\right.\) rule_tac \(x=\lambda x . a+(d / e) *_{R}(x-b)\) in \(\left.e x I\right)\)
using assms
by (auto intro!: continuous_intros simp: dist_commute dist_norm pos_divide_less_eq)
lemma homeomorphic_ball01_UNIV:
ball (0::'a::real_normed_vector) 1 homeomorphic (UNIV :: 'a set)
(is ?B homeomorphic ?U)
proof
have \(x \in\left(\lambda z . z /_{R}(1-n o r m z)\right)\) 'ball 01 for \(x::^{\prime} a\)
apply (rule_tac \(x=x / R(1+\) norm \(x)\) in image_eq \(I)\)
apply (auto simp: field_split_simps)
using norm_ge_zero [of \(x\) ] apply linarith +
done
then show \(\left(\lambda z::^{\prime} a . z / R(1-\right.\) norm \(\left.z)\right) \cdot ? B=? U\)
by blast
have \(x \in \operatorname{range}\left(\lambda z .(1 /(1+\right.\) norm \(\left.z)) *_{R} z\right)\) if norm \(x<1\) for \(x::^{\prime} a\)
using that
by (rule_tac \(x=x / R(1-n o r m x)\) in image_eqI) (auto simp: field_split_simps)
then show \(\left(\lambda z::^{\prime} a . z / R(1+\right.\) norm \(\left.z)\right)\) '? \(U=\) ? \(B\)
by (force simp: field_split_simps dest: add_less_zeroD)
show continuous_on (ball 0 1) \((\lambda z . z / R(1-n o r m ~ z))\)
by (rule continuous_intros \(\mid\) force \()+\)
have \(0: \bigwedge z .1+\) norm \(z \neq 0\)
by (metis (no_types) le_add_same_cancel1 norm_ge_zero not_one_le_zero)
then show continuous_on \(\operatorname{UNIV}(\lambda z . z / R(1+\) norm \(z))\)
by (auto intro!: continuous_intros)
show \(\bigwedge x . x \in\) ball \(01 \Longrightarrow\)
\[
x / R(1-\operatorname{norm} x) / R(1+\operatorname{norm}(x / R(1-\operatorname{norm} x)))=x
\]
by (auto simp: field_split_simps)
show \(\bigwedge y . y / R(1+\operatorname{norm} y) / R(1-\operatorname{norm}(y / R(1+\operatorname{norm} y)))=y\)
using 0 by (auto simp: field_split_simps)
qed
proposition homeomorphic_ball_UNIV:
fixes \(a\) ::' \(a::\) real_normed_vector
assumes \(0<r\) shows ball a \(r\) homeomorphic (UNIV:: 'a set)
using assms homeomorphic_ball01_UNIV homeomorphic_balls(1) homeomorphic_trans
zero_less_one by blast

\subsection*{3.3.19 Discrete}
lemma finite_implies_discrete:
fixes \(S\) :: 'a::topological_space set
assumes finite \((f\) ' \(S\) )
shows \((\forall x \in S . \exists e>0 . \forall y . y \in S \wedge f y \neq f x \longrightarrow e \leq \operatorname{norm}(f y-f x))\)
proof -
have \(\exists e>0 . \forall y . y \in S \wedge f y \neq f x \longrightarrow e \leq \operatorname{norm}(f y-f x)\) if \(x \in S\) for \(x\)
proof (cases \(f\) ' \(S-\{f x\}=\{ \}\) )
case True
with zero_less_numeral show ?thesis by (fastforce simp add: Set.image_subset_iff cong: conj_cong)
next
case False
then obtain \(z\) where \(z \in S f z \neq f x\)
by blast
```

 moreover have finn: finite {norm (z-fx)|z.z\inf'S-{fx}}
 using assms by simp
 ultimately have *: 0 < Inf{norm(z-fx)|z.z\inf'S-{fx}}
 by (force intro: finite_imp_less_Inf)
 show ?thesis
 by (force intro!: * cInf_le_finite [OF finn])
 qed
 with assms show ?thesis
 by blast
 qed

```

\subsection*{3.3.20 Completeness of "Isometry" (up to constant bounds)}
lemma cauchy_isometric:- TODO: rename lemma to Cauchy_isometric
    assumes \(e: e>0\)
        and \(s\) : subspace \(s\)
        and \(f\) : bounded_linear \(f\)
        and normf: \(\forall x \in s\). norm \((f x) \geq e *\) norm \(x\)
        and \(x s: \forall n . x n \in s\)
        and \(c f:\) Cauchy \((f \circ x)\)
    shows Cauchy \(x\)
proof -
    interpret \(f\) : bounded_linear \(f\) by fact
    have \(\exists N . \forall n \geq N\). norm \((x n-x N)<d\) if \(d>0\) for \(d\) :: real
    proof -
        from that obtain \(N\) where \(N: \forall n \geq N\). norm \((f(x n)-f(x N))<e * d\)
            using cf[unfolded Cauchy_def o_def dist_norm, THEN spec [where \(x=e * d]] e\)
            by auto
        have \(\operatorname{norm}(x n-x N)<d\) if \(n \geq N\) for \(n\)
        proof -
            have \(e * \operatorname{norm}(x n-x N) \leq \operatorname{norm}(f(x n-x N))\)
                using subspace_diff \([O F s\), of \(x n x N]\)
                using \(x s[\) THEN spec \([\) where \(x=N]]\) and \(x s[\) THEN spec \([\) where \(x=n]]\)
                using normf[THEN bspec[where \(x=x n-x N]\) ]
                by auto
            also have \(\operatorname{norm}(f(x n-x N))<e * d\)
                using \(\langle N \leq n\rangle N\) unfolding \(f\).diff [symmetric] by auto
            finally show ?thesis
                using \(\langle e\rangle 0\rangle\) by simp
            qed
            then show ?thesis by auto
    qed
    then show ?thesis
        by (simp add: Cauchy_altdef2 dist_norm)
qed
lemma complete_isometric_image:
    assumes \(0<e\)
        and \(s\) : subspace \(s\)
```

 and f: bounded_linear f
 and normf: }\forallx\ins.\operatorname{norm}(fx)\geqe*\operatorname{norm}(x
 and cs: complete s
 shows complete (f's)
 proof -
have }\existsl\inf's.(g\longrightarrowl) sequentiall
if as:\foralln::nat.g n f f's and cfg:Cauchy g for g
proof -
from that obtain x where }\foralln.xn\ins\wedgegn=f(xn
using choice[of \lambdan na.xa\ins\wedgegn=fxa] by auto
then have }x:\foralln.xn\ins\foralln.gn=f(xn) by aut
then have f\circx=g by (simp add: fun_eq_iff)
then obtain l where l\ins and l:(x\longrightarrowl) sequentially
using cs[unfolded complete_def,THEN spec[where x=x]]
using cauchy_isometric[OF<0<e\ranglesf normf] and cfg and x(1)
by auto
then show ?thesis
using linear_continuous_at[OF f , unfolded continuous_at_sequentially, THEN
spec[where x=x], of l]
by (auto simp: <f ○ }x=g\rangle
qed
then show ?thesis
unfolding complete_def by auto
qed

```

\subsection*{3.3.21 Connected Normed Spaces}
lemma compact_components:
fixes \(s::\) ' \(a:\) :heine_borel set
shows \(\llbracket\) compact \(s ; c \in\) components \(s \rrbracket \Longrightarrow\) compact \(c\)
by (meson bounded_subset closed_components in_components_subset compact_eq_bounded_closed)
```

lemma discrete_subset_disconnected:
fixes S :: ' a ::topological_space set
fixes $t::$ ' $b::$:real_normed_vector set
assumes conf: continuous_on $S f$
and no: $\bigwedge x . x \in S \Longrightarrow \exists e>0 . \forall y . y \in S \wedge f y \neq f x \longrightarrow e \leq \operatorname{norm}(f y-$
$f x$)
shows f ' $S \subseteq\{y$. connected_component_set $(f$ ' $S) y=\{y\}\}$
proof -
\{ fix x assume $x: x \in S$
then obtain e where $e>0$ and ele: $\bigwedge y . \llbracket y \in S ; f y \neq f x \rrbracket \Longrightarrow e \leq \operatorname{norm}(f$
$y-f x)$
using conf no $[O F x]$ by auto
then have $e 2: 0 \leq e / 2$
by simp
define F where $F \equiv$ connected_component_set $\left(f^{\prime} S\right)(f x)$
have False if $y \in S$ and ccs: $f y \in F$ and not: $f y \neq f x$ for y
proof -

```
define \(C\) where \(C \equiv \operatorname{cball}(f x)(e / 2)\)
define \(D\) where \(D \equiv-\operatorname{ball}(f x) e\)
have disj: \(C \cap D=\{ \}\)
unfolding \(C_{-}\)def \(D_{-}\)def using \(\langle 0<e\rangle\) by fastforce
moreover have \(F C D: F \subseteq C \cup D\)
proof -
have \(t \in C \vee t \in D\) if \(t \in F\) for \(t\)
proof -
obtain \(y\) where \(y \in S t=f y\)
using \(F_{-}\)def \(\langle t \in F\rangle\) connected_component_in by blast
then show ?thesis
by (metis C_def ComplI D_def centre_in_cball dist_norm e2 ele mem_ball
norm_minus_commute not_le)
qed
then show ?thesis
by auto
qed
ultimately have \(C \cap F=\{ \} \vee D \cap F=\{ \}\)
using connected_closed [of \(F]\langle e\rangle 0\rangle\) not
unfolding \(C_{-}\)def \(D_{-} d e f\)
by (metis Elementary_Metric_Spaces.open_ball F_def closed_cball connected_connected_component inf_bot_left open_closed)
moreover have \(C \cap F \neq\{ \}\)
unfolding disjoint_iff
by (metis FCD ComplD image_eqI mem_Collect_eq subsetD x D_def F_def
Un_iff \(\langle 0<e\rangle\) centre_in_ball connected_component_refl_eq)
moreover have \(D \cap F \neq\{ \}\)
unfolding disjoint_iff
by (metis ComplI D_def ccs dist_norm ele mem_ball norm_minus_commute
not not_le that(1))
ultimately show ?thesis by metis
qed
moreover have connected_component_set \((f\) ' \(S)(f x) \subseteq f\) ' \(S\)
by (auto simp: connected_component_in)
ultimately have connected_component_set \((f\) 'S) \((f x)=\{f x\}\)
by (auto simp: x F_def)
\}
with assms show ?thesis
by blast
qed
lemma continuous_disconnected_range_constant_eq:
(connected \(S \longleftrightarrow\)
( \(\forall f:: ' a::\) topological_space \(\Rightarrow{ }^{\prime} b::\) real_normed_algebra_1.
\(\forall t\). continuous_on \(S f \wedge f\) ' \(S \subseteq t \wedge(\forall y \in t\). connected_component_set \(t\)
\(y=\{y\})\)
\(\longrightarrow f\) constant_on \(S)\) ) (is ?thesis1)
and continuous_discrete_range_constant_eq:
(connected \(S \longleftrightarrow\)
```

 (\forall f::'a::topological_space => 'b::real_normed_algebra_1.
 continuous_on S f ^
 (\forallx\inS.\existse.0<e^(\forally.y\inS\wedge(fy\not=fx)\longrightarrowe\leqnorm(fy-f
 x)))
\longrightarrow constant_on S)) (is ?thesis2)
and continuous_finite_range_constant_eq:
(connected S}
(\forallf::'a::topological_space => 'b::real_normed_algebra_1.
continuous_on S f ^ finite (f'S)
\longrightarrow f constant_on S)) (is ?thesis3)
proof -
have *: \bigwedges tuv.\llbrackets\Longrightarrowt;t\Longrightarrowu;u\Longrightarrowv;v\Longrightarrows\rrbracket
\Longrightarrow (s \longleftrightarrow t) \wedge (s \longleftrightarrow u) \wedge (s \longleftrightarrow v)
by blast
have ?thesis1 ^ ?thesis2 ^ ?thesis3
apply (rule *)
using continuous_disconnected_range_constant apply metis
apply clarify
apply (frule discrete_subset_disconnected; blast)
apply (blast dest: finite_implies_discrete)
apply (blast intro!: finite_range_constant_imp_connected)
done
then show ?thesis1 ?thesis2 ?thesis3
by blast+
qed
lemma continuous_discrete_range_constant:
fixes f :: 'a::topological_space = 'b::real_normed_algebra_1
assumes S: connected S
and continuous_on S f
and }\bigwedgex.x\inS\Longrightarrow\existse>0.\forally.y\inS\wedgefy\not=fx\longrightarrowe\leqnorm (fy-fx
shows f constant_on S
using continuous_discrete_range_constant_eq [THEN iffD1,OF S] assms by blast
lemma continuous_finite_range_constant:
fixes f :: 'a::topological_space = 'b::real_normed_algebra_1
assumes connected S
and continuous_on S f
and finite (f'S)
shows f constant_on S
using assms continuous_finite_range_constant_eq by blast
end

```

\subsection*{3.4 Linear Decision Procedure for Normed Spaces}
```

theory Norm_Arith
imports HOL-Library.Sum_of_Squares
begin

```
```

lemma sum_sqs_eq:
fixes $x::^{\prime} a::$ idom shows $x * x+y * y=x *(y * 2) \Longrightarrow y=x$
by algebra
lemma norm_cmul_rule_thm:
fixes x :: 'a::real_normed_vector
shows $b \geq$ norm $x \Longrightarrow|c| * b \geq$ norm (scaleR c x)
unfolding norm_scaleR
apply (erule mult_left_mono)
apply simp
done
lemma norm_add_rule_thm:
fixes $x 1$ x2 :: 'a::real_normed_vector
shows norm $x 1 \leq b 1 \Longrightarrow$ norm $x 2 \leq b 2 \Longrightarrow \operatorname{norm}(x 1+x 2) \leq b 1+b 2$
by (rule order_trans [OF norm_triangle_ineq add_mono])
lemma ge_iff_diff_ge_0:
fixes a :: ' $a::$ linordered_ring
shows $a \geq b \equiv a-b \geq 0$
by (simp add: field_simps)
lemma pth_1:
fixes $x::$ ' $a:$:real_normed_vector
shows $x \equiv$ scaleR $1 x$ by simp
lemma pth_2:
fixes $x::$ 'a::real_normed_vector
shows $x-y \equiv x+-y$
by (atomize (full)) simp
lemma pth_3:
fixes x :: 'a::real_normed_vector
shows $-x \equiv$ scale $R(-1) x$
by simp
lemma pth_4:
fixes x :: 'a::real_normed_vector
shows scale $R 0 x \equiv 0$
and scaleR c $0=\left(0::^{\prime} a\right)$
by simp_all
lemma p th_5:
fixes x :: 'a::real_normed_vector
shows scale $R c(s c a l e R d x) \equiv \operatorname{scale} R(c * d) x$
by simp

```
```

lemma p th_6:
fixes $x::$ 'a::real_normed_vector
shows scaleR c $(x+y) \equiv$ scale R c $x+$ scaleR c y
by (simp add: scaleR_right_distrib)
lemma p th_7:
fixes x :: 'a::real_normed_vector
shows $0+x \equiv x$
and $x+0 \equiv x$
by simp_all
lemma pth_8:
fixes $x::$ 'a::real_normed_vector
shows scale R c $x+$ scale $R d x \equiv \operatorname{scale} R(c+d) x$
by (simp add: scaleR_left_distrib)
lemma pth_9:
fixes x :: 'a::real_normed_vector
shows $($ scale $\mathrm{c} x+z)+$ scale $R d x \equiv \operatorname{scale} R(c+d) x+z$
and scaleR c $x+($ scaleR $d x+z) \equiv \operatorname{scale} R(c+d) x+z$
and $($ scale $R ~ c x+w)+($ scale $R d x+z) \equiv \operatorname{scale} R(c+d) x+(w+z)$
by (simp_all add: algebra_simps)
lemma pth_a:
fixes x :: 'a::real_normed_vector
shows scaleR $0 x+y \equiv y$
by simp
lemma pth_b:
fixes $x::$ 'a::real_normed_vector
shows scale R c $x+$ scale $R d y \equiv$ scaleR c $x+$ scale $R d y$
and $($ scale $R c x+z)+$ scale $R d y \equiv$ scale $R c x+(z+$ scale $R d y)$
and scaleR c $x+($ scale $R d y+z) \equiv$ scaleR $c x+($ scaleR $d y+z)$
and $($ scaleR $c x+w)+($ scaleR $d y+z) \equiv$ scaleR c $x+(w+($ scaleR $d y+$
z))
by (simp_all add: algebra_simps)
lemma $p t h _c$:
fixes $x::{ }^{\prime} a::$ real_normed_vector
shows scale R c $x+$ scale $R d y \equiv$ scale $R d y+$ scale R c x
and $($ scale $R c x+z)+$ scaleR $d y \equiv$ scaleR $d y+(s c a l e R ~ c x+z)$
and scaleR c $x+($ scale $R d y+z) \equiv$ scaleR d $y+(\operatorname{scaleR}$ c $x+z)$
and $($ scale R c $x+w)+($ scaleR $d y+z) \equiv \operatorname{scaleR} d y+((\operatorname{scaleR}$ c $x+w)$
$+z)$
by (simp_all add: algebra_simps)
lemma $p t h _d$:
fixes x :: 'a::real_normed_vector

```
```

 shows \(x+0 \equiv x\)
 by simp
 lemma norm_imp_pos_and_ge:
fixes x :: 'a::real_normed_vector
shows norm $x \equiv n \Longrightarrow$ norm $x \geq 0 \wedge n \geq$ norm x
by atomize auto
lemma real_eq_0_iff_le_ge_0:
fixes x :: real
shows $x=0 \equiv x \geq 0 \wedge-x \geq 0$
by arith
lemma norm_pths:
fixes x :: 'a::real_normed_vector
shows $x=y \longleftrightarrow \operatorname{norm}(x-y) \leq 0$
and $x \neq y \longleftrightarrow \neg(\operatorname{norm}(x-y) \leq 0)$
using norm_ge_zero[of $x-y$] by auto
lemmas arithmetic_simps $=$
arith_simps
add_numeral_special
add_neg_numeral_special
mult_1_left
mult_1_right

```

ML_file 〈normarith.ML〉
method_setup norm \(=\) <
    Scan.succeed (SIMPLE_METHOD' o NormArith.norm_arith_tac)
) prove simple linear statements about vector norms

Hence more metric properties.
proposition dist_triangle_add:
fixes \(x\) y \(x^{\prime} y^{\prime}\) :: 'a::real_normed_vector
shows dist \((x+y)\left(x^{\prime}+y^{\prime}\right) \leq \operatorname{dist} x x^{\prime}+\operatorname{dist} y y^{\prime}\)
by norm
lemma dist_triangle_add_half:
fixes \(x x^{\prime} y y^{\prime}::\) 'a::real_normed_vector
shows dist \(x x^{\prime}<e / 2 \Longrightarrow \operatorname{dist} y y^{\prime}<e / 2 \Longrightarrow \operatorname{dist}(x+y)\left(x^{\prime}+y^{\prime}\right)<e\)
by norm
end

\section*{Chapter 4}

\section*{Vector Analysis}

\author{
theory Topology_Euclidean_Space \\ imports \\ Elementary_Normed_Spaces \\ Linear_Algebra \\ Norm_Arith \\ begin
}

\subsection*{4.1 Elementary Topology in Euclidean Space}

\section*{lemma euclidean_dist_l2:}
fixes \(x\) y :: ' \(a\) :: euclidean_space
shows dist \(x y=\) L2_set \((\lambda i\). dist \((x \cdot i)(y \cdot i))\) Basis
unfolding dist_norm norm_eq_sqrt_inner L2_set_def
by (subst euclidean_inner) (simp add: power2_eq_square inner_diff_left)
lemma norm_nth_le: norm \((x \cdot i) \leq\) norm \(x\) if \(i \in\) Basis
proof -
have \((x \cdot i)^{2}=\left(\sum i \in\{i\} .(x \cdot i)^{2}\right)\)
by simp
also have \(\ldots \leq\left(\sum i \in\right.\) Basis. \(\left.(x \cdot i)^{2}\right)\) by (intro sum_mono2) (auto simp: that)
finally show ?thesis
unfolding norm_conv_dist euclidean_dist_l2 [of x] L2_set_def by (auto intro!: real_le_rsqrt)
qed

\subsection*{4.1.1 Continuity of the representation WRT an orthogonal basis \\ lemma orthogonal_Basis: pairwise orthogonal Basis \\ by (simp add: inner_not_same_Basis orthogonal_def pairwise_def) \\ lemma representation_bound: \\ fixes \(B::{ }^{\prime} N\) ::real_inner set}
assumes finite \(B\) independent \(B b \in B\) and orth: pairwise orthogonal \(B\)
obtains \(m\) where \(m>0 \bigwedge x . x \in \operatorname{span} B \Longrightarrow \mid\) representation \(B x b \mid \leq m *\) norm \(x\)
proof
fix \(x\)
assume \(x: x \in \operatorname{span} B\)
have \(b \neq 0\)
using \(\langle\) independent \(B\rangle\langle b \in B\rangle\) dependent_zero by blast
have \([\) simp \(]: b \cdot b^{\prime}=\left(\right.\) if \(b^{\prime}=b\) then \((\text { norm } b)^{2}\) else 0\()\)
if \(b \in B b^{\prime} \in B\) for \(b b^{\prime}\)
using orth by (simp add: orthogonal_def pairwise_def norm_eq_sqrt_inner that)
have norm \(x=\) norm ( \(\sum b \in B\). representation \(B x b *_{R} b\) )
using real_vector.sum_representation_eq \([O F\langle i n d e p e n d e n t B\rangle x\langle f i n i t e B\rangle\) order_refl]
by simp
also have \(\ldots=\operatorname{sqrt}\left(\left(\sum b \in B\right.\right.\). representation \(\left.B x b *_{R} b\right) \cdot\left(\sum b \in B\right.\). representation \(\left.B x b *_{R} b\right)\) )
by (simp add: norm_eq_sqrt_inner)
also have \(\ldots=\operatorname{sqrt}\left(\sum b \in B .\left(\right.\right.\) representation \(\left.B x b *_{R} b\right) \cdot(\) representation \(B x\) \(\left.b *_{R} b\right)\) )
using 〈finite \(B\rangle\)
by (simp add: inner_sum_left inner_sum_right if_distrib \([o f ~ \lambda x . ~ * ~ x] ~ c o n g: ~\) \(i f\) _cong sum.cong_simp)
also have \(\ldots=\operatorname{sqrt}\left(\sum b \in B .\left(\text { norm }\left(\text { representation } B x b *_{R} b\right)\right)^{2}\right)\)
by (simp add: mult.commute mult.left_commute power2_eq_square)
also have \(\ldots=\operatorname{sqrt}\left(\sum b \in B .(\text { representation } B x b)^{2} *(\text { norm } b)^{2}\right)\) by (simp add: norm_mult power_mult_distrib)
finally have norm \(x=\operatorname{sqrt}\left(\sum b \in B .(\text { representation } B x b)^{2} *(\text { norm } b)^{2}\right)\).
moreover
have sqrt \(\left((\text { representation } B x b)^{2} *(\text { norm } b)^{2}\right) \leq \operatorname{sqrt}\left(\sum b \in B .(\right.\) representation \(\left.B x b)^{2} *(\text { norm } b)^{2}\right)\)
using \(\langle b \in B\rangle\langle\) finite \(B\rangle\) by (auto intro: member_le_sum)
then have \(\mid\) representation \(B x b \mid \leq(1 /\) norm \(b) * \operatorname{sqrt}\left(\sum b \in B\right.\). (representation \(\left.B \times b)^{2} *(\text { norm } b)^{2}\right)\)
using \(\langle b \neq 0\rangle\) by (simp add: field_split_simps real_sqrt_mult del: real_sqrt_le_iff)
ultimately show \(\mid\) representation \(B x b \mid \leq(1 /\) norm \(b) *\) norm \(x\)
by simp
next
show \(0<1\) / norm \(b\)
using 〈independent \(B\rangle\langle b \in B\rangle\) dependent_zero by auto
qed
lemma continuous_on_representation:
fixes \(B\) :: ' \(N\) ::euclidean_space set
assumes finite \(B\) independent \(B b \in B\) pairwise orthogonal \(B\)
shows continuous_on (span \(B)(\lambda x\). representation \(B x b)\)
proof
show \(\exists d>0 . \forall x^{\prime} \in \operatorname{span} B\). dist \(x^{\prime} x<d \longrightarrow\) dist (representation \(B x^{\prime} b\) )
(representation \(B x b\) ) \(\leq e\)
```

 if e>0x\in\operatorname{span}B\mathrm{ for }xe
 proof -
 obtain m}\mathrm{ where m>0 and m: \x.x span B \ |representation B x b |
 \leqm* norm x
using assms representation_bound by blast
show ?thesis
unfolding dist_norm
proof (intro exI conjI ballI impI)
show e/m>0
by (simp add: <e> 0\rangle\langlem>0\rangle)
show norm (representation B x'b - representation B x b) \leqe
if \mp@subsup{x}{}{\prime}:\mp@subsup{x}{}{\prime}\in\operatorname{span}B\mathrm{ and less: norm (}\mp@subsup{x}{}{\prime}-x)<e/m\mathrm{ for }\mp@subsup{x}{}{\prime}
proof -
have |representation B (}\mp@subsup{x}{}{\prime}-x)b|\leqm*\operatorname{norm}(\mp@subsup{x}{}{\prime}-x
using m[of \mp@subsup{x}{}{\prime}-x]\langlex\in span B\rangle span_diff x' by blast
also have ...<e
by (metis <m> 0` less mult.commute pos_less_divide_eq)
finally have |representation B (\mp@subsup{x}{}{\prime}-x) b| \leqe by simp
then show ?thesis
by (simp add: <x \in span B><independent B> representation_diff x
qed
qed
qed
qed

```

\subsection*{4.1.2 Balls in Euclidean Space}
```

lemma cball_subset_cball_iff:
fixes $a::$ ' a :: euclidean_space
shows cball a $r \subseteq$ cball $a^{\prime} r^{\prime} \longleftrightarrow$ dist $a a^{\prime}+r \leq r^{\prime} \vee r<0$
(is ?lhs \longleftrightarrow ? rhs)
proof
assume? lhs
then show? rhs
proof (cases $r<0$)
case True
then show ?rhs by simp
next
case False
then have $[\operatorname{simp}]: r \geq 0$ by simp
have $\operatorname{norm}\left(a-a^{\prime}\right)+r \leq r^{\prime}$
proof (cases $a=a^{\prime}$)
case True
then show ?thesis
using subsetD [where $c=a+r *_{R}$ (SOME i. $i \in$ Basis), OF 〈?lhs \rangle]
subsetD [where $c=a$, OF 〈? ?lhs \rangle]
by (force simp: SOME_Basis dist_norm)
next
case False

```
```

 have norm (a' - (a+(r/ norm (a-a')) *R (a-a})))=\operatorname{norm}(\mp@subsup{a}{}{\prime}-
 - (r / norm (a-a')) *R (a- a
by (simp add: algebra_simps)
also have ... = norm ((-1 - (r / norm (a-a'))) *R (a- a'))
by (simp add: algebra_simps)
also from }\langlea\not=\mp@subsup{a}{}{\prime}\rangle\mathrm{ have ... = |- norm (}a-\mp@subsup{a}{}{\prime})-r
by simp (simp add: field_simps)
finally have [simp]: norm (a' - (a+(r / norm (a-a}))*\mp@subsup{*}{R}{\prime}(a-\mp@subsup{a}{}{\prime})))
|norm (a-a')+r|
by linarith
from <a\not= a}\rangle\mathrm{ show ?thesis
using subsetD [where c=\mp@subsup{a}{}{\prime}+(1+r/norm(a-a}))\mp@subsup{*}{R}{}(a-\mp@subsup{a}{}{\prime})\mathrm{ , OF
<?lhs`]
by (simp add: dist_norm scaleR_add_left)
qed
then show ?rhs
by (simp add: dist_norm)
qed
qed metric

```
lemma cball_subset_ball_iff: cball a \(r \subseteq\) ball \(a^{\prime} r^{\prime} \longleftrightarrow\) dist \(a a^{\prime}+r<r^{\prime} \vee r<0\)
    (is ?lhs \(\longleftrightarrow\) ? rhs)
    for \(a\) :: ' \(a:\) :euclidean_space
proof
    assume? lhs
    then show ?rhs
    proof (cases \(r<0\) )
        case True then
        show? ?hs by simp
    next
        case False
        then have \([\operatorname{simp}]: r \geq 0\) by simp
        have norm \(\left(a-a^{\prime}\right)+r<r^{\prime}\)
        proof (cases \(a=a^{\prime}\) )
            case True
            then show?thesis
                using subsetD [where \(c=a+r *_{R}\) (SOME i. \(i \in\) Basis), OF 〈?lhs \(]\)
subsetD [where \(c=a\), OF 〈?lhs \(\rangle\) ]
            by (force simp: SOME_Basis dist_norm)
        next
            case False
            have False if norm \(\left(a-a^{\prime}\right)+r \geq r^{\prime}\)
            proof -
            from that have \(\left|r^{\prime}-\operatorname{norm}\left(a-a^{\prime}\right)\right| \leq r\)
                    by (simp split: abs_split)
                    (metis \(\langle 0 \leq r\rangle\langle ? l h s\rangle\) centre_in_cball dist_commute dist_norm less_asym
mem_ball subset_eq)
then show ?thesis
                    using subsetD [where \(c=a+\left(r^{\prime} / \operatorname{norm}\left(a-a^{\prime}\right)-1\right) *_{R}\left(a-a^{\prime}\right)\),
```

Topology_Euclidean_Space.thy589

```
```

OF〈??hs〉] $\left\langle a \neq a^{\prime}\right\rangle$

```
OF〈??hs〉] \(\left\langle a \neq a^{\prime}\right\rangle\)
            apply (simp add: dist_norm)
            apply (simp add: dist_norm)
            apply (simp add: scaleR_left_diff_distrib)
            apply (simp add: scaleR_left_diff_distrib)
            apply (simp add: field_simps)
            apply (simp add: field_simps)
            done
            done
        qed
        qed
        then show ?thesis by force
        then show ?thesis by force
        qed
        qed
        then show ?rhs by (simp add: dist_norm)
        then show ?rhs by (simp add: dist_norm)
    qed
    qed
next
next
    assume ?rhs
    assume ?rhs
    then show?lhs
    then show?lhs
        by metric
        by metric
qed
qed
lemma ball_subset_cball_iff: ball a r\subseteqcball a' }\mp@subsup{r}{}{\prime}\longleftrightarrow\mathrm{ dist a a a'+r s r r}\vee \vee r\leq
    (is ?lhs=?rhs)
    for a :: 'a::euclidean_space
proof (cases r \leq 0)
    case True
    then show ?thesis
        by metric
next
    case False
    show ?thesis
    proof
        assume ?lhs
        then have (cball a r\subseteqcball a' r')
            by (metis False closed_cball closure_ball closure_closed closure_mono not_less)
        with False show ?rhs
        by (fastforce iff:cball_subset_cball_iff)
    next
        assume ?rhs
        with False show ?lhs
        by metric
    qed
qed
lemma ball_subset_ball_iff:
    fixes a :: ' a :: euclidean_space
    shows ball a r\subseteqball a' }\mp@subsup{r}{}{\prime}\longleftrightarrow\mathrm{ dist a a ' }+r\leq\mp@subsup{r}{}{\prime}\veer\leq
        (is ?lhs = ?rhs)
proof (cases r\leq0)
    case True then show ?thesis
        by metric
next
    case False show ?thesis
    proof
```

```
    assume?lhs
    then have 0<r'
        using False by metric
    then have (cball a r\subseteqcball a' r')
        by (metis False\?lhs` closure_ball closure_mono not_less)
    then show ?rhs
        using False cball_subset_cball_iff by fastforce
    qed metric
qed
lemma ball_eq_ball_iff:
    fixes x :: 'a a: euclidean_space
    shows ball }xd=\mathrm{ ball }ye\longleftrightarrowd\leq0\wedgee\leq0\veex=y\wedged=
        (is ?lhs = ?rhs)
proof
    assume ?lhs
    then show ?rhs
    proof (cases d \leq 0\veee\leq0)
        case True
            with 〈?lhs` show ?rhs
            by safe (simp_all only: ball_eq_empty [of y e, symmetric] ball_eq_empty [of x
d, symmetric])
    next
        case False
        with \?lhs` show ?rhs
        apply (auto simp: set_eq_subset ball_subset_ball_iff dist_norm norm_minus_commute
algebra_simps)
        apply (metis add_le_same_cancel1 le_add_same_cancel1 norm_ge_zero norm_pths(2)
order_trans)
            apply (metis add_increasing2 add_le_imp_le_right eq_iff norm_ge_zero)
            done
    qed
next
    assume ?rhs then show ?lhs
        by (auto simp: set_eq_subset ball_subset_ball_iff)
qed
lemma cball_eq_cball_iff:
    fixes x :: 'a :: euclidean_space
    shows cball x d = cball y e \longleftrightarrowd<0^e<0\vee x=y^d=e
            (is ?lhs = ?rhs)
proof
    assume ?lhs
    then show ?rhs
    proof (cases d<0\veee<0)
        case True
            with 〈?lhs` show ?rhs
            by safe (simp_all only: cball_eq_empty [of y e, symmetric] cball_eq_empty [of
```

```
x d, symmetric])
    next
        case False
        with 〈?lhs` show ?rhs
        apply (auto simp: set_eq_subset cball_subset_cball_iff dist_norm norm_minus_commute
algebra_simps)
            apply (metis add_le_same_cancel1 le_add_same_cancel1 norm_ge_zero norm_pths(2)
order_trans)
            apply (metis add_increasing2 add_le_imp_le_right eq_iff norm_ge_zero)
            done
    qed
next
    assume ?rhs then show?lhs
        by (auto simp: set_eq_subset cball_subset_cball_iff)
qed
lemma ball_eq_cball_iff:
    fixes x :: 'a :: euclidean_space
    shows ball x d= cball y e \longleftrightarrowd\leq0^e<0 (is ?lhs = ?rhs)
proof
    assume ?lhs
    then show ?rhs
        apply (auto simp: set_eq_subset ball_subset_cball_iff cball_subset_ball_iff alge-
bra_simps)
    apply (metis add_increasing2 add_le_cancel_right add_less_same_cancel1 dist_not_less_zero
less_le_trans zero_le_dist)
    apply (metis add_less_same_cancel1 dist_not_less_zero less_le_trans not_le)
    using «?lhs` ball_eq_empty cball_eq_empty apply blast+
    done
next
    assume ?rhs then show ?lhs by auto
qed
lemma cball_eq_ball_iff:
    fixes x :: 'a :: euclidean_space
    shows cball }xd=\mathrm{ ball y e }\longleftrightarrowd<0\wedgee\leq
    using ball_eq_cball_iff by blast
lemma finite_ball_avoid:
    fixes }S::\mp@subsup{}{}{\prime}a\mathrm{ :: euclidean_space set
    assumes open S finite X p}\in
    shows \existse>0.\forallw\inball p e. w\inS\wedge(w\not=p\longrightarroww\not\inX)
proof -
    obtain e1 where 0<e1 and e1_b:ball p e1\subseteqS
        using open_contains_ball_eq[OF <open S`] assms by auto
    obtain e2 where 0<e2 and }\forallx\inX.x\not=p\longrightarrowe2 \leqdist p
        using finite_set_avoid[OF <finite X>,of p] by auto
    hence }\forallw\in\mathrm{ ball p(min e1 e2). w S S ^(w#p CwॄX) using e1_b by auto
    thus \existse>0.\forallw\inball p e.w\inS^(w\not=p>\longrightarroww\not\inX) using \langlee2>0\rangle\langlee1>0\rangle
```

```
    apply (rule_tac x=min e1 e2 in exI)
    by auto
qed
lemma finite_cball_avoid:
    fixes S :: ' }a\mathrm{ :: euclidean_space set
    assumes open S finite X p\inS
    shows \existse>0.\forallw\incball p e. w\inS\wedge(w\not=p\longrightarroww\not\inX)
proof -
    obtain e1 where e1>0 and e1: }\forallw\inball p e1. w\inS\wedge(w\not=p\longrightarroww\not\inX
        using finite_ball_avoid[OF assms] by auto
    define e2 where e2 \equive1/2
    have e2>0 and e2 <e1 unfolding e2_def using <e1>0\rangle by auto
    then have cball p e2 \subseteq ball p e1 by (subst cball_subset_ball_iff,auto)
    then show \existse>0.\forallw\incball pe.w\inS\wedge(w\not=p\longrightarroww\not\inX) using <e2>0\rangle
e1 by auto
qed
lemma dim_cball:
    assumes e>0
    shows dim (cball (0 :: 'n::euclidean_space) e) = DIM('n)
proof -
    {
        fix }x\mathrm{ :: ' }n::euclidean_space
        define }y\mathrm{ where }y=(e/\operatorname{norm}x)\mp@subsup{*}{R}{}
        then have y f cball 0 e
            using assms by auto
        moreover have *: x = (norm x / e) *R y
            using y_def assms by simp
        moreover from * have x = (norm x/e)** y
            by auto
        ultimately have }x\in\operatorname{span}(cball 0 e
            using span_scale[of y cball 0 e norm x/e]
                span_superset[of cball 0 e]
            by (simp add: span_base)
    }
    then have span (cball 0 e) = (UNIV :: 'n::euclidean_space set)
        by auto
    then show ?thesis
        using dim_span[of cball (0 :: ' n::euclidean_space) e] by (auto)
qed
```


4.1.3 Boxes

abbreviation One :: 'a::euclidean_space where
One $\equiv \sum$ Basis
lemma One_non_0: assumes One $=\left(0::^{\prime} a::\right.$ euclidean_space $)$ shows False proof -

```
have dependent (Basis :: 'a set)
    apply (simp add: dependent_finite)
    apply (rule_tac \(x=\lambda i .1\) in exI)
    using SOME_Basis apply (auto simp: assms)
    done
    with independent_Basis show False by force
qed
corollary One_neq_0[iff]: One \(\neq 0\)
    by (metis One_non_0)
corollary Zero_neq_One[iff]: \(0 \neq\) One
    by (metis One_non_0)
definition (in euclidean_space) eucl_less (infix \(<e\) 50) where
eucl_less a \(b \longleftrightarrow(\forall i \in\) Basis. \(a \cdot i<b \cdot i)\)
definition box_eucl_less: box ab=\{x.a<ex^x<eb\}
definition cbox a \(b=\{x . \forall i \in\) Basis. \(a \cdot i \leq x \cdot i \wedge x \cdot i \leq b \cdot i\}\)
lemma box_def: box a \(b=\{x . \forall i \in\) Basis. \(a \cdot i<x \cdot i \wedge x \cdot i<b \cdot i\}\)
    and in_box_eucl_less: \(x \in\) box a \(b \longleftrightarrow a<e x \wedge x<e b\)
    and mem_box: \(x \in\) box a \(b \longleftrightarrow(\forall i \in\) Basis. \(a \cdot i<x \cdot i \wedge x \cdot i<b \cdot i)\)
        \(x \in\) cbox \(a b \longleftrightarrow(\forall i \in\) Basis. \(a \cdot i \leq x \cdot i \wedge x \cdot i \leq b \cdot i)\)
    by (auto simp: box_eucl_less eucl_less_def cbox_def)
```

lemma cbox_Pair_eq: cbox $(a, c)(b, d)=c b o x a b \times c b o x c d$
by (force simp: cbox_def Basis_prod_def)
lemma cbox_Pair_iff [iff]: $(x, y) \in \operatorname{cbox}(a, c)(b, d) \longleftrightarrow x \in c b o x a b \wedge y \in$
cbox c d
by (force simp: cbox_Pair_eq)
lemma cbox_Complex_eq: cbox (Complex a c) (Complex bd) $=(\lambda(x, y)$. Complex
$x y)$ ' (cbox a $b \times$ cbox $c d)$
apply (auto simp: cbox_def Basis_complex_def)
apply (rule_tac $x=(\operatorname{Re} x, \operatorname{Im} x)$ in image_eqI)
using complex_eq by auto
lemma cbox_Pair_eq_0: cbox $(a, c)(b, d)=\{ \} \longleftrightarrow c b o x a b=\{ \} \vee c b o x$ c $d=$
\{\}
by (force simp: cbox_Pair_eq)
lemma swap_cbox_Pair [simp]: prod.swap'cbox $(c, a)(d, b)=\operatorname{cbox}(a, c)(b, d)$
by auto
lemma mem_box_real[simp]:
$(x::$ real $) \in$ box a $b \longleftrightarrow a<x \wedge x<b$
$(x::$ real $) \in$ cbox $a b \longleftrightarrow a \leq x \wedge x \leq b$

```
    by (auto simp: mem_box)
lemma box_real[simp]:
    fixes a b:: real
    shows box a b ={a<..< b} cbox a b={a.. b}
    by auto
lemma box_Int_box:
    fixes a :: 'a::euclidean_space
    shows box a b \cap box c d =
        box (\sumi\inBasis.max (a\cdoti) (c\cdoti) *R i)(\sumi\inBasis.min (b\cdoti) (d\cdoti) *R i)
    unfolding set_eq_iff and Int_iff and mem_box by auto
lemma rational_boxes:
    fixes x :: 'a::euclidean_space
    assumes e>0
    shows \existsab.(\foralli\inBasis.a\cdoti\in\mathbb{Q}\wedgeb\cdoti\in\mathbb{Q})\wedgex\inbox ab\wedge box ab\subseteqball
x e
proof -
    define e' where e}\mp@subsup{e}{}{\prime}=e/(2*\operatorname{sqrt}(\operatorname{real}(DIM ('a)))
    then have e: e}\mp@subsup{e}{}{\prime}>
        using assms by (auto)
    have }\foralli.\existsy.y\in\mathbb{Q}\wedgey<x\cdoti\wedgex\cdoti-y<\mp@subsup{e}{}{\prime}(\mathrm{ is }\foralli\mathrm{ . ?th i)
    proof
        fix }
        from Rats_dense_in_real[of x • i- e' x • i] e
        show ?th i by auto
    qed
    from choice[OF this] obtain a where
```



```
    have }\foralli.\existsy.y\in\mathbb{Q}\wedgex\cdoti<y\wedgey-x\cdoti<\mp@subsup{e}{}{\prime}(\mathrm{ is }\foralli.\mathrm{ ?.th i)
    proof
        fix }
```



```
        show ?th i by auto
    qed
    from choice[OF this] obtain b where
        b: \forallxa.b xa \in\mathbb{Q ^ x • xa<b xa^b ba - x • xa< e'..}
    let ?a=\sum i\inBasis.a }i\mp@subsup{*}{R}{}i\mathrm{ and ?b = \íBasis.b }i\mp@subsup{*}{R}{}
    show ?thesis
    proof (rule exI[of _ ?a], rule exI[of _ ?b], safe)
        fix y :: 'a
        assume *: y \in box ?a ?b
        have dist x y = sqrt (\sumi\inBasis. (dist (x | i) (y\cdoti))}\mp@subsup{)}{}{2}
            unfolding L2_set_def[symmetric] by (rule euclidean_dist_l2)
        also have ...< sqrt (\sum (i::'a)\inBasis. e^2 / real (DIM('a)))
        proof (rule real_sqrt_less_mono, rule sum_strict_mono)
            fix i :: 'a
            assume i: i\in Basis
```

```
    have a i<y\cdoti\wedge y\cdoti< bi
    using * i by (auto simp: box_def)
    moreover have a i< x\bulleti x\cdoti - a i< e'
    using a by auto
    moreover have x\cdoti<b ib i - x}\cdoti<\mp@subsup{e}{}{\prime
    using b by auto
    ultimately have }|x\cdoti-y\cdoti|<2*\mp@subsup{e}{}{\prime
        by auto
    then have dist (x • i) (y\cdoti)<e/sqrt (real (DIM('a)))
        unfolding e'_def by (auto simp: dist_real_def)
    then have (dist (x\cdoti)(y\cdoti)\mp@subsup{)}{}{2}<(e/sqrt (real (DIM('a))))}\mp@subsup{)}{}{2
        by (rule power_strict_mono) auto
    then show (dist (x • i) (y\cdoti))}\mp@subsup{)}{}{2}<\mp@subsup{e}{}{2}/\operatorname{real DIM ('a)
        by (simp add: power_divide)
    qed auto
    also have ... = e
        using <0 < e〉 by simp
    finally show }y\in\mathrm{ ball }x
        by (auto simp: ball_def)
    qed (insert a b, auto simp: box_def)
qed
lemma open_UNION_box:
    fixes M :: 'a::euclidean_space set
    assumes open M
    defines a' \equiv\lambdaf :: 'a m real × real. (\sum (i::'a)\inBasis. fst (f i)* *R i)
    defines }\mp@subsup{b}{}{\prime}\equiv\lambdaf::' 'a m real \times real. (\sum(i::'a)\inBasis. snd (f i)*R i)
    defines }I\equiv{f\in\mathrm{ Basis }\mp@subsup{->}{E}{}\mathbb{Q}\times\mathbb{Q}.box (\mp@subsup{a}{}{\prime}f)(\mp@subsup{b}{}{\prime}f)\subseteqM
    shows M=(\bigcupf\inI.box (\mp@subsup{a}{}{\prime}f)(\mp@subsup{b}{}{\prime}f))
proof -
    have }x\in(\bigcupf\inI.box(\mp@subsup{a}{}{\prime}f)(\mp@subsup{b}{}{\prime}f))\mathrm{ if }x\inM\mathrm{ for }
    proof -
        obtain e where e: e>0 ball x e\subseteqM
            using openE[OF <open M\rangle\langlex\inM}\\]\mathrm{ by auto
        moreover obtain a b where ab:
            x\in box a b
            \foralli\inBasis. a • i\in\mathbb{Q}
            \foralli\inBasis.b • i\in\mathbb{Q}
            box a b\subseteqball x e
            using rational_boxes[OF e(1)] by metis
        ultimately show ?thesis
            by (intro UN_I[of \lambdai\inBasis. (a | i, b • i)])
                (auto simp: euclidean_representation I_def a'_def b'_def)
    qed
    then show ?thesis by (auto simp: I_def)
qed
corollary open_countable_Union_open_box:
    fixes S ::' 'a :: euclidean_space set
```

```
    assumes open \(S\)
    obtains \(\mathcal{D}\) where countable \(\mathcal{D} \mathcal{D} \subseteq\) Pow \(S \bigwedge X . X \in \mathcal{D} \Longrightarrow \exists a b . X=\) box ab
\(\bigcup \mathcal{D}=S\)
proof -
    let ? \(a=\lambda f .\left(\sum\left(i::^{\prime} a\right) \in\right.\) Basis. \(\left.f s t(f i) *_{R} i\right)\)
    let ? \(b=\lambda f .\left(\sum\left(i::^{\prime} a\right) \in\right.\) Basis. snd \(\left.(f i) *_{R} i\right)\)
    let ? \(I=\left\{f \in\right.\) Basis \(\rightarrow_{E} \mathbb{Q} \times \mathbb{Q}\). box \(\left.(? a f)(? b f) \subseteq S\right\}\)
    let ?D \(=(\lambda f\). box \((? a f)(? b f)) \cdot ? I\)
    show ?thesis
    proof
        have countable ?I
            by (simp add: countable_PiE countable_rat)
        then show countable ?D
            by blast
        show \(\backslash ? \mathcal{D}=S\)
            using open_UNION_box [OF assms] by metis
    qed auto
qed
lemma rational_cboxes:
    fixes \(x\) :: 'a::euclidean_space
    assumes \(e>0\)
    shows \(\exists a b\). \((\forall i \in\) Basis. \(a \cdot i \in \mathbb{Q} \wedge b \cdot i \in \mathbb{Q}) \wedge x \in\) cbox a \(b \wedge\) cbox \(a b \subseteq\)
ball \(x e\)
proof -
    define \(e^{\prime}\) where \(e^{\prime}=e /\left(2 * \operatorname{sqrt}\left(\operatorname{real}\left(\operatorname{DIM}\left({ }^{\prime} a\right)\right)\right)\right)\)
    then have \(e: e^{\prime}>0\)
        using assms by auto
    have \(\forall i\). \(\exists y . y \in \mathbb{Q} \wedge y<x \cdot i \wedge x \cdot i-y<e^{\prime}(\) is \(\forall i\). ?th \(i)\)
    proof
        fix \(i\)
        from Rats_dense_in_real[of \(\left.x \cdot i-e^{\prime} x \cdot i\right] e\)
        show ?th \(i\) by auto
    qed
    from choice \([O F\) this \(]\) obtain \(a\) where
        \(a: \forall u . a u \in \mathbb{Q} \wedge a u<x \cdot u \wedge x \cdot u-a u<e^{\prime} .\).
    have \(\forall i . \exists y . y \in \mathbb{Q} \wedge x \cdot i<y \wedge y-x \cdot i<e^{\prime}(\) is \(\forall i\). ?th \(i)\)
    proof
        fix \(i\)
        from Rats_dense_in_real[of \(x \cdot i x \cdot i+e] e\)
        show ?th \(i\) by auto
    qed
    from choice \([O F\) this] obtain \(b\) where
        \(b: \forall u . b u \in \mathbb{Q} \wedge x \cdot u<b u \wedge b u-x \cdot u<e^{\prime} .\).
    let \(? a=\sum i \in\) Basis. \(a i *_{R} i\) and \(? b=\sum i \in\) Basis. \(b i *_{R} i\)
    show ?thesis
    proof (rule exI[of _ ?a], rule exI[of _ ?b], safe)
    fix \(y::^{\prime} a\)
    assume \(*: y \in c b o x ? a ? b\)
```

```
    have dist x y = sqrt (\sumi\inBasis. (dist (x | i) (y\cdoti))}\mp@subsup{)}{}{2}
    unfolding L2_set_def[symmetric] by (rule euclidean_dist_l2)
    also have ... < sqrt (\sum(i::'a)\inBasis. e^2 / real (DIM('a)))
    proof (rule real_sqrt_less_mono, rule sum_strict_mono)
    fix }i:: ''
    assume i:i\in Basis
    have ai\leqy\cdoti\wedge y\cdoti\leqbi
        using * i by (auto simp: cbox_def)
    moreover have a i< x\bulleti x\cdoti - ai< ''
        using a by auto
    moreover have x\bulleti<b ib i - x}\cdoti<\mp@subsup{e}{}{\prime
        using b by auto
    ultimately have }|x\cdoti-y\cdoti|<2*\mp@subsup{e}{}{\prime
        by auto
    then have dist (x • i) (y\cdoti)<e/sqrt (real (DIM('a)))
        unfolding e'_def by (auto simp: dist_real_def)
    then have (dist (x\cdoti)(y\cdoti))}\mp@subsup{)}{}{2}<(e/sqrt (real (DIM('a)))) 2
        by (rule power_strict_mono) auto
    then show (dist (x • i) (y\cdoti))}\mp@subsup{)}{}{2}<\mp@subsup{e}{}{2}/\operatorname{real DIM('a)
        by (simp add: power_divide)
    qed auto
    also have ... = e
        using <0<e\rangle by simp
    finally show }y\in\mathrm{ ball }x
        by (auto simp: ball_def)
    next
    show }x\in\operatorname{cbox (\sumi\inBasis.a i * *}i)(\sumi\inBasis.b i **R i
        using a b less_imp_le by (auto simp: cbox_def)
    qed (use a b cbox_def in auto)
qed
lemma open_UNION_cbox:
    fixes M :: 'a::euclidean_space set
    assumes open M
    defines }\mp@subsup{a}{}{\prime}\equiv\lambdaf.(\sum(i::'a)\inBasis.fst (f i) *R i i)
    defines }\mp@subsup{b}{}{\prime}\equiv\lambdaf.(\sum(i::'a)\inBasis. snd (fi)*R * i)
    defines I}\equiv{f\in\mathrm{ Basis }\mp@subsup{->}{E}{}\mathbb{Q}\times\mathbb{Q}.cbox (\mp@subsup{a}{}{\prime}f)(\mp@subsup{b}{}{\prime}f)\subseteqM
    shows M = (\bigcupf\inI.cbox (a'f) (b'f))
proof -
    have}x\in(\bigcupf\inI.cbox (\mp@subsup{a}{}{\prime}f)(\mp@subsup{b}{}{\prime}f))\mathrm{ if }x\inM\mathrm{ for }
    proof -
    obtain e where e: e>0 ball x e\subseteqM
        using openE[OF <open M\rangle\langlex\inM>] by auto
        moreover obtain a b where ab: x f cbox a b\foralli\in Basis.a • i\in\mathbb{Q}
                                    \foralli\inBasis. b • i\in\mathbb{Q cbox a b\subseteqball x e}
        using rational_cboxes[OF e(1)] by metis
    ultimately show ?thesis
        by (intro UN_I[of \lambdai\inBasis. (a • i,b • i)])
            (auto simp: euclidean_representation I_def a'_def b'_def)
```

```
    qed
    then show ?thesis by (auto simp: I_def)
qed
corollary open_countable_Union_open_cbox:
    fixes S :: 'a :: euclidean_space set
    assumes open S
```



```
b\bigcup\mathcal{D}=S
proof -
    let ?a = \lambdaf. (\sum(i::'a)\inBasis. fst (fi)** i
    let ?b = \lambdaf. (\sum(i::'a)\inBasis. snd (fi) *R i)
    let ?I ={f\inBasis }\mp@subsup{->}{E}{}\mathbb{Q}\times\mathbb{Q}.cbox (?a f) (?bf)\subseteqS
    let ?\mathcal{D }=(\lambdaf.cbox (?a f)(?b f))'?I
    show ?thesis
    proof
        have countable ?I
            by (simp add: countable_PiE countable_rat)
        then show countable ?D
            by blast
        show \?\mathcal{D}=S
            using open_UNION_cbox [OF assms] by metis
    qed auto
qed
lemma box_eq_empty:
    fixes a :: 'a::euclidean_space
    shows (box a b={}\longleftrightarrow(\existsi\inBasis. b\cdoti\leqa\cdoti)) (is ?th1)
        and (cbox a b ={}\longleftrightarrow(\existsi\inBasis. b\cdoti<a\cdoti)) (is ?th2)
proof -
    {
        fix ix
        assume i: i\inBasis and as:b\cdoti\leqa\cdoti and x:x\inbox a b
        then have a \cdot i<x \cdoti^x \cdoti<b .i
            unfolding mem_box by (auto simp: box_def)
        then have a\cdoti<b\cdoti by auto
        then have False using as by auto
    }
    moreover
    {
        assume as: }\foralli\in\mathrm{ Basis. }\neg(b\cdoti\leqa\cdoti
        let ?x = (1/2) *R (a+b)
        {
            fix }i:: '
            assume i: i\in Basis
            have }a\cdoti<b\cdot
                using as[THEN bspec[where x=i]] i by auto
            then have a\cdoti< ((1/2)*R (a+b))}\cdoti((1/2)* *R (a+b)) \cdoti<b\cdot
                by (auto simp: inner_add_left)
```

```
    }
    then have box a b}\not={
        using mem_box(1)[of ?x a b] by auto
    }
ultimately show ?th1 by blast
    {
        fix ix
        assume i:i B Basis and as:b\cdoti<a\cdoti and x:x\incbox a b
```



```
        unfolding mem_box by auto
    then have a\cdoti\leqb\cdoti by auto
    then have False using as by auto
}
moreover
{
    assume as:\foralli\inBasis.\neg (b\cdoti<a\cdoti)
    let ?}x=(1/2)\mp@subsup{*}{R}{}(a+b
    {
        fix }i:: ' a
        assume i:i\inBasis
        have }a\cdoti\leqb\cdot
            using as[THEN bspec[where x=i]] i by auto
        then have }a\cdoti\leq((1/2)**R(a+b))\cdoti((1/2)**R(a+b))\cdoti\leqb\cdot
            by (auto simp: inner_add_left)
    }
    then have cbox a b}\not={
        using mem_box(2)[of ?x a b] by auto
    }
    ultimately show ?th2 by blast
qed
lemma box_ne_empty:
    fixes a :: 'a::euclidean_space
    shows cbox a b}\not={}\longleftrightarrow(\foralli\in\mathrm{ Basis. a}\cdoti\leqb\cdoti
    and box a b\not={}\longleftrightarrow(\foralli\inBasis. a}\<<b\cdoti
    unfolding box_eq_empty[of a b] by fastforce+
lemma
    fixes a :: ' a::euclidean_space
    shows cbox_sing [simp]: cbox a a = {a}
        and box_sing [simp]: box a a = {}
    unfolding set_eq_iff mem_box eq_iff [symmetric]
    by (auto intro!: euclidean_eqI[where ' }a=\mp@subsup{=}{}{\prime}a]\mathrm{ )
        (metis all_not_in_conv nonempty_Basis)
    lemma subset_box_imp:
    fixes a :: 'a::euclidean_space
    shows (\foralli\inBasis.a\cdoti\leqc.i\wedged}\\i\leqb\cdoti)\Longrightarrowcbox c d\subseteqcbox a b
```

and $(\forall i \in$ Basis. $a \cdot i<c \cdot i \wedge d \cdot i<b \cdot i) \Longrightarrow$ cbox $c d \subseteq$ box a b and $(\forall i \in$ Basis. $a \cdot i \leq c \cdot i \wedge d \cdot i \leq b \cdot i) \Longrightarrow$ box $c d \subseteq$ cbox a b and $(\forall i \in$ Basis. $a \cdot i \leq c \cdot i \wedge d \cdot i \leq b \cdot i) \Longrightarrow b o x c d \subseteq b o x a b$
unfolding subset_eq[unfolded Ball_def] unfolding mem_box
by (best intro: order_trans less_le_trans le_less_trans less_imp_le)+

lemma box_subset_cbox:

fixes a :: ' $a::$ euclidean_space
shows box $a b \subseteq$ cbox $a b$
unfolding subset_eq [unfolded Ball_def] mem_box
by (fast intro: less_imp_le)
lemma subset_box:
fixes a :: ' a ::euclidean_space
shows cbox c $d \subseteq$ cbox $a b \longleftrightarrow(\forall i \in$ Basis. $c \cdot i \leq d \cdot i) \longrightarrow(\forall i \in$ Basis. $a \cdot i \leq c \cdot i$ $\wedge d \cdot i \leq b \cdot i)($ is ?th1)
and cbox c $d \subseteq$ box a $b \longleftrightarrow(\forall i \in$ Basis. $c \cdot i \leq d \cdot i) \longrightarrow(\forall i \in$ Basis. $a \cdot i<c \cdot i$ $\wedge d \cdot i<b \cdot i)($ is ? th 2$)$
and box c $d \subseteq$ cbox a $b \longleftrightarrow(\forall i \in$ Basis. $c \cdot i<d \cdot i) \longrightarrow(\forall i \in$ Basis. $a \cdot i \leq c \cdot i$ $\wedge d \cdot i \leq b \cdot i)($ is ?th3)
and box c $d \subseteq$ box a $b \longleftrightarrow(\forall i \in$ Basis. $c \cdot i<d \cdot i) \longrightarrow(\forall i \in$ Basis. $a \cdot i \leq c \cdot i \wedge$ $d \cdot i \leq b \cdot i)($ is ?th4 $)$ proof -
let ?lesscd $=\forall i \in$ Basis. $c \cdot i<d \cdot i$
let ?lerhs $=\forall i \in$ Basis. $a \cdot i \leq c \cdot i \wedge d \cdot i \leq b \cdot i$
show ?th1 ?th2
by (fastforce simp: mem_box)+
have $a c d b: a \cdot i \leq c \cdot i \wedge d \cdot i \leq b \cdot i$
if $i: i \in$ Basis and box: box $c d \subseteq c b o x$ a b and $c d: \bigwedge i . i \in$ Basis $\Longrightarrow c \cdot i<$ $d \cdot i$ for i
proof -
have box c $d \neq\{ \}$
using that
unfolding box_eq_empty by force
$\left\{\right.$ let $? x=\left(\sum j \in\right.$ Basis. $($ if $j=i$ then $((\min (a \cdot j)(d \cdot j))+c \cdot j) / \mathcal{Z}$ else $(c \cdot j+d \cdot j) / \mathcal{Z})$ $\left.*_{R} j\right)::^{\prime} a$
assume $*: a \cdot i>c \cdot i$
then have $c \cdot j<? x \cdot j \wedge ? x \cdot j<d \cdot j$ if $j \in$ Basis for j
using $c d$ that by (fastforce simp add: $i *$)
then have ? $x \in$ box c d
unfolding mem_box by auto
moreover have ? $x \notin$ cbox a b
using $i c d *$ by (force simp: mem_box)
ultimately have False using box by auto
\}
then have $a \cdot i \leq c \cdot i$ by force
moreover
\{ let ? $x=\left(\sum j \in\right.$ Basis. $($ if $j=i$ then $((\max (b \cdot j)(c \cdot j))+d \cdot j) /$ 2 else $(c \cdot j+d \cdot j) /$ 2 $)$
$\left.*_{R} j\right)::^{\prime} a$

```
    assume \(*: b \cdot i<d \cdot i\)
    then have \(d \cdot j>\) ? \(x \cdot j \wedge\) ? \(x \cdot j>c \cdot j\) if \(j \in\) Basis for \(j\)
        using \(c d\) that by (fastforce simp add: \(i *\) )
    then have ? \(x \in\) box c d
        unfolding mem_box by auto
    moreover have ? \(x \notin\) cbox a b
        using \(i c d *\) by (force simp: mem_box)
    ultimately have False using box by auto
    \}
    then have \(b \cdot i \geq d \cdot i\) by (rule ccontr) auto
    ultimately show ?thesis by auto
qed
show ?th3
    using acdb by (fastforce simp add: mem_box)
have \(a c d b^{\prime}: a \cdot i \leq c \cdot i \wedge d \cdot i \leq b \cdot i\)
    if \(i \in\) Basis box c \(d \subseteq\) box a \(b \bigwedge i . i \in\) Basis \(\Longrightarrow c \cdot i<d \cdot i\) for \(i\)
        using box_subset_cbox[of a b] that acdb by auto
    show? ?h4
    using \(a c d b^{\prime}\) by (fastforce simp add: mem_box)
qed
lemma eq_cbox: cbox a \(b=\) cbox \(c d \longleftrightarrow\) cbox \(a b=\{ \} \wedge\) cbox \(c d=\{ \} \vee a=c\)
\(\wedge b=d\)
        (is ?lhs = ? \(r h s\) )
proof
    assume ?lhs
    then have cbox ab cbox cd cbox \(c d \subseteq c b o x a b\)
        by auto
    then show? ?hs
        by (force simp: subset_box box_eq_empty intro: antisym euclidean_eqI)
next
    assume ?rhs
    then show?lhs
        by force
qed
lemma eq_cbox_box [simp]: cbox a \(b=\) box c \(d \longleftrightarrow\) cbox a \(b=\{ \} \wedge\) box c \(d=\{ \}\)
    (is?lhs \(\longleftrightarrow\) ? \(r h s\) )
proof
    assume \(L\) : ?lhs
    then have cbox ab box c d box cd \(d \subseteq\) cbox a b
        by auto
    then show ?rhs
        apply (simp add: subset_box)
        using \(L\) box_ne_empty box_sing apply (fastforce simp add:)
        done
qed force
lemma eq_box_cbox [simp]: box a \(b=\operatorname{cbox} c d \longleftrightarrow\) box a \(b=\{ \} \wedge\) cbox c \(d=\{ \}\)
```

by (metis eq_cbox_box)
lemma eq_box: box a $b=$ box c $d \longleftrightarrow$ box $a b=\{ \} \wedge$ box c $d=\{ \} \vee a=c \wedge b$ $=d$
(is ?lhs \longleftrightarrow ? $r h s$)
proof
assume L : ?lhs
then have box ab box cd box cd $d \subseteq b o x a b$
by auto
then show ?rhs
apply (simp add: subset_box)
using box_ne_empty(2) L
apply auto
apply (meson euclidean_eqI less_eq_real_def not_less)+ done
qed force
lemma subset_box_complex:
cbox a $b \subseteq$ cbox c $d \longleftrightarrow$
$(\operatorname{Re} a \leq \operatorname{Re} b \wedge \operatorname{Im} a \leq \operatorname{Im} b) \longrightarrow \operatorname{Re} a \geq \operatorname{Re} c \wedge \operatorname{Im} a \geq \operatorname{Im} c \wedge \operatorname{Re} b \leq$
$\operatorname{Re} d \wedge \operatorname{Im} b \leq \operatorname{Im} d$
cbox a $b \subseteq$ box c $d \longleftrightarrow$
$(\operatorname{Re} a \leq \operatorname{Re} b \wedge \operatorname{Im} a \leq \operatorname{Im} b) \longrightarrow \operatorname{Re} a>\operatorname{Re} c \wedge \operatorname{Im} a>\operatorname{Im} c \wedge \operatorname{Re} b<$
$\operatorname{Re} d \wedge \operatorname{Im} b<\operatorname{Im} d$
box a $b \subseteq$ cbox c $d \longleftrightarrow$
$(\operatorname{Re} a<\operatorname{Re} b \wedge \operatorname{Im} a<\operatorname{Im} b) \longrightarrow \operatorname{Re} a \geq \operatorname{Re} c \wedge \operatorname{Im} a \geq \operatorname{Im} c \wedge \operatorname{Re} b \leq$ $\operatorname{Re} d \wedge \operatorname{Im} b \leq \operatorname{Im} d$
box $a b \subseteq$ box $c d \longleftrightarrow$
$(\operatorname{Re} a<\operatorname{Re} b \wedge \operatorname{Im} a<\operatorname{Im} b) \longrightarrow \operatorname{Re} a \geq \operatorname{Re} c \wedge \operatorname{Im} a \geq \operatorname{Im} c \wedge \operatorname{Re} b \leq$ $\operatorname{Re} d \wedge \operatorname{Im} b \leq \operatorname{Im} d$
by (subst subset_box; force simp: Basis_complex_def)+
lemma in_cbox_complex_iff:
$x \in c b o x a b \longleftrightarrow \operatorname{Re} x \in\{\operatorname{Re} a . . \operatorname{Re} b\} \wedge \operatorname{Im} x \in\{\operatorname{Im} a . . \operatorname{Im} b\}$
by (cases x; cases a; cases b) (auto simp: cbox_Complex_eq)
lemma box_Complex_eq:
box (Complex a c) (Complex bd) $=(\lambda(x, y)$. Complex $x y)$ ' $(b o x a b \times b o x ~ c d)$ by (auto simp: box_def Basis_complex_def image_iff complex_eq_iff)
lemma in_box_complex_iff:
$x \in$ box $a b \longleftrightarrow \operatorname{Re} x \in\{\operatorname{Re} a<. .<\operatorname{Re} b\} \wedge \operatorname{Im} x \in\{\operatorname{Im} a<. .<\operatorname{Im} b\}$ by (cases x; cases a; cases b) (auto simp: box_Complex_eq)
lemma Int_interval:
fixes a :: ' $a::$ euclidean_space
shows cbox a $b \cap$ cbox c $d=$
cbox $\left(\sum i \in\right.$ Basis. $\left.\max (a \cdot i)(c \cdot i) *_{R} i\right)\left(\sum i \in\right.$ Basis. $\left.\min (b \cdot i)(d \cdot i) *_{R} i\right)$
unfolding set_eq_iff and Int_iff and mem_box
by auto
lemma disjoint_interval:
fixes $a:: ' a::$ euclidean_space
shows cbox a $b \cap$ cbox $c d=\{ \} \longleftrightarrow(\exists i \in$ Basis. $(b \cdot i<a \cdot i \vee d \cdot i<c \cdot i \vee b \cdot i<$ $c \cdot i \vee d \cdot i<a \cdot i)$) (is ? th1)
and cbox a $b \cap$ box $c d=\{ \} \longleftrightarrow(\exists i \in$ Basis. $(b \cdot i<a \cdot i \vee d \cdot i \leq c \cdot i \vee b \cdot i \leq$ $c \cdot i \vee d \cdot i \leq a \cdot i)$) (is ?th2)
and box a $b \cap$ cbox c $d=\{ \} \longleftrightarrow(\exists i \in$ Basis. $(b \cdot i \leq a \cdot i \vee d \cdot i<c \cdot i \vee b \cdot i \leq$ $c \cdot i \vee d \cdot i \leq a \cdot i)$) (is ? th3)
and box a $b \cap$ box $c d=\{ \} \longleftrightarrow(\exists i \in$ Basis. $(b \cdot i \leq a \cdot i \vee d \cdot i \leq c \cdot i \vee b \cdot i \leq$ $c \cdot i \vee d \cdot i \leq a \cdot i)$) (is? ?th4)
proof -
let ? $z=\left(\sum i \in\right.$ Basis. $\left(((\max (a \cdot i)(c \cdot i))+(\min (b \cdot i)(d \cdot i))) /\right.$ 2) $\left.*_{R} i\right):^{\prime} a$
have $* *: \bigwedge P Q .(\bigwedge i:: ' a . i \in$ Basis $\Longrightarrow Q ? z i \Longrightarrow P i) \Longrightarrow$
$(\bigwedge i x:: ' a . i \in$ Basis $\Longrightarrow P i \Longrightarrow Q x i) \Longrightarrow(\forall x . \exists i \in$ Basis. $Q x i) \longleftrightarrow$ $(\exists i \in$ Basis. $P i)$
by blast
note $*=$ set_eq_iff Int_iff empty_iff mem_box ball_conj_distrib[symmetric] eq_False ball_simps(10)
show ?th1 unfolding $*$ by (intro $* *$) auto
show ?th2 unfolding $*$ by (intro $* *$) auto
show ?th3 unfolding $*$ by (intro $* *$) auto
show ?th4 unfolding $*$ by (intro $* *$) auto
qed
lemma UN_box_eq_UNIV: $\left(\bigcup i::\right.$ nat. box $\left(-\left(\right.\right.$ real $i *_{R}$ One $\left.)\right)\left(\right.$ real $i *_{R}$ One $\left.)\right)=$ UNIV
proof -
have $|x \cdot b|<r e a l _o f$ _int $\left(\left\lceil\operatorname{Max}\left((\lambda b .|x \cdot b|){ }^{\prime}\right.\right.\right.$ Basis $\left.\left.)\right\rceil+1\right)$
if $[$ simp $]: b \in$ Basis for $x b::{ }^{\prime} a$
proof -
have $|x \cdot b| \leq r e a l _o f _i n t\lceil|x \cdot b|\rceil$
by (rule le_of_int_ceiling)
also have $\ldots \leq$ real_of_int $\left\lceil\operatorname{Max}\left((\lambda b .|x \cdot b|){ }^{\prime}\right.\right.$ Basis $\left.)\right\rceil$
by (auto intro!: ceiling_mono)
also have $\ldots<$ real_of_int $\left(\left\lceil\operatorname{Max}\left((\lambda b .|x \cdot b|){ }^{\prime}\right.\right.\right.$ Basis $\left.\left.)\right\rceil+1\right)$ by simp
finally show ?thesis.
qed
then have $\exists n:: n a t . \forall b \in$ Basis. $|x \cdot b|<$ real n for $x:: ' a$ by (metis order.strict_trans reals_Archimedean2)
moreover have $\bigwedge x b:::^{\prime} a$. $\bigwedge n:: n a t . ~|x \cdot b|<$ real $n \longleftrightarrow-$ real $n<x \cdot b \wedge x \cdot$
$b<$ real n
by auto
ultimately show ?thesis
by (auto simp: box_def inner_sum_left inner_Basis sum.If_cases)
qed

```
lemma image_affinity_cbox: fixes \(m::\) real
    fixes \(a b c\) ::' \(a::\) euclidean_space
    shows \(\left(\lambda x . m *_{R} x+c\right)\) ' cbox a \(b=\)
        (if cbox a \(b=\{ \}\) then \(\}\)
        else (if \(0 \leq m\) then cbox \(\left(m *_{R} a+c\right)\left(m *_{R} b+c\right)\)
        else cbox \(\left.\left.\left(m *_{R} b+c\right)\left(m *_{R} a+c\right)\right)\right)\)
proof (cases \(m=0\) )
    case True
    \{
        fix \(x\)
        assume \(\forall i \in\) Basis. \(x \cdot i \leq c \cdot i \forall i \in\) Basis. \(c \cdot i \leq x \cdot i\)
        then have \(x=c\)
            by (simp add: dual_order.antisym euclidean_eqI)
    \}
    moreover have \(c \in \operatorname{cbox}\left(m *_{R} a+c\right)\left(m *_{R} b+c\right)\)
        unfolding True by (auto)
    ultimately show ?thesis using True by (auto simp: cbox_def)
next
    case False
    \{
        fix \(y\)
        assume \(\forall i \in\) Basis. \(a \cdot i \leq y \cdot i \forall i \in\) Basis. \(y \cdot i \leq b \cdot i m>0\)
        then have \(\forall i \in\) Basis. \(\left(m *_{R} a+c\right) \cdot i \leq\left(m *_{R} y+c\right) \cdot i\) and \(\forall i \in\) Basis.
\(\left(m *_{R} y+c\right) \cdot i \leq\left(m *_{R} b+c\right) \cdot i\)
            by (auto simp: inner_distrib)
    \}
    moreover
    \{
        fix \(y\)
        assume \(\forall i \in\) Basis. \(a \cdot i \leq y \cdot i \forall i \in\) Basis. \(y \cdot i \leq b \cdot i m<0\)
        then have \(\forall i \in\) Basis. \(\left(m *_{R} b+c\right) \cdot i \leq\left(m *_{R} y+c\right) \cdot i\) and \(\forall i \in\) Basis.
\(\left(m *_{R} y+c\right) \cdot i \leq\left(m *_{R} a+c\right) \cdot i\)
            by (auto simp: mult_left_mono_neg inner_distrib)
    \}
    moreover
    \{
        fix \(y\)
    assume \(m>0\) and \(\forall i \in\) Basis. \(\left(m *_{R} a+c\right) \cdot i \leq y \cdot i\) and \(\forall i \in\) Basis. \(y \cdot i\)
\(\leq\left(m *_{R} b+c\right) \cdot i\)
    then have \(y \in\left(\lambda x . m *_{R} x+c\right)\) ' cbox a \(b\)
            unfolding image_iff Bex_def mem_box
            apply (intro exI[where \(\left.x=(1 / m) *_{R}(y-c)\right]\) )
            apply (auto simp: pos_le_divide_eq pos_divide_le_eq mult.commute inner_distrib
inner_diff_left)
            done
    \}
    moreover
    \{
        fix \(y\)
```

```
    assume }\foralli\in\mathrm{ Basis. ( }m\mp@subsup{*}{R}{}b+c)\cdoti\leqy\cdoti\foralli\in\mathrm{ Basis. y • i \ (m*R}a+c
- im<0
    then have }y\in(\lambdax.m\mp@subsup{*}{R}{}x+c)` cbox a b
            unfolding image_iff Bex_def mem_box
            apply (intro exI[where x=(1/m)*R (y-c)])
            apply (auto simp: neg_le_divide_eq neg_divide_le_eq mult.commute inner_distrib
inner_diff_left)
            done
    }
    ultimately show ?thesis using False by (auto simp:cbox_def)
qed
lemma image_smult_cbox:(\lambdax.m *R (x::_:euclidean_space))' cbox a b =
    (if cbox a b = {} then {} else if 0\leqm then cbox (m*R a) (m\mp@subsup{*}{R}{}b) else cbox
(m**
    using image_affinity_cbox[of m 0 a b] by auto
lemma swap_continuous:
    assumes continuous_on (cbox (a,c) (b,d)) (\lambda(x,y).f x y)
        shows continuous_on (cbox (c,a)(d,b)) (\lambda(x,y).f y x)
proof -
    have (\lambda(x,y).fy x)=(\lambda(x,y).f x y) ○ prod.swap
        by auto
    then show ?thesis
        apply (rule ssubst)
        apply (rule continuous_on_compose)
        apply (simp add: split_def)
        apply (rule continuous_intros | simp add: assms)+
        done
qed
```


4.1.4 General Intervals

definition is_interval ($s:$:('a::euclidean_space) set) \longleftrightarrow $(\forall a \in s . \forall b \in s . \forall x .(\forall i \in$ Basis. $((a \cdot i \leq x \cdot i \wedge x \cdot i \leq b \cdot i) \vee(b \cdot i \leq x \cdot i \wedge x \cdot i \leq$ $a \cdot i))) \longrightarrow x \in s)$
lemma is_interval_1:
is_interval $(s::$ real set $) \longleftrightarrow(\forall a \in s . \forall b \in s . \forall x . a \leq x \wedge x \leq b \longrightarrow x \in s)$ unfolding is_interval_def by auto
lemma is_interval_Int: is_interval $X \Longrightarrow$ is_interval $Y \Longrightarrow$ is_interval $(X \cap Y)$ unfolding is_interval_def
by blast
lemma is_interval_cbox [simp]: is_interval (cbox a (b::'a::euclidean_space)) (is ?th1) and is_interval_box [simp]: is_interval (box a b) (is ?th2) unfolding is_interval_def mem_box Ball_def atLeastAtMost_iff by (meson order_trans le_less_trans less_le_trans less_trans)+
lemma is_interval_empty [iff]: is_interval \{\}
unfolding is_interval_def by simp

```
lemma is_interval_univ [iff]: is_interval UNIV
    unfolding is_interval_def by simp
lemma mem_is_intervalI:
    assumes is_interval s
        and \(a \in s b \in s\)
        and \(\bigwedge i . i \in\) Basis \(\Longrightarrow a \cdot i \leq x \cdot i \wedge x \cdot i \leq b \cdot i \vee b \cdot i \leq x \cdot i \wedge x \cdot i \leq\)
\(a \cdot i\)
    shows \(x \in s\)
    by (rule assms(1)[simplified is_interval_def, rule_format, OF \(\operatorname{assms}(2,3,4)])\)
```

lemma interval_subst:
fixes $S:$:' $a:$:euclidean_space set
assumes is_interval S
and $x \in S y j \in S$
and $j \in$ Basis
shows $\left(\sum i \in\right.$ Basis. $($ if $i=j$ then $y i \cdot i$ else $\left.x \cdot i) *_{R} i\right) \in S$
by (rule mem_is_intervalI[OF assms (1,2)]) (auto simp: assms)
lemma mem_box_componentwiseI:
fixes $S:$:'a::euclidean_space set
assumes is_interval S
assumes $\bigwedge i . i \in$ Basis $\Longrightarrow x \cdot i \in((\lambda x . x \cdot i) ' S)$
shows $x \in S$
proof -
from assms have $\forall i \in$ Basis. $\exists s \in S . x \cdot i=s \cdot i$
by auto
with finite_Basis obtain s and $b s::^{\prime} a$ list
where $s: \bigwedge i . i \in$ Basis $\Longrightarrow x \cdot i=s i \cdot i \bigwedge i . i \in$ Basis $\Longrightarrow s i \in S$
and $b s$: set $b s=$ Basis distinct $b s$
by (metis finite_distinct_list)
from nonempty_Basis s obtain j where $j: j \in$ Basis s $j \in S$
by blast
define y where
$y=$ rec_list $(s j)\left(\lambda j j_{-} Y\right.$. $\left(\sum i \in\right.$ Basis. (if $i=j$ then $s i \cdot i$ else $\left.\left.\left.Y \cdot i\right) *_{R} i\right)\right)$
have $x=\left(\sum i \in\right.$ Basis. (if $i \in$ set bs then si$i \cdot i$ else s $\left.\left.j \cdot i\right) *_{R} i\right)$
using bs by (auto simp: s(1)[symmetric] euclidean_representation)
also have [symmetric]: $y b s=\ldots$
using $b s(2) b s(1)[T H E N$ equalityD1]
by (induct bs) (auto simp: y_def euclidean_representation intro!: euclidean_eqI[where
' $\left.a==^{\prime} a\right]$)
also have $y b s \in S$
using $b s(1)[T H E N$ equalityD1]
apply (induct bs)
apply (auto simp: y_def j)

```
        apply (rule interval_subst[OF assms(1)])
            apply (auto simp: s)
        done
    finally show ?thesis .
qed
lemma cbox01_nonempty [simp]: cbox 0 One }\not={
    by (simp add: box_ne_empty inner_Basis inner_sum_left sum_nonneg)
lemma box01_nonempty [simp]: box 0 One }\not={
    by (simp add: box_ne_empty inner_Basis inner_sum_left)
lemma empty_as_interval: {} = cbox One (0::'a::euclidean_space)
    using nonempty_Basis box01_nonempty box_eq_empty(1) box_ne_empty(1) by
blast
lemma interval_subset_is_interval:
    assumes is_interval S
    shows cbox a b\subseteqS\longleftrightarrowcbox a b={}\vee a\inS^b\inS (is ?lhs = ?rhs)
proof
    assume ?lhs
    then show ?rhs using box_ne_empty(1) mem_box(2) by fastforce
next
    assume ?rhs
    have cbox a b\subseteqS if a\inSb\inS
        using assms unfolding is_interval_def
        apply (clarsimp simp add: mem_box)
        using that by blast
    with 〈?rhs` show ?lhs
        by blast
    qed
lemma is_real_interval_union:
    is_interval ( }X\cupY
    if X: is_interval }X\mathrm{ and Y: is_interval }Y\mathrm{ and }I:(X\not={}\LongrightarrowY\not={}\LongrightarrowX
    Y\not={})
    for X Y::real set
proof -
    consider X\not={} Y\not={}|X={}| Y={} by blast
    then show ?thesis
    proof cases
        case 1
        then obtain r where r\inX\veeX\capY={}r\inY\veeX\capY={}
            by blast
        then show ?thesis
            using I 1 X Y unfolding is_interval_1
            by (metis (full_types) Un_iff le_cases)
    qed (use that in auto)
qed
```

```
lemma is_interval_translationI:
    assumes is_interval \(X\)
    shows is_interval \(((+) x\) ‘ \(X)\)
    unfolding is_interval_def
proof safe
    fix \(b d e\)
    assume \(b \in X d \in X\)
        \(\forall i \in\) Basis. \((x+b) \cdot i \leq e \cdot i \wedge e \cdot i \leq(x+d) \cdot i \vee\)
            \((x+d) \cdot i \leq e \cdot i \wedge e \cdot i \leq(x+b) \cdot i\)
    hence \(e-x \in X\)
        by (intro mem_is_intervalI \([\) OF assms \(\langle b \in X\rangle\langle d \in X\rangle\), of \(e-x]\) )
        (auto simp: algebra_simps)
    thus \(e \in(+) x\) ' \(X\) by force
qed
lemma is_interval_uminusI:
    assumes is_interval \(X\)
    shows is_interval (uminus ' \(X\) )
    unfolding is_interval_def
proof safe
    fix \(b d e\)
    assume \(b \in X d \in X\)
        \(\forall i \in\) Basis. \((-b) \cdot i \leq e \cdot i \wedge e \cdot i \leq(-d) \cdot i \vee\)
            \((-d) \cdot i \leq e \cdot i \wedge e \cdot i \leq(-b) \cdot i\)
    hence \(-e \in X\)
        by (intro mem_is_intervalI \([\) OF assms \(\langle b \in X\rangle\langle d \in X\rangle\), of \(-e])\)
            (auto simp: algebra_simps)
    thus \(e \in\) uminus' \(X\) by force
qed
lemma is_interval_uminus \([\) simp \(]\) : is_interval (uminus ' \(x\) ) \(=\) is_interval \(x\)
    using is_interval_uminusI[of \(x\) ] is_interval_uminusI[of uminus ' \(x\) ]
    by (auto simp: image_image)
lemma is_interval_neg_translationI:
    assumes is_interval \(X\)
    shows is_interval \(\left((-) x^{\prime} X\right)\)
proof -
    have \((-) x\) ' \(X=(+) x\) 'uminus ' \(X\)
        by (force simp: algebra_simps)
    also have is_interval...
        by (metis is_interval_uminusI is_interval_translationI assms)
    finally show ?thesis.
qed
lemma is_interval_translation[simp]:
    is_interval \(((+) x\) ‘ \(X)=\) is_interval \(X\)
    using is_interval_neg_translationI \(\left[\right.\) of \(\left.(+) x^{\prime} X x\right]\)
```

```
    by (auto intro!: is_interval_translationI simp: image_image)
lemma is_interval_minus_translation[simp]:
    shows is_interval ((-) x'X) = is_interval X
proof -
    have (-) x' X = (+) x'uminus ' }
        by (force simp: algebra_simps)
    also have is_interval ... = is_interval X
        by simp
    finally show ?thesis.
qed
lemma is_interval_minus_translation'[simp]:
    shows is_interval ((\lambdax.x-c)'X) = is_interval X
    using is_interval_translation[of - c X]
    by (metis image_cong uminus_add_conv_diff)
lemma is_interval_cball_1[intro, simp]: is_interval (cball a b) for a b::real
    by (simp add: cball_eq_atLeastAtMost is_interval_def)
lemma is_interval_ball_real: is_interval (ball a b) for a b::real
    by (simp add: ball_eq_greaterThanLessThan is_interval_def)
```


4.1.5 Bounded Projections

```
lemma bounded_inner_imp_bdd_above:
assumes bounded \(s\) shows bdd_above \(((\lambda x . x \cdot a)\) ' \(s)\)
by (simp add: assms bounded_imp_bdd_above bounded_linear_image bounded_linear_inner_left)
lemma bounded_inner_imp_bdd_below:
assumes bounded \(s\)
shows bdd_below \(((\lambda x . x \cdot a)\) 's)
by (simp add: assms bounded_imp_bdd_below bounded_linear_image bounded_linear_inner_left)
```


4.1.6 Structural rules for pointwise continuity

lemma continuous_infnorm[continuous_intros]:
continuous $F f \Longrightarrow$ continuous $F(\lambda x$. infnorm $(f x))$
unfolding continuous_def by (rule tendsto_infnorm)
lemma continuous_inner[continuous_intros]:
assumes continuous $F f$
and continuous $F g$
shows continuous $F(\lambda x$. inner $(f x)(g x))$
using assms unfolding continuous_def by (rule tendsto_inner)

4.1.7 Structural rules for setwise continuity

lemma continuous_on_infnorm[continuous_intros]:

```
    continuous_on s f \Longrightarrow continuous_on s ( }\lambdax\mathrm{ . infnorm ( f x ) )
    unfolding continuous_on by (fast intro: tendsto_infnorm)
lemma continuous_on_inner[continuous_intros]:
    fixes g :: 'a::topological_space => 'b::real_inner
    assumes continuous_on s f
        and continuous_on s g
    shows continuous_on s ( }\lambdax\mathrm{ . inner (fx) (g x))
    using bounded_bilinear_inner assms
    by (rule bounded_bilinear.continuous_on)
```


4.1.8 Openness of halfspaces.

```
lemma open_halfspace_lt:open {x. inner a }x<b
    by (simp add: open_Collect_less continuous_on_inner)
```

lemma open_halfspace_gt: open $\{x$. inner $a x>b\}$
by (simp add: open_Collect_less continuous_on_inner)
lemma open_halfspace_component_lt: open $\left\{x::^{\prime} a::\right.$ euclidean_space. $\left.x \bullet i<a\right\}$
by (simp add: open_Collect_less continuous_on_inner)
lemma open_halfspace_component_gt: open $\left\{x::^{\prime} a::\right.$ euclidean_space. $\left.x \cdot i>a\right\}$
by (simp add: open_Collect_less continuous_on_inner)
lemma eucl_less_eq_halfspaces:
fixes a :: ' a ::euclidean_space
shows $\{x . x<e a\}=(\bigcap i \in$ Basis. $\{x . x \cdot i<a \cdot i\})$
$\{x . a<e x\}=(\bigcap i \in$ Basis. $\{x . a \cdot i<x \cdot i\})$
by (auto simp: eucl_less_def)
lemma open_Collect_eucl_less[simp, intro]:
fixes a :: ' $a::$ euclidean_space
shows open $\{x . x<e a\}$ open $\{x . a<e x\}$
by (auto simp: eucl_less_eq_halfspaces open_halfspace_component_lt open_halfspace_component_gt)

4.1.9 Closure and Interior of halfspaces and hyperplanes

lemma continuous_at_inner: continuous (at x) (inner a) unfolding continuous_at by (intro tendsto_intros)
lemma closed_halfspace_le: closed $\{x$. inner $a x \leq b\}$ by (simp add: closed_Collect_le continuous_on_inner)
lemma closed_halfspace_ge: closed $\{x$. inner a $x \geq b\}$ by (simp add: closed_Collect_le continuous_on_inner)
lemma closed_hyperplane: closed $\{x$. inner $a x=b\}$ by (simp add: closed_Collect_eq continuous_on_inner)

```
lemma closed_halfspace_component_le: closed \(\left\{x::^{\prime} a::\right.\) euclidean_space. \(\left.x \cdot i \leq a\right\}\)
    by (simp add: closed_Collect_le continuous_on_inner)
lemma closed_halfspace_component_ge: closed \(\left\{x::^{\prime} a:: e u c l i d e a n \_s p a c e . ~ x \cdot i \geq a\right\}\)
    by (simp add: closed_Collect_le continuous_on_inner)
lemma closed_interval_left:
    fixes \(b\) :: ' \(a::\) euclidean_space
    shows closed \(\left\{x::^{\prime} a . \forall i \in\right.\) Basis. \(\left.x \cdot i \leq b \cdot i\right\}\)
    by (simp add: Collect_ball_eq closed_INT closed_Collect_le continuous_on_inner)
lemma closed_interval_right:
    fixes \(a\) :: ' \(a::\) euclidean_space
    shows closed \(\left\{x::^{\prime} a . \forall i \in\right.\) Basis. \(\left.a \cdot i \leq x \cdot i\right\}\)
    by (simp add: Collect_ball_eq closed_INT closed_Collect_le continuous_on_inner)
lemma interior_halfspace_le [simp]:
    assumes \(a \neq 0\)
        shows interior \(\{x . a \cdot x \leq b\}=\{x . a \cdot x<b\}\)
proof -
    have \(*: a \cdot x<b\) if \(x: x \in S\) and \(S: S \subseteq\{x . a \cdot x \leq b\}\) and open \(S\) for \(S x\)
    proof -
        obtain \(e\) where \(e>0\) and \(e\) : cball \(x e \subseteq S\)
            using 〈open \(S\) 〉open_contains_cball \(x\) by blast
        then have \(x+(e /\) norm \(a) *_{R} a \in \operatorname{cball} x e\)
            by (simp add: dist_norm)
        then have \(x+(e /\) norm \(a) *_{R} a \in S\)
            using \(e\) by blast
        then have \(x+(e /\) norm \(a) *_{R} a \in\{x . a \cdot x \leq b\}\)
            using \(S\) by blast
        moreover have \(e *(a \cdot a) /\) norm \(a>0\)
            by ( simp add: \(\langle 0<e\rangle\) assms)
        ultimately show ?thesis
            by (simp add: algebra_simps)
    qed
    show ?thesis
        by (rule interior_unique) (auto simp: open_halfspace_lt *)
qed
lemma interior_halfspace_ge [simp]:
    \(a \neq 0 \Longrightarrow\) interior \(\{x . a \cdot x \geq b\}=\{x \cdot a \cdot x>b\}\)
using interior_halfspace_le \([o f-a-b]\) by simp
lemma closure_halfspace_lt [simp]:
    assumes \(a \neq 0\)
        shows closure \(\{x . a \cdot x<b\}=\{x . a \cdot x \leq b\}\)
proof -
    have \([\) simp \(]:-\{x . a \cdot x<b\}=\{x . a \cdot x \geq b\}\)
        by (force simp:)
```

```
    then show? ?thesis
        using interior_halfspace_ge [of a b] assms
        by (force simp: closure_interior)
qed
lemma closure_halfspace_gt [simp]:
    \(a \neq 0 \Longrightarrow\) closure \(\{x . a \cdot x>b\}=\{x . a \cdot x \geq b\}\)
using closure_halfspace_lt [of \(-a-b]\) by simp
lemma interior_hyperplane [simp]:
    assumes \(a \neq 0\)
        shows interior \(\{x . a \cdot x=b\}=\{ \}\)
proof -
    have \([\) simp \(]:\{x . a \cdot x=b\}=\{x . a \cdot x \leq b\} \cap\{x . a \cdot x \geq b\}\)
        by (force simp:)
    then show ?thesis
        by (auto simp: assms)
qed
lemma frontier_halfspace_le:
    assumes \(a \neq 0 \vee b \neq 0\)
        shows frontier \(\{x . a \cdot x \leq b\}=\{x . a \cdot x=b\}\)
proof (cases \(a=0\) )
    case True with assms show ?thesis by simp
next
    case False then show ?thesis
        by (force simp: frontier_def closed_halfspace_le)
qed
lemma frontier_halfspace_ge:
    assumes \(a \neq 0 \vee b \neq 0\)
        shows frontier \(\{x . a \cdot x \geq b\}=\{x . a \cdot x=b\}\)
proof (cases \(a=0\) )
    case True with assms show ?thesis by simp
next
    case False then show ?thesis
        by (force simp: frontier_def closed_halfspace_ge)
qed
lemma frontier_halfspace_lt:
    assumes \(a \neq 0 \vee b \neq 0\)
        shows frontier \(\{x . a \cdot x<b\}=\{x . a \cdot x=b\}\)
proof (cases \(a=0\) )
    case True with assms show ?thesis by simp
next
    case False then show?thesis
    by (force simp: frontier_def interior_open open_halfspace_lt)
qed
```

```
lemma frontier_halfspace_gt:
    assumes \(a \neq 0 \vee b \neq 0\)
        shows frontier \(\{x . a \cdot x>b\}=\{x . a \cdot x=b\}\)
proof (cases \(a=0\) )
    case True with assms show ?thesis by simp
next
    case False then show ?thesis
        by (force simp: frontier_def interior_open open_halfspace_gt)
qed
```


4.1.10 Some more convenient intermediate-value theorem formulations

lemma connected_ivt_hyperplane:
assumes connected S and $x y: x \in S y \in S$ and b : inner $a x \leq b b \leq$ inner a y shows $\exists z \in S$. inner $a z=b$
proof (rule ccontr)
assume $a s: \neg(\exists z \in S$. inner $a z=b)$
let $? A=\{x$. inner $a x<b\}$
let ? $B=\{x$. inner $a x>b\}$
have open ?A open ?B
using open_halfspace_lt and open_halfspace_gt by auto
moreover have ? $A \cap$? $B=\{ \}$ by auto
moreover have $S \subseteq$? $A \cup$? B using as by auto
ultimately show False
using 〈connected S 〉[unfolded connected_def not_ex,
THEN spec[where $x=? A]$, THEN $\operatorname{spec}[$ where $x=? B]$]
using $x y b$ by auto
qed
lemma connected_ivt_component:
fixes $x::$ 'a::euclidean_space
shows connected $S \Longrightarrow x \in S \Longrightarrow y \in S \Longrightarrow x \cdot k \leq a \Longrightarrow a \leq y \cdot k \Longrightarrow(\exists z \in S$.
$z \cdot k=a$)
using connected_ivt_hyperplane[of $S x$ y $\left.k::^{\prime} a \quad a\right]$
by (auto simp: inner_commute)

4.1.11 Limit Component Bounds

lemma Lim_component_le:
fixes $f::$ ' $a \Rightarrow{ }^{\prime} b::$ euclidean_space
assumes $(f \longrightarrow l)$ net
and \neg (trivial_limit net)
and eventually $(\lambda x . f(x) \cdot i \leq b)$ net
shows $l \cdot i \leq b$
by (rule tendsto_le[OF assms(2) tendsto_const tendsto_inner[OF assms(1) tend-
sto_const] assms(3)])
lemma Lim_component_ge:
fixes $f::{ }^{\prime} a \Rightarrow{ }^{\prime} b::$ euclidean_space
assumes $(f \longrightarrow l)$ net
and \neg (trivial_limit net)
and eventually $(\lambda x . b \leq(f x) \cdot i)$ net
shows $b \leq l \cdot i$
by (rule tendsto_le[OF assms(2) tendsto_inner [OF assms(1) tendsto_const $]$ tendsto_const assms(3)])

```
lemma Lim_component_eq:
    fixes \(f::{ }^{\prime} a \Rightarrow{ }^{\prime} b::\) euclidean_space
    assumes net: \((f \longrightarrow l)\) net \(\neg\) trivial_limit net
        and ev:eventually \((\lambda x . f(x) \cdot i=b)\) net
    shows \(l \cdot i=b\)
    using ev[unfolded order_eq_iff eventually_conj_iff]
    using Lim_component_ge[OF net, of bi]
    using Lim_component_le[OF net, of \(i b]\)
    by auto
lemma open_box[intro]: open (box a b)
proof -
    have open \((\bigcap i \in\) Basis. \(((\cdot) i)-‘\{a \cdot i<. .<b \cdot i\})\)
    by (auto intro!: continuous_open_vimage continuous_inner continuous_ident con-
tinuous_const)
    also have \(\left(\bigcap i \in\right.\) Basis. \(\left.((\cdot) i)-{ }^{\prime}\{a \cdot i<. .<b \cdot i\}\right)=\) box a \(b\)
        by (auto simp: box_def inner_commute)
    finally show ?thesis.
qed
lemma closed_cbox[intro]:
    fixes \(a b\) :: 'a::euclidean_space
    shows closed (cbox a b)
proof -
    have closed \((\bigcap i \in\) Basis. \((\lambda x . x \cdot i)-‘\{a \cdot i . . b \cdot i\})\)
        by (intro closed_INT ballI continuous_closed_vimage allI
        linear_continuous_at closed_real_atLeastAtMost finite_Basis bounded_linear_inner_left)
    also have \((\bigcap i \in\) Basis. \((\lambda x . x \cdot i)-‘\{a \cdot i \ldots b \cdot i\})=c b o x a b\)
        by (auto simp: cbox_def)
    finally show closed (cbox a b) .
qed
lemma interior_cbox [simp]:
    fixes \(a b\) :: ' \(a::\) euclidean_space
    shows interior \((\) cbox a \(b)=\) box ab (is \(? L=? R)\)
proof(rule subset_antisym)
    show ? \(R \subseteq\) ? \(L\)
            using box_subset_cbox open_box
            by (rule interior_maximal)
    \{
        fix \(x\)
```

```
    assume x \in interior (cbox a b)
    then obtain s where s:open s x fss\subseteqcbox a b ..
    then obtain e where e>0 and e:\forall\mp@subsup{x}{}{\prime}.\mathrm{ dist }\mp@subsup{x}{}{\prime}x<e\longrightarrow\longrightarrow\mp@subsup{x}{}{\prime}\incbox a b
        unfolding open_dist and subset_eq by auto
    {
        fix i::'a
        assume i:i\in Basis
        have dist (x-(e/2) *R i) x<e
            and dist (x+(e/2)*R i) x<e
            unfolding dist_norm
            apply auto
            unfolding norm_minus_cancel
            using norm_Basis[OF i] \langlee>0\rangle
            apply auto
            done
            then have a \cdot i\leq (x-(e/2) *R i) \cdot i and (x+(e/2) *R i) \cdoti\leqb
            using e[THEN spec[where x=x - (e/2) * *R i]]
                and}e[THEN spec[where x=x+(e/\mathcal{L})\mp@subsup{*}{R}{}i]
            unfolding mem_box
            using i
            by blast+
        then have a • i< x \cdot i and x • i< b \cdot i
            using <e>0` i
            by (auto simp: inner_diff_left inner_Basis inner_add_left)
    }
    then have x\in box a b
            unfolding mem_box by auto
}
then show ? L\subseteq?R ..
qed
lemma bounded_cbox [simp]:
    fixes a :: 'a::euclidean_space
    shows bounded (cbox a b)
proof -
    let ?b = \sumi\inBasis. }|a\cdoti|+|b\cdoti
    {
        fix }x::\mp@subsup{}{}{\prime}
        assume \i. i\inBasis \Longrightarrowa
        then have (\sumi\inBasis. }|x\cdoti|)\leq?
            by (force simp: intro!: sum_mono)
        then have norm x\leq?b
            using norm_le_l1[of x] by auto
    }
    then show ?thesis
        unfolding cbox_def bounded_iff by force
qed
lemma bounded_box [simp]:
```

```
    fixes \(a\) :: ' \(a::\) euclidean_space
    shows bounded (box a b)
    using bounded_cbox[of a b] box_subset_cbox[of a b] bounded_subset[of cbox a b box
\(a b]\)
    by \(\operatorname{simp}\)
lemma not_interval_UNIV [simp]:
    fixes \(a\) :: 'a::euclidean_space
    shows cbox a \(b \neq U N I V\) box a \(b \neq U N I V\)
    using bounded_box[of a b] bounded_cbox[of a b] by force+
lemma not_interval_UNIV2 [simp]:
    fixes \(a\) :: ' \(a\) ::euclidean_space
    shows UNIV \(\neq\) cbox a b UNIV \(\neq\) box a \(b\)
    using bounded_box[of a b] bounded_cbox[of a b] by force+
lemma box_midpoint:
    fixes \(a\) :: ' \(a:\) :euclidean_space
    assumes box a \(b \neq\{ \}\)
    shows \(\left((1 / 2) *_{R}(a+b)\right) \in\) box \(a b\)
proof -
    have \(a \cdot i<\left((1 / 2) *_{R}(a+b)\right) \cdot i \wedge\left((1 / 2) *_{R}(a+b)\right) \cdot i<b \cdot i\) if \(i \in\)
Basis for \(i\)
            using assms that by (auto simp: inner_add_left box_ne_empty)
    then show ?thesis unfolding mem_box by auto
qed
lemma open_cbox_convex:
    fixes \(x\) :: ' \(a:\) :euclidean_space
    assumes \(x: x \in b o x a b\)
        and \(y: y \in c b o x a b\)
        and \(e: 0<e e \leq 1\)
    shows \(\left(e *_{R} x+(1-e) *_{R} y\right) \in b o x a b\)
proof -
    \{
        fix \(i::^{\prime} a\)
        assume \(i: i \in\) Basis
        have \(a \cdot i=e *(a \cdot i)+(1-e) *(a \cdot i)\)
            unfolding left_diff_distrib by simp
    also have \(\ldots<e *(x \cdot i)+(1-e) *(y \cdot i)\)
    proof (rule add_less_le_mono)
        show \(e *(a \cdot i)<e *(x \cdot i)\)
            using \(\langle 0<e\rangle\) i mem_box(1) \(x\) by auto
            show \((1-e) *(a \cdot i) \leq(1-e) *(y \cdot i)\)
            by (meson diff_ge_0_iff_ge \(\langle e \leq 1\) 〉 \(i\) mem_box(2) mult_left_mono \(y\) )
        qed
        finally have \(a \cdot i<\left(e *_{R} x+(1-e) *_{R} y\right) \cdot i\)
        unfolding inner_simps by auto
        moreover
```

```
    {
        have b}\cdoti=e*(b\cdoti)+(1-e)*(b\cdoti
            unfolding left_diff_distrib by simp
            also have ...>e * (x • i) +(1-e)*(y\cdoti)
            proof (rule add_less_le_mono)
                show e*(x • i)<e*(b\cdoti)
                using <0<e\rangle i mem_box(1) x by auto
            show (1-e)*(y\cdoti)\leq(1-e)*(b •i)
                by (meson diff_ge_0_iff_ge <e \leq 1> i mem_box(2) mult_left_mono y)
            qed
            finally have (e * *R}x+(1-e)\mp@subsup{*}{R}{}y)\cdoti<b\cdot
            unfolding inner_simps by auto
    }
    ultimately have a . i< (e**R x + (1-e)**R y) \cdoti^(e *R x + (1-e)
*R
            by auto
    }
    then show ?thesis
    unfolding mem_box by auto
qed
lemma closure_cbox [simp]: closure (cbox a b) = cbox a b
    by (simp add: closed_cbox)
lemma closure_box [simp]:
    fixes a :: 'a::euclidean_space
    assumes box a b}\not={
    shows closure (box a b) = cbox a b
proof -
    have ab:a<e b
        using assms by (simp add: eucl_less_def box_ne_empty)
    let ?c = (1 / 2) *R (a+b)
    {
        fix }
        assume as:x \in cbox a b
        define f}\mathrm{ where [abs_def]: f n = x+(inverse (real n + 1)) **R (?c-x) for n
    {
        fix n
        assume fn: fn<e b\longrightarrowa<efn\longrightarrowfn=x and xc: x\not=?c
        have *: 0< inverse (real n + 1) inverse (real n + 1)\leq1
            unfolding inverse_le_1_iff by auto
        have (inverse (real n + 1)) *R ((1/2) * *R (a+b)) + (1 - inverse (real n
+1))}\mp@subsup{*}{R}{}x
        x+(inverse (real n + 1)) *R (((1/2) * * (a+b)) - x)
        by (auto simp: algebra_simps)
        then have fn<eb and a<efn
            using open_cbox_convex[OF box_midpoint[OF assms] as *]
            unfolding f_def by (auto simp: box_def eucl_less_def)
        then have False
```

```
        using fn unfolding f_def using xc by auto
    }
    moreover
    {
        assume }\neg(f\longrightarrowx)\mathrm{ sequentially
        {
            fix e :: real
            assume e>0
            then obtain N :: nat where N: inverse (real (N+1))<e
                using reals_Archimedean by auto
            have inverse (real n+1)<e if N\leqn for n
                by (auto intro!: that le_less_trans [OF _ N])
            then have }\existsN::\mathrm{ nat. }\foralln\geqN\mathrm{ . inverse (real n + 1)<e by auto
        }
        then have ((\lambdan. inverse (real n + 1)) \longrightarrow0) sequentially
            unfolding lim_sequentially by(auto simp: dist_norm)
            then have (f\longrightarrowx) sequentially
            unfolding f_def
            using tendsto_add[OF tendsto_const, of \lambdan::nat. (inverse (real n + 1)) *R
((1 / 2) *R (a+b) - x) 0 sequentially x]
            using tendsto_scaleR [OF _ tendsto_const, of \lambdan::nat. inverse (real n + 1)
0 sequentially ((1/2) *R (a+b) - x)]
            by auto
        }
        ultimately have x\in closure (box a b)
            using as box_midpoint[OF assms]
            unfolding closure_def islimpt_sequential
            by (cases x=?c) (auto simp: in_box_eucl_less)
    }
    then show ?thesis
        using closure_minimal[OF box_subset_cbox, of a b] by blast
qed
lemma bounded_subset_box_symmetric:
    fixes S :: ('a::euclidean_space) set
    assumes bounded S
    obtains a where S\subseteqbox (-a)a
proof -
    obtain b}\mathrm{ where b>0 and b: }\forallx\inS. norm x \leqb
        using assms[unfolded bounded_pos] by auto
    define a :: 'a where }a=(\sumi\in\mathrm{ Basis. (b+1) *R
    have (-a)\cdoti<x\cdoti and x\cdoti<a\cdoti if x \inS and i:i\inBasis for x i
        using b Basis_le_norm[OF i, of x] that by (auto simp: a_def)
    then have S\subseteqbox (-a)a
        by (auto simp: simp add: box_def)
    then show ?thesis ..
qed
lemma bounded_subset_cbox_symmetric:
```

```
    fixes S :: ('a::euclidean_space) set
    assumes bounded S
    obtains a where S\subseteqcbox (-a)a
proof -
    obtain a where S\subseteqbox (-a)a
        using bounded_subset_box_symmetric[OF assms] by auto
    then show ?thesis
        by (meson box_subset_cbox dual_order.trans that)
qed
lemma frontier_cbox:
    fixes a b :: 'a::euclidean_space
    shows frontier (cbox a b) = cbox a b - box a b
    unfolding frontier_def unfolding interior_cbox and closure_closed[OF closed_cbox]
lemma frontier_box:
    fixes a b :: 'a::euclidean_space
    shows frontier (box a b)=(if box a b={} then {} else cbox a b-box a b)
proof (cases box a b={})
    case True
    then show ?thesis
        using frontier_empty by auto
    next
    case False
    then show ?thesis
    unfolding frontier_def and closure_box[OF False] and interior_open[OF open_box]
        by auto
qed
lemma Int_interval_mixed_eq_empty:
    fixes a :: 'a::euclidean_space
    assumes box c d\not={}
    shows box a b \cap cbox c d={}\longleftrightarrow box a b \cap box c d = {}
    unfolding closure_box[OF assms, symmetric]
    unfolding open_Int_closure_eq_empty[OF open_box] ..
```


4.1.12 Class Instances

lemma compact_lemma:
fixes $f::$ nat \Rightarrow 'a::euclidean_space
assumes bounded (range f)
shows $\forall d \subseteq$ Basis. $\exists l::^{\prime} a . \exists r$.
strict_mono $r \wedge(\forall e>0$. eventually $(\lambda n . \forall i \in d . \operatorname{dist}(f(r n) \cdot i)(l \cdot i)<e)$
sequentially)
by (rule compact_lemma_general $\left[\right.$ where unproj $=\lambda e . \sum i \in$ Basis. $\left.e i *_{R} i\right]$)
(auto intro!: assms bounded_linear_inner_left bounded_linear_image
simp: euclidean_representation)

```
instance euclidean_space \(\subseteq\) heine_borel
proof
    fix \(f::\) nat \(\Rightarrow{ }^{\prime} a\)
    assume \(f\) : bounded (range f)
    then obtain \(l::{ }^{\prime} a\) and \(r\) where \(r:\) strict_mono \(r\)
    and \(l: \forall e>0\). eventually \((\lambda n . \forall i \in\) Basis. dist \((f(r n) \cdot i)(l \cdot i)<e)\) sequentially
    using compact_lemma \([O F f]\) by blast
    \{
        fix \(e:\) :real
        assume \(e>0\)
        hence e / real_of_nat DIM('a) > 0 by (simp)
    with \(l\) have eventually \((\lambda n . \forall i \in\) Basis. \(\operatorname{dist}(f(r n) \cdot i)(l \cdot i)<e /\) (real_of_nat
DIM('a))) sequentially
        by simp
        moreover
        \{
            fix \(n\)
            assume \(n: \forall i \in\) Basis. dist \((f(r n) \cdot i)(l \cdot i)<e /\left(r e a l \_o f-n a t ~ D I M(' a)\right)\)
            have dist \((f(r n)) l \leq\left(\sum i \in\right.\) Basis.dist \(\left.(f(r n) \cdot i)(l \cdot i)\right)\)
                apply (subst euclidean_dist_l2)
            using zero_le_dist
            apply (rule L2_set_le_sum)
            done
```



```
                apply (rule sum_strict_mono)
                using \(n\)
                apply auto
            done
            finally have \(\operatorname{dist}(f(r n)) l<e\)
            by auto
    \}
    ultimately have eventually ( \(\lambda n\). \(\operatorname{dist}(f(r n)) l<e)\) sequentially
        by (rule eventually_mono)
    \}
    then have \(: ~((f \circ r) \longrightarrow l)\) sequentially
        unfolding o_def tendsto_iff by simp
    with \(r\) show \(\exists l r\). strict_mono \(r \wedge((f \circ r) \longrightarrow l)\) sequentially
        by auto
qed
instance euclidean_space \(\subseteq\) banach ..
instance euclidean_space \(\subseteq\) second_countable_topology
proof
    define \(a\) where \(a f=\left(\sum_{i \in \text { Basis. }} f_{s t}(f i) *_{R} i\right)\) for \(f:: ' a \Rightarrow\) real \(\times\) real
    then have \(a: \wedge f .\left(\sum i \in\right.\) Basis. \(\left.f s t(f i) *_{R} i\right)=a f\)
        by simp
```



```
    then have \(b: \wedge f .\left(\sum i \in\right.\) Basis. snd \(\left.(f i) *_{R} i\right)=b f\)
```

```
    by simp
    define B where B = (\lambdaf.box (af) (bf))'(Basis }\mp@subsup{->}{E}{}(\mathbb{Q}\times\mathbb{Q})
    have Ball B open by (simp add: B_def open_box)
    moreover have ( }\forallA\mathrm{ . open }A\longrightarrow(\exists\mp@subsup{B}{}{\prime}\subseteqB.\bigcup\mp@subsup{B}{}{\prime}=A)
    proof safe
        fix A::'a set
    assume open A
    show \exists}\mp@subsup{B}{}{\prime}\subseteqB.\cup\mp@subsup{B}{}{\prime}=
        apply (rule exI[of - {b\inB.b\subseteqA}])
        apply (subst (3) open_UNION_box[OF <open A`])
        apply (auto simp: a b B_def)
        done
    qed
    ultimately
    have topological_basis B
        unfolding topological_basis_def by blast
    moreover
    have countable B
        unfolding B_def
        by (intro countable_image countable_PiE finite_Basis countable_SIGMA count-
able_rat)
    ultimately show }\existsB::''a set set. countable B ^ open = generate_topology 
    by (blast intro: topological_basis_imp_subbasis)
qed
instance euclidean_space \subseteq polish_space ..
```


4.1.13 Compact Boxes

lemma compact_cbox [simp]:
fixes a :: ' $a:$:euclidean_space
shows compact (cbox a b)
using bounded_closed_imp_seq_compact[$[$ f cbox a b] using bounded_cbox[of a b]
by (auto simp: compact_eq_seq_compact_metric)
proposition is_interval_compact:
is_interval $S \wedge$ compact $S \longleftrightarrow(\exists a b . S=$ cbox $a b) \quad($ is ? $l h s=$? $r h s)$
proof (cases $S=\{ \}$)
case True
with empty_as_interval show ?thesis by auto
next
case False
show ?thesis
proof
assume L :?lhs
then have is_interval S compact S by auto
define a where $a \equiv \sum i \in$ Basis. (INF $\left.x \in S . x \cdot i\right) *_{R} i$
define b where $b \equiv \sum i \in$ Basis. (SUP $\left.x \in S . x \cdot i\right) *_{R} i$
have 1：$\bigwedge x i . \llbracket x \in S ; i \in B a s i s \rrbracket \Longrightarrow(I N F x \in S . x \cdot i) \leq x \cdot i$
by（simp add：cInf＿lower bounded＿inner＿imp＿bdd＿below compact＿imp＿bounded
L）
have 2：$\bigwedge x i . \llbracket x \in S ; i \in B a s i s \rrbracket \Longrightarrow x \cdot i \leq(S U P x \in S . x \cdot i)$
by（simp add：cSup＿upper bounded＿inner＿imp＿bdd＿above compact＿imp＿bounded
L）
have 3：$x \in S$ if inf：$\bigwedge i . i \in$ Basis $\Longrightarrow(I N F x \in S . x \cdot i) \leq x \cdot i$
and sup：$\bigwedge i . i \in$ Basis $\Longrightarrow x \cdot i \leq(S U P x \in S . x \cdot i)$ for x
proof（rule mem＿box＿componentwiseI［OF〈is＿interval $S\rangle$ ］）
fix $i::^{\prime} a$
assume $i: i \in$ Basis
have cont：continuous＿on $S(\lambda x . x \cdot i)$
by（intro continuous＿intros）
obtain a where $a \in S$ and $a: \bigwedge y . y \in S \Longrightarrow a \cdot i \leq y \cdot i$ using continuous＿attains＿inf［OF〈compact S〉False cont］by blast
obtain b where $b \in S$ and $b: \bigwedge y . y \in S \Longrightarrow y \cdot i \leq b \cdot i$
using continuous＿attains＿sup［OF 〈compact $S\rangle$ False cont］by blast
have $a \cdot i \leq($ INF $x \in S . x \cdot i)$
by（simp add：False a cINF＿greatest）
also have $\ldots \leq x \cdot i$
by（ simp add：i inf）
finally have $a i: a \cdot i \leq x \cdot i$ ．
have $x \cdot i \leq(S U P x \in S . x \cdot i)$
by（ simp add：i sup）
also have（SUP $x \in S . x \cdot i) \leq b \cdot i$
by（simp add：False b cSUP＿least）
finally have $b i: x \cdot i \leq b \cdot i$ ．
show $x \cdot i \in(\lambda x . x \cdot i)$＇$S$
apply（rule＿tac $x=\sum j \in$ Basis．（if $j=i$ then $x \cdot i$ else $a \cdot j$ ）$*_{R} j$ in
image＿eqI）
apply（simp add：i）
apply（rule mem＿is＿intervalI $\left[O F\left\langle i s _i n t e r v a l ~ S\right\rangle\langle a \in S\rangle\langle b \in S\rangle\right]$ ）
using i ai bi apply force
done
qed
have $S=$ cbox $a b$
by（auto simp：a＿def b＿def mem＿box intro： 12 3）
then show ？rhs
by blast
next
assume R ：？rhs
then show？？hs
using compact＿cbox is＿interval＿cbox by blast
qed
qed

4.1.14 Componentwise limits and continuity

But is the premise really necessary? Need to generalise dist ? x ? $y=$ L2_set (λi. dist $(? x \cdot i)(? y \cdot i))$ Basis
lemma Euclidean_dist_upper: $i \in$ Basis $\Longrightarrow \operatorname{dist}(x \cdot i)(y \cdot i) \leq d i s t x y$ by (metis (no_types) member_le_L2_set euclidean_dist_l2 finite_Basis)

But is the premise $i \in$ Basis really necessary?
lemma open_preimage_inner:
assumes open $S i \in$ Basis
shows open $\{x . x \cdot i \in S\}$
proof (rule openI, simp)
fix x
assume $x: x \cdot i \in S$
with assms obtain e where $0<e$ and e : ball $(x \cdot i) e \subseteq S$ by (auto simp: open_contains_ball_eq)
have $\exists e>0$. ball $(y \cdot i) e \subseteq S$ if dxy: dist $x y<e / 2$ for y
proof (intro exI conjI)
have dist $(x \cdot i)(y \cdot i)<e / 2$
by (meson $\langle i \in$ Basis dual_order.trans Euclidean_dist_upper not_le that)
then have $\operatorname{dist}(x \cdot i) z<e$ if $\operatorname{dist}(y \cdot i) z<e / 2$ for z by (metis dist_commute dist_triangle_half_l that)
then have ball $(y \cdot i)(e / 2) \subseteq$ ball $(x \cdot i) e$
using mem_ball by blast
with e show ball $(y \cdot i)(e / 2) \subseteq S$
by (metis order_trans)
qed (simp add: $\langle 0<e\rangle$)
then show $\exists e>0$. ball $x e \subseteq\{s . s \cdot i \in S\}$
by (metis (no_types, lifting) $\langle 0<e\rangle\langle o p e n ~ S\rangle h a l f _g t _z e r o _i f f ~ m e m _C o l l e c t _e q$
mem_ball open_contains_ball_eq subsetI)
qed
proposition tendsto_componentwise_iff:
fixes $f::$ _ \Rightarrow 'b::euclidean_space
shows $(f \longrightarrow l) F \longleftrightarrow(\forall i \in$ Basis. $((\lambda x .(f x \cdot i)) \longrightarrow(l \cdot i)) F)$
(is ?lhs = ? $r h s$)
proof
assume ?lhs
then show?rhs
unfolding tendsto_def
apply clarify
apply (drule_tac $x=\{s . s \cdot i \in S\}$ in spec)
apply (auto simp: open_preimage_inner)
done
next
assume R : ?rhs
then have $\bigwedge e . e>0 \Longrightarrow \forall i \in$ Basis. $\forall_{F} x$ in F. dist $(f x \cdot i)(l \cdot i)<e$ unfolding tendsto_iff by blast
then have $R^{\prime}: \bigwedge e . e>0 \Longrightarrow \forall_{F} x$ in F. $\forall i \in$ Basis. dist $(f x \cdot i)(l \cdot i)<e$
by (simp add: eventually_ball_finite_distrib [symmetric])
show ?lhs
unfolding tendsto_iff
proof clarify
fix e ::real
assume $0<e$
have $*$: L2_set $(\lambda i . \operatorname{dist}(f x \cdot i)(l \cdot i))$ Basis $<e$
if $\forall i \in$ Basis. dist $(f x \cdot i)(l \cdot i)<e /$ real $\operatorname{DIM}\left({ }^{\prime} b\right)$ for x
proof -
have L2_set $(\lambda i . \operatorname{dist}(f x \cdot i)(l \cdot i))$ Basis $\leq \operatorname{sum}(\lambda i . \operatorname{dist}(f x \cdot i)(l \cdot i))$
Basis
by (simp add: L2_set_le_sum)
also have $\ldots<\operatorname{DIM}\left({ }^{\prime} b\right) *\left(e /\right.$ real $\left.\operatorname{DIM}\left({ }^{\prime} b\right)\right)$
apply (rule sum_bounded_above_strict)
using that by auto
also have $\ldots=e$
by (simp add: field_simps)
finally show L2_set (λi. $\operatorname{dist}(f x \cdot i)(l \cdot i))$ Basis $<e$.
qed
have $\forall_{F} x$ in F. $\forall i \in$ Basis. dist $(f x \cdot i)(l \cdot i)<e / D I M\left({ }^{\prime} b\right)$
apply (rule R^{\prime})
using $\langle 0<e\rangle$ by simp
then show $\forall_{F} x$ in F. dist $(f x) l<e$
apply (rule eventually_mono)
apply (subst euclidean_dist_l2)
using * by blast
qed
qed
corollary continuous_componentwise:
continuous $F f \longleftrightarrow(\forall i \in$ Basis. continuous $F(\lambda x .(f x \cdot i)))$
by (simp add: continuous_def tendsto_componentwise_iff [symmetric])
corollary continuous_on_componentwise:
fixes S :: 'a :: t2_space set
shows continuous_on $S f \longleftrightarrow(\forall i \in$ Basis. continuous_on $S(\lambda x .(f x \cdot i)))$
apply (simp add: continuous_on_eq_continuous_within)
using continuous_componentwise by blast
lemma linear_componentwise_iff:
$\left(\right.$ linear $\left.f^{\prime}\right) \longleftrightarrow\left(\forall i \in\right.$ Basis. linear $\left.\left(\lambda x . f^{\prime} x \cdot i\right)\right)$
apply (auto simp: linear_iff inner_left_distrib)
apply (metis inner_left_distrib euclidean_eq_iff)
by (metis euclidean_eqI inner_scaleR_left)
lemma bounded_linear_componentwise_iff:
(bounded_linear $\left.f^{\prime}\right) \longleftrightarrow\left(\forall i \in\right.$ Basis. bounded_linear $\left.\left(\lambda x . f^{\prime} x \cdot i\right)\right)$
(is ?lhs =?rhs)

```
proof
    assume ?lhs then show ?rhs
        by (simp add: bounded_linear_inner_left_comp)
next
    assume ?rhs
    then have ( }\foralli\in\mathrm{ Basis. }\exists\textrm{K}.\forallx.|\mp@subsup{f}{}{\prime}x\cdoti|\leq\mathrm{ norm x * K) linear f'
    by (auto simp: bounded_linear_def bounded_linear_axioms_def linear_componentwise_iff
[symmetric] ball_conj_distrib)
    then obtain F where F: \bigwedgeix. i\in Basis \Longrightarrow| |f'x • i| \leqnorm x *Fi
        by metis
    have norm ( }\mp@subsup{f}{}{\prime}x)\leq\mathrm{ norm }x*\mathrm{ sum F Basis for }
    proof -
        have norm ( }\mp@subsup{f}{}{\prime}x)\leq(\sumi\in\mathrm{ Basis. }|\mp@subsup{f}{}{\prime}x\cdoti|
            by (rule norm_le_l1)
    also have ...\leq(\sumi\inBasis.norm x*Fi)
                by (metis F sum_mono)
    also have ... = norm x * sum F Basis
            by (simp add: sum_distrib_left)
    finally show ?thesis .
    qed
    then show ?lhs
        by (force simp: bounded_linear_def bounded_linear_axioms_def <linear f'>)
qed
```


4.1.15 Continuous Extension

definition clamp :: 'a::euclidean_space $\Rightarrow^{\prime} a \Rightarrow^{\prime} a \Rightarrow^{\prime} a$ where clamp a b $x=($ if $(\forall i \in$ Basis. $a \cdot i \leq b \cdot i)$
then $\left(\sum i \in\right.$ Basis. (if $x \cdot i<a \cdot i$ then $a \cdot i$ else if $x \cdot i \leq b \cdot i$ then $x \cdot i$ else $\left.b \cdot i\right) *_{R} i$)
else a)
lemma clamp_in_interval[simp]:
assumes $\bigwedge i . i \in$ Basis $\Longrightarrow a \cdot i \leq b \cdot i$
shows clamp a $b x \in$ cbox $a b$
unfolding clamp_def
using box_ne_empty(1)[of a b] assms by (auto simp: cbox_def)
lemma clamp_cancel_cbox[simp]:
fixes x a b :: 'a::euclidean_space
assumes $x: x \in$ cbox a b
shows clamp a b $x=x$
using assms
by (auto simp: clamp_def mem_box intro!: euclidean_eqI $\left[\right.$ where $\left.{ }^{\prime} a={ }^{\prime} a\right]$)
lemma clamp_empty_interval:
assumes $i \in$ Basis $a \cdot i>b \cdot i$
shows clamp a $b=\left(\lambda_{-} \cdot a\right)$
using assms
by (force simp: clamp_def[abs_def] split: if_splits intro!: ext)
lemma dist_clamps_le_dist_args:
fixes x :: ' $a::$ euclidean_space
shows dist (clamp aby) (clamp abs) \leq dist $y x$
proof cases
assume le: $(\forall i \in$ Basis. $a \cdot i \leq b \cdot i)$
 $\left(\sum i \in\right.$ Basis. $\left.(\operatorname{dist}(y \cdot i)(x \cdot i))^{2}\right)$
by (auto intro!: sum_mono simp: clamp_def dist_real_def abs_le_square_iff [symmetric])
then show ?thesis
by (auto intro: real_sqrt_le_mono
simp: euclidean_dist_l2[where $y=x]$ euclidean_dist_l2[where $y=c l a m p ~ a b l l]$
L2_set_def)
qed (auto simp: clamp_def)
lemma clamp_continuous_at:
fixes $f::{ }^{\prime} a::$ euclidean_space $\Rightarrow{ }^{\prime} b::$ metric_space
and $x::$ ' a
assumes $f_{\text {_cont: }}$ continuous_on $($ cbox a b) f
shows continuous (at $x)(\lambda x . f($ clamp a $b x))$
proof cases
assume le: $(\forall i \in$ Basis. $a \cdot i \leq b \cdot i)$
show ?thesis
unfolding continuous_at_eps_delta
proof safe
fix $x::{ }^{\prime} a$
fix e :: real
assume $e>0$
moreover have clamp abx cbox ab
by (simp add: le)
moreover note f_{-}cont[simplified continuous_on_iff]
ultimately
obtain d where $d: 0<d$
$\bigwedge x^{\prime} . x^{\prime} \in \operatorname{cbox} a b \Longrightarrow \operatorname{dist} x^{\prime}(\operatorname{clamp} a b x)<d \Longrightarrow \operatorname{dist}(f x)(f($ clamp a
$b x))<e$
by force
show $\exists d>0 . \forall x^{\prime}$. dist $x^{\prime} x<d \longrightarrow$
$\operatorname{dist}\left(f\left(\right.\right.$ clamp a b $\left.\left.x^{\prime}\right)\right)(f($ clamp a b $x))<e$
using le
by (auto intro!: d clamp_in_interval dist_clamps_le_dist_args[THEN le_less_trans])
qed
qed (auto simp: clamp_empty_interval)
lemma clamp_continuous_on:
fixes f :: ' $a:$:euclidean_space \Rightarrow ' $b::$ metric_space
assumes $f_{\text {_cont: continuous_on }(c b o x ~ a ~ b) ~}^{\text {con }}$
shows continuous_on $S(\lambda x . f($ clamp able)
using assms
by (auto intro: continuous_at_imp_continuous_on clamp_continuous_at)

```
lemma clamp_bounded:
    fixes \(f\) :: ' \(a\) ::euclidean_space \(\Rightarrow\) ' \(b::\) metric_space
    assumes bounded: bounded ( \(f\) ' (cbox a b))
    shows bounded (range \((\lambda x . f(\operatorname{clamp} a b x)))\)
proof cases
    assume le: \((\forall i \in\) Basis. \(a \cdot i \leq b \cdot i)\)
    from bounded obtain \(c\) where \(f_{-}\)bound: \(\forall x \in f\) 'cbox a \(b\). dist undefined \(x \leq c\)
        by (auto simp: bounded_any_center[where \(a=\) undefined])
    then show ?thesis
        by (auto intro!: exI[where \(x=c]\) clamp_in_interval[OF le[rule_format \(]\) ]
            simp: bounded_any_center[where \(a=\) undefined])
qed (auto simp: clamp_empty_interval image_def)
definition ext_cont \(::\left({ }^{\prime} a::\right.\) euclidean_space \(\Rightarrow{ }^{\prime} b::\) metric_space \() \Rightarrow^{\prime} a \Rightarrow^{\prime} a \Rightarrow^{\prime} a \Rightarrow\)
'b
    where ext_cont fab=( \(\lambda x . f(\) clamp \(a b x))\)
lemma ext_cont_cancel_cbox[simp]:
    fixes \(x\) a \(b\) :: 'a::euclidean_space
    assumes \(x: x \in\) cbox \(a b\)
    shows ext_cont fabx=fx
    using assms
    unfolding ext_cont_def
    by (auto simp: clamp_def mem_box intro!: euclidean_eqI[where ' \(\left.a={ }^{\prime} a\right]\) arg_cong \([\) where
\(f=f]\) )
```

lemma continuous_on_ext_cont[continuous_intros]:
continuous_on (cbox a b) $f \Longrightarrow$ continuous_on S (ext_cont fab)
by (auto intro!: clamp_continuous_on simp: ext_cont_def)

4.1.16 Separability

lemma univ_second_countable_sequence:
obtains $B::$ nat $\Rightarrow{ }^{\prime} a::$ euclidean_space set
where $\operatorname{inj} B \bigwedge n$. open $(B n) \bigwedge S$. open $S \Longrightarrow \exists k . S=\bigcup\{B n \mid n . n \in k\}$
proof -
obtain $\mathcal{B}::{ }^{\prime} a$ set set
where countable \mathcal{B}
and opn: $\wedge C . C \in \mathcal{B} \Longrightarrow$ open C
and Un: $\wedge S$. open $S \Longrightarrow \exists U . U \subseteq \mathcal{B} \wedge S=\bigcup U$
using univ_second_countable by blast
have $*$: infinite (range (λn. ball ($0::^{\prime} a$) (inverse (Suc $\left.n\right)$)))
apply (rule Infinite_Set.range_inj_infinite)
apply (simp add: inj_on_def ball_eq_ball_iff)
done
have infinite \mathcal{B}
proof

```
    assume finite \mathcal{B}
    then have finite (Union'(Pow \mathcal{B})
        by simp
    then have finite (range (\lambdan. ball (0::'a) (inverse(Suc n))))
        apply (rule rev_finite_subset)
    by (metis (no_types, lifting) PowI image_eqI image_subset_iff Un [OF open_ball])
    with * show False by simp
    qed
    obtain f :: nat => ' 'a set where \mathcal{B}= range f inj f
    by (blast intro:countable_as_injective_image [OF <countable \mathcal{B}}\langle\mathrm{ <infinite }\mathcal{B}\rangle]
    have *: \existsk.S=\bigcup{fn|n.n\ink} if open S for S
    using Un [OF that]
    apply clarify
    apply (rule_tac x=f-' U in exI)
    using \langleinj f\rangle\langle\mathcal{B}= range f\rangle apply force
    done
    show ?thesis
    apply (rule that [OF\inj f>-*])
    apply (auto simp: }\langle\mathcal{B}=\mathrm{ range f}\\mathrm{ opn)
    done
qed
proposition separable:
    fixes S :: 'a::{metric_space, second_countable_topology} set
    obtains T where countable T T\subseteqSS\subseteqclosure T
proof -
    obtain \mathcal{B :: 'a set set}
        where countable \mathcal{B}
            and {}}\not\in\mathcal{B
            and ope: }\bigwedgeC.C\in\mathcal{B}\Longrightarrow\mathrm{ openin(top_of_set S)C
            and if_ope: }\T\mathrm{ . openin(top_of_set S) T> \UU.U
        by (meson subset_second_countable)
    then obtain f}\mathrm{ where f:\C.C 隹 "fC}\in
        by (metis equalsOI)
    show ?thesis
    proof
    show countable (f '\mathcal{B})
            by (simp add: <countable \mathcal{B}\)
        show f'\mathcal{B}\subseteqS
            using ope f openin_imp_subset by blast
    show S\subseteqclosure (f'\mathcal{B})
    proof (clarsimp simp: closure_approachable)
            fix }x\mathrm{ and e::real
            assume x }\inS0<
            have openin (top_of_set S)(S\cap ball x e)
            by (simp add: openin_Int_open)
            with if_ope obtain }\mathcal{U}\mathrm{ where }\mathcal{U}:\mathcal{U}\subseteq\mathcal{B}S\cap\mathrm{ ball x e= \UU
                by meson
            show }\existsC\in\mathcal{B}.\operatorname{dist}(fC)x<
```

```
        proof (cases \mathcal{U}={})
            case True
            then show ?thesis
                using <0<e\rangle}\mathcal{U}\langlex\inS\rangle by aut
            next
            case False
            then obtain C where C\in\mathcal{U}}\mathrm{ by blast
            show ?thesis
            proof
            show dist (f C) x < e
            by (metis Int_iff Union_iff }\mathcal{U}\langleC\in\mathcal{U}\rangle\mathrm{ dist_commute f mem_ball subsetCE)
            show C\in\mathcal{B}
            using }\mathcal{U}\subseteq\mathcal{B}\rangle\langleC\in\mathcal{U}\rangle\mathrm{ by blast
            qed
        qed
    qed
    qed
qed
```


4.1.17 Diameter

```
lemma diameter_cball [simp]:
    fixes \(a\) :: ' \(a::\) euclidean_space
    shows diameter (cball ar) \(=(\) if \(r<0\) then 0 else \(2 * r)\)
proof -
    have diameter \((\) cball a \(r\) ) \(=2 * r\) if \(r \geq 0\)
    proof (rule order_antisym)
        show diameter \((\) cball a \(r) \leq 2 * r\)
        proof (rule diameter_le)
            fix \(x y\) assume \(x \in\) cball a \(r y \in\) cball a \(r\)
            then have norm \((x-a) \leq r\) norm \((a-y) \leq r\)
            by (auto simp: dist_norm norm_minus_commute)
            then have norm \((x-y) \leq r+r\)
            using norm_diff_triangle_le by blast
            then show norm \((x-y) \leq 2 * r\) by simp
        qed (simp add: that)
        have \(2 * r=\operatorname{dist}\left(a+r *_{R}(\right.\) SOME \(\left.i . i \in \operatorname{Basis})\right)\left(a-r *_{R}(\right.\) SOME \(i . i \in\)
Basis))
            apply (simp add: dist_norm)
        by (metis abs_of_nonneg mult.right_neutral norm_numeral norm_scaleR norm_some_Basis
real_norm_def scaleR_2 that)
            also have \(\ldots \leq\) diameter (cball a r)
            apply (rule diameter_bounded_bound)
            using that by (auto simp: dist_norm)
            finally show \(2 * r \leq\) diameter (cball a r).
    qed
    then show? ?thesis by simp
qed
```

```
lemma diameter_ball [simp]:
    fixes \(a\) :: ' \(a:\) ::uclidean_space
    shows diameter (ball a \(r\) ) \(=(\) if \(r<0\) then 0 else \(2 * r\) )
proof -
    have diameter (ball ar)=2*r if \(r>0\)
    by (metis bounded_ball diameter_closure closure_ball diameter_cball less_eq_real_def
linorder_not_less that)
    then show ?thesis
        by (simp add: diameter_def)
qed
lemma diameter_closed_interval \([\) simp \(]\) : diameter \(\{a . . b\}=(\) if \(b<a\) then 0 else
\(b-a)\)
proof -
    have \(\{a . . b\}=\) cball \(((a+b) / 2)((b-a) /\) 2 \()\)
        by (auto simp: dist_norm abs_if field_split_simps split: if_split_asm)
    then show ?thesis
        by \(\operatorname{simp}\)
qed
lemma diameter_open_interval [simp]: diameter \(\{a<. .<b\}=(\) if \(b<a\) then 0 else
\(b-a)\)
proof -
    have \(\{a<. .<b\}=\) ball \(((a+b) /\) 2 \()((b-a) / 2)\)
            by (auto simp: dist_norm abs_if field_split_simps split: if_split_asm)
    then show ?thesis
        by \(\operatorname{simp}\)
qed
lemma diameter_cbox:
    fixes a \(b::^{\prime} a:\) :euclidean_space
    shows \((\forall i \in\) Basis. \(a \cdot i \leq b \cdot i) \Longrightarrow\) diameter \((\) cbox a \(b)=\) dist \(a b\)
    by (force simp: diameter_def intro!: cSup_eq_maximum L2_set_mono
            simp: euclidean_dist_l2[where ' \(a={ }^{\prime} a\) ] cbox_def dist_norm)
```


4.1.18 Relating linear images to open/closed/interior/closure/connected

proposition open_surjective_linear_image:
fixes f :: 'a::real_normed_vector \Rightarrow 'b::euclidean_space
assumes open A linear f surj f
shows open (f ‘ A)
unfolding open_dist
proof clarify
fix x
assume $x \in A$
have bounded (inv f'Basis)
by (simp add: finite_imp_bounded)
with bounded_pos obtain B where $B>0$ and $B: \bigwedge x . x \in \operatorname{inv} f^{\prime} B a s i s \Longrightarrow$

```
norm \(x \leq B\)
    by metis
    obtain \(e\) where \(e>0\) and \(e: \bigwedge z\). dist \(z x<e \Longrightarrow z \in A\)
    by (metis open_dist \(\langle x \in A\rangle\langle o p e n ~ A\rangle)\)
    define \(\delta\) where \(\delta \equiv e / B / \operatorname{DIM}\left({ }^{\prime} b\right)\)
    show \(\exists e>0 . \forall y\). dist \(y(f x)<e \longrightarrow y \in f^{\prime} A\)
    proof (intro exI conjI)
        show \(\delta>0\)
            using \(\langle e>0\rangle\langle B>0\rangle\) by (simp add: \(\delta_{-}\)def field_split_simps)
        have \(y \in f^{\prime} A\) if dist \(y(f x) *(B *\) real \(D I M(' b))<e\) for \(y\)
        proof -
            define \(u\) where \(u \equiv y-f x\)
            show ?thesis
            proof (rule image_eqI)
            show \(y=f\left(x+\left(\sum i \in\right.\right.\) Basis. \(\left.\left.(u \cdot i) *_{R} \operatorname{inv} f i\right)\right)\)
            apply (simp add: linear_add linear_sum linear.scale 〈linear \(f\) 〉surj_f_inv_f
\(\langle\operatorname{surj} f\rangle\) )
            apply (simp add: euclidean_representation u_def)
            done
            have dist \(\left(x+\left(\sum i \in\right.\right.\) Basis. \((u \cdot i) *_{R}\) inv \(\left.\left.f i\right)\right) x \leq\left(\sum i \in\right.\) Basis. norm \(((u\)
- i) \(\left.*_{R} \operatorname{inv} f i\right)\) )
                by (simp add: dist_norm sum_norm_le)
            also have \(\ldots=\left(\sum i \in\right.\) Basis. \(|u \cdot i| *\) norm (inv \(\left.\left.f i\right)\right)\)
                    by \(\operatorname{simp}\)
            also have \(\ldots \leq\left(\sum i \in\right.\) Basis. \(\left.|u \cdot i|\right) * B\)
                by (simp add: B sum_distrib_right sum_mono mult_left_mono)
            also have \(\ldots \leq \operatorname{DIM}\left({ }^{\prime} b\right) * \operatorname{dist} y(f x) * B\)
                apply (rule mult_right_mono [OF sum_bounded_above])
                    using \(\langle 0<B\rangle\) by (auto simp: Basis_le_norm dist_norm u_def)
            also have \(\ldots<e\)
                by (metis mult.commute mult.left_commute that)
            finally show \(x+\left(\sum i \in\right.\) Basis. \(\left.(u \cdot i) *_{R} \operatorname{inv} f i\right) \in A\)
                by (rule e)
            qed
    qed
    then show \(\forall y\). dist \(y(f x)<\delta \longrightarrow y \in f^{\prime} A\)
            using \(\langle e>0\rangle\langle B>0\rangle\)
            by (auto simp: \(\delta_{-} d e f\) field_split_simps)
    qed
qed
corollary open_bijective_linear_image_eq:
    fixes \(f\) :: 'a::euclidean_space \(\Rightarrow\) 'b::euclidean_space
    assumes linear \(f\) bij \(f\)
        shows open \(\left(f^{\prime} A\right) \longleftrightarrow\) open \(A\)
proof
    assume \(\operatorname{open}(f\) ‘ \(A)\)
    then have \(\operatorname{open}(f-‘(f\) ' \(A))\)
        using assms by (force simp: linear_continuous_at linear_conv_bounded_linear
```

```
continuous_open_vimage)
    then show open \(A\)
        by (simp add: assms bij_is_inj inj_vimage_image_eq)
next
    assume open \(A\)
    then show \(\operatorname{open}(f\) ' \(A)\)
        by (simp add: assms bij_is_surj open_surjective_linear_image)
qed
corollary interior_bijective_linear_image:
    fixes \(f\) :: 'a::euclidean_space \(\Rightarrow\) 'b::euclidean_space
    assumes linear \(f\) bij \(f\)
    shows interior \((f\) ' \(S)=f\) ' interior \(S\) (is ?lhs \(=\) ? rhs \()\)
proof safe
    fix \(x\)
    assume \(x: x \in\) ? lhs
    then obtain \(T\) where open \(T\) and \(x \in T\) and \(T \subseteq f\) ' \(S\)
        by (metis interiorE)
    then show \(x \in\) ? rhs
    by (metis (no_types, hide_lams) assms subsetD interior_maximal open_bijective_linear_image_eq
subset_image_iff)
next
    fix \(x\)
    assume \(x: x \in\) interior \(S\)
    then show \(f x \in \operatorname{interior}(f\) ' \(S\) )
    by (meson assms imageI image_mono interiorI interior_subset open_bijective_linear_image_eq
open_interior)
qed
lemma interior_injective_linear_image:
    fixes \(f\) :: 'a::euclidean_space \(\Rightarrow\) 'a::euclidean_space
    assumes linear \(f \operatorname{inj} f\)
    shows interior \((f\) ' \(S)=f\) ' (interior \(S\) )
    by (simp add: linear_injective_imp_surjective assms bijI interior_bijective_linear_image)
lemma interior_surjective_linear_image:
    fixes \(f\) :: 'a::euclidean_space \(\Rightarrow\) ' \(a:\) :euclidean_space
    assumes linear \(f\) surj \(f\)
    shows interior \((f\) ' \(S)=f\) ' (interior \(S\) )
    by (simp add: assms interior_injective_linear_image linear_surjective_imp_injective)
lemma interior_negations:
    fixes \(S\) :: 'a::euclidean_space set
    shows interior (uminus ' \(S\) ) \(=\) image uminus (interior \(S\) )
    by (simp add: bij_uminus interior_bijective_linear_image linear_uminus)
lemma connected_linear_image:
    fixes \(f\) :: ' \(a::\) euclidean_space \(\Rightarrow\) ' \(b::\) real_normed_vector
    assumes linear \(f\) and connected \(s\)
```

shows connected (f ' s)
using connected_continuous_image assms linear_continuous_on linear_conv_bounded_linear by blast

4.1.19 "Isometry" (up to constant bounds) of Injective Linear Map

proposition injective_imp_isometric:
fixes f :: 'a::euclidean_space \Rightarrow ' $b::$ euclidean_space
assumes s : closed s subspace s
and f : bounded_linear $f \forall x \in s . f x=0 \longrightarrow x=0$
shows $\exists e>0 . \forall x \in s$. norm $(f x) \geq e *$ norm x
proof (cases $s \subseteq\left\{0::^{\prime} a\right\}$)
case True
have norm $x \leq \operatorname{norm}(f x)$ if $x \in s$ for x
proof -
from True that have $x=0$ by auto
then show ?thesis by simp
qed
then show ?thesis
by (auto intro!: exI[where $x=1]$)
next
case False
interpret f : bounded_linear f by fact
from False obtain a where $a: a \neq 0 a \in s$
by auto
from False have $s \neq\{ \}$
by auto
let ? $S=\{f x \mid x . x \in s \wedge$ norm $x=$ norm $a\}$
let ? $S^{\prime}=\left\{x::^{\prime} a . x \in s \wedge\right.$ norm $x=$ norm $\left.a\right\}$
let ? $S^{\prime \prime}=\left\{x::^{\prime} a\right.$. norm $x=$ norm $\left.a\right\}$
have $? S^{\prime \prime}=$ frontier $($ cball $0($ norm a) $)$
by (simp add: sphere_def dist_norm)
then have compact? $S^{\prime \prime}$ by (metis compact_cball compact_frontier)
moreover have ? $S^{\prime}=s \cap$? $S^{\prime \prime}$ by auto
ultimately have compact? S^{\prime}
using closed_Int_compact[of s ? $\left.S^{\prime \prime}\right]$ using $s(1)$ by auto
moreover have $*: f$ ' ? $S^{\prime}=$? S by auto
ultimately have compact ? S
using compact_continuous_image[OF linear_continuous_on $[$ OF $f(1)]$, of ? S '] by
auto
then have closed ?S
using compact_imp_closed by auto
moreover from a have ? $S \neq\{ \}$ by auto
ultimately obtain b^{\prime} where $b^{\prime} \in ? S \forall y \in ? S$. norm $b^{\prime} \leq$ norm y
using distance_attains_inf[of ?S 0] unfolding dist_0_norm by auto
then obtain b where $b \in s$
and $b a$: norm $b=$ norm a
and $b: \forall x \in\{x \in s$. norm $x=$ norm $a\}$. norm $(f b) \leq \operatorname{norm}(f x)$ unfolding $*$ [symmetric] unfolding image_iff by auto

```
    let \(? e=\operatorname{norm}(f b) /\) norm \(b\)
    have norm \(b>0\)
    using \(b a\) and \(a\) and norm_ge_zero by auto
    moreover have norm \((f b)>0\)
    using \(f(2)[T H E N \quad b s p e c[\) where \(x=b]\), OF \(\langle b \in s\rangle]\)
    using \(\langle\) norm \(b>0\rangle\) by simp
    ultimately have \(0<\operatorname{norm}(f b) /\) norm \(b\) by simp
    moreover
    have norm \((f b) /\) norm \(b *\) norm \(x \leq \operatorname{norm}(f x)\) if \(x \in s\) for \(x\)
    proof (cases \(x=0\) )
    case True
    then show norm \((f b) /\) norm \(b *\) norm \(x \leq \operatorname{norm}(f x)\)
        by auto
    next
    case False
    with \(\langle a \neq 0\rangle\) have \(*: 0<\) norm a / norm \(x\)
        unfolding zero_less_norm_iff[symmetric] by simp
    have \(\forall x \in s . c *_{R} x \in s\) for \(c\)
        using \(s\) [unfolded subspace_def] by simp
    with \(\langle x \in s\rangle\langle x \neq 0\rangle\) have (norm a \(/\) norm \(x) *_{R} x \in\{x \in\) s. norm \(x=\) norm
\(a\}\)
            by \(\operatorname{simp}\)
    with \(\langle x \neq 0\rangle\langle a \neq 0\rangle\) show norm \((f b) /\) norm \(b *\) norm \(x \leq \operatorname{norm}(f x)\)
        using \(b\left[T H E N\right.\) bspec [where \(x=(\) norm a \(/\) norm \(\left.\left.x) *_{R} x\right]\right]\)
        unfolding \(f\).scale \(R\) and \(b a\)
        by (auto simp: mult.commute pos_le_divide_eq pos_divide_le_eq)
    qed
    ultimately show ?thesis by auto
qed
proposition closed_injective_image_subspace:
    fixes \(f\) :: 'a::euclidean_space \(\Rightarrow\) ' \(b::\) euclidean_space
    assumes subspace s bounded_linear \(f \forall x \in s . f x=0 \longrightarrow x=0\) closed \(s\)
    shows \(\operatorname{closed}(f\) ' \(s)\)
proof -
    obtain \(e\) where \(e>0\) and \(e: \forall x \in s . e *\) norm \(x \leq \operatorname{norm}(f x)\)
        using injective_imp_isometric \([O F \operatorname{assms}(4,1,2,3)]\) by auto
    show ?thesis
        using complete_isometric_image \([\) OF \(\langle e\rangle 0\rangle \operatorname{assms}(1,2) e]\) and \(\operatorname{assms}(4)\)
        unfolding complete_eq_closed[symmetric] by auto
qed
```

lemma closure_bounded_linear_image_subset:
assumes f : bounded_linear f
shows f 'closure $S \subseteq$ closure $(f$ ' S)
using linear_continuous_on [OF f] closed_closure closure_subset by (rule image_closure_subset)
lemma closure_linear_image_subset:
fixes $f::$ ' $m::$ euclidean_space \Rightarrow ' $n:$:real_normed_vector
assumes linear f
shows f ' closure $S) \subseteq$ closure $(f$ ' S)
using assms unfolding linear_conv_bounded_linear
by (rule closure_bounded_linear_image_subset)
lemma closed_injective_linear_image:
fixes f :: 'a::euclidean_space \Rightarrow ' $b::$ euclidean_space
assumes S : closed S and f : linear $f \operatorname{inj} f$
shows closed (f ' S)
proof -
obtain g where g : linear $g g \circ f=i d$
using linear_injective_left_inverse $[O F f]$ by blast
then have confg: continuous_on (range f) g using linear_continuous_on linear_conv_bounded_linear by blast
have $[$ simp $]$: g ' f ' $S=S$
using g by (simp add: image_comp)
have cgf: closed (g ' f ' S)
by (simp add: $\langle g \circ f=i d\rangle S$ image_comp)
have [simp]: (range $f \cap g-' S)=f ' S$
using g unfolding o_def id_def image_def by auto metis+
show ?thesis
proof (rule closedin_closed_trans [of range f])
show closedin (top_of_set (range f)) (f ' S)
using continuous_closedin_preimage $[O F$ confg cgf] by simp
show closed (range f)
apply (rule closed_injective_image_subspace)
using f apply (auto simp: linear_linear linear_injective_0)
done
qed
qed
lemma closed_injective_linear_image_eq:
fixes f :: 'a::euclidean_space \Rightarrow 'b::euclidean_space
assumes f : linear $f \operatorname{inj} f$
shows $($ closed $($ image $f s) \longleftrightarrow$ closed s)
by (metis closed_injective_linear_image closure_eq closure_linear_image_subset clo-
sure_subset_eq $f(1) f(2)$ inj_image_subset_iff)
lemma closure_injective_linear_image:
fixes f :: 'a::euclidean_space \Rightarrow ' $b::$ euclidean_space
shows \llbracket linear $f ; \operatorname{inj} f \rrbracket \Longrightarrow f$ ' $($ closure $S)=\operatorname{closure~}(f$ ' $S)$
apply (rule subset_antisym)
apply (simp add: closure_linear_image_subset)
by (simp add: closure_minimal closed_injective_linear_image closure_subset im-
age_mono)
lemma closure_bounded_linear_image:
fixes $f::$ 'a::euclidean_space \Rightarrow 'b::euclidean_space
shows \llbracket linear f; bounded $S \rrbracket \Longrightarrow f^{\prime}($ closure $S)=\operatorname{closure~}(f$ ' $S)$
apply (rule subset_antisym, simp add: closure_linear_image_subset)
apply (rule closure_minimal, simp add: closure_subset image_mono)
by (meson bounded_closure closed_closure compact_continuous_image compact_eq_bounded_closed
linear_continuous_on linear_conv_bounded_linear)
lemma closure_scaleR:
fixes S :: ' $a:$:real_normed_vector set
shows $\left(\left(*_{R}\right) c\right)^{\prime}($ closure $S)=$ closure $\left(\left(\left(*_{R}\right) c\right)^{\prime} S\right)$
proof
show $\left(\left(*_{R}\right) c\right)$ ' $($ closure $S) \subseteq$ closure $\left(\left(\left(*_{R}\right) c\right)\right.$ 'S $)$
using bounded_linear_scaleR_right
by (rule closure_bounded_linear_image_subset)
show closure $\left(\left(\left(*_{R}\right) c\right)^{\prime} S\right) \subseteq\left(\left(*_{R}\right) c\right)$ ' $($ closure $S)$
by (intro closure_minimal image_mono closure_subset closed_scaling closed_closure)
qed

4.1.20 Some properties of a canonical subspace

lemma closed_substandard: closed $\left\{x::{ }^{\prime} a::\right.$ euclidean_space. $\forall i \in$ Basis. $P i \longrightarrow x \bullet i$ $=0\}$
(is closed?A)
proof -
let $? D=\{i \in$ Basis. $P i\}$
have closed ($\bigcap i \in ? D .\left\{x::^{\prime} a . x \cdot i=0\right\}$)
by (simp add: closed_INT closed_Collect_eq continuous_on_inner)
also have $\left(\bigcap i \in ? D .\left\{x::^{\prime} a . x \cdot i=0\right\}\right)=? A$
by auto
finally show closed? A.
qed
lemma closed_subspace:
fixes $s::$ 'a::euclidean_space set
assumes subspace s
shows closed s
proof -
have $\operatorname{dim} s \leq \operatorname{card}$ (Basis :: 'a set)
using dim_subset_UNIV by auto
with ex_card[OF this] obtain $d::{ }^{\prime}$ a set where t :card $d=\operatorname{dim} s$ and $d: d \subseteq$
Basis
by auto
let ?t $=\left\{x::^{\prime} a . \forall i \in\right.$ Basis. $\left.i \notin d \longrightarrow x \bullet i=0\right\}$
have $\exists f$. linear $f \wedge f^{\prime}\left\{x::^{\prime} a . \forall i \in\right.$ Basis. $\left.i \notin d \longrightarrow x \cdot i=0\right\}=s \wedge$
inj_on $f\left\{x::^{\prime} a . \forall i \in\right.$ Basis. $\left.i \notin d \longrightarrow x \cdot i=0\right\}$
using dim_substandard[of d] $t d$ assms

```
    by (intro subspace_isomorphism[OF subspace_substandard[of \lambdai. i\not\ind]]) (auto
simp: inner_Basis)
    then obtain f}\mathrm{ where f
        linear f
        f'{x.}\foralli\in\mathrm{ Basis. i}\not=d\longrightarrowx 识 0}=
        inj_on f {x.}\foralli\in\mathrm{ Basis. i}\not\ind\longrightarrowx •i=0
    by blast
    interpret f}\mathrm{ : bounded_linear f
        using f by (simp add: linear_conv_bounded_linear)
    have }x\in
    using f.zero d f(3)[THEN inj_onD, of x 0] by auto
    moreover have closed ?t by (rule closed_substandard)
    moreover have subspace ?t by (rule subspace_substandard)
    ultimately show ?thesis
    using closed_injective_image_subspace[of ?t f]
    unfolding f(2) using f(1) unfolding linear_conv_bounded_linear by auto
qed
lemma complete_subspace: subspace s complete s
    for s :: 'a::euclidean_space set
    using complete_eq_closed closed_subspace by auto
lemma closed_span [iff]: closed (span s)
    for s :: 'a::euclidean_space set
    by (simp add: closed_subspace)
lemma dim_closure [simp]: dim (closure s)=\operatorname{dim}s(\mathbf{is ?dc =?d)})
    for s :: 'a::euclidean_space set
proof -
    have ?dc \leq ?d
        using closure_minimal[OF span_superset, of s]
        using closed_subspace[OF subspace_span, of s]
        using dim_subset[of closure s span s]
        by simp
    then show ?thesis
        using dim_subset[OF closure_subset, of s]
        by simp
qed
```


4.1.21 Set Distance

```
lemma setdist_compact_closed:
fixes \(A\) :: 'a::heine_borel set
assumes \(A\) : compact \(A\) and \(B\) : closed \(B\)
and \(A \neq\{ \} B \neq\{ \}\)
shows \(\exists x \in A . \exists y \in B\). dist \(x y=\) setdist \(A B\)
proof -
obtain \(x\) where \(x \in A\) setdist \(A B=\) infdist \(x B\)
by (metis \(A\) assms(3) setdist_attains_inf setdist_sym)
```

```
    moreover
    obtain }y\mathrm{ where }y\inB\mathrm{ infdist }xB=\operatorname{dist}x
        using B\langleB\not={}` infdist_attains_inf by blast
    ultimately show ?thesis
    using}\langlex\inA\rangle\langley\inB\rangle\mathrm{ by auto
qed
lemma setdist_closed_compact:
    fixes S :: 'a::heine_borel set
    assumes S:closed S and T: compact T
        and}S\not={}T\not={
        shows }\existsx\inS.\existsy\inT. dist x y = setdist S 
    using setdist_compact_closed [OF T S〈T\not={}\rangle\langleS\not={}\rangle]
    by (metis dist_commute setdist_sym)
lemma setdist_eq_0_compact_closed:
    assumes S: compact S and T: closed T
        shows setdist }ST=0\longleftrightarrowS={}\veeT={}\veeS\capT\not={
proof (cases S={}\veeT={})
    case True
    then show ?thesis
        by force
next
    case False
    then show ?thesis
        by (metis S T disjoint_iff_not_equal in_closed_iff_infdist_zero setdist_attains_inf
setdist_eq_0I setdist_sym)
qed
corollary setdist_gt_0_compact_closed:
    assumes S:compact S and T: closed T
        shows setdist S T>0\longleftrightarrow(S\not={}\wedgeT\not={}\wedgeS\capT={})
    using setdist_pos_le [of S T] setdist_eq_0_compact_closed [OF assms] by linarith
lemma setdist_eq_0_closed_compact:
    assumes S:closed S and T: compact T
        shows setdist ST=0\longleftrightarrowS={}\veeT={}\veeS\capT\not={}
    using setdist_eq_0_compact_closed [OF T S]
    by (metis Int_commute setdist_sym)
lemma setdist_eq_0_bounded:
    fixes S :: 'a::heine_borel set
    assumes bounded S \vee bounded T
    shows setdist S T=0\longleftrightarrowS={}\vee T={}\vee closure S\cap closure T\not={}
proof (cases S={}\veeT={})
    case False
    then show ?thesis
        using setdist_eq_0_compact_closed [of closure S closure T]
        setdist_eq_0_closed_compact [of closure S closure T] assms
```

```
    by (force simp: bounded_closure compact_eq_bounded_closed)
qed force
lemma setdist_eq_0_sing_1:
    setdist {x} S=0\longleftrightarrowS={}\vee x closure S
    by (metis in_closure_iff_infdist_zero infdist_def infdist_eq_setdist)
lemma setdist_eq_0_sing_2:
    setdist }S{x}=0\longleftrightarrowS={}\veex\in\mathrm{ closure }
    by (metis setdist_eq_0_sing_1 setdist_sym)
lemma setdist_neq_0_sing_1:
    \mathrm{ setdist }{x} S=a;a\not=0\rrbracket\LongrightarrowS\not={}\wedgex\not\in closure S
    by (metis setdist_closure_2 setdist_empty2 setdist_eq_0I singletonI)
lemma setdist_neq_0_sing_2:
    \llbracketsetdist S {x}=a;a\not=0\rrbracket\LongrightarrowS\not={}\wedgex\not\inclosure S
    by (simp add: setdist_neq_0_sing_1 setdist_sym)
lemma setdist_sing_in_set:
    x S \Longrightarrow setdist {x} S=0
    by (simp add: setdist_eq_0I)
lemma setdist_eq_0_closed:
    closed S\Longrightarrow(setdist {x} S=0\longleftrightarrowS={}\vee 
by (simp add: setdist_eq_0_sing_1)
lemma setdist_eq_0_closedin:
    shows \llbracketclosedin (top_of_set U)S;x\inU\rrbracket
        \Longrightarrow(setdist {x} S=0\longleftrightarrowS={}\vee x 仿)
    by (auto simp: closedin_limpt setdist_eq_0_sing_1 closure_def)
lemma setdist_gt_0_closedin:
    shows \llbracketclosedin (top_of_set U) S;x\inU;S\not={};x\not\inS\rrbracket
        setdist {x} S>0
    using less_eq_real_def setdist_eq_0_closedin by fastforce
no_notation
    eucl_less(infix <e 50)
end
```


4.2 Convex Sets and Functions on (Normed) Euclidean Spaces

theory Convex_Euclidean_Space
imports
Convex

4.2.1 Topological Properties of Convex Sets and Functions

```
lemma aff_dim_cball:
    fixes \(a::\) ' \(n::\) euclidean_space
    assumes \(e>0\)
    shows aff_dim (cball a e) \(=\operatorname{int}\left(D I M\left({ }^{\prime} n\right)\right)\)
proof -
    have \((\lambda x . a+x)\) ' \((\) cball \(0 e) \subseteq\) cball a e
        unfolding cball_def dist_norm by auto
    then have aff_dim (cball (0 :: 'n::euclidean_space) e) \(\leq\) aff_dim \((\) cball a e)
        using aff_dim_translation_eq[of a cball 0 e]
                aff_dim_subset[of (+) a'cball 0 e cball a e]
        by auto
    moreover have aff_dim (cball ( \(0::\) ' \(n::\) euclidean_space) \(e)=\operatorname{int}(D I M(' n))\)
        using hull_inc[of ( 0 :: ' \(n::\) euclidean_space) cball 0 e]
            centre_in_cball[of (0 :: ' \(n::\) euclidean_space)] assms
        by (simp add: dim_cball[of e] aff_dim_zero[of cball 0 e \(]\) )
    ultimately show ?thesis
        using aff_dim_le_DIM [of cball a e] by auto
qed
lemma aff_dim_open:
    fixes \(S::\) ' \(n::\) euclidean_space set
    assumes open \(S\)
        and \(S \neq\{ \}\)
    shows aff_dim \(S=\operatorname{int}(D I M(' n))\)
proof -
    obtain \(x\) where \(x \in S\)
        using assms by auto
    then obtain \(e\) where \(e: e>0\) cball \(x e \subseteq S\)
        using open_contains_cball \([\) of \(S]\) assms by auto
    then have aff_dim (cball xe) \(\leq\) aff_dim \(S\)
        using aff_dim_subset by auto
    with \(e\) show ?thesis
        using aff_dim_cball \([\) of e x] aff_dim_le_DIM \([\) of \(S]\) by auto
qed
lemma low_dim_interior:
    fixes \(S\) :: ' \(n::\) euclidean_space set
    assumes \(\neg\) aff_dim \(S=\operatorname{int}(D I M(' n))\)
    shows interior \(S=\{ \}\)
proof -
    have aff_dim(interior \(S) \leq\) aff_dim \(S\)
        using interior_subset aff_dim_subset [of interior S S] by auto
    then show?thesis
        using aff_dim_open [of interior S] aff_dim_le_DIM [of S] assms by auto
```

qed
corollary empty_interior_lowdim:
fixes S :: ' $n::$ euclidean_space set
shows $\operatorname{dim} S<D I M(' n) \Longrightarrow$ interior $S=\{ \}$
by (metis low_dim_interior affine_hull_UNIV dim_affine_hull less_not_refl dim_UNIV)
corollary aff_dim_nonempty_interior:
fixes S :: 'a::euclidean_space set
shows interior $S \neq\{ \} \Longrightarrow$ aff_dim $S=\operatorname{DIM}\left({ }^{\prime} a\right)$
by (metis low_dim_interior)

4.2.2 Relative interior of a set

definition rel_interior $S=$
$\{x . \exists T$. openin (top_of_set (affine hull S)) $T \wedge x \in T \wedge T \subseteq S\}$
lemma rel_interior_mono:
$\llbracket S \subseteq T$; affine hull $S=$ affine hull $T \rrbracket$
$\Longrightarrow($ rel_interior $S) \subseteq($ rel_interior $T)$
by (auto simp: rel_interior_def)
lemma rel_interior_maximal:
$\llbracket T \subseteq S$; openin $($ top_of_set $($ affine hull $S)) T \rrbracket \Longrightarrow T \subseteq($ rel_interior $S)$
by (auto simp: rel_interior_def)
lemma rel_interior: rel_interior $S=\{x \in S . \exists T$. open $T \wedge x \in T \wedge T \cap$ affine hull $S \subseteq S\}$

$$
(\overline{\mathrm{is}} \text { ? lhs }=\text { ? } r h s)
$$

proof
show ?lhs \subseteq ?rhs
by (force simp add: rel_interior_def openin_open)
$\{\operatorname{fix} x T$
assume $*: x \in S$ open $T x \in T T \cap$ affine hull $S \subseteq S$
then have $* *: x \in T \cap$ affine hull S
using hull_inc by auto
with $*$ have $\exists T b .(\exists T a$. open $T a \wedge T b=$ affine hull $S \cap T a) \wedge x \in T b \wedge T b$ $\subseteq S$
by (rule_tac $x=T \cap($ affine hull $S)$ in exI) auto
\}
then show ? $\mathrm{rhs} \subseteq$? $\mathrm{lh} s$
by (force simp add: rel_interior_def openin_open)
qed
lemma mem_rel_interior: $x \in$ rel_interior $S \longleftrightarrow(\exists T$. open $T \wedge x \in T \cap S \wedge T$ \cap affine hull $S \subseteq S$)
by (auto simp: rel_interior)
lemma mem_rel_interior_ball:

```
    x\in rel_interior S \longleftrightarrowx\inS\wedge(\existse.e>0\wedge ball x e\cap affine hull S\subseteqS)
    (is ?lhs = ?rhs)
proof
    assume ?rhs then show ?lhs
    by (simp add: rel_interior) (meson Elementary_Metric_Spaces.open_ball centre_in_ball)
qed (force simp: rel_interior open_contains_ball)
lemma rel_interior_ball:
    rel_interior S ={x\inS.\existse.e>0^ball x e\capaffine hull S\subseteqS}
    using mem_rel_interior_ball [of _ S] by auto
lemma mem_rel_interior_cball:
    x\in rel_interior }S\longleftrightarrowx\inS\wedge(\existse.e>0\wedge cball x e\cap affine hull S\subseteqS
    (is ?lhs = ?rhs)
proof
    assume ?rhs then obtain e where x GSe>0 cball x e \cap affine hull S\subseteqS
        by (auto simp: rel_interior)
    then have ball x e\cap affine hull S\subseteqS
        by auto
    then show ?lhs
        using <0 < e\rangle\langlex \inS\rangle rel_interior_ball by auto
qed (force simp: rel_interior open_contains_cball)
lemma rel_interior_cball:
    rel_interior S = {x\inS.\existse.e>0^ cball x e\cap affine hull S\subseteqS}
    using mem_rel_interior_cball [of_S] by auto
lemma rel_interior_empty [simp]: rel_interior {}={}
    by (auto simp: rel_interior_def)
lemma affine_hull_sing [simp]: affine hull {a :: 'n::euclidean_space } ={a}
    by (metis affine_hull_eq affine_sing)
lemma rel_interior_sing [simp]:
    fixes a :: ' n::euclidean_space shows rel_interior {a} ={a}
proof -
    have }\exists\mathrm{ x::real. 0<x
        using zero_less_one by blast
    then show ?thesis
        by (auto simp: rel_interior_ball)
qed
lemma subset_rel_interior:
    fixes ST :: 'n::euclidean_space set
    assumes S\subseteqT
        and affine hull S=affine hull T
    shows rel_interior S\subseteq rel_interior T
    using assms by (auto simp: rel_interior_def)
```

lemma rel_interior_subset: rel_interior $S \subseteq S$
by (auto simp: rel_interior_def)
lemma rel_interior_subset_closure: rel_interior $S \subseteq$ closure S using rel_interior_subset by (auto simp: closure_def)
lemma interior_subset_rel_interior: interior $S \subseteq$ rel_interior S
by (auto simp: rel_interior interior_def)
lemma interior_rel_interior:
fixes $S:$: ' $n::$ euclidean_space set
assumes aff_dim $S=\operatorname{int}\left(\operatorname{DIM}\left({ }^{\prime} n\right)\right)$
shows rel_interior $S=$ interior S
proof -
have affine hull $S=U N I V$
using assms affine_hull_UNIV[of S] by auto
then show?thesis
unfolding rel_interior interior_def by auto
qed
lemma rel_interior_interior:
fixes S :: ' $n::$ euclidean_space set
assumes affine hull $S=U N I V$
shows rel_interior $S=$ interior S
using assms unfolding rel_interior interior_def by auto
lemma rel_interior_open:
fixes $S:$:' $n::$ euclidean_space set
assumes open S
shows rel_interior $S=S$
by (metis assms interior_eq interior_subset_rel_interior rel_interior_subset set_eq_subset)
lemma interior_rel_interior_gen:
fixes $S::{ }^{\prime} n::$ euclidean_space set
shows interior $S=($ if aff_dim $S=\operatorname{int}(\operatorname{DIM}(' n))$ then rel_interior S else $\{ \})$
by (metis interior_rel_interior low_dim_interior)
lemma rel_interior_nonempty_interior:
fixes S :: ' $n::$ euclidean_space set
shows interior $S \neq\{ \} \Longrightarrow$ rel_interior $S=$ interior S
by (metis interior_rel_interior_gen)
lemma affine_hull_nonempty_interior:
fixes $S::$ ' $n::$ euclidean_space set
shows interior $S \neq\{ \} \Longrightarrow$ affine hull $S=U N I V$
by (metis affine_hull_UNIV interior_rel_interior_gen)
lemma rel_interior_affine_hull [simp]:
fixes $S::$ ' $n::$ euclidean_space set

```
    shows rel_interior (affine hull \(S\) ) \(=\) affine hull \(S\)
proof -
    have *: rel_interior (affine hull \(S\) ) \(\subseteq\) affine hull \(S\)
        using rel_interior_subset by auto
    \{
        fix \(x\)
        assume \(x: x \in\) affine hull \(S\)
        define \(e\) :: real where \(e=1\)
        then have \(e>0\) ball \(x e \cap\) affine hull (affine hull \(S\) ) \(\subseteq\) affine hull \(S\)
            using hull_hull \([\) of _ \(S\) ] by auto
        then have \(x \in\) rel_interior (affine hull \(S\) )
        using \(x\) rel_interior_ball[of affine hull \(S\) ] by auto
    \}
    then show ?thesis using * by auto
qed
lemma rel_interior_UNIV [simp]: rel_interior (UNIV :: (' \(n::\) euclidean_space) set)
\(=\) UNIV
    by (metis open_UNIV rel_interior_open)
lemma rel_interior_convex_shrink:
    fixes \(S\) :: 'a::euclidean_space set
    assumes convex \(S\)
        and \(c \in\) rel_interior \(S\)
        and \(x \in S\)
        and \(0<e\)
        and \(e \leq 1\)
    shows \(x-e *_{R}(x-c) \in\) rel_interior \(S\)
proof -
    obtain \(d\) where \(d>0\) and \(d:\) ball c \(d \cap\) affine hull \(S \subseteq S\)
        using assms(2) unfolding mem_rel_interior_ball by auto
    \{
        fix \(y\)
            assume as: dist \(\left(x-e *_{R}(x-c)\right) y<e * d y \in\) affine hull \(S\)
            have \(*: y=(1-(1-e)) *_{R}\left((1 / e) *_{R} y-((1-e) / e) *_{R} x\right)+(1-\)
e) \(*_{R} x\)
                using \(\langle e>0\rangle\) by (auto simp: scaleR_left_diff_distrib scaleR_right_diff_distrib)
            have \(x \in\) affine hull \(S\)
                using assms hull_subset \([\) of \(S\) ] by auto
            moreover have \(1 / e+-((1-e) / e)=1\)
                using \(\langle e>0\rangle\) left_diff_distrib[of \(1(1-e) 1 / e]\) by auto
            ultimately have \(*^{*}:(1 / e) *_{R} y-((1-e) / e) *_{R} x \in\) affine hull \(S\)
                using as affine_affine_hull[of \(S\) ] mem_affine[of affine hull \(S\) y \(x(1 / e)-((1\)
\(-e) / e)]\)
            by (simp add: algebra_simps)
    have \(c-\left((1 / e) *_{R} y-((1-e) / e) *_{R} x\right)=(1 / e) *_{R}\left(e *_{R} c-y+\right.\)
\(\left.(1-e) *_{R} x\right)\)
        using \(\langle e>0\rangle\)
        by (auto simp: euclidean_eq_iff \(\left[\mathbf{w h e r e}{ }^{\prime} a={ }^{\prime} a\right]\) field_simps inner_simps)
```

```
    then have dist \(c\left((1 / e) *_{R} y-((1-e) / e) *_{R} x\right)=|1 / e| * \operatorname{norm}\left(e *_{R}\right.\)
\(\left.c-y+(1-e) *_{R} x\right)\)
    unfolding dist_norm norm_scaleR[symmetric] by auto
    also have \(\ldots=|1 / e| * \operatorname{norm}\left(x-e *_{R}(x-c)-y\right)\)
        by (auto intro!:arg_cong[where \(f=\) norm \(]\) simp add: algebra_simps)
    also have \(\ldots<d\)
        using as[unfolded dist_norm] and \(\langle e>0\rangle\)
        by (auto simp:pos_divide_less_eq[OF \(\langle e>0\rangle]\) mult.commute)
    finally have \((1 / e) *_{R} y-((1-e) / e) *_{R} x \in S\)
        using \(* * d\) by auto
    then have \(y \in S\)
        using * convexD \([O F\) 〈convex \(S\rangle\) ] assms (3-5)
        by (metis diff_add_cancel diff_ge_0_iff_ge le_add_same_cancel1 less_eq_real_def)
    \}
    then have ball \(\left(x-e *_{R}(x-c)\right)(e * d) \cap\) affine hull \(S \subseteq S\)
        by auto
    moreover have \(e * d>0\)
    using \(\langle e>0\rangle\langle d>0\rangle\) by simp
    moreover have \(c: c \in S\)
    using assms rel_interior_subset by auto
    moreover from \(c\) have \(x-e *_{R}(x-c) \in S\)
    using convexD_alt[of Sxce] assms
    by (metis diff_add_eq diff_diff_eq2 less_eq_real_def scaleR_diff_left scaleR_one
scale_right_diff_distrib)
    ultimately show ?thesis
    using mem_rel_interior_ball[ \(\left.0 f x-e *_{R}(x-c) S\right]\langle e>0\rangle\) by auto
qed
lemma interior_real_atLeast [simp]:
    fixes \(a\) :: real
    shows interior \(\{a .\}=.\{a<.\).
proof -
    \{
        fix \(y\)
        have ball \(y(y-a) \subseteq\{a .\).
            by (auto simp: dist_norm)
    moreover assume \(a<y\)
    ultimately have \(y \in\) interior \(\{a .\).
        by (force simp add: mem_interior)
    \}
    moreover
    \{
        fix \(y\)
    assume \(y \in\) interior \(\{a .\).
    then obtain \(e\) where \(e: e>0\) cball \(y e \subseteq\{a .\).
        using mem_interior_cball[of \(y\{a .\}\).\(] by auto\)
    moreover from \(e\) have \(y-e \in\) cball \(y e\)
        by (auto simp: cball_def dist_norm)
    ultimately have \(a \leq y-e\) by blast
```

```
        then have a<y using e by auto
    }
    ultimately show ?thesis by auto
qed
lemma continuous_ge_on_Ioo:
    assumes continuous_on {c..d} g\x. x \in{c<..<d}\Longrightarrowg m\geqac<d x <
{c..d}
    shows g(x::real)\geq(a::real)
proof-
    from assms(3) have {c..d} = closure {c<..<d} by (rule closure_greaterThanLessThan[symmetric])
    also from assms(2) have {c<..<d}\subseteq(g-'{a..}\cap{c..d}) by auto
    hence closure {c<..<d}\subseteq closure (g-'{a..}\cap{c..d}) by (rule closure_mono)
    also from assms(1) have closed (g-'{a..}\cap{c..d})
        by (auto simp: continuous_on_closed_vimage)
    hence closure (g-'{a..}\cap{c..d})=g-'{a..}\cap{c..d} by simp
    finally show ?thesis using <x \in{c..d}\rangle by auto
qed
lemma interior_real_atMost [simp]:
    fixes a :: real
    shows interior {..a}={..<a}
proof -
    {
        fix y
        have ball y (a-y)\subseteq{..a}
            by (auto simp: dist_norm)
        moreover assume a>y
        ultimately have }y\in\mathrm{ interior {..a}
            by (force simp add: mem_interior)
    }
    moreover
    {
        fix y
        assume y f interior {...a}
        then obtain e where e:e>0 cball y e\subseteq{..a}
            using mem_interior_cball[of y {..a}] by auto
        moreover from e have }y+e\in\mathrm{ cball y e
            by (auto simp: cball_def dist_norm)
        ultimately have }a\geqy+e\mathrm{ by auto
        then have a>y using e by auto
    }
    ultimately show ?thesis by auto
qed
lemma interior_atLeastAtMost_real [simp]: interior {a..b} ={a<..<b :: real}
proof-
    have {a..b} = {a..} \cap{..b} by auto
    also have interior ... ={a<..}\cap{..<b}
```

```
        by (simp)
    also have ... ={a<..<b} by auto
    finally show ?thesis.
qed
lemma interior_atLeastLessThan [simp]:
    fixes a::real shows interior {a..<b}={a<..<b}
    by (metis atLeastLessThan_def greaterThanLessThan_def interior_atLeastAtMost_real
interior_Int interior_interior interior_real_atLeast)
lemma interior_lessThanAtMost [simp]:
    fixes a::real shows interior {a<..b} = {a<..<b}
    by (metis atLeastAtMost_def greaterThanAtMost_def interior_atLeastAtMost_real
interior_Int
            interior_interior interior_real_atLeast)
lemma interior_greaterThanLessThan_real [simp]: interior {a<..<b} ={a<..<b
:: real}
    by (metis interior_atLeastAtMost_real interior_interior)
lemma frontier_real_atMost [simp]:
    fixes a :: real
    shows frontier {..a}={a}
    unfolding frontier_def by auto
lemma frontier_real_atLeast [simp]: frontier {a..} = {a::real}
    by (auto simp: frontier_def)
lemma frontier_real_greaterThan [simp]: frontier {a<..} ={a::real}
    by (auto simp: interior_open frontier_def)
lemma frontier_real_lessThan [simp]: frontier {..<a} ={a::real}
    by (auto simp: interior_open frontier_def)
lemma rel_interior_real_box [simp]:
    fixes a b :: real
    assumes a<b
    shows rel_interior {a.. b} ={a<..<b}
proof -
    have box a b}\not={
        using assms
        unfolding set_eq_iff
        by (auto intro!: exI[of - (a+b) / 2] simp: box_def)
    then show ?thesis
        using interior_rel_interior_gen[of cbox a b, symmetric]
        by (simp split: if_split_asm del: box_real add: box_real[symmetric])
qed
lemma rel_interior_real_semiline [simp]:
```

```
    fixes \(a\) :: real
    shows rel_interior \(\{a .\}=.\{a<.\).
proof -
    have \(*:\{a<.\} \neq.\{ \}\)
        unfolding set_eq_iff by (auto intro!: exI[of -a + 1])
    then show ?thesis using interior_real_atLeast interior_rel_interior_gen[of \{a..\}]
        by (auto split: if_split_asm)
qed
```


Relative open sets

definition rel_open $S \longleftrightarrow$ rel_interior $S=S$
lemma rel_open: rel_open $S \longleftrightarrow$ openin (top_of_set (affine hull S)) S (is ?lhs =
?rhs)
proof
assume ?lhs
then show ?rhs
unfolding rel_open_def rel_interior_def
using openin_subopen [of top_of_set (affine hull S) S] by auto
qed (auto simp: rel_open_def rel_interior_def)
lemma openin_rel_interior: openin (top_of_set (affine hull S)) (rel_interior S)
using openin_subopen by (fastforce simp add: rel_interior_def)
lemma openin_set_rel_interior:
openin (top_of_set S) (rel_interior S)
by (rule openin_subset_trans [OF openin_rel_interior rel_interior_subset hull_subset])
lemma affine_rel_open:
fixes $S:$: ' $n::$ euclidean_space set
assumes affine S
shows rel_open S
unfolding rel_open_def
using assms rel_interior_affine_hull[of S] affine_hull_eq[of S]
by metis
lemma affine_closed:
fixes $S:$: ' $n::$ euclidean_space set
assumes affine S
shows closed S
proof -
\{
assume $S \neq\{ \}$
then obtain L where L : subspace L affine_parallel $S L$
using assms affine_parallel_subspace $[$ of $S]$ by auto
then obtain a where $a: S=\left((+) a^{\prime} L\right)$
using affine_parallel_def $[$ of $L S$] affine_parallel_commut by auto
from L have closed L using closed_subspace by auto

```
        then have closed S
        using closed_translation a by auto
    }
    then show ?thesis by auto
qed
lemma closure_affine_hull:
    fixes }S:: 'n::euclidean_space se
    shows closure S\subseteqaffine hull S
    by (intro closure_minimal hull_subset affine_closed affine_affine_hull)
lemma closed_affine_hull [iff]:
    fixes }S:: 'n::euclidean_space se
    shows closed (affine hull S)
    by (metis affine_affine_hull affine_closed)
lemma closure_same_affine_hull [simp]:
    fixes }S:: 'n::euclidean_space se
    shows affine hull (closure S) = affine hull S
proof -
    have affine hull (closure S)\subseteq affine hull S
        using hull_mono[of closure S affine hull S affine]
            closure_affine_hull[of S] hull_hull[of affine S]
        by auto
    moreover have affine hull (closure S) \supseteq affine hull S
        using hull_mono[of S closure S affine] closure_subset by auto
    ultimately show ?thesis by auto
qed
lemma closure_aff_dim [simp]:
    fixes }S:: 'n::euclidean_space se
    shows aff_dim (closure S) = aff_dim S
proof -
    have aff_dim S {aff_dim (closure S)
        using aff_dim_subset closure_subset by auto
    moreover have aff_dim (closure S) \leq aff_dim (affine hull S)
        using aff_dim_subset closure_affine_hull by blast
    moreover have aff_dim (affine hull S) = aff_dim S
        using aff_dim_affine_hull by auto
    ultimately show ?thesis by auto
qed
lemma rel_interior_closure_convex_shrink:
    fixes S :: _::euclidean_space set
    assumes convex }
    and c\in rel_interior S
    and x closure S
    and}e>
    and}e\leq
```

```
    shows \(x-e *_{R}(x-c) \in\) rel_interior \(S\)
proof -
    obtain \(d\) where \(d>0\) and \(d\) : ball \(c d \cap\) affine hull \(S \subseteq S\)
    using assms(2) unfolding mem_rel_interior_ball by auto
    have \(\exists y \in S\). norm \((y-x) *(1-e)<e * d\)
    proof (cases \(x \in S\) )
        case True
    then show ?thesis using \(\langle e>0\rangle\langle d>0\rangle\) by force
    next
    case False
    then have \(x\) : \(x\) islimpt \(S\)
        using assms(3)[unfolded closure_def] by auto
    show ?thesis
    proof (cases \(e=1\) )
        case True
        obtain \(y\) where \(y \in S y \neq x\) dist \(y x<1\)
            using \(x[\) unfolded islimpt_approachable, THEN spec[where \(x=1]]\) by auto
            then show ?thesis
            unfolding True using \(\langle d>0\rangle\) by (force simp add:)
    next
        case False
        then have \(0<e * d /(1-e)\) and \(*: 1-e>0\)
            using \(\langle e \leq 1\rangle\langle e>0\rangle\langle d>0\rangle\) by auto
        then obtain \(y\) where \(y \in S y \neq x\) dist \(y x<e * d /(1-e)\)
            using \(x[\) unfolded islimpt_approachable,THEN \(\operatorname{spec}[\) where \(x=e * d /(1-e)]]\)
by auto
            then show ?thesis
            unfolding dist_norm using pos_less_divide_eq[OF *] by force
    qed
qed
then obtain \(y\) where \(y \in S\) and \(y\) : norm \((y-x) *(1-e)<e * d\)
    by auto
define \(z\) where \(z=c+((1-e) / e) *_{R}(x-y)\)
have \(*: x-e *_{R}(x-c)=y-e *_{R}(y-z)\)
    unfolding \(z_{-} d e f\) using \(\langle e>0\rangle\)
    by (auto simp: scaleR_right_diff_distrib scaleR_right_distrib scaleR_left_diff_distrib)
have zball: \(z \in\) ball \(c d\)
    using mem_ball z_def dist_norm \([o f c]\)
    using \(y\) and \(\operatorname{assms}(4,5)\)
    by (simp add: norm_minus_commute) (simp add: field_simps)
have \(x \in\) affine hull \(S\)
    using closure_affine_hull assms by auto
moreover have \(y \in\) affine hull \(S\)
    using \(\langle y \in S\rangle\) hull_subset \([o f S]\) by auto
moreover have \(c \in\) affine hull \(S\)
    using assms rel_interior_subset hull_subset \([\) of \(S]\) by auto
    ultimately have \(z \in\) affine hull \(S\)
    using z_def affine_affine_hull[of S]
        mem_affine_3_minus [of affine hull S c xy \((1-e) / e\) ]
```

assms
by simp
then have $z \in S$ using d zball by auto
obtain $d 1$ where $d 1>0$ and $d 1$: ball $z d 1 \leq$ ball c d using zball open_ball $[$ of $c d]$ openE $[$ of ball $c d z]$ by auto
then have ball $z d 1 \cap$ affine hull $S \subseteq$ ball c $d \cap$ affine hull S by auto
then have ball $z d 1 \cap$ affine hull $S \subseteq S$
using d by auto
then have $z \in$ rel_interior S
using mem_rel_interior_ball using $\langle d 1>0\rangle\langle z \in S\rangle$ by auto
then have $y-e *_{R}(y-z) \in$ rel_interior S
using rel_interior_convex_shrink $[$ of $S z y$ e] assms $\langle y \in S\rangle$ by auto
then show ?thesis using * by auto
qed
lemma rel_interior_eq:
rel_interior $s=s \longleftrightarrow$ openin (top_of_set (affine hull s)) s
using rel_open rel_open_def by blast
lemma rel_interior_openin:
openin(top_of_set (affine hull s)) $s \Longrightarrow$ rel_interior $s=s$
by (simp add: rel_interior_eq)
lemma rel_interior_affine:
fixes S :: ' $n::$ euclidean_space set
shows affine $S \Longrightarrow$ rel_interior $S=S$
using affine_rel_open rel_open_def by auto
lemma rel_interior_eq_closure:
fixes S :: ' $n::$ euclidean_space set
shows rel_interior $S=$ closure $S \longleftrightarrow$ affine S
proof (cases $S=\{ \}$)
case True
then show ?thesis
by auto
next
case False show ?thesis
proof
assume eq: rel_interior $S=$ closure S
have openin (top_of_set (affine hull S)) S
by (metis eq closure_subset openin_rel_interior rel_interior_subset subset_antisym)
moreover have closedin (top_of_set (affine hull S)) S
by (metis closed_subset closure_subset_eq eq hull_subset rel_interior_subset)
ultimately have $S=\{ \} \vee S=$ affine hull S
using convex_connected connected_clopen convex_affine_hull by metis
with False have affine hull $S=S$
by auto
then show affine S

```
        by (metis affine_hull_eq)
    next
        assume affine S
        then show rel_interior S = closure S
            by (simp add: rel_interior_affine affine_closed)
    qed
qed
```


Relative interior preserves under linear transformations

```
lemma rel_interior_translation_aux:
    fixes \(a\) :: ' \(n\) ::euclidean_space
    shows \(\left((\lambda x . a+x)^{\prime}\right.\) rel_interior \(\left.S\right) \subseteq\) rel_interior \(((\lambda x . a+x)\) ' \(S)\)
proof -
    \{
        fix \(x\)
        assume \(x: x \in\) rel_interior \(S\)
        then obtain \(T\) where open \(T x \in T \cap S T \cap\) affine hull \(S \subseteq S\)
        using mem_rel_interior \([\) of \(x S]\) by auto
        then have open \(((\lambda x . a+x)\) ' \(T)\)
            and \(a+x \in\left((\lambda x \cdot a+x)^{\prime} T\right) \cap\left((\lambda x \cdot a+x)^{\prime} S\right)\)
            and \(\left((\lambda x \cdot a+x)^{\prime} T\right) \cap\) affine hull \(((\lambda x \cdot a+x) \cdot S) \subseteq(\lambda x . a+x) \cdot S\)
            using affine_hull_translation[of a \(S\) ] open_translation[of \(T\) a] \(x\) by auto
        then have \(a+x \in\) rel_interior \(\left((\lambda x . a+x)^{\prime} S\right)\)
            using mem_rel_interior \(\left[\right.\) of \(a+x\left((\lambda x . a+x)^{\prime} S\right)\) ] by auto
    \}
    then show? thesis by auto
qed
lemma rel_interior_translation:
    fixes \(a\) :: ' \(n\) ::euclidean_space
    shows rel_interior \(((\lambda x . a+x) ' S)=(\lambda x . a+x)\) 'rel_interior \(S\)
proof -
    have \((\lambda x .(-a)+x)^{\prime}\) rel_interior \(((\lambda x . a+x)\) ' \(S) \subseteq\) rel_interior \(S\)
        using rel_interior_translation_aux \(\left[o f-a(\lambda x . a+x){ }^{\prime} S\right]\)
            translation_assoc[of -a a]
        by auto
    then have \(((\lambda x . a+x)\) 'rel_interior \(S) \supseteq\) rel_interior \(((\lambda x . a+x)\) ' \(S)\)
        using translation_inverse_subset[of a rel_interior \(\left((+) a^{\prime} S\right)\) rel_interior \(\left.S\right]\)
        by auto
    then show? ?thesis
        using rel_interior_translation_aux [of a S] by auto
qed
```

lemma affine_hull_linear_image:
assumes bounded_linear f
shows f ' (affine hull $s)=$ affine hull f ' s
proof -

```
    interpret \(f\) : bounded_linear \(f\) by fact
    have affine \(\{x . f x \in\) affine hull \(f\) ' \(s\}\)
        unfolding affine_def
    by (auto simp: f.scaleR f.add affine_affine_hull[unfolded affine_def, rule_format])
    moreover have affine \(\{x . x \in f\) ' (affine hull \(s)\}\)
    using affine_affine_hull[unfolded affine_def, of \(s\) ]
    unfolding affine_def by (auto simp: f.scaleR [symmetric] f.add [symmetric])
    ultimately show ?thesis
        by (auto simp: hull_inc elim!: hull_induct)
qed
lemma rel_interior_injective_on_span_linear_image:
    fixes \(f\) :: ' \(m\) ::euclidean_space \(\Rightarrow\) ' \(n::\) euclidean_space
        and \(S::\) ' \(m:: e u c l i d e a n \_s p a c e ~ s e t ~\)
    assumes bounded_linear \(f\)
        and inj_on \(f(\) span \(S\) )
    shows rel_interior \((f\) ' \(S)=f\) '(rel_interior \(S)\)
proof -
    \{
        fix \(z\)
    assume \(z: z \in\) rel_interior ( \(f\) ' \(S\) )
    then have \(z \in f\) ' \(S\)
        using rel_interior_subset \([\) of \(f\) ' \(S\) ] by auto
    then obtain \(x\) where \(x: x \in S f x=z\) by auto
    obtain e2 where e2: e2 > 0 cball ze2 \(\cap\) affine hull \(\left(f^{\prime} S\right) \subseteq\left(f^{\prime} S\right)\)
        using \(z\) rel_interior_cball[of \(f^{\prime} S\) ] by auto
    obtain \(K\) where \(K: K>0 \bigwedge x\). norm \((f x) \leq \operatorname{norm} x * K\)
    using assms Real_Vector_Spaces.bounded_linear.pos_bounded [of f] by auto
    define \(e 1\) where \(e 1=1 / K\)
    then have e1: e1>0 \(\bigwedge x\). e1 \(* \operatorname{norm}(f x) \leq \operatorname{norm} x\)
        using \(K\) pos_le_divide_eq[of e1] by auto
    define \(e\) where \(e=e 1 * e 2\)
    then have \(e>0\) using e1 e2 by auto
    \{
        fix \(y\)
        assume \(y: y \in \operatorname{cball} x e \cap\) affine hull \(S\)
        then have h1: \(f y \in\) affine hull \((f\) ' \(S\) )
            using affine_hull_linear_image \([\) of \(f S\) ] assms by auto
        from \(y\) have norm \((x-y) \leq e 1 * e 2\)
            using cball_def \([\) of \(x e]\) dist_norm \([o f x y] e_{-} d e f\) by auto
        moreover have \(f x-f y=f(x-y)\)
            using assms linear_diff [of \(f\) x y] linear_conv_bounded_linear [of f] by auto
        moreover have \(e 1 * \operatorname{norm}(f(x-y)) \leq \operatorname{norm}(x-y)\)
            using e1 by auto
        ultimately have \(e 1 * \operatorname{norm}((f x)-(f y)) \leq e 1 * e 2\)
            by auto
        then have \(f y \in \operatorname{cball} z\) e2
            using cball_def[off \(x\) e2] dist_norm \([o f f x y] e 1 x\) by auto
```

```
    then have fy\inf'S
        using y e2 h1 by auto
    then have }y\in
        using assms y hull_subset[of S] affine_hull_subset_span
        inj_on_image_mem_iff [OF <inj_on f (span S)`]
    by (metis Int_iff span_superset subsetCE)
}
then have z \in f'(rel_interior S)
    using mem_rel_interior_cball [of x S] \langlee> 0\rangle x by auto
}
moreover
{
fix }
assume x: x \in rel_interior S
then obtain e2 where e2: e2 > 0 cball x e2 \cap affine hull S \subseteqS
    using rel_interior_cball[of S] by auto
have }x\inS\mathrm{ using x rel_interior_subset by auto
then have *: fx\inf'S by auto
have }\forallx\in\operatorname{span}S.fx=0\longrightarrowx=
    using assms subspace_span linear_conv_bounded_linear[of f]
        linear_injective_on_subspace_0[of f span S]
    by auto
then obtain e1 where e1: e1>0\forallx\in span S. e1* norm x \leqnorm ( fx)
    using assms injective_imp_isometric[of span S f]
        subspace_span[of S] closed_subspace[of span S]
    by auto
define e where e=e1*e2
hence e > 0 using e1 e2 by auto
{
    fix y
    assume y: y \in cball (f x) e \cap affine hull (f'S)
    then have }y\inf\mathrm{ '(affine hull S)
        using affine_hull_linear_image[of f S] assms by auto
    then obtain xy where xy: xy \inaffine hull S f xy=y by auto
    with y have norm (fx-fxy)\leqe1*e2
        using cball_def[offxe] dist_norm[offxy] e_def by auto
    moreover have fx-fxy=f(x-xy)
        using assms linear_diff[of f x xy] linear_conv_bounded_linear[of f] by auto
    moreover have *: x-xy\in span S
        using subspace_diff[of span S x xy] subspace_span <x \inS\ranglexy
        affine_hull_subset_span[of S] span_superset
        by auto
    moreover from * have e1* norm (x-xy)\leqnorm (f(x-xy))
    using e1 by auto
    ultimately have e1 * norm (x-xy)\leqe1*e2
        by auto
    then have xy \in cball x e2
    using cball_def[of x e2] dist_norm[of x xy] e1 by auto
    then have }y\inf\mathrm{ 'S
```

```
            using xy e2 by auto
        }
        then have fx\in rel_interior (f'S)
        using mem_rel_interior_cball[of (fx)(f`S)]*\langlee> 0\rangle by auto
    }
    ultimately show ?thesis by auto
qed
lemma rel_interior_injective_linear_image:
    fixes f :: 'm::euclidean_space = ' 'n::euclidean_space
    assumes bounded_linear f
        and injf
    shows rel_interior (f'S)=f'(rel_interior S)
    using assms rel_interior_injective_on_span_linear_image[of f S]
        subset_inj_on[of f UNIV span S]
    by auto
```


4.2.3 Openness and compactness are preserved by convex hull operation

lemma open_convex_hull[intro]:
fixes S :: 'a::real_normed_vector set
assumes open S
shows open (convex hull S)
proof (clarsimp simp: open_contains_cball convex_hull_explicit)
fix T and u :: ' $a \Rightarrow$ real
assume obt: finite $T T \subseteq S \forall x \in T .0 \leq u x$ sum $u T=1$
from assms[unfolded open_contains_cball] obtain b
where $b: \bigwedge x . x \in S \Longrightarrow 0<b x \wedge$ cball $x(b x) \subseteq S$ by metis
have b ‘ $T \neq\{ \}$
using obt by auto
define i where $i=b$ ' T
let ? $\Phi=\lambda y . \exists F$. finite $F \wedge F \subseteq S \wedge(\exists u .(\forall x \in F .0 \leq u x) \wedge$ sum $u F=1$
$\left.\wedge\left(\sum v \in F . u v *_{R} v\right)=y\right)$
let $? a=\sum v \in T . u v *_{R} v$
show $\exists e>0$. cball ? $a e \subseteq\{y$. ? $\Phi y\}$
proof (intro exI subsetI conjI)
show $0<\operatorname{Min} i$
unfolding $i_{\text {_ def }}$ and Min_gr_iff [OF finite_imageI $[$ OF obt $(1)]\langle b$ ‘ $\left.T \neq\{ \}\rangle\right]$
using $b\langle T \subseteq S\rangle$ by auto
next
fix y
assume $y \in$ cball ? $a(\operatorname{Min} i)$
then have y : norm $(? a-y) \leq \operatorname{Min} i$ unfolding dist_norm[symmetric] by auto
$\{$ fix x
assume $x \in T$
then have Min $i \leq b x$

```
        by (simp add: i_def obt(1))
        then have \(x+(y-? a) \in\) cball \(x(b x)\)
            using \(y\) unfolding mem_cball dist_norm by auto
        moreover have \(x \in S\)
            using \(\langle x \in T\rangle\langle T \subseteq S\rangle\) by auto
    ultimately have \(x+(y-? a) \in S\)
    using \(y b\) by blast
    \}
    moreover
    have *: inj_on \((\lambda v . v+(y-? a)) T\)
        unfolding inj_on_def by auto
    have \(\left(\sum v \in(\lambda v . v+(y-? a))\right.\) ' \(\left.T . u(v-(y-? a)) *_{R} v\right)=y\)
    unfolding sum.reindex \([O F *]\) o_def using obt(4)
    by (simp add: sum.distrib sum_subtractf scaleR_left.sum[symmetric] scaleR_right_distrib)
    ultimately show \(y \in\{y\). ? \(\Phi y\}\)
    proof (intro CollectI exI conjI)
        show finite \(((\lambda v . v+(y-? a)) \cdot T)\)
            by (simp add: obt(1))
        show \(\operatorname{sum}(\lambda v \cdot u(v-(y-? a)))((\lambda v \cdot v+(y-? a)) \cdot T)=1\)
            unfolding sum.reindex \([O F *]\) o_def using obt(4) by auto
    qed (use obt \((1,3)\) in auto)
    qed
qed
lemma compact_convex_combinations:
    fixes \(S T\) :: 'a::real_normed_vector set
    assumes compact \(S\) compact \(T\)
    shows compact \(\left\{(1-u) *_{R} x+u *_{R} y \mid x y u .0 \leq u \wedge u \leq 1 \wedge x \in S \wedge y\right.\)
\(\in T\}\)
proof -
    let \(? X=\{0 . .1\} \times S \times T\)
    let ?h \(=\left(\lambda z .(1-f s t z) *_{R} f s t(\right.\) snd \(z)+f s t z *_{R}\) snd \((\) snd \(\left.z)\right)\)
    have \(*:\left\{(1-u) *_{R} x+u *_{R} y \mid x y u .0 \leq u \wedge u \leq 1 \wedge x \in S \wedge y \in T\right\}=\)
? \(h\) '? \(X\)
            by force
    have continuous_on ? \(X\left(\lambda z .(1-f s t z) *_{R} f s t(s n d z)+f s t z *_{R}\right.\) snd \((\) snd \(\left.z)\right)\)
            unfolding continuous_on by (rule ballI) (intro tendsto_intros)
    with assms show ?thesis
            by (simp add: * compact_Times compact_continuous_image)
qed
lemma finite_imp_compact_convex_hull:
    fixes \(S\) :: ' \(a\) ::real_normed_vector set
    assumes finite \(S\)
    shows compact (convex hull \(S\) )
proof (cases \(S=\{ \}\) )
    case True
    then show? ?thesis by simp
next
```

```
case False
with assms show ?thesis
proof (induct rule: finite_ne_induct)
    case (singleton x)
    show ?case by simp
next
    case (insert x A)
    let ?f = \lambda(u,y::'a). u*R 
    let ?T = {0..1::real} }\times(\mathrm{ convex hull A)
    have continuous_on ?T ?f
        unfolding split_def continuous_on by (intro ballI tendsto_intros)
    moreover have compact ?T
        by (intro compact_Times compact_Icc insert)
    ultimately have compact (?f '?T)
        by (rule compact_continuous_image)
    also have ?f '?T = convex hull (insert x A)
        unfolding convex_hull_insert [OF }\langleA\not={}\rangle
        apply safe
        apply (rule_tac x=a in exI, simp)
        apply (rule_tac x=1 - a in exI, simp, fast)
        apply (rule_tac x=(u,b) in image_eqI, simp_all)
        done
    finally show compact (convex hull (insert x A)).
    qed
qed
lemma compact_convex_hull:
    fixes }S\mathrm{ :: 'a::euclidean_space set
    assumes compact S
    shows compact (convex hull S)
proof (cases S={})
    case True
    then show ?thesis using compact_empty by simp
next
    case False
    then obtain w where w}SS\mathrm{ by auto
    show ?thesis
        unfolding caratheodory[of S]
    proof (induct (DIM('a)+1))
        case 0
        have *: {x.\exists sa. finite sa }\wedge sa\subseteqS\wedge card sa\leq0^x\inconvex hull sa}={
            using compact_empty by auto
        from 0 show ?case unfolding * by simp
    next
        case (Suc n)
        show ?case
        proof (cases n=0)
            case True
        have {x.\existsT. finite T^T\subseteqS\wedge card T\leqSuc n}\wedgex\in\mathrm{ convex hull T} =S
```

unfolding set_eq_iff and mem_Collect_eq proof (rule, rule)
fix x
assume $\exists T$. finite $T \wedge T \subseteq S \wedge$ card $T \leq$ Suc $n \wedge x \in$ convex hull T
then obtain T where T : finite $T T \subseteq S$ card $T \leq$ Suc $n x \in$ convex hull
by auto
show $x \in S$
proof (cases card $T=0$)
case True
then show ?thesis
using T (4) unfolding card_0_eq[OF $T(1)]$ by simp
next
case False
then have card $T=$ Suc 0 using $T(3)\langle n=0\rangle$ by auto
then obtain a where $T=\{a\}$ unfolding card_Suc_eq by auto
then show? ?thesis using $T(2,4)$ by simp
qed
next
fix x assume $x \in S$
then show $\exists T$. finite $T \wedge T \subseteq S \wedge$ card $T \leq$ Suc $n \wedge x \in$ convex hull T
by (rule_tac $x=\{x\}$ in exI) (use convex_hull_singleton in auto)
qed
then show ?thesis using assms by simp
next
case False
have $\{x . \exists T$. finite $T \wedge T \subseteq S \wedge$ card $T \leq$ Suc $n \wedge x \in$ convex hull $T\}=$ $\left\{(1-u) *_{R} x+u *_{R} y \mid x y u\right.$.
$0 \leq u \wedge u \leq 1 \wedge x \in S \wedge y \in\{x . \exists T$. finite $T \wedge T \subseteq S \wedge$ card $T \leq n$ $\wedge x \in$ convex hull $T\}\}$
unfolding set_eq_iff and mem_Collect_eq
proof (rule, rule)
fix x
assume $\exists u$ v c. $x=(1-c) *_{R} u+c *_{R} v \wedge$
$0 \leq c \wedge c \leq 1 \wedge u \in S \wedge(\exists T$. finite $T \wedge T \subseteq S \wedge$ card $T \leq n \wedge v \in$ convex hull T)
then obtain $u v c T$ where obt: $x=(1-c) *_{R} u+c *_{R} v$
$0 \leq c \wedge c \leq 1 u \in S$ finite $T T \subseteq S$ card $T \leq n v \in$ convex hull T
by auto
moreover have $(1-c) *_{R} u+c *_{R} v \in$ convex hull insert $u T$
by (meson convexD_alt convex_convex_hull hull_inc hull_mono in_mono insertCI obt(2) obt(7) subset_insertI)
ultimately show $\exists T$. finite $T \wedge T \subseteq S \wedge$ card $T \leq$ Suc $n \wedge x \in$ convex hull T
by (rule_tac $x=$ insert $u T$ in exI) (auto simp: card_insert_if)
next
fix x
assume $\exists T$. finite $T \wedge T \subseteq S \wedge$ card $T \leq$ Suc $n \wedge x \in$ convex hull T
then obtain T where T : finite $T T \subseteq S$ card $T \leq$ Suc $n x \in$ convex hull

```
T
            by auto
        show \existsuvc. x = (1-c)**Ru+c*Rv^
            0\leqc\wedgec\leq1\wedgeu\inS\wedge(\existsT. finite T ^T\subseteqS^ card T\leqn\wedgev\in
convex hull T)
    proof (cases card T=Suc n)
            case False
            then have card T\leqn using T(3) by auto
            then show ?thesis
            using \langlew\inS\rangle and T
            by (rule_tac x=w in exI, rule_tac x=x in exI, rule_tac x=1 in exI) auto
        next
            case True
            then obtain a u where au:T= insert a u a\not\inu
            by (metis card_le_Suc_iff order_refl)
            show ?thesis
            proof (cases u={})
            case True
            then have }x=a\mathrm{ using T(4)[unfolded au] by auto
            show ?thesis unfolding <x =a>
                using T<n \not=0` unfolding au
                by (rule_tac x=a in exI, rule_tac x=a in exI, rule_tac x=1 in exI)
force
            next
            case False
            obtain ux vx b where obt: ux\geq0 vx\geq0 ux + vx = 1
                b}\in\mathrm{ convex hull u x = ux *R}a+vx\mp@subsup{*}{R}{}
                using T(4)[unfolded au convex_hull_insert[OF False]]
                by auto
            have *: 1 - vx = ux using obt(3) by auto
            show ?thesis
                using obt T(1-3) card_insert_disjoint[OF _ au(2)] unfolding au *
                    by (rule_tac x=a in exI,rule_tac x=b in exI, rule_tac }x=vx\mathrm{ in exI)
force
            qed
            qed
        qed
        then show ?thesis
            using compact_convex_combinations[OF assms Suc] by simp
        qed
    qed
qed
```


4.2.4 Extremal points of a simplex are some vertices

lemma dist_increases_online:
fixes $a b d$:: 'a::real_inner
assumes $d \neq 0$
shows dist $a(b+d)>$ dist $a b \vee$ dist $a(b-d)>$ dist $a b$

```
proof (cases inner ad - inner \(b d>0\) )
    case True
    then have \(0<\) inner \(d d+(\) inner \(a d * 2-i n n e r b d * 2)\)
        using assms
        by (intro add_pos_pos) auto
    then show ?thesis
        unfolding dist_norm and norm_eq_sqrt_inner and real_sqrt_less_iff
        by (simp add: algebra_simps inner_commute)
next
    case False
    then have \(0<\) inner \(d d+(\) inner \(b d * 2-i n n e r ~ a d * 2)\)
        using assms
        by (intro add_pos_nonneg) auto
    then show ?thesis
        unfolding dist_norm and norm_eq_sqrt_inner and real_sqrt_less_iff
        by (simp add: algebra_simps inner_commute)
qed
lemma norm_increases_online:
    fixes \(d\) :: ' \(a:\) :real_inner
    shows \(d \neq 0 \Longrightarrow\) norm \((a+d)>\) norm \(a \vee \operatorname{norm}(a-d)>\) norm \(a\)
    using dist_increases_online[ of dall unfolding dist_norm by auto
lemma simplex_furthest_lt:
    fixes \(S\) :: 'a::real_inner set
    assumes finite \(S\)
    shows \(\forall x \in\) convex hull \(S . \quad x \notin S \longrightarrow(\exists y \in\) convex hull \(S\). norm \((x-a)<\)
\(\operatorname{norm}(y-a))\)
    using assms
proof induct
    fix \(x S\)
    assume as: finite \(S x \notin S \forall x \in\) convex hull \(S . x \notin S \longrightarrow(\exists y \in\) convex hull \(S\). norm
\((x-a)<\operatorname{norm}(y-a))\)
    show \(\forall\) xa convex hull insert \(x S . x a \notin\) insert \(x S \longrightarrow\)
            \((\exists y \in\) convex hull insert \(x\) S. norm \((x a-a)<\operatorname{norm}(y-a))\)
    proof (intro impI ballI, cases \(S=\{ \}\) )
            case False
            fix \(y\)
            assume \(y: y \in\) convex hull insert \(x S y \notin\) insert \(x S\)
            obtain \(u v b\) where obt: \(u \geq 0 v \geq 0 u+v=1 b \in\) convex hull \(S y=u *_{R} x\)
\(+v *_{R} b\)
            using \(y(1)\) [unfolded convex_hull_insert[OF False]] by auto
            show \(\exists z \in\) convex hull insert \(x\) S. norm \((y-a)<\operatorname{norm}(z-a)\)
            proof (cases \(y \in\) convex hull \(S\) )
                case True
                then obtain \(z\) where \(z \in\) convex hull \(S\) norm \((y-a)<\operatorname{norm}(z-a)\)
                using as(3)[THEN bspec[where \(x=y]]\) and \(y\) (2) by auto
            then show ?thesis
                by (meson hull_mono subsetD subset_insertI)
```

```
next
    case False
    show ?thesis
    proof (cases \(u=0 \vee v=0\) )
    case True
    with False show ?thesis
        using obt \(y\) by auto
    next
        case False
        then obtain \(w\) where \(w: w>0 w<u w<v\)
            using field_lbound_gt_zero \([\) of \(u v]\) and obt \((1,2)\) by auto
        have \(x \neq b\)
        proof
            assume \(x=b\)
            then have \(y=b\) unfolding \(o b t(5)\)
            using obt(3) by (auto simp: scaleR_left_distrib[symmetric])
            then show False using obt(4) and False
            using \(\langle x=b\rangle y(2)\) by blast
        qed
        then have \(*: w *_{R}(x-b) \neq 0\) using \(w(1)\) by auto
        show ?thesis
            using dist_increases_online[OF *, of a y]
        proof (elim disjE)
            assume dist a \(y<d i s t a\left(y+w *_{R}(x-b)\right)\)
            then have norm \((y-a)<\operatorname{norm}\left((u+w) *_{R} x+(v-w) *_{R} b-a\right)\)
                unfolding dist_commute[of a]
                unfolding dist_norm obt(5)
            by (simp add: algebra_simps)
        moreover have \((u+w) *_{R} x+(v-w) *_{R} b \in\) convex hull insert \(x S\)
            unfolding convex_hull_insert[OF \(\langle S \neq\{ \}\rangle]\)
        proof (intro CollectI conjI exI)
            show \(u+w \geq 0 v-w \geq 0\)
                    using obt(1) \(w\) by auto
        qed (use obt in auto)
        ultimately show ?thesis by auto
        next
            assume dist a \(y<d i s t ~ a\left(y-w *_{R}(x-b)\right)\)
            then have norm \((y-a)<\operatorname{norm}\left((u-w) *_{R} x+(v+w) *_{R} b-a\right)\)
                unfolding dist_commute[of a]
            unfolding dist_norm obt(5)
            by (simp add: algebra_simps)
            moreover have \((u-w) *_{R} x+(v+w) *_{R} b \in\) convex hull insert \(x S\)
            unfolding convex_hull_insert[OF \(\langle S \neq\{ \}\rangle]\)
            proof (intro CollectI conjI exI)
            show \(u-w \geq 0 v+w \geq 0\)
                    using obt(1) \(w\) by auto
            qed (use obt in auto)
            ultimately show ?thesis by auto
        qed
```

```
        qed
        qed
    qed auto
qed (auto simp: assms)
lemma simplex_furthest_le:
    fixes S :: 'a::real_inner set
    assumes finite S
        and S\not={}
    shows }\existsy\inS.\forallx\in\mathrm{ convex hull S.norm (x-a) < norm (y-a)
proof -
    have convex hull S}\not={
        using hull_subset[of S convex] and assms(2) by auto
    then obtain x where x:x\in convex hull S \forally\inconvex hull S.norm (y-a)\leq
norm (x-a)
        using distance_attains_sup[OF finite_imp_compact_convex_hull[OF〈finite S〉], of
a]
        unfolding dist_commute[of a]
        unfolding dist_norm
        by auto
    show ?thesis
    proof (cases x }\inS\mathrm{ )
        case False
        then obtain }y\mathrm{ where }y\in\mathrm{ convex hull S norm ( }x-a)<\mathrm{ norm ( }y-a
            using simplex_furthest_lt[OF assms(1),THEN bspec[where x=x]] and x(1)
            by auto
        then show ?thesis
            using x(2)[THEN bspec[where x=y]] by auto
    next
        case True
        with }x\mathrm{ show ?thesis by auto
    qed
qed
lemma simplex_furthest_le_exists:
    fixes S :: ('a::real_inner) set
    shows finite S\Longrightarrow\forallx\in(convex hull S). \existsy\inS.norm (x-a)\leqnorm (y-a)
    using simplex_furthest_le[of S] by (cases S={}) auto
lemma simplex_extremal_le:
    fixes S :: 'a::real_inner set
    assumes finite S
        and S\not={}
    shows }\existsu\inS.\existsv\inS.\forallx\inconvex hull S. \forally\in convex hull S. norm (x-y)
norm (u-v)
proof -
    have convex hull S}\not={
        using hull_subset[of S convex] and assms(2) by auto
    then obtain }uv\mathrm{ where obt: u}\in\mathrm{ convex hull Sv}\in\mathrm{ convex hull S
```

```
    \(\forall x \in\) convex hull \(S . \forall y \in\) convex hull \(S\). norm \((x-y) \leq\) norm \((u-v)\)
    using compact_sup_maxdistance[OF finite_imp_compact_convex_hull[OF assms(1)]]
    by (auto simp: dist_norm)
    then show ?thesis
    proof (cases \(u \notin S \vee v \notin S\), elim disjE)
    assume \(u \notin S\)
    then obtain \(y\) where \(y \in\) convex hull \(S\) norm \((u-v)<\) norm \((y-v)\)
        using simplex_furthest_lt[OF assms(1), THEN bspec[where \(x=u]]\) and obt(1)
        by auto
    then show ?thesis
    using \(\operatorname{obt}(3)[\) THEN \(b \operatorname{spec}[\) where \(x=y]\), THEN \(b \operatorname{spec}[\) where \(x=v]]\) and \(o b t(2)\)
        by auto
    next
    assume \(v \notin S\)
    then obtain \(y\) where \(y \in\) convex hull \(S\) norm \((v-u)<\operatorname{norm}(y-u)\)
    using simplex_furthest_lt[OF assms(1), THEN bspec[where \(x=v]]\) and obt(2)
        by auto
    then show ?thesis
    using \(\operatorname{obt}(3)[T H E N\) bspec [where \(x=u]\), THEN bspec[where \(x=y]]\) and \(\operatorname{obt}(1)\)
        by (auto simp: norm_minus_commute)
    qed auto
qed
lemma simplex_extremal_le_exists:
    fixes \(S\) :: 'a::real_inner set
    shows finite \(S \Longrightarrow x \in\) convex hull \(S \Longrightarrow y \in\) convex hull \(S \Longrightarrow\)
    \(\exists u \in S . \exists v \in S . \operatorname{norm}(x-y) \leq n o r m(u-v)\)
    using convex_hull_empty simplex_extremal_le \([\) of \(S]\)
    by (cases \(S=\{ \}\) ) auto
```


4.2.5 Closest point of a convex set is unique, with a continuous projection

definition closest_point :: ' $a::\{$ real_inner,heine_borel $\}$ set $\Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a$ where closest_point $S a=(S O M E x . x \in S \wedge(\forall y \in S$. dist $a x \leq$ dist $a y))$
lemma closest_point_exists:
assumes closed S
and $S \neq\{ \}$
shows closest_point_in_set: closest_point $S a \in S$
and $\forall y \in S$. dist a (closest_point S a) \leq dist a y
unfolding closest_point_def
by (rule_tac someI2_ex, auto intro: distance_attains_inf $[\operatorname{OF} \operatorname{assms}(1,2)$, of a])+
lemma closest_point_le: closed $S \Longrightarrow x \in S \Longrightarrow$ dist a (closest_point S a) \leq dist a x
using closest_point_exists[of S] by auto
lemma closest_point_self:

```
    assumes }x\in
    shows closest_point Sx=x
    unfolding closest_point_def
    by (rule some1_equality, rule ex1I[of_x]) (use assms in auto)
```

lemma closest_point_refl: closed $S \Longrightarrow S \neq\{ \} \Longrightarrow$ closest_point $S x=x \longleftrightarrow x$
$\in S$
using closest_point_in_set[of S x] closest_point_self $[$ of x S $]$
by auto
lemma closer_points_lemma:
assumes inner $y z>0$
shows $\exists u>0 . \forall v>0 . v \leq u \longrightarrow \operatorname{norm}\left(v *_{R} z-y\right)<\operatorname{norm} y$
proof -
have z : inner $z z>0$
unfolding inner_gt_zero_iff using assms by auto
have norm $\left(v *_{R} z-y\right)<$ norm y
if $0<v$ and $v \leq$ inner $y z /$ inner $z z$ for v
unfolding norm_lt using z assms that
by (simp add: field_simps inner_diff inner_commute mult_strict_left_mono[OF _
$\langle 0<v\rangle]$)
then show ?thesis
using assms z
by (rule_tac $x=$ inner $y z /$ inner $z z$ in exI) auto
qed
lemma closer_point_lemma:
assumes inner $(y-x)(z-x)>0$
shows $\exists u>0 . u \leq 1 \wedge \operatorname{dist}\left(x+u *_{R}(z-x)\right) y<\operatorname{dist} x y$
proof -
obtain u where $u>0$
and $u: \bigwedge v . \llbracket 0<v ; v \leq u \rrbracket \Longrightarrow \operatorname{norm}\left(v *_{R}(z-x)-(y-x)\right)<\operatorname{norm}(y-$
x)
using closer_points_lemma $[$ OF assms $]$ by auto
show ?thesis
using $u[$ of min $u 1]$ and $\langle u>0\rangle$
by (metis diff_diff_add dist_commute dist_norm less_eq_real_def not_less u zero_less_one)
qed
lemma any_closest_point_dot:
assumes convex S closed $S x \in S y \in S \forall z \in S$. dist a $x \leq$ dist $a z$
shows inner $(a-x)(y-x) \leq 0$
proof (rule ccontr)
assume \neg ?thesis
then obtain u where $u: u>0 u \leq 1$ dist $\left(x+u *_{R}(y-x)\right) a<d i s t x a$
using closer_point_lemma $[$ of a $x y$] by auto
let ? $z=(1-u) *_{R} x+u *_{R} y$
have ? $z \in S$
using convexD_alt $[$ OF $\operatorname{assms}(1,3,4)$, of $u]$ using u by auto

```
    then show False
    using assms(5)[THEN bspec[where x=?z]] and u(3)
    by (auto simp: dist_commute algebra_simps)
qed
lemma any_closest_point_unique:
    fixes }x\mathrm{ :: ' }a::\mathrm{ :real_inner
    assumes convex S closed Sx\inSy}\in
        \forallz\inS.dist a x < dist a z \forallz\inS.dist a y \leq dist a z
    shows }x=
    using any_closest_point_dot[OF assms(1-4,5)] and any_closest_point_dot[OF
assms(1-2,4,3,6)]
    unfolding norm_pths(1) and norm_le_square
    by (auto simp: algebra_simps)
lemma closest_point_unique:
    assumes convex S closed Sx\inS\forallz\inS. dist a x < dist a z
    shows x = closest_point S a
    using any_closest_point_unique[OF assms(1-3) _ assms(4), of closest_point S a]
    using closest_point_exists[OF assms(2)] and assms(3) by auto
lemma closest_point_dot:
    assumes convex S closed Sx\inS
    shows inner ( a c closest_point Sa) (x - closest_point Sa)\leq0
    using any_closest_point_dot[OF assms(1,2) _ assms(3)]
    by (metis assms(2) assms(3) closest_point_in_set closest_point_le empty_iff)
lemma closest_point_lt:
    assumes convex S closed Sx\inSx\not= closest_point S a
    shows dist a (closest_point S a)< dist a x
    using closest_point_unique[where a=a] closest_point_le[where a=a] assms by
fastforce
lemma setdist_closest_point:
    |losed S;S\not={}\rrbracket\Longrightarrow setdist {a} S= dist a (closest_point S a)
    by (metis closest_point_exists(2) closest_point_in_set emptyE insert_iff setdist_unique)
lemma closest_point_lipschitz:
    assumes convex S
        and closed S S\not={}
    shows dist (closest_point S x) (closest_point S y) \leq dist x y
proof -
    have inner (x - closest_point S x) (closest_point S y - closest_point S x) \leq 0
        and inner (y - closest_point S y)(closest_point S x - closest_point S y) \leq0
        by (simp_all add:assms closest_point_dot closest_point_in_set)
    then show ?thesis unfolding dist_norm and norm_le
        using inner_ge_zero[of (x - closest_point S x) - (y - closest_point S y)]
        by (simp add: inner_add inner_diff inner_commute)
qed
```

```
lemma continuous_at_closest_point:
    assumes convex \(S\)
    and closed \(S\)
    and \(S \neq\{ \}\)
    shows continuous (at \(x\) ) (closest_point \(S\) )
    unfolding continuous_at_eps_delta
    using le_less_trans[OF closest_point_lipschitz[OF assms]] by auto
```

lemma continuous_on_closest_point:
assumes convex S
and closed S
and $S \neq\{ \}$
shows continuous_on t (closest_point S)
by (metis continuous_at_imp_continuous_on continuous_at_closest_point[OF assms])
proposition closest_point_in_rel_interior:
assumes closed $S S \neq\{ \}$ and $x: x \in$ affine hull S
shows closest_point $S x \in$ rel_interior $S \longleftrightarrow x \in$ rel_interior S
proof (cases $x \in S$)
case True
then show ?thesis
by (simp add: closest_point_self)
next
case False
then have False if asm: closest_point $S x \in$ rel_interior S
proof -
obtain e where $e>0$ and clox: closest_point $S x \in S$
and e : cball (closest_point $S x$) $e \cap$ affine hull $S \subseteq S$
using asm mem_rel_interior_cball by blast
then have clo_notx: closest_point $S x \neq x$
using $\langle x \notin S\rangle$ by auto
define y where $y \equiv$ closest_point $S x-$
$($ min $1(e / \operatorname{norm}($ closest_point $S x-x))) *_{R}($ closest_point S
$x-x)$
have $x-y=\left(1-\min 1\left(e / n o r m\left(c l o s e s t _p o i n t ~ S x-x\right)\right)\right) *_{R}(x-$
closest_point $S x$)
by (simp add: y_def algebra_simps)
then have norm $(x-y)=a b s((1-\min 1$ (e / norm (closest_point $S x-$
$x)))$) $\operatorname{norm}(x-$ closest_point $S x)$
by simp
also have $\ldots<\operatorname{norm}(x-$ closest_point $S x)$
using clo_notx $\langle e>0$ 〉
by (auto simp: mult_less_cancel_right2 field_split_simps)
finally have no_less: norm $(x-y)<$ norm $(x-$ closest_point $S x)$.
have $y \in$ affine hull S
unfolding $y_{-} d e f$
by (meson affine_affine_hull clox hull_subset mem_affine_3_minus2 subsetD x)
moreover have dist (closest_point $S x$) $y \leq e$

```
    using \(\langle e>0\rangle\) by (auto simp: y_def min_mult_distrib_right)
    ultimately have \(y \in S\)
    using subsetD \([O F e]\) by simp
    then have dist \(x\) (closest_point \(S x) \leq\) dist \(x y\)
    by (simp add: closest_point_le 〈closed \(S\) 〉)
    with no_less show False
    by (simp add: dist_norm)
    qed
    moreover have \(x \notin\) rel_interior \(S\)
    using rel_interior_subset False by blast
    ultimately show ?thesis by blast
qed
```


Various point-to-set separating/supporting hyperplane theorems

```
lemma supporting_hyperplane_closed_point:
    fixes \(z::{ }^{\prime} a::\{\) real_inner, heine_borel\}
    assumes convex \(S\)
        and closed \(S\)
        and \(S \neq\{ \}\)
        and \(z \notin S\)
    shows \(\exists a b\). \(\exists y \in S\). inner \(a z<b \wedge\) inner \(a y=b \wedge(\forall x \in S\). inner \(a x \geq b)\)
proof -
    obtain \(y\) where \(y \in S\) and \(y: \forall x \in S\). dist \(z y \leq \operatorname{dist} z x\)
        by (metis distance_attains_inf \([O F \operatorname{assms}(2-3)])\)
    show ?thesis
    proof (intro exI bexI conjI ballI)
        show \((y-z) \cdot z<(y-z) \cdot y\)
            by (metis \(\langle y \in S\rangle\) assms(4) diff_gt_0_iff_gt inner_commute inner_diff_left
inner_gt_zero_iff right_minus_eq)
    show \((y-z) \cdot y \leq(y-z) \cdot x\) if \(x \in S\) for \(x\)
    proof (rule ccontr)
        have \(*: \bigwedge u .0 \leq u \wedge u \leq 1 \longrightarrow\) dist \(z y \leq \operatorname{dist} z\left((1-u) *_{R} y+u *_{R} x\right)\)
            using assms(1)[unfolded convex_alt] and \(y\) and \(\langle x \in S\rangle\) and \(\langle y \in S\rangle\) by auto
            assume \(\neg(y-z) \cdot y \leq(y-z) \cdot x\)
            then obtain \(v\) where \(v>0 v \leq 1 \operatorname{dist}\left(y+v *_{R}(x-y)\right) z<\operatorname{dist} y z\)
                using closer_point_lemma[of z y \(x\) ] by (auto simp: inner_diff)
            then show False
                using \(*[o f v]\) by (auto simp: dist_commute algebra_simps)
    qed
    qed (use \(\langle y \in S\rangle\) in auto)
qed
lemma separating_hyperplane_closed_point:
    fixes \(z::\) 'a::\{real_inner,heine_borel\}
    assumes convex \(S\)
        and closed \(S\)
        and \(z \notin S\)
    shows \(\exists a b\). inner \(a z<b \wedge(\forall x \in S\). inner \(a x>b)\)
```

```
proof (cases \(S=\{ \}\) )
    case True
    then show ?thesis
        by (simp add: gt_ex)
next
    case False
    obtain \(y\) where \(y \in S\) and \(y: \bigwedge x . x \in S \Longrightarrow\) dist \(z y \leq\) dist \(z x\)
        by (metis distance_attains_inf [OF assms(2) False])
    show ?thesis
    proof (intro exI conjI ballI)
        show \((y-z) \cdot z<\operatorname{inner}(y-z) z+(\operatorname{norm}(y-z))^{2} / 2\)
            using \(\langle y \in S\rangle\langle z \notin S\rangle\) by auto
    next
        fix \(x\)
        assume \(x \in S\)
        have False if \(*: 0<\operatorname{inner}(z-y)(x-y)\)
        proof -
            obtain \(u\) where \(u>0 u \leq 1 \operatorname{dist}\left(y+u *_{R}(x-y)\right) z<\operatorname{dist} y z\)
                using * closer_point_lemma by blast
            then show False using \(y\left[\right.\) of \(\left.y+u *_{R}(x-y)\right]\) convexD_alt [OF 〈convex \(S\) 〉]
                using \(\langle x \in S\rangle\langle y \in S\rangle\) by (auto simp: dist_commute algebra_simps)
            qed
            moreover have \(0<(\operatorname{norm}(y-z))^{2}\)
            using \(\langle y \in S\rangle\langle z \notin S\rangle\) by auto
            then have \(0<\operatorname{inner}(y-z)(y-z)\)
            unfolding power2_norm_eq_inner by simp
        ultimately show \((y-z) \cdot z+(\operatorname{norm}(y-z))^{2} / 2<(y-z) \cdot x\)
            by (force simp: field_simps power2_norm_eq_inner inner_commute inner_diff)
    qed
qed
lemma separating_hyperplane_closed_0:
    assumes convex ( \(S\) ::('a::euclidean_space) set)
        and closed \(S\)
        and \(0 \notin S\)
    shows \(\exists a b\). \(a \neq 0 \wedge 0<b \wedge(\forall x \in S\). inner \(a x>b)\)
proof (cases \(S=\{ \}\) )
    case True
    have (SOME i. \(i \in\) Basis \() \neq\left(0::^{\prime} a\right)\)
        by (metis Basis_zero SOME_Basis)
    then show ?thesis
        using True zero_less_one by blast
next
    case False
    then show ?thesis
        using False using separating_hyperplane_closed_point[OF assms]
        by (metis all_not_in_conv inner_zero_left inner_zero_right less_eq_real_def not_le)
qed
```

```
Now set-to-set for closed/compact sets
lemma separating_hyperplane_closed_compact:
    fixes \(S\) :: 'a::euclidean_space set
    assumes convex \(S\)
        and closed \(S\)
    and convex \(T\)
    and compact \(T\)
    and \(T \neq\{ \}\)
    and \(S \cap T=\{ \}\)
    shows \(\exists a b .(\forall x \in S\). inner \(a x<b) \wedge(\forall x \in T\). inner \(a x>b)\)
proof (cases \(S=\{ \}\) )
    case True
    obtain \(b\) where \(b: b>0 \forall x \in T\). norm \(x \leq b\)
    using compact_imp_bounded[OF assms(4)] unfolding bounded_pos by auto
    obtain \(z::\) ' \(a\) where \(z:\) norm \(z=b+1\)
    using vector_choose_size \([o f b+1]\) and \(b(1)\) by auto
    then have \(z \notin T\) using \(b(2)[T H E N\) bspec [where \(x=z]]\) by auto
    then obtain \(a b\) where \(a b\) : inner \(a z<b \forall x \in T . b<\) inner \(a x\)
    using separating_hyperplane_closed_point \([\) OF assms(3) compact_imp_closed \([\) OF
\(\operatorname{assms}(4)]\), of \(z]\)
    by auto
    then show ?thesis
    using True by auto
next
    case False
    then obtain \(y\) where \(y \in S\) by auto
    obtain \(a b\) where \(0<b\) and \(\S: \bigwedge x . x \in(\bigcup x \in S . \bigcup y \in T .\{x-y\}) \Longrightarrow b<\)
inner a \(x\)
    using separating_hyperplane_closed_point[OF convex_differences \([O F \operatorname{assms}(1,3)]\),
of 0 ]
    using closed_compact_differences assms by fastforce
    have \(a b: b+\) inner \(a y<\) inner \(a x\) if \(x \in S y \in T\) for \(x y\)
    using \(\S[o f ~ x-y]\) that by (auto simp add: inner_diff_right less_diff_eq)
    define \(k\) where \(k=(S U P x \in T . a \cdot x)\)
    have \(k+b / 2<a \cdot x\) if \(x \in S\) for \(x\)
    proof -
        have \(k \leq\) inner a \(x-b\)
        unfolding \(k_{-} d e f\)
        using \(\langle T \neq\{ \}\rangle\) ab that by (fastforce intro: cSUP_least)
        then show ?thesis
            using \(\langle 0<b\rangle\) by auto
    qed
    moreover
    have \(-(k+b / 2)<-a \cdot x\) if \(x \in T\) for \(x\)
    proof -
        have inner \(a x-b / 2<k\)
            unfolding \(k\) _def
        proof (subst less_cSUP_iff)
            show \(T \neq\{ \}\) by fact
```

```
    show bdd_above ((\cdot) a'}T
    using ab[rule_format, of y] \langley \inS\rangle
        by (intro bdd_aboveI2[where M=inner a y - b]) (auto simp: field_simps
intro: less_imp_le)
    show \existsy\inT.a\cdotx-b/2<a
        using <0<b> that by force
    qed
    then show ?thesis
        by auto
    qed
    ultimately show ?thesis
    by (metis inner_minus_left neg_less_iff_less)
qed
lemma separating_hyperplane_compact_closed:
    fixes S :: 'a::euclidean_space set
    assumes convex S
        and compact S
        and}S\not={
        and convex T
        and closed T
        and S\capT={}
    shows \existsab. (\forallx\inS. inner a x < b)^( }\forallx\inT. inner a x>b
proof -
    obtain ab}\mathrm{ where ( }\forallx\inT\mathrm{ . inner a x < b) ^( }\forallx\inS.b< inner a x)
        by (metis disjoint_iff_not_equal separating_hyperplane_closed_compact assms)
    then show ?thesis
        by (metis inner_minus_left neg_less_iff_less)
qed
```


General case without assuming closure and getting non-strict separation

```
lemma separating_hyperplane_set_0:
assumes convex \(S(0:: ' a::\) euclidean_space \() \notin S\)
shows \(\exists a . a \neq 0 \wedge(\forall x \in S .0 \leq\) inner \(a x)\)
proof -
let \(? k=\lambda c .\left\{x::^{\prime} a .0 \leq\right.\) inner \(\left.c x\right\}\)
have \(*\) : frontier (cball 01 ) \(\cap \bigcap f \neq\{ \}\) if as: \(f \subseteq ?{ }^{\prime}\) 'S finite \(f\) for \(f\)
proof -
obtain \(c\) where \(c: f=? k^{\prime} c c \subseteq S\) finite \(c\) using finite_subset_image \([O F\) as \((2,1)]\) by auto
then obtain \(a b\) where \(a b: a \neq 00<b \forall x \in\) convex hull \(c\). \(b<\) inner \(a x\) using separating_hyperplane_closed_0[OF convex_convex_hull, of \(c]\)
using finite_imp_compact_convex_hull[OF c(3), THEN compact_imp_closed]
and assms(2)
using subset_hull[of convex, OF assms(1), symmetric, of \(c\) ]
by force
have \(\operatorname{norm}(a / R\) norm \(a)=1\)
```

```
    by (simp add: ab(1))
    moreover have \((\forall y \in c .0 \leq y \cdot(a / R\) norm \(a))\)
    using hull_subset[of c convex] ab by (force simp: inner_commute)
    ultimately have \(\exists x\). norm \(x=1 \wedge(\forall y \in c .0 \leq\) inner \(y x)\)
    by blast
    then show frontier (cball 01 ) \(\cap \bigcap f \neq\{ \}\)
    unfolding \(c(1)\) frontier_cball sphere_def dist_norm by auto
    qed
    have frontier (cball 01\() \cap(\cap(? k ' S)) \neq\{ \}\)
    by (rule compact_imp_fip) (use * closed_halfspace_ge in auto)
    then obtain \(x\) where norm \(x=1 \forall y \in S . x \in ? k y\)
    unfolding frontier_cball dist_norm sphere_def by auto
    then show ?thesis
    by (metis inner_commute mem_Collect_eq norm_eq_zero zero_neq_one)
qed
lemma separating_hyperplane_sets:
    fixes \(S T\) :: 'a::euclidean_space set
    assumes convex \(S\)
        and convex \(T\)
        and \(S \neq\{ \}\)
        and \(T \neq\{ \}\)
        and \(S \cap T=\{ \}\)
    shows \(\exists a b\). \(a \neq 0 \wedge(\forall x \in S\). inner \(a x \leq b) \wedge(\forall x \in T\). inner a \(x \geq b)\)
proof -
    from separating_hyperplane_set_0[OF convex_differences[OF assms(2,1)]]
    obtain \(a\) where \(a \neq 0 \forall x \in\{x-y \mid x y . x \in T \wedge y \in S\}\). \(0 \leq\) inner a \(x\)
        using assms \((3-5)\) by force
    then have \(*: \bigwedge x y . x \in T \Longrightarrow y \in S \Longrightarrow\) inner a \(y \leq\) inner a \(x\)
        by (force simp: inner_diff)
    then have bdd: bdd_above \(\left(((\cdot) a)^{\prime} S\right)\)
        using \(\langle T \neq\{ \}\rangle\) by (auto intro: bdd_aboveI2[OF *])
    show ?thesis
        using \(\langle a \neq 0\) 〉
        by (intro ex \([\) [of _ \(a]\) exI \(\left[o f_{-} S U P x \in S . a \cdot x\right]\) )
            (auto intro!: cSUP_upper bdd cSUP_least \(\langle a \neq 0\rangle\langle S \neq\{ \}\rangle *)\)
qed
```


4.2.6 More convexity generalities

```
lemma convex_closure [intro,simp]:
fixes \(S\) :: ' \(a\) ::real_normed_vector set
assumes convex \(S\)
shows convex (closure \(S\) )
apply (rule convexI)
unfolding closure_sequential
apply (elim exE)
subgoal for \(x y u v f g\)
by (rule_tac \(x=\lambda n . u *_{R} f n+v *_{R} g n\) in exI) (force intro: tendsto_intros
```

```
dest: convexD [OF assms])
    done
lemma convex_interior [intro,simp]:
    fixes S :: 'a::real_normed_vector set
    assumes convex S
    shows convex (interior S)
    unfolding convex_alt Ball_def mem_interior
proof clarify
    fix x y u
    assume u:0\lequu\leq(1::real)
    fix ed
    assume ed: ball x e\subseteqS ball y d\subseteqS 0<d 0<e
    show }\existse>0\mathrm{ . ball ((1-u)*R}x+u\mp@subsup{*}{R}{}y)e\subseteq
    proof (intro exI conjI subsetI)
        fix z
        assume z:z\inball ((1-u)\mp@subsup{*}{R}{}x+u\mp@subsup{*}{R}{}y)(\operatorname{min}de)
        have }(1-u)\mp@subsup{*}{R}{}(z-u\mp@subsup{*}{R}{}(y-x))+u\mp@subsup{*}{R}{}(z+(1-u)*\mp@subsup{*}{R}{}(y-x))\in
        proof (rule_tac assms[unfolded convex_alt, rule_format])
            show z-u**R}(y-x)\inSz+(1-u)\mp@subsup{*}{R}{}(y-x)\in
                using ed zu by (auto simp add: algebra_simps dist_norm)
    qed (use }u\mathrm{ in auto)
    then show z\inS
        using u by (auto simp: algebra_simps)
    qed(use u ed in auto)
qed
lemma convex_hull_eq_empty[simp]: convex hull S={}\longleftrightarrow}\longleftrightarrowS={
    using hull_subset[of S convex] convex_hull_empty by auto
```


4.2.7 Convex set as intersection of halfspaces

```
lemma convex_halfspace_intersection:
    fixes \(S::\) ('a::euclidean_space) set
    assumes closed \(S\) convex \(S\)
    shows \(S=\bigcap\{h . S \subseteq h \wedge(\exists a b . h=\{x\). inner \(a x \leq b\})\}\)
proof -
    \{ fix \(z\)
        assume \(\forall T . S \subseteq T \wedge(\exists a b . T=\{x\). inner \(a x \leq b\}) \longrightarrow z \in T z \notin S\)
        then have \(\S: \bigwedge a b . S \subseteq\{x\). inner \(a x \leq b\} \Longrightarrow z \in\{x\). inner \(a x \leq b\}\)
            by blast
        obtain \(a b\) where inner \(a z<b(\forall x \in S\). inner \(a x>b)\)
            using \(\langle z \notin S\rangle\) assms separating_hyperplane_closed_point by blast
        then have False
            using § [of \(-a-b]\) by fastforce
    \}
    then show ?thesis
        by force
qed
```


4.2.8 Convexity of general and special intervals

lemma is_interval_convex:
fixes S :: 'a::euclidean_space set
assumes is_interval S
shows convex S
proof (rule convexI)
fix $x y$ and $u v::$ real
assume $x \in S y \in S$ and $u v: 0 \leq u 0 \leq v u+v=1$
then have $*: u=1-v 1-v \geq 0$ and $* *: v=1-u 1-u \geq 0$
by auto
\{
fix $a b$
assume $\neg b \leq u * a+v * b$
then have $u * a<(1-v) * b$
unfolding not_le using $\langle 0 \leq v\rangle$ by (auto simp: field_simps)
then have $a<b$
using $*(1)$ less_eq_real_def $u v(1)$ by auto
then have $a \leq u * a+v * b$
unfolding $*$ using $\langle 0 \leq v\rangle$
by (auto simp: field_simps intro!:mult_right_mono)
\}
moreover
\{
fix $a b$
assume $\neg u * a+v * b \leq a$
then have $v * b>(1-u) * a$
unfolding not_le using $\langle 0 \leq v\rangle$ by (auto simp: field_simps)
then have $a<b$
unfolding $*$ using $\langle 0 \leq v\rangle$
by (rule_tac mult_left_less_imp_less) (auto simp: field_simps)
then have $u * a+v * b \leq b$
unfolding $* *$
using $* *(2)\langle 0 \leq u\rangle$ by (auto simp: algebra_simps mult_right_mono)
\}
ultimately show $u *_{R} x+v *_{R} y \in S$
using DIM_positive[where ' $a==^{\prime} a$]
by (intro mem_is_intervall $[O F$ assms $\langle x \in S\rangle\langle y \in S\rangle]$) (auto simp: inner_simps)
qed
lemma is_interval_connected:
fixes S :: 'a::euclidean_space set
shows is_interval $S \Longrightarrow$ connected S
using is_interval_convex convex_connected by auto
lemma convex_box [simp]: convex (cbox a b) convex (box a (b::'a::euclidean_space))
by (auto simp add: is_interval_convex)
A non-singleton connected set is perfect (i.e. has no isolated points).
lemma connected_imp_perfect:

```
    fixes a :: 'a::metric_space
    assumes connected Sa\inS and S: \bigwedgex.S\not={x}
    shows a islimpt S
proof -
    have False if a\inT open T \y.\llbrackety\inS;y\inT\rrbracket\Longrightarrowy=a for T
    proof -
        obtain e where e>0 and e: cball a e\subseteqT
            using <open T\rangle\langlea\inT\rangle by (auto simp: open_contains_cball)
        have openin (top_of_set S) {a}
            unfolding openin_open using that \langlea \inS by blast
        moreover have closedin (top_of_set S) {a}
            by (simp add: assms)
        ultimately show False
            using <connected S`connected_clopen S by blast
    qed
    then show ?thesis
        unfolding islimpt_def by blast
qed
lemma connected_imp_perfect_aff_dim:
    \llbracketconnected S; aff_dim S = 0;a\inS\rrbracket\Longrightarrowa islimpt S
    using aff_dim_sing connected_imp_perfect by blast
```


4.2.9 On real, is_interval, convex and connected are all equivalent

lemma mem_is_interval_1_I:
fixes $a b c:$:real
assumes is_interval S
assumes $a \in S c \in S$
assumes $a \leq b b \leq c$
shows $b \in S$
using assms is_interval_1 by blast
lemma is_interval_connected_1:
fixes S :: real set
shows is_interval $S \longleftrightarrow$ connected S
by (meson connected_iff_interval is_interval_1)
lemma is_interval_convex_1:
fixes S :: real set
shows is_interval $S \longleftrightarrow$ convex S
by (metis is_interval_convex convex_connected is_interval_connected_1)
lemma connected_compact_interval_1:
connected $S \wedge$ compact $S \longleftrightarrow(\exists a b . S=\{a . . b::$ real $\})$
by (auto simp: is_interval_connected_1 [symmetric] is_interval_compact)
lemma connected_convex_1:
fixes S :: real set

```
shows connected \(S \longleftrightarrow\) convex \(S\)
by (metis is_interval_convex convex_connected is_interval_connected_1)
lemma connected_convex_1_gen:
    fixes \(S\) :: ' \(a\) :: euclidean_space set
    assumes \(\operatorname{DIM}\left({ }^{\prime} a\right)=1\)
    shows connected \(S \longleftrightarrow\) convex \(S\)
proof -
    obtain \(f::{ }^{\prime} a \Rightarrow\) real where \(\operatorname{linf}\) : linear \(f\) and \(\operatorname{inj} f\)
        using subspace_isomorphism[OF subspace_UNIV subspace_UNIV,
            where ' \(a={ }^{\prime} a\) and ' \(\left.b=r e a l\right]\)
        unfolding Euclidean_Space.dim_UNIV
        by (auto simp: assms)
    then have \(f-{ }^{\prime}(f\) ' \(S)=S\)
        by (simp add: inj_vimage_image_eq)
    then show ?thesis
        by (metis connected_convex_1 convex_linear_vimage linf convex_connected con-
nected_linear_image)
qed
lemma [simp]:
    fixes \(r s:\) :real
    shows is_interval_io: is_interval \(\{. .<r\}\)
        and is_interval_oi: is_interval \(\{r<.\).
        and is_interval_oo: is_interval \(\{r<. .<s\}\)
        and is_interval_oc: is_interval \(\{r<. . s\}\)
        and is_interval_co: is_interval \(\{r . .<s\}\)
    by (simp_all add: is_interval_convex_1)
```


4.2.10 Another intermediate value theorem formulation

lemma ivt_increasing_component_on_1:
fixes $f::$ real \Rightarrow ' $a:$:euclidean_space
assumes $a \leq b$
and continuous_on $\{a . . b\} f$
and $(f a) \cdot k \leq y y \leq(f b) \cdot k$
shows $\exists x \in\{a . . b\} .(f x) \cdot k=y$
proof -
have $f a \in f$ 'cbox abfb f 'cbox $a b$ using $\langle a \leq b\rangle$ by auto
then show? ?thesis using connected_ivt_component[off'cbox abfafbky] by (simp add: connected_continuous_image assms)
qed
lemma ivt_increasing_component_1:
fixes $f::$ real $\Rightarrow{ }^{\prime} a::$ euclidean_space
shows $a \leq b \Longrightarrow \forall x \in\{a . . b\}$. continuous (at $x) f \Longrightarrow$
$f a \cdot k \leq y \Longrightarrow y \leq f b \cdot k \Longrightarrow \exists x \in\{a . . b\} .(f x) \cdot k=y$
by (rule ivt_increasing_component_on_1) (auto simp: continuous_at_imp_continuous_on)

```
lemma ivt_decreasing_component_on_1:
    fixes f :: real => 'a::euclidean_space
    assumes a\leqb
        and continuous_on {a..b}f
        and (fb)\cdotk\leqy
        and y}\leq(fa)\cdot
    shows }\existsx\in{a..b}.(fx)\cdotk=
    using ivt_increasing_component_on_1[of a b \lambdax. - f x k - y] neg_equal_iff_equal
    using assms continuous_on_minus by force
lemma ivt_decreasing_component_1:
    fixes f :: real = ' 'a::euclidean_space
    shows }a\leqb\Longrightarrow\forallx\in{a..b}.continuous (at x) f
        fb\cdotk\leqy\Longrightarrowy\leqfa\cdotk\Longrightarrow\existsx\in{a..b}.(fx)\cdotk=y
    by (rule ivt_decreasing_component_on_1) (auto simp: continuous_at_imp_continuous_on)
```


4.2.11 A bound within an interval

lemma convex_hull_eq_real_cbox:
fixes $x y$:: real assumes $x \leq y$
shows convex hull $\{x, y\}=$ cbox $x y$
proof (rule hull_unique)
show $\{x, y\} \subseteq$ cbox $x y$ using $\langle x \leq y\rangle$ by auto
show convex (cbox x y)
by (rule convex_box)
next
fix S assume $\{x, y\} \subseteq S$ and convex S
then show cbox $x y \subseteq S$
unfolding is_interval_convex_1 [symmetric] is_interval_def Basis_real_def by - (clarify, simp (no_asm_use), fast)
qed
lemma unit_interval_convex_hull:
cbox ($0::$ 'a::euclidean_space) One $=$ convex hull $\{x . \forall i \in$ Basis. $(x \cdot i=0) \vee(x \cdot i$
$=1)\}$
(is ?int $=$ convex hull ?points)
proof -
have One[simp]: $\bigwedge i . i \in$ Basis \Longrightarrow One $\cdot i=1$
by (simp add: inner_sum_left sum.If_cases inner_Basis)
have ? int $=\{x . \forall i \in$ Basis. $x \cdot i \in \operatorname{cbox} 01\}$
by (auto simp: cbox_def)
also have $\ldots=\left(\sum i \in\right.$ Basis. $\left(\lambda x . x *_{R} i\right) '$ cbox 01$)$
by (simp only: box_eq_set_sum_Basis)
also have $\ldots=\left(\sum i \in\right.$ Basis. $\left(\lambda x . x *_{R} i\right)$ '(convex hull $\left.\left.\{0,1\}\right)\right)$ by (simp only: convex_hull_eq_real_cbox zero_le_one)
also have $\ldots=\left(\sum i \in\right.$ Basis. convex hull $\left(\left(\lambda x . x *_{R} i\right)\right.$ ' $\left.\left.\{0,1\}\right)\right)$
by (simp add: convex_hull_linear_image)

```
also have \(\ldots=\) convex hull \(\left(\sum i \in\right.\) Basis. \(\left(\lambda x . x *_{R} i\right)\) ' \(\left.\{0,1\}\right)\)
    by (simp only: convex_hull_set_sum)
    also have \(\ldots=\) convex hull \(\{x . \forall i \in\) Basis. \(x \cdot i \in\{0,1\}\}\)
    by (simp only: box_eq_set_sum_Basis)
    also have convex hull \(\{x . \forall i \in\) Basis. \(x \cdot i \in\{0,1\}\}=\) convex hull ?points
    by \(\operatorname{simp}\)
    finally show ?thesis .
qed
And this is a finite set of vertices.
lemma unit_cube_convex_hull:
obtains \(S\) :: 'a::euclidean_space set
where finite \(S\) and cbox \(0\left(\sum\right.\) Basis \()=\) convex hull \(S\)
proof
show finite \(\left\{x::^{\prime} a . \forall i \in\right.\) Basis. \(\left.x \cdot i=0 \vee x \cdot i=1\right\}\)
proof (rule finite_subset, clarify)
show finite \(\left(\left(\lambda S . \sum i \in\right.\right.\) Basis. (if \(i \in S\) then 1 else 0\(\left.) *_{R} i\right)\) 'Pow Basis)
using finite_Basis by blast
fix \(x::{ }^{\prime} a\)
assume \(x\) : \(\forall i \in\) Basis. \(x \cdot i=0 \vee x \cdot i=1\)
show \(x \in\left(\lambda S . \sum i \in\right.\) Basis. (if \(i \in S\) then 1 else 0) \(*_{R} i\) )'Pow Basis
apply (rule image_eqI[where \(x=\{i . i \in\) Basis \(\wedge x \cdot i=1\}]\) )
using \(x\)
by (subst euclidean_eq_iff, auto)
qed
show cbox 0 One \(=\) convex hull \(\{x . \forall i \in\) Basis. \(x \cdot i=0 \vee x \cdot i=1\}\)
using unit_interval_convex_hull by blast
qed
```

Hence any cube (could do any nonempty interval).
lemma cube_convex_hull:
assumes $d>0$
obtains S :: 'a::euclidean_space set where
finite S and cbox $\left(x-\left(\sum i \in\right.\right.$ Basis. $\left.\left.d *_{R} i\right)\right)\left(x+\left(\sum i \in\right.\right.$ Basis. $\left.\left.d *_{R} i\right)\right)=$ convex
hull S
proof -
let ? $d=\left(\sum i \in\right.$ Basis. $\left.d *_{R} i\right)::^{\prime} a$
have *: cbox $(x-$? $d)(x+$? $d)=\left(\lambda y . x-? d+(2 * d) *_{R} y\right)$ ' cbox 0
(\sum Basis)
proof (intro set_eqI iffI)
fix y
assume $y \in \operatorname{cbox}(x-? d)(x+? d)$
then have inverse $(2 * d) *_{R}(y-(x-? d)) \in \operatorname{cbox} 0\left(\sum\right.$ Basis $)$
using assms by (simp add: mem_box inner_simps) (simp add: field_simps)
with $\langle 0<d\rangle$ show $y \in\left(\lambda y . x-\operatorname{sum}\left(\left(*_{R}\right) d\right)\right.$ Basis $\left.+\left(2 *_{d}\right) *_{R} y\right)$ 'cbox 0 One
by (auto intro: image_eq $\left[\right.$ where $x=$ inverse $\left.\left.(2 * d) *_{R}(y-(x-? d))\right]\right)$
next
fix y

```
    assume \(y \in\left(\lambda y . x-? d+(2 * d) *_{R} y\right)\) 'cbox 0 One
    then obtain \(z\) where \(z: z \in \operatorname{cbox} 0\) One \(y=x-? d+(2 * d) *_{R} z\)
        by auto
    then show \(y \in \operatorname{cbox}(x-\) ? \(d)(x+\) ? \(d)\)
    using \(z\) assms by (auto simp: mem_box inner_simps)
    qed
    obtain \(S\) where finite \(S\) cbox \(0\left(\sum\right.\) Basis::'a) \(=\) convex hull \(S\)
    using unit_cube_convex_hull by auto
    then show ?thesis
        by (rule_tac that \(\left[\right.\) of \(\left.\left(\lambda y . x-? d+(2 * d) *_{R} y\right)^{6} S\right]\) ) (auto simp: con-
vex_hull_affinity *)
qed
```


4.2.12 Representation of any interval as a finite convex hull

lemma image_stretch_interval:
($\lambda x . \sum k \in$ Basis. $\left.(m k *(x \cdot k)) *_{R} k\right)$ 'cbox a (b::'a::euclidean_space $)=$
(if $($ cbox ab) $)=\{ \}$ then $\}$ else
cbox $\left(\sum k \in\right.$ Basis. $\left.(\min (m k *(a \cdot k))(m k *(b \cdot k))) *_{R} k::^{\prime} a\right)$
$\left(\sum k \in\right.$ Basis. $\left.\left.(\max (m k *(a \cdot k))(m k *(b \cdot k))) *_{R} k\right)\right)$
proof cases
assume $*$: cbox a $b \neq\{ \}$
show ? thesis
unfolding box_ne_empty if_not_P[OF *]
apply (simp add: cbox_def image_Collect set_eq_iff euclidean_eq_iff [where ' $a={ }^{\prime} a$]
ball_conj_distrib[symmetric])
apply (subst choice_Basis_iff [symmetric])
proof (intro allI ball_cong reft)
fix $x i::$ ' a assume $i \in$ Basis
with * have $a_{-} l l_{-} b: a \cdot i \leq b \cdot i$
unfolding box_ne_empty by auto
show $(\exists x a . x \cdot i=m i * x a \wedge a \cdot i \leq x a \wedge x a \leq b \cdot i) \longleftrightarrow$
$\min (m i *(a \cdot i))(m i *(b \cdot i)) \leq x \cdot i \wedge x \cdot i \leq \max (\operatorname{mi*}(a \cdot i))$
$(m i *(b \cdot i))$
proof (cases mi=0)
case True
with a_le_b show ?thesis by auto
next
case False
then have $*: \bigwedge a b . a=m i * b \longleftrightarrow b=a / m i$
by (auto simp: field_simps)
from False have
$\min (m i *(a \cdot i))(m i *(b \cdot i))=($ if $0<m i$ then $m i *(a \cdot i)$ else m $i *(b \cdot i))$
$\max (m i *(a \cdot i))(m i *(b \cdot i))=($ if $0<m i$ then $m i *(b \cdot i)$ else m $i *(a \cdot i))$
using $a_{-} l e _b$ by (auto simp: min_def max_def mult_le_cancel_left)
with False show ? thesis using $a_{-} l e _b *$
by (simp add: le_divide_eq divide_le_eq) (simp add: ac_simps)

```
        qed
    qed
qed simp
lemma interval_image_stretch_interval:
    \existsu v. (\lambdax. \sumk\inBasis. (mk* (x\cdotk))*R k)' cbox a (b::'a::euclidean_space) =
cbox u (v::'a::euclidean_space)
    unfolding image_stretch_interval by auto
lemma cbox_translation: cbox (c+a)(c+b)= image ( }\lambda\times2.c+x)(\mathrm{ cbox a b)
    using image_affinity_cbox [of 1 c a b]
    using box_ne_empty [of a+c b+c] box_ne_empty [of a b]
    by (auto simp: inner_left_distrib add.commute)
lemma cbox_image_unit_interval:
    fixes a :: 'a::euclidean_space
    assumes cbox a b}\not={
        shows cbox a b=
            (+)a``(\lambdax. \sumk\inBasis. ((b | k-a\cdotk)* (x | k)) *R k)'cbox 0 One
using assms
apply (simp add: box_ne_empty image_stretch_interval cbox_translation [symmetric])
apply (simp add: min_def max_def algebra_simps sum_subtractf euclidean_representation)
done
lemma closed_interval_as_convex_hull:
    fixes a :: 'a::euclidean_space
    obtains S where finite S cbox a b = convex hull S
proof (cases cbox a b={})
    case True with convex_hull_empty that show ?thesis
        by blast
next
    case False
    obtain S::'a set where finite S and eq: cbox 0 One = convex hull S
        by (blast intro: unit_cube_convex_hull)
    let ?S = ((+) a'`}(\lambdax.\sumk\inBasis. ((b | k - a | k)* (x •k)) *R k)'S
    show thesis
    proof
        show finite ?S
            by (simp add: <finite S`)
            have lin:linear ( }\lambdax.\sumk\in\mathrm{ Basis. ((b | k - a | k)* (x •k)) *R}
            by (rule linear_compose_sum) (auto simp: algebra_simps linearI)
            show cbox a b = convex hull ?S
                using convex_hull_linear_image [OF lin]
            by (simp add: convex_hull_translation eq cbox_image_unit_interval [OF False])
    qed
qed
```


4.2.13 Bounded convex function on open set is continuous

lemma convex_on_bounded_continuous:
fixes $S::$ ('a::real_normed_vector) set
assumes open S
and convex_on $S f$
and $\forall x \in S .|f x| \leq b$
shows continuous_on $S f$
proof -
have $\exists d>0 . \forall x^{\prime} . \operatorname{norm}\left(x^{\prime}-x\right)<d \longrightarrow\left|f x^{\prime}-f x\right|<e$ if $x \in S e>0$ for x
and $e::$ real
proof -
define B where $B=|b|+1$
then have $B: \quad 0<B \bigwedge x . x \in S \Longrightarrow|f x| \leq B$
using assms(3) by auto
obtain k where $k>0$ and $k:$ cball $x k S$
using $\langle x \in S\rangle$ assms(1) open_contains_cball_eq by blast
show $\exists d>0 . \forall x^{\prime}$. norm $\left(x^{\prime}-x\right)<d \longrightarrow\left|f x^{\prime}-f x\right|<e$
proof (intro exI conjI allI impI)
fix y
assume as: norm $(y-x)<\min (k / 2)(e /(2 * B) * k)$
show $|f y-f x|<e$
proof (cases $y=x$)
case False
define t where $t=k / \operatorname{norm}(y-x)$
have $2<t 0<t$
unfolding t_{-}def using as False and $\langle k>0\rangle$
by (auto simp:field_simps)
have $y \in S$
apply (rule $k[$ THEN subsetD])
unfolding mem_cball dist_norm
apply (rule order_trans[of_2* norm $(x-y)])$
using as
by (auto simp: field_simps norm_minus_commute) \{
define w where $w=x+t *_{R}(y-x)$
have $w \in S$ using $\langle k\rangle 0\rangle$ by (auto simp: dist_norm t_{-}def w_{-}def $k[$ THEN subsetD $]$)
have $(1 / t) *_{R} x+-x+((t-1) / t) *_{R} x=(1 / t-1+(t-1)$
$/ t) *_{R} x$
by (auto simp: algebra_simps)
also have $\ldots=0$
using $\langle t\rangle 0\rangle$ by (auto simp:field_simps)
finally have $w:(1 / t) *_{R} w+((t-1) / t) *_{R} x=y$
unfolding w_{-}def using False and $\langle t>0\rangle$
by (auto simp: algebra_simps)
have 2: $2 * B<e * t$
unfolding t_{-}def using $\langle 0<e\rangle\langle 0<k\rangle\langle B>0\rangle$ and as and False
by (auto simp:field_simps)
have $f y-f x \leq(f w-f x) / t$
using assms(2)[unfolded convex_on_def,rule_format,of wx $1 / t(t-1) / t$, unfolded w]

```
            using <0<t\rangle\langle2<t\rangle and \langlex\inS\rangle\langlew\inS\rangle
```

 by (auto simp:field_simps)
 also have...$<e$
using $B($ 2 $)[O F\langle w \in S\rangle$ and $B(2)[O F\langle x \in S\rangle] 2\langle t>0\rangle$ by (auto simp: field_simps)
finally have th1: $f y-f x<e$.
\}
moreover
\{
define w where $w=x-t *_{R}(y-x)$
have $w \in S$
using $\langle k>0\rangle$ by (auto simp: dist_norm t_def w_{-}def $k[$ THEN subsetD])
have $(1 /(1+t)) *_{R} x+(t /(1+t)) *_{R} x=(1 /(1+t)+t /(1$ $+t)) *_{R} x$
by (auto simp: algebra_simps)
also have $\ldots=x$ using $\langle t>0\rangle$ by (auto simp:field_simps)
finally have $w:(1 /(1+t)) *_{R} w+(t /(1+t)) *_{R} y=x$ unfolding w_{-}def using False and $\langle t>0\rangle$
by (auto simp: algebra_simps)
have $2 * B<e * t$
unfolding $t_{-} d e f$
using $\langle 0<e\rangle\langle 0<k\rangle\langle B>0\rangle$ and as and False
by (auto simp:field_simps)
then have $*:(f w-f y) / t<e$
using $B(2)[O F\langle w \in S\rangle]$ and $B(2)[O F\langle y \in S\rangle]$
using $\langle t>0\rangle$
by (auto simp:field_simps)
have $f x \leq 1 /(1+t) * f w+(t /(1+t)) * f y$
using assms(2)[unfolded convex_on_def,rule_format,of wy $1 /(1+t) t /$
$(1+t)$, unfolded $w]$
using $\langle 0<t\rangle\langle 2<t\rangle$ and $\langle y \in S\rangle\langle w \in S\rangle$
by (auto simp:field_simps)
also have $\ldots=(f w+t * f y) /(1+t)$
using $\langle t>0\rangle$ by (simp add: add_divide_distrib)
also have $\ldots<e+f y$
using $\langle t>0\rangle *\langle e>0\rangle$ by (auto simp: field_simps)
finally have $f x-f y<e$ by auto
\}
ultimately show ?thesis by auto
qed (use $\langle 0<e\rangle$ in auto)
qed (use $\langle 0<e\rangle\langle 0<k\rangle\langle 0<B\rangle$ in \langle auto simp: field_simps \rangle)
qed
then show ?thesis
by (metis continuous_on_iff dist_norm real_norm_def)
qed

4.2.14 Upper bound on a ball implies upper and lower bounds

lemma convex_bounds_lemma:
fixes $x::$ ' $a::$ real_normed_vector
assumes convex_on (cball x e) f
and $\forall y \in \operatorname{cball} x$ e. $f y \leq b$ and $y: y \in \operatorname{cball} x e$
shows $|f y| \leq b+2 *|f x|$
proof (cases $0 \leq e$)
case True
define z where $z=2 *_{R} x-y$
have $*: x-\left(2 *_{R} x-y\right)=y-x$
by (simp add: scaleR_2)
have $z: z \in \operatorname{cball} x e$
using y unfolding z_{-}def mem_cball dist_norm $*$ by (auto simp: norm_minus_commute)
have $(1 / 2) *_{R} y+(1 / 2) *_{R} z=x$
unfolding z_{-}def by (auto simp: algebra_simps)
then show $|f y| \leq b+2 *|f x|$
using assms(1)[unfolded convex_on_def,rule_format, OF yz, of 1/2 1/2]
using assms(2)[rule_format, OF y] assms(2)[rule_format, $O F \quad z]$
by (auto simp:field_simps)
next
case False
have dist $x y<0$
using False y unfolding mem_cball not_le by (auto simp del: dist_not_less_zero)
then show $|f y| \leq b+2 *|f x|$ using zero_le_dist $[$ of $x y]$ by auto
qed

Hence a convex function on an open set is continuous

```
lemma real_of_nat_ge_one_iff: \(1 \leq r e a l(n:: n a t) \longleftrightarrow 1 \leq n\)
    by auto
lemma convex_on_continuous:
    assumes open ( \(s::\left({ }^{\prime} a::\right.\) euclidean_space) set) convex_on \(s f\)
    shows continuous_on sf
    unfolding continuous_on_eq_continuous_at[OF assms(1)]
proof
    note dimge1 \(=\) DIM_positive \(\left[\right.\) where \(\left.{ }^{\prime} a={ }^{\prime} a\right]\)
    fix \(x\)
    assume \(x \in s\)
    then obtain \(e\) where \(e\) : cball \(x e \subseteq s e>0\)
        using assms(1) unfolding open_contains_cball by auto
    define \(d\) where \(d=e / \operatorname{real} \operatorname{DIM}\left({ }^{\prime} a\right)\)
    have \(0<d\)
        unfolding \(d_{\text {_def }}\) using \(\langle e>0\rangle\) dimge1 by auto
    let ? \(d=\left(\sum i \in\right.\) Basis. \(\left.d *_{R} i\right)::^{\prime} a\)
    obtain \(c\)
        where \(c\) : finite \(c\)
        and c1: convex hull \(c \subseteq\) cball \(x e\)
```

```
    and c2: cball \(x d \subseteq\) convex hull \(c\)
    proof
    define \(c\) where \(c=\left(\sum i \in\right.\) Basis. \(\left(\lambda a . a *_{R} i\right)\) ' \(\left.\{x \cdot i-d, x \cdot i+d\}\right)\)
    show finite \(c\)
        unfolding \(c_{-}\)def by (simp add: finite_set_sum)
    have \(\bigwedge i . i \in\) Basis \(\Longrightarrow\) convex hull \(\{x \cdot i-d, x \cdot i+d\}=\operatorname{cbox}(x \cdot i-d)\)
\((x \cdot i+d)\)
            using \(\langle 0<d\rangle\) convex_hull_eq_real_cbox by auto
    then have 1: convex hull \(c=\{a . \forall i \in\) Basis. \(a \cdot i \in \operatorname{cbox}(x \cdot i-d)(x \cdot i+\)
d) \(\}\)
            unfolding box_eq_set_sum_Basis c_def convex_hull_set_sum
            apply (subst convex_hull_linear_image [symmetric])
            by (force simp add: linear_iff scaleR_add_left)+
    then have 2: convex hull \(c=\{a . \forall i \in\) Basis. \(a \cdot i \in \operatorname{cball}(x \cdot i) d\}\)
        by (simp add: dist_norm abs_le_iff algebra_simps)
    show cball \(x d \subseteq\) convex hull \(c\)
        unfolding 2
    by (clarsimp simp: dist_norm) (metis inner_commute inner_diff_right norm_bound_Basis_le)
    have \(e^{\prime}: e=\left(\sum\left(i::^{\prime} a\right) \in\right.\) Basis. \(\left.d\right)\)
        by (simp add: d_def)
    show convex hull \(c \subseteq\) cball \(x\) e
        unfolding 2
    proof clarsimp
        show dist \(x y \leq e\) if \(\forall i \in\) Basis. dist \((x \cdot i)(y \cdot i) \leq d\) for \(y\)
        proof -
            have \(\bigwedge i . i \in \operatorname{Basis} \Longrightarrow 0 \leq \operatorname{dist}(x \cdot i)(y \cdot i)\)
                by \(\operatorname{simp}\)
            have \(\left(\sum i \in\right.\) Basis. dist \(\left.(x \cdot i)(y \cdot i)\right) \leq e\)
                using \(e^{\prime}\) sum_mono that by fastforce
            then show ?thesis
                by (metis (mono_tags) euclidean_dist_l2 order_trans [OF L2_set_le_sum]
zero_le_dist)
            qed
    qed
    qed
    define \(k\) where \(k=\operatorname{Max}\left(f^{‘} c\right)\)
    have convex_on (convex hull c) \(f\)
    using assms(2) c1 convex_on_subset e(1) by blast
    then have \(k: \forall y \in\) convex hull c. f \(y \leq k\)
    using \(c\) convex_on_convex_hull_bound \(k\) _def by fastforce
    have \(e \leq e *\) real DIM ('a)
    using \(e(2)\) real_of_nat_ge_one_iff by auto
    then have \(d \leq e\)
    by (simp add: d_def field_split_simps)
    then have dsube: cball \(x d \subseteq \operatorname{cball} x e\)
    by (rule subset_cball)
    have conv: convex_on (cball xd) f
    using 〈convex_on (convex hull c) f〉c2 convex_on_subset by blast
    then have \(\bigwedge y . y \in \operatorname{cball} x d \Longrightarrow|f y| \leq k+2 *|f x|\)
```

```
    by (rule convex_bounds_lemma) (use c2 \(k\) in blast)
    then have continuous_on (ball xd) \(f\)
    by (meson Elementary_Metric_Spaces.open_ball ball_subset_cball conv convex_on_bounded_continuous
    convex_on_subset mem_ball_imp_mem_cball)
    then show continuous (at \(x\) ) \(f\)
    unfolding continuous_on_eq_continuous_at[OF open_ball]
    using \(\langle d>0\rangle\) by auto
qed
end
```


4.3 Operator Norm

theory Operator_Norm
imports Complex_Main
begin
This formulation yields zero if ' a is the trivial vector space.

definition

onorm :: ('a::real_normed_vector $\Rightarrow{ }^{\prime} b::$ real_normed_vector) \Rightarrow real where onorm $f=(S U P x . \operatorname{norm}(f x) /$ norm $x)$
proposition onorm_bound:
assumes $0 \leq b$ and $\bigwedge x$.norm $(f x) \leq b *$ norm x
shows onorm $f \leq b$
unfolding onorm_def
proof (rule cSUP_least)
fix x
show norm $(f x) /$ norm $x \leq b$
using assms by (cases $x=0$) (simp_all add: pos_divide_le_eq)
qed simp
In non-trivial vector spaces, the first assumption is redundant.

```
lemma onorm_le:
    fixes \(f::\) ' \(a::\{\) real_normed_vector, perfect_space \(\} \Rightarrow{ }^{\prime} b::\) real_normed_vector
    assumes \(\bigwedge x\). norm \((f x) \leq b *\) norm \(x\)
    shows onorm \(f \leq b\)
proof (rule onorm_bound [OF _ assms])
    have \(\left\{0::^{\prime} a\right\} \neq\) UNIV by (metis not_open_singleton open_UNIV)
    then obtain \(a::\) ' \(a\) where \(a \neq 0\) by fast
    have \(0 \leq b *\) norm \(a\)
        by (rule order_trans [OF norm_ge_zero assms])
    with \(\langle a \neq 0\rangle\) show \(0 \leq b\)
        by (simp add: zero_le_mult_iff)
qed
lemma le_onorm:
```

```
    assumes bounded_linear f
    shows norm ( fx) / norm x \leq onorm f
proof -
    interpret f:bounded_linear f by fact
    obtain b}\mathrm{ where 0}\leqb\mathrm{ and }\forallx\mathrm{ . norm (fx) <norm x*b
        using f.nonneg_bounded by auto
    then have }\forallx\mathrm{ . norm ( fx)/ norm x }\leq
        by (clarify, case_tac x = 0,
            simp_all add: f.zero pos_divide_le_eq mult.commute)
    then have bdd_above (range ( }\lambdax.norm (fx)/ norm x)
        unfolding bdd_above_def by fast
    with UNIV_I show ?thesis
        unfolding onorm_def by (rule cSUP_upper)
qed
lemma onorm:
    assumes bounded_linear f
    shows norm (fx)\leqonorm f* norm x
proof -
    interpret f: bounded_linear f by fact
    show ?thesis
    proof (cases)
        assume x=0
        then show ?thesis by (simp add: f.zero)
    next
        assume }x\not=
        have norm (fx) / norm x \leqonorm f
            by (rule le_onorm [OF assms])
        then show norm (fx) \leqonorm f * norm x
            by (simp add: pos_divide_le_eq «x }=0\\mathrm{ )
    qed
qed
lemma onorm_pos_le:
    assumes f: bounded_linear f
    shows 0\leq onorm f
    using le_onorm [OF f, where x=0] by simp
lemma onorm_zero: onorm ( }\lambdax.0)=
proof (rule order_antisym)
    show onorm ( }\lambdax.0)\leq
        by (simp add: onorm_bound)
    show 0 \leq onorm ( }\lambdax.0
        using bounded_linear_zero by (rule onorm_pos_le)
qed
lemma onorm_eq_0:
    assumes f: bounded_linear f
    shows onorm f=0 \longleftrightarrow(\forallx.fx=0)
```

```
using onorm \([O F f]\) by (auto simp: fun_eq_iff [symmetric] onorm_zero)
lemma onorm_pos_lt:
    assumes \(f\) : bounded_linear \(f\)
    shows \(0<\) onorm \(f \longleftrightarrow \neg(\forall x . f x=0)\)
    by (simp add: less_le onorm_pos_le [OF f] onorm_eq_0 [OF f])
lemma onorm_id_le: onorm \((\lambda x . x) \leq 1\)
    by (rule onorm_bound) simp_all
```

lemma onorm_id: onorm $\left(\lambda x . x::^{\prime} a::\left\{r e a l _n o r m e d _v e c t o r, ~ p e r f e c t _s p a c e\right\}\right)=1$
proof (rule antisym $[$ OF onorm_id_le $]$)
have $\left\{0::^{\prime} a\right\} \neq U N I V$ by (metis not_open_singleton open_UNIV)
then obtain $x::{ }^{\prime} a$ where $x \neq 0$ by fast
hence $1 \leq$ norm $x /$ norm x
by simp
also have $\ldots \leq$ onorm $\left(\lambda x::^{\prime} a . x\right)$
by (rule le_onorm) (rule bounded_linear_ident)
finally show $1 \leq \operatorname{onorm}\left(\lambda x::^{\prime} a . x\right)$.
qed
lemma onorm_compose:
assumes f : bounded_linear f
assumes g : bounded_linear g
shows onorm $(f \circ g) \leq$ onorm $f *$ onorm g
proof (rule onorm_bound)
show $0 \leq$ onorm $f *$ onorm g
by (intro mult_nonneg_nonneg onorm_pos_le fg)
next
fix x
have norm $(f(g x)) \leq \operatorname{onorm} f * \operatorname{norm}(g x)$
by (rule onorm [OF f])
also have onorm $f * \operatorname{norm}(g x) \leq \operatorname{onorm} f *($ onorm $g *$ norm $x)$
by (rule mult_left_mono [OF onorm [OF g] onorm_pos_le [OF f]])
finally show norm $((f \circ g) x) \leq$ onorm $f *$ onorm $g *$ norm x
by (simp add: mult.assoc)
qed
lemma onorm_scaleR_lemma:
assumes f : bounded_linear f
shows onorm $\left(\lambda x . r *_{R} f x\right) \leq|r| *$ onorm f
proof (rule onorm_bound)
show $0 \leq|r| *$ onorm f
by (intro mult_nonneg_nonneg onorm_pos_le abs_ge_zero f)
next
fix x
have $|r| * \operatorname{norm}(f x) \leq|r| *($ onorm $f *$ norm $x)$
by (intro mult_left_mono onorm abs_ge_zero f)
then show norm $\left(r *_{R} f x\right) \leq|r| *$ onorm $f *$ norm x

```
    by (simp only: norm_scaleR mult.assoc)
qed
lemma onorm_scaleR:
    assumes f: bounded_linear f
    shows onorm ( }\lambdax.r\mp@subsup{*}{R}{}fx)=|r|*\mathrm{ onorm f
proof (cases r=0)
    assume r\not=0
    show ?thesis
    proof (rule order_antisym)
        show onorm ( }\lambdax.r\mp@subsup{*}{R}{}fx)\leq|r|*\mathrm{ onorm }
            using f}\mathrm{ by (rule onorm_scaleR_lemma)
    next
        have bounded_linear ( }\lambdax.r\mp@subsup{*}{R}{}fx
            using bounded_linear_scaleR_right f by (rule bounded_linear_compose)
        then have onorm ( }\lambda\mathrm{ . . inverse r ** r r*R f x) \ |inverse r|* onorm ( }\lambdax.
*R}f=x
            by (rule onorm_scaleR_lemma)
            with }\langler\not=0\rangle\mathrm{ show }|r|*\mathrm{ onorm f}\leq\mathrm{ onorm ( }\lambdax.r\mp@subsup{*}{R}{}fx
            by (simp add: inverse_eq_divide pos_le_divide_eq mult.commute)
    qed
qed (simp add: onorm_zero)
lemma onorm_scaleR_left_lemma:
    assumes r: bounded_linear r
    shows onorm ( }\lambdax.rx\mp@subsup{*}{R}{\prime}f)\leq\mathrm{ onorm r * norm f
proof (rule onorm_bound)
    fix }
    have norm (rx**R f)=norm (rx)* norm f
        by simp
    also have ... \leqonorm r * norm x * norm f
        by (intro mult_right_mono onorm r norm_ge_zero)
    finally show norm (rx*R f) \leqonorm r * norm f* norm x
        by (simp add: ac_simps)
qed (intro mult_nonneg_nonneg norm_ge_zero onorm_pos_le r)
lemma onorm_scaleR_left:
    assumes f: bounded_linear r
    shows onorm ( }\lambdax.rx\mp@subsup{*}{R}{}f)=\mathrm{ onorm r * norm f
proof (cases f=0)
    assume f}\not=
    show ?thesis
    proof (rule order_antisym)
        show onorm ( }\lambdax.rx\mp@subsup{*}{R}{\prime}f)\leq\mathrm{ onorm r * norm f
        using f by (rule onorm_scaleR_left_lemma)
    next
        have bl1: bounded_linear ( }\lambdax.rx\mp@subsup{*}{R}{}f
        by (metis bounded_linear_scaleR_const f)
        have bounded_linear ( }\lambdax.rx*\mathrm{ norm f)
```

```
    by (metis bounded_linear_mult_const f)
    from onorm_scaleR_left_lemma[OF this, of inverse (norm f)]
    have onorm r < onorm ( }\lambdax.rx*\mathrm{ norm f)*inverse (norm f)
    using <f \not=0
    by (simp add: inverse_eq_divide)
    also have onorm ( }\lambdax.rx*\operatorname{norm}f)\leq\operatorname{onorm}(\lambdax.rx**R f
    by (rule onorm_bound)
            (auto simp: abs_mult bl1 onorm_pos_le intro!: order_trans[OF _ onorm])
    finally show onorm r* norm f}\leq\operatorname{onorm}(\lambdax.rx*\mp@subsup{*}{R}{}f
    using <f \not=0\rangle
    by (simp add: inverse_eq_divide pos_le_divide_eq mult.commute)
    qed
qed (simp add: onorm_zero)
lemma onorm_neg:
    shows onorm ( }\lambdax.-fx)= onorm 
    unfolding onorm_def by simp
lemma onorm_triangle:
    assumes f: bounded_linear f
    assumes g: bounded_linear g
    shows onorm ( }\lambdax.fx+gx)\leq\mathrm{ onorm f + onorm g
proof (rule onorm_bound)
    show 0}\leq\mathrm{ onorm }f+\mathrm{ onorm g
        by (intro add_nonneg_nonneg onorm_pos_le f g)
next
    fix }
    have norm (fx+gx)\leqnorm (fx) + norm (g x)
        by (rule norm_triangle_ineq)
    also have norm (fx)+ norm (g x) \leqonorm f* norm x + onorm g * norm x
        by (intro add_mono onorm fg
    finally show norm (fx+gx)\leq(onorm f + onorm g)* norm x
        by (simp only: distrib_right)
qed
lemma onorm_triangle_le:
    assumes bounded_linear f
    assumes bounded_linear g
    assumes onorm f+ onorm g}\leq
    shows onorm ( }\lambdax.fx+gx)\leq
    using assms by (rule onorm_triangle [THEN order_trans])
lemma onorm_triangle_lt:
    assumes bounded_linear f
    assumes bounded_linear g
    assumes onorm f+ onorm g<e
    shows onorm ( }\lambdax.fx+gx)<
    using assms by (rule onorm_triangle [THEN order_le_less_trans])
```

```
lemma onorm_sum:
    assumes finite S
    assumes \s. s\inS\Longrightarrow bounded_linear ( }fs\mathrm{ )
    shows onorm ( }\lambdax.\operatorname{sum}(\lambdas.f\mathrm{ s x) S) < sum ( }\lambda\mathrm{ s.onorm (f s)) S
    using assms
    by (induction) (auto simp: onorm_zero intro!: onorm_triangle_le bounded_linear_sum)
lemmas onorm_sum_le = onorm_sum[THEN order_trans]
end
```


4.4 Line Segment

theory Line_Segment
imports
Convex
Topology_Euclidean_Space
begin

4.4.1 Topological Properties of Convex Sets, Metric Spaces and Functions

lemma convex_supp_sum:
assumes convex S and 1: supp_sum $u I=1$
and $\bigwedge i . i \in I \Longrightarrow 0 \leq u i \wedge(u i=0 \vee f i \in S)$
shows supp_sum $\left(\lambda i . u i *_{R} f i\right) I \in S$
proof -
have fin: finite $\{i \in I . u i \neq 0\}$
using 1 sum.infinite by (force simp: supp_sum_def support_on_def)
then have supp_sum $\left(\lambda i . u i *_{R} f i\right) I=\operatorname{sum}\left(\lambda i . u i *_{R} f i\right)\{i \in I . u i \neq 0\}$
by (force intro: sum.mono_neutral_left simp: supp_sum_def support_on_def)
also have $\ldots \in S$
using 1 assms by (force simp: supp_sum_def support_on_def intro: convex_sum
[OF fin 〈convex $S\rangle]$)
finally show ?thesis.
qed
lemma sphere_eq_empty [simp]:
fixes $a::$ ' $a::\{$ real_normed_vector, perfect_space $\}$
shows sphere a $r=\{ \} \longleftrightarrow r<0$
by (auto simp: sphere_def dist_norm) (metis dist_norm le_less_linear vector_choose_dist)
lemma cone_closure:
fixes S :: ' a ::real_normed_vector set assumes cone S
shows cone (closure S)
proof (cases $S=\{ \}$)
case True
then show ?thesis by auto

```
next
    case False
    then have 0 GS\wedge(\forallc.c>0\longrightarrow(*R)c'S=S)
        using cone_iff[of S] assms by auto
    then have 0 c closure S ^(\forallc.c>0 \longrightarrow(*R)c`closure S = closure S)
        using closure_subset by (auto simp: closure_scaleR)
    then show ?thesis
        using False cone_iff[of closure S] by auto
qed
corollary component_complement_connected:
    fixes S :: 'a::real_normed_vector set
    assumes connected S C components (-S)
    shows connected (-C)
    using component_diff_connected [of S UNIV] assms
    by (auto simp: Compl_eq_Diff_UNIV)
proposition clopen:
    fixes S :: 'a :: real_normed_vector set
    shows closed S ^ open S \longleftrightarrowS={}\veeS=UNIV
    by (force intro!: connected_UNIV [unfolded connected_clopen,rule_format])
corollary compact_open:
    fixes }S::\mp@subsup{}{}{\prime}a\mathrm{ :: euclidean_space set
    shows compact }S\wedge\mathrm{ open }S\longleftrightarrowS={
    by (auto simp: compact_eq_bounded_closed clopen)
corollary finite_imp_not_open:
    fixes S :: 'a::{real_normed_vector, perfect_space} set
    shows \llbracketfinite S; open S\rrbracket\LongrightarrowS={}
    using clopen [of S] finite_imp_closed not_bounded_UNIV by blast
corollary empty_interior_finite:
    fixes S :: 'a::{real_normed_vector, perfect_space} set
    shows finite S\Longrightarrow interior S={}
    by (metis interior_subset finite_subset open_interior [of S] finite_imp_not_open)
Balls, being convex, are connected.
lemma convex_local_global_minimum:
    fixes s:: 'a::real_normed_vector set
    assumes e>0
        and convex_on s f
        and ball x e\subseteqs
        and }\forally\inball x e.fx\leqfy
    shows }\forally\ins.fx\leqf
proof (rule ccontr)
    have }x\ins\mathrm{ using assms(1,3) by auto
    assume }\neg\mathrm{ ?thesis
```

```
    then obtain \(y\) where \(y \in s\) and \(y: f x>f y\) by auto
    then have \(x y: 0<\) dist \(x y\) by auto
    then obtain \(u\) where \(0<u u \leq 1\) and \(u: u<e /\) dist \(x y\)
        using field_lbound_gt_zero[of \(1 e /\) dist \(x y] x y\langle e>0\rangle\) by auto
    then have \(f\left((1-u) *_{R} x+u *_{R} y\right) \leq(1-u) * f x+u * f y\)
        using \(\langle x \in s\rangle\langle y \in s\rangle\)
        using assms(2)[unfolded convex_on_def,
            THEN bspec \([\) where \(x=x]\), THEN \(b\) spec \([\) where \(x=y]\), THEN spec \([\) where
\(x=1-u]\) ]
    by auto
    moreover
    have \(*: x-\left((1-u) *_{R} x+u *_{R} y\right)=u *_{R}(x-y)\)
        by (simp add: algebra_simps)
    have \((1-u) *_{R} x+u *_{R} y \in\) ball \(x e\)
        unfolding mem_ball dist_norm
        unfolding * and norm_scale \(R\) and abs_of_pos[OF \(\langle 0<u\rangle]\)
        unfolding dist_norm[symmetric]
        using \(u\)
        unfolding pos_less_divide_eq[OF xy]
        by auto
    then have \(f x \leq f\left((1-u) *_{R} x+u *_{R} y\right)\)
    using assms(4) by auto
    ultimately show False
    using mult_strict_left_mono[OF y \(\langle u>0\rangle\) ]
    unfolding left_diff_distrib
    by auto
qed
lemma convex_ball [iff]:
    fixes \(x::{ }^{\prime} a::\) real_normed_vector
    shows convex (ball \(x\) e)
proof (auto simp: convex_def)
    fix \(y z\)
    assume \(y z\) : dist \(x y<e\) dist \(x z<e\)
    fix \(u v\) :: real
    assume uv: \(0 \leq u 0 \leq v u+v=1\)
    have dist \(x\left(u *_{R} y+v *_{R} z\right) \leq u *\) dist \(x y+v * \operatorname{dist} x z\)
        using \(u v y z\)
        using convex_on_dist [of ball x e x, unfolded convex_on_def,
            THEN bspec[where \(x=y]\), THEN bspec [where \(x=z]\) ]
    by auto
    then show dist \(x\left(u *_{R} y+v *_{R} z\right)<e\)
        using convex_bound_lt[OF yz uv] by auto
qed
lemma convex_cball [iff]:
    fixes \(x::\) 'a::real_normed_vector
    shows convex (cball \(x\) e)
proof -
```

```
    {
        fix yz
        assume yz: dist x y \leqe dist x z\leqe
        fix uv :: real
        assume uv: 0\lequ0\leqvu+v=1
        have dist x (u**R y+v*R}z)\lequ*dist x y + v* dist x
        using uv yz
        using convex_on_dist [of cball x e x, unfolded convex_on_def,
            THEN bspec[where x=y],THEN bspec[where x=z]]
        by auto
    then have dist x (u**R y+v**Rz)\leqe
        using convex_bound_le[OF yz uv] by auto
    }
    then show ?thesis by (auto simp: convex_def Ball_def)
qed
lemma connected_ball [iff]:
    fixes }x\mathrm{ :: 'a::real_normed_vector
    shows connected (ball x e)
    using convex_connected convex_ball by auto
lemma connected_cball [iff]:
    fixes x :: 'a::real_normed_vector
    shows connected (cball x e)
    using convex_connected convex_cball by auto
lemma bounded_convex_hull:
    fixes s:: ' }a\mathrm{ ::real_normed_vector set
    assumes bounded s
    shows bounded (convex hull s)
proof -
    from assms obtain B where B: }\forallx\ins.norm x \leq B
        unfolding bounded_iff by auto
    show ?thesis
        by (simp add: bounded_subset[OF bounded_cball, of _ 0 B] B subsetI subset_hull)
qed
lemma finite_imp_bounded_convex_hull:
    fixes s:: 'a::real_normed_vector set
    shows finite s\Longrightarrow bounded (convex hull s)
    using bounded_convex_hull finite_imp_bounded
    by auto
```


4.4.2 Midpoint

definition midpoint $::$ ' $a::$ real_vector $\Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a$
where midpoint a $b=($ inverse $(2::$ real $)) *_{R}(a+b)$
lemma midpoint_idem [simp]: midpoint $x x=x$

```
unfolding midpoint_def by simp
lemma midpoint_sym: midpoint \(a b=\) midpoint \(b a\)
    unfolding midpoint_def by (auto simp add: scaleR_right_distrib)
lemma midpoint_eq_iff: midpoint \(a b=c \longleftrightarrow a+b=c+c\)
proof -
    have midpoint \(a b=c \longleftrightarrow\) scaleR 2 (midpoint \(a b)=\) scaleR \(2 c\)
        by simp
    then show?thesis
        unfolding midpoint_def scaleR_2 [symmetric] by simp
qed
lemma
    fixes \(a\) ::real
    assumes \(a \leq b\) shows ge_midpoint_1: \(a \leq\) midpoint \(a b\)
                and le_midpoint_1: midpoint \(a b \leq b\)
    by (simp_all add: midpoint_def assms)
lemma dist_midpoint:
    fixes \(a b\) :: ' \(a:\) :real_normed_vector shows
    dist \(a(\) midpoint \(a b)=(\) dist \(a b) / 2\left(\right.\) is ? \(\left.{ }^{\text {t } 1}\right)\)
    dist \(b(\) midpoint \(a b)=(\) dist \(a b) / 2(\) is ? t 2\()\)
    dist (midpoint \(a b) a=(\) dist \(a b) / 2(\) is ? t ) \()\)
    dist (midpoint \(a b) b=(\) dist \(a b) / 2\left(\right.\) is ? \(\mathrm{t}_{4}\) )
proof -
    have \(*: \bigwedge x y::^{\prime} a\). \(2 *_{R} x=-y \Longrightarrow\) norm \(x=(\) norm \(y) /\) 2
        unfolding equation_minus_iff by auto
    have \(* *: \bigwedge x y::^{\prime} a\). \(2 *_{R} x=y \Longrightarrow\) norm \(x=(\) norm \(y) / 2\)
        by auto
    note scaleR_right_distrib [simp]
    show ?t1
        unfolding midpoint_def dist_norm
        apply (rule **)
        apply (simp add: scaleR_right_diff_distrib)
        apply (simp add: scaleR_2)
        done
    show ?t2
        unfolding midpoint_def dist_norm
        apply (rule *)
        apply (simp add: scaleR_right_diff_distrib)
        apply (simp add: scaleR_2)
        done
    show ?t3
        unfolding midpoint_def dist_norm
        apply (rule *)
        apply (simp add: scaleR_right_diff_distrib)
        apply (simp add: scaleR_2)
    done
```

```
show ? \(t 4\)
    unfolding midpoint_def dist_norm
    apply (rule **)
    apply (simp add: scaleR_right_diff_distrib)
    apply (simp add: scaleR_2)
    done
qed
lemma midpoint_eq_endpoint [simp]:
    midpoint \(a b=a \longleftrightarrow a=b\)
    midpoint \(a b=b \longleftrightarrow a=b\)
    unfolding midpoint_eq_iff by auto
lemma midpoint_plus_self [simp]: midpoint \(a b+\) midpoint \(a b=a+b\)
    using midpoint_eq_iff by metis
lemma midpoint_linear_image:
    linear \(f \Longrightarrow\) midpoint \((f a)(f b)=f(\) midpoint \(a b)\)
by (simp add: linear_iff midpoint_def)
```


4.4.3 Open and closed segments

definition closed_segment :: 'a::real_vector $\Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a$ set where closed_segment $a b=\left\{(1-u) *_{R} a+u *_{R} b \mid u:: r e a l .0 \leq u \wedge u \leq 1\right\}$
definition open_segment :: 'a::real_vector $\Rightarrow{ }^{\prime} a \Rightarrow$ ' a set where open_segment $a b \equiv$ closed_segment $a b-\{a, b\}$
lemmas segment $=$ open_segment_def closed_segment_def
lemma in_segment:
$x \in$ closed_segment $a b \longleftrightarrow\left(\exists u .0 \leq u \wedge u \leq 1 \wedge x=(1-u) *_{R} a+u *_{R}\right.$
b)
$x \in$ open_segment $a b \longleftrightarrow a \neq b \wedge\left(\exists u .0<u \wedge u<1 \wedge x=(1-u) *_{R} a\right.$ $\left.+u *_{R} b\right)$
using less_eq_real_def by (auto simp: segment algebra_simps)
lemma closed_segment_linear_image:
closed_segment $(f a)(f b)=f$ ' closed_segment $a b)$ if linear f
proof -
interpret linear f by fact
show ?thesis
by (force simp add: in_segment add scale)
qed
lemma open_segment_linear_image:
$\llbracket l i n e a r f ; i n j f \rrbracket \Longrightarrow$ open_segment $(f a)(f b)=f$ ‘ $($ open_segment a b)
by (force simp: open_segment_def closed_segment_linear_image inj_on_def)

```
lemma closed_segment_translation:
    closed_segment \((c+a)(c+b)=\) image \((\lambda x . c+x)(\) closed_segment \(a b)\)
apply safe
apply (rule_tac \(x=x-c\) in image_eqI)
apply (auto simp: in_segment algebra_simps)
done
```

lemma open_segment_translation:
open_segment $(c+a)(c+b)=$ image $(\lambda x . c+x)$ (open_segment a b)
by (simp add: open_segment_def closed_segment_translation translation_diff)
lemma closed_segment_of_real:
closed_segment $($ of_real $x)($ of_real $y)=o f$ _real' closed_segment x y
apply (auto simp: image_iff in_segment scaleR_conv_of_real)
apply (rule_tac $x=(1-u) * x+u * y$ in bexI)
apply (auto simp: in_segment)
done
lemma open_segment_of_real:
open_segment (of_real $x)($ of_real $y)=$ of_real 'open_segment x y
apply (auto simp: image_iff in_segment scaleR_conv_of_real)
apply (rule_tac $x=(1-u) * x+u * y$ in bexI)
apply (auto simp: in_segment)
done
lemma closed_segment_Reals:
$\llbracket x \in$ Reals $; y \in$ Reals $\rrbracket \Longrightarrow$ closed_segment $x y=o f _r e a l ' c l o s e d _s e g m e n t ~(R e ~$
x) $(R e y)$
by (metis closed_segment_of_real of_real_Re)
lemma open_segment_Reals:
$\llbracket x \in$ Reals $; y \in R e a l s \rrbracket \Longrightarrow$ open_segment $x y=o f _r e a l '$ 'open_segment (Re $\left.x\right)$
(Re y)
by (metis open_segment_of_real of_real_Re)
lemma open_segment_PairD:
$\left(x, x^{\prime}\right) \in$ open_segment $\left(a, a^{\prime}\right)\left(b, b^{\prime}\right)$
$\Longrightarrow(x \in$ open_segment $a b \vee a=b) \wedge\left(x^{\prime} \in\right.$ open_segment $\left.a^{\prime} b^{\prime} \vee a^{\prime}=b^{\prime}\right)$
by (auto simp: in_segment)
lemma closed_segment_PairD:
$\left(x, x^{\prime}\right) \in$ closed_segment $\left(a, a^{\prime}\right)\left(b, b^{\prime}\right) \Longrightarrow x \in$ closed_segment $a b \wedge x^{\prime} \in$ closed_segment $a^{\prime} b^{\prime}$
by (auto simp: closed_segment_def)
lemma closed_segment_translation_eq [simp]:
$d+x \in$ closed_segment $(d+a)(d+b) \longleftrightarrow x \in$ closed_segment $a b$
proof -
have $*: \bigwedge d x a b . x \in$ closed_segment $a b \Longrightarrow d+x \in$ closed_segment $(d+a)$

```
\((d+b)\)
    apply (simp add: closed_segment_def)
    apply (erule ex_forward)
    apply (simp add: algebra_simps)
    done
    show ?thesis
    using \(*[\) where \(d=-d] *\)
    by (fastforce simp add:)
qed
lemma open_segment_translation_eq [simp]:
    \(d+x \in\) open_segment \((d+a)(d+b) \longleftrightarrow x \in\) open_segment \(a b\)
    by (simp add: open_segment_def)
lemma of_real_closed_segment [simp]:
    of_real \(x \in\) closed_segment (of_real a) (of_real b) \(\longleftrightarrow x \in\) closed_segment a b
    apply (auto simp: in_segment scaleR_conv_of_real elim!: ex_forward)
    using of_real_eq_iff by fastforce
lemma of_real_open_segment [simp]:
    of_real \(x \in\) open_segment (of_real a) (of_real b) \(\longleftrightarrow x \in\) open_segment a b
    apply (auto simp: in_segment scaleR_conv_of_real elim!: ex_forward del: exE)
    using of_real_eq_iff by fastforce
lemma convex_contains_segment:
    convex \(S \longleftrightarrow(\forall a \in S . \forall b \in S\). closed_segment \(a b \subseteq S)\)
    unfolding convex_alt closed_segment_def by auto
lemma closed_segment_in_Reals:
    \(\llbracket x \in\) closed_segment \(a b ; a \in\) Reals \(; b \in\) Reals \(\rrbracket \Longrightarrow x \in\) Reals
    by (meson subsetD convex_Reals convex_contains_segment)
lemma open_segment_in_Reals:
    \(\llbracket x \in\) open_segment \(a b ; a \in\) Reals \(; b \in\) Reals \(\rrbracket \Longrightarrow x \in\) Reals
    by (metis Diff_iff closed_segment_in_Reals open_segment_def)
lemma closed_segment_subset: \(\llbracket x \in S ; y \in S ;\) convex \(S \rrbracket \Longrightarrow\) closed_segment \(x y\)
\(\subseteq S\)
    by (simp add: convex_contains_segment)
lemma closed_segment_subset_convex_hull:
    \(\llbracket x \in\) convex hull \(S ; y \in\) convex hull \(S \rrbracket \Longrightarrow\) closed_segment \(x y \subseteq\) convex hull \(S\)
    using convex_contains_segment by blast
lemma segment_convex_hull:
    closed_segment \(a b=\) convex hull \(\{a, b\}\)
proof -
    have \(*: \bigwedge x .\{x\} \neq\{ \}\) by auto
    show ?thesis
```

```
    unfolding segment convex_hull_insert[OF *] convex_hull_singleton
    by (safe; rule_tac x=1 - u in exI; force)
qed
lemma open_closed_segment: u \in open_segment wz\Longrightarrowu\in closed_segment wz
    by (auto simp add: closed_segment_def open_segment_def)
lemma segment_open_subset_closed:
    open_segment a b\subseteqclosed_segment a b
    by (auto simp: closed_segment_def open_segment_def)
lemma bounded_closed_segment:
    fixes a :: 'a::real_normed_vector shows bounded (closed_segment a b)
    by (rule boundedI[where B=max (norm a) (norm b)])
    (auto simp: closed_segment_def max_def convex_bound_le intro!: norm_triangle_le)
lemma bounded_open_segment:
    fixes a :: 'a::real_normed_vector shows bounded (open_segment a b)
    by (rule bounded_subset [OF bounded_closed_segment segment_open_subset_closed])
lemmas bounded_segment = bounded_closed_segment open_closed_segment
lemma ends_in_segment [iff]: a c closed_segment a b b c closed_segment a b
    unfolding segment_convex_hull
    by (auto intro!: hull_subset[unfolded subset_eq, rule_format])
lemma eventually_closed_segment:
    fixes x0::'a::real_normed_vector
    assumes open X0 x0 \in X0
    shows }\mp@subsup{\forall}{F}{}x\mathrm{ in at }x0\mathrm{ within U. closed_segment x0 x}\subseteqX
proof -
    from openE[OF assms]
    obtain e where e: 0<e ball x0 e\subseteqX0.
    then have }\mp@subsup{\forall}{F}{}x\mathrm{ in at x0 within U. x f ball x0 e
        by (auto simp:dist_commute eventually_at)
    then show ?thesis
    proof eventually_elim
        case (elim x)
        have x0 \in ball x0 e using <e> >> by simp
        from convex_ball[unfolded convex_contains_segment, rule_format, OF this elim]
        have closed_segment x0 x\subseteq ball x0 e .
        also note <... \subseteqX0`
        finally show ?case .
    qed
qed
lemma closed_segment_commute: closed_segment a b = closed_segment b a
proof -
```

```
    have \(\{a, b\}=\{b, a\}\) by auto
    thus ?thesis
    by (simp add: segment_convex_hull)
qed
lemma segment_bound1:
    assumes \(x \in\) closed_segment \(a b\)
    shows norm \((x-a) \leq \operatorname{norm}(b-a)\)
proof -
    obtain \(u\) where \(x=(1-u) *_{R} a+u *_{R} b 0 \leq u u \leq 1\)
        using assms by (auto simp add: closed_segment_def)
    then show norm \((x-a) \leq\) norm \((b-a)\)
        apply clarify
        apply (auto simp: algebra_simps)
        apply (simp add: scaleR_diff_right [symmetric] mult_left_le_one_le)
        done
qed
lemma segment_bound:
    assumes \(x \in\) closed_segment a \(b\)
    shows norm \((x-a) \leq \operatorname{norm}(b-a)\) norm \((x-b) \leq \operatorname{norm}(b-a)\)
by (metis assms closed_segment_commute dist_commute dist_norm segment_bound1)+
lemma open_segment_commute: open_segment \(a b=\) open_segment \(b a\)
proof -
    have \(\{a, b\}=\{b, a\}\) by auto
    thus ?thesis
        by (simp add: closed_segment_commute open_segment_def)
qed
lemma closed_segment_idem [simp]: closed_segment \(a \operatorname{a}=\{a\}\)
    unfolding segment by (auto simp add: algebra_simps)
lemma open_segment_idem [simp]: open_segment a \(a=\{ \}\)
    by (simp add: open_segment_def)
lemma closed_segment_eq_open: closed_segment \(a b=o p e n \_s e g m e n t ~ a b \cup\{a, b\}\)
    using open_segment_def by auto
lemma convex_contains_open_segment:
    convex \(s \longleftrightarrow(\forall a \in s . \forall b \in s\). open_segment \(a b \subseteq s)\)
    by (simp add: convex_contains_segment closed_segment_eq_open)
lemma closed_segment_eq_real_ivl1:
    fixes \(a b\) ::real
    assumes \(a \leq b\)
    shows closed_segment \(a b=\{a . . b\}\)
proof safe
    fix \(x\)
```

```
assume \(x \in\) closed_segment \(a b\)
    then obtain \(u\) where \(u: 0 \leq u u \leq 1\) and \(x_{-} d e f: x=(1-u) * a+u * b\)
    by (auto simp: closed_segment_def)
    have \(u * a \leq u * b(1-u) * a \leq(1-u) * b\)
    by (auto intro!: mult_left_mono u assms)
    then show \(x \in\{a . . b\}\)
    unfolding \(x_{-}\)def by (auto simp: algebra_simps)
next
    show \(\bigwedge x . x \in\{a . . b\} \Longrightarrow x \in\) closed_segment \(a b\)
        by (force simp: closed_segment_def divide_simps algebra_simps
                intro: \(e x I[\) where \(x=(x-a) /(b-a)\) for \(x])\)
qed
lemma closed_segment_eq_real_ivl:
    fixes \(a b::\) real
    shows closed_segment \(a b=(\) if \(a \leq b\) then \(\{a . . b\}\) else \(\{b\).. \(a\})\)
    using closed_segment_eq_real_ivl1 [of ab] closed_segment_eq_real_ivl1 \(\left[\begin{array}{ll}\text { of } & b \\ a\end{array}\right]\)
    by (auto simp: closed_segment_commute)
lemma open_segment_eq_real_ivl:
    fixes \(a b::\) real
    shows open_segment \(a b=(\) if \(a \leq b\) then \(\{a<. .<b\}\) else \(\{b<. .<a\})\)
by (auto simp: closed_segment_eq_real_ivl open_segment_def split: if_split_asm)
lemma closed_segment_real_eq:
    fixes \(u::\) real shows closed_segment \(u v=(\lambda x .(v-u) * x+u)\) ' \(\{0 . .1\}\)
    by (simp add: add.commute [of u] image_affinity_atLeastAtMost [where \(c=u\) ]
closed_segment_eq_real_ivl)
lemma closed_segment_same_Re:
    assumes Re \(a=R e b\)
    shows closed_segment \(a b=\{z . \operatorname{Re} z=\operatorname{Re} a \wedge \operatorname{Im} z \in\) closed_segment (Im \(a)\)
( \(\operatorname{Im} b\) ) \}
proof safe
    fix \(z\) assume \(z \in\) closed_segment \(a b\)
    then obtain \(u\) where \(u: u \in\{0 . .1\} z=a+\) of_real \(u *(b-a)\)
        by (auto simp: closed_segment_def scaleR_conv_of_real algebra_simps)
    from assms show Re \(z=R e\) a by (auto simp: u)
    from \(u(1)\) show \(\operatorname{Im} z \in\) closed_segment ( \(\operatorname{Im} a)(\operatorname{Im} b)\)
        by (force simp: u closed_segment_def algebra_simps)
next
    fix \(z\) assume [simp]: Re \(z=\operatorname{Re} a\) and \(\operatorname{Im} z \in\) closed_segment (Im a) (Im b)
    then obtain \(u\) where \(u: u \in\{0 . .1\} \operatorname{Im} z=\operatorname{Im} a+o f_{-} r e a l u *(\operatorname{Im} b-\operatorname{Im} a)\)
        by (auto simp: closed_segment_def scaleR_conv_of_real algebra_simps)
    from \(u(1)\) show \(z \in\) closed_segment \(a b\) using assms
        by (force simp: u closed_segment_def algebra_simps scaleR_conv_of_real com-
plex_eq_iff)
qed
```

```
lemma closed_segment_same_Im:
    assumes \(\operatorname{Im} a=\operatorname{Im} b\)
    shows closed_segment \(a b=\{z\). Im \(z=\operatorname{Im} a \wedge \operatorname{Re} z \in\) closed_segment \((\) Re \(a)\)
(Re b)\}
proof safe
    fix \(z\) assume \(z \in\) closed_segment \(a b\)
    then obtain \(u\) where \(u: u \in\{0 . .1\} z=a+o f\) _real \(u *(b-a)\)
        by (auto simp: closed_segment_def scaleR_conv_of_real algebra_simps)
    from assms show \(\operatorname{Im} z=\operatorname{Im} a\) by (auto simp: u)
    from \(u(1)\) show Re \(z \in\) closed_segment (Re a) (Re b)
        by (force simp: u closed_segment_def algebra_simps)
next
    fix \(z\) assume [simp]: Im \(z=\operatorname{Im} a\) and Re \(z \in\) closed_segment (Re a) (Re b)
    then obtain \(u\) where \(u: u \in\{0 . .1\}\) Re \(z=R e a+\) of_real \(u *(R e b-R e a)\)
        by (auto simp: closed_segment_def scaleR_conv_of_real algebra_simps)
    from \(u(1)\) show \(z \in\) closed_segment a \(b\) using assms
        by (force simp: u closed_segment_def algebra_simps scaleR_conv_of_real com-
plex_eq_iff)
qed
lemma dist_in_closed_segment:
    fixes \(a\) :: ' \(a\) :: euclidean_space
    assumes \(x \in\) closed_segment \(a b\)
        shows dist \(x a \leq\) dist \(a b \wedge\) dist \(x b \leq\) dist \(a b\)
proof (intro conjI)
    obtain \(u\) where \(u: 0 \leq u u \leq 1\) and \(x: x=(1-u) *_{R} a+u *_{R} b\)
        using assms by (force simp: in_segment algebra_simps)
    have dist \(x a=u *\) dist \(a b\)
            apply (simp add: dist_norm algebra_simps \(x\) )
    by (metis \(\langle 0 \leq u\rangle\) abs_of_nonneg norm_minus_commute norm_scaleR real_vector.scale_right_diff_distrib)
    also have ... \(\leq\) dist \(a b\)
        by (simp add: mult_left_le_one_le u)
    finally show dist \(x a \leq\) dist \(a b\).
    have dist \(x b=\) norm \(\left((1-u) *_{R} a-(1-u) *_{R} b\right)\)
        by (simp add: dist_norm algebra_simps \(x\) )
    also have \(\ldots=(1-u) *\) dist \(a b\)
    proof -
        have norm \(\left((1-1 * u) *_{R}(a-b)\right)=(1-1 * u) * \operatorname{norm}(a-b)\)
            using \(\langle u \leq 1\) ) by force
        then show ?thesis
            by (simp add: dist_norm real_vector.scale_right_diff_distrib)
    qed
    also have \(\ldots \leq\) dist \(a b\)
        by (simp add: mult_left_le_one_le u)
    finally show dist \(x b \leq\) dist \(a b\).
qed
lemma dist_in_open_segment:
    fixes \(a\) :: ' \(a\) :: euclidean_space
```

```
    assumes \(x \in\) open_segment \(a b\)
    shows dist \(x a<\) dist \(a b \wedge\) dist \(x b<d i s t a b\)
proof (intro conjI)
    obtain \(u\) where \(u: 0<u u<1\) and \(x: x=(1-u) *_{R} a+u *_{R} b\)
        using assms by (force simp: in_segment algebra_simps)
    have dist \(x a=u *\) dist \(a b\)
        apply (simp add: dist_norm algebra_simps \(x\) )
        by (metis abs_of_nonneg less_eq_real_def norm_minus_commute norm_scaleR
real_vector.scale_right_diff_distrib \(\langle 0<u\rangle\) )
    also have *: ... < dist a b
        using assms mult_less_cancel_right2 \(u\) (2) by fastforce
    finally show dist \(x a<d i s t a b\).
    have ab_ne0: dist a \(b \neq 0\)
        using * by fastforce
    have dist \(x b=\operatorname{norm}\left((1-u) *_{R} a-(1-u) *_{R} b\right)\)
        by (simp add: dist_norm algebra_simps \(x\) )
    also have \(\ldots=(1-u) *\) dist \(a b\)
    proof -
        have norm \(\left((1-1 * u) *_{R}(a-b)\right)=(1-1 * u) * \operatorname{norm}(a-b)\)
            using \(\langle u<1\rangle\) by force
        then show ?thesis
            by (simp add: dist_norm real_vector.scale_right_diff_distrib)
    qed
    also have \(\ldots<\) dist \(a b\)
        using ab_ne0 \(\langle 0<u\rangle\) by simp
    finally show dist \(x b<\) dist \(a b\).
qed
lemma dist_decreases_open_segment_0:
    fixes \(x\) :: ' \(a\) :: euclidean_space
    assumes \(x \in\) open_segment \(0 b\)
        shows dist \(c x<\) dist \(c 0 \vee\) dist \(c x<\) dist \(c b\)
proof (rule ccontr, clarsimp simp: not_less)
    obtain \(u\) where \(u: 0 \neq b 0<u u<1\) and \(x: x=u *_{R} b\)
        using assms by (auto simp: in_segment)
    have \(x b: x \cdot b<b \cdot b\)
        using \(u x\) by auto
    assume norm \(c \leq\) dist \(c x\)
    then have \(c \cdot c \leq(c-x) \cdot(c-x)\)
        by (simp add: dist_norm norm_le)
    moreover have \(0<x \cdot b\)
        using \(u x\) by auto
    ultimately have less: \(c \cdot b<x \cdot b\)
        by (simp add: x algebra_simps inner_commute u)
    assume dist \(c b \leq\) dist \(c x\)
    then have \((c-b) \cdot(c-b) \leq(c-x) \cdot(c-x)\)
        by (simp add: dist_norm norm_le)
    then have \((b \cdot b) *(1-u * u) \leq 2 *(b \cdot c) *(1-u)\)
        by (simp add: \(x\) algebra_simps inner_commute)
```

```
    then have \((1+u) *(b \cdot b) *(1-u) \leq 2 *(b \cdot c) *(1-u)\)
    by (simp add: algebra_simps)
    then have \((1+u) *(b \cdot b) \leq 2 *(b \cdot c)\)
    using \(\langle u<1\rangle\) by auto
    with \(x b\) have \(c \cdot b \geq x \cdot b\)
    by (auto simp: x algebra_simps inner_commute)
    with less show False by auto
qed
proposition dist_decreases_open_segment:
    fixes \(a\) :: ' \(a\) :: euclidean_space
    assumes \(x \in\) open_segment \(a b\)
        shows dist \(c x<\) dist \(c a \vee\) dist \(c x<\operatorname{dist} c b\)
proof -
    have *: \(x-a \in\) open_segment \(0(b-a)\) using assms
        by (metis diff_self open_segment_translation_eq uminus_add_conv_diff)
    show ?thesis
        using dist_decreases_open_segment_0 0 OF *, of \(c-a]\) assms
        by (simp add: dist_norm)
qed
corollary open_segment_furthest_le:
    fixes \(a b x y\) :: 'a::euclidean_space
    assumes \(x \in\) open_segment \(a b\)
    shows norm \((y-x)<\operatorname{norm}(y-a) \vee \operatorname{norm}(y-x)<\operatorname{norm}(y-b)\)
    by (metis assms dist_decreases_open_segment dist_norm)
corollary dist_decreases_closed_segment:
    fixes \(a\) :: ' \(a\) :: euclidean_space
    assumes \(x \in\) closed_segment \(a b\)
        shows dist \(c x \leq\) dist \(c a \vee\) dist \(c x \leq\) dist \(c b\)
apply (cases \(x \in\) open_segment a b)
    using dist_decreases_open_segment less_eq_real_def apply blast
by (metis DiffI assms empty_iff insertE open_segment_def order_refl)
corollary segment_furthest_le:
    fixes \(a b x y\) :: 'a::euclidean_space
    assumes \(x \in\) closed_segment \(a b\)
    shows norm \((y-x) \leq \operatorname{norm}(y-a) \vee \operatorname{norm}(y-x) \leq \operatorname{norm}(y-b)\)
    by (metis assms dist_decreases_closed_segment dist_norm)
lemma convex_intermediate_ball:
    fixes \(a\) :: ' \(a\) :: euclidean_space
    shows \(\llbracket\) ball a \(r \subseteq T ; T \subseteq\) cball a \(r \rrbracket \Longrightarrow\) convex \(T\)
apply (simp add: convex_contains_open_segment, clarify)
by (metis (no_types, hide_lams) less_le_trans mem_ball mem_cball subsetCE dist_decreases_open_segment)
lemma csegment_midpoint_subset: closed_segment (midpoint ab) \(b \subseteq\) closed_segment
\(a b\)
```

apply (clarsimp simp: midpoint_def in_segment)
apply (rule_tac $x=(1+u) / 2$ in exI)
apply (auto simp: algebra_simps add_divide_distrib diff_divide_distrib)
by (metis field_sum_of_halves scaleR_left.add)
lemma notin_segment_midpoint:
fixes a :: ' a :: euclidean_space
shows $a \neq b \Longrightarrow a \notin$ closed_segment (midpoint $a b$) b
by (auto simp: dist_midpoint dest!: dist_in_closed_segment)

More lemmas, especially for working with the underlying formula

lemma segment_eq_compose:
fixes a :: ' a :: real_vector
shows $\left(\lambda u .(1-u) *_{R} a+u *_{R} b\right)=(\lambda x . a+x) o\left(\lambda u . u *_{R}(b-a)\right)$
by (simp add: o_def algebra_simps)
lemma segment_degen_1:
fixes a :: ' a :: real_vector
shows $(1-u) *_{R} a+u *_{R} b=b \longleftrightarrow a=b \vee u=1$
proof -
\{ assume $(1-u) *_{R} a+u *_{R} b=b$
then have $(1-u) *_{R} a=(1-u) *_{R} b$
by (simp add: algebra_simps)
then have $a=b \vee u=1$
by simp
\} then show ?thesis by (auto simp: algebra_simps)
qed
lemma segment_degen_0:
fixes a :: ' a :: real_vector
shows $(1-u) *_{R} a+u *_{R} b=a \longleftrightarrow a=b \vee u=0$
using segment_degen_1 [of $1-u b l a]$
by (auto simp: algebra_simps)
lemma add_scaleR_degen:
fixes $a b::$ 'a::real_vector
assumes $\left(u *_{R} b+v *_{R} a\right)=\left(u *_{R} a+v *_{R} b\right) \quad u \neq v$
shows $a=b$
by (metis (no_types, hide_lams) add.commute add_diff_eq diff_add_cancel real_vector.scale_cancel_left real_vector.scale_left_diff_distrib assms)
lemma closed_segment_image_interval:
closed_segment $a b=\left(\lambda u .(1-u) *_{R} a+u *_{R} b\right) '\{0 . .1\}$
by (auto simp: set_eq_iff image_iff closed_segment_def)
lemma open_segment_image_interval:
open_segment $a b=\left(\right.$ if $a=b$ then $\{ \}$ else $\left(\lambda u .(1-u) *_{R} a+u *_{R} b\right)$ '

```
\(\{0<. .<1\})\)
    by (auto simp: open_segment_def closed_segment_def segment_degen_0 segment_degen_1)
lemmas segment_image_interval = closed_segment_image_interval open_segment_image_interval
lemma closed_segment_neq_empty \([\) simp \(]:\) closed_segment \(a b \neq\{ \}\)
    by auto
lemma open_segment_eq_empty [simp]: open_segment \(a b=\{ \} \longleftrightarrow a=b\)
proof -
    \{ assume a1: open_segment \(a b=\{ \}\)
        have \(\} \neq\{0::\) real \(<. .<1\}\)
            by simp
        then have \(a=b\)
            using a1 open_segment_image_interval by fastforce
    \} then show ?thesis by auto
qed
lemma open_segment_eq_empty' \([\) simp \(]:\{ \}=\) open_segment \(a b \longleftrightarrow a=b\)
    using open_segment_eq_empty by blast
lemmas segment_eq_empty \(=\) closed_segment_neq_empty open_segment_eq_empty
lemma inj_segment:
    fixes \(a\) :: ' \(a\) :: real_vector
    assumes \(a \neq b\)
        shows inj_on \(\left(\lambda u .(1-u) *_{R} a+u *_{R} b\right) I\)
proof
    fix \(x y\)
    assume \((1-x) *_{R} a+x *_{R} b=(1-y) *_{R} a+y *_{R} b\)
    then have \(x *_{R}(b-a)=y *_{R}(b-a)\)
        by (simp add: algebra_simps)
    with assms show \(x=y\)
        by (simp add: real_vector.scale_right_imp_eq)
qed
lemma finite_closed_segment [simp]: finite(closed_segment ab) \(\longleftrightarrow a=b\)
    apply auto
    apply (rule ccontr)
    apply (simp add: segment_image_interval)
    using infinite_Icc [OF zero_less_one] finite_imageD [OF _ inj_segment] apply
blast
    done
lemma finite_open_segment [simp]: finite(open_segment \(a b) \longleftrightarrow a=b\)
    by (auto simp: open_segment_def)
lemmas finite_segment \(=\) finite_closed_segment finite_open_segment
```

```
lemma closed_segment_eq_sing: closed_segment \(a b=\{c\} \longleftrightarrow a=c \wedge b=c\)
    by auto
lemma open_segment_eq_sing: open_segment \(a b \neq\{c\}\)
    by (metis finite_insert finite_open_segment insert_not_empty open_segment_image_interval)
lemmas segment_eq_sing \(=\) closed_segment_eq_sing open_segment_eq_sing
lemma open_segment_bound1:
    assumes \(x \in\) open_segment \(a b\)
    shows norm \((x-a)<\operatorname{norm}(b-a)\)
proof -
    obtain \(u\) where \(x=(1-u) *_{R} a+u *_{R} b 0<u u<1 a \neq b\)
    using assms by (auto simp add: open_segment_image_interval split: if_split_asm)
    then show norm \((x-a)<\operatorname{norm}(b-a)\)
        apply clarify
        apply (auto simp: algebra_simps)
        apply (simp add: scaleR_diff_right [symmetric])
        done
qed
lemma compact_segment [simp]:
    fixes \(a::\) ' \(a:\) :real_normed_vector
    shows compact (closed_segment a b)
    by (auto simp: segment_image_interval intro!: compact_continuous_image contin-
uous_intros)
lemma closed_segment [simp]:
    fixes \(a\) :: 'a::real_normed_vector
    shows closed (closed_segment a b)
    by (simp add: compact_imp_closed)
lemma closure_closed_segment [simp]:
    fixes \(a::\) ' \(a:\) :real_normed_vector
    shows closure(closed_segment ab)=closed_segment ab
    by \(\operatorname{simp}\)
lemma open_segment_bound:
    assumes \(x \in\) open_segment \(a b\)
    shows norm \((x-a)<\operatorname{norm}(b-a)\) norm \((x-b)<\operatorname{norm}(b-a)\)
apply (simp add: assms open_segment_bound1)
by (metis assms norm_minus_commute open_segment_bound1 open_segment_commute)
lemma closure_open_segment [simp]:
    closure (open_segment \(a b)=(\) if \(a=b\) then \(\{ \}\) else closed_segment \(a b)\)
        for \(a\) :: ' \(a::\) :euclidean_space
proof (cases \(a=b\) )
    case True
    then show? ?hesis
```

```
    by simp
next
    case False
    have closure ((\lambdau.u** (b-a))'{0<..<1}) = (\lambdau.u* ( 
{0<..<1}
    apply (rule closure_injective_linear_image [symmetric])
    apply (use False in <auto intro!: injI`)
    done
    then have closure
        ((\lambdau. (1-u)*Ra+u** b)'{0<..<1}) =
    (\lambdax. (1-x)*R a + x * R b)'closure {0<..<1}
    using closure_translation [of a ((\lambdax. x* *R b-x * R a)'{0<..<1})]
    by (simp add: segment_eq_compose field_simps scaleR_diff_left scaleR_diff_right
image_image)
    then show ?thesis
    by (simp add: segment_image_interval closure_greaterThanLessThan [symmetric]
del: closure_greaterThanLessThan)
qed
lemma closed_open_segment_iff [simp]:
    fixes a :: 'a::euclidean_space shows closed(open_segment a b) \longleftrightarrowa=b
    by (metis open_segment_def DiffE closure_eq closure_open_segment ends_in_segment(1)
insert_iff segment_image_interval(2))
lemma compact_open_segment_iff [simp]:
    fixes a ::' 'a::euclidean_space shows compact(open_segment a b) \longleftrightarrowa=b
    by (simp add: bounded_open_segment compact_eq_bounded_closed)
lemma convex_closed_segment [iff]: convex (closed_segment a b)
    unfolding segment_convex_hull by(rule convex_convex_hull)
lemma convex_open_segment [iff]: convex (open_segment a b)
proof -
    have convex ((\lambdau.u*R (b-a))'{0<..<1})
        by (rule convex_linear_image) auto
    then have convex ((+) a'(\lambdau.u**R (b-a))'{0<..<1})
        by (rule convex_translation)
    then show ?thesis
        by (simp add: image_image open_segment_image_interval segment_eq_compose
field_simps scaleR_diff_left scaleR_diff_right)
qed
lemmas convex_segment = convex_closed_segment convex_open_segment
lemma subset_closed_segment:
    closed_segment a b\subseteq closed_segment c d \longleftrightarrow
    a\in closed_segment c d ^b G closed_segment c d
    by auto (meson contra_subsetD convex_closed_segment convex_contains_segment)
```

```
lemma subset_co_segment:
    closed_segment a b\subseteqopen_segment c d \longleftrightarrow
    a}\in\mathrm{ open_segment c d}\wedge b\in\mathrm{ open_segment c d
using closed_segment_subset by blast
lemma subset_open_segment:
    fixes a :: 'a::euclidean_space
    shows open_segment a b\subseteqopen_segment c d \longleftrightarrow
        a=b\vee a\inclosed_segment c d ^ b closed_segment c d
        (is ?lhs = ?rhs)
proof (cases a=b)
    case True then show ?thesis by simp
next
    case False show ?thesis
    proof
        assume rhs:?rhs
        with }\langlea\not=b\rangle\mathrm{ have }c\not=
            using closed_segment_idem singleton_iff by auto
        have \existsuc. (1-u)**R ((1-ua)*R}c+ua\mp@subsup{*}{R}{}d)+u\mp@subsup{*}{R}{}((1-ub)\mp@subsup{*}{R}{}c
ub*R}d)
                (1 -uc)*R
                if neq: (1-ua)*R}c+ua*\mp@subsup{*}{R}{}d\not=(1-ub)\mp@subsup{*}{R}{}c+ub\mp@subsup{*}{R}{}dc\not=
                    and }a=(1-ua)\mp@subsup{*}{R}{}c+ua*\mp@subsup{*}{R}{}db=(1-ub)\mp@subsup{*}{R}{}c+ub\mp@subsup{*}{R}{}
                    and u:0<uu<1 and uab:0\lequa ua\leq10\lequbub\leq1
                for }u|au
        proof -
            have ua\not=ub
                using neq by auto
            moreover have (u-1)*ua\leq0 using u uab
                by (simp add: mult_nonpos_nonneg)
            ultimately have lt: (u-1)*ua<u*ub using u uab
            by (metis antisym_conv diff_ge_0_iff_ge le_less_trans mult_eq_0_iff mult_le_0_iff
not_less)
            have p*ua+q*ub<p+q if p:0<p and q: 0<q for pq
            proof -
                have }\negp\leq0\negq\leq
                        using p q not_less by blast+
                    then show ?thesis
                    by (metis }\langleua\not=ub\rangle add_less_cancel_left add_less_cancel_right add_mono_thms_linordered_field(5
                                    less_eq_real_def mult_cancel_left1 mult_less_cancel_left2 uab(2) uab(4))
            qed
            then have (1-u)*ua +u*ub<1 using u uua\not=ub>
                    by (metis diff_add_cancel diff_gt_0_iff_gt)
            with lt show ?thesis
            by (rule_tac x =ua +u*(ub-ua) in exI) (simp add: algebra_simps)
        qed
        with rhs }\langlea\not=b\rangle\langlec\not=d\rangle\mathrm{ show ?lhs
            unfolding open_segment_image_interval closed_segment_def
            by (fastforce simp add:)
```

```
    next
    assume lhs:?lhs
    with <a\not=b\rangle have c\not=d
        by (meson finite_open_segment rev_finite_subset)
    have closure (open_segment a b)\subseteqclosure (open_segment c d)
        using lhs closure_mono by blast
    then have closed_segment a b\subseteqclosed_segment c d
        by (simp add: }\langlea\not=b\rangle\langlec\not=d\rangle
    then show ?rhs
        by (force simp: <a\not=b〉)
    qed
qed
lemma subset_oc_segment:
    fixes a :: 'a::euclidean_space
    shows open_segment a b\subseteq closed_segment c d \longleftrightarrow
        a=b\veea\inclosed_segment c d ^ b closed_segment c d
apply (simp add: subset_open_segment [symmetric])
apply (rule iffI)
apply (metis closure_closed_segment closure_mono closure_open_segment subset_closed_segment
subset_open_segment)
apply (meson dual_order.trans segment_open_subset_closed)
done
lemmas subset_segment = subset_closed_segment subset_co_segment subset_oc_segment
subset_open_segment
lemma dist_half_times2:
    fixes }a:: ' a :: real_normed_vector
    shows dist ((1/2) *R (a+b)) x*2 = dist (a+b) (2 *R
proof -
    have norm ((1 / 2) *R (a+b) - x)* 2 = norm (2 * * ((1/2) * * (a+b)
-x))
        by simp
    also have ... = norm ((a+b)-2 *R}x
        by (simp add: real_vector.scale_right_diff_distrib)
    finally show ?thesis
        by (simp only:dist_norm)
qed
lemma closed_segment_as_ball:
            closed_segment a b = affine hull {a,b} \cap cball(inverse 2 *R (a+b))(norm(b
-a) / 2)
proof (cases b =a)
    case True then show ?thesis by (auto simp: hull_inc)
next
    case False
    then have *:((\existsuv. x=u*R}a+v\mp@subsup{*}{R}{}b\wedgeu+v=1)
                        dist ((1/2) *R (a+b)) x*2 \leqnorm (b-a)) =
```

```
    (\existsu.x=(1-u)*R}a+u\mp@subsup{*}{R}{}b\wedge0\lequ\wedgeu\leq1) for x
    proof -
    have ((\existsuv. x = u**R a +v*R b ^u+v=1)^
                dist ((1 / 2) *R
            ((\existsu.x = (1-u)*R}a+u\mp@subsup{*}{R}{}b)
                        dist ((1/2) *R (a+b)) x*2 \leqnorm (b-a))
        unfolding eq_diff_eq [symmetric] by simp
    also have ... = (\existsu.x=(1-u)**R a + u*R b ^
                                    norm ((a+b)-(2*R x)) \leqnorm (b-a))
        by (simp add: dist_half_times2) (simp add: dist_norm)
    also have ... = (\existsu.x=(1-u)**Ra+u*R b ^
            norm}((a+b)-(2\mp@subsup{*}{R}{}((1-u)\mp@subsup{*}{R}{}a+u\mp@subsup{*}{R}{}b)))\leq\operatorname{norm}(b-a)
        by auto
    also have ... = (\existsu.x=(1-u)**Ra+u*R b ^
                norm}((1-u*2)*R (b-a))\leqnorm (b-a)
        by (simp add: algebra_simps scaleR_2)
    also have ... = (\existsu.x=(1-u) ** a +u*R b ^
                                    |1-u*2|*norm (b-a)\leqnorm (b-a))
        by simp
    also have ... = (\existsu.x=(1-u)*Ra+u**R b ^ |1-u*2 | < 1)
        by (simp add: mult_le_cancel_right2 False)
    also have ... = (\existsu.x=(1-u)*R a +u*R b ^0\lequ^u\leq1)
        by auto
    finally show ?thesis.
qed
show ?thesis
    by (simp add: affine_hull_2 Set.set_eq_iff closed_segment_def *)
qed
lemma open_segment_as_ball:
    open_segment a b=
    affine hull {a,b}\cap ball(inverse 2 *R}(a+b))(norm(b-a)/ 2
proof (cases b =a)
    case True then show ?thesis by (auto simp: hull_inc)
next
    case False
    then have *: ((\existsuv. x=u*R}a+v\mp@subsup{*}{R}{}b\wedgeu+v=1)
                    dist ((1/2)*R (a+b)) x*2 < norm (b-a)) =
                    (\existsu.x=(1-u)*R}a+u\mp@subsup{*}{R}{}b\wedge0<u\wedgeu<1) for x
    proof -
    have ((\existsuv. x=u**R}a+v\mp@subsup{*}{R}{}b\wedgeu+v=1)
                        dist ((1/2)** (a+b)) x*2<norm (b-a)) =
            ((\existsu.x = (1-u)**Ra+u* *
                        dist ((1/2)** (a+b)) x*2 < norm (b-a))
        unfolding eq_diff_eq [symmetric] by simp
    also have ... = (\existsu.x=(1-u)**R a +u*R b ^
                                    norm ((a+b) - (2** x))<norm (b-a))
        by (simp add: dist_half_times2) (simp add: dist_norm)
    also have ... = (\existsu.x=(1-u)**Ra+u*R b ^
```

```
            norm ((a+b) - (2 *R ((1-u)*Ra+u** b )) < norm (b-a))
        by auto
    also have ... = (\existsu.x=(1-u)* *}a+u\mp@subsup{*}{R}{}b
        norm}((1-u*2)\mp@subsup{*}{R}{}(b-a))<norm (b-a)
    by (simp add: algebra_simps scaleR_2)
    also have ... = (\existsu.x=(1-u)**}a+u\mp@subsup{*}{R}{}b
                                    |1-u*2|*norm (b-a)<norm (b-a))
    by simp
    also have ... = (\existsu.x=(1-u)*R}a+u\mp@subsup{*}{R}{}b\wedge|1-u*2|<1
    by (simp add: mult_le_cancel_right2 False)
    also have ... = (\existsu.x=(1-u)\mp@subsup{*}{R}{}a+u\mp@subsup{*}{R}{}b\wedge0<u\wedgeu<1)
    by auto
    finally show ?thesis .
qed
show ?thesis
    using False by (force simp: affine_hull_2 Set.set_eq_iff open_segment_image_interval
*)
qed
lemmas segment_as_ball = closed_segment_as_ball open_segment_as_ball
lemma connected_segment [iff]:
    fixes x :: 'a :: real_normed_vector
    shows connected (closed_segment x y)
    by (simp add: convex_connected)
lemma is_interval_closed_segment_1[intro, simp]: is_interval (closed_segment a b)
for a b::real
    unfolding closed_segment_eq_real_ivl
    by (auto simp: is_interval_def)
lemma IVT'_closed_segment_real:
    fixes f :: real => real
    assumes y \in closed_segment (f a) (f b)
    assumes continuous_on (closed_segment a b) f
    shows }\existsx\in\mathrm{ closed_segment a b. f x = y
    using IVT'[of f a y b]
        IVT'[of -f a-yb]
        IVT'[off b y a
        IVT'[of -fb - y a] assms
    by (cases a\leqb; cases f b \geqfa) (auto simp: closed_segment_eq_real_ivl continu-
ous_on_minus)
```


4.4.4 Betweenness

definition between $=(\lambda(a, b) x . x \in$ closed_segment $a b)$
lemma betweenI:
assumes $0 \leq u u \leq 1 x=(1-u) *_{R} a+u *_{R} b$
shows between $(a, b) x$
using assms unfolding between_def closed_segment_def by auto
lemma betweenE:
assumes between $(a, b) x$
obtains u where $0 \leq u u \leq 1 x=(1-u) *_{R} a+u *_{R} b$
using assms unfolding between_def closed_segment_def by auto
lemma between_implies_scaled_diff:
assumes between $(S, T) X$ between $(S, T) Y S \neq Y$
obtains c where $(X-Y)=c *_{R}(S-Y)$
proof -
from \langle between $(S, T) X\rangle$ obtain u_{X} where $X: X=u_{X} *_{R} S+\left(1-u_{X}\right) *_{R}$ T
by (metis add.commute betweenE eq_diff_eq)
from <between $(S, T) Y\rangle$ obtain u_{Y} where $Y: Y=u_{Y} *_{R} S+\left(1-u_{Y}\right) *_{R}$ T
by (metis add.commute betweenE eq_diff_eq)
have $X-Y=\left(u_{X}-u_{Y}\right) *_{R}(S-T)$
proof -
from $X Y$ have $X-Y=u_{X} *_{R} S-u_{Y} *_{R} S+\left(\left(1-u_{X}\right) *_{R} T-(1-\right.$ $\left.u_{Y}\right) *_{R} T$) by simp
also have $\ldots=\left(u_{X}-u_{Y}\right) *_{R} S-\left(u_{X}-u_{Y}\right) *_{R} T$ by (simp add: scaleR_left.diff)
finally show ?thesis by (simp add: real_vector.scale_right_diff_distrib)
qed
moreover from Y have $S-Y=\left(1-u_{Y}\right) *_{R}(S-T)$
by (simp add: real_vector.scale_left_diff_distrib real_vector.scale_right_diff_distrib)
moreover note $\langle S \neq Y$ 〉
ultimately have $(X-Y)=\left(\left(u_{X}-u_{Y}\right) /\left(1-u_{Y}\right)\right) *_{R}(S-Y)$ by auto
from this that show thesis by blast
qed
lemma between_mem_segment: between $(a, b) x \longleftrightarrow x \in$ closed_segment a b
unfolding between_def by auto
lemma between: between $(a, b)\left(x::^{\prime} a::\right.$ euclidean_space $) \longleftrightarrow$ dist $a b=($ dist $a x)$
$+($ dist $x b)$
proof (cases $a=b$)
case True
then show ?thesis
by (auto simp add: between_def dist_commute)
next
case False
then have Fal: norm $(a-b) \neq 0$ and Fal2: norm $(a-b)>0$
by auto
have $*: ~ \bigwedge u . a-\left((1-u) *_{R} a+u *_{R} b\right)=u *_{R}(a-b)$
by (auto simp add: algebra_simps)
have $\operatorname{norm}(a-x) *_{R}(x-b)=\operatorname{norm}(x-b) *_{R}(a-x)$ if $x=(1-u) *_{R}$

```
\(a+u *_{R} b 0 \leq u u \leq 1\) for \(u\)
    proof -
        have \(*: a-x=u *_{R}(a-b) x-b=(1-u) *_{R}(a-b)\)
            unfolding that(1) by (auto simp add:algebra_simps)
        show norm \((a-x) *_{R}(x-b)=\operatorname{norm}(x-b) *_{R}(a-x)\)
            unfolding norm_minus_commute \([\) of \(x a] *\) using \(\langle 0 \leq u\rangle\langle u \leq 1\rangle\)
        by \(\operatorname{simp}\)
    qed
    moreover have \(\exists u . x=(1-u) *_{R} a+u *_{R} b \wedge 0 \leq u \wedge u \leq 1\) if dist \(a b\)
\(=\) dist \(a x+\) dist \(x b\)
    proof -
        let ? \(\beta=\operatorname{norm}(a-x) / \operatorname{norm}(a-b)\)
        show \(\exists u . x=(1-u) *_{R} a+u *_{R} b \wedge 0 \leq u \wedge u \leq 1\)
        proof (intro exI conjI)
            show ? \(\beta \leq 1\)
                using Fal2 unfolding that[unfolded dist_norm] norm_ge_zero by auto
            show \(x=(1-? \beta) *_{R} a+(? \beta) *_{R} b\)
            proof (subst euclidean_eq_iff; intro ballI)
                fix \(i::^{\prime} a\)
                assume \(i: i \in\) Basis
                have \(\left((1-? \beta) *_{R} a+(? \beta) *_{R} b\right) \cdot i\)
                    \(=((\operatorname{norm}(a-b)-\operatorname{norm}(a-x)) *(a \cdot i)+\operatorname{norm}(a-x) *(b \cdot\)
i)) / \(\operatorname{norm}(a-b)\)
                using Fal by (auto simp add: field_simps inner_simps)
                also have \(\ldots=x \cdot i\)
                    apply (rule divide_eq_imp[OF Fal])
                    unfolding that[unfolded dist_norm]
                    using that[unfolded dist_triangle_eq] \(i\)
                    apply (subst (asm) euclidean_eq_iff)
                        apply (auto simp add: field_simps inner_simps)
                done
            finally show \(x \cdot i=\left((1-? \beta) *_{R} a+(? \beta) *_{R} b\right) \cdot i\)
                by auto
        qed
        qed (use Fal2 in auto)
    qed
    ultimately show ?thesis
        by (force simp add: between_def closed_segment_def dist_triangle_eq)
qed
lemma between_midpoint:
    fixes \(a\) :: ' \(a::\) euclidean_space
    shows between \((a, b)\) (midpoint \(a b)\) (is ? \(t 1\) )
        and between ( \(b, a\) ) (midpoint \(a b\) ) (is ? \(t 2\) )
proof -
    have \(*: \bigwedge x y z . x=(1 / 2::\) real \() *_{R} z \Longrightarrow y=(1 / 2) *_{R} z \Longrightarrow\) norm \(z=\) norm
\(x+\) norm \(y\)
            by auto
    show ?t1 ?t2
```

unfolding between midpoint_def dist_norm
by (auto simp add: field_simps inner_simps euclidean_eq_iff $\left[\right.$ where ' $a==^{\prime} a$] intro!: *)
qed
lemma between_mem_convex_hull:
between $(a, b) x \longleftrightarrow x \in$ convex hull $\{a, b\}$
unfolding between_mem_segment segment_convex_hull ..
lemma between_triv_iff [simp]: between $(a, a) b \longleftrightarrow a=b$
by (auto simp: between_def)
lemma between_triv1 [simp]: between $(a, b) a$
by (auto simp: between_def)
lemma between_triv2 [simp]: between $(a, b) b$
by (auto simp: between_def)
lemma between_commute:
between $(a, b)=$ between (b, a)
by (auto simp: between_def closed_segment_commute)
lemma between_antisym:
fixes a :: ' a :: euclidean_space
shows 【between $(b, c) a$; between $(a, c) b \rrbracket \Longrightarrow a=b$
by (auto simp: between dist_commute)
lemma between_trans:
fixes a :: ' a :: euclidean_space
shows \llbracket between $(b, c) a$; between $(a, c) d \rrbracket \Longrightarrow$ between $(b, c) d$
using dist_triangle2 [of bccl] dist_triangle3 [$\left.\begin{array}{lll}o f & b & d\end{array}\right]$
by (auto simp: between dist_commute)
lemma between_norm:
fixes a :: ' a :: euclidean_space
shows between $(a, b) x \longleftrightarrow \operatorname{norm}(x-a) *_{R}(b-x)=\operatorname{norm}(b-x) *_{R}(x-$
a)
by (auto simp: between dist_triangle_eq norm_minus_commute algebra_simps)
lemma between_swap:
fixes $A B X Y$:: 'a::euclidean_space
assumes between $(A, B) X$
assumes between $(A, B) Y$
shows between $(X, B) Y \longleftrightarrow$ between $(A, Y) X$
using assms by (auto simp add: between)
lemma between_translation [simp]: between $(a+y, a+z)(a+x) \longleftrightarrow$ between
$(y, z) x$
by (auto simp: between_def)
lemma between_trans_2:
fixes a :: ' a :: euclidean_space
shows \llbracket between $(b, c) a$; between $(a, b) d \rrbracket \Longrightarrow$ between $(c, d) a$
by (metis between_commute between_swap between_trans)
lemma between_scaleR_lift [simp]:
fixes v :: 'a::euclidean_space
shows between $\left(a *_{R} v, b *_{R} v\right)\left(c *_{R} v\right) \longleftrightarrow v=0 \vee$ between $(a, b) c$
by (simp add: between dist_norm scaleR_left_diff_distrib [symmetric] distrib_right [symmetric])
lemma between_1:
fixes x ::real
shows between $(a, b) x \longleftrightarrow(a \leq x \wedge x \leq b) \vee(b \leq x \wedge x \leq a)$
by (auto simp: between_mem_segment closed_segment_eq_real_ivl)
end

4.5 Limits on the Extended Real Number Line

```
theory Extended_Real_Limits
imports
    Topology_Euclidean_Space
    HOL-Library.Extended_Real
    HOL-Library.Extended_Nonnegative_Real
    HOL-Library.Indicator_Function
begin
lemma compact_UNIV:
    compact (UNIV :: 'a::{ complete_linorder,linorder_topology,second_countable_topology}
set)
    using compact_complete_linorder
    by (auto simp: seq_compact_eq_compact[symmetric] seq_compact_def)
lemma compact_eq_closed:
    fixes S :: 'a::{complete_linorder,linorder_topology,second_countable_topology} set
    shows compact }S\longleftrightarrow\mathrm{ closed S
    using closed_Int_compact[of S,OF _ compact_UNIV] compact_imp_closed
    by auto
lemma closed_contains_Sup_cl:
    fixes S :: 'a::{complete_linorder,linorder_topology,second_countable_topology} set
    assumes closed S
        and}S\not={
    shows Sup S\inS
proof -
    from compact_eq_closed[of S] compact_attains_sup[of S] assms
    obtain s where S:s\inS\forallt\inS.t\leqs
```

```
        by auto
    then have Sup S=s
    by (auto intro!: Sup_eqI)
    with S show ?thesis
    by simp
qed
lemma closed_contains_Inf_cl:
    fixes S :: 'a::{complete_linorder,linorder_topology,second_countable_topology} set
    assumes closed S
        and S\not={}
    shows Inf S\inS
proof -
    from compact_eq_closed[of S] compact_attains_inf[of S] assms
    obtain s}\mathrm{ where S:s}\inS\forallt\inS.s\leq
        by auto
    then have Inf S=s
        by (auto intro!: Inf_eqI)
    with S show ?thesis
        by simp
qed
instance enat :: second_countable_topology
proof
    show \existsB::enat set set.countable B}\wedge open = generate_topology B
    proof (intro exI conjI)
        show countable (range lessThan \cup range greaterThan::enat set set)
            by auto
    qed (simp add:open_enat_def)
qed
instance ereal :: second_countable_topology
proof (standard, intro exI conjI)
    let ?B=(\bigcupr\in\mathbb{Q}.{{..<r},{r<..}} :: ereal set set)
    show countable ?B
        by (auto intro: countable_rat)
    show open = generate_topology ?B
    proof (intro ext iffI)
        fix }S\mathrm{ :: ereal set
        assume open S
        then show generate_topology ?B S
            unfolding open_generated_order
        proof induct
            case (Basis b)
            then obtain e where b={..<e}\veeb={e<..}
            by auto
        moreover have {..<e} =\bigcup{{..<x}|x.x\in\mathbb{Q }\wedgex<e} {e<..}=\bigcup{{x<..}|x.
    x\in\mathbb{Q}\wedgee<x}
                by (auto dest: ereal_dense3
```

```
                    simp del: ex_simps
                    simp add: ex_simps[symmetric] conj_commute Rats_def image_iff)
        ultimately show ?case
            by (auto intro: generate_topology.intros)
    qed (auto intro: generate_topology.intros)
    next
    fix }
    assume generate_topology ?B S
    then show open S
        by induct auto
    qed
qed
```

This is a copy from ereal :: second_countable_topology. Maybe find a common super class of topological spaces where the rational numbers are densely embedded ?

```
instance ennreal :: second_countable_topology
proof (standard, intro exI conjI)
    let ? \(B=(\bigcup r \in \mathbb{Q} .\{\{. .<r\},\{r<.\}\}:.:\) ennreal set set \()\)
    show countable? \(B\)
        by (auto intro: countable_rat)
    show open \(=\) generate_topology ? \(B\)
    proof (intro ext iffI)
        fix \(S\) :: ennreal set
        assume open \(S\)
        then show generate_topology ?B \(S\)
            unfolding open_generated_order
        proof induct
            case (Basis b)
            then obtain \(e\) where \(b=\{. .<e\} \vee b=\{e<.\).
                by auto
    moreover have \(\{. .<e\}=\bigcup\{\{. .<x\} \mid x . x \in \mathbb{Q} \wedge x<e\}\{e<.\}=.\bigcup\{\{x<.\} \mid\).\(x .\)
\(x \in \mathbb{Q} \wedge e<x\}\)
                by (auto dest: ennreal_rat_dense
                            simp del: ex_simps
                            simp add: ex_simps[symmetric] conj_commute Rats_def image_iff)
            ultimately show ?case
                by (auto intro: generate_topology.intros)
        qed (auto intro: generate_topology.intros)
    next
        fix \(S\)
        assume generate_topology ? \(B S\)
        then show open \(S\)
            by induct auto
    qed
qed
lemma ereal_open_closed_aux:
    fixes \(S\) :: ereal set
```

```
    assumes open S
    and closed S
    and S:(-\infty)\not\inS
    shows S={}
proof (rule ccontr)
    assume \neg? ?thesis
    then have *: Inf S\inS
    by (metis assms(2) closed_contains_Inf_cl)
{
    assume Inf S=-\infty
    then have False
        using * assms(3) by auto
    }
    moreover
    {
    assume Inf S=\infty
    then have S={\infty}
        by (metis Inf_eq_PInfty <S \not={}>)
    then have False
        by (metis assms(1) not_open_singleton)
    }
    moreover
{
    assume fin: |Inf S|}\not=
    from ereal_open_cont_interval[OF assms(1) * fin]
    obtain e where e: e>0{Inf S-e<..<Inf S+e}\subseteqS.
    then obtain b}\mathrm{ where b: Inf S - e<bb<Inf S
        using fin ereal_between[of Inf S e] dense[of Inf S - e]
        by auto
    then have b \in{Inf S-e<..< Inf S+e}
        using e fin ereal_between[of Inf S e]
        by auto
    then have b}\in
        using e by auto
    then have False
        using b by (metis complete_lattice_class.Inf_lower leD)
    }
    ultimately show False
    by auto
qed
lemma ereal_open_closed:
    fixes }S\mathrm{ :: ereal set
    shows open }S\wedge\mathrm{ closed }S\longleftrightarrowS={}\veeS=UNI
proof -
    {
        assume lhs: open S ^ closed S
        {
```

```
        assume \(-\infty \notin S\)
        then have \(S=\{ \}\)
            using lhs ereal_open_closed_aux by auto
    \}
    moreover
    \{
        assume \(-\infty \in S\)
        then have \(-S=\{ \}\)
            using lhs ereal_open_closed_aux \([\) of \(-S]\) by auto
    \}
    ultimately have \(S=\{ \} \vee S=U N I V\)
        by auto
    \}
    then show? ?thesis
    by auto
qed
lemma ereal_open_atLeast:
    fixes \(x\) :: ereal
    shows open \(\{x ..\} \longleftrightarrow x=-\infty\)
proof
    assume \(x=-\infty\)
    then have \(\{x .\}=.U N I V\)
        by auto
    then show open \(\{x .\).
        by auto
next
    assume open \(\{x .\).
    then have open \(\{x ..\} \wedge\) closed \(\{x .\).
        by auto
    then have \(\{x .\}=.U N I V\)
        unfolding ereal_open_closed by auto
    then show \(x=-\infty\)
        by (simp add: bot_ereal_def atLeast_eq_UNIV_iff)
qed
lemma mono_closed_real:
    fixes \(S\) :: real set
    assumes mono: \(\forall y z . y \in S \wedge y \leq z \longrightarrow z \in S\)
        and closed \(S\)
    shows \(S=\{ \} \vee S=U N I V \vee(\exists a . S=\{a .\}\).
proof -
    \{
        assume \(S \neq\{ \}\)
        \{ assume ex: \(\exists B . \forall x \in S . B \leq x\)
            then have \(*: \forall x \in S\). Inf \(S \leq x\)
                using cInf_lower[of _ \(S\) ] ex by (metis bdd_below_def)
            then have \(\operatorname{Inf} S \in S\)
                apply (subst closed_contains_Inf)
```

```
            using ex <S F {}>〈closed S\rangle
            apply auto
            done
            then have }\forallx\mathrm{ . Inf S 
            using mono[rule_format, of Inf S] *
            by auto
            then have S ={Inf S ..}
            by auto
            then have }\existsa.S={a|..
            by auto
    }
    moreover
    {
        assume }\neg(\existsB.\forallx\inS.B\leqx
        then have nex: }\forallB.\existsx\inS.x<
            by (simp add: not_le)
        {
            fix y
            obtain }x\mathrm{ where }x\inS\mathrm{ and }x<
                using nex by auto
            then have }y\in
                using mono[rule_format, of x y] by auto
        }
        then have S=UNIV
            by auto
    }
    ultimately have S=UNIV \vee (\existsa.S={a..})
        by blast
}
then show ?thesis
    by blast
qed
lemma mono_closed_ereal:
    fixes }S\mathrm{ :: real set
    assumes mono: }\forallyz.y\inS\wedgey\leqz\longrightarrowz\in
        and closed S
    shows \existsa.S={x.a\leqereal x}
proof -
    {
        assume S={}
        then have ?thesis
            apply (rule_tac x=PInfty in exI)
            apply auto
            done
}
    moreover
{
    assume S = UNIV
```

```
    then have ?thesis
    apply (rule_tac x=-\infty in exI)
    apply auto
    done
}
moreover
{
    assume }\existsa.S={a ..
```



```
        by auto
    then have ?thesis
        apply (rule_tac x=ereal a in exI)
        apply auto
        done
    }
    ultimately show ?thesis
    using mono_closed_real[of S] assms by auto
qed
lemma Liminf_within:
    fixes f :: 'a::metric_space = 'b::complete_lattice
    shows Liminf (at x within S) f=(SUP e\in{0<..}. INF y\in(S\cap ball x e-{x}).
f y)
    unfolding Liminf_def eventually_at
proof (rule SUP_eq, simp_all add: Ball_def Bex_def, safe)
    fix Pd
    assume 0<d and \forally.y\inS\longrightarrowy\not=x^dist y x<d l
    then have S\cap ball x d-{x}\subseteq{x.P x}
        by (auto simp: dist_commute)
    then show \existsr>0. Inf (f'(Collect P)) \leq Inf (f'(S\cap ball x r - {x}))
        by (intro exI[of_d] INF_mono conjI<0<d>) auto
next
    fix d :: real
    assume 0<d
    then show }\existsP.(\existsd>0.\forallxa.xa\inS\longrightarrowxa\not=x\wedge\mathrm{ dist xa x < d }\longrightarrowPxa)
        Inf (f`}(S\cap\mathrm{ ball x d - {x})) < Inf (f'(Collect P))
        by (intro exI[of _ \lambday.y\inS\cap ball x d - {x}])
            (auto intro!: INF_mono exI[of _ d] simp:dist_commute)
qed
lemma Limsup_within:
    fixes f :: 'a::metric_space = 'b::complete_lattice
    shows Limsup (at x within S) f=(INF e\in{0<..}.SUP y\in(S\cap ball x e - {x}).
f y)
    unfolding Limsup_def eventually_at
proof (rule INF_eq, simp_all add: Ball_def Bex_def, safe)
    fix Pd
    assume 0<d and \forally. y GS\longrightarrowy\not=x^dist y x<d CP y
    then have S\cap ball x d-{x}\subseteq{x.P x}
```

```
    by (auto simp: dist_commute)
    then show }\existsr>0.Sup (f`(S\cap\mathrm{ ball x r - {x})) < Sup (f`(Collect P))
    by (intro exI[of_d] SUP_mono conjI <0<d`) auto
next
    fix d :: real
    assume 0<d
    then show }\existsP.(\existsd>0.\forallxa.xa\inS\longrightarrowxa\not=x\wedge\mathrm{ dist xa x<d < < P xa)^
        Sup }(f`(\mathrm{ Collect P)) }\leq\operatorname{Sup}(f`(S\cap\mathrm{ ball x d - {x}))
        by (intro exI[of - \lambday. y \inS \cap ball x d - {x}])
            (auto intro!: SUP_mono exI[of _ d] simp:dist_commute)
qed
lemma Liminf_at:
    fixes f :: 'a::metric_space => 'b::complete_lattice
    shows Liminf (at x) f=(SUP e\in{0<..}. INF y\in(ball x e - {x}).fy)
    using Liminf_within[of x UNIV f] by simp
lemma Limsup_at:
    fixes f :: 'a::metric_space = 'b::complete_lattice
    shows Limsup (at x) f=(INF e\in{0<..}.SUP y\in(ball x e - {x}).fy)
    using Limsup_within[of x UNIV f] by simp
lemma min_Liminf_at:
    fixes f :: 'a::metric_space => 'b::complete_linorder
    shows min (f x) (Liminf (at x) f) = (SUP e\in{0<..}. INF y\inball x e.f y)
    apply (simp add: inf_min [symmetric] Liminf_at)
    apply (subst inf_commute)
    apply (subst SUP_inf)
    apply auto
    apply (metis (no_types, lifting) INF_insert centre_in_ball greaterThan_iff im-
age_cong inf_commute insert_Diff)
    done
```


4.5.1 Extended-Real.thy

lemma sum_constant_ereal:
fixes a ::ereal
shows $\left(\sum i \in I . a\right)=a * \operatorname{card} I$
apply (cases finite I, induct set: finite, simp_all)
apply (cases a, auto, metis (no_types, hide_lams) add.commute mult.commute semiring_normalization_rules(3))
done
lemma real_lim_then_eventually_real:
assumes $(u \longrightarrow$ ereal $l) F$
shows eventually ($\left.\lambda n . u n=\operatorname{ereal}\left(r e a l _o f_{-} \operatorname{ereal}(u n)\right)\right) F$
proof -
have ereal $l \in\{-\infty<. .<(\infty::$ ereal $)\}$ by simp
moreover have open $\{-\infty<. .<(\infty$:: ereal $)\}$ by simp
ultimately have eventually ($\lambda n . u n \in\{-\infty<. .<(\infty::$ ereal $)\}) F$ using assms tendsto_def by blast
moreover have $\bigwedge x . x \in\{-\infty<. .<(\infty::$ ereal $)\} \Longrightarrow x=$ ereal(real_of_ereal $x)$ using ereal_real by auto
ultimately show ?thesis by (metis (mono_tags, lifting) eventually_mono)
qed
lemma ereal_Inf_cmult:
assumes $c>(0::$ real $)$
shows Inf $\{$ ereal $c * x \mid x . P x\}=$ ereal $c * \operatorname{Inf}\{x . P x\}$
proof -
have $(\lambda x::$ ereal. $c * x)(\operatorname{Inf}\{x::$ ereal. $P x\})=\operatorname{Inf}((\lambda x::$ ereal. $c * x)\{x::$ ereal. $P x\}$)
apply (rule mono_bij_Inf)
apply (simp add: assms ereal_mult_left_mono less_imp_le mono_def)
apply (rule bij_betw_byWitness $[$ of - λx. ($x::$ ereal) / c], auto simp add: assms ereal_mult_divide)
using assms ereal_divide_eq apply auto
done
then show ?thesis by (simp only: setcompr_eq_image[symmetric])
qed

Continuity of addition

The next few lemmas remove an unnecessary assumption in tendsto_add_ereal, culminating in tendsto_add_ereal_general which essentially says that the addition is continuous on ereal times ereal, except at $(-\infty, \infty)$ and $(\infty,-\infty)$. It is much more convenient in many situations, see for instance the proof of tendsto_sum_ereal below.
lemma tendsto_add_ereal_PInf:
fixes y :: ereal
assumes $y: y \neq-\infty$
assumes $f:(f \longrightarrow \infty) F$ and $g:(g \longrightarrow y) F$
shows $((\lambda x . f x+g x) \longrightarrow \infty) F$
proof -
have $\exists C$. eventually $(\lambda x . g x>$ ereal $C) F$
proof (cases y)
case (real r)
have $y>y-1$ using y real by (simp add: ereal_between(1))
then have eventually $(\lambda x . g x>y-1) F$ using g y order_tendsto_iff by auto moreover have $y-1=\operatorname{ereal}($ real_of_ereal $(y-1))$
by (metis real ereal_eq_1(1) ereal_minus(1) real_of_ereal.simps(1))
ultimately have eventually $\left(\lambda x . g x>\operatorname{ereal}\left(r_{\text {ral_of_ereal }}(y-1)\right)\right) F$ by simp then show ?thesis by auto
next
case (PInf)
have eventually $(\lambda x . g x>$ ereal 0$) F$ using g PInf by (simp add: tendsto_PInfty)

```
    then show ?thesis by auto
    qed (simp add: y)
    then obtain \(C\) ::real where ge: eventually \((\lambda x . g x>\) ereal \(C) F\) by auto
```

 \{
 fix \(M\) ::real
 have eventually \((\lambda x . f x>\operatorname{ereal}(M-C)) F\) using \(f\) by (simp add: tend-
 sto_PInfty)
then have eventually $(\lambda x .(f x>\operatorname{ereal}(M-C)) \wedge(g x>$ ereal $C)) F$
by (auto simp add: ge eventually_conj_iff)
moreover have $\wedge x .((f x>\operatorname{ereal}(M-C)) \wedge(g x>\operatorname{ereal} C)) \Longrightarrow(f x+g x$
$>$ ereal M)
using ereal_add_strict_mono2 by fastforce
ultimately have eventually $(\lambda x . f x+g x>$ ereal $M) F$ using eventually_mono
by force
\}
then show ?thesis by (simp add: tendsto_PInfty)
qed

One would like to deduce the next lemma from the previous one, but the fact that $-(x+y)$ is in general different from $(-x)+(-y)$ in ereal creates difficulties, so it is more efficient to copy the previous proof.

```
lemma tendsto_add_ereal_MInf:
    fixes \(y\) :: ereal
    assumes \(y\) : \(y \neq \infty\)
    assumes \(f:(f \longrightarrow-\infty) F\) and \(g:(g \longrightarrow y) F\)
    shows \(((\lambda x . f x+g x) \longrightarrow-\infty) F\)
proof -
    have \(\exists C\). eventually \((\lambda x . g x<\) ereal \(C) F\)
    proof (cases y)
        case (real r)
        have \(y<y+1\) using \(y\) real by (simp add: ereal_between(1))
        then have eventually \((\lambda x . g x<y+1) F\) using \(g\) order_tendsto_iff by
force
    moreover have \(y+1=\) ereal(real_of_ereal \((y+1))\) by (simp add: real)
    ultimately have eventually \((\lambda x . g x<\operatorname{ereal}(\) real_of_ereal \((y+1))) F\) by simp
    then show ?thesis by auto
    next
        case (MInf)
            have eventually \((\lambda x . g x<\) ereal 0\() F\) using \(g\) MInf by (simp add: tend-
sto_MInfty)
    then show ?thesis by auto
    qed ( simp add: y)
    then obtain \(C::\) real where \(g e\) : eventually \((\lambda x . g x<\) ereal \(C) F\) by auto
    \{
        fix \(M\) ::real
        have eventually \((\lambda x . f x<\operatorname{ereal}(M-C)) F\) using \(f\) by (simp add: tend-
sto_MInfty)
```

```
    then have eventually (\lambdax. (fx<ereal (M-C)) \wedge(gx<ereal C)) F
            by (auto simp add: ge eventually_conj_iff)
    moreover have }\x.((fx<\operatorname{ereal}(M-C))\wedge(gx< ereal C)))\Longrightarrow(fx+g
< ereal M)
            using ereal_add_strict_mono2 by fastforce
    ultimately have eventually ( }\lambdax.fx+gx<ereal M) F using eventually_mono
by force
    }
    then show ?thesis by (simp add: tendsto_MInfty)
qed
lemma tendsto_add_ereal_general1:
    fixes x y :: ereal
    assumes y: }|y|\not=
    assumes f:(f\longrightarrowx) F and g:(g\longrightarrowy)F
    shows ((\lambdax.fx+gx)\longrightarrowx+y)F
proof (cases x)
    case (real r)
    have a: }|x|\not=\infty\mathrm{ by (simp add: real)
    show ?thesis by (rule tendsto_add_ereal[OF a,OF y, OF f,OF g])
next
    case PInf
    then show ?thesis using tendsto_add_ereal_PInf assms by force
next
    case MInf
    then show ?thesis using tendsto_add_ereal_MInf assms
        by (metis abs_ereal.simps(3) ereal_MInfty_eq_plus)
qed
lemma tendsto_add_ereal_general2:
    fixes x y :: ereal
    assumes x: |x|\not=\infty
        and f:(f\longrightarrowx)F and g:(g\longrightarrowy)F
    shows ((\lambdax.fx+gx)\longrightarrowx+y)F
proof -
    have ((\lambdax.gx+fx)\longrightarrowx+y)F
        using tendsto_add_ereal_general1 [OF x, OF g,OF f] add.commute[of y, of x]
by simp
    moreover have \{x.g x + fx=fx+gx using add.commute by auto
    ultimately show ?thesis by simp
qed
```

The next lemma says that the addition is continuous on ereal, except at the pairs $(-\infty, \infty)$ and $(\infty,-\infty)$.
lemma tendsto_add_ereal_general [tendsto_intros]:
fixes $x y$:: ereal
assumes $\neg((x=\infty \wedge y=-\infty) \vee(x=-\infty \wedge y=\infty))$
and $f:(f \longrightarrow x) F$ and $g:(g \longrightarrow y) F$
shows $((\lambda x . f x+g x) \longrightarrow x+y) F$

```
proof (cases x)
    case (real r)
    show ?thesis
        apply (rule tendsto_add_ereal_general2) using real assms by auto
next
    case (PInf)
    then have }y\not=-\infty\mathrm{ using assms by simp
    then show ?thesis using tendsto_add_ereal_PInf PInf assms by auto
next
    case (MInf)
    then have y}\not=\infty\mathrm{ using assms by simp
    then show ?thesis using tendsto_add_ereal_MInf MInffg by (metis ereal_MInfty_eq_plus)
qed
```


Continuity of multiplication

In the same way as for addition, we prove that the multiplication is continuous on ereal times ereal, except at $(\infty, 0)$ and $(-\infty, 0)$ and $(0, \infty)$ and $(0,-\infty)$, starting with specific situations.

```
lemma tendsto_mult_real_ereal
    assumes \((u \longrightarrow\) ereal \(l) F(v \longrightarrow\) ereal \(m) F\)
    shows \(((\lambda n . u n * v n) \longrightarrow\) ereal \(l *\) ereal \(m) F\)
proof -
    have ureal: eventually ( \(\lambda\) n. u \(n=\) ereal(real_of_ereal( \(u n\) ) ) ) F by (rule real_lim_then_eventually_real[OF
\(\operatorname{assms}(1)])\)
    then have \(((\lambda n\). ereal(real_of_ereal \((u n))) \longrightarrow\) ereal \(l) F\) using assms by auto
    then have limu: \(((\lambda n\). real_of_ereal \((u n)) \longrightarrow l) F\) by auto
    have vreal: eventually \(\left(\lambda n . v n=e r e a l\left(r e a l \_o f \_e r e a l(v n)\right)\right) F\) by (rule real_lim_then_eventually_real \([O F\)
assms(2)])
    then have \(((\lambda n\). ereal \((\) real_of_ereal \((v n))) \longrightarrow\) ereal \(m) F\) using assms by
auto
    then have limv: \(((\lambda n\). real_of_ereal \((v n)) \longrightarrow m) F\) by auto
    \{
        fix \(n\) assume \(u n=\) ereal(real_of_ereal \((u n)\) ) \(v n=\) ereal(real_of_ereal \((v n)\) )
        then have ereal(real_of_ereal \((u n) *\) real_of_ereal \((v n))=u n * v n\) by (metis
times_ereal.simps(1))
    \}
    then have \(*\) : eventually ( \(\lambda n\). ereal(real_of_ereal \((u n) *\) real_of_ereal \((v n))=u n\)
* v n) \(F\)
    using eventually_elim2 [OF ureal vreal] by auto
    have \(\left(\left(\lambda n\right.\right.\). real_of_ereal \(\left(\begin{array}{l}u\end{array}\right) *\) real_of_ereal \(\left.\left.(v n)\right) \longrightarrow l * m\right) F\) using tend-
sto_mult \([\) OF limu limv] by auto
    then have \(\left(\left(\lambda n . \operatorname{ereal}\left(r e a l \_o f \_e r e a l(u n)\right) * r e a l \_o f \_e r e a l(v n)\right) \longrightarrow \operatorname{ereal}(l *\right.\)
\(m)\) ) \(F\) by auto
    then show ?thesis using \(*\) filterlim_cong by fastforce
qed
```

lemma tendsto_mult_ereal_PInf:
fixes $f g::-\Rightarrow$ ereal
assumes $(f \longrightarrow l) F l>0(g \longrightarrow \infty) F$
shows $((\lambda x . f x * g x) \longrightarrow \infty) F$
proof -
obtain $a:$:real where $0<$ ereal $a \operatorname{l}$ using assms(2) using ereal_dense2 by blast
have *: eventually $(\lambda x . f x>a) F$ using $\langle a<l\rangle \operatorname{assms}(1)$ by (simp add: order_tendsto_iff)
\{
fix K ::real
define M where $M=\max K 1$
then have $M>0$ by simp
then have $\operatorname{ereal}(M / a)>0$ using (ereal $a>0$ 〉 by simp
then have $\wedge x .((f x>a) \wedge(g x>M / a)) \Longrightarrow(f x * g x>$ ereal $a *$
$\operatorname{ereal}(M / a))$
using ereal_mult_mono_strict' $[$ where $? c=M / a$, OF $\langle 0<$ ereal $a\rangle]$ by auto moreover have ereal $a * \operatorname{ereal}(M / a)=M$ using 〈ereal $a>0\rangle$ by simp
ultimately have $\wedge x .((f x>a) \wedge(g x>M / a)) \Longrightarrow(f x * g x>M)$ by simp
moreover have $M \geq K$ unfolding $M_{\text {_ }}$ def by simp
ultimately have Imp: $\wedge x .((f x>a) \wedge(g x>M / a)) \Longrightarrow(f x * g x>K)$ using ereal_less_eq(3) le_less_trans by blast
have eventually $(\lambda x . g x>M / a) F$ using $\operatorname{assms}(3)$ by (simp add: tendsto_PInfty)
then have eventually $(\lambda x .(f x>a) \wedge(g x>M / a)) F$
using $*$ by (auto simp add: eventually_conj_iff)
then have eventually $(\lambda x . f x * g x>K) F$ using eventually_mono Imp by force
\}
then show ?thesis by (auto simp add: tendsto_PInfty)
qed
lemma tendsto_mult_ereal_pos:
fixes $f g::-\Rightarrow$ ereal
assumes $(f \longrightarrow l) F(g \longrightarrow m) F l>0 m>0$
shows $((\lambda x . f x * g x) \longrightarrow l * m) F$
proof (cases)
assume $*: l=\infty \vee m=\infty$
then show ?thesis
proof (cases)
assume $m=\infty$
then show ?thesis using tendsto_mult_ereal_PInf assms by auto
next
assume $\neg(m=\infty)$
then have $l=\infty$ using $*$ by simp
then have $((\lambda x . g x * f x) \longrightarrow l * m) F$ using tendsto_mult_ereal_PInf assms by auto

```
    moreover have \{x.gx*fx=fx*gx using mult.commute by auto
    ultimately show ?thesis by simp
    qed
next
    assume }\neg(l=\infty\veem=\infty
    then have l<\inftym<\infty by auto
    then obtain lr mr where l= ereal lr m= ereal mr
        using }\langlel>0\rangle\langlem>0\rangle\mathrm{ by (metis ereal_cases ereal_less(6) not_less_iff_gr_or_eq)
    then show ?thesis using tendsto_mult_real_ereal assms by auto
qed
```

We reduce the general situation to the positive case by multiplying by suitable signs. Unfortunately, as ereal is not a ring, all the neat sign lemmas are not available there. We give the bare minimum we need.

```
lemma ereal_sgn_abs:
    fixes \(l\) ::ereal
    shows \(\operatorname{sgn}(l) * l=a b s(l)\)
apply (cases \(l\) ) by (auto simp add: sgn_if ereal_less_uminus_reorder)
lemma sgn_squared_ereal:
    assumes \(l \neq(0::\) ereal \()\)
    shows \(\operatorname{sgn}(l) * \operatorname{sgn}(l)=1\)
apply (cases l) using assms by (auto simp add: one_ereal_def sgn_if)
lemma tendsto_mult_ereal [tendsto_intros]:
    fixes \(f\) ::- \(\Rightarrow\) ereal
    assumes \((f \longrightarrow l) F(g \longrightarrow m) F \neg((l=0 \wedge a b s(m)=\infty) \vee(m=0 \wedge a b s(l)\)
\(=\infty\) )
    shows \(((\lambda x . f x * g x) \longrightarrow l * m) F\)
proof (cases)
    assume \(l=0 \vee m=0\)
    then have \(\operatorname{abs}(l) \neq \infty \operatorname{abs}(m) \neq \infty\) using assms(3) by auto
    then obtain \(l r m r\) where \(l=\) ereal \(l r m=\) ereal \(m r\) by auto
    then show ?thesis using tendsto_mult_real_ereal assms by auto
next
    have sgn_finite: \(\backslash a::\) ereal. abs(sgn \(a) \neq \infty\)
    by (metis MInfty_neq_ereal(2) PInfty_neq_ereal(2) abs_eq_infinity_cases ereal_times(1)
ereal_times(3) ereal_uminus_eq_reorder sgn_ereal.elims)
    then have sgn_finite2: \(\backslash a b\) b:ereal. abs \((\) sgn \(a * \operatorname{sgn} b) \neq \infty\)
    by (metis abs_eq_infinity_cases abs_ereal.simps(2) abs_ereal.simps(3) ereal_mult_eq_MInfty
ereal_mult_eq_PInfty)
    assume \(\neg(l=0 \vee m=0)\)
    then have \(l \neq 0 \mathrm{~m} \neq 0\) by auto
    then have \(a b s(l)>0 a b s(m)>0\)
    by (metis abs_ereal_ge0 abs_ereal_less0 abs_ereal_pos ereal_uminus_uminus ereal_uminus_zero
less_le not_less)+
    then have \(\operatorname{sgn}(l) * l>0 \operatorname{sgn}(m) * m>0\) using ereal_sgn_abs by auto
    moreover have \(((\lambda x \cdot \operatorname{sgn}(l) * f x) \longrightarrow(\operatorname{sgn}(l) * l)) F\)
        by (rule tendsto_cmult_ereal, auto simp add: sgn_finite assms(1))
```

```
moreover have \(((\lambda x . \operatorname{sgn}(m) * g x) \longrightarrow(\operatorname{sgn}(m) * m)) F\)
    by (rule tendsto_cmult_ereal, auto simp add: sgn_finite assms(2))
ultimately have \(*:((\lambda x .(\operatorname{sgn}(l) * f x) *(\operatorname{sgn}(m) * g x)) \longrightarrow(\operatorname{sgn}(l) * l) *\)
\((\operatorname{sgn}(m) * m)) F\)
    using tendsto_mult_ereal_pos by force
    have \(((\lambda x .(\operatorname{sgn}(l) * \operatorname{sgn}(m)) *((\operatorname{sgn}(l) * f x) *(\operatorname{sgn}(m) * g x))) \longrightarrow(\operatorname{sgn}(l)\)
\(* \operatorname{sgn}(m)) *((\operatorname{sgn}(l) * l) *(\operatorname{sgn}(m) * m))) F\)
    by (rule tendsto_cmult_ereal, auto simp add: sgn_finite2 *)
    moreover have \(\bigwedge x .(\operatorname{sgn}(l) * \operatorname{sgn}(m)) *((\operatorname{sgn}(l) * f x) *(\operatorname{sgn}(m) * g x))=f\)
\(x * g x\)
    by (metis mult.left_neutral sgn_squared_ereal \([O F<l \neq 0\rangle]\) sgn_squared_ereal \([O F\)
\(\langle m \neq 0\rangle\) ] mult.assoc mult.commute)
    moreover have \((\operatorname{sgn}(l) * \operatorname{sgn}(m)) *((\operatorname{sgn}(l) * l) *(\operatorname{sgn}(m) * m))=l * m\)
        by (metis mult.left_neutral sgn_squared_ereal \([O F 〈 l \neq 0\rangle]\) sgn_squared_ereal \([O F\)
\(\langle m \neq 0\rangle\) ] mult.assoc mult.commute)
    ultimately show ?thesis by auto
qed
lemma tendsto_cmult_ereal_general [tendsto_intros]:
    fixes \(f::-\Rightarrow\) ereal and \(c::\) ereal
    assumes \((f \longrightarrow l) F \neg(l=0 \wedge a b s(c)=\infty)\)
    shows \(((\lambda x . c * f x) \longrightarrow c * l) F\)
by (cases \(c=0\), auto simp add: assms tendsto_mult_ereal)
```


Continuity of division

```
lemma tendsto_inverse_ereal_PInf:
fixes \(u::-\quad\) ereal
assumes \((u \longrightarrow \infty) F\)
shows \(((\lambda x .1 / u x) \longrightarrow 0) F\)
proof \{
fix \(e:\) :real assume \(e>0\)
have \(1 / e<\infty\) by auto
then have eventually ( \(\lambda n . u n>1 / e\) ) \(F\) using \(\operatorname{assms}(1)\) by (simp add:
tendsto_PInfty)
moreover
\{
fix \(z\) ::ereal assume \(z>1 / e\)
then have \(z>0\) using \(\langle e>0\rangle\) using less_le_trans not_le by fastforce
then have \(1 / z \geq 0\) by auto
moreover have \(1 / z<e\) using \(\langle e\rangle 0\rangle\langle z\rangle 1 / e\rangle\)
apply (cases \(z\) ) apply auto
by (metis (mono_tags, hide_lams) less_ereal.simps(2) less_ereal.simps(4)
divide_less_eq ereal_divide_less_pos ereal_less(4)
ereal_less_eq(4) less_le_trans mult_eq_0_iff not_le not_one_less_zero times_ereal.simps(1))
ultimately have \(1 / z \geq 01 / z<e\) by auto
\}
ultimately have eventually \((\lambda n .1 / u n<e) F\) eventually \((\lambda n .1 / u n \geq 0) F\) by
```

```
(auto simp add: eventually_mono)
    \} note \(*=\) this
    show ?thesis
    proof (subst order_tendsto_iff, auto)
        fix \(a\) :: ereal assume \(a<0\)
    then show eventually \((\lambda n .1 / u n>a) F\) using *(2) eventually_mono less_le_trans
linordered_field_no_ub by fastforce
    next
        fix \(a\) ::ereal assume \(a>0\)
        then obtain \(e::\) real where \(e>0\) a>e using ereal_dense2 ereal_less(2) by blast
        then have eventually ( \(\lambda n .1 / u n<e\) ) \(F\) using \(*(1)\) by auto
        then show eventually \((\lambda n .1 / u n<a) F\) using \(\langle a>e\rangle\) by (metis (mono_tags,
lifting) eventually_mono less_trans)
    qed
qed
```

The next lemma deserves to exist by itself, as it is so common and useful.

```
lemma tendsto_inverse_real [tendsto_intros]:
    fixes \(u::-\Rightarrow\) real
    shows \((u \longrightarrow l) F \Longrightarrow l \neq 0 \Longrightarrow((\lambda x .1 / u x) \longrightarrow 1 / l) F\)
    using tendsto_inverse unfolding inverse_eq_divide .
lemma tendsto_inverse_ereal [tendsto_intros]:
    fixes \(u::-\Rightarrow\) ereal
    assumes \((u \longrightarrow l) F l \neq 0\)
    shows \(((\lambda x .1 / u x) \longrightarrow 1 / l) F\)
proof (cases l)
    case (real r)
    then have \(r \neq 0\) using assms(2) by auto
    then have \(1 / l=\) ereal \((1 / r)\) using real by (simp add: one_ereal_def)
    define \(v\) where \(v=(\lambda n\). real_of_ereal \((u n))\)
    have ureal: eventually \((\lambda n . u n=\operatorname{ereal}(v n)) F\) unfolding \(v_{-} d e f\) using real_lim_then_eventually_real
\(\operatorname{assms}(1)\) real by auto
    then have \(((\lambda n\). ereal \((v n)) \longrightarrow\) ereal \(r) F\) using assms real \(v_{-} d e f\) by auto
    then have \(*:((\lambda n . v n) \longrightarrow r) F\) by auto
    then have \(((\lambda n .1 / v n) \longrightarrow 1 / r) F\) using \(\langle r \neq 0\rangle\) tendsto_inverse_real by
auto
    then have lim: \(((\lambda n\). \(\operatorname{ereal}(1 / v n)) \longrightarrow 1 / l) F \mathbf{u s i n g}\langle 1 / l=\operatorname{ereal}(1 / r)\rangle\) by
auto
```

have $r \in-\{0\}$ open $(-\{(0::$ real $)\})$ using $\langle r \neq 0\rangle$ by auto
then have eventually $(\lambda n . v n \in-\{0\}) F$ using $*$ using topological_tendsto D by blast
then have eventually $(\lambda n . v n \neq 0) F$ by auto
moreover
\{
fix n assume $H: v n \neq 0 u n=\operatorname{ereal}(v n)$
then have $\operatorname{ereal}(1 / v n)=1 / \operatorname{ereal}(v n)$ by (simp add: one_ereal_def)
then have $\operatorname{ereal}(1 / v n)=1 / u n$ using H (2) by simp
ultimately have eventually $(\lambda n . \operatorname{ereal}(1 / v n)=1 / u n) F$ using ureal eventually_elim2 by force
with Lim_transform_eventually[OF lim this] show ?thesis by simp next
case (PInf)
then have $1 / l=0$ by auto
then show ?thesis using tendsto_inverse_ereal_PInf assms PInf by auto
next
case (MInf)
then have $1 / l=0$ by auto
have $1 / z=-1 /-z$ if $z<0$ for $z::$ ereal
apply (cases z) using divide_ereal_def $\langle z<0\rangle$ by auto
moreover have eventually ($\lambda n . u n<0$) F by (metis (no_types) MInf assms(1) tendsto_MInfty zero_ereal_def)
ultimately have $*$: eventually $(\lambda n .-1 /-u n=1 / u n$) F by (simp add: eventually_mono)
define v where $v=(\lambda n .-u n)$
have $(v \longrightarrow \infty) F$ unfolding v_{-}def using MInf assms(1) tendsto_uminus_ereal by fastforce
then have $((\lambda n .1 / v n) \longrightarrow 0) F$ using tendsto_inverse_ereal_PInf by auto
then have $((\lambda n .-1 / v n) \longrightarrow 0) F$ using tendsto_uminus_ereal by fastforce
then show ?thesis unfolding v_def using Lim_transform_eventually[OF _ *]〈 $1 / l=0$) by auto
qed
lemma tendsto_divide_ereal [tendsto_intros]:
fixes $f g::_{-} \Rightarrow$ ereal
assumes $(f \longrightarrow l) F(g \longrightarrow m) F m \neq 0 \neg(\operatorname{abs}(l)=\infty \wedge \operatorname{abs}(m)=\infty)$
shows $((\lambda x . f x / g x) \longrightarrow l / m) F$
proof -
define h where $h=(\lambda x .1 / g x)$
have $*:(h \longrightarrow 1 / m) F$ unfolding $h_{-} d e f$ using $\operatorname{assms}(2) \operatorname{assms}(3)$ tendsto_inverse_ereal by auto
have $((\lambda x . f x * h x) \longrightarrow l *(1 / m)) F$
apply (rule tendsto_mult_ereal[OF assms(1) *]) using assms(3) assms(4) by (auto simp add: divide_ereal_def)
moreover have $f x * h x=f x / g x$ for x unfolding $h_{-} d e f$ by (simp add: divide_ereal_def)
moreover have $l *(1 / m)=l / m$ by (simp add: divide_ereal_def)
ultimately show ?thesis unfolding h_{-}def using Lim_transform_eventually by auto
qed

Further limits

The assumptions of $\llbracket|? x| \neq \infty ;|? y| \neq \infty ;(? f \longrightarrow ? x) ? F ;(? g \longrightarrow ? y)$ $? F \rrbracket \Longrightarrow((\lambda x$. ?f $x-? g x) \longrightarrow$? $x-$? $y)$? F are too strong, we weaken

```
them here.
lemma tendsto_diff_ereal_general [tendsto_intros]:
    fixes \(u v::^{\prime} a \Rightarrow\) ereal
    assumes \((u \longrightarrow l) F(v \longrightarrow m) F \neg((l=\infty \wedge m=\infty) \vee(l=-\infty \wedge m\)
\(=-\infty)\) )
    shows \(((\lambda n . u n-v n) \longrightarrow l-m) F\)
proof -
    have \(((\lambda n . u n+(-v n)) \longrightarrow l+(-m)) F\)
    apply (intro tendsto_intros assms) using assms by (auto simp add: ereal_uminus_eq_reorder)
    then show ?thesis by (simp add: minus_ereal_def)
qed
lemma id_nat_ereal_tendsto_PInf [tendsto_intros]:
    \((\lambda n:: n a t\). real \(n) \longrightarrow \infty\)
by (simp add: filterlim_real_sequentially tendsto_PInfty_eq_at_top)
lemma tendsto_at_top_pseudo_inverse [tendsto_intros]:
    fixes \(u:: n a t \Rightarrow\) nat
    assumes LIM \(n\) sequentially. \(u n:>\) at_top
    shows LIM \(n\) sequentially. Inf \(\{N . u N \geq n\}\) :> at_top
proof -
    \{
        fix \(C\) ::nat
        define \(M\) where \(M=\operatorname{Max}\{u n \mid n . n \leq C\}+1\)
        \{
            fix \(n\) assume \(n \geq M\)
            have eventually \((\lambda N . u N \geq n)\) sequentially using assms
                by (simp add: filterlim_at_top)
            then have \(*:\{N . u N \geq n\} \neq\{ \}\) by force
            have \(N>C\) if \(u N \geq n\) for \(N\)
            proof (rule ccontr)
                assume \(\neg(N>C)\)
                    have \(u N \leq \operatorname{Max}\{u n \mid n . n \leq C\}\)
                    apply (rule Max_ge) using \(\langle\neg(N>C)\rangle\) by auto
                    then show False using \(\langle u N \geq n\rangle\langle n \geq M\rangle\) unfolding \(M_{-}\)def by auto
            qed
            then have \(* *:\{N . u N \geq n\} \subseteq\{C .\).\(\} by fastforce\)
            have Inf \(\{N . u N \geq n\} \geq C\)
                by (metis * ** Inf_nat_def1 atLeast_iff subset_eq)
        \}
        then have eventually ( \(\lambda n\). Inf \(\{N . u N \geq n\} \geq C\) ) sequentially
            using eventually_sequentially by auto
    \}
    then show ?thesis using filterlim_at_top by auto
qed
lemma pseudo_inverse_finite_set:
    fixes \(u:: n a t \Rightarrow\) nat
```

```
    assumes LIM \(n\) sequentially. \(u n\) :> at_top
    shows finite \(\{N . u N \leq n\}\)
proof -
    fix \(n\)
    have eventually \((\lambda N . u N \geq n+1)\) sequentially using assms
        by (simp add: filterlim_at_top)
    then obtain \(N 1\) where \(N 1: \bigwedge N . N \geq N 1 \Longrightarrow u N \geq n+1\)
        using eventually_sequentially by auto
    have \(\{N . u N \leq n\} \subseteq\{. .<N 1\}\)
        apply auto using \(N 1\) by (metis Suc_eq_plus1 not_less not_less_eq_eq)
    then show finite \(\{N . u N \leq n\}\) by (simp add: finite_subset)
qed
lemma tendsto_at_top_pseudo_inverse2 [tendsto_intros]:
    fixes \(u:: n a t \Rightarrow\) nat
    assumes LIM \(n\) sequentially. \(u n\) :> at_top
    shows LIM \(n\) sequentially. Max \(\{N . u N \leq n\}:>\) at_top
proof -
    \{
        fix \(N 0:: n a t\)
        have \(N O \leq \operatorname{Max}\{N . u N \leq n\}\) if \(n \geq u N 0\) for \(n\)
            apply (rule Max.coboundedI) using pseudo_inverse_finite_set[OF assms] that
by auto
            then have eventually \((\lambda n . N O \leq \operatorname{Max}\{N . u N \leq n\})\) sequentially
            using eventually_sequentially by blast
    \}
    then show ?thesis using filterlim_at_top by auto
qed
lemma ereal_truncation_top [tendsto_intros]:
    fixes \(x\) ::ereal
    shows \((\lambda n::\) nat. \(\min x n) \longrightarrow x\)
proof (cases \(x\) )
    case (real r)
    then obtain \(K\) ::nat where \(K>0 K>a b s(r)\) using reals_Archimedean2 gr0I
by auto
    then have \(\min x n=x\) if \(n \geq K\) for \(n\) apply (subst real, subst real, auto)
using that eq_iff by fastforce
    then have eventually \((\lambda n . \min x n=x)\) sequentially using eventually_at_top_linorder
by blast
    then show ?thesis by (simp add: tendsto_eventually)
next
    case (PInf)
    then have \(\min x n=n\) for \(n::\) nat by (auto simp add: min_def)
    then show ?thesis using id_nat_ereal_tendsto_PInf PInf by auto
next
    case (MInf)
    then have \(\min x n=x\) for \(n::\) nat by (auto simp add: min_def)
    then show ?thesis by auto
```

```
qed
lemma ereal_truncation_real_top [tendsto_intros]:
    fixes \(x:\) ereal
    assumes \(x \neq-\infty\)
    shows \(\left(\lambda n:: n a t . r e a l \_o f \_e r e a l(\min x n)\right) \longrightarrow x\)
proof (cases \(x\) )
    case (real r)
    then obtain \(K\) ::nat where \(K>0 K>a b s(r)\) using reals_Archimedean2 gr0I
by auto
    then have \(\min x n=x\) if \(n \geq K\) for \(n\) apply (subst real, subst real, auto)
using that eq_iff by fastforce
    then have real_of_ereal \((\min x n)=r\) if \(n \geq K\) for \(n\) using real that by auto
    then have eventually \((\lambda n\). real_of_ereal \((\min x n)=r)\) sequentially using even-
tually_at_top_linorder by blast
    then have \((\lambda n\). real_of_ereal \((\min x n)) \longrightarrow r\) by (simp add: tendsto_eventually)
    then show ?thesis using real by auto
next
    case (PInf)
    then have real_of_ereal \((\min x n)=n\) for \(n:: n a t\) by (auto simp add: min_def)
    then show ?thesis using id_nat_ereal_tendsto_PInf PInf by auto
qed (simp add: assms)
lemma ereal_truncation_bottom [tendsto_intros]:
    fixes \(x\) ::ereal
    shows \((\lambda n::\) nat. \(\max x(-\) real \(n)) \longrightarrow x\)
proof (cases \(x\) )
    case (real r)
    then obtain \(K:: n a t\) where \(K>0 K>a b s(r)\) using reals_Archimedean2 gr0I
by auto
    then have \(\max x(-\) real \(n)=x\) if \(n \geq K\) for \(n\) apply (subst real, subst real,
auto) using that eq_iff by fastforce
    then have eventually \((\lambda n . \max x(-\) real \(n)=x)\) sequentially using eventu-
ally_at_top_linorder by blast
    then show ?thesis by (simp add: tendsto_eventually)
next
    case (MInf)
    then have \(\max x(-\) real \(n)=(-1) * \operatorname{ereal}(\) real \(n)\) for \(n::\) nat by (auto simp add:
max_def)
    moreover have \((\lambda n .(-1) * \operatorname{ereal}(\) real \(n)) \longrightarrow-\infty\)
    using tendsto_cmult_ereal[of -1, OF _ id_nat_ereal_tendsto_PInf] by (simp add:
one_ereal_def)
    ultimately show ?thesis using MInf by auto
next
    case (PInf)
    then have \(\max x(-\) real \(n)=x\) for \(n::\) nat by (auto simp add: max_def)
    then show ?thesis by auto
qed
```

```
lemma ereal_truncation_real_bottom [tendsto_intros]:
    fixes x::ereal
    assumes }x\not=
    shows (\lambdan::nat. real_of_ereal(max x (- real n))) \longrightarrowx
proof (cases x)
    case (real r)
    then obtain K::nat where K>0 K>abs(r) using reals_Archimedean2 gr0I
by auto
    then have max x (-real n)=x if n\geqK for n apply (subst real, subst real,
auto) using that eq_iff by fastforce
    then have real_of_ereal( max x (-real n)) =r if n\geqK for n using real that
by auto
    then have eventually ( }\lambdan\mathrm{ . real_of_ereal (max x (-real n)) =r) sequentially using
eventually_at_top_linorder by blast
    then have ( }\lambdan\mathrm{ . real_of_ereal (max }x(-\mathrm{ real n))) }\longrightarrowr by (simp add: tend-
sto_eventually)
    then show ?thesis using real by auto
next
    case (MInf)
    then have real_of_ereal(max }x(-\mathrm{ real n)) = (-1)* ereal(real n) for n::nat by
(auto simp add: max_def)
    moreover have ( }\lambdan.(-1)*\operatorname{ereal}(\mathrm{ real n)) }\longrightarrow-
    using tendsto_cmult_ereal[of -1,OF _ id_nat_ereal_tendsto_PInf] by (simp add:
one_ereal_def)
    ultimately show ?thesis using MInf by auto
qed (simp add: assms)
```

the next one is copied from tendsto_sum.
lemma tendsto_sum_ereal [tendsto_intros]:
fixes $f::{ }^{\prime} a \Rightarrow{ }^{\prime} b \Rightarrow$ ereal
assumes $\bigwedge i . i \in S \Longrightarrow(f i \longrightarrow a i) F$
^i. abs $(a i) \neq \infty$
shows $\left(\left(\lambda x . \sum i \in S . f i x\right) \longrightarrow\left(\sum i \in S . a i\right)\right) F$
proof (cases finite S)
assume finite S then show ?thesis using assms
by (induct, simp, simp add: tendsto_add_ereal_general2 assms)
qed (simp)
lemma continuous_ereal_abs:
continuous_on (UNIV::ereal set) abs
proof -
have continuous_on $(\{. .0\} \cup\{(0::$ ereal $) ..\})$ abs
apply (rule continuous_on_closed_Un, auto)
apply (rule iffD1[OF continuous_on_cong, of $\{. .0\}-\lambda x .-x]$)
using less_eq_ereal_def apply (auto simp add: continuous_uminus_ereal)
apply (rule iffD1[OF continuous_on_cong, of $\{0 .\}-.\lambda x . x]$)
apply (auto)
done

```
moreover have (UNIV::ereal set ) = {..0} \cup {(0::ereal)..} by auto
ultimately show ?thesis by auto
qed
lemmas continuous_on_compose_ereal_abs[continuous_intros] =
    continuous_on_compose2[OF continuous_ereal_abs _ subset_UNIV]
lemma tendsto_abs_ereal [tendsto_intros]:
    assumes (u\longrightarrow(l::ereal))F
    shows ((\lambdan.abs(u n)) \longrightarrowabs l) F
using continuous_ereal_abs assms by (metis UNIV_I continuous_on tendsto_compose)
lemma ereal_minus_real_tendsto_MInf [tendsto_intros]:
    (\lambdax. ereal (- real x)) \longrightarrow-\infty
by (subst uminus_ereal.simps(1)[symmetric], intro tendsto_intros)
```


4.5.2 Extended-Nonnegative-Real.thy

lemma tendsto_diff_ennreal_general [tendsto_intros]:
fixes $u \quad v::^{\prime} a \Rightarrow$ ennreal
assumes $(u \longrightarrow l) F(v \longrightarrow m) F \neg(l=\infty \wedge m=\infty)$
shows $((\lambda n . u n-v n) \longrightarrow l-m) F$
proof -
have ((λ n. e2ennreal(enn2ereal $(u n)-\operatorname{enn2ereal~}(v n))) \longrightarrow$ e2ennreal(enn2ereal
l - enn2ereal m)) F
apply (intro tendsto_intros) using assms by auto
then show? ?hesis by auto
qed
lemma tendsto_mult_ennreal [tendsto_intros]:
fixes $l m$::ennreal
assumes $(u \longrightarrow l) F(v \longrightarrow m) F \neg((l=0 \wedge m=\infty) \vee(l=\infty \wedge m=$
0))
shows $((\lambda n . u n * v n) \longrightarrow l * m) F$
proof -
have $((\lambda n$. e2ennreal(enn2ereal ($u n) *$ enn2ereal $(v n))) \longrightarrow$ e2ennreal(enn2ereal
l * enn2ereal m)) F
apply (intro tendsto_intros) using assms apply auto
using enn2ereal_inject zero_ennreal.rep_eq by fastforce+
moreover have e2ennreal(enn2ereal ($u n$) * enn2ereal $(v n)$) $=u n * v n$ for n
by (subst times_ennreal.abs_eq[symmetric], auto simp add: eq_onp_same_args)
moreover have e2ennreal(enn2ereal $l *$ enn2ereal m) $=l * m$
by (subst times_ennreal.abs_eq[symmetric], auto simp add: eq_onp_same_args)
ultimately show ?thesis
by auto
qed

4.5.3 monoset

definition (in order) mono_set:

```
mono_set \(S \longleftrightarrow(\forall x y . x \leq y \longrightarrow x \in S \longrightarrow y \in S)\)
```

lemma (in order) mono_greaterThan [intro, simp]: mono_set $\{B<.$.$\} unfolding$ mono_set by auto
lemma (in order) mono_atLeast [intro, simp]: mono_set $\{B .$.$\} unfolding mono_set$ by auto
lemma (in order) mono_UNIV [intro, simp]: mono_set UNIV unfolding mono_set by auto
lemma (in order) mono_empty [intro, simp]: mono_set \{\} unfolding mono_set
by auto
lemma (in complete_linorder) mono_set_iff:
fixes S :: 'a set
defines $a \equiv \operatorname{Inf} S$
shows mono_set $S \longleftrightarrow S=\{a<..\} \vee S=\{a .$.$\} (is { }_{-}=? c$)
proof
assume mono_set S
then have mono: $\bigwedge x y . x \leq y \Longrightarrow x \in S \Longrightarrow y \in S$
by (auto simp: mono_set)
show ?c
proof cases
assume $a \in S$
show ?c
using mono[OF _ $\langle a \in S\rangle]$
by (auto intro: Inf_lower simp: a_def)
next
assume $a \notin S$
have $S=\{a<.$.
proof safe
fix x assume $x \in S$
then have $a \leq x$
unfolding a_{-}def by (rule Inf_lower)
then show $a<x$
using $\langle x \in S\rangle\langle a \notin S\rangle$ by (cases $a=x$) auto
next
fix x assume $a<x$
then obtain y where $y<x y \in S$
unfolding a_{-}def Inf_less_iff ..
with mono[of $y x$] show $x \in S$
by auto
qed
then show ?c ..
qed
qed auto
lemma ereal_open_mono_set:
fixes S :: ereal set
shows open $S \wedge$ mono_set $S \longleftrightarrow S=U N I V \vee S=\{\operatorname{Inf} S<.$.
by (metis Inf_UNIV atLeast_eq_UNIV_iff ereal_open_atLeast

```
Extended_Real_Limits.thy
ereal_open_closed mono_set_iff open_ereal_greaterThan)
lemma ereal_closed_mono_set:
    fixes \(S\) :: ereal set
    shows closed \(S \wedge\) mono_set \(S \longleftrightarrow S=\{ \} \vee S=\{\operatorname{Inf} S .\).
    by (metis Inf_UNIV atLeast_eq_UNIV_iff closed_ereal_atLeast
        ereal_open_closed mono_empty mono_set_iff open_ereal_greaterThan)
    lemma ereal_Liminf_Sup_monoset:
    fixes \(f::\) ' \(a \Rightarrow\) ereal
    shows Liminf net \(f=\)
        Sup \(\{l . \forall S\). open \(S \longrightarrow\) mono_set \(S \longrightarrow l \in S \longrightarrow\) eventually \((\lambda x . f x \in S)\)
net \(\}\)
    \(\left(\right.\) is \(\left.{ }_{-}=S u p ? A\right)\)
proof (safe intro!: Liminf_eqI complete_lattice_class.Sup_upper complete_lattice_class.Sup_least)
    fix \(P\)
    assume \(P\) : eventually \(P\) net
    fix \(S\)
    assume \(S\) : mono_set \(S \operatorname{Inf}\left(f^{\prime}(\right.\) Collect \(\left.P)\right) \in S\)
    \{
        fix \(x\)
        assume \(P x\)
        then have \(\operatorname{Inf}(f\) ' \((\) Collect \(P)) \leq f x\)
            by (intro complete_lattice_class.INF_lower) simp
        with \(S\) have \(f x \in S\)
            by (simp add: mono_set)
    \}
    with \(P\) show eventually \((\lambda x . f x \in S)\) net
        by (auto elim: eventually_mono)
next
    fix \(y l\)
    assume \(S: \forall S\). open \(S \longrightarrow\) mono_set \(S \longrightarrow l \in S \longrightarrow\) eventually \((\lambda x . f x \in S)\)
net
    assume \(P: \forall P\). eventually \(P\) net \(\longrightarrow \operatorname{Inf}(f '(\) Collect \(P)) \leq y\)
    show \(l \leq y\)
    proof (rule dense_le)
        fix \(B\)
        assume \(B<l\)
        then have eventually \((\lambda x . f x \in\{B<.\}\).\() net\)
            by (intro \(S[\) rule_format \(]\) ) auto
        then have \(\operatorname{Inf}(f\) ' \(\{x . B<f x\}) \leq y\)
            using \(P\) by auto
        moreover have \(B \leq \operatorname{Inf}(f\) ' \(\{x . B<f x\})\)
            by (intro INF_greatest) auto
        ultimately show \(B \leq y\)
            by simp
    qed
qed
```

```
lemma ereal_Limsup_Inf_monoset:
    fixes \(f::\) ' \(a \Rightarrow\) ereal
    shows Limsup net \(f=\)
        Inf \(\{l . \forall S\). open \(S \longrightarrow\) mono_set (uminus' \(S\) ) \(\longrightarrow l \in S \longrightarrow\) eventually \((\lambda x\).
\(f x \in S) n e t\}\)
    (is _ = Inf? \(A\) )
proof (safe intro!: Limsup_eqI complete_lattice_class.Inf_lower complete_lattice_class.Inf_greatest)
    fix \(P\)
    assume \(P\) : eventually \(P\) net
    fix \(S\)
    assume \(S\) : mono_set (uminus'S) Sup \((f\) ' \((\) Collect \(P)) \in S\)
    \{
        fix \(x\)
        assume \(P x\)
        then have \(f x \leq \operatorname{Sup}(f\) ' \((\) Collect \(P))\)
            by (intro complete_lattice_class.SUP_upper) simp
            with \(S(1)\) [unfolded mono_set, rule_format, of \(-\operatorname{Sup}(f\) ' \((\) Collect \(P))-f x]\)
S(2)
            have \(f x \in S\)
            by (simp add: inj_image_mem_iff) \}
    with \(P\) show eventually \((\lambda x . f x \in S)\) net
            by (auto elim: eventually_mono)
next
    fix \(y l\)
    assume \(S: \forall S\). open \(S \longrightarrow\) mono_set (uminus' \(S\) ) \(\longrightarrow l \in S \longrightarrow\) eventually
( \(\lambda x . f x \in S\) ) net
    assume \(P: \forall P\). eventually \(P\) net \(\longrightarrow y \leq \operatorname{Sup}\left(f^{\prime}(\operatorname{Collect} P)\right)\)
    show \(y \leq l\)
    proof (rule dense_ge)
        fix \(B\)
        assume \(l<B\)
        then have eventually \((\lambda x . f x \in\{. .<B\})\) net
            by (intro \(S[\) rule_format \(]\) ) auto
            then have \(y \leq \operatorname{Sup}(f\) ' \(\{x . f x<B\})\)
            using \(P\) by auto
        moreover have Sup \((f\) ' \(\{x . f x<B\}) \leq B\)
            by (intro SUP_least) auto
        ultimately show \(y \leq B\)
            by \(\operatorname{simp}\)
    qed
qed
lemma liminf_bounded_open:
    fixes \(x\) :: nat \(\Rightarrow\) ereal
    shows \(x 0 \leq\) liminf \(x \longleftrightarrow(\forall S\). open \(S \longrightarrow\) mono_set \(S \longrightarrow x 0 \in S \longrightarrow(\exists N\).
\(\forall n \geq N . x n \in S)\) )
    (is \({ }_{-} \longleftrightarrow\) ? P \(x 0\) )
proof
    assume ? P \(x 0\)
```

```
    then show \(x 0 \leq \liminf x\)
    unfolding ereal_Liminf_Sup_monoset eventually_sequentially
    by (intro complete_lattice_class.Sup_upper) auto
next
    assume \(x 0 \leq \liminf x\)
    \{
        fix \(S\) :: ereal set
        assume om: open \(S\) mono_set \(S x 0 \in S\)
        \{
            assume \(S=U N I V\)
            then have \(\exists N . \forall n \geq N . x n \in S\)
            by auto
        \}
        moreover
        \{
            assume \(S \neq U N I V\)
            then obtain \(B\) where \(B: S=\{B<.\).
            using om ereal_open_mono_set by auto
        then have \(B<x 0\)
            using om by auto
        then have \(\exists N . \forall n \geq N . x n \in S\)
            unfolding \(B\)
            using \(\langle x 0 \leq\) liminf \(x\rangle\) liminf_bounded_iff
            by auto
    \}
    ultimately have \(\exists N . \forall n \geq N . x n \in S\)
        by auto
    \}
    then show? ? \(x 0\)
        by auto
    qed
    lemma limsup_finite_then_bounded:
    fixes \(u:: n a t \Rightarrow\) real
    assumes limsup \(u<\infty\)
    shows \(\exists C . \forall n . u n \leq C\)
proof -
    obtain \(C\) where \(C\) : limsup \(u<C C<\infty\) using assms ereal_dense2 by blast
    then have \(C=\) ereal(real_of_ereal \(C\) ) using ereal_real by force
    have eventually ( \(\lambda n . u n<C\) ) sequentially using \(C(1)\) unfolding Limsup_def
        apply (auto simp add: INF_less_iff)
        using SUP_lessD eventually_mono by fastforce
    then obtain \(N\) where \(N: \bigwedge n . n \geq N \Longrightarrow u n<C\) using eventually_sequentially
by auto
    define \(D\) where \(D=\max (\) real_of_ereal \(C)(\operatorname{Max}\{u n \mid n . n \leq N\})\)
    have \(\bigwedge n . u n \leq D\)
    proof -
        fix \(n\) show \(u n \leq D\)
        proof (cases)
```

assume $*: n \leq N$
have $u n \leq \operatorname{Max}\{u n \mid n . n \leq N\}$ by (rule Max_ge, auto simp add: *)
then show $u n \leq D$ unfolding $D_{-} d e f$ by linarith
next
assume $\neg(n \leq N)$
then have $n \geq N$ by simp
then have $u n<C$ using N by auto
then have $u n<$ real_of_ereal C using $\langle C=$ ereal(real_of_ereal C) 〉less_ereal.simps(1)
by fastforce
then show $u n \leq D$ unfolding D_{-}def by linarith
qed
qed
then show ?thesis by blast
qed
lemma liminf_finite_then_bounded_below:
fixes $u:: n a t \Rightarrow$ real
assumes liminf $u>-\infty$
shows $\exists C . \forall n . u n \geq C$
proof -
obtain C where C : liminf $u>C C>-\infty$ using assms using ereal_dense2
by blast
then have $C=$ ereal(real_of_ereal C) using ereal_real by force
have eventually $(\lambda n . u n>C)$ sequentially using $C(1)$ unfolding Liminf_def
apply (auto simp add: less_SUP_iff)
using eventually_elim2 less_INF_D by fastforce
then obtain N where $N: \bigwedge n . n \geq N \Longrightarrow u n>C$ using eventually_sequentially
by auto
define D where $D=\min ($ real_of_ereal $C)(\operatorname{Min}\{u n \mid n . n \leq N\})$
have $\wedge n$. $u n \geq D$
proof -
fix n show $u n \geq D$
proof (cases)
assume $*: n \leq N$
have $u n \geq \operatorname{Min}\{u n \mid n$. $n \leq N\}$ by (rule Min_le, auto simp add: *)
then show $u n \geq D$ unfolding $D_{-} d e f$ by linarith
next
assume $\neg(n \leq N)$
then have $n \geq N$ by simp
then have $u n>C$ using N by auto
then have $u n>$ real_of_ereal C using $\langle C=$ ereal(real_of_ereal C) 〉less_ereal.simps(1)
by fastforce
then show $u n \geq D$ unfolding $D_{-} d e f$ by linarith
qed
qed
then show ?thesis by blast
qed
lemma liminf_upper_bound:
fixes $u:$: nat \Rightarrow ereal
assumes liminf $u<l$
shows $\exists N>k$. $u N<l$
by (metis assms gt_ex less_le_trans liminf_bounded_iff not_less)
lemma limsup_shift:
$\limsup (\lambda n . u(n+1))=\limsup u$
proof -
have (SUP $m \in\{n+1 ..\} . u m)=(S U P m \in\{n ..\} . u(m+1))$ for n apply (rule $S U P_{-} e q$) using Suc_le_D by auto
then have $a:($ INF n. SUP $m \in\{n ..\} . u(m+1))=(\operatorname{INF} n .(S U P m \in\{n+1 .$.$\} .$
$u m)$) by auto
have $b:($ INF $n .(S U P m \in\{n+1 ..\} . u m))=($ INF $n \in\{1 .\} ..(S U P m \in\{n .\} . u$. m))
apply (rule $I N F_{-} e q$) using $S u c_{-} l e_{-} D$ by auto
have $(I N F n \in\{1 ..\} . v n)=(I N F n . v n)$ if decseq v for $v::$ nat $\Rightarrow{ }^{\prime} a$
apply (rule INF_eq) using (decseq v〉decseq_Suc_iff by auto
moreover have decseq (λn. (SUP $m \in\{n ..\} . u m)$) by (simp add: SUP_subset_mono decseq_def)
ultimately have $c:($ INF $n \in\{1 .$.$\} . (SUP m \in\{n .$.$\} . u m$)) $=$ (INF n. (SUP $m \in\{n ..\} . u m))$ by simp
have (INF n. Sup $\left.\left(u^{\prime}\{n .\}.\right)\right)=(\operatorname{INF} n . S U P m \in\{n ..\} . u(m+1))$ using $a b$
c by simp
then show ?thesis by (auto cong: limsup_INF_SUP)
qed
lemma limsup_shift_k:
$\limsup (\lambda n . u(n+k))=$ limsup u
proof (induction k)
case (Suc k)
have limsup $(\lambda n . u(n+k+1))=$ limsup $(\lambda n . u(n+k))$ using limsup_shift[where $? u=\lambda n . u(n+k)]$ by simp
then show ?case using Suc.IH by simp
qed (auto)
lemma liminf_shift:
$\liminf (\lambda n \cdot u(n+1))=\liminf u$
proof -
have (INF $m \in\{n+1 ..\} . u m)=($ INF $m \in\{n ..\} . u(m+1)$) for n
apply (rule $I N F_{-} e q$) using $S u c c_{-} l e D$ by (auto)
then have $a:(S U P n$. INF $m \in\{n ..\} . u(m+1))=(S U P n$. $($ INF $m \in\{n+1 .$.$\} .$
$u m)$) by auto
have $b:(S U P$ n. (INF $m \in\{n+1 ..\} . u m))=(S U P \quad n \in\{1 .$.$\} . (INF m \in\{n .$.$\} . u$ m)
apply (rule $S U P_{-} e q$) using $S u c_{-} l e _D$ by (auto)
have $(S U P n \in\{1 ..\} . v n)=(S U P n . v n)$ if incseq v for $v:: n a t \Rightarrow{ }^{\prime} a$
apply (rule SUP_eq) using «incseq v 〉 incseq_Suc_iff by auto
moreover have incseq (λn. (INF $m \in\{n ..\} . u m)$) by (simp add: INF_superset_mono
mono_def)
ultimately have $c:(S U P \quad n \in\{1 .$.$\} . (INF m \in\{n .$.$\} . u m$)) $=(S U P n$. (INF $m \in\{n .$.$\} . u m)$) by simp
have $\left(S U P\right.$ n. Inf $\left.\left(u^{\prime}\{n .\}.\right)\right)=(S U P$ n. INF $m \in\{n ..\} . u(m+1))$ using $a b$ c by simp
then show? ?thesis by (auto cong: liminf_SUP_INF)
qed
lemma liminf_shift_k:
$\liminf (\lambda n . u(n+k))=\liminf u$
proof (induction k)
case (Suc k)
have $\liminf (\lambda n . u(n+k+1))=\liminf (\lambda n . u(n+k))$ using liminf_shift[where ? $u=\lambda n$. $u(n+k)]$ by simp
then show ?case using Suc.IH by simp
qed (auto)
lemma Limsup_obtain:
fixes $u::{ }_{-}{ }^{\prime} a$:: complete_linorder
assumes Limsup $F u>c$
shows $\exists i . u i>c$
proof -
have (INF $P \in\{P$. eventually $P F\}$. SUP $x \in\{x . P x\}$. u $x)>c$ using assms by (simp add: Limsup_def)
then show? ?thesis by (metis eventually_True mem_Collect_eq less_INF_D less_SUP_iff)
qed
The next lemma is extremely useful, as it often makes it possible to reduce statements about limsups to statements about limits.
lemma limsup_subseq_lim:
fixes $u:: n a t \Rightarrow{ }^{\prime} a$:: \{complete_linorder, linorder_topology\}
shows $\exists r::$ nat \Rightarrow nat. strict_mono $r \wedge(u$ o $r) \longrightarrow$ limsup u
proof (cases)
assume $\forall n . \exists p>n . \forall m \geq p . u m \leq u p$
then have $\exists r . \forall n .(\forall m \geq r n . u m \leq u(r n)) \wedge r n<r(S u c n)$
by (intro dependent_nat_choice) (auto simp: conj_commute)
then obtain $r::$ nat \Rightarrow nat where strict_mono r and mono: $\bigwedge n m . r n \leq m$
$\Longrightarrow u m \leq u(r n)$
by (auto simp: strict_mono_Suc_iff)
define u max where $u \max =(\lambda n$. (SUP $m \in\{n ..\} . u m))$
have decseq umax unfolding umax_def by (simp add: SUP_subset_mono antimono_def)
then have $u m a x \longrightarrow$ limsup u unfolding umax_def by (metis LIMSEQ_INF limsup_INF_SUP)
then have $*:($ umax o $r) \longrightarrow$ limsup u by (simp add: LIMSEQ_subseq_LIMSEQ〈strict_mono r 〉)
have $\bigwedge n$. $\operatorname{umax}(r n)=u(r n)$ unfolding umax_def using mono
by (metis SUP_le_iff antisym atLeast_def mem_Collect_eq order_refl)
then have umax or $=u$ or unfolding o_def by simp
then have $\left(\begin{array}{lll}u & o & r\end{array}\right) \longrightarrow$ limsup u using $*$ by simp

```
    then show ?thesis using 〈strict_mono \(r\) 〉 by blast
next
    assume \(\neg(\forall n . \exists p>n .(\forall m \geq p . u m \leq u p))\)
    then obtain \(N\) where \(N: \bigwedge p . p>N \Longrightarrow \exists m>p . u p<u m\) by (force simp:
not_le le_less)
    have \(\exists r . \forall n . N<r n \wedge r n<r(\) Suc \(n) \wedge(\forall i \in\{N<. . r(\) Suc \(n)\} . u i \leq u(r\)
(Suc n)) )
    proof (rule dependent_nat_choice)
        fix \(x\) assume \(N<x\)
        then have a: finite \(\{N<\ldots x\}\{N<. . x\} \neq\{ \}\) by simp_all
    have \(\operatorname{Max}\{u i \mid i . i \in\{N<\ldots x\}\} \in\{u i \mid i . i \in\{N<. . x\}\}\) apply (rule Max_in)
using \(a\) by (auto)
            then obtain \(p\) where \(p \in\{N<\ldots x\}\) and upmax: \(u p=\operatorname{Max}\{u i \mid i . i \in\)
\(\{N<. . x\}\}\) by auto
    define \(U\) where \(U=\{m . m>p \wedge u p<u m\}\)
    have \(U \neq\{ \}\) unfolding \(U_{-}\)def using \(N[\) of \(p]\langle p \in\{N<\ldots x\}\rangle\) by auto
    define \(y\) where \(y=\operatorname{Inf} U\)
    then have \(y \in U\) using \(\langle U \neq\{ \}\rangle\) by (simp add: Inf_nat_def1)
    have \(a: \bigwedge i . i \in\{N<. . x\} \Longrightarrow u i \leq u p\)
    proof -
        fix \(i\) assume \(i \in\{N<. . x\}\)
        then have \(u i \in\{u i \mid i . i \in\{N<. . x\}\}\) by blast
        then show \(u i \leq u p\) using upmax by simp
    qed
    moreover have \(u p<u y\) using \(\langle y \in U\rangle U_{-} d e f\) by auto
    ultimately have \(y \notin\{N<\ldots x\}\) using not_le by blast
    moreover have \(y>N\) using \(\langle y \in U\rangle U_{\text {_ }} d e f\langle p \in\{N<\ldots x\}\rangle\) by auto
    ultimately have \(y>x\) by auto
    have \(\bigwedge i . i \in\{N<. . y\} \Longrightarrow u i \leq u y\)
    proof -
        fix \(i\) assume \(i \in\{N<. . y\}\) show \(u i \leq u y\)
        proof (cases)
        assume \(i=y\)
        then show ?thesis by simp
        next
        assume \(\neg(i=y)\)
        then have \(i: i \in\{N<. .<y\}\) using \(\langle i \in\{N<. . y\}\rangle\) by simp
        have \(u i \leq u p\)
        proof (cases)
            assume \(i \leq x\)
            then have \(i \in\{N<\ldots x\}\) using \(i\) by simp
            then show ?thesis using \(a\) by simp
        next
            assume \(\neg(i \leq x)\)
            then have \(i>x\) by simp
            then have \(*: i>p\) using \(\langle p \in\{N<. . x\}\rangle\) by simp
            have \(i<\) Inf \(U\) using \(i y_{-}\)def by simp
            then have \(i \notin U\) using Inf_nat_def not_less_Least by auto
```

```
            then show ?thesis using \(U_{-} d e f *\) by auto
            qed
            then show \(u i \leq u y\) using \(\langle u p<u y\rangle\) by auto
        qed
    qed
    then have \(N<y \wedge x<y \wedge(\forall i \in\{N<. . y\} . u i \leq u y)\) using \(\langle y>x\rangle\langle y>\)
\(N\) ) by auto
    then show \(\exists y>N . x<y \wedge(\forall i \in\{N<. . y\} . u i \leq u y)\) by auto
    qed (auto)
    then obtain \(r\) where \(r: \forall n . N<r n \wedge r n<r(\) Suc \(n) \wedge(\forall i \in\{N<. . r\) (Suc
\(n)\}\). \(u i \leq u(r(S u c n)))\) by auto
    have strict_mono \(r\) using \(r\) by (auto simp: strict_mono_Suc_iff)
    have incseq ( \(u\) or ) unfolding o_def using \(r\) by (simp add: incseq_SucI or-
der.strict_implies_order)
    then have \(\left(\begin{array}{ll}\text { o } & \text { r }) \longrightarrow(S U P ~ \\ n\end{array}\right.\). ( \(u\) or) \(n\) ) using LIMSEQ_SUP by blast
```



```
    moreover have limsup ( \(u\) or) \(\leq\) limsup \(u\) using \(\left\langle s t r i c t \_m o n o r\right\rangle\) by (simp add:
limsup_subseq_mono)
    ultimately have \(\left(S U P n\right.\). ( \(\begin{array}{l}\text { or }\end{array}\) r) \(n\) ) \(\leq\) limsup \(u\) by simp
    \{
        fix \(i\) assume \(i: i \in\{N<.\).
        obtain \(n\) where \(i<r\) (Suc \(n\) ) using sstrict_mono \(r\) ) using Suc_le_eq seq_suble
by blast
    then have \(i \in\{N<. . r(\) Suc \(n)\}\) using \(i\) by simp
    then have \(u i \leq u(r(\) Suc \(n))\) using \(r\) by \(\operatorname{simp}\)
    then have \(u i \leq(S U P \quad n\). ( \(u\) or \() n\) ) unfolding o_def by (meson SUP_upper2
UNIV_I)
    \}
    then have (SUP \(i \in\{N<.\).\(\} . u i\) ) \(\leq\) (SUP \(n\). (u or) \(n\) ) using SUP_least by blast
    then have limsup \(u \leq(S U P \quad n\). ( \(u\) or \(r\) ) \(n\) ) unfolding Limsup_def
        by (metis (mono_tags, lifting) INF_lower2 atLeast_Suc_greaterThan atLeast_def
eventually_ge_at_top mem_Collect_eq)
```



```
\(u\) by simp
```



```
by \(\operatorname{simp}\)
    then show ?thesis using 〈strict_mono \(r\) 〉 by auto
qed
lemma liminf_subseq_lim:
    fixes \(u:: n a t \Rightarrow{ }^{\prime} a::\{\) complete_linorder, linorder_topology \(\}\)
    shows \(\exists r::\) nat \(\Rightarrow\) nat. strict_mono \(r \wedge\left(\begin{array}{ll}u & o r\end{array}\right) \longrightarrow\) liminf \(u\)
proof (cases)
    assume \(\forall n . \exists p>n . \forall m \geq p . u m \geq u p\)
    then have \(\exists r . \forall n .(\forall m \geq r n . u m \geq u(r n)) \wedge r n<r(\) Suc \(n)\)
        by (intro dependent_nat_choice) (auto simp: conj_commute)
    then obtain \(r::\) nat \(\Rightarrow\) nat where strict_mono \(r\) and mono: \(\wedge n m\). \(r n \leq m\)
\(\Longrightarrow u m \geq u(r n)\)
```

by（auto simp：strict＿mono＿Suc＿iff）
define umin where umin $=(\lambda n$ ．$($ INF $m \in\{n ..\} . u m))$
have incseq umin unfolding umin＿def by（simp add：INF＿superset＿mono inc－ seq＿def）
then have umin \longrightarrow liminf u unfolding umin＿def by（metis LIMSEQ＿SUP liminf＿SUP＿INF）
then have $*:($ umin or $) \longrightarrow$ liminf u by（simp add：LIMSEQ＿subseq＿LIMSEQ〈strict＿mono r 〉）
have $\bigwedge n$ ．umin $(r n)=u(r n)$ unfolding umin＿def using mono
by（metis le＿INF＿iff antisym atLeast＿def mem＿Collect＿eq order＿refl）
then have umin or $r=u$ or unfolding o＿def by simp
then have（ u o r ）\longrightarrow liminf u using $*$ by simp
then show ？thesis using «strict＿mono r 〉 by blast
next
assume $\neg(\forall n . \exists p>n .(\forall m \geq p . u m \geq u p))$
then obtain N where $N: \bigwedge p . p>N \Longrightarrow \exists m>p . u p>u m$ by（force simp： not＿le le＿less）
have $\exists r . \forall n . N<r n \wedge r n<r($ Suc $n) \wedge(\forall i \in\{N<. . r($ Suc $n)\} . u i \geq u(r$ （Suc n）））
proof（rule dependent＿nat＿choice）
fix x assume $N<x$
then have a：finite $\{N<\ldots x\}\{N<. . x\} \neq\{ \}$ by simp＿all
have $\operatorname{Min}\{u i \mid i . i \in\{N<\ldots x\}\} \in\{u i \mid i . i \in\{N<. . x\}\}$ apply（rule Min＿in） using a by（auto）
then obtain p where $p \in\{N<. . x\}$ and upmin：$u p=\operatorname{Min}\{u i \mid i . i \in$ $\{N<. . x\}\}$ by auto
define U where $U=\{m . m>p \wedge u p>u m\}$
have $U \neq\{ \}$ unfolding U_{-}def using $N[$ of $p]\langle p \in\{N<. . x\}\rangle$ by auto
define y where $y=\operatorname{Inf} U$
then have $y \in U$ using $\langle U \neq\{ \}\rangle$ by（simp add：Inf＿nat＿def1）
have $a: \bigwedge i . i \in\{N<. . x\} \Longrightarrow u i \geq u p$
proof－
fix i assume $i \in\{N<. . x\}$
then have $u i \in\{u i \mid i . i \in\{N<. . x\}\}$ by blast
then show $u i \geq u p$ using upmin by simp
qed
moreover have $u p>u y$ using $\langle y \in U\rangle U_{-} d e f$ by auto
ultimately have $y \notin\{N<\ldots x\}$ using not＿le by blast
moreover have $y>N$ using $\langle y \in U\rangle U_{-} d e f\langle p \in\{N<. . x\}\rangle$ by auto
ultimately have $y>x$ by auto
have $\bigwedge i . i \in\{N<. . y\} \Longrightarrow u i \geq u y$
proof－
fix i assume $i \in\{N<. . y\}$ show $u i \geq u y$
proof（cases）
assume $i=y$
then show ？thesis by simp
next
assume $\neg(i=y)$

```
        then have \(i: i \in\{N<. .<y\}\) using \(\langle i \in\{N<. . y\}\rangle\) by simp
        have \(u i \geq u p\)
        proof (cases)
            assume \(i \leq x\)
            then have \(i \in\{N<\ldots x\}\) using \(i\) by simp
            then show ?thesis using a by simp
        next
            assume \(\neg(i \leq x)\)
            then have \(i>x\) by simp
            then have \(*: i>p\) using \(\langle p \in\{N<. . x\}\rangle\) by \(\operatorname{simp}\)
            have \(i<\) Inf \(U\) using \(i y_{-}\)def by simp
            then have \(i \notin U\) using Inf_nat_def not_less_Least by auto
            then show ?thesis using \(U_{-} d e f *\) by auto
                qed
                then show \(u i \geq u y\) using \(\langle u p>u y\rangle\) by auto
            qed
    qed
    then have \(N<y \wedge x<y \wedge(\forall i \in\{N<. . y\} . u i \geq u y)\) using \(\langle y>x\rangle\langle y>\)
\(N\) ) by auto
    then show \(\exists y>N . x<y \wedge(\forall i \in\{N<. . y\} . u i \geq u y)\) by auto
    qed (auto)
    then obtain \(r::\) nat \(\Rightarrow\) nat
        where \(r: \forall n . N<r n \wedge r n<r(\) Suc \(n) \wedge(\forall i \in\{N<. . r(\) Suc \(n)\} . u i \geq u\)
( \(r(\) Suc \(n)\) )) by auto
    have strict_mono \(r\) using \(r\) by (auto simp: strict_mono_Suc_iff)
```



```
der.strict_implies_order)
    then have \(\left(\begin{array}{ll}u & o r) \longrightarrow(I N F \\ n\end{array}\right.\). ( \(u\) or \() n\) ) using LIMSEQ_INF by blast
    then have liminf \((u\) or \()=(\) INF \(n .(u\) or) \(n\) ) by (simp add: lim_imp_Liminf \()\)
    moreover have liminf ( \(u\) or) \(\geq\) liminf \(u\) using 〈strict_mono \(r\) by (simp add:
liminf_subseq_mono)
    ultimately have (INF \(n\). ( \(u\) or \(r\) ) \(n\) ) \(\geq \liminf u\) by simp
    \(\{\)
        fix \(i\) assume \(i: i \in\{N<.\).
    obtain \(n\) where \(i<r\) (Suc \(n\) ) using «strict_mono \(r\) 〉 using Suc_le_eq seq_suble
by blast
    then have \(i \in\{N<. . r(\) Suc \(n)\}\) using \(i\) by simp
    then have \(u i \geq u(r(\) Suc \(n))\) using \(r\) by simp
    then have \(u i \geq\) (INF \(n\). ( \(u\) or ) n) unfolding o_def by (meson INF_lower2
UNIV_I)
    \}
    then have (INF \(i \in\{N<.\).\(\} . u i\) ) \(\geq\) (INF \(n\). ( \(u\) or ) \(n\) ) using \(I N F \_g r e a t e s t ~ b y ~\)
blast
    then have liminf \(u \geq(\) INF \(n\). ( \(u\) or \(r\) ) \(n\) ) unfolding Liminf_def
        by (metis (mono_tags, lifting) SUP_upper2 atLeast_Suc_greaterThan atLeast_def
eventually_ge_at_top mem_Collect_eq)
    then have liminf \(u=\left(\right.\) INF \(n\). \(\left(\begin{array}{l}u\end{array}\right.\) or \() n\) ) using 〈(INF \(n\). ( \(u\) or \() n\) ) \(\geq\) liminf \(\left.u\right\rangle\)
by simp
```

```
    then have \((u\) or \() \longrightarrow\) liminf \(u\) using \(\langle(u\) or \() \longrightarrow(\) INF \(n .(u\) or \() n)\rangle\)
by \(\operatorname{simp}\)
    then show ?thesis using «strict_mono \(r\) 〉 by auto
qed
```

The following statement about limsups is reduced to a statement about limits using subsequences thanks to limsup＿subseq＿lim．The statement for limits follows for instance from tendsto＿add＿ereal＿general．

```
lemma ereal_limsup_add_mono:
    fixes \(u v:: n a t \Rightarrow\) ereal
    shows limsup \((\lambda n . u n+v n) \leq\) limsup \(u+\) limsup \(v\)
proof (cases)
    assume (limsup \(u=\infty) \vee(\) limsup \(v=\infty)\)
    then have limsup \(u+\) limsup \(v=\infty\) by simp
    then show ?thesis by auto
next
    assume \(\neg((\) limsup \(u=\infty) \vee(\) limsup \(v=\infty))\)
    then have limsup \(u<\infty\) limsup \(v<\infty\) by auto
    define \(w\) where \(w=(\lambda n . u n+v n)\)
    obtain \(r\) where \(r\) : strict_mono \(r(w\) o \(r) \longrightarrow\) limsup \(w\) using limsup_subseq_lim
by auto
    obtain \(s\) where \(s\) : strict_mono \(s\left(\begin{array}{llll}u & o & r & o \\ \text { ) }\end{array} \longrightarrow\right.\) limsup ( \(\begin{array}{l}u\end{array}\) or) using
limsup_subseq_lim by auto
    obtain \(t\) where \(t\) : strict_mono \(t(v o r o s o t) \longrightarrow l i m s u p(v o r o s)\) using
limsup_subseq_lim by auto
    define \(a\) where \(a=r\) os ot
    have strict_mono \(a\) using \(r\) s \(t\) by (simp add: a_def strict_mono_o)
    have \(l:\left(\begin{array}{lll}w & o & a\end{array}\right) \longrightarrow\) limsup \(w\)
        \(\left(\begin{array}{lll}u & o & a\end{array}\right) \longrightarrow\) limsup \(\left(\begin{array}{lll}u & o & r\end{array}\right)\)
        \(\left(\begin{array}{lll}v & \circ & a) \longrightarrow l i m s u p\end{array}(v o r o s)\right.\)
    apply (metis (no_types, lifting) r(2) s(1) t(1) LIMSEQ_subseq_LIMSEQ a_def
comp_assoc)
    apply (metis (no_types, lifting) \(s(2) t(1)\) LIMSEQ_subseq_LIMSEQ a_def comp_assoc)
    apply (metis (no_types, lifting) t(2) a_def comp_assoc)
    done
    have limsup ( 4 o \(r\) ) \(\leq\) limsup \(u\) by (simp add: limsup_subseq_mono \(r(1)\) )
    then have \(a\) : limsup ( \(u\) or \() \neq \infty\) using 〈limsup \(u<\infty\) ) by auto
    have limsup \((v\) oros) \(\leq\) limsup \(v\)
        by (simp add: comp_assoc limsup_subseq_mono r(1) s(1) strict_mono_o)
    then have \(b\) : limsup ( \(v\) oros) \(\neq \infty\) using 〈limsup \(v<\infty\) ) by auto
    have \(\left(\lambda n .\left(\begin{array}{lll}u & o & a)\end{array}\right)+\left(\begin{array}{lll}v & \circ & a\end{array}\right) n\right) \longrightarrow\) limsup \((u\) or \()+l i m s u p(v o r o s)\)
        using \(l\) tendsto_add_ereal_general \(a b\) by fastforce
    moreover have \(\left(\lambda n\right.\). ( \(\left.\left.\begin{array}{lll}u & o & a\end{array}\right) n+\left(\begin{array}{lll}v & o & a\end{array}\right) n\right)=\left(\begin{array}{lll}w & o & a\end{array}\right)\) unfolding \(w_{-} d e f\) by
auto
    ultimately have \(\left(\begin{array}{lll}w & o & a\end{array}\right] \limsup (u\) or \()+l i m s u p(v o r o s)\) by simp
```

```
    then have limsup \(w=\limsup (u\) or) \(+\limsup (v o r o s)\) using \(l(1)\) LIM-
SEQ_unique by blast
    then have limsup \(w \leq\) limsup \(u+\limsup v\)
    using 〈limsup ( \(u\) or ) \(\leq\) limsup \(u\rangle\left\langle l i m s u p(v o r o s) \leq l i m s u p ~ v 〉 a d d \_m o n o ~\right.\)
by \(\operatorname{simp}\)
    then show ?thesis unfolding w_def by simp
qed
```

There is an asymmetry between liminfs and limsups in ereal, as $\infty+(-\infty)$ $=\infty$. This explains why there are more assumptions in the next lemma dealing with liminfs that in the previous one about limsups.

```
lemma ereal_liminf_add_mono:
    fixes \(u\) v::nat \(\Rightarrow\) ereal
    assumes \(\neg((\liminf u=\infty \wedge \liminf v=-\infty) \vee(\liminf u=-\infty \wedge \liminf v=\)
\(\infty)\)
    shows \(\liminf (\lambda n . u n+v n) \geq \liminf u+\liminf v\)
proof (cases)
    assume \((\liminf u=-\infty) \vee(\liminf v=-\infty)\)
    then have \(*: \liminf u+\liminf v=-\infty\) using assms by auto
    show ?thesis by (simp add: *)
next
    assume \(\neg((\liminf u=-\infty) \vee(\liminf v=-\infty))\)
    then have \(\liminf u>-\infty \liminf v>-\infty\) by auto
    define \(w\) where \(w=(\lambda n . u n+v n)\)
    obtain \(r\) where \(r\) : strict_mono \(r(w\) or \() \longrightarrow\) liminf \(w\) using liminf_subseq_lim
by auto
```



```
liminf_subseq_lim by auto
    obtain \(t\) where \(t\) : strict_monot \((v o r o s o t) \longrightarrow \liminf (v o r o s)\) using
liminf_subseq_lim by auto
    define \(a\) where \(a=r o s o t\)
    have strict_mono \(a\) using \(r s t\) by (simp add: a_def strict_mono_o)
    have \(l:\left(\begin{array}{lll}w & o & a\end{array}\right) \longrightarrow \liminf w\)
    \(\left(\begin{array}{lll}u & \circ & a)\end{array} \longrightarrow \liminf (u \circ r)\right.\)
    \((v \circ a) \longrightarrow \liminf (v o r o s)\)
    apply (metis (no_types, lifting) r(2) s(1) t(1) LIMSEQ_subseq_LIMSEQ a_def
comp_assoc)
    apply (metis (no_types, lifting) \(s\) (2) \(t\) (1) LIMSEQ_subseq_LIMSEQ a_def comp_assoc)
    apply (metis (no_types, lifting) t(2) a_def comp_assoc)
    done
    have liminf ( \(u\) or ) \(\geq\) liminf \(u\) by (simp add: liminf_subseq_mono \(r(1)\) )
    then have \(a\) : liminf ( \(u\) or) \(\neq-\infty\) using \(\langle\liminf u>-\infty\) ) by auto
    have liminf \((v\) or o \(s\) ) \(\geq\) liminf \(v\)
    by (simp add: comp_assoc liminf_subseq_mono r(1) s(1) strict_mono_o)
    then have \(b\) : liminf ( \(v\) oros) \(\neq-\infty\) using \(\langle\liminf v>-\infty\) by auto
```

```
have \(\left(\lambda n .\left(\begin{array}{lll}u & o & a\end{array}\right) n+\left(\begin{array}{lll}v & o & a\end{array}\right) n\right) \longrightarrow \liminf (u o r)+\liminf (v o r o s)\)
    using \(l\) tendsto_add_ereal_general \(a b\) by fastforce
```

 moreover have \(\left(\begin{array}{ll}\lambda\end{array}\right.\). \(\left.\left(\begin{array}{lll}u & o & a\end{array}\right) n+\left(\begin{array}{lll}v & o & a\end{array}\right) n\right)=\left(\begin{array}{lll}w & o & a\end{array}\right)\) unfolding \(w_{-} d e f\) by
 auto
ultimately have $(w o a) \longrightarrow \liminf (u$ or $)+\liminf (v o r o s)$ by simp
then have liminf $w=\liminf (u \quad o r)+\liminf (v o r o s)$ using $l(1)$ LIM-
SEQ_unique by blast
then have liminf $w \geq \liminf u+\liminf v$
using $\langle l i m i n f(u$ or $) \geq$ liminf $u\rangle\left\langle l i m i n f(v o r o s) \geq l i m i n f v>a d d _m o n o \quad\right.$ by
simp
then show ?thesis unfolding w_def by simp
qed
lemma ereal_limsup_lim_add:
fixes u v::nat \Rightarrow ereal
assumes $u \longrightarrow a \operatorname{abs}(a) \neq \infty$
shows limsup $(\lambda n . u n+v n)=a+\limsup v$
proof -
have limsup $u=a$ using assms(1) using tendsto_iff_Liminf_eq_Limsup triv-
ial_limit_at_top_linorder by blast
have $(\lambda n .-u n) \longrightarrow-a$ using $\operatorname{assms}(1)$ by auto
then have limsup $(\lambda n .-u n)=-a$ using tendsto_iff_Liminf_eq_Limsup triv-
ial_limit_at_top_linorder by blast
have limsup $(\lambda n . u n+v n) \leq \limsup u+\limsup v$
by (rule ereal_limsup_add_mono)
then have up: limsup $(\lambda n . u n+v n) \leq a+\limsup v$ using $\langle l i m s u p u=a$ 〉
by simp
have a: limsup $(\lambda n .(u n+v n)+(-u n)) \leq \limsup (\lambda n . u n+v n)+l i m s u p$ (λn. - u n)
by (rule ereal_limsup_add_mono)
have eventually (λn. u $n=$ ereal (real_of_ereal $(u n))$) sequentially using assms real_lim_then_eventually_real by auto
moreover have $\Lambda x . x=\operatorname{ereal}($ real_of_ereal $(x)) \Longrightarrow x+(-x)=0$
by (metis plus_ereal.simps(1) right_minus uminus_ereal.simps(1) zero_ereal_def)
ultimately have eventually $(\lambda n . u n+(-u n)=0)$ sequentially
by (metis (mono_tags, lifting) eventually_mono)
moreover have $\bigwedge n . u n+(-u n)=0 \Longrightarrow u n+v n+(-u n)=v n$
by (metis add.commute add.left_commute add.left_neutral)
ultimately have eventually $(\lambda n . u n+v n+(-u n)=v n)$ sequentially
using eventually_mono by force
 force
then have limsup $v \leq \limsup (\lambda n . u n+v n)-a$ using $a<\limsup (\lambda n .-u n)$ $=-a>$ by (simp add: minus_ereal_def)
then have limsup $(\lambda n . u n+v n) \geq a+\limsup v$ using assms(2) by (metis add.commute ereal_le_minus)
then show? ?thesis using up by simp
qed
lemma ereal_limsup_lim_mult:
fixes $u v$::nat \Rightarrow ereal
assumes $u \longrightarrow a a>0 a \neq \infty$
shows limsup $(\lambda n . u n * v n)=a * \limsup v$
proof -
define w where $w=(\lambda n . u n * v n)$
obtain r where r : strict_mono r (vor) \longrightarrow limsup v using limsup_subseq_lim by auto
have (u or) $\longrightarrow a$ using assms(1) LIMSEQ_subseq_LIMSEQ r by auto
with tendsto_mult_ereal[OF this $r(2)]$ have (λn. ($\left(\begin{array}{ll}\text { or } & r) n *(v o r) n) \longrightarrow\end{array}\right.$ $a * \limsup v$ using assms(2) assms(3) by auto
moreover have $\wedge n$. (wor) $n=\left(\begin{array}{lll}(& \circ & r\end{array}\right) n *(v o r) n$ unfolding $w_{-} d e f$ by auto
ultimately have (w or) $\longrightarrow a *$ limsup v unfolding w def by presburger
then have limsup (wor) $=a *$ limsup v by (simp add: tendsto_iff_Liminf_eq_Limsup)
then have I : limsup $w \geq a *$ limsup v by (metis limsup_subseq_mono r (1))
obtain s where s : strict_mono $s(w o s) \longrightarrow l i m s u p ~ w i n g ~ l i m s u p _s u b s e q-l i m ~$ by auto
have $*:\left(\begin{array}{lll}u & o & s\end{array}\right) \longrightarrow a$ using assms(1) LIMSEQ_subseq_LIMSEQ s by auto
have eventually (λ n. ((o os s) $n>0$) sequentially using assms(2) $*$ order_tendsto_iff by blast
moreover have eventually (λn. ($\left(\begin{array}{ll}\text { ors }\end{array}\right.$) $n<\infty$) sequentially using assms(3) * order_tendsto_iff by blast
moreover have (wos) $n /(u \circ s) n=(v o s) n$ if (uos) $n>0(u \circ s) n<$ ∞ for n
unfolding w_{-}def using that by (auto simp add: ereal_divide_eq)
ultimately have eventually (λn. (wos) $n /\left(\begin{array}{lll}(& \circ & s\end{array}\right) n=\left(\begin{array}{lll}v & \circ & s\end{array}\right) n$) sequentially
using eventually_elim2 by force

apply (rule tendsto_divide_ereal[$\mathrm{OF} s(2)$ *]) using assms(2) assms(3) by auto
ultimately have ($\begin{array}{lll}\text { os }\end{array}$) \longrightarrow (limsup w) / a using Lim_transform_eventually
by fastforce
then have limsup $($ vos $)=($ limsup $w) / a$ by (simp add: tendsto_iff_Liminf_eq_Limsup)
then have limsup $v \geq($ limsup $w) / a$ by (metis limsup_subseq_mono $s(1))$
then have $a *$ limsup $v \geq$ limsup w using assms(2) assms(3) by (simp add: ereal_divide_le_pos)
then show ?thesis using I unfolding w_def by auto
qed
lemma ereal_liminf_lim_mult:
fixes u v::nat \Rightarrow ereal
assumes $u \longrightarrow a a>0 a \neq \infty$
shows liminf $(\lambda n . u n * v n)=a * \liminf v$
proof -
define w where $w=(\lambda n . u n * v n)$
obtain r where r : strict_mono r (v or r) \longrightarrow liminf v using liminf_subseq_lim
by auto
have $\left(\begin{array}{lll}u & o & r\end{array}\right) \longrightarrow a$ using assms (1) LIMSEQ_subseq_LIMSEQ r by auto with tendsto_mult_ereal[OF this r (2)] have (λ. n ($\left.\begin{array}{lll}u & o r & r\end{array}\right) n *\left(\begin{array}{lll}v & o & r\end{array}\right) n$) \longrightarrow $a * \liminf v$ using assms(2) assms (3) by auto moreover have $\bigwedge n$. (wor) $n=\left(\begin{array}{lll}u & \circ r\end{array}\right) n *(v o r) n$ unfolding $w _d e f$ by auto ultimately have $(w$ or $) \longrightarrow a *$ liminf v unfolding $w_{_}$def by presburger then have liminf (w o r) $=a *$ liminf v by (simp add: tendsto_iff_Liminf_eq_Limsup) then have $I: \liminf w \leq a * \liminf v$ by (metis liminf_subseq_mono $r(1)$)
obtain s where s : strict_mono $s(w o s) \longrightarrow$ liminf w using liminf_subseq_lim by auto
have $*:\left(\begin{array}{lll}u & o & s\end{array}\right) \longrightarrow a$ using assms (1) LIMSEQ_subseq_LIMSEQ s by auto have eventually $(\lambda n .(u$ os $) n>0)$ sequentially $\mathbf{u s i n g} \operatorname{assms}(2) *$ order_tendsto_iff by blast
moreover have eventually $\left(\lambda n .\left(\begin{array}{lll}u & o & s\end{array}\right) n<\infty\right)$ sequentially using assms(3)* order_tendsto_iff by blast
moreover have ($w \circ s$) $n /\left(\begin{array}{ll}u \circ s) \\ \text { m }\end{array}\right.$ (vos) n if (uos) $n>0(u \circ s) n<$
∞ for n
unfolding w_{-}def using that by (auto simp add: ereal_divide_eq)
ultimately have eventually $\left(\lambda n\right.$. $\left.\left(\begin{array}{ll}w & o s\end{array}\right) n /\left(\begin{array}{ll}u & o s\end{array}\right) n=\left(\begin{array}{lll}v & o s\end{array}\right) n\right)$ sequentially using eventually_elim2 by force
moreover have $(\lambda n$. $(w \circ s) n /(u \circ s) n) \longrightarrow(\liminf w) / a$
apply (rule tendsto_divide_ereal[OF s(2) *]) using assms(2) assms(3) by auto
ultimately have (v os s) \longrightarrow (liminf w) / a using Lim_transform_eventually
by fastforce
then have liminf $(v o s)=($ liminf $w) / a$ by (simp add: tendsto_iff_Liminf_eq_Limsup)
then have liminf $v \leq(\liminf w) / a$ by (metis liminf_subseq_mono $s(1))$
then have $a * \liminf v \leq \liminf w$ using $\operatorname{assms}(2) \operatorname{assms}(3)$ by (simp add:
ereal_le_divide_pos)
then show ?thesis using I unfolding w_{-}def by auto
qed
lemma ereal_liminf_lim_add:
fixes u v::nat \Rightarrow ereal
assumes $u \longrightarrow a \operatorname{abs}(a) \neq \infty$
shows liminf $(\lambda n . u n+v n)=a+\liminf v$
proof -
have liminf $u=a$ using assms(1) tendsto_iff_Liminf_eq_Limsup trivial_limit_at_top_linorder
by blast
then have $*: \operatorname{abs}(\liminf u) \neq \infty$ using assms(2) by auto
have $(\lambda n .-u n) \longrightarrow-a$ using $\operatorname{assms}(1)$ by auto
then have liminf $(\lambda n .-u n)=-a$ using tendsto_iff_Liminf_eq_Limsup triv-
ial_limit_at_top_linorder by blast
then have $* *: \operatorname{abs}(\liminf (\lambda n .-u n)) \neq \infty$ using assms(2) by auto
have $\liminf (\lambda n . u n+v n) \geq \liminf u+\liminf v$ apply (rule ereal_liminf_add_mono) using * by auto
then have up: liminf $(\lambda n . u n+v n) \geq a+\liminf v$ using $\langle\liminf u=a\rangle$ by
simp
have $a: \liminf (\lambda n .(u n+v n)+(-u n)) \geq \liminf (\lambda n . u n+v n)+\liminf$ ($\lambda n .-u n$)
apply (rule ereal_liminf_add_mono) using ** by auto
have eventually (λn. $u n=\operatorname{ereal}($ real_of_ereal $(u n))$) sequentially using assms real_lim_then_eventually_real by auto
moreover have $\bigwedge x . x=\operatorname{ereal}($ real_of_ereal $(x)) \Longrightarrow x+(-x)=0$
by (metis plus_ereal.simps(1) right_minus uminus_ereal.simps(1) zero_ereal_def)
ultimately have eventually $(\lambda n$. $u n+(-u n)=0)$ sequentially
by (metis (mono_tags, lifting) eventually_mono)
moreover have $\bigwedge n . u n+(-u n)=0 \Longrightarrow u n+v n+(-u n)=v n$
by (metis add.commute add.left_commute add.left_neutral)
ultimately have eventually $(\lambda n . u n+v n+(-u n)=v n)$ sequentially using eventually_mono by force
then have liminf $v=\liminf (\lambda n . u n+v n+(-u n))$ using Liminf_eq by force
then have $\liminf v \geq \liminf (\lambda n . u n+v n)-a$ using $a<l \liminf (\lambda n .-u n)$ $=-a>$ by (simp add: minus_ereal_def)
then have liminf $(\lambda n . u n+v n) \leq a+\liminf v$ using assms (2) by (metis add.commute ereal_minus_le)
then show? ?thesis using up by simp
qed
lemma ereal_liminf_limsup_add:
fixes u v::nat \Rightarrow ereal
shows liminf $(\lambda n . u n+v n) \leq \liminf u+\limsup v$
proof (cases)
assume limsup $v=\infty \vee \liminf u=\infty$
then show?thesis by auto
next
assume $\neg(\limsup v=\infty \vee \liminf u=\infty)$
then have limsup $v<\infty \liminf u<\infty$ by auto
define w where $w=(\lambda n . u n+v n)$
obtain r where r : strict_mono $r(u$ or $) \longrightarrow$ liminf u using liminf_subseq_lim
by auto
obtain s where s : strict_mono $s(w o r o s) \longrightarrow \liminf (w o r)$ using liminf_subseq_lim by auto
obtain t where t : strict_monot t vorosot) \longrightarrow limsup (voros) using limsup_subseq_lim by auto
define a where $a=r o s$ ot
have strict_mono a using r s t by (simp add: a_def strict_mono_o)
have $l:\left(\begin{array}{lll}l & o & a\end{array}\right) \longrightarrow$ liminf u
$\left(\begin{array}{llll}w & o & a\end{array}\right) \longrightarrow \liminf \left(\begin{array}{lll}w & o & r\end{array}\right)$
$\left(\begin{array}{lll}v & o & a) \longrightarrow\end{array} \longrightarrow\right.$ limsup $(v o r o s)$
apply (metis (no_types, lifting) r(2) s(1) t(1) LIMSEQ_subseq_LIMSEQ a_def comp_assoc)

```
apply (metis (no_types, lifting) s(2) t(1) LIMSEQ_subseq_LIMSEQ a_def comp_assoc)
apply (metis (no_types, lifting) t(2) a_def comp_assoc)
```

done
have liminf (w o r) \geq liminf w by (simp add: liminf_subseq_mono $r(1)$)
have limsup $(v$ oros) \leq limsup v
by (simp add: comp_assoc limsup_subseq_mono r (1) s(1) strict_mono_o)
then have b : limsup (v oros) $<\infty$ using 〈limsup $v<\infty$) by auto
have $\left(\lambda n .\left(\begin{array}{lll}u & o & a\end{array}\right) n+\left(\begin{array}{lll}v & o & a\end{array}\right) n\right) \longrightarrow \liminf u+l i m s u p(v o r o s)$
apply (rule tendsto_add_ereal_general) using b 〈liminf $u<\infty\rangle l(1) l(3)$ by
force +
moreover have $\left(\lambda n\right.$. ($\left.\left.\begin{array}{lll}u & \circ & a\end{array}\right) n+\left(\begin{array}{lll}v & \circ & a\end{array}\right) n\right)=\left(\begin{array}{lll}w & o & a\end{array}\right)$ unfolding $w_{-} d e f$ by
auto
ultimately have $\left(\begin{array}{ll}w & o\end{array}\right) \longrightarrow \liminf u+\limsup (v o r o s)$ by simp
then have liminf (w or) $=\liminf u+\limsup (v o r o s)$ using $l(2)$ using
LIMSEQ_unique by blast
then have liminf $w \leq \liminf u+$ limsup v
using $\langle\liminf (w$ or $) \geq \liminf w\rangle\langle l i m s u p(v o r o s) \leq l i m s u p v\rangle$
by (metis add_mono_thms_linordered_semiring(2) le_less_trans not_less)
then show ?thesis unfolding w_{-}def by simp
qed
lemma ereal_liminf_limsup_minus:
fixes u v::nat \Rightarrow ereal
shows liminf $(\lambda n . u n-v n) \leq l i m s u p u-l i m s u p ~ v$
unfolding minus_ereal_def
apply (subst add.commute)
apply (rule order_trans[OF ereal_liminf_limsup_add])
using ereal_Limsup_uminus [of sequentially $\lambda n .-v n]$
apply (simp add: add.commute)
done
lemma liminf_minus_ennreal:
fixes u v::nat \Rightarrow ennreal
shows $(\bigwedge n$. v $n \leq u n) \Longrightarrow \liminf (\lambda n . u n-v n) \leq \limsup u-l i m s u p v$
unfolding liminf_SUP_INF limsup_INF_SUP
including ennreal.lifting
proof (transfer, clarsimp)
fix $v u::$ nat \Rightarrow ereal assume $*: \forall x .0 \leq v x \forall x .0 \leq u x \bigwedge n . v n \leq u n$
moreover have $0 \leq$ limsup u - limsup v
using * by (intro ereal_diff_positive Limsup_mono always_eventually) simp
moreover have $0 \leq \operatorname{Sup}\left(u{ }^{\prime}\{x .\}.\right)$ for x
using * by (intro SUP_upper2 $[$ of $x]$) auto
moreover have $0 \leq \operatorname{Sup}\left(v^{\prime}\{x .\}.\right)$ for x
using * by (intro SUP_upper2 $[$ of $x]$) auto
ultimately show $(S U P$ n. INF $n \in\{n ..\} . \max 0(u n-v n))$
$\leq \max 0\left(\left(\operatorname{INF} x . \max 0\left(\operatorname{Sup}\left(u^{\prime}\{x .\}.\right)\right)\right)-(\right.$ INF x. max $0(S u p(v '$

```
\(\{x .\}))\).\() )\)
    by (auto simp: * ereal_diff_positive max.absorb2 liminf_SUP_INF[symmetric]
limsup_INF_SUP[symmetric] ereal_liminf_limsup_minus)
qed
```


4.5.4 Relate extended reals and the indicator function

lemma ereal_indicator_le_0: (indicator $S x::$ ereal $) \leq 0 \longleftrightarrow x \notin S$
by (auto split: split_indicator simp: one_ereal_def)
lemma ereal_indicator: ereal (indicator $A x$) $=$ indicator $A x$ by (auto simp: indicator_def one_ereal_def)
lemma ereal_mult_indicator: ereal $(x *$ indicator $A y)=$ ereal $x *$ indicator $A y$ by (simp split: split_indicator)
lemma ereal_indicator_mult: ereal (indicator $A y * x)=$ indicator $A y *$ ereal x by (simp split: split_indicator)
lemma ereal_indicator_nonneg[simp, intro]: $0 \leq($ indicator A x ::ereal $)$
unfolding indicator_def by auto
lemma indicator_inter_arith_ereal: indicator $A x *$ indicator $B x=$ (indicator (A $\cap B) x$:: ereal)
by (simp split: split_indicator)
end

4.6 Radius of Convergence and Summation Tests

theory Summation_Tests
imports
Complex_Main
HOL-Library.Discrete
HOL-Library.Extended_Real
HOL-Library.Liminf_Limsup
Extended_Real_Limits
begin
The definition of the radius of convergence of a power series, various summability tests, lemmas to compute the radius of convergence etc.

4.6.1 Convergence tests for infinite sums

Root test

lemma limsup_root_powser:
fixes $f::$ nat \Rightarrow ' $a::\{$ banach, real_normed_div_algebra $\}$ shows limsup $\left(\lambda n\right.$. ereal $\left(\right.$ root $\left.\left.n\left(\operatorname{norm}\left(f n * z^{\wedge} n\right)\right)\right)\right)=$

```
    limsup (\lambdan. ereal (root n (norm (f n)))) * ereal (norm z)
proof -
    have A: (\lambdan. ereal (root n (norm (fn* * ^ n)))) =
                            (\lambdan. ereal (root n (norm (fn)))* ereal (norm z)) (is ?g = ?h)
    proof
        fix n show ?g n = ?h n
    by (cases n=0)(simp_all add: norm_mult real_root_mult real_root_pos2 norm_power)
    qed
    show ?thesis by (subst A, subst limsup_ereal_mult_right) simp_all
qed
lemma limsup_root_limit:
    assumes (\lambdan. ereal (root n (norm (fn))))\longrightarrowl}\longrightarrowl\mathrm{ (is ?g }\longrightarrow\mathrm{ -)
    shows limsup ( }\lambdan.\operatorname{ereal}(\operatorname{root n (norm ( }fn))))=
proof -
    from assms have convergent ?g lim ?g = l
        unfolding convergent_def by (blast intro: limI)+
    with convergent_limsup_cl show ?thesis by force
qed
lemma limsup_root_limit':
    assumes (\lambdan. root n (norm (f n))) \longrightarrowl
    shows limsup ( }\lambdan\mathrm{ . ereal (root n (norm (fn)))) = ereal l
    by (intro limsup_root_limit tendsto_ereal assms)
theorem root_test_convergence':
    fixes f :: nat => 'a :: banach
    defines l\equivlimsup ( }\lambdan\mathrm{ . ereal (root n (norm (f n))))
    assumes l:l<1
    shows summable f
proof -
    have 0= limsup (\lambdan.0) by (simp add: Limsup_const)
    also have ... \leql unfolding l_def by (intro Limsup_mono) (simp_all add:
real_root_ge_zero)
    finally have l\geq0 by simp
    with l obtain l' where l':l= ereal l' by (cases l) simp_all
    define c where c=(1-l')/ 2
    from l and }\langlel\geq0\rangle\mathrm{ have }c:l+c>l\mp@subsup{l}{}{\prime}+c\geq0\mp@subsup{l}{}{\prime}+c<1\mathrm{ unfolding c_def
        by (simp_all add: field_simps l')
    have }\forallC>l\mathrm{ . eventually ( }\lambdan\mathrm{ . ereal (root n (norm ( }fn)))<C)\mathrm{ sequentially
        by (subst Limsup_le_iff[symmetric]) (simp add: l_def)
    with c have eventually ( }\lambdan\mathrm{ . ereal (root n (norm (fn)))<l+ ereal c) sequentially
by simp
    with eventually_gt_at_top[of 0::nat]
        have eventually ( }\lambdan\mathrm{ . norm (fn) < ( (l' + c) ^ n) sequentially
    proof eventually_elim
    fix n :: nat assume n: n>0
    assume ereal (root n (norm (f n)))}<l+\mathrm{ ereal c
```

```
    hence root n(norm (fn))\leq l' + c by (simp add: l')
    with c n have root n (norm (fn)) ^ n \leq (l' + c) ^ n
        by (intro power_mono) (simp_all add: real_root_ge_zero)
    also from n have root n (norm (f n)) ^ n = norm (f n) by simp
    finally show norm (fn)\leq(l' +c)^ n by simp
    qed
    thus ?thesis
    by (rule summable_comparison_test_ev[OF _ summable_geometric]) (simp add:
c)
qed
theorem root_test_divergence:
    fixes f :: nat 歽'a :: banach
    defines l \equivlimsup ( }\lambda\mathrm{ n. ereal (root n (norm (fn))))
    assumes l:l>1
    shows \negsummable f
proof
    assume summable f
    hence bounded: Bseq f by (simp add: summable_imp_Bseq)
    have 0= limsup (\lambdan.0) by (simp add: Limsup_const)
    also have ... \leql unfolding l_def by (intro Limsup_mono) (simp_all add:
real_root_ge_zero)
    finally have l_nonneg:l\geq0 by simp
    define c where c=(if l=\infty then 2 else 1 + (real_of_ereal l - 1) / 2)
    from l l_nonneg consider l=\infty | 的'.l= ereal l' by (cases l) simp_all
    hence c:c>1 ^ ereal c<l by cases (insert l, auto simp: c_def field_simps)
    have unbounded: \negbdd_above {n. root n (norm (f n))>c}
    proof
        assume bdd_above {n. root n (norm (f n)) > c}
        then obtain N where }\foralln\mathrm{ . root n (norm (fn))>c>
bdd_above_def by blast
    hence }\existsN.\foralln\geqN. root n (norm (fn))\leq
        by (intro exI[of _ N + 1]) (force simp: not_less_eq_eq[symmetric])
    hence eventually ( }\lambdan\mathrm{ . root n (norm ( }fn)\mathrm{ ) }\leqc)\mathrm{ sequentially
        by (auto simp: eventually_at_top_linorder)
    hence l\leqc unfolding l_def by (intro Limsup_bounded) simp_all
    with c show False by auto
    qed
    from bounded obtain K where K:K>0 \bigwedgen. norm (f n) \leqK using BseqE
by blast
    define n where n=nat \lceillog c K\rceil
    from unbounded have }\existsm>n.c<root m (norm (fm)) unfolding bdd_above_def
    by (auto simp: not_le)
then guess m by (elim exE conjE) note m= this
from c K have K = c powr log c K by (simp add: powr_def log_def)
```

also from c have c powr $\log c K \leq c$ powr real n unfolding $n_{-} d e f$
by (intro powr_mono, linarith, simp)
finally have $K \leq c^{\wedge} n$ using c by (simp add: powr_realpow)
also from $c m$ have $c^{\wedge} n<c^{\wedge} m$ by simp
also from $c m$ have $c^{\wedge} m<$ root m (norm ($f m$)) ^ m by (intro power_strict_mono)
simp_all
also from m have $\ldots=\operatorname{norm}(f m)$ by simp
finally show False using K (2) [of m] by simp
qed

Cauchy's condensation test

context
fixes $f::$ nat \Rightarrow real
begin
private lemma condensation_inequality:
assumes mono: $\bigwedge m n .0<m \Longrightarrow m \leq n \Longrightarrow f n \leq f m$
shows $\left(\sum k=1 . .<n . f k\right) \geq\left(\sum k=1 . .<n . f\left(2 * 2{ }^{\wedge}\right.\right.$ Discrete.log $\left.\left.k\right)\right)($ is ?thesis1)
$\left(\sum k=1 . .<n . f k\right) \leq\left(\sum k=1 . .<n . f\left(2^{\wedge}\right.\right.$ Discrete.log $\left.\left.k\right)\right)$ (is ?thesis2)
by (intro sum_mono mono Discrete.log_exp2_ge Discrete.log_exp2_le, simp, simp)+
private lemma condensation_condense1: $\left(\sum k=1 . .<2 \wedge n\right.$. f (2 ^ Discrete.log $\left.k\right)$) $=\left(\sum k<n \cdot\right.$ 2 $^{\wedge} k * f\left(\right.$ 2 $\left.\left.^{\wedge} k\right)\right)$
proof (induction n)
case (Suc n)
have $\left\{1 . .<2^{\wedge}\right.$ Suc $\left.n\right\}=\left\{1 . .<2^{\wedge} n\right\} \cup\left\{\right.$ 2 $^{\wedge} n . .<\left(2^{\wedge}\right.$ Suc $n::$ nat $\left.)\right\}$ by auto
also have $\left(\sum k \in \ldots f\left(\right.\right.$ 2 $^{\wedge}$ Discrete. $\left.\left.\log k\right)\right)=$

$$
\left(\sum k<n . \mathscr{Z}^{\wedge} k * f\left(\mathbb{Z}^{\wedge} k\right)\right)+\left(\sum k = 2 ^ { \wedge } n . . < \mathbb { Z } ^ { \wedge } S u c \text { n. } f \left(\mathbb{Z}^{\wedge}\right.\right. \text { Discrete.log }
$$

k))
by (subst sum.union_disjoint) (insert Suc, auto)
also have Discrete. $\log k=n$ if $k \in\left\{2^{\wedge} n . .<2^{\wedge} S u c n\right\}$ for k using that by (intro Discrete.log_eqI) simp_all
hence $\left(\sum k=\right.$ 2 $^{\wedge} n . .<$ 2 $^{\wedge} S u c n . f\left(\right.$ 2^Discrete $\left.\left.^{\prime} \log k\right)\right)=\left(\sum\left(_::\right.\right.$nat $)=$2 $^{\wedge} n . .<$ 2 $^{\wedge} S u c$ n. $f\left(2^{\wedge} n\right)$)
by (intro sum.cong) simp_all
also have $\ldots=2^{\wedge} n * f\left(\right.$ 2 $\left.^{\wedge} n\right)$ by (simp)
finally show? case by simp
qed simp
private lemma condensation_condense2: $\left(\sum k=1 . .<2 \wedge n . f\left(2 * 2{ }^{\wedge}\right.\right.$ Discrete.log
$k)=\left(\sum k<n \cdot \mathscr{L}^{\wedge} k * f\left(\mathcal{Z}^{\wedge}\right.\right.$ Suc $\left.\left.k\right)\right)$
proof (induction n)
case (Suc n)
have $\left\{1 . .<\right.$ 2$\left.^{\wedge} S u c n\right\}=\left\{1 . .<\right.$ 2 $\left.^{\wedge} n\right\} \cup\left\{\right.$ 2^n.. $^{\wedge}<\left(\right.$ 2 $^{\wedge}$ Suc $n::$ nat $\left.)\right\}$ by auto
also have $\left(\sum k \in \ldots f\left(2 * 2^{\wedge}\right.\right.$ Discrete. $\left.\left.\log k\right)\right)=$

2^Discrete. $\log k)$)
by (subst sum.union_disjoint) (insert Suc, auto)
also have Discrete. $\log k=n$ if $k \in\left\{\right.$ 2 $\left.^{\wedge} n . .<2^{\wedge} S u c n\right\}$ for k using that by (intro Discrete.log_eqI) simp_all
 n. f (2^Suc n))
by (intro sum.cong) simp_all
also have $\ldots=2^{\wedge} n * f\left(2^{\wedge} S u c n\right)$ by (simp)
finally show? case by simp
qed simp
theorem condensation_test:
assumes mono: $\bigwedge m .0<m \Longrightarrow f($ Suc $m) \leq f m$
assumes nonneg: $\bigwedge n$. $f n \geq 0$
shows summable $f \longleftrightarrow$ summable $\left(\lambda n \cdot \mathbb{2}^{\wedge} n * f\left(\mathbb{2}^{\wedge} n\right)\right)$
proof -
define f^{\prime} where $f^{\prime} n=($ if $n=0$ then 0 else $f n)$ for n
from mono have mono': decseq (λn. $f($ Suc n)) by (intro decseq_SucI) simp
hence mono': $f n \leq f m$ if $m \leq n m>0$ for $m n$
using that decseq $D[$ OF mono', of $m-1 n-1]$ by simp
have $(\lambda n . f(S u c n))=\left(\lambda n . f^{\prime}(\right.$ Suc $\left.n)\right)$ by (intro ext) $\left(\right.$ simp add: $f^{\prime}{ }^{\prime}$ def $)$
hence summable $f \longleftrightarrow$ summable f^{\prime}
by (subst (1 2) summable_Suc_iff [symmetric]) (simp only:)
also have $\ldots \longleftrightarrow$ convergent $\left(\lambda n . \sum k<n . f^{\prime} k\right)$ unfolding summable_iff_convergent
also have monoseq ($\lambda n . \sum k<n . f^{\prime} k$) unfolding $f^{\prime}{ }_{-} d e f$ by (intro mono_SucI1) (auto intro!: mult_nonneg_nonneg nonneg)
hence convergent $\left(\lambda n . \sum k<n . f^{\prime} k\right) \longleftrightarrow B s e q\left(\lambda n . \sum k<n . f^{\prime} k\right)$
by (rule monoseq_imp_convergent_iff_Bseq)
also have $\ldots \longleftrightarrow$ Bseq ($\lambda n . \sum k=1 . .<n . f^{\prime} k$) unfolding One_nat_def
by (subst sum_shift_lb_Suc0_0_upt) (simp_all add: $f^{\prime}{ }_{-}$def atLeastOLessThan)
also have $\ldots \longleftrightarrow \operatorname{Bseq}\left(\lambda n . \sum k=1 . .<n . f k\right)$ unfolding $f^{\prime}{ }^{\prime}$ def by simp
also have $\ldots \longleftrightarrow B s e q\left(\lambda n . \sum k=1 . .<2^{\wedge} n . f k\right)$
by (rule nonneg_incseq_Bseq_subseq_iff [symmetric])
(auto intro!: sum_nonneg incseq_SucI nonneg simp: strict_mono_def)
also have $\ldots \longleftrightarrow \operatorname{Bseq}\left(\lambda n . \sum k<n . \mathcal{Z}^{\wedge} k * f\left(\right.\right.$ 2 $\left.\left.^{\wedge} k\right)\right)$
proof (intro iffI)
assume A : $\operatorname{Bseq}\left(\lambda n . \sum k=1 . .<2 \wedge n . f k\right)$
have eventually $\left(\lambda n\right.$. norm $\left(\sum k<n\right.$. 2 ${ }^{\wedge} k * f\left(\right.$ 2 $\left.\left.^{\wedge} \operatorname{Suc} k\right)\right) \leq \operatorname{norm}\left(\sum k=1 . .<\right.$ 2 $^{\wedge} n$.
$f k$)) sequentially
proof (intro always_eventually allI)
fix $n::$ nat
have norm $\left(\sum k<n\right.$. 2^k $* f\left(\right.$ 2^Suc $\left.\left.^{\wedge}\right)\right)=\left(\sum k<n\right.$. 2^ $k * f\left(\right.$ 2^Suc $\left.\left.^{\wedge}\right)\right)$
unfolding real_norm_def by (intro abs_of_nonneg sum_nonneg ballI mult_nonneg_nonneg nonneg)
simp_all
also have $\ldots \leq\left(\sum k=1 . .<2^{\wedge} n . f k\right)$
by (subst condensation_condense2 [symmetric]) (intro condensation_inequality mono')
also have $\ldots=$ norm \ldots unfolding real_norm_def
by (intro abs_of_nonneg[symmetric] sum_nonneg ballI mult_nonneg_nonneg nonneg)
finally show $\operatorname{norm}\left(\sum k<n .2^{\wedge} k * f\left(\right.\right.$ 2 $^{\wedge}$ Suc $\left.\left.k\right)\right) \leq \operatorname{norm}\left(\sum k=1 . .<2^{\wedge} n\right.$. $f k)$.
qed
from this and A have Bseq $\left(\lambda n . \sum k<n .2^{\wedge} k * f\left(2^{\wedge} S u c k\right)\right)$ by (rule Bseq_eventually_mono)
from Bseq_mult[OF Bfun_const[of 2] this] have Bseq (λn. $\sum k<n$. 2^Suc $k *$ $f\left(2^{\wedge} S u c k\right)$)
by (simp add: sum_distrib_left sum_distrib_right mult_ac)
hence Bseq $\left(\lambda n\right.$. $\left(\sum k=\right.$ Suc $\left.\left.0 . .<S u c ~ n . ~ 2 \wedge k * f\left(2^{\wedge} k\right)\right)+f 1\right)$
by (intro Bseq_add, subst sum.shift_bounds_Suc_ivl) (simp add: atLeast0LessThan)
hence Bseq (λn. ($\sum k=0 . .<$ Suc n. 2^ $k * f\left(\right.$ 2 $\left.^{\wedge} k\right)$))
by (subst sum.atLeast_Suc_lessThan) (simp_all add: add_ac)
thus Bseq $\left(\lambda n\right.$. $\left(\sum k<n\right.$. 2^^ $^{\wedge} k f\left(\right.$ 2^^ $\left.\left.\left.^{\wedge}\right)\right)\right)$
by (subst (asm) Bseq_Suc_iff) (simp add: atLeast0LessThan)
next
assume $A: B \operatorname{seq}\left(\lambda n .\left(\sum k<n . \mathcal{Z}^{\wedge} k * f\left(\right.\right.\right.$ 2 $\left.\left.\left.^{\wedge} k\right)\right)\right)$
have eventually (λ n. norm $\left(\sum k=1 . .<2 \wedge n . f k\right) \leq \operatorname{norm}\left(\sum k<n\right.$. 2^ $k * f$ (2^k))) sequentially
proof (intro always_eventually allI)
fix n :: nat
have norm $\left(\sum k=1 . .<\mathcal{Z}^{\wedge} n . f k\right)=\left(\sum k=1 . .<\mathcal{Z}^{\wedge} n . f k\right)$ unfolding real_norm_def
by (intro abs_of_nonneg sum_nonneg ballI mult_nonneg_nonneg nonneg)
also have $\ldots \leq\left(\sum k<n\right.$. $\left.\mathbf{2}^{\wedge} k * f\left(2^{\wedge} k\right)\right)$
by (subst condensation_condense1 [symmetric]) (intro condensation_inequality mono')
also have $\ldots=$ norm . . . unfolding real_norm_def
by (intro abs_of_nonneg [symmetric] sum_nonneg ballI mult_nonneg_nonneg nonneg) simp_all
finally show norm $\left(\sum k=1 . .<\mathscr{L}^{\wedge} n . f k\right) \leq \operatorname{norm}\left(\sum k<n\right.$. $\left.\mathfrak{L}^{\wedge} k * f\left(\mathscr{2}^{\wedge} k\right)\right)$. qed
from this and A show $\operatorname{Bseq}\left(\lambda n . \sum k=1 . .<2^{\wedge} n . f k\right)$ by (rule Bseq_eventually_mono) qed
also have monoseq $\left(\lambda n .\left(\sum k<n .2^{\wedge} k * f\left(2^{\wedge} k\right)\right)\right)$
by (intro mono_SucI1) (auto intro!: mult_nonneg_nonneg nonneg)
hence $\operatorname{Bseq}\left(\lambda n .\left(\sum k<n\right.\right.$. $\left.\left.\mathfrak{2}^{\wedge} k * f\left(\mathcal{L}^{\wedge} k\right)\right)\right) \longleftrightarrow$ convergent $\left(\lambda n\right.$. $\left(\sum k<n\right.$. $\mathfrak{L}^{\wedge} k *$ $\left.\left.f\left(\mathbf{2}^{\wedge} k\right)\right)\right)$
by (rule monoseq_imp_convergent_iff_Bseq [symmetric])
also have $\ldots \longleftrightarrow$ summable $\left(\lambda k .2^{\wedge} k * f\left(2^{\wedge} k\right)\right)$ by (simp only: summable_iff_convergent)
finally show ?thesis.
qed
end

Summability of powers

lemma abs_summable_complex_powr_iff:
summable $(\lambda$ n. norm $(\exp ($ of_real $(\ln ($ of_nat $n)) * s))) \longleftrightarrow$ Re $s<-1$

```
proof (cases Re \(s \leq 0\) )
    let \(? l=\lambda n\). complex_of_real \((\) ln \((\) of_nat \(n))\)
    case False
    have eventually \((\lambda n\). norm \((1::\) real \() \leq \operatorname{norm}(\exp (? l n * s)))\) sequentially
        apply (rule eventually_mono [OF eventually_gt_at_top[of \(0:: n a t]]\) )
        using False ge_one_powr_ge_zero by auto
    from summable_comparison_test_ev[OF this] False show ?thesis by (auto simp:
summable_const_iff)
next
    let ?l \(=\lambda n\). complex_of_real \(\left(\right.\) ln \(\left.\left(o f \_n a t ~ n\right)\right)\)
    case True
    hence summable \((\lambda\). norm \((\exp (? l n * s))) \longleftrightarrow\) summable \(\left(\lambda n\right.\). \({ }^{2}{ }^{\wedge} n *\) norm
\(\left.\left(\exp \left(? l\left(\mathfrak{Z}^{\wedge} n\right) * s\right)\right)\right)\)
    by (intro condensation_test) (auto intro!: mult_right_mono_neg)
```



```
n)
    proof
        fix \(n::\) nat
        have 2^n \(n \operatorname{norm}\left(\exp \left(? l\left(2^{\wedge} n\right) * s\right)\right)=\exp (\) real \(n * \ln 2) * \exp (\) real \(n * \ln\)
\(2 * R e s)\)
            using True by (subst exp_of_nat_mult) (simp add: ln_realpow algebra_simps)
            also have \(\ldots=\exp (\) real \(n *(\ln 2 *(\operatorname{Re} s+1)))\)
            by (simp add: algebra_simps exp_add)
        also have \(\ldots=\exp (\ln 2 *(R e s+1))^{\wedge} n\) by (subst exp_of_nat_mult) simp
            also have \(\exp (\ln 2 *(\operatorname{Re} s+1))=2 \operatorname{powr}(\operatorname{Re} s+1)\) by \((\operatorname{simp}\) add:
powr_def)
    finally show \(\mathbf{2}^{\wedge} n * \operatorname{norm}\left(\exp \left(? l\left(\mathbb{2}^{\wedge} n\right) * s\right)\right)=(2 \operatorname{powr}(\operatorname{Re} s+1)){ }^{\wedge} n\).
    qed
    also have summable \(\ldots \longleftrightarrow 2\) powr \((\operatorname{Re} s+1)<2\) powr 0
        by (subst summable_geometric_iff) simp
    also have \(\ldots \longleftrightarrow R e s<-1\) by (subst powr_less_cancel_iff) (simp, linarith)
    finally show?thesis.
qed
```

theorem summable_complex_powr_iff:
assumes Re $s<-1$
shows summable (λ n. exp (of_real $\left(\right.$ ln $\left.\left.\left.\left(o f_{-} n a t ~ n\right)\right) * s\right)\right)$
by (rule summable_norm_cancel, subst abs_summable_complex_powr_iff) fact
lemma summable_real_powr_iff: summable (λn. of_nat n powr $s::$ real) $\longleftrightarrow s<$
-1
proof -
from eventually_gt_at_top[of 0::nat]
have summable $(\lambda n$. of_nat n powr $s) \longleftrightarrow$ summable $(\lambda n$. exp (ln (of_nat $n) *$
s))
by (intro summable_cong) (auto elim! : eventually_mono simp: powr_def)
also have $\ldots \longleftrightarrow s<-1$ using abs_summable_complex_powr_iff[of of_real s]
by simp
finally show ?thesis.

qed

lemma inverse_power_summable:
assumes $s: s \geq$ 2
shows summable (λ n. inverse (of_nat $\left.n^{\wedge} s::^{\prime} a::\left\{r e a l _n o r m e d _d i v _a l g e b r a, b a n a c h\right\}\right)$)
proof (rule summable_norm_cancel, subst summable_cong)
from eventually_gt_at_top[of $0:: n a t$]
show eventually (λ n. norm (inverse (of_nat $\left.n{ }^{\wedge} s::^{\prime} a\right)$) $=$ real_of_nat n powr
(-real s)) at_top
by eventually_elim (simp add: norm_inverse norm_power powr_minus powr_realpow)
qed (insert s summable_real_powr_iff $[o f-s]$, simp_all)
lemma not_summable_harmonic: $\neg s u m m a b l e ~(\lambda n$. inverse (of_nat n) :: ' a :: real_normed_field)
proof
assume summable (λn. inverse (of_nat n) :: ' a)
hence convergent (λn. norm (of_real $\left(\sum k<n\right.$. inverse (of_nat $\left.k\right)$) :: 'a))
by (simp add: summable_iff_convergent convergent_norm)
hence convergent (λn. abs $\left(\sum k<n\right.$. inverse (of_nat k)) :: real) by (simp only:
norm_of_real)
also have $\left(\lambda n\right.$. abs $\left(\sum k<n\right.$. inverse $($ of_nat $\left.k)\right)::$ real $)=\left(\lambda n . \sum k<n\right.$. inverse
(of_nat k))
by (intro ext abs_of_nonneg sum_nonneg) auto
also have convergent $\ldots \longleftrightarrow$ summable $(\lambda k$. inverse (of_nat k) :: real)
by (simp add: summable_iff_convergent)
finally show False using summable_real_powr_iff $[o f-1]$ by (simp add: powr_minus)
qed

Kummer's test

theorem kummers_test_convergence:
fixes $f p::$ nat \Rightarrow real
assumes pos_f: eventually $(\lambda n . f n>0)$ sequentially
assumes nonneg_p: eventually $(\lambda n . p n \geq 0)$ sequentially
defines $l \equiv \liminf (\lambda n$. ereal $(p n * f n / f($ Suc $n)-p($ Suc $n)))$
assumes $l: l>0$
shows summable f
unfolding summable_iff_convergent'
proof -
define r where $r=($ if $l=\infty$ then 1 else real_of_ereal l / 2)
from l have $r>0 \wedge$ of_real $r<l$ by (cases l) (simp_all add: $\left.r_{-} d e f\right)$
hence $r: r>0$ of_real $r<l$ by simp_all
hence eventually $(\lambda n . p n * f n / f($ Suc $n)-p($ Suc $n)>r)$ sequentially
unfolding l_def by (force dest: less_LiminfD)
moreover from pos_f have eventually $(\lambda n . f(S u c n)>0)$ sequentially
by (subst eventually_sequentially_Suc)
ultimately have eventually $(\lambda n . p n * f n-p(S u c n) * f($ Suc $n)>r * f$
(Suc n)) sequentially
by eventually_elim (simp add: field_simps)
from eventually_conj[OF pos_f eventually_conj[OF nonneg_p this]]
obtain m where $m: \bigwedge n . n \geq m \Longrightarrow f n>0 \bigwedge n . n \geq m \Longrightarrow p n \geq 0$
$\bigwedge n . n \geq m \Longrightarrow p n * f n-p($ Suc $n) * f($ Suc $n)>r * f($ Suc $n)$
unfolding eventually_at_top_linorder by blast

```
let \({ }^{\text {? }} c=\left(\operatorname{norm}\left(\sum k \leq m . r * f k\right)+p m * f m\right) / r\)
have Bseq \(\left(\lambda n .\left(\sum k \leq n+\right.\right.\) Suc m. \(\left.\left.f k\right)\right)\)
proof (rule BseqI')
    fix \(k\) :: nat
    define \(n\) where \(n=k+\) Suc \(m\)
    have \(n\) : \(n>m\) by (simp add: n_def)
    from \(r\) have \(r * \operatorname{norm}\left(\sum k \leq n . f k\right)=\operatorname{norm}\left(\sum k \leq n . r * f k\right)\)
        by (simp add: sum_distrib_left[symmetric] abs_mult)
    also from \(n\) have \(\{. . n\}=\{. . m\} \cup\{\) Suc \(m . . n\}\) by auto
    hence \(\left(\sum k \leq n . r * f k\right)=\left(\sum k \in\{. . m\} \cup\{S u c ~ m . . n\} . r * f k\right)\) by (simp only:)
    also have \(\ldots=\left(\sum k \leq m . r * f k\right)+\left(\sum k=\right.\) Suc m..n. \(\left.r * f k\right)\)
        by (subst sum.union_disjoint) auto
    also have norm \(\ldots \leq \operatorname{norm}\left(\sum k \leq m . r * f k\right)+\) norm \(\left(\sum k=\right.\) Suc m..n. \(r *\)
\(f k\) )
    by (rule norm_triangle_ineq)
    also from \(r\) less_imp_le[OF \(m(1)]\) have \(\left(\sum k=S u c ~ m . . n . ~ r * f k\right) \geq 0\)
    by (intro sum_nonneg) auto
    hence norm ( \(\sum k=\) Suc m..n. \(\left.r * f k\right)=\left(\sum k=\right.\) Suc m..n. \(\left.r * f k\right)\) by simp
    also have \(\left(\sum k=\right.\) Suc m..n.r \(\left.* f k\right)=\left(\sum k=m . .<n . r * f(\right.\) Suc \(\left.k)\right)\)
    by (subst sum.shift_bounds_Suc_ivl [symmetric])
        (simp only: atLeastLessThanSuc_atLeastAtMost)
    also from \(m\) have \(\ldots \leq\left(\sum k=m . .<n . p k * f k-p(\right.\) Suc \(k) * f(\) Suc \(\left.k)\right)\)
    by (intro sum_mono[OF less_imp_le]) simp_all
also have \(\ldots=-\left(\sum k=m . .<n . p(\right.\) Suc \(k) * f(\) Suc \(\left.k)-p k * f k\right)\)
    by (simp add: sum_negf [symmetric] algebra_simps)
also from \(n\) have \(\ldots=p m * f m-p n * f n\)
        by (cases n, simp, simp only: atLeastLessThanSuc_atLeastAtMost, subst
sum_Suc_diff) simp_all
    also from less_imp_le \([O F m(1)] m(2) n\) have \(\ldots \leq p m * f m\) by simp
    finally show \(\operatorname{norm}\left(\sum k \leq n . f k\right) \leq\left(\right.\) norm \(\left.\left(\sum k \leq m . r * f k\right)+p m * f m\right) /\)
\(r\) using \(r\)
        by (subst pos_le_divide_eq[OF r(1)]) (simp only: mult_ac)
    qed
    moreover have \(\left(\sum k \leq n . f k\right) \leq\left(\sum k \leq n^{\prime} . f k\right)\) if Suc \(m \leq n n \leq n^{\prime}\) for \(n n^{\prime}\)
        using less_imp_le[OF \(m(1)]\) that by (intro sum_mono2) auto
    ultimately show convergent ( \(\lambda n . \sum k \leq n . f k\) ) by (rule Bseq_monoseq_convergent'_inc)
qed
```

theorem kummers_test_divergence:
fixes $f p::$ nat \Rightarrow real
assumes pos_f: eventually $(\lambda n . f n>0)$ sequentially
assumes pos_p: eventually $(\lambda n . p n>0)$ sequentially
assumes divergent_p: ᄀsummable (λn. inverse ($p n$))

```
    defines \(l \equiv \limsup (\lambda n . \operatorname{ereal}(p n * f n / f(\) Suc \(n)-p(\) Suc \(n)))\)
    assumes \(l\) : \(l<0\)
    shows \(\neg\) summable \(f\)
proof
    assume summable \(f\)
    from eventually_conj[OF pos_f eventually_conj[OF pos_p Limsup_lessD \(D\) OF l[unfolded
l_def] ]]]
    obtain \(N\) where \(N: \bigwedge n . n \geq N \Longrightarrow p n>0 \bigwedge n . n \geq N \Longrightarrow f n>0\)
                    \(\bigwedge n . n \geq N \Longrightarrow p n * f n / f(\) Suc \(n)-p(\) Suc \(n)<0\)
    by (auto simp: eventually_at_top_linorder)
    hence \(A\) : \(p n * f n<p\) (Suc \(n) * f\) (Suc \(n\) ) if \(n \geq N\) for \(n\) using that \(N[\) of \(n\) ]
\(N[\) of Suc n]
    by (simp add: field_simps)
    have \(B: p n * f n \geq p N * f N\) if \(n \geq N\) for \(n\) using that and \(A\)
    by (induction \(n\) rule: dec_induct) (auto intro!: less_imp_le elim!: order.trans)
    have eventually \((\lambda n\). norm \((p N * f N *\) inverse \((p n)) \leq f n)\) sequentially
        apply (rule eventually_mono [OF eventually_ge_at_top[of N]])
        using \(B N\) by (auto simp: field_simps abs_of_pos)
    from this and «summable \(f\) 〉 have summable ( \(\lambda\) n. \(p N * f N *\) inverse ( \(p n\) ) )
        by (rule summable_comparison_test_ev)
    from summable_mult [OF this, of inverse \((p N * f N)] N[O F\) le_refl \(]\)
    have summable ( \(\lambda n\). inverse ( \(p n\) )) by (simp add: field_split_simps)
    with divergent_p show False by contradiction
qed
```


Ratio test

```
theorem ratio_test_convergence:
fixes \(f::\) nat \(\Rightarrow\) real
assumes pos_f: eventually \((\lambda n . f n>0)\) sequentially
defines \(l \equiv \liminf (\lambda n\). ereal \((f n / f(\) Suc \(n)))\)
assumes \(l: l>1\)
shows summable \(f\)
proof (rule kummers_test_convergence[OF pos_f])
note \(l\)
also have \(l=\liminf (\lambda n . \operatorname{ereal}(f n / f(\) Suc \(n)-1))+1\)
by (subst Liminf_add_ereal_right[symmetric]) (simp_all add: minus_ereal_def l_def one_ereal_def)
finally show \(\liminf (\lambda n\). ereal \((1 * f n / f(\) Suc \(n)-1))>0\)
by \((\) cases liminf \((\lambda n\). ereal \((1 * f n / f(S u c n)-1)))\) simp_all
qed \(\operatorname{simp}\)
theorem ratio_test_divergence:
fixes \(f::\) nat \(\Rightarrow\) real
assumes pos_f: eventually \((\lambda n . f n>0)\) sequentially
defines \(l \equiv \limsup (\lambda n\). \(\operatorname{ereal}(f n / f(S u c n)))\)
assumes \(l\) : \(l<1\)
shows \(\neg\) summable \(f\)
proof (rule kummers_test_divergence \([O F\) pos_f])
```

```
    have limsup (\lambdan. ereal (fn/f(Suc n) - 1)) + 1 =l
    by (subst Limsup_add_ereal_right[symmetric]) (simp_all add: minus_ereal_def
l_def one_ereal_def)
    also note l
    finally show limsup (\lambdan. ereal (1*fn/f(Suc n) - 1))<0
    by (cases limsup (\lambdan. ereal (1*fn/f (Suc n) - 1))) simp_all
qed (simp_all add: summable_const_iff)
```


Raabe's test

```
theorem raabes_test_convergence:
fixes \(f::\) nat \(\Rightarrow\) real
    assumes pos: eventually ( }\lambdan.fn>0) sequentially
    defines l \equivliminf (\lambdan. ereal (of_nat n*(fn/f(Suc n) - 1)))
    assumes l:l>1
    shows summable f
proof (rule kummers_test_convergence)
    let ?l' = liminf (\lambdan. ereal (of_nat n*fn /f (Suc n) - of_nat (Suc n)))
    have 1<l by fact
    also have l = liminf (\lambdan. ereal (of_nat n*fn / f (Suc n) - of_nat (Suc n))
+1)
        by (simp add: l_def algebra_simps)
    also have ... = ?l' + 1 by (subst Liminf_add_ereal_right) simp_all
    finally show ?l'> 0 by (cases ?l') (simp_all add: algebra_simps)
qed (simp_all add: pos)
theorem raabes_test_divergence:
fixes f :: nat }=>\mathrm{ real
    assumes pos: eventually ( }\lambdan.fn>0) sequentially
    defines l \equivlimsup (\lambdan. ereal (of_nat n*(fn/f(Suc n) - 1)))
    assumes l:l<1
    shows \negsummable f
proof (rule kummers_test_divergence)
    let ?l' = limsup (\lambdan. ereal (of_nat n * f n / f (Suc n) - of_nat (Suc n)))
    notel
    also have l=limsup (\lambdan. ereal (of_nat n*fn/f (Suc n) - of_nat (Suc n))
+1)
        by (simp add: l_def algebra_simps)
    also have \ldots=? ?l'}+1\mathrm{ by (subst Limsup_add_ereal_right) simp_all
    finally show ?l' < 0 by (cases ?l') (simp_all add: algebra_simps)
qed (insert pos eventually_gt_at_top[of 0::nat] not_summable_harmonic, simp_all)
```


4.6.2 Radius of convergence

The radius of convergence of a power series. This value always exists, ranges from 0 to ∞, and the power series is guaranteed to converge for all inputs with a norm that is smaller than that radius and to diverge for all inputs with a norm that is greater.
definition conv_radius :: (nat $\Rightarrow{ }^{\prime} a$:: banach $) \Rightarrow$ ereal where

```
conv_radius f = inverse (limsup (\lambdan. ereal (root n (norm (f n)))))
lemma conv_radius_cong_weak [cong]: (\n.f n =gn)\Longrightarrowconv_radius f=conv_radius
g
    by (drule ext) simp_all
lemma conv_radius_nonneg: conv_radius f \geq0
proof -
    have 0 = limsup ( }\lambdan.0)\mathrm{ by (subst Limsup_const) simp_all
    also have ... \leqlimsup ( }\lambdan.\mathrm{ ereal (root n (norm (f n))))
        by (intro Limsup_mono) (simp_all add: real_root_ge_zero)
    finally show ?thesis
        unfolding conv_radius_def by (auto simp: ereal_inverse_nonneg_iff)
qed
lemma conv_radius_zero [simp]: conv_radius ( }\mp@subsup{\lambda}{-}{\prime}0)=
    by (auto simp: conv_radius_def zero_ereal_def [symmetric] Limsup_const)
lemma conv_radius_altdef:
    conv_radius f = liminf ( }\lambda\mathrm{ n. inverse (ereal (root n (norm (f n)))))
    by (subst Liminf_inverse_ereal) (simp_all add: real_root_ge_zero conv_radius_def)
lemma conv_radius_cong':
    assumes eventually ( }\lambdax.fx=gx)\mathrm{ sequentially
    shows conv_radius f}=\mathrm{ conv_radius g
    unfolding conv_radius_altdef by (intro Liminf_eq eventually_mono [OF assms])
auto
lemma conv_radius_cong:
    assumes eventually ( }\lambdax\mathrm{ . norm (fx) = norm (gx)) sequentially
    shows conv_radius f=conv_radius g
    unfolding conv_radius_altdef by (intro Liminf_eq eventually_mono [OF assms])
auto
theorem abs_summable_in_conv_radius:
    fixes f :: nat =>' 'a :: {banach, real_normed_div_algebra}
    assumes ereal (norm z) < conv_radius f
    shows summable ( }\lambdan\mathrm{ . norm (fn*z^^n))
proof (rule root_test_convergence')
    define l where l= limsup ( }\lambdan\mathrm{ . ereal (root n (norm (f n))))
    have 0 = limsup ( }\lambdan.0)\mathrm{ by (simp add: Limsup_const)
    also have ... \leql unfolding l_def by (intro Limsup_mono) (simp_all add:
real_root_ge_zero)
    finally have l_nonneg: l\geq0.
    have limsup ( }\lambdan\mathrm{ . root n (norm (fn* z^n))) =l* ereal (norm z) unfolding
l_def
    by (rule limsup_root_powser)
    also from l_nonneg consider l=0 | l=\infty | \existsl'.l=ereal l'^ \ l'>0
```

```
    by (cases l) (auto simp: less_le)
hence \(l *\) ereal (norm \(z\) ) \(<1\)
proof cases
    assume \(l=\infty\)
    hence conv_radius \(f=0\) unfolding conv_radius_def l_def by simp
    with assms show ?thesis by simp
next
    assume \(\exists l^{\prime} . l=\) ereal \(l^{\prime} \wedge l^{\prime}>0\)
    then guess \(l^{\prime}\) by (elim exE conjE) note \(l^{\prime}=\) this
    hence \(l \neq \infty\) by auto
    have \(l *\) ereal (norm \(z\) ) <l* conv_radius \(f\)
        by (intro ereal_mult_strict_left_mono) (simp_all add: l' assms)
    also have conv_radius \(f=\) inverse \(l\) by (simp add: conv_radius_def l_def)
    also from \(l^{\prime}\) have \(l *\) inverse \(l=1\) by simp
    finally show ?thesis .
qed simp_all
    finally show \(\limsup \left(\lambda n\right.\). ereal \(\left(\operatorname{root} n\left(\operatorname{norm}\left(\operatorname{norm}\left(f n * z^{\wedge} n\right)\right)\right)\right)<1\) by
simp
qed
lemma summable_in_conv_radius:
    fixes \(f::\) nat \(\Rightarrow{ }^{\prime} a::\{\) banach, real_normed_div_algebra \(\}\)
    assumes ereal (norm \(z\) ) < conv_radius \(f\)
    shows summable \(\left(\lambda n\right.\). \(f n * z^{\wedge} n\) )
    by (rule summable_norm_cancel, rule abs_summable_in_conv_radius) fact+
theorem not_summable_outside_conv_radius:
    fixes \(f::\) nat \(\Rightarrow{ }^{\prime} a::\{\) banach, real_normed_div_algebra \(\}\)
    assumes ereal (norm \(z)>\) conv_radius \(f\)
    shows \(\neg\) summable ( \(\lambda n . f n * z^{\wedge} n\) )
proof (rule root_test_divergence)
    define \(l\) where \(l=\limsup (\lambda n\). ereal \((\) root \(n(\operatorname{norm}(f n))))\)
    have \(0=\) limsup \((\lambda n .0)\) by (simp add: Limsup_const)
    also have \(\ldots \leq l\) unfolding \(l_{-} d e f\) by (intro Limsup_mono) (simp_all add:
real_root_ge_zero)
    finally have l_nonneg: \(l \geq 0\).
    from assms have \(l_{-} n z: l \neq 0\) unfolding conv_radius_def \(l_{-} d e f\) by auto
    have limsup \(\left(\lambda n\right.\). ereal \(\left.\left(\operatorname{root} n\left(\operatorname{norm}\left(f n * z^{\wedge} n\right)\right)\right)\right)=l * \operatorname{ereal}(\) norm \(z)\)
        unfolding l_def by (rule limsup_root_powser)
    also have ... > 1
    proof (cases l)
    assume \(l=\infty\)
    with assms conv_radius_nonneg \([\) of \(f]\) show ?thesis
            by (auto simp: zero_ereal_def[symmetric])
    next
    fix \(l^{\prime}\) assume \(l^{\prime}: l=\) ereal \(l^{\prime}\)
    from l_nonneg l_nz have \(1=l *\) inverse \(l\) by (auto simp: \(l^{\prime}\) field_simps)
    also from l_nz have inverse \(l=\) conv_radius \(f\)
```

```
        unfolding l_def conv_radius_def by auto
    also from l' l_nz l_nonneg assms have l*\ldots<l*ereal (norm z)
            by (intro ereal_mult_strict_left_mono) (auto simp: l')
    finally show ?thesis.
    qed (insert l_nonneg, simp_all)
    finally show limsup }(\lambdan.\operatorname{ereal}(\operatorname{root n}(\operatorname{norm}(fn*\mp@subsup{z}{}{\wedge}n))))>1
qed
lemma conv_radius_geI:
    assumes summable (\lambdan.fn* z ^ n :: 'a :: {banach, real_normed_div_algebra})
    shows conv_radius f \geq norm z
    using not_summable_outside_conv_radius[offz] assms by (force simp: not_le[symmetric])
lemma conv_radius_leI:
    assumes \negsummable (\lambdan.norm (fn*z ^ n :: 'a :: {banach, real_normed_div_algebra}))
    shows conv_radius f}\leq\mathrm{ norm z
    using abs_summable_in_conv_radius[of zf] assms by (force simp: not_le[symmetric])
lemma conv_radius_leI':
    assumes \negsummable (\lambdan.fn*z` n ::'a :: {banach,real_normed_div_algebra})
    shows conv_radius }f\leqnorm 
    using summable_in_conv_radius[of zf] assms by (force simp: not_le[symmetric])
    lemma conv_radius_geI_ex:
    fixes f :: nat = ' 'a :: {banach, real_normed_div_algebra}
    assumes \r.0<r\Longrightarrow ereal r < R\Longrightarrow\existsz.norm z=r^ summable (\lambdan.fn
* z^n)
    shows conv_radius f \geqR
proof (rule linorder_cases[of conv_radius f R])
    assume R}R\mathrm{ : conv_radius f<R
    with conv_radius_nonneg[of f] obtain conv_radius'
        where [simp]: conv_radius f}=\mathrm{ ereal conv_radius'
        by (cases conv_radius f) simp_all
    define r where r= (if R=\infty then conv_radius' + 1 else (real_of_ereal }R
conv_radius') / 2)
    from R conv_radius_nonneg[of f] have 0 < r ^ ereal r < R ^ ereal r>
conv_radius f
    unfolding r_def by (cases R) (auto simp: r_def field_simps)
    with assms(1)[of r] obtain z}\mathrm{ where norm z> conv_radius f summable ( }\lambdan.
n* z^n) by auto
    with not_summable_outside_conv_radius[of f z] show ?thesis by simp
qed simp_all
lemma conv_radius_geI_ex':
```



```
    assumes }\bigwedger.0<r\Longrightarrow ereal r<R\Longrightarrow summable (\lambdan.f n* of_real r^n
    shows conv_radius f \geqR
proof (rule conv_radius_geI_ex)
```

```
    fix \(r\) assume \(0<r\) ereal \(r<R\)
    with assms \([\) of \(r]\) show \(\exists z\). norm \(z=r \wedge\) summable \((\lambda n . f n * z \wedge n)\)
    by (intro exI[of - of_real \(r\) :: 'a]) auto
qed
lemma conv_radius_leI_ex:
    fixes \(f::\) nat \(\Rightarrow{ }^{\prime} a::\) \{banach, real_normed_div_algebra \(\}\)
    assumes \(R \geq 0\)
    assumes \(\wedge r .0<r \Longrightarrow\) ereal \(r>R \Longrightarrow \exists z\).norm \(z=r \wedge \neg\) summable \((\lambda n\).
norm (f \(\left.n * z^{\wedge} n\right)\) )
    shows conv_radius \(f \leq R\)
proof (rule linorder_cases \([\) of conv_radius \(f R\) )
    assume \(R\) : conv_radius \(f>R\)
    from \(R\) assms(1) obtain \(R^{\prime}\) where \(R^{\prime}: R=\) ereal \(R^{\prime}\) by (cases \(R\) ) simp_all
    define \(r\) where
        \(r=\left(\right.\) if conv_radius \(f=\infty\) then \(R^{\prime}+1\) else \(\left(R^{\prime}+\right.\) real_of_ereal (conv_radius \(\left.\left.f\right)\right)\)
/ 2)
    from \(R\) conv_radius_nonneg[of \(f]\) have \(r>R \wedge r<\) conv_radius \(f\) unfolding
\(r_{-}\)def
    by (cases conv_radius f) (auto simp: r_def field_simps \(R^{\prime}\) )
    with \(\operatorname{assms}(1) \operatorname{assms}(2)[o f r] R^{\prime}\)
        obtain \(z\) where norm \(z<\) conv_radius \(f \neg\) summable ( \(\lambda n\). norm \(\left(f n * z^{\wedge} n\right)\) )
by auto
    with abs_summable_in_conv_radius \([\) of \(z f]\) show ?thesis by auto
qed simp_all
lemma conv_radius_leI_ex':
    fixes \(f::\) nat \(\Rightarrow^{\prime} a::\{\) banach, real_normed_div_algebra \(\}\)
    assumes \(R \geq 0\)
    assumes \(\wedge r .0<r \Longrightarrow\) ereal \(r>R \Longrightarrow \neg\) summable ( \(\lambda n\). \(f n *\) of_real \(r \wedge n\) )
    shows conv_radius \(f \leq R\)
proof (rule conv_radius_leI_ex)
    fix \(r\) assume \(0<r\) ereal \(r>R\)
    with assms (2) \([\) of \(r]\) show \(\exists z\).norm \(z=r \wedge \neg\) summable ( \(\lambda\) n. norm \(\left(f n * z^{\wedge}\right.\)
n))
    by (intro exI[of - of_real \(r\) :: 'a]) (auto dest: summable_norm_cancel)
qed fact+
lemma conv_radius_eqI:
    fixes \(f::\) nat \(\Rightarrow{ }^{\prime} a::\{\) banach, real_normed_div_algebra \(\}\)
    assumes \(R \geq 0\)
    assumes \(\wedge r .0<r \Longrightarrow\) ereal \(r<R \Longrightarrow \exists z\).norm \(z=r \wedge\) summable \((\lambda n\). \(f n\)
* \(z^{\wedge} n\) )
    assumes \(\wedge r .0<r \Longrightarrow\) ereal \(r>R \Longrightarrow \exists z\). norm \(z=r \wedge \neg\) summable \((\lambda n\).
norm \(\left.\left(f n * z^{\wedge} n\right)\right)\)
    shows conv_radius \(f=R\)
    by (intro antisym conv_radius_geI_ex conv_radius_leI_ex assms)
```

lemma conv_radius_eqI':

```
    fixes \(f::\) nat \(\Rightarrow{ }^{\prime} a::\left\{b a n a c h, r e a l \_n o r m e d \_d i v \_a l g e b r a\right\}\)
    assumes \(R \geq 0\)
    assumes \(\bigwedge r .0<r \Longrightarrow\) ereal \(r<R \Longrightarrow\) summable \(\left(\lambda n . f n *\left(o f \_r e a l r\right){ }^{\wedge} n\right)\)
    assumes \(\bigwedge r .0<r \Longrightarrow\) ereal \(r>R \Longrightarrow \neg\) summable ( \(\lambda\) n. norm ( \(f n *\) (of_real
\(\left.r)^{\wedge} n\right)\) )
    shows conv_radius \(f=R\)
proof (intro conv_radius_eqI[OF assms(1)])
    fix \(r\) assume \(0<r\) ereal \(r<R\) with assms(2)[OF this]
        show \(\exists z\). norm \(z=r \wedge\) summable \(\left(\lambda n . f n * z^{\wedge} n\right)\) by force
next
    fix \(r\) assume \(0<r\) ereal \(r>R\) with assms(3)[OF this]
        show \(\exists z\). norm \(z=r \wedge \neg\) summable \(\left(\lambda n\right.\). norm \(\left(f n * z^{\wedge} n\right)\) ) by force
qed
lemma conv_radius_zeroI:
    fixes \(f::\) nat \(\Rightarrow{ }^{\prime} a::\{\) banach,real_normed_div_algebra \(\}\)
    assumes \(\bigwedge z . z \neq 0 \Longrightarrow \neg\) summable \(\left(\lambda n . f n * z^{\wedge} n\right)\)
    shows conv_radius \(f=0\)
proof (rule ccontr)
    assume conv_radius \(f \neq 0\)
    with conv_radius_nonneg[of \(f]\) have pos: conv_radius \(f>0\) by simp
    define \(r\) where \(r=(\) if conv_radius \(f=\infty\) then 1 else real_of_ereal (conv_radius
f) / 2)
    from pos have \(r\) : ereal \(r>0 \wedge\) ereal \(r<\) conv_radius \(f\)
        by (cases conv_radius \(f\) ) (simp_all add: r_def)
    hence summable ( \(\lambda n . f n *\) of_real \(r{ }^{\wedge} n\) ) by (intro summable_in_conv_radius)
simp
    moreover from \(r\) and assms[of of_real \(r]\) have \(\neg\) summable ( \(\lambda n\).f \(n *\) of_real \(r\)
    ^ \(n\) ) by \(\operatorname{simp}\)
    ultimately show False by contradiction
qed
lemma conv_radius_inftyI':
    fixes \(f::\) nat \(\Rightarrow{ }^{\prime} a::\{\) banach, real_normed_div_algebra \(\}\)
    assumes \(\wedge r . r>c \Longrightarrow \exists z\).norm \(z=r \wedge\) summable \(\left(\lambda n . f n * z^{\wedge} n\right)\)
    shows conv_radius \(f=\infty\)
proof -
    \{
        fix \(r\) :: real
        have \(\max r(c+1)>c\) by (auto simp: max_def)
            from assms[OF this] obtain \(z\) where norm \(z=\max r(c+1)\) summable
( \(\lambda n . f n * z^{\wedge} n\) ) by blast
        from conv_radius_geI[OF this(2)] this(1) have conv_radius \(f \geq r\) by simp
    \}
    from this[of real_of_ereal (conv_radius \(f+1\) )] show conv_radius \(f=\infty\)
    by (cases conv_radius f) simp_all
qed
lemma conv_radius_inftyI:
```

```
    fixes f:: nat # 'a :: {banach,real_normed_div_algebra}
    assumes \r. \existsz.norm z=r^ summable (\lambdan.fn*z^n)
    shows conv_radius f=\infty
    using assms by (rule conv_radius_inftyI')
lemma conv_radius_inftyI':
    fixes f:: nat # 'a :: {banach,real_normed_div_algebra}
    assumes \z. summable ( }\lambdan.fn*\mp@subsup{z}{}{\wedge}n
    shows conv_radius f = \infty
proof (rule conv_radius_inftyI')
    fix r :: real assume r>0
    with assms show \existsz. norm z =r^ summable ( }\lambdan.fn*\mp@subsup{z}{}{\wedge}n
        by (intro exI[of _ of_real r]) simp
qed
lemma conv_radius_conv_Sup:
    fixes f:: nat =>' 'a :: {banach, real_normed_div_algebra}
    shows conv_radius f=Sup {r.\forallz. ereal (norm z)<r\longrightarrow summable ( }\lambdan.f
* z` n)}
proof (rule Sup_eqI [symmetric], goal_cases)
    case (1r)
    thus ?case
        by (intro conv_radius_geI_ex') auto
next
    case (2 r)
    from 2[of O] have r:r\geq0 by auto
    show ?case
    proof (intro conv_radius_leI_ex'r)
        fix R assume R:R>0 ereal R>r
        with r obtain r' where [simp]: r=ereal r' by (cases r)auto
        show }\neg\mathrm{ summable ( }\lambdan.fn*\mathrm{ of_real }R\mp@subsup{}{}{`}n
        proof
            assume *: summable ( }\lambdan.fn*\mathrm{ of_real R^ n)
            define R' where R'=(R+r')/2
            from R have }\mp@subsup{R}{}{\prime}:\mp@subsup{R}{}{\prime}>\mp@subsup{r}{}{\prime}\mp@subsup{R}{}{\prime}<R\mathrm{ by (simp_all add: R'_def)
```



```
            using powser_inside[OF *] by auto
            from 2[of R] and this have R'\leq r' by auto
            with }\langle\mp@subsup{R}{}{\prime}>\mp@subsup{r}{}{\prime}\mathrm{ \ show False by simp
        qed
    qed
qed
lemma conv_radius_shift:
    fixes f:: nat 和 'a :: {banach, real_normed_div_algebra}
    shows conv_radius (\lambdan.f(n+m))=conv_radius f
    unfolding conv_radius_conv_Sup summable_powser_ignore_initial_segment ..
lemma conv_radius_norm [simp]: conv_radius ( }\lambdax\mathrm{ .norm ( }fx)\mathrm{ ) =conv_radius f
```

by (simp add: conv_radius_def)
lemma conv_radius_ratio_limit_ereal:
fixes $f::$ nat \Rightarrow ' $a::\{$ banach,real_normed_div_algebra $\}$
assumes $n z$: eventually ($\lambda n . f n \neq 0$) sequentially
assumes lim: $(\lambda n$. ereal $(\operatorname{norm}(f n) / \operatorname{norm}(f(S u c n)))) \longrightarrow c$
shows conv_radius $f=c$
proof (rule conv_radius_eqI')
show $c \geq 0$ by (intro Lim_bounded2[OF lim]) simp_all
next
fix r assume $r: 0<r$ ereal $r<c$
let ?l $=$ liminf $\left(\lambda n\right.$. ereal $\left(\right.$ norm $\left(f n *\right.$ of_real $\left.r{ }^{\wedge} n\right) /$ norm $\left(f(S u c n) * o f _r e a l\right.$ $\left.r^{\wedge} S u c n\right)$)
have ?l $=\liminf (\lambda n$. ereal $(\operatorname{norm}(f n) /(\operatorname{norm}(f(S u c n)))) *$ ereal (inverse $r)$)
using r by (simp add: norm_mult norm_power field_split_simps)
also from r have $\ldots=\liminf (\lambda n$. ereal $(\operatorname{norm}(f n) /(\operatorname{norm}(f($ Suc $n)))))$

* ereal (inverse r)
by (intro Liminf_ereal_mult_right) simp_all
also have $\liminf (\lambda n$. ereal $(\operatorname{norm}(f n) /(\operatorname{norm}(f(S u c n)))))=c$
by (intro lim_imp_Liminf lim) simp
finally have $l: ? l=c *$ ereal (inverse r) by simp
from r have $l^{\prime}: c *$ ereal (inverse r) >1 by (cases c) (simp_all add: field_simps)
show summable (λn. f $n *$ of_real $r^{\wedge} n$)
by (rule summable_norm_cancel, rule ratio_test_convergence)
(insert r nz l l', auto elim!: eventually_mono)
next
fix r assume $r: 0<r$ ereal $r>c$
let ?l $=$ limsup $\left(\lambda n\right.$. ereal $\left(\right.$ norm $\left(f n *\right.$ of_real $\left.r{ }^{\wedge} n\right) /$ norm $(f$ (Suc $n) * o f_{-} r e a l$ r^{\wedge} Suc n)))
have ?l $=\limsup (\lambda n . \operatorname{ereal}(\operatorname{norm}(f n) /(\operatorname{norm}(f(S u c n)))) *$ ereal (inverse r))
using r by (simp add: norm_mult norm_power field_split_simps)
also from r have $\ldots=\limsup (\lambda n$. ereal $(\operatorname{norm}(f n) /(\operatorname{norm}(f($ Suc $n)))))$
* ereal (inverse r)
by (intro Limsup_ereal_mult_right) simp_all
also have limsup $(\lambda n$. ereal $(\operatorname{norm}(f n) /(\operatorname{norm}(f($ Suc $n)))))=c$
by (intro lim_imp_Limsup lim) simp
finally have $l: ? l=c *$ ereal (inverse r) by simp
from r have $l^{\prime}: c *$ ereal (inverse r) <1 by (cases c) (simp_all add: field_simps)
show \neg summable (λn. norm ($f n *$ of_real $\left.r^{\wedge} n\right)$)
by (rule ratio_test_divergence) (insert r nz l l', auto elim!: eventually_mono)
qed
lemma conv_radius_ratio_limit_ereal_nonzero:
fixes $f::$ nat $\Rightarrow^{\prime} a::\{$ banach,real_normed_div_algebra $\}$
assumes $n z: \quad c \neq 0$
assumes lim: $(\lambda n$. ereal $(\operatorname{norm}(f n) / \operatorname{norm}(f($ Suc $n)))) \longrightarrow c$
shows conv_radius $f=c$

```
proof (rule conv_radius_ratio_limit_ereal \([\) OF _ lim], rule ccontr)
    assume \(\neg\) eventually \((\lambda n . f n \neq 0)\) sequentially
    hence frequently \((\lambda n . f n=0)\) sequentially by (simp add: frequently_def)
    hence frequently \((\lambda n\). ereal \((\operatorname{norm}(f n) / \operatorname{norm}(f(S u c n)))=0)\) sequentially
        by (force elim!: frequently_elim1)
    hence \(c=0\) by (intro limit_frequently_eq[OF _ _ lim]) auto
    with \(n z\) show False by contradiction
qed
lemma conv_radius_ratio_limit:
    fixes \(f::\) nat \(\Rightarrow{ }^{\prime} a\) :: \{banach,real_normed_div_algebra \(\}\)
    assumes \(c^{\prime}=\) ereal \(c\)
    assumes \(n z\) : eventually \((\lambda n . f n \neq 0)\) sequentially
    assumes lim: \((\lambda n\). norm \((f n) / \operatorname{norm}(f(S u c n))) \longrightarrow c\)
    shows conv_radius \(f=c^{\prime}\)
    using assms by (intro conv_radius_ratio_limit_ereal) simp_all
lemma conv_radius_ratio_limit_nonzero:
    fixes \(f::\) nat \(\Rightarrow\) ' \(a::\{\) banach,real_normed_div_algebra \(\}\)
    assumes \(c^{\prime}=\) ereal \(c\)
    assumes \(n z\) : \(c \neq 0\)
    assumes lim: \((\lambda n\). norm \((f n) / \operatorname{norm}(f(S u c n))) \longrightarrow c\)
    shows conv_radius \(f=c^{\prime}\)
    using assms by (intro conv_radius_ratio_limit_ereal_nonzero) simp_all
lemma conv_radius_cmult_left:
    assumes \(c \neq(0::\) ' \(a\) :: \{banach, real_normed_div_algebra \(\})\)
    shows conv_radius \((\lambda n . c * f n)=\) conv_radius \(f\)
proof -
    have conv_radius \((\lambda n . c * f n)=\)
        inverse (limsup \((\lambda n\). ereal \((\) root \(n(\operatorname{norm}(c * f n)))))\)
        unfolding conv_radius_def ..
    also have \((\lambda n\). ereal \((\) root \(n(\operatorname{norm}(c * f n))))=\)
                            \((\lambda n\). ereal \((\) root \(n(\) norm \(c)) * \operatorname{ereal}(\operatorname{root} n(\operatorname{norm}(f n))))\)
        by (rule ext) (auto simp: norm_mult real_root_mult)
    also have limsup \(\ldots=\operatorname{ereal} 1 * \limsup (\lambda n\). ereal \((\operatorname{root} n(\operatorname{norm}(f n))))\)
        using assms by (intro ereal_limsup_lim_mult tendsto_ereal LIMSEQ_root_const)
auto
    also have inverse \(\ldots=\) conv_radius \(f\) by (simp add: conv_radius_def)
    finally show ?thesis .
qed
lemma conv_radius_cmult_right:
    assumes \(c \neq(0::\) ' \(a::\{\) banach, real_normed_div_algebra \(\})\)
    shows conv_radius \((\lambda n . f n * c)=\) conv_radius \(f\)
proof -
    have conv_radius \((\lambda n . f n * c)=\) conv_radius \((\lambda n . c * f n)\)
        by (simp add: conv_radius_def norm_mult mult.commute)
    with conv_radius_cmult_left \([\) OF assms, of \(f]\) show ?thesis by simp
```

```
qed
lemma conv_radius_mult_power:
    assumes c\not=(0 :: 'a :: {real_normed_div_algebra,banach})
    shows conv_radius ( }\lambdan.c^n*fn)=conv_radius f / ereal (norm c
proof -
    have limsup (\lambdan. ereal (root n (norm (c^ n *fn))))=
                limsup (\lambdan. ereal (norm c) * ereal (root n (norm (fn))))
    by (intro Limsup_eq eventually_mono [OF eventually_gt_at_top[of 0::nat]])
            (auto simp: norm_mult norm_power real_root_mult real_root_power)
    also have ... = ereal (norm c)* limsup ( \lambdan. ereal (root n (norm (fn))))
    using assms by (subst Limsup_ereal_mult_left[symmetric]) simp_all
    finally have A: limsup ( }\lambdan\mathrm{ . ereal (root n (norm (c^ n*fn)))) =
                ereal (norm c) * limsup ( }\lambdan.\mathrm{ ereal (root n (norm (f n)))).
    show ?thesis using assms
    apply (cases limsup ( }\lambdan.\mathrm{ ereal (root n (norm (f n)))) = 0)
    apply (simp add: A conv_radius_def)
        apply (unfold conv_radius_def A divide_ereal_def, simp add: mult.commute
ereal_inverse_mult)
    done
qed
lemma conv_radius_mult_power_right:
    assumes }c\not=(0 :: 'a :: {real_normed_div_algebra,banach}
    shows conv_radius ( }\lambdan.fn*c^^n)=conv_radius f / ereal (norm c
    using conv_radius_mult_power[OF assms, of f]
    unfolding conv_radius_def by (simp add: mult.commute norm_mult)
lemma conv_radius_divide_power:
    assumes c\not=(0 :: 'a :: {real_normed_div_algebra,banach})
    shows conv_radius (\lambdan.fn/c^n)=conv_radius f*ereal (norm c)
proof -
    from assms have inverse c\not=0 by simp
    from conv_radius_mult_power_right [OF this, of f] show ?thesis
    by (simp add: divide_inverse divide_ereal_def assms norm_inverse power_inverse)
qed
lemma conv_radius_add_ge:
    min}(\mathrm{ conv_radius f) (conv_radius g) }
        conv_radius (\lambdax.fx+gx :: 'a :: {banach,real_normed_div_algebra})
    by (rule conv_radius_geI_ex')
    (auto simp: algebra_simps intro!: summable_add summable_in_conv_radius)
lemma conv_radius_mult_ge:
    fixes fg :: nat => ('a :: {banach,real_normed_div_algebra})
    shows conv_radius ( }\lambdax.\sumi\leqx.fi*g(x-i))\geqmin(conv_radiusf)(conv_radius
g)
proof (rule conv_radius_geI_ex')
```

```
    fix r assume r:r>0 ereal r<min (conv_radius f) (conv_radius g)
    from r have summable (\lambdan. (\sumi\leqn. (fi* of_real r^i) * (g (n - i)* of_real
r^(n - i))))
    by (intro summable_Cauchy_product abs_summable_in_conv_radius) simp_all
    thus summable (\lambdan. (\sumi\leqn.fi*g(n-i))* of_real r ` n)
    by (simp add: algebra_simps of_real_def power_add [symmetric] scaleR_sum_right)
qed
lemma le_conv_radius_iff:
    fixes a :: nat => 'a::{real_normed_div_algebra,banach}
    shows r\leq conv_radius a\longleftrightarrow(\forallx. norm (x-\xi)<r\longrightarrow summable (\lambdai.a i*
(x-\xi) ^ i))
apply (intro iffI allI impI summable_in_conv_radius conv_radius_geI_ex)
apply (meson less_ereal.simps(1) not_le order_trans)
apply (rule_tac x=of_real ra in exI, simp)
apply (metis abs_of_nonneg add_diff_cancel_left' less_eq_real_def norm_of_real)
done
end
```


4.7 Uniform Limit and Uniform Convergence

theory Uniform_Limit
imports Connected Summation_Tests
begin

4.7.1 Definition

definition uniformly_on :: 'a set $\Rightarrow\left({ }^{\prime} a \Rightarrow\right.$ ' $b::$ metric_space $) \Rightarrow\left({ }^{\prime} a \Rightarrow\right.$ 'b) filter where uniformly_on $S l=(I N F e \in\{0<.$.$\} . principal \{f . \forall x \in S$. dist $(f x)(l x)$ $<e\}$)

abbreviation

uniform_limit S f $l \equiv$ filterlim $f($ uniformly_on $S l)$
definition uniformly_convergent_on where uniformly_convergent_on $X f \longleftrightarrow(\exists l$. uniform_limit $X f l$ sequentially $)$
definition uniformly_Cauchy_on where uniformly_Cauchy_on $X f \longleftrightarrow(\forall e>0 . \exists M . \forall x \in X . \forall(m:: n a t) \geq M . \forall n \geq M$. dist $(f m x)(f n x)<e)$
proposition uniform_limit_iff:
uniform_limit $S f l F \longleftrightarrow\left(\forall e>0 . \forall_{F} n\right.$ in $F . \forall x \in S$. dist $\left.(f n x)(l x)<e\right)$
unfolding filterlim_iff uniformly_on_def
by (subst eventually_INF_base)
(fastforce
simp: eventually_principal uniformly_on_def
intro: bexI [where $x=\min a b$ for $a b]$

> elim: eventually_mono)+
lemma uniform_limitD:
uniform_limit S flF $F e>0 \Longrightarrow \forall_{F} n$ in F. $\forall x \in S$. dist $(f n x)(l x)<e$ by (simp add: uniform_limit_iff)
lemma uniform_limitI:
$\left(\bigwedge e . e>0 \Longrightarrow \forall_{F} n\right.$ in $F . \forall x \in S$. dist $\left.(f n x)(l x)<e\right) \Longrightarrow$ uniform_limit $S f$
l F
by (simp add: uniform_limit_iff)
lemma uniform_limit_sequentially_iff:
uniform_limit S fl sequentially $\longleftrightarrow(\forall e>0 . \exists N . \forall n \geq N . \forall x \in S . \operatorname{dist}(f n x)(l$
$x)<e$)
unfolding uniform_limit_iff eventually_sequentially ..
lemma uniform_limit_at_iff:
uniform_limit $S \mathrm{fl}($ at $x) \longleftrightarrow$
$(\forall e>0 . \exists d>0 . \forall z .0<d i s t z x \wedge$ dist $z x<d \longrightarrow(\forall x \in S . \operatorname{dist}(f z x)(l x)$ $<e)$)
unfolding uniform_limit_iff eventually_at by simp
lemma uniform_limit_at_le_iff:
uniform_limit $S \mathrm{fl}($ at $x) \longleftrightarrow$
$(\forall e>0 . \exists d>0 . \forall z .0<\operatorname{dist} z x \wedge$ dist $z x<d \longrightarrow(\forall x \in S . \operatorname{dist}(f z x)(l x)$
$\leq e)$)
unfolding uniform_limit_iff eventually_at by (fastforce dest: spec[where $x=e / 2$ for $e]$)
lemma metric_uniform_limit_imp_uniform_limit:
assumes f : uniform_limit $S f$ a F
assumes le: eventually $(\lambda x . \forall y \in S . \operatorname{dist}(g x y)(b y) \leq \operatorname{dist}(f x y)(a y)) F$
shows uniform_limit S g b F
proof (rule uniform_limitI)
fix e :: real assume $0<e$
from uniform_limitD[OF f this] le
show $\forall_{F} x$ in $F . \forall y \in S$. dist $(g x y)(b y)<e$
by eventually_elim force
qed

4.7.2 Exchange limits

proposition swap_uniform_limit:
assumes $f: \forall_{F} n$ in F. $(f n \longrightarrow g n)($ at x within $S)$
assumes $g:(g \longrightarrow l) F$
assumes uc: uniform_limit S f $h F$
assumes \neg trivial_limit F
shows $(h \longrightarrow l)($ at x within $S)$
proof (rule tendstoI)

```
    fix \(e\) :: real
    define \(e^{\prime}\) where \(e^{\prime}=e / 3\)
    assume \(0<e\)
    then have \(0<e^{\prime}\) by (simp add: \(e^{\prime}\) _def)
    from uniform_limitD \(\left[\right.\) OF uc \(\left.\left\langle 0<e^{\prime}\right\rangle\right]\)
    have \(\forall_{F} n\) in \(F . \forall x \in S . \operatorname{dist}(h x)(f n x)<e^{\prime}\)
        by (simp add: dist_commute)
    moreover
    from \(f\)
    have \(\forall_{F} n\) in \(F . \forall_{F} x\) in at \(x\) within \(S\). dist \((g n)(f n x)<e^{\prime}\)
        by eventually_elim (auto dest!: tendsto \(D\left[O F \_\left\langle 0<e^{\prime}\right\rangle\right]\) simp: dist_commute)
    moreover
    from tendsto \(D\left[\right.\) OF \(\left.g\left\langle 0<e^{\prime}\right\rangle\right]\) have \(\forall_{F} x\) in \(F\). dist \(l(g x)<e^{\prime}\)
    by (simp add: dist_commute)
    ultimately
    have \(\forall_{F}\) - in \(F . \forall_{F} x\) in at \(x\) within \(S\). dist \((h x) l<e\)
    proof eventually_elim
        case (elim n)
        note \(f h=\operatorname{elim}(1)\)
        note \(g l=\operatorname{elim}(3)\)
    have \(\forall_{F} x\) in at \(x\) within \(S . x \in S\)
        by (auto simp: eventually_at_filter)
    with \(\operatorname{elim}(2)\)
    show ?case
    proof eventually_elim
        case (elim x)
        from fh[rule_format, \(O F\langle x \in S\rangle\) ] elim(1)
        have dist ( \(h x\) ) \((g n)<e^{\prime}+e^{\prime}\)
            by (rule dist_triangle_lt \([\) OF add_strict_mono \(]\) )
        from dist_triangle_lt[OF add_strict_mono, OF this gl]
        show ?case by (simp add: \(e^{\prime}\) _def)
    qed
qed
thus \(\forall_{F} x\) in at \(x\) within \(S\). dist \((h x) l<e\)
    using eventually_happens by (metis \(\neg \neg\) trivial_limit \(F\rangle\) )
qed
```


4.7.3 Uniform limit theorem

lemma tendsto_uniform_limitI:
assumes uniform_limit S fl F
assumes $x \in S$
shows $((\lambda y . f y x) \longrightarrow l x) F$
using assms
by (auto intro!: tendstoI simp: eventually_mono dest!: uniform_limitD)
theorem uniform_limit_theorem:
assumes $c: \forall_{F} n$ in F. continuous_on $A(f n)$
assumes ul: uniform_limit $A f l F$

```
    assumes \neg trivial_limit F
    shows continuous_on A l
    unfolding continuous_on_def
proof safe
    fix }x\mathrm{ assume }x\in
    then have }\mp@subsup{\forall}{F}{}n\mathrm{ in }F.(fn\longrightarrowfnx)(\mathrm{ at x within A) (( }\n.fnx)\longrightarrowlx
F
        using c ul
        by (auto simp: continuous_on_def eventually_mono tendsto_uniform_limitI)
    then show (l\longrightarrowl 
        by (rule swap_uniform_limit) fact+
qed
lemma uniformly_Cauchy_onI:
    assumes \bigwedgee.e>0\Longrightarrow\existsM.\forallx\inX.\forallm\geqM.\foralln\geqM. dist (fmx) (fnx)<e
    shows uniformly_Cauchy_on X f
    using assms unfolding uniformly_Cauchy_on_def by blast
lemma uniformly_Cauchy_onI':
    assumes \bigwedgee.e>0\Longrightarrow\existsM.\forallx\inX.\forallm\geqM.\foralln>m. dist (fmx) (fnx)<e
    shows uniformly_Cauchy_on X f
proof (rule uniformly_Cauchy_onI)
    fix e :: real assume e: e>0
    from assms[OF this] obtain M
        where M: \x mn. x 保\Longrightarrowm\geqM\Longrightarrown>m\Longrightarrowdist (fmx) (fnx)
    < by fast
    {
```



```
        with M[OF this(1,2), of n] M[OF this(1,3), of m] e have dist (fmx) (fn
    x)<e
            by (cases m n rule: linorder_cases) (simp_all add:dist_commute)
    }
    thus }\existsM.\forallx\inX.\forallm\geqM.\foralln\geqM.dist (fmx)(fnx)<e by fas
qed
lemma uniformly_Cauchy_imp_Cauchy:
    uniformly_Cauchy_on Xf\Longrightarrowx\inX\LongrightarrowCauchy (\lambdan.fnx)
    unfolding Cauchy_def uniformly_Cauchy_on_def by fast
lemma uniform_limit_cong:
    fixes f g :: 'a m 'b (' c :: metric_space) and hi i:: 'b > 'c
    assumes eventually ( }\lambday.\forallx\inX.fyx=gyx)
    assumes }\x.x\inX\Longrightarrowhx=i
    shows uniform_limit XfhF}\longleftrightarrowuniform_limit X gi 
proof -
    {
        fix fg ::' }a=>\mp@subsup{|}{}{\prime}b=>\mp@subsup{}{}{\prime}c\mathrm{ and }hi i::'b=>'
        assume C: uniform_limit XfhF}\mathrm{ and A: eventually ( }\lambday.\forallx\inX.fyx=g
x) F
```

```
            and B:\bigwedgex. x 
    {
        fix e ::real assume e>0
        with C have eventually ( }\lambday.\forallx\inX.\operatorname{dist}(fyx)(hx)<e)
            unfolding uniform_limit_iff by blast
        with A have eventually ( }\lambday.\forallx\inX.\operatorname{dist}(gyx)(ix)<e)
        by eventually_elim (insert B, simp_all)
    }
    hence uniform_limit X g i F unfolding uniform_limit_iff by blast
    } note A= this
    show ?thesis by (rule iffI) (erule A; insert assms; simp add: eq_commute)+
qed
lemma uniform_limit_cong':
    fixes f g :: ' }a=>\mp@subsup{}{}{\prime}b=>(\mp@subsup{}{}{\prime}c:: metric_space) and hi :: 'b b 'c'
    assumes }\yx.x\inX\Longrightarrowfyx=gy
    assumes }\x.x\inX\Longrightarrowhx=i
    shows uniform_limit X fh F}\longleftrightarrowu\mathrm{ uniform_limit X g i F
    using assms by (intro uniform_limit_cong always_eventually) blast+
lemma uniformly_convergent_cong:
    assumes eventually ( }\lambdax.\forally\inA.fxy=gxy) sequentially A=
    shows uniformly_convergent_on A f \longleftrightarrowuniformly_convergent_on B g
    unfolding uniformly_convergent_on_def assms(2) [symmetric]
    by (intro iff_exI uniform_limit_cong eventually_mono [OF assms(1)]) auto
lemma uniformly_convergent_uniform_limit_iff:
    uniformly_convergent_on Xf}\longleftrightarrow山\mathrm{ uniform_limit Xf( }\lambdax.\operatorname{lim}(\lambdan.fnx)) sequentially
proof
    assume uniformly_convergent_on X f
    then obtain l where l: uniform_limit X fl sequentially
        unfolding uniformly_convergent_on_def by blast
    from l have uniform_limit Xf(\lambdax.lim (\lambdan.fnx)) sequentially }
                    uniform_limit X f l sequentially
            by (intro uniform_limit_cong' limI tendsto_uniform_limitI[of f X l]) simp_all
    also note l
    finally show uniform_limit Xf( }\lambdax.\operatorname{lim}(\lambdan.fnx)) sequentially
qed (auto simp: uniformly_convergent_on_def)
lemma uniformly_convergentI: uniform_limit X fl sequentially \Longrightarrowuniformly_convergent_on
Xf
    unfolding uniformly_convergent_on_def by blast
lemma uniformly_convergent_on_empty [iff]: uniformly_convergent_on {} f
    by (simp add: uniformly_convergent_on_def uniform_limit_sequentially_iff)
lemma uniformly_convergent_on_const [simp,intro]:
    uniformly_convergent_on A ( }\mp@subsup{\lambda}{-}{\prime}.c
    by (auto simp: uniformly_convergent_on_def uniform_limit_iff intro!: exI[of _ c])
```

Cauchy-type criteria for uniform convergence.

```
lemma Cauchy_uniformly_convergent:
    fixes \(f::\) nat \(\Rightarrow^{\prime} a \Rightarrow{ }^{\prime} b::\) complete_space
    assumes uniformly_Cauchy_on \(X f\)
    shows uniformly_convergent_on \(X f\)
unfolding uniformly_convergent_uniform_limit_iff uniform_limit_iff
proof safe
    let \(? f=\lambda x . \lim (\lambda n . f n x)\)
    fix \(e::\) real assume \(e: e>0\)
    hence \(e / 2>0\) by simp
    with assms obtain \(N\) where \(N: \wedge x m n . x \in X \Longrightarrow m \geq N \Longrightarrow n \geq N \Longrightarrow\)
dist \((f m x)(f n x)<e / 2\)
    unfolding uniformly_Cauchy_on_def by fast
    show eventually ( \(\lambda n . \forall x \in X\). dist \((f n x)(\) ? \(f x)<e)\) sequentially
        using eventually_ge_at_top[of \(N\) ]
    proof eventually_elim
        fix \(n\) assume \(n: n \geq N\)
        show \(\forall x \in X\). dist \((f n x)(? f x)<e\)
        proof
            fix \(x\) assume \(x: x \in X\)
            with assms have ( \(\lambda n\). f \(n x) \longrightarrow\) ?f \(x\)
                by (auto dest!: Cauchy_convergent uniformly_Cauchy_imp_Cauchy simp:
convergent_LIMSEQ_iff)
            with \(\langle e / 2>0\rangle\) have eventually \((\lambda m . m \geq N \wedge\) dist \((f m x)(? f x)<e / 2)\)
sequentially
                by (intro tendstoD eventually_conj eventually_ge_at_top)
            then obtain \(m\) where \(m: m \geq N\) dist \((f m x)\) (?f \(x)<e / 2\)
                    unfolding eventually_at_top_linorder by blast
            have dist \((f n x)(? f x) \leq \operatorname{dist}(f n x)(f m x)+\operatorname{dist}(f m x)(? f x)\)
                by (rule dist_triangle)
            also from \(x n\) have \(\ldots<e / 2+e / 2\) by (intro add_strict_mono \(N m\) )
            finally show \(\operatorname{dist}(f n x)(? f x)<e\) by simp
        qed
    qed
qed
lemma uniformly_convergent_Cauchy:
    assumes uniformly_convergent_on \(X f\)
    shows uniformly_Cauchy_on \(X f\)
proof (rule uniformly_Cauchy_onI)
    fix \(e:\) :real assume \(e>0\)
    then have \(0<e / 2\) by simp
    with assms[unfolded uniformly_convergent_on_def uniform_limit_sequentially_iff]
    obtain \(l N\) where \(l: x \in X \Longrightarrow n \geq N \Longrightarrow \operatorname{dist}(f n x)(l x)<e / 2\) for \(n x\)
        by metis
    from \(l l\) have \(x \in X \Longrightarrow n \geq N \Longrightarrow m \geq N \Longrightarrow \operatorname{dist}(f n x)(f m x)<e\) for
\(n m x\)
        by (rule dist_triangle_half_l)
    then show \(\exists M . \forall x \in X . \forall m \geq M . \forall n \geq M\). dist \((f m x)(f n x)<e\) by blast
```

qed
lemma uniformly_convergent_eq_Cauchy:
uniformly_convergent_on $X f=$ uniformly_Cauchy_on $X f$ for $f:: n a t \Rightarrow ' b \Rightarrow$ 'a::complete_space
using Cauchy_uniformly_convergent uniformly_convergent_Cauchy by blast
lemma uniformly_convergent_eq_cauchy:
fixes $s::$ nat $\Rightarrow{ }^{\prime} b{ }^{\prime} a::$ complete_space
shows
$(\exists l . \forall e>0 . \exists N . \forall n x . N \leq n \wedge P x \longrightarrow \operatorname{dist}(s n x)(l x)<e) \longleftrightarrow$ $(\forall e>0 . \exists N . \forall m n x . N \leq m \wedge N \leq n \wedge P x \longrightarrow \operatorname{dist}(s m x)(s n x)<e)$
proof -
have $*:(\forall n \geq N . \forall x . Q x \longrightarrow R n x) \longleftrightarrow(\forall n x . N \leq n \wedge Q x \longrightarrow R n x)$
$(\forall x . Q x \longrightarrow(\forall m \geq N . \forall n \geq N . S n m x)) \longleftrightarrow(\forall m n x . N \leq m \wedge N \leq n \wedge$
$Q x \longrightarrow S n m x)$
for $N::$ nat and $Q:::^{\prime} b \Rightarrow$ bool and $R S$
by blast+
show ?thesis
using uniformly_convergent_eq_Cauchy[of Collect Ps]
unfolding uniformly_convergent_on_def uniformly_Cauchy_on_def uniform_limit_sequentially_iff by (simp add: *)
qed
lemma uniformly_cauchy_imp_uniformly_convergent:
fixes $s::$ nat $\Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} b::$ complete_space
assumes $\forall e>0 . \exists N . \forall m(n:: n a t) x . N \leq m \wedge N \leq n \wedge P x-->\operatorname{dist}(s m x)(s$
$n x)<e$
and $\forall x . P x-->(\forall e>0 . \exists N . \forall n . N \leq n \longrightarrow \operatorname{dist}(s n x)(l x)<e)$
shows $\forall e>0 . \exists N . \forall n x . N \leq n \wedge P x \longrightarrow \operatorname{dist}(s n x)(l x)<e$
proof -
obtain l^{\prime} where $l: \forall e>0 . \exists N . \forall n x . N \leq n \wedge P x \longrightarrow \operatorname{dist}(s n x)\left(l^{\prime} x\right)<e$
using assms(1) unfolding uniformly_convergent_eq_cauchy[symmetric] by auto moreover
\{
fix x
assume $P x$
then have $l x=l^{\prime} x$
using tendsto_unique[OF trivial_limit_sequentially, of λn. s $\left.n x l x l^{\prime} x\right]$
using l and assms(2) unfolding lim_sequentially by blast
\}
ultimately show ?thesis by auto
qed
TODO: remove explicit formulations $(\exists l . \forall e>0 . \exists N . \forall n x . N \leq n \wedge ? P$ $x \longrightarrow \operatorname{dist}($?s $n x)(l x)<e)=(\forall e>0 . \exists N . \forall m n x . N \leq m \wedge N \leq n$ \wedge ? $P x \longrightarrow \operatorname{dist}($?s $m x)($?s $n x)<e)$
$\llbracket \forall e>0 . \exists N . \forall m n x . N \leq m \wedge N \leq n \wedge$? $P x \longrightarrow \operatorname{dist}(? s m x)($?s n $x)<e ; \forall x . ? P x \longrightarrow(\forall e>0 . \exists N . \forall n \geq N$. dist $($?s $n x)(? l x)<e) \rrbracket \Longrightarrow$
$\forall e>0 . \exists N . \forall n x . N \leq n \wedge ? P x \longrightarrow \operatorname{dist}(? s n x)(? l x)<e ?!$
lemma uniformly＿convergent＿imp＿convergent：
uniformly＿convergent＿on $X f \Longrightarrow x \in X \Longrightarrow$ convergent（ λn ．f n x ）
unfolding uniformly＿convergent＿on＿def convergent＿def
by（auto dest：tendsto＿uniform＿limitI）

4．7．4 Weierstrass M－Test

proposition Weierstrass＿m＿test＿ev：
fixes $f:: \Rightarrow_{-} \Rightarrow_{-}::$banach
assumes eventually $(\lambda n . \forall x \in A$ ．norm $(f n x) \leq M n)$ sequentially
assumes summable M
shows uniform＿limit $A\left(\lambda n x . \sum i<n . f i x\right)(\lambda x . \operatorname{suminf}(\lambda i . f i x))$ sequentially
proof（rule uniform＿limitI）
fix e ：：real
assume $0<e$
from suminf＿exist＿split［OF $\langle 0<e\rangle\langle s u m m a b l e ~ M 〉]$
have $\forall_{F} k$ in sequentially．norm $\left(\sum i . M(i+k)\right)<e$
by（auto simp：eventually＿sequentially）
with eventually＿all＿ge＿at＿top［OF assms（1）］
show $\forall_{F} n$ in sequentially．$\forall x \in A$ ．dist $\left(\sum i<n . f i x\right)\left(\sum i . f i x\right)<e$
proof eventually＿elim
case（elim k）
show ？case
proof safe
fix x assume $x \in A$
have $\exists N . \forall n \geq N$ ．norm $(f n x) \leq M n$ using assms（1）$\langle x \in A\rangle$ by（force simp：eventually＿at＿top＿linorder）
hence summable＿norm＿f：summable（ λn ．norm（ f n x ）） by（rule summable＿norm＿comparison＿test［OF＿〈summable M〉］）
have summable＿f：summable（ λn ．$f n x$ ） using summable＿norm＿cancel［OF summable＿norm＿f］．
have summable＿norm＿f＿plus＿k：summable（ λi ．norm $(f(i+k) x)$ ） using summable＿ignore＿initial＿segment［OF summable＿norm＿f］ by auto
have summable＿M＿plus＿k：summable $(\lambda i . M(i+k))$ using summable＿ignore＿initial＿segment［OF（summable M〉］ by auto
have dist $\left(\sum i<k . f i x\right)\left(\sum i . f i x\right)=\operatorname{norm}\left(\left(\sum i . f i x\right)-\left(\sum i<k . f i x\right)\right)$ using dist＿norm dist＿commute by（subst dist＿commute）
also have $\ldots=\operatorname{norm}\left(\sum i . f(i+k) x\right)$ using suminf＿minus＿initial＿segment［OF summable＿f，where $k=k$ ］by simp
also have $\ldots \leq\left(\sum i . \operatorname{norm}(f(i+k) x)\right)$
using summable＿norm［OF summable＿norm＿f＿plus＿k］．
also have $\ldots \leq\left(\sum i . M(i+k)\right)$
by（rule suminf＿le［OF＿summable＿norm＿f＿plus＿k summable＿M＿plus＿k］）
（insert elim（1）$\langle x \in A\rangle$ ，simp）
finally show $\operatorname{dist}\left(\sum i<k . f i x\right)\left(\sum i . f i x\right)<e$

```
        using elim by auto
        qed
    qed
qed
```

Alternative version, formulated as in HOL Light
corollary series_comparison_uniform:
fixes $f::$ _ $^{\Rightarrow}$ nat \Rightarrow _ :: banach
assumes g : summable g and le: $\backslash n x . N \leq n \wedge x \in A \Longrightarrow \operatorname{norm}(f x n) \leq g n$ shows $\exists l . \forall e .0<e \longrightarrow(\exists N . \forall n x . N \leq n \wedge x \in A \longrightarrow \operatorname{dist}(\operatorname{sum}(f x)$
$\{. .<n\})(l x)<e)$
proof -
have 1: $\forall_{F} n$ in sequentially. $\forall x \in A$. norm $(f x n) \leq g n$
using le eventually_sequentially by auto
show ?thesis
apply (rule_tac $x=\left(\lambda x . \sum i . f x i\right)$ in $\left.e x I\right)$
apply (metis (no_types, lifting) eventually_sequentially uniform_limitD [OF
Weierstrass_m_test_ev [OF 1 g]]) done
qed
corollary Weierstrass_m_test:
fixes $f::-{ }_{-} \Rightarrow_{-}$:: banach
assumes $\wedge n x . x \in A \Longrightarrow \operatorname{norm}(f n x) \leq M n$
assumes summable M
shows uniform_limit $A\left(\lambda n x . \sum i<n . f i x\right)(\lambda x$. suminf ($\lambda i . f i x)$) sequentially
using assms by (intro Weierstrass_m_test_ev always_eventually) auto
corollary Weierstrass_m_test'_ev:
fixes $f::-{ }_{-} \Rightarrow_{-}$: banach
assumes eventually ($\lambda n . \forall x \in A$. norm $(f n x) \leq M n$) sequentially summable M
shows uniformly_convergent_on $A\left(\lambda n x . \sum i<n . f i x\right)$
unfolding uniformly_convergent_on_def by (rule exI, rule Weierstrass_m_test_ev[OF assms])
corollary Weierstrass_m_test':
fixes $f::-{ }_{-} \Rightarrow_{-}::$banach
assumes $\backslash n x . x \in A \Longrightarrow \operatorname{norm}(f n x) \leq M$ nsummable M
shows uniformly_convergent_on $A\left(\lambda n x . \sum i<n . f i x\right)$
unfolding uniformly_convergent_on_def by (rule exI, rule Weierstrass_m_test[OF assms])
lemma uniform_limit_eq_rhs: uniform_limit $X f l F \Longrightarrow l=m \Longrightarrow$ uniform_limit $X f m F$
by simp

4.7.5 Structural introduction rules

named_theorems uniform_limit_intros introduction rules for uniform_limit

```
setup <
    Global_Theory.add_thms_dynamic (binding\uniform_limit_eq_intros`,
        fn context =>
        Named_Theorems.get (Context.proof_of context) named_theorems <uniform_limit_intros>
            |> map_filter (try (fn thm => @{thm uniform_limit_eq_rhs} OF [thm])))
)
lemma (in bounded_linear) uniform_limit[uniform_limit_intros]:
    assumes uniform_limit X g l F
    shows uniform_limit X (\lambdaab.f (gab)) (\lambdaa.f (l a)) F
proof (rule uniform_limitI)
    fix e::real
    from pos_bounded obtain K
        where K: \x y. dist ( f x ) (fy) \leqK* dist x y K>0
        by (auto simp: ac_simps dist_norm diff[symmetric])
    assume 0<e with \langleK> 0\rangle have e/K> 0 by simp
    from uniform_limitD[OF assms this]
    show }\mp@subsup{\forall}{F}{}n\mathrm{ in F. }\forallx\inX.\operatorname{dist}(f(gnx))(f(lx))<
    by eventually_elim (metis le_less_trans mult.commute pos_less_divide_eq K)
qed
lemma (in bounded_linear) uniformly_convergent_on:
    assumes uniformly_convergent_on A g
    shows uniformly_convergent_on A ( }\lambdaxy.f(gxy)
proof -
    from assms obtain l where uniform_limit A gl sequentially
        unfolding uniformly_convergent_on_def by blast
    hence uniform_limit A (\lambdaxy.f(gxy)) (\lambdax.f(lx)) sequentially
        by (rule uniform_limit)
    thus ?thesis unfolding uniformly_convergent_on_def by blast
qed
lemmas bounded_linear_uniform_limit_intros[uniform_limit_intros] =
    bounded_linear.uniform_limit[OF bounded_linear_Im]
    bounded_linear.uniform_limit[OF bounded_linear_Re]
    bounded_linear.uniform_limit[OF bounded_linear_cnj]
    bounded_linear.uniform_limit[OF bounded_linear_fst]
    bounded_linear.uniform_limit[OF bounded_linear_snd]
    bounded_linear.uniform_limit[OF bounded_linear_zero]
    bounded_linear.uniform_limit[OF bounded_linear_of_real]
    bounded_linear.uniform_limit[OF bounded_linear_inner_left]
    bounded_linear.uniform_limit[OF bounded_linear_inner_right]
    bounded_linear.uniform_limit[OF bounded_linear_divide]
    bounded_linear.uniform_limit[OF bounded_linear_scaleR_right]
    bounded_linear.uniform_limit[OF bounded_linear_mult_left]
    bounded_linear.uniform_limit[OF bounded_linear_mult_right]
    bounded_linear.uniform_limit[OF bounded_linear_scaleR_left]
```

```
lemmas uniform_limit_uminus[uniform_limit_intros] =
    bounded_linear.uniform_limit[OF bounded_linear_minus[OF bounded_linear_ident]]
lemma uniform_limit_const[uniform_limit_intros]: uniform_limit S (\lambdax.c) cf
    by (auto intro!: uniform_limitI)
lemma uniform_limit_add[uniform_limit_intros]:
    fixes f g::'a m 'b 缶'c::real_normed_vector
    assumes uniform_limit X fl F
    assumes uniform_limit X g m F
    shows uniform_limit X (\lambdaab.fab+gab) (\lambdaa.la +ma)F
proof (rule uniform_limitI)
    fix e::real
    assume 0<e
    hence 0<e / 2 by simp
    from
        uniform_limitD[OF assms(1) this]
        uniform_limitD[OF assms(2) this]
    show }\mp@subsup{\forall}{F}{}n\mathrm{ in F. }\forallx\inX.dist (fnx+gnx) (lx+mx)<
        by eventually_elim (simp add: dist_triangle_add_half)
qed
lemma uniform_limit_minus[uniform_limit_intros]:
```



```
    assumes uniform_limit X fl F
    assumes uniform_limit X g m F
    shows uniform_limit X (\lambdaab.fab-gab) (\lambdaa.la-ma)F
    unfolding diff_conv_add_uminus
    by (rule uniform_limit_intros assms)+
lemma uniform_limit_norm[uniform_limit_intros]:
    assumes uniform_limit S glf
    shows uniform_limit S (\lambdax y. norm (g x y)) ( \lambdax.norm (l x)) f
    using assms
    apply (rule metric_uniform_limit_imp_uniform_limit)
    apply (rule eventuallyI)
    by (metis dist_norm norm_triangle_ineq3 real_norm_def)
lemma (in bounded_bilinear) bounded_uniform_limit[uniform_limit_intros]:
    assumes uniform_limit XflF
    assumes uniform_limit X g m F
    assumes bounded (m` X)
    assumes bounded (l'X)
    shows uniform_limit X (\lambdaa b. prod (f a b) (gab)) (\lambdaa.prod (l a) (ma)) F
proof (rule uniform_limitI)
    fix e::real
    from pos_bounded obtain }K\mathrm{ where K
        0<K \ab.norm (prod a b) \leqnorm a* norm b*K
        by auto
```

```
hence \(\operatorname{sqrt}(K * 4)>0\) by simp
from assms obtain Km Kl
where \(K m: K m>0 \wedge x . x \in X \Longrightarrow\) norm \((m x) \leq K m\)
    and \(K l: K l>0 \wedge x . x \in X \Longrightarrow \operatorname{norm}(l x) \leq K l\)
    by (auto simp: bounded_pos)
hence \(K * K m * 4>0 K * K l * 4>0\)
    using \(\langle K>0\rangle\)
    by simp_all
assume \(0<e\)
hence sqrt \(e>0\) by simp
from uniform_limitD \([\) OF assms(1) divide_pos_pos[OF this \(\langle\operatorname{sqrt}(K * 4)>0\rangle]]\)
    uniform_limitD \([\) OF assms(2) divide_pos_pos \([\) OF this \(\langle\) sqrt \((K * 4)>0\rangle]]\)
    uniform_limitD \([O F\) assms(1) divide_pos_pos[OF \(\langle e>0\rangle\langle K * K m * 4>0\rangle]]\)
    uniform_limitD \([\) OF assms(2) divide_pos_pos \([O F\langle e>0\rangle\langle K * K l * 4>0\rangle]]\)
    show \(\forall_{F} n\) in \(F . \forall x \in X\). dist \((\operatorname{prod}(f n x)(g n x))(\operatorname{prod}(l x)(m x))<e\)
    proof eventually_elim
    case (elim n)
    show ? case
    proof safe
        fix \(x\) assume \(x \in X\)
    have dist \((\operatorname{prod}(f n x)(g n x))(\operatorname{prod}(l x)(m x)) \leq\)
        norm \((\operatorname{prod}(f n x-l x)(g n x-m x))+\)
        norm \((\operatorname{prod}(f n x-l x)(m x))+\)
        \(\operatorname{norm}(\operatorname{prod}(l x)(g n x-m x))\)
        by (auto simp: dist_norm prod_diff_prod intro: order_trans norm_triangle_ineq
add_mono)
    also note \(K(2)[\) of \(f n x-l x g n x-m x]\)
    also from elim (1)[THEN bspec, OF \(\iota_{-} \in X\), unfolded dist_norm]
    have norm \((f n x-l x) \leq\) sqrt e / sqrt \((K * 4)\)
        by \(\operatorname{simp}\)
    also from elim(2)[THEN bspec, OF \(\iota_{-} \in X\), unfolded dist_norm]
    have norm \((g n x-m x) \leq \operatorname{sqrt} e / \operatorname{sqrt}(K * 4)\)
        by \(\operatorname{simp}\)
    also have sqrt e / sqrt \((K * 4) *(\operatorname{sqrt} e / \operatorname{sqrt}(K * 4)) * K=e / 4\)
        using \(\langle K>0\rangle\langle e>0\rangle\) by auto
    also note \(K(2)[\) of \(f n x-l x m x]\)
    also note \(K\) (2) [of \(l x g n x-m x]\)
    also from elim(3)[THEN bspec, \(O F<_{-} \in X\), unfolded dist_norm]
    have norm \((f n x-l x) \leq e /(K * K m * 4)\)
        by \(\operatorname{simp}\)
    also from elim(4)[THEN bspec, OF \(\iota_{-} \in X\), unfolded dist_norm]
    have norm \((g n x-m x) \leq e /(K * K l * 4)\)
        by \(\operatorname{simp}\)
    also note \(\left.K l(2)\left[O F \quad \iota_{-} \in X\right\rangle\right]\)
    also note \(\left.K m(2)\left[O F \iota_{-} \in X\right\rangle\right]\)
    also have \(e /(K * K m * 4) * K m * K=e / 4\)
        using \(\langle K>0\rangle\langle K m>0\rangle\) by simp
```

```
        also have Kl*(e/(K*Kl*4))*K=e/4
            using \langleK> 0\rangle\langleKl> 0\rangle by simp
        also have e/4+e/4+e/4<e using <e> 0\rangle by simp
        finally show dist (prod (fnx) (gnx)) (prod (lx) (mx))<e
            using \langleK> 0\rangle\langleKl>0\rangle\langleKm>0\rangle\langlee> \ >
            by (simp add: algebra_simps mult_right_mono divide_right_mono)
        qed
    qed
qed
```

lemmas bounded_bilinear_bounded_uniform_limit_intros[uniform_limit_intros] = bounded_bilinear.bounded_uniform_limit[OF Inner_Product.bounded_bilinear_inner] bounded_bilinear.bounded_uniform_limit[OF Real_Vector_Spaces.bounded_bilinear_mult] bounded_bilinear.bounded_uniform_limit[OF Real_Vector_Spaces.bounded_bilinear_scaleR]

```
lemma uniform_lim_mult:
    fixes \(f::{ }^{\prime} a \Rightarrow{ }^{\prime} b \Rightarrow{ }^{\prime} c::\) real_normed_algebra
    assumes \(f\) : uniform_limit \(S\) flF
        and \(g\) : uniform_limit \(S\) g \(m F\)
        and \(l\) : bounded ( \(l\) ‘ \(S\) )
        and \(m\) : bounded ( \(m\) ' \(S\) )
    shows uniform_limit \(S(\lambda a b . f a b * g a b)(\lambda a . l a * m a) F\)
    by (intro bounded_bilinear_bounded_uniform_limit_intros assms)
lemma uniform_lim_inverse:
    fixes \(f::{ }^{\prime} a \Rightarrow{ }^{\prime} b{ }^{\prime} c::\) real_normed_field
    assumes \(f\) : uniform_limit \(S f l F\)
        and \(b: \wedge x . x \in S \Longrightarrow b \leq \operatorname{norm}(l x)\)
        and \(b>0\)
        shows uniform_limit \(S(\lambda x y\). inverse \((f x y))(\) inverse \(\circ l) F\)
proof (rule uniform_limitI)
    fix \(e\) ::real
    assume \(e>0\)
    have lte: dist (inverse \((f x y))((\) inverse \(\circ l) y)<e\)
                if \(b / 2 \leq \operatorname{norm}(f x y) \operatorname{norm}(f x y-l y)<e * b^{2} / 2 y \in S\)
                for \(x y\)
    proof -
        have \([\) simp \(]: l y \neq 0 f x y \neq 0\)
            using \(\langle b>0\rangle\) that \(b[O F\langle y \in S\rangle]\) by fastforce+
        have norm \((l y-f x y)<e * b^{2} / 2\)
            by (metis norm_minus_commute that(2))
        also have \(\ldots \leq e *(\operatorname{norm}(f x y) * \operatorname{norm}(l y))\)
            using \(\langle e>0\rangle\) that \(b[O F\langle y \in S\rangle]\) apply (simp add: power2_eq_square)
            by (metis \(\langle b>0\rangle\) less_eq_real_def mult.left_commute mult_mono')
            finally show ?thesis
            by (auto simp: dist_norm field_split_simps norm_mult norm_divide)
    qed
    have \(\forall_{F} n\) in \(F . \forall x \in S\). dist \((f n x)(l x)<b / 2\)
        using uniform_limitD [OF \(f\), of b/2] by (simp add: \(\langle b>0\rangle\) )
```

```
    then have \(\forall_{F} x\) in \(F . \forall y \in S . b / 2 \leq \operatorname{norm}(f x y)\)
    apply (rule eventually_mono)
    using \(b\) apply (simp only: dist_norm)
    by (metis (no_types, hide_lams) diff_zero dist_commute dist_norm norm_triangle_half_l
not_less)
    then have \(\forall_{F} x\) in \(F . \forall y \in S . b / 2 \leq \operatorname{norm}(f x y) \wedge \operatorname{norm}(f x y-l y)<e *\)
\(b^{2} / 2\)
        apply (simp only: ball_conj_distrib dist_norm [symmetric])
        apply (rule eventually_conj, assumption)
            apply (rule uniform_limitD [OF f, of \(e * b\) ^2 / 2])
        using \(\langle b>0\rangle\langle e>0\rangle\) by auto
    then show \(\forall_{F} x\) in \(F . \forall y \in S\). dist (inverse \(\left.(f x y)\right)((\) inverse \(\circ l) y)<e\)
        using lte by (force intro: eventually_mono)
qed
lemma uniform_lim_divide:
    fixes \(f::{ }^{\prime} a \Rightarrow{ }^{\prime} b{ }^{\prime} c:\) :real_normed_field
    assumes \(f\) : uniform_limit \(S\) f \(l F\)
        and \(g\) : uniform_limit \(S\) g \(m F\)
        and \(l\) : bounded ( \(l\) ' \(S\) )
        and \(b: \bigwedge x . x \in S \Longrightarrow b \leq \operatorname{norm}(m x)\)
        and \(b>0\)
        shows uniform_limit \(S(\lambda a b . f a b / g a b)(\lambda a . l a / m a) F\)
proof -
    have \(m\) : bounded ((inverse \(\circ m\) ) ' \(S\) )
        using \(b\langle b>0\rangle\)
        apply (simp add: bounded_iff)
        by (metis le_imp_inverse_le norm_inverse)
    have uniform_limit \(S(\lambda a b . f a b *\) inverse \((g a b))\)
            \((\lambda a . l a *(\) inverse \(\circ m) a) F\)
        by (rule uniform_lim_mult [OF f uniform_lim_inverse \([\) OF \(g b\langle b>0\rangle] l m])\)
    then show? thesis
        by (simp add: field_class.field_divide_inverse)
qed
lemma uniform_limit_null_comparison:
    assumes \(\forall_{F} x\) in \(F . \forall a \in S\). norm \((f x a) \leq g x a\)
    assumes uniform_limit \(S g\left(\lambda_{-} .0\right) F\)
    shows uniform_limit \(S f\left(\lambda_{\text {. }} 0\right) F\)
    using assms(2)
proof (rule metric_uniform_limit_imp_uniform_limit)
    show \(\forall_{F} x\) in \(F . \forall y \in S\). dist \((f x y) 0 \leq \operatorname{dist}(g x y) 0\)
        using assms(1) by (rule eventually_mono) (force simp add: dist_norm)
qed
lemma uniform_limit_on_Un:
uniform_limit \(I f g F \Longrightarrow\) uniform_limit \(J f g F \Longrightarrow\) uniform_limit \((I \cup J) f g F\)
by (auto intro!: uniform_limitI dest!: uniform_limitD elim: eventually_elim2)
```

```
lemma uniform_limit_on_empty [iff]:
    uniform_limit {} fgF
    by (auto intro!: uniform_limitI)
lemma uniform_limit_on_UNION:
    assumes finite S
    assumes \s.s s S \Longrightarrow uniform_limit (hs)fg F
    shows uniform_limit ( U(h'S))fg F
    using assms
    by induct (auto intro: uniform_limit_on_empty uniform_limit_on_Un)
```

```
lemma uniform_limit_on_Union:
    assumes finite \(I\)
    assumes \(\backslash J . J \in I \Longrightarrow\) uniform_limit \(J f g F\)
    shows uniform_limit (Union I) fgF
    by (metis SUP_identity_eq assms uniform_limit_on_UNION)
```

lemma uniform_limit_on_subset:
uniform_limit Jfg $F \Longrightarrow I \subseteq J \Longrightarrow$ uniform_limit If g F
by (auto intro!: uniform_limitI dest!! uniform_limitD intro: eventually_mono)
lemma uniform_limit_bounded:
fixes $f::{ }^{\prime} i \Rightarrow$ ' $a::$:topological_space $\Rightarrow{ }^{\prime} b::$ metric_space
assumes l : uniform_limit S flF
assumes bnd: \forall_{F} i in F. bounded ($f i$ ' S)
assumes $F \neq b o t$
shows bounded (l' S)
proof -
from l have $\forall_{F} n$ in $F . \forall x \in S$. dist $(l x)(f n x)<1$
by (auto simp: uniform_limit_iff dist_commute dest!: spec[where $x=1]$)
with bnd
have $\forall_{F} n$ in $F . \exists M . \forall x \in S$. dist undefined $(l x) \leq M+1$
by eventually_elim
(auto intro!: order_trans[OF dist_triangle2 add_mono] intro: less_imp_le
simp: bounded_any_center[where $a=$ undefined $]$)
then show ?thesis using assms
by (auto simp: bounded_any_center[where $a=$ undefined] dest!: eventually_happens)
qed
lemma uniformly_convergent_add:
uniformly_convergent_on $A f \Longrightarrow$ uniformly_convergent_on $A g \Longrightarrow$
uniformly_convergent_on A ($\lambda k x$.fkx+gkx :: 'a :: \{real_normed_algebra\})
unfolding uniformly_convergent_on_def by (blast dest: uniform_limit_add)
lemma uniformly_convergent_minus:
uniformly_convergent_on $A f \Longrightarrow$ uniformly_convergent_on $A g \Longrightarrow$ uniformly_convergent_on A ($\lambda k x . f k x-g k x::$ ' $a::\{$ real_normed_algebra\}) unfolding uniformly_convergent_on_def by (blast dest: uniform_limit_minus)
lemma uniformly_convergent_mult:
uniformly_convergent_on $A f$ uniformly_convergent_on $A\left(\lambda k x . c * f k x:: ' a::\left\{r e a l _n o r m e d _a l g e b r a\right\}\right)$
unfolding uniformly_convergent_on_def
by (blast dest: bounded_linear_uniform_limit_intros(13))

4.7.6 Power series and uniform convergence

proposition powser_uniformly_convergent:
fixes $a::$ nat \Rightarrow 'a::\{real_normed_div_algebra,banach \}
assumes $r<$ conv_radius a
shows uniformly_convergent_on (cball $\xi r)\left(\lambda n x . \sum i<n . a i *(x-\xi){ }^{\wedge} i\right)$
proof (cases $0 \leq r$)
case True
then have $*$: summable $\left(\lambda n\right.$. norm $(a n) * r^{\wedge} n$)
using abs_summable_in_conv_radius [of of_real ra] assms
by (simp add: norm_mult norm_power)
show ?thesis
by (simp add: Weierstrass_m_test ${ }_{-}$ev $\left[O F_{-} *\right]$ norm_mult norm_power mult_left_mono power_mono dist_norm norm_minus_commute)
next
case False then show ?thesis by (simp add: not_le)
qed
lemma powser_uniform_limit:
fixes $a::$ nat \Rightarrow ' $a::\left\{r e a l _n o r m e d _d i v _a l g e b r a, b a n a c h\right\}$
assumes $r<$ conv_radius a
shows uniform_limit (cball $\xi r)\left(\lambda n x . \sum i<n . a i *(x-\xi)^{\wedge} i\right)(\lambda x$. suminf
(λi. $\left.a i *(x-\xi)^{\wedge} i\right)$) sequentially
using powser_uniformly_convergent [OF assms]
by (simp add: Uniform_Limit.uniformly_convergent_uniform_limit_iff Series.suminf_eq_lim)
lemma powser_continuous_suminf:
fixes $a::$ nat \Rightarrow 'a:: \{real_normed_div_algebra,banach $\}$
assumes $r<$ conv_radius a
shows continuous_on (cball $\xi r)\left(\lambda x\right.$. suminf $\left(\lambda i\right.$. $\left.\left.a i *(x-\xi)^{\wedge} i\right)\right)$
apply (rule uniform_limit_theorem [OF _ powser_uniform_limit])
apply (rule eventuallyI continuous_intros assms)+
apply (simp add:)
done
lemma powser_continuous_sums:
fixes $a::$ nat $\Rightarrow{ }^{\prime} a::\{$ real_normed_div_algebra,banach $\}$
assumes $r: r<$ conv_radius a
and sm: $\bigwedge x . x \in$ cball $\xi r \Longrightarrow\left(\lambda n . a n *(x-\xi)^{\wedge} n\right) \operatorname{sums}(f x)$
shows continuous_on (cball $\xi r) f$
apply (rule continuous_on_cong [THEN iffD1, OF refl _ powser_continuous_suminf [OF r]])
using sm sums_unique by fastforce
lemmas uniform_limit_subset_union $=$ uniform_limit_on_subset[OF uniform_limit_on_Union]
end

```
theory Function_Topology
    imports
        Elementary_Topology
        Abstract_Limits
        Connected
begin
```


4.8 Function Topology

We want to define the general product topology.
The product topology on a product of topological spaces is generated by the sets which are products of open sets along finitely many coordinates, and the whole space along the other coordinates. This is the coarsest topology for which the projection to each factor is continuous.
To form a product of objects in Isabelle/HOL, all these objects should be subsets of a common type 'a. The product is then $P i_{E} I X$, the set of elements from ' i to ${ }^{\prime} a$ such that the i-th coordinate belongs to $X i$ for all i $\in I$.

Hence, to form a product of topological spaces, all these spaces should be subsets of a common type. This means that type classes can not be used to define such a product if one wants to take the product of different topological spaces (as the type 'a can only be given one structure of topological space using type classes). On the other hand, one can define different topologies (as introduced in thy) on one type, and these topologies do not need to share the same maximal open set. Hence, one can form a product of topologies in this sense, and this works well. The big caveat is that it does not interact well with the main body of topology in Isabelle/HOL defined in terms of type classes... For instance, continuity of maps is not defined in this setting.
As the product of different topological spaces is very important in several areas of mathematics (for instance adeles), I introduce below the product topology in terms of topologies, and reformulate afterwards the consequences in terms of type classes (which are of course very handy for applications).
Given this limitation, it looks to me that it would be very beneficial to revamp the theory of topological spaces in Isabelle/HOL in terms of topologies, and keep the statements involving type classes as consequences of more general statements in terms of topologies (but I am probably too naive here). Here is an example of a reformulation using topologies. Let

```
continuous_map T1 T2 \(f=\)
    \(\left(\left(\forall U\right.\right.\). openin T2 \(U \longrightarrow\) openin \(T 1\left(f-{ }^{\prime} U \cap\right.\) topspace \(\left.\left.(T 1)\right)\right)\)
                \(\wedge\left(f^{\prime}(\right.\) topspace T1 \() \subseteq(\) topspace T2 \(\left.\left.)\right)\right)\)
```

be the natural continuity definition of a map from the topology $T 1$ to the topology T2. Then the current continuous_on (with type classes) can be redefined as
continuous_on sf= continuous_map (top_of_set s) (topology euclidean) f

In fact, I need continuous_map to express the continuity of the projection on subfactors for the product topology, in Lemma continuous_on_restrict_product_topology, and I show the above equivalence in Lemma continuous_map_iff_continuous. I only develop the basics of the product topology in this theory. The most important missing piece is Tychonov theorem, stating that a product of compact spaces is always compact for the product topology, even when the product is not finite (or even countable).
I realized afterwards that this theory has a lot in common with ~~/src/ HOL/Library/Finite_Map.thy.

4.8.1 The product topology

We can now define the product topology, as generated by the sets which are products of open sets along finitely many coordinates, and the whole space along the other coordinates. Equivalently, it is generated by sets which are one open set along one single coordinate, and the whole space along other coordinates. In fact, this is only equivalent for nonempty products, but for the empty product the first formulation is better (the second one gives an empty product space, while an empty product should have exactly one point, equal to undefined along all coordinates.
So, we use the first formulation, which moreover seems to give rise to more straightforward proofs.
definition product_topology:: (' $i \Rightarrow\left({ }^{\prime}\right.$ a topology $\left.)\right) \Rightarrow\left({ }^{\prime} i\right.$ set $) \Rightarrow\left(\left({ }^{\prime} i \Rightarrow{ }^{\prime} a\right)\right.$ topology $)$
where product_topology $T I=$
topology_generated_by $\left\{\left(\Pi_{E} i \in I . X i\right) \mid X .(\forall i\right.$. openin $(T i)(X i)) \wedge$ finite $\{i$.
$X i \neq$ topspace $(T i)\}\}$
abbreviation powertop_real $::{ }^{\prime} a$ set $\Rightarrow\left({ }^{\prime} a \Rightarrow\right.$ real $)$ topology
where powertop_real \equiv product_topology (λ i. euclideanreal)
The total set of the product topology is the product of the total sets along each coordinate.
proposition product_topology:
product_topology X $I=$

```
    topology
    (arbitrary union_of
            ((finite intersection_of
            (\lambdaF.\existsiU.F={f.fi\inU}\wedgei\inI\wedgeopenin (X i) U))
            relative_to ( }\mp@subsup{\Pi}{E}{}i\inI.\mathrm{ topspace (X i))))
    (is__ topology (_ union_of ((_ intersection_of ?\Psi) relative_to ?TOP)))
proof -
    let ?\Omega = (\lambdaF.\existsY.F=P\mp@subsup{i}{E}{}IY\wedge(\foralli.openin (X i) (Yi))^ finite {i. Yi\not=
topspace (X i)})
    have *:(finite' intersection_of ?\Omega) A = (finite intersection_of ?\Psi relative_to
?TOP)}A\mathrm{ for }
    proof -
            have 1: \existsU.(\exists\mathcal{U}.finite }\mathcal{U}\wedge\mathcal{U}\subseteq\mathrm{ Collect ? }\Psi\wedge\bigcap\mathcal{U}=U)\wedge\mathrm{ ?TOP }\capU
\bigcapU
            if \mathcal{U}:\mathcal{U}\subseteqCollect ?\Omega and finite'}\mathcal{U}A=\bigcap\mathcal{U}\mathcal{U}\not={}\mathrm{ for }\mathcal{U
            proof -
            have }\forallU\in\mathcal{U}.\existsY.U=P\mp@subsup{i}{E}{}IY\wedge(\foralli.openin (Xi)(Yi))\wedge finite {i. Y
i\not= topspace ( }\mp@subsup{X}{}{i
            using }\mathcal{U}\mathrm{ by auto
            then obtain Y where Y: \U.U\in\mathcal{U}\LongrightarrowU=Pi\mp@subsup{i}{E}{}I(YU)\wedge(\foralli.openin
(Xi) (YU i))^ finite {i.(YU)i\not= topspace (Xi)}
            by metis
            obtain }U\mathrm{ where }U\in\mathcal{U
                using {U \not={}` by blast
            let ?F = \lambdaU. (\lambdai.{f.fi\inYUi})'{i\inI.YU | = topspace (Xi)}
            show ?thesis
            proof (intro conjI exI)
                show finite ( }\bigcupU\in\mathcal{U}. ?F U
                    using }Y\langle\mp@subsup{\mathrm{ inite' }}{}{\prime}\mathcal{U}\rangle\mathrm{ by auto
                show ?TOP \cap\bigcap(UU\in\mathcal{U}. ?F U)=\bigcap\mathcal{U}
                proof
                    have *: f\inU
                if U\in\mathcal{U}\mathrm{ and }\forallV\in\mathcal{U}.\foralli.i\inI\wedgeYVi\not= topspace (Xi)\longrightarrowfi\inY
Vi
                    and \foralli\inI.fi\in topspace ( }Xi\mathrm{ ) and f}\in\mathrm{ extensional I for f U
            proof -
                    have Pi}\mp@subsup{i}{E}{}I(YU)=
                    using Y\langleU\in\mathcal{U}\rangle\mathrm{ by blast}
                    then show }f\in
                    using that unfolding PiE_def Pi_def by blast
            qed
            show ?TOP\cap\bigcap(UU\in\mathcal{U}.?F U)\subseteq\bigcap\mathcal{U}
                by (auto simp: PiE_iff *)
            show }\bigcap\mathcal{U}\subseteq?TOP\cap\bigcap(\cupU\in\mathcal{U}. ?F U
                using Y openin_subset \langlefinite' }\mathcal{U}\mathrm{ 〉 by fastforce
            qed
        qed (use Y openin_subset in <blast+>)
    qed
    have 2: \exists\mathcal{U}
```

```
    if \(\mathcal{U}: \mathcal{U} \subseteq\) Collect ? \(\Psi\) and finite \(\mathcal{U}\) for \(\mathcal{U}\)
    proof (cases \(\mathcal{U}=\{ \}\) )
        case True
        then show ?thesis
            apply (rule_tac \(x=\{\) ? TOP \(\}\) in exI, simp)
            apply (rule_tac \(x=\lambda i\). topspace \((X i)\) in \(e x I)\)
            apply force
        done
    next
    case False
    then obtain \(U\) where \(U \in \mathcal{U}\)
        by blast
    have \(\forall U \in \mathcal{U} . \exists i Y . U=\{f . f i \in Y\} \wedge i \in I \wedge\) openin \((X i) Y\)
        using \(\mathcal{U}\) by auto
    then obtain \(J Y\) where
            \(Y: \wedge U . U \in \mathcal{U} \Longrightarrow U=\{f . f(J U) \in Y U\} \wedge J U \in I \wedge\) openin \((X(J\)
U)) ( \(Y\) U
            by metis
        let ? \(G=\lambda U . \Pi_{E} i \in I\). if \(i=J U\) then \(Y U\) else topspace \((X i)\)
        show ?thesis
        proof (intro conjI exI)
            show finite \((? G \cdot \mathcal{U}) ? G \cdot \mathcal{U} \neq\{ \}\)
            using \(\langle\) finite \(\mathcal{U}\rangle\langle U \in \mathcal{U}\rangle\) by blast +
            have \(*: \wedge U . U \in \mathcal{U} \Longrightarrow\) openin \((X(J U))(Y U)\)
                using \(Y\) by force
            show ? \(G ‘ \mathcal{U} \subseteq\left\{P i_{E} I Y \mid Y\right.\). \((\forall\) i. openin \((X i)(Y i)) \wedge\) finite \(\{i . Y i \neq\)
topspace ( \(\left.\left.\left.\begin{array}{l}X \\ i\end{array}\right)\right\}\right\}\)
            apply clarsimp
            apply (rule_tac \(x=(\lambda i\). if \(i=J U\) then \(Y U\) else topspace \((X i))\) in exI)
            apply (auto simp: *)
            done
        next
            show \((\bigcap U \in \mathcal{U}\). ? \(G U)=\) ? \(T O P \cap \bigcap \mathcal{U}\)
            proof
                have \(\left(\Pi_{E}\right.\) íI. if \(i=J U\) then \(Y U\) else topspace \(\left(\begin{array}{ll}X & i\end{array}\right) \subseteq\left(\Pi_{E} i \in I\right.\).
topspace ( \(\mathrm{X}_{\mathrm{i}}\) ))
            apply (clarsimp simp: PiE_iff Ball_def all_conj_distrib split: if_split_asm)
                    using \(Y\langle U \in \mathcal{U}\rangle\) openin_subset by blast +
            then have \((\bigcap U \in \mathcal{U}\).? \(G U) \subseteq\) ? \(T O P\)
                using \(\langle U \in \mathcal{U}\rangle\)
                    by fastforce
            moreover have \((\bigcap U \in \mathcal{U}\). ? \(G U) \subseteq \bigcap \mathcal{U}\)
                using PiE_mem \(Y\) by fastforce
            ultimately show \((\bigcap U \in \mathcal{U}\).? \(G U) \subseteq\) ?TOP \(\cap \bigcap \mathcal{U}\)
                    by auto
        qed (use \(Y\) in fastforce)
        qed
    qed
    show ?thesis
```

```
        unfolding relative_to_def intersection_of_def
        by (safe; blast dest!: 1 2)
    qed
    show ?thesis
        unfolding product_topology_def generate_topology_on_eq
        apply (rule arg_cong [where f=topology])
        apply (rule arg_cong [where f}=(\mathrm{ union_of)arbitrary])
        apply (force simp: *)
        done
qed
lemma topspace_product_topology [simp]:
    topspace (product_topology T I) = (\Pi}\mp@subsup{\Pi}{E}{}i\inI.topspace(T i)
proof
    show topspace (product_topology T I)\subseteq ( }\mp@subsup{\Pi}{E}{}i\inI.topspace (T i)
        unfolding product_topology_def topology_generated_by_topspace
        unfolding topspace_def by auto
    have ( }\mp@subsup{\Pi}{E}{}i\inI.\mathrm{ topspace (T i)) }\in{(\mp@subsup{\Pi}{E}{}i\inI.Xi)|X.(\foralli.openin (Ti) (X i)
^finite {i. Xi\not= topspace (T i)}}
        using openin_topspace not_finite_existsD by auto
    then show ( }\mp@subsup{\Pi}{E}{}i\inI.topspace (T i))\subseteqtopspace (product_topology T I)
        unfolding product_topology_def using PiE_def by (auto)
qed
lemma product_topology_basis:
    assumes \i. openin (Ti) (X i) finite {i. Xi\not= topspace (Ti)}
    shows openin (product_topology T I) (\Pi}\mp@subsup{\Pi}{E}{}i\inI.X i
    unfolding product_topology_def
    by (rule topology_generated_by_Basis) (use assms in auto)
proposition product_topology_open_contains_basis:
    assumes openin (product_topology T I) Ux\inU
    shows \existsX.x\in(\Pi}\mp@subsup{\Pi}{E}{}i\inI.X i)\wedge(\foralli.openin (Ti) (X i))\wedge finite {i. Xi\not
topspace (Ti)}\wedge(\Pi}\mp@subsup{\Pi}{E}{}i\inI.Xi)\subseteq
proof -
    have generate_topology_on {( }\mp@subsup{\Pi}{E}{}i\inI.X i)|X.(\forall i. openin (Ti) (X i)) ^ finit
{i. Xi\not= topspace (T i) }} U
    using assms unfolding product_topology_def by (intro openin_topology_generated_by)
auto
    then have }\x.x\inU\Longrightarrow\existsX.x\in(\mp@subsup{\Pi}{E}{}i\inI.Xi)\wedge(\foralli.openin (Ti)(Xi))
finite {i. Xi\not= topspace (Ti)}\wedge(梔 i\inI.Xi)\subseteqU
    proof induction
    case (Int UV 
    then obtain XU XV where H:
        x\inP\mp@subsup{i}{E}{}IXU(\foralli.openin (T i)(XU i)) finite {i. XU i\not= topspace (T i)}
Pi}\mp@subsup{i}{E}{}IXU\subseteq
        x\inP\mp@subsup{i}{E}{}IXV(\foralli.openin (Ti)(XV i)) finite {i. XV i\not= topspace (T T ) }
Pi}\mp@subsup{|}{E}{}IXV\subseteq
        by auto meson
```

```
    define }X\mathrm{ where }X=(\lambdai.XUi\capXVi
    have P\mp@subsup{i}{E}{}IX\subseteqP\mp@subsup{i}{E}{}IXU\capP\mp@subsup{i}{E}{}IXV
        unfolding X_def by (auto simp add: PiE_iff)
    then have Pi\mp@subsup{i}{E}{}IX\subseteqU\capV using H by auto
    moreover have }\foralli\mathrm{ . openin (Ti) (Xi)
    unfolding X_def using H by auto
    moreover have finite {i. Xi\not= topspace (Ti)}
    apply (rule rev_finite_subset[of {i.XU i\not= topspace (T i)}\cup{i.XVi\not=
topspace (Ti)}])
    unfolding X_def using H by auto
    moreover have x\inPi\mp@subsup{i}{E}{}IX
        unfolding X_def using H by auto
    ultimately show ?case
        by auto
    next
    case (UN Kx)
    then obtain k where k\inK x\ink by auto
    with UN have }\existsX.x\inP\mp@subsup{i}{E}{}IX\wedge(\foralli.openin (Ti)(Xi))\wedge finite {i. X
# topspace (T i)}\wedgePi 
        by simp
    then obtain X where x \inPi\mp@subsup{i}{E}{}IX\wedge(\foralli.openin (Ti)(X i))\wedge finite {i. X
i\not= topspace (Ti)}\wedgeP\mp@subsup{i}{E}{}IX\subseteqk
    by blast
    then have }x\inP\mp@subsup{i}{E}{}IX\wedge(\foralli.openin (Ti)(Xi))\wedge finite {i. Xi\not= topspac
(Ti)}^Pi\mp@subsup{i}{E}{}IX\subseteq(\bigcupK)
            using }\langlek\inK\rangle\mathrm{ by auto
    then show ?case
        by auto
    qed auto
    then show ?thesis using <x\inU\rangle by auto
qed
lemma product_topology_empty_discrete:
    product_topology T {} = discrete_topology {( }\lambdax\mathrm{ . undefined ) }
    by (simp add: subtopology_eq_discrete_topology_sing)
lemma openin_product_topology:
    openin (product_topology X I) =
    arbitrary union_of
        ((finite intersection_of (\lambdaF.(\existsiU.F={f.fi\inU}\wedgei\inI\wedge openin
(X i) U)))
    relative_to topspace (product_topology X I))
    apply (subst product_topology)
    apply (simp add: topology_inverse' [OF istopology_subbase])
    done
lemma subtopology_PiE:
    subtopology (product_topology X I) (\Pi}\mp@subsup{\Pi}{E}{}i\inI.(S i)) = product_topology (\lambdai
subtopology (X i) (S i)) I
```

```
proof -
    let ? \(P=\lambda F . \exists i U . F=\{f . f i \in U\} \wedge i \in I \wedge\) openin \((X i) U\)
    let ? \(X=\Pi_{E} i \in I\). topspace \((X i)\)
    have finite intersection_of ?P relative_to ? \(X \cap P i_{E} I S=\)
        finite intersection_of (?P relative_to ? \(X \cap P i_{E} I S\) ) relative_to ? \(X \cap P i_{E} I\)
\(S\)
    by (rule finite_intersection_of_relative_to)
    also have \(\ldots=\) finite intersection_of
                \(((\lambda F . \exists i U . F=\{f . f i \in U\} \wedge i \in I \wedge(\) openin \((X i)\) relative_to
Si) U)
                    relative_to ? \(\left.X \cap P i_{E} I S\right)\)
                    relative_to ? \(X \cap P i_{E} I S\)
    apply (rule arg_cong2 [where \(f=(\) relative_to \()]\) )
    apply (rule arg_cong [where \(f=(\) intersection_of)finite])
        apply (rule ext)
        apply (auto simp: relative_to_def intersection_of_def)
    done
    finally
    have finite intersection_of ?P relative_to ? \(X \cap P i_{E} I S=\)
        finite intersection_of
            \((\lambda F . \exists i U . F=\{f . f i \in U\} \wedge i \in I \wedge(\) openin \((X i)\) relative_to \(S i) U)\)
            relative_to ? \(X \cap P i_{E} I S\)
    by (metis finite_intersection_of_relative_to)
    then show ?thesis
    unfolding topology_eq
    apply clarify
    apply (simp add: openin_product_topology flip: openin_relative_to)
    apply (simp add: arbitrary_union_of_relative_to flip: PiE_Int)
    done
qed
lemma product_topology_base_alt:
    finite intersection_of \((\lambda F .(\exists i U . F=\{f . f i \in U\} \wedge i \in I \wedge\) openin \((X i) U))\)
        relative_to \(\left(\Pi_{E} i \in I\right.\). topspace \(\left.(X i)\right)=\)
        \(\left(\lambda F .\left(\exists U . F=P i_{E} I U \wedge\right.\right.\) finite \(\{i \in I . U i \neq \operatorname{topspace}(X i)\} \wedge(\forall i \in I\).
openin \((X i)(U i))))\)
    (is ?lhs =? ? rh )
proof -
    have \((\forall F\). ?lhs \(F \longrightarrow\) ? \(r h s F)\)
        unfolding all_relative_to all_intersection_of topspace_product_topology
    proof clarify
        fix \(\mathcal{F}\)
        assume finite \(\mathcal{F}\) and \(\mathcal{F} \subseteq\{\{f . f i \in U\} \mid i U . i \in I \wedge \operatorname{openin}(X i) U\}\)
        then show \(\exists U\). \(\left(\Pi_{E} i \in I\right.\). topspace \(\left.(X i)\right) \cap \bigcap \mathcal{F}=P i_{E} I U \wedge\)
            finite \(\{i \in I . U i \neq\) topspace \((X i)\} \wedge\left(\forall i \in I\right.\). openin \(\left.\left(\begin{array}{l}X \\ \end{array}\right)(U i)\right)\)
        proof (induction)
            case (insert \(F \mathcal{F}\) )
            then obtain \(U\) where eq: \(\left(\Pi_{E} i \in I\right.\). topspace \(\left.(X i)\right) \cap \bigcap \mathcal{F}=P i_{E} I U\)
                and fin: finite \(\{i \in I . U i \neq\) topspace \((X i)\}\)
```

```
            and ope: \bigwedgei.i\inI\Longrightarrowopenin}(Xi)(Ui
            by auto
    obtain iV where F={f.fi\inV}i\inI openin (Xi)V
            using insert by auto
    let ?U = \lambdaj. U j\cap (if j = i then V else topspace ( }X
    show ?case
    proof (intro exI conjI)
            show ( }\mp@subsup{\Pi}{E}{}i\inI.topspace (X i))\cap\bigcap(insert F\mathcal{F})=P\mp@subsup{i}{E}{}I\mathrm{ ? U
            using eq PiE_mem }\langlei\inI\rangle by (auto simp: <F={f.fi\inV}〉) fastforc
    next
            show finite {i\inI. ?U i\not= topspace (X i)}
            by (rule rev_finite_subset [OF finite.insertI [OF fin]]) auto
    next
            show }\foralli\inI.\mathrm{ openin (X i) (?U i)
                by (simp add: <openin (X i) V` ope openin_Int)
    qed
    qed (auto intro: dest: not_finite_existsD)
qed
moreover have ( }\forallF\mathrm{ . ?rhs F}\longrightarrow\mathrm{ ?lhs F)
proof clarify
    fix U ::'a }a>\mathrm{ 'b set
    assume fin: finite {i\inI.U i\not= topspace (Xi)} and ope: \foralli\inI. openin (X i)
(U i)
    let ?U =\bigcapi\in{i\inI.U U\not= topspace (X i)}. {x.xi\inUi}
    show ?lhs (PiE I U)
            unfolding relative_to_def topspace_product_topology
    proof (intro exI conjI)
            show (finite intersection_of ( }\lambdaF.\existsiU.F={f.fi\inU}\wedgei\inI\wedgeopeni
(X i) U)) ? U
                using fin ope by (intro finite_intersection_of_Inter finite_intersection_of_inc)
auto
            show ( }\mp@subsup{\Pi}{E}{}i\inI.topspace (X i)) \cap?U = Pi i I I U
                using ope openin_subset by fastforce
    qed
    qed
    ultimately show ?thesis
        by meson
qed
corollary openin_product_topology_alt:
    openin (product_topology XI)S\longleftrightarrow
```



```
                            (\foralli\inI. openin (Xi) (U i))\wedge x \inP\mp@subsup{i}{E}{}IU\wedgeP\mp@subsup{i}{E}{}IU\subseteqS)
unfolding openin_product_topology arbitrary_union_of_alt product_topology_base_alt
topspace_product_topology
    apply safe
    apply (drule bspec; blast)+
    done
```

lemma closure_of_product_topology:
(product_topology X I) closure_of (PiE I S $)=\operatorname{PiE} I(\lambda i .(X i)$ closure_of $(S i))$ proof -
have $*:(\forall T . f \in T \wedge$ openin (product_topology X $I) T \longrightarrow\left(\exists y \in P i_{E} I S . y \in\right.$ T))
$\longleftrightarrow(\forall i \in I . \forall T . f i \in T \wedge$ openin $(X i) T \longrightarrow S i \cap T \neq\{ \})$
(is? $\mathrm{lh} s=$? $r h s$)
if top: $\bigwedge i . i \in I \Longrightarrow f i \in$ topspace $(X i)$ and ext: $f \in$ extensional I for f
proof
assume $L[$ rule_format]: ?lhs
show ?rhs
proof clarify
fix $i T$
assume $i \in I f i \in T$ openin $(X i) T S i \cap T=\{ \}$
then have openin (product_topology X $I)\left(\left(\Pi_{E} i \in I\right.\right.$. topspace $\left.(X i)\right) \cap\{x . x$ $i \in T\})$
by (force simp: openin_product_topology intro: arbitrary_union_of_inc relative_to_inc finite_intersection_of_inc)
then show False
using L [of topspace (product_topology XI) $\cap\{f . f i \in T\}]\langle S i \cap T=\{ \}\rangle$
$\langle f i \in T\rangle\langle i \in I\rangle$
by (auto simp: top ext PiE_iff)
qed
next
assume R [rule_format $]$: ?rhs
show ?lhs
proof (clarsimp simp: openin_product_topology union_of_def arbitrary_def)

fix $\mathcal{U} U$

assume

$\mathcal{U}: \mathcal{U} \subseteq$ Collect
(finite intersection_of $(\lambda F . \exists i U . F=\{x . x i \in U\} \wedge i \in I \wedge$ openin $(X$
i) U) relative_to
$\left(\Pi_{E} i \in I\right.$. topspace $\left.\left.(X i)\right)\right)$ and
$f \in U U \in \mathcal{U}$
then have (finite intersection_of $(\lambda F . \exists i U . F=\{x . x i \in U\} \wedge i \in I \wedge$ openin $\left.\binom{X}{i} U\right)$

```
                                    relative_to ( }\mp@subsup{\Pi}{E}{}i\inI.topspace (X i))) U
```

by blast
with $\langle f \in U\rangle\langle U \in \mathcal{U}\rangle$
obtain \mathcal{T} where finite \mathcal{T}
and $\mathcal{T}: \wedge C . C \in \mathcal{T} \Longrightarrow \exists i \in I . \exists V$. openin $(X i) V \wedge C=\{x . x i \in V\}$
and topspace (product_topology XI) $\cap \mathfrak{T} \subseteq U f \in$ topspace (product_topology
$X I) \cap \bigcap \mathcal{T}$
apply (clarsimp simp add: relative_to_def intersection_of_def)
apply (rule that, auto dest!: subsetD)
done
then have $f \in \operatorname{PiE} I$ (topspace $\circ X) f \in \bigcap \mathcal{T}$ and subU: PiE I (topspace \circ $X) \cap \bigcap \mathcal{T} \subseteq U$ by (auto simp: PiE_iff)

```
    have *: fi\in topspace (X i)\cap\bigcap{U. openin (X i) U\wedge{x.xi\inU}\in\mathcal{T}}
                \openin}(Xi)(topspace (Xi)\cap\bigcap{U.openin (Xi)U\wedge{x.xi\inU
\in\mathcal{T}})
    if i\inI for i
        proof -
            have finite ((\lambdaU.{x.x i\inU}) -' }\mathcal{T}
            proof (rule finite_vimageI [OF <finite \mathcal{T}\rangle])
                show inj ( }\lambdaU.{x.xi\inU}
                    by (auto simp: inj_on_def)
            qed
            then have fin: finite {U. openin (X i) U\wedge{x.xi\inU}\in\mathcal{T}}
                by (rule rev_finite_subset) auto
            have openin (X i) (\bigcap (insert (topspace (X i)) {U. openin (X i) U ^{x.
xi\inU}\in\mathcal{T}}))
                by (rule openin_Inter) (auto simp: fin)
            then show ?thesis
                using}\langlef\in\bigcap\mathcal{T}\rangle\mathrm{ by (fastforce simp: that top)
            qed
            define }\Phi\mathrm{ where }\Phi\equiv\lambdai.topspace (X i)\cap\bigcap{U. openin (X i)U\wedge{f.fi
U}\in\mathcal{T}}
            have }\foralli\inI.\existsx.x\inSi\cap\Phi
            using R[OF _ *] unfolding \mp@subsup{\Phi}{-}{}def by blast
            then obtain \vartheta where \vartheta [rule_format]: \foralli\inI.\vartheta i\inSi\cap\Phii
            by metis
            show \existsy\inPi\mp@subsup{i}{E}{}IS.\existsx\in\mathcal{U}.y\inx
            proof
            show }\existsU\in\mathcal{U}.(\lambdai\inI.\vartheta i)\in
            proof
                have restrict \vartheta I P PiE I (topspace }\circX)\cap\bigcap\mathcal{T
                using }\mathcal{T}\mathrm{ by (fastforce simp: Ф_def PiE_def dest: ७)
                    then show restrict \vartheta I\inU
                using subU by blast
            qed (rule }\langleU\in\mathcal{U}\rangle
            next
            show (\lambdai\inI.\vartheta i)\inPi\mp@subsup{i}{E}{}IS
                using \vartheta by simp
            qed
        qed
    qed
    show ?thesis
        apply (simp add: * closure_of_def PiE_iff set_eq_iff cong: conj_cong)
        by metis
qed
corollary closedin_product_topology:
    closedin (product_topology X I) (PiE I S) \longleftrightarrowPiE I S={}\vee (\foralli\inI. closedin
(X i) (S i))
    apply (simp add: PiE_eq PiE_eq_empty_iff closure_of_product_topology flip: clo-
sure_of_eq)
```

```
    apply (metis closure_of_empty)
    done
corollary closedin_product_topology_singleton:
    \(f \in\) extensional \(I \Longrightarrow\) closedin (product_topology \(X I)\{f\} \longleftrightarrow(\forall i \in I\). closedin
( \(X i\) ) \(\{f i\}\) )
    using PiE_singleton closedin_product_topology [of X I]
    by (metis (no_types, lifting) all_not_in_conv insertI1)
lemma product_topology_empty:
    product_topology \(X\}=\) topology \((\lambda S . S \in\{\{ \},\{\lambda k\). undefined \(\}\})\)
    unfolding product_topology union_of_def intersection_of_def arbitrary_def rela-
tive_to_def
    by (auto intro: arg_cong [where \(f=\) topology])
```

lemma openin_product_topology_empty: openin (product_topology X \{\}) $S \longleftrightarrow S$ $\in\{\},\{\lambda k$. undefined $\}\}$
unfolding union_of_def intersection_of_def arbitrary_def relative_to_def openin_product_topology by auto

The basic property of the product topology is the continuity of projections:

```
lemma continuous_map_product_coordinates [simp]:
    assumes \(i \in I\)
    shows continuous_map (product_topology T I) (Ti) ( \(\lambda x . x i)\)
proof -
    \{
        fix \(U\) assume openin \((T i) U\)
        define \(X\) where \(X=(\lambda j\). if \(j=i\) then \(U\) else topspace \((T j))\)
        then have \(*:(\lambda x . x i)-‘ U \cap\left(\Pi_{E} i \in I\right.\). topspace \(\left.(T i)\right)=\left(\Pi_{E} j \in I . X j\right)\)
        unfolding \(X_{-}\)def using assms openin_subset[OF <openin ( \(T\) i) U〉]
        by (auto simp add: PiE_iff, auto, metis subsetCE)
        have \(* *\) : \((\forall i\). openin \((T i)(X i)) \wedge\) finite \(\{i . X i \neq\) topspace \((T i)\}\)
        unfolding \(X_{-}\)def using sopenin \((T i) U\) by auto
        have openin (product_topology \(T I)\left((\lambda x . x i)-{ }^{`} U \cap\left(\Pi_{E} i \in I\right.\right.\). topspace \((T\)
    i)))
        unfolding product_topology_def
        apply (rule topology_generated_by_Basis)
        apply (subst *)
        using ** by auto
    \}
    then show ?thesis unfolding continuous_map_alt
        by (auto simp add: assms PiE_iff)
qed
lemma continuous_map_coordinatewise_then_product [intro]:
    assumes \(\bigwedge i . i \in I \Longrightarrow\) continuous_map T1 (Ti) ( \(\lambda x . f x i)\)
        \(\bigwedge i x . i \notin I \Longrightarrow x \in\) topspace \(T 1 \Longrightarrow f x i=\) undefined
```

```
    shows continuous_map T1 (product_topology T I) \(f\)
unfolding product_topology_def
proof (rule continuous_on_generated_topo)
    fix \(U\) assume \(U \in\left\{P i_{E} I X \mid X .(\forall i\right.\). openin \((T i)(X i)) \wedge\) finite \(\{i . X i \neq\)
topspace ( \(T i\) ) \}\}
    then obtain \(X\) where \(H: U=P i_{E} I X \bigwedge i\).openin \((T i)(X\) i) finite \(\{i . X i\)
\(\neq\) topspace \((T i)\}\)
        by blast
    define \(J\) where \(J=\{i \in I\). X \(i \neq\) topspace \((T i)\}\)
    have finite \(J J \subseteq I\) unfolding \(J_{\text {_ }}\) def using \(H(3)\) by auto
    have \((\lambda x . f x i)-\) ' \((\) topspace \((T i)) \cap\) topspace \(T 1=\) topspace \(T 1\) if \(i \in I\) for \(i\)
        using that assms(1) by (simp add: continuous_map_preimage_topspace)
    then have \(*:(\lambda x . f x i)-‘(X i) \cap\) topspace \(T 1=\) topspace \(T 1\) if \(i \in I-J\) for \(i\)
        using that unfolding J_def by auto
    have \(f-‘ U \cap\) topspace \(T 1=\left(\bigcap i \in I .(\lambda x . f x i)-‘\left(\begin{array}{ll}X & i) \cap \text { topspace } T 1) \cap \\ \hline\end{array}\right.\right.\)
(topspace T1)
        by (subst \(H(1)\), auto simp add: PiE_iff assms)
    also have \(\ldots=(\bigcap i \in J .(\lambda x . f x i)-‘(X i) \cap\) topspace \(T 1) \cap(\) topspace \(T 1)\)
        using \(*\langle J \subseteq I\rangle\) by auto
    also have openin T1 (...)
        apply (rule openin_INT)
        apply (simp add: 〈finite \(J\rangle\) )
        using \(H(2)\) assms (1) \(\langle J \subseteq I\rangle\) by auto
    ultimately show openin \(T 1\) ( \(f-{ }^{\prime} U \cap\) topspace \(T 1\) ) by simp
next
    show \(f\) 'topspace \(T 1 \subseteq \bigcup\left\{P i_{E} I X \mid X .(\forall i\right.\). openin \((T i)(X i)) \wedge\) finite \(\{i . X\)
\(i \neq\) topspace ( \(T i\) ) \}\}
    apply (subst topology_generated_by_topspace \([\) symmetric \(]\) )
    apply (subst product_topology_def [symmetric])
    apply (simp only: topspace_product_topology)
    apply (auto simp add: PiE_iff)
    using assms unfolding continuous_map_def by auto
qed
lemma continuous_map_product_then_coordinatewise [intro]:
    assumes continuous_map T1 (product_topology T I) f
    shows \(\bigwedge i . i \in I \Longrightarrow\) continuous_map \(T 1(T i)(\lambda x . f x i)\)
        \(\bigwedge i x . i \notin I \Longrightarrow x \in\) topspace \(T 1 \Longrightarrow f x i=\) undefined
proof -
    fix \(i\) assume \(i \in I\)
    have \((\lambda x . f x i)=(\lambda y . y i)\) of by auto
    also have continuous_map T1 ( \(T\) i) (...)
        apply (rule continuous_map_compose[of _ product_topology T I])
        using assms \(\langle i \in I\rangle\) by auto
    ultimately show continuous_map \(T 1(T i)(\lambda x . f x i)\)
        by simp
    next
    fix \(i x\) assume \(i \notin I x \in\) topspace \(T 1\)
    have \(f x \in\) topspace (product_topology T I)
```

using assms $\langle x \in$ topspace T1〉 unfolding continuous_map_def by auto
then have $f x \in\left(\Pi_{E} i \in I\right.$. topspace $\left.(T i)\right)$
using topspace_product_topology by metis
then show $f x i=$ undefined
using $\langle i \notin I\rangle$ by (auto simp add: PiE_iff extensional_def)
qed
lemma continuous_on_restrict:
assumes $J \subseteq I$
shows continuous_map (product_topology T I) (product_topology T J) (λ x. restrict $x J$)
proof (rule continuous_map_coordinatewise_then_product)
fix i assume $i \in J$
then have $(\lambda x$. restrict $x J i)=(\lambda x . x i)$ unfolding restrict_def by auto
then show continuous_map (product_topology TI) (Ti) (λ x. restrict x J i)
using $\langle i \in J\rangle\langle J \subseteq I\rangle$ by auto
next
fix i assume $i \notin J$
then show restrict $x J i=$ undefined for $x:: ' a \Rightarrow$ ' b
unfolding restrict_def by auto
qed

Powers of a single topological space as a topological space, using type classes

instantiation fun :: (type, topological_space) topological_space
begin
definition open_fun_def:
open $U=$ openin (product_topology (λ i. euclidean) UNIV) U
instance proof
have topspace (product_topology ($\lambda\left(i::^{\prime} a\right)$. euclidean :: ('b topology)) UNIV) $=$ UNIV
unfolding topspace_product_topology topspace_euclidean by auto
then show open (UNIV::('a ${ }^{\prime} b$) set)
unfolding open_fun_def by (metis openin_topspace)
qed (auto simp add: open_fun_def)
end
lemma open_PiE [intro?]:
fixes $X::^{\prime} i \Rightarrow(' b::$ topological_space) set
assumes $\bigwedge i$. open (X i) finite $\{i . X i \neq U N I V\}$
shows open ($P i_{E}$ UNIV X)
by (simp add: assms open_fun_def product_topology_basis)
lemma euclidean_product_topology:
product_topology (λ i. euclidean::('b::topological_space) topology) UNIV $=$ euclidean

```
by (metis open_openin topology_eq open_fun_def)
proposition product_topology_basis':
    fixes \(x::^{\prime} i \Rightarrow{ }^{\prime} a\) and \(U::^{\prime} i \Rightarrow\) ('b::topological_space) set
    assumes finite \(I \bigwedge i . i \in I \Longrightarrow\) open \((U i)\)
    shows open \(\{f . \forall i \in I . f(x i) \in U i\}\)
proof -
    define \(J\) where \(J=x^{‘} I\)
    define \(V\) where \(V=(\lambda y\). if \(y \in J\) then \(\bigcap\{U i \mid i\). \(i \in I \wedge x i=y\}\) else UNIV \()\)
    define \(X\) where \(X=(\lambda y\). if \(y \in J\) then \(V y\) else UNIV \()\)
    have \(*\) : open ( \(X i\) ) for \(i\)
        unfolding \(X_{-}\)def \(V_{-}\)def using assms by auto
    have \(* *\) : finite \(\{i . X i \neq U N I V\}\)
        unfolding \(X_{-}\)def \(V_{-}\)def \(J_{-} d e f\) using assms(1) by auto
    have open ( \(P i_{E}\) UNIV X)
        by (simp add: * ** open_PiE)
    moreover have \(P i_{E} U N I V X=\{f . \forall i \in I . f(x i) \in U i\}\)
        apply (auto simp add: PiE_iff) unfolding \(X_{-}\)def \(V_{-} d e f J_{-} d e f\)
        proof (auto)
            fix \(f::{ }^{\prime} a \Rightarrow{ }^{\prime} b\) and \(i::{ }^{\prime} i\)
            assume a1: \(i \in I\)
            assume a2: \(\forall i\). fi \(i \in\left(\right.\) if \(i \in x^{‘} I\) then if \(i \in x^{‘} I\) then \(\bigcap\{U\) ia \(\mid i a . i a \in I \wedge x\)
\(i a=i\}\) else UNIV else UNIV)
            have \(f 3: x i \in x^{4} I\)
                using a1 by blast
            have \(U i \in\{U i a \mid i a . i a \in I \wedge x i a=x i\}\)
                using a1 by blast
            then show \(f(x i) \in U i\)
            using f3 a2 by (meson Inter_iff)
        qed
    ultimately show ?thesis by simp
qed
```

The results proved in the general situation of products of possibly different spaces have their counterparts in this simpler setting.

```
lemma continuous_on_product_coordinates [simp]:
    continuous_on UNIV (\lambdax. x i::('b::topological_space))
    using continuous_map_product_coordinates [of _ UNIV \lambdai. euclidean]
        by (metis (no_types) continuous_map_iff_continuous euclidean_product_topology
iso_tuple_UNIV_I subtopology_UNIV)
lemma continuous_on_coordinatewise_then_product [continuous_intros]:
    fixes f :: 'a::topological_space = 'b 缶 'c::topological_space
    assumes \i. continuous_on S ( }\lambdax.fxi
    shows continuous_on S f
    using continuous_map_coordinatewise_then_product [of UNIV,where T = \lambdai .
euclidean]
    by (metis UNIV_I assms continuous_map_iff_continuous euclidean_product_topology)
```

```
lemma continuous_on_product_then_coordinatewise_UNIV:
    assumes continuous_on UNIV f
    shows continuous_on UNIV ( }\lambdax.fxi
    unfolding continuous_map_iff_continuous2 [symmetric]
    by (rule continuous_map_product_then_coordinatewise [where I=UNIV]) (use
assms in <auto simp: euclidean_product_topology`)
lemma continuous_on_product_then_coordinatewise:
    assumes continuous_on Sf
    shows continuous_on S ( }\lambdax.fxi
proof -
    have continuous_on S ((\lambdaq.qi)\circf)
        by (metis assms continuous_on_compose continuous_on_id
            continuous_on_product_then_coordinatewise_UNIV continuous_on_subset sub-
set_UNIV)
    then show ?thesis
        by auto
qed
lemma continuous_on_coordinatewise_iff:
    fixes f :: (' }a=>\mathrm{ real ) = 'b b real
    shows continuous_on }(A\capS)f\longleftrightarrow(\foralli.continuous_on (A\capS)(\lambdax.fxi)
    by (auto simp: continuous_on_product_then_coordinatewise continuous_on_coordinatewise_then_product)
lemma continuous_map_span_sum:
    fixes B :: 'a::real_normed_vector set
    assumes biB: \bigwedgei.i i I \Longrightarrowb i\inB
    shows continuous_map euclidean (top_of_set (span B)) (\lambdax. \sumi\inI.xi* * b b i)
proof (rule continuous_map_euclidean_top_of_set)
    show ( }\lambdax.\sumi\inI.xi*\mp@subsup{*}{R}{}bi)-' span B = UNIV
        by auto (meson biB lessThan_iff span_base span_scale span_sum)
    show continuous_on UNIV ( }\lambdax.\sumi\inI.xi*\mp@subsup{*}{R}{}bi
        by (intro continuous_intros) auto
qed
```


Topological countability for product spaces

The next two lemmas are useful to prove first or second countability of product spaces, but they have more to do with countability and could be put in the corresponding theory.
lemma countable_nat_product_event_const:
fixes $F:: ' a$ set and $a:: ' a$
assumes $a \in F$ countable F
shows countable $\left\{x::\left(\right.\right.$ nat $\left.\Rightarrow{ }^{\prime} a\right) .(\forall i . x i \in F) \wedge$ finite $\left.\{i . x i \neq a\}\right\}$
proof -
have $*:\left\{x::\left(\right.\right.$ nat $\left.\Rightarrow^{\prime} a\right) .(\forall i . x i \in F) \wedge$ finite $\left.\{i . x i \neq a\}\right\}$
$\subseteq(\cup N .\{x .(\forall i . x i \in F) \wedge(\forall i \geq N . x i=a)\})$
using infinite_nat_iff_unbounded_le by fastforce
have countable $\{x .(\forall i . x i \in F) \wedge(\forall i \geq N . x i=a)\}$ for $N::$ nat

```
proof (induction \(N\) )
    case 0
    have \(\{x .(\forall i . x i \in F) \wedge(\forall i \geq(0:: n a t) . x i=a)\}=\{(\lambda i . a)\}\)
        using \(\langle a \in F\rangle\) by auto
    then show? case by auto
next
    case (Suc \(N\) )
    define \(f::\left(\left(n a t \Rightarrow{ }^{\prime} a\right) \times{ }^{\prime} a\right) \Rightarrow\left(n a t \Rightarrow{ }^{\prime} a\right)\)
        where \(f=(\lambda(x, b)\). \((\lambda i\). if \(i=N\) then \(b\) else \(x i))\)
    have \(\{x .(\forall i . x i \in F) \wedge(\forall i \geq\) Suc \(N . x i=a)\} \subseteq f^{\prime}(\{x .(\forall i . x i \in F) \wedge\)
\((\forall i \geq N . x i=a)\} \times F)\)
    proof (auto)
        fix \(x\) assume \(H: \forall i::\) nat. \(x i \in F \forall i \geq S u c N . x i=a\)
        define \(y\) where \(y=(\lambda i\). if \(i=N\) then a else \(x i)\)
        have \(f(y, x N)=x\)
            unfolding \(f_{-} d e f y_{-} d e f\) by auto
        moreover have \((y, x N) \in\{x .(\forall i . x i \in F) \wedge(\forall i \geq N . x i=a)\} \times F\)
            unfolding \(y_{\text {_ def }}\) using \(H\langle a \in F\rangle\) by auto
        ultimately show \(x \in f^{4}(\{x .(\forall i . x i \in F) \wedge(\forall i \geq N . x i=a)\} \times F)\)
            by (metis (no_types, lifting) image_eqI)
    qed
    moreover have countable \((\{x .(\forall i . x i \in F) \wedge(\forall i \geq N . x i=a)\} \times F)\)
        using Suc.IH assms(2) by auto
    ultimately show ?case
        by (meson countable_image countable_subset)
    qed
    then show ?thesis using countable_subset[OF *] by auto
qed
lemma countable_product_event_const:
    fixes \(F::\left({ }^{\prime} a::\right.\) countable \() \Rightarrow\) ' \(b\) set and \(b::{ }^{\prime} b\)
    assumes \(\bigwedge i\). countable ( \(F i\) )
    shows countable \(\left\{f::\left({ }^{\prime} a \Rightarrow{ }^{\prime} b\right) .(\forall i . f i \in F i) \wedge(\right.\) finite \(\left.\{i . f i \neq b\})\right\}\)
proof -
    define \(G\) where \(G=(\bigcup i . F i) \cup\{b\}\)
    have countable \(G\) unfolding \(G_{-}\)def using assms by auto
    have \(b \in G\) unfolding \(G_{-}\)def by auto
    define \(p i\) where \(p i=\left(\lambda\left(x::\left(n a t \Rightarrow{ }^{\prime} b\right)\right) .\left(\lambda i::^{\prime} a . x((\right.\right.\) to_nat::(' \(a \Rightarrow\) nat \(\left.\left.\left.)) i\right)\right)\right)\)
    have \(\left\{f::\left({ }^{\prime} a \Rightarrow ' b\right) .(\forall i . f i \in F i) \wedge(\right.\) finite \(\left.\{i . f i \neq b\})\right\}\)
        \(\subseteq p i^{\prime}\left\{g::\left(\right.\right.\) nat \(\left.\Rightarrow{ }^{\prime} b\right) .(\forall j . g j \in G) \wedge(\) finite \(\left.\{j . g j \neq b\})\right\}\)
    proof (auto)
        fix \(f\) assume \(H: \forall i . f i \in F i\) finite \(\{i . f i \neq b\}\)
        define \(I\) where \(I=\{i . f i \neq b\}\)
        define \(g\) where \(g=(\lambda j\). if \(j \in\) to_nat'I then \(f\) (from_nat \(j\) ) else \(b\) )
        have \(\{j . g j \neq b\} \subseteq\) to_nat' \(I\) unfolding \(g_{-}\)def by auto
        then have finite \(\{j . g j \neq b\}\)
            unfolding I_def using \(H\) (2) using finite_surj by blast
    moreover have \(g j \in G\) for \(j\)
        unfolding \(g_{-}\)def \(G_{-} d e f\) using \(H\) by auto
```

```
    ultimately have \(g \in\left\{g::\left(\right.\right.\) nat \(\left.\Rightarrow{ }^{\prime} b\right) .(\forall j . g j \in G) \wedge(\) finite \(\left.\{j . g j \neq b\})\right\}\)
        by auto
    moreover have \(f=p i g\)
        unfolding pi_def \(g_{-} d e f I_{-} d e f\) using \(H\) by fastforce
    ultimately show \(f \in \operatorname{pi}\{g .(\forall j . g j \in G) \wedge\) finite \(\{j . g j \neq b\}\}\)
        by auto
    qed
    then show ?thesis
        using countable_nat_product_event_const[OF \(\langle b \in G\rangle\langle c o u n t a b l e ~ G\rangle]\)
        by (meson countable_image countable_subset)
qed
instance fun :: (countable, first_countable_topology) first_countable_topology
proof
    fix \(x::^{\prime} a \Rightarrow\) ' \(b\)
    have \(\exists A::(' b \Rightarrow\) nat \(\Rightarrow\) 'b set \() . \forall x .(\forall i . x \in A x i \wedge\) open \((A x i)) \wedge(\forall S\). open
\(S \wedge x \in S \longrightarrow(\exists i . A x i \subseteq S))\)
    apply (rule choice) using first_countable_basis by auto
    then obtain \(A::(' b \Rightarrow\) nat \(\Rightarrow\) 'b set) where \(A: \bigwedge x i . x \in A x i\)
                            \(\backslash x i\). open \((A x i)\)
                            \(\bigwedge x S\). open \(S \Longrightarrow x \in S \Longrightarrow(\exists i . A x i \subseteq S)\)
    by metis
\(B i\) is a countable basis of neighborhoods of \(x_{i}\).
    define \(B\) where \(B=(\lambda i .(A(x i))\) 'UNIV \(\cup\{U N I V\})\)
    have countable \((B i)\) for \(i\) unfolding \(B_{-} d e f\) by auto
    have open_B: \(\bigwedge X i . X \in B i \Longrightarrow\) open \(X\)
        by (auto simp: \(B_{-} \operatorname{def} A\) )
    define \(K\) where \(K=\left\{P i_{E} U N I V X \mid X .(\forall i . X i \in B i) \wedge\right.\) finite \(\{i . X i \neq\)
UNIV\}\}
    have \(P i_{E}\) UNIV ( \(\lambda i\). UNIV \() \in K\)
        unfolding \(K_{-}\)def \(B_{-}\)def by auto
    then have \(K \neq\{ \}\) by auto
    have countable \(\{X .(\forall i . X i \in B i) \wedge\) finite \(\{i . X i \neq U N I V\}\}\)
        apply (rule countable_product_event_const) using 〈 \(\backslash i\). countable ( \(B\) i) 〉 by auto
    moreover have \(K=\left(\lambda X . P i_{E} U N I V X\right) 〔\{X .(\forall i . X i \in B i) \wedge\) finite \(\{i . X i\)
\(\neq U N I V\}\}\)
    unfolding \(K_{-} d e f\) by auto
    ultimately have countable \(K\) by auto
    have \(x \in k\) if \(k \in K\) for \(k\)
        using that unfolding \(K_{-}\)def \(B_{-} d e f\) apply auto using \(A(1)\) by auto
    have open \(k\) if \(k \in K\) for \(k\)
        using that unfolding \(K_{-}\)def by (blast intro: open_B open_PiE elim: )
    have Inc: \(\exists k \in K . k \subseteq U\) if open \(U \wedge x \in U\) for \(U\)
    proof -
        have openin (product_topology ( \(\lambda\) i. euclidean) UNIV) \(U x \in U\)
            using sopen \(U \wedge x \in U\) ) unfolding open_fun_def by auto
            with product_topology_open_contains_basis[OF this]
    have \(\exists X . x \in\left(\Pi_{E} i \in U N I V . X i\right) \wedge(\forall i\). open \((X i)) \wedge\) finite \(\{i . X i \neq U N I V\}\)
```

```
\(\wedge\left(\Pi_{E} i \in U N I V . X i\right) \subseteq U\)
    by \(\operatorname{simp}\)
    then obtain \(X\) where \(H: x \in\left(\Pi_{E} i \in U N I V . X i\right)\)
                \i. open ( \(X_{i}\) )
                    finite \(\{i . X i \neq U N I V\}\)
                    \(\left(\Pi_{E} i \in U N I V . X i\right) \subseteq U\)
        by auto
    define \(I\) where \(I=\{i . X i \neq U N I V\}\)
    define \(Y\) where \(Y=(\lambda i\). if \(i \in I\) then (SOME \(y . y \in B i \wedge y \subseteq X i)\) else
UNIV)
    have \(*: \exists y . y \in B i \wedge y \subseteq X i\) for \(i\)
    unfolding \(B_{-}\)def using \(\bar{A}(3)[O F H(2)] H(1)\) by (metis PiE_E UNIV_I UnCI
image_iff)
    have \(* *: Y i \in B i \wedge Y i \subseteq X i\) for \(i\)
        apply (cases \(i \in I\) )
        unfolding \(Y_{-} d e f\) using * that apply (auto)
            apply (metis (no_types, lifting) someI, metis (no_types, lifting) someI_ex
subset_iff)
    unfolding \(B_{-}\)def apply simp
    unfolding \(I_{-} d e f\) apply auto
    done
    have \(\{i . Y i \neq U N I V\} \subseteq I\)
        unfolding \(Y_{-}\)def by auto
    then have \(* * *\) : finite \(\{i . Y i \neq U N I V\}\)
        unfolding I_def using \(H\) (3) rev_finite_subset by blast
    have \((\forall i . Y i \in B i) \wedge\) finite \(\{i . Y i \neq U N I V\}\)
        using ** \(^{* * *}\) by auto
    then have \(P i_{E}\) UNIV \(Y \in K\)
        unfolding \(K_{-} d e f\) by auto
    have \(Y i \subseteq X i\) for \(i\)
        apply (cases \(i \in I\) ) using \(* *\) apply simp unfolding \(Y_{-}\)def \(I_{-}\)def by auto
    then have \(P i_{E} U N I V Y \subseteq P i_{E}\) UNIV \(X\) by auto
    then have \(P i_{E} U N I V Y \subseteq U\) using \(H(4)\) by auto
    then show ?thesis using \(\left\langle P i_{E} U N I V Y \in K\right\rangle\) by auto
    qed
    show \(\exists L .(\forall(i:: n a t) . x \in L i \wedge\) open \((L i)) \wedge(\forall U\). open \(U \wedge x \in U \longrightarrow(\exists i\).
\(L i \subseteq U)\) )
    apply (rule first_countableI[of K])
    using <countable \(K\rangle\langle\bigwedge k . k \in K \Longrightarrow x \in k\rangle\langle\bigwedge k . k \in K \Longrightarrow\) open \(k\rangle\) Inc by
auto
qed
proposition product_topology_countable_basis:
    shows \(\exists K::\left(\left({ }^{\prime} a::\right.\right.\) countable \(\Rightarrow{ }^{\prime} b::\) second_countable_topology) set set).
        topological_basis \(K \wedge\) countable \(K \wedge\)
        \(\left(\forall k \in K . \exists X .\left(k=P i_{E} U N I V X\right) \wedge(\forall i\right.\). open \((X i)) \wedge\) finite \(\{i . X i \neq\)
UNIV\})
```

proof -
obtain $B::^{\prime} b$ set set where B : countable $B \wedge$ topological_basis B
using ex_countable_basis by auto
then have $B \neq\{ \}$ by (meson UNIV_I empty_iff open_UNIV topological_basisE)
define $B 2$ where $B 2=B \cup\{U N I V\}$
have countable B2
unfolding B2_def using B by auto
have open U if $U \in B 2$ for U
using that unfolding B2_def using B topological_basis_open by auto
define K where $K=\left\{P i_{E}\right.$ UNIV $X \mid X .\left(\forall i::^{\prime} a . X i \in B 2\right) \wedge$ finite $\{i . X i \neq$ UNIV \}\}
have $i: \forall k \in K . \exists X .\left(k=P i_{E} U N I V X\right) \wedge(\forall i$. open $(X i)) \wedge$ finite $\{i . X i \neq$ UNIV \}
unfolding K_{-}def using $\langle\backslash U . U \in B 2 \Longrightarrow$ open $U\rangle$ by auto
have countable $\left\{X .\left(\forall\left(i::^{\prime} a\right) . X i \in B 2\right) \wedge\right.$ finite $\left.\{i . X i \neq U N I V\}\right\}$ apply (rule countable_product_event_const) using «countable B2) by auto
moreover have $K=\left(\lambda X . P i_{E} U N I V X\right)\{\{X .(\forall i . X i \in B 2) \wedge$ finite $\{i . X i$ $\neq U N I V\}\}$
unfolding $K_{-} d e f$ by auto
ultimately have $i i$: countable K by auto
have iii: topological_basis K
proof (rule topological_basisI)
fix U and $x::^{\prime} a \Rightarrow^{\prime} b$ assume open $U x \in U$
then have openin (product_topology (λ i. euclidean) UNIV) U
unfolding open_fun_def by auto
with product_topology_open_contains_basis[OF this $\langle x \in U\rangle]$
have $\exists X . x \in\left(\Pi_{E} i \in U N I V . X i\right) \wedge(\forall i$. open $(X i)) \wedge$ finite $\{i . X i \neq U N I V\}$
$\wedge\left(\Pi_{E} i \in U N I V . X i\right) \subseteq U$ by simp
then obtain X where $H: x \in\left(\Pi_{E} i \in U N I V . X i\right)$
\i. open (X_{i})
finite $\{i . X i \neq U N I V\}$
$\left(\Pi_{E} i \in U N I V . X i\right) \subseteq U$
by auto
then have $x i \in X i$ for i by auto
define I where $I=\{i . X i \neq U N I V\}$
define Y where $Y=(\lambda i$. if $i \in I$ then $(S O M E y . y \in B \mathcal{Z} \wedge y \subseteq X i \wedge x i \in$
y) else UNIV)
have $*: \exists y . y \in B 2 \wedge y \subseteq X i \wedge x i \in y$ for i
unfolding B2_def using $B\left\langle\right.$ open $\left(\begin{array}{ll}X & i)\rangle\langle x i \in X i\rangle \text { by (meson UnCI }\end{array}\right.$
topological_basisE)
have $* *: Y i \in B 2 \wedge Y i \subseteq X i \wedge x i \in Y i$ for i
using someI_ex[OF *]
apply (cases $i \in I$)
unfolding Y_{-}def using * apply (auto)
unfolding B2_def I_def by auto

```
    have \(\{i . Y i \neq U N I V\} \subseteq I\)
    unfolding \(Y_{-}\)def by auto
    then have \(* * *\) : finite \(\{i . Y i \neq U N I V\}\)
    unfolding I_def using \(H\) (3) rev_finite_subset by blast
    have \((\forall i . Y i \in B 2) \wedge\) finite \(\{i . Y i \neq U N I V\}\)
    using \(*^{*} * * *\) by auto
    then have \(P i_{E}\) UNIV \(Y \in K\)
    unfolding \(K_{-} d e f\) by auto
    have \(Y i \subseteq X i\) for \(i\)
    apply (cases \(i \in I\) ) using ** \(^{\text {apply }}\) simp unfolding \(Y_{-}\)def \(I_{-}\)def by auto
    then have \(P i_{E}\) UNIV \(Y \subseteq P i_{E}\) UNIV \(X\) by auto
    then have \(P i_{E} U N I V Y \subseteq U\) using \(H(4)\) by auto
    have \(x \in P i_{E}\) UNIV Y
        using \(* *\) by auto
    show \(\exists V \in K . x \in V \wedge V \subseteq U\)
    using \(\left\langle P i_{E} U N I V Y \in K\right\rangle\left\langle P i_{E} U N I V Y \subseteq U\right\rangle\left\langle x \in P i_{E} U N I V Y\right\rangle\) by auto
next
    fix \(U\) assume \(U \in K\)
    show open \(U\)
        using \(\langle U \in K\rangle\) unfolding open_fun_def \(K_{-}\)def by clarify (metis \(\langle U \in K\rangle i\)
open_PiE open_fun_def)
    qed
    show ?thesis using \(i\) ii iii by auto
qed
instance fun :: (countable, second_countable_topology) second_countable_topology
    apply standard
    using product_topology_countable_basis topological_basis_imp_subbasis by auto
```


4.8.2 The Alexander subbase theorem

theorem Alexander_subbase:

```
    assumes \(X\) : topology (arbitrary union_of (finite intersection_of \((\lambda x, x \in \mathcal{B})\)
```

relative_to $\bigcup \mathcal{B}))=X$
and fin: $\wedge C . \llbracket C \subseteq \mathcal{B} ; \bigcup C=$ topspace $X \rrbracket \Longrightarrow \exists C^{\prime}$. finite $C^{\prime} \wedge C^{\prime} \subseteq C \wedge$
$\bigcup C^{\prime}=$ topspace X
shows compact_space X
proof -
have $U \mathcal{B}: \bigcup \mathcal{B}=$ topspace X
by (simp flip: X)
have False if $\mathcal{U}: \forall U \in \mathcal{U}$. openin $X U$ and sub: topspace $X \subseteq \bigcup \mathcal{U}$
and neg: $\bigwedge \mathcal{F} . \llbracket \mathcal{F} \subseteq \mathcal{U}$; finite $\mathcal{F} \rrbracket \Longrightarrow \neg$ topspace $X \subseteq \bigcup \mathcal{F}$ for \mathcal{U}
proof -
define \mathcal{A} where $\mathcal{A} \equiv\{\mathcal{C} .(\forall U \in \mathcal{C}$. openin $X U) \wedge$ topspace $X \subseteq \bigcup \mathcal{C} \wedge(\forall \mathcal{F}$.
finite $\mathcal{F} \longrightarrow \mathcal{F} \subseteq \mathcal{C} \longrightarrow{ }^{\sim}($ topspace $\left.\left.X \subseteq \bigcup \mathcal{F})\right)\right\}$

```
    have \(1: \mathcal{A} \neq\{ \}\)
    unfolding \(\mathcal{A}\) _def using sub \(\mathcal{U}\) neg by force
    have \(2: \cup \mathcal{C} \in \mathcal{A}\) if \(\mathcal{C} \neq\{ \}\) and \(\mathcal{C}\) : subset.chain \(\mathcal{A} \mathcal{C}\) for \(\mathcal{C}\)
        unfolding \(\mathcal{A}_{\text {_def }}\)
    proof (intro CollectI conjI ballI allI impI notI)
        show openin \(X U\) if \(U: U \in \bigcup \mathcal{C}\) for \(U\)
        using \(U \mathcal{C}\) unfolding \(\mathcal{A}_{-}\)def subset_chain_def by force
    have \(\mathcal{C} \subseteq \mathcal{A}\)
        using subset_chain_def \(\mathcal{C}\) by blast
    with that \(\mathcal{A}\) _def show \(U U C\) : topspace \(X \subseteq \bigcup(\bigcup \mathcal{C})\)
        by blast
    show False if finite \(\mathcal{F}\) and \(\mathcal{F} \subseteq \bigcup \mathcal{C}\) and topspace \(X \subseteq \bigcup \mathcal{F}\) for \(\mathcal{F}\)
    proof -
        obtain \(\mathcal{B}\) where \(\mathcal{B} \in \mathcal{C} \mathcal{F} \subseteq \mathcal{B}\)
        by (metis Sup_empty \(\mathcal{C}\langle\mathcal{F} \subseteq \bigcup \mathcal{C}\rangle\langle f i n i t e \mathcal{F}\rangle\) UUC empty_subsetI finite.emptyI
finite_subset_Union_chain neg)
            then show False
            using \(\mathcal{A}\) _def \(\langle\mathcal{C} \subseteq \mathcal{A}\rangle\langle\) finite \(\mathcal{F}\rangle\langle\) topspace \(X \subseteq \bigcup \mathcal{F}\rangle\) by blast
        qed
    qed
    obtain \(\mathcal{K}\) where \(\mathcal{K} \in \mathcal{A}\) and \(\bigwedge X . \llbracket X \in \mathcal{A} ; \mathcal{K} \subseteq X \rrbracket \Longrightarrow X=\mathcal{K}\)
        using subset_Zorn_nonempty [OF 1 2] by metis
    then have \(*: \bigwedge \mathcal{W} . \llbracket \bigwedge W . W \in \mathcal{W} \Longrightarrow\) openin \(X W ;\) topspace \(X \subseteq \bigcup \mathcal{W} ; \mathcal{K} \subseteq\)
\(\mathcal{W}\);
\[
\Longrightarrow \mathcal{W}=\widehat{\mathcal{K}} . \llbracket \text { finite } \mathcal{F} ; \mathcal{F} \subseteq \mathcal{W} ; \text { topspace } X \subseteq \bigcup \mathcal{F} \rrbracket \Longrightarrow \text { False】 }
\]
```

and ope: $\forall U \in \mathcal{K}$. openin $X U$ and top: topspace $X \subseteq \bigcup \mathcal{K}$
and non: $\wedge \mathcal{F}$. finite $\mathcal{F} ; \mathcal{F} \subseteq \mathcal{K} ;$ topspace $X \subseteq \bigcup \mathcal{F} \rrbracket \Longrightarrow$ False
unfolding \mathcal{A}_{-}def by simp_all metis+
then obtain x where $x \in$ topspace $X x \notin \bigcup(\mathcal{B} \cap \mathcal{K})$
proof -
have $\bigcup(\mathcal{B} \cap \mathcal{K}) \neq \bigcup \mathcal{B}$ by (metis $\cup \mathcal{B}=$ topspace $X>$ fin inf.bounded_iff non order_refl)
then have $\exists a . a \notin \bigcup(\mathcal{B} \cap \mathcal{K}) \wedge a \in \bigcup \mathcal{B}$
by blast
then show ?thesis
using that by (metis UB)
qed
obtain C where C : openin $X C C \in \mathcal{K} x \in C$ using $\langle x \in$ topspace $X\rangle$ ope top by auto
then have $C \subseteq$ topspace X by (metis openin_subset)
then have (arbitrary union_of (finite intersection_of $(\lambda x . x \in \mathcal{B})$ relative_to
$\bigcup \mathcal{B})$) C
using openin_subbase C unfolding X [symmetric] by blast
moreover have $C \neq$ topspace X
using $\langle\mathcal{K} \in \mathcal{A}\rangle\langle C \in \mathcal{K}\rangle$ unfolding $\mathcal{A} _$def by blast
ultimately obtain $\mathcal{V} W$ where W : (finite intersection_of $(\lambda x . x \in \mathcal{B})$ relative_to topspace X) W

```
    and \(x \in W W \in \mathcal{V} \cup \mathcal{V} \neq\) topspace \(X C=\bigcup \mathcal{V}\)
    using \(C\) by (auto simp: union_of_def \(U \mathcal{B}\) )
    then have \(\bigcup \mathcal{V} \subseteq\) topspace \(X\)
    by (metis \(\langle C \subseteq\) topspace \(X 〉\) )
    then have topspace \(X \notin \mathcal{V}\)
    using \(\bigcup \mathcal{V} \neq\) topspace \(X>\) by blast
    then obtain \(\mathcal{B}^{\prime}\) where \(\mathcal{B}^{\prime}:\) finite \(\mathcal{B}^{\prime} \mathcal{B}^{\prime} \subseteq \mathcal{B} x \in \bigcap \mathcal{B}^{\prime} W=\) topspace \(X \cap \bigcap \mathcal{B}^{\prime}\)
    using \(W\langle x \in W\rangle\) unfolding relative_to_def intersection_of_def by auto
    then have \(\bigcap \mathcal{B}^{\prime} \subseteq \bigcup \mathcal{B}\)
    using \(\langle W \in \mathcal{V}\rangle\langle\mathcal{V} \neq\) topspace \(X\rangle\langle\mathcal{V} \subseteq\) topspace \(X\rangle\) by blast
    then have \(\bigcap \mathcal{B}^{\prime} \subseteq C\)
    using \(U \mathcal{B}\langle C=\bigcup \mathcal{V}\rangle\left\langle W=\right.\) topspace \(\left.X \cap \bigcap \mathcal{B}^{\prime}\right\rangle\langle W \in \mathcal{V}\rangle\) by auto
    have \(\forall b \in \mathcal{B}^{\prime} . \exists C^{\prime}\). finite \(C^{\prime} \wedge C^{\prime} \subseteq \mathcal{K} \wedge\) topspace \(X \subseteq \bigcup\left(\right.\) insert \(\left.b C^{\prime}\right)\)
    proof
    fix \(b\)
    assume \(b \in \mathcal{B}^{\prime}\)
    have insert \(b \mathcal{K}=\mathcal{K}\) if neg: \(\neg\left(\exists C^{\prime}\right.\). finite \(C^{\prime} \wedge C^{\prime} \subseteq \mathcal{K} \wedge\) topspace \(X \subseteq\)
\(\bigcup\left(\right.\) insert \(\left.b C^{\prime}\right)\) )
    proof (rule *)
        show openin \(X W\) if \(W \in\) insert \(b \mathcal{K}\) for \(W\)
            using that
            proof
                have \(b \in \mathcal{B}\)
                using \(\left\langle b \in \mathcal{B}^{\prime}\right\rangle\left\langle\mathcal{B}^{\prime} \subseteq \mathcal{B}\right\rangle\) by blast
            then have \(\exists \mathcal{U}\). finite \(\mathcal{U} \wedge \mathcal{U} \subseteq \mathcal{B} \wedge \bigcap \mathcal{U}=b\)
                by (rule_tac \(x=\{b\}\) in exI) auto
            moreover have \(\bigcup \mathcal{B} \cap b=b\)
                using \(\mathcal{B}^{\prime}(2)\left\langle b \in \mathcal{B}^{\prime}\right\rangle\) by auto
            ultimately show openin \(X W\) if \(W=b\)
                using that \(\left\langle b \in \mathcal{B}^{\prime}\right\rangle\)
                apply (simp add: openin_subbase flip: X)
                apply (auto simp: arbitrary_def intersection_of_def relative_to_def intro!:
union_of_inc)
                    done
            show openin \(X W\) if \(W \in \mathcal{K}\)
                by (simp add: \(\langle W \in \mathcal{K}\rangle\) ope)
            qed
    next
        show topspace \(X \subseteq \bigcup\) (insert b \(\mathcal{K}\) )
            using top by auto
        next
            show False if finite \(\mathcal{F}\) and \(\mathcal{F} \subseteq\) insert b \(\mathcal{K}\) topspace \(X \subseteq \bigcup \mathcal{F}\) for \(\mathcal{F}\)
            proof -
            have insert \(b(\mathcal{F} \cap \mathcal{K})=\mathcal{F}\)
                    using non that by blast
            then show False
                by (metis Int_lower2 finite_insert neg that(1) that(3))
            qed
    qed auto
```

```
            then show \exists\mp@subsup{C}{}{\prime}.\mathrm{ .finite C' }\mp@subsup{C}{}{\prime}\wedge\mp@subsup{C}{}{\prime}\subseteq\mathcal{K}\wedge topspace }X\subseteq\bigcup(\mathrm{ insert b C')
            using \langleb\in\mathcal{B}}\mp@subsup{}{}{\prime}\langlex\not\in\bigcup(\mathcal{B}\cap\mathcal{K})\rangle\mp@subsup{\mathcal{B}}{}{\prime
            by (metis IntI InterE Union_iff subsetD insertI1)
    qed
    then obtain F where F:\forallb\in\mathcal{B}
U(insert b (F b))
            by metis
    let ?D = insert C (U(F'\mathcal{B'))}
    show False
    proof (rule non)
            have topspace }X\subseteq(\capb\in\mp@subsup{\mathcal{B}}{}{\prime}.\cup(\mathrm{ insert b (F b)))
            using F by (simp add: INT_greatest)
            also have ...\subseteqU?D
            using \\\mathcal{B}}\subseteq\subseteqC\rangle\mathrm{ by force
            finally show topspace X\subseteq\?D .
            show ?D \subseteq\mathcal{K}
            using \C\in\mathcal{K}\rangleF by auto
            show finite ?D
            using \finite \mathcal{B}\rangle F by auto
    qed
    qed
    then show?thesis
    by (force simp: compact_space_def compactin_def)
qed
corollary Alexander_subbase_alt:
    assumes U\subseteq\bigcup\mathcal{B}
    and fin: }\wedgeC.\llbracketC\subseteq\mathcal{B};U\subseteq\bigcupC\rrbracket\Longrightarrow\exists\mp@subsup{C}{}{\prime}\mathrm{ . finite }\mp@subsup{C}{}{\prime}\wedge\mp@subsup{C}{}{\prime}\subseteqC\wedgeU\subseteq\cup\mp@subsup{C}{}{\prime
    and X: topology
                (arbitrary union_of
                            (finite intersection_of ( }\lambdax.x\in\mathcal{B})\mathrm{ relative_to U )) = X
shows compact_space X
proof -
    have topspace X=U
        using X topspace_subbase by fastforce
    have eq: U(Collect ((\lambdax.x\in\mathcal{B}) relative_to U))}=
        unfolding relative_to_def
        using \langleU\subseteq\bigcup\mathcal{B}\rangle\mathrm{ by blast}
    have *: \exists\mathcal{F}.finite \mathcal{F}\wedge\mathcal{F}\subseteq\mathcal{C}\wedge\bigcup\mathcal{F}=\mathrm{ topspace X}
        if \mathcal{C}\subseteqCollect (( }\lambdax.x\in\mathcal{B})\mathrm{ relative_to topspace X) and UC:\C}=\mathrm{ topspace
X for }\mathcal{C
    proof -
        have}\mathcal{C}\subseteq(\lambdaU. topspace X\capU)'\mathcal{B
            using that by (auto simp: relative_to_def)
            then obtain }\mp@subsup{\mathcal{B}}{}{\prime}\mathrm{ where }\mp@subsup{\mathcal{B}}{}{\prime}\subseteq\mathcal{B}\mathrm{ and }\mp@subsup{\mathcal{B}}{}{\prime}:\mathcal{C}=(\cap)(\mathrm{ topspace X)' }\mp@subsup{\mathcal{B}}{}{\prime
                by (auto simp: subset_image_iff)
            moreover have U\subseteq\bigcup\mathcal{B}
                using }\mp@subsup{\mathcal{B}}{}{\prime}<topspace X=U\rangleUC by aut
```

```
    ultimately obtain }\mp@subsup{\mathcal{C}}{}{\prime}\mathrm{ where finite }\mp@subsup{\mathcal{C}}{}{\prime}\mp@subsup{\mathcal{C}}{}{\prime}\subseteq\mp@subsup{\mathcal{B}}{}{\prime}U\subseteq\cup\mp@subsup{\mathcal{C}}{}{\prime
        using fin [of \mathcal{B}]\langletopspace }X=U\rangle\langleU\subseteq\bigcup\mathcal{B}\rangle\mathrm{ by blast
    then show ?thesis
        unfolding }\mp@subsup{\mathcal{B}}{}{\prime}\mathrm{ ex_finite_subset_image <topspace X =U> by auto
qed
show ?thesis
        apply (rule Alexander_subbase [where \mathcal{B}=Collect (( }\lambdax.x\in\mathcal{B})\mathrm{ relative_to
(topspace X))])
        apply (simp flip:X)
        apply (metis finite_intersection_of_relative_to eq)
        apply (blast intro: *)
        done
qed
```

proposition continuous_map_componentwise:
continuous_map X (product_topology Y I) $f \longleftrightarrow$
$f^{\prime}($ topspace $X) \subseteq$ extensional $I \wedge(\forall k \in I$. continuous_map $X(Y k)(\lambda x . f x$
k))
(is ?lhs $\longleftrightarrow __{-} \wedge$?rhs)
proof (cases $\forall x \in$ topspace $X . f x \in$ extensional I)
case True
then have f ' $($ topspace $X) \subseteq$ extensional I
by force
moreover have ?rhs if L : ?lhs
proof -
have openin $X\{x \in$ topspace $X . f x k \in U\}$ if $k \in I$ and openin $(Y k) U$ for
$k U$
proof -
have openin (product_topology $Y I)\left(\{Y . Y k \in U\} \cap\left(\Pi_{E} i \in I\right.\right.$. topspace (Y
i)))
apply (simp add: openin_product_topology flip: arbitrary_union_of_relative_to)
apply (simp add: relative_to_def)
using that apply (blast intro: arbitrary_union_of_inc finite_intersection_of_inc)
done
with that have openin $X\left\{x \in\right.$ topspace $X . f x \in\left(\{Y . Y k \in U\} \cap\left(\Pi_{E}\right.\right.$
$i \in I$. topspace ($Y i)$)) \}
using L unfolding continuous_map_def by blast
moreover have $\left\{x \in\right.$ topspace $X . f x \in\left(\{Y . Y k \in U\} \cap\left(\Pi_{E} i \in I\right.\right.$. topspace
$(Y i)))\}=\{x \in$ topspace $X . f x k \in U\}$
using L by (auto simp: continuous_map_def)
ultimately show ?thesis
by metis
qed
with that
show ?thesis
by (auto simp: continuous_map_def)
qed
moreover have ?lhs if ?rhs
proof -

```
    have 1: \x. x topspace X\Longrightarrowfx\in(\Pi}\mp@subsup{\Pi}{E}{
    using that True by (auto simp: continuous_map_def PiE_iff)
    have 2: {x\inS.\existsT\in\mathcal{T}.fx\inT}=(\bigcupT\in\mathcal{T}.{x\inS.fx\inT}) for S\mathcal{T}
        by blast
    have 3: {x\inS.\forallU\in\mathcal{U. f }x\inU}=(\bigcap(insert S ((\lambdaU.{x\inS.fx\inU})'
\mathcal{U})) for S U
            by blast
    show ?thesis
        unfolding continuous_map_def openin_product_topology arbitrary_def
    proof (clarsimp simp:all_union_of 1 2)
        fix }\mathcal{T
        assume \mathcal{T}:\mathcal{T}\subseteqCollect (finite intersection_of (\lambdaF.\existsiU.F={f.fi\inU}
\wedge i\inI^ openin (Y i) U)
                relative_to (\Pi}\mp@subsup{\Pi}{E}{}i\inI. topspace (Y i))
            show openin X (\bigcupT\in\mathcal{T}.{x\intopspace X.fx\inT})
            proof (rule openin_Union; clarify)
            fix ST
            assume T\in\mathcal{T}
            obtain }\mathcal{U}\mathrm{ where T=(的 íI. topspace (Yi)) }\cap\bigcap\mathcal{U}\mathrm{ and finite }\mathcal{U
            U}\subseteq{{f.fi\inU}|iU.i\inI\wedge openin (Y i)U
                using subsetD [OF \mathcal{T}<T\in\mathcal{T}\rangle] by (auto simp: intersection_of_def rela-
tive_to_def)
            with that show openin X {x\in topspace X. fx\inT}
                apply (simp add: continuous_map_def 1 cong: conj_cong)
                unfolding 3
                apply (rule openin_Inter; auto)
                done
        qed
    qed
    qed
    ultimately show ?thesis
        by metis
next
    case False
    then show ?thesis
        by (auto simp: continuous_map_def PiE_def)
qed
lemma continuous_map_componentwise_UNIV:
continuous_map \(X\) (product_topology Y UNIV) \(f \longleftrightarrow(\forall k\). continuous_map \(X\) \((Y k)(\lambda x . f x k))\) by (simp add: continuous_map_componentwise)
lemma continuous_map_product_projection [continuous_intros]: \(k \in I \Longrightarrow\) continuous_map (product_topology \(X I)\left(\begin{array}{ll}X & k\end{array}\right)(\lambda x . x k)\) using continuous_map_componentwise [of product_topology X I X I id] by simp
declare continuous_map_from_subtopology [OF continuous_map_product_projection,
```

```
continuous_intros]
proposition open_map_product_projection:
    assumes \(i \in I\)
    shows open_map (product_topology YI) (Yi) ( \(\lambda f . f i)\)
    unfolding openin_product_topology all_union_of arbitrary_def open_map_def im-
age_Union
proof clarify
    fix \(\mathcal{V}\)
    assume \(\mathcal{V}: \mathcal{V} \subseteq\) Collect
                (finite intersection_of
                                    \((\lambda F . \exists i U . F=\{f . f i \in U\} \wedge i \in I \wedge\) openin \((Y i) U)\) relative_to
                                    topspace (product_topology Y I))
    show openin \((Y i)\left(\bigcup x \in \mathcal{V} .(\lambda f . f i){ }^{\prime} x\right)\)
    proof (rule openin_Union, clarify)
        fix \(S V\)
        assume \(V \in \mathcal{V}\)
        obtain \(\mathcal{F}\) where finite \(\mathcal{F}\)
            and \(V: V=\left(\Pi_{E} i \in I\right.\). topspace \(\left.(Y i)\right) \cap \bigcap \mathcal{F}\)
            and \(\mathcal{F}: \mathcal{F} \subseteq\{\{f . f i \in U\} \mid i U . i \in I \wedge\) openin \((Y i) U\}\)
            using subsetD \([O F \mathcal{V}\langle V \in \mathcal{V}\rangle]\)
            by (auto simp: intersection_of_def relative_to_def)
            show openin \((Y i)((\lambda f . f i) \cdot V)\)
            proof (subst openin_subopen; clarify)
            fix \(x f\)
            assume \(f \in V\)
            let \(? T=\{a \in\) topspace \((Y i)\).
                    ( \(\lambda j\). if \(j=i\) then \(a\)
                                    else if \(j \in I\) then \(f j\) else undefined \() \in\left(\Pi_{E} i \in I\right.\). topspace \((Y\)
i)) \(\cap \bigcap \mathcal{F}\}\)
            show \(\exists T\). openin \((Y i) T \wedge f i \in T \wedge T \subseteq(\lambda f . f i)^{\prime} V\)
            proof (intro exI conjI)
                show openin \(\binom{Y}{i}\) ? \(T\)
            proof (rule openin_continuous_map_preimage)
                            have continuous_map \((Y i)(Y k)(\lambda x\). if \(k=i\) then \(x\) else \(f k)\) if \(k \in I\)
for \(k\)
            proof (cases \(k=i\) )
                        case True
                then show?thesis
                    by (metis (mono_tags) continuous_map_id eq_id_iff)
                    next
                case False
                then show ?thesis
                    by simp (metis IntD1 PiE_iff \(V\langle f \in V\rangle\) that)
                    qed
                    then show continuous_map ( \(Y\) i) (product_topology Y I)
                    ( \(\lambda x j\). if \(j=i\) then \(x\) else if \(j \in I\) then \(f j\) else undefined \()\)
                by (auto simp: continuous_map_componentwise assms extensional_def)
            next
```

```
            have openin (product_topology Y I) ( }\mp@subsup{\Pi}{E}{}i\inI.topspace (Y i)
                    by (metis openin_topspace topspace_product_topology)
                            moreover have openin (product_topology Y I) (\bigcapB\in\mathcal{F}.(\mp@subsup{\Pi}{E}{}i\inI.topspace
(Yi))\capB)
            if \mathcal{F}\not={}
        proof -
            show ?thesis
            proof (rule openin_Inter)
                show }\X.X\in(\cap)(\mp@subsup{\Pi}{E}{}i\inI.topspace (Yi))'\mathcal{F}\Longrightarrow openi
(product_topology Y I) X
            unfolding openin_product_topology relative_to_def
                    apply (clarify intro!: arbitrary_union_of_inc)
                    apply (rename_tac F)
                        apply (rule_tac x=F in exI)
                        using subsetD [OF F}
                        apply (force intro: finite_intersection_of_inc)
                    done
            qed (use 〈finite \mathcal{F}\rangle\langle\mathcal{F}\not={}\rangle\mathrm{ in auto)}
            qed
                ultimately show openin (product_topology Y I) ((\Pi}\mp@subsup{\Pi}{E}{}i\inI. topspace (Y
i)) \cap\bigcap\mathcal{F})
                by (auto simp only: Int_Inter_eq split: if_split)
            qed
        next
            have eqf:( }\lambdaj\mathrm{ . if }j=i\mathrm{ then f i else if j }\inI\mathrm{ then f j else undefined })=
                using PiE_arb V\langlef}\inV\rangle\mathrm{ by force
            show fi\in?T
            using V assms }\langlef\inV\rangle\mathrm{ by (auto simp: PiE_iff eqf)
        next
            show ?T\subseteq(\lambdaf.fi)'V
            unfolding V by (auto simp: intro!: rev_image_eqI)
        qed
        qed
    qed
qed
lemma retraction_map_product_projection:
    assumes i\inI
    shows (retraction_map (product_topology X I) (X i) (\lambdax. x i)\longleftrightarrow
            (topspace (product_topology X I) ={}) \longrightarrow topspace (Xi)={})
    (is ?lhs = ?rhs)
proof
    assume ?lhs
    then show ?rhs
        using retraction_imp_surjective_map by force
next
    assume R:?rhs
    show ?lhs
    proof (cases topspace (product_topology X I)={})
```

```
    case True
    then show ?thesis
        using R by (auto simp: retraction_map_def retraction_maps_def continu-
ous_map_on_empty)
    next
        case False
        have *: \existsg. continuous_map (X i) (product_topology X I) g^(\forallx\intopspace
(Xi).g xi= x)
        if z:z\in(\Pi}\mp@subsup{\Pi}{E}{}i\inI. topspace (Xi)) for 
    proof -
        have cm:continuous_map ( }X\mathrm{ \ ) ( X j) ( }\lambda\mathrm{ x. if j = i then x else z j) if j GI
for }
            using }\langlej\inI\ranglez\mathrm{ by (case_tac j = i) auto
        show ?thesis
            using <i\inI> that
                by (rule_tac }x=\lambdaxj\mathrm{ . if }j=i then x else z j in exI) (auto simp: continu- 
ous_map_componentwise PiE_iff extensional_def cm)
    qed
    show ?thesis
        using <i \inI\rangle False
        by (auto simp: retraction_map_def retraction_maps_def assms continuous_map_product_projection
*)
    qed
qed
```


4.8.3 Open Pi-sets in the product topology

proposition openin_PiE_gen:
openin (product_topology X I) $($ PiE I S) \longleftrightarrow
PiE I $S=\{ \} \vee$
finite $\{i \in I . \sim(S i=$ topspace $(X i))\} \wedge(\forall i \in I$. openin $(X i)(S i))$
(is ?lhs $\longleftrightarrow ~-~ V ~ ? r h s) ~$
proof (cases PiE I $S=\{ \}$)
case False
moreover have ?lhs = ? rhs
proof
assume L : ?lhs
moreover
obtain z where $z: z \in \operatorname{PiE} I S$
using False by blast
ultimately obtain U where fin: finite $\{i \in I . U i \neq$ topspace $(X i)\}$
and $P i_{E} I U \neq\{ \}$
and sub: Pi $i_{E} I U \subseteq P i_{E} I S$
by (fastforce simp add: openin_product_topology_alt)
then have $*: \bigwedge i . i \in I \Longrightarrow U i \subseteq S i$
by (simp add: subset_PiE)
show ?rhs
proof (intro conjI ballI)
show finite $\{i \in I . S i \neq$ topspace $(X i)\}$

```
            apply (rule finite_subset [OF _ fin], clarify)
            using *
            by (metis False L openin_subset topspace_product_topology subset_PiE sub-
set_antisym)
    next
            fix }i:: '
            assume i\inI
            then show openin (Xi) (Si)
            using open_map_product_projection [of i I X] L
            apply (simp add: open_map_def)
            apply (drule_tac x=PiE I S in spec)
            apply (simp add: False image_projection_PiE split: if_split_asm)
            done
    qed
    next
    assume ?rhs
    then show ?lhs
        apply (simp only:openin_product_topology)
        apply (rule arbitrary_union_of_inc)
        apply (auto simp: product_topology_base_alt)
        done
    qed
    ultimately show ?thesis
        by simp
qed simp
corollary openin_PiE:
    finite I\Longrightarrow openin (product_topology X I) (PiE I S)\longleftrightarrow PiE I S={}\vee (\foralli
EI. openin (X i) (Si))
    by (simp add: openin_PiE_gen)
proposition compact_space_product_topology:
    compact_space(product_topology X I) \longleftrightarrow
        topspace(product_topology X I) ={}\vee (\foralli\inI.compact_space (X i))
        (is ?lhs = ?rhs)
proof (cases topspace(product_topology X I) ={})
    case False
    then obtain z where z:z\in(\Pi}\mp@subsup{\Pi}{E}{}i\inI.\mathrm{ topspace(X i))
        by auto
    show ?thesis
    proof
    assume L:?lhs
        show ?rhs
        proof (clarsimp simp add: False compact_space_def)
            fix }
            assume i\inI
            with L have continuous_map (product_topology X I) (Xi) (\lambdaf.fi)
                by (simp add: continuous_map_product_projection)
```

```
    moreover
    have }\x.x\intopspace (X i)\Longrightarrowx\in(\lambdaf.fi)'(\Pi\mp@subsup{\Pi}{E}{}i\inI. topspace (X i)
        using <i\inI`z
        apply (rule_tac x=\lambdaj. if j = i then x else if }j\inI\mathrm{ then z j else undefined in
image_eqI, auto)
            done
```



```
            using <i }\inI\ranglez\mathrm{ by auto
            ultimately show compactin (X i) (topspace ( }X\mathrm{ \ i))
            by (metis L compact_space_def image_compactin topspace_product_topology)
qed
next
assume R: ?rhs
show ?lhs
proof (cases I = {})
    case True
    with R show ?thesis
        by (simp add: compact_space_def)
    next
        case False
        then obtain i where i\inI
            by blast
            show ?thesis
            using R
            proof
            assume com [rule_format]: \foralli\inI. compact_space (X i)
            let ?C = {{f.fi\inU} |iU.i\inI^openin (Xi)U}
            show compact_space (product_topology X I)
            proof (rule Alexander_subbase_alt)
                    show topspace (product_topology X I)\subseteq \?C
                    unfolding topspace_product_topology using <i \in I` by blast
            next
                fix C
                assume Csub:C\subseteq?C and UC: topspace (product_topology XI)\subseteq\bigcupC
                    define }\mathcal{D}\mathrm{ where }\mathcal{D}\equiv\lambdai.{U. openin (Xi)U\wedge{f.fi\inU}\inC
```



```
                    proof (cases \existsi.i\inI\wedge topspace (Xi)\subseteq\bigcup(\mathcal{D i}))
                    case True
                    then obtain i where i}\in
                            and i: topspace ( }X
                        unfolding D_def by blast
                    then have *: \bigwedge\mathcal{U}.\llbracketBall \mathcal{U}}\mathrm{ (openin (X i)); topspace (X i)}\subseteq\cup\mathcal{U}\rrbracket
                        \exists\mathcal{F}.finite \mathcal{F}}\wedge\mathcal{F}\subseteq\mathcal{U}\wedge\mathrm{ topspace (X i)}\subseteq\bigcup\mathcal{F
                    using com [OF <i \inI\rangle] by (auto simp: compact_space_def compactin_def)
                    have topspace (Xi)\subseteq\bigcup(\mathcal{D i})
                        using i by auto
                    with * obtain \mathcal{F}\mathrm{ where finite }\mathcal{F}\wedge\mathcal{F}\subseteq(\mathcal{D i)}\wedge\mathrm{ topspace ( }Xi)\subseteq\bigcup\mathcal{F}
                    unfolding \mathcal{D_def by fastforce}
                    with }\langlei\inI\rangle\mathrm{ show ?thesis
```

```
                unfolding D_def
                by (rule_tac x=(\lambdaU.{x.xi\inU})'\mathcal{F}\mathrm{ in exI) auto}
    next
        case False
        then have }\foralli\inI.\existsy.y\intopspace (Xi)\wedge y\not\in\bigcup(\mathcal{D}i
        by force
            then obtain g}\mathrm{ where g: ^i. i 
U(\mathcal{D i}
                by metis
            then have (\lambdai. if i }\inI\mathrm{ then g i else undefined) }\in\mathrm{ topspace (product_topology
XI)
                by (simp add: PiE_I)
                moreover have (\lambdai. if i\inI then g}i\mathrm{ else undefined) }\not\in\bigcup
                        using Csub g unfolding \mathcal{D_def by force}
                ultimately show ?thesis
                    using UC by blast
                qed
            qed (simp add: product_topology)
            qed (simp add: compact_space_topspace_empty)
        qed
    qed
qed (simp add: compact_space_topspace_empty)
corollary compactin_PiE:
    compactin (product_topology X I) (PiE I S)\longleftrightarrow
        PiE I S = {}\vee (\foralli\inI.compactin (Xi) (Si))
    by (auto simp: compactin_subspace subtopology_PiE subset_PiE compact_space_product_topology
        PiE_eq_empty_iff)
lemma in_product_topology_closure_of:
    z\in(product_topology X I) closure_of S
        \Longrightarrowi\inI\Longrightarrowzi
    using continuous_map_product_projection
    by (force simp: continuous_map_eq_image_closure_subset image_subset_iff)
lemma homeomorphic_space_singleton_product:
    product_topology X {k} homeomorphic_space ( X k)
    unfolding homeomorphic_space
    apply (rule_tac x=\lambdax. x k in exI)
    apply (rule bijective_open_imp_homeomorphic_map)
    apply (simp_all add: continuous_map_product_projection open_map_product_projection)
    unfolding PiE_over_singleton_iff
    apply (auto simp: image_iff inj_on_def)
    done
```


4.8.4 Relationship with connected spaces, paths, etc.

proposition connected_space_product_topology:
connected_space $($ product_topology X I) \longleftrightarrow

```
    \(\left(\Pi_{E} i \in I\right.\). topspace \(\left.(X i)\right)=\{ \} \vee(\forall i \in I\). connected_space \((X i))\)
    (is?lhs \(\longleftrightarrow\) ? eq \(\vee\) ? \(r h s\) )
proof (cases? eq)
    case False
    moreover have ?lhs = ?rhs
    proof
        assume ?lhs
    moreover
    have connectedin \(\binom{X}{i}\) (topspace \(\binom{X}{i}\)
        if \(i \in I\) and \(c i\) : connectedin(product_topology X I) (topspace(product_topology
    \(X I)\) ) for \(i\)
    proof -
        have cm: continuous_map (product_topology X I) \(\left(\begin{array}{l}X i) \\ (\lambda f . f i)\end{array}\right.\)
        by (simp add: \(\langle i \in I\rangle\) continuous_map_product_projection)
        show ?thesis
            using connectedin_continuous_map_image \([\) OF cm ci] \(\langle i \in I\rangle\)
            by (simp add: False image_projection_PiE)
    qed
    ultimately show ?rhs
        by (meson connectedin_topspace)
    next
    assume cs [rule_format]: ?rhs
    have False
        if disj: \(U \cap V=\{ \}\) and subUV: \(\left(\Pi_{E}\right.\) i \(\quad\). topspace \(\left.(X i)\right) \subseteq U \cup V\)
        and \(U\) : openin (product_topology \(X I\) ) \(U\)
        and \(V\) : openin (product_topology X I) V
        and \(U \neq\{ \} \quad V \neq\{ \}\)
        for \(U V\)
    proof -
        obtain \(f\) where \(f \in U\)
        using \(\langle U \neq\{ \}\rangle\) by blast
            then have \(f: f \in\left(\Pi_{E} i \in I\right.\). topspace \(\left.(X i)\right)\)
            using \(U\) openin_subset by fastforce
            have \(U \subseteq\) topspace (product_topology \(X I\) ) \(V \subseteq\) topspace(product_topology \(X\)
I)
            using \(U\) V openin_subset by blast+
    moreover have \(\left(\Pi_{E} i \in I\right.\). topspace \(\left.(X i)\right) \subseteq U\)
    proof -
        obtain \(C\) where (finite intersection_of ( \(\lambda F . \exists i U . F=\{x . x i \in U\} \wedge i\)
    \(\in I \wedge\) openin \((X i) U)\) relative_to
                    \(\left(\Pi_{E} i \in I\right.\). topspace \(\left.\left.(X i)\right)\right) C C \subseteq U f \in C\)
                using \(U\langle f \in U\rangle\) unfolding openin_product_topology union_of_def by auto
            then obtain \(\mathcal{T}\) where finite \(\mathcal{T}\)
                and \(t: \wedge C . C \in \mathcal{T} \Longrightarrow \exists i u .(i \in I \wedge \operatorname{openin}(X i) u) \wedge C=\{x . x i \in\)
\(u\}\)
            and subU: topspace (product_topology XI) \(\cap \bigcap \mathcal{T} \subseteq U\)
            and ftop: \(f \in\) topspace (product_topology X I)
            and fint: \(f \in \bigcap \mathcal{T}\)
            by (fastforce simp: relative_to_def intersection_of_def subset_iff)
```

let $? L=\bigcup C \in \mathcal{T} .\left\{i .(\lambda x . x i){ }^{\prime} C \subset\right.$ topspace $\left.(X i)\right\}$
obtain L where finite L
and $L: \bigwedge i U . \llbracket i \in I ;$ openin $(X i) U ; U \subset$ topspace $(X i) ;\{x . x i \in U\}$ $\in \mathcal{T} \rrbracket \Longrightarrow i \in L$
proof
show finite? L
proof (rule finite_Union)
fix M
assume $M \in(\lambda C .\{i .(\lambda x . x i)$ ' $C \subset$ topspace $(X i)\})$ ' \mathcal{T}
then obtain C where $C \in \mathcal{T}$ and $C: M=\left\{i .(\lambda x . x i){ }^{\prime} C \subset\right.$ topspace $(X i)\}$ by blast then obtain $j V$ where $j \in I$ and ope: openin $(X j) V$ and Ceq: C $=\{x . x j \in V\}$ using t by meson
then have $f j \in V$ using $\langle C \in \mathcal{T}\rangle$ fint by force
then have $(\lambda x . x k)$ ' $\{x . x j \in V\}=U N I V$ if $k \neq j$ for k using that apply (clarsimp simp add: set_eq_iff) apply (rule_tac $x=\lambda m$. if $m=k$ then x else $f m$ in image_eqI, auto) done
then have $\{i .(\lambda x . x i)$ ' $C \subset$ topspace $(X i)\} \subseteq\{j\}$ using $C e q$ by auto
then show finite M using C finite_subset by fastforce
qed (use \langle finite $\mathcal{T}\rangle$ in blast)
next
fix $i U$
assume $i \in I$ and ope: openin $(X i) U$ and psub: $U \subset$ topspace $\left(\begin{array}{l}X\end{array}\right)$
and int: $\{x . x i \in U\} \in \mathcal{T}$
then show $i \in$? L
by (rule_tac $a=\{x . x i \in U\}$ in $\left.U N_{-} I\right)$ (force+)
qed
show ?thesis
proof
fix h
assume $h: h \in\left(\Pi_{E} i \in I\right.$. topspace $\left.(X i)\right)$
define g where $g \equiv \lambda i$. if $i \in L$ then $f i$ else $h i$
have gin: $g \in\left(\Pi_{E} i \in I\right.$. topspace $\left.(X i)\right)$
unfolding $g_{\text {_ }}$ def using $f h$ by auto
moreover have $g \in X$ if $X \in \mathcal{T}$ for X
using fint openin_subset t [OF that $] L$ g_def h that by fastforce
ultimately have $g \in U$
using subU by auto
have $h \in U$ if finite $M h \in \operatorname{PiE} I$ (topspace $\circ X)\{i \in I . h i \neq g i\} \subseteq M$ for $M h$
using that
proof (induction arbitrary: h)

```
    case empty
    then show ?case
    using PiE_ext \(\langle g \in U\rangle\) gin by force
next
    case (insert i M)
    define \(f\) where \(f \equiv \lambda j\). if \(j=i\) then \(g\) i else \(h j\)
    have fin: \(f \in \operatorname{PiE} I\) (topspace \(\circ X\) )
    unfolding \(f_{-}\)def using gin insert.prems(1) by auto
    have subM: \(\{j \in I . f j \neq g j\} \subseteq M\)
        unfolding \(f_{-}\)def using insert.prems(2) by auto
    have \(f \in U\)
    using insert.IH [OF fin subM].
    show ?case
    proof (cases \(h \in V\) )
    case True
    show ?thesis
    proof (cases \(i \in I\) )
        case True
        let ? \(U=\{x \in\) topspace \((X i)\). \((\lambda j\). if \(j=i\) then \(x\) else \(h j) \in U\}\)
        let ? \(V=\{x \in\) topspace \((X i)\). \((\lambda j\). if \(j=i\) then \(x\) else \(h j) \in V\}\)
        have False
            proof (rule connected_spaceD [OF cs [OF \(\langle i \in I\rangle]]\) )
            have \(\wedge k . k \in I \Longrightarrow\) continuous_map \((X i)(X k)(\lambda x\). if \(k=i\) then
x else \(h k\) )
                    using continuous_map_eq_topcontinuous_at insert.prems(1)
topcontinuous_at_def by fastforce
    then have cm: continuous_map ( \(X_{i}\) ) (product_topology \(\left.X I\right)(\lambda x j\).
if \(j=i\) then \(x\) else \(h j\) )
                using \(\langle i \in I\rangle\) insert.prems (1)
                by (auto simp: continuous_map_componentwise extensional_def)
                    show openin ( \(X i\) ) ? \(U\)
                            by (rule openin_continuous_map_preimage [OF cm U])
                            show openin ( \(X_{i}\) ) ? V
                            by (rule openin_continuous_map_preimage \([O F \mathrm{~cm} V])\)
                            show topspace \((X i) \subseteq ? U \cup ? V\)
                            proof clarsimp
                fix \(x\)
                assume \(x \in\) topspace \((X i)\) and \((\lambda j\). if \(j=i\) then \(x\) else \(h j) \notin V\)
                with True subUV \(\left\langle h \in P i_{E} I\right.\) (topspace \(\circ X\) ) \(\rangle\)
                        show \((\lambda j\). if \(j=i\) then \(x\) else \(h j) \in U\)
                by (drule_tac \(c=(\lambda j\). if \(j=i\) then \(x\) else \(h j)\) in subsetD) auto
                    qed
                            show ? \(U \cap\) ? \(V=\{ \}\)
                            using disj by blast
show ? \(U \neq\{ \}\)
        using 〈 \(U \neq\{ \}\rangle f_{-} d e f\)
    proof -
        have \((\lambda j\). if \(j=i\) then \(g i\) else \(h j) \in U\)
            using \(\langle f \in U\rangle f_{-}\)def by blast
```

```
                    moreover have fi\in topspace ( }X
                        by (metis PiE_iff True comp_apply fin)
                            ultimately have }\existsb.b\in\mathrm{ topspace (Xi)^( ( a . if a=i then b
else ha)\inU
            using f_def by auto
                    then show ?thesis
                            by blast
                    qed
                    have ( }\lambdaj\mathrm{ . if }j=i\mathrm{ then }h\mathrm{ i else h j)=h
                            by force
                    moreover have hi\intopspace ( }X\mathrm{ \ )
                        using True insert.prems(1) by auto
                            ultimately show ? V }\not={
                            using \}h\inV\rangle\mathrm{ by force
                            qed
                            then show ?thesis ..
                next
                    case False
                    show ?thesis
                    proof (cases h=f)
                    case True
                    show ?thesis
                            by (rule insert.IH [OF insert.prems(1)]) (simp add: True subM)
                    next
                        case False
                        then show ?thesis
                            using gin insert.prems(1)<i\not\inI\rangle unfolding f_def by fastforce
                    qed
                qed
            next
                        case False
                        then show ?thesis
                            using subUV insert.prems(1) by auto
                qed
            qed
            then show h\inU
            unfolding g_def using PiE_iff 〈finite L> h by fastforce
        qed
        qed
        ultimately show ?thesis
            using disj inf_absorb2〈V\not= {}> by fastforce
    qed
    then show ?lhs
        unfolding connected_space_def
        by auto
    qed
    ultimately show ?thesis
    by simp
qed (simp add: connected_space_topspace_empty)
```

lemma connectedin_PiE:
connectedin (product_topology X I) (PiE I S) \longleftrightarrow
PiE I $S=\{ \} \vee(\forall i \in I$. connectedin $(X i)(S i))$
by (fastforce simp add: connectedin_def subtopology_PiE connected_space_product_topology subset_PiE PiE_eq_empty_iff)
lemma path_connected_space_product_topology:
path_connected_space(product_topology X I) \longleftrightarrow
topspace $($ product_topology $X I)=\{ \} \vee(\forall i \in I$. path_connected_space $(X i))$
(is ?lhs \longleftrightarrow ? eq \vee ? $r h s$)
proof (cases?eq)
case False
moreover have ? $\mathrm{lhs}=$? $r h s$
proof
assume L : ?lhs
show ?rhs
proof (clarsimp simp flip: path_connectedin_topspace)
fix $i::{ }^{\prime} a$
assume $i \in I$
have cm: continuous_map (product_topology XI) $(X i)(\lambda f . f i)$
by (simp add: $\langle i \in I\rangle$ continuous_map_product_projection)
show path_connectedin (X_{i}) (topspace $\binom{X}{)}$
using path_connectedin_continuous_map_image [OF cm L [unfolded path_connectedin_topspace [symmetric]]]
by (metis $\langle i \in I\rangle$ False retraction_imp_surjective_map retraction_map_product_projection)
qed
next
assume R [rule_format]: ?rhs
show ?lhs
unfolding path_connected_space_def topspace_product_topology
proof clarify
fix $x y$
assume $x: x \in\left(\Pi_{E} i \in I\right.$. topspace $\left.(X i)\right)$ and $y: y \in\left(\Pi_{E} i \in I\right.$. topspace $(X$
i))
have $\forall i . \exists g . i \in I \longrightarrow$ pathin $(X i) g \wedge g 0=x i \wedge g 1=y i$
using PiE_mem R path_connected_space_def $x y$ by force
then obtain g where $g: \wedge i . i \in I \Longrightarrow$ pathin $(X i)(g i) \wedge g i 0=x i \wedge g$
$i 1=y i$
by metis
with $x y$ show $\exists g$. pathin (product_topology XI) $g \wedge g 0=x \wedge g 1=y$
apply (rule_tac $x=\lambda a . \lambda i \in I . g i a$ in $e x I$)
apply (force simp: pathin_def continuous_map_componentwise)
done
qed
qed
ultimately show ?thesis
by simp
qed (simp add: path_connected_space_topspace_empty)
lemma path_connectedin_PiE:
path_connectedin (product_topology X I) $($ PiE I S) \longleftrightarrow
PiE I $S=\{ \} \vee(\forall i \in I$. path_connectedin $(X i)(S i))$
by (fastforce simp add: path_connectedin_def subtopology_PiE path_connected_space_product_topology subset_PiE PiE_eq_empty_iff topspace_subtopology_subset)

4.8.5 Projections from a function topology to a component

lemma quotient_map_product_projection:
assumes $i \in I$
shows quotient_map(product_topology X I) $\left(\begin{array}{ll}X i\end{array}\right)(\lambda x . x i) \longleftrightarrow$
(topspace $($ product_topology $X I)=\{ \} \longrightarrow$ topspace $\left.\binom{X}{i}=\{ \}\right)$
(is?lhs =?rhs)
proof
assume ?lhs with assms show ?rhs
by (auto simp: continuous_open_quotient_map open_map_product_projection)
next
assume ?rhs with assms show ?lhs
by (auto simp: Abstract_Topology.retraction_imp_quotient_map retraction_map_product_projection)
qed
lemma product_topology_homeomorphic_component:
assumes $i \in I \bigwedge j . \llbracket j \in I ; j \neq i \rrbracket \Longrightarrow \exists a$.topspace $(X j)=\{a\}$
shows product_topology X I homeomorphic_space (X i)
proof -
have quotient_map (product_topology X I) (Xi) ($\lambda x . x i)$
using assms by (force simp add: quotient_map_product_projection PiE_eq_empty_iff)
moreover
have inj_on $(\lambda x . x i)\left(\Pi_{E} i \in I\right.$. topspace $\left.\binom{X}{i}\right)$
using assms by (auto simp: inj_on_def PiE_iff) (metis extensionalityI singletonD)
ultimately show ?thesis
unfolding homeomorphic_space_def
by (rule_tac $x=\lambda x . x i$ in exI) (simp add: homeomorphic_map_def fip: homeo-
morphic_map_maps)
qed
lemma topological_property_of_product_component:
assumes major: P (product_topology X I)
and minor: $\bigwedge z i . \llbracket z \in\left(\Pi_{E} i \in I\right.$. topspace $\left.(X i)\right) ; P($ product_topology $X I) ; i \in$
$I \rrbracket$
$\Longrightarrow P($ subtopology (product_topology X I) $(\operatorname{PiE} I(\lambda j$. if $j=i$
then topspace $(X i)$ else $\{z j\}))$)
(is $\left.\wedge z i . \llbracket-;-_\rrbracket \Longrightarrow P(? S X z i)\right)$
and $P Q: \bigwedge X X^{\prime}$. X homeomorphic_space $X^{\prime} \Longrightarrow\left(P X \longleftrightarrow Q X^{\prime}\right)$
shows $\left(\Pi_{E} i \in I\right.$. topspace $\left.(X i)\right)=\{ \} \vee(\forall i \in I . Q(X i))$
proof -

```
have Q(Xi) if (\Pi}\mp@subsup{\Pi}{E}{}i\inI. topspace(X i))\not={} i\inI for 
proof -
    from that obtain f}\mathrm{ where f:f}\in(\mp@subsup{\Pi}{E}{}i\inI\mathrm{ . topspace ( }X\mathrm{ ( i))
        by force
    have ?SX f i homeomorphic_space X i
        apply (simp add: subtopology_PiE )
    using product_topology_homeomorphic_component [OF <i GI\rangle,of \lambdaj. subtopol-
ogy (X j) (if j = i then topspace ( }X\mathrm{ i ) else {f j})]
        using f by fastforce
    then show ?thesis
        using minor [OF f major <i }\inI\rangle] PQ by aut
    qed
    then show ?thesis by metis
qed
end
```


4.9 Bounded Linear Function

```
theory Bounded_Linear_Function
imports
    Topology_Euclidean_Space
    Operator_Norm
    Uniform_Limit
    Function_Topology
begin
lemma onorm_componentwise:
    assumes bounded_linear f
    shows onorm f}\leq(\sumi\in\mathrm{ Basis.norm (fi))
proof -
    {
        fix i::'a
        assume i\in Basis
        hence onorm ( }\lambdax.(x\cdoti)\mp@subsup{*}{R}{\prime}fi)\leq\operatorname{onorm}(\lambdax.(x\cdoti))* norm (fi
        by (auto intro!: onorm_scaleR_left_lemma bounded_linear_inner_left)
    also have ... \leq norm i* norm ( }fi\mathrm{ )
        by (rule mult_right_mono)
            (auto simp:ac_simps Cauchy_Schwarz_ineq2 intro!: onorm_le)
        finally have onorm ( }\lambdax.(x\cdoti)\mp@subsup{*}{R}{}fi)\leqnorm (fi) using <i\inBasis
        by simp
    } hence onorm ( }\lambdax.\sumi\in\mathrm{ Basis. (x • i) *R fi) < ( \i,Basis.norm (fi))
        by (auto intro!: order_trans[OF onorm_sum_le] bounded_linear_scaleR_const
            sum_mono bounded_linear_inner_left)
```



```
        by (simp add: linear_sum bounded_linear.linear assms linear_simps)
    also have ... = f
        by (simp add: euclidean_representation)
```

```
    finally show ?thesis.
qed
```

lemmas onorm_componentwise_le $=$ order_trans[OF onorm_componentwise]

4.9.1 Intro rules for bounded_linear

named_theorems bounded_linear_intros
lemma onorm_inner_left:
assumes bounded_linear r
shows onorm $(\lambda x . r x \cdot f) \leq$ onorm $r * \operatorname{norm} f$
proof (rule onorm_bound)
fix x
have norm $(r x \cdot f) \leq \operatorname{norm}(r x) *$ norm f
by (simp add: Cauchy_Schwarz_ineq2)
also have $\ldots \leq$ onorm $r *$ norm $x *$ norm f
by (intro mult_right_mono onorm assms norm_ge_zero)
finally show norm $(r x \cdot f) \leq \operatorname{onorm} r * \operatorname{norm} f * \operatorname{norm} x$
by (simp add: ac_simps)
qed (intro mult_nonneg_nonneg norm_ge_zero onorm_pos_le assms)
lemma onorm_inner_right:
assumes bounded_linear r
shows onorm $(\lambda x . f \cdot r x) \leq \operatorname{norm} f *$ onorm r
apply (subst inner_commute)
apply (rule onorm_inner_left[OF assms, THEN order_trans])
apply simp
done
lemmas [bounded_linear_intros] $=$
bounded_linear_zero
bounded_linear_add
bounded_linear_const_mult
bounded_linear_mult_const
bounded_linear_scaleR_const
bounded_linear_const_scaleR
bounded_linear_ident
bounded_linear_sum
bounded_linear_Pair
bounded_linear_sub
bounded_linear_fst_comp
bounded_linear_snd_comp
bounded_linear_inner_left_comp
bounded_linear_inner_right_comp

4．9．2 declaration of derivative／continuous／tendsto introduc－ tion rules for bounded linear functions

```
attribute_setup bounded_linear =
    <Scan.succeed (Thm.declaration_attribute (fn thm =>
        fold (fn (r,s) => Named_Theorems.add_thm s (thm RS r))
        [
        (@{thm bounded_linear.has_derivative}, named_theorems \derivative_intros`),
            (@{thm bounded_linear.tendsto}, named_theorems \tendsto_intros>),
            (@{thm bounded_linear.continuous}, named_theorems \continuous_intros`),
        (@{thm bounded_linear.continuous_on},named_theorems \continuous_intros`),
        (@{thm bounded_linear.uniformly_continuous_on}, named_theorems <continuous_intros〉),
            (@{thm bounded_linear_compose}, named_theorems \bounded_linear_intros`)
        ]))>
```

attribute_setup bounded_bilinear =
〈Scan.succeed (Thm.declaration_attribute ($f n$ thm $=>$
fold $(f n(r, s)=>$ Named_Theorems.add_thm $s(t h m R S r))$
[
(@\{thm bounded_bilinear.FDERIV $\}$, named_theorems $\left.\backslash d e r i v a t i v e _i n t r o s 〉\right), ~$
(@\{thm bounded_bilinear.tendsto\}, named_theorems $\left.\left\langle t e n d s t o _i n t r o s\right\rangle\right)$,
(@\{thm bounded_bilinear.continuous\}, named_theorems 〈continuous_intros〉),
(@\{thm bounded_bilinear.continuous_on $\}$, named_theorems 〈continuous_intros〉),
(@\{thm bounded_linear_compose[OF bounded_bilinear.bounded_linear_left]\},
named_theorems 〈bounded_linear_intros〉),
(@ $\{$ thm bounded_linear_compose[OF bounded_bilinear.bounded_linear_right $]\}$,
named_theorems 〈bounded_linear_intros〉),
(@\{thm bounded_linear.uniformly_continuous_on[OF bounded_bilinear.bounded_linear_left]\},
named_theorems 〈continuous_intros〉),
(@\{thm bounded_linear.uniformly_continuous_on[OF bounded_bilinear.bounded_linear_right]\},
named_theorems 〈continuous_intros〉)
])) >

4．9．3 Type of bounded linear functions

```
typedef (overloaded) ('a,'b) blinfun ((_ = _L /_) [22, 21] 21) =
    {f::'a::real_normed_vector }\mp@subsup{=>}{}{\prime}b:::real_normed_vector.bounded_linear f }
    morphisms blinfun_apply Blinfun
    by (blast intro: bounded_linear_intros)
declare [[coercion
```



```
lemma bounded_linear_blinfun_apply[bounded_linear_intros]:
    bounded_linear g bounded_linear ( }\lambdax\mathrm{ . blinfun_apply f ( }gx)\mathrm{ )
    by (metis blinfun_apply mem_Collect_eq bounded_linear_compose)
setup_lifting type_definition_blinfun
```

lemma blinfun_eqI: ($\bigwedge i$. blinfun_apply $x i=$ blinfun_apply $y i) \Longrightarrow x=y$
by transfer auto
lemma bounded_linear_Blinfun_apply: bounded_linear $f \Longrightarrow$ blinfun_apply (Blinfun f) $=f$
by (auto simp: Blinfun_inverse)

4.9.4 Type class instantiations

instantiation blinfun :: (real_normed_vector, real_normed_vector) real_normed_vector begin
lift_definition norm_blinfun $:: ~ ' a \nRightarrow_{L} ' b \Rightarrow$ real is onorm.
lift_definition minus_blinfun $:: ' a \Rightarrow_{L}{ }^{\prime} b \Rightarrow{ }^{\prime} a \Rightarrow_{L}{ }^{\prime} b \Rightarrow{ }^{\prime} a \Rightarrow_{L}{ }^{\prime} b$
is $\lambda f g x . f x-g x$
by (rule bounded_linear_sub)
definition dist_blinfun $::{ }^{\prime} a \Rightarrow_{L}{ }^{\prime} b \Rightarrow{ }^{\prime} a \Rightarrow_{L}{ }^{\prime} b \Rightarrow$ real where dist_blinfun a $b=$ norm $(a-b)$
definition [code del]:
(uniformity :: $\left(\left({ }^{\prime} a \Rightarrow_{L}{ }^{\prime} b\right) \times\left({ }^{\prime} a \Rightarrow_{L}{ }^{\prime} b\right)\right)$ filter $)=\left(\right.$ INF $e \in \begin{cases}0 & <. .\} \text {. principal }\end{cases}$ $\{(x, y)$. dist $x y<e\})$
definition open_blinfun $::\left({ }^{\prime} a \Rightarrow_{L}{ }^{\prime} b\right)$ set \Rightarrow bool
where [code del]: open_blinfun $S=\left(\forall x \in S . \forall_{F}\left(x^{\prime}, y\right)\right.$ in uniformity. $x^{\prime}=x \longrightarrow$ $y \in S$)
lift_definition uminus_blinfun $::$ ' $a \Rightarrow_{L}{ }^{\prime} b \Rightarrow{ }^{\prime} a \Rightarrow_{L}{ }^{\prime} b$ is $\lambda f x .-f x$ by (rule bounded_linear_minus)
lift_definition zero_blinfun $::{ }^{\prime} a \Rightarrow_{L}{ }^{\prime} b$ is $\lambda x .0$ by (rule bounded_linear_zero)
lift_definition plus_blinfun $:: ~ ' ~ a \Rightarrow_{L}{ }^{\prime} b \Rightarrow{ }^{\prime} a \Rightarrow_{L}{ }^{\prime} b \Rightarrow{ }^{\prime} a \Rightarrow_{L}{ }^{\prime} b$
is $\lambda f g x . f x+g x$
by (metis bounded_linear_add)
lift_definition scaleR_blinfun:: real $\Rightarrow{ }^{\prime} a \Rightarrow_{L}{ }^{\prime} b \Rightarrow{ }^{\prime} a \Rightarrow_{L}{ }^{\prime} b$ is $\lambda r f x . r *_{R} f x$ by (metis bounded_linear_compose bounded_linear_scaleR_right)
definition sgn_blinfun $::{ }^{\prime} a \Rightarrow_{L}{ }^{\prime} b \Rightarrow{ }^{\prime} a \Rightarrow_{L}{ }^{\prime} b$
where sgn_blinfun $x=$ scale $R($ inverse $($ norm $x)) x$

instance

apply standard
unfolding dist_blinfun_def open_blinfun_def sgn_blinfun_def uniformity_blinfun_def apply (rule refl | (transfer, force simp: onorm_triangle onorm_scaleR onorm_eq_0 algebra_simps))+

done

end
declare uniformity_Abort[where ${ }^{\prime} a=\left({ }^{\prime} a::\right.$ real_normed_vector $) \Rightarrow_{L}(' b::$ real_normed_vector $)$, code]
lemma norm_blinfun_eqI:
assumes $n \leq$ norm (blinfun_apply $f x$) / norm x
assumes $\bigwedge x$. norm (blinfun_apply $f x) \leq n *$ norm x
assumes $0 \leq n$
shows norm $f=n$
by (auto simp: norm_blinfun_def
intro!: antisym onorm_bound assms order_trans[OF _ le_onorm]
bounded_linear_intros)
lemma norm_blinfun: norm (blinfun_apply $f x$) \leq norm $f *$ norm x
by transfer (rule onorm)
lemma norm_blinfun_bound: $0 \leq b \Longrightarrow(\bigwedge x$. norm (blinfun_apply f $x) \leq b *$ norm
$x) \Longrightarrow$ norm $f \leq b$
by transfer (rule onorm_bound)
lemma bounded_bilinear_blinfun_apply[bounded_bilinear]: bounded_bilinear blinfun_apply
proof
fix $f g::^{\prime} a \Rightarrow_{L}{ }^{\prime} b$ and $a b::^{\prime} a$ and $r::$ real
show $(f+g) a=f a+g a\left(r *_{R} f\right) a=r *_{R} f a$
by (transfer, simp) +
interpret bounded_linear f for $f::^{\prime} a \Rightarrow_{L}$ 'b
by (auto intro!: bounded_linear_intros)
show $f(a+b)=f a+f b f\left(r *_{R} a\right)=r *_{R} f a$
by (simp_all add: add scaleR)
show $\exists K . \forall a b$. norm (blinfun_apply $a b) \leq$ norm $a *$ norm $b * K$
by (auto intro!: exI[where $x=1]$ norm_blinfun)
qed
interpretation blinfun: bounded_bilinear blinfun_apply
by (rule bounded_bilinear_blinfun_apply)
lemmas bounded_linear_apply_blinfun $[$ intro, simp $]=$ blinfun.bounded_linear_left
declare blinfun.zero_left [simp] blinfun.zero_right [simp]
context bounded_bilinear
begin
named_theorems bilinear_simps

```
lemmas [bilinear_simps] \(=\)
    add_left
    add_right
    diff_left
    diff_right
    minus_left
    minus_right
    scaleR_left
    scaleR_right
    zero_left
    zero_right
    sum_left
    sum_right
end
```

instance blinfun :: (real_normed_vector, banach) banach
proof
fix $X:: n a t \Rightarrow{ }^{\prime} a \Rightarrow_{L}{ }^{\prime} b$
assume Cauchy X
\{
fix $x::^{\prime} a$
\{
fix $x::^{\prime} a$
assume norm $x \leq 1$
have Cauchy ($\lambda n . X n x$)
proof (rule CauchyI)
fix $e:$:real
assume $0<e$
from Cauchy $D[O F\langle$ Cauchy $X\rangle\langle 0<e\rangle]$ obtain M
where $M: \bigwedge m n . m \geq M \Longrightarrow n \geq M \Longrightarrow \operatorname{norm}(X m-X n)<e$
by auto
show $\exists M . \forall m \geq M . \forall n \geq M . n o r m(X m x-X n x)<e$
proof (safe intro!: exI[where $x=M]$)
fix $m n$
assume $l e: M \leq m M \leq n$
have norm $(X m x-X n x)=$ norm $((X m-X n) x)$
by (simp add: blinfun.bilinear_simps)
also have $\ldots \leq \operatorname{norm}(X m-X n) *$ norm x
by (rule norm_blinfun)
also have $\ldots \leq \operatorname{norm}(X m-X n) * 1$
using \langle norm $x \leq 1\rangle$ norm_ge_zero by (rule mult_left_mono)
also have $\ldots=\operatorname{norm}(X m-X n)$ by simp
also have $\ldots<e$ using le by fact
finally show $\operatorname{norm}(X m x-X n x)<e$.
qed
qed
hence convergent $(\lambda n . X n x)$

```
    by (metis Cauchy_convergent_iff)
    } note convergent_norm1 = this
    define }y\mathrm{ where }y=x/R norm x
    have y: norm y \leq 1 and xy: x = norm }x\mp@subsup{*}{R}{}
    by (simp_all add: y_def inverse_eq_divide)
    have convergent ( }\lambdan\mathrm{ . norm }x\mp@subsup{*}{R}{}X|y
            by (intro bounded_bilinear.convergent [OF bounded_bilinear_scaleR] conver-
gent_const
            convergent_norm1 y)
    also have (\lambdan. norm x *R X n y) = ( }\lambdan.Xnx
        by (subst xy) (simp add: blinfun.bilinear_simps)
    finally have convergent ( }\lambdan.Xnx)
}
then obtain v}\mathrm{ where v: \x. ( }\lambdan.Xnx)\longrightarrowv
    unfolding convergent_def
    by metis
have Cauchy (\lambdan. norm (X n))
proof (rule CauchyI)
    fix e::real
    assume e>0
    from CauchyD[OF〈Cauchy X\rangle\langle0<e\rangle] obtain M
        where M:\bigwedgemn. }m\geqM\Longrightarrown\geqM\Longrightarrownorm (Xm-Xn)<
        by auto
    show \existsM.\forallm\geqM.\foralln\geqM.norm (norm (X m) - norm (X n))<e
    proof (safe intro!: exI[where x=M])
        fix mn assume mn: m\geqMn\geqM
        have norm (norm (X m) - norm (X n)) \leqnorm (X m - X n)
            by (metis norm_triangle_ineq3 real_norm_def)
        also have ...<e using mn by fact
        finally show norm (norm (X m) - norm (X n)) <e.
    qed
qed
then obtain K where K: (\lambdan. norm (X n))\longrightarrowK
    unfolding Cauchy_convergent_iff convergent_def
    by metis
have bounded_linear v
proof
    fix }xy\mathrm{ and }r::rea
from tendsto_add[OF v[of x] v [of y]] v[of x + y,unfolded blinfun.bilinear_simps]
        tendsto_scaleR[OF tendsto_const[of r] v[of x]] v[of r**R x, unfolded blin-
fun.bilinear_simps]
    show v(x+y)=vx+vyv(r*R}x)=r\mp@subsup{*}{R}{}v
        by (metis (poly_guards_query) LIMSEQ_unique)+
    show \existsK.\forallx.norm (vx)\leqnorm x * K
    proof (safe intro!: exI[where x=K])
        fix }
        have norm (vx) \leqK* norm x
```

by (rule tendsto_le[OF _ tendsto_mult $[$ OF K tendsto_const $]$ tendsto_norm $[O F$ v]])
(auto simp: norm_blinfun)
thus norm $(v x) \leq$ norm $x * K$
by (simp add: ac_simps)
qed
qed
hence $B v: \bigwedge x .(\lambda n . X n x) \longrightarrow$ Blinfun $v x$
by (auto simp: bounded_linear_Blinfun_apply v)
have $X \longrightarrow$ Blinfun v
proof (rule LIMSEQ_I)
fix r ::real assume $r>0$
define r^{\prime} where $r^{\prime}=r / 2$
have $0<r^{\prime} r^{\prime}<r$ using $\langle r>0\rangle$ by (simp_all add: $r^{\prime}{ }_{-} d e f$)
from Cauchy $D\left[O F\langle\right.$ Cauchy $\left.\left.X\rangle\left\langle r^{\prime}\right\rangle 0\right\rangle\right]$
obtain M where $M: \bigwedge m n . m \geq M \Longrightarrow n \geq M \Longrightarrow \operatorname{norm}(X m-X n)<$ r^{\prime}
by metis
show \exists no. $\forall n \geq$ no. norm $(X n-B l i n f u n v)<r$
proof (safe intro!: exI[where $x=M]$)
fix n assume $n: M \leq n$
have norm $(X n-B$ Blinfun $v) \leq r^{\prime}$
proof (rule norm_blinfun_bound)
fix x
have eventually ($\lambda m . m \geq M$) sequentially
by (metis eventually_ge_at_top)
hence ev_le: eventually (λm. norm $(X n x-X m x) \leq r^{\prime} *$ norm $\left.x\right)$ sequentially
proof eventually_elim
case (elim m)
have norm $(X n x-X m x)=\operatorname{norm}((X n-X m) x)$
by (simp add: blinfun.bilinear_simps)
also have $\ldots \leq \operatorname{norm}((X n-X m)) *$ norm x
by (rule norm_blinfun)
also have $\ldots \leq r^{\prime} *$ norm x
using $M[$ OF n elim $]$ by (simp add: mult_right_mono)
finally show ?case.

qed

have tendsto_v: $(\lambda m$. norm $(X n x-X m x)) \longrightarrow \operatorname{norm}(X n x-$
Blinfun $v x$)
by (auto intro!: tendsto_intros Bv)
show norm $((X n-B l i n f u n v) x) \leq r^{\prime} *$ norm x
by (auto intro!: tendsto_upperbound tendsto_v ev_le simp: blinfun.bilinear_simps)
qed (simp add: $\langle 0<r$ ’ less_imp_le)
thus norm $(X n-B l i n f u n v)<r$
by (metis $\left\langle r^{\prime}<r\right\rangle$ le_less_trans)
qed
qed

```
    thus convergent X
    by (rule convergentI)
qed
```


4.9.5 On Euclidean Space

lemma Zfun_sum:
assumes finite s
assumes $f: \bigwedge i . i \in s \Longrightarrow Z f u n(f i) F$
shows Zfun $(\lambda x$. sum $(\lambda i$. $f i x) s) F$
using assms by induct (auto intro!: Zfun_zero Zfun_add)
lemma norm_blinfun_euclidean_le:
fixes $a:: ' a::$ euclidean_space \Rightarrow_{L} ' $b::$ real_normed_vector
shows norm $a \leq \operatorname{sum}(\lambda x$. norm ($a x$) Basis
apply (rule norm_blinfun_bound)
apply (simp add: sum_nonneg)
apply (subst euclidean_representation[symmetric, where ' $a=$ ' a])
apply (simp only: blinfun.bilinear_simps sum_distrib_right)
apply (rule order.trans[OF norm_sum sum_mono])
apply (simp add: abs_mult mult_right_mono ac_simps Basis_le_norm)
done
lemma tendsto_componentwise1:
fixes $a::$ 'a::euclidean_space \Rightarrow_{L} ' $b::$ real_normed_vector and $b::^{\prime} c \Rightarrow{ }^{\prime} a \Rightarrow_{L}{ }^{\prime} b$
assumes $(\bigwedge j . j \in$ Basis $\Longrightarrow((\lambda n . b n j) \longrightarrow a j) F)$
shows $(b \longrightarrow a) F$
proof -
have $\bigwedge j . j \in$ Basis $\Longrightarrow Z f u n(\lambda x$. norm $(b x j-a j)) F$ using assms unfolding tendsto_Zfun_iff Zfun_norm_iff .
hence Zfun ($\lambda x . \sum j \in$ Basis. norm $(b x j-a j)$) F by (auto intro!: Zfun_sum)
thus ?thesis
unfolding tendsto_Zfun_iff
by (rule Zfun_le)
(auto intro!: order_trans[OF norm_blinfun_euclidean_le] simp: blinfun.bilinear_simps)
qed

lift_definition

blinfun_of_matrix::('b::euclidean_space \Rightarrow ' $a::$ euclidean_space \Rightarrow real $) \Rightarrow{ }^{\prime} a \Rightarrow_{L}{ }^{\prime} b$
is $\lambda a x . \sum i \in$ Basis. $\sum j \in$ Basis. $((x \cdot j) * a i j) *_{R} i$
by (intro bounded_linear_intros)
lemma blinfun_of_matrix_works:
fixes $f:: ' a::$ euclidean_space \Rightarrow_{L} 'b::euclidean_space
shows blinfun_of_matrix $(\lambda i j .(f j) \cdot i)=f$
proof (transfer, rule, rule euclidean_eqI)
fix $f::^{\prime} a \Rightarrow ' b$ and $x::^{\prime} a$ and $b::^{\prime} b$ assume bounded_linear f and $b: b \in$ Basis

```
    then interpret bounded_linear \(f\) by simp
    have \(\left(\sum j \in\right.\) Basis. \(\sum i \in\) Basis. \(\left.(x \cdot i *(f i \cdot j)) *_{R} j\right) \cdot b\)
    \(=\left(\sum j \in\right.\) Basis. if \(j=b\) then \(\left(\sum i \in\right.\) Basis. \(\left.(x \cdot i *(f i \cdot j))\right)\) else 0\()\)
    using \(b\)
    by (simp add: inner_sum_left inner_Basis if_distrib cong: if_cong) (simp add:
sum.swap)
    also have \(\ldots=\left(\sum i \in\right.\) Basis. \(\left.(x \cdot i *(f i \cdot b))\right)\)
        using \(b\) by (simp)
    also have \(\ldots=f x \cdot b\)
    by (metis (mono_tags, lifting) Linear_Algebra.linear_componentwise linear_axioms)
    finally show \(\left(\sum j \in\right.\) Basis. \(\sum i \in\) Basis. \(\left.(x \cdot i *(f i \cdot j)) *_{R} j\right) \cdot b=f x \cdot b\).
qed
lemma blinfun_of_matrix_apply:
    blinfun_of_matrix a \(x=\left(\sum i \in\right.\) Basis. \(\sum j \in\) Basis. \(\left.((x \cdot j) * a i j) *_{R} i\right)\)
    by transfer simp
lemma blinfun_of_matrix_minus: blinfun_of_matrix \(x-b l i n f u n_{-} o f=m a t r i x ~ y=b l i n-\)
fun_of_matrix \((x-y)\)
    by transfer (auto simp: algebra_simps sum_subtractf)
lemma norm_blinfun_of_matrix:
    norm (blinfun_of_matrix a) \(\leq\left(\sum i \in\right.\) Basis. \(\sum j \in\) Basis. \(\left.|a i j|\right)\)
    apply (rule norm_blinfun_bound)
    apply (simp add: sum_nonneg)
    apply (simp only: blinfun_of_matrix_apply sum_distrib_right)
    apply (rule order_trans[OF norm_sum sum_mono])
    apply (rule order_trans [OF norm_sum sum_mono])
    apply (simp add: abs_mult mult_right_mono ac_simps Basis_le_norm)
    done
lemma tendsto_blinfun_of_matrix:
    assumes \(\bigwedge i j . i \in\) Basis \(\Longrightarrow j \in\) Basis \(\Longrightarrow((\lambda n . b n i j) \longrightarrow a i j) F\)
    shows \(((\lambda n\). blinfun_of_matrix \((b n)) \longrightarrow\) blinfun_of_matrix a) \(F\)
proof -
    have \(\bigwedge i j . i \in\) Basis \(\Longrightarrow j \in\) Basis \(\Longrightarrow\) Zfun \((\lambda x\). norm \((b x i j-a i j)) F\)
        using assms unfolding tendsto_Zfun_iff Zfun_norm_iff .
    hence \(\operatorname{Zfun}\left(\lambda x .\left(\sum i \in\right.\right.\) Basis. \(\sum j \in\) Basis. \(\left.\left.|b x i j-a i j|\right)\right) F\)
        by (auto intro!: Zfun_sum)
    thus ?thesis
        unfolding tendsto_Zfun_iff blinfun_of_matrix_minus
        by (rule Zfun_le) (auto intro!: order_trans[OF norm_blinfun_of_matrix])
qed
lemma tendsto_componentwise:
    fixes \(a::\) 'a::euclidean_space \(\Rightarrow_{L}\) 'b::euclidean_space
        and \(b::^{\prime} c \Rightarrow{ }^{\prime} a \Rightarrow_{L}{ }^{\prime} b\)
    shows \((\bigwedge i j . i \in\) Basis \(\Longrightarrow j \in\) Basis \(\Longrightarrow((\lambda n . b n j \cdot i) \longrightarrow a j \cdot i) F) \Longrightarrow\)
\((b \longrightarrow a) F\)
```

apply (subst blinfun_of_matrix_works[of a, symmetric])
apply (subst blinfun_of_matrix_works[of b x for x, symmetric, abs_def])
by (rule tendsto_blinfun_of_matrix)

lemma

continuous_blinfun_componentwiseI:
fixes $f:: ' b::$ t2_space \Rightarrow ' $a::$ euclidean_space \Rightarrow_{L} 'c::euclidean_space
assumes $\bigwedge i j . i \in$ Basis $\Longrightarrow j \in$ Basis \Longrightarrow continuous $F(\lambda x .(f x) j \cdot i)$
shows continuous $F f$
using assms by (auto simp: continuous_def intro!: tendsto_componentwise)

lemma

continuous_blinfun_componentwiseI1:
fixes $f::$ ' $b::$ t2_space \Rightarrow 'a::euclidean_space $\Rightarrow_{L}{ }^{\prime} c::$ real_normed_vector
assumes $\bigwedge i . i \in$ Basis \Longrightarrow continuous $F(\lambda x . f x i)$
shows continuous $F f$
using assms by (auto simp: continuous_def intro!: tendsto_componentwise1)

lemma

continuous_on_blinfun_componentwise:
fixes $f::$ 'd::t2_space \Rightarrow 'e::euclidean_space \Rightarrow_{L} ' $f::$ real_normed_vector
assumes $\bigwedge i . i \in$ Basis \Longrightarrow continuous_on s $(\lambda x . f x i)$
shows continuous_on sf
using assms
by (auto intro!: continuous_at_imp_continuous_on intro!: tendsto_componentwise1 simp: continuous_on_eq_continuous_within continuous_def)
lemma bounded_linear_blinfun_matrix: bounded_linear $\left.\left(\lambda x .\left(x::=_{L}\right)_{-}\right) j \cdot i\right)$
by (auto intro!: bounded_linearI' bounded_linear_intros)
lemma continuous_blinfun_matrix:
fixes $f:: ' b::$ th_space \Rightarrow ' $a::$ real_normed_vector $\Rightarrow_{L}{ }^{\prime} c::$ real_inner
assumes continuous $F f$
shows continuous $F(\lambda x$. $(f x) j \cdot i)$
by (rule bounded_linear.continuous[OF bounded_linear_blinfun_matrix assms])
lemma continuous_on_blinfun_matrix:
fixes $f::^{\prime} a::$ t2_space $\Rightarrow{ }^{\prime} b::$ real_normed_vector $\Rightarrow_{L}{ }^{\prime} c::$ real_inner
assumes continuous_on $S f$
shows continuous_on $S(\lambda x .(f x) j \cdot i)$
using assms
by (auto simp: continuous_on_eq_continuous_within continuous_blinfun_matrix)
lemma continuous_on_blinfun_of_matrix[continuous_intros]:
assumes $\bigwedge i j . i \in$ Basis $\Longrightarrow j \in$ Basis \Longrightarrow continuous_on $S(\lambda s . g$ s $i j)$
shows continuous_on S (λs. blinfun_of_matrix ($g s)$)
using assms
by (auto simp: continuous_on intro!: tendsto_blinfun_of_matrix)
lemma mult_if_delta:
(if P then $\left(1::^{\prime} a::\right.$ comm_semiring_1) else 0$) * q=($ if P then q else 0$)$
by auto
lemma compact_blinfun_lemma:
fixes $f::$ nat \Rightarrow ' $a::$ euclidean_space \Rightarrow_{L} 'b::euclidean_space
assumes bounded (range f)
shows $\forall d \subseteq$ Basis. $\exists l::{ }^{\prime} a \Rightarrow_{L}{ }^{\prime} b$. $\exists r:: n a t \Rightarrow$ nat.
strict_mono $r \wedge(\forall e>0$. eventually $(\lambda n . \forall i \in d . \operatorname{dist}(f(r n) i)(l i)<e)$
sequentially)
by (rule compact_lemma_general[where unproj $=\lambda e$. blinfun_of_matrix $(\lambda i j . e$ $j \cdot i)]$)
(auto intro!: euclidean_eqI[where ' $a=$ 'b] bounded_linear_image assms
simp: blinfun_of_matrix_works blinfun_of_matrix_apply inner_Basis mult_if_delta
sum.delta'
scaleR_sum_left[symmetric])
lemma blinfun_euclidean_eqI: ($\bigwedge i . i \in$ Basis \Longrightarrow blinfun_apply $x i=$ blinfun_apply $y i) \Longrightarrow x=y$
apply (auto intro!: blinfun_eqI)
apply (subst (2) euclidean_representation[symmetric, where ' $\left.a==^{\prime} a\right]$)
apply (subst (1) euclidean_representation $\left[\right.$ symmetric, where $\left.{ }^{\prime} a=^{\prime} a\right]$)
apply (simp add: blinfun.bilinear_simps)
done
lemma Blinfun_eq_matrix: bounded_linear $f \Longrightarrow$ Blinfun $f=$ blinfun_of_matrix (λi $j . f j \cdot i)$
by (intro blinfun_euclidean_eqI)
(auto simp: blinfun_of_matrix_apply bounded_linear_Blinfun_apply inner_Basis
if_distrib
if_distribR sum.delta' euclidean_representation
cong: if_cong)
TODO: generalize (via compact_cball)?
instance blinfun :: (euclidean_space, euclidean_space) heine_borel
proof
fix $f::$ nat $\Rightarrow{ }^{\prime} a \Rightarrow_{L}{ }^{\prime} b$
assume f : bounded (range f)
then obtain $l::^{\prime} a \Rightarrow_{L} ' b$ and r where r : strict_mono r and l : $\forall e>0$. eventually ($\lambda n . \forall i \in$ Basis. dist $(f(r n) i)(l i)<e)$ sequentially using compact_blinfun_lemma $[O F f]$ by blast
\{
fix $e:$:real
let ? d $=$ real_of_nat DIM ('a) * real_of_nat DIM ('b)
assume $e>0$
hence $e / ? d>0$ by (simp)
with l have eventually $\left(\lambda n . \forall i \in\right.$ Basis. dist $\left(f\left(\begin{array}{ll}r & n) \\ \text {) })(l i)<e / ? d)\end{array}\right.\right.$
sequentially
by simp

```
    moreover
    {
        fix n
    assume n: \foralli\inBasis.dist (f (r n) i) (li)<e/ ?d
    have norm (f (r n) - l) = norm (blinfun_of_matrix (\lambdaij. (f (r n) - l) j .
i))
            unfolding blinfun_of_matrix_works ..
    also note norm_blinfun_of_matrix
    also have (\sumi\inBasis. \sumj\inBasis. |(f (rn) - l) j • i|)<
        (\sumi\in(Basis::'b set). e / real_of_nat DIM('b))
    proof (rule sum_strict_mono)
        fix i::'b assume i:i\in Basis
        have (\sumj::'a\inBasis.|(f (rn) - l) j • i|)< (\sumj::'a\inBasis. e / ?d)
        proof (rule sum_strict_mono)
            fix j::'a assume j: j B Basis
            have |(f(rn) - l) j \cdot i| \leqnorm ((f(rn) - l) j)
                by (simp add: Basis_le_norm i)
            also have ...<e / ?d
                using ni j by (auto simp: dist_norm blinfun.bilinear_simps)
            finally show |(f (rn)-l)j\cdoti|<e/?d by simp
        qed simp_all
        also have ... \leqe / real_of_nat DIM('b)
            by simp
        finally show (\sumj\inBasis.|(f(rn) - l) j •i|)<e / real_of_nat DIM('b)
            by simp
    qed simp_all
    also have ... \leqe by simp
    finally have dist (f (rn)) l<e
        by (auto simp: dist_norm)
    }
    ultimately have eventually ( }\lambdan\mathrm{ . dist (f (rn)) l<e) sequentially
    using eventually_elim2 by force
}
then have *:(( }f\circr)\longrightarrowl)\mathrm{ sequentially
    unfolding o_def tendsto_iff by simp
    with r show \existslr.strict_mono r ^(( f\circr)\longrightarrowl) sequentially
    by auto
qed
```


4.9.6 concrete bounded linear functions

```
lemma transfer_bounded_bilinear_bounded_linearI:
assumes \(g=(\lambda i x\). (blinfun_apply \((f i) x))\)
shows bounded_bilinear \(g=\) bounded_linear \(f\)
proof
assume bounded_bilinear g
then interpret bounded_bilinear \(f\) by (simp add: assms)
show bounded_linear \(f\)
proof (unfold_locales, safe intro!: blinfun_eqI)
```

```
    fix i
    show f(x+y)i=(fx+fy)if(r*R
        by (auto intro!: blinfun_eqI simp: blinfun.bilinear_simps)
    from _ nonneg_bounded show \existsK.\forallx. norm (fx)\leqnorm x * K
    by (rule ex_reg) (auto intro!: onorm_bound simp: norm_blinfun.rep_eq ac_simps)
    qed
qed (auto simp: assms intro!: blinfun.comp)
lemma transfer_bounded_bilinear_bounded_linear[transfer_rule]:
    (rel_fun (rel_fun (=) (pcr_blinfun (=) (=))) (=)) bounded_bilinear bounded_linear
    by (auto simp: pcr_blinfun_def cr_blinfun_def rel_fun_def OO_def
        intro!: transfer_bounded_bilinear_bounded_linearI)
context bounded_bilinear
begin
lift_definition prod_left::'b b 'a m }\mp@subsup{L}{}{\prime
    by (rule bounded_linear_left)
declare prod_left.rep_eq[simp]
lemma bounded_linear_prod_left[bounded_linear]: bounded_linear prod_left
    by transfer (rule flip)
lift_definition prod_right::'a m 'b 左 'c is ( }\lambdaab\mathrm{ . prod a b)
    by (rule bounded_linear_right)
declare prod_right.rep_eq[simp]
lemma bounded_linear_prod_right[bounded_linear]: bounded_linear prod_right
    by transfer (rule bounded_bilinear_axioms)
end
lift_definition id_blinfun::'a::real_normed_vector }\mp@subsup{=>}{L}{}\mp@subsup{}{}{\prime}a\mathrm{ is }\lambdax.
    by (rule bounded_linear_ident)
lemmas blinfun_apply_id_blinfun[simp] = id_blinfun.rep_eq
lemma norm_blinfun_id[simp]:
```



```
    by transfer (auto simp: onorm_id)
lemma norm_blinfun_id_le:
    norm (id_blinfun::'a::real_normed_vector }\mp@subsup{=>}{L}{\prime}'a)\leq
    by transfer (auto simp: onorm_id_le)
lift_definition fst_blinfun::('a::real_normed_vector × 'b::real_normed_vector) }\mp@subsup{=>}{L}{
' }a\mathrm{ is fst
    by (rule bounded_linear_fst)
```

lemma blinfun_apply_fst_blinfun[simp]: blinfun_apply fst_blinfun $=f s t$
by transfer (rule refl)
lift_definition snd_blinfun::('a::real_normed_vector \times 'b::real_normed_vector) \Rightarrow_{L}
${ }^{\prime} b$ is snd by (rule bounded_linear_snd)
lemma blinfun_apply_snd_blinfun[simp]: blinfun_apply snd_blinfun = snd
by transfer (rule refl)
lift_definition blinfun_compose::
'a::real_normed_vector \Rightarrow_{L} 'b::real_normed_vector \Rightarrow
' $c:$:real_normed_vector \Rightarrow_{L} ' $a \Rightarrow$
${ }^{\prime} c \Rightarrow{ }_{L}{ }^{\prime} b$ (infixl $o_{L} 55$) is (o)
parametric comp_transfer
unfolding o_def
by (rule bounded_linear_compose)
lemma blinfun_apply_blinfun_compose $[$ simp $]:\left(\begin{array}{lll}a & o_{L} & b\end{array}\right) c=a(b c)$
by (simp add: blinfun_compose.rep_eq)
lemma norm_blinfun_compose:
norm $\left(f o_{L} g\right) \leq n o r m f *$ norm g
by transfer (rule onorm_compose)
lemma bounded_bilinear_blinfun_compose[bounded_bilinear]: bounded_bilinear (o_{L}) by unfold_locales
(auto intro!: blinfun_eqI exI[where $x=1]$ simp: blinfun.bilinear_simps norm_blinfun_compose)
lemma blinfun_compose_zero[simp]:
blinfun_compose $0=\left(\lambda_{-} .0\right)$
blinfun_compose x $0=0$
by (auto simp: blinfun.bilinear_simps intro!: blinfun_eqI)
lemma blinfun_bij2:
fixes $f:: ' a \Rightarrow_{L}$ ' a ::euclidean_space
assumes $f o_{L} g=i d _$blinfun
shows bij (blinfun_apply g)
proof (rule bijI)
show inj g
using assms
by (metis blinfun_apply_id_blinfun blinfun_compose.rep_eq injI inj_on_imageI2)
then show surj g
using blinfun.bounded_linear_right bounded_linear_def linear_inj_imp_surj by
blast
qed
lemma blinfun_bij1:
fixes $f:: ' a \Rightarrow_{L}$ ' $a::$ euclidean_space
assumes $f o_{L} g=i d _b l i n f u n$
shows bij (blinfun_apply f)
proof (rule bijI)
show surj (blinfun_apply f)
by (metis assms blinfun_apply_blinfun_compose blinfun_apply_id_blinfun surjI)
then show inj (blinfun_apply f)
using blinfun.bounded_linear_right bounded_linear_def linear_surj_imp_inj by
blast
qed
lift_definition blinfun_inner_right::' $a:$:real_inner $\Rightarrow{ }^{\prime} a \Rightarrow_{L}$ real is (\cdot)
by (rule bounded_linear_inner_right)
declare blinfun_inner_right.rep_eq[simp]
lemma bounded_linear_blinfun_inner_right[bounded_linear]: bounded_linear blinfun_inner_right by transfer (rule bounded_bilinear_inner)
lift_definition blinfun_inner_left::'a::real_inner $\Rightarrow{ }^{\prime} a \Rightarrow_{L}$ real is $\lambda x y . y \cdot x$
by (rule bounded_linear_inner_left)
declare blinfun_inner_left.rep_eq[simp]
lemma bounded_linear_blinfun_inner_left[bounded_linear]: bounded_linear blinfun_inner_left by transfer (rule bounded_bilinear.flip[OF bounded_bilinear_inner])
lift_definition blinfun_scale R_{-}right::real $\Rightarrow{ }^{\prime} a \Rightarrow_{L}{ }^{\prime} a::$ real_normed_vector is $\left(*_{R}\right)$ by (rule bounded_linear_scaleR_right)
declare blinfun_scaleR_right.rep_eq[simp]
lemma bounded_linear_blinfun_scaleR_right[bounded_linear]: bounded_linear blinfun_scaleR_right by transfer (rule bounded_bilinear_scaleR)
lift_definition blinfun_scaleR_left::'a::real_normed_vector \Rightarrow real $\Rightarrow_{L}{ }^{\prime} a$ is $\lambda x y . y$
$*_{R} x$
by (rule bounded_linear_scaleR_left)
lemmas $[$ simp $]=$ blinfun_scaleR_left.rep_eq
lemma bounded_linear_blinfun_scaleR_left[bounded_linear]: bounded_linear blinfun_scaleR_left by transfer (rule bounded_bilinear.flip[OF bounded_bilinear_scaleR])
lift_definition blinfun_mult_right::' $a \Rightarrow{ }^{\prime} a \Rightarrow{ }_{L}{ }^{\prime} a:$:real_normed_algebra is (*)
by (rule bounded_linear_mult_right)
declare blinfun_mult_right.rep_eq[simp]
lemma bounded_linear_blinfun_mult_right[bounded_linear]: bounded_linear blinfun_mult_right by transfer (rule bounded_bilinear_mult)
lift_definition blinfun_mult_left::'a::real_normed_algebra $\Rightarrow^{\prime} a \Rightarrow_{L}{ }^{\prime} a$ is $\lambda x y . y *$ x by (rule bounded_linear_mult_left)
lemmas $[$ simp $]=$ blinfun_mult_left.rep_eq
lemma bounded_linear_blinfun_mult_left[bounded_linear]: bounded_linear blinfun_mult_left by transfer (rule bounded_bilinear.flip[OF bounded_bilinear_mult])
lemmas bounded_linear_function_uniform_limit_intros[uniform_limit_intros] = bounded_linear.uniform_limit[OF bounded_linear_apply_blinfun] bounded_linear.uniform_limit[OF bounded_linear_blinfun_apply] bounded_linear.uniform_limit[OF bounded_linear_blinfun_matrix]

4.9.7 The strong operator topology on continuous linear operators

Let ' a and ' b be two normed real vector spaces. Then the space of linear continuous operators from ' a to ' b has a canonical norm, and therefore a canonical corresponding topology (the type classes instantiation are given in Bounded_Linear_Function.thy).
However, there is another topology on this space, the strong operator topology, where T_{n} tends to T iff, for all x in ' a, then $T_{n} x$ tends to $T x$. This is precisely the product topology where the target space is endowed with the norm topology. It is especially useful when ' b is the set of real numbers, since then this topology is compact.
We can not implement it using type classes as there is already a topology, but at least we can define it as a topology.
Note that there is yet another (common and useful) topology on operator spaces, the weak operator topology, defined analogously using the product topology, but where the target space is given the weak-* topology, i.e., the pullback of the weak topology on the bidual of the space under the canonical embedding of a space into its bidual. We do not define it there, although it could also be defined analogously.

```
definition strong_operator_topology::('a::real_normed_vector \(\Rightarrow_{L}{ }^{\prime}\) b::real_normed_vector)
topology
where strong_operator_topology \(=\) pullback_topology UNIV blinfun_apply euclidean
lemma strong_operator_topology_topspace:
    topspace strong_operator_topology \(=\) UNIV
unfolding strong_operator_topology_def topspace_pullback_topology topspace_euclidean
by auto
```

lemma strong_operator_topology_basis:
fixes $f::\left(' a::\right.$ real_normed_vector $\Rightarrow_{L}{ }^{\prime} b::$ real_normed_vector) and $U::{ }^{\prime} i \Rightarrow$ 'b set and $x::^{\prime} i \Rightarrow{ }^{\prime} a$
assumes finite $I \bigwedge i . i \in I \Longrightarrow$ open $(U i)$
shows openin strong_operator_topology $\{f . \forall i \in I$. blinfun_apply $f(x i) \in U i\}$
proof -
have open $\left\{g::\left({ }^{\prime} a \Rightarrow^{\prime} b\right) . \forall i \in I . g(x i) \in U i\right\}$ by (rule product_topology_basis'[OF assms])
moreover have $\{f . \forall i \in I$. blinfun_apply $f(x i) \in U i\}$

$$
=\text { blinfun_apply-‘\{g::('a>'b).} \forall i \in I . g(x i) \in U i\} \cap U N I V
$$

by auto
ultimately show ?thesis
unfolding strong_operator_topology_def by (subst openin_pullback_topology) auto qed
lemma strong_operator_topology_continuous_evaluation:
continuous_map strong_operator_topology euclidean (λf. blinfun_apply $f x$)
proof -
have continuous_map strong_operator_topology euclidean (($\lambda f . f x)$ o blinfun_apply) unfolding strong_operator_topology_def apply (rule continuous_map_pullback) using continuous_on_product_coordinates by fastforce
then show ?thesis unfolding comp_def by simp
qed
lemma continuous_on_strong_operator_topo_iff_coordinatewise:
continuous_map T strong_operator_topology f
$\longleftrightarrow(\forall x$. continuous_map T euclidean $(\lambda y$. blinfun_apply $(f y) x))$
proof (auto)
fix $x::^{\prime} b$
assume continuous_map T strong_operator_topology f
with continuous_map_compose[OF this strong_operator_topology_continuous_evaluation]
have continuous_map T euclidean ($(\lambda z$. blinfun_apply z $x)$ of $)$
by simp
then show continuous_map T euclidean (λy. blinfun_apply $(f y) x$) unfolding comp_def by auto
next
assume $*: \forall x$. continuous_map T euclidean (λy. blinfun_apply ($f y$) x)
have $\bigwedge i$. continuous_map T euclidean (λx. blinfun_apply $(f x) i)$
using $*$ unfolding comp_def by auto
then have continuous_map T euclidean (blinfun_apply of)
unfolding o_def
by (metis (no_types) continuous_map_componentwise_UNIV euclidean_product_topology)
show continuous_map T strong_operator_topology f
unfolding strong_operator_topology_def
apply (rule continuous_map_pullback')
by (auto simp add: <continuous_map T euclidean (blinfun_apply of $)$))
qed
lemma strong_operator_topology_weaker_than_euclidean: continuous_map euclidean strong_operator_topology ($\lambda f . f$)
by (subst continuous_on_strong_operator_topo_iff_coordinatewise, auto simp add: linear_continuous_on)
end

4.10 Derivative

```
theory Derivative
    imports
        Bounded_Linear_Function
        Line_Segment
        Convex_Euclidean_Space
begin
declare bounded_linear_inner_left [intro]
declare has_derivative_bounded_linear[dest]
```


4.10.1 Derivatives

lemma has_derivative_add_const:
(f has_derivative $\left.f^{\prime}\right)$ net $\Longrightarrow\left((\lambda x . f x+c)\right.$ has_derivative $\left.f^{\prime}\right)$ net by (intro derivative_eq_intros) auto

4.10.2 Derivative with composed bilinear function

More explicit epsilon-delta forms.

```
proposition has_derivative_within':
    ( \(f\) has_derivative \(f^{\prime}\) ) (at \(x\) within \(\left.s\right) \longleftrightarrow\)
        bounded_linear \(f^{\prime} \wedge\)
        \(\left(\forall e>0 . \exists d>0 . \forall x^{\prime} \in s .0<\operatorname{norm}\left(x^{\prime}-x\right) \wedge \operatorname{norm}\left(x^{\prime}-x\right)<d \longrightarrow\right.\)
            norm \(\left(f x^{\prime}-f x-f^{\prime}\left(x^{\prime}-x\right)\right) /\) norm \(\left.\left(x^{\prime}-x\right)<e\right)\)
    unfolding has_derivative_within Lim_within dist_norm
    by (simp add: diff_diff_eq)
lemma has_derivative_at':
    ( \(f\) has_derivative \(f^{\prime}\) ) (at \(x\) )
    \(\longleftrightarrow\) bounded_linear \(f^{\prime} \wedge\)
            \(\left(\forall e>0 . \exists d>0 . \forall x^{\prime} .0<\operatorname{norm}\left(x^{\prime}-x\right) \wedge \operatorname{norm}\left(x^{\prime}-x\right)<d \longrightarrow\right.\)
            norm \(\left.\left(f x^{\prime}-f x-f^{\prime}\left(x^{\prime}-x\right)\right) / \operatorname{norm}\left(x^{\prime}-x\right)<e\right)\)
    using has_derivative_within' \(\left[\right.\) of \(f f^{\prime} x\) UNIV] by simp
lemma has_derivative_componentwise_within:
( \(f\) has_derivative \(f^{\prime}\) ) (at a within \(\left.S\right) \longleftrightarrow\)
\(\left(\forall i \in\right.\) Basis. \(\left((\lambda x . f x \cdot i)\right.\) has_derivative \(\left.\left(\lambda x . f^{\prime} x \cdot i\right)\right)(\) at a within \(\left.S)\right)\)
apply (simp add: has_derivative_within)
```

apply (subst tendsto_componentwise_iff)
apply (simp add: bounded_linear_componentwise_iff [symmetric] ball_conj_distrib)
apply (simp add: algebra_simps)
done
lemma has_derivative_at_withinI:
$\left(f\right.$ has_derivative $\left.f^{\prime}\right)($ at $x) \Longrightarrow\left(f\right.$ has_derivative $\left.f^{\prime}\right)($ at x within $s)$
unfolding has_derivative_within' has_derivative_at'
by blast
lemma has_derivative_right:
fixes $f::$ real \Rightarrow real
and y :: real
shows $(f$ has_derivative $((*) y))($ at x within $(\{x<..\} \cap I)) \longleftrightarrow$ $((\lambda t .(f x-f t) /(x-t)) \longrightarrow y)($ at x within $(\{x<..\} \cap I))$
proof -
have $((\lambda t .(f t-(f x+y *(t-x))) /|t-x|) \longrightarrow 0)$ (at x within $(\{x<.\}$.
$\cap I)) \longleftrightarrow$
$((\lambda t .(f t-f x) /(t-x)-y) \longrightarrow 0)($ at x within $(\{x<..\} \cap I))$
by (intro Lim_cong_within) (auto simp add: diff_divide_distrib add_divide_distrib)
also have $\ldots \longleftrightarrow((\lambda t .(f t-f x) /(t-x)) \longrightarrow y)($ at x within $(\{x<..\} \cap$ I))
by (simp add: Lim_null[symmetric])
also have $\ldots \longleftrightarrow((\lambda t .(f x-f t) /(x-t)) \longrightarrow y)$ (at x within $(\{x<..\} \cap$
I))
by (intro Lim_cong_within) (simp_all add: field_simps)
finally show ?thesis
by (simp add: bounded_linear_mult_right has_derivative_within)
qed

Caratheodory characterization

lemma DERIV_caratheodory_within:
(f has_field_derivative l) (at x within $S) \longleftrightarrow$
$(\exists g .(\forall z \cdot f z-f x=g z *(z-x)) \wedge$ continuous $($ at x within $S) g \wedge g x=l)$
(is ?lhs = ?rhs)
proof
assume? lhs
show ?rhs
proof (intro exI conjI)
let $? g=(\% z$. if $z=x$ then l else $(f z-f x) /(z-x))$
show $\forall z$. $f z-f x=? g z *(z-x)$ by simp
show continuous (at x within S) ?g using 〈?lhs〉
by (auto simp add: continuous_within has_field_derivative_iff cong: Lim_cong_within)
show ? $g x=l$ by simp
qed
next
assume ?rhs
then obtain g where
$(\forall z . f z-f x=g z *(z-x))$ and continuous (at x within S) g and $g x=l$ by blast
thus ?lhs
by (auto simp add: continuous_within has_field_derivative_iff cong: Lim_cong_within)
qed

4.10.3 Differentiability

definition

differentiable_on :: ('a::real_normed_vector $\Rightarrow{ }^{\prime} b::$ real_normed_vector $) \Rightarrow^{\prime}$ a set \Rightarrow bool
(infix differentiable'_on 50)
where f differentiable_on $s \longleftrightarrow(\forall x \in s . f$ differentiable (at x within $s)$)
lemma differentiableI: (f has_derivative f^{\prime}) net $\Longrightarrow f$ differentiable net unfolding differentiable_def
by auto
lemma differentiable_onD: $\llbracket f$ differentiable_on $S ; x \in S \rrbracket \Longrightarrow f$ differentiable (at x within S)
using differentiable_on_def by blast
lemma differentiable_at_withinI: f differentiable (at $x) \Longrightarrow f$ differentiable (at x within s)
unfolding differentiable_def
using has_derivative_at_withinI
by blast
lemma differentiable_at_imp_differentiable_on:
$(\bigwedge x . x \in s \Longrightarrow f$ differentiable at $x) \Longrightarrow f$ differentiable_on s
by (metis differentiable_at_withinI differentiable_on_def)
corollary differentiable_iff_scaleR:
fixes $f::$ real \Rightarrow 'a::real_normed_vector
shows f differentiable $F \longleftrightarrow\left(\exists d\right.$. (f has_derivative $\left.\left.\left(\lambda x . x *_{R} d\right)\right) F\right)$
by (auto simp: differentiable_def dest: has_derivative_linear linear_imp_scaleR)
lemma differentiable_on_eq_differentiable_at:
open $s \Longrightarrow f$ differentiable_on $s \longleftrightarrow(\forall x \in s$. f differentiable at $x)$
unfolding differentiable_on_def
by (metis at_within_interior interior_open)
lemma differentiable_transform_within:
assumes f differentiable (at x within s)
and $0<d$
and $x \in s$
and $\bigwedge x^{\prime} . \llbracket x^{\prime} \in s ;$ dist $x^{\prime} x<d \rrbracket \Longrightarrow f x^{\prime}=g x^{\prime}$
shows g differentiable (at x within s)
using assms has_derivative_transform_within unfolding differentiable_def
by blast
lemma differentiable_on_ident $[$ simp, derivative_intros $]:(\lambda x . x)$ differentiable_on S by (simp add: differentiable_at_imp_differentiable_on)
lemma differentiable_on_id [simp, derivative_intros]: id differentiable_on S by (simp add: id_def)
lemma differentiable_on_const [simp, derivative_intros]: $(\lambda z . c)$ differentiable_on S by (simp add: differentiable_on_def)
lemma differentiable_on_mult [simp, derivative_intros]:
fixes f :: ' M ::real_normed_vector \Rightarrow ' $a::$ real_normed_algebra
shows $\llbracket f$ differentiable_on $S ; g$ differentiable_on $S \rrbracket \Longrightarrow(\lambda z . f z * g z)$ differentiable_on S
unfolding differentiable_on_def differentiable_def
using differentiable_def differentiable_mult by blast
lemma differentiable_on_compose:
$\llbracket g$ differentiable_on $S ; f$ differentiable_on $(g ' S) \rrbracket \Longrightarrow(\lambda x . f(g x))$ differentiable_on S
by (simp add: differentiable_in_compose differentiable_on_def)
lemma bounded_linear_imp_differentiable_on: bounded_linear $f \Longrightarrow f$ differentiable_on S
by (simp add: differentiable_on_def bounded_linear_imp_differentiable)
lemma linear_imp_differentiable_on:
fixes $f::$ ' $a::$ euclidean_space \Rightarrow ' $b::$ real_normed_vector
shows linear $f \Longrightarrow f$ differentiable_on S
by (simp add: differentiable_on_def linear_imp_differentiable)
lemma differentiable_on_minus [simp, derivative_intros]: f differentiable_on $S \Longrightarrow(\lambda z .-(f z))$ differentiable_on S
by (simp add: differentiable_on_def)
lemma differentiable_on_add [simp, derivative_intros]:
$\llbracket f$ differentiable_on $S ; g$ differentiable_on $S \rrbracket \Longrightarrow(\lambda z . f z+g z)$ differentiable_on S
by (simp add: differentiable_on_def)
lemma differentiable_on_diff [simp, derivative_intros]:
$\llbracket f$ differentiable_on $S ; g$ differentiable_on $S \rrbracket \Longrightarrow(\lambda z . f z-g z)$ differentiable_on S
by (simp add: differentiable_on_def)
lemma differentiable_on_inverse [simp, derivative_intros]:
fixes f :: ' a :: real_normed_vector \Rightarrow ' b :: real_normed_field
shows f differentiable_on $S \Longrightarrow(\bigwedge x . x \in S \Longrightarrow f x \neq 0) \Longrightarrow(\lambda x$. inverse $(f x))$
differentiable_on S
by (simp add: differentiable_on_def)
lemma differentiable_on_scaleR [derivative_intros, simp]:
$\llbracket f$ differentiable_on $S ; g$ differentiable_on $S \rrbracket \Longrightarrow\left(\lambda x . f x *_{R} g x\right)$ differentiable_on S
unfolding differentiable_on_def
by (blast intro: differentiable_scaleR)
lemma has_derivative_sqnorm_at [derivative_intros, simp]:
$\left(\left(\lambda x .(\text { norm } x)^{2}\right)\right.$ has_derivative $\left.\left(\lambda x .2 *_{R}(a \cdot x)\right)\right)($ at a)
using bounded_bilinear.FDERIV [of (•) id id a_{-}id id]
by (auto simp: inner_commute dot_square_norm bounded_bilinear_inner)
lemma differentiable_sqnorm_at [derivative_intros, simp]:
fixes $a:: ' a$:: \{real_normed_vector,real_inner $\}$
shows $\left(\lambda x\right.$. $\left.(\text { norm } x)^{2}\right)$ differentiable (at a)
by (force simp add: differentiable_def intro: has_derivative_sqnorm_at)
lemma differentiable_on_sqnorm [derivative_intros, simp]:
fixes S :: 'a :: \{real_normed_vector,real_inner\} set
shows $\left(\lambda x\right.$. $\left.(\text { norm } x)^{2}\right)$ differentiable_on S
by (simp add: differentiable_at_imp_differentiable_on)
lemma differentiable_norm_at [derivative_intros, simp]:
fixes $a::{ }^{\prime} a::$ \{real_normed_vector,real_inner $\}$
shows $a \neq 0 \Longrightarrow$ norm differentiable (at a)
using differentiableI has_derivative_norm by blast
lemma differentiable_on_norm [derivative_intros, simp]:
fixes S :: ' a :: \{real_normed_vector,real_inner\} set
shows $0 \notin S \Longrightarrow$ norm differentiable_on S
by (metis differentiable_at_imp_differentiable_on differentiable_norm_at)

4.10.4 Frechet derivative and Jacobian matrix

definition frechet_derivative f net $=\left(S O M E f^{\prime} .\left(f\right.\right.$ has_derivative $\left.f^{\prime}\right)$ net $)$
proposition frechet_derivative_works:
f differentiable net $\longleftrightarrow(f$ has_derivative (frechet_derivative f net $)$) net
unfolding frechet_derivative_def differentiable_def
unfolding some_eq_ex[of λf^{\prime}. (f has_derivative $\left.f^{\prime}\right)$ net] ..
lemma linear_frechet_derivative: f differentiable net \Longrightarrow linear (frechet_derivative f net)
unfolding frechet_derivative_works has_derivative_def
by (auto intro: bounded_linear.linear)
lemma frechet_derivative_const $[$ simp $]$: frechet_derivative $(\lambda x . c)($ at a) $)=(\lambda x .0)$
using differentiable_const frechet_derivative_works has_derivative_const has_derivative_unique by blast
lemma frechet_derivative_id $[$ simp $]$: frechet_derivative id (at a) $=i d$
using differentiable_def frechet_derivative_works has_derivative_id has_derivative_unique by blast
lemma frechet_derivative_ident $[$ simp $]$: frechet_derivative $(\lambda x . x)($ at a) $)=(\lambda x . x)$ by (metis eq_id_iff frechet_derivative_id)

4.10.5 Differentiability implies continuity

proposition differentiable_imp_continuous_within:
f differentiable (at x within $s) \Longrightarrow$ continuous (at x within s) f by (auto simp: differentiable_def intro: has_derivative_continuous)
lemma differentiable_imp_continuous_on:
f differentiable_on $s \Longrightarrow$ continuous_on $s f$ unfolding differentiable_on_def continuous_on_eq_continuous_within using differentiable_imp_continuous_within by blast
lemma differentiable_on_subset:
f differentiable_on $t \Longrightarrow s \subseteq t \Longrightarrow f$ differentiable_on s
unfolding differentiable_on_def
using differentiable_within_subset
by blast
lemma differentiable_on_empty: fdifferentiable_on \{\}
unfolding differentiable_on_def
by auto
lemma has_derivative_continuous_on:
$\left(\bigwedge x, x \in s \Longrightarrow\left(f\right.\right.$ has_derivative $\left.f^{\prime} x\right)($ at x within $\left.s)\right) \Longrightarrow$ continuous_on s f
by (auto intro!: differentiable_imp_continuous_on differentiableI simp: differen-
tiable_on_def)
Results about neighborhoods filter.
lemma eventually_nhds_metric_le:
eventually $P($ nhds $a)=(\exists d>0 . \forall x$. dist $x a \leq d \longrightarrow P x)$
unfolding eventually_nhds_metric by (safe, rule_tac $x=d / 2$ in exI, auto)
lemma le_nhds: $F \leq n h d s a \longleftrightarrow(\forall S$. open $S \wedge a \in S \longrightarrow$ eventually $(\lambda x . x \in$ S) F)
unfolding le_filter_def eventually_nhds by (fast elim: eventually_mono)
lemma le_nhds_metric: $F \leq n h d s a \longleftrightarrow(\forall e>0$. eventually $(\lambda x$. dist $x a<e) F)$ unfolding le_filter_def eventually_nhds_metric by (fast elim: eventually_mono)
lemma le_nhds_metric_le: $F \leq n h d s a \longleftrightarrow(\forall e>0$. eventually $(\lambda x$. dist $x a \leq e)$

F)

unfolding le_filter_def eventually_nhds_metric_le by (fast elim: eventually_mono)
Several results are easier using a "multiplied-out" variant. (I got this idea from Dieudonne's proof of the chain rule).
lemma has_derivative_within_alt:
(f has_derivative f^{\prime}) (at x within $\left.s\right) \longleftrightarrow$ bounded_linear $f^{\prime} \wedge$
$\left(\forall e>0 . \exists d>0 . \forall y \in s . \operatorname{norm}(y-x)<d \longrightarrow \operatorname{norm}\left(f y-f x-f^{\prime}(y-x)\right)\right.$
$\leq e * \operatorname{norm}(y-x))$
unfolding has_derivative_within filterlim_def le_nhds_metric_le eventually_filtermap eventually_at dist_norm diff_diff_eq
by (force simp add: linear_0 bounded_linear.linear pos_divide_le_eq)
lemma has_derivative_within_alt2:
(f has_derivative f^{\prime}) (at x within $\left.s\right) \longleftrightarrow$ bounded_linear $f^{\prime} \wedge$
$\left(\forall e>0 . \operatorname{eventually}\left(\lambda y . \operatorname{norm}\left(f y-f x-f^{\prime}(y-x)\right) \leq e * \operatorname{norm}(y-x)\right)\right.$
(at x within $s)$)
unfolding has_derivative_within filterlim_def le_nhds_metric_le eventually_filtermap eventually_at dist_norm diff_diff_eq
by (force simp add: linear_0 bounded_linear.linear pos_divide_le_eq)
lemma has_derivative_at_alt:
(f has_derivative f^{\prime}) $($ at $x) \longleftrightarrow$
bounded_linear $f^{\prime} \wedge$
$\left(\forall e>0 . \exists d>0 . \forall y . \operatorname{norm}(y-x)<d \longrightarrow \operatorname{norm}\left(f y-f x-f^{\prime}(y-x)\right) \leq e\right.$

* $\operatorname{norm}(y-x))$
using has_derivative_within_alt [where $s=U N I V]$
by simp

4.10.6 The chain rule

proposition diff_chain_within[derivative_intros]:
assumes (f has_derivative f^{\prime}) (at x within $\left.s\right)$
and $\left(g\right.$ has_derivative $\left.g^{\prime}\right)\left(\right.$ at $(f x)$ within $\left.\left(f^{\prime} s\right)\right)$
shows $\left((g \circ f)\right.$ has_derivative $\left.\left(g^{\prime} \circ f^{\prime}\right)\right)($ at x within $s)$
using has_derivative_in_compose[OF assms]
by (simp add: comp_def)
lemma diff_chain_at[derivative_intros]:
(f has_derivative f^{\prime}) (at $\left.x\right) \Longrightarrow$
$\left(g\right.$ has_derivative $\left.g^{\prime}\right)($ at $(f x)) \Longrightarrow\left((g \circ f)\right.$ has_derivative $\left.\left(g^{\prime} \circ f^{\prime}\right)\right)($ at $x)$
using has_derivative_compose[of $f f^{\prime} x$ UNIV g g]
by (simp add: comp_def)
lemma has_vector_derivative_within_open:
$a \in S \Longrightarrow$ open $S \Longrightarrow$
$\left(f\right.$ has_vector_derivative $\left.f^{\prime}\right)($ at a within $S) \longleftrightarrow\left(f\right.$ has_vector_derivative $\left.f^{\prime}\right)($ at a)
by (simp only: at_within_interior interior_open)

```
lemma field_vector_diff_chain_within:
assumes \(D f\) : ( \(f\) has_vector_derivative \(\left.f^{\prime}\right)(\) at \(x\) within \(S)\)
    and \(D g\) : ( \(g\) has_field_derivative \(\left.g^{\prime}\right)(\) at \((f x)\) within \(f\) ' \(S)\)
shows \(\left((g \circ f)\right.\) has_vector_derivative \(\left.\left(f^{\prime} * g^{\prime}\right)\right)\) (at \(x\) within \(\left.S\right)\)
using diff_chain_within[OF Df[unfolded has_vector_derivative_def]
    \(D g\) [unfolded has_field_derivative_def]]
by (auto simp: o_def mult.commute has_vector_derivative_def)
lemma vector_derivative_diff_chain_within:
    assumes \(D f\) : ( \(f\) has_vector_derivative \(f^{\prime}\) ) (at \(x\) within \(S\) )
        and \(D g\) : \(\left(g\right.\) has_derivative \(\left.g^{\prime}\right)\left(\right.\) at \((f x)\) within \(\left.f^{\prime} S\right)\)
    shows \(\left((g \circ f)\right.\) has_vector_derivative \(\left.\left(g^{\prime} f^{\prime}\right)\right)(\) at \(x\) within \(S)\)
using diff_chain_within[OF Df[unfolded has_vector_derivative_def] Dg]
    linear.scaleR[OF has_derivative_linear [OF Dg]]
    unfolding has_vector_derivative_def o_def
    by (auto simp: o_def mult.commute has_vector_derivative_def)
```


4.10.7 Composition rules stated just for differentiability

```
lemma differentiable_chain_at:
    f differentiable (at x)\Longrightarrow
    g differentiable (at (fx))\Longrightarrow(g\circf) differentiable (at x)
    unfolding differentiable_def
    by (meson diff_chain_at)
lemma differentiable_chain_within:
    f differentiable (at x within S)\Longrightarrow
    g differentiable (at (fx) within (f'S))\Longrightarrow(g\circf) differentiable (at x within S)
    unfolding differentiable_def
    by (meson diff_chain_within)
```


4.10.8 Uniqueness of derivative

The general result is a bit messy because we need approachability of the limit point from any direction. But OK for nontrivial intervals etc.

```
proposition frechet_derivative_unique_within:
    fixes \(f\) :: 'a::euclidean_space \(\Rightarrow\) ' \(b::\) :real_normed_vector
    assumes 1: ( \(f\) has_derivative \(f^{\prime}\) ) (at \(x\) within \(S\) )
        and 2: ( \(f\) has_derivative \(\left.f^{\prime \prime}\right)(\) at \(x\) within \(S)\)
        and \(S: \wedge i e . \llbracket i \in\) Basis; \(e>0 \rrbracket \Longrightarrow \exists d .0<|d| \wedge|d|<e \wedge\left(x+d *_{R} i\right) \in S\)
    shows \(f^{\prime}=f^{\prime \prime}\)
proof -
    note as \(=\operatorname{assms}(1,2)[\) unfolded has_derivative_def]
    then interpret \(f^{\prime}\) : bounded_linear \(f^{\prime}\) by auto
    from as interpret \(f^{\prime \prime}\) : bounded_linear \(f^{\prime \prime}\) by auto
    have \(x\) islimpt \(S\) unfolding islimpt_approachable
    proof (intro allI impI)
        fix \(e:\) : real
```

```
    assume \(e>0\)
    obtain \(d\) where \(0<|d|\) and \(|d|<e\) and \(x+d *_{R}(S O M E\) i. \(i \in\) Basis \() \in S\)
        using assms(3) SOME_Basis \(\langle e>0\rangle\) by blast
    then show \(\exists x^{\prime} \in S . x^{\prime} \neq x \wedge\) dist \(x^{\prime} x<e\)
    by (rule_tac \(x=x+d *_{R}\) (SOME \(i . i \in\) Basis) in bexI) (auto simp: dist_norm
SOME_Basis nonzero_Basis) qed
then have \(*\) : netlimit (at \(x\) within \(S\) ) \(=x\)
    by (simp add: Lim_ident_at trivial_limit_within)
show ?thesis
proof (rule linear_eq_stdbasis)
    show linear \(f^{\prime}\) linear \(f^{\prime \prime}\)
        unfolding linear_conv_bounded_linear using as by auto
next
    fix \(i::{ }^{\prime} a\)
    assume \(i: i \in\) Basis
    define \(e\) where \(e=\operatorname{norm}\left(f^{\prime} i-f^{\prime \prime} i\right)\)
    show \(f^{\prime} i=f^{\prime \prime} i\)
    proof (rule ccontr)
        assume \(f^{\prime} i \neq f^{\prime \prime} i\)
        then have \(e>0\)
            unfolding \(e_{-}\)def by auto
        obtain \(d\) where \(d\) :
            \(0<d\)
            \((\bigwedge y . y \in S \longrightarrow 0<d i s t y x \wedge\) dist \(y x<d \longrightarrow\)
                dist \(\left(\left(f y-f x-f^{\prime}(y-x)\right) / R \operatorname{norm}(y-x)-\right.\)
                    \(\left.\left.\left(f y-f x-f^{\prime \prime}(y-x)\right) / R \operatorname{norm}(y-x)\right)(0-0)<e\right)\)
        using tendsto_diff [OF as (1,2)[THEN conjunct2]]
        unfolding * Lim_within
        using \(\langle e\rangle 0\rangle\) by blast
        obtain \(c\) where \(c: 0<|c||c|<d \wedge x+c *_{R} i \in S\)
            using assms(3) id(1) by blast
        have \(*: \operatorname{norm}\left(-\left((1 /|c|) *_{R} f^{\prime}\left(c *_{R} i\right)\right)+(1 /|c|) *_{R} f^{\prime \prime}\left(c *_{R} i\right)\right)=\)
            \(\operatorname{norm}\left((1 /|c|) *_{R}\left(-\left(f^{\prime}\left(c *_{R} i\right)\right)+f^{\prime \prime}\left(c *_{R} i\right)\right)\right)\)
            unfolding scaleR_right_distrib by auto
            also have \(\ldots=\operatorname{norm}\left((1 /|c|) *_{R}\left(c *_{R}\left(-\left(f^{\prime} i\right)+f^{\prime \prime} i\right)\right)\right)\)
            unfolding \(f^{\prime}\).scale \(R f^{\prime \prime}\).scale \(R\)
            unfolding scaleR_right_distrib scaleR_minus_right
            by auto
            also have ... \(=e\)
            unfolding \(e_{-} d e f\)
            using \(c(1)\)
            using norm_minus_cancel[of \(\left.f^{\prime} i-f^{\prime \prime} i\right]\)
            by auto
            finally show False
            using \(c\)
            using \(d(2)\left[\right.\) of \(\left.x+c *_{R} i\right]\)
            unfolding dist_norm
            unfolding \(f^{\prime}\).scale \(R f^{\prime \prime}\).scale \(R f^{\prime}\).add \(f^{\prime \prime}\).add \(f^{\prime}\).diff \(f^{\prime \prime}\). diff
                scaleR_scaleR scaleR_right_diff_distrib scaleR_right_distrib
```

```
            using i
            by (auto simp: inverse_eq_divide)
        qed
    qed
qed
proposition frechet_derivative_unique_within_closed_interval:
    fixes f::'a::euclidean_space = 'b::real_normed_vector
    assumes ab: \bigwedgei. i\inBasis \Longrightarrowa\cdoti<b\cdoti
        and x:x\incbox a b
        and (f has_derivative f')(at x within cbox a b)
        and (f has_derivative f}\mp@subsup{f}{}{\prime\prime})(\mathrm{ at }x\mathrm{ within cbox a b)
    shows f}\mp@subsup{f}{}{\prime}=\mp@subsup{f}{}{\prime\prime
proof (rule frechet_derivative_unique_within)
    fix e :: real
    fix }i::='
    assume e>0 and i:i\in Basis
    then show \exists d. 0< <d| ^ |d|<e^ x+d ** i\incbox a b
    proof (cases x}\cdoti=a\cdoti
        case True
        with ab[of i] \langlee>0\rangle x i show ?thesis
            by (rule_tac x=(min (b\cdoti - a\cdoti)e) / 2 in exI)
                (auto simp add: mem_box field_simps inner_simps inner_Basis)
    next
        case False
        moreover have a \cdot i<x \cdoti
            using False i mem_box(2) x by force
        moreover {
            have }a\cdoti*2+\operatorname{min}(x\cdoti-a\cdoti)e\leqa\cdoti*2+x\cdoti-a\cdot
                by auto
            also have ... =a\cdoti + x i
                by auto
            also have .. \leq2 * (x•i)
                using <a \cdot i< < • i> by auto
            finally have }a\cdoti*2+\operatorname{min}(x\cdoti-a\cdoti)e\leqx\cdoti*
            by auto
        }
        moreover have min (x\cdoti-a\cdoti)e\geq0
            by (simp add: }\langle0<e\rangle\langlea\cdoti<x\cdoti\rangle less_eq_real_def
        then have x •i*2 \leqb •i*2 + min (x •i-a | i)e
            using i mem_box(2) x by force
        ultimately show ?thesis
        using ab[of i] \langlee>0\rangle x i
            by (rule_tac x=- (min (x\cdoti -a\cdoti)e) / 2 in exI)
                (auto simp add: mem_box field_simps inner_simps inner_Basis)
    qed
qed (use assms in auto)
lemma frechet_derivative_unique_within_open_interval:
```

```
    fixes \(f::{ }^{\prime} a::\) euclidean_space \(\Rightarrow{ }^{\prime} b::\) real_normed_vector
    assumes \(x: x \in b o x a b\)
        and \(f:\left(f\right.\) has_derivative \(\left.f^{\prime}\right)\left(\right.\) at \(x\) within box a b) ( \(f\) has_derivative \(\left.f^{\prime \prime}\right)(\) at \(x\)
within box a \(b\) )
    shows \(f^{\prime}=f^{\prime \prime}\)
proof -
    have at \(x\) within box \(a b=\) at \(x\)
        by (metis x at_within_interior interior_open open_box)
    with \(f\) show \(f^{\prime}=f^{\prime \prime}\)
        by (simp add: has_derivative_unique)
qed
lemma frechet_derivative_at:
    ( \(f\) has_derivative \(f^{\prime}\) ) (at \(\left.x\right) \Longrightarrow f^{\prime}=\) frechet_derivative \(f\) (at \(x\) )
    using differentiable_def frechet_derivative_works has_derivative_unique by blast
```

lemma frechet_derivative_compose:
frechet_derivative $($ fog $)($ at $x)=$ frechet_derivative $(f)(a t(g x))$ ofrechet_derivative
g (at x)
if g differentiable at $x f$ differentiable at ($g x$)
by (metis diff_chain_at frechet_derivative_at frechet_derivative_works that)
lemma frechet_derivative_within_cbox:
fixes f :: ' $a::$ euclidean_space \Rightarrow ' $b::$ real_normed_vector
assumes $\bigwedge i . i \in$ Basis $\Longrightarrow a \cdot i<b \cdot i$
and $x \in c b o x$ a b
and (f has_derivative f^{\prime}) (at x within cbox a b)
shows frechet_derivative f (at x within cbox a b) $=f^{\prime}$
using assms
by (metis Derivative.differentiableI frechet_derivative_unique_within_closed_interval
frechet_derivative_works)
lemma frechet_derivative_transform_within_open:
frechet_derivative $f($ at $x)=$ frechet_derivative $g($ at $x)$
if f differentiable at x open $X x \in X \bigwedge x . x \in X \Longrightarrow f x=g x$
by (meson frechet_derivative_at frechet_derivative_works has_derivative_transform_within_open
that)

4.10.9 Derivatives of local minima and maxima are zero

lemma has_derivative_local_min:
fixes f :: 'a::real_normed_vector \Rightarrow real
assumes deriv: (f has_derivative f^{\prime}) (at x)
assumes min: eventually $(\lambda y . f x \leq f y)($ at $x)$
shows $f^{\prime}=(\lambda h .0)$
proof
fix h :: 'a
interpret f^{\prime} : bounded_linear f^{\prime} using deriv by (rule has_derivative_bounded_linear)

```
    show \(f^{\prime} h=0\)
    proof (cases \(h=0\) )
    case False
    from min obtain \(d\) where \(d 1: 0<d\) and d2: \(\forall y \in\) ball \(x d . f x \leq f y\)
        unfolding eventually_at by (force simp: dist_commute)
    have FDERIV \(\left(\lambda r . x+r *_{R} h\right) 0:>\left(\lambda r . r *_{R} h\right)\)
        by (intro derivative_eq_intros) auto
    then have FDERIV \(\left(\lambda r . f\left(x+r *_{R} h\right)\right) 0:>\left(\lambda k . f^{\prime}\left(k *_{R} h\right)\right)\)
        by (rule has_derivative_compose, simp add: deriv)
    then have DERIV \(\left(\lambda r . f\left(x+r *_{R} h\right)\right) 0:>f^{\prime} h\)
    unfolding has_field_derivative_def by (simp add: \(f^{\prime}\).scaleR mult_commute_abs)
    moreover have \(0<d /\) norm \(h\) using \(d 1\) and \(\langle h \neq 0\rangle\) by simp
    moreover have \(\forall y .|0-y|<d / \operatorname{norm} h \longrightarrow f\left(x+0 *_{R} h\right) \leq f(x+y\)
\(\left.*_{R} h\right)\)
            using \(\langle h \neq 0\rangle\) by (auto simp add: d2 dist_norm pos_less_divide_eq)
    ultimately show \(f^{\prime} h=0\)
        by (rule DERIV_local_min)
    qed \(\operatorname{simp}\)
qed
lemma has_derivative_local_max:
    fixes \(f\) :: ' \(a:\) :real_normed_vector \(\Rightarrow\) real
    assumes ( \(f\) has_derivative \(f^{\prime}\) ) (at \(x\) )
    assumes eventually \((\lambda y . f y \leq f x)(\) at \(x)\)
    shows \(f^{\prime}=(\lambda h .0)\)
    using has_derivative_local_min \(\left[o f \lambda x .-f x \lambda h .-f^{\prime} h x\right]\)
    using assms unfolding fun_eq_iff by simp
lemma differential_zero_maxmin:
    fixes \(f::^{\prime} a::\) real_normed_vector \(\Rightarrow\) real
    assumes \(x \in S\)
        and open \(S\)
        and deriv: \(\left(f\right.\) has_derivative \(\left.f^{\prime}\right)(\) at \(x)\)
        and mono: \((\forall y \in S . f y \leq f x) \vee(\forall y \in S . f x \leq f y)\)
    shows \(f^{\prime}=(\lambda v .0)\)
    using mono
proof
    assume \(\forall y \in S\). \(f y \leq f x\)
    with \(\langle x \in S\rangle\) and \(\langle\) open \(S\rangle\) have eventually \((\lambda y . f y \leq f x)(\) at \(x)\)
        unfolding eventually_at_topological by auto
    with deriv show ?thesis
        by (rule has_derivative_local_max)
next
    assume \(\forall y \in S . f x \leq f y\)
    with \(\langle x \in S\rangle\) and 〈open \(S\rangle\) have eventually \((\lambda y . f x \leq f y)(\) at \(x)\)
        unfolding eventually_at_topological by auto
    with deriv show ?thesis
        by (rule has_derivative_local_min)
qed
```

```
lemma differential_zero_maxmin_component:
    fixes \(f\) :: 'a::euclidean_space \(\Rightarrow\) 'b::euclidean_space
    assumes \(k: k \in\) Basis
        and ball: \(0<e(\forall y \in\) ball \(x e .(f y) \cdot k \leq(f x) \cdot k) \vee(\forall y \in\) ball \(x e .(f x) \cdot k \leq(f\)
\(y) \cdot k\) )
        and diff: \(f\) differentiable (at \(x\) )
    shows \(\left(\sum j \in\right.\) Basis. (frechet_derivative \(f(\) at \(\left.\left.x) j \cdot k\right) *_{R} j\right)=\left(0::^{\prime} a\right)(\) is ? \(D k=\)
0)
proof -
    let \(? f^{\prime}=\) frechet_derivative \(f(\) at \(x)\)
    have \(x \in\) ball \(x e\) using \(\langle 0<e\rangle\) by simp
    moreover have open (ball \(x\) e) by simp
    moreover have \(\left((\lambda x . f x \cdot k)\right.\) has_derivative \(\left(\lambda h\right.\). ? \(\left.f^{\prime} h \cdot k\right)\) ) (at \(\left.x\right)\)
        using bounded_linear_inner_left diff[unfolded frechet_derivative_works]
        by (rule bounded_linear.has_derivative)
    ultimately have \((\lambda h\). frechet_derivative \(f(\) at \(x) h \cdot k)=(\lambda v .0)\)
        using ball(2) by (rule differential_zero_maxmin)
    then show ?thesis
        unfolding fun_eq_iff by simp
qed
```


4.10.10 One-dimensional mean value theorem

lemma mvt_simple:
fixes f :: real \Rightarrow real
assumes $a<b$
and derf: $\bigwedge x . \llbracket a \leq x ; x \leq b \rrbracket \Longrightarrow\left(f\right.$ has_derivative $\left.f^{\prime} x\right)$ (at x within $\{a . . b\}$)
shows $\exists x \in\{a<. .<b\}$. $f b-f a=f^{\prime} x(b-a)$
proof (rule mvt)
have f differentiable_on $\{a . . b\}$
using derf unfolding differentiable_on_def differentiable_def by force
then show continuous_on $\{a . . b\} f$
by (rule differentiable_imp_continuous_on)
show (f has_derivative $f^{\prime} x$) (at x) if $a<x x<b$ for x
by (metis at_within_Icc_at derf leI order.asym that)
qed (use assms in auto)
lemma mvt_very_simple:
fixes $f::$ real \Rightarrow real
assumes $a \leq b$
and derf: $\bigwedge x . \llbracket a \leq x ; x \leq b \rrbracket \Longrightarrow\left(f\right.$ has_derivative $\left.f^{\prime} x\right)$ (at x within $\left.\{a . . b\}\right)$
shows $\exists x \in\{a . . b\} . f b-f a=f^{\prime} x(b-a)$
proof (cases $a=b$)
interpret bounded_linear $f^{\prime} b$
using assms(2) assms(1) by auto
case True
then show? ?thesis
by force

```
next
    case False
    then show ?thesis
        using mvt_simple[OF _ derf]
    by (metis \a \leq b>atLeastAtMost_iff dual_order.order_iff_strict greaterThanLessThan_iff)
qed
```

A nice generalization (see Havin's proof of 5.19 from Rudin's book).

```
lemma mvt_general:
    fixes \(f::\) real \(\Rightarrow\) ' \(a::\) real_inner
    assumes \(a<b\)
        and contf: continuous_on \(\{a . . b\} f\)
        and derf: \(\wedge x . \llbracket a<x ; x<b \rrbracket \Longrightarrow\left(f\right.\) has_derivative \(\left.f^{\prime} x\right)(\) at \(x)\)
    shows \(\exists x \in\{a<. .<b\}\). norm \((f b-f a) \leq \operatorname{norm}\left(f^{\prime} x(b-a)\right)\)
proof -
    have \(\exists x \in\{a<. .<b\} .(f b-f a) \cdot f b-(f b-f a) \cdot f a=(f b-f a) \cdot f^{\prime} x(b\)
\(-a\) )
            apply (rule mvt \([O F\langle a<b\rangle\), where \(f=\lambda x .(f b-f a) \cdot f x])\)
            apply (intro continuous_intros contf)
            using derf apply (auto intro: has_derivative_inner_right)
            done
    then obtain \(x\) where \(x: x \in\{a<. .<b\}\)
        \((f b-f a) \cdot f b-(f b-f a) \cdot f a=(f b-f a) \cdot f^{\prime} x(b-a) .\).
    show ?thesis
    proof (cases fa=fb)
        case False
        have norm \((f b-f a) * \operatorname{norm}(f b-f a)=(\operatorname{norm}(f b-f a))^{2}\)
            by (simp add: power2_eq_square)
        also have \(\ldots=(f b-f a) \cdot(f b-f a)\)
            unfolding power2_norm_eq_inner ..
        also have \(\ldots=(f b-f a) \cdot f^{\prime} x(b-a)\)
            using \(x\) (2) by (simp only: inner_diff_right)
        also have \(\ldots \leq \operatorname{norm}(f b-f a) * \operatorname{norm}\left(f^{\prime} x(b-a)\right)\)
            by (rule norm_cauchy_schwarz)
        finally show ?thesis
            using False \(x\) (1)
            by (auto simp add: mult_left_cancel)
    next
        case True
        then show ?thesis
            using \(\langle a<b\rangle\) by (rule_tac \(x=(a+b) / 2\) in bexI) auto
    qed
qed
```


4.10.11 More general bound theorems

proposition differentiable_bound_general:
fixes $f::$ real $\Rightarrow{ }^{\prime} a:$:real_normed_vector
assumes $a<b$

```
    and f_cont:continuous_on {a..b} f
    and phi_cont: continuous_on {a..b} \varphi
    and f}\mp@subsup{f}{}{\prime}:\bigwedgex.a<x\Longrightarrowx<b\Longrightarrow(f has_vector_derivative f'x) (at x
    and phi': \bigwedgex. a < x \Longrightarrow x < b\Longrightarrow (\varphi has_vector_derivative \varphi' x) (at x)
    and bnd: \x. a < x \Longrightarrow x<b\Longrightarrow norm ( f' x) \leq \varphi' }
    shows norm (fb-fa)\leq\varphib-\varphia
proof -
    {
        fix x assume x: a<x x<b
        have 0\leqnorm ( }\mp@subsup{f}{}{\prime}x)\mathrm{ by simp
        also have ... \leq \varphi ' }x\mathrm{ using }x\mathrm{ by (auto intro!: bnd)
    finally have 0}\leq\mp@subsup{\varphi}{}{\prime}x\mathrm{ .
    } note phi'_nonneg = this
    note f_tendsto = assms(2)[simplified continuous_on_def,rule_format]
    note phi_tendsto = assms(3)[simplified continuous_on_def,rule_format]
    {
        fix e::real assume e>0
        define e2 where e2 = e/2
        with }\langlee>0\rangle\mathrm{ have e2> 0 by simp
        let ?le = \lambdax1. norm (fx1 - fa) \leq\varphi x1 - \varphia+e* (x1 - a) +e
        define }A\mathrm{ where }A={x2.a\leqx2\wedgex2\leqb\wedge(\forallx1\in{a..<x2}. ?le x1)
    have A_subset: A\subseteq{a..b} by (auto simp: A_def)
    {
        fix x2
        assume a:a\leqx2 x2 \leqb and le: \forallx1\in{a..<x2}. ?le x1
        have ?le x2 using <e>0\rangle
        proof cases
            assume x2 }\not=a\mathrm{ with a have }a<x2\mathrm{ by simp
            have at x2 within {a<..<x2}\not= bot
                using <a<x2>
                by (auto simp: trivial_limit_within islimpt_in_closure)
            moreover
            have }((\lambdax1.(\varphix1-\varphia)+e*(x1-a)+e)\longrightarrow(\varphix2 - \varphia)+e < *
(x2 - a) +e) (at x2 within {a<..<x2})
                    ((\lambdax1. norm (fx1 - fa)) \longrightarrow norm (fx\mathcal{L}-fa)) (at x2 within {a
    <..<x2})
            using a
                by (auto intro!: tendsto_eq_intros f_tendsto phi_tendsto
                intro: tendsto_within_subset[where S={a..b}])
            moreover
            have eventually ( }\lambdax.x>a)(\mathrm{ at x2 within {a<..<x2})
                by (auto simp: eventually_at_filter)
            hence eventually ?le (at x2 within {a<..<x2})
                unfolding eventually_at_filter
                by eventually_elim (insert le, auto)
            ultimately
            show ?thesis
                by (rule tendsto_le)
            qed simp
```

```
\(\}\) note \(l e \_c o n t=t h i s\)
have \(a \in A\)
    using assms by (auto simp: A_def)
hence \([\operatorname{simp}]: A \neq\{ \}\) by auto
have \(A_{\_i v l: ~}^{\wedge x 1} x 2 . x 2 \in A \Longrightarrow x 1 \in\{a \ldots x 2\} \Longrightarrow x 1 \in A\)
    by (simp add: A_def)
have [simp]: bdd_above \(A\) by (auto simp: A_def)
define \(y\) where \(y=\operatorname{Sup} A\)
have \(y \leq b\)
    unfolding \(y\) _def
    by (simp add: cSup_le_iff) (simp add: A_def)
    have leI: \(\bigwedge x x 1 . a \leq x 1 \Longrightarrow x \in A \Longrightarrow x 1<x \Longrightarrow\) ?le \(x 1\)
    by (auto simp: A_def intro!: le_cont)
have \(y_{-}\)all_le: \(\forall x 1 \in\{a . .<y\}\). ?le \(x 1\)
    by (auto simp: y_def less_cSup_iff leI)
have \(a \leq y\)
    by (metis \(\langle a \in A\rangle\left\langle b d d_{\text {_above }} A\right\rangle\) cSup_upper \(y_{-} d e f\) )
have \(y \in A\)
    using \(y_{-}\)all_le \(\langle a \leq y\rangle\langle y \leq b\rangle\)
    by (auto simp: A_def)
hence \(A=\{a . . y\}\)
    using A_subset by (auto simp: subset_iff y_def cSup_upper intro: A_ivl)
from le_cont \(\left[O F\langle a \leq y\rangle\langle y \leq b\rangle y_{-} a l l_{l} l e\right]\) have le_y: ?le \(y\).
have \(y=b\)
proof (cases \(a=y\) )
    case True
    with \(\langle a<b\rangle\) have \(y<b\) by simp
    with \(\langle a=y\rangle f_{-}\)cont phi_cont \(\langle e 2>0\rangle\)
    have \(1: \forall_{F} x\) in at \(y\) within \(\{y . . b\}\). dist \((f x)(f y)<e 2\)
    and 2: \(\forall_{F} x\) in at \(y\) within \(\{y . . b\}\). dist \((\varphi x)(\varphi y)<e 2\)
        by (auto simp: continuous_on_def tendsto_iff)
    have 3: eventually \((\lambda x . y<x)\) (at \(y\) within \(\{y . . b\})\)
        by (auto simp: eventually_at_filter)
    have 4: eventually \((\lambda x::\) real. \(x<b)\) (at \(y\) within \(\{y . . b\})\)
        using - \(\langle y<b\rangle\)
        by (rule order_tendstoD) (auto intro!: tendsto_eq_intros)
    from 1234
    have eventually_le: eventually \((\lambda x\). ?le \(x)\) (at \(y\) within \(\{y . . b\})\)
    proof eventually_elim
        case (elim x1)
        have norm \((f x 1-f a)=\operatorname{norm}(f x 1-f y)\)
            by ( simp add: \(\langle a=y\rangle)\)
            also have norm \((f x 1-f y) \leq e 2\)
            using elim \(\langle a=y\rangle\) by (auto simp : dist_norm intro!: less_imp_le)
            also have \(\ldots \leq e 2+(\varphi x 1-\varphi a+e 2+e *(x 1-a))\)
            using \(\langle 0<e\rangle\) elim
            by (intro add_increasing2[OF add_nonneg_nonneg order.refl])
                (auto simp: \(\langle a=y\rangle\) dist_norm intro!: mult_nonneg_nonneg)
    also have \(\ldots=\varphi x 1-\varphi a+e *(x 1-a)+e\)
```

```
    by (simp add: e2_def)
    finally show ?le x1.
    qed
    from this[unfolded eventually_at_topological] «?le y〉
    obtain \(S\) where \(S:\) open \(S y \in S \bigwedge x . x \in S \Longrightarrow x \in\{y . . b\} \Longrightarrow\) ?le \(x\)
    by metis
    from 〈open \(S\) 〉 obtain \(d\) where \(d: \bigwedge x\). dist \(x y<d \Longrightarrow x \in S d>0\)
    by (force simp: dist_commute open_dist ball_def dest!: bspec \(\left.\left[O F \_\langle y \in S\rangle\right]\right)\)
    define \(d^{\prime}\) where \(d^{\prime}=\min b(y+(d / \mathcal{Z}))\)
    have \(d^{\prime} \in A\)
    unfolding \(A_{-} d e f\)
    proof safe
    show \(a \leq d^{\prime}\) using \(\langle a=y\rangle\langle 0<d\rangle\langle y<b\rangle\) by (simp add: \(\left.d^{\prime}{ }^{\prime} d e f\right)\)
    show \(d^{\prime} \leq b\) by (simp add: \(d^{\prime}{ }_{-} d e f\) )
    fix \(x 1\)
    assume \(x 1 \in\left\{a . .<d^{\prime}\right\}\)
    hence \(x 1 \in S x 1 \in\{y . . b\}\)
        by (auto simp: \(\langle a=y\rangle d^{\prime}{ }^{\prime}\) def dist_real_def intro!: \(d\) )
    thus ?le \(x 1\)
        by (rule \(S\) )
    qed
    hence \(d^{\prime} \leq y\)
        unfolding \(y_{-} d e f\)
        by (rule cSup_upper) simp
    then show \(y=b\) using \(\langle d>0\rangle\langle y<b\rangle\)
    by (simp add: \(\left.d^{\prime} \_d e f\right)\)
next
    case False
    with \(\langle a \leq y\rangle\) have \(a<y\) by simp
    show \(y=b\)
    proof (rule ccontr)
    assume \(y \neq b\)
    hence \(y<b\) using \(\langle y \leq b\rangle\) by simp
    let ? \(F=\) at \(y\) within \(\{y . .<b\}\)
    from \(f^{\prime} p h i^{\prime}\)
    have ( \(f\) has_vector_derivative \(f^{\prime} y\) ) ?F
        and ( \(\varphi\) has_vector_derivative \(\varphi^{\prime} y\) ) ? \(F\)
        using \(\langle a<y\rangle\langle y<b\rangle\)
        by (auto simp add: at_within_open[of _ \(\{a<. .<b\}\) ] has_vector_derivative_def
        intro!: has_derivative_subset [where \(s=\{a<. .<b\}\) and \(t=\{y . .<b\}])\)
    hence \(\forall_{F} x 1\) in ? \(F\). norm \(\left(f x 1-f y-(x 1-y) *_{R} f^{\prime} y\right) \leq e 2 *|x 1-y|\)
        \(\forall_{F} x 1\) in ? \(F\). norm \(\left(\varphi x 1-\varphi y-(x 1-y) *_{R} \varphi^{\prime} y\right) \leq e 2 *|x 1-y|\)
        using \(\langle e 2>0\rangle\)
        by (auto simp: has_derivative_within_alt2 has_vector_derivative_def)
    moreover
    have \(\forall_{F} x 1\) in ? \(F . y \leq x 1 \forall_{F} x 1\) in ? \(F . x 1<b\)
        by (auto simp: eventually_at_filter)
    ultimately
    have \(\forall_{F} x 1\) in ? \(F\). norm \((f x 1-f y) \leq(\varphi x 1-\varphi y)+e *|x 1-y|\)
```

```
    (is \(\forall_{F} x 1\) in ? \(F\). ?le \(x 1\) )
proof eventually_elim
    case (elim x1)
    from norm_triangle_ineq2[THEN order_trans, OF elim(1)]
    have \(\operatorname{norm}(f x 1-f y) \leq \operatorname{norm}\left(f^{\prime} y\right) *|x 1-y|+e 2 *|x 1-y|\)
        by (simp add: ac_simps)
    also have \(\operatorname{norm}\left(f^{\prime} y\right) \leq \varphi^{\prime} y\) using \(b n d\langle a<y\rangle\langle y<b\rangle\) by simp
    also have \(\varphi^{\prime} y *|x 1-y| \leq \varphi x 1-\varphi y+e 2 *|x 1-y|\)
        using elim by (simp add: ac_simps)
    finally
    have norm \((f x 1-f y) \leq \varphi x 1-\varphi y+e 2 *|x 1-y|+e 2 *|x 1-y|\)
    by (auto simp: mult_right_mono)
    thus ?case by (simp add: e2_def)
qed
moreover have ?le' \(y\) by simp
ultimately obtain \(S\)
where \(S\) : open \(S y \in S \bigwedge x . x \in S \Longrightarrow x \in\{y . .<b\} \Longrightarrow ? l e^{\prime} x\)
    unfolding eventually_at_topological
    by metis
from 〈open \(S\) 〉obtain \(d\) where \(d: \wedge x\). dist \(x y<d \Longrightarrow x \in S d>0\)
    by (force simp: dist_commute open_dist ball_def dest!: bspec \(\left.\left[O F \_\langle y \in S\rangle\right]\right)\)
define \(d^{\prime}\) where \(d^{\prime}=\min ((y+b) /\) 2) \((y+(d /\) 2 \())\)
have \(d^{\prime} \in A\)
    unfolding \(A_{-}\)def
proof safe
    show \(a \leq d^{\prime}\) using \(\langle a<y\rangle\langle 0<d\rangle\langle y<b\rangle\) by (simp add: \(d^{\prime}{ }_{-} d e f\) )
    show \(d^{\prime} \leq b\) using \(\langle y<b\rangle\) by (simp add: \(d^{\prime} \_d e f\) min_def)
    fix \(x 1\)
    assume \(x 1: x 1 \in\left\{a . .<d^{\prime}\right\}\)
    show ?le x1
    proof (cases \(x 1<y\) )
        case True
        then show ?thesis
            using \(\langle y \in A\rangle\) local.leI x1 by auto
    next
        case False
        hence \(x 1^{\prime}: x 1 \in S x 1 \in\{y . .<b\}\) using \(x 1\)
            by (auto simp: \(d^{\prime}\) _def dist_real_def intro!: d)
    have norm \((f x 1-f a) \leq \operatorname{norm}(f x 1-f y)+\operatorname{norm}(f y-f a)\)
            by (rule order_trans[OF _ norm_triangle_ineq]) simp
        also note \(S(3)[\) OF \(x 1]\)
        also note le_y
        finally show? ?le x1
            using False by (auto simp: algebra_simps)
    qed
qed
hence \(d^{\prime} \leq y\)
    unfolding \(y_{-}\)def by (rule cSup_upper) simp
thus False using \(\langle d>0\rangle\langle y<b\rangle\)
```

```
                by (simp add: d'_def min_def split: if_split_asm)
        qed
    qed
    with le_y have norm (fb-fa) \leq\varphib-\varphia+e*(b-a+1)
    by (simp add: algebra_simps)
} note * = this
show ?thesis
proof (rule field_le_epsilon)
    fix e::real assume e>0
    then show norm (fb-fa)\leq\varphib-\varphia+e
        using *[of e / (b-a+1)]\langlea<b\rangle by simp
    qed
qed
lemma differentiable_bound:
    fixes f :: 'a::real_normed_vector = 'b::real_normed_vector
    assumes convex S
        and derf: }\bigwedgex.x\inS\Longrightarrow(f\mathrm{ has_derivative f' }x\mathrm{ ) (at x within S)
        and B:\x. x }\\S\Longrightarrow\mathrm{ onorm }(\mp@subsup{f}{}{\prime}x)\leq
        and x:x\inS
        and y:y\inS
    shows norm (fx-fy)\leqB*\operatorname{norm}(x-y)
proof -
    let ? p = \lambdau. x + u* *R (y-x)
    let ? }\varphi=\lambdah.h*B*\operatorname{norm}(x-y
    have *: x + u**R}(y-x)\inS\mathrm{ if }u\in{0..1} for 
    proof -
        have }u\mp@subsup{*}{R}{}y=u\mp@subsup{*}{R}{}(y-x)+u\mp@subsup{*}{R}{}
        by (simp add: scale_right_diff_distrib)
        then show }x+u\mp@subsup{*}{R}{}(y-x)\in
            using that (convex S> x y by (simp add: convex_alt)
                (metis pth_b(2) pth_c(1) scaleR_collapse)
    qed
    have }\z.z\in(\lambdau.x+u** (y-x))'{0..1}
            (f has_derivative f'z)(at z within (\lambdau. x + u *R (y - x))'{0..1})
        by (auto intro: * has_derivative_subset [OF derf])
    then have continuous_on (?p'{0..1})f
        unfolding continuous_on_eq_continuous_within
        by (meson has_derivative_continuous)
    with * have 1: continuous_on {0 .. 1}(f\circ?p)
        by (intro continuous_intros)+
    {
        fix u::real assume u:u\in{0<..< 1}
    let ?u = ?p u
    interpret linear (f' ?u)
        using u by (auto intro!: has_derivative_linear derf *)
    have (f\circ?p has_derivative (f' ?u)\circ (\lambdau.0 +u** (y-x))) (at u within box
0 1)
    by (intro derivative_intros has_derivative_subset [OF derf]) (use u * in auto)
```

```
    hence \(\left(\left(f \circ\right.\right.\) ? \(p\) ) has_vector_derivative \(f^{\prime}\) ? \(\left.u(y-x)\right)(\) at \(u)\)
    by (simp add: at_within_open[OF u open_greaterThanLessThan] scaleR has_vector_derivative_def
o_def)
    \} note \(2=\) this
    have 3: continuous_on \(\{0 . .1\}\) ? \(\varphi\)
        by (rule continuous_intros)+
    have 4: (? \(\varphi\) has_vector_derivative \(B * \operatorname{norm}(x-y)\) ) (at u) for \(u\)
            by (auto simp: has_vector_derivative_def intro!: derivative_eq_intros)
    \{
            fix \(u::\) real assume \(u: u \in\{0<. .<1\}\)
            let ? \(u=\) ? \(p u\)
            interpret bounded_linear ( \(f^{\prime}\) ?u)
            using \(u\) by (auto intro!: has_derivative_bounded_linear derf *)
            have norm \(\left(f^{\prime} ? u(y-x)\right) \leq \operatorname{onorm}\left(f^{\prime} ? u\right) * \operatorname{norm}(y-x)\)
            by (rule onorm) (rule bounded_linear)
            also have onorm \(\left(f^{\prime} ? u\right) \leq B\)
            using \(u\) by (auto intro!: assms(3)[rule_format] *)
            finally have norm \(\left(\left(f^{\prime} ? u\right)(y-x)\right) \leq B * \operatorname{norm}(x-y)\)
            by (simp add: mult_right_mono norm_minus_commute)
    \(\}\) note \(5=\) this
    have \(\operatorname{norm}(f x-f y)=\operatorname{norm}\left(\left(f \circ\left(\lambda u . x+u *_{R}(y-x)\right)\right) 1-(f \circ(\lambda u . x\right.\)
\(\left.\left.+u *_{R}(y-x)\right)\right) 0\) )
    by (auto simp add: norm_minus_commute)
    also
    from differentiable_bound_general[OF zero_less_one 1, OF 324 5]
    have norm \(((f \circ ? p) 1-(f \circ ? p) 0) \leq B * \operatorname{norm}(x-y)\)
        by simp
    finally show ?thesis .
qed
lemma field_differentiable_bound:
    fixes \(S\) :: 'a::real_normed_field set
    assumes cvs: convex \(S\)
            and \(d f: \bigwedge z . z \in S \Longrightarrow\left(f\right.\) has_field_derivative \(\left.f^{\prime} z\right)(\) at \(z\) within \(S)\)
            and \(d n: \bigwedge z . z \in S \Longrightarrow \operatorname{norm}\left(f^{\prime} z\right) \leq B\)
            and \(x \in S \quad y \in S\)
            shows \(\operatorname{norm}(f x-f y) \leq B * \operatorname{norm}(x-y)\)
    apply (rule differentiable_bound [OF cvs])
    apply (erule df [unfolded has_field_derivative_def])
    apply (rule onorm_le, simp_all add: norm_mult mult_right_mono assms)
    done
```


lemma

differentiable_bound_segment:
fixes $f::$ 'a::real_normed_vector \Rightarrow ' $b::$ real_normed_vector
assumes $\wedge t . t \in\{0 . .1\} \Longrightarrow x 0+t *_{R} a \in G$
assumes $f^{\prime}: \bigwedge x . x \in G \Longrightarrow\left(f\right.$ has_derivative $\left.f^{\prime} x\right)($ at x within $G)$
assumes $B: \bigwedge x . x \in\{0 . .1\} \Longrightarrow \operatorname{onorm}\left(f^{\prime}\left(x 0+x *_{R} a\right)\right) \leq B$
shows norm $(f(x 0+a)-f x 0) \leq$ norm $a * B$

```
proof -
    let ?G = (\lambdax.x0 + x * * a)'{0..1}
    have ?G = (+) x0' (\lambdax. x * *R a)'{0..1} by auto
    also have convex ...
        by (intro convex_translation convex_scaled convex_real_interval)
    finally have convex ?G .
    moreover have ?G\subseteqG x0 f?G x0 + a\in?G using assms by (auto intro:
image_eqI[where x=1])
    ultimately show ?thesis
        using has_derivative_subset[OF f}\mp@subsup{}{\prime}{< ??G\subseteqG`] B
            differentiable_bound[of (\lambdax.x0 + x *R a)'{0..1}ff'B x0 + ax0]
        by (force simp: ac_simps)
qed
lemma differentiable_bound_linearization:
    fixes f::'a::real_normed_vector }=>\mathrm{ 'b::real_normed_vector
    assumes S:\t.t\in{0..1}\Longrightarrowa+t** (b-a)\inS
    assumes f'[derivative_intros]: \bigwedgex. x 
S)
```



```
    assumes x0 \inS
    shows norm (fb-fa-\mp@subsup{f}{}{\prime}x0(b-a))\leqnorm (b-a)*B
proof -
    define g}\mathrm{ where [abs_def]: gx=fx- f'x0 x for x
    have g: \x. x G S (ghas_derivative (\lambdai. f'xi- f'x0 i)) (at x within S)
        unfolding g_def using assms
        by (auto intro!: derivative_eq_intros
        bounded_linear.has_derivative[OF has_derivative_bounded_linear,OF f ])
    from B have }\forallx\in{0..1}. onorm (\lambdai. f' (a+x** (b-a)) i- f'x0i)\leq
        using assms by (auto simp: fun_diff_def)
    with differentiable_bound_segment[OF S g] \langlex0 \inS\rangle
    show ?thesis
        by (simp add: g_def field_simps linear_diff[OF has_derivative_linear[OF f |])
qed
lemma vector_differentiable_bound_linearization:
    fixes f::real => 'b::real_normed_vector
    assumes }\mp@subsup{f}{}{\prime}:\x.x\inS\Longrightarrow(f has_vector_derivative f'x) (at x within S
    assumes closed_segment a b\subseteqS
    assumes B:\x. x S S\Longrightarrow norm ( }\mp@subsup{f}{}{\prime}x-\mp@subsup{f}{}{\prime}x0)\leq
    assumes x0 \inS
    shows norm (fb-fa-(b-a)*R 和x0) \leqnorm (b-a)*B
    using assms
    by (intro differentiable_bound_linearization[of a b S f \lambdax h. h**R f'x x0 B])
        (force simp: closed_segment_real_eq has_vector_derivative_def
        scaleR_diff_right[symmetric] mult.commute[of B]
        intro!: onorm_le mult_left_mono)+
```

In particular.

```
lemma has_derivative_zero_constant:
    fixes \(f\) :: ' \(a:\) :real_normed_vector \(\Rightarrow\) ' \(b::\) real_normed_vector
    assumes convex s
        and \(\bigwedge x . x \in s \Longrightarrow(f\) has_derivative \((\lambda h .0))(\) at \(x\) within \(s)\)
    shows \(\exists c . \forall x \in s . f x=c\)
proof -
    \(\{\) fix \(x y\) assume \(x \in s y \in s\)
        then have norm \((f x-f y) \leq 0 * \operatorname{norm}(x-y)\)
            using assms by (intro differentiable_bound [of s]) (auto simp: onorm_zero)
        then have \(f x=f y\)
            by simp \(\}\)
    then show? ?thesis
        by metis
qed
lemma has_field_derivative_zero_constant:
    assumes convex \(s \bigwedge x . x \in s \Longrightarrow(f\) has_field_derivative 0) (at \(x\) within \(s\) )
    shows \(\exists c . \forall x \in s . f(x)=\left(c::{ }^{\prime} a\right.\) :: real_normed_field \()\)
proof (rule has_derivative_zero_constant)
    have \(A:(*) 0=\left(\lambda_{-} 0:: ' a\right)\) by (intro ext) simp
    fix \(x\) assume \(x \in s\) thus ( \(f\) has_derivative ( \(\lambda h .0\) )) (at \(x\) within \(s\) )
        using assms(2)[of x] by (simp add: has_field_derivative_def A)
qed fact
lemma
    has_vector_derivative_zero_constant:
    assumes convex s
    assumes \(\bigwedge x . x \in s \Longrightarrow(f\) has_vector_derivative 0\()(\) at \(x\) within \(s)\)
    obtains \(c\) where \(\bigwedge x . x \in s \Longrightarrow f x=c\)
    using has_derivative_zero_constant \([o f s f]\) assms
    by (auto simp: has_vector_derivative_def)
lemma has_derivative_zero_unique:
    fixes \(f::\) ' \(a:\) ::real_normed_vector \(\Rightarrow{ }^{\prime} b::\) real_normed_vector
    assumes convex \(s\)
        and \(\bigwedge x . x \in s \Longrightarrow(f\) has_derivative \((\lambda h .0))\) (at \(x\) within \(s)\)
        and \(x \in s y \in s\)
    shows \(f x=f y\)
    using has_derivative_zero_constant \([O F \operatorname{assms}(1,2)] \operatorname{assms}(3-)\) by force
lemma has_derivative_zero_unique_connected:
    fixes \(f\) :: 'a::real_normed_vector \(\Rightarrow\) ' \(b::\) real_normed_vector
    assumes open \(s\) connected \(s\)
    assumes \(f: \bigwedge x . x \in s \Longrightarrow(f\) has_derivative \((\lambda x .0))(\) at \(x)\)
    assumes \(x \in s y \in s\)
    shows \(f x=f y\)
proof (rule connected_local_const[where \(f=f\), OF 〈connected \(s\rangle\langle x \in s\rangle\langle y \in s\rangle]\) )
    show \(\forall a \in s\). eventually \((\lambda b . f a=f b)\) (at a within \(s)\)
    proof
```

```
    fix \(a\) assume \(a \in s\)
    with \(\langle o p e n s\rangle\) obtain \(e\) where \(0<e\) ball \(a e \subseteq s\)
        by (rule openE)
    then have \(\exists c . \forall x \in\) ball a e. \(f x=c\)
        by (intro has_derivative_zero_constant)
            (auto simp: at_within_open \([O F\) _open_ball \(] f\) )
    with \(\langle 0<e\rangle\) have \(\forall x \in\) ball a e. \(f a=f x\)
        by auto
    then show eventually \((\lambda b . f a=f b)\) (at a within s)
        using \(\langle 0<e\rangle\) unfolding eventually_at_topological
        by (intro exI[of _ ball a e]) auto
    qed
qed
```


4.10.12 Differentiability of inverse function (most basic form)

lemma has_derivative_inverse_basic:
fixes f :: ' $a:$:real_normed_vector \Rightarrow ' $b:$:real_normed_vector
assumes derf: (f has_derivative $\left.f^{\prime}\right)($ at $(g y))$
and ling': bounded_linear g^{\prime}
and $g^{\prime} \circ f^{\prime}=i d$
and contg: continuous (at y) g
and open T
and $y \in T$
and $f g: \wedge z . z \in T \Longrightarrow f(g z)=z$
shows (g has_derivative g^{\prime}) (at y)
proof -
interpret f^{\prime} : bounded_linear f^{\prime}
using assms unfolding has_derivative_def by auto
interpret g^{\prime} : bounded_linear g^{\prime}
using assms by auto
obtain C where $C: 0<C \bigwedge x$.norm $\left(g^{\prime} x\right) \leq$ norm $x * C$ using bounded_linear.pos_bounded[OF assms(2)] by blast
have lem1: $\forall e>0 . \exists d>0 . \forall z$. norm $(z-y)<d \longrightarrow \operatorname{norm}\left(g z-g y-g^{\prime}(z-y)\right) \leq e * \operatorname{norm}(g z-g y)$
proof (intro allI impI)
fix e :: real
assume $e>0$
with $C(1)$ have *: $e / C>0$ by auto
obtain $d 0$ where $0<d 0$ and $d 0$:
$\bigwedge u . \operatorname{norm}(u-g y)<d 0 \Longrightarrow \operatorname{norm}\left(f u-f(g y)-f^{\prime}(u-g y)\right) \leq e /$
$C * \operatorname{norm}(u-g y)$
using derf * unfolding has_derivative_at_alt by blast
obtain $d 1$ where $0<d 1$ and $d 1: \bigwedge x . \llbracket 0<$ dist $x y$ dist $x y<d 1 \rrbracket \Longrightarrow$ dist
$(g x)(g y)<d 0$
using contg $\langle 0<d 0\rangle$ unfolding continuous_at Lim_at by blast
obtain $d 2$ where $0<d 2$ and d2: $\bigwedge u$. dist $u y<d 2 \Longrightarrow u \in T$
using <open $T\rangle\langle y \in T\rangle$ unfolding open_dist by blast
obtain d where $d: 0<d d<d 1 d<d 2$
using field_lbound_gt_zero $[O F\langle 0<d 1\rangle\langle 0<d 2\rangle]$ by blast
show $\exists d>0 . \forall z$. norm $(z-y)<d \longrightarrow \operatorname{norm}\left(g z-g y-g^{\prime}(z-y)\right) \leq e$ * $\operatorname{norm}(g z-g y)$
proof (intro exI allI impI conjI)
fix z
assume as: norm $(z-y)<d$
then have $z \in T$
using d2 d unfolding dist_norm by auto
have $\operatorname{norm}\left(g z-g y-g^{\prime}(z-y)\right) \leq \operatorname{norm}\left(g^{\prime}\left(f(g z)-y-f^{\prime}(g z-g\right.\right.$ y)))
unfolding g^{\prime}.diff f^{\prime}.diff
unfolding assms(3)[unfolded o_def id_def, THEN fun_cong] $f g[O F\langle z \in T\rangle]$
by (simp add: norm_minus_commute)
also have $\ldots \leq \operatorname{norm}\left(f(g z)-y-f^{\prime}(g z-g y)\right) * C$
by (rule C (2))
also have $\ldots \leq(e / C) * \operatorname{norm}(g z-g y) * C$
proof -
have norm $(g z-g y)<d 0$
by (metis as cancel_comm_monoid_add_class.diff_cancel d(2) <0 <d0〉d1 diff_gt_0_iff_gt diff_strict_mono dist_norm dist_self zero_less_dist_iff)
then show ?thesis
by (metis $C(1)\langle y \in T\rangle d 0$ fg mult_le_cancel_iff1)
qed
also have $\ldots \leq e * \operatorname{norm}(g z-g y)$
using C by (auto simp add: field_simps)
finally show norm $\left(g z-g y-g^{\prime}(z-y)\right) \leq e * \operatorname{norm}(g z-g y)$
by simp
qed (use d in auto)
qed
have $*:(0::$ real $)<1 / 2$
by auto
obtain d where $0<d$ and d :
^z. norm $(z-y)<d \Longrightarrow \operatorname{norm}\left(g z-g y-g^{\prime}(z-y)\right) \leq 1 / 2 *$ norm $(g z-g y)$
using lem $1 *$ by blast
define B where $B=C * 2$
have $B>0$
unfolding $B _d e f$ using C by auto
have lem2: norm $(g z-g y) \leq B * \operatorname{norm}(z-y)$ if $z: \operatorname{norm}(z-y)<d$ for z proof -
have $\operatorname{norm}(g z-g y) \leq \operatorname{norm}\left(g^{\prime}(z-y)\right)+\operatorname{norm}\left((g z-g y)-g^{\prime}(z-y)\right)$ by (rule norm_triangle_sub)
also have $\ldots \leq \operatorname{norm}\left(g^{\prime}(z-y)\right)+1 / 2 * \operatorname{norm}(g z-g y)$
by (rule add_left_mono) (use dz in auto)
also have $\ldots \leq \operatorname{norm}(z-y) * C+1 / 2 * \operatorname{norm}(g z-g y)$
by (rule add_right_mono) (use C in auto)
finally show norm $(g z-g y) \leq B * \operatorname{norm}(z-y)$
unfolding B_{-}def
by (auto simp add: field_simps)

```
Derivative.thy
Inverse function theorem for complex derivatives
```

```
qed
```

qed
show ?thesis
show ?thesis
unfolding has_derivative_at_alt
unfolding has_derivative_at_alt
proof (intro conjI assms allI impI)
proof (intro conjI assms allI impI)
fix e :: real
fix e :: real
assume $e>0$
assume $e>0$
then have $*: e / B>0$ by (metis $\langle B>0\rangle$ divide_pos_pos)
then have $*: e / B>0$ by (metis $\langle B>0\rangle$ divide_pos_pos)
obtain d^{\prime} where $0<d^{\prime}$ and d^{\prime} :
obtain d^{\prime} where $0<d^{\prime}$ and d^{\prime} :
$\bigwedge z . \operatorname{norm}(z-y)<d^{\prime} \Longrightarrow \operatorname{norm}\left(g z-g y-g^{\prime}(z-y)\right) \leq e / B *$ norm
$\bigwedge z . \operatorname{norm}(z-y)<d^{\prime} \Longrightarrow \operatorname{norm}\left(g z-g y-g^{\prime}(z-y)\right) \leq e / B *$ norm
$(g z-g y)$
$(g z-g y)$
using lem1 * by blast
using lem1 * by blast
obtain k where $k: 0<k k<d k<d^{\prime}$
obtain k where $k: 0<k k<d k<d^{\prime}$
using field_lbound_gt_zero $\left[O F\langle 0<d\rangle\left\langle 0<d^{\prime}\right\rangle\right]$ by blast
using field_lbound_gt_zero $\left[O F\langle 0<d\rangle\left\langle 0<d^{\prime}\right\rangle\right]$ by blast
show $\exists d>0 . \forall y a$. norm $(y a-y)<d \longrightarrow \operatorname{norm}\left(g\right.$ ya $\left.-g y-g^{\prime}(y a-y)\right)$
show $\exists d>0 . \forall y a$. norm $(y a-y)<d \longrightarrow \operatorname{norm}\left(g\right.$ ya $\left.-g y-g^{\prime}(y a-y)\right)$
$\leq e * \operatorname{norm}(y a-y)$
$\leq e * \operatorname{norm}(y a-y)$
proof (intro exI allI impI conjI)
proof (intro exI allI impI conjI)
fix z
fix z
assume as: norm $(z-y)<k$
assume as: norm $(z-y)<k$
then have $\operatorname{norm}\left(g z-g y-g^{\prime}(z-y)\right) \leq e / B * \operatorname{norm}(g z-g y)$
then have $\operatorname{norm}\left(g z-g y-g^{\prime}(z-y)\right) \leq e / B * \operatorname{norm}(g z-g y)$
using $d^{\prime} k$ by auto
using $d^{\prime} k$ by auto
also have $\ldots \leq e * \operatorname{norm}(z-y)$
also have $\ldots \leq e * \operatorname{norm}(z-y)$
unfolding times_divide_eq_left pos_divide_le_eq[OF〈B>0〉]
unfolding times_divide_eq_left pos_divide_le_eq[OF〈B>0〉]
using lem2[of z] k as $\langle e>0\rangle$
using lem2[of z] k as $\langle e>0\rangle$
by (auto simp add: field_simps)
by (auto simp add: field_simps)
finally show norm $\left(g z-g y-g^{\prime}(z-y)\right) \leq e * \operatorname{norm}(z-y)$
finally show norm $\left(g z-g y-g^{\prime}(z-y)\right) \leq e * \operatorname{norm}(z-y)$
by simp
by simp
qed (use k in auto)
qed (use k in auto)
qed
qed
qed
qed
lemma has_field_derivative_inverse_basic:
lemma has_field_derivative_inverse_basic:
lemma has_field_derivative_inverse_basic:
shows DERIV $f(g y):>f^{\prime} \Longrightarrow$
shows DERIV $f(g y):>f^{\prime} \Longrightarrow$
shows DERIV $f(g y):>f^{\prime} \Longrightarrow$
$f^{\prime} \neq 0 \Longrightarrow$
$f^{\prime} \neq 0 \Longrightarrow$
$f^{\prime} \neq 0 \Longrightarrow$
continuous (at y) $g \Longrightarrow$
continuous (at y) $g \Longrightarrow$
continuous (at y) $g \Longrightarrow$
open $t \Longrightarrow$
open $t \Longrightarrow$
open $t \Longrightarrow$
$y \in t \Longrightarrow$
$y \in t \Longrightarrow$
$y \in t \Longrightarrow$
$(\bigwedge z . z \in t \Longrightarrow f(g z)=z)$
$(\bigwedge z . z \in t \Longrightarrow f(g z)=z)$
$(\bigwedge z . z \in t \Longrightarrow f(g z)=z)$
$\Longrightarrow D E R I V$ g y $:>$ inverse $\left(f^{\prime}\right)$
$\Longrightarrow D E R I V$ g y $:>$ inverse $\left(f^{\prime}\right)$
$\Longrightarrow D E R I V$ g y $:>$ inverse $\left(f^{\prime}\right)$
unfolding has_field_derivative_def
unfolding has_field_derivative_def
unfolding has_field_derivative_def
apply (rule has_derivative_inverse_basic)
apply (rule has_derivative_inverse_basic)
apply (rule has_derivative_inverse_basic)
apply (auto simp: bounded_linear_mult_right)
apply (auto simp: bounded_linear_mult_right)
apply (auto simp: bounded_linear_mult_right)
done

```
    done
```

 done
    ```

Simply rewrite that based on the domain point x．
```

lemma has_derivative_inverse_basic_x:
fixes f :: 'a::real_normed_vector }=>\mathrm{ 'b::real_normed_vector
assumes (f has_derivative f') (at x)
and bounded_linear g'

```
```

 and \(g^{\prime} \circ f^{\prime}=i d\)
 and continuous \((\) at \((f x)) g\)
 and \(g(f x)=x\)
 and open \(T\)
 and \(f x \in T\)
 and \(\bigwedge y . y \in T \Longrightarrow f(g y)=y\)
 shows (g has_derivative g^{\prime}) (at $(f x)$)
by (rule has_derivative_inverse_basic) (use assms in auto)

```

This is the version in Dieudonne', assuming continuity of \(f\) and \(g\).
```

lemma has_derivative_inverse_dieudonne:
fixes $f::$ ' $a:$:real_normed_vector \Rightarrow ' $b:$:real_normed_vector
assumes open S
and open $(f$ ' S)
and continuous_on $S f$
and continuous_on $(f$ ' $S) g$
and $\bigwedge x, x \in S \Longrightarrow g(f x)=x$
and $x \in S$
and (f has_derivative f^{\prime}) (at x)
and bounded_linear g^{\prime}
and $g^{\prime} \circ f^{\prime}=i d$
shows (g has_derivative g^{\prime}) (at ($\left.f x\right)$)
apply (rule has_derivative_inverse_basic_x[OF assms(7-9) _ _ assms(2)])
using assms(3-6)
unfolding continuous_on_eq_continuous_at[OF assms(1)] continuous_on_eq_continuous_at [OF
assms(2)]
apply auto
done

```

Here's the simplest way of not assuming much about g .
proposition has_derivative_inverse:
fixes \(f\) :: ' \(a\) ::real_normed_vector \(\Rightarrow\) ' \(b::\) real_normed_vector
    assumes compact \(S\)
        and \(x \in S\)
        and \(f x: f x \in \operatorname{interior}(f\) ' \(S\) )
        and continuous_on \(S f\)
        and \(g f: \wedge y . y \in S \Longrightarrow g(f y)=y\)
        and ( \(f\) has_derivative \(f^{\prime}\) ) (at \(x\) )
        and bounded_linear \(g^{\prime}\)
        and \(g^{\prime} \circ f^{\prime}=i d\)
    shows ( \(g\) has_derivative \(g^{\prime}\) ) (at \((f x)\) )
proof -
    have \(*: \bigwedge y . y \in \operatorname{interior}(f ' S) \Longrightarrow f(g y)=y\)
        by (metis gf image_iff interior_subset subsetCE)
    show ?thesis
    apply (rule has_derivative_inverse_basic_x \([O F \operatorname{assms}(6-8)\), where \(T=\) interior
( \(f\) ' \(S\) )])
    apply (rule continuous_on_interior \(\left.\left[O F_{-} f x\right]\right)\)
    apply (rule continuous_on_inv)
```

 apply (simp_all add: assms *)
 done
 qed

```

Invertible derivative continuous at a point implies local injectivity．It＇s only for this we need continuity of the derivative，except of course if we want the fact that the inverse derivative is also continuous．So if we know for some other reason that the inverse function exists，it＇s OK．
proposition has＿derivative＿locally＿injective：
fixes \(f::\)＇\(n::\) euclidean＿space \(\Rightarrow\)＇\(m\) ：：euclidean＿space
assumes \(a \in S\)
and open \(S\)
and bling：bounded＿linear \(g^{\prime}\)
and \(g^{\prime} \circ f^{\prime} a=i d\)
and derf：\(\bigwedge x . x \in S \Longrightarrow\left(f\right.\) has＿derivative \(\left.f^{\prime} x\right)(\) at \(x)\)
and \(\bigwedge e . e>0 \Longrightarrow \exists d>0 . \forall x\) ．dist \(a x<d \longrightarrow \operatorname{onorm}\left(\lambda v . f^{\prime} x v-f^{\prime} a\right.\)
\(v)<e\)
obtains \(r\) where \(r>0\) ball a \(r \subseteq S\) inj＿on \(f(b a l l ~ a ~ r)\)
proof－
interpret bounded＿linear \(g^{\prime}\)
using assms by auto
note \(f^{\prime} g^{\prime}=\operatorname{assms}(4)\left[u n f o l d e d i d \_d e f o_{-} d e f, T H E N\right.\) cong］
have \(g^{\prime}\left(f^{\prime} a\left(\sum\right.\right.\) Basis \(\left.)\right)=\left(\sum\right.\) Basis \()\left(\sum\right.\) Basis \() \neq(0:: ' n)\)
using \(f^{\prime} g^{\prime}\) by auto
then have \(*: 0<\) onorm \(g^{\prime}\)
unfolding onorm＿pos＿lt［OF assms（3）］
by fastforce
define \(k\) where \(k=1 /\) onorm \(g^{\prime} / 2\)
have \(*: k>0\)
unfolding \(k_{-} d e f\) using＊by auto
obtain \(d 1\) where \(d 1\) ：
\(0<d 1\)
\(\bigwedge x\) ．dist a \(x<d 1 \Longrightarrow \operatorname{onorm}\left(\lambda v . f^{\prime} x v-f^{\prime} a v\right)<k\)
using assms \((6) *\) by blast
from 〈open \(S\) 〉 obtain \(d 2\) where \(d 2>0\) ball \(a d 2 \subseteq S\) using \(\langle a \in S\) 〉．．
obtain \(d 2\) where \(d 2: 0<d 2\) ball a d2 \(\subseteq S\)
using \(\langle 0<d 2\rangle\langle b a l l a d 2 \subseteq S\rangle\) by blast
obtain \(d\) where \(d: 0<d d<d 1 d<d 2\)
using field＿lbound＿gt＿zero［OF d1（1）d2（1）］by blast
show ？thesis
proof
show \(0<d\) by（fact d）
show ball a \(d \subseteq S\)
using \(\langle d<d 2\) 〉 〈ball a d2 \(\subseteq S\) 〉 by auto
show inj＿on \(f\)（ball ad）
unfolding inj＿on＿def
proof（intro strip）
fix \(x y\)
assume as: \(x \in\) ball a \(d y \in\) ball a \(d f x=f y\)
define \(p h\) where [abs_def]: ph \(w=w-g^{\prime}(f w-f x)\) for \(w\)
have \(p h^{\prime}: p h=g^{\prime} \circ\left(\lambda w . f^{\prime} a w-(f w-f x)\right)\)
unfolding \(p h_{-}\)def o_def by (simp add: diff \(f^{\prime} g^{\prime}\) )
have norm \((p h x-p h y) \leq(1 / 2) * \operatorname{norm}(x-y)\)
proof (rule differentiable_bound \([\) OF convex_ball _ as \((1-2)])\)
fix \(u\)
assume \(u: u \in\) ball a d
then have \(u \in S\) using \(d d 2\) by auto
have \(*:\left(\lambda v . v-g^{\prime}\left(f^{\prime} u v\right)\right)=g^{\prime} \circ\left(\lambda w . f^{\prime} a w-f^{\prime} u w\right)\)
unfolding o_def and diff
using \(f^{\prime} g^{\prime}\) by auto
have blin: bounded_linear ( \(f^{\prime}\) a)
using \(\langle a \in S\rangle\) derf by blast
show (ph has_derivative \(\left(\lambda v . v-g^{\prime}\left(f^{\prime} u v\right)\right)\) ) (at u within ball a d)
unfolding \(p h^{\prime} *\) comp_def
by (rule \(\langle u \in S\rangle\) derivative_eq_intros has_derivative_at_withinI [OF derf] bounded_linear.has_derivative [OF blin] bounded_linear.has_derivative [OF bling] |simp) +
have \(* *\) : bounded_linear \(\left(\lambda x . f^{\prime} u x-f^{\prime}\right.\) a \(\left.x\right)\) bounded_linear \(\left(\lambda x . f^{\prime}\right.\) a \(x-\) \(\left.f^{\prime} u x\right)\)
using \(\langle u \in S\rangle\) blin bounded_linear_sub derf by auto
then have onorm \(\left(\lambda v . v-g^{\prime}\left(f^{\prime} u v\right)\right) \leq\) onorm \(g^{\prime} * \operatorname{onorm}\left(\lambda w . f^{\prime}\right.\) a \(w\) \(\left.-f^{\prime} u w\right)\)
by (simp add: * bounded_linear_axioms onorm_compose)
also have \(\ldots \leq\) onorm \(g^{\prime} * k\)
apply (rule mult_left_mono)
using \(d 1\) (2) [of \(u\) ]
using onorm_neg[where \(\left.f=\lambda x . f^{\prime} u x-f^{\prime} a x\right] d u\) onorm_pos_le[OF bling] apply (auto simp: algebra_simps)
done
also have \(\ldots \leq 1 / 2\)
unfolding \(k_{-}\)def by auto
finally show onorm \(\left(\lambda v . v-g^{\prime}\left(f^{\prime} u v\right)\right) \leq 1 / 2\).
qed
moreover have norm (phy-ph x) \(\operatorname{norm}(y-x)\)
by (simp add: as(3) ph_def)
ultimately show \(x=y\)
unfolding norm_minus_commute by auto

\section*{qed}
qed
qed

\subsection*{4.10.13 Uniformly convergent sequence of derivatives}
lemma has_derivative_sequence_lipschitz_lemma:
fixes \(f\) :: nat \(\Rightarrow\) ' \(a::\) real_normed_vector \(\Rightarrow\) ' \(b::\) real_normed_vector assumes convex \(S\)
and derf：\(\bigwedge n x . x \in S \Longrightarrow\left((f n)\right.\) has＿derivative \(\left.\left(f^{\prime} n x\right)\right)\)（at \(x\) within \(\left.S\right)\)
and nle：\(\bigwedge n x h . \llbracket n \geq N ; x \in S \rrbracket \Longrightarrow \operatorname{norm}\left(f^{\prime} n x h-g^{\prime} x h\right) \leq e *\) norm \(h\)
and \(0 \leq e\)
shows \(\forall m \geq N . \forall n \geq N . \forall x \in S . \forall y \in S . \operatorname{norm}((f m x-f n x)-(f m y-f n\)
\(y)) \leq 2 * e * \operatorname{norm}(x-y)\)
proof clarify
fix \(m n x y\)
assume as：\(N \leq m N \leq n x \in S y \in S\)
show norm \(((f m x-f n x)-(f m y-f n y)) \leq 2 * e * \operatorname{norm}(x-y)\)
proof（rule differentiable＿bound［where \(f^{\prime}=\lambda x h . f^{\prime} m x h-f^{\prime} n x h\) ，OF＜convex
S〉－－as（3－4）］）
fix \(x\)
assume \(x \in S\)
show（ \((\lambda a . f m a-f n a)\) has＿derivative（ \(\left.\lambda h . f^{\prime} m x h-f^{\prime} n x h\right)\) ）（at \(x\) within \(S\) ）
by（rule derivative＿intros derf \(\langle x \in S\rangle)+\)
show onorm \(\left(\lambda h . f^{\prime} m x h-f^{\prime} n x h\right) \leq 2 * e\)
proof（rule onorm＿bound）
fix \(h\)
have \(\operatorname{norm}\left(f^{\prime} m x h-f^{\prime} n x h\right) \leq \operatorname{norm}\left(f^{\prime} m x h-g^{\prime} x h\right)+\operatorname{norm}\left(f^{\prime} n\right.\) \(\left.x h-g^{\prime} x h\right)\)
using norm＿triangle＿ineq［of \(\left.f^{\prime} m x h-g^{\prime} x h-f^{\prime} n x h+g^{\prime} x h\right]\)
by（auto simp add：algebra＿simps norm＿minus＿commute）
also have \(\ldots \leq e *\) norm \(h+e *\) norm \(h\)
using nle \([O F\langle N \leq m\rangle\langle x \in S\rangle\) ，of \(h] n l e[O F\langle N \leq n\rangle\langle x \in S\rangle\) ，of \(h]\)
by（auto simp add：field＿simps）
finally show norm \(\left(f^{\prime} m x h-f^{\prime} n x h\right) \leq 2 * e *\) norm \(h\)
by auto
qed（ simp add：\(\langle 0 \leq e\rangle)\)
qed
qed
lemma has＿derivative＿sequence＿Lipschitz：
fixes \(f::\) nat \(\Rightarrow{ }^{\prime} a::\) real＿normed＿vector \(\Rightarrow{ }^{\prime} b::\) real＿normed＿vector
assumes convex \(S\)
and \(\bigwedge n x . x \in S \Longrightarrow\left((f n)\right.\) has＿derivative \(\left.\left(f^{\prime} n x\right)\right)\)（at \(x\) within \(S\) ）
and nle：\(\bigwedge e . e>0 \Longrightarrow \forall_{F} n\) in sequentially．\(\forall x \in S . \forall h\) ．norm \(\left(f^{\prime} n x h-g^{\prime}\right.\)
\(x h) \leq e *\) norm \(h\)
and \(e>0\)
shows \(\exists N . \forall m \geq N . \forall n \geq N . \forall x \in S . \forall y \in S\) ．
norm \(((f m x-f n x)-(f m y-f n y)) \leq e * \operatorname{norm}(x-y)\)
proof－
have \(*: 2 *(e / \mathcal{Z})=e\)
using \(\langle e>0\) 〉 by auto
obtain \(N\) where \(\forall n \geq N . \forall x \in S . \forall h . n o r m\left(f^{\prime} n x h-g^{\prime} x h\right) \leq(e / 2) *\) norm \(h\)
using nle \(\langle e>0\) 〉
unfolding eventually＿sequentially
by（metis less＿divide＿eq＿numeral1（1）mult＿zero＿left）
```

 then show \(\exists N . \forall m \geq N . \forall n \geq N . \forall x \in S . \forall y \in S . \operatorname{norm}(f m x-f n x-(f m y\)
 \(-f n y)) \leq e * \operatorname{norm}(x-y)\)
 apply (rule_tac \(x=N\) in exI)
 apply (rule has_derivative_sequence_lipschitz_lemma[where \(e=e / 2\), unfolded
 *])
using assms $\langle e>0\rangle$
apply auto
done
qed
proposition has_derivative_sequence:
fixes $f::$ nat $\Rightarrow{ }^{\prime} a::$ real_normed_vector $\Rightarrow ' b::$ banach
assumes convex S
and derf: $\wedge n x . x \in S \Longrightarrow\left((f n)\right.$ has_derivative $\left.\left(f^{\prime} n x\right)\right)($ at x within $S)$
and nle: $\bigwedge e . e>0 \Longrightarrow \forall_{F} n$ in sequentially. $\forall x \in S . \forall h . \operatorname{norm}\left(f^{\prime} n x h-g^{\prime}\right.$
$x h) \leq e *$ norm h
and $x 0 \in S$
and lim: $((\lambda n . f n x 0) \longrightarrow l)$ sequentially
shows $\exists g . \forall x \in S .(\lambda n . f n x) \longrightarrow g x \wedge\left(g\right.$ has_derivative $\left.g^{\prime}(x)\right)$ (at x within
S)
proof -
have lem1: $\bigwedge e . e>0 \Longrightarrow \exists N . \forall m \geq N . \forall n \geq N . \forall x \in S . \forall y \in S$.
norm $((f m x-f n x)-(f m y-f n y)) \leq e * \operatorname{norm}(x-y)$
using $\operatorname{assms}(1,2,3)$ by (rule has_derivative_sequence_Lipschitz)
have $\exists g . \forall x \in S .((\lambda n . f n x) \longrightarrow g x)$ sequentially
proof (intro ballI bchoice)
fix x
assume $x \in S$
show $\exists y .(\lambda n . f n x) \longrightarrow y$
unfolding convergent_eq_Cauchy
proof (cases $x=x 0$)
case True
then show Cauchy (λ n. $f n x$)
using LIMSEQ_imp_Cauchy[OF lim] by auto
next
case False
show Cauchy ($\lambda n . f n x$)
unfolding Cauchy_def
proof (intro allI impI)
fix e :: real
assume $e>0$
hence $*: e / 2>0 e / 2 / \operatorname{norm}(x-x 0)>0$ using False by auto
obtain M where $M: \forall m \geq M . \forall n \geq M$. dist ($f m x 0$) $(f n x 0)<e / 2$
using LIMSEQ_imp_Cauchy[OF lim] * unfolding Cauchy_def by blast
obtain N where N :
$\forall m \geq N . \forall n \geq N$.
$\forall u \in S . \forall y \in S . \operatorname{norm}(f m u-f n u-(f m y-f n y)) \leq$
$e / 2 / \operatorname{norm}(x-x 0) * \operatorname{norm}(u-y)$
using lem1 $*(2)$ by blast

```
```

 show \existsM.\forallm\geqM.\foralln\geqM. dist (fmx) (fnx)<e
 proof (intro exI allI impI)
 fix m}
 assume as: max M N\leqm max M N\leqn
 have dist (fmx) (fnx) \leqnorm (fmx0 - fnx0) + norm (fmx - f
 nx-(fmx0 - fnx0))
unfolding dist_norm
by (rule norm_triangle_sub)
also have ... \leqnorm (fmx0 - fnx0) +e / 2
using N\langlex\inS\rangle\langlex0\inS\rangle as False by fastforce
also have .. <e / 2 +e / 2
by (rule add_strict_right_mono) (use as M in \auto simp: dist_norm`)
finally show dist (fmx) (fnx)<e
by auto
qed
qed
qed
qed
then obtain g}\mathrm{ where g: }\forallx\inS.(\lambdan.fnx)\longrightarrowgx.
have lem2: \existsN.\foralln\geqN.\forallx\inS.\forally\inS. norm ((fnx-fny)-(gx-gy))\leq
e*\operatorname{norm}(x-y) if e>0 for e
proof -
obtain N where
N:\forallm\geqN.\foralln\geqN.\forallx\inS.\forally\inS. norm (fmx-fnx-(fmy-fny))
\leqe* norm (x-y)
using lem1 \langlee> 0\rangle by blast
show \existsN.\foralln\geqN.\forallx\inS.\forally\inS.norm (fnx-fny-(gx-gy))\leqe*
norm (x-y)
proof (intro exI ballI allI impI)
fix n x y
assume as:N\leqnx\inSy\inS
have ((\lambdam. norm (fnx-fny-(fmx-fmy)))\longrightarrow\operatorname{norm}(fnx-f
ny-(gx-gy))) sequentially
by (intro tendsto_intros g[rule_format] as)
moreover have eventually (\lambdam. norm (fnx-fny-(fmx-fmy))\leq
e* norm (x-y)) sequentially
unfolding eventually_sequentially
proof (intro exI allI impI)
fix m
assume N\leqm
then show norm (fnx-fny-(fmx-fmy)) \leqe* norm (x-y)
using N as by (auto simp add: algebra_simps)
qed
ultimately show norm (fnx-fny-(gx-gy))\leqe*norm (x-y)
by (simp add: tendsto_upperbound)
qed
qed
have }\forallx\inS.((\lambdan.fnx)\longrightarrowgx) sequentially ^(g has_derivative g' x) (at x
within S)

```
```

 unfolding has_derivative_within_alt2
 proof (intro ballI conjI allI impI)
fix x
assume $x \in S$
then show $(\lambda n . f n x) \longrightarrow g x$
by (simp add: g)
have $t^{\prime} g^{\prime}:\left(\lambda n . f^{\prime} n x u\right) \longrightarrow g^{\prime} x u$ for u
unfolding filterlim_def le_nhds_metric_le eventually_filtermap dist_norm
proof (intro allI impI)
fix e :: real
assume $e>0$
show eventually (λ n. norm $\left.\left(f^{\prime} n x u-g^{\prime} x u\right) \leq e\right)$ sequentially
proof (cases $u=0$)
case True
have eventually (λn. norm ($\left.f^{\prime} n x u-g^{\prime} x u\right) \leq e *$ norm u) sequentially
using nle $\langle 0<e\rangle\langle x \in S\rangle$ by (fast elim: eventually_mono)
then show ?thesis
using $\langle u=0\rangle\langle 0<e\rangle$ by (auto elim: eventually_mono)
next
case False
with $\langle 0<e\rangle$ have $0<e /$ norm u by simp
then have eventually $\left(\lambda n\right.$. norm $\left(f^{\prime} n x u-g^{\prime} x u\right) \leq e / \operatorname{norm} u *$ norm
u) sequentially
using nle $\langle x \in S\rangle$ by (fast elim: eventually_mono)
then show ?thesis
using $\langle u \neq 0\rangle$ by simp
qed
qed
show bounded_linear $\left(g^{\prime} x\right)$
proof
fix $x^{\prime} y z::{ }^{\prime} a$
fix c :: real
note lin $=\operatorname{assms}(2)[$ rule_format, $O F\langle x \in S\rangle$, THEN has_derivative_bounded_linear]
show $g^{\prime} x\left(c *_{R} x^{\prime}\right)=c *_{R} g^{\prime} x x^{\prime}$
apply (rule tendsto_unique[OF trivial_limit_sequentially tog \rceil)
unfolding lin[THEN bounded_linear.linear, THEN linear_cmul]
apply (intro tendsto_intros tog')
done
show $g^{\prime} x(y+z)=g^{\prime} x y+g^{\prime} x z$
apply (rule tendsto_unique[OF trivial_limit_sequentially tog \rceil)
unfolding lin[THEN bounded_linear.linear, THEN linear_add]
apply (rule tendsto_add)
apply (rule tog')+
done
obtain N where $N: \forall h$. norm $\left(f^{\prime} N x h-g^{\prime} x h\right) \leq 1 *$ norm h
using nle $\langle x \in S\rangle$ unfolding eventually_sequentially by (fast intro:
zero_less_one)
have bounded_linear ($\left.f^{\prime} N x\right)$
using derf $\langle x \in S\rangle$ by fast

```
```

 from bounded_linear.bounded [OF this]
 obtain \(K\) where \(K: \forall h\). norm \(\left(f^{\prime} N x h\right) \leq\) norm \(h * K .\).
 \{
 fix \(h\)
 have \(\operatorname{norm}\left(g^{\prime} x h\right)=\operatorname{norm}\left(f^{\prime} N x h-\left(f^{\prime} N x h-g^{\prime} x h\right)\right)\)
 by \(\operatorname{simp}\)
 also have \(\ldots \leq \operatorname{norm}\left(f^{\prime} N x h\right)+\operatorname{norm}\left(f^{\prime} N x h-g^{\prime} x h\right)\)
 by (rule norm_triangle_ineq4)
 also have \(\ldots \leq\) norm \(h * K+1 *\) norm \(h\)
 using \(N K\) by (fast intro: add_mono)
 finally have norm \(\left(g^{\prime} x h\right) \leq\) norm \(h *(K+1)\)
 by (simp add: ring_distribs)
 \}
 then show \(\exists K . \forall h\). norm \(\left(g^{\prime} x h\right) \leq\) norm \(h * K\) by fast
 qed
show eventually $\left(\lambda y\right.$. norm $\left.\left(g y-g x-g^{\prime} x(y-x)\right) \leq e * \operatorname{norm}(y-x)\right)$
(at x within S)
if $e>0$ for e
proof -
have *: e / 3>0
using that by auto
obtain N1 where N1: $\forall n \geq N 1 . \forall x \in S . \forall h . \operatorname{norm}\left(f^{\prime} n x h-g^{\prime} x h\right) \leq e /$
$3 *$ norm h
using nle * unfolding eventually_sequentially by blast
obtain N2 where

```
                N2[rule_format]: \(\forall n \geq\) N2. \(\forall x \in S . \forall y \in S . \operatorname{norm}(f n x-f n y-(g x-g\)
\(y)) \leq e / 3 * \operatorname{norm}(x-y)\)
            using lem2 \(*\) by blast
    let \(? N=\max N 1 N 2\)
    have eventually \(\left(\lambda y\right.\). norm \(\left(f ? N y-f ? N x-f^{\prime} ? N x(y-x)\right) \leq e / 3 *\)
\(\operatorname{norm}(y-x))(\) at \(x\) within \(S)\)
                using derf[unfolded has_derivative_within_alt2] and \(\langle x \in S\rangle\) and \(*\) by fast
    moreover have eventually \((\lambda y . y \in S)\) (at \(x\) within \(S\) )
            unfolding eventually_at by (fast intro: zero_less_one)
    ultimately show \(\forall_{F} y\) in at \(x\) within \(S\). norm \(\left(g y-g x-g^{\prime} x(y-x)\right)\)
\(\leq e * \operatorname{norm}(y-x)\)
    proof (rule eventually_elim2)
        fix \(y\)
        assume \(y \in S\)
        assume norm \(\left(f ? N y-f ? N x-f^{\prime} ? N x(y-x)\right) \leq e / 3 * \operatorname{norm}(y-\)
x)
    moreover have norm \((g y-g x-(f ? N y-f ? N x)) \leq e / 3 * \operatorname{norm}(y\)
\(-x)\)
            using \(N 2\left[O F_{-}\langle y \in S\rangle\langle x \in S\rangle\right]\)
            by (simp add: norm_minus_commute)
    ultimately have norm \(\left(g y-g x-f^{\prime} ? N x(y-x)\right) \leq 2 * e / 3 *\) norm
\((y-x)\)
    using norm_triangle_le \([\) of \(g y-g x-(f ? N y-f ? N x) f ? N y-f ? N x\)
\(\left.-f^{\prime} ? N x(y-x) 2 * e / 3 * \operatorname{norm}(y-x)\right]\)
```

 by (auto simp add: algebra_simps)
 moreover
 have \(\operatorname{norm}\left(f^{\prime} ? N x(y-x)-g^{\prime} x(y-x)\right) \leq e / 3 * \operatorname{norm}(y-x)\)
 using \(N 1\langle x \in S\rangle\) by auto
 ultimately show norm \(\left(g y-g x-g^{\prime} x(y-x)\right) \leq e * \operatorname{norm}(y-x)\)
 using norm_triangle_le \(\left[\right.\) of \(g y-g x-f^{\prime}\left(\max\right.\) N1 NQ) \(x(y-x) f^{\prime}(\max\)
 N1 N2) $\left.x(y-x)-g^{\prime} x(y-x)\right]$
by (auto simp add: algebra_simps)
qed
qed
qed
then show? ?thesis by fast
qed
Can choose to line up antiderivatives if we want.
lemma has_antiderivative_sequence:
fixes $f::$ nat \Rightarrow 'a::real_normed_vector \Rightarrow 'b::banach
assumes convex S
and der: $\wedge n x . x \in S \Longrightarrow\left((f n)\right.$ has_derivative $\left.\left(f^{\prime} n x\right)\right)($ at x within $S)$
and no: $\bigwedge e . e>0 \Longrightarrow \forall_{F} n$ in sequentially.
$\forall x \in S . \forall h . \operatorname{norm}\left(f^{\prime} n x h-g^{\prime} x h\right) \leq e *$ norm h
shows $\exists g$. $\forall x \in S$. (g has_derivative $\left.g^{\prime} x\right)$ (at x within S)
proof (cases $S=\{ \}$)
case False
then obtain a where $a \in S$
by auto
have $*: \wedge P Q . \exists g . \forall x \in S . P g x \wedge Q g x \Longrightarrow \exists g . \forall x \in S . Q g x$
by auto
show ?thesis
apply (rule *)
apply (rule has_derivative_sequence $[O F$ 〈convex S 〉_no, of $\lambda n x$. $f n x+(f$
$0 a-f n a)]$)
apply (metis assms(2) has_derivative_add_const)
using $\langle a \in S\rangle$
apply auto
done
qed auto
lemma has_antiderivative_limit:
fixes $g^{\prime}::$ 'a::real_normed_vector $\Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} b::$ banach
assumes convex S
and $\bigwedge e . e>0 \Longrightarrow \exists f f^{\prime} . \forall x \in S$.
$\left(f\right.$ has_derivative $\left.\left(f^{\prime} x\right)\right)($ at x within $S) \wedge\left(\forall h . \operatorname{norm}\left(f^{\prime} x h-g^{\prime} x h\right) \leq\right.$ $e *$ norm h)
shows $\exists g$. $\forall x \in S$. (g has_derivative $g^{\prime} x$) (at x within S)
proof -
have $*: \forall n . \exists f f^{\prime} . \forall x \in S$.
$\left(f\right.$ has_derivative $\left.\left(f^{\prime} x\right)\right)($ at x within $S) \wedge$
$\left(\forall h\right.$. norm $\left(f^{\prime} x h-g^{\prime} x h\right) \leq$ inverse (real (Suc $\left.\left.n\right)\right) *$ norm $\left.h\right)$

```
```

 by (simp add: assms(2))
 obtain f where
 *: \x.\exists\mp@subsup{f}{}{\prime}.\forallxa\inS.(fxhas_derivative f' xa) (at xa within S)^
 (\forallh. norm (f' xa h-g' xa h) \leqinverse (real (Suc x))* norm h)
 using * by metis
 obtain f' where
 f ^ { \prime } : \bigwedge x . \forall z \in S . (f x \text { has_derivative f'xz)(at z within S)^}
 (\forallh. norm (f'xzh- g'zh)\leqinverse (real (Suc x))* norm h)
 using * by metis
 show ?thesis
 proof (rule has_antiderivative_sequence[OF <convex S\, of f f])
 fix e :: real
 assume e>0
 obtain N where N: inverse (real (Suc N))<e
 using reals_Archimedean[OF <e>0\rangle] ..
 show }\mp@subsup{\forall}{F}{}n\mathrm{ in sequentially.}\forallx\inS.\forallh.norm (f'nxh- g'xh)\leqe*norm
 h
unfolding eventually_sequentially
proof (intro exI allI ballI impI)
fix n xh
assume n:N\leqn and x:x\inS
have *: inverse (real (Suc n)) \leqe
apply (rule order_trans[OF_N[THEN less_imp_le]])
using n apply (auto simp add: field_simps)
done
show norm (f'nxh-g'xh)\leqe* norm h
by (meson * mult_right_mono norm_ge_zero order.trans x f')
qed
qed (use f' in auto)
qed

```

\subsection*{4.10.14 Differentiation of a series}
proposition has_derivative_series:
fixes \(f::\) nat \(\Rightarrow\) 'a::real_normed_vector \(\Rightarrow{ }^{\prime} b::\) banach
assumes convex \(S\)
and \(\bigwedge n x . x \in S \Longrightarrow\left((f n)\right.\) has_derivative \(\left.\left(f^{\prime} n x\right)\right)\) (at \(x\) within \(\left.S\right)\)
and \(\bigwedge e, e>0 \Longrightarrow \forall_{F} n\) in sequentially. \(\forall x \in S . \forall h\). norm (sum ( \(\lambda i . f^{\prime}\) i \(x h\) )
\(\left.\{. .<n\}-g^{\prime} x h\right) \leq e *\) norm \(h\)
and \(x \in S\)
and ( \(\lambda n\). \(f n x\) ) sums \(l\)
shows \(\exists g . \forall x \in S .(\lambda n . f n x)\) sums \((g x) \wedge\left(g\right.\) has_derivative \(\left.g^{\prime} x\right)(\) at \(x\) within S)
unfolding sums_def
apply (rule has_derivative_sequence[OF assms(1) _ assms(3)])
apply (metis assms(2) has_derivative_sum)
using assms(4-5)
unfolding sums_def
apply auto

\section*{done}
lemma has_field_derivative_series:
fixes \(f::\) nat \(\Rightarrow\left(' a::\left\{r e a l \_n o r m e d \_f i e l d, b a n a c h\right\}\right) ~ \Rightarrow ' a\)
assumes convex \(S\)
assumes \(\bigwedge n x . x \in S \Longrightarrow\left(f n\right.\) has_field_derivative \(\left.f^{\prime} n x\right)(\) at \(x\) within \(S)\)
assumes uniform_limit \(S\left(\lambda n x . \sum i<n . f^{\prime} i x\right) g^{\prime}\) sequentially
assumes \(x 0 \in S\) summable ( \(\lambda n\). \(f n x 0\) )
shows \(\exists g . \forall x \in S .(\lambda n . f n x)\) sums \(g x \wedge\left(g\right.\) has_field_derivative \(\left.g^{\prime} x\right)(\) at \(x\)
within \(S\) )
unfolding has_field_derivative_def
proof (rule has_derivative_series)
show \(\forall_{F} n\) in sequentially.
\(\forall x \in S . \forall h . \operatorname{norm}\left(\left(\sum i<n . f^{\prime} i x * h\right)-g^{\prime} x * h\right) \leq e *\) norm \(h\) if \(e>0\)
for \(e\)
unfolding eventually_sequentially
proof -
from that \(\operatorname{assms}(3)\) obtain \(N\) where \(N: \bigwedge n x . n \geq N \Longrightarrow x \in S \Longrightarrow\) norm \(\left(\left(\sum i<n . f^{\prime} i x\right)-g^{\prime} x\right)<e\)
unfolding uniform_limit_iff eventually_at_top_linorder dist_norm by blast \{
fix \(n::\) nat and \(x h::{ }^{\prime} a\) assume \(n x: n \geq N x \in S\)
have norm \(\left(\left(\sum i<n . f^{\prime} i x * h\right)-g^{\prime} x * h\right)=\operatorname{norm}\left(\left(\sum i<n . f^{\prime} i x\right)-g^{\prime}\right.\)
x) * norm \(h\)
by (simp add: norm_mult [symmetric] ring_distribs sum_distrib_right)
also from \(N[\) OF \(n x]\) have norm \(\left(\left(\sum i<n . f^{\prime} i x\right)-g^{\prime} x\right) \leq e\) by simp
hence norm \(\left(\left(\sum i<n . f^{\prime} i x\right)-g^{\prime} x\right) *\) norm \(h \leq e *\) norm \(h\)
by (intro mult_right_mono) simp_all
finally have norm \(\left(\left(\sum i<n . f^{\prime} i x * h\right)-g^{\prime} x * h\right) \leq e *\) norm \(h\).
\}
thus \(\exists N . \forall n \geq N . \forall x \in S . \forall h . \operatorname{norm}\left(\left(\sum i<n . f^{\prime} i x * h\right)-g^{\prime} x * h\right) \leq e *\) norm \(h\) by blast
qed
qed (use assms in 〈auto simp: has_field_derivative_def〉)
lemma has_field_derivative_series':
fixes \(f::\) nat \(\Rightarrow\left({ }^{\prime} a::\{\right.\) real_normed_field,banach \(\left.\}\right) \Rightarrow{ }^{\prime} a\)
assumes convex \(S\)
assumes \(\bigwedge n x . x \in S \Longrightarrow\left(f n\right.\) has_field_derivative \(\left.f^{\prime} n x\right)(\) at \(x\) within \(S)\)
assumes uniformly_convergent_on \(S\left(\lambda n x . \sum i<n . f^{\prime} i x\right)\)
assumes \(x 0 \in S\) summable \((\lambda n\). \(f n x 0) x \in\) interior \(S\)
shows summable \((\lambda n . f n x)\left(\left(\lambda x . \sum n . f n x\right)\right.\) has_field_derivative \(\left(\sum n . f^{\prime} n\right.\)
x)) (at \(x\) )
proof -
from \(\langle x \in\) interior \(S\rangle\) have \(x \in S\) using interior_subset by blast
define \(g^{\prime}\) where [abs_def]: \(g^{\prime} x=\left(\sum i . f^{\prime} i x\right)\) for \(x\)
from assms(3) have uniform_limit \(S\left(\lambda n x . \sum i<n . f^{\prime} i x\right) g^{\prime}\) sequentially
by (simp add: uniformly_convergent_uniform_limit_iff suminf_eq_lim \(g^{\prime}{ }_{-}\)def)
from has_field_derivative_series \([O F \operatorname{assms}(1,2)\) this assms \((4,5)]\) obtain \(g\) where
```

g:
\x.x
\ x . x \in S \Longrightarrow (g has_field_derivative g' x) (at x within S) by blast
from g(1)[OF\langlex\inS\rangle] show summable (\lambdan.f n x) by (simp add: sums_iff)
from g(2)[OF\langlex\inS\rangle]\langlex\in interior S\rangle have (g has_field_derivative g' x) (at x)
by (simp add: at_within_interior[of x S])
also have (g has_field_derivative g' }\mp@subsup{g}{}{\prime}\mathrm{) (at x) }
((\lambdax.\sumn.f n x) has_field_derivative g' x) (at x)
using eventually_nhds_in_nhd[OF〈x\in interior S\] interior_subset[of S] g(1)

 by (intro DERIV_cong_ev) (auto elim!: eventually_mono simp: sums_iff)
 finally show ((\lambdax. \sumn.f nx) has_field_derivative g' }\mp@subsup{g}{}{\prime}\mathrm{) (at x) .
 qed
lemma differentiable_series:
fixes f :: nat => ('a :: {real_normed_field,banach}) 吘'a
assumes convex S open S
assumes \nx. x \inS\Longrightarrow(fnhas_field_derivative f'nx)(at x)
assumes uniformly_convergent_on S(\lambdanx. \sumi<n. f' i x)
assumes x0 \inS summable (}\lambdan\mathrm{ . f n x0) and x:x }\in
shows summable (}\lambdan.fnx)\mathrm{ and (}\lambdax.\sumn.fnx)\mathrm{ differentiable (at x)
proof -
from assms(4) obtain g' where A: uniform_limit S (\lambdan x. \sumi<n.f' i x) g'
sequentially
unfolding uniformly_convergent_on_def by blast
from x and <open S> have S: at x within S=at x by (rule at_within_open)
have \existsg.\forallx\inS.(\lambdan.fnx) sums g x ^(g has_field_derivative g' x)(at x within
S)
by (intro has_field_derivative_series[of S ff ' g' x0] assms A has_field_derivative_at_within)

```

```

 \x. x }\inS\Longrightarrow(g\mathrm{ has_field_derivative g' x) (at x within S) by blast
 from g[OF x] show summable (\lambdan.f n x) by (auto simp: summable_def)
 from g(2)[OF x] have g':(g has_derivative (*) (}\mp@subsup{g}{}{\prime}x))(\mathrm{ at x)
 by (simp add: has_field_derivative_def S)
 have ((\lambdax. \sumn.fnx) has_derivative (*) (g'x)) (at x)
 by (rule has_derivative_transform_within_open[OF g}\mp@subsup{g}{}{\prime}\langleopen S`x]
 (insert g, auto simp: sums_iff)
 thus (}\lambdax.\sumn.fnx) differentiable (at x) unfolding differentiable_def
 by (auto simp: summable_def differentiable_def has_field_derivative_def)
 qed
lemma differentiable_series':
fixes f :: nat => ('a :: {real_normed_field,banach}) 知 'a
assumes convex S open S
assumes }\nx.x\inS\Longrightarrow(fnhas_field_derivative f'nx)(at x
assumes uniformly_convergent_on S (}\lambdanx.\sumi<n.f'i i)
assumes x0 \inS summable (}\lambdan.fnx0
shows (}\lambdax.\sumn.fnx) differentiable (at x0)
using differentiable_series[OF assms, of x0]\langlex0 \inS\rangle by blast+

```

\section*{4．10．15 Derivative as a vector}

Considering derivative real \(\Rightarrow{ }^{\prime} b\) as a vector．
definition vector＿derivative \(f\) net \(=\left(S O M E f^{\prime} .\left(f\right.\right.\) has＿vector＿derivative \(\left.f^{\prime}\right)\) net \()\)
lemma vector＿derivative＿unique＿within：
assumes not＿bot：at x within \(S \neq\) bot and \(f^{\prime}:\left(f\right.\) has＿vector＿derivative \(\left.f^{\prime}\right)(\) at \(x\) within \(S)\)
and \(f^{\prime \prime}\) ：\(\left(f\right.\) has＿vector＿derivative \(\left.f^{\prime \prime}\right)(\) at \(x\) within \(S)\)
shows \(f^{\prime}=f^{\prime \prime}\)
proof－
have \(\left(\lambda x . x *_{R} f^{\prime}\right)=\left(\lambda x . x *_{R} f^{\prime \prime}\right)\)
proof（rule frechet＿derivative＿unique＿within，simp＿all）
show \(\exists d . d \neq 0 \wedge|d|<e \wedge x+d \in S\) if \(0<e\) for \(e\)
proof－
from that
obtain \(x^{\prime}\) where \(x^{\prime} \in S x^{\prime} \neq x\left|x^{\prime}-x\right|<e\)
using islimpt＿approachable＿real［ of \(x S\) ］not＿bot by（auto simp add：trivial＿limit＿within）
then show？thesis
using eq＿iff＿diff＿eq＿0 by fastforce qed
qed（use \(f^{\prime} f^{\prime \prime}\) in 〈auto simp：has＿vector＿derivative＿def〉）
then show ？thesis
unfolding fun＿eq＿iff by（metis scaleR＿one）
qed
lemma vector＿derivative＿unique＿at：
（ \(f\) has＿vector＿derivative \(f^{\prime}\) ）（at \(\left.x\right) \Longrightarrow\left(f\right.\) has＿vector＿derivative \(\left.f^{\prime \prime}\right)(\) at \(x) \Longrightarrow f^{\prime}\)
\(=f^{\prime \prime}\)
by（rule vector＿derivative＿unique＿within）auto
lemma differentiableI＿vector：（f has＿vector＿derivative y）\(F \Longrightarrow f\) differentiable \(F\) by（auto simp：differentiable＿def has＿vector＿derivative＿def）
proposition vector＿derivative＿works：
\(f\) differentiable net \(\longleftrightarrow\)（ \(f\) has＿vector＿derivative（vector＿derivative \(f\) net））net （is \(? l=? r\) ）
proof
assume ？l
obtain \(f^{\prime}\) where \(f^{\prime}:\left(f\right.\) has＿derivative \(\left.f^{\prime}\right)\) net using 〈？l〉 unfolding differentiable＿def ．．
then interpret bounded＿linear \(f^{\prime}\) by auto
show？？
unfolding vector＿derivative＿def has＿vector＿derivative＿def by（rule someI［of－\(\left.f^{\prime} 1\right]\) ）（simp add：scaleR［symmetric］\(f^{\prime}\) ）
qed（auto simp：vector＿derivative＿def has＿vector＿derivative＿def differentiable＿def）
```

lemma vector_derivative_within:
assumes not_bot: at x within $S \neq$ bot and y : (f has_vector_derivative y) (at x
within S)
shows vector_derivative $f($ at x within $S)=y$
using y
by (intro vector_derivative_unique_within[OF not_bot vector_derivative_works[THEN
iffD1] y])
(auto simp: differentiable_def has_vector_derivative_def)
lemma frechet_derivative_eq_vector_derivative:
assumes f differentiable (at x)
shows $($ frechet_derivative $f($ at $x))=\left(\lambda r . r *_{R}\right.$ vector_derivative $f($ at $\left.x)\right)$
using assms
by (auto simp: differentiable_iff_scaleR vector_derivative_def has_vector_derivative_def
intro: someI frechet_derivative_at [symmetric])
lemma has_real_derivative:
fixes f :: real \Rightarrow real
assumes (f has_derivative $\left.f^{\prime}\right) F$
obtains c where (f has_real_derivative c) F
proof -
obtain c where $f^{\prime}=(\lambda x . x * c)$
by (metis assms has_derivative_bounded_linear real_bounded_linear)
then show? ?thesis
by (metis assms that has_field_derivative_def mult_commute_abs)
qed
lemma has_real_derivative_iff:
fixes f :: real \Rightarrow real
shows $(\exists c .(f$ has_real_derivative $c) F)=(\exists D .(f$ has_derivative $D) F)$
by (metis has_field_derivative_def has_real_derivative)
lemma has_vector_derivative_cong_ev:
assumes $*$: eventually $(\lambda x . x \in S \longrightarrow f x=g x)(n h d s x) f x=g x$
shows $\left(f\right.$ has_vector_derivative $\left.f^{\prime}\right)($ at x within $S)=\left(g\right.$ has_vector_derivative $\left.f^{\prime}\right)$
(at x within S)
unfolding has_vector_derivative_def has_derivative_def
using *
apply (cases at x within $S \neq$ bot)
apply (intro refl conj_cong filterlim_cong)
apply (auto simp: Lim_ident_at eventually_at_filter elim: eventually_mono)
done
lemma islimpt_closure_open:
fixes $s::{ }^{\prime} a::$ perfect_space set
assumes open s and $t: t=$ closure $s x \in t$
shows x islimpt t
proof cases
assume $x \in s$

```
```

 \{ fix \(T\) assume \(x \in T\) open \(T\)
 then have open \((s \cap T)\)
 using 〈open \(s\) 〉 by auto
 then have \(s \cap T \neq\{x\}\)
 using not_open_singleton[of \(x\)] by auto
 with \(\langle x \in T\rangle\langle x \in s\rangle\) have \(\exists y \in t . y \in T \wedge y \neq x\)
 using closure_subset \([\) of \(s]\) by (auto simp: \(t\)) \}
 then show ?thesis
 by (auto intro!: islimptI)
 next
assume $x \notin s$ with t show ?thesis
unfolding t closure_def by (auto intro: islimpt_subset)
qed
lemma vector_derivative_unique_within_closed_interval:
assumes $a b: a<b x \in c b o x a b$
assumes D : (f has_vector_derivative f^{\prime}) (at x within cbox a b) (f has_vector_derivative
$f^{\prime \prime}$) (at x within cbox a b)
shows $f^{\prime}=f^{\prime \prime}$
using $a b$
by (intro vector_derivative_unique_within $\left[O F ~ _~ D\right]$)
(auto simp: trivial_limit_within intro!: islimpt_closure_open[where $s=\{a<. .<$
$b\}])$
lemma vector_derivative_at:
$\left(f\right.$ has_vector_derivative $\left.f^{\prime}\right)($ at $x) \Longrightarrow$ vector_derivative $f($ at $x)=f^{\prime}$
by (intro vector_derivative_within at_neq_bot)
lemma has_vector_derivative_id_at [simp]: vector_derivative $(\lambda x . x)($ at $a)=1$
by (simp add: vector_derivative_at)
lemma vector_derivative_minus_at [simp]:
f differentiable at a
\Longrightarrow vector_derivative $(\lambda x .-f x)($ at $a)=-$ vector_derivative $f($ at $a)$
by (simp add: vector_derivative_at has_vector_derivative_minus vector_derivative_works
[symmetric])
lemma vector＿derivative＿add＿at［simp］：
$\llbracket f$ differentiable at $a ; g$ differentiable at a \rrbracket
\Longrightarrow vector＿derivative $(\lambda x . f x+g x)($ at $a)=$ vector＿derivative $f($ at $a)+$ vector＿derivative g（at a）
by（simp add：vector＿derivative＿at has＿vector＿derivative＿add vector＿derivative＿works ［symmetric］）
lemma vector＿derivative＿diff＿at［simp］：
【f differentiable at $a ; g$ differentiable at a】
\Longrightarrow vector＿derivative $(\lambda x . f x-g x)($ at $a)=$ vector＿derivative $f($ at $a)-$
vector＿derivative g（at a）
by（simp add：vector＿derivative＿at has＿vector＿derivative＿diff vector＿derivative＿works

```
```

Derivative.thy
[symmetric])
lemma vector_derivative_mult_at [simp]:
fixes f g :: real = ' }a\mathrm{ :: real_normed_algebra
shows \llbracketf differentiable at a;g differentiable at a\rrbracket
\Longrightarrow vector_derivative (\lambda x . f x * g x) (at a) =fa* vector_derivative g(at a)+
vector_derivative f (at a) * g a
by (simp add: vector_derivative_at has_vector_derivative_mult vector_derivative_works
[symmetric])
lemma vector_derivative_scaleR_at [simp]:
|f differentiable at a;g differentiable at a\rrbracket
\Longrightarrow vector_derivative (\lambda x . f x * _ { R } g x) (at a) = fa a*R vector_derivative g(at a)

+ vector_derivative f (at a) *R g a
apply (rule vector_derivative_at)
apply (rule has_vector_derivative_scaleR)
apply (auto simp: vector_derivative_works has_vector_derivative_def has_field_derivative_def
mult_commute_abs)
done
lemma vector_derivative_within_cbox:
assumes ab: a<b x cbox a b
assumes f:(f has_vector_derivative f}\mp@subsup{f}{}{\prime})(\mathrm{ at }x\mathrm{ within cbox a b)
shows vector_derivative f(at x within cbox a b) = f'
by (intro vector_derivative_unique_within_closed_interval[OF ab _ f]
vector_derivative_works[THEN iffD1] differentiableI_vector)
fact
lemma vector_derivative_within_closed_interval:
fixes f::real }=>\mathrm{ ' 'a::euclidean_space
assumes }a<b\mathrm{ and }x\in{a..b
assumes (f has_vector_derivative f') (at x within {a..b})
shows vector_derivative f (at x within {a..b}) = f'
using assms vector_derivative_within_cbox
by fastforce
lemma has_vector_derivative_within_subset:
(f has_vector_derivative f}\mp@subsup{f}{}{\prime})(\mathrm{ at }x\mathrm{ within S) }\LongrightarrowT\subseteqS\Longrightarrow(f has_vector_derivative
f})(\mathrm{ at }x\mathrm{ within T)
by (auto simp: has_vector_derivative_def intro: has_derivative_subset)
lemma has_vector_derivative_at_within:
(f has_vector_derivative f') (at x)\Longrightarrow(f has_vector_derivative f') (at x within S)
unfolding has_vector_derivative_def
by (rule has_derivative_at_withinI)
lemma has_vector_derivative_weaken:
fixes x D and fgST
assumes f:(f has_vector_derivative D) (at x within T)

```
and \(x \in S S \subseteq T\)
and \(\bigwedge x . x \in S \Longrightarrow f x=g x\)
shows ( \(g\) has_vector_derivative \(D\) ) (at \(x\) within \(S\) )
proof -
have \((f\) has_vector_derivative \(D)(\) at \(x\) within \(S) \longleftrightarrow(g\) has_vector_derivative \(D)\)
(at \(x\) within \(S\) )
unfolding has_vector_derivative_def has_derivative_iff_norm
using assms by (intro conj_cong Lim_cong_within refl) auto
then show ?thesis
using has_vector_derivative_within_subset \([O F f\langle S \subseteq T\rangle]\) by simp
qed
lemma has_vector_derivative_transform_within:
assumes (f has_vector_derivative \(\left.f^{\prime}\right)(\) at \(x\) within \(S)\)
and \(0<d\)
and \(x \in S\)
and \(\bigwedge x^{\prime} . \llbracket x^{\prime} \in S ;\) dist \(x^{\prime} x<d \rrbracket \Longrightarrow f x^{\prime}=g x^{\prime}\)
shows ( \(g\) has_vector_derivative \(\left.f^{\prime}\right)(\) at \(x\) within \(S)\)
using assms
unfolding has_vector_derivative_def
by (rule has_derivative_transform_within)
lemma has_vector_derivative_transform_within_open:
assumes ( \(f\) has_vector_derivative \(f^{\prime}\) ) (at \(x\) )
and open \(S\)
and \(x \in S\)
and \(\bigwedge y . y \in S \Longrightarrow f y=g y\)
shows ( \(g\) has_vector_derivative \(f^{\prime}\) ) (at \(x\) )
using assms
unfolding has_vector_derivative_def
by (rule has_derivative_transform_within_open)
lemma has_vector_derivative_transform:
assumes \(x \in S \bigwedge x . x \in S \Longrightarrow g x=f x\)
assumes \(f^{\prime}:\left(f\right.\) has_vector_derivative \(\left.f^{\prime}\right)(\) at \(x\) within \(S)\)
shows ( \(g\) has_vector_derivative \(f^{\prime}\) ) (at x within \(S\) )
using assms
unfolding has_vector_derivative_def
by (rule has_derivative_transform)
lemma vector_diff_chain_at:
assumes ( \(f\) has_vector_derivative \(f^{\prime}\) ) (at \(x\) )
and ( \(g\) has_vector_derivative \(g^{\prime}\) ) (at \(\left.(f x)\right)\)
shows \(\left((g \circ f)\right.\) has_vector_derivative \(\left.\left(f^{\prime} *_{R} g^{\prime}\right)\right)(\) at \(x)\)
using assms has_vector_derivative_at_within has_vector_derivative_def vector_derivative_diff_chain_within
by blast
lemma vector_diff_chain_within:
assumes ( \(f\) has_vector_derivative \(f^{\prime}\) ) (at x within s)
and ( \(g\) has_vector_derivative \(\left.g^{\prime}\right)(\) at \((f x)\) within \(f\) ' \(s)\)
shows \(\left((g \circ f)\right.\) has_vector_derivative \(\left.\left(f^{\prime} *_{R} g^{\prime}\right)\right)\) (at \(x\) within s)
using assms has_vector_derivative_def vector_derivative_diff_chain_within by blast
lemma vector_derivative_const_at [simp]: vector_derivative \((\lambda x . c)(a t a)=0\)
by ( simp add: vector_derivative_at)
lemma vector_derivative_at_within_ivl:
( \(f\) has_vector_derivative \(f^{\prime}\) ) (at \(\left.x\right) \Longrightarrow\)
\(a \leq x \Longrightarrow x \leq b \Longrightarrow a<b \Longrightarrow\) vector_derivative \(f\) (at \(x\) within \(\{a . . b\}\) ) \(=f^{\prime}\)
using has_vector_derivative_at_within vector_derivative_within_cbox by fastforce
lemma vector_derivative_chain_at:
assumes \(f\) differentiable at \(x\) ( \(g\) differentiable at \((f x)\) )
shows vector_derivative \((g \circ f)(\) at \(x)=\)
vector_derivative \(f(\) at \(x) *_{R}\) vector_derivative \(g(\) at \((f x))\)
by (metis vector_diff_chain_at vector_derivative_at vector_derivative_works assms)
lemma field_vector_diff_chain_at:
assumes Df: (f has_vector_derivative \(\left.f^{\prime}\right)(\) at \(x)\)
and \(D g:\left(g\right.\) has_field_derivative \(\left.g^{\prime}\right)(\) at \((f x))\)
shows \(\left((g \circ f)\right.\) has_vector_derivative \(\left.\left(f^{\prime} * g^{\prime}\right)\right)(\) at \(x)\)
using diff_chain_at[OF Df[unfolded has_vector_derivative_def]
Dg [unfolded has_field_derivative_def]]
by (auto simp: o_def mult.commute has_vector_derivative_def)
lemma vector_derivative_chain_within:
assumes at \(x\) within \(S \neq \operatorname{bot} f\) differentiable (at \(x\) within \(S\) )
( \(g\) has_derivative \(g^{\prime}\) ) (at \((f x)\) within \(f\) ' \(S\) )
shows vector_derivative \((g \circ f)(\) at \(x\) within \(S)=\) \(g^{\prime}\) (vector_derivative \(f\) (at \(x\) within \(\left.S\right)\) )
apply (rule vector_derivative_within [OF <at \(x\) within \(S \neq b o t\rangle]\) )
apply (rule vector_derivative_diff_chain_within)
using assms(2-3) vector_derivative_works
by auto

\subsection*{4.10.16 Field differentiability}
definition field_differentiable :: [' \(a \Rightarrow\) 'a:: real_normed_field, ' \(a\) filter \(] \Rightarrow\) bool (infixr (field'_differentiable) 50)
where \(f\) field_differentiable \(F \equiv \exists f^{\prime}\). (f has_field_derivative \(\left.f^{\prime}\right) F\)
lemma field_differentiable_imp_differentiable:
\(f\) field_differentiable \(F \Longrightarrow f\) differentiable \(F\)
unfolding field_differentiable_def differentiable_def
using has_field_derivative_imp_has_derivative by auto
lemma field_differentiable_imp_continuous_at:
\(f\) field_differentiable (at \(x\) within \(S\) ) \(\Longrightarrow\) continuous \((\) at \(x\) within \(S\) ) \(f\)
by (metis DERIV_continuous field_differentiable_def)
lemma field_differentiable_within_subset:
\(\llbracket f\) field_differentiable (at \(x\) within \(S\) ); \(T \subseteq S \rrbracket \Longrightarrow f\) field_differentiable (at \(x\) within T)
by (metis DERIV_subset field_differentiable_def)
lemma field_differentiable_at_within:
【f field_differentiable (at x)】
\(\Longrightarrow f\) field_differentiable (at \(x\) within \(S\) )
unfolding field_differentiable_def
by (metis DERIV_subset top_greatest)
lemma field_differentiable_linear [simp,derivative_intros]: ((*) c) field_differentiable F
unfolding field_differentiable_def has_field_derivative_def mult_commute_abs by (force intro: has_derivative_mult_right)
lemma field_differentiable_const [simp,derivative_intros]: \((\lambda z . c)\) field_differentiable F
unfolding field_differentiable_def has_field_derivative_def
using DERIV_const has_field_derivative_imp_has_derivative by blast
lemma field_differentiable_ident [simp,derivative_intros]: \((\lambda z . z)\) field_differentiable F
unfolding field_differentiable_def has_field_derivative_def
using DERIV_ident has_field_derivative_def by blast
lemma field_differentiable_id [simp,derivative_intros]: id field_differentiable \(F\) unfolding id_def by (rule field_differentiable_ident)
lemma field_differentiable_minus [derivative_intros]:
f field_differentiable \(F \Longrightarrow(\lambda z .-(f z))\) field_differentiable \(F\)
unfolding field_differentiable_def
by (metis field_differentiable_minus)
lemma field_differentiable_add [derivative_intros]:
assumes \(f\) field_differentiable \(F g\) field_differentiable \(F\) shows ( \(\lambda z . f z+g z\) ) field_differentiable \(F\)
using assms unfolding field_differentiable_def by (metis field_differentiable_add)
lemma field_differentiable_add_const [simp,derivative_intros]:
(+) c field_differentiable F
by (simp add: field_differentiable_add)
lemma field_differentiable_sum [derivative_intros]:
\((\bigwedge i . i \in I \Longrightarrow(f i)\) field_differentiable \(F) \Longrightarrow\left(\lambda z . \sum i \in I . f i z\right)\) field_differentiable F
```

by (induct I rule: infinite_finite_induct)
(auto intro: field_differentiable_add field_differentiable_const)

```
```

lemma field_differentiable_diff [derivative_intros]:
assumes f field_differentiable F g field_differentiable F
shows (\lambdaz.fz-gz) field_differentiable F
using assms unfolding field_differentiable_def
by (metis field_differentiable_diff)
lemma field_differentiable_inverse [derivative_intros]:
assumes f field_differentiable (at a within S) f a\not=0
shows (}\lambdaz\mathrm{ . inverse (}fz)\mathrm{) field_differentiable (at a within S)
using assms unfolding field_differentiable_def
by (metis DERIV_inverse_fun)

```
lemma field_differentiable_mult [derivative_intros]:
    assumes \(f\) field_differentiable (at a within S)
        \(g\) field_differentiable (at a within \(S\) )
    shows \((\lambda z . f z * g z)\) field_differentiable (at a within \(S\) )
    using assms unfolding field_differentiable_def
    by (metis DERIV_mult [of f_aSg])
lemma field_differentiable_divide [derivative_intros]:
    assumes \(f\) field_differentiable (at a within \(S\) )
        \(g\) field_differentiable (at a within \(S\) )
        g \(a \neq 0\)
    shows ( \(\lambda z . f z / g z\) ) field_differentiable (at a within \(S\) )
    using assms unfolding field_differentiable_def
    by (metis DERIV_divide \(\left[o f f_{-} a S g\right]\) )
lemma field_differentiable_power [derivative_intros]:
    assumes \(f\) field_differentiable (at a within \(S\) )
    shows ( \(\lambda z . f z^{\wedge} n\) ) field_differentiable (at a within \(S\) )
    using assms unfolding field_differentiable_def
    by (metis DERIV_power)
lemma field_differentiable_transform_within:
    \(0<d \Longrightarrow\)
        \(x \in S \Longrightarrow\)
        \(\left(\bigwedge x^{\prime} . x^{\prime} \in S \Longrightarrow\right.\) dist \(\left.x^{\prime} x<d \Longrightarrow f x^{\prime}=g x^{\prime}\right) \Longrightarrow\)
        \(f\) field_differentiable (at \(x\) within \(S\) )
        \(\Longrightarrow g\) field_differentiable (at \(x\) within \(S\) )
    unfolding field_differentiable_def has_field_derivative_def
    by (blast intro: has_derivative_transform_within)
lemma field_differentiable_compose_within:
    assumes \(f\) field_differentiable (at a within \(S\) )
        \(g\) field_differentiable (at ( \(f\) a) within \(f^{\prime} S\) )
    shows ( \(g\) of) field_differentiable (at a within \(S\) )
using assms unfolding field_differentiable_def
by (metis DERIV_image_chain)
lemma field_differentiable_compose:
\(f\) field_differentiable at \(z \Longrightarrow g\) field_differentiable at ( \(f z\) ) \(\Longrightarrow(g \circ f)\) field_differentiable at \(z\)
by (metis field_differentiable_at_within field_differentiable_compose_within)
lemma field_differentiable_within_open:
\(\llbracket a \in S ;\) open \(S \rrbracket \Longrightarrow f\) field_differentiable at a within \(S \longleftrightarrow\) \(f\) field_differentiable at a
unfolding field_differentiable_def
by (metis at_within_open)
lemma exp_scaleR_has_vector_derivative_right:
\(\left(\left(\lambda t . \exp \left(t *_{R} A\right)\right)\right.\) has_vector_derivative \(\left.\exp \left(t *_{R} A\right) * A\right)(\) at \(t\) within \(T)\)
unfolding has_vector_derivative_def
proof (rule has_derivativeI)
let ? \(F=\) at \(t\) within \((T \cap\{t-1<. .<t+1\})\)
have *: at \(t\) within \(T=\) ? \(F\)
by (rule at_within_nhd \([\) where \(S=\{t-1<. .<t+1\}]\) ) auto
let \(? e=\lambda i x\). inverse \((1+\) real \(i) *\) inverse \((\) fact \(\left.i) *(x-t){ }^{\wedge} i\right) *_{R}(A * A\) ^ i)
have \(\forall_{F} n\) in sequentially.
\(\forall x \in T \cap\{t-1<. .<t+1\}\).norm \((\) ?e \(n x) \leq \operatorname{norm}\left(A^{\wedge}(n+1) / R f a c t(n\right.\)
\(+1)\) )
apply (auto simp: algebra_split_simps intro!: eventuallyI)
apply (rule mult_left_mono)
apply (auto simp add: field_simps power_abs intro!: divide_right_mono power_le_one)
done
then have uniform_limit \((T \cap\{t-1<. .<t+1\})\left(\lambda n x . \sum i<n\right.\). ?e \(\left.i x\right)(\lambda x\).
\(\sum i\). ?e \(i x\) ) sequentially
by (rule Weierstrass_m_test_ev) (intro summable_ignore_initial_segment summable_norm_exp)
moreover
have \(\forall_{F} x\) in sequentially. \(x>0\)
by (metis eventually_gt_at_top)
then have
\(\forall_{F} n\) in sequentially. \(\left(\left(\lambda x . \sum i<n\right.\right.\). ?e \(\left.\left.i x\right) \longrightarrow A\right)\) ?F by eventually_elim
(auto intro!: tendsto_eq_intros simp: power_0_left if_distrib if_distribR cong: if_cong)
ultimately
have [tendsto_intros]: \(\left(\left(\lambda x . \sum i\right.\right.\). ?e \(\left.\left.i x\right) \longrightarrow A\right)\) ?F
by (auto intro!: swap_uniform_limit[where \(f=\lambda n x\). \(\sum i<n\). ? e i \(x\) and \(F=\)
sequentially])
have [tendsto_intros]: \(((\lambda x\). if \(x=t\) then 0 else 1\() \longrightarrow 1) ? F\)
by (rule tendsto_eventually) (simp add: eventually_at_filter)
have \(\left(\left(\lambda y .((y-t) / a b s(y-t)) *_{R}\left(\left(\sum n\right.\right.\right.\right.\). ?e \(\left.\left.\left.\left.n y\right)-A\right)\right) \longrightarrow 0\right)(\) at \(t\) within

\section*{T)}

\section*{unfolding *}
by (rule tendsto_norm_zero_cancel) (auto intro!: tendsto_eq_intros)
moreover have \(\forall_{F} x\) in at \(t\) within \(T . x \neq t\)
by (simp add: eventually_at_filter)
then have \(\forall_{F} x\) in at \(t\) within \(T\). \(((x-t) /|x-t|) *_{R}\left(\left(\sum n\right.\right.\). ?e \(\left.\left.n x\right)-A\right)=\)
\(\left(\exp \left((x-t) *_{R} A\right)-1-(x-t) *_{R} A\right) / R \operatorname{norm}(x-t)\)
proof eventually_elim
case (elim \(x\) )
have \(\left(\exp \left((x-t) *_{R} A\right)-1-(x-t) *_{R} A\right) / R \operatorname{norm}(x-t)=\)
\(\left(\left(\sum n .(x-t) *_{R}\right.\right.\) ? e \(\left.\left.n x\right)-(x-t) *_{R} A\right) / R \operatorname{norm}(x-t)\)
unfolding exp_first_term
by (simp add: ac_simps)
also
have summable ( \(\lambda n\). ?e \(n x\) )
proof -
from elim have ?e n \(x=\left(\left((x-t) *_{R} A\right)^{\wedge}(n+1)\right) / R\) fact \((n+1) / R\)
\((x-t)\) for \(n\) by simp
then show ?thesis
by (auto simp only: intro!: summable_scaleR_right summable_ignore_initial_segment summable_exp_generic)
qed
then have \(\left(\sum n .(x-t) *_{R}\right.\) ? e \(\left.n x\right)=(x-t) *_{R}\left(\sum n\right.\). ?e \(\left.n x\right)\)
by (rule suminf_scaleR_right [symmetric])
also have \(\left(\ldots-(x-t) *_{R} A\right) / R\) norm \((x-t)=(x-t) *_{R}\left(\left(\sum n\right.\right.\). ?e \(n\)
\(x)-A) / R \operatorname{norm}(x-t)\)
by (simp add: algebra_simps)
finally show ?case by simp (simp add: field_simps)
qed
ultimately have \(\left(\left(\lambda y .\left(\exp \left((y-t) *_{R} A\right)-1-(y-t) *_{R} A\right) / R \operatorname{norm}(y\right.\right.\) \(-t)) \longrightarrow 0)(\) at \(t\) within \(T)\)
by (rule Lim_transform_eventually)
from tendsto_mult_right_zero[OF this, where \(\left.c=\exp \left(t *_{R} A\right)\right]\)
show \(\left(\left(\lambda y .\left(\exp \left(y *_{R} A\right)-\exp \left(t *_{R} A\right)-(y-t) *_{R}\left(\exp \left(t *_{R} A\right) * A\right)\right) / R\right.\right.\)
norm \((y-t)) \longrightarrow 0)\)
(at \(t\) within \(T\) )
by (rule Lim_transform_eventually)
(auto simp: field_split_simps exp_add_commuting[symmetric])
qed (rule bounded_linear_scaleR_left)
lemma exp_times_scaleR_commute: \(\exp \left(t *_{R} A\right) * A=A * \exp \left(t *_{R} A\right)\)
using exp_times_arg_commute \(\left[\right.\) symmetric, of \(\left.t *_{R} A\right]\)
by (auto simp: algebra_simps)
lemma exp_scaleR_has_vector_derivative_left: \(\left(\left(\lambda t . \exp \left(t *_{R} A\right)\right)\right.\) has_vector_derivative
```

A*\operatorname{exp}(t\mp@subsup{*}{R}{}A))(at t)
using exp_scaleR_has_vector_derivative_right[of A t]
by (simp add: exp_times_scaleR_commute)
lemma field_differentiable_series:

```

```

 assumes convex S open S
 assumes \nx. x 仿 (fnhas_field_derivative f' nx) (at x)
 assumes uniformly_convergent_on S (\lambdan x. \sumi<n. f'i x)
 assumes x0 \inS summable (}\lambdan.fnx0)\mathrm{ and x:x }\in
 shows (}\lambdax.\sumn.fnx)\mathrm{ field_differentiable (at x)
 proof -
from assms(4) obtain g' where A: uniform_limit S (\lambdan x. \sumi<n. f' ix) g'
sequentially
unfolding uniformly_convergent_on_def by blast
from x and <open S` have S: at x within S=at x by (rule at_within_open) have }\existsg.\forallx\inS.(\lambdan.fnx) sums g x ^(g has_field_derivative g' 多)(at x withi S) by (intro has_field_derivative_series[of S ff' g' x0] assms A has_field_derivative_at_within) then obtain g}\mathrm{ where g: \x.x 位 ఋ (\n.fnx) sums g x \x. x from g(2)[OF x] have g':(g has_derivative (*) (}\mp@subsup{g}{}{\prime}x)\mathrm{) (at x) by (simp add: has_field_derivative_def S) have ((\lambdax. \sumn.fnx) has_derivative (*) (g' x)) (at x) by (rule has_derivative_transform_within_open[OF g}\mp@subsup{g}{}{\prime}\mathrm{ <open S` x])
(insert g, auto simp: sums_iff)
thus (}\lambdax.\sumn.fnx) field_differentiable (at x) unfolding differentiable_def
by (auto simp: summable_def field_differentiable_def has_field_derivative_def)
qed

```

\section*{Caratheodory characterization}
```

lemma field＿differentiable＿caratheodory＿at：
f field＿differentiable（at z）\longleftrightarrow
$(\exists g .(\forall w . f(w)-f(z)=g(w) *(w-z)) \wedge$ continuous（at z）$g)$
using CARAT＿DERIV［of f ］
by（simp add：field＿differentiable＿def has＿field＿derivative＿def）
lemma field＿differentiable＿caratheodory＿within：
f field＿differentiable（at z within s）\longleftrightarrow
$(\exists g .(\forall w \cdot f(w)-f(z)=g(w) *(w-z)) \wedge$ continuous $($ at z within $s) g)$
using DERIV＿caratheodory＿within［of f］
by（simp add：field＿differentiable＿def has＿field＿derivative＿def）

```

\section*{4．10．17 Field derivative}
```

definition deriv :: (' $a \Rightarrow$ ' $a::$:real_normed_field $) \Rightarrow^{\prime} a \Rightarrow^{\prime} a$ where
$\operatorname{deriv} f x \equiv$ SOME D. DERIV f $x:>D$

```
lemma DERIV_imp_deriv: DERIV f \(x:>f^{\prime} \Longrightarrow \operatorname{deriv} f x=f^{\prime}\)
```

 unfolding deriv_def by (metis some_equality DERIV_unique)
 lemma DERIV_deriv_iff_has_field_derivative:
 DERIV f x :> deriv f }x\longleftrightarrow(\exists\mp@subsup{f}{}{\prime}.(f\mathrm{ has_field_derivative f}\mp@subsup{f}{}{\prime})(\mathrm{ at }x)
 by (auto simp: has_field_derivative_def DERIV_imp_deriv)
 lemma DERIV_deriv_iff_real_differentiable:
 fixes }x\mathrm{ :: real
 shows DERIV f x :> deriv f x \longleftrightarrow f differentiable at x
 unfolding differentiable_def by (metis DERIV_imp_deriv has_real_derivative_iff)
 lemma deriv_cong_ev:
assumes eventually (}\lambdax.fx=gx)(nhdsx)x=
shows deriv fx= deriv g y
proof -
have (}\lambda\mathrm{ D. (f has_field_derivative D) (at x)) =(}\lambda\mathrm{ D. (g has_field_derivative D) (at
y))
by (intro ext DERIV_cong_ev refl assms)
thus ?thesis by (simp add: deriv_def assms)
qed
lemma higher_deriv_cong_ev:
assumes eventually (}\lambdax.fx=gx)(nhds x)x=
shows (deriv ^^n) fx= (deriv ^^n) g y
proof -
from assms(1) have eventually (}\lambda\mathrm{ x. (deriv ^^n) f x = (deriv ^^n) g x) (nhds
x)
proof (induction n arbitrary: fg)
case (Suc n)
from Suc.prems have eventually (\lambday. eventually (\lambdaz.fz=gz)(nhds y))
(nhds x)
by (simp add: eventually_eventually)
hence eventually (}\lambdax\mathrm{ . deriv f }x=\mathrm{ deriv g x) (nhds x)
by eventually_elim (rule deriv_cong_ev, simp_all)
thus ?case by (auto intro!: deriv_cong_ev Suc simp: funpow_Suc_right simp del:
funpow.simps)
qed auto
from eventually_nhds_x_imp_x[OF this] assms(2) show ?thesis by simp
qed
lemma real_derivative_chain:
fixes }x\mathrm{ :: real
shows }f\mathrm{ differentiable at }x\Longrightarrowg\mathrm{ differentiable at (fx)
\Longrightarrow deriv (gof) x = deriv g (fx)* deriv fx
by (metis DERIV_deriv_iff_real_differentiable DERIV_chain DERIV_imp_deriv)
lemma field_derivative_eq_vector_derivative:
(deriv f x) = vector_derivative f (at x)
by (simp add: mult.commute deriv_def vector_derivative_def has_vector_derivative_def
has_field_derivative_def)

```
proposition field_differentiable_derivI:
\(f\) field_differentiable \((\) at \(x) \Longrightarrow(f\) has_field_derivative deriv \(f x)(\) at \(x)\)
by (simp add: field_differentiable_def DERIV_deriv_iff_has_field_derivative)
lemma vector_derivative_chain_at_general:
assumes \(f\) differentiable at \(x g\) field_differentiable at \((f x)\)
shows vector_derivative \((g \circ f)(\) at \(x)=\) vector_derivative \(f(\) at \(x) * \operatorname{deriv} g(f\)
x)
apply (rule vector_derivative_at [OF field_vector_diff_chain_at])
using assms vector_derivative_works by (auto simp: field_differentiable_derivI)
lemma DERIV_deriv_iff_field_differentiable:
DERIV f \(x\) : \(>\) deriv \(f x \longleftrightarrow f\) field_differentiable at \(x\) unfolding field_differentiable_def by (metis DERIV_imp_deriv)
lemma deriv_chain:
\(f\) field_differentiable at \(x \Longrightarrow g\) field_differentiable at \((f x)\) \(\Longrightarrow\) deriv \((g \circ f) x=\operatorname{deriv} g(f x) * \operatorname{deriv} f x\)
by (metis DERIV_deriv_iff_field_differentiable DERIV_chain DERIV_imp_deriv)
lemma deriv_linear \([\) simp \(]\) : deriv \((\lambda w . c * w)=(\lambda z . c)\)
by (metis DERIV_imp_deriv DERIV_cmult_Id)
lemma deriv_uminus \([\) simp \(]: \operatorname{deriv}(\lambda w .-w)=(\lambda z .-1)\)
using deriv_linear[of -1] by (simp del: deriv_linear)
lemma deriv_ident \([\) simp \(]: \operatorname{deriv}(\lambda w . w)=(\lambda z .1)\)
by (metis DERIV_imp_deriv DERIV_ident)
lemma deriv_id \([\) simp \(]:\) deriv \(i d=(\lambda z .1)\)
by (simp add: id_def)
lemma deriv_const \([\operatorname{simp}]: \operatorname{deriv}(\lambda w . c)=(\lambda z .0)\)
by (metis DERIV_imp_deriv DERIV_const)
lemma deriv_add [simp]:
【f field_differentiable at \(z ; g\) field_differentiable at \(z \rrbracket\) \(\Longrightarrow \operatorname{deriv}(\lambda w \cdot f w+g w) z=\operatorname{deriv} f z+\operatorname{deriv} g z\) unfolding DERIV_deriv_iff_field_differentiable[symmetric] by (auto intro!: DERIV_imp_deriv derivative_intros)
lemma deriv_diff [simp]:
\(\llbracket f\) field_differentiable at \(z ; g\) field_differentiable at \(z \rrbracket\) \(\Longrightarrow \operatorname{deriv}(\lambda w . f w-g w) z=\operatorname{deriv} f z-\operatorname{deriv} g z\)
unfolding DERIV_deriv_iff_field_differentiable[symmetric] by (auto intro!: DERIV_imp_deriv derivative_intros)
lemma deriv_mult [simp]:
```

【f field_differentiable at $z ; g$ field_differentiable at $z \rrbracket$
$\Longrightarrow \operatorname{deriv}(\lambda w . f w * g w) z=f z * \operatorname{deriv} g z+\operatorname{deriv} f z * g z$
unfolding DERIV_deriv_iff_field_differentiable[symmetric]
by (auto intro!: DERIV_imp_deriv derivative_eq_intros)
lemma deriv_cmult:
f field_differentiable at $z \Longrightarrow \operatorname{deriv}(\lambda w . c * f w) z=c * \operatorname{deriv} f z$
by simp
lemma deriv_cmult_right:
f field_differentiable at $z \Longrightarrow \operatorname{deriv}(\lambda w . f w * c) z=\operatorname{deriv} f z * c$
by simp
lemma deriv_inverse [simp]:
$\llbracket f$ field_differentiable at $z ; f z \neq 0 \rrbracket$
$\Longrightarrow \operatorname{deriv}(\lambda w$. inverse $(f w)) z=-\operatorname{deriv} f z / f z^{\wedge} 2$
unfolding DERIV_deriv_iff_field_differentiable[symmetric]
by (safe intro!: DERIV_imp_deriv derivative_eq_intros) (auto simp: field_split_simps
power2_eq_square)
lemma deriv_divide [simp]:
$\llbracket f$ field_differentiable at $z ; g$ field_differentiable at $z ; g z \neq 0 \rrbracket$
$\Longrightarrow \operatorname{deriv}(\lambda w . f w / g w) z=(\operatorname{deriv} f z * g z-f z * \operatorname{deriv} g z) / g z^{\wedge}$ 2
by (simp add: field_class.field_divide_inverse field_differentiable_inverse)
(simp add: field_split_simps power2_eq_square)
lemma deriv_cdivide_right:
f field_differentiable at $z \Longrightarrow \operatorname{deriv}(\lambda w . f w / c) z=\operatorname{deriv} f z / c$
by (simp add: field_class.field_divide_inverse)
lemma deriv_compose_linear:
f field_differentiable at $(c * z) \Longrightarrow$ deriv $(\lambda w . f(c * w)) z=c * \operatorname{deriv} f(c * z)$
apply (rule DERIV_imp_deriv)
unfolding DERIV_deriv_iff_field_differentiable [symmetric]
by (metis (full_types) DERIV_chain2 DERIV_cmult_Id mult.commute)

```
lemma nonzero_deriv_nonconstant:
    assumes \(d f: D E R I V f \xi:>d f\) and \(S\) : open \(S \xi \in S\) and \(d f \neq 0\)
        shows \(\neg f\) constant_on \(S\)
    unfolding constant_on_def
    by (metis \(\langle d f \neq 0\rangle\) has_field_derivative_transform_within_open [OF df S] DERIV_const
    DERIV_unique)

\subsection*{4.10.18 Relation between convexity and derivative}
proposition convex_on_imp_above_tangent:
assumes convex: convex_on \(A f\) and connected: connected \(A\)
assumes \(c: c \in\) interior \(A\) and \(x: x \in A\)
```

 assumes deriv: (f has_field_derivative \(f^{\prime}\)) (at c within A)
 shows \(f x-f c \geq f^{\prime} *(x-c)\)
 proof (cases x c rule: linorder_cases)
assume $x c: x>c$
let $? A^{\prime}=$ interior $A \cap\{c<.$.
from c have $c \in$ interior $A \cap$ closure $\{c<.$.$\} by auto$
also have $\ldots \subseteq$ closure (interior $A \cap\{c<.$.$\}) by (intro open_Int_closure_subset)$
auto
finally have at c within $? A^{\prime} \neq$ bot by (subst at_within_eq_bot_iff) auto
moreover from deriv have $\left((\lambda y .(f y-f c) /(y-c)) \longrightarrow f^{\prime}\right)$ (at c within
? A^{\prime})
unfolding has_field_derivative_iff using interior_subset[of A] by (blast intro:
tendsto_mono at_le)
moreover from eventually_at_right_real[$[O F$ xc]
have eventually $(\lambda y .(f y-f c) /(y-c) \leq(f x-f c) /(x-c))$ (at_right $c)$
proof eventually_elim
fix y assume $y: y \in\{c<. .<x\}$
with convex connected $x c$ have $f y \leq(f x-f c) /(x-c) *(y-c)+f c$
using interior_subset [of A]
by (intro convex_onD_Icc' convex_on_subset[$[$ FF convex] connected_contains_Icc)
auto
hence $f y-f c \leq(f x-f c) /(x-c) *(y-c)$ by simp
thus $(f y-f c) /(y-c) \leq(f x-f c) /(x-c)$ using $y x c$ by (simp add:
field_split_simps)
qed
hence eventually $(\lambda y .(f y-f c) /(y-c) \leq(f x-f c) /(x-c))$ (at c within
? A^{\prime})
by (blast intro: filter_leD at_le)
ultimately have $f^{\prime} \leq(f x-f c) /(x-c)$ by (simp add: tendsto_upperbound)
thus ?thesis using xc by (simp add: field_simps)
next
assume $x c: x<c$
let $? A^{\prime}=$ interior $A \cap\{. .<c\}$
from c have $c \in$ interior $A \cap$ closure $\{. .<c\}$ by auto
also have $\ldots \subseteq$ closure (interior $A \cap\{. .<c\}$) by (intro open_Int_closure_subset)
auto
finally have at c within $? A^{\prime} \neq$ bot by (subst at_within_eq_bot_iff) auto
moreover from deriv have $\left((\lambda y .(f y-f c) /(y-c)) \longrightarrow f^{\prime}\right)$ (at c within
? A^{\prime})
unfolding has_field_derivative_iff using interior_subset $[o f ~ A]$ by (blast intro:
tendsto_mono at_le)
moreover from eventually_at_left_real [OF xc]
have eventually $(\lambda y .(f y-f c) /(y-c) \geq(f x-f c) /(x-c))$ (at_left $c)$
proof eventually_elim
fix y assume $y: y \in\{x<. .<c\}$
with convex connected $x c$ have $f y \leq(f x-f c) /(c-x) *(c-y)+f c$
using interior_subset [of A]
by (intro convex_onD_Icc" convex_on_subset[OF convex] connected_contains_Icc)
auto

```
```

 hence fy-fc\leq(fx-fc)*((c-y)/(c-x)) by simp
 also have (c-y)/(c-x)=(y-c)/(x-c) using y xc by (simp add:
 field_simps)
finally show (fy-fc)/(y-c)\geq(fx-fc)/(x-c) using y xc
by (simp add: field_split_simps)
qed
hence eventually (\lambday.(fy-fc)/(y-c)\geq(fx-fc)/(x-c)) (at c within
?A')
by (blast intro: filter_leD at_le)
ultimately have f'\geq(fx-fc)/(x-c) by (simp add: tendsto_lowerbound)
thus ?thesis using xc by (simp add: field_simps)
qed simp_all

```

\subsection*{4.10.19 Partial derivatives}
lemma eventually_at_Pair_within_TimesI1:
fixes \(x::^{\prime} a::\) metric_space
assumes \(\forall_{F} x^{\prime}\) in at \(x\) within \(X . P x^{\prime}\)
assumes \(P x\)
shows \(\forall_{F}\left(x^{\prime}, y^{\prime}\right)\) in at \((x, y)\) within \(X \times Y . P x^{\prime}\)
proof -
from assms[unfolded eventually_at_topological]
obtain \(S\) where \(S\) : open \(S x \in S \bigwedge x^{\prime} . x^{\prime} \in X \Longrightarrow x^{\prime} \in S \Longrightarrow P x^{\prime}\) by metis
show \(\forall_{F}\left(x^{\prime}, y^{\prime}\right)\) in at \((x, y)\) within \(X \times Y . P x^{\prime}\)
unfolding eventually_at_topological by (auto intro!: exI[where \(x=S \times\) UNIV] \(S\) open_Times)
qed
lemma eventually_at_Pair_within_TimesI2:
fixes \(x::{ }^{\prime} a::\) metric_space
assumes \(\forall_{F} y^{\prime}\) in at \(y\) within \(Y\). \(P y^{\prime} P y\)
shows \(\forall_{F}\left(x^{\prime}, y^{\prime}\right)\) in at \((x, y)\) within \(X \times Y . P y^{\prime}\)
proof -
from assms[unfolded eventually_at_topological]
obtain \(S\) where \(S:\) open \(S y \in S \bigwedge y^{\prime} . y^{\prime} \in Y \Longrightarrow y^{\prime} \in S \Longrightarrow P y^{\prime}\)
by metis
show \(\forall_{F}\left(x^{\prime}, y^{\prime}\right)\) in at \((x, y)\) within \(X \times Y . P y^{\prime}\)
unfolding eventually_at_topological
by (auto intro!: exI[where \(x=U N I V \times S] S\) open_Times)
qed
proposition has_derivative_partialsI:
fixes \(f::{ }^{\prime} a::\) real_normed_vector \(\Rightarrow\) ' \(b::\) real_normed_vector \(\Rightarrow{ }^{\prime} c::\) real_normed_vector
assumes \(f x:((\lambda x . f x y)\) has_derivative \(f x)(\) at \(x\) within \(X)\)
assumes \(f y: \bigwedge x y . x \in X \Longrightarrow y \in Y \Longrightarrow((\lambda y . f x y)\) has_derivative blinfun_apply (fy \(x y)\) ) (at \(y\) within \(Y\) )
assumes fy_cont[unfolded continuous_within]: continuous (at ( \(x, y\) ) within \(X \times\)
\(Y)(\lambda(x, y) . f y x y)\)
```

 assumes \(y \in Y\) convex \(Y\)
 shows \(((\lambda(x, y) . f x y)\) has_derivative \((\lambda(t x, t y) . f x t x+f y x y t y))(a t(x, y)\)
 within $X \times Y)$
proof (safe intro!: has_derivativeI tendstoI, goal_cases)
case (2e)
interpret $f x$: bounded_linear $f x$ using $f x$ by (rule has_derivative_bounded_linear)
define e where $e=e^{\prime} / 9$
have $e>0$ using $\left\langle e^{\prime}>0\right\rangle$ by (simp add: e_def)
from fy_cont[THEN tendstoD, OF $\langle e>0\rangle]$
have $\forall_{F}\left(x^{\prime}, y^{\prime}\right)$ in at (x, y) within $X \times Y$. dist $\left(f y x^{\prime} y^{\prime}\right)(f y x y)<e$
by (auto simp: split_beta')
from this[unfolded eventually_at] obtain d^{\prime} where
$d^{\prime}>0$
$\bigwedge x^{\prime} y^{\prime} \cdot x^{\prime} \in X \Longrightarrow y^{\prime} \in Y \Longrightarrow\left(x^{\prime}, y^{\prime}\right) \neq(x, y) \Longrightarrow \operatorname{dist}\left(x^{\prime}, y^{\prime}\right)(x, y)<d^{\prime}$
dist $\left(f y x^{\prime} y^{\prime}\right)(f y x y)<e$
by auto
then
have $d^{\prime}: x^{\prime} \in X \Longrightarrow y^{\prime} \in Y \Longrightarrow \operatorname{dist}\left(x^{\prime}, y^{\prime}\right)(x, y)<d^{\prime} \Longrightarrow \operatorname{dist}\left(f y x^{\prime} y^{\prime}\right)(f y$
$x y)<e$
for $x^{\prime} y^{\prime}$
using $\langle 0<e$ 〉
by $\left(\right.$ cases $\left.\left(x^{\prime}, y^{\prime}\right)=(x, y)\right)$ auto
define d where $d=d^{\prime} /$ sqrt 2
have $d>0$ using $\left\langle 0<d^{\prime}\right\rangle$ by (simp add: d_def)
have $d: x^{\prime} \in X \Longrightarrow y^{\prime} \in Y \Longrightarrow$ dist $x^{\prime} x<d \Longrightarrow$ dist $y^{\prime} y<d \Longrightarrow \operatorname{dist}\left(f y x^{\prime}\right.$
$\left.y^{\prime}\right)(f y x y)<e$
for $x^{\prime} y^{\prime}$
by (auto simp: dist_prod_def d_def intro!: d' real_sqrt_sum_squares_less)
let $? S=$ ball $y d \cap Y$
have convex ? S
by (auto intro!: convex_Int 〈convex Y)
\{
fix $x^{\prime}:::^{\prime} a$ and $y^{\prime}:::^{\prime} b$
assume $x^{\prime}: x^{\prime} \in X$ and $y^{\prime}: y^{\prime} \in Y$
assume $d x^{\prime}:$ dist $x^{\prime} x<d$ and $d y^{\prime}:$ dist $y^{\prime} y<d$
have norm $\left(f y x^{\prime} y^{\prime}-f y x^{\prime} y\right) \leq \operatorname{dist}\left(f y x^{\prime} y^{\prime}\right)(f y x y)+\operatorname{dist}\left(f y x^{\prime} y\right)(f y x$
y)
by norm
also have dist $\left(f y x^{\prime} y^{\prime}\right)(f y x y)<e$
by (rule d; fact)
also have dist $\left(f y x^{\prime} y\right)(f y x y)<e$
by (auto intro!: d simp: dist_prod_def $\left.x^{\prime}\langle d>0\rangle\langle y \in Y\rangle d x^{\prime}\right)$
finally
have norm $\left(f y x^{\prime} y^{\prime}-f y x^{\prime} y\right)<e+e$
by arith
then have onorm (blinfun_apply $\left(f y x^{\prime} y^{\prime}\right)-$ blinfun_apply $\left.\left(f y x^{\prime} y\right)\right)<e+e$

```
```

 by (auto simp: norm_blinfun.rep_eq blinfun.diff_left[abs_def] fun_diff_def)
 $\}$ note onorm $=$ this
have ev_mem: $\forall_{F}\left(x^{\prime}, y^{\prime}\right)$ in at (x, y) within $X \times Y .\left(x^{\prime}, y^{\prime}\right) \in X \times Y$
using $\langle y \in Y\rangle$
by (auto simp: eventually_at intro!: zero_less_one)
moreover
have ev_dist: $\forall_{F} x y$ in at (x, y) within $X \times Y$. dist $x y(x, y)<d$ if $d>0$ for
d
using eventually_at_ball[OF that]
by (rule eventually_elim2) (auto simp: dist_commute intro!: eventually_True)
note $e v_{-} d i s t[O F\langle 0<d\rangle]$
ultimately
have $\forall_{F}\left(x^{\prime}, y^{\prime}\right)$ in at (x, y) within $X \times Y$.
$\operatorname{norm}\left(f x^{\prime} y^{\prime}-f x^{\prime} y-\left(f y x^{\prime} y\right)\left(y^{\prime}-y\right)\right) \leq \operatorname{norm}\left(y^{\prime}-y\right) *(e+e)$
proof (eventually_elim, safe)
fix $x^{\prime} y^{\prime}$
assume $x^{\prime} \in X$ and $y^{\prime}: y^{\prime} \in Y$
assume dist: dist $\left(x^{\prime}, y^{\prime}\right)(x, y)<d$
then have $d x$: dist $x^{\prime} x<d$ and dy: dist $y^{\prime} y<d$
unfolding dist_prod_def fst_conv snd_conv atomize_conj
by (metis le_less_trans real_sqrt_sum_squares_ge1 real_sqrt_sum_squares_ge2)
\{
fix t ::real
assume $t \in\left\{\begin{array}{lll}0 & . . & 1\end{array}\right\}$
then have $y+t *_{R}\left(y^{\prime}-y\right) \in$ closed_segment $y y^{\prime}$
by (auto simp: closed_segment_def algebra_simps intro!: exI [where $x=t]$)
also
have $\ldots \subseteq$ ball $y d \cap Y$
using $\langle y \in Y\rangle\langle 0<d\rangle d y y^{\prime}$
by (intro 〈convex ? S >[unfolded convex_contains_segment, rule_format, of y
y^{\prime}])
(auto simp: dist_commute)
finally have $y+t *_{R}\left(y^{\prime}-y\right) \in ? S$.
\} note $s e g=$ this
have $\bigwedge x . x \in$ ball $y d \cap Y \Longrightarrow$ onorm (blinfun_apply $\left(f y x^{\prime} x\right)$ - blinfun_apply
$\left.\left(f y x^{\prime} y\right)\right) \leq e+e$
by (safe intro!: onorm less_imp_le $\left\langle x^{\prime} \in X\right\rangle d x$) (auto simp: dist_commute $\langle 0$
$<d\rangle\langle y \in Y\rangle)$
with seg has_derivative_subset[OF assms(2)[OF $\left.\left.\left\langle x^{\prime} \in X\right\rangle\right]\right]$
show $\operatorname{norm}\left(f x^{\prime} y^{\prime}-f x^{\prime} y-\left(f y x^{\prime} y\right)\left(y^{\prime}-y\right)\right) \leq \operatorname{norm}\left(y^{\prime}-y\right) *(e+e)$
by (rule differentiable_bound_linearization[where $S=? S]$)
(auto intro!: $\langle 0<d\rangle\langle y \in Y\rangle$)
qed
moreover
let ?le $=\lambda x^{\prime}$. $\operatorname{norm}\left(f x^{\prime} y-f x y-(f x)\left(x^{\prime}-x\right)\right) \leq \operatorname{norm}\left(x^{\prime}-x\right) * e$
from fx[unfolded has_derivative_within, THEN conjunct2, THEN tendstoD, OF
< $0<e\rangle$]

```
have \(\forall_{F} x^{\prime}\) in at \(x\) within \(X\). ?le \(x^{\prime}\)
by eventually_elim (simp, simp add: dist_norm field_split_simps split: if_split_asm)
then have \(\forall_{F}\left(x^{\prime}, y^{\prime}\right)\) in at \((x, y)\) within \(X \times Y\). ?le \(x^{\prime}\)
by (rule eventually_at_Pair_within_TimesI1)
(simp add: blinfun.bilinear_simps)
moreover have \(\forall_{F}\left(x^{\prime}, y^{\prime}\right)\) in at \((x, y)\) within \(X \times Y\).norm \(\left(\left(x^{\prime}, y^{\prime}\right)-(x\right.\), y)) \(\neq 0\)
unfolding norm_eq_zero right_minus_eq
by (auto simp: eventually_at intro!: zero_less_one)

\section*{moreover}
from fy_cont[THEN tendstoD, OF \(\langle 0<e\rangle]\)
have \(\forall_{F} x^{\prime}\) in at \(x\) within \(X\). norm \(\left(f y x^{\prime} y-f y x y\right)<e\)
unfolding eventually_at
using \(\langle y \in Y\rangle\)
by (auto simp: dist_prod_def dist_norm)
then have \(\forall_{F}\left(x^{\prime}, y^{\prime}\right)\) in at \((x, y)\) within \(X \times Y\). norm \(\left(f y x^{\prime} y-f y x y\right)<e\)
by (rule eventually_at_Pair_within_TimesI1)
(simp add: blinfun.bilinear_simps \(\langle 0<e\rangle\) )
ultimately
have \(\forall_{F}\left(x^{\prime}, y^{\prime}\right)\) in at \((x, y)\) within \(X \times Y\).
\[
\begin{aligned}
& \text { norm }\left(\left(f x^{\prime} y^{\prime}-f x y-\left(f x\left(x^{\prime}-x\right)+f y x y\left(y^{\prime}-y\right)\right)\right) / R\right. \\
& \left.\quad \text { norm }\left(\left(x^{\prime}, y^{\prime}\right)-(x, y)\right)\right) \\
& <e^{\prime}
\end{aligned}
\]
apply eventually_elim
proof safe
fix \(x^{\prime} y^{\prime}\)
have \(\operatorname{norm}\left(f x^{\prime} y^{\prime}-f x y-\left(f x\left(x^{\prime}-x\right)+f y x y\left(y^{\prime}-y\right)\right)\right) \leq\)
\(\operatorname{norm}\left(f x^{\prime} y^{\prime}-f x^{\prime} y-f y x^{\prime} y\left(y^{\prime}-y\right)\right)+\)
\(\operatorname{norm}\left(f y x y\left(y^{\prime}-y\right)-f y x^{\prime} y\left(y^{\prime}-y\right)\right)+\)
norm \(\left(f x^{\prime} y-f x y-f x\left(x^{\prime}-x\right)\right)\)
by norm
also
assume \(n z: \operatorname{norm}\left(\left(x^{\prime}, y^{\prime}\right)-(x, y)\right) \neq 0\)
and nfy: norm \(\left(f y x^{\prime} y-f y x y\right)<e\)
assume norm \(\left(f x^{\prime} y^{\prime}-f x^{\prime} y-b l i n f u n \_a p p l y\left(f y x^{\prime} y\right)\left(y^{\prime}-y\right)\right) \leq \operatorname{norm}\left(y^{\prime}\right.\) \(-y) *(e+e)\)
also assume \(\operatorname{norm}\left(f x^{\prime} y-f x y-(f x)\left(x^{\prime}-x\right)\right) \leq \operatorname{norm}\left(x^{\prime}-x\right) * e\)
also
have norm \(\left((f y x y)\left(y^{\prime}-y\right)-\left(f y x^{\prime} y\right)\left(y^{\prime}-y\right)\right) \leq \operatorname{norm}\left((f y x y)-\left(f y x^{\prime}\right.\right.\) \(y)) * \operatorname{norm}\left(y^{\prime}-y\right)\)
by (auto simp: blinfun.bilinear_simps[symmetric] intro!: norm_blinfun)
also have \(\ldots \leq(e+e) * \operatorname{norm}\left(y^{\prime}-y\right)\)
using \(\langle e>0\rangle n f y\)
by (auto simp: norm_minus_commute intro!: mult_right_mono)
also have norm \(\left(x^{\prime}-x\right) * e \leq \operatorname{norm}\left(x^{\prime}-x\right) *(e+e)\)
using \(\langle 0<e\rangle\) by simp
also have norm \(\left(y^{\prime}-y\right) *(e+e)+(e+e) * \operatorname{norm}\left(y^{\prime}-y\right)+\operatorname{norm}\left(x^{\prime}-\right.\) \(x) *(e+e) \leq\)
```

 (norm (y' - y) + norm (x' - x))*(4*e)
 using <e > 0\rangle
 by (simp add: algebra_simps)
 also have .. \leq 2 * norm ((}\mp@subsup{x}{}{\prime},\mp@subsup{y}{}{\prime})-(x,y))*(4*e
 using <0 < e> real_sqrt_sum_squares_ge1[of norm (}\mp@subsup{x}{}{\prime}-x)\mathrm{ norm ((' ' - y)]
 real_sqrt_sum_squares_ge2[of norm (}\mp@subsup{y}{}{\prime}-y)\mathrm{ norm (}\mp@subsup{x}{}{\prime}-x)
 by (auto intro!: mult_right_mono simp: norm_prod_def
 simp del: real_sqrt_sum_squares_ge1 real_sqrt_sum_squares_ge2)
 also have ... \leqnorm ((}\mp@subsup{x}{}{\prime},\mp@subsup{y}{}{\prime})-(x,y))*(8*e
 by simp
 also have ...<norm ((\mp@subsup{x}{}{\prime},\mp@subsup{y}{}{\prime})-(x,y))*\mp@subsup{e}{}{\prime}
 using <0< e} nz
 by (auto simp: e_def)
 finally show norm ((f\mp@subsup{x}{}{\prime}\mp@subsup{y}{}{\prime}-fxy-(fx (\mp@subsup{x}{}{\prime}-x)+fyxy(\mp@subsup{y}{}{\prime}-y)))/R
 norm ((\mp@subsup{x}{}{\prime},\mp@subsup{y}{}{\prime}) - (x,y)))< < '
by (simp add: dist_norm) (auto simp add: field_split_simps)
qed
then show ?case
by eventually_elim (auto simp: dist_norm field_simps)
next
from has_derivative_bounded_linear[OF fx]
obtain fxb where fx = blinfun_apply fxb
by (metis bounded_linear_Blinfun_apply)
then show bounded_linear (}\lambda(tx,ty).fxtx+blinfun_apply (fy x y) ty
by (auto intro!: bounded_linear_intros simp: split_beta')
qed

```

\subsection*{4.10.20 Differentiable case distinction}
```

lemma has_derivative_within_If_eq:
((\lambdax. if P x then f x else g x) has_derivative f}\mp@subsup{f}{}{\prime})(\mathrm{ at x within S)=
(bounded_linear f'^
((\lambday.(if P y then (fy- ((if P x then f x else g x) + f' (y-x)))/R norm (y
-x)
else (g y - ((if P x then f x else g x) + f' (y - x)))/R norm (y - x)))
0) (at x within S))
(is_= (- ^(?if \longrightarrow0) -))
proof -
have (\lambday.(1 / norm (y-x)) *R
((if P y then f y else g y) -
((if P x then f x else g x) + f'(y-x)))) = ?if
by (auto simp: inverse_eq_divide)
thus ?thesis by (auto simp: has_derivative_within)
qed
lemma has_derivative_If_within_closures:
assumes $f^{\prime}: x \in S \cup($ closure $S \cap$ closure $T) \Longrightarrow$
$\left(f\right.$ has_derivative $\left.f^{\prime} x\right)($ at x within $S \cup($ closure $S \cap$ closure $T))$
assumes $g^{\prime}: x \in T \cup($ closure $S \cap$ closure $T) \Longrightarrow$

```
( \(g\) has_derivative \(g^{\prime} x\) ) (at \(x\) within \(T \cup(\) closure \(S \cap\) closure \(T)\) )
assumes connect: \(x \in\) closure \(S \Longrightarrow x \in\) closure \(T \Longrightarrow f x=g x\)
assumes connect': \(x \in\) closure \(S \Longrightarrow x \in\) closure \(T \Longrightarrow f^{\prime} x=g^{\prime} x\)
assumes \(x \_i n: x \in S \cup T\)
shows \(((\lambda x\). if \(x \in S\) then \(f x\) else \(g x)\) has_derivative
(if \(x \in S\) then \(f^{\prime} x\) else \(\left.\left.g^{\prime} x\right)\right)(\) at \(x\) within \((S \cup T)\) )
proof -
from \(f^{\prime} x\) _in interpret \(f^{\prime}:\) bounded_linear if \(x \in S\) then \(f^{\prime} x\) else \((\lambda x .0)\) by (auto simp add: has_derivative_within)
from \(g^{\prime}\) interpret \(g^{\prime}\) : bounded_linear if \(x \in T\) then \(g^{\prime} x\) else \((\lambda x .0)\) by (auto simp add: has_derivative_within)
have bl: bounded_linear (if \(x \in S\) then \(f^{\prime} x\) else \(g^{\prime} x\) )
using \(f^{\prime}\).scale \(R f^{\prime}\).bounded \(f^{\prime}\).add \(g^{\prime}\).scale \(R g^{\prime}\). bounded \(g^{\prime}\).add \(x_{-}\)in by (unfold_locales; force)
show ?thesis
using \(f^{\prime} g^{\prime}\) closure_subset[of \(\left.T\right]\) closure_subset \([\) of \(S]\)
unfolding has_derivative_within_If_eq by (intro conjI bl tendsto_If_within_closures x_in)
(auto simp: has_derivative_within inverse_eq_divide connect connect' subsetD)
qed
lemma has_vector_derivative_If_within_closures:
assumes \(x_{-} i n: x \in S \cup T\)
assumes \(u=S \cup T\)
assumes \(f^{\prime}: x \in S \cup(\) closure \(S \cap\) closure \(T) \Longrightarrow\)
(f has_vector_derivative \(\left.f^{\prime} x\right)(\) at \(x\) within \(S \cup(\) closure \(S \cap\) closure \(T))\)
assumes \(g^{\prime}: x \in T \cup(\) closure \(S \cap\) closure \(T) \Longrightarrow\)
( \(g\) has_vector_derivative \(\left.g^{\prime} x\right)(\) at \(x\) within \(T \cup(\) closure \(S \cap\) closure \(T))\)
assumes connect: \(x \in\) closure \(S \Longrightarrow x \in\) closure \(T \Longrightarrow f x=g x\)
assumes connect': \(x \in\) closure \(S \Longrightarrow x \in\) closure \(T \Longrightarrow f^{\prime} x=g^{\prime} x\)
shows ( \(\lambda x\). if \(x \in S\) then \(f x\) else \(g x)\) has_vector_derivative
(if \(x \in S\) then \(f^{\prime} x\) else \(\left.g^{\prime} x\right)\) ) (at \(x\) within \(u\) )
unfolding has_vector_derivative_def assms
using \(x \_i n\)
apply (intro has_derivative_If_within_closures[where ? \(f^{\prime}=\lambda x a . a *_{R} f^{\prime} x\) and
\(? g^{\prime}=\lambda x a . a *_{R} g^{\prime} x\), THEN has_derivative_eq_rhs])
subgoal by (rule \(f^{\prime}[\) unfolded has_vector_derivative_def]; assumption)
subgoal by (rule \(g^{\prime}[\) unfolded has_vector_derivative_def]; assumption)
by (auto simp: assms)

\subsection*{4.10.21 The Inverse Function Theorem}
lemma linear_injective_contraction:
assumes linear \(f c<1\) and \(l e: \bigwedge x\). norm \((f x-x) \leq c *\) norm \(x\) shows inj f
unfolding linear_injective_O[OF〈linear f〉]
proof safe
fix \(x\)
```

assume $f x=0$
with le [of x] have norm $x \leq c *$ norm x
by simp
then show $x=0$
using $\langle c<1$ 〉 by (simp add: mult_le_cancel_right1)
qed

```

From an online proof by J. Michael Boardman, Department of Mathematics, Johns Hopkins University
```

lemma inverse_function_theorem_scaled:
fixes $f::$ 'a::euclidean_space $\Rightarrow{ }^{\prime} a$
and $f^{\prime}:::^{\prime} a \Rightarrow\left({ }^{\prime} a \Rightarrow_{L}{ }^{\prime} a\right)$
assumes open U
and derf: $\wedge x . x \in U \Longrightarrow\left(f\right.$ has_derivative blinfun_apply $\left.\left(f^{\prime} x\right)\right)($ at $x)$
and contf: continuous_on $U f^{\prime}$
and $0 \in U$ and [simp]: f $0=0$
and $i d: f^{\prime} 0=i d _b l i n f u n$

```
    obtains \(U^{\prime} V g g^{\prime}\) where open \(U^{\prime} U^{\prime} \subseteq U 0 \in U^{\prime}\) open \(V 0 \in V\) homeomorphism
\(U^{\prime} V f g\)
                \(\wedge y . y \in V \Longrightarrow\left(g\right.\) has_derivative \(\left.\left(g^{\prime} y\right)\right)(\) at \(y)\)
                    \(\wedge y . y \in V \Longrightarrow g^{\prime} y=i n v\left(b l i n f u n \_a p p l y\left(f^{\prime}(g y)\right)\right)\)
                            \(\wedge y . y \in V \Longrightarrow\) bij (blinfun_apply \(\left.\left(f^{\prime}(g y)\right)\right)\)
proof -
    obtain d1 where cball \(0 d 1 \subseteq U d 1>0\)
        using <open \(U\rangle\langle 0 \in U\rangle\) open_contains_cball by blast
    obtain d2 where d2: \(\bigwedge x . \llbracket x \in U\); dist \(x 0 \leq d 2 \rrbracket \Longrightarrow \operatorname{dist}\left(f^{\prime} x\right)\left(f^{\prime} 0\right)<1 / \mathcal{Z}\)
\(0<d 2\)
        using continuous_onE [OF contf, of \(01 / 2]\) by (metis \(\langle 0 \in U\rangle\) half_gt_zero_iff
zero_less_one)
    obtain \(\delta\) where le: \(\bigwedge x\). norm \(x \leq \delta \Longrightarrow \operatorname{dist}\left(f^{\prime} x\right)\) id_blinfun \(\leq 1 / 2\) and \(0<\)
\(\delta\)
        and subU: cball \(0 \delta \subseteq U\)
    proof
        show \(\min d 1 d 2>0\)
            by (simp add: \(\langle 0<d 1\rangle\langle 0<d 2\rangle)\)
        show cball \(0(\min d 1 d 2) \subseteq U\)
            using <cball \(0 d 1 \subseteq U\) by auto
        show dist \(\left(f^{\prime} x\right)\) id_blinfun \(\leq 1 / 2\) if norm \(x \leq \min d 1\) d2 for \(x\)
            using 〈cball \(0 d 1 \subseteq U\rangle d 2\) that id by fastforce
    qed
    let ? \(D=\) cball \(0 \delta\)
    define \(V::\) 'a set where \(V \equiv\) ball \(0(\delta / 2)\)
    have 4: norm \((f(x+h)-f x-h) \leq 1 / 2 *\) norm \(h\)
        if \(x \in ? D x+h \in ? D\) for \(x h\)
    proof -
        let ? \(w=\lambda x . f x-x\)
        have \(B: \bigwedge x . x \in ? D \Longrightarrow\) onorm (blinfun_apply \(\left(f^{\prime} x-\right.\) id_blinfun \(\left.)\right) \leq 1 / 2\)
            by (metis dist_norm le mem_cball_0 norm_blinfun.rep_eq)
        have \(\bigwedge x . x \in ? D \Longrightarrow\left(? w\right.\) has_derivative (blinfun_apply \(\left.\left.\left(f^{\prime} x-i d \_b l i n f u n\right)\right)\right)\)
(at \(x\) )
by (rule derivative_eq_intros derf subsetD \([O F\) subU] | force simp: blinfun.diff_left)+
then have \(D w: \wedge x . x \in ? D \Longrightarrow\left(? w\right.\) has_derivative (blinfun_apply \(\left(f^{\prime} x-\right.\) id_blinfun))) (at \(x\) within ?D)
using has_derivative_at_withinI by blast
have norm \((? w(x+h)-? w x) \leq(1 / 2) *\) norm \(h\)
using differentiable_bound [OF convex_cball Dw B] that by fastforce
then show ?thesis
by (auto simp: algebra_simps)
qed
have for_g: \(\exists\) ! \(x\). norm \(x<\delta \wedge f x=y\) if \(y\) : norm \(y<\delta / 2\) for \(y\)
proof -
let \(? u=\lambda x . x+(y-f x)\)
have \(*\) : norm \((\) ? \(u x)<\delta\) if \(x \in ? D\) for \(x\)
proof -
have \(f x x\) : norm \((f x-x) \leq \delta / 2\)
using 4 [of \(0 x]\langle 0<\delta\rangle\langle f 0=0\rangle\) that by auto
have norm \((? u x) \leq\) norm \(y+\operatorname{norm}(f x-x)\)
by (metis add.commute add_diff_eq norm_minus_commute norm_triangle_ineq)
also have \(\ldots<\delta / 2+\delta / 2\)
using \(f x x y\) by auto
finally show ?thesis
by \(\operatorname{simp}\)
qed
have \(\exists\) ! \(x \in\) ? \(D\). ? \(u x=x\)
proof (rule banach_fix)
show cball \(0 \delta \neq\{ \}\)
using \(\langle 0<\delta\rangle\) by auto
show \((\lambda x . x+(y-f x))\) ' cball \(0 \delta \subseteq\) cball \(0 \delta\)
using * by force
have dist \((x+(y-f x))(x h+(y-f x h)) * 2 \leq \operatorname{dist} x\) xh
if norm \(x \leq \delta\) and norm \(x h \leq \delta\) for \(x\) xh
using that 4 [of \(x\) xh-x] by (auto simp: dist_norm norm_minus_commute
algebra_simps)
then show \(\forall x \in \operatorname{cball} 0 \delta . \forall y a \in \operatorname{cball} 0 \delta\). dist \((x+(y-f x))(y a+(y-f\) \(y a)) \leq(1 / 2) *\) dist \(x\) ya
by auto
qed (auto simp: complete_eq_closed)
then show ?thesis
by (metis * add_cancel_right_right eq_iff_diff_eq_0 le_less mem_cball_0)
qed
define \(g\) where \(g \equiv \lambda y\). THE \(x\). norm \(x<\delta \wedge f x=y\)
have \(g\) : norm \((g y)<\delta \wedge f(g y)=y\) if norm \(y<\delta / 2\) for \(y\)
unfolding \(g_{-} d e f\) using that the \(I^{\prime}[\) OF for_g] by meson
then have \(f g[\operatorname{simp}]: f(g y)=y\) if \(y \in V\) for \(y\)
using that by (auto simp: V_def)
have 5: norm \(\left(g y^{\prime}-g y\right) \leq 2 * \operatorname{norm}\left(y^{\prime}-y\right)\) if \(y \in V y^{\prime} \in V\) for \(y y^{\prime}\)
proof -
```

 have no: norm (g y) \leq n norm (g y) \leq < and [simp]: f (g y) = y
 using that g}\mathrm{ unfolding V_def by force+
 have norm (g y ' - g y) \leqnorm (g y ' - g y - ((y' - y)) +norm (}\mp@subsup{y}{}{\prime}-y
 by (simp add: add.commute norm_triangle_sub)
 also have \ldots\leq (1/2)*\operatorname{norm}(g\mp@subsup{y}{}{\prime}-gy)+\operatorname{norm}(\mp@subsup{y}{}{\prime}-y)
 using 4 [of g y g y ' - g y] that no by (simp add: g norm_minus_commute
 V_def)
finally show ?thesis
by auto
qed
have contg: continuous_on V g
proof
fix }y::'a and e::rea
assume 0<e and y:y\inV
show \existsd>0.\forall\mp@subsup{x}{}{\prime}\inV.dist \mp@subsup{x}{}{\prime}y<d\longrightarrow\operatorname{dist}(g\mp@subsup{x}{}{\prime})(gy)\leqe
proof (intro exI conjI ballI impI)
show 0<e/2
by (simp add: <0 <e\rangle)
qed (use 5 y in \force simp: dist_norm>)
qed
show thesis
proof
define }\mp@subsup{U}{}{\prime}\mathrm{ where }\mp@subsup{U}{}{\prime}\equiv(f-\mp@subsup{}{}{\prime}V)\cap\mathrm{ ball 0 }
have contf: continuous_on U f
using derf has_derivative_at_withinI by (fast intro: has_derivative_continuous_on)
then have continuous_on (ball 0 \delta) f
by (meson ball_subset_cball continuous_on_subset subU)
then show open U'
by (simp add: U'_def V_def Int_commute continuous_open_preimage)
show 0}\in\mp@subsup{U}{}{\prime}\mp@subsup{U}{}{\prime}\subseteqU\mathrm{ open V }0\in
using <0 < \delta〉 subU by (auto simp: U'_def V_def)
show hom: homeomorphism U'Vfg
proof
show continuous_on U'f
using }\langle\mp@subsup{U}{}{\prime}\subseteqU\rangle\mathrm{ contf continuous_on_subset by blast
show continuous_on V g
using contg by blast
show f ' U'\subseteqV
using U'_def by blast
show g'V\subseteqU'
by (simp add: U'_def V_def g image_subset_iff)
show g(fx)=x if }x\in\mp@subsup{U}{}{\prime}\mathrm{ for }
by (metis that fg Int_iff U'_def V_def for_g g mem_ball_0 vimage_eq)
show f(gy)=y if y\inV for y
using that by (simp add: g V_def)
qed
show bij: bij (blinfun_apply (f'(gy))) if y\inV for y
proof -
have inj: inj (blinfun_apply (f'}(gy))

```
proof (rule linear_injective_contraction)
show linear (blinfun_apply \(\left(f^{\prime}(g y)\right)\) )
using blinfun.bounded_linear_right bounded_linear_def by blast
next
fix \(x\)
have norm (blinfun_apply \(\left.\left(f^{\prime}(g y)\right) x-x\right)=\) norm \(\left(\right.\) blinfun_apply \(\left(f^{\prime}(g\right.\) y) - id_blinfun) \(x\) )
by (simp add: blinfun.diff_left)
also have \(\ldots \leq \operatorname{norm}\left(f^{\prime}(g y)-\right.\) id_blinfun \() *\) norm \(x\)
by (rule norm_blinfun)
also have \(\ldots \leq(1 / 2) *\) norm \(x\)
proof (rule mult_right_mono)
show norm \(\left(f^{\prime}\left(\begin{array}{ll}g & y)-i d \_b l i n f u n\end{array}\right) \leq 1 / 2\right.\)
using that \(g\) [of \(y\) ] le by (auto simp: V_def dist_norm)
qed auto
finally show norm (blinfun_apply \(\left.\left(f^{\prime}(g y)\right) x-x\right) \leq(1 / 2) *\) norm \(x\).
qed auto
moreover
have surj (blinfun_apply \(\left.\left(f^{\prime}(g y)\right)\right)\)
using blinfun.bounded_linear_right bounded_linear_def
by (blast intro!: linear_inj_imp_surj [OF _ inj])
ultimately show ?thesis
using bijI by blast
qed
define \(g^{\prime}\) where \(g^{\prime} \equiv \lambda y\).inv (blinfun_apply \(\left.\left(f^{\prime}(g y)\right)\right)\)
show ( \(g\) has_derivative \(g^{\prime} y\) ) (at \(\left.y\right)\) if \(y \in V\) for \(y\)
proof -
have \(g y: g y \in U\)
using \(g\) sub \(U\) that unfolding \(V_{-}\)def by fastforce
obtain \(e\) where \(e: \bigwedge h . f(g y+h)=y+\) blinfun_apply \(\left(f^{\prime}(g y)\right) h+e h\) and \(e 0:(\lambda h\). norm \((e h) /\) norm \(h)-0 \rightarrow 0\)
using iffD1 [OF has_derivative_iff_Ex derf \([O F\) gy]] \(\langle y \in V\rangle\) by auto
have \([\operatorname{simp}]\) : e \(0=0\)
using \(e[\) of 0\(]\) that by simp
let ?INV \(=\) inv (blinfun_apply \(\left.\left(f^{\prime}(g y)\right)\right)\)
have inj: inj (blinfun_apply \(\left.\left(f^{\prime}(g y)\right)\right)\)
using bij bij_betw_def that by blast
have ( \(g\) has_derivative \(g^{\prime} y\) ) (at \(y\) within \(V\) )
unfolding has_derivative_at_within_iff_Ex \([O F\langle y \in V\rangle\langle o p e n ~ V\rangle]\)
proof
show blinv: bounded_linear ( \(g^{\prime} y\) )
unfolding \(g^{\prime}\) _def using derf gy inj inj_linear_imp_inv_bounded_linear by
blast
define \(e g\) where \(e g \equiv \lambda k\). - ? INV \((e(g(y+k)-g y))\)
have \(g(y+k)=g y+g^{\prime} y k+e g k\) if \(y+k \in V\) for \(k\)
proof -
have ?INV \(k=\) ? INV (blinfun_apply \(\left(f^{\prime}(g y)\right)(g(y+k)-g y)+e(g\)
\((y+k)-g y))\)
using \(e[o f g(y+k)-g y]\) that by simp
```

 then have g(y+k) = g y +?INV k-?INV (e(g(y+k)-gy))
 using inj blinv by (simp add: linear_simps g'_def)
 then show ?thesis
 by (auto simp: eg_def g'_def)
 qed
 moreover have (}\lambdak.norm (eg k)/ norm k)-0->
 proof (rule Lim_null_comparison)
 let ?g = \lambdak. 2 * onorm ?INV * norm (e (g(y+k)-g y))/ norm (g
 (y+k)-gy)
show }\mp@subsup{\forall}{F}{}k\mathrm{ in at 0. norm (norm (eg k)/ norm k) }\leq??g
unfolding eventually_at_topological
proof (intro exI conjI ballI impI)
show open ((+)(-y)'V)
using <open V` open_translation by blast
show }0\in(+)(-y)'
by (simp add: that)
show norm (norm (eg k)/ norm k) \leq2 * onorm (inv (blinfun_apply
(f
if k\in(+)(-y)'Vk\not=0 for }
proof -
have }y+k\in
using that by auto
have norm (norm (eg k)/ norm k) \leq onorm ?INV * norm (e (g
(y+k) - g y)) / norm k
using blinv g'_def onorm by (force simp: eg_def divide_simps)
also have ... = (norm (g(y+k)-g y)/ norm k)*(onorm ?INV *
(norm (e(g(y+k)-gy))/\operatorname{norm}(g(y+k)-gy)))
by (simp add: divide_simps)
also have .. \leq2* (onorm ?INV * (norm (e (g(y+k)-gy)) /
norm (g(y+k) - g y)))
apply (rule mult_right_mono)
using 5 [of y y+k]\langley\inV\rangle\langley+k\inV\rangle onorm_pos_le [OF blinv]
apply (auto simp: divide_simps zero_le_mult_iff zero_le_divide_iff
g'_def)
done
finally show norm (norm (eg k) / norm k) \leq2 * onorm ?INV *
norm (e (g(y+k) - g y)) / norm (g (y+k) - g y)
by simp
qed
qed
have 1:(\lambdah. norm (e h)/ norm h) -0->(norm (e 0) / norm 0)
using e0 by auto
have 2: (\lambdak.g(y+k)-gy)-0->0
using contg <open V\rangle\langley\inV\rangle LIM_offset_zero_iff LIM_zero_iff at_within_open
continuous_on_def by fastforce
from tendsto_compose [OF 1 2, simplified]
have (\lambdak.norm (e (g(y+k) - g y)) / norm (g(y+k) - g y)) - 0->0.
from tendsto_mult_left [OF this] show ?g -0 O 0 by auto
qed

```
ultimately show \(\exists e .\left(\forall k . y+k \in V \longrightarrow g(y+k)=g y+g^{\prime} y k+e k\right)\) \(\wedge(\lambda k\). norm \((e k) /\) norm \(k)-0 \rightarrow 0\) by blast

\section*{qed}
then show ?thesis
by (metis «open \(V\) 〉 at_within_open that)
qed
show \(g^{\prime} y=i n v\left(b l i n f u n_{-}\right.\)apply \(\left.\left(f^{\prime}(g y)\right)\right)\)
if \(y \in V\) for \(y\)
by (simp add: \(g^{\prime}{ }_{-} d e f\) )
qed
qed
We need all this to justify the scaling and translations.
```

theorem inverse_function_theorem:
fixes $f::$ 'a::euclidean_space $\Rightarrow{ }^{\prime} a$
and $f^{\prime}::^{\prime} a \Rightarrow\left({ }^{\prime} a \Rightarrow_{L}{ }^{\prime} a\right)$
assumes open U
and derf: $\bigwedge x . x \in U \Longrightarrow\left(f\right.$ has_derivative (blinfun_apply $\left.\left(f^{\prime} x\right)\right)$) (at $\left.x\right)$
and contf: continuous_on $U f^{\prime}$
and $x 0 \in U$
and invf: invf $o_{L} f^{\prime} x 0=$ id_blinfun
obtains $U^{\prime} V g g^{\prime}$ where open $U^{\prime} U^{\prime} \subseteq U x 0 \in U^{\prime}$ open $V f x 0 \in V$ homeo-
morphism $U^{\prime} V f g$
$\bigwedge y . y \in V \Longrightarrow\left(g\right.$ has_derivative $\left.\left(g^{\prime} y\right)\right)($ at $y)$
$\bigwedge y . y \in V \Longrightarrow g^{\prime} y=i n v\left(b l i n f u n_{-} a p p l y\left(f^{\prime}(g y)\right)\right)$
$\bigwedge y . y \in V \Longrightarrow$ bij (blinfun_apply $\left.\left(f^{\prime}(g y)\right)\right)$
proof -
have apply1 [simp]: \i. blinfun_apply invf (blinfun_apply ($\left.\left.f^{\prime} x 0\right) i\right)=i$
by (metis blinfun_apply_blinfun_compose blinfun_apply_id_blinfun invf)
have apply2 [simp]: \i. blinfun_apply ($\left.f^{\prime} x 0\right)($ blinfun_apply invf $i)=i$
by (metis apply1 bij_inv_eq_iff blinfun_bij1 invf)
have $[$ simp $]:($ range (blinfun_apply invf $))=$ UNIV
using apply1 surjI by blast
let ? $f=\operatorname{invf} \circ(\lambda x .(f \circ(+) x 0) x-f x 0)$
let ? $f^{\prime}=\lambda x$. invf $o_{L}\left(f^{\prime}(x+x 0)\right)$
obtain $U^{\prime} V g g^{\prime}$ where open U^{\prime} and $U^{\prime}: U^{\prime} \subseteq(+)(-x 0)$ ' $U 0 \in U^{\prime}$
and open $V 0 \in V$ and hom: homeomorphism $U^{\prime} V$?f g
and derg: $\bigwedge y . y \in V \Longrightarrow\left(g\right.$ has_derivative $\left.\left(g^{\prime} y\right)\right)($ at $y)$
and $g^{\prime}: \bigwedge y . y \in V \Longrightarrow g^{\prime} y=\operatorname{inv}\left(? f^{\prime}(g y)\right)$
and $b i j: \bigwedge y . y \in V \Longrightarrow b i j\left(? f^{\prime}(g y)\right)$
proof (rule inverse_function_theorem_scaled $[o f(+)(-x 0)$ ' U ?f ?f $])$
show ope: open $((+)(-x 0) \cdot U)$
using «open U 〉 open_translation by blast
show (?f has_derivative blinfun_apply (?f' x)) (at x)
if $x \in(+)(-x 0)$ ' U for x
using that
apply clarify
apply (rule derf derivative_eq_intros \mid simp add: blinfun_compose.rep_eq)+

```

\section*{done}
have \(Y Y:\left(\lambda x . f^{\prime}(x+x 0)\right)-u-x 0 \rightarrow f^{\prime} u\)
if \(f^{\prime}-u \rightarrow f^{\prime} u u \in U\) for \(u\)
using that LIM＿offset［where \(k=x 0\) ］by（auto simp：algebra＿simps）
then have continuous＿on \(((+)(-x 0)\)＇\(U)\left(\lambda x . f^{\prime}(x+x 0)\right)\)
using contf 〈open U〉Lim＿at＿imp＿Lim＿at＿within
by（fastforce simp：continuous＿on＿def at＿within＿open＿NO＿MATCH ope）
then show continuous＿on \(\left((+)(-x 0)\right.\)＇\(U\) ）？\(f^{\prime}\)
by（intro continuous＿intros）simp
qed（auto simp：invf \(\langle x 0 \in U\rangle\) ）
show thesis
proof
let ？\(U^{\prime}=(+) x 0^{6} U^{\prime}\)
let ？\(V=\left((+)(f x 0) \circ f^{\prime} x 0\right)^{\prime} V\)
let ？\(g=(+) x 0 \circ g \circ\) invf \(\circ(+)(-f x 0)\)
let \(? g^{\prime}=\lambda y\) ．inv \(\left(\right.\) blinfun＿apply \(\left.\left(f^{\prime}(? g y)\right)\right)\)
show oU＇：open？\(U^{\prime}\)
by（simp add：＜open \(U^{\prime} 〉\) open＿translation）
show subU：？\(U^{\prime} \subseteq U\)
using ComplI \(\left\langle U^{\prime} \subseteq(+)(-x 0)\right.\)＇\(\left.U\right\rangle\) by auto
show \(x 0 \in\) ？\(U^{\prime}\)
by（ simp add：\(\left.\left\langle 0 \in U^{\prime}\right\rangle\right)\)
show open？\(V\)
using blinfun＿bij2［OF invf］
by（metis＜open V〉 bij＿is＿surj blinfun．bounded＿linear＿right bounded＿linear＿def
image＿comp open＿surjective＿linear＿image open＿translation）
show \(f x 0 \in\) ？\(V\)
using \(\langle 0 \in V\rangle\) image＿iff by fastforce
show homeomorphism ？\(U^{\prime}\) ？\(V f\) ？g
proof
show continuous＿on ？\(U^{\prime} f\)
by（meson subU continuous＿on＿eq＿continuous＿at derf has＿derivative＿continuous \(o U^{\prime}\) subsetD）
have ？f＇\(U^{\prime} \subseteq V\)
using hom homeomorphism＿image1 by blast
then show \(f\)＇？\(U^{\prime} \subseteq ? V\)
unfolding image＿subset＿iff
by（clarsimp simp：image＿def）（metis apply2 add．commute diff＿add＿cancel）
show ？\({ }^{\prime}\) ？\(V \subseteq\) ？\(U^{\prime}\)
using hom invf by（auto simp：image＿def homeomorphism＿def）
show ？\(g(f x)=x\)
if \(x \in\) ？\(U^{\prime}\) for \(x\)
using that hom homeomorphism＿apply1 by fastforce
have continuous＿on \(V g\) using hom homeomorphism＿def by blast
then show continuous＿on ？V ？g by（intro continuous＿intros）（auto elim！：continuous＿on＿subset）
have \(f g\) ：？f \((g x)=x\) if \(x \in V\) for \(x\)
using hom homeomorphism＿apply2 that by blast
```

 show f(?g y) = y
 if }y\in
 using that fg by (simp add: image_iff) (metis apply2 add.commute diff_add_cancel)
 qed
 show (?g has_derivative ?g' y) (at y) bij (blinfun_apply (f'(?g y)))
 if }y\in\mathrm{ ? V for }
 proof -
have 1: bij (blinfun_apply invf)
using blinfun_bij1 invf by blast
then have 2: bij (blinfun_apply (f'}(x0+gx))) if x\inV for x
by (metis add.commute bij bij_betw_comp_iff2 blinfun_compose.rep_eq that
top_greatest)
then show bij (blinfun_apply (f'(?g y)))
using that by auto
have g' x o blinfun_apply invf = inv (blinfun_apply (f'}(x0+gx))
if }x\inV\mathrm{ for }
using that
by (simp add: g' o_inv_distrib blinfun_compose.rep_eq 1 2 add.commute
bij_is_inj flip: o_assoc)
then show (?g has_derivative ?g' y) (at y)
using that invf
by clarsimp (rule derg derivative_eq_intros | simp flip: id_def)+
qed
qed auto
qed

```

\subsection*{4.10.22 Piecewise differentiable functions}
definition piecewise_differentiable_on
(infixr piecewise \({ }^{\prime}\) _differentiable \({ }^{\prime}\) _on 50)
where \(f\) piecewise_differentiable_on \(i \equiv\)
continuous_on if \(\wedge\)
\((\exists S\). finite \(S \wedge(\forall x \in i-S\). f differentiable (at \(x\) within \(i)))\)
lemma piecewise_differentiable_on_imp_continuous_on:
f piecewise_differentiable_on \(S \Longrightarrow\) continuous_on \(S f\)
by (simp add: piecewise_differentiable_on_def)
lemma piecewise_differentiable_on_subset:
f piecewise_differentiable_on \(S \Longrightarrow T \leq S \Longrightarrow f\) piecewise_differentiable_on \(T\)
using continuous_on_subset
unfolding piecewise_differentiable_on_def
apply safe
apply (blast elim: continuous_on_subset)
by (meson Diff_iff differentiable_within_subset subsetCE)
lemma differentiable_on_imp_piecewise_differentiable:
fixes \(a:\) : ' \(a::\{\) linorder_topology,real_normed_vector\}
shows \(f\) differentiable_on \(\{a . . b\} \Longrightarrow f\) piecewise_differentiable_on \(\{a . . b\}\)
apply (simp add: piecewise_differentiable_on_def differentiable_imp_continuous_on) apply (rule_tac \(x=\{a, b\}\) in exI, simp add: differentiable_on_def) done
lemma differentiable_imp_piecewise_differentiable:
\((\bigwedge x . x \in S \Longrightarrow f\) differentiable (at \(x\) within \(S)\) ) \(\Longrightarrow f\) piecewise_differentiable_on \(S\)
by (auto simp: piecewise_differentiable_on_def differentiable_imp_continuous_on differentiable_on_def
intro: differentiable_within_subset)
lemma piecewise_differentiable_const [iff]: ( \(\lambda x . z)\) piecewise_differentiable_on \(S\) by (simp add: differentiable_imp_piecewise_differentiable)
lemma piecewise_differentiable_compose:
\(\llbracket f\) piecewise_differentiable_on \(S ; g\) piecewise_differentiable_on \((f\) ' \(S\) );
\(\wedge x\). finite \((S \cap f-\{x\}) \rrbracket\)
\(\Longrightarrow(g \circ f)\) piecewise_differentiable_on \(S\)
apply (simp add: piecewise_differentiable_on_def, safe)
apply (blast intro: continuous_on_compose2)
apply (rename_tac A B)
apply (rule_tac \(x=A \cup(\bigcup x \in B . S \cap f-\{x\})\) in \(e x I)\)
apply (blast intro!: differentiable_chain_within)
done
lemma piecewise_differentiable_affine:
fixes \(m\) ::real
assumes \(f\) piecewise_differentiable_on \(\left(\left(\lambda x . m *_{R} x+c\right)\right.\) ' \(\left.S\right)\)
shows \(\left(f \circ\left(\lambda x . m *_{R} x+c\right)\right)\) piecewise_differentiable_on \(S\)
proof (cases \(m=0\) )
case True
then show ?thesis
unfolding o_def
by (force intro: differentiable_imp_piecewise_differentiable differentiable_const)
next
case False
show ?thesis
apply (rule piecewise_differentiable_compose [OF differentiable_imp_piecewise_differentiable])
apply (rule assms derivative_intros | simp add: False vimage_def real_vector_affinity_eq)+ done
qed
lemma piecewise_differentiable_cases:
fixes \(c:\) :real
assumes \(f\) piecewise_differentiable_on \(\{a . . c\}\) \(g\) piecewise_differentiable_on \(\{c . . b\}\)
\(a \leq c c \leq b f c=g c\)
shows \((\lambda x\). if \(x \leq c\) then \(f x\) else \(g x)\) piecewise_differentiable_on \(\{a . . b\}\)
proof -
```

obtain $S T$ where st: finite S finite T and $f d: \bigwedge x . x \in\{a . . c\}-S \Longrightarrow f$ differentiable at x within $\{a . . c\}$ and $g d: \wedge x . x \in\{c . . b\}-T \Longrightarrow g$ differentiable at x within $\{c . . b\}$

using assms

by (auto simp: piecewise_differentiable_on_def)
have finabc: finite $(\{a, b, c\} \cup(S \cup T))$
by (metis 〈finite $S\rangle\langle$ finite $T\rangle$ finite_Un finite_insert finite.emptyI)
have continuous_on $\{a . . c\} f$ continuous_on $\{c . . b\} g$
using assms piecewise_differentiable_on_def by auto
then have continuous_on $\{a . . b\}(\lambda x$. if $x \leq c$ then $f x$ else $g x)$
using continuous_on_cases [OF closed_real_atLeastAtMost [of acc, OF closed_real_atLeastAtMost [of cb], of $f g \lambda x . x \leq c]$ assms
by (force simp: ivl_disj_un_two_touch)
moreover
$\{$ fix x
assume $x: x \in\{a . . b\}-(\{a, b, c\} \cup(S \cup T))$
have (λx. if $x \leq c$ then $f x$ else $g x$) differentiable at x within $\{a . . b\}$ (is?diff_fg)
proof (cases x c rule: le_cases)
case le show?diff-fg
proof (rule differentiable_transform_within $[\mathbf{w h e r e} d=$ dist $x c]$)
have f differentiable at x
using x le fd [of $x]$ at_within_interior $[$ of $x\{a . . c\}]$ by simp
then show f differentiable at x within $\{a . . b\}$
by (simp add: differentiable_at_withinI) qed (use x le st dist_real_def in auto)
next case ge show? ?diff_fg proof (rule differentiable_transform_within [where $d=$ dist $x c]$)
have g differentiable at x
using x ge gd [of $x]$ at_within_interior $[$ of $x\{c . . b\}]$ by simp
then show g differentiable at x within $\{a . . b\}$
by (simp add: differentiable_at_withinI)
qed (use x ge st dist_real_def in auto)
qed
\}
then have $\exists S$. finite $S \wedge$

$$
(\forall x \in\{a . . b\}-S .(\lambda x . \text { if } x \leq c \text { then } f x \text { else } g x) \text { differentiable at } x
$$

within $\{a . . b\}$)
by (meson finabc)
ultimately show ?thesis
by (simp add: piecewise_differentiable_on_def)
qed
lemma piecewise_differentiable_neg:
f piecewise_differentiable_on $S \Longrightarrow(\lambda x .-(f x))$ piecewise_differentiable_on S by (auto simp: piecewise_differentiable_on_def continuous_on_minus)
lemma piecewise_differentiable_add:

```
    assumes f piecewise_differentiable_on i
                g piecewise_differentiable_on i
    shows ( }\lambdax.fx+gx)\mathrm{ piecewise_differentiable_on i
proof -
    obtain S T where st: finite S finite T
                    \forallxi - S. f differentiable at x within i
                    \forallx\ini - T.g differentiable at x within i
        using assms by (auto simp: piecewise_differentiable_on_def)
    then have finite }(S\cupT)\wedge(\forallx\ini-(S\cupT).(\lambdax.fx+gx)differentiable a
x within i)
        by auto
    moreover have continuous_on if continuous_on i g
        using assms piecewise_differentiable_on_def by auto
    ultimately show ?thesis
        by (auto simp: piecewise_differentiable_on_def continuous_on_add)
qed
lemma piecewise_differentiable_diff:
    \llbracketf piecewise_differentiable_on S; g piecewise_differentiable_on S\rrbracket
    \Longrightarrow ( \lambda x . f x - g x ) ~ p i e c e w i s e \_ d i f f e r e n t i a b l e \_ o n ~ S ~
    unfolding diff_conv_add_uminus
    by (metis piecewise_differentiable_add piecewise_differentiable_neg)
```


4.10.23 The concept of continuously differentiable

John Harrison writes as follows:
"The usual assumption in complex analysis texts is that a path γ should be piecewise continuously differentiable, which ensures that the path integral exists at least for any continuous f, since all piecewise continuous functions are integrable. However, our notion of validity is weaker, just piecewise differentiability... [namely] continuity plus differentiability except on a finite set... [Our] underlying theory of integration is the Kurzweil-Henstock theory. In contrast to the Riemann or Lebesgue theory (but in common with a simple notion based on antiderivatives), this can integrate all derivatives." "Formalizing basic complex analysis." From Insight to Proof: Festschrift in Honour of Andrzej Trybulec. Studies in Logic, Grammar and Rhetoric 10.23 (2007): 151-165.

And indeed he does not assume that his derivatives are continuous, but the penalty is unreasonably difficult proofs concerning winding numbers. We need a self-contained and straightforward theorem asserting that all derivatives can be integrated before we can adopt Harrison's choice.
definition C1_differentiable_on :: (real \Rightarrow 'a::real_normed_vector) \Rightarrow real set \Rightarrow bool
(infix C1'_differentiable'_on 50)
where
f C1_differentiable_on $S \longleftrightarrow$
$(\exists D .(\forall x \in S .(f$ has_vector_derivative $(D x))($ at $x)) \wedge$ continuous_on $S D)$
lemma C1_differentiable_on_eq:
f C1_differentiable_on $S \longleftrightarrow$
$(\forall x \in S . f$ differentiable at $x) \wedge$ continuous_on $S(\lambda x$. vector_derivative $f($ at
x))
(is ?lhs =? ? $r h s$)
proof
assume ?lhs
then show? rhs
unfolding C1_differentiable_on_def
by (metis (no_types, lifting) continuous_on_eq differentiableI_vector vector_derivative_at)
next
assume ?rhs
then show? ?hs
using C1_differentiable_on_def vector_derivative_works by fastforce
qed
lemma C1_differentiable_on_subset:
f C1_differentiable_on $T \Longrightarrow S \subseteq T \Longrightarrow f$ C1_differentiable_on S
unfolding C1_differentiable_on_def continuous_on_eq_continuous_within
by (blast intro: continuous_within_subset)
lemma C1_differentiable_compose:
assumes $f g$: f C1_differentiable_on $S g$ C1_differentiable_on $(f$ ' S) and fin: $\bigwedge x$. finite $(S \cap f-‘\{x\})$
shows $(g \circ f)$ C1_differentiable_on S
proof -
have $\bigwedge x . x \in S \Longrightarrow g \circ f$ differentiable at x
by (meson C1_differentiable_on_eq assms differentiable_chain_at imageI)
moreover have continuous_on $S(\lambda x$. vector_derivative $(g \circ f)($ at $x))$
proof (rule continuous_on_eq $\left[\right.$ of $-\lambda x$. vector_derivative $f($ at $x) *_{R}$ vector_derivative
$g(a t(f x))])$
show continuous_on $S\left(\lambda x\right.$. vector_derivative $f($ at $x) *_{R}$ vector_derivative g (at ((x)))
using $f g$
apply (clarsimp simp add: C1_differentiable_on_eq)
apply (rule Limits.continuous_on_scaleR, assumption)
by (metis (mono_tags, lifting) continuous_at_imp_continuous_on continuous_on_compose continuous_on_cong differentiable_imp_continuous_within o_def)
show $\bigwedge x . x \in S \Longrightarrow$ vector_derivative $f($ at $x) *_{R}$ vector_derivative $g($ at $(f x))$
$=$ vector_derivative $(g \circ f)($ at $x)$
by (metis (mono_tags, hide_lams) C1_differentiable_on_eq fg imageI vec-
tor_derivative_chain_at)
qed
ultimately show ?thesis
by (simp add: C1_differentiable_on_eq)
qed
lemma C1_diff_imp_diff: f C1_differentiable_on $S \Longrightarrow f$ differentiable_on S
by (simp add: C1_differentiable_on_eq differentiable_at_imp_differentiable_on)
lemma C1_differentiable_on_ident [simp, derivative_intros]: $(\lambda x . x)$ C1_differentiable_on S
by (auto simp: C1_differentiable_on_eq)
lemma C1_differentiable_on_const $[$ simp, derivative_intros]: (λ z. a) C1_differentiable_on S
by (auto simp: C1_differentiable_on_eq)
lemma C1_differentiable_on_add [simp, derivative_intros]:
f C1_differentiable_on $S \Longrightarrow g$ C1_differentiable_on $S \Longrightarrow(\lambda x . f x+g x)$ C1_differentiable_on S
unfolding C1_differentiable_on_eq by (auto intro: continuous_intros)
lemma C1_differentiable_on_minus [simp, derivative_intros]:
f C1_differentiable_on $S \Longrightarrow(\lambda x .-f x)$ C1_differentiable_on S
unfolding C1_differentiable_on_eq by (auto intro: continuous_intros)
lemma C1_differentiable_on_diff [simp, derivative_intros]:
f C1_differentiable_on $S \Longrightarrow g$ C1_differentiable_on $S \Longrightarrow(\lambda x . f x-g x)$ C1_differentiable_on S
unfolding C1_differentiable_on_eq by (auto intro: continuous_intros)
lemma C1_differentiable_on_mult [simp, derivative_intros]:
fixes $f g$:: real $\Rightarrow{ }^{\prime} a$:: real_normed_algebra
shows f C1_differentiable_on $S \Longrightarrow g$ C1_differentiable_on $S \Longrightarrow(\lambda x . f x * g x)$
C1_differentiable_on S
unfolding C1_differentiable_on_eq
by (auto simp: continuous_on_add continuous_on_mult continuous_at_imp_continuous_on
differentiable_imp_continuous_within)
lemma C1_differentiable_on_scale R [simp, derivative_intros]:
f C1_differentiable_on $S \Longrightarrow g$ C1_differentiable_on $S \Longrightarrow\left(\lambda x . f x *_{R} g x\right)$
C1_differentiable_on S
unfolding C1_differentiable_on_eq
by (rule continuous_intros \mid simp add: continuous_at_imp_continuous_on differen-
tiable_imp_continuous_within)+
definition piecewise_C1_differentiable_on
(infixr piecewise'_C1 ${ }^{\prime}$ _differentiable'_on 50)
where f piecewise_C1_differentiable_on $i \equiv$
continuous_on if \wedge
$(\exists S$. finite $S \wedge(f$ C1_differentiable_on $(i-S)))$
lemma C1_differentiable_imp_piecewise:
f C1_differentiable_on $S \Longrightarrow f$ piecewise_C1_differentiable_on S
by (auto simp: piecewise_C1_differentiable_on_def C1_differentiable_on_eq continuous_at_imp_continuous_on differentiable_imp_continuous_within)
lemma piecewise_C1_imp_differentiable:
f piecewise_C1_differentiable_on $i \Longrightarrow f$ piecewise_differentiable_on i
by (auto simp: piecewise_C1_differentiable_on_def piecewise_differentiable_on_def C1_differentiable_on_def differentiable_def has_vector_derivative_def intro: has_derivative_at_withinI)
lemma piecewise_C1_differentiable_compose:
assumes $f g$: f piecewise_C1_differentiable_on S g piecewise_C1_differentiable_on (f
' S) and fin: $\bigwedge x$. finite $(S \cap f-‘\{x\})$
shows $(g \circ f)$ piecewise_C1_differentiable_on S
proof -
have continuous_on $S(\lambda x . g(f x))$
by (metis continuous_on_compose2 fg order_refl piecewise_C1_differentiable_on_def)
moreover have $\exists T$. finite $T \wedge g \circ f$ C1_differentiable_on $S-T$
proof -
obtain F where finite F and $F: f$ C1_differentiable_on $S-F$ and $f: f$
piecewise_C1_differentiable_on S
using $f g$ by (auto simp: piecewise_C1_differentiable_on_def)
obtain G where finite G and $G: g$ C1_differentiable_on f ' $S-G$ and $g: g$ piecewise_C1_differentiable_on f ' S
using fg by (auto simp: piecewise_C1_differentiable_on_def)
show ?thesis
proof (intro exI conjI)
show finite $(F \cup(\bigcup x \in G . S \cap f-‘\{x\}))$
using fin by (auto simp only: Int_Union〈finite $F\rangle\langle f i n i t e ~ G\rangle$ finite_UN
finite_imageI)
show $g \circ f$ C1_differentiable_on $S-(F \cup(\bigcup x \in G . S \cap f-‘\{x\}))$
apply (rule C1_differentiable_compose)
apply (blast intro: C1_differentiable_on_subset [OF F])
apply (blast intro: C1_differentiable_on_subset [OF G])
by (simp add: C1_differentiable_on_subset G Diff_Int_distrib2 fin)
qed
qed
ultimately show ?thesis
by (simp add: piecewise_C1_differentiable_on_def)
qed
lemma piecewise_C1_differentiable_on_subset:
f piecewise_C1_differentiable_on $S \Longrightarrow T \leq S \Longrightarrow f$ piecewise_C1_differentiable_on
T
by (auto simp: piecewise_C1_differentiable_on_def elim!: continuous_on_subset C1_differentiable_on_subse
lemma C1_differentiable_imp_continuous_on:
f C1_differentiable_on $S \Longrightarrow$ continuous_on $S f$
unfolding C1_differentiable_on_eq continuous_on_eq_continuous_within using differentiable_at_withinI differentiable_imp_continuous_within by blast

```
lemma C1_differentiable_on_empty [iff]: f C1_differentiable_on {}
    unfolding C1_differentiable_on_def
    by auto
lemma piecewise_C1_differentiable_affine:
    fixes m::real
    assumes f piecewise_C1_differentiable_on (( }\lambdax.m*x+c)'S
    shows (f\circ(\lambdax.m** }x+c))\mathrm{ piecewise_C1_differentiable_on S
proof (cases m=0)
    case True
    then show ?thesis
        unfolding o_def by (auto simp: piecewise_C1_differentiable_on_def)
next
    case False
    have *: \bigwedgex. finite (S\cap{y.m*y+c=x})
        using False not_finite_existsD by fastforce
    show ?thesis
    apply (rule piecewise_C1_differentiable_compose [OF C1_differentiable_imp_piecewise])
        apply (rule * assms derivative_intros | simp add: False vimage_def)+
        done
qed
lemma piecewise_C1_differentiable_cases:
    fixes c::real
    assumes f piecewise_C1_differentiable_on {a..c}
                g piecewise_C1_differentiable_on {c..b}
                    a\leqcc\leqbfc=gc
    shows (\lambdax}\mathrm{ . if }x\leqc\mathrm{ then f x else g x) piecewise_C1_differentiable_on {a..b}
proof -
    obtain S T where st: f C1_differentiable_on ({a..c} - S)
                g C1_differentiable_on ({c..b} - T)
                    finite S finite T
    using assms
    by (force simp: piecewise_C1_differentiable_on_def)
    then have f_diff: f differentiable_on {a..<c} - S
            and g_diff:g differentiable_on {c<..b} - T
    by (simp_all add: C1_differentiable_on_eq differentiable_at_withinI differentiable_on_def)
    have continuous_on {a..c}f continuous_on {c..b}g
        using assms piecewise_C1_differentiable_on_def by auto
    then have cab:continuous_on {a..b} ( }\lambdax\mathrm{ . if }x\leqc\mathrm{ then f x else g x)
        using continuous_on_cases [OF closed_real_atLeastAtMost [of a c],
                        OF closed_real_atLeastAtMost [of c b],
                        of f g \lambdax. x\leqc] assms
        by (force simp: ivl_disj_un_two_touch)
    { fix }
    assume x: x\in{a..b} - insert c(S\cupT)
    have ( }\lambdax\mathrm{ . if }x\leqc\mathrm{ then f x else g x) differentiable at x (is ?diff_fg)
    proof (cases x c rule:le_cases)
```

```
        case le show ?diff-fg
            apply (rule differentiable_transform_within [where f=f and d= dist x c])
            using x dist_real_def le st by (auto simp: C1_differentiable_on_eq)
        next
        case ge show ?diff_fg
            apply (rule differentiable_transform_within [where f=g and d= dist x c])
            using dist_nz x dist_real_def ge st x by (auto simp: C1_differentiable_on_eq)
        qed
    }
    then have }(\forallx\in{a..b}-\mathrm{ insert }c(S\cupT).(\lambdax. if x\leqc then f x else g x)
differentiable at x)
    by auto
    moreover
    { assume fcon:continuous_on ({a<..<c} - S) (\lambdax.vector_derivative f (at x))
        and gcon: continuous_on ({c<..<b} - T) (\lambdax.vector_derivative g (at x))
    have open ({a<..<c} - S) open ({c<..<b} - T)
        using st by (simp_all add: open_Diff finite_imp_closed)
    moreover have continuous_on ({a<..<c} - S) ( }\lambda\mathrm{ x. vector_derivative ( }\lambdax\mathrm{ . if
x\leqc then f x else g x)(at x))
    proof -
        have (( }\lambdax.\mathrm{ if }x\leqc\mathrm{ then fx else g x) has_vector_derivative vector_derivative f
(at x)) (at x)
            if }a<xx<cx\not\inS\mathrm{ for }
        proof -
            have f: f differentiable at x
                by (meson C1_differentiable_on_eq Diff_iff atLeastAtMost_iff less_eq_real_def
st(1) that)
            show ?thesis
                    using that
            apply (rule_tac f=f and d=dist x c in has_vector_derivative_transform_within)
                    apply (auto simp:dist_norm vector_derivative_works [symmetric] f)
                    done
        qed
        then show ?thesis
        by (metis (no_types, lifting) continuous_on_eq [OF fcon] DiffE greaterThanLessThan_iff
vector_derivative_at)
    qed
    moreover have continuous_on ({c<..<b} - T) ( }\lambdax.vector_derivative ( \lambdax. if
x\leqc then f x else g x)(at x))
    proof -
            have (( }\lambdax\mathrm{ . if }x\leqc\mathrm{ then f x else g x) has_vector_derivative vector_derivative
g(at x)) (at x)
            if c<x x<bx\not\inT for }
        proof -
        have g:g differentiable at x
                            by (metis C1_differentiable_on_eq DiffD1 DiffI atLeastAtMost_diff_ends
greaterThanLessThan_iff st(2) that)
        show ?thesis
            using that
```

```
            apply (rule_tac f=g and d=dist x c in has_vector_derivative_transform_within)
                apply (auto simp: dist_norm vector_derivative_works [symmetric] g)
            done
qed
then show ?thesis
by (metis (no_types, lifting) continuous_on_eq [OF gcon] DiffE greaterThanLessThan_iff
vector_derivative_at)
    qed
    ultimately have continuous_on ({a<..<b} - insert c (S\cupT))
            ( }\lambdax\mathrm{ . vector_derivative ( }\lambdax\mathrm{ . if }x\leqc\mathrm{ then f x else g x) (at x))
            by (rule continuous_on_subset [OF continuous_on_open_Un], auto)
    } note * = this
    have continuous_on ({a<..<b} - insert c (S\cupT)) ( }\lambda\mathrm{ x. vector_derivative ( }\lambdax\mathrm{ .
if x\leqc then f x else g x)(at x))
            using st
            by (auto simp: C1_differentiable_on_eq elim!: continuous_on_subset intro: *)
    ultimately have }\existsS\mathrm{ . finite }S\wedge((\lambdax\mathrm{ . if }x\leqc\mathrm{ then fx else g x) C1_differentiable_on
{a..b} - S)
    apply (rule_tac }x={a,b,c}\cupS\cupT in exI
    using st by (auto simp: C1_differentiable_on_eq elim!: continuous_on_subset)
    with cab show ?thesis
    by (simp add: piecewise_C1_differentiable_on_def)
qed
lemma piecewise_C1_differentiable_neg:
    f piecewise_C1_differentiable_on S \Longrightarrow (\lambdax.-(fx)) piecewise_C1_differentiable_on
S
    unfolding piecewise_C1_differentiable_on_def
    by (auto intro!: continuous_on_minus C1_differentiable_on_minus)
lemma piecewise_C1_differentiable_add:
    assumes f piecewise_C1_differentiable_on i
                g piecewise_C1_differentiable_on i
        shows ( }\lambdax.fx+gx) piecewise_C1_differentiable_on i
proof -
    obtain St where st: finite S finite t
                    f C1_differentiable_on (i-S)
                    g C1_differentiable_on (i-t)
        using assms by (auto simp: piecewise_C1_differentiable_on_def)
    then have finite (S\cupt)\wedge(\lambdax.fx+gx) C1_differentiable_on i - (S\cupt)
        by (auto intro: C1_differentiable_on_add elim!: C1_differentiable_on_subset)
    moreover have continuous_on if continuous_on i g
        using assms piecewise_C1_differentiable_on_def by auto
    ultimately show ?thesis
        by (auto simp: piecewise_C1_differentiable_on_def continuous_on_add)
qed
lemma piecewise_C1_differentiable_diff:
\(\llbracket f\) piecewise_C1_differentiable_on \(S ; \quad\) g piecewise_C1_differentiable_on \(S \rrbracket\)
```

```
\(\Longrightarrow(\lambda x . f x-g x)\) piecewise_C1_differentiable_on \(S\)
```

unfolding diff_conv_add_uminus
by (metis piecewise_C1_differentiable_add piecewise_C1_differentiable_neg)
end

4.11 Finite Cartesian Products of Euclidean Spaces

```
theory Cartesian_Euclidean_Space
imports Derivative
begin
lemma subspace_special_hyperplane: subspace \(\{x . x \$ k=0\}\)
    by (simp add: subspace_def)
lemma sum_mult_product:
    sum \(h\{. .<A * B::\) nat \(\}=\left(\sum i \in\{. .<A\} . \sum j \in\{. .<B\} . h(j+i * B)\right)\)
    unfolding sum.nat_group[of \(h B A\), unfolded atLeastOLessThan, symmetric]
proof (rule sum.cong, simp, rule sum.reindex_cong)
    fix \(i\)
    show inj_on \((\lambda j . j+i * B)\{. .<B\}\) by (auto intro!: inj_onI)
    show \(\{i * B . .<i * B+B\}=(\lambda j . j+i * B) \cdot\{. .<B\}\)
    proof safe
        fix \(j\) assume \(j \in\{i * B . .<i * B+B\}\)
        then show \(j \in(\lambda j . j+i * B)\) ' \(\{. .<B\}\)
            by (auto intro!: image_eqI[of \(-j-i * B]\) )
    qed \(\operatorname{simp}\)
qed \(\operatorname{simp}\)
lemma interval_cbox_cart: \(\left\{a::\right.\) real \({ }^{\wedge} n\) n. \(\left.b\right\}=\) cbox a \(b\)
    by (auto simp add: less_eq_vec_def mem_box Basis_vec_def inner_axis)
lemma differentiable_vec:
    fixes \(S\) :: 'a::euclidean_space set
    shows vec differentiable_on \(S\)
    by (simp add: linear_linear bounded_linear_imp_differentiable_on)
lemma continuous_vec [continuous_intros]:
    fixes \(x\) :: 'a::euclidean_space
    shows isCont vec \(x\)
    apply (clarsimp simp add: continuous_def LIM_def dist_vec_def L2_set_def)
    apply (rule_tac \(x=r / s q r t(r e a l ~ C A R D(' b))\) in exI)
    by (simp add: mult.commute pos_less_divide_eq real_sqrt_mult)
lemma box_vec_eq_empty [simp]:
    shows cbox (vec a) (vec \(b)=\{ \} \longleftrightarrow\) cbox a \(b=\{ \}\)
        box \((\) vec \(a)(\) vec \(b)=\{ \} \longleftrightarrow\) box \(a b=\{ \}\)
    by (auto simp: Basis_vec_def mem_box box_eq_empty inner_axis)
```


4.11.1 Closures and interiors of halfspaces

```
lemma interior_halfspace_component_le [simp]:
    interior {x. x$k\leqa} ={x :: (real^^n). x$k<a} (is ?LE)
    and interior_halfspace_component_ge [simp]:
        interior {x. x$k\geqa}={x:: (real`'}n).x$k>a}(is?GE
proof -
    have axis k (1::real )}\not=
        by (simp add: axis_def vec_eq_iff)
    moreover have axis k (1::real) - x = x$k for }
        by (simp add: cart_eq_inner_axis inner_commute)
    ultimately show ?LE ?GE
        using interior_halfspace_le [of axis k (1::real) a]
        interior_halfspace_ge [of axis k (1::real) a] by auto
qed
lemma closure_halfspace_component_lt [simp]:
        closure {x. x$k<a}={x:: (real^\prime}n). x$k\leqa} (is ?LE)
    and closure_halfspace_component_gt [simp]:
        closure {x. x$k>a}={x::(real^'n). x$k\geqa} (is ?GE)
proof -
    have axis k (1::real)}\not=
        by (simp add: axis_def vec_eq_iff)
    moreover have axis k (1::real) - x=x$k for }
        by (simp add: cart_eq_inner_axis inner_commute)
    ultimately show ?LE ?GE
        using closure_halfspace_lt [of axis k (1::real) a]
                closure_halfspace_gt [of axis k (1::real) a] by auto
qed
lemma interior_standard_hyperplane:
    interior {x :: (real^^}n).x$k=a}={
proof -
    have axis k (1::real)}\not=
        by (simp add: axis_def vec_eq_iff)
    moreover have axis k (1::real) - x = x$k for }
        by (simp add: cart_eq_inner_axis inner_commute)
    ultimately show ?thesis
        using interior_hyperplane [of axis k (1::real) a]
        by force
qed
```

lemma matrix_vector_mul_bounded_linear $[$ intro, simp $]$: bounded_linear $((* v)$ A) for A :: 'a::\{euclidean_space, real_algebra_1 $\}^{\wedge}{ }^{\prime} n^{\wedge} \prime m$
using matrix_vector_mul_linear $[$ of $A]$
by (simp add: linear_conv_bounded_linear linear_matrix_vector_mul_eq)

lemma

fixes $A::$ 'a::\{euclidean_space,real_algebra_1 $\}^{\wedge} n^{\wedge}{ }^{\prime} m$
shows matrix_vector_mult_linear_continuous_at [continuous_intros]: isCont $((* v)$
A) z
and matrix_vector_mult_linear_continuous_on [continuous_intros]: continuous_on $S((* v) A)$
by (simp_all add: linear_continuous_at linear_continuous_on)

4.11.2 Bounds on components etc. relative to operator norm

```
lemma norm_column_le_onorm:
    fixes }A\mathrm{ :: real^' }n\mathrm{ ^'}
    shows norm(column i A)\leqonorm((*v) A)
proof -
    have norm ( }\chij.A$j$i)\leqnorm (A*v axis i 1)
        by (simp add: matrix_mult_dot cart_eq_inner_axis)
    also have ... \leqonorm ((*v) A)
        using onorm [OF matrix_vector_mul_bounded_linear, of A axis i 1] by auto
    finally have norm ( }\chij.A$j$i)\leq\operatorname{onorm}((*v)A)
    then show ?thesis
        unfolding column_def .
qed
lemma matrix_component_le_onorm:
    fixes }A\mathrm{ :: real^' }\mp@subsup{n}{}{\wedge\prime}
    shows }|A$i$j|\leq\operatorname{onorm}((*v)A
proof -
    have }|A$i$j|\leqnorm(\chin.(A$n$j)
        by (metis (full_types,lifting) component_le_norm_cart vec_lambda_beta)
    also have ... \leqonorm ((*v) A)
        by (metis (no_types) column_def norm_column_le_onorm)
    finally show ?thesis .
qed
lemma component_le_onorm:
    fixes f :: real^' }m=>\mp@subsup{real`^}{}{\prime}
    shows linear f\Longrightarrow matrix f$i$j|\leqonorm f
    by (metis matrix_component_le_onorm matrix_vector_mul(2))
lemma onorm_le_matrix_component_sum:
    fixes }A:: real^^ n^'
    shows onorm ((*v)A)\leq(\sumi\inUNIV. \sumj\inUNIV. |A$ i$ j|)
proof (rule onorm_le)
    fix }
    have norm (A*vx)\leq(\sumi\inUNIV.|(A*vx)$ i|)
        by (rule norm_le_l1_cart)
    also have \ldots. \leq (\sumi\inUNIV. \sumj\inUNIV. |A$ i$j|* norm x)
    proof (rule sum_mono)
        fix }
        have |(A*vx)$ i| \leq |\sumj\inUNIV. A $i$j*x$j|
            by (simp add: matrix_vector_mult_def)
        also have ... \leq (\sumj\inUNIV. |A$i$j*x$j|)
```

```
        by (rule sum_abs)
        also have ... \leq (\sumj\inUNIV. |A$i$j|* norm x)
        by (rule sum_mono) (simp add: abs_mult component_le_norm_cart mult_left_mono)
        finally show |(A*vx)$ i \ \leq (\sumj\inUNIV. |A $ i $ j|* norm x).
    qed
    finally show norm (A*vx)\leq(\sumi\inUNIV. \sumj\inUNIV. |A$ i$ j|)* norm x
        by (simp add: sum_distrib_right)
qed
lemma onorm_le_matrix_component:
    fixes }A\mathrm{ :: real^' }\mp@subsup{n}{}{\wedge\prime}
    assumes \ij.abs(A$i$j)\leqB
    shows onorm}((*v)A)\leqreal (CARD('m))*real (CARD('n))*
proof (rule onorm_le)
    fix }x\mathrm{ :: real^^}n::
    have norm (A*vx)\leq(\sumi\inUNIV.|(A*vx)$ i|)
        by (rule norm_le_l1_cart)
```



```
    proof (rule sum_mono)
        fix }
        have |(A*vx)$ i| \leq norm(A$ i)* norm x
        by (simp add: matrix_mult_dot Cauchy_Schwarz_ineq2)
        also have ... \leq (\sumj\inUNIV. |A$ i$ j|)* norm x
            by (simp add: mult_right_mono norm_le_l1_cart)
        also have ... \leq real (CARD('n))*B* norm x
            by (simp add: assms sum_bounded_above mult_right_mono)
        finally show |(A*vx)$ i| \leq real (CARD('n))*B* norm x .
    qed
    also have ... \leqCARD('m)* real (CARD(' n))*B * norm x
        by simp
    finally show norm (A*vx)\leqCARD('m)* real (CARD(' }n))*B*\mathrm{ norm x .
qed
lemma rational_approximation:
    assumes e>0
```



```
    using Rats_dense_in_real [of x-e/2 x +e/2] assms by auto
proposition matrix_rational_approximation:
    fixes }A\mathrm{ :: real^' }\mp@subsup{n}{}{\wedge\prime}
    assumes e>0
    obtains B where \}\ij.B$i$j\in\mathbb{Q}\mathrm{ onorm( }\lambdax.(A-B)*vx)<
proof -
    have }\forallij.\existsq\in\mathbb{Q}.|q-A$i$j|<e/(2*CARD('m)*CARD('n)
        using assms by (force intro: rational_approximation [of e / (2 * CARD('m)*
CARD('n))])
```



```
j|<e/(2*CARD('m)*CARD('n))
```

```
    by (auto simp:lambda_skolem Bex_def)
    show ?thesis
    proof
    have onorm ((*v) (A-B)) \leq real CARD('m) * real CARD('n)*
    (e / (2 * real CARD('m) * real CARD('n)))
        apply (rule onorm_le_matrix_component)
        using Bclo by (simp add: abs_minus_commute less_imp_le)
    also have ...<e
        using <0 < e> by (simp add: field_split_simps)
    finally show onorm ((*v) (A-B))<e.
    qed (use B in auto)
qed
lemma vector_sub_project_orthogonal_cart: (b::real^^}n)\cdot(x-((b\cdotx)/(b\cdotb))*
b) =0
    unfolding inner_simps scalar_mult_eq_scaleR by auto
lemma infnorm_cart:infnorm ( }x::\mp@subsup{\mathrm{ real }}{}{\wedge}n)=\mathrm{ Sup {|x$i| |i. i i UNIV}
    by (simp add: infnorm_def inner_axis Basis_vec_def) (metis (lifting) inner_axis
real_inner_1_right)
lemma component_le_infnorm_cart: }|x$i|\leqinfnorm (x::real^^ n
    using Basis_le_infnorm[of axis i 1 x]
    by (simp add: Basis_vec_def axis_eq_axis inner_axis)
lemma continuous_component[continuous_intros]: continuous F f \Longrightarrow continuous
F(\lambdax.fx$ i)
    unfolding continuous_def by (rule tendsto_vec_nth)
lemma continuous_on_component[continuous_intros]: continuous_on s f \Longrightarrowcon-
tinuous_on s ( }\lambdax.fx$i
    unfolding continuous_on_def by (fast intro: tendsto_vec_nth)
lemma continuous_on_vec_lambda[continuous_intros]:
    (\bigwedgei.continuous_on S (fi)) \Longrightarrow continuous_on S (\lambdax. \chi i. fix)
    unfolding continuous_on_def by (auto intro: tendsto_vec_lambda)
    lemma closed_positive_orthant: closed {x::real^' n.\foralli. 0\leqx$i}
    by (simp add: Collect_all_eq closed_INT closed_Collect_le continuous_on_component)
lemma bounded_component_cart: bounded s \Longrightarrow bounded ((\lambdax.x $ i)'s)
    unfolding bounded_def
    apply clarify
    apply (rule_tac x=x $ i in exI)
    apply (rule_tac x=e in exI)
    apply clarify
    apply (rule order_trans [OF dist_vec_nth_le], simp)
    done
```

```
lemma compact_lemma_cart:
    fixes f :: nat => 'a::heine_borel ^ 'n
    assumes f: bounded (range f)
    shows }\existslr\mathrm{ r.strict_mono r ^
            (\foralle>0. eventually ( }\lambdan.\foralli\ind.\operatorname{dist}(f(rn)$i)(l$i)<e) sequentially)
        (is ?th d)
proof -
    have }\forall\mp@subsup{d}{}{\prime}\subseteqd. ?th d
        by (rule compact_lemma_general[where unproj=vec_lambda])
            (auto intro!: f bounded_component_cart)
    then show ?th d by simp
qed
instance vec :: (heine_borel, finite) heine_borel
proof
    fix f :: nat m 'a ^ 'b
    assume f: bounded (range f)
    then obtain lr}\mathrm{ where r: strict_mono r
        and l: \foralle>0. eventually (\lambdan. \foralli\inUNIV.dist (f (rn)$ i) (l$ i)<e)
    sequentially
        using compact_lemma_cart [OF f] by blast
    let ?d = UNIV ::'b set
    { fix e::real assume e>0
        hence 0<e / (real_of_nat (card?d))
            using zero_less_card_finite divide_pos_pos[of e, of real_of_nat (card ?d)] by
auto
        with l have eventually (\lambdan.\foralli.dist (f (r n)$ i) (l $ i)<e / (real_of_nat
(card ?d))) sequentially
            by simp
        moreover
        { fix n
            assume n: \foralli.dist (f (r n) $ i) (l$ i)<e / (real_of_nat (card ?d))
            have dist (f (rn)) l\leq (\sumi\in?d.dist (f (r n) $ i) (l $ i))
                unfolding dist_vec_def using zero_le_dist by (rule L2_set_le_sum)
            also have .. < (\sumi\in?d. e / (real_of_nat (card ?d)))
                by (rule sum_strict_mono) (simp_all add: n)
            finally have dist (f (rn)) l<e by simp
        }
        ultimately have eventually ( }\lambdan\mathrm{ . dist (f (rn)) l<e) sequentially
            by (rule eventually_mono)
    }
    hence ((f\circr)\longrightarrowl) sequentially unfolding o_def tendsto_iff by simp
    with r show \existslr.strict_mono r ^ ((f\circr)\longrightarrowl) sequentially by auto
qed
lemma interval_cart:
    fixes a :: real^'}
    shows box a b ={x::real^\primen.\foralli. a$i<x$i\wedge x$i<b$i}
        and cbox a b ={x::real^^n.\foralli.a$i\leqx$i\wedge x$i\leqb$i}
```

by (auto simp add: set_eq_iff less_vec_def less_eq_vec_def mem_box Basis_vec_def inner_axis)
lemma mem_box_cart:
fixes a :: real ${ }^{\wedge} n$
shows $x \in$ box $a b \longleftrightarrow(\forall i . a \$ i<x \$ i \wedge x \$ i<b \$ i)$
and $x \in$ cbox a $b \longleftrightarrow(\forall i . a \$ i \leq x \$ i \wedge x \$ i \leq b \$ i)$
using interval_cart[of ab] by (auto simp add: set_eq_iff less_vec_def less_eq_vec_def)
lemma interval_eq_empty_cart:
fixes $a::$ real $^{\wedge} n$
shows $(b o x$ a $b=\{ \} \longleftrightarrow(\exists i . b \$ i \leq a \$ i))$ (is ?th1)
and $(c b o x a b=\{ \} \longleftrightarrow(\exists i . b \$ i<a \$ i))$ (is ?th2)
proof -
\{ fix $i x$ assume as: $b \$ i \leq a \$ i$ and $x: x \in b o x$ a b
hence $a \$ i<x \$ i \wedge x \$ i<b \$ i$ unfolding mem_box_cart by auto
hence $a \$ i<b \$ i$ by auto
hence False using as by auto \}
moreover
\{ assume $a s: \forall i . \neg(b \$ i \leq a \$ i)$
let $? x=(1 / 2) *_{R}(a+b)$
$\{$ fix i
have $a \$ i<b \$ i$ using as[THEN spec $[$ where $x=i]]$ by auto hence $a \$ i<\left((1 / 2) *_{R}(a+b)\right) \$ i\left((1 / 2) *_{R}(a+b)\right) \$ i<b \$ i$
unfolding vector_smult_component and vector_add_component by auto \}
hence box a $b \neq\{ \}$ using mem_box_cart(1)[of ? x a b] by auto $\}$
ultimately show ?th1 by blast
\{ fix $i x$ assume $a s: b \$ i<a \$ i$ and $x: x \in c b o x a b$
hence $a \$ i \leq x \$ i \wedge x \$ i \leq b \$ i$ unfolding mem_box_cart by auto
hence $a \$ i \leq b \$ i$ by auto
hence False using as by auto \}
moreover
\{ assume $a s: \forall i . \neg(b \$ i<a \$ i)$
let ? $x=(1 / 2) *_{R}(a+b)$
$\{\mathrm{fix} i$ have $a \$ i \leq b \$ i$ using $a s[$ THEN spec $[$ where $x=i]]$ by auto hence $a \$ i \leq\left((1 / 2) *_{R}(a+b)\right) \$ i\left((1 / 2) *_{R}(a+b)\right) \$ i \leq b \$ i$ unfolding vector_smult_component and vector_add_component by auto \}
hence cbox a $b \neq\{ \}$ using mem_box_cart(2)[of ?x a b] by auto \}
ultimately show ?th2 by blast
qed
lemma interval_ne_empty_cart:
fixes a :: real^^ n
shows cbox a $b \neq\{ \} \longleftrightarrow(\forall i . a \$ i \leq b \$ i)$

$$
\text { and box a } b \neq\{ \} \longleftrightarrow(\forall i . a \$ i<b \$ i)
$$

unfolding interval_eq_empty_cart[of a b] by (auto simp add: not_less not_le)

```
lemma subset_interval_imp_cart:
    fixes a :: real^'n
    shows (\foralli.a$i\leqc$i\wedged$i\leqb$i)\Longrightarrowcbox c d\subseteqcbox a b
        and (\foralli.a$i<c$i\wedged$i<b$i)\Longrightarrowcbox c d\subseteqbox a b
        and (\foralli.a$i\leqc$i\wedged$i\leqb$i)\Longrightarrowbox c d\subseteqcbox a b
        and (\foralli.a$i\leqc$i^d$i\leqb$i)\Longrightarrowbox c d\subseteqbox a b
    unfolding subset_eq[unfolded Ball_def] unfolding mem_box_cart
    by (auto intro: order_trans less_le_trans le_less_trans less_imp_le)
```

lemma interval_sing:
fixes $a::$ ' $a::$ linorder ${ }^{\wedge}{ }^{\prime} n$
shows $\{a . . a\}=\{a\} \wedge\{a<. .<a\}=\{ \}$
apply (auto simp add: set_eq_iff less_vec_def less_eq_vec_def vec_eq_iff)
done
lemma subset_interval_cart:
fixes $a::$ real $^{\wedge} n$
shows cbox c $d \subseteq$ cbox $a b \longleftrightarrow(\forall i . c \$ i \leq d \$ i)-->(\forall i . a \$ i \leq c \$ i \wedge d \$ i \leq$
$b \$ i)($ is ?th1)
and cbox c $d \subseteq$ box $a b \longleftrightarrow(\forall i . c \$ i \leq d \$ i)-->(\forall i . a \$ i<c \$ i \wedge d \$ i<$
$b \$ i)$ (is ?th2)
and box c $d \subseteq c b o x$ a $b \longleftrightarrow(\forall i . c \$ i<d \$ i)-->(\forall i . a \$ i \leq c \$ i \wedge d \$ i \leq$
$b \$ i)($ is ?th3)
and box c $d \subseteq b o x$ a $b \longleftrightarrow(\forall i . c \$ i<d \$ i)-->(\forall i . a \$ i \leq c \$ i \wedge d \$ i \leq b \$ i)$
(is ? th4)
using subset_box[of ccllll $\left.\begin{array}{l}a \\ b\end{array}\right]$ by (simp_all add: Basis_vec_def inner_axis)
lemma disjoint_interval_cart:
fixes $a::$ real $^{\wedge} n$
shows cbox a $b \cap$ cbox $c d=\{ \} \longleftrightarrow(\exists i .(b \$ i<a \$ i \vee d \$ i<c \$ i \vee b \$ i<c \$ i$
$\vee d \$ i<a \$ i)$) (is ?th1)
and cbox a $b \cap$ box $c d=\{ \} \longleftrightarrow(\exists i .(b \$ i<a \$ i \vee d \$ i \leq c \$ i \vee b \$ i \leq c \$ i \vee$
$d \$ i \leq a \$ i)$) (is ?th2)
and box a $b \cap c b o x c d=\{ \} \longleftrightarrow(\exists i .(b \$ i \leq a \$ i \vee d \$ i<c \$ i \vee b \$ i \leq c \$ i \vee$
$d \$ i \leq a \$ i)$) (is ?th3)
and box a $b \cap$ box $c d=\{ \} \longleftrightarrow(\exists i .(b \$ i \leq a \$ i \vee d \$ i \leq c \$ i \vee b \$ i \leq c \$ i \vee$
$d \$ i \leq a \$ i)$) (is? ?th4)

lemma Int_interval_cart:
fixes $a::$ real ${ }^{\wedge} n$
shows cbox ab cbox c $d=\{(\chi i . \max (a \$ i)(c \$ i)) . .(\chi i . \min (b \$ i)(d \$ i))\}$
unfolding Int_interval
by (auto simp: mem_box less_eq_vec_def)
(auto simp: Basis_vec_def inner_axis)

```
lemma closed_interval_left_cart:
    fixes b :: real^^}
    shows closed {x::real^'n.\foralli. x$i\leqb$i}
    by (simp add: Collect_all_eq closed_INT closed_Collect_le continuous_on_component)
```

lemma closed_interval_right_cart:
fixes $a:$:real ${ }^{\wedge} n$
shows closed $\left\{x::\right.$ real $\left.^{\wedge} n . \forall i . a \$ i \leq x \$ i\right\}$
by (simp add: Collect_all_eq closed_INT closed_Collect_le continuous_on_component)

```
lemma is_interval_cart:
    is_interval \(\left(s::\left(\right.\right.\) real \(\left.{ }^{\wedge} n\right)\) set \() \longleftrightarrow\)
        \((\forall a \in s . \forall b \in s . \forall x .(\forall i .((a \$ i \leq x \$ i \wedge x \$ i \leq b \$ i) \vee(b \$ i \leq x \$ i \wedge x \$ i \leq a \$ i)))\)
\(\longrightarrow x \in s\) )
    by (simp add: is_interval_def Ball_def Basis_vec_def inner_axis imp_ex)
lemma closed_halfspace_component_le_cart: closed \(\left\{x::\right.\) real \(\left.{ }^{\wedge} n . x \$ i \leq a\right\}\)
    by (simp add: closed_Collect_le continuous_on_component)
lemma closed_halfspace_component_ge_cart: closed \(\left\{x::\right.\) real \({ }^{\wedge}\) ' \(\left.n . x \$ i \geq a\right\}\)
    by (simp add: closed_Collect_le continuous_on_component)
lemma open_halfspace_component_lt_cart: open \(\{x::\) real^^ \(n . x \$ i<a\}\)
    by (simp add: open_Collect_less continuous_on_component)
lemma open_halfspace_component_gt_cart: open \(\left\{x::\right.\) real \(\left.{ }^{\wedge} n . x \$ i>a\right\}\)
    by (simp add: open_Collect_less continuous_on_component)
lemma Lim_component_le_cart:
    fixes \(f::{ }^{\prime} a \Rightarrow\) real \(^{\wedge} n\)
    assumes \((f \longrightarrow l)\) net \(\neg(\) trivial_limit net \()\) eventually \((\lambda x . f x \$ i \leq b)\) net
    shows \(l \$ i \leq b\)
    by (rule tendsto_le[OF assms(2) tendsto_const tendsto_vec_nth, \(\operatorname{OF} \operatorname{assms}(1,3)])\)
lemma Lim_component_ge_cart:
    fixes \(f::{ }^{\prime} a \Rightarrow\) real \(^{\wedge} n\)
    assumes \((f \longrightarrow l)\) net \(\neg\) (trivial_limit net) eventually \((\lambda x . b \leq(f x)\) \$i) net
    shows \(b \leq l \$ i\)
    by (rule tendsto_le[OF assms(2) tendsto_vec_nth tendsto_const, \(\operatorname{OF} \operatorname{assms}(1,3)])\)
lemma Lim_component_eq_cart:
    fixes \(f::{ }^{\prime} a \Rightarrow\) real \(^{\wedge} n\)
    assumes net: \((f \longrightarrow l)\) net \(\neg\) trivial_limit net and ev:eventually \((\lambda x . f(x) \$ i\)
= b) net
    shows \(l \$ i=b\)
    using ev[unfolded order_eq_iff eventually_conj_iff] and
        Lim_component_ge_cart [OF net, of bi] and
        Lim_component_le_cart[OF net, of \(i b]\) by auto
```

```
lemma connected_ivt_component_cart:
    fixes \(x\) :: real \({ }^{\wedge} n\)
    shows connected \(s \Longrightarrow x \in s \Longrightarrow y \in s \Longrightarrow x \$ k \leq a \Longrightarrow a \leq y \$ k \Longrightarrow(\exists z \in s\).
\(z \$ k=a\) )
    using connected_ivt_hyperplane \([\) of \(s x y\) axis \(k 1 a]\)
    by (auto simp add: inner_axis inner_commute)
lemma subspace_substandard_cart: vec.subspace \(\{x .(\forall i . P i \longrightarrow x \$ i=0)\}\)
    unfolding vec.subspace_def by auto
lemma closed_substandard_cart:
    closed \(\left\{x::^{\prime} a::\right.\) real_normed_vector \({ }^{\wedge}\) ' \(\left.n . \forall i . P i \longrightarrow x \$ i=0\right\}\)
proof -
    \{ fix \(i::^{\prime} n\)
        have closed \(\left\{x::^{\prime} a{ }^{\wedge}\right.\) ' \(\left.n . P i \longrightarrow x \$ i=0\right\}\)
            by (cases \(P\) i) (simp_all add: closed_Collect_eq continuous_on_component) \(\}\)
    thus ?thesis
        unfolding Collect_all_eq by (simp add: closed_INT)
qed
```


4.11.3 Convex Euclidean Space

lemma Cart_1: $\left(1::\right.$ real $\left.^{\wedge} n\right)=\sum$ Basis
using const_vector_cart[of 1] by (simp add: one_vec_def)
declare vector_add_ldistrib[simp] vector_ssub_ldistrib[simp] vector_smult_assoc[simp] vector_smult_rneg[simp]
declare vector_sadd_rdistrib[simp] vector_sub_rdistrib[simp]
lemmas vector_component_simps $=$ vector_minus_component vector_smult_component vector_add_component less_eq_vec_def vec_lambda_beta vector_uminus_component
lemma convex_box_cart:
assumes $\bigwedge i$. convex $\{x . P i x\}$
shows convex $\{x . \forall i . P i(x \$ i)\}$
using assms unfolding convex_def by auto

4.11.4 Derivative

definition jacobian f net $=$ matrix (frechet_derivative f net $)$
proposition jacobian_works:
$\left(f::\left(\right.\right.$ real $\left.^{\wedge} a\right) \Rightarrow\left(\right.$ real $\left.\left.^{\wedge} b\right)\right)$ differentiable net \longleftrightarrow
$(f$ has_derivative $(\lambda h .(j a c o b i a n f$ net $) * v h))$ net $($ is ?lhs $=? r h s)$
proof
assume ?lhs then show ?rhs
by (simp add: frechet_derivative_works has_derivative_linear jacobian_def)
next
assume ?rhs then show? lhs
by (rule differentiableI)

qed

Component of the differential must be zero if it exists at a local maximum or minimum for that corresponding component

```
proposition differential_zero_maxmin_cart:
    fixes \(f::\) real \(^{\wedge}{ }^{\wedge} a \Rightarrow\) real \(^{\wedge} b\)
    assumes \(0<e((\forall y \in\) ball \(x e .(f y) \$ k \leq(f x) \$ k) \vee(\forall y \in\) ball \(x e .(f x) \$ k \leq(f\)
y) \(\$ k)\) )
    \(f\) differentiable (at \(x\) )
    shows jacobian \(f\) (at \(x\) ) \(\$ k=0\)
    using differential_zero_maxmin_component \([o f\) axis \(k 1 e x f]\) assms
        vector_cart[of \(\lambda j\). frechet_derivative \(f(\) at \(x) j \$ k]\)
    by (simp add: Basis_vec_def axis_eq_axis inner_axis jacobian_def matrix_def)
```


4.11.5 Routine results connecting the types (real, 1) vec and real

lemma vec_cbox_1_eq [simp]:
shows vec‘cbox u v $=$ cbox (vec u) (vec v ::real^1)
by (force simp: Basis_vec_def cart_eq_inner_axis [symmetric] mem_box)
lemma vec_nth_cbox_1_eq [simp]:
fixes $u v$:: 'a::euclidean_space^1
shows $(\lambda x . x \$ 1)$ 'cbox $u v=\operatorname{cbox}(u \$ 1)(v \$ 1)$
by (auto simp: Basis_vec_def cart_eq_inner_axis [symmetric] mem_box image_iff
Bex_def inner_axis) (metis vec_component)
lemma vec_nth_1_iff_cbox [simp]:
fixes $a b::$ 'a::euclidean_space
shows $\left(\lambda x::^{\prime} a^{\wedge} 1 . x \$ 1\right) ' S=c b o x a b \longleftrightarrow S=c b o x(v e c a)(v e c b)$ (is ?lhs =?rhs)
proof
assume L : ?lhs show ?rhs
proof (intro equalityI subsetI) fix x assume $x \in S$
then have $x \$ 1 \in(\lambda v . v \$(1:: 1)) ' \operatorname{cbox}($ vec $a)(v e c h)$
using L by auto
then show $x \in \operatorname{cbox}$ (vec a) (vec b)
by (metis (no_types, lifting) imageE vector_one_nth)
next
fix $x::^{\prime} a^{\wedge} 1$
assume $x \in c b o x$ (vec a) (vec b)
then show $x \in S$
by (metis (no_types, lifting) L imageE imageI vec_component vec_nth_cbox_1_eq
vector_one_nth)
qed
qed simp

```
lemma vec_nth_real_1_iff_cbox [simp]:
    fixes \(a b\) :: real
    shows \((\lambda x::\) real^ \(1 . x \$ 1) ‘ S=\{a . . b\} \longleftrightarrow S=c b o x(v e c a)(v e c ~ b)\)
    using vec_nth_1_iff_cbox[of S a b]
    by \(\operatorname{simp}\)
lemma interval_split_cart:
    \(\{a . . b::\) real^^ \(n\} \cap\{x . x \$ k \leq c\}=\{a . .(\chi\) i. if \(i=k\) then \(\min (b \$ k) c\) else \(b \$ i)\}\)
    cbox \(a b \cap\{x . x \$ k \geq c\}=\{(\chi\) i. if \(i=k\) then \(\max (a \$ k) c\) else \(a \$ i) . . b\}\)
    apply (rule_tac[!] set_eqI)
    unfolding Int_iff mem_box_cart mem_Collect_eq interval_cbox_cart
    unfolding vec_lambda_beta
    by auto
```

lemmas cartesian_euclidean_space_uniform_limit_intros[uniform_limit_intros] =
bounded_linear.uniform_limit[OF blinfun.bounded_linear_right]
bounded_linear.uniform_limit[OF bounded_linear_vec_nth]
end

Chapter 5

Unsorted

```
theory Starlike
    imports
        Convex_Euclidean_Space
        Line_Segment
begin
lemma affine_hull_closed_segment [simp]:
        affine hull (closed_segment a b)= affine hull {a,b}
    by (simp add: segment_convex_hull)
lemma affine_hull_open_segment [simp]:
    fixes a :: 'a::euclidean_space
    shows affine hull (open_segment a b) = (if a=b then {} else affine hull {a,b})
by (metis affine_hull_convex_hull affine_hull_empty closure_open_segment closure_same_affine_hull
segment_convex_hull)
lemma rel_interior_closure_convex_segment:
    fixes S :: _::euclidean_space set
    assumes convex S a \in rel_interior S b \in closure S
        shows open_segment a b\subseteq rel_interior S
proof
    fix }
    have [simp]: (1-u) *R}a+u\mp@subsup{*}{R}{}b=b-(1-u)\mp@subsup{*}{R}{}(b-a)\mathrm{ for u
        by (simp add: algebra_simps)
    assume x fopen_segment a b
    then show x 位_interior S
        unfolding closed_segment_def open_segment_def using assms
        by (auto intro: rel_interior_closure_convex_shrink)
qed
lemma convex_hull_insert_segments:
    convex hull (insert a S)=
        (if S={} then {a} else }\bigcupx\in\mathrm{ convex hull S.closed_segment a x)
    by (force simp add: convex_hull_insert_alt in_segment)
```

lemma Int_convex_hull_insert_rel_exterior:

```
    fixes \(z\) :: ' \(a::\) euclidean_space
    assumes convex \(C T \subseteq C\) and \(z: z \in\) rel_interior \(C\) and dis: disjnt \(S\) (rel_interior
C)
    shows \(S \cap(\) convex hull \((\) insert \(z T))=S \cap(\) convex hull \(T)\) (is ?lhs = ?rhs)
proof
    have \(T=\{ \} \Longrightarrow z \notin S\)
        using dis \(z\) by (auto simp add: disjnt_def)
    then show ?lhs \(\subseteq\) ? \(r h s\)
    proof (clarsimp simp add: convex_hull_insert_segments)
        fix \(x y\)
        assume \(x \in S\) and \(y: y \in\) convex hull \(T\) and \(x \in\) closed_segment \(z y\)
        have \(y \in\) closure \(C\)
            by (metis \(y\) 〈convex \(C\rangle\langle T \subseteq C\rangle\) closure_subset contra_subsetD convex_hull_eq
hull_mono)
    moreover have \(x \notin\) rel_interior \(C\)
            by (meson \(\langle x \in S\rangle\) dis disjnt_iff)
        moreover have \(x \in\) open_segment \(z y \cup\{z, y\}\)
            using \(\langle x \in\) closed_segment \(z y\rangle\) closed_segment_eq_open by blast
        ultimately show \(x \in\) convex hull \(T\)
            using rel_interior_closure_convex_segment [OF 〈convex \(C\rangle z]\)
            using \(y z\) by blast
    qed
    show ? rhs \(\subseteq\) ? lhs
        by (meson hull_mono inf_mono subset_insertI subset_refl)
qed
```


5.0.1 Shrinking towards the interior of a convex set

```
lemma mem_interior_convex_shrink:
    fixes S :: 'a::euclidean_space set
    assumes convex }
        and c\in interior S
        and}x\in
        and 0<e
        and}e\leq
    shows x-e * 
proof -
    obtain d}\mathrm{ where d>0 and d: ball c d}\subseteq
            using assms(2) unfolding mem_interior by auto
    show ?thesis
        unfolding mem_interior
    proof (intro exI subsetI conjI)
        fix }
        assume y f ball (x-e * R}(x-c))(e*d
        then have as: dist (x-e*R}(x-c)) y<e*
            by simp
        have *: y = (1-(1-e)) *R
```

```
e) *}\mp@subsup{*}{R}{}
    using }\langlee>0\rangle\mathrm{ by (auto simp add: scaleR_left_diff_distrib scaleR_right_diff_distrib)
    have c-((1/e)*R}y-((1-e)/e)\mp@subsup{*}{R}{}x)=(1/e)\mp@subsup{*}{R}{}(e\mp@subsup{*}{R}{}c-y
(1-e)*R}\mp@subsup{*}{R}{
            using \langlee>0\rangle
            by (auto simp add: euclidean_eq_iff[where 'a='a] field_simps inner_simps)
    then have dist c((1/e)*R}y-((1-e)/e)*\mp@subsup{*}{R}{}x)=|1/e|*norm (e * *
c-y+(1-e)*R}x
            by (simp add: dist_norm)
    also have \ldots. = |1/e|* norm (x-e * R (x-c) - y)
        by (auto intro!:arg_cong[where f=norm] simp add:algebra_simps)
    also have ... <d
        using as[unfolded dist_norm] and <e> 0>
        by (auto simp add:pos_divide_less_eq[OF <e > 0`] mult.commute)
    finally have (1-(1-e)) *R
e) *}\mp@subsup{*}{R}{}x\in
            using assms(3-5) d
            by (intro convexD_alt [OF〈convex S`]) (auto intro: convexD_alt [OF <convex
S`])
    with \langlee> 0\rangle show y \inS
                            by (auto simp add: scaleR_left_diff_distrib scaleR_right_diff_distrib)
    qed (use \langlee>0\rangle\langled>0\rangle in auto)
qed
lemma mem_interior_closure_convex_shrink:
    fixes S :: 'a::euclidean_space set
    assumes convex }
        and c}\in\mathrm{ interior S
        and x}\in\mathrm{ closure S
        and 0<e
        and}e\leq
    shows x-e**}(x-c)\in\mathrm{ interior }
proof -
    obtain d}\mathrm{ where d>0 and d: ball c d}\subseteq
        using assms(2) unfolding mem_interior by auto
    have }\existsy\inS.\operatorname{norm}(y-x)*(1-e)<e*
    proof (cases x }\inS\mathrm{ )
        case True
        then show ?thesis
        using <e> 0\rangle\langled> 0\rangle by force
    next
        case False
    then have x: x islimpt S
        using assms(3)[unfolded closure_def] by auto
    show ?thesis
    proof (cases e = 1)
        case True
        obtain y where y\inS y\not= x dist y x<1
            using x[unfolded islimpt_approachable,THEN spec[where x=1]] by auto
```

```
    then show ?thesis
        using True }\langle0<d\rangle\mathrm{ by auto
    next
    case False
    then have 0<e*d/(1-e) and *:1 - e>0
        using <e\leq1\rangle\langlee>0\rangle\langled>0\rangle by auto
    then obtain y where y\inS y = x dist y x<e*d/(1-e)
        using islimpt_approachable x by blast
    then have norm (y-x)* (1-e)<e*d
        by (metis * dist_norm mult_imp_div_pos_le not_less)
    then show ?thesis
        using }\langley\inS\rangle\mathrm{ by blast
    qed
    qed
    then obtain y where y GS and y: norm (y-x)*(1-e)<e*d
    by auto
    define z where z=c+((1-e)/e)**}(x-y
    have *: x-e**}(x-c)=y-e\mp@subsup{*}{R}{}(y-z
    unfolding z_def using <e>0\rangle
    by (auto simp add: scaleR_right_diff_distrib scaleR_right_distrib scaleR_left_diff_distrib)
    have (1-e)* norm (x-y)/e<d
    using y <0<e` by (simp add: field_simps norm_minus_commute)
    then have z\in interior (ball cd}d\mathrm{ )
    using }\langle0<e\rangle\langlee\leq1\rangle\mathrm{ by (simp add: interior_open[OF open_ball] z_def dist_norm)
    then have z}\in\mathrm{ interior S
        using d interiorI interior_ball by blast
    then show ?thesis
        unfolding * using mem_interior_convex_shrink }\langley\inS\rangle\mathrm{ assms by blast
qed
lemma in_interior_closure_convex_segment:
    fixes S :: 'a::euclidean_space set
    assumes convex S and a:a\in interior S and b:b\inclosure S
        shows open_segment a b\subseteq interior S
proof (clarsimp simp: in_segment)
    fix u::real
    assume u:0<uu<1
    have (1-u)*R}a+u*R b=b-(1-u)**R(b-a
        by (simp add: algebra_simps)
    also have ... \in interior S using mem_interior_closure_convex_shrink [OF assms]
u
    by simp
    finally show (1-u)**Ra+u*R}b\in\mathrm{ interior S.
qed
lemma convex_closure_interior:
    fixes S :: 'a::euclidean_space set
    assumes convex S and int: interior S}\not={
    shows closure(interior S)= closure S
```

```
proof -
    obtain a where a: a\in interior S
        using int by auto
    have closure S\subseteq closure(interior S)
    proof
        fix }
        assume x: x \in closure S
        show }x\in\mathrm{ closure (interior S)
        proof (cases x=a)
            case True
            then show ?thesis
                using <a \in interior S` closure_subset by blast
        next
        case False
        show ?thesis
        proof (clarsimp simp add: closure_def islimpt_approachable)
            fix e::real
            assume xnotS: x # interior S and 0<e
            show \exists}\mp@subsup{x}{}{\prime}\in\mathrm{ interior S. }\mp@subsup{x}{}{\prime}\not=x\wedge\mathrm{ dist }\mp@subsup{x}{}{\prime}x<
            proof (intro bexI conjI)
                    show }x-\operatorname{min}(e/2 / norm (x-a)) 1 *R (x-a) f=
                    using False <0 <e> by (auto simp: algebra_simps min_def)
                    show dist (x-min (e/2 / norm (x-a)) 1**R (x-a)) x<e
                    using <0<e\rangle by (auto simp: dist_norm min_def)
                    show }x-\operatorname{min}(e/\mathcal{Z}/\operatorname{norm}(x-a))1\mp@subsup{*}{R}{\prime}(x-a)\in\mathrm{ interior }
                    using <0 < e〉 False
                    by (auto simp add: min_def a intro: mem_interior_closure_convex_shrink
[OF <convex S>a x])
                qed
            qed
        qed
    qed
    then show ?thesis
        by (simp add: closure_mono interior_subset subset_antisym)
qed
lemma closure_convex_Int_superset:
    fixes S :: 'a::euclidean_space set
    assumes convex S interior S}\not={}\mathrm{ interior S}\subseteq\mathrm{ closure T
    shows closure(S\capT)= closure S
proof -
    have closure S\subseteq closure(interior S)
        by (simp add: convex_closure_interior assms)
    also have ... \subseteq closure ( }S\capT\mathrm{ )
        using interior_subset [of S] assms
    by (metis (no_types, lifting) Int_assoc Int_lower2 closure_mono closure_open_Int_superset
inf.orderE open_interior)
    finally show ?thesis
        by (simp add: closure_mono dual_order.antisym)
```

qed

5.0.2 Some obvious but surprisingly hard simplex lemmas

lemma simplex:
assumes finite S
and $0 \notin S$
shows convex hull (insert $0 S)=\{y . \exists u .(\forall x \in S .0 \leq u x) \wedge \operatorname{sum} u S \leq 1 \wedge$ $\left.\operatorname{sum}\left(\lambda x . u x *_{R} x\right) S=y\right\}$
proof (simp add: convex_hull_-finite set_eq_iff assms, safe)
fix x and $u::$ ' $a \Rightarrow$ real
assume $0 \leq u 0 \forall x \in S .0 \leq u x u 0+\operatorname{sum} u S=1$
then show $\exists v .(\forall x \in S .0 \leq v x) \wedge \operatorname{sum} v S \leq 1 \wedge\left(\sum x \in S . v x *_{R} x\right)=$ $\left(\sum x \in S . u x *_{R} x\right)$
by force
next
fix x and $u:: ' a \Rightarrow$ real
assume $\forall x \in S .0 \leq u x$ sum $u S \leq 1$
then show $\exists v .0 \leq v 0 \wedge(\forall x \in S .0 \leq v x) \wedge v 0+\operatorname{sum} v S=1 \wedge\left(\sum x \in S\right.$. $\left.v x *_{R} x\right)=\left(\sum x \in S . u x *_{R} x\right)$
by (rule_tac $x=\lambda x$. if $x=0$ then $1-$ sum $u S$ else $u x$ in exI) (auto simp: sum_delta_notmem assms if_smult)
qed
lemma substd_simplex:
assumes $d: d \subseteq$ Basis
shows convex hull (insert $0 d)=$
$\left\{x .(\forall i \in\right.$ Basis. $0 \leq x \cdot i) \wedge\left(\sum i \in d . x \cdot i\right) \leq 1 \wedge(\forall i \in$ Basis. $i \notin d \longrightarrow x \cdot i=$ 0) $\}$
(is convex hull (insert 0?p) $=$?s)
proof -
let $? \mathrm{D}=d$
have $0 \notin ? p$
using assms by (auto simp: image_def)
from d have finite d
by (blast intro: finite_subset finite_Basis)
show ?thesis
unfolding simplex[$O F$ 〈finite $d\rangle\langle 0 \notin ? p\rangle]$
proof (intro set_eqI; safe)
fix $u:: ' a \Rightarrow$ real
assume as: $\forall x \in$? $D .0 \leq u x$ sum $u ? D \leq 1$
let $? x=\left(\sum x \in\right.$? D. $\left.u x *_{R} x\right)$
have ind: $\forall i \in$ Basis. $i \in d \longrightarrow u i=? x \cdot i$
and notind: $(\forall i \in$ Basis. $i \notin d \longrightarrow ? x \cdot i=0)$
using substdbasis_expansion_unique [OF assms] by blast+
then have $* *$: sum $u ? D=\operatorname{sum}((\cdot) ? x) ? D$
using assms by (auto intro!: sum.cong)
show $0 \leq ? x \cdot i$ if $i \in$ Basis for i
using as (1) ind notind that by fastforce

```
    show sum ((\cdot) ?x) ?D \leq 1
    using ** as(2) by linarith
    show ? }x\cdoti=0\mathrm{ if }i\in\mathrm{ Basis }i\not\ind\mathrm{ for }
    using notind that by blast
next
    fix }
    assume }\foralli\in\mathrm{ Basis. }0\leqx\cdoti\mathrm{ sum ((•) x) ?D }\leq1(\foralli\in\mathrm{ Basis. }i\not\ind\longrightarrowx \
=0)
    with d show \existsu. (\forallx\in?D. 0 \lequx)^ sum u?D\leq1^(\sumx\in?D.u x*R
x)=x
            unfolding substdbasis_expansion_unique[OF assms]
            by (rule_tac x=inner x in exI) auto
    qed
qed
lemma std_simplex:
    convex hull (insert 0 Basis) =
        {x::'a::euclidean_space. (\foralli\inBasis. 0 \leq x | i) ^ sum (\lambdai. x\cdoti) Basis \leq 1}
    using substd_simplex[of Basis] by auto
lemma interior_std_simplex:
    interior (convex hull (insert 0 Basis)) =
        {x::'a::euclidean_space. (\foralli\inBasis. 0 < x | i) ^ sum (\lambdai. x•i) Basis < 1}
    unfolding set_eq_iff mem_interior std_simplex
proof (intro allI iffI CollectI; clarify)
    fix }x::' '
    fix }
    assume e>0 and as:ball x e\subseteq{x.(\forall i\inBasis. 0 \leqx \cdot i)^ sum ((`) x) Basis
\leq1}
    show (\foralli\inBasis. 0 < x \cdot i) ^ sum ((`) x) Basis < 1
    proof safe
        fix }i:: '
        assume i: i\in Basis
        then show 0<x • i
        using as[THEN subsetD[where c=x - (e/2) *R i]] and <e>0\rangle
        by (force simp add: inner_simps)
    next
        have **: dist x (x+(e/2)*R (SOME i. i\inBasis))<e using <e>0\rangle
        unfolding dist_norm
        by (auto intro!: mult_strict_left_mono simp: SOME_Basis)
    have \i. i B Basis \Longrightarrow(x+(e/2) *R (SOME i. i\inBasis)) • i=
        x}\cdoti+(\mathrm{ if }i=(SOME i. i\inBasis) then e/2 else 0)
        by (auto simp:SOME_Basis inner_Basis inner_simps)
    then have *: sum ((\cdot) (x+(e/\mathcal{Q})\mp@subsup{*}{R}{\prime}(SOME i. i\inBasis))) Basis =
        sum (\lambdai. x•i + (if (SOME i. i\inBasis) = i then e/2 else 0)) Basis
        by (auto simp: intro!: sum.cong)
    have sum ((`) x) Basis < sum ((`) (x+(e/2) *R (SOME i. i\inBasis))) Basis
        using \langlee> 0\rangle DIM_positive by (auto simp: SOME_Basis sum.distrib *)
    also have ... \leq 
```

```
        using \(* *\) as by force
        finally show sum \(((\cdot) x)\) Basis \(<1\) by auto
    qed
next
    fix \(x::{ }^{\prime} a\)
    assume as: \(\forall i \in\) Basis. \(0<x \cdot i\) sum \(((\cdot) x)\) Basis \(<1\)
    obtain \(a::\) ' \(b\) where \(a \in\) UNIV using UNIV_witness ..
    let ? d \(=(1-\operatorname{sum}((\cdot) x)\) Basis \() /\) real \(\left(\operatorname{DIM}\left({ }^{\prime} a\right)\right)\)
    show \(\exists e>0\). ball \(x e \subseteq\{x\). \((\forall i \in\) Basis. \(0 \leq x \cdot i) \wedge \operatorname{sum}((\cdot) x)\) Basis \(\leq 1\}\)
    proof (rule_tac \(x=\min \left(\operatorname{Min}\left(((\cdot) x)^{\prime}\right.\right.\) Basis \(\left.)\right) D\) for \(D\) in exI, intro conjI subsetI
CollectI)
    fix \(y\)
    assume \(y: y \in\) ball \(x(\min (\operatorname{Min}((\cdot) x\) 'Basis \())\) ? \(d)\)
    have sum \(((\cdot) y)\) Basis \(\leq \operatorname{sum}(\lambda i . x \cdot i+\) ?d) Basis
    proof (rule sum_mono)
        fix \(i::^{\prime} a\)
        assume \(i: i \in\) Basis
        have \(|y \cdot i-x \cdot i| \leq \operatorname{norm}(y-x)\)
            by (metis Basis_le_norm i inner_commute inner_diff_right)
            also have..\(<\) ? d
            using \(y\) by (simp add: dist_norm norm_minus_commute)
            finally have \(|y \cdot i-x \cdot i|<\) ? \(d\).
            then show \(y \cdot i \leq x \cdot i+? d\) by auto
    qed
    also have . . \(\leq 1\)
        unfolding sum.distrib sum_constant
        by (auto simp add: Suc_le_eq)
    finally show \(\operatorname{sum}((\cdot) y)\) Basis \(\leq 1\).
    show \((\forall i \in\) Basis. \(0 \leq y \cdot i)\)
    proof safe
        fix \(i::\) ' \(a\)
        assume \(i: i \in\) Basis
        have norm \((x-y)<\operatorname{Min}(((\cdot) x)\) ' Basis \()\)
            using \(y\) by (auto simp: dist_norm less_eq_real_def)
            also have \(\ldots \leq x \cdot i\)
            using \(i\) by auto
            finally have norm \((x-y)<x \cdot i\).
            then show \(0 \leq y \cdot i\)
                using Basis_le_norm \([O F i\), of \(x-y]\) and as(1)[rule_format, OF \(i]\)
            by (auto simp: inner_simps)
    qed
    next
    have Min \((((\cdot) x)\) 'Basis \()>0\)
        using as by simp
    moreover have ? \(d>0\)
        using as by (auto simp: Suc_le_eq)
    ultimately show \(0<\min (\operatorname{Min}((\cdot) x\) 'Basis \())((1-\operatorname{sum}((\cdot) x)\) Basis \() /\)
real DIM ('a))
        by linarith
```

```
    qed
qed
lemma interior_std_simplex_nonempty:
    obtains a :: 'a::euclidean_space where
        a}\in\mathrm{ interior(convex hull (insert 0 Basis))
proof -
    let ?D = Basis :: 'a set
    let ?a = sum (\lambdab::'a. inverse (2 * real DIM('a)) *R b) Basis
    {
        fix }i:: ' '
    assume i: i\in Basis
    have ?a \cdot i = inverse (2 * real DIM('a))
        by (rule trans[of _ sum ( }\lambdaj.\mathrm{ if }i=j\mathrm{ then inverse (2 * real DIM('a)) else 0)
?D])
            (simp_all add: sum.If_cases i) }
    note ** = this
    show ?thesis
    proof
        show ?a \in interior(convex hull (insert 0 Basis))
            unfolding interior_std_simplex mem_Collect_eq
        proof safe
            fix }i::='
            assume i:i\in Basis
            show 0<?a • i
            unfolding **[OF i] by (auto simp add: Suc_le_eq)
        next
            have sum ((\cdot) ?a) ?D = sum (\lambdai. inverse (2 * real DIM('a))) ?D
            by (auto intro: sum.cong)
        also have ... < < 
            unfolding sum_constant divide_inverse[symmetric]
            by (auto simp add: field_simps)
        finally show sum ((\cdot) ?a) ?D < 1 by auto
        qed
    qed
qed
lemma rel_interior_substd_simplex:
    assumes D:D\subseteq Basis
    shows rel_interior (convex hull (insert 0 D)) =
        {x::'a::euclidean_space. (\foralli\inD.0<x\bulleti)\wedge (\sumi\inD. x\cdoti)<1\wedge(\foralli\inBasis.
i\not\inD\longrightarrowx\bulleti=0)}
        (is _ = ?s)
proof -
    have finite D
        using D finite_Basis finite_subset by blast
    show ?thesis
    proof (cases D={})
    case True
```

```
    then show ?thesis
    using rel_interior_sing using euclidean_eq_iff \(\left[o f ~ \_~ 0\right] ~ b y ~ a u t o ~\)
    next
    case False
    have h0: affine hull (convex hull (insert 0 D)) =
                    \(\left\{x::^{\prime} a::\right.\) euclidean_space. \((\forall i \in\) Basis. \(\left.i \notin D \longrightarrow x \cdot i=0)\right\}\)
        using affine_hull_convex_hull affine_hull_substd_basis assms by auto
    have aux: \(\bigwedge x::^{\prime} a . \forall i \in\) Basis. \((\forall i \in D .0 \leq x \bullet i) \wedge(\forall i \in\) Basis. \(i \notin D \longrightarrow x \bullet i=\)
\(0) \longrightarrow 0 \leq x \cdot i\)
    by auto
    \{
        fix \(x\) :: ' \(a::\) euclidean_space
        assume \(x: x \in\) rel_interior (convex hull (insert \(0 D\) ))
        then obtain \(e\) where \(e>0\) and
            ball \(x e \cap\{x a .(\forall i \in\) Basis. \(i \notin D \longrightarrow x a \cdot i=0)\} \subseteq\) convex hull (insert \(0 D\) )
            using mem_rel_interior_ball[of \(x\) convex hull (insert 0 D)] h0 by auto
        then have as: \(\bigwedge y . \llbracket\) dist \(x y<e \wedge(\forall i \in\) Basis. \(i \notin D \longrightarrow y \cdot i=0) \rrbracket \Longrightarrow\)
                    \((\forall i \in D .0 \leq y \cdot i) \wedge \operatorname{sum}((\cdot) y) D \leq 1\)
        using assms by (force simp: substd_simplex)
    have \(x 0\) : \((\forall i \in\) Basis. \(i \notin D \longrightarrow x \bullet i=0)\)
        using \(x\) rel_interior_subset substd_simplex[OF assms] by auto
    have \((\forall i \in D .0<x \cdot i) \wedge \operatorname{sum}((\cdot) x) D<1 \wedge(\forall i \in\) Basis. \(i \notin D \longrightarrow x \cdot i\)
\(=0\) )
    proof (intro conjI ballI)
        fix \(i\) :: 'a
        assume \(i \in D\)
        then have \(\forall j \in D .0 \leq\left(x-(e / 2) *_{R} i\right) \cdot j\)
            using \(D\langle e>0\rangle x 0\)
                            by (intro as[THEN conjunct1]) (force simp: dist_norm inner_simps in-
ner_Basis)
            then show \(0<x \cdot i\)
                using \(\langle e>0\rangle\langle i \in D\rangle D\) by (force simp: inner_simps inner_Basis)
    next
        obtain \(a\) where \(a: a \in D\)
            using \(\langle D \neq\{ \}\) 〉 by auto
        then have \(* *\) : dist \(x\left(x+(e / \mathcal{Z}) *_{R} a\right)<e\)
            using \(\langle e>0\rangle\) norm_Basis[of a] \(D\) by (auto simp: dist_norm)
            have \(\bigwedge i . i \in\) Basis \(\Longrightarrow\left(x+(e / 2) *_{R} a\right) \cdot i=x \cdot i+(i f i=a\) then \(e / 2\)
else 0)
            using \(a D\) by (auto simp: inner_simps inner_Basis)
        then have \(*: \operatorname{sum}\left((\cdot)\left(x+(e / 2) *_{R} a\right)\right) D=\operatorname{sum}(\lambda i \cdot x \cdot i+(\) if \(a=i\)
then e/2 else 0)) \(D\)
            using \(D\) by (intro sum.cong) auto
    have \(a \in\) Basis
                using \(\langle a \in D\rangle D\) by auto
            then have \(h 1:\left(\forall i \in\right.\) Basis. \(\left.i \notin D \longrightarrow\left(x+(e / 2) *_{R} a\right) \cdot i=0\right)\)
                using \(x 0 D\langle a \in D\rangle\) by (auto simp add: inner_add_left inner_Basis)
            have \(\operatorname{sum}((\cdot) x) D<\operatorname{sum}\left((\cdot)\left(x+(e / \mathcal{Z}) *_{R} a\right)\right) D\)
                using \(\langle e>0\rangle\langle a \in D\rangle\langle\) finite \(D\rangle\) by (auto simp add: * sum.distrib)
```

```
    also have ... \leq1
        using ** h1 as[rule_format, of x + (e/\mathcal{L})\mp@subsup{*}{R}{}a]
        by auto
    finally show sum ((\cdot) x) D<1 \i. i\inBasis \Longrightarrow i\not\inD \longrightarrowx•i=0
        using x0 by auto
    qed
}
moreover
{
    fix x :: 'a::euclidean_space
    assume as: x \in?s
    have }\foralli.0<x\cdoti\vee0=x\cdoti\longrightarrow0\leqx\cdot
        by auto
    moreover have }\foralli.i\inD\veei\not\inD\mathrm{ by auto
    ultimately
    have }\foralli.(\foralli\inD.0<x\bulleti)\wedge(\foralli.i\not\inD\longrightarrowx\bulleti=0)\longrightarrow0\leqx\cdot
        by metis
    then have h2: x \in convex hull (insert 0 D)
        using as assms by (force simp add: substd_simplex)
    obtain }a\mathrm{ where a: a}\in
        using \D\not={}` by auto
    define d}\mathrm{ where d}\equiv(1-\operatorname{sum}((\cdot)x)D)/\operatorname{real}(\operatorname{card D)
    have \existse>0. ball x e\cap{x.\foralli\inBasis. i\not\inD\longrightarrowx •i=0}\subseteq convex hull
insert 0 D
    unfolding substd_simplex[OF assms]
    proof (intro exI; safe)
    have 0< card D using\D\not={}〉\langlefinite D>
        by (simp add: card_gt_0_iff)
    have Min (((\cdot)x ' ' D )>0
        using as \langleD\not={}〉\langlefinite D> by (simp)
    moreover have d>0
        using as <0 < card D` by (auto simp:d_def)
    ultimately show min (Min (((\cdot) x)'D)) d>0
        by auto
    fix }y\mathrm{ :: 'a
    assume y2: }\foralli\in\mathrm{ Basis. i }\not\inD\longrightarrowy\cdoti=
    assume }y\inball x (min (Min ((\cdot) x'D))d
    then have y: dist x y<min (Min ((\cdot) x'D))d
        by auto
    have sum ((\cdot) y) D\leqsum (\lambdai. x\cdoti +d)D
    proof (rule sum_mono)
        fix }
        assume i\inD
        with D have i:i\in Basis
            by auto
        have }|y\cdoti-x\cdoti|\leqnorm (y-x
        by (metis i inner_commute inner_diff_right norm_bound_Basis_le order_refl)
            also have ... < d
                by (metis dist_norm min_less_iff_conj norm_minus_commute y)
```

```
            finally have }|y\cdoti-x\cdoti|<d
                then show y •i\leqx •i+d by auto
            qed
            also have ... \leq 1
                unfolding sum.distrib sum_constant d_def using <0 < card D>
                by auto
            finally show sum ((*) y) D\leq1.
            fix }i:: '
            assume i:i\in Basis
            then show 0 \leqy\cdoti
            proof (cases i\inD)
                case True
                have norm (x-y)<x\cdoti
                    using y Min_gr_iff[of (.) x' D norm (x - y)] \0< card D>\langlei\inD>
                    by (simp add: dist_norm card_gt_0_iff)
                    then show 0\leqy\cdoti
                    using Basis_le_norm[OF i, of x - y] and as(1)[rule_format]
                    by (auto simp: inner_simps)
            qed (use y2 in auto)
        qed
        then have x frel_interior (convex hull (insert 0 D))
        using h0 h2 rel_interior_ball by force
    }
    ultimately have
    \x.x 的l_interior (convex hull insert 0 D) \longleftrightarrow
    x\in{x.(\foralli\inD.0<x\cdoti)^\operatorname{sum}((\cdot)x)D<1\wedge(\foralli\inBasis. i\not\inD\longrightarrow
x}\cdoti=0)
            by blast
        then show ?thesis by (rule set_eqI)
    qed
qed
lemma rel_interior_substd_simplex_nonempty:
    assumes D\not={}
        and D\subseteq Basis
    obtains a :: 'a::euclidean_space
        where a \in rel_interior (convex hull (insert 0 D))
proof -
    let ?a = sum (\lambdab::'a::euclidean_space. inverse (2 * real (card D)) ** b) D
    have finite D
        using assms finite_Basis infinite_super by blast
    then have d1:0<real (card D)
        using 〈D\not={}` by auto
    {
        fix }
        assume i\inD
        have ?a \cdot i = sum ( }\lambdaj.\mathrm{ if }i=j\mathrm{ then inverse (2 * real (card D)) else 0) D
            unfolding inner_sum_left
```

using $\langle i \in D\rangle$ by (auto simp: inner_Basis subsetD[OF assms(2)] intro: sum.cong)
also have $\ldots=$ inverse $(2$ * real $($ card $D))$
using $\langle i \in D\rangle\langle$ finite $D\rangle$ by auto
finally have ? $a \cdot i=\operatorname{inverse}(2 * \operatorname{real}(\operatorname{card} D))$.
\}
note $* *=$ this
show ?thesis
proof
show ? a \in rel_interior (convex hull (insert 0 D))
unfolding rel_interior_substd_simplex[OF assms(2)]
proof safe
fix i
assume $i \in D$
have $0<$ inverse $(2 *$ real $($ card $D))$
using $d 1$ by auto
also have $\ldots=? a \cdot i$ using $* *[o f i]\langle i \in D\rangle$
by auto
finally show $0<? a \cdot i$ by auto
next
have $\operatorname{sum}((\cdot)$?a) $D=\operatorname{sum}(\lambda i$ inverse $(2 * \operatorname{real}(\operatorname{card} D))) D$
by (rule sum.cong) (rule refl, rule $* *$)
also have ... <1
unfolding sum_constant divide_real_def [symmetric]
by (auto simp add: field_simps)
finally show $\operatorname{sum}((\cdot)$?a) $D<1$ by auto
next
fix i
assume $i \in$ Basis and $i \notin D$
have ? $a \in \operatorname{span} D$
proof (rule span_sum $[$ of $D(\lambda b . b / R(2 *$ real $(\operatorname{card} D))) D])$
\{
fix x :: ' $a::$ euclidean_space
assume $x \in D$
then have $x \in \operatorname{span} D$
using span_base $\left[o f_{-} D\right]$ by auto
then have $x / R(2 *$ real $($ card $D)) \in \operatorname{span} D$
using span_mul $[$ of $x D($ inverse $($ real $(\operatorname{card} D)) / 2)]$ by auto
\}
then show $\bigwedge x . x \in D \Longrightarrow x / R(2 *$ real $($ card $D)) \in \operatorname{span} D$
by auto
qed
then show ? $a \cdot i=0$
using $\langle i \notin D$ unfolding span_substd_basis[OF assms(2)] using $\langle i \in$ Basis \rangle
by auto
qed
qed
qed

5.0.3 Relative interior of convex set

lemma rel_interior_convex_nonempty_aux:
fixes $S::$ ' $n::$ euclidean_space set
assumes convex S
and $0 \in S$
shows rel_interior $S \neq\{ \}$
proof (cases $S=\{0\}$)
case True
then show ?thesis using rel_interior_sing by auto
next
case False
obtain B where B : independent $B \wedge B \leq S \wedge S \leq \operatorname{span} B \wedge \operatorname{card} B=\operatorname{dim} S$ using basis_exists[of S] by metis
then have $B \neq\{ \}$
using B assms $\langle S \neq\{0\}\rangle$ span_empty by auto
have insert $0 B \leq \operatorname{span} B$
using subspace_span $[$ of $B]$ subspace_0[of span $B]$ span_superset by auto
then have span (insert $0 B) \leq \operatorname{span} B$ using span_span[of B] span_mono[of insert 0 B span B] by blast
then have convex hull insert $0 B \leq \operatorname{span} B$
using convex_hull_subset_span $[$ of insert 0 B] by auto
then have span (convex hull insert $0 B) \leq$ span B
using span_span[of B] span_mono[of convex hull insert 0 B span $B]$ by blast
then have $*$: span (convex hull insert $0 B$) $=$ span B
using span_mono[of B convex hull insert 0 B] hull_subset $[o f$ insert 0 B] by auto
then have span (convex hull insert $0 B$) $=$ span S
using B span_mono $[$ of $B S$] span_mono $[$ of S span $B]$ span_span $[$ of $B]$ by auto
moreover have $0 \in$ affine hull (convex hull insert 0 B)
using hull_subset[of convex hull insert 0 B] hull_subset $[$ of insert 0 B] by auto
ultimately have **: affine hull (convex hull insert 0 B) $=$ affine hull S
using affine_hull_span_O[of convex hull insert 0 B] affine_hull_span_0[of S] assms hull_subset[of S]
by auto
obtain d and $f::{ }^{\prime} n \Rightarrow{ }^{\prime} n$ where
fd: card $d=$ card B linear $f f$ ' $B=d$
$f '$ span $B=\{x . \forall i \in$ Basis. $i \notin d \longrightarrow x \cdot i=(0::$ real $)\} \wedge \operatorname{inj}$ _on $f($ span $B)$
and $d: d \subseteq$ Basis
using basis_to_substdbasis_subspace_isomorphism[of $\left.B, O F_{-}\right] B$ by auto
then have bounded_linear f
using linear_conv_bounded_linear by auto
have $d \neq\{ \}$
using fd $B\langle B \neq\{ \}\rangle$ by auto
have insert $0 d=f^{\prime}($ insert $0 B)$
using fd linear_0 by auto
then have (convex hull (insert 0 d)) $=f^{\prime}($ convex hull (insert 0 B) $)$
using convex_hull_linear_image[of f(insert $0 d$)]

```
        convex_hull_linear_image[of f (insert 0 B)] <linear f>
        by auto
    moreover have rel_interior ( f '(convex hull insert 0 B )) = f'rel_interior (convex
hull insert 0 B)
    proof (rule rel_interior_injective_on_span_linear_image[OF 〈bounded_linear f`])
    show inj_on f (span (convex hull insert 0 B))
        using fd * by auto
    qed
    ultimately have rel_interior (convex hull insert 0 B)}\not={
        using rel_interior_substd_simplex_nonempty[OF <d \not= {}> d] by fastforce
    moreover have convex hull (insert 0 B)\subseteqS
        using B assms hull_mono[of insert 0 B S convex] convex_hull_eq by auto
    ultimately show ?thesis
    using subset_rel_interior[of convex hull insert 0 B S] ** by auto
qed
lemma rel_interior_eq_empty:
    fixes S :: ' n::euclidean_space set
    assumes convex S
    shows rel_interior }S={}\longleftrightarrowS={
proof -
    {
        assume S\not={}
        then obtain a where a\inS by auto
        then have }0\in(+)(-a)'
            using assms exI[of ( }\lambdax.x\inS\wedge-a+x=0) a] by aut
        then have rel_interior ((+) (-a)`S) \not={}
            using rel_interior_convex_nonempty_aux[of (+) (-a)'S]
                convex_translation[of S-a] assms
            by auto
        then have rel_interior S}\not={
            using rel_interior_translation [of - a] by simp
    }
    then show ?thesis by auto
qed
lemma interior_simplex_nonempty:
    fixes S :: 'N :: euclidean_space set
    assumes independent S finite S card S = DIM('N)
    obtains a where a\in interior (convex hull (insert 0 S)
proof -
    have affine hull (insert 0 S) = UNIV
        by (simp add: hull_inc affine_hull_span_0 dim_eq_full[symmetric]
            assms(1) assms(3) dim_eq_card_independent)
    moreover have rel_interior (convex hull insert 0S)}\not={
        using rel_interior_eq_empty [of convex hull (insert 0 S)] by auto
    ultimately have interior (convex hull insert 0S)}\not={
        by (simp add: rel_interior_interior)
    with that show ?thesis
```

```
    by auto
qed
lemma convex_rel_interior:
    fixes S :: ' n::euclidean_space set
    assumes convex S
    shows convex (rel_interior S)
proof -
    {
        fix x y and u :: real
        assume assm: x \in rel_interior S y \in rel_interior S 0 \lequu\leq1
        then have }x\in
            using rel_interior_subset by auto
        have }x-u\mp@subsup{*}{R}{}(x-y)\in\mathrm{ rel_interior S
        proof (cases 0 =u)
            case False
            then have 0<u using assm by auto
            then show ?thesis
            using assm rel_interior_convex_shrink[of S y x u] assms <x \in S> by auto
        next
            case True
            then show ?thesis using assm by auto
        qed
        then have (1-u)*R}x+u\mp@subsup{*}{R}{}y\in\mathrm{ rel_interior S
            by (simp add: algebra_simps)
    }
    then show ?thesis
        unfolding convex_alt by auto
qed
lemma convex_closure_rel_interior:
    fixes S :: 'n::euclidean_space set
    assumes convex }
    shows closure (rel_interior S)= closure S
proof -
    have h1:closure (rel_interior S) \leq closure S
        using closure_mono[of rel_interior S S] rel_interior_subset[of S] by auto
    show ?thesis
    proof (cases S={})
        case False
        then obtain a where a: a\in rel_interior S
            using rel_interior_eq_empty assms by auto
        { fix }
            assume x: x \in closure S
            {
            assume x = a
            then have }x\in\mathrm{ closure (rel_interior S)
                    using a unfolding closure_def by auto
            }
```

```
        moreover
        {
            assume }x\not=
            {
                fix e :: real
            assume e>0
            define e1 where e1 = min 1 (e/norm (x-a))
            then have e1:e1>0 e1 \leq 1 e1* norm (x-a)\leqe
                using }\langlex\not=a\rangle\langlee>0\ranglele_divide_eq[of e1 e norm (x-a)
                by simp_all
            then have *: x - e1 *R (x-a)\in rel_interior S
                using rel_interior_closure_convex_shrink[of S a x e1] assms x a e1_def
                by auto
            have \existsy.y \in rel_interior S\wedge y f x ^ dist y x \leqe
                using * \langlex\not=a\rangle e1 by force
            }
            then have x islimpt rel_interior S
            unfolding islimpt_approachable_le by auto
            then have }x\in\mathrm{ closure(rel_interior S)
            unfolding closure_def by auto
        }
        ultimately have x\in closure(rel_interior S) by auto
    }
    then show ?thesis using h1 by auto
    qed auto
qed
lemma rel_interior_same_affine_hull:
    fixes S :: ' n::euclidean_space set
    assumes convex }
    shows affine hull (rel_interior S) = affine hull S
    by (metis assms closure_same_affine_hull convex_closure_rel_interior)
lemma rel_interior_aff_dim:
    fixes }S:: 'n::euclidean_space se
    assumes convex S
    shows aff_dim (rel_interior S) = aff_dim S
    by (metis aff_dim_affine_hull2 assms rel_interior_same_affine_hull)
lemma rel_interior_rel_interior:
    fixes S :: ' n::euclidean_space set
    assumes convex S
    shows rel_interior (rel_interior S) = rel_interior S
proof -
    have openin (top_of_set (affine hull (rel_interior S))) (rel_interior S)
    using openin_rel_interior[of S] rel_interior_same_affine_hull[of S] assms by auto
    then show ?thesis
        using rel_interior_def by auto
qed
```

```
lemma rel_interior_rel_open:
    fixes \(S::\) ' \(n::\) euclidean_space set
    assumes convex \(S\)
    shows rel_open (rel_interior \(S\) )
    unfolding rel_open_def using rel_interior_rel_interior assms by auto
lemma convex_rel_interior_closure_aux:
    fixes \(x\) y \(z::\) ' \(n::\) euclidean_space
    assumes \(0<a 0<b(a+b) *_{R} z=a *_{R} x+b *_{R} y\)
    obtains \(e\) where \(0<e e<1 z=y-e *_{R}(y-x)\)
proof -
    define \(e\) where \(e=a /(a+b)\)
    have \(z=(1 /(a+b)) *_{R}\left((a+b) *_{R} z\right)\)
        using assms by (simp add: eq_vector_fraction_iff)
    also have \(\ldots=(1 /(a+b)) *_{R}\left(a *_{R} x+b *_{R} y\right)\)
        using assms scaleR_cancel_left[of \(\left.1 /(a+b)(a+b) *_{R} z a *_{R} x+b *_{R} y\right]\)
        by auto
    also have \(\ldots=y-e *_{R}(y-x)\)
        using e_def assms
        by (simp add: divide_simps vector_fraction_eq_iff) (simp add: algebra_simps)
    finally have \(z=y-e *_{R}(y-x)\)
        by auto
    moreover have \(e>0 e<1\) using e_def assms by auto
    ultimately show ?thesis using that [of e] by auto
qed
lemma convex_rel_interior_closure:
    fixes \(S:: ' n::\) euclidean_space set
    assumes convex \(S\)
    shows rel_interior (closure \(S\) ) \(=\) rel_interior \(S\)
proof (cases \(S=\{ \}\) )
    case True
    then show ?thesis
        using assms rel_interior_eq_empty by auto
next
    case False
    have rel_interior (closure \(S\) ) \(\supseteq\) rel_interior \(S\)
        using subset_rel_interior [of S closure S] closure_same_affine_hull closure_subset
        by auto
    moreover
    \{
        fix \(z\)
        assume \(z: z \in\) rel_interior (closure \(S\) )
        obtain \(x\) where \(x: x \in\) rel_interior \(S\)
            using \(\langle S \neq\{ \}\rangle\) assms rel_interior_eq_empty by auto
        have \(z \in\) rel_interior \(S\)
        proof (cases \(x=z\) )
            case True
```

```
        then show ?thesis using x by auto
    next
    case False
    obtain e where e: e>0 cball ze\cap affine hull closure S closure S
        using z rel_interior_cball[of closure S] by auto
    hence *: 0 < e/norm (z-x) using e False by auto
    define y where y=z+(e/norm(z-x)) *R
    have yball:}y\in\mathrm{ cball ze
        using y_def dist_norm[of z y] e by auto
    have }x\in\mathrm{ affine hull closure S
        using x rel_interior_subset_closure hull_inc[of x closure S] by blast
    moreover have z\inaffine hull closure S
        using z rel_interior_subset hull_subset[of closure S] by blast
    ultimately have }y\in\mathrm{ affine hull closure S
        using y_def affine_affine_hull[of closure S]
            mem_affine_3_minus [of affine hull closure S z z x e/norm (z-x)] by auto
    then have }y\in\mathrm{ closure S using e yball by auto
    have}(1+(e/\operatorname{norm}(z-x)))*\mp@subsup{*}{R}{}z=(e/\operatorname{norm}(z-x))\mp@subsup{*}{R}{}x+
        using y_def by (simp add: algebra_simps)
    then obtain e1 where 0<e1 e1<1z=y-e1*R (y-x)
        using * convex_rel_interior_closure_aux[of e / norm (z-x) 1 z x y]
        by (auto simp add: algebra_simps)
    then show ?thesis
        using rel_interior_closure_convex_shrink assms x < y \in closure S`
        by fastforce
    qed
}
ultimately show ?thesis by auto
qed
lemma convex_interior_closure:
    fixes S :: ' n::euclidean_space set
    assumes convex }
    shows interior (closure S) = interior S
    using closure_aff_dim[of S] interior_rel_interior_gen[of S]
        interior_rel_interior_gen[of closure S]
        convex_rel_interior_closure[of S] assms
    by auto
lemma closure_eq_rel_interior_eq:
    fixes S1 S2 :: 'n::euclidean_space set
    assumes convex S1
        and convex S2
    shows closure S1 = closure S2 \longleftrightarrow rel_interior S1 = rel_interior S2
    by (metis convex_rel_interior_closure convex_closure_rel_interior assms)
lemma closure_eq_between:
    fixes S1 S2 :: 'n::euclidean_space set
    assumes convex S1
```

and convex S2
shows closure $S 1=$ closure $S 2 \longleftrightarrow$ rel_interior $S 1 \leq S 2 \wedge S 2 \subseteq$ closure $S 1$
(is ? $A \longleftrightarrow$? $B)$
proof
assume ? A
then show ? B
by (metis assms closure_subset convex_rel_interior_closure rel_interior_subset)
next
assume ? B
then have closure $S 1 \subseteq$ closure S2
by (metis assms(1) convex_closure_rel_interior closure_mono)
moreover from 〈?B〉 have closure $S 1 \supseteq$ closure $S 2$
by (metis closed_closure closure_minimal)
ultimately show ? A ..
qed
lemma open_inter_closure_rel_interior:
fixes $S A$:: ' $n::$ euclidean_space set
assumes convex S
and open A
shows $A \cap$ closure $S=\{ \} \longleftrightarrow A \cap$ rel_interior $S=\{ \}$
by (metis assms convex_closure_rel_interior open_Int_closure_eq_empty)
lemma rel_interior_open_segment:
fixes a :: ' a :: euclidean_space
shows rel_interior(open_segment $a b$) $=$ open_segment $a b$
proof (cases $a=b$)
case True then show ?thesis by auto
next
case False then
have open_segment $a b=$ affine hull $\{a, b\} \cap$ ball $((a+b) / R$ 2) (norm ($b-$
a) / 2)
by (simp add: open_segment_as_ball)
then show ?thesis
unfolding rel_interior_eq openin_open
by (metis Elementary_Metric_Spaces.open_ball False affine_hull_open_segment)
qed
lemma rel_interior_closed_segment:
fixes $a::$ ' a :: euclidean_space
shows rel_interior $($ closed_segment $a b)=$
(if $a=b$ then $\{a\}$ else open_segment $a b$)
proof (cases $a=b$)
case True then show ?thesis by auto
next
case False then show?thesis
by simp
(metis closure_open_segment convex_open_segment convex_rel_interior_closure
rel_interior_open_segment)
qed
lemmas rel_interior_segment $=$ rel_interior_closed_segment rel_interior_open_segment

5.0.4 The relative frontier of a set

definition rel_frontier $S=$ closure S - rel_interior S
lemma rel_frontier_empty [simp]: rel_frontier $\}=\{ \}$
by (simp add: rel_frontier_def)
lemma rel_frontier_eq_empty:
fixes S :: ' $n::$ euclidean_space set
shows rel_frontier $S=\{ \} \longleftrightarrow$ affine S
unfolding rel_frontier_def
using rel_interior_subset_closure by (auto simp add: rel_interior_eq_closure [symmetric])
lemma rel_frontier_sing [simp]:
fixes a :: ' n ::euclidean_space
shows rel_frontier $\{a\}=\{ \}$
by (simp add: rel_frontier_def)
lemma rel_frontier_affine_hull:
fixes S :: 'a::euclidean_space set
shows rel_frontier $S \subseteq$ affine hull S
using closure_affine_hull rel_frontier_def by fastforce
lemma rel_frontier_cball [simp]:
fixes a :: ' n ::euclidean_space shows rel_frontier (cball a r) $=($ if $r=0$ then $\{ \}$ else sphere a $r)$
proof (cases rule: linorder_cases [of r 0])
case less then show ?thesis by (force simp: sphere_def)
next
case equal then show ?thesis by simp
next
case greater then show ?thesis by simp (metis centre_in_ball empty_iff frontier_cball frontier_def interior_cball
interior_rel_interior_gen rel_frontier_def)
qed
lemma rel_frontier_translation:
fixes a :: ' $a:$::euclidean_space
shows rel_frontier $((\lambda x . a+x) ' S)=(\lambda x . a+x)$ '(rel_frontier $S)$
by (simp add: rel_frontier_def translation_diff rel_interior_translation closure_translation)
lemma rel_frontier_nonempty_interior:
fixes $S::$ ' $n::$ euclidean_space set
shows interior $S \neq\{ \} \Longrightarrow$ rel_frontier $S=$ frontier S
by (metis frontier_def interior_rel_interior_gen rel_frontier_def)

```
lemma rel_frontier_frontier:
    fixes S :: ' n::euclidean_space set
    shows affine hull S=UNIV \Longrightarrow rel_frontier S= frontier S
    by (simp add: frontier_def rel_frontier_def rel_interior_interior)
```

lemma closest_point_in_rel_frontier:
\llbracket closed $S ; S \neq\{ \} ; x \in$ affine hull $S-$ rel_interior $S \rrbracket$
\Longrightarrow closest_point $S x \in$ rel_frontier S
by (simp add: closest_point_in_rel_interior closest_point_in_set rel_frontier_def)
lemma closed_rel_frontier [iff]:
fixes $S::$ ' $n::$ euclidean_space set
shows closed (rel_frontier S)
proof -
have *: closedin (top_of_set (affine hull S)) (closure S - rel_interior S)
by (simp add: closed_subset closedin_diff closure_affine_hull openin_rel_interior)
show ?thesis
proof (rule closedin_closed_trans[of affine hull S rel_frontier $S]$)
show closedin (top_of_set (affine hull S)) (rel_frontier S)
by (simp add: * rel_frontier_def)
qed simp
qed
lemma closed_rel_boundary:
fixes S :: ' $n::$ euclidean_space set
shows closed $S \Longrightarrow \operatorname{closed}(S-$ rel_interior $S)$
by (metis closed_rel_frontier closure_closed rel_frontier_def)
lemma compact_rel_boundary:
fixes S :: ' $n::$ euclidean_space set
shows compact $S \Longrightarrow$ compact $(S-$ rel_interior S)
by (metis bounded_diff closed_rel_boundary closure_eq compact_closure compact_imp_closed)
lemma bounded_rel_frontier:
fixes $S::$ ' $n::$ euclidean_space set
shows bounded $S \Longrightarrow$ bounded (rel_frontier S)
by (simp add: bounded_closure bounded_diff rel_frontier_def)
lemma compact_rel_frontier_bounded:
fixes $S::{ }^{\prime} n::$ euclidean_space set
shows bounded $S \Longrightarrow$ compact(rel_frontier S)
using bounded_rel_frontier closed_rel_frontier compact_eq_bounded_closed by blast
lemma compact_rel_frontier:
fixes S :: ' $n::$ euclidean_space set
shows compact $S \Longrightarrow$ compact(rel_frontier S)
by (meson compact_eq_bounded_closed compact_rel_frontier_bounded)

```
lemma convex_same_rel_interior_closure:
    fixes \(S::{ }^{\prime} n::\) euclidean_space set
    shows \(\llbracket\) convex \(S\); convex \(T \rrbracket\)
    \(\Longrightarrow\) rel_interior \(S=\) rel_interior \(T \longleftrightarrow\) closure \(S=\) closure \(T\)
by (simp add: closure_eq_rel_interior_eq)
lemma convex_same_rel_interior_closure_straddle:
    fixes \(S::\) ' \(n::\) euclidean_space set
    shows \(\llbracket\) convex \(S\); convex \(T \rrbracket\)
            \(\Longrightarrow\) rel_interior \(S=\) rel_interior \(T \longleftrightarrow\)
                rel_interior \(S \subseteq T \wedge T \subseteq\) closure \(S\)
by (simp add: closure_eq_between convex_same_rel_interior_closure)
lemma convex_rel_frontier_aff_dim:
    fixes S1 S2 :: 'n::euclidean_space set
    assumes convex S1
        and convex \(S 2\)
        and \(S 2 \neq\{ \}\)
        and \(S 1 \leq\) rel_frontier S2
    shows aff_dim S1 < aff_dim S2
proof -
    have \(S 1 \subseteq\) closure \(S 2\)
        using assms unfolding rel_frontier_def by auto
    then have \(*\) : affine hull \(S 1 \subseteq\) affine hull S2
        using hull_mono[of S1 closure S2] closure_same_affine_hull[of S2] by blast
    then have aff_dim S1 \(\leq\) aff_dim S2
        using * aff_dim_affine_hull[of S1] aff_dim_affine_hull[of S2]
            aff_dim_subset[of affine hull S1 affine hull S2]
        by auto
    moreover
    \{
        assume eq: aff_dim S1 = aff_dim S2
        then have \(S 1 \neq\{ \}\)
            using aff_dim_empty[of S1] aff_dim_empty[of S2] 〈S2 \(\neq\{ \}\rangle\) by auto
    have \(* *\) : affine hull \(S 1=\) affine hull S2
        by (simp_all add: * eq 〈S1 \(\neq\{ \}\) 〉affine_dim_equal)
    obtain \(a\) where \(a: a \in\) rel_interior S1
            using \(\langle S 1 \neq\{ \}\) 〉 rel_interior_eq_empty assms by auto
    obtain \(T\) where \(T\) : open \(T a \in T \cap S 1 T \cap\) affine hull \(S 1 \subseteq S 1\)
            using mem_rel_interior[of a S1] a by auto
    then have \(a \in T \cap\) closure \(S 2\)
            using a assms unfolding rel_frontier_def by auto
    then obtain \(b\) where \(b: b \in T \cap\) rel_interior S2
            using open_inter_closure_rel_interior [of S2 T] assms \(T\) by auto
    then have \(b \in\) affine hull S1
            using rel_interior_subset hull_subset[of S2] ** by auto
    then have \(b \in S 1\)
            using \(T b\) by auto
```

```
        then have False
        using b assms unfolding rel_frontier_def by auto
    }
    ultimately show ?thesis
    using less_le by auto
qed
lemma convex_rel_interior_if:
    fixes S :: ' }n\mathrm{ ::euclidean_space set
    assumes convex S
        and z\in rel_interior S
    shows \forallx\inaffine hull S. \existsm. m>1^(\foralle.e>1^e\leqm\longrightarrow(1-e)**}\mp@subsup{*}{R}{}
+e *R}z\inS
proof -
    obtain e1 where e1: e1>0 ^ cball z e1 \cap affine hull S\subseteqS
    using mem_rel_interior_cball[of z S] assms by auto
    {
    fix }
    assume x: x G affine hull S
    {
        assume }x\not=
        define m}\mathrm{ where m=1+e1/norm(x-z)
        hence m>1 using e1 \langlex \not=z\rangle by auto
        {
            fix }
            assume e:e>1^e\leqm
            have z\in affine hull S
                using assms rel_interior_subset hull_subset[of S] by auto
            then have *: (1-e)*R}x+e\mp@subsup{*}{R}{}z\in\mathrm{ affine hull }
                using mem_affine[of affine hull S x z (1-e) e] affine_affine_hull[of S] x
                by auto
            have norm (z+e** x - (x+e *R z)) = norm ((e-1)** (x-z))
                by (simp add: algebra_simps)
            also have \ldots. = (e-1)* norm (x-z)
                using norm_scaleR e by auto
            also have ... \leq (m-1)* norm (x-z)
                using e mult_right_mono[of _ _ norm(x-z)] by auto
            also have ... = (e1/norm (x-z))* norm (x-z)
                using m_def by auto
            also have ... = e1
                using \langlex\not=z\rangle e1 by simp
            finally have **: norm (z+e * R}x-(x+e*\mp@subsup{*}{R}{}z))\leqe
                by auto
            have (1-e)*R}x+e\mp@subsup{*}{R}{}z\in\mathrm{ cball z e1
                    using m_def **
                    unfolding cball_def dist_norm
                    by (auto simp add: algebra_simps)
            then have (1-e)**}x+e\mp@subsup{*}{R}{}z\in
                    using e*e1 by auto
```

```
    }
    then have \existsm.m>1^(\foralle.e>1\wedgee\leqm\longrightarrow(1-e) *R}x+e\mp@subsup{*}{R}{}
GS )
    using \langlem> 1 > by auto
    }
    moreover
    {
        assume x = z
        define m}\mathrm{ where m=1+e1
        then have m>1
            using e1 by auto
        {
            fix e
            assume e: e>1^e\leqm
            then have (1-e)**R}x+e\mp@subsup{*}{R}{}z\in
            using e1 x <x =z> by (auto simp add: algebra_simps)
            then have (1-e)*R}x+e\mp@subsup{*}{R}{}z\in
            using e by auto
        }
        then have }\existsm.m>1\wedge(\foralle.e>1\wedgee\leqm\longrightarrow(1-e)\mp@subsup{*}{R}{}x+e\mp@subsup{*}{R}{}
\inS)
    using <m > 1` by auto
    }
    ultimately have }\existsm.m>1\wedge(\foralle.e>1\wedgee\leqm\longrightarrow(1-e)\mp@subsup{*}{R}{}x+
*R}z\inS\mathrm{ )
        by blast
    }
    then show ?thesis by auto
qed
lemma convex_rel_interior_if2:
    fixes S :: ' n::euclidean_space set
    assumes convex }
    assumes z \in rel_interior S
    shows }\forallx\inaffine hull S. \existse.e>1^(1-e)\mp@subsup{*}{R}{}x+e\mp@subsup{*}{R}{}z\in
    using convex_rel_interior_if[of S z] assms by auto
lemma convex_rel_interior_only_if:
    fixes }S\mathrm{ :: ' }n::euclidean_space se
    assumes convex }
        and}S\not={
    assumes }\forallx\inS.\existse.e>1\wedge(1-e)\mp@subsup{*}{R}{}x+e\mp@subsup{*}{R}{}z\in
    shows z \in rel_interior S
proof -
    obtain }x\mathrm{ where }x\mathrm{ : x f rel_interior S
        using rel_interior_eq_empty assms by auto
    then have }x\in
        using rel_interior_subset by auto
    then obtain e where e: e>1^(1-e)*R}x+e\mp@subsup{*}{R}{}z\in
```


using assms by auto

define y where [abs_def]: $y=(1-e) *_{R} x+e *_{R} z$
then have $y \in S$ using e by auto
define e1 where e1 $=1 / e$
then have $0<e 1 \wedge e 1<1$ using e by auto
then have $z=y-(1-e 1) *_{R}(y-x)$
using e1_def y_{-}def by (auto simp add: algebra_simps)
then show?thesis
using rel_interior_convex_shrink[of S x y 1-e1] $\langle 0<e 1 \wedge e 1<1\rangle\langle y \in S\rangle x$
assms
by auto
qed
lemma convex_rel_interior_iff:
fixes $S::$ ' $n::$ euclidean_space set
assumes convex S
and $S \neq\{ \}$
shows $z \in$ rel_interior $S \longleftrightarrow\left(\forall x \in S . \exists e . e>1 \wedge(1-e) *_{R} x+e *_{R} z \in S\right)$
using assms hull_subset[of S affine]
convex_rel_interior_if $[$ of $S z]$ convex_rel_interior_only_if $[$ of $S z]$
by auto
lemma convex_rel_interior_iff2:
fixes $S:$: ' $n::$ euclidean_space set
assumes convex S
and $S \neq\{ \}$
shows $z \in$ rel_interior $S \longleftrightarrow\left(\forall x \in\right.$ affine hull $S . \exists e . e>1 \wedge(1-e) *_{R} x+$
$e *_{R} z \in S$)
using assms hull_subset[of S] convex_rel_interior_if2 $[o f ~ S z]$ convex_rel_interior_only_if $[o f$ $S z]$
by auto
lemma convex_interior_iff:
fixes $S::{ }^{\prime} n::$ euclidean_space set
assumes convex S
shows $z \in$ interior $S \longleftrightarrow\left(\forall x . \exists e . e>0 \wedge z+e *_{R} x \in S\right)$
proof (cases aff_dim $S=\operatorname{int} \operatorname{DIM}(' n))$
case False
\{ assume $z \in$ interior S
then have False
using False interior_rel_interior_gen $[$ of $S]$ by auto $\}$
moreover
\{ assume $r: \forall x . \exists e . e>0 \wedge z+e *_{R} x \in S$
\{ fix x
obtain e1 where e1: e1>0^z+e1* $*_{R}(x-z) \in S$
using r by auto
obtain $e 2$ where $e 2: e 2>0 \wedge z+e 2 *_{R}(z-x) \in S$
using r by auto
define $x 1$ where [abs_def]: $x 1=z+e 1 *_{R}(x-z)$

```
    then have x1: x1 \in affine hull S
    using e1 hull_subset[of S] by auto
    define x2 where [abs_def]: x2 = z+e2 *R (z-x)
    then have x2: x2 \in affine hull S
        using e2 hull_subset[of S] by auto
    have *: e1/(e1+e2) +e2/(e1+e2) = 1
        using add_divide_distrib[of e1 e2 e1+e2] e1 e2 by simp
    then have z =(e2/(e1+e2)) *R x1 + (e1/(e1+e2)) ** x2
        by (simp add: x1_def x2_def algebra_simps) (simp add: * pth_8)
    then have z:z\in affine hull S
        using mem_affine[of affine hull S x1 x2 e2 /(e1+e2) e1/(e1+e2)]
            x1 x2 affine_affine_hull[of S] *
        by auto
    have x1-x2 = (e1 +e2) ** (x-z)
        using x1_def x2_def by (auto simp add: algebra_simps)
    then have }x=z+(1/(e1+e2)) *R (x1-x2
        using e1 e2 by simp
    then have }x\in\mathrm{ affine hull S
        using mem_affine_3_minus[of affine hull S z x1 x2 1/(e1+e2)]
        x1 x2 z affine_affine_hull[of S]
        by auto
    }
    then have affine hull S = UNIV
        by auto
    then have aff_dim S = int DIM('n)
        using aff_dim_affine_hull[of S] by (simp)
    then have False
        using False by auto
    }
    ultimately show ?thesis by auto
next
    case True
    then have S}\not={
        using aff_dim_empty[of S] by auto
    have *: affine hull S = UNIV
        using True affine_hull_UNIV by auto
    {
    assume z \in interior S
    then have z\in rel_interior S
        using True interior_rel_interior_gen[of S] by auto
    then have **: }\forallx.\existse.e>1\wedge(1-e)\mp@subsup{*}{R}{}x+e\mp@subsup{*}{R}{}z\in
        using convex_rel_interior_iff2[of S z] assms 〈S ={{}`* by auto
    fix }
    obtain e1 where e1:e1>1(1-e1)*R}(z-x)+e1\mp@subsup{*}{R}{}z\in
        using **[rule_format, of z-x] by auto
    define e where [abs_def]: e=e1-1
    then have (1-e1)*R}(z-x)+e1\mp@subsup{*}{R}{}z=z+e\mp@subsup{*}{R}{}
            by (simp add: algebra_simps)
    then have e>0z+e**}x\in
```

```
        using e1 e_def by auto
    then have \existse.e>0\wedgez+e **R}x\in
        by auto
    }
    moreover
    {
        assume r:}\forallx.\existse.e>0\wedgez+e*\mp@subsup{*}{R}{}x\in
        {
        fix }
        obtain e1 where e1: e1>0z+e1 * * (z-x)\inS
            using r[rule_format, of z-x] by auto
        define e where e=e1+1
        then have z+e1**R(z-x)=(1-e)**
            by (simp add: algebra_simps)
        then have e>1(1-e)*R}x+e\mp@subsup{*}{R}{}z\in
            using e1 e_def by auto
        then have \existse.e>1^(1-e)**}x+e\mp@subsup{*}{R}{}z\inS\mathrm{ by auto
    }
    then have z \in rel_interior S
        using convex_rel_interior_iff2[of Sz] assms \S \not={}> by auto
    then have z\in interior S
        using True interior_rel_interior_gen[of S] by auto
    }
    ultimately show ?thesis by auto
qed
```


Relative interior and closure under common operations

```
lemma rel_interior_inter_aux:\bigcap{rel_interior S |S.S \inI}\subseteq\bigcapI
proof -
    {
        fix y
        assume y }\in\bigcap{\mathrm{ {rel_interior S |S.S 价
        then have y:\forallS\inI.y\in rel_interior S
            by auto
        {
            fix }
            assume S\inI
            then have }y\in
            using rel_interior_subset y by auto
        }
        then have }y\in\bigcapI\mathrm{ by auto
    }
    then show ?thesis by auto
qed
lemma convex_closure_rel_interior_inter:
    assumes }\forallS\inI\mathrm{ . convex ( }S:: 'n::euclidean_space set
        and \bigcap{rel_interior }S|S.S\inI}\not={
```

```
    shows \(\bigcap\{\) closure \(S \mid S . S \in I\} \leq\) closure \((\bigcap\{\) rel_interior \(S \mid S . S \in I\})\)
proof -
    obtain \(x\) where \(x: \forall S \in I . x \in\) rel_interior \(S\)
        using assms by auto
    \{
        fix \(y\)
        assume \(y \in \bigcap\{\) closure \(S \mid S . S \in I\}\)
        then have \(y: \forall S \in I . y \in\) closure \(S\)
        by auto
        \{
            assume \(y=x\)
            then have \(y \in\) closure \((\bigcap\{\) rel_interior \(S \mid S . S \in I\})\)
            using \(x\) closure_subset \([\) of \(\bigcap\{\) rel_interior \(S \mid S . S \in I\}]\) by auto
        \}
        moreover
        \{
            assume \(y \neq x\)
            \{ fix \(e\) :: real
            assume \(e: e>0\)
            define \(e 1\) where \(e 1=\min 1(e / \operatorname{norm}(y-x))\)
            then have e1: e1>0e1
                    using \(\langle y \neq x\rangle\langle e>0\rangle\) le_divide_eq[of e1 e norm \((y-x)\) ]
                    by simp_all
            define \(z\) where \(z=y-e 1 *_{R}(y-x)\)
            \{
                fix \(S\)
                assume \(S \in I\)
                    then have \(z \in\) rel_interior \(S\)
                        using rel_interior_closure_convex_shrink[of S x y e1] assms x y e1 z_def
                by auto
            \}
            then have \(*: z \in \bigcap\{\) rel_interior \(S \mid S . S \in I\}\)
                by auto
            have \(\exists z . z \in \bigcap\{\) rel_interior \(S \mid S . S \in I\} \wedge z \neq y \wedge\) dist \(z y \leq e\)
                using \(\langle y \neq x\rangle z_{-} d e f * e 1\) e dist_norm[of \(\left.z y\right]\)
                by (rule_tac \(x=z\) in exI) auto
        \}
        then have \(y\) islimpt \(\bigcap\{\) rel_interior \(S \mid S . S \in I\}\)
            unfolding islimpt_approachable_le by blast
        then have \(y \in\) closure \((\bigcap\{\) rel_interior \(S \mid S . S \in I\})\)
            unfolding closure_def by auto
    \}
    ultimately have \(y \in\) closure \((\bigcap\{\) rel_interior \(S \mid S . S \in I\})\)
        by auto
    \}
    then show ?thesis by auto
qed
lemma convex_closure_inter:
```

```
    assumes \(\forall S \in I\). convex ( \(S::{ }^{\prime} n::\) euclidean_space set)
    and \(\bigcap\{\) rel_interior \(S \mid S . S \in I\} \neq\{ \}\)
    shows closure \((\bigcap I)=\bigcap\{\) closure \(S \mid S . S \in I\}\)
proof -
    have \(\bigcap\{\) closure \(S \mid S . S \in I\} \leq\) closure \((\bigcap\{\) rel_interior \(S \mid S . S \in I\})\)
        using convex_closure_rel_interior_inter assms by auto
    moreover
    have closure \((\bigcap\{\) rel_interior \(S \mid S . S \in I\}) \leq\) closure \((\bigcap I)\)
        using rel_interior_inter_aux closure_mono \([\) of \(\bigcap\{\) rel_interior \(S \mid S . S \in I\} \bigcap I]\)
        by auto
    ultimately show ?thesis
        using closure_Int [of I] by auto
qed
lemma convex_inter_rel_interior_same_closure:
    assumes \(\forall S \in I\). convex ( \(S::\) ' \(n::\) euclidean_space set)
        and \(\bigcap\{\) rel_interior \(S \mid S . S \in I\} \neq\{ \}\)
    shows closure \((\bigcap\{\) rel_interior \(S \mid S . S \in I\})=\operatorname{closure}(\bigcap I)\)
proof -
    have \(\bigcap\{\) closure \(S \mid S . S \in I\} \leq\) closure \((\bigcap\{\) rel_interior \(S \mid S . S \in I\})\)
        using convex_closure_rel_interior_inter assms by auto
    moreover
    have closure \((\bigcap\{\) rel_interior \(S \mid S . S \in I\}) \leq\) closure \((\bigcap I)\)
        using rel_interior_inter_aux closure_mono \([\) of \(\bigcap\{\) rel_interior \(S \mid S . S \in I\} \bigcap I]\)
        by auto
    ultimately show ?thesis
        using closure_Int[of I] by auto
qed
lemma convex_rel_interior_inter:
    assumes \(\forall S \in I\). convex ( \(S::\) ' \(n::\) euclidean_space set)
        and \(\bigcap\{\) rel_interior \(S \mid S . S \in I\} \neq\{ \}\)
    shows rel_interior \((\bigcap I) \subseteq \bigcap\{\) rel_interior \(S \mid S . S \in I\}\)
proof -
    have convex \((\bigcap I)\)
        using assms convex_Inter by auto
    moreover
    have convex \((\bigcap\{\) rel_interior \(S \mid S . S \in I\})\)
        using assms convex_rel_interior by (force intro: convex_Inter)
    ultimately
    have rel_interior \((\bigcap\{\) rel_interior \(S \mid S . S \in I\})=\) rel_interior \((\bigcap I)\)
        using convex_inter_rel_interior_same_closure assms
            closure_eq_rel_interior_eq[of \(\left.\bigcap\left\{r e l \_i n t e r i o r ~ S \mid S . S \in I\right\} \bigcap I\right]\)
        by blast
    then show ?thesis
        using rel_interior_subset \([\) of \(\bigcap\{\) rel_interior \(S \mid S . S \in I\}]\) by auto
qed
lemma convex_rel_interior_finite_inter:
```

```
    assumes \(\forall S \in I\). convex ( \(S::\) ' \(n::\) euclidean_space set)
    and \(\bigcap\{\) rel_interior \(S \mid S . S \in I\} \neq\{ \}\)
    and finite \(I\)
    shows rel_interior \((\bigcap I)=\bigcap\{\) rel_interior \(S \mid S . S \in I\}\)
proof -
    have \(\bigcap I \neq\{ \}\)
        using assms rel_interior_inter_aux [of I] by auto
    have convex \((\bigcap I)\)
        using convex_Inter assms by auto
    show ?thesis
    proof (cases \(I=\{ \}\) )
        case True
        then show ?thesis
            using Inter_empty rel_interior_UNIV by auto
    next
        case False
        \{
            fix \(z\)
            assume \(z: z \in \bigcap\{\) rel_interior \(S \mid S . S \in I\}\)
            \{
            fix \(x\)
            assume \(x: x \in \bigcap I\)
            \{
                fix \(S\)
                assume \(S: S \in I\)
                        then have \(z \in\) rel_interior \(S x \in S\)
                        using \(z x\) by auto
                then have \(\exists m . m>1 \wedge\left(\forall e . e>1 \wedge e \leq m \longrightarrow(1-e) *_{R} x+e *_{R}\right.\)
\(z \in S)\)
                    using convex_rel_interior_if[of \(S\) z] \(S\) assms hull_subset \([o f ~ S]\) by auto
            \}
            then obtain \(m S\) where
                    \(m S: \forall S \in I . m S S>1 \wedge\left(\forall e . e>1 \wedge e \leq m S S \longrightarrow(1-e) *_{R} x+e\right.\)
\(\left.*_{R} z \in S\right)\) by metis
            define \(e\) where \(e=\operatorname{Min}\left(m S{ }^{\prime} I\right)\)
            then have \(e \in m S^{\prime} I\) using assms \(\langle I \neq\{ \}\rangle\) by simp
            then have \(e>1\) using \(m S\) by auto
            moreover have \(\forall S \in I . e \leq m S S\)
                using e_def assms by auto
            ultimately have \(\exists e>1 .(1-e) *_{R} x+e *_{R} z \in \bigcap I\)
                using \(m S\) by auto
            \}
            then have \(z \in\) rel_interior \((\bigcap I)\)
            using convex_rel_interior_iff \([\) of \(\bigcap I z]\langle\bigcap I \neq\{ \}\rangle\langle\operatorname{convex}(\bigcap I)\rangle\) by auto
    \}
    then show ?thesis
            using convex_rel_interior_inter[of I] assms by auto
    qed
qed
```

lemma convex_closure_inter_two:
fixes $S T$:: ' $n::$ euclidean_space set
assumes convex S
and convex T
assumes rel_interior $S \cap$ rel_interior $T \neq\{ \}$
shows closure $(S \cap T)=$ closure $S \cap$ closure T
using convex_closure_inter $[o f\{S, T\}]$ assms by auto
lemma convex_rel_interior_inter_two:
fixes $S T$:: ' $n::$ euclidean_space set
assumes convex S
and convex T
and rel_interior $S \cap$ rel_interior $T \neq\{ \}$
shows rel_interior $(S \cap T)=$ rel_interior $S \cap$ rel_interior T
using convex_rel_interior_finite_inter $[o f ~\{S, T\}]$ assms by auto
lemma convex_affine_closure_Int:
fixes $S T$:: ' $n::$ euclidean_space set
assumes convex S
and affine T
and rel_interior $S \cap T \neq\{ \}$
shows closure $(S \cap T)=$ closure $S \cap T$
proof -
have affine hull $T=T$
using assms by auto
then have rel_interior $T=T$
using rel_interior_affine_hull[of T] by metis
moreover have closure $T=T$
using assms affine_closed $[$ of $T]$ by auto
ultimately show ?thesis
using convex_closure_inter_two[of S T] assms affine_imp_convex by auto
qed
lemma connected_component_1_gen:
fixes S :: ' a :: euclidean_space set
assumes $\operatorname{DIM}\left({ }^{\prime} a\right)=1$
shows connected_component S a $b \longleftrightarrow$ closed_segment $a b \subseteq S$
unfolding connected_component_def
by (metis (no_types, lifting) assms subsetD subsetI convex_contains_segment con-
vex_segment (1)
ends_in_segment connected_convex_1_gen)
lemma connected_component_1:
fixes S :: real set
shows connected_component S a $b \longleftrightarrow$ closed_segment $a b \subseteq S$
by (simp add: connected_component_1_gen)
lemma convex_affine_rel_interior_Int:

```
fixes \(S T\) :: ' \(n::\) euclidean_space set
assumes convex \(S\)
    and affine \(T\)
    and rel_interior \(S \cap T \neq\{ \}\)
    shows rel_interior \((S \cap T)=\) rel_interior \(S \cap T\)
proof -
    have affine hull \(T=T\)
        using assms by auto
    then have rel_interior \(T=T\)
        using rel_interior_affine_hull[of T] by metis
    moreover have closure \(T=T\)
        using assms affine_closed \([\) of \(T]\) by auto
    ultimately show ?thesis
        using convex_rel_interior_inter_two[of S T] assms affine_imp_convex by auto
qed
lemma convex_affine_rel_frontier_Int:
    fixes \(S T::{ }^{\prime} n::\) euclidean_space set
    assumes convex \(S\)
        and affine \(T\)
        and interior \(S \cap T \neq\{ \}\)
    shows rel_frontier \((S \cap T)=\) frontier \(S \cap T\)
using assms
    unfolding rel_frontier_def frontier_def
    using convex_affine_closure_Int convex_affine_rel_interior_Int rel_interior_nonempty_interior
by fastforce
lemma rel_interior_convex_Int_affine:
    fixes \(S\) :: 'a::euclidean_space set
    assumes convex \(S\) affine \(T\) interior \(S \cap T \neq\{ \}\)
        shows rel_interior \((S \cap T)=\) interior \(S \cap T\)
proof -
    obtain \(a\) where \(a S: a \in\) interior \(S\) and \(a T: a \in T\)
        using assms by force
    have rel_interior \(S=\) interior \(S\)
    by (metis (no_types) aS affine_hull_nonempty_interior equals0D rel_interior_interior)
    then show ?thesis
    by (metis (no_types) affine_imp_convex assms convex_rel_interior_inter_two hull_same
rel_interior_affine_hull)
qed
lemma closure_convex_Int_affine:
    fixes \(S\) :: 'a::euclidean_space set
    assumes convex \(S\) affine \(T\) rel_interior \(S \cap T \neq\{ \}\)
    shows closure \((S \cap T)=\) closure \(S \cap T\)
proof
    have closure \((S \cap T) \subseteq\) closure \(T\)
        by (simp add: closure_mono)
    also have \(\ldots \subseteq T\)
```

by (simp add: affine_closed assms)
finally show closure $(S \cap T) \subseteq$ closure $S \cap T$
by (simp add: closure_mono)
next
obtain a where $a \in$ rel_interior $S a \in T$
using assms by auto
then have ssT: subspace $((\lambda x .(-a)+x) ' T)$ and $a \in S$
using affine_diffs_subspace rel_interior_subset assms by blast+
show closure $S \cap T \subseteq$ closure $(S \cap T)$
proof
fix x assume $x \in$ closure $S \cap T$
show $x \in$ closure $(S \cap T)$
proof (cases $x=a$)
case True
then show ?thesis
using $\langle a \in S\rangle\langle a \in T\rangle$ closure_subset by fastforce

next

case False
then have $x \in$ closure(open_segment a x)
by auto
then show ?thesis
using $\langle x \in$ closure $S \cap T\rangle$ assms convex_affine_closure_Int by blast
qed
qed
qed
lemma subset_rel_interior_convex:
fixes $S T$:: ' $n::$ euclidean_space set
assumes convex S
and convex T
and $S \leq$ closure T
and $\neg S \subseteq$ rel_frontier T
shows rel_interior $S \subseteq$ rel_interior T
proof -
have $*: S \cap$ closure $T=S$
using assms by auto
have \neg rel_interior $S \subseteq$ rel_frontier T
using closure_mono[of rel_interior S rel_frontier T] closed_rel_frontier $[$ of T] closure_closed $[$ of S] convex_closure_rel_interior $[$ of $S]$ closure_subset $[$ of S] assms
by auto
then have rel_interior $S \cap$ rel_interior (closure $T) \neq\{ \}$
using assms rel_frontier_def [of T] rel_interior_subset convex_rel_interior_closure[of
$T]$
by auto
then have rel_interior $S \cap$ rel_interior $T=$ rel_interior $(S \cap$ closure $T)$
using assms convex_closure convex_rel_interior_inter_two $[$ of S closure $T]$ convex_rel_interior_closure[of T]
by auto
also have ... = rel_interior S

```
    using * by auto
    finally show ?thesis
    by auto
qed
lemma rel_interior_convex_linear_image:
    fixes \(f\) :: 'm::euclidean_space \(\Rightarrow\) ' \(n::\) euclidean_space
    assumes linear \(f\)
        and convex \(S\)
    shows \(f\) ' (rel_interior \(S)=\) rel_interior \((f\) ' \(S\) )
proof (cases \(S=\{ \}\) )
    case True
    then show ?thesis
        using assms by auto
next
    case False
    interpret linear \(f\) by fact
    have \(*: f\) ' (rel_interior \(S) \subseteq f\) ' \(S\)
        unfolding image_mono using rel_interior_subset by auto
    have \(f\) ' \(S \subseteq f^{\text {' }}\) (closure \(S\) )
        unfolding image_mono using closure_subset by auto
    also have \(\ldots=f\) ' \((\) closure (rel_interior \(S)\) )
        using convex_closure_rel_interior assms by auto
    also have \(\ldots \subseteq\) closure \((f\) ' (rel_interior \(S)\) )
        using closure_linear_image_subset assms by auto
    finally have closure \((f\) ' \(S\) ) \(=\) closure ( \(f\) 'rel_interior \(S\) )
        using closure_mono[of \(f\) ' \(S\) closure ( \(f\) 'rel_interior \(S\) )] closure_closure
        closure_mono[off'rel_interior \(S\) f'S] *
        by auto
    then have rel_interior \((f\) ' \(S)=\) rel_interior ( \(f\) ' rel_interior \(S\) )
        using assms convex_rel_interior
            linear_conv_bounded_linear \([\) of f \(]\) convex_linear_image \([o f\) - \(S]\)
            convex_linear_image[of - rel_interior S]
            closure_eq_rel_interior_eq[of f'S f'rel_interior \(S\) ]
        by auto
    then have rel_interior \((f\) ' \(S) \subseteq f^{\prime}\) rel_interior \(S\)
    using rel_interior_subset by auto
    moreover
\{
    fix \(z\)
    assume \(z \in f\) 'rel_interior \(S\)
    then obtain \(z 1\) where \(z 1: z 1 \in\) rel_interior \(S f z 1=z\) by auto
    \{
        fix \(x\)
        assume \(x \in f\) ' \(S\)
        then obtain \(x 1\) where \(x 1: x 1 \in S f x 1=x\) by auto
        then obtain \(e\) where \(e: e>1(1-e) *_{R} x 1+e *_{R} z 1 \in S\)
            using convex_rel_interior_iff[of \(S\) z1] 〈convex \(S\) 〉 x1 z1 by auto
        moreover have \(f\left((1-e) *_{R} x 1+e *_{R} z 1\right)=(1-e) *_{R} x+e *_{R} z\)
```

```
            using x1 z1 by (simp add: linear_add linear_scale <linear f \)
        ultimately have (1-e) *}\mp@subsup{R}{R}{}x+e\mp@subsup{*}{R}{}z\inf'
            using imageI[of (1-e)*R}x1+e\mp@subsup{*}{R}{\prime}z1S f] by aut
        then have }\existse.e>1^(1-e)\mp@subsup{*}{R}{}x+e\mp@subsup{*}{R}{}z\in\mp@subsup{f}{}{\prime}
            using e by auto
    }
    then have z \in rel_interior ( }f\mathrm{ 'S
        using convex_rel_interior_iff [of f'S z] <convex S\〈linear f\rangle
            <S \not= {}> convex_linear_image[of f S] linear_conv_bounded_linear[of f]
            by auto
    }
    ultimately show ?thesis by auto
qed
lemma rel_interior_convex_linear_preimage:
    fixes f :: 'm::euclidean_space = ' }n\mathrm{ ::euclidean_space
    assumes linear f
        and convex S
        and f-'(rel_interior S)}\not={
    shows rel_interior (f-'S)=f-`(rel_interior S)
proof -
    interpret linear f by fact
    have S\not={}
        using assms by auto
    have nonemp: f-' S\not={}
        by (metis assms(3) rel_interior_subset subset_empty vimage_mono)
    then have S\cap(range f)}\not={
        by auto
    have conv: convex ( f-' S)
        using convex_linear_vimage assms by auto
    then have convex ( }S\cap\mathrm{ range f)
        by (simp add: assms(2) convex_Int convex_linear_image linear_axioms)
    {
        fix z
        assume z f - '(rel_interior S)
        then have z:fz\in rel_interior S
            by auto
        {
            fix }
            assume }x\inf-'
            then have fx\inS by auto
            then obtain e where e:e>1(1-e) *R fx+e e*R}fz\in
                using convex_rel_interior_iff [of S fz] z assms <S # {}> by auto
            moreover have (1-e)*R fx+e *R}fz=f((1-e)**R x +e**Rz
                using <linear f> by (simp add: linear_iff)
            ultimately have }\existse.e>1\wedge(1-e)\mp@subsup{*}{R}{}x+e\mp@subsup{*}{R}{}z\inf-'
                using e by auto
    }
    then have z E rel_interior ( }f-\mp@subsup{}{}{\prime}S
```

```
        using convex_rel_interior_iff[of f -'S z] conv nonemp by auto
}
moreover
{
    fix z
    assume z:z f rel_interior (f -' S)
    {
        fix }
        assume x }\inS\cap\mathrm{ range f
        then obtain y where y: f y=x y\inf-' S by auto
        then obtain e where e: e>1(1-e) *}\mp@subsup{|}{R}{}y+e\mp@subsup{*}{R}{}z\inf-'
            using convex_rel_interior_iff[of f -' S z] z conv by auto
        moreover have (1-e) *R}x+e\mp@subsup{*}{R}{}fz=f((1-e)\mp@subsup{*}{R}{}y+e\mp@subsup{*}{R}{}z
            using <linear f> y by (simp add: linear_iff)
        ultimately have \existse.e>1^(1-e)**R}x+e\mp@subsup{*}{R}{}fz\inS\cap\mathrm{ range f
            using e by auto
    }
    then have fz\in rel_interior (S\cap range f)
        using <convex (S\cap(range f))\rangle\langleS\cap range f}\not={}
            convex_rel_interior_iff[of S \cap (range f) fz]
        by auto
    moreover have affine (range f)
        by (simp add: linear_axioms linear_subspace_image subspace_imp_affine)
    ultimately have fz\in rel_interior S
        using convex_affine_rel_interior_Int[of S range f] assms by auto
    then have z \inf -'(rel_interior S)
        by auto
    }
    ultimately show ?thesis by auto
qed
lemma rel_interior_Times:
    fixes }S:: 'n::euclidean_space se
        and T :: 'm::euclidean_space set
    assumes convex S
        and convex T
    shows rel_interior (S 人 T) = rel_interior S < rel_interior T
proof (cases S={}\veeT={})
    case True
    then show ?thesis
        by auto
next
    case False
    then have S\not={}T\not={}
        by auto
    then have ri: rel_interior S}\not={}\mathrm{ rel_interior T }\not={
    using rel_interior_eq_empty assms by auto
    then have fst - 'rel_interior S}\not={
    using fst_vimage_eq_Times[of rel_interior S] by auto
```

```
    then have rel_interior \(\left(\left(f s t::{ }^{\prime} n *{ }^{\prime} m \Rightarrow{ }^{\prime} n\right)-{ }^{\prime} S\right)=f s t-{ }^{\prime}\) rel_interior \(S\)
        using linear_fst 〈convex \(S\) 〉 rel_interior_convex_linear_preimage \([o f f s t S]\) by auto
    then have \(s\) : rel_interior \((S \times(U N I V:: ' m\) set \())=\) rel_interior \(S \times\) UNIV
        by (simp add: fst_vimage_eq_Times)
    from ri have snd -' rel_interior \(T \neq\{ \}\)
        using snd_vimage_eq_Times[of rel_interior \(T\) ] by auto
    then have rel_interior \(\left(\left(\right.\right.\) snd \(\left.\left.:: ' n *^{\prime} m \Rightarrow ' m\right)-{ }^{\prime} T\right)=\) snd - 'rel_interior \(T\)
        using linear_snd 〈convex \(T\) 〉rel_interior_convex_linear_preimage \([\) of snd \(T\) ] by
auto
    then have \(t\) : rel_interior \(((U N I V ~:: ~ ' n ~ s e t) ~ \times T)=U N I V \times\) rel_interior \(T\)
        by (simp add: snd_vimage_eq_Times)
    from \(s t\) have \(*\) : rel_interior \((S \times(U N I V:: ' m\) set \()) \cap\) rel_interior ((UNIV ::
\(' n\) set) \(\times T\) ) \(=\)
        rel_interior \(S \times\) rel_interior \(T\) by auto
    have \(S \times T=S \times(U N I V::\) ' \(m\) set \() \cap(U N I V:: ' n\) set \() \times T\)
        by auto
    then have rel_interior \((S \times T)=\) rel_interior \(((S \times(\) UNIV \(:: ~ ' m\) set \()) \cap((\) UNIV
\(:: ' n\) set \() \times T\) )
        by auto
    also have \(\ldots=\) rel_interior \((S \times(U N I V:: ' m\) set \()) \cap\) rel_interior \(((U N I V::\)
\(' n\) set) \(\times T\) )
        using * ri assms convex_Times
        by (subst convex_rel_interior_inter_two) auto
    finally show ?thesis using \(*\) by auto
qed
lemma rel_interior_scaleR:
    fixes \(S\) :: ' \(n::\) euclidean_space set
    assumes \(c \neq 0\)
    shows \(\left(\left(*_{R}\right) c\right)\) ' \((\) rel_interior \(S)=\) rel_interior \(\left(\left(\left(*_{R}\right) c\right)\right.\) ' \(\left.S\right)\)
    using rel_interior_injective_linear_image \(\left[o f\left(\left(*_{R}\right)\right.\right.\) c) \(\left.S\right]\)
        linear_conv_bounded_linear \(\left[o f\left(*_{R}\right)\right.\) c] linear_scaleR injective_scaleR[of c] assms
    by auto
lemma rel_interior_convex_scaleR:
    fixes \(S::\) ' \(n::\) euclidean_space set
    assumes convex \(S\)
    shows \(\left(\left(*_{R}\right) c\right)\) ' (rel_interior \(\left.S\right)=\) rel_interior \(\left(\left(\left(*_{R}\right) c\right)\right.\) 'S \()\)
    by (metis assms linear_scale \(R\) rel_interior_convex_linear_image)
lemma convex_rel_open_scaleR:
    fixes \(S::\) ' \(n::\) euclidean_space set
    assumes convex \(S\)
        and rel_open \(S\)
    shows convex \(\left(\left(\left(*_{R}\right) c\right) ' S\right) \wedge\) rel_open \(\left(\left(\left(*_{R}\right) c\right) \cdot S\right)\)
    by (metis assms convex_scaling rel_interior_convex_scale \(R\) rel_open_def)
    lemma convex_rel_open_finite_inter:
    assumes \(\forall S \in I\). convex ( \(S::\) ' \(n::\) euclidean_space set) \(\wedge\) rel_open \(S\)
```

and finite I
shows convex $(\bigcap I) \wedge$ rel_open $(\bigcap I)$
proof (cases $\bigcap\{$ rel_interior $S \mid S . S \in I\}=\{ \}$)
case True
then have $\bigcap I=\{ \}$
using assms unfolding rel_open_def by auto
then show ?thesis
unfolding rel_open_def by auto
next
case False
then have rel_open $(\bigcap I)$
using assms unfolding rel_open_def using convex_rel_interior_finite_inter[of I] by auto
then show?thesis
using convex_Inter assms by auto
qed
lemma convex_rel_open_linear_image:
fixes f :: 'm::euclidean_space \Rightarrow ' $n::$ euclidean_space
assumes linear f
and convex S
and rel_open S
shows convex $(f$ ' $S) \wedge$ rel_open $(f$ ' $S)$
by (metis assms convex_linear_image rel_interior_convex_linear_image rel_open_def)
lemma convex_rel_open_linear_preimage:
fixes f :: 'm::euclidean_space \Rightarrow ' n ::euclidean_space
assumes linear f
and convex S
and rel_open S
shows convex $(f-‘ S) \wedge$ rel_open $(f-‘ S)$
proof (cases $f-{ }^{\prime}($ rel_interior $\left.S)=\{ \}\right)$
case True
then have $f-' S=\{ \}$
using assms unfolding rel_open_def by auto
then show? ?hesis
unfolding rel_open_def by auto
next
case False
then have rel_open $\left(f-{ }^{\prime} S\right)$
using assms unfolding rel_open_def
using rel_interior_convex_linear_preimage[of f S]
by auto
then show? thesis
using convex_linear_vimage assms
by auto
qed

```
lemma rel_interior_projection:
    fixes S :: ('m::euclidean_space > ' }n::euclidean_space) set
        and f :: 'm::euclidean_space = ' }n::euclidean_space set
    assumes convex S
        and f}=(\lambday.{z.(y,z)\inS}
    shows }(y,z)\in\mathrm{ rel_interior }S\longleftrightarrow(y\in\mathrm{ rel_interior {y. (fy}={={})}\wedgez
rel_interior (fy))
proof -
    {
    fix }
    assume }y\in{y.fy\not={}
    then obtain z where (y,z)\inS
        using assms by auto
    then have }\existsx.x\inS\wedgey=fst
        by auto
    then obtain x where x SSy=fst x
        by blast
    then have }y\infst\mathrm{ ' }
        unfolding image_def by auto
    }
    then have fst 'S = {y.fy\not={}}
        unfolding fst_def using assms by auto
    then have h1: fst'rel_interior S= rel_interior {y.f y }={}
        using rel_interior_convex_linear_image[of fst S] assms linear_fst by auto
    {
    fix }
    assume y frel_interior {y.f y}\not={}
    then have y ffst'rel_interior S
        using h1 by auto
    then have *: rel_interior S\capfst -`{y}\not={}
        by auto
    moreover have aff: affine (fst -` {y})
        unfolding affine_alt by (simp add: algebra_simps)
        ultimately have **: rel_interior (S\capfst -`{y}) = rel_interior S \capfst -`
{y}
        using convex_affine_rel_interior_Int[of S fst -' {y}] assms by auto
    have conv: convex (S\capfst -' {y})
        using convex_Int assms aff affine_imp_convex by auto
    {
        fix }
        assume }x\inf
        then have (y,x)\inS\cap(fst -`{y})
            using assms by auto
        moreover have }x=\operatorname{snd}(y,x)\mathrm{ by auto
        ultimately have }x\in\mathrm{ snd''(S @fst -'{y})
            by blast
    }
    then have snd ' (S\capfst -' {y})=fy
        using assms by auto
```

```
    then have ***: rel_interior ( f y ) = snd'rel_interior (S\capfst -' {y})
    using rel_interior_convex_linear_image[of snd S\capfst - '{y}] linear_snd conv
    by auto
    {
    fix z
    assume z \in rel_interior (f y)
    then have z\in snd 'rel_interior (S\capfst -'{y})
        using *** by auto
    moreover have {y} = fst'rel_interior (S\capfst -'{y})
        using * ** rel_interior_subset by auto
    ultimately have (y,z)\in rel_interior (S\capfst -'{y})
        by force
    then have (y,z)\in rel_interior S
        using ** by auto
    }
    moreover
    {
        fix z
        assume (y,z)\in rel_interior S
        then have (y,z)\in rel_interior (S\capfst -' {y})
            using ** by auto
        then have z\in snd'rel_interior (S\capfst -'{y})
        by (metis Range_iff snd_eq_Range)
        then have z frel_interior ( fy)
        using *** by auto
    }
    ultimately have }\z.(y,z)\in\mathrm{ rel_interior }S\longleftrightarrowz\in\mathrm{ rel_interior (f y)
        by auto
}
then have h2: \yz.y\in rel_interior {t.ft\not={}}\Longrightarrow
    (y,z)\in rel_interior S \longleftrightarrowz\in rel_interior (f y)
    by auto
{
    fix yz
    assume asm: (y,z)\in rel_interior S
    then have y\infst 'rel_interior S
        by (metis Domain_iff fst_eq_Domain)
    then have }y\in\mathrm{ rel_interior {t.ft}={}
        using h1 by auto
    then have }y\in\mathrm{ rel_interior {t. ft}\not={}}\mathrm{ and (z erel_interior (fy))
        using h2 asm by auto
    }
    then show ?thesis using h2 by blast
qed
lemma rel_frontier_Times:
    fixes S :: 'n::euclidean_space set
    and T :: 'm::euclidean_space set
    assumes convex }
```

and convex T
shows rel_frontier $S \times$ rel_frontier $T \subseteq$ rel_frontier $(S \times T)$
by (force simp: rel_frontier_def rel_interior_Times assms closure_Times)

Relative interior of convex cone

lemma cone_rel_interior:
fixes S :: 'm::euclidean_space set
assumes cone S
shows cone $(\{0\} \cup$ rel_interior $S)$
proof (cases $S=\{ \}$)
case True
then show ?thesis by (simp add: cone_0)
next
case False
then have $*: 0 \in S \wedge\left(\forall c . c>0 \longrightarrow\left(*_{R}\right) c\right.$ ' $\left.S=S\right)$
using cone_iff[of S] assms by auto
then have $*: 0 \in(\{0\} \cup$ rel_interior $S)$
and $\forall c . c>0 \longrightarrow\left(*_{R}\right) c^{\prime}(\{0\} \cup$ rel_interior $S)=(\{0\} \cup$ rel_interior $S)$
by (auto simp add: rel_interior_scaleR)
then show? thesis
using cone_iff $[o f\{0\} \cup$ rel_interior $S]$ by auto
qed
lemma rel_interior_convex_cone_aux:
fixes S :: 'm::euclidean_space set
assumes convex S
shows $(c, x) \in$ rel_interior $($ cone hull $(\{(1::$ real $)\} \times S)) \longleftrightarrow$ $c>0 \wedge x \in\left(\left(\left(*_{R}\right) c\right)\right.$ ' (rel_interior $\left.\left.S\right)\right)$
proof (cases $S=\{ \}$)
case True
then show ?thesis by (simp add: cone_hull_empty)
next
case False
then obtain s where $s \in S$ by auto
have conv: convex $(\{(1$:: real $)\} \times S)$
using convex_Times[of $\{(1$:: real $)\}$ S] assms convex_singleton[of 1 :: real]
by auto
define f where $f y=\{z .(y, z) \in$ cone hull $(\{1::$ real $\} \times S)\}$ for y
then have $*:(c, x) \in$ rel_interior $($ cone hull $(\{(1::$ real $)\} \times S))=$
$(c \in$ rel_interior $\{y . f y \neq\{ \}\} \wedge x \in$ rel_interior $(f c))$
using convex_cone_hull $[$ of $\{(1$:: real $)\} \times S]$ conv
by (subst rel_interior_projection) auto
\{
fix y :: real
assume $y \geq 0$
then have $y *_{R}(1, s) \in$ cone hull $(\{1::$ real $\} \times S)$

```
        using cone_hull_expl[of {(1 :: real)} > S] <s\inS\rangle by auto
    then have fy\not={}
    using f_def by auto
}
then have {y.fy\not={}}={0..}
    using f_def cone_hull_expl[of {1 :: real} > S] by auto
    then have **: rel_interior {y.fy\not={}}={0<..}
    using rel_interior_real_semiline by auto
    {
    fix c :: real
    assume c>0
    then have fc=((*R)c'S)
        using f_def cone_hull_expl[of {1 :: real} > S] by auto
    then have rel_interior (fc)=(*R) c'rel_interior S
        using rel_interior_convex_scaleR[of S c] assms by auto
    }
    then show ?thesis using * ** by auto
qed
lemma rel_interior_convex_cone:
    fixes S :: 'm::euclidean_space set
    assumes convex S
    shows rel_interior (cone hull ({1 :: real }}\timesS))
            {(c,c**R x) | cx.c>0^x\in rel_interior S}
    (is ?lhs = ?rhs)
proof -
    {
        fix z
        assume z\in?lhs
        have *:z=(fst z, snd z)
            by auto
        then have z\in?rhs
            using rel_interior_convex_cone_aux[of S fst z snd z] assms }\langlez\in\mathrm{ ?lhs> by
fastforce
    }
    moreover
    {
        fix z
        assume z\in?rhs
        then have z\in?lhs
            using rel_interior_convex_cone_aux[of S fst z snd z] assms
            by auto
    }
    ultimately show ?thesis by blast
qed
lemma convex_hull_finite_union:
    assumes finite I
    assumes }\foralli\inI.convex (Si)\wedge(Si)\not={
```

```
    shows convex hull (U(S'I)) =
    {sum(\lambdai.ci**Rsi)I|cs.(\foralli\inI.ci\geq0)^\operatorname{sum}cI=1^(\foralli\inI.si\in
S i)}
    (is ?lhs = ?rhs)
proof -
    have ?lhs \supseteq ?rhs
    proof
        fix }
        assume x\in?rhs
        then obtain cs where *: sum (\lambdai.ci**Rsi) I=x sum c I = 1
            (\foralli\inI.c i\geq0)^(\foralli\inI.s i\inS i) by auto
            then have }\foralli\inI. s i\in convex hull (U(S'I)
            using hull_subset[of U(S'I) convex] by auto
            then show }x\in\mathrm{ ?lhs
                unfolding *(1)[symmetric]
                using * assms convex_convex_hull
        by (subst convex_sum) auto
    qed
    {
        fix }
        assume i }\in
        with assms have }\existsp.p\inSi\mathrm{ by auto
}
then obtain p}\mathrm{ where p: }\foralli\inI.pi\inSi by meti
{
    fix }
    assume i\inI
        {
            fix }
            assume x \inSi
            define c where c j=( if j=i then 1::real else 0) for j
            then have *: sum c I = 1
                using〈finite I\rangle\langlei\inI\rangle sum.delta[of I i \lambdaj::'a. 1::real]
                by auto
            define s where s j= (if j= i then x else p j) for j
            then have \forallj.c j**R sj=(if j=i then x else 0)
                using c_def by (auto simp add: algebra_simps)
            then have x=sum (\lambdai.ci**Rs i)I
                using s_def c_def \langlefinite I\rangle\langlei\inI\rangle sum.delta[of I i \lambdaj::'a. x]
                by auto
            moreover have ( }\foralli\inI.0\leqci)^\operatorname{sum}cI=1^(\foralli\inI.si\inSi
                using * c_def s_def p<x\inS i` by auto
            ultimately have }x\in\mathrm{ ?rhs
            by force
        }
        then have ?rhs \supseteqS i by auto
    }
    then have *: ?rhs }\supseteq\bigcup(\mp@subsup{S}{}{\prime}I)\mathrm{ by auto
```

```
{
    fix uv :: real
    assume uv: u\geq0^v\geq0^u+v=1
    fix x y
    assume xy: x\in?rhs \wedge y\in ?rhs
    from xy obtain cs where
        xc:x = sum (\lambdai.ci*R si) I\wedge(\foralli\inI.ci\geq0)\wedge sum c I=1^(\foralli\inI.s
i\inSi)
        by auto
    from xy obtain dt where
        yc:y = sum(\lambdai.di*R ti)I\wedge(\foralli\inI.di\geq0)^ sumd I=1^(\foralli\inI.t
i\inSi)
        by auto
    define e where e i=u*ci+v*di for }
    have ge0: }\foralli\inI. e i\geq
        using e_def xc yc uv by simp
    have sum (\lambdai.u*ci) I=u* sum c I
        by (simp add: sum_distrib_left)
    moreover have sum (\lambdai.v*di)I=v* sumd I
        by (simp add: sum_distrib_left)
    ultimately have sum1: sum e I=1
        using e_def xc yc uv by (simp add: sum.distrib)
    define q}\mathrm{ where qi=(if e i=0 then p i else (u*ci/ei) **Rsi+(v*d
i/ei) *R ti)
        for }
    {
        fix }
        assume i:i}\in
        have qi}\inS
        proof (cases e i=0)
            case True
        then show ?thesis using i p q_def by auto
        next
            case False
            then show ?thesis
                using mem_convex_alt[of S i s it iu*(ci) v * (di)]
                    mult_nonneg_nonneg[of uc c i] mult_nonneg_nonneg[of v d i]
                    assms q_def e_def i False xc yc uv
            by (auto simp del: mult_nonneg_nonneg)
        qed
    }
    then have qs: }\foralli\inI.qi\inSi by aut
    {
        fix }
        assume i:i\inI
        have (u*ci) *R s i+(v*di) *R ti=ei* 质qi
        proof (cases e i=0)
            case True
        have ge: u* (ci)\geq0^v*di\geq0
```

```
                using xc yc uv \(i\) by simp
        moreover from ge have \(u * c i \leq 0 \wedge v * d i \leq 0\)
                using True e_def \(i\) by simp
            ultimately have \(u * c i=0 \wedge v * d i=0\) by auto
            with True show ?thesis by auto
        next
            case False
            then have \((u *(c i) /(e i)) *_{R}(s i)+(v *(d i) /(e i)) *_{R}(t i)=q i\)
            using \(q_{-}\)def by auto
            then have \(e i *_{R}\left((u *(c i) /(e i)) *_{R}(s i)+(v *(d i) /(e i)) *_{R}(t i)\right)\)
                \(=(e i) *_{R}(q i)\) by auto
            with False show ?thesis by (simp add: algebra_simps)
    qed
    \}
    then have \(*: \forall i \in I .(u * c i) *_{R} s i+(v * d i) *_{R} t i=e i *_{R} q i\)
    by auto
    have \(u *_{R} x+v *_{R} y=\operatorname{sum}\left(\lambda i .(u * c i) *_{R} s i+(v * d i) *_{R} t i\right) I\)
    using \(x c\) yc by (simp add: algebra_simps scaleR_right.sum sum.distrib)
    also have \(\ldots=\operatorname{sum}\left(\lambda i . e i *_{R} q i\right) I\)
    using * by auto
    finally have \(u *_{R} x+v *_{R} y=\operatorname{sum}\left(\lambda i .(e i) *_{R}(q i)\right) I\)
    by auto
    then have \(u *_{R} x+v *_{R} y \in\) ? rhs
    using ge0 sum1 qs by auto
    \}
    then have convex ?rhs unfolding convex_def by auto
    then show ?thesis
        using 〈?lhs \(\supseteq\) ? \(r h s\rangle *\) hull_minimal \(\left[\right.\) of \(\bigcup\left(S^{\prime} I\right)\) ?rhs convex \(]\)
        by blast
qed
lemma convex_hull_union_two:
    fixes \(S T\) :: ' \(m::\) euclidean_space set
    assumes convex \(S\)
        and \(S \neq\{ \}\)
        and convex \(T\)
        and \(T \neq\{ \}\)
    shows convex hull \((S \cup T)=\)
        \(\left\{u *_{R} s+v *_{R} t \mid u v s t . u \geq 0 \wedge v \geq 0 \wedge u+v=1 \wedge s \in S \wedge t \in T\right\}\)
    (is ?lhs = ? \(r h s\) )
proof
    define \(I::\) nat set where \(I=\{1,2\}\)
    define \(s\) where \(s i=(\) if \(i=(1:: n a t)\) then \(S\) else \(T)\) for \(i\)
    have \(\cup(s ' I)=S \cup T\)
        using \(s_{-} d e f I_{-} d e f\) by auto
    then have convex hull \(\left(\bigcup\left(s^{\prime} I\right)\right)=\) convex hull \((S \cup T)\)
        by auto
    moreover have convex hull \(\bigcup\left(s^{\prime} I\right)=\)
        \(\left\{\sum i \in I . c i *_{R}\right.\) sa \(i \mid\) csa. \((\forall i \in I .0 \leq c i) \wedge \operatorname{sum} c I=1 \wedge(\forall i \in I\). sa \(i \in s\)
```

i) $\}$
using assms s_def I_def
by (subst convex_hull_finite_union) auto

moreover have

$\left\{\sum i \in I . c i *_{R}\right.$ sa $i \mid c$ sa. $(\forall i \in I .0 \leq c i) \wedge \operatorname{sum} c I=1 \wedge(\forall i \in I . s a i \in s$
$i)\} \leq$? $r h s$
using s_def I_def by auto
ultimately show? ?lhs \subseteq ? rhs by auto
\{
fix x
assume $x \in$? $r h s$
then obtain $u v s t$ where $*: x=u *_{R} s+v *_{R} t \wedge u \geq 0 \wedge v \geq 0 \wedge u+$ $v=1 \wedge s \in S \wedge t \in T$
by auto
then have $x \in$ convex hull $\{s, t\}$
using convex_hull_2[of st] by auto
then have $x \in$ convex hull $(S \cup T)$
using * hull_mono $[$ of $\{s, t\} S \cup T]$ by auto
\}
then show ?lhs \supseteq ?rhs by blast
qed
proposition ray_to_rel_frontier:
fixes a :: ' $a:$:real_inner
assumes bounded S
and $a: a \in$ rel_interior S
and aff: $(a+l) \in$ affine hull S
and $l \neq 0$
obtains d where $0<d\left(a+d *_{R} l\right) \in$ rel_frontier S

$$
\bigwedge e . \llbracket 0 \leq e ; e<d \rrbracket \Longrightarrow\left(a+e *_{R} l\right) \in \text { rel_interior } S
$$

proof -
have aaff: $a \in$ affine hull S
by (meson a hull_subset rel_interior_subset rev_subsetD)
let $? D=\left\{d .0<d \wedge a+d *_{R} l \notin\right.$ rel_interior $\left.S\right\}$
obtain B where $B>0$ and $B: S \subseteq$ ball a B
using bounded_subset_ballD [OF 〈bounded S 〉] by blast
have $a+(B /$ norm $l) *_{R} l \notin$ ball a B
by (simp add: dist_norm $\langle l \neq 0\rangle$)
with B have $a+(B /$ norm $l) *_{R} l \notin$ rel_interior S
using rel_interior_subset subsetCE by blast
with $\langle B>0\rangle\langle l \neq 0\rangle$ have nonMT: ? $D \neq\{ \}$
using divide_pos_pos zero_less_norm_iff by fastforce
have bdd: bdd_below? D
by (metis (no_types, lifting) bdd_belowI le_less mem_Collect_eq)
have relin_Ex: $\bigwedge x . x \in$ rel_interior $S \Longrightarrow$
$\exists e>0 . \forall x^{\prime} \in$ affine hull S. dist $x^{\prime} x<e \longrightarrow x^{\prime} \in$ rel_interior S
using openin_rel_interior [of $S]$ by (simp add: openin_euclidean_subtopology_iff)
define d where $d=$ Inf ?D
obtain ε where $0<\varepsilon$ and $\varepsilon: \bigwedge \eta . \llbracket 0 \leq \eta ; \eta<\varepsilon \rrbracket \Longrightarrow\left(a+\eta *_{R} l\right) \in$ rel_interior

```
S
    proof -
    obtain e where e>0
                and e:\\mp@subsup{x}{}{\prime}.\mp@subsup{x}{}{\prime}\in\mathrm{ affine hull S \ dist }\mp@subsup{x}{}{\prime}a<e\Longrightarrow\mp@subsup{x}{}{\prime}\in\mathrm{ rel_interior }S
            using relin_Ex a by blast
    show thesis
    proof (rule_tac \varepsilon =e/ norm l in that)
        show 0<e/ norm l by (simp add: <0<e\rangle<l\not=0`)
    next
        show }a+\eta\mp@subsup{*}{R}{}l\in\mathrm{ rel_interior S if 0}\leq\eta\eta<e/ norm l for 
        proof (rule e)
            show }a+\eta\mp@subsup{*}{R}{}l\in\mathrm{ affine hull S
        by (metis (no_types) add_diff_cancel_left' aff affine_affine_hull mem_affine_3_minus
aaff)
            show dist (a+\eta\mp@subsup{*}{R}{}l)a<e
            using that by (simp add:<l\not=0`dist_norm pos_less_divide_eq)
        qed
        qed
    qed
    have inint: \bigwedgee. \llbracket0\leqe;e<d\rrbracket\Longrightarrowa+e *Rl l rel_interior S
        unfolding d_def using cInf_lower [OF _ bdd]
        by (metis (no_types, lifting) a add.right_neutral le_less mem_Collect_eq not_less
real_vector.scale_zero_left)
    have }\varepsilon\leq
        unfolding d_def
        using \varepsilon dual_order.strict_implies_order le_less_linear
        by (blast intro: cInf_greatest [OF nonMT])
    with }\langle0<\varepsilon\rangle\mathrm{ have 0<d by simp
    have }a+d\mp@subsup{*}{R}{}l\not\in\mathrm{ rel_interior }
    proof
        assume adl: }a+d\mp@subsup{*}{R}{}l\in\mathrm{ rel_interior S
        obtain e where e>0
            and e:\\mp@subsup{x}{}{\prime}. \mp@subsup{x}{}{\prime}\in\mathrm{ affine hull }S\Longrightarrow\mathrm{ dist }\mp@subsup{x}{}{\prime}(a+d*\mp@subsup{*}{R}{}l)<e\Longrightarrow\mp@subsup{x}{}{\prime}\in
rel_interior S
            using relin_Ex adl by blast
        have d +e / norm l \leq Inf {d. 0<d^a+d**R l\not\in rel_interior S}
        proof (rule cInf_greatest [OF nonMT], clarsimp)
            fix }x\mathrm{ ::real
            assume }0<x\mathrm{ and nonrel: }a+x\mp@subsup{*}{R}{}l\not\in\mathrm{ rel_interior S
            show d +e / norm l \leqx
            proof (cases x<d)
            case True with inint nonrel <0 < x 
                    show ?thesis by auto
            next
            case False
                    then have dle: }x<d+e/norm l\Longrightarrowdist (a+x\mp@subsup{*}{R}{}l)(a+d\mp@subsup{*}{R}{}l
<e
                    by (simp add: field_simps }<l\not=0\rangle
                    have ain: }a+x\mp@subsup{*}{R}{}l\in\mathrm{ affine hull }
```

```
            by (metis add_diff_cancel_left' aff affine_affine_hull mem_affine_3_minus
aaff)
            show ?thesis
                using e [OF ain] nonrel dle by force
        qed
    qed
    then show False
        using }\langle0<e\rangle\langlel\not=0\rangle\mathrm{ by (simp add: d_def [symmetric] field_simps)
    qed
    moreover have }a+d\mp@subsup{*}{R}{}l\in\mathrm{ closure S
    proof (clarsimp simp: closure_approachable)
    fix \eta::real assume 0<\eta
    have 1:a+(d-\operatorname{min}d(\eta/2 / norm l))*R}l=
    proof (rule subsetD [OF rel_interior_subset inint])
        show d - min d ( | / 2 / norm l)<d
            using }\langlel\not=0\rangle\langle0<d\rangle\langle0<\eta\rangle\mathrm{ by auto
    qed auto
    have norm l* mind (\eta/(norm l * 2)) \leqnorm l * (\eta / (norm l * 2))
        by (metis min_def mult_left_mono norm_ge_zero order_refl)
    also have ... < \eta
        using <l\not=0\rangle\langle0< < > by (simp add: field_simps)
    finally have 2: norm l* mind (\eta / (norm l * 2))}<\eta\mathrm{ .
    show }\existsy\inS\mathrm{ . dist }y(a+d\mp@subsup{*}{R}{}l)<
        using 12<0<d\rangle\langle0< 
        by (rule_tac }x=a+(d-\operatorname{min}d(\eta/2/ norm l)) *R l in bexI) (auto simp
algebra_simps)
    qed
    ultimately have infront: }a+d\mp@subsup{*}{R}{}l\in\mathrm{ rel_frontier S
    by (simp add: rel_frontier_def)
    show ?thesis
    by (rule that [OF<0<d> infront inint])
qed
corollary ray_to_frontier:
    fixes a :: 'a::euclidean_space
    assumes bounded S
        and a: a\in interior S
        and l\not=0
    obtains d where 0<d (a+d *R}l)\in frontier 
            \e.\llbracket0\leqe;e<d\rrbracket\Longrightarrow(a+e*R}l)\in\mathrm{ interior S
proof -
    have §: interior S = rel_interior S
        using a rel_interior_nonempty_interior by auto
    then have a\in rel_interior S
        using a by simp
    moreover have a+l\in affine hull S
        using a affine_hull_nonempty_interior by blast
    ultimately show thesis
        by (metis §<bounded S\rangle<l\not=0\rangle frontier_def ray_to_rel_frontier rel_frontier_def
```

that）
qed
lemma segment＿to＿rel＿frontier＿aux：
fixes x ：：＇a ：：euclidean＿space
assumes convex S bounded S and $x: x \in$ rel＿interior S and $y: y \in S$ and $x y$ ：
$x \neq y$
obtains z where $z \in$ rel＿frontier $S y \in$ closed＿segment $x z$
open＿segment x z rel＿interior S
proof－
have $x+(y-x) \in$ affine hull S using hull＿inc［OF y ］by auto
then obtain d where $0<d$ and $d f:\left(x+d *_{R}(y-x)\right) \in$ rel＿frontier S
and $d i: \bigwedge e . \llbracket 0 \leq e ; e<d \rrbracket \Longrightarrow\left(x+e *_{R}(y-x)\right) \in$ rel＿interior S by（rule ray＿to＿rel＿frontier $[O F$（bounded $S>x]$ ）（use $x y$ in auto）
show ？thesis
proof
show $x+d *_{R}(y-x) \in$ rel＿frontier S
by（ simp add：$d f$ ）
next
have open＿segment x y rel＿interior S
using rel＿interior＿closure＿convex＿segment $[O F$ 〈convex S 〉 x ］closure＿subset y by blast
moreover have $x+d *_{R}(y-x) \in$ open＿segment $x y$ if $d<1$
using $x y\langle 0<d\rangle$ that by（force simp：in＿segment algebra＿simps）
ultimately have $1 \leq d$
using df rel＿frontier＿def by fastforce
moreover have $x=(1 / d) *_{R} x+((d-1) / d) *_{R} x$
by（metis $\langle 0<d\rangle$ add．commute add＿divide＿distrib diff＿add＿cancel divide＿self＿if less＿irrefl scaleR＿add＿left scaleR＿one）
ultimately show $y \in$ closed＿segment $x\left(x+d *_{R}(y-x)\right)$
unfolding in＿segment
by（rule＿tac $x=1 / d$ in exI）（auto simp：algebra＿simps）
next
show open＿segment $x\left(x+d *_{R}(y-x)\right) \subseteq$ rel＿interior S
proof（rule rel＿interior＿closure＿convex＿segment［OF 〈convex $S\rangle x]$ ）
show $x+d *_{R}(y-x) \in$ closure S
using df rel＿frontier＿def by auto
qed
qed
qed
lemma segment＿to＿rel＿frontier：
fixes x ：：＇$a:$ ：euclidean＿space
assumes S ：convex S bounded S and $x: x \in$ rel＿interior S
and $y: y \in S$ and $x y: \neg(x=y \wedge S=\{x\})$
obtains z where $z \in$ rel＿frontier $S y \in$ closed＿segment $x z$ open＿segment x z rel＿interior S

```
proof (cases }x=y\mathrm{ )
    case True
    with }xy\mathrm{ have S}={x
        by blast
    with True show ?thesis
    by (metis Set.set_insert all_not_in_conv ends_in_segment(1) insert_iff segment_to_rel_frontier_aux[OF
Sx] that y)
next
    case False
    then show ?thesis
        using segment_to_rel_frontier_aux [OF S x y] that by blast
qed
proposition rel_frontier_not_sing:
    fixes a :: 'a::euclidean_space
    assumes bounded S
        shows rel_frontier S}\not={a
proof (cases S={})
    case True then show ?thesis by simp
next
    case False
    then obtain z where z\inS
        by blast
    then show ?thesis
    proof (cases S={z})
        case True then show ?thesis by simp
    next
        case False
        then obtain w where w}\inSw\not=
            using }\langlez\inS\rangle\mathrm{ by blast
        show ?thesis
        proof
            assume rel_frontier S={a}
            then consider w}\not=\mathrm{ rel_frontier S|z& rel_frontier S
            using }\langlew\not=z\rangle\mathrm{ by auto
        then show False
        proof cases
            case 1
            then have w:w\in rel_interior S
                using }\langlew\inS\rangle\mathrm{ closure_subset rel_frontier_def by fastforce
            have }w+(w-z)\in\mathrm{ affine hull S
                    by (metis }\langlew\inS\rangle\langlez\inS\rangle\mathrm{ affine_affine_hull hull_inc mem_affine_3_minus
scaleR_one)
            then obtain e where 0<e(w+e*R}(w-z))\in\mathrm{ rel_frontier S
                    using}\langlew\not=z\rangle\langlez\inS\rangle\mathrm{ by (metis assms ray_to_rel_frontier right_minus_eq
w)
            moreover obtain d where 0<d (w+d**R}(z-w))\in rel_frontier S
                    using ray_to_rel_frontier [OF〈bounded S\rangle w, of 1 **R (z-w)] \langlew # z`
< }\inS
```

by（metis add．commute add．right＿neutral diff＿add＿cancel hull＿inc scaleR＿one）
ultimately have $d *_{R}(z-w)=e *_{R}(w-z)$
using 〈rel＿frontier $S=\{a\}$ 〉 by force
moreover have $e \neq-d$
using $\langle 0<e\rangle\langle 0<d\rangle$ by force
ultimately show False
by（metis（no＿types，lifting）$\langle w \neq z\rangle$ eq＿iff＿diff＿eq＿0 minus＿diff＿eq real＿vector．scale＿cancel＿right real＿vector．scale＿minus＿right scaleR＿left．minus）
next
case 2
then have $z: z \in$ rel＿interior S
using $\langle z \in S\rangle$ closure＿subset rel＿frontier＿def by fastforce
have $z+(z-w) \in$ affine hull S
by（metis $\langle z \in S\rangle\langle w \in S\rangle$ affine＿affine＿hull hull＿inc mem＿affine＿3＿minus scaleR＿one）
then obtain e where $0<e\left(z+e *_{R}(z-w)\right) \in$ rel＿frontier S
using $\langle w \neq z\rangle\langle w \in S\rangle$ by（metis assms ray＿to＿rel＿frontier right＿minus＿eq
z）
moreover obtain d where $0<d\left(z+d *_{R}(w-z)\right) \in$ rel＿frontier S using ray＿to＿rel＿frontier［OF 〈bounded $S\rangle z$ ，of $\left.1 *_{R}(w-z)\right]\langle w \neq z\rangle$
$\langle w \in S\rangle$
by（metis add．commute add．right＿neutral diff＿add＿cancel hull＿inc scaleR＿one）
ultimately have $d *_{R}(w-z)=e *_{R}(z-w)$
using 〈rel＿frontier $S=\{a\}$ 〉 by force
moreover have $e \neq-d$
using $\langle 0<e\rangle\langle 0<d\rangle$ by force
ultimately show False
by（metis（no＿types，lifting）$\langle w \neq z\rangle$ eq＿iff＿diff＿eq＿0 minus＿diff＿eq real＿vector．scale＿cancel＿right real＿vector．scale＿minus＿right scaleR＿left．minus）

qed

qed
qed
qed

5．0．5 Convexity on direct sums

lemma closure＿sum：
fixes $S T$ ：：＇a：：real＿normed＿vector set
shows closure $S+$ closure $T \subseteq$ closure $(S+T)$
unfolding set＿plus＿image closure＿Times［symmetric］split＿def
by（intro closure＿bounded＿linear＿image＿subset bounded＿linear＿add
bounded＿linear＿fst bounded＿linear＿snd）
lemma rel＿interior＿sum：
fixes $S T$ ：：＇n ：：euclidean＿space set
assumes convex S
and convex T
shows rel＿interior $(S+T)=$ rel＿interior $S+$ rel＿interior T
proof－

```
    have rel_interior S + rel_interior T = (\lambda(x,y). x + y)'(rel_interior S }
rel_interior T)
    by (simp add: set_plus_image)
    also have \ldots. = (\lambda(x,y). x + y)'rel_interior (S < T)
    using rel_interior_Times assms by auto
    also have ... = rel_interior (S+T)
    using fst_snd_linear convex_Times assms
        rel_interior_convex_linear_image[of (\lambda(x,y). x + y) S > T]
    by (auto simp add: set_plus_image)
    finally show ?thesis ..
qed
lemma rel_interior_sum_gen:
    fixes S:: ' }a=>\mp@subsup{}{}{\prime}n\mathrm{ '::uclidean_space set
    assumes }\bigwedgei.i\inI\Longrightarrow\mathrm{ convex (S i)
    shows rel_interior (sum S I) = sum (\lambdai. rel_interior (S i)) I
    using rel_interior_sum rel_interior_sing[of 0] assms
    by (subst sum_set_cond_linear[of convex], auto simp add: convex_set_plus)
lemma convex_rel_open_direct_sum:
    fixes S T :: 'n::euclidean_space set
    assumes convex S
        and rel_open S
        and convex T
        and rel_open T
    shows convex (S\timesT)^ rel_open (S\timesT)
    by (metis assms convex_Times rel_interior_Times rel_open_def)
lemma convex_rel_open_sum:
    fixes S T :: ' }n::\mathrm{ euclidean_space set
    assumes convex S
        and rel_open S
        and convex T
        and rel_open T
    shows convex (S+T)^ rel_open (S+T)
    by (metis assms convex_set_plus rel_interior_sum rel_open_def)
lemma convex_hull_finite_union_cones:
    assumes finite I
        and I\not={}
    assumes \bigwedgei. i\inI\Longrightarrow convex (Si)^ cone (Si)\wedgeSi\not={}
    shows convex hull (U(S'I)) = sum S I
    (is ?lhs = ?rhs)
proof -
    {
        fix }
        assume x\in?lhs
        then obtain cxs where
        x:x = sum (\lambdai.ci * * xs i) I\wedge(\foralli\inI.ci\geq0)\wedge sum c I=1^(\foralli\inI.
```

```
xs i\inS i)
    using convex_hull_finite_union[of I S] assms by auto
    define s where si=ci*\mp@subsup{*}{R}{}xsi}\mathrm{ for i
    have }\foralli\inI.s i\inS
        using s_def x assms by (simp add: mem_cone)
    moreover have x sum s I using x s_def by auto
    ultimately have }x\in\mathrm{ ?rhs
        using set_sum_alt[of I S] assms by auto
    }
    moreover
    {
    fix }
    assume x\in?rhs
    then obtain s}\mathrm{ where }x:x=sumsI\wedge(\foralli\inI.s i\inSi
        using set_sum_alt[of I S] assms by auto
    define xs where xs i = of_nat(card I) *R s i for i
    then have x= sum (\lambdai. ((1 :: real)/ of_nat(card I)) *R xs i) I
        using x assms by auto
    moreover have }\foralli\inI. xs i\inS
        using x xs_def assms by (simp add: cone_def)
    moreover have }\foralli\inI.(1 :: real) / of_nat (card I)\geq
        by auto
    moreover have sum (\lambdai. (1 :: real) / of_nat (card I)) I= 1
        using assms by auto
    ultimately have x\in?lhs
        using assms
        apply (simp add: convex_hull_finite_union[of I S])
        by (rule_tac x = (\lambdai.1 / (card I)) in exI) auto
    }
    ultimately show ?thesis by auto
qed
lemma convex_hull_union_cones_two:
    fixes S T :: 'm::euclidean_space set
    assumes convex S
        and cone S
        and S\not={}
    assumes convex T
        and cone T
        and T\not={}
    shows convex hull }(S\cupT)=S+
proof -
    define I :: nat set where }I={1,2
    define A where A i=( if i=(1::nat) then S else T) for i
    have U(A'I)=S\cupT
        using A_def I_def by auto
    then have convex hull }(\bigcup(A'I))=\mathrm{ convex hull (S }\cupT
        by auto
    moreover have convex hull U(A'I) = sum A I
```

```
        using \(A_{-}\)def I_def
    by (metis assms convex_hull_finite_union_cones empty_iff finite.emptyI finite.insertI
insertI1)
    moreover have sum \(A I=S+T\)
        using \(A_{-}\)def \(I_{-} d e f\) by (force simp add: set_plus_def)
    ultimately show ?thesis by auto
qed
lemma rel_interior_convex_hull_union:
    fixes \(S::{ }^{\prime} a \Rightarrow\) ' \(n::\) euclidean_space set
    assumes finite \(I\)
        and \(\forall i \in I\). convex \((S i) \wedge S i \neq\{ \}\)
    shows rel_interior (convex hull \(\left.\left(\bigcup\left(S^{\prime} I\right)\right)\right)=\)
        \(\left\{\operatorname{sum}\left(\lambda i . c i *_{R} s i\right) I \mid c s .(\forall i \in I . c i>0) \wedge \operatorname{sum} c I=1 \wedge\right.\)
            \((\forall i \in I . s i \in\) rel_interior \((S i))\}\)
    (is? ? \(/ h s=\) ? \(r h s\) )
proof (cases \(I=\{ \}\) )
    case True
    then show ?thesis
        using convex_hull_empty by auto
    next
    case False
    define \(C 0\) where \(C 0=\) convex hull \(\left(\bigcup\left(S^{\prime} I\right)\right)\)
    have \(\forall i \in I\). \(C 0 \geq S i\)
        unfolding C0_def using hull_subset \(\left[o f ~ \bigcup\left(S^{\prime} I\right)\right]\) by auto
    define \(K 0\) where \(K 0=\) cone hull \((\{1::\) real \(\} \times C 0)\)
    define \(K\) where \(K i=\) cone hull \((\{1::\) real \(\} \times S i)\) for \(i\)
    have \(\forall i \in I . K i \neq\{ \}\)
        unfolding \(K_{-}\)def using assms
        by (simp add: cone_hull_empty_iff [symmetric])
    have convK: \(\forall i \in I\). convex ( \(K i\) )
        unfolding \(K_{-} d e f\)
        by (simp add: assms(2) convex_Times convex_cone_hull)
    have \(K 0 \supseteq K i\) if \(i \in I\) for \(i\)
        unfolding K0_def K_def
        by (simp add: Sigma_mono \(\langle\forall i \in I . S i \subseteq C 0\rangle\) hull_mono that)
    then have \(K 0 \supseteq \bigcup\left(K^{\prime} I\right)\) by auto
    moreover have convex \(K 0\)
        unfolding K0_def by (simp add: CO_def convex_Times convex_cone_hull)
    ultimately have geq: K0 \(\supseteq\) convex hull \(\left(\bigcup\left(K^{\prime} I\right)\right)\)
        using hull_minimal[of _ K0 convex \(]\) by blast
    have \(\forall i \in I . K i \supseteq\{1::\) real \(\} \times S i\)
        using K_def by (simp add: hull_subset)
    then have \(\bigcup\left(K^{\prime} I\right) \supseteq\{1\) :: real \(\} \times \bigcup\left(S^{\prime} I\right)\)
        by auto
    then have convex hull \(\bigcup\left(K^{\prime} I\right) \supseteq\) convex hull \(\left(\{1\right.\) :: real \(\left.\} \times \bigcup\left(S^{\prime} I\right)\right)\)
        by (simp add: hull_mono)
    then have convex hull \(\bigcup\left(K^{\prime} I\right) \supseteq\{1::\) real \(\} \times C 0\)
        unfolding C0_def
```

```
    using convex_hull_Times[of {(1 :: real)} \(S'I)] convex_hull_singleton
    by auto
    moreover have cone (convex hull (U(K'I)))
    by (simp add: K_def cone_Union cone_cone_hull cone_convex_hull)
    ultimately have convex hull (U(K'I)) \supseteq K0
    unfolding KO_def
    using hull_minimal[of _ convex hull (U (K'I)) cone]
    by blast
    then have K0 = convex hull (U(K`I))
    using geq by auto
    also have ... = sum K I
    using assms False 〈\foralli\inI.K i\not={}` cone_hull_eq convK
    by (intro convex_hull_finite_union_cones; fastforce simp: K_def)
    finally have K0 = sum K I by auto
    then have *: rel_interior K0 = sum (\lambdai.(rel_interior (K i))) I
    using rel_interior_sum_gen[of I K] convK by auto
    {
    fix }
    assume x flhs
    then have (1::real, x)\in rel_interior K0
    using K0_def C0_def rel_interior_convex_cone_aux[of C0 1::real x] convex_convex_hull
        by auto
    then obtain k where k:(1::real, x) = sum kI\wedge(\foralli\inI.ki\in rel_interior (K
i))
        using 〈finite I\rangle* set_sum_alt[of I \lambdai. rel_interior (K i)] by auto
    {
        fix }
        assume i\inI
        then have convex (S i)^ki\in rel_interior (cone hull {1} }\timesSi
            using k K_def assms by auto
        then have \existsci si.ki=(ci,ci** si)^0<ci^ si\inrel_interior (S i)
            using rel_interior_convex_cone[of S i] by auto
    }
    then obtain cs where cs: }\foralli\inI.ki=(ci,ci\mp@subsup{*}{R}{}si)\wedge0<ci\wedgesi
rel_interior (S i)
        by metis
    then have x = (\sumi\inI.ci**Rs i)^ sum c I=1
        using }k\mathrm{ by (simp add: sum_prod)
    then have }x\in\mathrm{ ?rhs
        using k cs by auto
}
moreover
{
    fix }
    assume x\in?rhs
    then obtain cs where cs:x = sum ( }\lambdai.ci\mp@subsup{*}{R}{\prime}si)I
        (\foralli\inI.ci>0)\wedge sum c I=1 ^(\foralli\inI.s i < rel_interior (Si))
        by auto
    define k where ki=(ci,ci**Rsi) for i
```

```
    {
        fix i assume i 
        then have ki\in rel_interior ( }
            using k_def K_def assms cs rel_interior_convex_cone[of S i]
        by auto
    }
    then have (1,x)\in rel_interior K0
        using * set_sum_alt[of I (\lambdai.rel_interior (K i))] assms cs
        by (simp add: k_def) (metis (mono_tags, lifting) sum_prod)
    then have x f?lhs
        using K0_def C0_def rel_interior_convex_cone_aux[of C0 1 x]
        by auto
}
    ultimately show ?thesis by blast
qed
lemma convex_le_Inf_differential:
    fixes f :: real }=>\mathrm{ real
    assumes convex_on I f
        and x\in interior I
        and}y\in
    shows fy\geqfx+ Inf ((\lambdat. (fx-ft)/(x-t))'({x<..}\capI))*(y-x)
    (is _ \geq_+ Inf (?F x)* (y-x))
proof (cases rule: linorder_cases)
    assume }x<
    moreover
    have open (interior I) by auto
    from openE[OF this \langlex 隹terior I\rangle]
    obtain e where e: 0<e ball x e\subseteq interior I .
    moreover define t where t=min (x+e/2) ((x+y)/ 2)
    ultimately have }x<tt<yt\in\mathrm{ ball x e
    by (auto simp: dist_real_def field_simps split: split_min)
    with}\langlex\in\mathrm{ interior }I\ranglee interior_subset[of I] have t\inIx\inI by aut
    define K where K=x-e / 2
    with }\langle0<e\rangle\mathrm{ have K G ball x e K<x
        by (auto simp: dist_real_def)
    then have K}\in
        using <interior I \subseteqI`e(2) by blast
    have Inf (?F x) \leq (fx-fy)/(x-y)
    proof (intro bdd_belowI cInf_lower2)
    show (fx-ft)/(x-t)\in?F}
        using <t \inI\rangle\langlex< < < by auto
    show (fx-ft)/(x-t)\leq(fx-fy)/(x-y)
        using <convex_on If f <x 位\rangle\langley\inI\rangle\langlex<t\rangle\langlet<y\rangle
        by (rule convex_on_diff)
    next
```

fix y
assume $y \in ? F x$
with order_trans[OF convex_on_diff $\left[O F\left\langle c o n v e x _o n ~ I f\right\rangle\langle K \in I\rangle\right.$ - $\langle K\langle x\rangle$ _] $]$
show $(f K-f x) /(K-x) \leq y$ by auto
qed
then show ?thesis
using $\langle x<y\rangle$ by (simp add: field_simps)
next
assume $y<x$
moreover
have open (interior I) by auto
from openE[OF this $\langle x \in$ interior $I\rangle]$
obtain e where $e: 0<e$ ball $x e \subseteq$ interior I.
moreover define t where $t=x+e / 2$
ultimately have $x<t t \in$ ball $x e$
by (auto simp: dist_real_def field_simps)
with $\langle x \in$ interior $I\rangle e$ interior_subset $[o f ~ I]$ have $t \in I x \in I$ by auto
have $(f x-f y) /(x-y) \leq \operatorname{Inf}(? F x)$
proof (rule cInf_greatest)
have $(f x-f y) /(x-y)=(f y-f x) /(y-x)$
using $\langle y<x\rangle$ by (auto simp: field_simps)
also
fix z
assume $z \in ? F x$
with order_trans[OF convex_on_diff[OF 〈convex_on If $\langle\langle y \in I\rangle-\langle y<x\rangle]$]
have $(f y-f x) /(y-x) \leq z$
by auto
finally show $(f x-f y) /(x-y) \leq z$.
next
have $x+e / 2 \in$ ball $x e$
using e by (auto simp: dist_real_def)
with e interior_subset[of I] have $x+e / 2 \in\{x<..\} \cap I$
by auto
then show ? $F x \neq\{ \}$
by blast
qed
then show? ?thesis
using $\langle y<x\rangle$ by (simp add: field_simps)
qed simp

5.0.6 Explicit formulas for interior and relative interior of convex hull

lemma at_within_cbox_finite:
assumes $x \in$ box abx$\in S$ finite S
shows (at x within cbox ab-S)=at x
proof -
have interior $($ cbox $a b-S)=$ box $a b-S$

```
    using 〈finite \(S\) 〉 by (simp add: interior_diff finite_imp_closed)
    then show? ?thesis
    using at_within_interior assms by fastforce
qed
lemma affine_independent_convex_affine_hull:
    fixes \(S::{ }^{\prime} a::\) euclidean_space set
    assumes \(\neg\) affine_dependent \(S T \subseteq S\)
        shows convex hull \(T=\) affine hull \(T \cap\) convex hull \(S\)
proof -
    have fin: finite \(S\) finite \(T\) using assms aff_independent_finite finite_subset by
auto
    have convex hull \(T \subseteq\) affine hull \(T\)
        using convex_hull_subset_affine_hull by blast
    moreover have convex hull \(T \subseteq\) convex hull \(S\)
        using assms hull_mono by blast
    moreover have affine hull \(T \cap\) convex hull \(S \subseteq\) convex hull \(T\)
    proof -
        have \(0: \bigwedge u\). sum \(u S=0 \Longrightarrow(\forall v \in S . u v=0) \vee\left(\sum v \in S . u v *_{R} v\right) \neq 0\)
            using affine_dependent_explicit_finite assms(1) fin(1) by auto
        show ?thesis
        proof (clarsimp simp add: affine_hull_finite fin)
            fix \(u\)
            assume \(S:\left(\sum v \in T . u v *_{R} v\right) \in\) convex hull \(S\)
            and T1: sum \(u T=1\)
            then obtain \(v\) where \(v: \forall x \in S .0 \leq v x\) sum \(v S=1\left(\sum x \in S . v x *_{R} x\right)\)
\(=\left(\sum v \in T . u v *_{R} v\right)\)
            by (auto simp add: convex_hull_finite fin)
            \(\{\) fix \(x\)
            assume \(x \in T\)
            then have \(S: S=(S-T) \cup T\) - split into separate cases
                    using assms by auto
            have \([\operatorname{simp}]:\left(\sum x \in T . v x *_{R} x\right)+\left(\sum x \in S-T . v x *_{R} x\right)=\left(\sum x \in T . u\right.\)
\(\left.x *_{R} x\right)\)
                    \(\operatorname{sum} v T+\operatorname{sum} v(S-T)=1\)
                using \(v\) fin \(S\)
                by (auto simp: sum.union_disjoint [symmetric] Un_commute)
            have \(\left(\sum x \in S\right.\). if \(x \in T\) then \(v x-u x\) else \(\left.v x\right)=0\)
                    \(\left(\sum x \in S\right.\). (if \(x \in T\) then \(v x-u x\) else \(\left.\left.v x\right) *_{R} x\right)=0\)
                    using \(v\) fin \(T 1\)
            by (subst \(S\), subst sum.union_disjoint, auto simp: algebra_simps sum_subtractf)+
            \} note \([\) simp \(]=\) this
            have \((\forall x \in T .0 \leq u x)\)
            using 0 [of \(\lambda x\). if \(x \in T\) then \(v x-u x\) else \(v x]\langle T \subseteq S\rangle v(1)\) by fastforce
            then show \(\left(\sum v \in T . u v *_{R} v\right) \in\) convex hull \(T\)
            using 0 [of \(\lambda x\). if \(x \in T\) then \(v x-u x\) else \(v x]\langle T \subseteq S\rangle T 1\)
            by (fastforce simp add: convex_hull_finite fin)
    qed
    qed
```

```
    ultimately show ?thesis
        by blast
qed
lemma affine_independent_span_eq:
    fixes \(S\) :: 'a::euclidean_space set
    assumes \(\neg\) affine_dependent \(S\) card \(S=\operatorname{Suc}\left(\operatorname{DIM}\left({ }^{\prime} a\right)\right)\)
        shows affine hull \(S=\) UNIV
proof (cases \(S=\{ \}\) )
    case True then show ?thesis
        using assms by simp
next
    case False
        then obtain \(a T\) where \(T: a \notin T S=\) insert a \(T\)
        by blast
        then have fin: finite \(T\) using assms
        by (metis finite_insert aff_independent_finite)
            have \(U N I V \subseteq(+) a^{\prime} \operatorname{span}\left((\lambda x \cdot x-a)^{\prime} T\right)\)
            proof (intro card_ge_dim_independent Fun.vimage_subsetD)
                show independent \(\left((\lambda x . x-a){ }^{\prime} T\right)\)
                using \(T\) affine_dependent_iff_dependent assms(1) by auto
            show \(\operatorname{dim}\left((+) a-{ }^{\prime} U N I V\right) \leq \operatorname{card}((\lambda x . x-a) ' T)\)
            using assms \(T\) fin by (auto simp: card_image inj_on_def)
        qed (use surj_plus in auto)
        then show ?thesis
            using \(T\) (2) affine_hull_insert_span_gen equalityI by fastforce
qed
lemma affine_independent_span_gt:
    fixes \(S::{ }^{\prime} a::\) euclidean_space set
    assumes ind: \(\neg\) affine_dependent \(S\) and dim: DIM ('a) \(<\) card \(S\)
        shows affine hull \(S=\) UNIV
proof (intro affine_independent_span_eq [OF ind] antisym)
    show card \(S \leq\) Suc DIM ('a)
            using aff_independent_finite affine_dependent_biggerset ind by fastforce
    show Suc DIM ('a) \({ }^{\prime}\) card \(S\)
        using Suc_leI dim by blast
qed
lemma empty_interior_affine_hull:
    fixes \(S\) :: 'a::euclidean_space set
    assumes finite \(S\) and dim: card \(S \leq D I M\) ('a)
            shows interior (affine hull \(S\) ) \(=\{ \}\)
    using assms
proof (induct \(S\) rule: finite_induct)
    case (insert \(x S\) )
    then have dim \((\operatorname{span}((\lambda y . y-x)\) ' \(S))<\operatorname{DIM}\left({ }^{\prime} a\right)\)
    by (auto simp: Suc_le_lessD card_image_le dual_order.trans intro!: dim_le_card'[THEN
le_less_trans])
```


then show ?case

by (simp add: empty_interior_lowdim affine_hull_insert_span_gen interior_translation)
qed auto
lemma empty_interior_convex_hull:
fixes S :: 'a::euclidean_space set
assumes finite S and dim: card $S \leq D I M$ ('a)
shows interior (convex hull S) $=\{ \}$
by (metis Diff_empty Diff_eq_empty_iff convex_hull_subset_affine_hull interior_mono empty_interior_affine_hull [OF assms])
lemma explicit_subset_rel_interior_convex_hull:
fixes S :: 'a::euclidean_space set
shows finite S

$$
\Longrightarrow\{y . \exists u .(\forall x \in S .0<u x \wedge u x<1) \wedge \operatorname{sum} u S=1 \wedge \operatorname{sum}(\lambda x . u
$$

$\left.\left.x *_{R} x\right) S=y\right\}$

$$
\subseteq \text { rel_interior }(\text { convex hull } S)
$$

by (force simp add: rel_interior_convex_hull_union [where $S=\lambda x .\{x\}$ and $I=S$, simplified])
lemma explicit_subset_rel_interior_convex_hull_minimal:
fixes S :: 'a::euclidean_space set
shows finite S

$$
\Longrightarrow\left\{y . \exists u .(\forall x \in S .0<u x) \wedge \operatorname{sum} u S=1 \wedge \operatorname{sum}\left(\lambda x . u x *_{R} x\right) S\right.
$$

$=y\}$
\subseteq rel_interior (convex hull S)
by (force simp add: rel_interior_convex_hull_union [where $S=\lambda x .\{x\}$ and $I=S$, simplified])
lemma rel_interior_convex_hull_explicit:
fixes S :: 'a::euclidean_space set
assumes \neg affine_dependent S
shows rel_interior $($ convex hull $S)=$
$\left\{y . \exists u .(\forall x \in S .0<u x) \wedge \operatorname{sum} u S=1 \wedge \operatorname{sum}\left(\lambda x . u x *_{R} x\right) S=y\right\}$
(is ?lhs =? $r h s$)
proof
show? ?rhs \leq ? lhs
by (simp add: aff_independent_finite explicit_subset_rel_interior_convex_hull_minimal assms)
next
show ?lhs \leq ?rhs
proof (cases $\exists a . S=\{a\}$)
case True then show ?lhs \leq ?rhs
by force
next
case False
have f s: finite S
using assms by (simp add: aff_independent_finite)
\{ fix $a b$ and $d::$ real
assume $a b: a \in S b \in S a \neq b$
then have $S: S=(S-\{a, b\}) \cup\{a, b\}$ - split into separate cases
by auto
have $\left(\sum x \in S\right.$. if $x=a$ then $-d$ else if $x=b$ then d else 0$)=0$
$\left(\sum x \in S .(\right.$ if $x=a$ then $-d$ else if $x=b$ then d else 0$\left.) *_{R} x\right)=d *_{R} b$
$-d *_{R} a$
using $a b f_{s}$
by (subst S, subst sum.union_disjoint, auto)+
$\}$ note $[$ simp $]=$ this
\{ fix y
assume $y: y \in$ convex hull $S y \notin$?rhs
have $*$: False if
$u a: \forall x \in S .0 \leq u x \operatorname{sum} u S=1 \neg 0<u a a \in S$
and $y T: y=\left(\sum x \in S . u x *_{R} x\right) y \in T$ open T
and $s b: T \cap$ affine hull $S \subseteq\{w . \exists u .(\forall x \in S .0 \leq u x) \wedge$ sum $u S=1 \wedge$ $\left.\left(\sum x \in S . u x *_{R} x\right)=w\right\}$
for $u T a$
proof -
have $u a 0: u a=0$
using ua by auto
obtain b where $b: b \in S a \neq b$
using ua False by auto
obtain e where $e: 0<e$ ball $\left(\sum x \in S . u x *_{R} x\right) e \subseteq T$ using $y T$ by (auto elim: openE)
with b obtain d where $d: 0<d \operatorname{norm}\left(d *_{R}(a-b)\right)<e$ by (auto intro: that [of e/2 / norm $(a-b)]$)
have $\left(\sum x \in S . u x *_{R} x\right) \in$ affine hull S
using $y T y$ by (metis affine_hull_convex_hull hull_redundant_eq)
then have $\left(\sum x \in S . u x *_{R} x\right)-d *_{R}(a-b) \in$ affine hull S using ua by (auto simp: hull_inc intro: mem_affine_3_minus2)
then have $y-d *_{R}(a-b) \in T \cap$ affine hull S using d e $y T$ by auto
then obtain v where $v: \forall x \in S .0 \leq v x$

$$
\operatorname{sum} v S=1
$$

$\left(\sum x \in S . v x *_{R} x\right)=\left(\sum x \in S . u x *_{R} x\right)-d *_{R}(a-b)$
using subsetD [OF sb] yT
by auto
have aff: $\bigwedge u$. sum $u S=0 \Longrightarrow(\forall v \in S . u v=0) \vee\left(\sum v \in S . u v *_{R} v\right) \neq$
0
using assms by (simp add: affine_dependent_explicit_finite fs)
show False
using uabdvaff [of $\lambda x .(v x-u x)-($ if $x=a$ then $-d$ else if $x=b$ then d else 0)]
by (auto simp: algebra_simps sum_subtractf sum.distrib)
qed
have $y \notin$ rel_interior (convex hull S)
using y
apply (simp add: mem_rel_interior)
apply (auto simp: convex_hull_finite [OF fs])

```
            apply (drule_tac x=u in spec)
            apply (auto intro: *)
            done
    } with rel_interior_subset show ?lhs \leq?rhs
    by blast
    qed
qed
lemma interior_convex_hull_explicit_minimal:
    fixes S :: 'a::euclidean_space set
    assumes \negaffine_dependent S
    shows
    interior (convex hull S) =
                    (if card(S) \leq DIM('a) then {}
                    else {y.\existsu. (\forallx\inS.0<ux)^ sumu S=1^(\sumx\inS.ux* * 
= y})
    (is _ = (if_then_else ?rhs))
proof (clarsimp simp: aff_independent_finite empty_interior_convex_hull assms)
    assume S: ᄀ card S \leq DIM('a)
    have interior (convex hull S) = rel_interior(convex hull S)
        using assms S by (simp add: affine_independent_span_gt rel_interior_interior)
    then show interior(convex hull S)=?rhs
        by (simp add: assms S rel_interior_convex_hull_explicit)
qed
lemma interior_convex_hull_explicit:
    fixes S :: 'a::euclidean_space set
    assumes \negaffine_dependent S
    shows
        interior(convex hull S)=
            (if card(S) \leq DIM('a) then {}
            else {y.\existsu. (\forallx\inS.0<ux\wedgeux<1)\wedge sum uS=1^(\sumx\inS.
ux**R}x)=y}
proof -
    { fix }u:: ' a m real and a
        assume card Basis < card S and u: \x.x\inS\Longrightarrow0<ux sum u S=1 and
a:a}\in
    then have cs:Suc 0 < card S
            by (metis DIM_positive less_trans_Suc)
    obtain b where b:b\inSa\not=b
    proof (cases S\leq{a})
        case True
        then show thesis
            using cs subset_singletonD by fastforce
    qed blast
    have }ua+ub\leq\operatorname{sum}u{a,b
        using a b by simp
    also have ... \leq sum uS
        using abu
```

by (intro Groups_Big.sum_mono2) (auto simp: less_imp_le aff_independent_finite assms)
finally have $u a<1$
using $\langle b \in S\rangle u$ by fastforce
$\}$ note $[$ simp $]=$ this
show ?thesis
using assms by (force simp add: not_le interior_convex_hull_explicit_minimal) qed
lemma interior_closed_segment_ge2:
fixes a :: ' a ::euclidean_space
assumes $2 \leq \operatorname{DIM}\left({ }^{\prime} a\right)$
shows interior (closed_segment ab) $=\{ \}$
using assms unfolding segment_convex_hull
proof -
have card $\{a, b\} \leq D I M\left({ }^{\prime} a\right)$
using assms
by (simp add: card_insert_if linear not_less_eq_eq numeral_2_eq_2)
then show interior (convex hull $\{a, b\})=\{ \}$
by (metis empty_interior_convex_hull finite.insertI finite.emptyI)
qed
lemma interior_open_segment:
fixes a :: ' $a:$:euclidean_space
shows interior(open_segment a b) =
(if $2 \leq D I M\left({ }^{\prime} a\right)$ then $\}$ else open_segment $a b$)
proof (simp add: not_le, intro conjI impI)
assume $2 \leq \operatorname{DIM}\left({ }^{\prime} a\right)$
then show interior (open_segment $a b)=\{ \}$
using interior_closed_segment_ge2 interior_mono segment_open_subset_closed by
blast
next
assume le2: $\operatorname{DIM}\left({ }^{\prime} a\right)<2$
show interior (open_segment ab)=open_segment $a b$
proof (cases $a=b$)
case True then show? ?thesis by auto
next
case False
with le2 have affine hull (open_segment a b) = UNIV
by (simp add: False affine_independent_span_gt)
then show interior (open_segment $a b$) $=$ open_segment $a b$
using rel_interior_interior rel_interior_open_segment by blast
qed
qed
lemma interior_closed_segment:
fixes a :: ' a ::euclidean_space
shows interior (closed_segment ab) =
(if $2 \leq D I M(' a)$ then $\}$ else open_segment $a b$)

```
proof (cases a = b)
    case True then show ?thesis by simp
next
    case False
    then have closure (open_segment a b)= closed_segment a b
        by simp
    then show ?thesis
    by (metis (no_types) convex_interior_closure convex_open_segment interior_open_segment)
qed
lemmas interior_segment = interior_closed_segment interior_open_segment
lemma closed_segment_eq [simp]:
    fixes a :: 'a::euclidean_space
    shows closed_segment a b = closed_segment c d \longleftrightarrow <a,b}={c,d}
proof
    assume abcd: closed_segment a b = closed_segment c d
    show }{a,b}={c,d
    proof (cases }a=b\veec=d\mathrm{ )
        case True with abcd show ?thesis by force
    next
        case False
        then have neq: }a\not=b\wedgec\not=d\mathrm{ by force
        have *: closed_segment c d - {a,b} = rel_interior (closed_segment c d)
        using neq abcd by (metis (no_types) open_segment_def rel_interior_closed_segment)
    have b}\in{c,d
    proof -
        have insert b (closed_segment c d) = closed_segment c d
            using abcd by blast
        then show ?thesis
            by (metis DiffD2 Diff_insert2 False * insertI1 insert_Diff_if open_segment_def
rel_interior_closed_segment)
    qed
    moreover have a\in{c,d}
        by (metis Diff_iff False * abcd ends_in_segment(1) insertI1 open_segment_def
rel_interior_closed_segment)
    ultimately show {a,b}={c,d}
        using neq by fastforce
    qed
next
    assume {a,b}={c,d}
    then show closed_segment a b=closed_segment c d
        by (simp add: segment_convex_hull)
qed
lemma closed_open_segment_eq [simp]:
    fixes a :: 'a::euclidean_space
    shows closed_segment a b}\not==\mathrm{ open_segment c d
by (metis DiffE closed_segment_neq_empty closure_closed_segment closure_open_segment
```

```
ends_in_segment(1) insertI1 open_segment_def)
lemma open_closed_segment_eq [simp]:
    fixes \(a\) :: ' \(a::\) euclidean_space
    shows open_segment \(a b \neq\) closed_segment \(c d\)
using closed_open_segment_eq by blast
lemma open_segment_eq [simp]:
    fixes \(a\) :: ' \(a::\) euclidean_space
    shows open_segment \(a b=\) open_segment \(c d \longleftrightarrow a=b \wedge c=d \vee\{a, b\}=\)
\(\{c, d\}\)
    (is ?lhs = ?rhs)
proof
    assume \(a b c d:\) ? \(l h s\)
    show ?rhs
    proof (cases \(a=b \vee c=d\) )
        case True with abcd show ?thesis
            using finite_open_segment by fastforce
    next
        case False
        then have \(a 2: a \neq b \wedge c \neq d\) by force
        with abcd show ?rhs
            unfolding open_segment_def
            by (metis (no_types) abcd closed_segment_eq closure_open_segment)
    qed
next
    assume? ?rhs
    then show? lhs
        by (metis Diff_cancel convex_hull_singleton insert_absorb2 open_segment_def seg-
ment_convex_hull)
qed
```

```
5.0.7 Similar results for closure and (relative or absolute)
frontier
lemma closure_convex_hull [simp]:
    fixes S :: 'a::euclidean_space set
    shows compact S ==> closure(convex hull S) = convex hull S
    by (simp add: compact_imp_closed compact_convex_hull)
```

lemma rel_frontier_convex_hull_explicit:
fixes S :: 'a::euclidean_space set
assumes \neg affine_dependent S
shows rel_frontier(convex hull S) $=$
$\{y . \exists u .(\forall x \in S .0 \leq u x) \wedge(\exists x \in S . u x=0) \wedge \operatorname{sum} u S=1 \wedge$ sum
$\left.\left(\lambda x . u x *_{R} x\right) S=y\right\}$
proof -
have $f s$: finite S
using assms by (simp add: aff_independent_finite)

```
    have }\Lambdauyv
    \llbrackety\inS;uy=0; sum u S=1; \forallx\inS.0<vx;
    sum v S = 1; (\sumx\inS.vx** x)=(\sumx\inS.u x** x)\rrbracket
    \Longrightarrow\existsu. sum u S=0^(\existsv\inS.uv\not=0)^(\sumv\inS.uv *Rv)=0
    apply (rule_tac x = \lambdax.ux-vx in exI)
    apply (force simp: sum_subtractf scaleR_diff_left)
    done
then show ?thesis
    using fs assms
    apply (simp add: rel_frontier_def finite_imp_compact rel_interior_convex_hull_explicit)
    apply (auto simp: convex_hull_finite)
    apply (metis less_eq_real_def)
    by (simp add: affine_dependent_explicit_finite)
qed
lemma frontier_convex_hull_explicit:
    fixes S :: 'a::euclidean_space set
    assumes }\neg\mathrm{ affine_dependent }
    shows frontier(convex hull S)=
        {y.\existsu.(\forallx\inS.0\lequx)^(DIM ('a)<\operatorname{card S \longrightarrow (\existsx\inS.ux=0))})=(\mp@code{la}
^
            sum uS=1^\operatorname{sum}(\lambdax.ux** x) S=y}
proof -
    have fs: finite S
        using assms by (simp add: aff_independent_finite)
    show ?thesis
    proof (cases DIM ('a)< card S)
        case True
        with assms fs show ?thesis
            by (simp add: rel_frontier_def frontier_def rel_frontier_convex_hull_explicit
[symmetric]
                    interior_convex_hull_explicit_minimal rel_interior_convex_hull_explicit)
    next
        case False
        then have card S \leq DIM ('a)
        by linarith
        then show ?thesis
            using assms fs
        apply (simp add: frontier_def interior_convex_hull_explicit finite_imp_compact)
        apply (simp add: convex_hull_finite)
        done
    qed
qed
lemma rel_frontier_convex_hull_cases:
    fixes S :: 'a::euclidean_space set
    assumes \negaffine_dependent S
    shows rel_frontier(convex hull S)=\bigcup{convex hull (S-{x})|x.x\inS}
proof -
```

```
    have fs: finite S
    using assms by (simp add:aff_independent_finite)
    {fix ua
    have }\forallx\inS.0\lequx\Longrightarrowa\inS\Longrightarrowua=0\Longrightarrow sum uS=1
        \existsxv.x\inS^
            (\forallx\inS-{x}.0\leqvx)^
                sumv }(S-{x})=1\wedge(\sumx\inS-{x}.vx\mp@subsup{*}{R}{}x)=(\sumx\inS
ux**
    apply (rule_tac x=a in exI)
    apply (rule_tac x=u in exI)
    apply (simp add:Groups_Big.sum_diff1 fs)
    done }
    moreover
    {fix a u
    have }a\inS\Longrightarrow\forallx\inS-{a}.0\lequx\Longrightarrow\operatorname{sum}u(S-{a})=1
                \existsv. (\forallx\inS.0 \leq vx)^
                    (\existsx\inS.v \overline{x}=0)^\operatorname{sumvS=1^(\sumx\inS.vx *R}x)=(\sumx\inS
- {a}.ux**R x)
    apply (rule_tac x=\lambdax. if x = a then 0 else u x in exI)
    apply (auto simp: sum.If_cases Diff_eq if_smult fs)
    done }
    ultimately show ?thesis
        using assms
        apply (simp add:rel_frontier_convex_hull_explicit)
        apply (auto simp add: convex_hull_finite fs Union_SetCompr_eq)
        done
qed
lemma frontier_convex_hull_eq_rel_frontier:
    fixes S :: 'a::euclidean_space set
    assumes \negaffine_dependent S
    shows frontier(convex hull S)=
                (if card S \leq DIM ('a) then convex hull S else rel_frontier(convex hull S))
    using assms
    unfolding rel_frontier_def frontier_def
    by (simp add: affine_independent_span_gt rel_interior_interior
                finite_imp_compact empty_interior_convex_hull aff_independent_finite)
lemma frontier_convex_hull_cases:
    fixes S :: 'a::euclidean_space set
    assumes \negaffine_dependent S
    shows frontier(convex hull S)=
            (if card S \leq DIM ('a) then convex hull S else \bigcup{convex hull (S - {x})
|x. x\inS})
by (simp add: assms frontier_convex_hull_eq_rel_frontier rel_frontier_convex_hull_cases)
lemma in_frontier_convex_hull:
    fixes S :: 'a::euclidean_space set
    assumes finite S card S \leqSuc (DIM ('a)) x G S
```

```
    shows }\quadx\in\mathrm{ frontier(convex hull S)
proof (cases affine_dependent S)
    case True
    with assms obtain y where y \inS and y:y\inaffine hull (S - {y})
        by (auto simp: affine_dependent_def)
    moreover have x closure (convex hull S)
        by (meson closure_subset hull_inc subset_eq \langlex \inS\rangle)
    moreover have x}\not\in\mathrm{ interior (convex hull S)
        using assms
            by (metis Suc_mono affine_hull_convex_hull affine_hull_nonempty_interior <y
S`y card.remove empty_iff empty_interior_affine_hull finite_Diff hull_redundant
insert_Diff interior_UNIV not_less)
    ultimately show ?thesis
        unfolding frontier_def by blast
next
    case False
    { assume card S=Suc (card Basis)
    then have cs: Suc 0<card S
        by (simp)
        with subset_singletonD have }\existsy\inS.y\not=
        by (cases S \leq {x}) fastforce+
    } note [dest!] = this
    show ?thesis using assms
        unfolding frontier_convex_hull_cases [OF False] Union_SetCompr_eq
        by (auto simp: le_Suc_eq hull_inc)
qed
lemma not_in_interior_convex_hull:
    fixes }S\mathrm{ :: 'a::euclidean_space set
    assumes finite S card S \leqSuc (DIM ('a)) x E S
    shows x }\not\in\mathrm{ interior(convex hull S)
using in_frontier_convex_hull [OF assms]
by (metis Diff_iff frontier_def)
lemma interior_convex_hull_eq_empty:
    fixes S :: 'a::euclidean_space set
    assumes card S=Suc (DIM ('a))
    shows interior(convex hull S)={}\longleftrightarrowaffine_dependent S
proof
    show affine_dependent S\Longrightarrow interior (convex hull S)={}
    proof (clarsimp simp:affine_dependent_def)
        fix }a
        assume b \inS b Gaffine hull (S - {b})
        then have interior(affine hull S)={} using assms
            by (metis DIM_positive One_nat_def Suc_mono card.remove card.infinite
empty_interior_affine_hull eq_iff hull_redundant insert_Diff not_less zero_le_one)
    then show interior (convex hull S)={}
        using affine_hull_nonempty_interior by fastforce
    qed
```

next
show interior $($ convex hull $S)=\{ \} \Longrightarrow$ affine_dependent S
by (metis affine_hull_convex_hull affine_hull_empty affine_independent_span_eq assms convex_convex_hull empty_not_UNIV rel_interior_eq_empty rel_interior_interior) qed

5.0.8 Coplanarity, and collinearity in terms of affine hull

definition coplanar where
coplanar $S \equiv \exists u v w . S \subseteq$ affine hull $\{u, v, w\}$
lemma collinear_affine_hull:
collinear $S \longleftrightarrow(\exists u v . S \subseteq$ affine hull $\{u, v\})$
proof (cases $S=\{ \}$)
case True then show ?thesis
by simp
next
case False
then obtain x where $x: x \in S$ by auto
\{ fix u
assume $*: \bigwedge x y . \llbracket x \in S ; y \in S \rrbracket \Longrightarrow \exists c . x-y=c *_{R} u$
have $\bigwedge y c . x-y=c *_{R} u \Longrightarrow \exists a b . y=a *_{R} x+b *_{R}(x+u) \wedge a+b$
$=1$
by (rule_tac $x=1+c$ in exI, rule_tac $x=-c$ in exI, simp add: algebra_simps)
then have $\exists u v . S \subseteq\left\{a *_{R} u+b *_{R} v \mid a b . a+b=1\right\}$
using $*[O F x]$ by (rule_tac $x=x$ in exI, rule_tac $x=x+u$ in exI, force)
\} moreover
$\{$ fix $u v x y$
assume $*: S \subseteq\left\{a *_{R} u+b *_{R} v \mid a b . a+b=1\right\}$
have $\exists c . x-y=c *_{R}(v-u)$ if $x \in S y \in S$
proof -
obtain $a r$ where $a+r=1 x=a *_{R} u+r *_{R} v$ using $*\langle x \in S\rangle$ by blast
moreover
obtain $b s$ where $b+s=1 y=b *_{R} u+s *_{R} v$
using $*\langle y \in S\rangle$ by blast
ultimately have $x-y=(r-s) *_{R}(v-u)$
by (simp add: algebra_simps) (metis scaleR_left.add)
then show ?thesis
by blast
qed
\} ultimately
show ?thesis
unfolding collinear_def affine_hull_2
by blast
qed
lemma collinear_closed_segment [simp]: collinear (closed_segment ab)
by (metis affine_hull_convex_hull collinear_affine_hull hull_subset segment_convex_hull)

```
lemma collinear_open_segment [simp]: collinear (open_segment a b)
    unfolding open_segment_def
    by (metis convex_hull_subset_affine_hull segment_convex_hull dual_order.trans
        convex_hull_subset_affine_hull Diff_subset collinear_affine_hull)
lemma collinear_between_cases:
    fixes c :: 'a::euclidean_space
    shows collinear {a,b,c}\longleftrightarrow between (b,c) a\vee between (c,a)b\vee between (a,b)
c
            (is ?lhs = ?rhs)
proof
    assume ?lhs
    then obtain uv where uv: \x. x \in{a,b,c}\Longrightarrow\existsc. }\=u=u+c*\mp@subsup{*}{R}{}
        by (auto simp: collinear_alt)
    show ?rhs
        using uv [of a] uv [of b] uv [of c] by (auto simp: between_1)
next
    assume ?rhs
    then show ?lhs
        unfolding between_mem_convex_hull
    by (metis (no_types, hide_lams) collinear_closed_segment collinear_subset hull_redundant
hull_subset insert_commute segment_convex_hull)
qed
```

lemma subset_continuous_image_segment_1:
fixes f :: 'a::euclidean_space \Rightarrow real
assumes continuous_on (closed_segment ab) f
shows closed_segment $(f a)(f b) \subseteq$ image f (closed_segment a b)
by (metis connected_segment convex_contains_segment ends_in_segment imageI
is_interval_connected_1 is_interval_convex connected_continuous_image [OF
assms])
lemma continuous_injective_image_segment_1:
fixes f :: 'a::euclidean_space \Rightarrow real
assumes contf: continuous_on (closed_segment ab) f
and injf: inj_on f (closed_segment ab)
shows f ' $($ closed_segment $a b)=$ closed_segment $(f a)(f b)$
proof
show closed_segment $(f a)(f b) \subseteq f$ ' closed_segment ab
by (metis subset_continuous_image_segment_1 contf)
show f ' closed_segment $a b \subseteq$ closed_segment $(f a)(f b)$
proof (cases $a=b$)
case True
then show ?thesis by auto
next
case False
then have fnot: $f a \neq f b$
using inj_onD injf by fastforce
moreover
have $f a \notin$ open_segment $(f c)(f b)$ if $c: c \in$ closed_segment $a b$ for c
proof (clarsimp simp add: open_segment_def)
assume fa: $f a \in$ closed_segment $(f c)(f b)$
moreover have closed_segment $(f c)(f b) \subseteq f$ ' closed_segment c b
by (meson closed_segment_subset contf continuous_on_subset convex_closed_segment ends_in_segment(2) subset_continuous_image_segment_1 that)
ultimately have $f a \in f^{\text {}}$ closed_segment $c b$
by blast
then have $a: a \in$ closed_segment $c b$
by (meson ends_in_segment inj_on_image_mem_iff injf subset_closed_segment that)
have $c b$: closed_segment $c b \subseteq$ closed_segment $a b$
by (simp add: closed_segment_subset that)
show $f a=f c$
proof (rule between_antisym)
show between $(f c, f b)(f a)$
by (simp add: between_mem_segment fa)
show between ($f a, f b$) ($f c$)
by (metis a cb between_antisym between_mem_segment between_triv1 sub-
set_iff)
qed
qed
moreover
have $f b \notin$ open_segment $(f a)(f c)$ if $c: c \in$ closed_segment $a b$ for c
proof (clarsimp simp add: open_segment_def fnot eq_commute)
assume $f b: f b \in$ closed_segment $(f a)(f c)$
moreover have closed_segment $(f a)(f c) \subseteq f$ ' closed_segment a c
by (meson contf continuous_on_subset ends_in_segment(1) subset_closed_segment subset_continuous_image_segment_1 that)
ultimately have $f b \in f$ ' closed_segment $a c$ by blast
then have $b: b \in$ closed_segment $a c$
by (meson ends_in_segment inj_on_image_mem_iff injf subset_closed_segment
that)
have ca: closed_segment a c \subseteq closed_segment ab
by (simp add: closed_segment_subset that)
show $f b=f c$
proof (rule between_antisym)
show between $(f c, f a)(f b)$
by (simp add: between_commute between_mem_segment fb)
show between $(f b, f a)(f c)$
by (metis b between_antisym between_commute between_mem_segment
between_triv2 that)
qed
qed
ultimately show ?thesis
by (force simp: closed_segment_eq_real_ivl open_segment_eq_real_ivl split: if_split_asm)

```
    qed
qed
lemma continuous_injective_image_open_segment_1:
    fixes f :: 'a::euclidean_space }=>\mathrm{ real
    assumes contf: continuous_on (closed_segment a b) f
        and injf: inj_on f (closed_segment a b)
        shows f'(open_segment a b) = open_segment (f a) (f b)
proof -
    have f`(open_segment a b) = f`(closed_segment a b) - {f a,f b}
    by (metis (no_types, hide_lams) empty_subsetI ends_in_segment image_insert im-
age_is_empty inj_on_image_set_diff injf insert_subset open_segment_def segment_open_subset_closed)
    also have ... = open_segment (f a) (f b)
        using continuous_injective_image_segment_1 [OF assms]
        by (simp add: open_segment_def inj_on_image_set_diff [OF injf])
    finally show ?thesis.
qed
lemma collinear_imp_coplanar:
    collinear s==> coplanar s
by (metis collinear_affine_hull coplanar_def insert_absorb2)
lemma collinear_small:
    assumes finite s card s\leq2
        shows collinear s
proof -
    have card s=0\vee card s=1 \vee card s=2
        using assms by linarith
    then show ?thesis using assms
        using card_eq_SucD numeral_2_eq_2 by (force simp: card_1_singleton_iff)
qed
lemma coplanar_small:
    assumes finite s card s\leq3
        shows coplanar s
proof -
    consider card s\leq2 | card s=Suc (Suc (Suc 0))
        using assms by linarith
    then show ?thesis
    proof cases
        case 1
        then show ?thesis
            by (simp add:\{finite s` collinear_imp_coplanar collinear_small)
    next
        case 2
        then show ?thesis
            using hull_subset [of {-,,_}]
            by (fastforce simp: coplanar_def dest!: card_eq_SucD)
    qed
```


qed

lemma coplanar_empty: coplanar $\}$
by (simp add: coplanar_small)
lemma coplanar_sing: coplanar $\{a\}$
by (simp add: coplanar_small)
lemma coplanar_2: coplanar $\{a, b\}$
by (auto simp: card_insert_if coplanar_small)
lemma coplanar_3: coplanar $\{a, b, c\}$
by (auto simp: card_insert_if coplanar_small)
lemma collinear_affine_hull_collinear: collinear $($ affine hull $s) \longleftrightarrow$ collinear s unfolding collinear_affine_hull
by (metis affine_affine_hull subset_hull hull_hull hull_mono)
lemma coplanar_affine_hull_coplanar: coplanar(affine hull s) \longleftrightarrow coplanar s unfolding coplanar_def
by (metis affine_affine_hull subset_hull hull_hull hull_mono)
lemma coplanar_linear_image:
fixes $f::$ ' $a::$ euclidean_space \Rightarrow ' $b::$ real_normed_vector
assumes coplanar S linear f shows coplanar $(f$ ' $S)$
proof -
$\{$ fix $u v w$
assume $S \subseteq$ affine hull $\{u, v, w\}$
then have f ' $S \subseteq f$ ' (affine hull $\{u, v, w\})$
by (simp add: image_mono)
then have f ' $S \subseteq$ affine hull $(f$ ' $\{u, v, w\})$
by (metis assms(2) linear_conv_bounded_linear affine_hull_linear_image)
\} then
show ?thesis
by auto (meson assms(1) coplanar_def)
qed
lemma coplanar_translation_imp:
assumes coplanar S shows coplanar $\left((\lambda x . a+x)^{\prime} S\right)$
proof -
obtain $u v w$ where $S \subseteq$ affine hull $\{u, v, w\}$
by (meson assms coplanar_def)
then have $(+) a$ ' $S \subseteq$ affine hull $\{u+a, v+a, w+a\}$
using affine_hull_translation [of $a\{u, v, w\}$ for $u v w$]
by (force simp: add.commute)
then show ?thesis
unfolding coplanar_def by blast
qed

```
lemma coplanar_translation_eq: coplanar \(\left((\lambda x . a+x)^{\prime} S\right) \longleftrightarrow\) coplanar \(S\)
    by (metis (no_types) coplanar_translation_imp translation_galois)
lemma coplanar_linear_image_eq:
    fixes \(f\) :: 'a::euclidean_space \(\Rightarrow\) 'b::euclidean_space
    assumes linear \(f\) inj \(f\) shows coplanar \((f\) ' \(S)=\) coplanar \(S\)
proof
    assume coplanar \(S\)
    then show coplanar ( \(f\) ' \(S\) )
        using assms(1) coplanar_linear_image by blast
next
    obtain \(g\) where \(g\) : linear \(g g \circ f=i d\)
        using linear_injective_left_inverse [OF assms]
        by blast
    assume coplanar ( \(f\) ' \(S\) )
    then show coplanar \(S\)
        by (metis coplanar_linear_image \(g(1) g(2)\) id_apply image_comp image_id)
qed
lemma coplanar_subset: \(\llbracket\) coplanar \(t ; S \subseteq t \rrbracket \Longrightarrow\) coplanar \(S\)
    by (meson coplanar_def order_trans)
lemma affine_hull_3_imp_collinear: \(c \in\) affine hull \(\{a, b\} \Longrightarrow\) collinear \(\{a, b, c\}\)
    by (metis collinear_2 collinear_affine_hull_collinear hull_redundant insert_commute)
lemma collinear_3_imp_in_affine_hull:
    assumes collinear \(\{a, b, c\} a \neq b\) shows \(c \in\) affine hull \(\{a, b\}\)
proof -
    obtain \(u x y\) where \(b-a=y *_{R} u c-a=x *_{R} u\)
        using assms unfolding collinear_def by auto
    with \(\langle a \neq b\rangle\) have \(\exists v . c=(1-x / y) *_{R} a+v *_{R} b \wedge 1-x / y+v=1\)
        by (simp add: algebra_simps)
    then show ?thesis
        by (simp add: hull_inc mem_affine)
qed
lemma collinear_3_affine_hull:
    assumes \(a \neq b\)
    shows collinear \(\{a, b, c\} \longleftrightarrow c \in\) affine hull \(\{a, b\}\)
    using affine_hull_3_imp_collinear assms collinear_3_imp_in_affine_hull by blast
lemma collinear_3_eq_affine_dependent:
    collinear \(\{a, b, c\} \longleftrightarrow a=b \vee a=c \vee b=c \vee\) affine_dependent \(\{a, b, c\}\)
proof (cases \(a=b \vee a=c \vee b=c\) )
    case True
    then show ?thesis
        by (auto simp: insert_commute)
next
    case False
```

```
    then have collinear \(\{a, b, c\}\) if affine_dependent \(\{a, b, c\}\)
        using that unfolding affine_dependent_def
    by (auto simp: insert_Diff_if; metis affine_hull_3_imp_collinear insert_commute)
    moreover
    have affine_dependent \(\{a, b, c\}\) if collinear \(\{a, b, c\}\)
        using False that by (auto simp: affine_dependent_def collinear_3_affine_hull
insert_Diff_if)
    ultimately
    show ?thesis
        using False by blast
qed
lemma affine_dependent_imp_collinear_3:
    affine_dependent \(\{a, b, c\} \Longrightarrow\) collinear \(\{a, b, c\}\)
    by (simp add: collinear_3_eq_affine_dependent)
lemma collinear_3: NO_MATCH \(0 x \Longrightarrow\) collinear \(\{x, y, z\} \longleftrightarrow\) collinear \(\{0, x-y\),
\(z-y\}\)
    by (auto simp add: collinear_def)
lemma collinear_3_expand:
    collinear \(\{a, b, c\} \longleftrightarrow a=c \vee\left(\exists u . b=u *_{R} a+(1-u) *_{R} c\right)\)
proof -
    have collinear \(\{a, b, c\}=\) collinear \(\{a, c, b\}\)
    by (simp add: insert_commute)
    also have \(\ldots=\) collinear \(\{0, a-c, b-c\}\)
    by (simp add: collinear_3)
    also have \(\ldots \longleftrightarrow\left(a=c \vee b=c \vee\left(\exists c a . b-c=c a *_{R}(a-c)\right)\right)\)
    by (simp add: collinear_lemma)
    also have \(\ldots \longleftrightarrow a=c \vee\left(\exists u . b=u *_{R} a+(1-u) *_{R} c\right)\)
    by (cases \(a=c \vee b=c\) ) (auto simp: algebra_simps)
    finally show? ?thesis.
qed
lemma collinear_aff_dim: collinear \(S \longleftrightarrow\) aff_dim \(S \leq 1\)
proof
    assume collinear \(S\)
    then obtain \(u\) and \(v:: ' a\) where aff_dim \(S \leq a f f-d i m\{u, v\}\)
        by (metis 〈collinear \(S\) 〉aff_dim_affine_hull aff_dim_subset collinear_affine_hull)
    then show aff_dim \(S \leq 1\)
        using order_trans by fastforce
next
    assume aff_dim \(S \leq 1\)
    then have le1: aff_dim (affine hull \(S\) ) \(\leq 1\)
        by simp
    obtain \(B\) where \(B \subseteq S\) and \(B: \neg\) affine_dependent \(B\) affine hull \(S=\) affine hull
B
            using affine_basis_exists [of S] by auto
    then have finite \(B\) card \(B \leq 2\)
```

using B le1 by（auto simp：affine＿independent＿iff＿card）
then have collinear B
by（rule collinear＿small）
then show collinear S
by（metis 〈affine hull $S=$ affine hull B〉collinear＿affine＿hull＿collinear）
qed
lemma collinear＿midpoint：collinear $\{a$, midpoint $a b, b\}$
proof－
have $\S: \llbracket a \neq$ midpoint $a b ; b-$ midpoint $a b \neq-1 *_{R}(a-$ midpoint $a b) \rrbracket \Longrightarrow$
$b=$ midpoint $a b$
by（simp add：algebra＿simps）
show ？thesis
by（auto simp：collinear＿3 collinear＿lemma intro：§）
qed
lemma midpoint＿collinear：
fixes $a b c::$＇$a:$ ：：real＿normed＿vector
assumes $a \neq c$
shows $b=$ midpoint $a c \longleftrightarrow$ collinear $\{a, b, c\} \wedge$ dist $a b=$ dist $b c$
proof－
have $*: a-\left(u *_{R} a+(1-u) *_{R} c\right)=(1-u) *_{R}(a-c)$
$u *_{R} a+(1-u) *_{R} c-c=u *_{R}(a-c)$
$|1-u|=|u| \longleftrightarrow u=1 / 2$ for $u:$ ：real
by（auto simp：algebra＿simps）
have $b=$ midpoint a $c \Longrightarrow$ collinear $\{a, b, c\}$
using collinear＿midpoint by blast
moreover have $b=$ midpoint $a c \longleftrightarrow$ dist $a b=$ dist $b c$ if collinear $\{a, b, c\}$
proof－
consider $a=c \mid u$ where $b=u *_{R} a+(1-u) *_{R} c$
using \langle collinear $\{a, b, c\}$ 〉 unfolding collinear＿3＿expand by blast
then show ？thesis
proof cases
case 2
with assms have dist $a b=$ dist $b c \Longrightarrow b=$ midpoint $a c$
by（simp add：dist＿norm＊midpoint＿def scaleR＿add＿right del：divide＿const＿simps）
then show ？thesis
by（auto simp：dist＿midpoint）
qed（use assms in auto）
qed
ultimately show ？thesis by blast
qed
lemma between＿imp＿collinear：
fixes x ：：＇a ：：euclidean＿space
assumes between $(a, b) x$
shows collinear $\{a, x, b\}$
proof（cases $x=a \vee x=b \vee a=b$ ）
case True with assms show ？thesis

```
    by (auto simp: dist_commute)
next
    case False
    then have False if \c. b-x\not=c**R (a-x)
        using that [of -(norm (b-x) / norm (x-a))] assms
    by (simp add: between_norm vector_add_divide_simps flip: real_vector.scale_minus_right)
    then show ?thesis
        by (auto simp: collinear_3 collinear_lemma)
qed
lemma midpoint_between:
    fixes a b :: 'a::euclidean_space
    shows b= midpoint a c \longleftrightarrow between (a,c) b^dist a b = dist b c
proof (cases a=c)
    case False
    show ?thesis
        using False between_imp_collinear between_midpoint(1) midpoint_collinear by
blast
qed (auto simp: dist_commute)
lemma collinear_triples:
    assumes }a\not=
        shows collinear(insert a (insert b S)) \longleftrightarrow(\forallx\inS. collinear{a,b,x})
            (is ?lhs = ?rhs)
proof safe
    fix }
    assume ?lhs and x }\in
    then show collinear {a,b,x}
        using collinear_subset by force
next
    assume ?rhs
    then have }\forallx\inS.collinear {a,x,b
        by (simp add: insert_commute)
    then have *: \existsu. x=u**R}a+(1-u)\mp@subsup{*}{R}{}b\mathrm{ if }x\in\mathrm{ insert a (insert b S) for x
        using that assms collinear_3_expand by fastforce+
    have \existsc. x-y=c**R(b-a)
        if x:x\in insert a (insert bS) and y: y \in insert a (insert b S) for x y
    proof -
        obtain uv where x=u**}a+(1-u)\mp@subsup{*}{R}{}by=v\mp@subsup{*}{R}{}a+(1-v)\mp@subsup{*}{R}{}
            using *x y by presburger
        then have }x-y=(v-u)*R(b-a
            by (simp add: scale_left_diff_distrib scale_right_diff_distrib)
        then show ?thesis ..
    qed
    then show?lhs
        unfolding collinear_def by metis
qed
lemma collinear_4_3:
```

```
assumes \(a \neq b\)
    shows collinear \(\{a, b, c, d\} \longleftrightarrow\) collinear \(\{a, b, c\} \wedge\) collinear \(\{a, b, d\}\)
    using collinear_triples \([\) OF assms, of \(\{c, d\}]\) by (force simp:)
lemma collinear_3_trans:
    assumes collinear \(\{a, b, c\}\) collinear \(\{b, c, d\} \quad b \neq c\)
        shows collinear \(\{a, b, d\}\)
proof -
    have collinear \(\{b, c, a, d\}\)
        by (metis (full_types) assms collinear_4-3 insert_commute)
    then show ?thesis
        by (simp add: collinear_subset)
qed
lemma affine_hull_2_alt:
    fixes \(a b\) :: 'a::real_vector
    shows affine hull \(\{a, b\}=\) range \(\left(\lambda u . a+u *_{R}(b-a)\right)\)
proof -
    have 1: \(u *_{R} a+v *_{R} b=a+v *_{R}(b-a)\) if \(u+v=1\) for \(u v\)
        using that
        by (simp add: algebra_simps flip: scaleR_add_left)
    have 2: \(a+u *_{R}(b-a)=(1-u) *_{R} a+u *_{R} b\) for \(u\)
        by (auto simp: algebra_simps)
    show ?thesis
        by (force simp add: affine_hull_2 dest: 1 intro!: 2)
    qed
    lemma interior_convex_hull_3_minimal:
    fixes \(a\) :: ' \(a\) ::euclidean_space
    assumes \(\neg\) collinear \(\{a, b, c\}\) and 2: \(\operatorname{DIM}\left({ }^{\prime} a\right)=2\)
    shows interior (convex hull \(\{a, b, c\})=\)
        \(\left\{v . \exists x y z .0<x \wedge 0<y \wedge 0<z \wedge x+y+z=1 \wedge x *_{R} a+y *_{R} b\right.\)
\(\left.+z *_{R} c=v\right\}\)
            (is ?lhs = ? \(r h s\) )
proof
    have \(a b c: a \neq b a \neq c b \neq c \neg\) affine_dependent \(\{a, b, c\}\)
        using assms by (auto simp: collinear_3_eq_affine_dependent)
    with 2 show ?lhs \(\subseteq\) ? rhs
        by (fastforce simp add: interior_convex_hull_explicit_minimal)
    show ? \(r h s \subseteq\) ? lhs
        using \(a b c 2\)
        apply (clarsimp simp add: interior_convex_hull_explicit_minimal)
    subgoal for \(x y z\)
            by (rule_tac \(x=\lambda r\). (if \(r=a\) then \(x\) else if \(r=b\) then \(y\) else if \(r=c\) then \(z\) else
\(0)\) in exI) auto
        done
qed
```


5.0.9 Basic lemmas about hyperplanes and halfspaces

lemma halfspace_Int_eq:

$$
\begin{aligned}
& \{x . a \cdot x \leq b\} \cap\{x . b \leq a \cdot x\}=\{x . a \cdot x=b\} \\
& \{x . b \leq a \cdot x\} \cap\{x . a \cdot x \leq b\}=\{x . a \cdot x=b\}
\end{aligned}
$$

by auto
lemma hyperplane_eq_Ex:
assumes $a \neq 0$ obtains x where $a \cdot x=b$
by (rule_tac $x=(b /(a \cdot a)) *_{R} a$ in that $)(\operatorname{simp}$ add: assms $)$
lemma hyperplane_eq_empty:
$\{x . a \cdot x=b\}=\{ \} \longleftrightarrow a=0 \wedge b \neq 0$
using hyperplane_eq_Ex
by (metis (mono_tags, lifting) empty_Collect_eq inner_zero_left)
lemma hyperplane_eq_UNIV:
$\{x . a \cdot x=b\}=U N I V \longleftrightarrow a=0 \wedge b=0$
proof -
have $a=0 \wedge b=0$ if UNIV $\subseteq\{x . a \cdot x=b\}$ using subsetD [OF that, where $c=((b+1) /(a \cdot a)) *_{R} a$] by (simp add: field_split_simps split: if_split_asm)
then show? ?thesis by force
qed
lemma halfspace_eq_empty_lt:

$$
\{x \cdot a \cdot x<b\}=\{ \} \longleftrightarrow a=0 \wedge b \leq 0
$$

proof -
have $a=0 \wedge b \leq 0$ if $\{x . a \cdot x<b\} \subseteq\}$ using subsetD [OF that, where $\left.c=((b-1) /(a \cdot a)) *_{R} a\right]$ by (force simp add: field_split_simps split: if_split_asm)
then show? ?thesis by force
qed
lemma halfspace_eq_empty_gt:
$\{x . a \cdot x>b\}=\{ \} \longleftrightarrow a=0 \wedge b \geq 0$
using halfspace_eq_empty_lt [of $-a-b]$
by simp
lemma halfspace_eq_empty_le:
$\{x . a \cdot x \leq b\}=\{ \} \longleftrightarrow a=0 \wedge b<0$
proof -
have $a=0 \wedge b<0$ if $\{x . a \cdot x \leq b\} \subseteq\}$ using subsetD [OF that, where $\left.c=((b-1) /(a \cdot a)) *_{R} a\right]$ by (force simp add: field_split_simps split: if_split_asm)
then show? ?hesis by force
qed
lemma halfspace_eq_empty_ge:

$$
\{x . a \cdot x \geq b\}=\{ \} \longleftrightarrow a=0 \wedge b>0
$$

using halfspace_eq_empty_le $[o f-a-b]$ by simp

5.0.10 Use set distance for an easy proof of separation properties

```
proposition separation_closures:
    fixes }S\mathrm{ :: 'a::euclidean_space set
    assumes S\cap closure T={} T\cap closure S={}
    obtains UV where U\capV}={}\mathrm{ open U open VS}\subseteqUT\subseteq
proof (cases S={}\veeT={})
    case True with that show ?thesis by auto
next
    case False
    define f}\mathrm{ where f}\equiv\lambdax. setdist {x} T - setdist {x} 
    have contf: continuous_on UNIV f
        unfolding f_def by (intro continuous_intros continuous_on_setdist)
    show ?thesis
    proof (rule_tac U ={x.fx>0} and V ={x.fx<0} in that)
        show {x.0<fx}\cap{x.fx<0}={}
            by auto
        show open {x.0<fx}
            by (simp add: open_Collect_less contf)
        show open {x.fx<0}
            by (simp add: open_Collect_less contf)
        have }\x.x\inS\Longrightarrow\mathrm{ setdist {x} T}\not=0\x.x\inT\Longrightarrow setdist {x} S\not=
        by (meson False assms disjoint_iff setdist_eq_0_sing_1)+
        then show S\subseteq{x.0<fx} T\subseteq{x.fx<0}
            using less_eq_real_def by (fastforce simp add: f_def setdist_sing_in_set)+
    qed
qed
lemma separation_normal:
    fixes S :: 'a::euclidean_space set
    assumes closed S closed TS\capT={}
    obtains UV where open U open V S\subseteqUT\subseteqVU\capV={}
using separation_closures [of S T]
by (metis assms closure_closed disjnt_def inf_commute)
lemma separation_normal_local:
    fixes S :: 'a::euclidean_space set
    assumes US: closedin (top_of_set U)S
        and UT: closedin (top_of_set U) T
        and}S\capT={
    obtains S' T' where openin (top_of_set U) S'
                    openin (top_of_set U) T'
                            S\subseteq\mp@subsup{S}{}{\prime}T\subseteq\mp@subsup{T}{}{\prime}}\mp@subsup{S}{}{\prime}\cap\mp@subsup{T}{}{\prime}={
proof (cases S={}\veeT={})
    case True with that show ?thesis
        using UT US by (blast dest: closedin_subset)
```

```
next
    case False
    define f}\mathrm{ where f}\equiv\lambdax\mathrm{ . setdist {x} T - setdist {x} S
    have contf: continuous_on Uf
        unfolding f_def by (intro continuous_intros)
    show ?thesis
    proof (rule_tac S' = (U\capf-'`{0<..}) and T' = (U\capf -'{..<0}) in that)
        show (U\capf-'{0<..}) \cap(U\capf-'{..<0})={}
            by auto
        show openin (top_of_set U) (U\capf -`{0<..})
        by (rule continuous_openin_preimage [where T=UNIV]) (simp_all add: contf)
    next
        show openin (top_of_set U) (U\capf -`{..<0})
        by (rule continuous_openin_preimage [where T=UNIV]) (simp_all add: contf)
    next
        have S\subseteqUT\subseteqU
            using closedin_imp_subset assms by blast+
        then show }S\subseteqU\capf-'{0<..}T\subseteqU\capf-'{..<0
            using assms False by (force simp add: f_def setdist_sing_in_set intro!: set-
dist_gt_0_closedin)+
    qed
qed
lemma separation_normal_compact:
    fixes S :: 'a::euclidean_space set
    assumes compact S closed T S\capT={}
    obtains UV where open U compact(closure U) open VS\subseteqUT\subseteqVU\capV
= {}
proof -
    have closed S bounded S
        using assms by (auto simp: compact_eq_bounded_closed)
    then obtain r where r>0 and r:S\subseteq ball 0r
        by (auto dest!: bounded_subset_ballD)
    have **: closed (T\cup- ball 0 r)S\cap(T\cup- ball 0 r ) ={}
        using assms r by blast+
    then obtain UV where UV: open U open VS\subseteqUT\cup- ball 0r\subseteqVU\cap
V={}
        by (meson 〈closed S〉 separation_normal)
    then have compact(closure U)
            by (meson bounded_ball bounded_subset compact_closure compl_le_swap2 dis-
joint_eq_subset_Compl le_sup_iff)
    with UV show thesis
        using that by auto
qed
```


5.0.11 Connectedness of the intersection of a chain

proposition connected_chain:

fixes $\mathcal{F}::$ ' a :: euclidean_space set set

```
    assumes \(c c: \wedge S . S \in \mathcal{F} \Longrightarrow\) compact \(S \wedge\) connected \(S\)
    and linear: \(\wedge S T . S \in \mathcal{F} \wedge T \in \mathcal{F} \Longrightarrow S \subseteq T \vee T \subseteq S\)
    shows connected \((\bigcap \mathcal{F})\)
proof (cases \(\mathcal{F}=\{ \}\) )
    case True then show ?thesis
        by auto
next
    case False
    then have \(c f: \operatorname{compact}(\bigcap \mathcal{F})\)
        by (simp add: cc compact_Inter)
    have False if \(A B\) : closed \(A\) closed \(B A \cap B=\{ \}\)
                and \(A B e q: A \cup B=\bigcap \mathcal{F}\) and \(A \neq\{ \} B \neq\{ \}\) for \(A B\)
    proof -
        obtain \(U V\) where open \(U\) open \(V A \subseteq U B \subseteq V U \cap V=\{ \}\)
            using separation_normal [OF AB] by metis
    obtain \(K\) where \(K \in \mathcal{F}\) compact \(K\)
                using cc False by blast
    then obtain \(N\) where open \(N\) and \(K \subseteq N\)
        by blast
    let \({ }^{\text {C }} \mathbf{C}=\operatorname{insert}(U \cup V)\left((\lambda S . N-S)^{\prime} \mathcal{F}\right)\)
    obtain \(\mathcal{D}\) where \(\mathcal{D} \subseteq\) ? \(\mathcal{C}\) finite \(\mathcal{D} K \subseteq \bigcup \mathcal{D}\)
    proof (rule compactE [OF (compact K)])
        show \(K \subseteq \bigcup\left(\right.\) insert \(\left.(U \cup V)\left((-) N^{‘} \mathcal{F}\right)\right)\)
            using \(\langle K \subseteq N\rangle A B e q\langle A \subseteq U\rangle\langle B \subseteq V\rangle\) by auto
        show \(\wedge B . B \in \operatorname{insert}(U \cup V)\left((-) N^{‘} \mathcal{F}\right) \Longrightarrow\) open \(B\)
            by (auto simp: 〈open \(U\rangle\langle o p e n ~ V\rangle\) open_Un <open \(N\rangle\) cc compact_imp_closed
open_Diff)
    qed
    then have \(\operatorname{finite}(\mathcal{D}-\{U \cup V\})\)
        by blast
    moreover have \(\mathcal{D}-\{U \cup V\} \subseteq(\lambda S . N-S)^{\prime} \mathcal{F}\)
        using \(\langle\mathcal{D} \subseteq\) ? \(\mathcal{C}\rangle\) by blast
    ultimately obtain \(\mathcal{G}\) where \(\mathcal{G} \subseteq \mathcal{F}\) finite \(\mathcal{G}\) and Deq: \(\mathcal{D}-\{U \cup V\}=(\lambda S\).
\(N-S)\) ' \(\mathcal{G}\)
            using finite_subset_image by metis
    obtain \(J\) where \(J \in \mathcal{F}\) and \(J:(\bigcup S \in \mathcal{G} . N-S) \subseteq N-J\)
    proof (cases \(\mathcal{G}=\{ \}\) )
        case True
        with \(\langle\mathcal{F} \neq\{ \}\rangle\) that show ?thesis
            by auto
    next
        case False
        have \(\wedge S T . \llbracket S \in \mathcal{G} ; T \in \mathcal{G} \rrbracket \Longrightarrow S \subseteq T \vee T \subseteq S\)
            by (meson \(\langle\mathcal{G} \subseteq \mathcal{F}\rangle\) in_mono local.linear)
        with \(\langle\) finite \(\mathcal{G}\rangle\langle\mathcal{G} \neq\{ \}\rangle\)
        have \(\exists J \in \mathcal{G} .(\bigcup S \in \mathcal{G} . N-S) \subseteq N-J\)
        proof induction
            case (insert \(X \mathcal{H})\)
            show ?case
```

```
        proof (cases \mathcal{H}={})
            case True then show ?thesis by auto
        next
            case False
            then have }\ST.\llbracketS\in\mathcal{H;T\in\mathcal{H}\rrbracket\LongrightarrowS\subseteqT\veeT\subseteqS
            by (simp add: insert.prems)
            with insert.IH False obtain }J\mathrm{ where }J\in\mathcal{H}\mathrm{ and }J:(\bigcupY\in\mathcal{H.N - Y)
\subseteq N - J
            by metis
            have N-J\subseteqN-X\veeN-X\subseteqN-J
                    by (meson Diff_mono }\langleJ\in\mathcal{H}\rangle\mathrm{ insert.prems(2) insert_iff order_refl)
            then show ?thesis
            proof
                    assume N-J\subseteqN-X with J show ?thesis
                    by auto
            next
                    assume N-X\subseteqN-J
                    with J have N-X\cup\bigcup((-)N'\mathcal{H}\subseteq\subseteqN-J
                    by auto
            with }\langleJ\in\mathcal{H}\rangle\mathrm{ show ?thesis
                    by blast
            qed
        qed
        qed simp
        with }\langle\mathcal{G}\subseteq\mathcal{F}\rangle\mathrm{ show ?thesis by (blast intro: that)
    qed
    have K\subseteq\bigcup(insert (U\cupV)(\mathcal{D - {U\cupV}))}
        using <K\subseteq\bigcup\mathcal{D}\ by auto
    also have ...\subseteq(U\cupV)\cup(N-J)
        by (metis (no_types, hide_lams) Deq Un_subset_iff Un_upper2 J Union_insert
order_trans sup_ge1)
    finally have }J\capK\subseteqU\cup
        by blast
    moreover have connected ( }J\capK
        by (metis Int_absorb1 \langleJ \in\mathcal{F}\rangle\langleK\in\mathcal{F}\ranglecc inf.orderE local.linear)
    moreover have }U\cap(J\capK)\not={
        using ABeq }\langleJ\in\mathcal{F}\rangle\langleK\in\mathcal{F}\rangle\langleA\not={}\rangle\langleA\subseteqU\rangle\mathrm{ by blast
    moreover have }V\cap(J\capK)\not={
        using ABeq }\langleJ\in\mathcal{F}\rangle\langleK\in\mathcal{F}\rangle\langleB\not={}\rangle\langleB\subseteqV\rangle\mathrm{ by blast
    ultimately show False
        using connectedD [of J\capKUV] <open U\rangle\langleopen }V\rangle\langleU\capV={}\rangle b
auto
    qed
    with cf show ?thesis
        by (auto simp: connected_closed_set compact_imp_closed)
qed
lemma connected_chain_gen:
    fixes \mathcal{F :: 'a :: euclidean_space set set}
```

```
    assumes \(X: X \in \mathcal{F}\) compact \(X\)
    and \(c c: \wedge T . T \in \mathcal{F} \Longrightarrow\) closed \(T \wedge\) connected \(T\)
    and linear: \(\wedge S T . S \in \mathcal{F} \wedge T \in \mathcal{F} \Longrightarrow S \subseteq T \vee T \subseteq S\)
    shows connected \((\bigcap \mathcal{F})\)
proof -
    have \(\bigcap \mathcal{F}=(\bigcap T \in \mathcal{F} . X \cap T)\)
        using \(X\) by blast
    moreover have connected \((\bigcap T \in \mathcal{F} . X \cap T)\)
    proof (rule connected_chain)
        show \(\wedge T . T \in(\cap) X^{\prime} \mathcal{F} \Longrightarrow\) compact \(T \wedge\) connected \(T\)
        using cc \(X\) by auto (metis inf.absorb2 inf.orderE local.linear)
        show \(\wedge S T . S \in(\cap) X^{\prime} \mathcal{F} \wedge T \in(\cap) X^{\prime} \mathcal{F} \Longrightarrow S \subseteq T \vee T \subseteq S\)
        using local.linear by blast
    qed
    ultimately show ?thesis
        by metis
qed
lemma connected_nest:
    fixes \(S\) :: ' \(a::\) linorder \(\Rightarrow\) ' \(b::\) euclidean_space set
    assumes \(S: \wedge n\). compact \((S n) \bigwedge n\). connected \((S n)\)
        and nest: \(\bigwedge m n . m \leq n \Longrightarrow S n \subseteq S m\)
    shows connected \((\bigcap(\) range \(S))\)
proof (rule connected_chain)
    show \(\bigwedge A T . A \in\) range \(S \wedge T \in\) range \(S \Longrightarrow A \subseteq T \vee T \subseteq A\)
    by (metis image_iff le_cases nest)
qed (use \(S\) in blast)
lemma connected_nest_gen:
    fixes \(S::\) ' \(a::\) linorder \(\Rightarrow\) ' \(b::\) euclidean_space set
    assumes \(S: \bigwedge n . \operatorname{closed}(S n) \bigwedge n\). connected \((S n) \operatorname{compact}(S k)\)
        and nest: \(\bigwedge m n . m \leq n \Longrightarrow S n \subseteq S m\)
    shows connected \((\bigcap(\) range \(S))\)
proof (rule connected_chain_gen [of Sk])
    show \(\bigwedge A T . A \in\) range \(S \wedge T \in\) range \(S \Longrightarrow A \subseteq T \vee T \subseteq A\)
        by (metis imageE le_cases nest)
qed (use \(S\) in auto)
```


5.0.12 Proper maps, including projections out of compact sets

lemma finite_indexed_bound:
assumes A : finite $A \bigwedge x . x \in A \Longrightarrow \exists n::^{\prime} a::$ linorder. $P x n$
shows $\exists m . \forall x \in A . \exists k \leq m . P x k$
using A
proof (induction A)
case empty then show ?case by force
next
case (insert a A)

```
    then obtain mn where }\forallx\inA.\existsk\leqm.P xkPa
        by force
    then show ?case
        by (metis dual_order.trans insert_iff le_cases)
qed
proposition proper_map:
    fixes f :: 'a::heine_borel # 'b::heine_borel
    assumes closedin (top_of_set S)K
        and com: \U.\llbracketU\subseteqT; compact U\rrbracket\Longrightarrow compact (S\capf-'U)
        and f'S\subseteqT
        shows closedin (top_of_set T) (f'K)
proof -
    have K\subseteqS
        using assms closedin_imp_subset by metis
    obtain C where closed C and Keq: K=S\capC
            using assms by (auto simp: closedin_closed)
    have *: y\inf'K}\mathrm{ if }y\inT\mathrm{ and }y:y\mathrm{ islimpt f' }K\mathrm{ for }
    proof -
        obtain h where }\foralln.(\existsx\inK.hn=fx)\wedgehn\not=y inj h and hlim: (h
y) sequentially
                using \langley\inT\rangle y by (force simp: limpt_sequential_inj)
            then obtain }X\mathrm{ where X: \n. X n GK^hn=f(Xn)^hn#=y
                by metis
            then have fX: \bigwedgen.f(Xn)=hn
                by metis
            define \Psi where \Psi \equiv\lambdan. {a\inK.fa\ininsert y (range (\lambdai.f(X(n+i))))}
            have compact (C\cap(S\capf-' insert y (range (\lambdai.f(X(n+i)))))) for n
    proof (intro closed_Int_compact [OF (closed C> com] compact_sequence_with_limit)
                show insert y (range (\lambdai.f(X (n+i))))\subseteqT
```



```
            show (\lambdai.f(X(n+i)))\longrightarrowy
            by (simp add: fX add.commute [of n] LIMSEQ_ignore_initial_segment [OF
hlim])
            qed
            then have comf: compact (\Psi 
                by (simp add: Keq Int_def \Psi_def conj_commute)
            have ne:\bigcap\mathcal{F}\not={}
                    if finite \mathcal{F}
                        and \mathcal{F}:^t.t\in\mathcal{F}\Longrightarrow(\existsn.t=\Psi n)
                    for \mathcal{F}
    proof -
            obtain m where m: \t.t\in\mathcal{F}\Longrightarrow\existsk\leqm.t=\Psik
                by (rule exE [OF finite_indexed_bound [OF<{inite \mathcal{F}}\mathcal{F}]]\mathrm{ , force+)
            have }Xm\in\bigcap\mathcal{F
            using X le_Suc_ex by (fastforce simp: \Psi_def dest:m)
            then show ?thesis by blast
    qed
    have (\bigcapn.\Psi n) \not={}
```

```
    proof (rule compact_fip_Heine_Borel)
        show \(\backslash \mathcal{F}^{\prime}\). \(\llbracket\) finite \(\mathcal{F}^{\prime} ; \mathcal{F}^{\prime} \subseteq\) range \(\Psi \rrbracket \Longrightarrow \bigcap \mathcal{F}^{\prime} \neq\{ \}\)
            by (meson ne rangeE subset_eq)
    qed (use comf in blast)
    then obtain \(x\) where \(x \in K \bigwedge n .(f x=y \vee(\exists u . f x=h(n+u)))\)
    by (force simp add: \(\Psi \_d e f f X\) )
    then show ?thesis
    unfolding image_iff by (metis 〈inj h> le_add1 not_less_eq_eq rangeI range_ex1_eq)
qed
with assms closedin_subset show ?thesis
    by (force simp: closedin_limpt)
qed
lemma compact_continuous_image_eq:
    fixes \(f\) :: ' \(a:\) :heine_borel \(\Rightarrow\) ' \(b::\) heine_borel
    assumes \(f\) : inj_on \(f S\)
    shows continuous_on \(S f \longleftrightarrow\left(\forall T\right.\). compact \(\left.T \wedge T \subseteq S \longrightarrow \operatorname{compact}\left(f^{\prime} T\right)\right)\)
        (is ?lhs \(=\) ? \(r h s\) )
proof
    assume ?lhs then show ?rhs
        by (metis continuous_on_subset compact_continuous_image)
next
    assume RHS: ?rhs
    obtain \(g\) where \(g f: \bigwedge x . x \in S \Longrightarrow g(f x)=x\)
        by (metis inv_into_f_ff)
    then have \(*:\left(S \cap f-{ }^{\prime} U\right)=g^{\prime} U\) if \(U \subseteq f^{\prime} S\) for \(U\)
        using that by fastforce
    have gfim: \(g\) ' \(f\) ' \(S \subseteq S\) using \(g f\) by auto
    have \(* *\) : compact ( \(f\) ' \(S \cap g-{ }^{\prime} C\) ) if \(C: C \subseteq S\) compact \(C\) for \(C\)
    proof -
        obtain \(h\) where \(h C \in C \wedge h C \notin S \vee \operatorname{compact}\left(f^{\prime} C\right)\)
        by (force simp: C RHS)
        moreover have \(f\) ' \(C=\left(f\right.\) ' \(\left.S \cap g-{ }^{\prime} C\right)\)
            using \(C g f\) by auto
        ultimately show ?thesis
            using \(C\) by auto
    qed
    show ?lhs
        using proper_map \(\left[O F_{\ldots}\right.\) gfim] **
        by (simp add: continuous_on_closed \(*\) closedin_imp_subset)
qed
```


5.0.13 Trivial fact: convexity equals connectedness for collinear sets

lemma convex_connected_collinear:
fixes S :: 'a::euclidean_space set
assumes collinear S

```
    shows convex \(S \longleftrightarrow\) connected \(S\)
proof
    assume convex \(S\)
    then show connected \(S\)
        using convex_connected by blast
next
    assume \(S\) : connected \(S\)
    show convex \(S\)
    proof (cases \(S=\{ \}\) )
    case True
    then show ?thesis by simp
    next
        case False
        then obtain \(a\) where \(a \in S\) by auto
    have collinear (affine hull \(S\) )
        by (simp add: assms collinear_affine_hull_collinear)
        then obtain \(z\) where \(z \neq 0 \bigwedge x . x \in\) affine hull \(S \Longrightarrow \exists c . x-a=c *_{R} z\)
            by (meson \(\langle a \in S\rangle\) collinear hull_inc)
        then obtain \(f\) where \(f: \bigwedge x . x \in\) affine hull \(S \Longrightarrow x-a=f x *_{R} z\)
            by metis
        then have inj_f: inj_on \(f\) (affine hull \(S\) )
            by (metis diff_add_cancel inj_onI)
    have diff: \(x-y=(f x-f y) *_{R} z\) if \(x: x \in\) affine hull \(S\) and \(y: y \in\) affine
hull \(S\) for \(x y\)
    proof -
        have \(f x *_{R} z=x-a\)
            by (simp add: f hull_inc \(x\) )
            moreover have \(f y *_{R} z=y-a\)
            by (simp add: f hull_inc y)
            ultimately show ?thesis
                by (simp add: scaleR_left.diff)
    qed
    have cont_f: continuous_on (affine hull S) f
    proof (clarsimp simp: dist_norm continuous_on_iff diff)
            show \(\bigwedge x e .0<e \Longrightarrow \exists d>0 . \forall y \in\) affine hull \(S .|f y-f x| *\) norm \(z<d\)
\(\longrightarrow|f y-f x|<e\)
    by (metis \(\langle z \neq 0\rangle\) mult_pos_pos mult_less_iff1 zero_less_norm_iff)
    qed
    then have conn_fS: connected \(\left(f^{\prime} S\right)\)
            by (meson \(S\) connected_continuous_image continuous_on_subset hull_subset)
    show ?thesis
    proof (clarsimp simp: convex_contains_segment)
    fix \(x y z\)
    assume \(x \in S y \in S z \in\) closed_segment \(x y\)
    have False if \(z \notin S\)
    proof -
            have \(f\) ' (closed_segment \(x y)=\) closed_segment \((f x)(f y)\)
            proof (rule continuous_injective_image_segment_1)
                show continuous_on (closed_segment \(x\) y) \(f\)
```

by (meson $\langle x \in S\rangle\langle y \in S\rangle$ convex_affine_hull convex_contains_segment hull_inc continuous_on_subset [OF cont_f])
show inj_on f (closed_segment x y)
by (meson $\langle x \in S\rangle\langle y \in S\rangle$ convex_affine_hull convex_contains_segment hull_inc inj_on_subset [OF inj_f])
qed
then have $f z: f z \in$ closed_segment $(f x)(f y)$
using $\langle z \in$ closed_segment $x y\rangle$ by blast
have $z \in$ affine hull S by (meson $\langle x \in S\rangle\langle y \in S\rangle\langle z \in$ closed_segment $x y\rangle$ convex_affine_hull convex_contains_segment hull_inc subset_eq)
then have fz_notin: $f z \notin f^{\prime} S$
using hull_subset inj_f inj_onD that by fastforce
moreover have $\{. .<f z\} \cap f^{\prime} S \neq\{ \}\{f z<..\} \cap f^{\prime} S \neq\{ \}$
proof -
consider $f x \leq f z \wedge f z \leq f y \mid f y \leq f z \wedge f z \leq f x$
using $f z$
by (auto simp add: closed_segment_eq_real_ivl split: if_split_asm)
then have $\{. .<f z\} \cap f^{\prime}\{x, y\} \neq\{ \} \wedge\{f z<..\} \cap f^{\prime}\{x, y\} \neq\{ \}$ by cases (use fz_notin $\langle x \in S\rangle\langle y \in S\rangle$ in \langle auto simp: image_iff $\rangle)$
then show $\{. .<f z\} \cap f^{\prime} S \neq\{ \}\{f z<..\} \cap f \cdot S \neq\{ \}$
using $\langle x \in S\rangle\langle y \in S\rangle$ by blast +
qed
ultimately show False
using connectedD $[O F$ conn_fS , of $\{. .<f z\}\{f z<.\}$.$] by force$

qed

then show $z \in S$ by meson qed
qed
qed
lemma compact_convex_collinear_segment_alt:
fixes S :: 'a::euclidean_space set
assumes $S \neq\{ \}$ compact S connected S collinear S
obtains $a b$ where $S=$ closed_segment $a b$
proof -
obtain ξ where $\xi \in S$ using $\langle S \neq\{ \}$ 〉 by auto
have collinear (affine hull S)
by (simp add: assms collinear_affine_hull_collinear)
then obtain z where $z \neq 0 \bigwedge x . x \in$ affine hull $S \Longrightarrow \exists c . x-\xi=c *_{R} z$ by (meson $\langle\xi \in S\rangle$ collinear hull_inc)
then obtain f where $f: \bigwedge x . x \in$ affine hull $S \Longrightarrow x-\xi=f x *_{R} z$ by metis
let $? g=\lambda r . r *_{R} z+\xi$
have $g f:$? $g(f x)=x$ if $x \in$ affine hull S for x
by (metis diff_add_cancel f that)
then have inj_f: inj_on f (affine hull S)
by (metis inj_onI)
have diff: $x-y=(f x-f y) *_{R} z$ if $x: x \in$ affine hull S and $y: y \in$ affine

```
hull S for x y
    proof -
        have f x * *}z=x-
            by (simp add: f hull_inc x)
        moreover have f y**
            by (simp add: f hull_inc y)
        ultimately show ?thesis
            by (simp add: scaleR_left.diff)
    qed
    have cont_f: continuous_on (affine hull S) f
    proof (clarsimp simp: dist_norm continuous_on_iff diff)
        show \x e. 0<e\Longrightarrow\existsd>0.\forally\in affine hull S. |f y - fx|* norm z<d
\longrightarrow |fy-fx|<e
            by (metis «z \not=0` mult_pos_pos mult_less_iff1 zero_less_norm_iff)
    qed
    then have connected (f'S)
            by (meson <connected S` connected_continuous_image continuous_on_subset
hull_subset)
    moreover have compact (f'S)
        by (meson <compact S` compact_continuous_image_eq cont_f hull_subset inj_f)
    ultimately obtain x y where f'S={x..y}
        by (meson connected_compact_interval_1)
    then have fS_eq: f' }S=\mathrm{ closed_segment x y
        using \langleS\not={}` closed_segment_eq_real_ivl by auto
    obtain ab}\mathrm{ where }a\inSfa=xb\inSfb=
        by (metis (full_types) ends_in_segment fS_eq imageE)
    have f'(closed_segment a b)= closed_segment (f a) (f b)
    proof (rule continuous_injective_image_segment_1)
        show continuous_on (closed_segment a b) f
            by (meson }\langlea\inS\rangle\langleb\inS\rangle\mathrm{ convex_affine_hull convex_contains_segment hull_inc
continuous_on_subset [OF cont_f])
        show inj_on f (closed_segment a b)
            by (meson }\langlea\inS\rangle\langleb\inS\rangle convex_affine_hull convex_contains_segment hull_inc
inj_on_subset [OF inj_f]
    qed
    then have f'(closed_segment a b) =f'S
        by (simp add: <f }a=x\rangle\langlef b=y\ranglefS_eq
    then have ?g' f'(closed_segment a b)=?g'f'S
        by simp
    moreover have ( }\lambdax.fx\mp@subsup{*}{R}{}z+\xi)'closed_segment a b = closed_segment a b
        unfolding image_def using <a \inS\rangle\langleb\inS\rangle
        by (safe; metis (mono_tags, lifting) convex_affine_hull convex_contains_segment
gf hull_subset subsetCE)
    ultimately have closed_segment a b =S
        using gf by (simp add: image_comp o_def hull_inc cong: image_cong)
    then show ?thesis
        using that by blast
qed
```

```
lemma compact_convex_collinear_segment:
    fixes \(S\) :: 'a::euclidean_space set
    assumes \(S \neq\{ \}\) compact \(S\) convex \(S\) collinear \(S\)
    obtains \(a b\) where \(S=\) closed_segment \(a b\)
    using assms convex_connected_collinear compact_convex_collinear_segment_alt by
blast
```

lemma proper_map_from_compact:
fixes f :: 'a::euclidean_space \Rightarrow 'b::euclidean_space
assumes contf: continuous_on $S f$ and $i m f: f$ ' $S \subseteq T$ and compact S closedin (top_of_set T) K
shows compact ($S \cap f-^{\prime} K$)
by (rule closedin_compact [OF <compact S 〉] continuous_closedin_preimage_gen assms)+
lemma proper_map_fst:
assumes compact $T K \subseteq S$ compact K shows compact $\left(S \times T \cap f s t-{ }^{\prime} K\right)$
proof -
have $(S \times T \cap f s t-' K)=K \times T$ using assms by auto
then show ?thesis by (simp add: assms compact_Times)
qed
lemma closed_map_fst:
fixes S :: 'a::euclidean_space set and $T::$ ' $b::$ euclidean_space set
assumes compact T closedin (top_of_set $(S \times T)) c$
shows closedin (top_of_set S) (fst'c)
proof -
have *: fst' $(S \times T) \subseteq S$
by auto
show ?thesis
using proper_map $\left[O F __{-}\right.$*] by (simp add: proper_map_fst assms)
qed
lemma proper_map_snd:
assumes compact $S K \subseteq T$ compact K
shows compact $\left(S \times T \cap\right.$ snd $\left.-{ }^{\prime} K\right)$
proof -
have $(S \times T \cap$ snd $-‘ K)=S \times K$
using assms by auto
then show ?thesis by (simp add: assms compact_Times)
qed
lemma closed_map_snd:
fixes S :: 'a::euclidean_space set and $T::$ ' $b::$ euclidean_space set
assumes compact S closedin (top_of_set $(S \times T)$) c
shows closedin (top_of_set $T)\left(s n d{ }^{`} c\right)$
proof -

```
    have *: snd ' (S\timesT)\subseteqT
    by auto
    show ?thesis
    using proper_map [OF _ _ *] by (simp add: proper_map_snd assms)
qed
lemma closedin_compact_projection:
    fixes S :: 'a::euclidean_space set and T :: 'b::euclidean_space set
    assumes compact S and clo:closedin (top_of_set (S\timesT))U
        shows closedin (top_of_set T) {y.\existsx. x G S^(x,y)\inU}
proof -
    have}U\subseteqS\times
        by (metis clo closedin_imp_subset)
    then have {y.\existsx.x\inS\wedge(x,y)\inU}=snd'}
        by force
    moreover have closedin (top_of_set T) (snd 'U)
        by (rule closed_map_snd [OF assms])
    ultimately show ?thesis
        by simp
qed
```

lemma closed_compact_projection:
fixes S :: 'a::euclidean_space set
and $T::\left({ }^{\prime} a *\right.$ 'b::euclidean_space) set
assumes compact S and clo: closed T
shows closed $\{y . \exists x . x \in S \wedge(x, y) \in T\}$
proof -
have *: $\{y . \exists x . x \in S \wedge$ Pair $x y \in T\}=\{y . \exists x . x \in S \wedge$ Pair $x y \in((S \times$
$U N I V) \cap T)\}$
by auto
show ?thesis
unfolding *
by (intro clo closedin_closed_Int closedin_closed_trans [OF _ closed_UNIV]
closedin_compact_projection [OF <compact S 〕])
qed

Representing affine hull as a finite intersection of hyperplanes

proposition affine_hull_convex_Int_nonempty_interior:
fixes S :: ' a ::real_normed_vector set
assumes convex $S S \cap$ interior $T \neq\{ \}$
shows affine hull $(S \cap T)=$ affine hull S
proof
show affine hull $(S \cap T) \subseteq$ affine hull S
by (simp add: hull_mono)
next
obtain a where $a \in S a \in T$ and at: $a \in$ interior T
using assms interior_subset by blast

```
then obtain \(e\) where \(e>0\) and \(e\) : cball \(a e \subseteq T\)
    using mem_interior_cball by blast
have \(*: x \in(+) a^{\prime} \operatorname{span}((\lambda x . x-a) '(S \cap T))\) if \(x \in S\) for \(x\)
proof (cases \(x=a\) )
    case True with that span_0 eq_add_iff image_def mem_Collect_eq show ?thesis
        by blast
    next
        case False
        define \(k\) where \(k=\min (1 / 2)(e / \operatorname{norm}(x-a))\)
    have \(k\) : \(0<k k<1\)
        using \(\langle e>0\rangle\) False by (auto simp: \(k_{-} d e f\) )
    then have \(x a:(x-a)=\) inverse \(k *_{R} k *_{R}(x-a)\)
        by simp
    have \(e / \operatorname{norm}(x-a) \geq k\)
        using \(k_{-}\)def by linarith
    then have \(a+k *_{R}(x-a) \in\) cball a \(e\)
        using \(\langle 0<k\rangle\) False
        by (simp add: dist_norm) (simp add: field_simps)
    then have \(T: a+k *_{R}(x-a) \in T\)
        using \(e\) by blast
    have \(S: a+k *_{R}(x-a) \in S\)
        using \(k\langle a \in S\rangle\) convexD \([O F\langle\) convex \(S\rangle\langle a \in S\rangle\langle x \in S\rangle\), of \(1-k k]\)
        by (simp add: algebra_simps)
    have inverse \(k *_{R} k *_{R}(x-a) \in \operatorname{span}((\lambda x . x-a) \cdot(S \cap T))\)
        by (intro span_mul [OF span_base] image_eqI [where \(x=a+k *_{R}(x-\)
a)]) (auto simp: \(S T\) )
    with xa image_iff show ?thesis by fastforce
qed
have \(S \subseteq\) affine hull \((S \cap T)\)
    by (force simp: * \(\langle a \in S\rangle\langle a \in T\rangle\) hull_inc affine_hull_span_gen [of a])
    then show affine hull \(S \subseteq\) affine hull \((S \cap T)\)
        by (simp add: subset_hull)
qed
corollary affine_hull_convex_Int_open:
    fixes \(S\) :: ' \(a:\) :real_normed_vector set
    assumes convex \(S\) open \(T S \cap T \neq\{ \}\)
    shows affine hull \((S \cap T)=\) affine hull \(S\)
    using affine_hull_convex_Int_nonempty_interior assms interior_eq by blast
corollary affine_hull_affine_Int_nonempty_interior:
    fixes \(S\) :: 'a::real_normed_vector set
    assumes affine \(S S \cap\) interior \(T \neq\{ \}\)
    shows affine hull \((S \cap T)=\) affine hull \(S\)
    by (simp add: affine_hull_convex_Int_nonempty_interior affine_imp_convex assms)
corollary affine_hull_affine_Int_open:
    fixes \(S\) :: 'a::real_normed_vector set
    assumes affine \(S\) open \(T S \cap T \neq\{ \}\)
```

```
    shows affine hull (S\capT) = affine hull S
    by (simp add: affine_hull_convex_Int_open affine_imp_convex assms)
corollary affine_hull_convex_Int_openin:
    fixes S :: 'a::real_normed_vector set
    assumes convex S openin (top_of_set (affine hull S)) TS\capT\not={}
    shows affine hull (S\capT)= affine hull S
    using assms unfolding openin_open
    by (metis affine_hull_convex_Int_open hull_subset inf.orderE inf_assoc)
corollary affine_hull_openin:
    fixes S:: 'a::real_normed_vector set
    assumes openin (top_of_set (affine hull T)) SS\not={}
    shows affine hull S = affine hull T
    using assms unfolding openin_open
    by (metis affine_affine_hull affine_hull_affine_Int_open hull_hull)
corollary affine_hull_open:
    fixes S :: 'a::real_normed_vector set
    assumes open SS\not={}
    shows affine hull S = UNIV
    by (metis affine_hull_convex_Int_nonempty_interior assms convex_UNIV hull_UNIV
inf_top.left_neutral interior_open)
lemma aff_dim_convex_Int_nonempty_interior:
    fixes S :: 'a::euclidean_space set
    shows \llbracketconvex S;S\cap interior T}\not={}\rrbracket\Longrightarrow\operatorname{aff_dim}(S\capT)=aff_dim 
    using aff_dim_affine_hull2 affine_hull_convex_Int_nonempty_interior by blast
lemma aff_dim_convex_Int_open:
    fixes S :: 'a::euclidean_space set
    shows \llbracketconvex S; open T; S\capT\not={}\rrbracket\Longrightarrow aff_dim (S\capT)=aff_dim S
    using aff_dim_convex_Int_nonempty_interior interior_eq by blast
lemma affine_hull_Diff:
    fixes }S\mathrm{ :: ' }a\mathrm{ ::real_normed_vector set
    assumes ope:openin (top_of_set (affine hull S)) S and finite F F}\subset
    shows affine hull (S - F) = affine hull S
proof -
    have clo: closedin (top_of_set S) F
        using assms finite_imp_closedin by auto
    moreover have S-F\not={}
        using assms by auto
    ultimately show ?thesis
        by (metis ope closedin_def topspace_euclidean_subtopology affine_hull_openin
openin_trans)
qed
lemma affine_hull_halfspace_lt:
```

fixes a :: ' $a::$ euclidean_space
shows affine hull $\{x . a \cdot x<r\}=($ if $a=0 \wedge r \leq 0$ then $\{ \}$ else UNIV $)$
using halfspace_eq_empty_lt [of a r]
by (simp add: open_halfspace_lt affine_hull_open)
lemma affine_hull_halfspace_le:
fixes a :: ' $a::$ euclidean_space
shows affine hull $\{x . a \cdot x \leq r\}=($ if $a=0 \wedge r<0$ then $\{ \}$ else UNIV $)$
proof (cases $a=0$)
case True then show?thesis by simp
next
case False
then have affine hull closure $\{x . a \cdot x<r\}=$ UNIV
using affine_hull_halfspace_lt closure_same_affine_hull by fastforce
moreover have $\{x . a \cdot x<r\} \subseteq\{x . a \cdot x \leq r\}$
by (simp add: Collect_mono)
ultimately show ?thesis using False antisym_conv hull_mono top_greatest
by (metis affine_hull_halfspace_lt)
qed
lemma affine_hull_halfspace_gt:
fixes a :: ' $a::$ euclidean_space
shows affine hull $\{x . a \cdot x>r\}=($ if $a=0 \wedge r \geq 0$ then $\{ \}$ else UNIV $)$
using halfspace_eq_empty_gt [of ra]
by (simp add: open_halfspace_gt affine_hull_open)
lemma affine_hull_halfspace_ge:
fixes a :: ' $a::$ euclidean_space
shows affine hull $\{x . a \cdot x \geq r\}=($ if $a=0 \wedge r>0$ then $\{ \}$ else UNIV $)$
using affine_hull_halfspace_le $[o f-a-r]$ by simp
lemma aff_dim_halfspace_lt:
fixes a :: ' a ::euclidean_space
shows aff_dim $\{x . a \cdot x<r\}=$
(if $a=0 \wedge r \leq 0$ then -1 else $\operatorname{DIM}\left({ }^{\prime} a\right)$)
by simp (metis aff_dim_open halfspace_eq_empty_lt open_halfspace_lt)
lemma aff_dim_halfspace_le:
fixes a :: 'a::euclidean_space
shows aff_dim $\{x . a \cdot x \leq r\}=$ (if $a=0 \wedge r<0$ then -1 else DIM('a))
proof -
have int $(D I M(' a))=$ aff_dim (UNIV::'a set)
by (simp)
then have aff_dim (affine hull $\{x . a \cdot x \leq r\})=\operatorname{DIM}\left({ }^{\prime} a\right)$ if $(a=0 \longrightarrow r \geq$
0)
using that by (simp add: affine_hull_halfspace_le not_less)
then show ?thesis
by (force)

qed

lemma aff_dim_halfspace_gt:
fixes a :: ' $a::$ euclidean_space
shows aff_dim $\{x . a \cdot x>r\}=$
(if $a=0 \wedge r \geq 0$ then -1 else $\operatorname{DIM}\left({ }^{\prime} a\right)$)
by simp (metis aff_dim_open halfspace_eq_empty_gt open_halfspace_gt)
lemma aff_dim_halfspace_ge:
fixes a :: 'a::euclidean_space
shows aff_dim $\{x . a \cdot x \geq r\}=$
(if $a=0 \wedge r>0$ then -1 else $D I M(' a)$)
using aff_dim_halfspace_le $[$ of $-a-r]$ by simp
proposition aff_dim_eq_hyperplane:
fixes S :: 'a::euclidean_space set
shows aff_dim $S=\operatorname{DIM}\left({ }^{\prime} a\right)-1 \longleftrightarrow(\exists a b . a \neq 0 \wedge$ affine hull $S=\{x \cdot a \cdot x$ $=b\}$)
(is ? $l h s=$? $r h s$)
proof (cases $S=\{ \}$)
case True then show ?thesis
by (auto simp: dest: hyperplane_eq_Ex)
next
case False
then obtain c where $c \in S$ by blast
show ?thesis
proof (cases $c=0$)
case True
have ?lhs $\longleftrightarrow(\exists a . a \neq 0 \wedge \operatorname{span}((\lambda x . x-c) \cdot S)=\{x . a \cdot x=0\})$
by (simp add: aff_dim_eq_dim [of c] $\langle c \in S\rangle$ hull_inc dim_eq_hyperplane del:
One_nat_def)
also have $\ldots \longleftrightarrow$? rhs
using span_zero [of S] True $\langle c \in S\rangle$ affine_hull_span_0 hull_inc
by (fastforce simp add: affine_hull_span_gen $[$ of $c]\langle c=0\rangle$)
finally show ?thesis .
next
case False
have $x c_{-} i m: x \in(+) c$ ' $\{y \cdot a \cdot y=0\}$ if $a \cdot x=a \cdot c$ for $a x$
proof -
have $\exists y . a \cdot y=0 \wedge c+y=x$
by (metis that add.commute diff_add_cancel inner_commute inner_diff_left
right_minus_eq)
then show $x \in(+) c$ ' $\{y . a \cdot y=0\}$
by blast
qed
have 2: span $((\lambda x \cdot x-c) \cdot S)=\{x \cdot a \cdot x=0\}$
if $(+) c{ }^{\prime} \operatorname{span}((\lambda x . x-c) ' S)=\{x . a \cdot x=b\}$ for $a b$
proof -
have $b=a \cdot c$

```
        using span_0 that by fastforce
        with that have (+)c'span ((\lambdax.x-c)'S)={x.a\cdotx=a\cdotc}
        by simp
        then have span ((\lambdax.x-c)'S)=(\lambdax. x-c)'{x.a\cdotx=a\cdotc}
        by (metis (no_types) image_cong translation_galois uminus_add_conv_diff)
    also have ... = {x.a \cdot x=0}
        by (force simp: inner_distrib inner_diff_right
            intro: image_eqI [where }x=x+c\mathrm{ for }x\mathrm{ ])
        finally show ?thesis.
    qed
    have ?lhs = (\existsa.a\not=0^ span ((\lambdax.x-c)'S)={x.a\cdotx=0})
    by (simp add: aff_dim_eq_dim [of c] <c \in S` hull_inc dim_eq_hyperplane del:
One_nat_def)
    also have ... = ?rhs
    by (fastforce simp add: affine_hull_span_gen [of c] \langlec\inS` hull_inc inner_distrib
intro: xc_im intro!: 2)
    finally show ?thesis.
    qed
qed
corollary aff_dim_hyperplane [simp]:
    fixes a :: 'a::euclidean_space
    shows }a\not=0\Longrightarrow\mathrm{ aff_dim {x.a 和=r} = DIM('a) - 1
by (metis aff_dim_eq_hyperplane affine_hull_eq affine_hyperplane)
```


5.0.14 Some stepping theorems

lemma aff_dim_insert:
fixes a :: ' $a:$::uclidean_space
shows aff_dim (insert a S) $=($ if $a \in$ affine hull S then aff_dim S else aff_dim S
+1)
proof (cases $S=\{ \}$)
case True then show ?thesis by simp
next
case False
then obtain $x s^{\prime}$ where $S: S=$ insert $x s^{\prime} x \notin s^{\prime}$
by (meson Set.set_insert all_not_in_conv)
show ?thesis using S
by (force simp add: affine_hull_insert_span_gen span_zero insert_commute [of a]
aff_dim_eq_dim [of x] dim_insert)
qed
lemma affine_dependent_choose:
fixes a :: ' a :: euclidean_space
assumes \neg (affine_dependent S)
shows affine_dependent(insert a $S) \longleftrightarrow a \notin S \wedge a \in$ affine hull S
(is ?lhs = ? $r h s$)
proof safe

```
    assume affine_dependent (insert a S) and a\inS
    then show False
        using <a \inS` assms insert_absorb by fastforce
next
    assume lhs: affine_dependent (insert a S)
    then have a\not\inS
        by (metis (no_types) assms insert_absorb)
    moreover have finite S
        using affine_independent_iff_card assms by blast
    moreover have aff_dim (insert a S)}\not=\mathrm{ int (card S)
            using 〈finite S` affine_independent_iff_card <a \not\inS`lhs by fastforce
    ultimately show a G affine hull S
            by (metis aff_dim_affine_independent aff_dim_insert assms)
next
    assume }a\not\inS\mathrm{ and }a\in\mathrm{ affine hull S
    show affine_dependent (insert a S)
        by (simp add: <a \in affine hull S>\langlea\not\inS\rangleaffine_dependent_def)
qed
lemma affine_independent_insert:
    fixes a :: 'a :: euclidean_space
    shows \llbracket\neg affine_dependent S; a # affine hull S\rrbracket\Longrightarrow \negaffine_dependent(insert a
S)
    by (simp add: affine_dependent_choose)
lemma subspace_bounded_eq_trivial:
    fixes S :: 'a::real_normed_vector set
    assumes subspace S
        shows bounded S \longleftrightarrowS={0}
proof -
    have False if bounded Sx\inSx\not=0 for }
    proof -
        obtain B where B: \bigwedgey. y G S\Longrightarrow norm y<BB>0
            using 〈bounded S` by (force simp: bounded_pos_less)
            have ( }B/\mathrm{ norm x) *R }x\in
            using assms subspace_mul }\langlex\inS\rangle\mathrm{ by auto
            moreover have norm ((B/\operatorname{norm}x)*\mp@subsup{*}{R}{}x)=B
            using that B by (simp add: algebra_simps)
            ultimately show False using B by force
    qed
    then have bounded S\LongrightarrowS={0}
            using assms subspace_0 by fastforce
    then show ?thesis
            by blast
qed
lemma affine_bounded_eq_trivial:
    fixes S :: 'a::real_normed_vector set
    assumes affine S
```

```
        shows bounded \(S \longleftrightarrow S=\{ \} \vee(\exists a . S=\{a\})\)
proof (cases \(S=\{ \}\) )
    case True then show ?thesis
        by simp
    next
    case False
    then obtain \(b\) where \(b \in S\) by blast
    with False assms
    have bounded \(S \Longrightarrow S=\{b\}\)
        using affine_diffs_subspace [OF assms \(\langle b \in S\rangle]\)
    by (metis (no_types, lifting) ab_group_add_class.ab_left_minus bounded_translation
image_empty image_insert subspace_bounded_eq_trivial translation_invert)
    then show ?thesis by auto
qed
lemma affine_bounded_eq_lowdim:
    fixes \(S\) :: 'a::euclidean_space set
    assumes affine \(S\)
    shows bounded \(S \longleftrightarrow\) aff_dim \(S \leq 0\)
proof
    show aff_dim \(S \leq 0 \Longrightarrow\) bounded \(S\)
    by (metis aff_dim_sing aff_dim_subset affine_dim_equal affine_sing all_not_in_conv
assms bounded_empty bounded_insert dual_order.antisym empty_subsetI insert_subset)
qed (use affine_bounded_eq_trivial assms in fastforce)
lemma bounded_hyperplane_eq_trivial_0:
    fixes \(a\) :: ' \(a::\) euclidean_space
    assumes \(a \neq 0\)
    shows bounded \(\{x, a \cdot x=0\} \longleftrightarrow D I M\left({ }^{\prime} a\right)=1\)
proof
    assume bounded \(\{x . a \cdot x=0\}\)
    then have aff_dim \(\{x . a \cdot x=0\} \leq 0\)
        by (simp add: affine_bounded_eq_lowdim affine_hyperplane)
    with assms show \(\operatorname{DIM}\left({ }^{\prime} a\right)=1\)
        by (simp add: le_Suc_eq)
    next
    assume \(\operatorname{DIM}\left({ }^{\prime} a\right)=1\)
    then show bounded \(\{x . a \cdot x=0\}\)
        by (simp add: affine_bounded_eq_lowdim affine_hyperplane assms)
qed
lemma bounded_hyperplane_eq_trivial:
    fixes \(a\) :: ' \(a::\) euclidean_space
    shows bounded \(\{x . a \cdot x=r\} \longleftrightarrow\left(\right.\) if \(a=0\) then \(r \neq 0\) else \(\left.\operatorname{DIM}\left({ }^{\prime} a\right)=1\right)\)
proof (simp add: bounded_hyperplane_eq_trivial_0, clarify)
    assume \(r \neq 0 \quad a \neq 0\)
    have aff_dim \(\{x . y \cdot x=0\}=\operatorname{aff}\) _dim \(\{x . a \cdot x=r\}\) if \(y \neq 0\) for \(y::^{\prime} a\)
        by (metis that \(\langle a \neq 0\rangle\) aff_dim_hyperplane)
```

```
    then show bounded \(\{x . a \cdot x=r\}=\left(\operatorname{DIM}\left({ }^{\prime} a\right)=\right.\) Suc 0)
    by (metis One_nat_def \(\langle a \neq 0\rangle\) affine_bounded_eq_lowdim affine_hyperplane
bounded_hyperplane_eq_trivial_0)
qed
```


5.0.15 General case without assuming closure and getting non-strict separation

```
proposition separating_hyperplane_closed_point_inset:
    fixes \(S\) :: 'a::euclidean_space set
    assumes convex \(S\) closed \(S S \neq\{ \} z \notin S\)
    obtains \(a b\) where \(a \in S(a-z) \cdot z<b \bigwedge x . x \in S \Longrightarrow b<(a-z) \cdot x\)
proof -
    obtain \(y\) where \(y \in S\) and \(y: \bigwedge u . u \in S \Longrightarrow\) dist \(z y \leq d i s t z u\)
        using distance_attains_inf [of \(S z]\) assms by auto
    then have \(*:(y-z) \cdot z<(y-z) \cdot z+(\operatorname{norm}(y-z))^{2} / 2\)
        using \(\langle y \in S\rangle\langle z \notin S\rangle\) by auto
    show ?thesis
    proof (rule that \([O F\langle y \in S\rangle *]\) )
        fix \(x\)
        assume \(x \in S\)
        have \(y z: 0<(y-z) \cdot(y-z)\)
            using \(\langle y \in S\rangle\langle z \notin S\rangle\) by auto
        \{ assume \(0: 0<((z-y) \cdot(x-y))\)
            with any_closest_point_dot [OF 〈convex \(S\rangle\langle\) closed \(S\rangle\) ]
            have False
                using \(y\langle x \in S\rangle\langle y \in S\rangle\) not_less by blast
        \}
        then have \(0 \leq((y-z) \cdot(x-y))\)
            by (force simp: not_less inner_diff_left)
        with \(y z\) have \(0<2 *((y-z) \cdot(x-y))+(y-z) \cdot(y-z)\)
            by (simp add: algebra_simps)
        then show \((y-z) \cdot z+(\operatorname{norm}(y-z))^{2} / 2<(y-z) \cdot x\)
```

 by (simp add: field_simps inner_diff_left inner_diff_right dot_square_norm
 [symmetric])
qed
qed
lemma separating_hyperplane_closed_0_inset:
fixes S :: 'a::euclidean_space set
assumes convex S closed $S S \neq\{ \} 0 \notin S$
obtains $a b$ where $a \in S a \neq 00<b \bigwedge x . x \in S \Longrightarrow a \cdot x>b$
using separating_hyperplane_closed_point_inset [OF assms] by simp (metis $\langle 0 \notin$
$S 〉)$
proposition separating_hyperplane_set_0_inspan:
fixes S :: 'a::euclidean_space set
assumes convex $S S \neq\{ \} 0 \notin S$
obtains a where $a \in \operatorname{span} S a \neq 0 \bigwedge x . x \in S \Longrightarrow 0 \leq a \cdot x$
proof -
define k where [abs_def]: $k c=\{x .0 \leq c \cdot x\}$ for $c::{ }^{\prime} a$
have span $S \cap$ frontier (cball 01) $\cap \cap f^{\prime} \neq\{ \}$
if $f^{\prime}:$ finite $f^{\prime} f^{\prime} \subseteq k ' S$ for f^{\prime}
proof -
obtain C where $C \subseteq S$ finite C and $C: f^{\prime}=k{ }^{`} C$
using finite_subset_image [OF f $]$ by blast
obtain a where $a \in S a \neq 0$
using $\langle S \neq\{ \}\rangle\langle 0 \notin S\rangle$ ex_in_conv by blast
then have norm $(a / R($ norm $a))=1$
by simp
moreover have $a / R($ norm $a) \in \operatorname{span} S$
by (simp add: $\langle a \in S\rangle$ span_scale span_base)
ultimately have ass: $a / R($ norm $a) \in \operatorname{span} S \cap$ sphere 01
by simp
show ?thesis
proof (cases $C=\{ \}$)
case True with C ass show ?thesis
by auto
next
case False
have closed (convex hull C)
using 〈finite C 〉compact_eq_bounded_closed finite_imp_compact_convex_hull
by auto
moreover have convex hull $C \neq\{ \}$
by (simp add: False)
moreover have $0 \notin$ convex hull C
by (metis $\langle C \subseteq S\rangle\langle$ convex $S\rangle\langle 0 \notin S\rangle$ convex_hull_subset hull_same insert_absorb insert_subset)
ultimately obtain $a b$
where $a \in$ convex hull $C a \neq 00<b$
and $a b: \bigwedge x . x \in$ convex hull $C \Longrightarrow a \cdot x>b$
using separating_hyperplane_closed_0_inset by blast
then have $a \in S$
by (metis $\langle C \subseteq S\rangle \operatorname{assms}(1)$ subset $C E$ subset_hull)
moreover have norm $\left(a /_{R}(\right.$ norm $\left.a)\right)=1$
using $\langle a \neq 0\rangle$ by simp
moreover have $a / R($ norm $a) \in \operatorname{span} S$
by (simp add: $\langle a \in S\rangle$ span_scale span_base)
ultimately have ass: $a / R($ norm $a) \in$ span $S \cap$ sphere 01
by simp
have $\bigwedge x . \llbracket a \neq 0 ; x \in C \rrbracket \Longrightarrow 0 \leq x \cdot a$
using $a b\langle 0<b\rangle$ by (metis hull_inc inner_commute less_eq_real_def less_trans)
then have $a a: a /_{R}($ norm $a) \in(\bigcap c \in C .\{x .0 \leq c \cdot x\})$
by (auto simp add: field_split_simps)
show ?thesis
unfolding C k_def
using ass aa Int_iff empty_iff by force

```
        qed
    qed
    moreover have }\LambdaT.T\in\mp@subsup{k}{}{\prime}S\Longrightarrow\mathrm{ closed T
        using closed_halfspace_ge k_def by blast
    ultimately have (span S\capfrontier(cball 0 1)) \cap (\cap (k'S)) \not={}
        by (metis compact_imp_fip closed_Int_compact closed_span compact_cball com-
pact_frontier)
    then show ?thesis
        unfolding set_eq_iff k_def
        by simp (metis inner_commute norm_eq_zero that zero_neq_one)
qed
lemma separating_hyperplane_set_point_inaff:
    fixes S :: 'a::euclidean_space set
    assumes convex SS\not={} and zno:z\not\inS
    obtains ab}\mathrm{ where (z+a) Gaffine hull (insert zS)
                and }a\not=0\mathrm{ and }a\cdotz\leq
                and}\bigwedgex.x\inS\Longrightarrowa\cdotx\geq
proof -
    from separating_hyperplane_set_0_inspan [of image (\lambdax.-z + x) S]
    have convex ((+) (-z)'S)
        using <convex S` by simp
    moreover have (+) (-z)'S\not={}
        by (simp add: <S\not={}>)
    moreover have 0\not\in(+) (-z)'S
        using zno by auto
    ultimately obtain }a\mathrm{ where }a\in\operatorname{span}((+)(-z)'S)a\not=
                            and a: \x. x ( (+) (-z)'S)\Longrightarrow0\leqa\cdotx
        using separating_hyperplane_set_0_inspan [of image ( }\lambdax.-z+x)S
        by blast
    then have szx: \x.x 保\Longrightarrowa\cdotz\leqa\cdotx
        by (metis (no_types, lifting) imageI inner_minus_right inner_right_distrib mi-
nus_add neg_le_0_iff_le neg_le_iff_le real_add_le_0_iff)
    moreover
    have z+a\inaffine hull insert zS
        using <a \in span ((+) (-z)'S)>affine_hull_insert_span_gen by blast
    ultimately show ?thesis
        using <a\not=0\rangle szx that by auto
qed
proposition supporting_hyperplane_rel_boundary:
    fixes S :: 'a::euclidean_space set
    assumes convex Sx\inS and xno: x & rel_interior S
    obtains a}\mathrm{ where }a\not=
                        and }\y.y\inS\Longrightarrowa\cdotx\leqa\cdot
                        and \y.y \in rel_interior S\Longrightarrowa\cdotx<a\cdoty
proof -
    obtain a b where aff: (x+a)\in affine hull (insert x (rel_interior S))
```

```
and }a\not=0\mathrm{ and }a\cdotx\leq
and ageb: \bigwedgeu.u\in(rel_interior S)\Longrightarrowa\cdotu\geqb
    using separating_hyperplane_set_point_inaff [of rel_interior S x] assms
    by (auto simp: rel_interior_eq_empty convex_rel_interior)
    have le_ay: a \cdot x \leqa,y if y\inS for y
    proof -
    have con: continuous_on (closure (rel_interior S)) ((\cdot) a)
        by (rule continuous_intros continuous_on_subset | blast)+
    have y: y \in closure (rel_interior S)
        using 〈convex S` closure_def convex_closure_rel_interior }\langley\inS
        by fastforce
    show ?thesis
        using continuous_ge_on_closure [OF con y] ageb <a \cdot x \leqb>
        by fastforce
    qed
    have 3: a • x<a\cdoty if y\in rel_interior S for y
    proof -
        obtain e where 0<e y\inS and e:cball y e\cap affine hull S\subseteqS
        using <y \in rel_interior S> by (force simp: rel_interior_cball)
    define }\mp@subsup{y}{}{\prime}\mathrm{ where }\mp@subsup{y}{}{\prime}=y-(e/ norm a)*R((x+a)-x
    have }\mp@subsup{y}{}{\prime}\in\mathrm{ cball y e
        unfolding }\mp@subsup{y}{}{\prime
    moreover have }\mp@subsup{y}{}{\prime}\in\mathrm{ affine hull }
        unfolding }\mp@subsup{y}{}{\prime
        by (metis }\langlex\inS\rangle\langley\inS\rangle\langleconvex S\rangle aff affine_affine_hull hull_redundant
                        rel_interior_same_affine_hull hull_inc mem_affine_3_minus2)
    ultimately have }\mp@subsup{y}{}{\prime}\in
        using e by auto
    have }a\cdotx\leqa\cdot
        using le_ay }\langlea\not=0\rangle\langley\inS\rangle\mathrm{ by blast
    moreover have a \cdotx\not=a\cdoty
        using le_ay [OF \langle\mp@subsup{y}{}{\prime}\inS\rangle] \langlea\not=0\rangle\langle0<e\rangle not_le
        by (fastforce simp add: y'_def inner_diff dot_square_norm power2_eq_square)
    ultimately show ?thesis by force
qed
show ?thesis
    by (rule that [OF<a\not=0`le_ay 3])
qed
lemma supporting_hyperplane_relative_frontier:
    fixes S :: 'a::euclidean_space set
    assumes convex Sx\in closure Sx\not\in rel_interior S
    obtains a where }a\not=
            and }\bigwedgey.y\in\mathrm{ closure }S\Longrightarrowa\cdotx\leqa\cdot
            and }\bigwedgey.y\in rel_interior S\Longrightarrowa\cdotx<a\cdot
using supporting_hyperplane_rel_boundary [of closure S x]
by (metis assms convex_closure convex_rel_interior_closure)
```


5.0.16 Some results on decomposing convex hulls: intersections, simplicial subdivision

lemma

fixes S :: 'a::euclidean_space set
assumes \neg affine_dependent $(S \cup T)$
shows convex_hull_Int_subset: convex hull $S \cap$ convex hull $T \subseteq$ convex hull (S
$\cap T)($ is ? $C)$
and affine_hull_Int_subset: affine hull $S \cap$ affine hull $T \subseteq$ affine hull $(S \cap T)$
(is ? A)
proof -
have [simp]: finite S finite T
using aff_independent_finite assms by blast+
have sum $u(S \cap T)=1 \wedge$
$\left(\sum v \in S \cap T . u v *_{R} v\right)=\left(\sum v \in S . u v *_{R} v\right)$
if $[$ simp $]$: sum u $S=1$
sum v $T=1$
and eq: $\left(\sum x \in T . v x *_{R} x\right)=\left(\sum x \in S . u x *_{R} x\right)$ for $u v$
proof -
define f where $f x=($ if $x \in S$ then $u x$ else 0$)-($ if $x \in T$ then $v x$ else 0$)$
for x
have $\operatorname{sum} f(S \cup T)=0$
by (simp add: f_def sum_Un sum_subtractf flip: sum.inter_restrict)
moreover have $\left(\sum x \in(S \cup T) . f x *_{R} x\right)=0$
by (simp add: eq f_def sum_Un scaleR_left_diff_distrib sum_subtractf if_smult
flip: sum.inter_restrict cong: if_cong)
ultimately have $\bigwedge v . v \in S \cup T \Longrightarrow f v=0$
using aff_independent_finite assms unfolding affine_dependent_explicit
by blast
then have $u[$ simp $]: \bigwedge x . x \in S \Longrightarrow u x=($ if $x \in T$ then $v x$ else 0$)$
by (simp add: f_{-}def) presburger
have sum $u(S \cap T)=$ sum u S
by (simp add: sum.inter_restrict)
then have sum $u(S \cap T)=1$
using that by linarith
moreover have $\left(\sum v \in S \cap T . u v *_{R} v\right)=\left(\sum v \in S . u v *_{R} v\right)$
by (auto simp: if_smult sum.inter_restrict intro: sum.cong)
ultimately show ?thesis
by force
qed
then show ?A ?C
by (auto simp: convex_hull_finite affine_hull_finite)
qed
proposition affine_hull_Int:
fixes S :: 'a::euclidean_space set
assumes \neg affine_dependent $(S \cup T)$
shows affine hull $(S \cap T)=$ affine hull $S \cap$ affine hull T
by (simp add: affine_hull_Int_subset assms hull_mono subset_antisym)

```
proposition convex_hull_Int:
    fixes S :: 'a::euclidean_space set
    assumes \negaffine_dependent (S\cupT)
        shows convex hull (S\capT) = convex hull S \cap convex hull T
    by (simp add: convex_hull_Int_subset assms hull_mono subset_antisym)
proposition
    fixes }S\mathrm{ :: ' }a::euclidean_space set se
    assumes }\neg\mathrm{ affine_dependent ( \ S)
        shows affine_hull_Inter: affine hull }(\bigcapS)=(\bigcapT\inS. affine hull T) (is ?A
            and convex_hull_Inter: convex hull }(\bigcapS)=(\bigcapT\inS.convex hull T) (is ?C)
proof -
    have finite S
        using aff_independent_finite assms finite_UnionD by blast
    then have ?A ^ ?C using assms
    proof (induction S rule: finite_induct)
        case empty then show ?case by auto
    next
        case (insert T F)
        then show ?case
        proof (cases F={})
            case True then show ?thesis by simp
        next
            case False
            with insert.prems have [simp]: \neg affine_dependent (T\cup\bigcapF)
            by (auto intro: affine_dependent_subset)
            have [simp]: \neg affine_dependent (UF)
            using affine_independent_subset insert.prems by fastforce
            show ?thesis
            by (simp add: affine_hull_Int convex_hull_Int insert.IH)
        qed
    qed
    then show ?A ?C
        by auto
    qed
proposition in_convex_hull_exchange_unique:
    fixes S :: 'a::euclidean_space set
    assumes naff: ᄀ affine_dependent S and a: a\inconvex hull S
        and S:T\subseteqS T'\subseteqS
        and x: x convex hull (insert a T)
        and }\mp@subsup{x}{}{\prime}:x\in\mathrm{ convex hull (insert a T')
        shows }x\in\mathrm{ convex hull (insert a (T ค T'))
proof (cases a }\inS\mathrm{ )
    case True
    then have \negaffine_dependent (insert a T \cup insert a T')
        using affine_dependent_subset assms by auto
    then have }x\in\mathrm{ convex hull (insert a T }\cap\mathrm{ insert a T')
```

by (metis IntI convex_hull_Int $x x^{\prime}$)
then show ?thesis
by simp
next
case False
then have anot: $a \notin T a \notin T^{\prime}$
using assms by auto
have [simp]: finite S
by (simp add: aff_independent_finite assms)
then obtain b where $b 0: \bigwedge s . s \in S \Longrightarrow 0 \leq b s$

$$
\text { and } b 1: \operatorname{sum} b S=1 \text { and aeq: } \bar{a}=\left(\sum s \in S . b s *_{R} s\right)
$$

using a by (auto simp: convex_hull_finite)
have fin [simp]: finite T finite T^{\prime}
using assms infinite_super 〈finite S 〉 by blast+
then obtain $c c^{\prime}$ where $c 0: \wedge t . t \in$ insert $a T \Longrightarrow 0 \leq c t$
and c1: sum $c($ insert a $T)=1$
and xeq: $x=\left(\sum t \in\right.$ insert a $\left.T . c t *_{R} t\right)$
and $c^{\prime} 0: \wedge t . t \in$ insert a $T^{\prime} \Longrightarrow 0 \leq c^{\prime} t$
and $c^{\prime} 1$: sum $c^{\prime}\left(\right.$ insert a $\left.T^{\prime}\right)=1$
and $x^{\prime} e q: x=\left(\sum t \in\right.$ insert $\left.a T^{\prime} \cdot c^{\prime} t *_{R} t\right)$
using $x x^{\prime}$ by (auto simp: convex_hull_finite)
with fin anot
have sumTT': sum $c T=1-c$ a sum $c^{\prime} T^{\prime}=1-c^{\prime} a$
and wsumT: $\left(\sum t \in T . c t *_{R} t\right)=x-c a *_{R} a$
by simp_all
have $\operatorname{wsum} T^{\prime}:\left(\sum t \in T^{\prime} . c^{\prime} t *_{R} t\right)=x-c^{\prime} a *_{R} a$
using x^{\prime} eq fin anot by simp
define $c c$ where $c c \equiv \lambda x$. if $x \in T$ then $c x$ else 0
define $c c^{\prime}$ where $c c^{\prime} \equiv \lambda x$. if $x \in T^{\prime}$ then $c^{\prime} x$ else 0
define $d d$ where $d d \equiv \lambda x$. cc $x-c c^{\prime} x+\left(c a-c^{\prime} a\right) * b x$
have sumSS': sum cc $S=1-c$ a sum $c c^{\prime} S=1-c^{\prime} a$
unfolding $c c$ _def $c c^{\prime}$ _def using S
by (simp_all add: Int_absorb1 Int_absorb2 sum_subtractf sum.inter_restrict [symmetric]
sumTT')
have wsumSS: $\left(\sum t \in S . c c t *_{R} t\right)=x-c a *_{R} a\left(\sum t \in S . c c^{\prime} t *_{R} t\right)=x$
$-c^{\prime} a *_{R} a$
unfolding $c c_{-} d e f$ cc ${ }^{\prime}$ _def using S
by (simp_all add: Int_absorb1 Int_absorb2 if_smult sum.inter_restrict [symmetric]
wsumT wsumT' cong: if_cong)
have sum_dd0: sum $d d S=0$
unfolding $d d$ _def using S
by (simp add: sumSS' comm_monoid_add_class.sum.distrib sum_subtractf
algebra_simps sum_distrib_right [symmetric] b1)
have $\left(\sum v \in S .(b v * x) *_{R} v\right)=x *_{R}\left(\sum v \in S . b v *_{R} v\right)$ for x
by (simp add: pth_5 real_vector.scale_sum_right mult.commute)
then have $*:\left(\sum v \in S .(b v * x) *_{R} v\right)=x *_{R} a$ for x
using aeq by blast
have $\left(\sum v \in S . d d v *_{R} v\right)=0$
unfolding $d d_{-} d e f$ using S

```
    by (simp add: * wsumSS sum.distrib sum_subtractf algebra_simps)
    then have \(d d 0: d d v=0\) if \(v \in S\) for \(v\)
    using naff [unfolded affine_dependent_explicit not_ex, rule_format, of \(S\) dd]
    using that sum_dd0 by force
    consider \(c^{\prime} a \leq c a \mid c a \leq c^{\prime} a\) by linarith
    then show ?thesis
    proof cases
    case 1
    then have sum cc \(S \leq\) sum \(c c^{\prime} S\)
        by (simp add: sumSS')
    then have le: cc \(x \leq c c^{\prime} x\) if \(x \in S\) for \(x\)
        using dd0 [OF that] 1 b0 mult_left_mono that
    by (fastforce simp add: dd_def algebra_simps)
    have \(c c 0\) : cc \(x=0\) if \(x \in S x \notin T \cap T^{\prime}\) for \(x\)
    using le \([O F\langle x \in S\rangle]\) that c0
    by (force simp: cc_def \(c c^{\prime}\) _def split: if_split_asm)
    show ?thesis
    proof (simp add: convex_hull_finite, intro exI conjI)
        show \(\forall x \in T \cap T^{\prime} .0 \leq(c c(a:=c a)) x\)
            by (simp add: c0 cc_def)
    show \(0 \leq(c c(a:=c a)) a\)
        by ( simp add: c0)
    have \(\operatorname{sum}(c c(a:=c a))\left(\right.\) insert \(\left.a\left(T \cap T^{\prime}\right)\right)=c a+\operatorname{sum}(c c(a:=c a))(T\)
\(\cap T^{\prime}\) )
            by ( simp add: anot)
    also have \(\ldots=c a+\operatorname{sum}(c c(a:=c a)) S\)
    using \(\langle T \subseteq S\rangle\) False cc0 cc_def \(\langle a \notin S\rangle\) by (fastforce intro!: sum.mono_neutral_left
split: if_split_asm)
    also have \(\ldots=c a+(1-c a)\)
        by (metis \(\langle a \notin S\rangle\) fun_upd_other sum.cong sumSS \(\left.{ }^{\prime}(1)\right)\)
    finally show \(\operatorname{sum}(c c(a:=c a))\left(\right.\) insert \(\left.a\left(T \cap T^{\prime}\right)\right)=1\)
        by \(\operatorname{simp}\)
    have \(\left(\sum x \in\right.\) insert \(\left.a\left(T \cap T^{\prime}\right) .(c c(a:=c a)) x *_{R} x\right)=c a *_{R} a+\left(\sum x \in\right.\)
\(\left.T \cap T^{\prime} .(c c(a:=c a)) x *_{R} x\right)\)
        by (simp add: anot)
    also have \(\ldots=c a *_{R} a+\left(\sum x \in S .(c c(a:=c a)) x *_{R} x\right)\)
            using \(\langle T \subseteq S\rangle\) False cc0 by (fastforce intro!: sum.mono_neutral_left split:
if_split_asm)
    also have \(\ldots=c a *_{R} a+x-c a *_{R} a\)
        by (simp add: wsumSS \(\langle a \notin S\) 〉if_smult sum_delta_notmem)
    finally show ( \(\sum x \in\) insert \(\left.a\left(T \cap T^{\prime}\right) .(c c(a:=c a)) x *_{R} x\right)=x\)
        by \(\operatorname{simp}\)
    qed
next
    case 2
    then have sum \(c c^{\prime} S \leq\) sum cc \(S\)
        by ( simp add: sumSS')
    then have \(l e: c c^{\prime} x \leq c c x\) if \(x \in S\) for \(x\)
        using dd0 [OF that] 2 b0 mult_left_mono that
```

by (fastforce simp add: dd_def algebra_simps)
have $c c 0$: $c c^{\prime} x=0$ if $x \in S x \notin T \cap T^{\prime}$ for x
using le $[O F\langle x \in S\rangle]$ that $c^{\prime} 0$
by (force simp: cc_def $c c^{\prime}$ _def split: if_split_asm)
show ?thesis
proof (simp add: convex_hull_finite, intro exI conjI)
show $\forall x \in T \cap T^{\prime} .0 \leq\left(c c^{\prime}\left(a:=c^{\prime} a\right)\right) x$
by (simp add: $c^{\prime} 0$ cc ${ }^{\prime}$ _def)
show $0 \leq\left(c c^{\prime}\left(a:=c^{\prime} a\right)\right) a$
by (simp add: $\left.c^{\prime} 0\right)$
have $\operatorname{sum}\left(c c^{\prime}\left(a:=c^{\prime} a\right)\right)\left(\right.$ insert $\left.a\left(T \cap T^{\prime}\right)\right)=c^{\prime} a+\operatorname{sum}\left(c c^{\prime}\left(a:=c^{\prime} a\right)\right)$ $\left(T \cap T^{\prime}\right)$
by (simp add: anot)
also have $\ldots=c^{\prime} a+\operatorname{sum}\left(c c^{\prime}\left(a:=c^{\prime} a\right)\right) S$
using $\langle T \subseteq S\rangle$ False cc0 by (fastforce intro!: sum.mono_neutral_left split:
if_split_asm)
also have $\ldots=c^{\prime} a+\left(1-c^{\prime} a\right)$
by (metis $\langle a \notin S\rangle$ fun_upd_other sum.cong sumSS')
finally show $\operatorname{sum}\left(c c^{\prime}\left(a:=c^{\prime} a\right)\right)\left(\right.$ insert $\left.a\left(T \cap T^{\prime}\right)\right)=1$ by simp
have $\left(\sum x \in\right.$ insert $\left.a\left(T \cap T^{\prime}\right) .\left(c c^{\prime}\left(a:=c^{\prime} a\right)\right) x *_{R} x\right)=c^{\prime} a *_{R} a+\left(\sum x\right.$ $\left.\in T \cap T^{\prime} .\left(c c^{\prime}\left(a:=c^{\prime} a\right)\right) x *_{R} x\right)$
by (simp add: anot)
also have $\ldots=c^{\prime} a *_{R} a+\left(\sum x \in S .\left(c c^{\prime}\left(a:=c^{\prime} a\right)\right) x *_{R} x\right)$
using $\langle T \subseteq S\rangle$ False cc0 by (fastforce intro!: sum.mono_neutral_left split:
if_split_asm)
also have $\ldots=c a *_{R} a+x-c a *_{R} a$
by (simp add: wsumSS $\langle a \notin S\rangle$ if_smult sum_delta_notmem)
finally show ($\sum x \in$ insert $\left.a\left(T \cap T^{\prime}\right) .\left(c c^{\prime}\left(a:=c^{\prime} a\right)\right) x *_{R} x\right)=x$
by simp
qed
qed
qed
corollary convex_hull_exchange_Int:
fixes a :: ' $a::$ euclidean_space
assumes \neg affine_dependent $S a \in$ convex hull $S T \subseteq S T^{\prime} \subseteq S$
shows $($ convex hull $($ insert a $T)) \cap\left(\right.$ convex hull (insert a $\left.\left.T^{\prime}\right)\right)=$ convex hull (insert a $\left(T \cap T^{\prime}\right)$) (is ?lhs $=$? rhs $)$
proof (rule subset_antisym)
show ?lhs \subseteq ? rhs
using in_convex_hull_exchange_unique assms by blast
show ?rhs \subseteq ?lhs
by (metis hull_mono inf_le1 inf_le2 insert_inter_insert le_inf_iff)
qed
lemma Int_closed_segment:
fixes b :: ' a ::euclidean_space
assumes $b \in$ closed_segment $a c \vee \neg$ collinear $\{a, b, c\}$
shows closed_segment $a b \cap$ closed_segment $b c=\{b\}$
proof (cases $c=a$)
case True
then show ?thesis
using assms collinear_3_eq_affine_dependent by fastforce
next
case False
from assms show ?thesis
proof
assume $b \in$ closed_segment $a c$
moreover have \neg affine_dependent $\{a, c\}$
by (simp)
ultimately show ?thesis
using False convex_hull_exchange_Int $[o f \quad\{a, c\} b\{a\}\{c\}]$
by (simp add: segment_convex_hull insert_commute)
next
assume ncoll: ᄀ collinear $\{a, b, c\}$
have False if closed_segment $a b \cap$ closed_segment $b c \neq\{b\}$
proof -
have $b \in$ closed_segment $a b$ and $b \in$ closed_segment $b c$ by auto
with that obtain d where $b \neq d d \in$ closed_segment abd closed_segment
bc
by force
then have d : collinear $\{a, d, b\}$ collinear $\{b, d, c\}$
by (auto simp: between_mem_segment between_imp_collinear)
have collinear $\{a, b, c\}$
by (metis (full_types) $\langle b \neq d\rangle$ collinear_3_trans d insert_commute)
with ncoll show False ..
qed
then show ?thesis
by blast
qed
qed
lemma affine_hull_finite_intersection_hyperplanes:
fixes S :: 'a::euclidean_space set
obtains \mathcal{F} where
finite \mathcal{F}
of_nat $($ card $\mathcal{F})+$ aff_dim $S=\operatorname{DIM}\left({ }^{\prime} a\right)$
affine hull $S=\bigcap \mathcal{F}$
$\wedge h . h \in \mathcal{F} \Longrightarrow \exists a b . a \neq 0 \wedge h=\{x . a \cdot x=b\}$
proof -
obtain b where $b \subseteq S$
and indb: \neg affine_dependent b
and eq: affine hull $S=$ affine hull b
using affine_basis_exists by blast
obtain c where indc: $\neg a f f i n e _d e p e n d e n t ~ c$ and $b \subseteq c$
and affc: affine hull $c=$ UNIV
by (metis extend_to_affine_basis affine_UNIV hull_same indb subset_UNIV) then have finite c
by (simp add: aff_independent_finite)
then have fbc: finite b card $b \leq$ card c
using $\langle b \subseteq c\rangle$ infinite_super by (auto simp: card_mono)
have imeq: $(\lambda x$. affine hull $x)$ ' $((\lambda a . c-\{a\}) '(c-b))=((\lambda a$. affine hull $(c$ $\left.-\{a\}))^{\prime}(c-b)\right)$
by blast
have card_cb: $(\operatorname{card}(c-b))+\operatorname{aff}$ _dim $S=\operatorname{DIM}\left({ }^{\prime} a\right)$
proof -
have aff: aff_dim (UNIV ::'a set) =aff_dim c
by (metis aff_dim_affine_hull affc)
have aff_dim $b=$ aff_dim S
by (metis (no_types) aff_dim_affine_hull eq)
then have int $($ card b) $=1+$ aff_dim S
by (simp add: aff_dim_affine_independent indb)
then show?thesis
using fbc aff
by (simp add: «ᄀ affine_dependent $c\rangle\langle b \subseteq c\rangle$ aff_dim_affine_independent
card_Diff_subset of_nat_diff)
qed
show ?thesis
proof (cases $c=b$)
case True show ?thesis
proof
show int (card \{\}) + aff_dim $S=\operatorname{int} \operatorname{DIM}\left({ }^{\prime} a\right)$
using True card_cb by auto
show affine hull $S=\bigcap\{ \}$
using True affc eq by blast
qed auto
next
case False
have ind: \neg affine_dependent $(\bigcup a \in c-b . c-\{a\})$
by (rule affine_independent_subset [OF indc]) auto
have $*: 1+\operatorname{aff}-\operatorname{dim}(c-\{t\})=\operatorname{int}\left(D I M\left({ }^{\prime} a\right)\right)$ if $t: t \in c$ for t
proof -
have insert $t c=c$
using t by blast
then show ?thesis
by (metis (full_types) add.commute aff_dim_affine_hull aff_dim_insert aff_dim_UNIV
affc affine_dependent_def indc insert_Diff_single t)
qed
let ? $\mathcal{F}=(\lambda x \text {. affine hull } x)^{\prime}\left((\lambda a . c-\{a\})^{\prime}(c-b)\right)$
show ?thesis
proof
have card $((\lambda a$. affine hull $(c-\{a\})) \cdot(c-b))=\operatorname{card}(c-b)$
proof (rule card_image)
show inj_on (λ a. affine hull $(c-\{a\}))(c-b)$
unfolding inj_on_def
by（metis Diff＿eq＿empty＿iff Diff＿iff indc affine＿dependent＿def hull＿subset insert＿iff）
qed
then show int（card ？ $\mathcal{F})+\operatorname{aff}$＿dim $S=$ int $\operatorname{DIM('a)~}$
by（simp add：imeq card＿cb）
show affine hull $S=\bigcap$ ？F
by（metis Diff＿eq＿empty＿iff INT＿simps（4）UN＿singleton order＿refl $\langle b \subseteq c\rangle$ False eq double＿diff affine＿hull＿Inter［OF ind］）
have $\bigwedge a . \llbracket a \in c ; a \notin b \rrbracket \Longrightarrow a f f _d i m(c-\{a\})=\operatorname{int}\left(D I M\left({ }^{\prime} a\right)-S u c 0\right)$ by（metis＊DIM＿ge＿Suc0 One＿nat＿def add＿diff＿cancel＿left＇int＿ops（2） of＿nat＿diff）
then show $\wedge h . h \in ? \mathcal{F} \Longrightarrow \exists a b . a \neq 0 \wedge h=\{x . a \cdot x=b\}$
by（auto simp only：One＿nat＿def aff＿dim＿eq＿hyperplane［symmetric］）
qed（use 〈finite $c\rangle$ in auto）
qed
qed
lemma affine＿hyperplane＿sums＿eq＿UNIV＿0：
fixes S ：：＇a ：：euclidean＿space set
assumes affine S
and $0 \in S$ and $w \in S$
and $a \cdot w \neq 0$
shows $\{x+y \mid x y . x \in S \wedge a \cdot y=0\}=U N I V$
proof－
have subspace S
by（simp add：assms subspace＿affine）
have span1：span $\{y . a \cdot y=0\} \subseteq \operatorname{span}\{x+y \mid x y . x \in S \wedge a \cdot y=0\}$
using $\langle 0 \in S\rangle$ add．left＿neutral by（intro span＿mono）force
have $w \notin \operatorname{span}\{y \cdot a \cdot y=0\}$
using $\langle a \cdot w \neq 0\rangle$ span＿induct subspace＿hyperplane by auto
moreover have $w \in \operatorname{span}\{x+y \mid x y . x \in S \wedge a \cdot y=0\}$
using $\langle w \in S\rangle$
by（metis（mono＿tags，lifting）inner＿zero＿right mem＿Collect＿eq pth＿d span＿base）
ultimately have span2：span $\{y . a \cdot y=0\} \neq \operatorname{span}\{x+y \mid x y . x \in S \wedge a \cdot$ $y=0\}$
by blast
have $a \neq 0$ using assms inner＿zero＿left by blast
then have $\operatorname{DIM}\left({ }^{\prime} a\right)-1=\operatorname{dim}\{y . a \cdot y=0\}$
by（simp add：dim＿hyperplane）
also have $\ldots<\operatorname{dim}\{x+y \mid x y . x \in S \wedge a \cdot y=0\}$
using span1 span2 by（blast intro：dim＿psubset）
finally have $\operatorname{DIM}\left({ }^{\prime} a\right)-1<\operatorname{dim}\{x+y \mid x y . x \in S \wedge a \cdot y=0\}$ ．
then have $D D: \operatorname{dim}\{x+y \mid x y . x \in S \wedge a \cdot y=0\}=\operatorname{DIM}\left({ }^{\prime} a\right)$
using antisym dim＿subset＿UNIV lowdim＿subset＿hyperplane not＿le by fastforce
have subs：subspace $\{x+y \mid x y . x \in S \wedge a \cdot y=0\}$
using subspace＿sums［OF 〈subspace S 〉subspace＿hyperplane］by simp
moreover have span $\{x+y \mid x y . x \in S \wedge a \cdot y=0\}=U N I V$
using $D D$ dim＿eq＿full by blast
ultimately show ？thesis

```
    by (simp add: subs) (metis (lifting) span_eq_iff subs)
qed
proposition affine_hyperplane_sums_eq_UNIV:
    fixes \(S\) :: ' \(a\) :: euclidean_space set
    assumes affine \(S\)
        and \(S \cap\{v \cdot a \cdot v=b\} \neq\{ \}\)
        and \(S-\{v \cdot a \cdot v=b\} \neq\{ \}\)
        shows \(\{x+y \mid x y . x \in S \wedge a \cdot y=b\}=U N I V\)
proof (cases \(a=0\) )
    case True with assms show ?thesis
        by (auto simp: if_splits)
next
    case False
    obtain \(c\) where \(c \in S\) and \(c: a \cdot c=b\)
        using assms by force
    with affine_diffs_subspace [OF <affine \(S\) 〉]
    have subspace \(((+)(-c) \cdot S)\) by blast
    then have aff: affine \(((+)(-c)\) ' \(S\) )
        by (simp add: subspace_imp_affine)
    have \(0: 0 \in(+)(-c)^{\prime} S\)
        by ( simp add: \(\langle c \in S\rangle)\)
    obtain \(d\) where \(d \in S\) and \(a \cdot d \neq b\) and \(d c: d-c \in(+)(-c)\) ' \(S\)
        using assms by auto
    then have \(a d c: a \cdot(d-c) \neq 0\)
        by (simp add: c inner_diff_right)
    define \(U\) where \(U \equiv\{x+y \mid x y . x \in(+)(-c) \cdot S \wedge a \cdot y=0\}\)
    have \(u+v \in(+)(c+c)^{\prime} U\)
        if \(u \in S b=a \cdot v\) for \(u v\)
    proof
        show \(u+v=c+c+(u+v-c-c)\)
            by (simp add: algebra_simps)
        have \(\exists x y . u+v-c-c=x+y \wedge(\exists x a \in S . x=x a-c) \wedge a \cdot y=0\)
        proof (intro exI conjI)
            show \(u+v-c-c=(u-c)+(v-c) a \cdot(v-c)=0\)
                by (simp_all add: algebra_simps \(c\) that)
            qed (use that in auto)
            then show \(u+v-c-c \in U\)
            by (auto simp: U_def image_def)
    qed
    moreover have \(\llbracket a \cdot v=0 ; u \in S \rrbracket\)
                \(\Longrightarrow \exists x y a \cdot v+(u+c)=x+y a \wedge x \in S \wedge a \cdot y a=b\) for \(v u\)
        by (metis add.left_commute c inner_right_distrib pth_d)
    ultimately have \(\{x+y \mid x y . x \in S \wedge a \cdot y=b\}=(+)(c+c) \cdot U\)
    by (fastforce simp: algebra_simps U_def)
    also have \(\ldots=\) range \(((+)(c+c))\)
    by (simp only: U_def affine_hyperplane_sums_eq_UNIV_0 [OF aff 0 dc adc])
    also have ... = UNIV
    by simp
```

```
    finally show ?thesis .
qed
```

lemma aff_dim_sums_Int_0:
assumes affine S
and affine T
and $0 \in S 0 \in T$
shows aff_dim $\{x+y \mid x y . x \in S \wedge y \in T\}=(\operatorname{aff}$ _dim $S+$ aff_dim $T)-$
$\operatorname{aff} \operatorname{dim}(S \cap T)$
proof -
have $0 \in\{x+y \mid x y . x \in S \wedge y \in T\}$
using assms by force
then have $0: 0 \in$ affine hull $\{x+y \mid x y . x \in S \wedge y \in T\}$
by (metis (lifting) hull_inc)
have sub: subspace S subspace T
using assms by (auto simp: subspace_affine)
show ?thesis
using dim_sums_Int [OF sub] by (simp add: aff_dim_zero assms 0 hull_inc)
qed
proposition aff_dim_sums_Int:
assumes affine S
and affine T
and $S \cap T \neq\{ \}$
shows aff_dim $\{x+y \mid x y . x \in S \wedge y \in T\}=(\operatorname{aff}-\operatorname{dim} S+$ aff_dim $T)-$
$\operatorname{aff} _\operatorname{dim}(S \cap T)$
proof -
obtain a where $a: a \in S a \in T$ using assms by force
have aff: affine $((+)(-a)$ 'S) affine $((+)(-a)$ ' $T)$
using affine_translation [symmetric, of $-a$] assms by (simp_all cong: im-
age_cong_simp)
have zero: $0 \in((+)(-a) ' S) \quad 0 \in((+)(-a)$ ' $T)$
using a assms by auto
have $\{x+y \mid x y . x \in(+)(-a) \cdot S \wedge y \in(+)(-a) \cdot T\}=$
$(+)\left(-2 *_{R} a\right) '\{x+y \mid x y . x \in S \wedge y \in T\}$
by (force simp: algebra_simps scaleR_2)
moreover have $(+)(-a)^{\prime} S \cap(+)(-a)^{\prime} T=(+)(-a) ‘(S \cap T)$
by auto
ultimately show ?thesis
using aff_dim_sums_Int_0 [OF aff zero] aff_dim_translation_eq
by (metis (lifting))
qed
lemma aff_dim_affine_Int_hyperplane:
fixes a :: ' $a:$::uclidean_space
assumes affine S
shows $\operatorname{aff} _\operatorname{dim}(S \cap\{x . a \cdot x=b\})=$
(if $S \cap\{v \cdot a \cdot v=b\}=\{ \}$ then -1
else if $S \subseteq\{v \cdot a \cdot v=b\}$ then aff_dim S

```
            else aff_dim S - 1)
proof (cases a=0)
    case True with assms show ?thesis
        by auto
next
    case False
    then have aff_dim (S\cap{x.a\cdotx=b})=aff_dim S-1
                if x\inSa\cdotx\not=b and non:S\cap{v.a\cdotv=b}\not={} for }
    proof -
        have [simp]: {x+y| x y.x\inS\wedgea\cdoty=b}=UNIV
            using affine_hyperplane_sums_eq_UNIV [OF assms non] that by blast
        show ?thesis
            using aff_dim_sums_Int [OF assms affine_hyperplane non]
            by (simp add: of_nat_diff False)
    qed
    then show ?thesis
        by (metis (mono_tags, lifting) inf.orderE aff_dim_empty_eq mem_Collect_eq
subsetI)
qed
lemma aff_dim_lt_full:
    fixes S :: 'a::euclidean_space set
    shows aff_dim S<DIM('a)\longleftrightarrow (affine hull S # UNIV)
by (metis (no_types) aff_dim_affine_hull aff_dim_le_DIM aff_dim_UNIV affine_hull_UNIV
less_le)
lemma aff_dim_openin:
    fixes S :: 'a::euclidean_space set
    assumes ope:openin (top_of_set T) S and affine T S\not={}
    shows aff_dim S = aff_dim T
proof -
    show ?thesis
    proof (rule order_antisym)
        show aff_dim S < aff_dim T
            by (blast intro:aff_dim_subset [OF openin_imp_subset] ope)
    next
        obtain a where a \inS
            using 〈S\not={}` by blast
        have S\subseteqT
            using ope openin_imp_subset by auto
            then have }a\in
                using }\langlea\inS\rangle\mathrm{ by auto
            then have subT': subspace (( }\lambdax.-a+x)'T
            using affine_diffs_subspace 〈affine T〉 by auto
            then obtain B where Bsub: B\subseteq((\lambdax.-a+x)'T) and po: pairwise
orthogonal B
            and eq1: }\bigwedgex.x\inB\Longrightarrow norm x=1 and independent B
                    and cardB: card B = dim ((\lambdax. -a+x)'T)
                    and spanB: span B = ((\lambdax. -a+x)`T)
```

```
    by (rule orthonormal_basis_subspace) auto
    obtain \(e\) where \(0<e\) and \(e\) : cball \(a e \cap T \subseteq S\)
    by (meson \(\langle a \in S\rangle\) openin_contains_cball ope)
    have aff_dim \(T=\) aff_dim \(((\lambda x .-a+x) \cdot T)\)
    by (metis aff_dim_translation_eq)
    also have \(\ldots=\operatorname{dim}((\lambda x .-a+x)\) ' \(T)\)
    using aff_dim_subspace subT \(T^{\prime}\) by blast
    also have \(\ldots=\operatorname{card} B\)
    by ( simp add: cardB)
    also have \(\ldots=\operatorname{card}\left(\left(\lambda x . e *_{R} x\right)\right.\) ' \(\left.B\right)\)
    using \(\langle 0<e\rangle\) by (force simp: inj_on_def card_image)
    also have \(\ldots \leq \operatorname{dim}((\lambda x .-a+x)\) ' \(S)\)
    proof (simp, rule independent_card_le_dim)
    have \(e^{\prime}\) : cball \(0 \quad e \cap(\lambda x . x-a)\) ' \(T \subseteq(\lambda x . x-a)\) ' \(S\)
        using \(e\) by (auto simp: dist_norm norm_minus_commute subset_eq)
    have \(\left(\lambda x . e *_{R} x\right)\) ' \(B \subseteq\) cball \(0 e \cap(\lambda x \cdot x-a)\) ' \(T\)
        using Bsub \(\langle 0<e\rangle\) eq1 subT \({ }^{\prime}\langle a \in T\rangle\) by (auto simp: subspace_def)
    then show \(\left(\lambda x . e *_{R} x\right)\) ' \(B \subseteq(\lambda x . x-a) \cdot S\)
        using \(e^{\prime}\) by blast
    have inj_on \(\left(\left(*_{R}\right)\right.\) e) (span B)
            using \(\langle 0<e\rangle\) inj_on_def by fastforce
    then show independent \(\left(\left(\lambda x . e *_{R} x\right)\right.\) ' \(\left.B\right)\)
        using linear_scale_self 〈independent \(B\) 〉 linear_dependent_inj_imageD by blast
    qed
    also have ... \(=\) aff_dim \(S\)
        using \(\langle a \in S\rangle\) aff_dim_eq_dim hull_inc by (force cong: image_cong_simp)
    finally show aff_dim \(T \leq\) aff_dim \(S\).
    qed
qed
lemma dim_openin:
    fixes \(S\) :: 'a::euclidean_space set
    assumes ope: openin (top_of_set \(T) S\) and subspace \(T S \neq\{ \}\)
    shows \(\operatorname{dim} S=\operatorname{dim} T\)
proof (rule order_antisym)
    show \(\operatorname{dim} S \leq \operatorname{dim} T\)
        by (metis ope dim_subset openin_subset topspace_euclidean_subtopology)
next
    have \(\operatorname{dim} T=\) aff_dim \(S\)
        using aff_dim_openin
        by (metis aff_dim_subspace 〈subspace \(T\rangle\langle S \neq\{ \}\rangle\) ope subspace_affine)
    also have \(\ldots \leq \operatorname{dim} S\)
        by (metis aff_dim_subset aff_dim_subspace dim_span span_superset
            subspace_span)
    finally show \(\operatorname{dim} T \leq \operatorname{dim} S\) by \(\operatorname{simp}\)
qed
```


5.0.17 Lower-dimensional affine subsets are nowhere dense

proposition dense_complement_subspace:
fixes S :: ' a :: euclidean_space set
assumes dim_less: $\operatorname{dim} T<\operatorname{dim} S$ and subspace S shows closure $(S-T)=S$
proof -
have $\operatorname{closure}(S-U)=S$ if $\operatorname{dim} U<\operatorname{dim} S U \subseteq S$ for U
proof -
have span $U \subset \operatorname{span} S$
by (metis neq_iff psubsetI span_eq_dim span_mono that)
then obtain a where $a \neq 0 a \in \operatorname{span} S$ and $a: \bigwedge y . y \in \operatorname{span} U \Longrightarrow$ orthogonal a y
using orthogonal_to_subspace_exists_gen by metis
show ?thesis
proof
have closed S
by (simp add: 〈subspace $S\rangle$ closed_subspace)
then show closure $(S-U) \subseteq S$
by (simp add: closure_minimal)
show $S \subseteq$ closure $(S-U)$
proof (clarsimp simp: closure_approachable)
fix x and $e::$ real
assume $x \in S 0<e$
show $\exists y \in S-U$. dist $y x<e$
proof (cases $x \in U$)
case True
let ? $y=x+(e / 2 /$ norm $a) *_{R} a$
show ?thesis
proof
show dist ? $y x<e$
using $\langle 0<e\rangle$ by (simp add: dist_norm)
next
have $? y \in S$
by (metis $\langle a \in \operatorname{span} S\rangle\langle x \in S\rangle$ assms(2) span_eq_iff subspace_add
subspace_scale)
moreover have ? $y \notin U$
proof -
have e/2 / norm $a \neq 0$
using $\langle 0<e\rangle\langle a \neq 0\rangle$ by auto
then show ?thesis
by (metis True $\langle a \neq 0\rangle$ a orthogonal_scaleR orthogonal_self
real_vector.scale_eq_0_iff span_add_eq span_base)
qed
ultimately show $? y \in S-U$ by blast qed
next
case False
with $\langle 0<e\rangle\langle x \in S\rangle$ show ?thesis by force
qed
qed

```
        qed
    qed
    moreover have S-S\capT=S-T
        by blast
    moreover have dim (S\capT)<\operatorname{dim}S
        by (metis dim_less dim_subset inf.cobounded2 inf.orderE inf.strict_boundedE
    not_le)
    ultimately show ?thesis
        by force
    qed
corollary dense_complement_affine:
    fixes S :: ' }a\mathrm{ :: euclidean_space set
    assumes less:aff_dim T<aff_dim S and affine S shows closure (S - T) =S
proof (cases S \capT={})
    case True
    then show ?thesis
    by (metis Diff_triv affine_hull_eq <affine S` closure_same_affine_hull closure_subset
hull_subset subset_antisym)
next
    case False
    then obtain z where z:z\inS\capT by blast
    then have subspace ((+) (-z)'S)
        by (meson IntD1 affine_diffs_subspace <affine S`)
    moreover have int (dim ((+) (-z)`T)) < int (dim ((+) (-z)`S))
thm aff_dim_eq_dim
            using z less by (simp add: aff_dim_eq_dim_subtract [of z] hull_inc cong: im-
age_cong_simp)
    ultimately have closure (((+) (-z)'S)- ((+) (-z)'T)) = ((+) (-z)'S)
        by (simp add: dense_complement_subspace)
    then show ?thesis
        by (metis closure_translation translation_diff translation_invert)
qed
corollary dense_complement_openin_affine_hull:
    fixes S :: 'a :: euclidean_space set
    assumes less:aff_dim T < aff_dim S
            and ope:openin (top_of_set (affine hull S)) S
            shows closure(S - T) = closure S
proof -
    have affine hull S - T\subseteq affine hull S
        by blast
    then have closure (S\cap closure (affine hull S - T)) = closure (S\cap (affine hull
S-T))
    by (rule closure_openin_Int_closure [OF ope])
    then show ?thesis
    by (metis Int_Diff aff_dim_affine_hull affine_affine_hull dense_complement_affine
hull_subset inf.orderE less)
qed
```

```
corollary dense_complement_convex:
    fixes \(S\) :: ' \(a\) :: euclidean_space set
    assumes aff_dim \(T<\) aff_dim \(S\) convex \(S\)
        shows closure \((S-T)=\) closure \(S\)
proof
    show closure \((S-T) \subseteq\) closure \(S\)
        by (simp add: closure_mono)
    have closure (rel_interior \(S-T\) ) = closure (rel_interior \(S\) )
        by (simp add: assms dense_complement_openin_affine_hull openin_rel_interior
rel_interior_aff_dim rel_interior_same_affine_hull)
    then show closure \(S \subseteq\) closure \((S-T)\)
            by (metis Diff_mono 〈convex \(S\) 〉closure_mono convex_closure_rel_interior or-
der_refl rel_interior_subset)
qed
corollary dense_complement_convex_closed:
    fixes \(S::{ }^{\prime} a\) :: euclidean_space set
    assumes aff_dim \(T<\) aff_dim \(S\) convex \(S\) closed \(S\)
        shows closure \((S-T)=S\)
    by (simp add: assms dense_complement_convex)
```


5.0.18 Parallel slices, etc

If we take a slice out of a set, we can do it perpendicularly, with the normal vector to the slice parallel to the affine hull.

```
proposition affine_parallel_slice:
    fixes \(S\) :: ' \(a\) :: euclidean_space set
    assumes affine \(S\)
        and \(S \cap\{x . a \cdot x \leq b\} \neq\{ \}\)
        and \(\neg(S \subseteq\{x . a \cdot x \leq b\})\)
    obtains \(a^{\prime} b^{\prime}\) where \(a^{\prime} \neq 0\)
                \(S \cap\left\{x . a^{\prime} \cdot x \leq b^{\prime}\right\}=S \cap\{x . a \cdot x \leq b\}\)
                \(S \cap\left\{x . a^{\prime} \cdot x=b^{\prime}\right\}=S \cap\{x . a \cdot x=b\}\)
                    \(\wedge w . w \in S \Longrightarrow\left(w+a^{\prime}\right) \in S\)
proof (cases \(S \cap\{x . a \cdot x=b\}=\{ \}\) )
    case True
    then obtain \(u v\) where \(u \in S v \in S a \cdot u \leq b a \cdot v>b\)
        using assms by (auto simp: not_le)
    define \(\eta\) where \(\eta=u+((b-a \cdot u) /(a \cdot v-a \cdot u)) *_{R}(v-u)\)
    have \(\eta \in S\)
        by (simp add: \(\eta_{-}\)def \(\langle u \in S\rangle\langle v \in S\rangle\langle a f f i n e S\rangle\) mem_affine_3_minus)
    moreover have \(a \cdot \eta=b\)
        using \(\langle a \cdot u \leq b\rangle\langle b<a \cdot v\rangle\)
        by (simp add: \(\eta_{-}\)def algebra_simps) (simp add: field_simps)
    ultimately have False
        using True by force
    then show?thesis ..
next
```

```
case False
then obtain z where z\inS and z:a\cdotz=b
    using assms by auto
with affine_diffs_subspace [OF <affine S`]
have sub: subspace ((+) (-z)'S) by blast
    then have aff: affine ((+) (-z)'S) and span: span ((+) (-z)'S)=((+)
(-z)'S)
    by (auto simp: subspace_imp_affine)
    obtain }\mp@subsup{a}{}{\prime}\mp@subsup{a}{}{\prime\prime}\mathrm{ where }\mp@subsup{a}{}{\prime}:\mp@subsup{a}{}{\prime}\in\operatorname{span}((+)(-z)'S) and a:a=\mp@subsup{a}{}{\prime}+\mp@subsup{a}{}{\prime\prime
                and }\bigwedgew.w\in\operatorname{span}((+)(-z)'S)\Longrightarrow\mathrm{ orthogonal a"' w
    using orthogonal_subspace_decomp_exists [of (+) (- z)'S a] by metis
    then have }\bigwedgew.w\inS\Longrightarrow\mp@subsup{a}{}{\prime\prime}\cdot(w-z)=
    by (simp add: span_base orthogonal_def)
    then have }\mp@subsup{a}{}{\prime\prime}:\bigwedgew.w\inS\Longrightarrow\mp@subsup{a}{}{\prime\prime}\cdotw=(a-\mp@subsup{a}{}{\prime})\cdot
    by (simp add: a inner_diff_right)
    then have ba'\prime: }\w.w\inS\Longrightarrow\mp@subsup{a}{}{\prime\prime}\cdotw=b-\mp@subsup{a}{}{\prime}\cdot
    by (simp add: inner_diff_left z)
    show ?thesis
    proof (cases a'=0)
    case True
    with a assms True a" diff_zero less_irrefl show ?thesis
        by auto
    next
    case False
    show ?thesis
    proof
        show }S\cap{x.\mp@subsup{a}{}{\prime}\cdotx\leq\mp@subsup{a}{}{\prime}\cdotz}=S\cap{x.a\cdotx\leqb
                S\cap{x. a' }\cdotx=\mp@subsup{a}{}{\prime}\cdotz}=S\cap{x.a\cdotx=b
                by (auto simp: a ba" 'inner_left_distrib)
            have }\w.w\in(+)(-z)'S\Longrightarrow(w+a')\in(+)(-z)'
                by (metis subspace_add a' span_eq_iff sub)
            then show }\w.w\inS\Longrightarrow(w+\mp@subsup{a}{}{\prime})\in
                by fastforce
    qed (use False in auto)
    qed
qed
lemma diffs_affine_hull_span:
    assumes }a\in
        shows (\lambdax.x-a)'(affine hull S)= span ((\lambdax.x-a)'S)
proof -
    have *: ((\lambdax. x-a)'(S-{a})) = ((\lambdax.x-a)'S)-{0}
        by (auto simp: algebra_simps)
    show ?thesis
        by (auto simp add: algebra_simps affine_hull_span2 [OF assms] *)
qed
lemma aff_dim_dim_affine_diffs:
fixes \(S\) :: ' \(a\) :: euclidean_space set
```

```
    assumes affine \(S a \in S\)
    shows aff_dim \(S=\operatorname{dim}((\lambda x . x-a)\) ' \(S)\)
proof -
    obtain \(B\) where aff: affine hull \(B=\) affine hull \(S\)
                and ind: \(\neg\) affine_dependent \(B\)
                and card: of_nat \((\) card \(B)=\) aff_dim \(S+1\)
        using aff_dim_basis_exists by blast
    then have \(B \neq\{ \}\) using assms
        by (metis affine_hull_eq_empty ex_in_conv)
    then obtain \(c\) where \(c \in B\) by auto
    then have \(c \in S\)
        by (metis aff affine_hull_eq〈affine \(S\) 〉hull_inc)
    have \(x y: x-c=y-a \longleftrightarrow y=x+1 *_{R}(a-c)\) for \(x y c\) and \(a::^{\prime} a\)
        by (auto simp: algebra_simps)
    have \(*:(\lambda x . x-c) ' S=(\lambda x . x-a) ' S\)
        using assms \(\langle c \in S\rangle\)
        by (auto simp: image_iff xy; metis mem_affine_3_minus pth_1)
    have affS: affine hull \(S=S\)
        by (simp add: 〈affine \(S\) 〉)
    have aff_dim \(S=\) of_nat (card B) -1
        using card by simp
    also have \(\ldots=\operatorname{dim}((\lambda x . x-c)\) ' \(B)\)
        using affine_independent_card_dim_diffs [OF ind \(\langle c \in B\rangle\) ]
        by (simp add: affine_independent_card_dim_diffs \([O F\) ind \(\langle c \in B\rangle])\)
    also have \(\ldots=\operatorname{dim}((\lambda x . x-c)\) ' \((\) affine hull \(B))\)
        by (simp add: diffs_affine_hull_span \(\langle c \in B\rangle\) )
    also have \(\ldots=\operatorname{dim}((\lambda x . x-a) ' S)\)
        by ( simp add: affS aff *)
    finally show ?thesis.
qed
lemma aff_dim_linear_image_le:
    assumes linear \(f\)
        shows aff_dim \((f\) ' \(S) \leq\) aff_dim \(S\)
proof -
    have aff_dim \(\left(f^{\prime} T\right) \leq\) aff_dim \(T\) if affine \(T\) for \(T\)
    proof (cases \(T=\{ \}\) )
        case True then show ?thesis by (simp add: aff_dim_geq)
    next
        case False
        then obtain \(a\) where \(a \in T\) by auto
        have 1: \(\left((\lambda x . x-f a)^{\prime} f\right.\) ' \(\left.T\right)=\left\{x-f a \mid x . x \in f^{\prime} T\right\}\)
        by auto
        have 2: \(\left\{x-f a \mid x . x \in f^{\prime} T\right\}=f^{\prime}\left((\lambda x . x-a)^{\prime} T\right)\)
            by (force simp: linear_diff [OF assms])
        have \(\operatorname{aff} \_\operatorname{dim}\left(f^{\prime} T\right)=\operatorname{int}\left(\operatorname{dim}\left\{x-f a \mid x . x \in f^{\prime} T\right\}\right)\)
        by (simp add: \(\langle a \in T\rangle\) hull_inc aff_dim_eq_dim [offa] 1 cong: image_cong_simp)
        also have \(\ldots=\operatorname{int}(\operatorname{dim}(f ‘((\lambda x . x-a)\) ' \(T)))\)
            by (force simp: linear_diff [OF assms] 2)
```

```
    also have ...\leqint (dim ((\lambdax.x - a)'T))
    by (simp add: dim_image_le [OF assms])
    also have ... \leq aff_dim T
    by (simp add: aff_dim_dim_affine_diffs [symmetric] \langlea \inT\rangle\langleaffine T\rangle)
    finally show ?thesis.
qed
then
have aff_dim (f '(affine hull S)) \leq aff_dim (affine hull S)
    using affine_affine_hull [of S] by blast
    then show ?thesis
        using affine_hull_linear_image assms linear_conv_bounded_linear by fastforce
qed
lemma aff_dim_injective_linear_image [simp]:
    assumes linear finj f
    shows aff_dim ( f'S) = aff_dim S
proof (rule antisym)
    show aff_dim (f'S) \leq aff_dim S
    by (simp add: aff_dim_linear_image_le assms(1))
next
    obtain g}\mathrm{ where linear g g}\circf=i
        using assms(1) assms(2) linear_injective_left_inverse by blast
    then have aff_dim S \leqaff_dim( g'f'S)
        by (simp add: image_comp)
    also have ... \leqaff_dim (f'S)
        by (simp add: <linear g> aff_dim_linear_image_le)
    finally show aff_dim S \leqaff_dim (f'S).
qed
lemma choose_affine_subset:
assumes affine \(S-1 \leq d\) and dle: \(d \leq a f f-d i m S\)
obtains \(T\) where affine \(T T \subseteq S\) aff_dim \(T=d\)
proof (cases \(d=-1 \vee S=\{ \}\) )
case True with assms show ?thesis
by (metis aff_dim_empty affine_empty bot.extremum that eq_iff)
next
case False
with assms obtain \(a\) where \(a \in S 0 \leq d\) by auto
with assms have ss: subspace \(((+)(-a) \cdot S)\)
by (simp add: affine_diffs_subspace_subtract cong: image_cong_simp)
have nat \(d \leq \operatorname{dim}((+)(-a)\) ' \(S)\)
by (metis aff_dim_subspace aff_dim_translation_eq dle nat_int nat_mono ss)
then obtain \(T\) where subspace \(T\) and \(T s b: T \subseteq \operatorname{span}((+)(-a)\) ' \(S)\) and Tdim: \(\operatorname{dim} T=\) nat \(d\)
using choose_subspace_of_subspace [of nat d \((+)(-a)\) ' \(S\) ] by blast
then have affine \(T\)
using subspace_affine by blast
then have affine \(\left((+) a^{\text {' }} T\right)\)
```

```
    by (metis affine_hull_eq affine_hull_translation)
    moreover have \((+) a^{`} T \subseteq S\)
    proof -
    have \(T \subseteq(+)(-a) \cdot S\)
        by (metis (no_types) span_eq_iff Tsb ss)
    then show \((+) a^{\prime} T \subseteq S\)
        using add_ac by auto
    qed
    moreover have aff_dim \(\left((+) a^{\prime} T\right)=d\)
    by (simp add: aff_dim_subspace Tdim \(\langle 0 \leq d\rangle\langle s u b s p a c e ~ T\rangle\) aff_dim_translation_eq)
    ultimately show ?thesis
    by (rule that)
qed
```


5.0.19 Paracompactness

proposition paracompact:
fixes S :: 'a :: \{metric_space,second_countable_topology\} set
assumes $S \subseteq \bigcup \mathcal{C}$ and op $C: \wedge T . T \in \mathcal{C} \Longrightarrow$ open T
obtains \mathcal{C}^{\prime} where $S \subseteq \bigcup \mathcal{C}^{\prime}$
and $\wedge U . U \in \mathcal{C}^{\prime} \Longrightarrow$ open $U \wedge(\exists T . T \in \mathcal{C} \wedge U \subseteq T)$
and $\bigwedge x . x \in S$

$$
\Longrightarrow \exists V . \text { open } V \wedge x \in V \wedge \text { finite }\left\{U . U \in \mathcal{C}^{\prime} \wedge(U \cap V \neq\right.
$$

$\})\}$
proof (cases $S=\{ \}$)
case True with that show ?thesis by blast
next
case False
have $\exists T U . x \in U \wedge$ open $U \wedge$ closure $U \subseteq T \wedge T \in \mathcal{C}$ if $x \in S$ for x
proof -
obtain T where $x \in T T \in \mathcal{C}$ open T
using assms $\langle x \in S\rangle$ by blast
then obtain e where $e>0$ cball $x e \subseteq T$
by (force simp: open_contains_cball)
then show ?thesis
by (meson open_ball $\langle T \in \mathcal{C}\rangle$ ball_subset_cball centre_in_ball closed_cball clo-
sure_minimal dual_order.trans)
qed
then obtain $F G$ where $G i n: x \in G x$ and $o G$: open $(G x)$
and clos: closure $(G x) \subseteq F x$ and Fin: $F x \in \mathcal{C}$
if $x \in S$ for x
by metis
then obtain \mathcal{F} where $\mathcal{F} \subseteq G$ 'S countable $\mathcal{F} \bigcup \mathcal{F}=\bigcup(G ' S)$
using Lindelof [of G ' S] by (metis image_iff)
then obtain K where $K: K \subseteq S$ countable K and eq: $\bigcup(G ‘ K)=\bigcup(G ‘ S)$
by (metis countable_subset_image)
with False Gin have $K \neq\{ \}$ by force
then obtain $a::$ nat $\Rightarrow{ }^{\prime} a$ where range $a=K$
by (metis range_from_nat_into 〈countable K))

```
then have odif: \(\bigwedge n\). open \((F(a n)-\bigcup\{\) closure \((G(a m)) \mid m . m<n\})\)
    using \(\langle K \subseteq S\rangle\) Fin op \(C\) by (fastforce simp add:)
let ? \(C=\operatorname{range}(\lambda n . F(a n)-\bigcup\{\operatorname{closure}(G(a m)) \mid m . m<n\})\)
have enum_S: \(\exists n . x \in F(a n) \wedge x \in G(a n)\) if \(x \in S\) for \(x\)
proof -
    have \(\exists y \in K . x \in G y\) using eq that Gin by fastforce
    then show ?thesis
        using clos \(K\) 〈range \(a=K\) 〉closure_subset by blast
    qed
    show ?thesis
    proof
    show \(S \subseteq\) Union ? \(C\)
    proof
        fix \(x\) assume \(x \in S\)
        define \(n\) where \(n \equiv\) LEAST \(n . x \in F(a n)\)
        have \(n: x \in F(a n)\)
            using enum_S \([O F\langle x \in S\rangle\) by (force simp: n_def intro: LeastI)
        have notn: \(x \notin F(a m)\) if \(m<n\) for \(m\)
            using that not_less_Least by (force simp: n_def)
        then have \(x \notin \bigcup\{\) closure \((G(a m)) \mid m . m<n\}\)
            using \(n\langle K \subseteq S\rangle\langle\) range \(a=K\rangle\) clos notn by fastforce
        with \(n\) show \(x \in\) Union ? \(C\)
            by blast
    qed
    show \(\wedge U . U \in ? C \Longrightarrow\) open \(U \wedge(\exists T . T \in \mathcal{C} \wedge U \subseteq T)\)
        using Fin \(\langle K \subseteq S\rangle\langle\) range \(a=K\rangle\) by (auto simp: odif)
    show \(\exists V\). open \(V \wedge x \in V \wedge\) finite \(\{U . U \in ? C \wedge(U \cap V \neq\{ \})\}\) if \(x \in S\)
for \(x\)
    proof -
        obtain \(n\) where \(n: x \in F(a n) x \in G(a n)\)
            using \(\langle x \in S\rangle\) enum_S by auto
        have \(\{U \in ? C . U \cap G(a n) \neq\{ \}\} \subseteq(\lambda n . F(a n)-\bigcup\{\operatorname{closure}(G(a m))\)
\(\mid m . m<n\}\) )' atMost \(n\)
    proof clarsimp
            fix \(k\) assume \((F(a k)-\bigcup\{\) closure \((G(a m)) \mid m . m<k\}) \cap G(a n) \neq\)
\{\}
            then have \(k \leq n\)
            by auto (metis closure_subset not_le subsetCE)
            then show \(F(a k)-\bigcup\{\) closure \((G(a m)) \mid m . m<k\}\)
                        \(\in(\lambda n . F(a n)-\bigcup\{\) closure \((G(a m)) \mid m . m<n\}) '\{. . n\}\)
            by force
        qed
        moreover have finite \(((\lambda n . F(a n)-\bigcup\{\operatorname{closure}(G(a m)) \mid m . m<n\}) '\)
atMost n)
            by force
        ultimately have \(*\) : finite \(\{U \in ? C . U \cap G(a n) \neq\{ \}\}\)
            using finite_subset by blast
        have \(a n \in S\)
            using \(\langle K \subseteq S\rangle\langle\) range \(a=K\rangle\) by blast
```

```
            then show ?thesis
            by (blast intro: oG n *)
        qed
    qed
qed
corollary paracompact_closedin:
    fixes S :: 'a :: {metric_space,second_countable_topology} set
    assumes cin: closedin (top_of_set U) S
        and oin: }\T.T\in\mathcal{C}\Longrightarrow\mathrm{ openin (top_of_set U)T
        and S\subseteq\bigcup\mathcal{C}
    obtains }\mp@subsup{\mathcal{C}}{}{\prime}\mathrm{ where }S\subseteq\bigcup\mp@subsup{\mathcal{C}}{}{\prime
                and }^V.V\in\mp@subsup{\mathcal{C}}{}{\prime}\Longrightarrow\mathrm{ openin (top_of_set }U)V\wedge(\existsT.T\in\mathcal{C}\wedgeV
T)
                and }\bigwedgex.x\in
                            \Longrightarrow\existsV. openin (top_of_set U) V}\wedgex\inV
                                    finite {X.X\in\mathcal{C}
proof -
    have }\existsZ.\mathrm{ open }Z\wedge(T=U\capZ)\mathrm{ if }T\in\mathcal{C}\mathrm{ for }
        using oin [OF that] by (auto simp: openin_open)
    then obtain F where opF:open (FT) and intF:U\capFT=T if T\in\mathcal{C}\mathrm{ for}
T
        by metis
    obtain K where K: closed K U\capK=S
        using cin by (auto simp: closedin_closed)
    have 1:U\subseteqU(insert (-K)(F'\mathcal{C}))
        by clarsimp (metis Int_iff Union_iff }\langleU\capK=S\rangle\langleS\subseteq\bigcup\mathcal{C}\rangle\mathrm{ subsetD intF)
    have 2: \T.T\in insert (-K) (F'\mathcal{C})\Longrightarrow open T
        using <closed K` by (auto simp: opF)
    obtain \mathcal{D}\mathrm{ where }U\subseteq\bigcup\mathcal{D}
                and D1: \bigwedgeU.U \in\mathcal{D}\Longrightarrow open U^(\existsT.T\ininsert (-K) (F'\mathcal{C})\wedge
U\subseteqT)
                    and D2: }\bigwedgex.x\inU\Longrightarrow\existsV. open V\wedgex\inV\wedge finite {U\in\mathcal{D}.U
V\not={}}
        by (blast intro: paracompact [OF 1 2])
    let ?C = {U\capV |V.V\in\mathcal{D}\wedge(V\capK\not={})}
    show ?thesis
    proof (rule_tac \mathcal{C}
        show S\subseteq\bigcup?C
            using }\langleU\capK=S\rangle\langleU\subseteq\bigcup\mathcal{D}\rangleK by (blast dest!: subsetD
        show }\V.V\in?C\Longrightarrow\mathrm{ openin (top_of_set U)}V\wedge(\existsT.T\in\mathcal{C}\wedgeV\subseteqT
            using D1 intF by fastforce
        have *: {X. (\existsV.X=U\capV}\)VV\in\mathcal{D}\wedgeV\capK\not={})\wedgeX\cap(U\capV)\not
{}}\subseteq
                    (\lambdax. U\capx)'{U\in\mathcal{D}.U\capV\not={}} for }
        by blast
```



```
            if }x\inU\mathrm{ for }
        proof -
```

```
    from D2 [OF that] obtain \(V\) where open \(V x \in V\) finite \(\{U \in \mathcal{D} . U \cap V\)
```

$\neq\{ \}\}$
by auto
with $*$ show ?thesis
by (rule_tac $x=U \cap V$ in exI) (auto intro: that finite_subset $[O F *]$)
qed
qed
qed
corollary paracompact_closed:
fixes S :: 'a :: \{metric_space,second_countable_topology\} set
assumes closed S
and $o p C: \wedge T . T \in \mathcal{C} \Longrightarrow$ open T
and $S \subseteq \bigcup \mathcal{C}$
obtains \mathcal{C}^{\prime} where $S \subseteq \bigcup \mathcal{C}^{\prime}$
and $\wedge U . U \in \mathcal{C}^{\prime} \Longrightarrow$ open $U \wedge(\exists T . T \in \mathcal{C} \wedge U \subseteq T)$
and $\bigwedge x . \exists V$. open $V \wedge x \in V \wedge$
finite $\left\{U . U \in \mathcal{C}^{\prime} \wedge(U \cap V \neq\{ \})\right\}$
by (rule paracompact_closedin [of UNIV S C]) (auto simp: assms)

5.0.20 Closed-graph characterization of continuity

lemma continuous_closed_graph_gen:
fixes T :: ' $b:$:real_normed_vector set
assumes contf: continuous_on $S f$ and fim: f ' $S \subseteq T$
shows closedin (top_of_set $(S \times T))((\lambda x$. Pair $x(f x))$ ' $S)$
proof -
have eq: $\left((\lambda x \text {. Pair } x(f x))^{\prime} S\right)=(S \times T \cap(\lambda z .(f \circ f s t) z-$ snd $z)-‘\{0\})$ using fim by auto
show ?thesis
unfolding $e q$
by (intro continuous_intros continuous_closedin_preimage continuous_on_subset [OF contf]) auto
qed
lemma continuous_closed_graph_eq:
fixes f :: 'a::euclidean_space \Rightarrow 'b::euclidean_space
assumes compact T and fim: $f^{\prime} S \subseteq T$
shows continuous_on $S f \longleftrightarrow$
closedin (top_of_set $(S \times T))((\lambda x$. Pair $x(f x)) \cdot S)$
(is ?lhs = ? $r h s$)
proof -
have ?lhs if ?rhs
proof (clarsimp simp add: continuous_on_closed_gen [OF fim])
fix U
assume U : closedin (top_of_set T) U
have eq: $\left(S \cap f-{ }^{\prime} U\right)=f s t^{\prime}\left(\left((\lambda x\right.\right.$. Pair $\left.\left.x(f x)){ }^{\prime} S\right) \cap(S \times U)\right)$
by (force simp: image_iff)
show closedin (top_of_set $S)(S \cap f-‘ U)$
by（simp add：U closedin＿Int closedin＿Times closed＿map＿fst［OF〈compact $T\rangle$ ］ that eq）
qed
with continuous＿closed＿graph＿gen assms show ？thesis by blast
qed
lemma continuous＿closed＿graph：
fixes $f::$＇a：：topological＿space \Rightarrow＇b：：real＿normed＿vector
assumes closed S and contf：continuous＿on $S f$
shows closed $((\lambda x$ ．Pair $x(f x))$＇S）
proof（rule closedin＿closed＿trans）
show closedin（top＿of＿set $(S \times U N I V))((\lambda x .(x, f x))$＇$S)$
by（rule continuous＿closed＿graph＿gen［OF contf subset＿UNIV］）
qed（simp add：〈closed S 〉closed＿Times）
lemma continuous＿from＿closed＿graph：
fixes f ：：＇a：：euclidean＿space \Rightarrow＇$b::$ euclidean＿space
assumes compact T and fim：$f^{\prime} S \subseteq T$ and clo：closed $((\lambda x$ ．Pair $x(f x))$＇$S)$
shows continuous＿on $S f$

using fim clo

by（auto intro：closed＿subset simp：continuous＿closed＿graph＿eq［OF〈compact T〉 fim］）
lemma continuous＿on＿Un＿local＿open：
assumes opS：openin（top＿of＿set $(S \cup T)) S$
and opT：openin（top＿of＿set $(S \cup T)) T$
and contf：continuous＿on $S f$ and contg：continuous＿on $T f$
shows continuous＿on $(S \cup T) f$
using pasting＿lemma $[$ of $\{S, T\}$ top＿of＿set $(S \cup T)$ id euclidean $\lambda i . f f]$ contf contg opS opT
by（simp add：subtopology＿subtopology）（metis inf．absorb2 openin＿imp＿subset）
lemma continuous＿on＿cases＿local＿open：
assumes opS：openin（top＿of＿set $(S \cup T)) S$
and op T ：openin（top＿of＿set $(S \cup T)) T$
and contf：continuous＿on $S f$ and contg：continuous＿on $T g$
and $f g: \wedge x . x \in S \wedge \neg P x \vee x \in T \wedge P x \Longrightarrow f x=g x$
shows continuous＿on $(S \cup T)(\lambda x$ ．if P x then $f x$ else $g x)$
proof－
have $\bigwedge x . x \in S \Longrightarrow$（if $P x$ then $f x$ else $g x)=f x \wedge x . x \in T \Longrightarrow$（if $P x$ then $f x$ else $g x)=g x$
by（simp＿all add：fg）
then have continuous＿on $S(\lambda x$ ．if $P x$ then $f x$ else $g x)$ continuous＿on $T(\lambda x$ ． if P x then $f x$ else $g x$ ）
by（simp＿all add：contf contg cong：continuous＿on＿cong）
then show ？thesis
by（rule continuous＿on＿Un＿local＿open［OF opS opT］）
qed

5.0.21 The union of two collinear segments is another segment

proposition in_convex_hull_exchange:
fixes a :: ' a ::euclidean_space
assumes $a: a \in$ convex hull S and $x S: x \in$ convex hull S
obtains b where $b \in S x \in$ convex hull (insert $a(S-\{b\})$)
proof (cases $a \in S$)
case True
with $x S$ insert_Diff that show ?thesis by fastforce
next
case False
show ?thesis
proof (cases finite $S \wedge$ card $S \leq S u c(D I M(' a)))$
case True
then obtain u where $u 0: \bigwedge i . i \in S \Longrightarrow 0 \leq u i$ and $u 1$: sum $u S=1$
and $u a:\left(\sum i \in S . u i *_{R} i\right)=a$
using a by (auto simp: convex_hull_finite)
obtain v where $v 0: \bigwedge i . i \in S \Longrightarrow 0 \leq v i$ and $v 1:$ sum $v S=1$
and $v x:\left(\sum i \in S . v i *_{R} i\right)=x$
using True $x S$ by (auto simp: convex_hull_finite)
show ?thesis
proof (cases $\exists b . b \in S \wedge v b=0$)
case True
then obtain b where $b: b \in S v b=0$
by blast
show ?thesis
proof
have fin: finite (insert $a(S-\{b\})$)
using sum.infinite v1 by fastforce
show $x \in$ convex hull insert $a(S-\{b\})$
unfolding convex_hull_finite [OF fin] mem_Collect_eq
proof (intro conjI exI ballI)
have $\left(\sum x \in\right.$ insert $a(S-\{b\})$. if $x=a$ then 0 else $\left.v x\right)=$
$\left(\sum x \in S-\{b\}\right.$. if $x=a$ then 0 else $\left.v x\right)$
using fin by (force intro: sum.mono_neutral_right)
also have $\ldots=\left(\sum x \in S-\{b\} . v x\right)$
using b False by (auto intro!: sum.cong split: if_split_asm)
also have $\ldots=\left(\sum x \in S . v x\right)$
by (metis $\langle v b=0\rangle$ diff_zero sum.infinite sum_diff1 u1 zero_neq_one)
finally show ($\sum x \in$ insert $a(S-\{b\})$. if $x=a$ then 0 else $\left.v x\right)=1$ by (simp add: v1)
show $\bigwedge x . x \in$ insert $a(S-\{b\}) \Longrightarrow 0 \leq($ if $x=a$ then 0 else $v x)$ by (auto simp: v0)
have $\left(\sum x \in\right.$ insert $a(S-\{b\})$. (if $x=a$ then 0 else $\left.\left.v x\right) *_{R} x\right)=$
$\left(\sum x \in S-\{b\} .(\right.$ if $x=a$ then 0 else $\left.v x) *_{R} x\right)$
using fin by (force intro: sum.mono_neutral_right)
also have $\ldots=\left(\sum x \in S-\{b\} . v x *_{R} x\right)$
using b False by (auto intro!: sum.cong split: if_split_asm)
also have $\ldots=\left(\sum x \in S . v x *_{R} x\right)$
by (metis (no_types, lifting) b(2) diff_zero fin finite.emptyI finite_Diff2 finite_insert scale_eq_0_iff sum_diff1)
finally show $\left(\sum x \in\right.$ insert $a(S-\{b\})$. (if $x=a$ then 0 else $\left.\left.v x\right) *_{R} x\right)$ $=x$
by (simp add: $v x$)
qed
qed (rule $\langle b \in S\rangle$)
next
case False
have le_Max: u $i / v i \leq \operatorname{Max}((\lambda i . u i / v i) \cdot S)$ if $i \in S$ for i by (simp add: True that)
have $\operatorname{Max}((\lambda i . u i / v i) ' S) \in(\lambda i . u i / v i) \cdot S$ using True v1 by (auto intro: Max_in)
then obtain b where $b \in S$ and beq: $\operatorname{Max}\left((\lambda b . u b / v b)^{\prime} S\right)=u b / v b$ by blast
then have $0 \neq u b / v b$
using le_Max beq divide_le_0_iff le_numeral_extra(2) sum_nonpos u1 by (metis False eq_iff v0)
then have $0<u b 0<v b$ using False $\langle b \in S\rangle u 0 v 0$ by force+
have fin: finite (insert a $(S-\{b\})$)
using sum.infinite v1 by fastforce
show ?thesis
proof
show $x \in$ convex hull insert a $(S-\{b\})$
unfolding convex_hull_finite [OF fin] mem_Collect_eq
proof (intro conjI exI ballI)
have $\left(\sum x \in\right.$ insert $a(S-\{b\})$. if $x=a$ then $v b / u b$ else $v x-(v b /$ $u b) * u x)=$
$v b / u b+\left(\sum x \in S-\{b\} . v x-(v b / u b) * u x\right)$
using $\langle a \notin S\rangle\langle b \in S\rangle$ True
by (auto intro!: sum.cong split: if_split_asm)
also have $\ldots=v b / u b+\left(\sum x \in S-\{b\} . v x\right)-(v b / u b) *\left(\sum x\right.$ $\in S-\{b\} . u x)$
by (simp add: Groups_Big.sum_subtractf sum_distrib_left)
also have $\ldots=\left(\sum x \in S . v x\right)$
using $\langle 0<u b\rangle$ True by (simp add: Groups_Big.sum_diff1 u1 field_simps)
finally show sum $(\lambda x$. if $x=a$ then $v b / u b$ else $v x-(v b / u b) * u$
$x)($ insert $a(S-\{b\}))=1$
by (simp add: v1)
show $0 \leq($ if $i=a$ then $v b / u b$ else $v i-v b / u b * u i)$
if $i \in$ insert $a(S-\{b\})$ for i
using $\langle 0<u b\rangle\langle 0<v b\rangle v 0$ [of i] le_Max [of i] beq that False
by (auto simp: field_simps split: if_split_asm)
have $\left(\sum x \in\right.$ insert $a(S-\{b\})$. (if $x=a$ then $v b / u b$ else $v x-v b / u$ $\left.b * u x) *_{R} x\right)=$
$(v b / u b) *_{R} a+\left(\sum x \in S-\{b\} .(v x-v b / u b * u x) *_{R} x\right)$
using $\langle a \notin S\rangle\langle b \in S\rangle$ True by (auto intro!: sum.cong split: if_split_asm)
also have $\ldots=(v b / u b) *_{R} a+\left(\sum x \in S-\{b\} . v x *_{R} x\right)-(v b /$

```
ub) *R
    by (simp add: Groups_Big.sum_subtractf scaleR_left_diff_distrib sum_distrib_left
scale_sum_right)
            also have ... = (\sumx\inS.vx*R}x
                            using <0 < u b\rangle True by (simp add: ua vx Groups_Big.sum_diff1
algebra_simps)
            finally
            show (\sumx\ininsert a (S - {b}). (if x=a then vb/ub else vx - vb/u
b*ux) *R }x\mathrm{ ) = x
                by (simp add: vx)
            qed
            qed (rule }\langleb\inS`
    qed
    next
        case False
    obtain T where finite T T\subseteqS and caT: card T\leqSuc (DIM('a)) and xT:
x convex hull T
            using xS by (auto simp: caratheodory [of S])
        with False obtain b where b:b\inS b\not\inT
            by (metis antisym subsetI)
    show ?thesis
    proof
            show }x\in\mathrm{ convex hull insert a (S-{b})
            using \langleT\subseteqS〉b by (blast intro: subsetD [OF hull_mono xT])
    qed (rule }\langleb\inS\rangle
    qed
qed
lemma convex_hull_exchange_Union:
    fixes a :: 'a::euclidean_space
    assumes a\in convex hull S
    shows convex hull S = (\bigcupb GS. convex hull (insert a (S - {b}))) (is ?lhs =
?rhs)
proof
    show ?lhs \subseteq?rhs
        by (blast intro: in_convex_hull_exchange [OF assms])
    show ?rhs \subseteq? ?lhs
    proof clarify
        fix }x
        assumeb }\inSx\in\mathrm{ convex hull insert a (S-{b})
        then show }x\in\mathrm{ convex hull S if b}\in
            by (metis (no_types) that assms order_refl hull_mono hull_redundant in-
sert_Diff_single insert_subset subsetCE)
    qed
qed
lemma Un_closed_segment:
    fixes a :: 'a::euclidean_space
    assumes b \in closed_segment a c
```

```
    shows closed_segment a b U closed_segment b c = closed_segment a c
proof (cases c=a)
    case True
    with assms show ?thesis by simp
next
    case False
    with assms have convex hull {a,b}\cup convex hull {b,c} =(\bigcupba\in{a,c}.convex
hull insert b ({a,c} - {ba}))
    by (auto simp: insert_Diff_if insert_commute)
    then show ?thesis
        using convex_hull_exchange_Union
        by (metis assms segment_convex_hull)
qed
lemma Un_open_segment:
    fixes a :: 'a::euclidean_space
    assumes b \in open_segment a c
    shows open_segment a b\cup{b}\cupopen_segment bc=open_segment ac (is ?lhs
= ?rhs)
proof -
    have b: b \in closed_segment a c
        by (simp add: assms open_closed_segment)
    have *: ?rhs \subseteq insert b (open_segment a b \cup open_segment b c)
                if {b,c,a}\cup open_segment a b\cupopen_segment bc={c,a}\cup\mathrm{ ?rhs}
    proof -
            have insert a (insert c (insert b (open_segment a b U open_segment b c)))=
insert a (insert c (?rhs))
            using that by (simp add: insert_commute)
        then show ?thesis
        by (metis (no_types) Diff_cancel Diff_eq_empty_iff Diff_insert2 open_segment_def)
    qed
    show ?thesis
    proof
        show ?lhs \subseteq?rhs
            by (simp add: assms b subset_open_segment)
        show ?rhs \subseteq?lhs
            using Un_closed_segment [OF b]*
        by (simp add: closed_segment_eq_open insert_commute)
    qed
qed
```


5.0.22 Covering an open set by a countable chain of compact sets

proposition open_Union_compact_subsets:
fixes S :: 'a::euclidean_space set
assumes open S
obtains C where $\bigwedge n . \operatorname{compact}(C n) \bigwedge n . C n \subseteq S$
$\bigwedge n . C n \subseteq \operatorname{interior}(C(S u c n))$

```
                                    U(\mathrm{ range C) =S}
                                    \ K . \llbracket c o m p a c t ~ K ; K \subseteq S \rrbracket \Longrightarrow \exists N . \forall n \geq N . K \subseteq ( C n )
proof (cases S={})
    case True
    then show ?thesis
        by (rule_tac C = \lambdan. {} in that) auto
next
    case False
    then obtain a where a\inS
        by auto
    let ?C = \lambdan.cball a (real n) - (\bigcupx\in -S. \bigcupe ball 0 (1 / real(Suc n)). {x
+e})
    have }\existsN.\foralln\geqN.K\subseteq(fn
            if \n.compact(f n) and sub_int: \n.f n\subseteq interior (f(Suc n))
                and eq: \bigcup(range f)=S and compact KK\subseteqS for f K
    proof -
        have *: \foralln.fn\subseteq(\bigcupn. interior (f n))
            by (meson Sup_upper2 UNIV_I<\n.f n \subseteq interior (f (Suc n))> image_iff)
        have mono: \bigwedgem n. m\leqn\Longrightarrowfm\subseteqfn
            by (meson dual_order.trans interior_subset lift_Suc_mono_le sub_int)
        obtain I where finite I and I:K\subseteq(\bigcupi\inI. interior (f i))
    proof (rule compactE_image [OF (compact K\])
            show K\subseteq(\bigcupn. interior (fn))
            using \langleK\subseteqS\rangle<U(f`
    qed auto
    { fix n
            assume n: Max I \leqn
            have (\i\inI. interior (f i))\subseteqfn
            by (rule UN_least) (meson dual_order.trans interior_subset mono I Max_ge
[OF〈finite I\rangle] n)
            then have K\subseteqfn
            using I by auto
        }
        then show ?thesis
            by blast
    qed
    moreover have \existsf.(\foralln.compact (f n))}\wedge(\foralln.(fn)\subseteqS)\wedge(\foralln.(fn)
interior (f(Suc n))) ^
                        ((U(\mathrm{ range f ) = S))}
    proof (intro exI conjI allI)
        show \n. compact (?C n)
            by (auto simp: compact_diff open_sums)
            show \n.?? }n\subseteq
            by auto
            show ?C n \subseteq interior (?C (Suc n)) for n
            proof (simp add: interior_diff, rule Diff_mono)
            show cball a (real n)\subseteq ball a (1 + real n)
                by (simp add: cball_subset_ball_iff)
            have cl: closed (\bigcupx\in-S. \bigcupe\incball 0 (1/(2+ real n)). {x+e})
```

using assms by (auto intro: closed_compact_sums)
have closure $(\bigcup x \in-S . \bigcup y \in$ ball $0(1 /(2+$ real $n)) .\{x+y\})$ $\subseteq(\bigcup x \in-S . \bigcup e \in \operatorname{cball} 0(1 /(2+$ real $n)) .\{x+e\})$
by (intro closure_minimal UN_mono ball_subset_cball order_refl cl)
also have $\ldots \subseteq(\bigcup x \in-S . \bigcup y \in$ ball $0(1 /(1+$ real $n)) .\{x+y\})$
by (simp add: cball_subset_ball_iff field_split_simps UN_mono)
finally show closure $(\bigcup x \in-S$. $\bigcup y \in$ ball $0(1 /(2+$ real $n)) .\{x+y\})$ $\subseteq(\bigcup x \in-S . \bigcup y \in$ ball $0(1 /(1+$ real $n)) .\{x+y\})$.
qed
have $S \subseteq \bigcup$ (range ? C)
proof
fix x
assume $x: x \in S$
then obtain e where $e>0$ and e : ball $x e \subseteq S$ using assms open_contains_ball by blast
then obtain $N 1$ where $N 1>0$ and $N 1$: real $N 1>1 / e$
using reals_Archimedean2
by (metis divide_less_0_iff less_eq_real_def neq0_conv not_le of_nat_0 of_nat_1 of_nat_less_0_iff)
obtain N2 where N2: $\operatorname{norm}(x-a) \leq$ real N2
by (meson real_arch_simple)
have N12: inverse $((N 1+N 2)+1) \leq \operatorname{inverse}(N 1)$
using $\langle N 1>0\rangle$ by (auto simp: field_split_simps)
have $x \neq y+z$ if $y \notin S$ norm $z<1 /(1+($ real N1 + real N2 $))$ for $y z$
proof -
have $e *$ real N1 $<e *(1+($ real N1 + real N2 $))$
by (simp add: $\langle 0<e\rangle$)
then have $1 /(1+($ real N1 + real N2 $))<e$
using $N 1\langle e>0\rangle$
by (metis divide_less_eq less_trans mult.commute of_nat_add of_nat_less_0_iff of_nat_Suc)
then have $x-z \in$ ball $x e$
using that by simp
then have $x-z \in S$
using e by blast
with that show ?thesis
by auto
qed
with N2 show $x \in \bigcup$ (range ?C)
by (rule_tac $a=N 1+N 2$ in $\left.U N _I\right)$ (auto simp: dist_norm norm_minus_commute)
qed
then show \bigcup (range ? $C)=S$ by auto
qed
ultimately show ?thesis
using that by metis
qed

5.0.23 Orthogonal complement

definition orthogonal_comp $\left({ }_{-}^{\perp}\right.$ [80] 80)
where orthogonal_comp $W \equiv\{x . \forall y \in W$. orthogonal $y x\}$
proposition subspace_orthogonal_comp: subspace (W^{\perp})
unfolding subspace_def orthogonal_comp_def orthogonal_def
by (auto simp: inner_right_distrib)
lemma orthogonal_comp_anti_mono:
assumes $A \subseteq B$
shows $B^{\perp} \subseteq A^{\perp}$
proof
fix x assume $x: x \in B^{\perp}$
show $x \in$ orthogonal_comp A using x unfolding orthogonal_comp_def by (simp add: orthogonal_def, metis assms in_mono)
qed
lemma orthogonal_comp_null $[$ simp $]:\{0\}^{\perp}=U N I V$
by (auto simp: orthogonal_comp_def orthogonal_def)
lemma orthogonal_comp_UNIV [simp]: UNIV ${ }^{\perp}=\{0\}$
unfolding orthogonal_comp_def orthogonal_def
by auto (use inner_eq_zero_iff in blast)
lemma orthogonal_comp_subset: $U \subseteq U^{\perp \perp}$
by (auto simp: orthogonal_comp_def orthogonal_def inner_commute)
lemma subspace_sum_minimal:
assumes $S \subseteq U T \subseteq U$ subspace U
shows $S+T \subseteq U$
proof
fix x
assume $x \in S+T$
then obtain $x s$ xt where $x s \in S x t \in T x=x s+x t$ by (meson set_plus_elim)
then show $x \in U$ by (meson assms subsetCE subspace_add)
qed
proposition subspace_sum_orthogonal_comp:
fixes U :: ' a :: euclidean_space set
assumes subspace U
shows $U+U^{\perp}=U N I V$
proof -
obtain B where $B \subseteq U$
and ortho: pairwise orthogonal $B \bigwedge x . x \in B \Longrightarrow$ norm $x=1$
and independent B card $B=\operatorname{dim} U$ span $B=U$
using orthonormal_basis_subspace [OF assms] by metis
then have finite B

```
    by (simp add: indep_card_eq_dim_span)
    have \(*: \forall x \in B . \forall y \in B . x \cdot y=(\) if \(x=y\) then 1 else 0\()\)
    using ortho norm_eq_1 by (auto simp: orthogonal_def pairwise_def)
    \{ fix \(v\)
    let ? \(u=\sum b \in B .(v \cdot b) *_{R} b\)
    have \(v=? u+(v-? u)\)
            by \(\operatorname{simp}\)
    moreover have \(? u \in U\)
        by (metis (no_types, lifting) «span \(B=U\rangle\) assms subspace_sum span_base
span_mul)
    moreover have \((v-? u) \in U^{\perp}\)
    proof (clarsimp simp: orthogonal_comp_def orthogonal_def)
            fix \(y\)
            assume \(y \in U\)
            with \(\langle\) span \(B=U\rangle\) span_finite \([O F\langle\) finite \(B\rangle]\)
            obtain \(u\) where \(u: y=\left(\sum b \in B . u b *_{R} b\right)\)
                by auto
            have \(b \cdot(v-? u)=0\) if \(b \in B\) for \(b\)
            using that 〈finite B〉
                by (simp add: * algebra_simps inner_sum_right if_distrib \([o f(*) v\) for \(v]\)
inner_commute cong: if_cong)
            then show \(y \cdot(v-? u)=0\)
            by (simp add: \(u\) inner_sum_left)
    qed
    ultimately have \(v \in U+U^{\perp}\)
            using set_plus_intro by fastforce
    \} then show ?thesis
    by auto
qed
lemma orthogonal_Int_0:
    assumes subspace \(U\)
    shows \(U \cap U^{\perp}=\{0\}\)
    using orthogonal_comp_def orthogonal_self
    by (force simp: assms subspace_0 subspace_orthogonal_comp)
lemma orthogonal_comp_self:
    fixes \(U\) :: ' \(a\) :: euclidean_space set
    assumes subspace \(U\)
    shows \(U^{\perp \perp}=U\)
proof
    have ss \(U^{\prime}\) : subspace \(\left(U^{\perp}\right)\)
        by (simp add: subspace_orthogonal_comp)
    have \(u \in U\) if \(u \in U^{\perp \perp}\) for \(u\)
    proof -
        obtain \(v w\) where \(u=v+w v \in U w \in U^{\perp}\)
            using subspace_sum_orthogonal_comp [OF assms] set_plus_elim by blast
            then have \(u-v \in U^{\perp}\)
            by \(\operatorname{simp}\)
```

```
    moreover have \(v \in U^{\perp \perp}\)
        using \(\langle v \in U\rangle\) orthogonal_comp_subset by blast
    then have \(u-v \in U^{\perp \perp}\)
        by (simp add: subspace_diff subspace_orthogonal_comp that)
    ultimately have \(u-v=0\)
        using orthogonal_Int_0 ss \(U^{\prime}\) by blast
    with \(\langle v \in U\rangle\) show ?thesis
        by auto
    qed
    then show \(U^{\perp \perp} \subseteq U\)
        by auto
qed (use orthogonal_comp_subset in auto)
lemma ker_orthogonal_comp_adjoint:
    fixes \(f\) :: 'm::euclidean_space \(\Rightarrow\) ' \(n:: e u c l i d e a n \_s p a c e\)
    assumes linear \(f\)
    shows \(f-‘\{0\}=(\text { range }(\text { adjoint } f))^{\perp}\)
proof -
    have \(\bigwedge x . \llbracket \forall y . y \cdot f x=0 \rrbracket \Longrightarrow f x=0\)
        using assms inner_commute all_zero_iff by metis
    then show?thesis
        using assms
    by (auto simp: orthogonal_comp_def orthogonal_def adjoint_works inner_commute)
qed
```


5.0.24 A non-injective linear function maps into a hyperplane.

lemma linear_surj_adj_imp_inj:
fixes $f::$ ' $m:: e u c l i d e a n _s p a c e ~ \Rightarrow ' ~ n:: e u c l i d e a n _s p a c e$
assumes linear f surj (adjoint f)
shows inj f
proof -
have $\exists x . y=\operatorname{adjoint} f x$ for y using assms by (simp add: surjD)
then show inj f using assms unfolding inj_on_def image_def by (metis (no_types) adjoint_works euclidean_eqI)
qed
—https://mathonline.wikidot.com/injectivity-and-surjectivity-of-the-adjoint-of-a-linear-map
lemma surj_adjoint_iff_inj [simp]:
fixes $f::$ 'm::euclidean_space \Rightarrow ' $n::$ euclidean_space
assumes linear f
shows surj $($ adjoint $f) \longleftrightarrow \operatorname{inj} f$
proof
assume surj (adjoint f)
then show inj f
by (simp add: assms linear_surj_adj_imp_inj)

```
next
    assume inj f
    have }f-`{0}={0
        using assms <inj f\rangle linear_0 linear_injective_0 by fastforce
    moreover have f-'{0} = range (adjoint f)\perp
        by (intro ker_orthogonal_comp_adjoint assms)
    ultimately have range (adjoint f) 站}=UNI
        by (metis orthogonal_comp_null)
    then show surj (adjoint f)
        using adjoint_linear 〈linear f>
        by (subst (asm) orthogonal_comp_self)
        (simp add:adjoint_linear linear_subspace_image)
qed
lemma inj_adjoint_iff_surj [simp]:
    fixes f :: 'm::euclidean_space = ' 'n::euclidean_space
    assumes linear f
    shows inj (adjoint f) \longleftrightarrow surjf
proof
    assume inj (adjoint f)
    have (adjoint f) -'{0} ={0}
    by (metis <inj (adjoint f)> adjoint_linear assms surj_adjoint_iff_inj ker_orthogonal_comp_adjoint
orthogonal_comp_UNIV)
    then have (range (f)\mp@subsup{)}{}{\perp}={0}
    by (metis (no_types, hide_lams) adjoint_adjoint adjoint_linear assms ker_orthogonal_comp_adjoint
set_zero)
    then show surj f
    by (metis <inj (adjoint f)> adjoint_adjoint adjoint_linear assms surj_adjoint_iff_inj)
next
    assume surj f
    then have range f}=(\mathrm{ adjoint f-`{0}) 
        by (simp add: adjoint_adjoint adjoint_linear assms ker_orthogonal_comp_adjoint)
    then have {0} =adjoint f-'{0}
        using <surj f` adjoint_adjoint adjoint_linear assms ker_orthogonal_comp_adjoint
by force
    then show inj (adjoint f)
    by (simp add:\surj f` adjoint_adjoint adjoint_linear assms linear_surj_adj_imp_inj)
qed
lemma linear_singular_into_hyperplane:
    fixes f :: ' }n::\mathrm{ euclidean_space }=>\mp@subsup{}{}{\prime}
    assumes linear f
    shows ᄀinjf\longleftrightarrow(\existsa.a\not=0^(\forallx.a\cdotfx=0))(is _ = ?rhs)
proof
    assume }\neginj
    then show?rhs
        using all_zero_iff
        by (metis (no_types, hide_lams) adjoint_clauses(2) adjoint_linear assms
            linear_injective_0 linear_injective_imp_surjective linear_surj_adj_imp_inj)
```

```
Product_Topology.thy
```

```
next
```

next
assume ?rhs
assume ?rhs
then show }\neginj
then show }\neginj
by (metis assms linear_injective_isomorphism all_zero_iff)
by (metis assms linear_injective_isomorphism all_zero_iff)
qed
qed
lemma linear_singular_image_hyperplane:
lemma linear_singular_image_hyperplane:
fixes f :: ' }n::\mathrm{ euclidean_space = ' }
fixes f :: ' }n::\mathrm{ euclidean_space = ' }
assumes linear f \neginj f
assumes linear f \neginj f
obtains a where a\not=0 \S.f'S\subseteq{x.a\cdotx=0}
obtains a where a\not=0 \S.f'S\subseteq{x.a\cdotx=0}
using assms by (fastforce simp add: linear_singular_into_hyperplane)

```
    using assms by (fastforce simp add: linear_singular_into_hyperplane)
```

end

5.1 The binary product topology

theory Product_Topology
imports Function_Topology
begin

5.2 Product Topology

5.2.1 Definition

definition prod_topology :: 'a topology \Rightarrow ' b topology $\Rightarrow\left({ }^{\prime} a \times\right.$ 'b) topology where prod_topology $X Y \equiv$ topology (arbitrary union_of $(\lambda U . U \in\{S \times T \mid S T$. openin $X S \wedge$ openin $Y T\})$)
lemma open_product_open:
assumes open A
shows $\exists \mathcal{U} . \mathcal{U} \subseteq\{S \times T \mid S T$. open $S \wedge$ open $T\} \wedge \bigcup \mathcal{U}=A$
proof -
obtain $f g$ where $*: \wedge u . u \in A \Longrightarrow$ open $(f u) \wedge$ open $(g u) \wedge u \in(f u) \times(g$
$u) \wedge(f u) \times(g u) \subseteq A$
using open_prod_def [of A] assms by metis
let $? \mathcal{U}=(\lambda u . f u \times g u)^{\prime} A$
show ?thesis
by (rule_tac $x=? \mathcal{U}$ in exI) (auto simp: dest: *)
qed
lemma open_product_open_eq: (arbitrary union_of $(\lambda U . \exists S T . U=S \times T \wedge$ open
$S \wedge$ open $T))=$ open
by (force simp: union_of_def arbitrary_def intro: open_product_open open_Times)
lemma openin_prod_topology:
openin (prod_topology $X Y)=$ arbitrary union_of $(\lambda U . U \in\{S \times T \mid S T$. openin $X S \wedge$ openin $Y T\})$
unfolding prod_topology_def
proof (rule topology_inverse)
show istopology (arbitrary union_of $(\lambda U . U \in\{S \times T \mid S T$. openin $X S \wedge$
openin $Y T\}$))
apply (rule istopology_base, simp)
by (metis openin_Int Times_Int_Times)
qed
lemma topspace_prod_topology [simp]:
topspace (prod_topology $X Y$) $=$ topspace $X \times$ topspace Y
proof -
have topspace $($ prod_topology $X Y)=\bigcup($ Collect $($ openin $($ prod_topology $X Y)))$
(is - = ? Z)
unfolding topspace_def ..
also have $\ldots=$ topspace $X \times$ topspace Y
proof
show ? $Z \subseteq$ topspace $X \times$ topspace Y
apply (auto simp: openin_prod_topology union_of_def arbitrary_def)
using openin_subset by force+
next
have $*: \exists A B$. topspace $X \times$ topspace $Y=A \times B \wedge$ openin $X A \wedge$ openin Y
B
by blast
show topspace $X \times$ topspace $Y \subseteq ? Z$
apply (rule Union_upper)
using * by (simp add: openin_prod_topology arbitrary_union_of_inc)
qed
finally show? ?thesis .
qed
lemma subtopology_Times:
shows subtopology (prod_topology $X Y)(S \times T)=$ prod_topology (subtopology X
S) (subtopology Y T)
proof -
have $((\lambda U . \exists S T . U=S \times T \wedge$ openin $X S \wedge$ openin $Y T)$ relative_to $S \times T)$
$=$
$\left(\lambda U . \exists S^{\prime} T^{\prime} . U=S^{\prime} \times T^{\prime} \wedge(\right.$ openin X relative_to $S) S^{\prime} \wedge($ openin Y relative_to $T) T^{\prime}$)
by (auto simp: relative_to_def Times_Int_Times fun_eq_iff) metis
then show ?thesis
by (simp add: topology_eq openin_prod_topology arbitrary_union_of_relative_to
flip: openin_relative_to)
qed
lemma prod_topology_subtopology:
prod_topology (subtopology X S) $Y=$ subtopology (prod_topology X Y) $(S \times$ topspace Y)
prod_topology $X($ subtopology $Y T)=$ subtopology $($ prod_topology $X Y)($ topspace $X \times T)$
by (auto simp: subtopology_Times)
lemma prod_topology_discrete_topology:
discrete_topology $(S \times T)=$ prod_topology $($ discrete_topology $S)($ discrete_topology
T)
by (auto simp: discrete_topology_unique openin_prod_topology intro: arbitrary_union_of_inc)
lemma prod_topology_euclidean [simp]: prod_topology euclidean euclidean $=$ euclidean
by (simp add: prod_topology_def open_product_open_eq)
lemma prod_topology_subtopology_eu [simp]:
prod_topology (subtopology euclidean S) (subtopology euclidean T) = subtopology euclidean $(S \times T)$
by (simp add: prod_topology_subtopology subtopology_subtopology Times_Int_Times)
lemma openin_prod_topology_alt:
openin (prod_topology XY)S \longleftrightarrow
$(\forall x y .(x, y) \in S \longrightarrow(\exists U V$. openin $X U \wedge$ openin $Y V \wedge x \in U \wedge y \in V$
$\wedge U \times V \subseteq S))$
apply (auto simp: openin_prod_topology arbitrary_union_of_alt, fastforce)
by (metis mem_Sigma_iff)
lemma open_map_fst: open_map (prod_topology X Y) X fst
unfolding open_map_def openin_prod_topology_alt
by (force simp: openin_subopen [of X fst '] intro: subset_fst_imageI)
lemma open_map_snd: open_map (prod_topology X Y) Y snd
unfolding open_map_def openin_prod_topology_alt
by (force simp: openin_subopen [of Y snd '] intro: subset_snd_imageI)
lemma openin_prod_Times_iff:
openin (prod_topology X Y) $(S \times T) \longleftrightarrow S=\{ \} \vee T=\{ \} \vee$ openin $X S \wedge$
openin YT
proof (cases $S=\{ \} \vee T=\{ \})$
case False
then show ?thesis
apply (simp add: openin_prod_topology_alt openin_subopen [of X S] openin_subopen [of Y T] times_subset_iff, safe)
apply (meson|force)+ done
qed force
lemma closure_of_Times:
(prod_topology X Y) closure_of $(S \times T)=(X$ closure_of $S) \times(Y$ closure_of $T)$
(is ? $\mathrm{lh} s=$? $r h s$)
proof
show ?lhs \subseteq ?rhs
by (clarsimp simp: closure_of_def openin_prod_topology_alt) blast
show ? $r h s \subseteq$?lhs
by (clarsimp simp: closure_of_def openin_prod_topology_alt) (meson SigmaI subsetD)
qed
lemma closedin_prod_Times_iff:
closedin (prod_topology $X Y)(S \times T) \longleftrightarrow S=\{ \} \vee T=\{ \} \vee$ closedin $X S \wedge$ closedin Y T
by (auto simp: closure_of_Times times_eq_iff simp flip: closure_of_eq)
lemma interior_of_Times: (prod_topology X Y) interior_of $(S \times T)=(X$ interior_of $S) \times(Y$ interior_of $T)$
proof (rule interior_of_unique)
show $(X$ interior_of $S) \times Y$ interior_of $T \subseteq S \times T$
by (simp add: Sigma_mono interior_of_subset)
show openin (prod_topology X Y) ((X interior_of $S) \times Y$ interior_of T)
by (simp add: openin_prod_Times_iff)

next

show $T^{\prime} \subseteq(X$ interior_of $S) \times Y$ interior_of T if $T^{\prime} \subseteq S \times T$ openin (prod_topology $X Y) T^{\prime}$ for T^{\prime}
proof (clarsimp; intro conjI)
fix $a::{ }^{\prime} a$ and $b::{ }^{\prime} b$
assume $(a, b) \in T^{\prime}$
with that obtain $U V$ where $U V$: openin $X U$ openin $Y V a \in U b \in V U$
$\times V \subseteq T^{\prime}$
by (metis openin_prod_topology_alt)
then show $a \in X$ interior_of S
using interior_of_maximal_eq that(1) by fastforce
show $b \in Y$ interior_of T
using $U V$ interior_of_maximal_eq that(1)
by (metis SigmaI mem_Sigma_iff subset_eq)
qed
qed

5.2.2 Continuity

lemma continuous_map_pairwise:
continuous_map $Z($ prod_topology $X Y) f \longleftrightarrow$ continuous_map $Z X(f s t \circ f) \wedge$
continuous_map $Z Y($ snd $\circ f)$
(is ?lhs = ? $r h s$)
proof -
let $? g=f s t \circ f$ and $? h=s n d \circ f$
have $f: f x=(? g x, ? h x)$ for x
by auto
show ?thesis
proof (cases $(\forall x \in$ topspace $Z . ? g x \in$ topspace $X) \wedge(\forall x \in$ topspace Z. ?h x
\in topspace Y))
case True
show ?thesis
proof safe

```
    assume continuous_map Z (prod_topology X Y) f
    then have openin Z{x\in topspace Z.fst (fx)\inU} if openin X U for U
        unfolding continuous_map_def using True that
        apply clarify
        apply (drule_tac x=U \times topspace Y in spec)
        by (simp add: openin_prod_Times_iff mem_Times_iff cong: conj_cong)
    with True show continuous_map Z X (fst \circf)
        by (auto simp: continuous_map_def)
    next
    assume continuous_map Z (prod_topology X Y) f
    then have openin Z {x\in topspace Z. snd (fx)\inV} if openin Y V for V
            unfolding continuous_map_def using True that
            apply clarify
            apply (drule_tac x=topspace X }\timesV\mathrm{ in spec)
            by (simp add: openin_prod_Times_iff mem_Times_iff cong: conj_cong)
    with True show continuous_map Z Y (snd \circf)
            by (auto simp: continuous_map_def)
next
    assume Z: continuous_map Z X (fst \circf) continuous_map Z Y (snd \circf)
    have *: openin Z {x\in topspace Z.fx\inW}
            if }\wedgew.w\inW\Longrightarrow\existsUV. openin X U^\mathrm{ openin }YV\wedgew\inU\timesV\wedge
\times V\subseteqW for }
    proof (subst openin_subopen, clarify)
            fix }x:: '
            assume x\in topspace Z and fx\inW
            with that [OF<fx\inW\rangle]
            obtain UV where UV: openin X U openin YVfx\inU }\VVU\timesV
W
            by auto
            with Z UV show \exists}T\mathrm{ . openin Z T^x 
\inW}
            apply(rule_tac }x={x\in\mathrm{ topspace Z. ?g }x\inU}\cap{x\in\mathrm{ topspace Z. ?h x
\inV} in exI)
            apply (auto simp: <x \in topspace Z` continuous_map_def)
            done
        qed
        show continuous_map Z (prod_topology X Y) f
            using True by (simp add: continuous_map_def openin_prod_topology_alt
mem_Times_iff *)
            qed
    qed (auto simp: continuous_map_def)
qed
lemma continuous_map_paired:
continuous_map \(Z(\) prod_topology \(X Y)(\lambda x .(f x, g x)) \longleftrightarrow\) continuous_map \(Z X\) \(f \wedge\) continuous_map Z Yg
by (simp add: continuous_map_pairwise o_def)
lemma continuous_map_pairedI [continuous_intros]:
```

$\llbracket c o n t i n u o u s _m a p Z X f$; continuous_map $Z Y g \rrbracket \Longrightarrow$ continuous_map Z (prod_topology $X Y)(\lambda x .(f x, g x))$
by (simp add: continuous_map_pairwise o_def)
lemma continuous_map_fst [continuous_intros]: continuous_map (prod_topology X Y) $X f s t$ using continuous_map_pairwise [of prod_topology X Y X Yid] by (simp add: continuous_map_pairwise)
lemma continuous_map_snd [continuous_intros]: continuous_map (prod_topology X
Y) Y snd using continuous_map_pairwise [of prod_topology X Y X Yid] by (simp add: continuous_map_pairwise)
lemma continuous_map_fst_of [continuous_intros]:
continuous_map $Z($ prod_topology $X Y) f \Longrightarrow$ continuous_map $Z X(f s t \circ f)$ by (simp add: continuous_map_pairwise)
lemma continuous_map_snd_of [continuous_intros]:
continuous_map $Z($ prod_topology $X Y) f \Longrightarrow$ continuous_map $Z Y($ snd $\circ f)$ by (simp add: continuous_map_pairwise)
lemma continuous_map_prod_fst:
$i \in I \Longrightarrow$ continuous_map (prod_topology (product_topology ($\lambda i . Y) I) X) Y(\lambda x$. fst $x i$)
using continuous_map_componentwise_UNIV continuous_map_fst by fastforce
lemma continuous_map_prod_snd:
$i \in I \Longrightarrow$ continuous_map (prod_topology X (product_topology ($\lambda i . Y$) $I)$) $Y(\lambda x$. snd $x i)$
using continuous_map_componentwise_UNIV continuous_map_snd by fastforce
lemma continuous_map_if_iff [simp]: continuous_map $X Y(\lambda x$. if P then $f x$ else $g x) \longleftrightarrow$ continuous_map $X Y$ (if P then f else g)
by simp
lemma continuous_map_if [continuous_intros]: $\llbracket P \Longrightarrow$ continuous_map $X Y f ; \sim P$
\Longrightarrow continuous_map X Y g】 \Longrightarrow continuous_map $X Y(\lambda x$. if P then $f x$ else $g x)$
by simp
lemma continuous_map_subtopology_fst [continuous_intros]: continuous_map (subtopology (prod_topology X Y) Z) X fst
using continuous_map_from_subtopology continuous_map_fst by force
lemma continuous_map_subtopology_snd [continuous_intros]: continuous_map (subtopology (prod_topology X Y) Z) Y snd using continuous_map_from_subtopology continuous_map_snd by force
lemma quotient_map_fst [simp]:
quotient_map(prod_topology $X Y) X$ fst \longleftrightarrow (topspace $Y=\{ \} \longrightarrow$ topspace X $=\{ \}$)
by (auto simp: continuous_open_quotient_map open_map_fst continuous_map_fst)
lemma quotient_map_snd [simp]:
quotient_map(prod_topology $X Y$) Y snd \longleftrightarrow (topspace $X=\{ \} \longrightarrow$ topspace Y $=\{ \}$)
by (auto simp: continuous_open_quotient_map open_map_snd continuous_map_snd)
lemma retraction_map_fst:
retraction_map (prod_topology $X Y$) X fst \longleftrightarrow (topspace $Y=\{ \} \longrightarrow$ topspace $X=\{ \})$
proof (cases topspace $Y=\{ \}$)
case True
then show ?thesis
using continuous_map_image_subset_topspace
by (fastforce simp: retraction_map_def retraction_maps_def continuous_map_fst continuous_map_on_empty)
next
case False
have $\exists g$. continuous_map $X($ prod_topology $X Y) g \wedge(\forall x \in$ topspace X. fst $(g x)$
$=x$)
if $y: y \in$ topspace Y for y
by (rule_tac $x=\lambda x$. (x, y) in $e x I)$ (auto simp: y continuous_map_paired)
with False have retraction_map (prod_topology X Y) X fst
by (fastforce simp: retraction_map_def retraction_maps_def continuous_map_fst)
with False show ?thesis
by simp
qed
lemma retraction_map_snd:
retraction_map (prod_topology $X Y$) Y snd \longleftrightarrow (topspace $X=\{ \} \longrightarrow$ topspace $Y=\{ \})$
proof (cases topspace $X=\{ \}$)
case True
then show? ?thesis
using continuous_map_image_subset_topspace
by (fastforce simp: retraction_map_def retraction_maps_def continuous_map_fst continuous_map_on_empty)
next
case False
have $\exists g$. continuous_map Y (prod_topology $X Y) g \wedge(\forall y \in$ topspace Y. snd (g
$y)=y$)
if $x: x \in$ topspace X for x
by (rule_tac $x=\lambda y .(x, y)$ in exI) (auto simp: x continuous_map_paired)
with False have retraction_map (prod_topology X Y) Y snd
by (fastforce simp: retraction_map_def retraction_maps_def continuous_map_snd) with False show ?thesis
by simp
qed
lemma continuous_map_of_fst:
continuous_map (prod_topology $X Y) Z(f \circ f s t) \longleftrightarrow$ topspace $Y=\{ \} \vee$ con-
tinuous_map $X Z f$
proof (cases topspace $Y=\{ \}$)
case True
then show? ?thesis
by (simp add: continuous_map_on_empty)

next

case False
then show? ?thesis
by (simp add: continuous_compose_quotient_map_eq)
qed
lemma continuous_map_of_snd:
continuous_map $($ prod_topology $X Y) Z(f \circ$ snd $) \longleftrightarrow$ topspace $X=\{ \} \vee$
continuous_map YZf
proof (cases topspace $X=\{ \}$)
case True
then show? thesis
by (simp add: continuous_map_on_empty)
next
case False
then show? ?thesis
by (simp add: continuous_compose_quotient_map_eq)
qed
lemma continuous_map_prod_top:
continuous_map (prod_topology $X Y)\left(\right.$ prod_topology $\left.X^{\prime} Y^{\prime}\right)(\lambda(x, y) .(f x, g y))$
\longleftrightarrow
topspace (prod_topology $X Y)=\{ \} \vee$ continuous_map $X X^{\prime} f \wedge$ continuous_map $Y Y^{\prime} g$
proof (cases topspace (prod_topology X Y) $=\{ \}$)
case True
then show ?thesis
by (simp add: continuous_map_on_empty)
next
case False
then show ?thesis
by (simp add: continuous_map_paired case_prod_unfold continuous_map_of_fst
[unfolded o_def] continuous_map_of_snd [unfolded o_def])
qed
lemma in_prod_topology_closure_of:
assumes $z \in($ prod_topology $X Y)$ closure_of S
shows f st $z \in X$ closure_of $(f s t$ ' S) snd $z \in Y$ closure_of (snd'S)
using assms continuous_map_eq_image_closure_subset continuous_map_fst apply fastforce
using assms continuous_map_eq_image_closure_subset continuous_map_snd apply fastforce
done
proposition compact_space_prod_topology:
compact_space (prod_topology X Y) \longleftrightarrow topspace $($ prod_topology $X \quad Y)=\{ \} \vee$
compact_space $X \wedge$ compact_space Y
proof (cases topspace (prod_topology X Y) $=\{ \}$)
case True
then show ?thesis
using compact_space_topspace_empty by blast
next
case False
then have non_mt: topspace $X \neq\{ \}$ topspace $Y \neq\{ \}$
by auto
have compact_space X compact_space Y if compact_space(prod_topology X Y)
proof -
have compactin $X(f s t$ ' $($ topspace $X \times$ topspace $Y))$
by (metis compact_space_def continuous_map_fst image_compactin that topspace_prod_topology)
moreover
have compactin Y (snd' (topspace $X \times$ topspace $Y)$)
by (metis compact_space_def continuous_map_snd image_compactin that topspace_prod_topology)
ultimately show compact_space X compact_space Y
by (simp_all add: non_mt compact_space_def)
qed
moreover
define \mathcal{X} where $\mathcal{X} \equiv(\lambda V$.topspace $X \times V){ }^{\prime}$ Collect (openin $\left.Y\right)$
define \mathcal{Y} where $\mathcal{Y} \equiv(\lambda U . U \times$ topspace $Y)$ ' Collect (openin $X)$
have compact_space(prod_topology $X Y$) if compact_space X compact_space Y
proof (rule Alexander_subbase_alt)
show toptop: topspace $X \times$ topspace $Y \subseteq \bigcup(\mathcal{X} \cup \mathcal{Y})$
unfolding \mathcal{X}_{-}def $\mathcal{Y}_{\text {_ def }}$ by auto
fix $\mathcal{C}::\left({ }^{\prime} a \times ' b\right)$ set set
assume $\mathcal{C}: \mathcal{C} \subseteq \mathcal{X} \cup \mathcal{Y}$ topspace $X \times$ topspace $Y \subseteq \bigcup \mathcal{C}$
then obtain $\mathcal{X}^{\prime} \mathcal{Y}^{\prime}$ where $X Y: \mathcal{X}^{\prime} \subseteq \mathcal{X} \mathcal{Y}^{\prime} \subseteq \mathcal{Y}$ and $\mathcal{C} e q: \mathcal{C}=\mathcal{X}^{\prime} \cup \mathcal{Y}^{\prime}$
using subset_UnE by metis
then have sub: topspace $X \times$ topspace $Y \subseteq \bigcup\left(\mathcal{X}^{\prime} \cup \mathcal{Y}^{\prime}\right)$
using \mathcal{C} by simp
obtain $\mathcal{U} \mathcal{V}$ where $\mathcal{U}: \wedge U . U \in \mathcal{U} \Longrightarrow$ openin $X U \mathcal{Y}^{\prime}=(\lambda U . U \times$ topspace
Y) ' \mathcal{U}
and $\mathcal{V}: \wedge V . V \in \mathcal{V} \Longrightarrow$ openin $Y V \mathcal{X}^{\prime}=(\lambda V \text {.topspace } X \times V)^{\prime} \mathcal{V}$
using $X Y$ by (clarsimp simp add: $\mathcal{X}_{\text {_ }}$ def $\mathcal{Y}_{\text {_ def }}$ subset_image_iff) (force simp
add: subset_iff)
have $\exists \mathcal{D}$. finite $\mathcal{D} \wedge \mathcal{D} \subseteq \mathcal{X}^{\prime} \cup \mathcal{Y}^{\prime} \wedge$ topspace $X \times$ topspace $Y \subseteq \bigcup \mathcal{D}$
proof -
have topspace $X \subseteq \bigcup \mathcal{U} \vee$ topspace $Y \subseteq \bigcup \mathcal{V}$
using $\mathcal{U} \mathcal{V} \mathcal{C} \mathcal{C}$ eq by auto
then have $*: \exists \mathcal{D}$. finite $\mathcal{D} \wedge$ $\left(\forall x \in \mathcal{D} . x \in(\lambda V \text {. topspace } X \times V)^{\prime} \mathcal{V} \vee x \in(\lambda U . U \times\right.$ topspace
$\left.Y)^{\prime} \mathcal{U}\right) \wedge$ (topspace $X \times$ topspace $Y \subseteq \bigcup \mathcal{D}$)
proof
assume topspace $X \subseteq \bigcup \mathcal{U}$
with <compact_space $X>\mathcal{U}$ obtain \mathcal{F} where finite $\mathcal{F} \mathcal{F} \subseteq \mathcal{U}$ topspace $X \subseteq$
$\bigcup \mathcal{F}$
by (meson compact_space_alt)
with that show ?thesis
by (rule_tac $x=(\lambda D . D \times$ topspace $Y)$ ' \mathcal{F} in exI) auto
next
assume topspace $Y \subseteq \bigcup \mathcal{V}$
with 〈compact_space $Y\rangle \mathcal{V}$ obtain \mathcal{F} where finite $\mathcal{F} \mathcal{F} \subseteq \mathcal{V}$ topspace $Y \subseteq$
$\bigcup \mathcal{F}$
by (meson compact_space_alt)
with that show ?thesis
by (rule_tac $x=(\lambda C$. topspace $X \times C)$ ' \mathcal{F} in exI) auto
qed
then show?thesis
using that $\mathcal{U} \mathcal{V}$ by blast
qed
then show $\exists \mathcal{D}$. finite $\mathcal{D} \wedge \mathcal{D} \subseteq \mathcal{C} \wedge$ topspace $X \times$ topspace $Y \subseteq \bigcup \mathcal{D}$
using $\mathcal{C} \mathcal{C}$ eq by blast
next
have (finite intersection_of $(\lambda x . x \in \mathcal{X} \vee x \in \mathcal{Y})$ relative_to topspace $X \times$ topspace Y)
$=(\lambda U . \exists S T . U=S \times T \wedge$ openin $X S \wedge$ openin $Y T)$
(is ?lhs $=$? $r h s$)
proof -
have ?rhs U if ?lhs U for U
proof -
have topspace $X \times$ topspace $Y \cap \bigcap T \in\{A \times B \mid A B . A \in$ Collect (openin
$X) \wedge B \in$ Collect (openin $Y)\}$ if finite $T T \subseteq \mathcal{X} \cup \mathcal{Y}$ for T using that
proof induction
case (insert B B
then show ?case
unfolding \mathcal{X}_{-}def \mathcal{Y}_{-}def
apply (simp add: Int_ac subset_eq image_def)
apply (metis (no_types) openin_Int openin_topspace Times_Int_Times)
done
qed auto
then show?thesis
using that
by (auto simp: subset_eq elim!: relative_toE intersection_ofE)
qed

```
    moreover
    have ?lhs Z if Z: ?rhs Z for }
    proof -
    obtain U V where Z = U }\timesV\mathrm{ openin X U openin Y V
            using Z by blast
    then have UV:U\timesV=(topspace X }\times\mathrm{ topspace Y) }\cap(U\timesV
            by (simp add: Sigma_mono inf_absorb2 openin_subset)
    moreover
    have ?lhs ((topspace X \times topspace Y) \cap (U\timesV))
    proof (rule relative_to_inc)
            show (finite intersection_of ( }\lambdax.x\in\mathcal{X}\veex\in\mathcal{Y}))(U\timesV
            apply (simp add: intersection_of_def \mathcal{X_def \mathcal{Y_def)}}\mathbf{~}\mathrm{ )}
            apply (rule_tac }x={(U\times\mathrm{ topspace Y),(topspace }X\timesV)}\mathrm{ in exI)
                using <openin X U`<openin Y V` openin_subset UV apply (fastforce
simp add:)
            done
            qed
            ultimately show ?thesis
            using \Z = U }\timesV\rangle\mathrm{ by auto
            qed
            ultimately show ?thesis
            by meson
    qed
    then show topology (arbitrary union_of (finite intersection_of ( }\lambdax.x\in\mathcal{X}
Y)
            relative_to (topspace X }\times\mathrm{ topspace Y))) =
            prod_topology X Y
    by (simp add: prod_topology_def)
    qed
    ultimately show ?thesis
        using False by blast
qed
lemma compactin_Times:
    compactin(prod_topology X Y) (S\timesT)\longleftrightarrowS={}\vee T={}\vee compactin X
S ^ compactin Y T
    by (auto simp: compactin_subspace subtopology_Times compact_space_prod_topology)
```


5.2.3 Homeomorphic maps

lemma homeomorphic_maps_prod:
homeomorphic_maps (prod_topology $X Y)\left(p r o d _t o p o l o g y ~ X^{\prime} Y^{\prime}\right)(\lambda(x, y) .(f x, g$ $y))\left(\lambda(x, y) .\left(f^{\prime} x, g^{\prime} y\right)\right) \longleftrightarrow$
topspace $($ prod_topology $X Y)=\{ \} \wedge$
topspace (prod_topology $\left.X^{\prime} Y^{\prime}\right)=\{ \} \vee$
homeomorphic_maps $X X^{\prime} f f^{\prime} \wedge$
homeomorphic_maps $Y Y^{\prime} g g^{\prime}$
unfolding homeomorphic_maps_def continuous_map_prod_top
by (auto simp: continuous_map_def homeomorphic_maps_def continuous_map_prod_top)
lemma homeomorphic_maps_swap:
homeomorphic_maps (prod_topology X Y) (prod_topology Y X)
$(\lambda(x, y) \cdot(y, x))(\lambda(y, x) .(x, y))$
by (auto simp: homeomorphic_maps_def case_prod_unfold continuous_map_fst continuous_map_pairedI continuous_map_snd)
lemma homeomorphic_map_swap:
homeomorphic_map (prod_topology X Y) (prod_topology Y X) $(\lambda(x, y) .(y, x))$
using homeomorphic_map_maps homeomorphic_maps_swap by metis
lemma embedding_map_graph:
embedding_map $X($ prod_topology $X Y)(\lambda x .(x, f x)) \longleftrightarrow$ continuous_map $X Y$
f
(is ?lhs =?rhs)
proof
assume L : ?lhs
have snd $\circ(\lambda x .(x, f x))=f$ by force
moreover have continuous_map $X Y($ snd $\circ(\lambda x .(x, f x)))$ using L
unfolding embedding_map_def
by (meson continuous_map_in_subtopology continuous_map_snd_of homeomor-
phic_imp_continuous_map)
ultimately show ?rhs
by simp
next
assume R : ?rhs
then show? lhs
unfolding homeomorphic_map_maps embedding_map_def homeomorphic_maps_def by (rule_tac $x=f s t$ in exI)
(auto simp: continuous_map_in_subtopology continuous_map_paired continuous_map_from_subtopology
continuous_map_fst)
qed
lemma homeomorphic_space_prod_topology:
$\llbracket X$ homeomorphic_space $X^{\prime \prime} ; ~ Y$ homeomorphic_space $Y^{\prime} \rrbracket$
\Longrightarrow prod_topology X Y homeomorphic_space prod_topology $X^{\prime \prime} Y^{\prime}$
using homeomorphic_maps_prod unfolding homeomorphic_space_def by blast
lemma prod_topology_homeomorphic_space_left:
topspace $Y=\{b\} \Longrightarrow$ prod_topology X Y homeomorphic_space X
unfolding homeomorphic_space_def
by (rule_tac $x=f s t$ in exI) (simp add: homeomorphic_map_def inj_on_def flip:
homeomorphic_map_maps)
lemma prod_topology_homeomorphic_space_right:
topspace $X=\{a\} \Longrightarrow$ prod_topology X Y homeomorphic_space Y
unfolding homeomorphic_space_def
by (rule_tac $x=s n d$ in exI) (simp add: homeomorphic_map_def inj_on_def fip: homeomorphic_map_maps)
lemma homeomorphic_space_prod_topology_sing1:
$b \in$ topspace $Y \Longrightarrow X$ homeomorphic_space (prod_topology X (subtopology Y $\{b\})$)
by (metis empty_subsetI homeomorphic_space_sym inf.absorb_iff2 insert_subset prod_topology_homeomorphic_space_left topspace_subtopology)
lemma homeomorphic_space_prod_topology_sing2:
$a \in$ topspace $X \Longrightarrow Y$ homeomorphic_space (prod_topology (subtopology $X\{a\}$) Y)
by (metis empty_subsetI homeomorphic_space_sym inf.absorb_iff2 insert_subset prod_topology_homeomorphic_space_right topspace_subtopology)
lemma topological_property_of_prod_component:
assumes major: P (prod_topology $X Y$)
and $X: \bigwedge x . \llbracket x \in$ topspace $X ; P($ prod_topology $X \quad Y) \rrbracket \Longrightarrow P($ subtopology
(prod_topology $X Y)(\{x\} \times$ topspace $Y))$
and $Y: \bigwedge y . \llbracket y \in$ topspace $Y ; P($ prod_topology $X \quad Y) \rrbracket \Longrightarrow P($ subtopology
(prod_topology $X Y$) (topspace $X \times\{y\})$)
and $P Q: \bigwedge X X^{\prime} . X$ homeomorphic_space $X^{\prime} \Longrightarrow\left(P X \longleftrightarrow Q X^{\prime}\right)$
and $P R: \bigwedge X X^{\prime}$. X homeomorphic_space $X^{\prime} \Longrightarrow\left(P X \longleftrightarrow R X^{\prime}\right)$
shows topspace (prod_topology $X Y)=\{ \} \vee Q X \wedge R Y$
proof -
have $Q X \wedge R Y$ if topspace (prod_topology $X Y) \neq\{ \}$
proof -
from that obtain $a b$ where $a: a \in$ topspace X and $b: b \in$ topspace Y
by force
show ?thesis
using X [OF a major $]$ and $Y[$ OF b major $]$ homeomorphic_space_prod_topology_sing1
[OF b, of X] homeomorphic_space_prod_topology_sing2 [OF a, of Y]
by (simp add: subtopology_Times) (meson PQ PR homeomorphic_space_prod_topology_sing2
homeomorphic_space_sym)
qed
then show ?thesis by metis
qed
lemma limitin_pairwise:
limitin (prod_topology $X Y) f l F \longleftrightarrow$ limitin $X(f s t \circ f)(f s t l) F \wedge$ limitin Y
$(s n d \circ f)(s n d l) F$
(is ? lhs =? ? rhs)
proof
assume ?lhs
then obtain $a b$ where $e v: \bigwedge U . \llbracket(a, b) \in U$; openin (prod_topology $X Y) U \rrbracket$ $\Longrightarrow \forall_{F} x$ in $F . f x \in U$
and $a: a \in$ topspace X and $b: b \in$ topspace Y and $l: l=(a, b)$

```
    by (auto simp: limitin_def)
    moreover have \(\forall_{F} x\) in \(F\). fst \((f x) \in U\) if openin \(X U a \in U\) for \(U\)
    proof -
    have \(\forall_{F}\) c in \(F . f c \in U \times\) topspace \(Y\)
        using \(b\) that ev [of \(U \times\) topspace \(Y\) ] by (auto simp: openin_prod_topology_alt)
    then show?thesis
        by (rule eventually_mono) (metis (mono_tags, lifting) SigmaE2 prod.collapse)
    qed
    moreover have \(\forall_{F} x\) in \(F\). snd \((f x) \in U\) if openin \(Y U b \in U\) for \(U\)
    proof -
        have \(\forall_{F}\) c in \(F . f c \in\) topspace \(X \times U\)
        using a that ev [of topspace \(X \times U\) ] by (auto simp: openin_prod_topology_alt)
    then show?thesis
        by (rule eventually_mono) (metis (mono_tags, lifting) SigmaE2 prod.collapse)
    qed
    ultimately show ?rhs
    by (simp add: limitin_def)
next
    have limitin (prod_topology X Y) f(a,b) F
        if limitin \(X(f s t \circ f) a F \operatorname{limitin} Y(\) snd \(\circ f) b F\) for \(a b\)
        using that
    proof (clarsimp simp: limitin_def)
        fix \(Z::\left({ }^{\prime} a \times \prime\right.\) ' \(b\) set
        assume \(a: a \in\) topspace \(X \forall U\). openin \(X U \wedge a \in U \longrightarrow\left(\forall_{F} x\right.\) in \(F\). fst \((f\)
\(x) \in U\) )
            and \(b: b \in\) topspace \(Y \forall U\). openin \(Y U \wedge b \in U \longrightarrow\left(\forall_{F} x\right.\) in \(F\). snd \((f x)\)
\(\in U)\)
            and \(Z\) : openin (prod_topology \(X Y) Z(a, b) \in Z\)
        then obtain \(U V\) where openin \(X U\) openin \(Y V a \in U b \in V U \times V \subseteq Z\)
            using \(Z\) by (force simp: openin_prod_topology_alt)
        then have \(\forall_{F} x\) in \(F\). fst \((f x) \in U \forall_{F} x\) in \(F\). snd \((f x) \in V\)
            by (simp_all add: a b)
        then show \(\forall_{F} x\) in \(F . f x \in Z\)
            by (rule eventually_elim2) (use \(\langle U \times V \subseteq Z\rangle\) subsetD in auto)
    qed
    then show ? \(\mathrm{rhs} \Longrightarrow\) ? \(\mathrm{lh} s\)
    by (metis prod.collapse)
qed
end
```


5.3 T1 and Hausdorff spaces

theory T1_Spaces
imports Product_Topology
begin

5.4 T1 spaces with equivalences to many naturally "nice" properties.

definition t1_space where
t1_space $X \equiv \forall x \in$ topspace $X . \forall y \in$ topspace $X . x \neq y \longrightarrow(\exists U$. openin $X U \wedge$ $x \in U \wedge y \notin U)$
lemma t1_space_expansive:
\llbracket topspace $Y=$ topspace $X ; \bigwedge U$. openin $X U \Longrightarrow$ openin $Y U \rrbracket \Longrightarrow$ t1_space X \Longrightarrow t1_space Y
by (metis t1_space_def)
lemma t1_space_alt:
t1_space $X \longleftrightarrow(\forall x \in$ topspace $X . \forall y \in$ topspace $X . x \neq y \longrightarrow(\exists U$. closedin $X U \wedge x \in U \wedge y \notin U))$
by (metis DiffE DiffI closedin_def openin_closedin_eq t1_space_def)
lemma t1_space_empty: topspace $X=\{ \} \Longrightarrow$ t1_space X
by (simp add: t1_space_def)
lemma t1_space_derived_set_of_singleton:
t1_space $X \longleftrightarrow(\forall x \in$ topspace $X . X$ derived_set_of $\{x\}=\{ \})$
apply (simp add: t1_space_def derived_set_of_def, safe)
apply (metis openin_topspace)
by force
lemma t1_space_derived_set_of_finite:
t1_space $X \longleftrightarrow(\forall S$. finite $S \longrightarrow X$ derived_set_of $S=\{ \})$
proof (intro iffI allI impI)
fix S :: 'a set
assume finite S
then have fin: finite $((\lambda x .\{x\})$ '(topspace $X \cap S))$ by blast
assume t1_space X
then have X derived_set_of $(\bigcup x \in$ topspace $X \cap S .\{x\})=\{ \}$ unfolding derived_set_of_Union [OF fin]
by (auto simp: t1_space_derived_set_of_singleton)
then have X derived_set_of (topspace $X \cap S)=\{ \}$ by simp
then show X derived_set_of $S=\{ \}$
by simp
qed (auto simp: t1_space_derived_set_of_singleton)
lemma t1_space_closedin_singleton:
t1_space $X \longleftrightarrow(\forall x \in$ topspace X. closedin $X\{x\})$
apply (rule iffI)
apply (simp add: closedin_contains_derived_set t1_space_derived_set_of_singleton)
using t1_space_alt by auto
lemma closedin_t1_singleton:
$\llbracket t 1 _$space $X ; a \in$ topspace $X \rrbracket \Longrightarrow$ closedin $X\{a\}$
by (simp add: t1_space_closedin_singleton)
lemma t1_space_closedin_finite:
t1_space $X \longleftrightarrow(\forall S$. finite $S \wedge S \subseteq$ topspace $X \longrightarrow$ closedin $X S)$
apply (rule iffI)
apply (simp add: closedin_contains_derived_set t1_space_derived_set_of_finite)
by (simp add: t1_space_closedin_singleton)
lemma closure_of_singleton:
t1_space $X \Longrightarrow X$ closure_of $\{a\}=($ if $a \in$ topspace X then $\{a\}$ else $\{ \})$
by (simp add: closure_of_eq t1_space_closedin_singleton closure_of_eq_empty_gen)
lemma separated_in_singleton:
assumes t1_space X
shows separatedin $X\{a\} S \longleftrightarrow a \in$ topspace $X \wedge S \subseteq$ topspace $X \wedge(a \notin X$ closure_of S)
separatedin $X S\{a\} \longleftrightarrow a \in$ topspace $X \wedge S \subseteq$ topspace $X \wedge(a \notin X$ closure_of S)
unfolding separatedin_def
using assms closure_of closure_of_singleton by fastforce+
lemma t1_space_openin_delete:
t1_space $X \longleftrightarrow(\forall U x$. openin $X U \wedge x \in U \longrightarrow$ openin $X(U-\{x\}))$
apply (rule iffI)
apply (meson closedin_t1_singleton in_mono openin_diff openin_subset)
by (simp add: closedin_def t1_space_closedin_singleton)
lemma t1_space_openin_delete_alt:
t1_space $X \longleftrightarrow(\forall U x$. openin $X U \longrightarrow$ openin $X(U-\{x\}))$
by (metis Diff_empty Diff_insert0 t1_space_openin_delete)
lemma t1_space_singleton_Inter_open:
t1_space $X \longleftrightarrow(\forall x \in$ topspace $X . \bigcap\{U$. openin $X U \wedge x \in U\}=\{x\}$) (is $? P=? Q)$
and t1_space_Inter_open_supersets:
t1_space $X \longleftrightarrow(\forall S . S \subseteq$ topspace $X \longrightarrow \bigcap\{U$. openin $X U \wedge S \subseteq U\}=$ $S)($ is $? P=? R)$
proof -
have ? $R \Longrightarrow$? Q
apply clarify
apply (drule_tac $x=\{x\}$ in spec, simp)
done
moreover have ? $Q \Longrightarrow$? P
apply (clarsimp simp add: t1_space_def)
apply (drule_tac $x=x$ in bspec)
apply (simp_all add: set_eq_iff)

```
    by (metis (no_types,lifting))
moreover have ?P \Longrightarrow?R
proof (clarsimp simp add: t1_space_closedin_singleton, rule subset_antisym)
    fix }
    assume S:\forallx\intopspace X. closedin X {x} S\subseteq topspace X
    then show }\bigcap{U. openin X U\wedgeS\subseteqU}\subseteq
        apply clarsimp
        by (metis Diff_insert_absorb Set.set_insert closedin_def openin_topspace sub-
set_insert)
    qed force
    ultimately show ?P=?Q ?P=?R
    by auto
qed
lemma t1_space_derived_set_of_infinite_openin:
    t1_space X \longleftrightarrow
        ( }\forall\mathrm{ S. X derived_set_of S=
            {x\in topspace X.}\forallU.x\inU\wedge\mathrm{ openin X U }\longrightarrow\mathrm{ infinite(S }\capU)}
            (is _ = ?rhs)
proof
    assume t1_space X
    show ?rhs
    proof safe
            fix SxU
```



```
            with \t1_space X> show False
            apply (simp add: t1_space_derived_set_of_finite)
            by (metis IntI empty_iff empty_subsetI inf_commute openin_Int_derived_set_of_subset
subset_antisym)
    next
        fix S x
        have eq: (\existsy. (y\not=x)\wedgey\inS\wedgey\inT)\longleftrightarrow «~}((S\capT)\subseteq{x})\mathrm{ for xS T
            by blast
        assume }x\in\mathrm{ topspace }X\forallU.x\inU\wedge\mathrm{ openin }XU\longrightarrow\mathrm{ infinite ( }S\capU
        then show }x\inX\mathrm{ derived_set_of S
            apply (clarsimp simp add: derived_set_of_def eq)
            by (meson finite.emptyI finite.insertI finite_subset)
    qed (auto simp: in_derived_set_of)
qed (auto simp: t1_space_derived_set_of_singleton)
lemma finite_t1_space_imp_discrete_topology:
    |opspace }X=U;\mathrm{ finite }U;\mathrm{ t1_space X】 }\LongrightarrowX=\mathrm{ discrete_topology }
    by (metis discrete_topology_unique_derived_set t1_space_derived_set_of_finite)
lemma t1_space_subtopology: t1_space X \Longrightarrow t1_space(subtopology X U)
    by (simp add: derived_set_of_subtopology t1_space_derived_set_of_finite)
lemma closedin_derived_set_of_gen:
    t1_space }X\Longrightarrow\mathrm{ closedin X (X derived_set_of S)
```

apply (clarsimp simp add: in_derived_set_of closedin_contains_derived_set derived_set_of_subset_topspace)
by (metis DiffD2 insert_Diff insert_iff t1_space_openin_delete)
lemma derived_set_of_derived_set_subset_gen:
t1_space $X \Longrightarrow X$ derived_set_of $(X$ derived_set_of $S) \subseteq X$ derived_set_of S
by (meson closedin_contains_derived_set closedin_derived_set_of_gen)
lemma subtopology_eq_discrete_topology_gen_finite:
$\llbracket t 1 _$space X; finite $S \rrbracket \Longrightarrow$ subtopology $X S=$ discrete_topology $(t o p s p a c e ~ X \cap S)$
by (simp add: subtopology_eq_discrete_topology_gen t1_space_derived_set_of_finite)
lemma subtopology_eq_discrete_topology_finite:
$\llbracket t 1 _$space $X ; S \subseteq$ topspace X; finite $S \rrbracket$
\Longrightarrow subtopology $X S=$ discrete_topology S
by (simp add: subtopology_eq_discrete_topology_eq t1_space_derived_set_of_finite)
lemma t1_space_closed_map_image:
\llbracket closed_map X Yf; $f^{\prime}($ topspace $X)=$ topspace $Y ;$ t1_space $X \rrbracket \Longrightarrow t 1 _$space Y
by (metis closed_map_def finite_subset_image t1_space_closedin_finite)
lemma homeomorphic_t1_space: X homeomorphic_space $Y \Longrightarrow$ (t1_space $X \longleftrightarrow$ t1_space Y)
apply (clarsimp simp add: homeomorphic_space_def)
by (meson homeomorphic_eq_everything_map homeomorphic_maps_map t1_space_closed_map_image)
proposition t1_space_product_topology:
t1_space (product_topology X I)
\longleftrightarrow topspace $($ product_topology $X I)=\{ \} \vee\left(\forall i \in I\right.$. t1_space $\left.\binom{X}{i}\right)$
proof (cases topspace $($ product_topology $X I)=\{ \}$)
case True
then show ?thesis
using True t1_space_empty by blast
next
case False
then obtain f where $f: f \in\left(\Pi_{E} i \in I\right.$. topspace $\left.(X i)\right)$
by fastforce
have t1_space (product_topology XI) $\longleftrightarrow\left(\forall i \in I\right.$. t1_space $\binom{X}{i}$
proof (intro iffI ballI)
show t1_space ($\begin{aligned} & \mathrm{X}\end{aligned}$) if t1_space (product_topology $X I$) and $i \in I$ for i
proof -
have clo: $\bigwedge h . h \in\left(\Pi_{E} i \in I\right.$. topspace $\left.(X i)\right) \Longrightarrow$ closedin (product_topology
X I) $\{h\}$
using that by (simp add: t1_space_closedin_singleton)
show ?thesis
unfolding t1_space_closedin_singleton
proof clarify
show closedin $\left(X_{i}\right)\{x i\}$ if $x i \in$ topspace $(X i)$ for $x i$
using clo $[$ of $\lambda j \in I$. if $i=j$ then xi else $f j] f$ that $\langle i \in I\rangle$

```
            by (fastforce simp add: closedin_product_topology_singleton)
        qed
        qed
    next
    next
        show t1_space (product_topology X I) if }\foralli\inI.t1_space (X i
        using that
        by (simp add: t1_space_closedin_singleton Ball_def PiE_iff closedin_product_topology_singleton)
    qed
    then show ?thesis
        using False by blast
qed
lemma t1_space_prod_topology:
    t1_space(prod_topology X Y) \longleftrightarrow topspace(prod_topology X Y) ={}\vee t1_space
X ^ t1_space Y
proof (cases topspace (prod_topology X Y) = {})
    case True then show ?thesis
    by (auto simp: t1_space_empty)
next
    case False
    have eq:{(x,y)}={x}\times{y} for x y
        by simp
    have t1_space (prod_topology X Y)\longleftrightarrow (t1_space X ^ t1_space Y)
        using False
        by (force simp: t1_space_closedin_singleton closedin_prod_Times_iff eq simp del:
insert_Times_insert)
    with False show ?thesis
        by simp
qed
```


5.4.1 Hausdorff Spaces

```
definition Hausdorff_space
    where
    Hausdorff_space X \equiv
        \forally.x topspace }X\wedgey\in\mathrm{ topspace }X\wedge(x\not=y
        \longrightarrow ( \exists U V . ~ o p e n i n ~ X ~ U \wedge ~ o p e n i n ~ X ~ V ~ \wedge ~ x ~ G ~ U \wedge ~ y \in V \wedge ~ d i s j n t ~ U ~
V)
lemma Hausdorff_space_expansive:
\(\llbracket\) Hausdorff_space \(X\); topspace \(X=\) topspace \(Y ; \bigwedge U\). openin \(X U \Longrightarrow\) openin \(Y\)
\(U \rrbracket \Longrightarrow\) Hausdorff_space \(Y\)
by (metis Hausdorff_space_def)
lemma Hausdorff_space_topspace_empty:
topspace \(X=\{ \} \Longrightarrow\) Hausdorff_space \(X\)
by (simp add: Hausdorff_space_def)
```

```
lemma Hausdorff_imp_t1_space:
    Hausdorff_space X \Longrightarrow t1_space X
    by (metis Hausdorff_space_def disjnt_iff t1_space_def)
lemma closedin_derived_set_of:
    Hausdorff_space }X\Longrightarrow\mathrm{ closedin X (X derived_set_of S)
    by (simp add: Hausdorff_imp_t1_space closedin_derived_set_of_gen)
lemma t1_or_Hausdorff_space:
    t1_space X \vee Hausdorff_space X \longleftrightarrow t1_space X
    using Hausdorff_imp_t1_space by blast
lemma Hausdorff_space_sing_Inter_opens:
    \llbracketHausdorff_space X; a t topspace X\rrbracket\Longrightarrow\bigcap{u. openin X u^a\inu}={a}
    using Hausdorff_imp_t1_space t1_space_singleton_Inter_open by force
lemma Hausdorff_space_subtopology:
    assumes Hausdorff_space X shows Hausdorff_space(subtopology X S)
proof -
    have *: disjnt }UV\Longrightarrow\operatorname{disjnt}(S\capU)(S\capV)\mathrm{ for }U
        by (simp add: disjnt_iff)
    from assms show ?thesis
        apply (simp add: Hausdorff_space_def openin_subtopology_alt)
        apply (fast intro: * elim!: all_forward)
        done
qed
lemma Hausdorff_space_compact_separation:
    assumes X: Hausdorff_space X and S: compactin X S and T: compactin X T
and disjnt S T
    obtains UV where openin X U openin X V S\subseteqUT\subseteqV disjnt U V
proof (cases S = {})
    case True
    then show thesis
    by (metis \compactin X T\rangle compactin_subset_topspace disjnt_empty1 empty_subsetI
openin_empty openin_topspace that)
next
    case False
    have}\forallx\inS.\existsUV.\mathrm{ openin }XU\wedge\mathrm{ openin }XV\wedgex\inU\wedgeT\subseteqV\wedge\mathrm{ disjnt U
V
    proof
        fix }
        assume a \inS
        then have a\not\inT
            by (meson assms(4) disjnt_iff)
        have a: a\in topspace X
            using S <a \inS\ranglecompactin_subset_topspace by blast
        show \existsUV. openin X U^ openin X V ^a\inU^T\subseteqV^disjnt UV
        proof (cases T={})
```

```
    case True
    then show ?thesis
        using a disjnt_empty2 openin_empty by blast
    next
    case False
    have }\forallx\in\mathrm{ topspace }X-{a}.\existsUV\mathrm{ . openin }XU\wedge\mathrm{ openin }XV\wedgex\in
\wedgea\inV\wedge disjnt U V
        using X a by (simp add: Hausdorff_space_def)
    then obtain UV where UV:\forallx\in topspace X - {a}. openin X (Ux)^
openin X (V x)^x\inU x ^a\inV V ^ disjnt (Ux) (V x)
        by metis
    with \langlea\not\inT\rangle compactin_subset_topspace [OF T]
    have Topen: }\forallW\inU'T. openin X W and Tsub: T\subseteqU (U'T
        by (auto simp:)
    then obtain \mathcal{F}\mathrm{ where }\mathcal{F}:\mathrm{ finite }\mathcal{F}\mathcal{F}\subseteqU`T}\mathrm{ and T}\subseteq\bigcup\mathcal{F
        using T unfolding compactin_def by meson
    then obtain F where F: finite F F\subseteqT\mathcal{F}=U'F and SUF:T\subseteqU(U
'}F)\mathrm{ and }a\not\in
        using finite_subset_image [OF F] <a\not\inT\rangle\mathrm{ by (metis subsetD)}
    have }U:\x.\llbracketx\in\mathrm{ topspace }X;x\not=a\rrbracket\Longrightarrow\mathrm{ openin X (Ux)
        and V:\x.\llbracketx\in topspace X;x\not=a\rrbracket\Longrightarrowopenin X (V x)
        and disj: \x. \llbracketx\in topspace X;x\not=a\rrbracket\Longrightarrowdisjnt (Ux) (Vx)
        using UV by blast+
    show ?thesis
    proof (intro exI conjI)
        have F}\not={
            using False SUF by blast
        with \a\not\inF` show openin X (\bigcap(\mp@subsup{V}{}{`}F))
            using F compactin_subset_topspace [OF T] by (force intro: V)
        show openin X(U(U'F))
            using F Topen Tsub by (force intro: U)
        show disjnt (\bigcap(V'F)) (U(U'F))
            using disj
            apply (auto simp: disjnt_def)
            using }\langleF\subseteqT\rangle\langlea\not\inF\rangle\mathrm{ compactin_subset_topspace [OF T] by blast
            show }a\in(\bigcap(\mp@subsup{V}{}{\prime}F)
                using <F\subseteqT`T UV〈a\not\inT\rangle compactin_subset_topspace by blast
            qed (auto simp: SUF)
    qed
qed
then obtain U V where UV:\forallx\inS. openin X (Ux)^ openin X (V x)^x
\inUx\wedgeT\subseteqV 
    by metis
    then have S\subseteqU(U'S)
    by auto
    moreover have }\forallW\inU'S. openin X W
    using }UV\mathrm{ by blast
    ultimately obtain I where I:S\subseteqU(U'I) I\subseteqS finite I
    by (metis S compactin_def finite_subset_image)
```

```
    show thesis
    proof
    show openin X(U(U'I))
            using }\langleI\subseteqS\rangleUV\mathrm{ by blast
    show openin X(\bigcap(V'I))
            using False UV \langleI\subseteqS\rangle\langleS\subseteqU(U'I)\rangle\langlefinite I\rangle by blast
    show disjnt (U(U'I)) (\cap(V'I))
            by simp (meson UV <I\subseteqS`disjnt_subset2 in_mono le_INF_iff order_refl)
    qed (use UV I in auto)
qed
lemma Hausdorff_space_compact_sets:
    Hausdorff_space X \longleftrightarrow
        (\forallS T. compactin X S ^ compactin X T ^ disjnt S T
                \longrightarrow(\existsUV. openin X U^ openin X V^S\subseteqU^T\subseteqV^disjnt U
V))
    (is ?lhs = ?rhs)
proof
    assume ?lhs
    then show ?rhs
        by (meson Hausdorff_space_compact_separation)
next
    assume R [rule_format]: ?rhs
    show ?lhs
    proof (clarsimp simp add: Hausdorff_space_def)
        fix x y
        assume }x\in\mathrm{ topspace }Xy\in\mathrm{ topspace }Xx\not=
        then show \existsU. openin X U^(\existsV. openin X V\wedgex\inU\wedge y\inV\wedge disjnt
U V)
            using R [of {x} {y}] by auto
    qed
qed
lemma compactin_imp_closedin:
    assumes X:Hausdorff_space X and S:compactin X S shows closedin X S
proof -
    have S\subseteq topspace X
        by (simp add: assms compactin_subset_topspace)
    moreover
    have \existsT. openin X T^x\inT^T\subseteqtopspace X - S if x\in topspace X }x\not
S for x
        using Hausdorff_space_compact_separation [OF X _ S, of {x}] that
        apply (simp add: disjnt_def)
        by (metis Diff_mono Diff_triv openin_subset)
    ultimately show ?thesis
        using closedin_def openin_subopen by force
qed
```

```
lemma closedin_Hausdorff_singleton:
    \llbracketHausdorff_space X;x\in topspace X\rrbracket\Longrightarrow closedin X {x}
    by (simp add: Hausdorff_imp_t1_space closedin_t1_singleton)
lemma closedin_Hausdorff_sing_eq:
    Hausdorff_space }X\Longrightarrow\mathrm{ closedin }X{x}\longleftrightarrowx\in topspace X
    by (meson closedin_Hausdorff_singleton closedin_subset insert_subset)
lemma Hausdorff_space_discrete_topology [simp]:
    Hausdorff_space (discrete_topology U)
    unfolding Hausdorff_space_def
    apply safe
    by (metis discrete_topology_unique_alt disjnt_empty2 disjnt_insert2 insert_iff mk_disjoint_insert
topspace_discrete_topology)
lemma compactin_Int:
    |Hausdorff_space X; compactin X S; compactin X T\rrbracket\Longrightarrow compactin X (S\capT)
    by (simp add: closed_Int_compactin compactin_imp_closedin)
lemma finite_topspace_imp_discrete_topology:
    \llbrackettopspace X = U; finite U; Hausdorff_space X\rrbracket \LongrightarrowX = discrete_topology U
    using Hausdorff_imp_t1_space finite_t1_space_imp_discrete_topology by blast
lemma derived_set_of_finite:
    \llbracketHausdorff_space X; finite S\rrbracket\LongrightarrowX derived_set_of S={}
    using Hausdorff_imp_t1_space t1_space_derived_set_of_finite by auto
lemma derived_set_of_singleton:
    Hausdorff_space X\LongrightarrowX derived_set_of {x}={}
    by (simp add: derived_set_of_finite)
lemma closedin_Hausdorff_finite:
    |ausdorff_space X;S\subseteqtopspace X; finite S\rrbracket\Longrightarrow closedin X S
    by (simp add: compactin_imp_closedin finite_imp_compactin_eq)
lemma open_in_Hausdorff_delete:
    \llbracketHausdorff_space X; openin X S\rrbracket\Longrightarrow openin X (S - {x})
    using Hausdorff_imp_t1_space t1_space_openin_delete_alt by auto
lemma closedin_Hausdorff_finite_eq:
    \llbracketHausdorff_space X; finite S\rrbracket\Longrightarrow closedin X S \longleftrightarrowS\subseteq topspace X
    by (meson closedin_Hausdorff_finite closedin_def)
lemma derived_set_of_infinite_openin:
    Hausdorff_space X
        X derived_set_of S=
                        {x\in topspace X.\forallU.x\inU\wedge openin X U \longrightarrow infinite (S\capU)}
    using Hausdorff_imp_t1_space t1_space_derived_set_of_infinite_openin by fastforce
```

```
lemma Hausdorff_space_discrete_compactin:
    Hausdorff_space \(X\)
        \(\Longrightarrow S \cap X\) derived_set_of \(S=\{ \} \wedge\) compactin \(X S \longleftrightarrow S \subseteq\) topspace \(X \wedge\)
finite \(S\)
    using derived_set_of_finite discrete_compactin_eq_finite by fastforce
lemma Hausdorff_space_finite_topspace:
    Hausdorff_space \(X \Longrightarrow X\) derived_set_of (topspace \(X)=\{ \} \wedge\) compact_space \(X\)
\(\longleftrightarrow\) finite(topspace \(X\) )
    using derived_set_of_finite discrete_compact_space_eq_finite by auto
lemma derived_set_of_derived_set_subset:
    Hausdorff_space \(X \Longrightarrow X\) derived_set_of \((X\) derived_set_of \(S) \subseteq X\) derived_set_of
\(S\)
    by (simp add: Hausdorff_imp_t1_space derived_set_of_derived_set_subset_gen)
```

lemma Hausdorff_space_injective_preimage:
assumes Hausdorff_space Y and cmf: continuous_map $X Y f$ and inj_on f
(topspace X)
shows Hausdorff_space X
unfolding Hausdorff_space_def
proof clarify
fix $x y$
assume $x: x \in$ topspace X and $y: y \in$ topspace X and $x \neq y$
then obtain $U V$ where openin $Y U$ openin $Y V f x \in U f y \in V$ disjnt $U V$
using assms unfolding Hausdorff_space_def continuous_map_def by (meson
inj_onD)
show $\exists U V$. openin $X U \wedge$ openin $X V \wedge x \in U \wedge y \in V \wedge$ disjnt $U V$
proof (intro exI conjI)
show openin $X\{x \in$ topspace $X . f x \in U\}$
using <openin Y U cmf continuous_map by fastforce
show openin $X\{x \in$ topspace $X . f x \in V\}$
using 〈openin Y 〉 cmf openin_continuous_map_preimage by blast
show disjnt $\{x \in$ topspace $X . f x \in U\}\{x \in$ topspace $X . f x \in V\}$
using 〈disjnt $U V$ by (auto simp add: disjnt_def)
qed (use $x\langle f x \in U\rangle y\langle f y \in V\rangle$ in auto)
qed
lemma homeomorphic＿Hausdorff＿space：
X homeomorphic_space $Y \Longrightarrow$ Hausdorff_space $X \longleftrightarrow$ Hausdorff_space Y
unfolding homeomorphic_space_def homeomorphic_maps_map
by (auto simp: homeomorphic_eq_everything_map Hausdorff_space_injective_preimage)
lemma Hausdorff_space_retraction_map_image:
\llbracket retraction_map X Yr; Hausdorff_space X】 \Longrightarrow Hausdorff_space Y
unfolding retraction_map_def
using Hausdorff_space_subtopology homeomorphic_Hausdorff_space retraction_maps_section_image2
by blast

```
lemma compact_Hausdorff_space_optimal:
    assumes eq: topspace \(Y=\) topspace \(X\) and \(X Y: \bigwedge U\). openin \(X U \Longrightarrow\) openin
Y U
        and Hausdorff_space \(X\) compact_space \(Y\)
        shows \(Y=X\)
proof -
    have \(\wedge U\). closedin \(X U \Longrightarrow\) closedin \(Y U\)
        using \(X Y\) using topology_finer_closedin [OF eq]
        by metis
    have openin \(Y S=\) openin \(X S\) for \(S\)
        by (metis XY assms(3) assms(4) closedin_compact_space compactin_contractive
compactin_imp_closedin eq openin_closedin_eq)
    then show ?thesis
        by (simp add: topology_eq)
qed
lemma continuous_map_imp_closed_graph:
    assumes \(f\) : continuous_map \(X Y f\) and \(Y\) : Hausdorff_space \(Y\)
    shows closedin (prod_topology \(X Y)((\lambda x .(x, f x))\) 'topspace \(X)\)
    unfolding closedin_def
proof
    show \((\lambda x .(x, f x))\) 'topspace \(X \subseteq\) topspace (prod_topology \(X Y\) )
        using continuous_map_def \(f\) by fastforce
    show openin (prod_topology X Y) (topspace (prod_topology X Y) - \((\lambda x .(x, f x))\)
    ‘ topspace X)
        unfolding openin_prod_topology_alt
    proof (intro allI impI)
        show \(\exists U V\). openin \(X U \wedge\) openin \(Y V \wedge x \in U \wedge y \in V \wedge U \times V \subseteq\)
topspace (prod_topology X Y) - \((\lambda x .(x, f x))\) 'topspace \(X\)
        if \((x, y) \in\) topspace \((\) prod_topology \(X Y)-(\lambda x .(x, f x))\) 'topspace \(X\)
        for \(x y\)
        proof -
            have \(x \in\) topspace \(X y \in\) topspace \(Y y \neq f x\)
            using that by auto
            moreover have \(f x \in\) topspace \(Y\)
                by (meson \(\langle x \in\) topspace \(X\rangle\) continuous_map_def f)
            ultimately obtain \(U V\) where \(U V\) : openin \(Y U\) openin \(Y V f x \in U y \in\)
\(V\) disjnt \(U V\)
            using \(Y\) Hausdorff_space_def by metis
        show ?thesis
        proof (intro exI conjI)
            show openin \(X\{x \in\) topspace \(X . f x \in U\}\)
                    using <openin \(Y\) U \(f\) openin_continuous_map_preimage by blast
                    show \(\{x \in\) topspace \(X . f x \in U\} \times V \subseteq\) topspace (prod_topology \(X Y\) ) -
( \(\lambda x .(x, f x))\) 'topspace \(X\)
            using \(U V\) by (auto simp: disjnt_iff dest: openin_subset)
        qed (use \(U V\langle x \in\) topspace \(X\rangle\) in auto)
        qed
```

```
    qed
qed
```

lemma continuous＿imp＿closed＿map：
\llbracket continuous＿map $X Y f ;$ compact＿space $X ; H a u s d o r f f _s p a c e ~ Y \rrbracket \Longrightarrow$ closed＿map X Yf
by（meson closed＿map＿def closedin＿compact＿space compactin＿imp＿closedin im－ age＿compactin）
lemma continuous＿imp＿quotient＿map：
\llbracket continuous＿map $X Y f ;$ compact＿space X ；Hausdorff＿space $Y ; f^{\prime}($ topspace $X)$
$=$ topspace $Y \rrbracket$
\Longrightarrow quotient＿map $X Y f$
by（simp add：continuous＿imp＿closed＿map continuous＿closed＿imp＿quotient＿map）
lemma continuous＿imp＿homeomorphic＿map：
【continuous＿map $X Y f$ ；compact＿space X ；Hausdorff＿space Y ；
f＇$($ topspace $X)=$ topspace Y ；inj＿on $f($ topspace $X)$ 】
\Longrightarrow homeomorphic＿map X Yf
by（simp add：continuous＿imp＿closed＿map bijective＿closed＿imp＿homeomorphic＿map）
lemma continuous＿imp＿embedding＿map：
\llbracket continuous＿map X Yf；compact＿space X ；Hausdorff＿space Y ；inj＿on f（topspace X）】
\Longrightarrow embedding＿map $X Y f$
by（simp add：continuous＿imp＿closed＿map injective＿closed＿imp＿embedding＿map）

```
lemma continuous_inverse_map:
    assumes compact_space \(X\) Hausdorff_space \(Y\)
        and cmf: continuous_map \(X Y f\) and \(g f: \bigwedge x . x \in\) topspace \(X \Longrightarrow g(f x)=x\)
        and \(S f: S \subseteq f^{\prime}(\) topspace \(X)\)
    shows continuous_map (subtopology Y S) X g
proof (rule continuous_map_from_subtopology_mono \(\left[O F-\left\langle S \subseteq f^{\prime}(\right.\right.\) topspace \(\left.\left.\left.X)\right\rangle\right]\right)\)
    show continuous_map (subtopology \(Y\left(f^{\prime}(\right.\) topspace \(\left.\left.X)\right)\right) X g\)
        unfolding continuous_map_closedin
    proof (intro conjI ballI allI impI)
        fix \(x\)
        assume \(x \in\) topspace (subtopology \(Y(f\) 'topspace \(X)\) )
        then show \(g x \in\) topspace \(X\)
            by (auto simp: gf)
    next
        fix \(C\)
        assume \(C\) : closedin \(X C\)
        show closedin (subtopology \(Y(f\) 'topspace \(X)\) )
                            \(\{x \in\) topspace (subtopology \(Y(f\) 'topspace \(X)\) ). \(g x \in C\}\)
        proof (rule compactin_imp_closedin)
            show Hausdorff_space (subtopology \(Y(f\) 'topspace \(X)\) )
                using Hausdorff_space_subtopology [OF 〈Hausdorff_space \(Y\rangle\) ] by blast
            have compactin \(Y\left(f^{\prime} C\right)\)
```

using C cmf image_compactin closedin_compact_space [OF〈compact_space X)] by blast
moreover have $\left\{x \in\right.$ topspace $Y . x \in f^{\prime}$ topspace $\left.X \wedge g x \in C\right\}=f^{\prime} C$ using closedin_subset [OF C] cmf by (auto simp: gf continuous_map_def) ultimately have compactin $Y\{x \in$ topspace $Y . x \in f$ 'topspace $X \wedge g x \in$ C\}

by simp

then show compactin (subtopology $Y(f$ 'topspace $X)$)

```
                {x\in topspace (subtopology Y (f'topspace X)).g x 价}
```

 by (auto simp add: compactin_subtopology)
 qed
 qed
 qed
lemma closed_map_paired_continuous_map_right:
$\llbracket c o n t i n u o u s _m a p \quad X \quad Y f ; H a u s d o r f f _s p a c e ~ Y \rrbracket \Longrightarrow$ closed_map X (prod_topology $X Y)(\lambda x .(x, f x))$
by (simp add: continuous_map_imp_closed_graph embedding_map_graph embedding_imp_closed_map)
lemma closed_map_paired_continuous_map_left:
assumes f : continuous_map $X Y f$ and Y : Hausdorff_space Y
shows closed_map X (prod_topology $Y X)(\lambda x .(f x, x))$
proof -
have $e q:(\lambda x .(f x, x))=(\lambda(a, b) .(b, a)) \circ(\lambda x .(x, f x))$
by auto
show ?thesis
unfolding eq
proof (rule closed_map_compose)
show closed_map X (prod_topology $X Y)(\lambda x .(x, f x))$
using Y closed_map_paired_continuous_map_right f by blast
show closed_map (prod_topology X Y) (prod_topology YX) ($\lambda(a, b) .(b, a))$
by (metis homeomorphic_map_swap homeomorphic_imp_closed_map)
qed
qed
lemma proper_map_paired_continuous_map_right:
\llbracket continuous_map X Yf; Hausdorff_space $Y \rrbracket$ \Longrightarrow proper_map X (prod_topology $X Y)(\lambda x .(x, f x))$
using closed_injective_imp_proper_map closed_map_paired_continuous_map_right by (metis (mono_tags, lifting) Pair_inject inj_onI)
lemma proper_map_paired_continuous_map_left:
\llbracket continuous_map X Yf; Hausdorff_space $Y \rrbracket$
\Longrightarrow proper_map $X($ prod_topology $Y X)(\lambda x .(f x, x))$
using closed_injective_imp_proper_map closed_map_paired_continuous_map_left
by (metis (mono_tags, lifting) Pair_inject inj_onI)
lemma Hausdorff_space_prod_topology:

```
    Hausdorff_space(prod_topology X Y) \longleftrightarrow topspace(prod_topology X Y) ={} \vee
Hausdorff_space X ^ Hausdorff_space Y
    (is ?lhs = ?rhs)
proof
    assume ?lhs
    then show ?rhs
    by (rule topological_property_of_prod_component) (auto simp: Hausdorff_space_subtopology
homeomorphic_Hausdorff_space)
next
    assume R: ?rhs
    show ?lhs
    proof (cases (topspace X }\times\mathrm{ topspace Y)={})
        case False
        with R have ne: topspace X}\not={}\mathrm{ topspace }Y\not={}\mathrm{ and X: Hausdorff_space
X and Y: Hausdorff_space Y
            by auto
        show ?thesis
            unfolding Hausdorff_space_def
        proof clarify
            fix }x\mathrm{ y }\mp@subsup{x}{}{\prime}\mp@subsup{y}{}{\prime
            assume xy:(x,y)\in topspace (prod_topology X Y)
                and xy':(\mp@subsup{x}{}{\prime},\mp@subsup{y}{}{\prime})\in\mathrm{ topspace (prod_topology X Y)}
            and *: # U V. openin (prod_topology X Y) U^openin (prod_topology X Y)
V
                    \wedge (x,y) \inU\wedge( (x', y') \inV ^ disjnt U V
        have False if }x\not=\mp@subsup{x}{}{\prime}\veey\not=\mp@subsup{y}{}{\prime
            using that
        proof
            assume }x\not=\mp@subsup{x}{}{\prime
            then obtain UV where openin X U openin X V x \inU '' 
                by (metis Hausdorff_space_def X mem_Sigma_iff topspace_prod_topology xy
xy')
            let ? }U=U\times\mathrm{ topspace Y
            let ?V =V }\times\mathrm{ topspace Y
            have openin (prod_topology X Y) ?U openin (prod_topology X Y) ?V
                    by (simp_all add: openin_prod_Times_iff <openin X U\ <openin X V`)
            moreover have disjnt ?U ?V
                by (simp add: \disjnt U V`)
            ultimately show False
            using * \langlex \inU\rangle\langle\mp@subsup{x}{}{\prime}\inV\ranglexy x\mp@subsup{y}{}{\prime}}\mathbf{by}\mathrm{ (metis SigmaD2 SigmaI topspace_prod_topology)
            next
            assume y}\not=\mp@subsup{y}{}{\prime
            then obtain UV where openin Y U openin YVy\inU y'\inV disjnt UV
                by (metis Hausdorff_space_def Y mem_Sigma_iff topspace_prod_topology xy
xy')
            let ?U = topspace }X\times
            let ?V = topspace }X\times
            have openin (prod_topology X Y) ?U openin (prod_topology X Y) ?V
                by (simp_all add: openin_prod_Times_iff <openin Y U`<openin Y V`)
```

```
            moreover have disjnt ?U ?V
            by (simp add: <disjnt U V`)
            ultimately show False
            using * \langley\inU\rangle\langle\mp@subsup{y}{}{\prime}\inV\ranglexy x\mp@subsup{y}{}{\prime}}\mathbf{by}\mathrm{ (metis SigmaD1 SigmaI topspace_prod_topology)
            qed
            then show }x=\mp@subsup{x}{}{\prime}\wedgey=\mp@subsup{y}{}{\prime
            by blast
        qed
    qed (simp add: Hausdorff_space_topspace_empty)
qed
lemma Hausdorff_space_product_topology:
    Hausdorff_space (product_topology X I) \longleftrightarrow( }\mp@subsup{\Pi}{E}{}i\inI.\mathrm{ topspace (X i)) ={}}
(\foralli \inI. Hausdorff_space (X i))
    (is ?lhs = ?rhs)
proof
    assume ?lhs
    then show ?rhs
        apply (rule topological_property_of_product_component)
        apply (blast dest: Hausdorff_space_subtopology homeomorphic_Hausdorff_space)+
        done
next
    assume R: ?rhs
    show ?lhs
    proof (cases ( }\mp@subsup{\Pi}{E}{}i\inI.topspace(X i))={}
        case True
        then show ?thesis
            by (simp add: Hausdorff_space_topspace_empty)
    next
        case False
        have \existsUV. openin (product_topology X I) U ^ openin (product_topology X I)
    V\wedgef\inU\wedgeg\inV^disjnt UV
        if f:f\in(\Pi}\mp@subsup{\Pi}{E}{}i\inI.topspace (X i)) and g:g\in(\Pi 的 i\inI. topspace (X i)) and
f}\not=
            for fg :: 'a > 'b
        proof -
            obtain m where f m\not=gm
                using }\langlef\not=g\rangle\mathrm{ by blast
            then have }m\in
                using fg}\mathrm{ by fastforce
            then have Hausdorff_space (X m)
                using False that R by blast
            then obtain U V where U:openin (Xm)U and V:openin (Xm)V and
fm}\inUgm\inV disjnt UV
                by (metis Hausdorff_space_def PiE_mem }\langlefm\not=gm\rangle\langlem\inI`fg
            show ?thesis
            proof (intro exI conjI)
                let ?U = (\Pi}\mp@subsup{\Pi}{E}{}i\inI.topspace(Xi))\cap{x.xm\inU
```

```
    let ?V = (\Pi}\mp@subsup{|}{E}{}i\inI. topspace(X i)) \cap{x.x m \inV 
    show openin (product_topology X I) ?U openin (product_topology X I) ?V
            using <m \inI`UV
            by (force simp add: openin_product_topology intro: arbitrary_union_of_inc
relative_to_inc finite_intersection_of_inc)+
            show }f\in\mathrm{ ? U
            using <f m}\inU\ranglef\mathrm{ by blast
            show g}\in\mathrm{ ? V
            using <g m \inV`g by blast
            show disjnt ?U ?V
            using <disjnt U V` by (auto simp: PiE_def Pi_def disjnt_def)
            qed
    qed
    then show ?thesis
        by (simp add: Hausdorff_space_def)
    qed
qed
end
```


5.5 Path-Connectedness

theory Path_Connected imports Starlike T1_Spaces
 begin

5.5.1 Paths and Arcs

definition path $::\left(\right.$ real $\Rightarrow{ }^{\prime} a::$ topological_space $) \Rightarrow$ bool where path $g \longleftrightarrow$ continuous_on $\{0 . .1\} g$
definition pathstart $::\left(\right.$ real $\Rightarrow{ }^{\prime} a::$ topological_space $) \Rightarrow{ }^{\prime} a$ where pathstart $g=g 0$
definition pathfinish $::\left(\right.$ real $\Rightarrow{ }^{\prime} a::$ topological_space $) \Rightarrow{ }^{\prime} a$ where pathfinish $g=g 1$
definition path_image $::\left(\right.$ real $\Rightarrow{ }^{\prime} a::$ topological_space $) \Rightarrow{ }^{\prime} a$ set where path_image $g=g$ ' $\{0$.. 1$\}$
definition reversepath $::\left(\right.$ real $\Rightarrow{ }^{\prime} a::$ topological_space $) \Rightarrow$ real $\Rightarrow{ }^{\prime} a$ where reversepath $g=(\lambda x . g(1-x))$
definition joinpaths $::\left(\right.$ real $\Rightarrow{ }^{\prime} a::$ topological_space $) \Rightarrow\left(\right.$ real $\left.\Rightarrow{ }^{\prime} a\right) \Rightarrow$ real $\Rightarrow{ }^{\prime} a$ (infixr +++75)
where $g 1+++g 2=(\lambda x$. if $x \leq 1 / 2$ then $g 1(2 * x)$ else $g 2(2 * x-1))$

```
definition simple_path \(::\left(\right.\) real \(\Rightarrow{ }^{\prime} a::\) topological_space \() \Rightarrow\) bool
    where simple_path \(g \longleftrightarrow\)
        path \(g \wedge(\forall x \in\{0 . .1\} . \forall y \in\{0 . .1\} . g x=g y \longrightarrow x=y \vee x=0 \wedge y=1 \vee\)
\(x=1 \wedge y=0)\)
definition arc \(::\left(\right.\) real \(\Rightarrow{ }^{\prime} a::\) topological_space \() \Rightarrow\) bool
    where arc \(g \longleftrightarrow\) path \(g \wedge\) inj_on \(g\{0 . .1\}\)
```


5.5.2 Invariance theorems

lemma path_eq: path $p \Longrightarrow(\bigwedge t . t \in\{0 . .1\} \Longrightarrow p t=q t) \Longrightarrow$ path q using continuous_on_eq path_def by blast
lemma path_continuous_image: path $g \Longrightarrow$ continuous_on (path_image g) $f \Longrightarrow$ $\operatorname{path}(f \circ g)$
unfolding path_def path_image_def
using continuous_on_compose by blast
lemma continuous_on_translation_eq:
fixes g :: ' a :: real_normed_vector \Rightarrow ' b :: real_normed_vector
shows continuous_on $A((+) a \circ g)=$ continuous_on $A g$
proof -
have $g: g=(\lambda x .-a+x) \circ((\lambda x . a+x) \circ g)$ by (rule ext) simp
show ?thesis
by (metis (no_types, hide_lams) g continuous_on_compose homeomorphism_def
homeomorphism_translation)
qed
lemma path_translation_eq:
fixes $g::$ real $\Rightarrow{ }^{\prime} a$:: real_normed_vector
shows path $((\lambda x . a+x) \circ g)=$ path g
using continuous_on_translation_eq path_def by blast
lemma path_linear_image_eq:
fixes f :: 'a::euclidean_space \Rightarrow 'b::euclidean_space
assumes linear f inj f shows path $(f \circ g)=$ path g
proof -
from linear_injective_left_inverse [OF assms]
obtain h where h : linear $h h \circ f=i d$ by blast
then have $g: g=h \circ(f \circ g)$
by (metis comp_assoc id_comp)
show ?thesis
unfolding path_def
using h assms
by (metis g continuous_on_compose linear_continuous_on linear_conv_bounded_linear)
qed
lemma pathstart_translation: pathstart $((\lambda x . a+x) \circ g)=a+$ pathstart g by (simp add: pathstart_def)
lemma pathstart_linear_image_eq: linear $f \Longrightarrow$ pathstart $(f \circ g)=f($ pathstart $g)$ by (simp add: pathstart_def)
lemma pathfinish_translation: pathfinish $((\lambda x . a+x) \circ g)=a+$ pathfinish g by (simp add: pathfinish_def)
lemma pathfinish_linear_image: linear $f \Longrightarrow$ pathfinish $(f \circ g)=f($ pathfinish $g)$ by (simp add: pathfinish_def)
lemma path_image_translation: path_image $((\lambda x . a+x) \circ g)=(\lambda x . a+x)$ ‘ (path_image g) by (simp add: image_comp path_image_def)
lemma path_image_linear_image: linear $f \Longrightarrow$ path_image $(f \circ g)=f$ ' $($ path_image g)
by (simp add: image_comp path_image_def)
lemma reversepath_translation: reversepath $((\lambda x . a+x) \circ g)=(\lambda x . a+x) \circ$ reversepath g by (rule ext) (simp add: reversepath_def)
lemma reversepath_linear_image: linear $f \Longrightarrow$ reversepath $(f \circ g)=f \circ$ reversepath g
by (rule ext) (simp add: reversepath_def)
lemma joinpaths_translation:
$((\lambda x \cdot a+x) \circ g 1)+++((\lambda x \cdot a+x) \circ g 2)=(\lambda x \cdot a+x) \circ(g 1+++g 2)$
by (rule ext) (simp add: joinpaths_def)
lemma joinpaths_linear_image: linear $f \Longrightarrow(f \circ g 1)+++(f \circ g 2)=f \circ(g 1$ $+++g 2$)
by (rule ext) (simp add: joinpaths_def)
lemma simple_path_translation_eq:
fixes $g::$ real $\Rightarrow{ }^{\prime} a:$:euclidean_space
shows simple_path $((\lambda x . a+x) \circ g)=$ simple_path g by (simp add: simple_path_def path_translation_eq)
lemma simple_path_linear_image_eq:
fixes f :: 'a::euclidean_space \Rightarrow 'b::euclidean_space
assumes linear $f \operatorname{inj} f$
shows simple_path $(f \circ g)=$ simple_path g
using assms inj_on_eq_iff [of f]
by (auto simp: path_linear_image_eq simple_path_def path_translation_eq)

```
lemma arc_translation_eq:
    fixes \(g::\) real \(\Rightarrow{ }^{\prime} a::\) euclidean_space
    shows \(\operatorname{arc}((\lambda x \cdot a+x) \circ g)=\operatorname{arc} g\)
    by (auto simp: arc_def inj_on_def path_translation_eq)
lemma arc_linear_image_eq:
    fixes \(f\) :: 'a::euclidean_space \(\Rightarrow\) ' \(b::\) euclidean_space
        assumes linear \(f \operatorname{inj} f\)
            shows \(\operatorname{arc}(f \circ g)=\operatorname{arc} g\)
    using assms inj_on_eq_iff [of f]
    by (auto simp: arc_def inj_on_def path_linear_image_eq)
```


5.5.3 Basic lemmas about paths

lemma pathin_iff_path_real [simp]: pathin euclideanreal $g \longleftrightarrow$ path g
by (simp add: pathin_def path_def)
lemma continuous_on_path: path $f \Longrightarrow t \subseteq\{0 . .1\} \Longrightarrow$ continuous_on $t f$
using continuous_on_subset path_def by blast
lemma arc_imp_simple_path: arc $g \Longrightarrow$ simple_path g
by (simp add: arc_def inj_on_def simple_path_def)
lemma arc_imp_path: arc $g \Longrightarrow$ path g
using arc_def by blast
lemma arc_imp_inj_on: arc $g \Longrightarrow$ inj_on $g\{0 . .1\}$
by (auto simp: arc_def)
lemma simple_path_imp_path: simple_path $g \Longrightarrow$ path g
using simple_path_def by blast
lemma simple_path_cases: simple_path $g \Longrightarrow$ arc $g \vee$ pathfinish $g=$ pathstart g unfolding simple_path_def arc_def inj_on_def pathfinish_def pathstart_def by force
lemma simple_path_imp_arc: simple_path $g \Longrightarrow$ pathfinish $g \neq$ pathstart $g \Longrightarrow$ arc g using simple_path_cases by auto
lemma arc_distinct_ends: arc $g \Longrightarrow$ pathfinish $g \neq$ pathstart g unfolding arc_def inj_on_def pathfinish_def pathstart_def by fastforce
lemma arc_simple_path: arc $g \longleftrightarrow$ simple_path $g \wedge$ pathfinish $g \neq$ pathstart g using arc_distinct_ends arc_imp_simple_path simple_path_cases by blast
lemma simple_path_eq_arc: pathfinish $g \neq$ pathstart $g \Longrightarrow$ (simple_path $g=$ arc $g)$ by (simp add: arc_simple_path)
lemma path_image_const $[$ simp $]$: path_image $(\lambda t . a)=\{a\}$ by (force simp: path_image_def)
lemma path_image_nonempty $[$ simp $]:$ path_image $g \neq\{ \}$ unfolding path_image_def image_is_empty box_eq_empty by auto
lemma pathstart_in_path_image[intro]: pathstart g path_image g unfolding pathstart_def path_image_def by auto
lemma pathfinish_in_path_image[intro]: pathfinish $g \in$ path_image g unfolding pathfinish_def path_image_def by auto
lemma connected_path_image[intro]: path $g \Longrightarrow$ connected (path_image g) unfolding path_def path_image_def using connected_continuous_image connected_Icc by blast
lemma compact_path_image[intro]: path $g \Longrightarrow$ compact (path_image g)
unfolding path_def path_image_def
using compact_continuous_image connected_Icc by blast
lemma reversepath_reversepath $[$ simp $]$: reversepath $($ reversepath $g)=g$ unfolding reversepath_def by auto
lemma pathstart_reversepath $[$ simp $]$: pathstart (reversepath g) $=$ pathfinish g unfolding pathstart_def reversepath_def pathfinish_def by auto
lemma pathfinish_reversepath $[$ simp $]$: pathfinish (reversepath $g)=$ pathstart g unfolding pathstart_def reversepath_def pathfinish_def
by auto
lemma pathstart_join $[$ simp $]$: pathstart $(g 1+++g 2)=$ pathstart g1 unfolding pathstart_def joinpaths_def pathfinish_def by auto
lemma pathfinish_join[simp]: pathfinish $(g 1+++g 2)=$ pathfinish $g 2$ unfolding pathstart_def joinpaths_def pathfinish_def by auto
lemma path_image_reversepath $[$ simp $]$: path_image $($ reversepath $g)=$ path_image g proof -
have $*: \bigwedge g$. path_image (reversepath g) \subseteq path_image g
unfolding path_image_def subset_eq reversepath_def Ball_def image_iff by force

```
    show ?thesis
    using *[of g]*[of reversepath g]
    unfolding reversepath_reversepath
    by auto
qed
lemma path_reversepath [simp]: path (reversepath g) \longleftrightarrow path g
proof -
    have *: \bigwedgeg. path g\Longrightarrow path (reversepath g)
        unfolding path_def reversepath_def
        apply (rule continuous_on_compose[unfolded o_def, of _ \lambdax. 1 - x])
        apply (auto intro: continuous_intros continuous_on_subset[of {0..1}])
        done
    show ?thesis
        using * by force
qed
lemma arc_reversepath:
    assumes arc g shows arc(reversepath g)
proof -
    have injg: inj_on g {0..1}
        using assms
        by (simp add: arc_def)
    have **: \x y::real. 1-x=1-y\Longrightarrowx=y
        by simp
    show ?thesis
        using assms by (clarsimp simp: arc_def intro!: inj_onI) (simp add: inj_onD
reversepath_def **)
qed
lemma simple_path_reversepath: simple_path g \Longrightarrow simple_path (reversepath g)
    apply (simp add: simple_path_def)
    apply (force simp: reversepath_def)
    done
lemmas reversepath_simps =
    path_reversepath path_image_reversepath pathstart_reversepath pathfinish_reversepath
lemma path_join[simp]:
    assumes pathfinish g1 = pathstart g2
    shows path (g1 +++ g2) \longleftrightarrow path g1 ^ path g2
    unfolding path_def pathfinish_def pathstart_def
proof safe
    assume cont:continuous_on {0..1} (g1 +++ g2)
    have g1: continuous_on {0..1} g1 \longleftrightarrow continuous_on {0..1}((g1 +++ g2)\circ
(\lambdax.x / 2))
    by (intro continuous_on_cong refl) (auto simp: joinpaths_def)
    have g2: continuous_on {0..1} g2 \longleftrightarrow continuous_on {0..1} ((g1 +++ g2) ○
(\lambdax.x/2 + 1/2))
```

```
    using assms
    by (intro continuous_on_cong refl) (auto simp: joinpaths_def pathfinish_def path-
start_def)
    show continuous_on {0..1} g1 and continuous_on {0..1} g2
    unfolding g1 g2
            by (auto intro!: continuous_intros continuous_on_subset[OF cont] simp del:
o_apply)
next
    assume g1g2: continuous_on {0..1} g1 continuous_on {0..1} g2
    have 01:{0 .. 1}={0..1/2}\cup{1/2 .. 1::real}
        by auto
    {
        fix }x\mathrm{ :: real
        assume 0}\leqx\mathrm{ and }x\leq
        then have }x\in(\lambdax.x*2)'{0..1/2
            by (intro image_eqI[where }x=x/2]\mathrm{ ) auto
    }
    note 1 = this
    {
        fix }x\mathrm{ :: real
        assume 0 \leq x and x\leq1
        then have }x\in(\lambdax.x*2 - 1)'{1/2..1
            by (intro image_eqI[where x=x/2 + 1/2]) auto
    }
    note 2 = this
    show continuous_on {0..1}(g1 +++ g2)
        using assms
        unfolding joinpaths_def 01
        apply (intro continuous_on_cases closed_atLeastAtMost g1g2[THEN continu-
ous_on_compose2] continuous_intros)
    apply (auto simp: field_simps pathfinish_def pathstart_def intro!: 1 2)
    done
qed
```


5.5.4 Path Images

lemma bounded_path_image: path $g \Longrightarrow$ bounded(path_image g) by (simp add: compact_imp_bounded compact_path_image)
lemma closed_path_image:
fixes $g::$ real $\Rightarrow{ }^{\prime} a$::t2_space
shows path $g \Longrightarrow$ closed(path_image g)
by (metis compact_path_image compact_imp_closed)
lemma connected_simple_path_image: simple_path $g \Longrightarrow$ connected(path_image g)
by (metis connected_path_image simple_path_imp_path)
lemma compact_simple_path_image: simple_path $g \Longrightarrow$ compact(path_image g) by (metis compact_path_image simple_path_imp_path)

```
lemma bounded_simple_path_image: simple_path g\Longrightarrow bounded(path_image g)
    by (metis bounded_path_image simple_path_imp_path)
lemma closed_simple_path_image:
    fixes g :: real # 'a::t2_space
    shows simple_path g\Longrightarrow closed(path_image g)
    by (metis closed_path_image simple_path_imp_path)
lemma connected_arc_image:arc g \Longrightarrow connected(path_image g)
    by (metis connected_path_image arc_imp_path)
lemma compact_arc_image: arc g Compact(path_image g)
    by (metis compact_path_image arc_imp_path)
lemma bounded_arc_image: arc g\Longrightarrow bounded(path_image g)
    by (metis bounded_path_image arc_imp_path)
lemma closed_arc_image:
    fixes g :: real = ' }a\mathrm{ ::t2_space
    shows arc g \Longrightarrow closed(path_image g)
    by (metis closed_path_image arc_imp_path)
lemma path_image_join_subset: path_image (g1 +++g2) \subseteq path_image g1 \cup path_image
g2
    unfolding path_image_def joinpaths_def
    by auto
lemma subset_path_image_join:
    assumes path_image g1 \subseteqs
        and path_image g2 \subseteqs
    shows path_image (g1 +++ g2) \subseteqs
    using path_image_join_subset[of g1 g2] and assms
    by auto
lemma path_image_join:
    assumes pathfinish g1 = pathstart g2
    shows path_image(g1 +++ g2) = path_image g1 \cup path_image g2
proof -
    have path_image g1 \subseteq path_image (g1 +++ g2)
    proof (clarsimp simp: path_image_def joinpaths_def)
        fix u::real
        assume 0 \lequu\leq1
        then show g1 u\in(\lambdax.g1(2*x))'({0..1}\cap{x.x*2\leq1})
        by (rule_tac x=u/2 in image_eqI) auto
    qed
    moreover
    have §: g2 u f (\lambdax. g2 (2*x-1))'({0..1}\cap{x.\negx*2\leq1})
        if 0<uu\leq1 for }
```


using that assms

by (rule_tac $x=(u+1) / 2$ in image_eqI) (auto simp: field_simps pathfinish_def pathstart_def)
have $g 20 \in(\lambda x . g 1(2 * x)) \cdot(\{0 . .1\} \cap\{x . x * 2 \leq 1\})$
using assms
by (rule_tac $x=1 / 2$ in image_eqI) (auto simp: pathfinish_def pathstart_def)
then have path_image g2 \subseteq path_image $(g 1+++g 2)$
by (auto simp: path_image_def joinpaths_def intro!: §)
ultimately show ?thesis
using path_image_join_subset by blast
qed
lemma not_in_path_image_join:
assumes $x \notin$ path_image g1
and $x \notin$ path_image g2
shows $x \notin$ path_image $(g 1+++g 2)$
using assms and path_image_join_subset[of g1 g2]
by auto
lemma pathstart_compose: pathstart $(f \circ p)=f($ pathstart $p)$
by (simp add: pathstart_def)
lemma pathfinish_compose: pathfinish $(f \circ p)=f($ pathfinish $p)$
by (simp add: pathfinish_def)
lemma path_image_compose: path_image $(f \circ p)=f$ '(path_image $p)$
by (simp add: image_comp path_image_def)
lemma path_compose_join: $f \circ(p+++q)=(f \circ p)+++(f \circ q)$
by (rule ext) (simp add: joinpaths_def)
lemma path_compose_reversepath: $f \circ$ reversepath $p=\operatorname{reversepath}(f \circ p)$
by (rule ext) (simp add: reversepath_def)
lemma joinpaths_eq:
$\left(\bigwedge t . t \in\{0 . .1\} \Longrightarrow p t=p^{\prime} t\right) \Longrightarrow$
$\left(\bigwedge t . t \in\{0 . .1\} \Longrightarrow q t=q^{\prime} t\right)$
$\Longrightarrow t \in\{0 . .1\} \Longrightarrow(p+++q) t=\left(p^{\prime}+++q^{\prime}\right) t$
by (auto simp: joinpaths_def)
lemma simple_path_inj_on: simple_path $g \Longrightarrow$ inj_on $g\{0<. .<1\}$
by (auto simp: simple_path_def path_image_def inj_on_def less_eq_real_def Ball_def)

5.5.5 Simple paths with the endpoints removed

lemma simple_path_endless:
assumes simple_path c
shows path_image $c-\{$ pathstart c, pathfinish $c\}=c '\{0<. .<1\}$ (is ?lhs $=$? rhs)
proof
show ?lhs \subseteq ? rhs
using less_eq_real_def by (auto simp: path_image_def pathstart_def pathfinish_def)
show ? $\mathrm{rhs} \subseteq$? lhs
using assms
apply (auto simp: simple_path_def path_image_def pathstart_def pathfinish_def
Ball_def)
using less_eq_real_def zero_le_one by blast+
qed
lemma connected_simple_path_endless:
assumes simple_path c
shows connected(path_image $c-\{$ pathstart c,pathfinish $c\}$)
proof -
have continuous_on $\{0<. .<1\} c$
using assms by (simp add: simple_path_def continuous_on_path path_def sub-
set_iff)
then have connected $(c$ ' $\{0<. .<1\})$
using connected_Ioo connected_continuous_image by blast
then show ?thesis
using assms by (simp add: simple_path_endless)
qed
lemma nonempty_simple_path_endless:
simple_path $c \Longrightarrow$ path_image $c-\{$ pathstart c, pathfinish $c\} \neq\{ \}$
by (simp add: simple_path_endless)

5.5.6 The operations on paths

lemma path_image_subset_reversepath: path_image(reversepath g) \leq path_image g by simp
lemma path_imp_reversepath: path $g \Longrightarrow$ path(reversepath g)
by simp
lemma half_bounded_equal: $1 \leq x * 2 \Longrightarrow x * 2 \leq 1 \longleftrightarrow x=(1 / 2::$ real $)$
by simp
lemma continuous_on_joinpaths:
assumes continuous_on $\{0 . .1\}$ g1 continuous_on $\{0 . .1\}$ g2 pathfinish g1 $=$ pathstart g2 shows continuous_on $\{0 . .1\}(g 1+++$ g2)
proof -
have $\{0 . .1::$ real $\}=\{0 . .1 / 2\} \cup\{1 / 2 . .1\}$
by auto
then show ?thesis using assms by (metis path_def path_join)
qed
lemma path_join_imp: $\llbracket p a t h ~ g 1 ; ~ p a t h ~ g 2 ; ~ p a t h f i n i s h ~ g 1 ~=~ p a t h s t a r t ~ g 2 \rrbracket ~ \Longrightarrow p a t h(g 1 ~$ $+++g 2$)
by simp
lemma simple_path_join_loop:
assumes arc g1 arc g2
pathfinish g1 = pathstart g2 pathfinish g2 = pathstart g1
path_image g1 \cap path_image g2 \subseteq \{pathstart g1, pathstart g2\}
shows simple_path (g1 +++ g2)
proof -
have injg1: inj_on g1 \{0..1\}
using assms
by (simp add: arc_def)
have injg2: inj_on g2 \{0..1\}
using assms
by (simp add: arc_def)
have g12: $g 11=g 20$
and $g 21: ~ g 21=g 10$
and $s b: g 1 '\{0 . .1\} \cap g 2 '\{0 . .1\} \subseteq\{g 10, g 20\}$
using assms
by (simp_all add: arc_def pathfinish_def pathstart_def path_image_def)
$\{$ fix x and $y::$ real
assume $g 2_{2} e q: g 2(2 * x-1)=g 1(2 * y)$
and $x y I: x \neq 1 \vee y \neq 0$
and $x y: x \leq 10 \leq y y * 2 \leq 1 \neg x * 2 \leq 1$
then consider $g 1(2 * y)=g 10 \mid g 1(2 * y)=g 20$
using $s b$ by force
then have False
proof cases
case 1
then have $y=0$
using $x y$ g2_eq by (auto dest!: inj_onD [OF injg1])
then show ?thesis
using xy g2_eq xyI by (auto dest: inj_onD [OF injg2] simp flip: g21)
next
case 2
then have $2 * x=1$
using g2_eq g12 inj_onD [OF injg2] atLeastAtMost_iff $x y(1) x y(4)$ by
fastforce
with $x y$ show False by auto
qed
\} note $*=$ this
\{ fix x and $y:$:real
assume $x y: g 1(2 * x)=g 2(2 * y-1) y \leq 10 \leq x \neg y * 2 \leq 1 x * 2 \leq 1$
then have $x=0 \wedge y=1$
using $* x y$ by force
\} note $* *=$ this
show ?thesis
using assms

```
    apply (simp add: arc_def simple_path_def)
    apply (auto simp: joinpaths_def split: if_split_asm
        dest!: * ** dest: inj_onD [OF injg1] inj_onD [OF injg2])
    done
qed
```

lemma arc_join:
assumes arc g1 arc g2
pathfinish g1 = pathstart g2
path_image g1 \cap path_image g2 $\subseteq\{$ pathstart g2 $\}$
shows $\operatorname{arc}(g 1+++g 2)$
proof -
have injg1: inj_on g1 $\{0 . .1\}$
using assms
by (simp add: arc_def)
have injg2: inj_on g2 \{0..1\}
using assms
by (simp add: arc_def)
have $g 11: g 11=g 20$
and $s b: g 1$ ' $\{0 . .1\} \cap g 2$ ' $\{0 . .1\} \subseteq\{g 20\}$
using assms
by (simp_all add: arc_def pathfinish_def pathstart_def path_image_def)
\{ fix x and $y::$ real
assume $x y$: $g 2(2 * x-1)=g 1(2 * y) x \leq 10 \leq y y * 2 \leq 1 \neg x * 2 \leq 1$
then have $g 1(2 * y)=g 20$
using $s b$ by force
then have False
using $x y$ inj_onD injg2 by fastforce
\} note $*=$ this
show ?thesis
using assms
apply (simp add: arc_def inj_on_def)
apply (auto simp: joinpaths_def arc_imp_path split: if_split_asm
dest: * *[OF sym] inj_onD [OF injg1] inj_onD [OF injg2])
done
qed
lemma reversepath_joinpaths:
pathfinish $g 1=$ pathstart $g 2 \Longrightarrow$ reversepath $(g 1+++g 2)=$ reversepath $g 2$
+++ reversepath g1
unfolding reversepath_def pathfinish_def pathstart_def joinpaths_def
by (rule ext) (auto simp: mult.commute)

5.5.7 Some reversed and "if and only if" versions of joining theorems

lemma path_join_path_ends:
fixes $g 1$:: real $\Rightarrow{ }^{\prime} a::$ metric_space
assumes path $(g 1+++g 2)$ path $g 2$

```
    shows pathfinish g1 = pathstart g2
proof (rule ccontr)
    define \(e\) where \(e=\operatorname{dist}\left(\begin{array}{ll}g 1 & 1)\end{array}\right.\) (g2 0)
    assume Neg: pathfinish g1 \(\neq\) pathstart \(g 2\)
    then have \(0<d i s t\) (pathfinish g1) (pathstart g2)
        by auto
    then have \(e>0\)
    by (metis e_def pathfinish_def pathstart_def)
    then have \(\forall e>0 . \exists d>0 . \forall x^{\prime} \in\{0 . .1\}\). dist \(x^{\prime} 0<d \longrightarrow\) dist \((g 2 x)(g 20)<e\)
        using 〈path g2〉 atLeastAtMost_iff zero_le_one unfolding path_def continu-
ous_on_iff
    by blast
    then obtain \(d 1\) where \(d 1>0\)
            and \(d 1: \bigwedge x^{\prime} . \llbracket x^{\prime} \in\{0 . .1\} ;\) norm \(x^{\prime}<d 1 \rrbracket \Longrightarrow \operatorname{dist}\left(g 2 x^{\prime}\right)(g 20)<e / 2\)
        by (metis \(\langle 0<e\rangle\) half_gt_zero_iff norm_conv_dist)
    obtain \(d 2\) where \(d 2>0\)
        and \(d 2: \bigwedge x^{\prime} . \llbracket x^{\prime} \in\{0 . .1\} ;\) dist \(x^{\prime}(1 / 2)<d 2 \rrbracket\)
                        \(\Longrightarrow \operatorname{dist}\left((g 1+++g 2) x^{\prime}\right)(g 11)<e / 2\)
        using assms(1) \(\langle e>0\rangle\) unfolding path_def continuous_on_iff
        apply (drule_tac \(x=1 / 2\) in bspec, simp)
        apply (drule_tac \(x=e / 2\) in spec, force simp: joinpaths_def)
        done
    have \(\operatorname{int01} 1: \min (1 / 2)(\min d 1 d 2) / 2 \in\{0 . .1\}\)
    using \(\langle d 1>0\rangle\langle d 2>0\rangle\) by (simp add: min_def)
    have dist1: norm \((\min (1 / 2)(\min d 1 d 2) / 2)<d 1\)
        using \(\langle d 1>0\rangle\langle d 2>0\rangle\) by (simp add: min_def dist_norm)
    have int01_2: \(1 / 2+\min (1 / 2)(\min d 1 d 2) / 4 \in\{0 . .1\}\)
        using \(\langle d 1>0\rangle\langle d 2>0\rangle\) by \((\) simp add: min_def)
    have dist2: \(\operatorname{dist}(1 / 2+\min (1 / 2)(\min d 1 d 2) / 4)(1 / 2)<d 2\)
        using \(\langle d 1>0\rangle\langle d 2>0\rangle\) by (simp add: min_def dist_norm)
    have \([\operatorname{simp}]: \neg \min (1 / 2)(\min d 1 d 2) \leq 0\)
        using \(\langle d 1>0\rangle\langle d 2>0\rangle\) by (simp add: min_def)
    have \(\operatorname{dist}(g 2(\min (1 / 2)(\min d 1 d 2) / 2))(g 11)<e / 2\)
        \(\operatorname{dist}(g 2(\min (1 / 2)(\min d 1 d 2) / 2))(g 20)<e / 2\)
        using d1 [OF int01_1 dist1] d2 [OF int01_2 dist2] by (simp_all add: join-
paths_def)
    then have dist (g1 1) ( \(\begin{aligned} & \text { 2 } 0)<e / 2+e / 2 ~\end{aligned}\)
        using dist_triangle_half_r e_def by blast
    then show False
        by (simp add: e_def [symmetric])
qed
lemma path_join_eq [simp]:
    fixes \(g 1\) :: real \(\Rightarrow\) 'a::metric_space
    assumes path g1 path g2
        shows path \((g 1+++g 2) \longleftrightarrow\) pathfinish \(g 1=\) pathstart \(g_{2}\)
    using assms by (metis path_join_path_ends path_join_imp)
lemma simple_path_joinE:
```

```
    assumes simple_path \((g 1+++g 2)\) and pathfinish \(g 1=\) pathstart g2
    obtains arc g1 arc g2
```

 path_image g1 \(\cap\) path_image g2 \(\subseteq\{\) pathstart g1, pathstart g2 \(\}\)
 proof -
have $*: \bigwedge x y . \llbracket 0 \leq x ; x \leq 1 ; 0 \leq y ; y \leq 1 ;(g 1+++g 2) x=(g 1+++g 2)$
$y \rrbracket$
$\Longrightarrow x=y \vee x=0 \wedge y=1 \vee x=1 \wedge y=0$
using assms by (simp add: simple_path_def)
have path g1
using assms path_join simple_path_imp_path by blast
moreover have inj_on g1 \{0..1\}
proof (clarsimp simp: inj_on_def)
fix $x y$
assume g1 $x=g 1$ y $0 \leq x x \leq 10 \leq y y \leq 1$
then show $x=y$
using * $[$ of $x / 2 y / 2]$ by (simp add: joinpaths_def split_ifs)
qed
ultimately have arc g1
using assms by (simp add: arc_def)
have $[\operatorname{simp}]: ~ g 20=g 11$
using assms by (metis pathfinish_def pathstart_def)
have path g2
using assms path_join simple_path_imp_path by blast
moreover have inj_on g2 \{0..1\}
proof (clarsimp simp: inj_on_def)
fix $x y$
assume $g 2 x=g 2$ y $0 \leq x x \leq 10 \leq y y \leq 1$
then show $x=y$
using * of $(x+1) / 2(y+1) / 2]$
by (force simp: joinpaths_def split_ifs field_split_simps)
qed
ultimately have arc g2
using assms by (simp add: arc_def)
have $g 2 y=g 10 \vee g 2 y=g 11$
if $g 1 x=g 2$ y $0 \leq x x \leq 10 \leq y y \leq 1$ for $x y$
using $*[$ of $x / 2(y+1) / 2]$ that
by (auto simp: joinpaths_def split_ifs field_split_simps)
then have path_image g1 \cap path_image g2 $\subseteq\{$ pathstart g1, pathstart g2 $\}$
by (fastforce simp: pathstart_def pathfinish_def path_image_def)
with 〈arc g1〉 〈arc g2〉 show ?thesis using that by blast
qed
lemma simple_path_join_loop_eq:
assumes pathfinish g2 = pathstart g1 pathfinish g1 = pathstart g2
shows simple_path $(g 1+++g 2) \longleftrightarrow$
arc g1 \wedge arc g2 \wedge path_image $g 1 \cap$ path_image $g 2 \subseteq\{$ pathstart $g 1$,
pathstart g2\}
by (metis assms simple_path_joinE simple_path_join_loop)

```
lemma arc_join_eq:
    assumes pathfinish g1 = pathstart g2
        shows arc(g1 +++ g2) \longleftrightarrow
        arc g1 ^ arc g2 ^ path_image g1 \cap path_image g2 }\subseteq{\mathrm{ pathstart g2}
        (is ?lhs = ?rhs)
proof
    assume ?lhs
    then have simple_path(g1 +++ g2) by (rule arc_imp_simple_path)
    then have *: \x y.\llbracket0\leqx;x\leq1;0\leq y;y\leq1;(g1+++ g2) x = (g1 +++
g2) y\rrbracket
                    \Longrightarrowx=y\veex=0 ^ y=1\veex=1 ^ y=0
        using assms by (simp add: simple_path_def)
    have False if g1 0 = g2 u 0 \lequu\leq1 for u
        using * [of 0 (u+1) / 2] that assms arc_distinct_ends [OF<??lhs`]
    by (auto simp: joinpaths_def pathstart_def pathfinish_def split_ifs field_split_simps)
    then have n1: pathstart g1 & path_image g2
        unfolding pathstart_def path_image_def
        using atLeastAtMost_iff by blast
    show ?rhs using <?lhs`
        using «simple_path (g1 +++ g2)` assms n1 simple_path_joinE by auto
next
    assume ?rhs then show ?lhs
        using assms
        by (fastforce simp: pathfinish_def pathstart_def intro!: arc_join)
qed
lemma arc_join_eq_alt:
            pathfinish g1 = pathstart g2
            #arc(g1 +++ g2) \longleftrightarrow
                        arc g1 ^ arc g2 ^
                        path_image g1 \cap path_image g2 = {pathstart g2})
using pathfinish_in_path_image by (fastforce simp: arc_join_eq)
```


5.5.8 The joining of paths is associative

lemma path_assoc:
[pathfinish $p=$ pathstart q; pathfinish $q=$ pathstart $r \rrbracket$

$$
\Longrightarrow \operatorname{path}(p+++(q+++r)) \longleftrightarrow \operatorname{path}((p+++q)+++r)
$$

by simp
lemma simple_path_assoc:
assumes pathfinish $p=$ pathstart q pathfinish $q=$ pathstart r
shows simple_path $(p+++(q+++r)) \longleftrightarrow$ simple_path $((p+++q)+++r)$
proof (cases pathstart $p=$ pathfinish r)
case True show ?thesis
proof
assume simple_path $(p+++q+++r)$
with assms True show simple_path $((p+++q)+++r)$
by (fastforce simp add: simple_path_join_loop_eq arc_join_eq path_image_join

```
dest: arc_distinct_ends [of r])
    next
    assume 0: simple_path (( }p+++q)+++r
    with assms True have q: pathfinish r }\not\in\mathrm{ path_image q
        using arc_distinct_ends
        by (fastforce simp add: simple_path_join_loop_eq arc_join_eq path_image_join)
    have pathstart r }\not\in\mathrm{ path_image p
        using assms
        by (metis 0 IntI arc_distinct_ends arc_join_eq_alt empty_iff insert_iff
                pathfinish_in_path_image pathfinish_join simple_path_joinE)
    with assms 0 q True show simple_path ( }p+++q+++r
        by (auto simp: simple_path_join_loop_eq arc_join_eq path_image_join
            dest!: subsetD [OF_IntI])
    qed
next
    case False
    {fix }x:: '
        assume a: path_image p \cap path_image q\subseteq{pathstart q}
                (path_image p \cup path_image q) \cap path_image r\subseteq{pathstart r}
                x\in path_image p x path_image r
        have pathstart r \in path_image q
        by (metis assms(2) pathfinish_in_path_image)
        with a have x = pathstart q
        by blast
    }
    with False assms show ?thesis
    by (auto simp: simple_path_eq_arc simple_path_join_loop_eq arc_join_eq path_image_join)
qed
lemma arc_assoc:
    \llbracketpathfinish p = pathstart q; pathfinish q = pathstart r\rrbracket
    arc}(p+++(q+++r))\longleftrightarrow\operatorname{arc}((p+++q)+++r
by (simp add: arc_simple_path simple_path_assoc)
```


Symmetry and loops

lemma path_sym:

```
\(\llbracket\) pathfinish \(p=\) pathstart \(q\); pathfinish \(q=\) pathstart \(p \rrbracket \Longrightarrow\) path \((p+++q) \longleftrightarrow\) path \((q+++p)\)
by auto
lemma simple_path_sym:
\(\llbracket p a t h f i n i s h ~ p=\) pathstart \(q\); pathfinish \(q=\) pathstart \(p \rrbracket\)
\(\Longrightarrow\) simple_path \((p+++q) \longleftrightarrow\) simple_path \((q+++p)\)
by (metis (full_types) inf_commute insert_commute simple_path_joinE simple_path_join_loop)
lemma path_image_sym:
\(\llbracket p a t h f i n i s h ~ p=\) pathstart \(q\); pathfinish \(q=\) pathstart \(p \rrbracket\)
\(\Longrightarrow\) path_image \((p+++q)=\) path_image \((q+++p)\)
```

by (simp add: path_image_join sup_commute)

5.5.9 Subpath

```
definition subpath \(::\) real \(\Rightarrow\) real \(\Rightarrow(\) real \(\Rightarrow ' a) \Rightarrow\) real \(\Rightarrow{ }^{\prime} a\) ::real_normed_vector
    where subpath \(a b g \equiv \lambda x . g((b-a) * x+a)\)
lemma path_image_subpath_gen:
    fixes \(g::\) _ \(\Rightarrow\) 'a::real_normed_vector
    shows path_image(subpath \(u v g)=g\) '(closed_segment \(u v)\)
    by (auto simp add: closed_segment_real_eq path_image_def subpath_def)
lemma path_image_subpath:
    fixes \(g\) :: real \(\Rightarrow\) 'a::real_normed_vector
    shows path_image(subpath \(u v g)=(\) if \(u \leq v\) then \(g\) ' \(\{u . . v\}\) else \(g\) ' \(\{v . . u\})\)
    by (simp add: path_image_subpath_gen closed_segment_eq_real_ivl)
lemma path_image_subpath_commute:
    fixes \(g::\) real \(\Rightarrow\) 'a::real_normed_vector
    shows path_image(subpath \(u v g)=\) path_image (subpath \(v u g\) )
    by (simp add: path_image_subpath_gen closed_segment_eq_real_ivl)
lemma path_subpath [simp]:
    fixes \(g::\) real \(\Rightarrow\) 'a::real_normed_vector
    assumes path \(g u \in\{0 . .1\} v \in\{0 . .1\}\)
        shows path(subpath \(u v g\) )
proof -
    have continuous_on \(\{0 . .1\}(g \circ(\lambda x .((v-u) * x+u)))\)
        using assms
        apply (intro continuous_intros; simp add: image_affinity_atLeastAtMost [where
    \(c=u]\) )
        apply (auto simp: path_def continuous_on_subset)
        done
    then show ?thesis
        by (simp add: path_def subpath_def)
qed
lemma pathstart_subpath [simp]: pathstart(subpath \(u v g)=g(u)\)
    by (simp add: pathstart_def subpath_def)
lemma pathfinish_subpath [simp]: pathfinish(subpath uvg)=g(v)
    by (simp add: pathfinish_def subpath_def)
lemma subpath_trivial [simp]: subpath \(01 g=g\)
    by (simp add: subpath_def)
    lemma subpath_reversepath: subpath \(10 g=\) reversepath \(g\)
    by (simp add: reversepath_def subpath_def)
```

lemma reversepath_subpath: reversepath(subpath $u v g)=$ subpath $v u g$
by (simp add: reversepath_def subpath_def algebra_simps)
lemma subpath_translation: subpath uv $((\lambda x . a+x) \circ g)=(\lambda x . a+x) \circ$ subpath $u v g$
by (rule ext) (simp add: subpath_def)
lemma subpath_image: subpath $u v(f \circ g)=f \circ$ subpath $u v g$ by (rule ext) (simp add: subpath_def)
lemma affine_ineq:
fixes x :: 'a::linordered_idom
assumes $x \leq 1 v \leq u$
shows $v+x * u \leq u+x * v$
proof -
have $(1-x) *(u-v) \geq 0$
using assms by auto
then show ?thesis by (simp add: algebra_simps)
qed
lemma sum_le_prod1:
fixes $a::$ real shows $\llbracket a \leq 1 ; b \leq 1 \rrbracket \Longrightarrow a+b \leq 1+a * b$
by (metis add.commute affine_ineq mult.right_neutral)

```
lemma simple_path_subpath_eq:
    simple_path (subpath uvg) \(\longleftrightarrow\)
        path (subpath \(u v g) \wedge u \neq v \wedge\)
        \((\forall x y . x \in\) closed_segment \(u v \wedge y \in\) closed_segment \(u v \wedge g x=g y\)
        \(\longrightarrow x=y \vee x=u \wedge y=v \vee x=v \wedge y=u)\)
    (is ?lhs = ? \(r h s\) )
proof
    assume ?lhs
    then have \(p\) : path \((\lambda x . g((v-u) * x+u))\)
        and sim: \((\bigwedge x y . \llbracket x \in\{0 . .1\} ; y \in\{0 . .1\} ; g((v-u) * x+u)=g((v-u)\)
* \(y+u) \rrbracket\)
            \(\Longrightarrow x=y \vee x=0 \wedge y=1 \vee x=1 \wedge y=0)\)
        by (auto simp: simple_path_def subpath_def)
    \(\left\{\begin{array}{l}\text { fix } \\ x\end{array}\right.\)
    assume \(x \in\) closed_segment \(u v y \in\) closed_segment \(u v g x=g y\)
    then have \(x=y \vee x=u \wedge y=v \vee x=v \wedge y=u\)
        using \(\operatorname{sim}[o f(x-u) /(v-u)(y-u) /(v-u)] p\)
        by (auto split: if_split_asm simp add: closed_segment_real_eq image_affinity_atLeastAtMost)
            (simp_all add: field_split_simps)
    \} moreover
    have path (subpath \(u v g) \wedge u \neq v\)
        using \(\operatorname{sim}\left[\begin{array}{ll}\text { of 1/3 2/3] } p\end{array}\right.\)
        by (auto simp: subpath_def)
    ultimately show ?rhs
```

by metis
next
assume ?rhs
then
have d1: $\bigwedge x y . \llbracket g x=g y ; u \leq x ; x \leq v ; u \leq y ; y \leq v \rrbracket \Longrightarrow x=y \vee x=u \wedge$
$y=v \vee x=v \wedge y=u$
and $d 2: \bigwedge x y . \llbracket g x=g y ; v \leq x ; x \leq u ; v \leq y ; y \leq u \rrbracket \Longrightarrow x=y \vee x=u \wedge$
$y=v \vee x=v \wedge y=u$
and $n e: u<v \vee v<u$
and psp: path (subpath $u v g$)
by (auto simp: closed_segment_real_eq image_affinity_atLeastAtMost)
have $[$ simp $]: \bigwedge x . u+x * v=v+x * u \longleftrightarrow u=v \vee x=1$
by algebra
show ?lhs using psp ne
unfolding simple_path_def subpath_def
by (fastforce simp add: algebra_simps affine_ineq mult_left_mono crossproduct_eq dest: d1 d2)
qed
lemma arc_subpath_eq:
$\operatorname{arc}($ subpath $u v g) \longleftrightarrow$ path (subpath $u v g) \wedge u \neq v \wedge$ inj_on g (closed_segment u v)
(is ? $l h s=$? $r h s$)
proof
assume ?lhs
then have p : path $(\lambda x . g((v-u) * x+u))$
and $\operatorname{sim}:(\bigwedge x y . \llbracket x \in\{0 . .1\} ; y \in\{0 . .1\} ; g((v-u) * x+u)=g((v-u)$

* $y+u) \rrbracket$

$$
\Longrightarrow x=y)
$$

by (auto simp: arc_def inj_on_def subpath_def)
\{ fix $x y$
assume $x \in$ closed_segment $u v y \in$ closed_segment $u v g x=g y$
then have $x=y$
using $\operatorname{sim}[o f(x-u) /(v-u)(y-u) /(v-u)] p$
by (cases $v=u$)
(simp_all split: if_split_asm add: inj_on_def closed_segment_real_eq image_affinity_atLeastAtMost, simp add: field_simps)
\} moreover
have path (subpath $u v g) \wedge u \neq v$
using $\operatorname{sim}[$ of 1/3 2/3] p
by (auto simp: subpath_def)
ultimately show ? rhs
unfolding inj_on_def
by metis
next
assume ?rhs
then
have d1: $\bigwedge x y . \llbracket g x=g y ; u \leq x ; x \leq v ; u \leq y ; y \leq v \rrbracket \Longrightarrow x=y$
and d2: $\bigwedge x y . \llbracket g x=g y ; v \leq x ; x \leq u ; v \leq y ; y \leq u \rrbracket \Longrightarrow x=y$

```
    and ne: }u<v\veev<
    and psp: path (subpath uvg)
    by (auto simp: inj_on_def closed_segment_real_eq image_affinity_atLeastAtMost)
    show ?lhs using psp ne
    unfolding arc_def subpath_def inj_on_def
    by (auto simp: algebra_simps affine_ineq mult_left_mono crossproduct_eq dest:
d1 d2)
qed
```

lemma simple_path_subpath:
assumes simple_path $g u \in\{0 . .1\} v \in\{0 . .1\} u \neq v$
shows simple_path(subpath $u v g$)
using assms
apply (simp add: simple_path_subpath_eq simple_path_imp_path)
apply (simp add: simple_path_def closed_segment_real_eq image_affinity_atLeastAtMost,
fastforce)
done
lemma arc_simple_path_subpath:
\llbracket simple_path $g ; u \in\{0 . .1\} ; v \in\{0 . .1\} ; g u \neq g v \rrbracket \Longrightarrow \operatorname{arc}(s u b p a t h u v g)$
by (force intro: simple_path_subpath simple_path_imp_arc)
lemma arc_subpath_arc:
$\llbracket \operatorname{arc} g ; u \in\{0 . .1\} ; v \in\{0 . .1\} ; u \neq v \rrbracket \Longrightarrow \operatorname{arc}($ subpath $u v g)$
by (meson arc_def arc_imp_simple_path arc_simple_path_subpath inj_onD)
lemma arc_simple_path_subpath_interior:
\llbracket simple_path $g ; u \in\{0 . .1\} ; v \in\{0 . .1\} ; u \neq v ;|u-v|<1 \rrbracket \Longrightarrow \operatorname{arc}($ subpath u
vg)
by (force simp: simple_path_def intro: arc_simple_path_subpath)
lemma path_image_subpath_subset:
$\llbracket u \in\{0 . .1\} ; v \in\{0 . .1\} \rrbracket \Longrightarrow$ path_image (subpath $u v g) \subseteq$ path_image g
by (metis atLeastAtMost_iff atLeastatMost_subset_iff path_image_def path_image_subpath
subset_image_iff)
lemma join_subpaths_middle: subpath (0) ((1/2)) p+++ subpath ((1/2)) $1 p$
= p
by (rule ext) (simp add: joinpaths_def subpath_def field_split_simps)

5.5.10 There is a subpath to the frontier

lemma subpath_to_frontier_explicit:
fixes $S::{ }^{\prime} a::$ metric_space set
assumes g : path g and pathfinish $g \notin S$
obtains u where $0 \leq u u \leq 1$
$\bigwedge x .0 \leq x \wedge x<u \Longrightarrow g x \in$ interior S
$(g u \notin$ interior $S)(u=0 \vee g u \in$ closure $S)$

```
proof -
    have gcon: continuous_on \(\{0 . .1\} g\)
        using \(g\) by (simp add: path_def)
    moreover have bounded \((\{u . g u \in\) closure \((-S)\} \cap\{0 . .1\})\)
        using compact_eq_bounded_closed by fastforce
    ultimately have com: compact \((\{0 . .1\} \cap\{u . g u \in\) closure \((-S)\})\)
        using closed_vimage_Int
            by (metis (full_types) Int_commute closed_atLeastAtMost closed_closure com-
pact_eq_bounded_closed vimage_def)
    have \(1 \in\{u . g u \in\) closure \((-S)\}\)
        using assms by (simp add: pathfinish_def closure_def)
    then have dis: \(\{0 . .1\} \cap\{u . g u \in\) closure \((-S)\} \neq\{ \}\)
        using atLeastAtMost_iff zero_le_one by blast
    then obtain \(u\) where \(0 \leq u u \leq 1\) and gu: \(g u \in\) closure \((-S)\)
                            and umin: \(\wedge t . \llbracket 0 \leq t ; t \leq 1 ; g t \in\) closure \((-S) \rrbracket \Longrightarrow u \leq t\)
        using compact_attains_inf [OF com dis] by fastforce
    then have umin': \(\wedge t . \llbracket 0 \leq t ; t \leq 1 ; t<u \rrbracket \Longrightarrow g t \in S\)
        using closure_def by fastforce
    have \(\S: g u \in\) closure \(S\) if \(u \neq 0\)
    proof -
        have \(u>0\) using that \(\langle 0 \leq u\rangle\) by auto
            \{ fix \(e::\) real assume \(e>0\)
            obtain \(d\) where \(d>0\) and \(d: \bigwedge x^{\prime} . \llbracket x^{\prime} \in\{0 . .1\} ;\) dist \(x^{\prime} u \leq d \rrbracket \Longrightarrow \operatorname{dist}(g\)
\(\left.x^{\prime}\right)(g u)<e\)
            using continuous_onE \([\) OF gcon _ \(\left.\langle e>0\rangle]\langle 0 \leq\rangle_{-} \leq 1\right\rangle\) atLeastAtMost_iff
by auto
            have \(*\) : \(\operatorname{dist}(\max 0(u-d / 2)) u \leq d\)
                using \(\langle 0 \leq u\rangle\langle u \leq 1\rangle\langle d>0\rangle\) by (simp add: dist_real_def)
            have \(\exists y \in S\). dist \(y(g u)<e\)
                using \(\langle 0<u\rangle\langle u \leq 1\rangle\langle d>0\rangle\)
                by (force intro: \(\left.d\left[O F_{-} *\right] u m i n^{\prime}\right)\)
        \}
        then show ?thesis
            by (simp add: frontier_def closure_approachable)
    qed
    show ?thesis
    proof
        show \(\bigwedge x .0 \leq x \wedge x<u \Longrightarrow g x \in\) interior \(S\)
            using \(\langle u \leq 1\) 〉 interior_closure umin by fastforce
        show \(g u \notin\) interior \(S\)
            by (simp add: gu interior_closure)
    qed (use \(\langle 0 \leq u\rangle\langle u \leq 1\rangle \S\) in auto)
qed
lemma subpath_to_frontier_strong:
    assumes \(g\) : path \(g\) and pathfinish \(g \notin S\)
    obtains \(u\) where \(0 \leq u u \leq 1 g u \notin\) interior \(S\)
                    \(u=0 \vee(\forall x .0 \leq x \wedge x<1 \longrightarrow\) subpath 0 ug \(x \in\) interior \(S)\)
\(\wedge g u \in\) closure \(S\)
```

```
proof -
    obtain u where 0\lequu\leq1
                    and gxin: }\x.0\leqx\wedgex<u\Longrightarrowgx\in interior S
                    and gunot: (gu\not\ininterior S) and u0: ( }u=0\veegu\in\mathrm{ closure S)
        using subpath_to_frontier_explicit [OF assms] by blast
    show ?thesis
    proof
        show g u\not\in interior S
            using gunot by blast
    qed (use <0 \leq u`<u\leq 1>u0 in <(force simp: subpath_def gxin)+>)
qed
lemma subpath_to_frontier:
    assumes g: path g}\mathrm{ and g0: pathstart g}\in\mathrm{ closure S and g1: pathfinish g}\not\in
    obtains u where 0\lequu\leq1gu\in frontier S path_image(subpath 0ug)-
{gu}\subseteq interior S
proof -
    obtain u where 0\lequu\leq1
            and notin: g u\not\in interior S
            and disj: u=0 V
                (\forallx.0 \leq x ^ x<1 \longrightarrow subpath 0 ug x \in interior S)^gu
closure S
                (is _ V ?P)
    using subpath_to_frontier_strong [OF g g1] by blast
    show ?thesis
    proof
        show g u f frontier S
            by (metis DiffI disj frontier_def g0 notin pathstart_def)
            show path_image (subpath 0ug)-{gu}\subseteq interior S
            using disj
        proof
            assume u=0
            then show ?thesis
            by (simp add: path_image_subpath)
        next
            assume P:?P
            show ?thesis
            proof (clarsimp simp add: path_image_subpath_gen)
                    fix y
                    assume y: y \in closed_segment 0ugy\not\in interior S
            with }\langle0\lequ\rangle\mathrm{ have 0 \ y y \u
                by (auto simp: closed_segment_eq_real_ivl split: if_split_asm)
            then have }y=u\vee\mathrm{ subpath 0ug(y/u) E interior S
                    using P less_eq_real_def by force
                    then show g y=gu
                    using y by (auto simp: subpath_def split: if_split_asm)
            qed
        qed
    qed (use }\langle0\lequ\rangle\langleu\leq1\rangle\mathrm{ in auto)
```

```
qed
```

lemma exists_path_subpath_to_frontier:
fixes S :: ' $a:$:real_normed_vector set
assumes path g pathstart $g \in$ closure S pathfinish $g \notin S$
obtains h where path h pathstart $h=$ pathstart g path_image $h \subseteq$ path_image
g
path_image $h-\{$ pathfinish $h\} \subseteq$ interior S
pathfinish $h \in$ frontier S
proof -
obtain u where $u: 0 \leq u u \leq 1 g u \in$ frontier S (path_image(subpath $0 u g$) -
$\{g u\}) \subseteq$ interior S
using subpath_to_frontier [OF assms] by blast
show ?thesis
proof
show path_image (subpath $0 u \mathrm{~g}$) \subseteq path_image g
by (simp add: path_image_subpath_subset u)
show pathstart (subpath $0 u g$) $=$ pathstart g
by (metis pathstart_def pathstart_subpath)
qed (use assms u in (auto simp: path_image_subpath〉)
qed
lemma exists_path_subpath_to_frontier_closed:
fixes S :: ' a ::real_normed_vector set
assumes S : closed S and g : path g and $g 0$: pathstart $g \in S$ and $g 1$: pathfinish
$g \notin S$
obtains h where path h pathstart $h=$ pathstart g path_image $h \subseteq$ path_image
$g \cap S$
pathfinish $h \in$ frontier S
proof -
obtain h where h : path h pathstart $h=$ pathstart g path_image $h \subseteq$ path_image
g
path_image $h-\{$ pathfinish $h\} \subseteq$ interior S
pathfinish $h \in$ frontier S
using exists_path_subpath_to_frontier $\left[O F g g_{-} g 1\right]$ closure_closed $[O F S] g 0$ by
auto
show ?thesis
proof
show path_image $h \subseteq$ path_image $g \cap S$
using assms h interior_subset [of S] by (auto simp: frontier_def)
qed (use h in auto)
qed

5.5.11 Shift Path to Start at Some Given Point

definition shiftpath $::$ real $\Rightarrow\left(\right.$ real $\Rightarrow{ }^{\prime} a:$:topological_space $) \Rightarrow$ real $\Rightarrow{ }^{\prime} a$
where shiftpath a $f=(\lambda x$. if $(a+x) \leq 1$ then $f(a+x)$ else $f(a+x-1))$
lemma shiftpath_alt_def: shiftpath $a f=(\lambda x$. if $x \leq 1-a$ then $f(a+x)$ else $f(a$

```
+x-1))
    by (auto simp: shiftpath_def)
lemma pathstart_shiftpath: a \leq 1 \Longrightarrow pathstart (shiftpath a g)=ga
    unfolding pathstart_def shiftpath_def by auto
lemma pathfinish_shiftpath:
    assumes 0\leqa
        and pathfinish g= pathstart g
    shows pathfinish (shiftpath a g) = g a
    using assms
    unfolding pathstart_def pathfinish_def shiftpath_def
    by auto
lemma endpoints_shiftpath:
    assumes pathfinish g = pathstart g
        and }a\in{0..1
    shows pathfinish (shiftpath a g)=ga
        and pathstart (shiftpath a g)=ga
    using assms
    by (auto intro!: pathfinish_shiftpath pathstart_shiftpath)
lemma closed_shiftpath:
    assumes pathfinish g= pathstart g
        and a\in{0..1}
    shows pathfinish (shiftpath a g) = pathstart (shiftpath a g)
    using endpoints_shiftpath[OF assms]
    by auto
lemma path_shiftpath:
    assumes path g
        and pathfinish g = pathstart g
        and a\in{0..1}
    shows path (shiftpath a g)
proof -
    have *: {0 .. 1} ={0 .. 1-a}\cup{1-a .. 1}
        using assms(3) by auto
    have **: \x. x + a=1\Longrightarrowg(x+a-1)=g(x+a)
        using assms(2)[unfolded pathfinish_def pathstart_def]
        by auto
    show ?thesis
        unfolding path_def shiftpath_def *
    proof (rule continuous_on_closed_Un)
        have contg:continuous_on {0..1} g
            using <path g> path_def by blast
        show continuous_on {0..1-a}(\lambdax. if a }a=x\leq1\mathrm{ then g (a+x) else g (a+x
    - 1))
        proof (rule continuous_on_eq)
            show continuous_on {0..1-a}(g\circ(+) a)
```

by (intro continuous_intros continuous_on_subset [OF contg]) (use $\langle a \in$ $\{0 . .1\}$) in auto) qed auto
show continuous_on $\{1-a . .1\}(\lambda x$. if $a+x \leq 1$ then $g(a+x)$ else $g(a+x$

- 1))
proof (rule continuous_on_eq)
show continuous_on $\{1-a . .1\}(g \circ(+)(a-1))$
by (intro continuous_intros continuous_on_subset [OF contg]) (use $\langle a \in$ $\{0 . .1\}$ in auto)
qed (auto simp: ** add.commute add_diff_eq)
qed auto
qed
lemma shiftpath_shiftpath:
assumes pathfinish $g=$ pathstart g
and $a \in\{0 . .1\}$
and $x \in\{0 . .1\}$
shows shiftpath $(1-a)($ shiftpath $a g) x=g x$
using assms
unfolding pathfinish_def pathstart_def shiftpath_def
by auto
lemma path_image_shiftpath:
assumes $a: a \in\{0 . .1\}$
and pathfinish $g=$ pathstart g
shows path_image (shiftpath a g) = path_image g
proof -
$\{$ fix x
assume $g: g 1=g 0 x \in\{0 . .1::$ real $\}$ and gne: $\bigwedge y . y \in\{0 . .1\} \cap\{x . \neg a+x$ $\leq 1\} \Longrightarrow g x \neq g(a+y-1)$
then have $\exists y \in\{0 . .1\} \cap\{x . a+x \leq 1\} . g x=g(a+y)$
proof (cases $a \leq x$)
case False
then show ?thesis
apply (rule_tac $x=1+x-a$ in bexI)
using g gne $[$ of $1+x-a] a$ by (force simp: field_simps) +
next
case True
then show ?thesis
using $g a$ by (rule_tac $x=x-a$ in bexI) (auto simp: field_simps)
qed
\}
then show ?thesis
using assms
unfolding shiftpath_def path_image_def pathfinish_def pathstart_def
by (auto simp: image_iff)
qed
lemma simple_path_shiftpath:

```
    assumes simple_path \(g\) pathfinish \(g=\) pathstart \(g\) and \(a: 0 \leq a a \leq 1\)
        shows simple_path (shiftpath a g)
    unfolding simple_path_def
proof (intro conjI impI ballI)
    show path (shiftpath a g)
    by (simp add: assms path_shiftpath simple_path_imp_path)
    have \(*: \bigwedge x y . \llbracket g x=g y ; x \in\{0 . .1\} ; y \in\{0 . .1\} \rrbracket \Longrightarrow x=y \vee x=0 \wedge y=1\)
\(\vee x=1 \wedge y=0\)
        using assms by (simp add: simple_path_def)
    show \(x=y \vee x=0 \wedge y=1 \vee x=1 \wedge y=0\)
        if \(x \in\{0 . .1\} y \in\{0 . .1\}\) shiftpath a \(g x=\) shiftpath \(a g y\) for \(x y\)
        using that a unfolding shiftpath_def
        by (force split: if_split_asm dest!: *)
qed
```


5.5.12 Straight-Line Paths

definition linepath :: 'a::real_normed_vector $\Rightarrow{ }^{\prime} a \Rightarrow$ real $\Rightarrow{ }^{\prime} a$ where linepath a $b=\left(\lambda x .(1-x) *_{R} a+x *_{R} b\right)$
lemma pathstart_linepath $[$ simp $]$: pathstart (linepath ab) $=a$
unfolding pathstart_def linepath_def
by auto
lemma pathfinish_linepath $[$ simp $]$: pathfinish (linepath a b) $=b$
unfolding pathfinish_def linepath_def
by auto
lemma linepath_inner: linepath abx $\cdot v=$ linepath $(a \cdot v)(b \cdot v) x$ by (simp add: linepath_def algebra_simps)
lemma Re_linepath': Re (linepath abs)=linepath $($ Re a) $($ Re b) x by (simp add: linepath_def)
lemma Im_linepath': Im (linepath $a b x)=\operatorname{linepath}(\operatorname{Im} a)(\operatorname{Im} b) x$ by (simp add: linepath_def)
lemma linepath_0': linepath a b $0=a$
by (simp add: linepath_def)
lemma linepath_1': linepath a b $1=b$
by (simp add: linepath_def)
lemma continuous_linepath_at[intro]: continuous (at x) (linepath a b)
unfolding linepath_def
by (intro continuous_intros)
lemma continuous_on_linepath [intro,continuous_intros]: continuous_on s (linepath $a b$)
using continuous_linepath_at
by (auto intro!: continuous_at_imp_continuous_on)

```
lemma path_linepath[iff]: path (linepath a b)
    unfolding path_def
    by (rule continuous_on_linepath)
```

lemma path_image_linepath[simp]: path_image (linepath ab)=closed_segment a b
unfolding path_image_def segment linepath_def
by auto
lemma reversepath_linepath $[\operatorname{simp}]$: reversepath (linepath ab) linepath $b a$
unfolding reversepath_def linepath_def
by auto
lemma linepath_0 [simp]: linepath $0 b x=x *_{R} b$
by (simp add: linepath_def)
lemma linepath_cnj: cnj (linepath abs)=linepath (cnja) (cnjb) x
by (simp add: linepath_def)
lemma arc_linepath:
assumes $a \neq b$ shows [simp]: arc (linepath $a b$)
proof -
\{
fix $x y$:: real
assume $x *_{R} b+y *_{R} a=x *_{R} a+y *_{R} b$
then have $(x-y) *_{R} a=(x-y) *_{R} b$
by (simp add: algebra_simps)
with assms have $x=y$
by simp
\}
then show ?thesis
unfolding arc_def inj_on_def
by (fastforce simp: algebra_simps linepath_def)
qed
lemma simple_path_linepath[intro]: $a \neq b \Longrightarrow$ simple_path (linepath $a b$)
by (simp add: arc_imp_simple_path)
lemma linepath_trivial [simp]: linepath a a $x=a$
by (simp add: linepath_def real_vector.scale_left_diff_distrib)
lemma linepath_refl: linepath a $a=(\lambda x . a)$
by auto
lemma subpath_refl: subpath a a $g=\operatorname{linepath}(g a)(g a)$
by (simp add: subpath_def linepath_def algebra_simps)
lemma linepath_of_real: (linepath (of_real a) (of_real b) $x)=$ of_real $((1-x) * a+$ $x * b$)
by (simp add: scaleR_conv_of_real linepath_def)
lemma of_real_linepath: of_real (linepath $a b x)=$ linepath (of_real a) (of_real b) x by (metis linepath_of_real mult.right_neutral of_real_def real_scale $R_{-} d e f$)
lemma inj_on_linepath:
assumes $a \neq b$ shows inj_on (linepath $a b$) $\{0 . .1\}$
proof (clarsimp simp: inj_on_def linepath_def)
fix $x y$
assume $(1-x) *_{R} a+x *_{R} b=(1-y) *_{R} a+y *_{R} b 0 \leq x x \leq 10 \leq y$
$y \leq 1$
then have $x *_{R}(a-b)=y *_{R}(a-b)$
by (auto simp: algebra_simps)
then show $x=y$
using assms by auto
qed
lemma linepath_le_1:
fixes $a::$ 'a::linordered_idom shows $\llbracket a \leq 1 ; b \leq 1 ; 0 \leq u ; u \leq 1 \rrbracket \Longrightarrow(1-u)$
$* a+u * b \leq 1$
using mult_left_le [of a $1-u$] mult_left_le $\left[\begin{array}{ll}\text { of } & b \\ u\end{array}\right]$ by auto
lemma linepath_in_path:
shows $x \in\{0 . .1\} \Longrightarrow$ linepath a $b x \in$ closed_segment $a b$
by (auto simp: segment linepath_def)
lemma linepath_image_01: linepath ab' \quad ' $0 . .1\}=$ closed_segment $a b$
by (auto simp: segment linepath_def)
lemma linepath_in_convex_hull:
fixes $x:$:real
assumes $a: a \in$ convex hull S
and $b: b \in$ convex hull S
and $x: 0 \leq x x \leq 1$
shows linepath a bx convex hull S
proof -
have linepath abx closed_segment ab
using x by (auto simp flip: linepath_image_01)
then show? ?thesis
using ab convex_contains_segment by blast
qed
lemma Re_linepath: Re(linepath (of_real a) (of_real b) $x)=(1-x) * a+x * b$
by (simp add: linepath_def)
lemma Im_linepath: Im(linepath $\left.\left(o f _r e a l ~ a\right)\left(o f _r e a l ~ b\right) ~ x\right)=0$
by (simp add: linepath_def)

```
lemma bounded_linear_linepath:
    assumes bounded_linear \(f\)
    shows \(\quad f\) (linepath a \(b x\) ) \(=\operatorname{linepath~}(f a)(f b) x\)
proof -
    interpret \(f\) : bounded_linear \(f\) by fact
    show ?thesis by (simp add: linepath_def f.add f.scale)
qed
lemma bounded_linear_linepath':
    assumes bounded_linear \(f\)
    shows \(f \circ\) linepath \(a b=\) linepath \((f a)(f b)\)
    using bounded_linear_linepath \([O F\) assms \(]\) by (simp add: fun_eq_iff)
lemma linepath_cnj': cnj ○ linepath a blinepath (cnj a) (cnj b)
    by (simp add: linepath_def fun_eq_iff)
```

lemma differentiable_linepath [intro]: linepath abdifferentiable at x within A
by (auto simp: linepath_def)
lemma has_vector_derivative_linepath_within:
(linepath a b has_vector_derivative $(b-a)$) (at x within S)
by (force intro: derivative_eq_intros simp add: linepath_def has_vector_derivative_def
algebra_simps)

5.5.13 Segments via convex hulls

```
lemma segments_subset_convex_hull:
    closed_segment \(a b \subseteq(\) convex hull \(\{a, b, c\})\)
    closed_segment \(a c \subseteq(\) convex hull \(\{a, b, c\})\)
    closed_segment \(b c \subseteq(\) convex hull \(\{a, b, c\})\)
    closed_segment \(b a \subseteq(\) convex hull \(\{a, b, c\})\)
    closed_segment c \(a \subseteq(\) convex hull \(\{a, b, c\})\)
    closed_segment c \(b \subseteq(\) convex hull \(\{a, b, c\})\)
```

by (auto simp: segment_convex_hull linepath_of_real elim!: rev_subsetD [OF_hull_mono])
lemma midpoints_in_convex_hull:
assumes $x \in$ convex hull $s y \in$ convex hull s
shows midpoint $x y \in$ convex hull s
proof -
have (1 - inverse(2)) $*_{R} x+$ inverse(2) $*_{R} y \in$ convex hull s
by (rule convexD_alt) (use assms in auto)
then show ?thesis
by (simp add: midpoint_def algebra_simps)
qed
lemma not_in_interior_convex_hull_3:
fixes a :: complex
shows $a \notin$ interior(convex hull $\{a, b, c\}$)

```
    b\not\in interior(convex hull {a,b,c})
    c\not\in interior(convex hull {a,b,c})
by (auto simp: card_insert_le_m1 not_in_interior_convex_hull)
```

lemma midpoint_in_closed_segment [simp]: midpoint $a b \in$ closed_segment $a b$ using midpoints_in_convex_hull segment_convex_hull by blast
lemma midpoint_in_open_segment [simp]: midpoint $a b \in$ open_segment $a b \longleftrightarrow a$ $\neq b$ by (simp add: open_segment_def)
lemma continuous_IVT_local_extremum:
fixes $f::$ 'a::euclidean_space \Rightarrow real
assumes contf: continuous_on (closed_segment ab) f
and $a \neq b f a=f b$
obtains z where $z \in$ open_segment $a b$
$(\forall w \in$ closed_segment $a b .(f w) \leq(f z)) \vee$
$(\forall w \in$ closed_segment ab. $(f z) \leq(f w))$
proof -
obtain c where $c \in$ closed_segment $a b$ and $c: \bigwedge y . y \in$ closed_segment $a b \Longrightarrow$
$f y \leq f c$
using continuous_attains_sup [of closed_segment a b f] contf by auto
obtain d where $d \in$ closed_segment $a b$ and $d: \bigwedge y . y \in$ closed_segment $a b \Longrightarrow$ $f d \leq f y$
using continuous_attains_inf [of closed_segment a b f] contf by auto
show ?thesis
proof (cases $c \in$ open_segment $a b \vee d \in$ open_segment $a b$)
case True
then show ?thesis
using $c d$ that by blast
next
case False
then have $(c=a \vee c=b) \wedge(d=a \vee d=b)$
by (simp add: $\langle c \in$ closed_segment $a b\rangle\langle d \in$ closed_segment $a b\rangle$ open_segment_def)
with $\langle a \neq b\rangle\langle f a=f b\rangle c d$ show ?thesis
by (rule_tac $z=$ midpoint $a b$ in that) (fastforce +)
qed
qed
An injective map into R is also an open map w.r.T. the universe, and conversely.
proposition injective_eq_1d_open_map_UNIV:
fixes $f::$ real \Rightarrow real
assumes contf: continuous_on $S f$ and S : is_interval S
shows inj_on $f S \longleftrightarrow(\forall T$. open $T \wedge T \subseteq S \longrightarrow \operatorname{open}(f$ ' $T))$
(is ?lhs =? $r h s$)
proof safe
fix T
assume injf: ?lhs and open T and $T \subseteq S$

```
    have \(\exists U\). open \(U \wedge f x \in U \wedge U \subseteq f^{\prime} T\) if \(x \in T\) for \(x\)
    proof -
    obtain \(\delta\) where \(\delta>0\) and \(\delta\) : cball \(x \delta \subseteq T\)
        using <open \(T\rangle\langle x \in T\rangle\) open_contains_cball_eq by blast
    show ?thesis
    proof (intro exI conjI)
        have closed_segment \((x-\delta)(x+\delta)=\{x-\delta . . x+\delta\}\)
            using \(\langle 0<\delta\rangle\) by (auto simp: closed_segment_eq_real_ivl)
        also have \(\ldots \subseteq S\)
            using \(\delta\langle T \subseteq S\rangle\) by (auto simp: dist_norm subset_eq)
            finally have \(f\) ' (open_segment \((x-\delta)(x+\delta))=\) open_segment \((f(x-\delta))(f\)
\((x+\delta))\)
            using continuous_injective_image_open_segment_1
            by (metis continuous_on_subset [OF contf] inj_on_subset [OF injf])
            then show open ( \(f\) ' \(\{x-\delta<. .<x+\delta\}\) )
            using \(\langle 0<\delta\rangle\) by (simp add: open_segment_eq_real_ivl)
            show \(f x \in f^{\prime}\{x-\delta<. .<x+\delta\}\)
            by (auto simp: \(\langle\delta>0\rangle\) )
            show \(f\) ' \(\{x-\delta<. .<x+\delta\} \subseteq f^{\prime} T\)
            using \(\delta\) by (auto simp: dist_norm subset_iff)
        qed
    qed
    with open_subopen show open \(\left(f^{\prime} T\right)\)
        by blast
next
    assume \(R\) : ?rhs
    have False if \(x y: x \in S y \in S\) and \(f x=f y x \neq y\) for \(x y\)
    proof -
        have open (f 'open_segment \(x y\) )
            using \(R\)
            by (metis \(S\) convex_contains_open_segment is_interval_convex open_greaterThanLessThan
open_segment_eq_real_ivl xy)
    moreover
    have continuous_on (closed_segment \(x y\) ) \(f\)
    by (meson \(S\) closed_segment_subset contf continuous_on_subset is_interval_convex
that)
    then obtain \(\xi\) where \(\xi \in\) open_segment \(x y\)
                and \(\xi:(\forall w \in\) closed_segment \(x y .(f w) \leq(f \xi)) \vee\)
                        \((\forall w \in\) closed_segment \(x y .(f \xi) \leq(f w))\)
            using continuous_IVT_local_extremum \([\) of \(x y f]\langle f x=f y\rangle\langle x \neq y\rangle\) by blast
    ultimately obtain \(e\) where \(e>0\) and \(e: \bigwedge u\). dist \(u(f \xi)<e \Longrightarrow u \in f^{\prime}\)
open_segment \(x y\)
            using open_dist by (metis image_eqI)
    have fin: \(f \xi+(e / \mathcal{Z}) \in f\) ' open_segment \(x\) y \(f \xi-(e /\) Z \() \in f\) 'open_segment \(x\)
\(y\)
            using \(e[\) off \(\xi+(e / \mathcal{Z})] e[\) off \(\xi-(e / \mathcal{Z})]\langle e>0\rangle\) by (auto simp: dist_norm)
            show ?thesis
            using \(\xi\langle 0<e\rangle\) fin open_closed_segment by fastforce
    qed
```

```
    then show? lhs
    by (force simp: inj_on_def)
qed
```


5.5.14 Bounding a point away from a path

lemma not_on_path_ball:
fixes g :: real \Rightarrow 'a::heine_borel
assumes path g and $z: z \notin$ path_image g
shows $\exists e>0$. ball $z e \cap$ path_image $g=\{ \}$
proof -
have closed (path_image g)
by (simp add: 〈path g〉closed_path_image)
then obtain a where $a \in$ path_image $g \forall y \in$ path_image g. dist $z a \leq$ dist $z y$ by (auto intro: distance_attains_inf $[O F$ _ path_image_nonempty, of $g z]$)
then show ?thesis
by (rule_tac $x=\operatorname{dist} z$ a in exI) (use dist_commute z in auto)
qed
lemma not_on_path_cball:
fixes $g::$ real $\Rightarrow{ }^{\prime} a::$ heine_borel
assumes path g and $z \notin$ path_image g
shows $\exists e>0$. cball $z e \cap($ path_image $g)=\{ \}$
proof -
obtain e where ball $z e \cap$ path_image $g=\{ \} e>0$ using not_on_path_ball[OF assms] by auto
moreover have cball $z(e / \mathcal{Z}) \subseteq$ ball $z e$
using $\langle e>0\rangle$ by auto
ultimately show ?thesis
by (rule_tac $x=e / 2$ in exI) auto
qed

5.5.15 Path component

Original formalization by Tom Hales
definition path_component $S x y \equiv$
$(\exists g$. path $g \wedge$ path_image $g \subseteq S \wedge$ pathstart $g=x \wedge$ pathfinish $g=y)$
abbreviation
path_component_set $S x \equiv$ Collect (path_component $S x$)
lemmas path_defs = path_def pathstart_def pathfinish_def path_image_def path_component_def
lemma path_component_mem:
assumes path_component $S x y$
shows $x \in S$ and $y \in S$
using assms

```
    unfolding path_defs
    by auto
lemma path_component_refl:
    assumes x 
    shows path_component S x x
    using assms
    unfolding path_defs
    by (metis (full_types) assms continuous_on_const image_subset_iff path_image_def)
lemma path_component_refl_eq: path_component S x x \longleftrightarrow < < S S
    by (auto intro!: path_component_mem path_component_refl)
lemma path_component_sym: path_component S x y \Longrightarrow path_component S y x
    unfolding path_component_def
    by (metis (no_types) path_image_reversepath path_reversepath pathfinish_reversepath
pathstart_reversepath)
lemma path_component_trans:
    assumes path_component Sxy and path_component Syz
    shows path_component Sxz
    using assms
    unfolding path_component_def
    by (metis path_join pathfinish_join pathstart_join subset_path_image_join)
```

 lemma path_component_of_subset: \(S \subseteq T \Longrightarrow\) path_component \(S x y \Longrightarrow\) path_component
 \(T x y\)
 unfolding path_component_def by auto
 lemma path_component_linepath:
fixes S :: ' $a:$:real_normed_vector set
shows closed_segment $a b \subseteq S \Longrightarrow$ path_component S a b
unfolding path_component_def
by (rule_tac $x=$ linepath $a b$ in exI, auto)

Path components as sets

lemma path_component_set:
path_component_set $S x=$
$\{y .(\exists g$. path $g \wedge$ path_image $g \subseteq S \wedge$ pathstart $g=x \wedge$ pathfinish $g=y)\}$
by (auto simp: path_component_def)
lemma path_component_subset: path_component_set $S x \subseteq S$
by (auto simp: path_component_mem(2))
lemma path_component_eq_empty: path_component_set $S x=\{ \} \longleftrightarrow x \notin S$
using path_component_mem path_component_refl_eq
by fastforce
lemma path_component_mono:
$S \subseteq T \Longrightarrow($ path_component_set $S x) \subseteq($ path_component_set $T x)$
by (simp add: Collect_mono path_component_of_subset)
lemma path_component_eq:
$y \in$ path_component_set $S x \Longrightarrow$ path_component_set $S y=$ path_component_set
$S x$
by (metis (no_types, lifting) Collect_cong mem_Collect_eq path_component_sym path_component_trans)

5.5.16 Path connectedness of a space

definition path_connected $S \longleftrightarrow$
$(\forall x \in S . \forall y \in S . \exists g$. path $g \wedge$ path_image $g \subseteq S \wedge$ pathstart $g=x \wedge$ pathfinish g $=y)$
lemma path_connectedin_iff_path_connected_real [simp]:
path_connectedin euclideanreal $S \longleftrightarrow$ path_connected S
by (simp add: path_connectedin path_connected_def path_defs)
lemma path_connected_component: path_connected $S \longleftrightarrow(\forall x \in S . \forall y \in S$. path_component
$S x y$)
unfolding path_connected_def path_component_def by auto
lemma path_connected_component_set: path_connected $S \longleftrightarrow(\forall x \in S$. path_component_set
$S x=S$)
unfolding path_connected_component path_component_subset
using path_component_mem by blast
lemma path_component_maximal:
$\llbracket x \in T ;$ path_connected $T ; T \subseteq S \rrbracket \Longrightarrow T \subseteq($ path_component_set $S x)$
by (metis path_component_mono path_connected_component_set)
lemma convex_imp_path_connected:
fixes S :: ' $a:$:real_normed_vector set
assumes convex S
shows path_connected S
unfolding path_connected_def
using assms convex_contains_segment by fastforce
lemma path_connected_UNIV [iff]: path_connected (UNIV :: 'a::real_normed_vector set)
by (simp add: convex_imp_path_connected)
lemma path_component_UNIV: path_component_set UNIV $x=(U N I V ~:: ~ ' a::$ real_normed_vector set)
using path_connected_component_set by auto
lemma path_connected_imp_connected: assumes path_connected S

```
    shows connected \(S\)
proof (rule connectedI)
    fix \(e 1 e 2\)
    assume as: open e1 open e2 \(S \subseteq e 1 \cup e 2 e 1 \cap e 2 \cap S=\{ \} e 1 \cap S \neq\{ \} e 2 \cap\)
\(S \neq\{ \}\)
    then obtain \(x 1\) x2 where obt:x1 \(\in e 1 \cap S x 2 \in e 2 \cap S\)
        by auto
    then obtain \(g\) where \(g\) : path \(g\) path_image \(g \subseteq S\) pathstart \(g=x 1\) pathfinish \(g\)
\(=x 2\)
            using assms[unfolded path_connected_def,rule_format,of x1 x2] by auto
    have \(*\) : connected \(\{0 . .1::\) real \(\}\)
        by (auto intro!: convex_connected)
    have \(\{0 . .1\} \subseteq\{x \in\{0 . .1\} . g x \in e 1\} \cup\{x \in\{0 . .1\} . g x \in e 2\}\)
        using as(3) \(g(2)[\) unfolded path_defs] by blast
    moreover have \(\{x \in\{0 . .1\} . g x \in e 1\} \cap\{x \in\{0 . .1\} . g x \in e 2\}=\{ \}\)
        using \(\operatorname{as}(4) g(2)[\) unfolded path_defs]
        unfolding subset_eq
        by auto
    moreover have \(\{x \in\{0 . .1\} . g x \in e 1\} \neq\{ \} \wedge\{x \in\{0 . .1\} . g x \in e 2\} \neq\{ \}\)
        using \(g(3,4)\) [unfolded path_defs]
        using obt
        by (simp add: ex_in_conv [symmetric], metis zero_le_one order_refl)
    ultimately show False
        using \(*[\) unfolded connected_local not_ex, rule_format,
            of \(\left.\{0 . .1\} \cap g-{ }^{\prime} e 1\{0 . .1\} \cap g-‘ e 2\right]\)
        using continuous_openin_preimage_gen[OF g(1)[unfolded path_def] as (1)]
        using continuous_openin_preimage_gen[OF g(1)[unfolded path_def] as(2)]
        by auto
qed
lemma open_path_component:
    fixes \(S\) :: ' \(a:\) :real_normed_vector set
    assumes open \(S\)
    shows open (path_component_set \(S x\) )
    unfolding open_contains_ball
proof
    fix \(y\)
    assume as: \(y \in\) path_component_set \(S x\)
    then have \(y \in S\)
        by (simp add: path_component_mem(2))
    then obtain \(e\) where \(e: e>0\) ball \(y e \subseteq S\)
        using assms openE by blast
have \(\wedge u\). dist \(y u<e \Longrightarrow\) path_component \(S x u\)
        by (metis (full_types) as centre_in_ball convex_ball convex_imp_path_connected e
mem_Collect_eq mem_ball path_component_eq path_component_of_subset path_connected_component)
    then show \(\exists e>0\). ball \(y e \subseteq\) path_component_set \(S x\)
        using \(\langle e\rangle 0\rangle\) by auto
qed
```

```
lemma open_non_path_component:
    fixes \(S\) :: 'a::real_normed_vector set
    assumes open \(S\)
    shows open ( \(S\) - path_component_set \(S x\) )
    unfolding open_contains_ball
proof
    fix \(y\)
    assume \(y: y \in S-\) path_component_set \(S x\)
    then obtain \(e\) where \(e: e>0\) ball \(y e \subseteq S\)
        using assms openE by auto
    show \(\exists e>0\). ball \(y e \subseteq S\) - path_component_set \(S x\)
    proof (intro exI conjI subsetI DiffI notI)
        show \(\bigwedge x . x \in\) ball \(y e \Longrightarrow x \in S\)
            using \(e\) by blast
        show False if \(z \in\) ball \(y\) e \(z \in\) path_component_set \(S x\) for \(z\)
        proof -
            have \(y \in\) path_component_set \(S z\)
            by (meson assms convex_ball convex_imp_path_connected e open_contains_ball_eq
open_path_component path_component_maximal that(1))
            then have \(y \in\) path_component_set \(S x\)
                using path_component_eq that(2) by blast
            then show False
                    using \(y\) by blast
        qed
    qed (use e in auto)
qed
lemma connected_open_path_connected:
    fixes \(S\) :: ' \(a:\) :real_normed_vector set
    assumes open \(S\)
        and connected \(S\)
    shows path_connected \(S\)
    unfolding path_connected_component_set
proof (rule, rule, rule path_component_subset, rule)
    fix \(x y\)
    assume \(x \in S\) and \(y \in S\)
    show \(y \in\) path_component_set \(S x\)
    proof (rule ccontr)
        assume \(\neg\) ?thesis
        moreover have path_component_set \(S x \cap S \neq\{ \}\)
            using \(\langle x \in S\rangle\) path_component_eq_empty path_component_subset[of \(S x]\)
            by auto
        ultimately
    show False
    using \(\langle y \in S\rangle\) open_non_path_component \([O F\) assms(1)] open_path_component \([O F\)
\(\operatorname{assms}(1)\) ]
            using assms(2)[unfolded connected_def not_ex, rule_format,
                of path_component_set \(S x S\) - path_component_set \(S x]\)
            by auto
```

```
    qed
qed
lemma path_connected_continuous_image:
    assumes contf:continuous_on S f
        and path_connected S
    shows path_connected (f'S)
    unfolding path_connected_def
proof (rule, rule)
    fix }\mp@subsup{x}{}{\prime}\mp@subsup{y}{}{\prime
    assume \mp@subsup{x}{}{\prime}\inf'S ' y' \inf'S
    then obtain x y where }x:x\inS\mathrm{ and y:y SS and }\mp@subsup{x}{}{\prime}:\mp@subsup{x}{}{\prime}=fx\mathrm{ and }\mp@subsup{y}{}{\prime}:\mp@subsup{y}{}{\prime}
f y
        by auto
    from x y obtain g}\mathrm{ where path g ^ path_image g }\subseteqS\wedge pathstart g=x
pathfinish g=y
        using assms(2)[unfolded path_connected_def] by fast
    then show \existsg. path g}\wedge\mathrm{ path_image g}\subseteqf'S\wedge pathstart g= ''^ pathfinish 
= y'
        unfolding x' y' path_defs
        by (fastforce intro: continuous_on_compose continuous_on_subset[OF contf])
qed
lemma path_connected_translationI:
    fixes a :: ' }a\mathrm{ :: topological_group_add
    assumes path_connected S shows path_connected ((\lambdax.a + x)'S)
    by (intro path_connected_continuous_image assms continuous_intros)
lemma path_connected_translation:
    fixes a :: ' }a\mathrm{ :: topological_group_add
    shows path_connected ((\lambdax.a+x)`S) = path_connected S
proof -
    have }\forallxy.(+)(x:\mp@subsup{:}{}{\prime}a)`(+)(0-x)`y=
        by (simp add: image_image)
    then show ?thesis
        by (metis (no_types) path_connected_translationI)
qed
lemma path_connected_segment [simp]:
        fixes a :: 'a::real_normed_vector
        shows path_connected (closed_segment a b)
    by (simp add: convex_imp_path_connected)
lemma path_connected_open_segment [simp]:
    fixes a :: 'a::real_normed_vector
    shows path_connected (open_segment a b)
    by (simp add: convex_imp_path_connected)
```

lemma homeomorphic_path_connectedness:

```
    S homeomorphic T\Longrightarrow path_connected S \longleftrightarrow path_connected T
    unfolding homeomorphic_def homeomorphism_def by (metis path_connected_continuous_image)
lemma path_connected_empty [simp]: path_connected {}
    unfolding path_connected_def by auto
lemma path_connected_singleton [simp]: path_connected {a}
    unfolding path_connected_def pathstart_def pathfinish_def path_image_def
    using path_def by fastforce
lemma path_connected_Un:
    assumes path_connected S
        and path_connected T
        and}S\capT\not={
    shows path_connected (S\cupT)
    unfolding path_connected_component
proof (intro ballI)
    fix }x
    assume x: }x\inS\cupT\mathrm{ and }y:y\inS\cup
    from assms obtain z where z:z\inS z\inT
        by auto
    show path_component }(S\cupT)x
        using x y
    proof safe
        assume x \inSy}\in
        then show path_component (S\cupT) x y
        by (meson Un_upper1 <path_connected S` path_component_of_subset path_connected_component)
    next
        assume x \inS y \inT
        then show path_component (S\cupT) x y
        by (metis z assms(1-2) le_sup_iff order_refl path_component_of_subset path_component_trans
path_connected_component)
    next
    assume x }\inTy\in
        then show path_component (S\cupT) x y
        by (metis z assms(1-2) le_sup_iff order_refl path_component_of_subset path_component_trans
path_connected_component)
    next
        assume }x\inTy\in
        then show path_component (S\cupT) x y
        by (metis Un_upper1 assms(2) path_component_of_subset path_connected_component
sup_commute)
    qed
qed
lemma path_connected_UNION:
    assumes \i. i }\=A\Longrightarrow\mathrm{ path_connected (S i)
        and }\bigwedgei.i\inA\Longrightarrowz\inS
    shows path_connected (\bigcupi\inA.S i)
```

```
    unfolding path_connected_component
proof clarify
    fix \(x i y j\)
    assume \(*: i \in A x \in S i j \in A y \in S j\)
    then have path_component \((S\) i) \(x z\) and path_component \((S j) z y\)
        using assms by (simp_all add: path_connected_component)
    then have path_component \((\bigcup i \in A . S i) x z\) and path_component \((\bigcup i \in A . S i)\)
\(z y\)
    using \(*(1,3)\) by (auto elim!: path_component_of_subset [rotated])
    then show path_component \((\bigcup i \in A . S i) x y\)
        by (rule path_component_trans)
qed
lemma path_component_path_image_pathstart:
    assumes \(p\) : path \(p\) and \(x: x \in\) path_image \(p\)
    shows path_component (path_image \(p\) ) (pathstart \(p\) ) \(x\)
proof -
    obtain \(y\) where \(x: x=p y\) and \(y: 0 \leq y y \leq 1\)
        using \(x\) by (auto simp: path_image_def)
    show ?thesis
        unfolding path_component_def
    proof (intro exI conjI)
        have continuous_on ((*)y'\{0..1\})p
            by (simp add: continuous_on_path image_mult_atLeastAtMost_if p y)
        then have continuous_on \(\{0 . .1\}(p \circ((*) y))\)
            using continuous_on_compose continuous_on_mult_const by blast
        then show path \((\lambda u . p(y * u))\)
            by (simp add: path_def)
        show path_image \((\lambda u . p(y * u)) \subseteq\) path_image \(p\)
            using \(y\) mult_le_one by (fastforce simp: path_image_def image_iff)
    qed (auto simp: pathstart_def pathfinish_def \(x\) )
qed
lemma path_connected_path_image: path \(p \Longrightarrow\) path_connected \((\) path_image \(p\) )
    unfolding path_connected_component
    by (meson path_component_path_image_pathstart path_component_sym path_component_trans)
lemma path_connected_path_component [simp]:
    path_connected (path_component_set s x)
proof -
    \{ fix \(y z\)
        assume pa: path_component s \(x\) y path_component s \(x z\)
        then have pae: path_component_set s \(x=\) path_component_set s y
            using path_component_eq by auto
        have \(y z\) : path_component \(s y z\)
            using pa path_component_sym path_component_trans by blast
        then have \(\exists g\). path \(g \wedge\) path_image \(g \subseteq\) path_component_set s \(x \wedge\) pathstart \(g\)
\(=y \wedge\) pathfinish \(g=z\)
        apply (simp add: path_component_def)
```

```
    by (metis pae path_component_maximal path_connected_path_image pathstart_in_path_image)
    }
    then show ?thesis
    by (simp add: path_connected_def)
qed
lemma path_component: path_component S x y \longleftrightarrow (\existst. path_connected t ^t\subseteq
S\wedgex\int\wedge y \int)
    apply (intro iffI)
    apply (metis path_connected_path_image path_defs(5) pathfinish_in_path_image
pathstart_in_path_image)
    using path_component_of_subset path_connected_component by blast
lemma path_component_path_component [simp]:
    path_component_set (path_component_set S x) x = path_component_set S x
proof (cases x }\inS\mathrm{ )
    case True show ?thesis
    by (metis True mem_Collect_eq path_component_refl path_connected_component_set
path_connected_path_component)
next
    case False then show ?thesis
    by (metis False empty_iff path_component_eq_empty)
qed
lemma path_component_subset_connected_component:
    (path_component_set S x)\subseteq(connected_component_set S x)
proof (cases x }\inS\mathrm{ )
    case True show ?thesis
    by (simp add: True connected_component_maximal path_component_refl path_component_subset
path_connected_imp_connected)
next
    case False then show ?thesis
    using path_component_eq_empty by auto
qed
```


5.5.17 Lemmas about path-connectedness

```
lemma path_connected_linear_image:
fixes \(f\) :: 'a::real_normed_vector \(\Rightarrow\) ' \(b:\) :real_normed_vector
assumes path_connected \(S\) bounded_linear \(f\)
shows path_connected ( \(f\) ' \(S\) )
by (auto simp: linear_continuous_on assms path_connected_continuous_image)
lemma is_interval_path_connected: is_interval \(S \Longrightarrow\) path_connected \(S\) by (simp add: convex_imp_path_connected is_interval_convex)
lemma path_connected_Ioi[simp]: path_connected \(\{a<.\).\(\} for a\) :: real by (simp add: convex_imp_path_connected)
```

lemma path_connected_Ici[simp]: path_connected $\{a .$.$\} for a$:: real by (simp add: convex_imp_path_connected)
lemma path_connected_Iio[simp]: path_connected $\{. .<a\}$ for $a::$ real by (simp add: convex_imp_path_connected)
lemma path_connected_Iic[simp]: path_connected $\{. . a\}$ for a :: real by (simp add: convex_imp_path_connected)
lemma path_connected_Ioo[simp]: path_connected $\{a<. .<b\}$ for $a b::$ real by (simp add: convex_imp_path_connected)
lemma path_connected_Ioc[simp]: path_connected $\{a<. . b\}$ for $a b::$ real by (simp add: convex_imp_path_connected)
lemma path_connected_Ico[simp]: path_connected $\{a . .<b\}$ for $a b::$ real by (simp add: convex_imp_path_connected)
lemma path_connectedin_path_image:
assumes pathin $X g$ shows path_connectedin $X(g$ ' $(\{0 . .1\}))$ unfolding pathin_def
proof (rule path_connectedin_continuous_map_image)
show continuous_map (subtopology euclideanreal $\{0 . .1\}$) $X g$ using assms pathin_def by blast
qed (auto simp: is_interval_1 is_interval_path_connected)
lemma path_connected_space_subconnected:
path_connected_space $X \longleftrightarrow$
($\forall x \in$ topspace $X . \forall y \in$ topspace $X . \exists S$. path_connectedin $X S \wedge x \in S \wedge y$ $\in S)$
by (metis path_connectedin path_connectedin_topspace path_connected_space_def)
lemma connectedin_path_image: pathin $X g \Longrightarrow$ connectedin $X\left(g^{\prime}(\{0 . .1\})\right)$ by (simp add: path_connectedin_imp_connectedin path_connectedin_path_image)
lemma compactin_path_image: pathin $X g \Longrightarrow$ compactin $X\left(g^{\prime}(\{0 . .1\})\right)$ unfolding pathin_def
by (rule image_compactin [of top_of_set \{0..1 $\}$]) auto
lemma linear_homeomorphism_image:
fixes f :: 'a::euclidean_space \Rightarrow 'b::euclidean_space
assumes linear f inj f
obtains g where homeomorphism $(f$ ' $S) S g f$
proof -
obtain g where linear $g g \circ f=i d$
using assms linear_injective_left_inverse by blast
then have homeomorphism $(f$ ' S) $S g f$ using assms unfolding homeomorphism_def

```
    by (auto simp: eq_id_iff [symmetric] image_comp linear_conv_bounded_linear
linear_continuous_on)
    then show thesis ..
qed
lemma linear_homeomorphic_image:
    fixes f :: 'a::euclidean_space = 'b::euclidean_space
    assumes linear finj f
        shows S homeomorphic f'S
by (meson homeomorphic_def homeomorphic_sym linear_homeomorphism_image [OF
assms])
lemma path_connected_Times:
    assumes path_connected s path_connected t
        shows path_connected (s\timest)
proof (simp add: path_connected_def Sigma_def, clarify)
    fix x1 y1 x2 y2
    assume x1 \ins y1\int x2 \ins y2 \int
    obtain g}\mathrm{ where path g}\mathrm{ and g: path_image g}\subseteqs\mathrm{ and gs: pathstart g=x1 and
gf: pathfinish g=x2
            using \langlex1 \in s\rangle\langlex2 \in s\rangle assms by (force simp: path_connected_def)
    obtain h}\mathrm{ where path h and h: path_image h}\subseteqt\mathrm{ and hs: pathstart }h=y1\mathrm{ and
hf: pathfinish h = y2
            using \langley1 \int\rangle\langley2 \int\rangle assms by (force simp: path_connected_def)
    have path ( }\lambdaz.(x1,hz)
            using <path h>
            unfolding path_def
    by (intro continuous_intros continuous_on_compose2 [where g= Pair _]; force)
    moreover have path (\lambdaz. (gz,y2))
    using <path g>
    unfolding path_def
    by (intro continuous_intros continuous_on_compose2 [where g= Pair _]; force)
    ultimately have 1: path ((\lambdaz. (x1,hz)) +++ (\lambdaz.(gz,y2)))
    by (metis hf gs path_join_imp pathstart_def pathfinish_def)
    have path_image }((\lambdaz.(x1,hz))+++(\lambdaz.(gz,y2)))\subseteqpath_image (\lambdaz. (x1
hz))\cup path_image (\lambdaz. (gz, y2))
            by (rule Path_Connected.path_image_join_subset)
    also have ...\subseteq(\bigcupx\ins.\bigcup \ \ <t. {(x,x1)})
    using gh\langlex1\ins\rangle\langley2 \int\rangle by (force simp: path_image_def)
    finally have 2: path_image }((\lambdaz.(x1,hz))+++(\lambdaz.(gz,y2)))\subseteq(\bigcupx\ins
\x1\int.{(x, x1)}).
    show \existsg. path g}\wedge\mathrm{ path_image g}\subseteq(\bigcupx\ins.\bigcupx1\int.{(x,x1)})
                        pathstart g=(x1,y1)^ pathfinish g=(x2, y2)
    using 1 2 gf hs
    by (metis (no_types, lifting) pathfinish_def pathfinish_join pathstart_def path-
start_join)
qed
lemma is_interval_path_connected_1:
```

fixes s :: real set
shows is_interval $s \longleftrightarrow$ path_connected s using is_interval_connected_1 is_interval_path_connected path_connected_imp_connected by blast

5.5.18 Path components

lemma Union_path_component [simp]:
Union $\{$ path_component_set $S x \mid x . x \in S\}=S$
apply (rule subset_antisym)
using path_component_subset apply force
using path_component_refl by auto
lemma path_component_disjoint:
disjnt (path_component_set S a) (path_component_set S b) \longleftrightarrow
($a \notin$ path_component_set $S b$)
unfolding disjnt_iff
using path_component_sym path_component_trans by blast
lemma path_component_eq_eq:
path_component $S x=$ path_component $S y \longleftrightarrow$
$(x \notin S) \wedge(y \notin S) \vee x \in S \wedge y \in S \wedge$ path_component $S x y$
(is ?lhs $=$? $r h s$)
proof
assume ?lhs then show ?rhs
by (metis (no_types) path_component_mem(1) path_component_refl)
next
assume ?rhs then show?lhs
proof
assume $x \notin S \wedge y \notin S$ then show ?lhs
by (metis Collect_empty_eq_bot path_component_eq_empty)
next
assume $S: x \in S \wedge y \in S \wedge$ path_component $S x y$ show ?lhs
by (rule ext) (metis S path_component_trans path_component_sym)
qed
qed
lemma path_component_unique:
assumes $x \in c c \subseteq S$ path_connected c

$$
\bigwedge c^{\prime} . \llbracket x \in c^{\prime} ; c^{\prime} \subseteq S ; \text { path_connected } c \rrbracket \Longrightarrow c^{\prime} \subseteq c
$$

shows path_component_set $S x=c$
(is ?lhs = ?rhs)
proof
show ?lhs \subseteq ?rhs
using assms
by (metis mem_Collect_eq path_component_refl path_component_subset path_connected_path_component subsetD)
qed (simp add: assms path_component_maximal)

```
lemma path_component_intermediate_subset:
    path_component_set \(u a \subseteq t \wedge t \subseteq u\)
    \(\Longrightarrow\) path_component_set t a path_component_set ua
by (metis (no_types) path_component_mono path_component_path_component sub-
set_antisym)
lemma complement_path_component_Union:
    fixes \(x\) :: ' \(a\) :: topological_space
    shows \(S\) - path_component_set \(S x=\)
        \(\bigcup(\{\) path_component_set \(S y \mid y . y \in S\}-\{\) path_component_set \(S x\})\)
proof -
    have \(*:(\bigwedge x . x \in S-\{a\} \Longrightarrow\) disjnt \(a x) \Longrightarrow \bigcup S-a=\bigcup(S-\{a\})\)
        for \(a::^{\prime} a\) set and \(S\)
        by (auto simp: disjnt_def)
    have \(\bigwedge y . y \in\{\) path_component_set \(S x \mid x . x \in S\}-\{\) path_component_set \(S x\}\)
                \(\Longrightarrow\) disjnt (path_component_set \(S x\) ) y
        using path_component_disjoint path_component_eq by fastforce
    then have \(\bigcup\{\) path_component_set \(S x \mid x . x \in S\}-\) path_component_set \(S x=\)
                \(\bigcup(\{\) path_component_set \(S y \mid y . y \in S\}-\{\) path_component_set \(S x\})\)
        by (meson *)
    then show? ?hesis by simp
qed
```


5.5.19 Path components

definition path_component_of where path_component_of $X x y \equiv \exists g$. pathin $X g \wedge g 0=x \wedge g 1=y$
abbreviation path_component_of_set
where path_component_of_set $X x \equiv$ Collect (path_component_of X x)
definition path_components_of :: 'a topology $\Rightarrow{ }^{\prime}$ 'a set set
where path_components_of $X \equiv$ path_component_of_set X 'topspace X
lemma pathin_canon_iff: pathin (top_of_set $T) g \longleftrightarrow$ path $g \wedge g '\{0 . .1\} \subseteq T$ by (simp add: path_def pathin_def)
lemma path_component_of_canon_iff [simp]: path_component_of (top_of_set T) ab \longleftrightarrow path_component T $a b$ by (simp add: path_component_of_def pathin_canon_iff path_defs)
lemma path_component_in_topspace:
path_component_of $X x y \Longrightarrow x \in$ topspace $X \wedge y \in$ topspace X by (auto simp: path_component_of_def pathin_def continuous_map_def)
lemma path_component_of_refl:
path_component_of $X x x \longleftrightarrow x \in$ topspace X
by (metis path_component_in_topspace path_component_of_def pathin_const)

```
lemma path_component_of_sym:
    assumes path_component_of X x y
    shows path_component_of X y x
    using assms
    apply (clarsimp simp: path_component_of_def pathin_def)
    apply (rule_tac x=g\circ(\lambdat. 1-t) in exI)
    apply (auto intro!: continuous_map_compose simp: continuous_map_in_subtopology
continuous_on_op_minus)
    done
lemma path_component_of_sym_iff:
    path_component_of X x y \longleftrightarrow path_component_of X y x
    by (metis path_component_of_sym)
lemma continuous_map_cases_le:
    assumes contp: continuous_map X euclideanreal p
        and contq: continuous_map X euclideanreal q
        and contf:continuous_map (subtopology X {x.x\in topspace X ^px\leqqx})
Yf
    and contg:continuous_map (subtopology X {x. x 倝opspace }X\wedgeqx\leqpx}
Yg
    and fg: \bigwedgex. \llbracketx topspace X; px=qx\rrbracket\Longrightarrowfx=gx
    shows continuous_map X Y ( }\lambda\mathrm{ x. if px}\leqqx\mathrm{ then f x else g x)
proof -
    have continuous_map X Y (\lambdax. if q x - p x \in{0..} then f x else g x)
    proof (rule continuous_map_cases_function)
        show continuous_map X euclideanreal ( }\lambdax.qx-px
            by (intro contp contq continuous_intros)
    show continuous_map (subtopology X {x\in topspace X.qx-px\in euclideanreal
closure_of {0..}}) Yf
            by (simp add: contf)
    show continuous_map (subtopology X {x\in topspace X. qx - px euclideanreal
closure_of (topspace euclideanreal - {0..})}) Yg
            by (simp add: contg flip: Compl_eq_Diff_UNIV)
    qed (auto simp: fg)
    then show ?thesis
        by simp
qed
lemma continuous_map_cases_lt:
    assumes contp:continuous_map X euclideanreal p
        and contq: continuous_map X euclideanreal q
```



```
Yf
```



```
Yg
    and fg: \bigwedgex. \llbracketx topspace X; px=qx\rrbracket\Longrightarrowfx=gx
    shows continuous_map X Y(\lambdax. if px<qx then f x else g x)
proof -
```

have continuous_map $X Y(\lambda x$. if $q x-p x \in\{0<.$.$\} then f x$ else $g x)$
proof (rule continuous_map_cases_function)
show continuous_map X euclideanreal $(\lambda x . q x-p x)$
by (intro contp contq continuous_intros)
show continuous_map (subtopology $X\{x \in$ topspace $X . q x-p x \in$ euclideanreal closure_of $\{0<.\}\}$.$) Yf$
by (simp add: contf)
show continuous_map (subtopology $X\{x \in$ topspace $X . q x-p x \in$ euclideanreal closure_of (topspace euclideanreal $-\{0<.\})$.$\}) Yg$
by (simp add: contg fip: Compl_eq_Diff_UNIV)
qed (auto simp: fg)
then show ?thesis
by simp
qed
lemma path_component_of_trans:
assumes path_component_of $X x y$ and path_component_of $X y z$
shows path_component_of $X x z$
unfolding path_component_of_def pathin_def
proof -
let ?T01 = top_of_set $\{0 . .1::$ real $\}$
obtain g1 g2 where g1: continuous_map?T01 X g1 $x=g 10 y=g 11$
and g2: continuous_map?T01 X g2 $g 20=g 11 z=g 21$
using assms unfolding path_component_of_def pathin_def by blast
let $? ~ g=\lambda x$. if $x \leq 1 / 2$ then $(g 1 \circ(\lambda t .2 * t)) x$ else $(g 2 \circ(\lambda t$. $2 * t-1)) x$
show $\exists g$. continuous_map?T01 $X g \wedge g 0=x \wedge g 1=z$
proof (intro exI conjI)
show continuous_map (subtopology euclideanreal \{0..1\}) X?g
proof (intro continuous_map_cases_le continuous_map_compose, force, force)
show continuous_map (subtopology ?T01 $\{x \in$ topspace ?T01. $x \leq 1 / 2\}$)
?T01 ((*) 2)
by (auto simp: continuous_map_in_subtopology continuous_map_from_subtopology)
have continuous_map
(subtopology (top_of_set $\{0 . .1\})\{x .0 \leq x \wedge x \leq 1 \wedge 1 \leq x * 2\})$ euclideanreal $(\lambda t$. $2 * t-1)$
by (intro continuous_intros) (force intro: continuous_map_from_subtopology)
then show continuous_map (subtopology ?T01 $\{x \in$ topspace?T01. 1/2 \leq
$x\})$?T01 (λt. 2 * $t-1$)
by (force simp: continuous_map_in_subtopology)
show $(g 1 \circ(*)$ 2) $x=(g 2 \circ(\lambda t .2 * t-1)) x$ if $x \in$ topspace? $T 01 x=$
1/2 for x
using that by (simp add: g2(2) mult.commute continuous_map_from_subtopology)
qed (auto simp: g1 g2)
qed (auto simp: g1 g2)
qed
lemma path_component_of_mono:
$\llbracket p a t h _c o m p o n e n t _o f$ (subtopology $X S$) $x y ; S \subseteq T \rrbracket \Longrightarrow$ path_component_of (subtopology $X T$) $x y$
unfolding path_component_of_def
by (metis subsetD pathin_subtopology)
lemma path_component_of:
path_component_of $X x y \longleftrightarrow(\exists T$. path_connectedin $X T \wedge x \in T \wedge y \in T)$
(is ?lhs = ? $r h s$)
proof
assume? lhs then show ?rhs
by (metis atLeastAtMost_iff image_eqI order_refl path_component_of_def path_connectedin_path_image zero_le_one)
next
assume ?rhs then show ?lhs
by (metis path_component_of_def path_connectedin)
qed
lemma path_component_of_set:
path_component_of $X x y \longleftrightarrow(\exists g$. pathin $X g \wedge g 0=x \wedge g 1=y)$
by (auto simp: path_component_of_def)
lemma path_component_of_subset_topspace:
Collect(path_component_of $X x) \subseteq$ topspace X
using path_component_in_topspace by fastforce
lemma path_component_of_eq_empty:
Collect(path_component_of $X x)=\{ \} \longleftrightarrow(x \notin$ topspace $X)$
using path_component_in_topspace path_component_of_refl by fastforce
lemma path_connected_space_iff_path_component:
path_connected_space $X \longleftrightarrow(\forall x \in$ topspace $X . \forall y \in$ topspace X. path_component_of
$X x y)$
by (simp add: path_component_of path_connected_space_subconnected)
lemma path_connected_space_imp_path_component_of:
$\llbracket p a t h _c o n n e c t e d _s p a c e ~ X ; a \in$ topspace $X ; b \in$ topspace $X \rrbracket$
\Longrightarrow path_component_of X ab
by (simp add: path_connected_space_iff_path_component)
lemma path_connected_space_path_component_set:
path_connected_space $X \longleftrightarrow(\forall x \in$ topspace X. Collect (path_component_of $X x)$
$=$ topspace X)
using path_component_of_subset_topspace path_connected_space_iff_path_component
by fastforce
lemma path_component_of_maximal:
$\llbracket p a t h _c o n n e c t e d i n ~ X s ; x \in s \rrbracket \Longrightarrow s \subseteq C o l l e c t\left(p a t h _c o m p o n e n t _o f ~ X ~ x\right)$
using path_component_of by fastforce
lemma path_component_of_equiv:
path_component_of $X x y \longleftrightarrow x \in$ topspace $X \wedge y \in$ topspace $X \wedge$ path_component_of

```
X x = path_component_of X y
        (is ?lhs = ?rhs)
proof
    assume ?lhs
    then show ?rhs
        apply (simp add: fun_eq_iff path_component_in_topspace)
        apply (meson path_component_of_sym path_component_of_trans)
        done
qed (simp add: path_component_of_refl)
```

lemma path_component_of_disjoint:
disjnt (Collect (path_component_of X x)) (Collect (path_component_of X y))
\longleftrightarrow
$\sim($ path_component_of $X x y)$
by (force simp: disjnt_def path_component_of_eq_empty path_component_of_equiv)
lemma path_component_of_eq:
path_component_of $X x=$ path_component_of $X y \longleftrightarrow$
$(x \notin$ topspace $X) \wedge(y \notin$ topspace $X) \vee$
$x \in$ topspace $X \wedge y \in$ topspace $X \wedge$ path_component_of $X x y$
by (metis Collect_empty_eq_bot path_component_of_eq_empty path_component_of_equiv)
lemma path_component_of_aux:
path_component_of $X x y$
\Longrightarrow path_component_of (subtopology X (Collect (path_component_of X x)))
$x y$
by (meson path_component_of path_component_of_maximal path_connectedin_subtopology)
lemma path_connectedin_path_component_of:
path_connectedin X (Collect (path_component_of $X x)$)
proof -
have topspace (subtopology X (path_component_of_set $X x)$) path_component_of_set
X x
by (meson path_component_of_subset_topspace topspace_subtopology_subset)
then have path_connected_space (subtopology X (path_component_of_set X x))
by (metis (full_types) path_component_of_aux mem_Collect_eq path_component_of_equiv
path_connected_space_iff_path_component)
then show ?thesis
by (simp add: path_component_of_subset_topspace path_connectedin_def)
qed
lemma path_connectedin_euclidean [simp]:
path_connectedin euclidean $S \longleftrightarrow$ path_connected S
by (auto simp: path_connectedin_def path_connected_space_iff_path_component path_connected_component)
lemma path_connected_space_euclidean_subtopology [simp]:
path_connected_space(subtopology euclidean $S) \longleftrightarrow$ path_connected S
using path_connectedin_topspace by force
lemma Union_path_components_of:
$\bigcup($ path_components_of $X)=$ topspace X
by (auto simp: path_components_of_def path_component_of_equiv)
lemma path_components_of_maximal:
$\llbracket C \in$ path_components_of X; path_connectedin $X S ; \sim$ disjnt $C S \rrbracket \Longrightarrow S \subseteq C$
apply (auto simp: path_components_of_def path_component_of_equiv)
using path_component_of_maximal path_connectedin_def apply fastforce
by (meson disjnt_subset2 path_component_of_disjoint path_component_of_equiv path_component_of_maxim
lemma pairwise_disjoint_path_components_of:
pairwise disjnt (path_components_of X)
by (auto simp: path_components_of_def pairwise_def path_component_of_disjoint path_component_of_equiv)
lemma complement_path_components_of_Union:
$C \in$ path_components_of X \Longrightarrow topspace $X-C=\bigcup$ (path_components_of $X-\{C\})$
by (metis Diff_cancel Diff_subset Union_path_components_of cSup_singleton diff_Union_pairwise_disjoint insert_subset pairwise_disjoint_path_components_of)
lemma nonempty_path_components_of:
assumes $C \in$ path_components_of X shows $C \neq\{ \}$
proof -
have $C \in$ path_component_of_set X ' topspace X using assms path_components_of_def by blast
then show ?thesis using path_component_of_refl by fastforce

qed

lemma path_components_of_subset: $C \in$ path_components_of $X \Longrightarrow C \subseteq$ topspace
X
by (auto simp: path_components_of_def path_component_of_equiv)
lemma path_connectedin_path_components_of:
$C \in$ path_components_of $X \Longrightarrow$ path_connectedin $X C$
by (auto simp: path_components_of_def path_connectedin_path_component_of)
lemma path_component_in_path_components_of:
Collect (path_component_of $X a) \in$ path_components_of $X \longleftrightarrow a \in$ topspace X
by (metis imageI nonempty_path_components_of path_component_of_eq_empty path_components_of_def)
lemma path_connectedin_Union:
assumes $\mathcal{A}: \bigwedge S . S \in \mathcal{A} \Longrightarrow$ path_connectedin $X S \bigcap \mathcal{A} \neq\{ \}$
shows path_connectedin $X(\bigcup \mathcal{A})$
proof -
obtain a where $\bigwedge S . S \in \mathcal{A} \Longrightarrow a \in S$
using assms by blast
then have $\bigwedge x . x \in$ topspace (subtopology $X(\bigcup \mathcal{A})) \Longrightarrow$ path_component_of

```
(subtopology \(X(\bigcup \mathcal{A})) a x\)
    by simp (meson Union_upper \(\mathcal{A}\) path_component_of path_connectedin_subtopology)
    then show ?thesis
        using \(\mathcal{A}\) unfolding path_connectedin_def
    by (metis Sup_le_iff path_component_of_equiv path_connected_space_iff_path_component)
qed
lemma path_connectedin_Un:
    \(\llbracket p a t h \_c o n n e c t e d i n ~ X S ;\) path_connectedin \(X T ; S \cap T \neq\{ \} \rrbracket\)
    \(\Longrightarrow\) path_connectedin \(X(S \cup T)\)
    by (blast intro: path_connectedin_Union \([\) of \(\{S, T\}\), simplified \(]\) )
lemma path_connected_space_iff_components_eq:
    path_connected_space \(X \longleftrightarrow\)
        ( \(\forall C \in\) path_components_of \(X . \forall C^{\prime} \in\) path_components_of \(X . C=C^{\prime}\) )
    unfolding path_components_of_def
proof (intro iffI ballI)
    assume \(\forall C \in\) path_component_of_set \(X\) ' topspace \(X\).
            \(\forall C^{\prime} \in\) path_component_of_set \(X '\) topspace \(X . C=C^{\prime}\)
    then show path_connected_space \(X\)
    using path_component_of_refl path_connected_space_iff_path_component by fastforce
qed (auto simp: path_connected_space_path_component_set)
lemma path_components_of_eq_empty:
    path_components_of \(X=\{ \} \longleftrightarrow\) topspace \(X=\{ \}\)
    using Union_path_components_of nonempty_path_components_of by fastforce
lemma path_components_of_empty_space:
    topspace \(X=\{ \} \Longrightarrow\) path_components_of \(X=\{ \}\)
    by (simp add: path_components_of_eq_empty)
lemma path_components_of_subset_singleton:
    path_components_of \(X \subseteq\{S\} \longleftrightarrow\)
        path_connected_space \(X \wedge\) (topspace \(X=\{ \} \vee\) topspace \(X=S)\)
proof (cases topspace \(X=\{ \}\) )
    case True
    then show ?thesis
    by (auto simp: path_components_of_empty_space path_connected_space_topspace_empty)
next
    case False
    have (path_components_of \(X=\{S\}) \longleftrightarrow\) (path_connected_space \(X \wedge\) topspace \(X\)
    \(=S\) )
    proof (intro iffI conjI)
        assume L: path_components_of \(X=\{S\}\)
        then show path_connected_space \(X\)
            by (simp add: path_connected_space_iff_components_eq)
        show topspace \(X=S\)
            by (metis L ccpo_Sup_singleton [of S] Union_path_components_of)
    next
```

assume R : path_connected_space $X \wedge$ topspace $X=S$
then show path_components_of $X=\{S\}$
using ccpo_Sup_singleton [of S]
by (metis False all_not_in_conv insert_iff mk_disjoint_insert path_component_in_path_components_of path_connected_space_iff_components_eq path_connected_space_path_component_set)
qed
with False show ?thesis
by (simp add: path_components_of_eq_empty subset_singleton_iff)
qed
lemma path_connected_space_iff_components_subset_singleton:
path_connected_space $X \longleftrightarrow(\exists a$. path_components_of $X \subseteq\{a\})$
by (simp add: path_components_of_subset_singleton)
lemma path_components_of_eq_singleton:
path_components_of $X=\{S\} \longleftrightarrow$ path_connected_space $X \wedge$ topspace $X \neq\{ \} \wedge$
$S=$ topspace X
by (metis cSup_singleton insert_not_empty path_components_of_subset_singleton subset_singleton_iff)
lemma path_components_of_path_connected_space:
path_connected_space $X \Longrightarrow$ path_components_of $X=($ if topspace $X=\{ \}$ then
\{\} else $\{$ topspace $X\}$)
by (simp add: path_components_of_eq_empty path_components_of_eq_singleton)
lemma path_component_subset_connected_component_of:
path_component_of_set $X x \subseteq$ connected_component_of_set $X x$
proof (cases $x \in$ topspace X)
case True
then show ?thesis
by (simp add: connected_component_of_maximal path_component_of_refl path_connectedin_imp_connected path_connectedin_path_component_of)
next
case False
then show?thesis
using path_component_of_eq_empty by fastforce
qed
lemma exists_path_component_of_superset:
assumes S : path_connectedin $X S$ and ne: topspace $X \neq\{ \}$
obtains C where $C \in$ path_components_of $X S \subseteq C$
proof (cases $S=\{ \}$)
case True
then show ?thesis
using ne path_components_of_eq_empty that by fastforce
next
case False
then obtain a where $a \in S$
by blast

```
show ?thesis
proof
    show Collect (path_component_of X a) \(\in\) path_components_of \(X\)
    by (meson \(\langle a \in S\rangle S\) subsetD path_component_in_path_components_of path_connectedin_subset_topspace)
    show \(S \subseteq\) Collect (path_component_of Xa)
        by (simp add: \(S<a \in S\rangle\) path_component_of_maximal)
    qed
qed
lemma path_component_of_eq_overlap:
    path_component_of \(X x=\) path_component_of \(X y \longleftrightarrow\)
        \((x \notin\) topspace \(X) \wedge(y \notin\) topspace \(X) \vee\)
        Collect (path_component_of \(X x) \cap\) Collect (path_component_of \(X y) \neq\{ \}\)
by (metis disjnt_def empty_iff inf_bot_right mem_Collect_eq path_component_of_disjoint
path_component_of_eq path_component_of_eq_empty)
lemma path_component_of_nonoverlap:
    Collect (path_component_of \(X x\) ) \(\cap\) Collect (path_component_of \(X y\) ) \(=\{ \} \longleftrightarrow\)
    \((x \notin\) topspace \(X) \vee(y \notin\) topspace \(X) \vee\)
    path_component_of \(X x \neq\) path_component_of \(X y\)
    by (metis inf.idem path_component_of_eq_empty path_component_of_eq_overlap)
lemma path_component_of_overlap:
    Collect (path_component_of \(X x) \cap\) Collect (path_component_of \(X y) \neq\{ \} \longleftrightarrow\)
    \(x \in\) topspace \(X \wedge y \in\) topspace \(X \wedge\) path_component_of \(X x=\) path_component_of
\(X y\)
    by (meson path_component_of_nonoverlap)
lemma path_components_of_disjoint:
    \(\llbracket C \in\) path_components_of \(X ; C^{\prime} \in\) path_components_of \(X \rrbracket \Longrightarrow \operatorname{disjnt} C C^{\prime} \longleftrightarrow\)
\(C \neq C^{\prime}\)
    by (auto simp: path_components_of_def path_component_of_disjoint path_component_of_equiv)
lemma path_components_of_overlap:
    \(\llbracket C \in\) path_components_of \(X ; C^{\prime} \in\) path_components_of \(X \rrbracket \Longrightarrow C \cap C^{\prime} \neq\{ \}\)
    \(\longleftrightarrow C=C^{\prime}\)
    by (auto simp: path_components_of_def path_component_of_equiv)
lemma path_component_of_unique:
    \(\llbracket x \in C ;\) path_connectedin \(X C ; \bigwedge C^{\prime} . \llbracket x \in C^{\prime} ;\) path_connectedin \(X C^{\prime} \rrbracket \Longrightarrow C^{\prime}\)
\(\subseteq C \rrbracket\)
        \(\Longrightarrow\) Collect (path_component_of \(X x)=C\)
    by (meson subsetD eq_iff path_component_of_maximal path_connectedin_path_component_of)
lemma path_component_of_discrete_topology [simp]:
    Collect (path_component_of (discrete_topology \(U\) ) \(x)=(\) if \(x \in U\) then \(\{x\}\) else
    \{\})
proof -
    have \(\bigwedge C^{\prime} . \llbracket x \in C^{\prime} ;\) path_connectedin (discrete_topology \(U\) ) \(C^{\top} \rrbracket \Longrightarrow C^{\prime} \subseteq\{x\}\)
```

```
    by (metis path_connectedin_discrete_topology subsetD singletonD)
    then have }x\inU\Longrightarrow\mathrm{ Collect (path_component_of (discrete_topology U) x)=
{x}
    by (simp add: path_component_of_unique)
    then show ?thesis
        using path_component_in_topspace by fastforce
qed
lemma path_component_of_discrete_topology_iff [simp]:
    path_component_of (discrete_topology U) xy u
    by (metis empty_iff insertI1 mem_Collect_eq path_component_of_discrete_topology
singletonD)
lemma path_components_of_discrete_topology [simp]:
    path_components_of (discrete_topology U) = (\lambdax.{x})'U
    by (auto simp: path_components_of_def image_def fun_eq_iff)
lemma homeomorphic_map_path_component_of:
    assumes f: homeomorphic_map X Yf and x: x\in topspace X
    shows Collect (path_component_of Y (f x)) = f 'Collect(path_component_of X
x)
proof -
    obtain g}\mathrm{ where g: homeomorphic_maps X Yfg
        using f homeomorphic_map_maps by blast
    show ?thesis
    proof
        have Collect (path_component_of Y (f x))\subseteq topspace Y
            by (simp add: path_component_of_subset_topspace)
    moreover have g'Collect(path_component_of Y(fx))\subseteqCollect (path_component_of
X(g(fx)))
        using g x unfolding homeomorphic_maps_def
        by (metis f homeomorphic_imp_surjective_map imageI mem_Collect_eq path_component_of_maximal
path_component_of_refl path_connectedin_continuous_map_image path_connectedin_path_component_of)
    ultimately show Collect (path_component_of Y(fx))\subseteqf'Collect (path_component_of
X x)
            using g x unfolding homeomorphic_maps_def continuous_map_def image_iff
subset_iff
            by metis
        show f' Collect (path_component_of X x)\subseteq Collect (path_component_of Y (f
x))
    proof (rule path_component_of_maximal)
            show path_connectedin Y (f'Collect (path_component_of X x))
            by (meson f homeomorphic_map_path_connectedness_eq path_connectedin_path_component_of)
            qed (simp add: path_component_of_refl x)
    qed
qed
```

lemma homeomorphic_map_path_components_of:
assumes homeomorphic_map $X Y f$

```
shows path_components_of \(Y=(\) image \(f)\) ' (path_components_of \(X)\)
    (is ?lhs = ? rhs)
unfolding path_components_of_def homeomorphic_imp_surjective_map [OF assms,
symmetric]
    using assms homeomorphic_map_path_component_of by fastforce
```


5.5.20 Sphere is path-connected

lemma path_connected_punctured_universe:
assumes $2 \leq D I M$ ('a::euclidean_space)
shows path_connected ($-\left\{a::^{\prime} a\right\}$)
proof -
let ? $A=\left\{x::^{\prime} a . \exists i \in\right.$ Basis. $\left.x \cdot i<a \cdot i\right\}$
let $? B=\left\{x::^{\prime} a . \exists i \in\right.$ Basis. $\left.a \cdot i<x \cdot i\right\}$
have A : path_connected ?A
unfolding Collect_bex_eq
proof (rule path_connected_UNION)
fix $i::{ }^{\prime} a$
assume $i \in$ Basis
then show $\left(\sum i \in\right.$ Basis. $\left.(a \cdot i-1) *_{R} i\right) \in\left\{x::^{\prime} a . x \cdot i<a \cdot i\right\}$
by simp
show path_connected $\{x . x \cdot i<a \cdot i\}$
using convex_imp_path_connected [OF convex_halfspace_lt, of ia $a \cdot i]$
by (simp add: inner_commute)
qed
have B : path_connected ?B
unfolding Collect_bex_eq
proof (rule path_connected_UNION)
fix $i::^{\prime} a$
assume $i \in$ Basis
then show $\left(\sum i \in\right.$ Basis. $\left.(a \cdot i+1) *_{R} i\right) \in\left\{x::^{\prime} a . a \cdot i<x \cdot i\right\}$
by simp
show path_connected $\{x . a \cdot i<x \cdot i\}$
using convex_imp_path_connected [OF convex_halfspace_gt, of a $\cdot i i]$
by (simp add: inner_commute)
qed
obtain $S::$ ' a set where $S \subseteq$ Basis and card $S=$ Suc (Suc 0)
using ex_card[OF assms]
by auto
then obtain $b 0 b 1::{ }^{\prime} a$ where $b 0 \in$ Basis and $b 1 \in$ Basis and $b 0 \neq b 1$ unfolding card_Suc_eq by auto
then have $a+b 0-b 1 \in ? A \cap ? B$ by (auto simp: inner_simps inner_Basis)
then have ? $A \cap ? B \neq\{ \}$
by fast
with $A B$ have path_connected $(? A \cup ? B)$
by (rule path_connected_Un)
also have ? $A \cup ? B=\{x . \exists i \in$ Basis. $x \cdot i \neq a \cdot i\}$
unfolding neq_iff bex_disj_distrib Collect_disj_eq ..
also have $\ldots=\{x, x \neq a\}$
unfolding euclidean_eq_iff [where ' $a={ }^{\prime} a$]
by (simp add: Bex_def)
also have $\ldots=-\{a\}$
by auto
finally show ?thesis .
qed
corollary connected_punctured_universe:
$2 \leq D I M\left({ }^{\prime} N::\right.$ euclidean_space $) \Longrightarrow \operatorname{connected}\left(-\left\{a::^{\prime} N\right\}\right)$
by (simp add: path_connected_punctured_universe path_connected_imp_connected)
proposition path_connected_sphere:
fixes a :: ' a :: euclidean_space
assumes $2 \leq \operatorname{DIM}\left({ }^{\prime} a\right)$
shows path_connected(sphere a r)
proof (cases r 0::real rule: linorder_cases)
case less
then show ?thesis by (simp)
next
case equal
then show ?thesis
by (simp)
next
case greater
then have eq: (sphere $\left.\left(0::^{\prime} a\right) r\right)=\left(\lambda x .(r / \operatorname{norm} x) *_{R} x\right)$ ' $\left(-\left\{0::^{\prime} a\right\}\right)$
by (force simp: image_iff split: if_split_asm)
have continuous_on $\left(-\left\{0::^{\prime} a\right\}\right)\left(\lambda x .(r / n o r m x) *_{R} x\right)$
by (intro continuous_intros) auto
then have path_connected $\left(\left(\lambda x .(r / n o r m x) *_{R} x\right)\right.$ ' $\left.\left(-\left\{0::^{\prime} a\right\}\right)\right)$
by (intro path_connected_continuous_image path_connected_punctured_universe
assms)
with eq have path_connected (sphere ($\left.0::^{\prime} a\right) r$)
by auto
then have path_connected $\left((+) a\right.$ ' $\left(\right.$ sphere $\left.\left.\left(0::^{\prime} a\right) r\right)\right)$
by (simp add: path_connected_translation)
then show ?thesis
by (metis add.right_neutral sphere_translation)
qed
lemma connected_sphere:
fixes a :: ' a :: euclidean_space
assumes $2 \leq \operatorname{DIM}\left({ }^{\prime} a\right)$
shows connected(sphere a r)
using path_connected_sphere [OF assms]
by (simp add: path_connected_imp_connected)
corollary path_connected_complement_bounded_convex:
fixes S :: ' a :: euclidean_space set
assumes bounded S convex S and 2: $2 \leq \operatorname{DIM}$ ('a $^{(}$)
shows path_connected $(-S)$
proof (cases $S=\{ \}$)
case True then show ?thesis
using convex_imp_path_connected by auto
next
case False
then obtain a where $a \in S$ by auto
have § [rule_format]: $\forall y \in S . \forall u .0 \leq u \wedge u \leq 1 \longrightarrow(1-u) *_{R} a+u *_{R} y \in$ S
using \langle convex $S\rangle\langle a \in S\rangle$ by (simp add: convex_alt)
\{ fix $x y$ assume $x \notin S y \notin S$
then have $x \neq a y \neq a$ using $\langle a \in S\rangle$ by auto
then have bxy: bounded(insert x (insert $y S$))
by (simp add: 〈bounded S 〉)
then obtain B ::real where $B: 0<B$ and $B x$: norm $(a-x)<B$ and $B y$: norm $(a-y)<B$
and $S \subseteq$ ball a B
using bounded_subset_ballD [OF bxy, of a] by (auto simp: dist_norm)
define C where $C=B / \operatorname{norm}(x-a)$
let ? $C x a=a+C *_{R}(x-a)$
\{ fix u
assume $u:(1-u) *_{R} x+u *_{R} ? C x a \in S$ and $0 \leq u u \leq 1$
have $C C$: $1 \leq 1+(C-1) * u$
using $\langle x \neq a\rangle\langle 0 \leq u\rangle B x$
by (auto simp add: C_def norm_minus_commute)
have $*: \bigwedge v .(1-u) *_{R} x+u *_{R}\left(a+v *_{R}(x-a)\right)=a+(1+(v-1)$

* $u) *_{R}(x-a)$
by (simp add: algebra_simps)
have $a+\left((1 /(1+C * u-u)) *_{R} x+\left((u /(1+C * u-u)) *_{R} a+\right.\right.$ $\left.\left.(C * u /(1+C * u-u)) *_{R} x\right)\right)=$
$(1+(u /(1+C * u-u))) *_{R} a+((1 /(1+C * u-u))+(C *$
$u /(1+C * u-u))) *_{R} x$
by (simp add: algebra_simps)
also have $\ldots=(1+(u /(1+C * u-u))) *_{R} a+(1+(u /(1+C *$ $u-u))) *_{R} x$
using $C C$ by (simp add: field_simps)
also have $\ldots=x+(1+(u /(1+C * u-u))) *_{R} a+(u /(1+C * u$
$-u)) *_{R} x$
by (simp add: algebra_simps)
also have $\ldots=x+\left((1 /(1+C * u-u)) *_{R} a+\right.$
$\left.\left((u /(1+C * u-u)) *_{R} x+(C * u /(1+C * u-u)) *_{R} a\right)\right)$
using $C C$ by (simp add: field_simps) (simp add: add_divide_distrib scaleR_add_left)
finally have xeq: $(1-1 /(1+(C-1) * u)) *_{R} a+(1 /(1+(C-1)$
$* u)) *_{R}\left(a+(1+(C-1) * u) *_{R}(x-a)\right)=x$
by (simp add: algebra_simps)
have False
using $\S\left[\right.$ of $\left.a+(1+(C-1) * u) *_{R}(x-a) 1 /(1+(C-1) * u)\right]$
using $u\langle x \neq a\rangle\langle x \notin S\rangle\langle 0 \leq u\rangle C C$
by (auto simp: xeq *)
\}
then have pcx: path_component $(-S) x$? Cxa
by (force simp: closed_segment_def intro!: path_component_linepath)
define D where $D=B / \operatorname{norm}(y-a)$ - massive duplication with the proof above
let ? Dya $=a+D *_{R}(y-a)$
\{ fix u
assume $u:(1-u) *_{R} y+u *_{R}$? Dya $\in S$ and $0 \leq u u \leq 1$
have $D D: 1 \leq 1+(D-1) * u$
using $\langle y \neq a\rangle\langle 0 \leq u\rangle B y$
by (auto simp add: D_def norm_minus_commute)
have $*: \bigwedge v .(1-u) *_{R} y+u *_{R}\left(a+v *_{R}(y-a)\right)=a+(1+(v-1)$ *u) $*_{R}(y-a)$
by (simp add: algebra_simps)
have $a+\left((1 /(1+D * u-u)) *_{R} y+\left((u /(1+D * u-u)) *_{R} a+\right.\right.$ $\left.\left.(D * u /(1+D * u-u)) *_{R} y\right)\right)=$
$(1+(u /(1+D * u-u))) *_{R} a+((1 /(1+D * u-u))+(D *$ $u /(1+D * u-u))) *_{R} y$
by (simp add: algebra_simps)
also have $\ldots=(1+(u /(1+D * u-u))) *_{R} a+(1+(u /(1+D *$ $u-u))) *_{R} y$
using $D D$ by (simp add: field_simps)
also have $\ldots=y+(1+(u /(1+D * u-u))) *_{R} a+(u /(1+D * u$ $-u)) *_{R} y$
by (simp add: algebra_simps)
also have $\ldots=y+\left((1 /(1+D * u-u)) *_{R} a+\right.$

$$
\left.\left((u /(1+D * u-u)) *_{R} y+(D * u /(1+D * u-u)) *_{R} a\right)\right)
$$

using $D D$ by (simp add: field_simps) (simp add: add_divide_distrib scaleR_add_left)
finally have xeq: $(1-1 /(1+(D-1) * u)) *_{R} a+(1 /(1+(D-1)$ $* u)) *_{R}\left(a+(1+(D-1) * u) *_{R}(y-a)\right)=y$
by (simp add: algebra_simps)
have False
using §[of $\left.a+(1+(D-1) * u) *_{R}(y-a) 1 /(1+(D-1) * u)\right]$
using $u\langle y \neq a\rangle\langle y \notin S\rangle\langle 0 \leq u\rangle D D$
by (auto simp: xeq *)
\}
then have pdy: path_component $(-S) y$?Dya
by (force simp: closed_segment_def intro!: path_component_linepath)
have pyx: path_component $(-S)$?Dya ?Cxa
proof (rule path_component_of_subset)
show sphere a $B \subseteq-S$
using $\langle S \subseteq$ ball $a B\rangle$ by (force simp: ball_def dist_norm norm_minus_commute)
have $a B$: ? Dya \in sphere a B ? $C x a \in$ sphere $a B$
using $\langle x \neq a\rangle$ using $\langle y \neq a\rangle B$ by (auto simp: dist_norm C_def D_def)
then show path_component (sphere a B) ?Dya ?Cxa

```
            using path_connected_sphere [OF 2] path_connected_component by blast
    qed
    have path_component (-S) x y
        by (metis path_component_trans path_component_sym pcx pdy pyx)
    }
    then show ?thesis
    by (auto simp: path_connected_component)
qed
lemma connected_complement_bounded_convex:
    fixes S :: ' a :: euclidean_space set
    assumes bounded S convex S 2 \leq DIM('a)
        shows connected (-S)
    using path_connected_complement_bounded_convex [OF assms] path_connected_imp_connected
by blast
lemma connected_diff_ball:
    fixes }S::' 'a :: euclidean_space se
    assumes connected S cball a r \subseteqS 2 \leq DIM('a)
    shows connected (S - ball a r)
proof (rule connected_diff_open_from_closed [OF ball_subset_cball])
    show connected (cball a r - ball a r)
    using assms connected_sphere by (auto simp: cball_diff_eq_sphere)
qed (auto simp: assms dist_norm)
proposition connected_open_delete:
    assumes open S connected S and 2: 2 \leq DIM('N::euclidean_space)
    shows connected(S - {a::'N})
proof (cases a }\inS\mathrm{ )
    case True
    with <open S` obtain \varepsilon where \varepsilon>0 and \varepsilon: cball a \varepsilon\subseteqS
        using open_contains_cball_eq by blast
    define b where b\equiva+\varepsilon**R(SOME i. i\inBasis)
    have dist a b=\varepsilon
        by (simp add: b_def dist_norm SOME_Basis <0 < < less_imp_le)
    with }\varepsilon\mathrm{ have b}\in\bigcap{S-ball a r |r.0<r\wedger<\varepsilon
        by auto
    then have nonemp: (\bigcap{S-ball a r |r.0<r\wedger<\varepsilon})={}\Longrightarrow False
        by auto
    have con: \r. r<\varepsilon\Longrightarrow connected (S - ball a r)
        using \varepsilon by (force intro: connected_diff_ball [OF <connected S〉_ 2])
    have }x\in\bigcup{S-ball a r |r.0<r\wedger<\varepsilon} if x 位-{a} for x
        using that <0 < < >
        by (intro UnionI [of S - ball a (min \varepsilon (dist a x) / 2)]) auto
    then have S-{a}=\bigcup{S-ball a r|r.0<r\wedger<\varepsilon}
        by auto
    then show ?thesis
        by (auto intro: connected_Union con dest!: nonemp)
next
```

```
    case False then show ?thesis
    by (simp add: 〈connected \(S\) 〉)
qed
corollary path_connected_open_delete:
    assumes open \(S\) connected \(S\) and 2: 2 \(\leq \operatorname{DIM}\) ('N::euclidean_space)
    shows path_connected ( \(S-\left\{a::^{\prime} N\right\}\) )
    by (simp add: assms connected_open_delete connected_open_path_connected open_delete)
corollary path_connected_punctured_ball:
    \(2 \leq D I M(' N::\) euclidean_space \() \Longrightarrow\) path_connected \(\left(\right.\) ball a \(\left.r-\left\{a::^{\prime} N\right\}\right)\)
    by (simp add: path_connected_open_delete)
corollary connected_punctured_ball:
    2 \(\leq\) DIM ('N::euclidean_space) \(\Longrightarrow\) connected (ball a \(\left.r-\left\{a::^{\prime} N\right\}\right)\)
    by (simp add: connected_open_delete)
corollary connected_open_delete_finite:
    fixes \(S\) :::'a::euclidean_space set
    assumes \(S\) : open \(S\) connected \(S\) and 2: \(2 \leq D I M\left({ }^{\prime} a\right)\) and finite \(T\)
    shows connected \((S-T)\)
    using 〈finite \(T\rangle S\)
proof (induct \(T\) )
    case empty
    show ?case using <connected \(S\) 〉 by simp
next
    case (insert \(x F\) )
    then have connected \((S-F)\) by auto
    moreover have open \((S-F)\) using finite_imp_closed \([O F\langle\) finite \(F\rangle]\) 〈open \(S\rangle\)
by auto
    ultimately have connected ( \(S-F-\{x\}\) ) using connected_open_delete[OF _ _
2] by auto
    thus ?case by (metis Diff_insert)
qed
lemma sphere_1D_doubleton_zero:
    assumes 1: \(D I M(' a)=1\) and \(r>0\)
    obtains \(x\) y::'a::euclidean_space
        where sphere \(0 r=\{x, y\} \wedge\) dist \(x y=2 * r\)
proof -
    obtain \(b:: ' a\) where \(b:\) Basis \(=\{b\}\)
        using 1 card_1_singletonE by blast
    show ?thesis
    proof (intro that conjI)
        have \(x=\) norm \(x *_{R} b \vee x=-\operatorname{norm} x *_{R} b\) if \(r=\) norm \(x\) for \(x\)
        proof -
            have \(x b:(x \cdot b) *_{R} b=x\)
                using euclidean_representation [of \(x\), unfolded b] by force
            then have norm \(\left((x \cdot b) *_{R} b\right)=\) norm \(x\)
```

```
        by simp
    with b have }|x\cdotb|=norm 
    using norm_Basis by (simp add: b)
    with xb show ?thesis
    by (metis (mono_tags, hide_lams) abs_eq_iff abs_norm_cancel)
    qed
    with }\langler>0\rangleb\mathrm{ show sphere 0r ={r**R b, -r r*R}
    by (force simp: sphere_def dist_norm)
    have dist (r**R b) (-r\mp@subsup{*}{R}{}b)=\operatorname{norm}(r\mp@subsup{*}{R}{}b+r\mp@subsup{*}{R}{}b)
    by (simp add: dist_norm)
    also have ... = norm ((2*r)**R b)
        by (metis mult_2 scaleR_add_left)
    also have ... = 2*r
        using \langler> 0\rangle b norm_Basis by fastforce
    finally show dist (r**R
    qed
qed
lemma sphere_1D_doubleton:
    fixes a :: 'a :: euclidean_space
    assumes DIM('a)=1 and r>0
    obtains x y where sphere a r = {x,y} ^ dist x y = 2*r
proof -
    have sphere a r=(+) a'sphere 0 r
        by (metis add.right_neutral sphere_translation)
    then show ?thesis
        using sphere_1D_doubleton_zero [OF assms]
        by (metis (mono_tags, lifting) dist_add_cancel image_empty image_insert that)
qed
lemma psubset_sphere_Compl_connected:
    fixes S :: 'a::euclidean_space set
    assumes S:S\subset sphere a r and 0<r and 2: 2 \leq DIM('a)
    shows connected (-S)
proof -
    have S\subseteq sphere a r
        using S by blast
    obtain b}\mathrm{ where dist a b=r and b}\not\in
        using S mem_sphere by blast
    have CS: - S={x. dist a x \leqr^(x\not\inS)}\cup{x.r\leqdist a x\wedge(x\not\inS)}
        by auto
    have {x. dist a x\leqr^x\not\inS}\cap{x.r\leq dist a x ^ x\not\inS}\not={}
        using \langleb\not\inS\rangle\langledist a b=r\rangle by blast
    moreover have connected {x. dist a x\leqr^x\not\inS}
        using assms
        by (force intro: connected_intermediate_closure [of ball a r])
    moreover
    have connected {x.r\leq dist a x\wedgex\not\inS}
    proof (rule connected_intermediate_closure [of - cball a r])
```

```
    show {x.r\leq dist a x ^x\not\inS}\subseteq closure (- cball a r)
    using interior_closure by (force intro: connected_complement_bounded_convex)
    qed (use assms connected_complement_bounded_convex in auto)
    ultimately show ?thesis
    by (simp add:CS connected_Un)
qed
```


5.5.21 Every annulus is a connected set

```
lemma path_connected_2DIM_I:
    fixes \(a::\) ' \(N::\) euclidean_space
    assumes 2: \(2 \leq D I M\left({ }^{\prime} N\right)\) and pc: path_connected \(\{r .0 \leq r \wedge P r\}\)
    shows path_connected \(\{x . P(\operatorname{norm}(x-a))\}\)
proof -
    have \(\{x . P(\operatorname{norm}(x-a))\}=(+) a^{\prime}\{x . P(\) norm \(x)\}\)
        by force
    moreover have path_connected \(\left\{x::^{\prime} N . P(\right.\) norm \(\left.x)\right\}\)
    proof -
        let \(? D=\{x .0 \leq x \wedge P x\} \times\) sphere \(\left(0::^{\prime} N\right) 1\)
        have \(x \in\left(\lambda z\right.\).fst \(z *_{R}\) snd \(\left.z\right)\) '? \(D\)
            if \(P(\) norm \(x)\) for \(x::^{\prime} N\)
        proof (cases \(x=0\) )
            case True
            with that show ?thesis
                apply (simp add: image_iff)
            by (metis (no_types) mem_sphere_0 order_refl vector_choose_size zero_le_one)
        next
            case False
            with that show ?thesis
                by (rule_tac \(x=(\) norm \(x, x / R\) norm \(x)\) in image_eqI) auto
        qed
        then have \(*:\left\{x::{ }^{\prime} N . P(\right.\) norm \(\left.x)\right\}=\left(\lambda z . f\right.\) ft \(z *_{R}\) snd \(\left.z\right)\) '?D
            by auto
        have continuous_on ? \(D\left(\lambda z::\right.\) real \(\times{ }^{\prime} N . f s t z *_{R}\) snd \(\left.z\right)\)
            by (intro continuous_intros)
        moreover have path_connected ?D
            by (metis path_connected_Times [OF pc] path_connected_sphere 2)
        ultimately show ?thesis
            by (simp add: * path_connected_continuous_image)
    qed
    ultimately show ?thesis
        using path_connected_translation by metis
qed
proposition path_connected_annulus:
    fixes \(a::{ }^{\prime} N::\) euclidean_space
    assumes \(2 \leq D I M\left({ }^{\prime} N\right)\)
    shows path_connected \(\{x . r 1<\operatorname{norm}(x-a) \wedge \operatorname{norm}(x-a)<r 2\}\)
                path_connected \(\{x . r 1<\operatorname{norm}(x-a) \wedge \operatorname{norm}(x-a) \leq r 2\}\)
```

```
    path_connected {x.r1\leqnorm (x-a)^norm (x - a)< r2}
    path_connected {x.r1\leqnorm (x-a)^norm (x-a)\leqr2}
by (auto simp: is_interval_def intro!: is_interval_convex convex_imp_path_connected
path_connected_2DIM_I [OF assms])
proposition connected_annulus:
    fixes a :: 'N ::euclidean_space
    assumes 2 \leq DIM('N::euclidean_space)
    shows connected {x.r1<norm (x-a)^norm (x - a)<r2}
        connected {x.r1<norm(x-a)^norm (x-a)\leqr2}
        connected {x.r1\leqnorm(x-a)^norm (x-a)<r2}
        connected {x.r1\leqnorm(x-a)^norm (x-a)\leqr2}
    by (auto simp: path_connected_annulus [OF assms] path_connected_imp_connected)
```


5.5.22 Relations between components and path components

```
lemma open_connected_component:
```

 fixes \(S\) :: 'a::real_normed_vector set
 assumes open \(S\)
 shows open (connected_component_set \(S x\))
 proof (clarsimp simp: open_contains_ball)
fix y
assume xy: connected_component $S x y$
then obtain e where $e>0$ ball $y e \subseteq S$
using assms connected_component_in openE by blast
then show $\exists e>0$. ball $y e \subseteq$ connected_component_set $S x$
by (metis xy centre_in_ball connected_ball connected_component_eq_eq connected_component_in
connected_component_maximal)
qed
corollary open_components:
fixes S :: ' a ::real_normed_vector set
shows \llbracket open $u ; S \in$ components $u \rrbracket \Longrightarrow$ open S
by (simp add: components_iff) (metis open_connected_component)
lemma in_closure_connected_component:
fixes S :: ' $a:$:real_normed_vector set
assumes $x: x \in S$ and S : open S
shows $x \in$ closure (connected_component_set $S y$) $\longleftrightarrow x \in$ connected_component_set
$S y$
proof -
\{ assume $x \in$ closure (connected_component_set S y)
moreover have $x \in$ connected_component_set $S x$
using x by simp
ultimately have $x \in$ connected_component_set $S y$
using S by (meson Compl_disjoint closure_iff_nhds_not_empty connected_component_disjoint
disjoint_eq_subset_Compl open_connected_component)
\}
then show? ?thesis

```
    by (auto simp: closure_def)
qed
lemma connected_disjoint_Union_open_pick:
    assumes pairwise disjnt \(B\)
        \(\wedge S . S \in A \Longrightarrow\) connected \(S \wedge S \neq\{ \}\)
        \(\bigwedge S . S \in B \Longrightarrow\) open \(S\)
        \(\bigcup A \subseteq \bigcup B\)
        \(S \in A\)
    obtains \(T\) where \(T \in B S \subseteq T S \cap \bigcup(B-\{T\})=\{ \}\)
proof -
    have \(S \subseteq \bigcup B\) connected \(S S \neq\{ \}\)
        using assms \(\langle S \in A\rangle\) by blast +
    then obtain \(T\) where \(T \in B S \cap T \neq\{ \}\)
        by (metis Sup_inf_eq_bot_iff inf.absorb_iff2 inf_commute)
    have 1: open \(T\) by (simp add: \(\langle T \in B\rangle\) assms)
    have 2: open \((\bigcup(B-\{T\}))\) using assms by blast
    have 3: \(S \subseteq T \cup \bigcup(B-\{T\})\) using \(\langle S \subseteq \bigcup B\rangle\) by blast
    have \(T \cap \bigcup(B-\{T\})=\{ \}\) using \(\langle T \in B\rangle\langle\) pairwise disjnt \(B\rangle\)
        by (auto simp: pairwise_def disjnt_def)
    then have 4: \(T \cap \bigcup(B-\{T\}) \cap S=\{ \}\) by auto
    from connected \(D[O F\) <connected \(S\rangle 1243]\)
    have \(S \cap \bigcup(B-\{T\})=\{ \}\)
        by (auto simp: Int_commute \(\langle S \cap T \neq\{ \}\) ))
    with \(\langle T \in B\rangle\) have \(S \subseteq T\)
        using 3 by auto
    show ?thesis
        using \(\langle S \cap \bigcup(B-\{T\})=\{ \}\rangle\langle S \subseteq T\rangle\langle T \in B\rangle\) that by auto
qed
lemma connected_disjoint_Union_open_subset:
    assumes \(A\) : pairwise disjnt \(A\) and \(B\) : pairwise disjnt \(B\)
        and \(S A: \wedge S . S \in A \Longrightarrow\) open \(S \wedge\) connected \(S \wedge S \neq\{ \}\)
        and \(S B: \wedge S . S \in B \Longrightarrow\) open \(S \wedge\) connected \(S \wedge S \neq\{ \}\)
        and \(e q[\) simp \(]: \bigcup A=\bigcup B\)
        shows \(A \subseteq B\)
proof
    fix \(S\)
    assume \(S \in A\)
    obtain \(T\) where \(T \in B S \subseteq T S \cap \bigcup(B-\{T\})=\{ \}\)
        using \(S A S B\langle S \in A\rangle\) connected_disjoint_Union_open_pick [OF B, of A] eq
order_refl by blast
    moreover obtain \(S^{\prime}\) where \(S^{\prime} \in A T \subseteq S^{\prime} T \cap \bigcup\left(A-\left\{S^{\prime}\right\}\right)=\{ \}\)
        using \(S A S B\langle T \in B\rangle\) connected_disjoint_Union_open_pick [OF \(A\), of \(B]\) eq
order_refl by blast
    ultimately have \(S^{\prime}=S\)
            by (metis A Int_subset_iff \(S A\langle S \in A\rangle\) disjnt_def inf.orderE pairwise_def)
    with \(\left\langle T \subseteq S^{\prime}\right\rangle\) have \(T \subseteq S\) by simp
    with \(\langle S \subseteq T\rangle\) have \(S=T\) by blast
```

```
    with \(\langle T \in B\rangle\) show \(S \in B\) by simp
qed
```

lemma connected_disjoint_Union_open_unique:
assumes A : pairwise disjnt A and B : pairwise disjnt B
and $S A: \wedge S . S \in A \Longrightarrow$ open $S \wedge$ connected $S \wedge S \neq\{ \}$
and $S B: \bigwedge S . S \in B \Longrightarrow$ open $S \wedge$ connected $S \wedge S \neq\{ \}$
and $e q[$ simp $]: \bigcup A=\bigcup B$
shows $A=B$
by (rule subset_antisym; metis connected_disjoint_Union_open_subset assms)
proposition components_open_unique:
fixes S :: ' $a:$: real_normed_vector set
assumes pairwise disjnt $A \bigcup A=S$
$\wedge X . X \in A \Longrightarrow$ open $X \wedge$ connected $X \wedge X \neq\{ \}$
shows components $S=A$
proof -
have open S using assms by blast
show ?thesis
proof (rule connected_disjoint_Union_open_unique)
show disjoint (components S)
by (simp add: components_eq disjnt_def pairwise_def)
qed (use 〈open S 〉in \langle simp_all add: assms open_components in_components_connected
in_components_nonempty))
qed

5.5.23 Existence of unbounded components

lemma cobounded_unbounded_component:
fixes S :: ' a :: euclidean_space set
assumes bounded $(-S)$
shows $\exists x . x \in S \wedge \neg$ bounded (connected_component_set $S x$)
proof -
obtain $i::^{\prime} a$ where $i: i \in$ Basis
using nonempty_Basis by blast
obtain B where $B: B>0-S \subseteq$ ball $0 B$
using bounded_subset_ballD [OF assms, of 0] by auto
then have $*: \bigwedge x$. $B \leq$ norm $x \Longrightarrow x \in S$
by (force simp: ball_def dist_norm)
have unbounded_inner: \neg bounded $\{x$. inner $i x \geq B\}$
proof (clarsimp simp: bounded_def dist_norm)
fix $e x$
show $\exists y . B \leq i \cdot y \wedge \neg \operatorname{norm}(x-y) \leq e$
using i
by (rule_tac $x=x+(\max B e+1+|i \cdot x|) *_{R} i$ in exI) (auto simp:
inner_right_distrib)
qed
have $\S: \bigwedge x . B \leq i \cdot x \Longrightarrow x \in S$
using * Basis_le_norm [OF i] by (metis abs_ge_self inner_commute order_trans)
have $\{x . B \leq i \cdot x\} \subseteq$ connected_component_set $S\left(B *_{R} i\right)$
by (intro connected_component_maximal) (auto simp: i intro: convex_connected convex_halfspace_ge [of B] §)
then have \neg bounded (connected_component_set $S\left(B *_{R} i\right)$)
using bounded_subset unbounded_inner by blast
moreover have $B *_{R} i \in S$
by (rule *) (simp add: norm_Basis $[$ OF i])
ultimately show ?thesis
by blast
qed
lemma cobounded_unique_unbounded_component:
fixes S :: ' a :: euclidean_space set
assumes bs: bounded $(-S)$ and $2 \leq \operatorname{DIM}\left({ }^{\prime} a\right)$
and bo: \neg bounded (connected_component_set $S x$)
\neg bounded (connected_component_set Sy)
shows connected_component_set $S x=$ connected_component_set $S y$
proof -
obtain $i::^{\prime} a$ where $i: i \in$ Basis
using nonempty_Basis by blast
obtain B where $B: B>0-S \subseteq$ ball $0 B$
using bounded_subset_ballD [OF bs, of 0] by auto
then have $*: \bigwedge x . B \leq$ norm $x \Longrightarrow x \in S$
by (force simp: ball_def dist_norm)
obtain x^{\prime} where x^{\prime} : connected_component $S x x^{\prime}$ norm $x^{\prime}>B$
using bo [unfolded bounded_def dist_norm, simplified, rule_format]
by (metis diff_zero norm_minus_commute not_less)
obtain y^{\prime} where y^{\prime} : connected_component S y y^{\prime} norm $y^{\prime}>B$
using bo [unfolded bounded_def dist_norm, simplified, rule_format]
by (metis diff_zero norm_minus_commute not_less)
have $x^{\prime} y^{\prime}$: connected_component $S x^{\prime} y^{\prime}$
unfolding connected_component_def
proof (intro exI conjI)
show connected (- ball $0 B$:: 'a set)
using assms by (auto intro: connected_complement_bounded_convex)
qed (use $x^{\prime} y^{\prime}$ dist_norm $*$ in auto)
show ?thesis
proof (rule connected_component_eq)
show $x \in$ connected_component_set $S y$
using $x^{\prime} y^{\prime} x^{\prime} y^{\prime}$
by (metis (no_types) connected_component_eq_eq connected_component_in
mem_Collect_eq)
qed
qed
lemma cobounded_unbounded_components:
fixes S :: ' a :: euclidean_space set
shows bounded $(-S) \Longrightarrow \exists$ c. c \in components $S \wedge \neg$ bounded c
by (metis cobounded_unbounded_component components_def imageI)
lemma cobounded_unique_unbounded_components:
fixes S :: ' a :: euclidean_space set
shows 【bounded $(-S) ; c \in$ components $S ; \neg$ bounded $c ; c^{\prime} \in$ components S;
\neg bounded $c^{\prime} ; 2 \leq \operatorname{DIM}\left({ }^{\prime} a\right) \rrbracket \Longrightarrow c^{\prime}=c$
unfolding components_iff
by (metis cobounded_unique_unbounded_component)
lemma cobounded_has_bounded_component:
fixes S :: ' a :: euclidean_space set
assumes bounded $(-S) \neg$ connected $S 2 \leq D I M\left({ }^{\prime} a\right)$
obtains C where $C \in$ components S bounded C
by (meson cobounded_unique_unbounded_components connected_eq_connected_components_eq assms)

5.5.24 The inside and outside of a Set

The inside comprises the points in a bounded connected component of the set's complement. The outside comprises the points in unbounded connected component of the complement.
definition inside where
inside $S \equiv\{x .(x \notin S) \wedge$ bounded (connected_component_set $(-S) x)\}$
definition outside where
outside $S \equiv-S \cap\{x$. \neg bounded(connected_component_set $(-S) x)\}$
lemma outside: outside $S=\{x$. ᄀ bounded(connected_component_set $(-S) x)\}$
by (auto simp: outside_def) (metis Compl_iff bounded_empty connected_component_eq_empty)
lemma inside_no_overlap [simp]: inside $S \cap S=\{ \}$
by (auto simp: inside_def)
lemma outside_no_overlap [simp]:
outside $S \cap S=\{ \}$
by (auto simp: outside_def)
lemma inside_Int_outside [simp]: inside $S \cap$ outside $S=\{ \}$
by (auto simp: inside_def outside_def)
lemma inside_Un_outside [simp]: inside $S \cup$ outside $S=(-S)$
by (auto simp: inside_def outside_def)
lemma inside_eq_outside:
inside $S=$ outside $S \longleftrightarrow S=$ UNIV
by (auto simp: inside_def outside_def)
lemma inside_outside: inside $S=(-(S \cup$ outside $S))$
by (force simp: inside_def outside)

```
lemma outside_inside: outside \(S=(-(S \cup\) inside \(S))\)
    by (auto simp: inside_outside) (metis IntI equals0D outside_no_overlap)
```

lemma union_with_inside: $S \cup$ inside $S=-$ outside S
by (auto simp: inside_outside) (simp add: outside_inside)
lemma union_with_outside: $S \cup$ outside $S=-$ inside S
by (simp add: inside_outside)
lemma outside_mono: $S \subseteq T \Longrightarrow$ outside $T \subseteq$ outside S
by (auto simp: outside bounded_subset connected_component_mono)
lemma inside_mono: $S \subseteq T \Longrightarrow$ inside $S-T \subseteq$ inside T
by (auto simp: inside_def bounded_subset connected_component_mono)
lemma segment_bound_lemma:
fixes u ::real
assumes $x \geq B y \geq B 0 \leq u u \leq 1$
shows $(1-u) * x+u * y \geq B$
proof -
obtain $d x d y$ where $d x \geq 0 d y \geq 0 x=B+d x y=B+d y$
using assms by auto (metis add.commute diff_add_cancel)
with $\langle 0 \leq u\rangle\langle u \leq 1\rangle$ show ?thesis
by (simp add: add_increasing2 mult_left_le field_simps)
qed
lemma cobounded_outside:
fixes $S::{ }^{\prime} a$:: real_normed_vector set
assumes bounded S shows bounded (- outside S)
proof -
obtain B where $B: B>0 S \subseteq$ ball $0 B$
using bounded_subset_ballD [OF assms, of 0] by auto
\{ fix $x::^{\prime} a$ and $C::$ real
assume Bno: $B \leq$ norm x and $C: 0<C$
have $\exists y$. connected_component $(-S) x y \wedge$ norm $y>C$
proof (cases $x=0$)
case True with B Bno show ?thesis by force
next
case False
have closed_segment $x\left(((B+C) / \operatorname{norm} x) *_{R} x\right) \subseteq-$ ball $0 B$
proof
fix w
assume $w \in$ closed_segment $x\left(((B+C) / \operatorname{norm} x) *_{R} x\right)$
then obtain u where
$w: w=(1-u+u *(B+C) / \operatorname{norm} x) *_{R} x 0 \leq u u \leq 1$
by (auto simp add: closed_segment_def real_vector_class.scaleR_add_left
[symmetric])
with False $B C$ have $B \leq(1-u) *$ norm $x+u *(B+C)$
using segment_bound_lemma $[$ of B norm $x B+C u]$ Bno

```
            by simp
            with False B C show w\in- ball 0 B
            using distrib_right [of _ _ norm x]
            by (simp add: ball_def w not_less)
        qed
        also have ...\subseteq-S
            by (simp add: B)
        finally have }\existsT\mathrm{ . connected T^T`-S^x G T^((B+C)/ norm x)
* R}x\in
            by (rule_tac x=closed_segment x (((B+C)/norm x) *R x) in exI) simp
            with False B
            show ?thesis
            by (rule_tac x = ((B+C)/norm x) *R x in exI) (simp add: connected_component_def)
        qed
    }
    then show ?thesis
    apply (simp add: outside_def assms)
    apply (rule bounded_subset [OF bounded_ball [of 0 B]])
    apply (force simp: dist_norm not_less bounded_pos)
    done
qed
lemma unbounded_outside:
    fixes S :: 'a::{real_normed_vector, perfect_space} set
    shows bounded S }\Longrightarrow\neg\mathrm{ bounded(outside S)
    using cobounded_imp_unbounded cobounded_outside by blast
lemma bounded_inside:
    fixes S ::'a::{real_normed_vector, perfect_space} set
    shows bounded S\Longrightarrow bounded(inside S)
    by (simp add: bounded_Int cobounded_outside inside_outside)
lemma connected_outside:
    fixes }S:: 'a::euclidean_space se
    assumes bounded S 2 \leq DIM('a)
        shows connected(outside S)
    apply (clarsimp simp add: connected_iff_connected_component outside)
    apply (rule_tac S=connected_component_set (-S)x in connected_component_of_subset)
    apply (metis (no_types) assms cobounded_unbounded_component cobounded_unique_unbounded_component
connected_component_eq_eq connected_component_idemp double_complement mem_Collect_eq)
    by (simp add: Collect_mono connected_component_eq)
lemma outside_connected_component_lt:
    outside S = {x.\forallB.\existsy.B<norm(y)^ connected_component (-S)xy}
    apply (auto simp: outside bounded_def dist_norm)
    apply (metis diff_0 norm_minus_cancel not_less)
    by (metis less_diff_eq norm_minus_commute norm_triangle_ineq2 order.trans pinf(6))
lemma outside_connected_component_le:
```

outside $S=\{x . \forall B . \exists y . B \leq \operatorname{norm}(y) \wedge$ connected_component $(-S) x y\}$
apply (simp add: outside_connected_component_lt Set.set_eq_iff)
by (meson gt_ex leD le_less_linear less_imp_le order.trans)
lemma not_outside_connected_component_lt:
fixes S :: 'a::euclidean_space set
assumes S : bounded S and $2 \leq D I M\left({ }^{\prime} a\right)$
shows $-($ outside $S)=\{x . \forall B . \exists y . B<\operatorname{norm}(y) \wedge \neg$ connected_component
$(-S) x y\}$
proof -
obtain $B::$ real where $B: 0<B$ and Bno: $\bigwedge x . x \in S \Longrightarrow$ norm $x \leq B$
using S [simplified bounded_pos] by auto
\{ fix $y::^{\prime} a$ and $z::^{\prime} a$
assume $y z: B<$ norm $z B<$ norm y
have connected_component (-cball 0 B) y z
using assms yz
by (force simp: dist_norm intro: connected_componentI [OF _ subset_refl]
connected_complement_bounded_convex)
then have connected_component $(-S) y z$
by (metis connected_component_of_subset Bno Compl_anti_mono mem_cball_0 subset_iff)
$\}$ note $c y z=t h i s$
show ?thesis
apply (auto simp: outside bounded_pos)
apply (metis Compl_iff bounded_iff cobounded_imp_unbounded mem_Collect_eq not_le)
by (metis B connected_component_trans cyz not_le)

qed

lemma not_outside_connected_component_le:
fixes S :: 'a::euclidean_space set
assumes S : bounded $S \quad 2 \leq \operatorname{DIM}\left({ }^{\prime} a\right)$
shows $-($ outside $S)=\{x . \forall B . \exists y . B \leq \operatorname{norm}(y) \wedge \neg$ connected_component $(-$ S) $x y\}$
apply (auto intro: less_imp_le simp: not_outside_connected_component_lt [OF assms])
by (meson gt_ex less_le_trans)
lemma inside_connected_component_lt:
fixes S :: 'a::euclidean_space set
assumes S : bounded $S \quad 2 \leq \operatorname{DIM}\left({ }^{\prime} a\right)$
shows inside $S=\{x .(x \notin S) \wedge(\forall B . \exists y . B<\operatorname{norm}(y) \wedge \neg$ con-
nected_component $(-S) x y)\}$
by (auto simp: inside_outside not_outside_connected_component_lt [OF assms])
lemma inside_connected_component_le:
fixes S :: ' $a::$ euclidean_space set
assumes S : bounded $S \quad 2 \leq \operatorname{DIM}\left({ }^{\prime} a\right)$
shows inside $S=\{x .(x \notin S) \wedge(\forall B . \exists y . B \leq \operatorname{norm}(y) \wedge \neg$ con-
nected_component $(-S) x y)\}$
by (auto simp: inside_outside not_outside_connected_component_le [OF assms])
lemma inside_subset:
assumes connected U and \neg bounded U and $T \cup U=-S$
shows inside $S \subseteq T$
apply (auto simp: inside_def)
by (metis bounded_subset [of connected_component_set (-S) _] connected_component_maximal Compl_iff Un_iff assms subsetI)
lemma frontier_not_empty:
fixes S :: ' a :: real_normed_vector set
shows $\llbracket S \neq\{ \} ; S \neq U N I V \rrbracket \Longrightarrow$ frontier $S \neq\{ \}$ using connected_Int_frontier [of UNIV S] by auto
lemma frontier_eq_empty:
fixes S :: ' a :: real_normed_vector set
shows frontier $S=\{ \} \longleftrightarrow S=\{ \} \vee S=$ UNIV
using frontier_UNIV frontier_empty frontier_not_empty by blast
lemma frontier_of_connected_component_subset:
fixes S :: ' $a:$:real_normed_vector set
shows frontier (connected_component_set $S x$) \subseteq frontier S
proof -
\{ fix y
assume $y 1: y \in$ closure (connected_component_set $S x$)
and $y 2: y \notin$ interior (connected_component_set $S x$)
have $y \in$ closure S
using y1 closure_mono connected_component_subset by blast
moreover have $z \in$ interior (connected_component_set $S x$)
if $0<e$ ball $y e \subseteq$ interior S dist $y z<e$ for $e z$
proof -
have ball y $e \subseteq$ connected_component_set $S y$
using connected_component_maximal that interior_subset
by (metis centre_in_ball connected_ball subset_trans)
then show ?thesis
using y1 apply (simp add: closure_approachable open_contains_ball_eq [OF
open_interior])
by (metis connected_component_eq dist_commute mem_Collect_eq mem_ball
mem_interior subsetD $\langle 0<e\rangle$ y2)
qed
then have $y \notin$ interior S
using y2 by (force simp: open_contains_ball_eq [OF open_interior])
ultimately have $y \in$ frontier S
by (auto simp: frontier_def)
\}
then show ?thesis by (auto simp: frontier_def)
qed

```
lemma frontier_Union_subset_closure:
    fixes F :: 'a::real_normed_vector set set
    shows frontier }(\bigcupF)\subseteq\operatorname{closure}(\bigcupt\inF.frontier t
proof -
    have \existsy\inF.\existsy\infrontier y. dist y x<e
        if T\inFy\inT dist y x <e
                x\not\in\mathrm{ interior (UF) 0<e for x y e T}
    proof (cases x \inT)
        case True with that show ?thesis
        by (metis Diff_iff Sup_upper closure_subset contra_subsetD dist_self frontier_def
interior_mono)
    next
        case False
        have 1: closed_segment x y \capT\not={}
            using }\langley\inT\rangle\mathrm{ by blast
        have 2: closed_segment x y -T\not={}
            using False by blast
        obtain c where c\in closed_segment x y c\in frontier T
            using False connected_Int_frontier [OF connected_segment 1 2] by auto
        then show ?thesis
        proof -
            have norm (y-x)<e
            by (metis dist_norm <dist y x < e〉)
            moreover have norm ( }c-x)\leq\operatorname{norm}(y-x
            by (simp add: <c \in closed_segment x y segment_bound(1))
            ultimately have norm (c-x)<e
            by linarith
            then show ?thesis
            by (metis (no_types) <c f frontier T> dist_norm that(1))
        qed
    qed
    then show ?thesis
        by (fastforce simp add: frontier_def closure_approachable)
qed
lemma frontier_Union_subset:
    fixes F :: 'a::real_normed_vector set set
    shows finite F\Longrightarrow frontier }(\bigcupF)\subseteq(\bigcupt\inF.frontier t
by (rule order_trans [OF frontier_Union_subset_closure])
    (auto simp: closure_subset_eq)
lemma frontier_of_components_subset:
    fixes S :: 'a::real_normed_vector set
    shows C \in components S\Longrightarrow frontier C}\subseteq\mathrm{ frontier S
    by (metis Path_Connected.frontier_of_connected_component_subset components_iff)
lemma frontier_of_components_closed_complement:
    fixes S :: 'a::real_normed_vector set
    shows \llbracketclosed S;C\in components (-S)\rrbracket\Longrightarrow frontier C}\subseteq
```

using frontier＿complement frontier＿of＿components＿subset frontier＿subset＿eq by blast
lemma frontier＿minimal＿separating＿closed：
fixes S ：：＇a：：real＿normed＿vector set
assumes closed S
and nconn：\neg connected $(-S)$
and $C: C \in$ components $(-S)$
and conn：$\wedge T$ ．\llbracket closed $T ; T \subset S \rrbracket \Longrightarrow \operatorname{connected}(-T)$
shows frontier $C=S$
proof（rule ccontr）
assume frontier $C \neq S$
then have frontier $C \subset S$
using frontier＿of＿components＿closed＿complement $[O F 〈 c l o s e d ~ S 〉 C]$ by blast
then have connected $(-($ frontier $C))$
by（simp add：conn）
have $\neg \operatorname{connected}(-($ frontier $C))$
unfolding connected＿def not＿not
proof（intro exI conjI）
show open C
using C 〈closed S 〉open＿components by blast
show open（ - closure C ）
by blast
show $C \cap-$ closure $C \cap-$ frontier $C=\{ \}$
using closure＿subset by blast
show $C \cap-$ frontier $C \neq\{ \}$
using C＜open C 〉components＿eq frontier＿disjoint＿eq by fastforce
show－frontier $C \subseteq C \cup$－closure C
by（simp add：＜open C〉closed＿Compl frontier＿closures）
then show－closure $C \cap-$ frontier $C \neq\{ \}$
by（metis（no＿types，lifting）C Compl＿subset＿Compl＿iff 〈frontier C $\subset S\rangle$
compl＿sup frontier＿closures in＿components＿subset psubsetE sup．absorb＿iff2 sup．boundedE
sup＿bot．right＿neutral sup＿inf＿absorb）
qed
then show False
using＜connected（ - frontier C ）＞by blast
qed
lemma connected＿component＿UNIV［simp］：
fixes $x::{ }^{\prime} a::$ real＿normed＿vector
shows connected＿component＿set UNIV $x=$ UNIV
using connected＿iff＿eq＿connected＿component＿set［of UNIV ：：＇a set］connected＿UNIV
by auto
lemma connected＿component＿eq＿UNIV：
fixes x ：：＇a：：real＿normed＿vector
shows connected＿component＿set s $x=U N I V \longleftrightarrow s=U N I V$
using connected＿component＿in connected＿component＿UNIV by blast
lemma components_UNIV [simp]: components UNIV $=\{$ UNIV :: 'a::real_normed_vector set\}
by (auto simp: components_eq_sing_iff)
lemma interior_inside_frontier:
fixes S :: ' $a:$:real_normed_vector set
assumes bounded S
shows interior $S \subseteq$ inside (frontier S)
proof -
$\{\mathrm{fix} x y$
assume $x: x \in$ interior S and $y: y \notin S$
and $c c$: connected_component $(-$ frontier $S) x y$
have connected_component_set (- frontier S) $x \cap$ frontier $S \neq\{ \}$
proof (rule connected_Int_frontier; simp add: set_eq_iff)
show $\exists u$. connected_component $(-$ frontier $S) x u \wedge u \in S$
by (meson cc connected_component_in connected_component_refl_eq inte-
rior_subset subsetD x)
show $\exists u$. connected_component $(-$ frontier $S) x u \wedge u \notin S$
using $y c c$ by blast
qed
then have bounded (connected_component_set (- frontier S) x)
using connected_component_in by auto
\}
then show ?thesis
apply (auto simp: inside_def frontier_def)
apply (rule classical)
apply (rule bounded_subset [OF assms], blast)
done
qed
lemma inside_empty [simp]: inside $\}=(\{ \}$:: 'a :: \{real_normed_vector, perfect_space\} set)
by (simp add: inside_def)
lemma outside_empty [simp]: outside $\left\}=\left(U N I V ~:: ~ ' a ~:: ~\left\{r e a l _n o r m e d _v e c t o r, ~\right.\right.\right.$ perfect_space\} set)
using inside_empty inside_Un_outside by blast
lemma inside_same_component:
\llbracket connected_component $(-S) x y ; x \in$ inside $S \rrbracket \Longrightarrow y \in$ inside S
using connected_component_eq connected_component_in
by (fastforce simp add: inside_def)
lemma outside_same_component:
\llbracket connected_component $(-S) x y ; x \in$ outside $S \rrbracket \Longrightarrow y \in$ outside S using connected_component_eq connected_component_in by (fastforce simp add: outside_def)
lemma convex_in_outside:
fixes S :: ' a :: \{real_normed_vector, perfect_space \} set
assumes S : convex S and $z: z \notin S$
shows $z \in$ outside S
proof (cases $S=\{ \}$)
case True then show ?thesis by simp
next
case False then obtain a where $a \in S$ by blast
with z have $z n a: z \neq a$ by auto
\{ assume bounded (connected_component_set ($-S$) z)
with bounded_pos_less obtain B where $B>0$ and $B: \bigwedge x$. connected_component
$(-S) z x \Longrightarrow$ norm $x<B$
by (metis mem_Collect_eq)
define C where $C=(B+1+$ norm $z) / \operatorname{norm}(z-a)$
have $C>0$
using $\langle 0<B\rangle$ zna by (simp add: C_def field_split_simps add_strict_increasing)
have \mid norm $\left(z+C *_{R}(z-a)\right)-\operatorname{norm}\left(C *_{R}(z-a)\right) \mid \leq \operatorname{norm} z$
by (metis add_diff_cancel norm_triangle_ineq3)
moreover have norm $\left(C *_{R}(z-a)\right)>$ norm $z+B$
using zna $\langle B>0\rangle$ by (simp add: $\left.C_{-} d e f ~ l e _m a x _i f f_{-} d i s j\right)$
ultimately have C : norm $\left(z+C *_{R}(z-a)\right)>B$ by linarith
\{ fix u::real
assume $u: 0 \leq u u \leq 1$ and ins: $(1-u) *_{R} z+u *_{R}\left(z+C *_{R}(z-a)\right) \in$
S
then have Cpos: $1+u * C>0$
by (meson $\langle 0<C\rangle$ add_pos_nonneg less_eq_real_def zero_le_mult_iff zero_less_one)
then have $*:(1 /(1+u * C)) *_{R} z+(u * C /(1+u * C)) *_{R} z=z$
by (simp add: scaleR_add_left [symmetric] field_split_simps)
then have False
using convexD_alt $[$ OF $S\langle a \in S\rangle$ ins, of $1 /(u * C+1)]\langle C\rangle 0\rangle\langle z \notin S\rangle C p o s$
u
by (simp add: * field_split_simps)
$\}$ note contra $=$ this
have connected_component $(-S) z\left(z+C *_{R}(z-a)\right)$
proof (rule connected_componentI [OF connected_segment])
show closed_segment $z\left(z+C *_{R}(z-a)\right) \subseteq-S$
using contra by (force simp add: closed_segment_def)
qed auto
then have False
using zna $B\left[\right.$ of $\left.z+C *_{R}(z-a)\right] C$
by (auto simp: field_split_simps max_mult_distrib_right)
\}
then show?thesis
by (auto simp: outside_def z)
qed
lemma outside_convex:
fixes $S::$ ' $a::$ \{real_normed_vector, perfect_space\} set
assumes convex S
shows outside $S=-S$

```
    by (metis ComplD assms convex_in_outside equalityI inside_Un_outside subsetI
sup.cobounded2)
lemma outside_singleton [simp]:
    fixes x :: 'a :: {real_normed_vector, perfect_space}
    shows outside {x} = -{x}
    by (auto simp: outside_convex)
lemma inside_convex:
    fixes S :: 'a :: {real_normed_vector, perfect_space} set
    shows convex S\Longrightarrow inside S={}
    by (simp add: inside_outside outside_convex)
lemma inside_singleton [simp]:
    fixes x :: 'a :: {real_normed_vector, perfect_space}
    shows inside {x}={}
    by (auto simp: inside_convex)
lemma outside_subset_convex:
    fixes S :: 'a :: {real_normed_vector, perfect_space} set
    shows \llbracketconvex T;S\subseteqT\rrbracket\Longrightarrow - T\subseteq outside S
    using outside_convex outside_mono by blast
lemma outside_Un_outside_Un:
    fixes S :: 'a::real_normed_vector set
    assumes S \cap outside (T\cupU)={}
    shows outside(T\cupU)\subseteqoutside(T\cupS)
proof
    fix }
    assume x: x\in outside ( }T\cupU
    have }Y\subseteq-S if connected YY\subseteq-TY\subseteq-Ux\inYu\inY for u
    proof -
        have Y\subseteq connected_component_set (- (T\cupU)) x
            by (simp add: connected_component_maximal that)
        also have ...\subseteq outside (T\cupU)
            by (metis (mono_tags, lifting) Collect_mono mem_Collect_eq outside out-
side_same_component x)
            finally have }Y\subseteq\mathrm{ outside (T U U).
            with assms show ?thesis by auto
    qed
    with }x\mathrm{ show }x\in\mathrm{ outside ( }T\cupS
        by (simp add: outside_connected_component_lt connected_component_def) meson
qed
lemma outside_frontier_misses_closure:
    fixes }S:: 'a::real_normed_vector set
    assumes bounded S
    shows outside(frontier S)\subseteq- closure S
    unfolding outside_inside Lattices.boolean_algebra_class.compl_le_compl_iff
```

```
proof -
    { assume interior S\subseteq inside (frontier S)
        hence interior S U inside (frontier S)=inside (frontier S)
        by (simp add: subset_Un_eq)
        then have closure S\subseteq frontier S \cup inside (frontier S)
            using frontier_def by auto
    }
```



```
        using interior_inside_frontier [OF assms] by blast
qed
lemma outside_frontier_eq_complement_closure:
    fixes S :: 'a :: {real_normed_vector, perfect_space} set
        assumes bounded S convex S
            shows outside(frontier S) = - closure S
by (metis Diff_subset assms convex_closure frontier_def outside_frontier_misses_closure
                outside_subset_convex subset_antisym)
lemma inside_frontier_eq_interior:
        fixes S :: '}a:: {real_normed_vector, perfect_space} se
        shows \llbracketbounded S; convex S\rrbracket\Longrightarrow inside(frontier S)= interior S
    apply (simp add: inside_outside outside_frontier_eq_complement_closure)
    using closure_subset interior_subset
    apply (auto simp: frontier_def)
    done
lemma open_inside:
    fixes S :: 'a::real_normed_vector set
    assumes closed S
        shows open (inside S)
proof -
    { fix }x\mathrm{ assume }x:x\in\mathrm{ inside S
        have open (connected_component_set (-S) x)
            using assms open_connected_component by blast
    then obtain e where e:e>0 and e:\y. dist y x<e\longrightarrow connected_component
(-S) x y
        using dist_not_less_zero
        apply (simp add: open_dist)
        by (metis (no_types, lifting) Compl_iff connected_component_refl_eq inside_def
mem_Collect_eq x)
        then have \existse>0. ball x e\subseteq inside S
        by (metis e dist_commute inside_same_component mem_ball subsetI x)
    }
    then show ?thesis
        by (simp add: open_contains_ball)
qed
lemma open_outside:
    fixes S :: 'a::real_normed_vector set
```

```
    assumes closed \(S\)
        shows open (outside \(S\) )
proof -
    \{ fix \(x\) assume \(x: x \in\) outside \(S\)
        have open (connected_component_set \((-S) x\) )
            using assms open_connected_component by blast
    then obtain \(e\) where \(e: e>0\) and \(e: \bigwedge y\). dist \(y x<e \longrightarrow\) connected_component
\((-S) x y\)
            using dist_not_less_zero \(x\)
            by (auto simp add: open_dist outside_def intro: connected_component_refl)
        then have \(\exists e>0\). ball \(x e \subseteq\) outside \(S\)
            by (metis e dist_commute outside_same_component mem_ball subsetI x)
    \}
    then show ?thesis
        by (simp add: open_contains_ball)
qed
lemma closure_inside_subset:
            fixes \(S\) :: 'a::real_normed_vector set
            assumes closed \(S\)
            shows closure (inside \(S\) ) \(\subseteq S \cup\) inside \(S\)
by (metis assms closure_minimal open_closed open_outside sup.cobounded2 union_with_inside)
lemma frontier_inside_subset:
    fixes \(S\) :: ' \(a:\) :real_normed_vector set
    assumes closed \(S\)
        shows frontier (inside \(S) \subseteq S\)
proof -
    have closure (inside \(S\) ) \(\cap\) - inside \(S=\) closure (inside \(S\) ) - interior (inside \(S\) )
    by (metis (no_types) Diff_Compl assms closure_closed interior_closure open_closed
open_inside)
    moreover have - inside \(S \cap\) - outside \(S=S\)
        by (metis (no_types) compl_sup double_compl inside_Un_outside)
    moreover have closure (inside \(S\) ) \(\subseteq-\) outside \(S\)
            by (metis (no_types) assms closure_inside_subset union_with_inside)
    ultimately have closure (inside \(S\) ) - interior (inside \(S\) ) \(\subseteq S\)
            by blast
    then show ?thesis
        by (simp add: frontier_def open_inside interior_open)
qed
lemma closure_outside_subset:
    fixes \(S\) :: 'a::real_normed_vector set
    assumes closed \(S\)
        shows closure (outside \(S\) ) \(\subseteq S \cup\) outside \(S\)
    by (metis assms closed_open closure_minimal inside_outside open_inside sup_ge2)
lemma frontier_outside_subset:
    fixes \(S\) :: ' \(a\) ::real_normed_vector set
```

```
    assumes closed S
    shows frontier(outside S)\subseteqS
    unfolding frontier_def
    by (metis Diff_subset_conv assms closure_outside_subset interior_eq open_outside
sup_aci(1))
lemma inside_complement_unbounded_connected_empty:
    |connected (-S); ᄀ bounded (-S)\rrbracket\Longrightarrow inside S={}
    using inside_subset by blast
lemma inside_bounded_complement_connected_empty:
    fixes S :: 'a::{real_normed_vector, perfect_space} set
    shows \llbracketconnected (-S); bounded S\rrbracket\Longrightarrow inside S={}
    by (metis inside_complement_unbounded_connected_empty cobounded_imp_unbounded)
lemma inside_inside:
    assumes S\subseteq inside T
    shows inside S-T\subseteq inside T
unfolding inside_def
proof clarify
    fix }
    assume x: x\not\inT x\not\inS and bo: bounded (connected_component_set (-S) x)
    show bounded (connected_component_set (-T) x)
    proof (cases S \cap connected_component_set (-T)x={})
        case True then show ?thesis
        by (metis bounded_subset [OF bo] compl_le_compl_iff connected_component_idemp
    connected_component_mono disjoint_eq_subset_Compl double_compl)
    next
        case False
        then obtain y where y:y\inSy\in connected_component_set (-T)x
            by (meson disjoint_iff)
        then have bounded (connected_component_set (-T) y)
            using assms [unfolded inside_def] by blast
        with y show ?thesis
        by (metis connected_component_eq)
    qed
qed
lemma inside_inside_subset: inside(inside S)\subseteqS
    using inside_inside union_with_outside by fastforce
lemma inside_outside_intersect_connected:
            \llbracketconnected T; inside S\capT\not={}; outside S\capT\not={}\rrbracket\LongrightarrowS\capT\not={}
    apply (simp add: inside_def outside_def ex_in_conv [symmetric] disjoint_eq_subset_Compl,
clarify)
    by (metis (no_types, hide_lams) Compl_anti_mono connected_component_eq con-
nected_component_maximal contra_subsetD double_compl)
```

lemma outside_bounded_nonempty:
fixes S :: ' a :: \{real_normed_vector, perfect_space\} set
assumes bounded S shows outside $S \neq\{ \}$
by (metis (no_types, lifting) Collect_empty_eq Collect_mem_eq Compl_eq_Diff_UNIV
Diff_cancel
Diff_disjoint UNIV_I assms ball_eq_empty bounded_diff cobounded_outside
convex_ball
double_complement order_refl outside_convex outside_def)
lemma outside_compact_in_open:
fixes $S::$ ' $a::$ \{real_normed_vector,perfect_space\} set
assumes S : compact S and T : open T and $S \subseteq T T \neq\{ \}$ shows outside $S \cap T \neq\{ \}$
proof -
have outside $S \neq\{ \}$
by (simp add: compact_imp_bounded outside_bounded_nonempty S)
with assms obtain $a b$ where $a: a \in$ outside S and $b: b \in T$ by auto
show ?thesis
proof (cases $a \in T$)
case True with a show ?thesis by blast
next
case False
have front: frontier $T \subseteq-S$
using $\langle S \subseteq T\rangle$ frontier_disjoint_eq T by auto \{ fix γ
assume path γ and pimg_sbs: path_image $\gamma-\{$ pathfinish $\gamma\} \subseteq$ interior $(-$
T)
and pf: pathfinish $\gamma \in$ frontier T and ps: pathstart $\gamma=a$
define c where $c=$ pathfinish γ
have $c \in-S$ unfolding $c_{-} d e f$ using front $p f$ by blast
moreover have open $(-S)$ using S compact_imp_closed by blast
ultimately obtain $\varepsilon::$ real where $\varepsilon>0$ and ε : cball $c \varepsilon \subseteq-S$
using open_contains_cball $[o f-S] S$ by blast
then obtain d where $d \in T$ and d : dist $d c<\varepsilon$
using closure_approachable [of c T] pf unfolding c_{-}def
by (metis Diff_iff frontier_def)
then have $d \in-S$ using ε
using dist_commute by (metis contra_subsetD mem_cball not_le not_less_iff_gr_or_eq)
have pimg_sbs_cos: path_image $\gamma \subseteq-S$
using $\langle c \in-S\rangle\langle S \subseteq T\rangle$ c_def interior_subset pimg_sbs by fastforce have closed_segment $c d \leq$ cball $c \varepsilon$
by (metis $\langle 0<\varepsilon\rangle$ centre_in_cball closed_segment_subset convex_cball d dist_commute less_eq_real_def mem_cball)
with ε have closed_segment $c d \subseteq-S$ by blast
moreover have con_gcd: connected (path_image $\gamma \cup$ closed_segment c d)
by (rule connected_Un) (auto simp: c_def 〈path $\gamma\rangle$ connected_path_image)
ultimately have connected_component $(-S)$ a d
unfolding connected_component_def using pimg_sbs_cos ps by blast then have outside $S \cap T \neq\{ \}$
using outside_same_component $\left[O F_{-} a\right]$ by (metis IntI $\langle d \in T\rangle$ empty_iff)

```
        } note * = this
    have pal: pathstart (linepath a b) \in closure (-T)
        by (auto simp: False closure_def)
    show ?thesis
        by (rule exists_path_subpath_to_frontier [OF path_linepath pal _ *]) (auto
simp: b)
    qed
qed
lemma inside_inside_compact_connected:
    fixes S :: 'a :: euclidean_space set
    assumes S:closed S and T: compact T and connected T S\subseteq inside T
        shows inside S\subseteqinside T
proof (cases inside T={})
    case True with assms show ?thesis by auto
next
    case False
    consider DIM('a) = 1 | DIM ('a) \geq2
        using antisym not_less_eq_eq by fastforce
    then show ?thesis
    proof cases
        case 1 then show ?thesis
            using connected_convex_1_gen assms False inside_convex by blast
    next
        case 2
        have bounded S
        using assms by (meson bounded_inside bounded_subset compact_imp_bounded)
        then have coms: compact S
            by (simp add: S compact_eq_bounded_closed)
        then have bst: bounded (S\cupT)
        by (simp add: compact_imp_bounded T)
        then obtain r where 0<r and r:S\cupT\subseteq ball 0r
            using bounded_subset_ballD by blast
        have outst: outside S \cap outside T\not={}
    proof -
        have - ball 0 r\subseteq outside S
            by (meson convex_ball le_supE outside_subset_convex r)
        moreover have - ball 0 r \subseteq outside T
            by (meson convex_ball le_supE outside_subset_convex r)
        ultimately show ?thesis
            by (metis Compl_subset_Compl_iff Int_subset_iff bounded_ball inf.orderE
outside_bounded_nonempty outside_no_overlap)
    qed
    have S\capT={} using assms
        by (metis disjoint_iff_not_equal inside_no_overlap subsetCE)
    moreover have outside S\cap inside T\not={}
            by (meson False assms(4) compact_eq_bounded_closed coms open_inside out-
side_compact_in_open T)
    ultimately have inside S\capT={}
```

```
            using inside_outside_intersect_connected [OF <connected T\rangle, of S]
            by (metis 2 compact_eq_bounded_closed coms connected_outside inf.commute
inside_outside_intersect_connected outst)
    then show ?thesis
            using inside_inside [OF <S\subseteq inside T〉] by blast
    qed
qed
lemma connected_with_inside:
    fixes S :: 'a :: real_normed_vector set
    assumes S:closed S and cons: connected S
        shows connected (S \cup inside S)
```



```
    case True with assms show ?thesis by auto
next
    case False
    then obtain b where b: b\not\inSb\not\in inside S by blast
    have *: \existsy T. y GS^ connected T}^\mp@code{a\inT^y\inT^T\subseteq(S\cup inside S)
        if }a\inS\cup\mathrm{ inside S for a
        using that
    proof
        assume a\inS then show ?thesis
            by (rule_tac x=a in exI, rule_tac x={a} in exI, simp)
    next
        assume a: a \in inside S
        then have ain: a \in closure (inside S)
            by (simp add: closure_def)
        show ?thesis
            apply (rule exists_path_subpath_to_frontier [OF path_linepath [of a b], of inside
S])
            apply (simp_all add: ain b)
            subgoal for }
            apply (rule_tac x=pathfinish h in exI)
            apply (simp add: subsetD [OF frontier_inside_subset[OF S]])
            apply (rule_tac x=path_image h in exI)
            apply (simp add: pathfinish_in_path_image connected_path_image, auto)
            by (metis Diff_single_insert S frontier_inside_subset insert_iff interior_subset
subsetD)
            done
    qed
    show ?thesis
        apply (simp add: connected_iff_connected_component)
        apply (clarsimp simp add: connected_component_def dest!: *)
        subgoal for x y u u
            by (rule_tac x=(S\cupT\cup\mp@subsup{t}{}{\prime})\mathrm{ in exI) (auto intro!: connected_Un cons)})
        done
qed
```

The proof is virtually the same as that above.
lemma connected_with_outside:
fixes $S::{ }^{\prime} a$:: real_normed_vector set
assumes S : closed S and cons: connected S
shows connected $(S \cup$ outside S)
proof (cases $S \cup$ outside $S=U N I V$)
case True with assms show ?thesis by auto
next
case False
then obtain b where $b: b \notin S b \notin$ outside S by blast
have $*: \exists y T . y \in S \wedge$ connected $T \wedge a \in T \wedge y \in T \wedge T \subseteq(S \cup$ outside $S)$
if $a \in(S \cup$ outside $S)$ for a
using that proof
assume $a \in S$ then show ?thesis
by (rule_tac $x=a$ in exI, rule_tac $x=\{a\}$ in exI, simp)
next
assume $a: a \in$ outside S
then have ain: $a \in$ closure (outside S)
by (simp add: closure_def)
show ?thesis
apply (rule exists_path_subpath_to_frontier [OF path_linepath [of a b], of outside
S])
apply (simp_all add: ain b)
subgoal for h
apply (rule_tac $x=$ pathfinish h in exI)
apply (simp add: subsetD [OF frontier_outside_subset[OF S]])
apply (rule_tac $x=$ path_image h in exI)
apply (simp add: pathfinish_in_path_image connected_path_image, auto)
by (metis (no_types, lifting) frontier_outside_subset insertE insert_Diff inte-
rior_eq open_outside pathfinish_in_path_image S subsetCE)
done
qed
show ?thesis
apply (simp add: connected_iff_connected_component)
apply (clarsimp simp add: connected_component_def dest!: *)
subgoal for $x y u u^{\prime} T t^{\prime}$
by (rule_tac $x=\left(S \cup T \cup t^{\prime}\right)$ in exI) (auto intro!: connected_Un cons)
done
qed
lemma inside_inside_eq_empty [simp]:
fixes $S::{ }^{\prime} a::\{$ real_normed_vector, perfect_space $\}$ set
assumes S : closed S and cons: connected S
shows inside (inside S) $=\{ \}$
by (metis (no_types) unbounded_outside connected_with_outside [OF assms] bounded_Un
inside_complement_unbounded_connected_empty unbounded_outside union_with_outside)
lemma inside_in_components:
inside $S \in$ components $(-S) \longleftrightarrow$ connected(inside $S) \wedge$ inside $S \neq\{ \}$ (is
?lhs $=$? rhs $)$

```
proof
    assume R: ?rhs
    then have }\x.\llbracketx\inS;x\in\mathrm{ inside S\ ב ᄀ connected (inside S)
        by (simp add: inside_outside)
    with }R\mathrm{ show ?lhs
        unfolding in_components_maximal
        by (auto intro: inside_same_component connected_componentI)
qed (simp add: in_components_maximal)
```

The proof is like that above.
lemma outside_in_components:
outside $S \in$ components $(-S) \longleftrightarrow$ connected(outside $S) \wedge$ outside $S \neq\{ \}$ (is
? $\mathrm{lh} s=$? $r h s$)
proof
assume R : ?rhs
then have $\bigwedge x . \llbracket x \in S ; x \in$ outside $S \rrbracket \Longrightarrow \neg$ connected (outside S)
by (meson disjoint_iff outside_no_overlap)
with R show ?lhs
unfolding in_components_maximal
by (auto intro: outside_same_component connected_componentI)
qed (simp add: in_components_maximal)
lemma bounded_unique_outside:
fixes S :: ' a :: euclidean_space set
assumes bounded S DIM $\left(^{\prime} a\right) \geq 2$
shows $(c \in$ components $(-S) \wedge \neg$ bounded $c \longleftrightarrow c=$ outside S)
using assms
by (metis cobounded_unique_unbounded_components connected_outside double_compl
outside_bounded_nonempty outside_in_components unbounded_outside)

5.5.25 Condition for an open map's image to contain a ball

proposition ball_subset_open_map_image:
fixes $f::$ ' $a::$ heine_borel \Rightarrow ' $b::\{$ real_normed_vector, heine_borel $\}$
assumes contf: continuous_on (closure S) f and oint: open (f ' interior S)
and le_no: $\bigwedge z . z \in$ frontier $S \Longrightarrow r \leq \operatorname{norm}(f z-f a)$
and bounded $S a \in S 0<r$
shows ball (f a) $r \subseteq f$ ' S
proof (cases f ' $S=U N I V$)
case True then show ?thesis by simp
next
case False
then have closed (frontier $\left(f^{\prime} S\right)$) frontier $\left(f^{\prime} S\right) \neq\{ \}$
using $\langle a \in S\rangle$ by (auto simp: frontier_eq_empty)
then obtain w where $w: w \in$ frontier $(f$ ' S)
and dw_le: $\bigwedge y . y \in \operatorname{frontier}(f ' S) \Longrightarrow \operatorname{norm}(f a-w) \leq \operatorname{norm}(f a-y)$
by (auto simp add: dist_norm intro: distance_attains_inf $[$ of frontier $(f$ ' $S) f$ a])
then obtain ξ where $\xi: \bigwedge n . \xi n \in f^{\prime} S$ and tendsw: $\xi \longrightarrow w$
by (metis Diff_iff frontier_def closure_sequential)
then have $\bigwedge n . \exists x \in S . \xi n=f x$ by force
then obtain z where $z s: \bigwedge n . z n \in S$ and $f z: \bigwedge n . \xi n=f(z n)$ by metis
then obtain $y K$ where $y: y \in$ closure S and strict_mono ($K::$ nat \Rightarrow nat $)$

$$
\text { and Klim: }(z \circ K) \longrightarrow y
$$

using 〈bounded S 〉
unfolding compact_closure [symmetric] compact_def by (meson closure_subset
subset_iff)
then have ftendsw: $((\lambda n . f(z n)) \circ K) \longrightarrow w$ by (metis LIMSEQ_subseq_LIMSEQ fun.map_cong0 fz tendsw)
have $z K s: \bigwedge n .(z \circ K) n \in S$ by (simp add: zs)
have $f z: f \circ z=\xi(\lambda n . f(z n))=\xi$
using $f z$ by auto
then have $(\xi \circ K) \longrightarrow f y$
by (metis (no_types) Klim zKs y contf comp_assoc continuous_on_closure_sequentially)
with $f z$ have $w y: w=f y$ using $f z$ LIMSEQ_unique ftendsw by auto
have rle: $r \leq \operatorname{norm}(f y-f a)$
proof (rule le_no)
show $y \in$ frontier S
using w wy oint by (force simp: imageI image_mono interiorI interior_subset
frontier_def y)
qed
have $* *:(b \cap(-S) \neq\{ \} \wedge b-(-S) \neq\{ \} \Longrightarrow b \cap f \neq\{ \})$

$$
\Longrightarrow(b \cap S \neq\{ \}) \Longrightarrow b \cap f=\{ \} \Longrightarrow b \subseteq S
$$

for $b f$ and $S::{ }^{\prime} b$ set
by blast
have $\S: \bigwedge y . \llbracket n o r m(f a-y)<r ; y \in$ frontier $(f$ ' $S) \rrbracket \Longrightarrow$ False
by (metis dw_le norm_minus_commute not_less order_trans rle wy)
show ?thesis
apply (rule $* *$ [OF connected_Int_frontier $\left[\right.$ where $t=f^{\prime} S$, OF connected_ball]])
using $\langle a \in S\rangle\langle 0<r\rangle$ by (auto simp: disjoint_iff_not_equal dist_norm dest: §)
qed

Special characterizations of classes of functions into and out of R.

```
lemma Hausdorff_space_euclidean [simp]: Hausdorff_space (euclidean :: 'a::metric_space
topology)
proof -
    have \(\exists U V\). open \(U \wedge\) open \(V \wedge x \in U \wedge y \in V \wedge\) disjnt \(U V\)
        if \(x \neq y\)
        for \(x y::{ }^{\prime} a\)
    proof (intro exI conjI)
        let \(? r=\) dist \(x\) y / 2
        have [simp]: ?r >0
            by (simp add: that)
        show open (ball \(x\) ? \(r\) ) open (ball \(y\) ? \(r\) ) \(x \in(\) ball \(x\) ? \(r) y \in(\) ball \(y\) ? \(r)\)
            by (auto simp add: that)
```

```
    show disjnt (ball \(x\) ? \(r\) ) (ball y ? \(r\) )
    unfolding disjnt_def by (simp add: disjoint_ballI)
    qed
    then show ?thesis
    by (simp add: Hausdorff_space_def)
qed
proposition embedding_map_into_euclideanreal:
    assumes path_connected_space \(X\)
    shows embedding_map \(X\) euclideanreal \(f \longleftrightarrow\)
        continuous_map \(X\) euclideanreal \(f \wedge\) inj_on \(f\) (topspace \(X\) )
    proof safe
    show continuous_map \(X\) euclideanreal \(f\)
        if embedding_map \(X\) euclideanreal \(f\)
        using continuous_map_in_subtopology homeomorphic_imp_continuous_map that
        unfolding embedding_map_def by blast
    show inj_on \(f\) (topspace \(X\) )
        if embedding_map \(X\) euclideanreal \(f\)
        using that homeomorphic_imp_injective_map
        unfolding embedding_map_def by blast
    show embedding_map \(X\) euclideanreal \(f\)
    if cont: continuous_map \(X\) euclideanreal \(f\) and \(\operatorname{inj}\) : inj_on \(f\) (topspace \(X\) )
    proof -
    obtain \(g\) where \(g f: \bigwedge x . x \in\) topspace \(X \Longrightarrow g(f x)=x\)
        using inv_into_f_f [OF inj] by auto
    show ?thesis
    unfolding embedding_map_def homeomorphic_map_maps homeomorphic_maps_def
    proof (intro exI conjI)
        show continuous_map \(X\) (top_of_set \((f\) 'topspace \(X)) f\)
            by (simp add: cont continuous_map_in_subtopology)
        let ? \(S=f\) ' topspace \(X\)
        have eq: \(\{x \in\) ?S. \(g x \in U\}=f^{\prime} U\) if openin \(X U\) for \(U\)
            using openin_subset [OF that] by (auto simp: gf)
            have 1: \(g\) '? \(S \subseteq\) topspace \(X\)
            using eq by blast
            have openin (top_of_set ? S) \(\{x \in\) ?S. \(g x \in T\}\)
            if openin \(X T\) for \(T\)
            proof -
            have \(T \subseteq\) topspace \(X\)
                    by (simp add: openin_subset that)
            have \(R R: \forall x \in ? S \cap g-{ }^{\prime} T . \exists d>0 . \forall x^{\prime} \in ? S \cap\) ball \(x d . g x^{\prime} \in T\)
            proof (clarsimp simp add: gf)
                    have pcS: path_connectedin euclidean ?S
            using assms cont path_connectedin_continuous_map_image path_connectedin_topspace
by blast
            show \(\exists d>0 . \forall x^{\prime} \in f\) 'topspace \(X \cap\) ball \((f x) d . g x^{\prime} \in T\)
                    if \(x \in T\) for \(x\)
            proof -
                    have \(x: x \in\) topspace \(X\)
```

using $\langle T \subseteq$ topspace $X\rangle\langle x \in T\rangle$ by blast
obtain $u v d$ where $0<d u \in$ topspace $X v \in$ topspace X and sub_fuv: ? $S \cap\{f x-d . . f x+d\} \subseteq\{f u . . f v\}$
proof (cases $\exists u \in$ topspace X. $f u<f x$)
case True
then obtain u where $u: u \in$ topspace $X f u<f x$..
show ?thesis
proof (cases $\exists v \in$ topspace $X . f x<f v$)
case True
then obtain v where $v: v \in$ topspace $X f x<f v$..
show ?thesis
proof
let ? $d=\min (f x-f u)(f v-f x)$
show $0<$? d
by (simp add: $\langle f u<f x\rangle\langle f x<f v\rangle)$
show f 'topspace $X \cap\{f x-$?d..f $x+$? $d\} \subseteq\{f u . . f v\}$
by fastforce
qed (auto simp: $u v$)
next
case False
show ?thesis
proof
let ? $d=f x-f u$
show $0<$? d
by (simp add: u)
show f 'topspace $X \cap\{f x-$?d.. $f x+$? $d\} \subseteq\{f u . . f x\}$
using x u False by auto
qed (auto simp: x u)
qed
next
case False
note no_u = False
show ?thesis
proof (cases $\exists v \in$ topspace $X . f x<f v$)
case True
then obtain v where $v: v \in$ topspace $X f x<f v$..
show ?thesis
proof
let ? $d=f v-f x$
show $0<$?d
by (simp add: v)
show f 'topspace $X \cap\{f x-$?d..f $x+$? $d\} \subseteq\{f x . . f v\}$
using False by auto
qed (auto simp: x v)
next
case False
show ?thesis
proof
show f 'topspace $X \cap\{f x-1$..f $x+1\} \subseteq\{f x . . f x\}$

```
                    using False no_u by fastforce
                qed (auto simp: \(x\) )
                qed
        qed
        then obtain \(h\) where pathin \(X h h 0=u h 1=v\)
            using assms unfolding path_connected_space_def by blast
            obtain \(C\) where compactin \(X C\) connectedin \(X C u \in C v \in C\)
            proof
            show compactin \(X\) ( \(h\) ' \(\{0 . .1\}\) )
                using that by (simp add: <pathin \(X\) h〉compactin_path_image)
            show connectedin \(X\) ( \(h\) ' \(\{0 . .1\}\) )
                using \(\langle p a t h i n ~ X h\rangle\) connectedin_path_image by blast
            qed (use \(\langle h 0=u\rangle\langle h 1=v\rangle\) in auto)
            have continuous_map (subtopology euclideanreal (?S \(\cap\{f x-d . . f x+\)
```

$d\})$) (subtopology $X C$) g
proof (rule continuous_inverse_map)
show compact_space (subtopology X C)
using 〈compactin X C 〉compactin_subspace by blast
show continuous_map (subtopology X C) euclideanreal f
by (simp add: cont continuous_map_from_subtopology)
have $\{f u$.. $f v\} \subseteq f^{\prime}$ topspace (subtopology $X C$)
proof (rule connected_contains_Icc)
show connected (f 'topspace (subtopology X C))
using connectedin_continuous_map_image [OF cont]
by (simp add: 〈compactin $X C\rangle\langle$ connectedin $X C\rangle$ com-
pactin_subset_topspace inf_absorb2)
show $f u \in f$ ' topspace (subtopology $X C$)
by (simp add: $\langle u \in C\rangle\langle u \in$ topspace $X\rangle)$
show $f v \in f$ 'topspace (subtopology $X C$)
by (simp add: $\langle v \in C\rangle\langle v \in$ topspace $X\rangle$)
qed
then show f 'topspace $X \cap\{f x-d . . f x+d\} \subseteq f$ 'topspace
(subtopology X C)
using sub_fuv by blast
qed (auto simp: gf)
then have contg: continuous_map (subtopology euclideanreal (? $S \cap\{f x$
$-d . . f x+d\})) X g$
using continuous_map_in_subtopology by blast
have $\exists e>0 . \forall x \in$? $S \cap\{f x-d . . f x+d\} \cap$ ball $(f x)$ e. $g x \in T$
using openin_continuous_map_preimage $[O F$ contg $<$ openin $X T\rangle] x\langle x$
$\in T\rangle\langle 0<d\rangle$
unfolding openin_euclidean_subtopology_iff
by (force simp: gf dist_commute)
then obtain e where $e>0 \wedge(\forall x \in f$ 'topspace $X \cap\{f x-d . . f x+$
$d\} \cap \operatorname{ball}(f x)$ e. $g x \in T)$
by metis
with $\langle 0<d\rangle$ have min $d e>0 \forall u . u \in$ topspace $X \longrightarrow|f x-f u|<$
$\min d e \longrightarrow u \in T$
using dist_real_def gf by force+

```
        then show ?thesis
            by (metis (full_types) Int_iff dist_real_def image_iff mem_ball gf)
        qed
qed
then obtain d where d: \r.r\in?S \capg-`}T
                dr>0^(\forallx\in?S\cap ball r (dr).g x f T)
    by metis
        show ?thesis
    unfolding openin_subtopology
    proof (intro exI conjI)
```



```
topspace X
                using d by (auto simp:gf)
            qed auto
        qed
        then show continuous_map (top_of_set ?S) X g
            by (simp add: continuous_map_def gf)
        qed (auto simp:gf)
    qed
qed
```


An injective function into R is a homeomorphism and so an open

 map.lemma injective_into_1d_eq_homeomorphism:
fixes f :: ' $a:$:topological_space \Rightarrow real
assumes f : continuous_on $S f$ and S : path_connected S
shows inj_on $f S \longleftrightarrow(\exists g$. homeomorphism $S(f \cdot S) f g)$
proof
show \exists g. homeomorphism $S(f$ ' $S) f g$ if inj_on $f S$
proof -
have embedding_map (top_of_set S) euclideanreal f
using that embedding_map_into_euclideanreal [of top_of_set $S f$] assms by auto then show ?thesis
by (simp add: embedding_map_def) (metis all_closedin_homeomorphic_image f homeomorphism_injective_closed_map that)
qed
qed (metis homeomorphism_def inj_onI)
lemma injective_into_1d_imp_open_map:
fixes f :: ' $a:$:topological_space \Rightarrow real
assumes continuous_on S f path_connected S inj_on $f S$ openin (subtopology euclidean S) T
shows openin (subtopology euclidean $\left.\left(f^{\prime} S\right)\right)\left(f^{\prime} T\right)$
using assms homeomorphism_imp_open_map injective_into_1d_eq_homeomorphism by blast
lemma homeomorphism_into_1d:
fixes f :: 'a::topological_space \Rightarrow real
assumes path_connected S continuous_on S ff' $S=T$ inj_on f S
shows \exists g. homeomorphism $S T f g$
using assms injective_into_1d_eq_homeomorphism by blast

5.5.26 Rectangular paths

```
definition rectpath where
    rectpath a1 a3 = (let a2 = Complex (Re a3) (Im a1);a4 = Complex (Re a1)
(Im a3)
    in linepath a1 a2 +++ linepath a2 a3 +++ linepath a3 a4 +++
linepath a4 a1)
```

lemma path_rectpath [simp, intro]: path (rectpath a b)
by (simp add: Let_def rectpath_def)
lemma pathstart_rectpath $[$ simp $]:$ pathstart (rectpath a1 a3) $=a 1$
by (simp add: rectpath_def Let_def)
lemma pathfinish_rectpath $[$ simp $]:$ pathfinish (rectpath a1 a3) $=a 1$
by (simp add: rectpath_def Let_def)
lemma simple_path_rectpath [simp, intro]:
assumes Re a1 $\neq \operatorname{Re}$ a3 Im a1 $\neq \operatorname{Im}$ a3
shows simple_path (rectpath a1 a3)
unfolding rectpath_def Let_def using assms
by (intro simple_path_join_loop arc_join arc_linepath)
(auto simp: complex_eq_iff path_image_join closed_segment_same_Re closed_segment_same_Im)
lemma path_image_rectpath:
assumes Re a1 $\leq \operatorname{Re}$ a3 Im a1 $\leq \operatorname{Im}$ a3
shows path_image (rectpath a1 a3) $=$
$\{z . \operatorname{Re} z \in\{\operatorname{Re} a 1, \operatorname{Re} a 3\} \wedge \operatorname{Im} z \in\{\operatorname{Im}$ a1..Im a3 $\}\} \cup$
$\{z . \operatorname{Im} z \in\{\operatorname{Im} a 1, \operatorname{Im} a 3\} \wedge \operatorname{Re} z \in\{\operatorname{Re} a 1 . . \operatorname{Re} a 3\}\}$ (is ?lhs =? ? rhs)
proof -
define a2 a4 where a2 = Complex (Re a3) (Im a1) and $a_{4}=$ Complex (Re
a1) (Im a3)
have ?lhs = closed_segment a1 a2 \cup closed_segment a2 a3 \cup
closed_segment a4 a3 \cup closed_segment a1 a4
by (simp_all add: rectpath_def Let_def path_image_join closed_segment_commute
a2_def a4_def Un_assoc)
also have $\ldots=$?rhs using assms
by (auto simp: rectpath_def Let_def path_image_join a2_def a4_def
closed_segment_same_Re closed_segment_same_Im closed_segment_eq_real_ivl)
finally show ?thesis .
qed
lemma path_image_rectpath_subset_cbox: assumes Re $a \leq \operatorname{Re} b \operatorname{Im} a \leq \operatorname{Im} b$

```
shows path_image (rectpath a b) \subseteqcbox a b
using assms by (auto simp: path_image_rectpath in_cbox_complex_iff)
lemma path_image_rectpath_inter_box:
    assumes Re a\leqRe b Im a\leqIm b
    shows path_image (rectpath a b) \cap box a b = {}
    using assms by (auto simp: path_image_rectpath in_box_complex_iff)
lemma path_image_rectpath_cbox_minus_box:
    assumes Re a \leqRe b Im a \leq Im b
    shows path_image (rectpath a b) = cbox a b - box a b
    using assms by (auto simp: path_image_rectpath in_cbox_complex_iff
                                    in_box_complex_iff)
```

end

5.6 Bernstein-Weierstrass and Stone-Weierstrass

By L C Paulson (2015)
theory Weierstrass_Theorems
imports Uniform_Limit Path_Connected Derivative
begin

5.6.1 Bernstein polynomials

definition Bernstein :: [nat,nat,real] \Rightarrow real where
Bernstein $n k x \equiv$ of_nat (n choose $k) * x^{\wedge} k *(1-x)^{\wedge}(n-k)$
lemma Bernstein_nonneg: $\llbracket 0 \leq x ; x \leq 1 \rrbracket \Longrightarrow 0 \leq$ Bernstein $n k x$ by (simp add: Bernstein_def)
lemma Bernstein_pos: $\llbracket 0<x ; x<1 ; k \leq n \rrbracket \Longrightarrow 0<B e r n s t e i n ~ n k x$ by (simp add: Bernstein_def)
lemma sum_Bernstein $[$ simp $]:\left(\sum k \leq n\right.$. Bernstein $\left.n k x\right)=1$
using binomial_ring [of $x 1-x n]$
by (simp add: Bernstein_def)
lemma binomial_deriv1:

```
\(\left(\sum k \leq n\right.\). (of_nat \(k *\) of_nat \((n\) choose \(\left.\left.k)\right) * a^{\wedge}(k-1) * b^{\wedge}(n-k)\right)=\) real_of_nat
\(n *(a+b)^{\wedge}(n-1)\)
    apply (rule DERIV_unique [where \(f=\lambda a .(a+b)^{\wedge} n\) and \(\left.x=a\right]\) )
    apply (subst binomial_ring)
    apply (rule derivative_eq_intros sum.cong | simp add: atMost_atLeast0)+
    done
```

lemma binomial_deriv2:

```
    \(\left(\sum k \leq n .\left(o f \_n a t k * o f \_n a t(k-1) *\right.\right.\) of_nat \((n\) choose \(\left.\left.k)\right) * a^{\wedge}(k-2) * b^{\wedge}(n-k)\right)\)
    of_nat \(n *\) of_nat \((n-1) *(a+b:: \text { real })^{\wedge}(n-2)\)
    apply (rule DERIV_unique [where \(f=\lambda a\). of_nat \(n *(a+b:: r e a l)^{\wedge}(n-1)\) and
\(x=a]\) )
    apply (subst binomial_deriv1 [symmetric])
    apply (rule derivative_eq_intros sum.cong | simp add: Num.numeral_2_eq_2)+
    done
```

lemma sum_k_Bernstein $[\operatorname{simp}]:\left(\sum k \leq n . r e a l k * B e r n s t e i n ~ n k x\right)=o f _n a t ~ n *$
x
apply (subst binomial_deriv1 [of $n \times 1-x$, simplified, symmetric])
apply (simp add: sum_distrib_right)
apply (auto simp: Bernstein_def algebra_simps power_eq_if intro!: sum.cong)
done
lemma sum_kk_Bernstein $[$ simp $]:\left(\sum k \leq n\right.$. real $k *($ real $k-1) *$ Bernstein $n k$
$x)=$ real $n *($ real $n-1) * x^{2}$
proof -
have $\left(\sum k \leq n\right.$. real $k *($ real $k-1) *$ Bernstein $\left.n k x\right)=$
$\left(\sum k \leq n\right.$. real $k *$ real $(k-\operatorname{Suc} 0) *$ real $(n$ choose $k) * x^{\wedge}(k-2) *(1-$
$\left.x)^{\wedge}(n-k) * x^{2}\right)$
proof (rule sum.cong [OF refl], simp)
fix k
assume $k \leq n$
then consider $k=0|k=1| k^{\prime}$ where $k=\operatorname{Suc}\left(S u c k^{\prime}\right)$
by (metis One_nat_def not0_implies_Suc)
then show $k=0 \vee$
(real $k-1) *$ Bernstein $n k x=$
real (k - Suc 0) *
$\left(\right.$ real $(n$ choose $\left.k) *\left(x^{\wedge}(k-2) *\left((1-x)^{\wedge}(n-k) * x^{2}\right)\right)\right)$
by cases (auto simp add: Bernstein_def power2_eq_square algebra_simps)
qed
also have $\ldots=$ real_of_nat $n *$ real_of_nat $(n-S u c 0) * x^{2}$
by (subst binomial_deriv2 [of $n \times 1-x$, simplified, symmetric]) (simp add:
sum_distrib_right)
also have $\ldots=n *(n-1) * x^{2}$
by auto
finally show ?thesis
by auto
qed

5.6.2 Explicit Bernstein version of the 1D Weierstrass approximation theorem

theorem Bernstein_Weierstrass:
fixes $f::$ real \Rightarrow real
assumes contf: continuous_on $\{0 . .1\} f$ and $e: 0<e$ shows $\exists N . \forall n x . N \leq n \wedge x \in\{0 . .1\}$

$$
\longrightarrow \mid f x-\left(\sum k \leq n . f(k / n) * \text { Bernstein } n k x\right) \mid<e
$$

proof -
have bounded (f ' $\{0 . .1\}$)
using compact_continuous_image compact_imp_bounded contf by blast
then obtain M where $M: \wedge x .0 \leq x \Longrightarrow x \leq 1 \Longrightarrow|f x| \leq M$
by (force simp add: bounded_iff)
then have $0 \leq M$ by force
have ucontf: uniformly_continuous_on $\{0 . .1\} f$
using compact_uniformly_continuous contf by blast
then obtain d where $d: d>0 \bigwedge x x^{\prime} . \llbracket x \in\{0 . .1\} ; x^{\prime} \in\{0 . .1\} ;\left|x^{\prime}-x\right|<d \rrbracket$
$\Longrightarrow\left|f x^{\prime}-f x\right|<e / 2$
apply (rule uniformly_continuous_onE [where $e=e /$ 2])
using e by (auto simp: dist_norm)
\{ fix $n:: n a t$ and $x::$ real
assume n : Suc $\left(n a t\left\lceil 4 * M /\left(e * d^{2}\right)\right\rceil\right) \leq n$ and $x: 0 \leq x x \leq 1$
have $0<n$ using n by simp
have ed0: $-\left(e * d^{2}\right)<0$
using $e\langle 0<d\rangle$ by simp
also have $\ldots \leq M * 4$
using $\langle 0 \leq M\rangle$ by simp
finally have [simp]: real_of_int $\left(\right.$ nat $\left.\left\lceil 4 * M /\left(e * d^{2}\right)\right\rceil\right)=$ real_of_int $\lceil 4 * M$
$\left./\left(e * d^{2}\right)\right\rceil$
using $\langle 0 \leq M\rangle e\langle 0<d\rangle$
by (simp add: field_simps)
have $4 * M /\left(e * d^{2}\right)+1 \leq \operatorname{real}\left(S u c\left(n a t\left\lceil 4 * M /\left(e * d^{2}\right)\right\rceil\right)\right)$
by (simp add: real_nat_ceiling_ge)
also have $\ldots \leq$ real n
using n by (simp add: field_simps)
finally have n big: $4 * M /\left(e * d^{2}\right)+1 \leq$ real n.
have sum_bern: $\left(\sum k \leq n .(x-k / n)^{2} *\right.$ Bernstein $\left.n k x\right)=x *(1-x) / n$
proof -
have $*: \bigwedge a b x::$ real. $(a-b)^{2} * x=a *(a-1) * x+(1-2 * b) * a * x$ $+b * b * x$
by (simp add: algebra_simps power2_eq_square)
have $\left(\sum k \leq n .(k-n * x)^{2} *\right.$ Bernstein $\left.n k x\right)=n * x *(1-x)$
apply (simp add: * sum.distrib)
apply (simp flip: sum_distrib_left add: mult.assoc)
apply (simp add: algebra_simps power2_eq_square)
done
then have $\left(\sum k \leq n .(k-n * x)^{2} *\right.$ Bernstein $\left.n k x\right) / n^{\wedge} \mathcal{Z}=x *(1-x) / n$
by (simp add: power2_eq_square)
then show ?thesis
using n by (simp add: sum_divide_distrib field_split_simps power2_commute)
qed
\{ fix k
assume $k: k \leq n$
then have $k n: 0 \leq k / n k / n \leq 1$
by (auto simp: field_split_simps)
consider (lessd) $|x-k / n|<d \mid($ ged $) d \leq|x-k / n|$
by linarith
then have $|(f x-f(k / n))| \leq e / 2+2 * M / d^{2} *(x-k / n)^{2}$
proof cases
case lessd
then have $|(f x-f(k / n))|<e / 2$
using $d x$ kn by (simp add: abs_minus_commute)
also have $\ldots \leq\left(e / 2+2 * M / d^{2} *(x-k / n)^{2}\right)$
using $\langle M \geq 0\rangle d$ by simp
finally show?thesis by simp
next
case ged
then have dle: $d^{2} \leq(x-k / n)^{2}$
by (metis d(1) less_eq_real_def power2_abs power_mono)
have $\S: 1 \leq(x-\text { real } k / \text { real } n)^{2} / d^{2}$
using dle $\langle d\rangle 0\rangle$ by auto
have $|(f x-f(k / n))| \leq|f x|+|f(k / n)|$
by (rule abs_triangle_ineq4)
also have $\ldots \leq M+M$
by (meson M add_mono_thms_linordered_semiring(1) kn x)
also have $\ldots \leq 2 * M *\left((x-k / n)^{2} / d^{2}\right)$
using § $\langle M \geq 0\rangle$ mult_left_mono by fastforce
also have $\ldots \leq e / 2+2 * M / d^{2} *(x-k / n)^{2}$
using e by simp
finally show ?thesis .
qed
\} note $*=$ this
have $\mid f x-\left(\sum k \leq n . f(k / n) *\right.$ Bernstein $\left.n k x\right)|\leq| \sum k \leq n .(f x-f(k / n))$

* Bernstein $n k x$
by (simp add: sum_subtractf sum_distrib_left [symmetric] algebra_simps)
also have $\ldots \leq\left(\sum k \leq n . \mid(f x-f(k / n)) *\right.$ Bernstein $\left.n k x \mid\right)$
by (rule sum_abs)
also have $\ldots \leq\left(\sum k \leq n .\left(e / 2+\left(2 * M / d^{2}\right) *(x-k / n)^{2}\right) *\right.$ Bernstein n kx)
using *
by (force simp add: abs_mult Bernstein_nonneg x mult_right_mono intro:
sum_mono)
also have $\ldots \leq e / 2+(2 * M) /\left(d^{2} * n\right)$
unfolding sum.distrib Rings.semiring_class.distrib_right sum_distrib_left [symmetric]
mult.assoc sum_bern
using $\langle d\rangle 0\rangle x$ by (simp add: divide_simps $\langle M \geq 0\rangle$ mult_le_one mult_left_le)
also have $\ldots<e$
using $\langle d>0\rangle$ nbig e $\langle n>0\rangle$
apply (simp add: field_split_simps)
using ed0 by linarith
finally have $\mid f x-\left(\sum k \leq n . f(\right.$ real $k /$ real $n) *$ Bernstein $\left.n k x\right) \mid<e$.
\}
then show ?thesis
by auto
qed

5.6.3 General Stone-Weierstrass theorem

Source: Bruno Brosowski and Frank Deutsch. An Elementary Proof of the Stone-Weierstrass Theorem. Proceedings of the American Mathematical Society Volume 81, Number 1, January 1981. DOI: 10.2307/2043993 https: //www.jstor.org/stable/2043993
locale function_ring_on =
fixes $R::$ ('a::t2_space \Rightarrow real) set and $S::$ ' a set
assumes compact: compact S
assumes continuous: $f \in R \Longrightarrow$ continuous_on $S f$
assumes add: $f \in R \Longrightarrow g \in R \Longrightarrow(\lambda x . f x+g x) \in R$
assumes mult: $f \in R \Longrightarrow g \in R \Longrightarrow(\lambda x . f x * g x) \in R$
assumes const: $\left(\lambda_{-} . c\right) \in R$
assumes separable: $x \in S \Longrightarrow y \in S \Longrightarrow x \neq y \Longrightarrow \exists f \in R$. $f x \neq f y$
begin
lemma minus: $f \in R \Longrightarrow(\lambda x .-f x) \in R$
by (frule mult [OF const [of -1]]) simp
lemma diff: $f \in R \Longrightarrow g \in R \Longrightarrow(\lambda x . f x-g x) \in R$ unfolding diff_conv_add_uminus by (metis add minus)
lemma power: $f \in R \Longrightarrow\left(\lambda x . f x^{\wedge} n\right) \in R$
by (induct n) (auto simp: const mult)
lemma sum: \llbracket finite $I ; \bigwedge i . i \in I \Longrightarrow f i \in R \rrbracket \Longrightarrow\left(\lambda x . \sum i \in I . f i x\right) \in R$ by (induct I rule: finite_induct; simp add: const add)
lemma prod: \llbracket finite $I ; \bigwedge i . i \in I \Longrightarrow f i \in R \rrbracket \Longrightarrow\left(\lambda x . \prod i \in I . f i x\right) \in R$ by (induct I rule: finite_induct; simp add: const mult)
definition normf $::\left({ }^{\prime} a::\right.$ t2_space \Rightarrow real $) \Rightarrow$ real where normf $f \equiv S U P x \in S .|f x|$
lemma normf_upper:
assumes continuous_on $S f x \in S$ shows $|f x| \leq \operatorname{normf} f$
proof -
have bdd_above $((\lambda x .|f x|)$ ' S)
by (simp add: assms(1) bounded_imp_bdd_above compact compact_continuous_image
compact_imp_bounded continuous_on_rabs)
then show ?thesis
using assms cSUP_upper normf_def by fastforce
qed
lemma normf_least: $S \neq\{ \} \Longrightarrow(\bigwedge x . x \in S \Longrightarrow|f x| \leq M) \Longrightarrow$ normf $f \leq M$ by (simp add: normf_def cSUP_least)
end

```
lemma (in function_ring_on) one:
    assumes \(U\) : open \(U\) and \(t 0: t 0 \in S\) t0 \(\in U\) and \(t 1: t 1 \in S-U\)
        shows \(\exists V\). open \(V \wedge t 0 \in V \wedge S \cap V \subseteq U \wedge\)
            \(\left(\forall e>0 . \exists f \in R . f^{\prime} S \subseteq\{0 . .1\} \wedge(\forall t \in S \cap V . f t<e) \wedge(\forall t \in S\right.\)
\(-U . f t>1-e))\)
proof -
    have \(\exists p t \in R\). pt \(t 0=0 \wedge p t t>0 \wedge p t ' S \subseteq\{0 . .1\}\) if \(t: t \in S-U\) for \(t\)
    proof -
        have \(t \neq t 0\) using \(t\) t 0 by auto
        then obtain \(g\) where \(g: g \in R g t \neq g\) t0
            using separable t0 by (metis Diff_subset subset_eq t)
        define \(h\) where [abs_def]: \(h x=g x-g\) t0 for \(x\)
        have \(h \in R\)
            unfolding \(h \_d e f\) by (fast intro: g const diff)
        then have \(h s q:\left(\lambda w .(h w)^{2}\right) \in R\)
            by (simp add: power2_eq_square mult)
        have \(h t \neq h\) t0
            by (simp add: \(h_{-}\)def \(g\) )
        then have \(h t \neq 0\)
            by (simp add: \(h_{-} d e f\) )
        then have \(h t 2: 0<(h t)^{\wedge}\) 2
            by simp
        also have \(\ldots \leq \operatorname{normf}\left(\lambda w .(h w)^{2}\right)\)
            using \(t\) normf_upper [where \(x=t\) ] continuous [OF hsq] by force
    finally have \(n f p: 0<n o r m f\left(\lambda w .(h w)^{2}\right)\).
    define \(p\) where [abs_def]: \(p x=\left(1 / \operatorname{normf}\left(\lambda w .(h w)^{2}\right)\right) *(h x)^{\wedge} 2\) for \(x\)
    have \(p \in R\)
        unfolding \(p_{-}\)def by (fast intro: hsq const mult)
    moreover have \(p t 0=0\)
        by (simp add: p_def \(\left.h_{-} d e f\right)\)
        moreover have \(p t>0\)
            using nfp ht2 by (simp add: p_def)
        moreover have \(\bigwedge x . x \in S \Longrightarrow p x \in\{0 . .1\}\)
            using nfp normf_upper [OF continuous \([O F\) hsq] ] by (auto simp: p_def)
    ultimately show \(\exists p t \in R . p t t 0=0 \wedge p t t>0 \wedge p t ' S \subseteq\{0 . .1\}\)
        by auto
    qed
    then obtain \(p f\) where \(p f: \wedge t . t \in S-U \Longrightarrow p f t \in R \wedge p f t t 0=0 \wedge p f t t\)
\(>0\)
                    and \(p f 01: \wedge t . t \in S-U \Longrightarrow p f t ' S \subseteq\{0 . .1\}\)
        by metis
    have com_s \(U\) : compact \((S-U)\)
    using compact closed_Int_compact U by (simp add: Diff_eq compact_Int_closed
open_closed)
    have \(\wedge t . t \in S-U \Longrightarrow \exists A\). open \(A \wedge A \cap S=\{x \in S .0<p f t x\}\)
        apply (rule open_Collect_positive)
        by (metis pf continuous)
    then obtain \(U f\) where \(U f: \wedge t . t \in S-U \Longrightarrow\) open \((U f t) \wedge(U f t) \cap S=\)
\(\{x \in S .0<p f t x\}\)
```

by metis
then have open_Uf: $\wedge t . t \in S-U \Longrightarrow$ open (Uf t)
by blast
have $t U f t: \wedge t . t \in S-U \Longrightarrow t \in U f t$
using pf Uf by blast
then have $*: S-U \subseteq(\bigcup x \in S-U$. Uf $x)$
by blast
obtain sub U where $\operatorname{sub} U: \operatorname{sub} U \subseteq S-U$ finite sub $U S-U \subseteq(\bigcup x \in \operatorname{sub} U$.
Uf x)
by (blast intro: that compactE_image [OF com_sU open_Uf *])
then have $[\operatorname{simp}]: \operatorname{sub} U \neq\{ \}$
using t1 by auto
then have cardp: card sub $U>0$ using sub U
by (simp add: card_gt_0_iff)
define p where $\left[a b s _d e f\right]: p x=(1 / \operatorname{card} \operatorname{sub} U) *\left(\sum t \in \operatorname{sub} U\right.$. pf $\left.t x\right)$ for x
have $p R: p \in R$
unfolding $p_{-} d e f$ using subU pf by (fast intro: pf const mult sum)
have pt0 [simp]: p t0 $=0$
using subU pf by (auto simp: p_def intro: sum.neutral)
have pt_pos: $p t>0$ if $t: t \in S-U$ for t
proof -
obtain i where $i: i \in \operatorname{sub} U t \in U f i$ using $\operatorname{sub} U t$ by blast
show ?thesis
using subU it
apply (clarsimp simp: p_def field_split_simps)
apply (rule sum_pos2 [OF〈finite subU〉])
using Uf t pf01 apply auto
apply (force elim!: subsetCE)
done
qed
have $p 01: p x \in\{0 . .1\}$ if $t: x \in S$ for x
proof -
have $0 \leq p x$
using subU cardp t pf01
by (fastforce simp add: p_def field_split_simps intro: sum_nonneg)
moreover have $p x \leq 1$
using subU cardp t
apply (simp add: p_def field_split_simps)
apply (rule sum_bounded_above [where ' $a=$ real and $K=1$, simplified])
using pf01 by force
ultimately show ?thesis
by auto
qed
have compact (p ' $(S-U)$)
by (meson Diff_subset com_sU compact_continuous_image continuous continu-
ous_on_subset $p R$)
then have open $\left(-\left(p^{\prime}(S-U)\right)\right)$
by (simp add: compact_imp_closed open_Compl)
moreover have $0 \in-\left(p^{\prime}(S-U)\right)$
by (metis (no_types) ComplI image_iff not_less_iff_gr_or_eq pt_pos)
ultimately obtain delta0 where delta0: delta0 >0 ball 0 delta0 $\subseteq-(p$ ' ($S-U)$)
by (auto simp: elim!: openE)
then have pt_delta: $\bigwedge x . x \in S-U \Longrightarrow p x \geq$ delta 0
by (force simp: ball_def dist_norm dest: p01)
define δ where $\delta=$ delta $0 / 2$
have delta $0 \leq 1$ using delta0 p01 [of t1] t1 by (force simp: ball_def dist_norm dest: p01)
with delta0 have $\delta 01: 0<\delta \delta<1$
by (auto simp: δ_{-}def)
have $p t_{-} \delta$: $\bigwedge x . x \in S-U \Longrightarrow p x \geq \delta$
using pt_delta delta0 by (force simp: δ_{-}def)
have \exists. open $A \wedge A \cap S=\{x \in S . p x<\delta / 2\}$
by (rule open_Collect_less_Int $[O F$ continuous $[O F p R]$ continuous_on_const $])$
then obtain V where V : open $V V \cap S=\{x \in S . p x<\delta / 2\}$
by blast
define k where $k=\operatorname{nat}\lfloor 1 / \delta\rfloor+1$
have $k>0$ by (simp add: $k_{-} d e f$)
have $k-1 \leq 1 / \delta$
using $\delta 01$ by (simp add: $k_{-} d e f$)
with $\delta 01$ have $k \leq(1+\delta) / \delta$
by (auto simp: algebra_simps add_divide_distrib)
also have $\ldots<2 / \delta$
using $\delta 01$ by (auto simp: field_split_simps)
finally have $k 2 \delta: k<2 / \delta$.
have $1 / \delta<k$
using $\delta 01$ unfolding k_{-}def by linarith
with $\delta 01 k 2 \delta$ have $k \delta: 1<k * \delta k * \delta<2$
by (auto simp: field_split_simps)
define q where [abs_def]: $q n t=\left(1-p t^{\wedge} n\right)^{\wedge}\left(k^{\wedge} n\right)$ for $n t$
have $q R: q n \in R$ for n
by (simp add: q_def const diff power $p R$)
have $q 01: \bigwedge n t . t \in S \Longrightarrow q n t \in\{0 . .1\}$
using $p 01$ by (simp add: q_def power_le_one algebra_simps)
have $q t 0[\operatorname{simp}]: ~ \bigwedge n . n>0 \Longrightarrow q n t 0=1$
using t0 pf by (simp add: q_def power_0_left)
\{ fix t and $n:: n a t$
assume $t: t \in S \cap V$
with $\langle k>0\rangle V$ have $k * p t<k * \delta / 2$
by force
then have $1-(k * \delta / 2)^{\wedge} n \leq 1-(k * p t)^{\wedge} n$
using $\langle k>0\rangle p 01 t$ by (simp add: power_mono)
also have $\ldots \leq q n t$
using Bernoulli_inequality $\left[o f-\left((p t)^{\wedge} n\right) k^{\wedge} n\right]$
apply (simp add: q-def)
by (metis IntE atLeastAtMost_iff p01 power_le_one power_mult_distrib t)
finally have $1-(k * \delta / 2){ }^{\wedge} n \leq q n t$.
\} note limit $V=$ this

```
\{ fix \(t\) and \(n:: n a t\)
    assume \(t: t \in S-U\)
    with \(\langle k>0\rangle U\) have \(k * \delta \leq k * p t\)
        by (simp add: pt_ \(\delta\) )
    with \(k \delta\) have kpt: \(1<k * p t\)
        by (blast intro: less_le_trans)
    have \(p\) tn_pos: \(0<p t^{\wedge} n\)
        using \(p t\) _pos \([O F t]\) by simp
    have ptn_le: \(p t^{\wedge} n \leq 1\)
        by (meson Diffe atLeastAtMost_iff p01 power_le_one t)
    have \(q n t=\left(1 /\left(k \wedge n *(p t)^{\wedge} n\right)\right) *\left(1-p t^{\wedge} n\right)^{\wedge}\left(k^{\wedge} n\right) * k^{\wedge} n *(p t)^{\wedge} n\)
        using pt_pos \([O F t]\langle k\rangle 0\rangle\) by (simp add: q_def)
    also have \(\ldots \leq\left(1 /(k *(p t))^{\wedge} n\right) *\left(1-p t^{\wedge} n\right)^{\wedge}\left(k^{\wedge} n\right) *\left(1+k^{\wedge} n *(p t)^{\wedge} n\right)\)
        using pt_pos [OF \(t\) ] \(\langle k>0\rangle\)
        by (simp add: divide_simps mult_left_mono ptn_le)
    also have \(\ldots \leq\left(1 /(k *(p t))^{\wedge} n\right) *\left(1-p t^{\wedge} n\right)^{\wedge}\left(k^{\wedge} n\right) *\left(1+(p t)^{\wedge} n\right)^{\wedge}\left(k^{\wedge} n\right)\)
    proof (rule mult_left_mono [OF Bernoulli_inequality])
        show \(0 \leq 1 /(\text { real } k * p t)^{\wedge} n *\left(1-p t^{\wedge} n\right)^{\wedge} k \wedge n\)
            using ptn_pos ptn_le by (auto simp: power_mult_distrib)
    qed (use ptn_pos in auto)
    also have \(\ldots=\left(1 /(k *(p t))^{\wedge} n\right) *\left(1-p t^{\wedge}(2 * n)\right)^{\wedge}(k \wedge n)\)
        using pt_pos [OF \(t]\langle k>0\rangle\)
    by (simp add: algebra_simps power_mult power2_eq_square flip: power_mult_distrib)
    also have \(\ldots \leq\left(1 /(k *(p t))^{\wedge} n\right) * 1\)
        using pt_pos \(\langle k>0\rangle\) p01 power_le_one \(t\)
        by (intro mult_left_mono [OF power_le_one]) auto
    also have \(\ldots \leq(1 /(k * \delta))^{\wedge} n\)
        using \(\langle k>0\rangle \delta 01\) power_mono pt_ \(\delta t\)
        by (fastforce simp: field_simps)
    finally have \(q n t \leq(1 /(\text { real } k * \delta))^{\wedge} n\).
\(\}\) note limitNon \(U=\) this
define \(N N\)
    where \(N N e=1+n a t\lceil\max (\ln e / \ln (\) real \(k * \delta / 2))(-\ln e / \ln (\) real \(k\)
* \(\delta)\) )] for \(e\)
have \(N N\) : of_nat \((N N e)>\ln e / \ln (\) real \(k * \delta / 2)\) of_nat \((N N e)>-\ln e /\)
\(\ln (\) real \(k * \delta)\)
                if \(0<e\) for \(e\)
    unfolding \(N N\) _def by linarith+
    have NN1: \((k * \delta / 2)^{\wedge} N N e<e\) if \(e>0\) for \(e\)
    proof -
        have \(\ln \left((\text { real } k * \delta / 2)^{\wedge} N N e\right)=\operatorname{real}(N N e) * \ln (\) real \(k * \delta / 2)\)
        by (simp add: \(\langle\delta\rangle 0\rangle\langle 0<k\rangle\) ln_realpow)
    also have \(\ldots<\ln e\)
        using \(N N k \delta\) that by (force simp add: field_simps)
    finally show ?thesis
        by (simp add: \(\langle\delta\rangle 0\rangle\langle 0<k\rangle\) that)
    qed
have NNO: \((1 /(k * \delta))^{\wedge}(N N e)<e\) if \(e>0\) for \(e\)
proof -
```

```
    have 0<ln (real k) + ln \delta
            using \delta01(1) <0 < k> k\delta(1) ln_gt_zero ln_mult by fastforce
    then have real (NNe)*\operatorname{ln}(1/(real k*\delta))<ln e
        using k\delta(1) NN(2) [of e] that by (simp add: ln_div divide_simps)
    then have exp (real (NNe)*ln(1/(real k*\delta)))<e
        by (metis exp_less_mono exp_ln that)
    then show ?thesis
        by (simp add: \delta01(1)<0<k>exp_of_nat_mult)
    qed
    { fix t and e::real
    assume e>0
    have }t\inS\capV\Longrightarrow1-q(NNe)t<et\inS-U\Longrightarrowq(NNe)t<
    proof -
        assume t:t\inS\capV
        show 1-q (NNe)t<e
            by (metis add.commute diff_le_eq not_le limitV [OF t] less_le_trans [OF NN1
[OF〈e>0\rangle]])
    next
            assume t: t\inS-U
            show q (NN e) t<e
            using limitNonU [OF t] less_le_trans [OF NNO [OF\langlee>0\rangle]] not_le by blast
    qed
    } then have }\e.e>0\Longrightarrow\existsf\inR.f'S\subseteq{0..1}\wedge(\forallt\inS\capV.ft<e)
(}\forallt\inS-U.1-e<ft
    using q01
    by (rule_tac x=\lambdax.1 - q(NN e) x in bexI) (auto simp: algebra_simps intro:
diff const qR)
    moreover have t0V:t0\inV S\capV\subseteqU
        using pt_\delta t0 U V \delta01 by fastforce+
    ultimately show ?thesis using V t0V
        by blast
qed
```

Non-trivial case, with A and B both non-empty
lemma (in function_ring_on) two_special:
assumes A : closed A A $\subseteq S a \in A$
and B : closed $B B \subseteq S b \in B$
and disj: $A \cap B=\{ \}$
and $e: 0<e e<1$
shows $\exists f \in R . f$ ' $S \subseteq\{0 . .1\} \wedge(\forall x \in A . f x<e) \wedge(\forall x \in B . f x>1-e)$
proof -
$\{$ fix w
assume $w \in A$
then have open $(-B) b \in S w \notin B w \in S$
using assms by auto
then have $\exists V$. open $V \wedge w \in V \wedge S \cap V \subseteq-B \wedge$

$$
(\forall e>0 . \exists f \in R . f ' S \subseteq\{0 . .1\} \wedge(\forall x \in S \cap V . f x<e) \wedge(\forall x \in S
$$

$\cap B . f x>1-e)$)
using one $[$ of $-B$ w b]assms $\langle w \in A\rangle$ by simp

\}

then obtain $V f$ where $V f$:

$$
\begin{aligned}
& \wedge w . w \in A \underset{(\forall e>0 . \exists f \in R . f}{\Longrightarrow} \text { open }(V f w) \wedge w \in V f w \wedge S \cap V f w \subseteq-B \wedge \\
&(0 . .1\} \wedge(\forall x \in S \cap V f w . f x<e)
\end{aligned}
$$

$\wedge(\forall x \in S \cap B . f x>1-e))$
by metis
then have open_Vf: $\bigwedge w . w \in A \Longrightarrow$ open ($V f w$)
by blast
have tVft: $\bigwedge w . w \in A \Longrightarrow w \in V f w$
using Vf by blast
then have sum_max_0: $A \subseteq(\bigcup x \in A$. Vf $x)$
by blast
have com_A: compact A using A
by (metis compact compact_Int_closed inf.absorb_iff2)
obtain subA where subA: subA $\subseteq A$ finite sub $A \subseteq(\bigcup x \in \operatorname{sub} A$. Vf $x)$
by (blast intro: that compactE_image [OF com_A open_Vf sum_max_0])
then have $[$ simp $]$: sub $A \neq\{ \}$
using $\langle a \in A\rangle$ by auto
then have cardp: card subA>0 using subA
by (simp add: card_gt_0_iff)
have $\wedge w . w \in A \Longrightarrow \exists f \in R . f^{\prime} S \subseteq\{0 . .1\} \wedge(\forall x \in S \cap V f w . f x<e /$ card subA) $\wedge(\forall x \in S \cap B . f x>1-e /$ card subA $)$
using Vf e cardp by simp
then obtain ff where ff:

$$
\begin{aligned}
\wedge w . w \in A & \Longrightarrow f f w \in R \wedge f f w^{\prime} S \subseteq\{0 . .1\} \wedge \\
& (\forall x \in S \cap V f w . \text { ff } w x<e / \operatorname{card} \operatorname{sub} A) \wedge(\forall x \in S \cap B . f f
\end{aligned}
$$

$w x>1-e / \operatorname{card} \operatorname{subA})$
by metis
define $p f f$ where $\left[a b s_{-} d e f\right]$: pff $x=\left(\prod w \in \operatorname{subA}\right.$. ff $\left.w x\right)$ for x
have $p f f R: p f f \in R$
unfolding pff_def using subA ff by (auto simp: intro: prod)
moreover
have pff01: pff $x \in\{0 . .1\}$ if $t: x \in S$ for x
proof -
have $0 \leq p f f x$
using subA cardp t ff
by (fastforce simp: pff_def field_split_simps sum_nonneg intro: prod_nonneg)
moreover have $p f f x \leq 1$
using subA cardp $t f f$
by (fastforce simp add: pff_def field_split_simps sum_nonneg intro: prod_mono [where $g=\lambda x$. 1, simplified])
ultimately show ?thesis
by auto
qed
moreover
$\{$ fix $v x$
assume $v: v \in \operatorname{subA}$ and $x: x \in V f v x \in S$
from subA v have $p f f x=f f v x *\left(\prod w \in \operatorname{sub} A-\{v\}\right.$. ff $\left.w x\right)$
unfolding $p f f$ _def by (metis prod.remove)

```
    also have ... \leqff vx*1
    proof -
        have \bigwedgei. i\in subA - {v} \Longrightarrow0 \leqff ix ^ff ix \leq 1
            by (metis Diff_subset atLeastAtMost_iff ff image_subset_iff subA(1) subsetD
x(2))
            moreover have 0\leqff vx
            using ff subA(1) v x(2) by fastforce
            ultimately show ?thesis
                by (metis mult_left_mono prod_mono [where g=\lambdax. 1, simplified])
    qed
    also have ... < e / card subA
        using ff subA(1)vx by auto
    also have ... \leqe
        using cardp e by (simp add: field_split_simps)
    finally have pff x<e.
}
    then have }\x.x\inA\Longrightarrow\mathrm{ pff }x<
        using A Vf subA by (metis UN_E contra_subsetD)
    moreover
    { fix }
    assume x: x \in B
    then have }x\in
        using B by auto
    have 1-e\leq(1-e / card subA) ^card subA
        using Bernoulli_inequality [of -e / card subA card subA] e cardp
        by (auto simp: field_simps)
    also have ... = (\prodw\in subA. 1-e/ card subA)
            by (simp add: subA(2))
    also have ...<pff x
    proof -
        have }\bigwedgei.i\in\operatorname{subA\Longrightarrowe/real (card subA)\leq1^1-e/real (card subA)
< ff i x
            using e<B\subseteqS`ff subA(1) x by (force simp: field_split_simps)
            then show ?thesis
            using prod_mono_strict [where f=\lambdax.1 - e/card subA] subA(2) by
(force simp add: pff_def)
    qed
    finally have 1-e<pff x.
    }
    ultimately show ?thesis by blast
qed
lemma (in function_ring_on) two:
    assumes A: closed A A\subseteqS
        and B: closed B B\subseteqS
        and disj: }A\capB={
        and e:0<ee<1
    shows }\existsf\inR.f'S\subseteq{0..1}\wedge(\forallx\inA.fx<e)\wedge(\forallx\inB.fx>1-e
proof (cases A\not={}\wedgeB\not={})
```

```
case True then show ?thesis
    using assms
    by (force simp flip: ex_in_conv intro!: two_special)
next
    case False
    then consider \(A=\{ \} \mid B=\{ \}\) by force
    then show ?thesis
    proof cases
        case 1
        with \(e\) show ?thesis
        by (rule_tac \(x=\lambda x .1\) in bexI) (auto simp: const)
    next
        case 2
        with \(e\) show ?thesis
        by (rule_tac \(x=\lambda x .0\) in bexI) (auto simp: const)
    qed
qed
The special case where \(f\) is non－negative and \(e<\left(1:^{\prime} a\right) /\left(3::^{\prime} a\right)\)
lemma（in function＿ring＿on）Stone＿Weierstrass＿special：
assumes \(f\) ：continuous＿on \(S f\) and fpos：\(\bigwedge x . x \in S \Longrightarrow f x \geq 0\)
and \(e: 0<e e<1 / 3\)
shows \(\exists g \in R . \forall x \in S .|f x-g x|<2 * e\)
proof－
define \(n\) where \(n=1+n a t\lceil\) normf \(f / e\rceil\)
define \(A\) where \(A j=\{x \in S . f x \leq(j-1 / 3) * e\}\) for \(j::\) nat
define \(B\) where \(B j=\{x \in S . f x \geq(j+1 / 3) * e\}\) for \(j::\) nat
have ngt：\((n-1) * e \geq\) normf \(f\)
using e pos＿divide＿le＿eq real＿nat＿ceiling＿ge［of normf f／e］ by（fastforce simp add：divide＿simps n＿def）
moreover have \(n \geq 1\)
by（simp＿all add：\(n \_d e f\) ）
ultimately have \(g e_{-} f x:(n-1) * e \geq f x\) if \(x \in S\) for \(x\)
using \(f\) normf＿upper that by fastforce
have closed \(S\)
by（simp add：compact compact＿imp＿closed）
\(\{\mathrm{fix} j\)
have closed \((A j) A j \subseteq S\)
using 〈closed S〉continuous＿on＿closed＿Collect＿le［OF f continuous＿on＿const］ by（simp＿all add：A＿def Collect＿restrict）
moreover have closed \((B j) B j \subseteq S\)
using 〈closed \(S\) 〉continuous＿on＿closed＿Collect＿le［OF continuous＿on＿const \(f\) ］
by（simp＿all add：B＿def Collect＿restrict）
moreover have \((A j) \cap(B j)=\{ \}\)
using \(e\) by（auto simp：A＿def B＿def field＿simps）
ultimately have \(\exists f \in R . f\)＇\(S \subseteq\{0 . .1\} \wedge(\forall x \in A j . f x<e / n) \wedge(\forall x \in\)
\(B j . f x>1-e / n)\)
using \(e\langle 1 \leq n\rangle\) by（auto intro：two）
\}
```

then obtain $x f$ where $x f R: ~ \bigwedge j . x f j \in R$ and $x f 01: ~ \bigwedge j . x f j$ ' $S \subseteq\{0 . .1\}$
and $x f A: \wedge x j . x \in A j \Longrightarrow x f j x<e / n$
and $x f B: \bigwedge x j . x \in B j \Longrightarrow x f j x>1-e / n$
by metis
define g where [abs_def]: $g x=e *\left(\sum i \leq n . x f i x\right)$ for x
have $g R: g \in R$
unfolding g_{-}def by (fast intro: mult const sum xfR)
have gge $0: \bigwedge x . x \in S \Longrightarrow g x \geq 0$
using e xf01 by (simp add: g_def zero_le_mult_iff image_subset_iff sum_nonneg)
have $A 0: A 0=\{ \}$
using fpos e by (fastforce simp: A_def)
have $A n$: $A n=S$
using e ngt $\langle n \geq 1\rangle$ f normf_upper by (fastforce simp: A_def field_simps of_nat_diff)
have Asub: $A j \subseteq A i$ if $i \geq j$ for $i j$
using e that by (force simp: A_def intro: order_trans)
$\{$ fix t
assume $t: t \in S$
define j where $j=(L E A S T j . t \in A j)$
have $j n: j \leq n$
using t An by (simp add: Least_le j_def)
have $A j: t \in A j$
using t An by (fastforce simp add: j_def intro: LeastI)
then have $A i: t \in A i$ if $i \geq j$ for i
using Asub [OF that] by blast
then have $f j 1$: $f t \leq(j-1 / 3) * e$ by (simp add: A_def)
then have Anj: $t \notin A i$ if $i<j$ for i
using $A j\langle i<j\rangle$ not_less_Least by (fastforce simp add: j_def)
have $j 1: 1 \leq j$
using A0 Aj j_def not_less_eq_eq by (fastforce simp add: j_def)
then have $A n j: t \notin A(j-1)$
using Least_le by (fastforce simp add: j_def)
then have fj2: $(j-4 / 3) * e<f t$
using $j 1 t$ by (simp add: A_def of_nat_diff)
have xf_le1: $}$. xf $i t \leq 1$
using xf01 t by force
have $g t=e *\left(\sum i \leq n\right.$. xf it)
by (simp add: g_{-}def fip: distrib_left)
also have $\ldots=e *\left(\sum i \in\{. .<j\} \cup\{j . . n\} . x f i t\right)$
by (simp add: ivl_disj_un_one(4) jn)
also have $\ldots=e *\left(\sum i<j . x f i t\right)+e *\left(\sum i=j . . n . x f i t\right)$
by (simp add: distrib_left ivl_disj_int sum.union_disjoint)
also have $\ldots \leq e * j+e *(($ Suc $n-j) * e / n)$
proof (intro add_mono mult_left_mono)
show $\left(\sum i<j . x f i t\right) \leq j$
by (rule sum_bounded_above [OF xf_le1, where $A=$ lessThan j, simplified])
have xf $i t \leq e / n$ if $i \geq j$ for i
using $x f A[O F A i]$ that by (simp add: less_eq_real_def)
then show $\left(\sum i=j\right.$..n. xf $\left.i t\right) \leq \operatorname{real}(S u c n-j) * e /$ real n

```
        using sum_bounded_above \([\) of \(\{j . . n\} \lambda i . x f i t]\)
        by fastforce
    qed (use \(e\) in auto)
    also have \(\ldots \leq j * e+e *(n-j+1) * e / n\)
        using \(\langle 1 \leq n\rangle e\) by (simp add: field_simps del: of_nat_Suc)
    also have...\(\leq j * e+e * e\)
        using \(\langle 1 \leq n\rangle\) e \(j 1\) by (simp add: field_simps del: of_nat_Suc)
    also have \(\ldots<(j+1 / 3) * e\)
    using \(e\) by (auto simp: field_simps)
    finally have \(g j 1: g t<(j+1 / 3) * e\).
    have gj2: \((j-4 / 3) * e<g t\)
    proof (cases \(2 \leq j\) )
        case False
        then have \(j=1\) using \(j 1\) by simp
        with t gge0 \(e\) show ?thesis by force
    next
        case True
        then have \((j-4 / 3) * e<(j-1) * e-e^{\wedge} 2\)
            using \(e\) by (auto simp: of_nat_diff algebra_simps power2_eq_square)
        also have \(\ldots<(j-1) * e-((j-1) / n) * e^{\wedge} 2\)
            using e True jn by (simp add: power2_eq_square field_simps)
    also have \(\ldots=e *(j-1) *(1-e / n)\)
        by (simp add: power2_eq_square field_simps)
    also have \(\ldots \leq e *\left(\sum i \leq j-2 . x f i t\right)\)
    proof -
        \{ fix \(i\)
            assume \(i+2 \leq j\)
            then obtain \(d\) where \(i+2+d=j\)
                using le_Suc_ex that by blast
            then have \(t \in B i\)
                using Anj e ge_fx [OF t] \(\langle 1 \leq n\rangle\) fpos \([O F t] t\)
                unfolding \(A_{-}\)def \(B_{-} d e f\)
                by (auto simp add: field_simps of_nat_diff not_le intro: order_trans [of _
\(e * 2+e * d * 3+e * i * 3])\)
            then have xf it>1-e/n
                by (rule \(x f B\) )
            \}
            moreover have real \((j-\) Suc 0\() *(1-e /\) real \(n) \leq\) real \((\operatorname{card}\{. . j-\)
2\}) \(*(1-e /\) real \(n)\)
            using Suc_diff_le True by fastforce
            ultimately show ?thesis
                using e True by (auto intro: order_trans [OF _ sum_bounded_below [OF
less_imp_le]])
    qed
    also have \(\ldots \leq g t\)
            using jn e xf01 t
                by (auto intro!: Groups_Big.sum_mono2 simp add: g_def zero_le_mult_iff
image_subset_iff sum_nonneg)
    finally show ?thesis .
```

```
    qed
    have }|ft-gt|<2*
    using fj1 fj2 gj1 gj2 by (simp add: abs_less_iff field_simps)
    }
    then show ?thesis
    by (rule_tac x=g in bexI) (auto intro: gR)
qed
The "unpretentious" formulation
proposition (in function_ring_on) Stone_Weierstrass_basic:
    assumes f:continuous_on Sf}\mathrm{ and e: e>0
    shows }\existsg\inR.\forallx\inS. |fx-gx|<
proof -
    have \existsg\inR.\forallx\inS. |(fx+normff)-gx|<2 * min (e/\mathcal{Z})(1/4)
    proof (rule Stone_Weierstrass_special)
        show continuous_on S ( }\lambdax.fx+normf f
        by (force intro: Limits.continuous_on_add [OF f Topological_Spaces.continuous_on_const])
        show }\x.x\inS\Longrightarrow0\leqfx+normf 
            using normf_upper [OF f] by force
    qed (use e in auto)
    then obtain g}\mathrm{ where g}\inR\forallx\inS. |gx-(fx+normf f)|<
        by force
    then show ?thesis
        by (rule_tac x=\lambdax.g x - normf f in bexI) (auto simp: algebra_simps intro:
diff const)
qed
```

theorem (in function_ring_on) Stone_Weierstrass:
assumes f : continuous_on $S f$
shows $\exists F \in U N I V \rightarrow R$. LIM n sequentially. $F n:>$ uniformly_on $S f$
proof -
define h where $h \equiv \lambda n::$ nat. SOME $g . g \in R \wedge(\forall x \in S .|f x-g x|<1 /(1$
$+n)$)
show ?thesis
proof
\{ fix e ::real
assume e : $0<e$
then obtain N ::nat where $N: 0<N 0<$ inverse N inverse $N<e$
by (auto simp: real_arch_inverse [of e])
\{ fix $n::$ nat and $x::{ }^{\prime} a$ and $g::{ }^{\prime} a \Rightarrow$ real
assume $n: N \leq n \quad \forall x \in S .|f x-g x|<1 /(1+$ real $n)$
assume $x: x \in S$
have $\neg \operatorname{real}($ Suc $n)<$ inverse e
using $\langle N \leq n\rangle N$ using less_imp_inverse_less by force
then have $1 /(1+$ real $n) \leq e$
using e by (simp add: field_simps)
then have $|f x-g x|<e$
using n (2) x by auto

```
    }
    then have }\mp@subsup{\forall}{F}{}n\mathrm{ in sequentially. }\forallx\inS.|fx-hnx|<
        unfolding h_def
            by (force intro: someI__bex [OF Stone_Weierstrass_basic [OF f]] eventu-
ally_sequentiallyI [of N])
    }
    then show uniform_limit Shf sequentially
            unfolding uniform_limit_iff by (auto simp: dist_norm abs_minus_commute)
    show }h\inUNIV ->
            unfolding h_def by (force intro: someI2_bex [OF Stone_Weierstrass_basic
[OF f]])
    qed
qed
A HOL Light formulation
corollary Stone_Weierstrass_HOL:
    fixes }R:: ('a::t2_space => real) set and S :: 'a set
    assumes compact S \c. P(\lambdax.c::real)
            \f.Pf\Longrightarrow continuous_on S f
            \g.P(f)\wedgeP(g)\LongrightarrowP(\lambdax.fx+gx) \fg.P(f)\wedgeP(g)\LongrightarrowP(\lambdax.f
x*gx)
            \xy.x\inS\wedge y\inS\wedgex\not=y\Longrightarrow\existsf.P(f)\wedgefx\not=fy
            continuous_on S f
            0<e
    shows \existsg. P(g)^(\forallx\inS. |fx-gx|<e)
proof -
    interpret PR: function_ring_on Collect P
        by unfold_locales (use assms in auto)
    show ?thesis
        using PR.Stone_Weierstrass_basic [OF <continuous_on S f><0<e>]
        by blast
qed
```


5．6．4 Polynomial functions

inductive real＿polynomial＿function ：：（＇a：：real＿normed＿vector \Rightarrow real）\Rightarrow bool where
linear：bounded＿linear $f \Longrightarrow$ real＿polynomial＿function f
｜const：real＿polynomial＿function（ $\lambda x . c$ ）
｜add：【real＿polynomial＿function f；real＿polynomial＿function g】 \Longrightarrow real＿polynomial＿function $(\lambda x . f x+g x)$
\mid mult：【real＿polynomial＿function f ；real＿polynomial＿function $g \rrbracket \Longrightarrow$ real＿polynomial＿function $(\lambda x . f x * g x)$
declare real＿polynomial＿function．intros［intro］
definition polynomial＿function ：：（＇a：：real＿normed＿vector \Rightarrow＇$b::$ real＿normed＿vector）
\Rightarrow bool
where
polynomial＿function $p \equiv(\forall f$ ．bounded＿linear $f \longrightarrow$ real＿polynomial＿function（ f

$o p)$)

```
lemma real_polynomial_function_eq: real_polynomial_function \(p=\) polynomial_function
\(p\)
unfolding polynomial_function_def
proof
    assume real_polynomial_function \(p\)
    then show \(\forall f\). bounded_linear \(f \longrightarrow\) real_polynomial_function \((f \circ p)\)
    proof (induction p rule: real_polynomial_function.induct)
        case (linear \(h\) ) then show? case
            by (auto simp: bounded_linear_compose real_polynomial_function.linear)
    next
        case (const \(h\) ) then show ?case
            by (simp add: real_polynomial_function.const)
    next
        case (add \(h\) ) then show ?case
        by (force simp add: bounded_linear_def linear_add real_polynomial_function.add)
    next
        case (mult \(h\) ) then show ?case
            by (force simp add: real_bounded_linear const real_polynomial_function.mult)
    qed
next
    assume [rule_format, \(O F\) bounded_linear_ident]: \(\forall f\). bounded_linear \(f \longrightarrow\) real_polynomial_function
\((f \circ p)\)
    then show real_polynomial_function \(p\)
        by (simp add: o_def)
qed
lemma polynomial_function_const [iff]: polynomial_function \((\lambda x . c)\)
    by (simp add: polynomial_function_def o_def const)
lemma polynomial_function_bounded_linear:
    bounded_linear \(f \Longrightarrow\) polynomial_function \(f\)
    by (simp add: polynomial_function_def o_def bounded_linear_compose real_polynomial_function.linear)
lemma polynomial_function_id [iff]: polynomial_function \((\lambda x . x)\)
    by (simp add: polynomial_function_bounded_linear)
lemma polynomial_function_add [intro]:
            \(\llbracket\) polynomial_function \(f ;\) polynomial_function \(g \rrbracket \Longrightarrow\) polynomial_function \((\lambda x . f\)
\(x+g x)\)
    by (auto simp: polynomial_function_def bounded_linear_def linear_add real_polynomial_function.add
o_def)
lemma polynomial_function_mult [intro]:
    assumes \(f\) : polynomial_function \(f\) and \(g\) : polynomial_function \(g\)
    shows polynomial_function \(\left(\lambda x . f x *_{R} g x\right)\)
proof -
    have real_polynomial_function \((\lambda x . h(g x))\) if bounded_linear \(h\) for \(h\)
```

using g that unfolding polynomial_function_def o_def bounded_linear_def
by (auto simp: real_polynomial_function_eq)
moreover have real_polynomial_function f
by (simp add: freal_polynomial_function_eq)
ultimately show ?thesis
unfolding polynomial_function_def bounded_linear_def o_def
by (auto simp: linear.scaleR)
qed
lemma polynomial_function_cmul [intro]:
assumes f : polynomial_function f
shows polynomial_function $\left(\lambda x . c *_{R} f x\right)$
by (rule polynomial_function_mult [OF polynomial_function_const f])
lemma polynomial_function_minus [intro]:
assumes f : polynomial_function f
shows polynomial_function $(\lambda x .-f x)$
using polynomial_function_cmul $[O F f$, of -1$]$ by simp
lemma polynomial_function_diff [intro]:
【polynomial_function f; polynomial_function $g \rrbracket \Longrightarrow$ polynomial_function $(\lambda x . f$ $x-g x)$
unfolding add_uminus_conv_diff [symmetric]
by (metis polynomial_function_add polynomial_function_minus)
lemma polynomial_function_sum [intro]:
$\llbracket f n i t e ~ I ; ~ \bigwedge i . i \in I \Longrightarrow$ polynomial_function $(\lambda x . f x i) \rrbracket \Longrightarrow$ polynomial_function
(λx. sum $(f x) I)$
by (induct I rule: finite_induct) auto
lemma real_polynomial_function_minus [intro]:
real_polynomial_function $f \Longrightarrow$ real_polynomial_function $(\lambda x .-f x)$
using polynomial_function_minus [of f]
by (simp add: real_polynomial_function_eq)
lemma real_polynomial_function_diff [intro]:
【real_polynomial_function f; real_polynomial_function $g \rrbracket \Longrightarrow$ real_polynomial_function
$(\lambda x . f x-g x)$
using polynomial_function_diff [of f]
by (simp add: real_polynomial_function_eq)
lemma real_polynomial_function_sum [intro]:
\llbracket finite $I ; \bigwedge i . i \in I \Longrightarrow$ real_polynomial_function $(\lambda x . f x i) \rrbracket \Longrightarrow$ real_polynomial_function
($\lambda x . \operatorname{sum}(f x) I)$
using polynomial_function_sum [of If]
by (simp add: real_polynomial_function_eq)
lemma real_polynomial_function_power [intro]:
real_polynomial_function $f \Longrightarrow$ real_polynomial_function $\left(\lambda x . f x^{\wedge} n\right)$

```
    by (induct n) (simp_all add: const mult)
lemma real_polynomial_function_compose [intro]:
    assumes f
        shows real_polynomial_function (g of)
    using g
proof (induction g rule: real_polynomial_function.induct)
    case (linear f)
    then show ?case
        using f polynomial_function_def by blast
next
    case (add fg)
    then show ?case
        using f add by (auto simp: polynomial_function_def)
next
    case (mult fg)
    then show ?case
    using f mult by (auto simp: polynomial_function_def)
qed auto
lemma polynomial_function_compose [intro]:
    assumes f: polynomial_function f}\mathrm{ and g: polynomial_function g
        shows polynomial_function ( }g\mathrm{ of )
    using g real_polynomial_function_compose [OF f]
    by (auto simp: polynomial_function_def o_def)
lemma sum_max_0:
    fixes }x\mathrm{ ::real
    shows}(\sumi\leqmax mn. x^i*(if i\leqm then a i else 0))=(\sumi\leqm. x^i*ai
proof -
    have}(\sumi\leqmax mn. x^i*(if i\leqm then a i else 0)) = (\sumi\leqmax mn. (if i
\leqm then x^i * a i else 0))
    by (auto simp: algebra_simps intro: sum.cong)
    also have ... = (\sumi\leqm. (if i\leqm then x^i * a i else 0))
            by (rule sum.mono_neutral_right) auto
    also have ... = (\sumi\leqm. x^i *ai)
        by (auto simp: algebra_simps intro: sum.cong)
    finally show ?thesis.
qed
lemma real_polynomial_function_imp_sum:
    assumes real_polynomial_function f
    shows \existsa n::nat. f = ( \lambdax. \sumi\leqn.ai* x^i)
using assms
proof (induct f)
    case (linear f)
    then obtain c where f:f=(\lambdax.x*c)
    by (auto simp add: real_bounded_linear)
    have }x*c=(\sumi\leq1.(if i=0 then 0 else c)* ( ^^i) for x
```

by (simp add: mult_ac)
with f show ?case
by fastforce
next
case (const c)
have $c=\left(\sum i \leq 0 . c * x^{\wedge} i\right)$ for x
by auto
then show? case
by fastforce
case (add f1 f2)
then obtain a1 n1 a2 n2 where
$f 1=\left(\lambda x . \sum i \leq n 1 . a 1 i * x^{\wedge} i\right) f 2=\left(\lambda x . \sum i \leq n 2 . a 2 i * x^{\wedge} i\right)$
by auto
then have $f 1 x+f 2 x=\left(\sum i \leq \max n 1 n 2\right.$. $(($ if $i \leq n 1$ then a1 i else 0$)+($ if i $\leq n 2$ then a2 i else 0)) * $x^{\wedge} i$)
for x
using sum_max_0 [where $m=n 1$ and $n=n 2$] sum_max_0 [where $m=n 2$ and $n=n 1]$
by (simp add: sum.distrib algebra_simps max.commute)
then show ?case
by force
case (mult f1 f2)
then obtain a1 n1 a2 n2 where
$f 1=\left(\lambda x . \sum i \leq n 1 . a 1 i * x^{\wedge} i\right) f 2=\left(\lambda x . \sum i \leq n 2 . a 2 i * x^{\wedge} i\right)$
by auto
then obtain b1 b2 where
$f 1=\left(\lambda x . \sum i \leq n 1 . b 1 i * x^{\wedge} i\right) f 2=\left(\lambda x . \sum i \leq n 2 . b 2 i * x^{\wedge} i\right)$
$b 1=(\lambda i$. if $i \leq n 1$ then a1 i else 0$) b 2=(\lambda i$. if $i \leq n 2$ then a2 i else 0$)$
by auto
then have $f 1 x * f 2 x=\left(\sum i \leq n 1+n 2 .\left(\sum k \leq i . b 1 k * b 2(i-k)\right) * x^{\wedge} i\right)$
for x
using polynomial_product [of n1 b1 n2 b2] by (simp add: Set_Interval.atLeast0AtMost)
then show?case
by force
qed
lemma real_polynomial_function_iff_sum:
real_polynomial_function $f \longleftrightarrow\left(\exists a n . f=\left(\lambda x . \sum i \leq n . a i * x^{\wedge} i\right)\right) \quad$ (is ?lhs $=$? rhs $)$
proof
assume ?lhs then show ?rhs
by (metis real_polynomial_function_imp_sum)
next
assume ?rhs then show? lhs
by (auto simp: linear mult const real_polynomial_function_power real_polynomial_function_sum)
qed
lemma polynomial_function_iff_Basis_inner:
fixes f :: ' $a::$ real_normed_vector \Rightarrow ' $b::$ euclidean_space

```
    shows polynomial_function \(f \longleftrightarrow(\forall b \in\) Basis. real_polynomial_function \((\lambda x\). inner
( \(f x\) b) )
    (is ?lhs \(=\) ? \(r h s\) )
unfolding polynomial_function_def
proof (intro iffI allI impI)
    assume \(\forall h\). bounded_linear \(h \longrightarrow\) real_polynomial_function \((h \circ f)\)
    then show? rhs
        by (force simp add: bounded_linear_inner_left o_def)
next
    fix \(h:: ' b \Rightarrow\) real
    assume \(r p: \forall b \in\) Basis. real_polynomial_function \((\lambda x . f x \cdot b)\) and \(h\) : bounded_linear
\(h\)
    have real_polynomial_function \(\left(h \circ\left(\lambda x . \sum b \in\right.\right.\) Basis. \(\left.\left.(f x \cdot b) *_{R} b\right)\right)\)
        using \(r p\)
        by (force simp: real_polynomial_function_eq polynomial_function_mult
                            intro!: real_polynomial_function_compose [OF - linear [OF h]])
    then show real_polynomial_function \((h \circ f)\)
        by (simp add: euclidean_representation_sum_fun)
qed
```


5.6.5 Stone-Weierstrass theorem for polynomial functions

First, we need to show that they are continuous, differentiable and separable.

```
lemma continuous_real_polymonial_function:
    assumes real_polynomial_function \(f\)
        shows continuous (at \(x\) ) \(f\)
using assms
by (induct f) (auto simp: linear_continuous_at)
lemma continuous_polymonial_function:
    fixes \(f\) :: 'a::real_normed_vector \(\Rightarrow{ }^{\prime} b::\) euclidean_space
    assumes polynomial_function \(f\)
        shows continuous (at \(x\) ) \(f\)
proof (rule euclidean_isCont)
    show \(\bigwedge b . b \in\) Basis \(\Longrightarrow\) isCont \(\left(\lambda x .(f x \cdot b) *_{R} b\right) x\)
    using assms continuous_real_polymonial_function
    by (force simp: polynomial_function_iff_Basis_inner intro: isCont_scaleR)
qed
lemma continuous_on_polymonial_function:
    fixes \(f::\) 'a::real_normed_vector \(\Rightarrow\) ' \(b::\) euclidean_space
    assumes polynomial_function \(f\)
        shows continuous_on \(S f\)
    using continuous_polymonial_function [OF assms] continuous_at_imp_continuous_on
    by blast
```

lemma has_real_derivative_polynomial_function:
assumes real_polynomial_function p
shows $\exists p^{\prime}$. real_polynomial_function $p^{\prime} \wedge$

```
(\forallx. (p has_real_derivative ( }\mp@subsup{p}{}{\prime}x))(\mathrm{ at x))
using assms
proof (induct p)
    case (linear p)
    then show ?case
    by (force simp: real_bounded_linear const intro!: derivative_eq_intros)
next
    case (const c)
    show ?case
    by (rule_tac x=\lambdax.0 in exI) auto
    case (add f1 f2)
    then obtain p1 p2 where
        real_polynomial_function p1 \bigwedgex. (f1 has_real_derivative p1 x) (at x)
        real_polynomial_function p2 \x. (f2 has_real_derivative p2 x) (at x)
    by auto
    then show ?case
        by (rule_tac x=\lambdax.p1 x + p2 x in exI) (auto intro!: derivative_eq_intros)
    case (mult f1 f2)
    then obtain p1 p2 where
    real_polynomial_function p1 \x.(f1 has_real_derivative p1 x) (at x)
    real_polynomial_function p2 \x. (f2 has_real_derivative p2 x) (at x)
    by auto
    then show ?case
    using mult
    by (rule_tac x=\lambdax.f1 x * p2 x + f2 x * p1 x in exI) (auto intro!: deriva-
tive_eq_intros)
qed
lemma has_vector_derivative_polynomial_function:
    fixes p :: real => 'a::euclidean_space
    assumes polynomial_function p
    obtains p' where polynomial_function p' }\x.(p\mathrm{ has_vector_derivative ( }\mp@subsup{p}{}{\prime}x)
(at x)
proof -
    { fix b :: 'a
        assume b E Basis
        then
            obtain p' where p': real_polynomial_function p' and pd: }\x.((\lambdax.px\cdotb
has_real_derivative p'x) (at x)
            using assms [unfolded polynomial_function_iff_Basis_inner] has_real_derivative_polynomial_function
                by blast
    have polynomial_function ( }\lambdax.\mp@subsup{p}{}{\prime}x\mp@subsup{*}{R}{}b
            using \langleb\in Basis\rangle p' const [where 'a=real and c=0]
            by (simp add: polynomial_function_iff_Basis_inner inner_Basis)
    then have \exists q. polynomial_function q}\wedge(\forallx.((\lambdau.(pu\cdotb)\mp@subsup{*}{R}{}b)has_vector_derivative
qx)(at x))
            by (fastforce intro:derivative_eq_intros pd)
    }
    then obtain qf where qf:
```

```
        \b.b\in Basis \Longrightarrow polynomial_function (qf b)
        \bx.b B Basis\Longrightarrow((\lambdau. (pu\cdotb) *R b) has_vector_derivative qf b x) (at x)
    by metis
    show ?thesis
    proof
        show }\x.(p\mathrm{ has_vector_derivative ( }\sumb\in\mathrm{ Basis. qf b x)) (at x)
        apply (subst euclidean_representation_sum_fun [of p, symmetric])
        by (auto intro: has_vector_derivative_sum qf)
    qed (force intro:qf)
qed
lemma real_polynomial_function_separable:
    fixes }x\mathrm{ :: 'a::euclidean_space
    assumes }x\not=y\mathrm{ shows }\existsf\mathrm{ . real_polynomial_function f ^fx}=f
proof -
    have real_polynomial_function (\lambdau. \sumb\inBasis. (inner (x-u)b)^2)
    proof (rule real_polynomial_function_sum)
        show \i. i B Basis \Longrightarrow real_polynomial_function (\lambdau. ((x-u)\cdoti\mp@subsup{)}{}{2})
        by (auto simp: algebra_simps real_polynomial_function_diff const linear bounded_linear_inner_left)
    qed auto
    moreover have (\sumb\inBasis. ((x-y)\cdotb\mp@subsup{)}{}{2})\not=0
        using assms by (force simp add: euclidean_eq_iff [of x y] sum_nonneg_eq_0_iff
algebra_simps)
    ultimately show ?thesis
        by auto
qed
lemma Stone_Weierstrass_real_polynomial_function:
    fixes f :: 'a::euclidean_space }=>\mathrm{ real
    assumes compact S continuous_on S f 0 < e
    obtains g}\mathrm{ where real_polynomial_function g \x. x f S ב |fx-gx|<e
proof -
    interpret PR: function_ring_on Collect real_polynomial_function
    proof unfold_locales
    qed (use assms continuous_on_polymonial_function real_polynomial_function_eq
        in <auto intro: real_polynomial_function_separable>)
    show ?thesis
        using PR.Stone_Weierstrass_basic [OF〈continuous_on S f\rangle\langle0<e\rangle] that by
blast
qed
theorem Stone_Weierstrass_polynomial_function:
    fixes f :: 'a::euclidean_space = 'b::euclidean_space
    assumes S: compact S
        and f:continuous_on S f
        and e: 0<e
        shows \existsg. polynomial_function g}\wedge(\forallx\inS.norm(fx-gx)<e
proof -
    { fix b :: 'b
```

```
    assume \(b \in\) Basis
    have \(\exists p\). real_polynomial_function \(p \wedge(\forall x \in S .|f x \cdot b-p x|<e \mid \operatorname{DIM}(' b))\)
    proof (rule Stone_Weierstrass_real_polynomial_function \(\left[O F S_{-}\right.\), of \(\lambda x . f x \cdot b\)
e / card Basis])
            show continuous_on \(S(\lambda x . f x \cdot b)\)
            using \(f\) by (auto intro: continuous_intros)
    qed (use \(e\) in auto)
\}
then obtain \(p f\) where \(p f\) :
    \(\wedge b . b \in\) Basis \(\Longrightarrow\) real_polynomial_function (pf \(b) \wedge(\forall x \in S . \mid f x \cdot b-p f b\)
\(x \mid<e / \operatorname{DIM}(' b))\)
    by metis
    let ? \(g=\lambda x . \sum b \in\) Basis. pf \(b x *_{R} b\)
    \(\{\) fix \(x\)
    assume \(x \in S\)
    have norm \(\left(\sum b \in\right.\) Basis. \(\left.(f x \cdot b) *_{R} b-p f b x *_{R} b\right) \leq\left(\sum b \in\right.\) Basis. norm
\(\left.\left((f x \cdot b) *_{R} b-p f b x *_{R} b\right)\right)\)
            by (rule norm_sum)
    also have ... < of_nat DIM ('b) * (e / DIM ('b))
    proof (rule sum_bounded_above_strict)
        show \(\bigwedge i . i \in\) Basis \(\Longrightarrow\) norm \(\left((f x \cdot i) *_{R} i-p f i x *_{R} i\right)<e / r e a l\)
DIM ('b)
            by (simp add: Real_Vector_Spaces.scaleR_diff_left [symmetric] pf \(\langle x \in S\rangle)\)
    qed (rule DIM_positive)
    also have...\(=e\)
        by (simp add: field_simps)
    finally have norm ( \(\sum b \in\) Basis. \(\left.(f x \cdot b) *_{R} b-p f b x *_{R} b\right)<e\).
    \}
    then have \(\forall x \in S\). norm \(\left(\left(\sum b \in\right.\right.\) Basis. \(\left.\left.(f x \cdot b) *_{R} b\right)-? g x\right)<e\)
    by (auto simp flip: sum_subtractf)
    moreover
    have polynomial_function ?g
        using pf by (simp add: polynomial_function_sum polynomial_function_mult
real_polynomial_function_eq)
    ultimately show ?thesis
    using euclidean_representation_sum_fun [of f] by (metis (no_types, lifting))
qed
proposition Stone_Weierstrass_uniform_limit:
    fixes \(f\) :: 'a::euclidean_space \(\Rightarrow\) ' \(b::\) euclidean_space
    assumes \(S\) : compact \(S\)
        and \(f\) : continuous_on \(S f\)
    obtains \(g\) where uniform_limit \(S g\) f sequentially \(\bigwedge n\). polynomial_function ( \(g n\) )
proof -
    have pos: inverse (Suc \(n\) ) >0 for \(n\) by auto
    obtain \(g\) where \(g: \bigwedge n\). polynomial_function \((g n) \bigwedge x n . x \in S \Longrightarrow \operatorname{norm}(f x-\)
\(g n x)<\) inverse (Suc n)
    using Stone_Weierstrass_polynomial_function[OF S f pos]
    by metis
```

```
    have uniform_limit S g f sequentially
    proof (rule uniform_limitI)
    fix e::real assume 0<e
    with LIMSEQ_inverse_real_of_nat have }\mp@subsup{\forall}{F}{}n\mathrm{ in sequentially.inverse (Suc n)
< e
    by (rule order_tendstoD)
    moreover have }\mp@subsup{\forall}{F}{}n\mathrm{ in sequentially.}\forallx\inS.dist (gnx) (fx)< inverse (Su
n)
            using g by (simp add: dist_norm norm_minus_commute)
    ultimately show }\mp@subsup{\forall}{F}{}n\mathrm{ in sequentially. }\forallx\inS.\operatorname{dist}(gnx)(fx)<
        by (eventually_elim) auto
    qed
    then show ?thesis using g(1) ..
qed
```


5.6.6 Polynomial functions as paths

One application is to pick a smooth approximation to a path, or just pick a smooth path anyway in an open connected set
lemma path_polynomial_function:
fixes g :: real \Rightarrow ' $b::$ euclidean_space
shows polynomial_function $g \Longrightarrow$ path g
by (simp add: path_def continuous_on_polymonial_function)
lemma path_approx_polynomial_function:
fixes $g::$ real \Rightarrow ' $b::$ euclidean_space
assumes path g $0<e$
obtains p where polynomial_function p pathstart $p=$ pathstart g pathfinish p
$=$ pathfinish g

$$
\wedge t . t \in\{0 . .1\} \Longrightarrow \operatorname{norm}(p t-g t)<e
$$

proof -
obtain q where poq: polynomial_function q and noq: $\bigwedge x . x \in\{0 . .1\} \Longrightarrow$ norm $(g x-q x)<e / 4$
using Stone_Weierstrass_polynomial_function $[$ of $\{0 . .1\} g e / 4]$ assms
by (auto simp: path_def)
define $p f$ where $p f \equiv \lambda t . q t+(g 0-q 0)+t *_{R}(g 1-q 1-(g 0-q 0))$
show thesis
proof
show polynomial_function pf
by (force simp add: poq pf_def)
show norm $(p f t-g t)<e$
if $t \in\{0 . .1\}$ for t
proof -
have $*: \operatorname{norm}\left(((q t-g t)+(g 0-q 0))+\left(t *_{R}(g 1-q 1)+t *_{R}(q 0\right.\right.$
$-g 0)))<(e / 4+e / 4)+(e / 4+e / 4)$
proof (intro Real_Vector_Spaces.norm_add_less)
show norm $(q t-g t)<e / 4$
by (metis noq norm_minus_commute that)
show norm $\left(t *_{R}(g 1-q 1)\right)<e / 4$

```
            using noq that le_less_trans [OF mult_left_le_one_le noq]
            by auto
            show norm (t**R (q 0-g0))<e/4
            using noq that le_less_trans [OF mult_left_le_one_le noq]
            by simp (metis norm_minus_commute order_refl zero_le_one)
    qed (use noq norm_minus_commute that in auto)
    then show ?thesis
        by (auto simp add: algebra_simps pf_def)
    qed
    qed (auto simp add: path_defs pf_def)
qed
proposition connected_open_polynomial_connected:
    fixes S :: 'a::euclidean_space set
    assumes S: open S connected S
        and x\inS y \inS
        shows \existsg. polynomial_function g}\wedge path_image g\subseteqS\wedge pathstart g=x ^
pathfinish g=y
proof -
    have path_connected S using assms
        by (simp add: connected_open_path_connected)
    with }\langlex\inS\rangle\langley\inS\rangle\mathrm{ obtain p where p: path p path_image p }\subseteqS\mathrm{ pathstart p
=x pathfinish p=y
    by (force simp: path_connected_def)
    have \existse. 0<e^(\forallx\in path_image p.ball x e\subseteqS)
    proof (cases S = UNIV)
    case True then show ?thesis
        by (simp add: gt_ex)
    next
    case False
    show ?thesis
    proof (intro exI conjI ballI)
        show \xx. x f path_image p\Longrightarrow ball x (setdist (path_image p) (-S))\subseteqS
            using setdist_le_dist [of _ path_image p _ -S] by fastforce
            show 0< setdist (path_image p) (-S)
                using S p False
                    by (fastforce simp add: setdist_gt_0_compact_closed compact_path_image
open_closed)
    qed
    qed
    then obtain e where 0<eand eb: \x. x f path_image p b ball x e\subseteqS
    by auto
    obtain pf where polynomial_function pf and pf: pathstart pf = pathstart p
pathfinish pf = pathfinish p
                        and pf_e:\t.t\in{0..1} \Longrightarrow norm(pft-pt)<e
    using path_approx_polynomial_function [OF <path p\rangle\langle0<e\rangle] by blast
    show ?thesis
    proof (intro exI conjI)
    show polynomial_function pf
```

```
            by fact
            show pathstart pf = x pathfinish pf =y
            by (simp_all add: p pf)
    show path_image pf \subseteqS
            unfolding path_image_def
    proof clarsimp
            fix }\mp@subsup{x}{}{\prime}::\mathrm{ real
            assume 0 \leq x' x'\leq1
            then have dist (p x') (pf x')<e
            by (metis atLeastAtMost_iff dist_commute dist_norm pf_e)
            then show pf x'
            by (metis }\langle0\leq\mp@subsup{x}{}{\prime}\rangle\langle\mp@subsup{x}{}{\prime}\leq1\rangle\mathrm{ atLeastAtMost_iff eb imageI mem_ball path_image_def
subset_iff)
            qed
    qed
qed
lemma differentiable_componentwise_within:
    f differentiable (at a within S) \longleftrightarrow
    (\foralli\inBasis. (\lambdax.fx}\cdoti)\mathrm{ differentiable at a within S)
proof -
    { assume }\foralli\in\mathrm{ Basis. }\exists\textrm{D}.((\lambdax.fx\cdoti) has_derivative D) (at a within S
        then obtain f' where f}\mp@subsup{f}{}{\prime}\mathrm{ :
                    \i.i\in Basis\Longrightarrow((\lambdax.fx\cdoti)has_derivative f'i)(at a within S)
            by metis
```



```
            using that by (simp add: inner_add_left inner_add_right)
        have \existsD.\foralli\inBasis. ((\lambdax.fx\cdoti) has_derivative ( }\lambdax.Dx\cdoti))(\mathrm{ at a within S)
            apply (rule_tac x=\lambdax::'a. (\sumj\inBasis. f' j x *R j) :: 'b in exI)
            apply (simp add: eq f}\mp@subsup{f}{}{\prime}
            done
    }
    then show ?thesis
        apply (simp add: differentiable_def)
        using has_derivative_componentwise_within
        by blast
qed
lemma polynomial_function_inner [intro]:
    fixes i :: 'a::euclidean_space
    shows polynomial_function g m polynomial_function ( }\lambdax.gx\cdoti
    apply (subst euclidean_representation [where x=i, symmetric])
    apply (force simp: inner_sum_right polynomial_function_iff_Basis_inner polyno-
mial_function_sum)
    done
Differentiability of real and vector polynomial functions.
lemma differentiable_at_real_polynomial_function:
    real_polynomial_function f \Longrightarrowf differentiable (at a within S)
```

by (induction frule: real_polynomial_function.induct)
(simp_all add: bounded_linear_imp_differentiable)
lemma differentiable_on_real_polynomial_function:
real_polynomial_function $p \Longrightarrow p$ differentiable_on S
by (simp add: differentiable_at_imp_differentiable_on differentiable_at_real_polynomial_function)
lemma differentiable_at_polynomial_function:
fixes $f::$ _ \Rightarrow 'a::euclidean_space
shows polynomial_function $f \Longrightarrow f$ differentiable (at a within S)
by (metis differentiable_at_real_polynomial_function polynomial_function_iff_Basis_inner
differentiable_componentwise_within)
lemma differentiable_on_polynomial_function:
fixes $f::$ _ \Rightarrow 'a::euclidean_space
shows polynomial_function $f \Longrightarrow f$ differentiable_on S
by (simp add: differentiable_at_polynomial_function differentiable_on_def)
lemma vector_eq_dot_span:
assumes $x \in \operatorname{span} B y \in \operatorname{span} B$ and $i: \bigwedge i . i \in B \Longrightarrow i \cdot x=i \cdot y$
shows $x=y$
proof -
have $\bigwedge i . i \in B \Longrightarrow$ orthogonal $(x-y) i$
by (simp add: i inner_commute inner_diff_right orthogonal_def)
moreover have $x-y \in \operatorname{span} B$
by (simp add: assms span_diff)
ultimately have $x-y=0$
using orthogonal_to_span orthogonal_self by blast
then show? thesis by simp
qed
lemma orthonormal_basis_expand:
assumes B : pairwise orthogonal B
and 1: $\bigwedge i . i \in B \Longrightarrow$ norm $i=1$
and $x \in \operatorname{span} B$
and finite B
shows $\left(\sum i \in B .(x \cdot i) *_{R} i\right)=x$
proof (rule vector_eq_dot_span $\left.\left[O F_{-}\langle x \in \operatorname{span} B\rangle\right]\right)$
show $\left(\sum i \in B .(x \cdot i) *_{R} i\right) \in \operatorname{span} B$
by (simp add: span_clauses span_sum)
show $i \cdot\left(\sum i \in B .(x \cdot i) *_{R} i\right)=i \cdot x$ if $i \in B$ for i
proof -
have $[\operatorname{simp}]: i \cdot j=($ if $j=i$ then 1 else 0$)$ if $j \in B$ for j
using $B 1$ that $\langle i \in B\rangle$
by (force simp: norm_eq_1 orthogonal_def pairwise_def)
have $i \cdot\left(\sum i \in B .(x \cdot i) *_{R} i\right)=\left(\sum j \in B . x \cdot j *(i \cdot j)\right)$
by (simp add: inner_sum_right)
also have $\ldots=\left(\sum j \in B\right.$. if $j=i$ then $x \cdot i$ else 0$)$
by (rule sum.cong; simp)

```
    also have ... = i . x
    by (simp add: <finite B> that inner_commute)
    finally show ?thesis.
    qed
qed
```

theorem Stone_Weierstrass_polynomial_function_subspace:
fixes f :: 'a::euclidean_space \Rightarrow 'b::euclidean_space
assumes compact S
and contf: continuous_on $S f$
and $0<e$
and subspace $T f^{\prime} S \subseteq T$
obtains g where polynomial_function $g g$ ' $S \subseteq T$
$\bigwedge x . x \in S \Longrightarrow \operatorname{norm}(f x-g x)<e$
proof -
obtain B where $B \subseteq T$ and orthB: pairwise orthogonal B
and B1: $\bigwedge x . x \in B \Longrightarrow$ norm $x=1$
and independent B and $\operatorname{cardB}: \operatorname{card} B=\operatorname{dim} T$
and spanB: span $B=T$
using orthonormal_basis_subspace 〈subspace T 〉 by metis
then have finite B
by (simp add: independent_imp_finite)
then obtain $n:: n a t$ and b where $B=b$ ' $\{i . i<n\}$ inj_on $b\{i . i<n\}$
using finite_imp_nat_seg_image_inj_on by metis
with cardB have $n=\operatorname{card} B \operatorname{dim} T=n$
by (auto simp: card_image)
have $f x:\left(\sum i \in B .(f x \cdot i) *_{R} i\right)=f x$ if $x \in S$ for x
by (metis (no_types, lifting) B1 〈finite B〉assms(5) image_subset_iff orthB
orthonormal_basis_expand spanB sum.cong that)
have cont: continuous_on $S\left(\lambda x . \sum i \in B .(f x \cdot i) *_{R} i\right)$
by (intro continuous_intros contf)
obtain g where polynomial_function g
and $g: \bigwedge x . x \in S \Longrightarrow \operatorname{norm}\left(\left(\sum i \in B .(f x \cdot i) *_{R} i\right)-g x\right)<e /$
($n+2$)
using Stone_Weierstrass_polynomial_function [OF 〈compact S 〉cont, of e / real
$(n+2)]\langle 0<e\rangle$
by auto
with $f x$ have $g: \bigwedge x . x \in S \Longrightarrow \operatorname{norm}(f x-g x)<e /(n+2)$
by auto
show ?thesis
proof
show polynomial_function $\left(\lambda x . \sum i \in B .(g x \cdot i) *_{R} i\right)$
using 〈polynomial_function g 〉 by (force intro: 〈finite B))
show $\left(\lambda x . \sum i \in B .(g x \cdot i) *_{R} i\right) \cdot S \subseteq T$
using $\langle B \subseteq T\rangle$
by (blast intro: subspace_sum subspace_mul 〈subspace T〉)
show norm $\left(f x-\left(\sum i \in B .(g x \cdot i) *_{R} i\right)\right)<e$ if $x \in S$ for x
proof -
have orth': pairwise ($\lambda i j$. orthogonal $\left((f x \cdot i) *_{R} i-(g x \cdot i) *_{R} i\right)$

$$
\left.\left((f x \cdot j) *_{R} j-(g x \cdot j) *_{R} j\right)\right) B
$$

by (auto simp: orthogonal_def inner_diff_right inner_diff_left intro: pairwise_mono [OF orthB])
then have $\left(\text { norm }\left(\sum i \in B .(f x \cdot i) *_{R} i-(g x \cdot i) *_{R} i\right)\right)^{2}=$
$\left(\sum i \in B .\left(\operatorname{norm}\left((f x \cdot i) *_{R} i-(g x \cdot i) *_{R} i\right)\right)^{2}\right)$
by (simp add: norm_sum_Pythagorean [OF〈finite B〉orth \rceil)
also have $\ldots=\left(\sum i \in B .\left(\text { norm }\left(((f x-g x) \cdot i) *_{R} i\right)\right)^{2}\right)$
by (simp add: algebra_simps)
also have $\ldots \leq\left(\sum i \in B .(\operatorname{norm}(f x-g x))^{2}\right)$
proof -
have $\bigwedge i . i \in B \Longrightarrow((f x-g x) \cdot i)^{2} \leq(\operatorname{norm}(f x-g x))^{2}$
by (metis B1 Cauchy_Schwarz_ineq inner_commute mult.left_neutral norm_eq_1 power2_norm_eq_inner)
then show? ?thesis by (intro sum_mono) (simp add: sum_mono B1)
qed
also have $\ldots=n * \operatorname{norm}(f x-g x)^{\wedge} 2$
by (simp add: $\langle n=$ card $B\rangle$)
also have $\ldots \leq n *(e /(n+2))^{\wedge} 2$
proof (rule mult_left_mono)
show $(\operatorname{norm}(f x-g x))^{2} \leq(e / \operatorname{real}(n+2))^{2}$
by (meson dual_order.order_iff_strict g norm_ge_zero power_mono that)
qed auto
also have $\ldots \leq e^{\wedge} 2 /(n+2)$
using $\langle 0<e\rangle$ by (simp add: divide_simps power2_eq_square)
also have $\ldots<e^{\wedge}$ 2
using $\langle 0<e\rangle$ by (simp add: divide_simps)
finally have $\left(\operatorname{norm}\left(\sum i \in B .(f x \cdot i) *_{R} i-(g x \cdot i) *_{R} i\right)\right)^{2}<e^{\wedge} 2$.
then have $\left(\operatorname{norm}\left(\sum i \in B .(f x \cdot i) *_{R} i-(g x \cdot i) *_{R} i\right)\right)<e$
by (simp add: $\langle 0<e\rangle$ norm_lt_square power2_norm_eq_inner)
then show ?thesis
using fx that by (simp add: sum_subtractf)
qed
qed
qed
hide_fact linear add mult const
end

Chapter 6

Measure and Integration Theory

theory Sigma_Algebra
imports
Complex_Main
HOL-Library.Countable_Set
HOL-Library.FuncSet
HOL-Library.Indicator_Function
HOL-Library.Extended_Nonnegative_Real
HOL-Library.Disjoint_Sets
begin

6.1 Sigma Algebra

Sigma algebras are an elementary concept in measure theory. To measure - that is to integrate - functions, we first have to measure sets. Unfortunately, when dealing with a large universe, it is often not possible to consistently assign a measure to every subset. Therefore it is necessary to define the set of measurable subsets of the universe. A sigma algebra is such a set that has three very natural and desirable properties.

6.1.1 Families of sets

locale subset_class =
fixes $\Omega::$ ' a set and M :: 'a set set
assumes space_closed: $M \subseteq$ Pow Ω
lemma (in subset_class) sets_into_space: $x \in M \Longrightarrow x \subseteq \Omega$
by (metis PowD contra_subsetD space_closed)

Semiring of sets

locale semiring_of_sets $=$ subset_class +

```
assumes empty_sets[iff]: \(\} \in M\)
assumes Int [intro]: \(\bigwedge a b . a \in M \Longrightarrow b \in M \Longrightarrow a \cap b \in M\)
assumes Diff_cover:
    \(\bigwedge a b . a \in M \Longrightarrow b \in M \Longrightarrow \exists C \subseteq M\). finite \(C \wedge\) disjoint \(C \wedge a-b=\bigcup C\)
lemma (in semiring_of_sets) finite_INT[intro]:
    assumes finite \(I I \neq\{ \} \bigwedge i . i \in I \Longrightarrow A i \in M\)
    shows \((\bigcap i \in I . A i) \in M\)
    using assms by (induct rule: finite_ne_induct) auto
lemma (in semiring_of_sets) Int_space_eq1 [simp]: \(x \in M \Longrightarrow \Omega \cap x=x\)
    by (metis Int_absorb1 sets_into_space)
lemma (in semiring_of_sets) Int_space_eq2 [simp]: \(x \in M \Longrightarrow x \cap \Omega=x\)
    by (metis Int_absorb2 sets_into_space)
lemma (in semiring_of_sets) sets_Collect_conj:
    assumes \(\{x \in \Omega . P x\} \in M\{x \in \Omega . Q x\} \in M\)
    shows \(\{x \in \Omega . Q x \wedge P x\} \in M\)
proof -
    have \(\{x \in \Omega . Q x \wedge P x\}=\{x \in \Omega . Q x\} \cap\{x \in \Omega . P x\}\)
        by auto
    with assms show ?thesis by auto
qed
lemma (in semiring_of_sets) sets_Collect_finite_All':
    assumes \(\bigwedge i . i \in S \Longrightarrow\{x \in \Omega . P i x\} \in M\) finite \(S S \neq\{ \}\)
    shows \(\{x \in \Omega . \forall i \in S . P i x\} \in M\)
proof -
    have \(\{x \in \Omega . \forall i \in S . P i x\}=(\bigcap i \in S .\{x \in \Omega . P i x\})\)
        using \(\langle S \neq\{ \}\rangle\) by auto
    with assms show ?thesis by auto
qed
```


Ring of sets

```
locale ring_of_sets \(=\) semiring_of_sets +
    assumes Un [intro]: \(\bigwedge a b, a \in M \Longrightarrow b \in M \Longrightarrow a \cup b \in M\)
lemma (in ring_of_sets) finite_Union [intro]:
    finite \(X \Longrightarrow X \subseteq M \Longrightarrow \bigcup X \in M\)
    by (induct set: finite) (auto simp add: Un)
lemma (in ring_of_sets) finite_UN[intro]:
    assumes finite \(I\) and \(\bigwedge i . i \in I \Longrightarrow A i \in M\)
    shows \((\bigcup i \in I . A i) \in M\)
    using assms by induct auto
lemma (in ring_of_sets) Diff [intro]:
```

```
    assumes \(a \in M b \in M\) shows \(a-b \in M\)
    using Diff_cover[OF assms] by auto
lemma ring_of_setsI:
    assumes space_closed: \(M \subseteq\) Pow \(\Omega\)
    assumes empty_sets [iff]: \(\} \in M\)
    assumes Un[intro]: \(\bigwedge a b . a \in M \Longrightarrow b \in M \Longrightarrow a \cup b \in M\)
    assumes Diff[intro]: \(\bigwedge a b . a \in M \Longrightarrow b \in M \Longrightarrow a-b \in M\)
    shows ring_of_sets \(\Omega M\)
proof
    fix \(a b\) assume \(a b: a \in M b \in M\)
    from \(a b\) show \(\exists C \subseteq M\). finite \(C \wedge\) disjoint \(C \wedge a-b=\bigcup C\)
        by (intro exI[of _ \(\{a-b\}]\) ) (auto simp: disjoint_def)
    have \(a \cap b=a-(a-b)\) by auto
    also have \(\ldots \in M\) using \(a b\) by auto
    finally show \(a \cap b \in M\).
qed fact+
lemma ring_of_sets_iff: ring_of_sets \(\Omega M \longleftrightarrow M \subseteq P o w \Omega \wedge\} \in M \wedge(\forall a \in M\).
\(\forall b \in M . a \cup b \in M) \wedge(\forall a \in M . \forall b \in M . a-b \in M)\)
proof
    assume ring_of_sets \(\Omega\) M
    then interpret ring_of_sets \(\Omega M\).
    show \(M \subseteq P\) ow \(\Omega \wedge\} \in M \wedge(\forall a \in M . \forall b \in M . a \cup b \in M) \wedge(\forall a \in M . \forall b \in M\).
\(a-b \in M\) )
    using space_closed by auto
qed (auto intro!: ring_of_setsI)
lemma (in ring_of_sets) insert_in_sets:
    assumes \(\{x\} \in M A \in M\) shows insert \(x A \in M\)
proof -
    have \(\{x\} \cup A \in M\) using assms by (rule Un)
    thus ?thesis by auto
qed
lemma (in ring_of_sets) sets_Collect_disj:
    assumes \(\{x \in \Omega . P x\} \in M\{x \in \Omega . Q x\} \in M\)
    shows \(\{x \in \Omega . Q x \vee P x\} \in M\)
proof -
    have \(\{x \in \Omega . Q x \vee P x\}=\{x \in \Omega . Q x\} \cup\{x \in \Omega . P x\}\)
        by auto
    with assms show ?thesis by auto
qed
lemma (in ring_of_sets) sets_Collect_finite_Ex:
    assumes \(\bigwedge i . i \in S \Longrightarrow\{x \in \Omega . P i x\} \in M\) finite \(S\)
    shows \(\{x \in \Omega . \exists i \in S . P i x\} \in M\)
proof -
    have \(\{x \in \Omega . \exists i \in S . P i x\}=(\bigcup i \in S .\{x \in \Omega . P i x\})\)
```

```
    by auto
    with assms show ?thesis by auto
qed
```

```
Algebra of sets
locale algebra \(=\) ring_of_sets +
    assumes top [iff]: \(\Omega \in M\)
lemma (in algebra) compl_sets [intro]:
    \(a \in M \Longrightarrow \Omega-a \in M\)
    by auto
proposition algebra_iff_Un:
    algebra \(\Omega M \longleftrightarrow\)
        \(M \subseteq\) Pow \(\Omega \wedge\)
        \(\} \in M \wedge\)
        \((\forall a \in M . \Omega-a \in M) \wedge\)
        \((\forall a \in M . \forall b \in M . a \cup b \in M)\left(\right.\) is \(\left.\_\longleftrightarrow ? U n\right)\)
proof
    assume algebra \(\Omega M\)
    then interpret algebra \(\Omega M\).
    show ?Un using sets_into_space by auto
next
    assume ?Un
    then have \(\Omega \in M\) by auto
    interpret ring_of_sets \(\Omega\) M
    proof (rule ring_of_setsI)
        show \(\Omega\) : \(M \subseteq \operatorname{Pow} \Omega\} \in M\)
            using 〈?Un〉 by auto
        fix \(a b\) assume \(a: a \in M\) and \(b: b \in M\)
        then show \(a \cup b \in M\) using 〈? \(U n\) 〉 by auto
        have \(a-b=\Omega-((\Omega-a) \cup b)\)
            using \(\Omega a b\) by auto
        then show \(a-b \in M\)
            using \(a b\) 〈?Un〉 by auto
    qed
    show algebra \(\Omega M\) proof qed fact
qed
proposition algebra_iff_Int:
        algebra \(\Omega M \longleftrightarrow\)
        \(M \subseteq\) Pow \(\Omega \&\} \in M \&\)
        \((\forall a \in M . \Omega-a \in M) \&\)
        \((\forall a \in M . \forall b \in M . a \cap b \in M)\left(\right.\) is \(\_\longleftrightarrow\) ?Int \()\)
proof
    assume algebra \(\Omega\) M
    then interpret algebra \(\Omega M\).
    show ?Int using sets_into_space by auto
```

```
next
    assume ?Int
    show algebra \Omega M
    proof (unfold algebra_iff_Un, intro conjI ballI)
        show }\Omega:M\subseteqPow \Omega{}\in
            using <?Int` by auto
        from 〈?Int> show \ \a. a\inM\Longrightarrow\Omega-a\inM by auto
        fix ab assume M:a\inMb\inM
        hence }a\cupb=\Omega-((\Omega-a)\cap(\Omega-b)
            using }\Omega\mathrm{ by blast
        also have ... \inM
            using M〈?Int〉 by auto
        finally show }a\cupb\inM
    qed
qed
lemma (in algebra) sets_Collect_neg:
    assumes {x\in\Omega.P}x}\in
    shows {x\in\Omega.\negPx}\inM
proof -
    have {x\in\Omega.\negPx}=\Omega-{x\in\Omega.P x} by auto
    with assms show ?thesis by auto
qed
lemma (in algebra) sets_Collect_imp:
    {x\in\Omega.P }P}\inM\Longrightarrow{x\in\Omega.Qx}\inM\Longrightarrow{x\in\Omega.Qx\longrightarrowPx}\in
    unfolding imp_conv_disj by (intro sets_Collect_disj sets_Collect_neg)
lemma (in algebra) sets_Collect_const:
    {x\in\Omega.P}\inM
    by (cases P) auto
lemma algebra_single_set:
    X\subseteqS\Longrightarrow algebra }S{{},X,S-X,S
    by (auto simp: algebra_iff_Int)
```


Restricted algebras

```
abbreviation（in algebra）
restricted＿space \(A \equiv((\cap) A)\)＇\(M\)
lemma（in algebra）restricted＿algebra：
assumes \(A \in M\) shows algebra \(A\)（restricted＿space \(A\) ）
using assms by（auto simp：algebra＿iff＿Int）
```


Sigma Algebras

locale sigma＿algebra $=$ algebra +
assumes countable＿nat＿UN［intro］：$\bigwedge A$ ．range $A \subseteq M \Longrightarrow(\bigcup i::$ nat．$A i) \in M$

```
lemma (in algebra) is_sigma_algebra:
    assumes finite M
    shows sigma_algebra \Omega M
proof
    fix }A:: nat => 'a set assume range A\subseteq
    then have }(\bigcupi.Ai)=(\bigcups\inM\cap\mathrm{ range A.s)
        by auto
    also have (\bigcups\inM\cap range A.s)\inM
        using 〈finite M> by auto
    finally show (\bigcupi.A i)\inM.
qed
lemma countable_UN_eq:
    fixes }A\mathrm{ :: ' }i::\mathrm{ countable }=>\mp@subsup{}{}{\prime}a\mathrm{ set
    shows (range A\subseteqM\longrightarrow(\bigcupi.A i)\inM)\longleftrightarrow
        (range }(A\circ\mathrm{ from_nat })\subseteqM\longrightarrow(\bigcupi.(A\circfrom_nat) i)\inM
proof -
    let ? A' = A ○ from_nat
    have *: (\bigcupi. ? A' i) = (\bigcupi.A i) (is ?l = ?r)
    proof safe
        fix x i assume }x\inAi\mathrm{ thus }x\in?
            by (auto intro!: exI[of _ to_nat i])
    next
        fix }xi\mathrm{ assume }x\in?\mp@subsup{?}{}{\prime}\mp@subsup{A}{}{\prime}i\mathrm{ thus }x\in?,
            by (auto intro!: exI[of _ from_nat i])
    qed
    have }A\mathrm{ ' range from_nat = range }
        using surj_from_nat by simp
    then have **: range ? }\mp@subsup{A}{}{\prime}=\mathrm{ range }
            by (simp only: image_comp [symmetric])
    show ?thesis unfolding *** ..
qed
lemma (in sigma_algebra) countable_Union [intro]:
    assumes countable }XX\subseteqM\mathrm{ shows }\bigcupX\in
proof cases
    assume X \not={}
    hence }\bigcupX=(\bigcupn.from_nat_into X n
            using assms by (auto cong del: SUP_cong)
    also have ...\inM using assms
            by (auto intro!: countable_nat_UN) (metis \X \not= {}> from_nat_into subsetD)
    finally show ?thesis.
qed simp
lemma (in sigma_algebra) countable_UN[intro]:
    fixes }A\mathrm{ :: ' }i::\mathrm{ :countable }=>\mp@subsup{}{}{\prime}\mathrm{ 'a set
    assumes A'X\subseteqM
    shows }(\bigcupx\inX.Ax)\in
proof -
```

```
    let ? \(A=\lambda i\). if \(i \in X\) then \(A\) i else \(\}\)
    from assms have range ? \(A \subseteq M\) by auto
    with countable_nat_UN[of ?A ○ from_nat] countable_UN_eq[of ?A M]
    have \((\bigcup x\). ? \(A x) \in M\) by auto
    moreover have \((\bigcup x\). ? A \(x)=(\bigcup x \in X . A x)\) by (auto split: if_split_asm)
    ultimately show?thesis by simp
qed
lemma (in sigma_algebra) countable_ \(U N^{\prime}\) :
    fixes \(A:: ' i \Rightarrow\) 'a set
    assumes \(X\) : countable \(X\)
    assumes \(A: A^{‘} X \subseteq M\)
    shows \((\bigcup x \in X . A x) \in M\)
proof -
    have \((\bigcup x \in X . A x)=\left(\bigcup i \in t o \_n a t \_o n X\right.\) ' \(X . A(\) from_nat_into \(\left.X i)\right)\)
        using \(X\) by auto
    also have \(\ldots \in M\)
        using \(A X\)
        by (intro countable_UN) auto
    finally show ?thesis .
qed
lemma (in sigma_algebra) countable_UN \({ }^{\prime \prime}\) :
    \(\llbracket\) countable \(X ; \bigwedge x y . x \in X \Longrightarrow A x \in M \rrbracket \Longrightarrow(\bigcup x \in X . A x) \in M\)
by (erule countable_UN')(auto)
lemma (in sigma_algebra) countable_INT [intro]:
    fixes \(A\) :: ' \(i::\) countable \(\Rightarrow{ }^{\prime} a\) set
    assumes \(A: A^{\prime} X \subseteq M X \neq\{ \}\)
    shows \((\bigcap i \in X . A i) \in M\)
proof -
    from \(A\) have \(\forall i \in X . A i \in M\) by fast
    hence \(\Omega-(\bigcup i \in X . \Omega-A i) \in M\) by blast
    moreover
    have \((\bigcap i \in X . A i)=\Omega-(\bigcup i \in X . \Omega-A i)\) using space_closed \(A\)
        by blast
    ultimately show ?thesis by metis
qed
lemma (in sigma_algebra) countable_INT':
    fixes \(A:: ~ ' i \Rightarrow{ }^{\prime}\) a set
    assumes \(X\) : countable \(X X \neq\{ \}\)
    assumes \(A: A^{\prime} X \subseteq M\)
    shows \((\bigcap x \in X . A x) \in M\)
proof -
    have \((\bigcap x \in X . A x)=\left(\bigcap i \in t o \_n a t \_o n X\right.\) ' \(X . A(\) from_nat_into \(\left.X i)\right)\)
        using \(X\) by auto
    also have \(\ldots \in M\)
        using \(A X\)
```

```
    by (intro countable_INT) auto
    finally show ?thesis.
qed
lemma (in sigma_algebra) countable_INT'':
    UNIV }\inM\Longrightarrow\mathrm{ countable }I\Longrightarrow(\bigwedgei.i\inI\LongrightarrowFi\inM)\Longrightarrow(\bigcapi\inI.Fi)\in
    by (cases I = {})(auto intro: countable_INT')
lemma (in sigma_algebra) countable:
    assumes \a.a\inA\Longrightarrow{a}\inM countable A
    shows }A\in
proof -
    have (\bigcupa\inA.{a})\inM
        using assms by (intro countable_UN') auto
    also have ( }\cupa\inA.{a})=A by aut
    finally show ?thesis by auto
qed
lemma ring_of_sets_Pow: ring_of_sets sp (Pow sp)
    by (auto simp: ring_of_sets_iff)
lemma algebra_Pow: algebra sp (Pow sp)
    by (auto simp: algebra_iff_Un)
lemma sigma_algebra_iff:
    sigma_algebra \Omega M \longleftrightarrow
        algebra \OmegaM}\wedge(\forallA.range A\subseteqM\longrightarrow(\bigcupi::nat. A i) \inM
    by (simp add: sigma_algebra_def sigma_algebra_axioms_def)
lemma sigma_algebra_Pow: sigma_algebra sp (Pow sp)
    by (auto simp: sigma_algebra_iff algebra_iff_Int)
lemma (in sigma_algebra) sets_Collect_countable_All:
    assumes \bigwedgei. {x\in\Omega. Pix} 依
    shows {x\in\Omega.\foralli::'i::countable. P i x} \inM
proof -
    have {x\in\Omega.\foralli::'i::countable. P ix} = (\bigcapi. {x\in\Omega. P i x}) by auto
    with assms show ?thesis by auto
qed
lemma (in sigma_algebra) sets_Collect_countable_Ex:
    assumes \bigwedgei. {x\in\Omega.Pix}\inM
    shows {x\in\Omega. \existsi::'i::countable. P ix} \inM
proof -
    have {x\in\Omega. \existsi::'i::countable. P i x} = (\bigcupi. {x\in\Omega. P i x }) by auto
    with assms show ?thesis by auto
qed
lemma (in sigma_algebra) sets_Collect_countable_Ex':
```

```
    assumes \(\bigwedge i . i \in I \Longrightarrow\{x \in \Omega . P i x\} \in M\)
    assumes countable \(I\)
    shows \(\{x \in \Omega . \exists i \in I . P i x\} \in M\)
proof -
    have \(\{x \in \Omega . \exists i \in I . P i x\}=(\bigcup i \in I .\{x \in \Omega . P i x\})\) by auto
    with assms show ?thesis
        by (auto intro!: countable_UN \({ }^{\prime}\) )
qed
lemma (in sigma_algebra) sets_Collect_countable_All':
    assumes \(\bigwedge i . i \in I \Longrightarrow\{x \in \Omega . P i x\} \in M\)
    assumes countable I
    shows \(\{x \in \Omega . \forall i \in I . P i x\} \in M\)
proof -
    have \(\{x \in \Omega . \forall i \in I . P i x\}=(\bigcap i \in I .\{x \in \Omega . P i x\}) \cap \Omega\) by auto
    with assms show ?thesis
        by (cases \(I=\{ \}\) ) (auto intro!: countable_INT')
qed
lemma (in sigma_algebra) sets_Collect_countable_Ex1':
    assumes \(\bigwedge i . i \in I \Longrightarrow\{x \in \Omega . P i x\} \in M\)
    assumes countable \(I\)
    shows \(\{x \in \Omega . \exists!i \in I . P i x\} \in M\)
proof -
    have \(\{x \in \Omega . \exists!i \in I . P i x\}=\{x \in \Omega . \exists i \in I . P i x \wedge(\forall j \in I . P j x \longrightarrow i=j)\}\)
        by auto
    with assms show ?thesis
    by (auto intro!: sets_Collect_countable_All' sets_Collect_countable_Ex' sets_Collect_conj
sets_Collect_imp sets_Collect_const)
qed
lemmas (in sigma_algebra) sets_Collect \(=\)
    sets_Collect_imp sets_Collect_disj sets_Collect_conj sets_Collect_neg sets_Collect_const
    sets_Collect_countable_All sets_Collect_countable_Ex sets_Collect_countable_All
lemma (in sigma_algebra) sets_Collect_countable_Ball:
    assumes \(\bigwedge i .\{x \in \Omega . P i x\} \in M\)
    shows \(\{x \in \Omega\). \(\forall i::\) ' \(i::\) countable \(\in X . P i x\} \in M\)
    unfolding Ball_def by (intro sets_Collect assms)
lemma (in sigma_algebra) sets_Collect_countable_Bex:
    assumes \(\bigwedge i .\{x \in \Omega . P i x\} \in M\)
    shows \(\left\{x \in \Omega . \exists i:::^{\prime} i::\right.\) countable \(\left.\in X . P i x\right\} \in M\)
    unfolding Bex_def by (intro sets_Collect assms)
lemma sigma_algebra_single_set:
    assumes \(X \subseteq S\)
    shows sigma_algebra \(S\{\}, X, S-X, S\}\)
    using algebra.is_sigma_algebra[OF algebra_single_set[OF〈X \(\subseteq S\rangle]]\) by simp
```


Binary Unions

definition binary $::$＇$a \Rightarrow{ }^{\prime} a \Rightarrow n a t \Rightarrow{ }^{\prime} a$
where binary $a b=(\lambda x . b)(0:=a)$
lemma range＿binary＿eq：range（binary a b）$=\{a, b\}$
by（auto simp add：binary＿def）
lemma Un＿range＿binary：$a \cup b=(\bigcup i:: n a t$. binary $a b i)$
by（simp add：range＿binary＿eq cong del：SUP＿cong＿simp）
lemma Int＿range＿binary：$a \cap b=(\bigcap i::$ nat．binary a $b i)$
by（simp add：range＿binary＿eq cong del：INF＿cong＿simp）
lemma sigma＿algebra＿iff2：
sigma＿algebra $\Omega M \longleftrightarrow$
$M \subseteq$ Pow $\Omega \wedge\} \in M \wedge(\forall s \in M . \Omega-s \in M)$
$\wedge(\forall$ ．range $A \subseteq M \longrightarrow(\bigcup i::$ nat．$A i) \in M)($ is $? P \longleftrightarrow ? R \wedge ? S \wedge ? V \wedge$
？W ）
proof
assume ？P
then interpret sigma＿algebra ΩM ．
from space＿closed show ？$R \wedge$ ？$S \wedge$ ？$V \wedge$ ？W by auto
next
assume ？$R \wedge$ ？$S \wedge$ ？$V \wedge$ ？W
then have ？R ？S ？V ？W
by simp＿all
show？？
proof（rule sigma＿algebra．intro）
show sigma＿algebra＿axioms M
by standard（use 〈？W 〉 in simp）
from \langle ？W 〉 have $*$ ：range（binary $a b) \subseteq M \Longrightarrow \bigcup($ range $($ binary a $b)) \in M$

for $a b$

by auto
show algebra Ω M
unfolding algebra＿iff＿Un using 〈？R〉〈？S〉〈？V 〉＊
by（auto simp add：range＿binary＿eq）
qed
qed

Initial Sigma Algebra

Sigma algebras can naturally be created as the closure of any set of M with regard to the properties just postulated．

```
inductive_set sigma_sets :: 'a set \(\Rightarrow\) ' \(a\) set set \(\Rightarrow\) 'a set set
    for \(s p::\) ' \(a\) set and \(A::\) ' \(a\) set set
    where
        Basic[intro, simp]: \(a \in A \Longrightarrow a \in\) sigma_sets sp \(A\)
```

```
| Empty: \(\} \in\) sigma_sets sp \(A\)
| Compl: \(a \in\) sigma_sets sp \(A \Longrightarrow s p-a \in\) sigma_sets sp \(A\)
| Union: \((\bigwedge i::\) nat. a \(i \in\) sigma_sets sp \(A) \Longrightarrow(\bigcup i\). a \(i) \in\) sigma_sets sp \(A\)
```

lemma (in sigma_algebra) sigma_sets_subset:
assumes a : $a \subseteq M$
shows sigma_sets $\Omega a \subseteq M$
proof
fix x
assume $x \in$ sigma_sets Ωa
from this show $x \in M$
by (induct rule: sigma_sets.induct, auto) (metis a subsetD)
qed
lemma sigma_sets_into_sp: $A \subseteq$ Pow sp $\Longrightarrow x \in$ sigma_sets sp $A \Longrightarrow x \subseteq s p$
by (erule sigma_sets.induct, auto)
lemma sigma_algebra_sigma_sets:
$a \subseteq$ Pow $\Omega \Longrightarrow$ sigma_algebra Ω (sigma_sets Ωa)
by (auto simp add: sigma_algebra_iff2 dest: sigma_sets_into_sp
intro!: sigma_sets.Union sigma_sets.Empty sigma_sets.Compl)
lemma sigma_sets_least_sigma_algebra:
assumes $A \subseteq$ Pow S
shows sigma_sets $S A=\bigcap\{B . A \subseteq B \wedge$ sigma_algebra $S B\}$
proof safe
fix $B X$ assume $A \subseteq B$ and sa: sigma_algebra $S B$
and $X: X \in$ sigma_sets $S A$
from sigma_algebra.sigma_sets_subset[OF sa, simplified, $O F\langle A \subseteq B\rangle] X$
show $X \in B$ by auto
next
fix X assume $X \in \bigcap\{B . A \subseteq B \wedge$ sigma_algebra $S B\}$
then have [intro!]: $\bigwedge B . A \subseteq B \Longrightarrow$ sigma_algebra $S B \Longrightarrow X \in B$
by simp
have $A \subseteq$ sigma_sets $S A$ using assms by auto
moreover have sigma_algebra S (sigma_sets S A)
using assms by (intro sigma_algebra_sigma_sets $[$ of $A]$) auto
ultimately show $X \in$ sigma_sets $S A$ by auto
qed
lemma sigma_sets_top: $s p \in$ sigma_sets sp A
by (metis Diff_empty sigma_sets.Compl sigma_sets.Empty)
lemma binary_in_sigma_sets:
binary $a b i \in$ sigma_sets sp A if $a \in$ sigma_sets sp A and $b \in$ sigma_sets sp A
using that by (simp add: binary_def)
lemma sigma_sets_Un:
$a \cup b \in$ sigma_sets sp A if $a \in$ sigma_sets sp A and $b \in$ sigma_sets sp A

```
    using that by (simp add: Un_range_binary binary_in_sigma_sets Union)
lemma sigma_sets_Inter:
    assumes \(A s b: A \subseteq\) Pow sp
    shows \((\bigwedge i:: n a t\). a \(i \in\) sigma_sets sp \(A) \Longrightarrow(\bigcap i . a i) \in\) sigma_sets sp \(A\)
proof -
    assume ai: \(\bigwedge i::\) nat. a \(i \in\) sigma_sets sp \(A\)
    hence \(\bigwedge i::\) nat. \(s p-(a i) \in\) sigma_sets \(s p A\)
        by (rule sigma_sets.Compl)
    hence \((\bigcup i\). sp- \((a i)) \in\) sigma_sets sp \(A\)
        by (rule sigma_sets.Union)
    hence \(s p-(\bigcup i . s p-(a i)) \in\) sigma_sets sp \(A\)
        by (rule sigma_sets.Compl)
    also have \(s p-(\bigcup i . s p-(a i))=s p\) Int \((\bigcap i . a i)\)
        by auto
    also have \(\ldots=(\bigcap i . a i)\) using \(a i\)
        by (blast dest: sigma_sets_into_sp [OF Asb])
    finally show ?thesis.
qed
lemma sigma_sets_INTER:
    assumes \(A s b: A \subseteq\) Pow sp
        and ai: \(\bigwedge i:: n a \bar{t} . i \in S \Longrightarrow a i \in\) sigma_sets sp \(A\) and non: \(S \neq\{ \}\)
    shows \((\bigcap i \in S . a i) \in\) sigma_sets sp \(A\)
proof -
    from ai have \(\bigwedge i\). (if \(i \in S\) then a \(i\) else sp) \(\in\) sigma_sets sp \(A\)
        by (simp add: sigma_sets.intros(2-) sigma_sets_top)
    hence \((\bigcap i\). (if \(i \in S\) then a i else sp \()) \in\) sigma_sets sp \(A\)
        by (rule sigma_sets_Inter [OF Asb])
    also have \((\bigcap i\). (if \(i \in S\) then a \(i\) else \(s p))=(\bigcap i \in S\). a \(i)\)
        by auto (metis ai non sigma_sets_into_sp subset_empty subset_iff Asb)+
    finally show?thesis.
qed
lemma sigma_sets_UNION:
    countable \(B \Longrightarrow(\bigwedge b . b \in B \Longrightarrow b \in\) sigma_sets \(X A) \Longrightarrow \bigcup B \in\) sigma_sets \(X\)
A
    using from_nat_into [of B] range_from_nat_into \([\) of B] sigma_sets.Union [of from_nat_into
\(B \times A]\)
    by (cases \(B=\{ \}\) ) (simp_all add: sigma_sets.Empty cong del: SUP_cong)
lemma (in sigma_algebra) sigma_sets_eq:
        sigma_sets \(\Omega M=M\)
proof
    show \(M \subseteq\) sigma_sets \(\Omega M\)
        by (metis Set.subsetI sigma_sets.Basic)
    next
    show sigma_sets \(\Omega M \subseteq M\)
        by (metis sigma_sets_subset subset_refl)
```

qed
lemma sigma_sets_eqI:
assumes $A: \bigwedge a . a \in A \Longrightarrow a \in$ sigma_sets $M B$
assumes $B: \bigwedge b . b \in B \Longrightarrow b \in$ sigma_sets $M A$
shows sigma_sets $M A=$ sigma_sets $M B$
proof (intro set_eqI iffI)
fix a assume $a \in$ sigma_sets $M A$
from this A show $a \in$ sigma_sets $M B$
by induct (auto intro!: sigma_sets.intros(2-) del: sigma_sets.Basic)
next
fix b assume $b \in$ sigma_sets $M B$
from this B show $b \in$ sigma_sets $M A$
by induct (auto intro!: sigma_sets.intros(2-) del: sigma_sets.Basic)
qed
lemma sigma_sets_subseteq: assumes $A \subseteq B$ shows sigma_sets $X A \subseteq$ sigma_sets $X B$
proof
fix x assume $x \in$ sigma_sets $X A$ then show $x \in$ sigma_sets $X B$ by induct (insert $\langle A \subseteq B\rangle$, auto intro: sigma_sets.intros(2-))
qed
lemma sigma_sets_mono: assumes $A \subseteq$ sigma_sets $X B$ shows sigma_sets $X A \subseteq$ sigma_sets $X B$
proof
fix x assume $x \in$ sigma_sets $X A$ then show $x \in$ sigma_sets $X B$ by induct (insert $\langle A \subseteq$ sigma_sets $X B$, auto intro: sigma_sets.intros(2-))
qed
lemma sigma_sets_mono': assumes $A \subseteq B$ shows sigma_sets $X A \subseteq$ sigma_sets
X B
proof
fix x assume $x \in$ sigma_sets $X A$ then show $x \in$ sigma_sets $X B$
by induct (insert $\langle A \subseteq B\rangle$, auto intro: sigma_sets.intros(2-))
qed
lemma sigma_sets_superset_generator: $A \subseteq$ sigma_sets $X A$
by (auto intro: sigma_sets.Basic)
lemma (in sigma_algebra) restriction_in_sets:
fixes A :: nat \Rightarrow 'a set
assumes $S \in M$
and $*$: range $A \subseteq(\lambda A . S \cap A)$ ' M (is $\left._\subseteq ?_{r} r\right)$
shows range $A \subseteq M(\bigcup i . A i) \in(\lambda A . S \cap A)$ ' M
proof -
\{ fix i have $A i \in ? r$ using $*$ by auto
hence $\exists B$. $A i=B \cap S \wedge B \in M$ by auto hence $A i \subseteq S A i \in M$ using $\langle S \in M\rangle$ by auto $\}$

```
    thus range A\subseteqM(\bigcupi.A i)\in(\lambdaA.S\capA)'M
    by (auto intro!: image_eqI[of _ _ (Ui.A i)])
qed
lemma (in sigma_algebra) restricted_sigma_algebra:
    assumes S\inM
    shows sigma_algebra S (restricted_space S)
    unfolding sigma_algebra_def sigma_algebra_axioms_def
proof safe
    show algebra S (restricted_space S) using restricted_algebra[OF assms].
next
    fix }A:: nat => 'a set assume range A\subseteq restricted_space S
    from restriction_in_sets[OF assms this[simplified]]
    show (\bigcupi. A i) \in restricted_space S by simp
qed
lemma sigma_sets_Int:
    assumes }A\in\mathrm{ sigma_sets sp st A}\subseteqs
    shows (\cap)A'sigma_sets sp st = sigma_sets A ((\cap)A'st)
proof (intro equalityI subsetI)
    fix }x\mathrm{ assume }x\in(\cap)A\mathrm{ 'sigma_sets sp st
    then obtain y where }y\in\mathrm{ sigma_sets sp st }x=y\capA\mathrm{ by auto
    then have }x\in\mathrm{ sigma_sets ( }A\capsp)((\cap)A`st
    proof (induct arbitrary: x)
        case (Compl a)
        then show ?case
            by (force intro!: sigma_sets.Compl simp: Diff_Int_distrib ac_simps)
    next
        case (Union a)
        then show ?case
            by (auto intro!: sigma_sets.Union
                simp add:UN_extend_simps simp del: UN_simps)
    qed (auto intro!: sigma_sets.intros(2-))
    then show }x\in\mathrm{ sigma_sets }A((\cap)A`st
        using }\langleA\subseteqsp\rangle\mathrm{ by (simp add: Int_absorb2)
next
    fix x assume }x\in\mathrm{ sigma_sets A (( () A'st)
    then show }x\in(\cap)A' sigma_sets sp s
    proof induct
        case (Compl a)
        then obtain x where a=A\capxx\in sigma_sets sp st by auto
        then show ?case using <A\subseteqsp>
            by (force simp add: image_iff intro!: bexI[of _ sp - x] sigma_sets.Compl)
    next
        case (Union a)
        then have }\foralli.\existsx.x\in\mathrm{ sigma_sets sp st }\wedgeai=A\cap
            by (auto simp: image_iff Bex_def)
        from choice[OF this] guess f ..
        then show ?case
```

```
        by (auto intro!: bexI[of _ (\x.fx)] sigma_sets.Union
        simp add: image_iff)
    qed (auto intro!: sigma_sets.intros(2-))
qed
lemma sigma_sets_empty_eq: sigma_sets A {} ={{{},A}
proof (intro set_eqI iffI)
    fix a assume a\in sigma_sets A{} then show a\in{{},A}
        by induct blast+
qed (auto intro: sigma_sets.Empty sigma_sets_top)
lemma sigma_sets_single[simp]: sigma_sets A {A} ={{},A}
proof (intro set_eqI iffI)
    fix }x\mathrm{ assume }x\in\mathrm{ sigma_sets }A{A
    then show }x\in{{},A
        by induct blast+
next
    fix }x\mathrm{ assume }x\in{{},A
    then show }x\in\mathrm{ sigma_sets }A{A
        by (auto intro: sigma_sets.Empty sigma_sets_top)
qed
lemma sigma_sets_sigma_sets_eq:
    M\subseteq Pow S \Longrightarrow sigma_sets S (sigma_sets S M) = sigma_sets S M
    by (rule sigma_algebra.sigma_sets_eq[OF sigma_algebra_sigma_sets, of M S]) auto
lemma sigma_sets_singleton:
    assumes }X\subseteq
    shows sigma_sets S {X }}={{},X,S-X,S
proof -
    interpret sigma_algebra S { {}, X,S - X,S }
        by (rule sigma_algebra_single_set) fact
    have sigma_sets S {X }\subseteq sigma_sets S { {}, X,S - X,S }
        by (rule sigma_sets_subseteq) simp
    moreover have \ldots={{{,X,S-X,S}
        using sigma_sets_eq by simp
    moreover
    {fix A assume A\in{{},X,S-X,S}
        then have A\in sigma_sets S {X }
            by (auto intro: sigma_sets.intros(2-) sigma_sets_top) }
    ultimately have sigma_sets S {X } = sigma_sets S { {}, X,S - X,S}
        by (intro antisym) auto
    with sigma_sets_eq show ?thesis by simp
qed
lemma restricted_sigma:
    assumes S:S\in sigma_sets \OmegaM and M:M\subseteqPow \Omega
    shows algebra.restricted_space (sigma_sets \Omega M)S=
        sigma_sets S (algebra.restricted_space M S)
```

```
proof -
    from \(S\) sigma_sets_into_sp[OF M]
    have \(S \in\) sigma_sets \(\Omega M S \subseteq \Omega\) by auto
    from sigma_sets_Int[OF this]
    show ?thesis by simp
qed
lemma sigma_sets_vimage_commute:
    assumes \(X: X \in \Omega \rightarrow \Omega^{\prime}\)
    shows \(\left\{X-{ }^{\prime} A \cap \Omega \mid A . A \in\right.\) sigma_sets \(\left.\Omega^{\prime} M^{\prime}\right\}\)
        \(=\) sigma_sets \(\Omega\left\{X-^{\prime} A \cap \Omega \mid A . A \in M^{\prime}\right\}(\) is \(? L=? R)\)
proof
    show ? \(L \subseteq ? R\)
    proof clarify
        fix \(A\) assume \(A \in\) sigma_sets \(\Omega^{\prime} M^{\prime}\)
        then show \(X-{ }^{`} A \cap \Omega \in ? R\)
        proof induct
            case Empty then show ?case
            by (auto intro!: sigma_sets.Empty)
        next
            case (Compl B)
            have \(\left[\right.\) simp]: \(X-‘\left(\Omega^{\prime}-B\right) \cap \Omega=\Omega-\left(X-{ }^{\prime} B \cap \Omega\right)\)
                by (auto simp add: funcset_mem [OF X])
            with Compl show ?case
                by (auto intro!: sigma_sets.Compl)
        next
            case (Union F)
            then show ?case
                by (auto simp add: vimage_UN UN_extend_simps(4) simp del: UN_simps
                                    intro!: sigma_sets.Union)
        qed auto
    qed
    show ? \(R \subseteq\) ? \(L\)
    proof clarify
        fix \(A\) assume \(A \in ? R\)
        then show \(\exists B . A=X-{ }^{'} B \cap \Omega \wedge B \in\) sigma_sets \(\Omega^{\prime} M^{\prime}\)
        proof induct
            case (Basic B) then show ?case by auto
        next
            case Empty then show ?case
                by (auto intro!: sigma_sets.Empty exI[of _ \{\}])
            next
            case (Compl B)
            then obtain \(A\) where \(A: B=X-{ }^{\prime} A \cap \Omega A \in\) sigma_sets \(\Omega^{\prime} M^{\prime}\) by auto
            then have \([\) simp \(]: \Omega-B=X-‘\left(\Omega^{\prime}-A\right) \cap \Omega\)
                by (auto simp add: funcset_mem [OF X])
            with \(A(2)\) show ?case
                by (auto intro: sigma_sets.Compl)
        next
```

```
        case (Union F)
            then have }\foralli.\existsB.Fi=X -' B\cap\Omega\wedgeB\in\mathrm{ sigma_sets }\mp@subsup{\Omega}{}{\prime}\mp@subsup{M}{}{\prime}\mathrm{ by auto
            from choice[OF this] guess A .. note A= this
            with A show ?case
            by (auto simp: vimage_UN[symmetric] intro: sigma_sets.Union)
        qed
    qed
qed
lemma (in ring_of_sets) UNION_in_sets:
    fixes A:: nat => ' ' a set
    assumes A: range A\subseteqM
    shows (\bigcupi\in{0..<n}.A i)\inM
proof (induct n)
    case 0 show ?case by simp
next
    case (Suc n)
    thus ?case
        by (simp add: atLeastLessThanSuc) (metis A Un UNIV_I image_subset_iff)
qed
lemma (in ring_of_sets) range_disjointed_sets:
    assumes A: range A\subseteqM
    shows range (disjointed A)\subseteqM
proof (auto simp add: disjointed_def)
    fix n
    show A n - (\bigcupi\in{0..<n}. A i) \inM using UNION_in_sets
        by (metis A Diff UNIV_I image_subset_iff)
qed
lemma (in algebra) range_disjointed_sets':
    range A\subseteqM\Longrightarrow range (disjointed A)\subseteqM
    using range_disjointed_sets .
lemma sigma_algebra_disjoint_iff:
    sigma_algebra \OmegaM\longleftrightarrow algebra \OmegaM^
        (\forallA. range A\subseteqM\longrightarrow disjoint_family A\longrightarrow(\bigcupi::nat. A i) \inM)
proof (auto simp add: sigma_algebra_iff)
    fix A :: nat }=>\mathrm{ ' 'a set
    assume M: algebra \OmegaM
        and A: range A\subseteqM
        and UnA:\forallA. range A\subseteqM\longrightarrow disjoint_family A\longrightarrow(U i::nat. A i) \inM
    hence range (disjointed A)\subseteqM\longrightarrow
            disjoint_family (disjointed A)}
            (Ui. disjointed A i) \inM by blast
    hence ( \i. disjointed A i) \inM
    by (simp add: algebra.range_disjointed_sets'[of \Omega] M A disjoint_family_disjointed)
    thus (\bigcupi::nat. A i) \inM by (simp add:UN_disjointed_eq)
qed
```


Ring generated by a semiring

definition (in semiring_of_sets) generated_ring :: ' a set set where generated_ring $=\{\bigcup C \mid C . C \subseteq M \wedge$ finite $C \wedge$ disjoint $C\}$
lemma (in semiring_of_sets) generated_ringE[elim?]:
assumes $a \in$ generated_ring
obtains C where finite C disjoint $C C \subseteq M a=\bigcup C$
using assms unfolding generated_ring_def by auto
lemma (in semiring_of_sets) generated_ringI[intro?]:
assumes finite C disjoint $C C \subseteq M a=\bigcup C$
shows $a \in$ generated_ring
using assms unfolding generated_ring_def by auto
lemma (in semiring_of_sets) generated_ringI_Basic:
$A \in M \Longrightarrow A \in$ generated_ring
by (rule generated_ringI[of \{A\}]) (auto simp: disjoint_def)
lemma (in semiring_of_sets) generated_ring_disjoint_Un[intro]:
assumes $a: a \in$ generated_ring and $b: b \in$ generated_ring
and $a \cap b=\{ \}$
shows $a \cup b \in$ generated_ring
proof -
from a guess $C a$.. note $C a=$ this
from b guess $C b$.. note $C b=$ this
show ?thesis
proof
show disjoint $(C a \cup C b)$
using 〈 $a \cap b=\{ \}\rangle C a C b$ by (auto intro!: disjoint_union)
qed (insert Ca Cb , auto)
qed
lemma (in semiring_of_sets) generated_ring_empty: $\} \in$ generated_ring by (auto simp: generated_ring_def disjoint_def)
lemma (in semiring_of_sets) generated_ring_disjoint_Union:
assumes finite A shows $A \subseteq$ generated_ring \Longrightarrow disjoint $A \Longrightarrow \bigcup A \in$ generated_ring
using assms by (induct A) (auto simp: disjoint_def intro!: generated_ring_disjoint_Un generated_ring_empty)
lemma (in semiring_of_sets) generated_ring_disjoint_UNION:
finite $I \Longrightarrow \operatorname{disjoint}\left(A^{\prime} I\right) \Longrightarrow(\bigwedge i . i \in I \Longrightarrow A i \in$ generated_ring $) \Longrightarrow \bigcup(A$
' $I) \in$ generated_ring
by (intro generated_ring_disjoint_Union) auto
lemma (in semiring_of_sets) generated_ring_Int:
assumes $a: a \in$ generated_ring and $b: b \in$ generated_ring
shows $a \cap b \in$ generated_ring

```
proof -
    from \(a\) guess \(C a\).. note \(C a=\) this
    from \(b\) guess \(C b\).. note \(C b=\) this
    define \(C\) where \(C=(\lambda(a, b) . a \cap b)^{`}(C a \times C b)\)
    show ?thesis
    proof
        show disjoint \(C\)
        proof (simp add: disjoint_def C_def, intro ballI impI)
            fix \(a 1 b 1 a 2 b 2\) assume sets: \(a 1 \in C a b 1 \in C b a 2 \in C a b 2 \in C b\)
            assume \(a 1 \cap b 1 \neq a 2 \cap b 2\)
            then have \(a 1 \neq a 2 \vee b 1 \neq b 2\) by auto
            then show \((a 1 \cap b 1) \cap(a 2 \cap b 2)=\{ \}\)
            proof
                    assume \(a 1 \neq a 2\)
                    with sets \(C a\) have \(a 1 \cap a 2=\{ \}\)
                    by (auto simp: disjoint_def)
                    then show ?thesis by auto
        next
            assume \(b 1 \neq b 2\)
            with sets \(C b\) have \(b 1 \cap b 2=\{ \}\)
                by (auto simp: disjoint_def)
                    then show ?thesis by auto
        qed
        qed
    qed (insert \(C a C b\), auto simp: \(C_{-} d e f\) )
qed
lemma (in semiring_of_sets) generated_ring_Inter:
assumes finite \(A A \neq\{ \}\) shows \(A \subseteq\) generated_ring \(\Longrightarrow \bigcap A \in\) generated_ring using assms by (induct A rule: finite_ne_induct) (auto intro: generated_ring_Int)
lemma (in semiring_of_sets) generated_ring_INTER:
finite \(I \Longrightarrow I \neq\{ \} \Longrightarrow(\bigwedge i . i \in I \Longrightarrow A i \in\) generated_ring \() \Longrightarrow \bigcap\left(A^{\prime} I\right) \in\) generated_ring
by (intro generated_ring_Inter) auto
lemma (in semiring_of_sets) generating_ring:
ring_of_sets \(\Omega\) generated_ring
proof (rule ring_of_setsI)
let \(? R=\) generated_ring
show ? \(R \subseteq\) Pow \(\Omega\)
using sets_into_space by (auto simp: generated_ring_def generated_ring_empty)
show \(\} \in ? R\) by (rule generated_ring_empty)
\{ fix \(a\) assume \(a: a \in ? R\) then guess \(C a\).. note \(C a=\) this fix \(b\) assume \(b: b \in ? R\) then guess \(C b\).. note \(C b=\) this
show \(a-b \in ? R\)
proof cases
```

```
        assume \(C b=\{ \}\) with \(C b\langle a \in ? R\rangle\) show ?thesis
            by simp
    next
        assume \(C b \neq\{ \}\)
        with \(C a C b\) have \(a-b=\left(\bigcup a^{\prime} \in C a . \bigcap b^{\prime} \in C b . a^{\prime}-b^{\prime}\right)\) by auto
        also have \(\ldots \in\) ? \(R\)
        proof (intro generated_ring_INTER generated_ring_disjoint_UNION)
            fix \(a b\) assume \(a \in C a b \in C b\)
            with \(C a C b\) Diff_cover[of \(a b]\) show \(a-b \in ? R\)
            by (auto simp add: generated_ring_def)
                ( metis DiffI Diff_eq_empty_iff empty_iff)
    next
            show disjoint \(\left(\left(\lambda a^{\prime} \cdot \bigcap b^{\prime} \in C b \cdot a^{\prime}-b^{\prime}\right)^{‘} C a\right)\)
            using \(C a\) by (auto simp add: disjoint_def \(\langle C b \neq\{ \} 〉)\)
        next
            show finite \(C a\) finite \(C b C b \neq\{ \}\) by fact +
    qed
    finally show \(a-b \in ? R\).
    qed \}
note Diff \(=\) this
fix \(a b\) assume sets: \(a \in ? R \quad b \in ? R\)
have \(a \cup b=(a-b) \cup(a \cap b) \cup(b-a)\) by auto
also have \(\ldots \in\) ? \(R\)
    by (intro sets generated_ring_disjoint_Un generated_ring_Int Diff) auto
    finally show \(a \cup b \in ? R\).
qed
lemma (in semiring_of_sets) sigma_sets_generated_ring_eq: sigma_sets \(\Omega\) gener-
ated_ring \(=\) sigma_sets \(\Omega M\)
proof
    interpret \(M\) : sigma_algebra \(\Omega\) sigma_sets \(\Omega M\)
        using space_closed by (rule sigma_algebra_sigma_sets)
    show sigma_sets \(\Omega\) generated_ring \(\subseteq\) sigma_sets \(\Omega M\)
    by (blast intro!: sigma_sets_mono elim: generated_ringE)
qed (auto intro!: generated_ringI_Basic sigma_sets_mono)
```


A Two-Element Series

definition binaryset $::$ ' a set \Rightarrow 'a set \Rightarrow nat \Rightarrow 'a set where binaryset $A B=(\lambda x .\{ \})(0:=A$, Suc $0:=B)$

```
lemma range_binaryset_eq: range(binaryset A B)={A,B,{}}
    apply (simp add: binaryset_def)
    apply (rule set_eqI)
    apply (auto simp add: image_iff)
    done
```

lemma UN_binaryset_eq: $(\bigcup i$. binaryset $A B i)=A \cup B$
by (simp add: range_binaryset_eq cong del: SUP_cong_simp)

Closed CDI

definition closed_cdi :: 'a set \Rightarrow 'a set set \Rightarrow bool where
closed_cdi $\Omega M \longleftrightarrow$
$M \subseteq$ Pow $\Omega \&$
$(\forall s \in M . \Omega-s \in M) \&$
$(\forall A .($ range $A \subseteq M) \&(A 0=\{ \}) \&(\forall n . A n \subseteq A($ Suc $n)) \longrightarrow$
$(\bigcup i . A i) \in M) \&$
$(\forall A$. (range $A \subseteq M)$ \& disjoint_family $A \longrightarrow(\bigcup i::$ nat. $A i) \in M)$

inductive_set

smallest_ccdi_sets :: 'a set $\Rightarrow{ }^{\prime}$ 'a set set \Rightarrow ' a set set
for ΩM
where
Basic [intro]:
$a \in M \Longrightarrow a \in$ smallest_ccdi_sets ΩM
| Compl [intro]: $a \in$ smallest_ccdi_sets $\Omega M \Longrightarrow \Omega-a \in$ smallest_ccdi_sets ΩM | Inc: range $A \in \operatorname{Pow}($ smallest_ccdi_sets $\Omega M) \Longrightarrow A 0=\{ \} \Longrightarrow(\bigwedge n . A n \subseteq A$ (Suc n)) $\Longrightarrow(\bigcup i . A i) \in$ smallest_ccdi_sets ΩM
| Disj:
range $A \in$ Pow(smallest_ccdi_sets $\Omega M) \Longrightarrow$ disjoint_family A $\Longrightarrow(\bigcup i::$ nat. $A i) \in$ smallest_ccdi_sets ΩM
lemma (in subset_class) smallest_closed_cdi1: $M \subseteq$ smallest_ccdi_sets ΩM by auto
lemma (in subset_class) smallest_ccdi_sets: smallest_ccdi_sets $\Omega M \subseteq$ Pow Ω
apply (rule subsetI)
apply (erule smallest_ccdi_sets.induct)
apply (auto intro: range_subsetD dest: sets_into_space)
done
lemma (in subset_class) smallest_closed_cdi2: closed_cdi Ω (smallest_ccdi_sets Ω M)
apply (auto simp add: closed_cdi_def smallest_ccdi_sets) apply (blast intro: smallest_ccdi_sets.Inc smallest_ccdi_sets.Disj) + done
lemma closed_cdi_subset: closed_cdi $\Omega M \Longrightarrow M \subseteq P o w \Omega$
by (simp add: closed_cdi_def)
lemma closed_cdi_Compl: closed_cdi $\Omega M \Longrightarrow s \in M \Longrightarrow \Omega-s \in M$
by (simp add: closed_cdi_def)
lemma closed_cdi_Inc:
closed_cdi $\Omega M \Longrightarrow$ range $A \subseteq M \Longrightarrow A 0=\{ \} \Longrightarrow(!!n . A n \subseteq A(S u c n))$
$\Longrightarrow(\bigcup i . A i) \in M$
by (simp add: closed_cdi_def)
lemma closed_cdi_Disj:
closed_cdi $\Omega M \Longrightarrow$ range $A \subseteq M \Longrightarrow$ disjoint_family $A \Longrightarrow(\bigcup i:: n a t . A i) \in M$ by (simp add: closed_cdi_def)
lemma $c l o s e d _c d i _U n:$
assumes cdi: closed_cdi ΩM and empty: $\} \in M$
and $A: A \in M$ and $B: B \in M$
and disj: $A \cap B=\{ \}$
shows $A \cup B \in M$
proof -
have ra: range (binaryset $A B$) $\subseteq M$
by (simp add: range_binaryset_eq empty $A B$)
have di: disjoint_family (binaryset $A B$) using disj
by (simp add: disjoint_family_on_def binaryset_def Int_commute)
from closed_cdi_Disj [OF cdi ra di]
show ?thesis
by (simp add: UN_binaryset_eq)
qed
lemma (in algebra) smallest_ccdi_sets_Un:
assumes $A: A \in$ smallest_ccdi_sets ΩM and $B: B \in$ smallest_ccdi_sets ΩM and disj: $A \cap B=\{ \}$
shows $A \cup B \in$ smallest_ccdi_sets ΩM
proof -
have ra: range (binaryset $A B) \in$ Pow (smallest_ccdi_sets ΩM)
by (simp add: range_binaryset_eq A B smallest_ccdi_sets.Basic)
have di: disjoint_family (binaryset A B) using disj
by (simp add: disjoint_family_on_def binaryset_def Int_commute)
from Disj [OF ra di]
show ?thesis
by (simp add: UN_binaryset_eq)
qed
lemma (in algebra) smallest_ccdi_sets_Int1:
assumes $a: a \in M$
shows $b \in$ smallest_ccdi_sets $\Omega M \Longrightarrow a \cap b \in$ smallest_ccdi_sets ΩM
proof (induct rule: smallest_ccdi_sets.induct)
case (Basic x)
thus ?case
by (metis a Int smallest_ccdi_sets.Basic)
next
case (Compl x)
have $a \cap(\Omega-x)=\Omega-((\Omega-a) \cup(a \cap x))$
by blast

```
    also have ... \(\in\) smallest_ccdi_sets \(\Omega M\)
    by (metis smallest_ccdi_sets.Compl a Compl(2) Diff_Int2 Diff_Int_distrib2
        Diff_disjoint Int_Diff Int_empty_right smallest_ccdi_sets_Un
        smallest_ccdi_sets.Basic smallest_ccdi_sets.Compl)
    finally show ?case .
next
    case (Inc A)
    have 1: \((\bigcup i .(\lambda i . a \cap A i) i)=a \cap(\bigcup i . A i)\)
        by blast
    have range ( \(\lambda i . a \cap A i) \in \operatorname{Pow}\left(s m a l l e s t \_c c d i \_s e t s ~ \Omega M\right)\) using Inc
        by blast
    moreover have \((\lambda i . a \cap A\) i) \(0=\{ \}\)
        by (simp add: Inc)
    moreover have !!n. ( \(\lambda i . a \cap A i) n \subseteq(\lambda i . a \cap A i)(S u c n)\) using Inc
        by blast
    ultimately have 2: \((\bigcup i .(\lambda i . a \cap A i) i) \in\) smallest_ccdi_sets \(\Omega M\)
        by (rule smallest_ccdi_sets.Inc)
    show ?case
        by (metis 1 2)
next
    case (Disj A)
    have 1: \((\bigcup i .(\lambda i . a \cap A i) i)=a \cap(\bigcup i . A i)\)
        by blast
    have range ( \(\lambda i . a \cap A i) \in \operatorname{Pow}\left(s m a l l e s t \_c c d i \_s e t s ~ \Omega M\right)\) using Disj
        by blast
    moreover have disjoint_family ( \(\lambda i . a \cap A i\) ) using Disj
        by (auto simp add: disjoint_family_on_def)
    ultimately have 2: \((\bigcup i .(\lambda i . a \cap A i) i) \in\) smallest_ccdi_sets \(\Omega M\)
        by (rule smallest_ccdi_sets.Disj)
    show ? case
        by (metis 1 2)
qed
lemma (in algebra) smallest_ccdi_sets_Int:
    assumes \(b: b \in\) smallest_ccdi_sets \(\Omega M\)
    shows \(a \in\) smallest_ccdi_sets \(\Omega M \Longrightarrow a \cap b \in\) smallest_ccdi_sets \(\Omega M\)
proof (induct rule: smallest_ccdi_sets.induct)
    case (Basic x)
    thus ?case
        by (metis b smallest_ccdi_sets_Int1)
next
    case (Compl \(x\) )
    have \((\Omega-x) \cap b=\Omega-(x \cap b \cup(\Omega-b))\)
        by blast
    also have ... \(\in\) smallest_ccdi_sets \(\Omega M\)
        by (metis Compl(2) Diff_disjoint Int_Diff Int_commute Int_empty_right b
        smallest_ccdi_sets.Compl smallest_ccdi_sets_Un)
    finally show ?case .
```

```
next
    case (Inc A)
    have 1:(\bigcupi.(\lambdai.A i\capb)i)=(\bigcupi.Ai)\capb
        by blast
    have range (\lambdai.A i\capb)\inPow(smallest_ccdi_sets \Omega M) using Inc
        by blast
    moreover have (\lambdai.A i\capb) 0={}
        by (simp add: Inc)
    moreover have !!n. (\lambdai. A i\capb) n\subseteq(\lambdai.A i\capb) (Suc n) using Inc
        by blast
    ultimately have 2: (\bigcupi. (\lambdai. A i \cap b) i) \in smallest_ccdi_sets \Omega M
        by (rule smallest_ccdi_sets.Inc)
    show ?case
        by (metis 1 2)
next
    case (Disj A)
    have 1:(\bigcupi.(\lambdai.A i\capb)i)=(\bigcupi.Ai)\capb
        by blast
    have range (\lambdai. A i\capb)\in Pow(smallest_ccdi_sets \Omega M) using Disj
        by blast
    moreover have disjoint_family ( }\lambdai.Ai\capb)\mathrm{ using Disj
        by (auto simp add: disjoint_family_on_def)
    ultimately have 2: (\bigcupi. (\lambdai. A i\capb) i) \in smallest_ccdi_sets \Omega M
        by (rule smallest_ccdi_sets.Disj)
    show ?case
        by (metis 1 2)
qed
lemma (in algebra) sigma_property_disjoint_lemma:
    assumes sbC:M\subseteqC
        and ccdi: closed_cdi \Omega C
    shows sigma_sets \OmegaM\subseteqC
proof -
    have smallest_ccdi_sets \Omega M\in{B.M\subseteqB\wedge sigma_algebra \Omega B}
        apply (auto simp add: sigma_algebra_disjoint_iff algebra_iff_Int
                smallest_ccdi_sets_Int)
        apply (metis Union_Pow_eq Union_upper subsetD smallest_ccdi_sets)
        apply (blast intro: smallest_ccdi_sets.Disj)
        done
    hence sigma_sets (\Omega)(M)\subseteq smallest_ccdi_sets \Omega M
        by clarsimp
            (drule sigma_algebra.sigma_sets_subset [where a=M], auto)
    also have ... \subseteqC
        proof
            fix }
            assume x: x \in smallest_ccdi_sets \Omega M
            thus }x\in
                proof (induct rule: smallest_ccdi_sets.induct)
                    case (Basic x)
```

```
            thus ?case
                    by (metis Basic subsetD sbC)
        next
            case (Compl x)
            thus ?case
                    by (blast intro: closed_cdi_Compl [OF ccdi, simplified])
            next
                case (Inc A)
                thus ?case
                    by (auto intro: closed_cdi_Inc [OF ccdi, simplified])
            next
                case (Disj A)
        thus ?case
            by (auto intro: closed_cdi_Disj [OF ccdi, simplified])
        qed
    qed
    finally show ?thesis .
qed
lemma (in algebra) sigma_property_disjoint:
    assumes sbC:M\subseteqC
        and compl: !!s.s }\inC\cap\mathrm{ sigma_sets }(\Omega)(M)\Longrightarrow\Omega-s\in
        and inc: !!A. range A\subseteqC\cap sigma_sets (\Omega) (M)
            \Longrightarrow A 0 = \{ \} \Longrightarrow ( ! ! n . A n \subseteq A ( S u c ~ n ) )
                    \Longrightarrow(\bigcupi.A i) \inC
        and disj: !!A. range A\subseteqC\cap sigma_sets (\Omega)(M)
                            \Longrightarrow \text { disjoint_family } A \Longrightarrow ( \bigcup i : : n a t . ~ A ~ i ) ~ \in C
    shows sigma_sets (\Omega) (M)\subseteqC
proof -
    have sigma_sets (\Omega) (M)\subseteqC\cap sigma_sets (\Omega) (M)
        proof (rule sigma_property_disjoint_lemma)
            show M\subseteqC\cap sigma_sets (\Omega)(M)
            by (metis Int_greatest Set.subsetI sbC sigma_sets.Basic)
        next
            show closed_cdi \Omega(C\cap sigma_sets (\Omega)(M))
                by (simp add: closed_cdi_def compl inc disj)
                (metis PowI Set.subsetI le_infI2 sigma_sets_into_sp space_closed
                IntE sigma_sets.Compl range_subsetD sigma_sets.Union)
        qed
    thus ?thesis
        by blast
qed
```


Dynkin systems

```
locale Dynkin_system \(=\) subset_class +
    assumes space: \Omega\inM
        and compl[intro!]: }\A.A\inM\Longrightarrow\Omega-A\in
        and}UN[\mathrm{ intro!]: \A. disjoint_family }A\Longrightarrow\mathrm{ range }A\subseteq
```

$$
\Longrightarrow(\bigcup i:: \text { nat. } A i) \in M
$$

lemma (in Dynkin_system) empty[intro, simp]: $\} \in M$ using space compl[of $\Omega]$ by simp
lemma (in Dynkin_system) diff:
assumes sets: $D \in M E \in M$ and $D \subseteq E$
shows $E-D \in M$
proof -
let ?f $=\lambda x$. if $x=0$ then D else if $x=$ Suc 0 then $\Omega-E$ else $\}$
have range ?f $=\{D, \Omega-E,\{ \}\}$
by (auto simp: image_iff)
moreover have $D \cup(\Omega-E)=(\bigcup i$. ?f $i)$
by (auto simp: image_iff split: if_split_asm)
moreover
have disjoint_family ?f unfolding disjoint_family_on_def
using $\langle D \in M\rangle[$ THEN sets_into_space $]\langle D \subseteq E\rangle$ by auto
ultimately have $\Omega-(D \cup(\Omega-E)) \in M$
using sets $U N$ by auto fastforce
also have $\Omega-(D \cup(\Omega-E))=E-D$
using assms sets_into_space by auto
finally show ?thesis .
qed
lemma Dynkin_systemI:
assumes $\bigwedge A . A \in M \Longrightarrow A \subseteq \Omega \Omega \in M$
assumes $\bigwedge A . A \in M \Longrightarrow \Omega-A \in M$
assumes $\wedge A$. disjoint_family $A \Longrightarrow$ range $A \subseteq M$ $\Longrightarrow(\bigcup i::$ nat. $A i) \in M$
shows Dynkin_system Ω M
using assms by (auto simp: Dynkin_system_def Dynkin_system_axioms_def subset_class_def)
lemma Dynkin_systemI':
assumes $1: \bigwedge A . A \in M \Longrightarrow A \subseteq \Omega$
assumes empty: $\} \in M$
assumes Diff: $\wedge A . A \in M \Longrightarrow \Omega-A \in M$
assumes 2: $\bigwedge A$. disjoint_family $A \Longrightarrow$ range $A \subseteq M$ $\Longrightarrow(\bigcup i::$ nat. A $i) \in M$
shows Dynkin_system Ω M
proof -
from Diff [OF empty] have $\Omega \in M$ by auto
from 1 this Diff 2 show ?thesis
by (intro Dynkin_systemI) auto
qed
lemma Dynkin_system_trivial:
shows Dynkin_system A (Pow A)
by (rule Dynkin_systemI) auto
lemma sigma_algebra_imp_Dynkin_system:
assumes sigma_algebra ΩM shows Dynkin_system ΩM
proof -
interpret sigma_algebra ΩM by fact
show ?thesis using sets_into_space by (fastforce intro!: Dynkin_systemI)
qed

Intersection sets systems

definition Int_stable :: 'a set set \Rightarrow bool where
Int_stable $M \longleftrightarrow(\forall a \in M . \forall b \in M . a \cap b \in M)$
lemma (in algebra) Int_stable: Int_stable M
unfolding Int_stable_def by auto
lemma Int_stableI_image:
$(\bigwedge i j . i \in I \Longrightarrow j \in I \Longrightarrow \exists k \in I . A i \cap A j=A k) \Longrightarrow \operatorname{Int}$ _stable $\left(A^{\prime} I\right)$
by (auto simp: Int_stable_def image_def)
lemma Int_stableI:
$(\bigwedge a b . a \in A \Longrightarrow b \in A \Longrightarrow a \cap b \in A) \Longrightarrow$ Int_stable A
unfolding Int_stable_def by auto
lemma Int_stableD:
Int_stable $M \Longrightarrow a \in M \Longrightarrow b \in M \Longrightarrow a \cap b \in M$
unfolding Int_stable_def by auto
lemma (in Dynkin_system) sigma_algebra_eq_Int_stable:
sigma_algebra $\Omega M \longleftrightarrow$ Int_stable M
proof
assume sigma_algebra ΩM then show Int_stable M unfolding sigma_algebra_def using algebra.Int_stable by auto
next
assume Int_stable M
show sigma_algebra ΩM
unfolding sigma_algebra_disjoint_iff algebra_iff_Un
proof (intro conjI ballI allI impI)
show $M \subseteq$ Pow (Ω) using sets_into_space by auto
next
fix $A B$ assume $A \in M B \in M$
then have $A \cup B=\Omega-((\Omega-A) \cap(\Omega-B))$

$$
\Omega-A \in M \Omega-B \in M
$$

using sets_into_space by auto
then show $A \cup B \in M$ using〈Int_stable M 〉 unfolding Int_stable_def by auto
qed auto
qed

Smallest Dynkin systems

definition Dynkin :: 'a set $\Rightarrow{ }^{\prime} a$ set set \Rightarrow 'a set set where Dynkin $\Omega M=(\bigcap\{D$. Dynkin_system $\Omega D \wedge M \subseteq D\})$
lemma Dynkin_system_Dynkin:
assumes $M \subseteq \operatorname{Pow}(\Omega)$
shows Dynkin_system Ω (Dynkin ΩM)
proof (rule Dynkin_systemI)
fix A assume $A \in D y n k i n ~ \Omega M$
moreover
\{ fix D assume $A \in D$ and $d:$ Dynkin_system ΩD
then have $A \subseteq \Omega$ by (auto simp: Dynkin_system_def subset_class_def) \}
moreover have $\{D$. Dynkin_system $\Omega D \wedge M \subseteq D\} \neq\{ \}$
using assms Dynkin_system_trivial by fastforce
ultimately show $A \subseteq \Omega$
unfolding Dynkin_def using assms
by auto
next
show $\Omega \in$ Dynkin ΩM
unfolding Dynkin_def using Dynkin_system.space by fastforce
next
fix A assume $A \in D y n k i n \Omega M$
then show $\Omega-A \in$ Dynkin ΩM
unfolding Dynkin_def using Dynkin_system.compl by force
next
fix A :: nat $\Rightarrow{ }^{\prime}$ a set
assume A : disjoint_family A range $A \subseteq$ Dynkin ΩM show $(\bigcup i . A i) \in$ Dynkin ΩM unfolding Dynkin_def
proof (simp, safe)
fix D assume Dynkin_system $\Omega D M \subseteq D$
with A have $(\bigcup i . A i) \in D$
by (intro Dynkin_system.UN) (auto simp: Dynkin_def)
then show $(\bigcup i . A i) \in D$ by auto
qed
qed
lemma Dynkin_Basic[intro]: $A \in M \Longrightarrow A \in$ Dynkin ΩM
unfolding Dynkin_def by auto
lemma (in Dynkin_system) restricted_Dynkin_system:
assumes $D \in M$
shows Dynkin_system $\Omega\{Q . Q \subseteq \Omega \wedge Q \cap D \in M\}$
proof (rule Dynkin_systemI, simp_all)
have $\Omega \cap D=D$
using $\langle D \in M\rangle$ sets_into_space by auto
then show $\Omega \cap D \in M$
using $\langle D \in M\rangle$ by auto
next
fix A assume $A \subseteq \Omega \wedge A \cap D \in M$

```
moreover have \((\Omega-A) \cap D=(\Omega-(A \cap D))-(\Omega-D)\)
    by auto
    ultimately show \((\Omega-A) \cap D \in M\)
    using \(\langle D \in M\rangle\) by (auto intro: diff)
next
    fix \(A\) :: nat \(\Rightarrow{ }^{\prime}\) a set
    assume disjoint_family \(A\) range \(A \subseteq\{Q . Q \subseteq \Omega \wedge Q \cap D \in M\}\)
    then have \(\wedge i . A i \subseteq \Omega\) disjoint_family \((\lambda i . A i \cap D)\)
        range \((\lambda i . A i \cap D) \subseteq M(\bigcup x . A x) \cap D=(\bigcup x . A x \cap D)\)
        by ((fastforce simp: disjoint_family_on_def)+)
    then show \((\bigcup x . A x) \subseteq \Omega \wedge(\bigcup x . A x) \cap D \in M\)
        by (auto simp del: UN_simps)
qed
lemma (in Dynkin_system) Dynkin_subset:
    assumes \(N \subseteq M\)
    shows Dynkin \(\Omega N \subseteq M\)
proof -
    have Dynkin_system \(\Omega\) M ..
    then have Dynkin_system \(\Omega M\)
        using assms unfolding Dynkin_system_def Dynkin_system_axioms_def sub-
set_class_def by simp
    with \(\langle N \subseteq M\rangle\) show ?thesis by (auto simp add: Dynkin_def)
qed
lemma sigma_eq_Dynkin:
    assumes sets: \(M \subseteq\) Pow \(\Omega\)
    assumes Int_stable M
    shows sigma_sets \(\Omega M=\) Dynkin \(\Omega M\)
proof -
    have Dynkin \(\Omega M \subseteq\) sigma_sets \((\Omega)(M)\)
        using sigma_algebra_imp_Dynkin_system
        unfolding Dynkin_def sigma_sets_least_sigma_algebra[OF sets] by auto
    moreover
    interpret Dynkin_system \(\Omega\) Dynkin \(\Omega\) M
        using Dynkin_system_Dynkin[OF sets].
    have sigma_algebra \(\Omega\) (Dynkin \(\Omega M\) )
        unfolding sigma_algebra_eq_Int_stable Int_stable_def
    proof (intro ballI)
        fix \(A B\) assume \(A \in\) Dynkin \(\Omega M B \in\) Dynkin \(\Omega M\)
        let ? \(D=\lambda E .\{Q . Q \subseteq \Omega \wedge Q \cap E \in\) Dynkin \(\Omega M\}\)
        have \(M \subseteq\) ? \(D B\)
        proof
            fix \(E\) assume \(E \in M\)
            then have \(M \subseteq ? D E E \in\) Dynkin \(\Omega M\)
            using sets_into_space 〈Int_stable \(M\) 〉 by (auto simp: Int_stable_def)
            then have Dynkin \(\Omega M \subseteq\) ?D \(E\)
                using restricted_Dynkin_system \(\langle E \in\) Dynkin \(\Omega M\rangle\)
                by (intro Dynkin_system.Dynkin_subset) simp_all
```

```
        then have }B\in?D
            using }\langleB\inDynkin \Omega M> by aut
        then have E\capB\inDynkin \OmegaM
        by (subst Int_commute) simp
        then show }E\in?D
        using sets }\langleE\inM\rangle\mathrm{ by auto
    qed
    then have Dynkin \Omega M\subseteq?D B
        using restricted_Dynkin_system \langleB\in Dynkin \Omega M 
        by (intro Dynkin_system.Dynkin_subset) simp_all
    then show }A\capB\in\mathrm{ Dynkin }\Omega
    using \A \inDynkin \Omega M\ sets_into_space by auto
    qed
    from sigma_algebra.sigma_sets_subset[OF this, of M]
    have sigma_sets (\Omega) (M)\subseteq Dynkin \Omega M by auto
    ultimately have sigma_sets (\Omega) (M) = Dynkin \Omega M by auto
    then show ?thesis
    by (auto simp: Dynkin_def)
qed
lemma (in Dynkin_system) Dynkin_idem:
    Dynkin \Omega M = M
proof -
    have Dynkin \Omega M = M
    proof
        show M\subseteqDynkin \Omega M
            using Dynkin_Basic by auto
        show Dynkin \Omega M\subseteqM
            by (intro Dynkin_subset) auto
    qed
    then show ?thesis
        by (auto simp: Dynkin_def)
qed
lemma (in Dynkin_system) Dynkin_lemma:
    assumes Int_stable E
    and E: E\subseteqMM\subseteq sigma_sets \Omega E
    shows sigma_sets \Omega E = M
proof -
    have E\subseteqPow \Omega
        using E sets_into_space by force
    then have *: sigma_sets \OmegaE=Dynkin \OmegaE
        using \Int_stable E〉 by (rule sigma_eq_Dynkin)
    then have Dynkin \Omega E=M
        using assms Dynkin_subset[OF E(1)] by simp
    with * show ?thesis
        using assms by (auto simp: Dynkin_def)
qed
```


Induction rule for intersection-stable generators

The reason to introduce Dynkin-systems is the following induction rules for σ-algebras generated by a generator closed under intersection.

```
proposition sigma_sets_induct_disjoint[consumes 3, case_names basic empty compl
union]:
    assumes Int_stable \(G\)
        and closed: \(G \subseteq\) Pow \(\Omega\)
        and \(A: A \in\) sigma_sets \(\Omega G\)
    assumes basic: \(\bigwedge A . A \in G \Longrightarrow P A\)
        and empty: \(P\}\)
        and compl: \(\bigwedge A\). \(A \in\) sigma_sets \(\Omega G \Longrightarrow P A \Longrightarrow P(\Omega-A)\)
        and union: \(\bigwedge A\). disjoint_family \(A \Longrightarrow\) range \(A \subseteq\) sigma_sets \(\Omega G \Longrightarrow(\bigwedge i . P\)
\((A i)) \Longrightarrow P(\bigcup i::\) nat. \(A\) i \()\)
    shows \(P A\)
proof -
    let \(? D=\{A \in\) sigma_sets \(\Omega G . P A\}\)
    interpret sigma_algebra \(\Omega\) sigma_sets \(\Omega G\)
        using closed by (rule sigma_algebra_sigma_sets)
    from compl[ \(O F_{\text {_ }}\) empty] closed have space: \(P \Omega\) by simp
    interpret Dynkin_system \(\Omega\) ? D
        by standard (auto dest: sets_into_space intro!: space compl union)
    have sigma_sets \(\Omega G=\) ? \(D\)
        by (rule Dynkin_lemma) (auto simp: basic 〈Int_stable \(G\rangle\) )
    with \(A\) show ?thesis by auto
qed
```


6.1.2 Measure type

definition positive :: 'a set set \Rightarrow ('a set \Rightarrow ennreal) \Rightarrow bool where positive $M \mu \longleftrightarrow \mu\}=0$
definition countably_additive :: 'a set set \Rightarrow ('a set \Rightarrow ennreal $) \Rightarrow$ bool where countably_additive $M f \longleftrightarrow$
$(\forall$ A. range $A \subseteq M \longrightarrow$ disjoint_family $A \longrightarrow(\bigcup i . A i) \in M \longrightarrow$ $\left.\left(\sum i . f(A i)\right)=f(\bigcup i . A i)\right)$
definition measure_space :: 'a set $\Rightarrow{ }^{\prime}$ 'a set set \Rightarrow ('a set \Rightarrow ennreal $) \Rightarrow$ bool where
measure_space $\Omega A \mu \longleftrightarrow$ sigma_algebra $\Omega A \wedge$ positive $A \mu \wedge$ countably_additive $A \mu$
typedef ' a measure $=$
$\left\{\left(\Omega::^{\prime} a\right.\right.$ set $\left., A, \mu\right) .(\forall a \in-A . \mu a=0) \wedge$ measure_space $\left.\Omega A \mu\right\}$
proof
have sigma_algebra UNIV $\{\}$, UNIV $\}$
by (auto simp: sigma_algebra_iff2)
then show $(U N I V,\{\{ \}, U N I V\}, \lambda A .0) \in\{(\Omega, A, \mu) .(\forall a \in-A . \mu a=0) \wedge$
measure_space $\Omega A \mu\}$

```
    by (auto simp: measure_space_def positive_def countably_additive_def)
qed
definition space :: 'a measure => 'a set where
    space M = fst (Rep_measure M)
definition sets :: ' a measure }=>\mp@subsup{|}{}{\prime}a\mathrm{ set set where
    sets M = fst (snd (Rep_measure M))
definition emeasure :: 'a measure }=>\mp@subsup{}{}{\prime}a\mathrm{ set }=>\mathrm{ ennreal where
    emeasure M = snd (snd (Rep_measure M))
definition measure :: 'a measure }=>\mp@subsup{}{}{\prime}a\mathrm{ set }=>\mathrm{ real where
    measure MA = enn2real (emeasure MA)
declare [[coercion sets]]
declare [[coercion measure]]
declare [[coercion emeasure]]
lemma measure_space: measure_space (space M) (sets M) (emeasure M)
    by (cases M) (auto simp: space_def sets_def emeasure_def Abs_measure_inverse)
interpretation sets: sigma_algebra space M sets M for M :: 'a measure
    using measure_space[of M] by (auto simp: measure_space_def)
definition measure_of :: 'a set }=>\mp@subsup{'}{}{\prime}a\mathrm{ set set }=>('a set => ennreal) = ''a measure
    where
measure_of \Omega A }\mu
    Abs_measure ( }\Omega\mathrm{ , if }A\subseteq\mathrm{ Pow }\Omega\mathrm{ then sigma_sets }\OmegaA\mathrm{ else }{{},\Omega}\mathrm{ ,
    \lambdaa. if a \in sigma_sets \Omega A ^ measure_space \Omega (sigma_sets \Omega A) }\mu\mathrm{ then }\mu\mathrm{ a else
0)
```

abbreviation sigma $\Omega A \equiv$ measure_of $\Omega A(\lambda x .0)$
lemma measure_space_0: $A \subseteq$ Pow $\Omega \Longrightarrow$ measure_space Ω (sigma_sets ΩA) $(\lambda x$. 0)
unfolding measure_space_def
by (auto intro!: sigma_algebra_sigma_sets simp: positive_def countably_additive_def)
lemma sigma_algebra_trivial: sigma_algebra $\Omega\{\}, \Omega\}$
by unfold_locales(fastforce intro: exI[where $x=\{\{ \}\}]$ exI $[$ where $x=\{\Omega\}])+$
lemma measure_space_0': measure_space $\Omega\{\}, \Omega\}(\lambda x .0)$
$\mathbf{b y}($ simp add: measure_space_def positive_def countably_additive_def sigma_algebra_trivial)
lemma measure_space_closed:
assumes measure_space Ω M μ

```
    shows \(M \subseteq\) Pow \(\Omega\)
proof -
    interpret sigma_algebra \(\Omega M\) using assms by (simp add: measure_space_def)
    show ?thesis by(rule space_closed)
qed
```

lemma (in ring_of_sets) positive_cong_eq:
$\left(\bigwedge a . a \in M \Longrightarrow \mu^{\prime} a=\mu a\right) \Longrightarrow$ positive $M \mu^{\prime}=$ positive $M \mu$
by (auto simp add: positive_def)
lemma (in sigma_algebra) countably_additive_eq:
$\left(\bigwedge a . a \in M \Longrightarrow \mu^{\prime} a=\mu a\right) \Longrightarrow$ countably_additive $M \mu^{\prime}=$ countably_additive
M μ
unfolding countably_additive_def
by (intro arg_cong[where $f=A l l]$ ext) (auto simp add: countably_additive_def
subset_eq)
lemma measure_space_eq:
assumes closed: $A \subseteq$ Pow Ω and eq: $\bigwedge a . a \in$ sigma_sets $\Omega A \Longrightarrow \mu a=\mu^{\prime} a$
shows measure_space Ω (sigma_sets ΩA) $\mu=$ measure_space Ω (sigma_sets Ω
A) μ^{\prime}
proof -
interpret sigma_algebra Ω sigma_sets Ω A using closed by (rule sigma_algebra_sigma_sets)
from positive_cong_eq[OF eq, of $\lambda i . i]$ countably_additive_eq[OF eq, of λi. $i]$
show ?thesis by (auto simp: measure_space_def)
qed
lemma measure_of_eq:
assumes closed: $A \subseteq$ Pow Ω and eq: $\left(\bigwedge a . a \in\right.$ sigma_sets $\left.\Omega A \Longrightarrow \mu a=\mu^{\prime} a\right)$
shows measure_of $\Omega A \mu=$ measure_of $\Omega A \mu^{\prime}$
proof -
have measure_space Ω (sigma_sets $\Omega A) \mu=$ measure_space Ω (sigma_sets ΩA) μ^{\prime}
using assms by (rule measure_space_eq)
with eq show ?thesis by (auto simp add: measure_of_def intro!: arg_cong[where $\left.\left.f=A b s _m e a s u r e\right]\right)$
qed
lemma
shows space_measure_of_conv: space (measure_of $\Omega A \mu$) $=\Omega$ (is ?space)
and sets_measure_of_conv:
sets $($ measure_of $\Omega A \mu)=($ if $A \subseteq$ Pow Ω then sigma_sets ΩA else $\{\{ \}, \Omega\})$
(is ?sets)
and emeasure_measure_of_conv:
emeasure (measure_of $\Omega A \mu$) =
(λB. if $B \in$ sigma_sets $\Omega A \wedge$ measure_space $\Omega($ sigma_sets $\Omega A) \mu$ then μB else
0) (is ?emeasure)
proof -

```
    have ?space ^ ?sets ^ ?emeasure
    proof(cases measure_space \Omega(sigma_sets \Omega A) \mu)
    case True
    from measure_space_closed[OF this] sigma_sets_superset_generator[of A \Omega]
    have }A\subseteqPow \Omega by sim
    hence measure_space \Omega (sigma_sets \Omega A) \mu = measure_space \Omega (sigma_sets \Omega
A)
        (\lambdaa. if a \in sigma_sets \Omega A then }\mu\mathrm{ a else 0)
        by(rule measure_space_eq) auto
    with True < }A\subseteq\mathrm{ Pow }\Omega\mathrm{ \ show ?thesis
    by(simp add: measure_of_def space_def sets_def emeasure_def Abs_measure_inverse)
    next
    case False thus ?thesis
        by(cases A}\subseteqPow \Omega)(simp_all add: Abs_measure_inverse measure_of_def
sets_def space_def emeasure_def measure_space_0 measure_space_0')
    qed
    thus ?space?sets ?emeasure by simp_all
qed
lemma [simp]:
    assumes A: A\subseteqPow \Omega
    shows sets_measure_of:sets (measure_of \OmegaA \mu) = sigma_sets \Omega A
        and space_measure_of:space (measure_of \OmegaA )
using assms
by(simp_all add: sets_measure_of_conv space_measure_of_conv)
lemma space_in_measure_of [simp]: \Omega \in sets (measure_of \Omega M \mu)
    by (subst sets_measure_of_conv) (auto simp: sigma_sets_top)
lemma (in sigma_algebra) sets_measure_of_eq[simp]: sets (measure_of \OmegaM \mu)=
M
    using space_closed by (auto intro!: sigma_sets_eq)
lemma (in sigma_algebra) space_measure_of_eq[simp]: space (measure_of \Omega M \mu)
=\Omega
    by (rule space_measure_of_conv)
```

lemma measure_of_subset: $M \subseteq$ Pow $\Omega \Longrightarrow M^{\prime} \subseteq M \Longrightarrow$ sets (measure_of ΩM^{\prime}
$\mu) \subseteq$ sets (measure_of $\Omega M \mu^{\prime}$)
by (auto intro!: sigma_sets_subseteq)
lemma emeasure_sigma: emeasure (sigma $\Omega A)=(\lambda x .0)$
unfolding measure_of_def emeasure_def
by (subst Abs_measure_inverse)
(auto simp: measure_space_def positive_def countably_additive_def
intro!: sigma_algebra_sigma_sets sigma_algebra_trivial)
lemma sigma_sets_mono":
assumes $A \in$ sigma_sets $C D$

```
    assumes \(B \subseteq D\)
    assumes \(D \subseteq\) Pow \(C\)
    shows sigma_sets \(A B \subseteq\) sigma_sets \(C D\)
proof
    fix \(x\) assume \(x \in\) sigma_sets \(A B\)
    thus \(x \in\) sigma_sets \(C D\)
    proof induct
        case (Basic a) with assms have \(a \in D\) by auto
        thus ?case ..
    next
        case Empty show ?case by (rule sigma_sets.Empty)
    next
        from assms have \(A \in\) sets (sigma \(C D\) ) by (subst sets_measure_of \([O F\langle D \subseteq\)
Pow \(C>]\) )
    moreover case (Compl a) hence \(a \in\) sets (sigma C D) by (subst sets_measure_of [OF
\(\langle D \subseteq\) Pow \(C\rangle]\) )
    ultimately have \(A-a \in\) sets (sigma \(C D\) )..
    thus ?case by (subst (asm) sets_measure_of \([O F\langle D \subseteq\) Pow \(C\rangle])\)
    next
        case (Union a)
        thus ?case by (intro sigma_sets.Union)
    qed
qed
lemma in_measure_of \([\) intro, simp \(]: M \subseteq P o w ~ \Omega \Longrightarrow A \in M \Longrightarrow A \in\) sets (measure_of
\(\Omega M \mu)\)
    by auto
lemma space_empty_iff: space \(N=\{ \} \longleftrightarrow\) sets \(N=\{\{ \}\}\)
    by (metis Pow_empty Sup_bot_conv(1) cSup_singleton empty_iff
                sets.sigma_sets_eq sets.space_closed sigma_sets_top subset_singletonD)
Constructing simple 'a measure
proposition emeasure_measure_of:
    assumes \(M: M=\) measure_of \(\Omega A \mu\)
    assumes ms: \(A \subseteq\) Pow \(\Omega\) positive (sets \(M\) ) \(\mu\) countably_additive (sets \(M\) ) \(\mu\)
    assumes \(X: X \in\) sets \(M\)
    shows emeasure \(M X=\mu X\)
proof -
    interpret sigma_algebra \(\Omega\) sigma_sets \(\Omega\) A by (rule sigma_algebra_sigma_sets)
fact
    have measure_space \(\Omega\) (sigma_sets \(\Omega\) A) \(\mu\)
        using \(m s M\) by (simp add: measure_space_def sigma_algebra_sigma_sets)
    thus ?thesis using \(X \mathrm{~ms}\)
        by (simp add: \(M\) emeasure_measure_of_conv sets_measure_of_conv)
    qed
    lemma emeasure_measure_of_sigma:
```

```
    assumes ms: sigma_algebra \Omega M positive M \mu countably_additive M }
    assumes A: A\inM
    shows emeasure (measure_of \OmegaM }\Omega\mathrm{ ) A = / A
proof -
    interpret sigma_algebra \Omega M by fact
    have measure_space \Omega (sigma_sets \OmegaM) }
        using ms sigma_sets_eq by (simp add: measure_space_def)
    thus ?thesis by(simp add: emeasure_measure_of_conv A)
qed
lemma measure_cases[cases type: measure]:
    obtains (measure) }\OmegaA\mu\mathrm{ where }x=Abs_measure ( \Omega, A, \mu)\foralla\in-A. \mua=
measure_space \Omega A \mu
    by atomize_elim (cases x, auto)
```

lemma sets_le_imp_space_le: sets $A \subseteq$ sets $B \Longrightarrow$ space $A \subseteq$ space B
by (auto dest: sets.sets_into_space)
lemma sets_eq_imp_space_eq: sets $M=$ sets $M^{\prime} \Longrightarrow$ space $M=$ space M^{\prime}
by (auto intro!: antisym sets_le_imp_space_le)
lemma emeasure_notin_sets: $A \notin$ sets $M \Longrightarrow$ emeasure $M A=0$
by (cases M) (auto simp: sets_def emeasure_def Abs_measure_inverse measure_space_def)
lemma emeasure_neq_0_sets: emeasure $M A \neq 0 \Longrightarrow A \in$ sets M
using emeasure_notin_sets[of A M] by blast
lemma measure_notin_sets: $A \notin$ sets $M \Longrightarrow$ measure $M A=0$
by (simp add: measure_def emeasure_notin_sets zero_ennreal.rep_eq)
lemma measure_eqI:
fixes $M N$:: 'a measure
assumes sets $M=$ sets N and eq: $\bigwedge A . A \in$ sets $M \Longrightarrow$ emeasure $M A=$
emeasure $N A$
shows $M=N$
proof (cases M N rule: measure_cases[case_product measure_cases])
case (measure_measure $\Omega A \mu \Omega^{\prime} A^{\prime} \mu^{\prime}$)
interpret M : sigma_algebra Ω A using measure_measure by (auto simp: mea-
sure_space_def)
interpret N : sigma_algebra $\Omega^{\prime} A^{\prime}$ using measure_measure by (auto simp: mea-
sure_space_def)
have $A=$ sets $M A^{\prime}=$ sets N
using measure_measure by (simp_all add: sets_def Abs_measure_inverse)
with \langle sets $M=$ sets $N\rangle$ have $A A^{\prime}: A=A^{\prime}$ by simp
moreover from M.top N.top M.space_closed N.space_closed $A A^{\prime}$ have $\Omega=\Omega^{\prime}$
by auto
moreover \{ fix B have $\mu B=\mu^{\prime} B$
proof cases
assume $B \in A$

```
        with eq \(\langle A=\) sets \(M\rangle\) have emeasure \(M B=\) emeasure \(N B\) by simp
        with measure_measure show \(\mu B=\mu^{\prime} B\)
        by (simp add: emeasure_def Abs_measure_inverse)
    next
    assume \(B \notin A\)
    with \(\langle A=\) sets \(M\rangle\left\langle A^{\prime}=\right.\) sets \(\left.N\right\rangle\left\langle A=A^{\prime}\right\rangle\) have \(B \notin\) sets \(M B \notin\) sets \(N\)
        by auto
        then have emeasure \(M B=0\) emeasure \(N B=0\)
            by (simp_all add: emeasure_notin_sets)
        with measure_measure show \(\mu B=\mu^{\prime} B\)
            by (simp add: emeasure_def Abs_measure_inverse)
    qed \(\}\)
    then have \(\mu=\mu^{\prime}\) by auto
    ultimately show \(M=N\)
    by (simp add: measure_measure)
qed
lemma sigma_eqI:
    assumes \([\) simp \(]: M \subseteq\) Pow \(\Omega N \subseteq\) Pow \(\Omega\) sigma_sets \(\Omega M=\) sigma_sets \(\Omega N\)
    shows sigma \(\Omega M=\operatorname{sigma} \Omega N\)
    by (rule measure_eqI) (simp_all add: emeasure_sigma)
```


Measurable functions

definition measurable :: 'a measure \Rightarrow 'b measure $\Rightarrow\left({ }^{\prime} a \Rightarrow{ }^{\prime} b\right)$ set (infixr \rightarrow_{M} 60) where
measurable $A B=\left\{f \in\right.$ space $A \rightarrow$ space $B . \forall y \in$ sets $B . f-{ }^{\prime} y \cap$ space $A \in$ sets A\}
lemma measurableI:
$(\bigwedge x . x \in$ space $M \Longrightarrow f x \in$ space $N) \Longrightarrow\left(\bigwedge A . A \in\right.$ sets $N \Longrightarrow f-{ }^{\prime} A \cap$ space $M \in$ sets $M) \Longrightarrow$
$f \in$ measurable $M N$
by (auto simp: measurable_def)
lemma measurable_space:
$f \in$ measurable $M A \Longrightarrow x \in$ space $M \Longrightarrow f x \in$ space A unfolding measurable_def by auto
lemma measurable_sets:
$f \in$ measurable $M A \Longrightarrow S \in$ sets $A \Longrightarrow f-' S \cap$ space $M \in$ sets M
unfolding measurable_def by auto
lemma measurable_sets_Collect:
assumes $f: f \in$ measurable $M N$ and $P:\{x \in$ space $N . P x\} \in$ sets N shows $\{x \in$ space $M . P(f x)\} \in$ sets M
proof -
have $f-‘\{x \in$ space $N . P x\} \cap$ space $M=\{x \in$ space $M . P(f x)\}$ using measurable_space $[O F f]$ by auto

```
    with measurable_sets \([\) OF \(f\) P] show ?thesis
        by \(\operatorname{simp}\)
qed
```

lemma measurable_sigma_sets:
assumes B : sets $N=$ sigma_sets $\Omega A A \subseteq$ Pow Ω
and $f: f \in$ space $M \rightarrow \Omega$
and $b a: \bigwedge y . y \in A \Longrightarrow(f-‘ y) \cap$ space $M \in$ sets M
shows $f \in$ measurable $M N$
proof -
interpret A : sigma_algebra Ω sigma_sets ΩA using B (2) by (rule sigma_algebra_sigma_sets)
from B sets.top $[$ of $N]$ A.top sets.space_closed $[$ of $N]$ A.space_closed have $\Omega: \Omega=$
space N by force

```
    \{ fix \(X\) assume \(X \in\) sigma_sets \(\Omega A\)
        then have \(f-‘ X \cap\) space \(M \in\) sets \(M \wedge X \subseteq \Omega\)
            proof induct
                case (Basic a) then show ?case
                    by (auto simp add: ba) (metis B(2) subsetD PowD)
        next
            case (Compl a)
            have \([\) simp \(]: f-\) ' \(\Omega \cap\) space \(M=\) space \(M\)
                    by (auto simp add: funcset_mem [OF f])
            then show ?case
                    by (auto simp add: vimage_Diff Diff_Int_distrib2 sets.compl_sets Compl)
        next
            case (Union a)
            then show ?case
                    by (simp add: vimage_UN, simp only: UN_extend_simps(4)) blast
        qed auto \}
    with \(f\) show ?thesis
        by (auto simp add: measurable_def \(B \Omega\) )
qed
lemma measurable_measure_of:
    assumes \(B: N \subseteq\) Pow \(\Omega\)
        and \(f: f \in\) space \(M \rightarrow \Omega\)
        and ba: \(\bigwedge y . y \in N \Longrightarrow(f-‘ y) \cap\) space \(M \in\) sets \(M\)
    shows \(f \in\) measurable \(M\) (measure_of \(\Omega N \mu\) )
proof -
    have sets (measure_of \(\Omega N \mu\) ) \(=\) sigma_sets \(\Omega N\)
        using \(B\) by (rule sets_measure_of)
    from this assms show ?thesis by (rule measurable_sigma_sets)
qed
lemma measurable_iff_measure_of:
    assumes \(N \subseteq\) Pow \(\Omega f \in\) space \(M \rightarrow \Omega\)
    shows \(f \in\) measurable \(M\) (measure_of \(\Omega N \mu) \longleftrightarrow\left(\forall A \in N . f\right.\) - \(^{\prime} A \cap\) space \(M\)
\(\in\) sets \(M\) )
```

by (metis assms in_measure_of measurable_measure_of assms measurable_sets)
lemma measurable_cong_sets:
assumes sets: sets $M=$ sets M^{\prime} sets $N=$ sets N^{\prime}
shows measurable $M N=$ measurable $M^{\prime} N^{\prime}$
using sets[THEN sets_eq_imp_space_eq] sets by (simp add: measurable_def)
lemma measurable_cong:
assumes $\bigwedge w . w \in$ space $M \Longrightarrow f w=g w$
shows $f \in$ measurable $M M^{\prime} \longleftrightarrow g \in$ measurable $M M^{\prime}$
unfolding measurable_def using assms
by (simp cong: vimage_inter_cong Pi_cong)
lemma measurable_cong':
assumes $\bigwedge w . w \in$ space $M=\operatorname{simp}=>f w=g w$
shows $f \in$ measurable $M M^{\prime} \longleftrightarrow g \in$ measurable $M M^{\prime}$
unfolding measurable_def using assms
by (simp cong: vimage_inter_cong Pi_cong add: simp_implies_def)
lemma measurable_cong_simp:
$M=N \Longrightarrow M^{\prime}=N^{\prime} \Longrightarrow(\bigwedge w . w \in$ space $M \Longrightarrow f w=g w) \Longrightarrow$
$f \in$ measurable $M M^{\prime} \longleftrightarrow g \in$ measurable $N N^{\prime}$
by (metis measurable_cong)
lemma measurable_compose:
assumes $f: f \in$ measurable $M N$ and $g: g \in$ measurable $N L$
shows $(\lambda x . g(f x)) \in$ measurable $M L$
proof -
have $\bigwedge A .(\lambda x . g(f x))-‘ A \cap$ space $M=f-'(g-' A \cap$ space $N) \cap$ space M using measurable_space $[O F f]$ by auto
with measurable_space $[O F f]$ measurable_space $[O F g]$ show ?thesis by (auto intro: measurable_sets[OF f] measurable_sets[OF g] simp del: vimage_Int simp add: measurable_def)
qed
lemma measurable_comp:
$f \in$ measurable $M N \Longrightarrow g \in$ measurable $N L \Longrightarrow g \circ f \in$ measurable $M L$
using measurable_compose[of f $M N g L]$ by (simp add: comp_def)
lemma measurable_const:
$c \in$ space $M^{\prime} \Longrightarrow(\lambda x . c) \in$ measurable $M M^{\prime}$
by (auto simp add: measurable_def)
lemma measurable_ident: id \in measurable $M M$
by (auto simp add: measurable_def)
lemma measurable_id: $(\lambda x . x) \in$ measurable $M M$
by (simp add: measurable_def)

```
lemma measurable_ident_sets:
    assumes eq: sets \(M=\) sets \(M^{\prime}\) shows \((\lambda x . x) \in\) measurable \(M M^{\prime}\)
    using measurable_ident[of M]
    unfolding id_def measurable_def eq sets_eq_imp_space_eq[OF eq].
lemma sets_Least:
    assumes meas: \(\bigwedge i::\) nat. \(\{x \in\) space \(M . P i x\} \in M\)
    shows \((\lambda x\). LEAST \(j\). \(P j x)-{ }^{\prime} A \cap\) space \(M \in\) sets \(M\)
proof -
    \(\{\) fix \(i\) have \((\lambda x . L E A S T j . P j x)-‘\{i\} \cap\) space \(M \in\) sets \(M\)
        proof cases
            assume \(i:(\) LEAST \(j\). False \()=i\)
            have \((\lambda x\). LEAST \(j . P j x)-‘\{i\} \cap\) space \(M=\)
                    \(\{x \in\) space \(M . P i x\} \cap(\) space \(M-(\bigcup j<i\). \(\{x \in\) space \(M . P j x\})) \cup(\) space
\(M-(\bigcup i .\{x \in\) space \(M . P i x\}))\)
            by (simp add: set_eq_iff, safe)
                    (insert i, auto dest: Least_le intro: LeastI intro!: Least_equality)
            with meas show ?thesis
            by (auto intro!: sets.Int)
        next
            assume \(i\) : (LEAST \(j\). False \() \neq i\)
            then have \((\lambda x . L E A S T j\). \(P j x)-‘\{i\} \cap\) space \(M=\)
                    \(\{x \in\) space \(M . P i x\} \cap(\) space \(M-(\bigcup j<i .\{x \in\) space \(M . P j x\}))\)
            proof (simp add: set_eq_iff, safe)
                    fix \(x\) assume neq: \((L E A S T j\). False \() \neq(\) LEAST \(j\). \(P j x)\)
                    have \(\exists j\). \(P j x\)
                        by (rule ccontr) (insert neq, auto)
            then show \(P\) (LEAST j. P j x) \(x\) by (rule LeastI_ex)
            qed (auto dest: Least_le intro!: Least_equality)
            with meas show ?thesis
                    by auto
        qed \(\}\)
    then have \((\bigcup i \in A .(\lambda x . L E A S T j . P j x)-‘\{i\} \cap\) space \(M) \in\) sets \(M\)
        by (intro sets.countable_UN) auto
    moreover have \((\bigcup i \in A .(\lambda x . L E A S T j . P j x)-‘\{i\} \cap\) space \(M)=\)
        ( \(\lambda x\). LEAST \(j\). \(P j x\) ) - ' \(A \cap\) space \(M\) by auto
    ultimately show ?thesis by auto
qed
lemma measurable_mono1:
    \(M^{\prime} \subseteq\) Pow \(\Omega \Longrightarrow M \subseteq M^{\prime} \Longrightarrow\)
        measurable (measure_of \(\Omega M \mu\) ) \(N \subseteq\) measurable (measure_of \(\Omega M^{\prime} \mu^{\prime}\) ) \(N\)
    using measure_of_subset[of \(M^{\prime} \Omega M\) ] by (auto simp add: measurable_def)
```


Counting space

definition count_space :: 'a set \Rightarrow 'a measure where
count_space $\Omega=$ measure_of Ω (Pow Ω) (λ A. if finite A then of_nat (card A) else $\infty)$

```
lemma
    shows space_count_space[simp]: space (count_space \Omega)=\Omega
        and sets_count_space[simp]: sets (count_space \Omega)}=\operatorname{Pow}
    using sigma_sets_into_sp[of Pow \Omega \Omega]
    by (auto simp: count_space_def)
lemma measurable_count_space_eq1 [simp]:
    f\in measurable (count_space A) M}\longleftrightarrowf\inA->\mathrm{ space }
    unfolding measurable_def by simp
lemma measurable_compose_countable':
    assumes f:\bigwedgei.i\inI\Longrightarrow(\lambdax.fix) \in measurable M N
    and g:g\in measurable M (count_space I) and I: countable I
    shows (\lambdax.f(gx) x) \in measurable M N
    unfolding measurable_def
proof safe
    fix x assume x space M then show f (gx)x\in space N
        using measurable_space[OF f] g[THEN measurable_space] by auto
    next
    fix }A\mathrm{ assume A:A sets N
```



```
A\cap space M))
        using measurable_space[OF g] by auto
    also have ... \in sets M
        using f[THEN measurable_sets,OF _ A]g[THEN measurable_sets]
        by (auto intro!: sets.countable_UN' I intro: sets.Int[OF measurable_sets mea-
    surable_sets])
    finally show (\lambdax.f(gx) x) -` A\cap space M \in sets M .
qed
lemma measurable_count_space_eq_countable:
    assumes countable A
    shows f}\in\mathrm{ measurable M (count_space A) «(f) space M }->A\wedge(\foralla\inA.
-'{a}\cap space M 新s M))
proof -
    { fix X assume X\subseteqAf\in space M->A
        with 〈countable A` have f-' X\cap space M=(\bigcupa\inX.f -'{a}\cap space M)
countable X
            by (auto dest: countable_subset)
            moreover assume }\foralla\inA.f-'{a}\cap space M\in sets 
            ultimately have f-'X\cap space M \in sets M
            using \langleX\subseteqA\rangle by (auto intro!: sets.countable_UN' simp del: UN_simps) }
    then show ?thesis
            unfolding measurable_def by auto
qed
lemma measurable_count_space_eq2:
    finite }A\Longrightarrowf\in\mathrm{ measurable M (count_space }A)\longleftrightarrow(f\in\mathrm{ space }M->A\wedge(\foralla\inA
```

$f-‘\{a\} \cap$ space $M \in$ sets $M))$
by (intro measurable_count_space_eq_countable countable_finite)
lemma measurable_count_space_eq2_countable:
fixes $f::{ }^{\prime} a=>{ }^{\prime} c:$:countable
shows $f \in$ measurable M (count_space $A) \longleftrightarrow(f \in$ space $M \rightarrow A \wedge(\forall a \in A . f$
-‘ $\{a\} \cap$ space $M \in$ sets $M))$
by (intro measurable_count_space_eq_countable countableI_type)
lemma measurable_compose_countable:
assumes $f: \bigwedge i:: ' i::$ countable. $(\lambda x . f i x) \in$ measurable $M N$ and $g: g \in$ measurable M (count_space UNIV)
shows $(\lambda x . f(g x) x) \in$ measurable $M N$
by (rule measurable_compose_countable ${ }^{\prime}[$ OF assms $]$) auto
lemma measurable_count_space_const:
$(\lambda x . c) \in$ measurable M (count_space UNIV)
by (simp add: measurable_const)
lemma measurable_count_space:
$f \in$ measurable (count_space A) (count_space UNIV)
by simp
lemma measurable_compose_rev:
assumes $f: f \in$ measurable $L N$ and $g: g \in$ measurable $M L$
shows $(\lambda x . f(g x)) \in$ measurable $M N$
using measurable_compose $[O F g f]$.
lemma measurable_empty_iff:
space $N=\{ \} \Longrightarrow f \in$ measurable $M N \longleftrightarrow$ space $M=\{ \}$
by (auto simp add: measurable_def Pi_iff)

Extend measure

definition extend_measure $::$ 'a set $\Rightarrow{ }^{\prime} b$ set $\Rightarrow\left({ }^{\prime} b \Rightarrow{ }^{\prime} a\right.$ set $) \Rightarrow(' b \Rightarrow$ ennreal $)$
\Rightarrow 'a measure

where

extend_measure Ω I G $\mu=$
(if $\left(\exists \mu^{\prime} .\left(\forall i \in I . \mu^{\prime}(G i)=\mu i\right) \wedge\right.$ measure_space $\Omega\left(\right.$ sigma_sets $\left.\left.\Omega\left(G^{\prime} I\right)\right) \mu^{\prime}\right) \wedge$ $\neg(\forall i \in I . \mu i=0)$
then measure_of $\Omega\left(G^{\prime} I\right)\left(S O M E \mu^{\prime} .\left(\forall i \in I . \mu^{\prime}(G i)=\mu i\right) \wedge\right.$ measure_space
$\Omega\left(\right.$ sigma_sets $\left.\left.\Omega\left(G^{\prime} I\right)\right) \mu^{\prime}\right)$
else measure_of $\left.\Omega\left(G^{\prime} I\right)\left(\lambda_{-} 0\right)\right)$
lemma space_extend_measure: G ' $I \subseteq$ Pow $\Omega \Longrightarrow$ space (extend_measure Ω I G $\mu)=\Omega$
unfolding extend_measure_def by simp
lemma sets_extend_measure: G ' $I \subseteq P o w ~ \Omega \Longrightarrow$ sets (extend_measure $\Omega I G \mu$)

```
= sigma_sets \Omega(G`I)
    unfolding extend_measure_def by simp
lemma emeasure_extend_measure:
    assumes M:M = extend_measure \Omega IG 
        and eq: \bigwedgei. i\inI\Longrightarrow 㐌(Gi)=\mui
        and ms:G'I\subseteqPow \Omega positive (sets M) \mu' countably_additive (sets M) \mu'
        and}i\in
    shows emeasure M (Gi) = \mui
proof cases
    assume *: (\foralli\inI. }\mui=0
    with M have M_eq: M = measure_of \Omega(G`I) (\lambda_. 0)
    by (simp add: extend_measure_def)
    from measure_space_0[OF ms(1)] ms 〈i\inI\rangle
    have emeasure M (Gi)=0
    by (intro emeasure_measure_of[OF M_eq]) (auto simp add: M measure_space_def
sets_extend_measure)
    with }\langlei\inI\rangle*\mathrm{ show ?thesis
        by simp
next
```



```
\Omega(G'I)) \mp@subsup{\mu}{}{\prime}}\mathrm{ for }\mp@subsup{\mu}{}{\prime
    assume }\neg(\foralli\inI.\mui=0
    moreover
    have measure_space (space M) (sets M) \mu'
        using ms unfolding measure_space_def by auto standard
    with ms eq have }\exists\mp@subsup{\mu}{}{\prime}.P\mp@subsup{\mu}{}{\prime
        unfolding P_def
    by (intro exI[of _ | ]) (auto simp add: M space_extend_measure sets_extend_measure)
    ultimately have M_eq: M = measure_of \Omega (G`I) (Eps P)
        by (simp add: M extend_measure_def P_def[symmetric])
    from {\exists\mp@subsup{\mu}{}{\prime}.P 午〉 have P:P(Eps P) by (rule someI_ex)
    show emeasure M (Gi) = < i
    proof (subst emeasure_measure_of[OF M_eq])
        have sets_M: sets M = sigma_sets \Omega (G'I)
            using M_eq ms by (auto simp: sets_extend_measure)
        then show Gi\in sets M using <i }\inI`\mathrm{ by auto
    show positive (sets M) (Eps P) countably_additive (sets M) (Eps P) Eps P (G
i)=\mui
            using P\langlei\inI\rangle by (auto simp add: sets_M measure_space_def P_def)
    qed fact
qed
lemma emeasure_extend_measure_Pair:
    assumes M:M= extend_measure \Omega {(i,j).I ij} (\lambda(i,j).Gij) (\lambda(i,j).\mui
j)
    and eq:\ij.I Ij \Longrightarrow \mu
    and ms: \bigwedgeij.I ij \LongrightarrowGij\inPow \Omega positive (sets M) \mu'countably_additive
```

```
(sets \(M\) ) \(\mu^{\prime}\)
    and \(I i j\)
    shows emeasure \(M(G i j)=\mu i j\)
    using emeasure_extend_measure[OF \(M_{-}\)ms(2,3), of \(\left.(i, j)\right]\) eq \(m s(1)\langle I i j\rangle\)
    by (auto simp: subset_eq)
```


6.1.3 The smallest σ-algebra regarding a function

definition vimage_algebra $::^{\prime}$ 'a set $\Rightarrow\left({ }^{\prime} a \Rightarrow{ }^{\prime} b\right) \Rightarrow$ ' b measure \Rightarrow^{\prime} 'a measure where vimage_algebra $X f M=\operatorname{sigma} X\left\{f-^{\prime} A \cap X \mid A . A \in\right.$ sets $\left.M\right\}$
lemma space_vimage_algebra[simp]: space (vimage_algebra $X f M)=X$
unfolding vimage_algebra_def by (rule space_measure_of) auto
lemma sets_vimage_algebra: sets (vimage_algebra $X f M)=$ sigma_sets $X\left\{f ~-^{\prime} A\right.$
$\cap X \mid A . A \in$ sets $M\}$
unfolding vimage_algebra_def by (rule sets_measure_of) auto
lemma sets_vimage_algebra2:
$f \in X \rightarrow$ space $M \Longrightarrow$ sets (vimage_algebra $X f M)=\left\{f-^{\prime} A \cap X \mid A . A \in\right.$ sets $M\}$
using sigma_sets_vimage_commute[of $f X$ space M sets $M]$
unfolding sets_vimage_algebra sets.sigma_sets_eq by simp
lemma sets_vimage_algebra_cong: sets $M=$ sets $N \Longrightarrow$ sets (vimage_algebra $X f$
$M)=$ sets $($ vimage_algebra $X f N)$
by (simp add: sets_vimage_algebra)
lemma vimage_algebra_cong:
assumes $X=Y$
assumes $\bigwedge x . x \in Y \Longrightarrow f x=g x$
assumes sets $M=$ sets N
shows vimage_algebra $X f M=$ vimage_algebra $Y g N$
by (auto simp: vimage_algebra_def assms intro!: arg_cong2[where $f=$ sigma] $)$
lemma in_vimage_algebra: $A \in$ sets $M \Longrightarrow f-{ }^{\prime} A \cap X \in$ sets (vimage_algebra X $f M$)
by (auto simp: vimage_algebra_def)
lemma sets_image_in_sets:
assumes N : space $N=X$
assumes $f: f \in$ measurable $N M$
shows sets (vimage_algebra $X f M$) \subseteq sets N
unfolding sets_vimage_algebra N [symmetric]
by (rule sets.sigma_sets_subset) (auto intro!: measurable_sets f)
lemma measurable_vimage_algebra1: $f \in X \rightarrow$ space $M \Longrightarrow f \in$ measurable (vimage_algebra $X f M) M$
unfolding measurable_def by (auto intro: in_vimage_algebra)
lemma measurable_vimage_algebra2:
assumes $g: g \in$ space $N \rightarrow X$ and $f:(\lambda x . f(g x)) \in$ measurable $N M$
shows $g \in$ measurable N (vimage_algebra $X f M$)
unfolding vimage_algebra_def
proof (rule measurable_measure_of)
fix A assume $A \in\{f-‘ A \cap X \mid A$. $A \in$ sets $M\}$
then obtain Y where $Y: Y \in$ sets M and $A: A=f-{ }^{\prime} Y \cap X$ by auto
then have $g-‘ A \cap$ space $N=(\lambda x . f(g x))-{ }^{\prime} Y \cap$ space N
using g by auto
also have $\ldots \in$ sets N
using $f Y$ by (rule measurable_sets)
finally show $g-‘ A \cap$ space $N \in$ sets N.
qed (insert g, auto)
lemma vimage_algebra_sigma:
assumes $X: X \subseteq$ Pow Ω^{\prime} and $f: f \in \Omega \rightarrow \Omega^{\prime}$
shows vimage_algebra $\Omega f\left(\right.$ sigma $\left.\Omega^{\prime} X\right)=\operatorname{sigma} \Omega\left\{f-{ }^{\prime} A \cap \Omega \mid A . A \in X\right\}$
(is ? $V=$? S)
proof (rule measure_eqI)
have Ω : $\left\{f-^{\prime} A \cap \Omega \mid A . A \in X\right\} \subseteq$ Pow Ω by auto
show sets ? $V=$ sets ? S
using sigma_sets_vimage_commute $[O F f$, of $X]$
by (simp add: space_measure_of_conv f sets_vimage_algebra2 ΩX)
qed (simp add: vimage_algebra_def emeasure_sigma)
lemma vimage_algebra_vimage_algebra_eq:
assumes $*: f \in X \rightarrow Y g \in Y \rightarrow$ space M
shows vimage_algebra $X f($ vimage_algebra $Y g M)=$ vimage_algebra $X(\lambda x . g$
($f x)$) M
(is ? $V V=? V)$
proof (rule measure_eqI)
have $(\lambda x . g(f x)) \in X \rightarrow$ space $M \bigwedge A . A \cap f-^{\prime} Y \cap X=A \cap X$ using $*$ by auto
with $*$ show sets ? $V V=$ sets ? V
by (simp add: sets_vimage_algebra2 vimage_comp comp_def flip: ex_simps)
qed (simp add: vimage_algebra_def emeasure_sigma)

Restricted Space Sigma Algebra

definition restrict_space :: 'a measure \Rightarrow 'a set \Rightarrow 'a measure where restrict_space $M \Omega=$ measure_of $(\Omega \cap$ space $M)(((\cap) \Omega)$ 'sets $M)$ (emeasure M)
lemma space_restrict_space: space (restrict_space $M \Omega$) $=\Omega \cap$ space M using sets.sets_into_space unfolding restrict_space_def by (subst space_measure_of) auto
lemma space_restrict_space2 [simp]: $\Omega \in$ sets $M \Longrightarrow$ space (restrict_space $M \Omega$) $=\Omega$
by (simp add: space_restrict_space sets.sets_into_space)

```
lemma sets_restrict_space: sets (restrict_space \(M \Omega)=((\cap) \Omega)\) 'sets \(M\)
    unfolding restrict_space_def
proof (subst sets_measure_of)
    show \((\cap) \Omega\) ' sets \(M \subseteq \operatorname{Pow}(\Omega \cap\) space \(M)\)
        by (auto dest: sets.sets_into_space)
    have sigma_sets \((\Omega \cap\) space \(M)\left\{\left((\lambda x . x)-{ }^{\prime} X\right) \cap(\Omega \cap\right.\) space \(M) \mid X . X \in\) sets
```

$M\}=$
$(\lambda X . X \cap(\Omega \cap$ space $M))$ 'sets M
by (subst sigma_sets_vimage_commute[symmetric, where $\Omega^{\prime}=$ space $\left.M\right]$)
(auto simp add: sets.sigma_sets_eq)
moreover have $\left\{\left((\lambda x . x)-{ }^{\prime} X\right) \cap(\Omega \cap\right.$ space $M) \mid X . X \in$ sets $\left.M\right\}=(\lambda X . X$
$\cap(\Omega \cap$ space $M))$ ' sets M
by auto
moreover have $(\lambda X . X \cap(\Omega \cap$ space $M))$ ' sets $M=((\cap) \Omega)$ ' sets M
by (intro image_cong) (auto dest: sets.sets_into_space)
ultimately show sigma_sets $(\Omega \cap$ space $M)((\cap) \Omega$ 'sets $M)=(\cap) \Omega$ 'sets M
by simp
qed
lemma restrict_space_sets_cong:
$A=B \Longrightarrow$ sets $M=$ sets $N \Longrightarrow$ sets $($ restrict_space $M A)=$ sets (restrict_space
NB)
by (auto simp: sets_restrict_space)
lemma sets_restrict_space_count_space :
sets $($ restrict_space $($ count_space $A) B)=$ sets $($ count_space $(A \cap B))$
by(auto simp add: sets_restrict_space)
lemma sets_restrict_UNIV[simp]: sets (restrict_space M UNIV) $=$ sets M
by (auto simp add: sets_restrict_space)
lemma sets_restrict_restrict_space:
sets $($ restrict_space $($ restrict_space $M A) B)=$ sets $($ restrict_space $M(A \cap B))$
unfolding sets_restrict_space image_comp by (intro image_cong) auto
lemma sets_restrict_space_iff:
$\Omega \cap$ space $M \in$ sets $M \Longrightarrow A \in$ sets $($ restrict_space $M \Omega) \longleftrightarrow(A \subseteq \Omega \wedge A \in$
sets M)
proof (subst sets_restrict_space, safe)
fix A assume $\Omega \cap$ space $M \in$ sets M and $A: A \in$ sets M
then have $(\Omega \cap$ space $M) \cap A \in$ sets M
by rule
also have $(\Omega \cap$ space $M) \cap A=\Omega \cap A$
using sets.sets_into_space $[O F A]$ by auto
finally show $\Omega \cap A \in$ sets M
by auto
qed auto
lemma sets_restrict_space_cong: sets $M=$ sets $N \Longrightarrow$ sets (restrict_space $M \Omega)=$ sets (restrict_space $N \Omega$)
by (simp add: sets_restrict_space)
lemma restrict_space_eq_vimage_algebra:
$\Omega \subseteq$ space $M \Longrightarrow$ sets $($ restrict_space $M \Omega)=$ sets $($ vimage_algebra $\Omega(\lambda x . x) M)$
unfolding restrict_space_def
apply (subst sets_measure_of)
apply (auto simp add: image_subset_iff dest: sets.sets_into_space) []
apply (auto simp add: sets_vimage_algebra intro!: arg_cong2[where $f=$ sigma_sets]) done
lemma sets_Collect_restrict_space_iff:
assumes $S \in$ sets M
shows $\{x \in$ space (restrict_space $M S$). $P x\} \in$ sets (restrict_space $M S) \longleftrightarrow$
$\{x \in$ space $M . x \in S \wedge P x\} \in$ sets M
proof -
have $\{x \in S . P x\}=\{x \in$ space $M . x \in S \wedge P x\}$
using sets.sets_into_space [OF assms] by auto
then show ?thesis
by (subst sets_restrict_space_iff) (auto simp add: space_restrict_space assms)
qed
lemma measurable_restrict_space1:
assumes $f: f \in$ measurable $M N$
shows $f \in$ measurable (restrict_space $M \Omega$) N
unfolding measurable_def
proof (intro CollectI conjI ballI)
show sp: $f \in$ space (restrict_space $M \Omega$) \rightarrow space N
using measurable_space $[O F f]$ by (auto simp: space_restrict_space)
fix A assume $A \in$ sets N
have $f-{ }^{\prime} A \cap$ space (restrict_space $\left.M \Omega\right)=\left(f-{ }^{\prime} A \cap\right.$ space $\left.M\right) \cap(\Omega \cap$ space M)
by (auto simp: space_restrict_space)
also have $\ldots \in$ sets (restrict_space $M \Omega$)
unfolding sets_restrict_space
using measurable_sets[OF $f\langle A \in$ sets $N\rangle$] by blast
finally show $f-{ }^{\prime} A \cap$ space (restrict_space $M \Omega$) sets (restrict_space $M \Omega$). qed
lemma measurable_restrict_space2_iff:
$f \in$ measurable M (restrict_space $N \Omega) \longleftrightarrow(f \in$ measurable $M N \wedge f \in$ space $M \rightarrow \Omega)$
proof -
have $\bigwedge A . f \in$ space $M \rightarrow \Omega \Longrightarrow f-‘ \Omega \cap f-{ }^{\prime} A \cap$ space $M=f-{ }^{\prime} A \cap$ space
by auto
then show? ?thesis
by (auto simp: measurable_def space_restrict_space Pi_Int[symmetric] sets_restrict_space)
qed
lemma measurable_restrict_space2:
$f \in$ space $M \rightarrow \Omega \Longrightarrow f \in$ measurable $M N \Longrightarrow f \in$ measurable M (restrict_space $N \Omega$) by (simp add: measurable_restrict_space2_iff)
lemma measurable_piecewise_restrict:
assumes I : countable C
and $X: \wedge \Omega . \Omega \in C \Longrightarrow \Omega \cap$ space $M \in$ sets M space $M \subseteq \bigcup C$
and $f: \wedge \Omega . \Omega \in C \Longrightarrow f \in$ measurable (restrict_space $M \Omega$) N
shows $f \in$ measurable $M N$
proof (rule measurableI)
fix x assume $x \in$ space M
with X obtain Ω where $\Omega \in C x \in \Omega x \in$ space M by auto
then show $f x \in$ space N
by (auto simp: space_restrict_space intro: f measurable_space)
next
fix A assume $A: A \in$ sets N
have $f-{ }^{\prime} A \cap$ space $M=(\bigcup \Omega \in C .(f-‘ A \cap(\Omega \cap$ space $M)))$
using X by (auto simp: subset_eq)
also have $\ldots \in$ sets M
using measurable_sets $[O F f A] X I$
by (intro sets.countable_UN') (auto simp: sets_restrict_space_iff space_restrict_space)
finally show $f-{ }^{\prime} A \cap$ space $M \in$ sets M.
qed
lemma measurable_piecewise_restrict_iff:
countable $C \Longrightarrow(\bigwedge \Omega . \Omega \in C \Longrightarrow \Omega \cap$ space $M \in$ sets $M) \Longrightarrow$ space $M \subseteq(\cup C)$
\Longrightarrow
$f \in$ measurable $M N \longleftrightarrow(\forall \Omega \in C . f \in$ measurable (restrict_space $M \Omega) N)$
by (auto intro: measurable_piecewise_restrict measurable_restrict_space1)
lemma measurable_If_restrict_space_iff:
$\{x \in$ space $M . P x\} \in$ sets $M \Longrightarrow$
$(\lambda x$. if $P x$ then $f x$ else $g x) \in$ measurable $M N \longleftrightarrow$
$(f \in$ measurable (restrict_space $M\{x . P x\}) N \wedge g \in$ measurable (restrict_space
$M\{x . \neg P x\}) N$)
by (subst measurable_piecewise_restrict_iff $[$ where $C=\{\{x . P x\},\{x . \neg P x\}\}])$
(auto simp: Int_def sets.sets_Collect_neg space_restrict_space conj_commute[of _ $x \in$ space M for $x]$
cong: measurable_cong')
lemma measurable_If:
$f \in$ measurable $M M^{\prime} \Longrightarrow g \in$ measurable $M M^{\prime} \Longrightarrow\{x \in$ space $M . P x\} \in$ sets
$M \Longrightarrow$
$(\lambda x$. if $P x$ then $f x$ else $g x) \in$ measurable $M M^{\prime}$
unfolding measurable_If_restrict_space_iff by (auto intro: measurable_restrict_space1)
lemma measurable_If_set:
assumes measure: $f \in$ measurable $M M^{\prime} g \in$ measurable $M M^{\prime}$
assumes $P: A \cap$ space $M \in$ sets M
shows $(\lambda x$. if $x \in A$ then $f x$ else $g x) \in$ measurable $M M^{\prime}$
proof (rule measurable_If [OF measure])
have $\{x \in$ space $M . x \in A\}=A \cap$ space M by auto
thus $\{x \in$ space $M . x \in A\} \in$ sets M using $\langle A \cap$ space $M \in$ sets $M\rangle$ by auto
qed
lemma measurable_restrict_space_iff:
$\Omega \cap$ space $M \in$ sets $M \Longrightarrow c \in$ space $N \Longrightarrow$
$f \in$ measurable (restrict_space $M \Omega) N \longleftrightarrow(\lambda x$. if $x \in \Omega$ then $f x$ else $c) \in$ measurable $M N$
by (subst measurable_If_restrict_space_iff)
(simp_all add: Int_def conj_commute measurable_const)
lemma restrict_space_singleton: $\{x\} \in$ sets $M \Longrightarrow$ sets (restrict_space $M\{x\})=$ sets (count_space $\{x\}$)
using sets_restrict_space_iff $[$ of $\{x\} M]$
by (auto simp add: sets_restrict_space_iff dest!: subset_singletonD)
lemma measurable_restrict_countable:
assumes $X[$ intro : countable X
assumes sets $[$ simp $]: \bigwedge x . x \in X \Longrightarrow\{x\} \in$ sets M
assumes space $[$ simp $]: \bigwedge x . x \in X \Longrightarrow f x \in$ space N
assumes $f: f \in$ measurable (restrict_space $M(-X)) N$
shows $f \in$ measurable $M N$
using f sets.countable $[O F$ sets $X]$
by (intro measurable_piecewise_restrict $[$ where $M=M$ and $C=\{-X\} \cup((\lambda x$. $\{x\})$ (X])
(auto simp: Diff_Int_distrib2 Compl_eq_Diff_UNIV Int_insert_left sets.Diff restrict_space_singleton
simp del: sets_count_space cong: measurable_cong_sets)
lemma measurable_discrete_difference:
assumes $f: f \in$ measurable $M N$
assumes X : countable $X \bigwedge x . x \in X \Longrightarrow\{x\} \in$ sets $M \bigwedge x . x \in X \Longrightarrow g x \in$ space N
assumes eq: $\bigwedge x . x \in$ space $M \Longrightarrow x \notin X \Longrightarrow f x=g x$
shows $g \in$ measurable $M N$
by (rule measurable_restrict_countable $[$ OF X])
(auto simp: eq[symmetric] space_restrict_space cong: measurable_cong' intro: f measurable_restrict_space1)
lemma measurable_count_space_extend: $A \subseteq B \Longrightarrow f \in$ space $M \rightarrow A \Longrightarrow f \in M$

```
->M}\mathrm{ count_space B }\Longrightarrowf\inM\mp@subsup{->}{M}{M}\mathrm{ count_space A
    by (auto simp: measurable_def)
end
```


6.2 Measurability Prover

theory Measurable
imports
Sigma_Algebra
HOL-Library.Order_Continuity
begin

lemma (in algebra) sets_Collect_finite_All:
assumes $\bigwedge i . i \in S \Longrightarrow\{x \in \Omega . P i x\} \in M$ finite S
shows $\{x \in \Omega . \forall i \in S . P i x\} \in M$
proof -
have $\{x \in \Omega . \forall i \in S . P i x\}=($ if $S=\{ \}$ then Ω else $\bigcap i \in S .\{x \in \Omega . P i x\})$ by auto
with assms show ?thesis by (auto intro!: sets_Collect_finite_All')
qed
abbreviation pred $M P \equiv P \in$ measurable M (count_space (UNIV::bool set))

```
lemma pred_def: pred \(M P \longleftrightarrow\{x \in\) space \(M . P x\} \in\) sets \(M\)
proof
    assume pred M P
    then have \(P-\) ' \(\{\) True \(\} \cap\) space \(M \in\) sets \(M\)
        by (auto simp: measurable_count_space_eq2)
    also have \(P-‘\{\) True \(\} \cap\) space \(M=\{x \in\) space \(M . P x\}\) by auto
    finally show \(\{x \in\) space \(M . P x\} \in\) sets \(M\).
next
    assume \(P:\{x \in\) space \(M . P x\} \in\) sets \(M\)
    moreover
    \{ fix \(X\)
        have \(X \in\) Pow (UNIV :: bool set) by simp
        then have \(P-' X \cap\) space \(M=\{x \in\) space \(M .((X=\{\) True \(\} \longrightarrow P x) \wedge(X\)
\(=\{\) False \(\} \longrightarrow \neg P x) \wedge X \neq\{ \})\}\)
            unfolding UNIV_bool Pow_insert Pow_empty by auto
        then have \(P-\) ' \(X \cap\) space \(M \in\) sets \(M\)
        by (auto intro!: sets.sets_Collect_neg sets.sets_Collect_imp sets.sets_Collect_conj
sets.sets_Collect_const P) \}
    then show pred MP
        by (auto simp: measurable_def)
qed
```

lemma pred_sets1: $\{x \in$ space $M . P x\} \in$ sets $M \Longrightarrow f \in$ measurable $N M \Longrightarrow$
pred $N(\lambda x . P(f x))$
by（rule measurable＿compose［where $f=f$ and $N=M]$ ）（auto simp：pred＿def）
lemma pred＿sets2：$A \in$ sets $N \Longrightarrow f \in$ measurable $M N \Longrightarrow$ pred $M(\lambda x . f x \in$ A）
by（rule measurable＿compose［where $f=f$ and $N=N]$ ）（auto simp：pred＿def Int＿def［symmetric］）
ML＿file 〈measurable．ML»
attribute＿setup measurable $=$＜
Scan．lift（
（Args．add $\gg K$ true $\|$ Args．del \gg Kalse $\|$ Scan．succeed true）－－
Scan．optional（Args．parens（
Scan．optional（Args．$\$ \$ \$$ raw $\gg K$ true）false－－
Scan．optional（Args．$\$ \$ \$$ generic \gg K Measurable．Generic）Measurable．Concrete）） （false，Measurable．Concrete）＞＞
Measurable．measurable＿thm＿attr）
，declaration of measurability theorems
attribute＿setup measurable＿dest $=$ Measurable．dest＿thm＿attr
add dest rule to measurability prover
attribute＿setup measurable＿cong $=$ Measurable．cong＿thm＿attr
add congurence rules to measurability prover
method＿setup measurable $=\langle$ Scan．lift $($ Scan．succeed $($ METHOD o Measurable．measurable＿tac）$)$
，
measurability prover
simproc＿setup measurable $(A \in$ sets $M \mid f \in$ measurable $M N)=\langle K$ Measur－
able．simproc＞
setup く
Global＿Theory．add＿thms＿dynamic（binding＜measurable〉，Measurable．get＿all）
，

declare

pred＿sets1［measurable＿dest］
pred＿sets2［measurable＿dest］
sets．sets＿into＿space［measurable＿dest］

declare

sets．top［measurable］
sets．empty＿sets［measurable（raw）］
sets．Un［measurable（raw）］
sets．Diff［measurable（raw）］

declare

measurable＿count＿space［measurable（raw）］
measurable＿ident［measurable（raw）］

```
measurable_id[measurable (raw)]
measurable_const[measurable (raw)]
measurable_If[measurable (raw)]
measurable_comp[measurable (raw)]
measurable_sets[measurable (raw)]
```

declare measurable_cong_sets[measurable_cong]
declare sets_restrict_space_cong[measurable_cong]
declare sets_restrict_UNIV [measurable_cong]
lemma predE[measurable (raw)]:
pred $M P \Longrightarrow\{x \in$ space $M . P x\} \in$ sets M
unfolding pred_def .
lemma pred_intros_imp' $[$ measurable (raw)]:
$(K \Longrightarrow \operatorname{pred} M(\lambda x . P x)) \Longrightarrow \operatorname{pred} M(\lambda x . K \longrightarrow P x)$
by (cases K) auto
lemma pred_intros_conj1 ' measurable (raw)]:
$(K \Longrightarrow \operatorname{pred} M(\lambda x . P x)) \Longrightarrow \operatorname{pred} M(\lambda x . K \wedge P x)$
by (cases K) auto
lemma pred_intros_conj2 ${ }^{\prime}[$ measurable (raw)]:
$(K \Longrightarrow \operatorname{pred} M(\lambda x . P x)) \Longrightarrow \operatorname{pred} M(\lambda x . P x \wedge K)$
by (cases K) auto
lemma pred_intros_disj1 ${ }^{\prime}[$ measurable (raw)]:
$(\neg K \Longrightarrow \operatorname{pred} M(\lambda x . P x)) \Longrightarrow \operatorname{pred} M(\lambda x . K \vee P x)$
by (cases K) auto
lemma pred_intros_disj2'[measurable (raw)]:
$(\neg K \Longrightarrow \operatorname{pred} M(\lambda x . P x)) \Longrightarrow \operatorname{pred} M(\lambda x . P x \vee K)$
by (cases K) auto
lemma pred_intros_logic[measurable (raw)]:
pred $M(\lambda x . x \in$ space $M)$
pred $M(\lambda x . P x) \Longrightarrow \operatorname{pred} M(\lambda x . \neg P x)$
pred $M(\lambda x . Q x) \Longrightarrow \operatorname{pred} M(\lambda x . P x) \Longrightarrow \operatorname{pred} M(\lambda x . Q x \wedge P x)$
pred $M(\lambda x . Q x) \Longrightarrow$ pred $M(\lambda x . P x) \Longrightarrow$ pred $M(\lambda x . Q x \longrightarrow P x)$
pred $M(\lambda x . Q x) \Longrightarrow$ pred $M(\lambda x . P x) \Longrightarrow \operatorname{pred} M(\lambda x . Q x \vee P x)$
pred $M(\lambda x . Q x) \Longrightarrow \operatorname{pred} M(\lambda x . P x) \Longrightarrow \operatorname{pred} M(\lambda x . Q x=P x)$
pred $M(\lambda x . f x \in U N I V)$
pred $M(\lambda x . f x \in\{ \})$
pred $M\left(\lambda x . P^{\prime}(f x) x\right) \Longrightarrow$ pred $M\left(\lambda x . f x \in\left\{y . P^{\prime} y x\right\}\right)$
pred $M(\lambda x . f x \in(B x)) \Longrightarrow$ pred $M(\lambda x . f x \in-(B x))$
pred $M(\lambda x . f x \in(A x)) \Longrightarrow$ pred $M(\lambda x . f x \in(B x)) \Longrightarrow$ pred $M(\lambda x . f x \in$
$(A x)-(B x))$
pred $M(\lambda x . f x \in(A x)) \Longrightarrow \operatorname{pred} M(\lambda x . f x \in(B x)) \Longrightarrow \operatorname{pred} M(\lambda x . f x \in$
$(A x) \cap(B x))$
pred $M(\lambda x . f x \in(A x)) \Longrightarrow$ pred $M(\lambda x . f x \in(B x)) \Longrightarrow$ pred $M(\lambda x . f x \in$ $(A x) \cup(B x))$
pred $M(\lambda x . g x(f x) \in(X x)) \Longrightarrow$ pred $M(\lambda x . f x \in(g x)-‘(X x))$
by (auto simp: iff_conv_conj_imp pred_def)
lemma pred_intros_countable[measurable (raw)]:
fixes P :: ${ }^{\prime} a \neq{ }^{\prime} i$:: countable \Rightarrow bool
shows
$(\bigwedge i . \operatorname{pred} M(\lambda x . P x i)) \Longrightarrow \operatorname{pred} M(\lambda x . \forall i . P x i)$
$(\bigwedge i . \operatorname{pred} M(\lambda x . P x i)) \Longrightarrow \operatorname{pred} M(\lambda x . \exists i . P x i)$
by (auto intro!: sets.sets_Collect_countable_All sets.sets_Collect_countable_Ex simp: pred_def)
lemma pred_intros_countable_bounded[measurable (raw)]:
fixes X :: ' i :: countable set
shows
$(\bigwedge i . i \in X \Longrightarrow$ pred $M(\lambda x . x \in N x i)) \Longrightarrow \operatorname{pred} M(\lambda x . x \in(\bigcap i \in X . N x i))$
$(\bigwedge i . i \in X \Longrightarrow$ pred $M(\lambda x . x \in N x i)) \Longrightarrow \operatorname{pred} M(\lambda x . x \in(\bigcup i \in X . N x i))$
$(\bigwedge i . i \in X \Longrightarrow$ pred $M(\lambda x . P x i)) \Longrightarrow$ pred $M(\lambda x . \forall i \in X . P x i)$
$(\bigwedge i . i \in X \Longrightarrow \operatorname{pred} M(\lambda x . P x i)) \Longrightarrow \operatorname{pred} M(\lambda x . \exists i \in X . P x i)$
by simp_all (auto simp: Bex_def Ball_def)
lemma pred_intros_finite[measurable (raw)]:
finite $I \Longrightarrow(\bigwedge i . i \in I \Longrightarrow$ pred $M(\lambda x . x \in N x i)) \Longrightarrow \operatorname{pred} M(\lambda x . x \in(\bigcap i \in I$.
$N x i)$)
finite $I \Longrightarrow(\bigwedge i . i \in I \Longrightarrow$ pred $M(\lambda x . x \in N x i)) \Longrightarrow \operatorname{pred} M(\lambda x . x \in(\bigcup i \in I$.
$N x i)$)
finite $I \Longrightarrow(\bigwedge i . i \in I \Longrightarrow$ pred $M(\lambda x . P x i)) \Longrightarrow \operatorname{pred} M(\lambda x . \forall i \in I . P x i)$
finite $I \Longrightarrow(\bigwedge i . i \in I \Longrightarrow$ pred $M(\lambda x . P x i)) \Longrightarrow \operatorname{pred} M(\lambda x . \exists i \in I . P x i)$
by (auto intro!: sets.sets_Collect_finite_Ex sets.sets_Collect_finite_All simp: iff_conv_conj_imp pred_def)
lemma countable_Un_Int[measurable (raw)]:
$(\bigwedge i:: ' i::$ countable. $i \in I \Longrightarrow N i \in$ sets $M) \Longrightarrow(\bigcup i \in I . N i) \in$ sets M
$I \neq\{ \} \Longrightarrow(\bigwedge i:: ' i::$ countable. $i \in I \Longrightarrow N i \in$ sets $M) \Longrightarrow(\bigcap i \in I . N i) \in$ sets M
by auto

declare

finite_UN[measurable (raw)]
finite_INT[measurable (raw)]
lemma sets_Int_pred[measurable (raw)]:
assumes space: $A \cap B \subseteq$ space M and [measurable]: pred $M(\lambda x . x \in A)$ pred $M(\lambda x . x \in B)$
shows $A \cap B \in$ sets M
proof -
have $\{x \in$ space $M . x \in A \cap B\} \in$ sets M by auto
also have $\{x \in$ space $M . x \in A \cap B\}=A \cap B$

```
    using space by auto
    finally show ?thesis .
qed
lemma [measurable (raw generic)]:
    assumes \(f: f \in\) measurable \(M N\) and \(c: c \in\) space \(N \Longrightarrow\{c\} \in\) sets \(N\)
    shows pred_eq_const1: pred \(M(\lambda x . f x=c)\)
        and pred_eq_const2: pred \(M(\lambda x . c=f x)\)
proof -
    show pred \(M(\lambda x . f x=c)\)
    proof cases
        assume \(c \in\) space \(N\)
        with measurable_sets \([O F f c]\) show ?thesis
            by (auto simp: Int_def conj_commute pred_def)
    next
        assume \(c \notin\) space \(N\)
        with \(f[\) THEN measurable_space \(]\) have \(\{x \in\) space \(M . f x=c\}=\{ \}\) by auto
        then show ?thesis by (auto simp: pred_def cong: conj_cong)
    qed
    then show pred \(M(\lambda x . c=f x)\)
        by (simp add: eq_commute)
qed
lemma pred_count_space_const1[measurable (raw)]:
    \(f \in\) measurable \(M\) (count_space UNIV) \(\Longrightarrow\) Measurable.pred \(M(\lambda x . f x=c)\)
    by (intro pred_eq_const1[where \(N=\) count_space UNIV]) (auto )
lemma pred_count_space_const2[measurable (raw)]:
    \(f \in\) measurable \(M\) (count_space UNIV) \(\Longrightarrow\) Measurable.pred \(M(\lambda x . c=f x)\)
    by (intro pred_eq_const2[where \(N=\) count_space UNIV]) (auto )
lemma pred_le_const[measurable (raw generic)]:
    assumes \(f: f \in\) measurable \(M N\) and \(c:\{. . c\} \in\) sets \(N\) shows pred \(M(\lambda x . f x\)
\(\leq c\) )
    using measurable_sets[OF fc]
    by (auto simp: Int_def conj_commute eq_commute pred_def)
lemma pred_const_le[measurable (raw generic)]:
        assumes \(f: f \in\) measurable \(M N\) and \(c:\{c\).. \(\} \in\) sets \(N\) shows pred \(M(\lambda x . c\)
\(\leq f x)\)
    using measurable_sets[OF fc]
    by (auto simp: Int_def conj_commute eq_commute pred_def)
lemma pred_less_const[measurable (raw generic)]:
    assumes \(f: f \in\) measurable \(M N\) and \(c:\{. .<c\} \in\) sets \(N\) shows pred \(M(\lambda x . f\)
\(x<c\) )
    using measurable_sets[OF fc]
    by (auto simp: Int_def conj_commute eq_commute pred_def)
```

```
lemma pred_const_less[measurable (raw generic)]:
    assumes \(f: f \in\) measurable \(M N\) and \(c:\{c<..\} \in\) sets \(N\) shows pred \(M(\lambda x\).
\(c<f x)\)
    using measurable_sets[OF fc]
    by (auto simp: Int_def conj_commute eq_commute pred_def)
declare
    sets.Int[measurable (raw)]
lemma pred_in_If[measurable (raw)]:
    \((P \Longrightarrow \operatorname{pred} M(\lambda x . x \in A x)) \Longrightarrow(\neg P \Longrightarrow \operatorname{pred} M(\lambda x . x \in B x)) \Longrightarrow\)
        pred \(M(\lambda x . x \in(\) if \(P\) then \(A x\) else \(B x))\)
    by auto
lemma sets_range [measurable_dest]:
    \(A\) ' \(I \subseteq\) sets \(M \Longrightarrow i \in I \Longrightarrow A i \in\) sets \(M\)
    by auto
lemma pred_sets_range [measurable_dest]:
    \(A ' I \subseteq\) sets \(N \Longrightarrow i \in I \Longrightarrow f \in\) measurable \(M N \Longrightarrow \operatorname{pred} M(\lambda x . f x \in A i)\)
    using pred_sets2[OF sets_range] by auto
lemma sets_All[measurable_dest]:
    \(\forall i . A i \in \operatorname{sets}(M i) \Longrightarrow A i \in \operatorname{sets}(M i)\)
    by auto
lemma pred_sets_All[measurable_dest]:
    \(\forall i\). \(A i \in \operatorname{sets}(N i) \Longrightarrow f \in\) measurable \(M(N i) \Longrightarrow\) pred \(M(\lambda x . f x \in A i)\)
    using pred_sets2 \([O F\) sets_All, of \(A N f]\) by auto
lemma sets_Ball[measurable_dest]:
    \(\forall i \in I . A i \in \operatorname{sets}(M i) \Longrightarrow i \in I \Longrightarrow A i \in \operatorname{sets}(M i)\)
    by auto
lemma pred_sets_Ball[measurable_dest]:
    \(\forall i \in I\). A \(i \in\) sets \((N i) \Longrightarrow i \in I \Longrightarrow f \in\) measurable \(M(N i) \Longrightarrow\) pred \(M(\lambda x . f\)
\(x \in A i\) )
    using pred_sets2[OF sets_Ball, of _ _ f] by auto
lemma measurable_finite[measurable (raw)]:
    fixes \(S::\) ' \(a \Rightarrow\) nat set
    assumes [measurable]: \(\bigwedge i .\{x \in\) space \(M . i \in S x\} \in\) sets \(M\)
    shows pred \(M(\lambda x\). finite \((S x))\)
    unfolding finite_nat_set_iff_bounded by (simp add: Ball_def)
lemma measurable_Least[measurable]:
    assumes [measurable]: (\i::nat. \((\lambda x . P i x) \in\) measurable \(M(\) count_space UNIV \())\)
    shows \((\lambda x\). LEAST i. \(P i x) \in\) measurable \(M\) (count_space UNIV)
    unfolding measurable_def by (safe intro!: sets_Least) simp_all
```

```
lemma measurable_Max_nat[measurable (raw)]:
    fixes \(P::\) nat \(\Rightarrow{ }^{\prime} a \Rightarrow\) bool
    assumes [measurable]: \(\bigwedge i\). Measurable.pred \(M(P i)\)
    shows \((\lambda x . \operatorname{Max}\{i . P i x\}) \in\) measurable \(M\) (count_space UNIV)
    unfolding measurable_count_space_eq2_countable
proof safe
    fix \(n\)
    \(\{\) fix \(x\) assume \(\forall i . \exists n \geq i . P n x\)
        then have infinite \(\{i . P i x\}\)
            unfolding infinite_nat_iff_unbounded_le by auto
        then have \(\operatorname{Max}\{i . P i x\}=\) the None
            by (rule Max.infinite) \(\}\)
    note \(1=\) this
    \(\{\) fix \(x i j\) assume \(P\) i \(x \forall n \geq j\). \(\neg P n x\)
        then have finite \(\{i . P i x\}\)
            by (auto simp: subset_eq not_le[symmetric] finite_nat_iff_bounded)
        with \(\langle P i x\rangle\) have \(P(\operatorname{Max}\{i . P i x\}) x i \leq \operatorname{Max}\{i . P i x\}\) finite \(\{i . P i x\}\)
            using Max_in[of \(\{i . P i x\}]\) by auto \(\}\)
    note \(2=\) this
    have \((\lambda x . \operatorname{Max}\{i . P i x\})-‘\{n\} \cap\) space \(M=\{x \in\) space \(M . \operatorname{Max}\{i . P i x\}=\)
\(n\}\)
            by auto
    also have ... =
            \(\{x \in\) space M. if \((\forall i . \exists n \geq i\). \(P n x)\) then the None \(=n\) else
                if \((\exists i . P i x)\) then \(P n x \wedge(\forall i>n . \neg P i x)\)
                else \(\operatorname{Max}\}=n\}\)
            by (intro arg_cong[where \(f=\) Collect \(]\) ext conj_cong)
                (auto simp add: 12 not_le[symmetric] intro!: Max_eqI)
    also have ... \(\in\) sets \(M\)
            by measurable
    finally show \((\lambda x . \operatorname{Max}\{i . P i x\})-‘\{n\} \cap\) space \(M \in\) sets \(M\).
qed \(\operatorname{simp}\)
lemma measurable_Min_nat[measurable (raw)]:
    fixes \(P\) :: nat \(\Rightarrow{ }^{\prime} a \Rightarrow\) bool
    assumes [measurable]: \(\bigwedge i\). Measurable.pred \(M(P i)\)
    shows \((\lambda x\). Min \(\{i . P i x\}) \in\) measurable \(M\) (count_space UNIV)
    unfolding measurable_count_space_eq2_countable
proof safe
    fix \(n\)
    \(\{\) fix \(x\) assume \(\forall i . \exists n \geq i . P n x\)
    then have infinite \(\{i . P i x\}\)
        unfolding infinite_nat_iff_unbounded_le by auto
            then have Min \(\{i . P i x\}=\) the None
```

```
    by (rule Min.infinite) }
    note 1 = this
    { fix x ij assume P ix }\foralln\geqj.\negP n x
    then have finite {i.Pix}
        by (auto simp: subset_eq not_le[symmetric] finite_nat_iff_bounded)
    with }\langlePix\rangle\mathrm{ have P(Min {i.Pix}) x Min {i.Pix}
        using Min_in[of {i.P ix}] by auto }
    note 2 = this
    have (\lambdax. Min {i.P ix}) -`{n}\cap space M={x\inspace M. Min {i.P ix}=
n}
    by auto
    also have ... =
    {x\inspace M. if ( }\foralli.\existsn\geqi.Pnx) then the None = n els
        if (\existsi.P ix) then P n x ^(\foralli<n.\negPix)
        else Min {} = n}
    by (intro arg_cong[where f=Collect] ext conj_cong)
        (auto simp add: 1 2 not_le[symmetric] intro!: Min_eqI)
    also have ... \in sets M
    by measurable
    finally show (\lambdax. Min {i.P ix}) -'{n} \cap space M 的新 M .
qed simp
lemma measurable_count_space_insert[measurable (raw)]:
    s\inS\LongrightarrowA\in sets (count_space S)\Longrightarrow insert s A 新s (count_space S)
    by simp
lemma sets_UNIV [measurable (raw)]: A \in sets (count_space UNIV)
    by simp
lemma measurable_card[measurable]:
    fixes S :: 'a m nat set
    assumes [measurable]: \i. {x\inspace M.i\inS x}\in sets M
    shows (\lambdax. card (S x)) \in measurable M (count_space UNIV)
    unfolding measurable_count_space_eq2_countable
proof safe
    fix n show ( }\lambdax\mathrm{ . card (Sx)) -`{n} }\cap\mathrm{ space M 
    proof (cases n)
        case 0
        then have (\lambdax.card (Sx)) -`{n}\cap space M = {x\inspace M. infinite (S x)
\vee (\foralli. i\not\inSx)}
        by auto
        also have ... \in sets M
            by measurable
        finally show ?thesis.
    next
        case (Suc i)
        then have ( }\lambdax.\operatorname{card}(Sx))-`{n}\cap\mathrm{ space M=
```

$(\bigcup F \in\{A \in\{A$. finite $A\}$. card $A=n\} .\{x \in$ space $M .(\forall i . i \in S x \longleftrightarrow i \in$ F) \})
unfolding set_eq_iff[symmetric] Collect_bex_eq[symmetric] by (auto intro: card_ge_0_finite)
also have ... \in sets M
by (intro sets.countable_UN' countable_Collect countable_Collect_finite) auto finally show? thesis.
qed
qed rule
lemma measurable_pred_countable[measurable (raw)]:
assumes countable X

shows

$(\bigwedge i . i \in X \Longrightarrow$ Measurable.pred $M(\lambda x . P x i)) \Longrightarrow$ Measurable.pred $M(\lambda x$. $\forall i \in X . P x i)$
$(\bigwedge i . i \in X \Longrightarrow$ Measurable.pred $M(\lambda x . P x i)) \Longrightarrow$ Measurable.pred $M(\lambda x$. $\exists i \in X . P x i)$
unfolding pred_def
by (auto intro!: sets.sets_Collect_countable_All' sets.sets_Collect_countable_Ex' assms)

6.2.1 Measurability for (co)inductive predicates

lemma measurable_bot[measurable]: bot \in measurable M (count_space UNIV) by (simp add: bot_fun_def)
lemma measurable_top[measurable]: top \in measurable M (count_space UNIV) by (simp add: top_fun_def)
lemma measurable_SUP[measurable]:
fixes $F::{ }^{\prime} i \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} b::\{$ complete_lattice, countable $\}$
assumes [simp]: countable I
assumes [measurable]: $\bigwedge i . i \in I \Longrightarrow F i \in$ measurable M (count_space UNIV)
shows $(\lambda x . S U P i \in I . F i x) \in$ measurable M (count_space UNIV)
unfolding measurable_count_space_eq2_countable
proof (safe intro!: UNIV_I)
fix a
have $(\lambda x . S U P i \in I . F i x)-‘\{a\} \cap$ space $M=$
$\{x \in \operatorname{space} M .(\forall i \in I . F i x \leq a) \wedge(\forall b .(\forall i \in I . F i x \leq b) \longrightarrow a \leq b)\}$
unfolding SUP_le_iff[symmetric] by auto
also have $\ldots \in$ sets M
by measurable
finally show $(\lambda x . S U P i \in I . F i x)-‘\{a\} \cap$ space $M \in$ sets M.
qed
lemma measurable_INF[measurable]:
fixes $F::$ ' $i \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} b::\{$ complete_lattice, countable $\}$
assumes [simp]: countable I
assumes [measurable]: $\bigwedge i . i \in I \Longrightarrow F i \in$ measurable M (count_space UNIV)

```
    shows ( \(\lambda x\). INF \(i \in I . F i x) \in\) measurable \(M\) (count_space UNIV)
    unfolding measurable_count_space_eq2_countable
proof (safe intro!: UNIV_I)
    fix \(a\)
    have ( \(\lambda x\). INF \(i \in I . F i x)-‘\{a\} \cap\) space \(M=\)
        \(\{x \in\) space \(M .(\forall i \in I . a \leq F i x) \wedge(\forall b .(\forall i \in I . b \leq F i x) \longrightarrow b \leq a)\}\)
        unfolding le_INF_iff[symmetric] by auto
    also have ... \(\in\) sets \(M\)
        by measurable
    finally show \((\lambda x\). INF \(i \in I . F i x)-‘\{a\} \cap\) space \(M \in\) sets \(M\).
qed
lemma measurable_lfp_coinduct[consumes 1, case_names continuity step]:
    fixes \(F::\left({ }^{\prime} a \Rightarrow{ }^{\prime} b\right) \Rightarrow\left({ }^{\prime} a \Rightarrow{ }^{\prime} b::\{\right.\) complete_lattice, countable\})
    assumes \(P M\)
    assumes \(F\) : sup_continuous \(F\)
    assumes \(*: \bigwedge M A . P M \Longrightarrow(\bigwedge N . P N \Longrightarrow A \in\) measurable \(N\) (count_space
UNIV \() \Longrightarrow F A \in\) measurable \(M\) (count_space UNIV)
    shows lfp \(F \in\) measurable \(M\) (count_space UNIV)
proof -
    \{ fix \(i\) from \(\langle P M\rangle\) have \(\left(\left(F^{\wedge `} i\right)\right.\) bot) \(\in\) measurable \(M\) (count_space UNIV)
        by (induct \(i\) arbitrary: \(M\) ) (auto intro!: *) \}
    then have \(\left(\lambda x . S U P i .\left(F{ }^{\wedge} i\right)\right.\) bot \(\left.x\right) \in\) measurable \(M\) (count_space UNIV)
        by measurable
    also have \(\left(\lambda x . S U P i .\left(F^{\wedge}{ }^{\wedge} i\right)\right.\) bot \(\left.x\right)=l f p F\)
        by (subst sup_continuous_lfp) (auto intro: F simp: image_comp)
    finally show ?thesis.
qed
lemma measurable_lfp:
    fixes \(F::\left({ }^{\prime} a \Rightarrow{ }^{\prime} b\right) \Rightarrow\left({ }^{\prime} a \Rightarrow{ }^{\prime} b::\{\right.\) complete_lattice, countable\})
    assumes \(F\) : sup_continuous \(F\)
    assumes \(*: \bigwedge A . A \in\) measurable \(M\) (count_space UNIV) \(\Longrightarrow F A \in\) measurable
M (count_space UNIV)
    shows lfp \(F \in\) measurable \(M\) (count_space UNIV)
    by (coinduction rule: measurable_lfp_coinduct \(\left[O F_{-} F\right]\) ) (blast intro: *)
    lemma measurable_gfp_coinduct[consumes 1, case_names continuity step]:
    fixes \(F::\left({ }^{\prime} a \Rightarrow{ }^{\prime} b\right) \Rightarrow\left({ }^{\prime} a \Rightarrow{ }^{\prime} b::\{\right.\) complete_lattice, countable \(\left.\}\right)\)
    assumes \(P M\)
    assumes \(F\) : inf_continuous \(F\)
    assumes \(*: \bigwedge M A . P M \Longrightarrow(\bigwedge N . P N \Longrightarrow A \in\) measurable \(N\) (count_space
UNIV ) \(\Longrightarrow F A \in\) measurable \(M\) (count_space UNIV)
    shows gfp \(F \in\) measurable \(M\) (count_space UNIV)
proof -
    \{ fix \(i\) from \(\langle P M\rangle\) have \(\left(\left(F^{\wedge}{ }^{\wedge} i\right)\right.\) top \() \in\) measurable \(M\) (count_space UNIV)
        by (induct \(i\) arbitrary: \(M\) ) (auto intro!: *) \}
    then have \(\left(\lambda x\right.\). INF \(i .\left(F^{\wedge}{ }^{\wedge} i\right)\) top \(\left.x\right) \in\) measurable \(M\) (count_space UNIV)
        by measurable
```

```
    also have ( }\lambdax.INF i. (F ( ^^ i) top x) = gfp 
    by (subst inf_continuous_gfp) (auto intro: F simp: image_comp)
    finally show ?thesis.
qed
lemma measurable_gfp:
    fixes }F::('a=>'b)=>('a=>'b::{complete_lattice, countable})
    assumes F: inf_continuous F
    assumes *: \bigwedgeA.A\in measurable M (count_space UNIV)\LongrightarrowFA\in measurable
M (count_space UNIV)
    shows gfp F \in measurable M (count_space UNIV)
    by (coinduction rule: measurable_gfp_coinduct[OF _ F]) (blast intro: *)
lemma measurable_lfp2_coinduct[consumes 1, case_names continuity step]:
    fixes F:: (' }a>\mp@subsup{}{}{\prime}c=>\mp@subsup{}{}{\prime}b)=>('a=>''c=>'b::{complete_lattice, countable})
    assumes PMs
    assumes F: sup_continuous F
    assumes *: \bigwedgeMA s.PMs\Longrightarrow(\bigwedgeNt.PNt\LongrightarrowAt\in measurable N
(count_space UNIV))\LongrightarrowFAs\in measurable M (count_space UNIV)
    shows lfp F s \in measurable M (count_space UNIV)
proof -
    { fix i from <PM s\rangle have ( }\lambdax.(\mp@subsup{F}{}{\wedge`}i)\mathrm{ bot s x) & measurable M (count_space
    UNIV)
        by (induct i arbitrary:M s) (auto intro!: *) }
    then have ( }\lambdax.SUP i. (F ^^^ i) bot s x) \in measurable M (count_space UNIV
        by measurable
    also have (\lambdax.SUP i. (F ^^ i) bot s x) = lfp F s
        by (subst sup_continuous_lfp) (auto simp: F simp: image_comp)
    finally show ?thesis .
qed
    lemma measurable_gfp2_coinduct[consumes 1, case_names continuity step]:
    fixes F:: (' }a=>\mp@subsup{'}{}{\prime}c=>'b)=>('a=>''c=>'b::{complete_lattice, countable}
    assumes PMs
    assumes F: inf_continuous F
    assumes *: \M A s.PMs\Longrightarrow(\bigwedgeNt.PNt\LongrightarrowAt\in measurable N
(count_space UNIV))\LongrightarrowFAs\in measurable M (count_space UNIV)
    shows gfp F s measurable M (count_space UNIV)
proof -
    { fix i from <PM s\rangle have (\lambdax. (F ^^ i) top s x) \in measurable M (count_space
UNIV)
        by (induct i arbitrary:M s) (auto intro!: *) }
    then have ( }\lambdax.INFi.(F\mp@subsup{}{}{\wedge^}i) top s x) \in measurable M (count_space UNIV
        by measurable
    also have ( }\lambdax.INFi.(F\mp@subsup{}{}{\wedge}i) top s x ) = gfp F
        by (subst inf_continuous_gfp) (auto simp: F simp: image_comp)
    finally show ?thesis.
qed
```

```
lemma measurable_enat_coinduct:
    fixes \(f::{ }^{\prime} a \Rightarrow\) enat
    assumes \(R f\)
    assumes \(*: \bigwedge f . R f \Longrightarrow \exists g h i P . R g \wedge f=(\lambda x\). if \(P x\) then \(h x\) else eSuc \((g\)
\((i x))) \wedge\)
    Measurable.pred M P \(\wedge\)
    \(i \in\) measurable \(M M \wedge\)
    \(h \in\) measurable \(M\) (count_space UNIV)
    shows \(f \in\) measurable \(M\) (count_space UNIV)
proof (simp add: measurable_count_space_eq2_countable, rule )
    fix \(a\) :: enat
    have \(f-'\{a\} \cap\) space \(M=\{x \in\) space \(M . f x=a\}\)
        by auto
    \{ fix \(i::\) nat
    from \(\langle R f\rangle\) have Measurable.pred \(M(\lambda x . f x=\) enat \(i)\)
    proof (induction \(i\) arbitrary: \(f\) )
        case 0
        from \(*[O F\) this \(]\) obtain \(g h i P\)
            where \(f: f=(\lambda x\). if \(P x\) then \(h x\) else eSuc \((g(i x)))\) and
                            [measurable]: Measurable.pred MPi measurable \(M M h \in\) measurable
M (count_space UNIV)
                by auto
        have Measurable.pred \(M(\lambda x . P x \wedge h x=0)\)
                by measurable
        also have \((\lambda x . P x \wedge h x=0)=(\lambda x . f x=\) enat 0\()\)
                by (auto simp: \(f\) zero_enat_def[symmetric])
        finally show ?case .
    next
        case (Suc n)
        from \(*[\) OF Suc.prems \(]\) obtain \(g h i P\)
            where \(f: f=(\lambda x\). if \(P x\) then \(h x\) else eSuc \((g(i x)))\) and \(R g\) and
            M[measurable]: Measurable.pred MPiemeasurable M M \(h \in\) measurable
M (count_space UNIV)
            by auto
        have \((\lambda x . f x=\) enat \((\) Suc \(n))=\)
            \((\lambda x .(P x \longrightarrow h x=\) enat \((\) Suc \(n)) \wedge(\neg P x \longrightarrow g(i x)=\) enat \(n))\)
            by (auto simp: \(f\) zero_enat_def[symmetric] eSuc_enat[symmetric])
            also have Measurable.pred \(M \ldots\)
                by (intro pred_intros_logic measurable_compose[OF M(2)] Suc \(\langle R \quad g\rangle)\)
measurable
            finally show ?case .
    qed
    then have \(f-\) ' \(\{\) enat \(i\} \cap\) space \(M \in\) sets \(M\)
        by (simp add: pred_def Int_def conj_commute) \}
    note fin \(=\) this
    show \(f-‘\{a\} \cap\) space \(M \in\) sets \(M\)
    proof (cases a)
    case infinity
    then have \(f-‘\{a\} \cap\) space \(M=\) space \(M-(\bigcup n . f-‘\{\) enat \(n\} \cap\) space \(M)\)
```

```
        by auto
    also have ... \in sets M
            by (intro sets.Diff sets.top sets.Un sets.countable_UN) (auto intro!: fin)
    finally show ?thesis .
    qed (simp add: fin)
qed
lemma measurable_THE:
    fixes }P:: 'a> 'b=> boo
    assumes [measurable]: \i. Measurable.pred M (P i)
    assumes I[simp]: countable I \ix. x space M\LongrightarrowPix\Longrightarrowi\inI
    assumes unique: \xij. x = space M\LongrightarrowP ix \LongrightarrowPjx\Longrightarrowi=j
    shows (\lambdax.THE i.P ix) \in measurable M (count_space UNIV)
    unfolding measurable_def
proof safe
    fix }
    define f}\mathrm{ where fx=(THE i. P i x) for x
    define undef where undef =(THE i::'a. False)
    { fix ix assume x space MP ix then have fx=i
        unfolding f_def using unique by auto }
    note f_eq = this
    { fix x assume }x\in\mathrm{ space M }\foralli\inI.\negP i
        then have \i. ᄀP Pix
            using I(2)[of x] by auto
        then have fx=undef
            by (auto simp: undef_def f_def) }
    then have f-`}X\cap\mathrm{ space M=(ЧíI }\=X.{x\in\mathrm{ space M. P ix}) U
        (if undef }\inX\mathrm{ then space M-(\i<I. {xєspace M.P ix}) else {})
        by (auto dest: f_eq)
    also have ... \in sets M
        by (auto intro!: sets.Diff sets.countable_UN')
    finally show f-`}X\cap\mathrm{ space M}\in\mathrm{ sets M .
qed simp
lemma measurable_Ex1[measurable (raw)]:
    assumes [simp]: countable I and [measurable]: \i. i\inI\Longrightarrow Measurable.pred
M(Pi)
    shows Measurable.pred M ( }\lambdax.\exists!i\inI.Pix
    unfolding bex1_def by measurable
lemma measurable_Sup_nat[measurable (raw)]:
    fixes F :: 'a }=\mathrm{ nat set
    assumes [measurable]: \i. Measurable.pred M (\lambdax.i\inF x)
    shows ( }\lambdax\mathrm{ . Sup (Fx)) 
proof (clarsimp simp add: measurable_count_space_eq2_countable)
    fix a
    have F_empty_iff: F x ={}\longleftrightarrow \longleftrightarrow (\forall i. i\not\inF x) for }
        by auto
    have Measurable.pred M (\lambdax. if finite (Fx) then if F x={} then a=0
```

```
    else a }\inFx\wedge(\forallj.j\inFx\longrightarrowj\leqa) else a= the None
    unfolding finite_nat_set_iff_bounded Ball_def F_empty_iff by measurable
    moreover have ( }\lambdax\mathrm{ . Sup (F x)) -`{a} }\cap\mathrm{ space M=
    {x\inspace M. if finite (Fx) then if Fx={} then a=0
        else a GFx\wedge(\forallj.j\inFx\longrightarrowj\leqa) else a= the None}
    by (intro set_eqI)
        (auto simp: Sup_nat_def Max.infinite intro!: Max_in Max_eqI)
    ultimately show ( }\lambdax.\operatorname{Sup}(Fx))-`{a}\cap\mathrm{ space M 的的 M
        by auto
qed
lemma measurable_if_split[measurable (raw)]:
    (c\Longrightarrow Measurable.pred M f) \Longrightarrow(\negc\Longrightarrow Measurable.pred M g)\Longrightarrow
    Measurable.pred M (if c then f else g)
    by simp
lemma pred_restrict_space:
    assumes S sets M
    shows Measurable.pred (restrict_space M S) P\longleftrightarrow Measurable.pred M ( }\lambdax.x
S^Px)
    unfolding pred_def sets_Collect_restrict_space_iff[OF assms] ..
lemma measurable_predpow[measurable]:
    assumes Measurable.pred M T
    assumes }\bigwedgeQ. Measurable.pred M Q Measurable.pred M (R Q
    shows Measurable.pred M (( }\mp@subsup{R}{}{``}n)T
    by (induct n) (auto intro: assms)
lemma measurable_compose_countable_restrict:
    assumes P: countable {i. P i}
        and f:f\inM ->
        and Q:\bigwedgei.Pi\Longrightarrow pred M (Q i)
    shows pred M (\lambdax.P (fx)^Q(fx) x)
proof -
    have P_f:{x\in space M. P (fx)}\in sets M
        unfolding pred_def[symmetric] by (rule measurable_compose[OF f]) simp
    have pred (restrict_space M {x\inspace M. P (fx)}) ( }\lambdax.Q(fx)x
    proof (rule measurable_compose_countable'[where g=f,OF _ P P])
        show f}\in\mathrm{ restrict_space M {x, space M. P(fx)} 施 count_space {i.Pi}
            by (rule measurable_count_space_extend[OF subset_UNIV])
                (auto simp: space_restrict_space intro!: measurable_restrict_space1 f)
    qed (auto intro!: measurable_restrict_space1 Q)
    then show ?thesis
        unfolding pred_restrict_space[OF P_f] by (simp cong: measurable_cong)
qed
lemma measurable_limsup [measurable (raw)]:
    assumes [measurable]: \n. A n \in sets M
    shows limsup A E sets M
```

```
by (subst limsup_INF_SUP, auto)
lemma measurable_liminf [measurable (raw)]:
    assumes [measurable]: \(\bigwedge n . A n \in\) sets \(M\)
    shows liminf \(A \in\) sets \(M\)
by (subst liminf_SUP_INF, auto)
lemma measurable_case_enat[measurable (raw)]:
    assumes \(f: f \in M \rightarrow_{M}\) count_space UNIV and \(g: \bigwedge i . g i \in M \rightarrow_{M} N\) and \(h\) :
\(h \in M \rightarrow_{M} N\)
    shows \((\lambda x\). case \(f x\) of enat \(i \Rightarrow g i x \mid \infty \Rightarrow h x) \in M \rightarrow_{M} N\)
    apply (rule measurable_compose_countable \(\left[O F_{-} f\right]\) )
    subgoal for \(i\)
        by (cases \(i\) ) (auto intro: \(g h\) )
    done
```

hide_const (open) pred
end

6.3 Measure Spaces

theory Measure_Space
imports
Measurable HOL-Library.Extended_Nonnegative_Real
begin

```
6.3.1 Relate extended reals and the indicator function
lemma suminf_cmult_indicator:
    fixes f :: nat }=>\mathrm{ ennreal
    assumes disjoint_family A x \inA i
    shows}(\sumn.fn*indicator (A n) x)=f
proof -
    have **: \n.fn* indicator (A n) x=(if n=i then f n else 0 :: ennreal)
        using <x \inA i> assms unfolding disjoint_family_on_def indicator_def by auto
    then have \n. (\sumj<n.fj* indicator (A j)x)=(if i<n then f i else 0 ::
ennreal)
            by (auto simp: sum.If_cases)
    moreover have (SUP n. if i<n then fi else 0) = (fi :: ennreal )
    proof (rule SUP_eqI)
```



```
            from this[of Suc i] show fi\leqy by auto
    qed (insert assms, simp)
    ultimately show ?thesis using assms
            by (subst suminf_eq_SUP) (auto simp: indicator_def)
qed
lemma suminf_indicator:
```

```
    assumes disjoint_family \(A\)
    shows \(\left(\sum n\right.\). indicator \((A n) x\) :: ennreal \()=\) indicator \((\bigcup i . A\) i) \(x\)
proof cases
    assume \(*: x \in(\bigcup i . A i)\)
    then obtain \(i\) where \(x \in A i\) by auto
    from suminf_cmult_indicator[OF assms(1), OF \(\langle x \in A i\rangle\), of \(\lambda k\). 1]
    show ?thesis using \(*\) by simp
qed simp
lemma sum_indicator_disjoint_family:
    fixes \(f::{ }^{\prime} d \Rightarrow{ }^{\prime} e::\) semiring_1
    assumes \(d\) : disjoint_family_on \(A P\) and \(x \in A j\) and finite \(P\) and \(j \in P\)
    shows \(\left(\sum i \in P . f i *\right.\) indicator \(\left.(A i) x\right)=f j\)
proof -
    have \(P \cap\{i . x \in A i\}=\{j\}\)
        using \(d\langle x \in A j\rangle\langle j \in P\rangle\) unfolding disjoint_family_on_def
        by auto
    thus ?thesis
        unfolding indicator_def
        by (simp add: if_distrib sum.If_cases[OF〈finite P〉])
qed
```

The type for emeasure spaces is already defined in HOL-Analysis.Sigma_Algebra, as it is also used to represent sigma algebras (with an arbitrary emeasure).

6.3.2 Extend binary sets

lemma LIMSEQ_binaryset:
assumes $f: f\{ \}=0$
shows $\left(\lambda n . \sum i<n . f(\right.$ binaryset $\left.A B i)\right) \longrightarrow f A+f B$
proof -
have $\left(\lambda n . \sum i<\operatorname{Suc}(S u c n) . f(\right.$ binaryset $\left.A B i)\right)=(\lambda n . f A+f B)$ proof
fix n
show $\left(\sum i<\operatorname{Suc}(S u c n) . f(\right.$ binaryset $\left.A B i)\right)=f A+f B$ by (induct n) (auto simp add: binaryset_def f)
qed
moreover
have $\ldots \longrightarrow f A+f B$ by (rule tendsto_const)
ultimately
have $\left(\lambda n . \sum i<\operatorname{Suc}(S u c n) . f(\right.$ binaryset $\left.A B i)\right) \longrightarrow f A+f B$ by metis
hence $\left(\lambda n . \sum i<n+2 . f(\right.$ binaryset $\left.A B i)\right) \longrightarrow f A+f B$ by simp
thus ?thesis by (rule LIMSEQ_offset [where $k=$ 2])
qed
lemma binaryset_sums:
assumes $f: f\{ \}=0$
shows $(\lambda n . f$ (binaryset $A B n))$ sums $(f A+f B)$
by (simp add: sums_def LIMSEQ_binaryset [where $f=f$, OF f] atLeastOLessThan)
lemma suminf_binaryset_eq:
fixes $f::$ ' a set \Rightarrow ' $b::\{$ comm_monoid_add, t __space $\}$
shows $f\left\}=0 \Longrightarrow\left(\sum n . f(\right.\right.$ binaryset $\left.A B n)\right)=f A+f B$
by (metis binaryset_sums sums_unique)

6.3.3 Properties of a premeasure μ

The definitions for positive and countably_additive should be here, by they are necessary to define 'a measure in HOL-Analysis.Sigma_Algebra.
definition subadditive where

$$
\text { subadditive } M f \longleftrightarrow(\forall x \in M . \forall y \in M . x \cap y=\{ \} \longrightarrow f(x \cup y) \leq f x+f y)
$$

lemma subadditiveD: subadditive $M f \Longrightarrow x \cap y=\{ \} \Longrightarrow x \in M \Longrightarrow y \in M \Longrightarrow$ $f(x \cup y) \leq f x+f y$
by (auto simp add: subadditive_def)
definition countably_subadditive where countably_subadditive $M f \longleftrightarrow$
$(\forall$ A. range $A \subseteq M \longrightarrow$ disjoint_family $A \longrightarrow(\bigcup i . A i) \in M \longrightarrow(f(\bigcup i . A$
$\left.\left.i) \leq\left(\sum i . f(A i)\right)\right)\right)$
lemma (in ring_of_sets) countably_subadditive_subadditive:
fixes f :: 'a set \Rightarrow ennreal
assumes f : positive $M f$ and cs: countably_subadditive $M f$
shows subadditive $M f$
proof (auto simp add: subadditive_def)
fix $x y$
assume $x: x \in M$ and $y: y \in M$ and $x \cap y=\{ \}$
hence disjoint_family (binaryset x y)
by (auto simp add: disjoint_family_on_def binaryset_def)
hence range (binaryset $x y$) $\subseteq M \longrightarrow$
$(\bigcup$ i. binaryset x y $i) \in M \longrightarrow$
$f(\bigcup$ i. binaryset $x y i) \leq\left(\sum n . f(\right.$ binaryset $\left.x y n)\right)$
using cs by (auto simp add: countably_subadditive_def)
hence $\{x, y,\{ \}\} \subseteq M \longrightarrow x \cup y \in M \longrightarrow$
$f(x \cup y) \leq\left(\sum n . f(\right.$ binaryset $\left.x y n)\right)$
by (simp add: range_binaryset_eq UN_binaryset_eq)
thus $f(x \cup y) \leq f x+f y$ using $f x y$
by (auto simp add: Un o_def suminf_binaryset_eq positive_def)
qed
definition additive where

$$
\text { additive } M \mu \longleftrightarrow(\forall x \in M . \forall y \in M . x \cap y=\{ \} \longrightarrow \mu(x \cup y)=\mu x+\mu y)
$$

definition increasing where
increasing $M \mu \longleftrightarrow(\forall x \in M . \forall y \in M . x \subseteq y \longrightarrow \mu x \leq \mu y)$
lemma positiveD1: positive $M f \Longrightarrow f\}=0$ by (auto simp: positive_def)
lemma positiveD_empty:
positive $M f \Longrightarrow f\}=0$
by (auto simp add: positive_def)
lemma additiveD:
additive $M f \Longrightarrow x \cap y=\{ \} \Longrightarrow x \in M \Longrightarrow y \in M \Longrightarrow f(x \cup y)=f x+f y$
by (auto simp add: additive_def)
lemma increasingD:
increasing $M f \Longrightarrow x \subseteq y \Longrightarrow x \in M \Longrightarrow y \in M \Longrightarrow f x \leq f y$
by (auto simp add: increasing_def)
lemma countably_additiveI[case_names countably]:
$\left(\bigwedge A\right.$. range $A \subseteq M \Longrightarrow$ disjoint_family $A \Longrightarrow(\bigcup i . A i) \in M \Longrightarrow\left(\sum i . f(A\right.$
$i)=f(\bigcup i . A i))$
\Longrightarrow countably_additive $M f$
by (simp add: countably_additive_def)
lemma (in ring_of_sets) disjointed_additive:
assumes f : positive $M f$ additive $M f$ and A : range $A \subseteq M$ incseq A
shows $\left(\sum i \leq n . f(\right.$ disjointed $\left.A i)\right)=f(A n)$
proof (induct n)
case (Suc n)
then have $\left(\sum i \leq\right.$ Suc $n . f($ disjointed $\left.A i)\right)=f(A n)+f($ disjointed $A($ Suc n))
by simp
also have $\ldots=f(A n \cup$ disjointed $A(S u c n))$
using A by (subst $f(2)[T H E N$ additiveD]) (auto simp: disjointed_mono)
also have $A n \cup$ disjointed $A($ Suc $n)=A(S u c n)$
using 〈incseq A 〉 by (auto dest: incseq_SucD simp: disjointed_mono)
finally show ?case .
qed simp
lemma (in ring_of_sets) additive_sum:
fixes $A::^{\prime} i \Rightarrow$ 'a set
assumes f : positive $M f$ and ad: additive $M f$ and finite S
and $A: A^{\prime} S \subseteq M$
and disj: disjoint_family_on $A S$
shows $\left(\sum i \in S . f(A i)\right)=f(\bigcup i \in S . A i)$
using \langle finite $S\rangle$ disj A
proof induct
case empty show ?case using f by (simp add: positive_def)
next
case (insert s S)
then have $A s \cap(\bigcup i \in S . A i)=\{ \}$
by (auto simp add: disjoint_family_on_def neq_iff)

```
    moreover
    have A s\inM using insert by blast
    moreover have (\bigcupi\inS.A i) \inM
        using insert 〈finite S` by auto
    ultimately have f(As\cup(\bigcupi\inS.Ai))=f(As)+f(\bigcupi\inS.A i)
        using ad UNION_in_sets A by (auto simp add: additive_def)
    with insert show ?case using ad disjoint_family_on_mono[of S insert s S A]
        by (auto simp add: additive_def subset_insertI)
qed
lemma (in ring_of_sets) additive_increasing:
    fixes f :: 'a set }=>\mathrm{ ennreal
    assumes posf: positive Mf and addf: additive Mf
    shows increasing Mf
proof (auto simp add: increasing_def)
    fix }x
    assume xy: }x\inMy\inMx\subseteq
    then have }y-x\inM\mathrm{ by auto
    then have fx+0\leqfx+f(y-x) by (intro add_left_mono zero_le)
    also have ... =f(x\cup(y-x)) using addf
    by (auto simp add: additive_def) (metis Diff_disjoint Un_Diff_cancel Diff xy(1,2))
    also have ... = f y
        by (metis Un_Diff_cancel Un_absorb1 xy(3))
    finally show fx\leqfy by simp
qed
lemma (in ring_of_sets) subadditive:
    fixes f :: 'a set }=>\mathrm{ ennreal
    assumes f: positive Mf additive Mf and A: A'S\subseteqM and S: finite S
    shows f(\bigcupi\inS.A i)\leq(\sumi\inS.f(Ai))
using S A
proof (induct S)
    case empty thus ?case using f by (auto simp: positive_def)
next
    case (insert x F)
    hence in_M:A x 隹 (\bigcupi\inF.A i)\inM(\bigcupi\inF.A i) - A x (UM using A
by force+
    have subs: (\bigcupi\inF.A i)-A x\subseteq(\bigcupi\inF.A i) by auto
    have (Ui\in(\mathrm{ insert }xF).Ai)=\overline{A}x\cup((\bigcupi\inF.Ai)-Ax) by auto
    hence f}(\bigcupi\in(\mathrm{ insert x F).A i) =f(Ax U((\íF.Ai) - Ax))
        by simp
    also have ... =f(Ax)+f((\bigcupi\inF.A i)-Ax)
        using f(2) by (rule additiveD) (insert in_M, auto)
    also have ... \leqf(Ax)+f(\bigcupi\inF.A i)
        using additive_increasing[OF f] in_M subs by (auto simp: increasing_def intro:
add_left_mono)
    also have .. \leqf(Ax) + (\sumi\inF.f(A i)) using insert by (auto intro:
add_left_mono)
    finally show f(\bigcupi\in(insert x F).A i)\leq(\sumi\in(insert x F).f(Ai)) using
```

```
insert by simp
qed
lemma (in ring_of_sets) countably_additive_additive:
    fixes \(f::\) 'a set \(\Rightarrow\) ennreal
    assumes posf: positive \(M f\) and ca: countably_additive \(M f\)
    shows additive \(M f\)
proof (auto simp add: additive_def)
    fix \(x y\)
    assume \(x: x \in M\) and \(y: y \in M\) and \(x \cap y=\{ \}\)
    hence disjoint_family (binaryset \(x\) y)
        by (auto simp add: disjoint_family_on_def binaryset_def)
    hence range (binaryset \(x y\) ) \(\subseteq M \longrightarrow\)
        \((\bigcup i\). binaryset \(x\) y \(i) \in M \longrightarrow\)
                \(f(\bigcup i\). binaryset \(x\) y \(i)=\left(\sum n . f(\right.\) binaryset \(\left.x y n)\right)\)
        using \(c a\)
    by (simp add: countably_additive_def)
    hence \(\{x, y,\{ \}\} \subseteq M \longrightarrow x \cup y \in M \longrightarrow\)
        \(f(x \cup y)=\left(\sum n . f(\right.\) binaryset \(x\) y \(\left.n)\right)\)
    by (simp add: range_binaryset_eq UN_binaryset_eq)
    thus \(f(x \cup y)=f x+f y\) using posf \(x y\)
        by (auto simp add: Un suminf_binaryset_eq positive_def)
qed
lemma (in algebra) increasing_additive_bound:
    fixes \(A:\) nat \(\Rightarrow\) 'a set and \(f::\) 'a set \(\Rightarrow\) ennreal
    assumes \(f\) : positive \(M f\) and ad: additive \(M f\)
        and inc: increasing \(M f\)
        and \(A\) : range \(A \subseteq M\)
        and disj: disjoint_family \(A\)
    shows \(\left(\sum i . f(A i)\right) \leq f \Omega\)
proof (safe intro!: suminf_le_const)
    fix \(N\)
    note disj_ \(N=\) disjoint_family_on_mono[OF _ disj, of \(\{. .<N\}]\)
    have \(\left(\sum i<N . f(A i)\right)=f(\bigcup i \in\{. .<N\} . A i)\)
        using \(A\) by (intro additive_sum [OF fad _ ]) (auto simp: disj_N)
    also have \(\ldots \leq f \Omega\) using space_closed \(A\)
        by (intro increasing \(D[O F\) inc \(]\) finite_UN) auto
    finally show \(\left(\sum i<N . f(A i)\right) \leq f \Omega\) by simp
qed (insert \(f\), auto simp: positive_def)
lemma (in ring_of_sets) countably_additiveI_finite:
    fixes \(\mu\) :: 'a set \(\Rightarrow\) ennreal
    assumes finite \(\Omega\) positive \(M \mu\) additive \(M \mu\)
    shows countably_additive \(M \mu\)
proof (rule countably_additiveI)
    fix \(F::\) nat \(\Rightarrow\) 'a set assume \(F\) : range \(F \subseteq M(\bigcup i . F i) \in M\) and disj:
disjoint_family \(F\)
```

have $\forall i \in\{i . F i \neq\{ \}\} . \exists x . x \in F i$ by auto
from bchoice $[O F$ this $]$ obtain f where $f: \bigwedge i . F i \neq\{ \} \Longrightarrow f i \in F i$ by auto
have inj_f: inj_on $f\{i . F i \neq\{ \}\}$
proof (rule inj_onI, simp)
fix $i j$ absume $*: f i=f j F i \neq\{ \} F j \neq\{ \}$
then have $f i \in F$ if $j \in F j$ using f by force +
with disj $*$ show $i=j$ by (auto simp: disjoint_family_on_def)
qed
have finite $(\bigcup i . F i)$
by (metis $F(2)$ assms(1) infinite_super sets_into_space)
have F_{-}subset: $\{i . \mu(F i) \neq 0\} \subseteq\{i . F i \neq\{ \}\}$
by (auto simp: positiveD_empty $[O F\langle$ positive $M \mu\rangle]$)
moreover have fin_not_empty: finite $\{i . F i \neq\{ \}\}$
proof (rule finite_imageD)
from f have $f^{\prime}\{i . F i \neq\{ \}\} \subseteq(\bigcup i . F i)$ by auto
then show finite $\left(f^{\prime}\{i . F i \neq\{ \}\}\right)$
by (rule finite_subset) fact
qed fact
ultimately have fin_not_0: finite $\{i . \mu(F i) \neq 0\}$
by (rule finite_subset)
have disj_not_empty: disjoint_family_on $F\{i . F i \neq\{ \}\}$
using disj by (auto simp: disjoint_family_on_def)
from fin_not_0 have $\left(\sum i . \mu(F i)\right)=\left(\sum i \mid \mu(F i) \neq 0 . \mu(F i)\right)$
by (rule suminf_-finite) auto
also have $\ldots=\left(\sum i \mid F i \neq\{ \} . \mu(F i)\right)$
using fin_not_empty $F_{\text {_subset }}$ by (rule sum.mono_neutral_left) auto
also have $\ldots=\mu(\bigcup i \in\{i . F i \neq\{ \}\} . F i)$
using $\langle p o s i t i v e ~ M ~ \mu\rangle\langle a d d i t i v e ~ M ~ \mu 〉$ fin_not_empty disj_not_empty F by (intro
additive_sum) auto
also have $\ldots=\mu(\bigcup i . F i)$
by (rule arg_cong $[$ where $f=\mu]$) auto
finally show $\left(\sum i . \mu(F i)\right)=\mu(\bigcup i . F i)$.
qed
lemma (in ring_of_sets) countably_additive_iff_continuous_from_below:
fixes $f::{ }^{\prime}$ a set \Rightarrow ennreal
assumes f : positive $M f$ additive $M f$
shows countably_additive $M f \longleftrightarrow$
$(\forall$ A. range $A \subseteq M \longrightarrow$ incseq $A \longrightarrow(\bigcup i . A i) \in M \longrightarrow(\lambda i . f(A i)) \longrightarrow$
$f(\bigcup i . A i))$
unfolding countably_additive_def
proof safe
assume count_sum: $\forall A$. range $A \subseteq M \longrightarrow$ disjoint_family $A \longrightarrow \bigcup(A$ 'UNIV)
$\in M \longrightarrow\left(\sum i . f(A i)\right)=f(\bigcup(A \cdot U N I V))$
fix $A::$ nat \Rightarrow 'a set assume A : range $A \subseteq M \operatorname{incseq} A(\bigcup i$. $A i) \in M$
then have $d A$: range (disjointed $A) \subseteq M$ by (auto simp: range_disjointed_sets)
with count_sum[THEN spec, of disjointed A] A(3)
have $f_{-} U N:\left(\sum i . f(\right.$ disjointed $\left.A i)\right)=f(\bigcup i . A i)$
by (auto simp: UN_disjointed_eq disjoint_family_disjointed)
moreover have $\left(\lambda n .\left(\sum i<n . f(\right.\right.$ disjointed $\left.\left.A i)\right)\right) \longrightarrow\left(\sum i . f\right.$ (disjointed A i))
using $f(1)$ [unfolded positive_def] $d A$
by (auto intro!: summable_LIMSEQ)
from LIMSEQ_Suc[OF this]
have $\left(\lambda n .\left(\sum i \leq n . f(\right.\right.$ disjointed $\left.\left.A i)\right)\right) \longrightarrow\left(\sum i . f(\operatorname{disjointed} A i)\right)$
unfolding lessThan_Suc_atMost .
moreover have $\wedge n .\left(\sum i \leq n . f(\right.$ disjointed $\left.A i)\right)=f(A n)$
using disjointed_additive[OF f A(1,2)].
ultimately show $(\lambda i . f(A i)) \longrightarrow f(\bigcup i . A i)$ by simp
next
assume cont: $\forall A$. range $A \subseteq M \longrightarrow \operatorname{incseq} A \longrightarrow(\bigcup i . A i) \in M \longrightarrow(\lambda i . f$
$(A i)) \longrightarrow f(\bigcup i . A i)$
fix $A::$ nat $\Rightarrow{ }^{\prime} a$ set assume A : range $A \subseteq M$ disjoint_family $A(\bigcup i . A i) \in M$
have $*:(\bigcup n .(\bigcup i<n . A i))=(\bigcup i . A i)$ by auto
have $(\lambda n . f(\bigcup i<n . A i)) \longrightarrow f(\bigcup i . A i)$
proof (unfold $*[$ symmetric], intro cont [rule_format $]$)
show range $(\lambda i . \bigcup i<i . A i) \subseteq M(\bigcup i . \bigcup i<i . A i) \in M$
using $A *$ by auto
qed (force intro!: incseq_SucI)
moreover have $\bigwedge n . f(\bigcup i<n . A i)=\left(\sum i<n . f(A i)\right)$
using A
by (intro additive_sum $[O F f$, of _ A, symmetric $]$)
(auto intro: disjoint_family_on_mono[where $B=U N I V]$)
ultimately
have $(\lambda i . f(A i))$ sums $f(\bigcup i . A i)$
unfolding sums_def by simp
from sums_unique[OF this]
show $\left(\sum i . f(A i)\right)=f(\bigcup i . A i)$ by simp
qed
lemma (in ring_of_sets) continuous_from_above_iff_empty_continuous:
fixes f :: 'a set \Rightarrow ennreal
assumes f : positive $M f$ additive $M f$
shows $(\forall A$. range $A \subseteq M \longrightarrow \operatorname{decseq} A \longrightarrow(\bigcap i . A i) \in M \longrightarrow(\forall i . f(A i) \neq$
$\infty) \longrightarrow(\lambda i . f(A i)) \longrightarrow f(\bigcap i . A i))$
$\longleftrightarrow(\forall A$. range $A \subseteq M \longrightarrow$ decseq $A \longrightarrow(\bigcap i . A i)=\{ \} \longrightarrow(\forall i . f(A i)$
$\neq \infty) \longrightarrow\left(\lambda i . f\left(\begin{array}{ll}A &)\end{array} \longrightarrow 0\right)\right.$
proof safe
assume cont: $(\forall A$. range $A \subseteq M \longrightarrow$ decseq $A \longrightarrow(\bigcap i . A i) \in M \longrightarrow(\forall i . f$
$(A i) \neq \infty) \longrightarrow(\lambda i . f(A i)) \longrightarrow f(\bigcap i . A i))$
fix $A::$ nat \Rightarrow 'a set assume A : range $A \subseteq M \operatorname{decseq} A(\bigcap i . A$ i) $=\{ \} \forall i . f$ (A i) $\neq \infty$
with cont $[$ THEN spec, of $A]$ show $(\lambda i . f(A i)) \longrightarrow 0$
using <positive $M f\rangle[$ unfolded positive_def] by auto

```
next
    assume cont \(: \forall A\). range \(A \subseteq M \longrightarrow \operatorname{decseq} A \longrightarrow(\bigcap i . A i)=\{ \} \longrightarrow(\forall i . f\)
\((A i) \neq \infty) \longrightarrow(\lambda i . f(A i)) \longrightarrow 0\)
    fix \(A::\) nat \(\Rightarrow\) 'a set assume \(A\) : range \(A \subseteq M \operatorname{decseq} A(\cap i . A\) i) \(\in M \forall i . f\)
(A i) \(\neq \infty\)
    have \(f\) _mono: \(\backslash a b . a \in M \Longrightarrow b \in M \Longrightarrow a \subseteq b \Longrightarrow f a \leq f b\)
        using additive_increasing [OF f] unfolding increasing_def by simp
    have decseq_fA: decseq ( \(\lambda i . f\left(\begin{array}{ll}\text { i }\end{array}\right)\) )
        using \(A\) by (auto simp: decseq_def intro!: f_mono)
    have decseq: decseq ( \(\lambda i . A i-(\bigcap i . A\) i) \()\)
        using \(A\) by (auto simp: decseq_def)
    then have decseq-f: decseq ( \(\lambda i . f(A i-(\bigcap i . A i)))\)
        using \(A\) unfolding decseq_def by (auto intro!: f_mono Diff)
    have \(f(\cap x . A x) \leq f\left(\begin{array}{ll}A & 0\end{array}\right)\)
        using \(A\) by (auto intro!: f_mono)
    then have \(f_{-}\)Int_fin: \(f(\cap x . A x) \neq \infty\)
        using \(A\) by (auto simp: top_unique)
    \{ fix \(i\)
        have \(f\left(A_{i}-\left(\bigcap_{i .} A i\right)\right) \leq f\left(A\right.\) i) using \(A\) by (auto intro!: \(f_{-}\)mono)
        then have \(f(A i-(\cap i . A i)) \neq \infty\)
            using \(A\) by (auto simp: top_unique) \(\}\)
    note \(f_{-}\)fin \(=\)this
    have \((\lambda i . f(A i-(\cap i . A i))) \longrightarrow 0\)
    proof (intro cont[rule_format, OF - decseq - f-fin])
        show range \((\lambda i . A i-(\bigcap i . A i)) \subseteq M(\cap i . A i-(\bigcap i . A i))=\{ \}\)
            using \(A\) by auto
    qed
    from INF_Lim[OF decseq_f this]
    have (INF n. \(\left.f\left(A n-\left(\cap_{i . A}\right)\right)\right)=0\).
    moreover have (INF n. \(f(\cap i . A i))=f\left(\cap_{i . A}\right)\)
        by auto
    ultimately have (INF \(\left.n . f\left(A n-\left(\bigcap_{i .} A i\right)\right)+f\left(\bigcap_{i .} A i\right)\right)=0+f\left(\bigcap_{i}\right.\).
A i)
        using \(A(4) f_{\text {_fin }} f_{-}\)Int_fin
        by (subst INF_ennreal_add_const) (auto simp: decseq_f)
    moreover \{
        fix \(n\)
        have \(f(A n-(\bigcap i . A i))+f(\bigcap i . A i)=f((A n-(\bigcap i . A i)) \cup(\bigcap i . A\)
i))
            using \(A\) by (subst \(f(2)\) [THEN additiveD]) auto
    also have \((A n-(\bigcap i . A i)) \cup\left(\bigcap_{i} . A i\right)=A n\)
        by auto
    finally have \(f(A n-(\bigcap i . A i))+f(\bigcap i . A i)=f(A n)\).
    ultimately have (INF \(n . f(A n))=f(\cap i . A i)\)
        by \(\operatorname{simp}\)
    with LIMSEQ_INF[OF decseq_fA]
    show \((\lambda i . f(A i)) \longrightarrow f(\cap i . A\) i) by simp
```


qed

lemma (in ring_of_sets) empty_continuous_imp_continuous_from_below:
fixes $f::$ 'a set \Rightarrow ennreal
assumes f : positive $M f$ additive $M f \forall A \in M . f A \neq \infty$
assumes cont: $\forall A$. range $A \subseteq M \longrightarrow \operatorname{decseq} A \longrightarrow(\bigcap i . A i)=\{ \} \longrightarrow(\lambda i . f$
$(A i)) \longrightarrow 0$
assumes A : range $A \subseteq M$ incseq $A(\bigcup i . A i) \in M$
shows $(\lambda i . f(A i)) \longrightarrow f(\bigcup i . A i)$
proof -
from A have $(\lambda i . f((\bigcup i . A i)-A i)) \longrightarrow 0$
by (intro cont $[$ rule_format $]$) (auto simp: decseq_def incseq_def)
moreover
\{ fix i
have $f((\bigcup i . A i)-A i \cup A i)=f((\bigcup i . A i)-A i)+f(A i)$
using A by (intro $f(2)[$ THEN additiveD]) auto
also have $((\bigcup i . A i)-A i) \cup A i=(\bigcup i . A i)$
by auto
finally have $f((\bigcup i . A i)-A i)=f(\bigcup i . A i)-f(A i)$
using $f(3)[$ rule_format, of A i] A by (auto simp: ennreal_add_diff_cancel
subset_eq) \}
moreover have \forall_{F} i in sequentially. $f(A i) \leq f(\bigcup i . A i)$
using increasing $D\left[O F\right.$ additive_increasing $[\operatorname{OF} f(1,2)]$, of $A _\cup i$. A i] A
by (auto intro!: always_eventually simp: subset_eq)
ultimately show $(\lambda i . f(A i)) \longrightarrow f(\bigcup i . A i)$
by (auto intro: ennreal_tendsto_const_minus)
qed
lemma (in ring_of_sets) empty_continuous_imp_countably_additive:
fixes $f::{ }^{\prime}$ a set \Rightarrow ennreal
assumes f : positive $M f$ additive $M f$ and fin: $\forall A \in M . f A \neq \infty$
assumes cont: $\bigwedge A$. range $A \subseteq M \Longrightarrow$ decseq $A \Longrightarrow(\bigcap i . A i)=\{ \} \Longrightarrow(\lambda i . f$
$(A i)) \longrightarrow 0$
shows countably_additive $M f$
using countably_additive_iff_continuous_from_below $[O F f]$
using empty_continuous_imp_continuous_from_below[OF f fin] cont
by blast

6.3.4 Properties of emeasure

lemma emeasure_positive: positive (sets M) (emeasure M)
by (cases M) (auto simp: sets_def emeasure_def Abs_measure_inverse measure_space_def)
lemma emeasure_empty[simp, intro]: emeasure $M\}=0$
using emeasure_positive[of M] by (simp add: positive_def)
lemma emeasure_single_in_space: emeasure $M\{x\} \neq 0 \Longrightarrow x \in$ space M
using emeasure_notin_sets[of $\{x\}$ M] by (auto dest: sets.sets_into_space zero_less_iff_neq_zero[THEN iffD2])
lemma emeasure_countably_additive: countably_additive (sets M) (emeasure M)
by (cases M) (auto simp: sets_def emeasure_def Abs_measure_inverse measure_space_def)
lemma suminf_emeasure:
range $A \subseteq$ sets $M \Longrightarrow$ disjoint_family $A \Longrightarrow\left(\sum i\right.$. emeasure $\left.M(A i)\right)=$ emeasure
$M(\bigcup i . A i)$
using sets.countable_UN[of A UNIV M] emeasure_countably_additive[of M]
by (simp add: countably_additive_def)
lemma sums_emeasure:
disjoint_family $F \Longrightarrow(\bigwedge i . F i \in$ sets $M) \Longrightarrow(\lambda i$. emeasure $M(F i))$ sums emeasure $M(\bigcup i . F i)$
unfolding sums_iff by (intro conjI suminf_emeasure) auto
lemma emeasure_additive: additive (sets M) (emeasure M)
by (metis sets.countably_additive_additive emeasure_positive emeasure_countably_additive)
lemma plus_emeasure:
$a \in$ sets $M \Longrightarrow b \in$ sets $M \Longrightarrow a \cap b=\{ \} \Longrightarrow$ emeasure $M a+$ emeasure $M b$
$=$ emeasure $M(a \cup b)$
using additiveD $[$ OF emeasure_additive $]$..
lemma emeasure_Un:
$A \in$ sets $M \Longrightarrow B \in$ sets $M \Longrightarrow$ emeasure $M(A \cup B)=$ emeasure $M A+$ emeasure $M(B-A)$
using plus_emeasure $[$ of $A M B-A]$ by auto
lemma emeasure_Un_Int:
assumes $A \in$ sets $M B \in$ sets M
shows emeasure $M A+$ emeasure $M B=$ emeasure $M(A \cup B)+$ emeasure M
$(A \cap B)$
proof -
have $A=(A-B) \cup(A \cap B)$ by auto
then have emeasure $M A=$ emeasure $M(A-B)+$ emeasure $M(A \cap B)$
by (metis Diff_Diff_Int Diff_disjoint assms plus_emeasure sets.Diff)
moreover have $A \cup B=(A-B) \cup B$ by auto
then have emeasure $M(A \cup B)=$ emeasure $M(A-B)+$ emeasure $M B$
by (metis Diff_disjoint Int_commute assms plus_emeasure sets.Diff)
ultimately show ?thesis by (metis add.assoc add.commute)
qed
lemma sum_emeasure:
$F^{\prime} I \subseteq$ sets $M \Longrightarrow$ disjoint_family_on $F I \Longrightarrow$ finite $I \Longrightarrow$
$\left(\sum i \in I\right.$. emeasure $\left.M(F i)\right)=$ emeasure $M(\bigcup i \in I . F i)$
by (metis sets.additive_sum emeasure_positive emeasure_additive)
lemma emeasure_mono:
$a \subseteq b \Longrightarrow b \in$ sets $M \Longrightarrow$ emeasure $M a \leq$ emeasure $M b$
by (metis zero_le sets.additive_increasing emeasure_additive emeasure_notin_sets emeasure_positive increasingD)
lemma emeasure_space:
emeasure $M A \leq$ emeasure M (space M)
by (metis emeasure_mono emeasure_notin_sets sets.sets_into_space sets.top zero_le)
lemma emeasure_Diff:
assumes finite: emeasure $M B \neq \infty$
and [measurable]: $A \in$ sets $M B \in$ sets M and $B \subseteq A$
shows emeasure $M(A-B)=$ emeasure $M A-$ emeasure $M B$
proof -
have $(A-B) \cup B=A$ using $\langle B \subseteq A\rangle$ by auto
then have emeasure $M A=$ emeasure $M((A-B) \cup B)$ by simp
also have $\ldots=$ emeasure $M(A-B)+$ emeasure $M B$
by (subst plus_emeasure [symmetric]) auto
finally show emeasure $M(A-B)=$ emeasure $M A-$ emeasure $M B$ using finite by simp
qed
lemma emeasure_compl:
$s \in$ sets $M \Longrightarrow$ emeasure $M s \neq \infty \Longrightarrow$ emeasure $M($ space $M-s)=$ emeasure M (space M) - emeasure $M s$
by (rule emeasure_Diff) (auto dest: sets.sets_into_space)
lemma Lim_emeasure_incseq:
range $A \subseteq$ sets $M \Longrightarrow$ incseq $A \Longrightarrow(\lambda i$. (emeasure $M(A i))) \longrightarrow$ emeasure $M(\bigcup i . A i)$
using emeasure_countably_additive
by (auto simp add: sets.countably_additive_iff_continuous_from_below emeasure_positive emeasure_additive)
lemma incseq_emeasure:
assumes range $B \subseteq$ sets M incseq B
shows incseq (λi. emeasure $M(B i)$)
using assms by (auto simp: incseq_def intro!: emeasure_mono)
lemma SUP_emeasure_incseq:
assumes A : range $A \subseteq$ sets M incseq A
shows (SUP n. emeasure $M(A n))=$ emeasure $M(\bigcup i . A i)$
using LIMSEQ_SUP[OF incseq_emeasure, OF A] Lim_emeasure_incseq[OF A]
by (simp add: LIMSEQ_unique)
lemma decseq_emeasure:
assumes range $B \subseteq$ sets M decseq B
shows decseq (λi. emeasure $M(B i)$)
using assms by (auto simp: decseq_def intro!: emeasure_mono)
lemma INF_emeasure_decseq:
assumes A : range $A \subseteq$ sets M and decseq A
and finite: $\bigwedge i$. emeasure $M(A i) \neq \infty$
shows (INF n. emeasure $M(A n))=$ emeasure $M(\bigcap i . A i)$
proof -
have le_MI: emeasure $M(\bigcap i . A i) \leq$ emeasure $M\left(\begin{array}{ll}A & 0\end{array}\right)$
using A by (auto intro!: emeasure_mono)
hence $*$: emeasure $M(\bigcap i . A i) \neq \infty$ using finite $[$ of 0$]$ by (auto simp: top_unique)
have emeasure $M\left(\begin{array}{ll}A & 0\end{array}\right)-\left(\right.$ INF n. emeasure $\left.M\left(\begin{array}{ll}A & n\end{array}\right)\right)=(S U P$ n. emeasure M (A0)-emeasure $M(A n))$
by (simp add: ennreal_INF_const_minus)
also have $\ldots=(S U P n$. emeasure $M(A 0-A n))$
using A finite \langle decseq $A\rangle[$ unfolded decseq_def] by (subst emeasure_Diff) auto
also have $\ldots=$ emeasure $M(\bigcup i . A 0-A i)$
proof (rule SUP_emeasure_incseq)
show range $(\lambda n$. $A 0-A n) \subseteq$ sets M
using A by auto
show incseq $(\lambda n$. $A 0-A n)$
using $\langle\operatorname{decseq} A\rangle$ by (auto simp add: incseq_def decseq_def)
qed
also have $\ldots=$ emeasure $M\left(\begin{array}{ll}A & 0)\end{array}\right.$ - emeasure $M(\bigcap i . A i)$
using A finite * by (simp, subst emeasure_Diff) auto
finally show ?thesis
by (rule ennreal_minus_cancel[rotated 3])
(insert finite A, auto intro: INF_lower emeasure_mono)
qed
lemma $I N F_{-}$emeasure_decseq':
assumes $A: \bigwedge i$. $A i \in$ sets M and decseq A
and finite: $\exists i$. emeasure $M(A i) \neq \infty$
shows (INF n. emeasure $M(A n))=$ emeasure $M(\bigcap i . A i)$
proof -
from finite obtain i where i : emeasure $M\left(\begin{array}{ll}A &)<\infty\end{array}\right.$
by (auto simp: less_top)
have fin: $i \leq j \Longrightarrow$ emeasure $M(A j)<\infty$ for j
by (rule le_less_trans[OF emeasure_mono i]) (auto intro!: decseqD[OF 〈decseq A〉] A)
have $(\operatorname{INF} n$. emeasure $M(A n))=(\operatorname{INF} n$. emeasure $M(A(n+i)))$
proof (rule INF_eq)
show $\exists j \in U N I V$. emeasure $M(A(j+i)) \leq$ emeasure $M\left(A i^{\prime}\right)$ for i^{\prime}
by (intro bexI[of - $i]$ emeasure_mono decseq $D[O F\langle\operatorname{decseq} A\rangle]$) auto
qed auto
also have $\ldots=$ emeasure $M(\operatorname{INF} n .(A(n+i)))$
using $A\langle$ decseq $A\rangle$ fin by (intro $I N F_{-}$emeasure_decseq) (auto simp: decseq_def less_top)
also have (INF $n .(A(n+i)))=(I N F n . A n)$
by (meson INF_eq UNIV_I assms(2) decseqD le_add1)
finally show? ?thesis.

```
qed
lemma emeasure_INT_decseq_subset:
    fixes \(F\) :: nat \(\Rightarrow\) 'a set
    assumes \(I: I \neq\{ \}\) and \(F: \bigwedge i j . i \in I \Longrightarrow j \in I \Longrightarrow i \leq j \Longrightarrow F j \subseteq F i\)
    assumes \(F_{-}\)sets[measurable]: \(\bigwedge i . i \in I \Longrightarrow F i \in\) sets \(M\)
        and fin: \(\bigwedge i . i \in I \Longrightarrow\) emeasure \(M(F i) \neq \infty\)
    shows emeasure \(M(\bigcap i \in I . F i)=(\) INF \(i \in I\). emeasure \(M(F i))\)
proof cases
    assume finite \(I\)
    have \((\bigcap i \in I . F i)=F(\operatorname{Max} I)\)
        using \(I\) 〈finite \(I\rangle\) by (intro antisym INF_lower INF_greatest \(F\) ) auto
    moreover have (INF \(i \in I\). emeasure \(M(F i))=\) emeasure \(M(F(M a x I))\)
        using \(I\langle\) finite \(I\rangle\) by (intro antisym INF_lower INF_greatest \(F\) emeasure_mono)
    auto
    ultimately show ?thesis
        by simp
    next
    assume infinite \(I\)
    define \(L\) where \(L n=(L E A S T i . i \in I \wedge i \geq n)\) for \(n\)
    have \(L: L n \in I \wedge n \leq L n\) for \(n\)
        unfolding L_def
    proof (rule LeastI_ex)
        show \(\exists x . x \in I \wedge n \leq x\)
            using «infinite \(I\) » finite_subset \([\) of \(I\{. .<n\}]\)
            by (rule_tac ccontr) (auto simp: not_le)
    qed
    have \(L_{-} e q[\) simp \(]: i \in I \Longrightarrow L i=i\) for \(i\)
        unfolding L_def by (intro Least_equality) auto
    have L_mono: \(i \leq j \Longrightarrow L i \leq L j\) for \(i j\)
        using \(L\left[\right.\) of \(j\) ] unfolding \(L_{-} d e f\) by (intro Least_le) (auto simp: L_def)
    have emeasure \(M\left(\bigcap i . F\left(\begin{array}{l}\text { i }\end{array}\right)\right)=\left(I N F i\right.\). emeasure \(\left.M\left(F\left(\begin{array}{l}\text { i }\end{array}\right)\right)\right)\)
    proof (intro INF_emeasure_decseq[symmetric])
        show decseq ( \(\lambda i . F(L i)\) )
            using \(L\) by (intro antimonoI F L_mono) auto
    qed (insert \(L\) fin, auto)
    also have \(\ldots=(I N F i \in I\). emeasure \(M(F i))\)
    proof (intro antisym INF_greatest)
        show \(i \in I \Longrightarrow\left(I N F i\right.\). emeasure \(\left.M\left(F\left(L^{\prime}\right)\right)\right) \leq\) emeasure \(M(F i)\) for \(i\)
            by (intro INF_lower2[of i]) auto
    qed (insert \(L\), auto intro: INF_lower)
    also have \((\bigcap i . F(L i))=(\bigcap i \in I . F i)\)
    proof (intro antisym INF_greatest)
        show \(i \in I \Longrightarrow(\bigcap i . F(L i)) \subseteq F i\) for \(i\)
            by (intro INF_lower2[of i]) auto
    qed (insert L, auto)
    finally show ?thesis.
qed
```

lemma Lim_emeasure_decseq:
assumes A : range $A \subseteq$ sets M decseq A and fin: $\bigwedge i$. emeasure $M(A i) \neq \infty$ shows $(\lambda i$. emeasure $M(A i)) \longrightarrow$ emeasure $M(\bigcap i . A i)$ using LIMSEQ_INF[OF decseq_emeasure, OF A]
using INF_emeasure_decseq[OF A fin] by simp
lemma emeasure_lfp ${ }^{[}$[consumes 1, case_names cont measurable]:
assumes $P M$
assumes cont: sup_continuous F
assumes $*: \bigwedge M A . P M \Longrightarrow(\bigwedge N . P N \Longrightarrow$ Measurable.pred $N A) \Longrightarrow$ Mea-
surable.pred $M(F A)$
shows emeasure $M\{x \in$ space M. lfp $F x\}=(S U P$ i. emeasure $M\{x \in$ space M. ($F^{\wedge `} i$) (λx. False) $\left.x\right\}$)
proof -
have emeasure $M\{x \in$ space M.lfp $F x\}=$ emeasure $M(\bigcup i .\{x \in$ space $M .(F$
${ }^{\wedge}$ i) $(\lambda x$. False) $\left.x\}\right)$
using sup_continuous_lfp[OF cont] by (auto simp add: bot_fun_def intro!: arg_cong2[where $f=$ emeasure $]$)
moreover $\left\{\right.$ fix i from $\langle P M\rangle$ have $\left\{x \in\right.$ space $M .\left(F^{\wedge} i\right)(\lambda x$. False $\left.) x\right\} \in$ sets M
by (induct i arbitrary: M) (auto simp add: pred_def[symmetric] intro: *) \}
moreover have incseq ($\lambda i .\left\{x \in\right.$ space $M .\left(F^{\wedge} i\right)(\lambda x$. False) $\left.x\}\right)$
proof (rule incseq-SucI)
fix i
have $\left(F^{\wedge}{ }^{\wedge} i\right)(\lambda x$. False $) \leq\left(F^{\wedge}(\right.$ Suc $\left.i)\right)(\lambda x$. False $)$
proof (induct i)
case 0 show ?case by (simp add: le_fun_def)
next
case Suc thus ?case using monoD[OF sup_continuous_mono[OF cont] Suc]
by auto
qed
then show $\left\{x \in\right.$ space $M .\left(F^{\wedge}{ }^{\wedge} i\right)(\lambda x$. False $\left.) x\right\} \subseteq\left\{x \in\right.$ space $M .\left(F^{\wedge}\right.$ ^Suc
i) (λx. False) $x\}$
by auto
qed
ultimately show ?thesis
by (subst SUP_emeasure_incseq) auto
qed
lemma emeasure_lfp:
assumes $[$ simp $]: \bigwedge s$. sets $(M s)=$ sets N
assumes cont: sup_continuous F sup_continuous f
assumes meas: $\bigwedge P$. Measurable.pred $N P \Longrightarrow$ Measurable.pred $N(F P)$
assumes iter: $\bigwedge P$ s. Measurable.pred $N P \Longrightarrow P \leq l f p F \Longrightarrow$ emeasure (M s)
$\{x \in$ space $N . F P x\}=f(\lambda s$. emeasure $(M s)\{x \in$ space $N . P x\}) s$
shows emeasure ($M s$) $\{x \in$ space N. lfp $F x\}=$ lfp $f s$
proof (subst lfp_transfer_bounded $[$ where $\alpha=\lambda F$ s. emeasure (M s) $\{x \in$ space $N . F$
$x\}$ and $g=f$ and $f=F$ and $P=$ Measurable.pred N, symmetric])
fix C assume incseq $C \bigwedge i$. Measurable.pred $N(C i)$
then show $(\lambda s$. emeasure $(M s)\{x \in$ space $N .(S U P i . C i) x\})=(S U P i .(\lambda s$. emeasure ($M s$ s) $\{x \in$ space N. C i $x\})$) unfolding SUP_apply[abs_def]
by (subst SUP_emeasure_incseq) (auto simp: mono_def fun_eq_iff intro!: arg_cong2[where $f=$ emeasure])
qed (auto simp add: iter le_fun_def SUP_apply[abs_def] intro!: meas cont)
lemma emeasure_subadditive_finite:
finite $I \Longrightarrow A ` I \subseteq$ sets $M \Longrightarrow$ emeasure $M(\bigcup i \in I . A i) \leq\left(\sum i \in I\right.$. emeasure
$M(A i))$
by (rule sets.subadditive[OF emeasure_positive emeasure_additive]) auto
lemma emeasure_subadditive:
$A \in$ sets $M \Longrightarrow B \in$ sets $M \Longrightarrow$ emeasure $M(A \cup B) \leq$ emeasure $M A+$ emeasure M B
using emeasure_subadditive_finite $[$ of $\{$ True, False $\} \lambda$ True $\Rightarrow A \mid$ False $\Rightarrow B M]$
by simp
lemma emeasure_subadditive_countably:
assumes range $f \subseteq$ sets M
shows emeasure $M(\bigcup i . f i) \leq\left(\sum i\right.$. emeasure $\left.M(f i)\right)$
proof -
have emeasure $M(\bigcup i . f i)=$ emeasure $M(\bigcup i$. disjointed $f i)$ unfolding UN_disjointed_eq ..
also have $\ldots=\left(\sum i\right.$. emeasure M (disjointed $\left.f i\right)$)
using sets.range_disjointed_sets[OF assms] suminf_emeasure[of disjointed f]
by (simp add: disjoint_family_disjointed comp_def)
also have $\ldots \leq\left(\sum i\right.$. emeasure $\left.M(f i)\right)$
using sets.range_disjointed_sets[OF assms] assms
by (auto intro!: suminf_le emeasure_mono disjointed_subset)
finally show ?thesis.
qed
lemma emeasure_insert:
assumes sets: $\{x\} \in$ sets $M A \in$ sets M and $x \notin A$
shows emeasure M (insert $x A)=$ emeasure $M\{x\}+$ emeasure $M A$
proof -
have $\{x\} \cap A=\{ \}$ using $\langle x \notin A\rangle$ by auto
from plus_emeasure [OF sets this] show?thesis by simp
qed
lemma emeasure_insert_ne:
$A \neq\{ \} \Longrightarrow\{x\} \in$ sets $M \Longrightarrow A \in$ sets $M \Longrightarrow x \notin A \Longrightarrow$ emeasure M (insert
$x A)=$ emeasure $M\{x\}+$ emeasure $M A$
by (rule emeasure_insert)
lemma emeasure_eq_sum_singleton:
assumes finite $S \bigwedge x . x \in S \Longrightarrow\{x\} \in$ sets M

$$
\begin{aligned}
& \text { shows emeasure } M S=\left(\sum x \in S . \text { emeasure } M\{x\}\right) \\
& \text { using sum_emeasure }[\text { of } \lambda x .\{x\} S M] \text { assms } \\
& \text { by (auto simp: disjoint_family_on_def subset_eq) }
\end{aligned}
$$

lemma sum_emeasure_cover:

assumes finite S and $A \in$ sets M and $b r_{-} i n_{-} M: B$ ' $S \subseteq$ sets M
assumes $A: A \subseteq(\bigcup i \in S . B i)$
assumes disj: disjoint_family_on $B S$
shows emeasure $M A=\left(\sum i \in S\right.$. emeasure $\left.M(A \cap(B i))\right)$
proof -
have $\left(\sum i \in S\right.$. emeasure $\left.M(A \cap(B i))\right)=$ emeasure $M(\bigcup i \in S . A \cap(B i))$
proof (rule sum_emeasure)
show disjoint_family_on ($\lambda i . A \cap B i) S$
using 〈disjoint_family_on $B S$ 〉
unfolding disjoint_family_on_def by auto
qed (insert assms, auto)
also have $(\bigcup i \in S . A \cap(B i))=A$
using A by auto
finally show ?thesis by simp
qed
lemma emeasure_eq_0:
$N \in$ sets $M \Longrightarrow$ emeasure $M N=0 \Longrightarrow K \subseteq N \Longrightarrow$ emeasure $M K=0$
by (metis emeasure_mono order_eq_iff zero_le)
lemma emeasure_UN_eq_0:
assumes $\bigwedge i:: n a t$. emeasure $M(N i)=0$ and range $N \subseteq$ sets M
shows emeasure $M(\bigcup i . N i)=0$
proof -
have emeasure $M(\bigcup i . N i) \leq 0$
using emeasure_subadditive_countably[OF assms(2)] assms(1) by simp
then show ?thesis
by (auto intro: antisym zero_le)
qed
lemma measure_eqI_finite:
assumes [simp]: sets $M=$ Pow A sets $N=$ Pow A and finite A
assumes eq: $\bigwedge a . a \in A \Longrightarrow$ emeasure $M\{a\}=$ emeasure $N\{a\}$
shows $M=N$
proof (rule measure_eqI)
fix X assume $X \in$ sets M
then have $X: X \subseteq A$ by auto
then have emeasure $M X=\left(\sum a \in X\right.$. emeasure $\left.M\{a\}\right)$
using \langle finite $A\rangle$ by (subst emeasure_eq_sum_singleton) (auto dest: finite_subset)
also have $\ldots=\left(\sum a \in X\right.$. emeasure $\left.N\{a\}\right)$
using X eq by (auto intro!: sum.cong)
also have $\ldots=$ emeasure $N X$
using $X\langle$ finite $A\rangle$ by (subst emeasure_eq_sum_singleton) (auto dest: finite_subset)
finally show emeasure $M X=$ emeasure $N X$.

```
qed \(\operatorname{simp}\)
lemma measure_eqI_generator_eq:
    fixes \(M N\) :: 'a measure and \(E::\) 'a set set and \(A::\) nat \(\Rightarrow\) 'a set
    assumes Int_stable \(E \in \subseteq\) Pow \(\Omega\)
    and eq: \(\bigwedge X . X \in E \Longrightarrow\) emeasure \(M X=\) emeasure \(N X\)
    and \(M\) : sets \(M=\) sigma_sets \(\Omega E\)
    and \(N\) : sets \(N=\) sigma_sets \(\Omega E\)
    and \(A\) : range \(A \subseteq E(\bigcup i . A i)=\Omega \bigwedge i\). emeasure \(M(A i) \neq \infty\)
    shows \(M=N\)
proof -
    let \(? \mu=\) emeasure \(M\) and \(? \nu=\) emeasure \(N\)
    interpret \(S\) : sigma_algebra \(\Omega\) sigma_sets \(\Omega E\) by (rule sigma_algebra_sigma_sets)
fact
    have space \(M=\Omega\)
        using sets.top \([\) of \(M\) ] sets.space_closed \([\) of \(M]\) S.top S.space_closed \(\langle\) sets \(M=\)
    sigma_sets \(\Omega\) E
        by blast
    \(\{\operatorname{fix} F D\) assume \(F \in E\) and \(? \mu F \neq \infty\)
        then have [intro]: \(F \in\) sigma_sets \(\Omega E\) by auto
        have ? \(\nu F \neq \infty\) using \(\langle ? \mu F \neq \infty\rangle\langle F \in E\rangle\) eq by simp
        assume \(D \in\) sets \(M\)
        with 〈Int_stable \(E\rangle\langle E \subseteq\) Pow \(\Omega\rangle\) have emeasure \(M(F \cap D)=\) emeasure \(N\)
    \((F \cap D)\)
        unfolding \(M\)
    proof (induct rule: sigma_sets_induct_disjoint)
            case (basic A)
                then have \(F \cap A \in E\) using 〈Int_stable \(E\rangle\langle F \in E\rangle\) by (auto simp:
    Int_stable_def)
        then show ?case using eq by auto
    next
        case empty then show ?case by simp
        next
        case (compl A)
        then have \(* *: F \cap(\Omega-A)=F-(F \cap A)\)
            and [intro]: \(F \cap A \in\) sigma_sets \(\Omega E\)
```



```
        have ? \(\nu(F \cap A) \leq ? \nu F\) by (auto intro!: emeasure_mono simp: \(M N\) )
        then have ? \(\nu(F \cap A) \neq \infty\) using \(\langle ? \nu \quad F \neq \infty\) ) by (auto simp: top_unique)
        have ? \(\mu(F \cap A) \leq ? \mu F\) by (auto intro!: emeasure_mono simp: \(M\) )
        then have ? \(\mu(F \cap A) \neq \infty\) using \(\langle ? \mu F \neq \infty\) ) by (auto simp: top_unique)
        then have ? \(\mu(F \cap(\Omega-A))=? \mu F-? \mu(F \cap A)\) unfolding **
            using \(\langle F \cap A \in\) sigma_sets \(\Omega E\rangle\) by (auto intro!: emeasure_Diff simp: \(M\)
    N)
    also have \(\ldots=? \nu F-? \nu(F \cap A)\) using \(e q\langle F \in E\rangle\) compl by simp
    also have \(\ldots=? \nu(F \cap(\Omega-A))\) unfolding \(* *\)
                using \(\langle F \cap A \in\) sigma_sets \(\Omega E\rangle\langle ? \nu(F \cap A) \neq \infty\rangle\)
                by (auto intro!: emeasure_Diff [symmetric] simp: M N)
```

```
            finally show ?case
            using \(\langle\) space \(M=\Omega\) by auto
    next
        case (union A)
        then have ? \(\mu(\bigcup x . F \cap A x)=? \nu(\bigcup x . F \cap A x)\)
    by (subst (12) suminf_emeasure[symmetric]) (auto simp: disjoint_family_on_def
subset_eq M N)
            with \(A\) show ?case
            by auto
    qed \(\}\)
    note \(*=\) this
    show \(M=N\)
    proof (rule measure_eqI)
        show sets \(M=\) sets \(N\)
            using \(M N\) by simp
    have [simp, intro]: \(\bigwedge i . A i \in\) sets \(M\)
            using \(A(1)\) by (auto simp: subset_eq \(M\) )
    fix \(F\) assume \(F \in\) sets \(M\)
    let ? \(D=\) disjointed \((\lambda i . F \cap A i)\)
    from \(\left\langle\right.\) space \(M=\Omega\) ) have \(F_{-} e q: F=(\bigcup i\). ? \(D i)\)
            using \(\langle F \in\) sets \(M\rangle[\) THEN sets.sets_into_space] \(A(2)\) [symmetric] by (auto
simp: UN_disjointed_eq)
    have \([\) simp, intro]: \(\bigwedge i . ? D i \in\) sets \(M\)
            using sets.range_disjointed_sets[of \(\lambda i . F \cap A i M]\langle F \in\) sets \(M\rangle\)
            by (auto simp: subset_eq)
    have disjoint_family ?D
            by (auto simp: disjoint_family_disjointed)
    moreover
    have \(\left(\sum i\right.\). emeasure \(\left.M(? D i)\right)=\left(\sum i\right.\). emeasure \(\left.N(? D i)\right)\)
    proof (intro arg_cong[where \(f=\) suminf \(]\) ext)
        fix \(i\)
        have \(A i \cap ? D i=? D i\)
            by (auto simp: disjointed_def)
            then show emeasure \(M(? D i)=\) emeasure \(N(? D i)\)
            using \(*\left[\right.\) of \(A\) ? \(D^{2}\), \(\left.O F_{\_} A(3)\right] A(1)\) by auto
    qed
    ultimately show emeasure \(M F=\) emeasure \(N F\)
            by (simp add: image_subset_iff \(\langle\) sets \(M=\) sets \(N\rangle\left[\right.\) symmetric] \(F_{-}\)eq[symmetric]
suminf_emeasure)
    qed
qed
lemma space_empty: space \(M=\{ \} \Longrightarrow M=\) count_space \(\}\)
    by (rule measure_eqI) (simp_all add: space_empty_iff)
lemma measure_eqI_generator_eq_countable:
    fixes \(M N\) :: 'a measure and \(E\) :: 'a set set and \(A\) :: ' \(a\) set set
    assumes \(E\) : Int_stable \(E E \subseteq \operatorname{Pow} \Omega \bigwedge X . X \in E \Longrightarrow\) emeasure \(M X=\) emeasure
\(N X\)
```

and sets：sets $M=$ sigma＿sets ΩE sets $N=$ sigma＿sets ΩE
and $A: A \subseteq E(\bigcup A)=\Omega$ countable $A \bigwedge a . a \in A \Longrightarrow$ emeasure $M a \neq \infty$
shows $M=N$
proof cases
assume $\Omega=\{ \}$
have $*$ ：sigma＿sets $\Omega E=$ sets（sigma ΩE ）
using E（2）by simp
have space $M=\Omega$ space $N=\Omega$
using sets E（2）unfolding＊by（auto dest：sets＿eq＿imp＿space＿eq simp del：
sets＿measure＿of）
then show $M=N$
unfolding $\langle\Omega=\{ \}$ 〉 by（auto dest：space＿empty）
next
assume $\Omega \neq\{ \}$ with $\bigcup A=\Omega$ have $A \neq\{ \}$ by auto
from this＜countable A 〉 have rng：range（from＿nat＿into A ）$=A$
by（rule range＿from＿nat＿into）
show $M=N$
proof（rule measure＿eqI＿generator＿eq $[O F E$ sets $]$ ）
show range（from＿nat＿into A ）$\subseteq E$
unfolding $r n g$ using $\langle A \subseteq E\rangle$ ．
show（ $\bigcup i$ i．from＿nat＿into $A i)=\Omega$
unfolding rng using $\bigcup A=\Omega$ 〉．
show emeasure M（from＿nat＿into $A i) \neq \infty$ for i
using rng by（intro A）auto
qed
qed
lemma measure＿of＿of＿measure：measure＿of（space $M)($ sets $M)($ emeasure $M)=$ M
proof（intro measure＿eqI emeasure＿measure＿of＿sigma）
show sigma＿algebra（space M）（sets M）．．
show positive（sets M）（emeasure M）
by（simp add：positive＿def）
show countably＿additive（sets M ）（emeasure M ）
by（simp add：emeasure＿countably＿additive）
qed simp＿all

6．3．5 μ－null sets

definition null＿sets ：：＇a measure \Rightarrow＇a set set where null＿sets $M=\{N \in$ sets M ．emeasure $M N=0\}$
lemma null＿setsD1［dest］：$A \in$ null＿sets $M \Longrightarrow$ emeasure $M A=0$
by（simp add：null＿sets＿def）
lemma null＿setsD2［dest］：$A \in$ null＿sets $M \Longrightarrow A \in$ sets M
unfolding null＿sets＿def by simp
lemma null＿setsI［intro］：emeasure $M A=0 \Longrightarrow A \in$ sets $M \Longrightarrow A \in$ null＿sets M
unfolding null_sets_def by simp
interpretation null_sets: ring_of_sets space M null_sets M for M
proof (rule ring_of_setsI)
show null_sets $M \subseteq$ Pow (space M)
using sets.sets_into_space by auto
show $\} \in$ null_sets M
by auto
fix $A B$ assume null_sets: $A \in$ null_sets $M B \in$ null_sets M
then have sets: $A \in$ sets $M B \in$ sets M
by auto
then have $*$: emeasure $M(A \cup B) \leq$ emeasure $M A+$ emeasure $M B$ emeasure $M(A-B) \leq$ emeasure $M A$
by (auto intro!: emeasure_subadditive emeasure_mono)
then have emeasure $M B=0$ emeasure $M A=0$
using null_sets by auto
with sets $*$ show $A-B \in$ null_sets $M A \cup B \in$ null_sets M by (auto intro!: antisym zero_le)
qed
lemma UN_from_nat_into:
assumes I : countable $I I \neq\{ \}$
shows $(\bigcup i \in I . N i)=(\bigcup i . N$ (from_nat_into $I i))$
proof -
have $(\bigcup i \in I . N i)=\bigcup(N$ 'range (from_nat_into $I))$ using I by simp
also have $\ldots=(\bigcup i .(N \circ$ from_nat_into $I) i)$
by simp
finally show ?thesis by simp
qed
lemma null_sets_UN':
assumes countable I
assumes $\bigwedge i . i \in I \Longrightarrow N i \in$ null_sets M
shows $(\bigcup i \in I . N i) \in$ null_sets M
proof cases
assume $I=\{ \}$ then show ?thesis by simp
next
assume $I \neq\{ \}$
show ?thesis
proof (intro conjI CollectI null_setsI)
show $(\bigcup i \in I . N i) \in$ sets M
using assms by (intro sets.countable_UN') auto
have emeasure $M(\bigcup i \in I . N i) \leq\left(\sum n\right.$. emeasure $M(N($ from_nat_into $\left.I n))\right)$
unfolding UN_from_nat_into $[O F\langle$ countable $I\rangle\langle I \neq\{ \}\rangle]$
using assms $\langle I \neq\{ \}>$ by (intro emeasure_subadditive_countably) (auto intro:
from_nat_into)
also have $(\lambda n$. emeasure $M(N($ from_nat_into $I n)))=\left(\lambda_{-} .0\right)$
using assms $\langle I \neq\{ \}\rangle$ by (auto intro: from_nat_into)

```
    finally show emeasure M (\bigcupi\inI.Ni)=0
        by (intro antisym zero_le) simp
    qed
qed
lemma null_sets_UN[intro]:
    (\bigwedgei::'i::countable. N i < null_sets M)\Longrightarrow(\bigcupi.N i) \in null_sets M
    by (rule null_sets_UN') auto
lemma null_set_Int1:
    assumes }B\in\mathrm{ null_sets M A f sets M shows A }\capB\in\mathrm{ null_sets M
proof (intro CollectI conjI null_setsI)
    show emeasure M (A\capB)=0 using assms
        by (intro emeasure_eq_0[of B _ A \cap B]) auto
qed (insert assms,auto)
lemma null_set_Int2:
    assumes }B\in\mathrm{ null_sets M A sets M shows B}\capA\in\mathrm{ null_sets }
    using assms by (subst Int_commute) (rule null_set_Int1)
lemma emeasure_Diff_null_set:
    assumes B\in null_sets M A E sets M
    shows emeasure M (A-B)= emeasure MA
proof -
    have *: }A-B=(A-(A\capB))\mathrm{ by auto
    have }A\capB\in\mathrm{ null_sets }M\mathrm{ using assms by (rule null_set_Int1)
    then show ?thesis
        unfolding * using assms
        by (subst emeasure_Diff) auto
qed
lemma null_set_Diff:
    assumes B\in null_sets M A fets M shows B - A\in null_sets M
proof (intro CollectI conjI null_setsI)
    show emeasure M (B-A) = 0 using assms by (intro emeasure_eq_0[of B _ B
- A]) auto
qed (insert assms,auto)
lemma emeasure_Un_null_set:
    assumes }A\in\mathrm{ sets M B E null_sets M
    shows emeasure M (A\cupB)= emeasure MA
proof -
    have *: A\cupB=A\cup(B-A) by auto
    have B - A \in null_sets M using assms(2,1) by (rule null_set_Diff)
    then show ?thesis
        unfolding * using assms
        by (subst plus_emeasure[symmetric]) auto
qed
```

```
lemma emeasure_Un':
    assumes }A\in\mathrm{ sets M B fets MA }\capB\in\mathrm{ null_sets M
    shows emeasure M (A\cupB) = emeasure MA + emeasure M B
proof -
    have }A\cupB=A\cup(B-A\capB)\mathrm{ by blast
    also have emeasure M\ldots= emeasure MA + emeasure M (B-A\capB)
        using assms by (subst plus_emeasure) auto
    also have emeasure M (B-A\capB)= emeasure M B
        using assms by (intro emeasure_Diff_null_set) auto
    finally show ?thesis.
qed
```


6.3.6 The almost everywhere filter (i.e. quantifier)

definition ae_filter :: 'a measure \Rightarrow ' a filter where

$$
\text { ae_filter } M=(I N F N \in \text { null_sets } M . \text { principal }(\text { space } M-N))
$$

abbreviation almost_everywhere :: 'a measure $\Rightarrow\left({ }^{\prime} a \Rightarrow\right.$ bool $) \Rightarrow$ bool where almost_everywhere $M P \equiv$ eventually P (ae_filter M)

syntax

_almost_everywhere $::$ pttrn $\Rightarrow^{\prime} a \Rightarrow$ bool \Rightarrow bool (AE _ in _. _ $\left.[0,0,10] 10\right)$

translations

AE x in $M . P \rightleftharpoons C O N S T$ almost_everywhere $M(\lambda x . P)$
abbreviation
set_almost_everywhere $A M P \equiv A E x$ in $M . x \in A \longrightarrow P x$
syntax
_set_almost_everywhere :: pttrn $\Rightarrow{ }^{\prime}$ a set $\Rightarrow{ }^{\prime} a \Rightarrow$ bool \Rightarrow bool
($A E_{\text {_ }} \in_{-}$in ../ - $[0,0,0,10] 10$)
translations
AE $x \in A$ in $M . P \rightleftharpoons C O N S T$ set_almost_everywhere $A M(\lambda x . P)$
lemma eventually_ae_filter: eventually $P($ ae_filter $M) \longleftrightarrow(\exists N \in$ null_sets $M .\{x$ \in space $M . \neg P x\} \subseteq N$)
unfolding ae_filter_def by (subst eventually_INF_base) (auto simp: eventually_principal subset_eq)
lemma $A E_{-} I^{\prime}$:
$N \in$ null_sets $M \Longrightarrow\{x \in$ space $M . \neg P x\} \subseteq N \Longrightarrow(A E x$ in $M . P x)$
unfolding eventually_ae_filter by auto
lemma AE_iff_null:
assumes $\{x \in$ space $M . \neg P x\} \in$ sets M (is ?P \in sets M)
shows $(A E x$ in $M . P x) \longleftrightarrow\{x \in$ space $M . \neg P x\} \in$ null_sets M
proof
assume $A E x$ in $M . P x$ then obtain N where $N: N \in$ sets $M ? P \subseteq N$ emeasure $M N=0$
unfolding eventually_ae_filter by auto
have emeasure $M ? P \leq$ emeasure $M N$
using assms $N(1,2)$ by (auto intro: emeasure_mono)
then have emeasure M ? $P=0$
unfolding «emeasure $M N=0$ 〉 by auto
then show ? $P \in$ null_sets M using assms by auto
next
assume $? P \in$ null_sets M with assms show $A E x$ in $M . P x$ by (auto intro:
$\left.A E_{-} I^{\prime}\right)$
qed
lemma AE_iff_null_sets:
$N \in$ sets $M \Longrightarrow N \in$ null_sets $M \longleftrightarrow(A E x$ in $M . x \notin N)$
using Int_absorb1[OF sets.sets_into_space, of N M]
by (subst AE_iff_null) (auto simp: Int_def[symmetric])
lemma AE_not_in:
$N \in$ null_sets $M \Longrightarrow A E x$ in $M . x \notin N$
by (metis AE_iff_null_sets null_setsD2)
lemma AE_iff_measurable:
$N \in$ sets $M \Longrightarrow\{x \in$ space $M . \neg P x\}=N \Longrightarrow(A E x$ in $M . P x) \longleftrightarrow$ emeasure $M N=0$
using AE_iff_null $[o f$ _ $P]$ by auto
lemma $A E_{-} E[$ consumes 1]:
assumes $A E x$ in $M . P x$
obtains N where $\{x \in$ space $M . \neg P x\} \subseteq N$ emeasure $M N=0 N \in$ sets M
using assms unfolding eventually_ae_filter by auto
lemma $A E_{-} E 2$:
assumes $A E x$ in $M . P x\{x \in$ space $M . P x\} \in$ sets M
shows emeasure $M\{x \in$ space $M . \neg P x\}=0$ (is emeasure $M ? P=0$)
proof -
have $\{x \in$ space $M . \neg P x\}=$ space $M-\{x \in$ space $M . P x\}$ by auto
with AE_iff_null [of M P] assms show ?thesis by auto
qed
lemma $A E _E 3:$
assumes $A E x$ in $M . P x$
obtains N where $\bigwedge x . x \in$ space $M-N \Longrightarrow P x N \in$ null_sets M
using assms unfolding eventually_ae_filter by auto
lemma $A E_{-} I$:
assumes $\{x \in$ space $M . \neg P x\} \subseteq N$ emeasure $M N=0 N \in$ sets M
shows $A E x$ in M. P x
using assms unfolding eventually_ae_filter by auto

```
lemma \(A E \_m p[e l i m!]:\)
    assumes \(A E_{-} P: A E x\) in \(M . P x\) and \(A E \_i m p: A E x\) in \(M . P x \longrightarrow Q x\)
    shows \(A E x\) in \(M . Q x\)
proof -
    from \(A E_{-} P\) obtain \(A\) where \(P:\{x \in\) space \(M . \neg P x\} \subseteq A\)
        and \(A: A \in\) sets \(M\) emeasure \(M A=0\)
        by (auto elim!: AE_E)
    from \(A E \_i m p\) obtain \(B\) where \(i m p:\{x \in\) space \(M . P x \wedge \neg Q x\} \subseteq B\)
        and \(B: B \in\) sets \(M\) emeasure \(M B=0\)
        by (auto elim!: AE_E)
    show ?thesis
    proof (intro AE_I)
        have emeasure \(M(A \cup B) \leq 0\)
            using emeasure_subadditive[of \(A M B] A B\) by auto
        then show \(A \cup B \in\) sets \(M\) emeasure \(M(A \cup B)=0\)
            using \(A B\) by auto
        show \(\{x \in\) space \(M . \neg Q x\} \subseteq A \cup B\)
        using \(P\) imp by auto
    qed
qed
```

The next lemma is convenient to combine with a lemma whose conclusion is of the form $A E x$ in $M . P x=Q x$: for such a lemma, there is no [symmetric] variant, but using $A E _$symmetric $[O F \ldots]$ will replace it.

```
lemma
    shows \(A E_{i}\) iffi: \(A E x\) in \(M . P x \Longrightarrow A E x\) in \(M . P x \longleftrightarrow Q x \Longrightarrow A E x\) in \(M\).
\(Q x\)
    and AE_disjI1: \(A E x\) in \(M . P x \Longrightarrow A E x\) in \(M . P x \vee Q x\)
    and AE_disjI2: \(A E x\) in \(M . Q x \Longrightarrow A E x\) in \(M . P x \vee Q x\)
    and \(A E_{-}\)conjI: \(A E x\) in \(M . P x \Longrightarrow A E x\) in \(M . Q x \Longrightarrow A E x\) in \(M . P x \wedge\)
\(Q \quad x\)
    and \(A E_{-}\)conj_iff [simp]: \((A E x\) in \(M . P x \wedge Q x) \longleftrightarrow(A E x\) in \(M . P x) \wedge(A E\)
\(x\) in \(M . Q x\) )
    by auto
```

lemma $A E_{\text {_symmetric: }}$
assumes $A E x$ in $M . P x=Q x$
shows $A E x$ in $M . Q x=P x$
using assms by auto
lemma $A E_{-} i m p I$:
$(P \Longrightarrow A E x$ in $M . Q x) \Longrightarrow A E x$ in $M . P \longrightarrow Q x$
by fastforce
lemma $A E _m e a s u r e$:
assumes $A E: A E x$ in $M . P x$ and sets: $\{x \in$ space $M . P x\} \in$ sets M (is $? P \in$

```
sets M)
    shows emeasure M {x\inspace M. P x} = emeasure M (space M)
proof -
    from AE_E[OF AE] guess N . note N = this
    with sets have emeasure M (space M)\leqemeasure M (?P \cupN)
        by (intro emeasure_mono) auto
    also have .. . \leqemeasure M ?P + emeasure M N
        using sets N by (intro emeasure_subadditive) auto
    also have ... = emeasure M ?P using N by simp
    finally show emeasure M?P = emeasure M (space M)
        using emeasure_space[of M ?P] by auto
qed
lemma AE_space: AE x in M. x \in space M
    by (rule AE_I[where N={}]) auto
lemma AE_I2[simp, intro]:
    (\bigwedgex. x 的ace M\LongrightarrowPx)\LongrightarrowAE x in M. P x
    using AE_space by force
lemma AE_Ball_mp:
    \forallx\inspace M. Px\LongrightarrowAEx in M. Px C Q x\LongrightarrowAEx in M. Q x
    by auto
lemma AE_cong[cong]:
    (\bigwedgex. x \in space M\LongrightarrowPx\longleftrightarrow M P < (AE x in M. P x) \longleftrightarrow (AE x in M.
Q x)
    by auto
lemma AE_cong_simp: M =N\Longrightarrow(\x.x 的ace N=simp=> P x = Q x)\Longrightarrow
(AEx in M.P x) \longleftrightarrow(AEx in N.Q x)
    by (auto simp: simp_implies_def)
lemma AE_all_countable:
    (AE x in M.\foralli.P ix)\longleftrightarrow \longleftrightarrow (\foralli::'i::countable. AE x in M. P i x)
proof
    assume \foralli. AE x in M. P ix
    from this[unfolded eventually_ae_filter Bex_def, THEN choice]
    obtain N where N: \bigwedgei.Ni\in null_sets M \bigwedgei. {x\inspace M. \negPix}\subseteqNi
by auto
    have {x\inspace M.\neg(\foralli.Pix)}\subseteq(\bigcupi.{x\inspace M.\negPix}) by auto
    also have ...\subseteq(\bigcupi.N i) using N by auto
    finally have {x\inspace M.\neg(\foralli.Pix)}\subseteq(\bigcupi.Ni).
    moreover from N have (\bigcupi.Ni)\in null_sets M
        by (intro null_sets_UN) auto
    ultimately show AE x in M. \foralli. P ix
        unfolding eventually_ae_filter by auto
qed auto
```

```
lemma AE_ball_countable:
    assumes [intro]: countable X
    shows}(AEx\mathrm{ in M. }\forally\inX.P x y)\longleftrightarrow \longleftrightarrow(\forally\inX.AE x in M. P x y)
proof
    assume }\forally\inX.AEx\mathrm{ in M. P x y
    from this[unfolded eventually_ae_filter Bex_def,THEN bchoice]
    obtain N where N: \bigwedgey. y\inX\LongrightarrowNy\in null_sets M \bigwedgey. y\inX\Longrightarrow {x\inspace
M.\negPxy}\subseteqNy
            by auto
    have {x\inspace M. \neg(\forally\inX.P x y)}\subseteq(\bigcupy\inX.{x\inspace M.\negP x y})
        by auto
    also have ...\subseteq(\bigcupy\inX.Ny)
        using}N\mathrm{ by auto
    finally have {x\inspace M.\neg (\forally\inX.P x y) }\subseteq(\bigcupy\inX.Ny).
    moreover from N have ( }\bigcupy\inX.N y)\in null_sets M
        by (intro null_sets_UN') auto
    ultimately show AE x in M.\forally\inX.P x y
        unfolding eventually_ae_filter by auto
qed auto
lemma AE_ball_countable':
    (\bigwedgeN.N\inI\LongrightarrowAEx in M. PNx)\Longrightarrow countable I \LongrightarrowAE x in M. }\forall\textrm{N}\in\textrm{N
PNx
    unfolding AE_ball_countable by simp
lemma AE_pairwise: countable F\Longrightarrow pairwise ( }\lambdaAB.AEx in M. R x A B) F
\longleftrightarrow(AE x in M. pairwise (R x)F)
    unfolding pairwise_alt by (simp add: AE_ball_countable)
lemma AE_discrete_difference:
    assumes X: countable X
    assumes null: \x. x \in X\Longrightarrow emeasure M {x} =0
    assumes sets: }\x.x\inX\Longrightarrow{x}\in\mathrm{ sets M
    shows AE x in M. x\not\inX
proof -
    have ( }\bigcupx\inX.{x})\in null_sets M
        using assms by (intro null_sets_UN') auto
    from AE_not_in[OF this] show AE x in M. x & X
        by auto
qed
lemma AE_finite_all:
    assumes f: finite S shows (AEx in M.\foralli\inS.P ix)\longleftrightarrow \longleftrightarrow (\foralli\inS.AE x in M.
P ix)
    using f by induct auto
lemma AE_finite_allI:
    assumes finite S
    shows }(\bigwedges.s\inS\LongrightarrowAEx\mathrm{ in M.Qsx) ఋAEx in M. }\forall\textrm{s}\inS.Qs.
```

using $A E_{-}$finite_all[$O F\langle$ finite $S\rangle$] by auto
lemma emeasure_mono_AE:
assumes imp: AE x in $M . x \in A \longrightarrow x \in B$ and $B: B \in$ sets M
shows emeasure $M A \leq$ emeasure $M B$
proof cases
assume $A: A \in$ sets M
from imp obtain N where $N:\{x \in$ space $M . \neg(x \in A \longrightarrow x \in B)\} \subseteq N N \in$
null_sets M
by (auto simp: eventually_ae_filter)
have emeasure $M A=$ emeasure $M(A-N)$
using $N A$ by (subst emeasure_Diff_null_set) auto
also have emeasure $M(A-N) \leq$ emeasure $M(B-N)$
using N A B sets.sets_into_space by (auto intro!: emeasure_mono)
also have emeasure $M(B-N)=$ emeasure $M B$
using $N B$ by (subst emeasure_Diff_null_set) auto
finally show ?thesis.
qed (simp add: emeasure_notin_sets)
lemma emeasure_eq_AE:
assumes iff: $A E x$ in $M . x \in A \longleftrightarrow x \in B$
assumes $A: A \in$ sets M and $B: B \in$ sets M
shows emeasure $M A=$ emeasure $M B$
using assms by (safe intro!: antisym emeasure_mono_AE) auto
lemma emeasure_Collect_eq_AE:
$A E x$ in $M . P x \longleftrightarrow Q x \Longrightarrow$ Measurable.pred $M Q \Longrightarrow$ Measurable.pred M P \Longrightarrow
emeasure $M\{x \in$ space $M . P x\}=$ emeasure $M\{x \in$ space $M . Q x\}$
by (intro emeasure_eq_AE) auto
lemma emeasure_eq_0_AE: AE x in $M . \neg P x \Longrightarrow$ emeasure $M\{x \in$ space $M . P$
$x\}=0$
using AE_iff_measurable $\left[O F{ }_{-}\right.$refl, of $M \lambda x$. $\left.\neg P x\right]$
by (cases $\{x \in$ space $M . P x\} \in$ sets M) (simp_all add: emeasure_notin_sets)
lemma emeasure_0_AE:
assumes emeasure $M($ space $M)=0$
shows $A E x$ in $M . P x$
using eventually_ae_filter assms by blast
lemma emeasure_add_AE:
assumes [measurable]: $A \in$ sets $M B \in$ sets $M C \in$ sets M
assumes 1: $A E x$ in $M . x \in C \longleftrightarrow x \in A \vee x \in B$
assumes 2: $A E x$ in $M . \neg(x \in A \wedge x \in B)$
shows emeasure $M C=$ emeasure $M A+$ emeasure $M B$
proof -
have emeasure $M C=$ emeasure $M(A \cup B)$

```
    by (rule emeasure_eq_AE) (insert 1, auto)
    also have \(\ldots=\) emeasure \(M A+\) emeasure \(M(B-A)\)
    by (subst plus_emeasure) auto
    also have emeasure \(M(B-A)=\) emeasure \(M B\)
    by (rule emeasure_eq_AE) (insert 2, auto)
    finally show ?thesis.
qed
```


6.3.7 σ-finite Measures

locale sigma_finite_measure $=$
fixes M :: 'a measure
assumes sigma_finite_countable:
$\exists A::^{\prime} a$ set set. countable $A \wedge A \subseteq$ sets $M \wedge(\bigcup A)=$ space $M \wedge(\forall a \in A$.
emeasure $M a \neq \infty$)
lemma (in sigma_finite_measure) sigma_finite:
obtains A :: nat \Rightarrow 'a set
where range $A \subseteq$ sets $M(\bigcup i . A i)=$ space $M \bigwedge i$. emeasure $M(A i) \neq \infty$
proof -
obtain A :: 'a set set where
[simp]: countable A and
$A: A \subseteq$ sets $M(\bigcup A)=$ space $M \bigwedge a . a \in A \Longrightarrow$ emeasure $M a \neq \infty$
using sigma_finite_countable by metis
show thesis
proof cases
assume $A=\{ \}$ with $\langle(\bigcup A)=$ space $M\rangle$ show thesis
by (intro that $\left[\right.$ of λ_{-}. $\}]$) auto
next
assume $A \neq\{ \}$
show thesis
proof
show range (from_nat_into A) \subseteq sets M
using $\langle A \neq\{ \}\rangle A$ by auto
have $(\bigcup i$. from_nat_into $A i)=\bigcup A$
using range_from_nat_into $[$ OF $\langle A \neq\{ \}\rangle\langle c o u n t a b l e ~ A\rangle]$ by auto
with A show ($\bigcup i$. from_nat_into $A i)=$ space M
by auto
qed (intro A from_nat_into $\langle A \neq\{ \}\rangle)$
qed
qed
lemma (in sigma_finite_measure) sigma_finite_disjoint:
obtains A :: nat \Rightarrow 'a set
where range $A \subseteq$ sets $M(\bigcup i$. $A i)=$ space $M \bigwedge i$. emeasure $M(A i) \neq \infty$
disjoint_family A
proof -
obtain A :: nat \Rightarrow ' a set where
range: range $A \subseteq$ sets M and

```
    space: (\bigcupi.A i) = space M and
    measure: \i. emeasure M (A i)\not=\infty
    using sigma_finite by blast
    show thesis
    proof (rule that[of disjointed A])
    show range (disjointed A)\subseteq sets M
            by (rule sets.range_disjointed_sets[OF range])
    show (\bigcupi. disjointed A i) = space M
        and disjoint_family (disjointed A)
        using disjoint_family_disjointed UN_disjointed_eq[of A] space range
        by auto
    show emeasure M (disjointed A i)}\not=\infty\mathrm{ for i
    proof -
        have emeasure M (disjointed A i) \leq emeasure M (Ai)
            using range disjointed_subset[of A i] by (auto intro!: emeasure_mono)
            then show ?thesis using measure[of i] by (auto simp: top_unique)
    qed
    qed
qed
lemma (in sigma_finite_measure) sigma_finite_incseq:
    obtains A :: nat }=>\mathrm{ 'a set
    where range A\subseteq sets M (\bigcupi.A i)= space M \i. emeasure M (A i)\not=\infty
incseq A
proof -
    obtain F :: nat => ' a set where
        F: range F\subseteqsets M (\bigcupi.Fi)= space M \bigwedgei. emeasure M (Fi)\not=\infty
        using sigma_finite by blast
    show thesis
    proof (rule that[of \lambdan. \i\leqn.F i])
        show range ( }\lambdan.\cupi\leqn.Fi)\subseteq\mathrm{ sets M
            using F by (force simp: incseq_def)
        show (\bigcupn. \bigcupi\leqn.Fi)=space M
        proof -
            from F have }\bigwedgex.x\in space M\Longrightarrow\existsi. x 仡 Fi by aut
            with F show ?thesis by fastforce
        qed
        show emeasure M(\bigcupi\leqn.Fi)\not=\infty for n
        proof -
            have emeasure M(\bigcupi\leqn.Fi)\leq(\sumi\leqn. emeasure M (Fi))
            using F by (auto intro!: emeasure_subadditive_finite)
            also have ...<\infty
            using F by (auto simp: sum_Pinfty less_top)
            finally show ?thesis by simp
    qed
    show incseq ( }\lambdan.\bigcupi\leqn.Fi
        by (force simp: incseq_def)
    qed
qed
```

```
lemma (in sigma_finite_measure) approx_PInf_emeasure_with_finite:
    fixes \(C\) :: real
    assumes \(W \_m e a s: W \in\) sets \(M\)
        and \(W_{-}\)inf: emeasure \(M W=\infty\)
    obtains \(Z\) where \(Z \in\) sets \(M Z \subseteq W\) emeasure \(M Z<\infty\) emeasure \(M Z>C\)
proof -
    obtain \(A\) :: nat \(\Rightarrow\) 'a set
        where \(A\) : range \(A \subseteq\) sets \(M(\bigcup i . A i)=\) space \(M \bigwedge i\). emeasure \(M(A i) \neq\)
\(\infty\) incseq \(A\)
            using sigma_finite_incseq by blast
    define \(B\) where \(B=(\lambda i\). \(W \cap A i)\)
    have B_meas: \(\bigwedge i . B i \in\) sets \(M\) using \(W_{\text {_ }}\) meas 〈range \(A \subseteq\) sets \(\left.M\right\rangle B_{-}\)def by
blast
    have \(b: \bigwedge i\). \(B i \subseteq W\) using \(B_{-} d e f\) by blast
    \{ fix \(i\)
        have emeasure \(M(B i) \leq\) emeasure \(M(A i)\)
            using \(A\) by (intro emeasure_mono) (auto simp: B_def)
        also have emeasure \(M(A i)<\infty\)
                using 〈 \(\backslash i\). emeasure \(M(A i) \neq \infty\) by (simp add: less_top)
        finally have emeasure \(\left.M\left(\begin{array}{ll} & \end{array}\right)<\infty \cdot\right\}\)
    note \(c=\) this
    have \(W=(\bigcup i . B i)\) using \(B_{-} d e f \iota(\bigcup i . A i)=\) space \(\left.M\right\rangle W_{-}\)meas by auto
    moreover have incseq \(B\) using \(B_{-}\)def \(\langle i n c s e q ~ A 〉\) by (simp add: incseq_def sub-
set_eq)
    ultimately have \((\lambda i\). emeasure \(M(B i)) \longrightarrow\) emeasure \(M W\) using \(W_{-}\)meas
B_meas
            by (simp add: B_meas Lim_emeasure_incseq image_subset_iff)
    then have \((\lambda i\). emeasure \(M(B i)) \longrightarrow \infty\) using \(W_{-}\)inf by simp
    from order_tendsto \(D(1)[\) OF this, of \(C]\)
    obtain \(i\) where \(d\) : emeasure \(M(B i)>C\)
        by (auto simp: eventually_sequentially)
    have \(B i \in\) sets \(M B i \subseteq W\) emeasure \(M(B i)<\infty\) emeasure \(M(B i)>C\)
            using \(B \_\)meas b c d by auto
    then show ?thesis using that by blast
qed
```


6．3．8 Measure space induced by distribution of $\left(\rightarrow_{M}\right)$－functions

definition distr $::$＇a measure \Rightarrow＇b measure $\Rightarrow\left(' a \Rightarrow{ }^{\prime} b\right) \Rightarrow{ }^{\prime} b$ measure where
distr $M N f=$
measure＿of $($ space $N)($ sets $N)(\lambda A$ ．emeasure $M(f-‘ A \cap$ space $M))$

lemma

shows sets＿distr［simp，measurable＿cong］：sets $(\operatorname{distr} M N f)=$ sets N
and space＿distr $[$ simp $]$ ：space（distr $M N f$ ）$=$ space N
by（auto simp：distr＿def）
lemma
shows measurable_distr_eq1 [simp]: measurable (distr Mf Nff) Mf ${ }^{\prime}=$ measurable Nf Mf ${ }^{\prime}$
and measurable_distr_eq2[simp]: measurable $\mathrm{Mg}^{\prime}(\operatorname{distr} \operatorname{Mg} N g g)=$ measurable $M g^{\prime} N g$
by (auto simp: measurable_def)
lemma distr_cong:
$M=K \Longrightarrow$ sets $N=$ sets $L \Longrightarrow(\bigwedge x . x \in$ space $M \Longrightarrow f x=g x) \Longrightarrow \operatorname{distr} M$
$N f=\operatorname{distr} K L g$
using sets_eq_imp_space_eq[of $N L]$ by (simp add: distr_def Int_def cong: rev_conj_cong)
lemma emeasure_distr:
fixes $f::{ }^{\prime} a \Rightarrow$ ' b
assumes $f: f \in$ measurable $M N$ and $A: A \in$ sets N
shows emeasure ($\operatorname{distr} M N f) A=$ emeasure $M(f-‘ A \cap$ space $M)\left(\right.$ is $_{-}=? \mu$
A)
unfolding distr_def
proof (rule emeasure_measure_of_sigma)
show positive (sets N) ? μ
by (auto simp: positive_def)
show countably_additive (sets N) ? μ
proof (intro countably_additiveI)
fix $A::$ nat \Rightarrow ' b set assume range $A \subseteq$ sets N disjoint_family A
then have $A: \bigwedge i$. $A i \in$ sets $N(\bigcup i . A i) \in$ sets N by auto
then have $*$: range $(\lambda i . f-‘(A i) \cap$ space $M) \subseteq$ sets M
using f by (auto simp: measurable_def)
moreover have $(\bigcup i . f-‘ A i \cap$ space $M) \in$ sets M using * by blast
moreover have $* *$: disjoint_family ($\lambda i . f-{ }^{\prime} A i \cap$ space M)
using 〈disjoint_family A 〉 by (auto simp: disjoint_family_on_def)
ultimately show $\left(\sum i\right.$. ? $\left.\mu(A i)\right)=? \mu(\bigcup i . A i)$
using suminf_emeasure $\left[O F_{-} * *\right] A f$
by (auto simp: comp_def vimage_UN)
qed
show sigma_algebra (space N) (sets N) ..
qed fact
lemma emeasure_Collect_distr:
assumes $X[$ measurable $]: X \in$ measurable $M N$ Measurable.pred $N P$
shows emeasure (distr $M N X$) $\{x \in$ space $N . P x\}=$ emeasure $M\{x \in$ space M.
$P(X x)\}$
by (subst emeasure_distr)
(auto intro!: arg_cong2[where $f=$ emeasure $]$ (1)[THEN measurable_space $]$)
lemma emeasure_lfp2[consumes 1, case_names cont f measurable]:
assumes $P M$

```
    assumes cont: sup_continuous \(F\)
    assumes \(f: \bigwedge M . P M \Longrightarrow f \in\) measurable \(M^{\prime} M\)
    assumes \(*: \bigwedge M A . P M \Longrightarrow(\bigwedge N . P N \Longrightarrow\) Measurable.pred \(N A) \Longrightarrow\) Mea-
surable.pred \(M(F A)\)
    shows emeasure \(M^{\prime}\left\{x \in\right.\) space \(M^{\prime}\). lfp \(\left.F(f x)\right\}=\left(S U P\right.\) i. emeasure \(M^{\prime}\{x \in\) space
\(M^{\prime} .\left(F^{\wedge} i\right)(\lambda x\). False \(\left.\left.)(f x)\right\}\right)\)
proof (subst (1 2) emeasure_Collect_distr[symmetric, where \(X=f]\) )
    show \(f \in\) measurable \(M^{\prime} M f \in\) measurable \(M^{\prime} M\)
    using \(f[O F\langle P M\rangle]\) by auto
    \{ fix \(i\) show Measurable.pred \(M\left(\left(F^{\wedge `} i\right)(\lambda x\right.\). False \(\left.)\right)\)
        using \(\langle P M\) by (induction \(i\) arbitrary: \(M\) ) (auto intro!: *) \}
    show Measurable.pred \(M\) (lfp \(F\) )
        using \(\langle P M\rangle\) cont \(*\) by (rule measurable_lfp_coinduct \([o f P]\) )
    have emeasure (distr \(\left.M^{\prime} M f\right)\left\{x \in\right.\) space (distr \(M^{\prime} M f\) ). lfp \(\left.F x\right\}=\)
        (SUP i. emeasure (distr \(\left.M^{\prime} M f\right)\left\{x \in \operatorname{space}\left(\operatorname{distr} M^{\prime} M f\right) .\left(F^{\wedge} i\right)(\lambda x\right.\).
False) \(x\}\) )
        using 〈 \(P\) 〉
    proof (coinduction arbitrary: \(M\) rule: emeasure_lfp')
        case (measurable \(A N\) ) then have \(\Lambda N . P N \Longrightarrow\) Measurable.pred (distr \(M^{\prime}\)
\(N f) A\)
        by metis
        then have \(\Lambda N . P N \Longrightarrow\) Measurable.pred \(N A\)
        by simp
    with \(\langle P N\rangle[T H E N *]\) show ?case
        by auto
    qed fact
    then show emeasure (distr \(\left.M^{\prime} M f\right)\{x \in\) space \(M\). lfp \(F x\}=\)
        (SUP i. emeasure (distr \(\left.M^{\prime} M f\right)\left\{x \in\right.\) space \(M .\left(F^{\wedge}{ }^{\wedge} i\right)(\lambda x\). False) \(\left.x\}\right)\)
        by \(\operatorname{simp}\)
qed
lemma distr_id[simp]: distr \(N N(\lambda x . x)=N\)
    by (rule measure_eqI) (auto simp: emeasure_distr)
lemma distr_id2: sets \(M=\) sets \(N \Longrightarrow \operatorname{distr} N M(\lambda x . x)=N\)
    by (rule measure_eqI) (auto simp: emeasure_distr)
lemma measure_distr:
    \(f \in\) measurable \(M N \Longrightarrow S \in\) sets \(N \Longrightarrow\) measure (distr \(M N f\) ) \(S=\) measure
\(M\left(f-{ }^{\prime} S \cap\right.\) space \(\left.M\right)\)
    by (simp add: emeasure_distr measure_def)
lemma distr_cong_AE:
    assumes \(1: M=K\) sets \(N=\) sets \(L\) and
        2: \((A E x\) in \(M . f x=g x)\) and \(f \in\) measurable \(M N\) and \(g \in\) measurable \(K L\)
    shows distr \(M N f=\operatorname{distr} K L g\)
proof (rule measure_eqI)
    fix \(A\) assume \(A \in\) sets (distr \(M N f\) )
```

```
    with assms show emeasure (distr \(M N f\) ) \(A=\) emeasure (distr \(K L g\) ) \(A\)
    by (auto simp add: emeasure_distr intro!: emeasure_eq_AE measurable_sets)
qed (insert 1, simp)
lemma \(A E_{-} d i s t r D\) :
    assumes \(f: f \in\) measurable \(M M^{\prime}\)
        and \(A E: A E x\) in distr \(M M^{\prime} f . P x\)
    shows \(A E x\) in \(M . P(f x)\)
proof -
    from \(A E\left[T H E N A E \_E\right]\) guess \(N\).
    with \(f\) show ?thesis
        unfolding eventually_ae_filter
        by (intro bexI[of - \(f-{ }^{\prime} N \cap\) space \(\left.M\right]\) )
        (auto simp: emeasure_distr measurable_def)
qed
lemma \(A E_{-} d i s t r \_i f f:\)
    assumes \(f[\) measurable \(]: f \in\) measurable \(M N\) and \(P[\) measurable \(]:\{x \in\) space \(N\).
\(P x\} \in\) sets \(N\)
    shows \((A E x\) in distr \(M N f . P x) \longleftrightarrow(A E x\) in \(M . P(f x))\)
proof (subst (1 2) AE_iff_measurable[OF _ refl])
    have \(f-‘\{x \in\) space \(N . \neg P x\} \cap\) space \(M=\{x \in\) space \(M . \neg P(f x)\}\)
        using \(f[\) THEN measurable_space \(]\) by auto
    then show (emeasure ( \(\operatorname{distr} M N f)\{x \in \operatorname{space}(\operatorname{distr} M N f) . \neg P x\}=0)=\)
        (emeasure \(M\{x \in\) space \(M . \neg P(f x)\}=0)\)
        by (simp add: emeasure_distr)
qed auto
lemma null_sets_distr_iff:
    \(f \in\) measurable \(M N \Longrightarrow A \in\) null_sets \((\operatorname{distr} M N f) \longleftrightarrow f-{ }^{\prime} A \cap\) space \(M \in\)
null_sets \(M \wedge A \in\) sets \(N\)
    by (auto simp add: null_sets_def emeasure_distr)
proposition distr_distr:
    \(g \in\) measurable \(N L \Longrightarrow f \in\) measurable \(M N \Longrightarrow \operatorname{distr}(\operatorname{distr} M N f) L g=\)
distr \(M L(g \circ f)\)
    by (auto simp add: emeasure_distr measurable_space
        intro!: arg_cong[where \(f=\) emeasure \(M\) ] measure_eqI)
```


6.3.9 Real measure values

lemma ring_of_finite_sets: ring_of_sets (space $M)\{A \in$ sets M. emeasure $M A \neq$ top $\}$
proof (rule ring_of_setsI)
show $a \in\{A \in$ sets M. emeasure $M A \neq t o p\} \Longrightarrow b \in\{A \in$ sets M. emeasure $M A \neq t o p\} \Longrightarrow$
$a \cup b \in\{A \in$ sets M. emeasure $M A \neq t o p\}$ for $a b$
using emeasure_subadditive[of a M b] by (auto simp: top_unique)
show $a \in\{A \in$ sets M. emeasure $M A \neq t o p\} \Longrightarrow b \in\{A \in$ sets M. emeasure MA $\neq t o p\} \Longrightarrow$
$a-b \in\{A \in$ sets M. emeasure $M A \neq t o p\}$ for $a b$
using emeasure_mono[of $a-b a M]$ by (auto simp: top_unique)
qed (auto dest: sets.sets_into_space)
lemma measure_nonneg[simp]: $0 \leq$ measure $M A$
unfolding measure_def by auto
lemma measure_nonneg' $[$ simp $]$: \neg measure $M A<0$
using measure_nonneg not_le by blast
lemma zero_less_measure_iff: $0<$ measure $M A \longleftrightarrow$ measure $M A \neq 0$ using measure_nonneg[of $M A$] by (auto simp add: le_less)
lemma measure_le_0_iff: measure $M X \leq 0 \longleftrightarrow$ measure $M X=0$ using measure_nonneg[of M X] by linarith
lemma measure_empty[simp]: measure $M\}=0$
unfolding measure_def by (simp add: zero_ennreal.rep_eq)
lemma emeasure_eq_ennreal_measure:
emeasure $M A \neq t o p \Longrightarrow$ emeasure $M A=$ ennreal (measure $M A$)
by (cases emeasure M A rule: ennreal_cases) (auto simp: measure_def)
lemma measure_zero_top: emeasure $M A=t o p \Longrightarrow$ measure $M A=0$
by (simp add: measure_def)
lemma measure_eq_emeasure_eq_ennreal: $0 \leq x \Longrightarrow$ emeasure $M A=$ ennreal x \Longrightarrow measure $M A=x$
using emeasure_eq_ennreal_measure[of M A]
by (cases $A \in M$) (auto simp: measure_notin_sets emeasure_notin_sets)
lemma enn2real_plus: $a<t o p \Longrightarrow b<t o p \Longrightarrow$ enn2real $(a+b)=$ enn2real $a+$ enn2real b
by (simp add: enn2real_def plus_ennreal.rep_eq real_of_ereal_add less_top del: real_of_ereal_enn2ereal)
lemma enn2real_sum: $(\bigwedge i . i \in I \Longrightarrow f i<t o p) \Longrightarrow$ enn2real $(\operatorname{sum} f I)=$ sum (enn2real $\circ f$) I
by (induction I rule: infinite_finite_induct) (auto simp: enn2real_plus)
lemma measure_eq_AE:
assumes iff: $A E x$ in $M . x \in A \longleftrightarrow x \in B$
assumes $A: A \in$ sets M and $B: B \in$ sets M
shows measure $M A=$ measure $M B$
using assms emeasure_eq_AE[OF assms] by (simp add: measure_def)
lemma measure_Union:

```
    emeasure \(M A \neq \infty \Longrightarrow\) emeasure \(M B \neq \infty \Longrightarrow A \in\) sets \(M \Longrightarrow B \in\) sets \(M\)
\(\Longrightarrow A \cap B=\{ \} \Longrightarrow\)
    measure \(M(A \cup B)=\) measure \(M A+\) measure \(M B\)
    by (simp add: measure_def plus_emeasure[symmetric] enn2real_plus less_top)
lemma disjoint_family_on_insert:
    \(i \notin I \Longrightarrow\) disjoint_family_on \(A\) (insert \(i I) \longleftrightarrow A i \cap(\bigcup i \in I . A i)=\{ \} \wedge\)
disjoint_family_on A I
    by (fastforce simp: disjoint_family_on_def)
```

lemma measure_finite_Union:
finite $S \Longrightarrow A ‘ S \subseteq$ sets $M \Longrightarrow$ disjoint_family_on $A S \Longrightarrow(\bigwedge i . i \in S \Longrightarrow$
emeasure $M(A i) \neq \infty) \Longrightarrow$
measure $M(\bigcup i \in S . A i)=\left(\sum i \in S\right.$. measure $\left.M(A i)\right)$
by (induction S rule: finite_induct)
(auto simp: disjoint_family_on_insert measure_Union sum_emeasure[symmetric]
sets.countable_UN ${ }^{\prime}[O F$ countable_finite] $)$
lemma measure_Diff:
assumes finite: emeasure $M A \neq \infty$
and measurable: $A \in$ sets $M B \in$ sets $M B \subseteq A$
shows measure $M(A-B)=$ measure $M A-$ measure $M B$
proof -
have emeasure $M(A-B) \leq$ emeasure $M A$ emeasure $M B \leq$ emeasure $M A$
using measurable by (auto intro!: emeasure_mono)
hence measure $M((A-B) \cup B)=$ measure $M(A-B)+$ measure $M B$
using measurable finite by (rule_tac measure_Union) (auto simp: top_unique)
thus ?thesis using $\langle B \subseteq A\rangle$ by (auto simp: Un_absorb2)
qed
lemma measure_UNION:
assumes measurable: range $A \subseteq$ sets M disjoint_family A
assumes finite: emeasure $M(\bigcup i . A i) \neq \infty$
shows (λi. measure $M(A i))$ sums (measure $M(\bigcup i . A i)$)
proof -
have (λi. emeasure $M(A i))$ sums (emeasure $M(\bigcup i . A i)$)
unfolding suminf_emeasure[OF measurable, symmetric] by (simp add: summable_sums)
moreover
$\{$ fix i
have emeasure $M(A i) \leq$ emeasure $M(\bigcup i . A i)$
using measurable by (auto intro!: emeasure_mono)
then have emeasure $M(A i)=$ ennreal $(($ measure $M(A i)))$
using finite by (intro emeasure_eq_ennreal_measure) (auto simp: top_unique)
\}
ultimately show ?thesis using finite
by (subst (asm) (2) emeasure_eq_ennreal_measure) simp_all
qed
lemma measure_subadditive:
assumes measurable: $A \in$ sets $M B \in$ sets M
and fin: emeasure $M A \neq \infty$ emeasure $M B \neq \infty$
shows measure $M(A \cup B) \leq$ measure $M A+$ measure $M B$
proof -
have emeasure $M(A \cup B) \neq \infty$
using emeasure_subadditive [OF measurable] fin by (auto simp: top_unique)
then show (measure $M(A \cup B)) \leq($ measure $M A)+($ measure $M B)$
using emeasure_subadditive[OF measurable] fin
apply simp
apply (subst (asm) (2 3 4) emeasure_eq_ennreal_measure)
apply (auto simp flip: ennreal_plus)
done
qed
lemma measure_subadditive_finite:
assumes A : finite $I A^{\prime} I \subseteq$ sets M and fin: $\bigwedge i . i \in I \Longrightarrow$ emeasure $M(A i) \neq$ ∞
shows measure $M(\bigcup i \in I . A i) \leq\left(\sum i \in I\right.$. measure $\left.M(A i)\right)$
proof -
\{ have emeasure $M(\bigcup i \in I . A i) \leq\left(\sum i \in I\right.$. emeasure $\left.M(A i)\right)$
using emeasure_subadditive_finite $[O F A]$.
also have $\ldots<\infty$
using fin by (simp add: less_top A)
finally have emeasure $M(\bigcup i \in I . A i) \neq$ top by simp $\}$
note $*=$ this
show ?thesis
using emeasure_subadditive_finite[OF A] fin
unfolding emeasure_eq_ennreal_measure[OF *]
by (simp_all add: sum_nonneg emeasure_eq_ennreal_measure)
qed
lemma measure_subadditive_countably:
assumes A : range $A \subseteq$ sets M and fin: $\left(\sum i\right.$. emeasure $M\left(\begin{array}{ll}A & i\end{array}\right) \neq \infty$
shows measure $M(\bigcup \bar{i} . A i) \leq\left(\sum \bar{i}\right.$. measure $\left.M(A i)\right)$
proof -
from fin have $* *$: $\bigwedge i$. emeasure $M(A i) \neq t o p$ using ennreal_suminf_lessD[of λi. emeasure M (A i $)$] by (simp add: less_top)
\{ have emeasure $M\left(\bigcup_{i} . A i\right) \leq\left(\sum i\right.$. emeasure $\left.M(A i)\right)$
using emeasure_subadditive_countably[OF A].
also have $\ldots<\infty$
using fin by (simp add: less_top)
finally have emeasure $M(\bigcup i . A i) \neq$ top by simp $\}$
then have ennreal (measure $M(\bigcup i . A i))=$ emeasure $M(\bigcup i . A i)$
by (rule emeasure_eq_ennreal_measure[symmetric])
also have $\ldots \leq\left(\sum i\right.$. emeasure $\left.M(A i)\right)$
using emeasure_subadditive_countably $[O F A]$.
also have $\ldots=$ ennreal $\left(\sum i\right.$. measure $\left.M(A i)\right)$
using fin unfolding emeasure_eq_ennreal_measure[OF **]
by (subst suminf_ennreal) (auto simp: **)

```
finally show ?thesis
    apply (rule ennreal_le_iff[THEN iffD1, rotated])
    apply (intro suminf_nonneg allI measure_nonneg summable_suminf_not_top)
    using fin
    apply (simp add: emeasure_eq_ennreal_measure[OF **])
    done
qed
```

lemma measure_Un_null_set: $A \in$ sets $M \Longrightarrow B \in$ null_sets $M \Longrightarrow$ measure M (A
$\cup B)=$ measure $M A$
by (simp add: measure_def emeasure_Un_null_set)
lemma measure_Diff_null_set: $A \in$ sets $M \Longrightarrow B \in$ null_sets $M \Longrightarrow$ measure M
$(A-B)=$ measure $M A$
by (simp add: measure_def emeasure_Diff_null_set)
lemma measure_eq_sum_singleton:
finite $S \Longrightarrow(\bigwedge x . x \in S \Longrightarrow\{x\} \in$ sets $M) \Longrightarrow(\bigwedge x . x \in S \Longrightarrow$ emeasure M
$\{x\} \neq \infty) \Longrightarrow$
measure $M S=\left(\sum x \in S\right.$. measure $\left.M\{x\}\right)$
using emeasure_eq_sum_singleton[of S M]
by (intro measure_eq_emeasure_eq_ennreal) (auto simp: sum_nonneg emeasure_eq_ennreal_measure)
lemma Lim_measure_incseq:
assumes A : range $A \subseteq$ sets M incseq A and fin: emeasure $M(\bigcup i . A$ i) $\neq \infty$
shows $(\lambda i$. measure $M(A i)) \longrightarrow$ measure $M(\bigcup i . A i)$
proof (rule tendsto_ennrealD)
have ennreal (measure $M(\bigcup i . A i))=$ emeasure $M(\bigcup i . A i)$
using fin by (auto simp: emeasure_eq_ennreal_measure)
moreover have ennreal (measure $M(A i))=$ emeasure $M(A i)$ for i
using assms emeasure_mono[of $A_{-} \bigcup i . A$ i M]
by (intro emeasure_eq_ennreal_measure[symmetric]) (auto simp: less_top UN_upper
intro: le_less_trans)
ultimately show $(\lambda x$. ennreal (measure $M(A x))$) \longrightarrow ennreal (measure M
($\bigcup i . A i)$)
using A by (auto intro!: Lim_emeasure_incseq)
qed auto
lemma Lim_measure_decseq:
assumes A : range $A \subseteq$ sets M decseq A and fin: $\bigwedge i$. emeasure $M(A i) \neq \infty$
shows $(\lambda n$. measure $M(A n)) \longrightarrow$ measure $M(\bigcap i . A i)$
proof (rule tendsto_ennrealD)
have ennreal (measure $M(\bigcap i . A i))=$ emeasure $M(\bigcap i . A i)$
using fin [of 0] A emeasure_mono[of \bigcap i. A i A 0 M]
by (auto intro!: emeasure_eq_ennreal_measure[symmetric] simp: INT_lower less_top intro: le_less_trans)
moreover have ennreal (measure $M(A i)$) $=$ emeasure $M(A i)$ for i
using A fin $[$ of $i]$ by (intro emeasure_eq_ennreal_measure $[s y m m e t r i c]$) auto
ultimately show $(\lambda x$. ennreal (measure $M(A x))) \longrightarrow$ ennreal (measure M
($\left.\bigcap_{i .} A i\right)$)
using fin A by (auto intro!: Lim_emeasure_decseq)
qed auto

6.3.10 Set of measurable sets with finite measure

definition fmeasurable :: 'a measure \Rightarrow 'a set set where
fmeasurable $M=\{A \in$ sets M. emeasure $M A<\infty\}$
lemma fmeasurable $D[$ dest, measurable_dest $]: A \in$ fmeasurable $M \Longrightarrow A \in$ sets M by (auto simp: fmeasurable_def)
lemma fmeasurableD2: $A \in$ fmeasurable $M \Longrightarrow$ emeasure $M A \neq t o p$ by (auto simp: fmeasurable_def)
lemma fmeasurableI: $A \in$ sets $M \Longrightarrow$ emeasure $M A<\infty \Longrightarrow A \in$ fmeasurable M
by (auto simp: fmeasurable_def)
lemma fmeasurableI_null_sets: $A \in$ null_sets $M \Longrightarrow A \in$ fmeasurable M by (auto simp: fmeasurable_def)
lemma fmeasurableI2: $A \in$ fmeasurable $M \Longrightarrow B \subseteq A \Longrightarrow B \in$ sets $M \Longrightarrow B \in$ fmeasurable M
using emeasure_mono[of B A M] by (auto simp: fmeasurable_def)
lemma measure_mono_fmeasurable:
$A \subseteq B \Longrightarrow A \in$ sets $M \Longrightarrow B \in$ fmeasurable $M \Longrightarrow$ measure $M A \leq$ measure
MB
by (auto simp: measure_def fmeasurable_def intro!: emeasure_mono enn2real_mono)
lemma emeasure_eq_measure2: $A \in$ fmeasurable $M \Longrightarrow$ emeasure $M A=$ measure $M A$
by (simp add: emeasure_eq_ennreal_measure fmeasurable_def less_top)
interpretation fmeasurable: ring_of_sets space M fmeasurable M
proof (rule ring_of_setsI)
show fmeasurable $M \subseteq$ Pow (space M) $\} \in$ fmeasurable M
by (auto simp: fmeasurable_def dest: sets.sets_into_space)
fix $a b$ assume $*: a \in$ fmeasurable $M b \in$ fmeasurable M
then have emeasure $M(a \cup b) \leq$ emeasure $M a+$ emeasure $M b$ by (intro emeasure_subadditive) auto
also have ... <top using * by (auto simp: fmeasurable_def)
finally show $a \cup b \in$ fmeasurable M using * by (auto intro: fmeasurableI)
show $a-b \in$ fmeasurable M using emeasure_mono[of $a-b a M] *$ by (auto simp: fmeasurable_def)
qed

6.3.11 Measurable sets formed by unions and intersections

lemma fmeasurable_Diff: $A \in$ fmeasurable $M \Longrightarrow B \in$ sets $M \Longrightarrow A-B \in$ fmeasurable M using fmeasurableI2[of $A M A-B]$ by auto
lemma fmeasurable_Int_fmeasurable: $\llbracket S \in$ fmeasurable $M ; T \in$ sets $M \rrbracket \Longrightarrow(S \cap T) \in$ fmeasurable M by (meson fmeasurableD fmeasurableI2 inf_le1 sets.Int)
lemma fmeasurable_UN:
assumes countable $I \bigwedge i . i \in I \Longrightarrow F i \subseteq A \bigwedge i . i \in I \Longrightarrow F i \in$ sets $M A \in$ fmeasurable M
shows $(\bigcup i \in I . F i) \in$ fmeasurable M
proof (rule fmeasurableI2)
show $A \in$ fmeasurable $M(\bigcup i \in I . F i) \subseteq A$ using assms by auto
show $(\bigcup i \in I . F i) \in$ sets M using assms by (intro sets.countable_UN N^{\prime}) auto
qed
lemma fmeasurable_INT:
assumes countable $I i \in I \bigwedge i . i \in I \Longrightarrow F i \in$ sets $M F i \in$ fmeasurable M shows $(\bigcap i \in I . F i) \in$ fmeasurable M
proof (rule fmeasurableI2)
show $F i \in$ fmeasurable $M(\bigcap i \in I . F i) \subseteq F i$
using assms by auto
show $(\bigcap i \in I . F i) \in$ sets M
using assms by (intro sets.countable_INT') auto
qed
lemma measurable_measure_Diff:
assumes $A \in$ fmeasurable $M B \in$ sets $M B \subseteq A$
shows measure $M(A-B)=$ measure $M A-$ measure $M B$
by (simp add: assms fmeasurableD fmeasurableD2 measure_Diff)
lemma measurable_Un_null_set:
assumes $B \in$ null_sets M
shows $(A \cup B \in$ fmeasurable $M \wedge A \in$ sets $M) \longleftrightarrow A \in$ fmeasurable M
using assms by (fastforce simp add: fmeasurable.Un fmeasurableI_null_sets intro:
fmeasurableI2)
lemma measurable_Diff_null_set:
assumes $B \in$ null_sets M
shows $(A-B) \in$ fmeasurable $M \wedge A \in$ sets $M \longleftrightarrow A \in$ fmeasurable M
using assms
by (metis Un_Diff_cancel2 fmeasurable.Diff fmeasurableD fmeasurableI_null_sets measurable_Un_null_set)
lemma fmeasurable_Diff_D:
assumes m : $T-S \in$ fmeasurable $M S \in$ fmeasurable M and sub: $S \subseteq T$

```
    shows \(T \in\) fmeasurable \(M\)
proof -
    have \(T=S \cup(T-S)\)
        using assms by blast
    then show? ?hesis
        by (metis \(m\) fmeasurable.Un)
qed
lemma measure_Un2:
    \(A \in\) fmeasurable \(M \Longrightarrow B \in\) fmeasurable \(M \Longrightarrow\) measure \(M(A \cup B)=\) measure
\(M A+\) measure \(M(B-A)\)
    using measure_Union[of \(M A B-A]\) by (auto simp: fmeasurableD2 fmeasur-
able.Diff)
lemma measure_Un3:
    assumes \(A \in\) fmeasurable \(M B \in\) fmeasurable \(M\)
    shows measure \(M(A \cup B)=\) measure \(M A+\) measure \(M B-\) measure \(M(A\)
\(\cap B\) )
proof -
    have measure \(M(A \cup B)=\) measure \(M A+\) measure \(M(B-A)\)
        using assms by (rule measure_Un2)
    also have \(B-A=B-(A \cap B)\)
        by auto
    also have measure \(M(B-(A \cap B))=\) measure \(M B\) - measure \(M(A \cap B)\)
        using assms by (intro measure_Diff) (auto simp: fmeasurable_def)
    finally show ?thesis
        by \(\operatorname{simp}\)
qed
lemma measure_Un_AE:
    \(A E x\) in \(M . x \notin A \vee x \notin B \Longrightarrow A \in\) fmeasurable \(M \Longrightarrow B \in\) fmeasurable \(M \Longrightarrow\)
    measure \(M(A \cup B)=\) measure \(M A+\) measure \(M B\)
    by (subst measure_Un2) (auto intro!: measure_eq_AE)
lemma measure_UNION_AE:
    assumes \(I\) : finite \(I\)
    shows \((\bigwedge i . i \in I \Longrightarrow F i \in\) fmeasurable \(M) \Longrightarrow\) pairwise ( \(\lambda i j\). AE x in M. \(x\)
\(\notin F i \vee x \notin F j) I \Longrightarrow\)
        measure \(M(\bigcup i \in I . F i)=\left(\sum i \in I\right.\). measure \(\left.M(F i)\right)\)
    unfolding AE_pairwise[OF countable_finite, OF I]
    using \(I\)
proof (induction I rule: finite_induct)
    case (insert \(x\) I)
    have measure \(M\left(F x \cup \bigcup\left(F^{\prime} I\right)\right)=\) measure \(M(F x)+\) measure \(M\left(\bigcup^{\prime}\left(F^{\prime}\right.\right.\)
I))
    by (rule measure_Un_AE) (use insert in 〈auto simp: pairwise_insert))
    with insert show ?case
        by (simp add: pairwise_insert )
qed \(\operatorname{simp}\)
```

lemma measure_UNION ${ }^{\prime}$:
finite $I \Longrightarrow(\bigwedge i . i \in I \Longrightarrow F i \in$ fmeasurable $M) \Longrightarrow$ pairwise ($\lambda i j$. disjnt $(F$ i) $(F j)) I \Longrightarrow$ measure $M(\bigcup i \in I . F i)=\left(\sum i \in I\right.$. measure $\left.M(F i)\right)$
by (intro measure_UNION_AE) (auto simp: disjnt_def elim!: pairwise_mono intro!: always_eventually)
lemma measure_Union_AE:
finite $F \Longrightarrow(\bigwedge S . S \in F \Longrightarrow S \in$ fmeasurable $M) \Longrightarrow$ pairwise ($\lambda S T . A E x$ in M. $x \notin S \vee x \notin T) F \Longrightarrow$
measure $M(\bigcup F)=\left(\sum S \in F\right.$. measure $\left.M S\right)$
using measure_UNION_AE[of $F \lambda x . x$ M by simp
lemma measure_Union':
finite $F \Longrightarrow(\bigwedge S . S \in F \Longrightarrow S \in$ fmeasurable $M) \Longrightarrow$ pairwise disjnt $F \Longrightarrow$ measure $M(\bigcup F)=\left(\sum S \in F\right.$. measure $\left.M S\right)$
using measure_UNION ${ }^{\prime}[$ of $F \lambda x$. x M] by simp
lemma measure_Un_le:
assumes $A \in$ sets $M B \in$ sets M shows measure $M(A \cup B) \leq$ measure $M A$

+ measure M B
proof cases
assume $A \in$ fmeasurable $M \wedge B \in$ fmeasurable M
with measure_subadditive [of A M B] assms show ?thesis by (auto simp: fmeasurableD2)
next
assume $\neg(A \in$ fmeasurable $M \wedge B \in$ fmeasurable $M)$
then have $A \cup B \notin$ fmeasurable M
using fmeasurableI2[of $A \cup B M A]$ fmeasurableI2[of $A \cup B M B]$ assms by
auto
with assms show ?thesis by (auto simp: fmeasurable_def measure_def less_top[symmetric])
qed
lemma measure_UNION_le:
finite $I \Longrightarrow(\bigwedge i . i \in I \Longrightarrow F i \in$ sets $M) \Longrightarrow$ measure $M(\bigcup i \in I . F i) \leq\left(\sum i \in I\right.$.
measure $M(F i))$
proof (induction I rule: finite_induct)
case (insert i I)
then have measure $M(\bigcup i \in$ insert $i I . F i)=$ measure $M\left(F i \cup \bigcup\left(F^{\prime} I\right)\right)$ by simp
also from insert have measure $M(F i \cup \bigcup(F ‘ I)) \leq$ measure $M(F i)+$ measure $M\left(\bigcup\left(F^{\prime} I\right)\right)$
by (intro measure_Un_le sets.finite_Union) auto
also have measure $M(\bigcup i \in I . F i) \leq\left(\sum i \in I\right.$. measure $\left.M(F i)\right)$
using insert by auto
finally show ?case
using insert by simp
qed simp
lemma measure_Union_le:
finite $F \Longrightarrow(\bigwedge S . S \in F \Longrightarrow S \in$ sets $M) \Longrightarrow$ measure $M(\bigcup F) \leq\left(\sum S \in F\right.$.
measure $M S$)
using measure_UNION_le[of $F \lambda x . x M]$ by simp
Version for indexed union over a countable set
lemma
assumes countable I and $I: \bigwedge i . i \in I \Longrightarrow A i \in$ fmeasurable M and bound: $\bigwedge I^{\prime} . I^{\prime} \subseteq I \Longrightarrow$ finite $I^{\prime} \Longrightarrow$ measure $M\left(\bigcup i \in I^{\prime} . A i\right) \leq B$
shows fmeasurable_UN_bound: $(\bigcup i \in I . A i) \in$ fmeasurable M (is ?fm) and measure_UN_bound: measure $M(\bigcup i \in I . A i) \leq B$ (is ?m)
proof -
have $B \geq 0$
using bound by force
have ? $f m \wedge$? m
proof cases
assume $I=\{ \}$
with $\langle B \geq 0\rangle$ show ?thesis
by simp
next
assume $I \neq\{ \}$
have $(\bigcup i \in I . A i)=(\bigcup i$. $(\bigcup n \leq i$. A (from_nat_into $I n)))$
by (subst range_from_nat_into[symmetric, OF $\langle I \neq\{ \}\rangle$ 〈countable $I\rangle]$) auto
then have emeasure $M(\bigcup i \in I . A i)=$ emeasure $M(\bigcup i .(\bigcup n \leq i . A$ (from_nat_into
I n))) by simp
also have $\ldots=\left(S U P\right.$ i. emeasure $\left.M\left(\bigcup n \leq i . A\left(f r o m _n a t _i n t o ~ I n\right)\right)\right)$
using $I\langle I \neq\{ \}\rangle[$ THEN from_nat_into] by (intro SUP_emeasure_incseq[symmetric])
(fastforce simp: incseq_Suc_iff)+
also have $\ldots \leq B$
proof (intro SUP_least)
fix $i::$ nat
have emeasure $M(\bigcup n \leq i$. $A($ from_nat_into $I n))=$ measure $M(\bigcup n \leq i . A$
(from_nat_into I n))
using $I\langle I \neq\{ \}\rangle[T H E N$ from_nat_into] by (intro emeasure_eq_measure2
fmeasurable.finite_UN) auto
also have $\ldots=$ measure $M(\bigcup n \in$ from_nat_into I ' $\{. . i\} . A n)$
by simp
also have $\ldots \leq B$
by (intro ennreal_leI bound) (auto intro: from_nat_into $[O F\langle I \neq\{ \}\rangle]$)
finally show emeasure $M(\bigcup n \leq i$. A (from_nat_into I $n)) \leq$ ennreal B.
qed
finally have $*$: emeasure $M(\bigcup i \in I . A i) \leq B$.
then have? ?m
using I 〈countable $I\rangle$ by (intro fmeasurableI conjI) (auto simp: less_top[symmetric] top_unique)
with $*\langle 0 \leq B\rangle$ show ?thesis
by (simp add: emeasure_eq_measure2)

```
qed
then show ?fm?m by auto
qed
```

Version for big union of a countable set

```
lemma
    assumes countable \mathcal{D}
```



```
    and bound: }\\mathcal{E}.\llbracket\mathcal{E}\subseteq\mathcal{D}; finite \mathcal{E}\rrbracket\Longrightarrow measure M (\bigcup\mathcal{E})\leq
shows fmeasurable_Union_bound: \bigcup\mathcal{D}\in fmeasurable M (is ?fm)
    and measure_Union_bound: measure M (\bigcup\mathcal{D})\leqB (is ?m)
proof -
    have B\geq0
        using bound by force
    have ?fm ^ ?m
    proof (cases \mathcal{D = {})}
        case True
        with \langleB\geq0\rangle\mathrm{ show ?thesis}
            by auto
    next
        case False
        then obtain D :: nat }=>\mp@subsup{}{}{\prime}'a set where D:\mathcal{D}=\mathrm{ range D
            using <countable \mathcal{D}\ uncountable_def by force
            have 1: \bigwedgei. Di fmeasurable M
                by (simp add: D meas)
            have 2: }\bigwedge\mp@subsup{I}{}{\prime}\mathrm{ . finite I' }\Longrightarrow\mathrm{ measure M }(\bigcupx\in\mp@subsup{I}{}{\prime}.Dx)\leq
            by (simp add: D bound image_subset_iff)
        show ?thesis
            unfolding D
            by (intro conjI fmeasurable_UN_bound [OF _ 1 2] measure_UN_bound [OF _
1 2]) auto
        qed
        then show ?fm?m by auto
qed
```

Version for indexed union over the type of naturals

```
lemma
    fixes \(S\) :: nat \(\Rightarrow\) 'a set
    assumes \(S: \bigwedge i . S i \in\) fmeasurable \(M\) and \(B: \bigwedge n\). measure \(M(\bigcup i \leq n . S i) \leq B\)
    shows fmeasurable_countable_Union: \((\bigcup i . S i) \in\) fmeasurable \(M\)
        and measure_countable_Union_le: measure \(M(\bigcup i . S i) \leq B\)
proof -
    have \(m B\) : measure \(M(\bigcup i \in I . S i) \leq B\) if finite \(I\) for \(I\)
    proof -
        have \((\bigcup i \in I . S i) \subseteq(\bigcup i \leq \operatorname{Max} I . S i)\)
            using Max_ge that by force
        then have measure \(M(\bigcup i \in I . S i) \leq\) measure \(M(\bigcup i \leq M a x I . S i)\)
            by (rule measure_mono_fmeasurable) (use \(S\) in 〈blast+〉)
        then show?thesis
```

using B order_trans by blast
qed
show $(\bigcup i . S i) \in$ fmeasurable M
by (auto intro: fmeasurable_UN_bound $\left[O F_{-} S m B\right]$)
show measure $M(\bigcup n . S n) \leq B$
by (auto intro: measure_UN_bound $\left[O F_{-} S m B\right]$)
qed
lemma measure_diff_le_measure_setdiff:
assumes $S \in$ fmeasurable $M T \in$ fmeasurable M
shows measure $M S$ - measure $M T \leq$ measure $M(S-T)$
proof -
have measure $M S \leq$ measure $M((S-T) \cup T)$
by (simp add: assms fmeasurable.Un fmeasurableD measure_mono_fmeasurable)
also have $\ldots \leq$ measure $M(S-T)+$ measure $M T$
using assms by (blast intro: measure_Un_le)
finally show ?thesis
by (simp add: algebra_simps)
qed
lemma suminf_exist_split2:
fixes $f::$ nat \Rightarrow 'a::real_normed_vector
assumes summable f
shows $\left(\lambda n .\left(\sum k . f(k+n)\right)\right) \longrightarrow 0$
by (subst lim_sequentially, auto simp add: dist_norm suminf_exist_split[OF_assms])
lemma emeasure_union_summable:
assumes [measurable]: $\bigwedge n . A n \in$ sets M
and $\bigwedge n$. emeasure $M(A n)<\infty$ summable $(\lambda n$. measure $M(A n))$
shows emeasure $M(\bigcup n . A n)<\infty$ emeasure $M(\bigcup n$. $A n) \leq\left(\sum n\right.$. measure
$M(A n))$
proof -
define B where $B=(\lambda N .(\bigcup n \in\{. .<N\}$. $A n))$
have [measurable]: $B N \in$ sets M for N unfolding B_{-}def by auto
have $(\lambda N$. emeasure $M(B N)) \longrightarrow$ emeasure $M(\bigcup N . B N)$
apply (rule Lim_emeasure_incseq) unfolding B_{-}def by (auto simp add: SUP_subset_mono
incseq_def)
moreover have emeasure $M(B N) \leq \operatorname{ennreal}\left(\sum n\right.$. measure $\left.M(A n)\right)$ for N
proof -
have $*:\left(\sum n \in\{. .<N\}\right.$. measure $\left.M(A n)\right) \leq\left(\sum n\right.$. measure $\left.M(A n)\right)$
using assms(3) measure_nonneg sum_le_suminf by blast
have emeasure $M(B N) \leq\left(\sum n \in\{. .<N\}\right.$. emeasure $\left.M(A n)\right)$
unfolding B_{-}def by (rule emeasure_subadditive_finite, auto)
also have $\ldots=\left(\sum n \in\{. .<N\}\right.$. ennreal(measure $\left.\left.M(A n)\right)\right)$
using assms(2) by (simp add: emeasure_eq_ennreal_measure less_top)
also have $\ldots=$ ennreal $\left(\sum n \in\{. .<N\}\right.$. measure $\left.M(A n)\right)$
by auto
also have $\ldots \leq$ ennreal $\left(\sum n\right.$. measure $\left.M(A n)\right)$

```
        using * by (auto simp: ennreal_leI)
    finally show ?thesis by simp
    qed
    ultimately have emeasure M (\N.BN) \leqennreal (\sumn.measure M (An))
    by (simp add: Lim_bounded)
    then show emeasure M (\bigcupn.An)\leq(\sumn. measure M (An))
    unfolding B_def by (metis UN_UN_flatten UN_lessThan_UNIV)
    then show emeasure M (\bigcupn.A n)<\infty
    by (auto simp: less_top[symmetric] top_unique)
qed
lemma borel_cantelli_limsup1:
    assumes [measurable]: \n. A n E sets M
        and \n. emeasure M (A n)<\infty summable (\lambdan. measure M (A n))
    shows limsup A \in null_sets M
proof -
    have emeasure M (limsup A) \leq0
    proof (rule LIMSEQ_le_const)
    have (\lambdan.(\sumk. measure M (A (k+n))))\longrightarrow0 by (rule suminf_exist_split2[OF
assms(3)])
    then show (\lambdan. ennreal ( }\sumk.\mathrm{ measure M (A (k+n)))) }\longrightarrow
            unfolding ennreal_0[symmetric] by (intro tendsto_ennrealI)
    have emeasure M (limsup A)\leq(\sumk. measure M (A (k+n))) for n
    proof -
    have I:(\bigcupk\in{n..}. A k)=(\bigcupk.A(k+n)) by (auto, metis le_add_diff_inverse\mathcal{L},
fastforce)
            have emeasure M (limsup A)\leq emeasure M (\bigcupk\in{n..}. A k)
            by (rule emeasure_mono, auto simp add: limsup_INF_SUP)
            also have ... = emeasure M (\bigcupk.A(k+n))
                using I by auto
            also have ... \leq(\sumk. measure M (A (k+n)))
                apply (rule emeasure_union_summable)
                using assms summable_ignore_initial_segment[OF assms(3), of n] by auto
            finally show ?thesis by simp
    qed
            then show }\existsN.\foralln\geqN. emeasure M (limsup A)\leq(\sumk. measure M (A
(k+n)))
            by auto
    qed
    then show ?thesis using assms(1) measurable_limsup by auto
qed
lemma borel_cantelli_AE1:
    assumes [measurable]: \n. A n \in sets M
        and \n. emeasure M (A n)<\infty summable (\lambdan. measure M (A n))
    shows AE x in M. eventually ( }\lambdan.x\in\mathrm{ space M - A n) sequentially
proof -
    have AE x in M. x #limsup A
        using borel_cantelli_limsup1[OF assms] unfolding eventually_ae_filter by auto
```

```
    moreover
    {
    fix x assume }x\not\in\operatorname{limsup}
    then obtain N where }x\not\in(\bigcupn\in{N..}. A n) unfolding limsup_INF_SUP by
blast
    then have eventually ( }\lambdan.x\not\inAn) sequentially using eventually_sequentially
by auto
    }
    ultimately show ?thesis by auto
qed
```

6.3.12 Measure spaces with emeasure M (space M) $<\infty$
locale finite_measure $=$ sigma_finite_measure M for $M+$ assumes finite_emeasure_space: emeasure $M($ space $M) \neq$ top
lemma finite_measureI[Pure.intro!]:
emeasure M (space $M) \neq \infty \Longrightarrow$ finite_measure M
proof qed (auto intro!: exI[of - \{space M\}])
lemma (in finite_measure) emeasure_finite[simp, intro]: emeasure $M A \neq$ top using finite_emeasure_space emeasure_space $[$ of $M A]$ by (auto simp: top_unique)
lemma (in finite_measure) fmeasurable_eq_sets: fmeasurable $M=$ sets M by (auto simp: fmeasurable_def less_top[symmetric])
lemma (in finite_measure) emeasure_eq_measure: emeasure $M A=$ ennreal (measure MA)
by (intro emeasure_eq_ennreal_measure) simp
lemma (in finite_measure) emeasure_real: $\exists r .0 \leq r \wedge$ emeasure $M A=$ ennreal r using emeasure_finite $[$ of $A]$ by (cases emeasure M A rule: ennreal_cases) auto
lemma (in finite_measure) bounded_measure: measure $M A \leq$ measure M (space M)
using emeasure_space[of M A] emeasure_real $[$ of A] emeasure_real[of space M] by (auto simp: measure_def)
lemma (in finite_measure) finite_measure_Diff:
assumes sets: $A \in$ sets $M B \in$ sets M and $B \subseteq A$
shows measure $M(A-B)=$ measure $M A-$ measure $M B$
using measure_Diff $\left[O F _\right.$assms $]$by simp
lemma (in finite_measure) finite_measure_Union:
assumes sets: $A \in$ sets $M B \in$ sets M and $A \cap B=\{ \}$
shows measure $M(A \cup B)=$ measure $M A+$ measure $M B$
using measure_Union[OF _ assms] by simp
lemma (in finite_measure) finite_measure_finite_Union: assumes measurable: finite $S A$ 'S \subseteq sets M disjoint_family_on $A S$ shows measure $M(\bigcup i \in S . A i)=\left(\sum i \in S\right.$. measure $\left.M(A i)\right)$ using measure_finite_Union [OF assms] by simp
lemma (in finite_measure) finite_measure_UNION: assumes A : range $A \subseteq$ sets M disjoint_family A shows (λi. measure $M(A i)$) sums (measure $M(\bigcup i . A i))$ using measure_UNION[OF A] by simp
lemma (in finite_measure) finite_measure_mono:
assumes $A \subseteq B B \in$ sets M shows measure $M A \leq$ measure $M B$
using emeasure_mono[OF assms] emeasure_real $[$ of $A]$ emeasure_real $[$ of $B]$ by
(auto simp: measure_def)
lemma (in finite_measure) finite_measure_subadditive:
assumes $m: A \in$ sets $M B \in$ sets M
shows measure $M(A \cup B) \leq$ measure $M A+$ measure $M B$
using measure_subadditive $[$ OF m] by simp
lemma (in finite_measure) finite_measure_subadditive_finite:
assumes finite $I A^{\prime} I \subseteq$ sets M shows measure $M(\bigcup i \in I$. A $i) \leq\left(\sum i \in I\right.$.
measure $M\left(\begin{array}{ll}A & i)\end{array}\right.$
using measure_subadditive_finite[OF assms] by simp
lemma (in finite_measure) finite_measure_subadditive_countably:
range $A \subseteq$ sets $M \Longrightarrow$ summable (λi. measure $M(A i)) \Longrightarrow$ measure $M(\bigcup i$.
$A i) \leq\left(\sum i\right.$. measure $\left.M(A i)\right)$
by (rule measure_subadditive_countably)
(simp_all add: ennreal_suminf_neq_top emeasure_eq_measure)
lemma (in finite_measure) finite_measure_eq_sum_singleton:
assumes finite S and $*: \bigwedge x . x \in S \Longrightarrow\{x\} \in$ sets M
shows measure $M S=\left(\sum x \in S\right.$. measure $\left.M\{x\}\right)$
using measure_eq_sum_singleton [OF assms] by simp
lemma (in finite_measure) finite_Lim_measure_incseq:
assumes A : range $A \subseteq$ sets M incseq A
shows $(\lambda i$. measure $M(A i)) \longrightarrow$ measure $M(\bigcup i . A i)$
using Lim_measure_incseq[OF A] by simp
lemma (in finite_measure) finite_Lim_measure_decseq:
assumes A : range $A \subseteq$ sets M decseq A
shows $(\lambda n$. measure $M(A n)) \longrightarrow$ measure $M\left(\bigcap_{i .} A i\right)$
using Lim_measure_decseq[OF A] by simp
lemma (in finite_measure) finite_measure_compl:
assumes $S: S \in$ sets M
shows measure $M($ space $M-S)=$ measure $M($ space $M)$ - measure $M S$

```
    using measure_Diff[OF _ sets.top \(S\) sets.sets_into_space] \(S\) by simp
lemma (in finite_measure) finite_measure_mono_AE:
    assumes imp: \(A E x\) in \(M . x \in A \longrightarrow x \in B\) and \(B: B \in\) sets \(M\)
    shows measure \(M A \leq\) measure \(M B\)
    using assms emeasure_mono_AE[OF imp B]
    by (simp add: emeasure_eq_measure)
lemma (in finite_measure) finite_measure_eq_AE:
    assumes iff: \(A E x\) in \(M . x \in A \longleftrightarrow x \in B\)
    assumes \(A: A \in\) sets \(M\) and \(B: B \in\) sets \(M\)
    shows measure \(M A=\) measure \(M B\)
    using assms emeasure_eq_AE [OF assms] by (simp add: emeasure_eq_measure)
    lemma (in finite_measure) measure_increasing: increasing \(M\) (measure \(M\) )
    by (auto intro!: finite_measure_mono simp: increasing_def)
lemma (in finite_measure) measure_zero_union:
    assumes \(s \in\) sets \(M t \in\) sets \(M\) measure \(M t=0\)
    shows measure \(M(s \cup t)=\) measure \(M s\)
using assms
proof -
    have measure \(M(s \cup t) \leq\) measure \(M s\)
        using finite_measure_subadditive \([o f s t]\) assms by auto
    moreover have measure \(M(s \cup t) \geq\) measure \(M s\)
        using assms by (blast intro: finite_measure_mono)
    ultimately show ?thesis by simp
qed
lemma (in finite_measure) measure_eq_compl:
    assumes \(s \in\) sets \(M t \in\) sets \(M\)
    assumes measure \(M\) (space \(M-s)=\) measure \(M(\) space \(M-t)\)
    shows measure \(M s=\) measure \(M t\)
    using assms finite_measure_compl by auto
lemma (in finite_measure) measure_eq_bigunion_image:
    assumes range \(f \subseteq\) sets \(M\) range \(g \subseteq\) sets \(M\)
    assumes disjoint_family \(f\) disjoint_family \(g\)
    assumes \(\bigwedge n\) :: nat. measure \(M(f n)=\) measure \(M(g n)\)
    shows measure \(M(\bigcup i . f i)=\) measure \(M(\bigcup i . g i)\)
using assms
proof -
    have \(a\) : \((\lambda i\). measure \(M(f i))\) sums (measure \(M(\bigcup i . f i))\)
        by (rule finite_measure_UNION[OF assms (1,3)])
    have \(b\) : \((\lambda i\). measure \(M(g i))\) sums (measure \(M(\bigcup i . g i))\)
            by (rule finite_measure_UNION[OF \(\operatorname{assms}(2,4)]\) )
    show ?thesis using sums_unique \([\) OF b] sums_unique \([O F\) a] assms by simp
qed
```

```
lemma (in finite_measure) measure_countably_zero:
    assumes range \(c \subseteq\) sets \(M\)
    assumes \(\bigwedge i\). measure \(M(c i)=0\)
    shows measure \(M(\bigcup i\) :: nat. c \(i)=0\)
proof (rule antisym)
    show measure \(M(\bigcup i\) :: nat. c i) \(\leq 0\)
    using finite_measure_subadditive_countably[OF assms(1)] by (simp add: assms(2))
qed \(\operatorname{simp}\)
lemma (in finite_measure) measure_space_inter:
    assumes events:s sets \(M t \in\) sets \(M\)
    assumes measure \(M t=\) measure \(M\) (space \(M\) )
    shows measure \(M(s \cap t)=\) measure \(M s\)
proof -
    have measure \(M((\) space \(M-s) \cup(\) space \(M-t))=\) measure \(M(\) space \(M-\)
s)
    using events assms finite_measure_compl \([\) of \(t]\) by (auto intro!: measure_zero_union)
    also have \((\) space \(M-s) \cup(\) space \(M-t)=\) space \(M-(s \cap t)\)
        by blast
    finally show measure \(M(s \cap t)=\) measure \(M s\)
        using events by (auto intro!: measure_eq_compl[of \(s \cap t s]\) )
qed
lemma (in finite_measure) measure_equiprobable_finite_unions:
    assumes \(s\) : finite \(s \bigwedge x . x \in s \Longrightarrow\{x\} \in\) sets \(M\)
    assumes \(\bigwedge x y . \llbracket x \in s ; y \in s \rrbracket \Longrightarrow\) measure \(M\{x\}=\) measure \(M\{y\}\)
    shows measure \(M s=\) real (card \(s\) ) * measure \(M\{S O M E x . x \in s\}\)
proof cases
    assume \(s \neq\{ \}\)
    then have \(\exists x . x \in s\) by blast
    from someI_ex[OF this] assms
    have prob_some: \(\bigwedge x . x \in s \Longrightarrow\) measure \(M\{x\}=\) measure \(M\{S O M E y . y \in\)
\(s\}\) by blast
    have measure \(M s=\left(\sum x \in s\right.\). measure \(\left.M\{x\}\right)\)
        using finite_measure_eq_sum_singleton \([O F s]\) by simp
    also have \(\ldots=\left(\sum x \in s\right.\). measure \(\left.M\{S O M E y . y \in s\}\right)\) using prob_some by
auto
    also have \(\ldots=\operatorname{real}(\operatorname{card} s) *\) measure \(M\{(\) SOME \(x . x \in s)\}\)
        using sum_constant assms by simp
    finally show?thesis by simp
qed \(\operatorname{simp}\)
lemma (in finite_measure) measure_real_sum_image_fn:
    assumes \(e \in\) sets \(M\)
    assumes \(\bigwedge x . x \in s \Longrightarrow e \cap f x \in\) sets \(M\)
    assumes finite \(s\)
    assumes disjoint: \(\bigwedge x y . \llbracket x \in s ; y \in s ; x \neq y \rrbracket \Longrightarrow f x \cap f y=\{ \}\)
    assumes upper: space \(M \subseteq(\bigcup i \in s . f i)\)
    shows measure \(M e=\left(\sum x \in s\right.\). measure \(\left.M(e \cap f x)\right)\)
```

```
proof -
    have \(e \subseteq(\bigcup i \in s . f i)\)
        using \(\langle e \in\) sets \(M\) 〉 sets.sets_into_space upper by blast
    then have \(e: e=(\bigcup i \in s . e \cap f i)\)
        by auto
    hence measure \(M e=\) measure \(M(\bigcup i \in s . e \cap f i)\) by simp
    also have \(\ldots=\left(\sum x \in s\right.\). measure \(\left.M(e \cap f x)\right)\)
    proof (rule finite_measure_finite_Union)
        show finite \(s\) by fact
        show ( \(\lambda i\). \(e \cap f i\) )'s \(\subseteq\) sets \(M\) using assms(2) by auto
        show disjoint_family_on ( \(\lambda i . e \cap f i) s\)
            using disjoint by (auto simp: disjoint_family_on_def)
    qed
    finally show ?thesis .
qed
```

lemma (in finite_measure) measure_exclude:
assumes $A \in$ sets $M B \in$ sets M
assumes measure $M A=$ measure M (space M) $A \cap B=\{ \}$
shows measure $M B=0$
using measure_space_inter [of B A] assms by (auto simp: ac_simps)
lemma (in finite_measure) finite_measure_distr:
assumes $f: f \in$ measurable $M M^{\prime}$
shows finite_measure (distr $M M^{\prime} f$)
proof (rule finite_measureI)
have $f-‘$ space $M^{\prime} \cap$ space $M=$ space M using f by (auto dest: measurable_space)
with f show emeasure (distr $\left.M M^{\prime} f\right)\left(\right.$ space $\left.\left(\operatorname{distr} M M^{\prime} f\right)\right) \neq \infty$ by (auto simp: emeasure_distr)
qed
lemma emeasure_gfp[consumes 1, case_names cont measurable]:
assumes sets $[$ simp $]: \bigwedge s$. sets $(M$ s) $=$ sets N
assumes $\bigwedge s$. finite_measure ($M s$)
assumes cont: inf_continuous F inf_continuous f
assumes meas: $\bigwedge P$. Measurable.pred $N P \Longrightarrow$ Measurable.pred $N(F P)$
assumes iter: $\bigwedge P$ s. Measurable.pred $N P \Longrightarrow$ emeasure $(M s)\{x \in$ space $N . F$
$P x\}=f(\lambda s$. emeasure $(M s)\{x \in$ space $N . P x\}) s$
assumes bound: $\wedge P . f P \leq f(\lambda s$. emeasure $(M s)($ space $(M s)))$
shows emeasure (M s) $\{x \in$ space N.gfp $F x\}=g f p f s$
proof (subst gfp_transfer_bounded[where $\alpha=\lambda F$ s. emeasure (Ms) \{xєspace N.
$F x\}$ and $g=f$ and $f=F$ and
$P=$ Measurable.pred N, symmetric $]$)
interpret finite_measure $M s$ for s by fact
fix C assume decseq $C \bigwedge i$. Measurable.pred $N(C i)$
then show $(\lambda s$. emeasure $(M s)\{x \in$ space N. (INF i. $C i) x\})=($ INFi. $(\lambda s$. emeasure ($M s$) $\{x \in$ space N. Cix\}))
unfolding INF_apply[abs_def]
by (subst INF_emeasure_decseq) (auto simp: antimono_def fun_eq_iff intro!:

```
arg_cong2[where \(f=\) emeasure] \()\)
next
    show \(f x \leq(\lambda s\). emeasure \((M s)\{x \in\) space \(N\). \(F\) top \(x\}\) ) for \(x\)
        using bound[of \(x]\) sets_eq_imp_space_eq[OF sets] by (simp add: iter)
qed (auto simp add: iter le_fun_def INF_apply[abs_def] intro!: meas cont)
```


6.3.13 Counting space

lemma strict_monoI_Suc:
assumes ord [simp]: ($\bigwedge n . f n<f(S u c n))$ shows strict_mono f
unfolding strict_mono_def
proof safe
fix $n m$:: nat assume $n<m$ then show $f n<f m$ by (induct m) (auto simp: less_Suc_eq intro: less_trans ord)
qed
lemma emeasure_count_space:
assumes $X \subseteq A$ shows emeasure (count_space A) $X=($ if finite X then of_nat
(card X) else ∞)
$\left(\mathrm{is}_{-}=? M X\right)$
unfolding count_space_def
proof (rule emeasure_measure_of_sigma)
show $X \in$ Pow A using $\langle X \subseteq A\rangle$ by auto
show sigma_algebra A (Pow A) by (rule sigma_algebra_Pow)
show positive: positive (Pow A) ?M
by (auto simp: positive_def)
have additive: additive (Pow A) ?M
by (auto simp: card_Un_disjoint additive_def)
interpret ring_of_sets A Pow A
by (rule ring_of_setsI) auto
show countably_additive (Pow A) ?M
unfolding countably_additive_iff_continuous_from_below[OF positive additive]
proof safe
fix $F::$ nat $\Rightarrow{ }^{\prime}$ 'a set assume incseq F
show $(\lambda i . ? M(F i)) \longrightarrow$?M $(\bigcup i . F i)$
proof cases
assume $\exists i . \forall j \geq i . F i=F j$
then guess i.. note $i=$ this
$\{$ fix j from $i<$ incseq $F\rangle$ have $F j \subseteq F i$ by (cases $i \leq j$) (auto simp: incseq_def) $\}$
then have eq: $(\bigcup i . F i)=F i$
by auto
with i show ?thesis
by (auto intro!: Lim_transform_eventually[OF tendsto_const] eventually_sequentiallyI[where $c=i]$)
next
assume $\neg(\exists i . \forall j \geq i . F i=F j)$
then obtain f where $f: \bigwedge i . i \leq f i \bigwedge i . F i \neq F(f i)$ by metis
then have $\bigwedge i . F i \subseteq F(f i)$ using $\langle i n c s e q ~ F 〉$ by（auto simp：incseq＿def）
with f have $*: \bigwedge i . F i \subset F(f i)$ by auto
have incseq（ λi ．？M（ $F i$ ）$)$
using 〈incseq F 〉 unfolding incseq＿def by（auto simp：card＿mono dest： finite＿subset）
then have $(\lambda i . ? M(F i)) \longrightarrow(S U P n$ ．？M $(F n))$ by（rule LIMSEQ＿SUP）
moreover have $(S U P$ n．？M $(F n))=t o p$
proof（rule ennreal＿SUP＿eq＿top）
fix n ：：nat show $\exists k:: n a t \in U N I V$ ．of＿nat $n \leq$ ？$M(F k)$
proof（induct n ）
case（Suc n）
then guess k ．．note $k=$ this
moreover have finite $(F k) \Longrightarrow$ finite $(F(f k)) \Longrightarrow \operatorname{card}(F k)<\operatorname{card}$
（F（fk））
using $\langle F k \subset F(f k)\rangle$ by（simp add：psubset＿card＿mono）
moreover have finite $(F(f k)) \Longrightarrow$ finite $(F k)$
using $\langle k \leq f k\rangle\langle i n c s e q ~ F\rangle$ by（auto simp：incseq＿def dest：finite＿subset）
ultimately show ？case
by（auto intro！：exI［of－f k］simp del：of＿nat＿Suc）
qed auto
qed
moreover
have $\operatorname{inj}\left(\lambda n . F\left(\left(f^{\wedge}{ }^{\wedge} n\right) 0\right)\right)$
by（intro strict＿mono＿imp＿inj＿on strict＿monoI＿Suc）（simp add：＊）
then have 1：infinite（range $\left(\lambda i . F\left(\left(f^{\wedge} i\right) 0\right)\right)$ ）
by（rule range＿inj＿infinite）
have infinite（Pow（ \bigcup i．Fi））
by（rule infinite＿super $\left[O F_{-} 1\right]$ ）auto
then have infinite $(\bigcup i . F i)$
by auto
ultimately show ？thesis by（simp only：）simp
qed
qed
qed
lemma distr＿bij＿count＿space：
assumes f ：bij＿betw f A B
shows distr（count＿space A）（count＿space B）$f=$ count＿space B
proof（rule measure＿eqI）
have $f^{\prime}: f \in$ measurable（count＿space A）（count＿space B）
using f unfolding Pi＿def bij＿betw＿def by auto
fix X assume $X \in$ sets（distr（count＿space A ）（count＿space B）f）
then have $X: X \in$ sets（count＿space B）by auto
moreover from X have $f-{ }^{\prime} X \cap A=$ the＿inv＿into $A f^{\prime} X$

```
    using f by (auto simp: bij_betw_def subset_image_iff image_iff the_inv_into_f_f
intro: the_inv_into_f_f[symmetric])
    moreover have inj_on (the_inv_into A f) B
        using Xf by (auto simp: bij_betw_def inj_on_the_inv_into)
    with X have inj_on (the_inv_into A f) X
    by (auto intro: subset_inj_on)
    ultimately show emeasure (distr (count_space A) (count_space B) f) X=emea-
sure (count_space B) X
            using f unfolding emeasure_distr[OF f' X]
    by (subst (1 2) emeasure_count_space) (auto simp: card_image dest: finite_imageD)
qed simp
lemma emeasure_count_space_finite[simp]:
    X\subseteqA\Longrightarrow finite }X\Longrightarrow\mathrm{ emeasure (count_space A) X = of_nat (card X)
    using emeasure_count_space[of X A] by simp
lemma emeasure_count_space_infinite[simp]:
    X\subseteqA\Longrightarrow infinite }X\Longrightarrow\mathrm{ emeasure (count_space A) X= 
    using emeasure_count_space[of X A] by simp
lemma measure_count_space: measure (count_space A) X = (if X \subseteqA then of_nat
(card X) else 0)
    by (cases finite X) (auto simp: measure_notin_sets ennreal_of_nat_eq_real_of_nat
                                    measure_zero_top measure_eq_emeasure_eq_ennreal)
lemma emeasure_count_space_eq_0:
    emeasure (count_space A) X=0 \longleftrightarrow(X\subseteqA\longrightarrowX={})
proof cases
    assume X:X\subseteqA
    then show ?thesis
    proof (intro iffI impI)
    assume emeasure (count_space A) X = 0
    with X show }X={
        by (subst (asm) emeasure_count_space) (auto split: if_split_asm)
    qed simp
qed (simp add: emeasure_notin_sets)
lemma null_sets_count_space: null_sets (count_space A) = { {} }
    unfolding null_sets_def by (auto simp add: emeasure_count_space_eq_0)
lemma AE_count_space: (AE x in count_space A. P x) \longleftrightarrow(\forallx\inA.P x)
    unfolding eventually_ae_filter by (auto simp add: null_sets_count_space)
lemma sigma_finite_measure_count_space_countable:
    assumes A: countable A
    shows sigma_finite_measure (count_space A)
    proof qed (insert A, auto intro!: exI[of - (\lambdaa. {a})' A])
```

lemma sigma_finite_measure_count_space:
fixes A :: 'a::countable set shows sigma_finite_measure (count_space A)
by (rule sigma_finite_measure_count_space_countable) auto

```
lemma finite_measure_count_space:
    assumes [simp]: finite A
    shows finite_measure (count_space A)
    by rule simp
lemma sigma_finite_measure_count_space_finite:
    assumes A: finite A shows sigma_finite_measure (count_space A)
proof -
    interpret finite_measure count_space A using A by (rule finite_measure_count_space)
    show sigma_finite_measure (count_space A) ..
qed
```


6.3.14 Measure restricted to space

```
lemma emeasure_restrict_space:
    assumes \Omega\cap space M f sets MA\subseteq\Omega
    shows emeasure (restrict_space M \Omega) A = emeasure M A
proof (cases A f sets M)
    case True
    show ?thesis
    proof (rule emeasure_measure_of[OF restrict_space_def])
        show (\cap) \Omega' sets M\subseteqPow (\Omega\cap space M)A\in sets (restrict_space M \Omega)
        using }\langleA\subseteq\Omega\rangle\langleA\in\mathrm{ sets M〉 sets.space_closed by (auto simp: sets_restrict_space)
        show positive (sets (restrict_space M \Omega)) (emeasure M)
            by (auto simp: positive_def)
        show countably_additive (sets (restrict_space M \Omega)) (emeasure M)
        proof (rule countably_additiveI)
            fix A :: nat => _ assume range A\subseteq sets (restrict_space M \Omega) disjoint_family
A
            with assms have \i. A i\in sets M \i. A i\subseteq space M disjoint_family A
                by (fastforce simp: sets_restrict_space_iff[OF assms(1)] image_subset_iff
                    dest: sets.sets_into_space)+
            then show (\sumi. emeasure M (A i)) = emeasure M (\bigcupi.A i)
                by (subst suminf_emeasure) (auto simp: disjoint_family_subset)
        qed
    qed
next
    case False
    with assms have A & sets (restrict_space M \Omega)
        by (simp add: sets_restrict_space_iff)
    with False show ?thesis
        by (simp add: emeasure_notin_sets)
qed
lemma measure_restrict_space:
    assumes }\Omega\cap\mathrm{ space M}\in\mathrm{ sets MA}\subseteq
```

shows measure (restrict_space $M \Omega$) $A=$ measure $M A$
using emeasure_restrict_space[OF assms] by (simp add: measure_def)
lemma AE_restrict_space_iff:
assumes $\Omega \cap$ space $M \in$ sets M
shows $(A E x$ in restrict_space $M \Omega . P x) \longleftrightarrow(A E x$ in $M . x \in \Omega \longrightarrow P x)$
proof -
have ex_cong: $\bigwedge P Q f .(\bigwedge x . P x \Longrightarrow Q x) \Longrightarrow(\bigwedge x . Q x \Longrightarrow P(f x)) \Longrightarrow(\exists x$.
$P x) \longleftrightarrow(\exists x . Q x)$
by auto
\{ fix X assume $X: X \in$ sets M emeasure $M X=0$
then have emeasure $M(\Omega \cap$ space $M \cap X) \leq$ emeasure $M X$ by (intro emeasure_mono) auto
then have emeasure $M(\Omega \cap$ space $M \cap X)=0$
using X by (auto intro!: antisym) \}
with assms show ?thesis
unfolding eventually_ae_filter
by (auto simp add: space_restrict_space null_sets_def sets_restrict_space_iff emeasure_restrict_space cong: conj_cong
intro!: ex_cong[where $f=\lambda X .(\Omega \cap$ space $M) \cap X])$
qed
lemma restrict_restrict_space:
assumes $A \cap$ space $M \in$ sets $M B \cap$ space $M \in$ sets M
shows restrict_space (restrict_space $M A$) $B=$ restrict_space $M(A \cap B)$ (is ?l $=? r)$
proof (rule measure_eqI[symmetric])
show sets ? $r=$ sets ?l
unfolding sets_restrict_space image_comp by (intro image_cong) auto
next
fix X assume $X \in$ sets (restrict_space $M(A \cap B))$
then obtain Y where $Y \in$ sets $M X=Y \cap A \cap B$
by (auto simp: sets_restrict_space)
with assms sets.Int $[O F$ assms $]$ show emeasure ?r $X=$ emeasure ?l X by (subst (1 2) emeasure_restrict_space)
(auto simp: space_restrict_space sets_restrict_space_iff emeasure_restrict_space ac_simps)
qed
lemma restrict_count_space: restrict_space (count_space B) $A=$ count_space $(A \cap$ B)
proof (rule measure_eqI)
show sets (restrict_space (count_space B) A) $=$ sets $($ count_space $(A \cap B))$
by (subst sets_restrict_space) auto
moreover fix X assume $X \in$ sets (restrict_space (count_space B) A)
ultimately have $X \subseteq A \cap B$ by auto
then show emeasure (restrict_space (count_space B) A) $X=$ emeasure (count_space
$(A \cap B)) X$
by (cases finite X) (auto simp add: emeasure_restrict_space)

qed

lemma sigma_finite_measure_restrict_space:
assumes sigma_finite_measure M
and $A: A \in$ sets M
shows sigma_finite_measure (restrict_space M A)
proof -
interpret sigma_finite_measure M by fact
from sigma_finite_countable obtain C
where C : countable $C C \subseteq$ sets $M(\cup C)=$ space $M \forall a \in C$. emeasure $M a \neq$ ∞
by blast
let ${ }^{2} C=(\cap) A \cdot C$
from C have countable ?C ?C \subseteq sets (restrict_space $M A)(\bigcup$? $C)=$ space
(restrict_space MA)
by(auto simp add: sets_restrict_space space_restrict_space)
moreover \{
fix a
assume $a \in ? C$
then obtain a^{\prime} where $a=A \cap a^{\prime} a^{\prime} \in C$..
then have emeasure (restrict_space $M A$) $a \leq$ emeasure $M a^{\prime}$
using $A C$ by(auto simp add: emeasure_restrict_space intro: emeasure_mono)
also have $\ldots<\infty$ using $C(4)[$ rule_format, of $a]\left\langle a^{\prime} \in C\right\rangle$ by (simp add:
less_top)
finally have emeasure (restrict_space MA) $a \neq \infty$ by simp $\}$
ultimately show? thesis
by unfold_locales (rule exI conjI|assumption|blast)+
qed
lemma finite_measure_restrict_space:
assumes finite_measure M
and $A: A \in$ sets M
shows finite_measure (restrict_space MA)
proof -
interpret finite_measure M by fact
show ?thesis
by(rule finite_measureI)(simp add: emeasure_restrict_space A space_restrict_space)
qed
lemma restrict_distr:
assumes [measurable]: $f \in$ measurable $M N$
assumes [simp]: $\Omega \cap$ space $N \in$ sets N and restrict: $f \in$ space $M \rightarrow \Omega$
shows restrict_space (distr MNf) $\Omega=\operatorname{distr} M$ (restrict_space $N \Omega) f$
(is ?l $=? r$)
proof (rule measure_eqI)
fix A assume $A \in$ sets (restrict_space (distr $M N f$) Ω)
with restrict show emeasure ?l $A=$ emeasure ?r A
by (subst emeasure_distr)
(auto simp: sets_restrict_space_iff emeasure_restrict_space emeasure_distr

```
    intro!: measurable_restrict_space2)
```

qed (simp add: sets_restrict_space)
lemma measure_eqI_restrict_generator:
assumes E : Int_stable $E E \subseteq \operatorname{Pow} \Omega \bigwedge X . X \in E \Longrightarrow$ emeasure $M X=$ emeasure $N X$
assumes sets_eq: sets $M=$ sets N and $\Omega: \Omega \in$ sets M
assumes sets (restrict_space $M \Omega$) sigma_sets ΩE
assumes sets (restrict_space $N \Omega$) $=$ sigma_sets ΩE
assumes ae: AE x in M. $x \in \Omega A E x$ in $N . x \in \Omega$
assumes A : countable $A A \neq\{ \} A \subseteq E \bigcup A=\Omega \bigwedge a . a \in A \Longrightarrow$ emeasure M
$a \neq \infty$
shows $M=N$
proof (rule measure_eqI)
fix X assume $X: X \in$ sets M
then have emeasure $M X=$ emeasure (restrict_space $M \Omega)(X \cap \Omega)$
using ae Ω by (auto simp add: emeasure_restrict_space intro!: emeasure_eq_AE)
also have restrict_space $M \Omega=$ restrict_space $N \Omega$
proof (rule measure_eqI_generator_eq)
fix X assume $X \in E$
then show emeasure (restrict_space $M \Omega$) $X=$ emeasure (restrict_space $N \Omega$)
X
using $E \Omega$ by (subst (1 2) emeasure_restrict_space) (auto simp: sets_eq sets_eq[THEN sets_eq_imp_space_eq])
next
show range $($ from_nat_into $A) \subseteq E(\bigcup i$.from_nat_into $A i)=\Omega$
using A by (auto cong del: SUP_cong_simp)
next
fix i
have emeasure (restrict_space $M \Omega$) (from_nat_into $A i)=$ emeasure M (from_nat_into
A i)
using $A \Omega$ by (subst emeasure_restrict_space)
(auto simp: sets_eq sets_eq[THEN sets_eq_imp_space_eq] intro:
from_nat_into)
with A show emeasure (restrict_space $M \Omega)($ from_nat_into $A i) \neq \infty$ by (auto intro: from_nat_into)
qed fact+
also have emeasure (restrict_space $N \Omega)(X \cap \Omega)=$ emeasure $N X$
using X ae Ω by (auto simp add: emeasure_restrict_space sets_eq intro!: emeasure_eq_AE)
finally show emeasure $M X=$ emeasure $N X$.
qed fact

6.3.15 Null measure

definition null_measure :: 'a measure \Rightarrow 'a measure where
null_measure $M=$ sigma (space M) (sets M)
lemma space_null_measure[simp]: space (null_measure M) $=$ space M
by (simp add: null_measure_def)
lemma sets_null_measure[simp, measurable_cong]: sets (null_measure M) $=$ sets M by (simp add: null_measure_def)
lemma emeasure_null_measure[simp]: emeasure (null_measure M) $X=0$ by (cases $X \in$ sets M, rule emeasure_measure_of)
(auto simp: positive_def countably_additive_def emeasure_notin_sets null_measure_def dest: sets.sets_into_space)
lemma measure_null_measure[simp]: measure (null_measure M) $X=0$ by (intro measure_eq_emeasure_eq_ennreal) auto
lemma null_measure_idem [simp]: null_measure (null_measure M) $=$ null_measure M by (rule measure_eqI) simp_all

6.3.16 Scaling a measure

definition scale_measure :: ennreal $\Rightarrow{ }^{\prime} a$ measure $\Rightarrow{ }^{\prime} a$ measure where
scale_measure $r M=$ measure_of $($ space $M)($ sets $M)(\lambda A . r *$ emeasure $M A)$
lemma space_scale_measure: space (scale_measure r M) = space M by (simp add: scale_measure_def)
lemma sets_scale_measure $[$ simp, measurable_cong]: sets (scale_measure r M) = sets M
by (simp add: scale_measure_def)
lemma emeasure_scale_measure [simp]:
emeasure (scale_measure r M) $A=r *$ emeasure $M A$
(is ${ }_{-}=? \mu A$)
proof $($ cases $A \in$ sets $M)$
case True
show ?thesis unfolding scale_measure_def
proof (rule emeasure_measure_of_sigma)
show sigma_algebra (space M) (sets M)..
show positive (sets M) ? μ by (simp add: positive_def)
show countably_additive (sets M) ? μ
proof (rule countably_additiveI)
fix $A::$ nat \Rightarrow _ assume $*$: range $A \subseteq$ sets M disjoint_family A
have $\left(\sum i . ? \mu(A i)\right)=r *\left(\sum i\right.$. emeasure $\left.M(A i)\right)$
by simp
also have $\ldots=? \mu(\bigcup i . A$ i) using $* \mathbf{b y}($ simp add: suminf_emeasure $)$
finally show $\left(\sum i . ? \mu(A i)\right)=? \mu(\bigcup i . A i)$.
qed
qed(fact True)
qed(simp add: emeasure_notin_sets)

```
lemma scale_measure_1 [simp]: scale_measure \(1 M=M\)
    by(rule measure_eqI) simp_all
```

lemma scale_measure_0[simp]: scale_measure $0 M=$ null_measure M
by(rule measure_eqI) simp_all
lemma measure_scale_measure $[$ simp $]: 0 \leq r \Longrightarrow$ measure (scale_measure r M) A
$=r *$ measure $M A$
using emeasure_scale_measure[of r M A]
emeasure_eq_ennreal_measure $[$ of $M A$]
measure_eq_emeasure_eq_ennreal[of _scale_measure r M A]
by (cases emeasure (scale_measure r M) $A=$ top)
(auto simp del: emeasure_scale_measure
simp: ennreal_top_eq_mult_iff ennreal_mult_eq_top_iff measure_zero_top
ennreal_mult[symmetric])
lemma scale_scale_measure [simp]:
scale_measure r (scale_measure $\left.r^{\prime} M\right)=$ scale_measure $\left(r * r^{\prime}\right) M$
by (rule measure_eqI) (simp_all add: max_def mult.assoc)
lemma scale_null_measure [simp]: scale_measure r (null_measure $M)=$ null_measure M
by (rule measure_eqI) simp_all

6.3.17 Complete lattice structure on measures

lemma (in finite_measure) finite_measure_Diff':
$A \in$ sets $M \Longrightarrow B \in$ sets $M \Longrightarrow$ measure $M(A-B)=$ measure $M A$ - measure $M(A \cap B)$
using finite_measure_Diff[of $A A \cap B]$ by (auto simp: Diff_Int)
lemma (in finite_measure) finite_measure_Union':
$A \in$ sets $M \Longrightarrow B \in$ sets $M \Longrightarrow$ measure $M(A \cup B)=$ measure $M A+$ measure $M(B-A)$
using finite_measure_Union $[$ of $A B-A]$ by auto
lemma finite_unsigned_Hahn_decomposition:
assumes finite_measure M finite_measure N and [simp]: sets $N=$ sets M
shows $\exists Y \in$ sets $M .(\forall X \in$ sets $M . X \subseteq Y \longrightarrow N X \leq M X) \wedge(\forall X \in$ sets M.
$X \cap Y=\{ \} \longrightarrow M X \leq N X)$
proof -
interpret M : finite_measure M by fact
interpret N : finite_measure N by fact
define d where $d X=$ measure $M X-$ measure $N X$ for X
have [intro]: bdd_above (d'sets M)
using sets.sets_into_space[of _ M]
by (intro bdd_aboveI [where $M=$ measure M (space $M)]$)
(auto simp: d_def field_simps subset_eq intro!: add_increasing M.finite_measure_mono)
define γ where $\gamma=(S U P X \in$ sets $M . d X)$
have $l e_{-} \gamma[$ intro $]: X \in$ sets $M \Longrightarrow d X \leq \gamma$ for X
by (auto simp: γ_{-}def intro!: cSUP_upper)
have $\exists f . \forall n . f n \in$ sets $M \wedge d(f n)>\gamma-1 /{ }^{2}{ }^{\wedge} n$
proof (intro choice_iff [THEN iffD1] allI)
fix n
have $\exists X \in$ sets $M . \gamma-1 /$ 2 $^{\wedge} n<d X$
unfolding γ_{-}def by (intro less_cSUP_iff[THEN iffD1]) auto
then show $\exists y . y \in$ sets $M \wedge \gamma-1 / 2^{\wedge} n<d y$
by auto
qed
then obtain E where [measurable]: $E n \in$ sets M and $E: d(E n)>\gamma-1 /$ $2^{\wedge} n$ for n
by auto
define F where $F m n=($ if $m \leq n$ then $\bigcap i \in\{m . . n\}$. E i else space M) for m n
have [measurable]: $m \leq n \Longrightarrow F m n \in$ sets M for $m n$ by (auto simp: F_def)
have 1: $\gamma-2 / 2^{\wedge} m+1 / 2^{\wedge} n \leq d(F m n)$ if $m \leq n$ for $m n$ using that
proof (induct rule: dec_induct)
case base with $E[$ of m] show ?case
by (simp add: F-def field_simps)
next case (step i)
have $F_{-} S u c$: $F m($ Suc $i)=F m i \cap E(S u c i)$ using $\langle m \leq i\rangle$ by (auto simp: F_def le_Suc_eq)
have $\gamma+\left(\gamma-2 /\right.$ 2 $^{\wedge} m+1 / 2^{\wedge}$ Suc $\left.i\right) \leq\left(\gamma-1 /\right.$ 2 $^{\wedge}$ Suc $\left.i\right)+(\gamma-2 /$
$2^{\wedge} m+1 /$ 2 $\left.^{\wedge} i\right)$
by (simp add: field_simps)
also have $\ldots \leq d(E($ Suc $i))+d(F m i)$
using $E[$ of Suc $i]$ by (intro add_mono step) auto
also have $\ldots=d(E($ Suc $i))+d(F m i-E($ Suc i) $)+d(F m($ Suc $i))$
using $\langle m \leq i\rangle$ by (simp add: d_def field_simps F_{-}Suc M.finite_measure_Diff'
N.finite_measure_Diff ')
also have $\ldots=d(E($ Suc i) $\cup F m i)+d(F m($ Suc i) $)$
using $\langle m \leq i\rangle$ by (simp add: d_def field_simps M.finite_measure_Union'
N.finite_measure_Union')
also have $\ldots \leq \gamma+d(F m(S u c i))$
using $\langle m \leq i\rangle$ by auto
finally show? case
by auto

```
qed
define \(F^{\prime}\) where \(F^{\prime} m=(\bigcap i \in\{m .\).\(\} . E i)\) for \(m\)
have \(F^{\prime}{ }_{-} e q: F^{\prime} m=(\bigcap i . F m(i+m))\) for \(m\)
    by (fastforce simp: le_iff_add[of m] \(F^{\prime}\) _def \(F_{-} d e f\) )
    have [measurable]: \(F^{\prime} m \in\) sets \(M\) for \(m\)
    by (auto simp: \(F^{\prime}{ }^{\prime}\) def)
    have \(\gamma_{-} l e: \gamma-0 \leq d\left(\bigcup m . F^{\prime} m\right)\)
    proof (rule LIMSEQ_le)
    show \(\left(\lambda n . \gamma-2 / 2^{\wedge} n\right) \longrightarrow \gamma-0\)
        by (intro tendsto_intros LIMSEQ_divide_realpow_zero) auto
    have incseq \(F^{\prime}\)
        by (auto simp: incseq_def \(F^{\prime}\) _def)
    then show \(\left(\lambda m . d\left(F^{\prime} m\right)\right) \longrightarrow d\left(\bigcup m . F^{\prime} m\right)\)
        unfolding d_def
    by (intro tendsto_diff M.finite_Lim_measure_incseq \(N\).finite_Lim_measure_incseq)
auto
    have \(\gamma-2 /\) 2 \(^{\wedge} m+0 \leq d\left(F^{\prime} m\right)\) for \(m\)
    proof (rule LIMSEQ_le)
        have \(*\) : decseq \((\lambda n . F m(n+m))\)
            by (auto simp: decseq_def \(F_{-} d e f\) )
        show \((\lambda n . d(F m n)) \longrightarrow d\left(F^{\prime} m\right)\)
            unfolding \(d_{-}\)def \(F^{\prime}\) _eq
        by (rule LIMSEQ_offset[where \(k=m]\) )
        ( auto intro!: tendsto_diff M.finite_Lim_measure_decseq N.finite_Lim_measure_decseq
*)
            show \(\left(\lambda n . \gamma-2 / 2^{\wedge} m+1 / 2^{\wedge} n\right) \longrightarrow \gamma-2 / 2^{\wedge} m+0\)
                by (intro tendsto_add LIMSEQ_divide_realpow_zero tendsto_const) auto
    show \(\exists N . \forall n \geq N . \gamma-2 / 2^{\wedge} m+1 /\) 2 \(^{\wedge} n \leq d(F m n)\)
        using \(1[\) of \(m]\) by (intro exI \([\) of \(-m]\) ) auto
    qed
    then show \(\exists N . \forall n \geq N . \gamma-2 / 2^{\wedge} n \leq d\left(F^{\prime} n\right)\)
        by auto
qed
show ?thesis
proof (safe intro!: bexI[of - \(\left.\bigcup m . F^{\prime} m\right]\) )
    fix \(X\) assume [measurable]: \(X \in\) sets \(M\) and \(X: X \subseteq\left(\bigcup m . F^{\prime} m\right)\)
    have \(d\left(\bigcup m . F^{\prime} m\right)-d X=d\left(\left(\bigcup m . F^{\prime} m\right)-X\right)\)
        using \(X\) by (auto simp: d_def \(M\).finite_measure_Diff \(N\).finite_measure_Diff)
    also have \(\ldots \leq \gamma\)
        by auto
    finally have \(0 \leq d X\)
        using \(\gamma_{-} l e\) by auto
    then show emeasure \(N X \leq\) emeasure \(M X\)
        by (auto simp: d_def M.emeasure_eq_measure N.emeasure_eq_measure)
```

```
    next
    fix }X\mathrm{ assume [measurable]: X sets M and X:X }\\mathrm{ (\m. F' m) = {}
    then have d (\bigcupm. F' m) +dX=d}(X\cup(\bigcupm. F' m)
        by (auto simp:d_def M.finite_measure_Union N.finite_measure_Union)
    also have ... \leq \gamma
        by auto
    finally have d X\leq0
        using }\mp@subsup{\gamma}{-}{\primele by auto
    then show emeasure M X \leqemeasure N X
        by (auto simp: d_def M.emeasure_eq_measure N.emeasure_eq_measure)
    qed auto
qed
proposition unsigned_Hahn_decomposition:
    assumes [simp]: sets N = sets M and [measurable]: A fets M
        and [simp]: emeasure MA\not= top emeasure NA\not= top
    shows }\existsY\in\mathrm{ sets M. Y}\subseteqA\wedge(\forallX\in\mathrm{ sets M. X }\subseteqY\longrightarrowN\longrightarrowN\leqMX)
(}\forallX\in\mathrm{ sets M. X }\subseteqA\longrightarrowX\capY={}\longrightarrowMX\leqNX
proof -
    have \existsY\insets (restrict_space M A).
        (\forallX\insets (restrict_space M A). X\subseteqY\longrightarrow(restrict_space NA) X\leq(restrict_space
M A) X)^
        (\forallX\insets (restrict_space M A). X \capY={} \longrightarrow (restrict_space M A) X\leq
(restrict_space N A) X)
    proof (rule finite_unsigned_Hahn_decomposition)
        show finite_measure (restrict_space M A) finite_measure (restrict_space N A)
            by (auto simp: space_restrict_space emeasure_restrict_space less_top intro!:
finite_measureI)
    qed (simp add: sets_restrict_space)
    then guess Y ..
    then show ?thesis
        apply (intro bexI[of _ Y] conjI ballI conjI)
        apply (simp_all add: sets_restrict_space emeasure_restrict_space)
        apply safe
        subgoal for X Z
            by (erule ballE[of _ _ X]) (auto simp add: Int_absorb1)
        subgoal for X Z
            by (erule ballE[of _ _ X]) (auto simp add: Int_absorb1 ac_simps)
        apply auto
        done
qed
```

Define a lexicographical order on measure, in the order space, sets and measure. The parts of the lexicographical order are point-wise ordered.
instantiation measure :: (type) order_bot
begin
inductive less_eq_measure $::$ 'a measure \Rightarrow 'a measure \Rightarrow bool where space $M \subset$ space $N \Longrightarrow$ less_eq_measure $M N$

```
| space M = space N\Longrightarrow sets M}\subset\mathrm{ sets N \ less_eq_measure M N
| space M = space N\Longrightarrow sets M= sets N\Longrightarrow emeasure M}\leq\mathrm{ emeasure N 
less_eq_measure M N
lemma le_measure_iff:
    M\leqN\longleftrightarrow (if space M= space N then
        if sets M = sets N then emeasure M\leq emeasure N else sets M}\subseteq\mathrm{ sets N else
space M\subseteq space N)
    by (auto elim:less_eq_measure.cases intro:less_eq_measure.intros)
definition less_measure :: 'a measure }=>\mathrm{ ' 'a measure }=>\mathrm{ bool where
    less_measure }MN\longleftrightarrow(M\leqN\wedge\negN\leqM
definition bot_measure :: 'a measure where
    bot_measure = sigma {} {}
lemma
    shows space_bot[simp]: space bot ={}
        and sets_bot[simp]: sets bot = {{}}
        and emeasure_bot[simp]: emeasure bot X = 0
    by (auto simp: bot_measure_def sigma_sets_empty_eq emeasure_sigma)
instance
proof standard
    show bot \leqa for a :: 'a measure
    by (simp add: le_measure_iff bot_measure_def sigma_sets_empty_eq emeasure_sigma
le_fun_def)
qed (auto simp: le_measure_iff less_measure_def split: if_split_asm intro: measure_eqI)
end
```

proposition le_measure: sets $M=$ sets $N \Longrightarrow M \leq N \longleftrightarrow(\forall A \in$ sets M. emeasure
$M A \leq$ emeasure $N A$)
apply -
apply (auto simp: le_measure_iff le_fun_def dest: sets_eq_imp_space_eq)
subgoal for X
by (cases $X \in$ sets M) (auto simp: emeasure_notin_sets)
done
definition sup_measure' :: ' a measure \Rightarrow ' a measure \Rightarrow ' a measure where
sup_measure' $A B=$
measure_of (space A) (sets A)
$(\lambda X . S U P Y \in$ sets A. emeasure $A(X \cap Y)+$ emeasure $B(X \cap-Y))$
lemma assumes $[$ simp $]$: sets $B=$ sets A
shows space_sup_measure' ${ }^{\prime}$ simp]: space (sup_measure ${ }^{\prime} A B$) $=$ space A
and sets_sup_measure' $[$ simp $]$: sets $($ sup_measure' $A B)=$ sets A
using sets_eq_imp_space_eq[OF assms] by (simp_all add: sup_measure!_def)
lemma emeasure_sup_measure':
assumes sets_eq[simp]: sets $B=$ sets A and [simp, intro]: $X \in$ sets A
shows emeasure (sup_measure' A B) $X=(S U P Y \in$ sets A. emeasure $A(X \cap$ $Y)+$ emeasure $B(X \cap-Y))$
(is $-=$? $S X$)
proof -
note sets_eq_imp_space_eq[OF sets_eq, simp]
show ?thesis
using sup_measure'_def
proof (rule emeasure_measure_of)
let ? $d=\lambda X Y$. emeasure $A(X \cap Y)+$ emeasure $B(X \cap-Y)$
show countably_additive (sets (sup_measure' A B)) $(\lambda X$. SUP $Y \in$ sets A.
emeasure $A(X \cap Y)+$ emeasure $B(X \cap-Y))$
proof (rule countably_additiveI, goal_cases)
case (1 X)
then have [measurable]: $\backslash i . X i \in$ sets A and disjoint_family X by auto
have disjoint: disjoint_family ($\lambda i . X i \cap Y$) disjoint_family $(\lambda i . X i-Y)$ for Y
by (auto intro: disjoint_family_on_bisimulation [OF (disjoint_family X), simplified])
have $\left(\sum_{i} i\right.$? $\left.S\binom{X}{i}\right)=\left(\right.$ SUP $Y \in$ sets $A . \sum i$. ? $d\left(\begin{array}{ll}X & i)\end{array}\right)$
proof (rule ennreal_suminf_SUP_eq_directed)
fix $J::$ nat set and $a b$ assume finite J and [measurable]: $a \in$ sets $A b \in$ sets A
have $\exists c \in$ sets $A . c \subseteq X i \wedge(\forall a \in$ sets A. ?d $(X i) a \leq ? d(X i) c)$ for i
proof cases
assume emeasure $A(X i)=$ top \vee emeasure $B(X i)=$ top
then show ?thesis
proof
assume emeasure $A(X i)=$ top then show ?thesis
by (intro bexI $\left[o f-X_{i}\right.$) auto
next
assume emeasure $B\binom{X}{i}=$ top then show ?thesis
by (intro bexI[of - \{\}]) auto
qed
next
assume finite: $\neg($ emeasure $A(X i)=t o p \vee$ emeasure $B(X i)=t o p)$
then have $\exists Y \in$ sets $A . Y \subseteq X i \wedge(\forall C \in$ sets $A . C \subseteq Y \longrightarrow B C \leq A$
$C) \wedge(\forall C \in$ sets $A . C \subseteq X i \longrightarrow C \cap Y=\{ \} \longrightarrow A C \leq B C)$
using unsigned_Hahn_decomposition [of BAXi] by simp
then obtain Y where [measurable]: $Y \in$ sets A and [simp]: $Y \subseteq X i$
and $B_{-} l e _A: \wedge C . C \in$ sets $A \Longrightarrow C \subseteq Y \Longrightarrow B C \leq A C$
and $A_{-} l_{-} B: \wedge C . C \in$ sets $A \Longrightarrow C \subseteq X i \Longrightarrow C \cap Y=\{ \} \Longrightarrow A C$
$\leq B C$
by auto
show ?thesis
proof (intro bexI[of_Y] ballI conjI)
fix a assume [measurable]: $a \in$ sets A
have *: $(X i \cap a \cap Y \cup(X i \cap a-Y))=X i \cap a(X i-a) \cap Y \cup$ $(X i-a-Y)=X i \cap-a$
for $a Y$ by auto
then have ? $d\binom{X}{i} a=$
$(A(X i \cap a \cap Y)+A(X i \cap a \cap-Y))+(B(X i \cap-a \cap Y)+$ $B(X i \cap-a \cap-Y))$
by (subst (1 2) plus_emeasure) (auto simp: Diff_eq[symmetric])
also have $\ldots \leq(A(X i \cap a \cap Y)+B(X i \cap a \cap-Y))+(A(X i$
$\cap-a \cap Y)+B(X i \cap-a \cap-Y))$
by (intro add_mono order_refl $B_{-} l e_{-} A A_{-} l e_{-} B$) (auto simp: Diff_eq[symmetric])
also have $\ldots \leq(A(X i \cap Y \cap a)+A(X i \cap Y \cap-a))+(B(X i$ $\cap-Y \cap a)+B(X i \cap-Y \cap-a))$
by (simp add: ac_simps)
also have $\ldots \leq A(X i \cap Y)+B(X i \cap-Y)$
by (subst (1 2) plus_emeasure) (auto simp: Diff_eq[symmetric] *)
finally show ? $d(X i) a \leq$? $d\left(X_{i}\right) Y$.
qed auto
qed
then obtain C where [measurable]: $C i \in \operatorname{sets} A$ and $C i \subseteq X i$
and $C: \bigwedge a . a \in$ sets $A \Longrightarrow ? d(X i) a \leq ? d(X i)(C i)$ for i
by metis
have $*: X i \cap(\bigcup i . C i)=X i \cap C i$ for i
proof safe
fix $x j$ assume $x \in X i x \in C j$
moreover have $i=j \vee X i \cap X j=\{ \}$
using \langle disjoint_family $X\rangle$ by (auto simp: disjoint_family_on_def)
ultimately show $x \in C i$
using $\langle C i \subseteq X i\rangle\langle C j \subseteq X j\rangle$ by auto
qed auto
have $* *: X i \cap-(\bigcup i . C i)=X i \cap-C i$ for i
proof safe
fix $x j$ assume $x \in X i x \notin C i x \in C j$
moreover have $i=j \vee X i \cap X j=\{ \}$
using 〈disjoint_family $X\rangle$ by (auto simp: disjoint_family_on_def)
ultimately show False
using $\langle C i \subseteq X i\rangle\langle C j \subseteq X j\rangle$ by auto
qed auto
show $\exists c \in$ sets A. $\forall i \in J$.? $d\binom{X}{i} a \leq ? d(X i) c \wedge$? $d(X i) b \leq ? d(X i) c$
apply (intro bexI[of - $\bigcup i . C i]$)
unfolding $* * *$
apply (intro C ballI conjI)
apply auto
done
qed
also have $\ldots=$? $S(\bigcup i . X i)$
apply (simp only: UN_extend_simps(4))
apply (rule arg_cong [of _ - Sup])
apply (rule image_cong)

```
            apply (fact ref)
            using disjoint
            apply (auto simp add: suminf_add [symmetric] Diff-eq [symmetric] im-
age_subset_iff suminf_emeasure simp del: UN_simps)
            done
            finally show (\sumi. ?S (X i))=?S (\bigcupi.Xi).
        qed
    qed (auto dest: sets.sets_into_space simp: positive_def intro!: SUP_const)
qed
```

lemma le_emeasure_sup_measure'1:
assumes sets $B=$ sets $A X \in$ sets A shows emeasure $A X \leq$ emeasure
(sup_measure' A B) X
by (subst emeasure_sup_measure'[OF assms]) (auto intro!: SUP_upper2[of X]
assms)
lemma le_emeasure_sup_measure'2:
assumes sets $B=$ sets $A X \in$ sets A shows emeasure $B X \leq$ emeasure (sup_measure' A B) X
by (subst emeasure_sup_measure'[OF assms]) (auto intro!: SUP_upper2[of \{\}] assms)
lemma emeasure_sup_measure'_le2:
assumes [simp]: sets $B=$ sets C sets $A=$ sets C and [measurable]: $X \in$ sets C
assumes $A: \bigwedge Y . Y \subseteq X \Longrightarrow Y \in$ sets $A \Longrightarrow$ emeasure $A Y \leq$ emeasure $C Y$
assumes $B: \wedge Y . Y \subseteq X \Longrightarrow Y \in$ sets $A \Longrightarrow$ emeasure $B Y \leq$ emeasure $C Y$
shows emeasure (sup_measure' $A B$) $X \leq$ emeasure $C X$
proof (subst emeasure_sup_measure')
show (SUP $Y \in$ sets A. emeasure $A(X \cap Y)+$ emeasure $B(X \cap-Y)) \leq$ emeasure C X
unfolding \langle sets $A=$ sets C 〉
proof (intro SUP_least)
fix Y assume [measurable]: $Y \in$ sets C
have [simp]: $X \cap Y \cup(X-Y)=X$
by auto
have emeasure $A(X \cap Y)+$ emeasure $B(X \cap-Y) \leq$ emeasure $C(X \cap Y)$ + emeasure $C(X \cap-Y)$
by (intro add_mono A B) (auto simp: Diff-eq[symmetric])
also have $\ldots=$ emeasure $C X$
by (subst plus_emeasure) (auto simp: Diff_eq[symmetric])
finally show emeasure $A(X \cap Y)+$ emeasure $B(X \cap-Y) \leq$ emeasure C
X.
qed
qed simp_all
definition sup_lexord :: ' $a \Rightarrow{ }^{\prime} a \Rightarrow\left({ }^{\prime} a \Rightarrow{ }^{\prime} b::\right.$ order $) \Rightarrow{ }^{\prime} a \Rightarrow^{\prime} a \Rightarrow^{\prime} a$ where
sup_lexord A Bksc=
(if $k A=k B$ then c else
if $\neg k A \leq k B \wedge \neg k B \leq k A$ then s else

```
    if kB\leqkA then A else B)
lemma sup_lexord:
    (kA<kB\LongrightarrowPB)\Longrightarrow(kB<kA\LongrightarrowPA)\Longrightarrow(kA=kB\LongrightarrowPc)\Longrightarrow
        (\negkB\leqkA\Longrightarrow\negkA\leqkB\LongrightarrowPs)\LongrightarrowP(sup_lexord A B ks c)
    by (auto simp: sup_lexord_def)
lemmas le_sup_lexord = sup_lexord [where P=\lambdaa.c\leqa for c]
lemma sup_lexord1: k A =k B\Longrightarrow sup_lexord A B ks c = c
    by (simp add: sup_lexord_def)
lemma sup_lexord_commute: sup_lexord A B ks c=sup_lexord B A ks c
    by (auto simp: sup_lexord_def)
lemma sigma_sets_le_sets_iff:(sigma_sets (space x) \mathcal{A \subseteq sets x) = (\mathcal{A}\subseteq sets x)}
    using sets.sigma_sets_subset [of \mathcal{A}x] by auto
lemma sigma_le_iff: \mathcal{A \subseteqPow }\Omega\Longrightarrow\mathrm{ sigma }\Omega\mathcal{A}\leqx\longleftrightarrow(\Omega\subseteq\mathrm{ space }x\wedge\mathrm{ (space}
x=\Omega\longrightarrow\mathcal{A}\subseteq sets x))
    by (cases \Omega= space x)
        (simp_all add: eq_commute[of _ sets x] le_measure_iff emeasure_sigma le_fun_def
                        sigma_sets_superset_generator sigma_sets_le_sets_iff)
instantiation measure :: (type) semilattice_sup
begin
definition sup_measure :: 'a measure }=>\mathrm{ ' 'a measure }=>\mp@subsup{}{}{\prime}'a\mathrm{ measure where
    sup_measure A B=
        sup_lexord A B space (sigma (space A \cup space B) {})
            (sup_lexord A B sets (sigma (space A) (sets A \cup sets B)) (sup_measure' A B))
```

```
instance
```

instance
proof
proof
fix x y z :: 'a measure
show }x\leq\operatorname{sup}x
unfolding sup_measure_def
proof (intro le_sup_lexord)
assume space x = space y
then have *: sets }x\cup\mathrm{ sets }y\subseteq\mathrm{ Pow (space x)
using sets.space_closed by auto
assume \neg sets y \subseteq sets x ᄀ sets x}\subseteq\mathrm{ sets }
then have sets x}\subset\mathrm{ sets }x\cup\mathrm{ sets }
by auto
also have ... \leq sigma (space x) (sets x U sets y)
by (subst sets_measure_of[OF *]) (rule sigma_sets_superset_generator)
finally show }x\leq\mathrm{ sigma (space x) (sets }x\cup\mathrm{ sets y)
by (simp add: space_measure_of[OF *] less_eq_measure.intros(2))
next

```
```

 assume \neg space }y\subseteq\mathrm{ space }x\neg\mathrm{ space }x\subseteq\mathrm{ space }
 then show }x\leq\mathrm{ sigma (space }x\cup\mathrm{ space y) {}
 by (intro less_eq_measure.intros) auto
 next
assume sets x = sets }y\mathrm{ then show x sup_measure' x y
by (simp add:le_measure le_emeasure_sup_measure'1)
qed (auto intro: less_eq_measure.intros)
show y \leq sup x y
unfolding sup_measure_def
proof (intro le_sup_lexord)
assume **: space }x=\mathrm{ space }
then have *: sets }x\cup\mathrm{ sets }y\subseteq\mathrm{ Pow (space y)
using sets.space_closed by auto
assume }\neg\mathrm{ sets }y\subseteq\mathrm{ sets }x\neg\mathrm{ sets }x\subseteq\mathrm{ sets }
then have sets y \subset sets x \cup sets y
by auto
also have ... \leq sigma (space y) (sets x U sets y)
by (subst sets_measure_of[OF *]) (rule sigma_sets_superset_generator)
finally show }y\leq\mathrm{ sigma (space x) (sets }x\cup\mathrm{ sets y)
by (simp add: ** space_measure_of[OF *] less_eq_measure.intros(2))
next
assume \neg space }y\subseteq\mathrm{ space }x\neg\mathrm{ space }x\subseteq\mathrm{ space }
then show }y\leq\mathrm{ sigma (space }x\cup\mathrm{ space y) {}
by (intro less_eq_measure.intros) auto
next
assume sets }x=\mathrm{ sets }y\mathrm{ then show y s sup_measure' x y
by (simp add: le_measure le_emeasure_sup_measure'2)
qed (auto intro: less_eq_measure.intros)
show }x\leqy\Longrightarrowz\leqy\Longrightarrow\operatorname{sup}xz\leq
unfolding sup_measure_def
proof (intro sup_lexord[where P=\lambdax. x \leq y])
assume }x\leqyz\leqy\mathrm{ and [simp]: space }x=\mathrm{ space z sets }x=\mathrm{ sets z
from }\langlex\leqy\rangle\mathrm{ show sup_measure' }xz\leq
proof cases
case 1 then show ?thesis
by (intro less_eq_measure.intros(1)) simp
next
case 2 then show ?thesis
by (intro less_eq_measure.intros(2)) simp_all
next
case 3 with }\langlez\leqy\rangle\langlex\leqy\rangle\mathrm{ show ?thesis
by (auto simp add: le_measure intro!: emeasure_sup_measure'_le2)
qed
next
assume **: x \leqyz \leqy space x = space z ᄀ sets z\subseteq sets x ᄀ sets x \subseteq sets z
then have *: sets x \cup sets z\subseteqPow (space x)
using sets.space_closed by auto
show sigma (space x) (sets x\cup sets z) \leqy
unfolding sigma_le_iff[OF *] using ** by (auto simp: le_measure_iff split:

```
```

$i f_{-}$split_asm)
next
assume $x \leq y z \leq y \neg$ space $z \subseteq$ space $x \neg$ space $x \subseteq$ space z
then have space $x \subseteq$ space y space $z \subseteq$ space y
by (auto simp: le_measure_iff split: if_split_asm)
then show sigma (space $x \cup$ space z) $\} \leq y$
by (simp add: sigma_le_iff)
qed
qed
end
lemma space_empty_eq_bot: space $a=\{ \} \longleftrightarrow a=$ bot using space_empty[of a] by (auto intro!: measure_eqI)

```
lemma sets_eq_iff_bounded: \(A \leq B \Longrightarrow B \leq C \Longrightarrow\) sets \(A=\) sets \(C \Longrightarrow\) sets \(B=\) sets \(A\)
by (auto dest: sets_eq_imp_space_eq simp add: le_measure_iff split: if_split_asm)
lemma sets_sup: sets \(A=\) sets \(M \Longrightarrow\) sets \(B=\) sets \(M \Longrightarrow\) sets \((\sup A B)=\) sets M
by (auto simp add: sup_measure_def sup_lexord_def dest: sets_eq_imp_space_eq)
lemma le_measureD1: \(A \leq B \Longrightarrow\) space \(A \leq\) space \(B\)
by (auto simp: le_measure_iff split: if_split_asm)
lemma le_measureD2: \(A \leq B \Longrightarrow\) space \(A=\) space \(B \Longrightarrow\) sets \(A \leq\) sets \(B\)
by (auto simp: le_measure_iff split: if_split_asm)
lemma le_measureD3: \(A \leq B \Longrightarrow\) sets \(A=\) sets \(B \Longrightarrow\) emeasure \(A X \leq\) emeasure
B X
by (auto simp: le_measure_iff le_fun_def dest: sets_eq_imp_space_eq split: if_split_asm)
lemma UN_space_closed: \(\bigcup(\) sets' \(S) \subseteq\) Pow \((\bigcup(\) space ' \(S))\)
using sets.space_closed by auto

\section*{definition}

Sup_lexord \(::\left({ }^{\prime} a \Rightarrow{ }^{\prime} b::\right.\) complete_lattice \() \Rightarrow\left({ }^{\prime} a\right.\) set \(\left.\Rightarrow{ }^{\prime} a\right) \Rightarrow\left({ }^{\prime} a\right.\) set \(\left.\Rightarrow{ }^{\prime} a\right) \Rightarrow{ }^{\prime} a\)
set \(\Rightarrow{ }^{\prime} a\)
where

Sup_lexord kcs A=
(let \(U=(S U P a \in A . k a)\)
in if \(\exists a \in A . k a=U\) then \(c\{a \in A . k a=U\}\) else \(s A)\)
lemma Sup_lexord:
\(\left(\bigwedge a S . a \in A \Longrightarrow k a=(S U P a \in A . k a) \Longrightarrow S=\left\{a^{\prime} \in A . k a^{\prime}=k a\right\} \Longrightarrow P(c\right.\) \(S)) \Longrightarrow((\bigwedge a . a \in A \Longrightarrow k a \neq(S U P a \in A . k a)) \Longrightarrow P(s A)) \Longrightarrow\)
\(P(\) Sup_lexord \(k\) cs \(A)\)
by (auto simp: Sup_lexord_def Let_def)
```

lemma Sup_lexord1:
assumes A:A\not={}(\a.a\inA\Longrightarrowka=(\bigcupa\inA.ka))P(cA)
shows P (Sup_lexord k c s A)
unfolding Sup_lexord_def Let_def
proof (clarsimp, safe)
show }\foralla\inA.ka\not=(\bigcupx\inA.kx)\LongrightarrowP(sA
by (metis assms(1,2) ex_in_conv)
next
fix a assume a G A ka=(\bigcupx\inA.kx)
then have {a\inA.ka=(\bigcupx\inA.kx)}={a\inA.ka=ka}
by (metis A(2)[symmetric])
then show P}(c{a\inA.ka=(\bigcupx\inA.kx)}
by (simp add: A(3))
qed
instantiation measure :: (type) complete_lattice
begin
interpretation sup_measure: comm_monoid_set sup bot :: 'a measure
by standard (auto intro!: antisym)
lemma sup_measure_F_mono':
finite }J\Longrightarrow\mathrm{ finite }I\Longrightarrow\mathrm{ sup_measure.F id I sup_measure.Fid (I \ S)
proof (induction J rule: finite_induct)
case empty then show ?case
by simp
next
case (insert i J)
show ?case
proof cases
assume i\inI with insert show ?thesis
by (auto simp: insert_absorb)
next
assume i\not\inI
have sup_measure.F id I \leq sup_measure.F id (I J)
by (intro insert)
also have ... \leq sup_measure.F id (insert i (I\cupJ))
using insert }\langlei\not\inI\rangle\mathrm{ by (subst sup_measure.insert) auto
finally show ?thesis
by auto
qed
qed
lemma sup_measure_F_mono: finite }I\LongrightarrowJ\subseteqI\Longrightarrow sup_measure.Fid J\leqsup_measure.
id I
using sup_measure_F_mono'[of I J] by (auto simp: finite_subset Un_absorb1)
lemma sets_sup_measure_F:

```
```

finite $I \Longrightarrow I \neq\{ \} \Longrightarrow(\bigwedge i . i \in I \Longrightarrow$ sets $i=$ sets $M) \Longrightarrow$ sets (sup_measure. F

```
id \(I)=\) sets \(M\)
    by (induction I rule: finite_ne_induct) (simp_all add: sets_sup)
definition Sup_measure' :: 'a measure set \(\Rightarrow\) 'a measure where
Sup_measure \({ }^{\prime} M=\)
measure_of \((\bigcup a \in M\). space \(a)(\bigcup a \in M\). sets \(a)\)
    ( \(\lambda X\). (SUP \(P \in\{P\). finite \(P \wedge P \subseteq M\) \}. sup_measure.F id \(P X)\) )
lemma space_Sup_measure'2: space (Sup_measure' \(M)=(\bigcup m \in M\). space \(m\) )
    unfolding Sup_measure \({ }^{\prime}\) _def by (intro space_measure_of [OF UN_space_closed])
lemma sets_Sup_measure'2: sets (Sup_measure' \(M\) ) \(=\) sigma_sets \((\bigcup m \in M\). space
\(m)(\bigcup m \in M\). sets \(m)\)
    unfolding Sup_measure__def by (intro sets_measure_of[OF UN_space_closed])
lemma sets_Sup_measure':
    assumes sets_eq \([\) simp \(]: \bigwedge m . m \in M \Longrightarrow\) sets \(m=\) sets \(A\) and \(M \neq\{ \}\)
    shows sets (Sup_measure' \(M\) ) \(=\) sets \(A\)
    using sets_eq[THEN sets_eq_imp_space_eq, simp] 〈M\(\neq\{ \}\rangle\) by (simp add: Sup_measure \({ }^{\prime}\) _def \()\)
lemma space_Sup_measure':
    assumes sets_eq[simp]: \(\bigwedge m . m \in M \Longrightarrow\) sets \(m=\) sets \(A\) and \(M \neq\{ \}\)
    shows space (Sup_measure' \(M\) ) \(=\) space \(A\)
    using sets_eq[THEN sets_eq_imp_space_eq, simp] 〈M\(\neq\{ \}\rangle\)
    by (simp add: Sup_measure'_def )
lemma emeasure_Sup_measure':
    assumes sets_eq[simp]: \(\bigwedge m . m \in M \Longrightarrow\) sets \(m=\) sets \(A\) and \(X \in\) sets \(A M \neq\)
\{\}
    shows emeasure (Sup_measure' \(M) X=(S U P P \in\{P\). finite \(P \wedge P \subseteq M\}\).
sup_measure.F id P X)
    (is \({ }_{-}=\)? \(S X\) )
    using Sup_measure'_def
proof (rule emeasure_measure_of)
    note sets_eq[THEN sets_eq_imp_space_eq, simp]
    have \(*\) : sets \((\) Sup_measure' \(M)=\) sets \(A\) space \(\left(\right.\) Sup_measure \(\left.^{\prime} M\right)=\) space \(A\)
        using \(\langle M \neq\{ \}\rangle\) by (simp_all add: Sup_measure \({ }_{\text {_ }}\) def )
    let \(? \mu=\) sup_measure.F id
    show countably_additive (sets (Sup_measure' \(M\) )) ?S
    proof (rule countably_additiveI, goal_cases)
        case (1 F)
        then have \(* *\) : range \(F \subseteq\) sets \(A\)
        by (auto simp: *)
    show \(\left(\sum i . ? S(F i)\right)=? S(\bigcup i . F i)\)
    proof (subst ennreal_suminf_SUP_eq_directed)
        fix \(i j\) and \(N::\) nat set assume \(i j: i \in\{P\). finite \(P \wedge P \subseteq M\} j \in\{P\). finite
\(P \wedge P \subseteq M\}\)
        have \((i \neq\{ \} \longrightarrow\) sets \((? \mu i)=\) sets \(A) \wedge(j \neq\{ \} \longrightarrow\) sets \((? \mu j)=\) sets \(A)\)
        \((i \neq\{ \} \vee j \neq\{ \} \longrightarrow\) sets \((? \mu(i \cup j))=\) sets \(A)\)
        using \(i j\) by (intro impI sets_sup_measure_F conjI) auto
    then have ? \(\mu j(F n) \leq ? \mu(i \cup j)(F n) \wedge ? \mu i(F n) \leq ? \mu(i \cup j)(F n)\)
for \(n\)
    using \(i j\)
    by (cases \(i=\{ \}\); cases \(j=\{ \}\) )
            (auto intro!: le_measureD3 sup_measure_F_mono simp: sets_sup_measure_F
                simp del: id_apply)
    with \(i j\) show \(\exists k \in\{P\). finite \(P \wedge P \subseteq M\}\). \(\forall n \in N\).? \(\mu i(F n) \leq ? \mu k(F n)\)
\(\wedge ? \mu j(F n) \leq ? \mu k(F n)\)
            by (safe intro!: bexI[of \(i \cup j]\) ) auto
        next
            show \(\left(S U P P \in\{P\right.\). finite \(P \wedge P \subseteq M\}\). \(\sum n\). \(\left.? \mu P(F n)\right)=(S U P P \in\)
\(\{P\). finite \(P \wedge P \subseteq M\}\). ? \(\mu P\left(\bigcup\left(F^{\prime}\right.\right.\) UNIV \(\left.\left.)\right)\right)\)
    proof (intro arg_cong [of _ Sup] image_cong refl)
        fix \(i\) assume \(i: i \in\{P\). finite \(P \wedge P \subseteq M\}\)
        show \(\left(\sum n\right.\). ? \(\left.\mu i(F n)\right)=? \mu i\left(\bigcup\left(F^{`} \cdot U N I V\right)\right)\)
        proof cases
            assume \(i \neq\{ \}\) with \(i * *\) show ?thesis
                        apply (intro suminf_emeasure \(\langle\) disjoint_family \(F\rangle\) )
                apply (subst sets_sup_measure_F[OF _ _ sets_eq])
                apply auto
                done
            qed simp
        qed
        qed
    qed
    show positive (sets (Sup_measure' \(M\) )) ?S
        by (auto simp: positive_def bot_ennreal[symmetric])
    show \(X \in\) sets (Sup_measure \({ }^{\prime} M\) )
        using assms * by auto
qed (rule UN_space_closed)
definition Sup_measure :: 'a measure set \(\Rightarrow{ }^{\prime}\) a measure where
Sup_measure \(=\)
    Sup_lexord space
        (Sup_lexord sets Sup_measure'
            \((\lambda U\). sigma \((\bigcup u \in U\). space \(u)(\bigcup u \in U\). sets \(u)))\)
        ( \(\lambda U\). sigma \((\bigcup u \in U\). space \(u)\})\)
    definition Inf_measure :: 'a measure set \(\Rightarrow\) 'a measure where
        Inf_measure \(A=\operatorname{Sup}\{x . \forall a \in A . x \leq a\}\)
definition inf_measure \(::\) 'a measure \(\Rightarrow\) 'a measure \(\Rightarrow{ }^{\prime} a\) measure where
    inf_measure \(a b=\operatorname{Inf}\{a, b\}\)
definition top_measure :: 'a measure where
    top_measure \(=\operatorname{Inf}\{ \}\)
```

instance
proof
note UN_space_closed [simp]
show upper: $x \leq$ Sup A if $x: x \in A$ for $x::$ ' a measure and A
unfolding Sup_measure_def
proof (intro Sup_lexord $[$ where $P=\lambda y . x \leq y]$)
assume $\bigwedge a . a \in A \Longrightarrow$ space $a \neq(\bigcup a \in A$. space $a)$
from this $[O F\langle x \in A\rangle]\langle x \in A\rangle$ show $x \leq \operatorname{sigma}(\bigcup a \in A$. space $a)\{ \}$
by (intro less_eq_measure.intros) auto
next
fix $a S$ assume $a \in A$ and a : space $a=(\bigcup a \in A$. space $a)$ and $S: S=\left\{a^{\prime} \in\right.$
A. space $a^{\prime}=$ space $\left.a\right\}$
and neq: $\bigwedge a a . a a \in S \Longrightarrow$ sets $a a \neq(\bigcup a \in S$. sets $a)$
have sp_a: space $a=(\bigcup($ space' $S))$
using $\langle a \in A\rangle$ by (auto simp: S)
show $x \leq$ sigma $(\bigcup($ space ' $S))(\bigcup($ sets 'S) $)$
proof cases
assume $[$ simp $]$: space $x=$ space a
have sets $x \subset(\bigcup a \in S$. sets $a)$
using $\langle x \in A\rangle$ neq [of $x]$ by (auto simp: S)
also have $\ldots \subseteq$ sigma_sets $(\bigcup x \in S$. space $x)(\bigcup x \in S$. sets $x)$
by (rule sigma_sets_superset_generator)
finally show ?thesis
by (intro less_eq_measure.intros(2)) (simp_all add: sp_a)
next
assume space $x \neq$ space a
moreover have space $x \leq$ space a
unfolding a using $\langle x \in A\rangle$ by auto
ultimately show ?thesis
by (intro less_eq_measure.intros) (simp add: less_le sp_a)
qed
next
fix $a b S S^{\prime}$ assume $a \in A$ and a : space $a=(\bigcup a \in A$. space $a)$ and $S: S=$
$\left\{a^{\prime} \in A\right.$. space $a^{\prime}=$ space $\left.a\right\}$
and $b \in S$ and $b:$ sets $b=(\bigcup a \in S$. sets $a)$ and $S^{\prime}: S^{\prime}=\left\{a^{\prime} \in S\right.$. sets $a^{\prime}=$
sets $b\}$
then have $S^{\prime} \neq\{ \}$ space $b=$ space a
by auto
have sets_eq: $\bigwedge x . x \in S^{\prime} \Longrightarrow$ sets $x=$ sets b
by (auto simp: S^{\prime})
note sets_eq[THEN sets_eq_imp_space_eq, simp]
have $*$: sets (Sup_measure $\left.{ }^{\prime} S^{\prime}\right)=$ sets b space (Sup_measure $\left.{ }^{\prime} S^{\prime}\right)=$ space b
using $\left\langle S^{\prime} \neq\{ \}\right\rangle$ by (simp_all add: Sup_measure'_def sets_eq)
show $x \leq$ Sup_measure ${ }^{\prime} S^{\prime}$
proof cases
assume $x \in S$
with $\langle b \in S\rangle$ have space $x=$ space b
by (simp add: S)

```
```

 show ?thesis
 proof cases
 assume x \in S'
 show x \leq Sup_measure' S'
 proof (intro le_measure[THEN iffD2] ballI)
 show sets }x=\mathrm{ sets (Sup_measure' }\mp@subsup{S}{}{\prime}\mathrm{)
 using }\langlex\in\mp@subsup{S}{}{\prime}\rangle*\mathrm{ by (simp add: S')
 fix }X\mathrm{ assume }X\in\mathrm{ sets }
 show emeasure x X \leqemeasure (Sup_measure' S') X
 proof (subst emeasure_Sup_measure'}[OF _ <X \in sets x\rangle])
 show emeasure x X\leq(SUP P}\in{P\mathrm{ . finite P^P`S'{. emeasure
 (sup_measure.F id P) X)
using \langlex\inS'` by (intro SUP_upper2[where i={x}]) auto
qed (insert \langlex\inS'\ S', auto)
qed
next
assume }x\not\in\mp@subsup{S}{}{\prime
then have sets x}\not=\mathrm{ sets b
using \langlex\inS\rangle by (auto simp: S')
moreover have sets x \leq sets b
using \langlex\inS\rangle unfolding b by auto
ultimately show ?thesis
using *\langlex \inS\rangle
by (intro less_eq_measure.intros(2))
(simp_all add: * <space x = space b> less_le)
qed
next
assume }x\not\in
with }\langlex\inA\rangle\langlex\not\inS\rangle\langle\mathrm{ space b = space a〉 show ?thesis
by (intro less_eq_measure.intros)
(simp_all add:* less_le a SUP_upper S)
qed
qed
show least: Sup }A\leqx\mathrm{ if }x:\z.z\inA\Longrightarrowz\leqx\mathrm{ for }x:: 'a measure and
unfolding Sup_measure_def
proof (intro Sup_lexord[where P=\lambday. y \leqx])
assume \bigwedgea.a }a\A\Longrightarrow\mathrm{ space }a\not=(\bigcupa\inA\mathrm{ . space a)
show sigma (U(space'A)){}\leqx
using x[THEN le_measureD1] by (subst sigma_le_iff) auto
next
fix a S assume a f A space a=(\bigcupa\inA. space a) and S:S={\mp@subsup{a}{}{\prime}\inA. space
\mp@subsup{a}{}{\prime}}=\mathrm{ space a}
\ a . a \in S \Longrightarrow ~ s e t s ~ a \neq (\bigcup a \in S . ~ s e t s ~ a)
have U(space'}S)\subseteq\mathrm{ space }
using S le_measureD1[OF x] by auto
moreover
have U(space'}S)=\mathrm{ space a
using {a\inA\rangleS by auto
then have space }x=\bigcup(\mathrm{ space'S) }\Longrightarrow\bigcup(\mathrm{ sets'S)}\subseteq\mathrm{ sets }

```
```

 using <a \in A> le_measureD2[OF x] by (auto simp: S)
 ultimately show sigma (U(space'S))}(\bigcup(\mathrm{ sets'S)) <x
 by (subst sigma_le_iff) simp_all
 next
 fix a b S S' assume }a\inA\mathrm{ and a: space a =(\a,A. space a) and S:S=
 {\mp@subsup{a}{}{\prime}\inA. space a}\mp@subsup{a}{}{\prime}=\mathrm{ space a}

```

```

sets b}
then have }\mp@subsup{S}{}{\prime}\not={}\mathrm{ space b = space a
by auto
have sets_eq: \x. x \in S'\Longrightarrow sets }x=\mathrm{ sets }
by (auto simp: S')
note sets_eq[THEN sets_eq_imp_space_eq, simp]
have *: sets (Sup_measure' }\mp@subsup{S}{}{\prime}\mathrm{) = sets b space (Sup_measure' }\mp@subsup{S}{}{\prime})=\mathrm{ space b
using \langleS'\not={}\rangle by (simp_all add: Sup_measure'_def sets_eq)
show Sup_measure' }\mp@subsup{S}{}{\prime}\leq
proof cases
assume space x = space a
show ?thesis
proof cases
assume **: sets x = sets b
show ?thesis
proof (intro le_measure[THEN iffD2] ballI)
show ***: sets (Sup_measure ' }\mp@subsup{S}{}{\prime}\mathrm{) = sets x
by (simp add:***)
fix X assume X \in sets (Sup_measure' S')
show emeasure (Sup_measure' S') X \leqemeasure x X
unfolding ***
proof (subst emeasure_Sup_measure}\mp@subsup{}{}{\prime}[OF _ \X \in sets (Sup_measure' S')\rangle]
show (SUP P { {P. finite P\wedgeP\subseteq S'}. emeasure (sup_measure.F id
P) X)}\leq\mathrm{ emeasure }x
proof (safe intro!: SUP_least)
fix P assume P: finite P P\subseteq S'
show emeasure (sup_measure.F id P) X \leq emeasure x X
proof cases
assume P={} then show ?thesis
by auto
next
assume P\not={}
from P have finite P P\subseteqA
unfolding S'S by (simp_all add: subset_eq)
then have sup_measure.F id P}\leq
by (induction P) (auto simp: x)
moreover have sets (sup_measure.F id P) = sets x
using <finite P\rangle\langleP\not={}\rangle\langleP\subseteq\mp@subsup{S}{}{\prime}\rangle\langle\mathrm{ sets }x=\mathrm{ sets b>}
by (intro sets_sup_measure_F) (auto simp: S')
ultimately show emeasure (sup_measure.F id P) X \leqemeasure x X
by (rule le_measureD3)
qed

```
```

 qed
 show \(m \in S^{\prime} \Longrightarrow\) sets \(m=\) sets (Sup_measure \({ }^{\prime} S^{\prime}\)) for \(m\)
 unfolding * by (simp add: \(S^{\prime}\))
 qed fact
 qed
 next
 assume sets \(x \neq\) sets \(b\)
 moreover have sets \(b \leq\) sets \(x\)
 unfolding \(b S\) using \(x[\) THEN le_measureD2] 〈space \(x=\) space \(a\rangle\) by auto
 ultimately show Sup_measure \({ }^{\prime} S^{\prime} \leq x\)
 using \(\langle\) space \(x=\) space \(a\rangle\langle b \in S\rangle\)
 by (intro less_eq_measure.intros(2)) (simp_all add: * S)
 qed
 next
 assume space \(x \neq\) space \(a\)
 then have space \(a<\) space \(x\)
 using le_measureD \(1[\) OF \(x[\) OF \(\langle a \in A\rangle]]\) by auto
 then show Sup_measure \({ }^{\prime} S^{\prime} \leq x\)
 by (intro less_eq_measure.intros) (simp add: * 〈space b=space \(a\rangle\))
 qed
 qed
show Sup $\}=($ bot::'a measure $)$ Inf $\}=($ top ::'a measure $)$
by (auto intro!: antisym least simp: top_measure_def)
show lower: $x \in A \Longrightarrow \operatorname{Inf} A \leq x$ for $x::$ ' a measure and A
unfolding Inf_measure_def by (intro least) auto
show greatest: $(\bigwedge z . z \in A \Longrightarrow x \leq z) \Longrightarrow x \leq \operatorname{Inf} A$ for $x::$ 'a measure and A
unfolding Inf_measure_def by (intro upper) auto
show inf $x y \leq x \inf x y \leq y x \leq y \Longrightarrow x \leq z \Longrightarrow x \leq \inf y z$ for $x y z::{ }^{\prime} a$
measure
by (auto simp: inf_measure_def intro!: lower greatest)
qed
end
lemma sets_SUP:
assumes $\bigwedge x . x \in I \Longrightarrow$ sets $(M x)=$ sets N
shows $I \neq\{ \} \Longrightarrow$ sets $(S U P i \in I . M i)=$ sets N
unfolding Sup_measure_def
using assms assms[THEN sets_eq_imp_space_eq]
sets_Sup_measure' $\left[\right.$ where $A=N$ and $\left.M=M^{‘} I\right]$
by (intro Sup_lexord $1[$ where $P=\lambda x$. sets $x=$ sets $N]$) auto
lemma emeasure_SUP:
assumes sets: $\bigwedge i . i \in I \Longrightarrow$ sets $(M i)=$ sets $N X \in$ sets $N I \neq\{ \}$
shows emeasure $(S U P i \in I . M$ i) $X=(S U P J \in\{J . J \neq\{ \} \wedge$ finite $J \wedge J \subseteq I\}$.
emeasure (SUP $i \in J . M i) X$)
proof -
interpret sup_measure: comm_monoid_set sup bot :: 'b measure
by standard (auto intro!: antisym)

```
```

have eq: finite $J \Longrightarrow$ sup_measure.F id $J=(S U P i \in J . i)$ for $J:: ' b$ measure set
by (induction J rule: finite_induct) auto
have $1: J \neq\{ \} \Longrightarrow J \subseteq I \Longrightarrow$ sets $(S U P x \in J . M x)=$ sets N for J
by (intro sets_SUP sets) (auto)
from $\langle I \neq\{ \}\rangle$ obtain i where $i \in I$ by auto
have Sup_measure' $\left(M^{\prime} I\right) X=\left(S U P P \in\left\{P\right.\right.$. finite $\left.P \wedge P \subseteq M^{\prime} I\right\}$. sup_measure. F
id P)
using sets by (intro emeasure_Sup_measure') auto
also have Sup_measure ${ }^{\prime}\left(M^{‘} I\right)=(S U P \quad i \in I . M i)$
unfolding Sup_measure_def using $\langle I \neq\{ \}\rangle$ sets sets(1)[THEN sets_eq_imp_space_eq]
by (intro Sup_lexord1 [where $\left.P=\lambda x ._{-}=x\right]$) auto
also have $\left(S U P P \in\left\{P\right.\right.$. finite $\left.P \wedge P \subseteq M^{‘} I\right\}$. sup_measure.F id $\left.P X\right)=$
$(S U P J \in\{J . J \neq\{ \} \wedge$ finite $J \wedge J \subseteq I\} .(S U P i \in J . M i) X)$
proof (intro SUP_eq)
fix J assume $J \in\left\{P\right.$. finite $\left.P \wedge P \subseteq M^{`} I\right\}$
then obtain J^{\prime} where $J^{\prime}: J^{\prime} \subseteq I$ finite J^{\prime} and $J: J=M^{‘} J^{\prime}$ and finite J
using finite_subset_image $[$ of J M I] by auto
show $\exists j \in\{J . J \neq\{ \} \wedge$ finite $J \wedge J \subseteq I\}$. sup_measure.F id $J X \leq(S U P i \in j$.
Mi) X
proof cases
assume $J^{\prime}=\{ \}$ with $\langle i \in I\rangle$ show ?thesis
by (auto simp add: J)
next
assume $J^{\prime} \neq\{ \}$ with $J J^{\prime}$ show ?thesis
by (intro bexI[of _ J $]$) (auto simp add: eq simp del: id_apply)
qed
next
fix J assume $J: J \in\{P . P \neq\{ \} \wedge$ finite $P \wedge P \subseteq I\}$
show $\exists J^{\prime} \in\left\{J\right.$. finite $\left.J \wedge J \subseteq M^{‘} I\right\}$. (SUP $i \in J . M$ i) $X \leq$ sup_measure. F id
$J^{\prime} X$
using J by (intro bexI[of _ $\left.M^{`} J\right]$) (auto simp add: eq simp del: id_apply)
qed
finally show ?thesis .
qed
lemma emeasure_SUP_chain:
assumes sets: $\bigwedge i . i \in A \Longrightarrow$ sets $(M i)=$ sets $N X \in$ sets N
assumes ch: Complete_Partial_Order.chain $(\leq)(M$ ' $A)$ and $A \neq\{ \}$
shows emeasure (SUP $i \in A . M$ i) $X=(S U P i \in A$. emeasure (M i) X)
proof (subst emeasure_SUP[OF sets $\langle A \neq\{ \}\rangle])$
show $(S U P J \in\{J . J \neq\{ \} \wedge$ finite $J \wedge J \subseteq A\}$. emeasure $(S u p(M ' J)) X)=$
(SUP i $i \in$. emeasure (M i) X)
proof (rule SUP_eq)
fix J assume $J \in\{J . J \neq\{ \} \wedge$ finite $J \wedge J \subseteq A\}$
then have J : Complete_Partial_Order.chain $(\leq)(M ‘ J)$ finite $J J \neq\{ \}$ and
$J \subseteq A$
using ch[THEN chain_subset, of $\left.M^{〔} J\right]$ by auto
with in_chain_finite $[O F J(1)]$ obtain j where $j \in J(S U P j \in J . M j)=M j$
by auto

```
with \(\langle J \subseteq A\rangle\) show \(\exists j \in A\). emeasure \(\left(S u p\left(M^{\prime} J\right)\right) X \leq\) emeasure \((M j) X\) by auto
next
fix \(j\) assume \(j \in A\) then show \(\exists i \in\{J . J \neq\{ \} \wedge\) finite \(J \wedge J \subseteq A\}\). emeasure ( \(M^{j}\) ) \(X \leq\) emeasure \(\left(S u p\left(M^{\prime} i\right)\right) X\)
by (intro bexI \([o f-\{j\}]\) ) auto
qed
qed

\section*{Supremum of a set of \(\sigma\)-algebras}
```

lemma space_Sup_eq_UN: space $($ Sup $M)=(\bigcup x \in M$.space $x)$
unfolding Sup_measure_def
apply (intro Sup_lexord $[$ where $P=\lambda x$. space $x=-]$)
apply (subst space_Sup_measure'2)
apply auto []
apply (subst space_measure_of $\left.\left[O F \quad U N _s p a c e _c l o s e d\right]\right)$
apply auto
done
lemma sets_Sup_eq:
assumes $*: \bigwedge m . m \in M \Longrightarrow$ space $m=X$ and $M \neq\{ \}$
shows sets $($ Sup $M)=$ sigma_sets $X(\bigcup x \in M$. sets $x)$
unfolding Sup_measure_def
apply (rule Sup_lexord1)
apply fact
apply (simp add: assms)
apply (rule Sup_lexord)
subgoal premises that for a S
unfolding that(3) that(2)[symmetric]
using that (1)
apply (subst sets_Sup_measure'2)
apply (intro arg_cong2[where $f=$ sigma_sets])
apply (auto simp: *)
done
apply (subst sets_measure_of [OF UN_space_closed])
apply (simp add: assms)
done

```
lemma in_sets_Sup: \((\bigwedge m . m \in M \Longrightarrow\) space \(m=X) \Longrightarrow m \in M \Longrightarrow A \in\) sets
\(m \Longrightarrow A \in\) sets (Sup M)
    by (subst sets_Sup_eq[where \(X=X]\) ) auto
lemma Sup_lexord_rel:
    assumes \(\bigwedge i . i \in I \Longrightarrow k(A i)=k(B i)\)
        \(R(c(A ‘\{a \in I . k(B a)=(S U P x \in I . k(B x))\}))(c(B \cdot\{a \in I . k(B a)\)
\(=(S U P x \in I . k(B x))\}))\)
        \(R\left(s\left(A^{\prime} I\right)\right)\left(s\left(B^{\prime} I\right)\right)\)
    shows \(R\) (Sup_lexord kcs (A'I)) (Sup_lexord kcs( \(\left.B^{\prime} I\right)\) )
```

proof -
have $A \cdot\{a \in I . k(B a)=(S U P x \in I . k(B x))\}=\left\{a \in A^{\prime} I . k a=(S U P\right.$
$x \in I$. $k(B x))\}$
using assms(1) by auto
moreover have $B^{\prime}\{a \in I . k(B a)=(S U P x \in I . k(B x))\}=\left\{a \in B^{\prime} I . k\right.$
$a=(S U P x \in I . k(B x))\}$
by auto
ultimately show ?thesis
using assms by (auto simp: Sup_lexord_def Let_def image_comp)
qed
lemma sets_SUP_cong:
assumes eq: $\bigwedge i . i \in I \Longrightarrow$ sets $(M i)=$ sets $(N i)$ shows sets $(S U P i \in I . M i)$
$=$ sets $(S U P i \in I . N i)$
unfolding Sup_measure_def
using eq eq[THEN sets_eq_imp_space_eq]
apply (intro Sup_lexord_rel $[$ where $R=\lambda x y$. sets $x=$ sets $y]$)
apply simp
apply simp
apply (simp add: sets_Sup_measure'2)
apply (intro arg_cong2[where $f=\lambda x y$. sets (sigma $x y)]$)
apply auto
done
lemma sets_Sup_in_sets:
assumes $M \neq\{ \}$
assumes $\bigwedge m . m \in M \Longrightarrow$ space $m=$ space N
assumes $\bigwedge m . m \in M \Longrightarrow$ sets $m \subseteq$ sets N
shows sets $($ Sup $M) \subseteq$ sets N
proof -
have $*: ~ \bigcup($ space ' $M)=$ space N
using assms by auto
show ?thesis
unfolding * using assms by (subst sets_Sup_eq[of M space $N]$) (auto intro!:
sets.sigma_sets_subset)
qed
lemma measurable_Sup1:
assumes $m: m \in M$ and $f: f \in$ measurable $m N$
and const_space: $\bigwedge m n . m \in M \Longrightarrow n \in M \Longrightarrow$ space $m=$ space n
shows $f \in$ measurable (Sup M) N
proof -
have space $(S u p M)=$ space m
using m by (auto simp add: space_Sup_eq_UN dest: const_space)
then show ?thesis
using $m f$ unfolding measurable_def by (auto intro: in_sets_Sup[OF const_space])
qed
lemma measurable_Sup2:

```
```

 assumes \(M: M \neq\{ \}\)
 assumes \(f: \bigwedge m . m \in M \Longrightarrow f \in\) measurable \(N m\)
 and const_space: \(\bigwedge m n . m \in M \Longrightarrow n \in M \Longrightarrow\) space \(m=\) space \(n\)
 shows \(f \in\) measurable \(N\) (Sup M)
 proof -
from M obtain m where $m \in M$ by auto
have space_eq: $\bigwedge n . n \in M \Longrightarrow$ space $n=$ space m
by (intro const_space $\langle m \in M\rangle$)
have $f \in$ measurable N (sigma $(\bigcup m \in M$. space $m)(\bigcup m \in M$. sets $m))$
proof (rule measurable_measure_of)
show $f \in$ space $N \rightarrow \bigcup$ (space' M)
using measurable_space $[O F f] M$ by auto
qed (auto intro: measurable_sets f dest: sets.sets_into_space)
also have measurable $N($ sigma $(\bigcup m \in M$. space $m)(\bigcup m \in M$. sets $m))=$ mea-
surable N (Sup M)
apply (intro measurable_cong_sets refl)
apply (subst sets_Sup_eq[OF space_eq M])
apply simp
apply (subst sets_measure_of [OF UN_space_closed])
apply (simp add: space_eq M)
done
finally show ?thesis .
qed
lemma measurable_SUP2:
$I \neq\{ \} \Longrightarrow(\bigwedge i . i \in I \Longrightarrow f \in$ measurable $N(M i)) \Longrightarrow$
$(\bigwedge i j . i \in I \Longrightarrow j \in I \Longrightarrow$ space $(M i)=$ space $(M j)) \Longrightarrow f \in$ measurable N
(SUP $i \in I . M i$)
by (auto intro!: measurable_Sup2)
lemma sets_Sup_sigma:
assumes $[\operatorname{simp}]: M \neq\{ \}$ and $M: \bigwedge m . m \in M \Longrightarrow m \subseteq$ Pow Ω
shows sets $(S U P \quad m \in M$. sigma $\Omega m)=$ sets $(\operatorname{sigma} \Omega(\bigcup M))$
proof -
\{ fix $a m$ assume $a \in$ sigma_sets $\Omega m m \in M$
then have $a \in$ sigma_sets $\Omega(\bigcup M)$
by induction (auto intro: sigma_sets.intros(2-)) \}
then show sets $(S U P m \in M$. sigma $\Omega m)=$ sets $($ sigma $\Omega(\bigcup M))$
apply (subst sets_Sup_eq[where $X=\Omega]$)
apply (auto simp add: M) []
apply auto []
apply (simp add: space_measure_of_conv M Union_least)
apply (rule sigma_sets_eqI)
apply auto
done
qed
lemma Sup_sigma:
assumes $[\operatorname{simp}]: M \neq\{ \}$ and $M: \bigwedge m . m \in M \Longrightarrow m \subseteq$ Pow Ω

```
```

 shows (SUP \(m \in M\). sigma \(\Omega m)=(\operatorname{sigma} \Omega(\bigcup M))\)
 proof (intro antisym SUP_least)
have $*: \bigcup M \subseteq$ Pow Ω
using M by auto
show sigma $\Omega(\bigcup M) \leq(S U P m \in M$. sigma $\Omega m)$
proof (intro less_eq_measure.intros(3))
show space (sigma $\Omega(\bigcup M))=$ space $(S U P m \in M$. sigma $\Omega m)$
sets $($ sigma $\Omega(\bigcup M))=$ sets (SUP $m \in M$. sigma Ωm)
using sets_Sup_sigma[OF assms] sets_Sup_sigma[OF assms, THEN sets_eq_imp_space_eq]
by auto
qed (simp add: emeasure_sigma le_fun_def)
fix m assume $m \in M$ then show sigma $\Omega m \leq \operatorname{sigma} \Omega(\bigcup M)$
by (subst sigma_le_iff) (auto simp add: $M *$)
qed
lemma SUP_sigma_sigma:
$M \neq\{ \} \Longrightarrow(\bigwedge m . m \in M \Longrightarrow f m \subseteq$ Pow $\Omega) \Longrightarrow(S U P m \in M . \operatorname{sigma} \Omega(f m))$
$=\operatorname{sigma} \Omega(\bigcup m \in M . f m)$
using Sup_sigma[of f'M Ω] by (auto simp: image_comp)
lemma sets_vimage_Sup_eq:
assumes $*: M \neq\{ \} f \in X \rightarrow Y \bigwedge m . m \in M \Longrightarrow$ space $m=Y$
shows sets (vimage_algebra $X f($ Sup $M))=$ sets $(S U P m \in M$. vimage_algebra
$X f m$)
(is ? $I S=? S I$)
proof
show ?IS \subseteq ?SI
apply (intro sets_image_in_sets measurable_Sup2)
apply (simp add: space_Sup_eq_UN *)
apply (simp add: *)
apply (intro measurable_Sup1)
apply (rule imageI)
apply assumption
apply (rule measurable_vimage_algebra1)
apply (auto simp:*)
done
show ? $S I \subseteq$? $I S$
apply (intro sets_Sup_in_sets)
apply (auto simp: *) []
apply (auto simp: *) []
apply (elim imageE)
apply simp
apply (rule sets_image_in_sets)
apply simp
apply (simp add: measurable_def)
apply (simp add: * space_Sup_eq_UN sets_vimage_algebra2)
apply (auto intro: in_sets_Sup[OF *(3)])
done
qed

```
lemma restrict_space_eq_vimage_algebra':
sets \((\) restrict_space \(M \Omega)=\) sets \((\) vimage_algebra \((\Omega \cap\) space \(M)(\lambda x . x) M)\)
proof -
have \(*:\{A \cap(\Omega \cap\) space \(M) \mid A . A \in\) sets \(M\}=\{A \cap \Omega \mid A . A \in\) sets \(M\}\) using sets.sets_into_space [of _ M] by blast
show ?thesis
unfolding restrict_space_def
by (subst sets_measure_of)
(auto simp add: image_subset_iff sets_vimage_algebra \(*\) dest: sets.sets_into_space
intro!: arg_cong2[where \(f=\) sigma_sets])
qed
lemma sigma_le_sets:
assumes \([\) simp]: \(A \subseteq\) Pow \(X\) shows sets \((\) sigma \(X A) \subseteq\) sets \(N \longleftrightarrow X \in\) sets \(N \wedge A \subseteq\) sets \(N\)
proof
have \(X \in\) sigma_sets \(X A\) A sigma_sets \(X A\)
by (auto intro: sigma_sets_top)
moreover assume sets \((\) sigma \(X A) \subseteq\) sets \(N\)
ultimately show \(X \in\) sets \(N \wedge A \subseteq\) sets \(N\)
by auto
next
assume \(*: X \in\) sets \(N \wedge A \subseteq\) sets \(N\)
\{ fix \(Y\) assume \(Y \in\) sigma_sets \(X A\) from this \(*\) have \(Y \in\) sets \(N\) by induction auto \}
then show sets \((\) sigma \(X A) \subseteq\) sets \(N\) by auto
qed
lemma measurable_iff_sets:
\(f \in\) measurable \(M N \longleftrightarrow(f \in\) space \(M \rightarrow\) space \(N \wedge\) sets (vimage_algebra (space M) \(f N) \subseteq\) sets \(M\) )
proof -
have \(*:\{f-‘ A \cap\) space \(M \mid A . A \in\) sets \(N\} \subseteq\) Pow (space \(M\) )
by auto
show ?thesis
unfolding measurable_def
by (auto simp add: vimage_algebra_def sigma_le_sets[OF *])
qed
lemma sets_vimage_algebra_space: \(X \in\) sets (vimage_algebra \(X f M)\)
using sets.top[of vimage_algebra \(X f M]\) by simp
lemma measurable_mono:
assumes \(N\) : sets \(N^{\prime} \leq\) sets \(N\) space \(N=\) space \(N^{\prime}\)
assumes \(M\) : sets \(M \leq\) sets \(M^{\prime}\) space \(M=\) space \(M^{\prime}\)
shows measurable \(M N \subseteq\) measurable \(M^{\prime} N^{\prime}\)
```

 unfolding measurable_def
 proof safe

```
    fix \(f A\) assume \(f \in\) space \(M \rightarrow\) space \(N A \in\) sets \(N^{\prime}\)
    moreover assume \(\forall y \in\) sets \(N . f-{ }^{‘} y \cap\) space \(M \in\) sets \(M\) note this[THEN
bspec, of \(A]\)
    ultimately show \(f-‘ A \cap\) space \(M^{\prime} \in\) sets \(M^{\prime}\)
        using assms by auto
qed (insert \(N M\), auto)
lemma measurable_Sup_measurable:
    assumes \(f: f \in\) space \(N \rightarrow A\)
    shows \(f \in\) measurable \(N\) (Sup \(\{M\). space \(M=A \wedge f \in\) measurable \(N M\}\) )
proof (rule measurable_Sup2)
    show \(\{M\). space \(M=A \wedge f \in\) measurable \(N M\} \neq\{ \}\)
        using \(f\) unfolding ex_in_conv[symmetric]
        by (intro exI[of _ sigma \(A\) \{\}]) (auto intro!: measurable_measure_of)
    qed auto
    lemma (in sigma_algebra) sigma_sets_subset':
    assumes \(a: a \subseteq M \Omega^{\prime} \in M\)
    shows sigma_sets \(\Omega^{\prime} a \subseteq M\)
proof
    show \(x \in M\) if \(x: x \in\) sigma_sets \(\Omega^{\prime} a\) for \(x\)
        using \(x\) by (induct rule: sigma_sets.induct) (insert a, auto)
qed
lemma in_sets_SUP: \(i \in I \Longrightarrow(\bigwedge i . i \in I \Longrightarrow \operatorname{space}(M i)=Y) \Longrightarrow X \in\) sets
\((M i) \Longrightarrow X \in\) sets \((S U P i \in I . M i)\)
    by (intro in_sets_Sup \([\) where \(X=Y]\) ) auto
lemma measurable_SUP1:
    \(i \in I \Longrightarrow f \in\) measurable \((M i) N \Longrightarrow(\bigwedge m n . m \in I \Longrightarrow n \in I \Longrightarrow \operatorname{space}(M\)
\(m)=\operatorname{space}(M n)) \Longrightarrow\)
    \(f \in\) measurable (SUP \(i \in I . M\) i) \(N\)
    by (auto intro: measurable_Sup1)
lemma sets_image_in_sets':
    assumes \(X: X \in\) sets \(N\)
    assumes \(f: \bigwedge A . A \in\) sets \(M \Longrightarrow f-‘ A \cap X \in\) sets \(N\)
    shows sets (vimage_algebra \(X f M) \subseteq\) sets \(N\)
    unfolding sets_vimage_algebra
    by (rule sets.sigma_sets_subset') (auto intro!: measurable_sets \(X\) )
lemma mono_vimage_algebra:
    sets \(M \leq\) sets \(N \Longrightarrow\) sets (vimage_algebra \(X f M) \subseteq\) sets (vimage_algebra \(X f N\) )
    using sets.top[of sigma \(X\left\{f-{ }^{‘} A \cap X \mid A\right.\). \(A \in\) sets \(\left.N\right\}\) ]
    unfolding vimage_algebra_def
    apply (subst (asm) space_measure_of)
    apply auto []
```

apply (subst sigma_le_sets)
apply auto
done

```
lemma mono_restrict_space: sets \(M \leq\) sets \(N \Longrightarrow\) sets (restrict_space \(M X\) ) \(\subseteq\) sets
(restrict_space \(N X\) )
    unfolding sets_restrict_space by (rule image_mono)
lemma sets_eq_bot: sets \(M=\{\{ \}\} \longleftrightarrow M=\) bot
    apply safe
    apply (intro measure_eqI)
    apply auto
    done
lemma sets_eq_bot2: \(\{\}\}=\) sets \(M \longleftrightarrow M=\) bot
    using sets_eq_bot[of \(M\) ] by blast
lemma (in finite_measure) countable_support:
    countable \(\{x\). measure \(M\{x\} \neq 0\}\)
proof cases
    assume measure \(M(\) space \(M)=0\)
    with bounded_measure measure_le_0_iff have \(\{x\). measure \(M\{x\} \neq 0\}=\{ \}\)
        by auto
    then show? ?thesis
        by \(\operatorname{simp}\)
next
    let \({ }^{2} M=\) measure \(M(\) space \(M)\) and \({ }^{?} m=\lambda x\). measure \(M\{x\}\)
    assume \(? M \neq 0\)
    then have \(*:\{x\). ? \(m x \neq 0\}=(\bigcup n\). \(\{x\). ? \(M /\) Suc \(n<\) ? \(m x\})\)
        using reals_Archimedean[of ? \(\mathrm{m} x /\) ? M for \(x\) ]
        by (auto simp: field_simps not_le[symmetric] divide_le_0_iff measure_le_0_iff)
    have \(* *\) : \(\bigwedge n\). finite \(\{x\).? \(M /\) Suc \(n<? m x\}\)
    proof (rule ccontr)
            fix \(n\) assume infinite \(\{x\).? \(M /\) Suc \(n<\) ? \(m x\}\) (is infinite ? \(X\) )
            then obtain \(X\) where finite \(X\) card \(X=\) Suc (Suc n) \(X \subseteq\) ? \(X\)
                by (metis infinite_arbitrarily_large)
            from this(3) have \(*: \bigwedge x . x \in X \Longrightarrow ? M /\) Suc \(n \leq ? m x\)
                by auto
            \(\{\) fix \(x\) assume \(x \in X\)
                from \(\langle ? M \neq 0\rangle *[O F\) this \(]\) have \(? m \neq 0\) by (auto simp: field_simps
measure_le_0_iff)
            then have \(\{x\} \in\) sets \(M\) by (auto dest: measure_notin_sets) \(\}\)
            note singleton_sets \(=\) this
            have \(? M<\left(\sum x \in X\right.\). ? \(M /\) Suc \(\left.n\right)\)
                using \(\langle ? M \neq 0\) 〉
                by (simp add: <card \(X=\) Suc (Suc n) field_simps less_le) \(^{\text {( }}\) )
            also have \(\ldots \leq\left(\sum x \in X\right.\). ? \(\left.m x\right)\)
            by (rule sum_mono) fact
```

 also have ... = measure M (\bigcup x\inX. {x})
 using singleton_sets 〈finite X>
 by (intro finite_measure_finite_Union[symmetric]) (auto simp:disjoint_family_on_def)
 finally have ?M < measure M (\bigcupx\inX.{x}).
 moreover have measure M (\bigcupx\inX.{x})\leq?M
 using singleton_sets[THEN sets.sets_into_space] by (intro finite_measure_mono)
 auto
ultimately show False by simp
qed
show ?thesis
unfolding * by (intro countable_UN countableI_type countable_finite[OF **])
qed
end

```

\subsection*{6.4 Ordered Euclidean Space}
theory Ordered_Euclidean_Space
imports
Convex_Euclidean_Space
HOL-Library.Product_Order
begin
An ordering on euclidean spaces that will allow us to talk about intervals
```

class ordered_euclidean_space $=$ ord $+\inf +\sup +a b s+I n f+S u p+e u-$
clidean_space +
assumes eucl_le: $x \leq y \longleftrightarrow(\forall i \in$ Basis. $x \cdot i \leq y \cdot i)$
assumes eucl_less_le_not_le: $x<y \longleftrightarrow x \leq y \wedge \neg y \leq x$
assumes eucl_inf: inf $x y=\left(\sum i \in\right.$ Basis. inf $\left.(x \cdot i)(y \cdot i) *_{R} i\right)$
assumes eucl_sup: sup $x y=\left(\sum i \in\right.$ Basis. sup $\left.(x \cdot i)(y \cdot i) *_{R} i\right)$
assumes eucl_Inf: Inf $X=\left(\sum i \in\right.$ Basis. $($ INF $\left.x \in X . x \cdot i) *_{R} i\right)$
assumes eucl_Sup: Sup $X=\left(\sum i \in\right.$ Basis. (SUP $\left.\left.x \in X . x \cdot i\right) *_{R} i\right)$
assumes eucl_abs: $|x|=\left(\sum i \in\right.$ Basis. $\left.|x \cdot i| *_{R} i\right)$
begin
subclass order
by standard
(auto simp: eucl_le eucl_less_le_not_le intro!: euclidean_eqI antisym intro: or-
der.trans)
subclass ordered_ab_group_add_abs
by standard (auto simp: eucl_le inner_add_left eucl_abs abs_leI)
subclass ordered_real_vector
by standard (auto simp: eucl_le intro!: mult_left_mono mult_right_mono)
subclass lattice
by standard (auto simp: eucl_inf eucl_sup eucl_le)

```
```

subclass distrib_lattice
by standard (auto simp: eucl_inf eucl_sup sup_inf_distrib1 intro!: euclidean_eqI)
subclass conditionally_complete_lattice
proof
fix z::'a and }X::''a se
assume }X\not={
hence }\bigwedgei.(\lambdax.x\cdoti)' X\not={} by sim

```

```

X\leqz
by (auto simp: eucl_Inf eucl_Sup eucl_le
intro!: cInf_greatest cSup_least)
qed (force intro!: cInf_lower cSup_upper
simp: bdd_below_def bdd_above_def preorder_class.bdd_below_def preorder_class.bdd_above_def
eucl_Inf eucl_Sup eucl_le)+
lemma inner_Basis_inf_left: i Basis \Longrightarrow inf x y vi=inf (x •i) (y vi)
and inner_Basis_sup_left: i\inBasis \Longrightarrow sup x y | i=sup (x •i) (y\cdoti)
by (simp_all add: eucl_inf eucl_sup inner_sum_left inner_Basis if_distrib
cong: if_cong)
lemma inner_Basis_INF_left:i B Basis \Longrightarrow(INF x\inX.fx)}\cdot\mp@code{i=(INF x\inX.fx

- i)
and inner_Basis_SUP_left: i B Basis \Longrightarrow(SUP x\inX.fx) \cdoti=(SUP x\inX.fx
- i)
using eucl_Sup [of f'X] eucl_Inf [of f'X] by (simp_all add: image_comp)
lemma abs_inner: i Basis \Longrightarrow |x| • i= |x \cdot i|
by (auto simp: eucl_abs)

```

\section*{lemma}
```

 abs_scaleR: }|a\mp@subsup{*}{R}{}b|=|a|\mp@subsup{*}{R}{}|b
 by (auto simp: eucl_abs abs_mult intro!: euclidean_eqI)
 lemma interval_inner_leI:
assumes }x\in{a..b} 0\leq
shows }a\cdoti\leqx\cdotix\cdoti\leqb\cdot
using assms
unfolding euclidean_inner[of a i] euclidean_inner[of x i] euclidean_inner[of b i]
by (auto intro!: ordered_comm_monoid_add_class.sum_mono mult_right_mono simp:
eucl_le)
lemma inner_nonneg_nonneg:
shows 0\leqa\Longrightarrow0\leqb\Longrightarrow0\leqa\cdotb

 using interval_inner_le}\[[\begin{array}{llllll}{a}&{0}&{a}&{b}\end{array}
 by auto
 lemma inner_Basis_mono:
shows }a\leqb\Longrightarrowc\inBasis \Longrightarrowa\cdotc\leqb\cdot

```
```

by (simp add: eucl_le)
lemma Basis_nonneg[intro, simp]: $i \in$ Basis $\Longrightarrow 0 \leq i$
by (auto simp: eucl_le inner_Basis)

```
```

lemma Sup_eq_maximum_componentwise:

```
lemma Sup_eq_maximum_componentwise:
    fixes \(s:: ' a\) set
    fixes \(s:: ' a\) set
    assumes \(i: \bigwedge b . b \in\) Basis \(\Longrightarrow X \cdot b=i b \cdot b\)
    assumes \(i: \bigwedge b . b \in\) Basis \(\Longrightarrow X \cdot b=i b \cdot b\)
    assumes sup: \(\bigwedge b x . b \in\) Basis \(\Longrightarrow x \in s \Longrightarrow x \cdot b \leq X \cdot b\)
    assumes sup: \(\bigwedge b x . b \in\) Basis \(\Longrightarrow x \in s \Longrightarrow x \cdot b \leq X \cdot b\)
    assumes \(i_{-} s: \bigwedge b . b \in\) Basis \(\Longrightarrow(i b \cdot b) \in(\lambda x . x \cdot b)\) ' \(s\)
    assumes \(i_{-} s: \bigwedge b . b \in\) Basis \(\Longrightarrow(i b \cdot b) \in(\lambda x . x \cdot b)\) ' \(s\)
    shows Sup \(s=X\)
    shows Sup \(s=X\)
    using assms
    using assms
    unfolding eucl_Sup euclidean_representation_sum
    unfolding eucl_Sup euclidean_representation_sum
    by (auto intro!: conditionally_complete_lattice_class.cSup_eq_maximum)
```

 by (auto intro!: conditionally_complete_lattice_class.cSup_eq_maximum)
    ```
lemma Inf_eq_minimum_componentwise:
    assumes \(i: \bigwedge b . b \in\) Basis \(\Longrightarrow X \cdot b=i b \cdot b\)
    assumes sup: \(\bigwedge b x . b \in\) Basis \(\Longrightarrow x \in s \Longrightarrow X \cdot b \leq x \cdot b\)
    assumes \(i_{-} s: \bigwedge b . b \in\) Basis \(\Longrightarrow(i b \cdot b) \in(\lambda x . x \cdot b)\) ' \(s\)
    shows \(\operatorname{Inf} s=X\)
    using assms
    unfolding eucl_Inf euclidean_representation_sum
    by (auto intro!: conditionally_complete_lattice_class.cInf_eq_minimum)
end
proposition compact_attains_Inf_componentwise:
    fixes \(b::\) 'a::ordered_euclidean_space
    assumes \(b \in\) Basis assumes \(X \neq\{ \}\) compact \(X\)
    obtains \(x\) where \(x \in X x \cdot b=\operatorname{Inf} X \cdot b \bigwedge y . y \in X \Longrightarrow x \cdot b \leq y \cdot b\)
proof atomize_elim
    let ?proj \(=(\lambda x . x \cdot b)^{\prime} X\)
    from assms have compact ?proj ?proj \(\neq\{ \}\)
        by (auto intro!: compact_continuous_image continuous_intros)
    from compact_attains_inf [OF this]
    obtain \(s x\)
        where \(s: s \in(\lambda x . x \cdot b)^{\prime} X \wedge t . t \in(\lambda x . x \cdot b)^{\prime} X \Longrightarrow s \leq t\)
            and \(x: x \in X s=x \cdot b \bigwedge y \cdot y \in X \Longrightarrow x \cdot b \leq y \cdot b\)
        by auto
    hence Inf ? proj \(=x \cdot b\)
        by (auto intro!: conditionally_complete_lattice_class.cInf_eq_minimum)
    hence \(x \cdot b=\) Inf \(X \cdot b\)
        by (auto simp: eucl_Inf inner_sum_left inner_Basis if_distrib \(\langle b \in\) Basis
            cong: if_cong)
    with \(x\) show \(\exists x \cdot x \in X \wedge x \cdot b=\operatorname{Inf} X \cdot b \wedge(\forall y \cdot y \in X \longrightarrow x \cdot b \leq y \cdot b)\)
by blast
qed
proposition
```

 compact_attains_Sup_componentwise:
 fixes \(b:\) :' \(^{\prime}\) :: ordered_euclidean_space
 assumes \(b \in\) Basis assumes \(X \neq\{ \}\) compact \(X\)
 obtains \(x\) where \(x \in X x \cdot b=\operatorname{Sup} X \cdot b \bigwedge y \cdot y \in X \Longrightarrow y \cdot b \leq x \cdot b\)
 proof atomize_elim
let ? $p r o j=(\lambda x . x \cdot b)^{\prime} X$
from assms have compact ?proj ?proj $\neq\{ \}$
by (auto intro!: compact_continuous_image continuous_intros)
from compact_attains_sup [OF this]
obtain $s x$
where $s: s \in(\lambda x . x \cdot b)^{\prime} X \wedge t . t \in(\lambda x . x \cdot b)^{\prime} X \Longrightarrow t \leq s$
and $x: x \in X s=x \cdot b \bigwedge y . y \in X \Longrightarrow y \cdot b \leq x \cdot b$
by auto
hence Sup ?proj $=x \cdot b$
by (auto intro!: cSup_eq_maximum)
hence $x \cdot b=\operatorname{Sup} X \cdot b$
by (auto simp: eucl_Sup $\left[\mathbf{w h e r e}{ }^{\prime} a={ }^{\prime} a\right]$ inner_sum_left inner_Basis if_distrib $\langle b$
\in Basis
cong: if_cong)
with x show $\exists x . x \in X \wedge x \cdot b=\operatorname{Sup} X \cdot b \wedge(\forall y \cdot y \in X \longrightarrow y \cdot b \leq x \cdot b)$
by blast
qed
lemma tendsto_sup[tendsto_intros]:
fixes $X::$ ' $a \Rightarrow$ ' $b::$ ordered_euclidean_space
assumes $(X \longrightarrow x)$ net $(Y \longrightarrow y)$ net
shows $((\lambda i . \sup (X i)(Y i)) \longrightarrow \sup x y)$ net
unfolding sup_max eucl_sup by (intro assms tendsto_intros)
lemma tendsto_inf[tendsto_intros]:
fixes $X::{ }^{\prime} a \Rightarrow{ }^{\prime} b::$ ordered_euclidean_space
assumes $(X \longrightarrow x)$ net $(Y \longrightarrow y)$ net
shows $\left(\left(\lambda i \inf \left(\begin{array}{ll}X i\end{array}\right)(Y i)\right) \longrightarrow \inf x y\right)$ net
unfolding inf_min eucl_inf by (intro assms tendsto_intros)
lemma tendsto_componentwise_max:
assumes $f:(f \longrightarrow l) F$ and $g:(g \longrightarrow m) F$
shows $\left(\left(\lambda x\right.\right.$. $\left(\sum i \in\right.$ Basis. $\left.\left.\max (f x \cdot i)(g x \cdot i) *_{R} i\right)\right) \longrightarrow\left(\sum i \in\right.$ Basis. \max
$\left.\left.(l \cdot i)(m \cdot i) *_{R} i\right)\right) F$
by (intro tendsto_intros assms)
lemma tendsto_componentwise_min:
assumes $f:(f \longrightarrow l) F$ and $g:(g \longrightarrow m) F$
shows $\left(\left(\lambda x .\left(\sum i \in\right.\right.\right.$ Basis. $\left.\left.\min (f x \cdot i)(g x \cdot i) *_{R} i\right)\right) \longrightarrow\left(\sum i \in\right.$ Basis. min
$\left.\left.(l \cdot i)(m \cdot i) *_{R} i\right)\right) F$
by (intro tendsto_intros assms)
lemma (in order) atLeastatMost_empty'[simp]:
$(\neg a \leq b) \Longrightarrow\{a . . b\}=\{ \}$

```
```

by (auto)

```
instance real :: ordered_euclidean_space
by standard auto
lemma in_Basis_prod_iff:
fixes \(i::^{\prime} a::\) euclidean_space*' \(b::\) euclidean_space
shows \(i \in\) Basis \(\longleftrightarrow\) fst \(i=0 \wedge\) snd \(i \in\) Basis \(\vee\) snd \(i=0 \wedge\) fst \(i \in\) Basis
by (cases i) (auto simp: Basis_prod_def)
instantiation prod :: (abs, abs) abs
begin
definition \(|x|=(\mid\) fst \(x|\),\(| snd x \mid)\)
instance ..
end
instance prod :: (ordered_euclidean_space, ordered_euclidean_space) ordered_euclidean_space
by standard
(auto intro!: add_mono simp add: euclidean_representation_sum' Ball_def inner_prod_def
in_Basis_prod_iff inner_Basis_inf_left inner_Basis_sup_left inner_Basis_INF_left
Inf_prod_def
inner_Basis_SUP_left Sup_prod_def less_prod_def less_eq_prod_def eucl_le[where
\(\left.{ }^{\prime} a={ }^{\prime} a\right]\)
eucl_le[where ' \(a=\) ' \(b\) ] abs_prod_def abs_inner)
Instantiation for intervals on ordered_euclidean_space
```

proposition
fixes a :: 'a::ordered_euclidean_space
shows cbox_interval: cbox a b = {a..b}
and interval_cbox: {a..b} = cbox a b
and eucl_le_atMost: {x.\foralli\inBasis. x • i<= a \cdot i} ={..a}
and eucl_le_atLeast: {x.\foralli\inBasis.a 䜣 = x • i} = {a..}
by (auto simp: eucl_le[where 'a='a] eucl_less_def box_def cbox_def)
lemma sums_vec_nth :
assumes f sums a
shows (}\lambdax.fx\$i) sums a \$ i
using assms unfolding sums_def
by (auto dest: tendsto_vec_nth [where i=i])
lemma summable_vec_nth:
assumes summable f
shows summable (}\lambdax.fx\$i
using assms unfolding summable_def
by (blast intro: sums_vec_nth)

```
```

lemma closed_eucl_atLeastAtMost[simp, intro]:
fixes a :: ' $a::$ ordered_euclidean_space
shows closed $\{a . . b\}$
by (simp add: cbox_interval[symmetric] closed_cbox)
lemma closed_eucl_atMost[simp, intro]:
fixes a :: 'a::ordered_euclidean_space
shows closed $\{. . a\}$
by (simp add: closed_interval_left eucl_le_atMost[symmetric])
lemma closed_eucl_atLeast[simp, intro]:
fixes a :: ' a ::ordered_euclidean_space
shows closed $\{a .$.
by (simp add: closed_interval_right eucl_le_atLeast[symmetric])
lemma bounded_closed_interval [simp]:
fixes a :: ' $a::$ ordered_euclidean_space
shows bounded $\{a . . b\}$
using bounded_cbox[of a b]
by (metis interval_cbox)
lemma convex_closed_interval [simp]:
fixes a :: ' $a::$ ordered_euclidean_space
shows convex $\{a . . b\}$
using convex_box[of ab]
by (metis interval_cbox)
lemma image_smult_interval:($\lambda x . m *_{R}(x::$ _::ordered_euclidean_space $\left.)\right)$ ' $\{a . . b\}$
$=$
(if $\{a . . b\}=\{ \}$ then $\left\}\right.$ else if $0 \leq m$ then $\left\{m *_{R} a . . m *_{R} b\right\}$ else $\left\{m *_{R} b\right.$
.. $\left.m *_{R} a\right\}$)
using image_smult_cbox[of mab]
by (simp add: cbox_interval)
lemma [simp]:
fixes a b::'a::ordered_euclidean_space
shows is_interval_ic: is_interval $\{. . a\}$
and is_interval_ci: is_interval $\{a .$.
and is_interval_cc: is_interval $\{b . . a\}$
by (force simp: is_interval_def eucl_le $\left[\right.$ where $\left.\left.{ }^{\prime} a={ }^{\prime} a\right]\right)+$
lemma connected_interval [simp]:
fixes a b::'a::ordered_euclidean_space
shows connected $\{a . . b\}$
using is_interval_cc is_interval_connected by blast
lemma compact_interval [simp]:
fixes a b::'a::ordered_euclidean_space

```
```

shows compact $\{a$.. $b\}$
by (metis compact_cbox interval_cbox)
no_notation
eucl_less (infix <e 50)
lemma One_nonneg: $0 \leq\left(\sum\right.$ Basis::'a::ordered_euclidean_space)
by (auto intro: sum_nonneg)
lemma
fixes a b::'a::ordered_euclidean_space
shows bdd_above_cbox[intro, simp]: bdd_above (cbox a b)
and bdd_below_cbox[intro, simp]: bdd_below (cbox a b)
and bdd_above_box[intro, simp]: bdd_above (box a b)
and bdd_below_box[intro, simp]: bdd_below (box a b)
unfolding atomize_conj
by (metis bdd_above_Icc bdd_above_mono bdd_below_Icc bdd_below_mono bounded_box
bounded_subset_cbox_symmetric interval_cbox)
instantiation vec :: (ordered_euclidean_space, finite) ordered_euclidean_space
begin
definition inf $x y=(\chi i . \inf (x \$ i)(y \$ i))$
definition sup $x y=(\chi i$. sup $(x \$ i)(y \$ i))$
definition Inf $X=(\chi i$. (INF $x \in X . x \$ i))$
definition Sup $X=(\chi i .(S U P x \in X . x \$ i))$
definition $|x|=(\chi i .|x \$ i|)$
instance
apply standard
unfolding euclidean_representation_sum'
apply (auto simp: less_eq_vec_def inf_vec_def sup_vec_def Inf_vec_def Sup_vec_def
inner_axis
Basis_vec_def inner_Basis_inf_left inner_Basis_sup_left inner_Basis_INF_left
inner_Basis_SUP_left eucl_le[where ' $a=$ 'a] less_le_not_le abs_vec_def abs_inner)
done
end
end

```

\subsection*{6.5 Borel Space}
theory Borel_Space
imports
Measurable Derivative Ordered_Euclidean_Space Extended_Real_Limits
begin
lemma is_interval_real_ereal_oo: is_interval (real_of_ereal' \(\{N<. .<M:: e r e a l\})\)

> by (auto simp: real_atLeastGreaterThan_eq)
lemma sets_Collect_eventually_sequentially[measurable]:
\((\bigwedge i .\{x \in\) space \(M . P x i\} \in\) sets \(M) \Longrightarrow\{x \in\) space \(M\). eventually \((P x)\) sequentially \(\} \in\) sets \(M\)
unfolding eventually_sequentially by simp
lemma topological_basis_trivial: topological_basis \(\{\) A. open A\}
by (auto simp: topological_basis_def)
proposition open_prod_generated: open \(=\) generate_topology \(\{A \times B \mid A B\). open
\(A \wedge\) open \(B\}\)
proof -
have \(\left\{A \times B::\left({ }^{\prime} a \times{ }^{\prime} b\right)\right.\) set \(\mid A B\). open \(A \wedge\) open \(\left.B\right\}=((\lambda(a, b) . a \times b)\) '
\((\{A\). open \(A\} \times\{A\). open \(A\}))\)
by auto
then show ?thesis
by (auto intro: topological_basis_prod topological_basis_trivial topological_basis_imp_subbasis) qed
proposition mono_on_imp_deriv_nonneg:
assumes mono: mono_on f \(A\) and deriv: (f has_real_derivative \(D\) ) (at \(x\) )
assumes \(x \in\) interior \(A\)
shows \(D \geq 0\)
proof (rule tendsto_lowerbound)
let ? \(A^{\prime}=(\lambda y . y-x)^{\prime}\) interior \(A\)
from deriv show \(((\lambda h .(f(x+h)-f x) / h) \longrightarrow D)(\) at 0\()\)
by (simp add: field_has_derivative_at has_field_derivative_def)
from mono have mono': mono_on \(f\) (interior \(A\) ) by (rule mono_on_subset) (rule
interior_subset)
show eventually \((\lambda h .(f(x+h)-f x) / h \geq 0)(\) at 0\()\)
proof (subst eventually_at_topological, intro exI conjI ballI impI)
have open (interior \(A\) ) by simp
hence open \(((+)(-x)\) 'interior \(A)\) by (rule open_translation)
also have \(\left((+)(-x)^{\prime}\right.\) interior \(\left.A\right)=? A^{\prime}\) by auto
finally show open ? \(A^{\prime}\).
next
from \(\langle x \in\) interior \(A\rangle\) show \(0 \in ? A^{\prime}\) by auto
next
fix \(h\) assume \(h \in\) ? \(A^{\prime}\)
hence \(x+h \in\) interior \(A\) by auto
with mono' and \(\langle x \in\) interior \(A\rangle\) show \((f(x+h)-f x) / h \geq 0\)
by (cases h rule: linorder_cases \([o f, 0]\) )
(simp_all add: divide_nonpos_neg divide_nonneg_pos mono_onD field_simps)
qed
qed \(\operatorname{simp}\)
proposition mono_on_ctble_discont:
```

 fixes \(f::\) real \(\Rightarrow\) real
 fixes \(A\) :: real set
 assumes mono_on \(f A\)
 shows countable \(\{a \in A\). \(\neg\) continuous (at a within \(A\)) \(f\}\)
 proof -
have mono: $\bigwedge x y . x \in A \Longrightarrow y \in A \Longrightarrow x \leq y \Longrightarrow f x \leq f y$
using 〈mono_on $f A$ 〉 by (simp add: mono_on_def)
have $\forall a \in\{a \in A$. ᄀ continuous (at a within A) $f\} . \exists q::$ nat \times rat.
(fst $q=0 \wedge$ of_rat (snd $q)<f a \wedge(\forall x \in A . x<a \longrightarrow f x<$ of_rat (snd
q))) \vee
$(f s t q=1 \wedge$ of_rat $($ snd $q)>f a \wedge(\forall x \in A . x>a \longrightarrow f x>$ of_rat (snd
q)))
proof (clarsimp simp del: One_nat_def)
fix a assume $a \in A$ assume \neg continuous $($ at a within $A) f$
thus $\exists q 1 q 2$.
$q 1=0 \wedge$ real_of_rat $q 2<f a \wedge\left(\forall x \in A . x<a \longrightarrow f x<r e a l _o f\right.$ _rat $\left.q 2\right)$
V
$q 1=1 \wedge f a<r e a l_{-} o f$ _rat $q 2 \wedge(\forall x \in A . a<x \longrightarrow$ real_of_rat $q 2<f x)$
proof (auto simp add: continuous_within order_tendsto_iff eventually_at)
fix l assume $l<f a$
then obtain q^{2} where $q 2: l<o f$ _rat $q 2$ of_rat $q 2<f a$
using of_rat_dense by blast
assume $*[$ rule_format $]: \forall d>0 . \exists x \in A . x \neq a \wedge$ dist $x a<d \wedge \neg l<f x$
from q2 have real_of_rat $q \mathcal{D}<f a \wedge\left(\forall x \in A . x<a \longrightarrow f x<r e a l_{-} o f\right.$ _rat q2)
proof auto
fix x assume $x \in A x<a$
with $q 2 *[o f a-x]$ show $f x<r e a l_{-} o f _r a t ~ q 2$
apply (auto simp add: dist_real_def not_less)
apply (subgoal_tac $f x \leq f x a$)
by (auto intro: mono)
qed
thus ?thesis by auto
next
fix u assume $u>f a$
then obtain q2 where q2: $f a<o f_{-}$rat q2 of_rat q2 $<u$
using of_rat_dense by blast
assume $*[$ rule_format $]: \forall d>0 . \exists x \in A . x \neq a \wedge$ dist $x a<d \wedge \neg u>f x$
from q2 have real_of_rat $q 2>f a \wedge(\forall x \in A . x>a \longrightarrow f x>$ real_of_rat $q 2)$
proof auto
fix x assume $x \in A x>a$
with $q 2 *[o f x-a]$ show $f x>$ real_of_rat q2
apply (auto simp add: dist_real_def)
apply (subgoal_tac f $x \geq f x a$)
by (auto intro: mono)
qed
thus ?thesis by auto
qed
qed
hence $\exists g::$ real \Rightarrow nat \times rat. $\forall a \in\{a \in A . \neg$ continuous (at a within A) $f\}$.

```
\(\left(f s t(g a)=0 \wedge\right.\) of_rat \((\) snd \((g a))<f a \wedge\left(\forall x \in A . x<a \longrightarrow f x<o f_{-} r a t\right.\) \((\operatorname{snd}(g a)))) \mid\)
\(\left(f s t(g a)=1 \wedge\right.\) of_rat \((\) snd \((g a))>f a \wedge\left(\forall x \in A . x>a \longrightarrow f x>o f_{-} r a t\right.\) (snd \((g a)))\) )
by (rule bchoice)
then guess \(g\)..
hence \(g: \bigwedge a x . a \in A \Longrightarrow \neg\) continuous (at a within \(A\) ) \(f \Longrightarrow x \in A \Longrightarrow\) \(\left(f s t(g a)=0 \wedge\right.\) of_rat \((\) snd \((g a))<f a \wedge\left(x<a \longrightarrow f x<o f \_r a t\right.\) (snd \((g\) a)))) |
\(\left(f s t(g a)=1 \wedge\right.\) of_rat \((\) snd \((g a))>f a \wedge\left(x>a \longrightarrow f x>f_{-}\right.\)rat \((\)snd \((g\) a))))
by auto
have inj_on \(g\{a \in A\). \(\neg\) continuous (at a within A) \(f\}\)
proof (auto simp add: inj_on_def)
fix \(w z\)
assume 1: \(w \in A\) and 2: \(\neg\) continuous (at within A) \(f\) and 3: \(z \in A\) and 4: ᄀ continuous (at \(z\) within \(A\) ) \(f\) and 5: \(g w=g z\)
from \(g\left[\begin{array}{llll}\text { OF } & 1 & 2 & 3\end{array}\right] g[O F 341] 5\)
show \(w=z\) by auto
qed
thus ?thesis
by (rule countableI')
qed
lemma mono_on_ctble_discont_open:
fixes \(f::\) real \(\Rightarrow\) real
fixes \(A\) :: real set
assumes open \(A\) mono_on \(f A\)
shows countable \(\{a \in A\). \(\neg\) isCont \(f a\}\)
proof -
have \(\{a \in A . \neg\) isCont \(f a\}=\{a \in A . \neg(\) continuous \((\) at a within A) \(f)\}\)
by (auto simp add: continuous_within_open [OF _ <open A〉])
thus ?thesis
apply (elim ssubst)
by (rule mono_on_ctble_discont, rule assms)
qed
lemma mono_ctble_discont:
fixes \(f::\) real \(\Rightarrow\) real
assumes mono \(f\)
shows countable \(\{a\). \(\neg\) isCont \(f a\}\)
using assms mono_on_ctble_discont [off UNIV] unfolding mono_on_def mono_def
by auto
lemma has_real_derivative_imp_continuous_on:
assumes \(\Lambda x . x \in A \Longrightarrow\left(f\right.\) has_real_derivative \(\left.f^{\prime} x\right)(\) at \(x)\)
shows continuous_on \(A f\)
apply (intro differentiable_imp_continuous_on, unfold differentiable_on_def)
using assms differentiable_at_withinI real_differentiable_def by blast
lemma continuous_interval_vimage_Int:
assumes continuous_on \(\{a:: r e a l . . b\} g\) and mono: \(\wedge x y . a \leq x \Longrightarrow x \leq y \Longrightarrow\) \(y \leq b \Longrightarrow g x \leq g y\)
assumes \(a \leq b(c::\) real \() \leq d\{c . . d\} \subseteq\{g a . . g b\}\)
obtains \(c^{\prime} d^{\prime}\) where \(\{a . . b\} \cap g-‘\{c . . d\}=\left\{c^{\prime} . . d^{\prime}\right\} c^{\prime} \leq d^{\prime} g c^{\prime}=c g d^{\prime}=d\) proof-
let \(? A=\{a . . b\} \cap g-‘\{c . . d\}\)
from \(I V T^{\prime}\left[\right.\) of \(g\) a c \(\left.b, O F_{-}\langle a \leq b\rangle \operatorname{assms}(1)\right] \operatorname{assms}(4,5)\)
obtain \(c^{\prime \prime}\) where \(c^{\prime \prime}: c^{\prime \prime} \in ? A g c^{\prime \prime}=c\) by auto
from \(I V T^{\prime}\left[\right.\) of \(g\) a \(\left.d b, O F_{\ldots}\langle a \leq b\rangle \operatorname{assms}(1)\right] \operatorname{assms}(4,5)\)
obtain \(d^{\prime \prime}\) where \(d^{\prime \prime}: d^{\prime \prime} \in ? A g d^{\prime \prime}=d\) by auto
hence \([\) simp \(]: ? A \neq\{ \}\) by blast
define \(c^{\prime}\) where \(c^{\prime}=\operatorname{Inf} ? A\)
define \(d^{\prime}\) where \(d^{\prime}=\) Sup ?A
have \(? A \subseteq\left\{c^{\prime} . . d^{\prime}\right\}\) unfolding \(c^{\prime}{ }_{-}\)def \(d^{\prime}{ }^{\prime}\) def
by (intro subsetI) (auto intro: cInf_lower cSup_upper)
moreover from assms have closed?A
using continuous_on_closed_vimage \([o f\{a . . b\} g]\) by (subst Int_commute) simp
hence \(c^{\prime} d^{\prime}\) _in_set: \(c^{\prime} \in ? A d^{\prime} \in ? A\) unfolding \(c^{\prime}\) _def \(d^{\prime}{ }_{-} d e f\)
by ((intro closed_contains_Inf closed_contains_Sup, simp_all) []\()+\)
hence \(\left\{c^{\prime} . . d^{\prime}\right\} \subseteq\) ? \(A\) using assms
by (intro subsetI)
(auto intro!: order_trans[of \(c g c^{\prime} g x\) for \(\left.x\right]\) order_trans \(\left[o f g x g d^{\prime} d\right.\) for \(\left.x\right]\) intro!: mono)
moreover have \(c^{\prime} \leq d^{\prime}\) using \(c^{\prime} d^{\prime} \_\)_in_set(2) unfolding \(c^{\prime}\) _def by (intro cInf_lower)
auto
moreover have \(g c^{\prime} \leq c g d^{\prime} \geq d\) apply (insert \(c^{\prime \prime} d^{\prime \prime} c^{\prime} d^{\prime} \_\)in_set)
apply (subst \(c^{\prime \prime}(2)[\) symmetric \(]\) )
apply (auto simp: \(c^{\prime}\) _def intro!: mono cInf_lower \(c^{\prime \prime}\) ) []
apply (subst \(d^{\prime \prime}(2)[\) symmetric \(]\) )
apply (auto simp: \(d^{\prime}{ }_{-}\)def intro!: mono cSup_upper \(d^{\prime \prime}\) ) [] done
with \(c^{\prime} d^{\prime}\) _in_set have \(g c^{\prime}=c g d^{\prime}=d\) by auto
ultimately show ?thesis using that by blast
qed

\subsection*{6.5.1 Generic Borel spaces}
definition (in topological_space) borel :: 'a measure where borel \(=\) sigma UNIV \(\{S\). open \(S\}\)
abbreviation borel_measurable \(M \equiv\) measurable \(M\) borel
lemma in_borel_measurable: \(f \in\) borel_measurable \(M \longleftrightarrow\)

```

 by (auto simp add: measurable_def borel_def)
 lemma in_borel_measurable_borel:
f\in borel_measurable M\longleftrightarrow
(\forallS\in sets borel.
f -'S\cap space M G sets M)
by (auto simp add: measurable_def borel_def)
lemma space_borel[simp]: space borel = UNIV
unfolding borel_def by auto
lemma space_in_borel[measurable]:UNIV \in sets borel
unfolding borel_def by auto
lemma sets_borel: sets borel = sigma_sets UNIV {S. open S}
unfolding borel_def by (rule sets_measure_of) simp
lemma measurable_sets_borel:
\llbracket f \in measurable borel M ; A \in sets M \rrbracket \Longrightarrow f - ` A \in ~ s e t s ~ b o r e l ~
by (drule (1) measurable_sets) simp

```
lemma pred_Collect_borel[measurable (raw)]: Measurable.pred borel \(P \Longrightarrow\{x . P\)
\(x\} \in\) sets borel
    unfolding borel_def pred_def by auto
lemma borel_open[measurable (raw generic)]:
    assumes open \(A\) shows \(A \in\) sets borel
proof -
    have \(A \in\{S\). open \(S\}\) unfolding mem_Collect_eq using assms.
    thus ?thesis unfolding borel_def by auto
qed
lemma borel_closed[measurable (raw generic)]:
    assumes closed \(A\) shows \(A \in\) sets borel
proof -
    have space borel \(-(-A) \in\) sets borel
        using assms unfolding closed_def by (blast intro: borel_open)
    thus ?thesis by simp
qed
lemma borel_singleton[measurable]:
    \(A \in\) sets borel \(\Longrightarrow\) insert \(x A \in\) sets (borel :: 'a::t1_space measure)
    unfolding insert_def by (rule sets.Un) auto
lemma sets_borel_eq_count_space: sets (borel :: 'a::\{countable, t2_space\} measure)
= count_space UNIV
proof -
    have \((\bigcup a \in A .\{a\}) \in\) sets borel for \(A::\) 'a set
```

 by (intro sets.countable_UN') auto
 then show ?thesis
 by auto
 qed
lemma borel_comp[measurable]: A E sets borel \Longrightarrow-A\in sets borel
unfolding Compl_eq_Diff_UNIV by simp
lemma borel_measurable_vimage:
fixes f :: 'a = 'x::t2_space
assumes borel[measurable]: f\in borel_measurable M
shows }f-`{x}\cap\mathrm{ space M}\in\mathrm{ sets M by simp lemma borel_measurableI: fixes f :: ' }a>>'\\mathrm{ 'x::topological_space assumes }\S\mathrm{ . open }S\Longrightarrowf-`S\cap\mathrm{ space M }M\mathrm{ sets M
shows f}\in\mathrm{ borel_measurable M
unfolding borel_def
proof (rule measurable_measure_of, simp_all)

```

```

 using assms[of S] by simp
 qed
lemma borel_measurable_const:
(\lambdax.c) \in borel_measurable M
by auto
lemma borel_measurable_indicator:
assumes A: A\in sets M
shows indicator }A\in\mathrm{ borel_measurable M
unfolding indicator_def [abs_def] using A
by (auto intro!: measurable_If_set)
lemma borel_measurable_count_space[measurable (raw)]:
f\in borel_measurable (count_space S)
unfolding measurable_def by auto
lemma borel_measurable_indicator'[measurable (raw)]:
assumes [measurable]: {x\inspace M.fx\inA x} \in sets M
shows (\lambdax. indicator (Ax) (fx)) \in borel_measurable M
unfolding indicator_def[abs_def]
by (auto intro!: measurable_If)
lemma borel_measurable_indicator_iff:
(indicator A :: ' }a>\mp@subsup{}{}{\prime}\times\mathrm{ ' ::{t1_space, zero_neq_one}) }\in\mathrm{ borel_measurable }M\longleftrightarrow
~space M \in sets M
(is ?I \in borel_measurable M\longleftrightarrow _)
proof

```
```

 assume ?I \(\in\) borel_measurable \(M\)
 then have ? \(I-‘\{1\} \cap\) space \(M \in\) sets \(M\)
 unfolding measurable_def by auto
 also have ? \(I-‘\{1\} \cap\) space \(M=A \cap\) space \(M\)
 unfolding indicator_def [abs_def] by auto
 finally show \(A \cap\) space \(M \in\) sets \(M\).
 next
assume $A \cap$ space $M \in$ sets M
moreover have ?I \in borel_measurable $M \longleftrightarrow$
(indicator $(A \cap$ space $\left.M)::{ }^{\prime} a \Rightarrow^{\prime} x\right) \in$ borel_measurable M
by (intro measurable_cong) (auto simp: indicator_def)
ultimately show ?I \in borel_measurable M by auto
qed
lemma borel_measurable_subalgebra:
assumes sets $N \subseteq$ sets M space $N=$ space $M f \in$ borel_measurable N
shows $f \in$ borel_measurable M
using assms unfolding measurable_def by auto
lemma borel_measurable_restrict_space_iff_ereal:
fixes $f::$ ' $a \Rightarrow$ ereal
assumes $\Omega[$ measurable, simp $]: \Omega \cap$ space $M \in$ sets M
shows $f \in$ borel_measurable (restrict_space $M \Omega$) \longleftrightarrow
($\lambda x . f x *$ indicator $\Omega x) \in$ borel_measurable M
by (subst measurable_restrict_space_iff)
(auto simp: indicator_def if_distrib[where $f=\lambda x . a * x$ for $a]$ cong del:
if_weak_cong)
lemma borel_measurable_restrict_space_iff_ennreal:
fixes $f::{ }^{\prime} a \Rightarrow$ ennreal
assumes $\Omega[$ measurable, simp $]: \Omega \cap$ space $M \in$ sets M
shows $f \in$ borel_measurable (restrict_space $M \Omega$) \longleftrightarrow
$(\lambda x . f x *$ indicator $\Omega x) \in$ borel_measurable M
by (subst measurable_restrict_space_iff)
(auto simp: indicator_def if_distrib[where $f=\lambda x . a * x$ for $a]$ cong del:
if_weak_cong)
lemma borel_measurable_restrict_space_iff:
fixes $f::{ }^{\prime} a \Rightarrow$ ' $b::$ real_normed_vector
assumes $\Omega[$ measurable, simp $]: \Omega \cap$ space $M \in$ sets M
shows $f \in$ borel_measurable (restrict_space $M \Omega$) \longleftrightarrow
$\left(\lambda x\right.$. indicator $\left.\Omega x *_{R} f x\right) \in$ borel_measurable M
by (subst measurable_restrict_space_iff)
(auto simp: indicator_def if_distrib[where $f=\lambda x . x *_{R} a$ for $\left.a\right]$ ac_simps
cong del: if_weak_cong)
lemma cbox_borel[measurable]: cbox a b \in sets borel
by (auto intro: borel_closed)

```
lemma box_borel[measurable]: box a \(b \in\) sets borel
by (auto intro: borel_open)
lemma borel_compact: compact ( \(A::\) 'a::t2_space set) \(\Longrightarrow A \in\) sets borel
by (auto intro: borel_closed dest!: compact_imp_closed)
lemma borel_sigma_sets_subset:
\(A \subseteq\) sets borel \(\Longrightarrow\) sigma_sets UNIV \(A \subseteq\) sets borel
using sets.sigma_sets_subset[of A borel] by simp
lemma borel_eq_sigmaI1:
fixes \(F::{ }^{\prime} i \Rightarrow{ }^{\prime} a\) ::topological_space set and \(X\) :: ' \(a::\) topological_space set set
assumes borel_eq: borel \(=\) sigma UNIV X
assumes \(X: \bigwedge x . x \in X \Longrightarrow x \in \operatorname{sets}\left(\operatorname{sigma} \operatorname{UNIV}\left(F^{\prime} A\right)\right)\)
assumes \(F: \bigwedge i . i \in A \Longrightarrow F i \in\) sets borel
shows borel \(=\) sigma \(\operatorname{UNIV}(F ‘ A)\)
unfolding borel_def
proof (intro sigma_eqI antisym)
have borel_rev_eq: sigma_sets UNIV \(\{S\) ::'a set. open \(S\}=\) sets borel unfolding borel_def by simp
also have ... = sigma_sets UNIV X unfolding borel_eq by simp
also have \(\ldots \subseteq\) sigma_sets UNIV \(\left(F^{\prime} A\right)\)
using \(X\) by (intro sigma_algebra.sigma_sets_subset[OF sigma_algebra_sigma_sets])
auto
finally show sigma_sets UNIV \(\{S\). open \(S\} \subseteq\) sigma_sets UNIV \(\left(F^{‘} A\right)\).
show sigma_sets UNIV \(\left(F^{‘} A\right) \subseteq\) sigma_sets UNIV \{S. open \(\left.S\right\}\)
unfolding borel_rev_eq using \(F\) by (intro borel_sigma_sets_subset) auto
qed auto
lemma borel_eq_sigmaI2:
fixes \(F::{ }^{\prime} i \Rightarrow{ }^{\prime} j \Rightarrow{ }^{\prime} a::\) topological_space set and \(G::{ }^{\prime} l \Rightarrow{ }^{\prime} k \Rightarrow{ }^{\prime} a::\) topological_space set
assumes borel_eq: borel \(=\) sigma UNIV \(\left((\lambda(i, j) . G i j)^{`} B\right)\)
assumes \(X: \bigwedge i j .(i, j) \in B \Longrightarrow G i j \in \operatorname{sets}(\) sigma \(\operatorname{UNIV}((\lambda(i, j) . F i j)\) '
A))
assumes \(F: \bigwedge i j .(i, j) \in A \Longrightarrow F i j \in\) sets borel
shows borel \(=\) sigma \(\operatorname{UNIV}((\lambda(i, j) . F i j)\) ' \(A)\)
using assms
by (intro borel_eq_sigmaI1[where \(X=(\lambda(i, j) . G i j)\) ' \(B\) and \(F=(\lambda(i, j) . F i\)
j)]) auto
lemma borel_eq_sigmaI3:
fixes \(F:: ' i \Rightarrow{ }^{\prime} j \Rightarrow{ }^{\prime} a::\) topological_space set and \(X\) :: ' \(a::\) topological_space set set
assumes borel_eq: borel \(=\) sigma UNIV \(X\)
assumes \(X: \bigwedge x . x \in X \Longrightarrow x \in\) sets (sigma \(\operatorname{UNIV}((\lambda(i, j) . F i j)\) ' \(A))\)
assumes \(F: \bigwedge i j .(i, j) \in A \Longrightarrow F i j \in\) sets borel
shows borel \(=\) sigma \(\operatorname{UNIV}((\lambda(i, j) . F i j) ' A)\)
using assms by (intro borel_eq_sigmaI1 \([\) where \(X=X\) and \(F=(\lambda(i, j) . F i j)])\) auto
lemma borel_eq_sigmaI4:
fixes \(F::\) ' \(i \Rightarrow\) 'a::topological_space set
and \(G::{ }^{\prime} l \Rightarrow{ }^{\prime} k \Rightarrow{ }^{\prime} a::\) topological_space set
assumes borel_eq: borel \(=\) sigma \(\operatorname{UNIV}\left((\lambda(i, j) . G i j)^{`} A\right)\)
assumes \(X: \bigwedge i j .(i, j) \in A \Longrightarrow G i j \in\) sets \((\) sigma UNIV (range \(F))\)
assumes \(F: \bigwedge i . F i \in\) sets borel
shows borel \(=\) sigma UNIV \((\) range \(F)\)
using assms by (intro borel_eq_sigmaI1[where \(X=(\lambda(i, j) . G\) i j)' \(A\) and \(F=F]\) ) auto
lemma borel_eq_sigmaI5:
fixes \(F::{ }^{\prime} i \Rightarrow{ }^{\prime} j \Rightarrow{ }^{\prime} a::\) topological_space set and \(G::{ }^{\prime} l \Rightarrow{ }^{\prime} a::\) topological_space set
assumes borel_eq: borel \(=\) sigma UNIV \((\) range \(G)\)
assumes \(X: \bigwedge i . G i \in \operatorname{sets}(\operatorname{sigma} \operatorname{UNIV}(\operatorname{range}(\lambda(i, j) . F i j)))\)
assumes \(F: \bigwedge i j . F i j \in\) sets borel
shows borel \(=\) sigma \(\operatorname{UNIV}(\) range \((\lambda(i, j) . F i j))\)
using assms by (intro borel_eq_sigmaI1[where \(X=\) range \(G\) and \(F=(\lambda(i, j) . F\)
i j)]) auto
theorem second_countable_borel_measurable:
fixes \(X\) :: ' \(a::\) second_countable_topology set set
assumes eq: open \(=\) generate_topology \(X\)
shows borel \(=\) sigma UNIV X
unfolding borel_def
proof (intro sigma_eqI sigma_sets_eqI)
interpret \(X\) : sigma_algebra UNIV sigma_sets UNIV X
by (rule sigma_algebra_sigma_sets) simp
fix \(S\) :: 'a set assume \(S \in\) Collect open
then have generate_topology \(X S\)
by (auto simp: eq)
then show \(S \in\) sigma_sets UNIV X
proof induction
case (UN K)
then have \(K: \bigwedge k . k \in K \Longrightarrow\) open \(k\)
unfolding eq by auto
from ex_countable_basis obtain \(B\) :: ' \(a\) set set where
\(B: \bigwedge b . b \in B \Longrightarrow\) open \(b \bigwedge X\). open \(X \Longrightarrow \exists b \subseteq B .(\bigcup b)=X\) and countable
B
by (auto simp: topological_basis_def)
from \(B(2)[O F K]\) obtain \(m\) where \(m: \wedge k . k \in K \Longrightarrow m k \subseteq B \bigwedge k . k \in K\) \(\Longrightarrow \bigcup(m k)=k\)
by metis
define \(U\) where \(U=(\bigcup k \in K . m k)\)
with \(m\) have countable \(U\)
```

 by (intro countable_subset[OF _ \countable B`]) auto
 have }\bigcupU=(\bigcupA\inU.A) by sim
 also have ... = \bigcupK
 unfolding U_def UN_simps by (simp add:m)
 finally have }\bigcupU=\bigcupK
 have }\forallb\inU.\existsk\inK.b\subseteq
 using m by (auto simp: U_def)
 then obtain u where }u:\b.b\inU\Longrightarrowub\inK\mathrm{ and }\b.b\inU\Longrightarrowb\subseteq
 b
by metis
then have (\bigcupb\inU.ub)\subseteq\bigcupK\bigcupU\subseteq(\bigcupb\inU.ub)
by auto
then have }\bigcupK=(\bigcupb\inU.ub
unfolding \UU=\bigcupK` by auto also have ... \in sigma_sets UNIV X using u UN by (intro X.countable_UN'\countable U`) auto
finally show }\bigcupK\in\mathrm{ sigma_sets UNIV X .
qed auto
qed (auto simp: eq intro: generate_topology.Basis)
lemma borel_eq_closed: borel = sigma UNIV (Collect closed)
unfolding borel_def
proof (intro sigma_eqI sigma_sets_eqI, safe)
fix x :: 'a set assume open x
hence }x=UNIV - (UNIV - x) by aut
also have ... \in sigma_sets UNIV (Collect closed)
by (force intro: sigma_sets.Compl simp: <open x〉)
finally show }x\in\mathrm{ sigma_sets UNIV (Collect closed) by simp
next
fix x :: 'a set assume closed x
hence }x=UNIV - (UNIV - x) by aut
also have ... \in sigma_sets UNIV (Collect open)
by (force intro: sigma_sets.Compl simp:\closed x〉)
finally show }x\in\mathrm{ sigma_sets UNIV (Collect open) by simp
qed simp_all
proposition borel_eq_countable_basis:
fixes B::'a::topological_space set set
assumes countable B
assumes topological_basis B
shows borel = sigma UNIV B
unfolding borel_def
proof (intro sigma_eqI sigma_sets_eqI, safe)
interpret countable_basis open B using assms by (rule countable_basis_openI)
fix X::'a set assume open X
from open_countable_basisE[OF this] obtain }\mp@subsup{B}{}{\prime}\mathrm{ where }\mp@subsup{B}{}{\prime}:\mp@subsup{B}{}{\prime}\subseteqBX=\bigcup \ B'
then show }X\in\mathrm{ sigma_sets UNIV B

```
```

 by (blast intro: sigma_sets_UNION <countable B> countable_subset)
 next
fix b assume b}\in
hence open b by (rule topological_basis_open[OF assms(2)])
thus b \in sigma_sets UNIV (Collect open) by auto
qed simp_all
lemma borel_measurable_continuous_on_restrict:
fixes f :: 'a::topological_space = 'b::topological_space
assumes f:continuous_on A f
shows f}\in\mathrm{ borel_measurable (restrict_space borel A)
proof (rule borel_measurableI)
fix S :: 'b set assume open S
with f obtain T where f-' S\capA=T\capA open T
by (metis continuous_on_open_invariant)
then show f-'S\cap space (restrict_space borel A) \in sets (restrict_space borel A)
by (force simp add: sets_restrict_space space_restrict_space)
qed
lemma borel_measurable_continuous_onI: continuous_on UNIV f\Longrightarrowf\in borel_measurable
borel
by (drule borel_measurable_continuous_on_restrict) simp
lemma borel_measurable_continuous_on_if:
A sets borel \Longrightarrow continuous_on A f \Longrightarrow continuous_on (-A)g\Longrightarrow
(}\lambdax\mathrm{ . if }x\inA\mathrm{ then fx else g x) }\in\mathrm{ borel_measurable borel
by (auto simp add: measurable_If_restrict_space_iff Collect_neg_eq
intro!: borel_measurable_continuous_on_restrict)
lemma borel_measurable_continuous_countable_exceptions:
fixes f :: 'a::t1_space => 'b::topological_space
assumes X: countable X
assumes continuous_on (-X)f
shows f\in borel_measurable borel
proof (rule measurable_discrete_difference[OF _ X])
have }X\in\mathrm{ sets borel
by (rule sets.countable[OF _ X]) auto
then show (}\lambdax\mathrm{ . if }x\inX\mathrm{ then undefined else f x)
by (intro borel_measurable_continuous_on_if assms continuous_intros)
qed auto
lemma borel_measurable_continuous_on:
assumes f:continuous_on UNIV f and g:g}\in\mathrm{ borel_measurable M
shows (\lambdax.f(gx)) \in borel_measurable M
using measurable_comp[OF g borel_measurable_continuous_onI[OF f]] by (simp
add: comp_def)
lemma borel_measurable_continuous_on_indicator:
fixes f g :: 'a::topological_space => 'b::real_normed_vector

```
```

 shows \(A \in\) sets borel \(\Longrightarrow\) continuous_on \(A f \Longrightarrow\left(\lambda x\right.\). indicator \(\left.A x *_{R} f x\right) \in\)
 borel_measurable borel
by (subst borel_measurable_restrict_space_iff [symmetric])
(auto intro: borel_measurable_continuous_on_restrict)
lemma borel_measurable_Pair[measurable (raw)]:
fixes $f::{ }^{\prime} a \Rightarrow{ }^{\prime} b::$ second_countable_topology and $g::{ }^{\prime} a \Rightarrow^{\prime} c::$ second_countable_topology
assumes $f[$ measurable $]: f \in$ borel_measurable M
assumes $g[$ measurable $]: g \in$ borel_measurable M
shows $(\lambda x .(f x, g x)) \in$ borel_measurable M
proof (subst borel_eq_countable_basis)
let ? $B=S O M E B::^{\prime} b$ set set. countable $B \wedge$ topological_basis B
let ? $C=S O M E B::^{\prime} c$ set set. countable $B \wedge$ topological_basis B
let ? $P=(\lambda(b, c) . b \times c)$ ' $(? B \times ? C)$
show countable ?P topological_basis ?P
by (auto intro!: countable_basis topological_basis_prod is_basis)
show $(\lambda x .(f x, g x)) \in$ measurable $M($ sigma UNIV ?P)
proof (rule measurable_measure_of)
fix S assume $S \in$? P
then obtain $b c$ where $b \in ? B c \in ? C$ and $S: S=b \times c$ by auto
then have borel: open b open c
by (auto intro: is_basis topological_basis_open)
have $(\lambda x .(f x, g x))-^{\prime} S \cap$ space $M=(f-‘ b \cap$ space $M) \cap\left(g-{ }^{\prime} c \cap\right.$ space
M)
unfolding S by auto
also have ... \in sets M
using borel by simp
finally show $(\lambda x .(f x, g x))-' S \cap$ space $M \in$ sets M.
qed auto
qed
lemma borel_measurable_continuous_Pair:
fixes $f::{ }^{\prime} a \Rightarrow{ }^{\prime} b::$ second_countable_topology and $g::{ }^{\prime} a \Rightarrow^{\prime} c::$ second_countable_topology
assumes [measurable]: $f \in$ borel_measurable M
assumes [measurable]: $g \in$ borel_measurable M
assumes H : continuous_on UNIV (λx. H (fst $x)($ snd $x)$)
shows $(\lambda x . H(f x)(g x)) \in$ borel_measurable M
proof -
have eq: $(\lambda x . H(f x)(g x))=(\lambda x .(\lambda x . H(f s t x)(s n d x))(f x, g x))$ by auto
show ?thesis
unfolding eq by (rule borel_measurable_continuous_on $[O F H]$) auto
qed

```

\subsection*{6.5.2 Borel spaces on order topologies}
lemma [measurable]:
fixes \(a b\) :: ' \(a::\) :linorder_topology
shows lessThan_borel: \(\{. .<a\} \in\) sets borel
and greaterThan_borel: \(\{a<..\} \in\) sets borel
and greaterThanLessThan_borel: \(\{a<. .<b\} \in\) sets borel
and atMost_borel: \(\{. . a\} \in\) sets borel
and atLeast_borel: \(\{a ..\} \in\) sets borel
and atLeastAtMost_borel: \(\{a . . b\} \in\) sets borel
and greaterThanAtMost_borel: \(\{a<. . b\} \in\) sets borel
and atLeastLessThan_borel: \(\{a . .<b\} \in\) sets borel
unfolding greaterThanAtMost_def atLeastLessThan_def
by (blast intro: borel_open borel_closed open_lessThan open_greaterThan open_greaterThanLessThan closed_atMost closed_atLeast closed_atLeastAtMost)+
```

lemma borel_Iio:
borel = sigma UNIV (range lessThan :: 'a::{linorder_topology, second_countable_topology}
set set)
unfolding second_countable_borel_measurable[OF open_generated_order]
proof (intro sigma_eqI sigma_sets_eqI)
from countable_dense_setE guess D :: 'a set . note D = this
interpret L: sigma_algebra UNIV sigma_sets UNIV (range lessThan)
by (rule sigma_algebra_sigma_sets) simp
fix A :: 'a set assume A\in range lessThan }\cup\mathrm{ range greaterThan
then obtain }y\mathrm{ where }A={y<..}\veeA={..<y
by blast
then show A\in sigma_sets UNIV (range lessThan)
proof
assume A:A={y<..}
show ?thesis
proof cases
assume }\forallx>y.\existsd.y<d\wedged<
with D(2)[of {y<..< x} for x] have }\forallx>y.\existsd\inD.y<d\wedged<
by (auto simp: set_eq_iff)
then have A=UNIV - (\bigcapd\in{d\inD.y<d}.{..<d})
by (auto simp: A) (metis less_asym)
also have ... \in sigma_sets UNIV (range lessThan)
using D(1) by (intro L.Diff L.top L.countable_INT') auto
finally show ?thesis.
next
assume }\neg(\forallx>y.\existsd.y<d\wedged<x
then obtain x where }y<x\bigwedged.y<d\Longrightarrow\negd<
by auto
then have A=UNIV - {..<x}
unfolding A by (auto simp: not_less[symmetric])
also have ... \in sigma_sets UNIV (range lessThan)
by auto
finally show ?thesis.
qed
qed auto
qed auto

```
```

lemma borel_Ioi:
borel = sigma UNIV (range greaterThan :: 'a::{linorder_topology, second_countable_topology}
set set)
unfolding second_countable_borel_measurable[OF open_generated_order]
proof (intro sigma_eqI sigma_sets_eqI)
from countable_dense_setE guess D :: 'a set . note D = this
interpret L: sigma_algebra UNIV sigma_sets UNIV (range greaterThan)
by (rule sigma_algebra_sigma_sets) simp
fix A :: 'a set assume }A\in\mathrm{ range lessThan }\cup\mathrm{ range greaterThan
then obtain }y\mathrm{ where }A={y<..}\veeA={..<y
by blast
then show A E sigma_sets UNIV (range greaterThan)
proof
assume A: A = {..<y}
show ?thesis
proof cases
assume }\forallx<y.\existsd.x<d\wedged<

```

```

 by (auto simp: set_eq_iff)
 then have A=UNIV - (\bigcapd\in{d\inD.d<y}.{d<..})
 by (auto simp:A) (metis less_asym)
 also have ... \in sigma_sets UNIV (range greaterThan)
 using D(1) by (intro L.Diff L.top L.countable_INT'\prime) auto
 finally show ?thesis.
 next
 assume }\neg(\forallx<y.\existsd.x<d\wedged<y
 then obtain x where }x<y\bigwedged.y>d\Longrightarrowx\geq
 by (auto simp: not_less[symmetric])
 then have A=UNIV - {x<..}
 unfolding A Compl_eq_Diff_UNIV[symmetric] by auto
 also have ... \in sigma_sets UNIV (range greaterThan)
 by auto
 finally show ?thesis.
 qed
 qed auto
 qed auto
lemma borel_measurableI_less:
fixes f :: ' }a>>'\mp@code{'b:{{linorder_topology, second_countable_topology}
shows (\bigwedgey.{x\inspace M.fx<y}\in sets M)\Longrightarrowf\in borel_measurable M
unfolding borel_Iio
by (rule measurable_measure_of) (auto simp: Int_def conj_commute)
lemma borel_measurableI_greater:
fixes f :: ' }a=>\mathrm{ 'b::{linorder_topology, second_countable_topology}
shows (\bigwedgey. {x\inspace M. y<fx}\in sets M)\Longrightarrowf\in borel_measurable M

```
```

unfolding borel_Ioi
by (rule measurable_measure_of) (auto simp: Int_def conj_commute)
lemma borel_measurableI_le:
fixes $f::{ }^{\prime} a \Rightarrow$ ' $b::\{$ linorder_topology, second_countable_topology\}
shows $(\bigwedge y .\{x \in$ space $M . f x \leq y\} \in$ sets $M) \Longrightarrow f \in$ borel_measurable M
by (rule borel_measurableI_greater) (auto simp: not_le[symmetric])
lemma borel_measurableI_ge:
fixes $f::$ ' $a \Rightarrow$ ' $b::\{$ linorder_topology, second_countable_topology\}
shows $(\bigwedge y .\{x \in$ space $M . y \leq f x\} \in$ sets $M) \Longrightarrow f \in$ borel_measurable M
by (rule borel_measurableI_less) (auto simp: not_le[symmetric])
lemma borel_measurable_less[measurable]:
fixes $f::$ ' $a \Rightarrow$ ' $b::\{$ second_countable_topology, linorder_topology\}
assumes $f \in$ borel_measurable M
assumes $g \in$ borel_measurable M
shows $\{w \in$ space $M . f w<g w\} \in$ sets M
proof -
have $\{w \in$ space $M . f w<g w\}=(\lambda x .(f x, g x))-‘\{x . f s t x<\operatorname{snd} x\} \cap$ space
M
by auto
also have ... \in sets M
by (intro measurable_sets[OF borel_measurable_Pair borel_open, OF assms open_Collect_less]
continuous_intros)
finally show? ?thesis .
qed
lemma
fixes $f::$ ' $a \Rightarrow$ ' $b::\{$ second_countable_topology, linorder_topology $\}$
assumes $f[$ measurable $]: f \in$ borel_measurable M
assumes $g[$ measurable $]: g \in$ borel_measurable M
shows borel_measurable_le[measurable]: $\{w \in$ space $M . f w \leq g w\} \in$ sets M
and borel_measurable_eq[measurable]: $\{w \in$ space $M . f w=g w\} \in$ sets M
and borel_measurable_neq: $\{w \in$ space $M . f w \neq g w\} \in$ sets M
unfolding eq_iff not_less[symmetric]
by measurable
lemma borel_measurable_SUP[measurable (raw)]:
fixes $F::{ }_{-} \Rightarrow_{-} \Rightarrow_{-}:\{$complete_linorder, linorder_topology, second_countable_topology $\}$
assumes [simp]: countable I
assumes [measurable]: $\bigwedge i . i \in I \Longrightarrow F i \in$ borel_measurable M
shows (λx. SUP $i \in I$. Fix) \in borel_measurable M
by (rule borel_measurableI_greater) (simp add: less_SUP_iff)
lemma borel_measurable_INF[measurable (raw)]:
fixes $F:: \boldsymbol{Z}_{-} \Rightarrow_{\text {_ }}:\{$ complete_linorder, linorder_topology, second_countable_topology $\}$
assumes [simp]: countable I
assumes [measurable]: $\bigwedge i . i \in I \Longrightarrow F i \in$ borel_measurable M

```
```

shows (λx. INF $i \in I$. $F i x) \in$ borel_measurable M
by (rule borel_measurableI_less) (simp add: INF_less_iff)
lemma borel_measurable_cSUP[measurable (raw)]:
fixes $F:: \boldsymbol{\beta}_{-} \Rightarrow^{\prime} a::\{$ conditionally_complete_linorder, linorder_topology, sec-
ond_countable_topology\}
assumes [simp]: countable I
assumes [measurable]: $\bigwedge i . i \in I \Longrightarrow F i \in$ borel_measurable M
assumes bdd: $\bigwedge x . x \in$ space $M \Longrightarrow$ bdd_above $\left((\lambda i . F i x)^{\prime} I\right)$
shows $(\lambda x$. SUP $i \in I$. Fix) \in borel_measurable M
proof cases
assume $I=\{ \}$ then show ?thesis
unfolding $\langle I=\{ \}\rangle$ image_empty by simp
next
assume $I \neq\{ \}$
show ?thesis
proof (rule borel_measurableI_le)
fix y
have $\{x \in$ space $M . \forall i \in I . F i x \leq y\} \in$ sets M
by measurable
also have $\{x \in$ space $M . \forall i \in I . F i x \leq y\}=\{x \in$ space $M .(S U P i \in I . F i$
$x) \leq y\}$
by (simp add: cSUP_le_iff $\langle I \neq\{ \}\rangle$ bdd cong: conj_cong)
finally show $\{x \in$ space $M .(S U P i \in I . F i x) \leq y\} \in$ sets M.
qed
qed
lemma borel_measurable_cINF[measurable (raw)]:
fixes $F:: Z_{-} \Rightarrow^{\prime} a::\{$ conditionally_complete_linorder, linorder_topology, sec-
ond_countable_topology\}
assumes [simp]: countable I
assumes [measurable]: $\bigwedge i . i \in I \Longrightarrow F i \in$ borel_measurable M
assumes bdd: $\bigwedge x . x \in$ space $M \Longrightarrow$ bdd_below $\left((\lambda i . F i x)^{\prime} I\right)$
shows $(\lambda x$. INF $i \in I$. Fix) \in borel_measurable M
proof cases
assume $I=\{ \}$ then show ?thesis
unfolding $\langle I=\{ \}\rangle$ image_empty by simp
next
assume $I \neq\{ \}$
show ?thesis
proof (rule borel_measurableI_ge)
fix y
have $\{x \in$ space $M . \forall i \in I . y \leq F i x\} \in$ sets M
by measurable
also have $\{x \in$ space $M . \forall i \in I . y \leq F i x\}=\{x \in$ space M. $y \leq($ INF $i \in I$.
$F i x)\}$
by (simp add: le_cINF_iff $\langle I \neq\{ \}\rangle$ bdd cong: conj_cong)
finally show $\{x \in$ space $M . y \leq(I N F i \in I . F i x)\} \in$ sets M.
qed

```

\section*{qed}
lemma borel_measurable_lfp[consumes 1, case_names continuity step]:
fixes \(F::\left({ }^{\prime} a \Rightarrow{ }^{\prime} b\right) \Rightarrow\left(' a \Rightarrow{ }^{\prime} b::\{\right.\) complete_linorder, linorder_topology, second_countable_topology\})
assumes sup_continuous \(F\)
assumes \(*: \bigwedge f . f \in\) borel_measurable \(M \Longrightarrow F f \in\) borel_measurable \(M\)
shows lfp \(F \in\) borel_measurable \(M\)
proof -
\{ fix \(i\) have \(\left(\left(F^{\wedge `} i\right)\right.\) bot \() \in\) borel_measurable \(M\)
by (induct \(i\) ) (auto intro!: *) \}
then have \(\left(\lambda x . S U P i .\left(F^{\wedge}\right.\right.\) i) bot \(\left.x\right) \in\) borel_measurable \(M\) by measurable
also have ( \(\lambda x . S U P\) i. \(\left(F^{\wedge}\right.\) ^ \(\left.i\right)\) bot \(\left.x\right)=\left(S U P\right.\) i. \(\left(F^{\wedge} i\right)\) bot \()\)
by (auto simp add: image_comp)
also have (SUP i. ( \(\left.F^{\wedge `} i\right)\) bot) \(=l f p F\)
by (rule sup_continuous_lfp[symmetric]) fact
finally show ?thesis .
qed
lemma borel_measurable_gfp[consumes 1, case_names continuity step]:
fixes \(F::\left({ }^{\prime} a \Rightarrow{ }^{\prime} b\right) \Rightarrow\left({ }^{\prime} a \Rightarrow{ }^{\prime} b::\{\right.\) complete_linorder, linorder_topology, sec-
ond_countable_topology\})
assumes inf_continuous \(F\)
assumes \(*: ~ \bigwedge f . f \in\) borel_measurable \(M \Longrightarrow F f \in\) borel_measurable \(M\)
shows gfp \(F \in\) borel_measurable \(M\)
proof -
\{ fix \(i\) have \(\left(\left(F^{\wedge}{ }^{\wedge} i\right)\right.\) top \() \in\) borel_measurable \(M\)
by (induct \(i\) ) (auto intro!: * simp: bot_fun_def) \}
then have \(\left(\lambda x\right.\). INF \(i .\left(F^{\wedge} i\right)\) top \(\left.x\right) \in\) borel_measurable \(M\)
by measurable
also have \(\left(\lambda x\right.\). INF \(i .\left(F^{\wedge `} i\right)\) top \(\left.x\right)=\left(I N F i .\left(F{ }^{\wedge} i\right)\right.\) top \()\) by (auto simp add: image_comp)
also have \(\ldots=g f p F\)
by (rule inf_continuous_gfp[symmetric]) fact
finally show ?thesis.
qed
lemma borel_measurable_max[measurable (raw)]:
\(f \in\) borel_measurable \(M \Longrightarrow g \in\) borel_measurable \(M \Longrightarrow(\lambda x . \max (g x)(f x)::\)
\(' b::\{\) second_countable_topology, linorder_topology\}) \(\in\) borel_measurable \(M\)
by (rule borel_measurableI_less) simp
lemma borel_measurable_min[measurable (raw)]:
\(f \in\) borel_measurable \(M \Longrightarrow g \in\) borel_measurable \(M \Longrightarrow(\lambda x \cdot \min (g x)(f x)::\)
\(' b::\{\) second_countable_topology, linorder_topology\}) \(\in\) borel_measurable \(M\)
by (rule borel_measurableI_greater) simp
lemma borel_measurable_Min[measurable (raw)]:
finite \(I \Longrightarrow(\bigwedge i . i \in I \Longrightarrow f i \in\) borel_measurable \(M) \Longrightarrow(\lambda x\). Min \(((\lambda i . f i\)
x)' \(I)::\) ' \(b::\{\) second_countable_topology, linorder_topology\}) \(\in\) borel_measurable \(M\)
proof (induct I rule: finite_induct)
case (insert i I) then show ?case
by (cases \(I=\{ \}\) ) auto
qed auto
lemma borel_measurable_Max[measurable (raw)]:
finite \(I \Longrightarrow(\bigwedge i . i \in I \Longrightarrow f i \in\) borel_measurable \(M) \Longrightarrow(\lambda x . \operatorname{Max}((\lambda i . f i\)
\(\left.x)^{\prime} I\right)::\) ' \(b::\{\) second_countable_topology, linorder_topology\}) \(\in\) borel_measurable M
proof (induct I rule: finite_induct)
case (insert i I) then show ?case
by (cases \(I=\{ \}\) ) auto
qed auto
lemma borel_measurable_sup[measurable (raw)]:
\(f \in\) borel_measurable \(M \Longrightarrow g \in\) borel_measurable \(M \Longrightarrow(\lambda x . \sup (g x)(f x)::\)
\(' b::\{\) lattice, second_countable_topology, linorder_topology\}) \(\in\) borel_measurable \(M\)
unfolding sup_max by measurable
lemma borel_measurable_inf[measurable (raw)]:
\(f \in\) borel_measurable \(M \Longrightarrow g \in\) borel_measurable \(M \Longrightarrow(\lambda x\).inf \((g x)(f x)::\)
\(' b::\{\) lattice, second_countable_topology, linorder_topology \(\}) \in\) borel_measurable \(M\)
unfolding inf_min by measurable
lemma [measurable (raw)]:
fixes \(f::\) nat \(\Rightarrow^{\prime} a \Rightarrow{ }^{\prime} b::\{\) complete_linorder, second_countable_topology, linorder_topology\}
assumes \(\bigwedge i\). fie borel_measurable \(M\)
shows borel_measurable_liminf: \((\lambda x\). liminf \((\lambda i . f i x)) \in\) borel_measurable \(M\)
and borel_measurable_limsup: \((\lambda x\). limsup \((\lambda i . f i x)) \in\) borel_measurable \(M\)
unfolding liminf_SUP_INF limsup_INF_SUP using assms by auto
lemma measurable_convergent[measurable (raw)]:
fixes \(f::\) nat \(\Rightarrow^{\prime} a \Rightarrow{ }^{\prime} b::\{\) complete_linorder, second_countable_topology, linorder_topology \}
assumes [measurable]: \(\bigwedge i . f i \in\) borel_measurable \(M\)
shows Measurable.pred \(M(\lambda x\). convergent \((\lambda i . f i x))\)
unfolding convergent_ereal by measurable
lemma sets_Collect_convergent[measurable]:
fixes \(f::\) nat \(\Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} b::\{\) complete_linorder, second_countable_topology, linorder_topology \(\}\) assumes \(f[\) measurable]: \(\bigwedge i . f i \in\) borel_measurable \(M\) shows \(\{x \in\) space \(M\). convergent \((\lambda i . f i x)\} \in\) sets \(M\)
by measurable
lemma borel_measurable_lim[measurable (raw)]:
fixes \(f::\) nat \(\Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} b::\{\) complete_linorder, second_countable_topology, linorder_topology\} assumes [measurable]: \i.fi \(i \in\) borel_measurable \(M\) shows \((\lambda x . \lim (\lambda i . f i x)) \in\) borel_measurable \(M\)
proof -
```

 have \(\wedge x . \lim (\lambda i . f i x)=(\) if convergent \((\lambda i . f i x)\) then limsup \((\lambda i . f i x)\) else
 (THE i. False))
by (simp add: lim_def convergent_def convergent_limsup_cl)
then show? ?thesis
by simp
qed
lemma borel_measurable_LIMSEQ_order:
fixes $u::$ nat $\Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} b::\{$ complete_linorder, second_countable_topology, linorder_topology\}
assumes $u^{\prime}: \bigwedge x . x \in$ space $M \Longrightarrow(\lambda i . u$ i $x) \longrightarrow u^{\prime} x$
and u : $\bigwedge i . u i \in$ borel_measurable M
shows $u^{\prime} \in$ borel_measurable M
proof -
have $\Lambda x . x \in$ space $M \Longrightarrow u^{\prime} x=\liminf (\lambda n . u n x)$
using u^{\prime} by (simp add: lim_imp_Liminf $[$ symmetric $\left.]\right)$
with u show ?thesis by (simp cong: measurable_cong)
qed

```

\subsection*{6.5.3 Borel spaces on topological monoids}
lemma borel_measurable_add[measurable (raw)]:
fixes \(f g::{ }^{\prime} a \Rightarrow\) ' \(b::\{\) second_countable_topology, topological_monoid_add \(\}\)
assumes \(f: f \in\) borel_measurable \(M\)
assumes \(g: g \in\) borel_measurable \(M\)
shows \((\lambda x . f x+g x) \in\) borel_measurable \(M\)
using \(f g\) by (rule borel_measurable_continuous_Pair) (intro continuous_intros)
lemma borel_measurable_sum[measurable (raw)]:
fixes \(f::^{\prime} c \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} b::\{\) second_countable_topology, topological_comm_monoid_add\}
assumes \(\bigwedge i . i \in S \Longrightarrow f i \in\) borel_measurable \(M\)
shows \(\left(\lambda x . \sum i \in S . f i x\right) \in\) borel_measurable \(M\)
proof cases
assume finite \(S\)
thus ?thesis using assms by induct auto
qed \(\operatorname{simp}\)
lemma borel_measurable_suminf_order[measurable (raw)]:
fixes \(f::\) nat \(\Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} b::\{\) complete_linorder, second_countable_topology, linorder_topology, topological_comm_monoid_add\}
assumes \(f[\) measurable]: \(\bigwedge i . f i \in\) borel_measurable \(M\)
shows \((\lambda x\). suminf \((\lambda i . f i x)) \in\) borel_measurable \(M\)
unfolding suminf_def sums_def[abs_def] lim_def[symmetric] by simp

\subsection*{6.5.4 Borel spaces on Euclidean spaces}
```

lemma borel_measurable_inner[measurable (raw)]:
fixes fg :: ' }a=>\mathrm{ ' 'b::{second_countable_topology,real_inner}
assumes }f\in\mathrm{ borel_measurable M
assumes g}\in\mathrm{ borel_measurable M
shows (\lambdax.fx\cdotg x)\in borel_measurable M

```
```

using assms
by (rule borel_measurable_continuous_Pair) (intro continuous_intros)
notation
eucl_less (infix <e 50)
lemma box_oc: $\{x . a<e x \wedge x \leq b\}=\{x . a<e x\} \cap\{. . b\}$
and box_co: $\{x . a \leq x \wedge x<e b\}=\{a ..\} \cap\{x . x<e b\}$
by auto
lemma eucl_ivals[measurable]:
fixes $a b$:: ' $a::$ ordered_euclidean_space
shows $\{x . x<e a\} \in$ sets borel
and $\{x . a<e x\} \in$ sets borel
and $\{. . a\} \in$ sets borel
and $\{a ..\} \in$ sets borel
and $\{a . . b\} \in$ sets borel
and $\{x . a<e x \wedge x \leq b\} \in$ sets borel
and $\{x . a \leq x \wedge x<e b\} \in$ sets borel
unfolding box_oc box_co
by (auto intro: borel_open borel_closed)
lemma
fixes $i::$ ' $a::\{$ second_countable_topology, real_inner\}
shows hafspace_less_borel: $\{x . a<x \cdot i\} \in$ sets borel
and hafspace_greater_borel: $\{x . x \cdot i<a\} \in$ sets borel
and hafspace_less_eq_borel: $\{x . a \leq x \cdot i\} \in$ sets borel
and hafspace_greater_eq_borel: $\{x . x \cdot i \leq a\} \in$ sets borel
by simp_all
lemma borel_eq_box:
borel $=$ sigma UNIV $($ range $(\lambda(a, b)$. box a $b::$ ' a :: euclidean_space set $))$
(is ${ }_{-}=?$ SIGMA)
proof (rule borel_eq_sigmaI1[OF borel_def])
fix M :: 'a set assume $M \in\{S$. open $S\}$
then have open M by simp
show $M \in$?SIGMA
apply (subst open_UNION_box[OF 〈open M〉])
apply (safe intro!: sets.countable_UN' countable_PiE countable_Collect)
apply (auto intro: countable_rat)
done
qed (auto simp: box_def)
lemma halfspace_gt_in_halfspace:
assumes $i: i \in A$
shows $\left\{x::^{\prime} a . a<x \cdot i\right\} \in$
sigma_sets UNIV $((\lambda(a, i) .\{x:: ' a::$ euclidean_space. $x \cdot i<a\})$ ' $(U N I V \times A))$
(is ?set \in ?SIGMA)
proof -

```
```

 interpret sigma_algebra UNIV ?SIGMA
 by (intro sigma_algebra_sigma_sets) simp_all
 have \(*\) : ? set \(=\left(\bigcup n . U N I V-\left\{x::^{\prime} a . x \cdot i<a+1 / \operatorname{real}(\right.\right.\) Suc \(\left.\left.n)\right\}\right)\)
 proof (safe, simp_all add: not_less del: of_nat_Suc)
 fix \(x::{ }^{\prime} a\) assume \(a<x \cdot i\)
 with reals_Archimedean[of \(x \cdot i-a\)]
 obtain \(n\) where \(a+1 / \operatorname{real}(\) Suc \(n)<x \cdot i\)
 by (auto simp: field_simps)
 then show \(\exists n . a+1 / \operatorname{real}(S u c n) \leq x \cdot i\)
 by (blast intro: less_imp_le)
 next
 fix \(x n\)
 have \(a<a+1 /\) real (Suc \(n\)) by auto
 also assume \(\ldots \leq x\)
 finally show \(a<x\).
 qed
 show ?set \(\in\) ?SIGMA unfolding *
 by (auto intro!: Diff sigma_sets_Inter i)
 qed
lemma borel_eq_halfspace_less:
borel $=$ sigma UNIV $\left(\left(\lambda(a, i) .\left\{x::^{\prime} a::\right.\right.\right.$ euclidean_space. $\left.\left.x \cdot i<a\right\}\right)$ ' $($ UNIV \times
Basis))
(is ${ }_{-}=$? SIGMA)
proof (rule borel_eq_sigmaI2[OF borel_eq_box])
fix $a b::{ }^{\prime} a$
have box a $b=\{x \in$ space ?SIGMA. $\forall i \in$ Basis. $a \cdot i<x \cdot i \wedge x \cdot i<b \cdot i\}$
by (auto simp: box_def)
also have ... \in sets ?SIGMA
by (intro sets.sets_Collect_conj sets.sets_Collect_finite_All sets.sets_Collect_const)
(auto intro!: halfspace_gt_in_halfspace countable_PiE countable_rat)
finally show box $a b \in$ sets ?SIGMA.
qed auto
lemma borel_eq_halfspace_le:
borel $=$ sigma UNIV $\left(\left(\lambda(a, i) .\left\{x::^{\prime} a::\right.\right.\right.$ euclidean_space. $\left.\left.x \cdot i \leq a\right\}\right)$ ' $($ UNIV \times
Basis))
(is _ = ?SIGMA)
proof (rule borel_eq_sigmaI2[OF borel_eq_halfspace_less])
fix $a::$ real and $i::{ }^{\prime} a$ assume $(a, i) \in U N I V \times$ Basis
then have $i: i \in$ Basis by auto
have $*:\left\{x::^{\prime} a . x \cdot i<a\right\}=(\bigcup n .\{x . x \cdot i \leq a-1 /$ real $($ Suc $n)\})$
proof (safe, simp_all del: of_nat_Suc)
fix $x::^{\prime} a$ assume $*: x \cdot i<a$
with reals_Archimedean[of $a-x \cdot i$]
obtain n where $x \cdot i<a-1 /($ real (Suc $n))$
by (auto simp: field_simps)
then show $\exists n . x \cdot i \leq a-1 /($ real $($ Suc $n))$
by (blast intro: less_imp_le)

```
```

next
fix $x::^{\prime} a$ and n
assume $x \cdot i \leq a-1 / \operatorname{real}($ Suc $n)$
also have $\ldots<a$ by auto
finally show $x \cdot i<a$.
qed
show $\{x . x \cdot i<a\} \in$?SIGMA unfolding *
by (intro sets.countable_UN) (auto intro: i)
qed auto
lemma borel_eq_halfspace_ge:
borel $=$ sigma UNIV $\left(\left(\lambda(a, i) .\left\{x::^{\prime} a::\right.\right.\right.$ euclidean_space. $\left.\left.a \leq x \cdot i\right\}\right)$ ' $($ UNIV \times
Basis))
$\left(\right.$ is $_{-}=$?SIGMA $)$
proof (rule borel_eq_sigmaI2[OF borel_eq_halfspace_less])
fix $a::$ real and $i::$ ' a assume $i:(a, i) \in U N I V \times$ Basis
have $*:\left\{x::^{\prime} a . x \cdot i<a\right\}=$ space ?SIGMA $-\left\{x::^{\prime} a . a \leq x \cdot i\right\}$ by auto
show $\{x . x \cdot i<a\} \in$?SIGMA unfolding *
using i by (intro sets.compl_sets) auto
qed auto
lemma borel_eq_halfspace_greater:
borel $=$ sigma UNIV $\left(\left(\lambda(a, i) .\left\{x::^{\prime a} a::\right.\right.\right.$ euclidean_space. $\left.\left.a<x \cdot i\right\}\right)$ ' $($ UNIV \times
Basis))
$\left(\right.$ is $_{-}=?$?SIGMA $)$
proof (rule borel_eq_sigmaI2[OF borel_eq_halfspace_le])
fix a :: real and $i::$ ' a assume $(a, i) \in(U N I V \times$ Basis $)$
then have $i: i \in$ Basis by auto
have $*:\left\{x::^{\prime} a . x \cdot i \leq a\right\}=$ space ?SIGMA $-\left\{x::^{\prime} a . a<x \cdot i\right\}$ by auto
show $\{x . x \cdot i \leq a\} \in$?SIGMA unfolding *
by (intro sets.compl_sets) (auto intro: i)
qed auto
lemma borel_eq_atMost:
borel $=$ sigma UNIV $($ range $(\lambda a .\{. . a:: ' a::$ ordered_euclidean_space $\}))$
$\left(\right.$ is $_{-}=$? SIGMA $)$
proof (rule borel_eq_sigmaI4[OF borel_eq_halfspace_le])
fix a :: real and $i::$ ' a assume $(a, i) \in U N I V \times$ Basis
then have $i \in$ Basis by auto
then have $*:\left\{x::^{\prime} a . x \cdot i \leq a\right\}=\left(\bigcup k:: n a t\right.$. $\left\{.\right.$. ($\sum n \in$ Basis. (if $n=i$ then a else
real $\left.\left.k) *_{R} n\right)\right\}$)
proof (safe, simp_all add: eucl_le $[$ where ' $a=$ ' $a]$ split: if_split_asm)
fix $x::^{\prime} a$
from real_arch_simple[of Max (($\lambda i . x \cdot i)^{\prime}$ Basis $\left.)\right]$ guess $k::$ nat ..
then have $\bigwedge i . i \in$ Basis $\Longrightarrow x \cdot i \leq$ real k
by (subst (asm) Max_le_iff) auto
then show $\exists k::$ nat. $\forall i a \in$ Basis. $i a \neq i \longrightarrow x \cdot i a \leq$ real k
by (auto intro!: exI $[o f-k]$)
qed

```
```

 show \(\{x . x \cdot i \leq a\} \in\) ?SIGMA unfolding *
 by (intro sets.countable_UN) auto
 qed auto
lemma borel_eq_greaterThan:
borel $=$ sigma UNIV $\left(\right.$ range $\left(\lambda a::^{\prime} a::\right.$ ordered_euclidean_space. $\left.\left.\{x . a<e x\}\right)\right)$
$\left(\right.$ is $_{-}=?$?SIGMA $)$
proof (rule borel_eq_sigmaI4[OF borel_eq_halfspace_le])
fix a :: real and $i::$ ' a assume $(a, i) \in U N I V \times$ Basis
then have $i: i \in$ Basis by auto
have $\left\{x::^{\prime} a . x \cdot i \leq a\right\}=U N I V-\left\{x::^{\prime} a . a<x \cdot i\right\}$ by auto
also have $*:\left\{x::^{\prime} a . a<x \cdot i\right\}=$
$\left(\bigcup k:: n a t .\left\{x .\left(\sum n \in\right.\right.\right.$ Basis. (if $n=i$ then a else - real $\left.\left.\left.\left.k\right) *_{R} n\right)<e x\right\}\right)$ using
i
proof (safe, simp_all add: eucl_less_def split: if_split_asm)
fix $x::^{\prime} a$
from reals_Archimedean2[of Max $\left((\lambda i .-x \cdot i)^{\text {'Basis }}\right)$]
guess $k::$ nat .. note $k=$ this
\{ fix $i::$ ' a assume $i \in$ Basis
then have $-x \cdot i<$ real k
using k by (subst (asm) Max_less_iff) auto
then have - real $k<x \cdot i$ by simp $\}$
then show $\exists k::$ nat. $\forall i a \in$ Basis. $i a \neq i \longrightarrow-$ real $k<x \cdot i a$
by (auto intro!: exI $[o f-k]$)
qed
finally show $\{x . x \cdot i \leq a\} \in ? S I G M A$
apply (simp only:)
apply (intro sets.countable_UN sets.Diff)
apply (auto intro: sigma_sets_top)
done
qed auto
lemma borel_eq_lessThan:
borel $=$ sigma UNIV $\left(\right.$ range $\left(\lambda a::^{\prime} a::\right.$ ordered_euclidean_space. $\left.\left.\{x . x<e a\}\right)\right)$
$\left(\right.$ is $_{-}=$? SIGMA $)$
proof (rule borel_eq_sigmaI4 [OF borel_eq_halfspace_ge])
fix a :: real and $i::$ ' a assume $(a, i) \in U N I V \times$ Basis
then have $i: i \in$ Basis by auto
have $\left\{x::^{\prime} a . a \leq x \cdot i\right\}=U N I V-\left\{x::^{\prime} a . x \cdot i<a\right\}$ by auto
also have $*:\left\{x::^{\prime} a . x \cdot i<a\right\}=\left(\bigcup k:: n a t .\left\{x . x<e\left(\sum n \in\right.\right.\right.$ Basis. (if $n=i$ then
a else real $\left.\left.k) *_{R} n\right)\right\}$) using $\langle i \in$ Basis〉
proof (safe, simp_all add: eucl_less_def split: if_split_asm)
fix $x::^{\prime} a$
from reals_Archimedean2[of Max (($\lambda i . x \cdot i)^{‘}$ Basis $)$]
guess $k:: n a t$.. note $k=$ this
\{ fix $i::$ ' a assume $i \in$ Basis
then have $x \cdot i<$ real k
using k by (subst (asm) Max_less_iff) auto
then have $x \cdot i<$ real k by simp $\}$

```
```

 then show \existsk::nat. }\forall\mathrm{ ia Basis. ia }\not=i\longrightarrowx \ia<real
 by (auto intro!: exI[of _ k])
 qed
 finally show {x.a\leqx\cdoti}\in?SIGMA
 apply (simp only:)
 apply (intro sets.countable_UN sets.Diff)
 apply (auto intro: sigma_sets_top)
 done
 qed auto
lemma borel_eq_atLeastAtMost:
borel = sigma UNIV (range (}\lambda(a,b).{a..b} ::'a::ordered_euclidean_space set)
(is _ = ?SIGMA)
proof (rule borel_eq_sigmaI5[OF borel_eq_atMost])
fix a::'a
have *:{..a} = (\bigcupn::nat. {- real n *R One .. a})
proof (safe, simp_all add: eucl_le[where ' }a='='a]
fix }x :: 'a a
from real_arch_simple[of Max ((\lambdai. - x\bulleti)'Basis)]
guess k::nat .. note k= this
{ fix i:: 'a assume i\in Basis
with }k\mathrm{ have - x.i s real k
by (subst (asm) Max_le_iff) (auto simp: field_simps)
then have - real k\leqx.i by simp }
then show \existsn::nat. \foralli\inBasis. - real n \leq x •i
by (auto intro!: exI[of - k])
qed
show {..a} \in ?SIGMA unfolding *
by (intro sets.countable_UN)
(auto intro!: sigma_sets_top)
qed auto
lemma borel_set_induct[consumes 1, case_names empty interval compl union]: assumes $A \in$ sets borel
assumes empty: $P\}$ and int: $\bigwedge a b . a \leq b \Longrightarrow P\{a . . b\}$ and compl: $\bigwedge A . A \in$
sets borel \LongrightarrowPA\LongrightarrowP(-A) and
un:\f. disjoint_family f\Longrightarrow(\bigwedgei.fi\in sets borel) \Longrightarrow(\bigwedgei.P (fi))\Longrightarrow
P(\bigcupi::nat.fi)
shows P (A::real set)
proof -
let ?G = range (}\lambda(a,b).{a..b::real}
have Int_stable ?G ?G \subseteqPow UNIV A \in sigma_sets UNIV ?G
using assms(1) by (auto simp add: borel_eq_atLeastAtMost Int_stable_def)
thus ?thesis
proof (induction rule: sigma_sets_induct_disjoint)
case (union f)
from union.hyps(2) have \i.fi\in sets borel by (auto simp: borel_eq_atLeastAtMost)
with union show ?case by (auto intro: un)
next

```
```

 case (basic A)
 then obtain ab where A={a.. b} by auto
 then show?case
 by (cases a\leqb) (auto intro: int empty)
 qed (auto intro: empty compl simp:Compl_eq_Diff_UNIV[symmetric] borel_eq_atLeastAtMost)
 qed
lemma borel_sigma_sets_Ioc: borel = sigma UNIV (range (}\lambda(a,b).{a<..b::real})
proof (rule borel_eq_sigmaI5[OF borel_eq_atMost])
fix i :: real
have {..i}=(\bigcupj::nat. {-j<.. i})
by (auto simp: minus_less_iff reals_Archimedean2)
also have ...\in sets (sigma UNIV (range (}\lambda(i,j).{i<...j}))
by (intro sets.countable_nat_UN) auto
finally show {..i}\in sets (sigma UNIV (range (}\lambda(i,j).{i<..j})))
qed simp
lemma eucl_lessThan: {x::real. x<e a}=lessThan a
by (simp add: eucl_less_def lessThan_def)
lemma borel_eq_atLeastLessThan:
borel = sigma UNIV (range (}\lambda(a,b).{a ..<b:: real})) (is _ = ?SIGMA)
proof (rule borel_eq_sigmaI5[OF borel_eq_lessThan])
have move_uminus: \x y::real. -
fix x:: real
have {..<x} = (\ i::nat. {-real i ..<x})
by (auto simp: move_uminus real_arch_simple)
then show {y.y<ex}\in?SIGMA
by (auto intro: sigma_sets.intros(2-) simp: eucl_lessThan)
qed auto
lemma borel_measurable_halfspacesI:
fixes f:: 'a = 'c::euclidean_space
assumes F: borel = sigma UNIV (F'(UNIV }\times\mathrm{ Basis))
and S_eq: \a i. S a i = f-' F (a,i) \cap space M
shows f\in borel_measurable M}=(\foralli\in\mathrm{ Basis. }\forall\mathrm{ a::real. S a i }i\in\mathrm{ sets M)
proof safe
fix }a::\mathrm{ real and }i::'b assume i: i\in Basis and f:f\in borel_measurable M
then show S a i\in sets M unfolding assms
by (auto intro!: measurable_sets simp: assms(1))
next
assume a: \foralli\inBasis. \foralla.S a i\in sets M
then show f}\in\mathrm{ borel_measurable M
by (auto intro!: measurable_measure_of simp: S_eq F)
qed
lemma borel_measurabl_iff_halfspace_le:
fixes f :: ' }a>>' 'c::euclidean_space
shows f\in borel_measurable M =(\foralli\inBasis. \foralla.{w\in space M.fw\cdoti\leqa}

```
```

E sets M)
by (rule borel_measurable_halfspacesI[OF borel_eq_halfspace_le]) auto
lemma borel_measurable_iff_halfspace_less:
fixes f :: 'a m 'c::euclidean_space
shows f}\in\mathrm{ borel_measurable }M\longleftrightarrow(\foralli\inBasis. \foralla.{w\in space M.fw\cdoti<a
E sets M)
by (rule borel_measurable_halfspacesI[OF borel_eq_halfspace_less]) auto
lemma borel_measurable_iff_halfspace_ge:
fixes f :: ' }a>>'\mp@code{'::euclidean_space
shows f\in borel_measurable M=(\foralli\inBasis. }\foralla.{w\in\mathrm{ space M.a}\leq{fw\cdoti
e sets M)
by (rule borel_measurable_halfspacesI[OF borel_eq_halfspace_ge]) auto
lemma borel_measurable_iff_halfspace_greater:
fixes f :: 'a m 'c::euclidean_space
shows f\in borel_measurable M}\longleftrightarrow(\foralli\inBasis. \foralla. {w\in space M.a<fw
i} \in sets M)
by (rule borel_measurable_halfspacesI[OF borel_eq_halfspace_greater]) auto
lemma borel_measurable_iff_le:
(f::'a m real) \in borel_measurable M = (\foralla.{w\in space M.fw\leqa}\in sets M)
using borel_measurable_iff_halfspace_le[where 'c=real] by simp
lemma borel_measurable_iff_less:
(f::'a}=>\mathrm{ real) }\in\mathrm{ borel_measurable M = (}\foralla.{w\in\mathrm{ space M.fw<a} f sets M)
using borel_measurable_iff_halfspace_less[where 'c=real] by simp
lemma borel_measurable_iff_ge:
(f::'a}=>\mathrm{ real) < borel_measurable M = (}\forall\textrm{a}.{\mp@code{w}\in\mathrm{ space M. a
using borel_measurable_iff_halfspace_ge[where 'c=real]
by simp
lemma borel_measurable_iff_greater:
(f::'a}=>\mathrm{ real) }\in\mathrm{ borel_measurable M = (}\foralla.{w\in\mathrm{ space M. a<f w} f sets M)
using borel_measurable_iff_halfspace_greater[where 'c=real] by simp
lemma borel_measurable_euclidean_space:
fixes f :: '}a>>''c::euclidean_spac
shows f}\in\mathrm{ borel_measurable }M\longleftrightarrow(\foralli\inBasis. (\lambdax.fx\cdoti)\inborel_measurable
M)
proof safe
assume f: \foralli\inBasis. (}\lambdax.fx\cdoti)\in\mathrm{ borel_measurable M
then show }f\in\mathrm{ borel_measurable M
by (subst borel_measurable_iff_halfspace_le) auto
qed auto

```

\subsection*{6.5.5 Borel measurable operators}
lemma borel_measurable_norm[measurable]: norm \(\in\) borel_measurable borel by (intro borel_measurable_continuous_onI continuous_intros)
```

lemma borel_measurable_sgn [measurable]: (sgn::'a::real_normed_vector $\left.\Rightarrow{ }^{\prime} a\right) \in$
borel_measurable borel
by (rule borel_measurable_continuous_countable_exceptions $[$ where $X=\{0\}]$)
(auto intro!: continuous_on_sgn continuous_on_id)
lemma borel_measurable_uminus $[$ measurable (raw)]:
fixes $g::$ ' $a \Rightarrow$ ' $b::\{$ second_countable_topology, real_normed_vector $\}$
assumes $g: g \in$ borel_measurable M
shows $(\lambda x .-g x) \in$ borel_measurable M
by (rule borel_measurable_continuous_on[OF _ g]) (intro continuous_intros)
lemma borel_measurable_diff $[$ measurable (raw)]:
fixes $f::{ }^{\prime} a \Rightarrow$ ' $b::\{$ second_countable_topology, real_normed_vector $\}$
assumes $f: f \in$ borel_measurable M
assumes $g: g \in$ borel_measurable M
shows $(\lambda x . f x-g x) \in$ borel_measurable M
using borel_measurable_add [of f $M-g$] assms by (simp add: fun_Compl_def)
lemma borel_measurable_times[measurable (raw)]:
fixes $f:: ' a \Rightarrow$ ' $b::\{$ second_countable_topology, real_normed_algebra $\}$
assumes $f: f \in$ borel_measurable M
assumes $g: g \in$ borel_measurable M
shows $(\lambda x . f x * g x) \in$ borel_measurable M
using $f g$ by (rule borel_measurable_continuous_Pair) (intro continuous_intros)
lemma borel_measurable_prod[measurable (raw)]:
fixes $f::{ }^{\prime} c \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} b::\{$ second_countable_topology, real_normed_field $\}$
assumes $\bigwedge i . i \in S \Longrightarrow f i \in$ borel_measurable M
shows $\left(\lambda x . \prod i \in S . f i x\right) \in$ borel_measurable M
proof cases
assume finite S
thus ?thesis using assms by induct auto
qed simp
lemma borel_measurable_dist[measurable (raw)]:
fixes $g f::{ }^{\prime} a \Rightarrow$ ' $b::\{$ second_countable_topology, metric_space $\}$
assumes $f: f \in$ borel_measurable M
assumes $g: g \in$ borel_measurable M
shows $(\lambda x$. dist $(f x)(g x)) \in$ borel_measurable M
using $f g$ by (rule borel_measurable_continuous_Pair) (intro continuous_intros)
lemma borel_measurable_scale $R[$ measurable (raw)]:
fixes $g::$ ' $a \Rightarrow$ ' $b::\{$ second_countable_topology, real_normed_vector $\}$
assumes $f: f \in$ borel_measurable M
assumes $g: g \in$ borel_measurable M

```
```

shows (}\lambdax.fx\mp@subsup{*}{R}{}gx)\in\mathrm{ borel_measurable M
using fg by (rule borel_measurable_continuous_Pair) (intro continuous_intros)
lemma borel_measurable_uminus_eq [simp]:
fixes f :: ' }a>>'b::{\mathrm{ second_countable_topology, real_normed_vector}
shows (\lambdax. - fx)\inborel_measurable M\longleftrightarrowf\in borel_measurable M (is ?l =
?r)
proof
assume ?l from borel_measurable_uminus[OF this] show ?r by simp
qed auto
lemma affine_borel_measurable_vector:
fixes f :: ' }a=>\mathrm{ 'x::real_normed_vector
assumes f}\in\mathrm{ borel_measurable M
shows (}\lambdax.a+b\mp@subsup{*}{R}{}fx)\in\mathrm{ borel_measurable M
proof (rule borel_measurableI)
fix S :: 'x set assume open S
show (}\lambdax.a+b\mp@subsup{*}{R}{}fx)-'S\cap\mathrm{ space M}\in\mathrm{ sets }
proof cases
assume b\not=0
with <open S` have open ((\lambdax. (-a+x)/R b)'S) (is open ?S) using open_affinity [of S inverse b-a/R b] by (auto simp: algebra_simps) hence ?S \in sets borel by auto moreover from }\langleb\not=0\rangle\mathrm{ have (}\lambdax.a+b\mp@subsup{*}{R}{}fx)-`S=f-`?
apply auto by (rule_tac x=a + b* *R fx in image_eqI, simp_all)
ultimately show ?thesis using assms unfolding in_borel_measurable_borel
by auto
qed simp
qed

```
lemma borel_measurable_const_scaleR[measurable (raw)]:
    \(f \in\) borel_measurable \(M \Longrightarrow\left(\lambda x . b *_{R} f x::^{\prime} a::\right.\) real_normed_vector \() \in\) borel_measurable
M
    using affine_borel_measurable_vector \([\) of \(f\) M 0 b] by simp
lemma borel_measurable_const_add[measurable (raw)]:
    \(f \in\) borel_measurable \(M \Longrightarrow(\lambda x . a+f x:: ' a::\) real_normed_vector \() \in\) borel_measurable
M
    using affine_borel_measurable_vector[of f \(M\) a 1] by simp
lemma borel_measurable_inverse[measurable (raw)]:
    fixes \(f::{ }^{\prime} a \Rightarrow{ }^{\prime} b::\) real_normed_div_algebra
    assumes \(f: f \in\) borel_measurable \(M\)
    shows \((\lambda x\). inverse \((f x)) \in\) borel_measurable \(M\)
    apply (rule measurable_compose \([O F f]\) )
    apply (rule borel_measurable_continuous_countable_exceptions[of \{0\}])
    apply (auto intro!: continuous_on_inverse continuous_on_id)
```

 done
 lemma borel_measurable_divide[measurable (raw)]:
f\in borel_measurable M\Longrightarrowg\in borel_measurable M\Longrightarrow
(\lambdax.fx / g x::'b::{ second_countable_topology, real_normed_div_algebra}) \in borel_measurable
M
by (simp add: divide_inverse)
lemma borel_measurable_abs[measurable (raw)]:
f\inborel_measurable M\Longrightarrow(\lambdax. |f x :: real|) \in borel_measurable M
unfolding abs_real_def by simp
lemma borel_measurable_nth[measurable (raw)]:
(}\lambdax::\mp@subsup{real ^'}{}{\wedge}n.x\$ i)\in borel_measurable borel
by (simp add: cart_eq_inner_axis)
lemma convex_measurable:
fixes }A\mathrm{ :: ' }a\mathrm{ :: euclidean_space set
shows }X\in\mathrm{ borel_measurable }M\LongrightarrowX'space M\subseteqA\Longrightarrowopen A\Longrightarrowconvex_on
A q\Longrightarrow
(\lambdax.q(X x)) \in borel_measurable M
by (rule measurable_compose[where f=X and N=restrict_space borel A])
(auto intro!: borel_measurable_continuous_on_restrict convex_on_continuous mea-
surable_restrict_space2)
lemma borel_measurable_ln[measurable (raw)]:
assumes f:f\in borel_measurable M
shows }(\lambdax.ln(fx:: real))\in borel_measurable M
apply (rule measurable_compose[OF f])
apply (rule borel_measurable_continuous_countable_exceptions[of {0}])
apply (auto intro!: continuous_on_ln continuous_on_id)
done
lemma borel_measurable_log[measurable (raw)]:
f\inborel_measurable M\Longrightarrowg\in borel_measurable M\Longrightarrow(\lambdax. log (gx) (fx))\in
borel_measurable M
unfolding log_def by auto
lemma borel_measurable_exp[measurable]:
(exp::'a::{real_normed_field,banach} }\mp@subsup{=>}{}{\prime}a)\in\mathrm{ borel_measurable borel
by (intro borel_measurable_continuous_onI continuous_at_imp_continuous_on ballI
isCont_exp)
lemma measurable_real_floor[measurable]:
(floor :: real => int) }\in\mathrm{ measurable borel (count_space UNIV)
proof -
have }\bigwedgeax.\lfloorx\rfloor=a\longleftrightarrow(real_of_int a s x ^ x < real_of_int (a+1)
by (auto intro: floor_eq2)
then show ?thesis

```
```

 by (auto simp: vimage_def measurable_count_space_eq2_countable)
 qed
lemma measurable_real_ceiling[measurable]:
(ceiling :: real }=>\mathrm{ int) }\in\mathrm{ measurable borel (count_space UNIV)
unfolding ceiling_def[abs_def] by simp

```
lemma borel_measurable_real_floor: ( \(\lambda x::\) real. real_of_int \(\lfloor x\rfloor) \in\) borel_measurable
borel
    by \(\operatorname{simp}\)
lemma borel_measurable_root [measurable]: root \(n \in\) borel_measurable borel
    by (intro borel_measurable_continuous_onI continuous_intros)
lemma borel_measurable_sqrt [measurable]: sqrt \(\in\) borel_measurable borel
    by (intro borel_measurable_continuous_onI continuous_intros)
lemma borel_measurable_power [measurable (raw)]:
    fixes \(f:: \__{-} \Rightarrow\) ' \(b::\{\) power,real_normed_algebra \(\}\)
    assumes \(f: f \in\) borel_measurable \(M\)
    shows \(\left(\lambda x .(f x)^{\wedge} n\right) \in\) borel_measurable \(M\)
    by (intro borel_measurable_continuous_on \(\left[O F_{-} f\right]\) continuous_intros)
lemma borel_measurable_Re [measurable]: Re \(\in\) borel_measurable borel
    by (intro borel_measurable_continuous_onI continuous_intros)
lemma borel_measurable_Im [measurable]: Im \(\in\) borel_measurable borel
    by (intro borel_measurable_continuous_onI continuous_intros)
lemma borel_measurable_of_real [measurable]: (of_real :: _ \(\Rightarrow\) (_::real_normed_algebra) \()\)
\(\in\) borel_measurable borel
    by (intro borel_measurable_continuous_onI continuous_intros)
lemma borel_measurable_sin [measurable]: \(\left(\sin :: \_\Rightarrow\left(\_:\{\text {real_normed_field,banach }\}\right)\right)\)
\(\in\) borel_measurable borel
by (intro borel_measurable_continuous_onI continuous_intros)
lemma borel_measurable_cos [measurable]: (cos :: _ \(\Rightarrow\) ( \(::\) \{real_normed_field,banach\} \()\) )
\(\in\) borel_measurable borel
by (intro borel_measurable_continuous_onI continuous_intros)
lemma borel_measurable_arctan [measurable]: arctan \(\in\) borel_measurable borel by (intro borel_measurable_continuous_onI continuous_intros)
lemma borel_measurable_complex_iff:
\(f \in\) borel_measurable \(M \longleftrightarrow\)
\((\lambda x\). Re \((f x)) \in\) borel_measurable \(M \wedge(\lambda x\). Im \((f x)) \in\) borel_measurable \(M\) apply auto
apply (subst fun_complex_eq)
```

apply (intro borel_measurable_add)
apply auto
done

```
lemma powr_real_measurable [measurable]:
assumes \(f \in\) measurable \(M\) borel \(g \in\) measurable \(M\) borel shows \(\quad(\lambda x . f x\) powr \(g x::\) real \() \in\) measurable \(M\) borel using assms by (simp_all add: powr_def)
lemma measurable_of_bool[measurable]: of_bool \(\in\) count_space UNIV \(\rightarrow_{M}\) borel by \(\operatorname{simp}\)

\subsection*{6.5.6 Borel space on the extended reals}
```

lemma borel_measurable_ereal[measurable (raw)]:
assumes $f: f \in$ borel_measurable M shows $(\lambda x$. ereal $(f x)) \in$ borel_measurable
M
using continuous_on_ereal f by (rule borel_measurable_continuous_on) (rule con-
tinuous_on_id)
lemma borel_measurable_real_of_ereal[measurable (raw)]:
fixes $f::{ }^{\prime} a \Rightarrow$ ereal
assumes $f: f \in$ borel_measurable M
shows $(\lambda x$. real_of_ereal $(f x)) \in$ borel_measurable M
apply (rule measurable_compose $[O F f]$)
apply (rule borel_measurable_continuous_countable_exceptions[of $\{\infty,-\infty\}]$)
apply (auto intro: continuous_on_real simp: Compl_eq_Diff_UNIV)
done
lemma borel_measurable_ereal_cases:
fixes $f::{ }^{\prime} a \Rightarrow$ ereal
assumes $f: f \in$ borel_measurable M
assumes $H:(\lambda x . H($ ereal $($ real_of_ereal $(f x)))) \in$ borel_measurable M
shows $(\lambda x . H(f x)) \in$ borel_measurable M
proof -
let $? F=\lambda x$. if $f x=\infty$ then $H \infty$ else if $f x=-\infty$ then $H(-\infty)$ else H (ereal
(real_of_ereal $(f x))$)
\{ fix x have $H(f x)=? F x$ by (cases $f x$) auto \}
with $f H$ show ?thesis by simp
qed

```
```

lemma
fixes $f::{ }^{\prime} a \Rightarrow$ ereal assumes $f[$ measurable $]: f \in$ borel_measurable M
shows borel_measurable_ereal_abs[measurable(raw)]: $(\lambda x .|f x|) \in$ borel_measurable
M
and borel_measurable_ereal_inverse[measurable(raw)]: (λx.inverse $(f x)$:: ereal)
\in borel_measurable M
and borel_measurable_uminus_ereal[measurable $($ raw $)]:(\lambda x .-f x::$ ereal $) \in$
borel_measurable M

```
by (auto simp del: abs_real_of_ereal simp: borel_measurable_ereal_cases[OF f] measurable_If)
lemma borel_measurable_uminus_eq_ereal[simp]:
\((\lambda x .-f x::\) ereal \() \in\) borel_measurable \(M \longleftrightarrow f \in\) borel_measurable \(M\) (is ?l \(=\) ? \(r\) )
proof
assume ?l from borel_measurable_uminus_ereal \([\) OF this] show ?r by simp qed auto
lemma set_Collect_ereal2:
fixes \(f g::^{\prime} a \Rightarrow\) ereal
assumes \(f: f \in\) borel_measurable \(M\)
assumes \(g: g \in\) borel_measurable \(M\)
assumes \(H:\{x \in\) space \(M\). \(H\) (ereal (real_of_ereal \((f x))\) ) ereal (real_of_ereal ( \(g\)
x))) \(\} \in\) sets \(M\)
\(\{x \in\) space borel. \(H(-\infty)(\) ereal \(x)\} \in\) sets borel
\(\{x \in\) space borel. \(H(\infty)(\) ereal \(x)\} \in\) sets borel
\(\{x \in\) space borel. \(H\) (ereal \(x)(-\infty)\} \in\) sets borel
\(\{x \in\) space borel. \(H(\) ereal \(x)(\infty)\} \in\) sets borel
shows \(\{x \in\) space \(M . H(f x)(g x)\} \in\) sets \(M\)
proof -
let ? \(G=\lambda y x\). if \(g x=\infty\) then \(H y \infty\) else if \(g x=-\infty\) then \(H y(-\infty)\) else Hy (ereal (real_of_ereal ( \(g x)\) ))
let ? \(F=\lambda x\). if \(f x=\infty\) then ? \(G \infty x\) else if \(f x=-\infty\) then ? \(G(-\infty) x\) else ? \(G\) (ereal (real_of_ereal \((f x))) x\)
\{ fix \(x\) have \(H(f x)(g x)=? F x\) by (cases \(f x g x\) rule: ereal2_cases) auto \}
note \(*=\) this
from assms show ?thesis by \((s u b s t *)(\) simp del: space_borel split del: if_split)
qed
lemma borel_measurable_ereal_iff:
shows \((\lambda x\). ereal \((f x)) \in\) borel_measurable \(M \longleftrightarrow f \in\) borel_measurable \(M\) proof
assume \((\lambda x\). ereal \((f x)) \in\) borel_measurable \(M\)
from borel_measurable_real_of_ereal[OF this]
show \(f \in\) borel_measurable \(M\) by auto
qed auto
lemma borel_measurable_erealD \([\) measurable_dest \(]\) :
\((\lambda x\). ereal \((f x)) \in\) borel_measurable \(M \Longrightarrow g \in\) measurable \(N M \Longrightarrow(\lambda x . f(g\) \(x)) \in\) borel_measurable \(N\)
unfolding borel_measurable_ereal_iff by simp
theorem borel_measurable_ereal_iff_real:
fixes \(f::{ }^{\prime} a \Rightarrow\) ereal
shows \(f \in\) borel_measurable \(M \longleftrightarrow\)
\(((\lambda x\). real_of_ereal \((f x)) \in\) borel_measurable \(M \wedge f-‘\{\infty\} \cap\) space \(M \in\) sets
```

$M \wedge f-‘\{-\infty\} \cap$ space $M \in$ sets $M)$
proof safe
assume $*:(\lambda x$. real_of_ereal $(f x)) \in$ borel_measurable $M f-‘\{\infty\} \cap$ space $M \in$
sets $M f-‘\{-\infty\} \cap$ space $M \in$ sets M
have $f-‘\{\infty\} \cap$ space $M=\{x \in$ space $M . f x=\infty\} f-‘\{-\infty\} \cap$ space $M=$
$\{x \in$ space $M . f x=-\infty\}$ by auto
with $*$ have $* *$: $\{x \in$ space $M . f x=\infty\} \in$ sets $M\{x \in$ space $M . f x=-\infty\} \in$
sets M by simp_all
let ?f $=\lambda x$. if $f x=\infty$ then ∞ else if $f x=-\infty$ then $-\infty$ else ereal (real_of_ereal
($f x)$)
have ?f \in borel_measurable M using * ** by (intro measurable_If) auto
also have ?f $=f$ by (auto simp: fun_eq_iff ereal_real)
finally show $f \in$ borel_measurable M.
qed simp_all
lemma borel_measurable_ereal_iff_Iio:
$\left(f::^{\prime} a \Rightarrow\right.$ ereal $) \in$ borel_measurable $M \longleftrightarrow(\forall a . f-'\{. .<a\} \cap$ space $M \in$ sets
M)
by (auto simp: borel_Iio measurable_iff_measure_of)
lemma borel_measurable_ereal_iff_Ioi:
$\left(f::^{\prime} a \Rightarrow\right.$ ereal $) \in$ borel_measurable $M \longleftrightarrow(\forall a . f-‘\{a<..\} \cap$ space $M \in$ sets
M)
by (auto simp: borel_Ioi measurable_iff_measure_of)
lemma vimage_sets_compl_iff:
$f-‘ A \cap$ space $M \in$ sets $M \longleftrightarrow f-‘(-A) \cap$ space $M \in$ sets M
proof -
\{ fix A assume $f-‘ A \cap$ space $M \in$ sets M
moreover have $f-‘(-A) \cap$ space $M=$ space $M-f-‘ A \cap$ space M by
auto
ultimately have $f-‘(-A) \cap$ space $M \in$ sets M by auto $\}$
from this $[$ of $A]$ this $[o f-A]$ show ?thesis
by (metis double_complement)
qed
lemma borel_measurable_iff_Iic_ereal:
$\left(f::^{\prime} a \Rightarrow\right.$ ereal $) \in$ borel_measurable $M \longleftrightarrow(\forall a . f-‘\{. . a\} \cap$ space $M \in$ sets $M)$
unfolding borel_measurable_ereal_iff_Ioi vimage_sets_compl_iff [where $A=\{a<.$.
for a] by simp
lemma borel_measurable_iff_Ici_ereal:
$(f:: ' a \Rightarrow$ ereal $) \in$ borel_measurable $M \longleftrightarrow(\forall a . f-‘\{a ..\} \cap$ space $M \in$ sets $M)$
unfolding borel_measurable_ereal_iff_Iio vimage_sets_compl_iff [where $A=\{. .<a\}$
for a] by simp
lemma borel_measurable_ereal2:
fixes $f g$:: ' $a \Rightarrow$ ereal
assumes $f: f \in$ borel_measurable M

```
```

assumes $g: g \in$ borel_measurable M
assumes $H:\left(\lambda x . H\left(\right.\right.$ ereal $\left.\left(r e a l_{-} o f_{-} e r e a l(f x)\right)\right)($ ereal $($ real_of_ereal $\left.(g x)))\right) \in$
borel_measurable M
$\left(\lambda x . H(-\infty)\left(\right.\right.$ ereal $\left.\left.\left(r e a l _o f _e r e a l ~(g x)\right)\right)\right) \in$ borel_measurable M
$(\lambda x . H(\infty)($ ereal $($ real_of_ereal $(g x)))) \in$ borel_measurable M
$(\lambda x . H($ ereal $($ real_of_ereal $(f x)))(-\infty)) \in$ borel_measurable M
$(\lambda x . H$ (ereal $($ real_of_ereal $(f x)))(\infty)) \in$ borel_measurable M
shows $(\lambda x$. $H(f x)(g x)) \in$ borel_measurable M
proof -
let ? $G=\lambda y x$. if $g x=\infty$ then $H y \infty$ else if $g x=-\infty$ then $H y(-\infty)$ else
$H y$ (ereal (real_of_ereal ($g x)$))
let ? $F=\lambda x$. if $f x=\infty$ then ? $G \infty x$ else if $f x=-\infty$ then ? $G(-\infty) x$ else
? G (ereal (real_of_ereal $(f x))) x$
\{ fix x have $H(f x)(g x)=? F x$ by (cases $f x g x$ rule: ereal2_cases) auto \}
note $*=$ this
from assms show ?thesis unfolding * by simp
qed
lemma [measurable(raw)]:
fixes f :: ' $a \Rightarrow$ ereal
assumes [measurable]: $f \in$ borel_measurable $M g \in$ borel_measurable M
shows borel_measurable_ereal_add: $(\lambda x . f x+g x) \in$ borel_measurable M
and borel_measurable_ereal_times: $(\lambda x . f x * g x) \in$ borel_measurable M
by (simp_all add: borel_measurable_ereal2)
lemma [measurable(raw)]:
fixes $f g::{ }^{\prime} a \Rightarrow$ ereal
assumes $f \in$ borel_measurable M
assumes $g \in$ borel_measurable M
shows borel_measurable_ereal_diff: $(\lambda x . f x-g x) \in$ borel_measurable M
and borel_measurable_ereal_divide: $(\lambda x . f x / g x) \in$ borel_measurable M
using assms by (simp_all add: minus_ereal_def divide_ereal_def)
lemma borel_measurable_ereal_sum[measurable (raw)]:
fixes $f::{ }^{\prime} c \Rightarrow{ }^{\prime} a \Rightarrow$ ereal
assumes $\bigwedge i . i \in S \Longrightarrow f i \in$ borel_measurable M
shows $\left(\lambda x . \sum i \in S . f i x\right) \in$ borel_measurable M
using assms by (induction S rule: infinite_finite_induct) auto
lemma borel_measurable_ereal_prod[measurable (raw)]:
fixes $f:{ }^{\prime} c \Rightarrow{ }^{\prime} a \Rightarrow$ ereal
assumes $\bigwedge i . i \in S \Longrightarrow f i \in$ borel_measurable M
shows $\left(\lambda x . \prod i \in S . f i x\right) \in$ borel_measurable M
using assms by (induction S rule: infinite_finite_induct) auto
lemma borel_measurable_extreal_suminf[measurable (raw)]:
fixes $f::$ nat $\Rightarrow{ }^{\prime} a \Rightarrow$ ereal
assumes [measurable]: $\bigwedge i . f i \in$ borel_measurable M
shows $\left(\lambda x\right.$. $\left.\left(\sum i . f i x\right)\right) \in$ borel_measurable M

```
unfolding suminf_def sums_def[abs_def] lim_def[symmetric] by simp

\subsection*{6.5.7 Borel space on the extended non-negative reals}
ennreal is a topological monoid, so no rules for plus are required, also all order statements are usually done on type classes.
lemma measurable_enn2ereal[measurable]: enn2ereal \(\in\) borel \(\rightarrow_{M}\) borel by (intro borel_measurable_continuous_onI continuous_on_enn2ereal)
lemma measurable_e2ennreal[measurable]: e2ennreal \(\in\) borel \(\rightarrow_{M}\) borel by (intro borel_measurable_continuous_onI continuous_on_e2ennreal)
lemma borel_measurable_enn2real[measurable (raw)]:
\(f \in M \rightarrow_{M}\) borel \(\Longrightarrow(\lambda x\). enn2real \((f x)) \in M \rightarrow_{M}\) borel unfolding enn2real_def[abs_def] by measurable
definition [simp]: is_borel \(f M \longleftrightarrow f \in\) borel_measurable \(M\)
lemma is_borel_transfer[transfer_rule]: rel_fun (rel_fun (=) pcr_ennreal) (=) is_borel is_borel
unfolding is_borel_def[abs_def]
proof (safe intro!: rel_funI ext dest!: rel_fun_eq_pcr_ennreal[THEN iffD1])
fix \(f\) and \(M\) :: 'a measure
show \(f \in\) borel_measurable \(M\) if \(f\) : enn2ereal \(\circ f \in\) borel_measurable \(M\) using measurable_compose[OF f measurable_e2ennreal] by simp
qed \(\operatorname{simp}\)
context
includes ennreal.lifting
begin
lemma measurable_ennreal[measurable]: ennreal \(\in\) borel \(\rightarrow_{M}\) borel
unfolding is_borel_def[symmetric]
by transfer simp
lemma borel_measurable_ennreal_iff[simp]:
assumes \([\) simp \(]: \bigwedge x . x \in\) space \(M \Longrightarrow 0 \leq f x\)
shows \((\lambda x\). ennreal \((f x)) \in M \rightarrow_{M}\) borel \(\longleftrightarrow f \in M \rightarrow_{M}\) borel
proof safe
assume ( \(\lambda\) x. ennreal \((f x)) \in M \rightarrow_{M}\) borel
then have \((\lambda\) x. enn2real (ennreal \((f x))) \in M \rightarrow_{M}\) borel by measurable
then show \(f \in M \rightarrow_{M}\) borel
by (rule measurable_cong[THEN iffD1, rotated]) auto
qed measurable
lemma borel_measurable_times_ennreal[measurable (raw)]:
fixes \(f g::{ }^{\prime} a \Rightarrow\) ennreal
shows \(f \in M \rightarrow_{M}\) borel \(\Longrightarrow g \in M \rightarrow_{M}\) borel \(\Longrightarrow(\lambda x . f x * g x) \in M \rightarrow_{M}\)
borel
unfolding is_borel_def[symmetric] by transfer simp
lemma borel_measurable_inverse_ennreal[measurable (raw)]:
fixes \(f::{ }^{\prime} a \Rightarrow\) ennreal
shows \(f \in M \rightarrow_{M}\) borel \(\Longrightarrow(\lambda\) x. inverse \((f x)) \in M \rightarrow_{M}\) borel
unfolding is_borel_def[symmetric] by transfer simp
lemma borel_measurable_divide_ennreal[measurable (raw)]:
fixes \(f::\) ' \(a \Rightarrow\) ennreal
shows \(f \in M \rightarrow_{M}\) borel \(\Longrightarrow g \in M \rightarrow_{M}\) borel \(\Longrightarrow(\lambda x . f x / g x) \in M \rightarrow_{M}\) borel
unfolding divide_ennreal_def by simp
lemma borel_measurable_minus_ennreal[measurable (raw)]:
fixes \(f::{ }^{\prime} a \Rightarrow\) ennreal
shows \(f \in M \rightarrow_{M}\) borel \(\Longrightarrow g \in M \rightarrow_{M}\) borel \(\Longrightarrow(\lambda x . f x-g x) \in M \rightarrow_{M}\)
borel
unfolding is_borel_def[symmetric] by transfer simp
lemma borel_measurable_prod_ennreal[measurable (raw)]:
fixes \(f::{ }^{\prime} c \Rightarrow{ }^{\prime} a \Rightarrow\) ennreal
assumes \(\bigwedge i . i \in S \Longrightarrow f i \in\) borel_measurable \(M\)
shows \((\lambda x\). \(\Pi i \in S . f i x) \in\) borel_measurable \(M\)
using assms by (induction \(S\) rule: infinite_finite_induct) auto
end
hide_const (open) is_borel

\subsection*{6.5.8 LIMSEQ is borel measurable}
lemma borel_measurable_LIMSEQ_real:
fixes \(u::\) nat \(\Rightarrow{ }^{\prime} a \Rightarrow\) real
assumes \(u^{\prime}: \bigwedge x . x \in\) space \(M \Longrightarrow(\lambda i . u i x) \longrightarrow u^{\prime} x\)
and \(u: \bigwedge i . u i \in\) borel_measurable \(M\)
shows \(u^{\prime} \in\) borel_measurable \(M\)
proof -
have \(\Lambda x . x \in\) space \(M \Longrightarrow \liminf (\lambda n\). ereal \((u n x))=\operatorname{ereal}\left(u^{\prime} x\right)\) using \(u^{\prime}\) by (simp add: lim_imp_Liminf)
moreover from \(u\) have \((\lambda x\). liminf \((\lambda n\). ereal \((u n x))) \in\) borel_measurable \(M\) by auto
ultimately show ?thesis by (simp cong: measurable_cong add: borel_measurable_ereal_iff)
qed
lemma borel_measurable_LIMSEQ_metric:
fixes \(f::\) nat \(\Rightarrow^{\prime} a \Rightarrow{ }^{\prime} b::\) metric_space
assumes [measurable]: \(\bigwedge i . f i \in\) borel_measurable \(M\)
assumes lim: \(\bigwedge x . x \in\) space \(M \Longrightarrow(\lambda i . f i x) \longrightarrow g x\)
```

 shows g}\in\mathrm{ borel_measurable M
 unfolding borel_eq_closed
 proof (safe intro!: measurable_measure_of)
fix A :: 'b set assume closed A
have [measurable]: (\lambdax. infdist (gx)A) \in borel_measurable M
proof (rule borel_measurable_LIMSEQ_real)
show }\x.x\in\mathrm{ space M }\Longrightarrow(\lambdai.\operatorname{infdist (f i x) A) \longrightarrow infdist (g x)A
by (intro tendsto_infdist lim)
show \i. (\lambdax. infdist (fix)A)\in borel_measurable M
by (intro borel_measurable_continuous_on[where f=\lambdax. infdist x A]
continuous_at_imp_continuous_on ballI continuous_infdist continuous_ident)
auto
qed
show g-` A\cap space M E sets M proof cases assume A\not={} then have }\x\mathrm{ . infdist x A=0 }\longleftrightarrowx\in using <closed A` by (simp add: in_closed_iff_infdist_zero)
then have g-'A\cap space M = {x\inspace M. infdist (gx)A=0}
by auto
also have ...\in sets M
by measurable
finally show?thesis .
qed simp
qed auto
lemma sets_Collect_Cauchy[measurable]:
fixes f :: nat => 'a => 'b::{metric_space, second_countable_topology}
assumes f[measurable]: \i.fi f borel_measurable M
shows {x\inspace M. Cauchy (\lambdai.fix)}\in sets M
unfolding metric_Cauchy_iff2 using f by auto
lemma borel_measurable_lim_metric[measurable (raw)]:
fixes f :: nat \# ' }a=>\mathrm{ 'b::{banach, second_countable_topology}
assumes f[measurable]: \i.fi\in borel_measurable M
shows (\lambdax.lim (\lambdai.fix)) \in borel_measurable M
proof -
define }\mp@subsup{u}{}{\prime}\mathrm{ where }\mp@subsup{u}{}{\prime}x=\operatorname{lim}(\lambdai.\mathrm{ if Cauchy ((i.fix) then fix else 0) for }
then have *: \x.lim (\lambdai.fix)=(if Cauchy (\lambdai.fix) then u'x else (THE x.
False))
by (auto simp: lim_def convergent_eq_Cauchy[symmetric])
have }\mp@subsup{u}{}{\prime}\in\mathrm{ borel_measurable M
proof (rule borel_measurable_LIMSEQ_metric)
fix }
have convergent (\lambdai. if Cauchy (\lambdai.fix) then f i x else 0)
by (cases Cauchy (\lambdai.fix))
(auto simp add: convergent_eq_Cauchy[symmetric] convergent_def)

```
```

 then show (\lambdai. if Cauchy (\lambdai.fix) then fi x else 0) \longrightarrow }\longrightarrow\mp@subsup{u}{}{\prime}
 unfolding }\mp@subsup{u}{}{\prime
 by (rule convergent_LIMSEQ_iff[THEN iffD1])
 qed measurable
then show ?thesis
unfolding * by measurable
qed
lemma borel_measurable_suminf[measurable (raw)]:
fixes f :: nat = ' }a>>'b::{banach, second_countable_topology
assumes f[measurable]: \i.fi\in borel_measurable M
shows (\lambdax.suminf (\lambdai.fi x)) \in borel_measurable M
unfolding suminf_def sums_def[abs_def] lim_def[symmetric] by simp
lemma Collect_closed_imp_pred_borel: closed {x. P x} \Longrightarrow Measurable.pred borel P
by (simp add: pred_def)
lemma isCont_borel_pred[measurable]:
fixes f :: 'b::metric_space = 'a::metric_space
shows Measurable.pred borel (isCont f)
proof (subst measurable_cong)
let ?I = \lambdaj. inverse(real (Suc j))
show isCont f x = (\foralli. \existsj.\forallyz. dist x y<?I j ^ dist x z<?Ij \longrightarrow dist (f
y) (fz)\leq?! i) for }
unfolding continuous_at_eps_delta
proof safe
fix i assume }\foralle>0.\existsd>0.\forally. dist y x<d \longrightarrow dist (fy) (fx)<
moreover have 0<?I i / 2
by simp
ultimately obtain d where d:0<d \y. dist x y <d\Longrightarrow dist (fy) (fx)<
?I i / 2
by (metis dist_commute)
then obtain j where j:?I j<d
by (metis reals_Archimedean)
show \existsj.\forallyz. dist x y<?I j ^ dist x z < ?I j \longrightarrow dist (f y) (fz) \leq?I i
proof (safe intro!: exI[where x=j])
fix }yz\mathrm{ assume *: dist x y< ?I j dist x z< ?I j
have dist (fy) (fz)\leq\operatorname{dist}(fy)(fx)+\operatorname{dist}(fz)(fx)
by (rule dist_triangle2)
also have .. < ? I i / 2 + ?I i / 2
by (intro add_strict_mono d less_trans[OF _ j] *)
also have ... \leq?I i
by (simp add: field_simps)
finally show dist (fy) (fz)\leq? ?I i
by simp
qed
next

```
```

 fix e::real assume 0<e
 then obtain n}\mathrm{ where n: ?I n<e
 by (metis reals_Archimedean)
 assume \foralli.\existsj.\forallyz.dist x y < ?I j ^ dist x z<?Ij \longrightarrow dist (fy) (fz)\leq
 ?I i
from this[THEN spec, of Suc n]
obtain j where j:\bigwedgeyz.dist x y<?I j\Longrightarrow dist x z<?Ij\Longrightarrow dist (fy) (f
z)\leq?I (Suc n)
by auto
show \existsd>0.\forally. dist y x<d \longrightarrow dist (fy) (fx)<e
proof (safe intro!: exI[of - ?I j])
fix y assume dist y x<? ?I j
then have dist (fy)(fx)\leq?I (Suc n)
by (intro j) (auto simp: dist_commute)
also have ?I (Suc n)< ?I n
by simp
also note n
finally show dist (fy) (fx)<e .
qed simp
qed
qed (intro pred_intros_countable closed_Collect_all closed_Collect_le open_Collect_less
Collect_closed_imp_pred_borel closed_Collect_imp open_Collect_conj contin-
uous_intros)
lemma isCont_borel:
fixes f :: 'b::metric_space = 'a::metric_space
shows {x. isCont fx}\in sets borel
by simp
lemma is_real_interval:
assumes S: is_interval S
shows \existsab::real. S={}\veeS=UNIV\veeS={..<b}\veeS={..b}\veeS={a<..}
\veeS={a..}\vee
S={a<..<b}\veeS={a<..b}\veeS={a..<b}\veeS={a..b}
using S unfolding is_interval_1 by (blast intro: interval_cases)
lemma real_interval_borel_measurable:
assumes is_interval (S::real set)
shows S\in sets borel
proof -
from assms is_real_interval have \existsa b::real. S={}\veeS=UNIV \veeS={..<b}
\vee S = {..b} \vee
S={a<..}\veeS={a..}\veeS={a<..<b}\veeS={a<..b}\veeS={a..<b}\veeS
={a..b} by auto
then guess a ..
then guess b ..
thus ?thesis
by auto

```

\section*{qed}

The next lemmas hold in any second countable linorder (including ennreal or ereal for instance), but in the current state they are restricted to reals.
```

lemma borel_measurable_mono_on_fnc:
fixes $f::$ real \Rightarrow real and A :: real set
assumes mono_on $f A$
shows $f \in$ borel_measurable (restrict_space borel A)
apply (rule measurable_restrict_countable[OF mono_on_ctble_discont[OF assms]])
apply (auto intro!: image_eqI[where $x=\{x\}$ for $x]$ simp: sets_restrict_space)
apply (auto simp add: sets_restrict_restrict_space continuous_on_eq_continuous_within
cong: measurable_cong_sets
intro!: borel_measurable_continuous_on_restrict intro: continuous_within_subset)
done
lemma borel_measurable_piecewise_mono:
fixes $f::$ real \Rightarrow real and $C::$ real set set
assumes countable $C \bigwedge c . c \in C \Longrightarrow c \in$ sets borel $\bigwedge c . c \in C \Longrightarrow$ mono_on f
$c(\bigcup C)=U N I V$
shows $f \in$ borel_measurable borel
by (rule measurable_piecewise_restrict[of C], auto intro: borel_measurable_mono_on_fnc
simp: assms)
lemma borel_measurable_mono:
fixes $f::$ real \Rightarrow real
shows mono $f \Longrightarrow f \in$ borel_measurable borel
using borel_measurable_mono_on_fnc[off UNIV] by (simp add: mono_def mono_on_def)
lemma measurable_bdd_below_real[measurable (raw)]:
fixes $F::{ }^{\prime} a \Rightarrow$ ' $i \Rightarrow$ real
assumes [simp]: countable I and [measurable]: $\bigwedge i . i \in I \Longrightarrow F i \in M \rightarrow_{M}$ borel
shows Measurable.pred $M\left(\lambda x\right.$. bdd_below $\left.\left((\lambda i . F i x)^{‘} I\right)\right)$
proof (subst measurable_cong)
show bdd_below $\left((\lambda i . F i x)^{\prime} I\right) \longleftrightarrow(\exists q \in \mathbb{Z} . \forall i \in I . q \leq F i x)$ for x
by (auto simp: bdd_below_def intro!: bexI[of _ of_int (floor _)] intro: order_trans
of_int_floor_le)
show Measurable.pred $M(\lambda w . \exists q \in \mathbb{Z} . \forall i \in I . q \leq F i w)$
using countable_int by measurable
qed
lemma borel_measurable_cINF_real[measurable (raw)]:
fixes $F:: \boldsymbol{H}_{-} \Rightarrow$ real
assumes [simp]: countable I
assumes F [measurable]: $\bigwedge i . i \in I \Longrightarrow F i \in$ borel_measurable M
shows $(\lambda x$. INF $i \in I$. F $i x) \in$ borel_measurable M
proof (rule measurable_piecewise_restrict)
let $? \Omega=\left\{x \in\right.$ space M. bdd_below $\left.\left((\lambda i . F i x)^{\prime} I\right)\right\}$
show countable $\{? \Omega,-? \Omega\}$ space $M \subseteq \bigcup\{? \Omega,-? \Omega\} \wedge X . X \in\{? \Omega,-? \Omega\}$
$\Longrightarrow X \cap$ space $M \in$ sets M

```
```

 by auto
 fix X assume X }\in{?\Omega,-?\Omega} then show (\lambdax.INFi\inI.Fix)\inborel_measurable
 (restrict_space M X)
proof safe
show (\lambdax.INF i\inI.F i x) \in borel_measurable (restrict_space M ?\Omega)
by (intro borel_measurable_cINF measurable_restrict_space1 F)
(auto simp: space_restrict_space)
show (\lambdax.INF i\inI.Fix) \in borel_measurable (restrict_space M (-?\Omega))
proof (subst measurable_cong)
fix x assume x space (restrict_space M (- ?\Omega))
then have }\neg(\foralli\inI.-Fix\leqy) for y
by (auto simp: space_restrict_space bdd_above_def bdd_above_uminus[symmetric])
then show (INF i\inI.Fix)=-(THE x. False)
by (auto simp: space_restrict_space Inf_real_def Sup_real_def Least_def simp
del: Set.ball_simps(10))
qed simp
qed
qed
lemma borel_Ici: borel = sigma UNIV (range (\lambdax::real. {x ..}))
proof (safe intro!: borel_eq_sigmaI1[OF borel_Iio])
fix x :: real
have eq:{..<x} = space (sigma UNIV (range atLeast)) - {x ..}
by auto
show {..<x} \in sets (sigma UNIV (range atLeast))
unfolding eq by (intro sets.compl_sets) auto
qed auto
lemma borel_measurable_pred_less[measurable (raw)]:
fixes f :: ' }a>>'b::{\mathrm{ second_countable_topology, linorder_topology}
shows f}\in\mathrm{ borel_measurable }M\Longrightarrowg\in\mathrm{ borel_measurable }M\Longrightarrow\mathrm{ Measurable.pred
M(\lambdaw.fw<gw)
unfolding Measurable.pred_def by (rule borel_measurable_less)
no_notation
eucl_less(infix <e 50)
lemma borel_measurable_Max2[measurable (raw)]:
fixes f::- > _ >'a::{second_countable_topology, dense_linorder,linorder_topology}
assumes finite I
and [measurable]: \bigwedgei.fi\in borel_measurable M
shows (}\lambdax.\operatorname{Max{fix |i.i\inI}) \in borel_measurable M
by (simp add: borel_measurable_Max[OF assms(1), where ? }f=f\mathrm{ and ?M=M]
Setcompr_eq_image)
lemma measurable_compose_n [measurable (raw)]:
assumes T\in measurable M M
shows (}\mp@subsup{T}{}{\wedge^}n)\in\mathrm{ measurable M M
by (induction n, auto simp add: measurable_compose[OF _ assms])

```
```

lemma measurable_real_imp_nat
fixes $f::^{\prime} a \Rightarrow$ nat
assumes $[$ measurable]: $(\lambda x$. real $(f x)) \in$ borel_measurable M
shows $f \in$ measurable M (count_space UNIV)
proof -
let $? g=(\lambda x . \operatorname{real}(f x))$
have $\Lambda(n:: n a t)$. ? $g-‘(\{$ real $n\}) \cap$ space $M=f-‘\{n\} \cap$ space M by auto
moreover have $\bigwedge(n:: n a t)$. ? $g-'(\{$ real $n\}) \cap$ space $M \in$ sets M using assms
by measurable
ultimately have $\bigwedge(n:: n a t)$. $f-\{n\} \cap$ space $M \in$ sets M by simp
then show ?thesis using measurable_count_space_eq2_countable by blast
qed
lemma measurable_equality_set [measurable]:
fixes $f g::_{-} \Rightarrow$ 'a:: \{second_countable_topology, t2_space\}
assumes [measurable]: $f \in$ borel_measurable $M g \in$ borel_measurable M
shows $\{x \in$ space $M . f x=g x\} \in$ sets M
proof -
define A where $A=\{x \in$ space $M . f x=g x\}$
define B where $B=\left\{y . \exists x:^{\prime} a . y=(x, x)\right\}$
have $A=(\lambda x$. $(f x, g x))-' B \cap$ space M unfolding $A_{-} d e f B_{-} d e f$ by auto
moreover have $(\lambda x$. $(f x, g x)) \in$ borel_measurable M by simp
moreover have $B \in$ sets borel unfolding B_{-}def by (simp add: closed_diagonal)
ultimately have $A \in$ sets M by simp
then show ?thesis unfolding A_{-}def by simp
qed
lemma measurable_inequality_set [measurable]:
fixes $f g::-\quad$ ' $a::\{$ second_countable_topology, linorder_topology $\}$
assumes [measurable]: $f \in$ borel_measurable $M g \in$ borel_measurable M
shows $\{x \in$ space $M . f x \leq g x\} \in$ sets M
$\{x \in$ space $M . f x<g x\} \in$ sets M
$\{x \in$ space $M . f x \geq g x\} \in$ sets M
$\{x \in$ space $M . f x>g x\} \in$ sets M
proof -
define F where $F=(\lambda x .(f x, g x))$
have * [measurable]: $F \in$ borel_measurable M unfolding F_{-}def by simp

```
    have \(\{x \in\) space \(M . f x \leq g x\}=F-‘\{(x, y) \mid x y . x \leq y\} \cap\) space \(M\) unfolding
\(F_{-}\)def by auto
    moreover have \(\left\{(x, y) \mid x y . x \leq\left(y::^{\prime} a\right)\right\} \in\) sets borel using closed_subdiagonal
borel_closed by blast
    ultimately show \(\{x \in\) space \(M . f x \leq g x\} \in\) sets \(M\) using \(*\) by (metis
( mono_tags, lifting) measurable_sets)
    have \(\{x \in\) space \(M . f x<g x\}=F-\{(x, y) \mid x y . x<y\} \cap\) space \(M\) unfolding
\(F_{-}\)def by auto
moreover have \(\left\{(x, y) \mid x y . x<\left(y::^{\prime} a\right)\right\} \in\) sets borel using open_subdiagonal borel_open by blast
ultimately show \(\{x \in\) space \(M . f x<g x\} \in\) sets \(M\) using \(*\) by (metis (mono_tags, lifting) measurable_sets)
have \(\{x \in\) space \(M . f x \geq g x\}=F-\{(x, y) \mid x y . x \geq y\} \cap\) space \(M\) unfolding \(F_{-}\)def by auto
moreover have \(\left\{(x, y) \mid x y . x \geq\left(y::^{\prime} a\right)\right\} \in\) sets borel using closed_superdiagonal borel_closed by blast
ultimately show \(\{x \in\) space \(M . f x \geq g x\} \in\) sets \(M\) using \(*\) by (metis (mono_tags, lifting) measurable_sets)
have \(\{x \in\) space \(M . f x>g x\}=F-‘\{(x, y) \mid x y . x>y\} \cap\) space \(M\) unfolding \(F_{-}\)def by auto
moreover have \(\left\{(x, y) \mid x y . x>\left(y::^{\prime} a\right)\right\} \in\) sets borel using open_superdiagonal borel_open by blast
ultimately show \(\{x \in\) space \(M . f x>g x\} \in\) sets \(M\) using * by (metis ( mono_tags, lifting) measurable_sets)
qed
proposition measurable_limit [measurable]:
fixes \(f:: n a t \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} b::\) first_countable_topology
assumes [measurable]: \(\bigwedge n::\) nat. \(f n \in\) borel_measurable \(M\)
shows Measurable.pred \(M(\lambda x .(\lambda n . f n x) \longrightarrow c)\)
proof -
obtain \(A::\) nat \(\Rightarrow\) ' \(b\) set where \(A\) :
\i. open ( \(A i\) )
ヘi. \(c \in A i\)
\(\bigwedge S\). open \(S \Longrightarrow c \in S \Longrightarrow\) eventually ( \(\lambda i . A i \subseteq S\) ) sequentially
by (rule countable_basis_at_decseq) blast
have [measurable]: \(\wedge N i .(f N)-‘(A i) \cap\) space \(M \in\) sets \(M\) using \(A(1)\) by auto
then have mes: \(\left(\bigcap i . \bigcup n . \bigcap N \in\{n .\right.\).\(\} . (f N)-{ }^{\prime}(A i) \cap\) space \(\left.M\right) \in\) sets \(M\) by blast
have \((u \longrightarrow c) \longleftrightarrow(\forall i\). eventually ( \(\lambda n . u n \in A i)\) sequentially) for \(u::\) nat \(\Rightarrow{ }^{\prime} b\)
proof
assume \(u \longrightarrow c\)
then have eventually ( \(\lambda n . u n \in A i\) ) sequentially for \(i\) using \(A(1)[\) of \(i]\) A(2) [of \(i]\)
by (simp add: topological_tendstoD)
then show ( \(\forall\) i. eventually \((\lambda n . u n \in A\) i) sequentially) by auto next
assume \(H:(\forall i\). eventually \((\lambda n . u n \in A i)\) sequentially \()\)
show \((u \longrightarrow c)\)
proof (rule topological_tendstoI)
fix \(S\) assume open \(S c \in S\)
with \(A(3)[O F\) this \(]\) obtain \(i\) where \(A i \subseteq S\)
```

 using eventually_False_sequentially eventually_mono by blast
 moreover have eventually (}\lambdan.un\inA i) sequentially using H by sim
 ultimately show }\mp@subsup{\forall}{F}{}n\mathrm{ in sequentially. u n }\in
 by (simp add: eventually_mono subset_eq)
 qed
 qed
 then have {x.(\lambdan.fnx)\longrightarrowc}=(\bigcapi.\bigcupn.\bigcapN\in{n..}. (fN)-`(A i))
 by (auto simp add: atLeast_def eventually_at_top_linorder)
 then have {x\in space M. (\lambdan.fnx)\longrightarrowc} =(\bigcapi.\bigcupn.\bigcapN\in{n..}.(f
 N)-`(A i) \cap space M)
by auto
then have {x\in space M. (\lambdan.fnx)\longrightarrowc}\in sets M using mes by simp
then show ?thesis by auto
qed
lemma measurable_limit2 [measurable]:
fixes u::nat }=>\mp@subsup{}{}{\prime}a=>\mathrm{ real
assumes [measurable]: \n. u n b borel_measurable M v b borel_measurable M
shows Measurable.pred M (\lambdax. (\lambdan.unx)\longrightarrowvx)
proof -
define w where w = (\lambdanx.un x - v x)
have [measurable]: wn b borel_measurable M for n unfolding w_def by auto
have }((\lambdan.unx)\longrightarrowvx)\longleftrightarrow((\lambdan.wnx)\longrightarrow0) for x
unfolding w_def using Lim_null by auto
then show ?thesis using measurable_limit by auto
qed
lemma measurable_P_restriction [measurable (raw)]:
assumes [measurable]: Measurable.pred M PA\in sets M
shows {x\inA.P x}\in sets M
proof -
have A\subseteq space M using sets.sets_into_space[OF assms(2)].
then have {x\inA.Px}=A\cap{x\in space M.P x} by blast
then show ?thesis by auto
qed
lemma measurable_sum_nat [measurable (raw)]:
fixes f :: 'c }\mp@subsup{|}{}{\prime}a=>\mathrm{ nat
assumes \i. i\inS\Longrightarrowfi\in measurable M (count_space UNIV)
shows (\lambdax.\sumi\inS.fix)\in measurable M (count_space UNIV)
proof cases
assume finite S
then show ?thesis using assms by induct auto
qed simp
lemma measurable_abs_powr [measurable]:
fixes p::real
assumes [measurable]: f\in borel_measurable M

```
shows \((\lambda x .|f x|\) powr \(p) \in\) borel_measurable \(M\)
by \(\operatorname{simp}\)
The next one is a variation around measurable_restrict_space.
lemma measurable_restrict_space3:
assumes \(f \in\) measurable \(M N\) and
\[
f \in A \rightarrow B
\]
shows \(f \in\) measurable (restrict_space \(M A\) ) (restrict_space \(N B\) )

\section*{proof -}
have \(f \in\) measurable (restrict_space \(M A\) ) \(N\) using assms(1) measurable_restrict_space1 by auto
then show ?thesis by (metis Int_iff funcsetI funcset_mem
measurable_restrict_space2[of f, of restrict_space M A, of B, of N] assms(2)
space_restrict_space)
qed
lemma measurable_restrict_mono:
assumes \(f: f \in\) restrict_space \(M A \rightarrow_{M} N\) and \(B \subseteq A\)
shows \(f \in\) restrict_space \(M B \rightarrow_{M} N\)
by (rule measurable_compose[OF measurable_restrict_space3 f])
(insert \(\langle B \subseteq A\), auto)
The next one is a variation around measurable_piecewise_restrict.
```

lemma measurable_piecewise_restrict2:
assumes [measurable]: \n. A n f sets M
and space M = (U (n::nat). A n)
\ n . \exists h \in measurable MN. (\forall x \in A ~ n . f x = h x)
shows f\in measurable MN
proof (rule measurableI)
fix }B\mathrm{ assume [measurable]: B sets N
{
fix n::nat
obtain h}\mathrm{ where [measurable]: }h\in\mathrm{ measurable M N and }\forallx\inA n.fx=h
using assms(3) by blast
then have *: f-' B\capAn=h-' }\cap\capAn\mathrm{ by auto
have }h-\mp@subsup{}{}{\prime}B\capAn=h-'B\cap\mathrm{ space }M\capAn\mathrm{ using assms(2) sets.sets_into_space
by auto
then have }h-'B\capAn\in\mathrm{ sets M by simp
then have f-'B\capA n\in sets M using * by simp
}
then have (}\bigcupn.f-'B\capAn)\in\mathrm{ sets M by measurable
moreover have f-' }B\cap\mathrm{ space M=(\n.f-'B }\capAn)\mathrm{ using assms(2) by
blast
ultimately show f-` }B\cap\mathrm{ space }M\in\mathrm{ sets M by simp
next
fix x assume }x\in\mathrm{ space M
then obtain n where }x\inAn\mathrm{ using assms(2) by blast
obtain h where [measurable]: h\in measurable MN and }\forallx\inA n.fx=h
using assms(3) by blast

```
```

 then have f x =hx using <x\inA n> by blast
 moreover have hx\in space N by (metis measurable_space \langlex\in space M\rangle\langleh\in
 measurable M N`)
ultimately show fx\in space N by simp
qed
end

```

\subsection*{6.6 Lebesgue Integration for Nonnegative Functions}
theory Nonnegative_Lebesgue_Integration imports Measure_Space Borel_Space
begin

\subsection*{6.6.1 Approximating functions}
```

lemma AE_upper_bound_inf_ennreal:
fixes $F G::^{\prime} a \Rightarrow$ ennreal
assumes $\wedge e .(e::$ real $)>0 \Longrightarrow A E x$ in $M . F x \leq G x+e$
shows $A E x$ in $M . F x \leq G x$
proof -
have $A E x$ in $M . \forall n::$ nat. $F x \leq G x+$ ennreal ($1 /$ Suc n)
using assms by (auto simp: AE_all_countable)
then show?thesis
proof (eventually_elim)
fix x assume $x: \forall n::$ nat. $F x \leq G x+$ ennreal ($1 /$ Suc n)
show $F x \leq G x$
proof (rule ennreal_le_epsilon)
fix e :: real assume $0<e$
then obtain n where n : $1 /$ Suc $n<e$
by (blast elim: nat_approx_posE)
have $F x \leq G x+1 /$ Suc n
using x by simp
also have $\ldots \leq G x+e$
using n by (intro add_mono ennreal_leI) auto
finally show $F x \leq G x+$ ennreal e.
qed
qed
qed
lemma AE_upper_bound_inf:
fixes $F G::^{\prime} a \Rightarrow$ real
assumes $\bigwedge e . e>0 \Longrightarrow A E x$ in $M . F x \leq G x+e$
shows $A E x$ in $M . F x \leq G x$
proof -
have $A E x$ in $M . F x \leq G x+1 /$ real $(n+1)$ for $n::$ nat
by (rule assms, auto)

```
```

 then have \(A E x\) in \(M . \forall n::\) nat \(\in U N I V . F x \leq G x+1 /\) real \((n+1)\)
 by (rule AE_ball_countable', auto)
 moreover
 \{
 fix \(x\) assume \(i: \forall n:: n a t \in U N I V . F x \leq G x+1 /\) real \((n+1)\)
 have \((\lambda n . G x+1 /\) real \((n+1)) \longrightarrow G x+0\)
 by (rule tendsto_add, simp, rule LIMSEQ_ignore_initial_segment[OF lim_1_over_n,
 of 1])
then have $F x \leq G x$ using i LIMSEQ_le_const by fastforce
\}
ultimately show ?thesis by auto
qed
lemma not_AE_zero_ennreal_E:
fixes $f::^{\prime} a \Rightarrow$ ennreal
assumes $\neg(A E x$ in $M . f x=0)$ and [measurable]: $f \in$ borel_measurable M
shows $\exists A \in$ sets $M . \exists e::$ real>0. emeasure $M A>0 \wedge(\forall x \in A . f x \geq e)$
proof -
$\{$ assume $\neg(\exists e::$ real $>0 .\{x \in$ space $M . f x \geq e\} \notin$ null_sets $M)$
then have $0<e \Longrightarrow A E x$ in $M . f x \leq e$ for e :: real
by (auto simp: not_le less_imp_le dest!: AE_not_in)
then have $A E x$ in M. $f x \leq 0$
by (intro $A E_{-}$upper_bound_inf_ennreal $\left[\right.$where $\left.G=\lambda_{_} .0\right]$) simp
then have False
using assms by auto \}
then obtain $e:$:real where $e: e>0\{x \in$ space $M . f x \geq e\} \notin$ null_sets M by
auto
define A where $A=\{x \in$ space $M . f x \geq e\}$
have 1 [measurable]: $A \in$ sets M unfolding $A_{\text {_ def }}$ by auto
have 2: emeasure $M A>0$
using $e\left(\right.$ 2) $A_{-} d e f\langle A \in$ sets $M\rangle$ by auto
have 3: $\bigwedge x . x \in A \Longrightarrow f x \geq e$ unfolding A_{-}def by auto
show ?thesis using $e(1) 123$ by blast
qed
lemma not_AE_zero_E:
fixes $f::^{\prime} a \Rightarrow$ real
assumes $A E x$ in $M . f x \geq 0$
$\neg(A E x$ in $M . f x=0)$
and [measurable]: $f \in$ borel_measurable M
shows $\exists A e . A \in$ sets $M \wedge e>0 \wedge$ emeasure $M A>0 \wedge(\forall x \in A . f x \geq e)$
proof -
have $\exists e . e>0 \wedge\{x \in$ space $M . f x \geq e\} \notin$ null_sets M
proof (rule ccontr)
assume $*: \neg(\exists e . e>0 \wedge\{x \in$ space $M . f x \geq e\} \notin$ null_sets $M)$
\{
fix $e:$:real assume $e>0$
then have $\{x \in$ space $M . f x \geq e\} \in$ null_sets M using $*$ by blast
then have $A E x$ in $M . x \notin\{x \in$ space $M . f x \geq e\}$ using $A E_{-} n o t _i n$ by

```
blast
then have \(A E x\) in \(M . f x \leq e\) by auto
\}
then have \(A E x\) in \(M . f x \leq 0\) by (rule AE_upper_bound_inf, auto)
then have \(A E x\) in \(M . f x=0\) using assms(1) by auto
then show False using assms(2) by auto
qed
then obtain \(e\) where \(e: e>0\{x \in\) space \(M . f x \geq e\} \notin\) null_sets \(M\) by auto
define \(A\) where \(A=\{x \in\) space \(M . f x \geq e\}\)
have 1 [measurable]: \(A \in\) sets \(M\) unfolding \(A_{-}\)def by auto
have 2: emeasure \(M A>0\)
using \(e(2)\) ) \(A_{-}\)def \(\langle A \in\) sets \(M\rangle\) by auto
have 3: \(\wedge x . x \in A \Longrightarrow f x \geq e\) unfolding \(A_{-}\)def by auto
show ?thesis
using e(1) 123 by blast
qed

\subsection*{6.6.2 Simple function}

Our simple functions are not restricted to nonnegative real numbers. Instead they are just functions with a finite range and are measurable when singleton sets are measurable.
```

definition simple_function Mg}
finite (g'space M)^
(\forallx\ing'space M.g-`{x}\cap space M sets M)

```
lemma simple_functionD:
    assumes simple_function \(M g\)
    shows finite ( \(g\) 'space \(M\) ) and \(g-{ }^{\prime} X \cap\) space \(M \in\) sets \(M\)
proof -
    show finite ( \(g\) 'space \(M\) )
        using assms unfolding simple_function_def by auto
    have \(g-‘ X \cap\) space \(M=g-‘(X \cap g\) 'space \(M) \cap\) space \(M\) by auto
    also have \(\ldots=(\bigcup x \in X \cap g\) 'space \(M . g-‘\{x\} \cap\) space \(M)\) by auto
    finally show \(g-{ }^{'} X \cap\) space \(M \in\) sets \(M\) using assms
        by (auto simp del: UN_simps simp: simple_function_def)
qed
lemma measurable_simple_function[measurable_dest]:
    simple_function \(M f \Longrightarrow f \in\) measurable \(M\) (count_space UNIV)
    unfolding simple_function_def measurable_def
proof safe
    fix \(A\) assume finite \((f\) 'space \(M) \forall x \in f\) ' space \(M . f-{ }^{\prime}\{x\} \cap\) space \(M \in\) sets
M
    then have \((\bigcup x \in f\) ' space \(M\). if \(x \in A\) then \(f-‘\{x\} \cap\) space \(M\) else \(\}) \in\) sets
M
by (intro sets.finite_UN) auto
also have \((\bigcup x \in f\) 'space \(M\). if \(x \in A\) then \(f-‘\{x\} \cap\) space \(M\) else \(\})=f-‘\)
\(A \cap\) space \(M\)
```

 by (auto split: if_split_asm)
 finally show f-'}A\cap\mathrm{ space }M\in\mathrm{ sets M .
 qed simp
lemma borel_measurable_simple_function:
simple_function M f \Longrightarrowf\in borel_measurable M
by (auto dest!: measurable_simple_function simp: measurable_def)
lemma simple_function_measurable2[intro]:
assumes simple_function M f simple_function Mg
shows f-`}A\capg-` B\cap\mathrm{ space }M\in\mathrm{ sets }
proof -
have f-`}A\capg-`B\cap\mathrm{ space }M=(f-\mp@subsup{|}{}{`}A\cap\mathrm{ space }M)\cap(g-`B\cap\mathrm{ space M)
by auto
then show ?thesis using assms[THEN simple_functionD(2)] by auto
qed
lemma simple_function_indicator_representation:
fixes f ::'a m ennreal
assumes f:simple_function Mf and x:x\in space M
shows fx=(\sumy\inf`space M. y* indicator (f-`{y}\cap space M) x)
(is ?l = ?r)
proof -
have ?r = (\sumy\inf'space M.
(if y=fx then y* indicator (f-`{y}\cap space M)x else 0)) by (auto intro!: sum.cong) also have ... = fx* indicator (}f-`{fx}\cap\mathrm{ space M)x
using assms by (auto dest: simple_functionD)
also have ... = fx using }x\mathrm{ by (auto simp: indicator_def)
finally show ?thesis by auto
qed
lemma simple_function_notspace:
simple_function M (}\lambdax.hx*\mathrm{ indicator (- space M)x::ennreal) (is simple_function
M ?h)
proof -
have ?h' space M\subseteq{0} unfolding indicator_def by auto
hence [simp, intro]: finite (?h'space M) by (auto intro: finite_subset)
have ?h -' {0}\cap space M = space M by auto
thus ?thesis unfolding simple_function_def by (auto simp add: image_constant_conv)
qed
lemma simple_function_cong:
assumes \t. t\in space M\Longrightarrowft=gt
shows simple_function Mf}\longleftrightarrow\mathrm{ simple_function Mg
proof -
have \{x.f-`{x}\cap space M=g-`{x}\cap space M
using assms by auto
with assms show ?thesis

```
```

 by (simp add: simple_function_def cong: image_cong)
 qed
lemma simple_function_cong_algebra:
assumes sets N = sets M space N = space M
shows simple_function Mf\longleftrightarrow simple_function Nf
unfolding simple_function_def assms ..
lemma simple_function_borel_measurable:
fixes f :: ' }a=>\mathrm{ ' 'x::{t2_space}
assumes f}\in\mathrm{ borel_measurable M and finite (f'space M)
shows simple_function M f
using assms unfolding simple_function_def
by (auto intro: borel_measurable_vimage)
lemma simple_function_iff_borel_measurable:
fixes f :: '}a=>'\ 'x::{t2_space
shows simple_function Mf\longleftrightarrow finite (f'space M)}\)\f\in\mathrm{ borel_measurable M
by (metis borel_measurable_simple_function simple_functionD(1) simple_function_borel_measurable)
lemma simple_function_eq_measurable:
simple_function M }
longleftrightarrow\mathrm{ finite (f`space M) ^f G measurable M (count_space UNIV) using measurable_simple_function[of M f] by (fastforce simp: simple_function_def) lemma simple_function_const[intro, simp]: simple_function M (}\lambdax.c by (auto intro: finite_subset simp: simple_function_def) lemma simple_function_compose[intro, simp]: assumes simple_function M f shows simple_function M (}g\circf\mathrm{) unfolding simple_function_def proof safe show finite ((g\circf)'space M) using assms unfolding simple_function_def image_comp [symmetric] by auto next fix x assume x f space M let ?G = g-`{g(fx)}\cap(f`space M) have *:(g\circf)-‘{(g\circf)x}\cap space M= (\x\in?G.f -'{x}\cap space M) by auto show (g\circf) -`{(g\circf) x} \cap space M \in sets M
using assms unfolding simple_function_def *
by (rule_tac sets.finite_UN) auto
qed
lemma simple_function_indicator[intro, simp]:
assumes }A\in\mathrm{ sets M
shows simple_function M (indicator A)
proof -

```
```

 have indicator \(A\) ' space \(M \subseteq\{0,1\}\) (is ? \(S \subseteq\)-)
 by (auto simp: indicator_def)
 hence finite?S by (rule finite_subset) simp
 moreover have \(-A \cap\) space \(M=\) space \(M-A\) by auto
 ultimately show ?thesis unfolding simple_function_def
 using assms by (auto simp: indicator_def [abs_def])
 qed
lemma simple_function_Pair[intro, simp]:
assumes simple_function $M f$
assumes simple_function $M g$
shows simple_function $M(\lambda x .(f x, g x))$ (is simple_function M ? $p)$
unfolding simple_function_def
proof safe
show finite (?p ‘space M)
using assms unfolding simple_function_def
by (rule_tac finite_subset[of _ f'space $M \times g^{\prime}$ space M) auto
next
fix x assume $x \in$ space M
have $(\lambda x .(f x, g x))-‘\{(f x, g x)\} \cap$ space $M=$
$(f-‘\{f x\} \cap$ space $M) \cap(g-‘\{g x\} \cap$ space $M)$
by auto
with $\langle x \in$ space M show $(\lambda x$. $(f x, g x))-‘\{(f x, g x)\} \cap$ space $M \in$ sets M
using assms unfolding simple_function_def by auto
qed
lemma simple_function_compose1:
assumes simple_function $M f$
shows simple_function $M(\lambda x . g(f x))$
using simple_function_compose[OF assms, of g]
by (simp add: comp_def)
lemma simple_function_compose2:
assumes simple_function $M f$ and simple_function $M g$
shows simple_function $M(\lambda x . h(f x)(g x))$
proof -
have simple_function $M((\lambda(x, y) . h x y) \circ(\lambda x .(f x, g x)))$
using assms by auto
thus ?thesis by (simp_all add: comp_def)
qed

```
lemmas simple_function_add[intro, simp] = simple_function_compose2[where \(h=(+)]\)
    and simple_function_diff \([\) intro, simp \(]=\) simple_function_compose2[where \(h=(-)]\)
    and simple_function_uminus[intro, simp] \(=\) simple_function_compose[where \(g=\) uminus \(]\)
    and simple_function_mult \([\) intro, simp] \(=\) simple_function_compose2 \([\) where \(h=(*)]\)
    and simple_function_div[intro, simp] = simple_function_compose2 \([\) where \(h=(/ /]\)
    and simple_function_inverse \([\) intro, simp \(]=\) simple_function_compose \([\) where \(g=\) inverse \(]\)
    and simple_function_max \([\) intro, simp \(]=\) simple_function_compose \(2[\) where \(h=\max ]\)
```

lemma simple_function_sum[intro, simp]:
assumes \i.i\inP\Longrightarrow simple_function M (fi)
shows simple_function M (}\lambdax.\sumi\inP.fix
proof cases
assume finite P from this assms show ?thesis by induct auto
qed auto
lemma simple_function_ennreal[intro, simp]:
fixes fg :: ' }a=>\mathrm{ real assumes sf: simple_function M
shows simple_function M (}\lambdax\mathrm{ . ennreal (f x))
by (rule simple_function_compose1[OF sf])
lemma simple_function_real_of_nat[intro, simp]:
fixes f g :: 'a m nat assumes sf: simple_function M f
shows simple_function M (}\lambdax\mathrm{ . real (fx))
by (rule simple_function_compose1[OF sf])
lemma borel_measurable_implies_simple_function_sequence:
fixes }u:: ' a=> ennreal
assumes u[measurable]: }u\in\mathrm{ borel_measurable M
shows \existsf.incseq f^(\foralli. (\forallx.fix<top)\wedge simple_function M (fi))\wedgeu=
(SUP i.fi)
proof -
define f}\mathrm{ where [abs_def]:
fix = real_of_int (floor (enn2real (min i (ux)) * 2^i)) / 2^i for ix
have [simp]: 0 \leq fix for ix
by (auto simp: f_def intro!: divide_nonneg_nonneg mult_nonneg_nonneg enn2real_nonneg)
have *: 2^n * real_of_int x = real_of_int (2^n * x) for n x
by simp
have real_of_int \lfloorreal i*2 `i\rfloor= real_of_int \lfloori* 2` i\rfloor for i
by (intro arg_cong[where f=real_of_int]) simp
then have [simp]: real_of_int \lfloorreal i * 2 ^ i\rfloor= i* 2 ` i for } unfolding floor_of_nat by simp have incseq f proof (intro monoI le_funI) fix m n :: nat and x assume m}\leq moreover { fix d :: nat have \lfloor2^d::real\rfloor* \2`m * enn2real (min (of_nat m) (u x))\rfloor\leq
\2^d * (2^m * enn2real (min (of_nat m) (u x)))\rfloor
by (rule le_mult_floor) (auto)
also have .. . \leq \2^d * (2^m * enn2real (min (of_nat d + of_nat m) (u x))) \rfloor
by (intro floor_mono mult_mono enn2real_mono min.mono)
(auto simp: min_less_iff_disj of_nat_less_top)
finally have fmx\leqf(m+d)x

```
unfolding \(f_{-} d e f\)
by (auto simp: field_simps power_add \(*\) simp del: of_int_mult) \}
ultimately show \(f m x \leq f n x\)
by (auto simp add: le_iff_add)
qed
then have inc_f: incseq ( \(\lambda\) i. ennreal \((f i x)\) ) for \(x\)
by (auto simp: incseq_def le_fun_def)
then have incseq ( \(\lambda i x\). ennreal \((f i x)\) )
by (auto simp: incseq_def le_fun_def)
moreover
have simple_function \(M(f i)\) for \(i\)
proof (rule simple_function_borel_measurable)
have \(\lfloor\) enn2real ( \(\min (\) of_nat \(\left.i)(u x)) * 2^{\wedge} i\right\rfloor \leq\left\lfloor\right.\) int \(\left.i * 2^{\wedge} i\right\rfloor\) for \(x\) by (cases u x rule: ennreal_cases)
(auto split: split_min intro!: floor_mono)
then have \(f i{ }^{\prime}\) space \(M \subseteq\left(\lambda n\right.\). real_of_int \(n /\) 2 \(\left.^{\wedge} i\right)\) ' \(\left\{0\right.\).. of_nat \(i *\) 2 \(\left.^{\wedge} i\right\}\)
unfolding floor_of_int by (auto simp: f_def intro!: imageI)
then show finite ( \(f i\) 'space \(M\) )
by (rule finite_subset) auto
show \(f i \in\) borel_measurable \(M\)
unfolding \(f_{-}\)def enn2real_def by measurable
qed
moreover
\(\{\) fix \(x\)
have (SUP i. ennreal \((f i x))=u x\)
proof (cases u \(x\) rule: ennreal_cases)
case top then show ?thesis
by (simp add: f_def inf_min[symmetric] ennreal_of_nat_eq_real_of_nat[symmetric] ennreal_SUP_of_nat_eq_top)
next
case (real r)
obtain \(n\) where \(r \leq\) of_nat \(n\) using real_arch_simple by auto
then have min_eq_r: \(\forall_{F} x\) in sequentially. \(\min (\) real \(x) r=r\)
by (auto simp: eventually_sequentially intro!: exI \([o f-n]\) split: split_min)
have \(\left(\lambda i\right.\). real_of_int \(\left\lfloor\min (\right.\) real \(\left.\left.i) r * \mathscr{2}^{\wedge} i\right\rfloor / \mathscr{2}^{\wedge} i\right) \longrightarrow r\)
proof (rule tendsto_sandwich)
show \(\left(\lambda n . r-(1 / 2)^{\wedge} n\right) \longrightarrow r\)
by (auto intro!: tendsto_eq_intros LIMSEQ_power_zero)
show \(\forall_{F} n\) in sequentially. real_of_int \(\left\lfloor\min (r e a l n) r * 2^{\wedge} n\right\rfloor / 2{ }^{\wedge} n \leq r\)
using min_eq_r by eventually_elim (auto simp: field_simps)
have \(*: r *\left(2^{\wedge} n * 2^{\wedge} n\right) \leq 2^{\wedge} n+2 \wedge n * r e a l \_o f \_i n t\lfloor r * 2 ` n\rfloor\) for \(n\) using real_of_int_floor_ge_diff_one[of r * 2^n, THEN mult_left_mono, of
\(\left.2{ }^{\wedge} n\right]\)
by (auto simp: field_simps)
show \(\forall_{F} n\) in sequentially. \(r-(1 / \mathbb{Z}){ }^{\wedge} n \leq\) real_of_int \(\lfloor\min (\) real \(n) r * 2\)
^n」/2 ^n
using min_eq_r by eventually_elim (insert *, auto simp: field_simps)
qed auto
```

 then have (\lambdai. ennreal (fix)) \longrightarrow ennreal r
 by (simp add: real f_def ennreal_of_nat_eq_real_of_nat min_ennreal)
 from LIMSEQ_unique[OF LIMSEQ_SUP[OF inc_f] this]
 show ?thesis
 by (simp add: real)
 qed }
 ultimately show ?thesis
 by (intro exI [of _ \lambdai x. ennreal (f i x)]) (auto simp add: image_comp)
 qed
lemma borel_measurable_implies_simple_function_sequence':
fixes }u:: ' a=> ennrea
assumes u:u\in borel_measurable M
obtains f}\mathrm{ where
\i. simple_function M (fi) incseq f \ix.fix<top \x. (SUP i.fix) = ux
using borel_measurable_implies_simple_function_sequence [OF u]
by (metis SUP_apply)
lemma simple_function_induct
[consumes 1, case_names cong set mult add, induct set: simple_function]:
fixes }u:: ' a=> ennreal
assumes u: simple_function Mu
assumes cong: \fg. simple_function Mf\Longrightarrow simple_function Mg\Longrightarrow(AE x
in M.fx=gx)\LongrightarrowPf\LongrightarrowPg
assumes set: \A.A\in sets M\LongrightarrowP(indicator A)
assumes mult: \uc.Pu\LongrightarrowP(\lambdax.c*ux)
assumes add: \uv.Pu\LongrightarrowPv\LongrightarrowP(\lambdax.vx+ux)
shows Pu
proof (rule cong)
from AE_space show AE x in M. (\sumy\inu'space M. y* indicator (u -'{y}
\cap space M) x) = ux
proof eventually_elim
fix x assume x: x \in space M
from simple_function_indicator_representation[OF u x]
show (\sumy\inu'space M. y* indicator (u-`{ {y}\cap space M) x) = ux..
qed
next
from }u\mathrm{ have finite (}u\mathrm{ ' space M)
unfolding simple_function_def by auto
then show P}(\lambdax.\sumy\inu'space M. y* indicator (u-'{y}\cap space M) x
proof induct
case empty show ?case
using set[of {}] by (simp add: indicator_def[abs_def])
qed (auto intro!: add mult set simple_functionD u)
next
show simple_function M (}\lambdax.(\sumy\inu'space M. y* indicator (u-'{y}\cap spac
M) x))
apply (subst simple_function_cong)
apply (rule simple_function_indicator_representation[symmetric])

```
```

 apply (auto intro: u)
 done
 qed fact
lemma simple_function_induct_nn[consumes 1, case_names cong set mult add]:
fixes $u::$ ' $a \Rightarrow$ ennreal
assumes u : simple_function $M u$
assumes cong: $\bigwedge f$ g. simple_function $M f \Longrightarrow$ simple_function $M g \Longrightarrow(\bigwedge x . x$
\in space $M \Longrightarrow f x=g x) \Longrightarrow P f \Longrightarrow P g$
assumes set: $\bigwedge A . A \in$ sets $M \Longrightarrow P$ (indicator A)
assumes mult: $\bigwedge u c$. simple_function $M u \Longrightarrow P u \Longrightarrow P(\lambda x . c * u x)$
assumes add: $\bigwedge u v$. simple_function $M u \Longrightarrow P u \Longrightarrow$ simple_function $M v \Longrightarrow$
$(\bigwedge x . x \in$ space $M \Longrightarrow u x=0 \vee v x=0) \Longrightarrow P v \Longrightarrow P(\lambda x . v x+u x)$
shows $P u$
proof -
show ?thesis
proof (rule cong)
fix x assume $x: x \in$ space M
from simple_function_indicator_representation[OF $u x]$
show ($\sum y \in u$ 'space $M . y *$ indicator $(u-‘\{y\} \cap$ space $\left.M) x\right)=u x .$.
next
show simple_function $M\left(\lambda x .\left(\sum y \in u '\right.\right.$ space $M . y *$ indicator $\left(u-{ }^{\prime}\{y\} \cap\right.$
space M) x)
apply (subst simple_function_cong)
apply (rule simple_function_indicator_representation[symmetric])
apply (auto intro: u)
done
next
from u have finite (u 'space M)
unfolding simple_function_def by auto
then show $P\left(\lambda x . \sum y \in u\right.$ 'space $M . y *$ indicator $(u-‘\{y\} \cap$ space $\left.M) x\right)$
proof induct
case empty show ?case
using set $[$ of \{\}] by (simp add: indicator_def [abs_def])
next
case (insert $x S$)
$\left\{\right.$ fix z have $\left(\sum y \in S . y *\right.$ indicator $(u-‘\{y\} \cap$ space $\left.M) z\right)=0 \vee$
$x *$ indicator $(u-'\{x\} \cap$ space $M) z=0$
using insert by (subst sum_eq_0_iff) (auto simp: indicator_def) \}
note disj $=$ this
from insert show ?case
by (auto intro!: add mult set simple_functionD u simple_function_sum disj)
qed
qed fact
qed
lemma borel_measurable_induct
[consumes 1, case_names cong set mult add seq, induct set: borel_measurable]:
fixes $u::$ ' $a \Rightarrow$ ennreal

```
assumes \(u: u \in\) borel_measurable \(M\)
assumes cong: \(\lfloor f g . f \in\) borel_measurable \(M \Longrightarrow g \in\) borel_measurable \(M \Longrightarrow\) \((\bigwedge x . x \in\) space \(M \Longrightarrow f x=g x) \Longrightarrow P g \Longrightarrow P f\)
assumes set: \(\bigwedge A . A \in\) sets \(M \Longrightarrow P\) (indicator \(A)\)
assumes mult': \(\bigwedge u c . c<t o p \Longrightarrow u \in\) borel_measurable \(M \Longrightarrow\) ( \(\bigwedge x . x \in\) space \(M \Longrightarrow u x<t o p) \Longrightarrow P u \Longrightarrow P(\lambda x . c * u x)\)
assumes add: \(\bigwedge u v . u \in\) borel_measurable \(M \Longrightarrow(\bigwedge x . x \in\) space \(M \Longrightarrow u x<\) top \() \Longrightarrow P u \Longrightarrow v \in\) borel_measurable \(M \Longrightarrow(\bigwedge x . x \in\) space \(M \Longrightarrow v x<\) top \()\) \(\Longrightarrow(\bigwedge x . x \in\) space \(M \Longrightarrow u x=0 \vee v x=0) \Longrightarrow P v \Longrightarrow P(\lambda x . v x+u x)\)
assumes seq: \(\bigwedge U .(\bigwedge i . U i \in\) borel_measurable \(M) \Longrightarrow(\bigwedge i x . x \in\) space \(M \Longrightarrow\) \(U i x<t o p) \Longrightarrow(\bigwedge i . P(U i)) \Longrightarrow\) incseq \(U \Longrightarrow u=(S U P i . U i) \Longrightarrow P(S U P\) i. \(U i\) )
shows \(P u\)
using \(u\)
proof (induct rule: borel_measurable_implies_simple_function_sequence')
fix \(U\) assume \(U\) : \(\bigwedge i\). simple_function \(M(U i)\) incseq \(U \bigwedge i x . U i x<t o p\) and sup: \(\bigwedge x\). \((S U P\) i. \(U i x)=u x\)
have \(u_{\text {_eq: }} u=(S U P i . U i)\)
using \(u\) by (auto simp add: image_comp sup)
have not_inf: \(\bigwedge x i . x \in\) space \(M \Longrightarrow U i x<t o p\) using \(U\) by (auto simp: image_iff eq_commute)
from \(U\) have \(\bigwedge i . U i \in\) borel_measurable \(M\) by (simp add: borel_measurable_simple_function)
show \(P u\)
unfolding \(u_{-} e q\)
proof (rule seq)
fix \(i\) show \(P(U i)\) using «simple_function \(M(U i)\rangle\) not_inf \(\left[o f f_{-} i\right]\)
proof (induct rule: simple_function_induct_nn) case (mult uc) show ?case proof cases
                    assume \(c=0 \vee\) space \(M=\{ \} \vee(\forall x \in\) space \(M . u x=0)\)
                    with mult(1) show ?thesis
                    by (intro cong[of \(\lambda x . c * u x\) indicator \(\}]\) set)
                    (auto dest!: borel_measurable_simple_function)
        next
            assume \(\neg(c=0 \vee\) space \(M=\{ \} \vee(\forall x \in\) space \(M . u x=0))\)
            then obtain \(x\) where space \(M \neq\{ \}\) and \(x: x \in\) space \(M u x \neq 0 c \neq 0\)
                by auto
                    with mult(3)[of \(x]\) have \(c<t o p\)
                    by (auto simp: ennreal_mult_less_top)
            then have \(u_{-}\)fin: \(x^{\prime} \in\) space \(M \Longrightarrow u x^{\prime}<\) top for \(x^{\prime}\)
                using mult(3)[of \(x]\langle c \neq 0\rangle\) by (auto simp: ennreal_mult_less_top)
            then have \(P u\)
                by (rule mult)
```

 with u_fin 〈c < top〉 mult(1) show ?thesis
 by (intro mult') (auto dest!: borel_measurable_simple_function)
 qed
 qed (auto intro: cong intro!: set add dest!: borel_measurable_simple_function)
 qed fact+
 qed
lemma simple_function_If_set:
assumes sf:simple_function M f simple_function Mg and A:A\cap space M\in
sets M
shows simple_function M (}\lambda\mathrm{ x. if }x\inA\mathrm{ then f x else g x) (is simple_function M
?IF)
proof -
define F where F x = f-`{{x}\cap space M for } define G where Gx=g-`{x}\cap space M for x
show ?thesis unfolding simple_function_def
proof safe
have ?IF' space M\subseteqf'space M\cupg'space M by auto
from finite_subset[OF this] assms
show finite (?IF'space M) unfolding simple_function_def by auto
next
fix x assume x f space M
then have *:?IF -' {?IF x} \cap space M = (if x }\in
then }((F)(fx)\cap(A\cap\mathrm{ space M)})\cup(G(fx)-(G(fx)\cap(A\cap\mathrm{ space M))))
else }((F(gx)\cap(A\cap\mathrm{ space M)) U(G(gx) - (G (gx) ค (A ค space M)))))
using sets.sets_into_space[OF A] by (auto split: if_split_asm simp: G_def
F_def)
have [intro]: \x.Fx\in sets M \x.Gx\in sets M
unfolding F_def G_def using sf[THEN simple_functionD(2)] by auto
show ?IF -'{?IF x} \cap space M \in sets M unfolding * using A by auto
qed
qed
lemma simple_function_If:
assumes sf: simple_function M f simple_function Mg and P:{x\inspace M. P
x} \in sets M
shows simple_function M (}\lambdax\mathrm{ . if P x then f x else g x)
proof -
have {x\inspace M. P x} ={x.P x} \cap space M by auto
with simple_function_If_set[OF sf, of {x. P x}] P show ?thesis by simp
qed
lemma simple_function_subalgebra:
assumes simple_function Nf
and N_subalgebra: sets N\subseteq sets M space N}=\mathrm{ space M
shows simple_function M f
using assms unfolding simple_function_def by auto
lemma simple_function_comp:

```
assumes \(T: T \in\) measurable \(M M^{\prime}\) and \(f\) : simple_function \(M^{\prime} f\)
shows simple_function \(M(\lambda x . f(T x))\)
proof (intro simple_function_def[THEN iffD2] conjI ballI)
have \((\lambda x . f(T x))\) ' space \(M \subseteq f^{\prime}\) space \(M^{\prime}\) using \(T\) unfolding measurable_def by auto
then show finite \(((\lambda x . f(T x))\) ' space \(M)\) using \(f\) unfolding simple_function_def by (auto intro: finite_subset)
fix \(i\) assume \(i: i \in(\lambda x . f(T x))\) ' space \(M\)
then have \(i \in f\) ' space \(M^{\prime}\)
using \(T\) unfolding measurable_def by auto
then have \(f-‘\{i\} \cap\) space \(M^{\prime} \in\) sets \(M^{\prime}\)
using \(f\) unfolding simple_function_def by auto
then have \(T-‘\left(f-‘\{i\} \cap\right.\) space \(\left.M^{\prime}\right) \cap\) space \(M \in\) sets \(M\)
using \(T\) unfolding measurable_def by auto
also have \(T-^{‘}\left(f-‘\{i\} \cap\right.\) space \(\left.M^{\prime}\right) \cap\) space \(M=(\lambda x . f(T x))-‘\{i\} \cap\)
space \(M\)
using \(T\) unfolding measurable_def by auto
finally show \((\lambda x . f(T x))-‘\{i\} \cap\) space \(M \in\) sets \(M\).
qed

\subsection*{6.6.3 Simple integral}
definition simple_integral \(::\) 'a measure \(\Rightarrow\left({ }^{\prime} a \Rightarrow\right.\) ennreal \() \Rightarrow\) ennreal \(\left(\right.\) integral \(\left.{ }^{S}\right)\)
where
integral \(^{S} M f=\left(\sum x \in f^{\prime}\right.\) space \(M . x *\) emeasure \(M(f-‘\{x\} \cap\) space \(\left.M)\right)\)
syntax
_simple_integral \(::\) pttrn \(\Rightarrow\) ennreal \(\Rightarrow{ }^{\prime}\) a measure \(\Rightarrow\) ennreal ( \(\int^{S}{ }^{S}\). _ \(^{2}[60,61]\) 110)

\section*{translations}
\(\int{ }^{S} x . f \partial M==\) CONST simple_integral \(M(\% x . f)\)
lemma simple_integral_cong:
assumes \(\bigwedge t . t \in\) space \(M \Longrightarrow f t=g t\)
shows integral \({ }^{S} M f=\) integral \(^{S} M g\)
proof -
have \(f\) 'space \(M=g\) 'space \(M\)
\(\bigwedge x . f-‘\{x\} \cap\) space \(M=g-‘\{x\} \cap\) space \(M\)
using assms by (auto intro!: image_eqI)
thus ?thesis unfolding simple_integral_def by simp
qed
lemma simple_integral_const[simp]:
\(\left(\int{ }^{S} x . c \partial M\right)=c *(\) emeasure \(M)(\) space \(M)\)
proof (cases space \(M=\{ \}\) )
case True thus ?thesis unfolding simple_integral_def by simp
next
case False hence \((\lambda x . c)\) ' space \(M=\{c\}\) by auto
thus ?thesis unfolding simple_integral_def by simp qed
lemma simple_function_partition:
assumes \(f\) : simple_function \(M f\) and \(g\) : simple_function \(M g\)
assumes sub: \(\bigwedge x y . x \in\) space \(M \Longrightarrow y \in\) space \(M \Longrightarrow g x=g y \Longrightarrow f x=f y\)
assumes \(v: \bigwedge x . x \in\) space \(M \Longrightarrow f x=v(g x)\)
shows integral \({ }^{S} M f=\left(\sum y \in g\right.\) 'space \(M . v y *\) emeasure \(M\{x \in\) space \(M . g x\) \(=y\}\) )
\(\left(\right.\) is \(\left._{-}=? r\right)\)
proof -
from \(f g\) have \([\) simp \(]\) : finite ( \(f^{\prime}\) space \(M\) ) finite ( \(g\) 'space \(M\) )
by (auto simp: simple_function_def)
from \(f g\) have [measurable]: \(f \in\) measurable \(M\) (count_space UNIV) \(g \in\) measurable \(M\) (count_space UNIV)
by (auto intro: measurable_simple_function)
\{ fix \(y\) assume \(y \in\) space \(M\)
then have \(f\) 'space \(M \cap\{i . \exists x \in\) space \(M . i=f x \wedge g y=g x\}=\{v(g y)\}\)
by (auto cong: sub simp: \(v[\) symmetric \(])\}\)
note \(e q=\) this
have integral \({ }^{S} M f=\)
( \(\sum y \in f^{\prime}\) space \(M . y *\left(\sum z \in g^{‘}\right.\) space \(M\).
if \(\exists x \in\) space \(M . y=f x \wedge z=g x\) then emeasure \(M\{x \in\) space \(M . g x=z\}\)
else 0))
unfolding simple_integral_def
proof (safe intro!: sum.cong ennreal_mult_left_cong)
fix \(y\) assume \(y: y \in\) space \(M f y \neq 0\)
have \([\) simp \(]: g\) 'space \(M \cap\{z . \exists x \in\) space \(M\). \(f y=f x \wedge z=g x\}=\)
\(\{z . \exists x \in\) space M. \(f y=f x \wedge z=g x\}\)
by auto
have eq: \(\bigcup i \in\{z . \exists x \in\) space M. \(f y=f x \wedge z=g x\} .\{x \in\) space \(M . g x=i\})\) \(=\)
\(f-‘\{f y\} \cap\) space \(M\)
by (auto simp: eq_commute cong: sub rev_conj_cong)
have finite ( \(g^{‘}\) space \(M\) ) by simp
then have finite \(\{z . \exists x \in\) space \(M . f y=f x \wedge z=g x\}\)
by (rule rev_finite_subset) auto
then show emeasure \(M(f-‘\{f y\} \cap\) space \(M)=\)
( \(\sum z \in g\) 'space \(M\). if \(\exists x \in\) space \(M . f y=f x \wedge z=g x\) then emeasure \(M\{x\)
\(\in\) space M. \(g x=z\}\) else 0)
apply (simp add: sum.If_cases)
apply (subst sum_emeasure)
apply (auto simp: disjoint_family_on_def eq)
done
qed
also have \(\ldots=\left(\sum y \in f^{\prime}\right.\) space \(M .\left(\sum z \in g^{\prime}\right.\) space \(M\).
if \(\exists x \in\) space \(M . y=f x \wedge z=g x\) then \(y *\) emeasure \(M\{x \in\) space \(M . g x=\) z\} else 0))
by (auto intro!: sum.cong simp: sum_distrib_left)
also have ... = ? \(r\)
by (subst sum.swap)
(auto intro!: sum.cong simp: sum.If_cases scaleR_sum_right[symmetric] eq)
finally show integral \({ }^{S} M f=\) ? \(r\).
qed
lemma simple_integral_add[simp]:
assumes \(f\) : simple_function \(M f\) and \(\bigwedge x .0 \leq f x\) and \(g\) : simple_function \(M g\) and \(\bigwedge x .0 \leq g x\)
shows \(\left(\int{ }^{S} x . f x+g x \partial M\right)=\) integral \(^{S} M f+\) integral \(^{S} M g\)
proof -
have \(\left(\int{ }^{S} x . f x+g x \partial M\right)=\)
\(\left(\sum y \in(\lambda x .(f x, g x))\right.\) 'space \(M .(f s t y+\) snd \(y)\) * emeasure \(M\{x \in\) space \(M .(f\) \(x, g x)=y\}\) )
by (intro simple_function_partition) (auto intro: \(f g\) )
also have \(\ldots=\left(\sum y \in(\lambda x\right.\). \((f x, g x))\) 'space \(M\). fst \(y\) * emeasure \(M\{x \in\) space M. \((f x, g x)=y\})+\)
\(\left(\sum y \in(\lambda x .(f x, g x))\right.\) 'space \(M\). snd \(y *\) emeasure \(M\{x \in \operatorname{space} M .(f x, g x)=\) y\}) using assms(2,4) by (auto intro!: sum.cong distrib_right simp: sum.distrib[symmetric]) also have \(\left(\sum y \in(\lambda x .(f x, g x))\right.\) 'space \(M\). fst \(y *\) emeasure \(M\{x \in\) space \(M .(f\) \(x, g x)=y\})=\left(\int{ }^{S} x . f x \partial M\right)\)
by (intro simple_function_partition[symmetric]) (auto intro: \(f g\) )
also have \(\left(\sum y \in(\lambda x .(f x, g x))\right.\) 'space \(M\). snd \(y *\) emeasure \(M\) \{x space \(M .(f\)
\(x, g x)=y\})=\left(\int{ }^{S} x . g x \partial M\right)\)
by (intro simple_function_partition[symmetric]) (auto intro: \(f g\) )
finally show ?thesis.
qed
lemma simple_integral_sum [simp]:
assumes \(\bigwedge i x . i \in P \Longrightarrow 0 \leq f i x\)
assumes \(\bigwedge i . i \in P \Longrightarrow\) simple_function \(M(f i)\)
shows \(\left(\int{ }^{S} x .\left(\sum i \in P . f i x\right) \partial M\right)=\left(\sum i \in P\right.\). integral \(\left.^{S} M(f i)\right)\)
proof cases
assume finite \(P\)
from this assms show ?thesis
by induct (auto)
qed auto
lemma simple_integral_mult[simp]:
assumes \(f\) : simple_function \(M f\)
shows \(\left(\int{ }^{S} x . c * f x \partial M\right)=c *\) integral \(^{S} M f\)
proof -
have \(\left(\int{ }^{S} x . c * f x \partial M\right)=\left(\sum y \in f\right.\) 'space \(M .(c * y) *\) emeasure \(M\{x \in\) space
M. \(f x=y\}\) )
using \(f\) by (intro simple_function_partition) auto
```

also have $\ldots=c *$ integral $^{S} M f$
using f unfolding simple_integral_def
by (subst sum_distrib_left) (auto simp: mult.assoc Int_def conj_commute)
finally show ?thesis .
qed
lemma simple_integral_mono_AE:
assumes $f[$ measurable]: simple_function $M f$ and $g[$ measurable $]$: simple_function
Mg
and mono: AE x in $M . f x \leq g x$
shows integral ${ }^{S} M f \leq$ integral $^{S} M g$
proof -
let ? $\mu=\lambda P$. emeasure $M\{x \in$ space $M . P x\}$
have integral ${ }^{S} M f=\left(\sum y \in(\lambda x .(f x, g x))\right.$ 'space $M . f$ st $y * ? \mu(\lambda x .(f x, g x)$
= y))
using $f g$ by (intro simple_function_partition) auto
also have $\ldots \leq\left(\sum y \in(\lambda x .(f x, g x))\right.$ 'space M. snd $\left.y * ? \mu(\lambda x .(f x, g x)=y)\right)$
proof (clarsimp intro!: sum_mono)
fix x assume $x \in$ space M
let $? M=? \mu(\lambda y . f y=f x \wedge g y=g x)$
show $f x * ? M \leq g x * ? M$
proof cases
assume ? $M \neq 0$
then have $0<?$?
by (simp add: less_le)
also have $\ldots \leq$? $\mu(\lambda y . f x \leq g x)$
using mono by (intro emeasure_mono_AE) auto
finally have $\neg \neg f x \leq g x$
by (intro notI) auto
then show?thesis
by (intro mult_right_mono) auto
qed simp
qed
also have $\ldots=$ integral $^{S} M g$
using $f g$ by (intro simple_function_partition[symmetric]) auto
finally show? ?thesis.
qed
lemma simple_integral_mono:
assumes simple_function $M f$ and simple_function $M g$
and mono: $\bigwedge x . x \in$ space $M \Longrightarrow f x \leq g x$
shows integral ${ }^{S} M f \leq$ integral $^{S} M g$
using assms by (intro simple_integral_mono_AE) auto
lemma simple_integral_cong_AE:
assumes simple_function $M f$ and simple_function $M g$
and $A E x$ in $M . f x=g x$
shows integral ${ }^{S} M f=$ integral $^{S} M g$
using assms by (auto simp: eq_iff intro!: simple_integral_mono_AE)

```
lemma simple_integral_cong':
assumes \(s f\) : simple_function \(M f\) simple_function \(M g\)
and mea: (emeasure \(M)\{x \in\) space \(M . f x \neq g x\}=0\)
shows integral \({ }^{S} M f=\) integral \(^{S} M g\)
proof (intro simple_integral_cong_AE sf AE_I)
show (emeasure \(M\) ) \(\{x \in\) space \(M . f x \neq g x\}=0\) by fact
show \(\{x \in\) space \(M . f x \neq g x\} \in\) sets \(M\)
using \(s f[\) THEN borel_measurable_simple_function \(]\) by auto
qed \(\operatorname{simp}\)
lemma simple_integral_indicator:
assumes \(A: A \in\) sets \(M\)
assumes \(f\) : simple_function \(M f\)
shows \(\left(\int{ }^{S} x . f x *\right.\) indicator \(\left.A x \partial M\right)=\)
\(\left(\sum x \in f^{\prime}\right.\) space \(M . x *\) emeasure \(M(f-‘\{x\} \cap\) space \(\left.M \cap A)\right)\)
proof -
have eq: \((\lambda x .(f x\), indicator \(A x))\) 'space \(M \cap\{x\). snd \(x=1\}=(\lambda x .(f x\),
1 ::ennreal)) ' \(A\)
using \(A[T H E N\) sets.sets_into_space] by (auto simp: indicator_def image_iff split:
if_split_asm)
have eq2: \(\bigwedge x . f x \notin f^{\prime} A \Longrightarrow f-‘\{f x\} \cap\) space \(M \cap A=\{ \}\) by (auto simp: image_iff)
have \(\left(\int{ }^{S} x . f x *\right.\) indicator \(\left.A x \partial M\right)=\)
\(\left(\sum y \in(\lambda x .(f x\right.\), indicator \(A x))\) 'space \(M .(f s t y *\) snd \(y) *\) emeasure \(M\{x \in\) space
\(M .(f x\), indicator \(A x)=y\})\)
using assms by (intro simple_function_partition) auto
also have \(\ldots=\left(\sum y \in(\lambda x\right.\). \((f x\), indicator \(A\) x::ennreal \())\) 'space \(M\).
if snd \(y=1\) then fst \(y *\) emeasure \(M(f-‘\{f s t y\} \cap\) space \(M \cap A)\) else 0\()\)
by (auto simp: indicator_def split: if_split_asm intro!: arg_cong2[where \(f=(*)\) ]
arg_cong2[where \(f=\) emeasure] sum.cong)
also have \(\ldots=\left(\sum y \in(\lambda x .(f x, 1:: \text { ennreal }))^{\prime} A\right.\). fst \(y *\) emeasure \(M(f-‘\{f s t\)
\(y\} \cap\) space \(M \cap A)\) )
using assms by (subst sum.If_cases) (auto intro!: simple_functionD(1) simp: eq)
also have \(\ldots=\left(\sum y \in f s t^{\prime}(\lambda x .(f x, 1:: \text { ennreal }))^{\prime} A . y *\right.\) emeasure \(M(f-‘\{y\}\) \(\cap\) space \(M \cap A)\) )
by (subst sum.reindex [of fst]) (auto simp: inj_on_def)
also have \(\ldots=\left(\sum x \in f\right.\) 'space \(M . x\) * emeasure \(M(f-‘\{x\} \cap\) space \(M \cap\) A))
using \(A[\) THEN sets.sets_into_space]
by (intro sum.mono_neutral_cong_left simple_functionD f) (auto simp: image_comp comp_def eq2)
finally show ?thesis .
qed
lemma simple_integral_indicator_only[simp]:
assumes \(A \in\) sets \(M\)
```

shows integral ${ }^{S} M$ (indicator $\left.A\right)=$ emeasure $M A$
using simple_integral_indicator[OF assms, of λx. 1] sets.sets_into_space[OF assms]
by (simp_all add: image_constant_conv Int_absorb1 split: if_split_asm)
lemma simple_integral_null_set:
assumes simple_function $M u \bigwedge x .0 \leq u x$ and $N \in$ null_sets M
shows $\left(\int{ }^{S} x . u x *\right.$ indicator $\left.N x \partial M\right)=0$
proof -
have $A E x$ in M. indicator $N x=(0$:: ennreal $)$
using $\langle N \in$ null_sets $M\rangle$ by (auto simp: indicator_def intro!: $A E_{-} I\left[o f_{\neq} N\right]$)
then have $\left(\int{ }^{S} x . u x *\right.$ indicator $\left.N x \partial M\right)=\left(\int{ }^{S} x .0 \partial M\right)$
using assms apply (intro simple_integral_cong_AE) by auto
then show? ?hesis by simp
qed
lemma simple_integral_cong_AE_mult_indicator:
assumes sf: simple_function $M f$ and eq: AE x in $M . x \in S$ and $S \in$ sets M
shows integral ${ }^{S}{ }^{M} f=\left(\int^{S} x . f x *\right.$ indicator $\left.S x \partial M\right)$
using assms by (intro simple_integral_cong_AE) auto
lemma simple_integral_cmult_indicator:
assumes $A: A \in$ sets M
shows $\left(\int{ }^{S} x . c *\right.$ indicator $\left.A x \partial M\right)=c *$ emeasure $M A$
using simple_integral_mult[OF simple_function_indicator[OF A]]
unfolding simple_integral_indicator_only[OF A] by simp
lemma simple_integral_nonneg:
assumes f : simple_function $M f$ and $a e: A E x$ in $M .0 \leq f x$
shows $0 \leq$ integral $^{S} M f$
proof -
have integral ${ }^{S} M(\lambda x .0) \leq$ integral $^{S} M f$
using simple_integral_mono_AE[OF_f ae] by auto
then show?thesis by simp
qed

```

\subsection*{6.6.4 Integral on nonnegative functions}
```

definition $n n _i n t e g r a l ~:: ~ ' a ~ m e a s u r e ~ \Rightarrow(' a \Rightarrow$ ennreal $) \Rightarrow$ ennreal $\left(\right.$ integral $\left.^{N}\right)$
where
integral $^{N} M f=\left(S U P g \in\{g\right.$. simple_function $M g \wedge g \leq f\}$. integral $\left.^{S} M g\right)$
syntax
_nn_integral :: pttrn \Rightarrow ennreal $\Rightarrow{ }^{\prime}$ 'a measure \Rightarrow ennreal $\left(\int+\left(\left(2\right.\right.\right.$../ _)/ $\left.\partial_{-}\right)$
[60,61] 110)
translations
$\int{ }^{+} x . f \partial M==$ CONST nn_integral $M(\lambda x . f)$

```
lemma nn_integral_def_finite:
```

 integral \(^{N} M f=(S U P g \in\{g\). simple_function \(M g \wedge g \leq f \wedge(\forall x . g x<\) top \()\}\).
 integral $^{S} \mathrm{Mg}$)
(is ${ }_{-}=\operatorname{Sup}(? A$ '?f))
unfolding nn_integral_def
proof (safe intro!: antisym SUP_least)
fix g assume $g[$ measurable $]$: simple_function $M g g \leq f$
show integral ${ }^{S} M g \leq \operatorname{Sup}(? A$ '?f)
proof cases
assume $a e: A E x$ in $M . g x \neq t o p$
let ? $G=\{x \in$ space M. $g x \neq t o p\}$
have integral ${ }^{S} M g=$ integral $^{S} M(\lambda x . g x *$ indicator ? $G x)$
proof (rule simple_integral_cong_AE)
show $A E x$ in $M . g x=g x *$ indicator ? $G x$
using ae AE_space by eventually_elim auto
qed (insert g, auto)
also have $\ldots \leq \operatorname{Sup}(? A$ '?f)
using g by (intro SUP_upper) (auto simp: le_fun_def less_top split: split_indicator)
finally show ?thesis.
next
assume $n A E: \neg(A E x$ in $M . g x \neq t o p)$
then have emeasure $M\{x \in$ space $M . g x=$ top $\} \neq 0$ (is emeasure $M ? G \neq$
0)
by (subst (asm) AE_iff_measurable $[O F$ _ refl $]$) auto
then have top $=\left(S U P n .\left(\int{ }^{S} x\right.\right.$. of_nat $n *$ indicator ? $\left.\left.G x \partial M\right)\right)$
by (simp add: ennreal_SUP_of_nat_eq_top ennreal_top_eq_mult_iff SUP_mult_right_ennreal[symmetric])
also have $\ldots \leq \operatorname{Sup}(? A$ '?f)
using g
by (safe intro!: SUP_least SUP_upper)
(auto simp: le_fun_def of_nat_less_top top_unique[symmetric] split: split_indicator
intro: order_trans[of $g x f x$ for x, OF order_trans[of _top]])
finally show ?thesis
by (simp add: top_unique del: SUP_eq_top_iff Sup_eq_top_iff)
qed
qed (auto intro: SUP_upper)
lemma nn_integral_mono_AE:
assumes ae: AEx in $M . u x \leq v x$ shows integral ${ }^{N} M u \leq$ integral $^{N} M v$
unfolding nn_integral_def
proof (safe intro!: SUP_mono)
fix n assume n : simple_function $M n n \leq u$
from ae[THEN AE_E] guess N. note $N=$ this
then have $a e_{-} N: A E x$ in $M . x \notin N$ by (auto intro: AE_not_in)
let $? n=\lambda x . n x *$ indicator $($ space $M-N) x$
have $A E x$ in M. $n x \leq$?n x simple_function M ?n
using $n N a e_{-} N$ by auto
moreover
\{ fix x have ? $n x \leq v x$
proof cases

```
```

 assume \(x: x \in\) space \(M-N\)
 with \(N\) have \(u x \leq v x\) by auto
 with \(n\) (2)[THEN le_funD, of \(x] x\) show ?thesis
 by (auto simp: max_def split: if_split_asm)
 qed simp \}
 then have ? \(n \leq v\) by (auto simp: le_funI)
 moreover have integral \({ }^{S} M n \leq\) integral \(^{S} M\) ?n
 using \(a e_{-} N N n\) by (auto intro!: simple_integral_mono_AE)
 ultimately show \(\exists m \in\{g\). simple_function \(M g \wedge g \leq v\}\). integral \({ }^{S} M n \leq\)
 integral S M m
by force
qed
lemma nn_integral_mono:
$(\bigwedge x . x \in$ space $M \Longrightarrow u x \leq v x) \Longrightarrow$ integral $^{N} M u \leq$ integral $^{N} M v$
by (auto intro: nn_integral_mono_AE)
lemma mono_nn_integral: mono $F \Longrightarrow$ mono $\left(\lambda x\right.$. integral $\left.{ }^{N} M(F x)\right)$
by (auto simp add: mono_def le_fun_def intro!: nn_integral_mono)
lemma $n n_{-}$integral_cong_AE:
AE x in $M . u x=v x \Longrightarrow$ integral $^{N} M u=$ integral $^{N} M v$
by (auto simp: eq_iff intro!: nn_integral_mono_AE)
lemma nn_integral_cong:
$(\bigwedge x . x \in$ space $M \Longrightarrow u x=v x) \Longrightarrow$ integral $^{N} M u=$ integral $^{N} M v$
by (auto intro: nn_integral_cong_AE)
lemma nn_integral_cong_simp:
$(\bigwedge x . x \in$ space $M=\operatorname{simp}=>u x=v x) \Longrightarrow$ integral $^{N} M u=$ integral $^{N} M v$
by (auto intro: nn_integral_cong simp: simp_implies_def)
lemma incseq_nn_integral:
assumes incseq f shows incseq (λ i. integral ${ }^{N} M(f i)$)
proof -
have $\bigwedge i x . f i x \leq f($ Suc $i) x$
using assms by (auto dest!: incseq_SucD simp: le_fun_def)
then show ?thesis
by (auto intro!: incseq_SucI nn_integral_mono)
qed
lemma nn_integral_eq_simple_integral:
assumes f : simple_function $M f$ shows integral $^{N} M f=$ integral $^{S} M f$
proof -
let ?f $=\lambda x . f x *$ indicator (space M) x
have f^{\prime} : simple_function M ?f using f by auto
have integral ${ }^{N} M$?f \leq integral $^{S} M$?f using f^{\prime}
by (force intro!: SUP_least simple_integral_mono simp: le_fun_def nn_integral_def)
moreover have integral ${ }^{S} M$?f \leq integral $^{N} M$?f

```
```

 unfolding nn_integral_def
 using f' by (auto intro!: SUP_upper)
 ultimately show ?thesis
 by (simp cong: nn_integral_cong simple_integral_cong)
 qed

```

Beppo-Levi monotone convergence theorem
lemma nn_integral_monotone_convergence_SUP:
    assumes \(f: \operatorname{incseq} f\) and [measurable]: \(\bigwedge i . f i \in\) borel_measurable \(M\)
    shows \(\left(\int^{+} x .(S U P i . f i x) \partial M\right)=\left(S U P\right.\) i. integral \(\left.{ }^{N} M(f i)\right)\)
proof (rule antisym)
    show \(\left(\int^{+} x .(S U P i . f i x) \partial M\right) \leq\left(S U P i .\left(\int^{+} x . f i x \partial M\right)\right)\)
        unfolding nn_integral_def_finite[of _ \(\lambda x\). SUP i. fix]
    proof (safe intro!: SUP_least)
        fix \(u\) assume sf_u[simp]: simple_function \(M u\) and
            \(u: u \leq(\lambda x . S U P i . f i x)\) and \(u_{-}\)range: \(\forall x . u x<t o p\)
    note sf_u[THEN borel_measurable_simple_function, measurable]
    show integral \({ }^{S} M u \leq\left(S U P j . \int{ }^{+} x . f j x \partial M\right)\)
    proof (rule ennreal_approx_unit)
            fix \(a::\) ennreal assume \(a<1\)
            let ? \(a u=\lambda x . a * u x\)
            let ? \(B=\lambda c\) i. \(\{x \in\) space \(M\). ?au \(x=c \wedge c \leq f i x\}\)
            have integral \({ }^{S} M\) ?au \(=\left(\sum c \in ? a u\right.\) 'space \(M . c *(S U P\) i. emeasure \(M\) (?B \(c\)
i)))
            unfolding simple_integral_def
            proof (intro sum.cong ennreal_mult_left_cong refl)
            fix \(c\) assume \(c \in\) ? au' space \(M c \neq 0\)
            \{ fix \(x^{\prime}\) assume \(x^{\prime}: x^{\prime} \in\) space \(M\) ?au \(x^{\prime}=c\)
                with \(\langle c \neq 0\rangle\) u_range have ? au \(x^{\prime}<1 * u x^{\prime}\)
                    by (intro ennreal_mult_strict_right_mono \(\langle a<1\) ) (auto simp: less_le)
                    also have \(\ldots \leq\left(S U P\right.\) i. \(\left.f i x^{\prime}\right)\)
                        using \(u\) by (auto simp: le_fun_def)
                        finally have \(\exists i\). ? au \(x^{\prime} \leq f i x^{\prime}\)
                by (auto simp: less_SUP_iff intro: less_imp_le) \}
            then have \(*: ? a u-‘\{c\} \cap\) space \(M=(\bigcup i\) ? ?B \(c i)\)
                by auto
            show emeasure \(M(? a u-‘\{c\} \cap\) space \(M)=(S U P\) i. emeasure \(M(? B c\)
i))
                unfolding \(*\) using \(f\)
                by (intro SUP_emeasure_incseq[symmetric])
                    (auto simp: incseq_def le_fun_def intro: order_trans)
    qed
    also have \(\ldots=\left(S U P i . \sum c \in ? a u\right.\) 'space \(M . c *\) emeasure \(M(? B\) c i) )
            unfolding SUP_mult_left_ennreal using \(f\)
            by (intro ennreal_SUP_sum[symmetric])
                (auto intro!: mult_mono emeasure_mono simp: incseq_def le_fun_def intro:
order_trans)
    also have \(\ldots \leq\left(S U P i\right.\). integral \(\left.^{N} M(f i)\right)\)
```

 proof (intro SUP_subset_mono order_refl)
 fix }
 have (\sumc\in?au`space M. c * emeasure M (?B c i)) =
 (\int S}x.(a*ux)* indicator {x\inspace M.a*ux\leqfix} x \partialM)
 by (subst simple_integral_indicator)
 (auto intro!: sum.cong ennreal_mult_left_cong arg_cong2[where f=emeasure])
 also have ... = (\int +
 x \partialM)
by (rule nn_integral_eq_simple_integral[symmetric]) simp
also have ... \leq (}\mp@subsup{}{}{+}\mathrm{ + x. f i x }\partialM
by (intro nn_integral_mono) (auto split: split_indicator)
finally show (\sumc\in?au'space M.c* emeasure M (?B c i)) \leq (\int +}\mp@subsup{}{~}{x}.fi
\partialM).
qed
finally show a* integral }\mp@subsup{}{}{S}Mu\leq(SUP i. integral N M (f i)
by simp
qed
qed
qed (auto intro!: SUP_least SUP_upper nn_integral_mono)
lemma sup_continuous_nn_integral[order_continuous_intros]:
assumes f: \y. sup_continuous (fy)
assumes [measurable]: \x. (\lambday.f y x) \in borel_measurable M
shows sup_continuous (}\lambdax.({\mp@subsup{}{}{+}y.f y x \partialM)
unfolding sup_continuous_def
proof safe
fix C :: nat => 'b assume C: incseq C
with sup_continuous_mono[OF f] show (}\mp@subsup{\int}{}{+}y.fy(Sup(C'UNIV))\partialM)
(SUP i. 倝 y.fy(C i)\partialM)
unfolding sup_continuousD[OF f C]
by (subst nn_integral_monotone_convergence_SUP) (auto simp: mono_def le_fun_def)
qed
theorem nn_integral_monotone_convergence_SUP_AE:
assumes f : $\bigwedge i$. AE x in $M . f i x \leq f(S u c i) x \bigwedge i . f i \in$ borel_measurable M
shows $\left(\int^{+} x .(S U P i . f i x) \partial M\right)=\left(S U P\right.$ i. integral $\left.{ }^{N} M(f i)\right)$
proof -
from f have $A E x$ in $M . \forall i . f i x \leq f(S u c i) x$ by (simp add: AE_all_countable)
from this[THEN AE-E] guess N. note $N=$ this
let $? f=\lambda i x$. if $x \in$ space $M-N$ then $f i x$ else 0
have $f_{-} e q$: $A E x$ in M. \forall i. ?f $i x=f i x$ using N by (auto intro!: $A E_{-} I\left[o f f_{1}\right.$
$N]$)
then have $\left(\int^{+} x .(S U P\right.$ i. f i $\left.x) \partial M\right)=\left(\int^{+} x\right.$. (SUP i. ?f i $\left.\left.x\right) \partial M\right)$
by (auto intro!: nn_integral_cong_AE)
also have $\ldots=\left(S U P i .\left(\int^{+}\right.\right.$x. ?f i $\left.\left.x \partial M\right)\right)$
proof (rule nn_integral_monotone_convergence_SUP)
show incseq ?f using $N(1)$ by (force intro!: incseq_SucI le_funI)
$\{$ fix i show $(\lambda x$. if $x \in$ space $M-N$ then f ix else 0$) \in$ borel_measurable M

```
using \(f N(3)\) by (intro measurable_If_set) auto \}
qed
also have \(\ldots=\left(S U P i .\left(\int^{+} x . f i x \partial M\right)\right)\)
using \(f_{-} e q\) by (force intro!: arg_cong[where \(f=\lambda f\). Sup (range f)] nn_integral_cong_AE ext)
finally show ?thesis .
qed
lemma nn_integral_monotone_convergence_simple:
incseq \(f \Longrightarrow(\bigwedge i\). simple_function \(M(f i)) \Longrightarrow\left(S U P i . \int{ }^{S} x\right.\). fix \(\left.\partial M\right)=\left(\int{ }^{+} x\right.\).
(SUP i. fix) \(\partial M\) )
using nn_integral_monotone_convergence_SUP[of f M]
by (simp add: nn_integral_eq_simple_integral[symmetric] borel_measurable_simple_function)
lemma SUP_simple_integral_sequences:
assumes \(f\) : incseq \(f\) \i. simple_function \(M(f i)\)
and \(g\) : incseq \(g \bigwedge i\). simple_function \(M(g i)\)
and eq: AE \(x\) in \(M .(S U P\) i. \(f i x)=(S U P\) i. \(g i x)\)
shows \(\left(S U P i\right.\). integral \(\left.{ }^{S} M(f i)\right)=\left(S U P i\right.\). integral \(\left.{ }^{S} M(g i)\right)\)
(is \(\left.\operatorname{Sup}\left(? F^{`}{ }^{\prime}\right)=\operatorname{Sup}\left(? G^{`}\right)\right)\)
proof -
have \(\left(S U P\right.\) i. integral \(\left.{ }^{S} M(f i)\right)=\left(\int{ }^{+} x .(S U P\right.\) i. \(\left.f i x) \partial M\right)\)
using \(f\) by (rule nn_integral_monotone_convergence_simple)
also have \(\ldots=\left(\int{ }^{+} x .(S U P i . g i x) \partial M\right)\)
unfolding eq[THEN nn_integral_cong_AE] ..
also have \(\ldots=(S U P i\). ? \(G i)\)
using \(g\) by (rule nn_integral_monotone_convergence_simple[symmetric])
finally show ?thesis by simp
qed
lemma nn_integral_const[simp]: \(\left(\int+x . c \partial M\right)=c *\) emeasure \(M(\) space \(M)\)
by (subst nn_integral_eq_simple_integral) auto
lemma nn_integral_linear:
assumes \(f: f \in\) borel_measurable \(M\) and \(g: g \in\) borel_measurable \(M\)
shows \(\left(\int+x . a * f x+g x \partial M\right)=a *\) integral \(^{N} M f+\) integral \(^{N} M g\)
(is integral \({ }^{N} M ? L={ }_{\text {_ }}\) )
proof -
from borel_measurable_implies_simple_function_sequence' \([\) OF \(f(1)]\) guess \(u\).
note \(u=\) nn_integral_monotone_convergence_simple \([O F\) this \((2,1)]\) this
from borel_measurable_implies_simple_function_sequence' \([O F g(1)]\) guess \(v\).
note \(v=\) nn_integral_monotone_convergence_simple \([\) OF this(2,1)] this
let ? \(L^{\prime}=\lambda i x . a * u i x+v i x\)
have \(? L \in\) borel_measurable \(M\) using assms by auto
from borel_measurable_implies_simple_function_sequence [OF this] guess \(l\).
note \(l=\) nn_integral_monotone_convergence_simple \([\) OF this \((2,1)]\) this
have inc: incseq ( \(\lambda i . a *\) integral \(\left.^{S} M(u i)\right)\) incseq ( \(\lambda i\). integral \(\left.{ }^{S} M(v i)\right)\)
using \(u v\) by (auto simp: incseq_Suc_iff le_fun_def intro!: add_mono mult_left_mono simple_integral_mono)
```

 have \(l^{\prime}:\left(S U P i\right.\). integral \(\left.^{S} M(l i)\right)=\left(S U P i\right.\). integral \(\left.^{S} M\left({ }^{\prime} L^{\prime} i\right)\right)\)
 proof (rule SUP_simple_integral_sequences[OF l(3,2)])
 show incseq? \(L^{\prime} \bigwedge i\). simple_function \(M\left(? L^{\prime} i\right)\)
 using \(u v\) unfolding incseq_Suc_iff le_fun_def
 by (auto intro!: add_mono mult_left_mono)
 \{ fix \(x\)
 have \((S U P i . a * u i x+v i x)=a *(S U P\) i. u i \(x)+(S U P\) i. vix)
 using \(u(3) v(3) u(4)\left[o f f_{-} x\right] v(4)\left[o f f_{-} x\right]\) unfolding SUP_mult_left_ennreal
 by (auto intro!: ennreal_SUP_add simp: incseq_Suc_iff le_fun_def add_mono
 mult_left_mono) \}
then show $A E x$ in $M .(S U P$ i. l i $x)=\left(S U P i\right.$. ? L^{\prime} i $\left.x\right)$
unfolding $l(5)$ using $u(5) v(5)$ by (intro AE_I2) auto
qed
also have $\ldots=\left(S U P\right.$ i. $a *$ integral $^{S} M(u i)+$ integral $\left.^{S} M(v i)\right)$
using u (2) v (2) by auto
finally show ?thesis
unfolding $l(5)$ [symmetric] $l(1)$ [symmetric]
by (simp add: ennreal_SUP_add[OF inc] v u SUP_mult_left_ennreal[symmetric])
qed
lemma nn_integral_cmult: $f \in$ borel_measurable $M \Longrightarrow\left(\int{ }^{+} x . c * f x \partial M\right)=c *$
integral $^{N} M f$
using nn_integral_linear $[$ of $f M \lambda x .0 c]$ by simp
lemma nn_integral_multc: $f \in$ borel_measurable $M \Longrightarrow\left(\int+x . f x * c \partial M\right)=$
integral $^{N} M f * c$

```
unfolding mult.commute \(\left[o f_{-} c\right] n n \_i n t e g r a l \_c m u l t ~ b y ~ s i m p ~\)
lemma nn_integral_divide: \(f \in\) borel_measurable \(M \Longrightarrow\left(\int+x . f x / c \partial M\right)=\) \(\left(\int+x . f x \partial M\right) / c\)
unfolding divide_ennreal_def by (rule nn_integral_multc)
lemma nn_integral_indicator[simp]: \(A \in\) sets \(M \Longrightarrow\left(\int{ }^{+} x\right.\). indicator \(\left.A x \partial M\right)=\) (emeasure M) A
by (subst nn_integral_eq_simple_integral) (auto simp: simple_integral_indicator)
lemma nn_integral_cmult_indicator: \(A \in\) sets \(M \Longrightarrow\left(\int^{+} x . c *\right.\) indicator \(A x\) \(\partial M)=c *\) emeasure \(M A\)
by (subst nn_integral_eq_simple_integral) (auto)
lemma nn_integral_indicator':
assumes [measurable]: \(A \cap\) space \(M \in\) sets \(M\)
shows \(\left(\int^{+} x\right.\). indicator \(\left.A x \partial M\right)=\) emeasure \(M(A \cap\) space \(M)\)
proof -
have \(\left(\int^{+} x\right.\). indicator \(\left.A x \partial M\right)=\left(\int^{+}\right.\)x. indicator \((A \cap\) space \(\left.M) x \partial M\right)\)
by (intro nn_integral_cong) (simp split: split_indicator)
```

 also have \(\ldots=\) emeasure \(M(A \cap\) space \(M)\)
 by \(\operatorname{simp}\)
 finally show ?thesis.
 qed

```
lemma nn_integral_indicator_singleton[simp]:
    assumes [measurable]: \(\{y\} \in\) sets \(M\) shows \(\left(\int{ }^{+} x . f x *\right.\) indicator \(\left.\{y\} x \partial M\right)\)
\(=f y *\) emeasure \(M\{y\}\)
proof -
    have \(\left(\int{ }^{+} x . f x *\right.\) indicator \(\left.\{y\} x \partial M\right)=\left(\int{ }^{+} x . f y *\right.\) indicator \(\left.\{y\} x \partial M\right)\)
        by (auto intro!: nn_integral_cong split: split_indicator)
    then show? ?thesis
        by (simp add: nn_integral_cmult)
qed
lemma nn_integral_set_ennreal:
    \(\left(\int{ }^{+} x\right.\). ennreal \((f x) *\) indicator \(\left.A x \partial M\right)=\left(\int{ }^{+} x\right.\). ennreal \((f x *\) indicator \(A x)\)
\(\partial M)\)
    by (rule nn_integral_cong) (simp split: split_indicator)
lemma \(n n\) _integral_indicator_singleton'[simp]:
    assumes [measurable]: \(\{y\} \in\) sets \(M\)
    shows \(\left(\int^{+} x\right.\). ennreal \((f x *\) indicator \(\left.\{y\} x) \partial M\right)=f y *\) emeasure \(M\{y\}\)
    by (subst nn_integral_set_ennreal[symmetric]) (simp)
lemma nn_integral_add:
    \(f \in\) borel_measurable \(M \Longrightarrow g \in\) borel_measurable \(M \Longrightarrow\left(\int+x . f x+g x \partial M\right)\)
\(=\) integral \(^{N} M f+\) integral \(^{N} M g\)
    using nn_integral_linear [of \(f M g 1]\) by simp
lemma nn_integral_sum:
    \((\bigwedge i . i \in P \Longrightarrow f i \in\) borel_measurable \(M) \Longrightarrow\left(\int^{+} x .\left(\sum i \in P . f i x\right) \partial M\right)=\)
( \(\sum i \in P\). integral \({ }^{N} M(f i)\) )
    by (induction P rule: infinite_finite_induct) (auto simp: nn_integral_add)
theorem nn_integral_suminf:
    assumes \(f\) : \(\bigwedge i . f i \in\) borel_measurable \(M\)
    shows \(\left(\int^{+} x .\left(\sum i . f i x\right) \partial M\right)=\left(\sum i\right.\). integral \(\left.^{N} M(f i)\right)\)
proof -
    have all_pos: \(A E x\) in \(M . \forall i .0 \leq f i x\)
        using assms by (auto simp: AE_all_countable)
    have \(\left(\sum i\right.\). integral \(\left.^{N} M(f i)\right)=\left(S U P n . \sum i<n\right.\). integral \(\left.^{N} M(f i)\right)\)
        by (rule suminf_eq_SUP)
    also have \(\ldots=\left(S U P n . \int{ }^{+} x .\left(\sum i<n . f i x\right) \partial M\right)\)
        unfolding nn_integral_sum \([O F f]\)..
    also have \(\ldots=\int{ }^{+} x\). (SUP \(\left.n . \sum i<n . f i x\right) \partial M\) using \(f\) all_pos
        by (intro nn_integral_monotone_convergence_SUP_AE[symmetric])
            (elim AE_mp, auto simp: sum_nonneg simp del: sum.lessThan_Suc intro!:
AE_I2 sum_mono2)
```

 also have \(\ldots=\int{ }^{+} x .\left(\sum i . f i x\right) \partial M\) using all_pos
 by (intro nn_integral_cong_AE) (auto simp: suminf_eq_SUP)
 finally show ?thesis by simp
 qed
lemma nn_integral_bound_simple_function:
assumes bnd: $\bigwedge x . x \in$ space $M \Longrightarrow f x<\infty$
assumes f [measurable]: simple_function $M f$
assumes supp: emeasure $M\{x \in$ space $M . f x \neq 0\}<\infty$
shows nn_integral $M f<\infty$
proof cases
assume space $M=\{ \}$
then have nn_integral $M f=\left(\int{ }^{+} x .0 \partial M\right)$
by (intro nn_integral_cong) auto
then show? ?hesis by simp
next
assume space $M \neq\{ \}$
with simple_function $D(1)[O F f]$ bnd have bnd: $0 \leq \operatorname{Max}\left(f^{\prime}\right.$ space $\left.M\right) \wedge \operatorname{Max}$
(f'space M) $<\infty$
by (subst Max_less_iff) (auto simp: Max_ge_iff)
have $n n$ _integral $M f \leq\left(\int^{+} x . \operatorname{Max}\left(f^{\prime}\right.\right.$ space $\left.M\right) *$ indicator $\{x \in$ space $M . f x \neq$
0\} $x \partial M$)
proof (rule nn_integral_mono)
fix x assume $x \in$ space M
with f show $f x \leq \operatorname{Max}(f$ 'space $M) *$ indicator $\{x \in$ space $M . f x \neq 0\} x$
by (auto split: split_indicator intro!: Max_ge simple_functionD)
qed
also have $\ldots<\infty$
using bnd supp by (subst nn_integral_cmult) (auto simp: ennreal_mult_less_top)
finally show ?thesis.
qed
theorem nn_integral_Markov_inequality:
assumes $u: u \in$ borel_measurable M and $A \in$ sets M
shows (emeasure $M)(\{x \in$ space $M .1 \leq c * u x\} \cap A) \leq c *\left(\int+x . u x *\right.$
indicator $A \times \partial M)$
(is (emeasure M) ? $A \leq \leq^{*}$?PI)
proof -
have ? $A \in$ sets M
using $\langle A \in$ sets $M\rangle u$ by auto
hence (emeasure M) ? $A=\left(\int^{+} x\right.$. indicator ? $\left.A x \partial M\right)$
using nn_integral_indicator by simp
also have $\ldots \leq\left(\int^{+} x \cdot c *(u x *\right.$ indicator $\left.A x) \partial M\right)$
using u by (auto intro!: nn_integral_mono_AE simp: indicator_def)
also have $\ldots=c *\left(\int^{+} x . u x *\right.$ indicator $\left.A x \partial M\right)$
using assms by (auto intro!: nn_integral_cmult)
finally show ?thesis .
qed

```
```

lemma nn_integral_noteq_infinite:
assumes $g: g \in$ borel_measurable M and integral ${ }^{N} M g \neq \infty$
shows $A E x$ in $M . g x \neq \infty$
proof (rule ccontr)
assume $c: \neg(A E x$ in $M . g x \neq \infty)$
have (emeasure M) $\{x \in$ space $M . g x=\infty\} \neq 0$
using $c g$ by (auto simp add: AE_iff_null)
then have $0<($ emeasure $M)\{x \in$ space $M . g x=\infty\}$
by (auto simp: zero_less_iff_neq_zero)
then have $\infty=\infty *($ emeasure $M)\{x \in$ space $M . g x=\infty\}$
by (auto simp: ennreal_top_eq_mult_iff)
also have $\ldots \leq\left(\int^{+} x . \infty *\right.$ indicator $\{x \in$ space $\left.M . g x=\infty\} x \partial M\right)$
using g by (subst nn_integral_cmult_indicator) auto
also have $\ldots \leq$ integral $^{N} M g$
using assms by (auto intro!: nn_integral_mono_AE simp: indicator_def)
finally show False
using integral $^{N} M g \neq \infty$) by (auto simp: top_unique)
qed
lemma nn_integral_PInf:
assumes $f: f \in$ borel_measurable M and not_Inf: integral ${ }^{N} M f \neq \infty$
shows emeasure $M(f-'\{\infty\} \cap$ space $M)=0$
proof -
have ∞ * emeasure $M(f-‘\{\infty\} \cap$ space $M)=\left(\int+x . \infty *\right.$ indicator $\left(f-^{\prime}\right.$
$\{\infty\} \cap$ space $M) x \partial M)$
using f by (subst nn_integral_cmult_indicator) (auto simp: measurable_sets)
also have $\ldots \leq$ integral $^{N} M f$
by (auto intro!: nn_integral_mono simp: indicator_def)
finally have $\infty *($ emeasure $M)(f-‘\{\infty\} \cap$ space $M) \leq$ integral $^{N} M f$
by simp
then show?thesis
using assms by (auto simp: ennreal_top_mult top_unique split: if_split_asm)
qed
lemma simple_integral_PInf:
simple_function $M f \Longrightarrow$ integral $^{S} M f \neq \infty \Longrightarrow$ emeasure $M(f-‘\{\infty\} \cap$ space
M) $=0$
by (rule nn_integral_PInf) (auto simp: nn_integral_eq_simple_integral borel_measurable_simple_function)
lemma nn_integral_PInf_AE:
assumes $f \in$ borel_measurable M integral $^{N} M f \neq \infty$ shows $A E x$ in $M . f x \neq$
∞
proof (rule AE_I)
show (emeasure $M)(f-‘\{\infty\} \cap$ space $M)=0$
by (rule nn_integral_PInf [OF assms])
show $f-‘\{\infty\} \cap$ space $M \in$ sets M
using assms by (auto intro: borel_measurable_vimage)
qed auto

```
lemma nn_integral_diff:
assumes \(f: f \in\) borel_measurable \(M\)
and \(g: g \in\) borel_measurable \(M\)
and fin: integral \({ }^{N} M g \neq \infty\)
and mono: \(A E x\) in \(M . g x \leq f x\)
shows \(\left(\int+x . f x-g x \partial M\right)=\) integral \(^{N} M f-\) integral \(^{N} M g\)
proof -
have diff: \((\lambda x . f x-g x) \in\) borel_measurable \(M\)
using assms by auto
have \(A E x\) in \(M . f x=f x-g x+g x\)
using diff_add_cancel_ennreal mono nn_integral_noteq_infinite[OF g fin] assms
by auto
then have \(* *\) : integral \({ }^{N} M f=\left(\int{ }^{+} x . f x-g x \partial M\right)+\) integral \(^{N} M g\)
unfolding nn_integral_add[OF diff g, symmetric]
by (rule nn_integral_cong_AE)
show ?thesis unfolding \(* *\)
using fin
by (cases rule: ennreal2_cases[of \(\int{ }^{+} x . f x-g x \partial M\) integral \(\left.^{N} M g\right]\) ) auto
qed
lemma nn_integral_mult_bounded_inf:
assumes \(f: f \in\) borel_measurable \(M\left(\int^{+} x . f x \partial M\right)<\infty\) and \(c: c \neq \infty\) and ae: AE \(x\) in \(M . g x \leq c * f x\)
shows \(\left(\int{ }^{+} x . g x \partial M\right)<\infty\)
proof -
have \(\left(\int{ }^{+} x . g x \partial M\right) \leq\left(\int{ }^{+} x . c * f x \partial M\right)\)
by (intro nn_integral_mono_AE ae)
also have \(\left(\int{ }^{+} x . c * f x \partial M\right)<\infty\)
using \(c f\) by (subst nn_integral_cmult) (auto simp: ennreal_mult_less_top top_unique not_less)
finally show?thesis .
qed
Fatou's lemma: convergence theorem on limes inferior
lemma \(n n_{-}\)integral_monotone_convergence_INF_AE':
assumes \(f: \bigwedge i . A E x\) in \(M . f(S u c i) x \leq f i x\) and [measurable]: \(\bigwedge i . f i \in\)
borel_measurable \(M\)
and \(*:\left(\int^{+} x . f 0 x \partial M\right)<\infty\)
shows \(\left(\int^{+} x .(I N F i . f i x) \partial M\right)=\left(\right.\) INF i. integral \(\left.{ }^{N} M(f i)\right)\)
proof (rule ennreal_minus_cancel)
have integral \({ }^{N} M(f 0)-\left(\int^{+}{ }^{x}\right.\). (INF i. \(\left.\left.f i x\right) \partial M\right)=\left(\int{ }^{+} x . f 0 x-(\right.\) INF \(i\).
\(f i x) \partial M)\)
proof (rule nn_integral_diff [symmetric])
have \(\left(\int^{+} x\right.\). \((\) INF i. \(\left.f i x) \partial M\right) \leq\left(\int^{+} x . f 0 x \partial M\right)\)
by (intro nn_integral_mono INF_lower) simp
with \(*\) show \(\left(\int+x .(\right.\) INF i. \(\left.f i x) \partial M\right) \neq \infty\)
by \(\operatorname{simp}\)
qed (auto intro: INF_lower)
```

also have $\ldots=\left(\int^{+} x .(S U P\right.$ i. $\left.f 0 x-f i x) \partial M\right)$
by (simp add: ennreal_INF_const_minus)
also have $\ldots=\left(S U P i .\left(\int^{+} x . f 0 x-f i x \partial M\right)\right)$
proof (intro nn_integral_monotone_convergence_SUP_AE)
show $A E x$ in M.f $0 x-f i x \leq f 0 x-f($ Suc $i) x$ for i
using $f[$ of $i]$ by eventually_elim (auto simp: ennreal_mono_minus)
qed simp
also have $\ldots=\left(S U P\right.$ i. nn_integral $M(f 0)-\left(\int^{+} x . f\right.$ i x $\left.\left.\partial M\right)\right)$
proof (subst nn_integral_diff [symmetric])
fix i
have dec: AE x in $M . \forall i . f(S u c i) x \leq f i x$
unfolding $A E_{-}$all_countable using f by auto
then show $A E x$ in $M . f i x \leq f 0 x$
using dec by eventually_elim (auto intro: lift_Suc_antimono_le[of λi. fix 0 i
for $x]$)
then have $\left(\int^{+} x . f i x \partial M\right) \leq\left(\int^{+} x . f 0 x \partial M\right)$
by (rule nn_integral_mono_AE)
with $*$ show $\left(\int^{+} x\right.$. fix $\left.\partial M\right) \neq \infty$
by simp
qed (insert f, auto simp: decseq_def le_fun_def)
finally show integral ${ }^{N} M(f 0)-\left(\int^{+} x .(I N F i . f i x) \partial M\right)=$
integral $^{N} M(f 0)-\left(I N F i . \int+x . f i x \partial M\right)$
by (simp add: ennreal_INF_const_minus)
qed (insert $*$, auto intro!: nn_integral_mono intro: INF_lower)
theorem nn_integral_monotone_convergence_INF_AE:
fixes $f::$ nat $\Rightarrow{ }^{\prime} a \Rightarrow$ ennreal
assumes $f: \wedge i$. AE x in $M . f(S u c i) x \leq f i x$
and [measurable]: $\bigwedge i . f i \in$ borel_measurable M
and fin: $\left(\int^{+}\right.$x. fix $\left.\partial M\right)<\infty$
shows $\left(\int{ }^{+} x .(I N F i . f i x) \partial M\right)=\left(\right.$ INF i. integral $\left.^{N} M(f i)\right)$
proof -
\{ fix $f::$ nat \Rightarrow ennreal and j assume $\operatorname{decseq} f$
then have (INF i.fi)=(INFi.f(i+j))
apply (intro INF_eq)
apply (rule_tac $x=i$ in bexI)
apply (auto simp: decseq_def le_fun_def)
done \}
note $I N F_{-}$shift $=$this
have mono: $A E x$ in $M . \forall i . f(S u c i) x \leq f i x$
using f by (auto simp: AE_all_countable)
then have $A E x$ in $M .(I N F i . f i x)=(I N F n . f(n+i) x)$
by eventually_elim (auto intro!: decseq_SucI INF_shift)
then have $\left(\int^{+} x\right.$. (INF i. fix) $\left.\partial M\right)=\left(\int{ }^{+} x\right.$. (INF n. $\left.\left.f(n+i) x\right) \partial M\right)$
by (rule nn_integral_cong_AE)
also have $\ldots=\left(\right.$ INF $\left.n .\left(\int{ }^{+} x . f(n+i) x \partial M\right)\right)$
by (rule nn_integral_monotone_convergence_INF_AE') (insert assms, auto)
also have $\ldots=\left(\operatorname{INF} n .\left(\int^{+} x . f n x \partial M\right)\right)$
by (intro INF_shift[symmetric] decseq_SucI nn_integral_mono_AE f)

```
```

 finally show ?thesis .
 qed
lemma nn_integral_monotone_convergence_INF_decseq:
assumes $f: \operatorname{decseq} f$ and $*: \bigwedge i . f i \in$ borel_measurable $M\left(\int^{+} x . f i x \partial M\right)<$
∞
shows $\left(\int^{+} x\right.$. (INF i. $\left.\left.f i x\right) \partial M\right)=\left(I N F i\right.$. integral $\left.^{N} M(f i)\right)$
using nn_integral_monotone_convergence_INF_AE[of $\left.f M i, O F _*\right] f$ by (auto
simp: decseq_Suc_iff le_fun_def)
theorem nn_integral_liminf:
fixes u :: nat $\Rightarrow{ }^{\prime} a \Rightarrow$ ennreal
assumes u : $\bigwedge i . u i \in$ borel_measurable M
shows $\left(\int+x . \liminf (\lambda n . u n x) \partial M\right) \leq \liminf \left(\lambda n . \operatorname{integral}^{N} M(u n)\right)$
proof -
have $\left(\int^{+} x . \liminf (\lambda n . u n x) \partial M\right)=\left(S U P n . \int^{+} x\right.$. (INF $i \in\{n .\} .$.$\left.u i x\right)$
$\partial M)$
unfolding liminf_SUP_INF using u
by (intro nn_integral_monotone_convergence_SUP_AE)
(auto intro!: AE_I2 intro: INF_greatest INF_superset_mono)
also have $\ldots \leq \liminf \left(\lambda n\right.$. integral $\left.{ }^{N} M(u n)\right)$
by (auto simp: liminf_SUP_INF intro!: SUP_mono INF_greatest nn_integral_mono
INF_lower)
finally show ?thesis .
qed
theorem nn_integral_limsup:
fixes $u::$ nat $\Rightarrow{ }^{\prime} a \Rightarrow$ ennreal
assumes [measurable]: $\bigwedge i . u i \in$ borel_measurable $M w \in$ borel_measurable M
assumes bounds: $\bigwedge i$. AE x in $M . u$ i $x \leq w x$ and $w: ~\left(\int{ }^{+} x . w x \partial M\right)<\infty$
shows limsup $\left(\lambda n\right.$. integral $\left.{ }^{N} M(u n)\right) \leq\left(\int^{+} x \limsup (\lambda n . u n x) \partial M\right)$
proof -
have bnd: AE x in $M . \forall i . u$ i $x \leq w x$
using bounds by (auto simp: AE_all_countable)
then have $\left(\int{ }^{+} x .(S U P n . u n x) \partial M\right) \leq\left(\int{ }^{+} x . w x \partial M\right)$
by (auto intro!: nn_integral_mono_AE elim: eventually_mono intro: SUP_least)
then have $\left(\int+x\right.$. limsup $\left.(\lambda n . u n x) \partial M\right)=\left(\right.$ INF n. $\int{ }^{+} x .(S U P i \in\{n ..\} . u i$
x) $\partial M)$
unfolding limsup_INF_SUP using bnd w
by (intro nn_integral_monotone_convergence_INF_AE')
(auto intro!: AE_I2 intro: SUP_least SUP_subset_mono)
also have $\ldots \geq$ limsup (λn. integral ${ }^{N} M(u n)$)
by (auto simp: limsup_INF_SUP intro!: INF_mono SUP_least exI nn_integral_mono
SUP_upper)
finally (xtrans) show ?thesis .
qed
lemma nn_integral_LIMSEQ:
assumes $f: \operatorname{incseq} f \bigwedge i . f i \in$ borel_measurable M

```
```

 and \(u: \bigwedge x\). \((\lambda i . f i x) \longrightarrow u x\)
 shows \(\left(\lambda n\right.\). integral \(\left.{ }^{N} M(f n)\right) \longrightarrow\) integral \(^{N} M u\)
 proof -
have $\left(\lambda n\right.$. integral $\left.{ }^{N} M(f n)\right) \longrightarrow\left(S U P n\right.$. integral $\left.{ }^{N} M(f n)\right)$
using f by (intro LIMSEQ_SUP[of λn. integral $\left.{ }^{N} M(f n)\right]$ incseq_nn_integral)
also have $\left(S U P n\right.$. integral $\left.{ }^{N} M(f n)\right)=$ integral $^{N} M(\lambda x$. SUP n. $f n x)$
using f by (intro nn_integral_monotone_convergence_SUP[symmetric])
also have integral ${ }^{N} M(\lambda x$. SUP n. $f n x)=$ integral $^{N} M(\lambda x . u x)$
using f by (subst LIMSEQ_SUP[THEN LIMSEQ_unique, OF _ u]) (auto simp:
incseq_def le_fun_def)
finally show ?thesis.
qed
theorem nn_integral_dominated_convergence:
assumes [measurable]:
\i. u $i \in$ borel_measurable $M u^{\prime} \in$ borel_measurable $M w \in$ borel_measurable
M
and bound: $\bigwedge j$. AE x in $M . u j x \leq w x$
and $w:\left(\int{ }^{+} x . w x \partial M\right)<\infty$
and $u^{\prime}: A E x$ in $M .(\lambda i . u$ i $x) \longrightarrow u^{\prime} x$
shows $\left(\lambda i .\left(\int{ }^{+} x . u\right.\right.$ i $\left.\left.x \partial M\right)\right) \longrightarrow\left(\int{ }^{+} x \cdot u^{\prime} x \partial M\right)$
proof -
have limsup $\left(\lambda n\right.$. integral $\left.{ }^{N} M(u n)\right) \leq\left(\int^{+} x \cdot \limsup (\lambda n . u n x) \partial M\right)$
by (intro nn_integral_limsup $[O F \ldots$ bound $w]$) auto
moreover have $\left(\int^{+} x\right.$. limsup $\left.(\lambda n . u n x) \partial M\right)=\left(\int^{+} x . u^{\prime} x \partial M\right)$
using u^{\prime} by (intro nn_integral_cong_AE, eventually_elim) (metis tendsto_iff_Liminf_eq_Limsup
sequentially_bot)
moreover have $\left(\int^{+} x . \liminf (\lambda n . u n x) \partial M\right)=\left(\int{ }^{+} x . u^{\prime} x \partial M\right)$
using u^{\prime} by (intro nn_integral_cong_AE, eventually_elim) (metis tendsto_iff_Liminf_eq_Limsup
sequentially_bot)
moreover have $\left(\int{ }^{+} x . \liminf (\lambda n . u n x) \partial M\right) \leq \liminf \left(\lambda n\right.$. integral $^{N} M(u$
n))
by (intro nn_integral_liminf) auto
moreover have liminf $\left(\lambda n\right.$. integral $\left.{ }^{N} M(u n)\right) \leq \limsup \left(\lambda n\right.$. integral ${ }^{N} M(u$
n))
by (intro Liminf_le_Limsup sequentially_bot)
ultimately show ?thesis
by (intro Liminf_eq_Limsup) auto
qed
lemma inf_continuous_nn_integral[order_continuous_intros]:
assumes f : $\bigwedge y$. inf_continuous ($f y$)
assumes [measurable]: $\Lambda x .(\lambda y . f y x) \in$ borel_measurable M
assumes bnd: $\wedge x .\left(\int^{+} y . f\right.$ y $\left.x \partial M\right) \neq \infty$
shows inf_continuous $\left(\lambda x .\left(\int^{+} y . f y x \partial M\right)\right)$
unfolding inf_continuous_def
proof safe
fix $C::$ nat $\Rightarrow{ }^{\prime} b$ assume C : decseq C
then show $\left(\int^{+} y . f y\left(\operatorname{Inf}\left(C^{\prime} U N I V\right)\right) \partial M\right)=\left(I N F i . \int^{+} y . f y(C i) \partial M\right)$

```
```

 using inf_continuous_mono[OF f] bnd
 by (auto simp add: inf_continuousD[OF f C] fun_eq_iff antimono_def mono_def
 le_fun_def less_top
intro!: nn_integral_monotone_convergence_INF_decseq)
qed
lemma nn_integral_null_set:
assumes N\in null_sets M shows (\int+ x.ux* indicator Nx\partialM)=0
proof -
have (\int+ x. u x * indicator N x \partialM) =((+
proof (intro nn_integral_cong_AE AE_I)
show {x\in space M. ux* indicator Nx\not=0}\subseteqN
by (auto simp: indicator_def)
show (emeasure M) N=0 N E sets M
using assms by auto
qed
then show ?thesis by simp
qed
lemma nn_integral_0_iff:
assumes u:u\in borel_measurable M
shows integral }\mp@subsup{}{}{N}Mu=0\longleftrightarrow\mathrm{ emeasure M {xєspace M. u x = 0}=0
(is_
proof -
have u_eq: (\int+ x.ux* indicator ?A x \partialM) = integral }\mp@subsup{}{}{N}M
by (auto intro!: nn_integral_cong simp: indicator_def)
show ?thesis
proof
assume (emeasure M) ?A = 0
with nn_integral_null_set[of ?A M u]u
show integral }\mp@subsup{}{}{N}Mu=0\mathrm{ by (simp add: u_eq null_sets_def)
next
assume *: integral }\mp@subsup{}{}{N}Mu=
let ?M = \lambdan. {x\in space M. 1 \leq real (n::nat) *ux}
have 0=(SUP n. (emeasure M) (?M n\cap?A))
proof -
{ fix n :: nat
from nn_integral_Markov_inequality[OF u, of ?A of_nat n] u
have (emeasure M) (?M n\cap?A)\leq0
by (simp add: ennreal_of_nat_eq_real_of_nat u_eq *)
moreover have 0\leq(emeasure M)(?M n\cap?A) using u by auto
ultimately have (emeasure M) (?M n\cap?A)=0 by auto }
thus ?thesis by simp
qed
also have ... = (emeasure M)(\bigcupn.?M n\cap?A)
proof (safe intro!: SUP_emeasure_incseq)
fix }n\mathrm{ show ?M n }\cap\mathrm{ ?A A sets M
using u by (auto intro!: sets.Int)
next

```
```

 show incseq \((\lambda n .\{x \in\) space \(M .1 \leq\) real \(n * u x\} \cap\{x \in\) space \(M . u x \neq\)
    ```
    proof (safe intro!: incseq_SucI)
    fix \(n\) :: nat and \(x\)
    assume \(*: 1 \leq r e a l n * u x\)
    also have real \(n * u x \leq \operatorname{real}(\) Suc \(n) * u x\)
        by (auto intro!: mult_right_mono)
    finally show \(1 \leq \operatorname{real}(\) Suc \(n) * u x\) by auto
    qed
    qed
    also have \(\ldots=(\) emeasure \(M)\{x \in\) space \(M .0<u x\}\)
    proof (safe intro!: arg_cong[where \(f=(\) emeasure \(M)]\) )
    fix \(x\) assume \(0<u x\) and [simp, intro]: \(x \in\) space \(M\)
    show \(x \in(\bigcup n\).?M \(n \cap\) ?A)
    proof (cases u x rule: ennreal_cases)
    case (real \(r\) ) with \(\langle 0<u x\rangle\) have \(0<r\) by auto
    obtain \(j\) :: nat where \(1 / r \leq\) real \(j\) using real_arch_simple ..
    hence \(1 / r * r \leq\) real \(j * r\) unfolding mult_le_cancel_right using \(\langle 0<r\rangle\)
by auto
    hence \(1 \leq\) real \(j * r\) using real \(\langle 0<r\rangle\) by auto
    thus ?thesis using \(\langle 0<r\rangle\) real
                by (auto simp: ennreal_of_nat_eq_real_of_nat ennreal_1 [symmetric] en-
nreal_mult[symmetric]
                                    simp del: ennreal_1)
        qed (insert \(\langle 0<u x\rangle\), auto simp: ennreal_mult_top)
    qed (auto simp: zero_less_iff_neq_zero)
    finally show emeasure \(M ? A=0\)
        by (simp add: zero_less_iff_neq_zero)
    qed
qed
lemma nn_integral_0_iff_AE:
    assumes \(u: u \in\) borel_measurable \(M\)
    shows integral \({ }^{N} M u=0 \longleftrightarrow(A E x\) in \(M . u x=0)\)
proof -
    have sets: \(\{x \in\) space \(M . u x \neq 0\} \in\) sets \(M\)
        using \(u\) by auto
    show integral \({ }^{N} M u=0 \longleftrightarrow(A E x\) in \(M . u x=0)\)
        using nn_integral_0_iff[of u] AE_iff_null[OF sets] \(u\) by auto
qed
lemma AE_iff_nn_integral:
\(\{x \in\) space \(M . P x\} \in\) sets \(M \Longrightarrow(A E x\) in \(M . P x) \longleftrightarrow\) integral \(^{N} M\) (indicator \(\{x . \neg P x\})=0\)
by (subst nn_integral_0_iff_AE) (auto simp: indicator_def[abs_def])
lemma nn_integral_less:
assumes [measurable]: \(f \in\) borel_measurable \(M g \in\) borel_measurable \(M\)
assumes \(f:\left(\int{ }^{+} x . f x \partial M\right) \neq \infty\)
```

 assumes ord: \(A E x\) in \(M . f x \leq g x \neg(A E x\) in \(M . g x \leq f x)\)
 shows \(\left(\int{ }^{+} x . f x \partial M\right)<\left(\int{ }^{+} x . g x \partial M\right)\)
 proof -
have $0<\left(\int^{+} x . g x-f x \partial M\right)$
proof (intro order_le_neq_trans notI)
assume $0=\left(\int{ }^{+} x . g x-f x \partial M\right)$
then have $A E x$ in $M . g x-f x=0$
using nn_integral_0_iff_AE[of $\lambda x . g x-f x M]$ by simp
with $\operatorname{ord}(1)$ have $A E x$ in $M . g x \leq f x$
by eventually_elim (auto simp: ennreal_minus_eq_0)
with ord show False
by simp
qed simp
also have $\ldots=\left(\int^{+} x . g x \partial M\right)-\left(\int^{+} x . f x \partial M\right)$
using f by (subst nn_integral_diff) (auto simp: ord)
finally show ?thesis
using f by (auto dest!: ennreal_minus_pos_iff [rotated] simp: less_top)
qed
lemma nn_integral_subalgebra:
assumes $f: f \in$ borel_measurable N
and N : sets $N \subseteq$ sets M space $N=$ space $M \bigwedge A . A \in$ sets $N \Longrightarrow$ emeasure N
$A=$ emeasure $M A$
shows integral ${ }^{N} N f=$ integral $^{N} M f$
proof -

```

```

M
using N by (auto simp: measurable_def)
have $[$ simp $]: \bigwedge P$. $(A E x$ in $N . P x) \Longrightarrow(A E x$ in $M . P x)$
using N by (auto simp add: eventually_ae_filter null_sets_def subset_eq)
have $[$ simp $]: \bigwedge A . A \in$ sets $N \Longrightarrow A \in$ sets M
using N by auto
from f show ?thesis
apply induct
apply (simp_all add: nn_integral_add nn_integral_cmult nn_integral_monotone_convergence_SUP
N image_comp)
apply (auto intro!: nn_integral_cong cong: nn_integral_cong simp: N(2)[symmetric])
done
qed
lemma nn_integral_nat_function:
fixes $f::{ }^{\prime} a \Rightarrow$ nat
assumes $f \in$ measurable M (count_space UNIV)
shows $\left(\int^{+}\right.$x. of_nat $\left.(f x) \partial M\right)=\left(\sum t\right.$. emeasure $M\{x \in$ space $\left.M . t<f x\}\right)$
proof -
define F where $F i=\{x \in$ space $M . i<f x\}$ for i
with assms have [measurable]: $\bigwedge i . F i \in$ sets M
by auto

```
```

 \{ fix \(x\) assume \(x \in\) space \(M\)
 have (\(\lambda\) i. if \(i<f x\) then 1 else 0) sums (of_nat \((f x)::\) real)
 using sums_If_finite[of \(\left.\lambda i . i<f x \lambda_{-} .1:: r e a l\right]\) by simp
 then have (\(\lambda i\). ennreal (if \(i<f\) then 1 else 0\()\)) sums of_nat \((f x)\)
 unfolding ennreal_of_nat_eq_real_of_nat
 by (subst sums_ennreal) auto
 moreover have \(\bigwedge i\). ennreal (if \(i<f x\) then 1 else 0\()=\operatorname{indicator~}\binom{F}{i} x\)
 using \(\left\langle x \in\right.\) space \(M\) by (simp add: one_ennreal_def \(F_{-} d e f\))
 ultimately have of_nat \((f x)=\left(\sum i\right.\) indicator \((F i) x\) :: ennreal \()\)
 by (simp add: sums_iff) \}
 then have \(\left(\int^{+} x\right.\). of_nat \(\left.(f x) \partial M\right)=\left(\int^{+} x\right.\). (\(\sum\) i. indicator \(\left.\left.(F i) x\right) \partial M\right)\)
 by (simp cong: nn_integral_cong)
 also have \(\ldots=\left(\sum i\right.\). emeasure \(\left.M(F i)\right)\)
 by (simp add: nn_integral_suminf)
 finally show ?thesis
 by (simp add: F_def)
 qed

```
theorem nn_integral_lfp:
    assumes sets \([\operatorname{simp}]: \bigwedge s\). sets \((M s)=\) sets \(N\)
    assumes \(f\) : sup_continuous \(f\)
    assumes \(g\) : sup_continuous \(g\)
    assumes meas: \(\bigwedge F . F \in\) borel_measurable \(N \Longrightarrow f F \in\) borel_measurable \(N\)
    assumes step: \(\bigwedge F s . F \in\) borel_measurable \(N \Longrightarrow\) integral \(^{N}(M s)(f F)=g\)
\(\left(\lambda s\right.\). integral \(\left.{ }^{N}(M s) F\right) s\)
    shows \(\left(\int^{+} \omega\right.\). lfp \(\left.f \omega \partial M s\right)=l f p g s\)
proof (subst lfp_transfer_bounded[where \(\alpha=\lambda F s . \int{ }^{+} x . F x \partial M s\) and \(g=g\) and
\(f=f\) and \(P=\lambda f . f \in\) borel_measurable \(N\), symmetric \(]\) )
    fix \(C::\) nat \(\Rightarrow{ }^{\prime} b \Rightarrow\) ennreal assume incseq \(C \bigwedge i . C i \in\) borel_measurable \(N\)
    then show \(\left(\lambda s . \int{ }^{+} x .(S U P i . C i) x \partial M s\right)=\left(S U P i .\left(\lambda s . \int{ }^{+} x . C i x \partial M s\right)\right)\)
        unfolding \(S U P\) _apply[abs_def]
        by (subst nn_integral_monotone_convergence_SUP)
            (auto simp: mono_def fun_eq_iff intro!: arg_cong2[where \(f=\) emeasure] cong:
measurable_cong_sets)
qed (auto simp add: step le_fun_def SUP_apply[abs_def] bot_fun_def bot_ennreal in-
tro!: meas \(f g\) )
theorem nn_integral_gfp:
assumes sets \([\) simp \(]: \bigwedge s\). sets \((M s)=\) sets \(N\)
assumes \(f\) : inf_continuous \(f\) and \(g\) : inf_continuous \(g\)
assumes meas: \(\bigwedge F . F \in\) borel_measurable \(N \Longrightarrow f F \in\) borel_measurable \(N\)
assumes bound: \(\Lambda F s . F \in\) borel_measurable \(N \Longrightarrow\left(\int^{+} x . f F x \partial M s\right)<\infty\)
assumes non_zero: \(\bigwedge s\). emeasure ( \(M\) s) (space \((M s)) \neq 0\)
assumes step: \(\Lambda F s . F \in\) borel_measurable \(N \Longrightarrow\) integral \(^{N}(M s)(f F)=g\) \(\left(\lambda s\right.\). integral \(\left.{ }^{N}(M s) F\right) s\)
shows \(\left(\int{ }^{+} \omega\right.\). gfp \(\left.f \omega \partial M s\right)=g f p g s\)
proof (subst gfp_transfer_bounded [where \(\alpha=\lambda F s . \int{ }^{+} x . F x \partial M s\) and \(g=g\) and \(f=f\)
and \(P=\lambda F . F \in\) borel_measurable \(N \wedge\left(\forall s .\left(\int{ }^{+} x . F x \partial M s\right)<\infty\right)\), symmetric] \()\)
fix \(C::\) nat \(\Rightarrow{ }^{\prime} b \Rightarrow\) ennreal assume decseq \(C \bigwedge i . C i \in\) borel_measurable \(N \wedge\) \(\left(\forall s\right.\). integral \(\left.^{N}(M s)(C i)<\infty\right)\)
then show \(\left(\lambda s . \int{ }^{+} x .(I N F i . C\right.\) i) \(x \partial M s)=\left(I N F i .\left(\lambda s . \int{ }^{+} x . C\right.\right.\) i \(\left.\left.x \partial M s\right)\right)\)
unfolding \(I N F_{-}\)apply[abs_def]
by (subst nn_integral_monotone_convergence_INF_decseq)
(auto simp: mono_def fun_eq_iff intro!: arg_cong2[where \(f=\) emeasure] cong: measurable_cong_sets)
next
show \(\bigwedge x . g x \leq\left(\lambda s\right.\). integral \(^{N}(M s)(f\) top \(\left.)\right)\)
by (subst step)
(auto simp add: top_fun_def less_le non_zero le_fun_def ennreal_top_mult cong del: if_weak_cong intro!: monoD[OF inf_continuous_mono[OF g],
THEN le_funD])
next
fix \(C\) assume \(\bigwedge i:: n a t . C i \in\) borel_measurable \(N \wedge\left(\forall s\right.\). integral \(^{N}(M s)(C i)\) \(<\infty)\) decseq \(C\)
with bound show \(\operatorname{Inf}(C\) 'UNIV \() \in\) borel_measurable \(N \wedge\left(\forall\right.\) s. integral \({ }^{N}(M\)
s) \(\left(\operatorname{Inf}\left(C^{\prime}\right.\right.\) UNIV \(\left.\left.)\right)<\infty\right)\)
unfolding INF_apply[abs_def]
by (subst nn_integral_monotone_convergence_INF_decseq)
(auto simp: INF_less_iff cong: measurable_cong_sets intro!: borel_measurable_INF)
next
show \(\bigwedge x . x \in\) borel_measurable \(\wedge \wedge\left(\forall\right.\) s. integral \(\left.{ }^{N}(M s) x<\infty\right) \Longrightarrow\)
\(\left(\lambda s\right.\). integral \(\left.^{N}(M s)(f x)\right)=g\left(\lambda s\right.\). integral \(\left.^{N}(M s) x\right)\)
by (subst step) auto
qed (insert bound, auto simp add: le_fun_def INF_apply[abs_def] top_fun_def intro!:
meas \(f g\) )

\subsection*{6.6.5 Integral under concrete measures}
```

lemma nn_integral_mono_measure:
assumes sets $M=$ sets $N M \leq N$ shows nn_integral $M f \leq n n _i n t e g r a l ~ N f$
unfolding $n n _i n t e g r a l _d e f$
proof (intro SUP_subset_mono)
note \langle sets $M=$ sets $N\rangle[$ simp $]$ ssets $M=$ sets $N\rangle[$ THEN sets_eq_imp_space_eq,
simp]
show $\{g$. simple_function $M g \wedge g \leq f\} \subseteq\{g$. simple_function $N g \wedge g \leq f\}$
by (simp add: simple_function_def)
show integral ${ }^{S} M x \leq$ integral $^{S} N x$ for x
using le_measureD3[OF $\langle M \leq N\rangle$]
by (auto simp add: simple_integral_def intro!: sum_mono mult_mono)
qed
lemma $n n$ _integral_empty:
assumes space $M=\{ \}$
shows nn_integral $M f=0$
proof -
have $\left(\int^{+} x . f x \partial M\right)=\left(\int^{+} x .0 \partial M\right)$
by(rule nn_integral_cong)(simp add: assms)

```
```

 thus ?thesis by simp
 qed

```
lemma \(n n \_i n t e g r a l \_b o t[s i m p]:\) nn_integral bot \(f=0\)
    by (simp add: nn_integral_empty)

\section*{Distributions}
lemma nn_integral_distr:
assumes \(T: T \in\) measurable \(M M^{\prime}\) and \(f: f \in\) borel_measurable (distr \(M M^{\prime} T\) )
shows integral \({ }^{N}\left(\operatorname{distr} M M^{\prime} T\right) f=\left(\int^{+} x . f(T x) \partial M\right)\)
using \(f\)
proof induct
case (cong \(f g\) )
with \(T\) show ?case
apply (subst nn_integral_cong \(\left[o f{ }_{-} f g\right]\) )
apply simp
apply (subst nn_integral_cong[of_ \(\lambda x . f(T x) \lambda x . g(T x)])\)
apply (simp add: measurable_def Pi_iff)
apply simp
done
next
case (set \(A\) )
then have eq: \(\bigwedge x . x \in\) space \(M \Longrightarrow\) indicator \(A(T x)=\) indicator \(\left(T-^{\prime} A \cap\right.\)
space \(M\) ) \(x\)
by (auto simp: indicator_def)
from set \(T\) show ?case
by (subst nn_integral_cong[OF eq])
(auto simp add: emeasure_distr intro!: nn_integral_indicator[symmetric] measurable_sets)
qed (simp_all add: measurable_compose[OF T] T nn_integral_cmult nn_integral_add nn_integral_monotone_convergence_SUP le_fun_def incseq_def
image_comp)

\section*{Counting space}
lemma simple_function_count_space[simp]:
simple_function (count_space A) \(f \longleftrightarrow\) finite \(\left(f^{\prime} A\right)\)
unfolding simple_function_def by simp
lemma nn_integral_count_space:
assumes \(A\) : finite \(\{a \in A .0<f a\}\)
shows integral \({ }^{N}\left(\right.\) count_space A) \(f=\left(\sum a \mid a \in A \wedge 0<f a . f a\right)\)
proof -
have \(*:\left(\int^{+} x . \max 0(f x)\right.\) dcount_space \(\left.A\right)=\)
\(\left(\int+x .\left(\sum a \mid a \in A \wedge 0<f a . f a *\right.\right.\) indicator \(\left.\{a\} x\right)\) dcount_space \(\left.A\right)\)
by (auto intro!: nn_integral_cong
simp add: indicator_def if_distrib sum.If_cases[OF A] max_def le_less)
also have \(\ldots=\left(\sum a \mid a \in A \wedge 0<f a . \int{ }^{+} x . f a *\right.\) indicator \(\{a\} x\) dcount_space A)
```

 by (subst nn_integral_sum) (simp_all add: AE_count_space less_imp_le)
 also have \(\ldots=\left(\sum a \mid a \in A \wedge 0<f a . f a\right)\)
 by (auto intro!: sum.cong simp: one_ennreal_def[symmetric] max_def)
 finally show ?thesis by (simp add: max.absorb2)
 qed
lemma nn_integral_count_space_finite:
finite $A \Longrightarrow\left(\int^{+} x . f x\right.$ Dcount_space $\left.A\right)=\left(\sum a \in A . f a\right)$
by (auto intro!: sum.mono_neutral_left simp: nn_integral_count_space less_le)

```
lemma nn_integral_count_space \({ }^{\prime}\) :
assumes finite \(A \bigwedge x . x \in B \Longrightarrow x \notin A \Longrightarrow f x=0 A \subseteq B\)
shows \(\left(\int{ }^{+} x . f x\right.\) Dcount_space \(\left.B\right)=\left(\sum x \in A . f x\right)\)
proof -
have \(\left(\int{ }^{+} x . f x\right.\) dcount_space \(\left.B\right)=\left(\sum a \mid a \in B \wedge 0<f a . f a\right)\)
using assms \((2,3)\)
by (intro nn_integral_count_space finite_subset \([O F\) - \(\langle f i n i t e ~ A\rangle]\) ) (auto simp: less_le)
also have \(\ldots=\left(\sum a \in A . f a\right)\)
using assms by (intro sum.mono_neutral_cong_left) (auto simp: less_le)
finally show? ?thesis .
qed
lemma nn_integral_bij_count_space:
assumes \(g\) : bij_betw \(g\) A B
shows \(\left(\int{ }^{+} x . f(g x)\right.\) dcount_space \(\left.A\right)=\left(\int{ }^{+} x . f x\right.\) dcount_space B)
using \(g\) [THEN bij_betw_imp_funcset]
by (subst distr_bij_count_space[OF g, symmetric])
(auto intro!: nn_integral_distr[symmetric])
lemma nn_integral_indicator_finite:
fixes \(f\) :: ' \(a \Rightarrow\) ennreal
assumes \(f:\) finite \(A\) and [measurable]: \(\bigwedge a . a \in A \Longrightarrow\{a\} \in\) sets \(M\)
shows \(\left(\int{ }^{+} x . f x *\right.\) indicator \(\left.A x \partial M\right)=\left(\sum x \in A . f x *\right.\) emeasure \(\left.M\{x\}\right)\)
proof -
from \(f\) have \(\left(\int^{+} x . f x *\right.\) indicator \(\left.A x \partial M\right)=\left(\int^{+} x .\left(\sum a \in A . f a *\right.\right.\) indicator \(\{a\} x) \partial M)\)
by (intro nn_integral_cong) (auto simp: indicator_def if_distrib[where \(f=\lambda a . x\) * \(a\) for \(x]\) sum.If_cases)
also have \(\ldots=\left(\sum a \in A . f a *\right.\) emeasure \(\left.M\{a\}\right)\)
by (subst nn_integral_sum) auto
finally show ?thesis.
qed
lemma nn_integral_count_space_nat:
fixes \(f::\) nat \(\Rightarrow\) ennreal
shows \(\left(\int{ }^{+} i . f i\right.\) dcount_space UNIV \()=\left(\sum i . f i\right)\)
proof -
have \(\left(\int{ }^{+}\right.\)i. \(f\) i dcount_space UNIV \()=\)
```

 \(\left(\int{ }^{+} i .\left(\sum j . f j *\right.\right.\) indicator \(\left.\{j\} i\right) \partial\) count_space UNIV \()\)
 proof (intro nn_integral_cong)
 fix \(i\)
 have \(f i=\left(\sum j \in\{i\} . f j *\right.\) indicator \(\left.\{j\} i\right)\)
 by \(\operatorname{simp}\)
 also have \(\ldots=\left(\sum j . f j *\right.\) indicator \(\left.\{j\} i\right)\)
 by (rule suminf_finite[symmetric]) auto
 finally show \(f i=\left(\sum j . f j *\right.\) indicator \(\left.\{j\} i\right)\).
 qed
 also have \(\ldots=\left(\sum j .\left(\int^{+} i . f j *\right.\right.\) indicator \(\{j\} i\) dcount_space UNIV \(\left.)\right)\)
 by (rule nn_integral_suminf) auto
 finally show ?thesis
 by simp
 qed
lemma nn_integral_enat_function:
assumes $f: f \in$ measurable M (count_space UNIV)
shows $\left(\int^{+}\right.$x. ennreal_of_enat $\left.(f x) \partial M\right)=\left(\sum t\right.$. emeasure $M\{x \in$ space $M . t$
$<f x\}$)
proof -
define F where $F i=\{x \in$ space $M . i<f x\}$ for $i::$ nat
with assms have [measurable]: $\bigwedge i . F i \in$ sets M
by auto
\{ fix x assume $x \in$ space M
have ($\lambda i:: n a t$. if $i<f x$ then 1 else 0) sums ennreal_of_enat $(f x)$
using sums_If-finite[of $\lambda r . r<f x \lambda_{-} .1$:: ennreal]
by (cases $f x)$ (simp_all add: sums_def of_nat_tendsto_top_ennreal)
also have $(\lambda i$. (if $i<f x$ then 1 else 0$))=(\lambda i$. indicator $(F i) x)$
using $\langle x \in$ space $M\rangle$ by (simp add: one_ennreal_def $F_{-} d e f$ fun_eq_iff)
finally have ennreal_of_enat $(f x)=\left(\sum i\right.$ indicator $\left.(F i) x\right)$
by (simp add: sums_iff) \}
then have $\left(\int^{+} x\right.$. ennreal_of_enat $\left.(f x) \partial M\right)=\left(\int^{+} x\right.$. (\sum i. indicator $\left.(F i) x\right)$
∂M)
by (simp cong: nn_integral_cong)
also have $\ldots=\left(\sum i\right.$. emeasure $\left.M(F i)\right)$
by (simp add: nn_integral_suminf)
finally show ?thesis
by (simp add: F_def)
qed
lemma nn_integral_count_space_nn_integral:
fixes $f:: ' i \Rightarrow{ }^{\prime} a \Rightarrow$ ennreal
assumes countable I and [measurable]: $\bigwedge i . i \in I \Longrightarrow f i \in$ borel_measurable M
shows $\left(\int{ }^{+} x . \int{ }^{+} i . f i x\right.$ dcount_space I $\left.\partial M\right)=\left(\int{ }^{+} i . \int{ }^{+} x . f i x \partial M\right.$ dcount_space
I)
proof cases
assume finite I then show ?thesis
by (simp add: nn_integral_count_space_finite nn_integral_sum)

```
```

next
assume infinite I
then have [simp]: I\not={}
by auto
note * = bij_betw_from_nat_into[OF <countable I> <infinite I\rangle]
have **: \f. (\bigwedgei.0 \leqfi)\Longrightarrow(` +
I n))
by (simp add: nn_integral_bij_count_space[symmetric,OF *] nn_integral_count_space_nat)
show ?thesis
by (simp add: ** nn_integral_suminf from_nat_into)
qed
lemma of_bool_Bex_eq_nn_integral:
assumes unique: }\xy.x\inX\Longrightarrowy\inX\LongrightarrowPx\LongrightarrowPy\Longrightarrowx=
shows of_bool (\existsy\inX.P y) =({+ y. of_bool (P y) \partialcount_space X)
proof cases
assume }\existsy\inX.P
then obtain y where P y y\inX by auto
then show ?thesis
by (subst nn_integral_count_space'[where A={y}]) (auto dest: unique)
qed (auto cong: nn_integral_cong_simp)
lemma emeasure_UN_countable:
assumes sets[measurable]: \i. i\inI\LongrightarrowXi\in sets M and I[simp]: countable I
assumes disj: disjoint_family_on X I
shows emeasure M (\bigcup(X'I)) = ((+ i. emeasure M (X i) \partialcount_space I)
proof -
have eq:\bigwedgex. indicator (U(X'I)) x = \int + i. indicator (X i) x \partialcount_space I
proof cases
fix }x\mathrm{ assume }x:x\in\bigcup(\mp@subsup{X}{}{\prime}I
then obtain j where j:x\inX jj\inI
by auto
with disj have \ \i. i\inI\Longrightarrow indicator (}X i)x=(\mathrm{ indicator {j} i::ennreal)
by (auto simp: disjoint_family_on_def split: split_indicator)
with x j show ?thesis x
by (simp cong: nn_integral_cong_simp)
qed (auto simp: nn_integral_0_iff_AE)
note sets.countable_UN'[unfolded subset_eq, measurable]
have emeasure M (U(X'}I))=(\mp@subsup{\int}{}{+}x. indicator (U(\mp@subsup{X}{}{\prime}I)) x \partialM
by simp
also have ... = ({ + i. \int +
by (simp add: eq nn_integral_count_space_nn_integral)
finally show ?thesis
by (simp cong: nn_integral_cong_simp)
qed
lemma emeasure_countable_singleton:
assumes sets: $\bigwedge x . x \in X \Longrightarrow\{x\} \in$ sets M and X : countable X

```
```

 shows emeasure \(M X=\left(\int^{+}\right.\)x. emeasure \(M\{x\}\) dcount_space \(\left.X\right)\)
 proof -
have emeasure $M(\bigcup i \in X .\{i\})=\left(\int{ }^{+}\right.$x. emeasure $M\{x\}$ dcount_space $\left.X\right)$
using assms by (intro emeasure_UN_countable) (auto simp: disjoint_family_on_def)
also have $(\bigcup i \in X .\{i\})=X$ by auto
finally show ?thesis .
qed
lemma measure_eqI_countable:
assumes [simp]: sets $M=$ Pow A sets $N=$ Pow A and A : countable A
assumes eq: $\bigwedge a . a \in A \Longrightarrow$ emeasure $M\{a\}=$ emeasure $N\{a\}$
shows $M=N$
proof (rule measure_eqI)
fix X assume $X \in$ sets M
then have $X: X \subseteq A$ by auto
moreover from $A X$ have countable X by (auto dest: countable_subset)
ultimately have
emeasure $M X=\left(\int^{+} a\right.$. emeasure $M\{a\}$ dcount_space $\left.X\right)$
emeasure $N X=\left(\int^{+} a\right.$. emeasure $N\{a\}$ dcount_space $\left.X\right)$
by (auto intro!: emeasure_countable_singleton)
moreover have $\left(\int^{+} a\right.$. emeasure $M\{a\}$ dcount_space $\left.X\right)=\left(\int{ }^{+} a\right.$. emeasure N
$\{a\}$ dcount_space X)
using X by (intro nn_integral_cong eq) auto
ultimately show emeasure $M X=$ emeasure $N X$
by simp
qed simp
lemma measure_eqI_countable_AE:
assumes [simp]: sets $M=U N I V$ sets $N=U N I V$
assumes $a e: A E x$ in $M . x \in \Omega A E x$ in $N . x \in \Omega$ and [simp]: countable Ω
assumes eq: $\bigwedge x . x \in \Omega \Longrightarrow$ emeasure $M\{x\}=$ emeasure $N\{x\}$
shows $M=N$
proof (rule measure_eqI)
fix A
have emeasure $N A=$ emeasure $N\{x \in \Omega . x \in A\}$
using ae by (intro emeasure_eq_AE) auto
also have $\ldots=\left(\int^{+} x\right.$. emeasure $N\{x\}$ dcount_space $\left.\{x \in \Omega . x \in A\}\right)$
by (intro emeasure_countable_singleton) auto
also have $\ldots=\left(\int{ }^{+}\right.$x. emeasure $M\{x\}$ dcount_space $\left.\{x \in \Omega . x \in A\}\right)$
by (intro nn_integral_cong eq[symmetric]) auto
also have $\ldots=$ emeasure $M\{x \in \Omega . x \in A\}$
by (intro emeasure_countable_singleton[symmetric]) auto
also have $\ldots=$ emeasure $M A$
using ae by (intro emeasure_eq_AE) auto
finally show emeasure $M A=$ emeasure $N A$..
qed simp
lemma nn_integral_monotone_convergence_SUP_nat:
fixes $f::$ ' $a \Rightarrow$ nat \Rightarrow ennreal

```
```

 assumes chain: Complete_Partial_Order.chain \((\leq)\left(f^{\prime} Y\right)\)
 and nonempty: \(Y \neq\{ \}\)
 shows \(\left(\int^{+} x .(S U P i \in Y . f i x)\right.\) dcount_space UNIV \()=\left(S U P i \in Y .\left(\int^{+} x . f i\right.\right.\)
 x dcount_space UNIV))
(is ?lhs $=$?rhs is integral ${ }^{N}$? $M_{-}={ }_{-}$)
proof (rule order_class.order.antisym)
show ?rhs \leq ?lhs
by (auto intro!: SUP_least SUP_upper nn_integral_mono)
next
have $\exists g$. incseq $g \wedge$ range $g \subseteq(\lambda i . f i x)^{\prime} Y \wedge(S U P i \in Y . f i x)=(S U P i . g$
i) for x
by (rule ennreal_Sup_countable_SUP) (simp add: nonempty)
then obtain g where incseq: Λx. incseq ($g x)$
and range: $\bigwedge x$. range $(g x) \subseteq(\lambda i . f i x)$ ' Y
and sup: $\bigwedge x .(S U P i \in Y . f i x)=(S U P i . g x i)$ by moura
from incseq have incseq': incseq ($\lambda i x . g x i)$
by (blast intro: incseq_SucI le_funI dest: incseq_SucD)
have ?lhs $=\int{ }^{+} x .(S U P$ i. $g x$ i) ∂ ? M by (simp add: sup)
also have $\ldots=\left(S U P i . \int{ }^{+} x . g x i \partial ? M\right)$ using incseq ${ }^{\prime}$
by (rule nn_integral_monotone_convergence_SUP) simp
also have $\ldots \leq\left(S U P i \in Y . \int{ }^{+} x . f i x \partial\right.$? $\left.M\right)$
proof(rule $S U P_{-}$least)
fix n
have $\bigwedge x . \exists i . g x n=f i x \wedge i \in Y$ using range by blast
then obtain I where $I: \bigwedge x . g x n=f(I x) x \bigwedge x$. I $x \in Y$ by moura
have $\left(\int{ }^{+} x . g x n\right.$ dcount_space UNIV $)=\left(\sum x . g x n\right)$
by (rule nn_integral_count_space_nat)
also have $\ldots=\left(S U P m . \sum x<m . g x n\right)$
by (rule suminf_eq_SUP)
also have $\ldots \leq\left(S U P i \in Y . \int^{+} x . f i x \partial ? M\right)$
proof(rule SUP_mono)
fix m
show $\exists m^{\prime} \in Y .\left(\sum x<m . g x n\right) \leq\left(\int+x . f m^{\prime} x \partial ? M\right)$
proof (cases $m>0$)
case False
thus ?thesis using nonempty by auto
next
case True
let ? $Y=I '\{. .<m\}$
have $f^{\text {' }}$? $Y \subseteq f^{\text {' }} Y$ using I by auto
with chain have chain': Complete_Partial_Order.chain (\leq) (f'?Y) by (rule
chain_subset)
hence $\operatorname{Sup}\left(f\right.$ ‘?Y) $\in f^{\prime}$? Y
by (rule ccpo_class.in_chain_finite)(auto simp add: True lessThan_empty_iff)
then obtain m^{\prime} where $m^{\prime}<m$ and $m^{\prime}:(S U P i \in ? Y . f i)=f\left(I m^{\prime}\right)$ by
auto
have $I m^{\prime} \in Y$ using I by blast

```
```

 have \(\left(\sum x<m . g x n\right) \leq\left(\sum x<m . f\left(m^{\prime}\right) x\right)\)
 proof \((\) rule sum_mono)
 fix \(x\)
 assume \(x \in\{. .<m\}\)
 hence \(x<m\) by simp
 have \(g x n=f(I x) x\) by \((\operatorname{simp}\) add: \(I)\)
 also have \(\ldots \leq(S U P i \in ? Y\). \(f i) x\) unfolding Sup_fun_def image_image
 using \(\langle x \in\{. .<m\}\rangle\) by (rule Sup_upper [OF imageI])
 also have \(\ldots=f\left(I m^{\prime}\right) x\) unfolding \(m^{\prime}\) by simp
 finally show \(g x n \leq f\left(I m^{\prime}\right) x\).
 qed
also have $\ldots \leq\left(S U P m .\left(\sum x<m . f\left(I m^{\prime}\right) x\right)\right)$
by(rule SUP_upper) simp
also have $\ldots=\left(\sum x . f\left(I m^{\prime}\right) x\right)$
by (rule suminf_eq_SUP[symmetric])
also have $\ldots=\left(\int^{+} x . f\left(I m^{\prime}\right) x \partial ? M\right)$
by(rule nn_integral_count_space_nat[symmetric])
finally show ?thesis using $\left\langle I m^{\prime} \in Y\right\rangle$ by blast
qed
qed
finally show $\left(\int^{+} x . g x\right.$ dcount_space UNIV $) \leq \ldots$.
qed
finally show ?lhs \leq ? $r h s$.
qed
lemma power_series_tendsto_at_left:
assumes nonneg: $\bigwedge i .0 \leq f i$ and summable: $\bigwedge z .0 \leq z \Longrightarrow z<1 \Longrightarrow$ summable
(λn. $f n * z^{\wedge} n$)
shows $\left(\left(\lambda z\right.\right.$. ennreal $\left.\left(\sum n . f n * z^{\wedge} n\right)\right) \longrightarrow\left(\sum n\right.$. ennreal $\left.\left.(f n)\right)\right)$ (at_left
(1::real))
proof (intro tendsto_at_left_sequentially)
show $0<(1::$ real $)$ by simp
fix $S::$ nat \Rightarrow real assume $S: \bigwedge n . S n<1 \bigwedge n .0<S n S \longrightarrow 1$ incseq S
then have S_nonneg: $\bigwedge i .0 \leq S i$ by (auto intro: less_imp_le)
have $\left(\lambda i .\left(\int^{+} n . f n * S i^{\wedge} n\right.\right.$ dcount_space UNIV $\left.)\right) \longrightarrow\left(\int^{+} n\right.$. ennreal $(f n)$
dcount_space UNIV)
proof (rule nn_integral_LIMSEQ)
show incseq (λi n. ennreal $\left(f n * S i^{\wedge} n\right)$)
using S by (auto intro!: mult_mono power_mono nonneg ennreal_leI
simp: incseq_def le_fun_def less_imp_le)
fix n have $\left(\lambda i\right.$. ennreal $\left.\left(f n * S i^{\wedge} n\right)\right) \longrightarrow$ ennreal $\left(f n * 1^{\wedge} n\right)$
by (intro tendsto_intros tendsto_ennrealI S)
then show $\left(\lambda i\right.$. ennreal $\left.\left(f n * S i^{\wedge} n\right)\right) \longrightarrow$ ennreal $(f n)$
by simp
qed (auto simp: S_nonneg intro!: mult_nonneg_nonneg nonneg)
also have $\left(\lambda i .\left(\int^{+} n . f n * S i \wedge\right.\right.$ dcount_space UNIV $\left.)\right)=\left(\lambda i . \sum n . f n * S i^{\wedge} n\right)$
by (subst nn_integral_count_space_nat)
(intro ext suminf_ennreal2 mult_nonneg_nonneg nonneg S_nonneg

```
zero_le_power summable \(S\) )+
also have \(\left(\int^{+} n\right.\). ennreal \((f n)\) dcount_space UNIV \()=\left(\sum n\right.\). ennreal \(\left.(f n)\right)\)
by (simp add: nn_integral_count_space_nat nonneg)
finally show \(\left(\lambda n\right.\). ennreal \(\left.\left(\sum n a . f n a * S n^{\wedge} n a\right)\right) \longrightarrow\left(\sum n\right.\). ennreal \(\left.(f n)\right)\)
qed

\section*{Measures with Restricted Space}
```

lemma simple_function_restrict_space_ennreal:
fixes f :: ' }a=>\mathrm{ ennreal
assumes }\Omega\cap\mathrm{ space }M\in\mathrm{ sets }
shows simple_function (restrict_space M \Omega)f\longleftrightarrow simple_function M (}\lambdax.fx
indicator \Omega x)
proof -
{ assume finite (f`space (restrict_space M \Omega)) then have finite (f'space (restrict_space M \Omega)\cup{0}) by simp then have finite ((\lambdax.fx* indicator \Omegax)' space M) by (rule rev_finite_subset) (auto split: split_indicator simp: space_restrict_space) } moreover { assume finite ((\lambdax.fx* indicator \Omega x)' space M) then have finite (f`space (restrict_space M \Omega))
by (rule rev_finite_subset) (auto split: split_indicator simp: space_restrict_space)
}
ultimately show ?thesis
unfolding
simple_function_iff_borel_measurable borel_measurable_restrict_space_iff_ennreal[OF
assms]
by auto
qed
lemma simple_function_restrict_space:
fixes f :: ' }a>>'b:::real_normed_vector
assumes }\Omega\cap\mathrm{ space }M\in\mathrm{ sets }
shows simple_function (restrict_space M \Omega)f\longleftrightarrow simple_function M (}\lambdax\mathrm{ . indi-
cator \Omega x** f x)
proof -
{ assume finite (f'space (restrict_space M \Omega))
then have finite (f'space (restrict_space M \Omega)\cup{0}) by simp
then have finite ((}\lambdax\mathrm{ . indicator }\Omegax\mp@subsup{*}{R}{}fx)`\mathrm{ space M) by (rule rev_finite_subset) (auto split: split_indicator simp: space_restrict_space) } moreover { assume finite ((}\lambdax\mathrm{ . indicator }\Omegax\mp@subsup{*}{R}{}fx)'space M then have finite (f`space (restrict_space M \Omega))
by (rule rev_finite_subset) (auto split: split_indicator simp: space_restrict_space)
}
ultimately show ?thesis

```
```

 unfolding simple_function_iff_borel_measurable
 borel_measurable_restrict_space_iff[OF assms]
 by auto
 qed
lemma simple_integral_restrict_space:
assumes \Omega: \Omega\cap space M E sets M simple_function (restrict_space M \Omega)f
shows simple_integral (restrict_space M \Omega) f= simple_integral M (}\lambdax.fx
indicator \Omega x)
using simple_function_restrict_space_ennreal[THEN iffD1, OF \Omega,THEN sim-
ple_functionD(1)]
by (auto simp add: space_restrict_space emeasure_restrict_space[OF \Omega(1)] le_infI2
simple_integral_def
split: split_indicator split_indicator_asm
intro!: sum.mono_neutral_cong_left ennreal_mult_left_cong arg_cong2[where
f=emeasure])
lemma nn_integral_restrict_space:
assumes }\Omega[\mathrm{ simp]: }\Omega\cap\mathrm{ space }M\in\mathrm{ sets M
shows nn_integral (restrict_space M \Omega) f=nn_integral M (}\lambdax.fx*\mathrm{ indicator
\Omega x)
proof -
let ?R = restrict_space M \Omega and ?X = \lambdaMf.{s. simple_function Ms\wedges\leqf
\wedge(\forallx.s x < top)}
have integral'S ?R`?X ?R f = integral ' M' ?X M (}\lambdax.fx*\mathrm{ indicator }\Omegax
proof (safe intro!: image_eqI)
fix s assume s: simple_function ?R s s \leqf \forallx.s x < top

```

```

\Omegax)
by (intro simple_integral_restrict_space) auto
from s show simple_function M (\lambdax.s x* indicator \Omega x)
by (simp add: simple_function_restrict_space_ennreal)
from s show (}\lambdax.sx*\mathrm{ indicator }\Omegax)\leq(\lambdax.fx*\mathrm{ indicator }\Omegax
\x.sx* indicator \Omega x< top
by (auto split: split_indicator simp:le_fun_def image_subset_iff)
next
fix s assume s: simple_function Mss\leq(\lambdax.fx* indicator \Omega x)}\forallx.sx
top
then have simple_function M (}\lambdax.sx*\mathrm{ indicator (}\Omega\cap\mathrm{ space M) x) (is ?s')
by (intro simple_function_mult simple_function_indicator) auto
also have ?s'' \longleftrightarrow simple_function M (\lambdax.s x* indicator \Omega x)
by (rule simple_function_cong) (auto split: split_indicator)
finally show sf:simple_function (restrict_space M \Omega) s
by (simp add: simple_function_restrict_space_ennreal)
from s have s_eq:s=(\lambdax.s x* indicator \Omega x)
by (auto simp add: fun_eq_iff le_fun_def image_subset_iff
split: split_indicator split_indicator_asm
intro: antisym)

```
```

 show integral }\mp@subsup{}{}{S}Ms=\mp@subsup{\mathrm{ integral }}{}{S}(\mathrm{ restrict_space M S) s
 by (subst s_eq) (rule simple_integral_restrict_space[symmetric,OF \Omega sf])
 show \x.s x < top
 using s by (auto simp: image_subset_iff)
 from s show }s\leq
 by (subst s_eq) (auto simp: image_subset_iff le_fun_def split: split_indicator
 split_indicator_asm)
qed
then show ?thesis
unfolding nn_integral_def_finite by (simp cong del: SUP_cong_simp)
qed
lemma nn_integral_count_space_indicator:
assumes NO_MATCH (UNIV::'a set) (X::'a set)
shows (}\int\mp@subsup{}{}{+}x.fx\mathrm{ dcount_space X) = (}\mp@subsup{|}{}{+}x.fx*\mathrm{ indicator X x Ocount_space
UNIV)
by (simp add: nn_integral_restrict_space[symmetric] restrict_count_space)
lemma nn_integral_count_space_eq:
(\bigwedgex. x A - B\Longrightarrowfx=0)\Longrightarrow(\bigwedgex. x\inB-A\Longrightarrowfx=0)\Longrightarrow
(\int+}x.fx\mathrm{ Ocount_space A) =((+ }x.fx\mathrm{ Dcount_space B)
by (auto simp: nn_integral_count_space_indicator intro!: nn_integral_cong split:
split_indicator)
lemma nn_integral_ge_point:
assumes }x\in
shows p x \leq \int + x. p x \partialcount_space A
proof -
from assms have px\leq\int+ x. p x \partialcount_space {x}
by(auto simp add: nn_integral_count_space_finite max_def)
also have ... = \int + x'. p \mp@subsup{x}{}{\prime}*\mathrm{ indicator {x} x' Ocount_space A}
using assms by(auto simp add: nn_integral_count_space_indicator indicator_def
intro!: nn_integral_cong)
also have .. \leq \ + x. px dcount_space A
by(rule nn_integral_mono)(simp add: indicator_def)
finally show ?thesis.
qed

```

\section*{Measure spaces with an associated density}
definition density \(::\) 'a measure \(\Rightarrow(' a \Rightarrow\) ennreal \() \Rightarrow\) 'a measure where density \(M f=\) measure_of (space \(M)(\) sets \(M)\left(\lambda A . \int{ }^{+} x . f x *\right.\) indicator \(A x\) \(\partial M)\)

\section*{lemma}
shows sets_density[simp, measurable_cong]: sets (density Mf) = sets \(M\)
and space_density[simp]: space (density \(M f\) ) \(=\) space \(M\)
by (auto simp: density_def)
lemma space_density_imp[measurable_dest]:
\(\bigwedge x M f . x \in\) space (density \(M f) \Longrightarrow x \in\) space \(M\) by auto

\section*{lemma}
shows measurable_density_eq1[simp]: \(g \in\) measurable (density \(M g\) f) \({M g^{\prime}}^{\longleftrightarrow} \longleftrightarrow g\)
\(\in\) measurable \(M g g^{\prime}\)
and measurable_density_eq2[simp]: \(h \in\) measurable \(M h\left(\right.\) density \(\left.M h^{\prime} f\right) \longleftrightarrow h\)
\(\in\) measurable Mh Mh'
and simple_function_density_eq[simp]: simple_function (density \(M u f\) ) \(u \longleftrightarrow\) simple_function \(M u u\)
unfolding measurable_def simple_function_def by simp_all
lemma density_cong: \(f \in\) borel_measurable \(M \Longrightarrow f^{\prime} \in\) borel_measurable \(M \Longrightarrow\)
( \(A E x\) in \(\left.M . f x=f^{\prime} x\right) \Longrightarrow\) density \(M f=\operatorname{density~} M f^{\prime}\)
unfolding density_def by (auto intro!: measure_of_eq nn_integral_cong_AE sets.space_closed)
lemma emeasure_density:
assumes \(f[\) measurable \(]: f \in\) borel_measurable \(M\) and \(A[\) measurable \(]: A \in\) sets \(M\)
shows emeasure (density \(M f) A=\left(\int^{+} x . f x *\right.\) indicator \(\left.A x \partial M\right)\) \(\left(\right.\) is \(\left._{-}=? \mu A\right)\)
unfolding density_def
proof (rule emeasure_measure_of_sigma)
show sigma_algebra (space M) (sets M) ..
show positive (sets M) ? \(\mu\)
using \(f\) by (auto simp: positive_def)
show countably_additive (sets M) ? \(\mu\)
proof (intro countably_additiveI)
fix \(A\) :: nat \(\Rightarrow\) ' a set assume range \(A \subseteq\) sets \(M\)
then have \(\bigwedge i . A i \in\) sets \(M\) by auto
then have \(*: \bigwedge i .(\lambda x . f x *\) indicator \((A i) x) \in\) borel_measurable \(M\)
by auto
assume disj: disjoint_family \(A\)
then have \(\left(\sum n . ? \mu(A n)\right)=\left(\int^{+} x .\left(\sum n . f x * \operatorname{indicator}(A n) x\right) \partial M\right)\)
using \(f *\) by (subst nn_integral_suminf) auto
also have \(\left(\int^{+} x .\left(\sum n . f x *\right.\right.\) indicator \(\left.\left.(A n) x\right) \partial M\right)=\left(\int+x . f x *\left(\sum n\right.\right.\).
indicator (A n) x) \(\partial M\) )
using \(f\) by (auto intro!: ennreal_suminf_cmult nn_integral_cong_AE)
also have \(\ldots=\left(\int^{+} x . f x *\right.\) indicator \(\left.(\bigcup n . A n) x \partial M\right)\)
unfolding suminf_indicator[OF disj] ..
finally show \(\left(\sum i . \int{ }^{+} x . f x *\right.\) indicator \(\left.(A i) x \partial M\right)=\int{ }^{+} x . f x *\) indicator
\((\bigcup i . A\) i) \(x \partial M\).
qed
qed fact
lemma null_sets_density_iff:
assumes \(f: f \in\) borel_measurable \(M\)
shows \(A \in\) null_sets \((\) density \(M f) \longleftrightarrow A \in\) sets \(M \wedge(A E x\) in \(M . x \in A \longrightarrow\)
```

$f x=0$)
proof -
\{ assume $A \in$ sets M
have $\left(\int{ }^{+} x . f x *\right.$ indicator $\left.A x \partial M\right)=0 \longleftrightarrow$ emeasure $M\{x \in$ space $M . f x$

* indicator $A x \neq 0\}=0$
using $f\langle A \in$ sets $M\rangle$ by (intro nn_integral_0_iff) auto
also have $\ldots \longleftrightarrow(A E x$ in $M . f x *$ indicator $A x=0)$
using $f\langle A \in$ sets $M\rangle$ by (intro AE_iff_measurable[OF_refl, symmetric]) auto
also have $(A E x$ in $M . f x *$ indicator $A x=0) \longleftrightarrow(A E x$ in $M . x \in A \longrightarrow$
$f x \leq 0$)
by (auto simp add: indicator_def max_def split: if_split_asm)
finally have $\left(\int{ }^{+} x . f x *\right.$ indicator $\left.A x \partial M\right)=0 \longleftrightarrow(A E x$ in $M . x \in A \longrightarrow$
$f x \leq 0) \cdot\}$
with f show ?thesis
by (simp add: null_sets_def emeasure_density cong: conj_cong)
qed
lemma $A E_{-}$density:
assumes $f: f \in$ borel_measurable M
shows $(A E x$ in density $M f . P x) \longleftrightarrow(A E x$ in $M .0<f x \longrightarrow P x)$
proof
assume $A E x$ in density $M f . P x$
with f obtain N where $\{x \in$ space $M . \neg P x\} \subseteq N N \in$ sets M and $a e: A E$
x in $M . x \in N \longrightarrow f x=0$
by (auto simp: eventually_ae_filter null_sets_density_iff)
then have $A E x$ in $M . x \notin N \longrightarrow P x$ by auto
with ae show $A E x$ in $M .0<f x \longrightarrow P x$
by (rule eventually_elim2) auto
next
fix N assume $a e: A E x$ in $M .0<f x \longrightarrow P x$
then obtain N where $\{x \in$ space $M . \neg(0<f x \longrightarrow P x)\} \subseteq N N \in$ null_sets
M
by (auto simp: eventually_ae_filter)
then have $*:\{x \in$ space (density $M f$). $\neg P x\} \subseteq N \cup\{x \in$ space $M . f x=0\}$
$N \cup\{x \in$ space $M . f x=0\} \in$ sets M and ae2: AE x in $M . x \notin N$
using f by (auto simp: subset_eq zero_less_iff_neq_zero intro!: AE_not_in)
show $A E x$ in density $M f$. P x
using ae2
unfolding eventually_ae_filter[of_density $M f]$ Bex_def null_sets_density_iff [OF
f]
by (intro exI[of _ $N \cup\{x \in$ space $M . f x=0\}]$ conjI *) (auto elim: eventu-
ally_elim2)
qed
lemma nn_integral_density:
assumes $f: f \in$ borel_measurable M
assumes $g: g \in$ borel_measurable M
shows integral ${ }^{N}($ density $M f) g=\left(\int+x . f x * g x \partial M\right)$
using g proof induct

```
```

case (cong u v)
then show ?case
apply (subst nn_integral_cong[OF cong(3)])
apply (simp_all cong: nn_integral_cong)
done
next
case (set A) then show ?case
by (simp add: emeasure_density f)
next
case (mult uc)
moreover have \}\x.fx*(c*ux)=c*(fx*ux) by (simp add: field_simps
ultimately show ?case
using f by (simp add: nn_integral_cmult)
next
case (add uv)
then have \{x.fx*(vx+ux)=fx*vx+fx*ux
by (simp add: distrib_left)
with add f show ?case
by (auto simp add: nn_integral_add intro!: nn_integral_add[symmetric])
next
case (seq U)
have eq:AE x in M.fx* (SUP i. U i x) =(SUP i.fx* U i x)
by eventually_elim (simp add: SUP_mult_left_ennreal seq)
from seq f show ?case
apply (simp add: nn_integral_monotone_convergence_SUP image_comp)
apply (subst nn_integral_cong_AE[OF eq])
apply (subst nn_integral_monotone_convergence_SUP_AE)
apply (auto simp: incseq_def le_fun_def intro!: mult_left_mono)
done
qed
lemma density_distr:
assumes [measurable]: f\in borel_measurable N X \in measurable M N
shows density (distr MNX) f= distr (density M (\lambdax.f(Xx))) NX
by (intro measure_eqI)
(auto simp add: emeasure_density nn_integral_distr emeasure_distr
split: split_indicator intro!: nn_integral_cong)
lemma emeasure_restricted:
assumes S:S\in sets M and X:X 的ts M
shows emeasure (density M (indicator S)) X = emeasure M (S\capX)
proof -
have emeasure (density M (indicator S)) X = ({ + x. indicator S x * indicator
X x \partialM)
using S X by (simp add: emeasure_density)
also have ... = (}\mp@subsup{}{}{+}\mathrm{ + . indicator }(S\capX)x\partialM
by (auto intro!: nn_integral_cong simp: indicator_def)
also have ... = emeasure M (S\capX)
using S X by (simp add: sets.Int)

```
```

 finally show ?thesis .
 qed

```
lemma measure_restricted:
    \(S \in\) sets \(M \Longrightarrow X \in\) sets \(M \Longrightarrow\) measure (density \(M\) (indicator \(S\) )) \(X=\) measure
\(M(S \cap X)\)
    by (simp add: emeasure_restricted measure_def)
lemma (in finite_measure) finite_measure_restricted:
    \(S \in\) sets \(M \Longrightarrow\) finite_measure (density \(M\) (indicator \(S\) ))
    by standard (simp add: emeasure_restricted)
lemma emeasure_density_const:
    \(A \in\) sets \(M \Longrightarrow\) emeasure (density \(\left.M\left(\lambda_{\_} . c\right)\right) A=c *\) emeasure \(M A\)
    by (auto simp: nn_integral_cmult_indicator emeasure_density)
lemma measure_density_const:
    \(A \in\) sets \(M \Longrightarrow c \neq \infty \Longrightarrow\) measure (density \(M\left(\lambda_{-} c\right)\) ) \(A=\) enn2real \(c *\)
measure \(M A\)
    by (auto simp: emeasure_density_const measure_def enn2real_mult)
lemma density_density_eq:
    \(f \in\) borel_measurable \(M \Longrightarrow g \in\) borel_measurable \(M \Longrightarrow\)
    density (density \(M f) g=\) density \(M(\lambda x . f x * g x)\)
    by (auto intro!: measure_eqI simp: emeasure_density nn_integral_density ac_simps)
lemma distr_density_distr:
    assumes \(T: T \in\) measurable \(M M^{\prime}\) and \(T^{\prime}: T^{\prime} \in\) measurable \(M^{\prime} M\)
        and inv: \(\forall x \in\) space \(M . T^{\prime}(T x)=x\)
    assumes \(f: f \in\) borel_measurable \(M^{\prime}\)
    shows distr (density (distr \(\left.\left.M M^{\prime} T\right) f\right) M T^{\prime}=\operatorname{density} M(f \circ T)(i s \quad ? R=\)
? \(L\) )
proof (rule measure_eqI)
    fix \(A\) assume \(A: A \in\) sets ?R
    \(\{\) fix \(x\) assume \(x \in\) space \(M\)
        with sets.sets_into_space[OF A]
        have indicator \(\left(T^{\prime}-‘ A \cap\right.\) space \(\left.M^{\prime}\right)(T x)=(\) indicator \(A x::\) ennreal \()\)
            using \(T\) inv by (auto simp: indicator_def measurable_space) \}
    with \(A T T^{\prime} f\) show emeasure ? \(R A=\) emeasure ? \(L A\)
        by (simp add: measurable_comp emeasure_density emeasure_distr
                    nn_integral_distr measurable_sets cong: nn_integral_cong)
qed \(\operatorname{simp}\)
lemma density_density_divide:
    fixes \(f g\) :: 'a \({ }^{\prime}\) real
    assumes \(f: f \in\) borel_measurable \(M A E x\) in \(M .0 \leq f x\)
    assumes \(g: g \in\) borel_measurable \(M A E x\) in \(M .0 \leq g x\)
    assumes \(a c: A E x\) in \(M . f x=0 \longrightarrow g x=0\)
    shows density (density \(M f)(\lambda x . g x / f x)=\) density \(M g\)
```

proof -
have density Mg= density M (}\lambdax.\mathrm{ ennreal (}fx)*\mathrm{ ennreal (}gx/fx)
using fg ac by (auto intro!: density_cong measurable_If simp: ennreal_mult[symmetric])
then show ?thesis
using fg by (subst density_density_eq) auto
qed
lemma density_1:density M (\lambda_. 1) = M
by (intro measure_eqI) (auto simp: emeasure_density)
lemma emeasure_density_add:
assumes X: X\in sets M
assumes Mf[measurable]: f\in borel_measurable M
assumes Mg[measurable]: g b borel_measurable M
shows emeasure (density M f) X + emeasure (density Mg) X =
emeasure (density M (\lambdax.fx+g x)) X
using assms
apply (subst (1 2 3) emeasure_density, simp_all) []
apply (subst nn_integral_add[symmetric], simp_all) []
apply (intro nn_integral_cong, simp split: split_indicator)
done

```

\section*{Point measure}
```

definition point_measure :: 'a set $\Rightarrow\left({ }^{\prime} a \Rightarrow\right.$ ennreal $) \Rightarrow$ ' a measure where point_measure $A f=$ density (count_space A) f
lemma
shows space_point_measure: space (point_measure Af) $=A$ and sets_point_measure: sets (point_measure $A f)=$ Pow A
by (auto simp: point_measure_def)
lemma sets_point_measure_count_space[measurable_cong]: sets (point_measure Af) = sets (count_space A)
by (simp add: sets_point_measure)
lemma measurable_point_measure_eq1 [simp]:
$g \in$ measurable (point_measure $A f$) $M \longleftrightarrow g \in A \rightarrow$ space M
unfolding point_measure_def by simp
lemma measurable_point_measure_eq2_finite[simp]:
finite $A \Longrightarrow$
$g \in$ measurable M (point_measure $A f) \longleftrightarrow$
$(g \in$ space $M \rightarrow A \wedge(\forall a \in A . g-‘\{a\} \cap$ space $M \in$ sets $M))$
unfolding point_measure_def by (simp add: measurable_count_space_eq2)
lemma simple_function_point_measure[simp]:
simple_function (point_measure A f) $g \longleftrightarrow$ finite $\left(g^{\prime} A\right)$
by (simp add: point_measure_def)

```
lemma emeasure_point_measure:
assumes \(A\) : finite \(\{a \in X .0<f a\} X \subseteq A\)
shows emeasure (point_measure \(A f) X=\left(\sum a \mid a \in X \wedge 0<f a . f a\right)\)
proof -
have \(\{a .(a \in X \longrightarrow a \in A \wedge 0<f a) \wedge a \in X\}=\{a \in X .0<f a\}\) using \(\langle X \subseteq A\rangle\) by auto
with \(A\) show ?thesis
by (simp add: emeasure_density nn_integral_count_space point_measure_def indicator_def)
qed
lemma emeasure_point_measure_finite:
finite \(A \Longrightarrow X \subseteq A \Longrightarrow\) emeasure (point_measure \(A f) X=\left(\sum a \in X . f a\right)\)
by (subst emeasure_point_measure) (auto dest: finite_subset intro!: sum.mono_neutral_left
simp: less_le)
lemma emeasure_point_measure_finite2:
\(X \subseteq A \Longrightarrow\) finite \(X \Longrightarrow\) emeasure (point_measure \(A f) X=\left(\sum a \in X . f a\right)\)
by (subst emeasure_point_measure)
(auto dest: finite_subset intro!: sum.mono_neutral_left simp: less_le)
lemma null_sets_point_measure_iff:
\(X \in\) null_sets \((\) point_measure \(A f) \longleftrightarrow X \subseteq A \wedge(\forall x \in X . f x=0)\)
by (auto simp: AE_count_space null_sets_density_iff point_measure_def)
lemma AE_point_measure:
\((A E x\) in point_measure \(A f . P x) \longleftrightarrow(\forall x \in A .0<f x \longrightarrow P x)\)
unfolding point_measure_def
by (subst AE_density) (auto simp: AE_density AE_count_space point_measure_def)
lemma nn_integral_point_measure:
finite \(\{a \in A .0<f a \wedge 0<g a\} \Longrightarrow\)
integral \(^{N}(\) point_measure \(A f) g=\left(\sum a \mid a \in A \wedge 0<f a \wedge 0<g a . f a * g a\right)\)
unfolding point_measure_def
by (subst nn_integral_density)
(simp_all add: nn_integral_density nn_integral_count_space ennreal_zero_less_mult_iff)
lemma nn_integral_point_measure_finite:
finite \(A \Longrightarrow\) integral \(^{N}(\) point_measure \(A f) g=\left(\sum a \in A . f a * g a\right)\)
by (subst nn_integral_point_measure) (auto intro!: sum.mono_neutral_left simp: less_le)

\section*{Uniform measure}
definition uniform_measure \(M A=\) density \(M(\lambda x\). indicator \(A x /\) emeasure \(M\) A)
lemma
shows sets_uniform_measure[simp, measurable_cong]: sets (uniform_measure M \(A)=\) sets \(M\)
and space_uniform_measure[simp]: space (uniform_measure \(M A\) ) \(=\) space \(M\)
by (auto simp: uniform_measure_def)
lemma emeasure_uniform_measure \([\) simp \(]\) :
assumes \(A: A \in\) sets \(M\) and \(B: B \in\) sets \(M\)
shows emeasure (uniform_measure \(M A\) ) \(B=\) emeasure \(M(A \cap B) /\) emeasure MA
proof -
from \(A B\) have emeasure (uniform_measure \(M A) B=\left(\int^{+} x\right.\). \((1 /\) emeasure \(M\) \(A) *\) indicator \((A \cap B) x \partial M)\)
by (auto simp add: uniform_measure_def emeasure_density divide_ennreal_def split: split_indicator
intro!: nn_integral_cong)
also have \(\ldots=\) emeasure \(M(A \cap B) /\) emeasure \(M A\)
using \(A B\)
by (subst nn_integral_cmult_indicator) (simp_all add: sets.Int divide_ennreal_def mult.commute)
finally show ?thesis .
qed
lemma measure_uniform_measure[simp]:
assumes \(A\) : emeasure \(M A \neq 0\) emeasure \(M A \neq \infty\) and \(B: B \in\) sets \(M\)
shows measure (uniform_measure \(M A\) ) \(B=\) measure \(M(A \cap B) /\) measure \(M\) A
using emeasure_uniform_measure \([\) OF emeasure_neq_0_sets \([O F A(1)] B] A\)
by (cases emeasure \(M A\) emeasure \(M(A \cap B)\) rule: ennreal2_cases)
(simp_all add: measure_def divide_ennreal top_ennreal.rep_eq top_ereal_def ennreal_top_divide)
lemma \(A E \_u n i f o r m \_m e a s u r e I:\)
\(A \in\) sets \(M \Longrightarrow(A E x\) in \(M . x \in A \longrightarrow P x) \Longrightarrow(A E x\) in uniform_measure \(M\) A. \(P x)\)
unfolding uniform_measure_def by (auto simp: AE_density divide_ennreal_def)
lemma emeasure_uniform_measure_1:
emeasure \(M S \neq 0 \Longrightarrow\) emeasure \(M S \neq \infty \Longrightarrow\) emeasure (uniform_measure \(M\)
S) \(S=1\)
by (subst emeasure_uniform_measure)
(simp_all add: emeasure_neq_0_sets emeasure_eq_ennreal_measure divide_ennreal zero_less_iff_neq_zero[symmetric])
lemma nn_integral_uniform_measure:
assumes \(f[\) measurable \(]: f \in\) borel_measurable \(M\) and \(S[\) measurable \(]: S \in\) sets \(M\)
shows \(\left(\int{ }^{+} x . f x\right.\) duniform_measure \(\left.M S\right)=\left(\int{ }^{+} x . f x *\right.\) indicator \(\left.S x \partial M\right) /\)
emeasure \(M S\)
proof -
\{ assume emeasure \(M S=\infty\)
```

 then have ?thesis
 by (simp add:uniform_measure_def nn_integral_density f) }
 moreover
 { assume [simp]: emeasure M S=0
 then have ae:AE x in M. x\not\inS
 using sets.sets_into_space[OF S]
 by (subst AE_iff_measurable[OF_refl]) (simp_all add: subset_eq cong: rev_conj_cong)
 from ae have (}\mp@subsup{\int}{}{+}x\mathrm{ . indicator Sx/0*fx DM)=0
 by (subst nn_integral_0_iff_AE) auto
 moreover from ae have (\int + x. fx* indicator S x \partialM)=0
 by (subst nn_integral_0_iff_AE) auto
 ultimately have ?thesis
 by (simp add: uniform_measure_def nn_integral_density f) }
 moreover have emeasure MS\not=0\Longrightarrow emeasure M S\not=\infty\Longrightarrow?thesis
 unfolding uniform_measure_def
 by (subst nn_integral_density)
 (auto simp: ennreal_times_divide f nn_integral_divide[symmetric] mult.commute)
 ultimately show ?thesis by blast
 qed
lemma AE_uniform_measure:
assumes emeasure MA\not=0 emeasure MA<\infty
shows}(AEx\mathrm{ in uniform_measure M A.P
proof -
have }A\in\mathrm{ sets M
using <emeasure M A = 0` by (metis emeasure_notin_sets)
moreover have \}\x.0< indicator A x / emeasure MA\longleftrightarrowx\in
using assms
by (cases emeasure M A) (auto split: split_indicator simp: ennreal_zero_less_divide)
ultimately show ?thesis
unfolding uniform_measure_def by (simp add: AE_density)
qed

```

\section*{Null measure}
lemma null_measure_eq_density: null_measure \(M=\operatorname{density~} M\left(\lambda_{-} .0\right)\)
by (intro measure_eqI) (simp_all add: emeasure_density)
lemma nn_integral_null_measure \([\) simp \(]:\left(\int{ }^{+} x . f x\right.\) dnull_measure \(\left.M\right)=0\)
by (auto simp add: nn_integral_def simple_integral_def SUP_constant bot_ennreal_def le_fun_def
```

intro!: exI[of - \lambdax.0])

```
lemma density_null_measure[simp]: density (null_measure \(M\) ) \(f=\) null_measure \(M\) proof (intro measure_eqI)
fix \(A\) show emeasure (density (null_measure \(M\) ) f) \(A=\) emeasure (null_measure M) \(A\)
by (simp add: density_def) (simp only: null_measure_def[symmetric] emeasure_null_measure)
qed \(\operatorname{simp}\)

\section*{Uniform count measure}
definition uniform_count_measure \(A=\) point_measure \(A(\lambda x .1 / \operatorname{card} A)\)
lemma
shows space_uniform_count_measure: space (uniform_count_measure \(A\) ) \(=A\)
and sets_uniform_count_measure: sets (uniform_count_measure A) \(=\) Pow A unfolding uniform_count_measure_def by (auto simp: space_point_measure sets_point_measure)
lemma sets_uniform_count_measure_count_space[measurable_cong]:
sets \((\) uniform_count_measure \(A)=\) sets \((\) count_space \(A)\)
by (simp add: sets_uniform_count_measure)
lemma emeasure_uniform_count_measure:
finite \(A \Longrightarrow X \subseteq A \Longrightarrow\) emeasure (uniform_count_measure \(A\) ) \(X=\) card \(X /\)
card \(A\)
by (simp add: emeasure_point_measure_finite uniform_count_measure_def divide_inverse ennreal_mult
ennreal_of_nat_eq_real_of_nat)
lemma measure_uniform_count_measure:
finite \(A \Longrightarrow X \subseteq A \Longrightarrow\) measure (uniform_count_measure \(A\) ) \(X=\) card \(X /\) card A
by (simp add: emeasure_point_measure_finite uniform_count_measure_def measure_def enn2real_mult)
lemma space_uniform_count_measure_empty_iff [simp]:
space (uniform_count_measure \(X\) ) \(=\{ \} \longleftrightarrow X=\{ \}\)
by (simp add: space_uniform_count_measure)
lemma sets_uniform_count_measure_eq_UNIV [simp]:
sets (uniform_count_measure UNIV) \(=\) UNIV \(\longleftrightarrow\) True
UNIV \(=\) sets \((\) uniform_count_measure UNIV) \(\longleftrightarrow\) True
by (simp_all add: sets_uniform_count_measure)

\section*{Scaled measure}
lemma nn_integral_scale_measure:
assumes \(f: f \in\) borel_measurable \(M\)
shows nn_integral (scale_measure \(r M\) ) \(f=r * n n \_i n t e g r a l ~ M f\)
using \(f\)
proof induction
case (cong fg)
thus ?case
by (simp add: cong.hyps space_scale_measure cong: nn_integral_cong_simp)
next
case (mult \(f c\) )
```

 thus ?case
 by(simp add: nn_integral_cmult max_def mult.assoc mult.left_commute)
 next
case (add fg)
thus ?case
by(simp add: nn_integral_add distrib_left)
next
case (seq U)
thus ?case
by(simp add: nn_integral_monotone_convergence_SUP SUP_mult_left_ennreal im-
age_comp)
qed simp
end

```

\subsection*{6.7 Binary Product Measure}
theory Binary_Product_Measure
imports Nonnegative_Lebesgue_Integration
begin
lemma Pair_vimage_times[simp]: Pair \(x-{ }^{\prime}(A \times B)=(\) if \(x \in A\) then \(B\) else \(\{ \})\) by auto
```

lemma rev_Pair_vimage_times[simp]: (\lambdax. (x,y)) -' (A\timesB) = (if y \in B then A
else {})
by auto

```

\subsection*{6.7.1 Binary products}
definition pair_measure (infixr \(\otimes_{M} 80\) ) where
\(A \bigotimes_{M} B=\) measure_of (space \(A \times\) space \(B\) )
\(\{a \times b \mid a b . a \in\) sets \(A \wedge b \in\) sets \(B\}\)
\(\left(\lambda X \cdot \int{ }^{+} x \cdot\left(\int^{+} y\right.\right.\). indicator \(\left.\left.X(x, y) \partial B\right) \partial A\right)\)
lemma pair_measure_closed: \(\{a \times b \mid a b . a \in\) sets \(A \wedge b \in\) sets \(B\} \subseteq\) Pow (space \(A \times\) space \(B\) )
using sets.space_closed \([\) of \(A]\) sets.space_closed \([\) of \(B]\) by auto
lemma space_pair_measure:
space \(\left(A \bigotimes_{M} B\right)=\) space \(A \times\) space \(B\)
unfolding pair_measure_def using pair_measure_closed[of \(A \quad B]\)
by (rule space_measure_of)
lemma SIGMA_Collect_eq: (SIGMA x:space M. \(\{y \in\) space \(N . P x y\})=\{x \in\) space \(\left(M \bigotimes_{M} N\right) . P(f s t x)(\) snd \(\left.x)\right\}\)
by (auto simp: space_pair_measure)
lemma sets_pair_measure:

```

b e sets B}
unfolding pair_measure_def using pair_measure_closed[of A B]
by (rule sets_measure_of)
lemma sets_pair_measure_cong[measurable_cong, cong]:
sets M1 = sets M1' }\Longrightarrow\mathrm{ sets M2 = sets M2' }\Longrightarrow\mathrm{ sets (M1 @ M M2) = sets
(M1' 囚 M M2')
unfolding sets_pair_measure by (simp cong: sets_eq_imp_space_eq)
lemma pair_measureI [intro, simp, measurable]:
x\in sets }A\Longrightarrowy\in\mathrm{ sets }B\Longrightarrowx\timesy\in\mathrm{ sets (}A>\mp@subsup{\otimes}{M}{}B
by (auto simp: sets_pair_measure)

```
lemma sets_Pair: \(\{x\} \in\) sets \(M 1 \Longrightarrow\{y\} \in\) sets M2 \(\Longrightarrow\{(x, y)\} \in\) sets (M1
\(\bigotimes_{M}\) M2)
    using pair_measureI[of \(\{x\}\) M1 \(\{y\}\) M2] by simp
lemma measurable_pair_measureI:
    assumes 1: \(f \in\) space \(M \rightarrow\) space \(M 1 \times\) space M2 \(^{2}\)
    assumes 2: \(\bigwedge A B . A \in\) sets \(M 1 \Longrightarrow B \in\) sets \(M 2 \Longrightarrow f-{ }^{\prime}(A \times B) \cap\) space
\(M \in\) sets \(M\)
    shows \(f \in\) measurable \(M\left(M 1 \bigotimes_{M} M 2\right)\)
    unfolding pair_measure_def using 12
    by (intro measurable_measure_of) (auto dest: sets.sets_into_space)
lemma measurable_split_replace[measurable (raw)]:
    \((\lambda x\). \(f x(f s t(g x))(\) snd \((g x))) \in\) measurable \(M N \Longrightarrow(\lambda x\). case_prod \((f x)(g\)
\(x)) \in\) measurable \(M N\)
    unfolding split_beta \({ }^{\prime}\).
lemma measurable_Pair[measurable (raw)]:
    assumes \(f: f \in\) measurable \(M\) M1 and \(g: g \in\) measurable \(M\) M2
    shows \((\lambda x .(f x, g x)) \in\) measurable \(M\left(M 1 \otimes_{M} M 2\right)\)
proof (rule measurable_pair_measureI)
    show \((\lambda x\). \((f x, g x)) \in\) space \(M \rightarrow\) space \(M 1 \times\) space M2
        using \(f g\) by (auto simp: measurable_def)
    fix \(A B\) assume \(*: A \in\) sets \(M 1 B \in\) sets M2
    have \((\lambda x .(f x, g x))-‘(A \times B) \cap\) space \(M=(f-‘ A \cap\) space \(M) \cap(g-‘ B\)
\(\cap\) space \(M\) )
        by auto
    also have ... \(\in\) sets \(M\)
        by (rule sets.Int) (auto intro!: measurable_sets \(* f g\) )
    finally show \((\lambda x .(f x, g x))-‘(A \times B) \cap\) space \(M \in\) sets \(M\).
qed
lemma measurable_fst[intro!, simp, measurable]: fst \(\in\) measurable \(\left(M 1 \otimes_{M}\right.\) M2)
M1
    by (auto simp: fst_vimage_eq_Times space_pair_measure sets.sets_into_space Times_Int_Times
```

measurable_def)

```
lemma measurable_snd[intro!, simp, measurable]: snd \(\in\) measurable \(\left(M 1 \otimes_{M}\right.\) M2) M2
by (auto simp: snd_vimage_eq_Times space_pair_measure sets.sets_into_space Times_Int_Times measurable_def)
lemma measurable_Pair_compose_split[measurable_dest]:
assumes \(f\) : case_prod \(f \in\) measurable \(\left(M 1 \bigotimes_{M}\right.\) M2) \(N\)
assumes \(g: g \in\) measurable M M1 and \(h: h \in\) measurable M M2
shows \((\lambda x . f(g x)(h x)) \in\) measurable \(M N\)
using measurable_compose \([O F\) measurable_Pair \(f, O F g h]\) by simp
lemma measurable_Pair1_compose[measurable_dest]:
assumes \(f:(\lambda x .(f x, g x)) \in\) measurable \(M\left(M 1 \bigotimes_{M}\right.\) M2)
assumes [measurable]: \(h \in\) measurable \(N M\)
shows \((\lambda x . f(h x)) \in\) measurable \(N\) M1
using measurable_compose \([\) OF \(f\) measurable_fst \(]\) by simp
lemma measurable_Pair2_compose[measurable_dest]:
assumes \(f:(\lambda x .(f x, g x)) \in\) measurable \(M\left(M 1 \bigotimes_{M}\right.\) M2)
assumes [measurable]: \(h \in\) measurable \(N M\)
shows \((\lambda x . g(h x)) \in\) measurable \(N\) M2
using measurable_compose[OF f measurable_snd] by simp
lemma measurable_pair:
assumes \((f s t \circ f) \in\) measurable \(M\) M1 \((\) snd \(\circ f) \in\) measurable \(M\) M2
shows \(f \in\) measurable \(M\left(M 1 \bigotimes_{M} M 2\right)\)
using measurable_Pair [OF assms] by simp

\section*{lemma}
assumes \(f[\) measurable \(]: f \in\) measurable \(M\left(N \bigotimes_{M} P\right)\)
shows measurable_fst': \((\lambda x\). fst \((f x)) \in\) measurable \(M N\)
and measurable_snd \({ }^{\prime}:(\lambda x\). snd \((f x)) \in\) measurable \(M P\)
by simp_all

\section*{lemma}
assumes \(f[\) measurable \(]: f \in\) measurable \(M N\)
shows measurable_fst \({ }^{\prime \prime}:(\lambda x . f(f s t x)) \in\) measurable \(\left(M \bigotimes_{M} P\right) N\)
and measurable_snd \({ }^{\prime \prime}:(\lambda x . f(\) snd \(x)) \in\) measurable \(\left(P \bigotimes_{M} M\right) N\)
by simp_all
lemma sets_pair_in_sets:
assumes \(\bigwedge a b\). \(a \in\) sets \(A \Longrightarrow b \in\) sets \(B \Longrightarrow a \times b \in\) sets \(N\)
shows sets \(\left(A \bigotimes_{M} B\right) \subseteq\) sets \(N\)
unfolding sets_pair_measure
by (intro sets.sigma_sets_subset') (auto intro!: assms)
lemma sets_pair_eq_sets_fst_snd:
```

 sets \(\left(A \bigotimes_{M} B\right)=\) sets (Sup \{vimage_algebra (space \(A \times\) space \(B\)) fst \(A\), vim-
 age_algebra (space $A \times$ space B) snd $B\}$)
(is ?P $=$ sets $($ Sup $\{? f s t, ? s n d\}))$
proof -
\{ fix $a b$ assume $a b: a \in$ sets $A b \in$ sets B
then have $a \times b=\left(f s t-{ }^{\prime} a \cap(\right.$ space $A \times$ space $\left.B)\right) \cap\left(\right.$ snd $-{ }^{\prime} b \cap($ space A
\times space B))
by (auto dest: sets.sets_into_space)
also have $\ldots \in$ sets (Sup $\{$?fst, ?snd $\}$)
apply (rule sets.Int)
apply (rule in_sets_Sup)
apply auto []
apply (rule insertI1)
apply (auto intro: ab in_vimage_algebra) []
apply (rule in_sets_Sup)
apply auto []
apply (rule insertI2)
apply (auto intro: ab in_vimage_algebra)
done
finally have $a \times b \in$ sets (Sup $\{? f s t$, ? snd $\}$). \}
moreover have sets?fst \subseteq sets $\left(A \otimes_{M} B\right)$
by (rule sets_image_in_sets) (auto simp: space_pair_measure[symmetric])
moreover have sets ?snd \subseteq sets $\left(A \bigotimes_{M} B\right)$
by (rule sets_image_in_sets) (auto simp: space_pair_measure)
ultimately show ?thesis
apply (intro antisym[of sets A for A] sets_Sup_in_sets sets_pair_in_sets)
apply simp
apply simp
apply simp
apply (elim disjE)
apply (simp add: space_pair_measure)
apply (simp add: space_pair_measure)
apply (auto simp add: space_pair_measure)
done
qed

```
lemma measurable_pair_iff:
\(f \in\) measurable \(M\left(M 1 \bigotimes_{M} M 2\right) \longleftrightarrow(f s t \circ f) \in\) measurable \(M M 1 \wedge(\) snd \(\circ\)
\(f) \in\) measurable M M2
    by (auto intro: measurable_pair[of f M M1 M2])
lemma measurable_split_conv:
\((\lambda(x, y) . f x y) \in\) measurable \(A B \longleftrightarrow(\lambda x . f(f s t x)(\) snd \(x)) \in\) measurable \(A B\) by (intro arg_cong2 \([\) where \(f=(\in)]\) ) auto
lemma measurable_pair_swap \(:(\lambda(x, y) .(y, x)) \in\) measurable \(\left(M 1 \otimes_{M}\right.\) M2) (M2 \(\left.\otimes_{M} M 1\right)\)
by (auto intro!: measurable_Pair simp: measurable_split_conv)
lemma measurable_pair_swap:
assumes \(f: f \in\) measurable \(\left(M 1 \otimes_{M} M 2\right) M\) shows \((\lambda(x, y) . f(y, x)) \in\) measurable (M2 \(\bigotimes_{M}\) M1) M
using measurable_comp[OF measurable_Pair f] by (auto simp: measurable_split_conv comp_def)
lemma measurable_pair_swap_iff:
\(f \in\) measurable \(\left(M 2 \otimes_{M} M 1\right) M \longleftrightarrow(\lambda(x, y) . f(y, x)) \in\) measurable \(\left(M 1 \otimes_{M}\right.\) M2) \(M\)
by (auto dest: measurable_pair_swap)
lemma measurable_Pair1': \(x \in\) space \(M 1 \Longrightarrow\) Pair \(x \in\) measurable M2 \(\left(M 1 \otimes_{M}\right.\) M2)
by \(\operatorname{simp}\)
lemma sets_Pair1[measurable (raw)]:
assumes \(A: A \in\) sets \(\left(M 1 \bigotimes_{M} M 2\right)\) shows Pair \(x-' A \in\) sets M2
proof -
have Pair \(x-{ }^{\prime} A=\left(\right.\) if \(x \in\) space M1 then Pair \(x-{ }^{\prime} A \cap\) space M2 else \(\left.\{ \}\right)\) using \(A[T H E N\) sets.sets_into_space] by (auto simp: space_pair_measure)
also have \(\ldots \in\) sets M2
using \(A\) by (auto simp add: measurable_Pair1' intro!: measurable_sets split:
if_split_asm)
finally show ?thesis .
qed
lemma measurable_Pair2 ': \(y \in\) space M2 \(\Longrightarrow(\lambda x .(x, y)) \in\) measurable M1 (M1 \(\otimes_{M}\) M2)
by (auto intro!: measurable_Pair)
lemma sets_Pair2: assumes \(A: A \in \operatorname{sets}\left(M 1 \bigotimes_{M} M 2\right)\) shows \((\lambda x .(x, y))-\) ' \(A \in\) sets M1
proof -
have \((\lambda x .(x, y))-{ }^{\prime} A=\left(\right.\) if \(y \in\) space M2 then \((\lambda x .(x, y))-{ }^{\prime} A \cap\) space M1
else \{\})
using \(A[T H E N\) sets.sets_into_space] by (auto simp: space_pair_measure)
also have \(\ldots \in\) sets M1
using \(A\) by (auto simp add: measurable_Pair2' intro!: measurable_sets split: if_split_asm)
finally show ?thesis .
qed
lemma measurable_Pair2:
assumes \(f: f \in\) measurable \(\left(M 1 \bigotimes_{M} M 2\right) M\) and \(x: x \in\) space \(M 1\)
shows \((\lambda y . f(x, y)) \in\) measurable M2 \(M\)
using measurable_comp [OF measurable_Pair1' \(f\), OF \(x\) ]
by (simp add: comp_def)
lemma measurable_Pair1:
assumes \(f: f \in\) measurable \(\left(M 1 \bigotimes_{M} M 2\right) M\) and \(y: y \in\) space M2
shows \((\lambda x . f(x, y)) \in\) measurable M1 M
using measurable_comp[OF measurable_Pair2' \(f\), OF y]
by (simp add: comp_def)
lemma Int_stable_pair_measure_generator: Int_stable \(\{a \times b \mid a b . a \in\) sets \(A \wedge b\) \(\in\) sets \(B\) \}
unfolding Int_stable_def
by safe (auto simp add: Times_Int_Times)
lemma (in finite_measure) finite_measure_cut_measurable:
assumes [measurable]: \(Q \in\) sets \(\left(N \bigotimes_{M} M\right)\)
shows \((\lambda x\). emeasure \(M(\) Pair \(x-' Q)) \in\) borel_measurable \(N\)
(is ? \(s Q \in{ }_{-}\))
using Int_stable_pair_measure_generator pair_measure_closed assms
unfolding sets_pair_measure
proof (induct rule: sigma_sets_induct_disjoint)
case (compl A)
with sets.sets_into_space have \(\Lambda\) x. emeasure \(M\) (Pair \(x\)-' ( \((\) space \(N \times\) space \(M)-A))=\)
(if \(x \in\) space \(N\) then emeasure \(M(\) space \(M)-\) ?s \(A x\) else 0\()\)
unfolding sets_pair_measure[symmetric]
by (auto intro!: emeasure_compl simp: vimage_Diff sets_Pair1)
with compl sets.top show ?case
by (auto intro!: measurable_If simp: space_pair_measure)
next
case (union \(F\) )
then have \(\bigwedge x\). emeasure \(M(\) Pair \(x-'(\bigcup i . F i))=\left(\sum i\right.\). ?s \(\left.(F i) x\right)\)
by (simp add: suminf_emeasure disjoint_family_on_vimageI subset_eq vimage_UN
sets_pair_measure[symmetric])
with union show ?case
unfolding sets_pair_measure[symmetric] by simp
qed (auto simp add: if_distrib Int_def[symmetric] intro!: measurable_If)
lemma (in sigma_finite_measure) measurable_emeasure_Pair:
assumes \(Q: Q \in \operatorname{sets}\left(N \bigotimes_{M} M\right)\) shows \(\left(\lambda x\right.\). emeasure \(\left.M\left(\operatorname{Pair} x-{ }^{\prime} Q\right)\right) \in\)
borel_measurable \(N\) (is ?s \(Q \in\)-)
proof -
from sigma_finite_disjoint guess \(F\). note \(F=\) this
then have \(F_{-}\)sets: \(\bigwedge i . F i \in\) sets \(M\) by auto
let ? \(C=\lambda x\) i. \(F i \cap \operatorname{Pair} x-{ }^{\prime} Q\)
\(\{\) fix \(i\)
have \([\) simp \(]\) : space \(N \times F i \cap\) space \(N \times\) space \(M=\) space \(N \times F i\)
using \(F\) sets.sets_into_space by auto
let \(? R=\) density \(M\) (indicator \(\left(\begin{array}{l}F i))\end{array}\right.\)
have finite_measure ? \(R\)
using \(F\) by (intro finite_measureI) (auto simp: emeasure_restricted subset_eq)
then have \((\lambda x\). emeasure ? \(R(\) Pair \(x-‘(\) space \(N \times\) space ? \(R \cap Q))) \in\)
borel_measurable \(N\)
by (rule finite_measure.finite_measure_cut_measurable) (auto intro: \(Q\) ) moreover have \(\Lambda x\). emeasure ? \(R(\) Pair \(x-\) ' (space \(N \times\) space ? \(R \cap Q)\) ) \(=\) emeasure \(M(F i \cap\) Pair \(x-\) ' \((\) space \(N \times\) space ? \(R \cap Q))\) using \(Q\) F_sets by (intro emeasure_restricted) (auto intro: sets_Pair1)
moreover have \(\bigwedge x . F i \cap \operatorname{Pair} x-‘(\) space \(N \times\) space ? \(R \cap Q)=? C x i\)
using sets.sets_into_space \([O F Q]\) by (auto simp: space_pair_measure)
ultimately have \((\lambda x\). emeasure \(M(\) ? \(C x i)) \in\) borel_measurable \(N\) by simp \(\}\)
moreover
\(\{\) fix \(x\) have \(\left(\sum i\right.\). emeasure \(\left.M(? C x i)\right)=\) emeasure \(M(\bigcup i\). ? \(C x i)\)
proof (intro suminf_emeasure)
show range \((? C x) \subseteq\) sets \(M\)
using \(F\left\langle Q \in\right.\) sets \(\left.\left(N \bigotimes_{M} M\right)\right\rangle\) by (auto intro!: sets_Pair1)
have disjoint_family \(F\) using \(F\) by auto
show disjoint_family (?C x)
by (rule disjoint_family_on_bisimulation \([\) OF 〈disjoint_family \(F\rangle]\) ) auto qed
also have \((\bigcup i\). ? \(C x i)=\) Pair \(x-{ }^{`} Q\)
using \(F\) sets.sets_into_space \(\left[O F\left\langle Q \in\right.\right.\) sets \(\left.\left.\left(N \bigotimes_{M} M\right)\right\rangle\right]\)
by (auto simp: space_pair_measure)
finally have emeasure \(M\left(\right.\) Pair \(\left.x-^{`} Q\right)=\left(\sum i\right.\). emeasure \(M(\) ? \(\left.C x i)\right)\) by simp \}
ultimately show ?thesis using \(\left\langle Q \in\right.\) sets \(\left.\left(N \bigotimes_{M} M\right)\right\rangle\) F_sets
by auto
qed
lemma (in sigma_finite_measure) measurable_emeasure[measurable (raw)]:
assumes space: \(\bigwedge x . x \in\) space \(N \Longrightarrow A x \subseteq\) space \(M\)
assumes \(A:\left\{x \in \operatorname{space}\left(N \bigotimes_{M} M\right)\right.\). snd \(\left.x \in A(f s t x)\right\} \in \operatorname{sets}\left(N \bigotimes_{M} M\right)\)
shows \((\lambda x\). emeasure \(M(A x)) \in\) borel_measurable \(N\)
proof -
from space have \(\bigwedge x . x \in\) space \(N \Longrightarrow\) Pair \(x-{ }^{\prime}\left\{x \in \operatorname{space}\left(N \bigotimes_{M} M\right)\right.\). snd \(x \in A(\) fst \(x)\}=A x\) by (auto simp: space_pair_measure)
with measurable_emeasure_Pair[OF A] show ?thesis by (auto cong: measurable_cong)
qed
lemma (in sigma_finite_measure) emeasure_pair_measure:
assumes \(X \in\) sets \(\left(N \bigotimes_{M} M\right)\)
shows emeasure \(\left(N \bigotimes_{M} M\right) X=\left(\int^{+} x . \int{ }^{+} y\right.\). indicator \(\left.X(x, y) \partial M \partial N\right)\)
(is \(\left.{ }_{-}=? \mu X\right)\)
proof (rule emeasure_measure_of \([\) OF pair_measure_def \(]\) )
show positive (sets \(\left(N \bigotimes_{M} M\right)\) )? \(\mu\)
by (auto simp: positive_def)
have eq[simp]: \(\bigwedge A x y\).indicator \(A(x, y)=\) indicator \(\left(\right.\) Pair \(\left.x-{ }^{\prime} A\right) y\) by (auto simp: indicator_def)
show countably_additive (sets \(\left(N \bigotimes_{M} M\right)\) )? \(\mu\)
```

 proof (rule countably_additiveI)
 fix \(F::\) nat \(\Rightarrow\left({ }^{\prime} b \times{ }^{\prime} a\right)\) set assume \(F\) : range \(F \subseteq\) sets \(\left(N \bigotimes_{M} M\right)\) dis-
 joint_family F
from F have $*: \bigwedge i . F i \in$ sets $\left(N \bigotimes_{M} M\right)$ by auto
moreover have $\bigwedge x$. disjoint_family (λi. Pair $x-{ }^{\prime} F i$)
by (intro disjoint_family_on_bisimulation $[O F F(2)]$) auto
moreover have $\bigwedge x$. range $\left(\lambda i\right.$. Pair $\left.x-{ }^{\prime} F i\right) \subseteq$ sets M
using F by (auto simp: sets_Pair1)
ultimately show $\left(\sum n . ? \mu(F n)\right)=? \mu(\bigcup i . F i)$
by (auto simp add: nn_integral_suminf[symmetric] vimage_UN suminf_emeasure
intro!: nn_integral_cong nn_integral_indicator[symmetric])
qed
show $\{a \times b \mid a b . a \in$ sets $N \wedge b \in$ sets $M\} \subseteq$ Pow $($ space $N \times$ space $M)$
using sets.space_closed $[$ of $N]$ sets.space_closed $[$ of $M]$ by auto
qed fact
lemma (in sigma_finite_measure) emeasure_pair_measure_alt:
assumes $X: X \in \operatorname{sets}\left(N \bigotimes_{M} M\right)$
shows emeasure $\left(N \otimes_{M} M\right) X=\left(\int{ }^{+} x\right.$. emeasure $M\left(\right.$ Pair $\left.\left.x-{ }^{\prime} X\right) \partial N\right)$
proof -
have $[$ simp $]: \bigwedge x y$. indicator $X(x, y)=$ indicator $\left(\right.$ Pair $\left.x-{ }^{\prime} X\right) y$
by (auto simp: indicator_def)
show ?thesis
using X by (auto intro!: nn_integral_cong simp: emeasure_pair_measure sets_Pair1)
qed
proposition (in sigma_finite_measure) emeasure_pair_measure_Times:
assumes $A: A \in$ sets N and $B: B \in$ sets M
shows emeasure $\left(N \bigotimes_{M} M\right)(A \times B)=$ emeasure $N A *$ emeasure $M B$
proof -
have emeasure $\left(N \bigotimes_{M} M\right)(A \times B)=\left(\int{ }^{+}\right.$x. emeasure $M B *$ indicator $A x$
$\partial N)$
using $A B$ by (auto intro!: nn_integral_cong simp: emeasure_pair_measure_alt)
also have $\ldots=$ emeasure $M B *$ emeasure $N A$
using A by (simp add: nn_integral_cmult_indicator)
finally show ?thesis
by (simp add: ac_simps)
qed

```

\subsection*{6.7.2 Binary products of \(\sigma\)-finite emeasure spaces}
locale pair_sigma_finite \(=\) M1?: sigma_finite_measure M1 + M2?: sigma_finite_measure M2
for \(M 1\) :: 'a measure and M2 :: 'b measure
lemma (in pair_sigma_finite) measurable_emeasure_Pair1:
\(Q \in\) sets \(\left(\right.\) M1 \(\bigotimes_{M}\) M2) \(\Longrightarrow\left(\lambda x\right.\). emeasure M2 \(\left(\right.\) Pair \(\left.\left.x-{ }^{\prime} Q\right)\right) \in\) borel_measurable M1
using M2.measurable_emeasure_Pair .
lemma（in pair＿sigma＿finite）measurable＿emeasure＿Pair2：
assumes \(Q: Q \in\) sets \(\left(M 1 \bigotimes_{M}\right.\) M2）shows（ \(\lambda y\) ．emeasure M1 \(((\lambda x .(x, y))\) －＇\(Q)) \in\) borel＿measurable M2
proof -
    have \((\lambda(x, y) .(y, x))-‘ Q \cap\) space \(\left(M 2 \bigotimes_{M} M 1\right) \in \operatorname{sets}\left(M 2 \bigotimes_{M} M 1\right)\)
        using \(Q\) measurable_pair_swap' by (auto intro: measurable_sets)
    note M1.measurable_emeasure_Pair[OF this]
    moreover have \(\bigwedge y\). Pair \(y-{ }^{\prime}\left((\lambda(x, y) .(y, x))-{ }^{\prime} Q \cap\right.\) space \(\left.\left(M 2 \bigotimes_{M} M 1\right)\right)\)
\(=(\lambda x .(x, y))-{ }^{\prime} Q\)
        using \(Q[\) THEN sets.sets_into_space \(]\) by (auto simp: space_pair_measure)
    ultimately show? ?thesis by simp
qed
proposition (in pair_sigma_finite) sigma_finite_up_in_pair_measure_generator:
    defines \(E \equiv\{A \times B \mid A B . A \in\) sets M1 \(\wedge B \in\) sets M2 \(\}\)
    shows \(\exists F:: n a t \Rightarrow\left({ }^{\prime} a \times ' b\right)\) set. range \(F \subseteq E \wedge\) incseq \(F \wedge(\bigcup i . F i)=\) space
M1 \(\times\) space M2 \(\wedge\)
        \(\left(\forall\right.\) i. emeasure \(\left.\left(M 1 \bigotimes_{M} M 2\right)(F i) \neq \infty\right)\)
proof -
    from M1.sigma_finite_incseq guess F1 . note F1 = this
    from M2.sigma_finite_incseq guess F2 . note F2 \(=\) this
    from F1 F2 have space: space M1 \(=(\bigcup i\). F1 \(i)\) space M2 \(=(\bigcup i . F 2 i)\) by
auto
    let \(? F=\lambda i . F 1 i \times F 2 i\)
    show ?thesis
    proof (intro exI[of - ?F] conjI allI)
        show range ? \(F \subseteq E\) using \(F 1\) F2 by (auto simp: E_def) (metis range_subsetD)
    next
        have space \(M 1 \times\) space \(M 2 \subseteq(\bigcup i\). ?F \(i)\)
        proof (intro subsetI)
            fix \(x\) assume \(x \in\) space \(M 1 \times\) space M2
            then obtain \(i j\) where \(f\) st \(x \in F 1 i\) snd \(x \in F 2 j\)
                by (auto simp: space)
            then have fst \(x \in F 1(\max i j)\) snd \(x \in F 2(\max j i)\)
                using 〈incseq F1〉〈incseq F2〉 unfolding incseq_def
                by (force split: split_max)+
            then have \((\) fst \(x\), snd \(x) \in F 1(\max i j) \times F 2(\max i j)\)
                    by (intro SigmaI) (auto simp add: max.commute)
            then show \(x \in(\bigcup i\). ? \(F i)\) by auto
        qed
        then show \((\bigcup i\). ? \(F i)=\) space \(M 1 \times\) space M2
            using space by (auto simp: space)
    next
        fix \(i\) show \(i n c s e q(\lambda i . F 1 i \times F 2 i)\)
            using 〈incseq F1〉〈incseq F2〉 unfolding incseq_Suc_iff by auto
    next
        fix \(i\)
        from F1 F2 have F1 \(i \in\) sets M1 F2 \(i \in\) sets M2 by auto
```

 with F1 F2 show emeasure (M1 囚 M M2) (F1 i x F2 i) =>
 by (auto simp add: emeasure_pair_measure_Times ennreal_mult_eq_top_iff)
 qed
 qed
sublocale pair_sigma_finite }\subseteqP\mathrm{ P?: sigma_finite_measure M1 < < M2
proof
from M1.sigma_finite_countable guess F1 ..
moreover from M2.sigma_finite_countable guess F2 ..
ultimately show
\existsA. countable A ^ A\subseteq sets (M1 囚 м M2) ^UA= space (M1 囚 m M2) ^
(}\foralla\inA\mathrm{ . emeasure (M1 囚 M M2) a}=>\infty
by (intro exI[of - (\lambda(a,b).a\timesb)'(F1 < F2)] conjI)
(auto simp: M2.emeasure_pair_measure_Times space_pair_measure set_eq_iff
subset_eq ennreal_mult_eq_top_iff)

```
qed
lemma sigma_finite_pair_measure:
    assumes \(A\) : sigma_finite_measure \(A\) and \(B\) : sigma_finite_measure \(B\)
    shows sigma_finite_measure \(\left(A \bigotimes_{M} B\right)\)
proof -
    interpret \(A\) : sigma_finite_measure \(A\) by fact
    interpret \(B\) : sigma_finite_measure \(B\) by fact
    interpret \(A B\) : pair_sigma_finite \(A \quad B\)..
    show ?thesis ..
qed
lemma sets_pair_swap:
    assumes \(A \in\) sets \(\left(M 1 \bigotimes_{M} M 2\right)\)
    shows \((\lambda(x, y) .(y, x))-{ }^{\prime} A \cap\) space \(\left(M 2 \otimes_{M} M 1\right) \in\) sets \(\left(M 2 \otimes_{M} M 1\right)\)
    using measurable_pair_swap' assms by (rule measurable_sets)
lemma (in pair_sigma_finite) distr_pair_swap:
    \(M 1 \bigotimes_{M} M 2=\operatorname{distr}\left(\right.\) M2 \(\left.^{2} \bigotimes_{M} M 1\right)\left(M 1 \bigotimes_{M} M 2\right)(\lambda(x, y) .(y, x))(\) is \(? P=\)
?D)
proof -
    from sigma_finite_up_in_pair_measure_generator guess \(F::\) nat \(\Rightarrow\left({ }^{\prime} a \times{ }^{\prime} b\right)\) set
    .. note \(F=\) this
    let \(? E=\{a \times b \mid a b . a \in\) sets M1 \(\wedge b \in\) sets M2 \(\}\)
    show ?thesis
    proof (rule measure_eqI_generator_eq[OF Int_stable_pair_measure_generator[of M1
M2]])
        show ? \(E \subseteq\) Pow (space ?P)
            using sets.space_closed[of M1] sets.space_closed[of M2] by (auto simp:
space_pair_measure)
    show sets ? \(P=\) sigma_sets \((\) space ? \(P\) ) ? \(E\)
        by (simp add: sets_pair_measure space_pair_measure)
    then show sets ? \(D=\) sigma_sets \((\) space ?P) ?E
        by \(\operatorname{simp}\)
```

 next
 show range F\subseteq?E (\bigcupi.F i) = space ?P \i. emeasure ?P (Fi)\not=\infty
 using F by (auto simp: space_pair_measure)
 next
 fix }X\mathrm{ assume }X\in?
 then obtain A B where X[simp]:X=A\timesB and A:A\in sets M1 and B:
 B}\in\mathrm{ sets M2 by auto
have }(\lambda(y,x).(x,y))-` X\cap space (M2 \otimes M M1) = B 人 A using sets.sets_into_space[OF A] sets.sets_into_space[OF B] by (auto simp: space_pair_measure) with A B show emeasure (M1 * M M2) X = emeasure ?D X by (simp add: M2.emeasure_pair_measure_Times M1.emeasure_pair_measure_Times emeasure_distr measurable_pair_swap' ac_simps) qed qed lemma (in pair_sigma_finite) emeasure_pair_measure_alt2: assumes A: A f sets (M1 囚 M M2) shows emeasure (M1 囚 M M2) A = (}\mp@subsup{|}{}{+}y.\mathrm{ .emeasure M1 ((}\lambdax.(x,y)) -' 'A \partialM2) (is_= ? \nu A) proof - have [simp]: \y. (Pair y -' ((\lambda(x,y). (y,x)) -` A \cap space (M2 \otimes M M1)))
= (\lambdax. (x,y)) -' A
using sets.sets_into_space[OF A] by (auto simp: space_pair_measure)
show ?thesis using A
by (subst distr_pair_swap)
(simp_all del: vimage_Int add: measurable_sets[OF measurable_pair_swap]
M1.emeasure_pair_measure_alt emeasure_distr[OF measurable_pair_swap'
A])
qed
lemma (in pair_sigma_finite) AE_pair:
assumes AE x in (M1 囚 M M2). Q x
shows AE x in M1. (AE y in M2. Q (x,y))
proof -
obtain N where N:N\in sets (M1 囚 M M2) emeasure (M1 囚 M M2) N=0
{x\inspace (M1 囚 M M2). \negQ x}\subseteqN
using assms unfolding eventually_ae_flter by auto
show ?thesis
proof (rule AE_I)
from N measurable_emeasure_Pair1[OF <N \in sets (M1 囚 M M2)`]
show emeasure M1 {x\inspace M1. emeasure M2 (Pair x-'N)\not=0}=0
by (auto simp: M2.emeasure_pair_measure_alt nn_integral_0_iff)
show {x\in space M1. emeasure M2 (Pair x -'N)\not=0}\in sets M1
by (intro borel_measurable_eq measurable_emeasure_Pair1 N sets.sets_Collect_neg
N) simp
{ fix x assume }x\in\mathrm{ space M1 emeasure M2 (Pair x -' N) = 0

```
```

 have AE y in M2. Q (x,y)
 proof (rule AE_I)
 show emeasure M2 (Pair x -' N)=0 by fact
 show Pair x -' N f sets M2 using N(1) by (rule sets_Pair1)
 show {y f space M2. ᄀ Q (x,y)}\subseteq Pair x - 'N
 using N<x \in space M1` unfolding space_pair_measure by auto
 qed }
then show {x\in space M1. ᄀ(AE y in M2. Q (x,y))}\subseteq{x\in space M1.
emeasure M2 (Pair x -'N) = 0}
by auto
qed
qed
lemma (in pair_sigma_finite) AE_pair_measure:
assumes {x\inspace (M1 囚 M M2). P x} \in sets (M1 囚 M M2)
assumes ae:AE x in M1. AE y in M2. P (x,y)
shows AE x in M1 \otimes M M2. P x
proof (subst AE_iff_measurable[OF _ refl])
show {x\inspace (M1 囚 M M2). \negP x} \in sets (M1 囚 M M2)
by (rule sets.sets_Collect) fact
then have emeasure (M1 囚 m M2) {x\in space (M1 囚 m M2). ᄀP x} =
(}\mp@subsup{|}{}{+}x.\mp@subsup{\int}{}{+}y. indicator {x\in space (M1 囚 M M2). ᄀP x} (x,y) дM2 \partialM1)
by (simp add: M2.emeasure_pair_measure)

```

```

 using ae
 apply (safe intro!: nn_integral_cong_AE)
 apply (intro AE_I2)
 apply (safe intro!: nn_integral_cong_AE)
 apply auto
 done
 finally show emeasure (M1 囚 m M2) {x\in space (M1 囚 m M2). ᄀP P} =0
 by simp
qed
lemma (in pair_sigma_finite) AE_pair_iff:
{x\inspace (M1 囚 m M2). P (fst x) (snd x)}\in sets (M1 囚 m M2) \Longrightarrow
(AE x in M1. AE y in M2. P x y) \longleftrightarrow(AE x in (M1 \otimes M M2). P (fst x)
(snd x))
using AE_pair[of \lambdax.P(fst x) (snd x)] AE_pair_measure[of \lambdax. P (fst x) (snd
x)] by auto
lemma (in pair_sigma_finite) AE_commute:
assumes P: {x\inspace (M1 囚 m M2). P (fst x) (snd x)}\in sets (M1 囚 m M2)
shows (AE x in M1. AE y in M2. P x y) \longleftrightarrow(AE y in M2. AE x in M1. P x
y)
proof -
interpret Q: pair_sigma_finite M2 M1 ..
have [simp]: \x. (fst (case x of (x,y) => (y,x)))= snd x \x. (snd (case x of
(x,y) =>(y,x))) = fst x

```
```

 by auto
 have {x\in space (M2 \otimes M M1). P (snd x) (fst x)}=
 (\lambda(x,y). (y,x)) -'{x\in space (M1 囚 M M2). P (fst x) (snd x)} \cap space (M2
 \otimes MM1)
by (auto simp: space_pair_measure)
also have ...\in sets (M2 \otimes M M1)
by (intro sets_pair_swap P)
finally show ?thesis
apply (subst AE_pair_iff[OF P])
apply (subst distr_pair_swap)
apply (subst AE_distr_iff [OF measurable_pair_swap' P])
apply (subst Q.AE_pair_iff)
apply simp_all
done
qed

```

\subsection*{6.7.3 Fubinis theorem}
lemma measurable_compose_Pair1:
\(x \in\) space \(M 1 \Longrightarrow g \in\) measurable \(\left(M 1 \bigotimes_{M}\right.\) M2) \(L \Longrightarrow(\lambda y . g(x, y)) \in\) measurable M2 \(L\)
by simp
lemma (in sigma_finite_measure) borel_measurable_nn_integral_fst:
assumes \(f: f \in\) borel_measurable \(\left(M 1 \otimes_{M} M\right)\)
shows \(\left(\lambda x . \int^{+} y . f(x, y) \partial M\right) \in\) borel_measurable M1
using \(f\) proof induct
case (cong \(u v\) )
then have \(\bigwedge w x . w \in\) space \(M 1 \Longrightarrow x \in\) space \(M \Longrightarrow u(w, x)=v(w, x)\)
by (auto simp: space_pair_measure)
show ?case
apply (subst measurable_cong)
apply (rule nn_integral_cong)
apply fact+
done
next
case (set \(Q\) )
have \([\) simp \(]: \bigwedge x y\). indicator \(Q(x, y)=\) indicator \((\) Pair \(x-' Q) y\)
by (auto simp: indicator_def)
have \(\bigwedge x . x \in\) space \(M 1 \Longrightarrow\) emeasure \(M\left(\right.\) Pair \(\left.x-{ }^{\prime} Q\right)=\int+y\). indicator \(Q\)
\((x, y) \partial M\)
by (simp add: sets_Pair1 [OF set])
from this measurable_emeasure_Pair [OF set] show ?case
by (rule measurable_cong[THEN iffD1])
qed (simp_all add: nn_integral_add nn_integral_cmult measurable_compose_Pair1 nn_integral_monotone_convergence_SUP incseq_def le_fun_def
image_comp
cong: measurable_cong)
```

lemma (in sigma_finite_measure) nn_integral_fst:
assumes $f: f \in$ borel_measurable $\left(M 1 \bigotimes_{M} M\right)$
shows $\left(\int^{+} x . \int^{+} y . f(x, y) \partial M \partial M 1\right)=\operatorname{integral}^{N}\left(M 1 \bigotimes_{M} M\right) f($ is ?I f
= _)
using f proof induct
case (cong $u v$)
then have ?I $u=$? $I v$
by (intro nn_integral_cong) (auto simp: space_pair_measure)
with cong show ?case
by (simp cong: nn_integral_cong)
qed (simp_all add: emeasure_pair_measure nn_integral_cmult nn_integral_add
nn_integral_monotone_convergence_SUP measurable_compose_Pair1
borel_measurable_nn_integral_fst nn_integral_mono incseq_def le_fun_def
image_comp
cong: nn_integral_cong)

```
lemma (in sigma_finite_measure) borel_measurable_nn_integral[measurable (raw)]:
        case_prod \(f \in\) borel_measurable \(\left(N \bigotimes_{M} M\right) \Longrightarrow\left(\lambda x . \int^{+} y . f\right.\) x y \(\left.\partial M\right) \in\)
borel_measurable \(N\)
    using borel_measurable_nn_integral_fst[of case_prod f \(N\) ] by simp
proposition (in pair_sigma_finite) nn_integral_snd:
    assumes \(f\) [measurable]: \(f \in\) borel_measurable ( \(M 1 \otimes_{M}\) M2)
    shows \(\left(\int^{+} y \cdot\left(\int^{+} x . f(x, y) \partial M 1\right) \partial M 2\right)=\) integral \(^{N}\left(M 1 \bigotimes_{M} M 2\right) f\)
proof -
    note measurable_pair_swap \([O F f]\)
    from M1.nn_integral_fst[OF this]
    have \(\left(\int^{+} y \cdot\left(\int^{+} x . f(x, y) \partial M 1\right)\right.\) дM2 \()=\left(\int^{+}(x, y) . f(y, x) \partial\left(M 2 \bigotimes_{M}\right.\right.\)
M1) )
            by \(\operatorname{simp}\)
    also have \(\left(\int+(x, y) . f(y, x) \partial\left(\right.\right.\) M2 \(\left.\left.\bigotimes_{M} M 1\right)\right)=\operatorname{integral}^{N}\left(M 1 \otimes_{M} M 2\right) f\)
        by (subst distr_pair_swap) (auto simp add: nn_integral_distr intro!: nn_integral_cong)
    finally show ?thesis.
qed
theorem (in pair_sigma_finite) Fubini:
    assumes \(f: f \in\) borel_measurable (M1 囚 \(M_{M}\) M2)
    shows \(\left(\int^{+} y \cdot\left(\int^{+} x \cdot f(x, y)\right.\right.\) DM1 \()\) дM2 \()=\left(\int^{+} x \cdot\left(\int^{+} y \cdot f(x, y)\right.\right.\) дM2 \()\)
дM1)
    unfolding \(n n \_i n t e g r a l \_s n d[O F\) assms \(]\) M2.nn_integral_fst[OF assms] ..
theorem (in pair_sigma_finite) Fubini':
    assumes \(f:\) case_prod \(f \in\) borel_measurable \(\left(M 1 \otimes_{M}\right.\) M2)
    shows \(\left(\int^{+} y .\left(\int^{+} x . f x y\right.\right.\) дM1) \(\left.\partial M 2\right)=\left(\int^{+} x .\left(\int^{+} y . f x y\right.\right.\) дM2) \(\left.\partial M 1\right)\)
    using Fubini \([O F f]\) by simp

\subsection*{6.7.4 Products on counting spaces, densities and distributions}
proposition sigma_prod:
assumes \(X_{-}\)cover: \(\exists E \subseteq A\). countable \(E \wedge X=\bigcup E\) and \(A: A \subseteq\) Pow \(X\)
assumes \(Y_{-}\)cover: \(\exists E \subseteq B\). countable \(E \wedge Y=\bigcup E\) and \(B: B \subseteq\) Pow \(Y\)
shows sigma \(X A \bigotimes_{M}\) sigma \(Y B=\operatorname{sigma}(X \times Y)\{a \times b \mid a b . a \in A \wedge b\) \(\in B\}\)
(is ? \(P=? S\) )
proof (rule measure_eqI)
have [simp]: snd \(\in X \times Y \rightarrow Y f s t \in X \times Y \rightarrow X\)
by auto
let ? \(X Y=\left\{\left\{f s t-{ }^{\prime} a \cap X \times Y \mid a . a \in A\right\},\left\{s n d-{ }^{\prime} b \cap X \times Y \mid b . b \in B\right\}\right\}\)
have sets \(? P=\) sets \((S U P\) xy \(\in\) ? \(X Y\). sigma \((X \times Y) x y)\)
by (simp add: vimage_algebra_sigma sets_pair_eq_sets_fst_snd A B)
also have \(\ldots=\) sets \((\operatorname{sigma}(X \times Y)(\bigcup\) ? \(X Y))\)
by (intro Sup_sigma arg_cong \([\) where \(f=\) sets \(]\) ) auto
also have \(\ldots=\) sets ?S
proof (intro arg_cong \([\) where \(f=\) sets] sigma_eqI sigma_sets_eqI)
show \(\bigcup ? X Y \subseteq\) Pow \((X \times Y)\{a \times b \mid a b . a \in A \wedge b \in B\} \subseteq \operatorname{Pow}(X \times Y)\)
using \(A B\) by auto
next
interpret \(X Y\) : sigma_algebra \(X \times Y\) sigma_sets \((X \times Y)\{a \times b \mid a b . a \in A\) \(\wedge b \in B\}\)
using \(A B\) by (intro sigma_algebra_sigma_sets) auto
fix \(Z\) assume \(Z \in \bigcup\) ? \(X Y\)
then show \(Z \in\) sigma_sets \((X \times Y)\{a \times b \mid a b . a \in A \wedge b \in B\}\)
proof safe
fix \(a\) assume \(a \in A\)
from \(Y_{-}\)cover obtain \(E\) where \(E: E \subseteq B\) countable \(E\) and \(Y=\bigcup E\) by auto
with \(\langle a \in A\rangle A\) have \(e q: f_{s t}-{ }^{\prime} a \cap X \times Y=(\bigcup e \in E . a \times e)\) by auto
show fst -' \(a \cap X \times Y \in\) sigma_sets \((X \times Y)\{a \times b \mid a b . a \in A \wedge b \in B\}\) using \(\langle a \in A\rangle E\) unfolding eq by (auto intro!: XY.countable_UN')

\section*{next}
fix \(b\) assume \(b \in B\)
 by auto
with \(\langle b \in B\rangle B\) have \(e q:\) snd \(-{ }^{\prime} b \cap X \times Y=(\bigcup e \in E . e \times b)\)
by auto
show snd -' \(b \cap X \times Y \in\) sigma_sets \((X \times Y)\{a \times b \mid a b . a \in A \wedge b \in\)
B\}
using \(\langle b \in B\rangle E\) unfolding eq by (auto intro!: XY.countable_ \(U N^{\prime}\) )
qed
next
fix \(Z\) assume \(Z \in\{a \times b \mid a b . a \in A \wedge b \in B\}\)
then obtain \(a b\) where \(Z=a \times b\) and \(a b: a \in A b \in B\)
by auto
then have \(Z: Z=\left(f s t-{ }^{\prime} a \cap X \times Y\right) \cap\left(s n d-{ }^{\prime} b \cap X \times Y\right)\)
```

 using A B by auto
 interpret XY: sigma_algebra }X\timesY\mathrm{ sigma_sets }(X\timesY)(U\mathrm{ ? XY)
 by (intro sigma_algebra_sigma_sets) auto
 show Z 新ma_sets (X \times Y) (U?XY)
 unfolding Z by (rule XY.Int) (blast intro:ab)+
 qed
finally show sets ?P = sets ?S .
next
interpret finite_measure sigma X A for X A
proof qed (simp add: emeasure_sigma)
fix }A\mathrm{ assume }A\in\mathrm{ sets ?P then show emeasure ?P A = emeasure ?S A
by (simp add: emeasure_pair_measure_alt emeasure_sigma)
qed
lemma sigma_sets_pair_measure_generator_finite:
assumes finite }A\mathrm{ and finite B
shows sigma_sets (A\timesB) {a\timesb|ab.a\subseteqA^b\subseteqB}=Pow (A\timesB)
(is sigma_sets ?prod ?sets = _)
proof safe
have fin: finite (}A\timesB\mathrm{) using assms by (rule finite_cartesian_product)
fix }x\mathrm{ assume subset: x}\subseteqA\times
hence finite x using fin by (rule finite_subset)
from this subset show }x\in\mathrm{ sigma_sets ?prod ?sets
proof (induct x)
case empty show ?case by (rule sigma_sets.Empty)
next
case (insert a x)
hence {a}\in sigma_sets ?prod ?sets by auto
moreover have x\in sigma_sets ?prod ?sets using insert by auto
ultimately show ?case unfolding insert_is_Un[of a x] by (rule sigma_sets_Un)
qed
next
fix x a b
assume }x\in\mathrm{ sigma_sets ?prod ?sets and (a,b) fx
from sigma_sets_into_sp[OF _ this(1)] this(2)
show }a\inA\mathrm{ and }b\inB\mathrm{ by auto
qed
proposition sets_pair_eq:
assumes Ea: Ea\subseteq Pow (space A) sets A = sigma_sets (space A) Ea
and Ca: countable Ca Ca\subseteqEa \Ca= space A
and Eb:Eb\subseteq Pow (space B) sets B = sigma_sets (space B) Eb
and Cb: countable Cb Cb\subseteqEb\bigcupCb= space B
shows sets (A 囚 m B) = sets (sigma (space A 人 space B) {a\timesb|ab.a\in
Ea\wedgeb\inEb})
(is _ = sets (sigma ?\Omega?E))
proof
show sets (sigma ?\Omega ?E) \subseteq sets (}A\mp@subsup{\otimes}{M}{}B
using Ea(1) Eb(1) by (subst sigma_le_sets) (auto simp: Ea(2) Eb(2))

```
```

 have ?E\subseteq Pow ?\Omega
 using Ea(1) Eb(1) by auto
 then have E:a }\inEa\Longrightarrowb\inEb\Longrightarrowa\timesb\in\mathrm{ sets (sigma ? }\Omega\mathrm{ ? E) for ab
 by auto
 have sets (A 囚 M B)\subseteq sets (Sup {vimage_algebra?\Omega fst A,vimage_algebra ?\Omega
 snd B})
unfolding sets_pair_eq_sets_fst_snd ..
also have vimage_algebra ?\Omega fst A = vimage_algebra ?\Omega fst (sigma (space A)
Ea)
by (intro vimage_algebra_cong[OF refl refl]) (simp add: Ea)
also have ... = sigma?\Omega {fst -' }A\cap?\Omega|A.A\inEa
by (intro Ea vimage_algebra_sigma) auto
also have vimage_algebra ?\Omega snd B=vimage_algebra ?\Omega snd (sigma (space B)
Eb)
by (intro vimage_algebra_cong[OF refl refl]) (simp add: Eb)
also have ... = sigma ?\Omega {snd -'A\cap?\Omega |A. A\inEb}
by (intro Eb vimage_algebra_sigma) auto

```

```

?\Omega |Aa.Aa\inEb}} =

```

```

Eb}}
by auto
also have sets (SUP S\in{{fst -`Aa\cap?\Omega |Aa.Aa\inEa},{snd -'Aa\cap?\Omega |Aa.Aa\inEb}}. sigma ?\Omega S)= sets (sigma ?\Omega(\bigcup{{fst -'Aa\cap?\Omega |Aa.Aa\inEa}, {snd -'Aa\cap?\Omega |Aa. Aa\inEb}})) using Ea(1) Eb(1) by (intro sets_Sup_sigma) auto also have ...\subseteq sets (sigma ?\Omega ?E) proof (subst sigma_le_sets, safe intro!: space_in_measure_of) fix }a\mathrm{ assume }a\inE then have fst - ' }a\cap?\Omega=(\bigcupb\inCb.a\timesb using Cb(3)[symmetric] Ea(1) by auto then show fst -' }a\cap?\Omega\in\mathrm{ sets (sigma ? }\Omega\mathrm{ ? E) using Cb<a \inEa> by (auto intro!: sets.countable_UN' E) next fix b assume b GEb then have snd -' b\cap?\Omega=(\bigcupa\inCa.a\timesb) using Ca(3)[symmetric] Eb(1) by auto then show snd -' b\cap?\Omega { sets (sigma ?\Omega ?E) using Ca<b \inEb` by (auto intro!: sets.countable_UN' E)
qed
finally show sets (A 囚 M B)\subseteq sets (sigma ?\Omega ?E) .
qed
proposition borel_prod:
(borel }\mp@subsup{\otimes}{M}{}\mathrm{ borel) = (borel :: ('a::second_countable_topology > 'b::second_countable_topology)
measure)
(is ?P =?B)
proof -

```
```

have $? B=$ sigma $U N I V\{A \times B \mid A B$. open $A \wedge$ open $B\}$
by (rule second_countable_borel_measurable[OF open_prod_generated])
also have ... $=$? P
unfolding borel_def
by (subst sigma_prod) (auto intro!: exI[of - \{UNIV\}])
finally show ?thesis ..
qed
proposition pair_measure_count_space:
assumes A : finite A and B : finite B
shows count_space $A \bigotimes_{M}$ count_space $B=$ count_space $(A \times B)($ is ? $P=? C)$
proof (rule measure_eqI)
interpret A : finite_measure count_space A by (rule finite_measure_count_space)
fact
interpret B : finite_measure count_space B by (rule finite_measure_count_space)
fact
interpret P : pair_sigma_finite count_space A count_space B..
show eq: sets ?P $=$ sets ? C
by (simp add: sets_pair_measure sigma_sets_pair_measure_generator_finite A B)
fix X assume $X: X \in$ sets ? P
with eq have $X_{_}$subset: $X \subseteq A \times B$ by simp
with $A B$ have fin_Pair: $\bigwedge x$. finite (Pair $x-{ }^{\prime} X$)
by (intro finite_subset $\left[O F_{-} B\right]$) auto
have fin_X: finite X using X_{-}subset by (rule finite_subset) (auto simp: A B)
have card: $0<\operatorname{card}($ Pair $a-' X)$ if $(a, b) \in X$ for $a b$
using card_gt_0_iff fin_Pair that by auto
then have emeasure ? P P $X=\int^{+} x$. emeasure (count_space B) $\left(\right.$ Pair $\left.x-^{`} X\right)$
dcount_space A
by (simp add: B.emeasure_pair_measure_alt X)
also have $\ldots=$ emeasure ? $C X$
apply (subst emeasure_count_space)
using card X_{-}subset A fin_Pair fin_X
apply (auto simp add: nn_integral_count_space
of_nat_sum [symmetric] card_SigmaI[symmetric]
simp del: card_SigmaI
intro!: arg_cong[where $f=$ card $]$)
done
finally show emeasure ?P $X=$ emeasure ? $C X$.
qed

```
lemma emeasure_prod_count_space:
assumes \(A: A \in\) sets \(\left(\right.\) count_space UNIV \(\left.\bigotimes_{M} M\right)\left(\right.\) is \(A \in\) sets \(\left.\left(? A \bigotimes_{M} ? B\right)\right)\)
shows emeasure \(\left(? A \bigotimes_{M} ? B\right) A=\left(\int^{+} x . \int^{+} y\right.\). indicator \(\left.A(x, y) \partial ? B \partial ? A\right)\)
by (rule emeasure_measure_of \([O F\) pair_measure_def])
(auto simp: countably_additive_def positive_def suminf_indicator A nn_integral_suminf[symmetric] dest: sets.sets_into_space)
lemma emeasure_prod_count_space_single[simp]: emeasure (count_space UNIV \(\bigotimes_{M}\)
```

count_space UNIV) $\{x\}=1$
proof -
have $[$ simp $]: \bigwedge a b x y$. indicator $\{(a, b)\}(x, y)=($ indicator $\{a\} x *$ indicator
$\{b\} y::$ ennreal)
by (auto split: split_indicator)
show ?thesis
by (cases x) (auto simp: emeasure_prod_count_space nn_integral_cmult sets_Pair)
qed
lemma emeasure_count_space_prod_eq:
fixes $A::\left({ }^{\prime} a \times{ }^{\prime} b\right)$ set
assumes $A: A \in$ sets (count_space UNIV \bigotimes_{M} count_space UNIV) (is $A \in$ sets
$\left.\left(? A \bigotimes_{M} ? B\right)\right)$
shows emeasure $\left(? A \bigotimes_{M}\right.$?B) $A=$ emeasure (count_space UNIV) A
proof -
\{ fix $A::\left({ }^{\prime} a \times\right.$ 'b) set assume countable A
then have emeasure $\left(? A \bigotimes_{M} ? B\right)(\bigcup a \in A .\{a\})=\left(\int+\right.$ a. emeasure $\left(? A \bigotimes_{M}\right.$
?B) $\{a\}$ dcount_space A)
by (intro emeasure_UN_countable) (auto simp: sets_Pair disjoint_family_on_def)
also have $\ldots=\left(\int^{+} a\right.$. indicator A a dcount_space UNIV $)$
by (subst nn_integral_count_space_indicator) auto
finally have emeasure (?A \bigotimes_{M} ?B) $A=$ emeasure (count_space UNIV) A
by simp \}
note $*=$ this
show ?thesis
proof cases
assume finite A then show ?thesis
by (intro $*$ countable_finite)
next
assume infinite A
then obtain C where countable C and infinite C and $C \subseteq A$
by (auto dest: infinite_countable_subset')
with A have emeasure (?A $\left.\bigotimes_{M} ? B\right) C \leq$ emeasure $\left(? A \bigotimes_{M} ? B\right) A$
by (intro emeasure_mono) auto
also have emeasure (?A \bigotimes_{M} ?B) $C=$ emeasure (count_space UNIV) C
using «countable C 〉 by (rule *)
finally show ?thesis
using <infinite C 〉 <infinite A by (simp add: top_unique)
qed
qed
lemma nn_integral_count_space_prod_eq:
nn_integral (count_space UNIV \bigotimes_{M} count_space UNIV) $f=n n$ _integral (count_space
UNIV) f
(is nn_integral ? $P f={ }_{\text {_ }}$)
proof cases
assume cntbl: countable $\{x . f x \neq 0\}$
have $[$ simp $]: \bigwedge x . \operatorname{card}(\{x\} \cap\{x . f x \neq 0\})=($ indicator $\{x . f x \neq 0\} x::$ ennreal $)$

```
by (auto split: split_indicator)
have [measurable]: \(\bigwedge y .(\lambda x\). indicator \(\{y\} x) \in\) borel_measurable ?P
by (rule measurable_discrete_difference[of \(\lambda x\). \(0_{\text {_ }}\) borel \(\{y\} \lambda x\). indicator \(\{y\}\) \(x\) for \(y]\) )
(auto intro: sets_Pair)
have \(\left(\int{ }^{+} x . f x \partial ? P\right)=\left(\int{ }^{+} x . \int{ }^{+} x^{\prime} . f x *\right.\) indicator \(\{x\} x^{\prime}\) Dcount_space \(\{x . f\) \(x \neq 0\} \partial ? P)\)
by (auto simp add: nn_integral_cmult nn_integral_indicator' \({ }^{\prime}\) intro!: nn_integral_cong split: split_indicator)
```

also have $\ldots=\left(\int^{+} x . \int{ }^{+} x^{\prime} . f x^{\prime} *\right.$ indicator $\left\{x^{\prime}\right\} x$ dcount_space $\{x . f x \neq 0\}$

```
\(\partial ? P)\)
    by (auto intro!: nn_integral_cong split: split_indicator)
    also have \(\ldots=\left(\int{ }^{+} x^{\prime} . \int{ }^{+} x . f x^{\prime} *\right.\) indicator \(\left\{x^{\prime}\right\} x\) ? ? P dcount_space \(\{x . f x\)
\(\neq 0\}\) )
    by (intro nn_integral_count_space_nn_integral cntbl) auto
    also have \(\ldots=\left(\int^{+} x^{\prime} . f x^{\prime}\right.\) dcount_space \(\left.\{x . f x \neq 0\}\right)\)
        by (intro nn_integral_cong) (auto simp: nn_integral_cmult sets_Pair)
    finally show ?thesis
        by (auto simp add: nn_integral_count_space_indicator intro!: nn_integral_cong
    split: split_indicator)
next
    \(\{\) fix \(x\) assume \(f x \neq 0\)
        then have \((\exists r \geq 0.0<r \wedge f x=\) ennreal \(r) \vee f x=\infty\)
            by (cases \(f\) x rule: ennreal_cases) (auto simp: less_le)
        then have \(\exists n\). ennreal \((1 / \operatorname{real}(\) Suc \(n)) \leq f x\)
            by (auto elim!: nat_approx_posE intro!: less_imp_le) \}
    note \(*=\) this
    assume cntbl: uncountable \(\{x . f x \neq 0\}\)
    also have \(\{x . f x \neq 0\}=(\bigcup n .\{x .1 /\) Suc \(n \leq f x\})\)
        using * by auto
    finally obtain \(n\) where infinite \(\{x .1 /\) Suc \(n \leq f x\}\)
        by (meson countableI_type countable_UN uncountable_infinite)
    then obtain \(C\) where \(C: C \subseteq\{x .1 /\) Suc \(n \leq f x\}\) and countable \(C\) infinite \(C\)
        by (metis infinite_countable_subset')
    have [measurable]: \(C \in\) sets \(? P\)
        using sets.countable \(\left[O F_{-}\langle\right.\)countable \(C\rangle\), of ?P] by (auto simp: sets_Pair)
    have \(\left(\int{ }^{+} x\right.\). ennreal \((1 /\) Suc \(n) *\) indicator \(\left.C x \partial ? P\right) \leq n n \_i n t e g r a l ? P f\)
    using \(C\) by (intro nn_integral_mono) (auto split: split_indicator simp: zero_ereal_def [symmetric])
    moreover have \(\left(\int{ }^{+} x\right.\). ennreal \((1 /\) Suc \(n) *\) indicator \(\left.C x \partial ? P\right)=\infty\)
    using 〈infinite \(C\) 〉 by (simp add: nn_integral_cmult emeasure_count_space_prod_eq
ennreal_mult_top)
    moreover have \(\left(\int^{+}\right.\)x. ennreal \((1 /\) Suc \(n) *\) indicator \(C x\) dcount_space UNIV)
\(\leq n n \_i n t e g r a l(\) count_space UNIV) \(f\)
    using \(C\) by (intro nn_integral_mono) (auto split: split_indicator simp: zero_ereal_def [symmetric])
    moreover have \(\left(\int^{+}\right.\)x. ennreal \((1 / S u c n) *\) indicator \(C x\) dcount_space UNIV)
```

=

```
    using «infinite \(C\) 〉 by (simp add: nn_integral_cmult ennreal_mult_top)
    ultimately show? ?thesis
    by (simp add: top_unique)
qed
theorem pair_measure_density:
assumes \(f: f \in\) borel_measurable M1
assumes \(g: g \in\) borel_measurable M2
assumes sigma_finite_measure M2 sigma_finite_measure (density M2 g)
shows density M1 \(f \bigotimes_{M}\) density M2 \(g=\) density \(\left(M 1 \bigotimes_{M} M 2\right)(\lambda(x, y) . f x *\)
\(g y)(\) is \(? L=? R)\)
proof (rule measure_eqI)
interpret M2: sigma_finite_measure M2 by fact
interpret D2: sigma_finite_measure density M2 \(g\) by fact
fix \(A\) assume \(A: A \in\) sets ? \(L\)
with \(f g\) have \(\left(\int^{+} x . f x * \int{ }^{+} y . g y *\right.\) indicator \(\left.A(x, y) \partial M 2 \partial M 1\right)=\) \(\left(\int+x . \int+y . f x * g y *\right.\) indicator \(A(x, y)\) дM2 дM1) by (intro nn_integral_cong_AE)
(auto simp add: nn_integral_cmult[symmetric] ac_simps)
with \(A f g\) show emeasure ? \(L A=\) emeasure ? \(R A\)
by (simp add: D2.emeasure_pair_measure emeasure_density nn_integral_density
M2.nn_integral_fst[symmetric]
cong: nn_integral_cong)
qed \(\operatorname{simp}\)
lemma sigma_finite_measure_distr:
assumes sigma_finite_measure (distr \(M N f\) ) and \(f: f \in\) measurable \(M N\)
shows sigma_finite_measure \(M\)
proof -
interpret sigma_finite_measure distr \(M N f\) by fact
from sigma_finite_countable guess \(A\).. note \(A=\) this
show ?thesis
proof
show \(\exists\). countable \(A \wedge A \subseteq\) sets \(M \wedge \bigcup A=\) space \(M \wedge(\forall a \in A\). emeasure Ma \(=\infty\) )
using \(A f\)
by (intro exI[of \(-\left(\lambda a . f-{ }^{\prime} a \cap\right.\) space \(\left.\left.\left.M\right) ' A\right]\right)\)
(auto simp: emeasure_distr set_eq_iff subset_eq intro: measurable_space)
qed
qed
lemma pair_measure_distr:
assumes \(f: f \in\) measurable \(M S\) and \(g: g \in\) measurable \(N T\)
assumes sigma_finite_measure (distr \(N T g\) )
shows \(\operatorname{distr} M S f \bigotimes_{M} \operatorname{distr} N T g=\operatorname{distr}\left(M \bigotimes_{M} N\right)\left(S \bigotimes_{M} T\right)(\lambda(x, y)\).
\((f x, g y))(\) is \(? P=? D)\)
proof (rule measure_eqI)
interpret \(T\) : sigma_finite_measure distr \(N T g\) by fact
interpret \(N\) : sigma_finite_measure \(N\) by (rule sigma_finite_measure_distr) fact+
fix \(A\) assume \(A: A \in\) sets ? P
with \(f g\) show emeasure ?P \(A=\) emeasure ? \(D A\)
by (auto simp add: N.emeasure_pair_measure_alt space_pair_measure emeasure_distr
T.emeasure_pair_measure_alt nn_integral_distr intro!: nn_integral_cong arg_cong[where \(f=\) emeasure \(N]\) )
qed \(\operatorname{simp}\)
lemma pair_measure_eqI:
assumes sigma_finite_measure M1 sigma_finite_measure M2
assumes sets: sets \(\left(M 1 \bigotimes_{M}\right.\) M2) \(=\) sets \(M\)
assumes emeasure: \(\bigwedge A B . A \in\) sets \(M 1 \Longrightarrow B \in\) sets M2 \(\Longrightarrow\) emeasure M1 \(A\)
* emeasure M2 \(B=\) emeasure \(M(A \times B)\)
shows \(M 1 \bigotimes_{M} M 2=M\)
proof -
interpret M1: sigma_finite_measure M1 by fact
interpret M2: sigma_finite_measure M2 by fact
interpret pair_sigma_finite M1 M2 ..
from sigma_finite_up_in_pair_measure_generator guess \(F::\) nat \(\Rightarrow\left({ }^{\prime} a \times{ }^{\prime} b\right)\) set
.. note \(F=\) this
let \(? E=\{a \times b \mid a b . a \in\) sets M1 \(\wedge b \in\) sets M2 \(\}\)
let ? \(P=M 1 \bigotimes_{M}\) M2
show ?thesis
proof (rule measure_eqI_generator_eq[OF Int_stable_pair_measure_generator[of M1
M2]])
show ? \(E \subseteq\) Pow (space ?P)
using sets.space_closed[of M1] sets.space_closed[of M2] by (auto simp:
space_pair_measure)
show sets ? \(P=\) sigma_sets (space ?P) ?E
by (simp add: sets_pair_measure space_pair_measure)
then show sets \(M=\) sigma_sets (space ?P) ?E
using sets[symmetric] by simp
next
show range \(F \subseteq ? E(\bigcup i . F i)=\) space ? \(P\) \i. emeasure ?P \((F i) \neq \infty\)
using \(F\) by (auto simp: space_pair_measure)
next
fix \(X\) assume \(X \in ? E\)
then obtain \(A B\) where \(X[\operatorname{simp}]: X=A \times B\) and \(A: A \in\) sets \(M 1\) and \(B:\)
\(B \in\) sets M2 by auto
then have emeasure ? \(P\) X emeasure \(M 1 A *\) emeasure \(M 2 B\)
by (simp add: M2.emeasure_pair_measure_Times)
also have \(\ldots=\) emeasure \(M(A \times B)\)
using \(A B\) emeasure by auto
finally show emeasure ?P \(X=\) emeasure \(M X\)
by \(\operatorname{simp}\)
qed

\section*{qed}
lemma sets＿pair＿countable：
assumes countable S1 countable S2
assumes \(M\) ：sets \(M=\) Pow \(S 1\) and \(N\) ：sets \(N=\) Pow \(S 2\)
shows sets \(\left(M \bigotimes_{M} N\right)=\) Pow \((S 1 \times S 2)\)
proof auto
fix \(x a b\) assume \(x: x \in \operatorname{sets}\left(M \bigotimes_{M} N\right)(a, b) \in x\)
from sets．sets＿into＿space［OF \(x(1)] x(2)\)
sets＿eq＿imp＿space＿eq［of \(N\) count＿space S2］sets＿eq＿imp＿space＿eq［of \(M\) count＿space
S1］\(M N\)
show \(a \in S 1 b \in S 2\)
by（auto simp：space＿pair＿measure）
next
fix \(X\) assume \(X: X \subseteq S 1 \times S 2\)
then have countable \(X\)
by（metis countable＿subset 〈countable S1〉〈countable S2〉countable＿SIGMA）
have \(X=(\bigcup(a, b) \in X .\{a\} \times\{b\})\) by auto
also have \(\ldots \in\) sets \(\left(M \otimes_{M} N\right)\)
using \(X\)
by（safe intro！：sets．countable＿UN＇\(\langle\) countable \(X\)＞subsetI pair＿measureI）（auto simp：\(M N\) ）
finally show \(X \in\) sets \(\left(M \bigotimes_{M} N\right)\) ．
qed
lemma pair＿measure＿countable：
assumes countable S1 countable S2
shows count＿space \(S 1 \bigotimes_{M}\) count＿space S2 \(=\) count＿space \((S 1 \times S 2)\)
proof（rule pair＿measure＿eqI）
show sigma＿finite＿measure（count＿space S1）sigma＿finite＿measure（count＿space S2）
using assms by（auto intro！：sigma＿finite＿measure＿count＿space＿countable）
show sets（count＿space S1 \(\bigotimes_{M}\) count＿space S2）\(=\) sets \((\) count＿space \((S 1 \times S 2))\)
by（subst sets＿pair＿countable［OF assms］）auto
next
fix \(A B\) assume \(A \in\) sets（count＿space S1）\(B \in\) sets（count＿space S2）
then show emeasure（count＿space S1）\(A *\) emeasure（count＿space S2）\(B=\)
emeasure（count＿space \((S 1 \times S 2))(A \times B)\)
by（subst（1 2 3）emeasure＿count＿space）（auto simp：finite＿cartesian＿product＿iff ennreal＿mult＿top ennreal＿top＿mult）
qed
proposition nn＿integral＿fst＿count＿space：
\(\left(\int^{+} x . \int^{+} y . f(x, y)\right.\) dcount＿space UNIV dcount＿space UNIV \()=\) integral \(^{N}\)
（count＿space UNIV）\(f\)
（is ？lhs＝？\(r h s\) ）
proof（cases）
assume \(*\) ：countable \(\{x y . f x y \neq 0\}\)
let ？\(A=f s t\)＇\(\{x y . f x y \neq 0\}\)
```

let $? B=$ snd ' $\{x y . f x y \neq 0\}$
from $*$ have [simp]: countable ?A countable ?B by(rule countable_image) +
have ?lhs $=\left(\int^{+} x . \int^{+} y . f(x, y)\right.$ dcount_space UNIV ∂ count_space ?A $)$
by(rule nn_integral_count_space_eq)
(auto simp add: nn_integral_0_iff_AE AE_count_space not_le intro: rev_image_eqI)
also have $\ldots=\left(\int^{+} x . \int^{+} y . f(x, y)\right.$ dcount_space ?B Dcount_space ? $\left.A\right)$
by (intro nn_integral_count_space_eq nn_integral_cong)(auto intro: rev_image_eqI)
also have $\ldots=\left(\int^{+} x y . f\right.$ xy дcount_space $\left.(? A \times ? B)\right)$
by(subst sigma_finite_measure.nn_integral_fst)
(simp_all add: sigma_finite_measure_count_space_countable pair_measure_countable)
also have $\ldots=$?rhs
by (rule nn_integral_count_space_eq)(auto intro: rev_image_eqI)
finally show? thesis .
next
\{ fix $x y$ assume $f x y \neq 0$
then have $(\exists r \geq 0.0<r \wedge f x y=$ ennreal $r) \vee f x y=\infty$
by (cases f xy rule: ennreal_cases) (auto simp: less_le)
then have $\exists n$. ennreal $(1 /$ real $($ Suc $n)) \leq f x y$
by (auto elim!: nat_approx_posE intro!: less_imp_le) \}
note $*=$ this
assume cntbl: uncountable $\{x y . f x y \neq 0\}$
also have $\{x y . f x y \neq 0\}=(\bigcup n .\{x y .1 /$ Suc $n \leq f x y\})$
using * by auto
finally obtain n where infinite $\{x y .1 /$ Suc $n \leq f x y\}$
by (meson countableI_type countable_UN uncountable_infinite)
then obtain C where $C: C \subseteq\{x y .1 /$ Suc $n \leq f x y\}$ and countable C infinite
C
by (metis infinite_countable_subset')
have $\infty=\left(\int^{+}\right.$xy. ennreal ($1 /$ Suc $\left.n\right) *$ indicator C xy ∂ count_space UNIV)
using 〈infinite C 〉 by (simp add: nn_integral_cmult ennreal_mult_top)
also have $\ldots \leq$? rhs using C
by(intro nn_integral_mono)(auto split: split_indicator)
finally have ? rhs $=\infty$ by (simp add: top_unique)
moreover have ?lhs $=\infty$
proof(cases finite (fst ' C))
case True
then obtain $x C^{\prime}$ where $x: x \in f_{s t}$ ' C
and $C^{\prime}: C^{\prime}=f s t-‘\{x\} \cap C$
and infinite C^{\prime}
using 〈infinite C 〉 by (auto elim!: inf_img_fin_domE')
from $x C C^{\prime}$ have $* *: C^{\prime} \subseteq\{x y .1 /$ Suc $n \leq f x y\}$ by auto
from $C^{\prime}{ }^{\text {infinite }} C^{\prime}$ ' have infinite (snd ' C^{\prime})
by(auto dest!: finite_imageD simp add: inj_on_def)
then have $\infty=\left(\int^{+} y\right.$. ennreal $(1 /$ Suc $n) *$ indicator $\left(\right.$ snd $\left.{ }^{\prime} C^{\prime}\right) y$
dcount_space UNIV)
by(simp add: nn_integral_cmult ennreal_mult_top)

```
```

 also have \(\ldots=\left(\int^{+} y\right.\). ennreal \((1 /\) Suc \(n) *\) indicator \(C^{\prime}(x, y)\) dcount_space
 UNIV)

```
    by(rule nn_integral_cong)(force split: split_indicator intro: rev_image_eqI simp
add: \(C^{\prime}\) )
    also have \(\ldots=\left(\int^{+} x^{\prime} .\left(\int^{+} y\right.\right.\). ennreal \((1 /\) Suc \(n) *\) indicator \(C^{\prime}(x, y)\)
dcount_space UNIV) * indicator \(\{x\} x^{\prime}\) dcount_space UNIV)
            by (simp add: one_ereal_def [symmetric])
            also have \(\ldots \leq\left(\int^{+} x . \int^{+} y\right.\). ennreal \((1 /\) Suc \(n) *\) indicator \(C^{\prime}(x, y)\)
dcount_space UNIV \(\partial\) count_space UNIV)
            by(rule nn_integral_mono)(simp split: split_indicator)
    also have \(\ldots \leq\) ? lhs using \(* *\)
            by(intro nn_integral_mono)(auto split: split_indicator)
            finally show ?thesis by (simp add: top_unique)
    next
    case False
    define \(C^{\prime}\) where \(C^{\prime}=f s t\) ' \(C\)
    have \(\infty=\int{ }^{+}\)x. ennreal ( \(1 /\) Suc \(\left.n\right) *\) indicator \(C^{\prime} x\) dcount_space UNIV
        using \(C^{\prime}\) _def False by (simp add: nn_integral_cmult ennreal_mult_top)
    also have \(\ldots=\int{ }^{+} x . \int{ }^{+} y\). ennreal \((1 / S u c n) *\) indicator \(C^{\prime} x *\) indicator
\(\{S O M E y .(x, y) \in C\}\) y \(\partial\) count_space UNIV dcount_space UNIV
            by(auto simp add: one_ereal_def[symmetric] max_def intro: nn_integral_cong)
            also have \(\ldots \leq \int^{+} x . \int^{+} y\). ennreal \((1 / S u c n) *\) indicator \(C(x, y)\)
dcount_space UNIV \(\bar{\partial}\) count_space UNIV
            by (intro nn_integral_mono)(auto simp add: \(C^{\prime}\) _def split: split_indicator intro:
    someI)
        also have \(\ldots \leq\) ? \(\mathrm{lh} s\) using \(C\)
            by(intro nn_integral_mono)(auto split: split_indicator)
    finally show ?thesis by (simp add: top_unique)
    qed
    ultimately show? ?thesis by simp
qed
proposition nn_integral_snd_count_space:
    \(\left(\int^{+} y . \int^{+} x . f(x, y) \partial c o u n t \_s p a c e ~ U N I V ~ \partial c o u n t \_s p a c e ~ U N I V\right) ~=\) integral \(^{N}\)
(count_space UNIV) \(f\)
    (is ?lhs =? ? rh )
proof -
    have ?lhs \(=\left(\int^{+} y . \int^{+} x .(\lambda(y, x) . f(x, y))(y, x)\right.\) dcount_space UNIV
dcount_space UNIV)
            by (simp)
    also have \(\ldots=\int{ }^{+} y x .(\lambda(y, x) . f(x, y)) y x\) dcount_space UNIV
            by (rule nn_integral_fst_count_space)
    also have \(\ldots=\int+x y . f x y\) dcount_space \(\left((\lambda(x, y) \cdot(y, x)){ }^{\prime}\right.\) UNIV \()\)
            by (subst nn_integral_bij_count_space[OF inj_on_imp_bij_betw, symmetric])
            (simp_all add: inj_on_def split_def)
    also have \(\ldots=\) ?rhs \(\mathbf{b y}(\) rule nn_integral_count_space_eq) auto
    finally show? ?thesis.
qed
lemma measurable_pair_measure_countable1:
assumes countable \(A\)
and [measurable]: \(\bigwedge x . x \in A \Longrightarrow(\lambda y . f(x, y)) \in\) measurable \(N K\)
shows \(f \in\) measurable (count_space \(A \bigotimes_{M} N\) ) K
using - - assms(1)
\(\mathbf{b y}\left(\right.\) rule measurable_compose_countable \({ }^{\prime}[\) where \(f=\lambda a b . f(a\), snd \(b)\) and \(g=f s t\) and \(I=A\), simplified \(]\) ) simp_all

\subsection*{6.7.5 Product of Borel spaces}
```

theorem borel_Times:
fixes A :: 'a::topological_space set and B :: 'b::topological_space set
assumes $A: A \in$ sets borel and $B: B \in$ sets borel
shows $A \times B \in$ sets borel
proof -
have $A \times B=(A \times U N I V) \cap(U N I V \times B)$
by auto
moreover
\{ have $A \in$ sigma_sets UNIV \{S. open $S\}$ using A by (simp add: sets_borel)
then have $A \times U N I V \in$ sets borel
proof (induct A)
case (Basic S) then show ?case
by (auto intro!: borel_open open_Times)
next
case (Compl A)
moreover have $*:(U N I V-A) \times U N I V=U N I V-(A \times U N I V)$
by auto
ultimately show ?case
unfolding * by auto
next
case (Union A)
moreover have $*:(\bigcup(A \cdot U N I V)) \times U N I V=\bigcup((\lambda i . A i \times U N I V)$
UNIV)
by auto
ultimately show ?case
unfolding * by auto
qed $\operatorname{simp}\}$
moreover
\{ have $B \in$ sigma_sets UNIV \{S. open $S\}$ using B by (simp add: sets_borel)
then have $U N I V \times B \in$ sets borel
proof (induct B)
case (Basic S) then show ?case
by (auto intro!: borel_open open_Times)
next
case (Compl B)
moreover have $*: U N I V \times(U N I V-B)=U N I V-(U N I V \times B)$
by auto
ultimately show ?case
unfolding $*$ by auto

```
```

 next
 case (Union B)
 moreover have *:UNIV }\times(\bigcup(B'UNIV))=\bigcup((\lambdai.UNIV × B i)'
 UNIV)
by auto
ultimately show ?case
unfolding * by auto
qed simp }
ultimately show ?thesis
by auto
qed
lemma finite_measure_pair_measure:
assumes finite_measure M finite_measure N
shows finite_measure (N 囚 M M)
proof (rule finite_measureI)
interpret M: finite_measure M by fact
interpret N}N\mathrm{ : finite_measure N by fact
show emeasure (N \otimes M M) (space (N \otimes M M)) = \infty
by (auto simp: space_pair_measure M.emeasure_pair_measure_Times ennreal_mult_eq_top_iff)
qed
end

```

\subsection*{6.8 Finite Product Measure}
theory Finite_Product_Measure
imports Binary_Product_Measure Function_Topology
begin
lemma PiE_choice: \(\left(\exists f \in P i_{E} I F . \forall i \in I . P i(f i)\right) \longleftrightarrow(\forall i \in I . \exists x \in F i . P i x)\) by (auto simp: Bex_def PiE_iff Ball_def dest!: choice_iff '[THEN iffD1]) (force intro: exI[of _ restrict fI for \(f]\) )
lemma case_prod_const: \((\lambda(i, j) . c)=\left(\lambda_{\_} . c\right)\)
by auto

\subsection*{6.8.1 More about Function restricted by extensional}

\section*{definition}
merge \(I J=(\lambda(x, y)\). if \(i \in I\) then \(x\) i else if \(i \in J\) then \(y\) i else undefined \()\)
lemma merge_apply[simp]:
\(I \cap J=\{ \} \Longrightarrow i \in I \Longrightarrow\) merge \(I J(x, y) i=x i\)
\(I \cap J=\{ \} \Longrightarrow i \in J \Longrightarrow\) merge \(I J(x, y) i=y i\)
\(J \cap I=\{ \} \Longrightarrow i \in I \Longrightarrow\) merge \(I J(x, y) i=x i\)
\(J \cap I=\{ \} \Longrightarrow i \in J \Longrightarrow\) merge \(I J(x, y) i=y i\)
\(i \notin I \Longrightarrow i \notin J \Longrightarrow\) merge \(I J(x, y) i=\) undefined
unfolding merge_def by auto
lemma merge_commute:
\(I \cap J=\{ \} \Longrightarrow\) merge \(I J(x, y)=\) merge \(J I(y, x)\)
by (force simp: merge_def)
lemma Pi_cancel_merge_range[simp]:
\(I \cap J=\{ \} \Longrightarrow x \in \operatorname{Pi} I(\) merge \(I J(A, B)) \longleftrightarrow x \in P i I A\)
\(I \cap J=\{ \} \Longrightarrow x \in\) Pi \(I\) (merge \(J I(B, A)) \longleftrightarrow x \in\) Pi I A
\(J \cap I=\{ \} \Longrightarrow x \in\) Pi \(I\) (merge \(I J(A, B)) \longleftrightarrow x \in\) Pi I A
\(J \cap I=\{ \} \Longrightarrow x \in\) Pi I (merge \(J I(B, A)) \longleftrightarrow x \in\) Pi I A
by (auto simp: Pi_def)
lemma Pi_cancel_merge[simp]:
\(I \cap J=\{ \} \Longrightarrow\) merge \(I J(x, y) \in\) Pi I B \(\longleftrightarrow x \in\) Pi I B
\(J \cap I=\{ \} \Longrightarrow\) merge \(I J(x, y) \in\) Pi I B \(\longleftrightarrow x \in\) Pi I B
\(I \cap J=\{ \} \Longrightarrow\) merge \(I J(x, y) \in P i J B \longleftrightarrow y \in P i J B\)
\(J \cap I=\{ \} \Longrightarrow\) merge \(I J(x, y) \in P i J B \longleftrightarrow y \in P i J B\)
by (auto simp: Pi_def)
lemma extensional_merge \([\) simp \(]:\) merge \(I J(x, y) \in\) extensional \((I \cup J)\)
by (auto simp: extensional_def)
lemma restrict_merge[simp]:
\(I \cap J=\{ \} \Longrightarrow\) restrict (merge \(I J(x, y)) I=\) restrict \(x I\)
\(I \cap J=\{ \} \Longrightarrow\) restrict (merge \(I J(x, y)) J=\) restrict \(y J\)
\(J \cap I=\{ \} \Longrightarrow\) restrict (merge \(I J(x, y)) I=\) restrict \(x I\)
\(J \cap I=\{ \} \Longrightarrow\) restrict (merge \(I J(x, y)) J=\) restrict \(y J\)
by (auto simp: restrict_def)
lemma split_merge: \(P(\) merge \(I J(x, y) i) \longleftrightarrow(i \in I \longrightarrow P(x i)) \wedge(i \in J-I\) \(\longrightarrow P(y i)) \wedge(i \notin I \cup J \longrightarrow P\) undefined \()\)
unfolding merge_def by auto
lemma PiE_cancel_merge[simp]:
\(I \cap J=\{ \} \Longrightarrow\) merge \(I J(x, y) \in P i_{E}(I \cup J) B \longleftrightarrow x \in P i I B \wedge y \in P i J B\)
by (auto simp: PiE_def restrict_Pi_cancel)
lemma merge_singleton \([\) simp \(]: i \notin I \Longrightarrow\) merge \(I\{i\}(x, y)=\operatorname{restrict}(x(i:=y\)
i)) (insert \(i I\) )
unfolding merge_def by (auto simp: fun_eq_iff)
lemma extensional_merge_sub: \(I \cup J \subseteq K \Longrightarrow\) merge \(I J(x, y) \in\) extensional \(K\) unfolding merge_def extensional_def by auto
lemma merge_restrict[simp]:
merge \(I J\) (restrict \(x I, y)=\) merge \(I J(x, y)\)
merge \(I J(x\), restrict \(y J)=\) merge \(I J(x, y)\)
unfolding merge_def by auto
```

lemma merge_x_x_eq_restrict $[$ simp]:
merge $I J(x, x)=$ restrict $x(I \cup J)$
unfolding merge_def by auto
lemma injective_vimage_restrict:
assumes $J: J \subseteq I$
and sets: $A \subseteq\left(\Pi_{E} i \in J . S i\right) B \subseteq\left(\Pi_{E} i \in J . S i\right)$ and $n e:\left(\Pi_{E} i \in I . S i\right) \neq\{ \}$
and eq: $(\lambda x$. restrict $x J)-{ }^{\prime} A \cap\left(\Pi_{E} i \in I . S i\right)=(\lambda x$. restrict $x J)-{ }^{\prime} B \cap$
$\left(\Pi_{E} i \in I . S i\right)$
shows $A=B$
proof (intro set_eqI)
fix x
from ne obtain y where $y: \bigwedge i . i \in I \Longrightarrow y i \in S i$ by auto
have $J \cap(I-J)=\{ \}$ by auto
show $x \in A \longleftrightarrow x \in B$
proof cases
assume $x: x \in\left(\Pi_{E} i \in J . S i\right)$
have $x \in A \longleftrightarrow$ merge $J(I-J)(x, y) \in(\lambda x$. restrict $x J)-{ }^{\prime} A \cap\left(\Pi_{E} i \in I\right.$.
S i)
using y $x\langle J \subseteq I\rangle$ PiE_cancel_merge $[o f ~ J I-J x y S]$
by (auto simp del: PiE_cancel_merge simp add: Un_absorb1)
then show $x \in A \longleftrightarrow x \in B$
using $y x<J \subseteq I\rangle$ PiE_cancel_merge $[o f J I-J x y S]$
by (auto simp del: PiE_cancel_merge simp add: Un_absorb1 eq)
qed (insert sets, auto)
qed
lemma restrict_vimage:
$I \cap J=\{ \} \Longrightarrow$
$(\lambda x .($ restrict $x I$, restrict $x J))-{ }^{\prime}\left(P i_{E} I E \times P i_{E} J F\right)=P i(I \cup J)($ merge
$I J(E, F))$
by (auto simp: restrict_Pi_cancel PiE_def)
lemma merge_vimage:
$I \cap J=\{ \} \Longrightarrow$ merge $I J-‘ P i_{E}(I \cup J) E=P i I E \times P i J E$
by (auto simp: restrict_Pi_cancel PiE_def)

```

\subsection*{6.8.2 Finite product spaces}
definition prod_emb where prod_emb I M K \(X=(\lambda x\). restrict \(x K)-{ }^{\prime} X \cap\left(\Pi_{E} i \in I\right.\). space \(\left.(M i)\right)\)
lemma prod_emb_iff:
\(f \in\) prod_emb \(I M K X \longleftrightarrow f \in\) extensional \(I \wedge(\) restrict \(f K \in X) \wedge(\forall i \in I . f i\) \(\in \operatorname{space}(M i))\)
unfolding prod_emb_def PiE_def by auto
lemma
shows prod_emb_empty[simp]: prod_emb \(M L K\}=\{ \}\)
and prod_emb_Un[simp]: prod_emb \(M L K(A \cup B)=\) prod_emb \(M L K A \cup\) prod_emb M L K B
and prod_emb_Int: prod_emb \(M L K(A \cap B)=\) prod_emb \(M L K A \cap\) prod_emb MLKB
and prod_emb_UN[simp]: prod_emb MLK \((\bigcup i \in I . F i)=(\bigcup i \in I\). prod_emb \(M\) \(L K(F i))\)
and prod_emb_INT[simp]: \(I \neq\{ \} \Longrightarrow\) prod_emb MLK \((\bigcap i \in I . F i)=(\bigcap i \in I\). prod_emb MLK(Fi))
and prod_emb_Diff[simp]: prod_emb M L K \((A-B)=\) prod_emb M L K A prod_emb M L K B
by (auto simp: prod_emb_def)
lemma prod_emb_PiE: \(J \subseteq I \Longrightarrow(\bigwedge i . i \in J \Longrightarrow E i \subseteq\) space \((M i)) \Longrightarrow\)
prod_emb I M J \(\left(\Pi_{E} i \in J . E i\right)=\left(\Pi_{E} i \in I\right.\). if \(i \in J\) then \(E\) i else space \(\left.(M i)\right)\) by (force simp: prod_emb_def PiE_iff if_split_mem2)
lemma \(p\) rod_emb_PiE_same_index[simp]:
\((\bigwedge i . i \in I \Longrightarrow E i \subseteq\) space \((M i)) \Longrightarrow\) prod_emb \(I M I\left(P i_{E} I E\right)=P i_{E} I E\) by (auto simp: prod_emb_def PiE_iff)
lemma prod_emb_trans[simp]:
\(J \subseteq K \Longrightarrow K \subseteq L \Longrightarrow\) prod_emb \(L M K\) (prod_emb \(K M J X)=\) prod_emb \(L M\) J X
by (auto simp add: Int_absorb1 prod_emb_def PiE_def)
lemma prod_emb_Pi:
assumes \(X \in(\Pi j \in J\). sets \((M j)) J \subseteq K\)
shows prod_emb \(K M J\left(P i_{E} J X\right)=\left(\Pi_{E} i \in K\right.\). if \(i \in J\) then \(X\) i else space \((M\) i))
using assms sets.space_closed
by (auto simp: prod_emb_def PiE_iff split: if_split_asm) blast+
lemma prod_emb_id:
\(B \subseteq\left(\Pi_{E} i \in L\right.\). space \(\left.(M i)\right) \Longrightarrow\) prod_emb \(L M L B=B\)
by (auto simp: prod_emb_def subset_eq extensional_restrict)
lemma prod_emb_mono:
\(F \subseteq G \Longrightarrow\) prod_emb \(A\) M B \(F \subseteq\) prod_emb \(A M B G\) by (auto simp: prod_emb_def)
definition PiM :: 'i set \(\Rightarrow\left({ }^{\prime} i \Rightarrow{ }^{\prime}\right.\) a measure \() \Rightarrow\left({ }^{\prime} i \Rightarrow{ }^{\prime} a\right)\) measure where
PiM I M = extend_measure \(\left(\Pi_{E} i \in I\right.\). space ( \(M i\) ) \()\) \(\{(J, X) .(J \neq\{ \} \vee I=\{ \}) \wedge\) finite \(J \wedge J \subseteq I \wedge X \in(\Pi j \in J\). sets \((M j))\}\) \(\left(\lambda(J, X)\right.\). prod_emb I M \(\left.J\left(\Pi_{E} j \in J . X j\right)\right)\)
\(\left(\lambda(J, X) . \prod j \in J \cup\{i \in I\right.\). emeasure \((M i)(\) space \((M i)) \neq 1\}\). if \(j \in J\) then
emeasure \((M j)(X j)\) else emeasure \((M j)(\) space \((M j)))\)
definition prod_algebra \(::\) ' \(i\) set \(\Rightarrow\left(' i \Rightarrow{ }^{\prime} a\right.\) measure \() \Rightarrow\left({ }^{\prime} i \Rightarrow{ }^{\prime} a\right)\) set set where
```

prod_algebra I M = (}\lambda(J,X). prod_emb I M J (\Pi ח j j\inJ. X j))`
{(J,X).(J\not={}\veeI={})^ finite }J\wedgeJ\subseteqI\wedgeX\in(\Pij\inJ. sets (Mj))

```

\section*{abbreviation}
\(P i_{M} I M \equiv P i M I M\)
syntax
_PiM :: pttrn \(\Rightarrow\) ' \(i\) set \(\Rightarrow{ }^{\prime}\) a measure \(\Rightarrow\left({ }^{\prime} i=>{ }^{\prime} a\right)\) measure \(\left(\left(3 \Pi_{M_{~}} \in_{-} . /{ }^{\prime}\right) 10\right)\)
translations
\(\Pi_{M} x \in I . M==\) CONST PiM I \((\% x . M)\)
lemma extend_measure_cong:
assumes \(\Omega=\Omega^{\prime} I=I^{\prime} G=G^{\prime} \bigwedge i . i \in I^{\prime} \Longrightarrow \mu i=\mu^{\prime} i\)
shows extend_measure \(\Omega I G \mu=\) extend_measure \(\Omega^{\prime} I^{\prime} G^{\prime} \mu^{\prime}\) unfolding extend_measure_def by (auto simp add: assms)
lemma Pi_cong_sets:
\(\llbracket I=J ; \bigwedge x . x \in I \Longrightarrow M x=N x \rrbracket \Longrightarrow\) Pi \(I M=P i J N\)
unfolding Pi_def by auto
lemma PiM_cong:
assumes \(I=J \bigwedge x . x \in I \Longrightarrow M x=N x\)
shows PiM I M \(=\) PiM J N
unfolding PiM_def
proof (rule extend_measure_cong, goal_cases)
case 1
show ?case using assms
by (subst assms(1), intro PiE_cong[of J \(\lambda i\). space ( \(M\) i) \(\lambda i\). space \(\left.\binom{N}{i}\right]\) )
simp_all
next
case 2
have \(\wedge K . K \subseteq J \Longrightarrow(\Pi j \in K\). sets \((M j))=(\Pi j \in K\). sets \((N j))\)
using assms by (intro Pi_cong_sets) auto
thus ?case by (auto simp: assms)
next
case 3
show ?case using assms
by (intro ext) (auto simp: prod_emb_def dest: PiE_mem)

\section*{next}
case (4x)
thus ?case using assms
by (auto intro!: prod.cong split: if_split_asm)
qed
lemma prod_algebra_sets_into_space:
prod_algebra \(I M \subseteq \operatorname{Pow}\left(\Pi_{E} i \in I\right.\). space \(\left.(M i)\right)\)
by (auto simp: prod_emb_def prod_algebra_def)
```

lemma prod_algebra_eq_finite:
assumes I : finite I
shows prod_algebra $I M=\left\{\left(\Pi_{E} i \in I . X i\right) \mid X . X \in(\Pi j \in I\right.$. sets $\left.(M j))\right\}$ (is ? L
$=? R$)
proof (intro iffI set_eqI)
fix A assume $A \in ? L$
then obtain $J E$ where $J: J \neq\{ \} \vee I=\{ \}$ finite $J J \subseteq I \forall i \in J . E i \in$ sets
(Mi)
and $A: A=$ prod_emb $I M J\left(\Pi_{E} j \in J . E j\right)$
by (auto simp: prod_algebra_def)
let ? $A=\Pi_{E} \quad i \in I$. if $i \in J$ then E i else space $(M i)$
have $A: A=? A$
unfolding A using J by (intro prod_emb_PiE sets.sets_into_space) auto
show $A \in ? R$ unfolding A using J sets.top
by (intro CollectI exI[of - λi. if $i \in J$ then E i else space ($M i$ i)]) simp
next
fix A assume $A \in ? R$
then obtain X where $A: A=\left(\Pi_{E} i \in I . X i\right)$ and $X: X \in(\Pi j \in I$. sets $(M j))$
by auto
then have $A: A=$ prod_emb $I M I\left(\Pi_{E} i \in I . X i\right)$
by (simp add: prod_emb_PiE_same_index[OF sets.sets_into_space] Pi_iff)
from $X I$ show $A \in$? L unfolding A
by (auto simp: prod_algebra_def)
qed
lemma prod_algebraI:
finite $J \Longrightarrow(J \neq\{ \} \vee I=\{ \}) \Longrightarrow J \subseteq I \Longrightarrow(\bigwedge i . i \in J \Longrightarrow E i \in \operatorname{sets}(M i))$
\Longrightarrow prod_emb I M J $\left(\Pi_{E} j \in J . E j\right) \in$ prod_algebra I M
by (auto simp: prod_algebra_def)
lemma prod_algebraI_finite:
finite $I \Longrightarrow(\forall i \in I . E i \in \operatorname{sets}(M i)) \Longrightarrow\left(P i_{E} I E\right) \in$ prod_algebra I M
using prod_algebraI[of I I E M] prod_emb_PiE_same_index[of I E M, OF sets.sets_into_space]
by simp
lemma Int_stable_PiE: Int_stable $\left\{P i_{E} J E \mid E . \forall i \in I . E i \in \operatorname{sets}(M i)\right\}$
proof (safe intro!: Int_stableI)
fix $E F$ assume $\forall i \in I$. $E i \in \operatorname{sets}(M i) \forall i \in I . F i \in \operatorname{sets}(M i)$
then show $\exists G . P i_{E} J E \cap P i_{E} J F=P i_{E} J G \wedge(\forall i \in I . G i \in \operatorname{sets}(M i))$
by (auto intro!: exI[of - λi. E $i \cap F i]$ simp: PiE_Int)
qed
lemma prod_algebraE:
assumes $A: A \in$ prod_algebra I M
obtains $J E$ where $A=$ prod_emb $I M J\left(\Pi_{E} j \in J . E j\right)$
finite $J J \neq\{ \} \vee I=\{ \} J \subseteq I \bigwedge i . i \in J \Longrightarrow E i \in \operatorname{sets}(M i)$
using A by (auto simp: prod_algebra_def)
lemma prod_algebraE_all:

```
```

 assumes \(A: A \in\) prod_algebra \(I M\)
 obtains \(E\) where \(A=P i_{E} I E E \in(\Pi i \in I\). sets \((M i))\)
 proof -
from A obtain $E J$ where $A: A=$ prod_emb $I M J\left(P i_{E} J E\right)$
and $J: J \subseteq I$ and $E: E \in(\Pi i \in J$. sets $(M i))$
by (auto simp: prod_algebra_def)
from E have $\bigwedge i . i \in J \Longrightarrow E i \subseteq$ space (Mi)
using sets.sets_into_space by auto
then have $A=\left(\Pi_{E} \quad i \in I\right.$. if $i \in J$ then E i else space $\left.(M i)\right)$
using $A J$ by (auto simp: prod_emb_PiE)
moreover have (λi. if $i \in J$ then E i else space $(M i)) \in(\Pi i \in I$. sets $(M i))$
using sets.top E by auto
ultimately show ?thesis using that by auto
qed
lemma Int_stable_prod_algebra: Int_stable (prod_algebra I M)
proof (unfold Int_stable_def, safe)
fix A assume $A \in$ prod_algebra $I M$
from prod_algebraE[OF this] guess $J E$. note $A=$ this
fix B assume $B \in$ prod_algebra $I M$
from prod_algebraE[OF this] guess K. note $B=$ this
have $A \cap B=$ prod_emb $I M(J \cup K)\left(\Pi_{E} i \in J \cup K\right.$. (if $i \in J$ then E else
space $(M i)) \cap$
(if $i \in K$ then F i else space $(M i)$))
unfolding $A B$ using $A(2,3,4) A(5)[T H E N$ sets.sets_into_space] $B(2,3,4)$
$B(5)[T H E N$ sets.sets_into_space]
apply (subst (1 2 3) prod_emb_PiE)
apply (simp_all add: subset_eq PiE_Int)
apply blast
apply (intro PiE_cong)
apply auto
done
also have ... \in prod_algebra I M
using $A B$ by (auto intro!: prod_algebraI)
finally show $A \cap B \in$ prod_algebra $I M$.
qed
proposition prod_algebra_mono:
assumes space: $\bigwedge i . i \in I \Longrightarrow$ space $(E i)=\operatorname{space}(F i)$
assumes sets: $\bigwedge i . i \in I \Longrightarrow$ sets $(E i) \subseteq$ sets $(F i)$
shows prod_algebra I $E \subseteq$ prod_algebra I F
proof
fix A assume $A \in$ prod_algebra $I E$
then obtain $J G$ where $J: J \neq\{ \} \vee I=\{ \}$ finite $J \subseteq \subseteq I$
and $A: A=$ prod_emb $I E J\left(\Pi_{E} i \in J . G i\right)$
and $G: \bigwedge i . i \in J \Longrightarrow G i \in \operatorname{sets}(E i)$
by (auto simp: prod_algebra_def)
moreover
from space have $\left(\Pi_{E} i \in I\right.$. space $\left.(E i)\right)=\left(\Pi_{E} i \in I\right.$. space $\left.(F i)\right)$

```
```

 by (rule PiE_cong)
 with }A\mathrm{ have }A=\mathrm{ prod_emb I FJ (}\mp@subsup{\Pi}{E}{}i\inJ.Gi
 by (simp add: prod_emb_def)
 moreover
from sets GJ have \i.i i\inJ\LongrightarrowGi\in sets (Fi)
by auto
ultimately show }A\in\mathrm{ prod_algebra I F
apply (simp add: prod_algebra_def image_iff)
apply (intro exI[of _ J] exI[of _ G] conjI)
apply auto
done
qed
proposition prod_algebra_cong:
assumes I=J and sets:(\bigwedgei.i\inI\Longrightarrow sets (Mi)=sets (Ni))
shows prod_algebra I M = prod_algebra J N
proof -
have space: \i. i
using sets_eq_imp_space_eq[OF sets] by auto
with sets show ?thesis unfolding }\langleI=J
by (intro antisym prod_algebra_mono) auto
qed
lemma space_in_prod_algebra:
(\Pi}\mp@subsup{\Pi}{E}{}i\inI.space (M i)) \in prod_algebra I M
proof cases
assume I= {} then show ?thesis
by (auto simp add: prod_algebra_def image_iff prod_emb_def)
next
assume I\not={}
then obtain }i\mathrm{ where i}\inI\mathrm{ by auto
then have (}\mp@subsup{\Pi}{E}{}i\inI.space (M)) = prod_emb I M {i} (的 i\in{i}. space (Mi)
by (auto simp: prod_emb_def)
also have ... \in prod_algebra I M
using <i }\inI\rangle\mathrm{ by (intro prod_algebraI) auto
finally show ?thesis .
qed
lemma space_PiM: space (}\mp@subsup{\Pi}{M}{}i\inI.Mi)=(\mp@subsup{\Pi}{E}{}i\inI.space (M i)
using prod_algebra_sets_into_space unfolding PiM_def prod_algebra_def by (intro
space_extend_measure) simp
lemma prod_emb_subset_PiM[simp]: prod_emb I M K X \subseteq space (PiM I M)
by (auto simp: prod_emb_def space_PiM)
lemma space_PiM_empty_iff[simp]: space (PiM I M) ={} \longleftrightarrow (\existsi\inI. space (M
i)={})
by (auto simp: space_PiM PiE_eq_empty_iff)
lemma undefined_in_PiM_empty[simp]: (\lambdax. undefined) }\in\mathrm{ space (PiM {} M)

```
by (auto simp: space_PiM)
lemma sets_PiM: sets \(\left(\Pi_{M} i \in I . M i\right)=\) sigma_sets \(\left(\Pi_{E} i \in I\right.\). space \(\left.(M i)\right)\) (prod_algebra I M)
using prod_algebra_sets_into_space unfolding PiM_def prod_algebra_def by (intro sets_extend_measure) simp
proposition sets_PiM_single: sets \((\) PiM I M) \(=\)
            sigma_sets \(\left(\Pi_{E} i \in I\right.\). space (Mi)) \(\left\{\left\{f \in \Pi_{E} i \in I\right.\right.\). space \(\left.(M i) . f i \in A\right\} \mid i A . i\)
\(\in I \wedge A \in \operatorname{sets}(M i)\}\)
    (is _ = sigma_sets ? \(\Omega\) ? \(R\) )
    unfolding sets_PiM
proof (rule sigma_sets_eqI)
    interpret \(R\) : sigma_algebra ? \(\Omega\) sigma_sets ? \(\Omega\) ?R by (rule sigma_algebra_sigma_sets)
auto
    fix \(A\) assume \(A \in\) prod_algebra \(I M\)
    from prod_algebraE[OF this] guess \(J X\). note \(X=\) this
    show \(A \in\) sigma_sets ? \(\Omega\) ?R
    proof cases
        assume \(I=\{ \}\)
        with \(X\) have \(A=\{\lambda x\). undefined \(\}\) by (auto simp: prod_emb_def)
        with \(\langle I=\{ \}\rangle\) show ?thesis by (auto intro!: sigma_sets_top)
    next
            assume \(I \neq\{ \}\)
            with \(X\) have \(A=\left(\bigcap j \in J .\left\{f \in\left(\Pi_{E} i \in I\right.\right.\right.\). space (Mi)). \(\left.\left.f j \in X j\right\}\right)\)
                by (auto simp: prod_emb_def)
            also have \(\ldots \in\) sigma_sets ? \(\Omega\) ?R
                using \(X\langle I \neq\{ \}\rangle\) by (intro R.finite_INT sigma_sets.Basic) auto
            finally show \(A \in\) sigma_sets ? \(\Omega\) ? \(R\).
    qed
next
    fix \(A\) assume \(A \in ? R\)
    then obtain \(i B\) where \(A: A=\left\{f \in \Pi_{E} i \in I\right.\). space \(\left.(M i) . f i \in B\right\} i \in I B \in\)
sets (Mi)
            by auto
    then have \(A=\) prod_emb \(I M\{i\}\left(\Pi_{E} i \in\{i\} . B\right)\)
            by (auto simp: prod_emb_def)
    also have \(\ldots \in\) sigma_sets ? \(\Omega\) (prod_algebra I M)
            using \(A\) by (intro sigma_sets.Basic prod_algebraI) auto
    finally show \(A \in\) sigma_sets ? \(\Omega\) (prod_algebra I M).
qed
lemma sets_PiM_eq_proj:
    \(I \neq\{ \} \Longrightarrow\) sets \(\left(\right.\) PiM I M) \(=\) sets \(\left(S U P \quad i \in I\right.\). vimage_algebra \(\left(\Pi_{E} i \in I\right.\). space \((M\)
i)) \((\lambda x . x i)(M i))\)
    apply (simp add: sets_PiM_single)
    apply (subst sets_Sup_eq[where \(X=\Pi_{E} \quad i \in I\). space ( \(M i\) )])
    apply auto []
    apply auto []
```

apply simp
apply (subst arg_cong [of _ _ Sup, OF image_cong, OF refl])
apply (rule sets_vimage_algebra2)
apply (auto intro!: arg_cong2[where f=sigma_sets])
done

```

\section*{lemma}
    shows space_PiM_empty: space \(\left(P i_{M}\{ \} M\right)=\{\lambda k\). undefined \(\}\)
        and sets_PiM_empty: sets \(\left(P i_{M}\{ \} M\right)=\{\{ \},\{\lambda k\). undefined \(\}\}\)
    by (simp_all add: space_PiM sets_PiM_single image_constant sigma_sets_empty_eq)
proposition sets_PiM_sigma:
    assumes \(\Omega\) _cover: \(\bigwedge i . i \in I \Longrightarrow \exists S \subseteq E i\). countable \(S \wedge \Omega i=\bigcup S\)
    assumes \(E: \bigwedge i . i \in I \Longrightarrow E i \subseteq \operatorname{Pow}(\Omega i)\)
    assumes \(J: \bigwedge j . j \in J \Longrightarrow\) finite \(j \bigcup J=I\)
    defines \(P \equiv\left\{\left\{f \in\left(\Pi_{E} i \in I . \Omega i\right) . \forall i \in j . f i \in A i\right\} \mid A j . j \in J \wedge A \in P i j E\right\}\)
    shows sets \(\left(\Pi_{M} i \in I\right.\). sigma \(\left.(\Omega i)(E i)\right)=\) sets \(\left(\operatorname{sigma}\left(\Pi_{E} i \in I . \Omega\right.\right.\) i) P)
proof cases
    assume \(I=\{ \}\)
    with \(\bigcup J=I\rangle\) have \(P=\left\{\left\{\lambda_{\text {_. }}\right.\right.\) undefined \(\left.\}\right\} \vee P=\{ \}\)
        by (auto simp: P_def)
    with \(\langle I=\{ \}\rangle\) show ?thesis
        by (auto simp add: sets_PiM_empty sigma_sets_empty_eq)
next
    let \(? F=\lambda i\). \(\left\{(\lambda x . x i)-{ }^{\prime} A \cap P i_{E} I \Omega \mid A . A \in E i\right\}\)
    assume \(I \neq\{ \}\)
    then have sets \(\left(P i_{M} I(\lambda i\right.\). sigma \(\left.(\Omega i)(E i))\right)=\)
        sets \(\left(S U P i \in I\right.\). vimage_algebra \(\left.\left(\Pi_{E} i \in I . \Omega i\right)(\lambda x . x i)(\operatorname{sigma}(\Omega i)(E i))\right)\)
        by (subst sets_PiM_eq_proj) (auto simp: space_measure_of_conv)
    also have \(\ldots=\) sets \(\left(S U P i \in I\right.\). sigma \(\left.\left(P i_{E} I \Omega\right)(? F i)\right)\)
    using \(E\) by (intro sets_SUP_cong arg_cong \([\) where \(f=\) sets \(]\) vimage_algebra_sigma)
auto
    also have \(\ldots=\) sets \(\left(\operatorname{sigma}\left(P i_{E} I \Omega\right)(\bigcup i \in I\right.\). ?F \(\left.i)\right)\)
        using \(\langle I \neq\{ \}\rangle\) by (intro arg_cong \([\) where \(f=\) sets \(] S U P \_\)sigma_sigma) auto
    also have \(\ldots=\) sets \(\left(\operatorname{sigma}\left(P i_{E} I \Omega\right) P\right)\)
    proof (intro arg_cong[where \(f=\) sets] sigma_eqI sigma_sets_eqI)
        show \((\bigcup i \in I\). ?F \(i) \subseteq \operatorname{Pow}\left(P i_{E} I \Omega\right) P \subseteq \operatorname{Pow}\left(P i_{E} I \Omega\right)\)
            by (auto simp: P_def)
    next
        interpret \(P\) : sigma_algebra \(\Pi_{E} i \in I . \Omega\) isigma_sets \(\left(\Pi_{E} i \in I . \Omega\right.\) i) \(P\)
        by (auto intro!: sigma_algebra_sigma_sets simp: \(P_{\_} d e f\) )
        fix \(Z\) assume \(Z \in(\bigcup i \in I\). ? \(F i)\)
        then obtain \(i A\) where \(i: i \in I A \in E i\) and \(Z_{-} d e f: Z=(\lambda x . x i)-{ }^{‘} A \cap\)
\(P i_{E} I \Omega\)
        by auto
    from \(\langle i \in I\rangle J\) obtain \(j\) where \(j: i \in j j \in J j \subseteq I\) finite \(j\)
        by auto
        obtain \(S\) where \(S: \bigwedge i . i \in j \Longrightarrow S i \subseteq E i \bigwedge i . i \in j \Longrightarrow\) countable \((S i)\)
```

 \(\bigwedge i . i \in j \Longrightarrow \Omega i=\bigcup(S i)\)
 by (metis subset_eq \(\Omega_{\text {_cover }}\langle j \subseteq I\rangle\))
 define \(A^{\prime}\) where \(A^{\prime} n=n(i:=A)\) for \(n\)
 then have \(A^{\prime} _i: \bigwedge n . A^{\prime} n i=A\)
 by simp
 \{ fix \(n\) assume \(n \in P i_{E}(j-\{i\}) S\)
 then have \(A^{\prime} n \in \operatorname{Pij} E\)
 unfolding PiE_def Pi_def using \(S(1)\) by (auto simp: \(A^{\prime}\) _def \(\langle A \in E i\rangle\))
 with \(\langle j \in J\rangle\) have \(\left\{f \in P i_{E} I \Omega . \forall i \in j . f i \in A^{\prime} n i\right\} \in P\)
 by (auto simp: \(\left.\left.P_{-} d e f\right)\right\}\)
 note \(A^{\prime}{ }_{-} i_{-} P=\) this
 \(\left\{\right.\) fix \(x\) assume \(x i \in A x \in P i_{E} I \Omega\)
 with \(S(3)\langle j \subseteq I\rangle\) have \(\forall i \in j . \exists s \in S i . x i \in s\)
 by (auto simp: PiE_def Pi_def)
 then obtain \(s\) where \(s: \bigwedge i . i \in j \Longrightarrow s i \in S i \bigwedge i . i \in j \Longrightarrow x i \in s i\)
 by metis
 with \(\langle x i \in A\rangle\) have \(\exists n \in P i_{E}(j-\{i\}) S . \forall i \in j . x i \in A^{\prime} n i\)
 by (intro bexI[of restrict \((s(i:=A))(j-\{i\})])\) (auto simp: \(A^{\prime}{ }_{-}\)def split:
 if_splits) \}
then have $Z=\left(\bigcup n \in P i_{E}(j-\{i\}) S .\left\{f \in\left(\Pi_{E} i \in I . \Omega i\right) . \forall i \in j . f i \in A^{\prime} n i\right\}\right)$
unfolding Z_{-}def
by (auto simp add: set_eq_iff ball_conj_distrib $\langle i \in j\rangle A^{\prime} _i$ dest: $\operatorname{bspec}\left[O F{ }_{-}\langle i \in j\rangle\right]$
cong: conj_cong)
also have $\ldots \in$ sigma_sets $\left(\Pi_{E} i \in I . \Omega\right.$ i) P
using 〈finite j 〉 $S(2)$
by (intro P.countable_UN' countable_PiE) (simp_all add: image_subset_iff
A^{\prime} _in_P)
finally show $Z \in$ sigma_sets $\left(\Pi_{E} i \in I . \Omega i\right) P$.
next
interpret F : sigma_algebra $\Pi_{E} i \in I . \Omega i$ sigma_sets $\left(\Pi_{E} i \in I . \Omega i\right)(\bigcup i \in I . ? F$
i)
by (auto intro!: sigma_algebra_sigma_sets)
fix b assume $b \in P$
then obtain $A j$ where $b: b=\left\{f \in\left(\Pi_{E} i \in I . \Omega i\right) . \forall i \in j . f i \in A i\right\} j \in J A$
$\in \operatorname{Pij} E$
by (auto simp: P_def)
show $b \in$ sigma_sets $\left(P i_{E} I \Omega\right)(\bigcup i \in I$. ?F $i)$
proof cases
assume $j=\{ \}$
with b have $b=\left(\Pi_{E} i \in I . \Omega i\right)$
by auto
then show ?thesis
by blast
next
assume $j \neq\{ \}$
with $J b(2,3)$ have $e q: b=\left(\bigcap i \in j .\left((\lambda x . x i)-{ }^{\prime} A i \cap P i_{E} I \Omega\right)\right)$
unfolding $b(1)$

```
```

 by (auto simp: PiE_def Pi_def)
 show ?thesis
 unfolding eq using }\langleA\inPijE\rangle\langlej\inJ\rangleJ(2
 by (intro F.finite_INT J}\langlej\inJ\rangle\langlej\not={}> sigma_sets.Basic) blas
 qed
 qed
 finally show ?thesis .
 qed
lemma sets_PiM_in_sets:
assumes space: space N=(\Pi}\mp@subsup{\Pi}{E}{}i\inI. space (Mi)
assumes sets: \iA.i\inI\LongrightarrowA\in sets (Mi)\Longrightarrow{x\inspace N. x i\inA}\in sets
N
shows sets }(\mp@subsup{\Pi}{M}{}i\inI.Mi)\subseteq\mathrm{ sets N
unfolding sets_PiM_single space[symmetric]
by (intro sets.sigma_sets_subset subsetI) (auto intro: sets)
lemma sets_PiM_cong[measurable_cong]:
assumes I=J \bigwedgei.i\inJ\Longrightarrow sets (Mi)= sets (Ni) shows sets (PiM I M)
= sets (PiM J N)
using assms sets_eq_imp_space_eq[OF assms(2)] by (simp add: sets_PiM_single
cong: PiE_cong conj_cong)
lemma sets_PiM_I:
assumes finite J J\subseteqI\foralli\inJ.E i\in sets (Mi)
shows prod_emb I M J (\Pi}\mp@subsup{\Pi}{E}{}j\inJ.E j)\in sets (\PiM i m . M i)
proof cases
assume }J={
then have prod_emb I M J (}\mp@subsup{\Pi}{E}{}j\inJ.E j)=(\mp@subsup{\Pi}{E}{}j\inI.space (M j)
by (auto simp: prod_emb_def)
then show ?thesis
by (auto simp add: sets_PiM intro!: sigma_sets_top)
next
assume }J\not={}\mathrm{ with assms show ?thesis
by (force simp add: sets_PiM prod_algebra_def)
qed
proposition measurable_PiM:
assumes space: f\in space N->(}\mp@subsup{\Pi}{E}{}\mathrm{ i}i\inI. space (M i))
assumes sets: \bigwedgeX J.J\not={}\veeI={}\Longrightarrow finite J\LongrightarrowJ\subseteqI\Longrightarrow(\bigwedgei.i\inJ
\Longrightarrow X i \in \operatorname { s e t s } (M i)) \Longrightarrow
f -' prod_emb I M J (Pi E J X) \cap space N \in sets N
shows f}\in\mathrm{ measurable N (PiM I M)
using sets_PiM prod_algebra_sets_into_space space
proof (rule measurable_sigma_sets)
fix }A\mathrm{ assume }A\in\mathrm{ prod_algebra I M
from prod_algebraE[OF this] guess J X .
with sets[of J X] show f-`}A\cap\mathrm{ space N E sets N by auto
qed

```
```

lemma measurable_PiM_Collect:
assumes space: $f \in$ space $N \rightarrow\left(\Pi_{E} i \in I\right.$. space $\left.(M i)\right)$
assumes sets: $\bigwedge X J . J \neq\{ \} \vee I=\{ \} \Longrightarrow$ finite $J \Longrightarrow J \subseteq I \Longrightarrow(\bigwedge i . i \in J$
$\Longrightarrow X i \in \operatorname{sets}(M i)) \Longrightarrow$
$\{\omega \in$ space $N . \forall i \in J . f \omega i \in X i\} \in$ sets N
shows $f \in$ measurable N (PiM I M)
using sets_PiM prod_algebra_sets_into_space space
proof (rule measurable_sigma_sets)
fix A assume $A \in$ prod_algebra I M
from prod_algebraE[OF this] guess $J X$. note $X=$ this
then have $f-{ }^{\prime} A \cap$ space $N=\{\omega \in$ space $N . \forall i \in J . f \omega i \in X i\}$
using space by (auto simp: prod_emb_def del: PiE_I)
also have $\ldots \in$ sets N using $X(3,2,4,5)$ by (rule sets)
finally show $f-‘ A \cap$ space $N \in$ sets N.
qed
lemma measurable_PiM_single:
assumes space: $f \in$ space $N \rightarrow\left(\Pi_{E} i \in I\right.$. space $\left.(M i)\right)$
assumes sets: $\bigwedge A i . i \in I \Longrightarrow A \in$ sets $(M i) \Longrightarrow\{\omega \in$ space $N . f \omega i \in A\}$
\in sets N
shows $f \in$ measurable N (PiM I M)
using sets_PiM_single
proof (rule measurable_sigma_sets)
fix A assume $A \in\left\{\left\{f \in \Pi_{E} i \in I\right.\right.$. space (Mi). $\left.f i \in A\right\} \mid i A . i \in I \wedge A \in$ sets
(Mi)\}
then obtain $B i$ where $A=\left\{f \in \Pi_{E} i \in I\right.$. space $\left.(M i) . f i \in B\right\}$ and $B: i \in I$
$B \in$ sets ($M i$)
by auto
with space have $f-{ }^{\prime} A \cap$ space $N=\{\omega \in$ space $N . f \omega i \in B\}$ by auto
also have $\ldots \in$ sets N using B by (rule sets)
finally show $f-{ }^{\prime} A \cap$ space $N \in$ sets N.
qed (auto simp: space)
lemma measurable_PiM_single':
assumes $f: \bigwedge i . i \in I \Longrightarrow f i \in$ measurable $N(M i)$
and $(\lambda \omega$ i. $f i \omega) \in$ space $N \rightarrow\left(\Pi_{E} i \in I\right.$. space $\left.(M i)\right)$
shows $(\lambda \omega$ i. $f i \omega) \in$ measurable $N\left(P i_{M} I M\right)$
proof (rule measurable_PiM_single)
fix $A i$ assume $A: i \in I A \in \operatorname{sets}(M i)$
then have $\{\omega \in$ space $N . f i \omega \in A\}=f i-{ }^{\prime} A \cap$ space N
by auto
then show $\{\omega \in$ space $N . f i \omega \in A\} \in$ sets N
using $A f$ by (auto intro!: measurable_sets)
qed fact
lemma sets_PiM_I_finite[measurable]:
assumes finite I and sets: $(\bigwedge i . i \in I \Longrightarrow E i \in \operatorname{sets}(M i))$
shows $\left(\Pi_{E} j \in I . E j\right) \in$ sets $\left(\Pi_{M} i \in I . M i\right)$

```
```

using sets_PiM_I[of I I E M] sets.sets_into_space[OF sets]〈finite I〉 sets by auto

```
lemma measurable_component_singleton[measurable (raw)]:
assumes \(i \in I\) shows \((\lambda x . x i) \in\) measurable \(\left(P i_{M} I M\right)(M i)\)
proof (unfold measurable_def, intro CollectI conjI ballI)
fix \(A\) assume \(A \in\) sets \((M i)\)
then have \((\lambda x . x i)-‘ A \cap\) space \(\left(P i_{M} I M\right)=\) prod_emb \(I M\{i\}\left(\Pi_{E} j \in\{i\}\right.\).
A)
using sets.sets_into_space \(\langle i \in I\rangle\)
by (fastforce dest: Pi_mem simp: prod_emb_def space_PiM split: if_split_asm)
then show \((\lambda x . x i)-{ }^{\prime} A \cap \operatorname{space}\left(P i_{M} I M\right) \in \operatorname{sets}\left(P i_{M} I M\right)\)
using \(\langle A \in\) sets \((M i)\rangle\langle i \in I\rangle\) by (auto intro!: sets_PiM_I)
qed (insert \(\langle i \in I\rangle\), auto simp: space_PiM)
lemma measurable_component_singleton'[measurable_dest]:
assumes \(f: f \in\) measurable \(N\left(P i_{M} I M\right)\)
assumes \(g: g \in\) measurable \(L N\)
assumes \(i: i \in I\)
shows \((\lambda x .(f(g x)) i) \in\) measurable \(L(M i)\)
using measurable_compose[OF measurable_compose[OF gf] measurable_component_singleton, OF \(i]\).
lemma measurable_PiM_component_rev:
\(i \in I \Longrightarrow f \in\) measurable \((M i) N \Longrightarrow(\lambda x . f(x i)) \in\) measurable (PiM I M) N by \(\operatorname{simp}\)
lemma measurable_case_nat[measurable (raw)]:
assumes [measurable \((\) raw \()\) ]: \(i=0 \Longrightarrow f \in\) measurable \(M N\)
\(\bigwedge j . i=S u c j \Longrightarrow(\lambda x . g x j) \in\) measurable \(M N\)
shows \((\lambda x\). case_nat \((f x)(g x) i) \in\) measurable \(M N\)
by (cases i) simp_all
lemma measurable_case_nat' \([\) measurable (raw)]:
assumes \(f g[\) measurable \(]: f \in\) measurable \(N M g \in\) measurable \(N\left(\Pi_{M} i \in U N I V\right.\). M)
shows \((\lambda x\). case_nat \((f x)(g x)) \in\) measurable \(N\left(\Pi_{M} i \in U N I V . M\right)\)
using \(f g\) [THEN measurable_space]
by (auto intro!: measurable_PiM_single' simp add: space_PiM PiE_iff split: nat.split)
lemma measurable_add_dim [measurable]:
\((\lambda(f, y) . f(i:=y)) \in\) measurable \(\left(P i_{M} I M \bigotimes_{M} M i\right)\left(P i_{M}(\right.\) insert i \(\left.I) M\right)\)
(is ?f \(\in\) measurable ?P ?I)
proof (rule measurable_PiM_single)
fix \(j A\) assume \(j: j \in\) insert \(i I\) and \(A: A \in \operatorname{sets}(M j)\)
have \(\{\omega \in\) space ?P. \((\lambda(f, x)\). fun_upd \(f i x) \omega j \in A\}=\) (if \(j=i\) then space \(\left(P i_{M} I M\right) \times A\) else \(((\lambda x . x j) \circ f s t)-{ }^{\prime} A \cap\) space ?P) using sets.sets_into_space[OF A] by (auto simp add: space_pair_measure space_PiM)
also have \(\ldots \in\) sets ?P
using \(A j\)
by (auto intro!: measurable_sets[OF measurable_comp, OF _ measurable_component_singleton])
finally show \(\{\omega \in\) space ? \(P\). case_prod \((\lambda f\). fun_upd \(f i) \omega j \in A\} \in\) sets ? \(P\).
qed (auto simp: space_pair_measure space_PiM PiE_def)
proposition measurable_fun_upd:
assumes \(I: I=J \cup\{i\}\)
assumes \(f[\) measurable \(]: f \in\) measurable \(N(\) PiM J M)
assumes \(h[\) measurable \(]: h \in\) measurable \(N(M i)\)
shows \((\lambda x .(f x)(i:=h x)) \in\) measurable \(N(\) PiM I M)
proof (intro measurable_PiM_single)
fix \(j\) assume \(j \in I\) then show \((\lambda \omega .((f \omega)(i:=h \omega)) j) \in\) measurable \(N(M j)\) unfolding \(I\) by (cases \(j=i\) ) auto
next
show \((\lambda x .(f x)(i:=h x)) \in\) space \(N \rightarrow\left(\Pi_{E} i \in I\right.\). space \(\left.(M i)\right)\)
using \(I f[\) THEN measurable_space \(]\) [THEN measurable_space]
by (auto simp: space_PiM PiE_iff extensional_def)
qed
lemma measurable_component_update:
\(x \in \operatorname{space}\left(P i_{M} I M\right) \Longrightarrow i \notin I \Longrightarrow(\lambda v . x(i:=v)) \in\) measurable \((M i)\left(P i_{M}\right.\)
(insert i I) M)
by \(\operatorname{simp}\)
lemma measurable_merge[measurable]:
merge \(I J \in\) measurable \(\left(P i_{M} I M \bigotimes_{M} P i_{M} J M\right)\left(P i_{M}(I \cup J) M\right)\) (is ?f \(\in\) measurable ?P ? \(U\) )
proof (rule measurable_PiM_single)
fix \(i A\) assume \(A: A \in\) sets \((M i) i \in I \cup J\)
then have \(\{\omega \in\) space ? \(P\). merge \(I J \omega i \in A\}=\)
(if \(i \in I\) then \(((\lambda x . x i) \circ f s t)-{ }^{‘} A \cap\) space ?P else \(((\lambda x . x i) \circ\) snd \()-{ }^{‘} A \cap\)
space ?P)
by (auto simp: merge_def)
also have ... \(\in\) sets ?P
using \(A\)
by (auto intro!: measurable_sets[OF measurable_comp, OF _ measurable_component_singleton])
finally show \(\{\omega \in\) space ?P. merge \(I J \omega i \in A\} \in\) sets ?P .
qed (auto simp: space_pair_measure space_PiM PiE_iff merge_def extensional_def)
lemma measurable_restrict[measurable (raw)]:
assumes \(X: \bigwedge i . i \in I \Longrightarrow X i \in\) measurable \(N(M i)\)
shows \((\lambda x . \lambda i \in I . X i x) \in\) measurable \(N\left(P i_{M} I M\right)\)
proof (rule measurable_PiM_single)
fix \(A i\) assume \(A: i \in I A \in \operatorname{sets}(M i)\)
then have \(\{\omega \in\) space \(N .(\lambda i \in I . X i \omega) i \in A\}=X i-' A \cap\) space \(N\) by auto
then show \(\{\omega \in\) space \(N .(\lambda i \in I . X i \omega) i \in A\} \in\) sets \(N\) using \(A X\) by (auto intro!: measurable_sets)
qed (insert \(X\), auto simp add: PiE_def dest: measurable_space)
lemma measurable_abs_UNIV:
\((\bigwedge n .(\lambda \omega . f n \omega) \in\) measurable \(M(N n)) \Longrightarrow(\lambda \omega n\). \(f n \omega) \in\) measurable \(M\) (PiM UNIV N)
by (intro measurable_PiM_single) (auto dest: measurable_space)
lemma measurable_restrict_subset: \(J \subseteq L \Longrightarrow(\lambda f\). restrict \(f J) \in\) measurable \(\left(P i_{M}\right.\) \(L M)\left(P i_{M} J M\right)\)
by (intro measurable_restrict measurable_component_singleton) auto
lemma measurable_restrict_subset':
assumes \(J \subseteq L \bigwedge x . x \in J \Longrightarrow\) sets \((M x)=\) sets \((N x)\)
shows \((\lambda f\). restrict \(f J) \in\) measurable \(\left(P i_{M} L M\right)\left(P i_{M} J N\right)\)
proof-
from \(\operatorname{assms}(1)\) have \((\lambda f\). restrict \(f J) \in\) measurable \(\left(P i_{M} L M\right)\left(P i_{M} J M\right)\) by (rule measurable_restrict_subset)
also from assms(2) have measurable \(\left(P i_{M} L M\right)\left(P i_{M} J M\right)=\) measurable
\(\left(P i_{M} L M\right)\left(P i_{M} J N\right)\)
by (intro sets_PiM_cong measurable_cong_sets) simp_all
finally show ?thesis.
qed
lemma measurable_prod_emb[intro, simp]:
\(J \subseteq L \Longrightarrow X \in \operatorname{sets}\left(P i_{M} J M\right) \Longrightarrow\) prod_emb LMJX \(\operatorname{l}\) sets \(\left(P i_{M} L M\right)\)
unfolding prod_emb_def space_PiM[symmetric]
by (auto intro!: measurable_sets measurable_restrict measurable_component_singleton)
lemma merge_in_prod_emb:
assumes \(y \in\) space \((P i M I M) x \in X\) and \(X: X \in \operatorname{sets}\left(P i_{M} J M\right)\) and \(J \subseteq I\)
shows merge J I \((x, y) \in\) prod_emb I M J X
using assms sets.sets_into_space[OF X]
by (simp add: merge_def prod_emb_def subset_eq space_PiM PiE_def extensional_restrict
Pi_iff
cong: if_cong restrict_cong)
( simp add: extensional_def)
lemma prod_emb_eq_empty \(D\) :
assumes \(J: J \subseteq I\) and ne: space \((P i M I M) \neq\{ \}\) and \(X: X \in\) sets \(\left(P i_{M} J\right.\) M)
and \(*\) : prod_emb I M J X \(=\{ \}\)
shows \(X=\{ \}\)
proof safe
fix \(x\) assume \(x \in X\)
obtain \(\omega\) where \(\omega \in\) space (PiM I M)
using ne by blast
from merge_in_prod_emb \([\) OF this \(\langle x \in X\rangle X J] *\) show \(x \in\}\) by auto
qed
lemma sets_in_Pi_aux:
finite \(I \Longrightarrow(\bigwedge j . j \in I \Longrightarrow\{x \in \operatorname{space}(M j) . x \in F j\} \in \operatorname{sets}(M j)) \Longrightarrow\)
```

 {x\inspace (PiM I M). x P Pi I F} \in sets (PiM I M)
 by (simp add: subset_eq Pi_iff)
 lemma sets_in_Pi[measurable (raw)]:
finite I\Longrightarrowf\in measurable N (PiM I M)\Longrightarrow
(\bigwedgej.j\inI\Longrightarrow {x\inspace (M j). x 仿j}\in sets (M j))\Longrightarrow
Measurable.pred N (\lambdax.fx\inPi I F)
unfolding pred_def
by (rule measurable_sets_Collect[of f N PiM I M,OF _ sets_in_Pi_aux]) auto

```
lemma sets_in_extensional_aux:
    \(\{x \in \operatorname{space}(\) PiM I M). \(x \in\) extensional \(I\} \in\) sets (PiM I M)
proof -
    have \(\{x \in\) space (PiM I M). \(x \in\) extensional \(I\}=\) space (PiM I M)
        by (auto simp add: extensional_def space_PiM)
    then show? ?thesis by simp
qed
lemma sets_in_extensional[measurable (raw)]:
    \(f \in\) measurable \(N(\) PiM I M \() \Longrightarrow\) Measurable.pred \(N(\lambda x . f x \in\) extensional I)
    unfolding \(p r e d \_d e f\)
    by (rule measurable_sets_Collect[of f N PiM I M, OF _ sets_in_extensional_aux])
auto
lemma sets_PiM_I_countable:
    assumes \(I\) : countable \(I\) and \(E: \bigwedge i . i \in I \Longrightarrow E i \in\) sets \((M i)\) shows \(P i_{E} I E\)
\(\in \operatorname{sets}\left(P i_{M} I M\right)\)
proof cases
    assume \(I \neq\{ \}\)
    then have \(P i_{E} I E=\left(\bigcap i \in I\right.\). prod_emb \(\left.I M\{i\}\left(P i_{E}\{i\} E\right)\right)\)
    using \(E[T H E N\) sets.sets_into_space \(]\) by (auto simp: PiE_iff prod_emb_def fun_eq_iff)
    also have \(\ldots \in\) sets (PiM I M)
        using \(I\langle I \neq\{ \}\rangle\) by (safe intro!: sets.countable_INT' measurable_prod_emb
sets_PiM_I_finite E)
    finally show ?thesis .
qed (simp add: sets_PiM_empty)
lemma sets_PiM_D_countable:
    assumes \(A: A \in P i M I M\)
    shows \(\exists J \subseteq I . \exists X \in P i M J M\). countable \(J \wedge A=\) prod_emb I M J X
    using \(A\) [unfolded sets_PiM_single]
proof induction
    case (Basic A)
    then obtain \(i X\) where \(*: i \in I X \in\) sets \((M i)\) and \(A=\left\{f \in \Pi_{E} i \in I\right.\). space
(Mi). \(f i \in X\}\)
            by auto
    then have \(A: A=\) prod_emb \(I M\{i\}\left(\Pi_{E} \in\{i\} . X\right)\)
            by (auto simp: prod_emb_def)
    then show ?case
```

 by (intro exI[of - {i}] conjI bexI[of_ \Pi}\mp@subsup{\mp@code{E}}{-}{}\in{i}.X]
 (auto intro: countable_finite * sets_PiM_I_finite)
 next
case Empty then show ?case
by (intro exI[of - {}] conjI bexI[of - {}]) auto
next
case (Compl A)
then obtain JX where J\subseteqIX\in sets (PiM JM) countable J A = prod_emb
I M J X
by auto
then show ?case
by (intro exI[of _ J] bexI[of _ space (PiM J M) - X] conjI)
(auto simp add: space_PiM prod_emb_PiE intro!: sets_PiM_I_countable)
next
case (Union K)
obtain J X where J:\bigwedgei. Ji\subseteqI \bigwedgei.countable (Ji) and X: \i. Xi\in sets
(Pi}\mp@subsup{M}{M}{(J i)M)
and K: \bigwedgei.Ki= prod_emb I M (Ji)(Xi)
by (metis Union.IH)
show ?case
proof (intro exI[of - \i. J i] bexI[of - \i.prod_emb (\bigcupi. J i)M (J i) (X i)]
conjI)
show (\bigcupi.J i)\subseteqI countable (\bigcupi.J i) using J by auto
with J show U(K'UNIV) = prod_emb I M (\bigcupi.J i) (\bigcupi. prod_emb (\bigcupi.
J i)M(J i) (Xi))
by (simp add: K[abs_def] SUP_upper)
qed(auto intro: X)
qed
proposition measure_eqI_PiM_finite:
assumes [simp]: finite I sets P = PiM I M sets Q = PiM I M
assumes eq: \bigwedgeA.(\bigwedgei.i i I \LongrightarrowA i\in sets (Mi)) \LongrightarrowP(PiE I A)=Q (P\mp@subsup{i}{E}{}
I A)
assumes A: range A\subseteq prod_algebra I M (\bigcupi.A i)=space (PiM I M) \i::nat.
P(A i) \not=\infty
shows P=Q
proof (rule measure_eqI_generator_eq[OF Int_stable_prod_algebra prod_algebra_sets_into_space])
show range A\subseteq prod_algebra I M (\bigcupi. A i) = (\Pi}\mp@subsup{\Pi}{E}{}i\inI.space (M i)) \bigwedgei. P(
i)}\not=
unfolding space_PiM[symmetric] by fact+
fix }X\mathrm{ assume X }\in\mathrm{ prod_algebra I M
then obtain J E where X:X = prod_emb I M J (\Pi}\mp@code{E j\inJ. E j)
and J: finite J J\subseteqI \j.j\inJ\LongrightarrowEj\in sets (M j)
by (force elim!: prod_algebraE)
then show emeasure P X = emeasure Q X
unfolding }X\mathrm{ by (subst (1 2) prod_emb_Pi) (auto simp: eq)
qed (simp_all add: sets_PiM)
proposition measure_eqI_PiM_infinite:

```
```

 assumes [simp]: sets \(P=\) PiM I M sets \(Q=\) PiM I M
 assumes eq: \(\bigwedge A J\). finite \(J \Longrightarrow J \subseteq I \Longrightarrow(\bigwedge i . i \in J \Longrightarrow A i \in \operatorname{sets}(M i))\)
 \Longrightarrow
$P\left(p r o d _e m b I M J\left(P i_{E} J A\right)\right)=Q\left(p r o d _e m b I M J\left(P i_{E} J A\right)\right)$
assumes A : finite_measure P
shows $P=Q$
proof (rule measure_eqI_generator_eq[OF Int_stable_prod_algebra prod_algebra_sets_into_space])
interpret finite_measure P by fact
define i where $i=(S O M E$ i. $i \in I)$
have $i: I \neq\{ \} \Longrightarrow i \in I$
unfolding $i_{-} d e f$ by (rule someI_ex) auto
define A where $A n=$
(if $I=\{ \}$ then prod_emb $I M\left\}\left(\Pi_{E} i \in\{ \}\right.\right.$. $\})$ else prod_emb $I M\{i\}\left(\Pi_{E}\right.$
$i \in\{i\}$. space $(M i)))$
for n :: nat
then show range $A \subseteq$ prod_algebra $I M$
using prod_algebraI[of \{\} I λ i. space $\left(\begin{array}{ll}M & \text {) } M] \text { by (auto intro!: prod_algebraI }\end{array}\right.$
i)
have $\bigwedge i . A i=$ space (PiM I M)
by (auto simp: prod_emb_def space_PiM PiE_iff A_{-}def i ex_in_conv[symmetric]
exI)
then show $(\bigcup i . A i)=\left(\Pi_{E} i \in I\right.$. space $\left.(M i)\right) \bigwedge i$. emeasure $P(A i) \neq \infty$
by (auto simp: space_PiM)
next
fix X assume $X: X \in$ prod_algebra $I M$
then obtain $J E$ where $X: X=$ prod_emb $I M J\left(\Pi_{E} j \in J . E j\right)$
and J : finite $J J \subseteq I \bigwedge j . j \in J \Longrightarrow E j \in \operatorname{sets}(M j)$
by (force elim!: prod_algebraE)
then show emeasure $P X=$ emeasure $Q X$
by (auto intro!: eq)
qed (auto simp: sets_PiM)
locale product_sigma_finite $=$
fixes $M::^{\prime} i \Rightarrow{ }^{\prime} a$ measure
assumes sigma_finite_measures: $\bigwedge i$. sigma_finite_measure ($M i$)
sublocale product_sigma_finite $\subseteq M$?: sigma_finite_measure $M i$ for i
by (rule sigma_finite_measures)
locale finite_product_sigma_finite $=$ product_sigma_finite M for M :: $i{ }^{\prime} \Rightarrow^{\prime}$ ' mea-
sure +
fixes I :: ' i set
assumes finite_index: finite I
proposition (in finite_product_sigma_finite) sigma_finite_pairs:
$\exists F::^{\prime} i \Rightarrow$ nat \Rightarrow 'a set.
$(\forall i \in I$. range $(F i) \subseteq \operatorname{sets}(M i)) \wedge$
$(\forall k . \forall i \in I$. emeasure $(M i)(F i k) \neq \infty) \wedge \operatorname{incseq}\left(\lambda k . \Pi_{E} i \in I . F i k\right) \wedge$
$\left(\bigcup k . \Pi_{E} i \in I . F i k\right)=\operatorname{space}(P i M I M)$

```
```

proof -
have }\foralli::'i. \existsF::nat =>'a set. range F\subseteq sets (M i)^ incseq F ^(\bigcupi.F i)
space (Mi)^(\forallk. emeasure (Mi) (Fk)\not=\infty)
using M.sigma_finite_incseq by metis
from choice[OF this] guess F :: 'i m nat = 'a set ..
then have F: \bigwedgei.range (Fi)\subseteq sets (Mi) \bigwedgei.incseq (Fi) \bigwedgei. (\bigcupj.Fij)=
space (Mi)\bigwedgeik. emeasure (Mi) (Fik)\not=\infty
by auto
let ?F = \lambdak. \Pi
note space_PiM[simp]
show ?thesis
proof (intro exI[of _ F] conjI allI incseq_SucI set_eqI iffI ballI)
fix i show range (Fi)\subseteq sets (Mi) by fact
next
fix ik show emeasure (Mi) (Fik) f= by fact
next
fix }x\mathrm{ assume }x\in(\bigcupi. ?F i) with F(1) show x f space (PiM I M
by (auto simp: PiE_def dest!: sets.sets_into_space)
next
fix f}\mathrm{ assume f}\in\mathrm{ space (PiM I M)
with Pi_UN[OF finite_index, of \lambdak i.Fik] F
show f}\in(\bigcupi. ?F i) by (auto simp: incseq_def PiE_def
next
fix i show ?F i\subseteq? ? (Suc i)
using <
i. incseq (F i)`[THEN incseq_SucD] by auto
qed
qed
lemma emeasure_PiM_empty[simp]: emeasure (PiM {} M) {\lambda_. undefined } = 1
proof -
let ? }\mu=\lambdaA. if A={} then 0 else (1::ennreal
have emeasure (Pim {} M) (prod_emb {} M {} (\Pi}\mp@subsup{\Pi}{E}{}i\in{}. {}))=
proof (subst emeasure_extend_measure_Pair[OF PiM_def])
show positive (PiM {} M) ?\mu
by (auto simp: positive_def)
show countably_additive (PiM {} M) ? }
by (rule sets.countably_additiveI_finite)
(auto simp: additive_def positive_def sets_PiM_empty space_PiM_empty intro!:
)
qed (auto simp: prod_emb_def)
also have (prod_emb {} M {} (\Pi}\mp@subsup{\Pi}{E}{}i\in{}.{}))={\mp@subsup{\lambda}{~}{\prime}.\mathrm{ undefined }
by (auto simp: prod_emb_def)
finally show ?thesis
by simp
qed
lemma PiM_empty: PiM {} M = count_space {\lambda_. undefined}
by (rule measure_eqI) (auto simp add: sets_PiM_empty)

```
lemma (in product_sigma_finite) emeasure_PiM:
finite \(I \Longrightarrow(\bigwedge i . i \in I \Longrightarrow A i \in \operatorname{sets}(M i)) \Longrightarrow\) emeasure (PiM I M) (Pi \(\quad\) I A) \(=\left(\prod i \in I\right.\). emeasure \(\left.(M i)(A i)\right)\)
proof (induct I arbitrary: A rule: finite_induct)
case (insert i I)
interpret finite_product_sigma_finite M I by standard fact
have finite (insert i \(I\) ) using \(\langle\) finite \(I\rangle\) by auto
interpret \(I^{\prime}\) : finite_product_sigma_finite \(M\) insert i I by standard fact
let \(? h=(\lambda(f, y) . f(i:=y))\)
let \(? P=\operatorname{distr}\left(P i_{M} I M \bigotimes_{M} M i\right)\left(P i_{M}(\right.\) insert i \(\left.I) M\right) ? h\)
let \(? \mu=\) emeasure ? \(P\)
let \(? I=\{j \in\) insert \(i I\). emeasure \((M j)(\) space \((M j)) \neq 1\}\)
let ?f \(=\lambda J E j\). if \(j \in J\) then emeasure \((M j)(E j)\) else emeasure \((M j)\) (space ( \(M j\) )
have emeasure ( \(P i_{M}\) (insert i I) M) (prod_emb (insert i I) M (insert i \()\left(P i_{E}\right.\) \((\) insert \(i I) A))=\)
( \(\prod_{i \in \text { insert } i} I\). emeasure \(\left.\left(\begin{array}{ll}M i\end{array}\right)(A i)\right)\)
proof (subst emeasure_extend_measure_Pair[OF PiM_def])
fix \(J E\) assume \((J \neq\{ \} \vee\) insert \(i I=\{ \}) \wedge\) finite \(J \wedge J \subseteq\) insert \(i I \wedge E \in\) \((\Pi j \in J\). sets \((M j))\)
then have \(J: J \neq\{ \}\) finite \(J J \subseteq\) insert i \(I\) and \(E: \forall j \in J . E j \in\) sets \((M j)\) by auto
let ? \(p=\) prod_emb (insert i \(I) M J\left(P i_{E} J E\right)\)
let ? \(p^{\prime}=\) prod_emb \(I M(J-\{i\})\left(\Pi_{E} j \in J-\{i\} . E j\right)\)
have ? \(\mu\) ? \(p=\)
emeasure \(\left(P i_{M} I M \bigotimes_{M}(M i)\right)\left(? h-‘ ? p \cap \operatorname{space}\left(P i_{M} I M \bigotimes_{M} M i\right)\right)\)
by (intro emeasure_distr measurable_add_dim sets_PiM_I) fact+
also have ? \(h-{ }^{\prime} ? p \cap\) space \(\left(P i_{M} I M \bigotimes_{M} M i\right)=? p^{\prime} \times(\) if \(i \in J\) then \(E i\) else space ( \(M i\) ))
using \(J\) E[rule_format, THEN sets.sets_into_space]
by (force simp: space_pair_measure space_PiM prod_emb_iff PiE_def Pi_iff split: if_split_asm)
also have emeasure \(\left(P i_{M} I M \bigotimes_{M}(M i)\right)\left(? p^{\prime} \times(\right.\) if \(i \in J\) then \(E\) i else space \((M i))\) ) \(=\)
emeasure \(\left(P i_{M} I M\right) ? p^{\prime} *\) emeasure \((M i)(i f i \in J\) then \((E i)\) else space \((M\)
i))
using \(J E\) by (intro M.emeasure_pair_measure_Times sets_PiM_I) auto
also have \(? p^{\prime}=\left(\Pi_{E} j \in I\right.\). if \(j \in J-\{i\}\) then \(E j\) else space \(\left.(M j)\right)\)
using \(J\) E[rule_format, THEN sets.sets_into_space]
by (auto simp: prod_emb_iff PiE_def Pi_iff split: if_split_asm) blast+
also have emeasure \(\left(P i_{M} I M\right)\left(\Pi_{E} j \in I\right.\). if \(j \in J-\{i\}\) then \(E j\) else space \((M\) j)) \(=\)
( \(\Pi j \in I\). if \(j \in J-\{i\}\) then emeasure \((M j)(E j)\) else emeasure \((M j)\) (space ( \(M j\) ))
using \(E\) by (subst insert) (auto intro!: prod.cong)
also have \(\left(\prod j \in I\right.\). if \(j \in J-\{i\}\) then emeasure \((M j)(E j)\) else emeasure \((M\) j) \((\operatorname{space}(M j))) *\)
emeasure \((M i)(\) if \(i \in J\) then \(E\) i else space \((M i))=\left(\prod j \in\right.\) insert \(i I\). ?f \(J\) E j)
using insert by (auto simp: mult.commute intro!: arg_cong2[where \(f=(*)]\) prod.cong)
also have \(\ldots=\left(\prod j \in J \cup\right.\) ?I. ?f \(\left.J E j\right)\)
using insert(1,2) J E by (intro prod.mono_neutral_right) auto
finally show \(? \mu\) ? \(p=\ldots\).
show prod_emb (insert i I) MJ (Pi \(J E) \in\) Pow \(\left(\Pi_{E}\right.\) íinsert i I. space \((M\) i))
using J E[rule_format, THEN sets.sets_into_space] by (auto simp: prod_emb_iff PiE_def)
next
show positive (sets \(\left(P i_{M}(\right.\) insert \(\left.i I) M\right)\) ) ? \(\mu\) countably_additive (sets \(\left(P i_{M}\right.\) (insert i I) M)) ? \(\mu\)
using emeasure_positive [of ?P] emeasure_countably_additive [of ?P] by simp_all next
show (insert i \(I \neq\{ \} \vee\) insert \(i I=\{ \}) \wedge\) finite (insert \(i I) \wedge\)
insert \(i I \subseteq\) insert \(i I \wedge A \in(\Pi j \in\) insert \(i I\). sets \((M j))\)
using insert by auto
qed (auto intro!: prod.cong)
with insert show ?case
by (subst (asm) prod_emb_PiE_same_index) (auto intro!: sets.sets_into_space)
qed \(\operatorname{simp}\)
lemma (in product_sigma_finite) PiM_eqI:
assumes \(I[\) simp \(]\) : finite \(I\) and \(P\) : sets \(P=\) PiM \(I M\)
assumes eq: \(\bigwedge A\). \((\bigwedge i . i \in I \Longrightarrow A i \in \operatorname{sets}(M i)) \Longrightarrow P\left(P i_{E} I A\right)=\left(\prod i \in I\right.\).
emeasure \(\left(\begin{array}{ll}M & i\end{array}\right)\left(\begin{array}{ll}A & )\end{array}\right)\)
shows \(P=\) PiM I M
proof -
interpret finite_product_sigma_finite M I
proof qed fact
from sigma_finite_pairs guess \(C\).. note \(C=\) this
show ?thesis
proof (rule measure_eqI_PiM_finite[OF I refl \(P\), symmetric])
show \((\bigwedge i . i \in I \Longrightarrow A i \in \operatorname{sets}(M i)) \Longrightarrow\left(P i_{M} I M\right)\left(P i_{E} I A\right)=P\left(P i_{E}\right.\)
\(I A\) ) for \(A\)
by (simp add: eq emeasure_PiM)
define \(A\) where \(A n=\left(\Pi_{E} i \in I\right.\). \(\left.C i n\right)\) for \(n\)
with \(C\) show range \(A \subseteq\) prod_algebra \(I M \bigwedge i\). emeasure \(\left(P i_{M} I M\right)(A i) \neq\)
\(\infty(\bigcup i . A i)=\operatorname{space}(\) PiM I M)
by (auto intro!: prod_algebraI_finite simp: emeasure_PiM subset_eq ennreal_prod_eq_top)
qed
qed
lemma (in product_sigma_finite) sigma_finite:
assumes finite I
shows sigma_finite_measure (PiM I M)

\section*{proof}
interpret finite_product_sigma_finite M I by standard fact
obtain \(F\) where \(F: \Lambda j\). countable \((F j) \bigwedge j f . f \in F j \Longrightarrow f \in\) sets \((M j)\)
\(\Lambda j f . f \in F j \Longrightarrow\) emeasure \((M j) f \neq \infty\) and
in_space: \(\wedge j\). space \((M j)=\bigcup(F j)\)
using sigma_finite_countable by (metis subset_eq)
moreover have \(\left(\bigcup\left(P i_{E} I^{\prime} P i_{E} I F\right)\right)=\operatorname{space}\left(P i_{M} I M\right)\)
using in_space by (auto simp: space_PiM PiE_iff intro!: PiE_choice[THEN iffD2])
ultimately show \(\exists\). countable \(A \wedge A \subseteq\) sets \(\left(P i_{M} I M\right) \wedge \bigcup A=\) space \(\left(P i_{M}\right.\) \(I M) \wedge\left(\forall a \in A\right.\). emeasure \(\left.\left(P i_{M} I M\right) a \neq \infty\right)\)
by (intro exI[of \(\left.-P i_{E} I I^{\prime} P i_{E} I F\right]\) )
(auto intro!: countable_PiE sets_PiM_I_finite
simp: PiE_iff emeasure_PiM finite_index ennreal_prod_eq_top)
qed
sublocale finite_product_sigma_finite \(\subseteq\) sigma_finite_measure \(P i_{M} I M\) using sigma_finite[OF finite_index].
lemma (in finite_product_sigma_finite) measure_times:
\((\bigwedge i . i \in I \Longrightarrow A i \in \operatorname{sets}(M i)) \Longrightarrow \operatorname{emeasure}\left(P i_{M} I M\right)\left(P i_{E} I A\right)=\left(\prod i \in I\right.\). emeasure ( Mi ) ( \(A\) i \()\) )
using emeasure_PiM \([\) OF finite_index \(]\) by auto
lemma (in product_sigma_finite) nn_integral_empty:
\(0 \leq f(\lambda k\). undefined \() \Longrightarrow\) integral \(^{N}\left(P i_{M}\{ \} M\right) f=f(\lambda k\). undefined \()\)
by (simp add: PiM_empty nn_integral_count_space_finite max.absorb2)
lemma (in product_sigma_finite) distr_merge:
assumes \(I J[\) simp \(]: I \cap J=\{ \}\) and fin: finite I finite \(J\)
shows \(\operatorname{distr}\left(P i_{M} I M \otimes_{M} P i_{M} J M\right)\left(P i_{M}(I \cup J) M\right)(\) merge \(I J)=P i_{M}\)
\((I \cup J) M\)
(is ? \(D=? P\) )
proof (rule PiM_eqI)
interpret \(I\) : finite_product_sigma_finite M I by standard fact
interpret \(J\) : finite_product_sigma_finite \(M J\) by standard fact
fix \(A\) assume \(A: \wedge i . i \in I \cup J \Longrightarrow A i \in \operatorname{sets}(M i)\)
have *: (merge \(I J-‘ P i_{E}(I \cup J) A \cap\) space \(\left.\left(P i_{M} I M \otimes_{M} P i_{M} J M\right)\right)=\) \(P i_{E} I A \times P i_{E} J A\)
using \(A[T H E N\) sets.sets_into_space] by (auto simp: space_PiM space_pair_measure)
from \(A\) fin show emeasure ( \(\operatorname{distr}\left(P i_{M} I M \otimes_{M} P i_{M} J M\right)\left(P i_{M}(I \cup J) M\right)\)
\((\) merge \(I J))\left(P i_{E}(I \cup J) A\right)=\)
\(\left(\prod i \in I \cup J\right.\). emeasure \(\left.(M i)(A i)\right)\)
by (subst emeasure_distr)
(auto simp: * J.emeasure_pair_measure_Times I.measure_times J.measure_times prod.union_disjoint)
qed (insert fin, simp_all)
```

proposition (in product_sigma_finite) product_nn_integral_fold:
assumes IJ:I\capJ={} finite I finite J
and f[measurable]: f\in borel_measurable (}P\mp@subsup{i}{M}{}(I\cupJ)M
shows integral N}(P\mp@subsup{i}{M}{}(I\cupJ)M)f
(\int+}\mp@subsup{}{}{+}x.(\mp@subsup{\int}{}{+}y.f(merge IJ (x,y))\partial(P\mp@subsup{i}{M}{}JM))\partial(P\mp@subsup{i}{M}{}IM)
proof -
interpret I: finite_product_sigma_finite M I by standard fact
interpret J: finite_product_sigma_finite M J by standard fact
interpret P: pair_sigma_finite Pi iM I M Pi
have P_borel: (\lambdax.f (merge I J x)) \in borel_measurable (Pi_M I M 囚 M Pi m J
M)
using measurable_comp[OF measurable_merge f] by (simp add: comp_def)
show ?thesis
apply (subst distr_merge[OF IJ, symmetric])
apply (subst nn_integral_distr[OF measurable_merge])
apply measurable []
apply (subst J.nn_integral_fst[symmetric,OF P_borel])
apply simp
done
qed
lemma (in product_sigma_finite) distr_singleton:
distr (P\mp@subsup{i}{M}{}{i}M)(Mi)(\lambdax.xi)=Mi(is ?D= _)
proof (intro measure_eqI[symmetric])
interpret I: finite_product_sigma_finite M {i} by standard simp
fix }A\mathrm{ assume A:A sets (M i)
then have (}\lambdax.xi)-\mp@subsup{}{}{`}A\cap\mathrm{ space (}P\mp@subsup{i}{M}{}{i}M)=(\mp@subsup{\Pi}{E}{}i\in{i}.A
using sets.sets_into_space by (auto simp: space_PiM)
then show emeasure (M i) A= emeasure ?D A
using A I.measure_times[of \lambda_. A]
by (simp add: emeasure_distr measurable_component_singleton)
qed simp
lemma (in product_sigma_finite) product_nn_integral_singleton:
assumes f:f\in borel_measurable (Mi)
shows integral }\mp@subsup{}{}{N}(P\mp@subsup{i}{M}{}{i}M)(\lambdax.f(xi))=\mp@subsup{integral}{N}{N}(Mi)
proof -
interpret I: finite_product_sigma_finite M {i} by standard simp
from f show ?thesis
apply (subst distr_singleton[symmetric])
apply (subst nn_integral_distr[OF measurable_component_singleton])
apply simp_all
done
qed
proposition (in product_sigma_finite) product_nn_integral_insert:
assumes I[simp]: finite I i}\not\in
and f:f\inborel_measurable (Pi (insert i I) M)
shows integral }\mp@subsup{}{}{N}(P\mp@subsup{i}{M}{\prime}(\mathrm{ insert i I) M) f = ({ + x. (}\mp@subsup{|}{}{+}y.f(x(i:=y))\partial(Mi)

```
```

$\left.\partial\left(P i_{M} I M\right)\right)$
proof -
interpret I : finite_product_sigma_finite M I by standard auto
interpret i : finite_product_sigma_finite $M\{i\}$ by standard auto
have $I J: I \cap\{i\}=\{ \}$ and insert: $I \cup\{i\}=$ insert $i I$
using f by auto
show ?thesis
unfolding product_nn_integral_fold[OF IJ, unfolded insert, OF I(1) i.finite_index
$f]$
proof (rule nn_integral_cong, subst product_nn_integral_singleton[symmetric])
fix x assume $x: x \in \operatorname{space}\left(P i_{M} I M\right)$
let ?f $=\lambda y$. $f(x(i:=y))$
show ?f \in borel_measurable (M i)
using measurable_comp[OF measurable_component_update f, OF $x\langle i \notin I\rangle$]
unfolding comp_def .
show $\left(\int^{+} y . f(\right.$ merge $\left.I\{i\}(x, y)) \partial P i_{M}\{i\} M\right)=\left(\int^{+} y . f(x(i:=y i))\right.$
$\left.\partial P i_{M}\{i\} M\right)$
using x
by (auto intro!: nn_integral_cong arg_cong[where $f=f]$
simp add: space_PiM extensional_def PiE_def)
qed
qed
lemma (in product_sigma_finite) product_nn_integral_insert_rev:
assumes $I[s i m p]$: finite $I i \notin I$
and [measurable]: $f \in$ borel_measurable ($P i_{M}$ (insert i I) M)
shows integral ${ }^{N}\left(P i_{M}(\right.$ insert i I) $M) f=\left(\int^{+} y .\left(\int^{+} x . f(x(i:=y)) \partial\left(P i_{M}\right.\right.\right.$
$I M) \partial(M i))$
apply (subst product_nn_integral_insert[OF assms])
apply (rule pair_sigma_finite.Fubini ${ }^{\prime}$)
apply intro_locales []
apply (rule sigma_finite[OF I(1)])
apply measurable
done
lemma (in product_sigma_finite) product_nn_integral_prod:
assumes finite $I \bigwedge i . i \in I \Longrightarrow f i \in$ borel_measurable ($M i$)
shows $\left(\int^{+}{ }^{+} x .\left(\prod i \in I . f i(x i)\right) \partial P i_{M} I M\right)=\left(\prod i \in I\right.$. integral $\left.{ }^{N}(M i)(f i)\right)$
using assms proof (induction I)
case (insert i I)
note insert.prems[measurable]
note \langle finite $I\rangle$ [intro, simp]
interpret I : finite_product_sigma_finite M I by standard auto
have $*: \bigwedge x y .\left(\prod j \in I . f j(\right.$ if $j=i$ then y else $\left.x j)\right)=\left(\prod j \in I . f j(x j)\right)$
using insert by (auto intro!: prod.cong)
have prod: $\bigwedge J . J \subseteq$ insert $i I \Longrightarrow\left(\lambda x .\left(\prod i \in J . f i(x i)\right)\right) \in$ borel_measurable
($P i_{M} J M$)
using sets.sets_into_space insert
by (intro borel_measurable_prod_ennreal

```
```

 measurable_comp[OF measurable_component_singleton, unfolded comp_def])
 auto
 then show ?case
apply (simp add: product_nn_integral_insert[OF insert(1,2)])
apply (simp add: insert(2-) * nn_integral_multc)
apply (subst nn_integral_cmult)
apply (auto simp add: insert(2-))
done
qed (simp add: space_PiM)

```
proposition (in product_sigma_finite) product_nn_integral_pair:
    assumes [measurable]: case_prod \(f \in\) borel_measurable \(\left(M x \otimes_{M} M y\right)\)
    assumes \(x y\) : \(x \neq y\)
    shows \(\left(\int{ }^{+} \sigma . f(\sigma x)(\sigma y) \partial P i M\{x, y\} M\right)=\left(\int{ }^{+} z . f(f s t z)(\right.\) snd \(z) \partial(M x\)
\(\left.\bigotimes_{M} M y\right)\) )
proof -
    interpret psm: pair_sigma_finite \(M x\) x \(y\)
        unfolding pair_sigma_finite_def using sigma_finite_measures by simp_all
    have \(\{x, y\}=\{y, x\}\) by auto
    also have \(\left(\int^{+} \sigma . f(\sigma x)(\sigma y) \partial P i M\{y, x\} M\right)=\left(\int^{+} y . \int{ }^{+} \sigma . f(\sigma x) y \partial P i M\right.\)
\(\{x\}\) M \(\partial M y\) )
    using \(x y\) by (subst product_nn_integral_insert_rev) simp_all
    also have \(\ldots=\left(\int{ }^{+} y . \int{ }^{+} x . f x\right.\) y \(\left.\partial M x \partial M y\right)\)
    by (intro nn_integral_cong, subst product_nn_integral_singleton) simp_all
    also have \(\ldots=\left(\int^{+} z \cdot f(f s t z)(s n d z) \partial\left(M x \otimes_{M} M y\right)\right)\)
        by (subst psm.nn_integral_snd[symmetric]) simp_all
    finally show ?thesis.
qed
lemma (in product_sigma_finite) distr_component:
    \(\operatorname{distr}(M i)\left(P i_{M}\{i\} M\right)(\lambda x . \lambda i \in\{i\} . x)=P i_{M}\{i\} M(\) is \(? D=? P)\)
proof (intro PiM_eqI)
    fix \(A\) assume \(A: \bigwedge i a . i a \in\{i\} \Longrightarrow A i a \in \operatorname{sets}(M i a)\)
    then have \((\lambda x . \lambda i \in\{i\} . x)-{ }^{\prime} P i_{E}\{i\} A \cap\) space \((M i)=A i\)
        by (fastforce dest: sets.sets_into_space)
    with \(A\) show emeasure \(\left(\operatorname{distr}(M i)\left(P i_{M}\{i\} M\right)(\lambda x . \lambda i \in\{i\} . x)\right)\left(P i_{E}\{i\} A\right)\)
\(=\left(\prod i \in\{i\}\right.\). emeasure \(\left.(M i)(A i)\right)\)
    by (subst emeasure_distr) (auto intro!: sets_PiM_I_finite measurable_restrict)
qed simp_all
lemma (in product_sigma_finite)
    assumes \(I J: I \cap J=\{ \}\) finite \(I\) finite \(J\) and \(A: A \in \operatorname{sets}\left(P i_{M}(I \cup J) M\right)\)
    shows emeasure_fold_integral:
        emeasure \(\left(P i_{M}(I \cup J) M\right) A=\left(\int^{+} x\right.\). emeasure \(\left(P i_{M} J M\right)((\lambda y\). merge \(I J\)
\(\left.\left.(x, y))-‘ A \cap \operatorname{space}\left(P i_{M} J M\right)\right) \partial P i_{M} I M\right)(\) is ? \(I)\)
    and emeasure_fold_measurable:
    \(\left(\lambda x\right.\). emeasure \(\left(P i_{M} J M\right)\left((\lambda y\right.\). merge \(\left.\left.I J(x, y))-{ }^{`} A \cap \operatorname{space}\left(P i_{M} J M\right)\right)\right)\)
\(\in\) borel_measurable \(\left(P i_{M} I M\right)(\) is ? \(B)\)
proof -
interpret \(I\) : finite_product_sigma_finite \(M\) I by standard fact
interpret \(J\) : finite_product_sigma_finite \(M J\) by standard fact
interpret \(I J\) : pair_sigma_finite \(P i_{M} I M P i_{M} J M .\).
have merge: merge \(I J-^{\prime} A \cap\) space \(\left(P i_{M} I M \bigotimes_{M} P i_{M} J M\right) \in\) sets \(\left(P i_{M} I\right.\) \(\left.M \bigotimes_{M} P i_{M} J M\right)\)
by (intro measurable_sets \(\left[O F \_A\right]\) measurable_merge assms)
show ?I
apply (subst distr_merge[symmetric, OF IJ])
apply (subst emeasure_distr[OF measurable_merge A])
apply (subst J.emeasure_pair_measure_alt[OF merge])
apply (auto intro!: nn_integral_cong arg_cong2[where \(f=\) emeasure \(]\) simp: space_pair_measure)
done
show ? \(B\)
using IJ.measurable_emeasure_Pair1[OF merge]
by (simp add: vimage_comp comp_def space_pair_measure cong: measurable_cong) qed
lemma sets_Collect_single:
\(i \in I \Longrightarrow A \in\) sets \((M i) \Longrightarrow\left\{x \in \operatorname{space}\left(P i_{M} I M\right) . x i \in A\right\} \in \operatorname{sets}\left(P i_{M} I\right.\) M)
by \(\operatorname{simp}\)
lemma pair_measure_eq_distr_PiM:
fixes M1 :: 'a measure and M2 :: 'a measure
assumes sigma_finite_measure M1 sigma_finite_measure M2
shows \(\left(M 1 \bigotimes_{M} M 2\right)=\operatorname{distr}\left(i_{M}\right.\) UNIV (case_bool M1 M2) \()\left(M 1 \bigotimes_{M}\right.\) M2)
( \(\lambda x\). ( \(x\) True, \(x\) False) )
(is ? \(P=? D\) )
proof (rule pair_measure_eqI[OF assms])
interpret B: product_sigma_finite case_bool M1 M2
unfolding product_sigma_finite_def using assms by (auto split: bool.split)
let ? \(B=P i_{M}\) UNIV (case_bool M1 M2)
have \([\) simp \(]:\) fst \(\circ(\lambda x .(x\) True,\(x\) False \())=(\lambda x . x\) True \()\) snd \(\circ(\lambda x .(x\) True, \(x\)
False) \()=(\lambda x . x\) False \()\)
by auto
fix \(A B\) assume \(A: A \in\) sets \(M 1\) and \(B: B \in\) sets M2
have emeasure M1 \(A *\) emeasure M2 \(B=\left(\prod i \in U N I V\right.\). emeasure (case_bool M1
M2 i) (case_bool A B i) )
by (simp add: UNIV_bool ac_simps)
also have \(\ldots=\) emeasure ? \(B\left(P i_{E}\right.\) UNIV (case_bool A B) )
using \(A B\) by (subst B.emeasure_PiM) (auto split: bool.split)
also have \(P i_{E} U N I V(\) case_bool \(A B)=(\lambda x .(x\) True, \(x\) False \())-‘(A \times B) \cap\)
space ?B
using \(A[T H E N\) sets.sets_into_space] B[THEN sets.sets_into_space]
by (auto simp: PiE_iff all_bool_eq space_PiM split: bool.split)
finally show emeasure M1 \(A *\) emeasure M2 \(B=\) emeasure ? \(D(A \times B)\)
```

 using A B
 measurable_component_singleton[of True UNIV case_bool M1 M2]
 measurable_component_singleton[of False UNIV case_bool M1 M2]
 by (subst emeasure_distr) (auto simp: measurable_pair_iff)
 qed simp
lemma infprod_in_sets[intro]:
fixes E :: nat => 'a set assumes E: \i. Ei\in sets (Mi)
shows Pi UNIV E \in sets (\Pi}\mp@subsup{M}{M}{}i\inUNIV::nat set. M i
proof -
have Pi UNIV E = (\bigcapi. prod_emb UNIV M {..i} (\Pi}\mp@subsup{\Pi}{E}{}j\in{..i}.E j)
using E E[THEN sets.sets_into_space]
by (auto simp: prod_emb_def Pi_iff extensional_def)
with E show ?thesis by auto
qed

```

\subsection*{6.8.3 Measurability}

There are two natural sigma-algebras on a product space: the borel sigma algebra, generated by open sets in the product, and the product sigma algebra, countably generated by products of measurable sets along finitely many coordinates. The second one is defined and studied in Finite_Product_Measure.thy.
These sigma-algebra share a lot of natural properties (measurability of coordinates, for instance), but there is a fundamental difference: open sets are generated by arbitrary unions, not only countable ones, so typically many open sets will not be measurable with respect to the product sigma algebra (while all sets in the product sigma algebra are borel). The two sigma algebras coincide only when everything is countable (i.e., the product is countable, and the borel sigma algebra in the factor is countably generated). In this paragraph, we develop basic measurability properties for the borel sigma algebra, and compare it with the product sigma algebra as explained above.
lemma measurable_product_coordinates [measurable (raw)]:
\((\lambda x . x i) \in\) measurable borel borel
by (rule borel_measurable_continuous_onI[OF continuous_on_product_coordinates])
lemma measurable_product_then_coordinatewise:
fixes \(f:: ' a \Rightarrow\) ' \(b \Rightarrow\) ('c::topological_space)
assumes [measurable]: \(f \in\) borel_measurable \(M\)
shows \((\lambda x . f x i) \in\) borel_measurable \(M\)
proof -
have \((\lambda x . f x i)=(\lambda y . y i)\) of
unfolding comp_def by auto
then show ?thesis by simp
qed
To compare the Borel sigma algebra with the product sigma algebra, we
give a presentation of the product sigma algebra that is more similar to the one we used above for the product topology.
```

lemma sets_PiM_finite:
sets $\left(P i_{M} I M\right)=$ sigma_sets $\left(\Pi_{E} i \in I\right.$. space $\left.(M i)\right)$
$\left\{\left(\Pi_{E} i \in I . X i\right) \mid X .(\forall i . X i \in \operatorname{sets}(M i)) \wedge\right.$ finite $\{i . X i \neq$ space $\left.(M i)\}\right\}$
proof
have $\left\{\left(\Pi_{E} i \in I . X i\right) \mid X .(\forall i . X i \in\right.$ sets $(M i)) \wedge$ finite $\{i . X i \neq \operatorname{space}(M$
$i)\}\} \subseteq$ sets $\left(P i_{M} I M\right)$
proof (auto)
fix X assume $H: \forall i . X i \in \operatorname{sets}(M i)$ finite $\{i . X i \neq \operatorname{space}(M i)\}$
then have $*: X i \in \operatorname{sets}(M i)$ for i by simp
define J where $J=\{i \in I$. $X i \neq \operatorname{space}(M i)\}$
have finite $J J \subseteq I$ unfolding $J_{\text {_ }}$ def using H by auto
define Y where $Y=\left(\Pi_{E} j \in J . X j\right)$
have prod_emb I M J Y $\operatorname{sets}\left(P i_{M} I M\right)$
unfolding Y_{-}def apply (rule sets_PiM_I) using \langlefinite $J\rangle\langle J \subseteq I\rangle$ * by auto
moreover have prod_emb I MJY=($\left.\Pi_{E} i \in I . X i\right)$
unfolding prod_emb_def Y_def J_def using H sets.sets_into_space[OF *]
by (auto simp add: PiE_iff, blast)
ultimately show $P i_{E} I X \in$ sets $\left(P i_{M} I M\right)$ by simp
qed
then show sigma_sets $\left(\Pi_{E} i \in I\right.$. space $\left.(M i)\right)\left\{\left(\Pi_{E} i \in I . X i\right) \mid X .(\forall i . X i \in\right.$
sets $(M i)) \wedge$ finite $\{i . X i \neq \operatorname{space}(M i)\}\}$
\subseteq sets $\left(P i_{M} I M\right)$
by (metis (mono_tags, lifting) sets.sigma_sets_subset' sets.top space_PiM)
have $*: \exists X .\{f .(\forall i \in I . f i \in \operatorname{space}(M i)) \wedge f \in$ extensional $I \wedge f i \in A\}=$
$P i_{E} I X \wedge$
$(\forall i . X i \in \operatorname{sets}(M i)) \wedge$ finite $\{i . X i \neq \operatorname{space}(M i)\}$
if $i \in I A \in$ sets $(M i)$ for $i A$
proof -
define X where $X=(\lambda j$. if $j=i$ then A else space $(M j))$
have $\{f .(\forall i \in I . f i \in \operatorname{space}(M i)) \wedge f \in$ extensional $I \wedge f i \in A\}=P i_{E} I X$
unfolding X_{-}def using sets.sets_into_space $[O F\langle A \in$ sets $(M i)\rangle]\langle i \in I\rangle$
by (auto simp add: PiE_iff extensional_def, metis subsetCE, metis)
moreover have $X j \in$ sets ($M j$) for j
unfolding $X_{\text {_def }}$ using $\langle A \in \operatorname{sets}(M i)\rangle$ by auto
moreover have finite $\{j . X j \neq \operatorname{space}(M j)\}$
unfolding $X_{\text {_ def }}$ by simp
ultimately show ?thesis by auto
qed
show sets $\left(P i_{M} I M\right) \subseteq$ sigma_sets $\left(\Pi_{E} i \in I\right.$. space $\left.(M i)\right)\left\{\left(\Pi_{E} i \in I . X i\right) \mid X\right.$.
$(\forall i . X i \in \operatorname{sets}(M i)) \wedge$ finite $\{i . X i \neq \operatorname{space}(M i)\}\}$
unfolding sets_PiM_single
apply (rule sigma_sets_mono')
apply (auto simp add: PiE_iff *)
done
qed

```
```

lemma sets_PiM_subset_borel:
sets $\left(P i_{M}\right.$ UNIV $\left(\lambda_{_}\right.$. borel $\left.)\right) \subseteq$ sets borel
proof -
have $*: P i_{E} U N I V X \in$ sets borel if [measurable]: $\bigwedge i . X i \in$ sets borel finite $\{i$.
$X i \neq U N I V\}$ for $X::^{\prime} a \Rightarrow$ ' b set
proof -
define I where $I=\{i . X i \neq U N I V\}$
have finite I unfolding I_{-}def using that by simp
have $P i_{E}$ UNIV $X=(\bigcap i \in I .(\lambda x . x i)-‘(X i) \cap$ space borel $) \cap$ space borel
unfolding I_def by auto
also have ... \in sets borel
using that 〈finite I 〉 by measurable
finally show ?thesis by simp
qed
then have $\left\{\left(\Pi_{E} i \in U N I V . X i\right) \mid X::\left({ }^{\prime} a \Rightarrow\right.\right.$ 'b set). $(\forall i . X i \in$ sets borel $) \wedge$ finite
$\{i . X i \neq$ space borel $\}\} \subseteq$ sets borel
by auto
then show ?thesis unfolding sets_PiM_finite space_borel
by (simp add: * sets.sigma_sets_subset')
qed
proposition sets_PiM_equal_borel:
sets ($P i_{M}$ UNIV ($\lambda i::\left({ }^{\prime} a::\right.$ countable). borel::('b::second_countable_topology mea-
sure))) $=$ sets borel
proof
obtain $K::\left({ }^{\prime} a \Rightarrow\right.$ 'b) set set where K : topological_basis K countable K
$\wedge k . k \in K \Longrightarrow \exists X .\left(k=P i_{E}\right.$ UNIV $\left.X\right) \wedge(\forall i$. open $(X i)) \wedge$ finite $\{i$.
X $i \neq U N I V\}$
using product_topology_countable_basis by fast
have $*: k \in$ sets $\left(P i_{M} \operatorname{UNIV}\left(\lambda_{\sim}\right.\right.$. borel $\left.)\right)$ if $k \in K$ for k
proof -
obtain X where $H: k=P i_{E}$ UNIV $X \bigwedge i$. open $(X i)$ finite $\{i . X i \neq U N I V\}$
using $K(3)[O F\langle k \in K\rangle]$ by blast
show ?thesis unfolding $H(1)$ sets_PiM_finite space_borel using borel_open[OF
$H(2)] H(3)$ by auto
qed
have $* *: U \in \operatorname{sets}\left(P i_{M} U N I V\left(\lambda_{\text {. }}\right.\right.$ borel $\left.)\right)$ if open U for $U::\left({ }^{\prime} a \Rightarrow{ }^{\prime} b\right)$ set
proof -
obtain B where $B \subseteq K U=(\bigcup B)$
using <open U 〉 <topological_basis K 〉 by (metis topological_basis_def)
have countable B using $\langle B \subseteq K$ 〉 〈countable K 〉 countable_subset by blast
moreover have $k \in \operatorname{sets}\left(P i_{M} \operatorname{UNIV}\left(\lambda_{-}\right.\right.$. borel $)$) if $k \in B$ for k
using $\langle B \subseteq K\rangle *$ that by auto
ultimately show ?thesis unfolding $\langle U=(\bigcup B)\rangle$ by auto
qed
have sigma_sets UNIV (Collect open) \subseteq sets $\left(P i_{M}\right.$ UNIV ($\lambda i::{ }^{\prime}$ a. (borel::('b
measure))))
apply (rule sets.sigma_sets_subset') using ** by auto
then show sets (borel::('a $\left.\boldsymbol{m}^{\prime} b\right)$ measure $) \subseteq$ sets $\left(P i_{M}\right.$ UNIV (λ_{-}. borel) $)$

```
```

 unfolding borel_def by auto
 qed (simp add: sets_PiM_subset_borel)
lemma measurable_coordinatewise_then_product:
fixes f::'a ('b::countable) = ('c::second_countable_topology)
assumes [measurable]: \bigwedgei. (\lambdax.f x i) \in borel_measurable M
shows f}\in\mathrm{ borel_measurable M
proof -
have f}\in\mathrm{ measurable M (Pi M UNIV (}\mp@subsup{\lambda}{~}{\prime}.\mathrm{ borel))
by (rule measurable_PiM_single', auto simp add: assms)
then show ?thesis using sets_PiM_equal_borel measurable_cong_sets by blast
qed
end

```

\subsection*{6.9 Caratheodory Extension Theorem}
```

theory Caratheodory
imports Measure_Space
begin

```

Originally from the Hurd/Coble measure theory development, translated by Lawrence Paulson.
```

lemma suminf_ennreal_2dimen:
fixes $f::$ nat \times nat \Rightarrow ennreal
assumes $\bigwedge m . g m=\left(\sum n . f(m, n)\right)$
shows $\left(\sum i . f(\right.$ prod_decode $\left.i)\right)=$ suminf g
proof -
have $g_{-} d e f: g=\left(\lambda m .\left(\sum n . f(m, n)\right)\right)$
using assms by (simp add: fun_eq_iff)
have reindex: $\bigwedge B .\left(\sum x \in B . f(\right.$ prod_decode $\left.x)\right)=\operatorname{sum} f($ prod_decode ' $B)$
by (simp add: sum.reindex[OF inj_prod_decode] comp_def)
have $\left(S U P n . \sum i<n . f(\right.$ prod_decode $\left.i)\right)=\left(S U P p \in U N I V \times U N I V . \sum i<f s t\right.$
p. $\sum n<$ snd p. $\left.f(i, n)\right)$
proof (intro SUP_eq; clarsimp simp: sum.cartesian_product reindex)
fix n
let $? M=\lambda f$. Suc (Max (f ' prod_decode' $\{. .<n\}$))
\{ fix $a b x$ assume $x<n$ and [symmetric]: $(a, b)=$ prod_decode x
then have $a<$? M fst $b<$? M snd
by (auto intro!: Max_ge le_imp_less_Suc image_eqI) \}
then have $\operatorname{sum} f($ prod_decode' $\{. .<n\}) \leq \operatorname{sum} f(\{. .<? M$ fst $\} \times\{. .<? M$ snd $\})$
by (auto intro!: sum_mono2)
then show $\exists a b . \operatorname{sum} f($ prod_decode $'\{. .<n\}) \leq \operatorname{sum} f(\{. .<a\} \times\{. .<b\})$ by
auto
next
fix $a b$
let $? M=$ prod_decode' $\{. .<$ Suc (Max (prod_encode' $(\{. .<a\} \times\{. .<b\})))\}$
$\left\{\right.$ fix $a^{\prime} b^{\prime}$ assume $a^{\prime}<a b^{\prime}<b$ then have $\left(a^{\prime}, b^{\prime}\right) \in ? M$

```
by (auto intro!: Max_ge le_imp_less_Suc image_eqI[where \(x=\) prod_encode \(\left.\left.\left.\left(a^{\prime}, b^{\prime}\right)\right]\right)\right\}\)
then have \(\operatorname{sum} f(\{. .<a\} \times\{. .<b\}) \leq \operatorname{sum} f ? M\)
by (auto intro!: sum_mono2)
then show \(\exists\) n. sum \(f(\{. .<a\} \times\{. .<b\}) \leq \operatorname{sum} f(\) prod_decode ' \(\{. .<n\})\)
by auto
qed
also have \(\ldots=\left(S U P p . \sum i<p . \sum n . f(i, n)\right)\)
unfolding suminf_sum [OF summableI, symmetric]
by (simp add: suminf_eq_SUP SUP_pair sum.swap[of _ \(\left\{. .<f_{\text {ft }}\right.\) _ \(\left.\left.\}\right]\right)\)
finally show ?thesis unfolding \(g_{-} d e f\)
by (simp add: suminf_eq_SUP)
qed

\subsection*{6.9.1 Characterizations of Measures}
definition outer_measure_space where
outer_measure_space \(M f \longleftrightarrow\) positive \(M f \wedge\) increasing \(M f \wedge\) countably_subadditive \(M f\)

\section*{Lambda Systems}
definition lambda_system \(::\) ' \(a\) set \(\Rightarrow\) ' \(a\) set set \(\Rightarrow(' a\) set \(\Rightarrow\) ennreal \() \Rightarrow\) 'a set set where
lambda_system \(\Omega M f=\{l \in M . \forall x \in M . f(l \cap x)+f((\Omega-l) \cap x)=f x\}\)
lemma (in algebra) lambda_system_eq:
lambda_system \(\Omega M f=\{l \in M . \forall x \in M . f(x \cap l)+f(x-l)=f x\}\)
proof -
have \([\) simp \(]: \bigwedge l x . l \in M \Longrightarrow x \in M \Longrightarrow(\Omega-l) \cap x=x-l\) by (metis Int_Diff Int_absorb1 Int_commute sets_into_space)
show ?thesis
by (auto simp add: lambda_system_def) (metis Int_commute)+
qed
lemma (in algebra) lambda_system_empty: positive \(M f \Longrightarrow\} \in\) lambda_system \(\Omega M f\)
by (auto simp add: positive_def lambda_system_eq)
lemma lambda_system_sets: \(x \in\) lambda_system \(\Omega M f \Longrightarrow x \in M\) by (simp add: lambda_system_def)
lemma (in algebra) lambda_system_Compl:
fixes \(f::\) ' \(a\) set \(\Rightarrow\) ennreal
assumes \(x: x \in\) lambda_system \(\Omega M f\)
shows \(\Omega-x \in\) lambda_system \(\Omega M f\)
proof -
have \(x \subseteq \Omega\)
by (metis sets_into_space lambda_system_sets \(x\) )
hence \(\Omega-(\Omega-x)=x\)
```

 by (metis double_diff equalityE)
 with \(x\) show ?thesis
 by (force simp add: lambda_system_def ac_simps)
 qed
lemma (in algebra) lambda_system_Int:
fixes $f::$ 'a set \Rightarrow ennreal
assumes xl: $x \in$ lambda_system $\Omega M f$ and $y l: y \in l a m b d a _s y s t e m ~ \Omega M f$
shows $x \cap y \in$ lambda_system $\Omega M f$
proof -
from $x l$ yl show ?thesis
proof (auto simp add: positive_def lambda_system_eq Int)
fix u
assume $x: x \in M$ and $y: y \in M$ and $u: u \in M$
and $f x: \forall z \in M . f(z \cap x)+f(z-x)=f z$
and $f y: \forall z \in M . f(z \cap y)+f(z-y)=f z$
have $u-x \cap y \in M$
by (metis Diff Diff_Int Un uxy)
moreover
have $(u-(x \cap y)) \cap y=u \cap y-x$ by blast
moreover
have $u-x \cap y-y=u-y$ by blast
ultimately
have ey: $f(u-x \cap y)=f(u \cap y-x)+f(u-y)$ using $f y$
by force
have $f(u \cap(x \cap y))+f(u-x \cap y)$
$=(f(u \cap(x \cap y))+f(u \cap y-x))+f(u-y)$
by (simp add: ey ac_simps)
also have $\ldots=(f((u \cap y) \cap x)+f(u \cap y-x))+f(u-y)$
by (simp add: Int_ac)
also have $\ldots=f(u \cap y)+f(u-y)$
using fx [THEN bspec, of $u \cap y]$ Int $y u$
by force
also have $\ldots=f u$
by (metis fy u)
finally show $f(u \cap(x \cap y))+f(u-x \cap y)=f u$.
qed
qed
lemma (in algebra) lambda_system_Un:
fixes $f:$ ' 'a set \Rightarrow ennreal
assumes $x l: x \in$ lambda_system $\Omega M f$ and $y l: y \in l a m b d a _s y s t e m ~ \Omega M f$
shows $x \cup y \in$ lambda_system $\Omega M f$
proof -
have $(\Omega-x) \cap(\Omega-y) \in M$
by (metis Diff_Un Un compl_sets lambda_system_sets xl yl)
moreover
have $x \cup y=\Omega-((\Omega-x) \cap(\Omega-y))$
by auto (metis subsetD lambda_system_sets sets_into_space xl yl)+

```
```

 ultimately show ?thesis
 by (metis lambda_system_Compl lambda_system_Int xl yl)
 qed
lemma (in algebra) lambda_system_algebra:
positive $M f \Longrightarrow$ algebra Ω (lambda_system $\Omega M f$)
apply (auto simp add: algebra_iff_Un)
apply (metis lambda_system_sets subsetD sets_into_space)
apply (metis lambda_system_empty)
apply (metis lambda_system_Compl)
apply (metis lambda_system_Un)
done
lemma (in algebra) lambda_system_strong_additive:
assumes $z: z \in M$ and disj: $x \cap y=\{ \}$
and $x l: x \in$ lambda_system $\Omega M f$ and $y l: y \in l a m b d a _s y s t e m ~ \Omega M f$
shows $f(z \cap(x \cup y))=f(z \cap x)+f(z \cap y)$
proof -
have $z \cap x=(z \cap(x \cup y)) \cap x$ using disj by blast
moreover
have $z \cap y=(z \cap(x \cup y))-x$ using disj by blast
moreover
have $(z \cap(x \cup y)) \in M$
by (metis Int Un lambda_system_sets xl yl z)
ultimately show ?thesis using $x l y l$
by (simp add: lambda_system_eq)
qed
lemma (in algebra) lambda_system_additive: additive (lambda_system $\Omega M f$) f
proof (auto simp add: additive_def)
fix x and y
assume disj: $x \cap y=\{ \}$
and $x l: x \in$ lambda_system $\Omega M f$ and $y l: y \in l a m b d a _s y s t e m ~ \Omega M f$
hence $x \in M y \in M$ by (blast intro: lambda_system_sets) +
thus $f(x \cup y)=f x+f y$
using lambda_system_strong_additive [OF top disj xl yl]
by (simp add: Un)
qed
lemma lambda_system_increasing: increasing $M f \Longrightarrow$ increasing (lambda_system
$\Omega M f) f$
by (simp add: increasing_def lambda_system_def)
lemma lambda_system_positive: positive $M f \Longrightarrow$ positive (lambda_system $\Omega M f$)
f
by (simp add: positive_def lambda_system_def)
lemma (in algebra) lambda_system_strong_sum:
fixes $A::$ nat \Rightarrow 'a set and $f::$ ' a set \Rightarrow ennreal

```
```

 assumes \(f\) : positive \(M f\) and \(a: a \in M\)
 and \(A\) : range \(A \subseteq\) lambda_system \(\Omega M f\)
 and disj: disjoint_family \(A\)
 shows \(\left(\sum i=0 . .<n . f(a \cap A i)\right)=f(a \cap(\bigcup i \in\{0 . .<n\} . A i))\)
 proof (induct n)
case 0 show ?case using f by (simp add: positive_def)
next
case (Suc n)
have 2: $A n \cap \bigcup(A \cdot\{0 . .<n\})=\{ \}$ using disj
by (force simp add: disjoint_family_on_def neq_iff)
have 3: $A n \in$ lambda_system $\Omega M f$ using A
by blast
interpret l: algebra Ω lambda_system $\Omega M f$
using f by (rule lambda_system_algebra)
have $4: \bigcup(A$ ' $\{0 . .<n\}) \in$ lambda_system $\Omega M f$
using A l.UNION_in_sets by simp
from Suc.hyps show ?case
by (simp add: atLeastLessThanSuc lambda_system_strong_additive [OF a 23
4])
qed
proposition (in sigma_algebra) lambda_system_caratheodory:
assumes oms: outer_measure_space $M f$
and A : range $A \subseteq$ lambda_system $\Omega M f$
and disj: disjoint_family A
shows $(\bigcup i . A i) \in$ lambda_system $\Omega M f \wedge\left(\sum i . f(A i)\right)=f(\bigcup i . A i)$
proof -
have pos: positive $M f$ and inc: increasing $M f$
and csa: countably_subadditive $M f$
by (metis oms outer_measure_space_def)+
have sa: subadditive $M f$
by (metis countably_subadditive_subadditive csa pos)
have $A^{\prime}: \bigwedge S$. $A^{\prime} S \subseteq($ lambda_system $\Omega M f)$ using A
by auto
interpret ls: algebra Ω lambda_system $\Omega M f$
using pos by (rule lambda_system_algebra)
have $A^{\prime \prime}$: range $A \subseteq M$
by (metis A image_subset_iff lambda_system_sets)
have $U _i n$: $(\bigcup i . A i) \in M$
by (metis $A^{\prime \prime}$ countable_UN)
have $U_{-} e q: f(\bigcup i . A i)=\left(\sum i . f(A i)\right)$
proof (rule antisym)
show $f(\bigcup i . A i) \leq\left(\sum i . f(A i)\right)$
using csa[unfolded countably_subadditive_def] $A^{\prime \prime}$ disj U_{-}in by auto
have dis: $\bigwedge N$. disjoint_family_on $A\{. .<N\}$ by (intro disjoint_family_on_mono[OF
_ disj]) auto
show $\left(\sum i . f\left(\begin{array}{ll}A & i\end{array}\right) \leq f(\bigcup i . A i)\right.$
using ls.additive_sum [OF lambda_system_positive[OF pos] lambda_system_additive

```
```

_ A' dis] A"
by (intro suminf_le_const[OF summableI]) (auto intro!: increasingD[OF inc]
countable_UN)
qed
have f(a\cap(\bigcupi.A i))+f(a-(\bigcupi.A i))=fa
if a [iff]: a\inM for a
proof (rule antisym)
have range (\lambdai.a\capA)}\subseteqM\mathrm{ using A"
by blast
moreover
have disjoint_family (\lambdai.a\capA i) using disj
by (auto simp add: disjoint_family_on_def)
moreover
have }a\cap(\bigcupi.A i)\in
by (metis Int U_in a)
ultimately
have f(a\cap(\bigcupi.Ai))\leq(\sumi.f(a\capAi))
using csa[unfolded countably_subadditive_def,rule_format,of (\lambdai.a \capA i)]
by (simp add: o_def)
hence f(a\cap(\bigcupi.A i))+f(a-(\bigcupi.A i)) \leq(\sumi.f(a\capAi))+f(a-
(\bigcupi.A i))
by (rule add_right_mono)
also have ... \leqfa
proof (intro ennreal_suminf_bound_add)
fix n
have UNION_in: (\bigcupi\in{0..<n}.A i) \inM
by (metis A" UNION_in_sets)
have le_fa: f(U(A`{0..<n})\capa)\leqfa using A'
by (blast intro: increasingD [OF inc] A" UNION_in_sets)
have ls: (\bigcupi\in{0..<n}. A i) \in lambda_system \OmegaMf
using ls.UNION_in_sets by (simp add: A)
hence eq-fa: fa=f(a\cap(\bigcupi\in{0..<n}.A i))+f(a-(\bigcupi\in{0..<n}.A
i))
by (simp add: lambda_system_eq UNION_in)
have f(a-(\bigcupi.Ai))\leqf(a-(\bigcupi\in{0..<n}.Ai))
by (blast intro: increasingD [OF inc] UNION_in U_in)
thus (\sumi<n.f(a\capAi))+f(a-(\bigcupi.A i))\leqfa
by (simp add: lambda_system_strong_sum pos A disj eq_fa add_left_mono
atLeast0LessThan[symmetric])
qed
finally show f(a\cap(\bigcupi.A i))+f(a-(\bigcupi.Ai))\leqfa
by simp
next
have fa\leqf(a\cap(\bigcupi.Ai)\cup(a-(\bigcupi.Ai)))
by (blast intro: increasingD [OF inc] U_in)
also have ... \leqf(a\cap(\bigcupi.A i))+f(a-(\bigcupi.A i))
by (blast intro: subadditiveD [OF sa] U_in)
finally show fa\leqf(a\cap(\bigcupi.A i))+f(a-(\bigcupi.A i)).
qed

```
```

 thus ?thesis
 by (simp add: lambda_system_eq sums_iff U_eq U_in)
 qed
proposition (in sigma_algebra) caratheodory_lemma:
assumes oms: outer_measure_space M f
defines L \equivlambda_system \OmegaMf
shows measure_space \Omega Lf
proof -
have pos: positive Mf
by (metis oms outer_measure_space_def)
have alg: algebra \Omega L
using lambda_system_algebra [of f,OF pos]
by (simp add: algebra_iff_Un L_def)
then
have sigma_algebra \Omega L
using lambda_system_caratheodory [OF oms]
by (simp add: sigma_algebra_disjoint_iff L_def)
moreover
have countably_additive L f positive L f
using pos lambda_system_caratheodory [OF oms]
by (auto simp add: lambda_system_sets L_def countably_additive_def positive_def)
ultimately
show ?thesis
using pos by (simp add: measure_space_def)
qed
definition outer_measure :: 'a set set }=>(\mp@subsup{}{}{\prime}a\mathrm{ set }=>\mathrm{ ennreal) }=>\mp@subsup{}{}{\prime}\mathrm{ 'a set }=>\mathrm{ ennreal
where
outer_measure MfX =
(INF A\in{A. range A\subseteqM\wedge disjoint_family A}\wedgeX\subseteq(\bigcupi.A i)}.\sumi.f(
i))
lemma (in ring_of_sets) outer_measure_agrees:
assumes posf: positive $M f$ and ca: countably_additive $M f$ and $s: s \in M$
shows outer_measure $M f s=f s$
unfolding outer_measure_def
proof (safe intro!: antisym INF_greatest)
fix $A::$ nat $\Rightarrow{ }^{\prime}$ a set assume A : range $A \subseteq M$ and $d A$: disjoint_family A and $s A: s \subseteq(\bigcup x . A x)$
have inc: increasing $M f$
by (metis additive_increasing ca countably_additive_additive posf)
have $f s=f(\bigcup i . A i \cap s)$
using $s A$ by (auto simp: Int_absorb1)
also have $\ldots=\left(\sum i . f(A i \cap s)\right)$
using $s A d A A s$
by (intro ca[unfolded countably_additive_def, rule_format, symmetric])
(auto simp: Int_absorb1 disjoint_family_on_def)

```
also have \(\ldots \leq\left(\sum i . f(A i)\right)\)
using \(A\) s by (auto intro!: suminf_le increasing \(D[O F\) inc \(]\) )
finally show \(f s \leq\left(\sum i . f(A i)\right)\).
next
have \(\left(\sum i . f(\right.\) if \(i=0\) then \(s\) else \(\left.\{ \})\right) \leq f s\)
using positiveD1[OF posf] by (subst suminf_finite[of \{0\}]) auto
with \(s\) show (INF \(A \in\{A\). range \(A \subseteq M \wedge\) disjoint_family \(A \wedge s \subseteq \bigcup(A\) '
\(\left.U N I V)\} . \sum i . f(A i)\right) \leq f s\)
by (intro INF_lower2[of \(\lambda i\). if \(i=0\) then \(s\) else \(\}]\) )
(auto simp: disjoint_family_on_def)
qed
lemma outer_measure_empty:
positive \(M f \Longrightarrow\} \in M \Longrightarrow\) outer_measure \(M f\}=0\)
unfolding outer_measure_def
by (intro antisym INF_lower2[of \(\left.\lambda_{-} .\{ \}\right]\)) (auto simp: disjoint_family_on_def pos-
itive_def)
lemma (in ring_of_sets) positive_outer_measure:
assumes positive \(M f\) shows positive (Pow \(\Omega\) ) (outer_measure \(M f\) )
unfolding positive_def by (auto simp: assms outer_measure_empty)
lemma (in ring_of_sets) increasing_outer_measure: increasing (Pow \(\Omega\) ) (outer_measure Mf)
by (force simp: increasing_def outer_measure_def intro!: INF_greatest intro: INF_lower)
lemma (in ring_of_sets) outer_measure_le:
assumes pos: positive \(M f\) and inc: increasing \(M f\) and \(A\) : range \(A \subseteq M\) and \(X: X \subseteq(\bigcup i . A i)\)
shows outer_measure \(M f X \leq\left(\sum i . f\left(\begin{array}{ll}A & i\end{array}\right)\right)\)
unfolding outer_measure_def
proof (safe intro!: INF_lower2[of disjointed A] del: subsetI)
show \(d A\) : range \((\) disjointed \(A) \subseteq M\)
by (auto intro!: A range_disjointed_sets)
have \(\forall n . f(\) disjointed \(A n) \leq f(A n)\)
by (metis increasingD [OF inc] UNIV_I dA image_subset_iff disjointed_subset
A)
then show \(\left(\sum i . f(\right.\) disjointed \(\left.A i)\right) \leq\left(\sum i . f(A i)\right)\)
by (blast intro!: suminf_le)
qed (auto simp: \(X\) UN_disjointed_eq disjoint_family_disjointed)
lemma (in ring_of_sets) outer_measure_close:
outer_measure \(M f X<e \Longrightarrow \exists A\). range \(A \subseteq M \wedge\) disjoint_family \(A \wedge X \subseteq\) \((\bigcup i . A i) \wedge\left(\sum i . f(A i)\right)<e\)
unfolding outer_measure_def INF_less_iff by auto
lemma (in ring_of_sets) countably_subadditive_outer_measure:
assumes posf: positive \(M f\) and inc: increasing \(M f\)
shows countably_subadditive (Pow \(\Omega\) ) (outer_measure \(M\) f)
proof (simp add: countably_subadditive_def, safe)
fix \(A::\) nat \(\Rightarrow\) _ assume \(A\) : range \(A \subseteq \operatorname{Pow}(\Omega)\) and sb: \((\bigcup i . A i) \subseteq \Omega\)
let ? \(O=\) outer_measure \(M f\)
show ? \(O(\bigcup i . A i) \leq\left(\sum n\right.\).? \(\left.O(A n)\right)\)
proof (rule ennreal_le_epsilon)
fix \(b\) and \(e::\) real assume \(0<e\left(\sum n\right.\). outer_measure \(\left.M f(A n)\right)<t o p\)
then have \(*: \bigwedge n\). outer_measure \(M f(A n)<\) outer_measure \(M f(A n)+e\)
* (1/2) ^Suc n
by (auto simp add: less_top dest!: ennreal_suminf_lessD)
obtain \(B\)
where \(B: \bigwedge n\). range \((B n) \subseteq M\)
and \(s b B: \bigwedge n . A n \subseteq(\bigcup i . B n i)\)
and Ble: \(\bigwedge n\). \(\left(\sum i . f(B n i)\right) \leq ? O(A n)+e *(1 / 2)^{\wedge}(\) Suc \(n)\) by (metis less_imp_le outer_measure_close[OF *])
define \(C\) where \(C=\) case_prod \(B\) o prod_decode
from \(B\) have \(B_{-} i n_{-} M: \bigwedge i j\). \(B i j \in M\)
by (rule range_subsetD)
then have \(C\) : range \(C \subseteq M\)
by (auto simp add: C_def split_def)
have \(A_{-} C:(\bigcup i . A i) \subseteq(\bigcup i . C i)\)
using \(s b B\) by (auto simp add: C_def subset_eq) (metis prod.case prod_encode_inverse)
have ? \(O(\bigcup i . A i) \leq ? O(\bigcup i . C i)\)
using \(A_{-} C A C\) by (intro increasing_outer_measure[THEN increasingD]) (auto dest!: sets_into_space)
also have \(\ldots \leq\left(\sum i . f(C i)\right)\)
using \(C\) by (intro outer_measure_le[OF posf inc]) auto
also have \(\ldots=\left(\sum n . \sum i . f(B n i)\right)\)
using \(B_{-} i n_{-} M\) unfolding \(C_{-} d e f\) comp_def by (intro suminf_ennreal_2dimen)
auto
also have \(\ldots \leq\left(\sum n\right.\). ? \(O(A n)+e *(1 / 2)\) ^ Suc n)
using \(B_{-} n_{-} M\) by (intro suminf_le suminf_nonneg allI Ble) auto
also have \(\ldots=\left(\sum n\right.\). ? \(\left.O(A n)\right)+\left(\sum n\right.\). ennreal \(e *\) ennreal \(((1 / 2)\) ^ Suc n))
using \(\langle 0<e\rangle\) by (subst suminf_add[symmetric])
(auto simp del: ennreal_suminf_cmult simp add: en-
nreal_mult[symmetric])
also have \(\ldots=\left(\sum n\right.\). ? \(\left.O(A n)\right)+e\)
unfolding ennreal_suminf_cmult
by (subst suminf_ennreal_eq[OF zero_le_power power_half_series]) auto
finally show ? \(O(\bigcup i . A i) \leq\left(\sum n\right.\). ? \(\left.O(A n)\right)+e\).
qed
qed
lemma (in ring_of_sets) outer_measure_space_outer_measure:
positive \(M f \Longrightarrow\) increasing \(M f \Longrightarrow\) outer_measure_space (Pow \(\Omega\) ) (outer_measure Mf)
by (simp add: outer_measure_space_def
positive_outer_measure increasing_outer_measure countably_subadditive_outer_measure)
lemma (in ring_of_sets) algebra_subset_lambda_system:
assumes posf: positive \(M f\) and inc: increasing \(M f\) and add: additive \(M f\)
shows \(M \subseteq\) lambda_system \(\Omega(\) Pow \(\Omega)\) (outer_measure \(M f\) )
proof (auto dest: sets_into_space simp add: algebra.lambda_system_eq [OF algebra_Pow])
fix \(x s\) assume \(x: x \in M\) and \(s: s \subseteq \Omega\)
have \([\operatorname{simp}]: \bigwedge x . x \in M \Longrightarrow s \cap(\Omega-x)=s-x\) using \(s\)
by blast
have outer_measure \(M f(s \cap x)+\) outer_measure \(M f(s-x) \leq\) outer_measure \(M f s\)
unfolding outer_measure_def[of \(M f s\) ]
proof (safe intro!: INF_greatest)
fix \(A:\) nat \(\Rightarrow{ }^{\prime}\) 'a set assume \(A\) : disjoint_family \(A\) range \(A \subseteq M s \subseteq(\bigcup i\). A i)
have outer_measure \(M f(s \cap x) \leq\left(\sum i . f(A i \cap x)\right)\)
unfolding outer_measure_def
proof (safe intro!: INF_lower2[of \(\lambda i . A i \cap x]\) )
from \(A(1)\) show disjoint_family ( \(\lambda i . A i \cap x)\)
by (rule disjoint_family_on_bisimulation) auto
qed (insert \(x\) A, auto)
moreover
have outer_measure \(M f(s-x) \leq\left(\sum i . f(A i-x)\right)\)
unfolding outer_measure_def
proof (safe intro!: INF_lower2[of \(\lambda i . A i-x]\) )
from \(A(1)\) show disjoint_family ( \(\lambda i . A i-x\) )
by (rule disjoint_family_on_bisimulation) auto
qed (insert \(x A\), auto)
ultimately have outer_measure \(M f(s \cap x)+\) outer_measure \(M f(s-x) \leq\) \(\left(\sum i . f(A i \cap x)\right)+\left(\sum i . f(A i-x)\right)\) by (rule add_mono)
also have \(\ldots=\left(\sum i . f(A i \cap x)+f(A i-x)\right)\)
using \(A\) (2) \(x\) posf by (subst suminf_add) (auto simp: positive_def)
also have \(\ldots=\left(\sum i . f(A i)\right)\)
using \(A x\)
by (subst add[THEN additiveD, symmetric])
(auto intro!: arg_cong[where \(f=\) suminf \(]\) arg_cong \([\) where \(f=f]\) )
finally show outer_measure \(M f(s \cap x)+\) outer_measure \(M f(s-x) \leq\left(\sum i\right.\).
\(f(A i))\).
qed
moreover
have outer_measure \(M f s \leq\) outer_measure \(\operatorname{Mf}(s \cap x)+\) outer_measure \(M f(s\) \(-x\) )
proof -
have outer_measure \(M f s=\) outer_measure \(M f((s \cap x) \cup(s-x))\)
by (metis Un_Diff_Int Un_commute)
also have \(\ldots \leq\) outer_measure \(\operatorname{Mf}(s \cap x)+\) outer_measure \(M f(s-x)\) apply (rule subadditiveD)
apply (rule ring_of_sets.countably_subadditive_subadditive [OF ring_of_sets_Pow]) apply (simp add: positive_def outer_measure_empty[OF posf])
apply (rule countably_subadditive_outer_measure)
using \(s\) by (auto intro!: posf inc)
finally show ?thesis.
qed
ultimately
show outer_measure \(M f(s \cap x)+\) outer_measure \(M f(s-x)=\) outer_measure Mfs
by (rule order_antisym)
qed
lemma measure_down: measure_space \(\Omega N \mu \Longrightarrow\) sigma_algebra \(\Omega M \Longrightarrow M \subseteq N\) \(\Longrightarrow\) measure_space \(\Omega\) M \(\mu\)
by (auto simp add: measure_space_def positive_def countably_additive_def subset_eq)

\subsection*{6.9.2 Caratheodory's theorem}
theorem (in ring_of_sets) caratheodory':
assumes posf: positive \(M f\) and ca: countably_additive \(M f\)
shows \(\exists \mu::\) 'a set \(\Rightarrow\) ennreal. \((\forall s \in M . \mu s=f s) \wedge\) measure_space \(\Omega\) (sigma_sets
\(\Omega M) \mu\)
proof -
have inc: increasing \(M f\)
by (metis additive_increasing ca countably_additive_additive posf)
let ? \(O=\) outer_measure \(M f\)
define \(l s\) where \(l s=\) lambda_system \(\Omega(\) Pow \(\Omega)\) ? \(O\)
have mls: measure_space \(\Omega l s\) ? \(O\)
using sigma_algebra.caratheodory_lemma
[OF sigma_algebra_Pow outer_measure_space_outer_measure [OF posf inc]]
by (simp add: ls_def)
hence sls: sigma_algebra \(\Omega\) ls
by (simp add: measure_space_def)
have \(M \subseteq l s\)
by (simp add: ls_def)
(metis ca posf inc countably_additive_additive algebra_subset_lambda_system)
hence sgs_sb: sigma_sets \((\Omega)(M) \subseteq l s\)
using sigma_algebra.sigma_sets_subset [OF sls, of M]
by \(\operatorname{simp}\)
have measure_space \(\Omega\) (sigma_sets \(\Omega\) M) ? \(O\)
by (rule measure_down [OF mls], rule sigma_algebra_sigma_sets)
(simp_all add: sgs_sb space_closed)
thus ?thesis using outer_measure_agrees [OF posf ca]
by (intro exI \([o f\) - ? O] ) auto
qed
lemma (in ring_of_sets) caratheodory_empty_continuous:
assumes \(f\) : positive \(M\) fadditive \(M f\) and fin: \(\bigwedge A . A \in M \Longrightarrow f A \neq \infty\)
assumes cont: \(\bigwedge A\). range \(A \subseteq M \Longrightarrow\) decseq \(A \Longrightarrow(\bigcap i . A i)=\{ \} \Longrightarrow(\lambda i . f\) \((A i)) \longrightarrow 0\)
shows \(\exists \mu::{ }^{\prime}\) a set \(\Rightarrow\) ennreal．\((\forall s \in M . \mu s=f s) \wedge\) measure＿space \(\Omega\)（sigma＿sets \(\Omega M) \mu\)
proof（intro caratheodory＇empty＿continuous＿imp＿countably＿additive f）
show \(\forall A \in M . f A \neq \infty\) using \(f i n\) by auto
qed（rule cont）

\section*{6．9．3 Volumes}
definition volume ：：＇a set set \(\Rightarrow\)（＇a set \(\Rightarrow\) ennreal \() \Rightarrow\) bool where
volume \(M f \longleftrightarrow\) \((f\}=0) \wedge(\forall a \in M .0 \leq f a) \wedge\)
\(\left(\forall C \subseteq M\right.\) ．disjoint \(C \longrightarrow\) finite \(\left.C \longrightarrow \bigcup C \in M \longrightarrow f(\bigcup C)=\left(\sum c \in C . f c\right)\right)\)
lemma volumeI：
assumes \(f\}=0\)
assumes \(\bigwedge a . a \in M \Longrightarrow 0 \leq f a\)
assumes \(\bigwedge C . C \subseteq M \Longrightarrow\) disjoint \(C \Longrightarrow\) finite \(C \Longrightarrow \bigcup C \in M \Longrightarrow f(\bigcup C)\)
\(=\left(\sum c \in C . f c\right)\)
shows volume \(M f\)
using assms by（auto simp：volume＿def）
lemma volume＿positive：
volume \(M f \Longrightarrow a \in M \Longrightarrow 0 \leq f a\)
by（auto simp：volume＿def）
lemma volume＿empty：
volume \(M f \Longrightarrow f\}=0\)
by（auto simp：volume＿def）
proposition volume＿finite＿additive：
assumes volume \(M f\)
assumes \(A: \bigwedge i . i \in I \Longrightarrow A i \in M\) disjoint＿family＿on A I finite \(I \bigcup\left(A^{\prime} I\right) \in\) M
shows \(f\left(\bigcup\left(A^{\prime} I\right)\right)=\left(\sum i \in I . f(A i)\right)\)
proof－
have \(A^{`} I \subseteq M\) disjoint \(\left(A^{`} I\right)\) finite \(\left(A^{`} I\right) \bigcup\left(A^{`} I\right) \in M\)
using \(A\) by（auto simp：disjoint＿family＿on＿disjoint＿image）
with «volume \(M f\) 〉 have \(f\left(\bigcup\left(A^{\prime} I\right)\right)=\left(\sum a \in A^{\prime} I . f a\right)\)
unfolding volume＿def by blast
also have \(\ldots=\left(\sum i \in I . f(A i)\right)\)
proof（subst sum．reindex＿nontrivial）
fix \(i j\) assume \(i \in I j \in I i \neq j A i=A j\)
with \(\left\langle\right.\) disjoint＿family＿on \(\left.A^{\text {}}\right\rangle\) have \(A i=\{ \}\)
by（auto simp：disjoint＿family＿on＿def）
then show \(f\left(\begin{array}{ll}A & i\end{array}\right)=0\)
using volume＿empty［OF 〈volume \(M \mathrm{f}\rangle\) ］by simp
qed（auto intro：〈finite \(I\rangle)\)
finally show \(f\left(\bigcup\left(A^{\prime} I\right)\right)=\left(\sum i \in I . f(A i)\right)\)
by simp

\section*{qed}
```

lemma (in ring_of_sets) volume_additiveI:
assumes pos: $\wedge a . a \in M \Longrightarrow 0 \leq \mu a$
assumes [simp]: $\mu\}=0$
assumes add: $\bigwedge a b . a \in M \Longrightarrow b \in M \Longrightarrow a \cap b=\{ \} \Longrightarrow \mu(a \cup b)=\mu a$
$+\mu b$
shows volume $M \mu$
proof (unfold volume_def, safe)
fix C assume finite $C C \subseteq M$ disjoint C
then show $\mu(\cup C)=$ sum μC
proof (induct C)
case (insert c C)
from $\operatorname{insert}(1,2,4,5)$ have $\mu(\cup($ insert $c C))=\mu c+\mu(\bigcup C)$
by (auto intro!: add simp: disjoint_def)
with insert show? ?ase
by (simp add: disjoint_def)
qed simp
qed fact+

```
proposition (in semiring_of_sets) extend_volume:
    assumes volume \(M \mu\)
    shows \(\exists \mu^{\prime}\). volume generated_ring \(\mu^{\prime} \wedge\left(\forall a \in M . \mu^{\prime} a=\mu a\right)\)
proof -
    let \(? R=\) generated_ring
    have \(\forall a \in\) ?R. \(\exists m . \exists C \subseteq M . a=\bigcup C \wedge\) finite \(C \wedge\) disjoint \(C \wedge m=\left(\sum c \in C\right.\).
\(\mu c)\)
    by (auto simp: generated_ring_def)
    from bchoice \([O F\) this \(]\) guess \(\mu^{\prime}\).. note \(\mu^{\prime}\) _spec \(=\) this
    \{ fix \(C\) assume \(C: C \subseteq M\) finite \(C\) disjoint \(C\)
        fix \(D\) assume \(D: D \subseteq M\) finite \(D\) disjoint \(D\)
        assume \(\cup C=\bigcup D\)
        have \(\left(\sum d \in D . \mu d\right)=\left(\sum d \in D . \sum c \in C . \mu(c \cap d)\right)\)
        proof (intro sum.cong refl)
            fix \(d\) assume \(d \in D\)
            have \(U n_{-} e q-d:(\bigcup c \in C . c \cap d)=d\)
                using \(\langle d \in D\rangle \cup C=\bigcup D\) by auto
            moreover have \(\mu(\bigcup c \in C . c \cap d)=\left(\sum c \in C . \mu(c \cap d)\right)\)
            proof (rule volume_finite_additive)
                    \{ fix \(c\) assume \(c \in C\) then show \(c \cap d \in M\)
                        using \(C D\langle d \in D\rangle\) by auto \(\}\)
                    show \((\cup a \in C . a \cap d) \in M\)
                    unfolding Un_eq_d using \(\langle d \in D\rangle D\) by auto
                    show disjoint_family_on \((\lambda a . a \cap d) C\)
                    using 〈disjoint \(C\) 〉 by (auto simp: disjoint_family_on_def disjoint_def)
            qed fact+
            ultimately show \(\mu d=\left(\sum c \in C . \mu(c \cap d)\right)\) by simp
        qed \(\}\)
```

note split_sum $=$ this
\{ fix C assume $C: C \subseteq M$ finite C disjoint C
fix D assume $D: D \subseteq M$ finite D disjoint D
assume $\bigcup C=\bigcup D$
with split_sum $[O F C D]$ split_sum $[O F D C]$
have $\left(\sum d \in D . \mu d\right)=\left(\sum c \in C . \mu c\right)$
by (simp, subst sum.swap, simp add: ac_simps) \}
note sum_eq $=$ this
\{ fix C assume $C: C \subseteq M$ finite C disjoint C
then have $\bigcup C \in ? R$ by (auto simp: generated_ring_def)
with μ^{\prime} _spec $[T H E N$ bspec, of $\bigcup C]$
obtain D where
$D: D \subseteq M$ finite D disjoint $D \bigcup C=\bigcup D$ and $\mu^{\prime}(\bigcup C)=\left(\sum d \in D . \mu d\right)$
by auto
with sum_eq[OF CD] have $\mu^{\prime}(\bigcup C)=\left(\sum c \in C . \mu c\right)$ by simp $\}$
note $\mu^{\prime}=$ this
show ?thesis
proof (intro exI conjI ring_of_sets.volume_additiveI[OF generating_ring] ballI)
fix a assume $a \in M$ with $\mu^{\prime}[o f\{a\}]$ show $\mu^{\prime} a=\mu a$
by (simp add: disjoint_def)
next
fix a assume $a \in ? R$ then guess $C a$.. note $C a=$ this
with $\mu^{\prime}[$ of Ca] 〈volume $M \mu\rangle[T H E N$ volume_positive $]$
show $0 \leq \mu^{\prime} a$
by (auto intro!: sum_nonneg)
next
show $\mu^{\prime}\{ \}=0$ using $\mu^{\prime}[o f$ \{\}] by auto
next
fix a assume $a \in ? R$ then guess $C a$.. note $C a=$ this
fix b assume $b \in ? R$ then guess $C b$.. note $C b=$ this
assume $a \cap b=\{ \}$
with $C a C b$ have $C a \cap C b \subseteq\{\}\}$ by auto
then have C_Int_cases: $C a \cap C b=\{\{ \}\} \vee C a \cap C b=\{ \}$ by auto
from $\langle a \cap b=\{ \}\rangle$ have $\mu^{\prime}(\bigcup(C a \cup C b))=\left(\sum c \in C a \cup C b . \mu c\right)$
using $C a C b$ by (intro μ^{\prime}) (auto intro!: disjoint_union)
also have $\ldots=\left(\sum c \in C a \cup C b . \mu c\right)+\left(\sum c \in C a \cap C b . \mu c\right)$
using C_Int_cases volume_empty[OF 〈volume $M \mu\rangle]$ by (elim disjE) simp_all
also have $\ldots=\left(\sum c \in C a . \mu c\right)+\left(\sum c \in C b . \mu c\right)$
using $C a C b$ by (simp add: sum.union_inter)
also have $\ldots=\mu^{\prime} a+\mu^{\prime} b$
using $C a C b$ by (simp add: μ^{\prime})
finally show $\mu^{\prime}(a \cup b)=\mu^{\prime} a+\mu^{\prime} b$
using $C a C b$ by simp
qed
qed

```

\section*{Caratheodory on semirings}
```

theorem (in semiring_of_sets) caratheodory:
assumes pos: positive $M \mu$ and ca: countably_additive $M \mu$
shows $\exists \mu^{\prime}::$ 'a set \Rightarrow ennreal. $\left(\forall s \in M . \mu^{\prime} s=\mu s\right) \wedge$ measure_space Ω
(sigma_sets ΩM) μ^{\prime}
proof -
have volume $M \mu$
proof (rule volumeI)
\{ fix a assume $a \in M$ then show $0 \leq \mu a$
using pos unfolding positive_def by auto \}
note $p=$ this
fix C assume sets_ $C: C \subseteq M \bigcup C \in M$ and disjoint C finite C
have $\exists F^{\prime}$. bij_betw $F^{\prime}\{. .<$ card $C\} C$
by (rule finite_same_card_bij[OF _ 〈finite C〉]) auto
then guess F^{\prime}.. note $F^{\prime}=$ this
then have $F^{\prime}: C=F^{\prime} \quad\{. .<$ card $C\}$ inj_on $F^{\prime}\{. .<\operatorname{card} C\}$
by (auto simp: bij_betw_def)
\{ fix $i j$ assume $*: i<\operatorname{card} C j<\operatorname{card} C i \neq j$
with F^{\prime} have $F^{\prime} i \in C F^{\prime} j \in C F^{\prime} i \neq F^{\prime} j$
unfolding inj_on_def by auto
with 〈disjoint C 〉[THEN disjointD]
have $F^{\prime} i \cap F^{\prime} j=\{ \}$
by auto \}
note $F^{\prime}{ }_{-}$disj $=$this
define F where $F i=\left(\right.$ if $i<$ card C then $F^{\prime} i$ else $\left.\{ \}\right)$ for i
then have disjoint_family F
using F^{\prime} _disj by (auto simp: disjoint_family_on_def)
moreover from F^{\prime} have $(\bigcup i . F i)=\bigcup C$
by (auto simp add: F_def split: if_split_asm cong del: SUP_cong)
moreover have sets_F: $\bigwedge i . F i \in M$
using F^{\prime} sets_ C by (auto simp: $F_{-} d e f$)
moreover note sets_ C
ultimately have $\mu(\bigcup C)=\left(\sum i . \mu(F i)\right)$
using ca[unfolded countably_additive_def, THEN spec, of $F]$ by auto
also have $\ldots=\left(\sum i<\operatorname{card} C . \mu\left(F^{\prime} i\right)\right)$
proof -
have (λ i. if $i \in\{. .<\operatorname{card} C\}$ then $\mu\left(F^{\prime} i\right)$ else 0$)$ sums $\left(\sum i<\right.$ card $C . \mu\left(F^{\prime}\right.$
i))
by (rule sums_If_-finite_set) auto
also have $\left(\lambda i\right.$. if $i \in\{. .<$ card $C\}$ then $\mu\left(F^{\prime} i\right)$ else 0$)=(\lambda i . \mu(F i))$
using pos by (auto simp: positive_def $F_{-} d e f$)
finally show $\left(\sum i . \mu(F i)\right)=\left(\sum i<\operatorname{card} C . \mu\left(F^{\prime} i\right)\right)$
by (simp add: sums_iff)
qed
also have $\ldots=\left(\sum c \in C . \mu c\right)$
using F^{\prime} (2) by (subst (2) F^{\prime}) (simp add: sum.reindex)
finally show $\mu(\bigcup C)=\left(\sum c \in C \cdot \mu c\right)$.
next

```
```

 show }\mu{}=
 using <positive M \mu> by (rule positiveD1)
 qed
from extend_volume[OF this] obtain }\mp@subsup{\mu}{-}{}r\mathrm{ where
V:volume generated_ring \mu_r \a. a \in M\Longrightarrow\mua= \mu_r a
by auto
interpret G: ring_of_sets \Omega generated_ring
by (rule generating_ring)
have pos: positive generated_ring \mu_r
using V unfolding positive_def by (auto simp: positive_def intro!: volume_positive
volume_empty)
have countably_additive generated_ring \mp@subsup{\mu_}{-}{}r
proof (rule countably_additiveI)

```

```

 and Un_A:(\bigcupi. A' i) \in generated_ring
 from generated_ringE[OF Un_A] guess C'. note C' = this
 { fix c assume c\inC'
 moreover define }A\mathrm{ where [abs_def]: A i= 盾i}\capc\mathrm{ for i
 ultimately have A: range A\subseteqgenerated_ring disjoint_family }
 and Un_A: (\bigcupi.A i) \in generated_ring
 using A' C'
 by (auto intro!: G.Int G.finite_Union intro: generated_ringI_Basic simp:
 disjoint_family_on_def)
from A C ' }\langlec\in\mp@subsup{C}{}{\prime}\rangle\mathrm{ have UN_eq: (\i. A i)=c
by (auto simp: A_def)
have \foralli::nat. \existsf::nat => 'a set. }\mp@subsup{\mu}{-}{}r(Ai)=(\sumj.\mu_r(fj))\wedge\mathrm{ disjoint_family
f^U(range f)=A i^(\forallj.fj\inM)
(is }\foralli.?Pi
proof
fix }
from A have Ai: A i\in generated_ring by auto
from generated_ringE[OF this] guess C . note C = this
have }\exists\mp@subsup{F}{}{\prime}\mathrm{ . bij_betw }\mp@subsup{F}{}{\prime}{..<card C}
by (rule finite_same_card_bij[OF _ (finite C`]) auto
then guess F .. note F=this
define f}\mathrm{ where [abs_def]: fi=(if i< card C then F i else {}) for i
then have f:bij_betw f {..< card C} C
by (intro bij_betw_cong[THEN iffD1,OF _ F]) auto
with C have }\forallj.fj\in
by (auto simp: Pi_iff f_def dest!: bij_betw_imp_funcset)
moreover
from fC have d_f: disjoint_family_on f {..<card C}

```
by (intro disjoint_image_disjoint_family_on) (auto simp: bij_betw_def) then have disjoint_family \(f\)
by (auto simp: disjoint_family_on_def \(f_{-} d e f\) )
moreover
have Ai_eq: \(A i=(\bigcup x<\) card \(C . f x)\)
using \(f C\) Ai unfolding bij_betw_def by auto
then have \(\cup(\) range \(f)=A i\)
using \(f\) by (auto simp add: \(f_{-}\)def)
moreover
\(\left\{\right.\) have \(\left(\sum j . \mu_{\_} r(f j)\right)=\left(\sum j\right.\). if \(j \in\{. .<\) card \(C\}\) then \(\mu_{\_} r(f j)\) else 0\()\)
using volume_empty[OF V(1)] by (auto intro!: arg_cong [where \(f=\) suminf \(]\) simp: \(f_{-}\)def)
also have \(\ldots=\left(\sum j<\operatorname{card} C . \mu_{-} r(f j)\right)\)
by (rule sums_If_finite_set[THEN sums_unique, symmetric]) simp
also have \(\ldots=\mu_{-} r\left(\begin{array}{ll}A\end{array}\right)\)
using C f[THEN bij_betw_imp_funcset] unfolding Ai_eq
by (intro volume_finite_additive \(\left[O F V(1)\right.\) _ \(d_{-} f\), symmetric])
(auto simp: Pi_iff Ai_eq intro: generated_ringI_Basic)
finally have \(\mu_{-} r(A i)=\left(\sum j\right.\). \(\left.\mu_{-} r(f j)\right)\).. \}
ultimately show ?P \(i\)
by blast

\section*{qed}
from choice \([O F\) this] guess \(f\).. note \(f=\) this
then have \(U N_{-} f_{-} e q:(\bigcup i\). case_prod \(f(\) prod_decode \(i))=(\bigcup i . A i)\)
unfolding UN_extend_simps surj_prod_decode by (auto simp: set_eq_iff)
have \(d\) : disjoint_family ( \(\lambda i\). case_prod \(f\) (prod_decode \(i)\) )
unfolding disjoint_family_on_def
proof (intro ballI impI)
fix \(m n\) :: nat assume \(m \neq n\)
then have neq: prod_decode \(m \neq\) prod_decode \(n\)
using inj_prod_decode[of UNIV] by (auto simp: inj_on_def)
show case_prod \(f(\) prod_decode \(m) \cap\) case_prod \(f(\) prod_decode \(n)=\{ \}\)
proof cases
assume \(f s t\) (prod_decode \(m)=\) fst (prod_decode \(n\) )
then show? thesis
using neq \(f\) by (fastforce simp: disjoint_family_on_def)
next
assume neq: \(f s t(\) prod_decode \(m) \neq f s t(\) prod_decode \(n)\)
have case_prod \(f(\) prod_decode \(m) \subseteq A(\) fst \((\) prod_decode \(m))\)
case_prod \(f(\) prod_decode \(n) \subseteq A\left(f s t\left(p r o d \_d e c o d e ~ n\right)\right)\)
using \(f[\) THEN spec, of fst (prod_decode m)]
using \(f\) [THEN spec, of fst (prod_decode n)]
by (auto simp: set_eq_iff)
with \(f A\) neq show ?thesis
by (fastforce simp: disjoint_family_on_def subset_eq set_eq_iff)
qed
qed
from \(f\) have \(\left(\sum n . \mu_{-} r(A n)\right)=\left(\sum n . \mu_{-} r\left(\operatorname{case\_ prod} f\left(p r o d \_d e c o d e ~ n\right)\right)\right)\)
```

 by (intro suminf_ennreal_2dimen[symmetric] generated_ringI_Basic)
 (auto split: prod.split)
 also have \(\ldots=\left(\sum n . \mu(\right.\) case_prod \(f(\) prod_decode \(\left.n))\right)\)
 using \(f V(2)\) by (auto intro!: arg_cong[where \(f=\) suminf] split: prod.split)
 also have \(\ldots=\mu(\bigcup i\). case_prod \(f(\) prod_decode \(i))\)
 using \(f\left\langle c \in C^{\prime}\right\rangle C^{\prime}\)
 by (intro ca[unfolded countably_additive_def, rule_format \(]\))
 (auto split: prod.split simp: UN_f_eq d UN_eq)
 finally have \(\left(\sum n . \mu_{-} r\left(A^{\prime} n \cap c\right)\right)=\mu c\)
 using \(U N_{-} f_{-} e q U N_{-} e q\) by (simp add: \(\left.\left.A_{-} d e f\right)\right\}\)
 note \(e q=\) this
 have \(\left(\sum n . \mu_{-} r\left(A^{\prime} n\right)\right)=\left(\sum n . \sum c \in C^{\prime} . \mu_{_} r\left(A^{\prime} n \cap c\right)\right)\)
 using \(C^{\prime} A^{\prime}\)
 by (subst volume_finite_additive[symmetric, OF V(1)])
 (auto simp: disjoint_def disjoint_family_on_def
 intro!: G.Int G.finite_Union arg_cong[where \(f=\lambda X\). suminf \(\left(\lambda i . \mu_{-} r\right.\)
 ($X i)$)] ext
intro: generated_ringI_Basic)
also have $\ldots=\left(\sum c \in C^{\prime} . \sum n . \mu_{_} r\left(A^{\prime} n \cap c\right)\right)$
using $C^{\prime} A^{\prime}$
by (intro suminf_sum G.Int G.finite_Union) (auto intro: generated_ringI_Basic)
also have $\ldots=\left(\sum c \in C^{\prime} . \mu_{-} r c\right)$
using eq $V C^{\prime}$ by (auto intro!: sum.cong)
also have $\ldots=\mu_{-} r\left(\bigcup C^{\prime}\right)$
using $C^{\prime} U n_{-} A$
by (subst volume_finite_additive[symmetric, OF V(1)])
(auto simp: disjoint_family_on_def disjoint_def
intro: generated_ringI_Basic)
finally show $\left(\sum n . \mu_{-} r\left(A^{\prime} n\right)\right)=\mu_{_} r\left(\bigcup_{i} . A^{\prime} i\right)$
using C^{\prime} by simp
qed
from G.caratheodory ${ }^{[}\left[O F\left\langle p o s i t i v e ~ g e n e r a t e d _r i n g ~ \mu_{-} r\right\rangle\left\langle c o u n t a b l y _a d d i t i v e ~ g e n-~\right.\right.$
erated_ring $\left.\mu_{-} r\right\rangle$]
guess μ^{\prime}..
with V show ?thesis
unfolding sigma_sets_generated_ring_eq
by (intro exI[of - μ I]) (auto intro: generated_ringI_Basic)
qed
lemma extend_measure_caratheodory:
fixes G :: ' $i \Rightarrow{ }^{\prime}$ 'a set
assumes M : $M=$ extend_measure $\Omega I G \mu$
assumes $i \in I$
assumes semiring_of_sets $\Omega\left(G^{\prime} I\right)$
assumes empty: $\bigwedge i . i \in I \Longrightarrow G i=\{ \} \Longrightarrow \mu i=0$
assumes $i n j: \bigwedge i j . i \in I \Longrightarrow j \in I \Longrightarrow G i=G j \Longrightarrow \mu i=\mu j$
assumes nonneg: $\bigwedge i . i \in I \Longrightarrow 0 \leq \mu i$
assumes add: $\bigwedge A:: n a t \Rightarrow{ }^{\prime} i . \bigwedge j . A \in U N I V \rightarrow I \Longrightarrow j \in I \Longrightarrow$ disjoint_family

```
\((G \circ A) \Longrightarrow\)
\((\bigcup i . G(A i))=G j \Longrightarrow\left(\sum n . \mu(A n)\right)=\mu j\)
shows emeasure \(M(G i)=\mu i\)
proof -
interpret semiring_of_sets \(\Omega\) G'I
by fact
have \(\forall g \in G^{\bullet}\) I. \(\exists i \in I . g=G i\)
by auto
then obtain sel where sel: \(\bigwedge g . g \in G ' I \Longrightarrow\) sel \(g \in I \bigwedge g . g \in G ' I \Longrightarrow G\) \((\) sel \(g)=g\)
by metis
have \(\exists \mu^{\prime}\). \(\left(\forall s \in G\right.\) ' \(I . \mu^{\prime} s=\mu(\) sel s) \() \wedge\) measure_space \(\Omega\) (sigma_sets \(\Omega(G\) ' I)) \(\mu^{\prime}\)
proof (rule caratheodory)
show positive \(\left(G^{\prime} I\right)(\lambda s . \mu(\) sel s))
by (auto simp: positive_def intro!: empty sel nonneg)
show countably_additive \(\left(G{ }^{\prime} I\right)(\lambda s . \mu(\mathrm{sel} s))\)
proof (rule countably_additiveI)
fix \(A::\) nat \(\Rightarrow\) ' \(a\) set assume range \(A \subseteq G\) 'I disjoint_family \(A(\bigcup i . A i) \in\) \(G\) ' I
then show \(\left(\sum i . \mu(\operatorname{sel}(A i))\right)=\mu(\operatorname{sel}(\bigcup i . A i))\)
by (intro add) (auto simp: sel image_subset_iff_funcset comp_def Pi_iff intro!: sel)
qed
qed
then obtain \(\mu^{\prime}\) where \(\mu^{\prime}: \forall s \in G\) ' \(I\). \(\mu^{\prime} s=\mu\) (sel s) measure_space \(\Omega\) (sigma_sets \(\left.\Omega\left(G^{\prime} I\right)\right) \mu^{\prime}\)
by metis
show ? thesis
proof (rule emeasure_extend_measure[OF M])
\{ fix \(i\) assume \(i \in I\) then show \(\mu^{\prime}(G i)=\mu i\)
using \(\mu^{\prime}\) by (auto intro!: inj sel) \}
show \(G\) ' \(I \subseteq\) Pow \(\Omega\)
by (rule space_closed)
then show positive (sets \(M\) ) \(\mu^{\prime}\) countably_additive (sets \(M\) ) \(\mu^{\prime}\)
using \(\mu^{\prime}\) by (simp_all add: \(M\) sets_extend_measure measure_space_def)
qed fact
qed
proposition extend_measure_caratheodory_pair:
fixes \(G:: ' i \Rightarrow ' j \Rightarrow{ }^{\prime}\) a set
assumes \(M: M=\) extend_measure \(\Omega\{(a, b) . P a b\}(\lambda(a, b) . G a b)(\lambda(a, b)\).
\(\mu a b\) )
assumes \(P i j\)
assumes semiring: semiring_of_sets \(\Omega\{G a b \mid a b\). \(P a b\}\)
assumes empty: \(\backslash i j . P i j \Longrightarrow G i j=\{ \} \Longrightarrow \mu i j=0\)
```

 assumes \(i n j: \bigwedge i j k l . P i j \Longrightarrow P k l \Longrightarrow G i j=G k l \Longrightarrow \mu i j=\mu k l\)
 assumes nonneg: \(\bigwedge i j . P i j \Longrightarrow 0 \leq \mu i j\)
 assumes \(a d d: \bigwedge A::\) nat \(\Rightarrow{ }^{\prime} i . \bigwedge B:: n a t \Rightarrow{ }^{\prime} j\). \(\bigwedge j k\).
 \((\bigwedge n . P(A n)(B n)) \Longrightarrow P j k \Longrightarrow\) disjoint_family \((\lambda n . G(A n)(B n)) \Longrightarrow\)
 \((\bigcup i . G(A i)(B i))=G j k \Longrightarrow\left(\sum n . \mu(A n)(B n)\right)=\mu j k\)
 shows emeasure \(M(G i j)=\mu i j\)
 proof -
have emeasure $M((\lambda(a, b) . G a b)(i, j))=(\lambda(a, b) . \mu a b)(i, j)$
proof (rule extend_measure_caratheodory[OF M])
show semiring_of_sets $\Omega((\lambda(a, b) . G a b)$ ' $\{(a, b) . P a b\})$
using semiring by (simp add: image_def conj_commute)
next
fix $A::$ nat $\Rightarrow\left({ }^{\prime} i \times{ }^{\prime} j\right)$ and j assume $A \in U N I V \rightarrow\{(a, b) . P a b\} j \in\{(a$,
b). $P a b\}$
disjoint_family $((\lambda(a, b) . G a b) \circ A)$
$(\bigcup i$. case A i of $(a, b) \Rightarrow G a b)=($ case j of $(a, b) \Rightarrow G a b)$
then show $\left(\sum n\right.$. case $A n$ of $\left.(a, b) \Rightarrow \mu a b\right)=($ case j of $(a, b) \Rightarrow \mu a b)$
using add[of λi. fst (A i) λi. snd (A i) fst j snd j]
by (simp add: split_beta' comp_def Pi_iff)
qed (auto split: prod.splits intro: assms)
then show? ?hesis by simp
qed
end

```

\subsection*{6.10 Bochner Integration for Vector-Valued Functions}
theory Bochner_Integration
imports Finite_Product_Measure
begin
In the following development of the Bochner integral we use second countable topologies instead of separable spaces. A second countable topology is also separable.
```

proposition borel_measurable_implies_sequence_metric:
fixes f :: ' }a>>'b::{\mathrm{ {metric_space, second_countable_topology}
assumes [measurable]: f\in borel_measurable M
shows \existsF.(\foralli. simple_function M (Fi))\wedge(\forallx\inspace M. (\lambdai.Fix)\longrightarrowf
x) }
(\foralli.\forallx\inspace M.dist (Fix)z\leq2* dist (fx)z)
proof -
obtain D :: 'b set where countable D and D: \X. open X > X ={} \Longrightarrow
\existsd\inD.d\inX
by (erule countable_dense_setE)
define e where e= from_nat_into D
{fix n x

```
```

 obtain \(d\) where \(d \in D\) and \(d: d \in\) ball \(x(1 /\) Suc \(n)\)
 using \(D[\) of ball \(x(1 /\) Suc \(n)]\) by auto
 from \(\langle d \in D\rangle D[\) of UNIV] 〈countable \(D\rangle\) obtain \(i\) where \(d=e i\)
 unfolding e_def by (auto dest: from_nat_into_surj)
 with \(d\) have \(\exists i\). dist \(x(e i)<1 / S u c n\)
 by auto \}
 note \(e=\) this
 define \(A\) where [abs_def]: \(A m n=\)
 \(\{x \in \operatorname{space} M\). dist \((f x)(e n)<1 /(\) Suc \(m) \wedge 1 /(\) Suc \(m) \leq \operatorname{dist}(f x) z\}\) for
 $m n$
define B where $\left[a b s _d e f\right]: B m=$ disjointed $(A m)$ for m
define m where [abs_def]: $m N x=\operatorname{Max}\{m . m \leq N \wedge x \in(\bigcup n \leq N . B m n)\}$
for $N x$
define F where [abs_def]: $F N x=$
(if $(\exists m \leq N . x \in(\bigcup n \leq N . B m n)) \wedge(\exists n \leq N . x \in B(m N x) n)$
then $e($ LEAST $n . x \in B(m N x) n)$ else $z)$ for $N x$
have B_{-}imp_ $A[$ intro, simp $]: \bigwedge x m n . x \in B m n \Longrightarrow x \in A m n$
using disjointed_subset[of $A \mathrm{~m}$ for m] unfolding B_{-}def by auto
\{ fix m
have $\bigwedge n . A m n \in$ sets M
by (auto simp: A_def)
then have $\wedge n$. $B m n \in$ sets M
using sets.range_disjointed_sets[of $A m M]$ by (auto simp: B_def) \}
note this[measurable]

```
    \{ fix \(N i x\) assume \(\exists m \leq N . x \in(\bigcup n \leq N . B m n)\)
    then have \(m N x \in\{m::\) nat. \(m \leq N \wedge x \in(\bigcup n \leq N . B m n)\}\)
        unfolding \(m_{-}\)def by (intro Max_in) auto
        then have \(m N x \leq N \exists n \leq N . x \in B(m N x) n\)
        by auto \}
    note \(m=\) this
    \(\{\operatorname{fix} j N i x\) assume \(j \leq N i \leq N x \in B j i\)
    then have \(j \leq m N x\)
        unfolding m_def by (intro Max_ge) auto \}
    note \(m \_\)upper \(=\)this
    show ?thesis
    unfolding simple_function_def
    proof (safe intro!: exI [of _ F])
    have [measurable]: \(\bigwedge i . F i \in\) borel_measurable \(M\)
        unfolding \(F_{-}\)def m_def by measurable
    show \(\backslash x i . F i-{ }^{\prime}\{x\} \cap\) space \(M \in\) sets \(M\)
        by measurable
\(\{\) fix \(i\)
\{ fix \(n x\) assume \(x \in B(m i x) n\)
        then have \((L E A S T n . x \in B(m i x) n) \leq n\)
                by (intro Least_le)
        also assume \(n \leq i\)
        finally have \((L E A S T n . x \in B(m i x) n) \leq i\).
    then have \(F i\) 'space \(M \subseteq\{z\} \cup e\) ' \(\{. . i\}\)
        by (auto simp: F_def)
    then show finite ( \(F i\) ' space \(M\) )
        by (rule finite_subset) auto \}
    \(\{\operatorname{fix} N i n x\) assume \(i \leq N n \leq N x \in B\) in
    then have \(1: \exists m \leq N . x \in(\bigcup n \leq N . B m n)\) by auto
    from \(m[O F\) this \(]\) obtain \(n\) where \(n: m N x \leq N n \leq N x \in B(m N x) n\)
by auto
    moreover
    define \(L\) where \(L=(\) LEAST \(n . x \in B(m N x) n)\)
    have dist \((f x)(e L)<1 / \operatorname{Suc}(m N x)\)
    proof -
        have \(x \in B(m N x) L\)
            using \(n(3)\) unfolding \(L_{-}\)def by (rule LeastI)
        then have \(x \in A(m N x) L\)
            by auto
        then show ?thesis
            unfolding \(A_{-}\)def by simp
    qed
    ultimately have \(\operatorname{dist}(f x)(F N x)<1 / \operatorname{Suc}(m N x)\)
        by (auto simp add: F_def L_def) \}
note \(*=\) this
fix \(x\) assume \(x \in\) space \(M\)
show \((\lambda i . F i x) \longrightarrow f x\)
proof cases
    assume \(f x=z\)
    then have \(\bigwedge i n . x \notin A i n\)
        unfolding \(A_{-}\)def by auto
    then have \(\bigwedge i . F i x=z\)
        by (auto simp: F_def)
    then show ?thesis
        using \(\langle f x=z\rangle\) by auto
next
    assume \(f x \neq z\)
    show ?thesis
    proof (rule tendstoI)
        fix \(e\) :: real assume \(0<e\)
        with \(\langle f x \neq z\rangle\) obtain \(n\) where \(1 /\) Suc \(n<e 1 /\) Suc \(n<\operatorname{dist}(f x) z\)
            by (metis dist_nz order_less_trans neq_iff nat_approx_posE)
        with \(\langle x \in\) space \(M\rangle\langle f x \neq z\rangle\) have \(x \in(\bigcup i\). \(B n i)\)
unfolding \(A_{-}\)def \(B_{-}\)def \(U N \_d i s j o i n t e d \_e q u s i n g ~ e ~ b y ~ a u t o ~\) then obtain \(i\) where \(i: x \in B n i\) by auto
show eventually ( \(\lambda i\). dist \((F i x)(f x)<e)\) sequentially
using eventually_ge_at_top[of max \(n i]\)
proof eventually_elim
fix \(j\) assume \(j: \max n i \leq j\)
with \(i\) have \(\operatorname{dist}(f x)(F j x)<1 / \operatorname{Suc}(m j x)\)
by (intro \(*\left[O F_{-} i\right]\) ) auto
also have \(\ldots \leq 1 /\) Suc \(n\)
using \(j\) m_upper \(\left[O F ~ \_~ i ~ i\right] ~\)
by (auto simp: field_simps)
also note \(\langle 1 /\) Suc \(n<e\rangle\)
finally show dist \((F j x)(f x)<e\)
by (simp add: less_imp_le dist_commute)
qed
qed
qed
fix \(i\)
\{ fix \(n m\) assume \(x \in A n m\) then have dist (em) \((f x)+\operatorname{dist}(f x) z \leq 2 * \operatorname{dist}(f x) z\) unfolding \(A_{-}\)def by (auto simp: dist_commute)
also have dist (e m) \(z \leq \operatorname{dist}(e m)(f x)+\operatorname{dist}(f x) z\) by (rule dist_triangle)
finally (xtrans) have \(\operatorname{dist}(e m) z \leq 2 * \operatorname{dist}(f x) z\).
then show dist \((F i x) z \leq 2 * \operatorname{dist}(f x) z\)
unfolding \(F_{-} d e f\)
apply auto
apply (rule LeastI2)
apply auto
done
qed
qed
lemma
fixes \(f::{ }^{\prime} a \Rightarrow{ }^{\prime} b::\) semiring_1 assumes finite \(A\)
shows sum_mult_indicator \([\) simp \(]:\left(\sum x \in A . f x * \operatorname{indicator}(B x)(g x)\right)=\) \(\left(\sum x \in\{x \in A . g x \in B x\} . f x\right)\)
and sum_indicator_mult[simp]: \(\left(\sum x \in A\right.\). indicator \(\left.(B x)(g x) * f x\right)=\left(\sum x \in\{x \in A\right.\). \(g x \in B x\} . f x)\)
unfolding indicator_def
using assms by (auto intro!: sum.mono_neutral_cong_right split: if_split_asm)
lemma borel_measurable_induct_real[consumes 2, case_names set mult add seq]: fixes \(P::\left({ }^{\prime} a \Rightarrow\right.\) real \() \Rightarrow\) bool
assumes \(u: u \in\) borel_measurable \(M \bigwedge x .0 \leq u x\)
assumes set: \(\bigwedge A . A \in\) sets \(M \Longrightarrow P\) (indicator \(A\) )
assumes mult: \(\bigwedge u c .0 \leq c \Longrightarrow u \in\) borel_measurable \(M \Longrightarrow(\bigwedge x .0 \leq u x)\)
\(\Longrightarrow P u \Longrightarrow P(\lambda x . c * u x)\)
```

 assumes add: \(\bigwedge u v . u \in\) borel_measurable \(M \Longrightarrow(\bigwedge x .0 \leq u x) \Longrightarrow P u \Longrightarrow v\)
 \in borel_measurable $M \Longrightarrow(\bigwedge x .0 \leq v x) \Longrightarrow(\bigwedge x . x \in$ space $M \Longrightarrow u x=0 \vee$
$v x=0) \Longrightarrow P v \Longrightarrow P(\lambda x . v x+u x)$
assumes seq: $\bigwedge U .(\bigwedge i . U i \in$ borel_measurable $M) \Longrightarrow(\bigwedge i x .0 \leq U i x) \Longrightarrow$
$(\bigwedge i . P(U i)) \Longrightarrow$ incseq $U \Longrightarrow(\bigwedge x . x \in$ space $M \Longrightarrow(\lambda i . U i x) \longrightarrow u x)$
$\Longrightarrow P u$
shows $P u$
proof -
have $(\lambda x$. ennreal $(u x)) \in$ borel_measurable M using u by auto
from borel_measurable_implies_simple_function_sequence'[OF this]
obtain U where $U: \bigwedge i$. simple_function $M(U i)$ incseq $U \bigwedge i x . U i x<t o p$
and
sup: $\bigwedge x .(S U P i . U i x)=$ ennreal $(u x)$
by blast
define U^{\prime} where [abs_def]: $U^{\prime} i x=$ indicator (space M) $x *$ enn2real (U i x)
for $i x$
then have $U^{\prime}{ }_{-}$sf $[m e a s u r a b l e]:$ © i. simple_function $M\left(U^{\prime} i\right)$
using U by (auto intro!: simple_function_compose1[where $g=$ enn2real])
show $P u$
proof (rule seq)
show $U^{\prime}: U^{\prime} i \in$ borel_measurable $M \bigwedge x .0 \leq U^{\prime} i x$ for i
using U by (auto
intro: borel_measurable_simple_function
intro!: borel_measurable_enn2real borel_measurable_times
simp: U'_def zero_le_mult_iff)
show incseq U^{\prime}
using $U(2,3)$
by (auto simp: incseq_def le_fun_def image_iff eq_commute U^{\prime} _def indicator_def
enn2real_mono)
fix x assume $x: x \in$ space M
have $(\lambda i . U i x) \longrightarrow(S U P i . U i x)$
using $U(2)$ by (intro LIMSEQ_SUP) (auto simp: incseq_def le_fun_def)
moreover have $(\lambda i . U i x)=\left(\lambda i\right.$. ennreal $\left.\left(U^{\prime} i x\right)\right)$
using $x U(3)$ by (auto simp: fun_eq_iff $U^{\prime}{ }_{-}$def image_iff eq_commute)
moreover have $(S U P$ i. $U i x)=$ ennreal $(u x)$
using sup u (2) by (simp add: max_def)
ultimately show $\left(\lambda i, U^{\prime} i x\right) \longrightarrow u x$
using $u U^{\prime}$ by simp
next
fix i
have $U^{\prime}{ }^{i}$ ' space $M \subseteq$ enn2real ' $(U i$ 'space M) finite $(U i$ 'space $M)$
unfolding U^{\prime} _def using $U(1)$ by (auto dest: simple_functionD)
then have fin: finite ($U^{\prime} i^{\prime}$ 'space M)
by (metis finite_subset finite_imageI)
moreover have $\bigwedge z .\left\{y . U^{\prime} i z=y \wedge y \in U^{\prime} i '\right.$ space $M \wedge z \in$ space $\left.M\right\}=$
(if $z \in$ space M then $\left\{U^{\prime} i z\right\}$ else $\}$)

```
by auto
ultimately have \(U^{\prime}:\left(\lambda z . \sum y \in U^{\prime} i^{\prime}\right.\) space M. \(y *\) indicator \(\left\{x \in\right.\) space \(M . U^{\prime}\) \(i x=y\} z)=U^{\prime} i\)
by (simp add: \(U^{\prime}\) _def fun_eq_iff)
have \(\bigwedge x . x \in U^{\prime} i\) ' space \(M \Longrightarrow 0 \leq x\)
by (auto simp: \(U^{\prime}\) _def)
with fin have \(P\left(\lambda z . \sum y \in U^{\prime} i^{\prime}\right.\) space \(M . y *\) indicator \(\left\{x \in\right.\) space \(M . U^{\prime} i x=\) \(y\} z)\)
proof induct
case empty from set[of \{\}] show ?case
by (simp add: indicator_def[abs_def])
next
case (insert \(x\) F)
from insert.prems have nonneg: \(x \geq 0 \bigwedge y . y \in F \Longrightarrow y \geq 0\)
by simp_all
hence *: \(P\left(\lambda x a . x *\right.\) indicat_real \(\left\{x^{\prime} \in\right.\) space \(\left.\left.M . U^{\prime} i x^{\prime}=x\right\} x a\right)\)
by (intro mult set) auto
have \(P\left(\lambda z . x *\right.\) indicat_real \(\left\{x^{\prime} \in\right.\) space \(\left.M . U^{\prime} i x^{\prime}=x\right\} z+\)
\(\left(\sum y \in F . y *\right.\) indicat_real \(\left\{x \in\right.\) space \(\left.\left.\left.M . U^{\prime} i x=y\right\} z\right)\right)\)
using insert (1-3)
by (intro add * sum_nonneg mult_nonneg_nonneg)
(auto simp: nonneg indicator_def sum_nonneg_eq_0_iff)
thus?case
using insert.hyps by (subst sum.insert) auto
qed
with \(U^{\prime}\) show \(P\left(U^{\prime} i\right)\) by simp
qed
qed
lemma scaleR_cong_right:
fixes \(x::\) ' \(a\) :: real_vector
shows \((x \neq 0 \Longrightarrow r=p) \Longrightarrow r *_{R} x=p *_{R} x\)
by (cases \(x=0\) ) auto
inductive simple_bochner_integrable :: 'a measure \(\Rightarrow\left({ }^{\prime} a \Rightarrow{ }^{\prime} b:\right.\) :real_vector \() \Rightarrow\) bool for \(M f\) where
simple_function \(M f \Longrightarrow\) emeasure \(M\{y \in\) space \(M\). \(f y \neq 0\} \neq \infty \Longrightarrow\) simple_bochner_integrable Mf
lemma simple_bochner_integrable_compose2:
assumes \(p_{-} 0\) : p \(00=0\)
shows simple_bochner_integrable \(M f \Longrightarrow\) simple_bochner_integrable \(M g \Longrightarrow\) simple_bochner_integrable \(M(\lambda x . p(f x)(g x))\)
proof (safe intro!: simple_bochner_integrable.intros elim!: simple_bochner_integrable.cases del: notI)
assume sf: simple_function \(M f\) simple_function \(M g\)
then show simple_function \(M(\lambda x . p(f x)(g x))\)
by (rule simple_function_compose2)
from sf have [measurable]:
\(f \in\) measurable \(M\) (count_space UNIV)
\(g \in\) measurable \(M\) (count_space UNIV)
by (auto intro: measurable_simple_function)
assume fin: emeasure \(M\{y \in\) space \(M . f y \neq 0\} \neq \infty\) emeasure \(M\{y \in\) space M. \(g y \neq 0\} \neq \infty\)
have emeasure \(M\{x \in\) space \(M . p(f x)(g x) \neq 0\} \leq\)
emeasure \(M(\{x \in\) space \(M . f x \neq 0\} \cup\{x \in\) space \(M . g x \neq 0\})\)
by (intro emeasure_mono) (auto simp: p_0)
also have \(\ldots \leq\) emeasure \(M\{x \in\) space \(M . f x \neq 0\}+\) emeasure \(M\{x \in\) space M. \(g x \neq 0\}\)
by (intro emeasure_subadditive) auto
finally show emeasure \(M\{y \in\) space \(M . p(f y)(g y) \neq 0\} \neq \infty\)
using fin by (auto simp: top_unique)
qed
lemma simple_function_finite_support:
assumes \(f\) : simple_function \(M f\) and fin: \(\left(\int^{+} x . f x \partial M\right)<\infty\) and \(n n: \bigwedge x .0\) \(\leq f x\)
shows emeasure \(M\{x \in\) space \(M . f x \neq 0\} \neq \infty\)
proof cases
from \(f\) have meas[measurable]: \(f \in\) borel_measurable \(M\) by (rule borel_measurable_simple_function)
assume non_empty: \(\exists x \in\) space \(M . f x \neq 0\)
define \(m\) where \(m=\operatorname{Min}\) (f'space \(M-\{0\}\) )
have \(m \in f^{\prime}\) space \(M-\{0\}\) unfolding \(m_{-}\)def using \(f\) non_empty by (intro Min_in) (auto simp: sim-
ple_function_def)
then have \(m: 0<m\) using \(n n\) by (auto simp: less_le)
from \(m\) have \(m *\) emeasure \(M\{x \in\) space \(M .0 \neq f x\}=\) \(\left(\int{ }^{+} x . m *\right.\) indicator \(\{x \in\) space \(\left.M .0 \neq f x\} x \partial M\right)\)
using \(f\) by (intro nn_integral_cmult_indicator[symmetric]) auto
also have \(\ldots \leq\left(\int^{+} x . f x \partial M\right)\)
using \(A E_{-}\)space
proof (intro nn_integral_mono_AE, eventually_elim)
fix \(x\) assume \(x \in\) space \(M\)
with \(n n\) show \(m *\) indicator \(\{x \in\) space \(M .0 \neq f x\} x \leq f x\) using \(f\) by (auto split: split_indicator simp: simple_function_def m_def)
qed
also note \(\langle. . .<\infty\) )
finally show ?thesis
using \(m\) by (auto simp: ennreal_mult_less_top)
next
```

 assume \(\neg(\exists x \in\) space \(M . f x \neq 0)\)
 with \(n n\) have \(*:\{x \in\) space \(M . f x \neq 0\}=\{ \}\)
 by auto
 show ?thesis unfolding * by simp
 qed
lemma simple_bochner_integrableI_bounded:
assumes f : simple_function $M f$ and $f i n:\left(\int^{+} x\right.$. norm $\left.(f x) \partial M\right)<\infty$
shows simple_bochner_integrable Mf
proof
have emeasure $M\{y \in \operatorname{space} M$. ennreal $(\operatorname{norm}(f y)) \neq 0\} \neq \infty$
proof (rule simple_function_finite_support)
show simple_function $M(\lambda x$. ennreal (norm $(f x)))$
using f by (rule simple_function_compose1)
show $\left(\int+y\right.$. ennreal $($ norm $\left.(f y)) \partial M\right)<\infty$ by fact
qed simp
then show emeasure $M\{y \in$ space $M . f y \neq 0\} \neq \infty$ by simp
qed fact
definition simple_bochner_integral $::$ ' a measure $\Rightarrow(' a \Rightarrow$ ' $b::$ real_vector $) \Rightarrow$ ' b
where
simple_bochner_integral $M f=\left(\sum y \in f^{\prime}\right.$ space M. measure $M\{x \in$ space $M . f x=$
$y\} *_{R} y$)

```
proposition simple_bochner_integral_partition:
    assumes \(f\) : simple_bochner_integrable \(M f\) and \(g\) : simple_function \(M g\)
    assumes sub: \(\bigwedge x y . x \in\) space \(M \Longrightarrow y \in\) space \(M \Longrightarrow g x=g y \Longrightarrow f x=f y\)
    assumes \(v: \bigwedge x . x \in\) space \(M \Longrightarrow f x=v(g x)\)
    shows simple_bochner_integral \(M f=\left(\sum y \in g\right.\) 'space \(M\). measure \(M\{x \in\) space
M. \(\left.g x=y\} *_{R} v y\right)\)
        \(\left(\right.\) is \(\left._{-}=? r\right)\)
proof -
    from \(f g\) have \([\) simp \(]\) : finite ( \(f^{\prime}\) space \(M\) ) finite ( \(g\) 'space \(M\) )
        by (auto simp: simple_function_def elim: simple_bochner_integrable.cases)
    from \(f\) have [measurable]: \(f \in\) measurable \(M\) (count_space UNIV)
    by (auto intro: measurable_simple_function elim: simple_bochner_integrable.cases)
    from \(g\) have [measurable]: \(g \in\) measurable \(M\) (count_space UNIV)
    by (auto intro: measurable_simple_function elim: simple_bochner_integrable.cases)
    \{ fix \(y\) assume \(y \in\) space \(M\)
    then have \(f\) ' space \(M \cap\{i . \exists x \in\) space \(M . i=f x \wedge g y=g x\}=\{v(g y)\}\)
        by (auto cong: sub simp: v[symmetric]) \}
    note \(e q=\) this
    have simple_bochner_integral \(M f=\)
    ( \(\sum y \in f^{\prime}\) space \(M\). ( \(\sum z \in g^{‘}\) space \(M\).
                if \(\exists x \in\) space \(M . y=f x \wedge z=g x\) then measure \(M\{x \in\) space \(M . g x=z\}\)
```

else 0) $*_{R} y$)
unfolding simple_bochner_integral_def
proof (safe intro!: sum.cong scaleR_cong_right)
fix y assume $y: y \in$ space $M f y \neq 0$
have $[$ simp $]$: $g '$ space $M \cap\{z . \exists x \in$ space $M . f y=f x \wedge z=g x\}=$
$\{z . \exists x \in$ space $M . f y=f x \wedge z=g x\}$
by auto
have eq:\{x \in space M. $f x=f y\}=$
$(\bigcup i \in\{z . \exists x \in$ space $M . f y=f x \wedge z=g x\} .\{x \in$ space $M . g x=i\})$
by (auto simp: eq_commute cong: sub rev_conj_cong)
have finite (g^{\prime} space M) by simp
then have finite $\{z . \exists x \in$ space $M . f y=f x \wedge z=g x\}$
by (rule rev_finite_subset) auto
moreover
\{ fix x assume $x \in$ space $M f x=f y$
then have $x \in$ space $M f x \neq 0$
using y by auto
then have emeasure $M\{y \in$ space $M . g y=g x\} \leq$ emeasure $M\{y \in$ space
M. $f y \neq 0\}$
by (auto intro!: emeasure_mono cong: sub)
then have emeasure $M\{x a \in$ space $M . g x a=g x\}<\infty$
using f by (auto simp: simple_bochner_integrable.simps less_top) \}
ultimately
show measure $M\{x \in$ space $M . f x=f y\}=$
($\sum z \in g$ 'space M. if $\exists x \in$ space $M . f y=f x \wedge z=g x$ then measure $M\{x$
\in space M. g $x=z\}$ else 0)
apply (simp add: sum.If_cases eq)
apply (subst measure_finite_Union[symmetric])
apply (auto simp: disjoint_family_on_def less_top)
done
qed
also have $\ldots=\left(\sum y \in f^{\prime}\right.$ space $M .\left(\sum z \in g^{\prime}\right.$ 'space M.
if $\exists x \in$ space $M . y=f x \wedge z=g x$ then measure $M\{x \in$ space $M . g x=z\}$
$*_{R}$ y else 0))
by (auto intro!: sum.cong simp: scaleR_sum_left)
also have $\ldots=$? r
by (subst sum.swap)
(auto intro!: sum.cong simp: sum.If_cases scaleR_sum_right[symmetric] eq)
finally show simple_bochner_integral $M f=? r$.
qed
lemma simple_bochner_integral_add:
assumes f : simple_bochner_integrable $M f$ and g : simple_bochner_integrable $M g$
shows simple_bochner_integral $M(\lambda x . f x+g x)=$
simple_bochner_integral $M f+$ simple_bochner_integral $M g$
proof -
from $f g$ have simple_bochner_integral $M(\lambda x . f x+g x)=$
$\left(\sum y \in(\lambda x .(f x, g x))\right.$ 'space M. measure $M\{x \in \operatorname{space} M .(f x, g x)=y\} *_{R}$
$($ fst $y+$ snd $y))$

```
```

 by (intro simple_bochner_integral_partition)
 (auto simp: simple_bochner_integrable_compose2 elim: simple_bochner_integrable.cases)
 moreover from fg}\mathrm{ have simple_bochner_integral Mf=
 (\sumy\in(\lambdax. (fx,gx))' space M. measure M {x\in space M. (fx,g x)=y} *R
 fst y)
by (intro simple_bochner_integral_partition)
(auto simp: simple_bochner_integrable_compose2 elim: simple_bochner_integrable.cases)
moreover from fg}\mathrm{ have simple_bochner_integral Mg=
(\sumy\in(\lambdax. (fx,gx))'space M. measure M {x\in space M. (fx,gx)=y}*R
snd y)
by (intro simple_bochner_integral_partition)
(auto simp: simple_bochner_integrable_compose2 elim: simple_bochner_integrable.cases)
ultimately show ?thesis
by (simp add: sum.distrib[symmetric] scaleR_add_right)
qed
lemma simple_bochner_integral_linear:
assumes linear f
assumes g: simple_bochner_integrable Mg
shows simple_bochner_integral M (\lambdax.f(g x)) =f (simple_bochner_integral M
g)
proof -
interpret linear f by fact
from g have simple_bochner_integral M (\lambdax.f(g x))=
(\sumy\ing'space M. measure M {x\in space M.gx=y} ** f y)
by (intro simple_bochner_integral_partition)
(auto simp: simple_bochner_integrable_compose2[where p=\lambdax y.f x]
elim: simple_bochner_integrable.cases)
also have ... = f(simple_bochner_integral M g)
by (simp add: simple_bochner_integral_def sum scale)
finally show ?thesis .
qed
lemma simple_bochner_integral_minus:
assumes f: simple_bochner_integrable Mf
shows simple_bochner_integral M (\lambdax. - f x) = - simple_bochner_integral M f
proof -
from linear_uminus f show ?thesis
by (rule simple_bochner_integral_linear)
qed
lemma simple_bochner_integral_diff:
assumes f: simple_bochner_integrable Mf and g: simple_bochner_integrable Mg
shows simple_bochner_integral M (}\lambdax.fx-gx)
simple_bochner_integral M f - simple_bochner_integral Mg
unfolding diff_conv_add_uminus using f g
by (subst simple_bochner_integral_add)
(auto simp: simple_bochner_integral_minus simple_bochner_integrable_compose2[where
p=\lambdax y. - y])

```
```

lemma simple_bochner_integral_norm_bound:
assumes f : simple_bochner_integrable $M f$
shows norm (simple_bochner_integral $M f$) \leq simple_bochner_integral $M(\lambda x$.
norm ($f x)$)
proof -
have norm (simple_bochner_integral $M f$) \leq
($\sum y \in f$ 'space M. norm (measure $M\{x \in$ space $\left.M . f x=y\} *_{R} y\right)$)
unfolding simple_bochner_integral_def by (rule norm_sum)
also have $\ldots=\left(\sum y \in f\right.$ 'space M. measure $M\{x \in$ space $M . f x=y\} *_{R}$ norm
y)
by simp
also have $\ldots=$ simple_bochner_integral $M(\lambda x$. norm $(f x))$
using f
by (intro simple_bochner_integral_partition[symmetric])
(auto intro: f simple_bochner_integrable_compose2 elim: simple_bochner_integrable.cases)
finally show ?thesis .
qed
lemma simple_bochner_integral_nonneg[simp]:
fixes $f::{ }^{\prime} a \Rightarrow$ real
shows $(\bigwedge x .0 \leq f x) \Longrightarrow 0 \leq$ simple_bochner_integral $M f$
by (force simp add: simple_bochner_integral_def intro: sum_nonneg)
lemma simple_bochner_integral_eq_nn_integral:
assumes f : simple_bochner_integrable $M f \bigwedge x .0 \leq f x$
shows simple_bochner_integral $M f=\left(\int{ }^{+} x . f x \partial M\right)$
proof -
$\{$ fix $x y z$ have $(x \neq 0 \Longrightarrow y=z) \Longrightarrow$ ennreal $x * y=$ ennreal $x * z$
by (cases $x=0$) (auto simp: zero_ennreal_def[symmetric $]$) \}
note ennreal_cong_mult $=$ this
have [measurable]: $f \in$ borel_measurable M
using $f(1)$ by (auto intro: borel_measurable_simple_function elim: simple_bochner_integrable.cases)
\{ fix y assume $y: y \in$ space $M f y \neq 0$
have ennreal (measure $M\{x \in$ space $M . f x=f y\}$) = emeasure $M\{x \in$ space
$M . f x=f y\}$
proof (rule emeasure_eq_ennreal_measure[symmetric])
have emeasure $M\{x \in$ space $M . f x=f y\} \leq$ emeasure $M\{x \in$ space $M . f$
$x \neq 0\}$
using y by (intro emeasure_mono) auto
with f show emeasure $M\{x \in$ space $M . f x=f y\} \neq t o p$
by (auto simp: simple_bochner_integrable.simps top_unique)
qed
moreover have $\{x \in$ space $M . f x=f y\}=(\lambda x$. ennreal $(f x))-$ ' $\{$ ennreal
(fy) $\} \cap$ space M
using f by auto
ultimately have ennreal (measure $M\{x \in$ space $M . f x=f y\})=$

```
emeasure \(M((\lambda x\). ennreal \((f x))-‘\{\) ennreal \((f y)\} \cap\) space \(M)\) by simp \(\}\) with \(f\) have simple_bochner_integral \(M f=\left(\int{ }^{S} x . f x \partial M\right)\)
unfolding simple_integral_def
by (subst simple_bochner_integral_partition[OF \(f(1)\), where \(g=\lambda x\). ennreal ( \(f\)
\(x)\) and \(v=e n n 2 r e a l])\)
(auto intro: f simple_function_compose1 elim: simple_bochner_integrable.cases
intro!: sum.cong ennreal_cong_mult
simp: ac_simps ennreal_mult
simp flip: sum_ennreal)
also have \(\ldots=\left(\int^{+} x . f x \partial M\right)\)
using \(f\)
by (intro nn_integral_eq_simple_integral[symmetric])
(auto simp: simple_function_compose1 simple_bochner_integrable.simps)
finally show? ?thesis.
qed
lemma simple_bochner_integral_bounded:
fixes \(f::{ }^{\prime} a \Rightarrow\) ' \(b::\{\) real_normed_vector, second_countable_topology \}
assumes \(f[\) measurable \(]: f \in\) borel_measurable \(M\)
assumes \(s\) : simple_bochner_integrable \(M s\) and \(t\) : simple_bochner_integrable \(M t\)
shows ennreal (norm (simple_bochner_integral Ms - simple_bochner_integral M
t)) \(\leq\)
\(\left.\overline{\left(\int\right.}+x . \operatorname{norm}(f x-s x) \partial M\right)+\left(\int+x . \operatorname{norm}(f x-t x) \partial M\right)\)
(is ennreal \((\) norm \((? s-? t)) \leq ? S+? T)\)
proof -
have [measurable]: \(s \in\) borel_measurable \(M t \in\) borel_measurable \(M\)
using \(s t\) by (auto intro: borel_measurable_simple_function elim: simple_bochner_integrable.cases)
have ennreal \((\) norm \((? s-? t))=\) norm \((\) simple_bochner_integral \(M(\lambda x . s x-\) \(t x)\) )
using \(s\) t by (subst simple_bochner_integral_diff) auto
also have \(\ldots \leq\) simple_bochner_integral \(M(\lambda x\). norm \((s x-t x))\)
using simple_bochner_integrable_compose2 \([\) of (-) Mst] st
by (auto intro!: simple_bochner_integral_norm_bound)
also have \(\ldots=\left(\int{ }^{+} x\right.\). norm \(\left.(s x-t x) \partial M\right)\)
using simple_bochner_integrable_composeZ \([\) of \(\lambda x y\).norm \((x-y) M s t] s t\)
by (auto intro!: simple_bochner_integral_eq_nn_integral)
also have \(\ldots \leq\left(\int{ }^{+} x\right.\). ennreal (norm \(\left.(f x-s x)\right)+\) ennreal (norm \((f x-t\)
x)) \(\partial M\) )
by (auto intro!: nn_integral_mono simp flip: ennreal_plus)
(metis (erased, hide_lams) add_diff_cancel_left add_diff_eq diff_add_eq order_trans
norm_minus_commute norm_triangle_ineq4 order_refl)
also have \(\ldots=? S+? T\)
by (rule nn_integral_add) auto
finally show ?thesis .
qed
inductive has_bochner_integral :: 'a measure \(\Rightarrow\left({ }^{\prime} a \Rightarrow ' b\right) \Rightarrow{ }^{\prime} b::\{\) real_normed_vector,
```

second_countable_topology $\} \Rightarrow$ bool
for $M f x$ where
$f \in$ borel_measurable $M \Longrightarrow$
(^i. simple_bochner_integrable $M(s i)) \Longrightarrow$
$\left(\lambda i . \int{ }^{+} x . \operatorname{norm}(f x-s i x) \partial M\right) \longrightarrow 0 \Longrightarrow$
(λi. simple_bochner_integral $M(s i)) \longrightarrow x \Longrightarrow$
has_bochner_integral Mfx
lemma has_bochner_integral_cong:
assumes $M=N \bigwedge x . x \in$ space $N \Longrightarrow f x=g x x=y$
shows has_bochner_integral $M f x \longleftrightarrow$ has_bochner_integral N g y
unfolding has_bochner_integral.simps assms(1,3)
using assms(2) by (simp cong: measurable_cong_simp nn_integral_cong_simp)
lemma has_bochner_integral_cong_AE:
$f \in$ borel_measurable $M \Longrightarrow g \in$ borel_measurable $M \Longrightarrow(A E x$ in $M . f x=g$
$x) \Longrightarrow$
has_bochner_integral $M f x \longleftrightarrow$ has_bochner_integral $M g x$
unfolding has_bochner_integral.simps
by (intro arg_cong[where $f=E x]$ ext conj_cong rev_conj_cong refl arg_cong[where
$f=\lambda x . x \longrightarrow 0]$
nn_integral_cong_AE)
auto
lemma borel_measurable_has_bochner_integral:
has_bochner_integral $M f x \Longrightarrow f \in$ borel_measurable M
by (rule has_bochner_integral.cases)
lemma borel_measurable_has_bochner_integral' $[$ measurable_dest $]$:
has_bochner_integral $M f x \Longrightarrow g \in$ measurable $N M \Longrightarrow(\lambda x . f(g x)) \in$
borel_measurable N
using borel_measurable_has_bochner_integral[measurable] by measurable
lemma has_bochner_integral_simple_bochner_integrable:
simple_bochner_integrable $M f \Longrightarrow$ has_bochner_integral $M f$ (simple_bochner_integral
Mf)
by (rule has_bochner_integral.intros[where $\left.s=\lambda_{-} . f\right]$)
(auto intro: borel_measurable_simple_function
elim: simple_bochner_integrable.cases
simp: zero_ennreal_def[symmetric])
lemma has_bochner_integral_real_indicator:
assumes [measurable]: $A \in$ sets M and A : emeasure $M A<\infty$
shows has_bochner_integral M (indicator A) (measure $M A$)
proof -
have sbi: simple_bochner_integrable M (indicator $A::^{\prime} a \Rightarrow$ real)
proof
have $\{y \in$ space M. (indicator A $y::$ real $) \neq 0\}=A$
using sets.sets_into_space[OF $\langle A \in$ sets $M\rangle$] by (auto split: split_indicator)

```
```

 then show emeasure \(M\{y \in\) space \(M\). (indicator A \(y::\) real \() \neq 0\} \neq \infty\)
 using \(A\) by auto
 qed (rule simple_function_indicator assms)+
 moreover have simple_bochner_integral \(M\) (indicator \(A\)) \(=\) measure \(M A\)
 using simple_bochner_integral_eq_nn_integral[OF sbi] A
 by (simp add: ennreal_indicator emeasure_eq_ennreal_measure)
 ultimately show ?thesis
 by (metis has_bochner_integral_simple_bochner_integrable)
 qed
lemma has_bochner_integral_add[intro]:
has_bochner_integral Mfx has_bochner_integral Mgy
has_bochner_integral $M(\lambda x . f x+g x)(x+y)$
proof (safe intro!: has_bochner_integral.intros elim!: has_bochner_integral.cases)
fix $s f s g$
assume $f_{-} s f:\left(\lambda i . \int^{+} x . \operatorname{norm}(f x-s f i x) \partial M\right) \longrightarrow 0$
assume $g_{-} s g:\left(\lambda i . \int+{ }^{+}\right.$. norm $\left.(g x-s g i x) \partial M\right) \longrightarrow 0$
assume sf: $\forall i$. simple_bochner_integrable M (sf i)
and $s g: \forall i$. simple_bochner_integrable M ($s g i$)
then have [measurable]: $\bigwedge i$. sf $i \in$ borel_measurable $M \bigwedge i . s g i \in$ borel_measurable
M
by (auto intro: borel_measurable_simple_function elim: simple_bochner_integrable.cases)
assume [measurable]: $f \in$ borel_measurable $M g \in$ borel_measurable M
show $\bigwedge i$. simple_bochner_integrable $M(\lambda x$.sf $i x+s g i x)$
using sf sg by (simp add: simple_bochner_integrable_compose2)
show $\left(\lambda i . \int+x .(\operatorname{norm}(f x+g x-(s f i x+s g i x))) \partial M\right) \longrightarrow 0$
(is ? $f \longrightarrow 0$)
proof (rule tendsto_sandwich)
show eventually $\left(\lambda n .0 \leq\right.$?f n) sequentially $\left(\lambda_{-} .0\right) \longrightarrow 0$
by auto
show eventually $\left(\lambda i\right.$. ? $i \leq\left(\int{ }^{+} x\right.$. $($ norm $\left.(f x-s f i x)) \partial M\right)+\int+x$. n norm
$(g x-s g i x)) \partial M)$ sequentially
(is eventually (λi.?f $i \leq$? g i) sequentially)
proof (intro always_eventually allI)
fix i have ?f $i \leq\left(\int^{+} x\right.$. $($ norm $(f x-s f i x))+$ ennreal (norm $(g x-s g i$
x)) ∂M)
by (auto intro!: nn_integral_mono norm_diff_triangle_ineq
simp flip: ennreal_plus)
also have $\ldots=$? $g i$
by (intro nn_integral_add) auto
finally show ?f $i \leq$? $g i$.
qed
show ? $g \longrightarrow 0$
using tendsto_add[OF f_sf g_sg] by simp
qed
qed (auto simp: simple_bochner_integral_add tendsto_add)

```
```

lemma has_bochner_integral_bounded_linear:
assumes bounded_linear T
shows has_bochner_integral $M f x \Longrightarrow$ has_bochner_integral $M(\lambda x . T(f x))(T$
x)
proof (safe intro!: has_bochner_integral.intros elim!: has_bochner_integral.cases)
interpret T : bounded_linear T by fact
have [measurable]: $T \in$ borel_measurable borel
by (intro borel_measurable_continuous_onI T.continuous_on continuous_on_id)
assume [measurable]: $f \in$ borel_measurable M
then show $(\lambda x . T(f x)) \in$ borel_measurable M
by auto
fix s assume $f_{-} s:\left(\lambda i . \int^{+} x . \operatorname{norm}(f x-s i x) \partial M\right) \longrightarrow 0$
assume $s: \forall i$. simple_bochner_integrable $M(s i)$
then show $\bigwedge i$. simple_bochner_integrable $M(\lambda x . T(s i x))$
by (auto intro: simple_bochner_integrable_compose2 T.zero)
have [measurable]: $\bigwedge i$. s $i \in$ borel_measurable M
using s by (auto intro: borel_measurable_simple_function elim: simple_bochner_integrable.cases)
obtain K where $K: K>0 \bigwedge x i$. norm $(T(f x)-T(s i x)) \leq n o r m(f x-$
s ix) *K
using T.pos_bounded by (auto simp: T.diff[symmetric])
show $\left(\lambda i . \int{ }^{+} x \cdot \operatorname{norm}(T(f x)-T(s i x)) \partial M\right) \longrightarrow 0$
(is ? $f \longrightarrow 0$)
proof (rule tendsto_sandwich)
show eventually $(\lambda n .0 \leq$?f $n)$ sequentially $\left(\lambda_{_} .0\right) \longrightarrow 0$
by auto
show eventually $\left(\lambda i\right.$. ?f $i \leq K *\left(\int^{+} x\right.$. norm $\left.\left.(f x-s i x) \partial M\right)\right)$ sequentially
(is eventually $(\lambda i$.?f $i \leq ? g$ i) sequentially)
proof (intro always_eventually allI)
fix i have ?f $i \leq\left(\int^{+} x\right.$. ennreal $\left.K * \operatorname{norm}(f x-s i x) \partial M\right)$
using K by (intro nn_integral_mono) (auto simp: ac_simps ennreal_mult[symmetric])
also have $\ldots=$? $g i$
using K by (intro nn_integral_cmult) auto
finally show ?f $i \leq$? g.
qed
show ? $g \longrightarrow 0$
using ennreal_tendsto_cmult $\left[O F_{-} f_{-} s\right]$ by simp
qed
assume (λi. simple_bochner_integral $M(s i)) \longrightarrow x$
with s show (λi. simple_bochner_integral $M(\lambda x . T(s i x))) \longrightarrow T x$
by (auto intro!: T.tendsto simp: simple_bochner_integral_linear T.linear_axioms)
qed

```
lemma has_bochner_integral_zero[intro]: has_bochner_integral M ( \(\lambda x\). 0) 0 by (auto intro!: has_bochner_integral.intros[where \(s=\lambda_{-}\). 0\(]\)
simp: zero_ennreal_def[symmetric] simple_bochner_integrable.simps simple_bochner_integral_def image_constant_conv)
lemma has_bochner_integral_scaleR_left[intro]:
\((c \neq 0 \Longrightarrow\) has_bochner_integral \(M f x) \Longrightarrow\) has_bochner_integral \(M\left(\lambda x . f x *_{R}\right.\)
c) \(\left(x *_{R} c\right)\)
by (cases \(c=0)(\) auto simp add: has_bochner_integral_bounded_linear[OF bounded_linear_scaleR_left])
lemma has_bochner_integral_scaleR_right[intro]:
\((c \neq 0 \Longrightarrow\) has_bochner_integral \(M f x) \Longrightarrow\) has_bochner_integral \(M\left(\lambda x . c *_{R} f\right.\)
x) \(\left(c *_{R} x\right)\)
by ( cases \(c=0)(\) auto simp add: has_bochner_integral_bounded_linear [OF bounded_linear_scaleR_right \(])\)
lemma has_bochner_integral_mult_left[intro]:
fixes \(c::\) _:: \{real_normed_algebra,second_countable_topology\}
shows \((c \neq 0 \Longrightarrow\) has_bochner_integral \(M f x) \Longrightarrow\) has_bochner_integral \(M(\lambda x\).
\(f x * c)(x * c)\)
by (cases \(c=0\) ) (auto simp add: has_bochner_integral_bounded_linear[OF bounded_linear_mult_left])
lemma has_bochner_integral_mult_right[intro]:
fixes \(c::\) _:: \{real_normed_algebra,second_countable_topology\}
shows \((c \neq 0 \Longrightarrow\) has_bochner_integral \(M f x) \Longrightarrow\) has_bochner_integral \(M(\lambda x\).
\(c * f x)(c * x)\)
by (cases \(c=0)(\) auto simp add: has_bochner_integral_bounded_linear \([\) OF bounded_linear_mult_right] \()\)
lemmas has_bochner_integral_divide \(=\)
has_bochner_integral_bounded_linear[OF bounded_linear_divide]
lemma has_bochner_integral_divide_zero[intro]:
fixes \(c::\) _::\{real_normed_field, field, second_countable_topology\}
shows \((c \neq 0 \Longrightarrow\) has_bochner_integral \(M f x) \Longrightarrow\) has_bochner_integral \(M(\lambda x\).
\(f x / c)(x / c)\)
using has_bochner_integral_divide by (cases \(c=0\) ) auto
lemma has_bochner_integral_inner_left[intro]:
\((c \neq 0 \Longrightarrow\) has_bochner_integral \(M f x) \Longrightarrow\) has_bochner_integral \(M(\lambda x . f x \cdot c)\)
( \(x \cdot c\) )
by (cases \(c=0)(\) auto simp add: has_bochner_integral_bounded_linear[OF bounded_linear_inner_left])
lemma has_bochner_integral_inner_right[intro]:
\((c \neq 0 \Longrightarrow\) has_bochner_integral \(M f x) \Longrightarrow\) has_bochner_integral \(M(\lambda x . c \cdot f x)\)
( \(c \cdot x\) )
by (cases \(c=0\) ) (auto simp add: has_bochner_integral_bounded_linear [OF bounded_linear_inner_right])
lemmas has_bochner_integral_minus =
has_bochner_integral_bounded_linear[OF bounded_linear_minus[OF bounded_linear_ident]]
lemmas has_bochner_integral_Re =
```

 has_bochner_integral_bounded_linear[OF bounded_linear_Re]
 lemmas has_bochner_integral_Im =
has_bochner_integral_bounded_linear[OF bounded_linear_Im]
lemmas has_bochner_integral_cnj =
has_bochner_integral_bounded_linear[OF bounded_linear_cnj]
lemmas has_bochner_integral_of_real $=$
has_bochner_integral_bounded_linear[OF bounded_linear_of_real]
lemmas has_bochner_integral_fst $=$
has_bochner_integral_bounded_linear[OF bounded_linear_fst]
lemmas has_bochner_integral_snd =
has_bochner_integral_bounded_linear[OF bounded_linear_snd]
lemma has_bochner_integral_indicator:
$A \in$ sets $M \Longrightarrow$ emeasure $M A<\infty$
has_bochner_integral $M\left(\lambda x\right.$. indicator $\left.A x *_{R} c\right)$ (measure $M A *_{R} c$)
by (intro has_bochner_integral_scaleR_left has_bochner_integral_real_indicator)
lemma has_bochner_integral_diff:
has_bochner_integral Mfx has_bochner_integral Mgy
has_bochner_integral $M(\lambda x . f x-g x)(x-y)$
unfolding diff_conv_add_uminus
by (intro has_bochner_integral_add has_bochner_integral_minus)
lemma has_bochner_integral_sum:
$(\bigwedge i . i \in I \Longrightarrow$ has_bochner_integral $M(f i)(x i)) \Longrightarrow$
has_bochner_integral $M\left(\lambda x . \sum i \in I . f i x\right)\left(\sum i \in I . x i\right)$
by (induct I rule: infinite_finite_induct) auto
proposition has_bochner_integral_implies_finite_norm:
has_bochner_integral Mfx $\Longrightarrow\left(\int^{+} x\right.$. norm $\left.(f x) \partial M\right)<\infty$
proof (elim has_bochner_integral.cases)
fix $s v$
assume [measurable]: $f \in$ borel_measurable M and $s: \bigwedge i$. simple_bochner_integrable
$M(s i)$ and
lim_0: $\left(\lambda i . \int{ }^{+} x\right.$. ennreal $($ norm $\left.(f x-s i x)) \partial M\right) \longrightarrow 0$
from order_tendstoD[OF lim_0, of ∞]
obtain i where $f_{-} s_{-} f i n:\left(\int^{+} x\right.$. ennreal $($ norm $\left.(f x-s i x)) \partial M\right)<\infty$
by (auto simp: eventually_sequentially)
have [measurable]: $\bigwedge i$. s $i \in$ borel_measurable M
using s by (auto intro: borel_measurable_simple_function elim: simple_bochner_integrable.cases)
define m where $m=($ if space $M=\{ \}$ then 0 else Max $((\lambda x$.norm (s ix))'space
M))
have finite ($s i$ ' space M)
using s by (auto simp: simple_function_def simple_bochner_integrable.simps)
then have finite (norm 's i 'space M)
by (rule finite_imageI)
then have $\bigwedge x . x \in$ space $M \Longrightarrow$ norm $(s i x) \leq m 0 \leq m$

```
by (auto simp: m_def image_comp comp_def Max_ge_iff)
then have \(\left(\int{ }^{+} x\right.\). norm \(\left.(s i x) \partial M\right) \leq\left(\int^{+}\right.\)x. ennreal \(m *\) indicator \(\{x \in\) space
M. s i \(x \neq 0\} x \partial M)\)
by (auto split: split_indicator intro!: Max_ge nn_integral_mono simp:)
also have \(\ldots<\infty\)
using \(s\) by (subst nn_integral_cmult_indicator) (auto simp: \(\langle 0 \leq m\rangle\) simple_bochner_integrable.simps ennreal_mult_less_top less_top)
finally have \(s_{-}\)fin: \(\left(\int^{+} x\right.\). norm \(\left.(s i x) \partial M\right)<\infty\).
have \(\left(\int^{+} x . \operatorname{norm}(f x) \partial M\right) \leq\left(\int^{+}\right.\)x. ennreal \((\operatorname{norm}(f x-s i x))+\) ennreal
(norm (s i x)) \(\partial M\) )
by (auto intro!: nn_integral_mono simp flip: ennreal_plus)
(metis add.commute norm_triangle_sub)
also have \(\ldots=\left(\int^{+}\right.\)x. norm \(\left.(f x-s i x) \partial M\right)+\left(\int{ }^{+}\right.\)x. norm (s ix) \(\left.\partial M\right)\)
by (rule nn_integral_add) auto
also have \(\ldots<\infty\)
using \(s_{-} f i n f_{-} s_{-} f i n\) by auto
finally show \(\left(\int^{+} x\right.\). ennreal \((\) norm \(\left.(f x)) \partial M\right)<\infty\).
qed
proposition has_bochner_integral_norm_bound:
assumes \(i\) : has_bochner_integral \(M f x\)
shows norm \(x \leq\left(\int{ }^{+} x\right.\). norm \(\left.(f x) \partial M\right)\)
using assms proof
fix \(s\) assume
\(x:(\lambda i\). simple_bochner_integral \(M(s i)) \longrightarrow x(\) is ?s \(\longrightarrow x)\) and \(s[s i m p]: \bigwedge i\). simple_bochner_integrable \(M(s i)\) and
lim: \(\left(\lambda i . \int^{+} x\right.\). ennreal (norm \(\left.\left.(f x-s i x)\right) \partial M\right) \longrightarrow 0\) and
\(f[\) measurable \(]: f \in\) borel_measurable \(M\)
have [measurable]: \i. s \(i \in\) borel_measurable \(M\)
using \(s\) by (auto simp: simple_bochner_integrable.simps intro: borel_measurable_simple_function)
show norm \(x \leq\left(\int{ }^{+} x\right.\). norm \(\left.(f x) \partial M\right)\)
proof (rule LIMSEQ_le)
show ( \(\lambda\) i. ennreal (norm (?s i))) \(\longrightarrow\) norm \(x\)
using \(x\) by (auto simp: tendsto_ennreal_iff intro: tendsto_intros)
show \(\exists N . \forall n \geq N\). norm \((\) ?s \(n) \leq\left(\int{ }^{+} x\right.\). norm \(\left.(f x-s n x) \partial M\right)+\left(\int{ }^{+} x\right.\). norm \((f x) \partial M)\)
(is \(\exists N . \forall n \geq N . \leq\) ? \(t n\) )
proof (intro exI allI impI)
fix \(n\)
have ennreal \((\) norm \((\) ?s \(n)) \leq\) simple_bochner_integral \(M(\lambda x\). norm \((s \quad n x))\)
by (auto intro!: simple_bochner_integral_norm_bound)
also have \(\ldots=\left(\int{ }^{+}\right.\)x. norm \(\left.\binom{s}{n} \partial M\right)\)
by (intro simple_bochner_integral_eq_nn_integral)
(auto intro: s simple_bochner_integrable_compose2)
also have \(\ldots \leq\left(\int^{+} x\right.\). ennreal (norm \(\left.\left.(f x-s n x)\right)+\operatorname{norm}(f x) \partial M\right)\)
by (auto intro!: nn_integral_mono simp flip: ennreal_plus)
(metis add.commute norm_minus_commute norm_triangle_sub)
also have \(\ldots=\) ? \(t n\)
by (rule nn_integral_add) auto
finally show norm (?s n) \(\leq\) ? \(n\).
qed
have ? \(t \longrightarrow 0+\left(\int^{+}\right.\)x. ennreal (norm \(\left.\left.(f x)\right) \partial M\right)\)
using has_bochner_integral_implies_finite_norm [OF i]
by (intro tendsto_add tendsto_const lim)
then show ? \(t \longrightarrow \int{ }^{+} x\). ennreal (norm \(\left.(f x)\right) \partial M\)
by \(\operatorname{simp}\)
qed
qed
lemma has_bochner_integral_eq:
has_bochner_integral Mfx has_bochner_integral Mfy \(\quad\) P \(x=y\)
proof (elim has_bochner_integral.cases)
assume \(f[\) measurable \(]: f \in\) borel_measurable \(M\)
fix \(s t\)
assume \(\left(\lambda i . \int^{+} x . \operatorname{norm}(f x-s i x) \partial M\right) \longrightarrow 0(\) is \(? S \longrightarrow 0)\)
assume \(\left(\lambda i . \int{ }^{+} x . \operatorname{norm}(f x-t i x) \partial M\right) \longrightarrow 0\) (is ? \(\left.T \longrightarrow 0\right)\)
assume \(s: \bigwedge i\). simple_bochner_integrable \(M\) (s i)
assume \(t\) : \(\bigwedge i\). simple_bochner_integrable \(M(t i)\)
have [measurable]: \i. s \(i \in\) borel_measurable \(M\) ^i. \(t i \in\) borel_measurable \(M\)
using \(s t\) by (auto intro: borel_measurable_simple_function elim: simple_bochner_integrable.cases)
let \(? s=\lambda i\). simple_bochner_integral \(M(s i)\)
let \(? t=\lambda i\). simple_bochner_integral \(M(t i)\)
assume ?s \(\longrightarrow x\) ? \(t \longrightarrow y\)
then have ( \(\lambda\) i. norm (?s \(i-\) ?t \(i)\) ) \(\longrightarrow \operatorname{norm}(x-y)\)
by (intro tendsto_intros)
moreover
have \((\lambda i\). ennreal \((\) norm \((\) ?s \(i-\) ?t \(i))) \longrightarrow\) ennreal 0
proof (rule tendsto_sandwich)
show eventually ( \(\lambda i .0 \leq\) ennreal (norm (?s \(i-\) ?t \(i)\) ) sequentially ( \(\lambda_{-} .0\) )
\(\rightarrow\) ennreal 0
by auto
show eventually ( \(\lambda i\). norm \((\) ?s \(i-\) ?t \(i) \leq ? S i+\) ?T i) sequentially by (intro always_eventually allI simple_bochner_integral_bounded stf)
show \((\lambda i\). ?S \(i+\) ?T \(i) \longrightarrow\) ennreal 0
using tendsto_add[OF \(\langle ? S \longrightarrow 0\rangle\langle ? T \longrightarrow 0\rangle]\) by simp
qed
then have \((\lambda i\). norm \((\) ?s \(i-\) ?t \(i)) \longrightarrow 0\)
by (simp flip: ennreal_0)
ultimately have norm \((x-y)=0\)
by (rule LIMSEQ_unique)
then show \(x=y\) by simp

\section*{qed}
lemma has_bochner_integralI_AE:
assumes \(f\) : has_bochner_integral \(M f x\) and \(g: g \in\) borel_measurable \(M\) and \(a e\) : \(A E x\) in \(M . f x=g x\)
shows has_bochner_integral Mgx
using \(f\)
proof (safe intro!: has_bochner_integral.intros elim!: has_bochner_integral.cases)
fix \(s\) assume \(\left(\lambda i . \int^{+} x\right.\). ennreal (norm \(\left.\left.(f x-s i x)\right) \partial M\right) \longrightarrow 0\)
also have \(\left(\lambda i . \int{ }^{+}\right.\)x. ennreal (norm \(\left.\left.(f x-s i x)\right) \partial M\right)=\left(\lambda i . \int{ }^{+} x\right.\). ennreal
(norm \((g x-s i x)) \partial M)\)
using ae
by (intro ext nn_integral_cong_AE, eventually_elim) simp
finally show \(\left(\lambda i . \int{ }^{+} x\right.\). ennreal (norm \(\left.\left.(g x-s i x)\right) \partial M\right) \longrightarrow 0\).
qed (auto intro: g)
lemma has_bochner_integral_eq_AE:
assumes \(f\) : has_bochner_integral \(M f x\)
and \(g\) : has_bochner_integral \(M g y\)
and \(a e: A E x\) in \(M . f x=g x\)
shows \(x=y\)
proof -
from assms have has_bochner_integral \(M g x\) by (auto intro: has_bochner_integralI_AE)
from this \(g\) show \(x=y\)
by (rule has_bochner_integral_eq)
qed
lemma simple_bochner_integrable_restrict_space:
fixes \(f::{ }_{-} \Rightarrow\) ' \(b::\) real_normed_vector
assumes \(\Omega: \Omega \cap\) space \(M \in\) sets \(M\)
shows simple_bochner_integrable (restrict_space \(M \Omega) f \longleftrightarrow\) simple_bochner_integrable \(M\left(\lambda x\right.\). indicator \(\left.\Omega x *_{R} f x\right)\)
by (simp add: simple_bochner_integrable.simps space_restrict_space
simple_function_restrict_space[OF \(\Omega\) ] emeasure_restrict_space \([O F \Omega]\) Collect_restrict indicator_eq_0_iff conj_left_commute)
lemma simple_bochner_integral_restrict_space:
fixes \(f::{ }_{-} \Rightarrow\) ' \(b::\) real_normed_vector
assumes \(\Omega: \Omega \cap\) space \(M \in\) sets \(M\)
assumes \(f\) : simple_bochner_integrable (restrict_space \(M \Omega\) ) \(f\)
shows simple_bochner_integral (restrict_space \(M \Omega\) ) \(f=\) simple_bochner_integral \(M\left(\lambda x\right.\). indicator \(\left.\Omega x *_{R} f x\right)\)
proof -
have finite ( \(\left(\lambda x\right.\). indicator \(\left.\Omega x *_{R} f x\right)\) 'space \(M\) )
using \(f\) simple_bochner_integrable_restrict_space \([O F \Omega\), of \(f]\)
by (simp add: simple_bochner_integrable.simps simple_function_def)
then show ?thesis
```

 by (auto simp: space_restrict_space measure_restrict_space[OF \Omega(1)] le_infI2
 simple_bochner_integral_def Collect_restrict
 split: split_indicator split_indicator_asm
 intro!: sum.mono_neutral_cong_left arg_cong2[where f=measure])
 qed
context
notes [[inductive_internals]]
begin

```
inductive integrable for \(M f\) where
    has_bochner_integral \(M f x \Longrightarrow\) integrable \(M f\)
end
definition lebesgue_integral (integral \({ }^{L}\) ) where
    integral \(^{L} M f=(\) if \(\exists x\). has_bochner_integral \(M f x\) then THE x. has_bochner_integral
\(M f x\) else 0)
syntax
    _lebesgue_integral \(::\) pttrn \(\Rightarrow\) real \(\Rightarrow\) 'a measure \(\Rightarrow \operatorname{real}\left(\int\left(\left(2 . . / ~ \_\right) / \partial_{-}\right)[60,61]\right.\)
110)

\section*{translations}
\(\int x . f \partial M==C O N S T\) lebesgue_integral \(M(\lambda x . f)\)

\section*{syntax}
_ascii_lebesgue_integral \(::\) pttrn \(\Rightarrow\) 'a measure \(\Rightarrow\) real \(\Rightarrow\) real \(\left(\left(3 L I N T\left(1 \_\right) / \mid(-) . /\right.\right.\)
_) \([0,110,60] 60)\)

\section*{translations}

LINT \(x \mid M . f==\) CONST lebesgue_integral \(M(\lambda x . f)\)
lemma has_bochner_integral_integral_eq: has_bochner_integral \(M f x \Longrightarrow\) integral \(^{L}\) \(M f=x\)
by (metis the_equality has_bochner_integral_eq lebesgue_integral_def)
lemma has_bochner_integral_integrable:
integrable \(M f \Longrightarrow\) has_bochner_integral \(M f\left(\right.\) integral \(\left.^{L} M f\right)\)
by (auto simp: has_bochner_integral_integral_eq integrable.simps)
lemma has_bochner_integral_iff:
has_bochner_integral \(M f x \longleftrightarrow\) integrable \(M f \wedge\) integral \(^{L} M f=x\)
by (metis has_bochner_integral_integrable has_bochner_integral_integral_eq integrable.intros)
lemma simple_bochner_integrable_eq_integral:
simple_bochner_integrable \(M f \Longrightarrow\) simple_bochner_integral \(M f=\) integral \(^{L} M f\)
using has_bochner_integral_simple_bochner_integrable[of Mf]
by (simp add: has_bochner_integral_integral_eq)
lemma not_integrable_integral_eq: \(\neg\) integrable \(M f \Longrightarrow\) integral \(^{L} M f=0\) unfolding integrable.simps lebesgue_integral_def by (auto intro!: arg_cong[where \(f=\) The \(]\) )
```

lemma integral_eq_cases:
integrable $M f \longleftrightarrow$ integrable $N g \Longrightarrow$
(integrable $M f \Longrightarrow$ integrable $N g \Longrightarrow$ integral $^{L} M f=$ integral $\left.^{L} N g\right) \Longrightarrow$
integral $^{L} M f=$ integral $^{L} N g$
by (metis not_integrable_integral_eq)

```
lemma borel_measurable_integrable[measurable_dest]: integrable \(M f \Longrightarrow f \in\) borel_measurable
M
    by (auto elim: integrable.cases has_bochner_integral.cases)
lemma borel_measurable_integrable' \([\) measurable_dest]:
    integrable \(M f \Longrightarrow g \in\) measurable \(N M \Longrightarrow(\lambda x . f(g x)) \in\) borel_measurable \(N\)
    using borel_measurable_integrable[measurable] by measurable
lemma integrable_cong:
    \(M=N \Longrightarrow(\bigwedge x . x \in\) space \(N \Longrightarrow f x=g x) \Longrightarrow\) integrable \(M f \longleftrightarrow\) integrable
\(N g\)
    by (simp cong: has_bochner_integral_cong add: integrable.simps)
lemma integrable_cong_AE:
    \(f \in\) borel_measurable \(M \Longrightarrow g \in\) borel_measurable \(M \Longrightarrow A E x\) in \(M . f x=g x\)
\(\Longrightarrow\)
    integrable \(M f \longleftrightarrow\) integrable \(M g\)
    unfolding integrable.simps
    by (intro has_bochner_integral_cong_AE arg_cong[where \(f=E x]\) ext)
lemma integrable_cong_AE_imp:
    integrable \(M g \Longrightarrow f \in\) borel_measurable \(M \Longrightarrow(A E x\) in \(M . g x=f x) \Longrightarrow\)
integrable \(M f\)
    using integrable_cong_AE[off \(M g\) ] by (auto simp: eq_commute)
lemma integral_cong:
    \(M=N \Longrightarrow(\bigwedge x . x \in\) space \(N \Longrightarrow f x=g x) \Longrightarrow\) integral \(^{L} M f=\) integral \(^{L} N\)
\(g\)
    by (simp cong: has_bochner_integral_cong cong del: if_weak_cong add: lebesgue_integral_def)
lemma integral_cong_AE:
    \(f \in\) borel_measurable \(M \Longrightarrow g \in\) borel_measurable \(M \Longrightarrow A E x\) in \(M . f x=g x\)
\(\Longrightarrow\)
    integral \(^{L} M f=\) integral \(^{L} M g\)
    unfolding lebesgue_integral_def
    by (rule arg_cong[where \(\left.\left.x=h a s_{-} b o c h n e r \_i n t e g r a l ~ M f\right]\right)(\) intro has_bochner_integral_cong_AE
ext)
lemma integrable_add[simp, intro]: integrable \(M f \Longrightarrow\) integrable \(M g \Longrightarrow\) integrable \(M(\lambda x . f x+g x)\)
by (auto simp: integrable.simps)
lemma integrable_zero[simp, intro]: integrable \(M(\lambda x .0)\)
by (metis has_bochner_integral_zero integrable.simps)
lemma integrable_sum \([\) simp, intro]: \((\bigwedge i . i \in I \Longrightarrow\) integrable \(M(f i)) \Longrightarrow\) integrable \(M\left(\lambda x . \sum i \in I . f i x\right)\)
by (metis has_bochner_integral_sum integrable.simps)
lemma integrable_indicator \([\) simp, intro] \(: A \in\) sets \(M \Longrightarrow\) emeasure \(M A<\infty \Longrightarrow\) integrable \(M\left(\lambda x\right.\). indicator \(\left.A x *_{R} c\right)\)
by (metis has_bochner_integral_indicator integrable.simps)
lemma integrable_real_indicator[simp, intro]: \(A \in\) sets \(M \Longrightarrow\) emeasure \(M A<\infty\)
\(\Longrightarrow\)
    integrable \(M\) (indicator \(A:{ }^{\prime}{ }^{\prime} a \Rightarrow\) real)
    by (metis has_bochner_integral_real_indicator integrable.simps)
lemma integrable_diff[simp, intro]: integrable \(M f \Longrightarrow\) integrable \(M g \Longrightarrow\) integrable \(M(\lambda x . f x-g x)\)
by (auto simp: integrable.simps intro: has_bochner_integral_diff)
lemma integrable_bounded_linear: bounded_linear \(T \Longrightarrow\) integrable \(M f \Longrightarrow\) integrable \(M(\lambda x . T(f x))\)
by (auto simp: integrable.simps intro: has_bochner_integral_bounded_linear)
lemma integrable_scaleR_left[simp, intro]: \((c \neq 0 \Longrightarrow\) integrable \(M f) \Longrightarrow\) integrable \(M\left(\lambda x . f x *_{R} c\right)\)
unfolding integrable.simps by fastforce
lemma integrable_scaleR_right \([\) simp, intro \(]:(c \neq 0 \Longrightarrow\) integrable \(M f) \Longrightarrow\) integrable \(M\left(\lambda x . c *_{R} f x\right)\)
unfolding integrable.simps by fastforce
lemma integrable_mult_left[simp, intro]:
fixes \(c::\) _::\{real_normed_algebra,second_countable_topology\}
shows \((c \neq 0 \Longrightarrow\) integrable \(M f) \Longrightarrow\) integrable \(M(\lambda x . f x * c)\)
unfolding integrable.simps by fastforce
lemma integrable_mult_right [simp, intro]:
fixes \(c::\) _::\{real_normed_algebra,second_countable_topology\}
shows \((c \neq 0 \Longrightarrow\) integrable \(M f) \Longrightarrow\) integrable \(M(\lambda x . c * f x)\)
unfolding integrable.simps by fastforce
lemma integrable_divide_zero[simp, intro]:
fixes \(c::\) _ :: \{real_normed_field, field, second_countable_topology\}
shows \((c \neq 0 \Longrightarrow\) integrable \(M f) \Longrightarrow\) integrable \(M(\lambda x . f x / c)\)
unfolding integrable.simps by fastforce
lemma integrable_inner_left[simp, intro]:
\((c \neq 0 \Longrightarrow\) integrable \(M f) \Longrightarrow\) integrable \(M(\lambda x . f x \cdot c)\)
unfolding integrable.simps by fastforce
lemma integrable_inner_right[simp, intro]:
\((c \neq 0 \Longrightarrow\) integrable \(M f) \Longrightarrow\) integrable \(M(\lambda x . c \cdot f x)\)
unfolding integrable.simps by fastforce
lemmas integrable_minus \([\) simp, intro \(]=\) integrable_bounded_linear[OF bounded_linear_minus[OF bounded_linear_ident]]
lemmas integrable_divide \([\) simp, intro \(]=\) integrable_bounded_linear[OF bounded_linear_divide]
lemmas integrable_Re[simp, intro \(]=\) integrable_bounded_linear[OF bounded_linear_Re]
lemmas integrable_Im \([\) simp, intro \(]=\) integrable_bounded_linear [OF bounded_linear_Im]
lemmas integrable_cnj \([\) simp , intro \(]=\) integrable_bounded_linear[OF bounded_linear_cnj]
lemmas integrable_of_real \([\) simp , intro \(]=\)
integrable_bounded_linear[OF bounded_linear_of_real]
lemmas integrable_fst \([\) simp, intro \(]=\) integrable_bounded_linear[OF bounded_linear_fst]
lemmas integrable_snd[simp, intro] \(=\) integrable_bounded_linear[OF bounded_linear_snd]
lemma integral_zero \([\) simp \(]\) : integral \(^{L} M(\lambda x .0)=0\) by (intro has_bochner_integral_integral_eq has_bochner_integral_zero)
lemma integral_add[simp]: integrable \(M f \Longrightarrow\) integrable \(M g \Longrightarrow\) integral \(^{L} M(\lambda x . f x+g x)=\) integral \(^{L} M f+\) integral \(^{L} M g\)
by (intro has_bochner_integral_integral_eq has_bochner_integral_add has_bochner_integral_integrable)
lemma integral_diff [simp]: integrable \(M f \Longrightarrow\) integrable \(M g \Longrightarrow\) integral \(^{L} M(\lambda x . f x-g x)=\) integral \(^{L} M f-\) integral \(^{L} M g\)
by (intro has_bochner_integral_integral_eq has_bochner_integral_diff has_bochner_integral_integrable)
lemma integral_sum: \((\bigwedge i . i \in I \Longrightarrow\) integrable \(M(f i)) \Longrightarrow\)
integral \(^{L} M\left(\lambda x . \sum i \in I . f i x\right)=\left(\sum i \in I\right.\). integral \(\left.{ }^{L} M(f i)\right)\)
by (intro has_bochner_integral_integral_eq has_bochner_integral_sum has_bochner_integral_integrable)
lemma integral_sum'[simp]: ( \(\bigwedge i . i \in I=\) simp \(=>\) integrable \(M(f i)) \Longrightarrow\)
integral \(^{L} M\left(\lambda x . \sum i \in I . f i x\right)=\left(\sum i \in I\right.\). integral \(\left.^{L} M(f i)\right)\)
unfolding simp_implies_def by (rule integral_sum)
lemma integral_bounded_linear: bounded_linear \(T \Longrightarrow\) integrable \(M f \Longrightarrow\) integral \(^{L} M(\lambda x . T(f x))=T\left(\right.\) integral \(\left.^{L} M f\right)\)
by (metis has_bochner_integral_bounded_linear has_bochner_integral_integrable has_bochner_integral_integr
```

lemma integral_bounded_linear':
assumes T : bounded_linear T and T^{\prime} : bounded_linear T^{\prime}
assumes $*: \neg(\forall x . T x=0) \Longrightarrow\left(\forall x . T^{\prime}(T x)=x\right)$
shows integral ${ }^{L} M(\lambda x . T(f x))=T\left(\right.$ integral $\left.^{L} M f\right)$
proof cases
assume $(\forall x . T x=0)$ then show ?thesis
by simp
next
assume $* *: \neg(\forall x . T x=0)$
show ?thesis
proof cases
assume integrable $M f$ with T show ?thesis
by (rule integral_bounded_linear)
next
assume not: \neg integrable $M f$
moreover have \neg integrable $M(\lambda x . T(f x))$
proof
assume integrable $M(\lambda x . T(f x))$
from integrable_bounded_linear[OF T^{\prime} this $]$ not $*[O F ~ * *]$
show False
by auto
qed
ultimately show ?thesis
using T by (simp add: not_integrable_integral_eq linear_simps)
qed
qed
lemma integral_scale R_{-}left $[$simp $]:(c \neq 0 \Longrightarrow$ integrable $M f) \Longrightarrow\left(\int x . f x *_{R} c\right.$
$\partial M)=$ integral $^{L} M f *_{R} c$
by (intro has_bochner_integral_integral_eq has_bochner_integral_integrable has_bochner_integral_scaleR_left)
lemma integral_scaleR_right[simp]: $\left(\int x . c *_{R} f x \partial M\right)=c *_{R}$ integral $^{L} M f$
by (rule integral_bounded_linear' $[$ OF bounded_linear_scaleR_right bounded_linear_scaleR_right[of
$1 / c]]$) simp
lemma integral_mult_left[simp]:
fixes $c::$ _:: \{real_normed_algebra,second_countable_topology\}
shows $(c \neq 0 \Longrightarrow$ integrable $M f) \Longrightarrow\left(\int x . f x * c \partial M\right)=$ integral $^{L} M f * c$
by (intro has_bochner_integral_integral_eq has_bochner_integral_integrable has_bochner_integral_mult_left)
lemma integral_mult_right[simp]:
fixes c :: _::\{real_normed_algebra,second_countable_topology\}
shows $(c \neq 0 \Longrightarrow$ integrable $M f) \Longrightarrow\left(\int x . c * f x \partial M\right)=c *$ integral $^{L} M f$
by (intro has_bochner_integral_integral_eq has_bochner_integral_integrable has_bochner_integral_mult_right)
lemma integral_mult_left_zero[simp]:
fixes $c::$.::\{real_normed_field,second_countable_topology\}
shows $\left(\int x . f x * c \partial M\right)=$ integral $^{L} M f * c$

```
by (rule integral_bounded_linear \({ }^{\prime}[\) OF bounded_linear_mult_left bounded_linear_mult_left[of \(1 / c]]) \operatorname{simp}\)
lemma integral_mult_right_zero[simp]:
fixes \(c::\) _::\{real_normed_field,second_countable_topology\}
shows \(\left(\int x . c * f x \partial M\right)=c *\) integral \(^{L} M f\)
by (rule integral_bounded_linear' \({ }^{\prime}\) OF bounded_linear_mult_right bounded_linear_mult_right [of \(1 / c]]) \operatorname{simp}\)
lemma integral_inner_left \([\) simp \(]:(c \neq 0 \Longrightarrow\) integrable \(M f) \Longrightarrow\left(\int x . f x \cdot c \partial M\right)\)
\(=\) integral \(^{L} M f \cdot c\)
by (intro has_bochner_integral_integral_eq has_bochner_integral_integrable has_bochner_integral_inner_left)
lemma integral_inner_right \([\) simp \(]:(c \neq 0 \Longrightarrow\) integrable \(M f) \Longrightarrow\left(\int x \cdot c \cdot f x\right.\) \(\partial M)=c \cdot\) integral \(^{L} M f\)
by (intro has_bochner_integral_integral_eq has_bochner_integral_integrable has_bochner_integral_inner_right
lemma integral_divide_zero[simp]:
fixes \(c::\) _::\{real_normed_field, field, second_countable_topology \}
shows integral \({ }^{L} M(\lambda x . f x / c)=\) integral \(^{L} M f / c\)
by (rule integral_bounded_linear \({ }^{[ }\)[OF bounded_linear_divide bounded_linear_mult_left[of
c]]) \(\operatorname{simp}\)
lemma integral_minus \([\) simp \(]\) : integral \(^{L} M(\lambda x .-f x)=-\) integral \(^{L} M f\)
by (rule integral_bounded_linear'[OF bounded_linear_minus[OF bounded_linear_ident]
bounded_linear_minus[OF bounded_linear_ident]]) simp
lemma integral_complex_of_real \([\) simp \(]\) : integral \({ }^{L} M(\lambda x\). complex_of_real \((f x))=\) of_real (integral \({ }^{L} M f\) )
by (rule integral_bounded_linear' \({ }^{[ }\)[OF bounded_linear_of_real bounded_linear_Re]) simp
lemma integral_cnj \([\) simp \(]:\) integral \(^{L} M(\lambda x . c n j(f x))=c n j\left(\right.\) integral \(\left.^{L} M f\right)\)
by (rule integral_bounded_linear' \([\) OF bounded_linear_cnj bounded_linear_cnj]) simp
lemmas integral_divide[simp] =
integral_bounded_linear[OF bounded_linear_divide]
lemmas integral_Re \([\) simp \(]=\)
integral_bounded_linear[OF bounded_linear_Re]
lemmas integral_Im \([\) simp \(]=\)
integral_bounded_linear[OF bounded_linear_Im]
lemmas integral_of_real[simp] \(=\)
integral_bounded_linear[OF bounded_linear_of_real]
lemmas integral_fst \([\) simp \(]=\)
integral_bounded_linear [OF bounded_linear_fst]
lemmas integral_snd \([\) simp \(]=\)
integral_bounded_linear[OF bounded_linear_snd]
lemma integral_norm_bound_ennreal:
```

integrable $M f \Longrightarrow$ norm $\left(\right.$ integral $\left.^{L} M f\right) \leq\left(\int^{+}\right.$x. norm $\left.(f x) \partial M\right)$
by (metis has_bochner_integral_integrable has_bochner_integral_norm_bound)
lemma integrableI_sequence:
fixes $f::$ ' $a \Rightarrow$ ' $b::\{$ banach, second_countable_topology $\}$
assumes $f[$ measurable $]: f \in$ borel_measurable M
assumes $s: \bigwedge i$. simple_bochner_integrable $M(s i)$
assumes lim: $\left(\lambda i . \int{ }^{+} x . \operatorname{norm}(f x-s i x) \partial M\right) \longrightarrow 0($ is $? S \longrightarrow 0)$
shows integrable $M f$
proof -
let ?s $=\lambda n$. simple_bochner_integral M (s n)
have $\exists x$. ? $\longrightarrow x$
unfolding convergent_eq_Cauchy
proof (rule metric_CauchyI)
fix e :: real assume $0<e$
then have $0<$ ennreal ($e / 2$) by auto
from order_tendstoD(2)[OF lim this]
obtain M where $M: \bigwedge n . M \leq n \Longrightarrow$? $S n<e / 2$
by (auto simp: eventually_sequentially)
show $\exists M . \forall m \geq M . \forall n \geq M$. dist (?s m) (?s n) $<e$
proof (intro exI allI impI)
fix $m n$ assume $m: M \leq m$ and $n: M \leq n$
have ? $S n \neq \infty$
using $M[O F n]$ by auto
have norm (?s $n-$?s m) \leq ? $S n+$? $S m$
by (intro simple_bochner_integral_bounded sf)
also have \ldots < ennreal ($e / 2)+e / 2$
by (intro add_strict_mono M n m)
also have $\ldots=e$ using $\langle 0<e\rangle$ by (simp flip: ennreal_plus)
finally show dist (?s n) (?s m) $<e$
using $\langle 0<e\rangle$ by (simp add: dist_norm ennreal_less_iff)
qed
qed
then obtain x where ? $s \longrightarrow x$..
show ?thesis
by (rule, rule) fact+
qed

```
proposition nn_integral_dominated_convergence_norm:
    fixes \(u^{\prime}:: ~ \_~=~ \_::\left\{r e a l \_n o r m e d \_v e c t o r, ~ s e c o n d \_c o u n t a b l e \_t o p o l o g y\right\} ~\)
    assumes [measurable]:
        \i. u \(i \in\) borel_measurable \(M u^{\prime} \in\) borel_measurable \(M w \in\) borel_measurable
M
    and bound: \(\bigwedge j\). \(A E x\) in M.norm \((u j x) \leq w x\)
    and \(w:\left(\int{ }^{+} x . w x \partial M\right)<\infty\)
    and \(u^{\prime}: A E x\) in \(M .(\lambda i . u\) i \(x) \longrightarrow u^{\prime} x\)
    shows \(\left(\lambda i .\left(\int^{+} x . \operatorname{norm}\left(u^{\prime} x-u i x\right) \partial M\right)\right) \longrightarrow 0\)
proof -
have \(A E x\) in \(M . \forall j\). norm \((u j x) \leq w x\)
unfolding \(A E_{-}\)all_countable by rule fact
with \(u^{\prime}\) have bnd: AE \(x\) in \(M . \forall j\). norm \(\left(u^{\prime} x-u j x\right) \leq 2 * w x\)
proof (eventually_elim, intro allI)
fix \(i x\) assume \((\lambda i . u i x) \longrightarrow u^{\prime} x \forall j\). norm \((u j x) \leq w x \forall j\). norm ( \(u j\) \(x) \leq w x\)
then have norm \(\left(u^{\prime} x\right) \leq w x\) norm \((u i x) \leq w x\)
by (auto intro: LIMSEQ_le_const2 tendsto_norm)
then have norm \(\left(u^{\prime} x\right)+\operatorname{norm}(u i x) \leq 2 * w x\)
by simp
also have norm \(\left(u^{\prime} x-u\right.\) ix) \(\leq \operatorname{norm}\left(u^{\prime} x\right)+\operatorname{norm}(u\) ix)
by (rule norm_triangle_ineq4)
finally (xtrans) show norm \(\left(u^{\prime} x-u i x\right) \leq 2 * w x\).
qed
have w_nonneg: \(A E x\) in \(M .0 \leq w x\)
using bound [of 0] by (auto intro: order_trans[OF norm_ge_zero])
have \(\left(\lambda i .\left(\int{ }^{+} x . \operatorname{norm}\left(u^{\prime} x-u i x\right) \partial M\right)\right) \longrightarrow\left(\int{ }^{+} x .0\right.\) дM)
proof (rule nn_integral_dominated_convergence)
show \(\left(\int^{+} x\right.\). 2 * wx \(\left.\partial M\right)<\infty\)
by (rule nn_integral_mult_bounded_inf[OF _ w, of 2]) (insert w_nonneg, auto
simp: ennreal_mult )
show \(A E x\) in \(M\). ( \(\lambda i\). ennreal \(\left(\right.\) norm \(\left.\left.\left(u^{\prime} x-u i x\right)\right)\right) \longrightarrow 0\)
using \(u^{\prime}\)
proof eventually_elim
fix \(x\) assume \((\lambda i . u i x) \longrightarrow u^{\prime} x\)
from tendsto_diff [OF tendsto_const[of \(\left.u^{\prime} x\right]\) this]
show \(\left(\lambda i\right.\). ennreal \(\left(\right.\) norm \(\left.\left.\left(u^{\prime} x-u i x\right)\right)\right) \longrightarrow 0\)
by (simp add: tendsto_norm_zero_iff flip: ennreal_0)
qed
qed (insert bnd w_nonneg, auto)
then show? ?hesis by simp
qed
proposition integrableI_bounded:
fixes \(f::\) ' \(a \Rightarrow\) 'b::\{banach, second_countable_topology\}
assumes \(f[\) measurable \(]: f \in\) borel_measurable \(M\) and fin: \(\left(\int{ }^{+}\right.\)x. norm \(\left.(f x) \partial M\right)\)
\(<\infty\)
shows integrable \(M f\)
proof -
from borel_measurable_implies_sequence_metric \([\) OF \(f\), of 0\(]\) obtain \(s\) where
\(s: \bigwedge i\). simple_function \(M(s i)\) and
pointwise: \(\bigwedge x . x \in\) space \(M \Longrightarrow(\lambda i . s i x) \longrightarrow f x\) and
bound: \(\bigwedge i x . x \in\) space \(M \Longrightarrow \operatorname{norm}(s i x) \leq 2 * \operatorname{norm}(f x)\)
by simp metis
show ?thesis
proof (rule integrableI_sequence)
\(\{\mathrm{fix} i\)
```

 have (\int + x. norm (s i x)\partialM)\leq(\int+
 by (intro nn_integral_mono) (simp add: bound)
 also have ... = 2 * (}\int\mp@subsup{}{}{+}x.\mathrm{ ennreal (norm (f x)) дM)
 by (simp add: ennreal_mult nn_integral_cmult)
 also have ... < top
 using fin by (simp add: ennreal_mult_less_top)
 finally have (}\int\mp@subsup{}{}{+}x.norm (s i x)\partialM)<
 by simp }
 note fin_s = this
 show \i. simple_bochner_integrable M (s i)
 by (rule simple_bochner_integrableI_bounded) fact+
 show (\lambdai. \int + x. ennreal (norm (fx-six)) \partialM)\longrightarrow0
 proof (rule nn_integral_dominated_convergence_norm)
 show \j. AE x in M. norm (s jx) \leq2 * norm (fx)
 using bound by auto
 show \i. s i f borel_measurable M (\lambdax.2 * norm (fx)) \in borel_measurable
 M
using s by (auto intro: borel_measurable_simple_function)
show (\int + x. ennreal (2 * norm (fx))\partialM)<\infty
using fin by (simp add: nn_integral_cmult ennreal_mult ennreal_mult_less_top)
show AE x in M. (\lambdai.s ix)\longrightarrowfx
using pointwise by auto
qed fact
qed fact
qed
lemma integrableI_bounded_set:
fixes f :: ' }a>>'\mp@code{'b:{banach, second_countable_topology}
assumes [measurable]: A\in sets Mf\in borel_measurable M
assumes finite: emeasure M A<\infty
and bnd: AE x in M. x A A\longrightarrow norm (}fx\mathrm{ () < B
and null: AE x in M. x\not\inA\longrightarrowfx=0
shows integrable M f
proof (rule integrableI_bounded)
{ fix }x::\mathrm{ 'b have norm }x\leqB\Longrightarrow0\leq
using norm_ge_zero[of x] by arith }
with bnd null have (}\mp@subsup{\int}{}{+}\mathrm{ x. ennreal (norm (fx)) DM) }\leq(\int\mp@subsup{}{}{+}\mathrm{ x. ennreal (max
OB)* indicator A x \partialM)
by (intro nn_integral_mono_AE) (auto split: split_indicator split_max)
also have ... < <
using finite by (subst nn_integral_cmult_indicator) (auto simp: ennreal_mult_less_top)
finally show (}\int+\mp@subsup{}{}{+}x.\operatorname{ennreal (norm (fx))\partialM)}<\infty
qed simp
lemma integrableI_bounded_set_indicator:
fixes f :: ' }a>>'b::{banach, second_countable_topology
shows }A\in\mathrm{ sets }M\Longrightarrowf\in\mathrm{ borel_measurable }M

```
```

 emeasure \(M A<\infty \Longrightarrow(A E x\) in \(M . x \in A \longrightarrow \operatorname{norm}(f x) \leq B) \Longrightarrow\)
 integrable \(M\) (\(\lambda x\). indicator \(\left.A x *_{R} f x\right)\)
 by (rule integrableI_bounded_set \([\mathbf{w h e r e} A=A]\)) auto
    ```
lemma integrableI_nonneg:
    fixes \(f::{ }^{\prime} a \Rightarrow\) real
    assumes \(f \in\) borel_measurable \(M A E x\) in \(M .0 \leq f x\left(\int{ }^{+} x . f x \partial M\right)<\infty\)
    shows integrable \(M f\)
proof -
    have \(\left(\int{ }^{+} x . \operatorname{norm}(f x) \partial M\right)=\left(\int{ }^{+} x . f x \partial M\right)\)
        using assms by (intro nn_integral_cong_AE) auto
    then show? ?hesis
        using assms by (intro integrableI_bounded) auto
qed
lemma integrable_iff_bounded:
    fixes \(f::{ }^{\prime} a \Rightarrow\) ' \(b::\{\) banach, second_countable_topology \(\}\)
    shows integrable \(M f \longleftrightarrow f \in\) borel_measurable \(M \wedge\left(\int{ }^{+}\right.\)x. norm \(\left.(f x) \partial M\right)<\)
\(\infty\)
    using integrableI_bounded[of f M] has_bochner_integral_implies_finite_norm[of M
\(f]\)
    unfolding integrable.simps has_bochner_integral.simps[abs_def] by auto
lemma integrable_bound:
    fixes \(f::\) ' \(a \Rightarrow\) ' \(b::\{\) banach, second_countable_topology\}
        and \(g::{ }^{\prime} a \Rightarrow{ }^{\prime} c::\{b a n a c h\), second_countable_topology \(\}\)
    shows integrable \(M f \Longrightarrow g \in\) borel_measurable \(M \Longrightarrow\) (AExin M.norm ( \(g x)\)
\(\leq \operatorname{norm}(f x)) \Longrightarrow\)
        integrable \(M g\)
    unfolding integrable_iff_bounded
proof safe
    assume \(f \in\) borel_measurable \(M g \in\) borel_measurable \(M\)
    assume \(A E x\) in \(M\). norm \((g x) \leq\) norm ( \(f x\) )
    then have \(\left(\int^{+} x\right.\). ennreal (norm \(\left.\left.(g x)\right) \partial M\right) \leq\left(\int^{+} x\right.\).ennreal (norm \(\left.(f x)\right)\)
\(\partial M)\)
    by (intro nn_integral_mono_AE) auto
    also assume \(\left(\int^{+} x\right.\). ennreal (norm \(\left.\left.(f x)\right) \partial M\right)<\infty\)
    finally show \(\left(\int^{+}\right.\)x. ennreal (norm \(\left.\left.(g x)\right) \partial M\right)<\infty\)
qed
lemma integrable_mult_indicator:
    fixes \(f::\) ' \(a \Rightarrow\) ' \(b::\{\) banach, second_countable_topology\}
    shows \(A \in\) sets \(M \Longrightarrow\) integrable \(M f \Longrightarrow\) integrable \(M\left(\lambda x\right.\). indicator \(A x *_{R} f\)
\(x)\)
    by (rule integrable_bound[of \(M f]\) ) (auto split: split_indicator)
lemma integrable_real_mult_indicator:
    fixes \(f::{ }^{\prime} a \Rightarrow\) real
    shows \(A \in\) sets \(M \Longrightarrow\) integrable \(M f \Longrightarrow\) integrable \(M\) ( \(\lambda x . f x *\) indicator \(A\)
```

x)
using integrable_mult_indicator[of A M f] by (simp add: mult_ac)
lemma integrable_abs[simp, intro]:
fixes f :: 'a m real
assumes [measurable]: integrable M f shows integrable M (}\lambdax.|fx|
using assms by (rule integrable_bound) auto
lemma integrable_norm[simp, intro]:
fixes f :: ' }a>>'b::{banach, second_countable_topology
assumes [measurable]: integrable Mf shows integrable M (}\lambdax\mathrm{ . norm (f x))
using assms by (rule integrable_bound) auto
lemma integrable_norm_cancel:
fixes f :: ' }a>>'\mp@code{'b:{banach, second_countable_topology}
assumes [measurable]: integrable M (\lambdax. norm (f x)) f b borel_measurable M
shows integrable M f
using assms by (rule integrable_bound) auto
lemma integrable_norm_iff:
fixes f :: ' }a>>'\mp@code{'b:{{banach, second_countable_topology}
shows f}\in\mathrm{ borel_measurable }M\Longrightarrow\mathrm{ integrable }M(\lambdax.norm (fx))\longleftrightarrow \longleftrightarrow integrable
Mf
by (auto intro: integrable_norm_cancel)
lemma integrable_abs_cancel:
fixes f :: 'a m real
assumes [measurable]: integrable M (}\lambdax.|fx|)f\in\mathrm{ borel_measurable M shows
integrable M f
using assms by (rule integrable_bound) auto
lemma integrable_abs_iff:
fixes f :: 'a m real
shows f}\in\mathrm{ borel_measurable }M\Longrightarrow\mathrm{ integrable }M(\lambdax.|fx|)\longleftrightarrow integrable M
by (auto intro: integrable_abs_cancel)
lemma integrable_max[simp, intro]:
fixes f :: '}a=>\mathrm{ real
assumes fg[measurable]: integrable M f integrable Mg
shows integrable M (}\lambdax.\operatorname{max}(fx)(gx)
using integrable_add[OF integrable_norm[OF fg(1)] integrable_norm[OF fg(2)]]
by (rule integrable_bound) auto
lemma integrable_min[simp, intro]:
fixes f :: 'a }a\mathrm{ real
assumes fg[measurable]: integrable M f integrable Mg
shows integrable M (}\lambdax.\operatorname{min}(fx)(gx)
using integrable_add[OF integrable_norm[OF fg(1)] integrable_norm[OF fg(2)]]
by (rule integrable_bound) auto

```
lemma integral_minus_iff [simp]:
integrable \(M(\lambda x .-f x\) ::'a::\{banach, second_countable_topology\} \() \longleftrightarrow\) integrable \(M f\)
unfolding integrable_iff_bounded
by (auto)
lemma integrable_indicator_iff:
integrable \(M\) (indicator \(A::_{-} \Rightarrow\) real \() \longleftrightarrow A \cap\) space \(M \in\) sets \(M \wedge\) emeasure \(M\) \((A \cap\) space \(M)<\infty\)
by (simp add: integrable_iff_bounded borel_measurable_indicator_iff ennreal_indicator nn_integral_indicator'
cong: conj_cong)
lemma integral_indicator \([\) simp \(]\) : integral \({ }^{L} M(\) indicator \(A)=\) measure \(M(A \cap\) space \(M\) )
proof cases
assume \(*: A \cap\) space \(M \in\) sets \(M \wedge\) emeasure \(M(A \cap\) space \(M)<\infty\)
have integral \({ }^{L} M(\) indicator \(A)=\) integral \(^{L} M(\) indicator \((A \cap\) space \(M))\)
by (intro integral_cong) (auto split: split_indicator)
also have \(\ldots=\) measure \(M(A \cap\) space \(M)\)
using * by (intro has_bochner_integral_integral_eq has_bochner_integral_real_indicator) auto
finally show ?thesis .
next
assume \(*: \neg(A \cap\) space \(M \in\) sets \(M \wedge\) emeasure \(M(A \cap\) space \(M)<\infty)\)
have integral \(^{L} M(\) indicator \(A)=\) integral \(^{L} M\) (indicator \((A \cap\) space \(M)::-\Rightarrow\) real)
by (intro integral_cong) (auto split: split_indicator)
also have ... \(=0\)
using * by (subst not_integrable_integral_eq) (auto simp: integrable_indicator_iff)
also have \(\ldots=\) measure \(M(A \cap\) space \(M)\)
using * by (auto simp: measure_def emeasure_notin_sets not_less top_unique)
finally show ?thesis .
qed
lemma integrable_discrete_difference:
fixes \(f::\) ' \(a \Rightarrow\) ' \(b::\{\) banach, second_countable_topology \(\}\)
assumes \(X\) : countable \(X\)
assumes null: \(\bigwedge x . x \in X \Longrightarrow\) emeasure \(M\{x\}=0\)
assumes sets: \(\bigwedge x . x \in X \Longrightarrow\{x\} \in\) sets \(M\)
assumes eq: \(\bigwedge x . x \in\) space \(M \Longrightarrow x \notin X \Longrightarrow f x=g x\)
shows integrable \(M f \longleftrightarrow\) integrable \(M g\)
unfolding integrable_iff_bounded
proof (rule conj_cong)
\{ assume \(f \in\) borel_measurable \(M\) then have \(g \in\) borel_measurable \(M\)
by (rule measurable_discrete_difference \([\) where \(X=X]\) ) (auto simp: assms) \}
moreover
\{ assume \(g \in\) borel_measurable \(M\) then have \(f \in\) borel_measurable \(M\)
by (rule measurable_discrete_difference \([\) where \(X=X]\) ) (auto simp: assms) \} ultimately show \(f \in\) borel_measurable \(M \longleftrightarrow g \in\) borel_measurable \(M\)..
next
have \(A E x\) in \(M . x \notin X\) by (rule AE_discrete_difference) fact+
then have \(\left(\int^{+} x\right.\). norm \(\left.(f x) \partial M\right)=\left(\int^{+} x . \operatorname{norm}(g x) \partial M\right)\) by (intro nn_integral_cong_AE) (auto simp: eq)
then show \(\left(\int^{+} x . \operatorname{norm}(f x) \partial M\right)<\infty \longleftrightarrow\left(\int^{+} x . \operatorname{norm}(g x) \partial M\right)<\infty\) by simp
qed
lemma integral_discrete_difference:
fixes \(f::{ }^{\prime} a \Rightarrow\) ' \(b::\{\) banach, second_countable_topology \(\}\)
assumes \(X\) : countable \(X\)
assumes null: \(\bigwedge x . x \in X \Longrightarrow\) emeasure \(M\{x\}=0\)
assumes sets: \(\bigwedge x . x \in X \Longrightarrow\{x\} \in\) sets \(M\)
assumes eq: \(\bigwedge x . x \in\) space \(M \Longrightarrow x \notin X \Longrightarrow f x=g x\)
shows integral \({ }^{L} M f=\) integral \(^{L} M g\)
proof (rule integral_eq_cases)
show eq: integrable \(M f \longleftrightarrow\) integrable \(M g\) by (rule integrable_discrete_difference \([\) where \(X=X]\) ) fact +
assume \(f\) : integrable \(M f\)
show integral \({ }^{L} M f=\) integral \(^{L} M g\)
proof (rule integral_cong_AE)
show \(f \in\) borel_measurable \(M g \in\) borel_measurable \(M\) using \(f\) eq by (auto intro: borel_measurable_integrable)
have \(A E x\) in \(M . x \notin X\)
by (rule AE_discrete_difference) fact+
with \(A E_{-}\)space show \(A E x\) in \(M . f x=g x\)
by eventually_elim fact
qed
qed
lemma has_bochner_integral_discrete_difference:
fixes \(f::\) ' \(a \Rightarrow\) ' \(b::\{\) banach, second_countable_topology \(\}\)
assumes \(X\) : countable \(X\)
assumes null: \(\bigwedge x . x \in X \Longrightarrow\) emeasure \(M\{x\}=0\)
assumes sets: \(\bigwedge x . x \in X \Longrightarrow\{x\} \in\) sets \(M\)
assumes eq: \(\bigwedge x . x \in\) space \(M \Longrightarrow x \notin X \Longrightarrow f x=g x\)
shows has_bochner_integral \(M f x \longleftrightarrow\) has_bochner_integral \(M g x\)
using integrable_discrete_difference[of X Mfg,OF assms]
using integral_discrete_difference[of X Mfg, OF assms]
by (metis has_bochner_integral_iff)

\section*{lemma}
fixes \(f::{ }^{\prime} a \Rightarrow{ }^{\prime} b::\{b a n a c h\), second_countable_topology\} and \(w::\) ' \(a \Rightarrow\) real
assumes \(f \in\) borel_measurable \(M \bigwedge i\).s \(i \in\) borel_measurable \(M\) integrable \(M w\)
```

 assumes lim: \(A E x\) in \(M .(\lambda i . s\) i \(x) \longrightarrow f x\)
 assumes bound: \(\bigwedge i\). \(A E x\) in \(M\). norm \((s i x) \leq w x\)
 shows integrable_dominated_convergence: integrable \(M f\)
 and integrable_dominated_convergence2: \(\bigwedge i\). integrable \(M\) (s i)
 and integral_dominated_convergence: \(\left(\lambda i\right.\). integral \(\left.{ }^{L} M(s i)\right) \longrightarrow\) integral \(^{L}\)
 $M f$
proof -
have w_nonneg: $A E x$ in $M .0 \leq w x$
using bound [of 0] by eventually_elim (auto intro: norm_ge_zero order_trans)
then have $\left(\int{ }^{+} x . w x \partial M\right)=\left(\int{ }^{+} x\right.$. norm $\left.(w x) \partial M\right)$
by (intro nn_integral_cong_AE) auto
with «integrable $M w$ have $w: w \in$ borel_measurable $M\left(\int{ }^{+} x . w x \partial M\right)<\infty$
unfolding integrable_iff_bounded by auto
show int_s: $\bigwedge i$. integrable M (s i)
unfolding integrable_iff_bounded
proof
fix i
have $\left(\int{ }^{+}\right.$x. ennreal $($norm $\left.(s i x)) \partial M\right) \leq\left(\int{ }^{+}\right.$x. w x $\left.\partial M\right)$
using bound [of i] w_nonneg by (intro nn_integral_mono_AE) auto
with w show $\left(\int^{+} x\right.$. ennreal (norm $\left.\left.(s i x)\right) \partial M\right)<\infty$ by auto
qed fact
have all_bound: $A E x$ in $M . \forall i$. norm $(s i x) \leq w x$
using bound unfolding AE_all_countable by auto
show int_f: integrable $M f$
unfolding integrable_iff_bounded
proof
have $\left(\int^{+}\right.$x. ennreal $($norm $\left.(f x)) \partial M\right) \leq\left(\int^{+} x\right.$. w x $\left.\partial M\right)$
using all_bound lim w_nonneg
proof (intro nn_integral_mono_AE, eventually_elim)
fix x assume $\forall i$. norm $(s i x) \leq w x(\lambda i$.s i $x) \longrightarrow f x 0 \leq w x$
then show ennreal $($ norm $(f x)) \leq$ ennreal $(w x)$
by (intro LIMSEQ_le_const2[where $X=\lambda i$. ennreal (norm (s i x))]) (auto
intro: tendsto_intros)
qed
with w show $\left(\int^{+} x\right.$. ennreal (norm $\left.\left.(f x)\right) \partial M\right)<\infty$ by auto
qed fact
have $\left(\lambda n\right.$. ennreal (norm (integral ${ }^{L} M(s n)-$ integral $\left.\left.^{L} M f\right)\right)$) \longrightarrow ennreal
0 (is ? d \longrightarrow ennreal 0)
proof (rule tendsto_sandwich)
show eventually $(\lambda n$. ennreal $0 \leq ? d n)$ sequentially $\left(\lambda_{_}\right.$. ennreal 0$) \longrightarrow$
ennreal 0 by auto
show eventually $\left(\lambda n\right.$. ? $d n \leq\left(\int{ }^{+} x\right.$. norm $\left.\left.(s n x-f x) \partial M\right)\right)$ sequentially
proof (intro always_eventually allI)
fix n
have ?d $n=\operatorname{norm}\left(\right.$ integral $\left.^{L} M(\lambda x . s n x-f x)\right)$

```
```

 using int_f int_s by simp
 also have .. S (}\mp@subsup{|}{}{+}x.norm (s n x - fx) \partialM)
 by (intro int_f int_s integrable_diff integral_norm_bound_ennreal)
 finally show ?d n \leq (}\mp@subsup{\int}{}{+}x\mathrm{ . norm (s n x - f x) DM).
 qed
 show (\lambdan. \int + x. norm (s n x - fx)\partialM)\longrightarrow <nnreal 0
 unfolding ennreal_0
 apply (subst norm_minus_commute)
 proof (rule nn_integral_dominated_convergence_norm[where w=w])
 show \n.s n \in borel_measurable M
 using int_s unfolding integrable_iff_bounded by auto
 qed fact+
 qed
then have (}\lambda\mathrm{ n. integral }\mp@subsup{}{}{L}M(sn)-\mp@subsup{integral L}{L}{Mf})\longrightarrow
by (simp add: tendsto_norm_zero_iff del: ennreal_0)
from tendsto_add[OF this tendsto_const[of integral L}M\textrm{M f]
show (\lambdai. integral }\mp@subsup{}{}{L}M(si))\longrightarrow\mp@subsup{integral }{L}{L}Mf\mathrm{ by simp
qed
context
fixes s :: real \# ' }a=>\mathrm{ ' b::{banach, second_countable_topology} and w :: ' }a
real
and f :: ' }a=>\mp@subsup{|}{}{\prime}b\mathrm{ and }
assumes f\inborel_measurable M ^t.st\in borel_measurable M integrable M w
assumes lim:AE x in M. ((\lambdai.s i x) \longrightarrowf x) at_top
assumes bound: }\mp@subsup{\forall}{F}{}\mathrm{ i in at_top. AE x in M. norm (s i x) <wx
begin
lemma integral_dominated_convergence_at_top: ((\lambdat. integral}\mp@subsup{}{}{L}M(st))\longrightarrowin
tegral L}M\mathrm{ M) at_top
proof (rule tendsto_at_topI_sequentially)
fix X :: nat }=>\mathrm{ real assume X: filterlim X at_top sequentially
from filterlim_iff[THEN iffD1, OF this, rule_format, OF bound]
obtain N where w: \bigwedgen. N \leqn\LongrightarrowAEx in M.norm (s (X n) x) \leqwx
by (auto simp: eventually_sequentially)
show (\lambdan. integral }\mp@subsup{}{}{L}M(s(Xn)))\longrightarrow\mp@subsup{integral }{L}{L}M
proof (rule LIMSEQ_offset, rule integral_dominated_convergence)
show AE x in M. norm (s(X (n+N)) x)\leqwx for n
by (rule w) auto
show AE x in M. (\lambdan.s (X (n+N)) x)\longrightarrowfx
using lim
proof eventually_elim
fix }x\mathrm{ assume (((i.s i x) }\longrightarrowfx) at_to
then show }(\lambdan.s(X(n+N))x)\longrightarrowf
by (intro LIMSEQ_ignore_initial_segment filterlim_compose[OF _ X])
qed
qed fact+
qed

```
```

lemma integrable_dominated_convergence_at_top: integrable Mf
proof -
from bound obtain N where $w: \bigwedge n . N \leq n \Longrightarrow A E x$ in M. norm (s n x) \leq
w x
by (auto simp: eventually_at_top_linorder)
show ?thesis
proof (rule integrable_dominated_convergence)
show $A E x$ in M. norm $(s(N+i) x) \leq w x$ for $i::$ nat
by (intro w) auto
show $A E x$ in $M .(\lambda i . s(N+$ real $i) x) \longrightarrow f x$
using lim
proof eventually_elim
fix x assume $((\lambda i . s i x) \longrightarrow f x)$ at_top
then show $(\lambda n . s(N+n) x) \longrightarrow f x$
by (rule filterlim_compose)
(auto intro!: filterlim_tendsto_add_at_top filterlim_real_sequentially)
qed
qed fact+
qed
end
lemma integrable_mult_left_iff [simp]:
fixes $f::^{\prime} a \Rightarrow$ real
shows integrable $M(\lambda x . c * f x) \longleftrightarrow c=0 \vee$ integrable $M f$
using integrable_mult_left[of c Mf] integrable_mult_left[of $1 / c M \lambda x . c * f x]$
by (cases $c=0$) auto
lemma integrable_mult_right_iff [simp]:
fixes $f::{ }^{\prime} a \Rightarrow$ real
shows integrable $M(\lambda x . f x * c) \longleftrightarrow c=0 \vee$ integrable $M f$
using integrable_mult_left_iff [of $M c f]$ by (simp add: mult.commute)
lemma integrableI_nn_integral_finite:
assumes [measurable]: $f \in$ borel_measurable M
and nonneg: AE x in $M .0 \leq f x$
and finite: $\left(\int^{+} x . f x \partial M\right)=$ ennreal x
shows integrable $M f$
proof (rule integrableI_bounded)
have $\left(\int{ }^{+} x\right.$. ennreal (norm $\left.\left.(f x)\right) \partial M\right)=\left(\int+\right.$ x. ennreal $\left.(f x) \partial M\right)$
using nonneg by (intro nn_integral_cong_AE) auto
with finite show $\left(\int^{+}\right.$x. ennreal $($norm $\left.(f x)) \partial M\right)<\infty$
by auto
qed simp
lemma integral_nonneg_AE:
fixes $f::{ }^{\prime} a \Rightarrow$ real
assumes nonneg: $A E x$ in $M .0 \leq f x$

```
```

 shows \(0 \leq\) integral \(^{L} M f\)
 proof cases
assume f : integrable $M f$
then have [measurable]: $f \in M \rightarrow_{M}$ borel
by auto
have $(\lambda x$. max $0(f x)) \in M \rightarrow_{M}$ borel $\bigwedge x .0 \leq \max 0(f x)$ integrable $M(\lambda x$.
$\max 0(f x)$)
using f by auto
from this have $0 \leq$ integral $^{L} M(\lambda x$. max $0(f x))$
proof (induction rule: borel_measurable_induct_real)
case (add $f g$)
then have integrable M f integrable $M g$
by (auto intro!: integrable_bound [OF add.prems])
with add show ?case
by (simp add: nn_integral_add)
next
case (seq U)
show ? case
proof (rule LIMSEQ_le_const)
have $U_{-} l e: x \in$ space $M \Longrightarrow U i x \leq \max 0(f x)$ for $x i$
using seq by (intro incseq_le) (auto simp: incseq_def le_fun_def)
with seq nonneg show $\left(\lambda i\right.$. integral $\left.{ }^{L} M(U i)\right) \longrightarrow$ LINT $x \mid M . \max 0(f$
x)
by (intro integral_dominated_convergence) auto
have integrable $M(U i)$ for i
using seq.prems by (rule integrable_bound) (insert U_le seq, auto)
with seq show $\exists N . \forall n \geq N .0 \leq$ integral $^{L} M(U n)$
by auto
qed
qed (auto)
also have $\ldots=$ integral $^{L} M f$
using nonneg by (auto intro!: integral_cong_AE)
finally show ?thesis .
qed (simp add: not_integrable_integral_eq)
lemma integral_nonneg[simp]:
fixes $f::{ }^{\prime} a \Rightarrow$ real
shows $(\bigwedge x . x \in$ space $M \Longrightarrow 0 \leq f x) \Longrightarrow 0 \leq$ integral $^{L} M f$
by (intro integral_nonneg_AE) auto
proposition nn_integral_eq_integral:
assumes f : integrable $M f$
assumes nonneg: $A E x$ in $M .0 \leq f x$
shows $\left(\int^{+} x . f x \partial M\right)=$ integral $^{L} M f$
proof -
\{ fix $f:: ' a \Rightarrow$ real assume $f: f \in$ borel_measurable $M \wedge x .0 \leq f x$ integrable
$M f$
then have $\left(\int^{+} x . f x \partial M\right)=$ integral $^{L} M f$
proof (induct rule: borel_measurable_induct_real)

```
```

 case (set A) then show ?case
 by (simp add: integrable_indicator_iff ennreal_indicator emeasure_eq_ennreal_measure)
 next
 case (mult f c) then show ?case
 by (auto simp add: nn_integral_cmult ennreal_mult integral_nonneg_AE)
 next
 case (add gf)
 then have integrable M f integrable Mg
 by (auto intro!: integrable_bound[OF add.prems])
 with add show ?case
 by (simp add: nn_integral_add integral_nonneg_AE)
 next
 case (seq U)
 show ?case
 proof (rule LIMSEQ_unique)
 have U_le_f:x space M\LongrightarrowUix\leqfx for xi
 using seq by (intro incseq_le) (auto simp: incseq_def le_fun_def)
 have int_U: \i. integrable M (U i)
 using seq f U_le_f by (intro integrable_bound[OF f(3)]) auto
 from U_le_f seq have (\lambdai. integral }\mp@subsup{}{}{L}M(Ui))\longrightarrow \longrightarrowintegral L Mf
 by (intro integral_dominated_convergence) auto
 then show (\lambdai. ennreal (integral L}M(Ui)))\longrightarrow\mathrm{ ennreal (integral }\mp@subsup{}{}{L}
 f)
using seq f int_U by (simp add: f integral_nonneg_AE)
have (\lambdai. \int+ x.U ix \partialM)\longrightarrow \longrightarrow+ x.f x \partialM
using seq U_le_ff
by (intro nn_integral_dominated_convergence[where w=f]) (auto simp:
integrable_iff_bounded)
then show (\lambdai. \intx.U ix\partialM)\longrightarrow \longrightarrow+ }x.fx\partial
using seq int_U by simp
qed
qed }
from this[of \lambdax. max 0 (fx)] assms have (}\int\mp@subsup{}{}{+}\mathrm{ x. max 0 (fx) DM) = integral }\mp@subsup{}{}{L
M (\lambdax. max 0 (fx))
by simp
also have ... = integral L}M
using assms by (auto intro!: integral_cong_AE simp: integral_nonneg_AE)
also have (}\mp@subsup{\int}{}{+}x.\operatorname{max}0(fx)\partialM)=(\mp@subsup{\int}{}{+}x.fx\partialM
using assms by (auto intro!: nn_integral_cong_AE simp: max_def)
finally show ?thesis.
qed
lemma nn_integral_eq_integrable:
assumes f:f\inM 隹 borel AE x in M. 0\leqfx and 0\leqx
shows }(\mp@subsup{\int}{}{+}+x.fx\partialM)= ennreal x \longleftrightarrow(integrable Mf\wedge integral L M M = x)
proof (safe intro!: nn_integral_eq_integral assms)
assume *: (\int +}x.fx\partialM)= ennreal x
with integrableI_nn_integral_finite[OF f this] nn_integral_eq_integral[of M f,OF _
f(2)]

```
```

 show integrable \(M\) fintegral \({ }^{L} M f=x\)
 by (simp_all add: * assms integral_nonneg_AE)
 qed
lemma
fixes $f::$ _ $_{-} \Rightarrow^{\prime} a::\{$ banach, second_countable_topology $\}$
assumes integrable[measurable]: $\bigwedge i$. integrable $M(f i)$
and summable: AE x in M. summable (λi. norm (f i x))
and sums: summable (λi. ($\int x$. norm $\left.(f i x) \partial M\right)$)
shows integrable_suminf: integrable $M\left(\lambda x .\left(\sum i . f i x\right)\right)$ (is integrable M ?S)
and sums_integral: $\left(\lambda i\right.$. integral $\left.{ }^{L} M(f i)\right)$ sums $\left(\int x .\left(\sum i . f i x\right) \partial M\right)$ (is ?f
sums ? x)
and integral_suminf: $\left(\int x .\left(\sum i . f i x\right) \partial M\right)=\left(\sum i\right.$. integral $\left.^{L} M(f i)\right)$
and summable_integral: summable (λi. integral ${ }^{L} M(f i)$)
proof -
have 1: integrable $M\left(\lambda x . \sum i . \operatorname{norm}(f i x)\right)$
proof (rule integrableI_bounded)
have $\left(\int^{+}\right.$x. ennreal (norm $\left(\sum i\right.$.norm $\left.\left.\left.(f i x)\right)\right) \partial M\right)=\left(\int{ }^{+} x .\left(\sum i\right.\right.$. ennreal
($\operatorname{norm}(f i x))) \partial M)$
apply (intro nn_integral_cong_AE)
using summable
apply eventually_elim
apply (simp add: suminf_nonneg ennreal_suminf_neq_top)
done
also have $\ldots=\left(\sum i . \int+x . \operatorname{norm}(f i x) \partial M\right)$
by (intro nn_integral_suminf) auto
also have $\ldots=\left(\sum i\right.$. ennreal $\left.\left(\int x . \operatorname{norm}(f i x) \partial M\right)\right)$
by (intro arg_cong[where $f=$ suminf] ext nn_integral_eq_integral integrable_norm
integrable) auto
finally show $\left(\int^{+}\right.$x. ennreal (norm $\left.\left.\left(\sum i . \operatorname{norm}(f i x)\right)\right) \partial M\right)<\infty$
by (simp add: sums ennreal_suminf_neq_top less_top[symmetric] integral_nonneg_AE)
qed simp

```
    have 2: \(A E x\) in \(M .\left(\lambda n . \sum i<n . f i x\right) \longrightarrow\left(\sum i . f i x\right)\)
    using summable by eventually_elim (auto intro: summable_LIMSEQ summable_norm_cancel)
    have 3: \(\wedge j\). AE \(x\) in \(M . \operatorname{norm}\left(\sum i<j . f i x\right) \leq\left(\sum i . \operatorname{norm}(f i x)\right)\)
    using summable
proof eventually_elim
    fix \(j x\) assume \([\) simp \(]\) : summable ( \(\lambda i\). norm ( \(f i x\) ) )
    have norm \(\left(\sum i<j . f i x\right) \leq\left(\sum i<j\right.\).norm \(\left.(f i x)\right)\) by (rule norm_sum)
    also have \(\ldots \leq\left(\sum i\right.\). norm \(\left.(f i x)\right)\)
        using sum_le_suminf \([\) of \(\lambda i\). norm \((f i x)]\) unfolding sums_iff by auto
    finally show norm \(\left(\sum i<j\right.\). fix) \(\leq\left(\sum i\right.\). norm \(\left.(f i x)\right)\) by simp
qed
note \(i b l=\) integrable_dominated_convergence \([O F\) _ _ 12 3]
note int \(=\) integral_dominated_convergence \([O F\) _ 1233\(]\)
```

 show integrable M ?S
 by (rule ibl) measurable
 show ?f sums ?x unfolding sums_def
 using int by (simp add: integrable)
 then show ?x = suminf ?f summable ?f
 unfolding sums_iff by auto
 qed
proposition integral_norm_bound [simp]:
fixes f :: _ = 'a :: {banach, second_countable_topology}
shows norm (integral }\mp@subsup{}{}{L}Mf)\leq(\intx.norm (fx)\partialM
proof (cases integrable M f)
case True then show ?thesis
using nn_integral_eq_integral[of M \lambdax.norm (fx)] integral_norm_bound_ennreal[of
M f]
by (simp add: integral_nonneg_AE)
next
case False
then have norm (integral }\mp@subsup{}{}{L}Mf)=0\mathrm{ by (simp add: not_integrable_integral_eq)
moreover have (\intx.norm (fx)\partialM)\geq0 by auto
ultimately show ?thesis by simp
qed
proposition integral_abs_bound [simp]:
fixes f :: ' }a=>\mathrm{ real shows abs (f x.f f }\partialM)\leq(\intx.|fx|\partialM
using integral_norm_bound[of M f] by auto
lemma integral_eq_nn_integral:
assumes [measurable]: f\in borel_measurable M
assumes nonneg: AE x in M. 0 \leqfx
shows integral }\mp@subsup{}{}{L}Mf=\mathrm{ enn2real (}\mp@subsup{\int}{}{+}\mathrm{ x. ennreal (f x) DM)
proof cases
assume *: (\int+ x. ennreal (fx)\partialM)=\infty
also have (\int'+ x. ennreal (fx)\partialM)=((+ x. ennreal (norm (fx))\partialM)
using nonneg by (intro nn_integral_cong_AE) auto
finally have }\neg\mathrm{ integrable Mf
by (auto simp: integrable_iff_bounded)
then show ?thesis
by (simp add:* not_integrable_integral_eq)
next
assume (}\mp@subsup{\int}{}{+}\mathrm{ x. ennreal (f x) DM)}\not=
then have integrable Mf
by (cases }\int+\mp@subsup{}{}{+}x.ennreal (fx)\partialM rule: ennreal_cases
(auto intro!: integrableI_nn_integral_finite assms)
from nn_integral_eq_integral[OF this] nonneg show ?thesis
by (simp add: integral_nonneg_AE)
qed

```
```

lemma enn2real_nn_integral_eq_integral:
assumes eq: AE x in $M . f x=$ ennreal $(g x)$ and $n n: A E x$ in $M .0 \leq g x$
and $f i n:\left(\int^{+} x . f x \partial M\right)<t o p$
and [measurable]: $g \in M \rightarrow_{M}$ borel
shows enn2real $\left(\int^{+} x . f x \partial M\right)=\left(\int x . g x \partial M\right)$
proof -
have ennreal (enn2real $\left(\int{ }^{+}\right.$x. f x $\left.\left.\partial M\right)\right)=\left(\int{ }^{+} x . f x \partial M\right)$
using fin by (intro ennreal_enn2real) auto
also have $\ldots=\left(\int^{+} x . g x \partial M\right)$
using eq by (rule nn_integral_cong_AE)
also have $\ldots=\left(\int x . g x \partial M\right)$
proof (rule nn_integral_eq_integral)
show integrable $M g$
proof (rule integrableI_bounded)
have $\left(\int^{+} x\right.$. ennreal (norm $\left.\left.(g x)\right) \partial M\right)=\left(\int^{+} x . f x \partial M\right)$
using eq $n n$ by (auto intro!: nn_integral_cong_AE elim!: eventually_elim2)
also note fin
finally show $\left(\int^{+} x\right.$. ennreal (norm $\left.\left.(g x)\right) \partial M\right)<\infty$
by simp
qed simp
qed fact
finally show ?thesis
using $n n$ by (simp add: integral_nonneg_AE)
qed
lemma has_bochner_integral_nn_integral:
assumes $f \in$ borel_measurable $M A E x$ in $M .0 \leq f x 0 \leq x$
assumes $\left(\int{ }^{+}\right.$x. $\left.f x \partial M\right)=$ ennreal x
shows has_bochner_integral Mfx
unfolding has_bochner_integral_iff
using assms by (auto simp: assms integral_eq_nn_integral intro: integrableI_nn_integral_finite)
lemma integrableI_simple_bochner_integrable:
fixes $f::{ }^{\prime} a \Rightarrow$ ' $b::\{$ banach, second_countable_topology $\}$
shows simple_bochner_integrable $M f \Longrightarrow$ integrable $M f$
by (intro integrableI_sequence[where $s=\lambda_{\text {_. }} f$] borel_measurable_simple_function)
(auto simp: zero_ennreal_def[symmetric] simple_bochner_integrable.simps)

```
proposition integrable_induct[consumes 1, case_names base add lim, induct pred:
integrable]:
    fixes \(f::\) ' \(a \Rightarrow\) ' \(b::\{\) banach, second_countable_topology \(\}\)
    assumes integrable \(M f\)
    assumes base: \(\bigwedge A c . A \in\) sets \(M \Longrightarrow\) emeasure \(M A<\infty \Longrightarrow P\) ( \(\lambda x\). indicator
\(\left.A x *_{R} c\right)\)
    assumes add: \(\Lambda f g\). integrable \(M f \Longrightarrow P f \Longrightarrow\) integrable \(M g \Longrightarrow P g \Longrightarrow P\)
\((\lambda x . f x+g x)\)
    assumes lim: \(\bigwedge f s .(\bigwedge i\). integrable \(M(s i)) \Longrightarrow(\bigwedge i . P(s i)) \Longrightarrow\)
    \((\bigwedge x . x \in\) space \(M \Longrightarrow(\lambda i . s i x) \longrightarrow f x) \Longrightarrow\)
    \((\bigwedge i x . x \in\) space \(M \Longrightarrow\) norm \((\) s \(i x) \leq 2 * \operatorname{norm}(f x)) \Longrightarrow\) integrable \(M f \Longrightarrow\)
```

Pf
shows Pf
proof -
from «integrable M f` have f:f\in borel_measurable M (}\mp@subsup{}{}{+}+x.norm (fx)\partialM
<\infty
unfolding integrable_iff_bounded by auto
from borel_measurable_implies_sequence_metric[OF f(1)]
obtain s where s: \i. simplefunction M (s i) \x. x space M\Longrightarrow(\lambdai.s i
x)\longrightarrowfx
\ix. x f space M \Longrightarrow norm(six)\leq2* norm (f x)
unfolding norm_conv_dist by metis
{ fix f A
have [simp]: P (}\lambdax.0
using base[of {} undefined] by simp
have (\i::'b. i }\inA\Longrightarrow\mathrm{ integrable M (f i::'a ' 'b)) \
(\i.i}\=A\LongrightarrowP(fi))\LongrightarrowP(\lambdax.\sumi\inA.fix
by (induct A rule: infinite_finite_induct) (auto intro!: add) }
note sum = this
define s' where [abs_def]: s' iz= indicator (space M) z**R}\mathrm{ s iz for iz
then have s'_eq_s: \ix. x s space M\Longrightarrow s'ix=six
by simp
have sf[measurable]: \i. simple_function M (s' i)
unfolding s'_def using s(1)
by (intro simple_function_compose2[where }h=(\mp@subsup{*}{R}{})]\mathrm{ simple_function_indicator)
auto

```
    \(\{\operatorname{fix} i\)
    have \(\wedge z .\left\{y . s^{\prime} i z=y \wedge y \in s^{\prime} i '\right.\) space \(M \wedge y \neq 0 \wedge z \in\) space \(\left.M\right\}=\)
            (if \(z \in\) space \(M \wedge s^{\prime} i z \neq 0\) then \(\left\{s^{\prime} i z\right\}\) else \(\}\) )
        by (auto simp add: s'_def split: split_indicator)
    then have \(\bigwedge z . s^{\prime} i=\left(\lambda z . \sum y \in s^{\prime} i^{\prime}\right.\) space \(M-\{0\}\). indicator \(\{x \in\) space \(M\).
\(\left.s^{\prime} i x=y\right\} z *_{R} y\) )
    using sf by (auto simp: fun_eq_iff simple_function_def s'_def) \}
    note \(s^{\prime}{ }^{\prime} e q=\) this
show \(P f\)
proof (rule lim)
    fix \(i\)
    have \(\left(\int{ }^{+} x\right.\). norm \(\left.\left(s^{\prime} i x\right) \partial M\right) \leq\left(\int{ }^{+}\right.\)x. ennreal \(\left.(2 * \operatorname{norm}(f x)) \partial M\right)\)
        using \(s\) by (intro nn_integral_mono) (auto simp: \(s^{\prime}\) _eq_s)
    also have \(\ldots<\infty\)
        using \(f\) by (simp add: nn_integral_cmult ennreal_mult_less_top ennreal_mult)
    finally have sbi: simple_bochner_integrable \(M\left(s^{\prime} i\right)\)
        using sf by (intro simple_bochner_integrableI_bounded) auto
    then show integrable \(M\left(s^{\prime} i\right)\)
by (rule integrableI_simple_bochner_integrable)
\(\left\{\right.\) fix \(x\) assume \(x \in\) space \(M s^{\prime}\) i \(x \neq 0\)
then have emeasure \(M\left\{y \in\right.\) space \(\left.M . s^{\prime} i y=s^{\prime} i x\right\} \leq\) emeasure \(M\{y \in\) space M. s' i \(y \neq 0\}\)
by (intro emeasure_mono) auto
also have \(\ldots<\infty\)
using sbi by (auto elim: simple_bochner_integrable.cases simp: less_top)
finally have emeasure \(M\left\{y \in\right.\) space \(M . s^{\prime}\) i \(\left.y=s^{\prime} i x\right\} \neq \infty\) by simp \(\}\)
then show \(P\left(s^{\prime} i\right)\)
by (subst \(s^{\prime}\) _eq) (auto intro!: sum base simp: less_top)
fix \(x\) assume \(x \in\) space \(M\) with \(s\) show \(\left(\lambda i . s^{\prime} i x\right) \longrightarrow f x\)
by (simp add: \(s^{\prime}\) _eq_s)
show norm \(\left(s^{\prime} i x\right) \leq 2 * \operatorname{norm}(f x)\)
using \(\langle x \in\) space \(M\rangle\) s by (simp add: \(s^{\prime} \_e q_{-} s\) )
qed fact
qed
lemma integral_eq_zero_AE:
( \(A E x\) in \(M . f x=0) \Longrightarrow\) integral \(^{L} M f=0\)
using integral_cong_AE[of f \(\left.M \lambda_{\text {_. }} 0\right]\)
by (cases integrable \(M f\) ) (simp_all add: not_integrable_integral_eq)
lemma integral_nonneg_eq_0_iff_AE:
fixes \(f::\) _ \(\Rightarrow\) real
assumes \(f\) [measurable]: integrable \(M f\) and nonneg: \(A E x\) in \(M .0 \leq f x\)
shows integral \({ }^{L} M f=0 \longleftrightarrow(A E x\) in \(M . f x=0)\)
proof
assume integral \({ }^{L}\) Mf \(=0\)
then have integral \({ }^{N} M f=0\)
using nn_integral_eq_integral[OF f nonneg] by simp
then have \(A E x\) in \(M\). ennreal \((f x) \leq 0\)
by (simp add: nn_integral_0_iff_AE)
with nonneg show \(A E x\) in \(M . f x=0\)
by auto
qed (auto simp add: integral_eq_zero_AE)
lemma integral_mono_AE:
fixes \(f::^{\prime} a \Rightarrow\) real
assumes integrable \(M\) f integrable \(M g\) AEx in \(M . f x \leq g x\)
shows integral \({ }^{L} M f \leq\) integral \(^{L} M g\)
proof -
have \(0 \leq\) integral \(^{L} M(\lambda x . g x-f x)\)
using assms by (intro integral_nonneg_AE integrable_diff assms) auto
also have \(\ldots=\) integral \(^{L} M g-\) integral \(^{L} M f\)
by (intro integral_diff assms)
finally show? ?thesis by simp
qed
```

lemma integral_mono:
fixes $f::{ }^{\prime} a \Rightarrow$ real
shows integrable $M f \Longrightarrow$ integrable $M g \Longrightarrow(\bigwedge x . x \in$ space $M \Longrightarrow f x \leq g x)$
integral $^{L} M f \leq$ integral $^{L} M g$
by (intro integral_mono_AE) auto
lemma integral_norm_bound_integral:
fixes $f::$ 'a::euclidean_space \Rightarrow 'b::\{banach,second_countable_topology\}
assumes integrable M f integrable $M g \bigwedge x . x \in \operatorname{space} M \Longrightarrow \operatorname{norm}(f x) \leq g x$
shows norm $\left(\int x . f x \partial M\right) \leq\left(\int x . g x \partial M\right)$
proof -
have norm $\left(\int x . f x \partial M\right) \leq\left(\int x . \operatorname{norm}(f x) \partial M\right)$
by (rule integral_norm_bound)
also have $\ldots \leq\left(\int x . g x \partial M\right)$
using assms integrable_norm integral_mono by blast
finally show ?thesis .
qed
lemma integral_abs_bound_integral:
fixes f :: 'a::euclidean_space \Rightarrow real
assumes integrable M f integrable $M g \bigwedge x . x \in$ space $M \Longrightarrow|f x| \leq g x$
shows $\left|\int x . f x \partial M\right| \leq\left(\int x . g x \partial M\right)$
by (metis integral_norm_bound_integral assms real_norm_def)

```

The next two statements are useful to bound Lebesgue integrals, as they avoid one integrability assumption. The price to pay is that the upper function has to be nonnegative, but this is often true and easy to check in computations.
```

lemma integral_mono_AE':
fixes $f::-\Rightarrow$ real
assumes integrable $M f$ AE x in $M . g x \leq f x A E x$ in $M .0 \leq f x$
shows $\left(\int x . g x \partial M\right) \leq\left(\int x . f x \partial M\right)$
proof (cases integrable $M g$)
case True
show ? ?hesis by (rule integral_mono_AE, auto simp add: assms True)
next
case False
then have $\left(\int x . g x \partial M\right)=0$ by (simp add: not_integrable_integral_eq)
also have $\ldots \leq\left(\int x . f x \partial M\right)$ by (simp add: integral_nonneg_AE[OF assms(3)])
finally show ?thesis by simp
qed
lemma integral_mono':
fixes $f::-\Rightarrow$ real
assumes integrable $M f \bigwedge x . x \in$ space $M \Longrightarrow g x \leq f x \bigwedge x . x \in$ space $M \Longrightarrow$
$0 \leq f x$
shows $\left(\int x . g x \partial M\right) \leq\left(\int x . f x \partial M\right)$

```
```

by (rule integral_mono_ $A E^{\prime}$, insert assms, auto)
lemma (in finite_measure) integrable_measure:
assumes I: disjoint_family_on X I countable I
shows integrable (count_space $I)(\lambda i$. measure $M(X i))$
proof -
have $\left(\int{ }^{+}{ }_{i}\right.$. measure $M(X i)$ dcount_space $\left.I\right)=\left(\int{ }^{+} i\right.$. measure M (if $X i \in$ sets
M then $X i$ else $\}) \partial$ count_space $I)$
by (auto intro!: nn_integral_cong measure_notin_sets)
also have $\ldots=$ measure $M(\bigcup i \in I$. if $X i \in$ sets M then X i else $\})$
using I unfolding emeasure_eq_measure[symmetric]
by (subst emeasure_UN_countable) (auto simp: disjoint_family_on_def)
finally show ?thesis
by (auto intro!: integrableI_bounded)
qed
lemma integrableI_real_bounded:
assumes $f: f \in$ borel_measurable M and $a e: A E x$ in $M .0 \leq f x$ and $f i n$:
integral $^{N} M f<\infty$
shows integrable $M f$
proof (rule integrableI_bounded)
have $\left(\int{ }^{+}\right.$x. ennreal (norm $\left.\left.(f x)\right) \partial M\right)=\int{ }^{+}$x. ennreal $(f x) \partial M$
using ae by (auto intro: nn_integral_cong_AE)
also note fin
finally show $\left(\int+x\right.$. ennreal $($ norm $\left.(f x)) \partial M\right)<\infty$.
qed fact
lemma nn_integral_nonneg_infinite:
fixes $f::^{\prime} a \Rightarrow$ real
assumes $f \in$ borel_measurable $M \neg$ integrable $M f A E x$ in M. $f x \geq 0$
shows $\left(\int^{+} x . f x \partial M\right)=\infty$
using assms integrableI_real_bounded less_top by auto
lemma integral_real_bounded:
assumes $0 \leq r$ integral $^{N} M f \leq$ ennreal r
shows integral ${ }^{L} M f \leq r$
proof cases
assume [simp]: integrable $M f$
have integral ${ }^{L} M(\lambda x . \max 0(f x))=$ integral $^{N} M(\lambda x$. max $0(f x))$
by (intro nn_integral_eq_integral[symmetric]) auto
also have $\ldots=$ integral $^{N} M f$
by (intro nn_integral_cong) (simp add: max_def ennreal_neg)
also have $\ldots \leq r$
by fact
finally have integral ${ }^{L} M(\lambda x$. max $0(f x)) \leq r$
using $\langle 0 \leq r\rangle$ by simp
moreover have integral $^{L} M f \leq$ integral $^{L} M(\lambda x . \max 0(f x))$

```
```

 by (rule integral_mono_AE) auto
 ultimately show?thesis
 by simp
 next
assume }\neg\mathrm{ integrable Mf then show ?thesis
using <0 \leqr> by (simp add: not_integrable_integral_eq)
qed
lemma integrable_MIN:
fixes f:: - = - = real
shows \llbracket finite I; I\not={};\i.i\inI\Longrightarrow integrable M (fi)\rrbracket
\Longrightarrow integrable M (\lambda x . M I N ~ i \in I . f i x)
by (induct rule: finite_ne_induct) simp+
lemma integrable_MAX:
fixes f:: - = - = real
shows\llbracket finite I; I\not={}; \i.i\inI\Longrightarrow integrable M (fi)\rrbracket
\Longrightarrow ~ i n t e g r a b l e ~ M ~ (\lambda x . ~ M A X ~ i \in I . f i x)
by (induct rule: finite_ne_induct) simp+
theorem integral_Markov_inequality:
assumes [measurable]: integrable Mu and AE x in M. 0\lequx 0< (c::real)
shows (emeasure M) {x\inspace M. ux\geqc}\leq(1/c)*(\intx.ux\partialM)
proof -
have ((+ x. ennreal (ux)* indicator (space M) x \partialM) \leq ({ + x. u x \partialM)
by (rule nn_integral_mono_AE, auto simp add: \c>0\rangle less_eq_real_def)
also have ... = (\intx.u x \partialM)
by (rule nn_integral_eq_integral, auto simp add: assms)
finally have *: ((+ x. ennreal (ux)*indicator (space M) x \partialM) \leq (\int x.ux
\partialM)
by simp
have {x\in space M. ux \geqc} ={x\in space M. ennreal(1/c)*ux\geq1}\cap
(space M)
using \c>0\rangle by (auto simp: ennreal_mult'[symmetric])
then have emeasure M {x\in space M.ux\geqc} = emeasure M ({x\in space M.
ennreal(1/c)*ux\geq1} \cap(space M))
by simp
also have ... \leqennreal(1/c)* (\int + x. ennreal(}ux)*\mathrm{ indicator (space M) x
\partialM)
by (rule nn_integral_Markov_inequality) (auto simp add: assms)
also have ... \leqennreal(1/c)*((x. u x \partialM)
apply (rule mult_left_mono) using * <c>0\rangle by auto
finally show?thesis
using <0<c> by (simp add: ennreal_mult'[symmetric])
qed
lemma integral_ineq_eq_0_then_AE:
fixes f::- => real

```
```

 assumes AE x in M. fx\leqgx integrable M f integrable Mg
 (\intx.fx\partialM) =(\intx.gx\partialM)
 shows AE x in M. fx=gx
 proof -
define }h\mathrm{ where }h=(\lambdax.gx-fx
have AE x in M. hx=0
apply (subst integral_nonneg_eq_0_iff_AE[symmetric])
unfolding h_def using assms by auto
then show ?thesis unfolding h_def by auto
qed
lemma not_AE_zero_int_E:
fixes f::'a m real
assumes AE x in M.fx\geq0(\intx.fx\partialM)>0
and [measurable]: f}\in\mathrm{ borel_measurable M
shows \existsAe. A sets M ^e>0^ emeasure M A>0\wedge (\forallx\inA.fx\geqe)
proof (rule not_AE_zero_E, auto simp add: assms)
assume *:AE x in M. fx=0
have (\intx.f x \partialM) = (\intx. O \partialM) by (rule integral_cong_AE, auto simp add:
*)
then have (}\intx.fx\partialM)=0\mathrm{ by simp
then show False using assms(2) by simp
qed
proposition tendsto_L1_int:
fixes u :: _ > _ = 'b::{banach, second_countable_topology}
assumes [measurable]: \n. integrable M (u n) integrable Mf
and}((\lambdan.(\int+\mp@subsup{}{}{+}.norm(unx-fx)\partialM))\longrightarrow0)
shows}((\lambdan.(\intx.unx\partialM))\longrightarrow(\intx.fx\partialM))
proof -
have }((\lambdan.\operatorname{norm}((\intx.unx\partialM)-(\intx.fx\partialM)))\longrightarrow(0::ennreal))

```

```

x) \partialM)], auto simp add: assms)
{
fix n
have (\intx.u n x \partialM) - (\intx.f x \partialM) = (\int x.un x - fx \partialM)
apply (rule Bochner_Integration.integral_diff [symmetric]) using assms by
auto
then have norm((\intx.unx\partialM)-(\intx.fx\partialM))=norm (\intx.unx-f
x \partialM)
by auto
also have ... \leq (\intx.norm(u n x - fx) \partialM)
by (rule integral_norm_bound)
finally have ennreal(norm((\intx.unx\partialM) - (\int x.fx\partialM))) \leq (\int x.norm(u
nx-fx)\partialM)
by simp
also have ... = (\int +}x.\operatorname{norm}(unx-fx)\partialM
apply (rule nn_integral_eq_integral[symmetric]) using assms by auto
finally have norm ((\intx.u n x \partialM) - (\intx.f x \partialM)) \leq (\int +

```
```

$-f x) \partial M)$ by simp
\}
then show eventually $\left(\lambda n . \operatorname{norm}\left(\left(\int x . u n x \partial M\right)-\left(\int x . f x \partial M\right)\right) \leq\left(\int{ }^{+} x\right.\right.$.
norm (u $n x-f x) \partial M)) F$
by auto
qed
then have $\left(\left(\lambda n . \operatorname{norm}\left(\left(\int x . u n x \partial M\right)-\left(\int x . f x \partial M\right)\right)\right) \longrightarrow 0\right) F$
by (simp fip: ennreal_0)
then have $\left(\left(\lambda n .\left(\left(\int x . u n x \partial M\right)-\left(\int x . f x \partial M\right)\right)\right) \longrightarrow 0\right) F$ using tend-
sto_norm_zero_iff by blast
then show ?thesis using Lim_null by auto
qed

```

The next lemma asserts that, if a sequence of functions converges in \(L^{1}\), then it admits a subsequence that converges almost everywhere.
```

proposition tendsto_L1_AE_subseq:
fixes $u::$ nat $\Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} b::\{$ banach, second_countable_topology $\}$
assumes [measurable]: $\bigwedge n$. integrable $M(u n)$
and $\left(\lambda n .\left(\int x . \operatorname{norm}(u n x) \partial M\right)\right) \longrightarrow 0$
shows $\exists r:: n a t \Rightarrow n a t$. strict_mono $r \wedge(A E x$ in $M .(\lambda n . u(r n) x) \longrightarrow 0)$
proof -
\{
fix k
have eventually $\left(\lambda n\right.$. $\left(\int x\right.$. norm $\left.\left.(u n x) \partial M\right)<(1 / 2)^{\wedge} k\right)$ sequentially
using order_tendstoD(2)[OF assms(2)] by auto
with eventually_elim2[OF eventually_gt_at_top[of k] this]
have $\exists n>k$. ($\int x$. norm $\left.(u n x) \partial M\right)<(1 / 2) \wedge k$
by (metis eventually_False_sequentially)
\}
then have $\exists r . \forall n$. True $\wedge\left(r(\right.$ Suc $n)>r n \wedge\left(\int x . \operatorname{norm}(u(r(\right.$ Suc $n)) x)$
$\left.\partial M)<(1 / \mathcal{Z})^{\wedge}(r n)\right)$
by (intro dependent_nat_choice, auto)
then obtain r0 where r0: strict_mono r0 $\bigwedge n .\left(\int x \cdot \operatorname{norm}(u(r 0(S u c n)) x)\right.$
$\partial M)<(1 / 2)^{\wedge}(r 0 n)$
by (auto simp: strict_mono_Suc_iff)
define r where $r=(\lambda n . r 0(n+1))$
have strict_mono r unfolding r _def using $r 0(1)$ by (simp add: strict_mono_Suc_iff)
have $I:\left(\int^{+} x \operatorname{norm}(u(r n) x) \partial M\right)<\operatorname{ennreal}((1 / \mathcal{Z}) \wedge n)$ for n
proof -
have $r 0 n \geq n$ using «strict_mono $r 0$ 〉 by (simp add: seq_suble)
have $(1 / 2:: \text { real })^{\wedge}(r 0 n) \leq(1 / 2)^{\wedge} n$ by (rule power_decreasing $[O F\langle r 0 n \geq n\rangle$,
auto)
then have $\left(\int x . \operatorname{norm}(u(r 0(\right.$ Suc $\left.n)) x) \partial M\right)<(1 / 2){ }^{\wedge} n$
using r0(2) less_le_trans by blast
then have $\left(\int x \operatorname{norm}(u(r n) x) \partial M\right)<(1 / 2){ }^{\wedge} n$
unfolding r_{-}def by auto
moreover have $\left(\int{ }^{+} x \operatorname{norm}(u(r n) x) \partial M\right)=\left(\int x \operatorname{norm}(u(r n) x) \partial M\right)$
by (rule nn_integral_eq_integral, auto simp add: integrable_norm[OF assms(1)[of
rn]])

```
```

 ultimately show ?thesis by (auto intro: ennreal_lessI)
 qed
have $A E x$ in $M . \limsup (\lambda n$. ennreal $(\operatorname{norm}(u(r n) x))) \leq 0$
proof (rule AE_upper_bound_inf_ennreal)
fix $e:$:real assume $e>0$
define A where $A=(\lambda n .\{x \in \operatorname{space} M . \operatorname{norm}(u(r n) x) \geq e\})$
have A_{-}meas [measurable]: $\bigwedge n$. $A n \in$ sets M unfolding A_{-}def by auto
have A_{-}bound: emeasure $M(A n)<(1 / e) * \operatorname{ennreal}((1 / 2) \wedge n)$ for n
proof -
have $*$: indicator $(A n) x \leq(1 / e) * \operatorname{ennreal}(n o r m(u(r n) x))$ for x
apply (cases $x \in A n$) unfolding A_{-}def using $\langle 0<e\rangle$ by (auto simp:
ennreal_mult[symmetric])
have emeasure $M(A n)=\left(\int^{+} x\right.$. indicator $\left.(A n) x \partial M\right)$ by auto
also have $\ldots \leq\left(\int^{+} x .(1 / e) * \operatorname{ennreal}(\operatorname{norm}(u(r n) x)) \partial M\right)$
apply (rule nn_integral_mono) using * by auto
also have $\ldots=(1 / e) *\left(\int^{+} x . \operatorname{norm}(u(r n) x) \partial M\right)$
apply (rule nn_integral_cmult) using $\langle e>0\rangle$ by auto
also have $\ldots<(1 / e) * \operatorname{ennreal}\left((1 / 2)^{\wedge} n\right)$
using $I[$ of $n]\langle e>0\rangle$ by (intro ennreal_mult_strict_left_mono) auto
finally show ?thesis by simp
qed
have A_{-}fin: emeasure $M(A n)<\infty$ for n
using $\langle e>0\rangle$ A_bound[of n]
by (auto simp add: ennreal_mult less_top[symmetric])
have A_{-}sum: summable $(\lambda n$. measure $M(A n)$)
proof (rule summable_comparison_test' $\left[\right.$ of $\left.\left.\lambda n .(1 / e) *(1 / 2){ }^{\wedge} n 0\right]\right)$
have summable ($\left.\lambda n .(1 /(2:: \text { real }))^{\wedge} n\right)$ by (simp add: summable_geometric)
then show summable $\left(\lambda n .(1 / e) *(1 / 2)^{\wedge} n\right)$ using summable_mult by blast
fix n ::nat assume $n \geq 0$
have $\operatorname{norm}($ measure $M(A n))=$ measure $M(A n)$ by simp
also have $\ldots=$ enn2real(emeasure $M(A n)$) unfolding measure_def by simp
also have $\ldots<\operatorname{enn} 2 \operatorname{real}\left((1 / e) *(1 / 2){ }^{\wedge} n\right)$
using A_{-}bound $[$of $n]$ <emeasure $\left.M(A n)<\infty\right\rangle\langle 0<e\rangle$
by (auto simp: emeasure_eq_ennreal_measure ennreal_mult[symmetric] en-
nreal_less_iff)
also have $\ldots=(1 / e) *(1 / 2)^{\wedge} n$
using $\langle 0<e\rangle$ by auto
finally show $n \operatorname{orm}($ measure $M(A n)) \leq(1 / e) *(1 / 2)^{\wedge} n$ by simp
qed
have $A E x$ in M. eventually $(\lambda n . x \in$ space $M-A n)$ sequentially
by (rule borel_cantelli_AE1[OF A_meas A_fin A_sum])
moreover
\{
fix x assume eventually ($\lambda n . x \in$ space $M-A n$) sequentially
moreover have $\operatorname{norm}(u(r n) x) \leq e n n r e a l e$ if $x \in \operatorname{space} M-A n$ for n
using that unfolding A_{-}def by (auto intro: ennreal_leI)

```
ultimately have eventually \((\lambda n\). norm \((u(r n) x) \leq\) ennreal e) sequentially by (simp add: eventually_mono)
then have limsup \((\lambda n\). ennreal \((\operatorname{norm}(u(r n) x))) \leq e\)
by (simp add: Limsup_bounded)
\}
ultimately show \(A E x\) in \(M\). limsup \((\lambda n\). ennreal \((\operatorname{norm}(u(r n) x))) \leq 0+\) ennreal e by auto
qed
moreover
\{
fix \(x\) assume limsup \((\lambda n\). ennreal \((\operatorname{norm}(u(r n) x))) \leq 0\)
moreover then have liminf \((\lambda n\). ennreal \((\operatorname{norm}(u(r \bar{n}) x))) \leq 0\)
by (rule order_trans[rotated]) (auto intro: Liminf_le_Limsup)
ultimately have \((\lambda n\). ennreal \((\operatorname{norm}(u(r n) x))) \longrightarrow 0\)
using tendsto_Limsup [of sequentially \(\lambda\) n. ennreal (norm \((u(r n) x)\) )] by auto
then have \((\lambda n . \operatorname{norm}(u(r n) x)) \longrightarrow 0\)
by (simp flip: ennreal_0)
then have \((\lambda n . u(r n) x) \longrightarrow 0\)
by (simp add: tendsto_norm_zero_iff)
\}
ultimately have \(A E x\) in \(M .(\lambda n . u(r n) x) \longrightarrow 0\) by auto
then show ?thesis using <strict_mono \(r\) 〉 by auto
qed

\subsection*{6.10.1 Restricted measure spaces}
```

lemma integrable_restrict_space:
fixes $f::{ }^{\prime} a \Rightarrow ' b::\{b a n a c h$, second_countable_topology $\}$
assumes $\Omega[$ simp $]: \Omega \cap$ space $M \in$ sets M
shows integrable (restrict_space $M \Omega) f \longleftrightarrow$ integrable $M\left(\lambda x\right.$. indicator $\Omega x *_{R}$
$f x)$
unfolding integrable_iff_bounded
borel_measurable_restrict_space_iff $[O F \quad \Omega]$
nn_integral_restrict_space [OF Ω]
by (simp add: ac_simps ennreal_indicator ennreal_mult)
lemma integral_restrict_space:
fixes $f::$ ' $a \Rightarrow$ ' $b::\{$ banach, second_countable_topology\}
assumes $\Omega[$ simp $]: \Omega \cap$ space $M \in$ sets M
shows integral L (restrict_space $\left.M \Omega\right) f=$ integral $^{L} M\left(\lambda\right.$. indicator $\Omega x *_{R} f$
x)
proof (rule integral_eq_cases)
assume integrable (restrict_space $M \Omega$) f
then show ?thesis
proof induct
case (base $A c$) then show ?case
by (simp add: indicator_inter_arith[symmetric] sets_restrict_space_iff
emeasure_restrict_space Int_absorb1 measure_restrict_space)
next

```
```

 case (add \(g f\)) then show ?case
 by (simp add: scaleR_add_right integrable_restrict_space)
 next
 case \((\lim f s)\)
 show ?case
 proof (rule LIMSEQ_unique)
 show \(\left(\lambda i\right.\). integral \({ }^{L}(\) restrict_space \(\left.M \Omega)(s i)\right) \longrightarrow\) integral \(^{L}\) (restrict_space
 $M \Omega) f$
using lim by (intro integral_dominated_convergence[where $w=\lambda x$. $2 *$ norm
($f x)]$) simp_all
show (λ i. integral ${ }^{L}$ (restrict_space $\left.M \Omega\right)\left(\begin{array}{ll}s & i\end{array}\right) \longrightarrow\left(\int x\right.$. indicator Ωx
$\left.*_{R} f x \partial M\right)$
unfolding lim
using \lim
by (intro integral_dominated_convergence $[$ where $w=\lambda x$. 2 * norm (indicator
$\left.\left.\left.\Omega x *_{R} f x\right)\right]\right)$
(auto simp add: space_restrict_space integrable_restrict_space simp del:
norm_scaleR
split: split_indicator)
qed
qed
qed (simp add: integrable_restrict_space)
lemma integral_empty:
assumes space $M=\{ \}$
shows integral ${ }^{L} M f=0$
proof -
have $\left(\int x . f x \partial M\right)=\left(\int x .0 \partial M\right)$
by (rule integral_cong)(simp_all add: assms)
thus?thesis by simp
qed

```

\subsection*{6.10.2 Measure spaces with an associated density}
lemma integrable_density:
fixes \(f::{ }^{\prime} a \Rightarrow{ }^{\prime} b::\left\{b a n a c h\right.\), second_countable_topology\} and \(g::{ }^{\prime} a \Rightarrow\) real
assumes [measurable]: \(f \in\) borel_measurable \(M g \in\) borel_measurable \(M\) and \(n n\) : \(A E x\) in \(M .0 \leq g x\)
shows integrable \((\) density \(M g) f \longleftrightarrow\) integrable \(M\left(\lambda x . g x *_{R} f x\right)\)
unfolding integrable_iff_bounded using \(n n\)
apply (simp add: nn_integral_density less_top[symmetric])
apply (intro arg_cong2[where \(f=(=)]\) refl nn_integral_cong_AE)
apply (auto simp: ennreal_mult)
done
lemma integral_density:
fixes \(f::{ }^{\prime} a \Rightarrow\) ' \(b::\{\) banach, second_countable_topology \(\}\) and \(g::{ }^{\prime} a \Rightarrow\) real
assumes \(f: f \in\) borel_measurable \(M\)
and \(g[\) measurable \(]: g \in\) borel_measurable \(M A E x\) in \(M .0 \leq g x\) shows integral \({ }^{L}\) (density \(\left.M g\right) f=\) integral \(^{L} M\left(\lambda x . g x *_{R} f x\right)\) proof (rule integral_eq_cases)
assume integrable (density \(M g\) ) \(f\)
then show?thesis
proof induct
case (base Ac)
then have [measurable]: \(A \in\) sets \(M\) by auto
have int: integrable \(M(\lambda x . g x *\) indicator \(A x)\)
using \(g\) base integrable_density[of indicator \(A\) :: ' \(a \Rightarrow\) real \(M g\) ] by simp
then have integral \({ }^{L} M(\lambda x . g x *\) indicator \(A x)=\left(\int+x\right.\). ennreal \((g x *\)
indicator \(A x) \partial M\) )
using \(g\) by (subst nn_integral_eq_integral) auto
also have \(\ldots=\left(\int^{+}\right.\)x. ennreal \((g x) *\) indicator \(\left.A x \partial M\right)\)
by (intro nn_integral_cong) (auto split: split_indicator)
also have \(\ldots=\) emeasure (density \(M g\) ) \(A\)
by (rule emeasure_density[symmetric]) auto
also have ... = ennreal (measure (density \(M g\) ) \(A\) )
using base by (auto intro: emeasure_eq_ennreal_measure)
also have \(\ldots=\) integral \(^{L}(\) density \(M g)\) (indicator A)
using base by simp
finally show ?case
using base \(g\)
apply (simp add: int integral_nonneg_AE)
apply (subst (asm) ennreal_inj)
apply (auto intro!: integral_nonneg_AE)

\section*{done}
next
case (add fh)
then have [measurable]: \(f \in\) borel_measurable \(M h \in\) borel_measurable \(M\)
by (auto dest!: borel_measurable_integrable)
from add \(g\) show ?case
by (simp add: scaleR_add_right integrable_density)
next
case \((\lim f s)\)
have [measurable]: \(f \in\) borel_measurable \(M\) 亿i.s \(i \in\) borel_measurable \(M\) using \(\lim (1,5)[\) THEN borel_measurable_integrable] by auto
show ?case
proof (rule LIMSEQ_unique)
show \(\left(\lambda i\right.\). integral \(\left.{ }^{L} M\left(\lambda x . g x *_{R} s i x\right)\right) \longrightarrow\) integral \(^{L} M\left(\lambda x . g x *_{R} f\right.\)
x)
proof (rule integral_dominated_convergence)
show integrable \(M\left(\lambda x\right.\). \(\left.2 * \operatorname{norm}\left(g x *_{R} f x\right)\right)\)
by (intro integrable_mult_right integrable_norm integrable_density[THEN
iffD1] \(\lim g\) ) auto
show \(A E x\) in \(M .\left(\lambda i . g x *_{R} s i x\right) \longrightarrow g x *_{R} f x\) using lim(3) by (auto intro!: tendsto_scaleR AE_I2[of M])
```

 show \i. AE x in M. norm (gx*R s ix) \leq2* norm (gx * R f x)
 using lim(4) g by (auto intro!: AE_I2[of M] mult_left_mono simp:
 field_simps)
qed auto
show (\lambdai. integral L}M(\lambdax.gx\mp@subsup{*}{R}{L}six))\longrightarrow\mp@subsup{integral}{L}{L}(\mathrm{ density Mg)f
unfolding lim(2)[symmetric]
by (rule integral_dominated_convergence[where w=\lambdax. 2 * norm (fx)])
(insert lim(3-5), auto)
qed
qed
qed (simp add: f g integrable_density)
lemma
fixes g :: ' }a=>\mathrm{ real
assumes f\inborel_measurable M AE x in M. 0 \leqfxg f borel_measurable M
shows integral_real_density: integral L
and integrable_real_density: integrable (density M f) g\longleftrightarrow integrable M (\lambdax.f
x*g x)
using assms integral_density[of g M f] integrable_density[of g M f] by auto
lemma has_bochner_integral_density:
fixes f :: ' }a=>\mathrm{ ' b::{banach, second_countable_topology} and g :: ' }a=>\mathrm{ real
shows f}\in\mathrm{ borel_measurable }M\Longrightarrowg\in\mathrm{ borel_measurable M (AE x in M.0
\leqgx)\Longrightarrow
has_bochner_integral M (}\lambdax.gx\mp@subsup{*}{R}{}fx)x\Longrightarrow\mathrm{ has_bochner_integral (density M
g) fx
by (simp add: has_bochner_integral_iff integrable_density integral_density)

```

\subsection*{6.10.3 Distributions}
lemma integrable_distr_eq:
fixes \(f::\) ' \(a \Rightarrow\) ' \(b::\{\) banach, second_countable_topology \(\}\)
assumes [measurable]: \(g \in\) measurable \(M N f \in\) borel_measurable \(N\)
shows integrable \((\operatorname{distr} M N g) f \longleftrightarrow\) integrable \(M(\lambda x . f(g x))\)
unfolding integrable_iff_bounded by (simp_all add: nn_integral_distr)
lemma integrable_distr:
fixes \(f::{ }^{\prime} a \Rightarrow{ }^{\prime} b::\{\) banach, second_countable_topology \(\}\)
shows \(T \in\) measurable \(M M^{\prime} \Longrightarrow\) integrable \(\left(\operatorname{distr} M M^{\prime} T\right) f \Longrightarrow\) integrable \(M\) ( \(\lambda x . f(T x))\)
by (subst integrable_distr_eq[symmetric, where \(g=T]\) )
(auto dest: borel_measurable_integrable)
lemma integral_distr:
fixes \(f::\) ' \(a \Rightarrow\) ' \(b::\{\) banach, second_countable_topology \(\}\)
assumes \(g[\) measurable \(]: g \in\) measurable \(M N\) and \(f: f \in\) borel_measurable \(N\)
shows integral \({ }^{L}(\operatorname{distr} M N g) f=\) integral \(^{L} M(\lambda x . f(g x))\)
proof (rule integral_eq_cases)
assume integrable (distr \(M N g\) ) \(f\)
```

 then show ?thesis
 proof induct
 case (base A c)
 then have [measurable]: \(A \in\) sets \(N\) by auto
 from base have int: integrable (distr MNg) (\(\lambda\) a. indicator \(A a *_{R} c\))
 by (intro integrable_indicator)
 have integral \({ }^{L}(\operatorname{distr} M N g)\left(\lambda a\right.\). indicator \(\left.A a *_{R} c\right)=\) measure \((\operatorname{distr} M N\)
 g) $A *_{R} c$
using base by auto
also have $\ldots=$ measure $M(g-‘ A \cap$ space $M) *_{R} c$
by (subst measure_distr) auto
also have $\ldots=$ integral $^{L} M\left(\lambda\right.$ a. indicator $(g-‘ A \cap$ space $\left.M) a *_{R} c\right)$
using base by (auto simp: emeasure_distr)
also have $\ldots=$ integral ${ }^{L} M\left(\lambda a\right.$. indicator $A\left(\begin{array}{ll}g & \left.a) *_{R} c\right)\end{array}\right.$
using int base by (intro integral_cong_AE) (auto simp: emeasure_distr split:
split_indicator)
finally show ?case .
next
case (add fh)
then have [measurable]: $f \in$ borel_measurable $N h \in$ borel_measurable N
by (auto dest!: borel_measurable_integrable)
from add g show ?case
by (simp add: scaleR_add_right integrable_distr_eq)
next
case $(\lim f s)$
have [measurable]: $f \in$ borel_measurable N 亿i.s i \in borel_measurable N
using $\lim (1,5)[$ THEN borel_measurable_integrable] by auto
show ?case
proof (rule LIMSEQ_unique)
show $\left(\lambda i\right.$. integral $\left.{ }^{L} M(\lambda x . s i(g x))\right) \longrightarrow$ integral $^{L} M(\lambda x . f(g x))$
proof (rule integral_dominated_convergence)
show integrable $M(\lambda x$. $2 * \operatorname{norm}(f(g x)))$
using lim by (auto simp: integrable_distr_eq)
show $A E x$ in M. $(\lambda i$. s $i(g x)) \longrightarrow f(g x)$
using $\lim (3) g[$ THEN measurable_space $]$ by auto
show $\bigwedge i$. $A E x$ in M. norm $(s i(g x)) \leq 2 * \operatorname{norm}(f(g x))$
using $\lim (4) g[$ THEN measurable_space $]$ by auto
qed auto
show $\left(\lambda i\right.$. integral $\left.{ }^{L} M(\lambda x . s i(g x))\right) \longrightarrow$ integral $^{L}(\operatorname{distr} M N g) f$
unfolding $\lim (2)[$ symmetric]
by (rule integral_dominated_convergence $[$ where $w=\lambda x$. $2 *$ norm $(f x)])$
(insert $\lim (3-5)$, auto)
qed
qed
qed (simp add: f g integrable_distr_eq)
lemma has_bochner_integral_distr:

```
```

 fixes \(f::{ }^{\prime} a \Rightarrow\) ' \(b::\{b a n a c h\), second_countable_topology\}
 shows \(f \in\) borel_measurable \(N \Longrightarrow g \in\) measurable \(M N \Longrightarrow\)
 has_bochner_integral \(M(\lambda x . f(g x)) x \Longrightarrow\) has_bochner_integral (distr M N \(g\))
 $f x$
by (simp add: has_bochner_integral_iff integrable_distr_eq integral_distr)

```

\subsection*{6.10.4 Lebesgue integration on count_space}
lemma integrable_count_space:
fixes \(f::\) ' \(a \Rightarrow\) ' \(b::\{\) banach,second_countable_topology\}
shows finite \(X \Longrightarrow\) integrable (count_space \(X\) ) \(f\)
by (auto simp: nn_integral_count_space integrable_iff_bounded)
lemma measure_count_space[simp]:
\(B \subseteq A \Longrightarrow\) finite \(B \Longrightarrow\) measure (count_space \(A\) ) \(B=\) card \(B\)
unfolding measure_def by (subst emeasure_count_space) auto
lemma lebesgue_integral_count_space_finite_support:
assumes \(f\) : finite \(\{a \in A . f a \neq 0\}\)
shows \(\left(\int x . f x\right.\) dcount_space \(\left.A\right)=\left(\sum a \mid a \in A \wedge f a \neq 0 . f a\right)\)
proof -
have \(e q: \wedge x . x \in A \Longrightarrow\left(\sum a \mid x=a \wedge a \in A \wedge f a \neq 0 . f a\right)=\left(\sum x \in\{x\} . f\right.\)
x)
by (intro sum.mono_neutral_cong_left) auto
have \(\left(\int x . f x\right.\) dcount_space \(\left.A\right)=\left(\int x .\left(\sum a \mid a \in A \wedge f a \neq 0\right.\right.\). indicator \(\{a\}\)
\(x *_{R} f\) a) \(\partial\) count_space A)
by (intro integral_cong refl) (simp add: feq)
also have \(\ldots=\left(\sum a \mid a \in A \wedge f a \neq 0\right.\). measure (count_space \(\left.\left.A\right)\{a\} *_{R} f a\right)\)
by (subst integral_sum) (auto intro!: sum.cong)
finally show ?thesis
by auto
qed
lemma lebesgue_integral_count_space_finite: finite \(A \Longrightarrow\left(\int x . f x\right.\) dcount_space \(\left.A\right)\)
\(=\left(\sum a \in A . f a\right)\)
by (subst lebesgue_integral_count_space_finite_support)
(auto intro!: sum.mono_neutral_cong_left)
lemma integrable_count_space_nat_iff:
fixes \(f::\) nat \(\Rightarrow\).::\{banach,second_countable_topology \(\}\)
shows integrable (count_space UNIV) \(f \longleftrightarrow\) summable \((\lambda x\). norm \((f x))\)
by (auto simp add: integrable_iff_bounded nn_integral_count_space_nat ennreal_suminf_neq_top intro: summable_suminf_not_top)
lemma sums_integral_count_space_nat:
fixes \(f::\) nat \(\Rightarrow\) _::\{banach,second_countable_topology \(\}\)
assumes \(*\) : integrable (count_space UNIV) \(f\)
shows \(f\) sums ( integral \({ }^{L}\) (count_space UNIV) f)
```

proof -
let ?f = \lambdan i. indicator {n} i**R fi
have f': \n i. ?f n i = indicator {n} i* *R fn
by (auto simp: fun_eq_iff split: split_indicator)
have (\lambdai. \int n. ?f i n \partialcount_space UNIV) sums \int n. (\sum i. ?f i n) \partialcount_space
UNIV
proof (rule sums_integral)
show \i. integrable (count_space UNIV) (?f i)
using * by (intro integrable_mult_indicator) auto
show AE n in count_space UNIV. summable (\lambdai.norm (?f i n))
using summable_finite[of {n} \lambdai. norm (?f i n) for n] by simp
show summable (\lambdai. \int n. norm (?f i n) \partialcount_space UNIV)
using * by (subst f}\mp@subsup{f}{}{\prime})(\mathrm{ simp add: integrable_count_space_nat_iff)
qed
also have (\int n. (\sum i. ?f i n) \partialcount_space UNIV) = (\int n.f n \partialcount_space
UNIV)
using suminf_finite[of {n} \lambdai. ?f i n for n] by (auto intro!: integral_cong)
also have (\lambdai. \intn. ?f i n \partialcount_space UNIV)=f
by (subst f') simp
finally show ?thesis.
qed
lemma integral_count_space_nat:
fixes f :: nat = _::{banach,second_countable_topology}
shows integrable (count_space UNIV) f\Longrightarrow integral }\mp@subsup{}{}{L}\mathrm{ (count_space UNIV) }f
(\sumx.fx)
using sums_integral_count_space_nat by (rule sums_unique)
lemma integrable_bij_count_space:
fixes f :: 'a = 'b::{banach, second_countable_topology}
assumes g: bij_betw g A B
shows integrable (count_space A) (\lambdax.f(gx))\longleftrightarrow \longleftrightarrow integrable (count_space B) f
unfolding integrable_iff_bounded by (subst nn_integral_bij_count_space[OF g])
auto
lemma integral_bij_count_space:
fixes f :: 'a = 'b::{banach, second_countable_topology}
assumes g: bij_betw g A B
shows integral }\mp@subsup{}{}{L}\mathrm{ (count_space A) (}\lambdax.f(gx))=\mp@subsup{\mathrm{ integral }}{}{L}(\mathrm{ count_space B) f
using g[THEN bij_betw_imp_funcset]
apply (subst distr_bij_count_space[OF g, symmetric])
apply (intro integral_distr[symmetric])
apply auto
done
lemma has_bochner_integral_count_space_nat:
fixes f :: nat => _::{banach,second_countable_topology}
shows has_bochner_integral (count_space UNIV) fx\Longrightarrowf sums x

```
unfolding has_bochner_integral_iff by (auto intro!: sums_integral_count_space_nat)

\subsection*{6.10.5 Point measure}
lemma lebesgue_integral_point_measure_finite:
fixes \(g::\) ' \(a \Rightarrow\) ' \(b::\{\) banach, second_countable_topology \(\}\)
shows finite \(A \Longrightarrow(\bigwedge a . a \in A \Longrightarrow 0 \leq f a) \Longrightarrow\)
integral \(^{L}\) (point_measure Af) \(g=\left(\sum a \in A . f a *_{R} g a\right)\)
by (simp add: lebesgue_integral_count_space_finite AE_count_space integral_density point_measure_def)
proposition integrable_point_measure_finite:
fixes \(g::\) ' \(a \Rightarrow\) ' \(b::\left\{\right.\) banach, second_countable_topology\} and \(f::{ }^{\prime} a \Rightarrow\) real
shows finite \(A \Longrightarrow\) integrable (point_measure \(A f\) ) \(g\)
unfolding point_measure_def
apply (subst density_cong[where \(f^{\prime}=\lambda x\). ennreal ( \(\left.\left.\left.\max 0(f x)\right)\right]\right)\)
apply (auto split: split_max simp: ennreal_neg)
apply (subst integrable_density)
apply (auto simp: AE_count_space integrable_count_space)
done

\subsection*{6.10.6 Lebesgue integration on null_measure}
lemma has_bochner_integral_null_measure_iff [iff]:
has_bochner_integral (null_measure \(M\) ) \(f 0 \longleftrightarrow f \in\) borel_measurable \(M\)
by (auto simp add: has_bochner_integral.simps simple_bochner_integral_def[abs_def] intro!: exI[ \(\left.0 f_{-} \lambda n x .0\right]\) simple_bochner_integrable.intros)
lemma integrable_null_measure_iff[iff]: integrable (null_measure M) \(f \longleftrightarrow f \in\) borel_measurable M
by (auto simp add: integrable.simps)
lemma integral_null_measure[simp]: integral \({ }^{L}\) (null_measure \(\left.M\right) f=0\)
by (cases integrable (null_measure \(M\) ) f)
(auto simp add: not_integrable_integral_eq has_bochner_integral_integral_eq)

\subsection*{6.10.7 Legacy lemmas for the real-valued Lebesgue integral}
theorem real_lebesgue_integral_def:
assumes \(f\) [measurable]: integrable \(M f\)
shows integral \({ }^{L} M f=\) enn2real \(\left(\int{ }^{+} x . f x \partial M\right)-\) enn2real \(\left(\int{ }^{+}\right.\)x. ennreal \((-\) \(f x) \partial M\) )
proof -
have integral \({ }^{L} M f=\) integral \(^{L} M(\lambda x . \max 0(f x)-\max 0(-f x))\)
by (auto intro!: arg_cong[where \(f=\) integral \(\left.^{L} M\right]\) )
also have \(\ldots=\) integral \(^{L} M(\lambda x . \max 0(f x))-\) integral \(^{L} M(\lambda x\). \(\max 0(-f\)
x))
by (intro integral_diff integrable_max integrable_minus integrable_zero f)
also have integral \({ }^{L} M(\lambda x\). \(\max 0(f x))=\) enn2real \(\left(\int{ }^{+} x\right.\). ennreal \(\left.(f x) \partial M\right)\)
by (subst integral_eq_nn_integral) (auto intro!: arg_cong[where \(f=e n n 2 r e a l]\) nn_integral_cong simp: max_def ennreal_neg)
also have integral \({ }^{L} M(\lambda x . \max 0(-f x))=\) enn2real \(\left(\int{ }^{+}\right.\)x. ennreal \((-f x)\) \(\partial M)\)
by (subst integral_eq_nn_integral) (auto intro!: arg_cong[where \(f=\) enn2real] nn_integral_cong simp: max_def ennreal_neg)
finally show ?thesis .
qed
theorem real_integrable_def:
integrable \(M f \longleftrightarrow f \in\) borel_measurable \(M \wedge\) \(\left(\int^{+}\right.\)x. ennreal \(\left.(f x) \partial M\right) \neq \infty \wedge\left(\int^{+}\right.\)x. ennreal \(\left.(-f x) \partial M\right) \neq \infty\)
unfolding integrable_iff_bounded
proof (safe del: notI)
assume \(*:\left(\int+x\right.\). ennreal (norm \(\left.\left.(f x)\right) \partial M\right)<\infty\)
have \(\left(\int^{+}\right.\)x. ennreal \(\left.(f x) \partial M\right) \leq\left(\int^{+} x\right.\).ennreal \((\) norm \(\left.(f x)) \partial M\right)\)
by (intro nn_integral_mono) auto
also note *
finally show \(\left(\int+x\right.\). ennreal \(\left.(f x) \partial M\right) \neq \infty\) by \(\operatorname{simp}\)
have \(\left(\int^{+} x\right.\). ennreal \(\left.(-f x) \partial M\right) \leq\left(\int^{+}\right.\)x. ennreal \((\)norm \(\left.(f x)) \partial M\right)\)
by (intro nn_integral_mono) auto
also note *
finally show \(\left(\int^{+}\right.\)x. ennreal \(\left.(-f x) \partial M\right) \neq \infty\) by simp
next
assume [measurable]: \(f \in\) borel_measurable \(M\)
assume fin: \(\left(\int^{+}\right.\)x. ennreal \(\left.(f x) \partial M\right) \neq \infty\left(\int^{+}\right.\)x. ennreal \(\left.(-f x) \partial M\right) \neq \infty\)
have \(\left(\int{ }^{+}\right.\)x. norm \(\left.(f x) \partial M\right)=\left(\int^{+}\right.\)x. ennreal \((f x)+\) ennreal \(\left.(-f x) \partial M\right)\)
by (intro nn_integral_cong) (auto simp: abs_real_def ennreal_neg)
also have... \(=\left(\int^{+}\right.\)x. ennreal \(\left.(f x) \partial M\right)+\left(\int^{+}\right.\)x. ennreal \(\left.(-f x) \partial M\right)\)
by (intro nn_integral_add) auto
also have \(\ldots<\infty\)
using fin by (auto simp: less_top)
finally show \(\left(\int^{+} x\right.\). norm \(\left.(f x) \partial M\right)<\infty\).
qed
lemma integrable \(D[\) dest \(]\) :
assumes integrable \(M f\)
shows \(f \in\) borel_measurable \(M\left(\int^{+}\right.\)x. ennreal \(\left.(f x) \partial M\right) \neq \infty\left(\int^{+} x\right.\). ennreal \((-f x) \partial M) \neq \infty\)
using assms unfolding real_integrable_def by auto
lemma integrableE:
assumes integrable \(M f\)
obtains \(r q\) where \(0 \leq r 0 \leq q\)
\(\left(\int{ }^{+}\right.\)x. ennreal \(\left.(f x) \partial M\right)=\) ennreal \(r\)
\(\left(\int{ }^{+}\right.\)x. ennreal \(\left.(-f x) \partial M\right)=\) ennreal \(q\)
\(f \in\) borel_measurable \(M\) integral \(^{L} M f=r-q\)
using assms unfolding real_integrable_def real_lebesgue_integral_def[OF assms] by (cases rule: ennreal2_cases \(\left[o f\left(\int{ }^{+}\right.\right.\)x. ennreal \(\left.(-f x) \partial M\right)\left(\int{ }^{+}\right.\)x. ennreal \((f\) x) \(\partial M)\) ]) auto
lemma integral_monotone_convergence_nonneg:
fixes \(f::\) nat \(\Rightarrow{ }^{\prime} a \Rightarrow\) real
assumes \(i\) : \(\bigwedge i\). integrable \(M(f i)\) and mono: AE \(x\) in \(M\). mono ( \(\lambda n . f n x\) ) and pos: \(\bigwedge i\). \(A E x\) in \(M .0 \leq f i x\)
and lim: \(A E x\) in \(M .(\lambda i . f i x) \longrightarrow u x\)
and ilim: \(\left(\lambda i\right.\). integral \(\left.{ }^{L} M(f i)\right) \longrightarrow x\)
and \(u: u \in\) borel_measurable \(M\)
shows integrable \(M u\)
and integral \({ }^{L} M u=x\)
proof -
have \(n n: A E x\) in \(M . \forall i .0 \leq f i x\)
using pos unfolding AE_all_countable by auto
with lim have \(u_{-} n n: A E x\) in \(M .0 \leq u x\) by eventually_elim (auto intro: LIMSEQ_le_const)
have \([\) simp \(]: 0 \leq x\) by (intro LIMSEQ_le_const[OF ilim] allI exI impI integral_nonneg_AE pos)
have \(\left(\int^{+} x\right.\). ennreal \(\left.(u x) \partial M\right)=\left(S U P n .\left(\int{ }^{+} x\right.\right.\). ennreal \(\left.\left.(f n x) \partial M\right)\right)\)
proof (subst nn_integral_monotone_convergence_SUP_AE[symmetric])
fix \(i\)
from mono nn show \(A E x\) in M. ennreal \((f i x) \leq \operatorname{ennreal}(f(S u c i) x)\) by eventually_elim (auto simp: mono_def)
show \((\lambda x\). ennreal \((f i x)) \in\) borel_measurable \(M\)
using \(i\) by auto
next
show \(\left(\int+x\right.\). ennreal \(\left.(u x) \partial M\right)=\int+x .(S U P\) i. ennreal \((f i x)) \partial M\)
apply (rule nn_integral_cong_AE)
using lim mono nn u_nn
apply eventually_elim
apply (simp add: LIMSEQ_unique[OF _ LIMSEQ_SUP] incseq_def) done
qed
also have \(\ldots=\) ennreal \(x\) using mono i nn unfolding nn_integral_eq_integral[OF i pos]
by (subst LIMSEQ_unique[OF LIMSEQ_SUP]) (auto simp: mono_def inte-
gral_nonneg_AE pos intro!: integral_mono_AE ilim)
finally have \(\left(\int^{+}\right.\)x. ennreal \(\left.(u x) \partial M\right)=\) ennreal \(x\).
moreover have \(\left(\int{ }^{+}\right.\)x. ennreal \(\left.(-u x) \partial M\right)=0\)
using \(u\) u_nn by (subst nn_integral_0_iff_AE) (auto simp add: ennreal_neg)
ultimately show integrable \(M u\) integral \({ }^{L} M u=x\)
by (auto simp: real_integrable_def real_lebesgue_integral_def u)
qed
lemma
fixes \(f::\) nat \(\Rightarrow{ }^{\prime} a \Rightarrow\) real
assumes \(f: \bigwedge i\). integrable \(M(f i)\) and mono: \(A E x\) in \(M\). mono ( \(\lambda n . f n x\) )
```

 and lim: \(A E x\) in \(M .(\lambda i . f i x) \longrightarrow u x\)
 and ilim: \(\left(\lambda i\right.\). integral \(\left.{ }^{L} M(f i)\right) \longrightarrow x\)
 and \(u: u \in\) borel_measurable \(M\)
 shows integrable_monotone_convergence: integrable Mu
 and integral_monotone_convergence: integral \({ }^{L}\) Mu=x
 and has_bochner_integral_monotone_convergence: has_bochner_integral M u x
 proof -
have 1: $\bigwedge i$. integrable $M(\lambda x . f i x-f 0 x)$
using f by auto
have 2: $A E x$ in M. mono (λn. $f n x-f 0 x$)
using mono by (auto simp: mono_def le_fun_def)
have 3: $\bigwedge n$. AE x in $M .0 \leq f n x-f 0 x$
using mono by (auto simp: field_simps mono_def le_fun_def)
have 4: AE x in $M .(\lambda i . f i x-f 0 x) \longrightarrow u x-f 0 x$
using lim by (auto intro!: tendsto_diff)
have 5: $\left(\lambda i .\left(\int x . f i x-f 0 x \partial M\right)\right) \longrightarrow x-$ integral $^{L} M(f 0)$
using f ilim by (auto intro!: tendsto_diff)
have $6:(\lambda x . u x-f 0 x) \in$ borel_measurable M
using $f[o f 0] u$ by auto
note diff $=$ integral_monotone_convergence_nonneg[OF 1223456$]$
have integrable $M(\lambda x .(u x-f 0 x)+f 0 x)$
using diff(1) f by (rule integrable_add)
with diff(2) f show integrable $M u$ integral $^{L} M u=x$
by auto
then show has_bochner_integral Mux
by (metis has_bochner_integral_integrable)
qed
lemma integral_norm_eq_0_iff:
fixes $f::{ }^{\prime} a \Rightarrow$ ' $b::\{$ banach, second_countable_topology $\}$
assumes f [measurable]: integrable $M f$
shows $\left(\int x\right.$. norm $\left.(f x) \partial M\right)=0 \longleftrightarrow$ emeasure $M\{x \in$ space $M . f x \neq 0\}=0$
proof -
have $\left(\int{ }^{+}\right.$x. norm $\left.(f x) \partial M\right)=\left(\int x\right.$.norm $\left.(f x) \partial M\right)$
using f by (intro nn_integral_eq_integral integrable_norm) auto
then have $\left(\int x\right.$. norm $\left.(f x) \partial M\right)=0 \longleftrightarrow\left(\int^{+} x\right.$. norm $\left.(f x) \partial M\right)=0$
by simp
also have $\ldots \longleftrightarrow$ emeasure $M\{x \in$ space M. ennreal $(\operatorname{norm}(f x)) \neq 0\}=0$
by (intro nn_integral_0_iff) auto
finally show ?thesis
by simp
qed
lemma integral_0_iff:
fixes $f::^{\prime} a \Rightarrow$ real
shows integrable $M f \Longrightarrow\left(\int x .|f x| \partial M\right)=0 \longleftrightarrow$ emeasure $M\{x \in$ space $M . f$
$x \neq 0\}=0$
using integral_norm_eq_0_iff[of Mf] by simp

```
```

lemma (in finite_measure) integrable_const[intro!, simp]: integrable M (}\lambdax.a
using integrable_indicator[of space M Ma] by (simp cong: integrable_cong add:
less_top[symmetric])
lemma lebesgue_integral_const[simp]:
fixes a :: ' }a\mathrm{ :: {banach, second_countable_topology}
shows}(\intx.a\partialM)=\mathrm{ measure M (space M) *R a
proof -
{ assume emeasure M (space M)=\inftya\not=0
then have ?thesis
by (auto simp add: not_integrable_integral_eq ennreal_mult_less_top measure_def
integrable_iff_bounded) }
moreover
{ assume a=0 then have ?thesis by simp }
moreover
{ assume emeasure M (space M)\not=\infty
interpret finite_measure M
proof qed fact
have (\intx.a\partialM)=(\intx. indicator (space M) x * *R a \partialM)
by (intro integral_cong) auto
also have ... = measure M (space M)*R a
by (simp add: less_top[symmetric])
finally have ?thesis .}
ultimately show ?thesis by blast
qed
lemma (in finite_measure) integrable_const_bound:
fixes f :: 'a m 'b::{banach,second_countable_topology}
shows AE x in M. norm (fx)\leqB\Longrightarrowf\in borel_measurable M\Longrightarrow integrable
Mf
apply (rule integrable_bound[OF integrable_const[of B], of f])
apply assumption
apply (cases 0 \leq B)
apply auto
done
lemma (in finite_measure) integral_bounded_eq_bound_then_AE:
assumes AE x in M.fx\leq(c::real)
integrable Mf(\intx.fx\partialM)=c* measure M (space M)
shows AE x in M.fx=c
apply (rule integral_ineq_eq_0_then_AE) using assms by auto
lemma integral_indicator_finite_real:
fixes f :: 'a \# real
assumes [simp]: finite A
assumes [measurable]: \bigwedgea.a\inA\Longrightarrow{a}\in sets M
assumes finite: \bigwedgea. a }\inA\Longrightarrow\mathrm{ emeasure M {a}< <
shows (\intx.fx* indicator A x \partialM) =(\suma\inA.fa* measure M {a})
proof -

```
```

 have \(\left(\int x . f x *\right.\) indicator \(\left.A x \partial M\right)=\left(\int x .\left(\sum a \in A . f a *\right.\right.\) indicator \(\left.\left.\{a\} x\right) \partial M\right)\)
 proof (intro integral_cong refl)
 fix \(x\) show \(f x *\) indicator \(A x=\left(\sum a \in A . f a *\right.\) indicator \(\left.\{a\} x\right)\)
 by (auto split: split_indicator simp: eq_commute[of \(x]\) cong: conj_cong)
 qed
 also have \(\ldots=\left(\sum a \in A . f a *\right.\) measure \(\left.M\{a\}\right)\)
 using finite by (subst integral_sum) (auto)
 finally show ?thesis.
 qed
lemma (in finite_measure) ennreal_integral_real:
assumes [measurable]: $f \in$ borel_measurable M
assumes ae: $A E x$ in $M . f x \leq$ ennreal $B 0 \leq B$
shows ennreal $\left(\int x\right.$. enn2real $\left.(f x) \partial M\right)=\left(\int{ }^{+} x . f x \partial M\right)$
proof (subst nn_integral_eq_integral[symmetric])
show integrable M (λx. enn2real $(f x)$)
using ae by (intro integrable_const_bound $[$ where $B=B]$) (auto simp: enn2real_leI)
show $\left(\int{ }^{+}\right.$x. ennreal (enn2real $\left.\left.(f x)\right) \partial M\right)=\operatorname{integral}^{N} M f$
using ae by (intro nn_integral_cong_AE) (auto simp: le_less_trans[OF _ en-
nreal_less_top])
qed auto
lemma (in finite_measure) integral_less_AE:
fixes $X Y$:: ' $a \Rightarrow$ real
assumes int: integrable $M X$ integrable $M Y$
assumes A : (emeasure $M) A \neq 0 A \in$ sets $M A E x$ in $M . x \in A \longrightarrow X x \neq Y x$
assumes gt: AE x in $M . X x \leq Y x$
shows integral ${ }^{L} M X<$ integral $^{L} M Y$
proof -
have integral ${ }^{L} M X \leq$ integral $^{L} M Y$
using gt int by (intro integral_mono_AE) auto
moreover
have integral ${ }^{L} M X \neq$ integral $^{L} M Y$
proof
assume eq: integral ${ }^{L} M X=$ integral $^{L} M Y$
have integral ${ }^{L} M(\lambda x .|Y x-X x|)=$ integral $^{L} M(\lambda x . Y x-X x)$
using $g t$ int by (intro integral_cong_AE) auto
also have $\ldots=0$
using eq int by simp
finally have (emeasure M) $\{x \in$ space $M . Y x-X x \neq 0\}=0$
using int by (simp add: integral_0_iff)
moreover
have $\left(\int{ }^{+} x\right.$. indicator $\left.A x \partial M\right) \leq\left(\int^{+} x\right.$. indicator $\{x \in$ space $M . Y x-X x$
$\neq 0\} x \partial M)$
using A by (intro nn_integral_mono_AE) auto
then have (emeasure M) $A \leq($ emeasure $M)\{x \in$ space $M . Y x-X x \neq 0\}$
using int A by (simp add: integrable_def)
ultimately have emeasure $M A=0$
by simp

```
```

 with «(emeasure M) A\not=0` show False by auto
 qed
 ultimately show ?thesis by auto
 qed
lemma (in finite_measure) integral_less_AE_space:
fixes }XY:: ' a m real
assumes int: integrable M X integrable M Y
assumes gt:AEx in M. X x<Y x emeasure M (space M)}=
shows integral L}MX<\mp@subsup{\mathrm{ integral }}{}{L}M
using gt by (intro integral_less_AE[OF int, where A=space M]) auto
lemma tendsto_integral_at_top:
fixes f :: real \# 'a::{banach, second_countable_topology}
assumes [measurable_cong]: sets M = sets borel and f[measurable]: integrable M
f
shows ((\lambday.\intx. indicator {.. y} x**R fx \partialM)\longrightarrow \longrightarrow x.fx\partialM) at_top
proof (rule tendsto_at_topI_sequentially)
fix }X\mathrm{ :: nat }=>\mathrm{ real assume filterlim X at_top sequentially
show (\lambdan. \intx. indicator {..X n} x*R fx \partialM)\longrightarrow \longrightarrowintegral }\mp@subsup{}{}{L}M
proof (rule integral_dominated_convergence)
show integrable M (}\lambdax.\operatorname{norm}(fx)
by (rule integrable_norm) fact
show AE x in M. (\lambdan. indicator {..X n} x *R f x)\longrightarrowfx
proof
fix }
from〈filterlim X at_top sequentially〉
have eventually (}\lambdan.x\leqXn) sequentially
unfolding filterlim_at_top_ge[where c=x] by auto
then show (\lambdan. indicator {..X n} x* *R fx)\longrightarrowfx
by (intro tendsto_eventually) (auto split: split_indicator elim!: eventu-
ally_mono)
qed
fix n show AE x in M. norm (indicator {..X n} x *R f x) \leqnorm (fx)
by (auto split: split_indicator)
qed auto
qed
lemma
fixes f :: real }=>\mathrm{ real
assumes M: sets M = sets borel
assumes nonneg: AE x in M. 0 \leqfx
assumes borel: f}\in\mathrm{ borel_measurable borel
assumes int: \bigwedgey. integrable M (\lambdax.fx* indicator {.. y} x)
assumes conv: ((\lambday.\intx.fx* indicator {.. y} x \partialM)\longrightarrow }\longrightarrow\mathrm{) at_top
shows has_bochner_integral_monotone_convergence_at_top: has_bochner_integral M
f
and integrable_monotone_convergence_at_top: integrable M f
and integral_monotone_convergence_at_top:integral }\mp@subsup{}{}{L}Mf=

```
```

proof -
from nonneg have AE x in M. mono (\lambdan::nat. f x* indicator {..real n} x)
by (auto split: split_indicator intro!: monoI)
{ fix }x\mathrm{ have eventually (}\lambdan.fx*\mathrm{ indicator {..real n} x =fx) sequentially
by (rule eventually_sequentiallyI[of nat \lceilx\rceil])
(auto split: split_indicator simp: nat_le_iff ceiling_le_iff) }
from filterlim_cong[OF refl refl this]
have AEx in M.(\lambdai.fx* indicator {..real i} x)\longrightarrowfx
by simp
have (\lambdai. \int x.fx* indicator {..real i} x \partialM) \longrightarrowx
using conv filterlim_real_sequentially by (rule filterlim_compose)
have M_measure[simp]: borel_measurable M = borel_measurable borel
using M by (simp add: sets_eq_imp_space_eq measurable_def)
have f}\in\mathrm{ borel_measurable M
using borel by simp
show has_bochner_integral M f x
by (rule has_bochner_integral_monotone_convergence) fact+
then show integrable M f integral }\mp@subsup{}{}{L}Mf=
by (auto simp:_has_bochner_integral_iff)
qed

```

\subsection*{6.10.8 Product measure}
lemma (in sigma_finite_measure) borel_measurable_lebesgue_integrable[measurable (raw)]:
fixes \(f:: \boldsymbol{-}_{-} \Rightarrow\) _ \(^{\prime}:\{\) banach, second_countable_topology \(\}\)
assumes [measurable]: case_prod \(f \in\) borel_measurable \(\left(N \bigotimes_{M} M\right)\)
shows Measurable.pred \(N(\lambda x\). integrable \(M(f x))\)
proof -
have \([\) simp \(]: ~ \bigwedge x . x \in\) space \(N \Longrightarrow\) integrable \(M(f x) \longleftrightarrow\left(\int^{+} y . \operatorname{norm}(f x y)\right.\)
\(\partial M)<\infty\)
unfolding integrable_iff_bounded by simp
show ?thesis
by (simp cong: measurable_cong)
qed
lemma (in sigma_finite_measure) measurable_measure[measurable (raw)]:
\((\bigwedge x . x \in\) space \(N \Longrightarrow A x \subseteq\) space \(M) \Longrightarrow\)
\(\left\{x \in \operatorname{space}\left(N \bigotimes_{M} M\right)\right.\). snd \(x \in A(\) fst \(\left.x)\right\} \in \operatorname{sets}\left(N \bigotimes_{M} M\right) \Longrightarrow\)
\((\lambda x\). measure \(M(A x)) \in\) borel_measurable \(N\)
unfolding measure_def by (intro measurable_emeasure borel_measurable_enn2real)
auto
proposition (in sigma_finite_measure) borel_measurable_lebesgue_integral[measurable (raw)]:
fixes \(f::{ }_{-} \Rightarrow_{-} \Rightarrow_{\text {_ }}:\{\) banach, second_countable_topology \(\}\)
assumes \(f[\) measurable \(]\) : case_prod \(f \in\) borel_measurable \(\left(N \bigotimes_{M} M\right)\)
shows \(\left(\lambda x . \int y . f x y \partial M\right) \in\) borel_measurable \(N\)
proof -
```

from borel_measurable_implies_sequence_metric $[O F f$, of 0$]$ guess s..
then have $s: \bigwedge i$. simple_function $\left(N \bigotimes_{M} M\right)(s i)$
$\bigwedge x y . x \in$ space $N \Longrightarrow y \in$ space $M \Longrightarrow(\lambda i . s i(x, y)) \longrightarrow f x y$
$\bigwedge i x y . x \in \operatorname{space} N \Longrightarrow y \in \operatorname{space} M \Longrightarrow \operatorname{norm}(s i(x, y)) \leq 2 *$ norm $(f x$
y)
by (auto simp: space_pair_measure)
have [measurable]: $\bigwedge i . s i \in$ borel_measurable $\left(N \otimes_{M} M\right)$
by (rule borel_measurable_simple_function) fact
have $\bigwedge i . s i \in$ measurable $\left(N \bigotimes_{M} M\right)$ (count_space UNIV)
by (rule measurable_simple_function) fact
define f^{\prime} where [abs_def]: f^{\prime} i $x=$
(if integrable $M(f x)$ then simple_bochner_integral $M(\lambda y . s i(x, y))$ else 0$)$
for $i x$
\{ fix $i x$ assume $x \in$ space N
then have simple_bochner_integral $M(\lambda y . s i(x, y))=$
$\left(\sum z \in s i\right.$ ' (space $N \times$ space $\left.M\right)$. measure $M\{y \in$ space M.s $i(x, y)=z\}$
$\left.*_{R} z\right)$
using $s(1)[$ THEN simple_functionD (1)]
unfolding simple_bochner_integral_def
by (intro sum.mono_neutral_cong_left)
(auto simp: eq_commute space_pair_measure image_iff cong: conj_cong) \}
note $e q=$ this
show ?thesis
proof (rule borel_measurable_LIMSEQ_metric)
fix i show $f^{\prime} i \in$ borel_measurable N
unfolding f^{\prime} _def by (simp_all add: eq cong: measurable_cong if_cong)
next
fix x assume $x: x \in$ space N
\{ assume int_f: integrable $M(f x)$
have int_2f: integrable M (λy. $2 *$ norm ($f x y$))
by (intro integrable_norm integrable_mult_right int_f)
have $\left(\lambda i\right.$. integral $\left.{ }^{L} M(\lambda y . s i(x, y))\right) \longrightarrow$ integral $^{L} M(f x)$
proof (rule integral_dominated_convergence)
from int_f show $f x \in$ borel_measurable M by auto
show $\bigwedge i$. $(\lambda y$.s $i(x, y)) \in$ borel_measurable M
using x by simp
show $A E x a$ in $M .(\lambda i . s i(x, x a)) \longrightarrow f x x a$
using $x s(2)$ by auto
show $\bigwedge i$. AE xa in M.norm $(s i(x, x a)) \leq 2 * \operatorname{norm}(f x x a)$
using $x s(3)$ by auto
qed fact
moreover
\{ fix i
have simple_bochner_integrable $M(\lambda y . s i(x, y))$

```
```

 proof (rule simple_bochner_integrableI_bounded)
 have (\lambday.s i}(x,y))'space M\subseteqsi'(space N\times space M
 using x by auto
 then show simple_function M (\lambday.s i (x,y))
 using simple_functionD(1)[OF s(1), of i] x
 by (intro simple_function_borel_measurable)
 (auto simp: space_pair_measure dest: finite_subset)
 have (\int+ y. ennreal (norm (s i (x,y))) \partialM) \leq ({ + y. 2 * norm (fxy)
 \partialM)
using x s by (intro nn_integral_mono) auto
also have (\int+ y. 2* norm (fxy)\partialM)<\infty
using int_2f unfolding integrable_iff_bounded by simp
finally show (}\mp@subsup{\int}{}{+}\mathrm{ xa. ennreal (norm (s i (x,xa))) }\partialM)<\infty
qed
then have integral }\mp@subsup{}{}{L}M(\lambday.s i (x,y))= simple_bochner_integral M (\lambday.
i (x,y))
by (rule simple_bochner_integrable_eq_integral[symmetric]) }
ultimately have (\lambdai. simple_bochner_integral M (\lambday.s i (x,y)))\longrightarrow
integral L}M(fx
by simp }
then
show (\lambdai. f' ix)}\longrightarrow\mp@subsup{\mathrm{ integral }}{}{L}M(fx
unfolding f'_def
by (cases integrable M (fx)) (simp_all add: not_integrable_integral_eq)
qed
qed
lemma (in pair_sigma_finite) integrable_product_swap:
fixes f :: _ \# _::{banach, second_countable_topology}
assumes integrable (M1 囚 M M2) f
shows integrable (M2 \otimes M M1) (}\lambda(x,y).f(y,x)
proof -
interpret Q: pair_sigma_finite M2 M1 ..
have *: (\lambda(x,y).f(y,x))=(\lambdax.f (case x of (x,y)=>(y,x))) by (auto simp:
fun_eq_iff)
show ?thesis unfolding *
by (rule integrable_distr[OF measurable_pair_swap])
(simp add: distr_pair_swap[symmetric] assms)
qed
lemma (in pair_sigma_finite) integrable_product_swap_iff:
fixes f :: _ = _::{banach, second_countable_topology}
shows integrable (M2 \otimes M M1) (\lambda(x,y).f(y,x))\longleftrightarrow < integrable (M1 囚 M M2)
f
proof -
interpret Q:pair_sigma_finite M2 M1 ..
from Q.integrable_product_swap[of \lambda(x,y).f(y,x)] integrable_product_swap[of f]
show ?thesis by auto
qed

```
lemma (in pair_sigma_finite) integral_product_swap:
fixes \(f::\) _ \(\Rightarrow\) _::\{banach, second_countable_topology \(\}\)
assumes \(f: f \in\) borel_measurable (M1 \(\bigotimes_{M}\) M2)
shows \(\left(\int(x, y) . f(y, x) \partial\left(\right.\right.\) M2 \(\left.\left.^{2} \bigotimes_{M} M 1\right)\right)=\operatorname{integral}^{L}\left(M 1 \bigotimes_{M}\right.\) M2) \(f\)
proof -
have \(*:(\lambda(x, y) . f(y, x))=(\lambda x . f(\) case \(x\) of \((x, y) \Rightarrow(y, x)))\) by (auto simp:
fun_eq_iff)
show ?thesis unfolding *
by (simp add: integral_distr[symmetric, OF measurable_pair_swap' f] distr_pair_swap[symmetric])
qed
theorem (in pair_sigma_finite) Fubini_integrable:
fixes \(f::\) _ \(\Rightarrow\) _::\{banach, second_countable_topology \(\}\)
assumes \(f[\) measurable \(]: f \in\) borel_measurable \(\left(M 1 \otimes_{M}\right.\) M2)
and integ1: integrable M1 ( \(\lambda x . \int y\). norm \((f(x, y))\) дM2)
and integ2: AE \(x\) in M1. integrable M2 \((\lambda y . f(x, y))\)
shows integrable ( \(M 1 \bigotimes_{M}\) M2) \(f\)
proof (rule integrableI_bounded)
have \(\left(\int^{+} p . \operatorname{norm}(f p) \partial\left(M 1 \bigotimes_{M}\right.\right.\) M2) \()=\left(\int^{+} x .\left(\int^{+} y . \operatorname{norm}(f(x, y))\right.\right.\)
дM2) \(\partial M 1\) )
by (simp add: M2.nn_integral_fst [symmetric])
also have \(\ldots=\left(\int^{+} x .\left|\int y . \operatorname{norm}(f(x, y)) \partial M 2\right| \partial M 1\right)\)
apply (intro nn_integral_cong_AE)
using integ2
proof eventually_elim
fix \(x\) assume integrable M2 \((\lambda y . f(x, y))\)
then have \(f\) : integrable M2 \((\lambda y\). norm \((f(x, y)))\)
by simp
then have \(\left(\int^{+} y\right.\). ennreal \((\operatorname{norm}(f(x, y)))\) DM2) \(=\) ennreal \((L I N T y \mid M 2\).
\(\operatorname{norm}(f(x, y)))\)
by (rule nn_integral_eq_integral) simp
also have \(\ldots=\) ennreal \(|\operatorname{LINT} y|\) M2. norm \((f(x, y)) \mid\)
using \(f\) by simp
finally show \(\left(\int{ }^{+} y\right.\). ennreal \((\operatorname{norm}(f(x, y)))\) DM2 \()=\) ennreal \(|\operatorname{LINT} y|\) M2.
norm \((f(x, y)) \mid\).
qed
also have ... \(<\infty\)
using integ1 by (simp add: integrable_iff_bounded integral_nonneg_AE)
finally show \(\left(\int^{+} p . \operatorname{norm}(f p) \partial\left(M 1 \bigotimes_{M} M 2\right)\right)<\infty\).
qed fact
lemma (in pair_sigma_finite) emeasure_pair_measure_finite:
assumes \(A: A \in\) sets \(\left(M 1 \otimes_{M} M 2\right)\) and finite: emeasure \(\left(M 1 \otimes_{M} M 2\right) A<\) \(\infty\)
shows \(A E x\) in M1. emeasure M2 \(\{y \in\) space M2. \((x, y) \in A\}<\infty\)
proof -
from M2.emeasure_pair_measure_alt \([O F A]\) finite
have \(\left(\int^{+} x\right.\). emeasure M2 (Pair \(\left.\left.x-{ }^{\prime} A\right) \partial M 1\right) \neq \infty\)
```

 by simp
 then have AE x in M1. emeasure M2 (Pair x -'A) \not=\infty
 by (rule nn_integral_PInf_AE[rotated]) (intro M2.measurable_emeasure_Pair A)
 moreover have }\x.x\in\mathrm{ space M1 ב Pair x -' }A={y\in\operatorname{space M2. (x,y)\in
 A}
using sets.sets_into_space[OF A] by (auto simp: space_pair_measure)
ultimately show ?thesis by (auto simp: less_top)
qed
lemma (in pair_sigma_finite) AE_integrable_fst':
fixes f :: _ = _::{banach, second_countable_topology}
assumes f[measurable]: integrable (M1 囚 M M2) f
shows AE x in M1. integrable M2 (}\lambday.f(x,y)
proof -
have (\int + x. ({ + y. norm (f (x,y)) \partialM2) \partialM1) = (\int +
M2))
by (rule M2.nn_integral_fst) simp
also have (}\mp@subsup{\int}{}{+}x.\operatorname{norm}(fx)\partial(M1 \otimes |M M2)) \not=
using f unfolding integrable_iff_bounded by simp
finally have AE x in M1. (}\mp@subsup{\int}{}{+}y.\operatorname{norm}(f(x,y))\partialM2) =>
by (intro nn_integral_PInf_AE M2.borel_measurable_nn_integral)
(auto simp: measurable_split_conv)
with AE_space show ?thesis
by eventually_elim
(auto simp: integrable_iff_bounded measurable_compose[OF _ borel_measurable_integrable[OF
f]] less_top)
qed
lemma (in pair_sigma_finite) integrable_fst':
fixes f :: _ \# _::{banach, second_countable_topology}
assumes f[measurable]: integrable (M1 囚 M M2) f
shows integrable M1 (}\lambdax.\inty.f(x,y) \partialM2
unfolding integrable_iff_bounded
proof
show (}\lambdax.\inty.f(x,y)\partialM2)\in\mathrm{ borel_measurable M1
by (rule M2.borel_measurable_lebesgue_integral) simp
have (\int+ x. ennreal (norm (\inty.f (x,y)\partialM2)) \partialM1) \leq (\int +}x.(\int\mp@subsup{}{}{+}y.n.norm
(f (x,y)) \partialМ2) \partialM1)
using AE_integrable_fst'[OF f] by (auto intro!: nn_integral_mono_AE inte-
gral_norm_bound_ennreal)
also have (}\int\mp@subsup{}{}{+}x.(\int\mp@subsup{}{}{+}y.\operatorname{norm}(f(x,y))\partialM2)\partialM1)=(\int + x.norm (fx)\partial(M

* M M2))
by (rule M2.nn_integral_fst) simp
also have (}\mp@subsup{|}{}{+}x.\operatorname{norm}(fx)\partial(M1 \otimes M M2)) <
using f unfolding integrable_iff_bounded by simp
finally show (\int+ x. ennreal (norm (\int y.f (x,y)\partialM2)) \partialM1) < . .
qed
proposition (in pair_sigma_finite) integral_fst':

```
```

 fixes \(f::\) _ \(\Rightarrow\) _::\{banach, second_countable_topology \(\}\)
 assumes \(f\) : integrable \(\left(M 1 \otimes_{M} M 2\right) f\)
 shows \(\left(\int x .\left(\int y . f(x, y) \partial M 2\right) \partial M 1\right)=\operatorname{integral}^{L}\left(M 1 \bigotimes_{M} M 2\right) f\)
 using f proof induct
case (base $A c$)
have $A[$ measurable $]: A \in$ sets $\left(M 1 \otimes_{M}\right.$ M2) by fact

```
    have eq: \(\bigwedge x y . x \in\) space \(M 1 \Longrightarrow\) indicator \(A(x, y)=\) indicator \(\{y \in\) space M2.
\((x, y) \in A\} y\)
    using sets.sets_into_space [OF A] by (auto split: split_indicator simp: space_pair_measure)
    have int_A: integrable ( \(M 1 \otimes_{M}\) M2) (indicator \(A:: \quad \Rightarrow\) real \()\)
        using base by (rule integrable_real_indicator)
    have \(\left(\int x . \int y\right.\). indicator \(\left.A(x, y) *_{R} c \partial M 2 \quad \partial M 1\right)=\left(\int x\right.\). measure M2
\(\{y \in\) space M2. \((x, y) \in A\} *_{R}\) c \(\left.\partial M 1\right)\)
    proof (intro integral_cong_AE, simp, simp)
        from AE_integrable_fst \({ }^{\prime}\left[O F\right.\) int_A \(A E_{-}\)space
        show \(A E x\) in M1. \(\left(\int y\right.\). indicator \(\left.A(x, y) *_{R} c \partial M 2\right)=\) measure \(M 2\{y \in\) space
M2. \((x, y) \in A\} *_{R} c\)
            by eventually_elim (simp add: eq integrable_indicator_iff)
    qed
    also have \(\ldots=\) measure \(\left(M 1 \bigotimes_{M} M 2\right) A *_{R} c\)
    proof (subst integral_scaleR_left)
        have \(\left(\int{ }^{+}\right.\)x. ennreal (measure M2 \(\{y \in\) space M2. \(\left.\left.(x, y) \in A\}\right) \partial M 1\right)=\)
            \(\left(\int{ }^{+} x\right.\). emeasure M2 \(\{y \in \operatorname{space}\) M2. \((x, y) \in A\}\) DM1)
            using emeasure_pair_measure_finite[OF base]
        by (intro nn_integral_cong_AE, eventually_elim) (simp add: emeasure_eq_ennreal_measure)
    also have \(\ldots=\) emeasure \(\left(M 1 \otimes_{M}\right.\) M2) \(A\)
            using sets.sets_into_space[ \(\left[\begin{array}{ll}\text { OF } & A\end{array}\right]\)
            by (subst M2.emeasure_pair_measure_alt)
                (auto intro!: nn_integral_cong arg_cong[where \(f=\) emeasure M2] simp:
space_pair_measure)
            finally have \(*:\left(\int^{+} x\right.\). ennreal (measure M2 \(\{y \in\) space M2. \(\left.(x, y) \in A\}\right)\)
\(\partial M 1)=\) emeasure \(\left(M 1 \otimes_{M}\right.\) M2) \(A\).
    from base \(*\) show integrable M1 \((\lambda x\). measure M2 \(\{y \in\) space M2. \((x, y) \in\)
A\})
            by (simp add: integrable_iff_bounded)
    then have \(\left(\int x\right.\). measure M2 \(\{y \in\) space M2. \(\left.(x, y) \in A\} \partial M 1\right)=\)
            ( \(\int{ }^{+}\)x. ennreal (measure M2 \(\{y \in\) space M2. \(\left.(x, y) \in A\}\right)\) дM1)
            by (rule nn_integral_eq_integral[symmetric]) simp
    also note *
    finally show ( \(\int x\). measure M2 \(\{y \in\) space M2. \(\left.(x, y) \in A\} \partial M 1\right) *_{R} c=\)
measure (M1 \(\bigotimes_{M}\) M2) \(A *_{R} c\)
            using base by (simp add: emeasure_eq_ennreal_measure)
qed
also have \(\ldots=\left(\int a\right.\). indicator \(\left.A a *_{R} c \partial\left(M 1 \bigotimes_{M} M 2\right)\right)\)
    using base by simp
```

 finally show ?case .
 next
case ($a d d f g$)
then have [measurable]: $f \in$ borel_measurable $\left(M 1 \bigotimes_{M}\right.$ M2) $g \in$ borel_measurable
($\mathrm{M1}_{1} \bigotimes_{M} \mathrm{M2}$)
by auto
have $\left(\int x . \int y . f(x, y)+g(x, y) \partial M 2 \partial M 1\right)=$
$\left(\int x .\left(\int y . f(x, y) \partial M 2\right)+\left(\int y . g(x, y) \partial M 2\right)\right.$ дM1 $)$
apply (rule integral_cong_AE)
apply simp_all
using $A E_{-}$integrable_fst $t^{[}\left[O F\right.$ add(1)] $A E_{-}$integrable_fst ${ }^{\prime}[O F$ add(3)]
apply eventually_elim
apply simp
done
also have $\ldots=\left(\int x . f x \partial\left(M 1 \otimes_{M} M 2\right)\right)+\left(\int x . g x \partial\left(M 1 \otimes_{M} M 2\right)\right)$
using integrable_fst ${ }^{\prime}[O F$ add(1)] integrable_fst $[$ OF $\operatorname{add}(3)]$ add $(2,4)$ by simp
finally show ?case
using add by simp
next
case $(\lim f s)$
then have [measurable]: $f \in$ borel_measurable $\left(M 1 \bigotimes_{M}\right.$ M2) $\bigwedge i . s i \in$ borel_measurable
(M1 \bigotimes_{M} M2)
by auto
show ?case
proof (rule LIMSEQ_unique)
show $\left(\lambda i\right.$. integral ${ }^{L}\left(\right.$ M1 $\left.\left._{M} M 2\right)(s i)\right) \longrightarrow$ integral $^{L}\left(M 1 \bigotimes_{M} M 2\right) f$
proof (rule integral_dominated_convergence)
show integrable $\left(M 1 \bigotimes_{M} M 2\right)(\lambda x$. $2 * \operatorname{norm}(f x))$
using $\lim (5)$ by auto
qed (insert lim, auto)
have ($\lambda i . \int x . \int y . s i(x, y) \partial M 2$ дM1) $\longrightarrow \int x . \int y . f(x, y) \partial M 2$
$\partial M 1$
proof (rule integral_dominated_convergence)
have $A E x$ in M1. $\forall i$. integrable M2 $(\lambda y . s i(x, y))$
unfolding $A E_{-}$all_countable using $A E_{-}$integrable_fst'[OF lim(1)] ..
with $A E_{-}$space $A E_{-}$integrable_fst ${ }^{\prime}[O F \lim (5)]$
show $A E x$ in M1. $\left(\lambda i . \int y . s i(x, y) \partial M 2\right) \longrightarrow \int y . f(x, y) \partial M 2$
proof eventually_elim
fix x assume $x: x \in$ space M1 and
$s: \forall i$ integrable M2 $(\lambda y . s i(x, y))$ and f : integrable M2 $(\lambda y . f(x, y))$
show $\left(\lambda i . \int y . s i(x, y) \partial M 2\right) \longrightarrow \int y . f(x, y) \partial M 2$
proof (rule integral_dominated_convergence)
show integrable M2 $(\lambda y$. $2 * \operatorname{norm}(f(x, y)))$
using f by auto
show $A E$ xa in M2. $(\lambda i . s i(x, x a)) \longrightarrow f(x, x a)$
using x lim(3) by (auto simp: space_pair_measure)
show $\bigwedge i$. AE xa in M2. norm $(s i(x, x a)) \leq 2 * \operatorname{norm}(f(x, x a))$
using x lim(4) by (auto simp: space_pair_measure)

```
```

 qed (insert x, measurable)
 qed
 show integrable M1 (\lambdax. (\int y. 2 * norm (f (x,y)) \partialM2))
 by (intro integrable_mult_right integrable_norm integrable_fst' lim)
 fix i show AE x in M1. norm (}\inty.si(x,y)\partialM2)\leq(\inty. 2 * norm (f
 (x,y)) \partialM2)
using AE_space AE_integrable_fst'[OF lim(1), of i] AE_integrable_fst' }[O
lim(5)]
proof eventually_elim
fix }x\mathrm{ assume x: x f space M1
and s: integrable M2 (\lambday.s i (x,y)) and f: integrable M2 (\lambday.f (x,y))
from s have norm (\inty.s i (x,y)\partialM2) \leq (\int +
by (rule integral_norm_bound_ennreal)
also have }···\leq(\mp@subsup{\int}{}{+}y.2*\operatorname{norm}(f(x,y))\mathrm{ дM2)
using x lim by (auto intro!: nn_integral_mono simp: space_pair_measure)
also have ... = (\inty. 2 * norm (f (x,y)) \partialM2)
using f by (intro nn_integral_eq_integral) auto
finally show norm (\int y.s i (x,y)\partialM2) \leq (\inty.2 * norm (f (x,y))
\partialM2)
by simp
qed
qed simp_all
then show (\lambdai. integral }\mp@subsup{}{}{L}(M1\mp@subsup{\otimes}{M}{\prime}M2)(si))\longrightarrow\intx.\inty.f(x,y)\partialM
\partialM1
using lim by simp
qed
qed
lemma (in pair_sigma_finite)
fixes f:: _ > _ _ _::{banach, second_countable_topology}
assumes f: integrable (M1 囚 M M2) (case_prod f)
shows AE_integrable_fst: AE x in M1. integrable M2 (}\lambday.fxy)(is ?AE
and integrable_fst: integrable M1 (\lambdax. \inty.fxy\partialM2) (is ?INT)
and integral_fst: (\intx. (\inty.fxy\partialM2) \partialM1) = integral }\mp@subsup{}{}{L}(M1\mp@subsup{\otimes}{M}{\prime}M2)(\lambda(x
y). fxy) (is ?EQ)
using AE_integrable_fst'[OF f] integrable_fst'[OF f] integral_fst'[OF f] by auto
lemma (in pair_sigma_finite)
fixes f:: _ \# _ \# _::{banach, second_countable_topology}
assumes f[measurable]: integrable (M1 \bigotimes M M2) (case_prod f)
shows AE_integrable_snd: AE y in M2. integrable M1 (}\lambdax.fxy)(is ?AE
and integrable_snd: integrable M2 (}\lambday.\intx.fxy\partialM1) (is ?INT)
and integral_snd:(\inty.(\intx.f x y \partialM1) \partialM2) = integral }\mp@subsup{}{}{L}(M1\mp@subsup{\otimes}{M}{\prime}M2
(case_prod f) (is ?EQ)
proof -
interpret Q:pair_sigma_finite M2 M1 ..
have Q_int:integrable (M2 * M M1) (}\lambda(x,y).fy x
using f unfolding integrable_product_swap_iff[symmetric] by simp
show ?AE using Q.AE_integrable_fst'[OF Q_int] by simp

```
```

 show ?INT using Q.integrable_fst'[OF Q_int] by simp
 show ?EQ using Q.integral_fst'[OF Q_int]
 using integral_product_swap[of case_prod f] by simp
 qed
proposition (in pair_sigma_finite) Fubini_integral:
fixes f:: _ > _ > _ ::{banach, second_countable_topology}
assumes f: integrable (M1 \otimes M M2) (case_prod f)
shows (\inty.(\intx.f x y \partialM1) \partialM2) = (\int x. (\inty.f x y \partialM2) \partialM1)
unfolding integral_snd[OF assms] integral_fst[OF assms] ..
lemma (in product_sigma_finite) product_integral_singleton:
fixes f:: _ \# _::{banach, second_countable_topology}

```

```

(Mi) f
apply (subst distr_singleton[symmetric])
apply (subst integral_distr)
apply simp_all
done
lemma (in product_sigma_finite) product_integral_fold:
fixes f :: _ = _::{banach, second_countable_topology}
assumes IJ[simp]:I\capJ={} and fin: finite I finite J
and f: integrable (PiM}(I\cupJ)M)
shows integral L}(P\mp@subsup{i}{M}{}(I\cupJ)M)f=(\intx.(\inty.f(merge IJ (x,y))\partialP\mp@subsup{i}{M}{}
M) \partialPi}\mp@subsup{M}{M}{IM)
proof -
interpret I: finite_product_sigma_finite M I by standard fact
interpret J: finite_product_sigma_finite M J by standard fact
have finite (}I\cupJ)\mathrm{ using fin by auto
interpret IJ: finite_product_sigma_finite M I\cupJ by standard fact
interpret P: pair_sigma_finite Pi}\mp@subsup{|}{M}{}IMP\mp@subsup{i}{M}{}J M ..
let ?M = merge I J
let ?f = \lambdax.f(?M x)
from f have f_borel: f \in borel_measurable (}P\mp@subsup{i}{M}{}(I\cupJ)M
by auto
have P_borel: (\lambdax.f (merge I J x)) \in borel_measurable (Pi (I M M 囚 M Pi m
M)
using measurable_comp[OF measurable_merge f_borel] by (simp add: comp_def)
have f_int: integrable (}P\mp@subsup{i}{M}{}IM\mp@subsup{\otimes}{M}{}P\mp@subsup{i}{M}{}JM)\mathrm{ ?f
by (rule integrable_distr[OF measurable_merge]) (simp add: distr_merge[OF IJ
fin] f)
show ?thesis
apply (subst distr_merge[symmetric,OF IJ fin])
apply (subst integral_distr[OF measurable_merge f_borel])
apply (subst P.integral_fst'[symmetric,OF f_int])
apply simp
done
qed

```
lemma (in product_sigma_finite) product_integral_insert:
fixes \(f::\) _ \(\Rightarrow\) _::\{banach, second_countable_topology \(\}\)
assumes \(I\) : finite \(I \notin I\)
and \(f\) : integrable \(\left(P i_{M}(\right.\) insert \(\left.i I) M\right) f\)
shows integral \({ }^{L}\left(P i_{M}\right.\) (insert i \(\left.\left.I\right) M\right) f=\left(\int x .\left(\int y . f(x(i:=y)) \partial M i\right) \partial P i_{M}\right.\)
I M)
proof -
have integral \({ }^{L}\left(P i_{M}(\right.\) insert \(\left.i I) M\right) f=\operatorname{integral}^{L}\left(P i_{M}(I \cup\{i\}) M\right) f\)
by \(\operatorname{simp}\)
also have \(\ldots=\left(\int x .\left(\int y . f(\right.\right.\) merge \(\left.\left.I\{i\}(x, y)) \partial P i_{M}\{i\} M\right) \partial P i_{M} I M\right)\)
using \(f I\) by (intro product_integral_fold) auto
also have \(\ldots=\left(\int x .\left(\int y . f(x(i:=y)) \partial M i\right) \partial P i_{M} I M\right)\)
proof (rule integral_cong[OF refl], subst product_integral_singleton[symmetric])
fix \(x\) assume \(x: x \in \operatorname{space}\left(P i_{M} I M\right)\)
have \(f_{-}\)borel: \(f \in\) borel_measurable ( \(P i_{M}\) (insert i I) M)
using \(f\) by auto
show \((\lambda y . f(x(i:=y))) \in\) borel_measurable (Mi)
using measurable_comp[OF measurable_component_update f_borel, OF \(x<i \notin\)
\(I\) )]
unfolding comp_def.
from \(x I\) show \(\left(\int y . f(\right.\) merge \(\left.I\{i\}(x, y)) \partial P i_{M}\{i\} M\right)=\left(\int x a . f(x(i:=\right.\) xa i)) \(\left.\partial P i_{M}\{i\} M\right)\)
by (auto intro!: integral_cong arg_cong[where \(f=f]\) simp: merge_def space_PiM extensional_def PiE_def)
qed
finally show ?thesis.
qed
lemma (in product_sigma_finite) product_integrable_prod:
fixes \(f:: ' i \Rightarrow\) ' \(a \Rightarrow\) _::\{real_normed_field,banach,second_countable_topology\}
assumes \([\) simp \(]\) : finite \(I\) and integrable: \(\bigwedge i . i \in I \Longrightarrow\) integrable \((M i)(f i)\)
shows integrable \(\left(P i_{M} I M\right)\left(\lambda x .\left(\prod i \in I . f i(x i)\right)\right)(\) is integrable _ ?f)
proof (unfold integrable_iff_bounded, intro conjI)
interpret finite_product_sigma_finite M I by standard fact
show ?f \(\in\) borel_measurable \(\left(P i_{M} I M\right)\)
using assms by simp
have \(\left(\int^{+} x\right.\). ennreal (norm \(\left.\left.\left(\prod i \in I . f i(x i)\right)\right) \partial P i_{M} I M\right)=\) \(\left(\int^{+} x\right.\). \(\left(\prod i \in I\right.\). ennreal (norm \(\left.\left.\left.(f i(x i))\right)\right) \partial P i_{M} I M\right)\)
by (simp add: prod_norm prod_ennreal)
also have \(\ldots=\left(\prod i \in I . \int^{+}\right.\)x. ennreal (norm \(\left.\left.(f i x)\right) \partial M i\right)\)
using assms by (intro product_nn_integral_prod) auto
also have \(\ldots<\infty\)
using integrable by (simp add: less_top[symmetric] ennreal_prod_eq_top integrable_iff_bounded)
finally show \(\left(\int^{+} x\right.\). ennreal (norm \(\left.\left.\left(\prod i \in I . f i(x i)\right)\right) \partial P i_{M} I M\right)<\infty\).
qed
lemma (in product_sigma_finite) product_integral_prod:
fixes \(f::^{\prime} i \Rightarrow{ }^{\prime} a \Rightarrow\) _::\{real_normed_field,banach,second_countable_topology\}
assumes finite \(I\) and integrable: \(\bigwedge i . i \in I \Longrightarrow\) integrable \((M i)(f i)\)
shows \(\left(\int x .\left(\prod i \in I . f i(x i)\right) \partial P i_{M} I M\right)=\left(\prod i \in I\right.\). integral \(\left.^{L}(M i)(f i)\right)\)
using assms proof induct
case empty
interpret finite_measure \(P i_{M}\{ \} M\)
by rule (simp add: space_PiM)
show ?case by (simp add: space_PiM measure_def)
next
case (insert i I)
then have \(i I\) : finite (insert \(i I\) ) by auto
then have prod: \(\bigwedge J . J \subseteq\) insert \(i I \Longrightarrow\) integrable \(\left(P i_{M} J M\right)\left(\lambda x .\left(\prod i \in J . f i(x i)\right)\right)\)
by (intro product_integrable_prod insert(4)) (auto intro: finite_subset)
interpret \(I\) : finite_product_sigma_finite MI by standard fact
have \(*: \bigwedge x y .\left(\prod j \in I . f j(\right.\) if \(j=i\) then \(y\) else \(\left.x j)\right)=\left(\prod j \in I . f j(x j)\right)\) using \(\langle i \notin I\rangle\) by (auto intro!: prod.cong)
show ?case
unfolding product_integral_insert[OF insert(1,2) prod[OF subset_refl] by (simp add: * insert prod subset_insertI)
qed
lemma integrable_subalgebra:
fixes \(f::\) ' \(a \Rightarrow\) ' \(b::\{\) banach, second_countable_topology\}
assumes borel: \(f \in\) borel_measurable \(N\)
and \(N\) : sets \(N \subseteq\) sets \(M\) space \(N=\) space \(M \bigwedge A . A \in\) sets \(N \Longrightarrow\) emeasure \(N\)
\(A=\) emeasure \(M A\)
shows integrable \(N f \longleftrightarrow\) integrable \(M f\) (is ?P)
proof -
have \(f \in\) borel_measurable \(M\)
using assms by (auto simp: measurable_def)
with assms show ?thesis
using assms by (auto simp: integrable_iff_bounded nn_integral_subalgebra)
qed
lemma integral_subalgebra:
fixes \(f::{ }^{\prime} a \Rightarrow\) ' \(b::\{\) banach, second_countable_topology \(\}\)
assumes borel: \(f \in\) borel_measurable \(N\)
and \(N\) : sets \(N \subseteq\) sets \(M\) space \(N=\) space \(M \bigwedge A\). \(A \in\) sets \(N \Longrightarrow\) emeasure \(N\)
\(A=\) emeasure \(M A\)
shows integral \({ }^{L} N f=\) integral \(^{L} M f\)
proof cases
assume integrable \(N f\)
then show ?thesis
proof induct
case base with assms show ?case by (auto simp: subset_eq measure_def)
next
case (add fg)
```

 then have (\inta.fa+ga\partialN)=\mp@subsup{integral }{L}{L}Mf+\mp@subsup{integral }{L}{L}Mg
 by simp
 also have ... = (\int a.fa+g a \partialM)
 using add integrable_subalgebra[OF _ N,of f] integrable_subalgebra[OF _ N,
 of g] by simp
finally show ?case .
next
case (limfs)
then have M: \bigwedgei. integrable M (s i) integrable Mf
using integrable_subalgebra[OF _ N,of f] integrable_subalgebra[OF _ N, of s i
for i] by simp_all
show ?case
proof (intro LIMSEQ_unique)
show (\lambdai. integral }\mp@subsup{}{}{L}N(si))\longrightarrow\mp@subsup{integral }{L}{L}N
apply (rule integral_dominated_convergence[where w=\lambdax. 2 * norm (fx)])
using lim
apply auto
done
show (\lambdai. integral }\mp@subsup{}{}{L}N(si))\longrightarrow\mp@subsup{integral L}{L}{Mf
unfolding lim
apply (rule integral_dominated_convergence[where w=\lambdax. 2 * norm (fx)])
using lim M N(2)
apply auto
done
qed
qed
qed (simp add: not_integrable_integral_eq integrable_subalgebra[OF assms])
hide_const (open) simple_bochner_integral
hide_const (open) simple_bochner_integrable
end

```

\subsection*{6.11 Complete Measures}
```

theory Complete_Measure
imports Bochner_Integration
begin
locale complete_measure =
fixes M :: 'a measure
assumes complete: }\bigwedgeAB.B\subseteqA\LongrightarrowA\in\mathrm{ null_sets }M\LongrightarrowB\in\mathrm{ sets }
definition
split_completion M A p = (if A E sets M then p=(A,{}) else
\exists N'.A= fst p\cup snd p\wedgefst p\cap snd p={}^fst p\in sets M ^ snd p\subseteq N'
\wedge N'\in null_sets M)
definition

```
\[
\text { main_part } M A=f s t(E p s(\text { split_completion } M A))
\]

\section*{definition}
null_part \(M A=\) snd \((E p s(\) split_completion \(M A))\)
definition completion \(::\) ' \(a\) measure \(\Rightarrow\) ' \(a\) measure where
completion \(M=\) measure_of (space \(M)\left\{S \cup N \mid S N N^{\prime} . S \in\right.\) sets \(M \wedge N^{\prime} \in\) null_sets \(\left.M \wedge N \subseteq N^{\prime}\right\}\)
(emeasure \(M \circ\) main_part \(M\) )
lemma completion_into_space:
\(\left\{S \cup N \mid S N N^{\prime} . S \in\right.\) sets \(M \wedge N^{\prime} \in\) null_sets \(\left.M \wedge N \subseteq N^{\prime}\right\} \subseteq\) Pow (space M)
using sets.sets_into_space by auto
lemma space_completion[simp]: space (completion \(M\) ) = space \(M\)
unfolding completion_def using space_measure_of [OF completion_into_space] by simp
lemma completionI:
assumes \(A=S \cup N N \subseteq N^{\prime} N^{\prime} \in\) null_sets \(M S \in\) sets \(M\)
shows \(A \in\left\{S \cup N \mid S N N^{\prime} . S \in\right.\) sets \(M \wedge N^{\prime} \in\) null_sets \(\left.M \wedge N \subseteq N^{\prime}\right\}\)
using assms by auto
lemma completionE:
assumes \(A \in\left\{S \cup N \mid S N N^{\prime} . S \in\right.\) sets \(M \wedge N^{\prime} \in\) null_sets \(\left.M \wedge N \subseteq N^{\prime}\right\}\)
obtains \(S N N^{\prime}\) where \(A=S \cup N N \subseteq N^{\prime} N^{\prime} \in\) null_sets \(M S \in\) sets \(M\)
using assms by auto
lemma sigma_algebra_completion:
sigma_algebra \((\) space \(M)\left\{S \cup N \mid S N N^{\prime} . S \in\right.\) sets \(M \wedge N^{\prime} \in\) null_sets \(M \wedge N\) \(\left.\subseteq N^{\prime}\right\}\)
(is sigma_algebra _ ? A)
unfolding sigma_algebra_iffe
proof (intro conjI ballI allI impI)
show ? \(A \subseteq\) Pow (space \(M\) )
using sets.sets_into_space by auto
next
show \(\} \in ?\) A by auto
next
let \(? C=\) space \(M\)
fix \(A\) assume \(A \in ?\) f from completion \(E[O F\) this \(]\) guess \(S N N^{\prime}\).
then show space \(M-A \in ? A\)
by \(\left(\right.\) intro completion \(\left[\right.\) of \(-(? C-S) \cap\left(? C-N^{\prime}\right)(? C-S) \cap N^{\prime} \cap(? C-\) \(N)\) ]) auto
next
fix \(A::\) nat \(\Rightarrow\) 'a set assume \(A\) : range \(A \subseteq\) ? \(A\)
then have \(\forall n . \exists S N N^{\prime} . A n=S \cup N \wedge S \in\) sets \(M \wedge N^{\prime} \in\) null_sets \(M \wedge N\) \(\subseteq N^{\prime}\)
```

 by (auto simp: image_subset_iff)
 from choice[OF this] guess S ..
 from choice[OF this] guess N ..
 from choice[OF this] guess N'..
 then show }\bigcup(A`UNIV)\in?
 using null_sets_UN[of N']
 by (intro completionI[of - \bigcup(S'UNIV) \bigcup(N`UNIV) \bigcup(N'`UNIV)]) auto
 qed
lemma sets_completion:
sets (completion M) ={S\cupN|SN N'. S fets M ^ N'\in null_sets M ^N
\subseteq N ^ { \prime } \}
using sigma_algebra.sets_measure_of_eq[OF sigma_algebra_completion]
by (simp add: completion_def)
lemma sets_completionE:
assumes }A\in\mathrm{ sets (completion M)
obtains SN N' where A=S\cupNN\subseteq N'N
using assms unfolding sets_completion by auto
lemma sets_completionI:
assumes }A=S\cupNN\subseteq\mp@subsup{N}{}{\prime}\mp@subsup{N}{}{\prime}\in\mathrm{ null_sets M S fets M
shows }A\in\mathrm{ sets (completion M)
using assms unfolding sets_completion by auto
lemma sets_completionI_sets[intro, simp]:
A\in sets M\LongrightarrowA\in sets (completion M)
unfolding sets_completion by force
lemma measurable_completion: f\inM 和N\Longrightarrowf\incompletion M
by (auto simp: measurable_def)
lemma null_sets_completion:
assumes }\mp@subsup{N}{}{\prime}\in\mathrm{ null_sets M N}\subseteq\mp@subsup{N}{}{\prime}\mathrm{ shows }N\in\mathrm{ sets (completion M)
using assms by (intro sets_completionI[of N {} N N }})\mathrm{) auto
lemma split_completion:
assumes }A\in\mathrm{ sets (completion M)
shows split_completion M A (main_part M A, null_part M A)
proof cases
assume }A\in\mathrm{ sets }M\mathrm{ then show ?thesis
by (simp add: split_completion_def[abs_def] main_part_def null_part_def)
next
assume nA:A\not\in sets M
show ?thesis
unfolding main_part_def null_part_def if_not_P[OF nA]
proof (rule someI2_ex)
from assms[THEN sets_completionE] guess S N N'. note A = this
let ?P = (S,N-S)

```
```

 show \exists p. split_completion M A p
 unfolding split_completion_def if_not_P[OF nA] using A
 proof (intro exI conjI)
 show }A=fst?P\cup\mathrm{ snd ?P using A by auto
 show snd ?P \subseteq N' using A by auto
 qed auto
 qed auto
 qed
lemma sets_restrict_space_subset:
assumes S:S sets (completion M)
shows sets (restrict_space (completion M)S)\subseteq sets (completion M)
by (metis assms sets.Int_space_eq2 sets_restrict_space_iff subsetI)
lemma
assumes S\in sets (completion M)
shows main_part_sets[intro, simp]: main_part M S E sets M
and main_part_null_part_Un[simp]: main_part M S U null_part M S = S
and main_part_null_part_Int[simp]: main_part M S \cap null_part M S = {}
using split_completion[OF assms]
by (auto simp: split_completion_def split: if_split_asm)
lemma main_part[simp]:S\in sets M\Longrightarrow main_part M S=S
using split_completion[of SM]
by (auto simp: split_completion_def split: if_split_asm)
lemma null_part:
assumes S sets (completion M) shows }\exists\textrm{N}.N\in\mathrm{ null_sets M ^ null_part M S
\subseteq N
using split_completion[OF assms] by (auto simp: split_completion_def split: if_split_asm)
lemma null_part_sets[intro, simp]:
assumes S fets M shows null_part M S \in sets M emeasure M (null_part M
S)=0
proof -
have}S:S\in\mathrm{ sets (completion M) using assms by auto
have S - main_part M S sets M using assms by auto
moreover
from main_part_null_part_Un[OF S] main_part_null_part_Int[OF S]
have S - main_part MS = null_part MS by auto
ultimately show sets: null_part MS\in sets M by auto
from null_part[OF S] guess N ..
with emeasure_eq_0[of N_ null_part M S] sets
show emeasure M (null_part M S)=0 by auto
qed
lemma emeasure_main_part_UN:
fixes S :: nat => ' a set
assumes range S\subseteq sets (completion M)

```
shows emeasure \(M\) (main_part \(M(\bigcup i .(S i)))=\) emeasure \(M(\bigcup i\). main_part \(M(S i))\)
proof -
have \(S: \bigwedge i . S i \in\) sets (completion \(M\) ) using assms by auto
then have \(U N:(\bigcup i . S i) \in\) sets (completion \(M)\) by auto
have \(\forall i . \exists N . N \in\) null_sets \(M \wedge\) null_part \(M(S i) \subseteq N\)
using null_part \([\) OF \(S\) ] by auto
from choice \([O F\) this] guess \(N\).. note \(N=\) this
then have \(U N_{-} N:(\bigcup i . N i) \in\) null_sets \(M\) by (intro null_sets_UN) auto
have \((\bigcup i . S i) \in\) sets (completion \(M)\) using \(S\) by auto
from null_part[OF this] guess \(N^{\prime}\).. note \(N^{\prime}=\) this
let ? \(N=(\bigcup i . N i) \cup N^{\prime}\)
have null_set: \(? N \in\) null_sets \(M\) using \(N^{\prime} U N_{-} N\) by (intro null_sets.Un) auto
have main_part \(M(\bigcup i . S i) \cup ? N=(\) main_part \(M(\bigcup i . S i) \cup\) null_part \(M\)
\((\bigcup i . S i)) \cup ? N\)
using \(N^{\prime}\) by auto
also have \(\ldots=(\bigcup\) i. main_part \(M(S i) \cup\) null_part \(M(S i)) \cup\) ? \(N\)
unfolding main_part_null_part_Un[OF S] main_part_null_part_Un[OF UN] by
auto
also have \(\ldots=(\bigcup i\). main_part \(M(S i)) \cup\) ? \(N\)
using \(N\) by auto
finally have \(*\) : main_part \(M(\bigcup i . S i) \cup ? N=(\bigcup i\). main_part \(M(S i)) \cup\) ? \(N\)
have emeasure \(M\) (main_part \(M(\bigcup i . S i))=\) emeasure \(M\) (main_part \(M(\bigcup i\). \(S\) i) \(\cup\) ?N)
using null_set UN by (intro emeasure_Un_null_set[symmetric]) auto
also have \(\ldots=\) emeasure \(M((\bigcup\) i. main_part \(M(S i)) \cup ? N)\)
unfolding * ..
also have \(\ldots=\) emeasure \(M(\bigcup i\). main_part \(M(S i))\)
using null_set \(S\) by (intro emeasure_Un_null_set) auto
finally show ?thesis .
qed
lemma emeasure_completion [simp]:
assumes \(S: S \in\) sets (completion \(M\) )
shows emeasure (completion \(M\) ) \(S=\) emeasure \(M\) (main_part \(M S\) )
proof (subst emeasure_measure_of [OF completion_def completion_into_space])
let ? \(\mu=\) emeasure \(M \circ\) main_part \(M\)
show \(S \in\) sets (completion \(M\) ) ? \(\mu S=\) emeasure \(M\) (main_part \(M S\) ) using \(S\)
by simp_all
show positive (sets (completion M)) ? \(\mu\)
by (simp add: positive_def)
show countably_additive (sets (completion M)) ? \(\mu\)
proof (intro countably_additiveI)
fix \(A\) :: nat \(\Rightarrow\) 'a set assume \(A\) : range \(A \subseteq\) sets (completion \(M\) ) disjoint_family A
have disjoint_family ( \(\lambda i\). main_part \(M\left(\begin{array}{ll}A & i)\end{array}\right)\)
proof (intro disjoint_family_on_bisimulation[OF A(2)])
fix \(n m\) assume \(A n \cap A m=\{ \}\)
```

 then have (main_part M (A n) \cup null_part M (A n)) \cap (main_part M (A
 m) \cup null_part M (A m))={}
using A by (subst (1 2) main_part_null_part_Un) auto
then show main_part M (An) \cap main_part M (A m)={} by auto
qed
then have (\sumn. emeasure M (main_part M (A n))) = emeasure M (\bigcupi.
main_part M (A i))
using A by (auto intro!: suminf_emeasure)
then show (\sumn.? }\mu(An))=
by (simp add: completion_def emeasure_main_part_UN[OF A(1)])
qed
qed
lemma measure_completion[simp]: S f sets M\Longrightarrow measure (completion M) S=
measure M S
unfolding measure_def by auto
lemma emeasure_completion_UN:
range S\subseteq sets (completion M)\Longrightarrow
emeasure (completion M) (\bigcupi::nat. (S i)) = emeasure M (\bigcupi. main_part M
(S i))
by (subst emeasure_completion) (auto simp add: emeasure_main_part_UN)
lemma emeasure_completion_Un:
assumes S:S\in sets (completion M) and T:T\in sets (completion M)
shows emeasure (completion M) (S\cupT) = emeasure M (main_part M S\cup
main_part M T)
proof (subst emeasure_completion)
have UN:(\bigcupi. binary (main_part M S) (main_part M T) i)=(\bigcupi. main_part
M (binary ST i)
unfolding binary_def by (auto split: if_split_asm)
show emeasure M (main_part M (S\cupT)) = emeasure M (main_part M S U
main_part M T)
using emeasure_main_part_UN[of binary S T M] assms
by (simp add: range_binary_eq, simp add: Un_range_binary UN)
qed (auto intro: S T)
lemma sets_completionI_sub:
assumes N: N'\in null_sets MN\subseteqN'
shows }N\in\mathrm{ sets (completion M)
using assms by (intro sets_completionI[of _ {} N N \) auto
lemma completion_ex_simple_function:
assumes f: simple_function (completion M) f
shows \exists\mp@subsup{f}{}{\prime}. simple_function M f'^(AEx in M.fx= f'x)
proof -
let ?F = \lambdax. f -' {x}\cap space M
have F: \x. ?F x sets (completion M) and fin: finite (f'space M)
using simple_functionD[OF f] simple_functionD[OF f] by simp_all

```
```

have $\forall x . \exists N . N \in$ null_sets $M \wedge$ null_part $M(? F x) \subseteq N$
using F null_part by auto
from choice [OF this] obtain N where
$N: \bigwedge x$. null_part $M(? F x) \subseteq N x \wedge x . N x \in$ null_sets M by auto
let $? N=\bigcup x \in f^{\prime}$ space $M . N x$
let $? f^{\prime}=\lambda x$. if $x \in$? N then undefined else $f x$
have sets: ? $N \in$ null_sets M using N fin by (intro null_sets.finite_UN) auto
show ?thesis unfolding simple_function_def
proof (safe intro!: exI[of - ?f $]$)
have ?f'' space $M \subseteq f^{\prime}$ space $M \cup\{$ undefined $\}$ by auto
from finite_subset[OF this] simple_functionD (1)[OF f]
show finite (?f' ' space M) by auto
next
fix x assume $x \in$ space M
have ? $f^{\prime}-{ }^{\prime}\left\{? f^{\prime} x\right\} \cap$ space $M=$
(if $x \in$? N then ? F undefined $\cup ? N$
else if $f x=$ undefined then ? $F(f x) \cup ? N$
else ? $F(f x)-? N)$
using $N(2)$ sets.sets_into_space by (auto split: if_split_asm simp: null_sets_def)
moreover \{ fix y have ? $F y \cup$? $N \in$ sets M
proof cases
assume $y: y \in f^{\prime}$ space M
have ?F $y \cup ? N=($ main_part $M(? F y) \cup$ null_part $M(? F y)) \cup ? N$
using main_part_null_part_Un $[O F F]$ by auto
also have $\ldots=$ main_part $M(? F y) \cup ? N$
using $y N$ by auto
finally show ?thesis
using F sets by auto
next
assume $y \notin f^{\prime}$ space M then have $? F y=\{ \}$ by auto
then show ?thesis using sets by auto
qed $\}$
moreover \{
have ? $F(f x)-? N=$ main_part $M(? F(f x)) \cup$ null_part $M(? F(f x))-$
? N
using main_part_null_part_Un $[$ OF F] by auto
also have $\ldots=$ main_part $M(? F(f x))-? N$
using $N\langle x \in$ space $M\rangle$ by auto
finally have ? $F(f x)-$? $N \in$ sets M
using F sets by auto \}
ultimately show ? $f^{\prime}-‘\left\{? f^{\prime} x\right\} \cap$ space $M \in$ sets M by auto
next
show $A E x$ in $M . f x=? f^{\prime} x$
by (rule $A E_{-} I^{\prime}$, rule sets) auto
qed
qed
lemma completion_ex_borel_measurable:
fixes $g::{ }^{\prime} a \Rightarrow$ ennreal

```
```

 assumes \(g: g \in\) borel_measurable (completion M)
 shows \(\exists g^{\prime} \in\) borel_measurable \(M .\left(A E x\right.\) in \(\left.M . g x=g^{\prime} x\right)\)
 proof -
from $g[$ THEN borel_measurable_implies_simple_function_sequence] guess f. note
$f=$ this
from this(1)[THEN completion_ex_simple_function]
have $\forall i$. $\exists f^{\prime}$. simple_function $M f^{\prime} \wedge\left(A E x\right.$ in $\left.M . f i x=f^{\prime} x\right)$..
from this [THEN choice] obtain f^{\prime} where
sf: $\bigwedge i$. simple_function $M\left(f^{\prime} i\right)$ and
$A E: \forall i$. $A E x$ in $M . f i x=f^{\prime} i x$ by auto
show ?thesis
proof (intro bexI)
from $A E\left[\right.$ unfolded $A E_{-}$all_countable[symmetric]]
show $A E x$ in $M . g x=\left(S U P\right.$ i. $\left.f^{\prime} i x\right)$ (is $A E x$ in $M . g x=$? $\left.f x\right)$
proof (elim AE_mp, safe intro!: AE_I2)
fix x assume $e q: \forall i . f i x=f^{\prime} i x$
moreover have $g x=(S U P$ i. $f i x)$
unfolding f by (auto split: split_max)
ultimately show $g x=$? $f x$ by auto
qed
show ?f \in borel_measurable M
using $s f[$ THEN borel_measurable_simple_function $]$ by auto
qed
qed

```
lemma null_sets_completionI: \(N \in\) null_sets \(M \Longrightarrow N \in\) null_sets (completion \(M\) )
    by (auto simp: null_sets_def)
lemma \(A E\) _completion: \((A E x\) in \(M . P x) \Longrightarrow(A E x\) in completion \(M . P x)\)
    unfolding eventually_ae_filter by (auto intro: null_sets_completionI)
lemma null_sets_completion_iff: \(N \in\) sets \(M \Longrightarrow N \in\) null_sets (completion \(M\) )
\(\longleftrightarrow N \in\) null_sets \(M\)
    by (auto simp: null_sets_def)
lemma sets_completion_AE: \((A E x\) in \(M . \neg P x) \Longrightarrow\) Measurable.pred (completion
M) \(P\)
    unfolding pred_def sets_completion eventually_ae_filter
    by auto
lemma null_sets_completion_iff2:
    \(A \in\) null_sets \((\) completion \(M) \longleftrightarrow\left(\exists N^{\prime} \in\right.\) null_sets \(\left.M . A \subseteq N^{\prime}\right)\)
proof safe
    assume \(A \in\) null_sets (completion M)
    then have \(A: A \in\) sets (completion \(M\) ) and main_part \(M A \in\) null_sets \(M\)
        by (auto simp: null_sets_def)
    moreover obtain \(N\) where \(N \in\) null_sets \(M\) null_part \(M A \subseteq N\)
        using null_part \([O F A]\) by auto
    ultimately show \(\exists N^{\prime} \in\) null_sets \(M . A \subseteq N^{\prime}\)
```

 proof (intro bexI)
 show \(A \subseteq N \cup\) main_part \(M A\)
 using «null_part \(M A \subseteq N\rangle\) by (subst main_part_null_part_Un[OF A, symmet-
 ric]) auto
qed auto
next
fix N assume $N \in$ null_sets $M A \subseteq N$
then have $A \in$ sets (completion M) and $N: N \in$ sets $M A \subseteq N$ emeasure $M N$
$=0$
by (auto intro: null_sets_completion)
moreover have emeasure (completion M) $A=0$
using N by (intro emeasure_eq_ $0\left[\right.$ of $\left.N_{-} A\right]$) auto
ultimately show $A \in$ null_sets (completion M)
by auto
qed
lemma null_sets_completion_subset:
$B \subseteq A \Longrightarrow A \in$ null_sets (completion $M) \Longrightarrow B \in$ null_sets (completion M)
unfolding null_sets_completion_iff2 by auto
interpretation completion: complete_measure completion M for M
proof
show $B \subseteq A \Longrightarrow A \in$ null_sets (completion $M) \Longrightarrow B \in$ sets (completion M)
for $B A$
using null_sets_completion_subset[of B A M] by (simp add: null_sets_def)
qed
lemma null_sets_restrict_space:
$\Omega \in$ sets $M \Longrightarrow A \in$ null_sets (restrict_space $M \Omega) \longleftrightarrow A \subseteq \Omega \wedge A \in$ null_sets
M
by (auto simp: null_sets_def emeasure_restrict_space sets_restrict_space)
lemma completion_ex_borel_measurable_real:
fixes $g::{ }^{\prime} a \Rightarrow$ real
assumes $g: g \in$ borel_measurable (completion M)
shows $\exists g^{\prime} \in$ borel_measurable $M .\left(A E x\right.$ in $\left.M . g x=g^{\prime} x\right)$
proof -
have $(\lambda x$. ennreal $(g x)) \in$ completion $M \rightarrow_{M}$ borel $(\lambda x$. ennreal $(-g x)) \in$
completion $M \rightarrow_{M}$ borel
using g by auto
from this[THEN completion_ex_borel_measurable]
obtain pf nf :: ' $a \Rightarrow$ ennreal
where [measurable]: $n f \in M \rightarrow_{M}$ borel pf $\in M \rightarrow_{M}$ borel
and $a e: A E x$ in $M . p f x=$ ennreal $(g x) A E x$ in $M . n f x=$ ennreal $(-g x)$
by (auto simp: eq_commute)
then have $A E x$ in $M . p f x=$ ennreal $(g x) \wedge n f x=$ ennreal $(-g x)$
by auto
then obtain N where $N \in$ null_sets $M\{x \in$ space M. pf $x \neq$ ennreal $(g x) \wedge n f$
$x \neq$ ennreal $(-g x)\} \subseteq N$

```
```

 by (auto elim!: AE_E)
 show ?thesis
 proof
 let ?F = \lambdax. indicator (space M - N) x* (enn2real (pf x) - enn2real (nf x))
 show ?F \in M ->M
 using \N \in null_sets M` by auto
 show AEx in M.g x = ?F x
 using <N \in null_sets M〉[THEN AE_not_in] ae AE_space
 apply eventually_elim
 subgoal for }
 by (cases 0::real g x rule: linorder_le_cases) (auto simp: ennreal_neg)
 done
 qed
 qed

```
lemma simple_function_completion: simple_function \(M f \Longrightarrow\) simple_function (completion M) \(f\)
    by (simp add: simple_function_def)
lemma simple_integral_completion:
simple_function \(M f \Longrightarrow\) simple_integral (completion \(M\) ) \(f=\) simple_integral \(M f\)
unfolding simple_integral_def by simp
lemma nn_integral_completion: nn_integral (completion \(M\) ) \(f=n n \_i n t e g r a l ~ M f\)
unfolding nn_integral_def
proof (safe intro!: SUP_eq)
fix \(s\) assume \(s\) : simple_function (completion \(M\) ) \(s\) and \(s \leq f\)
then obtain \(s^{\prime}\) where \(s^{\prime}\) : simple_function \(M s^{\prime} A E x\) in \(M\). s \(x=s^{\prime} x\) by (auto dest: completion_ex_simple_function)
then obtain \(N\) where \(N: N \in\) null_sets \(M\left\{x \in\right.\) space \(M\). s \(\left.x \neq s^{\prime} x\right\} \subseteq N\) by (auto elim!: AE_E)
then have \(a e_{-} N: A E x\) in \(M .\left(s x \neq s^{\prime} x \longrightarrow x \in N\right) \wedge x \notin N\) by (auto dest: AE_not_in)
define \(s^{\prime \prime}\) where \(s^{\prime \prime} x=(\) if \(x \in N\) then 0 else \(s x)\) for \(x\)
then have ae_s_eq_s \({ }^{\prime \prime}: A E x\) in completion \(M . s x=s^{\prime \prime} x\)
using \(s^{\prime}\) ae_ \(N\) by (intro AE_completion) auto
have \(s^{\prime \prime}\) : simple_function \(M s^{\prime \prime}\)
proof (subst simple_function_cong)
show \(t \in\) space \(M \Longrightarrow s^{\prime \prime} t=\left(\right.\) if \(t \in N\) then 0 else \(\left.s^{\prime} t\right)\) for \(t\)
using \(N\) by (auto simp: \(s^{\prime \prime}\) _def dest: sets.sets_into_space)
show simple_function \(M\left(\lambda t\right.\). if \(t \in N\) then 0 else \(\left.s^{\prime} t\right)\) unfolding \(s^{\prime \prime}{ }_{\text {_ }}\) def [abs_def] using \(N\) by (auto intro!: simple_function_If s')
qed
show \(\exists j \in\{g\). simple_function \(M g \wedge g \leq f\}\). integral \({ }^{S}(\) completion \(M) s \leq\) integral \(^{S} M j\)
proof (safe intro!: bexI[of _ \(\left.s^{\prime \prime}\right]\) )
have integral \({ }^{S}\) (completion \(M\) ) \(s=\) integral \(^{S}\) (completion M) \(s^{\prime \prime}\)
by (intro simple_integral_cong_AE s simple_function_completion s" ae_s_eq_s")
```

 then show integral \({ }^{S}\) (completion \(\left.M\right) s \leq\) integral \(^{S} M s^{\prime \prime}\)
 using \(s^{\prime \prime}\) by (simp add: simple_integral_completion)
 from \(\langle s \leq f\rangle\) show \(s^{\prime \prime} \leq f\)
 unfolding \(s^{\prime \prime}\) _def le_fun_def by auto
 qed fact
 next
fix s assume simple_function $M s s \leq f$
then show $\exists j \in\{g$. simple_function (completion M) $g \wedge g \leq f\}$. integral ${ }^{S} M s$
\leq integral S (completion $\left.M\right) j$
by (intro bexI $\left[o f_{-} s\right]$) (auto simp: simple_integral_completion simple_function_completion)
qed
lemma integrable_completion:
fixes $f::$ ' $a \Rightarrow$ ' $b::\{b a n a c h$, second_countable_topology \}
shows $f \in M \rightarrow_{M}$ borel \Longrightarrow integrable (completion M) $f \longleftrightarrow$ integrable $M f$
by (rule integrable_subalgebra[symmetric]) auto
lemma integral_completion:
fixes $f::{ }^{\prime} a \Rightarrow$ ' $b::\{$ banach, second_countable_topology $\}$
assumes $f: f \in M \rightarrow_{M}$ borel shows integral ${ }^{L}$ (completion M) $f=$ integral $^{L} M$
f
by (rule integral_subalgebra[symmetric]) (auto intro: f)
locale semifinite_measure $=$
fixes M :: 'a measure
assumes semifinite:
$\bigwedge A . A \in$ sets $M \Longrightarrow$ emeasure $M A=\infty \Longrightarrow \exists B \in$ sets $M . B \subseteq A \wedge$ emeasure
$M B<\infty$
locale locally_determined_measure $=$ semifinite_measure +
assumes locally_determined:
$\bigwedge A . A \subseteq$ space $M \Longrightarrow(\bigwedge B . B \in$ sets $M \Longrightarrow$ emeasure $M B<\infty \Longrightarrow A \cap B$
\in sets $M) \Longrightarrow A \in$ sets M
locale cld_measure $=$
complete_measure $M+$ locally_determined_measure M for M :: 'a measure
definition outer_measure_of $::$ 'a measure \Rightarrow 'a set \Rightarrow ennreal where outer_measure_of $M A=(I N F B \in\{B \in$ sets $M . A \subseteq B\}$. emeasure $M B)$
lemma outer_measure_of_eq[simp]: $A \in$ sets $M \Longrightarrow$ outer_measure_of $M A=$ emeasure $M A$ by (auto simp: outer_measure_of_def intro!: INF_eqI emeasure_mono)
lemma outer_measure_of_mono: $A \subseteq B \Longrightarrow$ outer_measure_of $M A \leq$ outer_measure_of MB unfolding outer_measure_of_def by (intro INF_superset_mono) auto
lemma outer_measure_of_attain:

```
```

 assumes \(A \subseteq\) space \(M\)
 shows \(\exists E \in\) sets \(M . A \subseteq E \wedge\) outer_measure_of \(M A=\) emeasure \(M E\)
 proof -
have emeasure M ' $\{B \in$ sets $M . A \subseteq B\} \neq\{ \}$
using $\langle A \subseteq$ space $M\rangle$ by auto
from ennreal_Inf_countable_INF[OF this]
obtain f
where f : range $f \subseteq$ emeasure M ' $\{B \in$ sets $M . A \subseteq B\}$ decseq f
and outer_measure_of $M A=(I N F i . f i)$
unfolding outer_measure_of_def by auto
have $\exists E . \forall n .(E n \in$ sets $M \wedge A \subseteq E n \wedge$ emeasure $M(E n) \leq f n) \wedge E(S u c$
$n) \subseteq E n$
proof (rule dependent_nat_choice)
show $\exists x . x \in$ sets $M \wedge A \subseteq x \wedge$ emeasure $M x \leq f 0$
using $f(1)$ by (fastforce simp: image_subset_iff image_iff intro: eq_refl[OF
sym])
next
fix $E n$ assume $E \in$ sets $M \wedge A \subseteq E \wedge$ emeasure $M E \leq f n$
moreover obtain F where $F \in$ sets $M A \subseteq F f$ (Suc n) $=$ emeasure $M F$
using $f(1)$ by (auto simp: image_subset_iff image_iff)
ultimately show $\exists y .(y \in$ sets $M \wedge A \subseteq y \wedge$ emeasure $M y \leq f($ Suc $n)) \wedge$
$y \subseteq E$
by (auto intro!: exI[of _ $F \cap E]$ emeasure_mono)
qed
then obtain E
where $[$ simp $]: \bigwedge n . E n \in$ sets M
and $\bigwedge n . A \subseteq E n$
and $l e_{-} f: \bigwedge n$. emeasure $M(E n) \leq f n$
and decseq E
by (auto simp: decseq_Suc_iff)
show ?thesis
proof cases
assume fin: $\exists i$. emeasure $M(E i)<\infty$
show ?thesis
proof (intro bexI[of $-\bigcap i . E i]$ conjI)
show $A \subseteq(\bigcap i . E i)(\bigcap i . E i) \in$ sets M
using $\langle\backslash n . A \subseteq E n\rangle$ by auto
have (INF i. emeasure $M(E i)) \leq$ outer_measure_of $M A$
unfolding <outer_measure_of $M A=(I N F n . f n)$ 〉
by (intro INF_superset_mono le_f) auto
moreover have outer_measure_of $M A \leq(I N F i$. outer_measure_of $M(E$ i) $)$
by (intro INF_greatest outer_measure_of_mono 〈 $\backslash n . A \subseteq E n$)
ultimately have outer_measure_of $M A=($ INF i. emeasure $M(E i))$
by auto
also have $\ldots=$ emeasure $M(\bigcap i . E i)$
using fin by (intro INF_emeasure_decseq ${ }^{\prime}$ (decseq E〉) (auto simp: less_top)
finally show outer_measure_of $M A=$ emeasure $M(\bigcap i . E i)$.
qed

```
```

 next
 assume #i. emeasure M(E i)<\infty
 then have f n=\infty for n
 using le_f by (auto simp: not_less top_unique)
 moreover have }\existsE\in\mathrm{ sets M. A}\subseteqE\wedgef0= emeasure M E
 using f by auto
 ultimately show ?thesis
 unfolding <outer_measure_of MA=(INF n.f n)` by simp
 qed
 qed
lemma SUP_outer_measure_of_incseq:
assumes A: \bigwedgen.A n\subseteq space M and incseq A
shows (SUP n.outer_measure_of M (A n)) = outer_measure_of M (\bigcupi. A i)
proof (rule antisym)
obtain E
where E: \bigwedgen. En f sets M \bigwedgen.A n\subseteqEn \n. outer_measure_of M (A n)
= emeasure M (E n)
using outer_measure_of_attain[OF A] by metis
define F where F n = (\bigcapi\in{n ..}. E i) for n
with E have F: incseq F \n.Fn f sets M
by (auto simp: incseq_def)
have An\subseteqFn for n
using incseqD[OF<incseq A>, of n]<\n.A n\subseteqE n> by (auto simp: F_def)
have eq:outer_measure_of M (A n) = outer_measure_of M (F n) for n
proof (intro antisym)
have outer_measure_of M (F n) \leq outer_measure_of M (E n)
by (intro outer_measure_of_mono) (auto simp add: F_def)
with E show outer_measure_of M (Fn) \leqouter_measure_of M (A n)
by auto
show outer_measure_of M (A n) \leq outer_measure_of M (F n)
by (intro outer_measure_of_mono <A n\subseteqFn`) qed have outer_measure_of M (\bigcupn. A n) \leq outer_measure_of M (Un.F n) using <\n.A n\subseteqFn` by (intro outer_measure_of_mono) auto
also have ... = (SUP n. emeasure M (F n))
using F by (simp add: SUP_emeasure_incseq subset_eq)
finally show outer_measure_of M(Un.A n) \leq(SUP n. outer_measure_of M (A
n))
by (simp add: eq F)
qed (auto intro:SUP_least outer_measure_of_mono)
definition measurable_envelope :: 'a measure = ' a set }=>\mp@subsup{}{}{\prime}\mathrm{ 'a set }=>\mathrm{ bool
where measurable_envelope MA E \longleftrightarrow
(A\subseteqE\wedgeE\in sets M}\wedge(\forallF\in\mathrm{ sets M. emeasure M (F`E) = outer_measure_of
M(F\capA)))

```
lemma measurable_envelopeD:
assumes measurable_envelope \(M A E\)
shows \(A \subseteq E\)
and \(E \in\) sets \(M\)
and \(\bigwedge F . F \in\) sets \(M \Longrightarrow\) emeasure \(M(F \cap E)=\) outer_measure_of \(M(F \cap\)
A)
and \(A \subseteq\) space \(M\)
using assms sets.sets_into_space[of E] by (auto simp: measurable_envelope_def)
lemma measurable_envelopeD1:
assumes \(E\) : measurable_envelope \(M A E\) and \(F: F \in\) sets \(M F \subseteq E-A\)
shows emeasure \(M F=0\)
proof -
have emeasure \(M F=\) emeasure \(M(F \cap E)\)
using \(F\) by (intro arg_cong2[where \(f=\) emeasure]) auto
also have \(\ldots=\) outer_measure_of \(M(F \cap A)\)
using measurable_envelope \(D[O F E]\langle F \in\) sets \(M\rangle\) by (auto simp: measurable_envelope_def)
also have ... = outer_measure_of \(M\}\)
using \(\langle F \subseteq E-A\rangle\) by (intro arg_cong2[where \(f=\) outer_measure_of]) auto
finally show emeasure \(M F=0\)
by \(\operatorname{simp}\)
qed
lemma measurable_envelope_eq1:
assumes \(A \subseteq E E \in\) sets \(M\)
shows measurable_envelope \(M A E \longleftrightarrow(\forall F \in\) sets \(M . F \subseteq E-A \longrightarrow\) emeasure
\(M F=0\) )
proof safe
assume \(*: \forall F \in\) sets \(M . F \subseteq E-A \longrightarrow\) emeasure \(M F=0\)
show measurable_envelope M A E
unfolding measurable_envelope_def
proof (rule ccontr, auto simp add: \(\langle E \in\) sets \(M\rangle\langle A \subseteq E\rangle)\)
fix \(F\) assume \(F \in\) sets \(M\) emeasure \(M(F \cap E) \neq\) outer_measure_of \(M(F \cap\) A)
then have outer_measure_of \(M(F \cap A)<\) emeasure \(M(F \cap E)\)
using outer_measure_of_mono[of \(F \cap A F \cap E M]\langle A \subseteq E\rangle\langle E \in\) sets \(M\rangle\) by (auto simp: less_le)
then obtain \(G\) where \(G: G \in\) sets \(M F \cap A \subseteq G\) and less: emeasure \(M G\) \(<\) emeasure \(M(E \cap F)\)
unfolding outer_measure_of_def INF_less_iff by (auto simp: ac_simps)
have le: emeasure \(M(G \cap E \cap F) \leq\) emeasure \(M G\)
using \(\langle E \in\) sets \(M\rangle\langle G \in\) sets \(M\rangle\langle F \in\) sets \(M\rangle\) by (auto intro!: emeasure_mono)
from \(G\) have \(E \cap F-G \in\) sets \(M E \cap F-G \subseteq E-A\)
using \(\langle F \in\) sets \(M\rangle\langle E \in\) sets \(M\rangle\) by auto
with * have \(0=\) emeasure \(M(E \cap F-G)\)
by auto
```

 also have E\capF-G=E\capF-(G\capE\capF)
 by auto
 also have emeasure M (E\capF-(G\capE\capF))= emeasure M (E\capF)-
 emeasure M (G\capE\capF)
using }\langleE\in\mathrm{ sets M\<F sets M> le less G by (intro emeasure_Diff) (auto
simp: top_unique)
also have ... > 0
using le less by (intro diff_gr0_ennreal) auto
finally show False by auto
qed
qed (rule measurable_envelopeD1)
lemma measurable_envelopeD2:
assumes E: measurable_envelope M A E shows emeasure M E=outer_measure_of
M A
proof -
from <measurable_envelope M A E` have emeasure M (E\capE) = outer_measure_of
M(E\capA)
by (auto simp: measurable_envelope_def)
with measurable_envelopeD[OF E] show emeasure M E = outer_measure_of M
A
by (auto simp: Int_absorb1)
qed
lemma measurable_envelope_eq2:
assumes A\subseteqEE\in sets M emeasure ME<\infty
shows measurable_envelope M A E \longleftrightarrow (emeasure M E = outer_measure_of M
A)
proof safe
assume *: emeasure M E = outer_measure_of M A
show measurable_envelope M A E
unfolding measurable_envelope_eq1[OF \langleA\subseteqE\rangle\langleE\in sets M\]

 proof (intro conjI ballI impI assms)
 fix F assume F:F\in sets MF\subseteqE-A
 with }\langleE\in\mathrm{ sets M> have le: emeasure MF}\leq\mathrm{ emeasure M E
 by (intro emeasure_mono) auto
 from F}\langleA\subseteqE\rangle\mathrm{ have outer_measure_of M A {outer_measure_of M (E-F)
 by (intro outer_measure_of_mono) auto
 then have emeasure ME-0\leq emeasure M (E-F)
 using*\langleE\in sets M\rangle\langleF\in sets M\rangle by simp
 also have ... = emeasure M E - emeasure M F
 using \langleE\in sets M\<emeasure M E<\infty>F le by (intro emeasure_Diff) (auto
 simp: top_unique)
 finally show emeasure M F = 0
 using ennreal_mono_minus_cancel[of emeasure M E 0 emeasure M F] le assms
 by auto
qed
qed (auto intro: measurable_envelopeD2)

```
```

lemma measurable_envelopeI_countable:
fixes $A::$ nat \Rightarrow 'a set
assumes E : $\bigwedge n$. measurable_envelope $M(A n)(E n)$
shows measurable_envelope $M(\bigcup n . A n)(\bigcup n . E n)$
proof (subst measurable_envelope_eq1)
show $(\bigcup n . A n) \subseteq(\bigcup n . E n)(\bigcup n . E n) \in$ sets M
using measurable_envelope $D(1,2)[O F E]$ by auto
show $\forall F \in$ sets $M . F \subseteq(\bigcup n . E n)-(\bigcup n . A n) \longrightarrow$ emeasure $M F=0$
proof safe
fix F assume $F: F \in$ sets $M F \subseteq(\bigcup n . E n)-(\bigcup n . A n)$
then have $F \cap E n \in$ sets $M F \cap E n \subseteq E n-A n F \subseteq(\bigcup n$. $E n$) for n
using measurable_envelope $D(1,2)[O F E]$ by auto
then have emeasure $M(\bigcup n . F \cap E n)=0$
by (intro emeasure_UN_eq_0 measurable_envelopeD1[OF E]) auto
then show emeasure $M F=0$
using $\langle F \subseteq(\bigcup n$. $E n)\rangle$ by (auto simp: Int_absorb2)
qed
qed
lemma measurable_envelopeI_countable_cover:
fixes A and C :: nat \Rightarrow 'a set
assumes $C: A \subseteq(\bigcup n . C n) \bigwedge n . C n \in$ sets $M \wedge n$. emeasure $M(C n)<\infty$
shows $\exists E \subseteq(\bigcup n$. $C n)$. measurable_envelope $M A E$
proof -
have $A \cap C n \subseteq$ space M for n
using $\langle C n \in$ sets $M\rangle$ by (auto dest: sets.sets_into_space)
then have $\forall n . \exists E \in$ sets $M . A \cap C n \subseteq E \wedge$ outer_measure_of $M(A \cap C n)=$
emeasure $M E$
using outer_measure_of_attain $[$ of $A \cap C n M$ for $n]$ by auto
then obtain E
where $E: \bigwedge n . E n \in$ sets $M \wedge n . A \cap C n \subseteq E n$
and eq: $\bigwedge n$. outer_measure_of $M(A \cap C n)=$ emeasure $M(E n)$
by metis
have outer_measure_of $M(A \cap C n) \leq$ outer_measure_of $M(E n \cap C n)$ for n
using E by (intro outer_measure_of_mono) auto
moreover have outer_measure_of $M(E n \cap C n) \leq$ outer_measure_of $M(E n)$
for n
by (intro outer_measure_of_mono) auto
ultimately have eq: outer_measure_of $M(A \cap C n)=$ emeasure $M(E n \cap C$
n) for n
using $E C$ by (intro antisym) (auto simp: eq)
\{ fix n
have outer_measure_of $M(A \cap C n) \leq$ outer_measure_of $M(C n)$
by (intro outer_measure_of_mono) simp
also have $\ldots<\infty$
using assms by auto
finally have emeasure $M(E n \cap C n)<\infty$

```
```

using eq by simp }
then have measurable_envelope M (\bigcupn. A\capC n)(\bigcupn.E n\capC n)
using E C by (intro measurable_envelopeI_countable measurable_envelope_eq2[THEN
iffD2]) (auto simp: eq)
with <A\subseteq(\bigcupn.C n)\rangle show ?thesis
by (intro exI[of _ (\bigcupn.E n\capC n)]) (auto simp add: Int_absorb2)
qed
lemma (in complete_measure) complete_sets_sandwich:
assumes [measurable]: A sets MC\in sets M and subset: A\subseteqB B\subseteqC
and measure: emeasure M A = emeasure M C emeasure M A<\infty
shows }B\in\mathrm{ sets M
proof -
have }B-A\in\mathrm{ sets M
proof (rule complete)
show }B-A\subseteqC-
using subset by auto
show }C-A\in\mathrm{ null_sets M
using measure subset by(simp add: emeasure_Diff null_setsI)
qed
then have }A\cup(B-A)\in\mathrm{ sets }
by measurable
also have }A\cup(B-A)=
using }\langleA\subseteqB\rangle\mathrm{ by auto
finally show ?thesis .
qed
lemma (in complete_measure) complete_sets_sandwich_fmeasurable:
assumes [measurable]: A\in fmeasurable M C\in fmeasurable M and subset: A\subseteq
B B\subseteqC
and measure: measure MA= measure MC
shows B}\in\mathrm{ fmeasurable M
proof (rule fmeasurableIQ)
show B\subseteqCC\in fmeasurable M by fact+
show B}\in\mathrm{ sets M
proof (rule complete_sets_sandwich)
show }A\in\mathrm{ sets MC}C\mathrm{ sets M A}\subseteqBB\subseteq
using assms by auto
show emeasure M A<\infty
using }\langleA\in\mathrm{ fmeasurable }M>\mathrm{ by (auto simp: fmeasurable_def)
show emeasure M A = emeasure MC
using assms by (simp add: emeasure_eq_measure2)
qed
qed
lemma AE_completion_iff: (AE x in completion M. P x) \longleftrightarrow(AE x in M. P x)
proof
assume AE x in completion M. P x
then obtain N where N\in null_sets (completion M) and P:{x\inspace M. \negP

```
\(x\} \subseteq N\)
unfolding eventually_ae_filter by auto
then obtain \(N^{\prime}\) where \(N^{\prime}: N^{\prime} \in\) null_sets \(M\) and \(N \subseteq N^{\prime}\)
unfolding null_sets_completion_iff2 by auto
from \(P\left\langle N \subseteq N^{\prime}\right\rangle\) have \(\{x \in\) space \(M . \neg P x\} \subseteq N^{\prime}\)
by auto
with \(N^{\prime}\) show \(A E x\) in \(M . P x\)
unfolding eventually_ae_filter by auto
qed (rule AE_completion)
lemma null_part_null_sets: \(S \in\) completion \(M \Longrightarrow\) null_part \(M S \in\) null_sets (completion M)
by (auto dest!: null_part intro: null_sets_completionI null_sets_completion_subset)
lemma AE_notin_null_part: \(S \in\) completion \(M \Longrightarrow(A E x\) in \(M . x \notin\) null_part \(M\)
S)
by (auto dest!: null_part_null_sets AE_not_in simp: AE_completion_iff)
lemma completion_upper:
assumes \(A: A \in\) sets (completion \(M\) )
shows \(\exists A^{\prime} \in\) sets \(M . A \subseteq A^{\prime} \wedge\) emeasure (completion \(\left.M\right) A=\) emeasure \(M A^{\prime}\)

\section*{proof -}
from AE_notin_null_part[OF A] obtain \(N\) where \(N: N \in\) null_sets \(M\) null_part
\(M A \subseteq N\)
unfolding eventually_ae_filter using null_part_null_sets[OF A, THEN null_setsD2, THEN sets.sets_into_space] by auto
show ?thesis
proof (intro bexI conjI)
show \(A \subseteq\) main_part \(M A \cup N\)
using «null_part \(M A \subseteq N\rangle\) by (subst main_part_null_part_Un[symmetric, OF
A]) auto
show emeasure (completion \(M\) ) \(A=\) emeasure \(M\) (main_part \(M A \cup N\) )
using \(A\langle N \in\) null_sets \(M\rangle\) by (simp add: emeasure_Un_null_set)
qed (use \(A N\) in auto)
qed
lemma \(A E \_i n \_m a i n \_p a r t:\)
assumes \(A: A \in\) completion \(M\) shows \(A E x\) in \(M . x \in\) main_part \(M A \longleftrightarrow x\) \(\in A\)
using AE_notin_null_part[OF A]
by (subst (2) main_part_null_part_Un[symmetric, OF A]) auto
lemma completion_density_eq:
assumes ae: AEx in \(M .0<f x\) and [measurable]: \(f \in M \rightarrow_{M}\) borel
shows completion \((\) density \(M f)=\) density \((\) completion \(M) f\)
proof (intro measure_eqI)
have \(N^{\prime} \in\) sets \(M \wedge\left(A E x \in N^{\prime}\right.\) in \(\left.M . f x=0\right) \longleftrightarrow N^{\prime} \in\) null_sets \(M\) for \(N^{\prime}\)
proof safe
assume \(N^{\prime}: N^{\prime} \in\) sets \(M\) and \(a e_{-} N^{\prime}: A E x \in N^{\prime}\) in \(M . f x=0\)
```

 from \(a e_{-} N^{\prime}\) ae have \(A E x\) in \(M . x \notin N^{\prime}\)
 by eventually_elim auto
 then show \(N^{\prime} \in\) null_sets \(M\)
 using \(N^{\prime}\) by (simp add: AE_iff_null_sets)
 next
 assume \(N^{\prime}: N^{\prime} \in\) null_sets \(M\) then show \(N^{\prime} \in\) sets \(M A E x \in N^{\prime}\) in \(M . f x=\)
 0
using ae AE_not_in[OF $N\rceil$ by (auto simp: less_le)
qed
then show sets_eq: sets (completion (density $M f$)) $=$ sets (density (completion
M) f)
by (simp add: sets_completion null_sets_density_iff)

```
    fix \(A\) assume \(A:\langle A \in\) completion (density \(M f\) ) \(\rangle\)
    moreover
    have \(A \in\) completion \(M\)
        using \(A\) unfolding sets_eq by simp
    moreover
    have main_part (density \(M f\) ) \(A \in M\)
        using \(A\) main_part_sets[of \(A\) density \(M f\) ] unfolding sets_density sets_eq by
simp
    moreover have \(A E x\) in \(M . x \in\) main_part (density \(M f\) ) \(A \longleftrightarrow x \in A\)
        using \(A E_{\text {_in_main_part }[O F}\langle A \in\) completion (density \(M f\) ) \(]\) ae by (auto simp
add: AE_density)
    ultimately show emeasure (completion (density \(M f\) )) \(A=\) emeasure (density
(completion M) f) A
    by (auto simp add: emeasure_density measurable_completion nn_integral_completion
intro!: nn_integral_cong_AE)
qed
lemma null_sets_subset: \(B \in\) null_sets \(M \Longrightarrow A \in\) sets \(M \Longrightarrow A \subseteq B \Longrightarrow A \in\) null_sets M
using emeasure_mono[of A B M] by (simp add: null_sets_def)
lemma (in complete_measure) complete2: \(A \subseteq B \Longrightarrow B \in\) null_sets \(M \Longrightarrow A \in\) null_sets M
using complete \([\) of \(A B]\) null_sets_subset \([\) of \(B M A]\) by simp
lemma (in complete_measure) AE_iff_null_sets: \((A E x\) in \(M . P x) \longleftrightarrow\{x \in\) space M. \(\neg P x\} \in\) null_sets \(M\)
unfolding eventually_ae_filter by (auto intro: complete2)
lemma (in complete_measure) null_sets_iff_AE: \(A \in\) null_sets \(M \longleftrightarrow((A E x\) in \(M . x \notin A) \wedge A \subseteq\) space \(M)\)
unfolding \(A E_{-}\)iff_null_sets by (auto cong: rev_conj_cong dest: sets.sets_into_space simp: subset_eq)
lemma (in complete_measure) in_sets_AE:
assumes ae: \(A E x\) in \(M . x \in A \longleftrightarrow x \in B\) and \(A: A \in\) sets \(M\) and \(B: B \subseteq\)
space \(M\)
shows \(B \in\) sets \(M\)
proof -
have ( \(A E x\) in \(M . x \notin B-A \wedge x \notin A-B\) )
using ae by eventually_elim auto
then have \(B-A \in\) null_sets \(M A-B \in\) null_sets \(M\) using \(A B\) unfolding null_sets_iff_AE by (auto dest: sets.sets_into_space)
then have \(A \cup(B-A)-(A-B) \in\) sets \(M\)
using \(A\) by blast
also have \(A \cup(B-A)-(A-B)=B\)
by auto
finally show \(B \in\) sets \(M\).
qed
lemma (in complete_measure) vimage_null_part_null_sets:
assumes \(f: f \in M \rightarrow_{M} N\) and eq: null_sets \(N \subseteq\) null_sets (distr \(M N f\) ) and \(A: A \in\) completion \(N\)
shows \(f\)-' null_part \(N A \cap\) space \(M \in\) null_sets \(M\)
proof -
obtain \(N^{\prime}\) where \(N^{\prime} \in\) null_sets \(N\) null_part \(N A \subseteq N^{\prime}\)
using null_part \([O F A]\) by auto
then have \(N^{\prime}: N^{\prime} \in\) null_sets ( \(\operatorname{distr} M N f\) )
using eq by auto
show ?thesis
proof (rule complete2)
show \(f\)-' null_part \(N A \cap\) space \(M \subseteq f-{ }^{\prime} N^{\prime} \cap\) space \(M\)
using <null_part \(N A \subseteq N^{\prime}\) ’ by auto
show \(f-{ }^{\prime} N^{\prime} \cap\) space \(M \in\) null_sets \(M\)
using \(f N^{\prime}\) by (auto simp: null_sets_def emeasure_distr)
qed
qed
lemma (in complete_measure) vimage_null_part_sets:
\(f \in M \rightarrow_{M} N \Longrightarrow\) null_sets \(N \subseteq\) null_sets \((\operatorname{distr} M N f) \Longrightarrow A \in\) completion \(N\)
\(\Longrightarrow\)
\(f-\) ' null_part \(N A \cap\) space \(M \in\) sets \(M\)
using vimage_null_part_null_sets \([\) of \(f\) N \(A\) ] by auto
lemma (in complete_measure) measurable_completion2:
assumes \(f: f \in M \rightarrow_{M} N\) and null_sets: null_sets \(N \subseteq\) null_sets (distr \(M N f\) )
shows \(f \in M \rightarrow_{M}\) completion \(N\)
proof (rule measurableI)
show \(x \in\) space \(M \Longrightarrow f x \in\) space (completion \(N\) ) for \(x\)
using \(f[\) THEN measurable_space \(]\) by auto
fix \(A\) assume \(A: A \in\) sets (completion \(N\) )
have \(f-{ }^{\prime} A \cap\) space \(M=\left(f-{ }^{\prime}\right.\) main_part \(N A \cap\) space \(\left.M\right) \cup\left(f-{ }^{\prime}\right.\) null_part \(N\)
\(A \cap\) space \(M\) )
using main_part_null_part_Un[OF A] by auto
then show \(f-{ }^{‘} A \cap\) space \(M \in\) sets \(M\)
```

 using \(f\) A null_sets by (auto intro: vimage_null_part_sets measurable_sets)
    ```
qed
lemma (in complete_measure) completion_distr_eq:
assumes \(X: X \in M \rightarrow_{M} N\) and null_sets: null_sets (distr \(M N X\) ) \(=\) null_sets \(N\)
shows completion \((\operatorname{distr} M N X)=\operatorname{distr} M(\) completion \(N) X\)
proof (rule measure_eqI)
show eq: sets \((\) completion \((\operatorname{distr} M N X))=\operatorname{sets}(\operatorname{distr} M(\operatorname{completion} N) X)\) by (simp add: sets_completion null_sets)
fix \(A\) assume \(A: A \in\) completion (distr \(M N X\) )
moreover have \(A^{\prime}: A \in\) completion \(N\) using \(A\) by (simp add: eq)
moreover have main_part (distr MNX) A sets \(N\) using main_part_sets[OF A] by simp
moreover have \(X-{ }^{\prime} A \cap\) space \(M=(X-‘\) main_part (distr \(M N X) A \cap\)
space \(M) \cup\left(X-{ }^{\prime}\right.\) null_part (distr \(\left.M N X\right) A \cap\) space \(\left.M\right)\) using main_part_null_part_Un[OF A] by auto
moreover have \(X\)-' null_part (distr \(M N X) A \cap\) space \(M \in\) null_sets \(M\) using \(X A\) by (intro vimage_null_part_null_sets) (auto cong: distr_cong)
ultimately show emeasure (completion (distr MNX)) A=emeasure (distr M (completion N) X) A
using \(X\) by (auto simp: emeasure_distr measurable_completion null_sets measurable_completion2
```

intro!: emeasure_Un_null_set[symmetric])

```
qed
lemma distr_completion: \(X \in M \rightarrow_{M} N \Longrightarrow \operatorname{distr}\) (completion \(M\) ) \(N X=\) distr M N X
by (intro measure_eqI) (auto simp: emeasure_distr measurable_completion)
proposition (in complete_measure) fmeasurable_inner_outer:
\(S \in\) fmeasurable \(M \longleftrightarrow\)
( \(\forall\) e>0. \(\exists T \in\) fmeasurable \(M . \exists U \in\) fmeasurable \(M . T \subseteq S \wedge S \subseteq U \wedge \mid\) measure \(M T\) - measure \(M U \mid<e\) )
(is \(-\longleftrightarrow\) ?approx)
proof safe
let \(? \mu=\) measure \(M\) let \(? D=\lambda T U .|? \mu T-? \mu U|\)
assume ?approx
have \(\exists A . \forall n .(f s t(A n) \in\) fmeasurable \(M \wedge\) snd \((A n) \in\) fmeasurable \(M \wedge f s t\) \((A n) \subseteq S \wedge S \subseteq \operatorname{snd}(A n) \wedge\)
\(? D(f s t(A n))(\) snd \((A n))<1 / S u c n) \wedge(f s t(A n) \subseteq f s t(A(S u c n)) \wedge\) snd \((A(S u c n)) \subseteq \operatorname{snd}(A n))\)
(is \(\exists A . \forall n\). ? \(P n(A n) \wedge ? Q(A n)(A(\) Suc \(n)))\)
proof (intro dependent_nat_choice)
show \(\exists\) A. ? P \(0 A\)
using 〈?approx〉[THEN spec, of 1] by auto
next
fix \(A n\) assume ？\(P n A\)
moreover
from 〈？approx〉［THEN spec，of \(1 /\) Suc（Suc n）］
obtain \(T U\) where \(*: T \in\) fmeasurable \(M U \in\) fmeasurable \(M T \subseteq S S \subseteq U\)
？D \(T U<1 /\) Suc（Suc n）
by auto
ultimately have ？\(\mu T \leq ? \mu(T \cup f s t A) ? \mu(U \cap\) snd \(A) \leq ? \mu U\)
\(? \mu T \leq ? \mu U ? \mu(T \cup f s t A) \leq ? \mu(U \cap\) snd \(A)\)
by（auto intro！：measure＿mono＿fmeasurable）
then have ？\(D(T \cup f s t A)(U \cap\) snd \(A) \leq ? D T U\)
by auto
also have ？D \(T U<1 /\) Suc（Suc \(n\) ）by fact
finally show \(\exists B\) ．？\(P(\) Suc \(n) B \wedge\) ？\(Q A B\)
using 〈？\(P\) n \(A\) 〉＊
by（intro exI［of \(-(T \cup f s t A, U \cap\) snd \(A)]\) conjI）auto
qed
then obtain \(A\)
where \(l m: \bigwedge n\) ．fst \((A n) \in\) fmeasurable \(M \bigwedge n\) ．snd \((A n) \in\) fmeasurable \(M\) and set＿bound：\(\bigwedge n . f s t(A n) \subseteq S \bigwedge n . S \subseteq\) snd \((A n)\)
and mono：\(\bigwedge n\) ．fst \((A n) \subseteq\) fst \((A(\) Suc \(n)) \bigwedge n\) ．snd \((A(\) Suc \(n)) \subseteq \operatorname{snd}(A\)
n）
and bound：\(\bigwedge n\) ．？\(D(f s t(A n))(\) snd \((A n))<1 / S u c n\)
by metis
have \(I N T_{-} s A:(\bigcap n\) ．snd \((A n)) \in\) fmeasurable \(M\)
using \(l m\) by（intro fmeasurable＿INT［of＿0］）auto
have \(U N_{-} f A:(\bigcup n\) ．fst \((A n)) \in\) fmeasurable \(M\)
using \(l m\) order＿trans［OF set＿bound（1）set＿bound（2）［of 0］］by（intro fmeasur－ able＿UN［of＿snd（A O \()\) ］）auto
```

 have \((\lambda n . ? \mu(f s t(A n))-? \mu(\operatorname{snd}(A n))) \longrightarrow 0\)
 using bound
 by (subst tendsto_rabs_zero_iff [symmetric])
 (intro tendsto_sandwich \(\left[\mathrm{OF}_{\text {_ _ }}\right.\) tendsto_const LIMSEQ_inverse_real_of_nat];
 auto intro!: always_eventually less_imp_le simp: divide_inverse)
 moreover
 have \((\lambda n\). ? \(\mu(f s t(A n))-\) ? \(\mu(\) snd \((A n))) \longrightarrow ? \mu(\bigcup n\). fst \((A n))-? \mu\)
 $(\bigcap n$. snd $(A n))$
proof (intro tendsto_diff Lim_measure_incseq Lim_measure_decseq)
show range $(\lambda i$. fst $(A i)) \subseteq$ sets M range $(\lambda i$. snd $(A i)) \subseteq$ sets M

```

```

 using mono lm by (auto simp: incseq_Suc_iff decseq_Suc_iff intro!: mea-
 sure_mono_fmeasurable)
show emeasure $M(\bigcup x$. fst $(A x)) \neq \infty$ emeasure $M(\operatorname{snd}(A n)) \neq \infty$ for n
using $\operatorname{lm}(2)[$ of $n] U N_{-} f A$ by (auto simp: fmeasurable_def)
qed
ultimately have eq: $0=? \mu(\bigcup n . f s t(A n))-$? $\mu(\bigcap n$. snd $(A n))$
by (rule LIMSEQ_unique)

```
```

 show \(S \in\) fmeasurable \(M\)
 using \(U N_{-} f A\) INT_sA
 proof (rule complete_sets_sandwich_fmeasurable)
 show \((\bigcup n . f s t(A n)) \subseteq S S \subseteq(\bigcap n\). snd \((A n))\)
 using set_bound by auto
 show ? \(\mu(\bigcup n\). fst \((A n))=? \mu(\bigcap n\). snd \((A n))\)
 using eq by auto
 qed
 qed (auto intro!: bexI[of - S])

```
lemma (in complete_measure) fmeasurable_measure_inner_outer:
    \((S \in\) fmeasurable \(M \wedge m=\) measure \(M S) \longleftrightarrow\)
        \((\forall e>0 . \exists T \in\) fmeasurable \(M . T \subseteq S \wedge m-e<\) measure \(M T) \wedge\)
        ( \(\forall e>0 . \exists U \in\) fmeasurable \(M . S \subseteq U \wedge\) measure \(M U<m+e\) )
    (is ?lhs =? ? rh )
proof
    assume \(R H S\) : ?rhs
    then have \(T: \wedge e .0<e \longrightarrow(\exists T \in\) fmeasurable \(M . T \subseteq S \wedge m-e<\) measure
MT)
            and \(U: \bigwedge e .0<e \longrightarrow(\exists U \in\) fmeasurable \(M . S \subseteq U \wedge\) measure \(M U<m\)
\(+e\) )
    by auto
    have \(S \in\) fmeasurable \(M\)
    proof (subst fmeasurable_inner_outer, safe)
        fix \(e\) ::real assume \(0<e\)
        with \(R H S\) obtain \(T U\) where \(T: T \in\) fmeasurable \(M T \subseteq S m-e / 2<\)
measure \(M T\)
                    and \(U: U \in\) fmeasurable \(M S \subseteq U\) measure \(M U<m+e / 2\)
        by (meson half_gt_zero) +
    moreover have measure \(M U\) - measure \(M T<(m+e / \mathcal{Z})-(m-e / 2)\)
        by (intro diff_strict_mono) fact+
    moreover have measure \(M T \leq\) measure \(M U\)
        using \(T U\) by (intro measure_mono_fmeasurable) auto
    ultimately show \(\exists T \in\) fmeasurable \(M . \exists U \in\) fmeasurable \(M . T \subseteq S \wedge S \subseteq U\)
\(\wedge \mid\) measure \(M T\) - measure \(M U \mid<e\)
        apply (rule_tac bexI[OF _ \(\langle T \in\) fmeasurable \(M\rangle]\) )
        apply (rule_tac bexI[OF _ \(\langle U \in\) fmeasurable \(M\rangle]\) )
        by auto
    qed
    moreover have \(m=\) measure \(M S\)
        using \(\langle S \in\) fmeasurable \(M\rangle U[\) of measure \(M S-m] T[\) of \(m\) - measure \(M S]\)
        by (cases \(m\) measure \(M S\) rule: linorder_cases)
            (auto simp: not_le[symmetric] measure_mono_fmeasurable)
    ultimately show ?lhs
    by simp
qed (auto intro!: bexI \(\left[o f_{-} S\right]\) )
lemma (in complete_measure) null_sets_outer:
\(S \in\) null_sets \(M \longleftrightarrow(\forall e>0 . \exists T \in\) fmeasurable \(M . S \subseteq T \wedge\) measure \(M T<e)\)
proof -
have \(S \in\) null_sets \(M \longleftrightarrow(S \in\) fmeasurable \(M \wedge 0=\) measure \(M S)\)
by (auto simp: null_sets_def emeasure_eq_measure2 intro: fmeasurableI) (simp
add: measure_def)
also have \(\ldots=(\forall e>0 . \exists T \in\) fmeasurable \(M . S \subseteq T \wedge\) measure \(M T<e)\)
unfolding fmeasurable_measure_inner_outer by auto
finally show ?thesis .
qed
lemma (in complete_measure) fmeasurable_measure_inner_outer_le:
\((S \in\) fmeasurable \(M \wedge m=\) measure \(M S) \longleftrightarrow\)
\((\forall e>0 . \exists T \in\) fmeasurable \(M . T \subseteq S \wedge m-e \leq\) measure \(M T) \wedge\)
( \(\forall e>0 . \exists U \in\) fmeasurable \(M . S \subseteq U \wedge\) measure \(M U \leq m+e\) ) (is ?T1)
and null_sets_outer_le:
\(S \in\) null_sets \(M \longleftrightarrow(\forall e>0 . \exists T \in\) fmeasurable \(M . S \subseteq T \wedge\) measure \(M T \leq\)
e) (is ?T2)
proof -
have \(e>0 \wedge m-e / 2 \leq t \Longrightarrow m-e<t\) \(e>0 \wedge t \leq m+e / 2 \Longrightarrow t<m+e\) \(e>0 \longleftrightarrow e / 2>0\)
for \(e t\)
by auto
then show ?T1 ?T2
unfolding fmeasurable_measure_inner_outer null_sets_outer
by (meson dense le_less_trans less_imp_le)+
qed
lemma (in cld_measure) notin_sets_outer_measure_of_cover:
assumes \(E: E \subseteq\) space \(M E \notin\) sets \(M\)
shows \(\exists B \in\) sets \(M .0<\) emeasure \(M B \wedge\) emeasure \(M B<\infty \wedge\)
outer_measure_of \(M(B \cap E)=\) emeasure \(M B \wedge\) outer_measure_of \(M(B-E)\)
= emeasure M B
proof -
from locally_determined \([O F\langle E \subseteq\) space \(M\rangle]\langle E \notin\) sets \(M\rangle\)
obtain \(F\)
where [measurable]: \(F \in\) sets \(M\) and emeasure \(M F<\infty E \cap F \notin\) sets \(M\) by blast
then obtain \(H H^{\prime}\)
where \(H\) : measurable_envelope \(M(F \cap E) H\) and \(H^{\prime}\) : measurable_envelope \(M\) \((F-E) H^{\prime}\)
using measurable_envelopeI_countable_cover \(\left[\right.\) of \(\left.F \cap E \lambda_{-} . F M\right]\)
measurable_envelopeI_countable_cover \(\left[\right.\) of \(\left.F-E \lambda_{-} . F M\right]\)
by auto
note measurable_envelopeD(2)[OF \(H^{\prime}\), measurable \(]\) measurable_envelopeD(2)[OF \(H\), measurable]
from measurable_envelope \(D(1)\left[O F H^{\prime}\right]\) measurable_envelope \(D(1)[O F H]\)
have subset: \(F-H^{\prime} \subseteq F \cap E F \cap E \subseteq F \cap H\)
by auto
```

moreover define G where $G=(F \cap H)-\left(F-H^{\prime}\right)$
ultimately have $G: G=F \cap H \cap H^{\prime}$
by auto
have emeasure $M(F \cap H) \neq 0$
proof
assume emeasure $M(F \cap H)=0$
then have $F \cap H \in$ null_sets M
by auto
with $\langle E \cap F \notin$ sets $M\rangle$ show False
using complete $[O F\langle F \cap E \subseteq F \cap H\rangle]$ by (auto simp: Int_commute)
qed
moreover
have emeasure $M\left(F-H^{\prime}\right) \neq$ emeasure $M(F \cap H)$
proof
assume emeasure $M\left(F-H^{\prime}\right)=$ emeasure $M(F \cap H)$
with $\langle E \cap F \notin$ sets $M\rangle$ emeasure_mono[of $F \cap H F M]$ (emeasure $M F<\infty\rangle$
have $F \cap E \in$ sets M
by (intro complete_sets_sandwich $\left.\left[O F ~ _~ _~ s u b s e t ~\right]\right) ~ a u t o ~$
with $\langle E \cap F \notin$ sets M 〉 show False
by (simp add: Int_commute)
qed
moreover have emeasure $M\left(F-H^{\prime}\right) \leq$ emeasure $M(F \cap H)$
using subset by (intro emeasure_mono) auto
ultimately have emeasure $M G \neq 0$
unfolding G_def using subset
by (subst emeasure_Diff) (auto simp: top_unique diff_eq_0_iff_ennreal)
show ?thesis
proof (intro bexI conjI)
have emeasure $M G \leq$ emeasure $M F$
unfolding G by (auto intro!: emeasure_mono)
with semeasure $M F<\infty$) show $0<$ emeasure $M G$ emeasure $M G<\infty$
using 〈emeasure $M G \neq 0$ 〉 by (auto simp: zero_less_iff_neq_zero)
show [measurable]: $G \in$ sets M
unfolding G by auto
have emeasure $M G=$ outer_measure_of $M\left(F \cap H^{\prime} \cap(F \cap E)\right)$
using measurable_envelope $D(3)\left[O F H\right.$, of $\left.F \cap H^{\dagger}\right]$ unfolding G by (simp
add: ac_simps
also have $\ldots \leq$ outer_measure_of $M(G \cap E)$
using measurable_envelope $D(1)[O F H]$ by (intro outer_measure_of_mono)
(auto simp: G)
finally show outer_measure_of $M(G \cap E)=$ emeasure $M G$
using outer_measure_of_mono[of $G \cap E G M]$ by auto
have emeasure $M G=$ outer_measure_of $M(F \cap H \cap(F-E))$
using measurable_envelope $D(3)\left[O F H^{\prime}\right.$, of $\left.F \cap H\right]$ unfolding G by (simp
add: ac_simps
also have $\ldots \leq$ outer_measure_of $M(G-E)$
using measurable_envelopeD $(1)[O F H]$ by (intro outer_measure_of_mono)

```
```

(auto simp:G)
finally show outer_measure_of M (G-E) = emeasure M G
using outer_measure_of_mono[of G-E G M] by auto
qed
qed

```

The following theorem is a specialization of D.H. Fremlin, Measure Theory vol 4 I (413G). We only show one direction and do not use a inner regular family \(K\).
lemma (in cld_measure) borel_measurable_cld:
fixes \(f::{ }^{\prime} a \Rightarrow\) real assumes \(\bigwedge A a b . A \in\) sets \(M \Longrightarrow 0<\) emeasure \(M A \Longrightarrow\) emeasure \(M A<\infty\)
\(\Longrightarrow a<b \Longrightarrow\)
        \(\min\) (outer_measure_of \(M\{x \in A . f x \leq a\}\) ) (outer_measure_of \(M\{x \in A . b \leq\)
\(f x\})<\) emeasure \(M A\)
    shows \(f \in M \rightarrow_{M}\) borel
proof (rule ccontr)
    let ? \(E=\lambda a .\{x \in\) space \(M . f x \leq a\}\) and \(? F=\lambda a .\{x \in\) space \(M . a \leq f x\}\)
    assume \(f \notin M \rightarrow_{M}\) borel
    then obtain \(a\) where ? \(E\) a \(\notin\) sets \(M\)
        unfolding borel_measurable_iff_le by blast
    from notin_sets_outer_measure_of_cover [OF _ this]
    obtain \(K\)
        where \(K: K \in\) sets \(M 0<\) emeasure \(M K\) emeasure \(M K<\infty\)
            and eq1: outer_measure_of \(M(K \cap\) ? \(E a)=\) emeasure \(M K\)
            and eq2: outer_measure_of \(M(K-\) ?E \(a)=\) emeasure \(M K\)
        by auto
    then have me_K: measurable_envelope \(M(K \cap ? E a) K\)
        by (subst measurable_envelope_eq2) auto
    define \(b\) where \(b n=a+\) inverse (real (Suc \(n)\) ) for \(n\)
    have \((S U P\) n. outer_measure_of \(M(K \cap ? F(b n)))=\) outer_measure_of \(M(\bigcup n\).
\(K \cap ? F(b n))\)
    proof (intro SUP_outer_measure_of_incseq)
        have \(x \leq y \Longrightarrow b y \leq b x\) for \(x y\)
        by (auto simp: b_def field_simps)
            then show incseq ( \(\lambda n . K \cap\{x \in\) space \(M . b n \leq f x\}\) )
            by (auto simp: incseq_def intro: order_trans)
    qed auto
    also have \((\bigcup n . K \cap ? F(b n))=K-? E a\)
    proof -
        have \(b \longrightarrow a\)
                unfolding \(b_{-} d e f\) by (rule LIMSEQ_inverse_real_of_nat_add)
            then have \(\forall n\). \(\neg b n \leq f x \Longrightarrow f x \leq a\) for \(x\)
                by (rule LIMSEQ_le_const) (auto intro: less_imp_le simp: not_le)
            moreover have \(\neg b n \leq a\) for \(n\)
                by (auto simp: b_def)
            ultimately show ?thesis
```

 using〈K \in sets M〉[THEN sets.sets_into_space] by (auto simp: subset_eq
 intro: order_trans)
qed
finally have 0< (SUP n. outer_measure_of M (K\cap?F (b n)))
using K by (simp add: eq2)
then obtain n where pos_b: 0 < outer_measure_of M (K\cap?F (b n)) and a
< b n
unfolding less_SUP_iff by (auto simp: b_def)
from measurable_envelopeI_countable_cover[of K \cap ?F (b n) \lambda_. K M] K
obtain }\mp@subsup{K}{}{\prime}\mathrm{ where }\mp@subsup{K}{}{\prime}\subseteqK and me_K': measurable_envelope M (K\cap?F (b n)
K'
by auto
then have K'_le_K: emeasure M K'\leqemeasure M K
by (intro emeasure_mono K)
have K'\in sets M
using me_K' by (rule measurable_envelopeD)
have min (outer_measure_of M {x\inK'.fx\leqa})(outer_measure_of M {x\inK'.
bn\leqfx})< emeasure M K'
proof (rule assms)
show 0 < emeasure M K' emeasure M K ' < \infty
using measurable_envelopeD2[OF me_K] pos_b K K'_le_K by auto
qed fact+
also have {x\in\mp@subsup{K}{}{\prime}.fx\leqa}=\mp@subsup{K}{}{\prime}\cap(K\cap?E a)
using \langleK' \in sets M\rangle[THEN sets.sets_into_space] \langleK''\subseteqK\rangle by auto
also have {x\inK'.b n \leqfx} = K'\cap (K\cap?F (b n))
using \langleK' \in sets M\rangle[THEN sets.sets_into_space] \langleK'\ \subseteqK\rangle by auto
finally have min (emeasure M K) (emeasure M K') < emeasure M K'
unfolding
measurable_envelopeD(3)[OF me_K \K' }\in\mathrm{ sets M\, symmetric]
measurable_envelopeD(3)[OF me_K'㓉'\in sets M\rangle, symmetric]
using \langleK'\}\subseteqK\rangle by (simp add: Int_absorb1 Int_absorb2)
with K'_le_K show False
by (auto simp: min_def split: if_split_asm)
qed
end

```

\section*{6．12 Regularity of Measures}
```

theory Regularity
imports Measure_Space Borel_Space
begin
theorem
fixes M::'a::{second_countable_topology,complete_space} measure
assumes sb: sets M = sets borel
assumes emeasure M (space M)}\not=
assumes B}\in\mathrm{ sets borel

```
shows inner_regular: emeasure \(M B=\)
(SUP \(K \in\{K . K \subseteq B \wedge\) compact \(K\}\). emeasure \(M K\) ) (is ?inner \(B\) )
and outer_regular: emeasure \(M B=\)
\((I N F U \in\{U . B \subseteq U \wedge\) open \(U\}\). emeasure \(M U\) ) (is ?outer \(B\) )
proof -
have \(U s: U N I V=\) space \(M\) by (metis assms(1) sets_eq_imp_space_eq space_borel)
hence \(s U\) : space \(M=U N I V\) by simp
interpret finite_measure \(M\) by rule fact
have approx_inner: \(\bigwedge A . A \in\) sets \(M \Longrightarrow\)
( \(\bigwedge e . e>0 \Longrightarrow \exists K . K \subseteq A \wedge\) compact \(K \wedge\) emeasure \(M A \leq\) emeasure \(M K\)
+ ennreal \(e) \Longrightarrow\) ?inner \(A\)
by (rule ennreal_approx_SUP)
(force intro!: emeasure_mono simp: compact_imp_closed emeasure_eq_measure)+
have approx_outer: \(\bigwedge A . A \in\) sets \(M \Longrightarrow\)
\((\bigwedge e . e>0 \Longrightarrow \exists B . A \subseteq B \wedge\) open \(B \wedge\) emeasure \(M B \leq\) emeasure \(M A+\)
ennreal e) \(\Longrightarrow\) ?outer \(A\)
by (rule ennreal_approx_INF)
(force intro!: emeasure_mono simp: emeasure_eq_measure sb)+
from countable_dense_setE guess \(X::^{\prime} a\) set . note \(X=\) this
\{
fix \(r::\) real assume \(r>0\) hence \(\bigwedge y\). open (ball y \(r\) ) \(\bigwedge y\). ball \(y r \neq\{ \}\) by auto with \(X(2)[\) OF this]
have \(x\) : space \(M=(\bigcup x \in X\). cball \(x r)\)
by (auto simp add: sU) (metis dist_commute order_less_imp_le)
let ? \(U=\bigcup k\). ( \(\bigcup n \in\{0 . . k\}\). cball (from_nat_into \(X n) r\) )
have \((\lambda k\). emeasure \(M(\bigcup n \in\{0 . . k\}\). cball (from_nat_into \(X n) r)) \longrightarrow M\) ? \(U\)
by (rule Lim_emeasure_incseq) (auto intro!: borel_closed bexI simp: incseq_def Us sb)
also have ? \(U=\) space \(M\)
proof safe
fix \(x\) from \(X(2)[\) OF open_ball \([o f x r]]\langle r>0\rangle\) obtain \(d\) where \(d: d \in X d \in\) ball \(x r\) by auto
show \(x \in ? U\)
using \(X(1) d\)
by simp (auto intro!: exI [where \(x=\) to_nat_on \(X\) d] simp: dist_commute Bex_def)
qed (simp add: \(s U\) )
finally have \((\lambda k . M(\bigcup n \in\{0 \ldots k\}\). cball (from_nat_into \(X n) r)) \longrightarrow M\) (space M).
\(\}\) note \(M_{\text {_space }}=\) this
\{
fix \(e\) ::real and \(n\) :: nat assume \(e>0 n>0\)
hence \(1 / n>0 e * 2\) powr \(-n>0\) by (auto)
from \(M_{\text {_space }}[O F\langle 1 / n>0\rangle]\)
have \((\lambda k\). measure \(M(\bigcup i \in\{0 . . k\}\). cball \((\) from_nat_into \(X i)(1 /\) real \(n))) \longrightarrow\) measure \(M\) (space \(M\) )
unfolding emeasure_eq_measure by (auto)
from metric_LIMSEQ_D[OF this \(\langle 0<e * 2\) powr \(-n\rangle]\)
obtain \(k\) where dist (measure \(M(\bigcup i \in\{0 . . k\}\). cball (from_nat_into \(X i)(1 /\) real \(n)\) ) \((\) measure \(M(\) space \(M))<\)
\(e * 2\) powr \(-n\)
by auto
hence measure \(M(\bigcup i \in\{0 . . k\}\). cball (from_nat_into \(X i)(1 /\) real \(n)) \geq\) measure \(M\) (space \(M)-e * 2\) powr -real \(n\) by (auto simp: dist_real_def)
hence \(\exists k\). measure \(M(\bigcup i \in\{0 . . k\}\). cball (from_nat_into \(X i)(1 /\) real \(n)) \geq\) measure \(M(\) space \(M)-e * 2\) powr - real \(n .\).
\} note \(k=\) this
hence \(\forall e \in\{0<..\} . \forall(n:: n a t) \in\{0<..\} . \exists k\).
measure \(M(\bigcup i \in\{0 . . k\}\). cball (from_nat_into \(X i)(1 /\) real \(n)) \geq\) measure \(M\) (space \(M)-e * 2\) powr - real \(n\)
by blast
then obtain \(k\) where \(k: \forall e \in\{0<..\} . \forall n \in\{0<.\).\(\} . measure M(\) space \(M)-e *\) 2 powr - real (n::nat) \(\leq\) measure \(M(\bigcup i \in\{0 . . k\) e \(n\}\). cball (from_nat_into \(X i)(1 / n))\) by metis
hence \(k\) : \(\bigwedge e n . e>0 \Longrightarrow n>0 \Longrightarrow\) measure \(M(\) space \(M)-e * 2\) powr \(-n\) \(\leq\) measure \(M(\bigcup i \in\{0 . . k\) e \(n\}\). cball (from_nat_into \(X i)(1 / n))\) unfolding Ball_def by blast
have approx_space: \(\exists K \in\{K . K \subseteq\) space \(M \wedge\) compact \(K\}\). emeasure \(M\) (space \(M) \leq\) emeasure MK+ennreal \(e\) (is ?thesis e) if \(0<e\) for \(e\) :: real
proof -
define \(B\) where [abs_def]:
\(B n=(\bigcup i \in\{0 . . k e(\) Suc \(n)\}\).cball (from_nat_into \(X i)(1 /\) Suc \(n))\) for \(n\)
have \(\bigwedge n\). closed ( \(B n\) ) by (auto simp: B_def)
hence \([\) simp \(]: \bigwedge n . B n \in \operatorname{sets} M\) by (simp add: sb)
from \(k[O F\langle e>0\rangle\) zero_less_Suc]
have \(\bigwedge n\). measure \(M(\) space \(M)\) - measure \(M(B n) \leq e * 2\) powr - real \((S u c\)
n)
by (simp add: algebra_simps B_def finite_measure_compl)
hence \(B_{-}\)compl_le: \(\bigwedge n\) ::nat. measure \(M(\) space \(M-B n) \leq e * 2\) powr - real (Suc n)
by (simp add: finite_measure_compl)
define \(K\) where \(K=(\bigcap n . B n)\)
from <closed ( \(B_{-}\)) ) have closed \(K\) by (auto simp: \(K_{-}\)def)
hence \([\) simp \(]: K \in\) sets \(M\) by (simp add: sb)
have measure \(M\) (space \(M\) ) - measure \(M K=\) measure \(M\) (space \(M-K\) )
by (simp add: finite_measure_compl)
also have \(\ldots=\) emeasure \(M(\bigcup n\). space \(M-B n)\) by (auto simp: K_def emeasure_eq_measure)
also have \(\ldots \leq\left(\sum n\right.\). emeasure \(M\) (space \(\left.\left.M-B n\right)\right)\)
by (rule emeasure_subadditive_countably) (auto simp: summable_def)
also have \(\ldots \leq\left(\sum\right.\) n. ennreal \((e *\) 2 powr - real \(\left.(S u c n))\right)\)
using B_compl_le by (intro suminf_le) (simp_all add: emeasure_eq_measure ennreal_leI)
also have \(\ldots \leq\left(\sum n\right.\). ennreal \(\left(e *(1 / 2){ }^{\wedge}\right.\) Suc \(\left.\left.n\right)\right)\)
by (simp add: powr_minus powr_realpow field_simps del: of_nat_Suc)
also have \(\ldots=\) ennreal \(e *\left(\sum\right.\) n. ennreal ((1/2) ^Suc n))
unfolding ennreal_power[symmetric]
using \(\langle 0<e\rangle\)
by (simp add: ac_simps ennreal_mult' divide_ennreal[symmetric] divide_ennreal_def ennreal_power[symmetric])
also have \(\ldots=e\)
by (subst suminf_ennreal_eq[OF zero_le_power power_half_series]) auto
finally have measure \(M(\) space \(M) \leq\) measure \(M K+e\)
using \(\langle 0<e\rangle\) by simp
hence emeasure \(M(\) space \(M) \leq\) emeasure \(M K+e\)
using \(\langle 0<e\rangle\) by (simp add: emeasure_eq_measure flip: ennreal_plus)
moreover have compact \(K\)
unfolding compact_eq_totally_bounded
proof safe
show complete \(K\) using <closed \(K\rangle\) by (simp add: complete_eq_closed)
fix \(e^{\prime}:\) :real assume \(0<e^{\prime}\)
from nat_approx_posE[OF this] guess \(n\). note \(n=\) this
let \(? k=\) from_nat_into \(X\) ' \(\{0 . . k\) e (Suc n) \(\}\)
have finite ? \(k\) by simp
moreover have \(K \subseteq\left(\bigcup x \in ? k\right.\). ball \(\left.x e^{\prime}\right)\) unfolding \(K_{-}\)def \(B_{-}\)def using \(n\) by force
ultimately show \(\exists k\). finite \(k \wedge K \subseteq\left(\bigcup x \in k\right.\). ball \(\left.x e^{\prime}\right)\) by blast
qed
ultimately
show ?thesis by (auto simp: sU)
qed
\{ fix \(A::^{\prime}\) a set assume closed \(A\) hence \(A \in\) sets borel by (simp add: compact_imp_closed)
hence \([\) simp \(]: A \in\) sets \(M\) by (simp add: sb)
have ?inner \(A\)
proof (rule approx_inner)
fix \(e\) ::real assume \(e>0\)
from approx_space[OF this] obtain \(K\) where
\(K: K \subseteq\) space \(M\) compact \(K\) emeasure \(M(\) space \(M) \leq\) emeasure \(M K+e\)
by (auto simp: emeasure_eq_measure)
hence [simp]: \(K \in\) sets \(M\) by (simp add: sb compact_imp_closed)
have measure \(M A\) - measure \(M(A \cap K)=\) measure \(M(A-A \cap K)\)
by (subst finite_measure_Diff) auto
also have \(A-A \cap K=A \cup K-K\) by auto
also have measure \(M \ldots=\) measure \(M(A \cup K)\) - measure \(M K\)
by (subst finite_measure_Diff) auto
also have \(\ldots \leq\) measure \(M(\) space \(M)\) - measure \(M K\)
by (simp add: emeasure_eq_measure sU sb finite_measure_mono)
also have \(\ldots \leq e\)
using \(K\langle 0<e\rangle\) by (simp add: emeasure_eq_measure flip: ennreal_plus)
finally have emeasure \(M A \leq\) emeasure \(M(A \cap K)+\) ennreal \(e\) using \(\langle 0<e\rangle\) by (simp add: emeasure_eq_measure algebra_simps flip: en-
nreal＿plus）
moreover have \(A \cap K \subseteq A\) compact \((A \cap K)\) using 〈closed \(A\) 〉 （compact \(K\) 〉
by auto
ultimately show \(\exists K \subseteq A\) ．compact \(K \wedge\) emeasure \(M A \leq\) emeasure \(M K\)
+ ennreal e
by blast
qed simp
have ？outer \(A\)
proof cases
assume \(A \neq\{ \}\)
let \(? G=\lambda d\) ．\(\{x\) ．infdist \(x A<d\}\)
\｛
fix \(d\)
have ？\(G d=(\lambda x\) ．infdist \(x A)-{ }^{\prime}\{. .<d\}\) by auto
also have open ．．．
by（intro continuous＿open＿vimage）（auto intro！：continuous＿infdist contin－ uous＿ident）
finally have open（？G d）．
\} note open_ \(G=\) this
from in＿closed＿iff＿infdist＿zero［OF \((\) closed \(A\rangle\langle A \neq\{ \}\rangle]\)
have \(A=\{x\) ．infdist \(x A=0\}\) by auto
also have \(\ldots=(\cap i\) ？？\(G(1 /\) real \((\) Suc \(i)))\)
proof（auto simp del：of＿nat＿Suc，rule ccontr）
fix \(x\)
assume infdist \(x\) A \(=0\)
hence pos：infdist \(x A>0\) using infdist＿nonneg \([0 f\) \(x A\) ］by simp
from nat＿approx＿posE［OF this］guess \(n\) ．
moreover
assume \(\forall i\) ．infdist \(x A<1 /\) real（Suc \(i\) ）
hence infdist \(x A<1 /\) real（Suc \(n\) ）by auto
ultimately show False by simp
qed
also have \(M \ldots=(\) INF n．emeasure \(M(\) ？\(G(1 /\) real（Suc n）\())\) ）
proof（rule INF＿emeasure＿decseq［symmetric］，safe）
fix \(i\) ：：nat
from open＿G［of \(1 /\) real（Suc i）］
show ？\(G(1 /\) real（Suc i））\(\in\) sets \(M\) by（simp add：sb borel＿open）
next
show decseq（ \(\lambda\) i．\(\{x\) ．infdist \(x A<1 /\) real（Suc i）\(\}\) ）
by（auto intro：less＿trans intro！：divide＿strict＿left＿mono simp：decseq＿def le＿eq＿less＿or＿eq）
qed simp
finally
have emeasure \(M A=(\) INF \(n\) ．emeasure \(M\{x\) ．infdist \(x A<1 /\) real（Suc n）\}) .
moreover
have \(\ldots \geq(I N F U \in\{U . A \subseteq U \wedge\) open \(U\}\) ．emeasure \(M U)\)
proof（intro INF＿mono）
fix \(m\)
have ？\(G(1 / \operatorname{real}(\) Suc \(m)) \in\{U . A \subseteq U \wedge\) open \(U\}\) using open＿\(G\) by auto
moreover have \(M(? G(1 / \operatorname{real}(\) Suc \(m))) \leq M(? G(1 / \operatorname{real}(\) Suc \(m)))\)
by \(\operatorname{simp}\)
ultimately show \(\exists U \in\{U . A \subseteq U \wedge\) open \(U\}\) ．
emeasure \(M U \leq\) emeasure \(M\{x\) ．infdist \(x A<1 /\) real（Suc m）\(\}\)
by blast
qed
moreover
have emeasure \(M A \leq(I N F U \in\{U . A \subseteq U \wedge\) open \(U\}\) ．emeasure \(M U)\)
by（rule INF＿greatest）（auto intro！：emeasure＿mono simp：sb）
ultimately show？？thesis by simp
qed（auto intro！：INF＿eqI）
note 〈？inner \(A\) 〉〈？outer \(A\) 〉\}
note closed＿in＿D \(=\) this
from \(\langle B \in\) sets borel \(\rangle\)
have Int＿stable（Collect closed）Collect closed \(\subseteq\) Pow UNIV B \(\in\) sigma＿sets UNIV（Collect closed）
by（auto simp：Int＿stable＿def borel＿eq＿closed）
then show ？inner \(B\) ？outer \(B\)
proof（induct B rule：sigma＿sets＿induct＿disjoint）
case empty
\｛ case 1 show ？case by（intro SUP＿eqI［symmetric］）auto \}
\｛ case 2 show ？case by（intro INF＿eqI［symmetric］）（auto elim！：meta＿alle［of －\｛\}]) \}
next
case（basic B）
\｛ case 1 from basic closed＿in＿D show ？case by auto \}
\｛ case 2 from basic closed＿in＿D show ？case by auto \}
next
case（compl B）
note inner \(=\operatorname{compl}(2)\) and outer \(=\operatorname{compl}(3)\)
from compl have \([\) simp \(]: B \in\) sets \(M\) by（auto simp：sb borel＿eq＿closed）
case 2
have \(M(\) space \(M-B)=M(\) space \(M)\)－emeasure \(M B\) by（auto simp： emeasure＿compl）
also have \(\ldots=(I N F K \in\{K . K \subseteq B \wedge\) compact \(K\} . M(\) space \(M)-M K)\)
by（subst ennreal＿SUP＿const＿minus）（auto simp：less＿top［symmetric］inner）
also have \(\ldots=(I N F U \in\{U . U \subseteq B \wedge\) compact \(U\} . M(\) space \(M-U))\)
by（auto simp add：emeasure＿compl sb compact＿imp＿closed）
also have \(\ldots \geq(\) INF \(U \in\{U . U \subseteq B \wedge\) closed \(U\} . M(\) space \(M-U))\)
by（rule INF＿superset＿mono）（auto simp add：compact＿imp＿closed）
also have \((I N F U \in\{U . U \subseteq B \wedge\) closed \(U\} . M(\) space \(M-U))=\)
（INF \(U \in\{U\) ．space \(M-B \subseteq U \wedge\) open \(U\}\) ．emeasure \(M U\) ）
apply（rule arg＿cong［of＿＿Inf］）
using \(s U\)
apply（auto simp add：image＿iff）
apply（rule exI［of＿UNIV－y for \(y]\) ）
apply safe
```

 apply (auto simp add: double_diff)
 done
 finally have
 (INF \(U \in\{U\). space \(M-B \subseteq U \wedge\) open \(U\}\). emeasure \(M U) \leq\) emeasure \(M\)
 (space $M-B$).
moreover have
(INF $U \in\{U$. space $M-B \subseteq U \wedge$ open $U\}$. emeasure $M U) \geq$ emeasure M
(space $M-B$)
by (auto simp: sb sU intro!: INF_greatest emeasure_mono)
ultimately show ?case by (auto intro!: antisym simp: sets_eq_imp_space_eq[OF
$s b]$)

```
    case 1
    have \(M(\) space \(M-B)=M(\) space \(M)-\) emeasure \(M B\) by (auto simp:
emeasure_compl)
    also have \(\ldots=(S U P U \in\{U . B \subseteq U \wedge\) open \(U\} . M(\) space \(M)-M U)\)
        unfolding outer by (subst ennreal_INF_const_minus) auto
    also have \(\ldots=(S U P U \in\{U . B \subseteq U \wedge\) open \(U\} . M(\) space \(M-U))\)
        by (auto simp add: emeasure_compl sb compact_imp_closed)
    also have \(\ldots=(S U P K \in\{K . K \subseteq\) space \(M-B \wedge\) closed \(K\}\). emeasure \(M\)
K)
    unfolding SUP_image [of _ \(\lambda\) u. space \(M-u_{-}\), symmetric, unfolded comp_def]
        apply (rule arg_cong [of _ _Sup])
        using \(s U\) apply (auto intro!: imageI)
        done
    also have \(\ldots=(S U P K \in\{K . K \subseteq\) space \(M-B \wedge\) compact \(K\}\). emeasure \(M\)
K)
    proof (safe intro!: antisym SUP_least)
        fix \(K\) assume closed \(K K \subseteq\) space \(M-B\)
        from closed_in_D[OF〈closed \(K\) 〉]
            have K_inner: emeasure \(M K=(S U P K \in\{K a . K a \subseteq K \wedge\) compact \(K a\}\).
emeasure \(M K\) ) by \(\operatorname{simp}\)
            show emeasure \(M K \leq(S U P K \in\{K . K \subseteq\) space \(M-B \wedge\) compact \(K\}\).
emeasure \(M K\) )
            unfolding K_inner using \(\langle K \subseteq\) space \(M-B\rangle\)
            by (auto intro!: SUP_upper SUP_least)
    qed (fastforce intro!: SUP_least SUP_upper simp: compact_imp_closed)
    finally show ?case by (auto intro!: antisym simp: sets_eq_imp_space_eq[OF sb])
    next
    case (union D)
    then have range \(D \subseteq\) sets \(M\) by (auto simp: sb borel_eq_closed)
    with union have \(M\left[\right.\) symmetric] \(:\left(\sum i . M(D i)\right)=M(\bigcup i . D i)\) by (intro
suminf_emeasure)
    also have \(\left(\lambda n . \sum i<n . M(D i)\right) \longrightarrow\left(\sum i . M(D i)\right)\)
        by (intro summable_LIMSEQ) auto
    finally have measure_LIMSEQ: \(\left(\lambda n . \sum i<n\right.\). measure \(\left.M(D i)\right) \longrightarrow\) measure
M ( \(\bigcup i . D i)\)
        by (simp add: emeasure_eq_measure sum_nonneg)
    have \((\bigcup i . D i) \in\) sets \(M\) using \(\langle\) range \(D \subseteq\) sets \(M\rangle\) by auto

\section*{case 1}
show ?case
proof (rule approx_inner)
fix \(e\) :: real assume \(e>0\)
with measure_LIMSEQ
have \(\exists\) no. \(\forall n \geq n o . \mid\left(\sum i<n\right.\). measure \(\left.M(D i)\right)\)-measure \(M(\bigcup x . D x) \mid<\) e/2
by (auto simp: lim_sequentially dist_real_def simp del: less_divide_eq_numeral1)
hence \(\exists n 0 . \mid\left(\sum i<n 0\right.\). measure \(\left.M(D i)\right)\) - measure \(M(\bigcup x . D x) \mid<e / 2\) by auto
then obtain \(n 0\) where \(n 0: \mid\left(\sum i<n 0\right.\). measure \(\left.M(D i)\right)\) - measure \(M(\bigcup i\). Di) \(\mid<e / 2\)
unfolding choice_iff by blast
have ennreal \(\left(\sum i<n 0\right.\). measure \(\left.M(D i)\right)=\left(\sum i<n 0 . M(D i)\right)\)
by (auto simp add: emeasure_eq_measure)
also have \(\ldots \leq\left(\sum i . M(D i)\right)\) by (rule sum_le_suminf) auto
also have \(\ldots=M(\bigcup i . D i)\) by (simp add: \(M)\)
also have \(\ldots=\) measure \(M(\bigcup i . D i)\) by (simp add: emeasure_eq_measure)
finally have n0: measure \(M(\bigcup i . D i)-\left(\sum i<n 0\right.\). measure \(\left.M(D i)\right)<e / \mathcal{Z}\) using n0 by (auto simp: sum_nonneg)
have \(\forall i . \exists K . K \subseteq D i \wedge\) compact \(K \wedge\) emeasure \(M(D i) \leq\) emeasure \(M K\) \(+e /(2 *\) Suc n0)
proof
fix \(i\)
from \(\langle 0<e\rangle\) have \(0<e /(2 *\) Suc n0) by simp
have emeasure \(M(D i)=(S U P K \in\{K . K \subseteq(D i) \wedge\) compact \(K\}\). emeasure MK)
using union by blast
from SUP_approx_ennreal[OF \(\langle 0<e /(2 * S u c\) n0 \()\rangle\) _ this]
show \(\exists K . K \subseteq D i \wedge\) compact \(K \wedge\) emeasure \(M(D i) \leq\) emeasure \(M K+\) \(e /(2 *\) Suc n0)
by (auto simp: emeasure_eq_measure intro: less_imp_le compact_empty)
qed
then obtain \(K\) where \(K: \bigwedge i . K i \subseteq D i \bigwedge i\). compact \((K i)\)
\i. emeasure \(M(D i) \leq\) emeasure \(M(K i)+e /(2 *\) Suc n0 \()\)
unfolding choice_iff by blast
let ? \(K=\bigcup i \in\{. .<n 0\}\). \(K i\)
have disjoint_family_on \(K\{. .<n 0\}\) using \(K\langle\) disjoint_family \(D\) 〉
unfolding disjoint_family_on_def by blast
hence \(m K\) : measure \(M\) ? \(K=\left(\sum i<n 0\right.\). measure \(\left.M(K i)\right)\) using \(K\)
by (intro finite_measure_finite_Union) (auto simp: sb compact_imp_closed)
have measure \(M(\bigcup i . D i)<\left(\sum i<n 0\right.\). measure \(\left.M(D i)\right)+e / 2\) using no by \(\operatorname{simp}\)
also have \(\left(\sum i<n 0\right.\). measure \(\left.M(D i)\right) \leq\left(\sum i<n 0\right.\). measure \(M(K i)+\) \(e /(2 * S u c n 0))\)
using \(K\langle 0<e\rangle\)
by (auto intro: sum_mono simp: emeasure_eq_measure simp flip: ennreal_plus)
also have \(\ldots=\left(\sum i<n 0\right.\). measure \(\left.M(K i)\right)+\left(\sum i<n 0 . e /(2 *\right.\) Suc n0 \(\left.)\right)\)
by (simp add: sum.distrib)
also have \(\ldots \leq\left(\sum i<n 0\right.\). measure \(M\left(\begin{array}{l}\text { i } i)\end{array}\right)+e / 2\) using \(\langle 0<e\rangle\) by (auto simp: field_simps intro!: mult_left_mono)
finally
have measure \(M(\bigcup i . D i)<\left(\sum i<n 0\right.\). measure \(\left.M(K i)\right)+e / 2+e / 2\) by auto
hence \(M(\bigcup i . D i)<M ? K+e\)
using \(\langle 0<e\rangle\) by (auto simp: mK emeasure_eq_measure sum_nonneg ennreal_less_iff simp flip: ennreal_plus)
moreover
have ? \(K \subseteq(\bigcup i . D i)\) using \(K\) by auto
moreover
have compact ? \(K\) using \(K\) by auto
ultimately
have ? \(K \subseteq(\bigcup i . D i) \wedge\) compact ? \(K \wedge\) emeasure \(M(\bigcup i . D i) \leq\) emeasure \(M\) ? \(K+\) ennreal e by simp
+ ennreal e ..
qed fact
case 2
show ?case
proof (rule approx_outer \([O F\langle(\bigcup\) i. D i) \(\in\) sets \(M\rangle])\)
fix \(e\) :: real assume \(e>0\)
have \(\forall i::\) nat. \(\exists U . D i \subseteq U \wedge\) open \(U \wedge e /(2\) powr Suc \(i)>\) emeasure \(M U\) - emeasure \(M\left(\begin{array}{l}\text { i }\end{array}\right)\)
proof
fix \(i\) ::nat
from \(\langle 0<e\rangle\) have \(0<e /\) (2 powr Suc \(i\) ) by simp
have emeasure \(M(D i)=(\operatorname{INF} U \in\{U .(D i) \subseteq U \wedge\) open \(U\}\). emeasure M U)
using union by blast
from INF_approx_ennreal[OF \(\langle 0<e /(2\) powr Suc \(i)\rangle\) this \(]\) show \(\exists U . D i \subseteq U \wedge\) open \(U \wedge e /(2\) powr Suc i) \(>\) emeasure \(M U-\) emeasure \(M\left(\begin{array}{l}i\end{array}\right)\)
using \(\langle 0<e\rangle\)
by (auto simp: emeasure_eq_measure sum_nonneg ennreal_less_iff ennreal_minus
finite_measure_mono sb simp flip: ennreal_plus)

\section*{qed}
then obtain \(U\) where \(U: \bigwedge i . D i \subseteq U i \bigwedge i\). open \((U i)\)
ヘi. e/(2 powr Suc i) > emeasure \(M(U i)-\) emeasure \(M(D i)\)
unfolding choice_iff by blast
let ? \(U=\bigcup i . U i\)
have ennreal (measure \(M\) ? \(U\) - measure \(M(\bigcup i . D i))=M\) ? \(U-M(\bigcup i\). Di)
using \(U(1,2)\)
by (subst ennreal_minus[symmetric])
(auto intro!: finite_measure_mono simp: sb emeasure_eq_measure)
```

 also have \(\ldots=M(? U-(\bigcup i . D i))\) using \(U\langle(\bigcup i . D i) \in\) sets \(M\rangle\)
 by (subst emeasure_Diff) (auto simp: sb)
 also have \(\ldots \leq M(\bigcup i . U i-D i)\) using \(U\langle\) range \(D \subseteq\) sets \(M\rangle\)
 by (intro emeasure_mono) (auto simp: sb intro!: sets.countable_nat_UN
    ```
sets.Diff)
    also have \(\ldots \leq\left(\sum i . M(U i-D i)\right)\) using \(U\langle\) range \(D \subseteq\) sets \(M\rangle\)
            by (intro emeasure_subadditive_countably) (auto intro!: sets.Diff simp: sb)
            also have \(\ldots \leq\left(\sum\right.\) i. ennreal e/(2 powr Suc \(i\) ) ) using \(U\) 〈range \(D \subseteq\) sets
M)
            using \(\langle 0<e\rangle\)
            by (intro suminf_le, subst emeasure_Diff)
                (auto simp: emeasure_Diff emeasure_eq_measure sb ennreal_minus
                        finite_measure_mono divide_ennreal ennreal_less_iff
                intro: less_imp_le)
    also have \(\ldots \leq\left(\sum\right.\) n. ennreal \((e *(1 / 2)\) ^Suc \(\left.n)\right)\)
            using \(\langle 0<e\rangle\)
                by (simp add: powr_minus powr_realpow field_simps divide_ennreal del:
of_nat_Suc)
            also have \(\ldots=\) ennreal \(e *\left(\sum n\right.\). ennreal ((1/2) ^Suc n))
            unfolding ennreal_power[symmetric]
            using \(\langle 0<e\rangle\)
            by (simp add: ac_simps ennreal_mult' divide_ennreal[symmetric] divide_ennreal_def
                    ennreal_power[symmetric])
            also have \(\ldots=\) ennreal \(e\)
            by (subst suminf_ennreal_eq[OF zero_le_power power_half_series]) auto
            finally have emeasure \(M\) ? \(U \leq\) emeasure \(M(\bigcup i . D i)+\) ennreal \(e\)
            using \(\langle 0<e\rangle\) by (simp add: emeasure_eq_measure flip: ennreal_plus)
                    moreover
                    have \((\bigcup i . D i) \subseteq\) ? \(U\) using \(U\) by auto
                    moreover
                    have open ? \(U\) using \(U\) by auto
                    ultimately
                    have \((\bigcup i . D i) \subseteq\) ? \(U \wedge\) open ? \(U \wedge\) emeasure \(M\) ? \(U \leq\) emeasure \(M(\bigcup\) i. \(D\)
\(i)+\) ennreal \(e\) by simp
            thus \(\exists B .(\bigcup i . D i) \subseteq B \wedge\) open \(B \wedge\) emeasure \(M B \leq\) emeasure \(M(\bigcup i . D\)
i) + ennreal \(e .\).
    qed
    qed
qed
end

\subsection*{6.13 Lebesgue Measure}

\author{
theory Lebesgue_Measure \\ imports \\ Finite_Product_Measure \\ Caratheodory \\ Complete_Measure
}

Summation_Tests
Regularity
begin
lemma measure_eqI_lessThan:
fixes \(M N\) :: real measure
assumes sets: sets \(M=\) sets borel sets \(N=\) sets borel
assumes fin: \(\bigwedge x\). emeasure \(M\{x<.\}<.\infty\)
assumes \(\bigwedge x\). emeasure \(M\{x<.\}=\). emeasure \(N\{x<.\).
shows \(M=N\)
proof (rule measure_eqI_generator_eq_countable)
let ? \(L T=\lambda a:\) :real. \(\{a<.\).\(\} let ? E=\) range ? \(L T\)
show Int_stable? E
by (auto simp: Int_stable_def lessThan_Int_lessThan)
show ? \(E \subseteq\) Pow UNIV sets \(M=\) sigma_sets UNIV ?E sets \(N=\) sigma_sets UNIV ? \(E\)
unfolding sets borel_Ioi by auto
show ?LT'Rats \(\subseteq\) ? \(E(\bigcup i \in\) Rats. ?LT \(i)=\) UNIV \(\bigwedge a . a \in\) ?LT'Rats \(\Longrightarrow\) emeasure \(M a \neq \infty\)
using fin by (auto intro: Rats_no_bot_less simp: less_top)
qed (auto intro: assms countable_rat)

\subsection*{6.13.1 Measures defined by monotonous functions}

Every right-continuous and nondecreasing function gives rise to a measure on the reals:
definition interval_measure \(::(\) real \(\Rightarrow\) real \() \Rightarrow\) real measure where interval_measure \(F=\)
extend_measure UNIV \(\{(a, b) . a \leq b\}(\lambda(a, b) .\{a<. . b\})(\lambda(a, b)\). ennreal \((F\) \(b-F a)\) )
lemma emeasure_interval_measure_Ioc:
assumes \(a \leq b\)
assumes mono_ \(F: \bigwedge x y . x \leq y \Longrightarrow F x \leq F y\)
assumes right_cont_F: \(\bigwedge a\). continuous (at_right a) \(F\)
shows emeasure (interval_measure \(F\) ) \(\{a<. . b\}=F b-F a\)
proof (rule extend_measure_caratheodory_pair[OF interval_measure_def \(\langle a \leq b\rangle]\) )
show semiring_of_sets UNIV \(\{\{a<. . b\} \mid a b::\) real. \(a \leq b\}\)
proof (unfold_locales, safe)
fix \(a b c d\) :: real assume \(*: a \leq b c \leq d\)
then show \(\exists C \subseteq\{\{a<. . b\} \mid a b . a \leq b\}\). finite \(C \wedge\) disjoint \(C \wedge\{a<. . b\}-\)
\(\{c<. . d\}=\bigcup C\)
proof cases
let \(? C=\{\{a<. . b\}\}\)
assume \(b<c \vee d \leq a \vee d \leq c\)
with \(*\) have ? \(C \subseteq\{\{a<. . b\} \mid a b . a \leq b\} \wedge\) finite \(? C \wedge\) disjoint \(? C \wedge\{a<. . b\}\)
\(-\{c<. . d\}=\bigcup ? C\)
```

 by (auto simp add: disjoint_def)
 thus ?thesis ..
 next
 let ?C = {{a<..c},{d<..b}}
 assume }\neg(b<c\veed\leqa\veed\leqc
 with * have ?C }\subseteq{{a<..b}|ab.a\leqb}^ finite ?C ^ disjoint ?C ^ {a<..b
 - {c<..d} = \?C
by (auto simp add: disjoint_def Ioc_inj) (metis linear)+
thus ?thesis ..
qed
qed (auto simp: Ioc_inj, metis linear)
next
fix lr :: nat => real and a b :: real
assume l_r[simp]:\n.ln\leqrn and a\leqb and disj:disjoint_family (\lambdan.{l
n<..r n})
assume lr_eq-ab:(\bigcupi. {l i<..ri}) = {a<..b}
have [intro, simp]: \bigwedgea b. a\leqb b\LongrightarrowFa\leqFb
by (auto intro!: l_r mono_F)
{ fix S :: nat set assume finite S
moreover note <a\leqb>
moreover have
i. i\inS\Longrightarrow {li<..ri}\subseteq{a<..b}
unfolding lr_eq_ab[symmetric] by auto
ultimately have (\sumi\inS.F(ri)-F(li))\leqFb-Fa
proof (induction S arbitrary: a rule: finite_psubset_induct)
case (psubset S)
show ?case
proof cases
assume }\existsi\inS.li<r

```

```

 by (intro Min_in) auto
 then obtain m}\mathrm{ where m:m SSlm<rmlm=Min (l'{íS.li<r
 i})
by fastforce
have (\sumi\inS.F(ri)-F(l i))=(F(rm)-F(lm))+(\sumi\inS - {m}.
F(ri) - F (li))
using m psubset by (intro sum.remove) auto
also have (\sumi\inS - {m}.F(ri)-F(li))\leqFb-F(rm)
proof (intro psubset.IH)
show S-{m}\subsetS
using < }m\inS\mathrm{ \ by auto
show r m
using psubset.prems(2)[OF \langlem\inS\rangle] <l m<rm> by auto
next
fix i assume i
then have i:i\inSi\not=m by auto
{ assume i':li<rili<rm

```
```

 with 〈finite S`im have lmsli
 by auto
 with i' have {li<..r i}\cap{lm<..rm}\not={}
 by auto
 then have False
 using disjoint_family_onD[OF disj, of i m] i by auto }
 then have li\not=ri\Longrightarrowrm\leqli
 unfolding not_less[symmetric] using l_r[of i] by auto
 then show {li<..r ri}\subseteq{rm<..b}
 using psubset.prems(2)[OF〈i\inS\rangle] by auto
 qed
 also have F (rm) - F(lm)\leqF(rm)-Fa
 using psubset.prems(2)[OF <m \inS`] <l m < rm>
 by (auto simp add:Ioc_subset_iff intro!: mono_F)
 finally show ?case
 by (auto intro: add_mono)
 qed (auto simp add: <a \leqb> less_le)
 qed }
 note claim1 = this

```
\{ fix \(S u v\) and \(l r::\) nat \(\Rightarrow\) real
    assume finite \(S \bigwedge i . i \in S \Longrightarrow l i<r i\{u . . v\} \subseteq(\bigcup i \in S .\{l i<. .<r i\})\)
    then have \(F v-F u \leq\left(\sum i \in S . F(r i)-F(l i)\right)\)
    proof (induction arbitrary: \(v\) u rule: finite_psubset_induct)
    case (psubset \(S\) )
    show ? case
    proof cases
        assume \(S=\{ \}\) then show ?case
            using psubset by (simp add: mono_F)
    next
        assume \(S \neq\{ \}\)
        then obtain \(j\) where \(j \in S\)
            by auto
        let ? \(R=r j<u \vee l j>v \vee(\exists i \in S-\{j\} . l i \leq l j \wedge r j \leq r i)\)
        show ? case
        proof cases
            assume ? \(R\)
            with \(\langle j \in S\rangle\) psubset.prems have \(\{u . . v\} \subseteq(\bigcup i \in S-\{j\} .\{l i<. .<r i\})\)
                apply (auto simp: subset_eq Ball_def)
                    apply (metis Diff_iff less_le_trans leD linear singletonD)
                    apply (metis Diff_iff less_le_trans leD linear singletonD)
                    apply (metis order_trans less_le_not_le linear)
                    done
            with \(\langle j \in S\rangle\) have \(F v-F u \leq\left(\sum i \in S-\{j\} . F(r i)-F(l i)\right)\)
                by (intro psubset) auto
            also have \(\ldots \leq\left(\sum i \in S . F(r i)-F(l i)\right)\)
```

 using psubset.prems
 by (intro sum_mono2 psubset) (auto intro: less_imp_le)
 finally show ?thesis.
 next
 assume ᄀ ?R
 then have j:u\leqrjlj\leqv\bigwedgei.i}\inS-{j}\Longrightarrowri<rj\veeli>l
 by (auto simp: not_less)
 let ?S1 = {i\inS.li<lj}
 let ?S2 = {i\inS.ri>rj}
 have}(\sumi\inS.F(ri)-F(l i))\geq(\sumi\in?S1\cup?S2\cup{j}.F(ri)-
 (l i))
using }\langlej\inS\rangle\langlefinite S\rangle psubset.prems j
by (intro sum_mono2) (auto intro: less_imp_le)
also have (\sumi\in?S1\cup?S2 \cup{j}.F (ri)-F (li))=
(\sumi\in?S1. F (ri)-F(li))+(\sumi\in?S2 . F (ri) - F(li)) +(F(r
j) - F(l j))
using psubset(1) psubset.prems(1) j
apply (subst sum.union_disjoint)
apply simp_all
apply (subst sum.union_disjoint)
apply auto
apply (metis less_le_not_le)
done
also (xtrans) have (\sumi\in?S1. F (ri) - F (li))\geqF(lj)-Fu
using }\langlej\inS\rangle\langlefinite S\rangle psubset.prems j
apply (intro psubset.IH psubset)
apply (auto simp: subset_eq Ball_def)
apply (metis less_le_trans not_le)
done
also (xtrans) have (\sumi\in?S2. F (ri) - F (l i))\geqFv-F(rj)
using }\langlej\inS\rangle\langlefinite S\rangle psubset.prems
apply (intro psubset.IH psubset)
apply (auto simp: subset_eq Ball_def)
apply (metis le_less_trans not_le)
done
finally (xtrans) show ?case
by (auto simp: add_mono)
qed
qed
qed }
note claim2 = this
have ennreal (Fb-Fa)\leq(\sumi. ennreal (F (ri) - F(li)))
proof (rule ennreal_le_epsilon)
fix epsilon :: real assume egt0: epsilon > 0
have \foralli.\existsd>0.F(ri+d)<F(ri)+epsilon / 2^(i+2)
proof

```
```

 fix \(i\)
 note right_cont_F \([\) of \(r i]\)
 thus \(\exists d>0\). \(F(r i+d)<F(r i)+\) epsilon / 2^ \((i+2)\)
 apply -
 apply (subst (asm) continuous_at_right_real_increasing)
 apply (rule mono_F, assumption)
 apply (drule_tac \(x=\) epsilon / 2 ^ \((i+2)\) in spec)
 apply (erule impE)
 using egt0 by (auto simp add: field_simps)
 qed
then obtain delta where
deltai_gt0: $\bigwedge i$. delta $i>0$ and
deltai_prop: $\bigwedge i . F(r i+$ delta $i)<F(r i)+$ epsilon / $\mathfrak{Z}^{\wedge}(i+\mathcal{Z})$
by metis
have $\exists a^{\prime}>a . F a^{\prime}-F a<e p s i l o n / 2$
apply (insert right_cont_F [of a])
apply (subst (asm) continuous_at_right_real_increasing)
using mono_F apply force
apply (drule_tac $x=$ epsilon / 2 in spec)
using egt0 unfolding mult.commute [of 2] by force
then obtain a^{\prime} where $a^{\prime} l e a\left[\right.$ arith]: $a^{\prime}>a$ and
a_prop: $F a^{\prime}-F a<e p s i l o n / 2$
by auto
define S^{\prime} where $S^{\prime}=\{i . l i<r i\}$
obtain S :: nat set where
$S \subseteq S^{\prime}$ and finS: finite S and
Sprop: $\left\{a^{\prime} . . b\right\} \subseteq(\bigcup i \in S .\{l i<. .<r i+$ delta $i\})$
proof (rule compactE_image)
show compact $\left\{a^{\prime} . . b\right\}$
by (rule compact_Icc)
show $\bigwedge i . i \in S^{\prime} \Longrightarrow$ open $(\{l i<. .<r i+$ delta $i\})$ by auto
have $\left\{a^{\prime} . . b\right\} \subseteq\{a<. . b\}$
by auto
also have $\{a<. . b\}=\left(\bigcup i \in S^{\prime} .\{l i<. . r i\}\right)$
unfolding lr_eq_ab[symmetric] by (fastforce simp add: $S^{\prime}{ }^{\prime}$ def intro: less_le_trans)
also have $\ldots \subseteq\left(\bigcup i \in S^{\prime} .\{l i<. .<r i+\right.$ delta $\left.i\}\right)$
apply (intro UN_mono)
apply (auto simp: $S^{\prime}{ }_{-} d e f$)
apply (cut_tac $i=i$ in deltai_gt0)
apply simp
done
finally show $\left\{a^{\prime} . . b\right\} \subseteq\left(\bigcup i \in S^{\prime} .\{l i<. .<r i+\right.$ delta $\left.i\}\right)$.
qed
with $S^{\prime}{ }^{\prime}$ def have Sprop2: $\backslash i . i \in S \Longrightarrow l i<r i$ by auto
from finS have $\exists n . \forall i \in S . i \leq n$
by (subst finite_nat_set_iff_bounded_le [symmetric])
then obtain n where Sbound [rule_format]: $\forall i \in S . i \leq n .$.
have $F b-F a^{\prime} \leq\left(\sum i \in S . F(r i+\right.$ delta $\left.i)-F(l i)\right)$
apply (rule claim2 [rule_format])

```
using finS Sprop apply auto
apply (frule Sprop2)
apply (subgoal_tac delta \(i>0\) )
apply arith
by (rule deltai_gt0)
also have \(\ldots \leq\left(\sum i \in S . F(r i)-F(l i)+\right.\) epsilon / \(\left.2^{\wedge}(i+2)\right)\)
apply (rule sum_mono)
apply simp
apply (rule order_trans)
apply (rule less_imp_le)
apply (rule deltai_prop)
by auto
also have \(\ldots=\left(\sum i \in S . F(r i)-F(l i)\right)+\) \((\) epsilon \(/ 4) *\left(\sum i \in S .(1 / 2)^{\wedge} i\right)\left(\right.\) is \(\left._{-}=? t+_{-}\right)\)
by (subst sum.distrib) (simp add: field_simps sum_distrib_left)
also have \(\ldots \leq ? t+(\) epsilon \(/ 4) *\left(\sum i<\operatorname{Suc} n .(1 / 2)^{\wedge} i\right)\)
apply (rule add_left_mono)
apply (rule mult_left_mono)
apply (rule sum_mono2)
using egt0 apply auto
by (frule Sbound, auto)
also have \(\ldots \leq ? t+(\) epsilon / 2)
apply (rule add_left_mono)
apply (subst geometric_sum)
apply auto
apply (rule mult_left_mono)
using egt0 apply auto
done
finally have aux2: \(F b-F a^{\prime} \leq\left(\sum i \in S . F(r i)-F(l i)\right)+e p s i l o n / 2\)
by \(\operatorname{simp}\)
have \(F b-F a=\left(F b-F a^{\prime}\right)+\left(F a^{\prime}-F a\right)\)
by auto
also have \(\ldots \leq\left(F b-F a^{\prime}\right)+\) epsilon / 2
using a_prop by (intro add_left_mono) simp
also have \(\ldots \leq\left(\sum i \in S . F(r i)-F(l i)\right)+\) epsilon / \(2+e p s i l o n / 2\)
apply (intro add_right_mono)
apply (rule aux2)
done
also have \(\ldots=\left(\sum i \in S . F(r i)-F(l i)\right)+\) epsilon
by auto
also have \(\ldots \leq\left(\sum i \leq n . F(r i)-F(l i)\right)+e p s i l o n\)
using finS Sbound Sprop by (auto intro!: add_right_mono sum_mono2)
finally have ennreal \((F b-F a) \leq\left(\sum i \leq n\right.\). ennreal \(\left.(F(r i)-F(l i))\right)+\) epsilon
using egt0 by (simp add: sum_nonneg flip: ennreal_plus)
then show ennreal \((F b-F a) \leq\left(\sum i\right.\). ennreal \(\left.(F(r i)-F(l i))\right)+(\) epsilon :: real)
by (rule order_trans) (auto intro!: add_mono sum_le_suminf simp del: sum_ennreal)
qed
moreover have \(\left(\sum i\right.\). ennreal \(\left.(F(r i)-F(l i))\right) \leq\) ennreal \((F b-F a)\)
using \(\langle a \leq b\rangle\) by (auto intro!: suminf_le_const ennreal_le_iff[THEN iffD2] claim1)
ultimately show \(\left(\sum n\right.\). ennreal \(\left.(F(r n)-F(l n))\right)=\) ennreal \((F b-F a)\)
by (rule antisym[rotated])
qed (auto simp: Ioc_inj mono_F)
lemma measure_interval_measure_Ioc:
assumes \(a \leq b\) and \(\bigwedge x y . x \leq y \Longrightarrow F x \leq F y\) and \(\bigwedge a\). continuous (at_right
a) \(F\)
shows measure (interval_measure \(F)\{a<. . b\}=F b-F a\)
unfolding measure_def
by (simp add: assms emeasure_interval_measure_Ioc)
lemma emeasure_interval_measure_Ioc_eq:
\((\bigwedge x y . x \leq y \Longrightarrow F x \leq F y) \Longrightarrow(\bigwedge a\). continuous (at_right a) \(F) \Longrightarrow\)
emeasure (interval_measure \(F)\{a<. . b\}=(\) if \(a \leq b\) then \(F b-F\) a else 0)
using emeasure_interval_measure_Ioc [of abll by auto
lemma sets_interval_measure [simp, measurable_cong]:
sets \((\) interval_measure \(F)=\) sets borel
apply (simp add: sets_extend_measure interval_measure_def borel_sigma_sets_Ioc)
apply (rule sigma_sets_eqI)
apply auto
apply (case_tac \(a \leq b a\) )
apply (auto intro: sigma_sets.Empty)
done
lemma space_interval_measure [simp]: space (interval_measure F) = UNIV
by (simp add: interval_measure_def space_extend_measure)
lemma emeasure_interval_measure_Icc:
assumes \(a \leq b\)
assumes mono_ \(F: \bigwedge x y . x \leq y \Longrightarrow F x \leq F y\)
assumes cont_F : continuous_on UNIV \(F\)
shows emeasure (interval_measure \(F\) ) \(\{a . . b\}=F b-F a\)
proof (rule tendsto_unique)
\{ fix \(a b:\) : real assume \(a \leq b\) then have emeasure (interval_measure \(F\) ) \(\{a<\)..
\(b\}=F b-F a\)
using cont_F
by (subst emeasure_interval_measure_Ioc)
(auto intro: mono_F continuous_within_subset simp: continuous_on_eq_continuous_within)
\}
note \(*=\) this
let ? \(F=\) interval_measure \(F\)
show \(((\lambda a . F b-F a) \longrightarrow\) emeasure ? \(F\{a . . b\})(\) at_left \(a)\)
proof (rule tendsto_at_left_sequentially)
```

 show }a-1<a\mathrm{ by simp
 fix }X\mathrm{ assume }\n.Xn<a incseq X X\longrightarrow
 with \langlea\leqb\rangle have (\lambdan. emeasure ?F {X n<..b}) \longrightarrow emeasure ?F (\capn.
 {X n<..b})
apply (intro Lim_emeasure_decseq)
apply (auto simp:decseq_def incseq_def emeasure_interval_measure_Ioc *)
apply force
apply (subst (asm) *)
apply (auto intro: less_le_trans less_imp_le)
done
also have (\bigcapn. {X n<..b}) ={a..b}
using <\n. X n<a>
apply auto
apply (rule LIMSEQ_le_const2[OF〈X \longrightarrowa>])
apply (auto intro: less_imp_le)
apply (auto intro:less_le_trans)
done
also have (\lambdan. emeasure ?F {X n<..b}) = (\lambdan. Fb-F (X n))
using 〈\n. X n<
\langlea\leqb\rangle by (subst *) (auto intro: less_imp_le less_le_trans)
finally show (\lambdan.Fb-F (Xn))\longrightarrow emeasure ?F {a..b} .
qed
show ((\lambdaa. ennreal (Fb-Fa))\longrightarrowFb-Fa) (at_left a)
by (rule continuous_on_tendsto_compose[where g=\lambdax.x and s=UNIV])
(auto simp: continuous_on_ennreal continuous_on_diff cont_F)
qed (rule trivial_limit_at_left_real)
lemma sigma_finite_interval_measure:
assumes mono_F: \bigwedgex y. x \leq y \LongrightarrowFx\leqFy
assumes right_cont_F : \bigwedgea. continuous (at_right a) F
shows sigma_finite_measure (interval_measure F)
apply unfold_locales
apply (intro exI[of - (\lambda(a,b).{a<.. b})'(\mathbb{Q }\times\mathbb{Q})])
apply (auto intro!: Rats_no_top_le Rats_no_bot_less countable_rat simp: emea-
sure_interval_measure_Ioc_eq[OF assms])
done

```

\subsection*{6.13.2 Lebesgue-Borel measure}
definition lborel :: ('a :: euclidean_space) measure where
lborel \(=\) distr \(\left(\Pi_{M}\right.\) b Basis. interval_measure \(\left.(\lambda x . x)\right)\) borel \(\left(\lambda f . \sum b \in\right.\) Basis. \(f\)
\(\left.b *_{R} b\right)\)
abbreviation lebesgue :: 'a::euclidean_space measure
where lebesgue \(\equiv\) completion lborel
abbreviation lebesgue_on :: 'a set \(\Rightarrow{ }^{\prime}\) 'a::euclidean_space measure
where lebesgue_on \(\Omega \equiv\) restrict_space (completion lborel) \(\Omega\)
lemma lebesgue_on_mono:
assumes major: \(A E x\) in lebesgue_on \(S . P x\) and minor: \(\bigwedge x . \llbracket P x ; x \in S \rrbracket \Longrightarrow\) \(Q\) x
shows \(A E x\) in lebesgue_on \(S . Q x\)
proof -
have \(A E\) a in lebesgue_on \(S . P a \longrightarrow Q a\) using minor space_restrict_space by fastforce
then show ?thesis
using major by auto
qed
lemma integral_eq_zero_null_sets:
assumes \(S \in\) null_sets lebesgue
shows integral \({ }^{L}\) (lebesgue_on S) \(f=0\)
proof (rule integral_eq_zero_AE)
show \(A E x\) in lebesgue_on S. \(f x=0\)
by (metis (no_types, lifting) assms AE_not_in lebesgue_on_mono null_setsD2
null_sets_restrict_space order_refl)
qed
lemma
shows sets_lborel[simp, measurable_cong]: sets lborel \(=\) sets borel
and space_lborel[simp]: space lborel \(=\) space borel
and measurable_lborel1 [simp]: measurable \(M\) lborel \(=\) measurable \(M\) borel
and measurable_lborel2[simp]: measurable lborel \(M=\) measurable borel \(M\)
by (simp_all add: lborel_def)
lemma space_lebesgue_on \([\) simp \(]\) : space (lebesgue_on \(S\) ) \(=S\)
by (simp add: space_restrict_space)
lemma sets_lebesgue_on_refl [iff]: \(S \in\) sets (lebesgue_on \(S\) )
by (metis inf_top.right_neutral sets.top space_borel space_completion space_lborel space_restrict_space)
lemma Compl_in_sets_lebesgue: \(-A \in\) sets lebesgue \(\longleftrightarrow A \in\) sets lebesgue
by (metis Compl_eq_Diff_UNIV double_compl space_borel space_completion space_lborel
Sigma_Algebra.sets.compl_sets)
lemma measurable_lebesgue_cong:
assumes \(\bigwedge x . x \in S \Longrightarrow f x=g x\)
shows \(f \in\) measurable (lebesgue_on \(S\) ) \(M \longleftrightarrow g \in\) measurable (lebesgue_on \(S\) )
M
by (metis (mono_tags, lifting) IntD1 assms measurable_cong_simp space_restrict_space)
lemma lebesgue_on_UNIV_eq: lebesgue_on UNIV = lebesgue
proof -
have measure_of UNIV (sets lebesgue) (emeasure lebesgue) \(=\) lebesgue by (metis measure_of_of_measure space_borel space_completion space_lborel)
then show ?thesis
by (auto simp: restrict_space_def)

\section*{qed}
lemma integral_restrict_Int:
fixes \(f\) :: 'a::euclidean_space \(\Rightarrow\) 'b::euclidean_space
assumes \(S \in\) sets lebesgue \(T \in\) sets lebesgue
shows integral \({ }^{L}\) (lebesgue_on \(\left.T\right)(\lambda x\). if \(x \in S\) then \(f x\) else 0\()=\) integral \(^{L}\)
(lebesgue_on \((S \cap T)) f\)
proof -
have \(\left(\lambda x\right.\). indicat_real \(T x *_{R}(\) if \(x \in S\) then \(f x\) else 0\(\left.)\right)=(\lambda x\). indicat_real \((S\)
\(\left.\cap T) x *_{R} f x\right)\)
by (force simp: indicator_def)
then show? ?thesis
by (simp add: assms sets.Int Bochner_Integration.integral_restrict_space)
qed
lemma integral_restrict:
fixes \(f\) :: 'a::euclidean_space \(\Rightarrow\) ' \(b::\) euclidean_space
assumes \(S \subseteq T S \in\) sets lebesgue \(T \in\) sets lebesgue
shows integral \({ }^{L}\) (lebesgue_on \(\left.T\right)(\lambda x\). if \(x \in S\) then \(f x\) else 0\()=\) integral \(^{L}\)
(lebesgue_on \(S\) ) \(f\)
using integral_restrict_Int [of S T f] assms
by (simp add: Int_absorb2)
lemma integral_restrict_UNIV:
fixes \(f\) :: 'a::euclidean_space \(\Rightarrow\) ' \(b::\) euclidean_space
assumes \(S \in\) sets lebesgue
shows integral \({ }^{L}\) lebesgue \((\lambda x\). if \(x \in S\) then \(f x\) else 0\()=\) integral \(^{L}\) (lebesgue_on
S) \(f\)
using integral_restrict_Int [of S UNIV f] assms
by (simp add: lebesgue_on_UNIV_eq)
lemma integrable_lebesgue_on_empty [iff]:
fixes \(f\) :: 'a::euclidean_space \(\Rightarrow\) 'b::\{second_countable_topology,banach \}
shows integrable (lebesgue_on \(\}\) ) \(f\)
by (simp add: integrable_restrict_space)
lemma integral_lebesgue_on_empty [simp]:
fixes \(f::\) 'a::euclidean_space \(\Rightarrow\) 'b:: \{second_countable_topology,banach \(\}\)
shows integral \({ }^{L}\) (lebesgue_on \{\}) \(f=0\)
by (simp add: Bochner_Integration.integral_empty)
lemma has_bochner_integral_restrict_space:
fixes \(f:: ' a \Rightarrow\) ' \(b::\{\) banach, second_countable_topology \(\}\)
assumes \(\Omega: \Omega \cap\) space \(M \in\) sets \(M\)
shows has_bochner_integral (restrict_space \(M \Omega\) ) fi
\(\longleftrightarrow\) has_bochner_integral \(M\left(\lambda x\right.\). indicator \(\left.\Omega x *_{R} f x\right) i\)
by (simp add: integrable_restrict_space [OF assms] integral_restrict_space [OF assms] has_bochner_integral_iff)
lemma integrable_restrict_UNIV:
fixes \(f::\) 'a::euclidean_space \(\Rightarrow{ }^{\prime} b::\{\) banach, second_countable_topology \(\}\)
assumes \(S: S \in\) sets lebesgue
shows integrable lebesgue \((\lambda x\). if \(x \in S\) then \(f x\) else 0\() \longleftrightarrow\) integrable (lebesgue_on S) \(f\)
using has_bochner_integral_restrict_space [of S lebesgue f] assms
by (simp add: integrable.simps indicator_scaleR_eq_if)
lemma integral_mono_lebesgue_on_AE:
fixes \(f::-\Rightarrow\) real
assumes \(f\) : integrable (lebesgue_on T) \(f\)
and \(g f\) : AE \(x\) in (lebesgue_on \(S\) ). \(g x \leq f x\)
and f0: AE \(x\) in (lebesgue_on \(T\) ). \(0 \leq f x\)
and \(S \subseteq T\) and \(S: S \in\) sets lebesgue and \(T: T \in\) sets lebesgue
shows \(\left(\int x . g x \partial(\right.\) lebesgue_on \(\left.S)\right) \leq\left(\int x . f x \partial(\right.\) lebesgue_on \(\left.T)\right)\)
proof -
have \(\left(\int x . g x \partial(\right.\) lebesgue_on \(\left.S)\right)=\left(\int x\right.\). (if \(x \in S\) then \(g x\) else 0) dlebesgue \()\)
by (simp add: Lebesgue_Measure.integral_restrict_UNIV S)
also have \(\ldots \leq\left(\int x\right.\). (if \(x \in T\) then \(f x\) else 0\()\) Dlebesgue)
proof (rule Bochner_Integration.integral_mono_AE')
show integrable lebesgue ( \(\lambda x\). if \(x \in T\) then \(f x\) else 0 )
by (simp add: integrable_restrict_UNIV T f)
show \(A E x\) in lebesgue. (if \(x \in S\) then \(g\) else 0\() \leq(\) if \(x \in T\) then \(f x\) else 0\()\)
using assms by (auto simp: AE_restrict_space_iff)
show \(A E x\) in lebesgue. \(0 \leq(\) if \(x \in T\) then \(f x\) else 0\()\)
using f0 by (simp add: AE_restrict_space_iff T)
qed
also have \(\ldots=\left(\int x . f x \partial(\right.\) lebesgue_on \(\left.T)\right)\)
using Lebesgue_Measure.integral_restrict_UNIV T by blast
finally show ?thesis.
qed

\subsection*{6.13.3 Borel measurability}
lemma borel_measurable_if_I:
fixes \(f\) :: 'a::euclidean_space \(\Rightarrow\) ' \(b::\) euclidean_space
assumes \(f: f \in\) borel_measurable (lebesgue_on \(S\) ) and \(S: S \in\) sets lebesgue
shows \((\lambda x\). if \(x \in S\) then \(f x\) else 0\() \in\) borel_measurable lebesgue
proof -
have eq: \(\{x . x \notin S\} \cup\{x . f x \in Y\}=\{x . x \notin S\} \cup\{x . f x \in Y\} \cap S\) for \(Y\) by blast
show ?thesis
using \(f S\)
apply (simp add: vimage_def in_borel_measurable_borel Ball_def)
apply (elim all_forward imp_forward asm_rl)
apply (simp only: Collect_conj_eq Collect_disj_eq imp_conv_disj eq)
apply (auto simp: Compl_eq [symmetric] Compl_in_sets_lebesgue sets_restrict_space_iff)
done
qed
```

lemma borel_measurable_if_D:
fixes f :: 'a::euclidean_space = 'b::euclidean_space
assumes (}\lambdax\mathrm{ . if }x\inS\mathrm{ then f x else 0) }\in\mathrm{ borel_measurable lebesgue
shows f}\in\mathrm{ borel_measurable (lebesgue_on S)
using assms
apply (simp add: in_borel_measurable_borel Ball_def)
apply (elim all_forward imp_forward asm_rl)
apply (force simp: space_restrict_space sets_restrict_space image_iff intro: rev_bexI)
done
lemma borel_measurable_if:
fixes f :: 'a::euclidean_space = 'b::euclidean_space
assumes S sets lebesgue
shows (}\lambdax\mathrm{ . if }x\inS\mathrm{ then f x else 0) }\in\mathrm{ borel_measurable lebesgue }\longleftrightarrowf
borel_measurable (lebesgue_on S)
using assms borel_measurable_if_D borel_measurable_if_I by blast
lemma borel_measurable_if_lebesgue_on:
fixes f :: 'a::euclidean_space }=>\mathrm{ 'b::euclidean_space
assumes S \in sets lebesgue T\in sets lebesgue S\subseteqT
shows (}\lambdax\mathrm{ . if }x\inS\mathrm{ then f x else 0) }\in\mathrm{ borel_measurable (lebesgue_on T) }\longleftrightarrow
\inborel_measurable (lebesgue_on S)
(is ?lhs = ?rhs)
proof
assume ?lhs then show ?rhs
using measurable_restrict_mono [OF _ <S\subseteqT\rangle]
by (subst measurable_lebesgue_cong [where g=(}\lambdax\mathrm{ . if }x\inS\mathrm{ then }f\mathrm{ x else 0)])
auto
next
assume ?rhs then show ?lhs
by (simp add: \S sets lebesgue` borel_measurable_if_I measurable_restrict_space1)
qed
lemma borel_measurable_vimage_halfspace_component_lt:
f\inborel_measurable (lebesgue_on S) \longleftrightarrow
(\foralla i. i G Basis \longrightarrow {x\inS.fx•i<a}\in sets (lebesgue_on S))
apply (rule trans [OF borel_measurable_iff_halfspace_less])
apply (fastforce simp add: space_restrict_space)
done
lemma borel_measurable_vimage_halfspace_component_ge:
fixes f :: 'a::euclidean_space = 'b::euclidean_space
shows f}\in\mathrm{ borel_measurable (lebesgue_on S) }
(\forallai.i Basis \longrightarrow {x\inS.fx\cdoti\geqa}\in sets (lebesgue_on S))
apply (rule trans [OF borel_measurable_iff_halfspace_ge])
apply (fastforce simp add: space_restrict_space)
done

```
lemma borel_measurable_vimage_halfspace_component_gt:
```

 fixes \(f\) :: 'a::euclidean_space \(\Rightarrow\) 'b::euclidean_space
 shows \(f \in\) borel_measurable (lebesgue_on \(S\)) \(\longleftrightarrow\)
 \((\forall a i . i \in\) Basis \(\longrightarrow\{x \in S . f x \cdot i>a\} \in\) sets (lebesgue_on \(S))\)
 apply (rule trans [OF borel_measurable_iff_halfspace_greater])
 apply (fastforce simp add: space_restrict_space)
 done
 lemma borel_measurable_vimage_halfspace_component_le:
fixes f :: 'a::euclidean_space \Rightarrow 'b::euclidean_space
shows $f \in$ borel_measurable (lebesgue_on S) \longleftrightarrow
$(\forall a i . i \in$ Basis $\longrightarrow\{x \in S . f x \cdot i \leq a\} \in$ sets (lebesgue_on $S))$
apply (rule trans [OF borel_measurable_iff_halfspace_le])
apply (fastforce simp add: space_restrict_space)
done
lemma
fixes f :: ' $a::$ euclidean_space \Rightarrow ' $b::$ euclidean_space
shows borel_measurable_vimage_open_interval:
$f \in$ borel_measurable (lebesgue_on S) \longleftrightarrow
$(\forall a b .\{x \in S . f x \in$ box a $b\} \in$ sets (lebesgue_on $S)$) (is?thesis1)
and borel_measurable_vimage_open:
$f \in$ borel_measurable (lebesgue_on S) \longleftrightarrow
$(\forall T$. open $T \longrightarrow\{x \in S . f x \in T\} \in$ sets (lebesgue_on $S)$) (is ?thesis2)
proof -
have $\{x \in S . f x \in$ box a b\} \in sets (lebesgue_on S) if $f \in$ borel_measurable
(lebesgue_on S) for $a b$
proof -
have $S=S \cap$ space lebesgue
by simp
then have $S \cap(f-$ ' box a b) \in sets (lebesgue_on $S)$
by (metis (no_types) box_borel in_borel_measurable_borel inf_sup_aci(1) space_restrict_space
that)
then show ?thesis
by (simp add: Collect_conj_eq vimage_def)
qed
moreover
have $\{x \in S . f x \in T\} \in$ sets (lebesgue_on S)
if $T: \bigwedge a b .\left\{x \in S . f x \in b_{\text {ox }}\right.$ a $\left.b\right\} \in$ sets (lebesgue_on S) open T for T
proof -
obtain \mathcal{D} where countable \mathcal{D} and $\mathcal{D}: \bigwedge X . X \in \mathcal{D} \Longrightarrow \exists a b . X=$ box ab
$\bigcup \mathcal{D}=T$
using open_countable_Union_open_box that 〈open $T\rangle$ by metis
then have eq: $\{x \in S . f x \in T\}=(\bigcup U \in \mathcal{D} .\{x \in S . f x \in U\})$
by blast
have $\{x \in S . f x \in U\} \in$ sets (lebesgue_on S) if $U \in \mathcal{D}$ for U
using that $T \mathcal{D}$ by blast
then show? ?thesis
by (auto simp: eq intro: Sigma_Algebra.sets.countable_UN' [OF <countable
$\mathcal{D}\rangle])$

```
```

 qed
 moreover
 have eq: {x\inS.fx\cdoti<a}={x\inS.fx\in{y.y\cdoti<a}} for ia
 by auto
 have f\inborel_measurable (lebesgue_on S)
 if }\bigwedgeT\mathrm{ . open }T\Longrightarrow{x\inS.fx\inT}\in\mathrm{ sets(lebesgue_on S)
 by (metis (no_types) eq borel_measurable_vimage_halfspace_component_lt open_halfspace_component_lt
 that)
ultimately show ?thesis1 ?thesis2
by blast+
qed
lemma borel_measurable_vimage_closed:
fixes f :: 'a::euclidean_space = 'b::euclidean_space
shows f}\in\mathrm{ borel_measurable (lebesgue_on S) }
(\forallT. closed T\longrightarrow{x\inS.fx\inT}\in sets (lebesgue_on S))
(is ?lhs = ?rhs)
proof -
have eq: {x\inS.fx\inT}=S-{x\inS.fx\in(-T)} for T
by auto
show ?thesis
apply (simp add: borel_measurable_vimage_open, safe)
apply (simp_all (no_asm) add: eq)
apply (intro sets.Diff sets_lebesgue_on_refl, force simp: closed_open)
apply (intro sets.Diff sets_lebesgue_on_refl, force simp: open_closed)
done
qed
lemma borel_measurable_vimage_closed_interval:
fixes f :: 'a::euclidean_space = 'b::euclidean_space
shows f}\in\mathrm{ borel_measurable (lebesgue_on S) }
(\forallab. {x\inS.fx\incbox a b} \in sets(lebesgue_on S))
(is ?lhs = ?rhs)
proof
assume ?lhs then show ?rhs
using borel_measurable_vimage_closed by blast
next
assume RHS: ?rhs
have {x\inS.fx\inT}\in sets (lebesgue_on S) if open T for T
proof -
obtain \mathcal{D}\mathrm{ where countable }\mathcal{D}\mathrm{ and }\mathcal{D}:\mathcal{D}\subseteq\mathrm{ Pow T }\X.X\in\mathcal{D \Longrightarrow\existsab.X}
= cbox a b U\mathcal{D =T}
using open_countable_Union_open_cbox that \langleopen T\rangle by metis
then have eq: {x\inS.fx\inT}=(\bigcupU\in\mathcal{D}.{x\inS.fx\inU})
by blast
have {x\inS.fx\inU}\in sets (lebesgue_on S) if U\in\mathcal{D}\mathrm{ for }U
using that \mathcal{D by (metis RHS)}
then show ?thesis
by (auto simp: eq intro: Sigma_Algebra.sets.countable_UN' [OF <countable

```
```

D \])

 qed
 then show ?lhs
 by (simp add: borel_measurable_vimage_open)
 qed
lemma borel_measurable_vimage_borel:
fixes f :: 'a::euclidean_space = 'b::euclidean_space
shows f}\in\mathrm{ borel_measurable (lebesgue_on S) }
(\forallT.T G sets borel }\longrightarrow{x\inS.fx\inT}\in sets(lebesgue_on S))
(is ?lhs = ?rhs)
proof
assume f:?lhs
then show ?rhs
using measurable_sets [OF f]
by (simp add: Collect_conj_eq inf_sup_aci(1) space_restrict_space vimage_def)
qed (simp add: borel_measurable_vimage_open_interval)
lemma lebesgue_measurable_vimage_borel:
fixes f :: 'a::euclidean_space => 'b::euclidean_space
assumes f}\in\mathrm{ borel_measurable lebesgue T G sets borel
shows {x.fx\inT}\in sets lebesgue
using assms borel_measurable_vimage_borel [of f UNIV] by auto
lemma borel_measurable_lebesgue_preimage_borel:
fixes f :: 'a::euclidean_space => 'b::euclidean_space
shows }f\in\mathrm{ borel_measurable lebesgue }
(\forallT.T\in sets borel \longrightarrow {x.fx\inT}\in sets lebesgue)
apply (intro iffI allI impI lebesgue_measurable_vimage_borel)
apply (auto simp: in_borel_measurable_borel vimage_def)
done

```

\subsection*{6.13.4 Measurability of continuous functions}
lemma continuous_imp_measurable_on_sets_lebesgue:
assumes \(f\) : continuous_on \(S f\) and \(S: S \in\) sets lebesgue
shows \(f \in\) borel_measurable (lebesgue_on \(S\) )
proof -
have sets (restrict_space borel \(S\) ) \(\subseteq\) sets (lebesgue_on \(S\) )
by (simp add: mono_restrict_space subsetI)
then show ?thesis
by (simp add: borel_measurable_continuous_on_restrict [OF f] borel_measurable_subalgebra
```

space_restrict_space)

```
qed
lemma id_borel_measurable_lebesgue [iff]: id \(\in\) borel_measurable lebesgue
by (simp add: measurable_completion)
lemma id_borel_measurable_lebesgue_on [iff]: id \(\in\) borel_measurable (lebesgue_on \(S\) ) by (simp add: measurable_completion measurable_restrict_space1)

\section*{context}
begin
interpretation sigma_finite_measure interval_measure \((\lambda x . x)\) by (rule sigma_finite_interval_measure) auto
interpretation finite_product_sigma_finite \(\lambda_{\text {_. }}\) interval_measure ( \(\lambda x . x\) ) Basis proof qed simp
lemma lborel_eq_real: lborel \(=\) interval_measure \((\lambda x . x)\)
unfolding lborel_def Basis_real_def
using distr_id[of interval_measure ( \(\lambda x . x\) )]
by (subst distr_component[symmetric])
(simp_all add: distr_distr comp_def del: distr_id cong: distr_cong)
lemma lborel_eq: lborel \(=\operatorname{distr}\left(\Pi_{M} b \in\right.\) Basis. lborel \()\) borel \(\left(\lambda f . \sum b \in\right.\) Basis. \(f b\) \(\left.*_{R} b\right)\)
by (subst lborel_def) (simp add: lborel_eq_real)
lemma nn_integral_lborel_prod:
assumes [measurable]: \(\bigwedge b . b \in\) Basis \(\Longrightarrow f b \in\) borel_measurable borel
assumes \(n n[\) simp \(]: \bigwedge b x . b \in\) Basis \(\Longrightarrow 0 \leq f b x\)
shows \(\left(\int{ }^{+} x .\left(\prod b \in\right.\right.\) Basis. \(\left.f b(x \cdot b)\right)\) dlborel \()=\left(\prod b \in\right.\) Basis. \(\left(\int{ }^{+} x . f b x\right.\) dlborel))
by (simp add: lborel_def nn_integral_distr product_nn_integral_prod product_nn_integral_singleton)
lemma emeasure_lborel_Icc[simp]:
fixes \(l u\) :: real
assumes \([\) simp \(]: l \leq u\)
shows emeasure lborel \(\{l . . u\}=u-l\)
proof -
have \(\left((\lambda f . f 1)-‘\{l . . u\} \cap\right.\) space \(\left(P i_{M}\{1\}(\lambda b\right.\). interval_measure \(\left.\left.(\lambda x . x))\right)\right)=\) \(\{1::\) real \(\} \rightarrow_{E}\{l . . u\}\) by (auto simp: space_PiM)
then show ?thesis
by (simp add: lborel_def emeasure_distr emeasure_PiM emeasure_interval_measure_Icc) qed
lemma emeasure_lborel_Icc_eq: emeasure lborel \(\{l . . u\}=\) ennreal (if \(l \leq u\) then \(u\) - l else 0)
by \(\operatorname{simp}\)
lemma emeasure_lborel_cbox[simp]:
assumes \([\) simp \(]: \bigwedge b . b \in\) Basis \(\Longrightarrow l \cdot b \leq u \cdot b\)
shows emeasure lborel \((\) cbox \(l u)=\left(\prod b \in\right.\) Basis. \(\left.(u-l) \cdot b\right)\)
proof -
```

 have \(\left(\lambda x . \prod b \in\right.\) Basis. indicator \(\{l \cdot b . . u \cdot b\}(x \cdot b)::\) ennreal \()=\) indicator \((c b o x\)
 $l u$)
by (auto simp: fun_eq_iff cbox_def split: split_indicator)
then have emeasure lborel $($ cbox $l u)=\left(\int^{+} x .\left(\prod b \in\right.\right.$ Basis. indicator $\{l \cdot b . . u \cdot b\}$
(x•b)) dlborel)
by simp
also have $\ldots=\left(\prod b \in\right.$ Basis. $\left.(u-l) \cdot b\right)$
by (subst nn_integral_lborel_prod) (simp_all add: prod_ennreal inner_diff_left)
finally show ?thesis.
qed

```
lemma AE_lborel_singleton: AE x in lborel::'a::euclidean_space measure. \(x \neq c\)
    using SOME_Basis AE_discrete_difference [of \{c\} lborel] emeasure_lborel_cbox [of
c c]
    by (auto simp add: power_0_left)
lemma emeasure_lborel_Ioo[simp]:
    assumes \([\operatorname{simp}]: l \leq u\)
    shows emeasure lborel \(\{l<. .<u\}=\) ennreal \((u-l)\)
proof -
    have emeasure lborel \(\{l<. .<u\}=\) emeasure lborel \(\{l . . u\}\)

auto
    then show ?thesis
        by \(\operatorname{simp}\)
qed
lemma emeasure_lborel_Ioc[simp]:
    assumes \([\operatorname{simp}]: l \leq u\)
    shows emeasure lborel \(\{l<. . u\}=\) ennreal \((u-l)\)
proof -
    have emeasure lborel \(\{l<. . u\}=\) emeasure lborel \(\{l . . u\}\)

auto
    then show ?thesis
        by \(\operatorname{simp}\)
qed
lemma emeasure_lborel_Ico[simp]:
    assumes \([\operatorname{simp}]: l \leq u\)
    shows emeasure lborel \(\{l . .<u\}=\) ennreal \((u-l)\)
proof -
    have emeasure lborel \(\{l . .<u\}=\) emeasure lborel \(\{l . . u\}\)

auto
    then show ?thesis
        by simp
qed
```

lemma emeasure_lborel_box[simp]:
assumes [simp]: \b. b E Basis \Longrightarrowl | b \lequ\cdotb
shows emeasure lborel (box l u)=(\prodb\inBasis. (u-l)\cdotb)
proof -
have (}\lambdax.\prodb\in\mathrm{ Basis. indicator {l.b<..<u•b} (x • b) :: ennreal) = indicator
(box l u)
by (auto simp: fun_eq_iff box_def split: split_indicator)
then have emeasure lborel (box l u) = ({ +

```

```

 by simp
 also have ... = (\prodb\inBasis. (}u-l)\cdotb
 by (subst nn_integral_lborel_prod) (simp_all add: prod_ennreal inner_diff_left)
 finally show ?thesis.
 qed
lemma emeasure_lborel_cbox_eq:
emeasure lborel (cbox l u)=(if \forallb\inBasis.l • b\lequ • b then \prodb\inBasis. (}u
l) • b else 0)
using box_eq_empty(2)[THEN iffD2, of u l] by (auto simp: not_le)
lemma emeasure_lborel_box_eq:
emeasure lborel (box l u) = (if \forallb\inBasis.l •b\lequ | b then \b\inBasis. (}u-l\mathrm{)
-b else 0)
using box_eq_empty(1)[THEN iffD2, of u l] by (auto simp: not_le dest!: less_imp_le)
force

```
```

lemma emeasure_lborel_singleton[simp]: emeasure lborel $\{x\}=0$

```
lemma emeasure_lborel_singleton[simp]: emeasure lborel \(\{x\}=0\)
    using emeasure_lborel_cbox[of x x] nonempty_Basis
    using emeasure_lborel_cbox[of x x] nonempty_Basis
    by (auto simp del: emeasure_lborel_cbox nonempty_Basis)
    by (auto simp del: emeasure_lborel_cbox nonempty_Basis)
lemma emeasure_lborel_cbox_finite: emeasure lborel (cbox a b) <\infty
    by (auto simp: emeasure_lborel_cbox_eq)
lemma emeasure_lborel_box_finite: emeasure lborel (box a b)<\infty
    by (auto simp: emeasure_lborel_box_eq)
lemma emeasure_lborel_ball_finite: emeasure lborel (ball c r) <\infty
proof -
    have bounded (ball c r) by simp
    from bounded_subset_cbox_symmetric[OF this] obtain a where a: ball c r\subseteqcbox
(-a)a
        by auto
    hence emeasure lborel (ball c r) \leqemeasure lborel (cbox (-a) a)
        by (intro emeasure_mono) auto
    also have ... < < by (simp add: emeasure_lborel_cbox_eq)
    finally show ?thesis .
qed
lemma emeasure_lborel_cball_finite: emeasure lborel (cball c r)<\infty
```

```
proof -
    have bounded (cball c r) by simp
    from bounded_subset_cbox_symmetric[OF this] obtain a where a: cball c r }
cbox (-a) a
            by auto
    hence emeasure lborel (cball c r) \leqemeasure lborel (cbox (-a)a)
            by (intro emeasure_mono) auto
    also have ...<\infty by (simp add: emeasure_lborel_cbox_eq)
    finally show ?thesis.
qed
lemma fmeasurable_cbox [iff]: cbox a b f fmeasurable lborel
    and fmeasurable_box [iff]: box a b fmeasurable lborel
    by (auto simp: fmeasurable_def emeasure_lborel_box_eq emeasure_lborel_cbox_eq)
```


lemma

```
fixes \(l u\) :: real
    assumes [simp]:l\lequ
    shows measure_lborel_Icc[simp]: measure lborel {l .. u} =u-l
        and measure_lborel_Ico[simp]: measure lborel {l ..<u} =u-l
            and measure_lborel_Ioc[simp]: measure lborel {l<.. u}=u-l
            and measure_lborel_Ioo[simp]: measure lborel {l<..<u}=u-l
    by (simp_all add: measure_def)
```


lemma

assumes $[$ simp $]: \bigwedge b . b \in$ Basis $\Longrightarrow l \cdot b \leq u \cdot b$
shows measure_lborel_box[simp]: measure lborel (box l u) $=\left(\prod b \in\right.$ Basis. $(u-l)$
-b)
and measure_lborel_cbox[simp]: measure lborel (cbox lu) $=\left(\prod b \in\right.$ Basis. $(u-$ l) $\cdot b$)
by (simp_all add: measure_def inner_diff_left prod_nonneg)
lemma measure_lborel_cbox_eq:
measure lborel (cbox $l u)=\left(\right.$ if $\forall b \in$ Basis. $l \cdot b \leq u \cdot b$ then $\prod b \in$ Basis. $(u-l)$

- b else 0)
using box_eq_empty(2)[THEN iffD2, of u l] by (auto simp: not_le)
lemma measure_lborel_box_eq:
measure lborel (box $l u)=\left(\right.$ if $\forall b \in$ Basis. $l \cdot b \leq u \cdot b$ then $\prod b \in$ Basis. $(u-l)$
- belse 0)
using box_eq_empty(1)[THEN iffD2, of u l] by (auto simp: not_le dest!: less_imp_le)
force
lemma measure_lborel_singleton[simp]: measure lborel $\{x\}=0$
by (simp add: measure_def)
lemma sigma_finite_lborel: sigma_finite_measure lborel
proof
show $\exists A::^{\prime} a$ set set. countable $A \wedge A \subseteq$ sets lborel $\wedge \bigcup A=$ space lborel \wedge

```
( }\foralla\inA\mathrm{ . emeasure lborel }a\not=\infty
    by (intro exI[of _ range (\lambdan::nat. box (- real n *R One) (real n * *R One))])
        (auto simp: emeasure_lborel_cbox_eq UN_box_eq_UNIV)
qed
end
```

lemma emeasure_lborel_UNIV [simp]: emeasure lborel (UNIV ::'a::euclidean_space
set) $=\infty$
proof -
\{ fix n ::nat
let $? B a=$ Basis $::$ ' a set
have real $n \leq$ (2::real) ^card ? Ba* real n
by (simp add: mult_le_cancel_right1)
also
have $\ldots \leq(2::$ real $)$ ^ card ? Ba * real (Suc n) ^ card ?Ba
apply (rule mult_left_mono)
apply (metis DIM_positive One_nat_def less_eq_Suc_le less_imp_le of_nat_le_iff
of_nat_power self_le_power zero_less_Suc)
apply (simp)
done
finally have real $n \leq(2:: r e a l) ~ \wedge ~ c a r d ~ ? ~ B a ~ * ~ r e a l ~(S u c ~ n) ~ \wedge ~ c a r d ~ ? B a ~ . ~$
$\}$ note $[$ intro! $]=$ this
show ?thesis
unfolding UN_box_eq_UNIV[symmetric]
apply (subst SUP_emeasure_incseq[symmetric])
apply (auto simp: incseq_def subset_box inner_add_left
simp del: Sup_eq_top_iff SUP_eq_top_iff
intro!: ennreal_SUP_eq_top)
done
qed
lemma emeasure_lborel_countable:
fixes A :: 'a::euclidean_space set
assumes countable A
shows emeasure lborel $A=0$
proof -
have $A \subseteq(\bigcup i$. \{from_nat_into A i\}) using from_nat_into_surj assms by force
then have emeasure lborel $A \leq$ emeasure lborel $(\bigcup i$. $\{$ from_nat_into $A i\})$
by (intro emeasure_mono) auto
also have emeasure lborel $(\bigcup i$. $\{$ from_nat_into $A i\})=0$
by (rule emeasure_UN_eq_0) auto
finally show ?thesis
by (auto simp add:)
qed
lemma countable_imp_null_set_lborel: countable $A \Longrightarrow A \in$ null_sets lborel
by (simp add: null_sets_def emeasure_lborel_countable sets.countable)

```
lemma finite_imp_null_set_lborel: finite \(A \Longrightarrow A \in\) null_sets lborel
    by (intro countable_imp_null_set_lborel countable_finite)
lemma insert_null_sets_iff [simp]: insert \(a N \in\) null_sets lebesgue \(\longleftrightarrow N \in\) null_sets
lebesgue
    \((\) is ? \(l h s=? r h s)\)
proof
    assume ?lhs then show ?rhs
        by (meson completion.complete2 subset_insertI)
next
    assume ?rhs then show? lhs
    by (simp add: null_sets.insert_in_sets null_setsI)
qed
lemma insert_null_sets_lebesgue_on_iff [simp]:
    assumes \(a \in S S \in\) sets lebesgue
    shows insert a \(N \in\) null_sets (lebesgue_on \(S) \longleftrightarrow N \in\) null_sets (lebesgue_on \(S\) )
    by (simp add: assms null_sets_restrict_space)
```

lemma lborel_neq_count_space[simp]: lborel \neq count_space ($A::\left({ }^{\prime} a:: o r d e r e d _e u c l i d e a n _s p a c e\right) ~$
set)
proof
assume asm: lborel $=$ count_space A
have space lborel $=U N I V$ by simp
hence $[$ simp $]: A=U N I V$ by (subst (asm) asm) (simp only: space_count_space)
have emeasure lborel \{undefined:: $\left.{ }^{\prime} a\right\}=1$
by (subst asm, subst emeasure_count_space_finite) auto
moreover have emeasure lborel $\{$ undefined $\} \neq 1$ by simp
ultimately show False by contradiction
qed
lemma mem_closed_if_AE_lebesgue_open:
assumes open S closed C
assumes $A E x \in S$ in lebesgue. $x \in C$
assumes $x \in S$
shows $x \in C$
proof (rule ccontr)
assume $x C: x \notin C$
with open $E[$ of $S-C]$ assms
obtain e where $e: 0<e$ ball $x e \subseteq S-C$
by blast
then obtain $a b$ where box: $x \in$ box a b box a $b \subseteq S-C$
by (metis rational_boxes order_trans)
then have $0<$ emeasure lebesgue (box a b)
by (auto simp: emeasure_lborel_box_eq mem_box algebra_simps intro!: prod_pos)
also have $\ldots \leq$ emeasure lebesgue $(S-C)$
using assms box
by (auto intro!: emeasure_mono)

```
    also have \(\ldots=0\)
    using assms
    by (auto simp: eventually_ae_filter completion.complete2 set_diff_eq null_setsD1)
    finally show False by simp
qed
lemma mem_closed_if_AE_lebesgue: closed \(C \Longrightarrow(A E x\) in lebesgue. \(x \in C) \Longrightarrow\)
\(x \in C\)
    using mem_closed_if_AE_lebesgue_open[OF open_UNIV] by simp
```


6.13.5 Affine transformation on the Lebesgue-Borel

lemma lborel_eqI:

fixes M :: 'a::euclidean_space measure
assumes emeasure_eq: $\bigwedge l u .(\bigwedge b . b \in$ Basis $\Longrightarrow l \cdot b \leq u \cdot b) \Longrightarrow$ emeasure M
(box l $u)=\left(\prod b \in\right.$ Basis. $\left.(u-l) \cdot b\right)$
assumes sets_eq: sets $M=$ sets borel
shows lborel $=M$
proof (rule measure_eqI_generator_eq)
let ? $E=$ range $\left(\lambda(a, b)\right.$. box a $b::^{\prime} a$ set $)$
show Int_stable? E by (auto simp: Int_stable_def box_Int_box)
show ? $E \subseteq$ Pow UNIV sets lborel $=$ sigma_sets UNIV ? E sets $M=$ sigma_sets UNIV ? E by (simp_all add: borel_eq_box sets_eq)
let ? $A=\lambda n$:: nat. box $\left(-\left(\right.\right.$ real $n *_{R}$ One $\left.)\right)\left(\right.$ real $n *_{R}$ One) $::$ ' a set
show range ? $A \subseteq$? $E(\bigcup i$. ?A $i)=U N I V$
unfolding UN_box_eq_UNIV by auto
\{ fix i show emeasure lborel (?A i) $\neq \infty$ by auto \}
\{ fix X assume $X \in$? E then show emeasure lborel $X=$ emeasure $M X$
apply (auto simp: emeasure_eq emeasure_lborel_box_eq)
apply (subst box_eq_empty(1)[THEN iffD2])
apply (auto intro: less_imp_le simp: not_le)
done \}
qed
lemma lborel_affine_euclidean:
fixes $c::$ ' $a:$:euclidean_space \Rightarrow real and t
defines $T x \equiv t+\left(\sum j \in\right.$ Basis. $\left.(c j *(x \cdot j)) *_{R} j\right)$
assumes $c: \bigwedge j . j \in$ Basis $\Longrightarrow c j \neq 0$
shows lborel $=$ density $($ distr lborel borel $T)\left(\lambda_{-}\left(\prod j \in\right.\right.$ Basis. $\left.\left.|c j|\right)\right)\left(\right.$ is $\left._{-}=? D\right)$
proof (rule lborel_eqI)
let ? $B=$ Basis :: 'a set
fix $l u$ assume $l e: \bigwedge b . b \in ? B \Longrightarrow l \cdot b \leq u \cdot b$
have [measurable]: $T \in$ borel \rightarrow_{M} borel by (simp add: T_def[abs_def])

```
have eq: \(T\)-' box \(l u=\) box
        ( \(\sum j \in\) Basis. \((((\) if \(0<c j\) then \(l-t\) else \(\left.u-t) \cdot j) / c j) *_{R} j\right)\)
        \(\left(\sum j \in\right.\) Basis. \((((\) if \(0<c j\) then \(u-t\) else \(\left.l-t) \cdot j) / c j) *_{R} j\right)\)
        using \(c\) by (auto simp: box_def T_def field_simps inner_simps divide_less_eq)
    with le \(c\) show emeasure ? \(D(b o x l u)=\left(\prod b \in ? B .(u-l) \cdot b\right)\)
    by (auto simp: emeasure_density emeasure_distr nn_integral_multc emeasure_lborel_box_eq
inner_simps
            field_split_simps ennreal_mult'[symmetric] prod_nonneg prod.distrib[symmetric]
            intro!: prod.cong)
qed \(\operatorname{simp}\)
lemma lborel_affine:
    fixes \(t::\) ' \(a::\) euclidean_space
    shows \(c \neq 0 \Longrightarrow\) lborel \(=\) density \(\left(\right.\) distr lborel borel \(\left.\left(\lambda x . t+c *_{R} x\right)\right)\left(\lambda_{-}\right.\).
\(\left.|c|^{\wedge} D I M(' a)\right)\)
    using lborel_affine_euclidean[where \(c=\lambda_{-}::^{\prime} a . c\) and \(\left.t=t\right]\)
    unfolding scaleR_scaleR[symmetric] scaleR_sum_right[symmetric] euclidean_representation
prod_constant by simp
lemma lborel_real_affine:
    \(c \neq 0 \Longrightarrow\) lborel \(=\) density \((\) distr lborel borel \((\lambda x . t+c * x))\left(\lambda_{\text {. }}\right.\) ennreal (abs
c))
    using lborel_affine[of ct] by simp
lemma AE_borel_affine:
    fixes \(P\) :: real \(\Rightarrow\) bool
    shows \(c \neq 0 \Longrightarrow\) Measurable.pred borel \(P \Longrightarrow A E x\) in lborel. \(P x \Longrightarrow A E x\) in
lborel. \(P(t+c * x)\)
    by (subst lborel_real_affine[where \(t=-t / c\) and \(c=1 / c]\) )
        (simp_all add: AE_density AE_distr_iff field_simps)
lemma nn_integral_real_affine:
    fixes \(c::\) real assumes [measurable]: \(f \in\) borel_measurable borel and \(c: c \neq 0\)
    shows \(\left(\int{ }^{+} x . f x\right.\) dlborel \()=|c| *\left(\int{ }^{+} x . f(t+c * x)\right.\) dlborel \()\)
    by (subst lborel_real_affine [OF c, of t])
        ( simp add: nn_integral_density nn_integral_distr nn_integral_cmult)
lemma lborel_integrable_real_affine:
    fixes \(f::\) real \(\Rightarrow{ }^{\prime} a::\{\) banach, second_countable_topology \(\}\)
    assumes \(f\) : integrable lborel \(f\)
    shows \(c \neq 0 \Longrightarrow\) integrable lborel \((\lambda x . f(t+c * x))\)
    using \(f f[\) THEN borel_measurable_integrable \(]\) unfolding integrable_iff_bounded
    by (subst (asm) nn_integral_real_affine \([\) where \(c=c\) and \(t=t]\) ) (auto simp: en-
nreal_mult_less_top)
lemma lborel_integrable_real_affine_iff:
    fixes \(f::\) real \(\Rightarrow\) ' \(a::\{\) banach, second_countable_topology \(\}\)
    shows \(c \neq 0 \Longrightarrow\) integrable lborel \((\lambda x . f(t+c * x)) \longleftrightarrow\) integrable lborel \(f\)
    using
```

```
    lborel_integrable_real_affine[of f c t]
    lborel_integrable_real_affine[of \lambdax.f(t+c*x) 1/c-t/c]
    by (auto simp add: field_simps)
lemma lborel_integral_real_affine:
    fixes }f:: real => 'a :: {banach, second_countable_topology} and c :: real
    assumes c:c\not=0 shows (\intx.fx\partial lborel) = |c| *R (\intx.f(t+c*x) \partiallborel)
proof cases
    assume f[measurable]: integrable lborel f then show ?thesis
    using c ff[THEN borel_measurable_integrable] f[THEN lborel_integrable_real_affine,
of ct]
            by (subst lborel_real_affine[OF c, of t])
            (simp add: integral_density integral_distr)
next
    assume ᄀ integrable lborel f}\mathrm{ with c show ?thesis
        by (simp add: lborel_integrable_real_affine_iff not_integrable_integral_eq)
qed
lemma
    fixes c :: 'a::euclidean_space }=>\mathrm{ real and t
    assumes c:\j.j\in Basis\Longrightarrowcj\not=0
```



```
    shows lebesgue_affine_euclidean:lebesgue = density (distr lebesgue lebesgue T)
( }\mp@subsup{\lambda}{-}{\prime}(\prodj\in\mathrm{ Basis. }|cj|))(\mathrm{ is _ = ? D)
            and lebesgue_affine_measurable: T \in lebesgue }\mp@subsup{->}{M}{}\mathrm{ lebesgue
proof -
    have T_borel[measurable]: T\in borel }\mp@subsup{->}{M}{M}\mathrm{ borel
            by (auto simp: T_def[abs_def])
    { fix }A:: 'a set assume A:A\in sets borel
            then have emeasure lborel A=0 \longleftrightarrow emeasure (density (distr lborel borel T)
(\lambda_. (\prodj\inBasis. |cj|))) A=0
            unfolding T_def using c by (subst lborel_affine_euclidean[symmetric]) auto
            also have ... \longleftrightarrow emeasure (distr lebesgue lborel T) A=0
            using A c by (simp add: distr_completion emeasure_density nn_integral_cmult
prod_nonneg cong: distr_cong)
            finally have emeasure lborel A=0 \longleftrightarrow emeasure (distr lebesgue lborel T) A
=0.}
    then have eq: null_sets lborel = null_sets (distr lebesgue lborel T)
        by (auto simp: null_sets_def)
    show T\in lebesgue }\mp@subsup{->}{M}{}\mathrm{ lebesgue
    by (rule completion.measurable_completion2) (auto simp: eq measurable_completion)
    have lebesgue = completion (density (distr lborel borel T) (\lambda.. (\prodj\inBasis. |c
j|)))
            using c by (subst lborel_affine_euclidean[of c t]) (simp_all add: T_def[abs_def])
    also have ... = density (completion (distr lebesgue lborel T)) ( }\mp@subsup{\lambda}{~}{\prime}.(\j\in\mathrm{ Basis.
|cj|))
        using c by (auto intro!: always_eventually prod_pos completion_density_eq simp:
```

```
distr_completion cong: distr_cong)
    also have ... = density (distr lebesgue lebesgue T) (\lambda.. (\prodj\inBasis. |c j|))
    by (subst completion.completion_distr_eq) (auto simp: eq measurable_completion)
    finally show lebesgue = density (distr lebesgue lebesgue T) ( }\mp@subsup{\lambda}{-}{\prime}.(\prodj\in\mathrm{ Basis. |c
j|)) .
qed
corollary lebesgue_real_affine:
    c\not=0\Longrightarrowlebesgue = density (distr lebesgue lebesgue ( }\lambdax.t+c*x))(\mp@subsup{\lambda}{~}{\prime}. ennreal
(abs c))
    using lebesgue_affine_euclidean [where c=\lambdax::real.c] by simp
lemma nn_integral_real_affine_lebesgue:
    fixes c :: real assumes f[measurable]: f\in borel_measurable lebesgue and c:c\not=
0
```



```
proof -
    have (\int +}x.fx\mathrm{ Dlebesgue) ) = ( { +
+c*x))(\lambdax. ennreal |c|))
    using lebesgue_real_affine c by auto
    also have ... = \int + x. ennreal |c|*fx \partialdistr lebesgue lebesgue ( }\lambdax.t+c*x
    by (subst nn_integral_density) auto
    also have ... = ennreal |c|* integral }\mp@subsup{}{}{N}\mathrm{ (distr lebesgue lebesgue ( }\lambdax.t+c*x)\mathrm{ )
f
    using f measurable_distr_eq1 nn_integral_cmult by blast
    also have ... = | | * ( { +}x.f(t+c*x) \partiallebesgue
    using lebesgue_affine_measurable[where c=\lambdax::real. c]
    by (subst nn_integral_distr) (force+)
    finally show ?thesis .
qed
lemma lebesgue_measurable_scaling[measurable]: (*R) x lebesgue }\mp@subsup{->}{M}{}\mathrm{ lebesgue
proof cases
    assume x = 0
    then have (* *R) x = ( \lambdax.0::'a)
        by (auto simp: fun_eq_iff)
    then show ?thesis by auto
next
    assume }x\not=0\mathrm{ then show ?thesis
        using lebesgue_affine_measurable[of \lambda_. x 0]
    unfolding scaleR_scaleR[symmetric] scaleR_sum_right[symmetric] euclidean_representation
        by (auto simp add: ac_simps)
qed
```


lemma

```
fixes \(m\) :: real and \(\delta::{ }^{\prime} a::\) euclidean_space
defines \(\operatorname{Trdx} \equiv r *_{R} x+d\)
shows emeasure_lebesgue_affine: emeasure lebesgue \(\left(T m \delta{ }^{\prime} S\right)=|m|{ }^{\wedge} D I M\left({ }^{\prime} a\right)\)
* emeasure lebesgue \(S\) (is ?e)
```

and measure_lebesgue_affine: measure lebesgue $\left(T m \delta{ }^{\prime} S\right)=|m|^{\wedge} D I M\left({ }^{\prime} a\right) *$ measure lebesgue S (is ? m)
proof -
show ?e
proof cases
assume $m=0$ then show ?thesis
by (simp add: image_constant_conv T_def[abs_def])
next
let $? T=T m \delta$ and $? T^{\prime}=T(1 / m)\left(-\left((1 / m) *_{R} \delta\right)\right)$
assume $m \neq 0$
then have $s_{\text {_comp_s: }} ? T^{\prime} \circ ? T=i d ? T \circ ? T^{\prime}=i d$
by (auto simp: T_def[abs_def] fun_eq_iff scaleR_add_right scale R_{-}diff_right)
then have inv ? $T^{\prime}=? T$ bij ? T^{\prime}
by (auto intro: inv_unique_comp o_bij)
then have eq: $T m \delta ' S=T(1 / m)\left((-1 / m) *_{R} \delta\right)-{ }^{\prime} S \cap$ space lebesgue using bij_vimage_eq_inv_image[OF 〈bij? $T^{\prime \prime}$, of $\left.S\right]$ by auto
have trans_eq- $T:\left(\lambda x . \delta+\left(\sum j \in\right.\right.$ Basis. $\left.\left.(m *(x \cdot j)) *_{R} j\right)\right)=T m \delta$ for $m \delta$
unfolding T_def[abs_def] scaleR_scaleR[symmetric] scaleR_sum_right[symmetric] by (auto simp add: euclidean_representation ac_simps)
have T [measurable]: $T r d \in$ lebesgue \rightarrow_{M} lebesgue for $r d$
using lebesgue_affine_measurable[of $\left.\lambda_{-} . r d\right]$
by (cases $r=0$) (auto simp: trans_eq_T T_def $[$ abs_def $])$
show ?thesis
proof cases
assume $S \in$ sets lebesgue with $\langle m \neq 0\rangle$ show ?thesis
unfolding $e q$
apply (subst lebesgue_affine_euclidean $\left[\right.$ of $\left.\lambda_{-} . m \delta\right]$)
apply (simp_all add: emeasure_density trans_eq_T nn_integral_cmult emeasure_distr
del: space_completion emeasure_completion)
apply (simp add: vimage_comp s_comp_s)
done
next
assume $S \notin$ sets lebesgue
moreover have ?T' $S \notin$ sets lebesgue
proof
assume ? T ' $S \in$ sets lebesgue
then have ? $T-$ ' $(? T$ ' $S) \cap$ space lebesgue \in sets lebesgue
by (rule measurable_sets[OF T])
also have ?T -' $(? T$ ' $S) \cap$ space lebesgue $=S$
by (simp add: vimage_comp s_comp_s eq)
finally show False using $\langle S \notin$ sets lebesgue〉 by auto
qed
ultimately show ?thesis
by (simp add: emeasure_notin_sets)
qed

```
qed
show ?m
    unfolding measure_def <?e〉 by (simp add: enn2real_mult prod_nonneg)
qed
lemma lebesgue_real_scale:
    assumes c\not=0
    shows lebesgue = density (distr lebesgue lebesgue ( }\lambdax.c*x))(\lambdax. ennreal |c|
    using assms by (subst lebesgue_affine_euclidean[of \lambda_. c 0]) simp_all
lemma divideR_right:
    fixes x y :: 'a::real_normed_vector
    shows }r\not=0\Longrightarrowy=x/Rr\longleftrightarrowr*R y=
    using scaleR_cancel_left[of r y x/R r] by simp
lemma lborel_has_bochner_integral_real_affine_iff:
    fixes }x::''a :: {banach, second_countable_topology
    shows c\not=0\Longrightarrow
        has_bochner_integral lborel f x \longleftrightarrow
        has_bochner_integral lborel ( }\lambdax.f(t+c*x))(x/R|c|
    unfolding has_bochner_integral_iff lborel_integrable_real_affine_iff
    by (simp_all add: lborel_integral_real_affine[symmetric] divideR_right cong:conj_cong)
lemma lborel_distr_uminus: distr lborel borel uminus = (lborel :: real measure)
    by (subst lborel_real_affine[of -1 0])
        (auto simp: density_1 one_ennreal_def[symmetric])
lemma lborel_distr_mult:
    assumes (c::real)}\not=
    shows distr lborel borel ((*) c) = density lborel ( }\mp@subsup{\lambda}{~}{\prime}\mathrm{ . inverse |c|)
proof-
    have distr lborel borel ((*) c) = distr lborel lborel ((*) c) by (simp cong: distr_cong)
    also from assms have ... = density lborel ( }\mp@subsup{\lambda}{~}{\prime}.\mathrm{ inverse |c|)
        by (subst lborel_real_affine[of inverse c 0]) (auto simp: o_def distr_density_distr)
    finally show ?thesis.
qed
lemma lborel_distr_mult':
    assumes (c::real)}\not=
    shows lborel = density (distr lborel borel ((*)c)) (\lambda.. |c|)
proof-
    have lborel = density lborel (\lambda_. 1) by (rule density_1[symmetric])
    also from assms have ( }\mp@subsup{\lambda}{_}{\prime}.1\mathrm{ :: ennreal) = ( }\mp@subsup{\lambda}{-}{\prime}\mathrm{ . inverse }|c|*|c|)\mathrm{ by (intro ext)
simp
    also have density lborel ... = density (density lborel ( }\mp@subsup{\lambda}{~}{\prime}\mathrm{ . inverse |c|)) ( ( .. |c|)
        by (subst density_density_eq) (auto simp: ennreal_mult)
    also from assms have density lborel ( }\mp@subsup{\lambda}{-}{\prime}\mathrm{ . inverse |c|)= distr lborel borel ( (*) c)
        by (rule lborel_distr_mult[symmetric])
    finally show ?thesis .
```


qed

lemma lborel＿distr＿plus：
fixes $c::$＇a：：euclidean＿space
shows distr lborel borel $((+)$ c）$=$ lborel
by（subst lborel＿affine［of 1 c］，auto simp：density＿1）
interpretation lborel：sigma＿finite＿measure lborel
by（rule sigma＿finite＿lborel）
interpretation lborel＿pair：pair＿sigma＿finite lborel lborel ．．
lemma lborel＿prod：
lborel \bigotimes_{M} lborel $=\left(\right.$ lborel $::\left({ }^{\prime} a::\right.$ euclidean＿space \times＇b：：euclidean＿space $)$ measure $)$
proof（rule lborel＿eqI［symmetric］，clarify）
fix $l a u a::$＇a and $l b u b::$＇b
assume $l u: \bigwedge a b .(a, b) \in$ Basis $\Longrightarrow(l a, l b) \cdot(a, b) \leq(u a, u b) \cdot(a, b)$
have［simp］：
へb．$b \in$ Basis $\Longrightarrow l a \cdot b \leq u a \cdot b$
$\bigwedge b . b \in$ Basis $\Longrightarrow l b \cdot b \leq u b \cdot b$
inj＿on（ $\lambda u .(u, 0))$ Basis inj＿on（ λ u．（ $0, u)$ ）Basis
$(\lambda u .(u, 0)){ }^{\prime}$ Basis $\cap(\lambda u .(0, u)){ }^{\prime}$ Basis $=\{ \}$
box $(l a, l b)(u a, u b)=$ box la ua \times box lb ub
using lu［of＿0］lu［of O］by（auto intro！：inj＿onI simp add：Basis＿prod＿def ball＿Un
box＿def）
show emeasure（lborel \bigotimes_{M} lborel）$(b o x(l a, l b)(u a, u b))=$
ennreal（prod（（•）（（ua，ub）－（la，lb）））Basis）
by（simp add：lborel．emeasure＿pair＿measure＿Times Basis＿prod＿def prod．union＿disjoint prod．reindex ennreal＿mult inner＿diff＿left prod＿nonneg）
qed（simp add：borel＿prod［symmetric］）
lemma lborelD＿Collect［measurable（raw）］：$\{x \in$ space borel．$P x\} \in$ sets borel \Longrightarrow $\{x \in$ space lborel．$P x\} \in$ sets lborel
by simp
lemma lborelD［measurable（raw）］：$A \in$ sets borel $\Longrightarrow A \in$ sets lborel by simp
lemma emeasure＿bounded＿finite：
assumes bounded A shows emeasure lborel $A<\infty$
proof－
obtain $a b$ where $A \subseteq$ cbox $a b$
by（meson bounded＿subset＿cbox＿symmetric 〈bounded A〉）
then have emeasure lborel $A \leq$ emeasure lborel（cbox a b ）
by（intro emeasure＿mono）auto
then show ？thesis
by（auto simp：emeasure＿lborel＿cbox＿eq prod＿nonneg less＿top［symmetric］top＿unique split：if＿split＿asm）

```
qed
lemma emeasure_compact_finite: compact A\Longrightarrow emeasure lborel A<\infty
    using emeasure_bounded_finite[of A] by (auto intro: compact_imp_bounded)
lemma borel_integrable_compact:
    fixes f :: 'a::euclidean_space => 'b::{banach, second_countable_topology}
    assumes compact S continuous_on S f
    shows integrable lborel ( }\lambdax\mathrm{ . indicator S x *R fx)
proof cases
    assume S\not={}
    have continuous_on S ( }\lambdax\mathrm{ . norm (fx))
        using assms by (intro continuous_intros)
    from continuous_attains_sup[OF 〈compact S\rangle\langleS\not={}\ranglethis]
    obtain M where M: \x. x }\inS\Longrightarrow\mathrm{ norm (fx) {M
        by auto
    show ?thesis
    proof (rule integrable_bound)
        show integrable lborel ( }\lambdax\mathrm{ . indicator S x*M)
            using assms by (auto intro!: emeasure_compact_finite borel_compact inte-
grable_mult_left)
        show ( }\lambdax\mathrm{ . indicator S x * * f x) & borel_measurable lborel
        using assms by (auto intro!: borel_measurable_continuous_on_indicator borel_compact)
    show AE x in lborel. norm (indicator S x * R f x) \leqnorm (indicator S x*M)
            by (auto split: split_indicator simp: abs_real_def dest!: M)
    qed
qed simp
lemma borel_integrable_atLeastAtMost:
    fixes f :: real => real
    assumes f:\x.a\leqx\Longrightarrowx\leqb\LongrightarrowisCont f x
    shows integrable lborel ( }\lambdax.fx*\mathrm{ indicator {a.. b} x) (is integrable _ ?f)
proof -
    have integrable lborel ( }\lambdax\mathrm{ . indicator {a.. b} x *R f x)
    proof (rule borel_integrable_compact)
        from f}\mathrm{ show continuous_on {a..b} f
            by (auto intro: continuous_at_imp_continuous_on)
    qed simp
    then show ?thesis
        by (auto simp: mult.commute)
qed
```


6.13.6 Lebesgue measurable sets

abbreviation lmeasurable :: ' a ::euclidean_space set set where
lmeasurable \equiv fmeasurable lebesgue
lemma not_measurable_UNIV $[$ simp $]:$ UNIV \notin lmeasurable

```
    by (simp add: fmeasurable_def)
lemma lmeasurable_iff_integrable:
```



```
real)
    by (auto simp: fmeasurable_def integrable_iff_bounded borel_measurable_indicator_iff
ennreal_indicator)
lemma lmeasurable_cbox [iff]: cbox a b \in lmeasurable
    and lmeasurable_box [iff]: box a b \in lmeasurable
    by (auto simp: fmeasurable_def emeasure_lborel_box_eq emeasure_lborel_cbox_eq)
lemma
    fixes a::real
    shows lmeasurable_interval [iff]:{a..b} \in lmeasurable {a<..<b} {lmeasurable
    apply (metis box_real(2) lmeasurable_cbox)
    by (metis box_real(1) lmeasurable_box)
lemma fmeasurable_compact: compact S\LongrightarrowS \in fmeasurable lborel
    using emeasure_compact_finite[of S] by (intro fmeasurableI) (auto simp:borel_compact)
lemma lmeasurable_compact: compact S\LongrightarrowS 倍measurable
    using fmeasurable_compact by (force simp: fmeasurable_def)
lemma measure_frontier:
    bounded S measure lebesgue (frontier S) = measure lebesgue (closure S) -
measure lebesgue (interior S)
    using closure_subset interior_subset
    by (auto simp: frontier_def fmeasurable_compact intro!: measurable_measure_Diff)
lemma lmeasurable_closure:
    bounded S\Longrightarrow closure S < lmeasurable
    by (simp add:lmeasurable_compact)
lemma lmeasurable_frontier:
    bounded S\Longrightarrow frontier S lmeasurable
    by (simp add: compact_frontier_bounded lmeasurable_compact)
lemma lmeasurable_open: bounded S open S C S lmeasurable
    using emeasure_bounded_finite[of S] by (intro fmeasurableI) (auto simp: borel_open)
lemma lmeasurable_ball [simp]: ball a r lmeasurable
    by (simp add: lmeasurable_open)
lemma lmeasurable_cball [simp]: cball a r f lmeasurable
    by (simp add: lmeasurable_compact)
lemma lmeasurable_interior: bounded S 焐erior S < lmeasurable
    by (simp add: bounded_interior lmeasurable_open)
```

```
lemma null_sets_cbox_Diff_box: cbox a b-box a b \(\in\) null_sets lborel
proof -
    have emeasure lborel (cbox a b-box ab)=0
    by (subst emeasure_Diff) (auto simp: emeasure_lborel_cbox_eq emeasure_lborel_box_eq
box_subset_cbox)
    then have cbox ab-box abenull_sets lborel
        by (auto simp: null_sets_def)
    then show ?thesis
        by (auto dest!: AE_not_in)
qed
lemma bounded_set_imp_lmeasurable:
    assumes bounded \(S S \in\) sets lebesgue shows \(S \in\) lmeasurable
    by (metis assms bounded_Un emeasure_bounded_finite emeasure_completion fmea-
surableI main_part_null_part_Un)
lemma finite_measure_lebesgue_on: \(S \in\) lmeasurable \(\Longrightarrow\) finite_measure (lebesgue_on
S)
    by (auto simp: finite_measureI fmeasurable_def emeasure_restrict_space)
lemma integrable_const_ivl [iff]:
    fixes \(a:\) :'a::ordered_euclidean_space
    shows integrable (lebesgue_on \(\{a . . b\})(\lambda x . c)\)
    by (metis cbox_interval finite_measure.integrable_const finite_measure_lebesgue_on
lmeasurable_cbox)
```


6．13．7 Translation preserves Lebesgue measure

lemma sigma＿sets＿image：
assumes $S: S \in$ sigma＿sets ΩM and $M \subseteq \operatorname{Pow} \Omega f^{\prime} \Omega=\Omega$ inj＿on $f \Omega$
and $M: \bigwedge y . y \in M \Longrightarrow f^{\prime} y \in M$
shows $(f \cdot S) \in$ sigma＿sets ΩM
using S
proof（induct S rule：sigma＿sets．induct）
case（Basic a）then show ？case
by（ simp add：M）
next
case Empty then show ？case
by（simp add：sigma＿sets．Empty）
next
case（Compl a）
then have $\Omega-a \subseteq \Omega a \subseteq \Omega$
by（auto simp：sigma＿sets＿into＿sp $[O F\langle M \subseteq$ Pow $\Omega\rangle])$
then show？case
by（auto simp：inj＿on＿image＿set＿diff［OF〈inj＿on f 亿》］assms intro：Compl
sigma＿sets．Compl）
next
case（Union a）then show ？case
by (metis image_UN sigma_sets.simps)
qed
lemma null_sets_translation:
assumes $N \in$ null_sets lborel shows $\{x . x-a \in N\} \in$ null_sets lborel
proof -
have $[\operatorname{simp}]:(\lambda x . x+a)^{\prime} N=\{x . x-a \in N\}$
by force
show ?thesis
using assms emeasure_lebesgue_affine [of 1 a N] by (auto simp: null_sets_def)
qed
lemma lebesgue_sets_translation:
fixes f :: ' $a \Rightarrow$ ' $a:$:euclidean_space
assumes $S: S \in$ sets lebesgue
shows $((\lambda x \cdot a+x) \cdot S) \in$ sets lebesgue
proof -
have im_eq: $(+) a{ }^{\prime} A=\{x . x-a \in A\}$ for A
by force
have $\left((\lambda x . a+x)^{\prime} S\right)=\left((\lambda x .-a+x)-{ }^{\prime} S\right) \cap($ space lebesgue $)$
using image_iff by fastforce
also have ... \in sets lebesgue
proof (rule measurable_sets [OF measurableI assms])
fix $A:: ' b$ set
assume $A: A \in$ sets lebesgue
have vim_eq: $(\lambda x . x-a)-{ }^{\prime} A=(+) a$ ' A for A
by force
have $\exists s n N^{\prime} .(+) a^{\prime}(S \cup N)=s \cup n \wedge s \in$ sets borel $\wedge N^{\prime} \in$ null_sets lborel
$\wedge n \subseteq N^{\prime}$
if $S \in$ sets borel and $N^{\prime} \in$ null_sets lborel and $N \subseteq N^{\prime}$ for $S N N^{\prime}$
proof (intro exI conjI)
show $(+) a^{\prime}(S \cup N)=(\lambda x . a+x)^{\prime} S \cup(\lambda x . a+x)^{\prime} N$
by auto
show $(\lambda x . a+x){ }^{\prime} N^{\prime} \in$ null_sets lborel
using that by (auto simp: null_sets_translation im_eq)
qed (use that im_eq in auto)
with A have $(\lambda x . x-a)-{ }^{\prime} A \in$ sets lebesgue
by (force simp: vim_eq completion_def intro!: sigma_sets_image)
then show $(+)(-a)-$ ' $A \cap$ space lebesgue \in sets lebesgue
by (auto simp: vimage_def im_eq)
qed auto
finally show ?thesis .
qed
lemma measurable_translation:
$S \in$ lmeasurable $\Longrightarrow\left((+) a^{\prime} S\right) \in$ lmeasurable
using emeasure_lebesgue_affine [of 1 a S]
apply (auto intro: lebesgue_sets_translation simp add: fmeasurable_def cong: image_cong_simp)

```
apply (simp add: ac_simps)
done
lemma measurable_translation_subtract:
    S\inlmeasurable \Longrightarrow((\lambdax.x-a)'S)\in lmeasurable
    using measurable_translation [of S - a] by (simp cong: image_cong_simp)
lemma measure_translation:
    measure lebesgue ((+) a'S) = measure lebesgue S
    using measure_lebesgue_affine [of 1 a S] by (simp add: ac_simps cong: im-
age_cong_simp)
lemma measure_translation_subtract:
    measure lebesgue ((\lambdax.x-a)'S)= measure lebesgue S
    using measure_translation [of - a] by (simp cong: image_cong_simp)
```


6.13.8 A nice lemma for negligibility proofs

lemma summable_iff_suminf_neq_top: $(\bigwedge n . f n \geq 0) \Longrightarrow \neg$ summable $f \Longrightarrow\left(\sum i\right.$. ennreal $(f i))=$ top
by (metis summable_suminf_not_top)
proposition starlike_negligible_bounded_gmeasurable:
fixes S :: ' a :: euclidean_space set
assumes $S: S \in$ sets lebesgue and bounded S
and eq1: $\bigwedge c x . \llbracket\left(c *_{R} x\right) \in S ; 0 \leq c ; x \in S \rrbracket \Longrightarrow c=1$
shows $S \in$ null_sets lebesgue
proof -
obtain M where $0<M S \subseteq$ ball $0 M$
using 〈bounded S 〉 by (auto dest: bounded_subset_ballD)
let ? $f=\lambda n$. root $\operatorname{DIM}\left({ }^{\prime} a\right)(S u c n)$
have vimage_eq_image: $\left(*_{R}\right)($?f $n)-{ }^{\prime} S=\left(*_{R}\right)(1 /$?f $n)$ ' S for n apply safe
subgoal for x by (rule image_eqI[of _ _ ?f $\left.n *_{R} x\right]$) auto
subgoal by auto
done
have eq: $(1 / \text { ?f } n)^{\wedge} \operatorname{DIM}\left({ }^{\prime} a\right)=1 /$ Suc n for n by (simp add: field_simps)
$\left\{\right.$ fix $n x$ assume x : root $\operatorname{DIM}\left({ }^{\prime} a\right)(1+$ real $n) *_{R} x \in S$
have $1 *$ norm $x \leq \operatorname{root} \operatorname{DIM}\left({ }^{\prime} a\right)(1+$ real $n) *$ norm x
by (rule mult_mono) auto
also have ... $<M$
using $x\langle S \subseteq$ ball $0 M$ by auto
finally have norm $x<M$ by simp $\}$
note less_ $M=$ this

```
    have \(\left(\sum n\right.\). ennreal \((1 /\) Suc \(\left.n)\right)=\) top
    using not_summable_harmonic[where ' \(a=\) real] summable_Suc_iff [where \(f=\lambda\).
\(1 /(\) real \(n)\) ]
    by (intro summable_iff_suminf_neq_top) (auto simp add: inverse_eq_divide)
    then have top * emeasure lebesgue \(S=\left(\sum n \text {. ( } 1 / \text { ?f } n\right)^{\wedge} D I M(' a) *\) emeasure
lebesgue \(S\) )
    unfolding ennreal_suminf_multc eq by simp
    also have \(\ldots=\left(\sum n\right.\). emeasure lebesgue \(\left(\left(*_{R}\right)(\right.\) ?f \(\left.\left.n)-‘ S\right)\right)\)
    unfolding vimage_eq_image using emeasure_lebesgue_affine[of 1 / ?f n 0 S for
\(n]\) by \(\operatorname{simp}\)
    also have \(\ldots=\) emeasure lebesgue \(\left(\bigcup n .\left(*_{R}\right)(\right.\) ?f \(\left.n)-‘ S\right)\)
    proof (intro suminf_emeasure)
        show disjoint_family \(\left(\lambda n .\left(*_{R}\right)(? f n)-' S\right)\)
            unfolding disjoint_family_on_def
        proof safe
            fix \(m n::\) nat and \(x\) assume \(m \neq n\) ?f \(m *_{R} x \in S\) ?f \(n *_{R} x \in S\)
            with eq1 [of ?f \(m /\) ?f \(n\) ?f \(n *_{R} x\) ] show \(x \in\}\)
            by auto
        qed
        have \(\left(*_{R}\right)(\) ?f \(i)-‘ S \in\) sets lebesgue for \(i\)
            using measurable_sets[OF lebesgue_measurable_scaling[of ?f i] S] by auto
            then show range \(\left(\lambda i .\left(*_{R}\right)(\right.\) ?f \(\left.i)-{ }^{\prime} S\right) \subseteq\) sets lebesgue
            by auto
    qed
    also have \(\ldots\). \(\leq\) emeasure lebesgue (ball \(0 M\) :: 'a set)
        using less_M by (intro emeasure_mono) auto
    also have ... < top
        using lmeasurable_ball by (auto simp: fmeasurable_def)
    finally have emeasure lebesgue \(S=0\)
        by (simp add: ennreal_top_mult split: if_split_asm)
    then show \(S \in\) null_sets lebesgue
        unfolding null_sets_def using \(\langle S \in\) sets lebesgue〉 by auto
qed
corollary starlike_negligible_compact:
    compact \(S \Longrightarrow\left(\bigwedge c x . \llbracket\left(c *_{R} x\right) \in S ; 0 \leq c ; x \in S \rrbracket \Longrightarrow c=1\right) \Longrightarrow S \in\) null_sets
lebesgue
    using starlike_negligible_bounded_gmeasurable \([\) of \(S]\) by (auto simp: compact_eq_bounded_closed)
proposition outer_regular_lborel_le:
    assumes \(B\) [measurable]: \(B \in\) sets borel and \(0<(e::\) real \()\)
    obtains \(U\) where open \(U B \subseteq U\) and emeasure lborel \((U-B) \leq e\)
proof -
    let \(? \mu=\) emeasure lborel
    let ? \(B=\lambda n::\) nat. ball \(0 n\) :: 'a set
    let \(? e=\lambda n . e *\left((1 / 2)^{\wedge} S u c n\right)\)
    have \(\forall n\). \(\exists U\). open \(U \wedge\) ? \(B n \cap B \subseteq U \wedge\) ? \(\mu(U-B)<\) ? e \(n\)
    proof
```

```
    fix n :: nat
    let ?A = density lborel (indicator (?B n))
    have emeasure_A: X 的ts borel }\Longrightarrow\mathrm{ emeasure ?A X = ? }\mu(?B n\capX) for X
    by (auto simp: emeasure_density borel_measurable_indicator indicator_inter_arith[symmetric])
    have finite_A: emeasure ?A (space ?A) }\not=
        using emeasure_bounded_finite[of ?B n] by (auto simp: emeasure_A)
    interpret A: finite_measure ?A
        by rule fact
    have emeasure ?A B + ?e n > (INF U\in{U.B\subseteqU\wedge open U}. emeasure ?A
U)
            using <0<e\rangle by (auto simp: outer_regular[OF_finite_A B, symmetric])
    then obtain U where U:B\subseteqU open U and muU: ? }\mu(?Bn\capB)+?e 
> ? }\mu(?Bn\capU
            unfolding INF_less_iff by (auto simp: emeasure_A)
    moreover
    { have ? }\mu((?Bn\capU)-B)=?\mu((?B\cap\capU)-(?Bn\capB)
        using U by (intro arg_cong[where f=? }\mu])\mathrm{ auto
        also have ... = ? }\mu(?B\cap\capU)-? (? ?B n\capB
        using U A.emeasure_finite[of B]
        by (intro emeasure_Diff) (auto simp del: A.emeasure_finite simp: emeasure_A)
    also have ... < ?e n
        using U muU A.emeasure_finite[of B]
        by (subst minus_less_iff_ennreal)
        (auto simp del: A.emeasure_finite simp: emeasure_A less_top ac_simps intro!:
emeasure_mono)
            finally have ? }\mu((?B\cap\capU)-B)<?e n . }
    ultimately show }\exists\textrm{U}\mathrm{ . open }U\wedge\mathrm{ ? B n }\capB\subseteqU\wedge? \mu(U-B)<?e 
            by (intro exI[of _ ?B n\capU]) auto
    qed
    then obtain U
        where U:\bigwedgen. open (Un)\bigwedgen.?B n\capB\subseteqUn\bigwedgen.? }\(Un-B)<\mathrm{ ? ? n
    by metis
    show ?thesis
    proof
        { fix }x\mathrm{ assume }x\in
            moreover
            obtain n where norm x < real n
                using reals_Archimedean2 by blast
            ultimately have }x\in(\cupn.Un
                using}U(2)[of n] by auto 
    note * = this
    then show open }(\bigcupn.Un)B\subseteq(\bigcupn.Un
            using U by auto
    have ? }\mu(\cupn.Un-B)\leq(\sumn. ? \mu (Un-B)
            using U(1) by (intro emeasure_subadditive_countably) auto
    also have ... \leq(\sumn. ennreal (?e n))
            using U(3) by (intro suminf_le) (auto intro: less_imp_le)
    also have ... = ennreal (e*1)
```

using $\langle 0<e\rangle$ by (intro suminf_ennreal_eq sums_mult power_half_series) auto finally show emeasure lborel $((\bigcup n . U n)-B) \leq$ ennreal e by simp
qed
qed
lemma outer_regular_lborel:
assumes $B: B \in$ sets borel and $0<(e::$ real $)$
obtains U where open $U B \subseteq U$ emeasure lborel $(U-B)<e$
proof -
obtain U where U : open $U B \subseteq U$ and emeasure lborel $(U-B) \leq e / 2$
using outer_regular_lborel_le [OF B, of e/2] $\langle e>0\rangle$
by force
moreover have ennreal (e/2) < ennreal e using $\langle e>0\rangle$ by (simp add: ennreal_lessI)
ultimately have emeasure lborel $(U-B)<e$
by auto
with U show ?thesis
using that by auto
qed
lemma completion_upper:
assumes $A: A \in$ sets (completion M)
obtains A^{\prime} where $A \subseteq A^{\prime} A^{\prime} \in$ sets $M A^{\prime}-A \in$ null_sets (completion M) emeasure (completion M) $A=$ emeasure $M A^{\prime}$
proof -
from AE_notin_null_part[OF A] obtain N where $N: N \in$ null_sets M null_part $M A \subseteq N$
unfolding eventually_ae_filter using null_part_null_sets[OF A, THEN null_setsD2,
THEN sets.sets_into_space] by auto
let ? $A^{\prime}=$ main_part $M A \cup N$
show ?thesis
proof
show $A \subseteq ? A^{\prime}$
using 〈null_part $M A \subseteq N\rangle$ by (subst main_part_null_part_Un[symmetric, OF
A]) auto
have main_part $M A \subseteq A$
using assms main_part_null_part_Un by auto
then have ? $A^{\prime}-A \subseteq N$
by blast
with N show ? $A^{\prime}-A \in$ null_sets (completion M)
by (blast intro: null_sets_completionI completion.complete_measure_axioms complete_measure.complete2)
show emeasure (completion M) $A=$ emeasure M (main_part $M A \cup N$)
using $A\langle N \in$ null_sets $M\rangle$ by (simp add: emeasure_Un_null_set)
qed (use $A N$ in auto)
qed
lemma sets_lebesgue_outer_open:

```
fixes \(e:\) :real
assumes \(S: S \in\) sets lebesgue and \(e>0\)
obtains \(T\) where open \(T S \subseteq T(T-S) \in\) lmeasurable emeasure lebesgue ( \(T\)
\(-S)<\) ennreal \(e\)
proof -
    obtain \(S^{\prime}\) where \(S^{\prime}: S \subseteq S^{\prime} S^{\prime} \in\) sets borel
                and null: \(S^{\prime}-S \in\) null_sets lebesgue
                and em: emeasure lebesgue \(S=\) emeasure lborel \(S^{\prime}\)
    using completion_upper[of \(S\) lborel] \(S\) by auto
then have \(f_{-} S^{\prime}: S^{\prime} \in\) sets borel
    using \(S\) by (auto simp: fmeasurable_def)
with outer_regular_lborel \([\) OF _ \(\langle 0<e\rangle]\)
obtain \(U\) where \(U\) : open \(U S^{\prime} \subseteq U\) emeasure lborel \(\left(U-S^{\prime}\right)<e\)
    by blast
    show thesis
    proof
        show open \(U S \subseteq U\)
        using \(f_{-} S^{\prime} U S^{\prime}\) by auto
    have \((U-S)=\left(U-S^{\prime}\right) \cup\left(S^{\prime}-S\right)\)
        using \(S^{\prime} U\) by auto
    then have eq: emeasure lebesgue \((U-S)=\) emeasure lborel \(\left(U-S^{\prime}\right)\)
        using null by (simp add: U(1) emeasure_Un_null_set \(f_{-} S^{\prime}\) sets.Diff)
    have \((U-S) \in\) sets lebesgue
        by (simp add: \(S U(1)\) sets.Diff)
    then show \((U-S) \in\) lmeasurable
    unfolding fmeasurable_def using \(U(3)\) eq less_le_trans by fastforce
    with eq \(U\) show emeasure lebesgue \((U-S)<e\)
    by (simp add: eq)
    qed
qed
lemma sets_lebesgue_inner_closed:
    fixes \(e\) ::real
    assumes \(S \in\) sets lebesgue \(e>0\)
    obtains \(T\) where closed \(T T \subseteq S S-T \in\) lmeasurable emeasure lebesgue ( \(S-\)
\(T)<\) ennreal \(e\)
proof -
    have \(-S \in\) sets lebesgue
        using assms by (simp add: Compl_in_sets_lebesgue)
    then obtain \(T\) where open \(T-S \subseteq T\)
            and \(T:(T--S) \in\) lmeasurable emeasure lebesgue \((T--S)<e\)
        using sets_lebesgue_outer_open assms by blast
    show thesis
    proof
        show closed \((-T)\)
            using <open \(T\) 〉 by blast
    show - \(T \subseteq S\)
            using \(\langle-S \subseteq T\rangle\) by auto
        show \(S-(-T) \in\) lmeasurable emeasure lebesgue \((S-(-T))<e\)
```

using T by (auto simp: Int_commute)
qed
qed
lemma lebesgue_openin:
【openin (top_of_set S) $T ; S \in$ sets lebesgue】 $\Longrightarrow T \in$ sets lebesgue
by (metis borel_open openin_open sets.Int sets_completionI_sets sets_lborel)
lemma lebesgue_closedin:
\llbracket closedin $($ top_of_set $S) T ; S \in$ sets lebesgue $\rrbracket \Longrightarrow T \in$ sets lebesgue
by (metis borel_closed closedin_closed sets.Int sets_completionI_sets sets_lborel)

6.13.9 \quad _sigma and G_{-}delta sets.

— https://en.wikipedia.org/wiki/F-sigma_set
inductive fsigma :: 'a::topological_space set \Rightarrow bool where
$(\bigwedge n:: n a t$. closed $(F n)) \Longrightarrow f$ sigma $(\bigcup(F \cdot U N I V))$
inductive gdelta :: 'a::topological_space set \Rightarrow bool where
$(\bigwedge n::$ nat. open $(F n)) \Longrightarrow$ gdelta $(\bigcap(F \cdot U N I V))$
lemma fsigma_Union_compact:
fixes $S::$ 'a::\{real_normed_vector,heine_borel\} set
shows f sigma $S \longleftrightarrow\left(\exists F::\right.$ nat $\Rightarrow{ }^{\prime}$ a set. range $F \subseteq$ Collect compact $\wedge S=\bigcup(F$

- UNIV))
proof safe
assume fsigma S
then obtain $F::$ nat $\Rightarrow{ }^{\prime} a$ set where F : range $F \subseteq$ Collect closed $S=\bigcup(F$ '
UNIV)
by (meson fsigma.cases image_subsetI mem_Collect_eq)
then have $\exists D:: n a t \Rightarrow{ }^{\prime}$ 'a set. range $D \subseteq$ Collect compact $\wedge \bigcup\left(D^{\prime}\right.$ UNIV $)=F$
i for i
using closed_Union_compact_subsets [of Fi]
by (metis image_subsetI mem_Collect_eq range_subsetD)
then obtain $D::$ nat \Rightarrow nat \Rightarrow 'a set where $D: \wedge i$. range $(D i) \subseteq$ Collect compact $\wedge \bigcup((D i) ' U N I V)=F i$ by metis
let ? $D D=\lambda n .(\lambda(i, j) . D i j)($ prod_decode $n)$
show $\exists F::$ nat \Rightarrow ' a set. range $F \subseteq$ Collect compact $\wedge S=\bigcup(F ' U N I V)$
proof (intro exI conjI)
show range? $D D \subseteq$ Collect compact
using D by clarsimp (metis mem_Collect_eq rangeI split_conv subsetCE
surj_pair)
show $S=\bigcup$ (range? $D D)$
proof
show $S \subseteq \bigcup$ (range ? $D D$)
using $D F$
by clarsimp (metis UN_iff old.prod.case prod_decode_inverse prod_encode_eq) show $\bigcup($ range ? $D D) \subseteq S$

```
            using D F by fastforce
        qed
    qed
next
    fix F :: nat # 'a set
    assume range F\subseteq Collect compact and S=\bigcup(F'UNIV)
    then show fsigma (U(F'UNIV))
        by (simp add: compact_imp_closed fsigma.intros image_subset_iff)
qed
lemma gdelta_imp_fsigma: gdelta S \Longrightarrow fsigma (- S)
proof (induction rule: gdelta.induct)
    case (1 F)
    have - \bigcap(F'UNIV ) =(Ui.-(Fi))
        by auto
    then show ?case
        by (simp add: fsigma.intros closed_Compl 1)
qed
lemma fsigma_imp_gdelta: fsigma S \Longrightarrow gdelta (-S)
proof (induction rule: fsigma.induct)
    case (1 F)
    have - U(F'UNIV )=(\bigcapi.-(Fi))
        by auto
    then show ?case
        by (simp add: 1 gdelta.intros open_closed)
qed
lemma gdelta_complement: gdelta }(-S)\longleftrightarrow\mathrm{ fsigma S
    using fsigma_imp_gdelta gdelta_imp_fsigma by force
lemma lebesgue_set_almost_fsigma:
    assumes S \in sets lebesgue
```



```
proof -
    { fix n::nat
```



```
T)< ennreal (1 / Suc n)
        using sets_lebesgue_inner_closed [OF assms]
        by (metis of_nat_0_less_iff zero_less_Suc zero_less_divide_1_iff)
    then have }\existsT\mathrm{ . closed T^T؟S^S-TGlmeasurable ^ measure lebesgue
(S-T)<1 / Suc n
        by (metis emeasure_eq_measure2 ennreal_leI not_le)
    }
    then obtain F where F: \bigwedgen::nat.closed (F n)^Fn\subseteqS^S-Fn\in
lmeasurable ^ measure lebesgue (S-Fn)<1/Suc n
    by metis
    let ?C = U(F'UNIV)
    show thesis
```

```
    proof
    show fsigma ?C
            using F by (simp add: fsigma.intros)
            show (S - ?C) \in null_sets lebesgue
            proof (clarsimp simp add: completion.null_sets_outer_le)
            fix e :: real
            assume 0<e
            then obtain n where n:1 / Suc n<e
                using nat_approx_posE by metis
            show \existsT\inlmeasurable. S - (\bigcupx.Fx)\subseteqT^ measure lebesgue T\leqe
            proof (intro bexI conjI)
                show measure lebesgue (S - Fn) \leqe
                    by (meson F n less_trans not_le order.asym)
            qed (use F in auto)
        qed
    show ?C \cup (S - ?C) =S
            using F by blast
    show disjnt ?C (S - ?C)
            by (auto simp: disjnt_def)
    qed
qed
lemma lebesgue_set_almost_gdelta:
    assumes S fets lebesgue
    obtains C T where gdelta C T 的ull_sets lebesgue S UT=C disjnt S T
proof -
    have -S sets lebesgue
        using assms Compl_in_sets_lebesgue by blast
    then obtain CT where C: fsigma C T\in null_sets lebesgue C\cupT=-S disjnt
C T
            using lebesgue_set_almost_fsigma by metis
    show thesis
    proof
        show gdelta (-C)
            by (simp add: <fsigma C` fsigma_imp_gdelta)
        show S\cupT=-C disjnt S T
            using C by (auto simp: disjnt_def)
    qed (use C in auto)
qed
end
```


6.14 Tagged Divisions for Henstock-Kurzweil Integration

theory Tagged_Division
imports Topology_Euclidean_Space
begin

```
lemma sum_Sigma_product:
    assumes finite \(S\)
        and \(\bigwedge i . i \in S \Longrightarrow\) finite \((T i)\)
    shows \(\left(\sum i \in S . \operatorname{sum}(x i)(T i)\right)=\left(\sum(i, j) \in \operatorname{Sigma} S T . x i j\right)\)
    using assms
proof induct
    case empty
    then show ?case
        by simp
next
    case (insert a \(S\) )
    show ?case
        by (simp add: insert.hyps(1) insert.prems sum.Sigma)
qed
lemmas scaleR_simps = scaleR_zero_left scaleR_minus_left scaleR_left_diff_distrib
    scaleR_zero_right scaleR_minus_right scaleR_right_diff_distrib scaleR_eq_0_iff
    scaleR_cancel_left scaleR_cancel_right scaleR_add_right scaleR_add_left real_vector_class.scaleR_one
```


6.14.1 Sundries

A transitive relation is well-founded if all initial segments are finite.

```
lemma wf_finite_segments:
    assumes irrefl r and trans r and \x. finite {y. (y,x)\inr}
    shows wf (r)
    apply (simp add: trans_wf_iff wf_iff_acyclic_if_finite converse_def assms)
    using acyclic_def assms irrefl_def trans_Restr by fastforce
```

For creating values between u and v.

```
lemma scaling_mono:
    fixes \(u::^{\prime} a::\) linordered_field
    assumes \(u \leq v 0 \leq r r \leq s\)
        shows \(u+r *(v-u) / s \leq v\)
proof -
    have \(r / s \leq 1\) using assms
        using divide_le_eq_1 by fastforce
    then have \((r / s) *(v-u) \leq 1 *(v-u)\)
        by (meson diff_ge_0_iff_ge mult_right_mono \(\langle u \leq v\rangle\) )
    then show ?thesis
        by (simp add: field_simps)
qed
```


6.14.2 Some useful lemmas about intervals

lemma interior_subset_union_intervals:
assumes $i=c b o x a b$
and $j=$ cbox $c d$
and interior $j \neq\{ \}$
and $i \subseteq j \cup S$
and interior $i \cap$ interior $j=\{ \}$
shows interior $i \subseteq$ interior S
proof－
have box a $b \cap$ cbox c $d=\{ \}$
using Int＿interval＿mixed＿eq＿empty［of c d a b］assms
unfolding interior＿cbox by auto
moreover
have box a $b \subseteq c b o x$ c $d \cup S$
apply（rule order＿trans，rule box＿subset＿cbox）
using assms by auto
ultimately
show ？thesis
unfolding assms interior＿cbox
by auto（metis IntI UnE empty＿iff interior＿maximal open＿box subsetCE subsetI）
qed
lemma interior＿Union＿subset＿cbox：
assumes finite f
assumes $f: \bigwedge s . s \in f \Longrightarrow \exists a b . s=c b o x a b \bigwedge s . s \in f \Longrightarrow$ interior $s \subseteq t$ and t ：closed t
shows interior $(\bigcup f) \subseteq t$
proof－
have $[$ simp $]: s \in f \Longrightarrow$ closed s for s
using f by auto
define E where $E=\{s \in f$ ．interior $s=\{ \}\}$
then have finite $E E \subseteq\{s \in f$ ．interior $s=\{ \}\}$
using 〈finite f 〉 by auto
then have interior $(\bigcup f)=$ interior $(\bigcup(f-E))$
proof（induction E rule：finite＿subset＿induct＇）
case（insert $s f^{\prime}$ ）
have interior $\left(\bigcup\left(f-\operatorname{insert} s f^{\prime}\right) \cup s\right)=\operatorname{interior}\left(\bigcup\left(f-\operatorname{insert} s f^{\prime}\right)\right)$
using insert．hyps 〈finite f 〉 by（intro interior＿closed＿Un＿empty＿interior）auto
also have $\bigcup\left(f-\right.$ insert $\left.s f^{\prime}\right) \cup s=\bigcup\left(f-f^{\prime}\right)$
using insert．hyps by auto
finally show ？case
by（simp add：insert．IH）
qed simp
also have $\ldots \subseteq \bigcup(f-E)$
by（rule interior＿subset）
also have $\ldots \subseteq t$
proof（rule Union＿least）
fix s assume $s \in f-E$
with $f[o f s]$ obtain $a b$ where $s: s \in f s=c b o x a b$ box a $b \neq\{ \}$
by（fastforce simp：E＿def）
have closure（interior $s) \subseteq$ closure t
by（intro closure＿mono $f\langle s \in f\rangle$ ）
with s 〈closed $t\rangle$ show $s \subseteq t$
by simp
qed
finally show ?thesis.
qed
lemma Int_interior_Union_intervals:
\llbracket finite $\mathcal{F} ;$ open $S ; \bigwedge T . T \in \mathcal{F} \Longrightarrow \exists a b . T=$ cbox $a b ; \bigwedge T . T \in \mathcal{F} \Longrightarrow S \cap$ (interior T) $=\{ \} \rrbracket$
$\Longrightarrow S \cap$ interior $(\bigcup \mathcal{F})=\{ \}$
using interior_Union_subset_cbox[of \mathcal{F} UNIV - S] by auto
lemma interval_split:
fixes a :: ' a ::euclidean_space
assumes $k \in$ Basis
shows
cbox a $b \cap\{x . x \cdot k \leq c\}=$ cbox $a\left(\sum i \in\right.$ Basis. (if $i=k$ then $\min (b \cdot k) c$ else $\left.b \cdot i) *_{R} i\right)$
cbox $a b \cap\{x . x \cdot k \geq c\}=\operatorname{cbox}\left(\sum i \in\right.$ Basis. (if $i=k$ then $\max (a \cdot k) c$ else $a \cdot i) *_{R}$ i) b
using assms by (rule_tac set_eqI; auto simp: mem_box)+
lemma interval_not_empty: $\forall i \in$ Basis. $a \cdot i \leq b \cdot i \Longrightarrow c b o x$ a $b \neq\{ \}$
by (simp add: box_ne_empty)

6.14.3 Bounds on intervals where they exist

definition interval_upperbound :: ('a::euclidean_space) set $\Rightarrow{ }^{\prime} a$
where interval_upperbound $s=\left(\sum i \in\right.$ Basis. $\left.(S U P x \in s . x \cdot i) *_{R} i\right)$
definition interval_lowerbound :: ('a::euclidean_space) set $\Rightarrow{ }^{\prime} a$
where interval_lowerbound $s=\left(\sum i \in\right.$ Basis. $($ INF $\left.x \in s . x \cdot i) *_{R} i\right)$
lemma interval_upperbound [simp]:
$\forall i \in$ Basis. $a \cdot i \leq b \cdot i \Longrightarrow$
interval_upperbound (cbox a b) $=\left(b::^{\prime} a::\right.$ euclidean_space $)$
unfolding interval_upperbound_def euclidean_representation_sum cbox_def
by (safe intro!: cSup_eq) auto
lemma interval_lowerbound [simp]:
$\forall i \in$ Basis. $a \cdot i \leq b \cdot i \Longrightarrow$ interval_lowerbound (cbox a b) $=(a::$ 'a::euclidean_space $)$
unfolding interval_lowerbound_def euclidean_representation_sum cbox_def
by (safe intro!: cInf_eq) auto
lemmas interval_bounds $=$ interval_upperbound interval_lowerbound

lemma

fixes X ::real set
shows interval_upperbound_real[simp]: interval_upperbound $X=$ Sup X and interval_lowerbound_real [simp]: interval_lowerbound $X=\operatorname{Inf} X$
by (auto simp: interval_upperbound_def interval_lowerbound_def)

```
lemma interval_bounds' \({ }^{[s i m p]:}\)
    assumes cbox a \(b \neq\{ \}\)
    shows interval_upperbound (cbox ab) \(=b\)
        and interval_lowerbound (cbox ab) \(=a\)
    using assms unfolding box_ne_empty by auto
lemma interval_upperbound_Times:
    assumes \(A \neq\{ \}\) and \(B \neq\{ \}\)
    shows interval_upperbound \((A \times B)=\) (interval_upperbound \(A\), interval_upperbound
B)
proof-
    from assms have fst_image_times': \(A=f s t\) ' \((A \times B)\) by simp
    have ( \(\sum i \in\) Basis. \(\left.(S U P x \in A \times B . x \cdot(i, 0)) *_{R} i\right)=\left(\sum i \in\right.\) Basis. (SUP \(x \in A\).
\(\left.x \cdot i) *_{R} i\right)\)
            by (subst (2) fst_image_times') (simp del: fst_image_times add: image_comp
inner_Pair_0)
```

 moreover from assms have snd_image_times': \(B=\) snd ' \((A \times B)\) by simp
 have \(\left(\sum i \in\right.\) Basis. \(\left.(S U P x \in A \times B . x \cdot(0, i)) *_{R} i\right)=\left(\sum i \in\right.\) Basis. \((S U P x \in B\).
 $\left.x \cdot i) *_{R} i\right)$
by (subst (2) snd_image_times') (simp del: snd_image_times add: image_comp
inner_Pair_0)
ultimately show ?thesis unfolding interval_upperbound_def
by (subst sum_Basis_prod_eq) (auto simp add: sum_prod)
qed
lemma interval_lowerbound_Times:
assumes $A \neq\{ \}$ and $B \neq\{ \}$
shows interval_lowerbound $(A \times B)=($ interval_lowerbound A, interval_lowerbound
B)
proof-
from assms have $f_{s t _i m a g e _t i m e s '}$: $A=f_{s t}$ ' $(A \times B)$ by simp
have $\left(\sum i \in\right.$ Basis. $\left.(I N F x \in A \times B . x \cdot(i, 0)) *_{R} i\right)=\left(\sum i \in\right.$ Basis. (INF $x \in A$.
$\left.x \cdot i) *_{R} i\right)$
by (subst (2) fst_image_times') (simp del: fst_image_times add: image_comp
inner_Pair_0)
moreover from assms have snd_image_times': $B=$ snd ' $(A \times B)$ by simp
have $\left(\sum i \in\right.$ Basis. $\left.(I N F x \in A \times B . x \cdot(0, i)) *_{R} i\right)=\left(\sum i \in\right.$ Basis. (INF $x \in B$.
$\left.x \cdot i) *_{R} i\right)$
by (subst (2) snd_image_times') (simp del: snd_image_times add: image_comp
inner_Pair_0)
ultimately show ?thesis unfolding interval_lowerbound_def
by (subst sum_Basis_prod_eq) (auto simp add: sum_prod)
qed

6.14.4 The notion of a gauge - simply an open set containing the point

definition gauge $\gamma \longleftrightarrow(\forall x . x \in \gamma x \wedge$ open $(\gamma x))$
lemma gaugeI:
assumes $\bigwedge x . x \in \gamma x$
and $\bigwedge x$. open (γx)
shows gauge γ
using assms unfolding gauge_def by auto
lemma gauge $D[$ dest $]$:
assumes gauge γ
shows $x \in \gamma x$
and open (γx)
using assms unfolding gauge_def by auto
lemma gauge_ball_dependent: $\forall x .0<e x \Longrightarrow$ gauge $(\lambda x$. ball $x(e x))$
unfolding gauge_def by auto
lemma gauge_ball[intro]: $0<e \Longrightarrow$ gauge $(\lambda x$. ball $x e)$
unfolding gauge_def by auto
lemma gauge_trivial[intro!]: gauge (λ x. ball x 1)
by (rule gauge_ball) auto
lemma gauge_Int[intro]: gauge $\gamma 1 \Longrightarrow$ gauge $\gamma 2 \Longrightarrow$ gauge $(\lambda x . \gamma 1 x \cap \gamma 2 x)$
unfolding gauge_def by auto
lemma gauge_reflect:
fixes $\gamma::$ ' $a:$:euclidean_space \Rightarrow 'a set
shows gauge $\gamma \Longrightarrow$ gauge $(\lambda x$. uminus' $\gamma(-x)$)
using equation_minus_iff
by (auto simp: gauge_def surj_def intro!: open_surjective_linear_image linear_uminus)
lemma gauge_Inter:
assumes finite S and $\bigwedge u . u \in S \Longrightarrow$ gauge ($f u$)
shows gauge $(\lambda x . \bigcap\{f u x \mid u . u \in S\})$
proof -
have $*: \bigwedge x .\{f u x \mid u . u \in S\}=(\lambda u . f u x) ' S$
by auto
show ?thesis
unfolding gauge_def unfolding *
using assms unfolding Ball_def Inter_iff mem_Collect_eq gauge_def by auto
qed
lemma gauge_existence_lemma:
$(\forall x . \exists d::$ real. $p x \longrightarrow 0<d \wedge q d x) \longleftrightarrow(\forall x . \exists d>0 . p x \longrightarrow q d x)$
by (metis zero_less_one)

6.14.5 Attempt a systematic general set of "offset" results for components

lemma gauge_modify:
assumes $(\forall S$. open $S \longrightarrow$ open $\{x . f(x) \in S\})$ gauge d
shows gauge $(\lambda x .\{y . f y \in d(f x)\})$
using assms unfolding gauge_def by force

6.14.6 Divisions

definition division_of (infixl division ${ }^{\prime}$ _of 40)
where

```
\(s\) division_of \(i \longleftrightarrow\)
    finite \(s \wedge\)
    \((\forall K \in s . K \subseteq i \wedge K \neq\{ \} \wedge(\exists a b . K=c b o x a b)) \wedge\)
    \((\forall K 1 \in s . \forall K 2 \in s . K 1 \neq K 2 \longrightarrow \operatorname{interior}(K 1) \cap \operatorname{interior}(K 2)=\{ \}) \wedge\)
    \((\bigcup s=i)\)
```

lemma division_ofD[dest]:
assumes s division_of i
shows finite s
and $\wedge K . K \in s \Longrightarrow K \subseteq i$
and $\wedge K . K \in s \Longrightarrow K \neq\{ \}$
and $\bigwedge K . K \in s \Longrightarrow \exists a b . K=$ cbox $a b$
and $\bigwedge K 1 K 2 . K 1 \in s \Longrightarrow K 2 \in s \Longrightarrow K 1 \neq K 2 \Longrightarrow \operatorname{interior}(K 1) \cap$ inte-
$\operatorname{rior}(K 2)=\{ \}$
and $\bigcup s=i$
using assms unfolding division_of_def by auto
lemma division_ofI:
assumes finite s
and $\wedge K . K \in s \Longrightarrow K \subseteq i$
and $\wedge K . K \in s \Longrightarrow K \neq\{ \}$
and $\bigwedge K . K \in s \Longrightarrow \exists a b . K=c b o x a b$
and $\bigwedge K 1 K 2 . K 1 \in s \Longrightarrow K 2 \in s \Longrightarrow K 1 \neq K 2 \Longrightarrow$ interior $K 1 \cap$ interior
$K 2=\{ \}$
and $\bigcup s=i$
shows s division_of i
using assms unfolding division_of_def by auto
lemma division_of_finite: s division_of $i \Longrightarrow$ finite s
by auto

unfolding division_of_def by auto
lemma division_of_trivial[simp]: s division_of $\} \longleftrightarrow s=\{ \}$
unfolding division_of_def by auto
lemma division_of_sing[simp]:

```
    s division_of cbox a (a::'a::euclidean_space) }\longleftrightarrows={\begin{array}{lccc:}{<c}&{a}&{a}\end{array}
    (is ?l = ?r)
proof
    assume ?r
    moreover
    { fix K
        assume s={{a}} K\ins
        then have }\existsxy.K=cbox x y
        apply (rule_tac x=a in exI)+
        apply force
        done
    }
    ultimately show ?l
        unfolding division_of_def cbox_sing by auto
next
    assume ?l
    have }x={a}\mathrm{ if }x\ins\mathrm{ for }
        by (metis «s division_of cbox a a` cbox_sing division_ofD(2) division_ofD(3)
subset_singletonD that)
    moreover have s\not={}
        using <s division_of cbox a a` by auto
    ultimately show ?r
        unfolding cbox_sing by auto
qed
lemma elementary_empty: obtains p where p division_of {}
    unfolding division_of_trivial by auto
lemma elementary_interval: obtains p where p division_of (cbox a b)
    by (metis division_of_trivial division_of_self)
lemma division_contains:s division_of i\Longrightarrow}\Longrightarrow\forallx\ini.\existsk\ins.x\in
    unfolding division_of_def by auto
lemma forall_in_division:
    d division_of }i\Longrightarrow(\forallx\ind.Px)\longleftrightarrow(\forallab.cbox a b \ind \longrightarrowP(cbox a b)
    unfolding division_of_def by fastforce
lemma cbox_division_memE:
    assumes \mathcal{D}:K\in\mathcal{D}\mathcal{D}\mathrm{ division_of S}
    obtains ab}\mathrm{ where }K=\mathrm{ cbox a b }K\not={}K\subseteq
    using assms unfolding division_of_def by metis
lemma division_of_subset:
    assumes p division_of ( }\bigcupp
        and q\subseteqp
    shows q division_of ( }\bigcupq
proof (rule division_ofI)
    note * = division_ofD[OF assms(1)]
```

```
show finite \(q\)
    using *(1) assms(2) infinite_super by auto
\{
    fix \(k\)
    assume \(k \in q\)
    then have \(k p: k \in p\)
        using assms(2) by auto
    show \(k \subseteq \bigcup q\)
        using \(\langle k \in q\rangle\) by auto
    show \(\exists a b\). \(k=c b o x a b\)
        using *(4) [OF kp] by auto
    show \(k \neq\{ \}\)
        using \(*(3)[O F k p]\) by auto
    \}
fix \(k 1 k 2\)
    assume \(k 1 \in q k 2 \in q k 1 \neq k 2\)
    then have \(* *: k 1 \in p k 2 \in p k 1 \neq k 2\)
        using assms(2) by auto
    show interior \(k 1 \cap\) interior \(k 2=\{ \}\)
    using \(*(5)[O F * *]\) by auto
qed auto
lemma division_of_union_self[intro]: \(p\) division_of \(s \Longrightarrow p\) division_of \((\bigcup p)\)
    unfolding division_of_def by auto
lemma division_inter:
    fixes s1 s2 :: 'a::euclidean_space set
    assumes p1 division_of s1
        and \(p 2\) division_of s2
    shows \(\{k 1 \cap k 2 \mid k 1 k 2 . k 1 \in p 1 \wedge k 2 \in p 2 \wedge k 1 \cap k 2 \neq\{ \}\}\) division_of \((s 1\)
\(\cap \mathrm{s}\) 2)
    (is ? \(A^{\prime}\) division_of _)
proof -
    let ? \(A=\{s . s \in(\lambda(k 1, k 2) . k 1 \cap k 2) '(p 1 \times p 2) \wedge s \neq\{ \}\}\)
    have \(*\) : ? \(A^{\prime}=? A\) by auto
    show ?thesis
        unfolding *
    proof (rule division_ofI)
        have ? \(A \subseteq(\lambda(x, y) . x \cap y)\) ' \((p 1 \times p \mathcal{Z})\)
            by auto
        moreover have finite ( \(p 1 \times p 2\) )
            using assms unfolding division_of_def by auto
        ultimately show finite ? A by auto
        have \(*: \bigwedge s . \bigcup\{x \in s . x \neq\{ \}\}=\bigcup s\)
            by auto
        show \(\bigcup ? A=s 1 \cap s 2\)
            unfolding *
            using division_ofD (6)[OF assms(1)] and division_ofD(6)[OF assms(2)] by
auto
```


\{

fix k
assume $k \in$? A
then obtain $k 1 k 2$ where $k: k=k 1 \cap k 2 k 1 \in p 1 k 2 \in p 2 k \neq\{ \}$ by auto
then show $k \neq\{ \}$
by auto
show $k \subseteq s 1 \cap s 2$
using division_ofD(2)[OF assms(1) k (2)] and division_ofD(2)[OF assms(2)
$k(3)]$
unfolding k by auto
obtain a1 b1 where $k 1: k 1=$ cbox a1 b1
using division_ofD (4)[OF assms(1) k (2)] by blast
obtain a2 b2 where $k 2: k 2=c b o x a 2 b 2$
using division_ofD(4)[OF assms(2) k (3)] by blast
show $\exists a b$. $k=c b o x a b$
unfolding $k k 1 k 2$ unfolding Int_interval by auto
\}
fix $k 1 k 2$
assume $k 1 \in ? A$
then obtain $x 1$ y1 where $k 1: k 1=x 1 \cap y 1 x 1 \in p 1 y 1 \in p 2 k 1 \neq\{ \}$ by auto
assume $k 2 \in ? A$
then obtain $x 2 y 2$ where $k 2: k 2=x 2 \cap y 2 x 2 \in p 1 y 2 \in p 2 k 2 \neq\{ \}$ by auto
assume $k 1 \neq k 2$
then have th: $x 1 \neq x 2 \vee y 1 \neq y^{2}$
unfolding $k 1 k 2$ by auto
have $*:$ interior $x 1 \cap$ interior $x 2=\{ \} \vee$ interior $y 1 \cap$ interior $y 2=\{ \} \Longrightarrow$ interior $(x 1 \cap y 1) \subseteq$ interior $x 1 \Longrightarrow$ interior $(x 1 \cap y 1) \subseteq$ interior $y 1 \Longrightarrow$ interior $(x \mathcal{2} \cap y \mathcal{2}) \subseteq$ interior $x 2 \Longrightarrow$ interior $(x 2 \cap y 2) \subseteq$ interior $y \mathcal{Z} \Longrightarrow$ interior $(x 1 \cap y 1) \cap$ interior $(x \mathcal{2} \cap y \mathcal{L})=\{ \}$ by auto
show interior $k 1 \cap$ interior $k 2=\{ \}$
unfolding $k 1 \mathrm{k} 2$
apply (rule *)
using assms division_ofD(5) k1 k2(2) k2(3) th apply auto done
qed
qed
lemma division_inter_1:
assumes d division_of i
and cbox a (b::'a::euclidean_space) $\subseteq i$
shows \{cbox ab \quad ค $k \mid k . k \in d \wedge$ cbox a $b \cap k \neq\{ \}\}$ division_of (cbox a b)
proof (cases cbox ab=\{\})
case True
show ?thesis
unfolding True and division_of_trivial by auto
next

```
    case False
    have *: cbox a \(b \cap i=\) cbox a \(b\) using assms(2) by auto
    show ?thesis
        using division_inter[OF division_of_self[OF False] assms(1)]
        unfolding * by auto
qed
lemma elementary_Int:
    fixes \(s t::\) ' \(a:\) :euclidean_space set
    assumes \(p 1\) division_of \(s\)
        and \(p 2\) division_of \(t\)
    shows \(\exists p\). \(p\) division_of \((s \cap t)\)
using assms division_inter by blast
lemma elementary_Inter:
    assumes finite \(f\)
        and \(f \neq\{ \}\)
        and \(\forall s \in f . \exists p\). p division_of ( \(s::\left({ }^{\prime} a::\right.\) euclidean_space) set)
    shows \(\exists p . p\) division_of ( \(\bigcap f)\)
    using assms
proof (induct frule: finite_induct)
    case (insert \(x f\) )
    show ? case
    proof (cases \(f=\{ \}\) )
        case True
        then show ?thesis
            unfolding True using insert by auto
    next
        case False
        obtain \(p\) where \(p\) division_of \(\bigcap f\)
            using insert(3)[OF False insert(5)[unfolded ball_simps,THEN conjunct2]] ..
        moreover obtain \(p x\) where \(p x\) division_of \(x\)
            using insert(5)[rule_format, OF insertI1] ..
        ultimately show ?thesis
            by (simp add: elementary_Int Inter_insert)
    qed
qed auto
lemma division_disjoint_union:
    assumes p1 division_of s1
        and \(p 2\) division_of s2
        and interior s1 \(\cap\) interior \(s 2=\{ \}\)
    shows \((p 1 \cup p 2)\) division_of \((s 1 \cup s 2)\)
proof (rule division_ofI)
    note \(d 1=\) division_of \(D[\) OF \(\operatorname{assms}(1)]\)
    note \(d 2=\) division_of \(D[\) OF \(\operatorname{assms}(2)]\)
    show finite \((p 1 \cup p 2)\)
        using d1(1) d2(1) by auto
    show \(\bigcup(p 1 \cup p 2)=s 1 \cup s 2\)
```

```
    using d1(6) d2(6) by auto
{
    fix k1 k2
    assume as:k1\inp1\cupp2 k2 \in p1\cupp2 k1\not=k2
    moreover
    let ?g=interior k1 \cap interior k2 = {}
    {
        assume as: k1\inp1 k2\inp2
        have ?g
            using interior_mono[OF d1(2)[OF as(1)]] interior_mono[OF d2(2)[OF
as(2)]]
            using assms(3) by blast
    }
    moreover
    {
        assume as: k1\inp2 k2\inp1
        have ?g
            using interior_mono[OF d1(2)[OF as(2)]] interior_mono[OF d2(2)[OF
as(1)]]
            using assms(3) by blast
        }
        ultimately show ?g
        using d1(5)[OF _ _ as(3)] and d2(5)[OF _ _as(3)] by auto
}
    fix }
    assume k: k\inp1\cupp2
    show k\subseteqs1\cups2
        using k d1(2) d2(2) by auto
    show }k\not={
        using kd1(3) d2(3) by auto
    show \existsab. k=cbox a b
        using k d1(4) d2(4) by auto
qed
lemma partial_division_extend_1:
    fixes a b c d :: 'a::euclidean_space
    assumes incl: cbox c d \subseteqcbox a b
        and nonempty: cbox c d}\not={
    obtains p}\mathrm{ where p division_of (cbox a b) cbox c d f p
proof
    let ? }B=\lambdaf::'a=>'a\times'⿱丷 '
        cbox (\sumi\inBasis. (fst (fi) • i)*R i) (\sumi\inBasis. (snd (fi) | i) *R i)
    define p where p=?B'(Basis }\mp@subsup{->}{E}{}{(a,c),(c,d),(d,b)}
    show cbox c d \inp
        unfolding p_def
    by (auto simp add: box_eq_empty cbox_def intro!: image_eqI[where }x=\lambda(i::'a)\inBasis
(c,d)])
```



```
    using incl nonempty that
    unfolding box_eq_empty subset_box by (auto simp: not_le)
show \(p\) division_of (cbox a b)
proof (rule division_ofI)
    show finite \(p\)
    unfolding \(p_{\text {_def }}\) by (auto intro!: finite_PiE)
    \{
    fix \(k\)
    assume \(k \in p\)
    then obtain \(f\) where \(f: f \in\) Basis \(\rightarrow_{E}\{(a, c),(c, d),(d, b)\}\) and \(k: k=\)
? \(B f\)
    by (auto simp: p_def)
    then show \(\exists a b . k=c b o x a b\)
    by auto
    have \(k \subseteq\) cbox a \(b \wedge k \neq\{ \}\)
    proof (simp add: \(k\) box_eq_empty subset_box not_less, safe)
        fix \(i::{ }^{\prime} a\)
        assume \(i: i \in\) Basis
        with \(f\) have \(f i=(a, c) \vee f i=(c, d) \vee f i=(d, b)\)
            by (auto simp: PiE_iff)
        with \(i\) ord [of \(i\) ]
        show \(a \cdot i \leq f s t(f i) \cdot i \operatorname{snd}(f i) \cdot i \leq b \cdot i f s t(f i) \cdot i \leq \operatorname{snd}(f i) \cdot i\)
            by auto
    qed
    then show \(k \neq\{ \} k \subseteq\) cbox \(a b\)
        by auto
    \{
        fix \(l\)
        assume \(l \in p\)
        then obtain \(g\) where \(g: g \in\) Basis \(\rightarrow_{E}\{(a, c),(c, d),(d, b)\}\) and \(l: l=\)
? \(B g\)
            by (auto simp: \(p_{-}\)def)
    assume \(l \neq k\)
    have \(\exists i \in\) Basis. \(f i \neq g i\)
    proof (rule ccontr)
            assume \(\neg\) ?thesis
            with \(f g\) have \(f=g\)
            by (auto simp: PiE_iff extensional_def fun_eq_iff)
            with \(\langle l \neq k\rangle\) show False
            by ( simp add: lk)
    qed
    then obtain \(i\) where \(*: i \in\) Basis \(f i \neq g i\)..
    then have \(f i=(a, c) \vee f i=(c, d) \vee f i=(d, b)\)
                \(g i=(a, c) \vee g i=(c, d) \vee g i=(d, b)\)
            using \(f g\) by (auto simp: PiE_iff)
    with \(* \operatorname{ord}[\) of \(i]\) show interior \(l \cap\) interior \(k=\{ \}\)
        by (auto simp add: l \(k\) disjoint_interval intro!: bexI \([o f ~-~ i])\)
\}
```

```
    note <k\subseteqcbox a b
}
moreover
    {
    fix x assume x: x c cbox a b
    have \foralli\inBasis. \existsl. x • i\in{fst l •i.. snd l • i}^l\in{(a,c),(c,d),(d,b)}
    proof
        fix }i:: ' '
        assume i\in Basis
        with x ord[of i]
```



```
                (d\cdoti\leqx \cdot i^x •i\leqb \cdoti)
            by (auto simp: cbox_def)
        then show \existsl.x • i\in{fst l \cdot i .. snd l • i}^l\in{(a,c),(c,d),(d,b)}
                by auto
    qed
    then obtain f}\mathrm{ where
        f:\foralli\inBasis. x • i\in{fst (fi) •i..snd (fi) • i} ^ fi\in{(a,c), (c,d), (d,
b)}
                unfolding bchoice_iff ..
    moreover from f have restrict f Basis }\in\mathrm{ Basis }\mp@subsup{->}{E}{}{(a,c),(c,d),(d,b)
                by auto
    moreover from f have x & ?B (restrict f Basis)
        by (auto simp: mem_box)
    ultimately have }\existsk\inp.x\in
        unfolding p_def by blast
    }
    ultimately show }\bigcupp=cbox a b
        by auto
    qed
qed
proposition partial_division_extend_interval:
    assumes p division_of ( }\bigcupp)(\bigcupp)\subseteqcbox a b
    obtains q}\mathrm{ where p}\subseteqqq\mathrm{ division_of cbox a (b::'a::euclidean_space)
proof (cases p={})
    case True
    obtain q}\mathrm{ where q division_of (cbox a b)
    by (rule elementary_interval)
    then show ?thesis
        using True that by blast
next
    case False
    note p = division_ofD[OF assms(1)]
    have div_cbox: }\forallk\inp.\existsq.q division_of cbox a b\wedgek\in
    proof
        fix }
        assume kp:k\inp
        obtain cd where k: k= cbox c d
```

using $p(4)[O F k p]$ by blast
have $*$: cbox $c d \subseteq$ cbox a b cbox c $d \neq\{ \}$
using $p(2,3)[$ OF $k p$, unfolded $k]$ using assms(2)
by (blast intro: order.trans) +
obtain q where q division_of cbox abcbox c $d \in q$
by (rule partial_division_extend_1 [OF *])
then show $\exists q . q$ division_of cbox $a b \wedge k \in q$
unfolding k by auto
qed
obtain q where $q: \bigwedge x . x \in p \Longrightarrow q x$ division_of cbox a $b \bigwedge x . x \in p \Longrightarrow x \in$ $q x$
using bchoice $[O F$ div_cbox] by blast
have $q x$ division_of $\bigcup(q x)$ if $x: x \in p$ for x
apply (rule division_ofI)
using division_ofD[OF $q(1)[O F x]]$ by auto
then have di: $\Lambda x . x \in p \Longrightarrow \exists d . d$ division_of $\bigcup(q x-\{x\})$
by (meson Diff_subset division_of_subset)
have $\exists d$. d division_of $\bigcap\left((\lambda i . \bigcup(q i-\{i\})){ }^{\prime} p\right)$
apply (rule elementary_Inter [OF finite_imageI $[$ OF $p(1)]])$
apply (auto dest: di simp: False elementary_Inter [OF finite_imageI[OF p(1)]])
done
then obtain d where $d: d$ division_of $\bigcap((\lambda i . \bigcup(q i-\{i\}))$ ' $p)$..
have $d \cup p$ division_of cbox ab
proof -
have te: $\bigwedge S f T . S \neq\{ \} \Longrightarrow \forall i \in S . f i \cup i=T \Longrightarrow T=\bigcap\left(f^{\prime} S\right) \cup \bigcup S$ by auto
have cbox_eq: cbox a $b=\bigcap((\lambda i . \bigcup(q i-\{i\})) ' p) \cup \bigcup p$
proof (rule te[OF False], clarify)
fix i
assume $i: i \in p$
show $\bigcup(q i-\{i\}) \cup i=c b o x a b$
using division_ofD (6)[OF $q(1)[$ OF i]] using $q(2)[O F i]$ by auto
qed
\{ fix K
assume $K: K \in p$
note $q k=$ division_ofD[OF $q(1)[O F K]]$
have $*: \bigwedge u T S . T \cap S=\{ \} \Longrightarrow u \subseteq S \Longrightarrow u \cap T=\{ \}$ by auto
have interior $(\bigcap i \in p . \bigcup(q i-\{i\})) \cap$ interior $K=\{ \}$
proof (rule $*[$ OF Int_interior_Union_intervals $]$)
show $\wedge T . T \in q K-\{K\} \Longrightarrow$ interior $K \cap$ interior $T=\{ \}$
using $q k$ (5) using $q(2)[O F K]$ by auto
show interior $(\bigcap i \in p . \bigcup(q i-\{i\})) \subseteq$ interior $(\bigcup(q K-\{K\}))$
apply (rule interior_mono)+
using K by auto
qed (use $q k$ in auto) $\}$ note $[$ simp $]=$ this
show $d \cup p$ division_of (cbox a b)
unfolding cbox_eq
apply (rule division_disjoint_union[OF d assms(1)])

```
    apply (rule Int_interior_Union_intervals)
    apply (rule p open_interior ballI)+
    apply simp_all
    done
qed
then show ?thesis
    by (meson Un_upper2 that)
qed
lemma elementary_bounded[dest]:
    fixes S :: 'a::euclidean_space set
    shows p division_of S \Longrightarrow bounded S
    unfolding division_of_def by (metis bounded_Union bounded_cbox)
lemma elementary_subset_cbox:
    p division_of S\Longrightarrow\existsab.S\subseteqcbox a (b::'a::euclidean_space)
    by (meson bounded_subset_cbox_symmetric elementary_bounded)
proposition division_union_intervals_exists:
    fixes a b :: 'a::euclidean_space
    assumes cbox a b}\not={
    obtains p where (insert (cbox a b) p) division_of (cbox a b \cup cbox c d)
proof (cases cbox c d = {})
    case True
    with assms that show ?thesis by force
next
    case False
    show ?thesis
    proof (cases cbox a b \cap cbox c d = {})
        case True
        then show ?thesis
            by (metis that False assms division_disjoint_union division_of_self insert_is_Un
interior_Int interior_empty)
    next
        case False
        obtain uv where uv: cbox a b\cap cbox c d = cbox uv
            unfolding Int_interval by auto
        have uv_sub: cbox u v\subseteq cbox c d using uv by auto
        obtain p where pd: p division_of cbox c d and cbox uv\inp
            by (rule partial_division_extend_1[OF uv_sub False[unfolded uv]])
        note p = this division_ofD[OF pd]
        have interior (cbox a b \cap\bigcup(p-{cbox uv}))= interior(cbox uv \cap\bigcup(p-
{cbox u v}))
            apply (rule arg_cong[of _ _ interior])
            using p(8) uv by auto
        also have ... = {}
            unfolding interior_Int
            apply (rule Int_interior_Union_intervals)
            using p(6) p(7)[OF p(2)]〈finite p>
```

```
        apply auto
        done
    finally have [simp]: interior (cbox a b) \cap interior }(\bigcup(p-{cbox u v}))={
by simp
    have cbe: cbox a b\cup cbox c d = cbox a b U U(p-{cbox u v})
            using p(8) unfolding uv[symmetric] by auto
    have insert (cbox a b) (p-{cbox uv}) division_of cbox a b U (p-{cbox u
v})
    proof -
        have {cbox a b} division_of cbox a b
            by (simp add: assms division_of_self)
        then show insert (cbox a b) (p-{cbox uv}) division_of cbox a b U U(p-
{cbox u v})
    by (metis (no_types) Diff_subset <interior (cbox a b) \cap interior }(\bigcup(p-{cbox
uv}))}={}>division_disjoint_union division_of_subset insert_is_Un p(1) p(8))
    qed
    with that[of p-{cbox u v}}]]\mathrm{ show ?thesis by (simp add: cbe)
    qed
qed
lemma division_of_Union:
    assumes finite f
    and }\bigwedgep.p\inf\Longrightarrowp\mathrm{ division_of ( }\bigcupp
    and \k1 k2. k1\in\bigcupf\Longrightarrow <2 \in\bigcupf\Longrightarrowk1\not=k2\Longrightarrow interior k1 \cap interior
k2 = {}
    shows \f division_of \bigcup(Uf)
    using assms by (auto intro!: division_ofI)
lemma elementary_union_interval:
    fixes a b :: 'a::euclidean_space
    assumes p division_of \bigcupp
    obtains q}\mathrm{ where q division_of (cbox a b U \p)
proof (cases p={}\vee cbox a b={})
    case True
    obtain p where p division_of (cbox a b)
        by (rule elementary_interval)
    then show thesis
        using True assms that by auto
next
    case False
    then have p\not={} cbox a b}\not={
        by auto
    note pdiv = division_ofD[OF assms]
    show ?thesis
    proof (cases interior (cbox a b) ={})
        case True
        show ?thesis
            apply (rule that [of insert (cbox a b) p,OF division_ofI])
            using pdiv(1-4) True False apply auto
```

```
    apply (metis IntI equals0D pdiv(5))
    by (metis disjoint_iff_not_equal pdiv(5))
next
    case False
    have \(\forall K \in p . \exists q\). (insert \((\) cbox ab) q) division_of \((\) cbox \(a b \cup K)\)
    proof
        fix \(K\)
        assume \(k p: K \in p\)
        from \(\operatorname{pdiv}(4)[O F k p]\) obtain \(c d\) where \(K=c b o x c d\) by blast
        then show \(\exists q\). (insert \((\) cbox ab) q) division_of (cbox ab \(b \cup K)\)
        by (meson 〈cbox a \(b \neq\{ \}\) 〉division_union_intervals_exists)
    qed
    from bchoice[OF this] obtain \(q\) where \(\forall x \in p\). insert (cbox ab) \((q x)\) division_of
\((c b o x a b) \cup x\)..
    note \(q=\) division_of \(D[\) OF this[rule_format \(]]\)
    let ? \(D=\bigcup\{\) insert (cbox a b) \((q K) \mid K . K \in p\}\)
    show thesis
    proof (rule that \([O F\) division_ofI \(]\) )
    have \(*:\{\) insert \((\) cbox ab) \((q K) \mid K . K \in p\}=(\lambda K\).insert \((\) cbox a \(b)(q K))\)
- \(p\)
        by auto
    show finite ?D
        using \(* \operatorname{pdiv}(1) q(1)\) by auto
    have \(\bigcup ? D=(\bigcup x \in p . \bigcup(\) insert \((\) cbox a \(b)(q x)))\)
        by auto
    also have \(\ldots=\bigcup\{\) cbox ab \(b \in t \mid t . t \in p\}\)
        using \(q(6)\) by auto
    also have \(\ldots=\) cbox a \(b \cup \bigcup p\)
        using \(\langle p \neq\{ \}\rangle\) by auto
    finally show \(\bigcup ? D=c b o x\) a \(b \cup \bigcup p\).
    show \(K \subseteq\) cbox a \(b \cup \bigcup p K \neq\{ \}\) if \(K \in ? D\) for \(K\)
        using \(q\) that by blast+
    show \(\exists a b\). \(K=c b o x a b\) if \(K \in ? D\) for \(K\)
        using \(q(4)\) that by auto
    next
        fix \(K^{\prime} K\)
    assume \(K: K \in ? D\) and \(K^{\prime}: K^{\prime} \in ? D K \neq K^{\prime}\)
    obtain \(x\) where \(x: K \in \operatorname{insert}(\operatorname{cbox}\) a \(b)(q x) x \in p\)
        using \(K\) by auto
    obtain \(x^{\prime}\) where \(x^{\prime}: K^{\prime} \in\) insert (cbox a \(\left.b\right)\left(q x^{\prime}\right) x^{\prime} \in p\)
        using \(K^{\prime}\) by auto
    show interior \(K \cap\) interior \(K^{\prime}=\{ \}\)
    proof (cases \(x=x^{\prime} \vee K=\) cbox a \(b \vee K^{\prime}=c b o x a b\) )
        case True
        then show ?thesis
            using True \(K^{\prime} q(5) x^{\prime} x\) by auto
    next
        case False
        then have \(a s^{\prime}: K \neq c b o x\) a \(b K^{\prime} \neq c b o x\) a \(b\)
```

```
            by auto
            obtain cd where K: K= cbox c d
            using q(4)x by blast
            have interior K\cap interior (cbox a b) = {}
            using as' K'(2) q(5) x by blast
            then have interior K\subseteq interior x
            by (metis <interior (cbox ab)}\not={}`Kq(2) x interior_subset_union_intervals)
            moreover
            obtain c d where c_d: K' = cbox c d
                using q(4)[OF x'(2,1)] by blast
            have interior K'\cap interior (cbox a b) ={}
            using as'(2) q(5) x' by blast
            then have interior K}\mp@subsup{K}{}{\prime}\subseteq\mathrm{ interior }\mp@subsup{x}{}{\prime
            by (metis <interior (cbox a b) \not={}> c_d interior_subset_union_intervals
q(2) x'(1) x'(2))
            moreover have interior x \cap interior x' = {}
            by (meson False assms division_ofD(5) x'(2) x(2))
            ultimately show ?thesis
                using<interior K\subseteq interior x><interior }\mp@subsup{K}{}{\prime}\subseteq\mathrm{ interior }\mp@subsup{x}{}{\prime}\mathrm{ ` by auto
        qed
    qed
    qed
qed
lemma elementary_unions_intervals:
    assumes fin: finite f
        and \s.s\inf\Longrightarrow\existsab.s=cbox a (b::'a::euclidean_space)
    obtains p}\mathrm{ where p division_of ( }\bigcupf\mathrm{ )
proof -
    have \existsp.p division_of (Uf)
    proof (induct_tac f rule:finite_subset_induct)
        show }\existsp.p\mathrm{ division_of }\bigcup{}\mathrm{ using elementary_empty by auto
    next
        fix }x
        assume as: finite F x\not\inF\existsp.p division_of UFx\inf
        from this(3) obtain p where p:p division_of UF ..
        from assms(2)[OF as(4)] obtain ab where x: x = cbox a b by blast
        have *: \bigcupF=\bigcupp
            using division_ofD[OF p] by auto
        show \exists p.p division_of U(insert x F)
            using elementary_union_interval[OF p[unfolded *], of a b]
            unfolding Union_insert x * by metis
    qed (insert assms, auto)
    then show ?thesis
        using that by auto
qed
```

```
lemma elementary_union:
    fixes S T :: 'a::euclidean_space set
    assumes ps division_of S pt division_of T
    obtains p where p division_of (S\cupT)
proof -
    have *:S UT=\ps\cup\bigcuppt
        using assms unfolding division_of_def by auto
    show ?thesis
        apply (rule elementary_unions_intervals[of ps \cup pt])
        using assms apply auto
        by (simp add: * that)
qed
lemma partial_division_extend:
    fixes T :: 'a::euclidean_space set
    assumes p division_of S
        and q division_of T
        and S\subseteqT
    obtains r where p\subseteqr and r division_of T
proof -
    note divp = division_ofD[OF assms(1)] and divq = division_ofD[OF assms(2)]
    obtain ab}\mathrm{ where ab:T}
        using elementary_subset_cbox[OF assms(2)] by auto
    obtain r1 where p\subseteqr1 r1 division_of (cbox a b)
        using assms
        by (metis ab dual_order.trans partial_division_extend_interval divp(6))
    note r1 = this division_ofD[OF this(2)]
    obtain p' where p}\mp@subsup{p}{}{\prime}\mathrm{ division_of }\bigcup(r1-p
        apply (rule elementary_unions_intervals[of r1 - p])
        using r1 (3,6)
            apply auto
        done
    then obtain r2 where r2: r2 division_of (U(r1 - p)) \cap (Uq)
        by (metis assms(2) divq(6) elementary_Int)
    {
        fix }
    assume x:x\inT x\not\inS
    then obtain R where r:R\inr1x}\in
        unfolding r1 using ab
        by (meson division_contains r1(2) subsetCE)
    moreover have R\not\inp
    proof
        assume R\inp
        then have }x\inS\mathrm{ using divp(2) r by auto
        then show False using x by auto
        qed
        ultimately have }x\in\bigcup(r1-p)\mathrm{ by auto
    }
    then have Teq:T = \bigcupp\cup(\bigcup(r1-p)\cap\bigcupq)
```

```
    unfolding divp divq using assms(3) by auto
    have interior \(S \cap\) interior \((\bigcup(r 1-p))=\{ \}\)
    proof (rule Int_interior_Union_intervals)
    have \(*: \bigwedge S .(\bigwedge x . x \in S \Longrightarrow\) False \() \Longrightarrow S=\{ \}\)
        by auto
    show interior \(S \cap\) interior \(m=\{ \}\) if \(m \in r 1-p\) for \(m\)
    proof -
        have interior \(m \cap\) interior \((\bigcup p)=\{ \}\)
        proof (rule Int_interior_Union_intervals)
            show \(\wedge T . T \in p \Longrightarrow\) interior \(m \cap\) interior \(T=\{ \}\)
                by (metis DiffD1 DiffD2 that r1(1) r1(7) rev_subsetD)
        qed (use divp in auto)
        then show interior \(S \cap\) interior \(m=\{ \}\)
            unfolding divp by auto
    qed
    qed (use r1 in auto)
    then have interior \(S \cap\) interior \((\bigcup(r 1-p) \cap(\bigcup q))=\{ \}\)
    using interior_subset by auto
    then have div: \(p \cup r 2\) division_of \(\bigcup p \cup \bigcup(r 1-p) \cap \bigcup q\)
    by (simp add: assms(1) division_disjoint_union divp(6) r2)
    show ?thesis
    apply (rule that[of \(p \cup r 2]\) )
    apply (auto simp: div Teq)
    done
qed
lemma division_split:
fixes \(a\) :: ' \(a:\) :euclidean_space
assumes \(p\) division_of (cbox ab) and \(k: k \in\) Basis
shows \(\{l \cap\{x . x \cdot k \leq c\} \mid l . l \in p \wedge l \cap\{x . x \cdot k \leq c\} \neq\{ \}\}\) division_of(cbox a
\(b \cap\{x \cdot x \cdot k \leq c\})\)
(is ?p1 division_of ?I1)
and \(\{l \cap\{x . x \cdot k \geq c\} \mid l . l \in p \wedge l \cap\{x . x \cdot k \geq c\} \neq\{ \}\}\) division_of (cbox a \(b \cap\{x \cdot x \cdot k \geq c\})\)
(is ?p2 division_of ?I2)
proof (rule_tac[!] division_ofI)
note \(p=\) division_of \(D[O F \operatorname{assms}(1)]\)
show finite ?p1 finite ?p2
using \(p(1)\) by auto
show \(\bigcup ? p 1=? I 1 \bigcup ? p 2=? I 2\)
unfolding \(p(6)\) [symmetric] by auto
\{
fix \(K\)
assume \(K \in\) ? \(p 1\)
then obtain \(l\) where \(l: K=l \cap\{x . x \cdot k \leq c\} l \in p l \cap\{x . x \cdot k \leq c\} \neq\{ \}\)
by blast
obtain \(u v\) where \(u v: l=c b o x u v\)
```

```
        using assms(1) l(2) by blast
    show K\subseteq?!1
        using lp(2) uv by force
    show K\not={}
        by (simp add: l)
    show }\existsab.K=cbox a
        apply (simp add:l uv p(2-3)[OF l(2)])
        apply (subst interval_split[OF k])
        apply (auto intro: order.trans)
        done
    fix K
    assume K'}\mp@subsup{K}{}{\prime}\in?,p
```



```
# {}
    by blast
    assume K}
    then show interior K}\cap\mathrm{ interior }\mp@subsup{K}{}{\prime}={
        unfolding l l' using p(5)[OF l(2) l'(2)] by auto
}
{
    fix }
    assume K\in?p2
    then obtain l where l:K=l\cap{x.c\leqx\cdotk}l\inpl\cap{x.c\leqx\cdotk}\not={}
        by blast
    obtain }uv\mathrm{ where uv:l=cbox uv
        using l(2) p(4) by blast
    show K\subseteq?!I2
        using lp(2) uv by force
    show K}\not={
        by (simp add: l)
    show \existsab.K=cbox a b
        apply (simp add: l uv p(2-3)[OF l(2)])
        apply (subst interval_split[OF k])
        apply (auto intro: order.trans)
        done
    fix K}\mp@subsup{K}{}{\prime
    assume K' }\in??p
```



```
# {}
            by blast
        assume K}=\mp@subsup{|}{}{\prime
        then show interior }K\cap\mathrm{ interior }\mp@subsup{K}{}{\prime}={
            unfolding l l' using p(5)[OF l(2) l'(2)] by auto
    }
qed
```


6.14.7 Tagged (partial) divisions

definition tagged_partial_division_of (infixr tagged ${ }^{\prime}$ _partial'_division'_of 40)

```
where \(s\) tagged_partial_division_of \(i \longleftrightarrow\)
    finite \(s \wedge\)
    \((\forall x K .(x, K) \in s \longrightarrow x \in K \wedge K \subseteq i \wedge(\exists a b . K=c b o x a b)) \wedge\)
    \((\forall x 1\) K1 \(x 2\) K2. \((x 1, K 1) \in s \wedge(x 2, K 2) \in s \wedge(x 1, K 1) \neq(x 2, K 2) \longrightarrow\)
        interior K1 \(\cap\) interior K2 \(=\{ \})\)
```

lemma tagged_partial_division_ofD:
assumes s tagged_partial_division_of i
shows finite s
and $\bigwedge x K .(x, K) \in s \Longrightarrow x \in K$
and $\bigwedge x K .(x, K) \in s \Longrightarrow K \subseteq i$
and $\bigwedge x K .(x, K) \in s \Longrightarrow \exists a b . K=c b o x a b$
and $\bigwedge x 1$ K1 x2 K2. $(x 1, K 1) \in s \Longrightarrow$
$(x 2, K 2) \in s \Longrightarrow(x 1, K 1) \neq(x 2, K 2) \Longrightarrow$ interior $K 1 \cap$ interior $K 2=\{ \}$
using assms unfolding tagged_partial_division_of_def by blast+
definition tagged_division_of (infixr tagged ${ }^{\prime}$ _division'_of 40)
where s tagged_division_of $i \longleftrightarrow s$ tagged_partial_division_of $i \wedge(\bigcup\{K . \exists x$.
$(x, K) \in s\}=i)$
lemma tagged_division_of_finite: s tagged_division_of $i \Longrightarrow$ finite s unfolding tagged_division_of_def tagged_partial_division_of_def by auto
lemma tagged_division_of:
s tagged_division_of $i \longleftrightarrow$ finite $s \wedge$
$(\forall x K .(x, K) \in s \longrightarrow x \in K \wedge K \subseteq i \wedge(\exists a b . K=c b o x a b)) \wedge$
$(\forall x 1 K 1 x 2$ K2. $(x 1, K 1) \in s \wedge(x 2, K 2) \in s \wedge(x 1, K 1) \neq(x 2, K 2) \longrightarrow$
interior K1 \cap interior K2 $=\{ \}) \wedge$
$(\bigcup\{K . \exists x .(x, K) \in s\}=i)$
unfolding tagged_division_of_def tagged_partial_division_of_def by auto

```
lemma tagged_division_ofI:
    assumes finite \(s\)
        and \(\bigwedge x K .(x, K) \in s \Longrightarrow x \in K\)
        and \(\bigwedge x K .(x, K) \in s \Longrightarrow K \subseteq i\)
    and \(\bigwedge x K .(x, K) \in s \Longrightarrow \exists a b . K=c b o x a b\)
    and \(\bigwedge x 1 K 1 x 2\) K2. \((x 1, K 1) \in s \Longrightarrow(x 2, K 2) \in s \Longrightarrow(x 1, K 1) \neq(x 2, K 2)\)
\(\Longrightarrow\)
            interior K1 \(\cap\) interior K2 \(=\{ \}\)
        and \((\bigcup\{K . \exists x .(x, K) \in s\}=i)\)
    shows \(s\) tagged_division_of \(i\)
    unfolding tagged_division_of
    using assms by fastforce
lemma tagged_division_of \(D[d e s t]\) :
    assumes \(s\) tagged_division_of \(i\)
    shows finite s
        and \(\bigwedge x K .(x, K) \in s \Longrightarrow x \in K\)
```

```
    and \(\bigwedge x K .(x, K) \in s \Longrightarrow K \subseteq i\)
    and \(\bigwedge x K .(x, K) \in s \Longrightarrow \exists a b . K=c b o x a b\)
    and \(\bigwedge x 1 K 1\) x2 K2. \((x 1, K 1) \in s \Longrightarrow(x 2, K 2) \in s \Longrightarrow(x 1, K 1) \neq(x 2, K 2)\)
        interior K1 \(\cap\) interior K2 \(=\{ \}\)
    and \((\bigcup\{K . \exists x .(x, K) \in s\}=i)\)
    using assms unfolding tagged_division_of by blast+
lemma division_of_tagged_division:
    assumes \(s\) tagged_division_of \(i\)
    shows (snd's) division_of \(i\)
proof (rule division_ofI)
    note assm \(=\) tagged_division_ofD \([O F\) assms \(]\)
    show \(\bigcup(s n d ' s)=i\) finite \((s n d ' s)\)
        using assm by auto
    fix \(k\)
    assume \(k: k \in \operatorname{snd}^{\prime} s\)
    then obtain \(x k\) where \(x k:(x k, k) \in s\)
        by auto
    then show \(k \subseteq i k \neq\{ \} \exists a b . k=c b o x a b\)
        using assm by fastforce +
    fix \(k^{\prime}\)
    assume \(k^{\prime}: k^{\prime} \in \operatorname{snd}\) ' \(s k \neq k^{\prime}\)
    from this(1) obtain \(x k^{\prime}\) where \(x k^{\prime}:\left(x k^{\prime}, k^{\prime}\right) \in s\)
        by auto
    then show interior \(k \cap\) interior \(k^{\prime}=\{ \}\)
    using assm(5) \(k^{\prime}(2) x k\) by blast
qed
lemma partial_division_of_tagged_division:
    assumes s tagged_partial_division_of \(i\)
    shows (snd's) division_of \(\bigcup(s n d\) ' \(s)\)
proof (rule division_ofI)
    note assm \(=\) tagged_partial_division_ofD[OF assms]
    show finite \((\) snd 's) \(\bigcup(\) snd's) \(s) \bigcup(\) snd ' \(s)\)
        using assm by auto
    fix \(k\)
    assume \(k: k \in\) snd ' \(^{\prime} s\)
    then obtain \(x k\) where \(x k:(x k, k) \in s\)
        by auto
    then show \(k \neq\{ \} \exists a b\). \(k=\) cbox ab \(k \subseteq \bigcup(\) snd's)
        using assm by auto
    fix \(k^{\prime}\)
    assume \(k^{\prime}: k^{\prime} \in\) snd 's \(k \neq k^{\prime}\)
    from this(1) obtain \(x k^{\prime}\) where \(x k^{\prime}:\left(x k^{\prime}, k^{\prime}\right) \in s\)
        by auto
    then show interior \(k \cap\) interior \(k^{\prime}=\{ \}\)
        using assm(5) \(k^{\prime}(2) x k\) by auto
qed
```

lemma tagged_partial_division_subset:
assumes stagged_partial_division_of i and $t \subseteq s$
shows t tagged_partial_division_of i
using assms finite_subset[OF assms(2)]
unfolding tagged_partial_division_of_def
by blast
lemma tag_in_interval: p tagged_division_of $i \Longrightarrow(x, k) \in p \Longrightarrow x \in i$
by auto
lemma tagged_division_of_empty: \{\} tagged_division_of \{\}
unfolding tagged_division_of by auto
lemma tagged_partial_division_of_trivial[simp]: ptagged_partial_division_of $\} \longleftrightarrow$ $p=\{ \}$
unfolding tagged_partial_division_of_def by auto
lemma tagged_division_of_trivial[simp]: p tagged_division_of $\} \longleftrightarrow p=\{ \}$
unfolding tagged_division_of by auto
lemma tagged_division_of_self: $x \in$ cbox a $b \Longrightarrow\{(x$, cbox $a b)\}$ tagged_division_of (cbox a b)
by (rule tagged_division_ofI) auto
lemma tagged_division_of_self_real: $x \in\{a . . b::$ real $\} \Longrightarrow\{(x,\{a . . b\})\}$ tagged_division_of $\{a . . b\}$ unfolding box_real[symmetric]
by (rule tagged_division_of_self)
lemma tagged_division_Un:
assumes $p 1$ tagged_division_of s1 and $p 2$ tagged_division_of s2 and interior s1 \cap interior $s \mathcal{Z}=\{ \}$
shows $(p 1 \cup p 2)$ tagged_division_of $(s 1 \cup s 2)$
proof (rule tagged_division_ofI)
note $p 1=$ tagged_division_of $D[O F \operatorname{assms}(1)]$
note $p 2=$ tagged_division_of $D[O F \operatorname{assms}(2)]$
show finite $(p 1 \cup p 2)$
using $p 1$ (1) $p 2(1)$ by auto
show $\bigcup\{k . \exists x .(x, k) \in p 1 \cup p 2\}=s 1 \cup s 2$
using $p 1(6) p 2(6)$ by blast
fix $x k$
assume $x k:(x, k) \in p 1 \cup p 2$
show $x \in k \exists a b . k=c b o x a b$
using $x k$ p1 $(2,4) p 2(2,4)$ by auto
show $k \subseteq s 1 \cup s 2$
using $x k$ p1(3) p2(3) by blast

```
    fix \(x^{\prime} k^{\prime}\)
    assume \(x k^{\prime}:\left(x^{\prime}, k^{\prime}\right) \in p 1 \cup p 2(x, k) \neq\left(x^{\prime}, k^{\prime}\right)\)
    have \(*: \bigwedge a b . a \subseteq s 1 \Longrightarrow b \subseteq s 2 \Longrightarrow\) interior \(a \cap\) interior \(b=\{ \}\)
    using assms(3) interior_mono by blast
    show interior \(k \cap\) interior \(k^{\prime}=\{ \}\)
    apply (cases \((x, k) \in p 1)\)
    apply (meson * UnE assms(1) assms(2) p1(5) tagged_division_ofD (3) \(x k^{\prime}(1)\)
\(\left.x k^{\prime}(2)\right)\)
    by (metis * UnE assms(1) assms(2) inf_sup_aci(1) p2(5) tagged_division_ofD(3)
\(\left.x k x k^{\prime}(1) x k^{\prime}(2)\right)\)
qed
lemma tagged_division_Union:
    assumes finite I
    and tag: \(\bigwedge i . i \in I \Longrightarrow p f n i\) tagged_division_of \(i\)
    and disj: \(\bigwedge i 1\) i2. \(\llbracket i 1 \in I ; i 2 \in I ; i 1 \neq i 2 \rrbracket \Longrightarrow \operatorname{interior}(i 1) \cap \operatorname{interior}(i 2)=\)
\{\}
    shows \(\bigcup(p f n\) ' \(I)\) tagged_division_of \((\bigcup I)\)
proof (rule tagged_division_ofI)
    note assm \(=\) tagged_division_ofD \([\) OF tag \(]\)
    show finite \((\bigcup(p f n ‘ I))\)
    using assms by auto
    have \(\bigcup\{k . \exists x .(x, k) \in \bigcup(p f n ' I)\}=\bigcup\left((\lambda i . \bigcup\{k . \exists x .(x, k) \in p f n i\})^{\prime} I\right)\)
        by blast
    also have \(\ldots=\bigcup I\)
        using assm(6) by auto
    finally show \(\bigcup\{k . \exists x .(x, k) \in \bigcup(p f n ' I)\}=\bigcup I\).
    fix \(x k\)
    assume \(x k:(x, k) \in \bigcup(p f n ' I)\)
    then obtain \(i\) where \(i: i \in I(x, k) \in p f n i\)
        by auto
    show \(x \in k \exists a b\). \(k=c b o x\) a \(b k \subseteq \bigcup I\)
    using \(\operatorname{assm}(2-4)[O F i]\) using \(i(1)\) by auto
    fix \(x^{\prime} k^{\prime}\)
    assume \(x k^{\prime}:\left(x^{\prime}, k^{\prime}\right) \in \bigcup\left(p f n^{\prime} I\right)(x, k) \neq\left(x^{\prime}, k^{\prime}\right)\)
    then obtain \(i^{\prime}\) where \(i^{\prime}: i^{\prime} \in I\left(x^{\prime}, k^{\prime}\right) \in p f n i^{\prime}\)
        by auto
    have \(*: \bigwedge a b . i \neq i^{\prime} \Longrightarrow a \subseteq i \Longrightarrow b \subseteq i^{\prime} \Longrightarrow\) interior \(a \cap\) interior \(b=\{ \}\)
    using \(i(1) i^{\prime}(1)\) disj interior_mono by blast
    show interior \(k \cap\) interior \(k^{\prime}=\{ \}\)
    proof (cases \(i=i^{\prime}\) )
    case True then show ?thesis
            using \(\operatorname{assm}(5) i^{\prime} i x k^{\prime}(2)\) by blast
    next
        case False then show ?thesis
        using \(* \operatorname{assm}(3) i^{\prime} i\) by auto
    qed
qed
```

```
lemma tagged_partial_division_of_Union_self:
    assumes p tagged_partial_division_of s
    shows p tagged_division_of (U(snd' p))
    apply (rule tagged_division_ofI)
    using tagged_partial_division_ofD[OF assms]
    apply auto
    done
lemma tagged_division_of_union_self:
    assumes p tagged_division_of s
    shows p tagged_division_of ( U(snd ' p))
    apply (rule tagged_division_ofI)
    using tagged_division_ofD[OF assms]
    apply auto
    done
lemma tagged_division_Un_interval:
    fixes a :: 'a::euclidean_space
    assumes p1 tagged_division_of (cbox a b \cap{x. x•k\leq(c::real)})
        and p2 tagged_division_of (cbox a b \cap{x. x.k\geqc})
        and k:k\in Basis
    shows (p1\cupp2) tagged_division_of (cbox a b)
proof -
    have *: cbox a b=(cbox a b \cap{x. x\cdotk\leqc}) \cup(cbox a b\cap{x.x\cdotk\geqc})
        by auto
    show ?thesis
        apply (subst *)
        apply (rule tagged_division_Un[OF assms(1-2)])
        unfolding interval_split[OF k] interior_cbox
        using}
        apply (auto simp add: box_def elim!: ballE[where }x=k]\mathrm{ )
        done
qed
lemma tagged_division_Un_interval_real:
    fixes a :: real
    assumes p1 tagged_division_of ({a.. b} \cap{x. x.k\leq(c::real)})
        and p2 tagged_division_of ({a.. b}\cap{x. x•k\geqc})
        and k:k\in Basis
    shows (p1\cupp2) tagged_division_of {a .. b}
    using assms
    unfolding box_real[symmetric]
    by (rule tagged_division_Un_interval)
lemma tagged_division_split_left_inj:
    assumes d:d tagged_division_of i
    and tags:(x1,K1)\ind (x2,K2) \ind
    and K1 }=\mathrm{ K2
    and eq:K1\cap{x.x.k\leqc}=K2\cap {x.x.k\leqc}
```

```
    shows interior \((K 1 \cap\{x \cdot x \cdot k \leq c\})=\{ \}\)
proof -
    have interior \((\) K1 \(\cap\) K2 \()=\{ \} \vee(x 2, K 2)=(x 1, K 1)\)
    using tags \(d\) by (metis (no_types) interior_Int tagged_division_ofD(5))
    then show ?thesis
        using eq〈K1 \(\neq\) K2〉 by (metis (no_types) inf_assoc inf_bot_left inf_left_idem
interior_Int old.prod.inject)
qed
lemma tagged_division_split_right_inj:
    assumes \(d\) : d tagged_division_of \(i\)
    and tags: \((x 1, K 1) \in d(x 2, K 2) \in d\)
    and \(K 1 \neq K 2\)
    and eq: K1 \(\cap\{x . x \cdot k \geq c\}=K 2 \cap\{x . x \cdot k \geq c\}\)
        shows interior \((K 1 \cap\{x . x \cdot k \geq c\})=\{ \}\)
proof -
    have interior \((K 1 \cap K 2)=\{ \} \vee(x 2, K 2)=(x 1, K 1)\)
        using tags \(d\) by (metis (no_types) interior_Int tagged_division_ofD (5))
    then show ?thesis
        using eq〈K1 \(\neq\) K2〉 by (metis (no_types) inf_assoc inf_bot_left inf_left_idem
    interior_Int old.prod.inject)
qed
lemma (in comm_monoid_set) over_tagged_division_lemma:
    assumes \(p\) tagged_division_of \(i\)
        and \(\wedge u v\). box \(u v=\{ \} \Longrightarrow d(\) cbox \(u v)=\mathbf{1}\)
    shows \(F(\lambda(-, k) . d k) p=F d(s n d\) ' \(p)\)
proof -
    have \(*:(\lambda(-, k), d k)=d \circ\) snd
        by (simp add: fun_eq_iff)
    note assm = tagged_division_ofD \([O F\) assms(1)]
    show ?thesis
        unfolding *
    proof (rule reindex_nontrivial[symmetric])
        show finite \(p\)
            using assm by auto
        fix \(x y\)
    assume \(x \in p \quad y \in p x \neq y\) snd \(x=\) snd \(y\)
    obtain \(a b\) where \(a b\) : snd \(x=\) cbox \(a b\)
        using \(\operatorname{assm}(4)[\) of fst \(x\) snd \(x]\langle x \in p\rangle\) by auto
    have \((\) fst \(x\), snd \(y) \in p(\) fst \(x\), snd \(y) \neq y\)
        using \(\langle x \in p\rangle\langle x \neq y\rangle\langle\) snd \(x=\) snd \(y\rangle\) [symmetric] by auto
    with \(\langle x \in p\rangle\langle y \in p\rangle\) have interior (snd \(x) \cap\) interior (snd \(y\) ) \(=\{ \}\)
        by (intro assm(5)[of fst \(x_{-}\)fst \(\left.y\right]\) ) auto
    then have box a \(b=\{ \}\)
        unfolding «snd \(x=\) snd \(y\rangle[\) symmetric \(] a b\) by auto
    then have \(d(\) cbox a \(b)=\mathbf{1}\)
        using assm(2)[of fst \(x\) snd \(x]\langle x \in p\rangle a b[\) symmetric] by (intro assms(2)) auto
    then show \(d(\operatorname{snd} x)=\mathbf{1}\)
```

```
        unfolding ab by auto
    qed
qed
```


6.14.8 Functions closed on boxes: morphisms from boxes to monoids

This auxiliary structure is used to sum up over the elements of a division. Main theorem is operative_division. Instances for the monoid are ' a option, real, and bool.

Using additivity of lifted function to encode definedness. definition lift_option :: $\left(\begin{array}{l} \\ \\ \end{array} \Rightarrow^{\prime} b \Rightarrow^{\prime} c\right) \Rightarrow^{\prime} a$ option $\Rightarrow^{\prime} b$ option $\Rightarrow^{\prime} c$ option where
lift_option $f a^{\prime} b^{\prime}=$ Option.bind $a^{\prime}\left(\lambda a\right.$. Option.bind $b^{\prime}(\lambda b$. Some $\left.(f a b))\right)$
lemma lift_option_simps[simp]:
lift_option f (Some a) (Some b) $=$ Some (f a b)
lift_option f None $b^{\prime}=$ None
lift_option f a^{\prime} None $=$ None
by (auto simp: lift_option_def)
lemma comm_monoid_lift_option:
assumes comm_monoid $f z$
shows comm_monoid (lift_option f) (Some z)
proof -
from assms interpret comm_monoid $f z$.
show ?thesis
by standard (auto simp: lift_option_def ac_simps split: bind_split)
qed
lemma comm_monoid_and: comm_monoid HOL.conj True
by standard auto
lemma comm_monoid_set_and: comm_monoid_set HOL.conj True by (rule comm_monoid_set.intro) (fact comm_monoid_and)

Misc lemma interval_real_split:
$\{a . . b::$ real $\} \cap\{x . x \leq c\}=\{a \operatorname{l.} \min b c\}$
$\{a . . b\} \cap\{x . c \leq x\}=\{\max a c \cdot . b\}$
apply (metis Int_atLeastAtMostL1 atMost_def)
apply (metis Int_atLeastAtMostL2 atLeast_def)
done
lemma bgauge_existence_lemma: $(\forall x \in s . \exists d::$ real. $0<d \wedge q d x) \longleftrightarrow(\forall x . \exists d>0$. $x \in s \longrightarrow q d x)$
by (meson zero_less_one)

Division points definition division_points ($k:$:('a::euclidean_space) set) $d=$
$\{(j, x) . j \in$ Basis \wedge (interval_lowerbound $k) \cdot j<x \wedge x<$ (interval_upperbound $k) \cdot j \wedge$
$(\exists i \in d$. (interval_lowerbound $i) \cdot j=x \vee($ interval_upperbound $i) \cdot j=x)\}$
lemma division_points_finite:
fixes i :: 'a::euclidean_space set
assumes d division_of i
shows finite (division_points id)
proof -
note assm $=$ division_ofD $[$ OF assms $]$
let ? $M=\lambda j$. $\{(j, x) \mid x$. (interval_lowerbound $i) \cdot j<x \wedge x<$ (interval_upperbound $i) \cdot j \wedge$
$(\exists i \in d$. (interval_lowerbound $i) \cdot j=x \vee($ interval_upperbound $i) \cdot j=x)\}$
have $*$: division_points i $d=\bigcup(? M$ ' Basis $)$
unfolding division_points_def by auto
show ?thesis
unfolding * using assm by auto
qed
lemma division_points_subset:
fixes a :: ' $a::$ euclidean_space
assumes d division_of (cbox a b)
and $\forall i \in$ Basis. $a \cdot i<b \cdot i \quad a \cdot k<c c<b \cdot k$
and $k: k \in$ Basis
shows division_points (cbox a $b \cap\{x . x \cdot k \leq c\})\{l \cap\{x . x \cdot k \leq c\} \mid l . l \in d \wedge$
$l \cap\{x . x \cdot k \leq c\} \neq\{ \}\} \subseteq$
division_points (cbox ab)d (is ?t1)
and division_points (cbox ab $\cap\{x . x \cdot k \geq c\})\{l \cap\{x . x \cdot k \geq c\} \mid l . l \in d \wedge$
$\neg(l \cap\{x . x \cdot k \geq c\}=\{ \})\} \subseteq$
division_points (cbox a b) d (is ?t2)
proof -
note assm $=$ division_of $[$ OF $\operatorname{assms}(1)]$
have $*: \forall i \in$ Basis. $a \cdot i \leq b \cdot i$
$\forall i \in$ Basis. $a \cdot i \leq\left(\sum i \in\right.$ Basis. $($ if $i=k$ then $\min (b \cdot k) c$ else $\left.b \cdot i) *_{R} i\right) \cdot i$ $\forall i \in$ Basis. ($\sum i \in$ Basis. (if $i=k$ then $\max (a \cdot k) c$ else $\left.\left.a \cdot i\right) *_{R} i\right) \cdot i \leq b \cdot i$ $\min (b \cdot k) c=c \max (a \cdot k) c=c$
using assms using less_imp_le by auto
have $\exists i \in d$. interval_lowerbound $i \cdot x=y \vee$ interval_upperbound $i \cdot x=y$
if $a \cdot x<y y<($ if $x=k$ then c else $b \cdot x)$
interval_lowerbound $i \cdot x=y \vee$ interval_upperbound $i \cdot x=y$
$i=l \cap\{x . x \cdot k \leq c\} l \in d l \cap\{x . x \cdot k \leq c\} \neq\{ \}$
$x \in$ Basis for $i l x y$
proof -
obtain $u v$ where $l: l=c b o x u v$
using $\langle l \in d\rangle \operatorname{assms}(1)$ by blast
have $*: \forall i \in$ Basis. $u \cdot i \leq\left(\sum i \in\right.$ Basis. $(i f i=k$ then $\min (v \cdot k) c$ else $v \cdot i)$
$\left.*_{R} i\right) \cdot i$
using that(6) unfolding l interval_split $[O F ~ k]$ box_ne_empty that .

```
    have **: }\foralli\in\mathrm{ Basis. }u\cdoti\leqv\cdot
    using l using that(6) unfolding box_ne_empty[symmetric] by auto
    show ?thesis
    apply (rule bexI[OF _ <l\ind>])
    using that(1-3,5)\langlex\in Basis\rangle
    unfolding l interval_bounds[OF **] interval_bounds[OF *] interval_split[OF
k] that
    apply (auto split: if_split_asm)
    done
    qed
```



```
        using \langlec<<b\cdotk\rangle by (auto split: if_split_asm)
    ultimately show ?t1
        unfolding division_points_def interval_split[OF k, of a b]
    unfolding interval_bounds[OF *(1)] interval_bounds[OF *(2)] interval_bounds[OF
*(3)]
        unfolding * by force
    have }\xy\mathrm{ i l. (if }x=k\mathrm{ then c else }a\cdotx)<y\Longrightarrowa\cdotx<
        using <a\cdotk<c> by (auto split: if_split_asm)
    moreover have \existsi\ind. interval_lowerbound i •x=y\vee
                interval_upperbound i • x= y
        if (if }x=k\mathrm{ then c else }a\cdotx)<y y<b\cdot
            interval_lowerbound i}\cdotx=y\vee interval_upperbound i \cdotx=
```



```
            x\in Basis for x y il
    proof -
        obtain }uv\mathrm{ where }l:l=cbox u
            using \langlel \ind\rangle assm(4) by blast
    have *: \foralli\inBasis. (\sumi\inBasis. (if i=k then max (u | k) c else u}\cdot\mp@code{i)}\mp@subsup{*}{R}{}i)
i\leqv.i
        using that(6) unfolding l interval_split[OF k] box_ne_empty that .
    have **: }\foralli\in\mathrm{ Basis. }u\cdoti\leqv\cdot
            using l using that(6) unfolding box_ne_empty[symmetric] by auto
    show \existsi\ind. interval_lowerbound i}\cdotx=y\vee interval_upperbound i • x=y
        apply (rule bexI[OF _ <l\ind>])
        using that(1-3,5)\langlex\in Basis\rangle
        unfolding l interval_bounds[OF **] interval_bounds[OF *] interval_split[OF
    k] that
        apply (auto split:if_split_asm)
        done
    qed
    ultimately show ?t2
        unfolding division_points_def interval_split[OF k, of a b]
    unfolding interval_bounds[OF*(1)] interval_bounds[OF *(2)] interval_bounds[OF
*(3)]
    unfolding *
    by force
qed
```

```
lemma division_points_psubset:
    fixes \(a\) :: ' \(a:\) :euclidean_space
    assumes \(d\) : d division_of (cbox a b)
        and altb: \(\forall i \in\) Basis. \(a \cdot i<b \cdot i \quad a \cdot k<c c<b \cdot k\)
        and \(l \in d\)
        and disj: interval_lowerbound \(l \cdot k=c \vee\) interval_upperbound \(l \cdot k=c\)
        and \(k: k \in\) Basis
    shows division_points (cbox a \(b \cap\{x . x \cdot k \leq c\})\{l \cap\{x . x \cdot k \leq c\} \mid l . l \in d \wedge l\)
\(\cap\{x . x \cdot k \leq c\} \neq\{ \}\} \subset\)
            division_points (cbox a b) d (is ?D1 \(\subset\) ?D)
        and division_points (cbox ab \(\cap\{x . x \cdot k \geq c\})\{l \cap\{x . x \cdot k \geq c\} \mid l . l \in d \wedge l\)
\(\cap\{x . x \cdot k \geq c\} \neq\{ \}\} \subset\)
            division_points \((c b o x a b) d\) (is ? D2 \(\subset\) ? \(D\) )
proof -
    have \(a b: \forall i \in\) Basis. \(a \cdot i \leq b \cdot i\)
        using altb by (auto intro!:less_imp_le)
    obtain \(u v\) where \(l: l=\) cbox \(u v\)
        using \(d<l \in d\rangle\) by blast
    have \(u v\) : \(\forall i \in\) Basis. \(u \cdot i \leq v \cdot i \forall i \in\) Basis. \(a \cdot i \leq u \cdot i \wedge v \cdot i \leq b \cdot i\)
        apply (metis assms(5) box_ne_empty(1) cbox_division_memE d l)
        by (metis assms(5) box_ne_empty(1) cbox_division_memE d l subset_box(1))
    have \(*\) : interval_upperbound (cbox a \(b \cap\{x . x \cdot k \leq\) interval_upperbound \(l \cdot k\}\) )
- \(k=\) interval_upperbound \(l \cdot k\)
            interval_upperbound (cbox ab \(\cap\{x . x \cdot k \leq\) interval_lowerbound \(l \cdot k\}\) ) \(\cdot\)
    \(k=\) interval_lowerbound \(l \cdot k\)
        unfolding \(l\) interval_split \([O F k]\) interval_bounds \([O F \operatorname{uv}(1)]\)
        using uv[rule_format, of \(k] a b k\)
        by auto
    have \(\exists x . x \in\) ? \(D-\) ? \(D 1\)
        using assms(3-)
        unfolding division_points_def interval_bounds[OF ab]
        by (force simp add: *)
    moreover have ? \(D 1 \subseteq ? D\)
        by (auto simp add: assms division_points_subset)
    ultimately show ? \(D 1 \subset\) ? \(D\)
        by blast
    have *: interval_lowerbound (cbox a \(b \cap\{x . x \cdot k \geq\) interval_lowerbound \(l \cdot k\}\) )
- \(k=\) interval_lowerbound \(l \cdot k\)
        interval_lowerbound (cbox a \(b \cap\{x . x \cdot k \geq\) interval_upperbound \(l \cdot k\}) \cdot k=\)
interval_upperbound \(l \cdot k\)
        unfolding linterval_split[OF k] interval_bounds[OF uv(1)]
        using uv[rule_format, of \(k\) ] \(a b k\)
        by auto
    have \(\exists x . x \in ? D-\) ? D2
        using assms (3-)
        unfolding division_points_def interval_bounds[OF ab]
        by (force simp add: *)
    moreover have ?D2 \(\subseteq\) ? D
        by (auto simp add: assms division_points_subset)
```

```
    ultimately show ? D \(2 \subset ? D\)
    by blast
qed
lemma division_split_left_inj:
    fixes \(S\) :: 'a::euclidean_space set
    assumes div: \(\mathcal{D}\) division_of \(S\)
        and \(e q: K 1 \cap\left\{x::^{\prime} a . x \cdot k \leq c\right\}=K 2 \cap\{x . x \cdot k \leq c\}\)
        and \(K 1 \in \mathcal{D}\) K2 \(\in \mathcal{D} K 1 \neq K 2\)
    shows interior \((K 1 \cap\{x . x \cdot k \leq c\})=\{ \}\)
proof -
    have interior K2 \(\cap\) interior \(\{a . a \cdot k \leq c\}=\) interior \(K 1 \cap\) interior \(\{a . a \cdot k\)
\(\leq c\}\)
            by (metis (no_types) eq interior_Int)
    moreover have \(\bigwedge\) A. interior \(A \cap\) interior \(K 2=\{ \} \vee A=K 2 \vee A \notin \mathcal{D}\)
        by (meson div \(\langle K 2 \in \mathcal{D}\rangle\) division_of_def)
    ultimately show ?thesis
        using \(\langle K 1 \in \mathcal{D}\rangle\langle K 1 \neq K 2\rangle\) by auto
qed
lemma division_split_right_inj:
    fixes \(S\) :: 'a::euclidean_space set
    assumes div: \(\mathcal{D}\) division_of \(S\)
        and eq: K1 \(\cap\left\{x::^{\prime} a . x \cdot k \geq c\right\}=K 2 \cap\{x . x \cdot k \geq c\}\)
        and \(K 1 \in \mathcal{D} K 2 \in \mathcal{D} K 1 \neq K 2\)
    shows interior \((K 1 \cap\{x . x \cdot k \geq c\})=\{ \}\)
proof -
    have interior K2 \(\cap\) interior \(\{a . a \cdot k \geq c\}=\) interior \(K 1 \cap\) interior \(\{a . a \cdot k\)
\(\geq c\}\)
        by (metis (no_types) eq interior_Int)
    moreover have \(\bigwedge A\). interior \(A \cap\) interior \(K 2=\{ \} \vee A=K 2 \vee A \notin \mathcal{D}\)
        by (meson div \(\langle K 2 \in \mathcal{D}\rangle\) division_of_def)
    ultimately show ?thesis
        using \(\langle K 1 \in \mathcal{D}\rangle\langle K 1 \neq K 2\rangle\) by auto
qed
lemma interval_doublesplit:
    fixes \(a\) :: ' \(a\) ::euclidean_space
    assumes \(k \in\) Basis
    shows cbox a \(b \cap\{x .|x \cdot k-c| \leq(e::\) real \()\}=\)
        cbox \(\left(\sum i \in\right.\) Basis. (if \(i=k\) then \(\max (a \cdot k)(c-e)\) else \(\left.\left.a \cdot i\right) *_{R} i\right)\)
            \(\left(\sum i \in\right.\) Basis. \((\) if \(i=k\) then \(\min (b \cdot k)(c+e)\) else \(\left.b \cdot i) *_{R} i\right)\)
proof -
    have \(*: \bigwedge x c\) e::real. \(|x-c| \leq e \longleftrightarrow x \geq c-e \wedge x \leq c+e\)
        by auto
    have \(* *: \bigwedge s P Q . s \cap\{x . P x \wedge Q x\}=(s \cap\{x . Q x\}) \cap\{x . P x\}\)
        by blast
    show ?thesis
        unfolding \(* * *\) interval_split [OF assms] by (rule refl)
```

```
qed
lemma division_doublesplit:
    fixes \(a\) :: ' \(a::\) euclidean_space
    assumes \(p\) division_of (cbox a b)
        and \(k: k \in\) Basis
    shows \((\lambda l . l \cap\{x .|x \cdot k-c| \leq e\})\) ' \(\{l \in p . l \cap\{x .|x \cdot k-c| \leq e\} \neq\{ \}\}\)
        division_of (cbox a \(b \cap\{x .|x \cdot k-c| \leq e\})\)
proof -
    have \(*: \bigwedge x c .|x-c| \leq e \longleftrightarrow x \geq c-e \wedge x \leq c+e\)
        by auto
    have \(* *: \bigwedge p q p^{\prime} q^{\prime} . p\) division_of \(q \Longrightarrow p=p^{\prime} \Longrightarrow q=q^{\prime} \Longrightarrow p^{\prime}\) division_of \(q^{\prime}\)
        by auto
    note division_split(1)[OF assms, where \(c=c+e\),unfolded interval_split[OF k]]
    note division_split(2)[OF this, where \(c=c-e\) and \(k=k, O F k]\)
    then show ?thesis
        apply (rule **)
        subgoal
        apply (simp add: abs_diff_le_iff field_simps Collect_conj_eq setcompr_eq_image
[symmetric] cong: image_cong_simp)
        apply (rule equalityI)
        apply blast
        apply clarsimp
        apply (rule_tac \(x=x a \cap\{x . c+e \geq x \cdot k\}\) in exI)
        apply auto
        done
        by (simp add: interval_split \(k\) interval_doublesplit)
qed
Operative locale operative \(=\) comm_monoid_set +
    fixes \(g::\) ' \(b::\) euclidean_space set \(\Rightarrow{ }^{\prime} a\)
    assumes box_empty_imp: \(\bigwedge a b\). box a \(b=\{ \} \Longrightarrow g(\) cbox ab) \(=\mathbf{1}\)
        and Basis_imp: \(\bigwedge a b c k . k \in\) Basis \(\Longrightarrow g(\) cbox a b) \(=g(\) cbox a \(b \cap\{x . x \cdot k\)
\(\leq c\}) * g(c b o x\) a \(b \cap\{x \cdot x \cdot k \geq c\})\)
begin
lemma empty [simp]:
    \(g\}=\mathbf{1}\)
proof -
    have \(*\) : cbox One \((-\) One \()=\left(\{ \}::{ }^{\prime} b\right.\) set \()\)
    by (auto simp: box_eq_empty inner_sum_left inner_Basis sum.If_cases ex_in_conv)
    moreover have box One ( - One) \(=\left(\{ \}::^{\prime} b\right.\) set \()\)
        using box_subset_cbox[of One -One] by (auto simp: *)
    ultimately show ?thesis
        using box_empty_imp [of One -One] by simp
qed
lemma division:
    \(F g d=g(c b o x a b)\) if \(d\) division_of \((c b o x a b)\)
```

```
proof -
    define \(C\) where \(\left[a b s \_d e f\right]: C=\operatorname{card}(\) division_points \((c b o x a b) d)\)
    then show ?thesis
    using that proof (induction \(C\) arbitrary: a b d rule: less_induct)
        case (less abd)
        show ?case
        proof cases
            assume box a \(b=\{ \}\)
            \{ fix \(k\) assume \(k \in d\)
                    then obtain \(a^{\prime} b^{\prime}\) where \(k: k=\operatorname{cbox} a^{\prime} b^{\prime}\)
                    using division_ofD (4) [OF less.prems \(]\) by blast
            with \(\langle k \in d\rangle\) division_ofD(2)[OF less.prems \(]\) have cbox \(a^{\prime} b^{\prime} \subseteq c b o x\) a \(b\)
                    by auto
            then have box \(a^{\prime} b^{\prime} \subseteq b o x\) a \(b\)
                    unfolding subset_box by auto
            then have \(g k=\mathbf{1}\)
                    using box_empty_imp [of \(\left.a^{\prime} b\right] k\) by (simp add: 〈box a \(\left.\left.\left.b=\{ \}\right\rangle\right)\right\}\)
        then show box a \(b=\{ \} \Longrightarrow F g d=g(\) cbox a \(b)\)
            by (auto intro!: neutral simp: box_empty_imp)
        next
            assume box a \(b \neq\{ \}\)
            then have \(a b: \forall i \in\) Basis. \(a \cdot i<b \cdot i\) and \(a b^{\prime}: \forall i \in\) Basis. \(a \cdot i \leq b \cdot i\)
            by (auto simp: box_ne_empty)
        show \(F g d=g(\) cbox a \(b)\)
        proof (cases division_points (cbox a b) \(d=\{ \}\) )
            case True
            \(\left\{\right.\) fix \(u v\) and \(j::{ }^{\prime} b\)
                assume \(j: j \in\) Basis and as: cbox \(u v \in d\)
                then have cbox \(u v \neq\{ \}\)
                    using less.prems by blast
                    then have \(u v: \forall i \in\) Basis. \(u \cdot i \leq v \cdot i u \cdot j \leq v \cdot j\)
                        using \(j\) unfolding box_ne_empty by auto
            have \(*: \bigwedge p r Q . \neg j \in\) Basis \(\vee p \vee r \vee(\forall x \in d . Q x) \Longrightarrow p \vee r \vee Q(c b o x\)
\(u v)\)
                using as \(j\) by auto
            have \((j, u \cdot j) \notin\) division_points \((\) cbox a b)d
                \((j, v \cdot j) \notin\) division_points \((\) cbox a b) d using True by auto
                    note this[unfolded de_Morgan_conj division_points_def mem_Collect_eq
split_conv interval_bounds[OF ab ] bex_simps]
                note \(*[O F\) this(1) \(] *[O F\) this(2)] note this[unfolded interval_bounds \([O F\)
\(u v(1)]]\)
            moreover
            have \(a \cdot j \leq u \cdot j v \cdot j \leq b \cdot j\)
                using division_ofD(2,2,3)[OF 〈d division_of cbox ab> as]
                apply (metis \(j\) subset_box(1) uv(1))
                by (metis 〈cbox \(u v \subseteq\) cbox a b〉 \(j\) subset_box(1) uv(1))
            ultimately have \(u \cdot j=a \cdot j \wedge v \cdot j=a \cdot j \vee u \cdot j=b \cdot j \wedge v \cdot j=b \cdot j \vee u \cdot j=\)
\(a \cdot j \wedge v \cdot j=b \cdot j\)
                            unfolding not_less de_Morgan_disj using ab[rule_format,of j] uv(2) \(j\)
```

```
by force \}
    then have \(d^{\prime}: \forall i \in d . \exists u v . i=c b o x u v \wedge\)
    \((\forall j \in\) Basis. \(u \cdot j=a \cdot j \wedge v \cdot j=a \cdot j \vee u \cdot j=b \cdot j \wedge v \cdot j=b \cdot j \vee u \cdot j=a \cdot j \wedge\)
\(v \cdot j=b \cdot j)\)
            unfolding forall_in_division[OF less.prems] by blast
    have \((1 / 2) *_{R}(a+b) \in\) cbox \(a b\)
    unfolding mem_box using \(a b\) by (auto simp: inner_simps)
    note this[unfolded division_ofD \((6)[O F<d\) division_of cbox a b〉,symmetric]
Union_iff]
    then obtain \(i\) where \(i: i \in d(1 / 2) *_{R}(a+b) \in i .\).
    obtain \(u v\) where \(u v: i=\) cbox \(u v\)
\[
\begin{gathered}
\forall j \in \text { Basis. } u \cdot j=a \cdot j \wedge v \cdot j=a \cdot j \vee \\
u \cdot j=b \cdot j \wedge v \cdot j=b \cdot j \vee \\
u \cdot j=a \cdot j \wedge v \cdot j=b \cdot j
\end{gathered}
\]
using \(d^{\prime} i(1)\) by auto
have cbox a \(b \in d\)
proof -
have \(u=a v=b\)
unfolding euclidean_eq_iff [where ' \(a=\) ' \(b\) ]
proof safe
fix \(j::\) ' \(b\)
assume \(j: j \in\) Basis
note \(i\) (2) [unfolded uv mem_box,rule_format, of \(j\) ]
then show \(u \cdot j=a \cdot j\) and \(v \cdot j=b \cdot j\)
using uv(2)[rule_format,of \(j\) ] \(j\) by (auto simp: inner_simps)
qed
then have \(i=c b o x a b\) using \(u v\) by auto
then show ?thesis using \(i\) by auto
qed
then have deq: \(d=\) insert (cbox ab) \((d-\{\) cbox a \(b\})\)
by auto
have \(F g(d-\{\) cbox a b \(\})=\mathbf{1}\)
proof (intro neutral ballI)
fix \(x\)
assume \(x: x \in d-\{\) cbox ab \(\}\)
then have \(x \in d\)
by auto note \(d^{\prime}[\) rule_format, OF this]
then obtain \(u v\) where \(u v: x=\) cbox \(u v\)
\[
\begin{gathered}
\forall j \in \text { Basis. } u \cdot j=a \cdot j \wedge v \cdot j=a \cdot j \vee \\
u \cdot j=b \cdot j \wedge v \cdot j=b \cdot j \vee \\
u \cdot j=a \cdot j \wedge v \cdot j=b \cdot j
\end{gathered}
\]
by blast
have \(u \neq a \vee v \neq b\)
using \(x\) [unfolded \(u v\) ] by auto
then obtain \(j\) where \(u \cdot j \neq a \cdot j \vee v \cdot j \neq b \cdot j\) and \(j: j \in\) Basis
unfolding euclidean_eq_iff [where ' \(a=\) ' \(b\) ] by auto
then have \(u \cdot j=v \cdot j\)
using \(u v(2)[\) rule_format, OF \(j]\) by auto
then have box \(u v=\{ \}\)
```

```
            using j unfolding box_eq_empty by (auto intro!: bexI[of _ j])
    then show g}x=\mathbf{1
        unfolding uv(1) by (rule box_empty_imp)
    qed
    then show Fgd=g(cbox a b)
    using division_ofD[OF less.prems]
    apply (subst deq)
    apply (subst insert)
    apply auto
    done
next
    case False
    then have \existsx.x\in division_points (cbox a b)d
        by auto
    then obtain kc
        where k B Basis interval_lowerbound (cbox a b) •k<c
            c< interval_upperbound (cbox a b) •k
            \existsi\ind. interval_lowerbound i | k=c\vee interval_upperbound i • k=c
            unfolding division_points_def by auto
    then obtain j where a • k<cc<<b\cdotk
        and j\ind and j: interval_lowerbound j • k=c\vee interval_upperbound
j \cdot k=c
            by (metis division_of_trivial empty_iff interval_bounds' less.prems)
    let ?lec ={x.x\cdotk\leqc} let ?gec ={x.x\cdotk\geqc}
    define d1 where d1={l\cap ?lec | l. l d d ^l\cap ?lec \not={}}
    define d2 where d2 = {l\cap? gec | l. l\ind\wedgel\cap?gec \not={}}
    define cb where cb = (\sumi\inBasis. (if i=k then c else b
    define ca where ca=(\sumi\inBasis. (if i=k then c else a }\cdoti)\mp@subsup{*}{R}{}i
    have division_points (cbox a b \cap ?lec) {l\cap?lec |l. l\ind\wedgel\cap?lec \not={}}
                \subset ~ d i v i s i o n < p o i n t s ~ ( c b o x ~ a ~ b ) d d
            by (rule division_points_psubset[OF\d division_of cbox a b> ab <a • k< c>
```



```
    with division_points_finite[OF <d division_of cbox a b b]
    have card
        (division_points (cbox a b \cap ?lec) {l\cap ?lec |l. l\ind\wedgel\cap?lec }\not={}}
            < card (division_points (cbox a b) d)
            by (rule psubset_card_mono)
    moreover have division_points (cbox a b \cap {x.c\leqx •k}) {l\cap{x.c\leqx
\cdot k} |l. l l d^l\cap{x.c\leqx • k}\not={}}
                \subset \text { division_points (cbox a b)d}
            by (rule division_points_psubset[OF <d division_of cbox a b>ab <a •k<c>
<c<b | k><j\ind>j <k\in Basis>])
    with division_points_finite[OF <d division_of cbox a b>]
    have card (division_points (cbox a b \cap ?gec) {l\cap?gec |l. l\ind\wedgel\cap?gec
\not={}})
                < card (division_points (cbox a b)d)
            by (rule psubset_card_mono)
    ultimately have *:Fgd1 = g(cbox a b \cap?lec) Fgd2 = g(cbox a b \cap
?gec)
```

```
    unfolding interval_split[OF <k \in Basis`]
    apply (rule_tac[!] less.hyps)
    using division_split[OF <d division_of cbox a b〉, where k=k and c=c]〈k
\in Basis>
    by (simp_all add: interval_split d1_def d2_def division_points_finite[OF <d
division_of cbox a b>])
    have fxk_le: g (l\cap?lec)=1
    if l\indy\indl\cap?lec = y\cap?lec l\not=y for ly
    proof -
    obtain uv where leq:l= cbox uv
        using <l \ind\rangle less.prems by auto
    have interior (cbox u v \cap ?lec) = {}
        using that division_split_left_inj leq less.prems by blast
    then show ?thesis
        unfolding leq interval_split [OF \k G Basis\rangle]
        by (auto intro: box_empty_imp)
    qed
    have fxk_ge: g(l\cap{x.x\cdotk\geqc})=\mathbf{1}
        if l\indy\indl\cap?gec = y\cap?gec l\not=y for ly
    proof -
    obtain uv where leq: l= cbox uv
        using }\langlel\ind\rangle\mathrm{ less.prems by auto
    have interior (cbox u v\cap? gec)={}
        using that division_split_right_inj leq less.prems by blast
    then show ?thesis
        unfolding leq interval_split[OF <k \in Basis`]
        by (auto intro: box_empty_imp)
    qed
    have d1_alt: d1 = (\lambdal.l\cap?lec)'{l\ind.l\cap?lec \not={}}
        using d1_def by auto
    have d2_alt:d2 = (\lambdal.l\cap?gec)'{l\ind.l\cap?gec \not={}}
        using d2_def by auto
    have g(cbox a b)=Fgd1*Fgd2(is _ = ?prev)
        unfolding * using <k \in Basis\rangle
        by (auto dest: Basis_imp)
    also have Fgd1 = F (\lambdal.g (l\cap?lec)) d
        unfolding d1_alt using division_of_finite[OF less.prems] fxk_le
        by (subst reindex_nontrivial) (auto intro!: mono_neutral_cong_left)
    also have Fgd2 = F (\lambdal.g (l\cap?gec)) d
        unfolding d2_alt using division_of_finite[OF less.prems] fxk_ge
        by (subst reindex_nontrivial) (auto intro!: mono_neutral_cong_left)
    also have *: }\forallx\ind.gx=g(x\cap\mathrm{ ?lec )*g(x ค?gec)
        unfolding forall_in_division[OF <d division_of cbox a b>]
        using <k \in Basis`
        by (auto dest: Basis_imp)
    have F(\lambdal.g(l\cap?lec))d*F(\lambdal.g(l\cap?gec)) d=Fgd
    using * by (simp add: distrib)
    finally show ?thesis by auto
qed
```

```
        qed
    qed
qed
```

proposition tagged_division:
assumes d tagged_division_of (cbox a b)
shows $F(\lambda(-, l), g l) d=g(c b o x a b)$
proof -
have $F(\lambda(-, k) . g k) d=F g\left(s n d{ }^{\prime} d\right)$
using assms box_empty_imp by (rule over_tagged_division_lemma)
then show ?thesis
unfolding assms [THEN division_of_tagged_division, THEN division].
qed
end
locale operative_real $=$ comm_monoid_set +
fixes $g::$ real set $\Rightarrow{ }^{\prime} a$
assumes neutral: $b \leq a \Longrightarrow g\{a . . b\}=\mathbf{1}$
assumes coalesce_less: $a<c \Longrightarrow c<b \Longrightarrow g\{a . . c\} * g\{c . . b\}=g\{a . . b\}$
begin
sublocale operative where $g=g$
rewrites box $=\left(\right.$ greaterThanLessThan :: real $\left.\Rightarrow{ }^{-}\right)$
and cbox $=($ atLeastAtMost $::$ real \Rightarrow _)
and $\bigwedge x::$ real. $x \in$ Basis $\longleftrightarrow x=1$
proof -
show operative $f z g$
proof
show $g($ cbox $a b)=\mathbf{1}$ if box $a b=\{ \}$ for $a b$
using that by (simp add: neutral)
show $g($ cbox a b) $=g($ cbox a $b \cap\{x . x \cdot k \leq c\}) * g(c b o x$ a $b \cap\{x . c \leq x$

- $k\}$)
if $k \in$ Basis for $a b c k$
proof -
from that have [simp]: $k=1$
by simp
from neutral [of 0 1] neutral [of a a for a] coalesce_less
have $[$ simp $]: g\{ \}=\mathbf{1} \bigwedge a . g\{a\}=\mathbf{1}$
$\bigwedge a b c . a<c \Longrightarrow c<b \Longrightarrow g\{a . . c\} * g\{c . . b\}=g\{a . . b\}$
by auto
have $g\{a . . b\}=g\{a . . \min b c\} * g\{\max a c . . b\}$
by (auto simp: min_def max_def le_less)
then show $g($ cbox $a b)=g($ cbox $a b \cap\{x . x \cdot k \leq c\}) * g($ cbox $a b \cap\{x$.
$c \leq x \cdot k\}$)
by (simp add: atMost_def [symmetric] atLeast_def [symmetric])
qed
qed
show box $=($ greaterThanLessThan :: real \Rightarrow _)

```
    and cbox = (atLeastAtMost :: real # _)
    and \x::real. }x\in\mathrm{ Basis }\longleftrightarrowx=
    by (simp_all add: fun_eq_iff)
qed
lemma coalesce_less_eq:
    g{a..c}*g{c..b}=g{a..b} if a\leqcc c b 
    proof (cases c=a\veec=b)
        case False
    with that have a<cc<b
        by auto
        then show ?thesis
        by (rule coalesce_less)
    next
        case True
    with that box_empty_imp [of a a] box_empty_imp [lof b b] show ?thesis
        by safe simp_all
        qed
end
lemma operative_realI:
    operative_real fzg if operative fzg
proof -
    interpret operative f zg
        using that .
    show ?thesis
    proof
        show }g{a..b}=z\mathrm{ if }b\leqa\mathrm{ for }a
            using that box_empty_imp by simp
        show f(g{a..c})(g{c..b})=g{a..b} if a<cc<<b for abc
            using that
        using Basis_imp [of 1 a b c]
            by (simp_all add: atMost_def [symmetric] atLeast_def [symmetric] max_def
min_def)
qed
qed
```


6.14.9 Special case of additivity we need for the FTC

lemma additive_tagged_division_1:
fixes $f::$ real $\Rightarrow{ }^{\prime} a::$ real_normed_vector
assumes $a \leq b$
and p tagged_division_of $\{a . . b\}$
shows $\operatorname{sum}(\lambda(x, k) . f(\operatorname{Sup} k)-f(\operatorname{Inf} k)) p=f b-f a$
proof -
let ?f $=(\lambda k::($ real $)$ set. if $k=\{ \}$ then 0 else $f($ interval_upperbound $k)-$ $f($ interval_lowerbound $k))$
interpret operative_real plus 0 ?f

```
    rewrites comm_monoid_set.F (+) 0 = sum
    by standard[1] (auto simp add: sum_def)
    have p_td: p tagged_division_of cbox a b
    using assms(2) box_real(2) by presburger
    have **: cbox a b}\not={
        using assms(1) by auto
    then have fb-fa=(\sum(x,l)\inp. if l={} then 0 else f (interval_upperbound
l) - f(interval_lowerbound l))
    proof -
        have (if cbox a b = {} then 0 else f (interval_upperbound (cbox a b)) - f
(interval_lowerbound (cbox a b))) =fb-f a
            using assms by auto
            then show ?thesis
                using p_td assms by (simp add: tagged_division)
    qed
    then show ?thesis
        using assms by (auto intro!: sum.cong)
qed
```


6.14.10 Fine-ness of a partition w.r.t. a gauge

definition fine (infixr fine 46)
where d fine $s \longleftrightarrow(\forall(x, k) \in s . k \subseteq d x)$
lemma fineI:
assumes $\bigwedge x k .(x, k) \in s \Longrightarrow k \subseteq d x$
shows d fine s
using assms unfolding fine_def by auto
lemma fine $D[$ dest $]$:
assumes d fine s
shows $\bigwedge x k .(x, k) \in s \Longrightarrow k \subseteq d x$
using assms unfolding fine_def by auto
lemma fine_Int: $(\lambda x . d 1 x \cap d 2 x)$ fine $p \longleftrightarrow d 1$ fine $p \wedge d 2$ fine p unfolding fine_def by auto
lemma fine_Inter:
$(\lambda x . \bigcap\{f d x \mid d . d \in s\})$ fine $p \longleftrightarrow(\forall d \in s .(f d)$ fine $p)$ unfolding fine_def by blast
lemma fine_Un: d fine $p 1 \Longrightarrow d$ fine $p 2 \Longrightarrow d$ fine $(p 1 \cup p 2)$
unfolding fine_def by blast
lemma fine_Union: $(\bigwedge p . p \in p s \Longrightarrow d$ fine $p) \Longrightarrow d$ fine $(\bigcup p s)$
unfolding fine_def by auto
lemma fine_subset: $p \subseteq q \Longrightarrow d$ fine $q \Longrightarrow d$ fine p unfolding fine_def by blast

6.14.11 Some basic combining lemmas

```
lemma tagged_division_Union_exists:
    assumes finite I
        and \foralli\inI.\exists p. p tagged_division_of i}\wedged\mathrm{ fine p
        and \foralli1\inI.}\foralli2\inI. i1 \not=i2\longrightarrow < interior i1 \cap interior i2 = {
        and UI=i
        obtains p}\mathrm{ where p tagged_division_of i and d fine p
proof -
    obtain pfn where pfn:
        \x.x 
        \ x . x \in I \Longrightarrow d ~ f i n e ~ p f n ~ x ~
        using bchoice[OF assms(2)] by auto
    show thesis
        apply (rule_tac p=\bigcup (pfn'I) in that)
        using assms(1) assms(3) assms(4) pfn(1) tagged_division_Union apply force
        by (metis (mono_tags, lifting) fine_Union imageE pfn(2))
qed
```


6.14.12 The set we're concerned with must be closed

lemma division_of_closed:
fixes i :: ' $n::$ euclidean_space set
shows s division_of $i \Longrightarrow$ closed i
unfolding division_of_def by fastforce

6.14.13 General bisection principle for intervals; might be useful elsewhere

lemma interval_bisection_step:
fixes type :: 'a::euclidean_space
assumes emp: $P\}$
and Un: $\wedge S T . \llbracket P S ; P T ; \operatorname{interior}(S) \cap \operatorname{interior}(T)=\{ \} \rrbracket \Longrightarrow P(S \cup T)$
and non: $\neg P\left(c b o x a\left(b::^{\prime} a\right)\right)$
obtains $c d$ where $\neg P($ cbox $c d)$
and $\bigwedge i . i \in$ Basis $\Longrightarrow a \cdot i \leq c \cdot i \wedge c \cdot i \leq d \cdot i \wedge d \cdot i \leq b \cdot i \wedge 2 *(d \cdot i-c \cdot i) \leq$
$b \cdot i-a \cdot i$
proof -
have cbox a $b \neq\{ \}$
using emp non by metis
then have $a b: \bigwedge i . i \in$ Basis $\Longrightarrow a \cdot i \leq b \cdot i$
by (force simp: mem_box)
have UN_cases: \llbracket finite \mathcal{F};
$\wedge S . S \in \mathcal{F} \Longrightarrow P S$;
$\bigwedge S . S \in \mathcal{F} \Longrightarrow \exists$ ab. $S=$ cbox ab;
$\bigwedge S T . S \in \mathcal{F} \Longrightarrow T \in \mathcal{F} \Longrightarrow S \neq T \Longrightarrow$ interior $S \cap$ interior $T=\{ \} \rrbracket \Longrightarrow$
$P(\bigcup \mathcal{F})$ for \mathcal{F}
proof (induct \mathcal{F} rule: finite_induct)
case empty show ?case
using emp by auto

```
next
    case (insert xf)
    then show ?case
            unfolding Union_insert by (metis Int_interior_Union_intervals Un insert_iff
open_interior)
    qed
    let ?ab = \lambdai. (a\cdoti + b}\cdoti)/
    let ?A = {cbox c d | c d::'a. \foralli\inBasis. (c\bulleti=a\bulleti)^(d\bulleti=?ab i)\vee
        (c\cdoti=?ab i)\wedge(d\cdoti=b\cdoti)}
    have P(\?A)
        if \cd. \foralli\inBasis.a\bulleti\leqc\bulleti\wedgec\cdoti\leqd\bulleti\wedged\bulleti\leqb\bulleti\wedge2* (d\bulleti-c\bulleti)\leqb\bulleti
-a\cdoti\LongrightarrowP(cbox c d)
    proof (rule UN_cases)
        let ?B = ( \lambdaS. cbox ( }\sum\mathrm{ i íBasis. (if i }\inS\mathrm{ then a•i else ?ab i) *R i::'a)
                        (\sumi\inBasis. (if i\inS then ?ab i else b}\cdoti)\mp@subsup{*}{R}{}i))'{s.s\subseteqBasis
        have ?A\subseteq?B
    proof
            fix }
            assume }x\in?
            then obtain cd
                where x: x = cbox c d
                \i.i B Basis \Longrightarrow
```



```
            by blast
```



```
            using x(2) ab by (fastforce simp add: euclidean_eq_iff[where 'a='a])+
            then show }x\in\mathrm{ ? B
            unfolding x by (rule_tac x={i.i\inBasis \wedgec\cdoti=a\cdoti} in image_eqI) auto
    qed
    then show finite?A
        by (rule finite_subset) auto
    next
    fix }
    assume S\in?A
    then obtain cd
        where s: S = cbox c d
            \i. i\in Basis\Longrightarrowc.i=a}\Longrightarrowi\wedged\cdoti=?ab i\veec\cdoti=?ab i\wedged
i=b . i
            by blast
    show P S
            unfolding s using ab s(2) by (fastforce intro!: that)
    show \existsab.S=cbox a b
            unfolding s by auto
    fix }
    assume T\in?A
    then obtain ef where t:
            T = cbox ef
```


by blast
assume $S \neq T$
then have $\neg(c=e \wedge d=f)$
unfolding $s t$ by auto
then obtain i where $c \cdot i \neq e \cdot i \vee d \cdot i \neq f \cdot i$ and $i^{\prime}: i \in$ Basis
unfolding euclidean_eq_iff $\left[\right.$ where $\left.{ }^{\prime} a=^{\prime} a\right]$ by auto
then have $i: c \cdot i \neq e \bullet i d \cdot i \neq f \bullet i$
using $s(2) t(2)$ apply fastforce
using $t\left(\right.$ 2) [OF $\left.i^{\prime}\right]\langle c \cdot i \neq e \cdot i \vee d \cdot i \neq f \cdot i\rangle i^{\prime} s($ 2) $t($ 2) by fastforce
have $*: \bigwedge s t .(\bigwedge a . a \in s \Longrightarrow a \in t \Longrightarrow$ False $) \Longrightarrow s \cap t=\{ \}$
by auto
show interior $S \cap$ interior $T=\{ \}$
unfolding $s t$ interior_cbox
proof (rule *)
fix x
assume $x \in$ box $c d x \in$ box ef
then have $x: c \cdot i<d \cdot i e \cdot i<f \cdot i c \cdot i<f \cdot i e \cdot i<d \cdot i$
unfolding mem_box using i^{\prime} by force +
show False using $s(2)[O F i] t(2)[O F i]$ and $i x$ by auto
qed
qed
also have $\bigcup ? A=c b o x a b$
proof (rule set_eqI,rule)
fix x
assume $x \in \bigcup$? A
then obtain $c d$ where x :
$x \in$ cbox $c d$
^i. $i \in$ Basis $\Longrightarrow c \cdot i=a \cdot i \wedge d \cdot i=? a b i \vee c \cdot i=? a b i \wedge d \cdot i=b \cdot i$
by blast
then show $x \in c b o x a b$
unfolding mem_box by force
next
fix x
assume $x: x \in c b o x a b$
then have $\forall i \in$ Basis. $\exists c d .(c=a \cdot i \wedge d=? a b i \vee c=? a b i \wedge d=b \cdot i) \wedge$
$c \leq x \cdot i \wedge x \cdot i \leq d$
(is $\forall i \in$ Basis. $\exists \mathrm{c} d$. ? P icc)
unfolding mem_box by (metis linear)
then obtain $\alpha \beta$ where $\forall i \in$ Basis. $(\alpha \cdot i=a \cdot i \wedge \beta \cdot i=$?ab $i \vee$ $\alpha \cdot i=$? $a b i \wedge \beta \cdot i=b \cdot i) \wedge \alpha \cdot i \leq x \cdot i \wedge x \cdot i \leq \beta \cdot i$
by (auto simp: choice_Basis_iff)
then show $x \in \bigcup$? A
by (force simp add: mem_box)
qed
finally show thesis
by (metis (no_types, lifting) assms(3) that)
qed

```
lemma interval_bisection:
    fixes type :: 'a::euclidean_space
    assumes \(P\}\)
        and Un: \(\wedge S T . \llbracket P S ; P T ; \operatorname{interior}(S) \cap \operatorname{interior}(T)=\{ \} \rrbracket \Longrightarrow P(S \cup T)\)
        and \(\neg P\left(\right.\) cbox a \(\left.\left(b::^{\prime} a\right)\right)\)
    obtains \(x\) where \(x \in\) cbox ab
        and \(\forall e>0 . \exists c d . x \in \operatorname{cbox} c d \wedge \operatorname{cbox} c d \subseteq\) ball \(x e \wedge \operatorname{cbox} c d \subseteq \operatorname{cbox} a b \wedge\)
\(\neg P(\) cbox c d \()\)
proof -
    have \(\forall x . \exists y . \neg P(\operatorname{cbox}(\) fst \(x)(\) snd \(x)) \longrightarrow(\neg P(\operatorname{cbox}(\) fst \(y)(\) snd \(y)) \wedge\)
        \((\forall i \in\) Basis. fst \(x \cdot i \leq\) fst \(y \cdot i \wedge\) fst \(y \cdot i \leq\) snd \(y \cdot i \wedge\) snd \(y \cdot i \leq\) snd \(x \cdot i \wedge\)
            \(2 *(\) snd \(y \cdot i-f s t y \cdot i) \leq\) snd \(x \cdot i-f s t x \cdot i))(\) is \(\forall x\). ?P \(x)\)
    proof
        show ? P \(x\) for \(x\)
        proof (cases \(P(\operatorname{cbox}(f s t x)(\operatorname{snd} x)))\)
            case True
            then show ?thesis by auto
        next
            case False
            obtain \(c d\) where \(\neg P(\operatorname{cbox} c d)\)
                \i. \(i \in\) Basis \(\Longrightarrow\)
                    fst \(x \cdot i \leq c \cdot i \wedge\)
                    \(c \cdot i \leq d \cdot i \wedge\)
                    \(d \cdot i \leq \operatorname{snd} x \cdot i \wedge\)
                    \(2 *(d \cdot i-c \cdot i) \leq \operatorname{snd} x \cdot i-f_{s t} x \cdot i\)
                by (blast intro: interval_bisection_step[of \(P\), OF assms(1-2) False])
            then show ?thesis
                by (rule_tac \(x=(c, d)\) in exI) auto
        qed
    qed
    then obtain \(f\) where \(f\) :
        \(\forall x\).
            \(\neg P(\operatorname{cbox}(\) fst \(x)(\) snd \(x)) \longrightarrow\)
            \(\neg P(\operatorname{cbox}(f s t(f x))(\) snd \((f x))) \wedge\)
                ( \(\forall i \in\) Basis.
                    fst \(x \cdot i \leq f s t(f x) \cdot i \wedge\)
                    fst \((f x) \cdot i \leq \operatorname{snd}(f x) \cdot i \wedge\)
                    snd \((f x) \cdot i \leq \operatorname{snd} x \cdot i \wedge\)
                    \(2 *(\) snd \((f x) \cdot i-f s t(f x) \cdot i) \leq s n d x \cdot i-f s t x \cdot i)\) by metis
```

 define \(A B A B\) where \(a b _d e f: A B n=\left(f^{\wedge} n\right)(a, b) A n=f s t(A B n) B n=\)
 $\operatorname{snd}(A B n)$ for n
have $[$ simp $]: A 0=a B 0=b$ and $A B R A W: \bigwedge n . \neg P(\operatorname{cbox}(A($ Suc $n))(B($ Suc
n))) \wedge
$(\forall i \in$ Basis. $A(n) \cdot i \leq A($ Suc $n) \cdot i \wedge A($ Suc $n) \cdot i \leq B($ Suc $n) \cdot i \wedge B($ Suc $n) \cdot i \leq$
$B(n) \cdot i \wedge$
$2 *(B($ Suc $n) \cdot i-A($ Suc $n) \cdot i) \leq B(n) \cdot i-A(n) \cdot i)($ is $\wedge n$. ?P $n)$
proof -
show $A 0=a B 0=b$
unfolding ab_def by auto

```
note \(S=a b \_d e f\) funpow.simps o_def id_apply
show ?P \(n\) for \(n\)
proof (induct \(n\) )
    case 0
    then show ?case
        unfolding \(S\) using \(\langle\neg P(\) cbox a b) \() f\) by auto
    next
        case (Suc \(n\) )
        show ?case
            unfolding \(S\)
            apply (rule \(f\) [rule_format \(]\) )
            using Suc
            unfolding \(S\)
            apply auto
            done
    qed
qed
then have \(A B: A(n) \cdot i \leq A(\) Suc \(n) \cdot i A(\) Suc \(n) \cdot i \leq B(\) Suc \(n) \cdot i\)
                    \(B(\) Suc \(n) \cdot i \leq B(n) \cdot i 2 *(B(\) Suc \(n) \cdot i-A(\) Suc \(n) \cdot i) \leq B(n) \cdot i-\)
\(A(n) \cdot i\)
                if \(i \in\) Basis for \(i n\)
    using that by blast+
have \(\operatorname{notPAB}: \neg P(\) cbox \((A(\) Suc \(n))(B(\) Suc \(n)))\) for \(n\)
    using \(A B R A W\) by blast
have interv: \(\exists n . \forall x \in \operatorname{cbox}(A n)(B n) . \forall y \in \operatorname{cbox}(A n)(B n)\). dist \(x y<e\)
    if \(e: 0<e\) for \(e\)
proof -
    obtain \(n\) where \(n:\left(\sum i \in\right.\) Basis. \(\left.b \cdot i-a \cdot i\right) / e<2^{\wedge} n\)
        using real_arch_pow[of \(2(\operatorname{sum}(\lambda i . b \cdot i-a \cdot i) B a s i s) / e]\) by auto
    show ?thesis
    proof (rule exI [where \(x=n\) ], clarify)
        fix \(x y\)
    assume \(x y\) : \(x \in \operatorname{cbox}(A n)(B n) y \in \operatorname{cbox}(A n)(B n)\)
    have dist \(x y \leq \operatorname{sum}(\lambda i .|(x-y) \cdot i|)\) Basis
            unfolding dist_norm by(rule norm_le_l1)
    also have \(\ldots \leq \operatorname{sum}(\lambda i . B n \cdot i-A n \cdot i)\) Basis
    proof (rule sum_mono)
            fix \(i::^{\prime} a\)
            assume \(i: i \in\) Basis
            show \(|(x-y) \cdot i| \leq B n \cdot i-A n \cdot i\)
                using xy[unfolded mem_box,THEN bspec, OF i]
                by (auto simp: inner_diff_left)
    qed
    also have \(\ldots \leq \operatorname{sum}(\lambda i . b \cdot i-a \cdot i)\) Basis / 2^n
        unfolding sum_divide_distrib
    proof (rule sum_mono)
            show \(B n \cdot i-A n \cdot i \leq(b \cdot i-a \cdot i) / 2^{\wedge} n\) if \(i: i \in\) Basis for \(i\)
            proof (induct \(n\) )
                case 0
```

```
            then show ?case
                    unfolding }AB\mathrm{ by auto
        next
            case (Suc n)
            have B (Suc n) • i - A (Suc n) • i\leq(Bn•i-An•i)/ 2
                    using }AB(3)\mathrm{ that }AB(4)[of i n] using i by aut
            also have ... \leq (b . i-a •i)/2 ` Suc n
                    using Suc by (auto simp add: field_simps)
            finally show ?case .
        qed
        qed
        also have ... <e
            using n using e by (auto simp add: field_simps)
        finally show dist x y<e.
    qed
qed
{
    fix n m :: nat
    assume m\leqn then have cbox (An) (Bn)\subseteqcbox (Am) (Bm)
    proof (induction rule: inc_induct)
        case (step i)
        show ?case
            using AB by (intro order_trans[OF step.IH] subset_box_imp) auto
    qed simp
} note ABsubset = this
have \n. cbox (A n) (B n) \not={}
    by (meson AB dual_order.trans interval_not_empty)
then obtain x0 where x0: \n. x0 \in cbox (A n) (B n)
    using decreasing_closed_nest [OF closed_cbox] ABsubset interv by blast
show thesis
proof (rule that[rule_format, of x0])
    show x0\incbox a b
        using <A 0 =a\rangle\langleB 0 = b\rangle x0 by blast
    fix e :: real
    assume e>0
    from interv[OF this] obtain n
        where n: }\forallx\incbox (An) (Bn).\forally\incbox (A n) (B n). dist x y < e..
    have ᄀ P(cbox (An) (B n))
    proof (cases 0<n)
        case True then show ?thesis
            by (metis Suc_pred' notPAB)
    next
        case False then show ?thesis
            using \langleA O =a\rangle\langleB 0=b\rangle\langle\negP(cbox a b)\rangle by blast
    qed
    moreover have cbox (A n) (B n)\subseteq ball x0 e
        using n using xO[of n] by auto
    moreover have cbox (A n) (B n)\subseteq cbox a b
        using ABsubset }\langleA0=a\rangle\langleB0=b\rangle\mathrm{ by blast
```

ultimately show $\exists c d . x 0 \in \operatorname{cbox} c d \wedge \operatorname{cbox} c d \subseteq b a l l x 0 e \wedge c b o x c d \subseteq$ cbox $a b \wedge \neg P($ cbox c $d)$
apply (rule_tac $x=A n$ in exI)
apply (rule_tac $x=B n$ in $e x I$)
apply (auto simp: x0)
done
qed
qed

6.14.14 Cousin's lemma

lemma fine_division_exists:
fixes $a b$:: 'a::euclidean_space
assumes gauge g
obtains p where p tagged_division_of (cbox a b) g fine p
proof (cases $\exists p$. p tagged_division_of (cbox ab) $\wedge g$ fine $p)$
case True
then show ?thesis
using that by auto
next
case False
assume $\neg(\exists p . p$ tagged_division_of $($ cbox a $b) \wedge g$ fine $p)$
obtain x where x :
$x \in(c b o x a b)$
\e. $0<e \Longrightarrow$
$\exists c d$.
$x \in$ cbox $c d \wedge$
cbox c $d \subseteq$ ball x e \wedge cbox c $d \subseteq($ cbox a $b) \wedge$ $\neg(\exists p . p$ tagged_division_of cbox c d \wedge g fine $p)$
apply (rule interval_bisection[of $\lambda s . \exists p . p$ tagged_division_of $s \wedge g$ fine $p, O F$
_ _ False])
apply (simp add: fine_def)
apply (metis tagged_division_Un fine_Un)
apply auto
done
obtain e where $e: e>0$ ball $x e \subseteq g x$
using gauge $D[$ OF assms, of $x]$ unfolding open_contains_ball by auto
from $x(2)[$ OF $e(1)]$
obtain $c d$ where $c _d: x \in$ cbox $c d$
cbox c $d \subseteq$ ball $x e$
cbox c $d \subseteq$ cbox a b
$\neg(\exists p . p$ tagged_division_of cbox $c d \wedge g$ fine $p)$
by blast
have g fine $\{(x$, cbox $c d)\}$
unfolding fine_def using e using $c_{-} d(2)$ by auto
then show ?thesis
using tagged_division_of_self $\left[O F \quad c_{-} d(1)\right]$ using $c_{-} d$ by auto
qed
lemma fine_division_exists_real:
fixes $a b$:: real
assumes gauge g
obtains p where p tagged_division_of $\{a . . b\} g$ fine p
by (metis assms box_real(2) fine_division_exists)

6.14.15 A technical lemma about "refinement" of division

```
lemma tagged_division_finer:
    fixes \(p::\left(\right.\) ('a::euclidean_space \(\times\left({ }^{\prime} a:: e u c l i d e a n \_\right.\)_space set) \()\)set
    assumes ptag: \(p\) tagged_division_of (cbox ab)
        and gauge d
    obtains \(q\) where \(q\) tagged_division_of (cbox a b)
        and \(d\) fine \(q\)
        and \(\forall(x, k) \in p . k \subseteq d(x) \longrightarrow(x, k) \in q\)
proof -
    have \(p\) : finite \(p\) p tagged_partial_division_of (cbox a b)
        using ptag tagged_division_of_def by blast+
    have \((\exists q . q\) tagged_division_of \((\bigcup\{k . \exists x .(x, k) \in p\}) \wedge d\) fine \(q \wedge(\forall(x, k) \in p\).
\(k \subseteq d(x) \longrightarrow(x, k) \in q))\)
    if finite \(p\) p tagged_partial_division_of (cbox ab) gauge \(d\) for \(p\)
    using that
    proof (induct p)
    case empty
    show ?case
        by (force simp add: fine_def)
    next
        case (insert xk p)
        obtain \(x k\) where \(x k: x k=(x, k)\)
        using surj_pair [of xk] by metis
    obtain \(q 1\) where \(q 1: q 1\) tagged_division_of \(\bigcup\{k . \exists x .(x, k) \in p\}\)
                    and \(d\) fine \(q 1\)
                    and q1I: \(\wedge x k . \llbracket(x, k) \in p ; k \subseteq d x \rrbracket \Longrightarrow(x, k) \in q 1\)
        using case_prodD tagged_partial_division_subset[OF insert(4) subset_insertI]
        by (metis (mono_tags, lifting) insert.hyps(3) insert.prems(2))
    have \(*: \bigcup\{l . \exists y .(y, l) \in\) insert \(x k p\}=k \cup \bigcup\{l . \exists y .(y, l) \in p\}\)
            unfolding \(x k\) by auto
    note \(p=\) tagged_partial_division_ofD[OF insert(4)]
    obtain \(u v\) where \(u v: k=c b o x u v\)
        using \(p\) (4) xk by blast
    have finite \(\{k . \exists x .(x, k) \in p\}\)
        apply (rule finite_subset \([\) of _ snd ' \(p]\) )
        using image_iff apply fastforce
        using insert.hyps(1) by blast
    then have int: interior \((\) cbox \(u v) \cap\) interior \((\bigcup\{k . \exists x .(x, k) \in p\})=\{ \}\)
    proof (rule Int_interior_Union_intervals)
        show open (interior (cbox uv))
            by auto
```

```
    show }\bigwedgeT.T\in{k.\existsx.(x,k)\inp}\Longrightarrow\existsab.T=cbox ab
        using p(4) by auto
    show }\T.T\in{k.\existsx.(x,k)\inp}\Longrightarrow\mathrm{ interior (cbox u v) \ interior T=
{}
        by clarify (metis insert.hyps(2) insert_iff interior_cbox p(5) uv xk)
    qed
    show ?case
    proof (cases cbox u v\subseteqdx)
        case True
        have {(x, cbox u v)} tagged_division_of cbox u v
        by (simp add: p(2) uv xk tagged_division_of_self)
        then have {(x, cbox u v)}\cup q1 tagged_division_of }\bigcup{k.\existsx.(x,k)\in\mathrm{ insert
xk p}
            unfolding * uv by (metis (no_types, lifting) int q1 tagged_division_Un)
            with True show ?thesis
                apply (rule_tac x ={(x,cbox u v)}\cupq1 in exI)
        using <d fine q1` fine_def q1I uv xk apply fastforce
        done
    next
        case False
        obtain q2 where q2: q2 tagged_division_of cbox u v d fine q2
            using fine_division_exists[OF assms(2)] by blast
        show ?thesis
            apply (rule_tac x=q2 \cup q1 in exI)
            apply (intro conjI)
            unfolding * uv
            apply (rule tagged_division_Un q2 q1 int fine_Un)+
                apply (auto intro: q1 q2 fine_Un 〈d fine q1〉 simp add: False q1I uv xk)
            done
        qed
    qed
    with p obtain q where q: q tagged_division_of }\bigcup{k.\existsx.(x,k)\inp}d fine 
\forall(x,k)\inp.k\subseteqdx \longrightarrow (x,k)\inq
    by (meson`gauge d`)
    with ptag that show ?thesis by auto
qed
```


Covering lemma

Some technical lemmas used in the approximation results that follow. Proof of the covering lemma is an obvious multidimensional generalization of Lemma 3, p65 of Swartz's "Introduction to Gauge Integrals".

```
proposition covering_lemma:
    assumes S\subseteqcbox a b box a b}\not={} gauge g
    obtains }\mathcal{D}\mathrm{ where
        countable \mathcal{D }\bigcup\mathcal{D}\subseteqcbox a b
        \ K . K \in \mathcal { D } \Longrightarrow \text { interior } K \neq \{ \} \wedge ( \exists c d . K = c b o x ~ c ~ d )
        pairwise ( }\lambdaAB\mathrm{ . interior }A\cap\mathrm{ interior B ={}) }\mathcal{D
        \K.K\in\mathcal{D \Longrightarrow\exists }
```

\uv．cbox $u v \in \mathcal{D} \Longrightarrow \exists n . \forall i \in$ Basis．$v \cdot i-u \cdot i=(b \cdot i-a \cdot i) / 2^{\wedge} n$ $S \subseteq \cup \mathcal{D}$
proof－
have aibi：$\bigwedge i . i \in$ Basis $\Longrightarrow a \cdot i \leq b \cdot i$ and normab： $0<\operatorname{norm}(b-a)$
using 〈box a $b \neq\{ \}$ 〉 box＿eq＿empty box＿sing by fastforce＋
let $? K 0=\lambda\left(n, f::^{\prime} a \Rightarrow n a t\right)$ ．
cbox $\left(\sum_{i} \in\right.$ Basis．$\left.(a \cdot i+(f i / 2 \wedge n) *(b \cdot i-a \cdot i)) *_{R} i\right)$
$\left(\sum i \in\right.$ Basis．$\left.(a \cdot i+((f i+1) / 2 \wedge n) *(b \cdot i-a \cdot i)) *_{R} i\right)$
let ？D0 $=$ ？ KO^{\prime}（SIGMA n：UNIV．Pi i_{E} Basis（ $\lambda i::$＇a．lessThan（2＾n）））
obtain $\mathcal{D} 0$ where count：countable $\mathcal{D} 0$
and sub：$\bigcup \mathcal{D} 0 \subseteq c b o x a b$
and int：$\wedge K . K \in \mathcal{D} 0 \Longrightarrow($ interior $K \neq\{ \}) \wedge(\exists c d . K=c b o x c d)$
and intdj：$\wedge A B . \llbracket A \in \mathcal{D} 0 ; B \in \mathcal{D} 0 \rrbracket \Longrightarrow A \subseteq B \vee B \subseteq A \vee$ interior
$A \cap$ interior $B=\{ \}$
and $S K: \wedge x . x \in S \Longrightarrow \exists K \in \mathcal{D} 0 . x \in K \wedge K \subseteq g x$
and cbox：$\bigwedge u v$ ．cbox $u v \in \mathcal{D} 0 \Longrightarrow \exists n . \forall i \in$ Basis．$v \cdot i-u \cdot i=$
$(b \cdot i-a \cdot i) / 2^{\wedge} n$
and fin：$\wedge K . K \in \mathcal{D} 0 \Longrightarrow$ finite $\{L \in \mathcal{D} 0 . K \subseteq L\}$
proof
show countable ？D0
by（simp add：countable＿PiE）
next
show U ？$D 0 \subseteq c b o x a b$
apply（simp add：UN＿subset＿iff）
apply（intro conjI allI ballI subset＿box＿imp）
apply（simp add：field＿simps）
apply（auto intro：mult＿right＿mono aibi）
apply（force simp：aibi scaling＿mono nat＿less＿real＿le dest：PiE＿mem intro：
mult＿right＿mono）
done
next
show $\wedge K . K \in ? D 0 \Longrightarrow$ interior $K \neq\{ \} \wedge(\exists c d . K=c b o x c d)$
using 〈box a $b \neq\{ \}$ 〉
by（clarsimp simp：box＿eq＿empty）（fastforce simp add：field＿split＿simps dest：
PiE＿mem）
next
have realff：$($ real $w) * 2 \wedge m<($ real $v) * 2 \wedge n \longleftrightarrow w * 2 \wedge m<v * 2 \wedge n$ for m $n v w$
using of＿nat＿less＿iff less＿imp＿of＿nat＿less by fastforce
have $*: \forall v w$ ．？$K 0(m, v) \subseteq ? K 0(n, w) \vee ? K 0(n, w) \subseteq ? K 0(m, v) \vee$ inte－ $\operatorname{rior}(? K 0(m, v)) \cap \operatorname{interior}(? K 0(n, w))=\{ \}$
for $m n$－The symmetry argument requires a single HOL formula
proof（rule linorder＿wlog［where $a=m$ and $b=n$ ］，intro allI impI）
fix $v w m$ and n ：：nat
assume $m \leq n$－WLOG we can assume $m \leq n$ ，when the first disjunct becomes impossible have $? K 0(n, w) \subseteq ? K 0(m, v) \vee$ interior $(? K 0(m, v)) \cap$ interior $(? K 0(n, w))=$ \｛\}
apply（simp add：subset＿box disjoint＿interval）
apply (rule ccontr)
apply (clarsimp simp add: aibi mult_le_cancel_right divide_le_cancel not_less not_le)
apply (drule_tac $x=i$ in bspec, assumption)
using $\langle m \leq n\rangle$ realff [of _ $1+_{\text {_ }}$] realff [of $1+_{\text {_- }} 1+_{\text {_ }}$]
apply (auto simp: divide_simps add.commute not_le nat_le_iff_add realff)
apply (simp_all add: power_add)
apply (metis (no_types, hide_lams) mult_Suc mult_less_cancel2 not_less_eq mult.assoc)
apply (metis (no_types, hide_lams) mult_Suc mult_less_cancel2 not_less_eq mult.assoc)

done

then show ? $K 0(m, v) \subseteq ? K 0(n, w) \vee ? K 0(n, w) \subseteq ? K 0(m, v) \vee$ inte$\operatorname{rior}(? K 0(m, v)) \cap \operatorname{interior}(? K 0(n, w))=\{ \}$
by meson
qed auto
show $\bigwedge A B . \llbracket A \in ? D 0 ; B \in ? D 0 \rrbracket \Longrightarrow A \subseteq B \vee B \subseteq A \vee$ interior $A \cap$ interior $B=\{ \}$
apply (erule imageE SigmaE)+
using * by simp
next
show $\exists K \in$? DO. $x \in K \wedge K \subseteq g x$ if $x \in S$ for x
proof (simp only: bex_simps split_paired_Bex_Sigma)
show $\exists n . \exists f \in$ Basis $\rightarrow_{E}\left\{. .<2^{\wedge} n\right\} . x \in ? K 0(n, f) \wedge ? K 0(n, f) \subseteq g x$
proof -
obtain e where $0<e$
and $e: \bigwedge y .(\bigwedge i . i \in$ Basis $\Longrightarrow|x \cdot i-y \cdot i| \leq e) \Longrightarrow y \in g x$
proof -
have $x \in g x$ open $(g x)$
using 〈gauge $g\rangle$ by (auto simp: gauge_def)
then obtain ε where $0<\varepsilon$ and ε : ball $x \in g x$ using openE by blast
have norm $(x-y)<\varepsilon$
if $\left(\bigwedge i . i \in\right.$ Basis $\Longrightarrow|x \cdot i-y \cdot i| \leq \varepsilon /\left(2 * \operatorname{real} \operatorname{DIM}\left({ }^{\prime} a\right)\right)$) for y
proof -
have norm $(x-y) \leq\left(\sum i \in\right.$ Basis. $\left.|x \cdot i-y \cdot i|\right)$
by (metis (no_types, lifting) inner_diff_left norm_le_l1 sum.cong)
also have $\ldots \leq \operatorname{DIM}\left({ }^{\prime} a\right) *\left(\varepsilon /\left(2 *\right.\right.$ real $\left.\left.D I M\left({ }^{\prime} a\right)\right)\right)$
by (meson sum_bounded_above that)
also have $\ldots=\varepsilon / 2$
by (simp add: field_split_simps)
also have ... $<\varepsilon$
by (simp add: $\langle 0<\varepsilon\rangle$)
finally show ?thesis .
qed
then show ?thesis
by (rule_tac $e=\varepsilon / 2 / D I M\left({ }^{\prime} a\right)$ in that) (simp_all add: $\langle 0<\varepsilon\rangle$ dist_norm subsetD $\left[\begin{array}{ll}O F & \varepsilon\end{array}\right]$
qed

```
    have xab: x\incbox a b
    using}\langlex\inS\rangle\langleS\subseteqcbox a b\rangle by blas
    obtain n where n: norm (b-a) / 2^n<e
        using real_arch_pow_inv [of e / norm(b - a) 1/2] normab <0 < e>
        by (auto simp: field_split_simps)
    then have norm (b-a)<e* 2`n
    by (auto simp: field_split_simps)
```



```
    proof -
        have b \cdot i - a \cdoti <norm ( b - a)
    by (metis abs_of_nonneg dual_order.trans inner_diff_left linear norm_ge_zero
Basis_le_norm that)
            also have ...<e* 2 ^ n
            using <norm (b-a)<e* 2 ` n> by blast
            finally show ?thesis .
    qed
    have D:(a+n\leqx^x\leqa+m)\Longrightarrow(a+n\leqy^y\leqa+m)\Longrightarrow
abs(x-y)\leqm-n
                    for amnx and y::real
            by auto
```



```
^
```



```
    proof
    fix }i::',a assume i\inBasi
    consider x • i=b • i| x • i< b •i
            using <i \in Basis` mem_box(2) xab by force
```



```
                x\cdoti\leqa•i+(real k+1)*(b•i-a\cdoti)/2^^n)
    proof cases
            case 1 then show ?thesis
                        by (rule_tac x = 2^ n - 1 in exI) (auto simp: algebra_simps
field_split_simps of_nat_diff <i \in Basis〉 aibi)
    next
            case 2
            then have abi_less: a \cdot i< b . i
            using <i \in Basis` xab by (auto simp: mem_box)
```



```
            show ?thesis
            proof (intro exI conjI)
            show ?k<2 ` n
                using aibi xab<i < Basis`
                by (force simp: nat_less_iff floor_less_iff field_split_simps 2 mem_box)
            next
```



```
/ 2^n
of_nat_floor)
```

```
            using aibi [OF <i \in Basis`] xab 2
                    apply (simp_all add: <i \in Basis> mem_box field_split_simps)
                    done
            also have ... = x • i
                    using abi_less by (simp add: field_split_simps)
                            finally show }a\cdoti+real ?k* (b\cdoti-a\cdoti)/ 2^ n \leqx • i
next
have }x\cdoti\leqa\cdoti+(2^n*(x\cdoti-a\cdoti)/(b\cdoti-a\cdoti))*(b\cdot
```



```
                    using abi_less by (simp add: field_split_simps)
                            also have .. \leqavi + (real ? k + 1)* (b • i-a * i) / 2 ` n
                                    apply (intro add_left_mono mult_right_mono divide_right_mono
of_nat_floor)
            using aibi [OF <i \in Basis`] xab
                        apply (auto simp: <i \in Basis` mem_box divide_simps)
                    done
                    finally show }x\cdoti\leqa\cdoti+(real? k + 1)*(b\cdoti-a\cdoti)/2 ^ n .
                qed
            qed
        qed
        then have }\existsf\in\mathrm{ Basis }\mp@subsup{->}{E}{}{..<\mp@subsup{2}{}{`}n}.x\in?KK0(n,f
            apply (simp add: mem_box Bex_def)
            apply (clarify dest!: bchoice)
            apply (rule_tac x=restrict f Basis in exI, simp)
            done
            moreover have }\f.x\in?K0(n,f)\Longrightarrow?K0(n,f)\subseteqg
            apply (clarsimp simp add: mem_box)
            apply (rule e)
            apply (drule bspec D, assumption)+
            apply (erule order_trans)
            apply (simp add: divide_simps)
            using bai apply (force simp add: algebra_simps)
            done
            ultimately show ?thesis by auto
        qed
    qed
    next
        show \uv. cbox u v\in?D0 \Longrightarrow\existsn.\foralli\inBasis.v • i-u | i=(b | i-a
i) / 2 ^n
            by (force simp: eq_cbox box_eq_empty field_simps dest!: aibi)
    next
        obtain j::'a where j\in Basis
            using nonempty_Basis by blast
        have finite {L\in?DO.?KO(n,f)\subseteqL} if f\inBasis }\mp@subsup{->}{E}{}{..<\mp@subsup{2}{}{\wedge}n} for nf
    proof (rule finite_subset)
            let ?B = (\lambda(n, f::'a=>nat). cbox (\sumi\inBasis. (a P i + (fi)/ 2^n * (b • i-
a}\cdot\mp@code{i))}\mp@subsup{*}{R}{}i
                                    (\sumi\inBasis. (a • i + ((fi) +1) / 2^n* (b • i-
a}\cdoti))** * i)
```

```
                `(SIGMA m:atMost n. Pi iE Basis (\lambdai::'a. lessThan (2^m)))
    have ? KO(m,g)\in?B if g\inBasis }\mp@subsup{->}{E}{}{..<2 ^ m} ? KO(n,f)\subseteq?KO(m,g
for mg
    proof -
        have dd:w/m\leqv/n^(v+1)/n\leq(w+1)/m
                \Longrightarrow \text { inverse n} \leq \text { inverse m for w m v n::real}
            by (auto simp: field_split_simps)
        have bjaj:b • j - a \cdot j>0
            using <j \in Basis〉〈box a b}\not={}\ box_eq_empty(1) by fastforce
```



```
- a}\cdotj
            using that }\langlej\in\mathrm{ Basis〉 by (simp add: subset_box field_split_simps aibi)
        then have ((gj) / 2 ` m) \leq ((fj) / 2 ` n) ^
                ((real (fj) + 1)/ 2` n) \leq ((real (gj) + 1) / 2 ^ m)
            by (metis bjaj mult.commute of_nat_1 of_nat_add mult_le_cancel_iff2)
            then have inverse ( 2` n) \leq (inverse (2^m) :: real)
            by (rule dd)
            then have m}\leq
            by auto
            show ?thesis
            by (rule imageI) (simp add: <m \leq n> that)
    qed
    then show {L\in?D0.?K0(n,f)\subseteqL}\subseteq?B
            by auto
        show finite ?B
            by (intro finite_imageI finite_SigmaI finite_atMost finite_lessThan finite_PiE
finite_Basis)
    qed
    then show finite {L\in? D0. K\subseteqL} if K\in?D0 for K
        using that by auto
    qed
    let ?D1 = {K\in\mathcal{D}0.\existsx\inS\capK.K\subseteqgx}
    obtain \mathcal{D}\mathrm{ where count: countable }\mathcal{D}
            and sub: \bigcup\mathcal{D}\subseteqcbox a b S\subseteq\bigcup\mathcal{D}
            and int: \bigwedgeK.K\in\mathcal{D \Longrightarrow(interior K}\not={})\wedge(\existscd.K=cbox c d)
            and intdj: \bigwedgeAB.\llbracketA\in\mathcal{D};B\in\mathcal{D}\rrbracket\LongrightarrowA\subseteqB\veeB\subseteqA\vee interior }
\cap interior B}={
            and SK: \bigwedgeK. K\in\mathcal{D}\Longrightarrow\existsx. x\inS\capK\wedgeK\subseteqgx
            and cbox: \bigwedgeuv. cbox uv\in\mathcal{D}\Longrightarrow\existsn.\foralli\inBasis.v \cdoti-u . i=(b
                - i - a • i) / 2^n
            and fin: \K.K\in\mathcal{D}\Longrightarrow finite {L.L\in\mathcal{D}\wedgeK\subseteqL}
    proof
    show countable ?D1 using count countable_subset
            by (simp add: count countable_subset)
            show \?D1 \subseteqcbox a b
            using sub by blast
            show S\subseteqU?D1
            using SK by (force simp:)
```

```
    show }\bigwedgeK.K\in?D1\Longrightarrow(\mathrm{ interior }K\not={})\wedge(\existscd.K=cbox c d )
    using int by blast
    show }\AB.\llbracketA\in?D1;B\in?D1\rrbracket\LongrightarrowA\subseteqB\veeB\subseteqA\vee interior A\cap interior
B={}
        using intdj by blast
    show }\K.K\in?D1\Longrightarrow\existsx.x\inS\capK\wedgeK\subseteqg
        by auto
    show \uv. cbox u v\in?D1 \Longrightarrow\existsn.\foralli\inBasis.v | i - u • i=(b • i-a .
i) / 2 ^n
        using cbox by blast
    show }\K.K\in?D1\Longrightarrow\mathrm{ finite {L.L &?D1 ^K }\subseteqL
        using fin by simp (metis (mono_tags, lifting) Collect_mono rev_finite_subset)
    qed
    let ?\mathcal{D }={K\in\mathcal{D}.\forall\mp@subsup{K}{}{\prime}.\mp@subsup{K}{}{\prime}\in\mathcal{D}\wedgeK\not=\mp@subsup{K}{}{\prime}\longrightarrow\neg(K\subseteq\mp@subsup{K}{}{\prime})}
    show ?thesis
    proof (rule that)
    show countable ?D
        by (blast intro: countable_subset [OF _ count])
    show \?\mathcal{D }\subseteqcbox a b
        using sub by blast
    show S\subseteq\?D
    proof clarsimp
        fix }
        assume }x\in
        then obtain X where }x\inXX\in\mathcal{D}\mathrm{ using }\langleS\subseteq\bigcup\mathcal{D}\rangle\mathrm{ by blast
        let ?R = {(K,L). K\in\mathcal{D}\wedgeL\in\mathcal{D}\wedgeL\subsetK}
        have irrR: irrefl ?R by (force simp: irrefl_def)
    have traR: trans ?R by (force simp: trans_def)
    have finR: \x. finite {y. (y,x)\in?R}
        by simp (metis (mono_tags, lifting) fin }\langleX\in\mathcal{D}\rangle\mathrm{ finite_subset mem_Collect_eq
psubset_imp_subset subsetI)
    have {X\in\mathcal{D}.x\inX}\not={}
            using }\langleX\in\mathcal{D}\rangle\langlex\inX\rangle\mathrm{ by blast
        then obtain Y where }Y\in{X\in\mathcal{D}.x\inX}\bigwedge\mp@subsup{Y}{}{\prime}.(\mp@subsup{Y}{}{\prime},Y)\in?R\Longrightarrow\mp@subsup{Y}{}{\prime
\not\in{X\in\mathcal{D}.x\inX}
            by (rule wfE_min' [OF wf_finite_segments [OF irrR traR finR]]) blast
        then show }\existsY.Y\in\mathcal{D}\wedge(\forall\mp@subsup{K}{}{\prime}.\mp@subsup{K}{}{\prime}\in\mathcal{D}\wedgeY\not=\mp@subsup{K}{}{\prime}\longrightarrow\negY\subseteq\mp@subsup{K}{}{\prime})\wedgex
Y
            by blast
    qed
    show }\K.K\in?\mathcal{D}\Longrightarrow\mathrm{ interior }K\not={}\wedge(\existscd.K=cbox c d
        by (blast intro: dest: int)
    show pairwise ( }\lambdaAB\mathrm{ . interior }A\cap\mathrm{ interior }B={})?D
        using intdj by (simp add: pairwise_def) metis
    show }\K.K\in?\mathcal{D}\Longrightarrow\existsx\inS\capK.K\subseteqg
        using SK by force
    show \uv. cbox uv\in?\mathcal{D }\Longrightarrow\existsn.\foralli\inBasis.v }\=i-u\cdoti=(b\cdoti-a\cdoti
/ 2^n
    using cbox by force
```


qed

qed

6.14.16 Division filter

Divisions over all gauges towards finer divisions.

```
definition division_filter :: ' \(a:\) :euclidean_space set \(\Rightarrow\left({ }^{\prime} a \times\right.\) 'a set) set filter
    where division_filter \(s=(I N F g \in\{g\). gauge \(g\}\). principal \(\{p . p\) tagged_division_of
\(s \wedge g\) fine \(p\}\) )
proposition eventually_division_filter:
    \(\left(\forall_{F} p\right.\) in division_filter s. \(P\) p \() \longleftrightarrow\)
        \((\exists g\). gauge \(g \wedge(\forall p . p\) tagged_division_of \(s \wedge g\) fine \(p \longrightarrow P p))\)
    unfolding division_filter_def
proof (subst eventually_INF_base; clarsimp)
    fix \(g 1\) g2 \(::\) ' \(a \Rightarrow\) 'a set show gauge \(g 1 \Longrightarrow\) gauge \(g 2 \Longrightarrow \exists x\). gauge \(x \wedge\)
        \(\{p . p\) tagged_division_of \(s \wedge x\) fine \(p\} \subseteq\{p . p\) tagged_division_of \(s \wedge g 1\) fine \(p\}\)
\(\wedge\)
        \(\{p . p\) tagged_division_of \(s \wedge x\) fine \(p\} \subseteq\{p . p\) tagged_division_of \(s \wedge g 2\) fine \(p\}\)
        by (intro exI[of - \(\lambda x . g 1 x \cap g 2 x]\) ) (auto simp: fine_Int)
qed (auto simp: eventually_principal)
lemma division_filter_not_empty: division_filter \(\left(\begin{array}{cc}\text { cox } & a\end{array}\right) \neq b o t\)
    unfolding trivial_limit_def eventually_division_filter
    by (auto elim: fine_division_exists)
```

lemma eventually_division_filter_tagged_division:
eventually ($\lambda p . p$ tagged_division_of s) (division_filter s)
unfolding eventually_division_filter by (intro exI $[$ of $-\lambda x$. ball x 1]) auto
end

6.15 Henstock-Kurzweil Gauge Integration in Many Dimensions

theory Henstock_Kurzweil_Integration
imports
Lebesgue_Measure Tagged_Division
begin
lemma norm_diff2: $\llbracket y=y 1+y 2 ; x=x 1+x 2 ; e=e 1+e 2 ; \operatorname{norm}(y 1-x 1)$
$\leq e 1 ; \operatorname{norm}\left(y^{2}-x 2\right) \leq e 2 \rrbracket$
$\Longrightarrow \operatorname{norm}(y-x) \leq e$
using norm_triangle_mono [of y1-x1 e1 y2 - x2 e2]
by (simp add: add_diff_add)
lemma setcomp_dot1: $\{z \cdot P(z \cdot(i, 0))\}=\{(x, y) . P(x \cdot i)\}$
by auto
lemma setcomp_dot2: $\{z . P(z \cdot(0, i))\}=\{(x, y) . P(y \cdot i)\}$
by auto
lemma Sigma_Int_Paircomp1: $(\operatorname{Sigma} A B) \cap\{(x, y) . P x\}=\operatorname{Sigma}(A \cap\{x . P$ x\}) B by blast
lemma Sigma_Int_Paircomp2: (Sigma A B) $\cap\{(x, y) . P y\}=\operatorname{Sigma} A(\lambda z . B z$ $\cap\{y . P y\})$ by blast

6.15.1 Content (length, area, volume...) of an interval

abbreviation content $::$ 'a::euclidean_space set \Rightarrow real where content $s \equiv$ measure lborel s
lemma content_cbox_cases:
content $($ cbox $a b)=($ if $\forall i \in$ Basis. $a \cdot i \leq b \cdot i$ then $\operatorname{prod}(\lambda i . b \cdot i-a \cdot i)$ Basis else 0)
by (simp add: measure_lborel_cbox_eq inner_diff)
lemma content_cbox: $\forall i \in$ Basis. $a \cdot i \leq b \cdot i \Longrightarrow$ content $\left(\right.$ cbox abs) $=\left(\prod i \in\right.$ Basis. $b \cdot i-a \cdot i)$
unfolding content_cbox_cases by simp
lemma content_cbox': cbox a $b \neq\{ \} \Longrightarrow$ content $($ cbox a $b)=\left(\prod i \in\right.$ Basis. $b \cdot i-$ $a \cdot i)$
by (simp add: box_ne_empty inner_diff)
lemma content_cbox_if: content $($ cbox $a b)=\left(\right.$ if cbox $a b=\{ \}$ then 0 else $\prod i \in$ Basis.
$b \cdot i-a \cdot i)$
by (simp add: content_cbox')
lemma content_cbox_cart:
cbox $a b \neq\{ \} \Longrightarrow \operatorname{content}($ cbox $a b)=\operatorname{prod}(\lambda i . b \$ i-a \$ i)$ UNIV
by (simp add: content_cbox_if Basis_vec_def cart_eq_inner_axis axis_eq_axis prod.UNION_disjoint)
lemma content_cbox_if_cart:
content $($ cbox $a b)=($ if cbox a $b=\{ \}$ then 0 else prod $(\lambda i . b \$ i-a \$ i) U N I V)$
by (simp add: content_cbox_cart)
lemma content_division_of:
assumes $K \in \mathcal{D} \mathcal{D}$ division_of S
shows content $K=\left(\prod i \in\right.$ Basis. interval_upperbound $K \cdot i-i n t e r v a l=l o w e r b o u n d$
$K \cdot i)$
proof -
obtain $a b$ where $K=c b o x a b$
using cbox_division_memE assms by metis

```
    then show ?thesis
    using assms by (force simp: division_of_def content_cbox')
qed
lemma content_real: a\leqb\Longrightarrow content {a..b} = b - a
    by simp
lemma abs_eq_content: }|y-x|=(\mathrm{ if }x\leqy\mathrm{ then content {x..y} else content {y..x})
    by (auto simp: content_real)
lemma content_singleton: content {a}=0
    by simp
lemma content_unit[iff]: content (cbox 0 (One::'a::euclidean_space)) = 1
    by simp
lemma content_pos_le [iff]: 0 \leq content X
    by simp
corollary content_nonneg [simp]: ᄀ content (cbox a b)<0
    using not_le by blast
lemma content_pos_lt: }\foralli\inBasis.a\cdoti<b\cdoti\Longrightarrow0<content (cbox a b)
    by (auto simp: less_imp_le inner_diff box_eq_empty intro!: prod_pos)
lemma content_eq_0: content (cbox a b) =0\longleftrightarrow(\existsi\inBasis. b }\cdoti\leqa\cdoti
    by (auto simp: content_cbox_cases not_le intro: less_imp_le antisym eq_refl)
lemma content_eq_0_interior: content (cbox a b)=0\longleftrightarrow interior (cbox a b)={}
    unfolding content_eq_0 interior_cbox box_eq_empty by auto
lemma content_pos_lt_eq: 0 < content (cbox a (b::'a::euclidean_space)) \longleftrightarrow(\forall i\inBasis.
a\cdoti<b\cdoti)
    by (auto simp add: content_cbox_cases less_le prod_nonneg)
lemma content_empty [simp]: content {} = 0
    by simp
lemma content_real_if [simp]: content {a..b} = (if a\leqb then b - a else 0)
    by (simp add: content_real)
lemma content_subset: cbox a b\subseteqcbox c d \Longrightarrow content (cbox a b) \leq content (cbox
c d)
    unfolding measure_def
    by (intro enn2real_mono emeasure_mono) (auto simp: emeasure_lborel_cbox_eq)
lemma content_lt_nz: 0 < content (cbox a b) \longleftrightarrow content (cbox a b) \not=0
    unfolding content_pos_lt_eq content_eq_0 unfolding not_ex not_le by fastforce
```

```
lemma content_Pair: content \((\operatorname{cbox}(a, c)(b, d))=\) content \((c b o x a b) *\) content
(cbox c d)
    unfolding measure_lborel_cbox_eq Basis_prod_def
    apply (subst prod.union_disjoint)
    apply (auto simp: bex_Un ball_Un)
    apply (subst (1 2) prod.reindex_nontrivial)
    apply auto
    done
lemma content_cbox_pair_eq0_D:
    content \((\operatorname{cbox}(a, c)(b, d))=0 \Longrightarrow\) content \((\) cbox ab) \(=0 \vee \operatorname{content}(\operatorname{cbox} c d)\)
\(=0\)
    by (simp add: content_Pair)
lemma content_cbox_plus:
    fixes \(x\) :: ' \(a\) ::euclidean_space
    shows content \(\left(\operatorname{cbox} x\left(x+h *_{R}\right.\right.\) One \(\left.)\right)=\left(\right.\) if \(h \geq 0\) then \(h^{\wedge} \operatorname{DIM}\left({ }^{\prime} a\right)\) else 0\()\)
    by (simp add: algebra_simps content_cbox_if box_eq_empty)
lemma content_0_subset: content \((\) cbox \(a b)=0 \Longrightarrow s \subseteq\) cbox \(a b \Longrightarrow\) content \(s\)
\(=0\)
    using emeasure_mono[of s cbox a b lborel]
    by (auto simp: measure_def enn2real_eq_0_iff emeasure_lborel_cbox_eq)
lemma content_ball_pos:
    assumes \(r>0\)
    shows content (ball cr)>0
proof -
    from rational_boxes [OF assms, of \(c\) ] obtain \(a b\) where \(a b: c \in b o x a b\) box a \(b\)
\(\subseteq\) ball cr
        by auto
    from \(a b\) have \(0<\) content (box ab)
            by (subst measure_lborel_box_eq) (auto intro!: prod_pos simp: algebra_simps
box_def)
    have emeasure lborel (box a b) \(\leq\) emeasure lborel (ball c r)
        using \(a b\) by (intro emeasure_mono) auto
    also have emeasure lborel (box a b) = ennreal (content (box a b))
        using emeasure_lborel_box_finite[of ab] by (intro emeasure_eq_ennreal_measure)
auto
    also have emeasure lborel (ball cr)=ennreal (content (ball cr))
        using emeasure_lborel_ball_finite[of c r] by (intro emeasure_eq_ennreal_measure)
auto
    finally show ?thesis
        using <content (box a b) >0〉 by simp
qed
lemma content_cball_pos:
    assumes \(r>0\)
    shows content (cball cr)>0
```

proof -
from rational_boxes[OF assms, of c] obtain $a b$ where $a b: c \in b o x a b b o x a b$ \subseteq ball c r by auto
from $a b$ have $0<$ content (box ab)
by (subst measure_lborel_box_eq) (auto intro!: prod_pos simp: algebra_simps box_def)
have emeasure lborel (box a b) \leq emeasure lborel (ball c r) using $a b$ by (intro emeasure_mono) auto
also have $\ldots \leq$ emeasure lborel (cball c r) by (intro emeasure_mono) auto
also have emeasure lborel (box ab) =ennreal (content (box a b))
using emeasure_lborel_box_finite $[o f a b]$ by (intro emeasure_eq_ennreal_measure) auto
also have emeasure lborel (cball cr) $=$ ennreal (content $($ cball cr))
using emeasure_lborel_cball_finite[of cr] by (intro emeasure_eq_ennreal_measure) auto
finally show ?thesis using content (box a b) >0〉 by simp
qed
lemma content_split:
fixes a :: ' a ::euclidean_space
assumes $k \in$ Basis
shows content (cbox ab) $=$ content (cbox a $b \cap\{x . x \cdot k \leq c\})+\operatorname{content}(c b o x a$ $b \cap\{x . x \cdot k \geq c\})$

- Prove using measure theory
proof (cases $\forall i \in$ Basis. $a \cdot i \leq b \cdot i$)
case True
have 1: $\bigwedge X Y Z .\left(\prod i \in\right.$ Basis. $Z i($ if $i=k$ then X else $\left.Y i)\right)=Z k X *$ (ПíBasis-\{k\}.Zi(Yi))
by (simp add: if_distrib prod.delta_remove assms)
note simps $=$ interval_split $[$ OF assms $]$ content_cbox_cases
have 2: $\left(\prod i \in\right.$ Basis. $\left.b \cdot i-a \cdot i\right)=\left(\prod i \in\right.$ Basis $\left.-\{k\} . b \cdot i-a \cdot i\right) *(b \cdot k-a \cdot k)$ by (metis (no_types, lifting) assms finite_Basis mult.commute prod.remove)
have $\wedge x \cdot \min (b \cdot k) c=\max (a \cdot k) c \Longrightarrow$
$x *(b \cdot k-a \cdot k)=x *(\max (a \cdot k) c-a \cdot k)+x *(b \cdot k-\max (a \cdot k) c)$ by (auto simp add: field_simps)
moreover
have $* *$: ($\prod i \in$ Basis. $\left(\left(\sum i \in\right.\right.$ Basis. (if $i=k$ then $\min (b \cdot k) c$ else $\left.\left.b \cdot i\right) *_{R} i\right)$
- $i-a \cdot i))=$
($\prod_{i \in \text { Basis. }}($ if $i=k$ then $\min (b \cdot k) c$ else $\left.b \cdot i)-a \cdot i\right)$
(ПíBasis. $b \cdot i-\left(\left(\sum i \in\right.\right.$ Basis. $(i f i=k$ then $\max (a \cdot k) c$ else $\left.a \cdot i) *_{R} i\right)$
- $i))=$
(ПíBasis. $b \cdot i-($ if $i=k$ then $\max (a \cdot k) c$ else $a \cdot i))$ by (auto intro!: prod.cong)
have $\neg a \cdot k \leq c \Longrightarrow \neg c \leq b \cdot k \Longrightarrow$ False unfolding not_le using True assms by auto
ultimately show ?thesis

```
    using assms unfolding simps ** \(1[\) of \(\lambda i x . b \cdot i-x] 1[o f \lambda i x . x-a \cdot i] 2\)
    by auto
next
    case False
    then have cbox a \(b=\{ \}\)
        unfolding box_eq_empty by (auto simp: not_le)
    then show ?thesis
        by (auto simp: not_le)
qed
lemma division_of_content_0:
    assumes content (cbox ab) \(=0\) d division_of (cbox ab) \(K \in d\)
    shows content \(K=0\)
    unfolding forall_in_division[OF assms(2)]
    by (meson assms content_0_subset division_of_def)
lemma sum_content_null:
    assumes content (cbox ab) \(=0\)
        and \(p\) tagged_division_of (cbox ab)
    shows \(\left(\sum(x, K) \in p\right.\). content \(\left.K *_{R} f x\right)=\left(0::^{\prime} a::\right.\) real_normed_vector \()\)
proof (rule sum.neutral, rule)
    fix \(y\)
    assume \(y: y \in p\)
    obtain \(x K\) where \(x k: y=(x, K)\)
        using surj_pair [of y] by blast
    then obtain \(c d\) where \(k: K=\operatorname{cbox} c d K \subseteq \operatorname{cbox} a b\)
        by (metis assms(2) tagged_division_ofD(3) tagged_division_ofD(4) y)
    have \(\left(\lambda\left(x^{\prime}, K^{\prime}\right)\right.\). content \(\left.K^{\prime} *_{R} f x^{\prime}\right) y=\) content \(K *_{R} f x\)
        unfolding \(x k\) by auto
    also have \(\ldots=0\)
        using assms(1) content_0_subset \(k\) (2) by auto
    finally show \(\left(\lambda(x, k)\right.\). content \(\left.k *_{R} f x\right) y=0\).
qed
global_interpretation sum_content: operative plus 0 content
    rewrites comm_monoid_set.F plus \(0=\) sum
proof -
    interpret operative plus 0 content
        by standard (auto simp add: content_split [symmetric] content_eq_0_interior)
    show operative plus 0 content
        by standard
    show comm_monoid_set.F plus \(0=\) sum
        by ( simp add: sum_def)
qed
lemma additive_content_division: d division_of (cbox ab) \(\Longrightarrow\) sum content \(d=\)
content (cbox a b)
    by (fact sum_content.division)
```

```
lemma additive_content_tagged_division:
    d tagged_division_of (cbox a b)\Longrightarrow sum ( }\lambda(x,l).content l)d= content (cbox a
b)
    by (fact sum_content.tagged_division)
lemma subadditive_content_division:
    assumes }\mathcal{D}\mathrm{ division_of S S}\subseteq\mathrm{ cbox a b
    shows sum content \mathcal{D}\leqcontent(cbox a b)
proof -
    have \mathcal{D division_of }\bigcup\mathcal{D}\bigcup\mathcal{D}\subseteqcbox a b
        using assms by auto
    then obtain }\mp@subsup{\mathcal{D}}{}{\prime}\mathrm{ where }\mathcal{D}\subseteq\mp@subsup{\mathcal{D}}{}{\prime}\mp@subsup{\mathcal{D}}{}{\prime}\mathrm{ division_of cbox a b
        using partial_division_extend_interval by metis
    then have sum content }\mathcal{D}\leq\mathrm{ sum content }\mp@subsup{\mathcal{D}}{}{\prime
        using sum_mono2 by blast
    also have ... \leqcontent(cbox a b)
        by (simp add: <\mathcal{D}}\mp@subsup{}{\prime}{\prime}\mathrm{ division_of cbox a b> additive_content_division less_eq_real_def)
    finally show ?thesis.
qed
lemma content_real_eq_0: content {a..b::real} = 0 \longleftrightarrowa\geqb
    by (metis atLeastatMost_empty_iff2 content_empty content_real diff_self eq_iff le_cases
le_iff_diff_le_0)
lemma property_empty_interval: }\forall\textrm{a}b..content (cbox a b)=0\longrightarrowP(cbox a b)
\Longrightarrow P \{ \}
    using content_empty unfolding empty_as_interval by auto
lemma interval_bounds_nz_content [simp]:
    assumes content (cbox a b)}\not=
    shows interval_upperbound (cbox a b) =b
        and interval_lowerbound (cbox a b) =a
    by (metis assms content_empty interval_bounds')+
```


6.15.2 Gauge integral

Case distinction to define it first on compact intervals first, then use a limit. This is only much later unified. In Fremlin: Measure Theory, Volume 4I this is generalized using residual sets.

```
definition has_integral :: (' \(n::\) euclidean_space \(\Rightarrow\) ' \(b::\) :real_normed_vector) \(\Rightarrow{ }^{\prime} b \Rightarrow\)
' \(n\) set \(\Rightarrow\) bool
    (infixr has'_integral 46)
    where ( \(f\) has_integral I) \(s \longleftrightarrow\)
        (if \(\exists a b\). \(s=c b o x a b\)
        then \(\left(\left(\lambda p . \sum(x, k) \in p\right.\right.\). content \(\left.\left.k *_{R} f x\right) \longrightarrow I\right)\) (division_filter s)
        else \((\forall e>0 . \exists B>0 . \forall a b\). ball \(0 B \subseteq c b o x a b \longrightarrow\)
            \(\left(\exists z .\left(\left(\lambda p . \sum(x, k) \in p\right.\right.\right.\). content \(k *_{R}(\) if \(x \in s\) then \(f x\) else 0\(\left.\left.)\right) \longrightarrow z\right)\)
(division_filter (cbox a b)) \(\wedge\)
            norm \((z-I)<e))\) )
```

```
lemma has_integral_cbox:
    (f has_integral I) (cbox a b) \longleftrightarrow((\lambdap.\sum(x,k)\inp.content k*R f x) \longrightarrowI)
(division_flter (cbox a b))
    by (auto simp add: has_integral_def)
lemma has_integral:
    (f has_integral y) (cbox a b)\longleftrightarrow
        (}\foralle>0.\exists\gamma.gauge \gamma
            (\forall\mathcal{D}.\mathcal{D}\mathrm{ tagged_division_of (cbox a b) ^ }
                norm (sum ( }\lambda(x,k).content (k)*R f x) \mathcal{D - y)<e))
    by (auto simp: dist_norm eventually_division_filter has_integral_def tendsto_iff)
lemma has_integral_real:
    (f has_integral y) {a..b::real}}
        (\foralle>0.\exists\gamma.gauge }\gamma
            (}\forall\mathcal{D}.\mathcal{D}\mathrm{ tagged_division_of {a..b} ^ }\gamma\mathrm{ fine }\mathcal{D}
                norm (sum ( }\lambda(x,k)\mathrm{ . content (k)* *Rfx) D - y)<e))
    unfolding box_real[symmetric] by (rule has_integral)
lemma has_integralD[dest]:
    assumes (f has_integral y) (cbox a b)
        and}e>
    obtains }
        where gauge }
            and }\\mathcal{D}.\mathcal{D}\mathrm{ tagged_division_of (cbox a b) }\Longrightarrow\gamma\mathrm{ fine }\mathcal{D}
                norm ((\sum (x,k)\in\mathcal{D}. content k**R f x) - y)<e
    using assms unfolding has_integral by auto
lemma has_integral_alt:
    (f has_integral y) i\longleftrightarrow
        (if \existsab.i=cbox a b
        then (f has_integral y) }
        else ( }\forall\textrm{e}>0.\existsB>0.\forallab.ball 0 B\subseteqcbox a b
            (\existsz. ((\lambdax. if x \in i then f x else 0) has_integral z) (cbox a b)^norm (z-y)
    < e)))
    by (subst has_integral_def) (auto simp add: has_integral_cbox)
lemma has_integral_altD:
    assumes (f has_integral y) i
        and}\neg(\existsab.i=cbox a b
        and e>0
    obtains B where B>0
            and }\forallab\mathrm{ b. ball }0B\subseteq\mathrm{ cbox a b}
        (\existsz. ((\lambdax. if }x\ini=\mp@code{then f(x) else 0) has_integral z) (cbox a b) }\wedge\operatorname{norm}(z-y
    < e)
    using assms has_integral_alt[of f y i] by auto
definition integrable_on (infixr integrable!_on 46)
```

```
where \(f\) integrable_on \(i \longleftrightarrow(\exists y .(f\) has_integral \(y) i)\)
definition integral if=(SOME y. (f has_integral y) \(i \vee \neg f\) integrable_on \(i \wedge\)
\(y=0\) )
lemma integrable_integral[intro]: fintegrable_on \(i \Longrightarrow(f\) has_integral (integral if \()\) )
\(i\)
    unfolding integrable_on_def integral_def by (metis (mono_tags, lifting) someI_ex)
lemma not_integrable_integral: \(\neg f\) integrable_on \(i \Longrightarrow\) integral \(i f=0\)
    unfolding integrable_on_def integral_def by blast
lemma has_integral_integrable[dest]: (f has_integral i) \(s \Longrightarrow f\) integrable_on \(s\)
    unfolding integrable_on_def by auto
```

lemma has_integral_integral: f integrable_on $s \longleftrightarrow(f$ has_integral (integral sf)) s
by auto

6.15.3 Basic theorems about integrals

```
lemma has_integral_eq_rhs: ( \(f\) has_integral \(j) S \Longrightarrow i=j \Longrightarrow(f\) has_integral i) \(S\)
    by (rule forw_subst)
lemma has_integral_unique_cbox:
    fixes \(f\) :: ' \(n::\) euclidean_space \(\Rightarrow\) ' \(a:\) :real_normed_vector
    shows (f has_integral k1) (cbox ab) \(\Longrightarrow\) (f has_integral k2) \((\) cbox a b) \(\Longrightarrow k 1=\)
k2
    by (auto simp: has_integral_cbox intro: tendsto_unique[OF division_filter_not_empty])
```

lemma has_integral_unique:
fixes $f::$ ' $n::$ euclidean_space \Rightarrow ' $a::$ real_normed_vector
assumes (f has_integral k1) $i(f$ has_integral k2) i
shows $k 1=k 2$
proof (rule ccontr)
let $? \mathrm{e}=\operatorname{norm}(k 1-k 2) / 2$
let $? F=(\lambda x$. if $x \in i$ then $f x$ else 0$)$
assume $k 1 \neq k 2$
then have $e: ? e>0$
by auto
have nonbox: $\neg(\exists a b . i=c b o x$ a $b)$
using $\langle k 1 \neq k 2\rangle$ assms has_integral_unique_cbox by blast
obtain $B 1$ where $B 1$:
$0<B 1$
$\bigwedge a b$. ball 0 B1 \subseteq cbox ab \Longrightarrow
$\exists z .(? F$ has_integral $z)($ cbox a b) \wedge norm $(z-k 1)<$ norm $(k 1-k 2) / 2$
by (rule has_integral_altD[OF assms(1) nonbox,OF e]) blast
obtain B2 where B2:
$0<B 2$
\ab. ball 0 B2 \subseteq cbox a $b \Longrightarrow$
$\exists z$. (?F has_integral z) $($ cbox a b) \wedge norm $(z-k 2)<\operatorname{norm}(k 1-k \mathcal{L}) / \mathcal{Z}$ by (rule has_integral_altD[OF assms(2) nonbox,OF e]) blast
obtain $a b:: ' n$ where ab: ball 0 B1 \subseteq cbox a bball 0 B2 \subseteq cbox a b
by (metis Un_subset_iff bounded_Un bounded_ball bounded_subset_cbox_symmetric)
obtain w where w : (? F has_integral w) (cbox a b) norm $(w-k 1)<$ norm ($k 1$

- $k 2$)/2
using B1(2)[OF ab(1)] by blast
obtain z where z : (? F has_integral $z)($ cbox ab) norm $(z-k 2)<$ norm $(k 1-$ k2)/2
using B2(2)[OF ab(2)] by blast
have $z=w$
using has_integral_unique_cbox[OF w(1) z(1)] by auto
then have norm $(k 1-k 2) \leq \operatorname{norm}(z-k 2)+\operatorname{norm}(w-k 1)$
using norm_triangle_ineq4 [of $k 1-w k 2-z]$
by (auto simp add: norm_minus_commute)
also have $\ldots<\operatorname{norm}(k 1-k 2) / 2+\operatorname{norm}(k 1-k 2) / 2$
by (metis add_strict_mono $z(2) w(2))$
finally show False by auto
qed
lemma integral_unique [intro]: (f has_integral $y) k \Longrightarrow$ integral $k f=y$
unfolding integral_def
by (rule some_equality) (auto intro: has_integral_unique)
lemma has_integral_iff: (f has_integral i) $S \longleftrightarrow(f$ integrable_on $S \wedge$ integral $S f$ $=i$)
by blast
lemma eq_integralD: integral $k f=y \Longrightarrow(f$ has_integral $y) k \vee \neg f$ integrable_on
$k \wedge y=0$
unfolding integral_def integrable_on_def
apply (erule subst)
apply (rule someI_ex)
by blast
lemma has_integral_const [intro]:
fixes $a b$:: 'a::euclidean_space
shows $\left((\lambda x . c)\right.$ has_integral (content $\left.\left.(c b o x a b) *_{R} c\right)\right)(c b o x a b)$
using eventually_division_filter_tagged_division[of cbox a b] additive_content_tagged_division[of _ ab]
by (auto simp: has_integral_cbox split_beta' scaleR_sum_left[symmetric]
elim!: eventually_mono intro!: tendsto_cong[THEN iffD1, OF - tend-
sto_const])
lemma has_integral_const_real [intro]:
fixes $a b$:: real
shows $\left((\lambda x . c)\right.$ has_integral (content $\left.\left.\{a . . b\} *_{R} c\right)\right)\{a . . b\}$
by (metis box_real(2) has_integral_const)

```
lemma has_integral_integrable_integral: (f has_integral i) \(s \longleftrightarrow f\) integrable_on \(s \wedge\)
integral \(s f=i\)
    by blast
lemma integral_const [simp]:
    fixes \(a b\) :: ' \(a::\) euclidean_space
    shows integral (cbox ab) \((\lambda x . c)=\mathrm{content}(c b o x a b) *_{R} c\)
    by (rule integral_unique) (rule has_integral_const)
lemma integral_const_real [simp]:
    fixes \(a b\) :: real
    shows integral \(\{a . . b\}(\lambda x . c)=\) content \(\{a . . b\} *_{R} c\)
    by (metis box_real(2) integral_const)
lemma has_integral_is_0_cbox:
    fixes \(f::\) ' \(n::\) euclidean_space \(\Rightarrow\) ' \(a::\) real_normed_vector
    assumes \(\bigwedge x . x \in\) cbox \(a b \Longrightarrow f x=0\)
    shows (f has_integral 0) (cbox a b)
        unfolding has_integral_cbox
        using eventually_division_filter_tagged_division[of cbox a b] assms
        by (subst tendsto_cong[where \(\left.g=\lambda_{-} .0\right]\) )
        (auto elim! : eventually_mono intro!: sum.neutral simp: tag_in_interval)
lemma has_integral_is_0:
    fixes \(f::\) ' \(n::\) euclidean_space \(\Rightarrow\) ' \(a::\) real_normed_vector
    assumes \(\bigwedge x . x \in S \Longrightarrow f x=0\)
    shows (f has_integral 0) \(S\)
proof (cases \((\exists a b . S=\) cbox a b))
    case True with assms has_integral_is_0_cbox show ?thesis
        by blast
next
    case False
    have \(*:(\lambda x\). if \(x \in S\) then \(f x\) else 0\()=(\lambda x .0)\)
        by (auto simp add: assms)
    show ?thesis
        using has_integral_is_0_cbox False
        by (subst has_integral_alt) (force simp add: *)
qed
lemma has_integral_0[simp]: (( \(\left.\left.\lambda x:: ' n:: e u c l i d e a n \_s p a c e . ~ 0\right) ~ h a s \_i n t e g r a l ~ 0\right) ~ S ~\)
    by (rule has_integral_is_0) auto
    lemma has_integral_0_eq[simp]: (( \(\lambda x .0)\) has_integral \(i) S \longleftrightarrow i=0\)
    using has_integral_unique \([O F\) has_integral_0] by auto
lemma has_integral_linear_cbox:
    fixes \(f::\) ' \(n::\) euclidean_space \(\Rightarrow\) ' \(a::\) real_normed_vector
    assumes \(f\) : (f has_integral y) (cbox ab)
```

```
    and \(h\) : bounded_linear \(h\)
    shows \(((h \circ f)\) has_integral \((h y))(\) cbox a b)
proof -
    interpret bounded_linear \(h\) using \(h\).
    show ?thesis
        unfolding has_integral_cbox using tendsto [OF f [unfolded has_integral_cbox]]
        by (simp add: sum scaleR split_beta')
qed
lemma has_integral_linear:
    fixes \(f\) :: ' \(n::\) euclidean_space \(\Rightarrow\) 'a::real_normed_vector
    assumes \(f\) : (f has_integral y) \(S\)
        and \(h\) : bounded_linear \(h\)
    shows \(((h \circ f)\) has_integral (hy)) \(S\)
proof (cases \((\exists a b . S=c b o x\) a \(b)\) )
    case True with \(f\) h has_integral_linear_cbox show ?thesis
        by blast
next
    case False
    interpret bounded_linear \(h\) using \(h\).
    from pos_bounded obtain \(B\) where \(B: 0<B \bigwedge x\).norm \((h x) \leq \operatorname{norm} x * B\)
        by blast
    let ? \(S=\lambda f x\). if \(x \in S\) then \(f x\) else 0
    show ?thesis
    proof (subst has_integral_alt, clarsimp simp: False)
        fix \(e\) :: real
        assume \(e: e>0\)
        have \(*: 0<e / B\) using \(e B(1)\) by simp
        obtain \(M\) where \(M\) :
            \(M>0\)
            \ab. ball \(0 M \subseteq\) cbox ab \(\Longrightarrow\)
                \(\exists z\). (?S f has_integral z) (cbox a b) \(\wedge\) norm \((z-y)<e / B\)
        using has_integral_altD[OF f False *] by blast
        show \(\exists B>0 . \forall a b\). ball \(0 B \subseteq\) cbox a \(b \longrightarrow\)
            \((\exists z .(? S(h \circ f)\) has_integral \(z)(\) cbox ab) \() \wedge\) norm \((z-h y)<e)\)
        proof (rule exI, intro allI conjI impI)
            show \(M>0\) using \(M\) by metis
        next
            fix \(a b::^{\prime} n\)
            assume sb: ball \(0 M \subseteq\) cbox a \(b\)
            obtain \(z\) where \(z\) : (?S f has_integral \(z)(\) cbox a b) norm \((z-y)<e / B\)
                using \(M(2)[O F s b]\) by blast
            have \(*: ? S(h \circ f)=h \circ ? S f\)
                using zero by auto
            show \(\exists z .(? S(h \circ f)\) has_integral \(z)(\) cbox a \(b) \wedge\) norm \((z-h y)<e\)
            proof (intro exI conjI)
                show \((? S(h \circ f)\) has_integral \(h z)(\) cbox a b)
                    by (simp add: * has_integral_linear_cbox[OF z(1) h])
                    show norm \((h z-h y)<e\)
```

```
                    by (metis B diff le_less_trans pos_less_divide_eq z(2))
        qed
    qed
    qed
qed
lemma has_integral_scaleR_left:
    (f has_integral y) S \Longrightarrow((\lambdax.fx\mp@subsup{*}{R}{}c) has_integral (y* *R}c))
    using has_integral_linear[OF _ bounded_linear_scaleR_left] by (simp add: comp_def)
lemma integrable_on_scaleR_left:
    assumes f integrable_on A
    shows ( }\lambdax.fx\mp@subsup{*}{R}{}y)\mathrm{ integrable_on A
    using assms has_integral_scaleR_left unfolding integrable_on_def by blast
lemma has_integral_mult_left:
    fixes c :: _ :: real_normed_algebra
    shows (f has_integral y)S\Longrightarrow((\lambdax.f }\=c\mathrm{ ) has_integral ( }y*c))
    using has_integral_linear[OF _ bounded_linear_mult_left] by (simp add: comp_def)
lemma has_integral_divide:
    fixes c :: _ :: real_normed_div_algebra
    shows (f has_integral y)S\Longrightarrow((\lambdax.fx/c) has_integral (y/c))S
    unfolding divide_inverse by (simp add: has_integral_mult_left)
```

The case analysis eliminates the condition f integrable_on S at the cost of the type class constraint division_ring

```
corollary integral_mult_left [simp]:
    fixes c:: 'a::{real_normed_algebra,division_ring}
    shows integral S ( }\lambdax.fx*c)=\mathrm{ integral Sf*c
proof (cases f integrable_on S \vee c=0)
    case True then show ?thesis
        by (force intro: has_integral_mult_left)
next
    case False then have }\neg(\lambdax.fx*c) integrable_on S
        using has_integral_mult_left [of ( }\lambdax.fx*c) - S inverse c
        by (auto simp add: mult.assoc)
    with False show ?thesis by (simp add: not_integrable_integral)
qed
corollary integral_mult_right [simp]:
    fixes c:: 'a::{real_normed_field}
    shows integral S (\lambdax.c*fx)=c* integral S f
by (simp add: mult.commute [of c])
corollary integral_divide [simp]:
    fixes z :: 'a::real_normed_field
    shows integral S (\lambdax.fx/z)= integral S (\lambdax.fx)/z
using integral_mult_left [of S f inverse z]
```

```
by (simp add: divide_inverse_commute)
lemma has_integral_mult_right:
    fixes \(c::\) ' \(a\) :: real_normed_algebra
    shows ( \(f\) has_integral \(y) i \Longrightarrow((\lambda x . c * f x)\) has_integral \((c * y)) i\)
    using has_integral_linear[OF _ bounded_linear_mult_right] by (simp add: comp_def)
lemma has_integral_cmul: ( \(f\) has_integral \(k) S \Longrightarrow\left(\left(\lambda x . c *_{R} f x\right)\right.\) has_integral \((c\)
\(\left.\left.*_{R} k\right)\right) S\)
    unfolding o_def[symmetric]
    by (metis has_integral_linear bounded_linear_scaleR_right)
lemma has_integral_cmult_real:
    fixes \(c::\) real
    assumes \(c \neq 0 \Longrightarrow(f\) has_integral \(x) A\)
    shows \(((\lambda x . c * f x)\) has_integral \(c * x) A\)
proof (cases \(c=0\) )
    case True
    then show? ?hesis by simp
next
    case False
    from has_integral_cmul[ OF assms[OF this], of c] show ?thesis
        unfolding real_scaleR_def .
qed
lemma has_integral_neg: \((f\) has_integral \(k) S \Longrightarrow((\lambda x .-(f x))\) has_integral \(-k) S\)
    by (drule_tac \(c=-1\) in has_integral_cmul) auto
lemma has_integral_neg_iff: \(((\lambda x .-f x)\) has_integral \(k) S \longleftrightarrow(f\) has_integral -
k) \(S\)
    using has_integral_neg[of \(f-k]\) has_integral_neg \([o f \lambda x .-f x k]\) by auto
lemma has_integral_add_cbox:
    fixes \(f::\) ' \(n::\) euclidean_space \(\Rightarrow\) ' \(a:\) :real_normed_vector
    assumes ( \(f\) has_integral \(k\) ) (cbox ab) (g has_integral l) (cbox ab)
    shows \(((\lambda x . f x+g x)\) has_integral \((k+l))(\) cbox a \(b)\)
    using assms
        unfolding has_integral_cbox
        by (simp add: split_beta' scaleR_add_right sum.distrib[abs_def] tendsto_add)
lemma has_integral_add:
    fixes \(f\) :: ' \(n::\) euclidean_space \(\Rightarrow\) 'a::real_normed_vector
    assumes \(f\) : \((f\) has_integral \(k) S\) and \(g:(g\) has_integral \(l) S\)
    shows \(((\lambda x . f x+g x)\) has_integral \((k+l)) S\)
proof (cases \(\exists a b . S=\) cbox ab)
    case True with has_integral_add_cbox assms show ?thesis
        by blast
next
    let \(? S=\lambda f x\). if \(x \in S\) then \(f x\) else 0
```

```
    case False
    then show ?thesis
    proof (subst has_integral_alt, clarsimp,goal_cases)
    case (1 e)
    then have e2: e/2>0
            by auto
            obtain Bf where 0<Bf
            and Bf: \ab. ball 0 Bf \subseteqcbox a b\Longrightarrow
                        \existsz.(?S f has_integral z) (cbox a b) ^ norm (z-k)<e/2
            using has_integral_altD[OF f False e2] by blast
    obtain Bg}\mathrm{ where 0<Bg
            and Bg: \bigwedgeab. ball 0 Bg\subseteq(cbox a b)\Longrightarrow
                                    \existsz.(?S g has_integral z) (cbox a b) ^ norm (z-l)<e/\mathcal{Z}
            using has_integral_altD[OF g False e2] by blast
        show ?case
    proof (rule_tac x=max Bf Bg in exI, clarsimp simp add: max.strict_coboundedI1
<0<Bf`)
            fix ab
            assume ball 0 (max Bf Bg)\subseteqcbox a (b::'n)
            then have fs: ball 0 Bf \subseteqcbox a (b::'n) and gs: ball 0 Bg\subseteqcbox a (b::'n)
                by auto
            obtain w where w: (?S f has_integral w) (cbox a b) norm ( w-k)<e/2
            using Bf[OF fs] by blast
            obtain z where z:(?S g has_integral z) (cbox a b) norm (z-l)<e/2
            using Bg[OF gs] by blast
            have *: \bigwedgex. (if x G S then f x + g x else 0) =(?S f x ) + (?S g x )
            by auto
            show \existsz.(?S(\lambdax.fx+gx) has_integral z) (cbox a b)^norm (z-(k+
l))}<
            proof (intro exI conjI)
                show (?S(\lambdax.fx+g x) has_integral (w + z)) (cbox a b)
                    by (simp add: has_integral_add_cbox[OF w(1) z(1), unfolded *[symmetric]])
            show norm (w+z-(k+l))<e
                    by (metis dist_norm dist_triangle_add_half w(2) z(2))
            qed
    qed
    qed
qed
lemma has_integral_diff:
    (f has_integral k)S\Longrightarrow(g has_integral l)S\Longrightarrow
    ((\lambdax.fx-g x) has_integral (k-l))S
    using has_integral_add[OF _ has_integral_neg, of f k S g l]
    by (auto simp: algebra_simps)
lemma integral_0 [simp]:
    integral S ( }\lambdax::'n::euclidean_space. 0::'m::real_normed_vector) = 0
    by (rule integral_unique has_integral_0)+
```

```
lemma integral_add: \(f\) integrable_on \(S \Longrightarrow g\) integrable_on \(S \Longrightarrow\)
    integral \(S(\lambda x . f x+g x)=\) integral \(S f+\) integral \(S g\)
    by (rule integral_unique) (metis integrable_integral has_integral_add)
```

lemma integral_cmul [simp]: integral $S\left(\lambda x . c *_{R} f x\right)=c *_{R}$ integral $S f$
proof (cases f integrable_on $S \vee c=0$)
case True with has_integral_cmul integrable_integral show ?thesis
by fastforce
next
case False then have $\neg\left(\lambda x . c *_{R} f x\right)$ integrable_on S
using has_integral_cmul [of $\left(\lambda x . c *_{R} f x\right)$ - S inverse $\left.c\right]$ by auto
with False show ?thesis by (simp add: not_integrable_integral)
qed
lemma integral_mult:
fixes K ::real
shows f integrable_on $X \Longrightarrow K *$ integral $X f=$ integral $X(\lambda x . K * f x)$
unfolding real_scaleR_def[symmetric] integral_cmul ..
lemma integral_neg [simp]: integral $S(\lambda x .-f x)=-$ integral $S f$
proof (cases f integrable_on S)
case True then show ?thesis
by (simp add: has_integral_neg integrable_integral integral_unique)
next
case False then have $\neg(\lambda x .-f x)$ integrable_on S
using has_integral_neg $[o f(\lambda x .-f x)-S]$ by auto
with False show ?thesis by (simp add: not_integrable_integral)
qed
lemma integral_diff: f integrable_on $S \Longrightarrow g$ integrable_on $S \Longrightarrow$
integral $S(\lambda x . f x-g x)=$ integral $S f-$ integral $S g$
by (rule integral_unique) (metis integrable_integral has_integral_diff)
lemma integrable_0: $(\lambda x .0)$ integrable_on S
unfolding integrable_on_def using has_integral_0 by auto
lemma integrable_add: f integrable_on $S \Longrightarrow g$ integrable_on $S \Longrightarrow(\lambda x . f x+g x)$
integrable_on S
unfolding integrable_on_def by(auto intro: has_integral_add)
lemma integrable_cmul: fintegrable_on $S \Longrightarrow\left(\lambda x . c *_{R} f(x)\right)$ integrable_on S
unfolding integrable_on_def by(auto intro: has_integral_cmul)
lemma integrable_on_scaleR_iff [simp]:
fixes $c::$ real
assumes $c \neq 0$
shows $\left(\lambda x . c *_{R} f x\right)$ integrable_on $S \longleftrightarrow f$ integrable_on S
using integrable_cmul[0 f $\left.\lambda x . c *_{R} f x S 1 / c\right]$ integrable_cmul $[o f f S c]\langle c \neq 0\rangle$
by auto

```
lemma integrable_on_cmult_iff [simp]:
    fixes \(c::\) real
    assumes \(c \neq 0\)
    shows \((\lambda x . c * f x)\) integrable_on \(S \longleftrightarrow f\) integrable_on \(S\)
    using integrable_on_scaleR_iff [of cf] assms by simp
lemma integrable_on_cmult_left:
    assumes \(f\) integrable_on \(S\)
    shows ( \(\lambda x\). of_real \(c * f x\) ) integrable_on \(S\)
        using integrable_cmul[of \(f S\) of_real c] assms
        by (simp add: scaleR_conv_of_real)
lemma integrable_neg: \(f\) integrable_on \(S \Longrightarrow(\lambda x .-f(x))\) integrable_on \(S\)
    unfolding integrable_on_def by(auto intro: has_integral_neg)
lemma integrable_neg_iff: \((\lambda x .-f(x))\) integrable_on \(S \longleftrightarrow f\) integrable_on \(S\)
    using integrable_neg by fastforce
lemma integrable_diff:
    \(f\) integrable_on \(S \Longrightarrow g\) integrable_on \(S \Longrightarrow(\lambda x . f x-g x)\) integrable_on \(S\)
    unfolding integrable_on_def by(auto intro: has_integral_diff)
lemma integrable_linear:
    \(f\) integrable_on \(S \Longrightarrow\) bounded_linear \(h \Longrightarrow(h \circ f)\) integrable_on \(S\)
    unfolding integrable_on_def by(auto intro: has_integral_linear)
lemma integral_linear:
    \(f\) integrable_on \(S \Longrightarrow\) bounded_linear \(h \Longrightarrow\) integral \(S(h \circ f)=h(\) integral \(S f)\)
    by (meson has_integral_iff has_integral_linear)
lemma integrable_on_cnj_iff:
    ( \(\lambda x . \operatorname{cnj}(f x)\) ) integrable_on \(A \longleftrightarrow f\) integrable_on \(A\)
    using integrable_linear \([O F\) _ bounded_linear_cnj, of \(f A]\)
        integrable_linear [OF _ bounded_linear_cnj, of cnj \(\circ f A]\)
    by (auto simp: o_def)
lemma integral_cnj: cnj (integral \(A f)=\operatorname{integral} A(\lambda x . c n j(f x))\)
    by (cases \(f\) integrable_on A)
        (simp_all add: integral_linear[OF _ bounded_linear_cnj, symmetric]
                        o_def integrable_on_cnj_iff not_integrable_integral)
lemma integral_component_eq[simp]:
    fixes \(f::\) ' \(n::\) euclidean_space \(\Rightarrow\) ' \(m\) ::euclidean_space
    assumes \(f\) integrable_on \(S\)
    shows integral \(S(\lambda x . f x \cdot k)=\) integral \(S f \cdot k\)
    unfolding integral_linear[OF assms(1) bounded_linear_inner_left,unfolded o_def]
```

```
lemma has_integral_sum:
    assumes finite \(T\)
        and \(\bigwedge a . a \in T \Longrightarrow((f a)\) has_integral \((i a)) S\)
    shows \(((\lambda x\). sum \((\lambda a . f a x) T)\) has_integral (sum i \(T)) S\)
    using assms(1) subset_refl[of T]
proof (induct rule: finite_subset_induct)
    case empty
    then show? case by auto
next
    case (insert \(x F\) )
    with assms show ?case
        by (simp add: has_integral_add)
qed
lemma integral_sum:
    «finite \(I ; ~ \bigwedge a . a \in I \Longrightarrow f a\) integrable_on \(S \rrbracket \Longrightarrow\)
    integral \(S\left(\lambda x . \sum a \in I . f a x\right)=\left(\sum a \in I\right.\). integral \(\left.S(f a)\right)\)
    by (simp add: has_integral_sum integrable_integral integral_unique)
lemma integrable_sum:
    \(\llbracket\) finite \(I ; \bigwedge a . a \in I \Longrightarrow f a\) integrable_on \(S \rrbracket \Longrightarrow\left(\lambda x . \sum a \in I . f a x\right)\) integrable_on
\(S\)
    unfolding integrable_on_def using has_integral_sum [of I] by metis
lemma has_integral_eq:
    assumes \(\bigwedge x . x \in s \Longrightarrow f x=g x\)
        and ( \(f\) has_integral \(k\) ) \(s\)
    shows ( \(g\) has_integral \(k\) ) \(s\)
    using has_integral_diff \([O F \operatorname{assms}(2)\), of \(\lambda x . f x-g x 0]\)
    using has_integral_is_ \(0[\) of \(s \lambda x . f x-g x]\)
    using assms(1)
    by auto
lemma integrable_eq: \(\llbracket f\) integrable_on \(s ; \bigwedge x . x \in s \Longrightarrow f x=g x \rrbracket \Longrightarrow g\) inte-
grable_on s
    unfolding integrable_on_def
    using has_integral_eq[of sfg] has_integral_eq by blast
lemma has_integral_cong:
    assumes \(\bigwedge x . x \in s \Longrightarrow f x=g x\)
    shows (f has_integral i) \(s=(g\) has_integral i) \(s\)
    using has_integral_eq[of sfg] has_integral_eq[of s gf] assms
    by auto
lemma integral_cong:
    assumes \(\bigwedge x . x \in s \Longrightarrow f x=g x\)
    shows integral s \(f=\) integral s \(g\)
    unfolding integral_def
by (metis (full_types, hide_lams) assms has_integral_cong integrable_eq)
```

```
lemma integrable_on_cmult_left_iff [simp]:
    assumes \(c \neq 0\)
    shows \((\lambda x\). of_real \(c * f x)\) integrable_on \(s \longleftrightarrow f\) integrable_on \(s\)
        (is ?lhs =?rhs)
proof
    assume ?lhs
    then have \((\lambda x\). of_real \((1 / c) *(o f\) _real \(c * f x))\) integrable_on \(s\)
        using integrable_cmul[of \(\lambda x\). of_real \(c * f x s 1 /\) of_real \(c]\)
        by (simp add: scaleR_conv_of_real)
    then have \((\lambda x\). (of_real \((1 / c) *\) of_real \(c * f x))\) integrable_on \(s\)
        by (simp add: algebra_simps)
    with \(\langle c \neq 0\rangle\) show ? rhs
        by (metis (no_types, lifting) integrable_eq mult.left_neutral nonzero_divide_eq_eq
of_real_1 of_real_mult)
qed (blast intro: integrable_on_cmult_left)
lemma integrable_on_cmult_right:
    fixes \(f::{ }_{-} \Rightarrow\) ' \(b::\{\) comm_ring, real_algebra_1,real_normed_vector \(\}\)
    assumes \(f\) integrable_on \(s\)
    shows ( \(\lambda x . f x *\) of_real c) integrable_on s
using integrable_on_cmult_left [OF assms] by (simp add: mult.commute)
lemma integrable_on_cmult_right_iff [simp]:
    fixes \(f::{ }_{2} \Rightarrow\) 'b :: \{comm_ring,real_algebra_1,real_normed_vector \(\}\)
    assumes \(c \neq 0\)
    shows \((\lambda x . f x *\) of_real \(c\) ) integrable_on \(s \longleftrightarrow f\) integrable_on \(s\)
using integrable_on_cmult_left_iff [OF assms] by (simp add: mult.commute)
lemma integrable_on_cdivide:
    fixes \(f::\) _ \(^{\prime}{ }^{\prime} b\) :: real_normed_field
    assumes \(f\) integrable_on s
    shows ( \(\lambda x . f x /\) of_real \(c\) ) integrable_on \(s\)
by (simp add: integrable_on_cmult_right divide_inverse assms flip: of_real_inverse)
lemma integrable_on_cdivide_iff [simp]:
    fixes \(f::{ }_{\text {_ }} \Rightarrow\) ' \(b::\) real_normed_field
    assumes \(c \neq 0\)
    shows \((\lambda x . f x /\) of_real \(c)\) integrable_on \(s \longleftrightarrow f\) integrable_on \(s\)
by (simp add: divide_inverse assms flip: of_real_inverse)
lemma has_integral_null [intro]: content \((\) cbox a b) \(=0 \Longrightarrow(f\) has_integral 0\()(\) cbox
\(a b\) )
    unfolding has_integral_cbox
    using eventually_division_filter_tagged_division[of cbox a b]
    by (subst tendsto_cong[where \(\left.g=\lambda_{-} .0\right]\) ) (auto elim: eventually_mono intro: sum_content_null)
lemma has_integral_null_real [intro]: content \(\{a . . b::\) real \(\}=0 \Longrightarrow(f\) has_integral
0) \(\{a . . b\}\)
```

by (metis box_real(2) has_integral_null)
lemma has_integral_null_eq[simp]: content (cbox ab) $=0 \Longrightarrow(f$ has_integral $i)$
$(c b o x a b) \longleftrightarrow i=0$
by (auto simp add: has_integral_null dest!: integral_unique)
lemma integral_null [simp]: content (cbox ab)=0 integral (cbox abs) $f=0$ by (metis has_integral_null integral_unique)
lemma integrable_on_null $[$ intro $]$: content $(\operatorname{cbox} a b)=0 \Longrightarrow f$ integrable_on (cbox ab)
by (simp add: has_integral_integrable)
lemma has_integral_empty[intro]: (f has_integral 0) \{\}
by (meson ex_in_conv has_integral_is_0)
lemma has_integral_empty_eq[simp]: (f has_integral i) $\} \longleftrightarrow i=0$
by (auto simp add: has_integral_empty has_integral_unique)
lemma integrable_on_empty[intro]: f integrable_on \{\}
unfolding integrable_on_def by auto
lemma integral_empty[simp]: integral $\} f=0$
by (rule integral_unique) (rule has_integral_empty)
lemma has_integral_refl[intro]:
fixes a :: 'a::euclidean_space
shows (f has_integral 0) (cbox a a)
and (f has_integral 0) $\{a\}$
proof -
show (f has_integral 0) (cbox a a)
by (rule has_integral_null) simp
then show (f has_integral 0) $\{a\}$ by simp
qed
lemma integrable_on_refl[intro]: f integrable_on cbox a a
unfolding integrable_on_def by auto
lemma integral_refl [simp]: integral (cbox a a) $f=0$
by (rule integral_unique) auto
lemma integral_singleton [simp]: integral $\{a\} f=0$
by auto
lemma integral_blinfun_apply:
assumes f integrable_on s
shows integral $s(\lambda x$. blinfun_apply $h(f x))=$ blinfun_apply $h($ integral s $f)$
by (subst integral_linear $[$ symmetric, OF assms blinfun.bounded_linear_right $]$) (simp
add: o_def)
lemma blinfun_apply_integral:
assumes f integrable_on s
shows blinfun_apply (integral sf) $x=$ integral $s(\lambda y$. blinfun_apply $(f y) x)$
by (metis (no_types, lifting) assms blinfun.prod_left.rep_eq integral_blinfun_apply integral_cong)
lemma has_integral_componentwise_iff:
fixes f :: ' a :: euclidean_space \Rightarrow ' $b::$ euclidean_space
shows $(f$ has_integral $y) A \longleftrightarrow(\forall b \in$ Basis. $((\lambda x . f x \cdot b)$ has_integral $(y \cdot b))$
A)
proof safe
fix $b::$ ' b assume (f has_integral y) A
from has_integral_linear[OF this(1) bounded_linear_inner_left, of b]
show $((\lambda x . f x \cdot b)$ has_integral $(y \cdot b)) A$ by (simp add: o_def)
next
assume $(\forall b \in$ Basis. $((\lambda x . f x \cdot b)$ has_integral $(y \cdot b)) A)$
hence $\forall b \in$ Basis. $\left(\left(\left(\lambda x . x *_{R} b\right) \circ(\lambda x . f x \cdot b)\right)\right.$ has_integral $\left.\left((y \cdot b) *_{R} b\right)\right) A$
by (intro ballI has_integral_linear) (simp_all add: bounded_linear_scaleR_left)
hence $\left(\left(\lambda x . \sum b \in\right.\right.$ Basis. $\left.(f x \cdot b) *_{R} b\right)$ has_integral $\left(\sum b \in\right.$ Basis. $\left.\left.(y \cdot b) *_{R} b\right)\right)$
A
by (intro has_integral_sum) (simp_all add: o_def)
thus (f has_integral y) A by (simp add: euclidean_representation)
qed
lemma has_integral_componentwise:
fixes f :: 'a :: euclidean_space \Rightarrow ' b :: euclidean_space
shows $(\bigwedge b . b \in$ Basis $\Longrightarrow((\lambda x . f x \cdot b)$ has_integral $(y \cdot b)) A) \Longrightarrow(f$ has_integral
y) A
by (subst has_integral_componentwise_iff) blast
lemma integrable_componentwise_iff:
fixes f :: 'a :: euclidean_space \Rightarrow ' b :: euclidean_space
shows f integrable_on $A \longleftrightarrow(\forall b \in$ Basis. $(\lambda x . f x \cdot b)$ integrable_on $A)$
proof
assume f integrable_on A
then obtain y where (f has_integral y) A by (auto simp: integrable_on_def)
hence $(\forall b \in$ Basis. $((\lambda x . f x \cdot b)$ has_integral $(y \cdot b)) A)$
by (subst (asm) has_integral_componentwise_iff)
thus $(\forall b \in B a s i s .(\lambda x . f x \cdot b)$ integrable_on $A)$ by (auto simp: integrable_on_def)
next
assume $(\forall b \in$ Basis. $(\lambda x . f x \cdot b)$ integrable_on $A)$
then obtain y where $\forall b \in$ Basis. $((\lambda x . f x \cdot b)$ has_integral $y b) A$ unfolding integrable_on_def by (subst (asm) bchoice_iff) blast
hence $\forall b \in$ Basis. $\left(\left(\left(\lambda x . x *_{R} b\right) \circ(\lambda x . f x \cdot b)\right)\right.$ has_integral $\left.\left(y b *_{R} b\right)\right) A$ by (intro ballI has_integral_linear) (simp_all add: bounded_linear_scaleR_left)
hence $\left(\left(\lambda x . \sum b \in\right.\right.$ Basis. $\left.(f x \cdot b) *_{R} b\right)$ has_integral $\left(\sum b \in\right.$ Basis. y $\left.\left.b *_{R} b\right)\right) A$ by (intro has_integral_sum) (simp_all add: o_def)

```
thus \(f\) integrable_on \(A\) by (auto simp: integrable_on_def o_def euclidean_representation)
qed
lemma integrable_componentwise:
    fixes \(f\) :: ' \(a\) :: euclidean_space \(\Rightarrow\) ' \(b\) :: euclidean_space
    shows \((\bigwedge b . b \in\) Basis \(\Longrightarrow(\lambda x . f x \cdot b)\) integrable_on \(A) \Longrightarrow f\) integrable_on \(A\)
    by (subst integrable_componentwise_iff) blast
lemma integral_componentwise:
    fixes \(f\) :: ' \(a\) :: euclidean_space \(\Rightarrow\) ' \(b\) :: euclidean_space
    assumes \(f\) integrable_on \(A\)
    shows integral \(A f=\left(\sum b \in\right.\) Basis. integral \(\left.A\left(\lambda x .(f x \cdot b) *_{R} b\right)\right)\)
proof -
    from assms have integrable: \(\forall b \in\) Basis. \(\left(\lambda x . x *_{R} b\right) \circ(\lambda x .(f x \cdot b))\) integrable_on
A
            by (subst (asm) integrable_componentwise_iff, intro integrable_linear ballI)
                (simp_all add: bounded_linear_scaleR_left)
    have integral \(A f=\) integral \(A\left(\lambda x . \sum b \in\right.\) Basis. \(\left.(f x \cdot b) *_{R} b\right)\)
            by (simp add: euclidean_representation)
    also from integrable have \(\ldots=\left(\sum a \in\right.\) Basis. integral \(\left.A\left(\lambda x .(f x \cdot a) *_{R} a\right)\right)\)
            by (subst integral_sum) (simp_all add: o_def)
    finally show ?thesis.
qed
lemma integrable_component:
\(f\) integrable_on \(A \Longrightarrow(\lambda x . f x \cdot(y:: ' b::\) euclidean_space \())\) integrable_on \(A\)
by (drule integrable_linear[OF_bounded_linear_inner_left[of y]]) (simp add: o_def)
```


6.15.4 Cauchy-type criterion for integrability

proposition integrable_Cauchy:
fixes $f::$ ' $n::$ euclidean_space \Rightarrow ' $a::\{$ real_normed_vector,complete_space $\}$
shows f integrable_on cbox $a b \longleftrightarrow$
($\forall e>0 . \exists \gamma$. gauge $\gamma \wedge$
$(\forall \mathcal{D} 1$ D2. $\mathcal{D} 1$ tagged_division_of $($ cbox a $b) \wedge \gamma$ fine $\mathcal{D} 1 \wedge$ D2 tagged_division_of $($ cbox a b) $\wedge \gamma$ fine $\mathcal{D} 2 \longrightarrow$ norm $\left(\left(\sum(x, K) \in \mathcal{D} 1\right.\right.$. content $\left.K *_{R} f x\right)-\left(\sum(x, K) \in \mathcal{D} 2\right.$. content $K *_{R}$ $f(x))<e)$)
(is ? $l=(\forall e>0 . \exists \gamma$. ? P e $\gamma)$)
proof (intro iffI allI impI)
assume ?l
then obtain y
where $y: \bigwedge e . e>0 \Longrightarrow$
$\exists \gamma$. gauge $\gamma \wedge$
$(\forall \mathcal{D} . \mathcal{D}$ tagged_division_of cbox a $b \wedge \gamma$ fine $\mathcal{D} \longrightarrow$ norm $\left(\left(\sum(x, K) \in \mathcal{D}\right.\right.$. content $\left.\left.\left.K *_{R} f x\right)-y\right)<e\right)$
by (auto simp: integrable_on_def has_integral)
show $\exists \gamma$. ?P $e \gamma$ if $e>0$ for e
proof -

```
    have \(e / 2>0\) using that by auto
    with \(y\) obtain \(\gamma\) where gauge \(\gamma\)
        and \(\gamma: \wedge \mathcal{D}\). \(\mathcal{D}\) tagged_division_of cbox a \(b \wedge \gamma\) fine \(\mathcal{D} \Longrightarrow\)
            norm \(\left(\left(\sum(x, K) \in \mathcal{D}\right.\right.\). content \(\left.\left.K *_{R} f x\right)-y\right)<e / 2\)
    by meson
    show ?thesis
    apply (rule_tac \(x=\gamma\) in exI, clarsimp simp: \(\langle\) gauge \(\gamma\rangle\) )
    by (blast intro!: \(\gamma\) dist_triangle_half_l \([\) where \(y=y\),unfolded dist_norm \(]\) )
    qed
next
    assume \(\forall e>0\). \(\exists \gamma\). ? \(P\) e \(\gamma\)
    then have \(\forall n::\) nat. \(\exists \gamma\). ? \(P(1 /(n+1)) \gamma\)
        by auto
    then obtain \(\gamma::\) nat \(\Rightarrow{ }^{\prime} n \Rightarrow{ }^{\prime} n\) set where \(\gamma\) :
        ^m. gauge ( \(\gamma m\) )
        \(\bigwedge m\) D1 D2. 【D1 tagged_division_of cbox a b;
            \(\gamma\) m fine \(\mathcal{D} 1 ;\) D2 tagged_division_of cbox a \(b ; \gamma m\) fine \(\mathcal{D}\) 2】
            \(\Longrightarrow\) norm \(\left(\left(\sum(x, K) \in \mathcal{D} 1\right.\right.\). content \(\left.K *_{R} f x\right)-\left(\sum(x, K) \in \mathcal{D} 2\right.\).
content \(\left.K *_{R} f x\right)\) )
                        \(<1 /(m+1)\)
        by metis
    have gauge \((\lambda x . \bigcap\{\gamma i x \mid i . i \in\{0 . . n\}\})\) for \(n\)
        using \(\gamma\) by (intro gauge_Inter) auto
    then have \(\forall n . \exists p . p\) tagged_division_of \(\left(\begin{array}{ccc} & a b\end{array}\right) \wedge(\lambda x . \bigcap\{\gamma i x \mid i . i \in\)
\(\{0 . . n\}\})\) fine \(p\)
    by (meson fine_division_exists)
    then obtain \(p\) where \(p: \bigwedge z . p z\) tagged_division_of cbox ab
                                    \(\bigwedge z .(\lambda x . \bigcap\{\gamma i x \mid i . i \in\{0 . . z\}\})\) fine \(p z\)
        by meson
    have \(d p: \bigwedge i n . i \leq n \Longrightarrow \gamma i\) fine \(p n\)
        using \(p\) unfolding fine_Inter
        using atLeastAtMost_iff by blast
    have Cauchy \(\left(\lambda n\right.\). sum \(\left(\lambda(x, K)\right.\). content \(\left.\left.K *_{R}(f x)\right)(p n)\right)\)
    proof (rule CauchyI)
        fix \(e\) ::real
        assume \(0<e\)
        then obtain \(N\) where \(N \neq 0\) and \(N\) : inverse \((\) real \(N)<e\)
            using real_arch_inverse[of e] by blast
            show \(\exists M . \forall m \geq M . \forall n \geq M\). norm \(\left(\left(\sum(x, K) \in p\right.\right.\) m. content \(\left.K *_{R} f x\right)-\)
\(\left(\sum(x, K) \in p\right.\) n. content \(\left.\left.K *_{R} f x\right)\right)<e\)
    proof (intro exI allI impI)
            fix \(m n\)
            assume \(m n: N \leq m N \leq n\)
            have norm \(\left(\left(\sum(x, K) \in p\right.\right.\) m. content \(\left.K *_{R} f x\right)-\left(\sum(x, K) \in p n\right.\). content
\(\left.\left.K *_{R} f x\right)\right)<1 /(\) real \(N+1)\)
            by (simp add: \(p(1) d p m n \gamma\) )
            also have ... \(<e\)
                using \(N\langle N \neq 0\rangle\langle 0<e\rangle\) by (auto simp: field_simps)
            finally show norm \(\left(\left(\sum(x, K) \in p m\right.\right.\). content \(\left.K *_{R} f x\right)-\left(\sum(x, K) \in p n\right.\).
```

```
content \(\left.\left.K *_{R} f x\right)\right)<e\).
    qed
    qed
    then obtain \(y\) where \(y: \exists\) no. \(\forall n \geq\) no. norm \(\left(\left(\sum(x, K) \in p n\right.\right.\). content \(K *_{R} f\)
\(x)-y)<r\) if \(r>0\) for \(r\)
    by (auto simp: convergent_eq_Cauchy[symmetric] dest: LIMSEQ_D)
    show?
    unfolding integrable_on_def has_integral
    proof (rule_tac \(x=y\) in exI, clarify)
    fix \(e\) :: real
    assume \(e>0\)
    then have \(e 2: e / 2>0\) by auto
    then obtain \(N 1::\) nat where \(N 1: N 1 \neq 0\) inverse \((\) real \(N 1)<e / 2\)
            using real_arch_inverse by blast
    obtain N2::nat where N2: \(\wedge n . n \geq N 2 \Longrightarrow\) norm \(\left(\left(\sum(x, K) \in p\right.\right.\) n. content
\(\left.K *_{R} f(x)-y\right)<e / 2\)
            using \(y[O F e 2]\) by metis
    show \(\exists \gamma\). gauge \(\gamma \wedge\)
                                    \((\forall \mathcal{D} . \mathcal{D}\) tagged_division_of \((\) cbox \(a b) \wedge \gamma\) fine \(\mathcal{D} \longrightarrow\)
                                    norm \(\left(\left(\sum(x, K) \in \mathcal{D}\right.\right.\). content \(\left.\left.\left.K *_{R} f x\right)-y\right)<e\right)\)
    proof (intro exI conjI allI impI)
        show gauge ( \(\gamma(\) N1 + N2 \()\) )
            using \(\gamma\) by auto
        show norm \(\left(\left(\sum(x, K) \in q\right.\right.\). content \(\left.\left.K *_{R} f x\right)-y\right)<e\)
                if \(q\) tagged_division_of cbox \(a b \wedge \gamma(N 1+N 2)\) fine \(q\) for \(q\)
            proof (rule norm_triangle_half_r)
            have norm \(\left(\left(\sum(x, K) \in p(N 1+N 2)\right.\right.\). content \(\left.K *_{R} f x\right)-\left(\sum(x, K) \in q\right.\).
content \(\left.K *_{R} f x\right)\) )
                        \(<1 /(\) real \((N 1+N 2)+1)\)
                by (rule \(\gamma ; \operatorname{simp}\) add: dp \(p\) that)
            also have..\(<e / 2\)
                using \(N 1\langle 0<e\rangle\) by (auto simp: field_simps intro: less_le_trans)
            finally show norm \(\left(\left(\sum(x, K) \in p(N 1+N 2)\right.\right.\). content \(\left.K *_{R} f x\right)-\left(\sum(x, K)\right.\)
\(\in q\). content \(\left.\left.K *_{R} f x\right)\right)<e / 2\).
            show norm \(\left(\left(\sum(x, K) \in p(N 1+N 2)\right.\right.\). content \(\left.\left.K *_{R} f x\right)-y\right)<e / \mathcal{Z}\)
                using N2 le_add_same_cancel2 by blast
            qed
        qed
    qed
qed
```


6.15.5 Additivity of integral on abutting intervals

```
lemma tagged_division_split_left_inj_content:
    assumes \(\mathcal{D}: \mathcal{D}\) tagged_division_of \(S\)
        and \((x 1, K 1) \in \mathcal{D}(x 2, K 2) \in \mathcal{D} K 1 \neq K 2 K 1 \cap\{x . x \cdot k \leq c\}=K 2 \cap\{x\).
\(x \cdot k \leq c\} k \in\) Basis
    shows content \((K 1 \cap\{x . x \cdot k \leq c\})=0\)
proof -
```

from tagged_division_ofD $(4)[$ OF $\mathcal{D}\langle(x 1, K 1) \in \mathcal{D}\rangle]$ obtain $a b$ where $K 1: K 1$ = cbox ab
by auto
then have interior $(K 1 \cap\{x . x \cdot k \leq c\})=\{ \}$
by (metis tagged_division_split_left_inj assms)
then show ?thesis
unfolding K1 interval_split[$O F\langle k \in$ Basis \rangle by (auto simp: content_eq_0_interior)
qed
lemma tagged_division_split_right_inj_content:
assumes $\mathcal{D}: \mathcal{D}$ tagged_division_of S
and $(x 1, K 1) \in \mathcal{D}(x 2, K 2) \in \mathcal{D} K 1 \neq K 2 K 1 \cap\{x . x \cdot k \geq c\}=K 2 \cap\{x$.
$x \cdot k \geq c\} k \in$ Basis
shows content $(K 1 \cap\{x . x \cdot k \geq c\})=0$
proof -
from tagged_division_ofD $(4)[O F \mathcal{D}\langle(x 1, K 1) \in \mathcal{D}\rangle]$ obtain $a b$ where $K 1$: K1
= cbox ab
by auto
then have interior $(K 1 \cap\{x . c \leq x \cdot k\})=\{ \}$
by (metis tagged_division_split_right_inj assms)
then show ?thesis
unfolding K1 interval_split[OF $\langle k \in$ Basis \rangle]
by (auto simp: content_eq_0_interior)
qed
proposition has_integral_split:
fixes f :: ' $a::$ euclidean_space \Rightarrow ' $b::$ real_normed_vector
assumes $f:(f$ has_integral $i)($ cbox a $b \cap\{x . x \cdot k \leq c\})$
and $f j$: $(f$ has_integral $j)($ cbox a $b \cap\{x . x \cdot k \geq c\})$
and $k: k \in$ Basis
shows $(f$ has_integral $(i+j))($ cbox a $b)$
unfolding has_integral
proof clarify
fix e ::real
assume $0<e$
then have $e: e / 2>0$
by auto
obtain $\gamma 1$ where $\gamma 1$: gauge $\gamma 1$
and $\gamma 1$ norm:
$\wedge \mathcal{D} . \llbracket \mathcal{D}$ tagged_division_of cbox a $b \cap\{x . x \cdot k \leq c\} ; \gamma 1$ fine $\mathcal{D} \rrbracket$
$\Longrightarrow \operatorname{norm}\left(\left(\sum(x, K) \in \mathcal{D}\right.\right.$. content $\left.\left.K *_{R} f x\right)-i\right)<e / 2$
apply (rule has_integralD[OF fi[unfolded interval_split[OF k]]e])
apply (simp add: interval_split[symmetric] k)

done

obtain γ^{2} where $\gamma 2$: gauge γ^{2}
and $\gamma 2$ norm:

$$
\wedge \mathcal{D} . \llbracket \mathcal{D} \text { tagged_division_of cbox a } b \cap\{x . c \leq x \cdot k\} ; \gamma 2 \text { fine } \mathcal{D} \rrbracket
$$

$$
\Longrightarrow \operatorname{norm}\left(\left(\sum(x, k) \in \mathcal{D} . \text { content } k *_{R} f x\right)-j\right)<e / \mathbb{2}
$$

```
    apply (rule has_integralD[OF fj[unfolded interval_split[OF k]] e])
    apply (simp add: interval_split[symmetric] k)
    done
let ?\gamma }=\lambdax\mathrm{ . if }x\cdotk=c\mathrm{ then ( }\gamma1x\cap\gamma2x) else ball x | x | k - c|\cap \gamma1 x \cap \gamma2 x
have gauge ?\gamma
    using \gamma1 \gamma2 unfolding gauge_def by auto
then show }\exists\gamma.g\mathrm{ gauge }\gamma
                    ( }\forall\mathcal{D}.\mathcal{D}\mathrm{ tagged_division_of cbox a b ^ }\gamma\mathrm{ fine }\mathcal{D}
                        norm ((\sum (x,k)\in\mathcal{D}. content k*Rf * ) - (i+j))<e)
proof (rule_tac x=?\gamma in exI, safe)
    fix p
    assume p: p tagged_division_of (cbox a b) and ?\gamma fine p
    have ab_eqp: cbox a b =\bigcup{K.\existsx. (x,K) \in p}
        using p by blast
    have xk_le_c:x\cdotk\leqc if as: (x,K)\inp and K:K\cap{x.x\cdotk\leqc}\not={} for x K
    proof (rule ccontr)
        assume **: \neg x • k\leqc
        then have }K\subseteq\mathrm{ ball x |x •k-c|
            using <? }\gamma\mathrm{ fine p> as by (fastforce simp: not_le algebra_simps)
            with K obtain y where y: y f ball x |x | k-c| y\cdotk\leqc
            by blast
        then have |x\cdotk-y\cdotk|<|x\cdotk-c|
            using Basis_le_norm[OF k, of x - y]
            by (auto simp add: dist_norm inner_diff_left intro: le_less_trans)
            with y show False
                using ** by (auto simp add: field_simps)
    qed
    have xk_ge_c: x}\cdotk\geqc\mathrm{ if as: }(x,K)\inp\mathrm{ and }K:K\cap{x.x\cdotk\geqc}\not={}\mathrm{ for }
K
    proof (rule ccontr)
    assume **: \neg x • k\geqc
    then have K\subseteq ball x |x \cdotk-c|
        using <?\gamma fine p> as by (fastforce simp: not_le algebra_simps)
    with K obtain y where y:y\in ball x |x | k-c| y\cdotk\geqc
        by blast
    then have }|x\cdotk-y\cdotk|<|x\cdotk-c
        using Basis_le_norm[OF k, of x - y]
        by (auto simp add: dist_norm inner_diff_left intro:le_less_trans)
    with y show False
        using ** by (auto simp add: field_simps)
    qed
    have fin_finite: finite {(x,f K)|xK. (x,K) \ins\wedgePxK}
    if finite s for s and f :: 'a set 知'a set and P :: 'a = 'a set }=>\mathrm{ bool
    proof -
        from that have finite }((\lambda(x,K).(x,fK))'s
        by auto
    then show ?thesis
        by (rule rev_finite_subset) auto
    qed
```

```
    \(\left\{\operatorname{fix} \mathcal{G}::\right.\) 'a set \(\Rightarrow{ }^{\prime}\) a set
    fix \(i::\) ' \(a \times\) 'a set
    assume \(i \in(\lambda(x, k) .(x, \mathcal{G} k))\) ' \(p-\{(x, \mathcal{G} k) \mid x k .(x, k) \in p \wedge \mathcal{G} k \neq\{ \}\}\)
    then obtain \(x K\) where \(x k: i=(x, \mathcal{G} K)(x, K) \in p\)
                \((x, \mathcal{G} K) \notin\{(x, \mathcal{G} K) \mid x K .(x, K) \in p \wedge \mathcal{G} K \neq\{ \}\}\)
        by auto
    have content \((\mathcal{G} K)=0\)
        using \(x k\) using content_empty by auto
    then have \(\left(\lambda(x, K)\right.\). content \(\left.K *_{R} f x\right) i=0\)
        unfolding \(x k\) split_conv by auto
    \(\}\) note \([\) simp \(]=\) this
    have finite \(p\)
        using \(p\) by blast
    let \(? M 1=\{(x, K \cap\{x \cdot x \cdot k \leq c\}) \mid x K .(x, K) \in p \wedge K \cap\{x \cdot x \cdot k \leq c\} \neq\)
\{\}\}
    have \(\gamma 1\)-fine: \(\gamma 1\) fine ?M1
    using 〈? \(\gamma\) fine \(p\rangle\) by (fastforce simp: fine_def split: if_split_asm)
    have norm \(\left(\left(\sum(x, k) \in\right.\right.\) ?M1. content \(\left.\left.k *_{R} f x\right)-i\right)<e / 2\)
    proof (rule \(\gamma 1\) norm [OF tagged_division_ofI \(\gamma 1\) _fine])
        show finite ?M1
        by (rule fin_finite) (use \(p\) in blast)
    show \(\bigcup\{k . \exists x .(x, k) \in ? M 1\}=c b o x a b \cap\{x . x \cdot k \leq c\}\)
        by (auto simp: ab_eqp)
    fix \(x L\)
    assume \(x L:(x, L) \in\) ?M1
    then obtain \(x^{\prime} L^{\prime}\) where \(x L^{\prime}: x=x^{\prime} L=L^{\prime} \cap\{x . x \cdot k \leq c\}\)
                                    \(\left.\left(x^{\prime}, L^{\prime}\right) \in p L^{\prime} \cap\{x . x \cdot k \leq c\} \neq \overline{\{ }\right\}\)
        by blast
    then obtain \(a^{\prime} b^{\prime}\) where \(a b^{\prime}: L^{\prime}=c b o x a^{\prime} b^{\prime}\)
        using \(p\) by blast
    show \(x \in L L \subseteq\) cbox a \(b \cap\{x . x \cdot k \leq c\}\)
    using \(p x k_{-} l e_{-} c x L^{\prime}\) by auto
    show \(\exists a b . L=c b o x a b\)
    using \(p x L^{\prime} a b^{\prime}\) by (auto simp add: interval_split[OF \(k\),where \(\left.c=c\right]\) )
    fix \(y R\)
    assume \(y R:(y, R) \in\) ?M1
    then obtain \(y^{\prime} R^{\prime}\) where \(y R^{\prime}: y=y^{\prime} R=R^{\prime} \cap\{x . x \cdot k \leq c\}\)
                        \(\left(y^{\prime}, R^{\prime}\right) \in p R^{\prime} \cap\{x . x \cdot k \leq c\} \neq\{ \}\)
        by blast
    assume as: \((x, L) \neq(y, R)\)
    show interior \(L \cap\) interior \(R=\{ \}\)
    proof \(\left(\right.\) cases \(\left.L^{\prime}=R^{\prime} \longrightarrow x^{\prime}=y^{\prime}\right)\)
        case False
        have interior \(R^{\prime}=\{ \}\)
        by (metis (no_types) False Pair_inject inf.idem tagged_division_ofD(5) [OF
p] \(\left.x L^{\prime}(3) y R^{\prime}(3)\right)\)
    then show ?thesis
```

```
        using \(y R^{\prime}\) by simp
    next
        case True
        then have \(L^{\prime} \neq R^{\prime}\)
            using as unfolding \(x L^{\prime} y R^{\prime}\) by auto
    have interior \(L^{\prime} \cap\) interior \(R^{\prime}=\{ \}\)
    by (metis (no_types) Pair_inject \(\left\langle L^{\prime} \neq R^{\prime}\right\rangle p\) tagged_division_ofD (5) \(x L^{\prime}(3)\)
\(\left.y R^{\prime}(3)\right)\)
            then show ?thesis
            using \(x L^{\prime}(2) y R^{\prime}(2)\) by auto
    qed
qed
moreover
let ? M2 \(=\{(x, K \cap\{x \cdot x \cdot k \geq c\}) \mid x K .(x, K) \in p \wedge K \cap\{x \cdot x \cdot k \geq c\} \neq\{ \}\}\)
have \(\gamma^{2}\) _fine: \(\gamma 2\) fine ?M2
    using 〈? \(\gamma\) fine \(p\rangle\) by (fastforce simp: fine_def split: if_split_asm)
    have norm \(\left(\left(\sum(x, k) \in\right.\right.\) ?M2. content \(\left.\left.k *_{R} f x\right)-j\right)<e / 2\)
    proof (rule \(\gamma 2\) norm [OF tagged_division_ofI \(\gamma 2\) _fine])
        show finite ?M2
        by (rule fin_finite) (use \(p\) in blast)
    show \(\bigcup\{k . \exists x .(x, k) \in ?\) ?M2 \(\}=c b o x\) a \(b \cap\{x . x \cdot k \geq c\}\)
        by (auto simp: ab_eqp)
```

 fix \(x L\)
 assume \(x L:(x, L) \in\) ?M2
 then obtain \(x^{\prime} L^{\prime}\) where \(x L^{\prime}: x=x^{\prime} L=L^{\prime} \cap\{x . x \cdot k \geq c\}\)
 \(\left.\left(x^{\prime}, L^{\prime}\right) \in p L^{\prime} \cap\{x . x \cdot k \geq c\} \neq \overline{\{ }\right\}\)
 by blast
 then obtain \(a^{\prime} b^{\prime}\) where \(a b^{\prime}: L^{\prime}=c b o x a^{\prime} b^{\prime}\)
 using \(p\) by blast
 show \(x \in L L \subseteq\) cbox ab \(b \cap\{x . x \cdot k \geq c\}\)
 using \(p x k_{-} g e_{-} c x L^{\prime}\) by auto
 show \(\exists a b\). \(L=\) cbox \(a b\)
 using \(p x L^{\prime} a b^{\prime}\) by (auto simp add: interval_split[OF \(k\), where \(\left.c=c\right]\))
 fix \(y R\)
 assume \(y R:(y, R) \in\) ?M2
 then obtain \(y^{\prime} R^{\prime}\) where \(y R^{\prime}: y=y^{\prime} R=R^{\prime} \cap\{x . x \cdot k \geq c\}\)
 \(\left(y^{\prime}, R^{\prime}\right) \in p R^{\prime} \cap\{x . x \cdot k \geq c\} \neq\{ \}\)
 by blast
 assume as: \((x, L) \neq(y, R)\)
 show interior \(L \cap\) interior \(R=\{ \}\)
 proof (cases \(L^{\prime}=R^{\prime} \longrightarrow x^{\prime}=y^{\prime}\))
 case False
 have interior \(R^{\prime}=\{ \}\)
 by (metis (no_types) False Pair_inject inf.idem tagged_division_ofD (5) [OF
 p] $\left.x L^{\prime}(3) y R^{\prime}(3)\right)$
then show ?thesis
using $y R^{\prime}$ by simp

next

case True
then have $L^{\prime} \neq R^{\prime}$
using as unfolding $x L^{\prime} y R^{\prime}$ by auto
have interior $L^{\prime} \cap$ interior $R^{\prime}=\{ \}$
by (metis (no_types) Pair_inject $\left\langle L^{\prime} \neq R^{\prime}\right\rangle p$ tagged_division_ofD (5) x $L^{\prime}(3)$ $\left.y R^{\prime}(3)\right)$
then show ?thesis
using $x L^{\prime}$ (2) $y R^{\prime}(2)$ by auto
qed
qed
ultimately
have norm $\left(\left(\left(\sum(x, K) \in\right.\right.\right.$?M1. content $\left.\left.K *_{R} f x\right)-i\right)+\left(\left(\sum(x, K) \in\right.\right.$?M2. content $\left.\left.\left.K *_{R} f x\right)-j\right)\right)<e / 2+e / 2$
using norm_add_less by blast
moreover have $\left(\left(\sum(x, K) \in\right.\right.$?M1. content $\left.\left.K *_{R} f x\right)-i\right)+$
$\left(\left(\sum(x, K) \in\right.\right.$?M2. content $\left.\left.K *_{R} f x\right)-j\right)=$
$\left(\sum(x, k a) \in p\right.$. content $\left.k a *_{R} f x\right)-(i+j)$
proof -
have eq $0: \bigwedge x y . x=(0::$ real $) \Longrightarrow x *_{R}\left(y:::^{\prime} b\right)=0$
by auto
have cont_eq: $\bigwedge g .\left(\lambda(x, l)\right.$. content $\left.l *_{R} f x\right) \circ(\lambda(x, l) .(x, g l))=(\lambda(x, l)$.
content $\left.(g l) *_{R} f x\right)$
by auto
have $*: \wedge \mathcal{G}::$ ' a set \Rightarrow 'a set.

$$
\left(\sum(x, K) \in\{(x, \mathcal{G} K) \mid x K .(x, K) \in p \wedge \mathcal{G} K \neq\{ \}\} \text {. content } K *_{R}\right.
$$

$f x)=$

$$
\left(\sum(x, K) \in(\lambda(x, K) \cdot(x, \mathcal{G} K)){ }^{\prime} p . \text { content } K *_{R} f x\right)
$$

by (rule sum.mono_neutral_left) (auto simp: 〈finite $p\rangle$)
have $\left(\left(\sum(x, k) \in ?\right.\right.$ M1. content $\left.\left.k *_{R} f x\right)-i\right)+\left(\left(\sum(x, k) \in ?\right.\right.$ M2. content k $\left.\left.*_{R} f x\right)-j\right)=$
$\left(\sum(x, k) \in\right.$?M1. content $\left.k *_{R} f x\right)+\left(\sum(x, k) \in\right.$?M2. content $\left.k *_{R} f x\right)-$ $(i+j)$
by auto
moreover have $\ldots=\left(\sum(x, K) \in p\right.$. content $\left.(K \cap\{x . x \cdot k \leq c\}) *_{R} f x\right)$ $+$
$\left(\sum(x, K) \in p\right.$. content $\left.(K \cap\{x . c \leq x \cdot k\}) *_{R} f x\right)-(i+j)$
unfolding *
apply (subst (1 2) sum.reindex_nontrivial)
apply (auto intro!: k p eq0 tagged_division_split_left_inj_content tagged_division_split_right_inj_conte simp: cont_eq 〈finite $p\rangle$)
done
moreover have $\Lambda x . x \in p \Longrightarrow\left(\lambda(a, B)\right.$. content $(B \cap\{a . a \cdot k \leq c\}) *_{R} f$
a) $x+$
$\left(\lambda(a, B)\right.$. content $\left.(B \cap\{a . c \leq a \cdot k\}) *_{R} f a\right) x=$
$\left(\lambda(a, B)\right.$. content $\left.B *_{R} f a\right) x$
proof clarify
fix $a B$
assume $(a, B) \in p$
with p obtain $u v$ where $u v: B=$ cbox $u v$ by blast
then show content $(B \cap\{x . x \cdot k \leq c\}) *_{R} f a+$ content $(B \cap\{x . c \leq x$

- $k\}) *_{R} f a=$ content $B *_{R} f a$
by (auto simp: scaleR_left_distrib uv content_split[OF $k, o f u v c])$
qed
ultimately show ?thesis
by (auto simp: sum.distrib[symmetric])
qed
ultimately show norm $\left(\left(\sum(x, k) \in p\right.\right.$. content $\left.\left.k *_{R} f x\right)-(i+j)\right)<e$
by auto
qed
qed

6.15.6 A sort of converse, integrability on subintervals

```
lemma has_integral_separate_sides:
    fixes \(f::\) ' \(a::\) euclidean_space \(\Rightarrow\) ' \(b::\) real_normed_vector
    assumes \(f\) : (f has_integral i) (cbox a b)
        and \(e>0\)
        and \(k: k \in\) Basis
    obtains \(d\) where gauge \(d\)
        \(\forall p 1\) p2. p1 tagged_division_of \((\) cbox a \(b \cap\{x . x \cdot k \leq c\}) \wedge d\) fine \(p 1 \wedge\)
            p2 tagged_division_of (cbox a \(b \cap\{x . x \cdot k \geq c\}) \wedge d\) fine \(p 2 \longrightarrow\)
            norm \(\left(\left(\operatorname{sum}\left(\lambda(x, k)\right.\right.\right.\). content \(\left.k *_{R} f x\right) p 1+\operatorname{sum}\left(\lambda(x, k)\right.\). content \(k *_{R} f\)
x) \(p 2)-i)<e\)
proof -
    obtain \(\gamma\) where \(d\) : gauge \(\gamma\)
            \(\bigwedge p . \llbracket p\) tagged_division_of cbox a \(b ; \gamma\) fine \(p \rrbracket\)
                \(\Longrightarrow \operatorname{norm}\left(\left(\sum(x, k) \in p\right.\right.\). content \(\left.\left.k *_{R} f x\right)-i\right)<e\)
    using has_integralD[OF \(f\langle e>0\rangle]\) by metis
    \{ fix p1 p2
        assume tdiv1: p1 tagged_division_of \(\left(\right.\) cbox \(\left.^{\text {a }} b\right) \cap\{x . x \cdot k \leq c\}\) and \(\gamma\) fine p1
        note \(p 1=\) tagged_division_of \(D[O F\) this (1)]
        assume tdiv2: p2 tagged_division_of (cbox ab) \(\cap\{x . c \leq x \cdot k\}\) and \(\gamma\) fine \(p\) 2
        note \(p 2=\) tagged_division_of \(D[O F\) this (1)]
        note tagged_division_Un_interval[OF tdiv1 tdiv2]
        note \(p 12=\) tagged_division_of \(D[O F\) this \(]\) this
        \(\{\mathrm{fix} a b\)
            assume \(a b:(a, b) \in p 1 \cap p 2\)
            have \((a, b) \in p 1\)
                using \(a b\) by auto
            obtain \(u v\) where \(u v: b=c b o x u v\)
                using \(\langle(a, b) \in p 1\rangle p 1\) (4) by moura
            have \(b \subseteq\{x . x \cdot k=c\}\)
            using ab p1(3)[of ab] p2(3)[of ab] by fastforce
            moreover
            have interior \(\left\{x::^{\prime} a . x \cdot k=c\right\}=\{ \}\)
            proof (rule ccontr)
                assume \(\neg\) ?thesis
```

```
        then obtain x where x:x\in interior {x::'a. x v k = c}
            by auto
```



```
            using mem_interior by metis
            have }x:x\cdotk=
            using x interior_subset by fastforce
            have *: \bigwedgei. i B Basis \Longrightarrow | (x-(x+(\varepsilon/2) *R k)) . i|=(if i=k then
\varepsilon/2 else 0)
            using <0 < < k by (auto simp: inner_simps inner_not_same_Basis)
            have (\sumi\inBasis. |(x-(x+(\varepsilon/2) * *R k)) \cdoti|)=
                    (\sumi\inBasis. (if i=k then \varepsilon/2 else 0))
            using * by (blast intro: sum.cong)
            also have ... < < 
            by (subst sum.delta) (use <0< < in auto)
            finally have }x+(\varepsilon/2)\mp@subsup{*}{R}{}k\in\mathrm{ ball }x
            unfolding mem_ball dist_norm by(rule le_less_trans[OF norm_le_l1])
            then have }x+(\varepsilon/2)\mp@subsup{*}{R}{}k\in{x.x\cdotk=c
            using }\varepsilon\mathrm{ by auto
            then show False
                using <0 < < x k by (auto simp: inner_simps)
            qed
            ultimately have content b=0
            unfolding uv content_eq_0_interior
            using interior_mono by blast
            then have content b * *}f=
            by auto
    }
    then have norm ((\sum(x,k)\inp1. content k*R fx) + (\sum(x,k)\inp2. content k
*R}f(x)-i)
                norm ((\sum(x,k)\inp1\cupp2. content k**R f x ) - i)
            by (subst sum.union_inter_neutral) (auto simp: p1 p2)
    also have ... < e
            using d(2) p12 by (simp add: fine_Un k {\gamma fine p1\rangle\langle\gamma fine p2>)
    finally have norm (( }\sum(x,k)\inp1. content k\mp@subsup{*}{R}{}fx)+(\sum(x,k)\inp2. conten
k**
    }
    then show ?thesis
    using d(1) that by auto
qed
lemma integrable_split [intro]:
    fixes f :: 'a::euclidean_space => 'b::{real_normed_vector,complete_space}
    assumes f:f integrable_on cbox a b
            and k: k\in Basis
            shows f integrable_on (cbox a b \cap{x. x.k\leqc}) (is ?thesis1)
            and fintegrable_on(cbox a b \cap{x.x\cdotk\geqc}) (is ?thesis2)
proof -
    obtain y where y:(f has_integral y) (cbox a b)
            using f by blast
```

```
define \(a^{\prime}\) where \(a^{\prime}=\left(\sum i \in\right.\) Basis. \((\) if \(i=k\) then \(\max (a \cdot k) c\) else \(a \cdot i) *_{R}\) i)
define \(b^{\prime}\) where \(b^{\prime}=\left(\sum i \in\right.\) Basis. (if \(i=k\) then \(\min (b \cdot k) c\) else \(\left.\left.b \cdot i\right) *_{R} i\right)\)
have \(\exists d\). gauge \(d \wedge\)
        ( \(\forall\) p1 p2. p1 tagged_division_of cbox a \(b \cap\{x . x \cdot k \leq c\} \wedge d\) fine \(p 1 \wedge\)
                        p2 tagged_division_of cbox a \(b \cap\{x . x \cdot k \leq c\} \wedge d\) fine p2 \(\longrightarrow\)
                            norm \(\left(\left(\sum(x, K) \in p 1\right.\right.\). content \(\left.K *_{R} f x\right)-\left(\sum(x, K) \in p 2\right.\).
content \(\left.\left.K *_{R} f x\right)\right)<e\) )
    if \(e>0\) for \(e\)
    proof -
        have \(e / 2>0\) using that by auto
    with has_integral_separate_sides[OF y this \(k\), of \(c]\)
    obtain \(d\)
        where gauge \(d\)
            and \(d: \bigwedge p 1 p 2 . \llbracket p 1\) tagged_division_of cbox a \(b \cap\{x . x \cdot k \leq c\} ; d\) fine \(p 1\);
                    p2 tagged_division_of cbox a \(b \cap\{x . c \leq x \cdot k\} ; d\) fine p2】
            \(\Longrightarrow\) norm \(\left(\left(\sum(x, K) \in p 1\right.\right.\). content \(\left.K *_{R} f x\right)+\left(\sum(x, K) \in p 2\right.\). content
\(\left.\left.K *_{R} f x\right)-y\right)<e / 2\)
        by metis
    show ?thesis
        proof (rule_tac \(x=d\) in exI, clarsimp simp add: \(\langle\) gauge \(d\rangle\) )
            fix \(p 1 p 2\)
            assume as: p1 tagged_division_of \((\) cbox a \(b) \cap\{x . x \cdot k \leq c\} d\) fine \(p 1\)
                    p2 tagged_division_of (cbox ab) \(\cap\{x . x \cdot k \leq c\} d\) fine p2
            show norm \(\left(\left(\sum(x, k) \in p 1\right.\right.\). content \(\left.k *_{R} f x\right)-\left(\sum(x, k) \in p 2\right.\). content \(k *_{R}\)
\(f x))<e\)
            proof (rule fine_division_exists[OF \(\langle g a u g e d\rangle\), of \(\left.\left.a^{\prime} b\right]\right)\)
                    fix \(p\)
                    assume \(p\) tagged_division_of cbox \(a^{\prime} b d\) fine \(p\)
                    then show ?thesis
                using as norm_triangle_half_l[OF d[of p1 p] d[of p2 p]]
                unfolding interval_split[OF \(k\) ] \(b^{\prime}{ }_{-}\)def [symmetric] \(a^{\prime}{ }_{\text {_ }}\) def [symmetric]
                by (auto simp add: algebra_simps)
            qed
        qed
    qed
    with \(f\) show ?thesis1
        by (simp add: interval_split[OF k] integrable_Cauchy)
    have \(\exists d\). gauge \(d \wedge\)
                ( \(\forall\) p1 p2. p1 tagged_division_of cbox a \(b \cap\{x . x \cdot k \geq c\} \wedge d\) fine \(p 1 \wedge\)
                        \(p 2\) tagged_division_of cbox a \(b \cap\{x . x \cdot k \geq c\} \wedge d\) fine \(p 2 \longrightarrow\)
                            norm \(\left(\left(\sum(x, K) \in\right.\right.\) p1. content \(\left.K *_{R} f x\right)-\left(\sum(x, K) \in p 2\right.\).
content \(\left.\left.K *_{R} f x\right)\right)<e\) )
    if \(e>0\) for \(e\)
    proof -
        have \(e / 2>0\) using that by auto
    with has_integral_separate_sides[OF y this \(k\), of \(c]\)
    obtain \(d\)
        where gauge \(d\)
            and \(d: \bigwedge p 1\) p2. \(\llbracket p 1\) tagged_division_of cbox \(a b \cap\{x . x \cdot k \leq c\} ; d\) fine \(p 1\);
```

p2 tagged_division_of cbox a $b \cap\{x . c \leq x \cdot k\} ; d$ fine $p 2 \rrbracket$ \Longrightarrow norm $\left(\left(\sum(x, K) \in p 1\right.\right.$. content $\left.K *_{R} f x\right)+\left(\sum(x, K) \in p 2\right.$. content $\left.\left.K *_{R} f x\right)-y\right)<e / 2$
by metis
show ?thesis
proof (rule_tac $x=d$ in exI, clarsimp simp add: \langle gauge $d\rangle)$
fix $p 1 p 2$
assume as: p1 tagged_division_of (cbox ab) $\cap\{x . x \cdot k \geq c\} d$ fine $p 1$ p2 tagged_division_of (cbox a b) $\cap\{x . x \cdot k \geq c\} d$ fine p2
show norm $\left(\left(\sum(x, k) \in p 1\right.\right.$. content $\left.k *_{R} f x\right)-\left(\sum(x, k) \in p 2\right.$. content $k *_{R}$ $f x))<e$
proof (rule fine_division_exists[OF 〈gauge d \downarrow, of a $b\rceil$])
fix p
assume p tagged_division_of cbox a $b^{\prime} d$ fine p then show? ?thesis
using as norm_triangle_half_l[OF $d\left[\begin{array}{lll}o f & p & p 1\end{array}\right] d\left[\begin{array}{ll}o f & p\end{array}\right.$ p2]]
unfolding interval_split[OF k] $b^{\prime}{ }_{-}$def[symmetric] $a^{\prime}{ }_{-}$def [symmetric]
by (auto simp add: algebra_simps)

qed

qed
qed
with f show ?thesis2
by (simp add: interval_split[OF k] integrable_Cauchy)
qed
lemma operative_integralI:
fixes f :: 'a::euclidean_space \Rightarrow ' $b::$ banach
shows operative (lift_option (+)) (Some 0)
(λi. if f integrable_on i then Some (integral if) else None)
proof -
interpret comm_monoid lift_option plus Some ($0::$ 'b)
by (rule comm_monoid_lift_option)
(rule add.comm_monoid_axioms)
show ?thesis
proof
fix $a b c$
fix $k::$ ' a
assume $k: k \in$ Basis
show (if f integrable_on cbox a b then Some (integral (cbox ab)f) else None)
$=$
lift_option $(+)$ (if f integrable_on cbox a $b \cap\{x . x \cdot k \leq c\}$ then Some
(integral (cbox a $b \cap\{x . x \cdot k \leq c\}) f$) else None)
(if f integrable_on cbox a $b \cap\{x . c \leq x \cdot k\}$ then Some (integral (cbox ab
$\cap\{x . c \leq x \cdot k\}) f$) else None)
proof (cases f integrable_on cbox ab)
case True
with k show ?thesis
by (auto simp: integrable_split intro: integral_unique [OF has_integral_split[OF - - $k]$])

```
    next
    case False
        have }\neg(f\mathrm{ integrable_on cbox a b \{x.x •kscc) V ᄀ( f integrable_on cbox
ab\cap{x.c\leqx\cdotk})
    proof (rule ccontr)
        assume \neg ?thesis
        then have f integrable_on cbox a b
            unfolding integrable_on_def
            apply (rule_tac x=integral (cbox a b \cap {x. x •k\leqc}) f+integral (cbox
ab\cap{x.x\cdotk\geqc})f in exI)
                apply (auto intro: has_integral_split[OF _ _ k])
                done
        then show False
            using False by auto
        qed
        then show ?thesis
            using False by auto
        qed
    next
        fix }ab:: ''
        assume box a b={}
        then show (if f integrable_on cbox a b then Some (integral (cbox a b) f) else
None) = Some 0
        using has_integral_null_eq
        by (auto simp: integrable_on_null content_eq_0_interior)
    qed
qed
```


6.15.7 Bounds on the norm of Riemann sums and the integral itself

lemma dsum_bound:
assumes p : p division_of (cbox ab)
and norm $c \leq e$
shows norm $\left(\operatorname{sum}\left(\lambda l\right.\right.$. content $\left.\left.l *_{R} c\right) p\right) \leq e * \operatorname{content}($ cbox a $b)$
proof -
have sumeq: $\left(\sum i \in p\right.$. \mid content $\left.i \mid\right)=$ sum content p by simp
have $e: 0 \leq e$
using assms(2) norm_ge_zero order_trans by blast
have norm $\left(\operatorname{sum}\left(\lambda l\right.\right.$. content $\left.\left.l *_{R} c\right) p\right) \leq\left(\sum i \in p\right.$.norm $\left(\right.$ content $\left.\left.i *_{R} c\right)\right)$
using norm_sum by blast
also have $\ldots \leq e *\left(\sum i \in p . \mid\right.$ content $\left.i \mid\right)$
by (simp add: sum_distrib_left[symmetric] mult.commute assms(2) mult_right_mono
sum_nonneg)
also have $\ldots \leq e *$ content (cbox ab)
by (metis additive_content_division p eq_iff sumeq)
finally show ?thesis .
qed

```
lemma rsum_bound:
    assumes \(p\) : \(p\) tagged_division_of (cbox a b)
        and \(\forall x \in c b o x\) a \(b\). norm \((f x) \leq e\)
    shows norm (sum \(\left(\lambda(x, k)\right.\). content \(\left.\left.k *_{R} f x\right) p\right) \leq e *\) content (cbox ab)
proof (cases cbox a \(b=\{ \}\) )
    case True show ?thesis
        using \(p\) unfolding True tagged_division_of_trivial by auto
next
    case False
    then have \(e: e \geq 0\)
        by (meson ex_in_conv assms(2) norm_ge_zero order_trans)
    have sum_le: sum (content \(\circ\) snd) \(p \leq\) content (cbox ab)
        unfolding additive_content_tagged_division[OF p, symmetric] split_def
        by (auto intro: eq_refl)
    have con: \(\bigwedge x k . x k \in p \Longrightarrow 0 \leq\) content (snd \(x k\) )
        using tagged_division_ofD (4) [OF p] content_pos_le
        by force
    have norm \(\left(\operatorname{sum}\left(\lambda(x, k)\right.\right.\). content \(\left.\left.k *_{R} f x\right) p\right) \leq\left(\sum i \in p\right.\). norm (case \(i\) of \((x\),
\(k) \Rightarrow\) content \(\left.k *_{R} f x\right)\) )
    by (rule norm_sum)
    also have \(\ldots \leq e *\) content ( cbox a b)
    proof -
        have \(\bigwedge x k . x k \in p \Longrightarrow \operatorname{norm}(f(f s t x k)) \leq e\)
            using assms(2) p tag_in_interval by force
            moreover have \(\left(\sum i \in p . \mid\right.\) content \(\left.(s n d i) \mid * e\right) \leq e *\) content (cbox ab)
            unfolding sum_distrib_right[symmetric]
            using con sum_le by (auto simp: mult.commute intro: mult_left_mono [OF _
e])
    ultimately show ?thesis
            unfolding split_def norm_scaleR
            by (metis (no_types, lifting) mult_left_mono[OF_abs_ge_zero] order_trans[OF
sum_mono])
    qed
    finally show ?thesis .
qed
lemma rsum_diff_bound:
    assumes \(p\) tagged_division_of (cbox a b)
    and \(\forall x \in\) cbox a b. norm \((f x-g x) \leq e\)
    shows norm \(\left(\operatorname{sum}\left(\lambda(x, k)\right.\right.\). content \(\left.k *_{R} f x\right) p-\operatorname{sum}\left(\lambda(x, k)\right.\). content \(k *_{R} g\)
x) \(p\) ) \(\leq\)
                \(e\) * content (cbox ab)
    using order_trans[OF _ rsum_bound[OF assms]]
    by (simp add: split_def scaleR_diff_right sum_subtractf eq_refl)
lemma has_integral_bound:
    fixes \(f\) :: ' \(a::\) euclidean_space \(\Rightarrow\) ' \(b::\) real_normed_vector
    assumes \(0 \leq B\)
```

```
and f:(f has_integral i) (cbox a b)
and }\bigwedgex.x\incbox ab\Longrightarrownorm (fx)\leq
shows norm i\leqB* content (cbox a b)
proof (rule ccontr)
    assume \neg ?thesis
    then have norm i-B* content (cbox a b)>0
        by auto
    with f[unfolded has_integral]
    obtain }\gamma\mathrm{ where gauge }\gamma\mathrm{ and }\gamma\mathrm{ :
        \p.\llbracketp tagged_division_of cbox a b;\gamma fine p\rrbracket
        #norm ((\sum(x,K)\inp. content K * 
(cbox a b)
    by metis
    then obtain p}\mathrm{ where p:p tagged_division_of cbox a b and }\gamma\mathrm{ fine p
    using fine_division_exists by blast
    have }\sB.norm s\leqB\Longrightarrow\neg\operatorname{norm}(s-i)<\mathrm{ norm i - B
    unfolding not_less
    by (metis diff_left_mono dist_commute dist_norm norm_triangle_ineq2 order_trans)
    then show False
    using \gamma[OF p<\gamma fine p〉] rsum_bound[OF p] assms by metis
qed
corollary integrable_bound:
    fixes f :: 'a::euclidean_space => 'b::real_normed_vector
    assumes 0\leqB
        and f integrable_on (cbox a b)
        and \x. x\incbox a b\Longrightarrownorm ( }fx)\leq
        shows norm (integral (cbox a b) f) \leqB* content (cbox a b)
by (metis integrable_integral has_integral_bound assms)
```


6.15.8 Similar theorems about relationship among components

```
lemma rsum_component_le:
    fixes \(f\) :: ' \(a:\) :euclidean_space \(\Rightarrow\) ' \(b::\) euclidean_space
    assumes \(p\) : p tagged_division_of (cbox a b)
        and \(\bigwedge x . x \in\) cbox a \(b \Longrightarrow(f x) \cdot i \leq(g x) \cdot i\)
    shows \(\left(\sum(x, K) \in p\right.\). content \(\left.K *_{R} f x\right) \cdot i \leq\left(\sum(x, K) \in p\right.\). content \(\left.K *_{R} g x\right)\)
- i
unfolding inner_sum_left
proof (rule sum_mono, clarify)
    fix \(x K\)
    assume \(a b:(x, K) \in p\)
    with \(p\) obtain \(u v\) where \(K: K=c b o x u v\)
        by blast
    then show (content \(\left.K *_{R} f x\right) \cdot i \leq\left(\right.\) content \(\left.K *_{R} g x\right) \cdot i\)
    by (metis ab assms inner_scaleR_left measure_nonneg mult_left_mono tag_in_interval)
qed
```

```
lemma has_integral_component_le:
    fixes \(f g\) :: 'a::euclidean_space \(\Rightarrow\) ' \(b::\) euclidean_space
    assumes \(k: k \in\) Basis
    assumes (f has_integral i) \(S\) ( \(g\) has_integral \(j\) ) \(S\)
        and \(f_{-} l e_{-} g: \bigwedge x . x \in S \Longrightarrow(f x) \cdot k \leq(g x) \cdot k\)
    shows \(i \cdot k \leq j \cdot k\)
proof -
    have \(i k_{-} l e \_j k: i \cdot k \leq j \cdot k\)
        if \(f_{-} i\) : ( \(f\) has_integral \(i\) ) (cbox a b)
        and \(g_{-} j\) : ( \(g\) has_integral \(j\) ) (cbox a b)
        and \(l e: \forall x \in c b o x a b\). \((f x) \cdot k \leq(g x) \cdot k\)
        for \(a b i\) and \(j:: ' b\) and \(f g::^{\prime} a \Rightarrow{ }^{\prime} b\)
    proof (rule ccontr)
        assume \(\neg\) ?thesis
        then have \(*: 0<(i \cdot k-j \cdot k) / 3\)
            by auto
        obtain \(\gamma 1\) where gauge \(\gamma 1\)
            and \(\gamma 1: \bigwedge p\). \(\llbracket p\) tagged_division_of cbox a \(b ; \gamma 1\) fine \(p \rrbracket\)
                    \(\Longrightarrow\) norm \(\left(\left(\sum(x, k) \in p\right.\right.\). content \(\left.\left.k *_{R} f x\right)-i\right)<(i \cdot k-j \cdot k) / 3\)
            using \(f_{-}\)i[unfolded has_integral,rule_format, \(O F *\) ] by fastforce
        obtain \(\gamma 2\) where gauge \(\gamma\) 2
            and \(\gamma 2: \wedge p\). \(\llbracket p\) tagged_division_of cbox a \(b ; \gamma 2\) fine \(p \rrbracket\)
                    \(\Longrightarrow\) norm \(\left(\left(\sum(x, k) \in p\right.\right.\). content \(\left.\left.k *_{R} g x\right)-j\right)<(i \cdot k-j \cdot k) / 3\)
            using \(g_{-} j[\) unfolded has_integral,rule_format, OF *] by fastforce
        obtain \(p\) where \(p\) : p tagged_division_of cbox ab and \(\gamma 1\) fine \(p \gamma 2\) fine \(p\)
                using fine_division_exists[OF gauge_Int[OF〈gauge \(\gamma 1\rangle\langle g a u g e ~ \gamma 2\rangle]\), of a \(b\) ]
unfolding fine_Int
                by metis
    then have \(\mid\left(\left(\sum(x, k) \in p\right.\right.\). content \(\left.\left.k *_{R} f x\right)-i\right) \cdot k \mid<(i \cdot k-j \cdot k) / 3\)
                    \(\mid\left(\left(\sum(x, k) \in p\right.\right.\). content \(\left.\left.k *_{R} g x\right)-j\right) \cdot k \mid<(i \cdot k-j \cdot k) / 3\)
            using le_less_trans[OF Basis_le_norm[OF k]] k \(\gamma 1 \gamma_{2}\) by metis+
        then show False
            unfolding inner_simps
            using rsum_component_le \([\) OF p] le
            by (fastforce simp add: abs_real_def split: if_split_asm)
    qed
    show ?thesis
    proof (cases \(\exists a b . S=\) cbox ab)
        case True
        with \(i k_{-} l e \_j k\) assms show ?thesis
        by auto
    next
        case False
        show ?thesis
        proof (rule ccontr)
            assume \(\neg i \cdot k \leq j \cdot k\)
            then have \(i j:(i \cdot k-j \cdot k) / 3>0\)
                by auto
            obtain \(B 1\) where \(0<B 1\)
```

and B1: $\bigwedge a b$. ball $0 B 1 \subseteq$ cbox $a b \Longrightarrow$

$$
\begin{aligned}
& \exists z .((\lambda x . \text { if } x \in S \text { then } f x \text { else 0) has_integral } z)(\text { cbox a } b) \wedge \\
& \quad \text { norm }(z-i)<(i \cdot k-j \cdot k) / 3
\end{aligned}
$$

using has_integral_altD[OF _ False ij] assms by blast
obtain $B 2$ where $0<B 2$
and B2: $\bigwedge a b$. ball 0 B2 \subseteq cbox a $b \Longrightarrow$
$\exists z .((\lambda x$. if $x \in S$ then $g x$ else 0) has_integral $z)($ cbox a $b) \wedge$
norm $(z-j)<(i \cdot k-j \cdot k) / 3$
using has_integral_altD[OF _ False ij] assms by blast
have bounded (ball 0 B1 \cup ball ($\left.0::^{\prime} a\right)$ B2)
unfolding bounded_Un by (rule conjI bounded_ball)+
from bounded_subset_cbox_symmetric[OF this]
obtain a b::' a where $a b:$ ball $0 B 1 \subseteq$ cbox a b ball 0 B2 \subseteq cbox a b by (meson Un_subset_iff)
then obtain $w 1$ w2 where int_w1: $((\lambda x$. if $x \in S$ then $f x$ else 0$)$ has_integral w1) (cbox ab)

$$
\text { and norm_w1: norm }(w 1-i)<(i \cdot k-j \cdot k) / 3
$$

and int_w2: $((\lambda x$. if $x \in S$ then g x else 0) has_integral w2 $)$
(cbox a b)

$$
\text { and norm_w2: norm }(w 2-j)<(i \cdot k-j \cdot k) / 3
$$

using B1 B2 by blast
have $*$: $\bigwedge w 1$ w2 $j i:$ real $.|w 1-i|<(i-j) / 3 \Longrightarrow|w 2-j|<(i-j) / 3$ $\Longrightarrow w 1 \leq w 2 \Longrightarrow$ False by (simp add: abs_real_def split: if_split_asm)
have $|(w 1-i) \cdot k|<(i \cdot k-j \cdot k) / 3$
$|(w 2-j) \cdot k|<(i \cdot k-j \cdot k) / 3$
using Basis_le_norm k le_less_trans norm_w1 norm_w2 by blast+
moreover
have $w 1 \cdot k \leq w 2 \cdot k$
using $i k_{-} l e_{-} j k$ int_w1 int_w2 $f_{-} l e_{-} g$ by auto
ultimately show False
unfolding inner_simps by (rule *)
qed
qed
qed
lemma integral_component_le:
fixes $g f$:: 'a::euclidean_space \Rightarrow ' $b::$ euclidean_space
assumes $k \in$ Basis
and f integrable_on S g integrable_on S
and $\wedge x . x \in S \Longrightarrow(f x) \cdot k \leq(g x) \cdot k$
shows (integral $S f$) $\cdot k \leq($ integral $S g) \cdot k$
using has_integral_component_le assms by blast
lemma has_integral_component_nonneg:
fixes f :: 'a::euclidean_space \Rightarrow ' $b::$ euclidean_space
assumes $k \in$ Basis
and (f has_integral i) S
and $\bigwedge x . x \in S \Longrightarrow 0 \leq(f x) \cdot k$

```
    shows 0\leqi\cdotk
    using has_integral_component_le[OF assms(1) has_integral_0 assms(2)]
    using assms(3-)
    by auto
lemma integral_component_nonneg:
    fixes f :: 'a::euclidean_space }=>\mp@subsup{}{}{\prime}b::\mathrm{ euclidean_space
    assumes k}\in\mathrm{ Basis
        and }\x.x\inS\Longrightarrow0\leq(fx)\cdot
    shows 0}\leq(\mathrm{ integral Sf)
proof (cases f integrable_on S)
    case True show ?thesis
        using True assms has_integral_component_nonneg by blast
next
    case False then show ?thesis by (simp add: not_integrable_integral)
qed
lemma has_integral_component_neg:
    fixes f :: 'a::euclidean_space => 'b::euclidean_space
    assumes }k\in\mathrm{ Basis
        and (f has_integral i) S
        and }\x.x\inS\Longrightarrow(fx)\cdotk\leq
    shows }i\cdotk\leq
    using has_integral_component_le[OF assms(1,2) has_integral_0] assms(2-)
    by auto
lemma has_integral_component_lbound:
    fixes f :: 'a::euclidean_space => 'b::euclidean_space
    assumes (f has_integral i) (cbox a b)
        and }\forallx\incbox a b. B\leqf(x)\cdot
        and }k\in\mathrm{ Basis
    shows B * content (cbox a b) \leqi\cdotk
    using has_integral_component_le[OF assms(3) has_integral_const assms(1),of ( }\sum\mathrm{ i i Basis.
B *R i)::'b] assms(2-)
    by (auto simp add: field_simps)
lemma has_integral_component_ubound:
    fixes f::'a::euclidean_space => 'b::euclidean_space
    assumes (f has_integral i) (cbox a b)
        and }\forallx\incbox a b.fx\cdotk\leq
        and k}\in\mathrm{ Basis
    shows i}i\cdotk\leqB* content (cbox a b
    using has_integral_component_le[OF assms(3,1) has_integral_const, of \sumi\inBasis.
B *R i] assms(2-)
    by (auto simp add: field_simps)
lemma integral_component_lbound:
    fixes f :: 'a::euclidean_space = 'b::euclidean_space
    assumes f integrable_on cbox a b
```

```
    and }\forallx\incbox a b. B\leqf(x)\cdot
    and }k\in\mathrm{ Basis
    shows B * content (cbox a b) \leq(integral(cbox a b)f)\cdotk
    using assms has_integral_component_lbound by blast
lemma integral_component_lbound_real:
    assumes f integrable_on {a ::real..b}
        and }\forallx\in{a..b}.B\leqf(x)\cdot
        and }k\in\mathrm{ Basis
    shows B* content {a..b}\leq(integral {a..b}f)\cdotk
    using assms
    by (metis box_real(2) integral_component_lbound)
lemma integral_component_ubound:
    fixes f :: 'a::euclidean_space = 'b::euclidean_space
    assumes f integrable_on cbox a b
        and \forallx\incbox a b. f x}\cdotk\leq
        and }k\in\mathrm{ Basis
    shows (integral (cbox a b)f)\cdotk\leqB* content (cbox a b)
    using assms has_integral_component_ubound by blast
lemma integral_component_ubound_real:
    fixes f :: real => 'a::euclidean_space
    assumes f integrable_on {a..b}
        and }\forallx\in{a..b}.fx\cdotk\leq
        and k}\in\mathrm{ Basis
    shows (integral {a..b} f)\cdotk\leqB* content {a..b}
    using assms
    by (metis box_real(2) integral_component_ubound)
```


6.15.9 Uniform limit of integrable functions is integrable

lemma real_arch_invD:
$0<(e::$ real $) \Longrightarrow(\exists n::$ nat. $n \neq 0 \wedge 0<$ inverse $($ real $n) \wedge$ inverse $($ real $n)<$ e)
by (subst(asm) real_arch_inverse)
lemma integrable_uniform_limit:
fixes f :: 'a::euclidean_space \Rightarrow ' $b::$ banach
assumes $\bigwedge e . e>0 \Longrightarrow \exists g .(\forall x \in$ cbox a b. norm $(f x-g x) \leq e) \wedge g$ inte-
grable_on cbox a b
shows f integrable_on cbox a b
proof (cases content (cbox ab) >0)
case False then show ?thesis
using has_integral_null by (simp add: content_lt_nz integrable_on_def)
next
case True
have $1 /($ real $n+1)>0$ for n
by auto
then have $\exists g$. $(\forall x \in \operatorname{cbox} a b$. norm $(f x-g x) \leq 1 /($ real $n+1)) \wedge g$ integrable_on cbox a b for n
using assms by blast
then obtain g where $g_{-} n e a r_{-} f: \bigwedge n x . x \in \operatorname{cbox} a b \Longrightarrow \operatorname{norm}(f x-g n x) \leq$ $1 /($ real $n+1)$
and int_g: $\bigwedge n . g n$ integrable_on cbox $a b$
by metis
then obtain h where $h: \bigwedge n .(g n$ has_integral $h n)(c b o x a b)$
unfolding integrable_on_def by metis
have Cauchy h
unfolding Cauchy_def
proof clarify
fix e :: real
assume $e>0$
then have $e / 4 /$ content $($ cbox ab) >0
using True by (auto simp: field_simps)
then obtain M where $M \neq 0$ and $M: 1 /($ real $M)<e / 4 /$ content $($ cbox $a b)$
by (metis inverse_eq_divide real_arch_inverse)
show $\exists M . \forall m \geq M . \forall n \geq M$. dist $(h m)(h n)<e$
proof (rule exI [where $x=M$], clarify)
fix $m n$
assume $m: M \leq m$ and $n: M \leq n$
have $e / 4\rangle 0$ using $\langle e\rangle 0\rangle$ by auto
then obtain $g m$ gn where gauge gm gauge gn
and $g m: \wedge \mathcal{D} . \mathcal{D}$ tagged_division_of cbox $a b \wedge g m$ fine \mathcal{D}

$$
\Longrightarrow \operatorname{norm}\left(\left(\sum(x, K) \in \mathcal{D} . \text { content } K *_{R} g m x\right)-h m\right)<
$$

$e / 4$
and gn: $\bigwedge \mathcal{D}$. \mathcal{D} tagged_division_of cbox a $b \wedge$ gn fine $\mathcal{D} \Longrightarrow$

$$
\text { norm }\left(\left(\sum(x, K) \in \mathcal{D} . \text { content } K *_{R} g n x\right)-h n\right)<e / 4
$$

using $h[$ unfolded has_integral] by meson
then obtain \mathcal{D} where $\mathcal{D}: \mathcal{D}$ tagged_division_of cbox ab $(\lambda x$.gm $x \cap g n x)$ fine \mathcal{D}
by (metis (full_types) fine_division_exists gauge_Int)
have triangle3: norm $(i 1-i 2)<e$
if no: $\operatorname{norm}(s 2-s 1) \leq e / 2 \operatorname{norm}(s 1-i 1)<e / 4 \operatorname{norm}(s 2-i 2)<e / 4$
for $s 1$ s2 $i 1$ and $i 2:: ' b$
proof -
have norm $(i 1-i \mathcal{Q}) \leq \operatorname{norm}(i 1-s 1)+\operatorname{norm}(s 1-s 2)+\operatorname{norm}(s 2-$
i2)
using norm_triangle_ineq[of i1 - s1 s1 - i2]
using norm_triangle_ineq[of s1-s2 s2 - i2]
by (auto simp: algebra_simps)
also have ... $<e$
using no by (auto simp: algebra_simps norm_minus_commute)
finally show ?thesis .
qed
have finep: gm fine \mathcal{D} gn fine \mathcal{D}

```
    using fine_Int \mathcal{D by auto}
    have norm_le: norm (gnx-gmx)\leq2 / real M if x: x f cbox a b for x
    proof -
    have norm (fx-gnx)+norm (fx-gmx)\leq1/(real n + 1)+1/
(real m+1)
            using g_near_f[OF x, of n] g_near_f[OF x, of m] by simp
            also have .. \leq 1/(real M)+1/(real M)
            using <M \not=0\ranglem n by (intro add_mono; force simp: field_split_simps)
            also have \ldots=2 / real M
            by auto
            finally show norm (gnx-gmx)\leq2 / real M
            using norm_triangle_le[of g n x-fxfx-gmx 2 / real M]
            by (auto simp: algebra_simps simp add: norm_minus_commute)
    qed
    have norm ((\sum(x,K) \in\mathcal{D}.content K*Rg g n x) - (\sum(x,K) \in\mathcal{D}.content
K*R g m x ) < < / real M * content (cbox a b)
            by (blast intro: norm_le rsum_diff_bound[OF \mathcal{D}(1), where e=2 / real M])
    also have ... \leqe/2
            using M True
            by (auto simp: field_simps)
    finally have le_e2: norm ((\sum(x,K) \in\mathcal{D}.content K *R g n x) - (\sum(x,K)
\mathcal{D}.content K**g g m x ) \leqe/2.
    then show dist (hm) (hn)<e
            unfolding dist_norm using gm gn \mathcal{D finep by (auto intro!: triangle3)}
    qed
    qed
    then obtain s where s:h\longrightarrows
    using convergent_eq_Cauchy[symmetric] by blast
    show ?thesis
    unfolding integrable_on_def has_integral
    proof (rule_tac x=s in exI, clarify)
    fix e::real
    assume e: 0<e
    then have e/3>0 by auto
    then obtain N1 where N1:\foralln\geqN1. norm (hn-s)<e/3
        using LIMSEQ_D [OF s] by metis
    from e True have e/3 / content (cbox a b) >0
        by (auto simp: field_simps)
    then obtain N2 :: nat
            where N2 }\not=0\mathrm{ and N2:1 / (real N2) <e/3 / content (cbox a b)
        by (metis inverse_eq_divide real_arch_inverse)
    obtain g' where gauge g'
            and g': \bigwedge\mathcal{D}.\mathcal{D}\mathrm{ tagged_division_of cbox a b}\wedge g' fine \mathcal{D }\Longrightarrow
                norm}((\sum(x,K)\in\mathcal{D}. content K*Rg(N1 + N2) x) -h(N1
N2))}<e\mp@code{e/3
            by (metis h has_integral <e/3 > 0`)
    have *: norm (sf - s)<e
        if no: norm (sf - sg) \leqe/3 norm (h-s)<e/3 norm (sg-h)<e/3 for
sf sgh
```

```
    proof -
    have norm \((s f-s) \leq \operatorname{norm}(s f-s g)+\operatorname{norm}(s g-h)+\operatorname{norm}(h-s)\)
        using norm_triangle_ineq[of \(s f-s g s g-s]\)
        using norm_triangle_ineq[of \(s g-h \quad h-s]\)
        by (auto simp: algebra_simps)
    also have \(\ldots<e\)
        using no by (auto simp: algebra_simps norm_minus_commute)
        finally show? ?hesis.
    qed
        \(\{\) fix \(\mathcal{D}\)
    assume ptag: \(\mathcal{D}\) tagged_division_of (cbox a b) and \(g^{\prime}\) fine \(\mathcal{D}\)
    then have norm_less: norm \(\left(\left(\sum(x, K) \in \mathcal{D}\right.\right.\). content \(\left.K *_{R} g(N 1+N 2) x\right)\)
\(-h(N 1+N 2))<e / 3\)
            using \(g^{\prime}\) by blast
        have content (cbox ab)<e/3*(of_nat N2)
            using \(\langle N 2 \neq 0\rangle\) N2 using True by (auto simp: field_split_simps)
            moreover have \(e / 3 *\) of_nat N2 \(\leq e / 3 *(\) of_nat \((N 1+N 2)+1)\)
            using \(\langle e\rangle 0\rangle\) by auto
            ultimately have content (cbox ab)<e/3*(of_nat \((N 1+N 2)+1)\)
                by linarith
            then have le_e3: \(1 /(\) real \((N 1+N 2)+1) *\) content \((\operatorname{cbox} a \operatorname{b}) \leq e / 3\)
            unfolding inverse_eq_divide
            by (auto simp: field_simps)
            have ne3: norm \((h(N 1+N 2)-s)<e / 3\)
            using \(N 1\) by auto
            have norm \(\left(\left(\sum(x, K) \in \mathcal{D}\right.\right.\). content \(\left.K *_{R} f x\right)-\left(\sum(x, K) \in \mathcal{D}\right.\). content \(K\)
\(\left.\left.*_{R} g(N 1+N 2) x\right)\right)\)
                \(\leq 1 /(\) real \((N 1+N 2)+1) *\) content \((\) cbox ab)
            by (blast intro: g_near_f rsum_diff_bound [OF ptag])
            then have norm \(\left(\left(\sum(x, K) \in \mathcal{D}\right.\right.\). content \(\left.\left.K *_{R} f x\right)-s\right)<e\)
            by (rule \(*\left[O F\right.\) order_trans \(\left[O F \_l e \_e 3\right]\) ne3 norm_less])
    \}
    then show \(\exists d\). gauge \(d \wedge\)
                            \(\left(\forall \mathcal{D} . \mathcal{D}\right.\) tagged_division_of cbox a \(b \wedge d\) fine \(\mathcal{D} \longrightarrow \operatorname{norm}\left(\left(\sum(x, K) \in\right.\right.\)
D. content \(\left.\left.\left.K *_{R} f x\right)-s\right)<e\right)\)
        by (blast intro: \(g^{\prime}\left\langle\right.\) gauge \(\left.g^{\prime}\right\rangle\) )
    qed
qed
lemmas integrable_uniform_limit_real \(=\) integrable_uniform_limit \(\left[\right.\) where \({ }^{\prime} a=r e a l\), simplified]
```


6.15.10 Negligible sets

definition negligible (s :: 'a::euclidean_space set) \longleftrightarrow
(\forall ab. ((indicator $s:: ' a \Rightarrow$ real) has_integral 0) (cbox ab))

Negligibility of hyperplane

lemma content_doublesplit:

```
    fixes \(a\) :: 'a::euclidean_space
    assumes \(0<e\)
    and \(k: k \in\) Basis
    obtains \(d\) where \(0<d\) and content (cbox ab \(\quad \cap\{x .|x \cdot k-c| \leq d\})<e\)
proof cases
    assume \(*: a \cdot k \leq c \wedge c \leq b \cdot k \wedge(\forall j \in\) Basis. \(a \cdot j \leq b \cdot j)\)
    define \(a^{\prime}\) where \(a^{\prime} d=\left(\bar{\sum} j \in\right.\) Basis. (if \(j=k\) then \(\max (a \cdot j)(c-d)\) else \(\left.a \cdot j\right)\)
\(*_{R} j\) ) for \(d\)
    define \(b^{\prime}\) where \(b^{\prime} d=\left(\sum j \in\right.\) Basis. \((\) if \(j=k\) then \(\min (b \cdot j)(c+d)\) else \(b \cdot j)\)
\(*_{R} j\) ) for \(d\)
```

 have \(\left(\left(\lambda d . \Pi j \in\right.\right.\) Basis. \(\left.\left(b^{\prime} d-a^{\prime} d\right) \cdot j\right) \longrightarrow\left(\prod j \in\right.\) Basis. \(\left.\left.\left(b^{\prime} 0-a^{\prime} 0\right) \cdot j\right)\right)\)
 (at_right 0)
by (auto simp: b'_def a'_def intro!: tendsto_min tendsto_max tendsto_eq_intros)
also have $\left(\prod j \in\right.$ Basis. $\left.\left(b^{\prime} 0-a^{\prime} 0\right) \cdot j\right)=0$
using k *
by (intro prod_zero bexI $\left[O F_{-} k\right]$)
(auto simp: b^{\prime} _def a^{\prime} _def inner_diff inner_sum_left inner_not_same_Basis intro!:
sum.cong)
also have $\left(\left(\lambda d . \prod j \in\right.\right.$ Basis. $\left.\left.\left(b^{\prime} d-a^{\prime} d\right) \cdot j\right) \longrightarrow 0\right)($ at_right 0$)=$
$((\lambda d$. content $($ cbox a $b \cap\{x .|x \cdot k-c| \leq d\})) \longrightarrow 0)($ at_right 0$)$
proof (intro tendsto_cong eventually_at_rightI)
fix $d::$ real assume $d: d \in\{0<. .<1\}$
have cbox a $b \cap\{x .|x \cdot k-c| \leq d\}=\operatorname{cbox}\left(a^{\prime} d\right)\left(b^{\prime} d\right)$ for d
using $* d k$ by (auto simp add: cbox_def set_eq_iff Int_def ball_conj_distrib
abs_diff_le_iff a^{\prime} _def b^{\prime} _def)
moreover have $j \in$ Basis $\Longrightarrow a^{\prime} d \cdot j \leq b^{\prime} d \cdot j$ for j
using $* d k$ by (auto simp: $a^{\prime}{ }^{\prime} d e f b^{\prime}{ }_{-} d e f$)
ultimately show $\left(\prod j \in\right.$ Basis. $\left.\left(b^{\prime} d-a^{\prime} d\right) \cdot j\right)=$ content (cbox ab $\cap\{x$.
$|x \cdot k-c| \leq d\})$
by simp
qed simp
finally have $((\lambda d$. content $($ cbox $a b \cap\{x .|x \cdot k-c| \leq d\})) \longrightarrow 0)$ (at_right
$0)$.
from order_tendstoD (2)[OF this $\langle 0<e\rangle]$
obtain d^{\prime} where $0<d^{\prime}$ and $d^{\prime}: \bigwedge y . y>0 \Longrightarrow y<d^{\prime} \Longrightarrow$ content (cbox ab
$\cap\{x .|x \cdot k-c| \leq y\})<e$
by (subst (asm) eventually_at_right [of _ 1]) auto
show ?thesis
by (rule that[of $\left.d^{\prime} / 2\right]$, insert $\left\langle 0<d^{\prime}\right\rangle d^{\prime}\left[\right.$ of $d^{\prime} /$ 2], auto)
next
assume $*: \neg(a \cdot k \leq c \wedge c \leq b \cdot k \wedge(\forall j \in$ Basis. $a \cdot j \leq b \cdot j))$
then have $(\exists j \in$ Basis. $b \cdot j<a \cdot j) \vee(c<a \cdot k \vee b \cdot k<c)$
by (auto simp: not_le)
show thesis
proof cases
assume $\exists j \in$ Basis. $b \cdot j<a \cdot j$
then have [simp]: cbox a $b=\{ \}$
using box_ne_empty(1)[of a b] by auto

```
    show ?thesis
    by (rule that[of 1]) (simp_all add: \(\langle 0<e\rangle)\)
    next
    assume \(\neg(\exists j \in\) Basis. \(b \cdot j<a \cdot j)\)
    with \(*\) have \(c<a \cdot k \vee b \cdot k<c\)
        by auto
    then show thesis
    proof
        assume \(c: c<a \cdot k\)
        moreover have \(x \in c b o x a b \Longrightarrow c \leq x \cdot k\) for \(x\)
            using \(k\) c by (auto simp: cbox_def)
            ultimately have cbox ab \(b\{x .|x \cdot k-c| \leq(a \cdot k-c) / 2\}=\{ \}\)
            using \(k\) by (auto simp: cbox_def)
            with \(\langle 0<e\rangle c\) that \([o f(a \cdot k-c) /\) 2] show ?thesis
                by auto
    next
        assume \(c: b \cdot k<c\)
        moreover have \(x \in\) cbox \(a b \Longrightarrow x \cdot k \leq c\) for \(x\)
            using \(k c\) by (auto simp: cbox_def)
            ultimately have cbox ab \(b\{x .|x \cdot k-c| \leq(c-b \cdot k) / \mathscr{D}\}=\{ \}\)
                using \(k\) by (auto simp: cbox_def)
            with \(\langle 0<e\rangle c\) that \([o f(c-b \cdot k) / 2]\) show ?thesis
                by auto
    qed
    qed
qed
proposition negligible_standard_hyperplane[intro]:
    fixes \(k::\) ' \(a:\) :euclidean_space
    assumes \(k: k \in\) Basis
    shows negligible \(\{x . x \cdot k=c\}\)
    unfolding negligible_def has_integral
proof clarsimp
    fix \(a b\) and \(e::\) real assume \(e>0\)
    with \(k\) obtain \(d\) where \(0<d\) and \(d\) : content (cbox ab \(b\{x .|x \cdot k-c| \leq\)
\(d\})<e\)
    by (metis content_doublesplit)
    let ? \(i=\) indicator \(\left\{x::^{\prime} a . x \cdot k=c\right\}::{ }^{\prime} a \Rightarrow\) real
    show \(\exists \gamma\). gauge \(\gamma \wedge\)
                                    \((\forall \mathcal{D} . \mathcal{D}\) tagged_division_of cbox a \(b \wedge \gamma\) fine \(\mathcal{D} \longrightarrow\)
                    \(\mid \sum(x, K) \in \mathcal{D}\). content \(K *\) ? \(\left.i x \mid<e\right)\)
    proof (intro exI, safe)
        show gauge \((\lambda x\). ball \(x d)\)
            using \(\langle 0<d\rangle\) by blast
    next
        fix \(\mathcal{D}\)
        assume \(p: \mathcal{D}\) tagged_division_of (cbox a b) \((\lambda x\). ball \(x\) d) fine \(\mathcal{D}\)
        have content \(L=\) content \((L \cap\{x .|x \cdot k-c| \leq d\})\)
```

```
    if (x,L)\in\mathcal{D} ?i }x\not=0\mathrm{ for x L
    proof -
    have xk: x\cdotk=c
        using that by (simp add: indicator_def split: if_split_asm)
    have L\subseteq{x. |x\cdotk-c| \leqd}
    proof
        fix }
        assume y: y\inL
        have L\subseteqball x d
            using p(2) that(1) by auto
        then have norm (x-y)<d
            by (simp add: dist_norm subset_iff y)
            then have |(x-y)\cdotk|<d
                using }k\mathrm{ norm_bound_Basis_lt by blast
            then show }y\in{x.|x\cdotk-c|\leqd
                unfolding inner_simps xk by auto
    qed
    then show content L}=\mathrm{ content (L}\cap{x. |x\cdotk-c|\leqd})
        by (metis inf.orderE)
    qed
    then have *: (\sum(x,K)\in\mathcal{D}. content K * ?i }x)=(\sum(x,K)\in\mathcal{D}.content (K
{x. |x\cdotk-c|\leqd})*R ??i x)
    by (force simp add: split_paired_all intro!: sum.cong [OF refl])
    note }\mp@subsup{p}{}{\prime}=\mathrm{ tagged_division_ofD[OF p(1)] and p'=division_of_tagged_division[OF
p(1)]
```



```
=c} x)<e
    proof -
    have (\sum(x,K)\in\mathcal{D}.content (K\cap{x. |x\cdotk-c|\leqd})* ?i x)\leq(\sum(x,K)\in\mathcal{D}.
content (K\cap{x. |x • k-c|\leqd}))
        by (force simp add: indicator_def intro!: sum_mono)
    also have ... < e
    proof (subst sum.over_tagged_division_lemma[OF p(1)])
        fix u v::'a
        assume box u v ={}
        then have *: content (cbox u v) = 0
            unfolding content_eq_0_interior by simp
```



```
            by auto
        then have content (cbox uv\cap{x. |x \cdotk-c|\leqd})\leq content (cbox uv)
                unfolding interval_doublesplit[OF k] by (rule content_subset)
```



```
                unfolding * interval_doublesplit[OF k]
                by (blast intro: antisym)
        next
            have (\suml\insnd '\mathcal{D}. content (l\cap{x. |x . k-c|\leqd}))=
```



```
c|\leqd}\not={}})
    proof (subst (2) sum.reindex_nontrivial)
```

fix $x y$ assume $x \in\left\{l \in \operatorname{snd}{ }^{\prime} \mathcal{D} . l \cap\{x .|x \cdot k-c| \leq d\} \neq\{ \}\right\} y \in\{l$ \in snd ' $\mathcal{D} . l \cap\{x .|x \cdot k-c| \leq d\} \neq\{ \}\}$
$x \neq y$ and $e q: x \cap\{x .|x \cdot k-c| \leq d\}=y \cap\{x .|x \cdot k-c| \leq d\}$
then obtain $x^{\prime} y^{\prime}$ where $\left(x^{\prime}, x\right) \in \mathcal{D} x \cap\{x .|x \cdot k-c| \leq d\} \neq\{ \}\left(y^{\prime}\right.$, $y) \in \mathcal{D} y \cap\{x .|x \cdot k-c| \leq d\} \neq\{ \}$ by (auto)
from $p^{\prime}(5)\left[O F\left\langle\left(x^{\prime}, x\right) \in \mathcal{D}\right\rangle\left\langle\left(y^{\prime}, y\right) \in \mathcal{D}\right\rangle\right]\langle x \neq y\rangle$ have interior $(x \cap y)$ $=\{ \}$
by auto
moreover have interior $((x \cap\{x .|x \cdot k-c| \leq d\}) \cap(y \cap\{x . \mid x \cdot k-$ $c \mid \leq d\})) \subseteq$ interior $(x \cap y)$ by (auto intro: interior_mono)
ultimately have interior $(x \cap\{x .|x \cdot k-c| \leq d\})=\{ \}$ by (auto simp: eq)
then show content $(x \cap\{x .|x \cdot k-c| \leq d\})=0$
using $p^{\prime}(4)\left[O F\left\langle\left(x^{\prime}, x\right) \in \mathcal{D}\right\rangle\right]$ by (auto simp: interval_doublesplit $[O F k]$ content_eq_0_interior simp del: interior_Int)
qed (insert $p^{\prime}(1)$, auto intro!: sum.mono_neutral_right)
also have $\ldots \leq \operatorname{norm}\left(\sum l \in(\lambda l . l \cap\{x .|x \cdot k-c| \leq d\}) ‘\{l \in\right.$ snd ' $\mathcal{D} . l \cap$ $\{x .|x \cdot k-c| \leq d\} \neq\{ \}\}$. content $l *_{R} 1::$ real $)$
by simp
also have $\ldots \leq 1 *$ content (cbox a $b \cap\{x .|x \cdot k-c| \leq d\}$)
using division_doublesplit[OF $p^{\prime \prime} k$, unfolded interval_doublesplit[OF k]]
unfolding interval_doublesplit[OF k] by (intro dsum_bound) auto
also have $\ldots<e$
using d by simp
finally show $\left(\sum K \in s n d\right.$ ' \mathcal{D}. content $\left.(K \cap\{x .|x \cdot k-c| \leq d\})\right)<e$. qed
finally show $\left(\sum(x, K) \in \mathcal{D}\right.$. content $(K \cap\{x .|x \cdot k-c| \leq d\}) *$? $\left.i x\right)<e$. qed
then show $\mid \sum(x, K) \in \mathcal{D}$. content $K *$? i $x \mid<e$
unfolding * by (simp add: sum_nonneg split: prod.split)
qed
qed
corollary negligible_standard_hyperplane_cart:
fixes k :: ' $a::$ finite
shows negligible $\{x . x \$ k=(0::$ real $)\}$
by (simp add: cart_eq_inner_axis negligible_standard_hyperplane)

Hence the main theorem about negligible sets

lemma has_integral_negligible_cbox:
fixes $f::$ ' $b::$ euclidean_space \Rightarrow ' $a:$:real_normed_vector
assumes negs: negligible S
and $0: \bigwedge x . x \notin S \Longrightarrow f x=0$
shows (f has_integral 0) (cbox a b)
unfolding has_integral
proof clarify
fix e ::real
assume $e>0$
then have $n n_{-} g t 0: e / 2 /\left((\right.$ real $\left.n+1) *\left(2^{\wedge} n\right)\right)>0$ for n by simp
then have $\exists \gamma$. gauge $\gamma \wedge$
$(\forall \mathcal{D} . \mathcal{D}$ tagged_division_of cbox ab$b \wedge$ fine $\mathcal{D} \longrightarrow$

$$
\begin{aligned}
& \mid \sum(x, K) \in \mathcal{D} \text {. content } K *_{R} \text { indicator } S x \mid \\
& \left.<e / 2 /\left((\text { real } n+1) * \mathcal{D}^{\wedge} n\right)\right) \text { for } n
\end{aligned}
$$

using negs [unfolded negligible_def has_integral] by auto
then obtain γ where
gd: $\bigwedge n$. gauge (γn)
and $\gamma: \bigwedge n \mathcal{D} . \llbracket \mathcal{D}$ tagged_division_of cbox a $b ; \gamma$ fine $\mathcal{D} \rrbracket$
$\Longrightarrow \mid \sum(x, K) \in \mathcal{D}$. content $K *_{R}$ indicator $S x \mid<e / \mathcal{Z} /(($ real $n+$

1) * $2^{\wedge} n$)
by metis
show $\exists \gamma$. gauge $\gamma \wedge$
$(\forall \mathcal{D} . \mathcal{D}$ tagged_division_of cbox ab $\quad \wedge \gamma$ fine $\mathcal{D} \longrightarrow$
norm $\left(\left(\sum(x, K) \in \mathcal{D}\right.\right.$. content $\left.\left.\left.K *_{R} f x\right)-0\right)<e\right)$
proof (intro exI, safe)
show gauge $(\lambda x . \gamma(n a t\lfloor\operatorname{norm}(f x)\rfloor) x)$
using $g d$ by (auto simp: gauge_def)
show norm $\left(\left(\sum(x, K) \in \mathcal{D}\right.\right.$. content $\left.\left.K *_{R} f x\right)-0\right)<e$
if \mathcal{D} tagged_division_of $($ cbox ab) $(\lambda x$. $\gamma($ nat \lfloor norm $(f x)\rfloor) x)$ fine \mathcal{D} for \mathcal{D}
proof (cases $\mathcal{D}=\{ \}$)
case True with $\langle 0<e\rangle$ show ?thesis by simp
next
case False
obtain N where $\operatorname{Max}\left((\lambda(x, K)\right.$. norm $\left.(f x)){ }^{\prime} \mathcal{D}\right) \leq$ real N
using real_arch_simple by blast
then have $N: \bigwedge x . x \in(\lambda(x, K) \text {. norm }(f x))^{\prime} \mathcal{D} \Longrightarrow x \leq \operatorname{real} N$
by (meson Max_ge that(1) dual_order.trans finite_imageI tagged_division_of_finite)
have $\forall i$. \exists q. q tagged_division_of $($ cbox $a b) \wedge(\gamma i)$ fine $q \wedge(\forall(x, K) \in \mathcal{D}$.
$K \subseteq(\gamma i) x \longrightarrow(x, K) \in q)$
by (auto intro: tagged_division_finer[OF that(1) gd])
from choice[OF this]
obtain q where $q: \bigwedge n . q$ ntagged_division_of cbox ab

> ^n. γ n fine $q n$
> $\bigwedge n x K . \llbracket(x, K) \in \mathcal{D} ; K \subseteq \gamma n x \rrbracket \Longrightarrow(x, K) \in q n$
by fastforce
have finite \mathcal{D}
using that (1) by blast
then have sum_le_inc: \llbracket finite $T ; \wedge x y .(x, y) \in T \Longrightarrow(0::$ real $) \leq g(x, y)$;

$$
\bigwedge y . y \in \mathcal{D} \Longrightarrow \exists x .(x, y) \in T \wedge f(y) \leq g(x, y) \rrbracket \Longrightarrow \operatorname{sum} f \mathcal{D} \leq
$$

sum $g T$ for $f g T$
by (rule sum_le_included[of $\mathcal{D} T g$ snd $f]$; force)
have norm $\left(\sum(x, K) \in \mathcal{D}\right.$. content $\left.K *_{R} f x\right) \leq\left(\sum(x, K) \in \mathcal{D}\right.$. norm (content $\left.K *_{R} f x\right)$)
unfolding split_def by (rule norm_sum)
also have $\ldots \leq\left(\sum(i, j) \in \operatorname{Sigma}\{. . N+1\} q\right.$.
$($ real $i+1) *\left(\right.$ case j of $(x, K) \Rightarrow$ content $K *_{R}$ indicator S
x))
proof (rule sum_le_inc, safe)
show finite (Sigma $\{. . N+1\} q$)
by (meson finite_SigmaI finite_atMost tagged_division_of_finite $q(1)$)
next
fix $x K$
assume $x k:(x, K) \in \mathcal{D}$
define n where $n=$ nat \lfloor norm $(f x)\rfloor$
have $*: \operatorname{norm}(f x) \in(\lambda(x, K)$. norm $(f x))$ ' \mathcal{D}
using $x k$ by auto
have $n f x$: real $n \leq \operatorname{norm}(f x)$ norm $(f x) \leq$ real $n+1$
unfolding $n_{-} d e f$ by auto
then have $n \in\{0 . . N+1\}$
using $N[O F *]$ by auto
moreover have $K \subseteq \gamma($ nat \lfloor norm $(f x)\rfloor) x$ using that(2) $x k$ by auto
moreover then have $(x, K) \in q$ (nat \lfloor norm $(f x)\rfloor)$ by (simp add: q(3) xk)
moreover then have $(x, K) \in q n$
using n_def by blast
moreover
have norm (content $\left.K *_{R} f x\right) \leq($ real $n+1) *($ content $K *$ indicator $S x)$
proof (cases $x \in S$)
case False
then show ?thesis by (simp add: 0)
next
case True
have $*$: content $K \geq 0$ using tagged_division_ofD (4)[OF that(1) xk] by auto
moreover have content $K * \operatorname{norm}(f x) \leq$ content $K *($ real $n+1)$
by (simp add: mult_left_mono nfx (2))
ultimately show ?thesis
using nfx True by (auto simp: field_simps)
qed
ultimately show $\exists y .(y, x, K) \in($ Sigma $\{. . N+1\} q) \wedge$ norm (content $\left.K *_{R} f x\right) \leq$
$($ real $y+1) *\left(\right.$ content $K *_{R}$ indicator $\left.S x\right)$
by force
qed auto
also have $\ldots=\left(\sum i \leq N+1 . \sum j \in q i .(\right.$ real $i+1) *($ case j of $(x, K) \Rightarrow$ content $K *_{R}$ indicator $\left.S x\right)$)
using $q(1)$ by (intro sum_Sigma_product [symmetric]) auto
also have $\ldots \leq\left(\sum i \leq N+1 .(\right.$ real $i+1) * \mid \sum(x, K) \in q i$. content $K *_{R}$ indicator $S x \mid$)
by (rule sum_mono) (simp add: sum_distrib_left [symmetric])
also have $\ldots \leq\left(\sum i \leq N+1 . e / 2 / 2^{\wedge} i\right)$
proof (rule sum_mono)

```
            show (real i + 1)* | (x,K)\inqi. content K *R indicator S x | <e/2/2
^ i
            if i\in{..N+1} for i
            using \gamma[of q i i] q by (simp add: divide_simps mult.left_commute)
            qed
            also have ... =e/2*(\sumi\leqN+1.(1/2) ^i)
            unfolding sum_distrib_left by (metis divide_inverse inverse_eq_divide power_one_over)
            also have .. <e/2 * 2
            proof (rule mult_strict_left_mono)
            have sum (power (1/2)) {..N + 1} = sum (power (1/2::real)) {..<N+
2}
                using lessThan_Suc_atMost by auto
            also have ... < 2
                by (auto simp: geometric_sum)
            finally show sum (power (1/2::real)) {..N+1}<2.
            qed (use <0 < e` in auto)
            finally show ?thesis by auto
    qed
qed
qed
proposition has_integral_negligible:
fixes \(f\) :: ' \(b::\) euclidean_space \(\Rightarrow{ }^{\prime} a::\) real_normed_vector
assumes negs: negligible \(S\)
and \(\bigwedge x . x \in(T-S) \Longrightarrow f x=0\)
shows (f has_integral 0) T
proof (cases \(\exists a b . T=\) cbox ab)
case True
then have \(((\lambda x\). if \(x \in T\) then \(f x\) else 0) has_integral 0\() T\)
using assms by (auto intro!: has_integral_negligible_cbox)
then show ?thesis
by (rule has_integral_eq [rotated]) auto
next
case False
let ?f \(=(\lambda x\). if \(x \in T\) then \(f x\) else 0\()\)
have \(((\lambda x\). if \(x \in T\) then \(f x\) else 0\()\) has_integral 0\() T\)
apply (auto simp: False has_integral_alt [of ?f])
apply (rule_tac \(x=1\) in exI, auto)
apply (rule_tac \(x=0\) in exI, simp add: has_integral_negligible_cbox [OF negs]
assms)
done
then show ?thesis
by (rule_tac \(f=\) ? \(f\) in has_integral_eq) auto
qed
lemma
assumes negligible \(S\)
shows integrable_negligible: \(f\) integrable_on \(S\) and integral_negligible: integral \(S f\)
```

$$
=0
$$

using has_integral_negligible [OF assms]
by (auto simp: has_integral_iff)
lemma has＿integral＿spike：
fixes $f::$＇$b::$ euclidean＿space \Rightarrow＇a：：real＿normed＿vector
assumes negligible S
and $g f: \bigwedge x . x \in T-S \Longrightarrow g x=f x$
and fint：（f has＿integral y）T
shows（ g has＿integral y）T
proof－
have＊：（g has＿integral y）（cbox ab）
if（f has＿integral y）（cbox ab）$\forall x \in$ cbox $a b-S . g x=f x$ for $a b f$ and
$g:: ' b \Rightarrow ' a$ and y
proof－
have $((\lambda x . f x+(g x-f x))$ has＿integral $(y+0))($ cbox a $b)$
using that by（intro has＿integral＿add has＿integral＿negligible）（auto intro！：
〈negligible S ）
then show ？thesis
by auto
qed
have $\S: ~ \bigwedge a b z . \llbracket \bigwedge x . x \in T \wedge x \notin S \Longrightarrow g x=f x$ ；
$((\lambda x$ ．if $x \in T$ then $f x$ else 0）has＿integral $z)($ cbox a $b) \rrbracket$ $\Longrightarrow((\lambda x$ ．if $x \in T$ then $g x$ else 0$)$ has＿integral $z)($ cbox a $b)$
by（auto dest！：＊［where $f=\lambda x$ ．if $x \in T$ then $f x$ else 0 and $g=\lambda x$ ．if $x \in T$
then g x else 0］）
show ？thesis
using fint $g f$
apply（subst has＿integral＿alt）
apply（subst（asm）has＿integral＿alt）
apply（auto split：if＿split＿asm）
apply（blast dest：＊）
using § by meson
qed
lemma has＿integral＿spike＿eq：
assumes negligible S
and $g f: \wedge x . x \in T-S \Longrightarrow g x=f x$
shows $(f$ has＿integral $y) T \longleftrightarrow(g$ has＿integral $y) T$
using has＿integral＿spike［OF 〈negligible S 〉］gf
by metis
lemma integrable＿spike：
assumes f integrable＿on T negligible $S \bigwedge x . x \in T-S \Longrightarrow g x=f x$
shows g integrable＿on T
using assms unfolding integrable＿on＿def by（blast intro：has＿integral＿spike）
lemma integral＿spike：
assumes negligible S

```
and \(\bigwedge x . x \in T-S \Longrightarrow g x=f x\)
```

shows integral $T f=$ integral $T g$
using has_integral_spike_eq[OF assms] by (auto simp: integral_def integrable_on_def)

6.15.11 Some other trivialities about negligible sets

```
lemma negligible_subset:
    assumes negligible st\subseteqs
    shows negligible t
    unfolding negligible_def
        by (metis (no_types) Diff_iff assms contra_subsetD has_integral_negligible indi-
cator_simps(2))
lemma negligible_diff[intro?]:
    assumes negligible s
    shows negligible ( }s-t\mathrm{ )
    using assms by (meson Diff_subset negligible_subset)
lemma negligible_Int:
    assumes negligible s \vee negligible t
    shows negligible ( }s\capt\mathrm{ )
    using assms negligible_subset by force
lemma negligible_Un:
    assumes negligible S and T: negligible T
    shows negligible ( }S\cupT
proof -
    have (indicat_real (S U T) has_integral 0) (cbox a b)
        if S0: (indicat_real S has_integral 0) (cbox a b)
        and (indicat_real T has_integral 0) (cbox a b) for a b
    proof (subst has_integral_spike_eq[OF T])
        show indicat_real S x = indicat_real (S\cupT) x if x cbox a b-T for x
            by (metis Diff_iff Un_iff indicator_def that)
        show (indicat_real S has_integral 0) (cbox a b)
        by (simp add: SO)
    qed
    with assms show ?thesis
        unfolding negligible_def by blast
qed
lemma negligible_Un_eq[simp]: negligible (s\cupt)\longleftrightarrow negligible s ^ negligible t
    using negligible_Un negligible_subset by blast
lemma negligible_sing[intro]: negligible {a::'a::euclidean_space}
    using negligible_standard_hyperplane[OF SOME_Basis, of a • (SOME i. i \in Ba-
sis)] negligible_subset by blast
lemma negligible_insert[simp]: negligible (insert a s) \longleftrightarrow negligible s
```

```
    by (metis insert_is_Un negligible_Un_eq negligible_sing)
lemma negligible_empty[iff]: negligible {}
    using negligible_insert by blast
Useful in this form for backchaining
lemma empty_imp_negligible: S={}\Longrightarrow negligible S
    by simp
lemma negligible_finite[intro]:
    assumes finite s
    shows negligible s
    using assms by (induct s) auto
lemma negligible_Union[intro]:
    assumes finite }\mathcal{T
        and }\wedget.t\in\mathcal{T}\Longrightarrow\mathrm{ negligible }
    shows negligible(\\mathcal{T})
    using assms by induct auto
lemma negligible: negligible S \longleftrightarrow(\forallT.(indicat_real S has_integral 0) T)
proof (intro iffI allI)
    fix T
    assume negligible S
    then show (indicator S has_integral 0) T
        by (meson Diff_iff has_integral_negligible indicator_simps(2))
qed (simp add: negligible_def)
```


6.15.12 Finite case of the spike theorem is quite commonly needed

```
lemma has_integral_spike_finite:
    assumes finite \(S\)
        and \(\bigwedge x . x \in T-S \Longrightarrow g x=f x\)
        and (f has_integral y) T
    shows (g has_integral y) \(T\)
    using assms has_integral_spike negligible_finite by blast
lemma has_integral_spike_finite_eq:
    assumes finite \(S\)
        and \(\bigwedge x . x \in T-S \Longrightarrow g x=f x\)
    shows \(((f\) has_integral \(y) T \longleftrightarrow(g\) has_integral \(y) T)\)
    by (metis assms has_integral_spike_finite)
lemma integrable_spike_finite:
    assumes finite \(S\)
        and \(\bigwedge x . x \in T-S \Longrightarrow g x=f x\)
        and \(f\) integrable_on \(T\)
    shows \(g\) integrable_on \(T\)
```

```
    using assms has_integral_spike_finite by blast
lemma has_integral_bound_spike_finite:
    fixes f :: 'a::euclidean_space = 'b::real_normed_vector
    assumes 0\leqB finite S
        and f:(f has_integral i) (cbox a b)
        and leB: \x. x cbox a b-S\Longrightarrow norm (f x) \leqB
        shows norm i\leqB* content (cbox a b)
proof -
    define g}\mathrm{ where }g\equiv(\lambdax. if x\inS then 0 else f x)
    then have \x. x\in cbox a b-S\Longrightarrow norm (gx)\leqB
        using leB by simp
    moreover have (g has_integral i) (cbox a b)
        using has_integral_spike_finite [OF\finite S\rangle_f]
        by (simp add: g_def)
    ultimately show ?thesis
        by (simp add: <0 \leq B` g_def has_integral_bound)
qed
corollary has_integral_bound_real:
    fixes f:: real # 'b::real_normed_vector
    assumes 0\leqB finite S
        and (f has_integral i) {a..b}
        and }\x.x\in{a..b}-S\Longrightarrownorm (fx)\leq
        shows norm i\leqB* content {a..b}
    by (metis assms box_real(2) has_integral_bound_spike_finite)
```


6.15.13 In particular, the boundary of an interval is negligible

lemma negligible_frontier_interval: negligible(cbox ($a::^{\prime} a::$:euclidean_space) b - box a b)
proof -
let $? A=\bigcup\left(\left(\lambda k .\{x . x \cdot k=a \cdot k\} \cup\left\{x::^{\prime} a . x \cdot k=b \cdot k\right\}\right)\right.$ 'Basis $)$
have negligible ?A
by (force simp add: negligible_Union[OF finite_imageI])
moreover have cbox ab-box $a b \subseteq ? A$
by (force simp add: mem_box)
ultimately show ?thesis
by (rule negligible_subset)
qed
lemma has_integral_spike_interior:
assumes $f:(f$ has_integral $y)(c b o x a b)$ and $g f: \wedge x . x \in b o x a b \Longrightarrow g x=f x$
shows (g has_integral y) (cbox a b)
by (meson Diff_iff gf has_integral_spike[OF negligible_frontier_interval _f])
lemma has_integral_spike_interior_eq:
assumes $\wedge x . x \in b o x a b \Longrightarrow g x=f x$
shows $(f$ has_integral $y)($ cbox $a b) \longleftrightarrow(g$ has_integral $y)(c b o x a b)$
by (metis assms has_integral_spike_interior)
lemma integrable_spike_interior:
assumes $\bigwedge x . x \in$ box a $b \Longrightarrow g x=f x$
and f integrable_on cbox a b
shows g integrable_on cbox a b
using assms has_integral_spike_interior_eq by blast

6.15.14 Integrability of continuous functions

```
lemma operative_approximableI:
    fixes \(f::\) ' \(b::\) euclidean_space \(\Rightarrow{ }^{\prime} a:: b a n a c h\)
    assumes \(0 \leq e\)
    shows operative conj True \(\left(\lambda i . \exists g .\left(\forall x \in i . \operatorname{norm}\left(f x-g\left(x::^{\prime} b\right)\right) \leq e\right) \wedge g\right.\)
integrable_on i)
proof -
    interpret comm_monoid conj True
        by standard auto
    show ?thesis
    proof (standard, safe)
        fix \(a b::{ }^{\prime} b\)
        show \(\exists g\). \((\forall x \in\) cbox a \(b\). norm \((f x-g x) \leq e) \wedge g\) integrable_on cbox a \(b\)
            if box a \(b=\{ \}\) for \(a b\)
            using assms that
                by (metis content_eq_0_interior integrable_on_null interior_cbox norm_zero
right_minus_eq)
    \{
        fix \(c g\) and \(k::{ }^{\prime} b\)
        assume \(f g\) : \(\forall x \in\) cbox a b. norm \((f x-g x) \leq e\) and \(g: g\) integrable_on cbox
\(a b\)
    assume \(k: k \in\) Basis
            show \(\exists g .(\forall x \in \operatorname{cbox}\) a \(b \cap\{x . x \cdot k \leq c\}\). norm \((f x-g x) \leq e) \wedge g\)
integrable_on cbox a \(b \cap\{x . x \cdot k \leq c\}\)
            \(\exists g .(\forall x \in c b o x\) a \(b \cap\{x . c \leq x \cdot k\}\).norm \((f x-g x) \leq e) \wedge g\) integrable_on
cbox \(a b \cap\{x . c \leq x \cdot k\}\)
            using \(f g g k\) by auto
    \}
    show \(\exists g .(\forall x \in\) cbox a b. norm \((f x-g x) \leq e) \wedge g\) integrable_on cbox a \(b\)
            if fg1: \(\forall x \in c b o x\) a \(b \cap\{x . x \cdot k \leq c\}\). norm \((f x-g 1 x) \leq e\)
                and g1: g1 integrable_on cbox a \(b \cap\{x . x \cdot k \leq c\}\)
                and fg2: \(\forall x \in c b o x\) a \(b \cap\{x . c \leq x \cdot k\}\). norm \((f x-g 2 x) \leq e\)
                and g2: g2 integrable_on cbox a \(b \cap\{x . c \leq x \cdot k\}\)
            and \(k: k \in\) Basis
        for \(c k g 1 g 2\)
    proof -
        let ? \(g=\lambda x\). if \(x \cdot k=c\) then \(f x\) else if \(x \cdot k \leq c\) then \(g 1 x\) else \(g 2 x\)
        show \(\exists g\). \((\forall x \in c b o x a b\). norm \((f x-g x) \leq e) \wedge g\) integrable_on cbox a \(b\)
        proof (intro exI conjI ballI)
```

```
    show norm (fx-?g x)\leqe if x\incbox a b for }
    by (auto simp: that assms fg1 fg2)
    show ?g integrable_on cbox a b
    proof -
    have ?g integrable_on cbox a b \cap{x.x •k\leqc} ?g integrable_on cbox a b
\cap{x.x\cdotk\geqc}
            by(rule integrable_spike[OF _ negligible_standard_hyperplane[of k c]], use
k g1 g2 in auto)+
            with has_integral_split[OF _ _ k] show ?thesis
                unfolding integrable_on_def by blast
            qed
            qed
        qed
    qed
qed
lemma comm_monoid_set_F_and: comm_monoid_set.F (^) True f s \longleftrightarrow (finite s
\longrightarrow ( \forall x \in s . f x ) )
proof -
    interpret bool:comm_monoid_set <(^)\rangle True ..
    show ?thesis
        by (induction s rule: infinite_finite_induct) auto
qed
lemma approximable_on_division:
    fixes f :: 'b::euclidean_space = ' a::banach
    assumes 0\leqe
        and d:d division_of (cbox a b)
        and f:\foralli\ind.\existsg.(\forallx\ini.norm (fx-g x)\leqe)\wedgeg integrable_on i
    obtains g}\mathrm{ where }\forallx\incbox a b. norm (fx-gx)\leqe g integrable_on cbox a b
proof -
    interpret operative conj True \lambdai. \existsg. (\forallx\ini.norm (fx-g (x::'b)) \leqe) ^g
integrable_on i
        using <0 \leqe> by (rule operative_approximableI)
    from f local.division [OF d] that show thesis
        by auto
    qed
lemma integrable_continuous:
    fixes f :: 'b::euclidean_space }=>\mathrm{ ' 'a::banach
    assumes continuous_on (cbox a b) f
    shows f integrable_on cbox a b
proof (rule integrable_uniform_limit)
    fix e :: real
    assume e: e>0
    then obtain d where 0<d and d: \x x'. \llbracketx\in cbox a b; x'\incbox a b; dist
x'}x<d\rrbracket\Longrightarrow\operatorname{dist}(f\mp@subsup{x}{}{\prime})(fx)<
    using compact_uniformly_continuous[OF assms compact_cbox] unfolding uni-
formly_continuous_on_def by metis
```

```
    obtain \(p\) where ptag: \(p\) tagged_division_of cbox a \(b\) and finep: \((\lambda x\). ball \(x d)\) fine
\(p\)
    using fine_division_exists[OF gauge_ball[ OF \(\langle 0<d\rangle\) ], of a b].
    have \(*: \forall i \in s n d ' p . \exists g .(\forall x \in i . \operatorname{norm}(f x-g x) \leq e) \wedge g\) integrable_on \(i\)
    proof (safe, unfold snd_conv)
        fix \(x l\)
        assume \(a s:(x, l) \in p\)
        obtain \(a b\) where \(l: l=c b o x\) a \(b\)
        using as ptag by blast
    then have \(x: x \in c b o x a b\)
            using as ptag by auto
    show \(\exists g\). \((\forall x \in l\). norm \((f x-g x) \leq e) \wedge g\) integrable_on \(l\)
    proof (intro exI conjI strip)
        show ( \(\lambda y . f x\) ) integrable_on \(l\)
            unfolding integrable_on_def \(l\) by blast
    next
        fix \(y\)
        assume \(y: y \in l\)
        then have \(y \in\) ball \(x d\)
            using as finep by fastforce
            then show norm \((f y-f x) \leq e\)
                using \(d x\) y as \(l\)
                    by (metis dist_commute dist_norm less_imp_le mem_ball ptag subsetCE
tagged_division_ofD (3))
    qed
    qed
    from \(e\) have \(e \geq 0\)
        by auto
    from approximable_on_division[OF this division_of_tagged_division[OF ptag] *]
    show \(\exists g\). \((\forall x \in\) cbox a \(b\). norm \((f x-g x) \leq e) \wedge g\) integrable_on cbox a \(b\)
        by metis
qed
lemma integrable_continuous_interval:
    fixes \(f::\) ' \(b::\) ordered_euclidean_space \(\Rightarrow\) 'a::banach
    assumes continuous_on \(\{a . . b\} f\)
    shows \(f\) integrable_on \(\{a . . b\}\)
    by (metis assms integrable_continuous interval_cbox)
```

lemmas integrable_continuous_real $=$ integrable_continuous_interval $\left[\right.$ where $\left.{ }^{\prime} b=r e a l\right]$
lemma integrable_continuous_closed_segment:
fixes f :: real $\Rightarrow{ }^{\prime} a:: b a n a c h$
assumes continuous_on (closed_segment a b) f
shows f integrable_on (closed_segment ab)
using assms
by (auto intro!: integrable_continuous_interval simp: closed_segment_eq_real_ivl)

6.15.15 Specialization of additivity to one dimension

6.15.16 A useful lemma allowing us to factor out the content size

lemma has_integral_factor_content:
(f has_integral i) (cbox ab) \longleftrightarrow
$(\forall e>0 . \exists d$. gauge $d \wedge(\forall p . p$ tagged_division_of $($ cbox a $b) \wedge d$ fine $p \longrightarrow$ $\operatorname{norm}\left(\operatorname{sum}\left(\lambda(x, k)\right.\right.$. content $\left.\left.k *_{R} f x\right) p-i\right) \leq e *$ content $($ cbox a b) $\left.)\right)$
proof (cases content (cbox a b) $=0$)
case True
have $\bigwedge e p . p$ tagged_division_of cbox a $b \Longrightarrow$ norm $\left(\left(\sum(x, k) \in p\right.\right.$. content $k *_{R}$ $f x)) \leq e *$ content (cbox a b)
unfolding sum_content_null[OF True] True by force
moreover have $i=0$
if $\bigwedge e . e>0 \Longrightarrow \exists d$. gauge $d \wedge$
(\forall p. p tagged_division_of cbox a $b \wedge$ d fine $p \longrightarrow$ norm $\left(\left(\sum(x, k) \in p\right.\right.$. content $\left.\left.k *_{R} f x\right)-i\right) \leq e *$ content (cbox a
b))
using that [of 1]
by (force simp add: True sum_content_null[OF True] intro: fine_division_exists[of - $a b]$)
ultimately show ?thesis
unfolding has_integral_null_eq[OF True]
by (force simp add:)
next
case False
then have $F: 0<$ content (cbox ab)
using zero_less_measure_iff by blast
let $? P=\lambda e$ opp. \exists d. gauge $d \wedge$
$\left(\forall p . p\right.$ tagged_division_of $\left(\right.$ cbox a b) $\wedge d$ fine $p \longrightarrow o p p\left(n o r m ~\left(\left(\sum(x, k) \in p\right.\right.\right.$.
content $\left.\left.k *_{R} f x\right)-i\right)$) e)
show ?thesis
proof (subst has_integral, safe)
fix e :: real
assume $e: e>0$
show ?P $(e *$ content $($ cbox a b)) (\leq) if $\S[$ rule_format $]: \forall \varepsilon>0$. ?P $\varepsilon(<)$
using § [of e * content (cbox a b)]
by (meson F e less_imp_le mult_pos_pos)
show ? $P e(<)$ if $\S\left[r_{\text {rule_format }]: ~}^{\forall \varepsilon>0 \text {. ? } P(\varepsilon * \text { content }(c b o x a b))(\leq) ~}\right.$
using § [of e/2 / content (cbox a b)]
using F e by (force simp add: algebra_simps)
qed
qed
lemma has_integral_factor_content_real:
(f has_integral i) $\{a . . b::$ real $\} \longleftrightarrow$
$(\forall e>0 . \exists d$. gauge $d \wedge(\forall p . p$ tagged_division_of $\{a . . b\} \wedge d$ fine $p \longrightarrow$ norm $\left(\operatorname{sum}\left(\lambda(x, k)\right.\right.$. content $\left.\left.k *_{R} f x\right) p-i\right) \leq e *$ content $\left.\left.\{a . . b\}\right)\right)$
unfolding box_real[symmetric]
by (rule has_integral_factor_content)

6.15.17 Fundamental theorem of calculus

lemma interval_bounds_real:
fixes $q b$:: real
assumes $a \leq b$
shows Sup $\{a . . b\}=b$
and $\operatorname{Inf}\{a . . b\}=a$
using assms by auto
theorem fundamental_theorem_of_calculus:
fixes $f::$ real $\Rightarrow{ }^{\prime} a:: b a n a c h$
assumes $a \leq b$
and vecd: $\bigwedge x . x \in\{a . . b\} \Longrightarrow\left(f\right.$ has_vector_derivative $\left.f^{\prime} x\right)($ at x within $\{a . . b\})$
shows $\left(f^{\prime}\right.$ has_integral $\left.(f b-f a)\right)\{a . . b\}$
unfolding has_integral_factor_content box_real[symmetric]
proof safe
fix e :: real
assume $e>0$
then have $\forall x . \exists d>0 . x \in\{a . . b\} \longrightarrow$
$\left(\forall y \in\{a . . b\} . \operatorname{norm}(y-x)<d \longrightarrow \operatorname{norm}\left(f y-f x-(y-x) *_{R} f^{\prime} x\right) \leq e\right.$

* norm $(y-x))$
using vecd[unfolded has_vector_derivative_def has_derivative_within_alt] by blast
then obtain d where $d: \bigwedge x .0<d x$

$$
\begin{aligned}
\Lambda x y . & \llbracket x \in\{a . . b\} ; y \in\{a . . b\} ; \operatorname{norm}(y-x)<d x \rrbracket \\
& \Longrightarrow \operatorname{norm}\left(f y-f x-(y-x) *_{R} f^{\prime} x\right) \leq e * \operatorname{norm}(y-x)
\end{aligned}
$$

by metis
show $\exists d$. gauge $d \wedge(\forall p . p$ tagged_division_of $($ cbox a $b) \wedge d$ fine $p \longrightarrow$
norm $\left(\left(\sum(x, k) \in p\right.\right.$. content $\left.\left.k *_{R} f^{\prime} x\right)-(f b-f a)\right) \leq e *$ content (cbox a b))
proof (rule exI, safe)
show gauge $(\lambda x$. ball $x(d x))$
using $d(1)$ gauge_ball_dependent by blast
next
fix p
assume ptag: p tagged_division_of cbox a b and finep: $(\lambda x$. ball $x(d x))$ fine p
have $b a: b-a=\left(\sum(x, K) \in p\right.$. Sup $\left.K-\operatorname{Inf} K\right) f b-f a=\left(\sum(x, K) \in p\right.$. $f($ Sup K) $-f($ Inf $K))$
using additive_tagged_division_1 $[$ where $f=\lambda x . x]$ additive_tagged_division_1 $[$ where $f=f]$

$$
\langle a \leq b\rangle \text { ptag by auto }
$$

have $\operatorname{norm}\left(\sum(x, K) \in p .\left(\right.\right.$ content $\left.K *_{R} f^{\prime} x\right)-(f($ Sup K $)-f($ Inf K $\left.))\right)$
$\leq\left(\sum n \in p . e *(\right.$ case n of $\left.(x, k) \Rightarrow \operatorname{Sup} k-\operatorname{Inf} k)\right)$
proof (rule sum_norm_le,safe)
fix $x K$
assume $(x, K) \in p$
then have $x \in K$ and $k a b: K \subseteq c b o x a b$

```
    using ptag by blast+
    then obtain uv where k:K=cbox uv and x\inK and kab:K\subseteqcbox ab
    using ptag < (x,K) \in p> by auto
    have }u\leq
    using <x \inK> unfolding k by auto
    have ball:}\forally\inK.y\in\mathrm{ ball x (d x)
    using finep <(x,K)\in p> by blast
    have }u\inKv\in
    by (simp_all add: <u \leq v>k)
    have norm ((v-u)*R f
*R f}\mp@subsup{f}{}{\prime}x-(fv-fx-(v-x)\mp@subsup{*}{R}{}\mp@subsup{f}{}{\prime}x)
    by (auto simp add: algebra_simps)
    also have ... \leqnorm (fu-fx-(u-x)*R 和x)+norm (fv-fx-(v
-x)*R 㧨}x
    by (rule norm_triangle_ineq4)
    finally have norm ((v-u)*R和x-(fv-fu))\leq
    norm (fu-fx-(u-x)**R f'x) + norm (fv-f}x-(v-x)\mp@subsup{*}{R}{\prime}\mp@subsup{f}{}{\prime}x)
    also have .. \leqe*norm (u-x)+e*\operatorname{norm}(v-x)
    proof (rule add_mono)
    show norm (fu-fx-(u-x)*R 和 x) \leqe* norm (u-x)
    proof (rule d)
        show norm (u-x)<dx
        using }\langleu\inK\rangle\mathrm{ ball by (auto simp add: dist_real_def)
    qed (use }\langlex\inK\rangle\langleu\inK\rangle kab in auto
    show norm (fv-fx-(v-x)*R和}x)\leqe*\operatorname{norm}(v-x
    proof (rule d)
        show norm (v-x)<dx
        using }\langlev\inK\rangle\mathrm{ ball by (auto simp add: dist_real_def)
    qed (use \langlex \inK\rangle\langlev\inK\rangle kab in auto)
    qed
    also have ... \leqe *(Sup K - Inf K)
    using }\langlex\inK\rangle\mathrm{ by (auto simp: k interval_bounds_real[OF〈u < v〉] field_simps)
    finally show norm (content K *R f'x - (f (Sup K) - f (Inf K))) \leqe*
(Sup K - Inf K)
    using <u \leqv` by (simp add: k)
    qed
    with }\langlea\leqb\rangle\mathrm{ show norm (( }\sum(x,K)\inp.content K * *R f'x) - (fb - fa)) \leq
e * content (cbox a b)
    by (auto simp: ba split_def sum_subtractf [symmetric] sum_distrib_left)
    qed
qed
lemma ident_has_integral:
    fixes a::real
    assumes a\leqb
    shows ((\lambdax.x) has_integral ( }\mp@subsup{b}{}{2}-\mp@subsup{a}{}{2})/2){a..b
proof -
    have ((\lambdax. x) has_integral inverse 2 * b - - inverse 2 * a
        unfolding power2_eq_square
```

by (rule fundamental_theorem_of_calculus [OF assms] derivative_eq_intros | simp) +
then show ?thesis
by (simp add: field_simps)
qed
lemma integral_ident [simp]:
fixes a ::real
assumes $a \leq b$
shows integral $\{a . . b\}(\lambda x . x)=\left(\right.$ if $a \leq b$ then $\left(b^{2}-a^{2}\right) / 2$ else 0$)$
by (metis assms ident_has_integral integral_unique)
lemma ident_integrable_on:
fixes a ::real
shows $(\lambda x . x)$ integrable_on $\{a . . b\}$
by (metis atLeastatMost_empty_iff integrable_on_def has_integral_empty ident_has_integral)

```
lemma integral_sin [simp]:
    fixes \(a\) ::real
    assumes \(a \leq b\) shows integral \(\{a . . b\} \sin =\cos a-\cos b\)
proof -
    have (sin has_integral \((-\cos b--\cos a))\{a . . b\}\)
    proof (rule fundamental_theorem_of_calculus)
        show \(((\lambda a .-\cos a)\) has_vector_derivative \(\sin x)(\) at \(x\) within \(\{a . . b\})\) for \(x\)
            unfolding has_field_derivative_iff_has_vector_derivative [symmetric]
            by (rule derivative_eq_intros \(\mid\) force \()+\)
    qed (use assms in auto)
    then show ?thesis
        by (simp add: integral_unique)
qed
lemma integral_cos [simp]:
    fixes \(a\) ::real
    assumes \(a \leq b\) shows integral \(\{a . . b\} \cos =\sin b-\sin a\)
proof -
    have (cos has_integral \((\sin b-\sin a))\{a . . b\}\)
    proof (rule fundamental_theorem_of_calculus)
        show (sin has_vector_derivative \(\cos x)(\) at \(x\) within \(\{a . . b\})\) for \(x\)
            unfolding has_field_derivative_iff_has_vector_derivative [symmetric]
            by (rule derivative_eq_intros \(\mid\) force) +
    qed (use assms in auto)
    then show? ?thesis
        by (simp add: integral_unique)
qed
lemma has_integral_sin_nx: \(((\lambda x\). sin(real_of_int \(n * x))\) has_integral 0) \(\{-p i . . p i\}\)
proof (cases \(n=0\) )
    case False
    have \(((\lambda x . \sin (n * x))\) has_integral \((-\cos (n * p i) / n--\cos (n *-p i) / n))\)
```

```
\(\{-p i . . p i\}\)
    proof (rule fundamental_theorem_of_calculus)
        show \(((\lambda x .-\cos (n * x) / n)\) has_vector_derivative \(\sin (n * a))\) (at a within
\(\{-p i . . p i\})\)
            if \(a \in\{-p i . . p i\}\) for \(a::\) real
            using that False
            unfolding has_vector_derivative_def
            by (intro derivative_eq_intros |force)+
    qed auto
    then show? ?thesis
        by simp
qed auto
lemma integral_sin_nx:
    integral \(\{-\) pi..pi \(\}(\lambda x . \sin (x *\) real_of_int \(n))=0\)
    using has_integral_sin_nx [of \(n\) ] by (force simp: mult.commute)
lemma has_integral_cos_nx:
    \(\left(\left(\lambda x . \cos \left(r e a l \_o f \_i n t \mid n * x\right)\right)\right.\) has_integral \((\) if \(n=0\) then 2 \(*\) pi else 0\(\left.)\right)\{-p i . . p i\}\)
proof (cases \(n=0\) )
    case True
    then show? ?thesis
        using has_integral_const_real [of 1 ::real - pi pi] by auto
next
    case False
    have \(((\lambda x \cdot \cos (n * x))\) has_integral \((\sin (n * p i) / n-\sin (n *-p i) / n))\)
\{-pi..pi\}
    proof (rule fundamental_theorem_of_calculus)
        show \(((\lambda x . \sin (n * x) / n)\) has_vector_derivative \(\cos (n * x))(\) at \(x\) within
\(\{-p i . . p i\})\)
            if \(x \in\{-p i . . p i\}\)
            for \(x\) :: real
            using that False
            unfolding has_vector_derivative_def
            by (intro derivative_eq_intros |force)+
    qed auto
    with False show ?thesis
        by (simp add: mult.commute)
qed
lemma integral_cos_nx:
        integral \(\{-\) pi..pi \(\}(\lambda x . \cos (x *\) real_of_int \(n))=(\) if \(n=0\) then \(2 *\) pi else 0\()\)
    using has_integral_cos_nx [of \(n\) ] by (force simp: mult.commute)
```


6.15.18 Taylor series expansion

lemma mvt_integral:
fixes $f::^{\prime} a::$ real_normed_vector \Rightarrow ' $b::$ banach
assumes $f^{\prime}[$ derivative_intros $]$:
$\bigwedge x . x \in S \Longrightarrow\left(f\right.$ has_derivative $\left.f^{\prime} x\right)($ at x within $S)$
assumes line_in: $\wedge t . t \in\{0 . .1\} \Longrightarrow x+t *_{R} y \in S$
shows $f(x+y)-f x=$ integral $\{0 . .1\}\left(\lambda t . f^{\prime}\left(x+t *_{R} y\right) y\right)($ is ?th 1$)$
proof -
from assms have subset: $\left(\lambda x a . x+x a *_{R} y\right)$ ' $\{0 . .1\} \subseteq S$ by auto
note [derivative_intros] $=$
has_derivative_subset[OF _ subset]
has_derivative_in_compose $\left[\right.$ where $f=\left(\lambda x a . x+x a *_{R} y\right)$ and $\left.g=f\right]$
note [continuous_intros] $=$
continuous_on_compose2[where $\left.f=\left(\lambda x a . x+x a *_{R} y\right)\right]$
continuous_on_subset $[O F$ _ subset $]$
have $\wedge t . t \in\{0 . .1\} \Longrightarrow$
$\left(\left(\lambda t . f\left(x+t *_{R} y\right)\right)\right.$ has_vector_derivative $\left.f^{\prime}\left(x+t *_{R} y\right) y\right)$
(at t within $\{0 . .1\}$)
using assms
by (auto simp: has_vector_derivative_def
linear_cmul[OF has_derivative_linear[OF f], symmetric] intro!: derivative_eq_intros)
from fundamental_theorem_of_calculus[rule_format, OF _ this]
show ?th1
by (auto intro!: integral_unique[symmetric])
qed
lemma (in bounded_bilinear) sum_prod_derivatives_has_vector_derivative:
assumes $p>0$
and $f 0: D f 0=f$
and $D f: \wedge m t . m<p \Longrightarrow a \leq t \Longrightarrow t \leq b \Longrightarrow$
(Df m has_vector_derivative $D f(S u c m) t)(a t t$ within $\{a . . b\})$
and $g 0: D g 0=g$
and $D g: \bigwedge m t . m<p \Longrightarrow a \leq t \Longrightarrow t \leq b \Longrightarrow$
(Dg m has_vector_derivative $D g(S u c m) t)(a t t$ within $\{a . . b\})$
and ivl: $a \leq t t \leq b$
shows $\left(\left(\lambda t . \sum i<p .(-1)^{\wedge} i *_{R} \operatorname{prod}(D f i t)(D g(p-S u c i) t)\right)\right.$
has_vector_derivative
$\left.\operatorname{prod}(f t)(D g p t)-(-1)^{\wedge} p *_{R} \operatorname{prod}(D f p t)(g t)\right)$
(at t within $\{a . . b\}$)
using assms
proof cases
assume $p: p \neq 1$
define p^{\prime} where $p^{\prime}=p-2$
from assms p have $p^{\prime}:\{. .<p\}=\left\{\right.$..Suc $\left.p^{\prime}\right\} p=$ Suc (Suc p^{\prime})
by (auto simp: $p^{\prime}{ }_{-} d e f$)
have $*: \bigwedge i . i \leq p^{\prime} \Longrightarrow S u c\left(S u c p^{\prime}-i\right)=\left(\right.$ Suc $\left(\right.$ Suc $\left.\left.p^{\prime}\right)-i\right)$
by auto
let ?f $=\lambda i .(-1)^{\wedge} i *_{R}(\operatorname{prod}(D f i t)(D g((p-i)) t))$
have $\left(\sum i<p .(-1){ }^{\wedge} i *_{R}(\operatorname{prod}(D f i t)(D g(S u c(p-S u c i)) t)+\right.$ $\operatorname{prod}(D f($ Suc i) $t)(D g(p-S u c i) t)))=$
($\sum i \leq\left(\right.$ Suc p^{\prime}). ?f $i-$?f (Suc $\left.i\right)$)
by (auto simp: algebra_simps p'(2) numeral_2_eq_2 * lessThan_Suc_atMost)

```
also note sum_telescope
finally
have \(\left(\sum i<p .(-1){ }^{\wedge} i *_{R}(\operatorname{prod}(\operatorname{Df} i t)(D g(\operatorname{Suc}(p-\operatorname{Suc} i)) t)+\right.\)
    prod (Df (Suc i) t) \((D g(p-S u c i) t)))\)
    \(=\operatorname{prod}(f t)(D g p t)-(-1){ }^{\wedge} p *_{R} \operatorname{prod}(D f p t)(g t)\)
    unfolding \(p^{\prime}\) [symmetric]
    by (simp add: assms)
thus ?thesis
    using assms
    by (auto intro!: derivative_eq_intros has_vector_derivative)
qed (auto intro!: derivative_eq_intros has_vector_derivative)
lemma
    fixes \(f::\) real \(\Rightarrow\) ' \(a:\) :banach
    assumes \(p>0\)
    and \(f 0: D f 0=f\)
    and Df: \(\wedge m t . m<p \Longrightarrow a \leq t \Longrightarrow t \leq b \Longrightarrow\)
        (Df mas_vector_derivative \(D f(\) Suc \(m) t\) ) (at \(t\) within \(\{a . . b\})\)
    and ivl: \(a \leq b\)
    defines \(i \equiv \lambda x\). \(\left((b-x){ }^{\wedge}(p-1) / \operatorname{fact}(p-1)\right) *_{R} D f p x\)
    shows Taylor_has_integral:
        (i has_integral for \(\left.b\left(\sum i<p .\left((b-a){ }^{\wedge} i / f a c t i\right) *_{R} D f i a\right)\right)\{a\) a.b \(\}\)
    and Taylor_integral:
        \(f b=\left(\sum i<p .\left((b-a){ }^{\wedge} i / f a c t i\right) *_{R}\right.\) Dfia) + integral \(\{a . . b\} i\)
    and Taylor_integrable:
        \(i\) integrable_on \(\{a . . b\}\)
proof goal_cases
    case 1
    interpret bounded_bilinear scaleR::real \(\Rightarrow{ }^{\prime} a \Rightarrow^{\prime} a\)
        by (rule bounded_bilinear_scaleR)
    define \(g\) where \(g s=(b-s)^{\wedge}(p-1) /\) fact \((p-1)\) for \(s\)
    define \(D g\) where [abs_def]:
        Dgns \(=\left(\right.\) if \(n<p\) then \((-1)^{\wedge} n *(b-s)^{\wedge}(p-1-n) / f a c t(p-1-n)\)
else 0) for \(n s\)
    have \(g 0: D g 0=g\)
        using \(\langle p>0\) 〉
        by (auto simp add: Dg_def field_split_simps g_def split: if_split_asm)
    \{
        fix \(m\)
    assume \(p>\) Suc \(m\)
    hence \(p-\) Suc \(m=\) Suc ( \(p-\) Suc (Suc \(m\) ))
        by auto
    hence real \((p-\operatorname{Suc} m) *\) fact \((p-\operatorname{Suc}(\) Suc \(m))=\) fact \((p-\) Suc \(m)\)
        by auto
    \} note fact_eq \(=\) this
have \(D g: \wedge m t . m<p \Longrightarrow a \leq t \Longrightarrow t \leq b \Longrightarrow\)
        (Dg m has_vector_derivative Dg (Suc m) t) (at \(t\) within \(\{a . . b\})\)
        unfolding Dg_def
    by (auto intro!: derivative_eq_intros simp: has_vector_derivative_def fact_eq field_split_simps)
```

```
let ? \(s u m=\lambda t . \sum i<p .(-1)^{\wedge} i *_{R} D g i t *_{R} D f(p-S u c i) t\)
from sum_prod_derivatives_has_vector_derivative \(\left[o f\right.\) _ \(D g_{\ldots}\) _ \(D f\),
    \(O F\langle p>0\rangle g 0 D g f 0 D f]\)
have deriv: \(\wedge t . a \leq t \Longrightarrow t \leq b \Longrightarrow\)
    (?sum has_vector_derivative
        \(\left.g t *_{R} D f p t-(-1)^{\wedge} p *_{R} D g p t *_{R} f t\right)(a t t\) within \(\{a . . b\})\)
    by auto
from fundamental_theorem_of_calculus[rule_format, OF \(\langle a \leq b\rangle d e r i v]\)
have ( \(i\) has_integral ?sum \(b-\) ?sum \(a\) ) \(\{a . . b\}\)
    using atLeastatMost_empty' \([\) simp del]
    by (simp add: i_def \(g_{-}\)def \(D g_{-} d e f\) )
also
have one: \((-1)^{\wedge} p^{\prime} *(-1)^{\wedge} p^{\prime}=(1::\) real \()\)
    and \(\{. .<p\} \cap\{i . p=\) Suc \(i\}=\{p-1\}\)
    for \(p^{\prime}\)
    using \(\langle p>0\rangle\)
    by (auto simp: power_mult_distrib[symmetric])
then have ?sum \(b=f b\)
    using Suc_pred \({ }^{[ }\)OF \(\left.\langle p>0\rangle\right]\)
    by (simp add: diff_eq_eq Dg_def power_0_left le_Suc_eq if_distrib
        if_distribR sum.If_cases f0)
    also
    have \(\{. .<p\}=(\lambda x . p-x-1) '\{. .<p\}\)
    proof safe
    fix \(x\)
    assume \(x<p\)
    thus \(x \in(\lambda x . p-x-1)\) ' \(\{. .<p\}\)
        by (auto intro!: image_eqI[where \(x=p-x-1]\) )
    qed simp
    from - this
    have ?sum \(a=\left(\sum i<p .\left((b-a)^{\wedge} i / f a c t i\right) *_{R} D f i a\right)\)
    by (rule sum.reindex_cong) (auto simp add: inj_on_def Dg_def one)
    finally show \(c\) : ?case .
case 2 show ?case using c integral_unique
    by (metis (lifting) add.commute diff_eq_eq integral_unique)
    case 3 show ?case using \(c\) by force
qed
```


6.15.19 Only need trivial subintervals if the interval itself is trivial

proposition division_of_nontrivial:
fixes \mathcal{D} :: ' $a::$ euclidean_space set set
assumes sdiv: \mathcal{D} division_of (cbox a b)
and cont0: content (cbox a $b) \neq 0$
shows $\{k . k \in \mathcal{D} \wedge$ content $k \neq 0\}$ division_of (cbox ab)
using sdiv
proof (induction card \mathcal{D} arbitrary: \mathcal{D} rule: less_induct)
case less

```
note \(\mathcal{D}=\) division_ofD \([\) OF less.prems \(]\)
\{
    presume \(*:\{k \in \mathcal{D}\). content \(k \neq 0\} \neq \mathcal{D} \Longrightarrow\) ?case
    then show? case
        using less.prems by fastforce
\}
assume noteq: \(\{k \in \mathcal{D}\). content \(k \neq 0\} \neq \mathcal{D}\)
then obtain \(K c d\) where \(K \in \mathcal{D}\) and contk: content \(K=0\) and \(k e q: K=\)
cbox c d
    using \(\mathcal{D}(4)\) by blast
    then have card \(\mathcal{D}>0\)
    unfolding card_gt_0_iff using less by auto
    then have card: card \((\mathcal{D}-\{K\})<\operatorname{card} \mathcal{D}\)
    using less \(\langle K \in \mathcal{D}\rangle\) by (simp add: \(\mathcal{D}(1))\)
    have closed: closed \((\bigcup(\mathcal{D}-\{K\}))\)
        using less.prems by auto
    have \(x\) islimpt \(\bigcup(\mathcal{D}-\{K\})\) if \(x \in K\) for \(x\)
    unfolding islimpt_approachable
    proof (intro allI impI)
    fix \(e\) ::real
    assume \(e>0\)
    obtain \(i\) where \(i: c \cdot i=d \cdot i i \in\) Basis
        using contk \(\mathcal{D}(3)[O F\langle K \in \mathcal{D}\rangle]\) unfolding box_ne_empty keq
        by (meson content_eq_0 dual_order.antisym)
    then have \(x i: x \cdot i=d \cdot i\)
        using \(\langle x \in K\) ) unfolding keq mem_box by (metis antisym)
    define \(y\) where \(y=\left(\sum j \in\right.\) Basis. (if \(j=i\) then if \(c \cdot i \leq(a \cdot i+b \cdot i) / 2\) then \(c \cdot i\)
\(+\)
            \(\min e(b \cdot i-c \cdot i) / 2\) else \(c \cdot i-\min e(c \cdot i-a \cdot i) / 2\) else \(\left.x \cdot j) *_{R} j\right)\)
    show \(\exists x^{\prime} \in \bigcup(\mathcal{D}-\{K\}) . x^{\prime} \neq x \wedge\) dist \(x^{\prime} x<e\)
    proof (intro bexI conjI)
        have \(d \in\) cbox \(c d\)
            using \(\mathcal{D}(3)[O F\langle K \in \mathcal{D}\rangle]\) by (simp add: box_ne_empty(1) keq mem_box(2))
            then have \(d \in\) cbox a \(b\)
                using \(\mathcal{D}(2)[O F\langle K \in \mathcal{D}\rangle]\) by (auto simp: keq)
            then have \(d i: a \cdot i \leq d \cdot i \wedge d \cdot i \leq b \cdot i\)
                using \(\langle i \in\) Basis \(\rangle\) mem_box(2) by blast
            then have \(x y i: y \cdot i \neq x \cdot i\)
            unfolding \(y_{-}\)def \(i\) xi using \(\langle e>0\rangle\) cont0 \(\langle i \in\) Basis \(\rangle\)
            by (auto simp: content_eq_0 elim!: ballE \([\) of _ i \(]\) )
            then show \(y \neq x\)
                unfolding euclidean_eq_iff \(\left[\right.\) where \({ }^{\prime} a=^{\prime} a\) ] using \(i\) by auto
            have norm \((y-x) \leq\left(\sum b \in\right.\) Basis. \(\left.|(y-x) \cdot b|\right)\)
            by (rule norm_le_l1)
            also have \(\ldots=|(y-x) \cdot i|+\left(\sum b \in\right.\) Basis \(\left.-\{i\} \cdot|(y-x) \cdot b|\right)\)
                by (meson finite_Basis i(2) sum.remove)
            also have \(\ldots<e+\operatorname{sum}(\lambda i .0)\) Basis
            proof (rule add_less_le_mono)
                show \(|(y-x) \cdot i|<e\)
```

```
            using di <e > 0` y_def i xi by (auto simp: inner_simps)
        show (\sumi\inBasis - {i}. |(y-x)\cdoti|)\leq(\sumi\inBasis.0)
            unfolding y_def by (auto simp: inner_simps)
        qed
        finally have norm (y-x)<e+\operatorname{sum (\lambdai. 0) Basis .}
        then show dist y x<e
            unfolding dist_norm by auto
        have }y\not\in
            unfolding keq mem_box using i(1) i(2) xi xyi by fastforce
        moreover have y\in\bigcup\mathcal{D}
            using subsetD[OF \mathcal{D}(2)[OF}\langleK\in\mathcal{D}\rangle]\langlex\inK\rangle]\langlee>0\rangle di 
            by (auto simp: \mathcal{D mem_box y_def field_simps elim!: ballE[of _ _ i])}
            ultimately show }y\in\bigcup(\mathcal{D}-{K})\mathrm{ by auto
    qed
qed
then have K\subseteqU(\mathcal{D - {K})}
    using closed closed_limpt by blast
then have U(\mathcal{D}-{K})=cbox a b
    unfolding }\mathcal{D}(6)[symmetric] by aut
then have \mathcal{D - {K} division_of cbox a b}
    by (metis Diff_subset less.prems division_of_subset \mathcal{D}(6))
    then have {ka\in\mathcal{D - {K}.content ka\not=0} division_of (cbox a b)}
    using card less.hyps by blast
    moreover have {ka\in\mathcal{D}-{K}. content ka\not=0}={K\in\mathcal{D}. content K\not=0}
    using contk by auto
    ultimately show ?case by auto
qed
```


6.15.20 Integrability on subintervals

```
lemma operative_integrableI:
    fixes \(f::\) ' \(b::\) euclidean_space \(\Rightarrow\) ' \(a::\) banach
    assumes \(0 \leq e\)
    shows operative conj True ( \(\lambda i . f\) integrable_on i)
proof -
    interpret comm_monoid conj True
    proof qed
    show ?thesis
    proof
        show \(\bigwedge a b\). box a \(b=\{ \} \Longrightarrow(f\) integrable_on cbox ab) \(=\) True
            by (simp add: content_eq_0_interior integrable_on_null)
        show \(\bigwedge a b c k\).
                \(k \in\) Basis \(\Longrightarrow\)
                    \((f\) integrable_on cbox ab) \(\longleftrightarrow\)
                    (f integrable_on cbox a \(b \cap\{x . x \cdot k \leq c\} \wedge f\) integrable_on cbox a \(b \cap\)
\(\{x . c \leq x \cdot k\}\) )
            unfolding integrable_on_def by (auto intro!: has_integral_split)
    qed
qed
```

```
lemma integrable_subinterval:
    fixes f :: 'b::euclidean_space = 'a::banach
    assumes f:f integrable_on cbox a b
        and cd: cbox c d\subseteq cbox a b
    shows f integrable_on cbox c d
proof -
    interpret operative conj True \lambdai.f integrable_on i
        using order_refl by (rule operative_integrableI)
    show ?thesis
    proof (cases cbox c d = {})
        case True
        then show ?thesis
            using division [symmetric] f by (auto simp: comm_monoid_set_F_and)
    next
        case False
        then show ?thesis
        by (metis cd comm_monoid_set_F_and division division_of_finite f partial_division_extend_1)
    qed
qed
lemma integrable_subinterval_real:
    fixes f :: real # 'a::banach
    assumes fintegrable_on {a..b}
        and {c..d}\subseteq{a..b}
    shows f integrable_on {c..d}
    by (metis assms box_real(2) integrable_subinterval)
```


6.15.21 Combining adjacent intervals in 1 dimension

lemma has_integral_combine:
fixes $a b$ c:: real and j :: ' $a::$ banach
assumes $a \leq c$
and $c \leq b$
and $a c:(f$ has_integral $i)\{a . . c\}$
and $c b:(f$ has_integral $j)\{c . . b\}$
shows $(f$ has_integral $(i+j))\{a . . b\}$
proof -
interpret operative_real lift_option plus Some 0
di. if f integrable_on i then Some (integral if) else None
using operative_integralI by (rule operative_realI)
from $\langle a \leq c\rangle\langle c \leq b\rangle a c c b$ coalesce_less_eq
have $*$: lift_option $(+)$
(if f integrable_on $\{a . . c\}$ then Some (integral $\{a . . c\} f$) else None)
(if f integrable_on $\{c . . b\}$ then Some (integral $\{c . . b\} f)$ else None $)=$ (if f integrable_on $\{a . . b\}$ then Some (integral $\{a . . b\} f$) else None)
by (auto simp: split: if_split_asm)
then have f integrable_on cbox a b
using ac cb by (auto split: if_split_asm)

```
    with *
    show ?thesis
    using ac cb by (auto simp add: integrable_on_def integral_unique split: if_split_asm)
qed
lemma integral_combine:
    fixes f :: real }=>\mp@subsup{}{}{\prime}'a::banac
    assumes a\leqc
        and c\leqb
        and ab:f integrable_on {a..b}
    shows integral {a..c} f+ integral {c..b} f= integral {a..b}f
proof -
    have (f has_integral integral {a..c} f) {a..c}
        using ab <c \leq b integrable_subinterval_real by fastforce
    moreover
    have (f has_integral integral {c..b} f) {c..b}
        using ab \langlea\leqc\rangle integrable_subinterval_real by fastforce
    ultimately have (f has_integral integral {a..c} f+integral {c..b} f) {a..b}
        using <a \leqc\rangle\langlec\leqb\rangle has_integral_combine by blast
    then show ?thesis
        by (simp add: has_integral_integrable_integral)
qed
lemma integrable_combine:
    fixes f :: real => 'a::banach
    assumes a\leqc
        and c\leqb
        and fintegrable_on {a..c}
        and fintegrable_on {c..b}
    shows fintegrable_on {a..b}
    using assms
    unfolding integrable_on_def
    by (auto intro!: has_integral_combine)
lemma integral_minus_sets:
    fixes f::real = 'a::banach
    shows }c\leqa\Longrightarrowc\leqb\Longrightarrowf integrable_on {c .. max a b } \Longrightarrow <
        integral {c..a}f-integral {c..b}f=
        (if a\leqb then - integral {a .. b} f else integral {b .. a} f)
    using integral_combine[of c a bf] integral_combine[of c b af]
    by (auto simp: algebra_simps max_def)
lemma integral_minus_sets':
    fixes f::real # 'a::banach
    shows }c\geqa\Longrightarrowc\geqb\Longrightarrowf integrable_on {min a b .. c} \Longrightarrow
    integral {a .. c} f-integral {b .. c} f=
    (if a\leqb then integral {a .. b} f else - integral {b .. a} f)
    using integral_combine[of b a cf] integral_combine[of abcf]
    by (auto simp: algebra_simps min_def)
```


6.15.22 Reduce integrability to "local" integrability

lemma integrable_on_little_subintervals:
fixes f :: 'b::euclidean_space \Rightarrow 'a::banach
assumes $\forall x \in c b o x$ a b. $\exists d>0 . \forall u v . x \in c b o x u v \wedge$ cbox $u v \subseteq b a l l x d \wedge$ cbox $u v \subseteq c b o x$ a $b \longrightarrow$
fintegrable_on cbox $u v$
shows f integrable_on cbox a b
proof -
interpret operative conj True λi. f integrable_on i
using order_refl by (rule operative_integrableI)
have $\forall x . \exists d>0 . x \in$ cbox a $b \longrightarrow(\forall u v . x \in$ cbox $u v \wedge$ cbox $u v \subseteq$ ball $x d \wedge$
cbox $u v \subseteq$ cbox a $b \longrightarrow$
f integrable_on cbox u v)
using assms by (metis zero_less_one)
then obtain d where $d: \bigwedge x .0<d x$
$\bigwedge x u v . \llbracket x \in$ cbox a $b ; x \in$ cbox $u v ;$ cbox $u v \subseteq$ ball $x(d x) ;$ cbox $u v \subseteq$ cbox $a b \rrbracket$
$\Longrightarrow f$ integrable_on cbox uv
by metis
obtain p where p : p tagged_division_of cbox a $b(\lambda x$. ball $x(d x))$ fine p using fine_division_exists[OF gauge_ball_dependent,of da b] d(1) by blast
then have $s n d p$: snd ' p division_of cbox a b
by (metis division_of_tagged_division)
have f integrable_on k if $(x, k) \in p$ for $x k$
using tagged_division_of $D(2-4)[O F p(1)$ that $]$ fine $D[O F p(2)$ that $] d[o f x]$ by
auto
then show?thesis
unfolding division [symmetric, OF sndp] comm_monoid_set_F_and by auto
qed

6.15.23 Second FTC or existence of antiderivative

lemma integrable_const [intro]: ($\lambda x . c$) integrable_on cbox a b
unfolding integrable_on_def by blast
lemma integral_has_vector_derivative_continuous_at:
fixes $f::$ real $\Rightarrow{ }^{\prime} a::$ banach
assumes $f: f$ integrable_on $\{a . . b\}$
and $x: x \in\{a . . b\}-S$
and finite S
and fx: continuous (at x within $(\{a . . b\}-S)) f$
shows $((\lambda u$. integral $\{a . . u\} f)$ has_vector_derivative $f x)$ (at x within ($\{a . . b\}-$ S))
proof -
let $? I=\lambda a b$. integral $\{a . . b\} f$
\{ fix $e:$:real
assume $e>0$
obtain d where $d>0$ and $d: \bigwedge x^{\prime} . \llbracket x^{\prime} \in\{a . . b\}-S ;\left|x^{\prime}-x\right|<d \rrbracket \Longrightarrow \operatorname{norm}(f$
$\left.x^{\prime}-f x\right) \leq e$
using $\langle e>0\rangle f x$ by (auto simp: continuous_within_eps_delta dist_norm less_imp_le)
have norm (integral $\{a . . y\} f-$ integral $\left.\{a . . x\} f-(y-x) *_{R} f x\right) \leq e * \mid y-$
$x \mid$ (is ?lhs \leq ?rhs $)$
if $y: y \in\{a . . b\}-S$ and $y x:|y-x|<d$ for y
proof (cases $y<x$)

case False

have f integrable_on $\{a . . y\}$ using $f y$ by (simp add: integrable_subinterval_real)
then have Idiff: ?I a $y-$?I $a x=$?I $x y$
using False x by (simp add: algebra_simps integral_combine)
have fux_int: $\left((\lambda u . f u-f x)\right.$ has_integral integral $\left.\{x . . y\} f-(y-x) *_{R} f x\right)$ $\{x . . y\}$
proof (rule has_integral_diff)
show (f has_integral integral $\{x . . y\} f$) $\{x . . y\}$
using $x y$ by (auto intro: integrable_integral [OF integrable_subinterval_real
[OF f]])
show $\left((\lambda u . f x)\right.$ has_integral $\left.(y-x) *_{R} f x\right)\{x . . y\}$
using has_integral_const_real [of fxay] False by simp
qed
have ?lhs $\leq e *$ content $\{x . . y\}$
using yx False dxy d 〈e>0〉 assms
by (intro has_integral_bound_real $[$ where $f=(\lambda u . f u-f x)]$) (auto simp: Idiff fux_int)
also have ... \leq ? rhs using False by auto
finally show ?thesis .
next
case True
have f integrable_on $\{a . . x\}$ using $f x$ by (simp add: integrable_subinterval_real)
then have Idiff: ?I a $x-$?I $a y=$?I $y x$
using True x y by (simp add: algebra_simps integral_combine)
have fux_int: $\left((\lambda u . f u-f x)\right.$ has_integral integral $\{y . . x\} f-(x-y) *_{R} f$ x) $\{y . . x\}$
proof (rule has_integral_diff)
show (f has_integral integral $\{y . . x\} f$) $\{y . . x\}$
using $x y$ by (auto intro: integrable_integral [OF integrable_subinterval_real [OF f]])
show $\left((\lambda u . f x)\right.$ has_integral $\left.(x-y) *_{R} f x\right)\{y . . x\}$
using has_integral_const_real [of fxy x] True by simp
qed
have norm (integral $\{a . . x\} f-$ integral $\left.\{a . . y\} f-(x-y) *_{R} f x\right) \leq e *$ content $\{y . . x\}$
using yx True $d x y\langle e>0\rangle$ assms
by (intro has_integral_bound_real[where $f=(\lambda u . f u-f x)]$) (auto simp: Idiff fux_int)
also have $\ldots \leq e *|y-x|$
using True by auto

```
    finally have norm (integral \(\{a . . x\} f-\) integral \(\left.\{a . . y\} f-(x-y) *_{R} f x\right)\)
\(\leq e *|y-x|\).
    then show ?thesis
        by (simp add: algebra_simps norm_minus_commute)
    qed
    then have \(\exists d>0 . \forall y \in\{a . . b\}-S .|y-x|<d \longrightarrow\) norm (integral \(\{a . . y\} f\)
- integral \(\left.\{a . . x\} f-(y-x) *_{R} f x\right) \leq e *|y-x|\)
        using \(\langle d>0\rangle\) by blast
    \}
    then show ?thesis
    by (simp add: has_vector_derivative_def has_derivative_within_alt bounded_linear_scaleR_left)
qed
```

lemma integral_has_vector_derivative:
fixes f :: real $\Rightarrow{ }^{\prime} a::$ banach
assumes continuous_on $\{a . . b\} f$
and $x \in\{a . . b\}$
shows $((\lambda u$. integral $\{a . . u\} f)$ has_vector_derivative $f(x))$ (at x within $\{a . . b\}$)
using assms integral_has_vector_derivative_continuous_at [OF integrable_continuous_real]
by (fastforce simp: continuous_on_eq_continuous_within)
lemma integral_has_real_derivative:
assumes continuous_on $\{a . . b\} g$
assumes $t \in\{a . . b\}$
shows $((\lambda x$. integral $\{a . . x\} g)$ has_real_derivative $g t)$ (at t within $\{a . . b\})$
using integral_has_vector_derivative [of a b g t] assms
by (auto simp: has_field_derivative_iff_has_vector_derivative)
lemma antiderivative_continuous:
fixes $q b$:: real
assumes continuous_on $\{a . . b\} f$
obtains g where $\bigwedge x . x \in\{a . . b\} \Longrightarrow\left(g\right.$ has_vector_derivative $\left.\left(f x:: _:: b a n a c h\right)\right)$
(at x within $\{a . . b\}$)
using integral_has_vector_derivative [OF assms] by auto

6.15.24 Combined fundamental theorem of calculus

lemma antiderivative_integral_continuous:
fixes f :: real \Rightarrow ' $a:: b a n a c h$
assumes continuous_on $\{a . . b\} f$
obtains g where $\forall u \in\{a . . b\} . \forall v \in\{a . . b\} . u \leq v \longrightarrow$ (f has_integral $(g v-g$
u)) $\{u . . v\}$
proof -
obtain g
where $g: \bigwedge x . x \in\{a . . b\} \Longrightarrow(g$ has_vector_derivative $f x)$ (at x within $\{a . . b\})$
using antiderivative_continuous [OF assms] by metis
have (f has_integral $g v-g u)\{u . . v\}$ if $u \in\{a . . b\} v \in\{a . . b\} u \leq v$ for $u v$ proof -

```
    have }\bigwedgex.x\in cbox u v\Longrightarrow(g has_vector_derivative f x) (at x within cbox u v
        by (metis atLeastAtMost_iff atLeastatMost_subset_iff box_real(2) g
            has_vector_derivative_within_subset subsetCE that(1,2))
    then show ?thesis
    by (metis box_real(2) that(3) fundamental_theorem_of_calculus)
    qed
    then show ?thesis
        using that by blast
qed
```


6.15.25 General "twiddling" for interval-to-interval function image

lemma has_integral_twiddle:
assumes $0<r$
and $h g: \bigwedge x . h(g x)=x$
and $g h: \bigwedge x . g(h x)=x$
and contg: $\bigwedge x$. continuous (at $x) g$
and $g: \bigwedge u v . \exists w z . g^{\prime}$ cbox $u v=c b o x w z$
and $h: \bigwedge u v . \exists w z . h{ }^{`}$ cbox $u v=c b o x w z$
and $r: \bigwedge u v$. content $\left(g{ }^{\prime}\right.$ cbox $\left.u v\right)=r * \operatorname{content}(\operatorname{cbox} u v)$
and intfi: (f has_integral i) (cbox ab)
shows $\left((\lambda x . f(g x))\right.$ has_integral $\left.(1 / r) *_{R} i\right)(h ‘ c b o x a b)$
proof (cases cbox a $b=\{ \}$)
case True
then show ?thesis
using intfi by auto
next
case False
obtain $w z$ where $w z: h^{\prime}$ cbox a $b=c b o x w z$
using h by blast
have inj: inj ginj h
using hg gh injI by metis+
from h obtain $h a h b$ where $h_{\text {_ }} e q: h^{\prime}$ cbox a $b=c b o x h a h b$ by blast
have $\exists d$. gauge $d \wedge(\forall p$. p tagged_division_of h 'cbox a $b \wedge d$ fine p
$\longrightarrow \operatorname{norm}\left(\left(\sum(x, k) \in p\right.\right.$. content $\left.\left.\left.k *_{R} f(g x)\right)-(1 / r) *_{R} i\right)<e\right)$
if $e>0$ for e
proof -
have $e * r>0$ using that $\langle 0<r\rangle$ by simp
with intfi[unfolded has_integral]
obtain d where gauge d
and $d: \bigwedge p . p$ tagged_division_of cbox a $b \wedge d$ fine p $\Longrightarrow \operatorname{norm}\left(\left(\sum(x, k) \in p\right.\right.$. content $\left.\left.k *_{R} f x\right)-i\right)<e * r$
by metis
define d^{\prime} where $d^{\prime} x=g-{ }^{\prime} d(g x)$ for x
show ?thesis
proof (rule_tac $x=d^{\prime}$ in exI, safe)
show gauge d^{\prime}
using 〈gauge d〉continuous_open_vimage[OF _ contg] by (auto simp: gauge_def

```
d'_def)
    next
        fix p
        assume ptag: p tagged_division_of h'cbox a b and finep: d' fine p
        note p = tagged_division_ofD[OF ptag]
        have gab:g y cbox a b if y \inK (x,K)\inp for x y K
            by (metis hg inj(2) inj_image_mem_iff p(3) subsetCE that that)
        have gimp: (\lambda(x,K).(gx, g'K))' p tagged_division_of (cbox a b) ^
            d fine (\lambda(x,k). (gx,g'k))'p
        unfolding tagged_division_of
    proof safe
        show finite ((\lambda(x,k). (gx,g'k))'p)
            using ptag by auto
        show d fine (\lambda(x,k).(g x, g'k))'p
            using finep unfolding fine_def d'_def by auto
        next
            fix }x
            assume xk:}(x,k)\in
            show g x f g'k
            using p(2)[OF xk] by auto
            show \existsuv.g'k= cbox uv
            using p(4)[OF xk] using assms(5-6) by auto
            fix }\mp@subsup{x}{}{\prime}\mp@subsup{K}{}{\prime}
            assume x\mp@subsup{k}{}{\prime}:(\mp@subsup{x}{}{\prime},\mp@subsup{K}{}{\prime})\inp\mathrm{ and }u:u\in\operatorname{interior (g'k)u\in interior (g' K')}
            have interior }k\cap\mathrm{ interior K'}={{
            proof
            assume interior k\cap interior K'={}
            moreover have u\ing'(interior k \cap interior K')
                    using interior_image_subset[OF <inj g> contg] u
                    unfolding image_Int[OF inj(1)] by blast
            ultimately show False by blast
        qed
        then have same: (x,k)=( (x', K')
            using ptag xk' xk by blast
            then show g}x=g\mp@subsup{x}{}{\prime
                by auto
            show gu\ing' K'if u\ink for u
            using that same by auto
            show gu\ing'kif}u\in\mp@subsup{K}{}{\prime}\mathrm{ for u
            using that same by auto
        next
            fix }
            assume x c cbox a b
            then have h x \in \bigcup{k.\existsx. (x,k)\inp}
            using}p(6) by aut
            then obtain X y where hx\inX (y,X)\inp by blast
            then show }x\in\bigcup{k.\existsx.(x,k)\in(\lambda(x,k).(gx,g'k))'p
            by clarsimp (metis (no_types, lifting) gh image_eqI pair_imageI)
        qed (use gab in auto)
```

```
    have *: inj_on ( }\lambda(x,k).(gx,g`k)) 
    using inj(1) unfolding inj_on_def by fastforce
    have }(\sum(x,K)\in(\lambda(y,L).(gy,g'L))'p. content K * R f | )
        = (\sumu\inp.case case u of (x,K) => (gx,g'K) of (y,L) => content L * *R
f y)
            by (metis (mono_tags, lifting) * sum.reindex_cong)
            also have ... = (\sum(x,K)\inp.r** content K *R f (gx))
            using r by (auto intro!: * sum.cong simp: bij_betw_def dest!: p(4))
            finally
            have (\sum(x,K)\in(\lambda(x,K). (gx,g'K))'p. content K * }\mp@subsup{\mp@code{R}}{}{\prime}fx)-i=r**
(\sum(x,K)\inp.content K** f
            by (simp add: scaleR_right.sum split_def)
            also have ... =r**R}((\sum(x,K)\inp.content K * *R f(gx)) - (1/r)* *R i
            using \langle0<r\rangle by (auto simp: scaleR_diff_right)
            finally show norm ((\sum (x,K)\inp. content K * *R f(gx)) - (1/r)*R}i)<
                using d[OF gimp] <0<r\rangle by auto
    qed
    qed
    then show ?thesis
    by (auto simp: h_eq has_integral)
qed
```


6.15.26 Special case of a basic affine transformation

```
lemma AE_lborel_inner_neq:
    assumes \(k: k \in\) Basis
    shows \(A E x\) in lborel. \(x \cdot k \neq c\)
proof -
    interpret finite_product_sigma_finite \(\lambda_{\text {_. }}\) lborel Basis
        proof qed simp
        have emeasure lborel \(\{x \in\) space lborel. \(x \cdot k=c\}\)
            \(=\) emeasure \(\left(\Pi_{M} j:: ' a \in\right.\) Basis. lborel \()\left(\Pi_{E} j \in\right.\) Basis. if \(j=k\) then \(\{c\}\) else
UNIV)
            using \(k\)
    by (auto simp add: lborel_eq[where ' \(\left.a={ }^{\prime} a\right]\) emeasure_distr intro!: arg_cong2[where
\(f=\) emeasure])
        (auto simp: space_PiM PiE_iff extensional_def split: if_split_asm)
    also have \(\ldots=\left(\prod j \in\right.\) Basis. emeasure lborel (if \(j=k\) then \(\{c\}\) else UNIV \()\) )
            by (intro measure_times) auto
    also have \(\ldots=0\)
            by (intro prod_zero bexI \(\left[O F_{-} k\right]\) ) auto
    finally show ?thesis
        by (subst AE_iff_measurable \(\left[O F_{-}\right.\)refl] ) auto
qed
lemma content_image_stretch_interval:
    fixes \(m\) :: 'a::euclidean_space \(\Rightarrow\) real
    defines sf \(x \equiv\left(\sum k::^{\prime} a \in\right.\) Basis. \(\left.(f k *(x \cdot k)) *_{R} k\right)\)
    shows content (s m'cbox ab) \(=\mid \prod k \in\) Basis. \(m k \mid *\) content (cbox ab)
```

```
proof cases
    have s[measurable]: sf\in borel }\mp@subsup{->}{M}{M}\mathrm{ borel for }
        by (auto simp: s_def[abs_def])
    assume m: }\forallk\in\mathrm{ Basis. m k}\not=
    then have s_comp_s:s}(\lambdak.1/mk)\circsm=idsm\circs(\lambdak.1/mk)=i
        by (auto simp: s_def[abs_def] fun_eq_iff euclidean_representation)
    then have inv (s (\lambdak.1/mk))=smbij (s (\lambdak.1/mk))
        by (auto intro: inv_unique_comp o_bij)
    then have eq:s m'cbox a b}=s(\lambdak.1/mk) -' cbox a b
        using bij_vimage_eq_inv_image[OF <bij (s (\lambdak.1/m k))〉, of cbox a b] by auto
    show ?thesis
        using m unfolding eq measure_def
        by (subst lborel_affine_euclidean[where }c=m\mathrm{ and }t=0]\mathrm{ )
            (simp_all add: emeasure_density measurable_sets_borel[OF s] abs_prod nn_integral_cmult
                s_def[symmetric] emeasure_distr vimage_comp s_comp_s enn2real_mult
prod_nonneg)
next
    assume }\neg(\forallk\in\mathrm{ Basis. m k}\not=0
    then obtain k where k:k\in Basis m k=0 by auto
    then have [simp]:(\prodk\inBasis. m k)=0
        by (intro prod_zero) auto
    have emeasure lborel {x\inspace lborel. x f s m'cbox a b} = 0
    proof (rule emeasure_eq_O_AE)
        show AE x in lborel. x &s m'cbox a b
            using AE_lborel_inner_neq[OF <k\inBasis`]
        proof eventually_elim
            show }x\cdotk\not=0\Longrightarrowx\not\insm'cbox ab for 
            using k by (auto simp: s_def[abs_def] cbox_def)
        qed
    qed
    then show ?thesis
        by (simp add: measure_def)
qed
lemma interval_image_affinity_interval:
    \existsuv. (\lambdax. m *R (x::'a::euclidean_space) + c)' cbox a b = cbox u v
    unfolding image_affinity_cbox
    by auto
lemma content_image_affinity_cbox:
    content((\lambdax::'a::euclidean_space. m *R x + c)' cbox a b) =
        |m| ^DIM('a) * content (cbox a b) (is ?l = ?r)
proof (cases cbox a b={})
    case True then show ?thesis by simp
next
    case False
    show ?thesis
    proof (cases m\geq0)
        case True
```

```
    with «cbox a \(b \neq\{ \}\) 〉 have \(\operatorname{cbox}\left(m *_{R} a+c\right)\left(m *_{R} b+c\right) \neq\{ \}\)
        by (simp add: box_ne_empty inner_left_distrib mult_left_mono)
    moreover from True have \(*: \bigwedge i .\left(m *_{R} b+c\right) \cdot i-\left(m *_{R} a+c\right) \cdot i=m\)
\(*_{R}(b-a) \cdot i\)
        by (simp add: inner_simps field_simps)
    ultimately show ?thesis
        by (simp add: image_affinity_cbox True content_cbox'
        prod.distrib inner_diff_left)
    next
    case False
    with \(\left\langle c b o x\right.\) a \(b \neq\{ \}\) 〉 have \(\operatorname{cbox}\left(m *_{R} b+c\right)\left(m *_{R} a+c\right) \neq\{ \}\)
        by (simp add: box_ne_empty inner_left_distrib mult_left_mono)
    moreover from False have \(*\) : \(\bigwedge i .\left(m *_{R} a+c\right) \cdot i-\left(m *_{R} b+c\right) \cdot i=\)
\((-m) *_{R}(b-a) \cdot i\)
            by (simp add: inner_simps field_simps)
    ultimately show ?thesis using False
            by (simp add: image_affinity_cbox content_cbox'
                prod.distrib[symmetric] inner_diff_left flip: prod_constant)
    qed
qed
lemma has_integral_affinity:
    fixes \(a\) :: ' \(a\) ::euclidean_space
    assumes ( \(f\) has_integral i) (cbox ab)
        and \(m \neq 0\)
    shows \(\left(\left(\lambda x . f\left(m *_{R} x+c\right)\right)\right.\) has_integral \(\left.\left(1 /\left(|m|{ }^{\wedge} \operatorname{DIM}\left({ }^{\prime} a\right)\right)\right) *_{R} i\right)((\lambda x .(1\)
\(\left./ m) *_{R} x+-\left((1 / m) *_{R} c\right)\right)\) ' cbox a b)
proof (rule has_integral_twiddle)
    show \(\exists w z .\left(\lambda x .(1 / m) *_{R} x+-\left((1 / m) *_{R} c\right)\right)\) ' cbox \(u v=\operatorname{cbox} w z\)
        \(\exists w z \cdot\left(\lambda x \cdot m *_{R} x+c\right)\) 'cbox \(u v=c b o x w z\) for \(u v\)
            using interval_image_affinity_interval by blast+
    show content \(\left(\left(\lambda x . m *_{R} x+c\right)\right.\) 'cbox \(\left.u v\right)=|m|{ }^{\wedge} \operatorname{DIM}\left({ }^{\prime} a\right) *\) content (cbox
\(u v)\) for \(u v\)
    using content_image_affinity_cbox by blast
qed (use assms zero_less_power in 〈auto simp: field_simps〉)
lemma integrable_affinity:
    assumes \(f\) integrable_on cbox \(a b\)
        and \(m \neq 0\)
    shows \(\left(\lambda x . f\left(m *_{R} x+c\right)\right)\) integrable_on \(\left(\left(\lambda x .(1 / m) *_{R} x+-\left((1 / m) *_{R}\right.\right.\right.\)
c)) ' cbox a b)
    using has_integral_affinity assms
    unfolding integrable_on_def by blast
lemmas has_integral_affinity01 = has_integral_affinity \([\) of _ - \(01::\) real, simplified]
lemma integrable_on_affinity:
    assumes \(m \neq 0\) fintegrable_on (cbox ab)
    shows \(\left(\lambda x . f\left(m *_{R} x+c\right)\right)\) integrable_on \(\left(\left(\lambda x .(1 / m) *_{R} x-\left((1 / m) *_{R}\right.\right.\right.\)
```

```
c))' cbox a b)
proof -
    from assms obtain I where (f has_integral I) (cbox a b)
        by (auto simp: integrable_on_def)
    from has_integral_affinity[OF this assms(1), of c] show ?thesis
        by (auto simp: integrable_on_def)
qed
lemma has_integral_cmul_iff:
    assumes c\not=0
    shows ((\lambdax.c * * f x) has_integral ( c * *R I)) A \longleftrightarrow (f has_integral I) A
    using assms has_integral_cmul[of f I A c]
            has_integral_cmul[of \lambdax.c**R f x c * R I A inverse c] by (auto simp:
field_simps)
lemma has_integral_affinity':
    fixes a :: 'a::euclidean_space
    assumes (f has_integral i) (cbox a b) and m>0
    shows ((\lambdax.f(m*R x + c)) has_integral (i/R m ` DIM('a)))
        (cbox ((a-c)/Rm) ((b-c)/Rm))
proof (cases cbox a b = {})
    case True
    hence (cbox ((a-c)/Rm) ((b-c)/Rm))={}
        using \langlem>0\rangle unfolding box_eq_empty by (auto simp: algebra_simps)
    with True and assms show ?thesis by simp
next
    case False
    have ((\lambdax.f(m** }x+c))\mathrm{ has_integral (1 / |m| ^ DIM('a)) * *R i)
            ((\lambdax. (1 / m) ** 
        using assms by (intro has_integral_affinity) auto
    also have ((\lambdax. (1/m)*R}x+-((1/m)\mp@subsup{*}{R}{\prime}c))' cbox a b)
                        ((\lambdax. - ((1/m)**R c) + x)'(\lambdax. (1/m) *R x)' cbox a b)
        by (simp add: image_image algebra_simps)
    also have (\lambdax.(1/m)**R x)' cbox a b = cbox ((1/m) *R a) ((1/m) *R b)
using <m > 0\rangle False
        by (subst image_smult_cbox) simp_all
    also have (\lambdax. - ((1/m) *R c) + x)`... = cbox ((a-c)/R m) ((b-c)
/R m)
    by (subst cbox_translation [symmetric]) (simp add: field_simps vector_add_divide_simps)
    finally show ?thesis using \langlem>0\rangle by (simp add: field_simps)
qed
lemma has_integral_affinity_iff:
    fixes f :: 'a :: euclidean_space => 'b :: real_normed_vector
    assumes m>0
    shows ((\lambdax.f (m**R x + c)) has_integral (I/R m ` DIM('a)))
                        (cbox ((a-c)/Rm) ((b-c)/Rm))\longleftrightarrow
            (f has_integral I) (cbox a b) (is ?lhs = ?rhs)
proof
```

```
    assume?lhs
    from has_integral_affinity'[OF this,of 1/m -c / /R m] and <m>0\rangle
    show ?rhs by (simp add: vector_add_divide_simps) (simp add: field_simps)
next
    assume ?rhs
    from has_integral_affinity'[OF this,of m c] and \langlem> 0\rangle
    show ?lhs by simp
qed
```


6.15.27 Special case of stretching coordinate axes separately

```
lemma has_integral_stretch:
    fixes \(f::\) ' \(a::\) euclidean_space \(\Rightarrow\) ' \(b::\) real_normed_vector
    assumes (f has_integral i) (cbox a b)
        and \(\forall k \in\) Basis. \(m k \neq 0\)
    shows \(\left(\left(\lambda x . f\left(\sum k \in\right.\right.\right.\) Basis. \(\left.\left.(m k *(x \cdot k)) *_{R} k\right)\right)\) has_integral
            \(\left((1 / \mid \operatorname{prod} m\right.\) Basis \(\left.\left.\mid) *_{R} i\right)\right)\left(\left(\lambda x .\left(\sum k \in\right.\right.\right.\) Basis. \(\left.\left.(1 / m k *(x \cdot k)) *_{R} k\right)\right) \cdot\)
cbox a b)
    apply (rule has_integral_twiddle \([\) where \(f=f]\) )
    unfolding zero_less_abs_iff content_image_stretch_interval
    unfolding image_stretch_interval empty_as_interval euclidean_eq_iff [where ' \(a=\) =' \(a\) ]
    using assms
    by auto
```

lemma has_integral_stretch_real:
fixes $f::$ real \Rightarrow 'b::real_normed_vector
assumes (f has_integral i) $\{a . . b\}$ and $m \neq 0$
shows $\left((\lambda x . f(m * x))\right.$ has_integral $\left.(1 /|m|) *_{R} i\right)((\lambda x . x / m)$ ' $\{a . . b\})$
using has_integral_stretch [of fiablb.m] assms by simp
lemma integrable_stretch:
fixes f :: 'a::euclidean_space \Rightarrow ' $b::$ real_normed_vector
assumes f integrable_on cbox $a b$
and $\forall k \in$ Basis. $m k \neq 0$
shows $\left(\lambda x::^{\prime} a . f\left(\sum k \in\right.\right.$ Basis. $\left.\left.(m k *(x \cdot k)) *_{R} k\right)\right)$ integrable_on
$\left(\left(\lambda x . \sum k \in\right.\right.$ Basis. $\left.(1 / m k *(x \cdot k)) *_{R} k\right)$ ' cbox a $\left.b\right)$
using assms unfolding integrable_on_def
by (force dest: has_integral_stretch)
lemma vec_lambda_eq_sum:
$(\chi k . f k(x \$ k))=\left(\sum k \in\right.$ Basis. $(f($ axis_index $\left.k)(x \cdot k)) *_{R} k\right)($ is $? l h s=$
?rhs
proof -
have ?lhs $=(\chi k . f k(x \cdot$ axis $k 1))$
by (simp add: cart_eq_inner_axis)
also have $\ldots=\left(\sum u \in U N I V . f u(x \cdot\right.$ axis $u 1) *_{R}$ axis u 1$)$
by (simp add: vec_eq_iff axis_def if_distrib cong: if_cong)
also have $\ldots=$? rhs
by (simp add: Basis_vec_def UNION_singleton_eq_range sum.reindex axis_eq_axis

```
inj_on_def)
    finally show ?thesis.
qed
lemma has_integral_stretch_cart:
    fixes }m\mathrm{ :: ' }n::\mathrm{ finite }=>\mathrm{ real
    assumes f:(f has_integral i) (cbox a b) and m: ^k.m k\not=0
    shows ((\lambdax.f(\chik.mk*x$k)) has_integral i/R |prod m UNIV )
        ((\lambdax. \chi k. x$k / m k)'(cbox a b))
proof -
    have *: \forallk:: real^'}n\in\mathrm{ Basis. m (axis_index k)}\not=
        using axis_index by (simp add: m)
    have eqp:(\prodk:: real^^n 
    by (simp add: Basis_vec_def UNION_singleton_eq_range prod.reindex axis_eq_axis
inj_on_def)
    show ?thesis
        using has_integral_stretch [OF f*] vec_lambda_eq_sum [where f=\lambdaix.mi*
x] vec_lambda_eq_sum [where f=\lambdaix.x / m i]
        by (simp add: field_simps eqp)
qed
lemma image_stretch_interval_cart:
    fixes }m\mathrm{ :: ' }n\mathrm{ ::finite }=>\mathrm{ real
    shows (\lambdax. \chi k.mk*x$k)' cbox a b=
        (if cbox a b = {} then {}
        else cbox (\chik. min (mk*a$k) (mk*b$k)) (\chik. max (mk*a$k)
(mk*b$k)))
proof -
    have *: (\sumk\inBasis. min (m (axis_index k)* (a\cdotk)) (m (axis_index k)* (b .
k)) *R }\mp@subsup{|}{R}{\prime
    =(\chik.min (mk*a$k) (mk*b$k))
    (\sumk\inBasis.max (m (axis_index k)* (a\cdotk)) (m(axis_index k)*(b}\mp@code{m}
*R k)
    =(\chik.max (mk*a$k) (mk*b$k))
    apply (simp_all add: Basis_vec_def cart_eq_inner_axis UNION_singleton_eq_range
sum.reindex axis_eq_axis inj_on_def)
    apply (simp_all add: vec_eq_iff axis_def if_distrib cong: if_cong)
    done
    show ?thesis
    by (simp add: vec_lambda_eq_sum [where f=\lambdaix.mi*x] image_stretch_interval
eq_cbox *)
qed
```


6.15.28 even more special cases

lemma uminus_interval_vector[simp]:
fixes $a b$:: 'a::euclidean_space
shows uminus' cbox a $b=\operatorname{cbox}(-b)(-a)$
proof -

```
    have \(x \in\) uminus' cbox \(a b\) if \(x \in \operatorname{cbox}(-b)(-a)\) for \(x\)
    proof -
        have \(-x \in\) cbox ab
        using that by (auto simp: mem_box)
    then show ?thesis
        by force
    qed
    then show?thesis
    by (auto simp: mem_box)
qed
lemma has_integral_reflect_lemma[intro]:
    assumes (f has_integral i) (cbox a b)
    shows \(((\lambda x . f(-x))\) has_integral i) (cbox (-b) \((-a))\)
    using has_integral_affinity[OF assms, of -1 0]
    by auto
lemma has_integral_reflect_lemma_real[intro]:
    assumes ( \(f\) has_integral i) \{a..b::real \(\}\)
    shows \(((\lambda x . f(-x))\) has_integral \(i)\{-b . .-a\}\)
    using assms
    unfolding box_real[symmetric]
    by (rule has_integral_reflect_lemma)
lemma has_integral_reflect[simp]:
    \(((\lambda x . f(-x))\) has_integral \(i)(\) cbox \((-b)(-a)) \longleftrightarrow(f\) has_integral i) (cbox a b)
    by (auto dest: has_integral_reflect_lemma)
lemma has_integral_reflect_real[simp]:
    fixes \(a b::\) real
    shows \(((\lambda x . f(-x))\) has_integral \(i)\{-b . .-a\} \longleftrightarrow(f\) has_integral \(i)\{a . . b\}\)
    by (metis has_integral_reflect interval_cbox)
lemma integrable_reflect[simp]: \((\lambda x . f(-x))\) integrable_on cbox \((-b)(-a) \longleftrightarrow f\)
integrable_on cbox a b
    unfolding integrable_on_def by auto
lemma integrable_reflect_real[simp]: \((\lambda x . f(-x))\) integrable_on \(\{-b . .-a\} \longleftrightarrow f\)
integrable_on \(\{a . . b::\) real \(\}\)
    unfolding box_real[symmetric]
    by (rule integrable_reflect)
```

lemma integral_reflect[simp]: integral (cbox (-b) $(-a))(\lambda x . f(-x))=$ integral
(cbox a b) f
unfolding integral_def by auto
lemma integral_reflect_real $[$ simp $]$: integral $\{-b . .-a\}(\lambda x . f(-x))=$ integral
$\{a . . b::$ real $\} f$
unfolding box_real[symmetric]
by (rule integral_reflect)

6.15.29 Stronger form of FCT; quite a tedious proof

lemma split_minus[simp]: $(\lambda(x, k) . f x k) x-(\lambda(x, k) . g x k) x=(\lambda(x, k) . f x k$ $-g x k) x$ by (simp add: split_def)
theorem fundamental_theorem_of_calculus_interior:
fixes f :: real $\Rightarrow{ }^{\prime} a::$ real_normed_vector
assumes $a \leq b$
and contf: continuous_on $\{a . . b\} f$
and derf: $\bigwedge x . x \in\{a<. .<b\} \Longrightarrow\left(f\right.$ has_vector_derivative $\left.f^{\prime} x\right)($ at $x)$
shows $\left(f^{\prime}\right.$ has_integral $\left.(f b-f a)\right)\{a . . b\}$
proof (cases $a=b$)
case True
then have $*$: cbox $a b=\{b\} f b-f a=0$
by (auto simp add: order_antisym)
with True show ?thesis by auto
next
case False
with $\langle a \leq b\rangle$ have $a b: a<b$ by arith
show ?thesis
unfolding has_integral_factor_content_real
proof (intro allI impI)
fix e :: real
assume $e: e>0$
then have eba8: $(e *(b-a)) / 8>0$
using $a b$ by (auto simp add: field_simps)
note derf_exp = derf[unfolded has_vector_derivative_def has_derivative_at_alt,
THEN conjunct2, rule_format]
thm derf_exp
have bounded: $\bigwedge x . x \in\{a<. .<b\} \Longrightarrow$ bounded_linear $\left(\lambda u . u *_{R} f^{\prime} x\right)$
by (simp add: bounded_linear_scaleR_left)
have $\forall x \in$ box a b. $\exists d>0 . \forall y$. norm $(y-x)<d \longrightarrow \operatorname{norm}(f y-f x-(y-x)$ $\left.*_{R} f^{\prime} x\right) \leq e / 2 * \operatorname{norm}(y-x)$
(is $\forall x \in$ box a b. ? $Q x$) - The explicit quantifier is required by the following step
proof
fix x assume $x \in b o x$ a b with e show ? $Q x$
using derf_exp [of x e/2] by auto
qed
then obtain d where $d: \bigwedge x .0<d x$
$\bigwedge x y . \llbracket x \in$ box a b; norm $(y-x)<d x \rrbracket \Longrightarrow \operatorname{norm}\left(f y-f x-(y-x) *_{R} f^{\prime}\right.$
$x) \leq e / 2 * \operatorname{norm}(y-x)$
unfolding bgauge_existence_lemma by metis
have bounded (f ' cbox a b)
using compact_cbox assms by (auto simp: compact_imp_bounded compact_continuous_image)

```
    then obtain }
        where }0<B\mathrm{ and }B:\x.x\inf'cbox a b\Longrightarrow norm x\leq
        unfolding bounded_pos by metis
    obtain da where 0<da
    and da:\bigwedgec.\llbracketa\leqc;{a..c}\subseteq{a..b};{a..c}\subseteq ball a da\rrbracket
                        norm (content {a..c} * *}\mp@subsup{f}{}{\prime}a-(fc-fa))\leq(e
(b-a))/4
    proof -
        have continuous (at a within {a..b}) f
        using contf continuous_on_eq_continuous_within by force
    with eba8 obtain k where 0<k
        and k:\bigwedgex.\llbracketx\in{a..b};0<norm (x-a); norm (x-a)<k\rrbracket\Longrightarrow norm (f
x-fa)<e* (b-a)/8
            unfolding continuous_within Lim_within dist_norm by metis
        obtain l where l: 0<lnorm (l*R}\mp@subsup{|}{}{\prime}a)\leqe*(b-a)/
    proof (cases f' a=0)
        case True with ab e that show ?thesis by auto
    next
        case False
        show ?thesis
        proof
            show norm ((e*(b-a)/8/norm (f'a)) *R 和a)\leqe*(b-a)/8
                        0<e*(b-a)/8 / norm (f'a)
            using False ab e by (auto simp add: field_simps)
        qed
    qed
    have norm (content {a..c} *R f'a-(fc-fa))\leqe*(b-a)/4
        if a\leqc {a..c}\subseteq{a..b} and bmin: {a..c}\subseteqball a (min kl) for c
    proof -
        have minkl: }|a-x|<\operatorname{min}kl\mathrm{ if }x\in{a..c} for x
            using bmin dist_real_def that by auto
            then have lel: }|c-a|\leq|l
            using that by force
        have norm ((c-a)**R f'a-(fc-fa))\leqnorm ((c-a) * *R f'a)+
norm (f c-fa)
        by (rule norm_triangle_ineq4)
    also have \ldots}\leqe*(b-a)/8+e*(b-a)/
    proof (rule add_mono)
        have norm ((c-a)*R和}a)\leqnorm (l\mp@subsup{*}{R}{}\mp@subsup{f}{}{\prime}a
            by (auto intro: mult_right_mono [OF lel])
            also have ... \leqe*(b-a)/8
                by (rule l)
            finally show norm ((c-a)*R和}a)\leqe*(b-a)/8
        next
            have norm (fc-fa)<e*(b-a)/ &
            proof (cases a=c)
            case True then show ?thesis
                using eba8 by auto
            next
```

```
            case False show ?thesis
                    by (rule k) (use minkl }\langlea\leqc>\mathrm{ that False in auto)
        qed
        then show norm (fc-fa)\leqe*(b-a)/8 by simp
        qed
        finally show norm (content {a..c} * * f}\mp@subsup{f}{}{\prime}a-(fc-fa))\leqe*(b-a)/
        unfolding content_real[OF \a\leqc)] by auto
    qed
    then show ?thesis
        by (rule_tac da=min kl in that)(auto simp:l<0<k)
    qed
    obtain db where 0<db
    and db:\c. \llbracketc\leqb;{c..b}\subseteq{a..b};{c..b}\subseteq ball b db\rrbracket
        norm (content {c..b} *R 和 b-(fb-fc)) \leq(e*(b-a))
/4
    proof -
    have continuous (at b within {a..b})f
        using contf continuous_on_eq_continuous_within by force
    with eba8 obtain k
        where 0<k
            and k: \x.\llbracketx\in{a..b};0<norm(x-b);norm(x-b)<k\rrbracket
                norm (f b-fx)<e*(b-a)/8
            unfolding continuous_within Lim_within dist_norm norm_minus_commute
by metis
    obtain l where l: 0<l norm (l*R f}\mp@subsup{f}{}{\prime}b)\leq(e*(b-a))/
    proof (cases f'b=0)
            case True thus?thesis
            using ab e that by auto
    next
        case False show ?thesis
        proof
            show norm ((e*(b-a)/8/norm (f'b)) *R 和b)\leqe*(b-a)/8
                        0<e*(b-a)/8/norm (f'b)
            using False ab e by (auto simp add: field_simps)
        qed
    qed
    have norm (content {c..b} *R f'b - (fb-fc))\leqe*(b-a)/4
        if c\leqb{c..b}\subseteq{a..b} and bmin: {c..b}\subseteq ball b (min kl) for c
    proof -
        have minkl: }|b-x|<\operatorname{min}kl\mathrm{ if }x\in{c..b} for x
            using bmin dist_real_def that by auto
            then have lel: }|b-c|\leq|l
            using that by force
            have norm ((b-c)*R \mp@subsup{f}{}{\prime}b-(fb-fc))\leqnorm ((b-c)** * f
norm (fb-fc)
            by (rule norm_triangle_ineq4)
    also have \ldots}\leqe*(b-a)/8+e*(b-a)/
    proof (rule add_mono)
        have norm ((b-c)**R f'b) \leqnorm (l**R f'b)
```

```
            by (auto intro: mult_right_mono [OF lel])
            also have \(\ldots \leq e *(b-a) / 8\)
            by (rule \(l\) )
        finally show norm \(\left((b-c) *_{R} f^{\prime} b\right) \leq e *(b-a) / 8\).
    next
        have \(\operatorname{norm}(f b-f c)<e *(b-a) / 8\)
        proof (cases \(b=c\) )
            case True with eba8 show ?thesis
                by auto
            next
            case False show ?thesis
                by (rule \(k\) ) (use minkl \(\langle c \leq b\rangle\) that False in auto)
        qed
        then show norm \((f b-f c) \leq e *(b-a) / 8\) by simp
    qed
    finally show norm (content \(\left.\{c . . b\} *_{R} f^{\prime} b-(f b-f c)\right) \leq e *(b-a) / 4\)
        unfolding content_real \([O F\langle c \leq b\rangle]\) by auto
    qed
    then show ?thesis
        by (rule_tac \(d b=\min k l\) in that) (auto simp: \(l\langle 0<k\rangle)\)
    qed
    let \(? d=(\lambda x\). ball \(x(\) if \(x=a\) then da else if \(x=b\) then \(d b\) else \(d x))\)
    show \(\exists d\). gauge \(d \wedge(\forall p . p\) tagged_division_of \(\{a . . b\} \wedge d\) fine \(p \longrightarrow\)
                norm \(\left(\left(\sum(x, K) \in p\right.\right.\). content \(\left.\left.K *_{R} f^{\prime} x\right)-(f b-f a)\right) \leq e *\) content
\(\{a . . b\})\)
    proof (rule exI, safe)
        show gauge ?d
            using \(a b\langle d b>0\rangle\langle d a>0\rangle d(1)\) by (auto intro: gauge_ball_dependent)
    next
        fix \(p\)
        assume ptag: \(p\) tagged_division_of \(\{a . . b\}\) and fine: ?d fine \(p\)
        let \(? A=\{t\). fst \(t \in\{a, b\}\}\)
        note \(p=\) tagged_division_ofD[OF ptag]
        have \(p A: p=(p \cap ? A) \cup(p-? A)\) finite \((p \cap ? A)\) finite \((p-? A)(p \cap ? A)\)
\(\cap(p-? A)=\{ \}\)
            using ptag fine by auto
    have \(l e \_x z: \bigwedge w x y z::\) real. \(y \leq z / 2 \Longrightarrow w-x \leq z / \mathcal{Z} \Longrightarrow w+y \leq x+z\)
            by arith
    have non: False if \(x k:(x, K) \in p\) and \(x \neq a x \neq b\)
        and less: \(e *(\operatorname{Sup} K-\operatorname{Inf} K) / 2<n o r m\left(\right.\) content \(K *_{R} f^{\prime} x-(f(S u p\)
\(K)-f(\operatorname{Inf} K)))\)
    for \(x K\)
    proof -
            obtain \(u v\) where \(k\) : \(K=\) cbox \(u v\)
                using \(p\) (4) xk by blast
            then have \(u \leq v\) and \(u v:\{u, v\} \subseteq c b o x u v\)
                using \(p\) (2)[OF xk] by auto
            then have result: \(e *(v-u) / \mathscr{2}<\operatorname{norm}\left((v-u) *_{R} f^{\prime} x-(f v-f u)\right)\)
                using less[unfolded \(k\) box_real interval_bounds_real content_real] by auto
```

then have $x \in b o x a b$ using $p(2) p(3)\langle x \neq a\rangle\langle x \neq b\rangle x k$ by fastforce
with d have $*: \bigwedge y$. norm $(y-x)<d x$

$$
\Longrightarrow \operatorname{norm}\left(f y-f x-(y-x) *_{R} f^{\prime} x\right) \leq e / 2 * \operatorname{norm}(y-x)
$$

by metis
have $x d$: norm $(u-x)<d x$ norm $(v-x)<d x$
using fine $D[$ OF fine $x k]\langle x \neq a\rangle\langle x \neq b\rangle u v$
by (auto simp add: k subset_eq dist_commute dist_real_def)
have $\operatorname{norm}\left((v-u) *_{R} f^{\prime} x-(f v-f u)\right)=$ $\operatorname{norm}\left(\left(f u-f x-(u-x) *_{R} f^{\prime} x\right)-\left(f v-f x-(v-x) *_{R} f^{\prime} x\right)\right)$
by (rule arg_cong[where $f=$ norm $]$) (auto simp: scaleR_left.diff)
also have $\ldots \leq e / 2 * \operatorname{norm}(u-x)+e / 2 * \operatorname{norm}(v-x)$
by (metis norm_triangle_le_diff add_mono $* x d$)
also have $\ldots \leq e / 2 * \operatorname{norm}(v-u)$
using p (2)[OF xk] by (auto simp add: field_simps k)
also have $\ldots<\operatorname{norm}\left((v-u) *_{R} f^{\prime} x-(f v-f u)\right)$
using result by (simp add: $\langle u \leq v\rangle$)
finally have $e *(v-u) / 2<e *(v-u) / 2$
using $u v$ by auto
then show False by auto
qed
have norm $\left(\sum(x, K) \in p-\right.$? A. content $K *_{R} f^{\prime} x-(f($ Sup $K)-f($ Inf K)))
$\leq\left(\sum(x, K) \in p-\right.$?A. norm (content $K *_{R} f^{\prime} x-(f($ Sup $K)-f($ Inf K))))
by (auto intro: sum_norm_le)
also have $\ldots \leq\left(\sum n \in p-\right.$? A. $e *($ case n of $\left.(x, k) \Rightarrow \operatorname{Sup} k-\operatorname{Inf} k) / 2\right)$
using non by (fastforce intro: sum_mono)
finally have $I: \operatorname{norm}\left(\sum(x, k) \in p-? A\right.$.

$$
\text { content } \left.k *_{R} f^{\prime} x-(f(\text { Sup } k)-f(\operatorname{Inf} k))\right)
$$

$$
\leq\left(\sum n \in p-? A . e *(\text { case } n \text { of }(x, k) \Rightarrow \text { Sup } k-\operatorname{Inf} k)\right) / \mathcal{D}
$$

by (simp add: sum_divide_distrib)
have II: norm $\left(\sum(x, k) \in p \cap\right.$?A. content $k *_{R} f^{\prime} x-(f($ Sup $k)-f$ (Inf k))) -

$$
\left(\sum n \in p \cap ? A . e *(\text { case } n \text { of }(x, k) \Rightarrow \text { Sup } k-\operatorname{Inf} k)\right)
$$

$$
\leq\left(\sum n \in p-? A \cdot e *(\text { case } n \text { of }(x, k) \Rightarrow \text { Sup } k-\operatorname{Inf} k)\right) / 2
$$

proof -
have ge0: $0 \leq e *($ Sup $k-\operatorname{Inf} k)$ if $x k p:(x, k) \in p \cap ? A$ for $x k$
proof -
obtain $u v$ where $u v: k=$ cbox $u v$
by (meson Int_iff xkp p(4))
with p (2) that $u v$ have cbox $u v \neq\{ \}$
by blast
then show $0 \leq e *((\operatorname{Sup} k)-(\operatorname{Inf} k))$
unfolding $u v$ using e by (auto simp add: field_simps)
qed
let $? B=\lambda x .\{t \in p$.fst $t=x \wedge$ content $($ snd $t) \neq 0\}$
let ? $C=\{t \in p$.fst $t \in\{a, b\} \wedge$ content $($ snd $t) \neq 0\}$
have norm $\left(\sum(x, k) \in p \cap\{t\right.$. fst $t \in\{a, b\}\}$. content $k *_{R} f^{\prime} x-(f$ (Sup
$k)-f(\operatorname{Inf} k))) \leq e *(b-a) / 2$
proof -
have $*: \bigwedge S f e . \operatorname{sum} f S=\operatorname{sum} f(p \cap ? C) \Longrightarrow \operatorname{norm}(\operatorname{sum} f(p \cap ? C))$
$\leq e \Longrightarrow \operatorname{norm}(\operatorname{sum} f S) \leq e$ by auto
have 1: content $K *_{R}\left(f^{\prime} x\right)-(f((\operatorname{Sup} K))-f((\operatorname{Inf} K)))=0$
if $(x, K) \in p \cap\{t$. fst $t \in\{a, b\}\}-p \cap$? C for $x K$
proof -
have $x k:(x, K) \in p$ and $k 0:$ content $K=0$
using that by auto
then obtain $u v$ where $u v: K=c b o x u v$ using $p(4)$ by blast
then have $u=v$
using $x k k 0 p(2)$ by force
then show content $K *_{R}\left(f^{\prime} x\right)-(f((\operatorname{Sup} K))-f((\operatorname{Inf} K)))=0$ using $x k$ unfolding $u v$ by auto qed
have 2: $\operatorname{norm}\left(\sum(x, K) \in p \cap\right.$?C. content $K *_{R} f^{\prime} x-(f($ Sup $K)-f$
$(\operatorname{Inf} K))) \leq e *(b-a) / 2$
proof -
have norm_le: norm $(\operatorname{sum} f S) \leq e$
if $\bigwedge x y . \llbracket x \in S ; y \in S \rrbracket \Longrightarrow x=y \bigwedge x . x \in S \Longrightarrow \operatorname{norm}(f x) \leq e e$
>0
for $S f$ and e :: real
proof (cases $S=\{ \}$)
case True
with that show ?thesis by auto
next
case False then obtain x where $x \in S$
by auto
then have $S=\{x\}$
using that (1) by auto
then show ?thesis
using $\langle x \in S\rangle$ that(2) by auto
qed
have *: $p \cap$? $C=? B a \cup ? B b$
by blast
then have norm $\left(\sum(x, K) \in p \cap\right.$?C. content $K *_{R} f^{\prime} x-(f$ (Sup K)
$-f(\operatorname{Inf} K)))=$ norm $\left(\sum(x, K) \in ? B a \cup ? B b\right.$. content $K *_{R} f^{\prime} x-(f(S u p$ $K)-f(\operatorname{Inf} K)))$
by simp
also have $\ldots=\operatorname{norm}\left(\left(\sum(x, K) \in ? B\right.\right.$ a. content $K *_{R} f^{\prime} x-(f$ (Sup $K)-f(\operatorname{Inf} K)))+$ $\left(\sum(x, K) \in\right.$?B b. content $K *_{R} f^{\prime} x-(f($ Sup K $)-$ $f(\operatorname{Inf} K))))$
using $p(1) a b e$ by (subst sum.union_disjoint) auto
also have $\ldots \leq e *(b-a) / 4+e *(b-a) / 4$
proof (rule norm_triangle_le [OF add_mono])

```
    have pa: \existsv.k=cbox a v\wedgea\leqv if (a,k)\inp for k
    using p(2) p(3) p(4) that by fastforce
    show norm (\sum(x,K) \in?B a. content K *R 和}x-(f(Sup K) - f
(Inf K))) \leqe*(b-a)/4
    proof (intro norm_le; clarsimp)
            fix K K'
            assume K: (a,K)\inp(a,\mp@subsup{K}{}{\prime})\inp\mathrm{ and ne0: content }K\not=0\mathrm{ content}
K'}=
            with pa obtain v v' where v:K=cbox a va\leqv and v': K'=
cbox a v' a\leq v'
            by blast
            let ?v = min v v'
            have box a?v}\subseteqK\cap\mp@subsup{K}{}{\prime
                unfolding v v' by (auto simp add:mem_box)
            then have interior (box a (min v v'))\subseteq interior K \cap interior K'
                using interior_Int interior_mono by blast
            moreover have (a+?v)/2\in box a ?v
            using ne0 unfolding v v' content_eq_0 not_le
            by (auto simp add: mem_box)
            ultimately have (a+?v)/\mathscr{D}\in interior K \cap interior K'
            unfolding interior_open[OF open_box] by auto
            then show }K=\mp@subsup{K}{}{\prime
                using p(5)[OF K] by auto
            next
                        fix K
                            assume K:(a,K)\inp and ne0: content K\not=0
```



```
(b-a)
            if (a,c)\inp and ne0: content c\not=0 for c
            proof -
            obtain v}\mathrm{ where v:c=cbox a v and a
                    using pa[OF}\langle(a,c)\inp\rangle] by meti
            then have }a\in{a..v}v\leq
                using p(3)[OF <(a,c)\inp>] by auto
            moreover have {a..v}\subseteq ball a da
                using fineD[OF〈?d fine p〉<(a,c)\in p〉] by (simp add: v split:
if_split_asm)
            ultimately show ?thesis
                unfolding v interval_bounds_real[OF \langlea\leqv\rangle] box_real
                using da<a\leqv` by auto
            qed
    qed (use ab e in auto)
    next
    have pb:\existsv.k=cbox vb\wedgeb\geqv if (b,k)\inp for k
            using p(2) p(3) p(4) that by fastforce
            show norm (\sum(x,K) \in?B b. content K *R f'x - (f (Sup K) - f
(Inf K))) \leqe*(b-a)/4
            proof (intro norm_le; clarsimp)
            fix K K'
```

assume $K:(b, K) \in p\left(b, K^{\prime}\right) \in p$ and ne 0 : content $K \neq 0$ content $K^{\prime} \neq 0$
with $p b$ obtain $v v^{\prime}$ where $v: K=c b o x v b v \leq b$ and $v^{\prime}: K^{\prime}=$ cbox $v^{\prime} b v^{\prime} \leq b$
by blast
let ? $v=\max v v^{\prime}$
have box ?v $b \subseteq K \cap K^{\prime}$
unfolding $v v^{\prime}$ by (auto simp: mem_box)
then have interior $\left(b o x\left(\max v v^{\prime}\right) b\right) \subseteq$ interior $K \cap$ interior K^{\prime}
using interior_Int interior_mono by blast
moreover have $((b+? v) / 2) \in b o x$? $v b$
using ne0 unfolding $v v^{\prime}$ content_eq_0 not_le by (auto simp:
mem_box)
ultimately have $((b+? v) / \mathcal{L}) \in$ interior $K \cap$ interior K^{\prime}
unfolding interior_open [OF open_box] by auto
then show $K=K^{\prime}$
using $p(5)[O F K]$ by auto
next
fix K
assume $K:(b, K) \in p$ and ne0: content $K \neq 0$
show norm $\left(\right.$ content $\left.c *_{R} f^{\prime} b-(f(\operatorname{Sup} c)-f(\operatorname{Inf} c))\right) * 4 \leq e *$
if $(b, c) \in p$ and $n e 0$: content $c \neq 0$ for c
proof -
obtain v where $v: c=c b o x v b$ and $v \leq b$
using $\langle(b, c) \in p\rangle p b$ by blast
then have $v \geq a b \in\{v . . b\}$
using $p(3)[\bar{O} F\langle(b, c) \in p\rangle]$ by auto
moreover have $\{v . . b\} \subseteq$ ball $b d b$
using fine $D[O F 〈 ? d$ fine $p\rangle\langle(b, c) \in p\rangle]$ box_real(2) v False by force
ultimately show ?thesis
using $d b v$ by auto
qed
qed (use ab e in auto)
qed
also have $\ldots=e *(b-a) / 2$
by simp
finally show norm $\left(\sum(x, k) \in p \cap\right.$?C.
content $k *_{R} f^{\prime} x-(f($ Sup $\left.k)-f(\operatorname{Inf} k))\right) \leq e *(b-a) / 2$.
qed
show norm $\left(\sum(x, k) \in p \cap\right.$?A. content $k *_{R} f^{\prime} x-(f(($ Sup $k))-f((\operatorname{Inf}$ $k)))) \leq e *(b-a) / 2$
apply (rule $*[$ OF sum.mono_neutral_right $[O F p A(2)]])$
using 12 by (auto simp: split_paired_all)
qed
also have $\ldots=\left(\sum n \in p . e *(\right.$ case n of $\left.(x, k) \Rightarrow \operatorname{Sup} k-\operatorname{Inf} k)\right) / 2$
unfolding sum_distrib_left[symmetric]
by (subst additive_tagged_division_1 $[O F\langle a \leq b\rangle p t a g]$) auto
finally have norm_le: norm $\left(\sum(x, K) \in p \cap\{t\right.$. fst $t \in\{a, b\}\}$. content K

```
\(*_{R} f^{\prime} x-(f(\) Sup K \(\left.)-f(\operatorname{Inf} K))\right)\)
        \(\leq\left(\sum n \in p . e *(\right.\) case \(n\) of \(\left.(x, K) \Rightarrow \operatorname{Sup} K-\operatorname{Inf} K)\right) / \mathcal{Z}\).
    have le2: \(\bigwedge x\) s1 s2::real. \(0 \leq s 1 \Longrightarrow x \leq(s 1+s 2) / 2 \Longrightarrow x-s 1 \leq s 2 / 2\)
        by auto
    show ?thesis
        apply (rule le2 [OF sum_nonneg])
        using ge0 apply force
            by (metis (no_types, lifting) Diff_Diff_Int Diff_subset norm_le p(1)
sum.subset_diff)
        qed
    note \(*=\) additive_tagged_division_1 [OF assms(1) ptag, symmetric]
    have norm \(\left(\sum(x, K) \in p \cap\right.\) ? \(A \cup(p-? A)\). content \(K *_{R} f^{\prime} x-(f(\) Sup \(K)\)
\(-f(\operatorname{Inf} K)))\)
            \(\leq e *\left(\sum(x, K) \in p \cap ? A \cup(p-? A)\right.\). Sup \(\left.K-\operatorname{Inf} K\right)\)
            unfolding sum_distrib_left
            unfolding sum.union_disjoint[OF pA(2-)]
            using le_xz norm_triangle_le I II by blast
        then
            show norm \(\left(\left(\sum(x, K) \in p\right.\right.\). content \(\left.\left.K *_{R} f^{\prime} x\right)-(f b-f a)\right) \leq e *\) content
\(\{a . . b\}\)
            by (simp only: content_real \([\) OF \(\langle a \leq b\rangle] *[\) of \(\lambda x . x] *[o f f]\) sum_subtractf \([\) symmetric \(]\)
split_minus pA(1) [symmetric])
    qed
    qed
qed
```


6.15.30 Stronger form with finite number of exceptional points

lemma fundamental_theorem_of_calculus_interior_strong:
fixes $f::$ real $\Rightarrow{ }^{\prime} a:: b a n a c h$
assumes finite S
and $a \leq b \bigwedge x . x \in\{a<. .<b\}-S \Longrightarrow\left(f\right.$ has_vector_derivative $\left.f^{\prime}(x)\right)($ at $x)$ and continuous_on $\{a . . b\} f$
shows $\left(f^{\prime}\right.$ has_integral $\left.(f b-f a)\right)\{a . . b\}$
using assms
proof (induction arbitrary: a b)
case empty
then show?case
using fundamental_theorem_of_calculus_interior by force
next
case (insert $x S$)
show ?case
proof (cases $x \in\{a<. .<b\}$)
case False then show ?thesis
using insert by blast
next
case True then have $a<x x<b$
by auto
have $\left(f^{\prime}\right.$ has_integral $\left.f x-f a\right)\{a . . x\}\left(f^{\prime}\right.$ has_integral $\left.f b-f x\right)\{x . . b\}$
using 〈continuous_on $\{a . . b\} f\rangle\langle a\langle x\rangle\langle x<b\rangle$ continuous_on_subset by (force simp: intro!: insert)+
then have $\left(f^{\prime}\right.$ has_integral $\left.f x-f a+(f b-f x)\right)\{a . . b\}$
using $\langle a<x\rangle\langle x<b\rangle$ has_integral_combine less_imp_le by blast
then show? thesis
by simp
qed
qed
corollary fundamental_theorem_of_calculus_strong:
fixes $f::$ real $\Rightarrow{ }^{\prime} a::$ banach
assumes finite S
and $a \leq b$
and vec: $\bigwedge x . x \in\{a . . b\}-S \Longrightarrow\left(f\right.$ has_vector_derivative $\left.f^{\prime}(x)\right)($ at $x)$
and continuous_on $\{a . . b\} f$
shows $\left(f^{\prime}\right.$ has_integral $\left.(f b-f a)\right)\{a . . b\}$
by (rule fundamental_theorem_of_calculus_interior_strong $[O F\langle$ finite $S\rangle]$) (force simp: assms $)+$
proposition indefinite_integral_continuous_left:
fixes $f:$ real $\Rightarrow{ }^{\prime} a::$ banach
assumes intf: fintegrable_on $\{a . . b\}$ and $a<c c \leq b e>0$
obtains d where $d>0$
and $\forall t . c-d<t \wedge t \leq c \longrightarrow$ norm (integral $\{a . . c\} f-$ integral $\{a . . t\} f$)
$<e$
proof -
obtain w where $w>0$ and $w: \wedge t . \llbracket c-w<t ; t<c \rrbracket \Longrightarrow \operatorname{norm}(f c) *$ norm $(c-t)<e / 3$
proof (cases fc=0)
case False
hence $e 3: 0<e / 3 / \operatorname{norm}(f c$) using $\langle e>0\rangle$ by simp
moreover have norm $(f c) *$ norm $(c-t)<e / 3$
if $t<c$ and $c-e / 3 / \operatorname{norm}(f c)<t$ for t
proof -
have norm $(c-t)<e / 3 / \operatorname{norm}(f c)$
using that by auto
then show norm $(f c) *$ norm $(c-t)<e / 3$
by (metis e3 mult.commute norm_not_less_zero pos_less_divide_eq zero_less_divide_iff)
qed
ultimately show?thesis
using that by auto
next
case True then show ?thesis
using $\langle e>0\rangle$ that by auto
qed
let ? $S U M=\lambda p .\left(\sum(x, K) \in p\right.$. content $\left.K *_{R} f x\right)$
have $e 3: e / 3>0$
using $\langle e>0\rangle$ by auto

```
have \(f\) integrable_on \(\{a . . c\}\)
    using \(\langle a\langle c\rangle\langle c \leq b\rangle\) by (auto intro: integrable_subinterval_real[OF intf])
then obtain \(d 1\) where gauge \(d 1\) and \(d 1\) :
    \(\wedge p . \llbracket p\) tagged_division_of \(\{a . . c\} ;\) d1 fine \(p \rrbracket \Longrightarrow\) norm (?SUM \(p-\) integral
\(\{a . . c\} f)<e / 3\)
    using integrable_integral has_integral_real e3 by metis
    define \(d\) where [abs_def]: \(d x=\operatorname{ball} x w \cap d 1 x\) for \(x\)
    have gauge \(d\)
    unfolding d_def using \(\langle w>0\rangle\langle\) gauge d1〉 by auto
    then obtain \(k\) where \(0<k\) and \(k\) : ball \(c k \subseteq d c\)
    by (meson gauge_def open_contains_ball)
    let ? \(d=\min k(c-a) / \mathcal{Z}\)
    show thesis
    proof (intro that [of ? d] allI impI, safe)
    show ? \(d>0\)
        using \(\langle 0<k\rangle\langle a<c\rangle\) by auto
    next
    fix \(t\)
    assume \(t: c-? d<t t \leq c\)
    show norm (integral \((\{a . . c\}) f-\) integral \((\{a . . t\}) f)<e\)
    proof (cases \(t<c\) )
        case False with \(\langle t \leq c\rangle\) show ?thesis
        by (simp add: \(\langle e>0\rangle\) )
    next
        case True
        have \(f\) integrable_on \(\{a . . t\}\)
            using \(\langle t\langle c\rangle\langle c \leq b\rangle\) by (auto intro: integrable_subinterval_real[OF intf])
        then obtain d2 where d2: gauge d2
            \(\wedge p . p\) tagged_division_of \(\{a . . t\} \wedge d 2\) fine \(p \Longrightarrow\) norm (?SUM \(p-i n t e g r a l\)
\(\{a . . t\} f)<e / 3\)
            using integrable_integral has_integral_real e3 by metis
        define \(d 3\) where \(d 3 x=(\) if \(x \leq t\) then \(d 1 x \cap d 2 x\) else \(d 1 x)\) for \(x\)
        have gauge \(d 3\)
            using <gauge d1〉 <gauge d2〉unfolding d3_def gauge_def by auto
        then obtain \(p\) where ptag: \(p\) tagged_division_of \(\{a . . t\}\) and pfine: d3 fine \(p\)
            by (metis box_real(2) fine_division_exists)
        note \(p^{\prime}=\) tagged_division_ofD[OF ptag]
        have \(p t:(x, K) \in p \Longrightarrow x \leq t\) for \(x K\)
            by (meson atLeastAtMost_iff \(p^{\prime}(2) p^{\prime}(3)\) subsetCE)
        with pfine have \(d 2\) fine \(p\)
            unfolding fine_def d3_def by fastforce
        then have d2.fin: norm (?SUM \(p-\) integral \(\{a . . t\} f)<e / 3\)
            using d2(2) ptag by auto
        have eqs: \(\{a . . c\} \cap\{x . x \leq t\}=\{a . . t\}\{a . . c\} \cap\{x . x \geq t\}=\{t . . c\}\)
            using \(t\) by (auto simp add: field_simps)
        have \(p \cup\{(c,\{t . . c\})\}\) tagged_division_of \(\{a . . c\}\)
        proof (intro tagged_division_Un_interval_real)
            show \(\{(c,\{t . . c\})\}\) tagged_division_of \(\{a . . c\} \cap\{x . t \leq x \cdot 1\}\)
```

using $\langle t \leq c\rangle$ by (auto simp: eqs tagged_division_of_self_real)
qed (auto simp: eqs ptag)
moreover
have d1 fine $p \cup\{(c,\{t . . c\})\}$
unfolding fine_def
proof safe
fix $x K y$
assume $(x, K) \in p$ and $y \in K$ then show $y \in d 1 x$
by (metis Int_iff d3_def subsetD fineD pfine)
next
fix x assume $x \in\{t . . c\}$
then have dist $c x<k$
using $t(1)$ by (auto simp add: field_simps dist_real_def)
with k show $x \in d 1 c$
unfolding $d_{-} d e f$ by auto
qed
ultimately have d1_fin: norm $(? S U M(p \cup\{(c,\{t . . c\})\})-$ integral $\{a . . c\}$ f) $<e / 3$
using $d 1$ by metis
have $\operatorname{SUMEQ}: ? \operatorname{SUM}(p \cup\{(c,\{t . . c\})\})=(c-t) *_{R} f c+$?SUM p
proof -
have ? $S U M(p \cup\{(c,\{t . . c\})\})=\left(\operatorname{content}\{t . . c\} *_{R} f c\right)+$?SUM p
proof (subst sum.union_disjoint)
show $p \cap\{(c,\{t . . c\})\}=\{ \}$
using $\langle t<c\rangle p t$ by force
qed (use $p^{\prime}(1)$ in auto)
also have $\ldots=(c-t) *_{R} f c+$?SUM p using $\langle t \leq c\rangle$ by auto
finally show ?thesis .
qed
have $c-k<t$
using $\langle k>0\rangle t(1)$ by (auto simp add: field_simps)
moreover have $k \leq w$
proof (rule ccontr)
assume $\neg k \leq w$
then have $c+(k+w) / 2 \notin d c$ by (auto simp add: field_simps not_le not_less dist_real_def d_def)
then have $c+(k+w) / 2 \notin$ ball $c k$
using k by blast
then show False
using $\langle 0<w\rangle\langle\neg k \leq w\rangle$ dist_real_def by auto
qed
ultimately have cwt: $c-w<t$
by (auto simp add: field_simps)
have eq: integral $\{a . . c\} f-$ integral $\{a . . t\} f=-\left(\left((c-t) *_{R} f c+\right.\right.$?SUM
p) -
integral $\{a . . c\} f)+($?SUM $p-$ integral $\{a . . t\} f)+(c-t) *_{R} f c$
by auto
have norm (integral $\{a . . c\} f-$ integral $\{a . . t\} f)<e / 3+e / 3+e / 3$

```
            unfolding eq
    proof (intro norm_triangle_lt add_strict_mono)
            show norm (- ((c-t)*R fc+?SUM p - integral {a..c} f)) <e/3
                by (metis SUMEQ d1_fin norm_minus_cancel)
            show norm (?SUM p - integral {a..t} f)<e/3
            using d2_fin by blast
            show norm ((c-t)**R fc)<e/3
            using w cwt <t < c\rangle by simp (simp add: field_simps)
            qed
            then show ?thesis by simp
    qed
    qed
qed
lemma indefinite_integral_continuous_right:
    fixes f :: real # 'a::banach
    assumes f integrable_on {a..b}
        and a\leqc
        and c<b
        and e>0
    obtains d where 0<d
        and }\forallt.c\leqt\wedget<c+d\longrightarrow\mathrm{ norm(integral {a..c} f-integral {a..t} f)
< e
proof -
    have intm: ( }\lambdax.f(-x)) integrable_on {-b .. -a} - b<-c-c\leq-a
        using assms by auto
    from indefinite_integral_continuous_left[OF intm \langlee>0\rangle]
    obtain d where 0<d
        and d: \t. \llbracket-c-d<t; t\leq -c\rrbracket
            \Longrightarrow \text { norm (integral \{-b..-c\} ( } \lambda x . f ( - x ) ) - ~ i n t e g r a l ~ \{ - b . . t \} ~ ( \lambda x . f
(-x)))<e
    by metis
    let ?d = min d (b-c)
    show ?thesis
    proof (intro that[of ?d] allI impI)
        show 0<?d
            using }\langle0<d\rangle\langlec<b\rangle\mathrm{ by auto
        fix t:: real
        assume t:c\leqt\wedget<c+?d
        have *: integral {a..c} f= integral {a..b} f- integral {c..b} f
                integral {a..t} f= integral {a..b} f-integral {t..b} f
            using assms t by (auto simp: algebra_simps integral_combine)
        have (-c)-d< (-t)-t\leq-c
            using t by auto
        from d[OF this] show norm (integral {a..c} f- integral {a..t}f)<e
            by (auto simp add: algebra_simps norm_minus_commute *)
    qed
qed
```

```
lemma indefinite_integral_continuous_1:
    fixes f :: real # 'a::banach
    assumes f integrable_on {a..b}
    shows continuous_on {a..b} (\lambdax. integral {a..x} f)
proof -
    have \existsd>0.\forall\mp@subsup{x}{}{\prime}\in{a..b}. dist \mp@subsup{x}{}{\prime}x<d\longrightarrow\mathrm{ dist (integral {a..x}}f\mathrm{ f) (integral}
{a..x} f)<e
            if x:x\in{a..b} and e>0 for x e :: real
    proof (cases a=b)
        case True
        with that show ?thesis by force
    next
        case False
        with x have }a<b\mathrm{ by force
        with x consider x=a| x=b | a<x x<b
            by force
        then show ?thesis
        proof cases
            case 1 then show ?thesis
            by (force simp:dist_norm algebra_simps intro: indefinite_integral_continuous_right
[OF assms_ <a<b\rangle\langlee>0\rangle])
    next
            case 2 then show ?thesis
            by (force simp: dist_norm norm_minus_commute algebra_simps intro: indef-
inite_integral_continuous_left [OF assms <a<b\rangle_ <e> 0\rangle])
    next
            case 3
            obtain d1 where 0<d1
                and d1: \t. \llbracketx-d1<t;t\leqx\rrbracket\Longrightarrow norm (integral {a..x} f- integral
{a..t} f)<e
            using 3 by (auto intro: indefinite_integral_continuous_left [OF assms <a<
x\rangle-\langlee> < 0\])
            obtain d2 where 0 < d2
                and d2: \bigwedget. \llbracketx\leqt;t<x+d2\rrbracket\Longrightarrow norm (integral {a..x} f- integral
{a..t} f)<e
            using 3 by (auto intro: indefinite_integral_continuous_right [OF assms _ <x
< b> <e>0>]]
            show ?thesis
            proof (intro exI ballI conjI impI)
                show 0< min d1 d2
                using <0 < d1> <0 < d2> by simp
            show dist (integral {a..y}f)(integral {a..x}f)<e
                    if y}\in{a..b} dist y x< min d1 d2 for y
            proof (cases y<x)
                case True
                with that d1 show ?thesis by (auto simp: dist_commute dist_norm)
            next
                case False
                with that d2 show ?thesis
```

```
                    by (auto simp: dist_commute dist_norm)
            qed
        qed
        qed
    qed
    then show ?thesis
        by (auto simp: continuous_on_iff)
qed
lemma indefinite_integral_continuous_1':
    fixes f::real #> 'a::banach
    assumes f integrable_on {a..b}
    shows continuous_on {a..b} (\lambdax. integral {x..b}f)
proof -
    have integral {a..b} f- integral {a..x} f= integral {x..b} f if }x\in{a..b} for x
        using integral_combine[OF _ _ assms, of x] that
        by (auto simp: algebra_simps)
    with _ show ?thesis
    by (rule continuous_on_eq) (auto intro!: continuous_intros indefinite_integral_continuous_1
assms)
qed
theorem integral_has_vector_derivative':
    fixes f :: real => 'b::banach
    assumes continuous_on {a..b} f
        and}x\in{a..b
    shows ((\lambdau. integral {u..b} f) has_vector_derivative - fx) (at x within {a..b})
proof -
    have *: integral {x..b} f= integral {a .. b} f-integral {a .. x} f if a\leqx x \leq
for }
        using integral_combine[of a x b for x, OF that integrable_continuous_real[OF
    assms(1)]]
        by (simp add: algebra_simps)
    show ?thesis
        using <x \in _>*
        by (rule has_vector_derivative_transform)
            (auto intro!: derivative_eq_intros assms integral_has_vector_derivative)
qed
lemma integral_has_real_derivative':
    assumes continuous_on {a..b} g
    assumes }t\in{a..b
    shows ((\lambdax. integral {x..b} g) has_real_derivative -gt) (at t within {a..b})
    using integral_has_vector_derivative'[OF assms]
    by (auto simp: has_field_derivative_iff_has_vector_derivative)
```


6.15.31 This doesn't directly involve integration, but that gives an easy proof

```
lemma has_derivative_zero_unique_strong_interval:
    fixes \(f\) :: real \(\Rightarrow{ }^{\prime} a::\) banach
    assumes finite \(k\)
        and contf: continuous_on \(\{a . . b\} f\)
        and \(f a=y\)
        and fder: \(\bigwedge x . x \in\{a . . b\}-k \Longrightarrow(f\) has_derivative \((\lambda h .0))\) (at \(x\) within \(\{a . . b\})\)
        and \(x: x \in\{a . . b\}\)
    shows \(f x=y\)
proof -
    have \(a \leq b a \leq x\)
        using assms by auto
    have \(\left(\left(\lambda x .0::^{\prime} a\right)\right.\) has_integral \(\left.f x-f a\right)\{a . . x\}\)
    proof (rule fundamental_theorem_of_calculus_interior_strong[OF \(\langle\) finite \(k\rangle\langle a \leq\)
\(x\rangle\) ]; clarify?)
        have \(\{a . . x\} \subseteq\{a . . b\}\)
            using \(x\) by auto
        then show continuous_on \(\{a . . x\} f\)
            by (rule continuous_on_subset[OF contf])
        show ( \(f\) has_vector_derivative 0) (at z) if \(z: z \in\{a<. .<x\}\) and notin: \(z \notin k\)
for \(z\)
            unfolding has_vector_derivative_def
        proof (simp add: at_within_open[OF \(z\), symmetric])
            show ( \(f\) has_derivative \((\lambda x .0)\) ) (at \(z\) within \(\{a<. .<x\}\) )
            by (rule has_derivative_subset [OF fder]) (use \(x\) z notin in auto)
        qed
    qed
    from has_integral_unique[OF has_integral_0 this]
    show ?thesis
        unfolding assms by auto
qed
```


6.15.32 Generalize a bit to any convex set

```
lemma has_derivative_zero_unique_strong_convex:
    fixes \(f\) :: ' \(a::\) euclidean_space \(\Rightarrow\) 'b::banach
    assumes convex \(S\) finite \(K\)
        and contf: continuous_on \(S f\)
        and \(c \in S f c=y\)
        and derf: \(\bigwedge x . x \in S-K \Longrightarrow(f\) has_derivative \((\lambda h .0)\) ) (at \(x\) within \(S\) )
        and \(x \in S\)
    shows \(f x=y\)
proof (cases \(x=c\) )
    case True with \(\langle f c=y\rangle\) show ?thesis
        by blast
next
    case False
    let \(? \varphi=\lambda u .(1-u) *_{R} c+u *_{R} x\)
```

```
have contf': continuous_on \(\{0\).. 1\(\}(f \circ ? \varphi)\)
proof (rule continuous_intros continuous_on_subset \([\) OF contf \(]\) ) +
    show \(\left(\lambda u .(1-u) *_{R} c+u *_{R} x\right) \cdot\{0 . .1\} \subseteq S\)
    using \(\langle\) convex \(S\rangle\langle x \in S\rangle\langle c \in S\rangle\) by (auto simp add: convex_alt algebra_simps)
qed
have \(t=u\) if \(? \varphi t=? \varphi u\) for \(t u\)
proof -
    from that have \((t-u) *_{R} x=(t-u) *_{R} c\)
        by (auto simp add: algebra_simps)
    then show ?thesis
        using \(\langle x \neq c\rangle\) by auto
qed
then have eq: (SOME \(t\).? \(\varphi t=? \varphi u)=u\) for \(u\)
    by blast
then have \(\left(? \varphi-{ }^{\prime} K\right) \subseteq(\lambda z\).SOME \(t\). ? \(\varphi t=z)\) ' \(K\)
        by (clarsimp simp: image_iff) (metis (no_types) eq)
then have fin: finite (? \(\varphi-{ }^{\prime} K\) )
    by (rule finite_surj[OF (finite K〉])
    have \(\operatorname{derf}^{\prime}:((\lambda u . f(? \varphi u))\) has_derivative ( \(\lambda h .0)\) ) (at t within \(\left.\{0 . .1\}\right)\)
                if \(t \in\{0 . .1\}-\{t . ? \varphi t \in K\}\) for \(t\)
    proof -
        have df: (f has_derivative \((\lambda h .0))(\) at \((? \varphi t)\) within ? \(\varphi\) ' \(\{0 . .1\})\)
        using \(\langle\) convex \(S\rangle\langle x \in S\rangle\langle c \in S\rangle\) that
        by (auto simp add: convex_alt algebra_simps intro: has_derivative_subset [OF
derf])
        have \(\left(f \circ\right.\) ? \(\varphi\) has_derivative \(\left.(\lambda x .0) \circ\left(\lambda z .\left(0-z *_{R} c\right)+z *_{R} x\right)\right)(\) at \(t\) within
\(\{0 . .1\})\)
            by (rule derivative_eq_intros df | simp)+
        then show ?thesis
            unfolding o_def.
    qed
    have \((f \circ ? \varphi) 1=y\)
        apply (rule has_derivative_zero_unique_strong_interval[OF fin contf '])
        unfolding o_def using \(\langle f c=y\rangle\) derf \({ }^{\prime}\) by auto
then show ?thesis
    by auto
qed
```

Also to any open connected set with finite set of exceptions. Could generalize to locally convex set with limpt-free set of exceptions.

```
lemma has_derivative_zero_unique_strong_connected:
    fixes f :: 'a::euclidean_space }=>\mathrm{ 'b::banach
    assumes connected S
    and open S
    and finite K
    and contf:continuous_on S f
    and c\inS
    and fc=y
```

```
    and derf: \(\bigwedge x . x \in S-K \Longrightarrow(f\) has_derivative \((\lambda h .0)\) ) (at \(x\) within \(S\) )
    and \(x \in S\)
    shows \(f x=y\)
proof -
    have \(\exists e>0\). ball \(x e \subseteq(S \cap f-‘\{f x\})\) if \(x \in S\) for \(x\)
    proof -
        obtain \(e\) where \(0<e\) and \(e\) : ball \(x e \subseteq S\)
            using \(\langle x \in S\rangle\langle o p e n ~ S\rangle\) open_contains_ball by blast
            have ball \(x e \subseteq\{u \in S . f u \in\{f x\}\}\)
            proof safe
            fix \(y\)
            assume \(y: y \in\) ball \(x e\)
            then show \(y \in S\)
            using \(e\) by auto
            show \(f y=f x\)
            proof (rule has_derivative_zero_unique_strong_convex[OF convex_ball〈finite
K〉])
            show continuous_on (ball \(x\) e) \(f\)
                using contf continuous_on_subset e by blast
                show ( \(f\) has_derivative \((\lambda h .0)\) ) (at \(u\) within ball \(x e)\)
                    if \(u \in\) ball \(x e-K\) for \(u\)
                    by (metis Diff_iff contra_subsetD derf e has_derivative_subset that)
        qed (use \(y e\langle 0<e\rangle\) in auto)
    qed
    then show \(\exists e>0\). ball \(x e \subseteq(S \cap f-‘\{f x\})\)
        using \(\langle 0<e\rangle\) by blast
    qed
    then have openin (top_of_set \(S\) ) \((S \cap f-‘\{y\})\)
        by (auto intro!: open_openin_trans \([O F\) <open \(S\rangle]\) simp: open_contains_ball)
    moreover have closedin (top_of_set \(S\) ) ( \(S \cap f-‘\{y\}\) )
        by (force intro!: continuous_closedin_preimage [OF contf])
    ultimately have \((S \cap f-‘\{y\})=\{ \} \vee(S \cap f-‘\{y\})=S\)
        using <connected \(S\) 〉 by (simp add: connected_clopen)
    then show ?thesis
        using \(\langle x \in S\rangle\langle f c=y\rangle\langle c \in S\rangle\) by auto
qed
lemma has_derivative_zero_connected_constant:
    fixes \(f\) :: ' \(a::\) euclidean_space \(\Rightarrow\) ' \(b::\) banach
    assumes connected \(S\)
        and open \(S\)
        and finite \(k\)
        and continuous_on \(S f\)
        and \(\forall x \in(S-k)\). (f has_derivative ( \(\lambda\) h. 0)) (at \(x\) within \(S\) )
        obtains \(c\) where \(\bigwedge x . x \in S \Longrightarrow f(x)=c\)
proof (cases \(S=\{ \}\) )
    case True
    then show ?thesis
        by (metis empty_iff that)
```

```
next
    case False
    then obtain c where c}\in
        by (metis equals0I)
    then show ?thesis
        by (metis has_derivative_zero_unique_strong_connected assms that)
qed
lemma DERIV_zero_connected_constant:
```



```
    assumes connected S
        and open S
        and finite K
        and continuous_on S f
        and }\forallx\in(S-K).DERIV f x :> 0
    obtains c where \}\x.x\inS\Longrightarrowf(x)=
    using has_derivative_zero_connected_constant [OF assms(1-4)] assms
    by (metis DERIV_const has_derivative_const Diff_iff at_within_open frechet_derivative_at
has_field_derivative_def)
```


6.15.33 Integrating characteristic function of an interval

lemma has_integral_restrict_open_subinterval:
fixes f :: 'a::euclidean_space \Rightarrow ' $b::$ banach
assumes intf: (f has_integral i) (cbox c d)
and $c b$: cbox $c d \subseteq c b o x a b$
shows $((\lambda x$. if $x \in$ box $c d$ then $f x$ else 0$)$ has_integral i) (cbox ab)
proof (cases cbox c $d=\{ \}$)
case True
then have box $c d=\{ \}$
by (metis bot.extremum_uniqueI box_subset_cbox)
then show ?thesis
using True intf by auto
next
case False
then obtain p where pdiv: p division_of cbox abland inp:cbox $c d \in p$ using cb partial_division_extend_1 by blast
define g where [abs_def]: $g x=($ if $x \in$ box $c d$ then $f x$ else 0) for x
interpret operative lift_option plus Some ($0::$ 'b)
λi. if g integrable_on i then Some (integral $i g$) else None
by (fact operative_integralI)
note operat $=$ division [OF pdiv, symmetric]
show ?thesis
proof (cases (g has_integral i) (cbox ab))
case True then show ?thesis
by (simp add: g_def)
next
case False
have iterate: F (λ i. if g integrable_on i then Some (integral $i g$) else None) (p

```
- {cbox c d})= Some 0
    proof (intro neutral ballI)
        fix }
        assume x: x \in p-{cbox c d}
        then have }x\in
            by auto
        then obtain }uv\mathrm{ where uv: x= cbox uv
            using pdiv by blast
        have interior x \cap interior (cbox c d) ={}
            using pdiv inp x by blast
        then have (g has_integral 0) x
            unfolding uv using has_integral_spike_interior[where f=\lambdax.0]
                by (metis (no_types, lifting) disjoint_iff_not_equal g_def has_integral_0_eq
interior_cbox)
        then show (if g integrable_on x then Some (integral x g) else None) =Some
0
            by auto
    qed
    interpret comm_monoid_set lift_option plus Some (0 :: 'b)
    by (intro comm_monoid_set.intro comm_monoid_lift_option add.comm_monoid_axioms)
    have intg:g integrable_on cbox c d
        using integrable_spike_interior[where f=f]
        by (meson g_def has_integral_integrable intf)
    moreover have integral (cbox c d) g=i
    proof (rule has_integral_unique[OF has_integral_spike_interior intf])
        show \x. x b box c d\Longrightarrowfx=gx
            by (auto simp: g_def)
        show (g has_integral integral (cbox c d) g) (cbox c d)
            by (rule integrable_integral[OF intg])
    qed
    ultimately have F ( }\lambdaA\mathrm{ . if g integrable_on A then Some (integral A g) else
None) p=Some i
    by (metis (full_types, lifting) division_of_finite inp iterate pdiv remove right_neutral)
    then
    have (g has_integral i) (cbox a b)
    by (metis integrable_on_def integral_unique operat option.inject option.simps(3))
    with False show ?thesis
        by blast
    qed
qed
```

lemma has_integral_restrict_closed_subinterval:
fixes $f::$ ' $a::$ euclidean_space \Rightarrow ' $b::$ banach
assumes (f has_integral i) (cbox $c d$)
and cbox $c d \subseteq c b o x a b$
shows $((\lambda x$. if $x \in$ cbox $c d$ then $f x$ else 0$)$ has_integral $i)($ cbox a $b)$
proof -
note has_integral_restrict_open_subinterval[OF assms]

```
    note \(*=\) has_integral_spike[OF negligible_frontier_interval_this]
    show ?thesis
    by (rule *[of ccd]) (use box_subset_cbox[of ccd] in auto)
qed
lemma has_integral_restrict_closed_subintervals_eq:
    fixes \(f::\) ' \(a:\) :euclidean_space \(\Rightarrow\) ' \(b::\) banach
    assumes cbox \(c d \subseteq\) cbox ab
    shows \(((\lambda x\). if \(x \in\) cbox \(c d\) then \(f x\) else 0) has_integral \(i)(c b o x a b) \longleftrightarrow(f\)
has_integral i) (cbox c d)
    (is ? \(l=? r\) )
proof (cases cbox c \(d=\{ \}\) )
    case False
    let ? \(g=\lambda x\). if \(x \in\) cbox \(c d\) then \(f x\) else 0
    show ?thesis
    proof
        assume ?l
        then have ?g integrable_on cbox c d
        using assms has_integral_integrable integrable_subinterval by blast
            then have \(f\) integrable_on cbox \(c d\)
        by (rule integrable_eq) auto
    moreover then have \(i=\) integral ( \(\operatorname{cbox} c d\) ) \(f\)
        by (meson «( \((\lambda x\). if \(x \in\) cbox \(c d\) then \(f x\) else 0\()\) has_integral \(i)(\) cbox a b) 〉assms
has_integral_restrict_closed_subinterval has_integral_unique integrable_integral)
    ultimately show ?r by auto
    next
        assume ?r then show ?l
            by (rule has_integral_restrict_closed_subinterval[ OF _ assms \(]\) )
    qed
qed auto
Hence we can apply the limit process uniformly to all integrals.
lemma has_integral':
fixes \(f:: ' n::\) euclidean_space \(\Rightarrow\) ' \(a::\) banach
shows ( \(f\) has_integral i) \(S \longleftrightarrow\)
\((\forall e>0 . \exists B>0 . \forall a b\). ball \(0 B \subseteq\) cbox a \(b \longrightarrow\)
\((\exists z .((\lambda x\). if \(x \in S\) then \(f(x)\) else 0) has_integral \(z)(\) cbox a \(b) \wedge \operatorname{norm}(z-\)
i) \(<e\) )
(is ?l \(\longleftrightarrow(\forall e>0\). ? \(r e))\)
proof (cases \(\exists a b . S=c b o x a b\) )
case False then show ?thesis
by (simp add: has_integral_alt)
next
case True
then obtain \(a b\) where \(S: S=c b o x a b\)
by blast
obtain \(B\) where \(0<B\) and \(B: \bigwedge x . x \in\) cbox a \(b \Longrightarrow\) norm \(x \leq B\)
using bounded_cbox[unfolded bounded_pos] by blast
show ?thesis
```

```
    proof safe
    fix e :: real
    assume ?l and e>0
    have (( }\lambdax\mathrm{ . if }x\inS\mathrm{ then f x else 0) has_integral i) (cbox c d)
        if ball 0}(B+1)\subseteqcbox cd for cd
        unfolding S using B that
        by (force intro: <?l\rangle[unfolded S] has_integral_restrict_closed_subinterval)
    then show ?r e
    by (meson }\langle0<B\rangle\langle0<e\rangle add_pos_pos le_less_trans zero_less_one norm_pths(2)
next
    assume as: }\foralle>0\mathrm{ . ?r e
    then obtain C
        where C: \bigwedgeab. ball 0 C\subseteq cbox a b\Longrightarrow
                        \existsz. ((\lambdax. if }x\inS\mathrm{ then f x else 0) has_integral z) (cbox a b)
        by (meson zero_less_one)
    define c:: ' n where }c=(\sumi\in\mathrm{ Basis. ( }-\operatorname{max}BC)\mp@subsup{*}{R}{}i
    define d::' n where d=( \sumi\inBasis. max B C *R i)
```



```
        using that and Basis_le_norm[OF <i\inBasis\rangle, of x]
        by (auto simp add: field_simps sum_negf c_def d_def)
    then have c_d:cbox a b\subseteqcbox c d
        by (meson B mem_box(2) subsetI)
    have c.i\leqx •i\wedgex • i\leqd •i
        if x: norm (0-x)<C and i:i\inBasis for x i
            using Basis_le_norm[OF i, of x] x i by (auto simp: sum_negf c_def d_def)
            then have ball 0 C \subseteqcbox c d
            by (auto simp: mem_box dist_norm)
    with C obtain y where y: (f has_integral y) (cbox a b)
        using c_d has_integral_restrict_closed_subintervals_eq S by blast
    have }y=
    proof (rule ccontr)
        assume y}\not=
        then have 0<norm (y-i)
        by auto
    from as[rule_format,OF this]
    obtain C where C: \bigwedgeab. ball 0 C\subseteq cbox a b\Longrightarrow
        \existsz. ((\lambdax. if x \inS then fx else 0) has_integral z) (cbox a b) ^ norm (z-i)
< norm (y-i)
            by auto
    define c:: 'n where }c=(\sumi\inBasis. (-\operatorname{max}BC)\mp@subsup{*}{R}{}i
    define d:: 'n where d=( \sumi\inBasis. max B C * *
    have c}\cdoti\leqx\cdoti\wedgex\cdoti\leqd\cdot
            if norm x \leq B and i\inBasis for x i
            using that Basis_le_norm[of i x] by (auto simp add: field_simps sum_negf
c_def d_def)
            then have c_d: cbox a b\subseteq cbox c d
            by (simp add: B mem_box(2) subset_eq)
    have }c\cdoti\leqx\cdoti\wedgex\cdoti\leqd\cdoti if norm (0-x)<C and i\inBasis for x i
            using Basis_le_norm[of i x] that by (auto simp: sum_negf c_def d_def)
```

```
    then have ball 0 C \subseteq cbox c d
    by (auto simp: mem_box dist_norm)
    with C obtain z where z:(f has_integral z) (cbox a b) norm (z-i)<norm
(y-i)
    using has_integral_restrict_closed_subintervals_eq[OF c_d] S by blast
    moreover then have z=y
            by (blast intro: has_integral_unique [OF _ y])
        ultimately show False
            by auto
    qed
    then show ?l
        using y by (auto simp:S)
    qed
qed
lemma has_integral_le:
    fixes }f\mathrm{ :: ' n::euclidean_space # real
    assumes fg:(f has_integral i) S (g has_integral j) S
        and le:\x. x GS\Longrightarrowfx\leqgx
    shows i\leqj
    using has_integral_component_le[OF _ fg, of 1] le by auto
lemma integral_le:
    fixes f :: ' }n::\mathrm{ :euclidean_space }=>\mathrm{ real
    assumes f integrable_on S
        and g integrable_on S
        and }\x.x\inS\Longrightarrowfx\leqg
    shows integral Sf}\leq\mathrm{ integral Sg
    by (rule has_integral_le[OF assms(1,Q)[unfolded has_integral_integral] assms(3)])
lemma has_integral_nonneg:
    fixes f :: ' n::euclidean_space }=>\mathrm{ real
    assumes (f has_integral i) S
        and }\bigwedgex.x\inS\Longrightarrow0\leqf
    shows 0\leqi
    using has_integral_component_nonneg[of 1 f i S]
    unfolding o_def
    using assms
    by auto
lemma integral_nonneg:
    fixes f :: ' }n::\mathrm{ euclidean_space }=>\mathrm{ real
    assumes f:f integrable_on S and 0:\x.x \inS\Longrightarrow0\leqfx
    shows 0\leqintegral S f
    by (rule has_integral_nonneg[OF f[unfolded has_integral_integral] 0])
Hence a general restriction property.
lemma has_integral_restrict [simp]:
fixes \(f::\) ' \(a\) :: euclidean_space \(\Rightarrow\) ' \(b::\) banach
```

```
    assumes \(S \subset T\)
    shows \(((\lambda x\). if \(x \in S\) then \(f x\) else 0\()\) has_integral i) \(T \longleftrightarrow(f\) has_integral \(i) S\)
proof -
    have \(*: \bigwedge x\). (if \(x \in T\) then if \(x \in S\) then \(f x\) else 0 else 0\()=(\) if \(x \in S\) then \(f x\)
else 0)
            using assms by auto
    show ?thesis
            apply (subst(2) has_integral')
            apply (subst has_integral')
            apply (simp add: *)
            done
qed
corollary has_integral_restrict_UNIV:
    fixes \(f\) :: ' \(n::\) euclidean_space \(\Rightarrow\) 'a::banach
    shows \(((\lambda x\). if \(x \in s\) then \(f x\) else 0\()\) has_integral \(i)\) UNIV \(\longleftrightarrow(f\) has_integral \(i)\)
\(s\)
    by auto
lemma has_integral_restrict_Int:
    fixes \(f::\) ' \(a\) :: euclidean_space \(\Rightarrow\) ' \(b::\) banach
    shows \(((\lambda x\). if \(x \in S\) then \(f x\) else 0) has_integral \(i) T \longleftrightarrow(f\) has_integral \(i)(S\)
\(\cap T\) )
proof -
    have \(((\lambda x\). if \(x \in T\) then if \(x \in S\) then \(f\) x else 0 else 0) has_integral \(i) U N I V=\)
                ( \((\lambda x\). if \(x \in S \cap T\) then \(f x\) else 0\()\) has_integral i) UNIV
            by (rule has_integral_cong) auto
    then show ?thesis
            using has_integral_restrict_UNIV by fastforce
qed
lemma integral_restrict_Int:
    fixes \(f::\) ' \(a\) :: euclidean_space \(\Rightarrow\) ' \(b::\) banach
    shows integral \(T(\lambda x\). if \(x \in S\) then \(f x\) else 0\()=\operatorname{integral}(S \cap T) f\)
    by (metis (no_types, lifting) has_integral_cong has_integral_restrict_Int integrable_integral
integral_unique not_integrable_integral)
lemma integrable_restrict_Int:
    fixes \(f::\) ' \(a\) :: euclidean_space \(\Rightarrow\) ' \(b::\) banach
    shows \((\lambda x\). if \(x \in S\) then \(f x\) else 0 ) integrable_on \(T \longleftrightarrow\) fintegrable_on \((S \cap T)\)
    using has_integral_restrict_Int by fastforce
lemma has_integral_on_superset:
    fixes \(f::\) ' \(n::\) euclidean_space \(\Rightarrow{ }^{\prime} a::\) banach
    assumes \(f\) : ( \(f\) has_integral i) \(S\)
        and \(\wedge x . x \notin S \Longrightarrow f x=0\)
        and \(S \subseteq T\)
        shows (f has_integral i) \(T\)
proof -
```

```
    have ( }\lambdax\mathrm{ . if }x\inS\mathrm{ then f x else 0) =( }\lambdax\mathrm{ . if }x\inT\mathrm{ then f x else 0)
        using assms by fastforce
    with f show ?thesis
        by (simp only: has_integral_restrict_UNIV [symmetric, of f])
qed
lemma integrable_on_superset:
    fixes f :: ' }n::\mathrm{ :uclidean_space }=>\mathrm{ ' 'a::banach
    assumes f integrable_on S
        and }\x.x\not\inS\Longrightarrowfx=
        and}S\subseteq
    shows f integrable_on t
    using assms
    unfolding integrable_on_def
    by (auto intro:has_integral_on_superset)
lemma integral_restrict_UNIV:
    fixes }f:: ' n::euclidean_space => 'a::banach
    shows integral UNIV ( }\lambdax\mathrm{ . if }x\inS\mathrm{ then f x else 0) = integral S f
    by (simp add: integral_restrict_Int)
lemma integrable_restrict_UNIV:
    fixes }f:: ' n::euclidean_space => 'a::banach
    shows ( }\lambdax\mathrm{ . if }x\ins\mathrm{ then f x else 0) integrable_on UNIV }\longleftrightarrowf\mathrm{ integrable_on s
    unfolding integrable_on_def
    by auto
lemma has_integral_subset_component_le:
    fixes f :: ' n::euclidean_space = 'm::euclidean_space
    assumes k:k\in Basis
        and as: S\subseteqT(f has_integral i) S (f has_integral j) T \x. x\inT\Longrightarrow0\leq
f(x)\cdotk
    shows i\cdotk\leqj\cdotk
proof -
    have §:((\lambdax. if x }\inS\mathrm{ then f x else 0) has_integral i) UNIV
            (( }\lambdax.\mathrm{ if }x\inT\mathrm{ then f x else 0) has_integral j) UNIV
        by (simp_all add: assms)
    show ?thesis
        using as by (force intro!: has_integral_component_le[OF k §])
qed
```


6.15.34 Integrals on set differences

```
lemma has_integral_setdiff:
fixes \(f\) :: ' \(a::\) euclidean_space \(\Rightarrow\) 'b::banach
assumes \(S\) : (f has_integral i) \(S\) and \(T\) : (f has_integral j) \(T\) and neg: negligible \((T-S)\)
shows \((f\) has_integral \((i-j))(S-T)\)
proof -
```

```
    show ?thesis
    unfolding has_integral_restrict_UNIV [symmetric,of f]
proof (rule has_integral_spike [OF neg])
    have eq: ( }\lambdax\mathrm{ . (if }x\inS\mathrm{ then f x else 0) - (if x G T then f x else 0) )}
                ( \lambdax. if }x\inT-S\mathrm{ then - fx else if }x\inS-T\mathrm{ then }fx\mathrm{ else 0)
            by (force simp add:)
    have (( }\lambdax\mathrm{ . if }x\inS\mathrm{ then f x else 0) has_integral i) UNIV
            (( }\lambdax.\mathrm{ if }x\inT\mathrm{ then f x else 0) has_integral j) UNIV
            using S T has_integral_restrict_UNIV by auto
    from has_integral_diff [OF this]
    show (( }\lambdax.\mathrm{ if }x\inT-S\mathrm{ then }-fx\mathrm{ else if }x\inS-T\mathrm{ then f x else 0)
                    has_integral i-j) UNIV
        by (simp add: eq)
    qed force
qed
lemma integral_setdiff:
    fixes f :: 'a::euclidean_space }=>\mp@subsup{}{}{\prime}b::banac
    assumes f integrable_on S f integrable_on T negligible(T - S)
shows integral (S - T) f = integral Sf - integral Tf
    by (rule integral_unique) (simp add: assms has_integral_setdiff integrable_integral)
lemma integrable_setdiff:
    fixes f :: 'a::euclidean_space = 'b::banach
    assumes (f has_integral i) S (f has_integral j) T negligible (T - S)
    shows fintegrable_on (S - T)
    using has_integral_setdiff [OF assms]
    by (simp add: has_integral_iff)
lemma negligible_setdiff [simp]: T\subseteqS\Longrightarrow negligible (T - S)
    by (metis Diff_eq_empty_iff negligible_empty)
lemma negligible_on_intervals: negligible s \longleftrightarrow(\forallab.negligible(s \cap cbox a b)) (is
?l}\longleftrightarrow?r
proof
    assume R:?r
    show ?l
        unfolding negligible_def
    proof safe
        fix ab
        have negligible (s \ cbox a b)
            by (simp add: R)
        then show (indicator s has_integral 0) (cbox a b)
            by (meson Diff_iff Int_iff has_integral_negligible indicator_simps(2))
    qed
qed (simp add: negligible_Int)
lemma negligible_translation:
    assumes negligible S
```

```
    shows negligible \(((+) c\) ‘ \(S)\)
proof -
    have inj: inj \(((+) c)\)
        by \(\operatorname{simp}\)
    show ?thesis
    using assms
    proof (clarsimp simp: negligible_def)
        fix \(a b\)
    assume \(\forall x y\). (indicator \(S\) has_integral 0) (cbox \(x y)\)
    then have \(*\) : (indicator \(S\) has_integral 0) (cbox \((a-c)(b-c))\)
        by (meson Diff_iff assms has_integral_negligible indicator_simps(2))
    have eq: indicator \(((+) c\) ' \(S)=(\lambda x\). indicator \(S(x-c))\)
        by (force simp add: indicator_def)
    show (indicator \(((+) c\) ' \(S\) ) has_integral 0) (cbox a b)
        using has_integral_affinity [OF *, of \(1-c\) ]
                cbox_translation \([\) of \(c-c+a-c+b]\)
        by (simp add: eq) (simp add: ac_simps)
    qed
qed
lemma negligible_translation_rev:
    assumes negligible \(((+) c\) ' \(S\) )
    shows negligible \(S\)
by (metis negligible_translation [OF assms, of \(-c\) ] translation_galois)
lemma has_integral_spike_set_eq:
    fixes \(f\) :: ' \(n::\) euclidean_space \(\Rightarrow\) 'a::banach
    assumes negligible \(\{x \in S-T . f x \neq 0\}\) negligible \(\{x \in T-S . f x \neq 0\}\)
    shows (f has_integral \(y) S \longleftrightarrow(f\) has_integral \(y) T\)
proof -
    have \(((\lambda x\). if \(x \in S\) then \(f x\) else 0) has_integral \(y)\) UNIV \(=\)
        ( \((\lambda x\). if \(x \in T\) then \(f x\) else 0\()\) has_integral \(y)\) UNIV
    proof (rule has_integral_spike_eq)
        show negligible \((\{x \in S-T . f x \neq 0\} \cup\{x \in T-S . f x \neq 0\})\)
            by (rule negligible_Un [OF assms])
    qed auto
    then show ?thesis
        by (simp add: has_integral_restrict_UNIV)
qed
corollary integral_spike_set:
    fixes \(f\) :: ' \(n::\) euclidean_space \(\Rightarrow\) ' \(a:: b a n a c h\)
    assumes negligible \(\{x \in S-T . f x \neq 0\}\) negligible \(\{x \in T-S . f x \neq 0\}\)
    shows integral \(S f=\) integral \(T f\)
    using has_integral_spike_set_eq [OF assms]
    by (metis eq_integralD integral_unique)
lemma integrable_spike_set:
    fixes \(f\) :: ' \(n\) ::euclidean_space \(\Rightarrow\) 'a::banach
```

assumes f : fintegrable_on S and neg: negligible $\{x \in S-T . f x \neq 0\}$ negligible $\{x \in T-S . f x \neq 0\}$
shows f integrable_on T
using has_integral_spike_set_eq [OF neg] f by blast
lemma integrable_spike_set_eq:
fixes $f::{ }^{\prime} n::$ euclidean_space $\Rightarrow{ }^{\prime} a::$ banach
assumes negligible $((S-T) \cup(T-S))$
shows f integrable_on $S \longleftrightarrow f$ integrable_on T
by (blast intro: integrable_spike_set assms negligible_subset)

```
lemma integrable_on_insert_iff: f integrable_on (insert x X) \longleftrightarrow f integrable_on X
    for f::- " 'a::banach
    by (rule integrable_spike_set_eq) (auto simp: insert_Diff_if)
```

lemma has_integral_interior:
fixes $f::$ ' a :: euclidean_space \Rightarrow ' $b::$ banach
shows negligible $($ frontier $S) \Longrightarrow(f$ has_integral $y)$ (interior $S) \longleftrightarrow(f$ has_integral
y) S
by (rule has_integral_spike_set_eq [OF empty_imp_negligible negligible_subset])
(use interior_subset in «auto simp: frontier_def closure_def〉)
lemma has_integral_closure:
fixes $f::$ ' a :: euclidean_space \Rightarrow ' $b::$ banach
shows negligible $($ frontier $S) \Longrightarrow(f$ has_integral $y)$ (closure $S) \longleftrightarrow(f$ has_integral
y) S
by (rule has_integral_spike_set_eq [OF negligible_subset empty_imp_negligible]) (auto
simp: closure_Un_frontier)
lemma has_integral_open_interval:
fixes f :: ' a :: euclidean_space \Rightarrow ' b :: banach
shows $(f$ has_integral $y)(b o x a b) \longleftrightarrow(f$ has_integral $y)(c b o x a b)$
unfolding interior_cbox [symmetric]
by (metis frontier_cbox has_integral_interior negligible_frontier_interval)
lemma integrable_on_open_interval:
fixes $f::$ ' a :: euclidean_space \Rightarrow ' $b::$ banach
shows f integrable_on box $a b \longleftrightarrow f$ integrable_on cbox a b
by (simp add: has_integral_open_interval integrable_on_def)
lemma integral_open_interval:
fixes $f::$ ' a :: euclidean_space $\Rightarrow{ }^{\prime} b$:: banach
shows integral(box a b) $f=\operatorname{integral(cbox~a~b)~} f$
by (metis has_integral_integrable_integral has_integral_open_interval not_integrable_integral)

6.15.35 More lemmas that are useful later

lemma has_integral_subset_le:
fixes $f::$ ' $n:$:euclidean_space \Rightarrow real

```
assumes \(s \subseteq t\)
    and (f has_integral i) \(s\)
    and (f has_integral \(j\) ) \(t\)
    and \(\forall x \in t .0 \leq f x\)
shows \(i \leq j\)
using has_integral_subset_component_le[OF_assms(1), of 1 fij]
using assms
by auto
lemma integral_subset_component_le:
    fixes \(f\) :: ' \(n\) ::euclidean_space \(\Rightarrow\) ' \(m\) ::euclidean_space
    assumes \(k \in\) Basis
    and \(s \subseteq t\)
    and \(f\) integrable_on s
    and \(f\) integrable_on \(t\)
    and \(\forall x \in t .0 \leq f x \cdot k\)
    shows \((\) integral \(s f) \cdot k \leq(\) integral \(t f) \cdot k\)
    by (meson assms has_integral_subset_component_le integrable_integral)
lemma integral_subset_le:
    fixes \(f::\) ' \(n::\) euclidean_space \(\Rightarrow\) real
    assumes \(s \subseteq t\)
        and \(f\) integrable_on \(s\)
        and \(f\) integrable_on \(t\)
        and \(\forall x \in t .0 \leq f x\)
    shows integral \(s f \leq\) integral \(t f\)
    using assms has_integral_subset_le by blast
lemma has_integral_alt':
    fixes \(f\) :: ' \(n::\) euclidean_space \(\Rightarrow\) 'a::banach
    shows ( \(f\) has_integral i) \(s \longleftrightarrow\)
            \((\forall a b\). \((\lambda x\). if \(x \in s\) then \(f x\) else 0) integrable_on cbox a \(b) \wedge\)
            \((\forall e>0 . \exists B>0 . \forall a b\). ball \(0 B \subseteq\) cbox \(a b \longrightarrow\)
                norm (integral (cbox ab) \((\lambda x\). if \(x \in s\) then \(f x\) else 0\()-i)<e)\)
    (is ? \(l=? r\) )
proof
    assume rhs: ?r
    show?l
    proof (subst has_integral', intro allI impI)
        fix \(e:\) :real
        assume \(e>0\)
        from rhs[THEN conjunct2,rule_format,OF this]
        show \(\exists B>0 . \forall a b\). ball \(0 B \subseteq\) cbox \(a b \longrightarrow\)
                            ( \(\exists z .((\lambda x\). if \(x \in s\) then \(f x\) else 0) has_integral \(z)\)
                            \((\) cbox a \(b) \wedge\) norm \((z-i)<e)\)
        by (simp add: has_integral_iff rhs)
    qed
next
    let \(? \Phi=\lambda e\) a \(b . \exists z .((\lambda x\). if \(x \in s\) then \(f x\) else 0) has_integral \(z)(\) cbox a b) \(\wedge\)
```

```
norm \((z-i)<e\)
    assume?l
    then have lhs: \(\exists B>0 . \forall a b\). ball \(0 B \subseteq\) cbox \(a b \longrightarrow\) ? \(\Phi\) e ab if \(e>0\) for \(e\)
        using that has_integral' \([\) of \(f]\) by auto
    let ?f \(=\lambda x\). if \(x \in s\) then \(f x\) else 0
    show? ?
    proof (intro conjI allI impI)
        fix \(a b::\) ' \(n\)
        from lhs[OF zero_less_one]
        obtain \(B\) where \(0<B\) and \(B: \bigwedge a b\). ball \(0 B \subseteq c b o x a b \Longrightarrow\) ? \(\Phi 1 a b\)
            by blast
        let ? \(a=\sum i \in\) Basis. \(\min (a \cdot i)(-B) *_{R} i::{ }^{\prime} n\)
        let ? \(b=\sum i \in\) Basis. \(\max (b \cdot i) B *_{R} i::^{\prime} n\)
        show ?f integrable_on cbox a b
        proof (rule integrable_subinterval[of _ ? a ? \(b]\) )
            have ? \(a \cdot i \leq x \cdot i \wedge x \cdot i \leq ? b \cdot i\) if norm \((0-x)<B i \in\) Basis for \(x i\)
                using Basis_le_norm [of \(i x]\) that by (auto simp add:field_simps)
            then have ball \(0 B \subseteq\) cbox ?a ?b
                by (auto simp: mem_box dist_norm)
            then show? integrable_on cbox ?a ?b
                unfolding integrable_on_def using \(B\) by blast
            show cbox a b \(\subseteq\) cbox ? a ? b
            by (force simp: mem_box)
        qed
        fix \(e\) :: real
        assume \(e>0\)
        with lhs show \(\exists B>0 . \forall a b\). ball \(0 B \subseteq\) cbox \(a b \longrightarrow\)
            norm (integral (cbox a b) \((\lambda x\). if \(x \in s\) then \(f x\) else 0\()-i)<e\)
            by (metis (no_types, lifting) has_integral_integrable_integral)
    qed
qed
```


6.15.36 Continuity of the integral (for a 1-dimensional interval)

lemma integrable_alt:
fixes $f::$ ' $n::$ euclidean_space \Rightarrow ' $a::$ banach
shows f integrable_on $s \longleftrightarrow$
$(\forall a b$. $(\lambda x$. if $x \in s$ then $f x$ else 0$)$ integrable_on cbox ab) \wedge $(\forall e>0 . \exists B>0 . \forall a b c d$. ball $0 B \subseteq$ cbox $a b \wedge$ ball $0 B \subseteq$ cbox c $d \longrightarrow$ norm (integral (cbox a b) (λ x. if $x \in s$ then $f x$ else 0$)-$
integral $($ cbox $c d) \quad(\lambda x$. if $x \in s$ then $f x$ else 0$))<e)$
(is ?l $=? r$)
proof
let $? F=\lambda x$. if $x \in s$ then $f x$ else 0
assume ?l
then obtain y where $\operatorname{intF}: \bigwedge a b$. ? F integrable_on cbox a b
and $y: \bigwedge e .0<e \Longrightarrow$

```
\(\exists B>0 . \forall a b\). ball \(0 B \subseteq\) cbox \(a b \longrightarrow\) norm (integral (cbox ab) ? \(F-\)
```

y) $<e$
unfolding integrable_on_def has_integral_alt ${ }^{\prime}[o f f]$ by auto
show ?r
proof (intro conjI allI impI intF)
fix e ::real
assume $e>0$
then have $e / 2>0$
by auto
obtain B where $0<B$
and $B: \bigwedge a b$. ball $0 B \subseteq$ cbox a $b \Longrightarrow$ norm (integral $($ cbox ab) $? F-y)<$
e/2
using $\langle 0<e / 2\rangle y$ by blast
show $\exists B>0 . \forall a b c d$. ball $0 B \subseteq$ cbox a $b \wedge$ ball $0 B \subseteq c b o x ~ c d \longrightarrow$
norm (integral (cbox a b) ?F - integral (cbox c d) ?F) $<e$
proof (intro conjI exI impI allI, rule $\langle 0<B$)
fix $a b c d:: ' n$
assume sub: ball $0 B \subseteq$ cbox a $b \wedge$ ball $0 B \subseteq$ cbox c d
show norm (integral (cbox a b) ? F - integral (cbox c d) ? F) $<e$
using sub by (auto intro: norm_triangle_half_l dest: B)
qed
qed
next
let $? F=\lambda x$. if $x \in s$ then $f x$ else 0
assume rhs: ?r
let ?cube $=\lambda n . \operatorname{cbox}\left(\sum i \in\right.$ Basis. - real $\left.n *_{R} i::^{\prime} n\right)\left(\sum i \in\right.$ Basis. real $\left.n *_{R} i\right)$
have Cauchy (λn. integral (?cube n) ?F)
unfolding Cauchy_def
proof (intro allI impI)
fix e ::real
assume $e>0$
with rhs obtain B where $0<B$
and $B: \bigwedge a b c d$. ball $0 B \subseteq$ cbox a $b \wedge$ ball $0 B \subseteq$ cbox c d
\Longrightarrow norm (integral (cbox a b) ?F - integral (cbox c d) ?F) $<e$
by blast
obtain N where $N: B \leq$ real N
using real_arch_simple by blast
have ball $0 B \subseteq$? cube n if $n: n \geq N$ for n
proof -
have $\operatorname{sum}\left(\left(*_{R}\right)(-\right.$ real $\left.n)\right)$ Basis $\cdot i \leq x \cdot i \wedge$
$x \cdot i \leq \operatorname{sum}\left(\left(*_{R}\right)(\right.$ real n) $)$ Basis $\cdot i$
if norm $x<B i \in$ Basis for $x i:: ' n$
using Basis_le_norm[of $i x] n$ that by (auto simp add: field_simps
sum_negf)
then show ?thesis
by (auto simp: mem_box dist_norm)
qed
then show $\exists M . \forall m \geq M . \forall n \geq M$. dist (integral (?cube m) ?F) (integral (?cube
$n) ? F)<e$

```
            by (fastforce simp add: dist_norm intro!: B)
    qed
    then obtain i where i:( }\lambdan\mathrm{ . integral (?cube n) ?F) }\longrightarrow> \ C
        using convergent_eq_Cauchy by blast
    have \existsB>0.\forallab. ball 0 B\subseteqcbox a b \longrightarrow norm(integral (cbox a b) ?F - i)
< e
    if e>0 for }
    proof -
        have *: e/2 > 0 using that by auto
        then obtain N where N: \n.N\leqn\Longrightarrow norm(i - integral (?cube n)?F)
< e/2
            using i[THEN LIMSEQ_D, simplified norm_minus_commute] by meson
        obtain B where 0<B
            and B: \bigwedgeabcd.\llbracketball 0 B\subseteq cbox a b; ball 0 B\subseteqcbox c d\rrbracket\Longrightarrow
                    norm (integral (cbox a b)?F - integral (cbox c d)?F) < e/2
            using rhs * by meson
        let ?B = max (real N) B
        show ?thesis
        proof (intro exI conjI allI impI)
            show 0<?B
            using }\langleB\rangle0\rangle\mathrm{ by auto
            fix ab :: 'n
            assume ball 0?B}\subseteqcbox a b
            moreover obtain n where n: max (real N) B\leqreal n
            using real_arch_simple by blast
            moreover have ball 0 B\subseteq??cube n
            proof
            fix }x\mathrm{ :: ' }
            assume x: x\in ball 0 B
            have \llbracketnorm (0 - x)<B;i\inBasis\rrbracket
```



```
i for }
                    using Basis_le_norm[of i x] n by (auto simp add: field_simps sum_negf)
                    then show }x\in\mathrm{ ?cube n
                    using x by (auto simp: mem_box dist_norm)
            qed
            ultimately show norm (integral (cbox a b) ?F - i) <e
            using norm_triangle_half_l [OF B N] by force
        qed
    qed
    then show ?l unfolding integrable_on_def has_integral_alt'[of f]
        using rhs by blast
qed
lemma integrable_altD:
    fixes f :: ' }n::\mathrm{ :uclidean_space }=>\mp@subsup{}{}{\prime}a::banac
    assumes f integrable_on s
    shows }\ab.(\lambdax. if x\ins then f x else 0) integrable_on cbox a b
        and \e.e>0\Longrightarrow\existsB>0.\forallabcd. ball 0 B\subseteqcbox a b ^ ball 0 B\subseteqcbox c
```

```
\(d \longrightarrow\)
    norm (integral (cbox ab) \((\lambda x\). if \(x \in s\) then \(f x\) else 0\()-\) integral \((c b o x c d)\)
\((\lambda x\). if \(x \in s\) then \(f x\) else 0\())<e\)
    using assms[unfolded integrable_alt[of f]] by auto
lemma integrable_alt_subset:
    fixes \(f\) :: 'a::euclidean_space \(\Rightarrow\) 'b::banach
    shows
        fintegrable_on \(S \longleftrightarrow\)
            \((\forall a b\). \((\lambda x\). if \(x \in S\) then \(f x\) else 0) integrable_on cbox ab) \(\wedge\)
            ( \(\forall e>0 . \exists B>0 . \forall a b c d\).
                                    ball \(0 B \subseteq\) cbox a \(b \wedge\) cbox a \(b \subseteq\) cbox c d
                                    \(\longrightarrow\) norm (integral (cbox ab) \((\lambda x\). if \(x \in S\) then \(f x\) else 0\()-\)
                                    integral \((\) cbox c d) \((\lambda x\). if \(x \in S\) then \(f x\) else 0\())<e)\)
        (is \({ }_{-}=\)? \(r\) rhs \()\)
    proof -
    let \(? g=\lambda x\). if \(x \in S\) then \(f x\) else 0
    have \(f\) integrable_on \(S \longleftrightarrow\)
            \((\forall a b\). ? g integrable_on cbox a b) \(\wedge\)
            \((\forall e>0 . \exists B>0 . \forall a b c d\). ball \(0 B \subseteq\) cbox a \(b \wedge\) ball \(0 B \subseteq c b o x c d \longrightarrow\)
                norm (integral (cbox a b) ?g - integral (cbox c d) ?g) <e)
            by (rule integrable_alt)
    also have \(\ldots=\) ? \(r\) rh
    proof -
            \{ fix \(e\) :: real
            assume \(e: \bigwedge e . e>0 \Longrightarrow \exists B>0 . \forall a b c d\). ball \(0 B \subseteq\) cbox a \(b \wedge\) cbox \(a b \subseteq\)
cbox c d \(\longrightarrow\)
                norm (integral (cbox ab) ?g - integral (cbox c d) ?g)
\(<e\)
            and \(e>0\)
            obtain \(B\) where \(B>0\)
            and \(B: \bigwedge a b c d . \llbracket b a l l 0 B \subseteq c b o x a b ; c b o x a b \subseteq c b o x c d \rrbracket \Longrightarrow\)
                    norm (integral \((\) cbox a b) ? \(g\) - integral \((\) cbox c d) ?g) \(<e / 2\)
            using \(\langle e>0\rangle e[\) of \(e / 2]\) by force
        have \(\exists B>0 . \forall a b c d\).
                            ball \(0 B \subseteq\) cbox a \(b \wedge\) ball \(0 B \subseteq\) cbox c \(d \longrightarrow\)
                            norm (integral (cbox a b) ? \(g\) - integral (cbox c d) ?g) \(<e\)
        proof (intro exI allI conjI impI)
            fix \(a b c d::{ }^{\prime} a\)
            let ? \(\alpha=\sum i \in\) Basis. \(\max (a \cdot i)(c \cdot i) *_{R} i\)
            let ? \(\beta=\sum i \in\) Basis. \(\min (b \cdot i)(d \cdot i) *_{R} i\)
            show norm (integral (cbox a b) ?g - integral (cbox c d) ?g) \(<e\)
                            if ball: ball \(0 B \subseteq\) cbox a b \(\wedge\) ball \(0 B \subseteq\) cbox c d
                    proof -
                    have \(B^{\prime}:\) norm (integral (cbox a \(b \cap\) cbox \(c d\) ) ? \(g\) - integral (cbox \(x\) y)
?g) \(<e / 2\)
            if cbox a \(b \cap\) cbox \(c d \subseteq \operatorname{cbox} x y\) for \(x y\)
                    using \(B\) [of ? \(\alpha\) ? \(\beta x y\) ] ball that by (simp add: Int_interval [symmetric])
            show ?thesis
```

using $B^{\prime}\left[\begin{array}{lll}\text { of } & b] & B^{\prime}[\text { of } c \\ c & d\end{array}\right]$ norm_triangle_half_r by blast qed
qed (use $\langle B>0\rangle$ in auto) $\}$
then show?thesis
by force
qed
finally show ?thesis .
qed
lemma integrable_on_subcbox:
fixes $f::{ }^{\prime} n::$ euclidean_space $\Rightarrow{ }^{\prime} a::$ banach
assumes intf: fintegrable_on S
and sub: cbox a $b \subseteq S$
shows f integrable_on cbox ab
proof -
have (λx. if $x \in S$ then $f x$ else 0) integrable_on cbox a b
by (simp add: intf integrable_altD (1))
then show ?thesis
by (metis (mono_tags) sub integrable_restrict_Int le_inf_iff order_refl subset_antisym)
qed

6.15.37 A straddling criterion for integrability

```
lemma integrable_straddle_interval:
    fixes \(f\) :: ' \(n::\) euclidean_space \(\Rightarrow\) real
    assumes \(\bigwedge e . e>0 \Longrightarrow \exists g h i j\). (g has_integral \(i)(\) cbox ab) \(\wedge(h\) has_integral \(j)\)
(cbox ab) ^
                    \(|i-j|<e \wedge(\forall x \in\) cbox \(a b .(g x) \leq f x \wedge f x \leq h x)\)
    shows \(f\) integrable_on cbox a \(b\)
proof -
    have \(\exists d\). gauge \(d \wedge\)
                                    ( \(\forall\) p1 p2. p1 tagged_division_of cbox a \(b \wedge d\) fine \(p 1 \wedge\)
                                    p2 tagged_division_of cbox a \(b \wedge d\) fine \(p 2 \longrightarrow\)
                                    \(\mid\left(\sum(x, K) \in p 1\right.\). content \(\left.K *_{R} f x\right)-\left(\sum(x, K) \in p 2\right.\). content \(K *_{R}\)
\(f x) \mid<e)\)
        if \(e>0\) for \(e\)
    proof -
        have \(e: e / 3>0\)
            using that by auto
        then obtain \(g h i j\) where \(i j:|i-j|<e / 3\)
                    and (g has_integral i) (cbox a b)
                    and ( \(h\) has_integral j) (cbox a b)
                    and fgh: \(\bigwedge x . x \in\) cbox \(a b \Longrightarrow g x \leq f x \wedge f x \leq h x\)
        using assms real_norm_def by metis
        then obtain \(d 1\) d2 where gauge d1 gauge d2
            and d1: \(\bigwedge p\). \(\llbracket p\) tagged_division_of cbox a b; d1 fine \(p \rrbracket \Longrightarrow\)
                    \(\mid\left(\sum(x, K) \in p\right.\). content \(\left.K *_{R} g x\right)-i \mid<e / 3\)
                    and d2: \(\bigwedge p\). \(\llbracket p\) tagged_division_of cbox a \(b\); d2 fine \(p \rrbracket \Longrightarrow\)
                    \(\mid\left(\sum(x, K) \in p\right.\). content \(\left.K *_{R} h x\right)-j \mid<e / 3\)
```

```
    by (metis e has_integral real_norm_def)
    have}|(\sum(x,K)\inp1. content K**Rfx)-(\sum(x,K)\inp2. content K**R fx)
< e
    if p1: p1 tagged_division_of cbox a b and 11: d1 fine p1 and 21:d2 fine p1
            and p2: p2 tagged_division_of cbox a b and 12:d1 fine p2 and 22: d2 fine
p2 for p1 p2
    proof -
        have *: \g1 g2 h1 h2 f1 f2.
                    \llbracket|g2 - i|<e/3; |g1 - i|<e/3; |h2 - j|<e/3; |h1 - j|<e/3;
                    g1 - h2 \leqf1 - f2;f1 - f2 \leqh1 - g2]
                    C |1 - f2 | <e
            using <e> 0\rangle ij by arith
        have 0: (\sum(x,k)\inp1. content k**R fx) - (\sum(x,k)\inp1. content k**Rg x)
\geq0
                O}\leq(\sum(x,k)\inp2. content k\mp@subsup{*}{R}{}hx)-(\sum(x,k)\inp2. content k*R f
x)
                (\sum(x,k)\inp2. content k\mp@subsup{*}{R}{}fx)-(\sum(x,k)\inp2. content k**g g x)\geq
0
                    0}\leq(\sum(x,k)\inp1. content k\mp@subsup{*}{R}{}hx)-(\sum(x,k)\inp1. content k* *R f
x)
            unfolding sum_subtractf[symmetric]
            apply (auto intro!: sum_nonneg)
                    apply (meson fgh measure_nonneg mult_left_mono tag_in_interval that
sum_nonneg)+
            done
    show ?thesis
    proof (rule *)
            show |(\sum(x,K)\inp2. content K** g x) - i| <e/3
                by (rule d1[OF p2 12])
            show |(\sum(x,K)\inp1. content K*R g x) - i| <e/3
                by (rule d1[OF p1 11])
            show |(\sum(x,K)\inp2. content K*R h x) - j| <e/3
                by (rule d2[OF p2 22])
            show |(\sum(x,K)\inp1. content K*R}hx)-j|<e/
                by (rule d2[OF p1 21])
            qed (use 0 in auto)
    qed
    then show ?thesis
        by (rule_tac x=\lambdax.d1 x \cap d2 x in exI)
            (auto simp: fine_Int intro:〈gauge d1〉〈gauge d2〉d1 d2)
    qed
    then show ?thesis
    by (simp add: integrable_Cauchy)
qed
lemma integrable_straddle:
    fixes }f:: 'n::euclidean_space => rea
    assumes \bigwedgee.e>0\Longrightarrow\existsghij.(g has_integral i) s ^(h has_integral j) s ^
                    |i-j|<e^(\forallx\ins.gx\leqfx^fx\leqhx)
```

```
    shows \(f\) integrable_on s
proof -
    let ?fs \(=(\lambda x\). if \(x \in s\) then \(f x\) else 0\()\)
    have ?fs integrable_on cbox \(a b\) for \(a b\)
    proof (rule integrable_straddle_interval)
        fix \(e\) ::real
        assume \(e>0\)
        then have \(*: e / 4>0\)
            by auto
    with assms obtain \(g h i j\) where \(g\) : ( \(g\) has_integral i) \(s\) and \(h\) : ( \(h\) has_integral
j) \(s\)
            and \(i j:|i-j|<e / 4\)
                        and fgh: \(\wedge x . x \in s \Longrightarrow g x \leq f x \wedge f x \leq h x\)
        by metis
    let ? \(g s=(\lambda x\). if \(x \in s\) then \(g x\) else 0\()\)
    let ? \(h s=(\lambda x\). if \(x \in s\) then \(h x\) else 0\()\)
    obtain \(B g\) where \(B g: \bigwedge a b\). ball \(0 B g \subseteq\) cbox \(a b \Longrightarrow \mid\) integral (cbox ab) ?gs
\(-i \mid<e / 4\)
            and int_g: \(\bigwedge a b\). ?gs integrable_on cbox a \(b\)
            using \(g *\) unfolding has_integral_alt' real_norm_def by meson
    obtain \(B h\) where
                Bh: \(\bigwedge a b\). ball 0 Bh \(\subseteq\) cbox a \(b \Longrightarrow \mid\) integral (cbox a b) ?hs \(-j \mid<e / 4\)
                and int_h: \(\bigwedge a b\). ?hs integrable_on cbox ab
            using \(h *\) unfolding has_integral_alt' real_norm_def by meson
    define \(c\) where \(c=\left(\sum i \in\right.\) Basis. \(\left.\min (a \cdot i)(-(\max B g B h)) *_{R} i\right)\)
    define \(d\) where \(d=\left(\sum i \in\right.\) Basis. \(\left.\max (b \cdot i)(\max B g B h) *_{R} i\right)\)
    have \(\llbracket \operatorname{norm}(0-x)<B g ; i \in B a s i s \rrbracket \Longrightarrow c \cdot i \leq x \cdot i \wedge x \cdot i \leq d \cdot i\) for \(x i\)
            using Basis_le_norm [of i \(x\) ] unfolding \(c_{-}\)def d_def by auto
    then have ballBg: ball \(0 B g \subseteq\) cbox c d
            by (auto simp: mem_box dist_norm)
    have \(\llbracket \operatorname{norm}(0-x)<B h ; i \in B a s i s \rrbracket \Longrightarrow c \cdot i \leq x \cdot i \wedge x \cdot i \leq d \cdot i\) for \(x i\)
            using Basis_le_norm [of i \(x\) ] unfolding \(c_{-}\)def d_def by auto
    then have ballBh: ball 0 Bh \(\subseteq\) cbox cd
            by (auto simp: mem_box dist_norm)
    have \(a b\) _cd: cbox \(a b \subseteq c b o x ~ c d\)
            by (auto simp: c_def d_def subset_box_imp)
    have \(* *\) : \(\bigwedge c h c g a g\) ah::real. \(\llbracket|a h-a g| \leq|c h-c g| ;|c g-i|<e / 4 ;|c h-j|\)
\(<e / 4 \rrbracket\)
            \(\Longrightarrow|a g-a h|<e\)
            using \(i j\) by arith
    show \(\exists g h i j .(g\) has_integral \(i)(\) cbox ab) \(\wedge(h\) has_integral \(j)(\) cbox ab) \() \wedge \mid i\)
\(-j \mid<e \wedge\)
            \((\forall x \in\) cbox a b. g \(x \leq(\) if \(x \in s\) then \(f x\) else 0\() \wedge\)
                    (if \(x \in s\) then \(f x\) else 0\() \leq h x\) )
    proof (intro exI ballI conjI)
            have eq: \(\lfloor x f g\). (if \(x \in s\) then \(f x\) else 0\()-(\) if \(x \in s\) then \(g x\) else 0\()=\)
                    (if \(x \in s\) then \(f x-g x\) else ( \(0::\) real \()\) )
            by auto
            have int_hg: \((\lambda x\). if \(x \in s\) then \(h x-g x\) else 0\()\) integrable_on cbox a \(b\)
```

(λx. if $x \in s$ then $h x-g x$ else 0) integrable_on cbox $c d$
by (metis (no_types) integrable_diff $g h$ has_integral_integrable integrable_altD(1))+
show (?gs has_integral integral (cbox a b) ?gs) (cbox a b)
(?hs has_integral integral (cbox a b) ?hs) (cbox a b)
by (intro integrable_integral int_g int_h)+
then have integral (cbox a b) ?gs \leq integral (cbox a b) ?hs
using fgh by (force intro: has_integral_le)
then have $0 \leq$ integral (cbox ab) ?hs - integral (cbox a b) ?gs by simp
then have |integral (cbox a b) ?hs - integral (cbox a b) ?gs
$\leq \mid$ integral (cbox c d) ?hs - integral (cbox c d) ?gs \mid
apply (simp add: integral_diff [symmetric] int_g int_h)
apply (subst abs_of_nonneg[OF integral_nonneg[OF integrable_diff, OF int_h int_g]])
using fgh apply (force simp: eq intro!: integral_subset_le [OF ab_cd int_hg])+ done
then show \mid integral (cbox a b) ? gs - integral (cbox a b) ?hs $\mid<e$
using ** Bg ballBg Bh ballBh by blast
show $\bigwedge x . x \in$ cbox $a b \Longrightarrow$?gs $x \leq$?fs $x \bigwedge x . x \in$ cbox $a b \Longrightarrow$?fs $x \leq$?hs
using fgh by auto
qed
qed
then have int_f: ?fs integrable_on cbox ab for $a b$
by simp
have $\exists B>0 . \forall a b c d$.
ball $0 B \subseteq$ cbox a $b \wedge$ ball $0 B \subseteq$ cbox c $d \longrightarrow$
abs (integral (cbox a b) ?fs - integral (cbox c d) ?fs) $<e$
if $0<e$ for e
proof -
have $*: e / 3>0$
using that by auto
with assms obtain $g h i j$ where g : (g has_integral i) s and h : (h has_integral j) s
and $i j:|i-j|<e / 3$
and fgh: $\bigwedge x . x \in s \Longrightarrow g x \leq f x \wedge f x \leq h x$
by metis
let ? $g s=(\lambda x$. if $x \in s$ then $g x$ else 0$)$
let ?hs $=(\lambda x$. if $x \in s$ then $h x$ else 0$)$
obtain $B g$ where $B g>0$
and $B g: \bigwedge a b$. ball $0 B g \subseteq$ cbox $a b \Longrightarrow \mid$ integral $($ cbox $a b) ? g s-i \mid$
$<e / 3$
and int_g: $\bigwedge a b$. ?gs integrable_on cbox a b
using $g *$ unfolding has_integral_alt' real_norm_def by meson
obtain $B h$ where $B h>0$
and Bh: $\bigwedge a b$. ball $0 B h \subseteq$ cbox a $b \Longrightarrow \mid$ integral (cbox ab) ? $h s-j \mid$
$<e / 3$
and int_h: $\bigwedge a b$. ?hs integrable_on cbox a b
using $h *$ unfolding has_integral_alt' real_norm_def by meson
\{ fix $a b c d::$ ' n
assume as: ball $0(\max B g B h) \subseteq$ cbox abball $0(\max B g B h) \subseteq c b o x c d$
have $* *$: ball 0 Bg \subseteq ball ($0:: \prime$ ' n) (max $B g B h$) ball $0 B h \subseteq$ ball ($0:: ' n$) (max Bg Bh)
by auto
have *: \bigwedge ga gc ha hc fa fc. $\llbracket|g a-i|<e / 3 ;|g c-i|<e / 3 ;|h a-j|<e / 3 ;$
$|h c-j|<e / 3 ; g a \leq f a ; f a \leq h a ; g c \leq f c ; f c \leq h c \rrbracket \Longrightarrow$
$|f a-f c|<e$ using $i j$ by arith
have abs (integral (cbox a b) (λx. if $x \in s$ then $f x$ else 0) -integral (cbox c
d)
$(\lambda x$. if $x \in s$ then $f x$ else 0$))<e$
proof (rule *)
show \mid integral (cbox a b) ?gs $-i \mid<e / 3$
using ** Bg as by blast
show \mid integral $($ cbox c d) ? $g s-i \mid<e / 3$
using ** Bg as by blast
show \mid integral (cbox a b) ? $h s-j \mid<e / 3$
using ** Bh as by blast
show \mid integral (cbox cd) ? $h s-j \mid<e / 3$
using ** Bh as by blast
qed (use int_f int_g int_h fgh in $\left\langle s i m p _a l l\right.$ add: integral_le $\left.\rangle\right)$
\}
then show ?thesis
apply (rule_tac $x=\max B g B h$ in $e x I$)
using $\langle B g>0\rangle$ by auto
qed
then show? thesis
unfolding integrable_alt $[$ of f f real_norm_def by (blast intro: int_f)
qed

6.15.38 Adding integrals over several sets

```
lemma has_integral_Un:
    fixes f :: 'n::euclidean_space = 'a::banach
    assumes f:(f has_integral i) S (f has_integral j) T
        and neg: negligible (S\capT)
    shows (f has_integral ( }i+j))(S\cupT
    unfolding has_integral_restrict_UNIV [symmetric, of f]
proof (rule has_integral_spike[OF neg])
    let ?f = \lambdax. (if }x\inS\mathrm{ then f x else 0) +( if }x\inT\mathrm{ then f x else 0)
    show (?f has_integral i+j) UNIV
        by (simp add: f has_integral_add)
qed auto
lemma integral_Un [simp]:
    fixes f :: ' n::euclidean_space = 'a::banach
    assumes f integrable_on S f integrable_on T negligible (S \capT)
    shows integral }(S\cupT)f=\mathrm{ integral Sf+integral Tf
```

```
by (simp add: has_integral_Un assms integrable_integral integral_unique)
lemma integrable_Un:
    fixes \(f\) :: 'a::euclidean_space \(\Rightarrow\) ' \(b::\) banach
    assumes negligible \((A \cap B) f\) integrable_on \(A f\) integrable_on \(B\)
    shows \(f\) integrable_on \((A \cup B)\)
proof -
    from assms obtain \(y z\) where ( \(f\) has_integral \(y\) ) \(A\) (f has_integral \(z) B\)
        by (auto simp: integrable_on_def)
    from has_integral_Un[OF this assms(1)] show ?thesis by (auto simp: inte-
grable_on_def)
qed
lemma integrable_Un':
    fixes \(f\) :: 'a::euclidean_space \(\Rightarrow\) ' \(b::\) banach
    assumes \(f\) integrable_on \(A\) fintegrable_on \(B\) negligible \((A \cap B) C=A \cup B\)
    shows \(f\) integrable_on \(C\)
    using integrable_Un[of A Bf] assms by simp
lemma has_integral_Union:
    fixes \(f::\) ' \(n::\) euclidean_space \(\Rightarrow\) 'a::banach
    assumes \(\mathcal{T}\) : finite \(\mathcal{T}\)
        and int: \(\wedge S . S \in \mathcal{T} \Longrightarrow(f\) has_integral \((i S)) S\)
        and neg: pairwise \(\left(\lambda S S^{\prime}\right.\). negligible \(\left.\left(S \cap S^{\prime}\right)\right) \mathcal{T}\)
    shows (f has_integral (sum i \(\mathcal{T}))(\bigcup \mathcal{T})\)
proof -
    let \(\mathfrak{U}=\left((\lambda(a, b) . a \cap b)^{\prime}\{(a, b) . a \in \mathcal{T} \wedge b \in\{y . y \in \mathcal{T} \wedge a \neq y\}\}\right)\)
    have \(((\lambda x\). if \(x \in \bigcup \mathcal{T}\) then \(f x\) else 0\()\) has_integral sum \(i \mathcal{T})\) UNIV
    proof (rule has_integral_spike)
        show negligible ( \(\cup\) ?U)
        proof (rule negligible_Union)
        have finite \((\mathcal{T} \times \mathcal{T})\)
            by (simp add: \(\mathcal{T}\) )
        moreover have \(\{(a, b) . a \in \mathcal{T} \wedge b \in\{y \in \mathcal{T} . a \neq y\}\} \subseteq \mathcal{T} \times \mathcal{T}\)
            by auto
        ultimately show finite ? U
                by (blast intro: finite_subset \([\) of \(-\mathcal{T} \times \mathcal{T}]\) )
            show \(\wedge t . t \in ? \mathcal{U} \Longrightarrow\) negligible \(t\)
            using neg unfolding pairwise_def by auto
        qed
    next
        show (if \(x \in \bigcup \mathcal{T}\) then \(f x\) else 0\()=\left(\sum A \in \mathcal{T}\right.\). if \(x \in A\) then \(f x\) else 0\()\)
            if \(x \in U N I V-(\bigcup\) ? \(\mathcal{U})\) for \(x\)
    proof clarsimp
        fix \(S\) assume \(S \in \mathcal{T} x \in S\)
        moreover then have \(\forall b \in \mathcal{T} . x \in b \longleftrightarrow b=S\)
            using that by blast
        ultimately show \(f x=\left(\sum A \in \mathcal{T}\right.\). if \(x \in A\) then \(f x\) else 0\()\)
            by (simp add: sum.delta \([O F \mathcal{T}]\) )
```

qed
next
show $\left(\left(\lambda x . \sum A \in \mathcal{T}\right.\right.$. if $x \in A$ then $f x$ else 0$)$ has_integral $\left.\left(\sum A \in \mathcal{T} . i A\right)\right)$ UNIV
using int by (simp add: has_integral_restrict_UNIV has_integral_sum [OF $\mathcal{T}]$)
qed
then show ?thesis
using has_integral_restrict_UNIV by blast
qed
In particular adding integrals over a division, maybe not of an interval.
lemma has_integral_combine_division:
fixes f :: ' $n::$ euclidean_space \Rightarrow 'a::banach
assumes \mathcal{D} division_of S
and $\wedge k . k \in \mathcal{D} \Longrightarrow(f$ has_integral $(i k)) k$
shows (f has_integral (sum i $\mathcal{D})) S$
proof -
note $\mathcal{D}=$ division_ofD $[$ OF assms $(1)]$
have neg: negligible $\left(S \cap s^{\prime}\right)$ if $S \in \mathcal{D} s^{\prime} \in \mathcal{D} S \neq s^{\prime}$ for $S s^{\prime}$
proof -
obtain $a c b \mathcal{D}$ where obt: $S=c b o x a b s^{\prime}=c b o x c \mathcal{D}$
by (meson $\left.\langle S \in \mathcal{D}\rangle\left\langle s^{\prime} \in \mathcal{D}\right\rangle \mathcal{D}(4)\right)$
from $\mathcal{D}(5)[$ OF that $]$ show ?thesis
unfolding obt interior_cbox
by (metis (no_types, lifting) Diff_empty Int_interval box_Int_box negligi-
ble_frontier_interval)
qed
show ?thesis
unfolding $\mathcal{D}(6)$ [symmetric]
by (auto intro: \mathcal{D} neg assms has_integral_Union pairwiseI)
qed
lemma integral_combine_division_bottomup:
fixes f :: ' $n::$ euclidean_space \Rightarrow 'a::banach
assumes \mathcal{D} division_of $S \wedge k . k \in \mathcal{D} \Longrightarrow f$ integrable_on k
shows integral $S f=\operatorname{sum}(\lambda i$. integral if) \mathcal{D}
by (meson assms integral_unique has_integral_combine_division has_integral_integrable_integral)
lemma has_integral_combine_division_topdown:
fixes $f::$ ' $n::$ euclidean_space \Rightarrow 'a::banach
assumes f : f integrable_on S
and $\mathcal{D}: \mathcal{D}$ division_of K
and $K \subseteq S$
shows (f has_integral (sum (λ i. integral if) $\mathcal{D})$) K
proof -
have f integrable_on L if $L \in \mathcal{D}$ for L
proof -
have $L \subseteq S$
using $\langle K \subseteq S\rangle \mathcal{D}$ that by blast
then show f integrable_on L

```
        using that by (metis (no_types) f\mathcal{D}\mathrm{ division_ofD(4) integrable_on_subcbox)}
    qed
    then show ?thesis
        by (meson D has_integral_combine_division has_integral_integrable_integral)
qed
lemma integral_combine_division_topdown:
    fixes f :: ' }n::\mathrm{ :uclidean_space => 'a::banach
    assumes f integrable_on S
        and }\mathcal{D}\mathrm{ division_of S
    shows integral Sf=sum (\lambdai. integral if) D
    using assms has_integral_combine_division_topdown by blast
lemma integrable_combine_division:
    fixes f :: ' n::euclidean_space = 'a::banach
    assumes \mathcal{D}:\mathcal{D}\mathrm{ division_of }S
        and f: \bigwedgei.i\in\mathcal{D}\Longrightarrowfintegrable_on i
    shows f integrable_on S
    using f unfolding integrable_on_def by (metis has_integral_combine_division[OF
D])
lemma integrable_on_subdivision:
    fixes }f:: ' n::euclidean_space => 'a::banach
    assumes }\mathcal{D}:\mathcal{D}\mathrm{ division_of }
        and f: fintegrable_on S
        and}i\subseteq
    shows f integrable_on i
proof -
    have f integrable_on i if i\in\mathcal{D}\mathrm{ for i}
proof -
    have i\subseteqS
        using assms that by auto
    then show f integrable_on i
        using that by (metis (no_types) \mathcal{D f division_ofD(4) integrable_on_subcbox)}
qed
    then show ?thesis
        using \mathcal{D}}\mathrm{ integrable_combine_division by blast
qed
```


6.15.39 Also tagged divisions

```
lemma has_integral_combine_tagged_division:
fixes \(f::\) ' \(n::\) euclidean_space \(\Rightarrow\) ' \(a::\) banach
assumes \(p\) tagged_division_of \(S\)
and \(\bigwedge x k .(x, k) \in p \Longrightarrow(f\) has_integral \((i k)) k\)
shows (f has_integral \(\left.\left(\sum(x, k) \in p . i k\right)\right) S\)
proof -
have *: (f has_integral \(\left(\sum k \in\right.\) snd \(^{\prime} p\). integral \(\left.\left.k f\right)\right) S\)
proof -
```

```
    have snd ' p division_of S
    by (simp add: assms(1) division_of_tagged_division)
    with assms show ?thesis
    by (metis (mono_tags, lifting) has_integral_combine_division has_integral_integrable_integral
imageE prod.collapse)
    qed
    also have (\sumk\insnd'p. integral kf)}=(\sum(x,k)\inp.integral kf
    by (intro sum.over_tagged_division_lemma[OF assms(1), symmetric] integral_null)
        (simp add: content_eq_0_interior)
    finally show ?thesis
        using assms by (auto simp add: has_integral_iff intro!: sum.cong)
qed
lemma integral_combine_tagged_division_bottomup:
    fixes f :: ' }n::\mathrm{ :uclidean_space }=>\mathrm{ ' 'a::banach
    assumes p: p tagged_division_of (cbox a b)
        and f: }\xk.(x,k)\inp\Longrightarrowf integrable_on k
    shows integral (cbox a b) f= sum ( }\lambda(x,k)\mathrm{ . integral kf)p
    by (simp add: has_integral_combine_tagged_division[OF p] integral_unique f inte-
grable_integral)
lemma has_integral_combine_tagged_division_topdown:
    fixes }f:: ' n::euclidean_space => 'a::banach
    assumes f:f integrable_on cbox a b
        and p: p tagged_division_of (cbox a b)
    shows (f has_integral (sum ( }\lambda(x,K).\mathrm{ integral K f) p)) (cbox a b)
proof -
    have (f has_integral integral K f)K if (x,K)\inp for x K
    by (metis assms integrable_integral integrable_on_subcbox tagged_division_ofD(3,4)
that)
    then show ?thesis
        by (simp add: has_integral_combine_tagged_division p)
qed
lemma integral_combine_tagged_division_topdown:
    fixes f :: ' }n::\mathrm{ euclidean_space }=>\mp@subsup{}{}{\prime}a::banac
    assumes f integrable_on cbox a b
        and p tagged_division_of (cbox a b)
    shows integral (cbox a b) f}=\operatorname{sum}(\lambda(x,k). integral kf)
    using assms by (auto intro: integral_unique [OF has_integral_combine_tagged_division_topdown])
```


6.15.40 Henstock's lemma

lemma Henstock_lemma_part1:
fixes $f::$ ' $n::$ euclidean_space \Rightarrow 'a::banach
assumes intf: f integrable_on cbox a b
and $e>0$
and gauge d
and less_e: $\bigwedge p . \llbracket p$ tagged_division_of (cbox ab); dine $p \rrbracket \Longrightarrow$

```
norm (sum ( }\lambda(x,K). content K *R fx) p-integral(cbox a b) f)
< e
    and p: p tagged_partial_division_of (cbox a b) d fine p
    shows norm (sum ( }\lambda(x,K). content K *R f x - integral Kf) p)\leqe(is?lhs \leq
e)
proof (rule field_le_epsilon)
    fix }k\mathrm{ :: real
    assume k>0
    let ?SUM = \lambdap. (\sum (x,K) \in p. content K *R f x)
    note p' = tagged_partial_division_ofD[OF p(1)]
    have U(snd' }p)\subseteqcbox a 
        using p'(3) by fastforce
    then obtain q}\mathrm{ where q: snd ' }p\subseteqq\mathrm{ and qdiv: q division_of cbox a b
    by (meson p(1) partial_division_extend_interval partial_division_of_tagged_division)
    note q' = division_ofD[OF qdiv]
    define }r\mathrm{ where }r=q-snd ' 
    have snd' }p\capr={
        unfolding r_def by auto
    have finite r
        using q' unfolding r_def by auto
    have \existsp.p tagged_division_of }i\wedged\mathrm{ fine }p
            norm (?SUM p - integral if)<k/(real (card r) + 1)
        if i\inr for }
    proof -
    have gt0: k / (real (card r) + 1)> 0 using <k> 0\rangle by simp
    have i:i\inq
        using that unfolding r_def by auto
        then obtain }uv\mathrm{ where uv: i= cbox uv
        using q'(4) by blast
        then have cbox uv\subseteqcbox a b
        using i q'(2) by auto
    then have f integrable_on cbox uv
        by (rule integrable_subinterval[OF intf])
    with integrable_integral[OF this,unfolded has_integral[of f]]
    obtain dd where gauge dd and dd:
        \mathcal{D}.\llbracket\mathcal{D}\mathrm{ tagged_division_of cbox u v; dd fine }\mathcal{D}\rrbracket\Longrightarrow
    norm (?SUM D - integral (cbox u v)f)<k/(real (card r) + 1)
        using gt0 by auto
    with gauge_Int[OF <gauge d〉<gauge dd>]
    obtain qq where qq: qq tagged_division_of cbox uv (\lambdax.d x \capdd x) fine qq
        using fine_division_exists by blast
    with dd[of qq] show ?thesis
        by (auto simp: fine_Int uv)
    qed
    then obtain qq where qq: \bigwedgei. i\inr\Longrightarrowqqi tagged_division_of i}
        d fine qq i ^ norm (?SUM (qq i) - integral if)<k/(real (cardr) + 1)
    by metis
    let ?p = p\cup\bigcup(qq'r)
```

```
have norm (?SUM ?p - integral (cbox a b) f) \(<e\)
proof (rule less_e)
    show \(d\) fine? \(p\)
        by (metis (mono_tags, hide_lams) qq fine_Un fine_Union imageE \(p(2))\)
    note \(p t a g=\) tagged_partial_division_of_Union_self \([\) OF \(p(1)]\)
    have \(p \cup \bigcup(q q\) ' \(r)\) tagged_division_of \(\bigcup(s n d ' p) \cup \bigcup r\)
    proof (rule tagged_division_Un[OF ptag tagged_division_Union [OF 〈finite r〉]])
        show \(\bigwedge i . i \in r \Longrightarrow q q i\) tagged_division_of \(i\)
            using \(q q\) by auto
        show \(\bigwedge i 1 i 2 . \llbracket i 1 \in r ; i 2 \in r ; i 1 \neq i 2 \rrbracket \Longrightarrow\) interior \(i 1 \cap\) interior \(i 2=\{ \}\)
            by (simp add: \(\left.q^{\prime}(5) r_{-} d e f\right)\)
    show interior \((\bigcup(\) snd ' \(p)) \cap\) interior \((\bigcup r)=\{ \}\)
    proof (rule Int_interior_Union_intervals \([O F\langle\) finite \(r\rangle])\)
            show open (interior \((\bigcup(\) snd ' \(p))\) )
            by blast
            show \(\wedge T . T \in r \Longrightarrow \exists a b . T=\) cbox \(a b\)
            by (simp add: \(\left.q^{\prime}(4) r_{-} d e f\right)\)
            have interior \(T \cap\) interior \((\bigcup(s n d ' p))=\{ \}\) if \(T \in r\) for \(T\)
            proof (rule Int_interior_Union_intervals)
            show \(\bigwedge U . U \in\) snd' \(p \Longrightarrow \exists a b . U=c b o x a b\)
                using \(q q^{\prime}(4)\) by blast
            show \(\wedge U . U \in\) snd ' \(p \Longrightarrow\) interior \(T \cap\) interior \(U=\{ \}\)
                by (metis Diffe q q'(5) r_def subsetD that)
            qed (use \(p^{\prime}\) in auto)
            then show \(\wedge T . T \in r \Longrightarrow\) interior \((\bigcup(\) snd' \(p)) \cap\) interior \(T=\{ \}\)
            by (metis Int_commute)
    qed
    qed
    moreover have \(\bigcup(s n d ' p) \cup \bigcup r=c b o x a b\) and \(\{q q i \mid i . i \in r\}=q q\) 'r
    using qdiv \(q\) unfolding Union_Un_distrib[symmetric] r_def by auto
    ultimately show ?p tagged_division_of (cbox a b)
    by fastforce
qed
then have norm \((? S U M p+(? S U M(\bigcup(q q\) 'r) \())-\) integral \((\) cbox ab) \(f)<e\)
proof (subst sum.union_inter_neutral[symmetric, OF 〈finite p〉], safe)
    show content \(L *_{R} f x=0\) if \((x, L) \in p(x, L) \in q q K K \in r\) for \(x K L\)
    proof -
    obtain \(u v\) where \(u v\) : \(L=\) cbox \(u v\)
        using \(\langle(x, L) \in p\rangle p^{\prime}(4)\) by blast
    have \(L \subseteq K\)
        using \(q q[\) OF that(3)] tagged_division_ofD \((3)\langle(x, L) \in q q K\rangle\) by metis
    have \(L \in\) snd ' \(p\)
        using \(\langle(x, L) \in p\rangle\) image_iff by fastforce
    then have \(L \in q K \in q L \neq K\)
        using that \((1,3) q(1)\) unfolding \(r_{-}\)def by auto
    with \(q^{\prime}(5)\) have interior \(L=\{ \}\)
        using interior_mono[OF \(\langle L \subseteq K\rangle\) ] by blast
    then show content \(L *_{R} f x=0\)
        unfolding uv content_eq_0_interior [symmetric] by auto
```

```
    qed
    show finite (U(qq`r))
    by (meson finite_UN qq 〈finite r> tagged_division_of_finite)
    qed
    moreover have content M *R fx=0
        if x:(x,M)\inqqK (x,M)\inqqL and KL:qqK\not=qqL and r:K\inr L\inr
    for xMKL
proof -
    note kl= tagged_division_ofD(3,4)[OF qq[THEN conjunct1]]
    obtain uv where uv:M= cbox uv
        using <(x,M)\inqq L><L\inr>kl(2) by blast
    have empty: interior ( }K\capL)={
        by (metis DiffD1 interior_Int q'(5) r_def KL r)
    have interior M={}
        by (metis (no_types, lifting) Int_assoc empty inf.absorb_iff2 interior_Int kl(1)
subset_empty x r)
    then show content M * 
        unfolding uv content_eq_0_interior[symmetric]
        by auto
    qed
    ultimately have norm(?SUM p + sum ?SUM (qq`r) - integral (cbox a b) f)
< e
    apply (subst (asm) sum.Union_comp)
    using qq by (force simp: split_paired_all)+
    moreover have content M * *R fx=0
        if K\inrL\inrK}=|\mp@code{qqK=qqL}(x,M)\inqqK for KLx
    using tagged_division_ofD(6) qq that by (metis (no_types, lifting))
    ultimately have less_e: norm (?SUM p + sum (?SUM oqq)r - integral (cbox
a b) f)}<
    proof (subst (asm) sum.reindex_nontrivial [OF <finite r>])
    qed (auto simp: split_paired_all sum.neutral)
    have norm_le: norm (cp-ip)\leqe+k
                if norm ((cp+cr)-i)<enorm (cr-ir)<kip+ir=i
                    for ir ip i cr cp::'a
    proof -
        from that show ?thesis
            using norm_triangle_le[of cp + cr - i - (cr - ir)]
            unfolding that(3)[symmetric] norm_minus_cancel
            by (auto simp add: algebra_simps)
    qed
    have ?lhs = norm (?SUM p - (\sum(x,k)\inp. integral kf))
        unfolding split_def sum_subtractf ..
    also have ... \leqe+k
    proof (rule norm_le[OF less_e])
        have lessk: k* real (card r) / (1 + real (card r)) <k
            using \langlek>0\rangle by (auto simp add: field_simps)
    have norm (sum (?SUM oqq)r - (\sumk\inr. integral kf)) \leq (\sumx\inr.k / (real
(card r) + 1))
```

```
            unfolding sum_subtractf[symmetric] by (force dest: qq intro!: sum_norm_le)
    also have ...<k
    by (simp add: lessk add.commute mult.commute)
    finally show norm (sum (?SUM o qq)r - (\sumk\inr. integral kf))}<k
    next
    from q(1) have [simp]: snd ' }p\cupq=q\mathrm{ by auto
    have integral lf =0
        if inp:}(x,l)\inp(y,m)\inp\mathrm{ and ne: (x,l)}\not=(y,m)\mathrm{ and l=m for x l y m
    proof -
            obtain uv where uv:l=cbox uv
                using inp p'(4) by blast
            have content (cbox u v)=0
            unfolding content_eq_0_interior using that p(1) uv
            by (auto dest: tagged_partial_division_ofD)
            then show ?thesis
            using uv by blast
    qed
    then have (\sum (x,K)\inp. integral Kf)=(\sumK\insnd ' p. integral Kf)
        apply (subst sum.reindex_nontrivial [OF <finite p〉])
        unfolding split_paired_all split_def by auto
    then show (\sum(x,k)\inp. integral kf) +(\sumk\inr. integral kf)=integral (cbox
a b) f
    unfolding integral_combine_division_topdown[OF intf qdiv] r_def
    using q'(1) p'(1) sum.union_disjoint [of snd' pq-snd ' p, symmetric]
        by simp
    qed
    finally show ?lhs }\leqe+k
qed
lemma Henstock_lemma_part2:
    fixes f :: 'm::euclidean_space = ' }n::\mathrm{ euclidean_space
    assumes fed: f integrable_on cbox a b e>0 gauge d
        and less_e: \bigwedge\mathcal{D}.\llbracket\mathcal{D tagged_division_of (cbox a b);d fine }\mathcal{D}\rrbracket\Longrightarrow
                                    norm(sum ( }\lambda(x,k).content k\mp@subsup{*}{R}{}fx)\mathcal{D}-integral (cbox a b)f
< e
        and tag: p tagged_partial_division_of (cbox a b)
        and d fine p
    shows sum (\lambda(x,k). norm (content k*R f x - integral kf)) p\leq2 * real
(DIM('n))*e
proof -
    have finite p
        using tag tagged_partial_division_ofD by blast
    then show ?thesis
        unfolding split_def
    proof (rule sum_norm_allsubsets_bound)
        fix }
        assume Q:Q\subseteqp
        then have fine: d fine Q
            by (simp add: <d fine p> fine_subset)
```

```
    show norm (\sumx\inQ. content (snd x) *R f (fst x) - integral (snd x)f)\leqe
    apply (rule Henstock_lemma_part1[OF fed less_e, unfolded split_def])
    using Q tag tagged_partial_division_subset by (force simp add: fine)+
    qed
qed
lemma Henstock_lemma:
    fixes f :: 'm::euclidean_space = ' }n\mathrm{ ::euclidean_space
    assumes intf:f integrable_on cbox a b
        and e>0
    obtains }\gamma\mathrm{ where gauge }
        and }\bigwedgep.\llbracketp tagged_partial_division_of (cbox a b);\gamma fine p\rrbracket
            sum (\lambda(x,k). norm(content k *R}fx-integral kf)) p<
proof -
    have *: e/(2 * (real DIM('n) + 1)) > 0 using <e> 0> by simp
    with integrable_integral[OF intf, unfolded has_integral]
    obtain }\gamma\mathrm{ where gauge }
        and \gamma:\bigwedge\mathcal{D}.\llbracket\mathcal{D tagged_division_of cbox a b;\gamma fine }\mathcal{D}\rrbracket\Longrightarrow
                norm ((\sum (x,K)\in\mathcal{D}. content K*R fx)-integral (cbox a b) f)
                <e/(2* (real DIM('n) + 1))
        by metis
    show thesis
    proof (rule that [OF〈gauge \gamma>])
        fix p
        assume p: p tagged_partial_division_of cbox a b \gamma fine p
        have (\sum(x,K)\inp. norm (content K*R}fx-integral Kf))
                \leq2 * real DIM ('n)*(e/(2 * (real DIM ('n) + 1)))
        using Henstock_lemma_part2[OF intf * <gauge \gamma\rangle}\gamma p] by meti
    also have ... <e
            using \langlee> 0\rangle by (auto simp add: field_simps)
        finally
        show (\sum(x,K)\inp.norm (content K *R fx - integral Kf ) ) < e.
    qed
qed
```


6.15.41 Monotone convergence (bounded interval first)

```
lemma bounded_increasing_convergent:
fixes \(f::\) nat \(\Rightarrow\) real
shows \(\llbracket\) bounded \((\) range \(f) ; \wedge n . f n \leq f(S u c n) \rrbracket \Longrightarrow \exists l . f \longrightarrow l\)
using Bseq_mono_convergent \([o f f]\) incseq_Suc_iff \([o f f]\)
by (auto simp: image_def Bseq_eq_bounded convergent_def incseq_def)
lemma monotone_convergence_interval:
fixes \(f::\) nat \(\Rightarrow\) ' \(n::\) euclidean_space \(\Rightarrow\) real
assumes intf: \(\wedge k\). \((f k)\) integrable_on cbox a \(b\) and \(l e: \bigwedge k x . x \in c b o x a b \Longrightarrow(f k x) \leq f(\) Suc \(k) x\) and \(f g: \Lambda x . x \in\) cbox a \(b \Longrightarrow((\lambda k . f k x) \longrightarrow g x)\) sequentially and bou: bounded (range ( \(\lambda k\). integral (cbox ab) \((f k)\) ) )
```

```
    shows \(g\) integrable_on cbox a \(b \wedge((\lambda k\). integral \((\) cbox ab) \((f k)) \longrightarrow\) integral
(cbox a b) g) sequentially
proof (cases content (cbox a b) \(=0\) )
    case True then show ?thesis
        by auto
next
    case False
    have \(f g 1:(f k x) \leq(g x)\) if \(x: x \in c b o x a b\) for \(x k\)
    proof -
        have \(\forall_{F} j\) in sequentially. \(f k x \leq f j x\)
        proof (rule eventually_sequentiallyI [of \(k\) ])
            show \(\bigwedge j\). \(k \leq j \Longrightarrow f k x \leq f j x\)
            using le \(x\) by (force intro: transitive_stepwise_le)
        qed
        then show \(f k x \leq g x\)
            using tendsto_lowerbound [OF fg] x trivial_limit_sequentially by blast
    qed
    have int_inc: \(\bigwedge n\). integral (cbox ab) \((f n) \leq\) integral \((\) cbox a b) \((f(S u c n))\)
        by (metis integral_le intf le)
    then obtain \(i\) where \(i:(\lambda k\). integral (cbox ab) \((f k)) \longrightarrow i\)
        using bounded_increasing_convergent bou by blast
    have \(\Lambda k . \forall_{F} x\) in sequentially. integral (cbox ab) \((f k) \leq\) integral (cbox a \(b\) ) ( \(f\)
x)
    unfolding eventually_sequentially
    by (force intro: transitive_stepwise_le int_inc)
    then have \(i^{\prime}: \wedge k\). (integral (cbox ab) \(\left.(f k)\right) \leq i\)
        using tendsto_le [OF trivial_limit_sequentially i] by blast
    have ( \(g\) has_integral i) (cbox a b)
    unfolding has_integral real_norm_def
    proof clarify
    fix \(e\) ::real
    assume \(e: e>0\)
    have \(\wedge k .(\exists \gamma\). gauge \(\gamma \wedge(\forall \mathcal{D} . \mathcal{D}\) tagged_division_of \((\) cbox a \(b) \wedge \gamma\) fine \(\mathcal{D} \longrightarrow\)
            abs \(\left(\left(\sum(x, K) \in \mathcal{D}\right.\right.\). content \(\left.K *_{R} f k x\right)-\) integral \((\) cbox a \(\left.b)(f k)\right)<e / \mathcal{Z}^{\wedge}\)
\((k+2)))\)
            using intf e by (auto simp: has_integral_integral has_integral)
    then obtain \(c\) where \(c: \bigwedge x\). gauge ( \(c x\) )
                \(\bigwedge x \mathcal{D} . \llbracket \mathcal{D}\) tagged_division_of cbox a b; c \(x\) fine \(\mathcal{D} \rrbracket \Longrightarrow\)
                        abs \(\left(\left(\sum(u, K) \in \mathcal{D}\right.\right.\). content \(\left.K *_{R} f x u\right)-\) integral \((\) cbox a b) \((f x))\)
                        \(<e / 2^{\wedge}(x+2)\)
        by metis
    have \(\exists r . \forall k \geq r .0 \leq i-(\) integral \((\) cbox ab) \((f k)) \wedge i-(\) integral \((\) cbox ab)
\((f k))<e / 4\)
    proof -
        have \(e / 4>0\)
            using \(e\) by auto
            show ?thesis
            using LIMSEQ_D [OF \(i\langle e / 4>0\rangle] i^{\prime}\) by auto
```


qed

then obtain r where $r: \bigwedge k . r \leq k \Longrightarrow 0 \leq i-$ integral (cbox ab) $(f k)$

$$
\bigwedge k . r \leq k \Longrightarrow i-\text { integral }(\text { cbox a } b)(f k)<e / 4
$$

by metis
have $\exists n \geq r . \forall k \geq n .0 \leq(g x)-(f k x) \wedge(g x)-(f k x)<e /(4 * \operatorname{content}(c b o x$ $a b)$)
if $x \in c b o x a b$ for x
proof -
have $e /(4 *$ content $($ cbox a b)) >0
by (simp add: False content_lt_nz e)
with fg that LIMSEQ_D
obtain N where $\forall n \geq N$. norm $(f n x-g x)<e /(4 *$ content (cbox ab)) by metis
then show $\exists n \geq r . \forall k \geq n .0 \leq g x-f k x \wedge g x-f k x<e /(4 *$ content (cbox a b))
apply (rule_tac $x=N+r$ in exI)
using fg1 [OF that $]$ by (auto simp add: field_simps)
qed
then obtain m where $r_{-} l e _m: ~ \bigwedge x . x \in c b o x a b \Longrightarrow r \leq m x$
and $m: \bigwedge x k . \llbracket x \in$ cbox a $b ; m x \leq k \rrbracket$
$\Longrightarrow 0 \leq g x-f k x \wedge g x-f k x<e /(4 * \operatorname{content}($ cbox a b))
by metis
define d where $d x=c(m x) x$ for x
show $\exists \gamma$. gauge $\gamma \wedge$
$(\forall \mathcal{D} . \mathcal{D}$ tagged_division_of cbox a $b \wedge$ γ fine $\mathcal{D} \longrightarrow$ abs $\left(\left(\sum(x, K) \in \mathcal{D}\right.\right.$. content $\left.\left.\left.K *_{R} g x\right)-i\right)<e\right)$
proof (rule exI, safe)
show gauge d
using $c(1)$ unfolding gauge_def d_def by auto
next
fix \mathcal{D}
assume ptag: \mathcal{D} tagged_division_of (cbox a b) and dfine \mathcal{D}
note $p^{\prime}=$ tagged_division_of $D[O F$ ptag]
obtain s where $s: \bigwedge x . x \in \mathcal{D} \Longrightarrow m\left(f_{s t} x\right) \leq s$
by (metis finite_imageI finite_nat_set_iff_bounded_le $p^{\prime}(1)$ rev_image_eqI)
have $*:|a-d|<e$ if $|a-b| \leq e / 4|b-c|<e / 2|c-d|<e / 4$ for $a b$
c d
using that norm_triangle_lt[of $a-b b-c 3 * e / 4]$
norm_triangle_lt[of $a-b+(b-c) c-d e]$
by (auto simp add: algebra_simps)
show $\mid\left(\sum(x, k) \in \mathcal{D}\right.$. content $\left.k *_{R} g x\right)-i \mid<e$
proof (rule *)
have $\mid\left(\sum(x, K) \in \mathcal{D}\right.$. content $\left.K *_{R} g x\right)-\left(\sum(x, K) \in \mathcal{D}\right.$. content $K *_{R} f(m$ x) $x) \mid$
$\leq\left(\sum i \in \mathcal{D} . \mid\left(\right.\right.$ case i of $(x, K) \Rightarrow$ content $\left.K *_{R} g x\right)-($ case i of $(x$, $K) \Rightarrow$ content $\left.\left.K *_{R} f(m x) x\right) \mid\right)$
by (metis (mono_tags) sum_subtractf sum_abs)
also have $\ldots \leq\left(\sum(x, k) \in \mathcal{D}\right.$. content $k *(e /(4 *$ content $($ cbox a b) $)))$
proof (rule sum_mono, simp add: split_paired_all)
fix $x K$
assume $x k:(x, K) \in \mathcal{D}$
with ptag have $x: x \in c b o x a b$
by blast
then have abs (content $K *(g x-f(m x) x)) \leq$ content $K *(e /(4 *$ content (cbox a b)))
by (metis m[OF x] mult_nonneg_nonneg abs_of_nonneg less_eq_real_def measure_nonneg mult_left_mono order_refl)
then show \mid content $K * g x-$ content $K * f(m x) x \mid \leq$ content $K *$ $e /(4 *$ content (cbox a b))
by (simp add: algebra_simps)
qed
also have $\ldots=\left(e /(4 *\right.$ content $($ cbox ab) $)) *\left(\sum(x, k) \in \mathcal{D}\right.$. content $\left.k\right)$
by (simp add: sum_distrib_left sum_divide_distrib split_def mult.commute)
also have $\ldots \leq e / 4$
by (metis False additive_content_tagged_division [OF ptag] nonzero_mult_divide_mult_cancel_right order_refl times_divide_eq_left)
finally show $\mid\left(\sum(x, K) \in \mathcal{D}\right.$. content $\left.K *_{R} g x\right)-\left(\sum(x, K) \in \mathcal{D}\right.$. content K $\left.*_{R} f(m x) x\right) \mid \leq e / 4$.

next

have norm $\left(\left(\sum(x, K) \in \mathcal{D}\right.\right.$. content $\left.K *_{R} f(m x) x\right)-\left(\sum(x, K) \in \mathcal{D}\right.$. integral $K(f(m x))))$
$\leq \operatorname{norm}\left(\sum j=0 . . s . \sum(x, K) \in\{x k \in \mathcal{D} . m(f s t x k)=j\}\right.$. content K $*_{R} f(m x) x-$ integral $\left.K(f(m x))\right)$
apply (subst sum.group)
using s by (auto simp: sum_subtractf split_def $p^{\prime}(1)$)
also have $\ldots<e / 2$
proof -
have norm $\left(\sum j=0 . . s . \sum(x, k) \in\{x k \in \mathcal{D} . m(f s t x k)=j\}\right.$. content k $*_{R} f(m x) x-$ integral $\left.k(f(m x))\right)$

$$
\leq\left(\sum i=0 . . s . e / 2^{\wedge}(i+2)\right)
$$

proof (rule sum_norm_le)
fix t
assume $t \in\{0 . . s\}$
have norm $\left(\sum(x, k) \in\{x k \in \mathcal{D} . m(\right.$ fst $x k)=t\}$. content $k *_{R} f(m x) x$ - integral $k(f(m x)))=$
$\operatorname{norm}\left(\sum(x, k) \in\{x k \in \mathcal{D} . m(\right.$ fst $x k)=t\}$. content $k *_{R} f t x-$ integral $k(f t))$ by (force intro!: sum.cong arg_cong $[$ where $f=$ norm $]$)
also have $\ldots \leq e / 2^{\wedge}(t+2)$
proof (rule Henstock_lemma_part1 [OF intf]) show $\{x k \in \mathcal{D} . m(f s t x k)=t\}$ tagged_partial_division_of cbox a b proof (rule tagged_partial_division_subset $[$ of $\mathcal{D}]$)
show \mathcal{D} tagged_partial_division_of cbox a b
using ptag tagged_division_of_def by blast
qed auto
show $c t$ fine $\{x k \in \mathcal{D} . m(f s t x k)=t\}$
using $\langle d$ fine $\mathcal{D}\rangle$ by (auto simp: fine_def d_def)
qed (use ce in auto)
finally show norm $\left(\sum(x, K) \in\{x k \in \mathcal{D} . m(f\right.$ st $x k)=t\}$. content $K *_{R}$ $f(m x) x-$

$$
\text { integral } K(f(m x))) \leq e / \mathcal{Z}^{\wedge}(t+2) .
$$

qed
also have $\ldots=(e / 2 / 2) *\left(\sum i=0 . . s .(1 / 2){ }^{\wedge} i\right)$
by (simp add: sum_distrib_left field_simps)
also have $\ldots<e / 2$
by (simp add: sum_gp mult_strict_left_mono[OF _ e])
finally show norm $\left(\sum j=0\right.$..s. $\sum(x, k) \in\{x k \in \mathcal{D}$.
$m(f s t x k)=j\}$. content $k *_{R} f(m x) x-$ integral $\left.k(f(m x))\right)<e / 2$.
qed
finally show $\mid\left(\sum(x, K) \in \mathcal{D}\right.$. content $\left.K *_{R} f(m x) x\right)-\left(\sum(x, K) \in \mathcal{D}\right.$.
integral $K(f(m x))) \mid<e / 2$
by simp
next
have comb: integral (cbox ab) $(f y)=\left(\sum(x, k) \in \mathcal{D}\right.$. integral $\left.k(f y)\right)$ for y
using integral_combine_tagged_division_topdown[OF intf ptag] by metis
have $f_{-} l e: \bigwedge y m n . \llbracket y \in c b o x a b ; n \geq m \rrbracket \Longrightarrow f m y \leq f n y$
using le by (auto intro: transitive_stepwise_le)
have $\left(\sum(x, k) \in \mathcal{D}\right.$. integral $\left.k(f r)\right) \leq\left(\sum(x, K) \in \mathcal{D}\right.$. integral $\left.K(f(m x))\right)$
proof (rule sum_mono, simp add: split_paired_all)
fix $x K$
assume $x K:(x, K) \in \mathcal{D}$
show integral $K(f r) \leq$ integral $K(f(m x))$
proof (rule integral_le)
show $f r$ integrable_on K
by (metis integrable_on_subcbox intf $\left.p^{\prime}(3) p^{\prime}(4) x K\right)$
show $f(m x)$ integrable_on K
by (metis elementary_interval integrable_on_subdivision intf $p^{\prime}(3) p^{\prime}(4)$
$x K)$
show $f r y \leq f(m x) y$ if $y \in K$ for y
using that $r_{-} l e _m[$ of $x] p^{\prime}(2-3)[O F x K] f_{-} l e$ by auto
qed
qed
moreover have $\left(\sum(x, K) \in \mathcal{D}\right.$. integral $\left.K(f(m x))\right) \leq\left(\sum(x, k) \in \mathcal{D}\right.$. integral $k(f s)$)
proof (rule sum_mono, simp add: split_paired_all)
fix $x K$
assume $x K:(x, K) \in \mathcal{D}$
show integral $K(f(m x)) \leq$ integral $K(f s)$
proof (rule integral_le)
show $f(m x)$ integrable_on K
by (metis elementary_interval integrable_on_subdivision intf $p^{\prime}(3) p^{\prime}(4)$
$x K$)
show f s integrable_on K
by (metis integrable_on_subcbox intf $\left.p^{\prime}(3) p^{\prime}(4) x K\right)$
show $f(m x) y \leq f s y$ if $y \in K$ for y
using that s xK f_le $p^{\prime}(3)$ by fastforce

```
            qed
            qed
            moreover have 0\leqi-integral (cbox a b) (fr) i - integral (cbox a b) (f
r)<e/4
                using r by auto
            ultimately show }|(\sum(x,K)\in\mathcal{D}\mathrm{ . integral }K(f(mx)))-i|<e/
                using comb i'[of s] by auto
            qed
    qed
    qed
    with i integral_unique show ?thesis
        by blast
qed
lemma monotone_convergence_increasing:
    fixes f :: nat }=>\mathrm{ ' n::euclidean_space }=>\mathrm{ real
    assumes int_f: \k.(fk) integrable_on S
        and }\wedgekx.x\inS\Longrightarrow(fkx)\leq(f(Suck)x
        and fg: \bigwedgex. x 
        and bou: bounded (range ( }\lambdak\mathrm{ . integral S (fk)))
    shows g integrable_on S ^ ((\lambdak. integral S (fk)) \longrightarrow integral S g) sequentially
proof -
    have lem: g integrable_on S ^((\lambdak. integral S (fk))\longrightarrow integral S g) sequentially
        if f0: \kx. x \inS\Longrightarrow0\leqfkx
        and int_f: \k. (fk) integrable_on S
```



```
        and lim: \bigwedgex. x }\inS\Longrightarrow((\lambdak.fkx)\longrightarrowgx) sequentially
        and bou: bounded (range( }\lambdak\mathrm{ . integral S (fk)))
        for f :: nat => ' n::euclidean_space }=>\mathrm{ real and g S
    proof -
        have fg:(fkx)\leq(gx) if x\inS for xk
        proof -
            have }\xa.k\leqxa\Longrightarrowfkx\leqfxa
            using le by (force intro: transitive_stepwise_le that)
            then show ?thesis
                using tendsto_lowerbound [OF lim [OF that]] eventually_sequentiallyI by
force
    qed
    obtain i where i:(\lambdak. integral S(fk))\longrightarrowi
            using bounded_increasing_convergent [OF bou] le int_f integral_le by blast
        have i':(integral S (fk))\leqi for k
        proof -
            have }\k.\bigwedgex.x\inS\Longrightarrow\foralln\geqk.fkx\leqfn
                using le by (force intro: transitive_stepwise_le)
            then show ?thesis
            using tendsto_lowerbound [OF i eventually_sequentiallyI trivial_limit_sequentially]
                by (meson int_f integral_le)
    qed
    let ?f = ( \lambdakx. if }x\inS\mathrm{ then f k x else 0)
```

let $? g=(\lambda x$. if $x \in S$ then $g x$ else 0$)$
have int: ?f k integrable_on cbox $a b$ for $a b k$
by (simp add: int_f integrable_altD(1))
have int': $\wedge k$ ab.fkintegrable_on cbox ab $\quad \cap S$
using int by (simp add: Int_commute integrable_restrict_Int)
have g: ?g integrable_on cbox a $b \wedge$
$(\lambda k$. integral $($ cbox $a b)(? f k)) \longrightarrow$ integral (cbox $a b)$? g for $a b$
proof (rule monotone_convergence_interval)
have norm $($ integral $($ cbox a b) $($?f $k)) \leq \operatorname{norm}($ integral $S(f k))$ for k
proof -
have $0 \leq$ integral (cbox a b) (?f k)
by (metis (no_types) integral_nonneg Int_iff fo inf_commute integral_restrict_Int
int')
moreover have $0 \leq$ integral $S(f k)$
by (simp add: integral_nonneg f0 int_f)
moreover have integral $(S \cap$ cbox a b) $(f k) \leq \operatorname{integral} S(f k)$
by (metis f0 inf_commute int' int_f integral_subset_le le_inf_iff order_refl)
ultimately show? ?thesis
by (simp add: integral_restrict_Int)
qed
moreover obtain B where $\backslash x . x \in$ range (λk. integral $S(f k)) \Longrightarrow$ norm $x \leq B$
using bou unfolding bounded_iff by blast
ultimately show bounded (range (λk. integral (cbox a b) (?f $k)$))
unfolding bounded_iff by (blast intro: order_trans)
qed (use int le lim in auto)
moreover have $\exists B>0 . \forall a b$. ball $0 B \subseteq$ cbox $a b \longrightarrow$ norm (integral (cbox a
b) ? $g-i)<e$
if $0<e$ for e
proof have $e / 4>0$
using that by auto
with LIMSEQ_D [OF i] obtain N where $N: \wedge n . n \geq N \Longrightarrow$ norm (integral $S(f n)-i)<e / 4$
by metis
with int_f[of N, unfolded has_integral_integral has_integral_alt'[of $f N]]$
obtain B where $0<B$ and B :
$\backslash a b$. ball $0 B \subseteq$ cbox a $b \Longrightarrow$ norm (integral (cbox a b) (?f N) - integral $S(f N))<e / 4$
by (meson $\langle 0<e / 4$)
have norm (integral (cbox ab) ? $g-i)<e$ if ab: ball $0 B \subseteq c b o x a b$ for a b
proof -
obtain M where $M: \wedge n . n \geq M \Longrightarrow$ abs (integral (cbox ab) (?f n) integral (cbox a b) ?g) <e/2
using $\langle e>0\rangle g$ by (fastforce simp add: dest!: LIMSEQ_D [where $r=$ e/2])
have $*: \bigwedge \alpha \beta g . \llbracket|\alpha-i|<e / 2 ;|\beta-g|<e / 2 ; \alpha \leq \beta ; \beta \leq i \rrbracket \Longrightarrow \mid g-$ $i \mid<e$

```
            unfolding real_inner_1_right by arith
        show norm (integral (cbox a b) ?g - i) <e
            unfolding real_norm_def
        proof (rule *)
            show |integral (cbox a b) (?f N) - i|<e/2
            proof (rule abs_triangle_half_l)
            show |integral (cbox a b) (?f N) - integral S (fN)|<e/2/2
                using B[OF ab] by simp
            show abs (i - integral S (fN))<e/2/2
                using N by (simp add: abs_minus_commute)
    qed
    show |integral (cbox a b) (?f (M+N)) - integral (cbox a b) ?g| <e/2
            by (metis le_add1 M[of M + N])
    show integral (cbox a b) (?f N) \leqintegral (cbox a b) (?f (M+N))
    proof (intro ballI integral_le[OF int int])
            fix x assume x c cbox a b
            have (fmx)\leq(fnx) if x\inSn\geqm for mn
            proof (rule transitive_stepwise_le [OF <n\geqm> order_refl])
                show \uyz.\llbracketfux\leqfyx;fyx\leqfzx\rrbracket\Longrightarrowfux\leqfzx
                    using dual_order.trans by blast
            qed (simp add:le <x \inS`)
            then show (?f N)x\leq(?f (M+N))x
                by auto
    qed
    have integral (cbox a b \capS) (f(M+N))\leq integral S (f (M+N))
            by (metis Int_lower1 f0 inf_commute int' int_f integral_subset_le)
            then have integral (cbox a b) (?f (M+N)) \leqintegral S (f (M+N))
            by (metis (no_types) inf_commute integral_restrict_Int)
            also have ... }<
            using i'}[\mathrm{ of M +N] by auto
            finally show integral (cbox a b) (?f (M+N))\leqi.
        qed
    qed
    then show ?thesis
        using < O < B by blast
    qed
    ultimately have (g has_integral i) S
    unfolding has_integral_alt' by auto
    then show ?thesis
    using has_integral_integrable_integral i integral_unique by metis
    qed
    have sub: \k. integral S ( \lambdax. fkx - f0 x) = integral S (fk) - integral S (f 0)
    by (simp add: integral_diff int_f)
    have *: \bigwedgex m n. x \inS\Longrightarrown\geqm\Longrightarrowfmx\leqfnx
    using assms(2) by (force intro: transitive_stepwise_le)
    have gf:(\lambdax.gx-f0x) integrable_on S ^((\lambdak. integral S (\lambdax.f(Suc k)x-
f(0x))}
    integral S (\lambdax.gx - f0x)) sequentially
```

```
    proof (rule lem)
    show \k. (\lambdax.f (Suc k)x-f0x) integrable_on S
        by (simp add: integrable_diff int_f)
    show (\lambdak.f(Suc k)x-f0x)\longrightarrowg \longrightarrow - f0x if x f S for x
    proof -
        have (\lambdan.f(Suc n) x)\longrightarrowgx
            using LIMSEQ_ignore_initial_segment[OF fg[OF〈x \inS\rangle], of 1] by simp
        then show ?thesis
            by (simp add: tendsto_diff)
    qed
    show bounded (range ( }\lambdak.\mathrm{ integral S ( }\lambdax.f(Suck)x-f0x))
    proof -
        obtain B where B: \bigwedgek. norm (integral S (fk))\leqB
            using bou by (auto simp: bounded_iff)
        then have norm (integral S ( }\lambdax.f(Suck)x-f0x)
                \leqB+norm (integral S (f0)) for k
        unfolding sub by (meson add_le_cancel_right norm_triangle_le_diff)
        then show ?thesis
            unfolding bounded_iff by blast
    qed
    qed (use * in auto)
    then have ( }\lambdax.\mathrm{ integral S ( }\lambda\mathrm{ xa. f (Suc x) xa - f0 xa) + integral S (f0))
            untegral S (\lambdax.gx-f0x) + integral S (f 0)
    by (auto simp add: tendsto_add)
    moreover have ( }\lambdax.gx-f0x+f0x) integrable_on S
    using gf integrable_add int_f [of 0] by metis
    ultimately show ?thesis
    by (simp add: integral_diff int_f LIMSEQ_imp_Suc sub)
qed
lemma has_integral_monotone_convergence_increasing:
    fixes f :: nat => 'a::euclidean_space }=>\mathrm{ real
    assumes f: \k.(fk has_integral x k) s
    assumes \kx.x\ins\Longrightarrowfkx\leqf(Suc k)x
    assumes }\bigwedgex.x\ins\Longrightarrow(\lambdak.fkx)\longrightarrowg
    assumes }x\longrightarrow\mp@subsup{x}{}{\prime
    shows (g has_integral x') s
proof -
    have x_eq: x = (\lambdai. integral s (fi))
        by (simp add: integral_unique[OF f])
    then have x:range( }\lambdak\mathrm{ . integral s (fk)) = range }
        by auto
    have *:g integrable_on s ^( }\lambdak\mathrm{ . integral s (fk)) }\longrightarrow\mathrm{ integral s g
    proof (intro monotone_convergence_increasing allI ballI assms)
        show bounded (range( }\lambdak\mathrm{ . integral s (fk)))
            using x convergent_imp_bounded assms by metis
    qed (use f in auto)
    then have integral s g}=\mp@subsup{x}{}{\prime
        by (intro LIMSEQ_unique[OF_\langlex\longrightarrow和多) (simp add: x_eq)
```

```
    with * show ?thesis
    by (simp add: has_integral_integral)
qed
```

lemma monotone_convergence_decreasing:
fixes $f::$ nat $\Rightarrow{ }^{\prime} n:$:euclidean_space \Rightarrow real
assumes intf: $\wedge k .(f k)$ integrable_on S
and le: $\wedge k x . x \in S \Longrightarrow f($ Suc $k) x \leq f k x$
and $f g: \bigwedge x . x \in S \Longrightarrow((\lambda k . f k x) \longrightarrow g x)$ sequentially
and bou: bounded (range (λk. integral $S(f k))$)
shows g integrable_on $S \wedge(\lambda k$. integral $S(f k)) \longrightarrow$ integral $S g$
proof -
have $*$: range $(\lambda k$. integral $S(\lambda x .-f k x))=\left(*_{R}\right)(-1){ }^{\prime}($ range $(\lambda k$. integral S
($f k)$))
by force
have $(\lambda x .-g x)$ integrable_on $S \wedge(\lambda k$. integral $S(\lambda x .-f k x)) \longrightarrow$ integral
$S(\lambda x .-g x)$
proof (rule monotone_convergence_increasing)
show $\wedge k .(\lambda x .-f k x)$ integrable_on S
by (blast intro: integrable_neg intf)
show $\wedge k x . x \in S \Longrightarrow-f k x \leq-f(S u c k) x$
by (simp add: le)
show $\bigwedge x . x \in S \Longrightarrow(\lambda k .-f k x) \longrightarrow-g x$
by (simp add: fg tendsto_minus)
show bounded (range $(\lambda k$. integral $S(\lambda x .-f k x))$)
using * bou bounded_scaling by auto
qed
then show ?thesis
by (force dest: integrable_neg tendsto_minus)
qed
lemma integral_norm_bound_integral:
fixes f :: ' $n::$ euclidean_space \Rightarrow ' $a::$ banach
assumes int_f: fintegrable_on S
and int_g: g integrable_on S
and $l e_{-} g: \bigwedge x . x \in S \Longrightarrow \operatorname{norm}(f x) \leq g x$
shows norm (integral $S f$) \leq integral $S g$
proof -
have norm: norm $\eta \leq y+e$
if norm $\zeta \leq x$ and $|x-y|<e / 2$ and norm $(\zeta-\eta)<e / 2$
for $e x y$ and $\zeta \eta::{ }^{\prime} a$
proof -
have norm $(\eta-\zeta)<e / 2$
by (metis norm_minus_commute that(3))
moreover have $x \leq y+e / 2$
using that(2) by linarith
ultimately show ?thesis
using that(1) le_less_trans[OF norm_triangle_sub[of $\eta \zeta]]$ by (auto simp:
less_imp_le)

```
qed
have lem: norm (integral(cbox a b) f) \(\leq\) integral (cbox ab) \(g\)
    if \(f: f\) integrable_on cbox ab
    and \(g: g\) integrable_on cbox a \(b\)
    and nle: \(\wedge x . x \in \operatorname{cbox}\) a \(b \Longrightarrow \operatorname{norm}(f x) \leq g x\)
    for \(f:: ' n \Rightarrow{ }^{\prime} a\) and \(g a b\)
    proof (rule field_le_epsilon)
    fix \(e:\) : real
    assume \(e>0\)
    then have \(e: e / 2>0\)
        by auto
    with integrable_integral \([\) OF f , unfolded has_integral \([\) of \(f]]\)
    obtain \(\gamma\) where \(\gamma\) : gauge \(\gamma\)
                \(\wedge \mathcal{D} . \mathcal{D}\) tagged_division_of cbox \(a b \wedge \gamma\) fine \(\mathcal{D}\)
            \(\Longrightarrow \operatorname{norm}\left(\left(\sum(x, k) \in \mathcal{D}\right.\right.\). content \(\left.k *_{R} f x\right)-\) integral \(\left.(c b o x a b) f\right)<e / 2\)
        by meson
    moreover
    from integrable_integral[OF g,unfolded has_integral[of g]]e
    obtain \(\delta\) where \(\delta\) : gauge \(\delta\)
                \(\wedge \mathcal{D}\). \(\mathcal{D}\) tagged_division_of cbox \(a b \wedge \delta\) fine \(\mathcal{D}\)
            \(\Longrightarrow\) norm \(\left(\left(\sum(x, k) \in \mathcal{D}\right.\right.\). content \(\left.k *_{R} g x\right)-\) integral \(\left.(c b o x a b) g\right)<e / 2\)
        by meson
    ultimately have gauge \((\lambda x . \gamma x \cap \delta x)\)
        using gauge_Int by blast
    with fine_division_exists obtain \(\mathcal{D}\)
        where \(p\) : \(\mathcal{D}\) tagged_division_of cbox ab \((\lambda x . \gamma x \cap \delta x)\) fine \(\mathcal{D}\)
        by metis
    have \(\gamma\) fine \(\mathcal{D} \delta\) fine \(\mathcal{D}\)
        using fine_Int \(p(2)\) by blast+
    show norm (integral \((\) cbox a b) \(f) \leq\) integral (cbox ab) \(g+e\)
    proof (rule norm)
        have norm (content \(\left.K *_{R} f x\right) \leq\) content \(K *_{R} g x\) if \((x, K) \in \mathcal{D}\) for \(x K\)
        proof-
            have \(K: x \in K K \subseteq\) cbox a b
            using \(\langle(x, K) \in \mathcal{D}\rangle p(1)\) by blast +
            obtain \(u v\) where \(K=c b o x u v\)
                using \(\langle(x, K) \in \mathcal{D}\rangle p(1)\) by blast
            moreover have content \(K * \operatorname{norm}(f x) \leq\) content \(K * g x\)
            by (meson \(K(1) K(2)\) content_pos_le mult_left_mono nle subsetD)
            then show ?thesis
            by \(\operatorname{simp}\)
    qed
    then show norm \(\left(\sum(x, k) \in \mathcal{D}\right.\). content \(\left.k *_{R} f x\right) \leq\left(\sum(x, k) \in \mathcal{D}\right.\). content \(k\)
\(\left.{ }^{*}{ }_{R} g x\right)\)
            by (simp add: sum_norm_le split_def)
            show norm \(\left(\left(\sum(x, k) \in \mathcal{D}\right.\right.\). content \(\left.k *_{R} f x\right)-\) integral \((\) cbox a b) \(f)<e / 2\)
            using \(\langle\gamma\) fine \(\mathcal{D}\rangle \gamma p(1)\) by simp
    show \(\mid\left(\sum(x, k) \in \mathcal{D}\right.\). content \(\left.k *_{R} g x\right)-\) integral \((c b o x ~ a ~ b) ~ g \mid<e / 2\)
            using \(\langle\delta\) fine \(\mathcal{D}\rangle \delta p(1)\) by simp
```


qed

qed
show ?thesis
proof (rule field_le_epsilon)
fix e :: real
assume $e>0$
then have $e: e / 2>0$
by auto
let ?f $=(\lambda x$. if $x \in S$ then $f x$ else 0$)$
let $? g=(\lambda x$. if $x \in S$ then $g x$ else 0$)$
have f : ?f integrable_on cbox $a b$ and g : ? g integrable_on cbox $a b$ for $a b$
using int_f int_g integrable_altD by auto
obtain $B f$ where $0<B f$
and $B f$: $\bigwedge a b$. ball $0 B f \subseteq$ cbox a $b \Longrightarrow$
$\exists z$. (?f has_integral z) (cbox a b) \wedge norm $(z-$ integral $S f)<e / \mathcal{Z}$
using integrable_integral [OF int_f, unfolded has_integral'[of f]] e that by blast
obtain $B g$ where $0<B g$
and Bg: $\bigwedge a b$. ball $0 B g \subseteq$ cbox a $b \Longrightarrow$
$\exists z$. (?g has_integral z) $($ cbox a b) \wedge norm $(z-$ integral $S g)<e / 2$
using integrable_integral [OF int_g, unfolded has_integral' $[$ of g]] e that by blast
obtain a b::' n where ab: ball 0 Bf \cup ball $0 B g \subseteq$ cbox a b
using ball_max_Un by (metis bounded_ball bounded_subset_cbox_symmetric)
have ball 0 Bf \subseteq cbox a b
using $a b$ by auto
with $B f$ obtain z where int_fz: (?f has_integral z) (cbox a b) and z : norm (z

- integral S f) <e/2
by meson
have ball 0 Bg \subseteq cbox ab
using $a b$ by auto
with $B g$ obtain w where int_gw: (?g has_integral $w)(c b o x a b)$ and $w:$ norm
$(w-$ integral $S g)<e / 2$
by meson
show norm (integral $S f) \leq$ integral $S g+e$
proof (rule norm)
show norm (integral (cbox a b) ?f) \leq integral (cbox a b) ?g
by (simp add: le_g lem $[$ OF f g, of a b])
show \mid integral $($ cbox a b) ? $g-i n t e g r a l ~ S ~ g \mid<e / 2$
using int_gw integral_unique w by auto
show norm (integral (cbox a b) ?f - integral $S f$) $<e / 2$
using int_fz integral_unique z by blast
qed
qed
qed
lemma continuous_on_imp_absolutely_integrable_on:
fixes $f:$: real \Rightarrow 'a::banach
shows continuous_on $\{a . . b\} f \Longrightarrow$
norm (integral $\{a . . b\} f) \leq$ integral $\{a . . b\}(\lambda x$. norm $(f x))$
by (intro integral_norm_bound_integral integrable_continuous_real continuous_on_norm)

```
Henstock_Kurzweil_Integration.thy
auto
lemma integral_bound:
fixes \(f::\) real \(\Rightarrow\) ' \(a::\) banach
assumes \(a \leq b\)
assumes continuous_on \(\{a\).. \(b\} f\)
assumes \(\wedge t . t \in\{a . . b\} \Longrightarrow \operatorname{norm}(f t) \leq B\)
shows norm (integral \(\{a . . b\} f) \leq B *(b-a)\)
proof -
note continuous_on_imp_absolutely_integrable_on[OF assms(2)]
also have integral \(\{a . . b\}(\lambda x\). norm \((f x)) \leq \operatorname{integral}\{a . . b\}\left(\lambda_{-} . B\right)\) by (rule integral_le)
(auto intro!: integrable_continuous_real continuous_intros assms)
also have \(\ldots=B *(b-a)\) using assms by simp
finally show ?thesis.
qed
lemma integral_norm_bound_integral_component:
fixes \(f::\) ' \(n::\) euclidean_space \(\Rightarrow\) 'a::banach
fixes \(g:: ' n \Rightarrow\) ' \(b::\) euclidean_space
assumes \(f: f\) integrable_on \(S\) and \(g: g\) integrable_on \(S\)
and \(f g: \bigwedge x . x \in S \Longrightarrow \operatorname{norm}(f x) \leq(g x) \cdot k\)
shows norm (integral \(S f) \leq(\) integral \(S g) \cdot k\)
proof -
have norm (integral \(S f) \leq\) integral \(S((\lambda x . x \cdot k) \circ g)\)
using integral_norm_bound_integral[ \(O F\) f integrable_linear [OF g]]
by (simp add: bounded_linear_inner_left fg)
then show ?thesis
unfolding o_def integral_component_eq \([O F g]\).
qed
lemma has_integral_norm_bound_integral_component:
fixes \(f::\) ' \(n::\) euclidean_space \(\Rightarrow\) 'a::banach
fixes \(g:: ' n \Rightarrow{ }^{\prime} b::\) euclidean_space
assumes \(f\) : (f has_integral i) \(S\)
and \(g:(g\) has_integral \(j) S\)
and \(\bigwedge x . x \in S \Longrightarrow \operatorname{norm}(f x) \leq(g x) \cdot k\)
shows norm \(i \leq j \cdot k\)
using integral_norm_bound_integral_component \([\) of \(f S g k]\)
unfolding integral_unique \([O F f]\) integral_unique \([O F g]\)
using assms
by auto
```

lemma uniformly_convergent_improper_integral:
fixes $f:: ' b \Rightarrow$ real $\Rightarrow{ }^{\prime} a::\{$ banach $\}$
assumes deriv: $\bigwedge x . x \geq a \Longrightarrow(G$ has_field_derivative $g x)$ (at x within $\{a .$.$\})$
assumes integrable: $\bigwedge a^{\prime} b x . x \in A \Longrightarrow a^{\prime} \geq a \Longrightarrow b \geq a^{\prime} \Longrightarrow f x$ integrable_on $\left\{a^{\prime} . . b\right\}$

```
    assumes \(G\) : convergent \(G\)
    assumes le: \(\bigwedge y x . y \in A \Longrightarrow x \geq a \Longrightarrow\) norm \((f y x) \leq g x\)
    shows uniformly_convergent_on \(A(\lambda b x\). integral \(\{a . . b\}(f x))\)
proof (intro Cauchy_uniformly_convergent uniformly_Cauchy_onI', goal_cases)
    case ( \(1 \quad \varepsilon\) )
    from \(G\) have Cauchy \(G\)
        by (auto intro!: convergent_Cauchy)
    with 1 obtain \(M\) where \(M: \operatorname{dist}(G(\) real \(m))(G(\) real \(n))<\varepsilon\) if \(m \geq M n \geq\)
\(M\) for \(m n\)
    by (force simp: Cauchy_def)
    define \(M^{\prime}\) where \(M^{\prime}=\max (n a t\lceil a\rceil) M\)
    show ?case
    proof (rule exI[of _ M ], safe, goal_cases)
        case ( \(1 \times m \quad n\) )
        have \(M^{\prime}: M^{\prime} \geq a M^{\prime} \geq M\) unfolding \(M^{\prime}{ }_{-}\)def by linarith +
        have int_g: \((g\) has_integral \((G(\) real \(n)-G(\) real \(m)))\{\) real m..real \(n\}\)
        using \(1 M^{\prime}\) by (intro fundamental_theorem_of_calculus)
                            (auto simp: has_field_derivative_iff_has_vector_derivative [symmetric]
                            intro!: DERIV_subset[OF deriv])
        have int_f: \(f x\) integrable_on \(\left\{a^{\prime}\right.\).. real \(\left.n\right\}\) if \(a^{\prime} \geq a\) for \(a^{\prime}\)
        using that 1 by (cases \(a^{\prime} \leq\) real \(n\) ) (auto intro: integrable)
        have dist (integral \{a..real \(m\}(f x))(\) integral \(\{\) a..real \(n\}(f x))=\)
                norm (integral \(\{a .\). real \(n\}(f x)-\) integral \(\{a .\). real \(m\}(f x))\)
        by (simp add: dist_norm norm_minus_commute)
        also have integral \(\{\) a..real \(m\}(f x)+\) integral \(\{\) real m..real \(n\}(f x)=\)
                    integral \(\{\) a..real \(n\}(f x)\)
        using \(M^{\prime}\) and 1 by (intro integral_combine int_f) auto
            hence integral \(\{a .\). real \(n\}(f x)-\) integral \(\{a .\). real \(m\}(f x)=\)
                integral \(\{\) real m..real \(n\}(f x)\)
        by (simp add: algebra_simps)
    also have norm \(\ldots \leq\) integral \(\{\) real m..real \(n\} g\)
        using le \(1 M^{\prime}\) int_f int_g by (intro integral_norm_bound_integral) auto
        also from int_g have integral \(\{\) real m..real \(n\} g=G(\) real \(n)-G(\) real \(m)\)
        by (simp add: has_integral_iff)
    also have \(\ldots \leq \operatorname{dist}(G m)(G n)\)
        by (simp add: dist_norm)
    also from 1 and \(M^{\prime}\) have \(\ldots<\varepsilon\)
        by (intro \(M\) ) auto
    finally show ?case .
    qed
qed
lemma uniformly_convergent_improper_integral':
    fixes \(f:: ' b \Rightarrow\) real \(\Rightarrow\) ' \(a::\{\) banach, real_normed_algebra \(\}\)
    assumes deriv: \(\bigwedge x . x \geq a \Longrightarrow(G\) has_field_derivative \(g x)\) (at \(x\) within \(\{a .\}\).
    assumes integrable: \(\bigwedge a^{\prime} b x . x \in A \Longrightarrow a^{\prime} \geq a \Longrightarrow b \geq a^{\prime} \Longrightarrow f x\) integrable_on
```

```
\(\left\{a^{\prime} . . b\right\}\)
    assumes \(G\) : convergent \(G\)
    assumes le: eventually \((\lambda x . \forall y \in A\). norm \((f y x) \leq g x)\) at_top
    shows uniformly_convergent_on \(A(\lambda b x\). integral \(\{a . . b\}(f x))\)
proof -
    from le obtain \(a^{\prime \prime}\) where \(l e: \bigwedge y x . y \in A \Longrightarrow x \geq a^{\prime \prime} \Longrightarrow \operatorname{norm}(f y x) \leq g x\)
        by (auto simp: eventually_at_top_linorder)
    define \(a^{\prime}\) where \(a^{\prime}=\max a a^{\prime \prime}\)
    have uniformly_convergent_on \(A\left(\lambda b x\right.\). integral \(\left\{a^{\prime} .\right.\). real \(\left.\left.b\right\}(f x)\right)\)
    proof (rule uniformly_convergent_improper_integral)
        fix \(t\) assume \(t: t \geq a^{\prime}\)
        hence ( \(G\) has_field_derivative \(g t\) ) (at \(t\) within \(\{a .\).\(\} )\)
        by (intro deriv) (auto simp: a'_def)
    moreover have \(\left\{a^{\prime} ..\right\} \subseteq\{a .\).\(\} unfolding a^{\prime}{ }_{-}\)def by auto
    ultimately show ( \(G\) has_field_derivative \(g t\) ) (at t within \(\left\{a^{\prime} ..\right\}\) )
        by (rule DERIV_subset)
    qed (insert le, auto simp: \(a^{\prime}\) _def intro: integrable \(G\) )
    hence uniformly_convergent_on \(A\left(\lambda b x\right.\). integral \(\left\{a . . a^{\prime}\right\}(f x)+\) integral \(\left\{a^{\prime} .\right.\). real
b\} ( \(f x)\) )
    (is ?P) by (intro uniformly_convergent_add) auto
    also have eventually \(\left(\lambda x . \forall y \in A\right.\). integral \(\left\{a . . a^{\prime}\right\}(f y)+\) integral \(\left\{a^{\prime} . . x\right\}(f y)\)
\(=\)
            integral \(\{a . . x\}(f y))\) sequentially
        by (intro eventually_mono [OF eventually_ge_at_top[of nat 「a ๆ]] ballI inte-
gral_combine)
        (auto simp: \(a^{\prime}\) _def intro: integrable)
    hence ? \(P \longleftrightarrow\) ?thesis
        by (intro uniformly_convergent_cong) simp_all
    finally show ?thesis .
qed
```


6.15.42 differentiation under the integral sign

lemma integral_continuous_on_param:
fixes $f::{ }^{\prime} a::$ topological_space \Rightarrow ' $b::$ euclidean_space $\Rightarrow{ }^{\prime} c::$ banach
assumes cont_fx: continuous_on $(U \times$ cbox a b) $(\lambda(x, t) . f x t)$
shows continuous_on $U(\lambda x$. integral $($ cbox a $b)(f x))$
proof cases
assume content (cbox ab) $\neq 0$
then have ne: cbox a $b \neq\{ \}$ by auto
note $[$ continuous_intros $]=$
continuous_on_compose2[OF cont_fx, where $f=\lambda y$. Pair $x y$ for x, unfolded split_beta fst_conv snd_conv]
show ?thesis
unfolding continuous_on_def
proof (safe intro!: tendstoI)

```
    fix }\mp@subsup{e}{}{\prime}::\mathrm{ real and }
    assume }\mp@subsup{e}{}{\prime}>
    define e where e= e'/(content (cbox a b) + 1)
    have }e>0\mathrm{ using <e'>0` by (auto simp: e_def intro!: divide_pos_pos add_nonneg_pos)
    assume }x\in
    from continuous_on_prod_compactE[OF cont_fx compact_cbox }\langlex\inU\rangle\langle0<e\rangle
    obtain X0 where X0:x\inX0 open X0
        and fx_bound: \yt.y\inX0\capU\Longrightarrowt\in cbox a b \Longrightarrow norm (fyt-fxt)
\leqe
        unfolding split_beta fst_conv snd_conv dist_norm
        by metis
    have }\mp@subsup{\forall}{F}{}y\mathrm{ in at }x\mathrm{ within }U.y\inX0\cap
        using XO(1) XO(2) eventually_at_topological by auto
        then show }\mp@subsup{\forall}{F}{}y\mathrm{ in at }x\mathrm{ within U. dist (integral (cbox a b) (fy)) (integral
(cbox a b) (fx))< < '
    proof eventually_elim
        case (elim y)
        have dist (integral (cbox a b) (fy)) (integral (cbox a b) (fx))=
            norm (integral (cbox a b) (\lambdat.fyt-fxt))
            using elim }\langlex\inU
            unfolding dist_norm
            by (subst integral_diff)
                (auto intro!: integrable_continuous continuous_intros)
            also have ... \leqe* content (cbox a b)
            using elim \langlex\inU\rangle
            by (intro integrable_bound)
                (auto intro!: fx_bound \langlex\inU > less_imp_le[OF <0<e\rangle]
                        integrable_continuous continuous_intros)
            also have ...< < '
            using <0< e}}\rangle\langlee> 0
            by (auto simp: e_def field_split_simps)
            finally show dist (integral (cbox a b) (f y)) (integral (cbox a b) (fx)) < e'.
        qed
    qed
qed (auto intro!: continuous_on_const)
lemma leibniz_rule:
    fixes f::'a::banach = 'b::euclidean_space }=>\mp@subsup{}{}{\prime}'c::banac
    assumes fx:\xt. x 
            ((\lambdax.fxt) has_derivative blinfun_apply (fx x t)) (at x within U)
    assumes integrable_f2: \x.x\inU\Longrightarrowfx integrable_on cbox a b
    assumes cont_fx:continuous_on (U 
    assumes [intro]: x0 \inU
    assumes convex }
    shows
            ((\lambdax. integral (cbox a b) (fx)) has_derivative integral (cbox a b) (fx x0)) (at x0
within U)
            (is (?F has_derivative ?dF) -)
proof cases
```

```
assume content \((\) cbox a \(b) \neq 0\)
then have ne: cbox a \(b \neq\{ \}\) by auto
note [continuous_intros] \(=\)
    continuous_on_compose2 [OF cont_fx, where \(f=\lambda y\). Pair \(x y\) for \(x\),
        unfolded split_beta fst_conv snd_conv]
    show ?thesis
proof (intro has_derivativeI bounded_linear_scaleR_left tendstoI, fold norm_conv_dist)
    have cont_f1: \(\wedge t . t \in\) cbox a \(b \Longrightarrow\) continuous_on \(U(\lambda x . f x t)\)
    by (auto simp: continuous_on_eq_continuous_within intro!: has_derivative_continuous
fx)
    note [continuous_intros] = continuous_on_compose2[OF cont_f1]
    fix \(e^{\prime}:\) :real
    assume \(e^{\prime}>0\)
    define \(e\) where \(e=e^{\prime} /(\) content \((\) cbox a b) +1\()\)
    have \(e>0\) using \(\left\langle e^{\prime}>0\right\rangle\) by (auto simp: e_def intro!: divide_pos_pos add_nonneg_pos)
    from continuous_on_prod_compactE[OF cont_fx compact_cbox \(\langle x 0 \in U\rangle\langle e>0\rangle]\)
    obtain \(X 0\) where \(X 0: x 0 \in X 0\) open \(X 0\)
        and fx_bound: \(\bigwedge x t . x \in X 0 \cap U \Longrightarrow t \in\) cbox a \(b \Longrightarrow\) norm \((f x x t-f x x 0\)
\(t) \leq e\)
            unfolding split_beta fst_conv snd_conv
            by (metis dist_norm)
    note eventually_closed_segment \([O F\langle o p e n ~ X 0\rangle\langle x 0 \in X 0\rangle\), of \(U]\)
    moreover
    have \(\forall_{F} x\) in at \(x 0\) within \(U . x \in X 0\)
        using \(\langle o p e n ~ X 0\rangle\langle x 0 \in X 0\rangle\) eventually_at_topological by blast
    moreover have \(\forall_{F} x\) in at \(x 0\) within \(U . x \neq x 0\)
        by (auto simp: eventually_at_filter)
    moreover have \(\forall_{F} x\) in at \(x 0\) within \(U . x \in U\)
        by (auto simp: eventually_at_filter)
    ultimately
    show \(\forall_{F} x\) in at \(x 0\) within \(U\). norm \(((? F x-? F x 0-? d F(x-x 0)) / R\)
\(\operatorname{norm}(x-x 0))<e^{\prime}\)
    proof eventually_elim
        case (elim x)
        from elim have \(0<\operatorname{norm}(x-x 0)\) by \(\operatorname{simp}\)
        have closed_segment \(x 0 x \subseteq U\)
            by (rule 〈convex \(U\rangle[\) unfolded convex_contains_segment, rule_format, \(O F<x 0\)
\(\in U\rangle\langle x \in U\rangle])\)
            from elim have [intro]: \(x \in U\) by auto
            have ? \(F x-\) ? \(F x 0-\) ? \(d F(x-x 0)=\)
            integral (cbox ab) \((\lambda y . f x y-f x 0 y-f x x 0 y(x-x 0))\)
            (is \({ }_{-}=\)? id)
            using \(\langle x \neq x 0\rangle\)
            by (subst blinfun_apply_integral integral_diff,
                    auto intro!: integrable_diff integrable_f2 continuous_intros
                        intro: integrable_continuous)+
    also
    \{
```

```
    fix \(t\) assume \(t: t \in(\) cbox a \(b)\)
    have seg: \(\bigwedge t . t \in\{0 . .1\} \Longrightarrow x 0+t *_{R}(x-x 0) \in X 0 \cap U\)
    using 〈closed_segment \(x 0 x \subseteq U\) 〉
                〈closed_segment \(x 0 x \subseteq X 0\) 〉
    by (force simp: closed_segment_def algebra_simps)
    from \(t\) have deriv:
        \(((\lambda x . f x t)\) has_derivative \((f x y t))(\) at \(y\) within \(X 0 \cap U)\)
        if \(y \in X 0 \cap U\) for \(y\)
        unfolding has_vector_derivative_def [symmetric]
        using that \(\langle x \in X 0\rangle\)
        by (intro has_derivative_subset \([O F\) fx]) auto
    have \(\bigwedge x . x \in X 0 \cap U \Longrightarrow\) onorm (blinfun_apply \((f x x t)-(f x x 0 t)) \leq e\)
    using fx_bound \(t\)
    by (auto simp add: norm_blinfun_def fun_diff_def blinfun.bilinear_simps[symmetric])
    from differentiable_bound_linearization[OF seg deriv this] X0
    have \(\operatorname{norm}(f x t-f x 0 t-f x x 0 t(x-x 0)) \leq e * \operatorname{norm}(x-x 0)\)
        by (auto simp add: ac_simps)
    \}
    then have norm ? id \(\leq\) integral \(\left(\right.\) cbox ab) \(\left(\lambda_{-} . e * \operatorname{norm}(x-x 0)\right)\)
    by (intro integral_norm_bound_integral)
        (auto intro!: continuous_intros integrable_diff integrable_f2
                intro: integrable_continuous)
    also have \(\ldots=\) content \((\) cbox \(a b) * e * \operatorname{norm}(x-x 0)\)
    by \(\operatorname{simp}\)
    also have \(\ldots<e^{\prime}\) * norm \((x-x 0)\)
    proof (intro mult_strict_right_mono[OF _ \(\langle 0<n o r m ~(x-x 0)\rangle])\)
    show content (cbox a b) \(* e<e^{\prime}\)
    using \(\left\langle e^{\prime}>0\right\rangle\) by (simp add: divide_simps e_def not_less)
    qed
    finally have norm \((? F x-? F x 0-? d F(x-x 0))<e^{\prime} * \operatorname{norm}(x-x 0)\).
    then show ?case
    by (auto simp: divide_simps)
    qed
    qed (rule blinfun.bounded_linear_right)
qed (auto intro!: derivative_eq_intros simp: blinfun.bilinear_simps)
lemma has_vector_derivative_eq_has_derivative_blinfun:
    \(\left(f\right.\) has_vector_derivative \(\left.f^{\prime}\right)(\) at \(x\) within \(U) \longleftrightarrow\)
    ( \(f\) has_derivative blinfun_scaleR_left \(f^{\prime}\) ) (at \(x\) within \(U\) )
    by (simp add: has_vector_derivative_def)
lemma leibniz_rule_vector_derivative:
    fixes \(f::\) real \(\Rightarrow\) 'b::euclidean_space \(\Rightarrow{ }^{\prime} c::\) banach
    assumes \(f x: \bigwedge x t . x \in U \Longrightarrow t \in\) cbox \(a b \Longrightarrow\)
    \(((\lambda x . f x t)\) has_vector_derivative \((f x x t))\) (at \(x\) within \(U)\)
    assumes integrable_f2: \(\bigwedge x . x \in U \Longrightarrow(f x)\) integrable_on cbox a \(b\)
    assumes cont_fx: continuous_on \((U \times\) cbox ab) \((\lambda(x, t)\). fx \(x t)\)
    assumes \(U: x 0 \in U\) convex \(U\)
    shows \(((\lambda x\). integral (cbox a b) ( \(f x)\) ) has_vector_derivative integral (cbox a b) (fx
```

```
x0))
    (at x0 within U)
proof -
    note [continuous_intros] =
        continuous_on_compose2[OF cont_fx, where f=\lambday. Pair x y for }x\mathrm{ ,
        unfolded split_beta fst_conv snd_conv]
    show ?thesis
        unfolding has_vector_derivative_eq_has_derivative_blinfun
    proof (rule has_derivative_eq_rhs [OF leibniz_rule[OF _ integrable_f2 _ U]])
        show continuous_on ( U < cbox a b) ( }\lambda(x,t)\mathrm{ . blinfun_scaleR_left (fx x t))
            using cont_fx by (auto simp: split_beta intro!: continuous_intros)
        show blinfun_apply (integral (cbox a b) ( }\lambdat.blinfun_scaleR_left (fx x0 t))) 
                blinfun_apply (blinfun_scaleR_left (integral (cbox a b) (fx x0)))
    by (subst integral_linear[symmetric])
            (auto simp: has_vector_derivative_def o_def
                intro!: integrable_continuous U continuous_intros bounded_linear_intros)
    qed (use fx in <auto simp: has_vector_derivative_def>)
qed
lemma has_field_derivative_eq_has_derivative_blinfun:
    (f has_field_derivative f}\mp@subsup{f}{}{\prime})(\mathrm{ at }x\mathrm{ within U) }\longleftrightarrow(f has_derivative blinfun_mult_right
f})(\mathrm{ at }x\mathrm{ within U)
    by (simp add: has_field_derivative_def)
lemma leibniz_rule_field_derivative:
    fixes f::'a::{real_normed_field, banach} => 'b::euclidean_space = 'a
    assumes fx:\xt.x\inU\Longrightarrowt\incbox a b \Longrightarrow ((\lambdax.fxt) has_field_derivative
fx xt) (at x within U)
    assumes integrable_f2: \x. x \inU\Longrightarrow(fx) integrable_on cbox a b
    assumes cont_fx:continuous_on (U 
    assumes U:x0\inU convex U
    shows ((\lambdax. integral (cbox a b) (fx)) has_field_derivative integral (cbox a b) (fx
x0)) (at x0 within U)
proof -
    note [continuous_intros]=
        continuous_on_compose2[OF cont_fx, where f=\lambday. Pair x y for x,
            unfolded split_beta fst_conv snd_conv]
    have *: blinfun_mult_right (integral (cbox a b) (fx x0)) =
        integral (cbox a b) ( }\lambdat\mathrm{ . blinfun_mult_right (fx x0 t))
        by (subst integral_linear[symmetric])
            (auto simp: has_vector_derivative_def o_def
            intro!: integrable_continuous U continuous_intros bounded_linear_intros)
    show ?thesis
        unfolding has_field_derivative_eq_has_derivative_blinfun
    proof (rule has_derivative_eq_rhs [OF leibniz_rule[OF _ integrable_f2 _ U, where
fx=\lambdax t. blinfun_mult_right ( }fx\timesxt)]]
    show continuous_on ( U < cbox a b) ( }\lambda(x,t).blinfun_mult_right (fx x t ))
        using cont_fx by (auto simp: split_beta intro!: continuous_intros)
    show blinfun_apply (integral (cbox a b) (\lambdat. blinfun_mult_right (fx x0 t)))}
```

```
    blinfun_apply (blinfun_mult_right (integral (cbox a b) (fx x0)))
    by (subst integral_linear[symmetric])
    (auto simp: has_vector_derivative_def o_def
        intro!: integrable_continuous U continuous_intros bounded_linear_intros)
    qed (use fx in <auto simp: has_field_derivative_def`)
qed
lemma leibniz_rule_field_differentiable:
    fixes f::'a::{real_normed_field, banach} = 'b::euclidean_space =>'a
    assumes }\xt.x\inU\Longrightarrowt\incbox a b\Longrightarrow((\lambdax.fxt) has_field_derivative fx x
t)(at x within U)
    assumes }\x.x\inU\Longrightarrow(fx) integrable_on cbox a b
    assumes continuous_on (U\times (cbox a b)) ( }\lambda(x,t).fxxt
    assumes x0 \inU convex }
    shows ( }\lambda\mathrm{ x. integral (cbox a b) (fx)) field_differentiable at x0 within U
    using leibniz_rule_field_derivative[OF assms] by (auto simp: field_differentiable_def)
```


6.15.43 Exchange uniform limit and integral

```
lemma uniform_limit_integral_cbox:
    fixes \(f:: ' a \Rightarrow{ }^{\prime} b::\) euclidean_space \(\Rightarrow{ }^{\prime} c::\) banach
    assumes \(u\) : uniform_limit (cbox ab) fg \(F\)
    assumes \(c: \bigwedge n\). continuous_on (cbox ab) \((f n)\)
    assumes \([\) simp \(]: F \neq b o t\)
    obtains \(I J\) where
    \(\bigwedge n .\left(f n h a s \_i n t e g r a l ~ I ~ n\right)(c b o x a b)\)
    ( \(g\) has_integral \(J\) ) (cbox ab)
    \((I \longrightarrow J) F\)
proof -
    have \(f[\) simp \(]\) : \(f n\) integrable_on (cbox a b) for \(n\)
    by (auto intro!: integrable_continuous assms)
    then obtain \(I\) where \(I: \bigwedge n\). \((f n\) has_integral \(I n)(c b o x a b)\)
            by atomize_elim (auto simp: integrable_on_def intro!: choice)
    moreover
    have gi[simp]: g integrable_on (cbox a b)
    by (auto intro!: integrable_continuous uniform_limit_theorem \(\left[O F_{-} u\right]\) eventuallyI
c)
    then obtain \(J\) where \(J:(g\) has_integral \(J)(c b o x a b)\)
            by blast
    moreover
    have \((I \longrightarrow J) F\)
    proof cases
            assume content (cbox ab) \(=0\)
            hence \(I=\left(\lambda_{-} 0\right) J=0\)
                by (auto intro!: has_integral_unique I J)
            thus ?thesis by simp
next
```

```
    assume content_nonzero: content (cbox a b)}\not=
    show ?thesis
    proof (rule tendstoI)
        fix e::real
        assume e>0
        define e}\mp@subsup{e}{}{\prime}\mathrm{ where e}\mp@subsup{e}{}{\prime}=e/
        with }\langlee>0\rangle\mathrm{ have }\mp@subsup{e}{}{\prime}>0\mathrm{ by simp
    then have }\mp@subsup{\forall}{F}{}n\mathrm{ in F. }\forallx\incbox a b.norm (fnx-gx)< 'f/ content (cbo
ab)
    using u content_nonzero by (auto simp: uniform_limit_iff dist_norm zero_less_measure_iff)
    then show }\mp@subsup{\forall}{F}{}n\mathrm{ in F.dist (I n) J<e
    proof eventually_elim
        case (elim n)
        have In = integral (cbox a b) (f n)
            J = integral (cbox a b)g
            using I[of n] J by (simp_all add: integral_unique)
            then have dist (I n) J=norm (integral (cbox ab) (\lambdax.fnx-gx))
                by (simp add: integral_diff dist_norm)
            also have ... \leqintegral (cbox a b) ( }\lambdax.(\mp@subsup{e}{}{\prime}/ content (cbox a b)))
            using elim
            by (intro integral_norm_bound_integral) (auto intro!: integrable_diff)
        also have ... <e
            using <0<e>
            by (simp add: e'_def)
        finally show ?case .
        qed
    qed
qed
    ultimately show ?thesis ..
qed
lemma uniform_limit_integral:
    fixes f::'a m 'b::ordered_euclidean_space }=>\mp@subsup{}{}{\prime}c::banach
    assumes u: uniform_limit {a..b} fgF
    assumes c: \n.continuous_on {a..b} (fn)
    assumes [simp]: F\not=bot
    obtains I J where
        \n.(f n has_integral I n) {a..b}
        (g has_integral J) {a..b}
        (I\longrightarrowJ)F
    by (metis interval_cbox assms uniform_limit_integral_cbox)
```


6.15.44 Integration by parts

lemma integration_by_parts_interior_strong:
fixes prod :: _ $\boldsymbol{\beta}_{-} \Rightarrow^{\prime} b::$ banach
assumes bilinear: bounded_bilinear (prod)
assumes s : finite s and $l e: a \leq b$
assumes cont [continuous_intros]: continuous_on $\{a . . b\} f$ continuous_on $\{a . . b\}$

```
g
    assumes deriv: \x. x\in{a<..<b} - s\Longrightarrow(f has_vector_derivative f'x) (at x)
                        \x. x\in{a<..<b} - s\Longrightarrow(g has_vector_derivative g' x) (at x)
    assumes int: (( }\lambdax.prod (fx) (g' x)) has_integral
                            (prod (fb) (gb) - prod (fa) (ga) - y)) {a..b}
    shows ((\lambdax.prod (f'x) (gx)) has_integral y) {a..b}
proof -
    interpret bounded_bilinear prod by fact
    have ((\lambdax. prod (fx) (g'x) + prod (f'x) (gx)) has_integral
                (prod (f b) (gb) - prod (f a) (ga))) {a..b}
    using deriv by (intro fundamental_theorem_of_calculus_interior_strong[OF s le])
                                    (auto intro!: continuous_intros continuous_on has_vector_derivative)
    from has_integral_diff[OF this int] show ?thesis by (simp add: algebra_simps)
qed
lemma integration_by_parts_interior:
    fixes prod :: _ > _ = 'b :: banach
    assumes bounded_bilinear (prod) a\leqb
        continuous_on {a..b} f continuous_on {a..b} g
    assumes \x. x\in{a<..<b}\Longrightarrow(f has_vector_derivative f' x) (at x)
        \x. x\in{a<..<b}\Longrightarrow(g has_vector_derivative g' x) (at x)
    assumes ((\lambdax. prod (fx) (g' ( ) ) has_integral (prod (fb) (gb) - prod (fa) (g
a) - y)) {a..b}
    shows ((\lambdax.prod (f'x) (gx)) has_integral y) {a..b}
    by (rule integration_by_parts_interior_strong[of _ {} - - fg f'g}|)\mathrm{ ) (insert assms,
simp_all)
lemma integration_by_parts:
    fixes prod :: _ # _ # 'b :: banach
    assumes bounded_bilinear (prod) a\leqb
            continuous_on {a..b} f continuous_on {a..b} g
    assumes \x. x\in{a..b} \Longrightarrow(f has_vector_derivative f' x) (at x)
            \x.x\in{a..b}\Longrightarrow(g has_vector_derivative g' x) (at x)
    assumes ((\lambdax. prod (fx) (g'x)) has_integral (prod (fb) (gb) - prod (fa) (g
a) - y)) {a..b}
    shows ((\lambdax.prod (f'x) (g x)) has_integral y) {a..b}
    by (rule integration_by_parts_interior[of _ _ fg f'g}])\mathrm{ )(insert assms, simp_all)
lemma integrable_by_parts_interior_strong:
    fixes prod :: _ > _ # 'b :: banach
    assumes bilinear: bounded_bilinear (prod)
    assumes s: finite s and le: a\leqb
    assumes cont [continuous_intros]: continuous_on {a..b} f continuous_on {a..b}
g
    assumes deriv: \x. }x\in{a<..<b}-s\Longrightarrow(f has_vector_derivative f'x)(at x
                    \x. x\in{a<..<b} - s\Longrightarrow(g has_vector_derivative g' x) (at x)
    assumes int: (\lambdax. prod (fx)(\mp@subsup{g}{}{\prime}x)) integrable_on {a..b}
    shows (\lambdax.prod (f'x) (gx)) integrable_on {a..b}
proof -
```

```
    from int obtain \(I\) where \(\left(\left(\lambda x\right.\right.\).prod \(\left.(f x)\left(g^{\prime} x\right)\right)\) has_integral \(\left.I\right)\{a . . b\}\)
        unfolding integrable_on_def by blast
    hence \(\left(\left(\lambda x . \operatorname{prod}(f x)\left(g^{\prime} x\right)\right)\right.\) has_integral \((\operatorname{prod}(f b)(g b)-\operatorname{prod}(f a)(g a)-\)
        \((\operatorname{prod}(f b)(g b)-\operatorname{prod}(f a)(g a)-I)))\{a . . b\}\) by simp
    from integration_by_parts_interior_strong[OF assms(1-7) this]
        show ?thesis unfolding integrable_on_def by blast
qed
lemma integrable_by_parts_interior:
    fixes prod \(::\) _ \(^{\prime}\) _ \(^{\prime}\) 'b :: banach
    assumes bounded_bilinear (prod) \(a \leq b\)
        continuous_on \(\{a . . b\} f\) continuous_on \(\{a . . b\} g\)
    assumes \(\wedge x . x \in\{a<. .<b\} \Longrightarrow\left(f\right.\) has_vector_derivative \(\left.f^{\prime} x\right)(\) at \(x)\)
        \(\bigwedge x . x \in\{a<. .<b\} \Longrightarrow\left(g\right.\) has_vector_derivative \(\left.g^{\prime} x\right)(\) at \(x)\)
    assumes \(\left(\lambda x\right.\). prod \(\left.(f x)\left(g^{\prime} x\right)\right)\) integrable_on \(\{a . . b\}\)
    shows \(\left(\lambda x . \operatorname{prod}\left(f^{\prime} x\right)(g x)\right)\) integrable_on \(\{a . . b\}\)
    by (rule integrable_by_parts_interior_strong[of _ \{\} _ - \(\left.f g f^{\prime} g\right]^{\prime}\) ) (insert assms,
simp_all)
lemma integrable_by_parts:
    fixes prod \(::\) _ \(\Rightarrow\) _ \(\Rightarrow\) 'b \(::\) banach
    assumes bounded_bilinear (prod) \(a \leq b\)
        continuous_on \(\{a . . b\} f\) continuous_on \(\{a . . b\} g\)
    assumes \(\bigwedge x . x \in\{a . . b\} \Longrightarrow\left(f\right.\) has_vector_derivative \(\left.f^{\prime} x\right)(\) at \(x)\)
        \(\bigwedge x . x \in\{a . . b\} \Longrightarrow\left(g\right.\) has_vector_derivative \(\left.g^{\prime} x\right)(\) at \(x)\)
    assumes \(\left(\lambda x\right.\). prod \(\left.(f x)\left(g^{\prime} x\right)\right)\) integrable_on \(\{a . . b\}\)
    shows \(\left(\lambda x . \operatorname{prod}\left(f^{\prime} x\right)(g x)\right)\) integrable_on \(\{a . . b\}\)
    by (rule integrable_by_parts_interior_strong[of _ \(\left\}\right.\) _ - \(f g f^{\prime} g \eta\) ) (insert assms,
simp_all)
```


6.15.45 Integration by substitution

lemma has_integral_substitution_general:
fixes $f::$ real \Rightarrow ' $a::$ euclidean_space and $g::$ real \Rightarrow real
assumes s : finite s and $l e: a \leq b$
and subset: g ' $\{a . . b\} \subseteq\{c . . d\}$
and f [continuous_intros]: continuous_on $\{c . . d\} f$
and g [continuous_intros]: continuous_on $\{a . . b\} g$
and deriv [derivative_intros]:
$\bigwedge x . x \in\{a . . b\}-s \Longrightarrow\left(g\right.$ has_field_derivative $\left.g^{\prime} x\right)($ at x within $\{a . . b\})$
shows $\left(\left(\lambda x . g^{\prime} x *_{R} f(g x)\right)\right.$ has_integral (integral $\{g a . . g b\} f-$ integral $\{g$
$b . . g a\} f))\{a . . b\}$
proof -
let $? F=\lambda x$. integral $\{c . . g x\} f$
have cont_int: continuous_on $\{a . . b\}$?F
by (rule continuous_on_compose2[OF _ g subset] indefinite_integral_continuous_1 f integrable_continuous_real $)+$
have deriv: $\left(((\lambda x\right.$. integral $\{c . . x\} f) \circ g)$ has_vector_derivative $\left.g^{\prime} x *_{R} f(g x)\right)$ (at x within $\{a . . b\})$ if $x \in\{a . . b\}-s$ for x
proof (rule has_vector_derivative_eq_rhs [OF vector_diff_chain_within refl])
show (g has_vector_derivative $g^{\prime} x$) (at x within $\{a . . b\}$)
using deriv has_field_derivative_iff_has_vector_derivative that by blast
show $((\lambda x$. integral $\{c . . x\} f)$ has_vector_derivative $f(g x))$
(at ($g x$) within g ' $\{a . . b\}$)
using that le subset
by (blast intro: has_vector_derivative_within_subset integral_has_vector_derivative
f)
qed
have deriv: (?F has_vector_derivative $\left.g^{\prime} x *_{R} f(g x)\right)$
$($ at $x)$ if $x \in\{a . . b\}-(s \cup\{a, b\})$ for x
using deriv[of x] that by (simp add: at_within_Icc_at o_def)
have $\left(\left(\lambda x . g^{\prime} x *_{R} f(g x)\right)\right.$ has_integral $\left.(? F b-? F a)\right)\{a . . b\}$
using le cont_int s deriv cont_int
by (intro fundamental_theorem_of_calculus_interior_strong[of $s \cup\{a, b\}])$ simp_all
also
from subset have $g x \in\{c . . d\}$ if $x \in\{a . . b\}$ for x using that by blast
from this[of a] this[of b] le have $c d: c \leq g a g b \leq d c \leq g b g a \leq d$ by auto
have integral $\{c . . g b\} f-$ integral $\{c . . g a\} f=$ integral $\{g a . . g b\} f-$ integral
$\{g b . . g a\} f$
proof cases
assume $g a \leq g b$
note $l e=l e$ this
from $c d$ have integral $\{c . . g a\} f+$ integral $\{g a . . g b\} f=$ integral $\{c . . g b\} f$
by (intro integral_combine integrable_continuous_real continuous_on_subset[OF
f] le) simp_all
with le show ?thesis
by (cases $g a=g b)($ simp_all add: algebra_simps)
next
assume less: $\neg g a \leq g b$
then have $g a \geq g b$ by simp
note $l e=l e$ this
from $c d$ have integral $\{c . . g b\} f+$ integral $\{g b . . g a\} f=$ integral $\{c . . g a\} f$
by (intro integral_combine integrable_continuous_real continuous_on_subset[OF
f] le) simp_all
with less show ?thesis
by (simp_all add: algebra_simps)
qed
finally show ?thesis .
qed
lemma has_integral_substitution_strong:
fixes $f::$ real \Rightarrow ' $a::$ euclidean_space and $g::$ real \Rightarrow real
assumes s : finite s and $l e: a \leq b g a \leq g b$
and subset: $g '\{a . . b\} \subseteq\{c . . d\}$
and f [continuous_intros]: continuous_on $\{c . . d\} f$
and g [continuous_intros]: continuous_on $\{a . . b\} g$
and deriv [derivative_intros]:
$\bigwedge x . x \in\{a . . b\}-s \Longrightarrow\left(g\right.$ has_field_derivative $\left.g^{\prime} x\right)($ at x within $\{a . . b\})$

```
shows \(\left(\left(\lambda x . g^{\prime} x *_{R} f(g x)\right)\right.\) has_integral (integral \(\left.\left.\{g a . . g b\} f\right)\right)\{a . . b\}\)
using has_integral_substitution_general[OF s le(1) subset \(f g\) deriv] le(2)
by (cases \(g a=g b\) ) auto
lemma has_integral_substitution:
    fixes \(f::\) real \(\Rightarrow\) ' \(a::\) euclidean_space and \(g::\) real \(\Rightarrow\) real
    assumes \(a \leq b g a \leq g b g '\{a . . b\} \subseteq\{c . . d\}\)
        and continuous_on \(\{c . . d\} f\)
        and \(\bigwedge x . x \in\{a . . b\} \Longrightarrow\left(g\right.\) has_field_derivative \(\left.g^{\prime} x\right)(\) at \(x\) within \(\{a . . b\})\)
    shows \(\left(\left(\lambda x . g^{\prime} x *_{R} f(g x)\right)\right.\) has_integral (integral \(\left.\left.\{g a . . g b\} f\right)\right)\{a . . b\}\)
```



```
        (auto intro: DERIV_continuous_on assms)
lemma integral_shift:
    fixes \(f\) :: real \(\Rightarrow{ }^{\prime} a::\) euclidean_space
    assumes cont: continuous_on \(\{a+c . . b+c\} f\)
    shows integral \(\{a . . b\}(f \circ(\lambda x . x+c))=\) integral \(\{a+c . . b+c\} f\)
proof (cases \(a \leq b\) )
    case True
    have \(\left(\left(\lambda x .1 *_{R} f(x+c)\right)\right.\) has_integral integral \(\left.\{a+c . . b+c\} f\right)\{a . . b\}\)
        using True cont
        by (intro has_integral_substitution[where \(c=a+c\) and \(d=b+c]\) )
            (auto intro!: derivative_eq_intros)
    thus ?thesis by (simp add: has_integral_iff o_def)
qed auto
```


6.15.46 Compute a double integral using iterated integrals and switching the order of integration

lemma continuous_on_imp_integrable_on_Pair1:
fixes $f::$ _ $^{\prime}$ 'b::banach
assumes con: continuous_on (cbox $(a, c)(b, d)) f$ and $x: x \in c b o x a b$
shows $(\lambda y . f(x, y))$ integrable_on ($\operatorname{cbox} c d$)
proof -
have $f \circ(\lambda y .(x, y))$ integrable_on (cbox c d)
proof (intro integrable_continuous continuous_on_compose [OF _ continuous_on_subset
[OF con]])
show continuous_on (cbox c d) (Pair x)
by (simp add: continuous_on_Pair)
show Pair x 'cbox $c d \subseteq \operatorname{cbox}(a, c)(b, d)$
using x by blast
qed
then show ?thesis by (simp add: o_def)
qed
lemma integral_integrable_2dim:
fixes $f::\left(' a::\right.$ euclidean_space * 'b::euclidean_space) $\Rightarrow{ }^{\prime} c::$ banach
assumes continuous_on $(\operatorname{cbox}(a, c)(b, d)) f$

```
    shows \((\lambda x\). integral (cbox c d) \((\lambda y . f(x, y))\) ) integrable_on cbox a \(b\)
proof (cases content (cbox ced) \(=0\) )
case True
    then show ?thesis
        by (simp add: True integrable_const)
next
    case False
    have uc: uniformly_continuous_on (cbox \((a, c)(b, d)) f\)
        by (simp add: assms compact_cbox compact_uniformly_continuous)
    \{ fix \(x::^{\prime} a\) and \(e::\) real
        assume \(x: x \in c b o x a b\) and \(e: 0<e\)
        then have e2_gt: \(0<e / 2 /\) content \((\operatorname{cbox} c d)\) and e2_less: e/2 / content
    \((\) cbox \(c d) *\) content \((\) cbox \(c d)<e\)
        by (auto simp: False content_lt_nz e)
        then obtain \(d d\)
        where \(d d: \wedge x x^{\prime} . \llbracket x \in \operatorname{cbox}(a, c)(b, d) ; x^{\prime} \in c b o x(a, c)(b, d) ; \operatorname{norm}\left(x^{\prime}-x\right)\)
\(<d d \rrbracket\)
                        \(\Longrightarrow \operatorname{norm}\left(f x^{\prime}-f x\right) \leq e /(2 *\) content \((\operatorname{cbox} c d)) d d>0\)
        using uc [unfolded uniformly_continuous_on_def, THEN spec, of e/(2 \(*\) content
(cbox ced))]
            by (auto simp: dist_norm intro: less_imp_le)
    have \(\exists\) delta \(>0 . \forall x^{\prime} \in\) cbox a \(b\). norm \(\left(x^{\prime}-x\right)<\) delta \(\longrightarrow\) norm (integral (cbox
\(\left.c d)\left(\lambda u . f\left(x^{\prime}, u\right)-f(x, u)\right)\right)<e\)
            using dd e2_gt assms \(x\)
            apply (rule_tac \(x=d d\) in \(e x I\) )
            apply clarify
            apply (rule le_less_trans [OF integrable_bound e2_less])
            apply (auto intro: integrable_diff continuous_on_imp_integrable_on_Pair1)
            done
    \} note \(*=\) this
    show ?thesis
    proof (rule integrable_continuous)
        show continuous_on (cbox a b) ( \(\lambda x\). integral (cbox c d) \((\lambda y . f(x, y)))\)
            by (simp add: * continuous_on_iff dist_norm integral_diff [symmetric] contin-
uous_on_imp_integrable_on_Pair1 [OF assms])
    qed
qed
lemma integral_split:
    fixes \(f\) :: ' \(a::\) euclidean_space \(\Rightarrow\) ' \(b::\{\) real_normed_vector,complete_space \(\}\)
    assumes \(f: f\) integrable_on (cbox ab)
        and \(k: k \in\) Basis
    shows integral (cbox a b) \(f=\)
                integral (cbox a \(b \cap\{x . x \cdot k \leq c\}) f+\)
                integral (cbox ab \(\cap\{x . x \cdot k \geq c\}) f\)
    using \(k f\)
    by (auto simp: has_integral_integral intro: integral_unique [OF has_integral_split])
```

lemma integral_swap_operativeI:

```
fixes \(f::\left(' a:: e u c l i d e a n \_s p a c e ~ * ~ ' b:: e u c l i d e a n \_s p a c e\right) ~ \Rightarrow ~ ' c:: b a n a c h\)
assumes \(f\) : continuous_on sf and \(e: 0<e\)
    shows operative conj True
        ( \(\lambda k . \forall a b c d\).
            \(\operatorname{cbox}(a, c)(b, d) \subseteq k \wedge \operatorname{cbox}(a, c)(b, d) \subseteq s\)
            \(\longrightarrow\) norm \((\) integral \((\operatorname{cbox}(a, c)(b, d)) f-\)
                integral (cbox a b) ( \(\lambda x\). integral \((\) cbox \(c d)(\lambda y . f((x, y)))))\)
        \(\leq e *\) content \((\operatorname{cbox}(a, c)(b, d)))\)
```

proof (standard, auto)
fix $a::^{\prime} a$ and $c::^{\prime} b$ and $b::^{\prime} a$ and $d::^{\prime} b$ and $u::^{\prime} a$ and $v::^{\prime} a$ and $w::^{\prime} b$ and $z::^{\prime} b$
assume $*: \operatorname{box}(a, c)(b, d)=\{ \}$
and cb1: cbox $(u, w)(v, z) \subseteq \operatorname{cbox}(a, c)(b, d)$
and cb2: $\operatorname{cbox}(u, w)(v, z) \subseteq s$
then have $c 0$: content $(\operatorname{cbox}(a, c)(b, d))=0$
using * unfolding content_eq_0_interior by simp
have $c 0^{\prime}$: content $(\operatorname{cbox}(u, w)(v, z))=0$
by (fact content_0_subset [OF c0 cb1])
show norm (integral (cbox $(u, w)(v, z)) f-$ integral (cbox uv) (λ. integral
$($ cbox $w z)(\lambda y . f(x, y))))$
$\leq e *$ content $(\operatorname{cbox}(u, w)(v, z))$
using content_cbox_pair_eq0_D [OF c0]
by (force simp add: c0')
next
fix $a::^{\prime} a$ and $c::^{\prime} b$ and $b::^{\prime} a$ and $d::^{\prime} b$
and $M::$ real and $i::^{\prime} a$ and $j:: ' b$
and $u::^{\prime} a$ and $v::^{\prime} a$ and $w::^{\prime} b$ and $z::^{\prime} b$
assume $i j:(i, j) \in$ Basis
and $n 1: \forall a^{\prime} b^{\prime} c^{\prime} d^{\prime}$.
$\operatorname{cbox}\left(a^{\prime}, c^{\prime}\right)\left(b^{\prime}, d^{\prime}\right) \subseteq \operatorname{cbox}(a, c)(b, d) \wedge$
$\operatorname{cbox}\left(a^{\prime}, c^{\prime}\right)\left(b^{\prime}, d^{\prime}\right) \subseteq\{x . x \cdot(i, j) \leq M\} \wedge \operatorname{cbox}\left(a^{\prime}, c^{\prime}\right)\left(b^{\prime}, d^{\prime}\right) \subseteq s$
\longrightarrow
norm (integral $\left(\operatorname{cbox}\left(a^{\prime}, c^{\prime}\right)\left(b^{\prime}, d^{\prime}\right)\right) f-$ integral $\left(\operatorname{cbox} a^{\prime} b^{\prime}\right)(\lambda x$.
integral $\left(\right.$ cbox $\left.\left.\left.c^{\prime} d^{\prime}\right)(\lambda y . f(x, y))\right)\right)$
$\leq e *$ content $\left(\operatorname{cbox}\left(a^{\prime}, c^{\prime}\right)\left(b^{\prime}, d^{\prime}\right)\right)$
and $n 2: \forall a^{\prime} b^{\prime} c^{\prime} d^{\prime}$.
$\operatorname{cbox}\left(a^{\prime}, c^{\prime}\right)\left(b^{\prime}, d^{\prime}\right) \subseteq \operatorname{cbox}(a, c)(b, d) \wedge$
cbox $\left(a^{\prime}, c^{\prime}\right)\left(b^{\prime}, d^{\prime}\right) \subseteq\{x . M \leq x \cdot(i, j)\} \wedge \operatorname{cbox}\left(a^{\prime}, c^{\prime}\right)\left(b^{\prime}, d^{\prime}\right) \subseteq s$
\longrightarrow
norm (integral (cbox $\left.\left(a^{\prime}, c^{\prime}\right)\left(b^{\prime}, d^{\prime}\right)\right) f-$ integral $\left(\right.$ cbox $\left.a^{\prime} b^{\prime}\right)(\lambda x$.
integral $\left(\right.$ cbox $\left.\left.\left.c^{\prime} d^{\prime}\right)(\lambda y . f(x, y))\right)\right)$
$\leq e *$ content $\left(\operatorname{cbox}\left(a^{\prime}, c^{\prime}\right)\left(b^{\prime}, d^{\prime}\right)\right)$
and subs: cbox $(u, w)(v, z) \subseteq \operatorname{cbox}(a, c)(b, d) \quad \operatorname{cbox}(u, w)(v, z) \subseteq s$
have fcont: continuous_on (cbox $(u, w)(v, z)) f$
using assms(1) continuous_on_subset subs(2) by blast
then have fint: f integrable_on cbox $(u, w)(v, z)$
by (metis integrable_continuous)
consider $i \in$ Basis $j=0 \mid j \in$ Basis $i=0$ using $i j$
by (auto simp: Euclidean_Space.Basis_prod_def)
then show norm (integral $(\operatorname{cbox}(u, w)(v, z)) f-$ integral (cbox uv) $(\lambda x$. integral

```
\((\operatorname{cbox} w z)(\lambda y . f(x, y))))\)
                \(\leq e *\) content \((\operatorname{cbox}(u, w)(v, z))(\) is ?normle \()\)
    proof cases
    case 1
    then have \(e: e *\) content \((\operatorname{cbox}(u, w)(v, z))=\)
                    \(e *(\) content \((\) cbox \(u v \cap\{x . x \cdot i \leq M\}) *\) content \((\operatorname{cbox} w z))+\)
                    \(e *(\) content \((\) cbox \(u v \cap\{x . M \leq x \cdot i\}) * \operatorname{content}(\operatorname{cbox} w z))\)
        by (simp add: content_split [where \(c=M\) ] content_Pair algebra_simps)
    have \(*\) : integral \((\) cbox \(u v)(\lambda x\). integral \((\operatorname{cbox} w z)(\lambda y . f(x, y)))=\)
                integral (cbox \(u v \cap\{x . x \cdot i \leq M\})(\lambda x\). integral (cbox wz) ( \(\lambda y . f\)
\((x, y)))+\)
                integral (cbox \(u v \cap\{x . M \leq x \cdot i\})(\lambda x\). integral (cbox wz) ( \(\lambda y . f\)
\((x, y)))\)
            using \(1 f\) subs integral_integrable_2dim continuous_on_subset
            by (blast intro: integral_split)
    show ?normle
        apply (rule norm_diff2 [OF integral_split [where \(c=M\), OF fint ij] *e])
        using 1 subs
        apply (simp_all add: cbox_Pair_eq setcomp_dot1 \([\) of \(\lambda u . M \leq u]\) setcomp_dot1
[of \(\lambda u . u \leq M]\) Sigma_Int_Paircomp1)
            apply (simp_all add: interval_split ij flip: cbox_Pair_eq content_Pair)
            apply (force simp flip: interval_split intro!: n1 [rule_format])
            apply (force simp flip: interval_split intro!: n2 [rule_format])
            done
    next
    case 2
    then have \(e: e *\) content \((\operatorname{cbox}(u, w)(v, z))=\)
                    \(e *(\) content \((\) cbox \(u v) *\) content \((\operatorname{cbox} w z \cap\{x . x \cdot j \leq M\}))+\)
                    \(e *(\) content \((\) cbox \(u v) *\) content \((\) cbox \(w z \cap\{x . M \leq x \cdot j\}))\)
            by (simp add: content_split [where \(c=M\) ] content_Pair algebra_simps)
    have \((\lambda x\). integral (cbox \(w z \cap\{x . x \cdot j \leq M\})(\lambda y . f(x, y)))\) integrable_on
cbox u v
            \((\lambda x\). integral \((\operatorname{cbox} w z \cap\{x . M \leq x \cdot j\})(\lambda y . f(x, y)))\) integrable_on cbox
\(u v\)
            using 2 subs
            apply (simp_all add: interval_split)
            apply (rule integral_integrable_2dim [OF continuous_on_subset [OF f]]; auto
simp: cbox_Pair_eq interval_split [symmetric])+
            done
            with 2 have \(*\) : integral (cbox u v) ( \(\lambda\) x. integral (cbox wz) \((\lambda y . f(x, y)))=\)
                    integral (cbox uv) ( \(\lambda\) x. integral (cbox wz \(\cap\{x . x \cdot j \leq M\}\) ) ( \(\lambda y\).
\(f(x, y)))+\)
            integral (cbox \(u v)(\lambda x\). integral \((\operatorname{cbox} w z \cap\{x . M \leq x \cdot j\})(\lambda y\).
\(f(x, y)))\)
            by (simp add: integral_add [symmetric] integral_split [symmetric]
                continuous_on_imp_integrable_on_Pair1 [OF fcont] cong: integral_cong)
    show ?normle
            apply (rule norm_diff2 [OF integral_split \([\) where \(c=M\), OF fint ij] * e])
            using 2 subs
```

apply (simp_all add: cbox_Pair_eq setcomp_dot2 $[$ of $\lambda u . M \leq u]$ setcomp_dot2 [of $\lambda u . u \leq M]$ Sigma_Int_Paircomp2)
apply (simp_all add: interval_split ij flip: cbox_Pair_eq content_Pair)
apply (force simp flip: interval_split intro!: n1 [rule_format])
apply (force simp flip: interval_split intro!: n2 [rule_format])
done
qed
qed
lemma integral_Pair_const:
integral $($ cbox $(a, c)(b, d))(\lambda x . k)=$
integral (cbox a b) (λx. integral $($ cbox $c d)(\lambda y . k))$
by (simp add: content_Pair)
lemma integral_prod_continuous:
fixes $f::\left({ }^{\prime} a::\right.$ euclidean_space $*$ 'b::euclidean_space) $\Rightarrow{ }^{\prime} c::$ banach
assumes continuous_on (cbox $(a, c)(b, d)) f($ is continuous_on ?CBOX $f)$
shows integral $(c b o x(a, c)(b, d)) f=$ integral (cbox ab) (λx. integral (cbox $c d)(\lambda y . f(x, y)))$
proof (cases content? ? (BOX $=0$)
case True
then show ?thesis
by (auto simp: content_Pair)
next
case False
then have cbp: content? $C B O X>0$
using content_lt_nz by blast
have norm (integral ?CBOX $f-$ integral (cbox ab) $(\lambda x$. integral $(c b o x ~ c d)(\lambda y$.
$f(x, y))))=0$
proof (rule dense_eq0_I, simp)
fix e :: real
assume $0<e$
with 〈content? $C B O X>0$ 〉 have $0<e /$ content? $C B O X$
by simp
have $f_{\text {_int_acbd: }}$ f integrable_on ?CBOX
by (rule integrable_continuous [OF assms])
$\{\boldsymbol{f i x} p$
assume $p: p$ division_of ?CBOX
then have finite p
by blast
define e^{\prime} where $e^{\prime}=e /$ content ? $C B O X$
with $\langle 0<e\rangle\langle 0<e /$ content ? $C B O X\rangle$
have $0<e^{\prime}$
by simp
interpret operative conj True
$\lambda k . \forall a^{\prime} b^{\prime} c^{\prime} d^{\prime}$.
$\operatorname{cbox}\left(a^{\prime}, c^{\prime}\right)\left(b^{\prime}, d^{\prime}\right) \subseteq k \wedge \operatorname{cbox}\left(a^{\prime}, c^{\prime}\right)\left(b^{\prime}, d^{\prime}\right) \subseteq ? C B O X$
\longrightarrow norm (integral (cbox $\left.\left(a^{\prime}, c^{\prime}\right)\left(b^{\prime}, d^{\prime}\right)\right) f-$ integral $\left(\right.$ cbox $\left.a^{\prime} b^{\prime}\right)\left(\lambda x\right.$. integral $\left.\left.\left(c b o x c^{\prime} d^{\prime}\right)(\lambda y . f((x, y)))\right)\right)$

$$
\leq e^{\prime} * \text { content }\left(\operatorname{cbox}\left(a^{\prime}, c^{\prime}\right)\left(b^{\prime}, d^{\prime}\right)\right)
$$

using assms $\left\langle 0<e^{\prime}\right\rangle$ by (rule integral_swap_operativeI)
have norm (integral ?CBOX $f-$ integral (cbox a b) (λx. integral (cbox c d) $(\lambda y . f(x, y))))$
$\leq e^{\prime} *$ content ? $C B O X$
if $\wedge t u v w z . t \in p \Longrightarrow \operatorname{cbox}(u, w)(v, z) \subseteq t \Longrightarrow \operatorname{cbox}(u, w)(v, z) \subseteq$? $C B O X$
\Longrightarrow norm (integral $($ cbox $(u, w)(v, z)) f-$
integral (cbox u v) $(\lambda x$. integral $(\operatorname{cbox} w z)(\lambda y . f(x, y))))$ $\leq e^{\prime} *$ content $(\operatorname{cbox}(u, w)(v, z))$
using that division [of $p(a, c)(b, d)] p\langle$ finite $p\rangle$ by (auto simp add: comm_monoid_set_F_and)
with False have norm (integral ?CBOX $f-$ integral (cbox a b) (λx. integral $(\operatorname{cbox} c d)(\lambda y . f(x, y))))$
$\leq e$
if $\bigwedge t u v w z . t \in p \Longrightarrow \operatorname{cbox}(u, w)(v, z) \subseteq t \Longrightarrow \operatorname{cbox}(u, w)(v, z) \subseteq$?CBOX
\Longrightarrow norm (integral $(\operatorname{cbox}(u, w)(v, z)) f-$ integral $($ cbox u v) $(\lambda x$. integral $(\operatorname{cbox} w z)(\lambda y . f(x, y))))$ $\leq e *$ content $(\operatorname{cbox}(u, w)(v, z)) /$ content ?CBOX
using that by (simp add: e^{\prime} _def)
\} note $o p_{-} a c b d=t h i s$
$\left\{\right.$ fix $k:: r e a l$ and \mathcal{D} and $u::^{\prime} a$ and $v w$ and $z::^{\prime} b$ and $t 1$ t2 l
assume $k: 0<k$
and $n f: \bigwedge x y u v$.
$\llbracket x \in$ cbox a $b ; y \in \operatorname{cbox}$ c $d ; u \in \operatorname{cbox}$ a $b ; v \in c b o x$ c d; norm $(u-x$,
$v-y)<k \rrbracket$

$$
\Longrightarrow \operatorname{norm}(f(u, v)-f(x, y))<e /(2 *(\text { content ?CBOX }))
$$

and $p_{-} a c b d: \mathcal{D}$ tagged_division_of $\operatorname{cbox}(a, c)(b, d)$
and fine: $(\lambda x$. ball $x k)$ fine $\mathcal{D} \quad((t 1, t 2), l) \in \mathcal{D}$
and uwvz_sub: cbox $(u, w)(v, z) \subseteq l$ cbox $(u, w)(v, z) \subseteq \operatorname{cbox}(a, c)(b, d)$
have $t: t 1 \in$ cbox a b t2 \in cbox $c d$
by (meson fine p_acbd cbox_Pair_iff tag_in_interval)+
have $l s: l \subseteq$ ball $(t 1, t 2) k$
using fine by (simp add: fine_def Ball_def)
\{ fix $x 1 x 2$
assume xuvwz: x1 \in cbox u v x2 \in cbox $w z$
then have $x: x 1 \in$ cbox a $b x 2 \in \operatorname{cbox} c d$ using uwvz_sub by auto
have norm $(x 1-t 1, x 2-t 2)=\operatorname{norm}(t 1-x 1$, t2 $-x 2)$ by (simp add: norm_Pair norm_minus_commute)
also have norm ($t 1-x 1$, t2 $-x 2$) $<k$ using xuvwz ls uwvz_sub unfolding ball_def by (force simp add: cbox_Pair_eq dist_norm)
finally have norm $(f(x 1, x 2)-f(t 1$, t2 $)) \leq e /$ content? $C B O X / 2$ using $n f[O F t x]$ by simp
\} note $n f^{\prime}=$ this
have $f_{-} i n t^{\prime}$ _uwvz: f integrable_on cbox $(u, w)(v, z)$
using f_int_acbd uwvz_sub integrable_on_subcbox by blast
have $f_{-} i n t _u v: ~ \bigwedge x . x \in$ cbox $u v \Longrightarrow(\lambda y . f(x, y))$ integrable_on cbox $w z$
using assms continuous_on_subset uwvz_sub
by (blast intro: continuous_on_imp_integrable_on_Pair1)
have 1: norm (integral (cbox $(u, w)(v, z)) f-\operatorname{integral}(\operatorname{cbox}(u, w)(v, z))$
$(\lambda x . f(t 1, t 2)))$
$\leq e *$ content $(\operatorname{cbox}(u, w)(v, z)) /$ content ?CBOX/2
using $c b p\langle 0<e /$ content ? $C B O X\rangle n f^{\prime}$
apply (simp only: integral_diff [symmetric] f_int_uwvz integrable_const)
apply (auto simp: integrable_diff f_int_uwvz integrable_const intro: order_trans [OF integrable_bound [of e/content ?CBOX / 2]])
done
have int_integrable: $(\lambda x$. integral (cbox wz) $(\lambda y . f(x, y)))$ integrable_on cbox $u v$
using assms integral_integrable_2dim continuous_on_subset uwvz_sub(2) by blast
have normint_wz:
$\bigwedge x . x \in$ cbox $u v \Longrightarrow$
norm (integral (cbox wz) $(\lambda y . f(x, y))-\operatorname{integral}(\operatorname{cbox} w z)(\lambda y . f$
(t1, t2)))
$\leq e *$ content $(\operatorname{cbox} w z) /$ content $(\operatorname{cbox}(a, c)(b, d)) / \mathcal{D}$
using $c b p\langle 0<e /$ content ? $C B O X\rangle n f^{\prime}$
apply (simp only: integral_diff [symmetric] f_int_uv integrable_const)
apply (auto simp: integrable_diff f_int_uv integrable_const intro: order_trans
[OF integrable_bound [of e/content ?CBOX/2]]])
done
have norm (integral (cbox u v)
$(\lambda x$. integral $($ cbox $w z)(\lambda y . f(x, y))-\operatorname{integral}(\operatorname{cbox} w z)(\lambda y . f$ $(t 1, t 2))))$
$\leq e *$ content $(\operatorname{cbox} w z) /$ content? $C B O X / 2 *$ content (cbox $u v)$
using $c b p\langle 0<e /$ content ? $C B O X\rangle$
apply (intro integrable_bound $\left.\left[O F ~ _~ n o r m i n t _w z\right]\right) ~(~) ~$
apply (auto simp: field_split_simps integrable_diff int_integrable integrable_const) done
also have $\ldots \leq e *$ content $(\operatorname{cbox}(u, w)(v, z)) /$ content ? $C B O X / 2$
by (simp add: content_Pair field_split_simps)
finally have 2: norm (integral (cbox uv) (λ x. integral (cbox wz) $(\lambda y . f$ $(x, y)))$ -
integral (cbox uv) (λ x. integral $(\operatorname{cbox} w z)(\lambda y . f(t 1, t 2))))$
$\leq e *$ content $(\operatorname{cbox}(u, w)(v, z)) /$ content ?CBOX/2
by (simp only: integral_diff [symmetric] int_integrable integrable_const)
have norm_xx: $\llbracket x^{\prime}=y^{\prime} ; \operatorname{norm}\left(x-x^{\prime}\right) \leq e / 2 ; \operatorname{norm}\left(y-y^{\prime}\right) \leq e / 2 \rrbracket \Longrightarrow$ $\operatorname{norm}(x-y) \leq e$ for $x::^{\prime} c$ and $y x^{\prime} y^{\prime} e$
using norm_triangle_mono [of $x-y^{\prime}$ e/2 $y^{\prime}-y$ e/2] field_sum_of_halves
by (simp add: norm_minus_commute)
have norm (integral $($ cbox $(u, w)(v, z)) f-$ integral (cbox u $v)(\lambda x$. integral $(\operatorname{cbox} w z)(\lambda y . f(x, y))))$
$\leq e *$ content $(\operatorname{cbox}(u, w)(v, z)) /$ content ?CBOX
by (rule norm_xx [OF integral_Pair_const 1 2])
\} note $*=$ this
have norm (integral ?CBOX $f-$ integral (cbox ab) (λ x. integral (cbox ced) $(\lambda y . f(x, y)))) \leq e$
if $\forall x \in$? CBOX. $\forall x^{\prime} \in ?$?CBOX. $\operatorname{norm}\left(x^{\prime}-x\right)<k \longrightarrow \operatorname{norm}\left(f x^{\prime}-f x\right)<$ $e /(2 *$ content $(? C B O X)) 0<k$ for k
proof -
obtain p where p tag: p tagged_division_of $c b o x(a, c)(b, d)$ and fine: $(\lambda x$. ball $x k)$ fine p
using fine_division_exists $\langle 0<k\rangle$ by blast
show ?thesis
using that fine ptag $\langle 0<k\rangle$
by (auto simp: * intro: op_acbd [OF division_of_tagged_division [OF ptag]])
qed
then show norm (integral ?CBOX $f-$ integral (cbox ab) (λx. integral (cbox c d) $(\lambda y . f(x, y)))) \leq e$
using compact_uniformly_continuous [OF assms compact_cbox]
apply (simp add: uniformly_continuous_on_def dist_norm)
apply (drule_tac $x=e / 2 /$ content?CBOX in spec)
using $c b p\langle 0<e\rangle$ by (auto simp: zero_less_mult_iff)
qed
then show?thesis
by simp
qed
lemma integral_swap_2dim:
fixes $f::\left[\right.$ 'a::euclidean_space, ' $b::$ euclidean_space] $\Rightarrow{ }^{\prime} c::$ banach
assumes continuous_on (cbox $(a, c)(b, d))(\lambda(x, y) . f x y)$
shows integral $(\operatorname{cbox}(a, c)(b, d))(\lambda(x, y) . f x y)=$ integral $(c b o x(c, a)(d$, b)) $(\lambda(x, y) . f y x)$

proof -

have $((\lambda(x, y) . f x y)$ has_integral integral $(\operatorname{cbox}(c, a)(d, b))(\lambda(x, y) . f y x))$ (prod.swap' $(\operatorname{cbox}(c, a)(d, b)))$
proof (rule has_integral_twiddle [of 1 prod.swap prod.swap $\lambda(x, y)$.f y x integral
$(\operatorname{cbox}(c, a)(d, b))(\lambda(x, y) . f y x)$, simplified $])$
show $\bigwedge u v$. content (prod.swap'cbox $u v$) $=$ content (cbox $u v$)
by (metis content_Pair mult.commute old.prod.exhaust swap_cbox_Pair)
show $((\lambda(x, y) . f y x)$ has_integral integral $(\operatorname{cbox}(c, a)(d, b))(\lambda(x, y) . f y x))$
($c b o x(c, a)(d, b))$
by (simp add: assms integrable_continuous integrable_integral swap_continuous)
qed (use isCont_swap in 〈fastforce+>)
then show ?thesis
by force
qed
theorem integral_swap_continuous:
fixes $f::[$ 'a::euclidean_space, 'b::euclidean_space $] \Rightarrow{ }^{\prime} c::$ banach
assumes continuous_on (cbox $(a, c)(b, d))(\lambda(x, y) . f x y)$
shows integral $($ cbox a b) $(\lambda x$. integral $($ cbox $c d)(f x))=$
integral (cbox ced) (λy. integral (cbox a b) $(\lambda x . f x y))$
proof -

```
    have integral (cbox a b) ( \(\lambda\). integral (cbox c d) \((f x)\) ) \(=\) integral \((c b o x(a, c)\)
\((b, d))(\lambda(x, y) . f x y)\)
    using integral_prod_continuous [OF assms] by auto
    also have \(\ldots=\) integral \((c b o x(c, a)(d, b))(\lambda(x, y) . f y x)\)
    by (rule integral_swap_2dim [OF assms])
    also have \(\ldots=\) integral \((c b o x c d)(\lambda y\). integral \((c b o x a b)(\lambda x . f x y))\)
    using integral_prod_continuous [OF swap_continuous] assms
    by auto
    finally show ?thesis.
qed
```


6.15.47 Definite integrals for exponential and power function

lemma has_integral_exp_minus_to_infinity:
assumes a : $a>0$
shows $((\lambda x::$ real. $\exp (-a * x))$ has_integral $\exp (-a * c) / a)\{c .$.
proof -
define f where $f=(\lambda k x$. if $x \in\{$ c..real $k\}$ then $\exp (-a * x)$ else 0$)$
\{
fix $k::$ nat assume k : of_nat $k \geq c$
from $k a$
have $((\lambda x . \exp (-a * x))$ has_integral $(-\exp (-a * r e a l k) / a-(-\exp (-a * c) / a)))$ $\{c .$. real $k\}$
by (intro fundamental_theorem_of_calculus)
(auto intro!: derivative_eq_intros simp: has_field_derivative_iff_has_vector_derivative [symmetric])
hence $(f k$ has_integral $(\exp (-a * c) / a-\exp (-a *$ real $k) / a))\{c .$.$\} unfolding$ f_def
by (subst has_integral_restrict) simp_all
\} note has_integral_f $=$ this
have [simp]: $f k=\left(\lambda_{-} .0\right)$ if of_nat $k<c$ for k using that by (auto simp: fun_eq_iff f_def)
have integral_f: integral $\{c .\}.(f k)=$
(if real $k \geq c$ then $\exp (-a * c) / a-\exp (-a * r e a l k) / a$ else 0$)$
for k using integral_unique[OF has_integral_f $[o f k]$ by simp
have $A:(\lambda x . \exp (-a * x))$ integrable_on $\{c ..\} \wedge$
$(\lambda k$. integral $\{c .\}.(f k)) \longrightarrow$ integral $\{c .\}.(\lambda x . \exp (-a * x))$
proof (intro monotone_convergence_increasing allI ballI)
fix k ::nat
have $(\lambda x . \exp (-a * x))$ integrable_on $\left\{c . . o f_{-}\right.$real $\left.k\right\}$ (is ?P)
unfolding f_{-}def by (auto intro!: continuous_intros integrable_continuous_real)
hence $(f k)$ integrable_on $\{c . . o f$ _real $k\}$
by (rule integrable_eq) (simp add: $f_{-} d e f$)
then show $f k$ integrable_on $\{c .$.
by (rule integrable_on_superset) (auto simp: $f_{-} d e f$)
next
fix x assume $x: x \in\{c .$.
have sequentially \leq principal $\{$ nat $\lceil x\rceil .$.$\} unfolding at_top_def by (simp add:$ Inf_lower)
also have $\{$ nat $\lceil x\rceil ..\} \subseteq\{k . x \leq$ real $k\}$ by auto
also have $\inf ($ principal... $)($ principal $\{k . \neg x \leq$ real $k\})=$
principal $(\{k . x \leq$ real $k\} \cap\{k . \neg x \leq$ real $k\})$ by simp
also have $\{k . x \leq$ real $k\} \cap\{k . \neg x \leq$ real $k\}=\{ \}$ by blast
finally have inf sequentially (principal $\{k . \neg x \leq$ real $k\}$) $=$ bot
by (simp add: inf.coboundedI1 bot_unique)
with x show $(\lambda k . f k x) \longrightarrow \exp (-a * x)$ unfolding $f_{-} d e f$
by (intro filterlim_If) auto
next
have \mid integral $\{c .\}.(f k) \mid \leq \exp (-a * c) / a$ for k
proof (cases $c>$ of_nat k)
case False
hence abs $($ integral $\{c .\}.(f k))=a b s(\exp (-(a * c)) / a-\exp (-(a *$
real $k)$) / a)
by (simp add: integral_f)
also have $a b s(\exp (-(a * c)) / a-\exp (-(a *$ real $k)) / a)=$ $\exp (-(a * c)) / a-\exp (-(a *$ real $k)) / a$
using False a by (intro abs_of_nonneg) (simp_all add: field_simps)
also have $\ldots \leq \exp (-a * c) / a$ using a by simp
finally show ?thesis .
qed (insert a, simp_all add: integral_f)
thus bounded (range $(\lambda k$. integral $\{c .\}.(f k))$)
by (intro boundedI $[o f-\exp (-a * c) / a])$ auto
qed (auto simp: $f_{-} d e f$)
have $(\lambda k . \exp (-a * c) / a-\exp (-a *$ of_nat $k) / a) \longrightarrow \exp (-a * c) / a-0 / a$
by (intro tendsto_intros filterlim_compose[OF exp_at_bot] filterlim_tendsto_neg_mult_at_bot[OF tendsto_const] filterlim_real_sequentially)+ (insert a, simp_all)
moreover
from eventually_gt_at_top[of nat $\lceil c\rceil]$ have eventually $(\lambda k$. of_nat $k>c)$ sequentially by eventually_elim linarith
hence eventually $(\lambda k . \exp (-a * c) / a-\exp (-a *$ of_nat $k) / a=$ integral $\{c .\}$.
$(f k))$ sequentially
by eventually_elim (simp add: integral_f)
ultimately have $(\lambda k$. integral $\{c .\}.(f k)) \longrightarrow \exp (-a * c) / a-0 / a$ by (rule Lim_transform_eventually)
from LIMSEQ_unique[OF conjunct2[OF A] this]
have integral $\{c .\}.(\lambda x . \exp (-a * x))=\exp (-a * c) / a$ by simp
with conjunct1 $[O F A]$ show ?thesis by (simp add: has_integral_integral)
qed
lemma integrable_on_exp_minus_to_infinity: $a>0 \Longrightarrow(\lambda x . \exp (-a * x)::$ real $)$ integrable_on $\{c .$.
using has_integral_exp_minus_to_infinity[of a c] unfolding integrable_on_def by blast

```
lemma has_integral_powr_from_0:
    assumes \(a\) : \(a>(-1::\) real \()\) and \(c: c \geq 0\)
    shows \(((\lambda x . x\) powr a) has_integral (c powr \((a+1) /(a+1)))\{0 . . c\}\)
proof (cases \(c=0\) )
    case False
    define \(f\) where \(f=(\lambda k x\). if \(x \in\{\) inverse (of_nat (Suc \(k)\) )..c \(\}\) then x powr a
else 0)
    define \(F\) where \(F=(\lambda k\). if inverse \((\) of_nat \((S u c k)) \leq c\) then
                                    c powr \((a+1) /(a+1)-\) inverse (real \((\) Suc \(k))\) powr
\((a+1) /(a+1)\) else 0\()\)
    \{
        fix \(k:: n a t\)
        have ( \(f k\) has_integral \(F k\) ) \(\{0 . . c\}\)
        proof (cases inverse (of_nat (Suc k)) \(\leq c\) )
            case True
        \{
            fix \(x\) assume \(x: x \geq\) inverse \((1+\) real \(k)\)
            have \(0<\) inverse \((1+\) real \(k)\) by simp
            also note \(x\)
            finally have \(x>0\).
        \(\}\) note \(x=\) this
        hence ( \((\lambda\) x. x powr a) has_integral c powr \((a+1) /(a+1)-\)
                                    inverse (real \((\) Suc \(k))\) powr \((a+1) /(a+1))\) \{inverse (real (Suc
    \(k)) . . c\}\)
        using True a by (intro fundamental_theorem_of_calculus)
            (auto intro!: derivative_eq_intros continuous_on_powr' continuous_on_const
                simp: has_field_derivative_iff_has_vector_derivative [symmetric])
        with True show ?thesis unfolding \(f_{-} d e f F_{-} d e f\) by (subst has_integral_restrict)
simp_all
        next
            case False
            thus ?thesis unfolding \(f_{-}\)def \(F_{-}\)def by (subst has_integral_restrict) auto
        qed
    \} note has_integral_f \(=\) this
    have integral_f: integral \(\{0 . . c\}(f k)=F k\) for \(k\)
        using has_integral_f \([\) of \(k]\) by (rule integral_unique)
    have \(A:(\lambda x . x\) powr a) integrable_on \(\{0 . . c\} \wedge\)
                \((\lambda k\). integral \(\{0 . . c\}(f k)) \longrightarrow\) integral \(\{0 . . c\}(\lambda x\). x powr a)
    proof (intro monotone_convergence_increasing ballI allI)
        fix \(k\) from has_integral_f[of \(k]\) show \(f k\) integrable_on \(\{0 . . c\}\)
        by (auto simp: integrable_on_def)
    next
        fix \(k::\) nat and \(x::\) real
    \{
        assume \(x\) : inverse \((\) real \((\) Suc \(k)) \leq x\)
        have inverse (real (Suc (Suc k))) \(\leq\) inverse (real (Suc \(k\) )) by (simp add:
field_simps)
        also note \(x\)
```

```
        finally have inverse \((\) real \((\) Suc \((\) Suc \(k))) \leq x\).
    \}
    thus \(f k x \leq f(S u c k) x\) by (auto simp: \(f_{-}\)def simp del: of_nat_Suc)
    next
    fix \(x\) assume \(x: x \in\{0 . . c\}\)
    show \((\lambda k . f k x) \longrightarrow x\) powr \(a\)
    proof (cases \(x=0\) )
        case False
        with \(x\) have \(x>0\) by simp
        from order_tendstoD(2)[OF LIMSEQ_inverse_real_of_nat this]
            have eventually ( \(\lambda k\). x powr \(a=f k x\) ) sequentially
            by eventually_elim (insert \(x\), simp add: \(f_{-}\)def)
        moreover have \(\left(\lambda_{-}\right.\). x powr a) \(\longrightarrow x\) powr a by simp
        ultimately show ?thesis by (blast intro: Lim_transform_eventually)
    qed (simp_all add: \(f_{-} d e f\) )
    next
    \{
        fix \(k\)
        from \(a\) have \(F k \leq c\) powr \((a+1) /(a+1)\)
            by (auto simp add: F_def divide_simps)
        also from \(a\) have \(F k \geq 0\)
        by (auto simp: F_def divide_simps simp del: of_nat_Suc intro!: powr_mono2)
        hence \(F k=a b s(F k)\) by simp
        finally have \(a b s(F k) \leq c\) powr \((a+1) /(a+1)\).
    \}
    thus bounded (range ( \(\lambda k\). integral \(\{0 . . c\}(f k))\) )
    by (intro boundedI[of _ c powr \((a+1) /(a+1)]\) ) (auto simp: integral_f)
    qed
    from False \(c\) have \(c>0\) by simp
    from order_tendstoD(2)[OF LIMSEQ_inverse_real_of_nat this]
    have eventually \((\lambda k\). c powr \((a+1) /(a+1)-\) inverse (real \((S u c k))\) powr
\((a+1) /(a+1)=\)
                        integral \(\{0 . . c\}(f k))\) sequentially
    by eventually_elim (simp add: integral_f \(F_{-} d e f\) )
    moreover have \((\lambda k\). c powr \((a+1) /(a+1)-\) inverse \((\) real \((\) Suc \(k))\) powr
\((a+1) /(a+1))\)
                        \(\longrightarrow c\) powr \((a+1) /(a+1)-0\) powr \((a+1) /(a+1)\)
    using \(a\) by (intro tendsto_intros LIMSEQ_inverse_real_of_nat) auto
    hence \((\lambda k\). c powr \((a+1) /(a+1)-\) inverse (real (Suc \(k))\) powr \((a+1) /\)
\((a+1))\)
    \(\longrightarrow c\) powr \((a+1) /(a+1)\) by \(\operatorname{simp}\)
    ultimately have \((\lambda k\). integral \(\{0 . . c\}(f k)) \longrightarrow c\) powr \((a+1) /(a+1)\)
    by (blast intro: Lim_transform_eventually)
    with \(A\) have integral \(\{0 . . c\}(\lambda x . x\) powr \(a)=c\) powr \((a+1) /(a+1)\)
        by (blast intro: LIMSEQ_unique)
    with \(A\) show ?thesis by (simp add: has_integral_integral)
qed (simp_all add: has_integral_refl)
```

```
lemma integrable_on_powr_from_0:
    assumes \(a: a>(-1:\) :real \()\) and \(c: c \geq 0\)
    shows ( \(\lambda x\). x powr a) integrable_on \(\{0 . . c\}\)
    using has_integral_powr_from_0[OF assms] unfolding integrable_on_def by blast
lemma has_integral_powr_to_inf:
    fixes \(a\) e :: real
    assumes \(e<-1 a>0\)
    shows \(((\lambda x . x\) powr \(e)\) has_integral \(-(a\) powr \((e+1)) /(e+1))\{a .\).
proof -
    define \(f::\) nat \(\Rightarrow\) real \(\Rightarrow\) real where \(f=(\lambda n x\). if \(x \in\{a . . n\}\) then \(x\) powr \(e\)
else 0)
    define \(F\) where \(F=(\lambda x\). x powr \((e+1) /(e+1))\)
    have has_integral_f: \((f n\) has_integral \((F n-F a))\{a .\).
    if \(n: n \geq a\) for \(n::\) nat
    proof -
        from \(n\) assms have \(((\lambda x . x\) powr e) has_integral \((F n-F a))\{a . . n\}\)
        by (intro fundamental_theorem_of_calculus) (auto intro!: derivative_eq_intros
                simp: has_field_derivative_iff_has_vector_derivative [symmetric] F_def)
    hence \((f n\) has_integral \((F n-F a))\{a . . n\}\)
        by (rule has_integral_eq [rotated]) (simp add: \(f_{-}\)def)
    thus \((f n\) has_integral \((F n-F a))\{a .\).
        by (rule has_integral_on_superset) (auto simp: \(f_{-}\)def)
    qed
    have integral. \(f:\) integral \(\{a .\}.(f n)=(\) if \(n \geq a\) then \(F n-F\) a else 0\()\) for \(n::\)
nat
    proof (cases \(n \geq a\) )
        case True
        with has_integral_f[OF this] show ?thesis by (simp add: integral_unique)
    next
    case False
    have ( \(f\) n has_integral 0) \(\{a\}\) by (rule has_integral_refl)
    hence ( \(f\) n has_integral 0) \{a..\}
        by (rule has_integral_on_superset) (insert False, simp_all add: \(f_{-}\)def)
    with False show ?thesis by (simp add: integral_unique)
    qed
    have \(*:(\lambda x\). \(x\) powr e) integrable_on \(\{a ..\} \wedge\)
                ( \(\lambda n\). integral \(\{a .\}.(f n)) \longrightarrow\) integral \(\{a .\}.(\lambda x\). x powr \(e)\)
    proof (intro monotone_convergence_increasing allI ballI)
        fix \(n::\) nat
        from assms have ( \(\lambda x . x\) powr e) integrable_on \(\{a . . n\}\)
        by (auto intro!: integrable_continuous_real continuous_intros)
    hence \(f n\) integrable_on \(\{a . . n\}\)
        by (rule integrable_eq) (auto simp: \(f_{-}\)def)
    thus \(f n\) integrable_on \(\{a .\).
        by (rule integrable_on_superset) (auto simp: f_def)
    next
```

```
    fix n :: nat and x :: real
    show f n x < f (Suc n) x by (auto simp: f_def)
    next
    fix }x\mathrm{ :: real assume }x:x\in{a..
    from filterlim_real_sequentially
        have eventually ( }\lambdan\mathrm{ . real }n\geqx)\mathrm{ at_top
        by (simp add: filterlim_at_top)
    with x have eventually ( \lambdan.f n x = x powr e) at_top
        by (auto elim!: eventually_mono simp: f_def)
    thus (\lambdan.f n x)\longrightarrowx powr e by (simp add: tendsto_eventually)
    next
    have norm (integral {a..} (fn))\leq-Fa for n :: nat
    proof (cases n \geqa)
        case True
        with assms have a powr (e+1)\geqn powr (e+1)
            by (intro powr_mono2') simp_all
        with assms show ?thesis by (auto simp: divide_simps F_def integral_f)
    qed (insert assms, simp add: integral_f F_def field_split_simps)
    thus bounded (range( }\lambdak\mathrm{ . integral {a..} (f k)))
        unfolding bounded_iff by (intro exI[of _ -F a]) auto
    qed
    from filterlim_real_sequentially
        have eventually ( }\lambdan\mathrm{ . real }n\geqa)\mathrm{ at_top
        by (simp add: filterlim_at_top)
    hence eventually ( }\lambdan.Fn-Fa= integral {a..} (f n)) at_to
    by eventually_elim (simp add: integral_f)
    moreover have (\lambdan.Fn-Fa)\longrightarrow0/(e+1)-Fa unfolding F_def
        by (insert assms, (rule tendsto_intros filterlim_compose[OF tendsto_neg_powr]
            filterlim_ident filterlim_real_sequentially | simp)+)
    hence ( }\lambdan.Fn-Fa)\longrightarrow-F a by sim
    ultimately have ( }\lambdan\mathrm{ . integral {a..} (fn)) }\longrightarrow-Fa\mp@code{by (blast intro: Lim_transform_eventually)
    from conjunct2[OF *] and this
        have integral {a..} (\lambdax.x powr e)=-F a by (rule LIMSEQ_unique)
    with conjunct1[OF *] show ?thesis
    by (simp add: has_integral_integral F_def)
qed
lemma has_integral_inverse_power_to_inf:
    fixes a :: real and n :: nat
    assumes n>1a>0
    shows ((\lambdax.1 / x ^ n) has_integral 1 / (real (n-1)*a^ (n - 1))) {a..}
proof -
    from assms have real_of_int (-int n)<-1 by simp
    note has_integral_powr_to_inf[OF this <a>0\rangle]
    also have - (a powr (real_of_int (- int n) + 1)) / (real_of_int (- int n) + 1)
=
    1/(real (n-1)*a powr (real (n-1))) using assms
        by (simp add: field_split_simps powr_add [symmetric] of_nat_diff)
```

```
    also from assms have a powr (real (n-1))=\mp@subsup{a}{}{\wedge}(n-1)
    by (intro powr_realpow)
    finally show ?thesis
    by (rule has_integral_eq [rotated])
        (insert assms, simp_all add: powr_minus powr_realpow field_split_simps)
qed
```


Adaption to ordered Euclidean spaces and the Cartesian Euclidean space

```
lemma integral_component_eq_cart[simp]:
    fixes }f\mathrm{ :: ' }n::\mathrm{ :euclidean_space }=>\mathrm{ real^'m
    assumes f integrable_on s
    shows integral s ( }\lambdax.fx$k)=\mathrm{ integral s f $ k
    using integral_linear[OF assms(1) bounded_linear_vec_nth,unfolded o_def].
lemma content_closed_interval:
    fixes a :: 'a::ordered_euclidean_space
    assumes a\leqb
    shows content {a..b} =(\prodi\inBasis.b\cdoti - a.i)
    using content_cbox[of a b] assms by (simp add: cbox_interval eucl_le[where
'a='a])
lemma integrable_const_ivl[intro]:
    fixes a::'a::ordered_euclidean_space
    shows (\lambdax.c) integrable_on {a..b}
    unfolding cbox_interval[symmetric] by (rule integrable_const)
lemma integrable_on_subinterval:
    fixes }f::' ' :::ordered_euclidean_space = 'a::banach
    assumes f integrable_on S {a..b}\subseteqS
    shows f integrable_on {a..b}
    using integrable_on_subcbox[off S a b] assms by (simp add: cbox_interval)
end
```


6.16 Radon-Nikodým Derivative

```
theory Radon_Nikodym
imports Bochner_Integration
begin
definition diff_measure :: 'a measure }=>\mathrm{ ' 'a measure }=>\mathrm{ ' 'a measure
where
    diff_measure M N = measure_of (space M) (sets M) ( }\lambda\mathrm{ A. emeasure M A -
emeasure N A)
lemma
    shows space_diff_measure[simp]: space (diff_measure M N)= space M
```

and sets_diff_measure[simp]: sets (diff_measure $M N$) sets M by (auto simp: diff_measure_def)
lemma emeasure_diff_measure:
assumes fin: finite_measure M finite_measure N and sets_eq: sets $M=$ sets N assumes pos: $\bigwedge A . A \in$ sets $M \Longrightarrow$ emeasure $N A \leq$ emeasure $M A$ and $A: A$ \in sets M
shows emeasure (diff_measure $M N$) $A=$ emeasure $M A-$ emeasure $N A$ (is _ $=? \mu \mathrm{~A})$
unfolding diff_measure_def
proof (rule emeasure_measure_of_sigma)
show sigma_algebra (space M) (sets M) ..
show positive (sets M) ? μ
using pos by (simp add: positive_def)
show countably_additive (sets M) ? μ
proof (rule countably_additiveI)
fix $A::$ nat \Rightarrow _ assume A : range $A \subseteq$ sets M and disjoint_family A
then have suminf:
$\left(\sum i\right.$. emeasure $\left.M(A i)\right)=$ emeasure $M(\bigcup i . A i)$
$\left(\sum i\right.$. emeasure $\left.N(A i)\right)=$ emeasure $N(\bigcup i . A i)$
by (simp_all add: suminf_emeasure sets_eq)
with A have (\sum i. emeasure $M(A i)-$ emeasure $\left.N(A i)\right)=$
(\sum i. emeasure $\left.M(A i)\right)-\left(\sum i\right.$. emeasure $\left.N(A i)\right)$
using fin pos[of A_{-}]
by (intro ennreal_suminf_minus)
(auto simp: sets_eq finite_measure.emeasure_eq_measure suminf_emeasure)
then show ($\sum i$. emeasure $M(A i)-$ emeasure $\left.N(A i)\right)=$
emeasure $M(\bigcup i . A i)-$ emeasure $N(\bigcup i . A i)$
by (simp add: suminf)
qed
qed fact
An equivalent characterization of sigma-finite spaces is the existence of integrable positive functions (or, still equivalently, the existence of a probability measure which is in the same measure class as the original measure).

```
proposition (in sigma_finite_measure) obtain_positive_integrable_function:
    obtains \(f::^{\prime} a \Rightarrow\) real where
        \(f \in\) borel_measurable \(M\)
        \(\bigwedge x . f x>0\)
        \(\bigwedge x . f x \leq 1\)
        integrable \(M f\)
proof -
    obtain \(A::\) nat \(\Rightarrow{ }^{\prime} a\) set where range \(A \subseteq\) sets \(M(\bigcup i . A i)=\) space \(M \bigwedge i\).
emeasure \(M(A i) \neq \infty\)
        using sigma_finite by auto
    then have [measurable]:A \(n \in\) sets \(M\) for \(n\) by auto
    define \(g\) where \(g=\left(\lambda x\right.\). \(\left(\sum n .(1 / 2)^{\wedge}(\right.\) Suc \(n) * \operatorname{indicator}(A n) x /(1+\)
measure \(M(A n)))\) )
    have [measurable]: \(g \in\) borel_measurable \(M\) unfolding \(g_{-}\)def by auto
```

have $*$: summable ($\lambda n .(1 / 2)^{\wedge}($ Suc $n) *$ indicator $(A n) x /(1+$ measure $M(A$ $n)$)) for x apply (rule summable_comparison_test' $\left[\right.$ of $\lambda n .(1 / 2)^{\wedge}($ Suc n) 0] $)$
using power_half_series summable_def by (auto simp add: indicator_def divide_simps)
have $g x \leq\left(\sum n .(1 / 2)^{\wedge}(\right.$ Suc $\left.n)\right)$ for x unfolding g_{-}def
apply (rule suminf_le) using $*$ power_half_series summable_def by (auto simp add: indicator_def divide_simps)
then have $g_{-} l e _1: g x \leq 1$ for x using power_half_series sums_unique by fastforce
have g_pos: $g x>0$ if $x \in$ space M for x
unfolding g_{-}def proof (subst suminf_pos_iff $[O F *[o f x]]$, auto)
obtain i where $x \in A i$ using $\langle(\bigcup i . A i)=$ space $M\rangle\langle x \in$ space $M\rangle$ by auto
then have $0<(1 / 2)^{\wedge}$ Suc $i *$ indicator $(A$ i) $x /(1+$ Sigma_Algebra.measure $M(A i))$
unfolding indicator_def apply (auto simp add: divide_simps) using measure_nonneg[of M A i]
by (auto, meson add_nonneg_nonneg linorder_not_le mult_nonneg_nonneg zero_le_numeral zero_le_one zero_le_power)
then show $\exists i .0<(1 / 2)^{\wedge} i *$ indicator $(A i) x /(2+2 *$ Sigma_Algebra.measure $M(A i))$ by auto
qed
have integrable $M g$
unfolding g_{-}def proof (rule integrable_suminf)
fix n
show integrable $M\left(\lambda x .(1 / 2){ }^{\wedge}\right.$ Suc $n *$ indicator $(A n) x /(1+$ Sigma_Algebra.measure $M(A n)))$ using <emeasure $M(A n) \neq \infty$)
by (auto intro!: integrable_mult_right integrable_divide_zero integrable_real_indicator simp add: top.not_eq_extremum)
next
show $A E x$ in M. summable (λ n. norm ($(1 / 2)^{\wedge}$ Suc $n * \operatorname{indicator~}(A n) x$ $/(1+$ Sigma_Algebra.measure $M(A n))))$ using $*$ by auto
show summable (λn. (\int x. norm ($(1 / 2)^{\wedge}$ Suc $n * \operatorname{indicator~(A~n)~x/(1+~}$ Sigma_Algebra.measure $M(A n))) \partial M)$)
apply (rule summable_comparison_test' $\left[\right.$ of $\lambda n .(1 / 2)^{\wedge}($ Suc n) 0], auto)
using power_half_series summable_def apply auto[1]
apply (auto simp add: field_split_simps) using measure_nonneg $[$ of $M]$ not_less
by fastforce
qed
define f where $f=(\lambda x$. if $x \in$ space M then $g x$ else 1$)$
have $f x>0$ for x unfolding $f_{-} d e f$ using $g_{-} p o s$ by auto
moreover have $f x \leq 1$ for x unfolding $f_{-} d e f$ using $g_{-} l e_{-} 1$ by auto
moreover have [measurable]: $f \in$ borel_measurable M unfolding $f_{-} d e f$ by auto
moreover have integrable $M f$
apply (subst integrable_cong $[o f \ldots$ _ $g]$) unfolding f_{-}def using «integrable M $g\rangle$ by auto
ultimately show $(\bigwedge f . f \in$ borel_measurable $M \Longrightarrow(\bigwedge x .0<f x) \Longrightarrow(\bigwedge x . f x$ $\leq 1) \Longrightarrow$ integrable $M f \Longrightarrow$ thesis $) \Longrightarrow$ thesis
by (meson that)
qed
lemma (in sigma_finite_measure) Ex_finite_integrable_function:
$\exists h \in$ borel_measurable M. integral ${ }^{N} M h \neq \infty \wedge(\forall x \in$ space $M .0<h x \wedge h x<$ $\infty)$
proof -
obtain A :: nat $\Rightarrow{ }^{\prime} a$ set where
range $[$ measurable $]$: range $A \subseteq$ sets M and
space: $(\bigcup i . A i)=$ space M and
measure: $\bigwedge i$. emeasure $M(A i) \neq \infty$ and
disjoint: disjoint_family A
using sigma_finite_disjoint by blast
let ${ }^{2} B=\lambda i$. $\mathbf{2}^{\wedge}$ Suc $i *$ emeasure $M\left(\begin{array}{ll}A & i\end{array}\right)$
have [measurable]: $\bigwedge i . A i \in$ sets M
using range by fastforce+
have \forall i. $\exists x .0<x \wedge x<\operatorname{inverse}(? B i)$
proof
fix i show $\exists x .0<x \wedge x<$ inverse $(? B i)$
using measure[of i]
by (auto intro!: dense simp: ennreal_inverse_positive ennreal_mult_eq_top_iff
power_eq_top_ennreal)
qed
from choice $[O F$ this $]$ obtain n where $n: \bigwedge i .0<n i$
^i. $n i<$ inverse (2^Suc $i *$ emeasure $M(A i)$) by auto
\{ fix i have $0 \leq n i$ using $n(1)[o f i]$ by auto $\}$ note pos $=$ this
let $? h=\lambda x . \sum i . n i *$ indicator $(A i) x$
show ?thesis
proof (safe intro!: bexI[of _ ? $h]$ del: notI)
have integral ${ }^{N} M ? h=\left(\sum i . n i *\right.$ emeasure $\left.M(A i)\right)$ using pos
by (simp add: nn_integral_suminf nn_integral_cmult_indicator)
also have $\ldots \leq\left(\sum\right.$ i. ennreal $\left.\left((1 / 2)^{\wedge} S u c i\right)\right)$
proof (intro suminf_le allI)
fix N
have $n N *$ emeasure $M(A N) \leq$ inverse (2^Suc $N *$ emeasure $M(A N))$

* emeasure $M(A N)$
using $n[$ of $N]$ by (intro mult_right_mono) auto
also have $\ldots=(1 / 2)^{\wedge}$ Suc $N *($ inverse $($ emeasure $M(A N)) *$ emeasure
$M(A N))$
using measure [of N]
by (simp add: ennreal_inverse_power divide_ennreal_def ennreal_inverse_mult power_eq_top_ennreal less_top[symmetric] mult_ac del: power_Suc)
also have ... \leq inverse (ennreal 2) ^Suc N
using measure [of N]

```
            by (cases emeasure M (AN); cases emeasure M (AN)=0)
            (auto simp: inverse_ennreal ennreal_mult[symmetric] divide_ennreal_def
simp del: power_Suc)
            also have ... = ennreal (inverse 2 ` Suc N)
                by (subst ennreal_power[symmetric], simp) (simp add: inverse_ennreal)
            finally show nN* emeasure M(AN)\leqennreal ((1/2)^Suc N)
            by simp
    qed auto
    also have ... < top
        unfolding less_top[symmetric]
        by (rule ennreal_suminf_neq_top)
            (auto simp: summable_geometric summable_Suc_iff simp del: power_Suc)
    finally show integral N}M?h\not=
        by (auto simp: top_unique)
    next
    { fix x assume x f space M
        then obtain i where x\inA i using space[symmetric] by auto
        with disjoint n have ?h x= ni
            by (auto intro!: suminf_cmult_indicator intro: less_imp_le)
                then show 0<?h x and ?h x<\infty using n[of i] by (auto simp:
less_top[symmetric]) }
    note pos = this
    qed measurable
qed
```


6.16.1 Absolutely continuous

definition absolutely_continuous :: 'a measure \Rightarrow ' a measure \Rightarrow bool where absolutely_continuous $M N \longleftrightarrow$ null_sets $M \subseteq$ null_sets N
lemma absolutely_continuousI_count_space: absolutely_continuous (count_space A) M
unfolding absolutely_continuous_def by (auto simp: null_sets_count_space)
lemma absolutely_continuousI_density:
$f \in$ borel_measurable $M \Longrightarrow$ absolutely_continuous M (density $M f$)
by (force simp add: absolutely_continuous_def null_sets_density_iff dest: AE_not_in)
lemma absolutely_continuous__point_measure_finite:
$(\bigwedge x . \llbracket x \in A ; f x \leq 0 \rrbracket \Longrightarrow g x \leq 0) \Longrightarrow$ absolutely_continuous (point_measure
$A f$) (point_measure $A g$)
unfolding absolutely_continuous_def by (force simp: null_sets_point_measure_iff)
lemma absolutely_continuous D :
absolutely_continuous $M N \Longrightarrow A \in$ sets $M \Longrightarrow$ emeasure $M A=0 \Longrightarrow$ emeasure
$N A=0$
by (auto simp: absolutely_continuous_def null_sets_def)
lemma absolutely_continuous_AE:

```
    assumes sets_eq: sets M' = sets M
    and absolutely_continuous M M' AE x in M. P x
    shows AE x in M'. P x
proof -
    from \langleAE x in M. P x\rangle obtain N where N:N\in null_sets M {x\inspace M. }
Px}\subseteqN
    unfolding eventually_ae_filter by auto
    show AE x in M'. P x
    proof (rule AE_I')
    show {x\inspace M'.\negPx}\subseteqN using sets_eq_imp_space_eq[OF sets_eq] N(2)
by simp
    from <absolutely_continuous M M'` show N E null_sets M'
        using N unfolding absolutely_continuous_def sets_eq null_sets_def by auto
    qed
qed
```


6.16.2 Existence of the Radon-Nikodym derivative

proposition

(in finite_measure) Radon_Nikodym_finite_measure:
assumes finite_measure N and sets_eq[simp]: sets $N=$ sets M
assumes absolutely_continuous $M N$
shows $\exists f \in$ borel_measurable M. density $M f=N$
proof -
interpret N : finite_measure N by fact
define G where $G=\left\{g \in\right.$ borel_measurable $M . \forall A \in$ sets $M .\left(\int{ }^{+} x . g x *\right.$ indicator $A x \partial M) \leq N A\}$
have [measurable_dest]: $f \in G \Longrightarrow f \in$ borel_measurable M
and $G_{-} D: \bigwedge A . f \in G \Longrightarrow A \in$ sets $M \Longrightarrow\left(\int{ }^{+} x . f x *\right.$ indicator $\left.A x \partial M\right) \leq$
$N A$ for f
by (auto simp: G_def)
note this[measurable_dest]
have $(\lambda x .0) \in G$ unfolding G_{-}def by auto
hence $G \neq\{ \}$ by auto
\{ fix $f g$ assume $f[$ measurable $]: f \in G$ and $g[$ measurable $]: g \in G$ have $(\lambda x . \max (g x)(f x)) \in G($ is $? \max \in G)$ unfolding G_{-}def proof safe
let ? $A=\{x \in$ space $M . f x \leq g x\}$
have ? $A \in$ sets M using $f g$ unfolding G_{-}def by auto
fix A assume [measurable]: $A \in$ sets M
have union: $((? A \cap A) \cup(($ space $M-? A) \cap A))=A$
using sets.sets_into_space $[O F\langle A \in$ sets $M\rangle]$ by auto
have $\Lambda x . x \in$ space $M \Longrightarrow \max (g x)(f x) *$ indicator $A x=$ $g x *$ indicator $(? A \cap A) x+f x *$ indicator $(($ space $M-? A) \cap A) x$ by (auto simp: indicator_def max_def)
hence $\left(\int^{+} x . \max (g x)(f x) *\right.$ indicator $\left.A x \partial M\right)=$
$\left(\int+x . g x *\right.$ indicator $\left.(? A \cap A) x \partial M\right)+$
$\left(\int{ }^{+} x . f x *\right.$ indicator $(($ space $\left.M-? A) \cap A) x \partial M\right)$
by (auto cong: nn_integral_cong intro!: nn_integral_add)

```
    also have .. }\leqN(?A\capA)+N((\mathrm{ space M - ?A) คA)
    using f g unfolding G_def by (auto intro!: add_mono)
    also have ... = N A
        using union by (subst plus_emeasure) auto
    finally show (\int +}x.\operatorname{max}(gx)(fx)*\mathrm{ indicator A x }\partialM)\leqNA
    qed auto }
    note max_in_G = this
    {fix f}\mathrm{ assume incseq f and f:\i.fi}\in
    then have [measurable]: \i.fi\in borel_measurable M by (auto simp:G_def)
    have (\lambdax.SUP i.fix)\inG unfolding G_def
    proof safe
        show (\lambdax.SUP i.fix) \in borel_measurable M by measurable
    next
    fix }A\mathrm{ assume }A\in\mathrm{ sets M
    have (\int +
        ( \int + x. (SUP i. f i x * indicator A x) \partialM)
        by (intro nn_integral_cong) (simp split: split_indicator)
    also have ... = (SUP i. ( ( + }\mp@subsup{}{}{+}\mathrm{ . fi i x* indicator A x }\partialM)
        using <incseq f\ranglef\langleA\in sets M\rangle
        by (intro nn_integral_monotone_convergence_SUP)
            (auto simp: G_def incseq_Suc_iff le_fun_def split: split_indicator)
        finally show ( }\mp@subsup{\int}{}{+}x.(SUP i.fix)* indicator A x \partialM) \leqN
        using f}\langleA\in\mathrm{ sets M> by (auto intro!: SUP_least simp:G_D)
    qed }
    note SUP_in_G = this
    let ?y =SUP g\inG. integral }\mp@subsup{}{}{N}M
    have y_le:?y \leqN (space M) unfolding G_def
    proof (safe intro!: SUP_least)
    fix g}\mathrm{ assume }\forallA\in\mathrm{ sets M. ( }\int\mp@subsup{}{}{+}x.gx*\mathrm{ indicator A x }\partialM)\leqN
    from this[THEN bspec, OF sets.top] show integral }\mp@subsup{}{}{N}Mg\leqN(\mathrm{ space M)
        by (simp cong: nn_integral_cong)
    qed
    from ennreal_SUP_countable_SUP [OF〈G\not={}\rangle,of integral }\mp@subsup{}{}{N}M]\mathrm{ guess ys ..
note ys = this
    then have \foralln.\existsg.g\inG^\mp@subsup{integral }{}{N}Mg=ysn
    proof safe
        fix n assume range ys \subseteqintegral N }\mp@subsup{}{}{N}\mp@subsup{M}{}{\prime}
        hence ys n }\in\mp@subsup{\mathrm{ integral }}{}{N}M'G\mathrm{ by auto
        thus \existsg.g\inG^\mp@subsup{integral }{}{N}Mg=ys n by auto
    qed
    from choice[OF this] obtain gs where \i.gs i\inG \n. integral }\mp@subsup{}{}{N}M(gs n
= ys n by auto
    hence y_eq: ?y = (SUP i. integral N}M(gs i)) using ys by aut
    let ?g = \lambdaix. Max ((\lambdan.gs n x)'{..i})
    define f}\mathrm{ where [abs_def]: fx=(SUP i. ?g i x) for x
    let ?F = \lambdaAx.fx* indicator Ax
    have gs_not_empty: \ix. (\lambdan.gs n x)'{..i} \not={} by auto
    { fix }i\mathrm{ have ?g i G G
        proof (induct i)
```

```
        case 0 thus ?case by simp fact
    next
        case (Suc i)
        with Suc gs_not_empty 〈gs \((S u c i) \in G\rangle\) show ?case
            by (auto simp add: atMost_Suc intro!: max_in_G \(^{\text {a }}\)
    qed \(\}\)
    note \(g_{-} i n_{-} G=\) this
    have incseq ? g using gs_not_empty
    by (auto intro!: incseq_SucI le_funI simp add: atMost_Suc)
```

from $S U P_{-} i n_{-} G\left[O F\right.$ this $\left.g_{-} i n_{-} G\right]$ have $[m e a s u r a b l e]: f \in G$ unfolding $f_{-} d e f$. then have [measurable]: $f \in$ borel_measurable M unfolding G_{-}def by auto
have integral ${ }^{N} M f=\left(S U P\right.$ i. integral $\left.{ }^{N} M(? g i)\right)$ unfolding $f_{-} d e f$
using $g_{-} n_{-} G\langle i n c s e q$? $g\rangle$ by (auto intro!: nn_integral_monotone_convergence_SUP simp: G_def)
also have $\ldots=? y$
proof (rule antisym)
show (SUP i. integral $\left.{ }^{N} M(? g i)\right) \leq ? y$
using $g_{-} i n_{-} G$ by (auto intro: SUP_mono)
show ?y $\leq\left(S U P\right.$ i. integral $\left.{ }^{N} M(? g i)\right)$ unfolding $y_{-} e q$
by (auto intro!: SUP_mono nn_integral_mono Max_ge)
qed
finally have int_f_eq-y: integral ${ }^{N} M f=? y$.
have upper_bound: $\forall A \in$ sets $M . N A \leq \operatorname{density~} M f A$
proof (rule ccontr)
assume \neg ?thesis
then obtain A where $A[$ measurable $]: A \in$ sets M and $f_{-} l e s s_{-} N$: density $M f$
$A<N A$
by (auto simp: not_le)
then have pos_A: $0<M A$

using «absolutely_continuous M N $\[$ THEN absolutely_continuous D, OF A] by (auto simp: zero_less_iff_neq_zero)
define b where $b=(N A-\operatorname{density} M f A) / M A / 2$
with $f_{-} l e s s_{-} N$ pos_ A have $0<b b \neq t o p$
by (auto intro!: diff_gr0_ennreal simp: zero_less_iff_neq_zero diff_eq_0_iff_ennreal ennreal_divide_eq_top_iff)
let ? $f=\lambda x . f x+b$
have nn_integral $M f \neq$ top
using $\langle f \in G\rangle\left[\right.$ THEN $G_{-} D$, of space $\left.M\right]$ by (auto simp: top_unique cong:
nn_integral_cong)
with $\langle b \neq$ top \rangle interpret $M f$: finite_measure density M ?f by (intro finite_measureI)
(auto simp: field_simps mult_indicator_subset ennreal_mult_eq_top_iff emeasure_density nn_integral_cmult_indicator nn_integral_add cong: nn_integral_cong)
from unsigned_Hahn_decomposition[of density M ?f $N A]$
obtain Y where [measurable]: $Y \in$ sets M and $[$ simp]: $Y \subseteq A$
and Y1: $\wedge C . C \in$ sets $M \Longrightarrow C \subseteq Y \Longrightarrow$ density M ?f $C \leq N C$
and Y2: $\wedge C . C \in$ sets $M \Longrightarrow C \subseteq A \Longrightarrow C \cap Y=\{ \} \Longrightarrow N C \leq$ density M ?f C
by auto
let $? f^{\prime}=\lambda x . f x+b *$ indicator $Y x$
have $M Y \neq 0$
proof
assume $M Y=0$
then have $N Y=0$
using «absolutely_continuous $M N\rangle[$ THEN absolutely_continuous D, of $Y]$ by auto
then have $N A=N(A-Y)$
by (subst emeasure_Diff) auto
also have $\ldots \leq$ density M ?f $(A-Y)$
by (rule Y2) auto
also have $\ldots \leq$ density M ?f $A-$ density M ?f Y
by (subst emeasure_Diff) auto
also have $\ldots \leq$ density M ?f $A-0$
by (intro ennreal_minus_mono) auto
also have density M ?f $A=b * M A+$ density $M f A$
by (simp add: emeasure_density field_simps mult_indicator_subset nn_integral_add nn_integral_cmult_indicator)
also have $\ldots<N A$
using $f_{-} l e s s_{-} N$ pos_ A
by (cases density $M f A$; cases $M A$; cases $N A$)
(auto simp: b_def ennreal_less_iff ennreal_minus divide_ennreal ennreal_numeral[symmetric]
ennreal_plus[symmetric] ennreal_mult[symmetric] field_simps
simp del: ennreal_numeral ennreal_plus)
finally show False
by simp
qed
then have nn_integral $M f<n n$ _integral M ? f^{\prime}
using $\langle 0<b\rangle\left\langle n n _i n t e g r a l ~ M f \neq t o p\right\rangle$
by (simp add: nn_integral_add nn_integral_cmult_indicator ennreal_zero_less_mult_iff zero_less_iff_neq_zero)
moreover
have ? $f^{\prime} \in G$
unfolding G_{-}def
proof safe
fix X assume [measurable]: $X \in$ sets M
have $\left(\int^{+} x\right.$. ? $f^{\prime} x *$ indicator $\left.X x \partial M\right)=$ density $M f(X-Y)+$ density M ?f $(X \cap Y)$
by (auto simp add: emeasure_density nn_integral_add[symmetric] split: split_indicator intro!: nn_integral_cong)

```
        also have ... \leqN(X - Y) +N(X\capY)
        using G_D[OF}\langlef\inG\rangle]\mathrm{ by (intro add_mono Y1) (auto simp: emea-
sure_density)
        also have ... = NX
        by (subst plus_emeasure) (auto intro!: arg_cong2[where f=emeasure])
        finally show (\int+ x. ?f' x * indicator X x \partialM) \leqNX .
    qed simp
    then have nn_integral M ?f'}\leq??
        by (rule SUP_upper)
    ultimately show False
        by (simp add: int_f_eq_y)
    qed
    show ?thesis
    proof (intro bexI[of _ f] measure_eqI conjI antisym)
        fix A assume }A\in\mathrm{ sets (density Mf) then show emeasure (density M f)A
\leq emeasure NA
            by (auto simp: emeasure_density intro!: G_D[OF \langlef \inG\rangle])
    next
        fix A assume A:A\in sets (density Mf) then show emeasure N A \leqemeasure
(density M f) A
            using upper_bound by auto
    qed auto
qed
lemma (in finite_measure) split_space_into_finite_sets_and_rest:
    assumes ac:absolutely_continuous M N and sets_eq[simp]: sets N = sets M
    shows \existsB::nat }\mp@subsup{|}{}{\prime}\mathrm{ a set. disjoint_family B ^ range B}\subseteq\mathrm{ sets }M\wedge(\foralli.N(Bi
# () ^
            (\forallA\insets M.A\cap(\bigcupi.B i)={}\longrightarrow(emeasure M A = 0^NA=0)\vee
(emeasure MA>0\wedgeNA=\infty))
proof -
    let ?Q = {Q\insets M.NQ\not=\infty}
    let ?a = SUP Q\in?Q. emeasure M Q
    have {}\in?Q by auto
    then have Q_not_empty:? Q }={}\mathrm{ by blast
    have ?a \leq emeasure M (space M) using sets.sets_into_space
        by (auto intro!: SUP_least emeasure_mono)
    then have ?a \not= \infty
        using finite_emeasure_space
    by (auto simp: less_top[symmetric] top_unique simp del: SUP_eq_top_iff Sup_eq_top_iff)
    from ennreal_SUP_countable_SUP [OF Q_not_empty, of emeasure M]
    obtain }\mp@subsup{Q}{}{\prime\prime}\mathrm{ where range }\mp@subsup{Q}{}{\prime\prime}\subseteq\mathrm{ emeasure M'?Q and a: ?a = (SUP i::nat. Q'
i)
    by auto
```



```
    from choice[OF this] obtain }\mp@subsup{Q}{}{\prime}\mathrm{ where }\mp@subsup{Q}{}{\prime}:\bigwedgei. Q Q' i= emeasure M ( Q' i) \bigwedgei
Q'i\in?Q
    by auto
    then have a_Lim: ? a = (SUP i. emeasure M ( Q'i)) using a by simp
```

```
let ? \(O=\lambda n . \bigcup i \leq n . Q^{\prime}{ }^{i}\)
have Union: \((S U P i\). emeasure \(M(? O i))=\) emeasure \(M(\bigcup i\) ? ? \(O i)\)
proof (rule SUP_emeasure_incseq[of ? O] )
    show range ? \(O \subseteq\) sets \(M\) using \(Q^{\prime}\) by auto
    show incseq? \({ }^{\text {? }}\) by (fastforce intro!: incseq-SucI)
qed
have \(Q^{\prime}\) _sets[measurable]: \(\bigwedge i . Q^{\prime} i \in\) sets \(M\) using \(Q^{\prime}\) by auto
have \(O\) _sets: \(\bigwedge i\). ? \(O i \in\) sets \(M\) using \(Q^{\prime}\) by auto
then have \(O_{-} i n_{-} G: \bigwedge i\). ? \(O i \in ? Q\)
proof (safe del: notI)
    fix \(i\) have \(Q^{\prime}\) ' \(\{. . i\} \subseteq\) sets \(M\) using \(Q^{\prime}\) by auto
    then have \(N(? O i) \leq\left(\sum i \leq i . N\left(Q^{\prime} i\right)\right)\)
        by (simp add: emeasure_subadditive_finite)
    also have \(\ldots<\infty\) using \(Q^{\prime}\) by (simp add: less_top)
    finally show \(N(? O i) \neq \infty\) by \(\operatorname{simp}\)
qed auto
have O_mono: \(\bigwedge n\). ? \(O n \subseteq\) ? \(O\) (Suc n) by fastforce
have \(a_{\_} e q:\) ? \(a=\) emeasure \(M(\cup i\). ?O \(i)\) unfolding Union[symmetric]
proof (rule antisym)
    show ? \(a \leq(S U P\) i. emeasure \(M(? O i))\) unfolding \(a_{-}\)Lim
        using \(Q^{\prime}\) by (auto intro!: SUP_mono emeasure_mono)
    show (SUP i. emeasure \(M(? O i)) \leq ? a\)
    proof (safe intro!: Sup_mono, unfold bex_simps)
        fix \(i\)
        have \(*:\left(\bigcup\left(Q^{\prime}\right.\right.\) ‘ \(\left.\left.\{. . i\}\right)\right)=\) ? \(O i\) by auto
        then show \(\exists x .(x \in\) sets \(M \wedge N x \neq \infty) \wedge\)
            emeasure \(M\left(\bigcup\left(Q^{\prime}\right.\right.\) ' \(\left.\left.\{. . i\}\right)\right) \leq\) emeasure \(M x\)
            using \(O_{-}\)in_G[of \(\left.i\right]\) by (auto intro!: exI \([\) of _ ? \(O i]\) )
    qed
qed
let ? \(O \_0=(\bigcup i\). ? \(O i)\)
have ? \(O \_0 \in\) sets \(M\) using \(Q^{\prime}\) by auto
have disjointed \(Q^{\prime} i \in\) sets \(M\) for \(i\)
    using sets.range_disjointed_sets \(\left[\right.\) of \(\left.Q^{\prime} M\right]\) using \(Q^{\prime}\) _sets by (auto simp: sub-
set_eq)
    note \(Q\) _sets \(=\) this
    show ?thesis
    proof (intro bexI exI conjI ballI impI allI)
        show disjoint_family (disjointed \(Q^{\prime}\) )
        by (rule disjoint_family_disjointed)
    show range (disjointed \(Q^{\prime}\) ) \(\subseteq\) sets \(M\)
        using \(Q^{\prime}\) _sets by (intro sets.range_disjointed_sets) auto
    \{ fix \(A\) assume \(A: A \in\) sets \(M A \cap\left(\bigcup i\right.\). disjointed \(\left.Q^{\prime} i\right)=\{ \}\)
        then have \(A 1: A \cap\left(\bigcup i . Q^{\prime} i\right)=\{ \}\)
            unfolding \(U N \_\)disjointed_eq by auto
        show emeasure \(M A=0 \wedge N A=0 \vee 0<\) emeasure \(M A \wedge N A=\infty\)
        proof (rule disjCI, simp)
            assume \(*\) : emeasure \(M A=0 \vee N A \neq\) top
            show emeasure \(M A=0 \wedge N A=0\)
```

```
    proof (cases emeasure MA=0)
    case True
    with ac A have NA=0
            unfolding absolutely_continuous_def by auto
            with True show ?thesis by simp
        next
            case False
            with * have NA\not=\infty by auto
            with A have emeasure M ?O_0 + emeasure M A = emeasure M (?O_0 \cup
A)
            using Q' A1 by (auto intro!: plus_emeasure simp: set_eq_iff)
            also have \ldots. = (SUP i. emeasure M (?O i\cupA))
            proof (rule SUP_emeasure_incseq[of \lambdai.?O i\cupA, symmetric, simplified])
            show range (\lambdai. ?O i\cupA)\subseteq sets M
                using \N A = 抆 Osets A by auto
            qed (fastforce intro!: incseq_SucI)
            also have ... \leq?a
            proof (safe intro!: SUP_least)
            fix i have ?O i\cupA\in?Q
            proof (safe del: notI)
                show ?O i}\cupA\in\mathrm{ sets M using O_sets A by auto
                from O_in_G[of i] have N(?O i\cupA)\leqN(?O i) + NA
                    using emeasure_subadditive[of ?O i N A] A O_sets by auto
                with O_in_G[of i] show N (?O i\cupA)\not=\infty
                    using \langleN A = 弶 by (auto simp: top_unique)
            qed
            then show emeasure M (?O i\cupA)\leq?a by (rule SUP_upper)
            qed
            finally have emeasure M A = 0
                unfolding a_eq using measure_nonneg[of M A] by (simp add: emea-
sure_eq_measure)
            with \emeasure M A = 0` show ?thesis by auto
            qed
            qed }
    {fix i
            have N(disjointed Q' }\mp@subsup{Q}{}{\prime})\leqN(\mp@subsup{Q}{}{\prime}i
            by (auto intro!: emeasure_mono simp: disjointed_def)
            then show N(disjointed Q' }\mp@subsup{Q}{}{\prime})\not=
            using Q'(2)[of i] by (auto simp: top_unique) }
    qed
qed
proposition (in finite_measure) Radon_Nikodym_finite_measure_infinite:
    assumes absolutely_continuous M N and sets_eq: sets N = sets M
    shows }\existsf\in\mathrm{ borel_measurable M. density Mf=N
proof -
    from split_space_into_finite_sets_and_rest[OF assms]
    obtain Q :: nat }=>\mp@subsup{)}{}{\prime}\mathrm{ a set
        where Q:disjoint_family Q range Q\subseteq sets M
```

and in-Q0: $\bigwedge A . A \in$ sets $M \Longrightarrow A \cap(\bigcup i . Q i)=\{ \} \Longrightarrow$ emeasure $M A=0$
$\wedge N A=0 \vee 0<$ emeasure $M A \wedge N A=\infty$
and Q_{-}fin: $\bigwedge i . N(Q i) \neq \infty$ by force
from Q have Q_{-}sets: $\bigwedge i . Q i \in$ sets M by auto
let $? N=\lambda i$. density N (indicator $(Q i)$) and $? M=\lambda i$. density M (indicator
($Q i$)
have $\forall i$. $\exists f \in$ borel_measurable (?M i). density (?M i) $f=$? $N i$
proof (intro allI finite_measure.Radon_Nikodym_finite_measure)
fix i
from Q show finite_measure (?M i)
by (auto intro!: finite_measureI cong: nn_integral_cong
simp add: emeasure_density subset_eq sets_eq)
from Q have emeasure (?N i) (space $N)=$ emeasure $N(Q i)$
by (simp add: sets_eq[symmetric] emeasure_density subset_eq cong: nn_integral_cong)
with Q_{-}fin show finite_measure (?N i)
by (auto intro!: finite_measureI)
show sets $(? N i)=$ sets $(? M i)$ by (simp add: sets_eq)
have [measurable]: $\bigwedge A . A \in$ sets $M \Longrightarrow A \in$ sets N by (simp add: sets_eq)
show absolutely_continuous (?M i) (?N i)
using 〈absolutely_continuous $M N\rangle\langle Q i \in$ sets $M\rangle$
by (auto simp: absolutely_continuous_def null_sets_density_iff sets_eq intro!: absolutely_continuous_AE[OF sets_eq])
qed
from choice[OF this[unfolded Bex_def]]
obtain f where borel: $\bigwedge i . f i \in$ borel_measurable $M \bigwedge i x .0 \leq f i x$
and f_{-}density: $\bigwedge i$. density $(? M i)(f i)=? N i$
by force
\{ fix $A i$ assume $A: A \in$ sets M
with Q borel have $\left(\int{ }^{+} x . f i x *\right.$ indicator $\left.(Q i \cap A) x \partial M\right)=$ emeasure
(density (?Mi) (fi)) A by (auto simp add: emeasure_density nn_integral_density subset_eq
intro!: nn_integral_cong split: split_indicator)
also have $\ldots=$ emeasure $N(Q i \cap A)$
using $A Q$ by (simp add: f_{-}density emeasure_restricted subset_eq sets_eq)
finally have emeasure $N(Q i \cap A)=\left(\int{ }^{+} x . f i x * \operatorname{indicator}(Q i \cap A) x\right.$ $\partial M) .$.
note integral_eq $=$ this
let ?f $=\lambda x$. ($\sum i . f i x *$ indicator $\left.(Q i) x\right)+\infty *$ indicator $($ space $M-(\bigcup i$.
$Q i)$) x
show ?thesis
proof (safe intro!: bexI[of _ ?f])
show ?f \in borel_measurable M using borel Q_sets
by (auto intro!: measurable_If)
show density M ?f $=N$
proof (rule measure_eqI)
fix A assume $A \in$ sets (density M ?f)
then have $A \in$ sets M by simp
have $Q i: \bigwedge i . Q i \in$ sets M using Q by auto
have $[$ intro,simp $]: \bigwedge i .(\lambda x . f i x *$ indicator $(Q i \cap A) x) \in$ borel_measurable
^i. $A E x$ in $M .0 \leq f i x *$ indicator $(Q i \cap A) x$ using borel Qi $\langle A \in$ sets $M\rangle$ by auto
have $\left(\int{ }^{+} x\right.$. ?f $x *$ indicator $\left.A x \partial M\right)=\left(\int{ }^{+} x\right.$. $\left(\sum i . f i x *\right.$ indicator $(Q i$ $\cap A) x)+\infty *$ indicator $(($ space $M-(\bigcup i . Q i)) \cap A) x \partial M)$
using borel by (intro nn_integral_cong) (auto simp: indicator_def)
also have $\ldots=\left(\int{ }^{+} x .\left(\sum i . f i x * \operatorname{indicator}(Q i \cap A) x\right) \partial M\right)+\infty *$ emeasure $M(($ space $M-(\bigcup i . Q i)) \cap A)$
using borel $Q i\langle A \in$ sets $M\rangle$
by (subst nn_integral_add)
(auto simp add: nn_integral_cmult_indicator sets.Int intro!: suminf_o_le)
also have $\ldots=\left(\sum i . N(Q i \cap A)\right)+\infty *$ emeasure $M(($ space $M-(\bigcup i$. $Q i)) \cap A$)
by (subst integral_eq[OF〈A sets $M\rangle$], subst nn_integral_suminf) auto
finally have $\left(\int^{+} x\right.$. ? $f x *$ indicator $\left.A x \partial M\right)=\left(\sum i . N(Q i \cap A)\right)+\infty *$ emeasure $M(($ space $M-(\bigcup i . Q i)) \cap A)$.
moreover have $\left(\sum i . N(Q i \cap A)\right)=N\left(\left(\bigcup_{i .} Q i\right) \cap A\right)$
using Q Q_sets $\langle A \in$ sets M 〉
by (subst suminf_emeasure) (auto simp: disjoint_family_on_def sets_eq)
moreover
have $($ space $M-(\bigcup x . Q x)) \cap A \cap(\bigcup x . Q x)=\{ \}$
by auto
then have $\infty *$ emeasure $M(($ space $M-(\bigcup i . Q i)) \cap A)=N(($ space M $-(\bigcup i . Q i)) \cap A)$
using in_Q0[of (space $M-(\bigcup i . Q i)) \cap A]\langle A \in$ sets $M\rangle Q$ by (auto simp: ennreal_top_mult)
moreover have (space $M-(\bigcup i . Q i)) \cap A \in$ sets $M((\bigcup i . Q i) \cap A) \in$ sets M
using Q _sets $\langle A \in$ sets $M\rangle$ by auto
moreover have $((\bigcup i . Q i) \cap A) \cup(($ space $M-(\bigcup i . Q i)) \cap A)=A((\bigcup i$.
$Q i) \cap A) \cap(($ space $M-(\bigcup i . Q i)) \cap A)=\{ \}$
using $\langle A \in$ sets $M\rangle$ sets.sets_into_space by auto
ultimately have $N A=\left(\int^{+} x\right.$. ?f $x *$ indicator $\left.A x \partial M\right)$
using plus_emeasure $[$ of $(\bigcup$ i. $Q i) \cap A N($ space $M-(\bigcup i . Q i)) \cap A]$ by (simp add: sets_eq)
with $\langle A \in$ sets $M\rangle$ borel Q show emeasure (density M ?f) $A=N A$
by (auto simp: subset_eq emeasure_density)
qed (simp add: sets_eq)
qed
qed
theorem (in sigma_finite_measure) Radon_Nikodym:
assumes ac: absolutely_continuous $M N$ assumes sets_eq: sets $N=$ sets M
shows $\exists f \in$ borel_measurable M. density $M f=N$
proof -
from Ex_finite_integrable_function
obtain h where finite: integral ${ }^{N} M h \neq \infty$ and borel: $h \in$ borel_measurable M and $n n: \bigwedge x .0 \leq h x$ and

```
    pos: \(\bigwedge x . x \in\) space \(M \Longrightarrow 0<h x\) and
    \(\bigwedge x . x \in\) space \(M \Longrightarrow h x<\infty\) by auto
    let \(? T=\lambda A .\left(\int^{+} x . h x *\right.\) indicator \(\left.A x \partial M\right)\)
    let \(? M T=\) density \(M h\)
    from borel finite \(n n\) interpret \(T\) : finite_measure ?MT
        by (auto intro!: finite_measureI cong: nn_integral_cong simp: emeasure_density)
    have absolutely_continuous ? \(M T N\) sets \(N=\) sets ? \(M T\)
    proof (unfold absolutely_continuous_def, safe)
    fix \(A\) assume \(A \in\) null_sets ? \(M T\)
    with borel have \(A \in\) sets \(M A E x\) in \(M . x \in A \longrightarrow h x \leq 0\)
        by (auto simp add: null_sets_density_iff)
    with pos sets.sets_into_space have \(A E x\) in \(M . x \notin A\)
        by (elim eventually_mono) (auto simp: not_le[symmetric])
    then have \(A \in\) null_sets \(M\)
        using \(\langle A \in\) sets \(M\rangle\) by (simp add: AE_iff_null_sets)
    with ac show \(A \in\) null_sets \(N\)
        by (auto simp: absolutely_continuous_def)
    qed (auto simp add: sets_eq)
    from T.Radon_Nikodym_finite_measure_infinite[OF this]
    obtain \(f\) where \(f\) _borel: \(f \in\) borel_measurable \(M\) density ? \(M T f=N\) by auto
    with nn borel show ?thesis
    by (auto intro!: bexI[of \(\lambda x . h x * f x]\) simp: density_density_eq)
qed
```


6.16.3 Uniqueness of densities

```
lemma finite_density_unique:
assumes borel: \(f \in\) borel_measurable \(M g \in\) borel_measurable \(M\)
assumes pos: \(A E x\) in \(M .0 \leq f x A E x\) in \(M .0 \leq g x\)
and fin: integral \({ }^{N} M f \neq \infty\)
shows density \(M f=\) density \(M g \longleftrightarrow(A E x\) in \(M . f x=g x)\)
proof (intro iffI ballI)
fix \(A\) assume eq: \(A E x\) in \(M . f x=g x\)
with borel show density \(M f=\) density \(M g\) by (auto intro: density_cong)
next
let \(? P=\lambda f A . \int{ }^{+} x . f x *\) indicator \(A x \partial M\)
assume density \(M f=\) density \(M g\)
with borel have eq: \(\forall A \in\) sets \(M\). ? P \(f A=\) ? P \(g A\)
by (simp add: emeasure_density[symmetric])
from this[THEN bspec, OF sets.top] fin
have \(g_{-} f i n\) : integral \({ }^{N} M g \neq \infty\) by (simp cong: nn_integral_cong)
\{ fix \(f g\) assume borel: \(f \in\) borel_measurable \(M g \in\) borel_measurable \(M\) and pos: \(A E x\) in \(M .0 \leq f x A E x\) in \(M .0 \leq g x\) and \(g_{-}\)fin: integral \({ }^{N} M g \neq \infty\) and eq: \(\forall A \in\) sets \(M\). ?P \(f A=\) ?P \(g A\)
let \(? N=\{x \in\) space \(M . g x<f x\}\)
have \(N: ? N \in\) sets \(M\) using borel by simp
have ?P \(g\) ? \(N \leq\) integral \(^{N} M g\) using pos by (intro nn_integral_mono_AE) (auto split: split_indicator)
```

then have $P g_{-} f i n: ? P g ? N \neq \infty$ using $g_{-} f i n$ by (auto simp: top_unique)
have ? $P(\lambda x .(f x-g x))$? $N=\left(\int{ }^{+} x . f x *\right.$ indicator ? $N x-g x *$ indicator ? $N \times \partial M)$
by (auto intro!: nn_integral_cong simp: indicator_def)
also have $\ldots=? P f ? N-? P g ? N$
proof (rule nn_integral_diff)
show $(\lambda x . f x *$ indicator ? $N x) \in$ borel_measurable $M(\lambda x . g x *$ indicator
? $N x) \in$ borel_measurable M using borel N by auto
show $A E x$ in $M . g x *$ indicator ? $N x \leq f x *$ indicator ? $N x$
using pos by (auto split: split_indicator)
qed fact
also have $\ldots=0$
unfolding eq[THEN bspec, OF N] using $P g_{-} f i n$ by auto
finally have $A E x$ in $M . f x \leq g x$
using pos borel nn_integral_PInf_AE[OF borel(2) $\left.g_{-} f i n\right]$
by (subst (asm) nn_integral_0_iff_AE)
(auto split: split_indicator simp: not_less ennreal_minus_eq_0) \}
from this[OF borel pos g_{-}fin eq] this $[O F \operatorname{borel}(2,1) \operatorname{pos}(2,1)$ fin $] e q$
show $A E x$ in $M . f x=g x$ by auto
qed
lemma (in finite_measure) density_unique_finite_measure:
assumes borel: $f \in$ borel_measurable $M f^{\prime} \in$ borel_measurable M
assumes pos: $A E x$ in $M .0 \leq f x A E x$ in $M .0 \leq f^{\prime} x$
assumes $f: \bigwedge A . A \in$ sets $M \Longrightarrow\left(\int{ }^{+} x . f x *\right.$ indicator $\left.A x \partial M\right)=\left(\int{ }^{+} x . f^{\prime} x\right.$

* indicator $A x \partial M)$
(is $\bigwedge A . A \in$ sets $M \Longrightarrow ? P f A=? P f^{\prime} A$)
shows $A E x$ in $M . f x=f^{\prime} x$
proof -
let $? D=\lambda f$. density $M f$
let $? N=\lambda A$. ?P $f A$ and $? N^{\prime}=\lambda A$. ?P $f^{\prime} A$
let ?f $=\lambda A x . f x *$ indicator $A x$ and $? f^{\prime}=\lambda A x . f^{\prime} x *$ indicator $A x$
have ac: absolutely_continuous M (density $M f$) sets $($ density $M f)=$ sets M using borel by (auto intro!: absolutely_continuousI_density)
from split_space_into_finite_sets_and_rest[OF this]
obtain Q :: nat $\Rightarrow{ }^{\prime}$ a set
where Q : disjoint_family Q range $Q \subseteq$ sets M
and in_Q0: $\bigwedge A . A \in$ sets $M \Longrightarrow A \cap(\bigcup i . Q i)=\{ \} \Longrightarrow$ emeasure $M A=0$
\wedge ? D f $A=0 \vee 0<$ emeasure $M A \wedge$? Df $A=\infty$
and Q_{-}fin: $\bigwedge i$. ?D $f(Q i) \neq \infty$ by force
with borel pos have in_Q0: $\bigwedge A . A \in$ sets $M \Longrightarrow A \cap(\bigcup i . Q i)=\{ \} \Longrightarrow$
emeasure $M A=0 \wedge$? $N A=0 \vee 0<$ emeasure $M A \wedge$? $N A=\infty$
and $Q_{-} f i n: \bigwedge i$. ? $N(Q i) \neq \infty$ by (auto simp: emeasure_density subset_eq)
from Q have Q _sets[measurable]: $\bigwedge i . Q i \in$ sets M by auto
let $? D=\left\{x \in\right.$ space $\left.M . f x \neq f^{\prime} x\right\}$
have ? $D \in$ sets M using borel by auto
have $*: \bigwedge i x A$ ．$\bigwedge y::$ ennreal．$y *$ indicator $(Q i) x *$ indicator $A x=y *$ indicator $(Q i \cap A) x$
unfolding indicator＿def by auto
have $\forall i$ ．$A E x$ in M ．？f $(Q i) x=$ ？$f^{\prime}(Q i) x$ using borel Q_{-}fin Q pos
by（intro finite＿density＿unique［THEN iffD1］allI）
（auto intro！：f measure＿eqI simp：emeasure＿density＊subset＿eq）
moreover have $A E x$ in M ．？f（space $M-(\bigcup i . Q i)) x=? f^{\prime}($ space $M-$
$(\bigcup i . Q i)) x$
proof（rule AE＿I＇）
\｛ fix $f::{ }^{\prime} a \Rightarrow$ ennreal assume borel：$f \in$ borel＿measurable M
and eq：$\bigwedge A . A \in$ sets $M \Longrightarrow$ ？$N A=\left(\int^{+} x . f x *\right.$ indicator $\left.A x \partial M\right)$
let ？$A=\lambda i$ ．（space $M-(\bigcup i . Q i)) \cap\{x \in$ space $M . f x<(i::$ nat $)\}$
have $(\bigcup i$ ．？$A i) \in$ null＿sets M
proof（rule null＿sets＿UN）
fix $i::$ nat have ？A $i \in$ sets M
using borel by auto
have ？$N(? A$ i $) \leq\left(\int{ }^{+}\right.$x．$(i::$ ennreal $) *$ indicator $(? A$ i）$x \partial M)$
unfolding eq［OF〈？$A \quad i \in$ sets M 〉］
by（auto intro！：nn＿integral＿mono simp：indicator＿def）
also have $\ldots=i *$ emeasure $M(? A i)$
using 〈？A $i \in$ sets M by（auto intro！：nn＿integral＿cmult＿indicator）
also have $\ldots<\infty$ using emeasure＿real［ of ？A i］by（auto simp：en－ nreal＿mult＿less＿top of＿nat＿less＿top）
finally have ？$N(? A$ i $) \neq \infty$ by simp
then show ？A $i \in$ null＿sets M using in＿Q $_{-} 0[O F$ «？A $i \in$ sets M 〉］＜？A $i \in$ sets $M>$ by auto
qed
also have $(\bigcup i$. ？$A i)=($ space $M-(\bigcup i . Q i)) \cap\{x \in$ space $M . f x \neq \infty\}$
by（auto simp：ennreal＿Ex＿less＿of＿nat less＿top［symmetric］）
finally have（space $M-(\bigcup i . Q i)) \cap\{x \in$ space $M . f x \neq \infty\} \in$ null＿sets M by $\operatorname{simp}\}$
from this $[O F \operatorname{borel}(1) \mathrm{refl}]$ this $[O F \operatorname{borel}(2) f]$
have（space $\left.M-\left(\bigcup_{i .} Q i\right)\right) \cap\{x \in$ space $M . f x \neq \infty\} \in$ null＿sets M（space $M-(\bigcup i . Q i)) \cap\left\{x \in\right.$ space $\left.M . f^{\prime} x \neq \infty\right\} \in$ null＿sets M by simp＿all
then show $(($ space $M-(\bigcup i . Q i)) \cap\{x \in$ space $M . f x \neq \infty\}) \cup(($ space M $-(\bigcup i . Q i)) \cap\left\{x \in\right.$ space $\left.\left.M . f^{\prime} x \neq \infty\right\}\right) \in$ null＿sets M by（rule null＿sets．Un）
show $\{x \in$ space M ．？f（space $M-(\bigcup i . Q i)) x \neq$ ？f＇$($ space $M-(\bigcup i . Q$ i））$x\} \subseteq$
$(($ space $M-(\bigcup i . Q i)) \cap\{x \in$ space $M . f x \neq \infty\}) \cup(($ space $M-(\bigcup i . Q$
i））$\cap\left\{x \in\right.$ space $\left.M . f^{\prime} x \neq \infty\right\}$ ）by（auto simp：indicator＿def）
qed
moreover have $A E x$ in M ．（？f（space $M-(\bigcup i . Q i)) x=$ ？$f^{\prime}($ space $M-$
$(\bigcup i . Q i)) x) \longrightarrow\left(\forall i\right.$ ．？f $\left.(Q i) x=? f^{\prime}(Q i) x\right) \longrightarrow$
？f $($ space $M) x=$ ？$f^{\prime}($ space $M) x$
by（auto simp：indicator＿def）
ultimately have $A E x$ in M ．？$f($ space $M) x=? f^{\prime}($ space $M) x$
unfolding AE＿all＿countable［symmetric］
by eventually＿elim（auto split：if＿split＿asm simp：indicator＿def）
then show $A E x$ in $M . f x=f^{\prime} x$ by auto

qed

proposition (in sigma_finite_measure) density_unique:
assumes $f: f \in$ borel_measurable M
assumes $f^{\prime}: f^{\prime} \in$ borel_measurable M
assumes density_eq: density $M f=$ density $M f^{\prime}$
shows $A E x$ in $M . f x=f^{\prime} x$
proof -
obtain h where h_{-}borel: $h \in$ borel_measurable M
and fin: integral ${ }^{N} M h \neq \infty$ and pos: $\bigwedge x . x \in$ space $M \Longrightarrow 0<h x \wedge h x<$
$\infty \bigwedge x .0 \leq h x$
using Ex_finite_integrable_function by auto
then have $h_{-} n n: A E x$ in $M .0 \leq h x$ by auto
let $? H=$ density $M h$
interpret h : finite_measure? H
using fin h_borel pos
by (intro finite_measureI) (simp cong: nn_integral_cong emeasure_density add: fin)
let ? $f M=$ density $M f$
let ? $f^{\prime} M=$ density $M f^{\prime}$
$\{$ fix A assume $A \in$ sets M
then have $\{x \in$ space $M . h x *$ indicator $A x \neq 0\}=A$
using pos(1) sets.sets_into_space by (force simp: indicator_def)
then have $\left(\int{ }^{+} x . h x *\right.$ indicator $\left.A x \partial M\right)=0 \longleftrightarrow A \in$ null_sets M
using h_{-}borel $\langle A \in$ sets $M\rangle h_{-} n n$ by (subst nn_integral_0_iff) auto \}
note h _null_sets $=$ this
\{ fix A assume $A \in$ sets M
have $\left(\int{ }^{+} x . f x *(h x *\right.$ indicator $\left.A x) \partial M\right)=\left(\int{ }^{+} x . h x *\right.$ indicator $A x$ $\partial ? f M)$
using $\langle A \in$ sets $M\rangle$ h_borel $h _n n f f^{\prime}$
by (intro nn_integral_density[symmetric]) auto
also have $\ldots=\left(\int{ }^{+} x . h x *\right.$ indicator $\left.A x \partial ? f^{\prime} M\right)$
by (simp_all add: density_eq)
also have $\ldots=\left(\int^{+} x . f^{\prime} x *(h x *\right.$ indicator $\left.A x) \partial M\right)$
using $\langle A \in$ sets $M\rangle$ h_borel h_nn $f f^{\prime}$
by (intro nn_integral_density) auto
finally have $\left(\int{ }^{+} x . h x *(f x *\right.$ indicator $\left.A x) \partial M\right)=\left(\int{ }^{+} x . h x *\left(f^{\prime} x *\right.\right.$ indicator A x) ∂M)
by (simp add: ac_simps)
then have $\left(\int{ }^{+} x .(f x *\right.$ indicator $\left.A x) \partial ? H\right)=\left(\int{ }^{+} x .\left(f^{\prime} x *\right.\right.$ indicator $\left.A x\right)$ $\partial ? H)$
using $\langle A \in$ sets $M\rangle$ h_borel $h _n n f f^{\prime}$
by (subst (asm) (1 2) nn_integral_density[symmetric]) auto \}
then have $A E x$ in ? H. $f x=f^{\prime} x$ using h_borel h_nn $f f^{\prime}$
by (intro h.density_unique_finite_measure absolutely_continuous_AE[of M]) auto
with AE_space [of M] pos show $A E x$ in $M . f x=f^{\prime} x$
unfolding $A E_{-} d e n s i t y\left[O F ~ h _b o r e l\right]$ by auto
qed
lemma (in sigma_finite_measure) density_unique_iff:
assumes $f: f \in$ borel_measurable M and $f^{\prime}: f^{\prime} \in$ borel_measurable M
shows density $M f=$ density $M f^{\prime} \longleftrightarrow\left(A E x\right.$ in $\left.M . f x=f^{\prime} x\right)$
using density_unique $[O F$ assms $]$ density_cong $\left[O F f f^{\prime}\right]$ by auto
lemma sigma_finite_density_unique:
assumes borel: $f \in$ borel_measurable $M g \in$ borel_measurable M
and fin: sigma_finite_measure (density $M f$)
shows density $M f=$ density $M g \longleftrightarrow(A E x$ in $M . f x=g x)$
proof
assume $A E x$ in $M . f x=g x$ with borel show density $M f=$ density $M g$
by (auto intro: density_cong)
next
assume eq: density $M f=$ density $M g$
interpret f : sigma_finite_measure density $M f$ by fact
from f.sigma_finite_incseq guess A. note cover $=$ this
have $A E x$ in $M . \forall i . x \in A i \longrightarrow f x=g x$ unfolding AE_all_countable
proof
fix i
have density (density $M f$) (indicator $(A i))=$ density (density $M g$) (indicator (A i))
unfolding $e q$..
moreover have $\left(\int^{+} x . f x *\right.$ indicator $\left.(A i) x \partial M\right) \neq \infty$
using cover (1) cover(3)[of i] borel by (auto simp: emeasure_density subset_eq)
ultimately have $A E x$ in $M . f x *$ indicator $(A i) x=g x * \operatorname{indicator}(A i) x$
using borel cover (1)
by (intro finite_density_unique[THEN iffD1]) (auto simp: density_density_eq
subset_eq)
then show $A E x$ in $M . x \in A i \longrightarrow f x=g x$
by auto
qed
with $A E$ _space show $A E x$ in $M . f x=g x$
apply eventually_elim
using cover(2)[symmetric]
apply auto
done
qed
lemma (in sigma_finite_measure) sigma_finite_iff_density_finite':
assumes $f: f \in$ borel_measurable M
shows sigma_finite_measure (density $M f) \longleftrightarrow(A E x$ in $M . f x \neq \infty)$
(is sigma_finite_measure ? $N \longleftrightarrow{ }_{-}$)
proof
assume sigma_finite_measure ?N
then interpret N : sigma_finite_measure ? N.
from N.Ex_finite_integrable_function obtain h where
$h: h \in$ borel_measurable M integral N ? $N h \neq \infty$ and
fin: $\forall x \in$ space $M .0<h x \wedge h x<\infty$
by auto
have $A E x$ in $M . f x * h x \neq \infty$
proof (rule AE_I')
have integral ${ }^{N}$? $N h=\left(\int{ }^{+} x . f x * h x \partial M\right)$
using $f h$ by (auto intro!: nn_integral_density)
then have $\left(\int{ }^{+} x . f x * h x \partial M\right) \neq \infty$
using $h(2)$ by simp
then show $(\lambda x . f x * h x)-‘\{\infty\} \cap$ space $M \in$ null_sets M
using $f h(1)$ by (auto intro!: nn_integral_PInf[unfolded infinity_ennreal_def]
borel_measurable_vimage)
qed auto
then show $A E x$ in $M . f x \neq \infty$
using fin by (auto elim!: AE_Ball_mp simp: less_top ennreal_mult_less_top)
next
assume $A E: A E x$ in $M . f x \neq \infty$
from sigma_finite guess Q. note $Q=$ this
define A where $A i=$
$f-‘($ case i of $0 \Rightarrow\{\infty\} \mid$ Suc $n \Rightarrow\{$.. ennreal(of_nat (Suc $n))\}) \cap$ space M
for i
$\{$ fix $i j$ have $A i \cap Q j \in$ sets M
unfolding A_{-}def using $f Q$
apply (rule_tac sets.Int)
by (cases i) (auto intro: measurable_sets $[$ OF $f(1)])\}$
note $A_{\text {_in_sets }}=$ this
show sigma_finite_measure ?N
proof (standard, intro exI conjI ballI)
show countable (range $(\lambda(i, j) . A i \cap Q j)$)
by auto
show range $(\lambda(i, j)$. $A i \cap Q j) \subseteq$ sets (density $M f$)
using A _in_sets by auto
next
have $\bigcup(\operatorname{range}(\lambda(i, j) . A i \cap Q j))=(\bigcup i j . A i \cap Q j)$
by auto
also have $\ldots=(\bigcup i . A i) \cap$ space M using Q by auto
also have $(\bigcup i . A i)=$ space M
proof safe
fix x assume $x: x \in$ space M
show $x \in(\bigcup i . A i)$
proof (cases f x rule: ennreal_cases)
case top with x show ?thesis unfolding A_{-}def by (auto intro: exI[of 0$]$)
next
case (real r)
with ennreal_Ex_less_of_nat $[$ of $f x]$ obtain n :: nat where $f x<n$
by auto
also have $n<($ Suc n :: ennreal $)$
by simp
finally show ?thesis
using x real by (auto simp: A_def ennreal_of_nat_eq_real_of_nat intro!:
$e x I[o f$ _ Suc $n]$) qed
qed (auto simp: A_def)
finally show $\bigcup($ range $(\lambda(i, j)$. $A i \cap Q j))=$ space ? N by simp
next
fix X assume $X \in \operatorname{range}(\lambda(i, j)$. $A i \cap Q j)$
then obtain $i j$ where $[$ simp $]: X=A i \cap Q j$ by auto
have $\left(\int{ }^{+} x . f x *\right.$ indicator $\left.(A i \cap Q j) x \partial M\right) \neq \infty$
proof (cases i)
case 0
have $A E x$ in $M . f x *$ indicator $(A i \cap Q j) x=0$
using $A E$ by (auto simp: $A_{-} d e f\langle i=0\rangle$)
from nn_integral_cong_AE[OF this] show ?thesis by simp
next
case (Suc n)
then have $\left(\int{ }^{+} x . f x *\right.$ indicator $\left.(A i \cap Q j) x \partial M\right) \leq$
$\left(\int{ }^{+} x\right.$. (Suc n :: ennreal) $*$ indicator $\left.(Q j) x \partial M\right)$
by (auto intro!: nn_integral_mono simp: indicator_def A_{-}def ennreal_of_nat_eq_real_of_nat)
also have $\ldots=$ Suc $n *$ emeasure $M(Q j)$
using Q by (auto intro!: nn_integral_cmult_indicator)
also have $\ldots<\infty$
using Q by (auto simp: ennreal_mult_less_top less_top of_nat_less_top)
finally show? ?thesis by simp
qed
then show emeasure ? $N X \neq \infty$
using A_{-}in_sets $Q f$ by (auto simp: emeasure_density)
qed
qed
lemma (in sigma_finite_measure) sigma_finite_iff_density_finite:
$f \in$ borel_measurable $M \Longrightarrow$ sigma_finite_measure (density $M f) \longleftrightarrow(A E x$ in
M. $f x \neq \infty)$
by (subst sigma_finite_iff_density_finite)
(auto simp: max_def intro!: measurable_If)

6.16.4 Radon-Nikodym derivative

definition $R N_{-}$deriv $::$'a measure $\Rightarrow{ }^{\prime} a$ measure $\Rightarrow{ }^{\prime} a \Rightarrow$ ennreal where
$R N _$deriv $M N=$
(if $\exists f . f \in$ borel_measurable $M \wedge$ density $M f=N$
then SOME $f . f \in$ borel_measurable $M \wedge$ density $M f=N$ else ($\left.\lambda_{-} .0\right)$)
lemma $R N_{-}$derivI:
assumes $f \in$ borel_measurable M density $M f=N$
shows density $M\left(R N _d e r i v ~ M N\right)=N$
proof -
have $*: \exists f . f \in$ borel_measurable $M \wedge$ density $M f=N$
using assms by auto
then have density M (SOME $f . f \in$ borel_measurable $M \wedge$ density $M f=N)$ $=N$
by (rule someI2_ex) auto
with $*$ show ?thesis
by (auto simp: RN_deriv_def)
qed
lemma borel_measurable_RN_deriv[measurable]: RN_deriv M N \in borel_measurable M
proof -
\{ assume ex: $\exists f . f \in$ borel_measurable $M \wedge$ density $M f=N$
have 1: $(S O M E f . f \in$ borel_measurable $M \wedge$ density $M f=N) \in$ borel_measurable
M
using ex by (rule someI2_ex) auto \}
from this show ?thesis
by (auto simp: $\left.R N_{-} d e r i v_{-} d e f\right)$
qed
lemma density_RN_deriv_density:
assumes $f: f \in$ borel_measurable M
shows density $M\left(R N_{-} \operatorname{deriv} M(\right.$ density $\left.M f)\right)=\operatorname{density~} M f$
by (rule RN_derivI[OF f]) simp
lemma (in sigma_finite_measure) density_RN_deriv:
absolutely_continuous $M N \Longrightarrow$ sets $N=$ sets $M \Longrightarrow$ density $M\left(R N _d e r i v M N\right)$
$=N$
by (metis RN_derivI Radon_Nikodym)
lemma (in sigma_finite_measure) $R N_{-} d e r i v _n n _i n t e g r a l: ~$
assumes N : absolutely_continuous $M N$ sets $N=$ sets M and $f: f \in$ borel_measurable M
shows integral ${ }^{N} N f=\left(\int{ }^{+} x\right.$. RN_deriv $\left.M N x * f x \partial M\right)$
proof -
have integral ${ }^{N} N f=$ integral $^{N}\left(\right.$ density $\left.M\left(R N _d e r i v M N\right)\right) f$
using N by (simp add: density_RN_deriv)
also have $\ldots=\left(\int{ }^{+} x . R N_{-} \operatorname{deriv} M N x * f x \partial M\right)$
using f by (simp add: nn_integral_density)
finally show ?thesis by simp
qed
lemma (in sigma_finite_measure) $R N_{-}$deriv_unique:
assumes $f: f \in$ borel_measurable M
and eq: density $M f=N$
shows $A E x$ in M. $f x=R N _\operatorname{deriv} M N x$
unfolding eq[symmetric]
by (intro density_unique_iff[THEN iffD1] f borel_measurable_RN_deriv density_RN_deriv_density[symmetric])

```
lemma \(R N_{\text {_ }}\) deriv_unique_sigma_finite:
    assumes \(f: f \in\) borel_measurable \(M\)
    and eq: density \(M f=N\) and fin: sigma_finite_measure \(N\)
    shows \(A E x\) in \(M\). \(f x=R N_{-}\)deriv \(M N x\)
    using fin unfolding eq[symmetric]
    by (intro sigma_finite_density_unique[THEN iffD1] \(f\) borel_measurable_RN_deriv
        density_RN_deriv_density[symmetric])
    lemma (in sigma_finite_measure) \(R N_{-} d e r i v_{-} d i s t r:\)
    fixes \(T::^{\prime} a \Rightarrow{ }^{\prime} b\)
    assumes \(T: T \in\) measurable \(M M^{\prime}\) and \(T^{\prime}: T^{\prime} \in\) measurable \(M^{\prime} M\)
        and inv: \(\forall x \in\) space \(M . T^{\prime}(T x)=x\)
    and ac[simp]: absolutely_continuous (distr \(\left.M M^{\prime} T\right)\left(\operatorname{distr} N M^{\prime} T\right)\)
    and \(N\) : sets \(N=\) sets \(M\)
    shows \(A E x\) in \(M\). RN_deriv (distr \(\left.M M^{\prime} T\right)\left(\operatorname{distr} N M^{\prime} T\right)(T x)=R N_{-} d e r i v\)
M N x
proof (rule RN_deriv_unique)
    have \([\) simp \(]\) : sets \(N=\) sets \(M\) by fact
    note sets_eq_imp_space_eq[OF N, simp]
    have measurable_ \(N[\) simp \(]: \wedge M^{\prime}\). measurable \(N M^{\prime}=\) measurable \(M M^{\prime}\) by (auto
simp: measurable_def)
    \{ fix \(A\) assume \(A \in\) sets \(M\)
        with inv \(T T^{\prime}\) sets.sets_into_space[OF this]
        have \(T-‘ T^{\prime}-‘ A \cap T-\) space \(M^{\prime} \cap\) space \(M=A\)
        by (auto simp: measurable_def) \}
    note \(e q=\) this \([\) simp \(]\)
    \{ fix \(A\) assume \(A \in\) sets \(M\)
        with inv \(T T^{\prime}\) sets.sets_into_space[OF this]
        have \(\left(T^{\prime} \circ T\right)-{ }^{\prime} A \cap\) space \(M=A\)
            by (auto simp: measurable_def) \}
    note eq2 \(=\) this \([\) simp \(]\)
    let \(? M^{\prime}=\operatorname{distr} M M^{\prime} T\) and \(? N^{\prime}=\operatorname{distr} N M^{\prime} T\)
    interpret \(M^{\prime}\) : sigma_finite_measure ? \(M^{\prime}\)
    proof
        from sigma_finite_countable guess \(F\).. note \(F=\) this
        show \(\exists A\). countable \(A \wedge A \subseteq\) sets \(\left(\operatorname{distr} M M^{\prime} T\right) \wedge \bigcup A=\) space (distr \(M M^{\prime}\)
    \(T) \wedge\left(\forall a \in A\right.\). emeasure \(\left.\left(\operatorname{distr} M M^{\prime} T\right) a \neq \infty\right)\)
        proof (intro exI conjI ballI)
            show \(*:\left(\lambda A . T^{\prime}-‘ A \cap \text { space ? } M^{\prime}\right)^{\prime} F \subseteq\) sets ? \(M^{\prime}\)
            using \(F T^{\prime}\) by (auto simp: measurable_def)
            show \(\bigcup\left(\left(\lambda A . T^{\prime}-{ }^{\prime} A \cap \text { space ? } M^{\prime}\right)^{\prime} F\right)=\) space ? \(M^{\prime}\)
                using \(F T^{\prime}[\) THEN measurable_space \(]\) by (auto simp: set_eq_iff)
    next
        fix \(X\) assume \(X \in\left(\lambda A . T^{\prime}-{ }^{\prime} A \cap \text { space ? } M^{\prime}\right)^{\prime} F\)
        then obtain \(A\) where \([\) simp \(]: X=T^{\prime}-{ }^{\prime} A \cap\) space ? \(M^{\prime}\) and \(A \in F\) by
    auto
        have \(X \in\) sets \(M^{\prime}\) using \(F T^{\prime}\langle A \in F\rangle\) by auto
        moreover
        have Fi: \(A \in\) sets \(M\) using \(F\langle A \in F\rangle\) by auto
```

ultimately show emeasure ? $M^{\prime} X \neq \infty$ using $F T T^{\prime}\langle A \in F\rangle$ by (simp add: emeasure_distr)
qed (insert F, auto)
qed
have ($R N_{-}$deriv ? M^{\prime} ? N^{\prime}) $\circ T \in$ borel_measurable M using T ac by measurable
then show $\left(\lambda x\right.$. RN_deriv ? $\left.M^{\prime} ? N^{\prime}(T x)\right) \in$ borel_measurable M by (simp add: comp_def)
have $N=\operatorname{distr} N M\left(T^{\prime} \circ T\right)$
by (subst measure_of_of_measure[of N, symmetric])
(auto simp add: distr_def sets.sigma_sets_eq intro!: measure_of_eq sets.space_closed)
also have $\ldots=\operatorname{distr}\left(\operatorname{distr} N M^{\prime} T\right) M T^{\prime}$
using $T T^{\prime}$ by (simp add: distr_distr)
also have $\ldots=\operatorname{distr}\left(\operatorname{density}\left(\operatorname{distr} M M^{\prime} T\right)\left(R N_{-} d e r i v\left(d i s t r ~ M M^{\prime} T\right)(\right.\right.$ distr
$\left.\left.N M^{\prime} T\right)\right)$) $M T^{\prime}$
using ac by (simp add: M^{\prime}.density_RN_deriv)
also have $\ldots=$ density $M\left(R N _\right.$deriv $\left.\left(\operatorname{distr} M M^{\prime} T\right)\left(\operatorname{distr} N M^{\prime} T\right) \circ T\right)$
by (simp add: distr_density_distr[OF $T T^{\prime}$, OF inv])
finally show density $M\left(\lambda x . R N_{-} \operatorname{deriv}\left(\operatorname{distr} M M^{\prime} T\right)\left(\operatorname{distr} N M^{\prime} T\right)(T x)\right)$
$=N$
by (simp add: comp_def)
qed
lemma (in sigma_finite_measure) $R N_{-} d e r i v_{-} f i n i t e: ~$
assumes N : sigma_finite_measure N and ac: absolutely_continuous $M N$ sets N
$=$ sets M
shows $A E x$ in $M . R N _d e r i v M N x \neq \infty$
proof -
interpret N : sigma_finite_measure N by fact
from N show ?thesis
using sigma_finite_iff_density_finite[OF borel_measurable_RN_deriv, of N] den-
sity_RN_deriv[$\left.\begin{array}{ll}O F & a c\end{array}\right]$
by simp
qed
lemma (in sigma_finite_measure)
assumes N : sigma_finite_measure N and ac: absolutely_continuous $M N$ sets N
$=$ sets M
and $f: f \in$ borel_measurable M
shows $R N_{-}$deriv_integrable: integrable $N f \longleftrightarrow$
integrable $M\left(\lambda x\right.$. enn2real ($R N_{-}$deriv $\left.\left.M N x\right) * f x\right)$ (is ?integrable)
and $R N_{-}$deriv_integral: integral $^{L} N f=\left(\int x\right.$. enn2real $\left(R N_{-} d e r i v ~ M N x\right) * f x$ $\partial M)$ (is ?integral)
proof -
note $a c(2)[s i m p]$ and sets_eq_imp_space_eq[OF ac(2), simp]
interpret N : sigma_finite_measure N by fact
have eq: density $M\left(R N _\right.$deriv $\left.M N\right)=$ density $M\left(\lambda x\right.$. enn2real ($R N_{_}$deriv $M N$

```
x))
    proof (rule density_cong)
    from RN_deriv_finite[OF assms(1,2,3)]
    show AE x in M. RN_deriv MNx= ennreal (enn2real (RN_deriv M N x)
        by eventually_elim (auto simp: less_top)
    qed (insert ac, auto)
    show ?integrable
        apply (subst density_RN_deriv[OF ac, symmetric])
        unfolding eq
        apply (intro integrable_real_density f AE_I2 enn2real_nonneg)
        apply (insert ac, auto)
        done
    show ?integral
    apply (subst density_RN_deriv[OF ac, symmetric])
    unfolding eq
    apply (intro integral_real_density f AE_I2 enn2real_nonneg)
    apply (insert ac, auto)
    done
qed
proposition (in sigma_finite_measure) real_RN_deriv:
    assumes finite_measure N
    assumes ac:absolutely_continuous M N sets N = sets M
    obtains D where D\in borel_measurable M
        and AE x in M. RN_deriv MN x = ennreal (D x)
        and AEx in N. 0<Dx
        and }\bigwedgex.0\leqD
proof
    interpret N: finite_measure N by fact
    note RN = borel_measurable_RN_deriv density_RN_deriv[OF ac]
    let ?RN = \lambdat. {x\in space M. RN_deriv M Nx=t}
    show ( }\lambdax\mathrm{ . enn2real (RN_deriv M N x)) G borel_measurable M
        using RN by auto
    have N(?RN \infty) =( ( + x. RN_deriv MNx* indicator (?RN \infty) x \partialM)
        using RN(1) by (subst RN(2)[symmetric]) (auto simp: emeasure_density)
    also have \ldots= ( }\mp@subsup{}{}{+}x.\infty*\mathrm{ indicator (?RN }\infty)x\partialM
        by (intro nn_integral_cong) (auto simp: indicator_def)
    also have \ldots=\infty* emeasure M (?RN }~\mathrm{ )
        using RN by (intro nn_integral_cmult_indicator) auto
    finally have eq: N(?RN \infty)=\infty* emeasure M (?RN \infty).
    moreover
    have emeasure M (?RN \infty) = 0
    proof (rule ccontr)
```

```
    assume emeasure M{x\in space M. RN_deriv MNx=\infty}\not=0
    then have 0< emeasure M {x\in space M. RN_deriv MNx=\infty}
    by (auto simp:zero_less_iff_neq_zero)
    with eq have N(?RN \infty) = \infty by (simp add: ennreal_mult_eq_top_iff)
    with N.emeasure_finite[of ?RN \infty] RN show False by auto
    qed
    ultimately have AE x in M. RN_deriv MN x<\infty
    using RN by (intro AE_iff_measurable[THEN iffD2]) (auto simp: less_top[symmetric])
    then show AE x in M. RN_deriv MNx= ennreal (enn2real (RN_deriv M N
x))
    by auto
    then have eq:AE x in N. RN_deriv MNx= ennreal (enn2real (RN_deriv M
N x))
    using ac absolutely_continuous_AE by auto
```

 have \(N(? R N 0)=\left(\int+x . R N _d e r i v M N x *\right.\) indicator \(\left.(? R N 0) x \partial M\right)\)
 by (subst \(R N(2)[\) symmetric \(])\) (auto simp: emeasure_density)
 also have \(\ldots=\left(\int^{+} x .0 \partial M\right)\)
 by (intro nn_integral_cong) (auto simp: indicator_def)
 finally have \(A E x\) in \(N\). RN_deriv \(M N x \neq 0\)
 using \(R N\) by (subst AE_iff_measurable[OF_refl]) (auto simp: ac cong: sets_eq_imp_space_eq)
 with eq show \(A E x\) in \(N .0<\) enn2real (\(R N_{-}\)deriv \(M N x\))
 by (auto simp: enn2real_positive_iff less_top[symmetric] zero_less_iff_neq_zero)
 qed (rule enn2real_nonneg)
lemma (in sigma_finite_measure) $R N_{-}$deriv_singleton:
assumes ac: absolutely_continuous $M N$ sets $N=$ sets M
and $x:\{x\} \in$ sets M
shows $N\{x\}=R N _$deriv $M N x *$ emeasure $M\{x\}$
proof -
from $\langle\{x\} \in$ sets $M\rangle$
have density $M\left(R N_{-}\right.$deriv $\left.M N\right)\{x\}=\left(\int^{+} w . R N_{_} d e r i v M N x *\right.$ indicator $\{x\}$
$w \partial M$)
by (auto simp: indicator_def emeasure_density intro!: nn_integral_cong)
with x density_ $R N_{-} \operatorname{deriv}[O F a c]$ show ?thesis
by (auto simp: max_def)
qed
end
theory Set_Integral
imports Radon_Nikodym
begin
definition set_borel_measurable MAf $\equiv\left(\lambda x\right.$. indicator $\left.A x *_{R} f x\right) \in$ borel_measurable

M

```
definition set_integrable MAf\equiv integrable M(\lambdax. indicator A x * R f x)
definition set_lebesgue_integral M A f \equivlebesgue_integral M ( }\lambda\mathrm{ x. indicator A x
*R}fx
syntax
    _ascii_set_lebesgue_integral :: pttrn }=>\mp@subsup{}{}{\prime}\mathrm{ 'a set }=>\mp@subsup{}{}{\prime}'a measure => real => rea
    ((4LINT (-):(-)/|(_)./ _) [0,60,110,61] 60)
translations
    LINT x:A|M.f == CONST set_lebesgue_integral M A ( }\lambdax.f
```


syntax

_lebesgue_borel_integral :: pttrn \Rightarrow real \Rightarrow real ((2LBINT _./ _) [0,60] 60)

syntax

_set_lebesgue_borel_integral :: pttrn \Rightarrow real set \Rightarrow real \Rightarrow real ((3LBINT _:_./ _) $[0,60,61] 60)$

```
lemma set_integrable_cong:
    assumes }M=\mp@subsup{M}{}{\prime}A=\mp@subsup{A}{}{\prime}\x.x\inA\Longrightarrowfx=\mp@subsup{f}{}{\prime}
    shows set_integrable MAf= set_integrable M' }\mp@subsup{M}{}{\prime}\mp@subsup{A}{}{\prime
proof -
    have ( }\lambdax\mathrm{ . indicator A x *R
        using assms by (auto simp: indicator_def)
    thus ?thesis by (simp add: set_integrable_def assms)
qed
lemma set_borel_measurable_sets:
    fixes f :: _ # _::real_normed_vector
    assumes set_borel_measurable M XfB}\in\mathrm{ sets borel X sets M
    shows f-' B\capX\in sets M
proof -
    have f \in borel_measurable (restrict_space M X)
    using assms unfolding set_borel_measurable_def by (subst borel_measurable_restrict_space_iff)
auto
    then have f-' B\cap space (restrict_space M X) \in sets (restrict_space M X)
        by (rule measurable_sets) fact
    with }\langleX\in\mathrm{ sets M\ show ?thesis
        by (subst (asm) sets_restrict_space_iff) (auto simp: space_restrict_space)
```


qed

lemma set_lebesgue_integral_zero [simp]: set_lebesgue_integral $M A(\lambda x .0)=0$ by (auto simp: set_lebesgue_integral_def)
lemma set_lebesgue_integral_cong:
assumes $A \in$ sets M and $\forall x . x \in A \longrightarrow f x=g x$
shows (LINT x:A|M. fx) $=($ LINT $x: A \mid M . g x)$
unfolding set_lebesgue_integral_def
using assms
by (metis indicator_simps(2) real_vector.scale_zero_left)
lemma set_lebesgue_integral_cong_AE:
assumes [measurable]: $A \in$ sets $M f \in$ borel_measurable $M g \in$ borel_measurable M
assumes $A E x \in A$ in $M . f x=g x$
shows LINT $x: A \mid M . f x=$ LINT $x: A \mid M . g x$
proof-
have $A E x$ in M. indicator $A x *_{R} f x=$ indicator $A x *_{R} g x$ using assms by auto
thus ?thesis
unfolding set_lebesgue_integral_def by (intro integral_cong_AE) auto qed
lemma set_integrable_cong_AE:
$f \in$ borel_measurable $M \Longrightarrow g \in$ borel_measurable $M \Longrightarrow$
$A E x \in A$ in $M . f x=g x \Longrightarrow A \in$ sets $M \Longrightarrow$
set_integrable MAf=set_integrable MAg
unfolding set_integrable_def
by (rule integrable_cong_AE) auto
lemma set_integrable_subset:
fixes $M A B$ and $f:: \boldsymbol{\beta}_{-} \boldsymbol{-}_{-}:\{$banach, second_countable_topology $\}$
assumes set_integrable $M A f B \in$ sets $M B \subseteq A$
shows set_integrable MBf
proof -
have set_integrable MB(λx. indicator $\left.A x *_{R} f x\right)$ using assms integrable_mult_indicator set_integrable_def by blast
with $\langle B \subseteq A\rangle$ show ?thesis unfolding set_integrable_def by (simp add: indicator_inter_arith[symmetric] Int_absorb2)
qed
lemma set_integrable_restrict_space:
fixes $f::{ }^{\prime} a \Rightarrow$ ' $b::\{$ banach, second_countable_topology $\}$
assumes f : set_integrable $M S f$ and $T: T \in$ sets (restrict_space $M S$)
shows set_integrable MTf
proof -
obtain T^{\prime} where $T_{-} e q: T=S \cap T^{\prime}$ and $T^{\prime} \in$ sets M
using T by (auto simp: sets_restrict_space)
have <integrable $M\left(\lambda x\right.$. indicator $T^{\prime} x *_{R}$ (indicator $\left.S x *_{R} f x\right)$) >
using $\left\langle T^{\prime} \in\right.$ sets $\left.M\right\rangle$ f integrable_mult_indicator set_integrable_def by blast
then show?thesis
unfolding set_integrable_def
unfolding $T_{-} e q$ indicator_inter_arith by (simp add: ac_simps)
qed
lemma set_integral_scaleR_right [simp]: LINT $t: A \mid M . a *_{R} f t=a *_{R}($ LINT $t: A \mid M . f t)$
unfolding set_lebesgue_integral_def
by (subst integral_scaleR_right[symmetric]) (auto intro!: Bochner_Integration.integral_cong)
lemma set_integral_mult_right [simp]:
fixes $a::{ }^{\prime} a::\{$ real_normed_field, second_countable_topology $\}$
shows LINT $t: A \mid M . a * f t=a *(\operatorname{LINT} t: A \mid M . f t)$
unfolding set_lebesgue_integral_def
by (subst integral_mult_right_zero[symmetric]) auto
lemma set_integral_mult_left [simp]:
fixes $a::$ ' $a::\{$ real_normed_field, second_countable_topology $\}$
shows LINT $t: A \mid M . f t * a=($ LINT $t: A \mid M . f t) * a$
unfolding set_lebesgue_integral_def
by (subst integral_mult_left_zero[symmetric]) auto
lemma set_integral_divide_zero [simp]:
fixes a :: ' $a:$:\{real_normed_field, field, second_countable_topology\}
shows LINT $t: A \mid M . f t / a=($ LINT $t: A \mid M . f t) / a$
unfolding set_lebesgue_integral_def
by (subst integral_divide_zero[symmetric], intro Bochner_Integration.integral_cong) (auto split: split_indicator)
lemma set_integrable_scaleR_right [simp, intro]:
shows $(a \neq 0 \Longrightarrow$ set_integrable $M A f) \Longrightarrow$ set_integrable $M A\left(\lambda t . a *_{R} f t\right)$
unfolding set_integrable_def
unfolding scaleR_left_commute by (rule integrable_scaleR_right)
lemma set_integrable_scaleR_left [simp, intro]:
fixes $a::$ _ :: \{banach, second_countable_topology\}
shows $(a \neq 0 \Longrightarrow$ set_integrable $M A f) \Longrightarrow$ set_integrable $M A\left(\lambda t . f t *_{R} a\right)$
unfolding set_integrable_def
using integrable_scaleR_left[of a $M \lambda x$. indicator $\left.A x *_{R} f x\right]$ by simp
lemma set_integrable_mult_right [simp, intro]:
fixes a :: ' $a::\{$ real_normed_field, second_countable_topology $\}$
shows $(a \neq 0 \Longrightarrow$ set_integrable $M A f) \Longrightarrow$ set_integrable $M A(\lambda t . a * f t)$

```
    unfolding set_integrable_def
    using integrable_mult_right[of a M \lambdax. indicator A x *R f x] by simp
lemma set_integrable_mult_right_iff [simp]:
    fixes a :: 'a::{real_normed_field, second_countable_topology}
    assumes }a\not=
    shows set_integrable MA (\lambdat. a*ft)\longleftrightarrow set_integrable M Af
proof
    assume set_integrable M A (\lambdat.a*ft)
    then have set_integrable MA (\lambdat. 1/a* (a*ft))
        using set_integrable_mult_right by blast
    then show set_integrable M A f
        using assms by auto
qed auto
lemma set_integrable_mult_left [simp, intro]:
    fixes a :: 'a::{real_normed_field, second_countable_topology}
    shows (a\not=0\Longrightarrow set_integrable MAf)\Longrightarrow set_integrable M A (\lambdat.ft*a)
    unfolding set_integrable_def
    using integrable_mult_left[of a M \lambdax. indicator A x *R f x] by simp
lemma set_integrable_mult_left_iff [simp]:
    fixes a :: 'a::{real_normed_field, second_countable_topology}
    assumes }a\not=
    shows set_integrable M A (\lambdat.ft*a)\longleftrightarrow set_integrable M A f
    using assms by (subst set_integrable_mult_right_iff [symmetric]) (auto simp:
mult.commute)
lemma set_integrable_divide [simp, intro]:
    fixes a :: 'a::{real_normed_field, field, second_countable_topology}
    assumes }a\not=0\Longrightarrow\mathrm{ set_integrable MAf
    shows set_integrable M A ( }\lambdat.ft/a
proof -
    have integrable M( }\lambdax\mathrm{ . indicator A x * * f x / a)
        using assms unfolding set_integrable_def by (rule integrable_divide_zero)
    also have ( }\lambdax\mathrm{ . indicator A x**R fx/a)=( ( x. indicator A x * * (fx/a))
        by (auto split: split_indicator)
    finally show ?thesis
        unfolding set_integrable_def .
qed
lemma set_integrable_mult_divide_iff [simp]:
    fixes a :: 'a::{real_normed_field, second_countable_topology}
    assumes }a\not=
    shows set_integrable MA(\lambdat.ft/a)\longleftrightarrow set_integrable M A f
    by (simp add: divide_inverse assms)
lemma set_integral_add [simp, intro]:
    fixes fg :: _ > _ :: {banach, second_countable_topology}
```

```
assumes set_integrable \(M A f\) set_integrable \(M A g\)
shows set_integrable \(M A(\lambda x . f x+g x)\)
    and LINT \(x: A \mid M . f x+g x=(\) LINT \(x: A \mid M . f x)+(\) LINT \(x: A \mid M . g x)\)
    using assms unfolding set_integrable_def set_lebesgue_integral_def by (simp_all
add: scaleR_add_right)
lemma set_integral_diff [simp, intro]:
    assumes set_integrable \(M A f\) set_integrable \(M A g\)
    shows set_integrable \(M A(\lambda x . f x-g x)\) and LINT \(x: A \mid M . f x-g x=\)
        (LINT \(x: A \mid M . f x)-(\) LINT \(x: A \mid M . g x)\)
    using assms unfolding set_integrable_def set_lebesgue_integral_def by (simp_all
add: scaleR_diff_right)
lemma set_integral_uminus: set_integrable \(M A f \Longrightarrow\) LINT \(x: A \mid M .-f x=-\)
(LINT \(x: A \mid M . f x\) )
    unfolding set_integrable_def set_lebesgue_integral_def
    by (subst integral_minus[symmetric]) simp_all
lemma set_integral_complex_of_real:
    LINT \(x: A \mid M\). complex_of_real \((f x)=o f\) _real (LINT \(x: A \mid M . f x)\)
    unfolding set_lebesgue_integral_def
    by (subst integral_complex_of_real[symmetric])
        (auto intro!: Bochner_Integration.integral_cong split: split_indicator)
    lemma set_integral_mono:
    fixes \(f g::{ }_{-} \Rightarrow\) real
    assumes set_integrable MAf set_integrable MAg
        \(\bigwedge x . x \in A \Longrightarrow f x \leq g x\)
    shows \((\) LINT \(x: A \mid M . f x) \leq(\) LINT \(x: A \mid M . g x)\)
    using assms unfolding set_integrable_def set_lebesgue_integral_def
    by (auto intro: integral_mono split: split_indicator)
lemma set_integral_mono_AE:
    fixes \(f g::\) _ \(\Rightarrow\) real
    assumes set_integrable MAf set_integrable \(M A g\)
        \(A E x \in A\) in \(M . f x \leq g x\)
    shows (LINT \(x: A \mid M . f x) \leq(\) LINT \(x: A \mid M . g x)\)
    using assms unfolding set_integrable_def set_lebesgue_integral_def
    by (auto intro: integral_mono_AE split: split_indicator)
```

lemma set_integrable_abs: set_integrable $M A f \Longrightarrow$ set_integrable $M A(\lambda x .|f x|$
:: real)
using integrable_abs[of $M \lambda x . f x *$ indicator $A x]$ unfolding set_integrable_def
by (simp add: abs_mult ac_simps)
lemma set_integrable_abs_iff:
fixes $f::$ _ \Rightarrow real
shows set_borel_measurable $M A f \Longrightarrow$ set_integrable $M A(\lambda x .|f x|)=$ set_integrable
$M A f$
unfolding set_integrable_def set_borel_measurable_def
by (subst (2) integrable_abs_iff [symmetric]) (simp_all add: abs_mult ac_simps)
lemma set_integrable_abs_iff':
fixes $f::_{-} \Rightarrow$ real
shows $f \in$ borel_measurable $M \Longrightarrow A \in$ sets $M \Longrightarrow$
set_integrable $M A(\lambda x .|f x|)=$ set_integrable $M A f$
by (simp add: set_borel_measurable_def set_integrable_abs_iff)
lemma set_integrable_discrete_difference:
fixes $f::{ }^{\prime} a \Rightarrow$ ' $b::\{$ banach, second_countable_topology $\}$
assumes countable X
assumes diff: $(A-B) \cup(B-A) \subseteq X$
assumes $\bigwedge x . x \in X \Longrightarrow$ emeasure $M\{x\}=0 \bigwedge x . x \in X \Longrightarrow\{x\} \in$ sets M
shows set_integrable $M A f \longleftrightarrow$ set_integrable $M B f$
unfolding set_integrable_def
proof (rule integrable_discrete_difference $[$ where $X=X]$)
show $\bigwedge x . x \in$ space $M \Longrightarrow x \notin X \Longrightarrow$ indicator $A x *_{R} f x=$ indicator $B x *_{R}$
$f x$
using diff by (auto split: split_indicator)
qed fact +
lemma set_integral_discrete_difference:
fixes $f::{ }^{\prime} a \Rightarrow$ ' $b::\{$ banach, second_countable_topology $\}$
assumes countable X
assumes diff: $(A-B) \cup(B-A) \subseteq X$
assumes $\bigwedge x . x \in X \Longrightarrow$ emeasure $M\{x\}=0 \bigwedge x . x \in X \Longrightarrow\{x\} \in$ sets M
shows set_lebesgue_integral $M A f=$ set_lebesgue_integral $M B f$
unfolding set_lebesgue_integral_def
proof (rule integral_discrete_difference $[$ where $X=X]$)
show $\bigwedge x . x \in$ space $M \Longrightarrow x \notin X \Longrightarrow$ indicator $A x *_{R} f x=$ indicator $B x *_{R}$
$f x$
using diff by (auto split: split_indicator)
qed fact+
lemma set_integrable_Un:
fixes $f g::$ _ $\Rightarrow_{\text {_ }}::\{$ banach, second_countable_topology $\}$
assumes $f_{-} A$: set_integrable $M A f$ and $f_{-} B$: set_integrable $M B f$ and [measurable]: $A \in$ sets $M B \in$ sets M
shows set_integrable $M(A \cup B) f$
proof -
have set_integrable $M(A-B) f$
using $f_{-} A$ by (rule set_integrable_subset) auto
with $f_{-} B$ have integrable $M\left(\lambda x\right.$. indicator $(A-B) x *_{R} f x+$ indicator $B x$ $\left.*_{R} f x\right)$
unfolding set_integrable_def using integrable_add by blast
then show ?thesis
unfolding set_integrable_def
by (rule integrable_cong[THEN iffD1, rotated 2]) (auto split: split_indicator)

```
qed
lemma set_integrable_empty [simp]: set_integrable M {} f
    by (auto simp: set_integrable_def)
lemma set_integrable_UN:
    fixes f :: _ # _ :: {banach, second_countable_topology}
    assumes finite I \i. i\inI\Longrightarrow set_integrable M (A i)f
        \i.i\inI\LongrightarrowA i sets M
    shows set_integrable M (\bigcupi\inI. A i)f
    using assms
    by (induct I) (auto simp: set_integrable_Un sets.finite_UN)
lemma set_integral_Un:
    fixes f:: _ > _ :: {banach, second_countable_topology}
    assumes }A\capB={
    and set_integrable M A f
    and set_integrable M B f
shows LINT x:A\cupB|M.f x = (LINT x:A M. f x ) + (LINT x:B|M. f x )
    using assms
    unfolding set_integrable_def set_lebesgue_integral_def
    by (auto simp add: indicator_union_arith indicator_inter_arith[symmetric] scaleR_add_left)
lemma set_integral_cong_set:
    fixes f :: _ # _ :: {banach, second_countable_topology}
    assumes set_borel_measurable M A f set_borel_measurable M B f
        and ae:AE x in M. x }\inA\longleftrightarrowx\in
    shows LINT x:B|M. fx=LINT x:A M. f x
    unfolding set_lebesgue_integral_def
proof (rule integral_cong_AE)
    show AE x in M. indicator B x *R f x = indicator A x *R f x
        using ae by (auto simp: subset_eq split: split_indicator)
qed (use assms in <auto simp: set_borel_measurable_def`)
proposition set_borel_measurable_subset:
    fixes f :: _ # _ :: {banach, second_countable_topology}
    assumes [measurable]: set_borel_measurable MAfB\in sets M and B\subseteqA
    shows set_borel_measurable M B f
proof-
    have set_borel_measurable M B ( \lambdax. indicator A x * *R fx)
        using assms unfolding set_borel_measurable_def
        using borel_measurable_indicator borel_measurable_scaleR by blast
    moreover have ( }\lambdax\mathrm{ . indicator }Bx\mp@subsup{*}{R}{}\mathrm{ indicator A x *R}fx)=(\lambdax\mathrm{ . indicator B
x*R f x)
        using }\langleB\subseteqA\rangle\mathrm{ by (auto simp: fun_eq_iff split: split_indicator)
    ultimately show ?thesis
        unfolding set_borel_measurable_def by simp
qed
```

```
lemma set_integral_Un_AE:
    fixes f :: _ _ _ :: {banach, second_countable_topology}
    assumes ae:AE x in M.\neg(x\inA\wedge x 隹) and [measurable]: A E sets M B
\epsilon sets M
    and set_integrable M A f
    and set_integrable M B f
    shows LINT x:A\cupB|M.f x = (LINT x:A|M.f x) +(LINT x:B|M.f x)
proof -
    have f: set_integrable M (A\cupB)f
        by (intro set_integrable_Un assms)
    then have f': set_borel_measurable M (A\cupB)f
        using integrable_iff_bounded set_borel_measurable_def set_integrable_def by blast
    have LINT x:A\cupB|M.fx=LINT x:(A-A\capB)\cup (B-A\capB)|M.fx
    proof (rule set_integral_cong_set)
        show AE x in M. (x\inA-A\capB\cup(B-A\capB))=(x\inA\cupB)
            using ae by auto
        show set_borel_measurable M (A-A\capB\cup(B-A\capB))f
        using f' by (rule set_borel_measurable_subset) auto
    qed fact
    also have ... = (LINT x:(A-A\capB)|M.fx)+(LINT x:(B - A\capB)|M.f
x)
    by (auto intro!: set_integral_Un set_integrable_subset[OF f])
    also have ... =(LINT x:A|M.fx) + (LINT x:B|M. fx )
        using ae
        by (intro arg_cong2[where f=(+)] set_integral_cong_set)
            (auto intro!: set_borel_measurable_subset[OF f ])
    finally show ?thesis .
qed
lemma set_integral_finite_Union:
    fixes f :: _ > _ ::{banach, second_countable_topology}
    assumes finite I disjoint_family_on A I
        and \bigwedgei. i 
    shows (LINT x:(\bigcupi\inI. A i)|M.fx)=(\sumi\inI.LINT x:A i|M.fx)
    using assms
proof induction
    case (insert x F)
    then have A x\cap\bigcup(A'F)={}
        by (meson disjoint_family_on_insert)
    with insert show ?case
    by (simp add: set_integral_Un set_integrable_Un set_integrable_UN disjoint_family_on_insert)
qed (simp add: set_lebesgue_integral_def)
lemma pos_integrable_to_top:
    fixes l::real
    assumes \i. A i f sets M mono A
    assumes nneg: \x i. x \in A i\Longrightarrow0\leqfx
    and intgbl: \i::nat. set_integrable M (A i)f
```

```
    and lim: \((\lambda i::\) nat. LINT \(x: A i \mid M . f x) \longrightarrow l\)
shows set_integrable \(M(\bigcup i . A i) f\)
    unfolding set_integrable_def
    apply (rule integrable_monotone_convergence \([\) where \(f=\lambda i:: n a t . \lambda x\). indicator
( \(A\) i) \(x *_{R} f x\) and \(\left.x=l\right]\) )
    apply (rule intgbl [unfolded set_integrable_def])
    prefer 3 apply (rule lim [unfolded set_lebesgue_integral_def])
    apply (rule AE_I2)
    using 〈mono A〉 apply (auto simp: mono_def nneg split: split_indicator) []
proof (rule AE_I2)
    \{ fix \(x\) assume \(x \in\) space \(M\)
        show \(\left(\lambda i\right.\). indicator \(\left.(A i) x *_{R} f x\right) \longrightarrow\) indicator \(\left(\bigcup i . A\right.\) i) \(x *_{R} f x\)
        proof cases
            assume \(\exists i . x \in A i\)
            then guess \(i\)..
            then have \(*\) : eventually ( \(\lambda i . x \in A i\) ) sequentially
            using \(\langle x \in A\) i〉〈mono \(A\rangle\) by (auto simp: eventually_sequentially mono_def)
            show ?thesis
            apply (intro tendsto_eventually)
            using *
            apply eventually_elim
            apply (auto split: split_indicator)
            done
        qed auto \}
    then show \(\left(\lambda x\right.\). indicator \(\left.(\bigcup i . A i) x *_{R} f x\right) \in\) borel_measurable \(M\)
        apply (rule borel_measurable_LIMSEQ_real)
        apply assumption
        using intgbl set_integrable_def by blast
qed
```

lemma lebesgue＿integral＿countable＿add：
fixes $f::{ }_{-} \boldsymbol{\beta}^{\prime} a::\{$ banach，second＿countable＿topology $\}$
assumes meas［intro］：$\bigwedge i::$ nat．$A i \in$ sets M
and disj：$\bigwedge i j . i \neq j \Longrightarrow A i \cap A j=\{ \}$
and intgbl：set＿integrable $M(\bigcup i . A i) f$
shows LINT $x:(\bigcup i . A i) \mid M . f x=\left(\sum i .(\operatorname{LINT} x:(A i) \mid M . f x)\right)$
unfolding set＿lebesgue＿integral＿def
proof（subst integral＿suminf［symmetric］）
show int＿A：integrable $M\left(\lambda x\right.$ ．indicat＿real $\left.\left(\begin{array}{ll}A & i\end{array}\right) x *_{R} f x\right)$ for i
using intgbl unfolding set＿integrable＿def［symmetric］
by（rule set＿integrable＿subset）auto
\｛ fix x assume $x \in$ space M
have（ λi ．indicator $\left.(A i) x *_{R} f x\right)$ sums（indicator $\left.(\bigcup i . A i) x *_{R} f x\right)$
by（intro sums＿scaleR＿left indicator＿sums）fact \}
note sums $=$ this
have norm＿f：$\bigwedge i$ ．set＿integrable $M(A i)(\lambda x . \operatorname{norm}(f x))$
using int＿A［THEN integrable＿norm］unfolding set＿integrable＿def by auto
show $A E x$ in M. summable (λi. norm (indicator $\left.(A i) x *_{R} f x\right)$)
using disj by (intro AE_I2) (auto intro!: summable_mult2 sums_summable[OF indicator_sums])

```
    show summable ( \(\lambda\) i. LINT \(x \mid M\). norm (indicator \(\left(A\right.\) i) \(\left.x *_{R} f x\right)\) )
    proof (rule summableI_nonneg_bounded)
    fix \(n\)
    show \(0 \leq L I N T x \mid M\). norm (indicator \(\left.(A n) x *_{R} f x\right)\)
        using norm_f by (auto intro!: integral_nonneg_AE)
    have \(\left(\sum i<n\right.\). LINT \(x \mid M\). norm (indicator \(\left.\left.(A i) x *_{R} f x\right)\right)=\left(\sum i<n\right.\). LINT
\(x: A i \mid M\). norm ( \(f x)\) )
        by (simp add: abs_mult set_lebesgue_integral_def)
    also have \(\ldots=\) set_lebesgue_integral \(M(\bigcup i<n\). A i) ( \(\lambda x\). norm ( \(f x)\) )
        using norm_f
        by (subst set_integral_finite_Union) (auto simp: disjoint_family_on_def disj)
    also have \(\ldots \leq\) set_lebesgue_integral \(M(\bigcup i\). A i) \((\lambda x\).norm \((f x))\)
        using intgbl[unfolded set_integrable_def, THEN integrable_norm] norm_f
        unfolding set_lebesgue_integral_def set_integrable_def
    apply (intro integral_mono set_integrable_UN[of \{..<n\}, unfolded set_integrable_def])
            apply (auto split: split_indicator)
        done
    finally show \(\left(\sum i<n . \operatorname{LINT} x \mid M\right.\). norm (indicator \(\left.\left.(A i) x *_{R} f x\right)\right) \leq\)
        set_lebesgue_integral \(M(\bigcup i . A i)(\lambda x\). norm \((f x))\)
        by \(\operatorname{simp}\)
    qed
    show LINT \(x \mid M\). indicator \((\bigcup(A \cdot U N I V)) x *_{R} f x=\operatorname{LINT} x \mid M .\left(\sum i\right.\).
indicator \(\left(A\right.\) i) \(\left.x *_{R} f x\right)\)
    apply (rule Bochner_Integration.integral_cong[OF refl \(]\) )
        apply (subst suminf_scaleR_left[OF sums_summable[OF indicator_sums, OF
disj], symmetric])
    using sums_unique[OF indicator_sums[OF disj]]
    apply auto
    done
qed
lemma set_integral_cont_up:
    fixes \(f:: \__{-} \Rightarrow\) ' \(a::\{\) banach, second_countable_topology \(\}\)
    assumes [measurable]: \(\bigwedge i\). \(A i \in\) sets \(M\) and \(A\) : incseq \(A\)
    and intgbl: set_integrable \(M(\bigcup i . A i) f\)
shows ( \(\lambda\) i. LINT \(x:(A i) \mid M . f x) \longrightarrow\) LINT \(x:(\bigcup\) i. A i \() \mid M . f x\)
    unfolding set_lebesgue_integral_def
proof (intro integral_dominated_convergence[where \(w=\lambda x\). indicator \((\bigcup i . A i) x\)
\(\left.\left.*_{R} \operatorname{norm}(f x)\right]\right)\)
    have int_A: \(\bigwedge i\). set_integrable \(M(A i) f\)
        using intgbl by (rule set_integrable_subset) auto
    show \(\bigwedge i\). \(\left(\lambda x\right.\). indicator \(\left.\left(\begin{array}{ll}A & i\end{array}\right) x *_{R} f x\right) \in\) borel_measurable \(M\)
        using int_A integrable_iff_bounded set_integrable_def by blast
```

```
show ( }\lambdax\mathrm{ . indicator (U (A`UNIV)) x**R f x) E borel_measurable M
    using integrable_iff_bounded intgbl set_integrable_def by blast
    show integrable M ( }\lambdax\mathrm{ . indicator ( }\bigcupi.A i)x** norm (fx)
        using int_A intgbl integrable_norm unfolding set_integrable_def
        by fastforce
    { fix }xi\mathrm{ assume }x\inA
        with A have ( }\lambda\mathrm{ xa. indicator ( }Axa) x::real)\longrightarrow \longrightarrow1\longleftrightarrow(\lambdaxa. 1::real
\longrightarrow 1
        by (intro filterlim_cong refl)
            (fastforce simp: eventually_sequentially incseq_def subset_eq intro!: exI[of _
i]) }
    then show AE x in M. (\lambdai. indicator (A i) x*R fx)\longrightarrow < indicator (\bigcupi. A
i) }x\mp@subsup{*}{R}{}f
    by (intro AE_I2 tendsto_intros) (auto split: split_indicator)
qed (auto split: split_indicator)
lemma set_integral_cont_down:
    fixes f :: _ # 'a :: {banach, second_countable_topology}
    assumes [measurable]: \i. A i f sets M and A: decseq A
    and int0: set_integrable M (A 0) f
    shows (\lambdai::nat. LINT x:(A i)|M.f x) \longrightarrowLINT x:(\bigcapi. A i)|M. f x
    unfolding set_lebesgue_integral_def
proof (rule integral_dominated_convergence)
    have int_A: \i. set_integrable M (A i) f
        using int0 by (rule set_integrable_subset) (insert A, auto simp: decseq_def)
    have integrable M (\lambdac. norm (indicat_real (A 0) c**Rfc))
        by (metis (no_types) int0 integrable_norm set_integrable_def)
    then show integrable M ( }\lambdax\mathrm{ . indicator (A0) x * * norm (fx))
        by force
    have set_integrable M (\bigcapi. A i) f
        using int0 by (rule set_integrable_subset) (insert A, auto simp: decseq_def)
    with int_A show ( }\lambdax\mathrm{ . indicat_real ( }\cap(A`UNIV)) x*\mp@subsup{*}{R}{\prime}fx)\in\mathrm{ borel_measurable
M
                        \i. (\lambdax. indicat_real (A i) x*R f x) \in borel_measurable M
        by (auto simp: set_integrable_def)
    show \i. AE x in M. norm(indicator (A i) x**R fx)\leqindicator (A 0) x**R
norm (f x)
    using A by (auto split: split_indicator simp: decseq_def)
    { fix x i assume x space Mx\not\inAi
    with }A\mathrm{ have ( }\lambdai\mathrm{ . indicator ( }A\mathrm{ i ) x::real ) }\longrightarrow0\longleftrightarrow(\lambdai.0::real) \longrightarrow
        by (intro filterlim_cong refl)
            (auto split: split_indicator simp: eventually_sequentially decseq_def intro!:
exI[of - i]) }
    then show AE x in M. (\lambdai. indicator (A i) x**Rfx)\longrightarrow \ indicator (\bigcapi. A
i) x**R}f
    by (intro AE_I2 tendsto_intros) (auto split: split_indicator)
qed
```

```
lemma set_integral_at_point:
    fixes a :: real
    assumes set_integrable M{a}f
    and [simp]: {a}\in sets M and (emeasure M) {a}\not=\infty
    shows (LINT x:{a}|M.fx)=fa* measure M {a}
proof-
    have set_lebesgue_integral M{a}f= set_lebesgue_integral M {a} (%x.fa)
        by (intro set_lebesgue_integral_cong) simp_all
    then show ?thesis using assms
        unfolding set_lebesgue_integral_def by simp
qed
```

abbreviation complex_integrable :: 'a measure $\Rightarrow(' a \Rightarrow$ complex $) \Rightarrow$ bool where complex_integrable $M f \equiv$ integrable $M f$
abbreviation complex_lebesgue_integral $::$ ' a measure $\Rightarrow\left({ }^{\prime} a \Rightarrow\right.$ complex $) \Rightarrow$ complex (integral ${ }^{C}$) where integral ${ }^{C} M f==$ integral $^{L} M f$

syntax

_complex_lebesgue_integral $::$ pttrn \Rightarrow complex $\Rightarrow{ }^{\prime}$ a measure \Rightarrow complex ($\left.\int^{C}{ }_{\text {_ }}{ }^{-} \partial_{-}[60,61] 110\right)$

translations

$\int{ }^{C} x . f \partial M==$ CONST complex_lebesgue_integral $M(\lambda x . f)$
syntax
_ascii_complex_lebesgue_integral :: pttrn $\Rightarrow{ }^{\prime}$ a measure \Rightarrow real \Rightarrow real ((3CLINT -|_. -) $[0,110,60] 60)$

translations

$$
\text { CLINT } x \mid M . f==\text { CONST complex_lebesgue_integral } M(\lambda x . f)
$$

lemma complex_integrable_cnj [simp]:
complex_integrable $M(\lambda x . c n j(f x)) \longleftrightarrow$ complex_integrable $M f$
proof
assume complex_integrable $M(\lambda x$.cnj $(f x))$
then have complex_integrable $M(\lambda x$. cnj $(\operatorname{cnj}(f x)))$
by (rule integrable_cnj)
then show complex_integrable $M f$
by simp
qed simp
lemma complex_of_real_integrable_eq:
complex_integrable $M(\lambda x$. complex_of_real $(f x)) \longleftrightarrow$ integrable $M f$
proof
assume complex_integrable $M(\lambda x$. complex_of_real $(f x))$
then have integrable $M(\lambda x$. Re (complex_of_real $(f x)))$

```
    by (rule integrable_Re)
    then show integrable Mf
    by simp
qed simp
```

abbreviation complex_set_integrable :: 'a measure $\Rightarrow{ }^{\prime} a$ set $\Rightarrow\left({ }^{\prime} a \Rightarrow\right.$ complex $) \Rightarrow$ bool where
complex_set_integrable MAf \equiv set_integrable MAf
abbreviation complex_set_lebesgue_integral $::$ 'a measure $\Rightarrow{ }^{\prime}$ 'a set $\Rightarrow\left({ }^{\prime} a \Rightarrow\right.$ complex) \Rightarrow complex where
complex_set_lebesgue_integral MAf

syntax

_ascii_complex_set_lebesgue_integral $::$ pttrn \Rightarrow ' a set $\Rightarrow{ }^{\prime}$ 'a measure \Rightarrow real \Rightarrow real ((4CLINT _:-|.. -) $[0,60,110,61] 60)$

```
translations
CLINT x:A|M. f == CONST complex_set_lebesgue_integral M A ( }\lambdax.f
lemma set_measurable_continuous_on_ivl:
    assumes continuous_on {a..b} (f :: real => real)
    shows set_borel_measurable borel {a..b} f
    unfolding set_borel_measurable_def
    by (rule borel_measurable_continuous_on_indicator[OF _ assms]) simp
```

This notation is from Sbastien Gouzel: His use is not directly in line with the notations in this file, they are more in line with sum, and more readable he thinks.
abbreviation set_nn_integral $M A f \equiv n n _i n t e g r a l ~ M(\lambda x . f x *$ indicator $A x)$
syntax
_set_nn_integral $::$ pttrn $=>$ ' a set $=>$ 'a measure $=>$ ereal $=>$ ereal
$\left(\left(\int^{+}\left((-) \in(-) . / ~_{-}\right) / \partial_{-}\right)[0,60,110,61] 60\right)$
_set_lebesgue_integral $::$ pttrn $=>$ 'a set $=>$ 'a measure $=>$ ereal $=>$ ereal
$\left(\left(\int\left((-) \in(-) . / ~_{-}\right) / \partial_{-}\right)[0,60,110,61] 60\right)$

translations

$\int{ }^{+} x \in A . f \partial M==C O N S T$ set_nn_integral $M A(\lambda x . f)$
$\int x \in A . f \partial M==C O N S T$ set_lebesgue_integral $M A(\lambda x . f)$
lemma nn_integral_disjoint_pair:
assumes [measurable]: $f \in$ borel_measurable M
$B \in$ sets $M C \in$ sets M
$B \cap C=\{ \}$
shows $\left(\int{ }^{+} x \in B \cup C . f x \partial M\right)=\left(\int{ }^{+} x \in B . f x \partial M\right)+\left(\int{ }^{+} x \in C . f x \partial M\right)$ proof -
have mes: $\bigwedge D . D \in$ sets $M \Longrightarrow(\lambda x . f x *$ indicator $D x) \in$ borel_measurable M by simp
have pos: $\bigwedge D . A E x$ in $M . f x *$ indicator $D x \geq 0$ using assms(2) by auto have $\bigwedge x . f x *$ indicator $(B \cup C) x=f x *$ indicator $B x+f x *$ indicator C x using assms(4)
by (auto split: split_indicator)
then have $\left(\int{ }^{+} x . f x *\right.$ indicator $\left.(B \cup C) x \partial M\right)=\left(\int{ }^{+} x . f x *\right.$ indicator $B x$ $+f x *$ indicator $C x \partial M)$
by simp
also have $\ldots=\left(\int{ }^{+} x . f x *\right.$ indicator $\left.B x \partial M\right)+\left(\int{ }^{+} x . f x *\right.$ indicator $C x$ $\partial M)$
by (rule nn_integral_add) (auto simp add: assms mes pos)
finally show ?thesis by simp
qed
lemma nn_integral_disjoint_pair_countspace:
assumes $B \cap C=\{ \}$
shows $\left(\int{ }^{+} x \in B \cup C . f x\right.$ dcount_space UNIV $)=\left(\int{ }^{+} x \in B . f x\right.$ dcount_space UNIV $)+\left(\int{ }^{+} x \in C . f x\right.$ dcount_space UNIV $)$
by (rule nn_integral_disjoint_pair) (simp_all add: assms)
lemma nn_integral_null_delta:
assumes $A \in$ sets $M B \in$ sets M
$(A-B) \cup(B-A) \in$ null_sets M
shows $\left(\int{ }^{+} x \in A . f x \partial M\right)=\left(\int{ }^{+} x \in B . f x \partial M\right)$
proof (rule nn_integral_cong_AE, auto simp add: indicator_def)
have $*: A E$ a in M. a $\notin(A-B) \cup(B-A)$
using assms(3) AE_not_in by blast
then show $A E$ a in $M . a \notin A \longrightarrow a \in B \longrightarrow f a=0$
by auto
show $A E x \in A$ in $M . x \notin B \longrightarrow f x=0$
using * by auto
qed
proposition nn_integral_disjoint_family:
assumes [measurable]: $f \in$ borel_measurable $M \bigwedge(n:: n a t) . B n \in$ sets M
and disjoint_family B
shows $\left(\int^{+} x \in(\bigcup n . B n) . f x \partial M\right)=\left(\sum n .\left(\int^{+}{ }^{+} \in B n . f x \partial M\right)\right)$
proof -
have $\left(\int{ }^{+} x .\left(\sum n . f x *\right.\right.$ indicator $\left.\left.(B n) x\right) \partial M\right)=\left(\sum n .\left(\int+x . f x *\right.\right.$ indicator (B n) x $\partial M)$)
by (rule nn_integral_suminf) simp
moreover have $\left(\sum n . f x *\right.$ indicator $\left.(B n) x\right)=f x *$ indicator $(\bigcup n . B n) x$ for x
proof (cases)
assume $x \in(\bigcup n . B n)$
then obtain n where $x \in B n$ by blast
have a : finite $\{n\}$ by simp
have $\bigwedge i . i \neq n \Longrightarrow x \notin B i$ using $\langle x \in B n\rangle$ assms(3) disjoint_family_on_def
by (metis IntI UNIV_I empty_iff)
then have $\bigwedge i . i \notin\{n\} \Longrightarrow$ indicator $(B i) x=(0::$ ennreal $)$ using indicator_def by simp
then have $b: \bigwedge i . i \notin\{n\} \Longrightarrow f x *$ indicator $(B i) x=(0::$ ennreal $)$ by simp
define h where $h=(\lambda i . f x *$ indicator $(B i) x)$
then have $\wedge i . i \notin\{n\} \Longrightarrow h i=0$ using b by simp
then have $\left(\sum i . h i\right)=\left(\sum i \in\{n\} . h i\right)$
by (metis sums_unique $\left[\begin{array}{lll}O F & \left.\text { sums_finite }\left[\begin{array}{ll}O F & a\end{array}\right] \text {) }\right) ~(2)\end{array}\right.$
then have $\left(\sum i . h i\right)=h n$ by simp
then have $\left(\sum n\right.$. $f x *$ indicator $\left.(B n) x\right)=f x *$ indicator $(B n) x$ using h_{-}def by simp
then have $\left(\sum n . f x *\right.$ indicator $\left.(B n) x\right)=f x$ using $\langle x \in B n\rangle$ indicator_def by simp
then show ?thesis using $\langle x \in(\bigcup n . B n)\rangle$ by auto
next
assume $x \notin(\bigcup n$. $B n)$
then have $\bigwedge n . f x *$ indicator $(B n) x=0$ by simp
have $\left(\sum n . f x *\right.$ indicator $\left.(B n) x\right)=0$
by (simp add: 〈 $\backslash n$. $f x *$ indicator $(B n) x=0\rangle)$
then show ?thesis using $\langle x \notin(\bigcup n . B n)\rangle$ by auto
qed
ultimately show ?thesis by simp
qed
lemma nn_set_integral_add:
assumes [measurable]: $f \in$ borel_measurable $M g \in$ borel_measurable M $A \in$ sets M
shows $\left(\int{ }^{+} x \in A .(f x+g x) \partial M\right)=\left(\int{ }^{+} x \in A . f x \partial M\right)+\left(\int{ }^{+} x \in A . g x\right.$ дM)
proof -
have $\left(\int{ }^{+} x \in A .(f x+g x) \partial M\right)=\left(\int{ }^{+} x .(f x *\right.$ indicator $A x+g x *$ indicator A x) $\partial M)$
by (auto simp add: indicator_def intro!: nn_integral_cong)
also have $\ldots=\left(\int{ }^{+} x . f x *\right.$ indicator $\left.A x \partial M\right)+\left(\int{ }^{+} x . g x *\right.$ indicator $A x$ $\partial M)$
apply (rule nn_integral_add) using assms(1) assms(2) by auto
finally show?thesis by simp
qed
lemma nn_set_integral_cong:
assumes $A E x$ in M. $f x=g x$
shows $\left(\int{ }^{+} x \in A . f x \partial M\right)=\left(\int{ }^{+} x \in A . g x \partial M\right)$
apply (rule nn_integral_cong_AE) using assms(1) by auto
lemma nn_set_integral_set_mono:
$A \subseteq B \Longrightarrow\left(\int^{+} x \in A . f x \partial M\right) \leq\left(\int^{+} x \in B . f x \partial M\right)$
by (auto intro!: nn_integral_mono split: split_indicator)

```
lemma nn_set_integral_mono:
    assumes [measurable]: f\in borel_measurable Mg}\mathrm{ (borel_measurable M
        A \in sets M
    and AE x\inA in M. fx\leqgx
    shows (\int\mp@subsup{}{}{+}x\inA.fx\partialM)\leq(\int\mp@subsup{}{}{+}x\inA.g x \partialM)
by (auto intro!: nn_integral_mono_AE split: split_indicator simp:assms)
lemma nn_set_integral_space [simp]:
```



```
by (metis (mono_tags, lifting) indicator_simps(1) mult.right_neutral nn_integral_cong)
lemma nn_integral_count_compose_inj:
    assumes inj_on g A
    shows ( }\mp@subsup{\int}{}{+}x\inA.f(gx)\mathrm{ Dcount_space UNIV ) = ( ( + y f g'A. f y Dcount_space
UNIV)
proof -
    have (\int +
        by (auto simp add: nn_integral_count_space_indicator[symmetric])
    also have ... = ( }\mp@subsup{\int}{}{+}y.fy\mathrm{ Ocount_space ( }\mp@subsup{g}{}{`}A)
        by (simp add: assms nn_integral_bij_count_space inj_on_imp_bij_betw)
    also have ... = ( { + y \in g'A. f y \partialcount_space UNIV )
        by (auto simp add: nn_integral_count_space_indicator[symmetric])
    finally show?thesis by simp
qed
lemma nn_integral_count_compose_bij:
    assumes bij_betw g A B
    shows ( }\mp@subsup{\int}{}{+}x\inA.f(gx)\mathrm{ dcount_space UNIV )}=(\int\mp@subsup{}{}{+}y\inB.fy\mathrm{ dcount_space
UNIV)
proof -
    have inj_on g A using assms bij_betw_def by auto
    then have ( }\mp@subsup{\int}{}{+}x\inA.f(gx)\partialcount_space UNIV) = ( \int + y f g`A. fy \partialcount_space
UNIV)
            by (rule nn_integral_count_compose_inj)
    then show ?thesis using assms by (simp add: bij_betw_def)
qed
lemma set_integral_null_delta:
    fixes f::_ # _ :: {banach, second_countable_topology}
    assumes [measurable]: integrable Mf A\in sets M B\in sets M
            and null: }(A-B)\cup(B-A)\in\mathrm{ null_sets M
    shows (\intx\inA.fx\partialM)=(\intx\inB.fx\partialM)
proof (rule set_integral_cong_set)
    have *:AE a in M. a\not\in(A-B)\cup(B-A)
        using null AE_not_in by blast
    then show AE x in M. (x\inB)=(x\inA)
        by auto
qed (simp_all add: set_borel_measurable_def)
```

```
lemma set_integral_space:
    assumes integrable \(M f\)
    shows \(\left(\int x \in\right.\) space \(\left.M . f x \partial M\right)=\left(\int x . f x \partial M\right)\)
    by (metis (no_types, lifting) indicator_simps(1) integral_cong scaleR_one set_lebesgue_integral_def)
lemma null_if_pos_func_has_zero_nn_int:
    fixes \(f:: ' a \Rightarrow\) ennreal
    assumes [measurable]: \(f \in\) borel_measurable \(M A \in\) sets \(M\)
        and \(A E x \in A\) in \(M . f x>0\left(\int^{+} x \in A\right.\). \(\left.f x \partial M\right)=0\)
    shows \(A \in\) null_sets \(M\)
proof -
    have \(A E x\) in \(M . f x *\) indicator \(A x=0\)
        by (subst nn_integral_O_iff_AE[symmetric], auto simp add: assms(4))
    then have \(A E x \in A\) in \(M\). False using assms(3) by auto
    then show \(A \in\) null_sets \(M\) using assms(2) by (simp add: AE_iff_null_sets)
qed
lemma null_if_pos_func_has_zero_int:
    assumes [measurable]: integrable \(M f A \in\) sets \(M\)
        and \(A E x \in A\) in \(M . f x>0\left(\int x \in A . f x \partial M\right)=(0::\) real \()\)
    shows \(A \in\) null_sets \(M\)
proof -
    have \(A E x\) in \(M\). indicator \(A x * f x=0\)
        apply (subst integral_nonneg_eq_-_iff_AE[symmetric])
        using assms integrable_mult_indicator[OF \(\langle A \in\) sets \(M\rangle\) assms(1)]
        by (auto simp: set_lebesgue_integral_def)
    then have \(A E x \in A\) in \(M . f x=0\) by auto
    then have \(A E x \in A\) in \(M\). False using assms(3) by auto
    then show \(A \in\) null_sets \(M\) using assms(2) by (simp add: AE_iff_null_sets)
qed
The next lemma is a variant of density_unique. Note that it uses the notation for nonnegative set integrals introduced earlier.
lemma (in sigma_finite_measure) density_unique2:
assumes [measurable]: \(f \in\) borel_measurable \(M f^{\prime} \in\) borel_measurable \(M\)
assumes density_eq: \(\bigwedge A . A \in\) sets \(M \Longrightarrow\left(\int^{+} x \in A . f x \partial M\right)=\left(\int^{+} x \in A\right.\).
\(\left.f^{\prime} x \partial M\right)\)
shows \(A E\) x in M. \(f x=f^{\prime} x\)
proof (rule density_unique)
show density \(M f=\operatorname{density~} M f^{\prime}\)
by (intro measure_eqI) (auto simp: emeasure_density intro!: density_eq)
qed (auto simp add: assms)
The next lemma implies the same statement for Banach-space valued functions using Hahn-Banach theorem and linear forms. Since they are not yet easily available, I only formulate it for real-valued functions.
lemma density_unique_real:
fixes \(f f^{\prime}::-\quad \Rightarrow\) real
assumes \(M\) [measurable]: integrable \(M f\) integrable \(M f^{\prime}\)
```

```
    assumes density_eq: \(\bigwedge A . A \in\) sets \(M \Longrightarrow\left(\int x \in A . f x \partial M\right)=\left(\int x \in A \cdot f^{\prime} x\right.\)
\(\partial M)\)
    shows \(A E x\) in \(M . f x=f^{\prime} x\)
proof -
    define \(A\) where \(A=\left\{x \in\right.\) space \(\left.M . f x<f^{\prime} x\right\}\)
    then have [measurable]: \(A \in\) sets \(M\) by simp
    have \(\left(\int x \in A .\left(f^{\prime} x-f x\right) \partial M\right)=\left(\int x \in A . f^{\prime} x \partial M\right)-\left(\int x \in A . f x \partial M\right)\)
        using \(\langle A \in\) sets \(M\rangle M\) integrable_mult_indicator set_integrable_def by blast
    then have \(\left(\int x \in A .\left(f^{\prime} x-f x\right) \partial M\right)=0\) using \(\operatorname{assms}(3)\) by simp
    then have \(A \in\) null_sets \(M\)
        using \(A_{-}\)def null_if_pos_func_has_zero_int[where ?f \(=\lambda x . f^{\prime} x-f x\) and ?A
\(=A]\) assms by auto
    then have \(A E x\) in \(M . x \notin A\) by (simp add: AE_not_in)
    then have \(*: A E x\) in \(M . f^{\prime} x \leq f x\) unfolding \(A_{-} d e f\) by auto
    define \(B\) where \(B=\left\{x \in\right.\) space \(\left.M . f^{\prime} x<f x\right\}\)
    then have [measurable]: \(B \in\) sets \(M\) by simp
    have \(\left(\int x \in B .\left(f x-f^{\prime} x\right) \partial M\right)=\left(\int x \in B . f x \partial M\right)-\left(\int x \in B . f^{\prime} x \partial M\right)\)
        using \(\langle B \in\) sets \(M\rangle M\) integrable_mult_indicator set_integrable_def by blast
    then have \(\left(\int x \in B .\left(f x-f^{\prime} x\right) \partial M\right)=0\) using \(\operatorname{assms}(3)\) by simp
    then have \(B \in\) null_sets \(M\)
        using \(B_{-}\)def null_if_pos_func_has_zero_int[where ?f \(=\lambda x . f x-f^{\prime} x\) and ?A
\(=B]\) assms by auto
    then have \(A E x\) in \(M . x \notin B\) by (simp add: AE_not_in)
    then have \(A E x\) in \(M . f^{\prime} x \geq f x\) unfolding \(B_{-} d e f\) by auto
    then show ?thesis using \(*\) by auto
qed
```

The next lemma shows that L^{1} convergence of a sequence of functions follows from almost everywhere convergence and the weaker condition of the convergence of the integrated norms (or even just the nontrivial inequality about them). Useful in a lot of contexts! This statement (or its variations) are known as Scheffe lemma.
The formalization is more painful as one should jump back and forth between reals and ereals and justify all the time positivity or integrability (thankfully, measurability is handled more or less automatically).

```
proposition Scheffe_lemma1:
    assumes \(\wedge n\). integrable \(M(F n)\) integrable \(M f\)
        \(A E x\) in \(M .(\lambda n . F n x) \longrightarrow f x\)
        \(\limsup \left(\lambda n . \int+x . \operatorname{norm}(F n x) \partial M\right) \leq\left(\int^{+} x . \operatorname{norm}(f x) \partial M\right)\)
    shows \(\left(\lambda n . \int+x\right.\). norm \(\left.(F n x-f x) \partial M\right) \longrightarrow 0\)
proof -
    have [measurable]: \(\backslash n . F n \in\) borel_measurable \(M f \in\) borel_measurable \(M\)
        using assms(1) assms(2) by simp_all
    define \(G\) where \(G=(\lambda n x \operatorname{norm}(f x)+\operatorname{norm}(F n x)-\operatorname{norm}(F n x-f x))\)
    have [measurable]: \(\backslash n\). \(G n \in\) borel_measurable \(M\) unfolding \(G_{-}\)def by simp
    have \(G_{\text {_pos }}[\) simp \(]: \bigwedge n x . G n x \geq 0\)
    unfolding \(G_{-}\)def by (metis ge_iff_diff_ge_0 norm_minus_commute norm_triangle_ineq4)
```

have finint: $\left(\int^{+} x\right.$. $\left.\operatorname{norm}(f x) \partial M\right) \neq \infty$
using has_bochner_integral_implies_finite_norm[OF has_bochner_integral_integrable[OF〈integrable $M f\rangle]$] by simp
then have fin2: $2 *\left(\int^{+} x \cdot \operatorname{norm}(f x) \partial M\right) \neq \infty$
by (auto simp: ennreal_mult_eq_top_iff)

\{

fix x assume $*:(\lambda n . F n x) \longrightarrow f x$
then have $(\lambda n$. norm $(F n x)) \longrightarrow \operatorname{norm}(f x)$ using tendsto_norm by blast
moreover have $(\lambda n$. norm $(F n x-f x)) \longrightarrow 0$ using $*$ Lim_null tend-
sto_norm_zero_iff by fastforce
ultimately have $a:(\lambda n \operatorname{norm}(F n x)-\operatorname{norm}(F n x-f x)) \longrightarrow \operatorname{norm}(f$
$x)$ using tendsto_diff by fastforce
have $(\lambda n . \operatorname{norm}(f x)+\operatorname{norm}(F n x)-\operatorname{norm}(F n x-f x))) \longrightarrow \operatorname{norm}(f$
$x)+\operatorname{norm}(f x)$
by (rule tendsto_add) (auto simp add: a)
moreover have $\bigwedge n$. Gnx $n \operatorname{norm}(f x)+(\operatorname{norm}(F n x)-\operatorname{norm}(F n x-f$
$x)$) unfolding G_{-}def by simp
ultimately have $(\lambda n . G n x) \longrightarrow 2 * \operatorname{norm}(f x)$ by simp
then have (λn. ennreal $(G n x)) \longrightarrow \operatorname{ennreal}(2 * \operatorname{norm}(f x))$ by simp
then have $\liminf (\lambda n$. ennreal $(G n x))=\operatorname{ennreal}(2 * \operatorname{norm}(f x))$
using sequentially_bot tendsto_iff_Liminf_eq_Limsup by blast
\}
then have $A E x$ in $M . \liminf (\lambda n . \operatorname{ennreal}(G n x))=\operatorname{ennreal}(2 * \operatorname{norm}(f x))$
using assms(3) by auto
then have $\left(\int^{+} x\right.$. liminf $\left(\lambda n\right.$. ennreal $\left.\left.\left(\begin{array}{ll}G & n\end{array}\right)\right) \partial M\right)=\left(\int^{+} x .2 *\right.$ en$\operatorname{nreal}(\operatorname{norm}(f x)) \partial M)$
by (simp add: nn_integral_cong_AE ennreal_mult)
also have $\ldots=2 *\left(\int^{+} x\right.$. norm $\left.(f x) \partial M\right)$ by (rule nn_integral_cmult) auto
finally have int_liminf: $\left(\int^{+} x . \liminf (\lambda n\right.$. ennreal $\left.(G n x)) \partial M\right)=2 *\left(\int^{+}\right.$ x. $\operatorname{norm}(f x) \partial M)$
by simp
have $\left(\int{ }^{+}\right.$x. ennreal $\left.(\operatorname{norm}(f x))+\operatorname{ennreal}(\operatorname{norm}(F n x)) \partial M\right)=\left(\int{ }^{+} x . \operatorname{norm}(f\right.$
x) $\partial M)+\left(\int^{+} x\right.$. $\left.\operatorname{norm}(F n x) \partial M\right)$ for n
by (rule nn_integral_add) (auto simp add: assms)
then have limsup $\left(\lambda n .\left(\int^{+}\right.\right.$x.ennreal $\left.\left.(\operatorname{norm}(f x))+\operatorname{ennreal}(\operatorname{norm}(F n x)) \partial M\right)\right)$ $=$
$\limsup \left(\lambda n \cdot\left(\int{ }^{+} x \cdot \operatorname{norm}(f x) \partial M\right)+\left(\int{ }^{+} x \cdot \operatorname{norm}(F n x) \partial M\right)\right)$
by simp
also have $\ldots=\left(\int^{+} x . \operatorname{norm}(f x) \partial M\right)+\limsup \left(\lambda n .\left(\int{ }^{+} x . \operatorname{norm}(F n x) \partial M\right)\right)$
by (rule Limsup_const_add, auto simp add: finint)
also have $\ldots \leq\left(\int^{+} x \operatorname{norm}(f x) \partial M\right)+\left(\int{ }^{+} x . \operatorname{norm}(f x) \partial M\right)$
using assms(4) by (simp add: add_left_mono)
also have $\ldots=2 *\left(\int^{+} x\right.$. $\left.\operatorname{norm}(f x) \partial M\right)$
unfolding one_add_one[symmetric] distrib_right by simp
ultimately have a : limsup $\left(\lambda n .\left(\int^{+} x\right.\right.$. ennreal $(\operatorname{norm}(f x))+\operatorname{ennreal}(n o r m(F$ $n x)$) $\partial M)$) \leq
$2 *\left(\int{ }^{+} x . \operatorname{norm}(f x) \partial M\right)$ by simp
have le: ennreal (norm $(F n x-f x)) \leq$ ennreal (norm $(f x))+$ ennreal (norm $(F n x)$) for $n x$
by (simp add: norm_minus_commute norm_triangle_ineq4 ennreal_minus flip: ennreal_plus)
then have le2: $\left(\int^{+} x\right.$. ennreal (norm $\left.\left.(F n x-f x)\right) \partial M\right) \leq\left(\int^{+} x\right.$. ennreal (norm $(f x))+$ ennreal (norm $(F n x)) \partial M)$ for n
by (rule nn_integral_mono)
have $2 *\left(\int^{+} x . \operatorname{norm}(f x) \partial M\right)=\left(\int^{+} x . \liminf (\lambda n\right.$. ennreal $\left.(G n x)) \partial M\right)$
by (simp add: int_liminf)
also have $\ldots \leq \liminf \left(\lambda n .\left(\int{ }^{+} x . G n x \partial M\right)\right)$
by (rule nn_integral_liminf) auto
also have $\liminf \left(\lambda n \cdot\left(\int{ }^{+} x . G n x \partial M\right)\right)=$
$\liminf \left(\lambda n .\left(\int^{+}\right.\right.$x. $\left.\operatorname{ennreal}(\operatorname{norm}(f x))+\operatorname{ennreal}(\operatorname{norm}(F n x)) \partial M\right)-\left(\int^{+} x\right.$. $\operatorname{norm}(F n x-f x) \partial M))$
proof (intro arg_cong $[$ where $f=$ liminf $]$ ext $)$
fix n
have $\bigwedge x$. ennreal $(G n x)=\operatorname{ennreal}(\operatorname{norm}(f x))+\operatorname{ennreal}(\operatorname{norm}(F n x))-$ ennreal(norm($F n x-f x)$)
unfolding G_def by (simp add: ennreal_minus fip: ennreal_plus)
moreover have $\left(\int^{+}\right.$x. ennreal $(\operatorname{norm}(f x))+\operatorname{ennreal}(\operatorname{norm}(F n x))-e n$ $\operatorname{nreal}(\operatorname{norm}(F n x-f x)) \partial M)$
$=\left(\int{ }^{+} x . \operatorname{ennreal}(\operatorname{norm}(f x))+\operatorname{ennreal}(\operatorname{norm}(F n x)) \partial M\right)-\left(\int{ }^{+} x\right.$. $\operatorname{norm}(F n x-f x) \partial M)$
proof (rule nn_integral_diff)
from le show $A E x$ in M. ennreal (norm $(F n x-f x)) \leq$ ennreal (norm $(f$ $x))+\operatorname{ennreal}(\operatorname{norm}(F n x))$
by simp
from le2 have $\left(\int^{+}\right.$x. ennreal (norm $\left.\left.(F n x-f x)\right) \partial M\right)<\infty$ using assms(1) assms(2)
by (metis has_bochner_integral_implies_finite_norm integrable.simps Bochner_Integration.integrable_d
then show $\left(\int^{+} x\right.$. ennreal $\left.(\operatorname{norm}(F n x-f x)) \partial M\right) \neq \infty$ by simp
qed (auto simp add: assms)
ultimately show $\left(\int{ }^{+} x\right.$. G n x $\left.\partial M\right)=\left(\int{ }^{+}\right.$x. ennreal $(\operatorname{norm}(f x))+$ en$\operatorname{nreal}(\operatorname{norm}(F n x)) \partial M)-\left(\int{ }^{+} x \operatorname{norm}(F n x-f x) \partial M\right)$
by simp
qed
finally have $2 *\left(\int{ }^{+}\right.$x. $\left.\operatorname{norm}(f x) \partial M\right)+\limsup \left(\lambda n .\left(\int{ }^{+} x\right.\right.$. norm $(F n x-f$ x) $\partial M)$) \leq
$\liminf \left(\lambda n .\left(\int{ }^{+} x . \operatorname{ennreal}(\operatorname{norm}(f x))+\operatorname{ennreal}(\operatorname{norm}(F n x)) \partial M\right)-\left(\int{ }^{+} x\right.\right.$.
$\operatorname{norm}(F n x-f x) \partial M))+$
$\limsup \left(\lambda n .\left(\int^{+} x . \operatorname{norm}(F n x-f x) \partial M\right)\right)$
by (intro add_mono) auto
also have $\ldots \leq\left(\limsup \left(\lambda n . \int{ }^{+} x\right.\right.$. ennreal $(\operatorname{norm}(f x))+\operatorname{ennreal}(\operatorname{norm}(F n x))$
$\left.\partial M)-\limsup \left(\lambda n . \int{ }^{+} x . \operatorname{norm}(F n x-f x) \partial M\right)\right)+$ limsup $\left(\lambda n .\left(\int{ }^{+} x . \operatorname{norm}(F n x-f x) \partial M\right)\right)$
by (intro add_mono liminf_minus_ennreal le2) auto

```
    also have \(\ldots=\limsup \left(\lambda n .\left(\int^{+} x . \operatorname{ennreal}(\operatorname{norm}(f x))+\operatorname{ennreal}(\operatorname{norm}(F n x))\right.\right.\)
```

$\partial M)$)
by (intro diff_add_cancel_ennreal Limsup_mono always_eventually allI le2)
also have $\ldots \leq 2 *\left(\int^{+} x \cdot \operatorname{norm}(f x) \partial M\right)$
by fact
finally have $\limsup \left(\lambda n .\left(\int{ }^{+} x . \operatorname{norm}(F n x-f x) \partial M\right)\right)=0$
using fin2 by simp
then show ?thesis
by (rule tendsto_0_if_Limsup_eq_0_ennreal)
qed
proposition Scheffe_lemma2:
fixes $F::$ nat $\Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} b::\{$ banach, second_countable_topology $\}$
assumes $\bigwedge n::$ nat. $F n \in$ borel_measurable M integrable $M f$
$A E x$ in $M .(\lambda n . F n x) \longrightarrow f x$
$\wedge n .\left(\int^{+} x . \operatorname{norm}(F n x) \partial M\right) \leq\left(\int^{+} x . \operatorname{norm}(f x) \partial M\right)$
shows $\left(\lambda n . \int+x . \operatorname{norm}(F n x-f x) \partial M\right) \longrightarrow 0$
proof (rule Scheffe_lemma1)
fix n :: nat
have $\left(\int{ }^{+} x\right.$. norm $\left.(f x) \partial M\right)<\infty$ using assms(2) by (metis has_bochner_integral_implies_finite_norm
integrable.cases)
then have $\left(\int^{+} x . \operatorname{norm}(F n x) \partial M\right)<\infty$ using assms (4)[of $\left.n\right]$ by auto
then show integrable M (Fn) by (subst integrable_iff_bounded, simp add: assms(1)[of
$n]$)
qed (auto simp add: assms Limsup_bounded)
lemma tendsto_set_lebesgue_integral_at_right:
fixes $a b$:: real and f :: real \Rightarrow ' $a::\{b a n a c h$, second_countable_topology $\}$
assumes $a<b$ and sets: $\bigwedge a^{\prime} . a^{\prime} \in\{a<. . b\} \Longrightarrow\left\{a^{\prime} . . b\right\} \in$ sets M
and set_integrable $M\{a<. . b\} f$
shows $\left(\left(\lambda a^{\prime}\right.\right.$. set_lebesgue_integral $\left.M\left\{a^{\prime} . . b\right\} f\right) \longrightarrow$
set_lebesgue_integral $M\{a<. . b\} f$) (at_right a)
proof (rule tendsto_at_right_sequentially[OF assms(1)], goal_cases)
case (1 S)
have eq: $(\bigcup n .\{S n . . b\})=\{a<. . b\}$
proof safe
fix $x n$ assume $x \in\{S n . . b\}$
with $1(1,2)[$ of $n]$ show $x \in\{a<. . b\}$ by auto
next
fix x assume $x \in\{a<. . b\}$
with order_tendsto $D[O F\langle S \longrightarrow a\rangle$, of $x]$ show $x \in(\bigcup n .\{S n . . b\})$
by (force simp: eventually_at_top_linorder dest: less_imp_le)
qed
have (λn. set_lebesgue_integral $M\{S n . . b\} f) \longrightarrow$ set_lebesgue_integral M
($\cup n .\{S n . . b\}) f$
by (rule set_integral_cont_up) (insert assms 1, auto simp: eq incseq_def decseq_def
less_imp_le)
with eq show ?case by simp
qed

The next lemmas relate convergence of integrals over an interval to improper integrals.
lemma tendsto_set_lebesgue_integral_at_left:
fixes $a b$:: real and $f::$ real \Rightarrow ' $a::\left\{b a n a c h, s e c o n d _c o u n t a b l e _t o p o l o g y\right\}$
assumes $a<b$ and sets: $\bigwedge b^{\prime} . b^{\prime} \in\{a . .<b\} \Longrightarrow\left\{a . . b^{\prime}\right\} \in$ sets M and set_integrable $M\{a . .<b\} f$
shows $\left(\left(\lambda b^{\prime}\right.\right.$. set_lebesgue_integral $\left.M\left\{a . . b^{\prime}\right\} f\right) \longrightarrow$
set_lebesgue_integral $M\{a . .<b\} f)($ at_left $b)$
proof (rule tendsto_at_left_sequentially[OF assms(1)], goal_cases)
case (1 S)
have eq: $(\bigcup n .\{a . . S n\})=\{a . .<b\}$
proof safe
fix $x n$ assume $x \in\{a . . S n\}$
with $1(1,2)[$ of $n]$ show $x \in\{a . .<b\}$ by auto
next
fix x assume $x \in\{a . .<b\}$
with order_tendsto $D[O F\langle S \longrightarrow b\rangle$, of $x]$ show $x \in(\bigcup n .\{a . . S n\})$
by (force simp: eventually_at_top_linorder dest: less_imp_le)
qed
have $(\lambda n$. set_lebesgue_integral $M\{a . . S n\} f) \longrightarrow$ set_lebesgue_integral M
($\bigcup n .\{a . . S n\}) f$
by (rule set_integral_cont_up) (insert assms 1, auto simp: eq incseq_def decseq_def less_imp_le)
with eq show? case by simp
qed
proposition tendsto_set_lebesgue_integral_at_top:
fixes $f::$ real $\Rightarrow{ }^{\prime} a::\{b a n a c h$, second_countable_topology\}
assumes sets: $\bigwedge b . b \geq a \Longrightarrow\{a . . b\} \in$ sets M
and int: set_integrable $M\{a .\}$.
shows $((\lambda b$. set_lebesgue_integral $M\{a . . b\} f) \longrightarrow$ set_lebesgue_integral $M\{a .\}$.
f) at_top
proof (rule tendsto_at_topI_sequentially)
fix $X::$ nat \Rightarrow real assume filterlim X at_top sequentially
show (λn. set_lebesgue_integral $M\{a . . X n\} f) \longrightarrow$ set_lebesgue_integral M
\{a..\} f
unfolding set_lebesgue_integral_def
proof (rule integral_dominated_convergence)
show integrable $M\left(\lambda x\right.$. indicat_real $\{a .\}. x *_{R}$ norm $\left.(f x)\right)$
using integrable_norm [OF int[unfolded set_integrable_def]] by simp
show $A E x$ in $M .\left(\lambda n\right.$. indicator $\left.\{a . . X n\} x_{R} f x\right) \longrightarrow$ indicat_real $\{a .$.
$x *_{R} f x$
proof
fix x
from 〈filterlim X at_top sequentially〉
have eventually $(\lambda n . x \leq X n)$ sequentially
unfolding filterlim_at_top_ge[where $c=x]$ by auto
then show $\left(\lambda n\right.$. indicator $\left.\{a . . X n\} x *_{R} f x\right) \longrightarrow$ indicat_real $\{a .\}. x *_{R}$ $f x$
by (intro tendsto_eventually) (auto split: split_indicator elim!: eventually_mono)
qed
fix n show $A E x$ in M. norm (indicator $\left.\{a . . X n\} x *_{R} f x\right) \leq$ indicator $\{a .\}. x *_{R} \operatorname{norm}(f x)$
by (auto split: split_indicator)
next
from int show $\left(\lambda x\right.$. indicat_real $\left.\{a .\}. x *_{R} f x\right) \in$ borel_measurable M
by (simp add: set_integrable_def)
next
fix n :: nat
from sets have $\{a . . X n\} \in$ sets M by (cases $X n \geq a)$ auto
with int have set_integrable $M\{a . . X n\} f$
by (rule set_integrable_subset) auto
thus $\left(\lambda x\right.$. indicat_real $\left.\{a . . X n\} x *_{R} f x\right) \in$ borel_measurable M
by (simp add: set_integrable_def)
qed
qed
proposition tendsto_set_lebesgue_integral_at_bot:
fixes $f::$ real \Rightarrow 'a::\{banach, second_countable_topology\}
assumes sets: $\bigwedge a . a \leq b \Longrightarrow\{a . . b\} \in$ sets M
and int: set_integrable $M\{. . b\} f$
shows $((\lambda a$. set_lebesgue_integral $M\{a . . b\} f) \longrightarrow$ set_lebesgue_integral M
\{..b\} f) at_bot
proof (rule tendsto_at_botI_sequentially)
fix X :: nat \Rightarrow real assume filterlim X at_bot sequentially
show $(\lambda n$. set_lebesgue_integral $M\{X n . . b\} f) \longrightarrow$ set_lebesgue_integral M
$\{. . b\} f$
unfolding set_lebesgue_integral_def
proof (rule integral_dominated_convergence)
show integrable $M\left(\lambda x\right.$. indicat_real $\{. . b\} \quad x *_{R}$ norm $\left.(f x)\right)$
using integrable_norm[OF int[unfolded set_integrable_def]] by simp
show $A E x$ in $M .\left(\lambda n\right.$. indicator $\left.\{X n . . b\} x *_{R} f x\right) \longrightarrow$ indicat_real $\{. . b\}$
$x *_{R} f x$
proof
fix x
from 〈filterlim X at_bot sequentially〉
have eventually $(\lambda n . x \geq X n)$ sequentially
unfolding filterlim_at_bot_le $[$ where $c=x]$ by auto
then show $\left(\lambda n\right.$. indicator $\left.\{X n . . b\} x *_{R} f x\right) \longrightarrow$ indicat_real $\{. . b\} x *_{R}$
$f x$
by (intro tendsto_eventually) (auto split: split_indicator elim!: eventu-
ally_mono)
qed
fix n show $A E x$ in M. norm (indicator $\left.\{X n . . b\} x *_{R} f x\right) \leq$
indicator $\{. . b\} x *_{R}$ norm $(f x)$
by (auto split: split_indicator)
next

```
    from int show ( }\lambdax\mathrm{ . indicat_real {..b} x * R}f=\mp@code{f)\in borel_measurable M
            by (simp add: set_integrable_def)
next
    fix n :: nat
    from sets have {Xn..b}\in sets M by (cases X n \leqb) auto
    with int have set_integrable M {X n..b} f
            by (rule set_integrable_subset) auto
    thus (\lambdax. indicat_real {X n..b} x* *R f x) \in borel_measurable M
        by (simp add: set_integrable_def)
    qed
qed
end
```


6.17 Non-Denumerability of the Continuum

theory Continuum_Not_Denumerable
imports
Complex_Main
HOL-Library.Countable_Set
begin

6.17.1 Abstract

The following document presents a proof that the Continuum is uncountable. It is formalised in the Isabelle/Isar theorem proving system.
Theorem: The Continuum \mathbb{R} is not denumerable. In other words, there does not exist a function $f: \mathbb{N} \Rightarrow \mathbb{R}$ such that f is surjective.
Outline: An elegant informal proof of this result uses Cantor's Diagonalisation argument. The proof presented here is not this one.
First we formalise some properties of closed intervals, then we prove the Nested Interval Property. This property relies on the completeness of the Real numbers and is the foundation for our argument. Informally it states that an intersection of countable closed intervals (where each successive interval is a subset of the last) is non-empty. We then assume a surjective function $f: \mathbb{N} \Rightarrow \mathbb{R}$ exists and find a real x such that x is not in the range of f by generating a sequence of closed intervals then using the Nested Interval Property.

```
theorem real_non_denum: \(\nexists f::\) nat \(\Rightarrow\) real. surj \(f\)
proof
    assume \(\exists f::\) nat \(\Rightarrow\) real. surj \(f\)
    then obtain \(f::\) nat \(\Rightarrow\) real where surj \(f\)..
```

First we construct a sequence of nested intervals, ignoring range f.

$$
\text { have } a<b \Longrightarrow \exists k a k b . k a<k b \wedge\{k a . . k b\} \subseteq\{a . . b\} \wedge c \notin\{k a . . k b\} \text { for } a b c
$$

:: real

```
    by (auto simp add: not_le cong: conj_cong)
    (metis dense le_less_linear less_linear less_trans order_refl)
```

then obtain $i j$ where $i j$:

```
    \(a<b \Longrightarrow i a b c<j a b c\)
        \(a<b \Longrightarrow\{i a b c . . j a b c\} \subseteq\{a . . b\}\)
        \(a<b \Longrightarrow c \notin\{i a b c . . j a b c\}\)
    for \(a b c\) :: real
    by metis
```

define $i v l$ where $i v l=$
rec_nat $(f 0+1, f 0+2)(\lambda n x .(i(f s t x)(\operatorname{snd} x)(f n), j(f s t x)($ snd $x)(f$
n))
define I where $I n=\{f$ st $($ ivl $n)$.. snd $($ ivl $n)\}$ for n
have ivl [simp]:
ivl $0=(f 0+1, f 0+2)$
$\bigwedge n . \operatorname{ivl}($ Suc $n)=(i(f s t($ ivl $n))($ snd $($ ivl $n))(f n), j(f s t($ ivl $n))($ snd $($ ivl $n)$) $(f n)$)
unfolding ivl_def by simp_all
This is a decreasing sequence of non-empty intervals.
have less: fst (ivl n) < snd (ivl n) for n
by (induct n) (auto intro!: ij)
have decseq I
unfolding I_def decseq_Suc_iff ivl fst_conv snd_conv
by (intro ij allI less)
Now we apply the finite intersection property of compact sets.

```
have I 0 \cap (\bigcapi. I i) \not= {}
proof (rule compact_imp_fip_image)
    fix S :: nat set
    assume fin: finite S
    have {}\subsetI(Max (insert 0 S))
        unfolding I_def using less[of Max (insert 0 S)] by auto
    also have I (Max (insert 0S))\subseteq(\bigcapi\ininsert 0 S.I i)
        using fin decseqD[OF <decseq I`, of _ Max (insert 0 S)]
        by (auto simp: Max_ge_iff)
    also have (\bigcapi\ininsert 0S.I i)=I 0\cap (\bigcapi\inS.I i)
        by auto
    finally show I 0 \cap (\bigcapi\inS.I i)\not={}
        by auto
qed (auto simp: I_def)
then obtain }x\mathrm{ where }x\inIn\mathrm{ for n
    by blast
moreover from <surj f> obtain j where x =fj
    by blast
ultimately have fj\inI (Suc j)
    by blast
```

```
    with ij(3)[OF less] show False
    unfolding I_def ivl fst_conv snd_conv by auto
qed
```

lemma uncountable_UNIV_real: uncountable (UNIV :: real set)
using real_non_denum unfolding uncountable_def by auto
lemma bij_betw_open_intervals:
fixes $a b c d$:: real
assumes $a<b c<d$
shows $\exists f$. bij_betw $f\{a<. .<b\}\{c<. .<d\}$
proof -
define f where $f a b c d x=(d-c) /(b-a) *(x-a)+c$ for $a b c d x::$
real
\{
fix $a b c d x$:: real
assume $*: a<b c<d a<x x<b$
moreover from $*$ have $(d-c) *(x-a)<(d-c) *(b-a)$
by (intro mult_strict_left_mono) simp_all
moreover from * have $0<(d-c) *(x-a) /(b-a)$
by simp
ultimately have $f a b c d x<d c<f a b c d x$
by (simp_all add: $f_{-} d e f$ field_simps)
\}
with assms have bij_betw (f a blcc) $\{a<. .<b\}\{c<. .<d\}$
by (intro bij_betw_by Witness[where $\left.f^{\prime}=f \quad c \quad d \quad a \quad b\right]$) (auto simp: $f_{-} d e f$)
then show ?thesis by auto
qed
lemma bij_betw_tan: bij_betw tan $\{-p i / 2<. .<p i / 2\}$ UNIV
using arctan_ubound by (intro bij_betw_byWitness[where $f^{\prime}=$ arctan]) (auto simp:
arctan arctan_tan)
lemma uncountable_open_interval: uncountable $\{a<. .<b\} \longleftrightarrow a<b$ for $a b$::
real
proof
show $a<b$ if uncountable $\{a<. .<b\}$
using uncountable_def that by force
show uncountable $\{a<. .<b\}$ if $a<b$
proof -
obtain f where bij_betw $f\{a<. .<b\}\{-p i / 2<. .<p i / 2\}$
using bij_betw_open_intervals[OF $\langle a<b\rangle$, of -pi/2 pi/2] by auto
then show?thesis
by (metis bij_betw_tan uncountable_bij_betw uncountable_UNIV_real)
qed
qed
lemma uncountable_half_open_interval_1: uncountable $\{a . .<b\} \longleftrightarrow a<b$ for $a b$:: real

```
apply auto
using atLeastLessThan_empty_iff
apply fastforce
using uncountable_open_interval [of a b]
apply (metis countable_Un_iff ivl_disj_un_singleton(3))
done
lemma uncountable_half_open_interval_2: uncountable {a<..b} \longleftrightarrowa<b for a b
:: real
apply auto
using atLeastLessThan_empty_iff
apply fastforce
using uncountable_open_interval [of a b]
apply (metis countable_Un_iff ivl_disj_un_singleton(4))
done
lemma real_interval_avoid_countable_set:
    fixes a b :: real and A :: real set
    assumes a<b and countable A
    shows }\existsx\in{a<..<b}. x\not\in
proof -
    from <countable A> have *: countable ( }A\cap{a<..<b}
        by auto
    with }\langlea<b\rangle\mathrm{ have }\neg\mathrm{ countable {a<..<b}
        by (simp add: uncountable_open_interval)
    with * have }A\cap{a<..<b}\not={a<..<b
        by auto
    then have }A\cap{a<..<b}\subset{a<..<b
        by (intro psubsetI) auto
    then have \existsx. x\in{a<..<b}-A\cap{a<..<b}
        by (rule psubset_imp_ex_mem)
    then show ?thesis
        by auto
qed
lemma uncountable_closed_interval: uncountable {a..b} \longleftrightarrowa<b for a b :: real
    apply (rule iffI)
        apply (metis atLeastAtMost_singleton atLeastatMost_empty countable_finite fi-
nite.emptyI finite_insert linorder_neqE_linordered_idom)
    using real_interval_avoid_countable_set by fastforce
lemma open_minus_countable:
    fixes }SA\mathrm{ :: real set
    assumes countable A S}\not={}\mathrm{ open S
    shows }\existsx\inS.x\not\in
proof -
    obtain }x\mathrm{ where }x\in
        using 〈S\not={}` by auto
    then obtain e where 0<e {y. dist y x<e}\subseteqS
```

```
    using «open \(S\) 〉 by (auto simp: open_dist subset_eq)
    moreover have \(\{y\). dist \(y x<e\}=\{x-e<. .<x+e\}\)
    by (auto simp: dist_real_def)
    ultimately have uncountable \((S-A)\)
    using uncountable_open_interval[of \(x-e x+e]\) 〈countable A〉
    by (intro uncountable_minus_countable) (auto dest: countable_subset)
    then show ?thesis
    unfolding uncountable_def by auto
qed
end
```


6．18 Homotopy of Maps

```
theory Homotopy
    imports Path_Connected Continuum_Not_Denumerable Product_Topology
begin
definition homotopic_with
where
homotopic_with P X Y f g \equiv
    (\existsh.continuous_map (prod_topology (top_of_set {0..1::real})X)Yh^
        (}\forallx.h(0,x)=fx)
    (}\forallx.h(1,x)=gx)
    (\forallt\in{0..1}. P(\lambdax.h(t,x))))
```

p, q are functions $X \rightarrow Y$ ，and the property P restricts all intermediate maps．We often just want to require that P fixes some subset，but to include the case of a loop homotopy，it is convenient to have a general property P ．
abbreviation homotopic＿with＿canon ：：
$\left[\left(' a:: t o p o l o g i c a l _s p a c e ~ \Rightarrow ' b::\right.\right.$ topological＿space $) \Rightarrow$ bool，＇a set，＇b set，＇$a \Rightarrow$＇b，＇a $\left.\Rightarrow{ }^{\prime} b\right] \Rightarrow$ bool
where
homotopic＿with＿canon PSTpqhomotopic＿with P（top＿of＿set S ）（top＿of＿set T）$p q$
lemma split＿01：$\{0 . .1::$ real $\}=\{0 . .1 / 2\} \cup\{1 / 2 . .1\}$
by force
lemma split＿01＿prod：$\{0 . .1::$ real $\} \times X=(\{0 . .1 / 2\} \times X) \cup(\{1 / 2 . .1\} \times X)$ by force
lemma image＿Pair＿const：$(\lambda x .(x, c))$＇$A=A \times\{c\}$
by auto
lemma $f s t_{-} o_{-}$paired $[$simp $]: f s t \circ(\lambda(x, y) .(f x y, g x y))=(\lambda(x, y) . f x y)$ by auto

```
lemma snd_o_paired \([\) simp \(]:\) snd \(\circ(\lambda(x, y) .(f x y, g x y))=(\lambda(x, y) . g x y)\)
    by auto
```

lemma continuous_on_o_Pair: \llbracket continuous_on $(T \times X) h ; t \in T \rrbracket \Longrightarrow$ continu-
ous_on X (h ○ Pair t)
by (fast intro: continuous_intros elim!: continuous_on_subset)
lemma continuous_map_o_Pair:
assumes h : continuous_map (prod_topology $X Y$) $Z h$ and $t: t \in$ topspace X
shows continuous_map Y Z ($h \circ$ Pair t)
by (intro continuous_map_compose $\left[O F _h\right]$ continuous_intros; simp add: t)

6.18.1 Trivial properties

We often want to just localize the ending function equality or whatever.

```
proposition homotopic_with:
    assumes \(\bigwedge h k .(\bigwedge x . x \in\) topspace \(X \Longrightarrow h x=k x) \Longrightarrow(P h \longleftrightarrow P k)\)
    shows homotopic_with \(P X Y p q \longleftrightarrow\)
        ( \(\exists\) h. continuous_map (prod_topology (subtopology euclideanreal \(\{0 . .1\}\) ) X)
\(Y h \wedge\)
```

```
(\forallx\in topspace X.h(0,x)=px)^
```

(\forallx\in topspace X.h(0,x)=px)^
(\forallx\in topspace X. h(1,x)=qx)^
(\forallx\in topspace X. h(1,x)=qx)^
(\forallt\in{0..1}. P(\lambdax.h(t,x))))
(\forallt\in{0..1}. P(\lambdax.h(t,x))))
unfolding homotopic_with_def
apply (rule iffI, blast, clarify)
apply (rule_tac $x=\lambda(u, v)$. if $v \in$ topspace X then $h(u, v)$ else if $u=0$ then $p v$
else $q v$ in exI)
apply auto
using continuous_map_eq apply fastforce
apply (drule_tac $x=t$ in bspec, force)
apply (subst assms; simp)
done
lemma homotopic_with_mono:
assumes hom: homotopic_with P X Yfg
and $Q: \wedge h . \llbracket$ continuous_map $X Y h ; P h \rrbracket \Longrightarrow Q h$
shows homotopic_with $Q X Y f g$
using hom unfolding homotopic_with_def
by (force simp: o_def dest: continuous_map_o_Pair intro: Q)
lemma homotopic_with_imp_continuous_maps:
assumes homotopic_with P X Yfg
shows continuous_map $X Y f \wedge$ continuous_map $X Y g$
proof -
obtain $h::$ real $\times{ }^{\prime} a \Rightarrow{ }^{\prime} b$
where conth: continuous_map (prod_topology (top_of_set \{0..1\}) X) Yh
and $h: \forall x . h(0, x)=f x \forall x . h(1, x)=g x$
using assms by (auto simp: homotopic_with_def)

```
```

 have \(*: t \in\{0 . .1\} \Longrightarrow\) continuous_map \(X Y(h \circ(\lambda x .(t, x)))\) for \(t\)
 by (rule continuous_map_compose \([O F\) _ conth]) (simp add: o_def continu-
 ous_map_pairwise)
show ?thesis
using $h *[o f 0] *[o f 1]$ by (simp add: continuous_map_eq)
qed
lemma homotopic_with_imp_continuous:
assumes homotopic_with_canon P X Yfg
shows continuous_on $X f \wedge$ continuous_on $X g$
by (meson assms continuous_map_subtopology_eu homotopic_with_imp_continuous_maps)
lemma homotopic_with_imp_property:
assumes homotopic_with $P X Y f g$
shows $P f \wedge P g$
proof
obtain h where $h: \bigwedge x . h(0, x)=f x \bigwedge x . h(1, x)=g x$ and $P: \bigwedge t . t \in$
$\{0 . .1::$ real $\} \Longrightarrow P(\lambda x . h(t, x))$
using assms by (force simp: homotopic_with_def)
show $P f P g$
using P [of 0$] P$ [of 1$]$ by (force simp: h) +
qed
lemma homotopic_with_equal:
assumes $P f P g$ and contf: continuous_map $X Y f$ and $f g: \wedge x . x \in$ topspace
$X \Longrightarrow f x=g x$
shows homotopic_with P X Yfg
unfolding homotopic_with_def
proof (intro exI conjI allI ballI)
let $? h=\lambda(t::$ real, $x)$. if $t=1$ then $g x$ else $f x$
show continuous_map (prod_topology (top_of_set \{0..1\}) X) Y?h
proof (rule continuous_map_eq)
show continuous_map (prod_topology (top_of_set \{0..1\})X) Y(f○ snd)
by (simp add: contf continuous_map_of_snd)
qed (auto simp: fg)
show $P(\lambda x$. ?h $(t, x))$ if $t \in\{0 . .1\}$ for t
by (cases $t=1$) (simp_all add: assms)
qed auto
lemma homotopic_with_imp_subset1:
homotopic_with_canon P X Yfg $\Longrightarrow f^{\prime} X \subseteq Y$
by (simp add: homotopic_with_def image_subset_iff) (metis atLeastAtMost_iff or-
der_refl zero_le_one)
lemma homotopic_with_imp_subset2:
homotopic_with_canon P X Yfg $\Longrightarrow g^{\prime} X \subseteq Y$
by (simp add: homotopic_with_def image_subset_iff) (metis atLeastAtMost_iff order_refl zero_le_one)

```
lemma homotopic_with_subset_left:
\(\llbracket h o m o t o p i c \_w i t h \_c a n o n P X Y f g ; Z \subseteq X \rrbracket \Longrightarrow\) homotopic_with_canon P Z Y f \(g\)
unfolding homotopic_with_def by (auto elim!: continuous_on_subset ex_forward)
lemma homotopic_with_subset_right:
\(\llbracket h o m o t o p i c \_w i t h \_c a n o n ~ P X Y f g ; Y \subseteq Z \rrbracket \Longrightarrow\) homotopic_with_canon P X Z f g
unfolding homotopic_with_def by (auto elim!: continuous_on_subset ex_forward)

\subsection*{6.18.2 Homotopy with P is an equivalence relation}
(on continuous functions mapping X into Y that satisfy P , though this only affects reflexivity)
lemma homotopic_with_refl [simp]: homotopic_with P X Yff \(\longleftrightarrow\) continuous_map \(X Y f \wedge P f\)
by (auto simp: homotopic_with_imp_continuous_maps intro: homotopic_with_equal dest: homotopic_with_imp_property)
lemma homotopic_with_symD:
assumes homotopic_with \(P X Y f g\)
shows homotopic_with P X Ygf
proof -
let ? \(101=\) subtopology euclideanreal \(\{0 . .1\}\)
let ? \(j=\lambda y\). \((1-f s t y\), snd \(y)\)
have 1: continuous_map (prod_topology ?I01 X) (prod_topology euclideanreal X)
? \(j\)
by (intro continuous_intros; simp add: continuous_map_subtopology_fst prod_topology_subtopology)
have *: continuous_map (prod_topology ?I01 X) (prod_topology ?I01 X) ?j
proof -
have continuous_map (prod_topology ?I01 X) (subtopology (prod_topology eu-
clideanreal \(X)(\{0 . .1\} \times\) topspace \(X)\) ) ?j
by (simp add: continuous_map_into_subtopology [OF 1] image_subset_iff)
then show? ?thesis
by (simp add: prod_topology_subtopology(1))
qed
show ?thesis
using assms
apply (clarsimp simp add: homotopic_with_def)
subgoal for \(h\)
by (rule_tac \(x=h \circ(\lambda y .(1-f s t y\), snd \(y))\) in exI) (simp add: continu-
ous_map_compose [OF *])
done
qed
lemma homotopic_with_sym:
homotopic_with \(P X Y f g \longleftrightarrow\) homotopic_with \(P X Y g f\)
by (metis homotopic_with_symD)
proposition homotopic_with_trans:
assumes homotopic_with P X Yfg homotopic_with P X Ygh
shows homotopic_with P X Yf h
proof -
let ?X01 = prod_topology (subtopology euclideanreal \{0..1\}) X
obtain k1 k2
where contk1: continuous_map ?X01 Y k1 and contk2: continuous_map ?X01 Yk2
and k12: \(\forall x . k 1(1, x)=g x \forall x . k 2(0, x)=g x\) \(\forall x . k 1(0, x)=f x \forall x . k 2(1, x)=h x\)
and \(P: \quad \forall t \in\{0 . .1\} . P(\lambda x . k 1(t, x)) \forall t \in\{0 . .1\} . P(\lambda x . k 2(t, x))\)
using assms by (auto simp: homotopic_with_def)
define \(k\) where \(k \equiv \lambda y\). if fst \(y \leq 1 / 2\)
then \(\left(k 1 \circ\left(\lambda x .\left(2 *_{R}\right.\right.\right.\) fst \(x\), snd \(\left.\left.\left.x\right)\right)\right) y\)
else \(\left(k 2 \circ\left(\lambda x .\left(2 *_{R}\right.\right.\right.\) fst \(x-1\), snd \(\left.\left.\left.x\right)\right)\right) y\)
have keq: \(k 1(2 * u, v)=k 2(2 * u-1, v)\) if \(u=1 / 2\) for \(u v\)
by (simp add: k12 that)
show ?thesis
unfolding homotopic_with_def
proof (intro exI conjI)
show continuous_map ? X01 Yk
unfolding \(k_{\text {_ }}\) def
proof (rule continuous_map_cases_le)
show fst: continuous_map?X01 euclideanreal fst
using continuous_map_fst continuous_map_in_subtopology by blast
show continuous_map? \({ }^{2} 01\) euclideanreal ( \(\lambda x\). 1/2)
by \(\operatorname{simp}\)
show continuous_map (subtopology ?X01 \(\{y \in\) topspace ?X01. fst \(y \leq 1 / 2\}\) )
Y
\(\left(k 1 \circ\left(\lambda x .\left(2 *_{R}\right.\right.\right.\) fst \(x\), snd \(\left.\left.\left.x\right)\right)\right)\)
apply (intro fst continuous_map_compose [OF _ contk1] continuous_intros continuous_map_into_subtopology continuous_map_from_subtopology | simp)+ by (force simp: prod_topology_subtopology)
show continuous_map (subtopology?X01 \(\{y \in\) topspace? ? 0 01. \(1 / 2 \leq\) fst \(y\}\) ) Y
\[
\left(k 2 \circ\left(\lambda x \cdot\left(2 *_{R} \text { fst } x-1, \text { snd } x\right)\right)\right)
\]
apply (intro fst continuous_map_compose [OF _ contk2] continuous_intros continuous_map_into_subtopology continuous_map_from_subtopology \(\mid\) simp \()+\) by (force simp: prod_topology_subtopology)
show \(\left(k 1 \circ\left(\lambda x .\left(2 *_{R}\right.\right.\right.\) fst \(x\), snd \(\left.\left.\left.x\right)\right)\right) y=\left(k 2 \circ\left(\lambda x .\left(2 *_{R} f\right.\right.\right.\) st \(x-1\), snd x))) \(y\)
if \(y \in\) topspace? ? 001 and fst \(y=1 / 2\) for \(y\)
using that by (simp add: keq)
qed
show \(\forall x\). \(k(0, x)=f x\)
by (simp add: k12 k_def)
show \(\forall x . k(1, x)=h x\)
by (simp add: k12 \(k\) _def)
show \(\forall t \in\{0 . .1\} . P(\lambda x . k(t, x))\)
```

 proof
 fix t show }t\in{0..1}\LongrightarrowP(\lambdax.k(t,x)
 by (cases t\leq1/2)(auto simp add: k_def P)
 qed
 qed
 qed
lemma homotopic_with_id2:
(\bigwedgex. x t topspace X\Longrightarrowg(fx)=x)\Longrightarrow homotopic_with (\lambdax. True) X X (g\circ
f) id
by (metis comp_apply continuous_map_id eq_id_iff homotopic_with_equal homo-
topic_with_symD)

```

\subsection*{6.18.3 Continuity lemmas}
lemma homotopic_with_compose_continuous_map_left:
【homotopic_with p X1 X2 \(f g\); continuous_map X2 X3 \(h ; \wedge j . p j \Longrightarrow q(h \circ j) \rrbracket\) \(\Longrightarrow\) homotopic_with q X1 X3 \((h \circ f)(h \circ g)\)
unfolding homotopic_with_def
apply clarify
subgoal for \(k\)
by (rule_tac \(x=h \circ k\) in exI) (rule conjI continuous_map_compose \(\mid\) simp add:
o_def)+
done
lemma homotopic_with_compose_continuous_map_right:
assumes hom: homotopic_with \(p\) X2 X3 \(f g\) and conth: continuous_map X1 X2 \(h\)
and \(q: \bigwedge j \cdot p j \Longrightarrow q(j \circ h)\)
shows homotopic_with q X1 X3 \((f \circ h)(g \circ h)\)
proof -
obtain \(k\)
where contk: continuous_map (prod_topology (subtopology euclideanreal \{0..1\})
X2) X3 \(k\)
and \(k: \forall x . k(0, x)=f x \forall x . k(1, x)=g x\) and \(p: \wedge t . t \in\{0 . .1\} \Longrightarrow p\)
\((\lambda x . k(t, x))\)
using hom unfolding homotopic_with_def by blast
have hsnd: continuous_map (prod_topology (subtopology euclideanreal \{0..1\})
X1) X2 ( \(h \circ s n d\) )
by (rule continuous_map_compose [OF continuous_map_snd conth])
let \(? h=k \circ(\lambda(t, x) .(t, h x))\)
show ?thesis
unfolding homotopic_with_def
proof (intro exI conjI allI ballI)
have continuous_map (prod_topology (top_of_set \{0..1\}) X1)
(prod_topology (top_of_set \{0..1::real\}) X2) \((\lambda(t, x) .(t, h x))\)
by (metis (mono_tags, lifting) case_prod_beta' comp_def continuous_map_eq continuous_map_fst continuous_map_pairedI hsnd)
then show continuous_map (prod_topology (subtopology euclideanreal \{0..1\})
```

X1) X3 ?h
by (intro conjI continuous_map_compose [OF _ contk])
show q(\lambdax.?h(t,x)) if t\in{0..1} for t
using q[OF p [OF that]] by (simp add: o_def)
qed (auto simp: k)
qed
corollary homotopic_compose:
assumes homotopic_with (\lambdax. True) X Y ff' homotopic_with (\lambdax. True) Y Zg
g'
shows homotopic_with (}\lambdax\mathrm{ . True) X Z (g०f) (g'。的)
proof (rule homotopic_with_trans [where g=g\circ\mp@subsup{f}{}{\prime}])
show homotopic_with (}\lambdax\mathrm{ . True) X Z (g०f) (g०f}
using assms by (simp add: homotopic_with_compose_continuous_map_left ho-
motopic_with_imp_continuous_maps)
show homotopic_with (}\lambdax\mathrm{ . True) X Z (g○f') (g'}\circ\mp@subsup{f}{}{\prime}
using assms by (simp add: homotopic_with_compose_continuous_map_right ho-
motopic_with_imp_continuous_maps)
qed

```
proposition homotopic_with_compose_continuous_right:
        【homotopic_with_canon \((\lambda f . p(f \circ h)) X Y f g\); continuous_on \(W h ; h\) ‘ \(W \subseteq\)
X】
        \(\Longrightarrow\) homotopic_with_canon \(p W Y(f \circ h)(g \circ h)\)
    apply (clarsimp simp add: homotopic_with_def)
    subgoal for \(k\)
        apply (rule_tac \(x=k \circ(\lambda y .(\) fst \(y, h(\) snd \(y)))\) in \(e x I)\)
        by (intro conjI continuous_intros continuous_on_compose2 [where \(f=\) snd and
\(g=h]\); fastforce simp: o_def elim: continuous_on_subset)
    done
proposition homotopic_with_compose_continuous_left:
        \(\llbracket h o m o t o p i c \_w i t h \_c a n o n(\lambda f . p(h \circ f)) X Y f g\); continuous_on \(Y h ; h^{‘} Y \subseteq\)
\(Z \rrbracket\)
        \(\Longrightarrow\) homotopic_with_canon \(p X Z(h \circ f)(h \circ g)\)
    apply (clarsimp simp add: homotopic_with_def)
    subgoal for \(k\)
    apply (rule_tac \(x=h \circ k\) in \(e x I\) )
        by (intro conjI continuous_intros continuous_on_compose [where \(f=s n d\) and
\(g=h\), unfolded o_def]; fastforce simp: o_def elim: continuous_on_subset)
    done
lemma homotopic＿from＿subtopology：
        homotopic_with \(P\) X \(X^{\prime} f g \Longrightarrow\) homotopic_with \(P\) (subtopology \(X\) s) \(X^{\prime} f g\)
    unfolding homotopic_with_def
    by (force simp add: continuous_map_from_subtopology prod_topology_subtopology(2)
elim!: ex_forward)
lemma homotopic＿on＿emptyI：
```

 assumes topspace X={}PfPg
 shows homotopic_with P X X'fg
 unfolding homotopic_with_def
 proof (intro exI conjI ballI)
show P}(\lambdax.(\lambda(t,x). if t=0 then f x else g x) (t,x)) if t\in{0..1} for t::real
by (cases t = 0, auto simp: assms)
qed (auto simp: continuous_map_atin assms)
lemma homotopic_on_empty:
topspace }X={}\Longrightarrow\mathrm{ (homotopic_with P X X'fg }\longleftrightarrowPf\wedgePg
using homotopic_on_emptyI homotopic_with_imp_property by metis
lemma homotopic_with_canon_on_empty [simp]: homotopic_with_canon (}\lambdax.True
{} tfg
by (auto intro: homotopic_with_equal)
lemma homotopic_constant_maps:
homotopic_with (\lambdax. True) X X '}(\lambdax.a) (\lambdax.b)\longleftrightarrow \longleftrightarrow
topspace X ={}\vee path_component_of \mp@subsup{X}{}{\prime}ab(is ?lhs = ?rhs)
proof (cases topspace X = {})
case False
then obtain c where c:c\in topspace X
by blast
have \existsg.continuous_map (top_of_set {0..1::real}) 㕵 g^g 0=a^g 1=b
if x\in topspace X and hom: homotopic_with (}\lambdax\mathrm{ . True) X X' (}\lambdax.a)(\lambdax.b
for }
proof -
obtain }h::\mathrm{ real }\times\mp@subsup{}{}{\prime}a=>'
where conth: continuous_map (prod_topology (top_of_set {0..1}) X) X'h
and h: \x.h(0, x)=a \x.h(1,x)=b
using hom by (auto simp: homotopic_with_def)
have cont: continuous_map (top_of_set {0..1}) X'(h\circ
by (rule continuous_map_compose [OF _ conth] continuous_intros c | simp)+
then show ?thesis
by (force simp: h)
qed
moreover have homotopic_with (}\lambdax.\mathrm{ True) X X ' (}\lambdax.g0) (\lambdax.g 1)
if x\in topspace X a = g 0 b = g 1 continuous_map (top_of_set {0..1}) X'g
for }x\mathrm{ and }g:: real =>'
unfolding homotopic_with_def
by (force intro!: continuous_map_compose continuous_intros c that)
ultimately show ?thesis
using False by (auto simp: path_component_of_def pathin_def)
qed (simp add: homotopic_on_empty)
proposition homotopic_with_eq:
assumes h: homotopic_with P X Yfg
and f}\mp@subsup{f}{}{\prime}:\bigwedgex.x\in topspace X\Longrightarrow f'x=f
and g}\mp@subsup{g}{}{\prime}:\bigwedgex.x\in topspace X\Longrightarrow g'x=g

```
and \(P:(\bigwedge h k .(\bigwedge x . x \in\) topspace \(X \Longrightarrow h x=k x) \Longrightarrow P h \longleftrightarrow P k)\)
shows homotopic_with \(P X Y f^{\prime} g^{\prime}\)
using \(h\) unfolding homotopic_with_def
apply clarify
subgoal for \(h\)
apply (rule_tac \(x=\lambda(u, v)\). if \(v \in\) topspace \(X\) then \(h(u, v)\) else if \(u=0\) then \(f^{\prime}\)
\(v\) else \(g^{\prime} v\) in exI)
apply (simp add: \(f^{\prime} g^{\prime}\), safe)
apply (fastforce intro: continuous_map_eq)
apply (subst \(P\); fastforce)
done
done
lemma homotopic_with_prod_topology:
assumes homotopic_with pX1 Y1 ff \(f^{\prime}\) and homotopic_with qX2 Y2 \(g g^{\prime}\)
and \(r: \bigwedge i j . \llbracket p i ; q j \rrbracket \Longrightarrow r(\lambda(x, y) .(i x, j y))\)
shows homotopic_with \(r\) (prod_topology X1 X2) (prod_topology Y1 Y2)
\((\lambda z \cdot(f(f s t z), g(\) snd \(z)))\left(\lambda z \cdot\left(f^{\prime}(f s t z), g^{\prime}(\right.\right.\) snd \(\left.\left.z)\right)\right)\)
proof -
obtain \(h\)
where \(h\) : continuous_map (prod_topology (subtopology euclideanreal \{0..1\}) X1) Y1 \(h\)
and \(h 0: \wedge x . h(0, x)=f x\)
and \(h 1: \bigwedge x\). \(h(1, x)=f^{\prime} x\)
and \(p: \wedge t . \llbracket 0 \leq t ; t \leq 1 \rrbracket \Longrightarrow p(\lambda x . h(t, x))\)
using assms unfolding homotopic_with_def by auto
obtain \(k\)
where \(k\) : continuous_map (prod_topology (subtopology euclideanreal \{0..1\}) X2) Y2 k
and \(k 0: \wedge x . k(0, x)=g x\) and \(k 1: \wedge x . k(1, x)=g^{\prime} x\) and \(q: \wedge t . \llbracket 0 \leq t ; t \leq 1 \rrbracket \Longrightarrow q(\lambda x . k(t, x))\)
using assms unfolding homotopic_with_def by auto
let \({ }^{\text {? }} \mathrm{hk}=\lambda(t, x, y) .(h(t, x), k(t, y))\)
show ?thesis
unfolding homotopic_with_def
proof (intro conjI allI exI)
show continuous_map (prod_topology (subtopology euclideanreal \{0..1\}) (prod_topology X1 X2))
(prod_topology Y1 Y2) ? \(h k\)
unfolding continuous_map_pairwise case_prod_unfold
by (rule conjI continuous_map_pairedI continuous_intros continuous_map_id [unfolded id_def]
continuous_map_fst_of [unfolded o_def] continuous_map_snd_of [unfolded
o_def]
continuous_map_compose [OF _ h, unfolded o_def] continuous_map_compose \(\left[\mathrm{OF}_{\_} k\right.\), unfolded o_def] \(]+\)
next
fix \(x\)
```

 show ?hk (0,x)=(f(fst x),g (snd x)) ?hk (1, x)=(f'(fst x), g' (snd x)}
 by (auto simp: case_prod_beta h0 k0 h1 k1)
 qed (auto simp: p q r)
qed
lemma homotopic_with_product_topology:
assumes ht: \bigwedgei.i i I\Longrightarrow homotopic_with (pi) (X i) (Yi) (fi) (gi)
and pq:\h.(\bigwedgei.i
shows homotopic_with q (product_topology X I) (product_topology Y I)
(\lambdaz. (\lambdai\inI. (fi)(zi)))(\lambdaz.(\lambdai\inI. (gi) (z i)))
proof -
obtain h
where h: \bigwedgei. i\inI\Longrightarrow continuous_map (prod_topology (subtopology euclidean-
real {0..1}) (X i)) (Y i) (h i)
and h0: \bigwedgeix. i G I\Longrightarrowhi (0,x)=fix
and h1:\bigwedgeix. i\inI\Longrightarrowhi(1,x)=gix
and p:\bigwedgeit. \llbracketi\inI;t\in{0..1}\rrbracket\Longrightarrowpi(\lambdax.hi (t,x))
using ht unfolding homotopic_with_def by metis
show ?thesis
unfolding homotopic_with_def
proof (intro conjI allI exI)
let ?h = \lambda(t,z). \lambdai\inI. hi (t,z i)
have continuous_map (prod_topology (subtopology euclideanreal {0..1}) (product_topology
X I))
(Yi) (\lambdax.hi(fst x, snd xi)) if i\inI for i
proof -
have §: continuous_map (prod_topology (top_of_set {0..1}) (product_topology
X I)) (X i) (\lambdax. snd x i)
using continuous_map_componentwise continuous_map_snd that by fastforce
show ?thesis
unfolding continuous_map_pairwise case_prod_unfold
by (intro conjI that § continuous_intros continuous_map_compose [OF _ h,
unfolded o_def])
qed
then show continuous_map (prod_topology (subtopology euclideanreal {0..1})
(product_topology X I))
(product_topology Y I) ?h
by (auto simp: continuous_map_componentwise case_prod_beta)
show ?h (0, x) = (\lambdai\inI.fi (xi)) ?h (1, x)=(\lambdai\inI.gi (xi)) for x
by (auto simp: case_prod_beta h0 h1)
show }\forallt\in{0..1}.q(\lambdax. ?h (t,x)
by (force intro: p pq)
qed
qed
Homotopic triviality implicitly incorporates path-connectedness.

```
```

lemma homotopic_triviality:

```
lemma homotopic_triviality:
    shows ( }\forallfg\mathrm{ . continuous_on S f^f'S}\subseteqT
```

 shows (}\forallfg\mathrm{ . continuous_on S f^f'S}\subseteqT
    ```
\[
\text { continuous_on } S g \wedge g ' S \subseteq T
\]
\(\longrightarrow\) homotopic_with_canon \((\lambda x\). True) \(S T f g) \longleftrightarrow\)
\((S=\{ \} \vee\) path_connected \(T) \wedge\)
( \(\forall f\). continuous_on \(S f \wedge f^{\prime} S \subseteq T \longrightarrow(\exists\) c. homotopic_with_canon \((\lambda x\).
True) \(S T f(\lambda x . c)))\)
(is ?lhs =? ? rh )
proof (cases \(S=\{ \} \vee T=\{ \}\) )
case True then show ?thesis
by (auto simp: homotopic_on_emptyI)
next
case False show ?thesis
proof
assume LHS [rule_format]: ?lhs
have pab: path_component \(T a b\) if \(a \in T b \in T\) for \(a b\)
proof -
have homotopic_with_canon \((\lambda x\). True) \(S T(\lambda x . a)(\lambda x . b)\)
by (simp add: LHS image_subset_iff that)
then show ?thesis
using False homotopic_constant_maps [of top_of_set \(S\) top_of_set T a b] by
auto
qed
moreover
have \(\exists c\). homotopic_with_canon ( \(\lambda x\). True) \(S T f(\lambda x . c)\) if continuous_on \(S f\) \(f\) ' \(S \subseteq T\) for \(f\)
using False LHS continuous_on_const that by blast
ultimately show ?rhs
by (simp add: path_connected_component)
next
assume RHS: ?rhs
with False have \(T\) : path_connected \(T\)
by blast
show ?lhs
proof clarify
fix \(f g\)
assume continuous_on \(S f f^{\prime} S \subseteq T\) continuous_on \(S g g^{\prime} S \subseteq T\)
obtain \(c d\) where \(c\) : homotopic_with_canon ( \(\lambda x\). True) \(S T f(\lambda x . c)\) and \(d\) :
homotopic_with_canon ( \(\lambda x\). True) \(S T g(\lambda x . d)\)
using False 〈continuous_on \(S f\rangle\langle f\) ' \(S \subseteq T\rangle R H S\) 〈continuous_on \(S g\rangle\langle g\) '
\(S \subseteq T\) by blast
then have \(c \in T d \in T\)
using False homotopic_with_imp_continuous_maps by fastforce+
with \(T\) have path_component \(T\) c d
using path_connected_component by blast
then have homotopic_with_canon ( \(\lambda x\). True) \(S T(\lambda x . c)(\lambda x . d)\)
by (simp add: homotopic_constant_maps)
with \(c d\) show homotopic_with_canon ( \(\lambda x\). True) \(S T f g\)
by (meson homotopic_with_symD homotopic_with_trans)
qed
qed
qed

\subsection*{6.18.4 Homotopy of paths, maintaining the same endpoints}
definition homotopic_paths :: ['a set, real \(\Rightarrow{ }^{\prime} a\), real \(\Rightarrow{ }^{\prime} a::\) topological_space] \(\Rightarrow\) bool
where
homotopic_paths s p \(q \equiv\)
homotopic_with_canon ( \(\lambda\) r. pathstart \(r=\) pathstart \(p \wedge\) pathfinish \(r=\) pathfinish p) \(\{0 . .1\}\) sp \(q\)
lemma homotopic_paths:
homotopic_paths s p \(q \longleftrightarrow\)
\((\exists h\). continuous_on \((\{0 . .1\} \times\{0 . .1\}) h \wedge\)
\[
h^{\prime}(\{0 . .1\} \times\{0 . .1\}) \subseteq s \wedge
\]
\[
(\forall x \in\{0 . .1\} . h(0, x)=p x) \wedge
\]
\[
(\forall x \in\{0 \ldots 1\} . h(1, x)=q x) \wedge
\]
\[
(\forall t \in\{0 . .1:: \text { real }\} . \text { pathstart }(h \circ \text { Pair } t)=\text { pathstart } p \wedge
\] pathfinish \((h \circ\) Pair \(t)=\) pathfinish \(p)\) )
by (auto simp: homotopic_paths_def homotopic_with pathstart_def pathfinish_def)
proposition homotopic_paths_imp_pathstart: homotopic_paths s p \(q \Longrightarrow\) pathstart \(p=\) pathstart \(q\)
by (metis (mono_tags, lifting) homotopic_paths_def homotopic_with_imp_property)
proposition homotopic_paths_imp_pathfinish: homotopic_paths s \(p q \Longrightarrow\) pathfinish \(p=\) pathfinish \(q\)
by (metis (mono_tags, lifting) homotopic_paths_def homotopic_with_imp_property)
lemma homotopic_paths_imp_path: homotopic_paths s p \(q \Longrightarrow\) path \(p \wedge\) path \(q\)
using homotopic_paths_def homotopic_with_imp_continuous_maps path_def continuous_map_subtopology_eu by blast
lemma homotopic_paths_imp_subset: homotopic_paths s p \(q \Longrightarrow\) path_image \(p \subseteq s \wedge\) path_image \(q \subseteq s\)
by (metis (mono_tags) continuous_map_subtopology_eu homotopic_paths_def homotopic_with_imp_continuous_maps path_image_def)
proposition homotopic_paths_refl [simp]: homotopic_paths spp path p \(\wedge\) path_image \(p \subseteq s\)
by (simp add: homotopic_paths_def path_def path_image_def)
proposition homotopic_paths_sym: homotopic_paths s p \(q \Longrightarrow\) homotopic_paths s \(q p\)
by (metis (mono_tags) homotopic_paths_def homotopic_paths_imp_pathfinish homotopic_paths_imp_pathstart homotopic_with_symD)
proposition homotopic_paths_sym_eq: homotopic_paths s p \(q \longleftrightarrow\) homotopic_paths
```

sqp
by (metis homotopic_paths_sym)
proposition homotopic_paths_trans [trans]:
assumes homotopic_paths s p q homotopic_paths s q r
shows homotopic_paths s p r
proof -
have pathstart q= pathstart p pathfinish q = pathfinish p
using assms by (simp_all add: homotopic_paths_imp_pathstart homotopic_paths_imp_pathfinish)
then have homotopic_with_canon (}\lambdaf.\mathrm{ pathstart f = pathstart p ^ pathfinish f
= pathfinish p) {0..1} sqr
using 〈homotopic_paths s q r > homotopic_paths_def by force
then show ?thesis
using assms homotopic_paths_def homotopic_with_trans by blast
qed
proposition homotopic_paths_eq:
|path p; path_image p\subseteqs;\bigwedget.t\in{0..1}\Longrightarrowpt=qt\rrbracket\Longrightarrow homotopic_paths
s pq
unfolding homotopic_paths_def
by (rule homotopic_with_eq)
(auto simp: path_def pathstart_def pathfinish_def path_image_def elim: continu-
ous_on_eq)
proposition homotopic_paths_reparametrize:
assumes path p
and pips: path_image p\subseteqs
and contf:continuous_on {0..1}f
and f01:f'{0..1}\subseteq{0..1}
and [simp]: f(0)=0 f(1)=1
and q:^t.t\in{0..1}\Longrightarrowq(t)=p(ft)
shows homotopic_paths s p q
proof -
have contp: continuous_on {0..1} p
by (metis <path p> path_def)
then have continuous_on {0..1} (p\circf)
using contf continuous_on_compose continuous_on_subset f01 by blast
then have path q
by (simp add: path_def) (metis q continuous_on_cong)
have piqs: path_image q\subseteqs
by (metis (no_types, hide_lams) pips f01 image_subset_iff path_image_def q)
have fb0:\ab.\llbracket0\leqa;a\leq1;0\leqb;b\leq1\rrbracket\Longrightarrow0\leq(1-a)*fb+a*b
using f01 by force
have fb1: \llbracket0\leqa;a\leq1;0\leqb;b\leq1\rrbracket\Longrightarrow(1-a)*fb+a*b\leq1 for ab
using f01 [THEN subsetD, of f b] by (simp add: convex_bound_le)
have homotopic_paths s q p
proof (rule homotopic_paths_trans)
show homotopic_paths s q (p\circf)
using q by (force intro: homotopic_paths_eq [OF <path q> piqs])

```
```

next
show homotopic_paths s (p\circf) p
using pips [unfolded path_image_def]
apply (simp add: homotopic_paths_def homotopic_with_def)
apply (rule_tac x=p\circ(\lambday. (1 - (fst y)) *R ((f\circ snd) y)+(fst y)**R snd
y) in exI)
apply (rule conjI contf continuous_intros continuous_on_subset [OF contp]|
simp)+
by (auto simp: fb0 fb1 pathstart_def pathfinish_def)
qed
then show ?thesis
by (simp add: homotopic_paths_sym)
qed

```
lemma homotopic_paths_subset: \(\llbracket h o m o t o p i c \_p a t h s ~ s p ~ q ; s \subseteq t \rrbracket \Longrightarrow h o m o t o p i c \_p a t h s\)
\(t p q\)
    unfolding homotopic_paths by fast

A slightly ad-hoc but useful lemma in constructing homotopies.
```

lemma continuous_on_homotopic_join_lemma:
fixes }q::[real,real] > 'a::topological_space
assumes p:continuous_on ({0..1} > {0..1}) (\lambday.p (fst y) (snd y)) (is contin-
uous_on ?A ?p)
and q:continuous_on ({0..1} }\times{0..1})(\lambday.q(fst y)(snd y)) (is continu--
ous_on ?A ?q)
and pf:\t.t\in{0..1}\Longrightarrow pathfinish(pt)=pathstart (q t)
shows continuous_on ({0..1} }\times{0..1})(\lambday.(p(fst y)+++q(fst y))(snd y)
proof -
have §: (\lambdat. p (fst t) (2 * snd t)) = ?p \circ (\lambday.(fst y, 2 * snd y))
(\lambdat.q(fst t) (2* snd t-1))=?q\circ(\lambday.(fst y, 2* snd y - 1))
by force+
show ?thesis
unfolding joinpaths_def
proof (rule continuous_on_cases_le)
show continuous_on {y\in?A. snd y \leq 1/2} (\lambdat.p (fst t) (2 * snd t))
continuous_on {y\in?A. 1/2 \leq snd y} (\lambdat.q(fst t) (2* snd t - 1))
continuous_on ?A snd
unfolding §
by (rule continuous_intros continuous_on_subset [OF p] continuous_on_subset
[OF q] | force)+
qed (use pf in <auto simp: mult.commute pathstart_def pathfinish_def`)
qed

```

Congruence properties of homotopy w.r.t. path-combining operations.
lemma homotopic_paths_reversepath_D:
assumes homotopic_paths s pq
shows homotopic_paths \(s\) (reversepath \(p)(\) reversepath \(q)\)
using assms
apply (simp add: homotopic_paths_def homotopic_with_def, clarify)
apply \((\) rule_tac \(x=h \circ(\lambda x .(f s t x, 1-s n d x))\) in \(e x I)\)
apply (rule conjI continuous_intros)+
apply (auto simp: reversepath_def pathstart_def pathfinish_def elim!: continuous_on_subset)
done
proposition homotopic_paths_reversepath:
homotopic_paths s (reversepath p) (reversepath \(q) \longleftrightarrow\) homotopic_paths sp \(q\) using homotopic_paths_reversepath_D by force
proposition homotopic_paths_join:
\(\llbracket h o m o t o p i c \_p a t h s ~ s ~ p ~ p o r ; h o t o p i c \_p a t h s ~ s q q^{\prime} ;\) pathfinish \(p=\) pathstart \(q \rrbracket \Longrightarrow\) homotopic_paths s \((p+++q)\left(p^{\prime}+++q^{\prime}\right)\)
apply (clarsimp simp add: homotopic_paths_def homotopic_with_def)
apply (rename_tac k1 k2)
apply \((\) rule_tac \(x=(\lambda y .((k 1 \circ \operatorname{Pair}(f s t y))+++(k 2 \circ \operatorname{Pair}(f s t y)))(\) snd \(y))\) in \(e x I\) )
apply (intro conjI continuous_intros continuous_on_homotopic_join_lemma; force simp: joinpaths_def pathstart_def pathfinish_def path_image_def)
done
proposition homotopic_paths_continuous_image:
\(\llbracket h o m o t o p i c \_p a t h s\) s \(f g\); continuous_on \(s h ; h^{\prime} s \subseteq t \rrbracket \Longrightarrow\) homotopic_paths \(t(h\) \(\circ f)(h \circ g)\)
unfolding homotopic_paths_def
by (simp add: homotopic_with_compose_continuous_map_left pathfinish_compose pathstart_compose)

\subsection*{6.18.5 Group properties for homotopy of paths}

So taking equivalence classes under homotopy would give the fundamental group
proposition homotopic_paths_rid:
assumes path \(p\) path_image \(p \subseteq s\)
shows homotopic_paths s \((p+++\) linepath \((\) pathfinish \(p)(\) pathfinish \(p)) p\)
proof -
have §: continuous_on \(\{0 . .1\}\left(\lambda t::\right.\) real. if \(t \leq 1 / 2\) then \(2 *_{R} t\) else 1\()\)
unfolding split_01
by (rule continuous_on_cases continuous_intros \(\mid\) force simp: pathfinish_def joinpaths_def)+
show ?thesis
apply (rule homotopic_paths_sym)
using assms unfolding pathfinish_def joinpaths_def
by (intro § continuous_on_cases continuous_intros homotopic_paths_reparametrize
[where \(f=\lambda t\). if \(t \leq 1 / 2\) then \(2 *_{R}\) t else 1 ]; force)
qed
proposition homotopic_paths_lid:
\(\llbracket\) path \(p\); path_image \(p \subseteq s \rrbracket \Longrightarrow\) homotopic_paths s (linepath (pathstart \(p\) ) (pathstart p) \(+++p) p\)
using homotopic_paths_rid [of reversepath \(p s\) ]
by (metis homotopic_paths_reversepath path_image_reversepath path_reversepath pathfinish_linepath pathfinish_reversepath reversepath_joinpaths reversepath_linepath)
proposition homotopic_paths_assoc:
\(\llbracket p a t h ~ p ;\) path_image \(p \subseteq s\); path \(q\); path_image \(q \subseteq s ;\) path \(r\); path_image \(r \subseteq s\); pathfinish \(p=\) pathstart \(q\);
pathfinish \(q=\) pathstart \(r \rrbracket\)
\(\Longrightarrow\) homotopic_paths \(s(p+++(q+++r))((p+++q)+++r)\)
apply (subst homotopic_paths_sym)
apply (rule homotopic_paths_reparametrize
[where \(f=\lambda t\). if \(t \leq 1 / 2\) then inverse \(2 *_{R} t\) else if \(t \leq 3 / 4\) then \(t-(1 / 4)\) else \(\left.2 *_{R} t-1\right]\) )
apply (simp_all del: le_divide_eq_numeral1 add: subset_path_image_join)
apply (rule continuous_on_cases_1 continuous_intros \(\mid\) auto simp: joinpaths_def)+ done
proposition homotopic_paths_rinv:
assumes path \(p\) path_image \(p \subseteq s\)
shows homotopic_paths \(s(p+++\) reversepath \(p)\) (linepath (pathstart \(p\) ) (pathstart p))
proof -
have \(p\) : continuous_on \(\{0 . .1\} p\)
using assms by (auto simp: path_def)
let \(? A=\{0 . .1\} \times\{0 . .1\}\)
have continuous_on ? \(A(\lambda x\). (subpath \(0(f s t x) p+++\) reversepath (subpath 0
\((f s t x) p))(s n d x))\)
unfolding joinpaths_def subpath_def reversepath_def path_def add_0_right diff_0_right
proof (rule continuous_on_cases_le)
show continuous_on \(\{x \in\) ? A. snd \(x \leq 1 / 2\}(\lambda t\). \(p(f\) st \(t *(2 *\) snd \(t)))\)
continuous_on \(\{x \in ? A .1 / 2 \leq \operatorname{snd} x\}(\lambda t . p(f s t t *(1-(2 *\) snd \(t-\) 1))))
continuous_on ?A snd
by (intro continuous_on_compose2 [OF p] continuous_intros; auto simp add: mult_le_one)+
qed (auto simp add: algebra_simps)
then show ?thesis
using assms
apply (subst homotopic_paths_sym_eq)
unfolding homotopic_paths_def homotopic_with_def
apply (rule_tac \(x=(\lambda y\). (subpath 0 (fst y) \(p+++\) reversepath(subpath 0 (fst
y) \(p\) )) (snd \(y)\) ) in \(e x I\) )
apply (force simp: mult_le_one path_defs joinpaths_def subpath_def reversepath_def) done
qed
proposition homotopic_paths_linv:
assumes path \(p\) path_image \(p \subseteq s\)
shows homotopic_paths \(s\) (reversepath \(p+++p\) ) (linepath (pathfinish \(p\) ) ( pathfinish p))
using homotopic_paths_rinv [of reversepath \(p s]\) assms by simp

\subsection*{6.18.6 Homotopy of loops without requiring preservation of endpoints}
definition homotopic_loops :: 'a::topological_space set \(\Rightarrow\left(\right.\) real \(\left.\Rightarrow{ }^{\prime} a\right) \Rightarrow(\) real \(\Rightarrow\) \(\left.{ }^{\prime} a\right) \Rightarrow\) bool where
homotopic_loops s \(p q \equiv\)
homotopic_with_canon ( \(\lambda\) r. pathfinish \(r=\) pathstart \(r\) ) \(\{0 . .1\}\) s \(p q\)
lemma homotopic_loops:
homotopic_loops s p \(q \longleftrightarrow\)
\((\exists\) h. continuous_on \((\{0 . .1::\) real \(\} \times\{0 . .1\}) h \wedge\)
image \(h(\{0 . .1\} \times\{0 . .1\}) \subseteq s \wedge\)
\((\forall x \in\{0 . .1\} . h(0, x)=p x) \wedge\)
\((\forall x \in\{0 . .1\} . h(1, x)=q x) \wedge\)
\((\forall t \in\{0 . .1\}\). pathfinish \((h \circ\) Pair \(t)=\operatorname{pathstart}(h \circ \operatorname{Pair} t)))\)
by (simp add: homotopic_loops_def pathstart_def pathfinish_def homotopic_with)
proposition homotopic_loops_imp_loop:
homotopic_loops s p \(q \Longrightarrow\) pathfinish \(p=\) pathstart \(p \wedge\) pathfinish \(q=\) pathstart
\(q\)
using homotopic_with_imp_property homotopic_loops_def by blast
proposition homotopic_loops_imp_path:
homotopic_loops s \(p q \Longrightarrow\) path \(p \wedge\) path \(q\)
unfolding homotopic_loops_def path_def
using homotopic_with_imp_continuous_maps continuous_map_subtopology_eu by
blast
proposition homotopic_loops_imp_subset:
homotopic_loops s p \(q \Longrightarrow\) path_image \(p \subseteq s \wedge\) path_image \(q \subseteq s\)
unfolding homotopic_loops_def path_image_def
by (meson continuous_map_subtopology_eu homotopic_with_imp_continuous_maps)
proposition homotopic_loops_refl:
homotopic_loops s p p \(\longleftrightarrow\)
path \(p \wedge\) path_image \(p \subseteq s \wedge\) pathfinish \(p=\) pathstart \(p\)
by (simp add: homotopic_loops_def path_image_def path_def)
proposition homotopic_loops_sym: homotopic_loops s p \(q \Longrightarrow\) homotopic_loops s \(q\) p
by (simp add: homotopic_loops_def homotopic_with_sym)
proposition homotopic_loops_sym_eq: homotopic_loops s p \(q \longleftrightarrow\) homotopic_loops \(s q p\) by (metis homotopic_loops_sym)
proposition homotopic_loops_trans:
 unfolding homotopic_loops_def by (blast intro: homotopic_with_trans)
proposition homotopic_loops_subset:
\(\llbracket h o m o t o p i c \_l o o p s ~ s ~ p ~ q ; ~ s \subseteq t \rrbracket \Longrightarrow h o m o t o p i c \_l o o p s t ~ p ~ q ~\)
by (fastforce simp add: homotopic_loops)
proposition homotopic_loops_eq:
\(\llbracket\) path \(p ;\) path_image \(p \subseteq s ;\) pathfinish \(p=\) pathstart \(p ; \wedge t . t \in\{0 . .1\} \Longrightarrow p(t)\) \(=q(t) \rrbracket\)
\(\Longrightarrow\) homotopic_loops s p q
unfolding homotopic_loops_def path_image_def path_def pathstart_def pathfinish_def by (auto intro: homotopic_with_eq [OF homotopic_with_refl [where \(f=p\), THEN iffD2]])
proposition homotopic_loops_continuous_image:
\(\llbracket h o m o t o p i c \_l o o p s ~ s f g\); continuous_on sh;h's \(\subseteq t \rrbracket \Longrightarrow\) homotopic_loops \(t(h\) \(\circ f)(h \circ g)\)
unfolding homotopic_loops_def
by (simp add: homotopic_with_compose_continuous_map_left pathfinish_def pathstart_def)

\subsection*{6.18.7 Relations between the two variants of homotopy}
proposition homotopic_paths_imp_homotopic_loops:
【homotopic_paths s p \(q\); pathfinish \(p=\) pathstart \(p\); pathfinish \(q=\) pathstart \(p \rrbracket\) \(\Longrightarrow\) homotopic_loops s p q
by (auto simp: homotopic_with_def homotopic_paths_def homotopic_loops_def)
proposition homotopic_loops_imp_homotopic_paths_null:
assumes homotopic_loops s \(p\) (linepath a a)
shows homotopic_paths s p (linepath (pathstart p) (pathstart p))
proof -
have path \(p\) by (metis assms homotopic_loops_imp_path)
have ploop: pathfinish \(p=\) pathstart \(p\) by (metis assms homotopic_loops_imp_loop)
have pip: path_image \(p \subseteq s\) by (metis assms homotopic_loops_imp_subset)
let \(? A=\{0 . .1::\) real \(\} \times\{0 . .1::\) real \(\}\)
obtain \(h\) where conth: continuous_on ?A \(h\)
and \(h s: h\) '? \(A \subseteq s\)
and \([\) simp \(]: \bigwedge x . x \in\{0 . .1\} \Longrightarrow h(0, x)=p x\)
and \([\operatorname{simp}]: \bigwedge x . x \in\{0 . .1\} \Longrightarrow h(1, x)=a\)
and ends: \(\wedge t . t \in\{0 . .1\} \Longrightarrow\) pathfinish \((h \circ\) Pair \(t)=\) pathstart \((h \circ\)
Pair t)
using assms by (auto simp: homotopic_loops homotopic_with)
have conth0: path \((\lambda u . h(u, 0))\)
unfolding path_def
proof (rule continuous_on_compose [of _ _ h, unfolded o_def])
show continuous_on \(((\lambda x .(x, 0))\) ' \(\{0 . .1\}) h\)
by (force intro: continuous_on_subset [OF conth])
qed (force intro: continuous_intros)
have pih0: path_image \((\lambda u . h(u, 0)) \subseteq s\)
using \(h s\) by (force simp: path_image_def)
have c1: continuous_on? A \((\lambda x . h(f s t x * s n d x, 0))\)
proof (rule continuous_on_compose [of _ _ h, unfolded o_def])
show continuous_on \(((\lambda x\). \((f s t x *\) snd \(x, 0))\) ' ?A) \(h\)
by (force simp: mult_le_one intro: continuous_on_subset [OF conth])
qed (force intro: continuous_intros)+
have c2: continuous_on? \(A(\lambda x . h(f s t x-f s t ~ x *\) snd \(x, 0))\)
proof (rule continuous_on_compose [of _ \(h\), unfolded o_def])
show continuous_on \(((\lambda x\). \((f\) st \(x-f s t x *\) snd \(x, 0))\) '?A) \(h\)
by (auto simp: algebra_simps add_increasing2 mult_left_le intro: continu-
ous_on_subset [OF conth])
qed (force intro: continuous_intros)
have \([s i m p]: \wedge t . \llbracket 0 \leq t \wedge t \leq 1 \rrbracket \Longrightarrow h(t, 1)=h(t, 0)\)
using ends by (simp add: pathfinish_def pathstart_def)
have adhoc_le: \(c * 4 \leq 1+c *(d * 4)\) if \(\neg d * 4 \leq 30 \leq c c \leq 1\) for \(c d::\) real
proof -
have \(c * 3 \leq c *(d * 4)\) using that less_eq_real_def by auto
with \(\langle c \leq 1\rangle\) show ?thesis by fastforce
qed
have \(*: \wedge p x\). \(\llbracket p a t h ~ p \wedge\) path (reversepath \(p)\);
\[
\text { path_image } p \subseteq s \wedge \text { path_image }(\text { reversepath } p) \subseteq s ;
\]
pathfinish \(p=\) pathstart(linepath a a +++ reversepath \(p) \wedge\)
pathstart (reversepath \(p)=a \wedge\) pathstart \(p=x \rrbracket\)
\(\Longrightarrow\) homotopic_paths \(s(p+++\) linepath \(a \operatorname{a}+++\) reversepath \(p)\)
(linepath \(x x\) )
by (metis homotopic_paths_lid homotopic_paths_join
homotopic_paths_trans homotopic_paths_sym homotopic_paths_rinv)
have 1: homotopic_paths sp(p+++ linepath (pathfinish \(p)(\) pathfinish \(p)\) )
using 〈path p〉homotopic_paths_rid homotopic_paths_sym pip by blast
moreover have homotopic_paths \(s\) ( \(p+++\) linepath (pathfinish \(p\) ) (pathfinish p))
\[
(\text { linepath }(\text { pathstart } p)(\text { pathstart } p)+++p+++
\]
linepath (pathfinish \(p\) ) (pathfinish \(p)\) )
apply (rule homotopic_paths_sym)
using homotopic_paths_lid [of \(p+++\) linepath (pathfinish \(p\) ) (pathfinish p) \(s\) ]
by (metis 1 homotopic_paths_imp_path homotopic_paths_imp_pathstart homotopic_paths_imp_subset)

\section*{moreover}
have homotopic_paths \(s\) (linepath ( pathstart \(p)(\) pathstart \(p)+++p+++\) linepath (pathfinish p) (pathfinish \(p\) ))
\[
((\lambda u . h(u, 0))+++ \text { linepath a a }+++ \text { reversepath }
\]
\((\lambda u . h(u, 0)))\)
unfolding homotopic_paths_def homotopic_with_def
proof (intro exI strip conjI)
let \(? h=\lambda y\). \((\) subpath \(0(f s t y)(\lambda u . h(u, 0))+++(\lambda u . h(\operatorname{Pair}(f s t y) u))\) \(+++\operatorname{subpath}(f s t y) 0(\lambda u . h(u, 0)))(\) snd \(y)\)
have continuous_on ?A ?h
by (intro continuous_on_homotopic_join_lemma; simp add: path_defs joinpaths_def subpath_def conth c1 c2)
moreover have ? \(h\) '? \(A \subseteq s\)
unfolding joinpaths_def subpath_def
by (force simp: algebra_simps mult_le_one mult_left_le intro: hs [THEN subsetD] adhoc_le)
ultimately show continuous_map (prod_topology (top_of_set \{0..1\}) (top_of_set \(\{0 . .1\})\) )
\[
\left(t o p_{-} o f_{-} s e t s\right) ? h
\]
by ( simp add: subpath_reversepath)
qed (use ploop in «simp_all add: reversepath_def path_defs joinpaths_def o_def subpath_def conth c1 c2>)
moreover have homotopic_paths s \(((\lambda u . h(u, 0))+++\) linepath a \(a+++\) reversepath \((\lambda u . h(u, 0)))\)
(linepath (pathstart p) (pathstart p))
proof (rule \(*\); simp add: pih0 pathstart_def pathfinish_def conth0)
show \(a=(\) linepath \(a \operatorname{a}+++\) reversepath \((\lambda u . h(u, 0))) 0 \wedge\) reversepath \((\lambda u\). \(h(u, 0)) 0=a\)
by (simp_all add: reversepath_def joinpaths_def)
qed
ultimately show ?thesis
by (blast intro: homotopic_paths_trans)
qed
proposition homotopic_loops_conjugate:
fixes \(s\) :: 'a::real_normed_vector set
assumes path \(p\) path \(q\) and pip: path_image \(p \subseteq s\) and piq: path_image \(q \subseteq s\)
and \(p q\) : pathfinish \(p=\) pathstart \(q\) and qloop: pathfinish \(q=\) pathstart \(q\)
shows homotopic_loops \(s(p+++q+++\) reversepath \(p) q\)
proof -
have contp: continuous_on \(\{0 . .1\} p\) using 〈path \(p\) 〉[unfolded path_def] by blast
have contq: continuous_on \(\{0 . .1\} q\) using \(\langle p a t h ~ q\rangle\) [unfolded path_def] by blast
let \(? A=\{0 . .1::\) real \(\} \times\{0 . .1::\) real \(\}\)
have c1: continuous_on ? \(A(\lambda x . p((1-f s t x) *\) snd \(x+f s t x))\)
proof (rule continuous_on_compose \([\) of _ \(p\), unfolded o_def])
show continuous_on \(((\lambda x\). \((1-f s t x) *\) snd \(x+f s t x)\) '? \(A) p\)
by (auto intro: continuous_on_subset [OF contp] simp: algebra_simps add_increasing2
mult_right_le_one_le sum_le_prod1)
qed (force intro: continuous_intros)
have c2: continuous_on ? \(A(\lambda x . p((f s t x-1) *\) snd \(x+1))\)
proof (rule continuous_on_compose [of _ _ p, unfolded o_def])
show continuous_on \(((\lambda x\). \((\) fst \(x-1) *\) snd \(x+1)\) '?A) \(p\)
by (auto intro: continuous_on_subset [OF contp] simp: algebra_simps add_increasing2 mult_left_le_one_le)
qed (force intro: continuous_intros)
have \(p s 1: \bigwedge a b . \llbracket b * 2 \leq 1 ; 0 \leq b ; 0 \leq a ; a \leq 1 \rrbracket \Longrightarrow p((1-a) *(2 * b)+\) a) \(\in s\)
using sum_le_prod1
by (force simp: algebra_simps add_increasing2 mult_left_le intro: pip [unfolded path_image_def, THEN subsetD])
have ps2: \(\bigwedge a b, \llbracket \neg 4 * b \leq 3 ; b \leq 1 ; 0 \leq a ; a \leq 1 \rrbracket \Longrightarrow p((a-1) *(4 * b\) \(-3)+1) \in s\)
apply (rule pip [unfolded path_image_def, THEN subsetD])
apply (rule image_eqI, blast)
apply (simp add: algebra_simps)
by (metis add_mono_thms_linordered_semiring(1) affine_ineq linear mult.commute mult.left_neutral mult_right_mono add.commute zero_le_numeral)
have \(q s: \bigwedge a b . \llbracket 4 * b \leq 3 ; \neg b * 2 \leq 1 \rrbracket \Longrightarrow q(4 * b-2) \in s\)
using path_image_def piq by fastforce
have homotopic_loops \(s(p+++q+++\) reversepath \(p)\)
(linepath (pathstart \(q\) ) (pathstart \(q)+++q+++\) linepath
(pathstart q) (pathstart q) )
unfolding homotopic_loops_def homotopic_with_def
proof (intro exI strip conjI)
let \(? h=(\lambda y\). (subpath \((\) fst \(y) 1 p+++q+++\) subpath \(1(\) fst \(y) p)(\) snd \(y))\)
have continuous_on ? \(A(\lambda y . q(\) snd \(y))\)
by (force simp: contq intro: continuous_on_compose [of _ \(q\), unfolded o_def]
continuous_on_id continuous_on_snd)
then have continuous_on ?A ?h
using pq qloop
by (intro continuous_on_homotopic_join_lemma) (auto simp: path_defs joinpaths_def subpath_def c1 c2)
then show continuous_map (prod_topology (top_of_set \{0..1\}) (top_of_set \{0..1\})) (top_of_set s) ?h
by (auto simp: joinpaths_def subpath_def ps1 ps2 qs)
show \(? h(1, x)=(\) linepath \((\) pathstart \(q)(\) pathstart \(q)+++q+++\) linepath (pathstart q) (pathstart q)) \(x\) for \(x\) using \(p q\) by (simp add: pathfinish_def subpath_refl)
qed (auto simp: subpath_reversepath)
moreover have homotopic_loops s (linepath (pathstart q) (pathstart \(q\) ) \(+++q\) +++ linepath (pathstart q) (pathstart q)) q
proof -
have homotopic_paths s (linepath (pathfinish q) (pathfinish \(q)+++q) q\) using 〈path \(q\) 〉 homotopic_paths_lid qloop piq by auto
hence 1: \(\wedge f\). homotopic_paths sfq\(\vee \neg\) homotopic_paths s \(f\) (linepath (pathfinish q) \((\) pathfinish \(q)+++q\) ) using homotopic_paths_trans by blast
hence homotopic_paths s (linepath (pathfinish q) (pathfinish q) \(+++q+++\) linepath (pathfinish \(q\) ) (pathfinish \(q)\) ) \(q\)
proof -
have homotopic_paths \(s(q+++\) linepath (pathfinish \(q)(\) pathfinish \(q)) q\)
by（simp add：〈path q＞homotopic＿paths＿rid piq）
thus ？thesis
by（metis（no＿types） 1 〈path q〉 homotopic＿paths＿join homotopic＿paths＿rinv homotopic＿paths＿sym
homotopic＿paths＿trans qloop pathfinish＿linepath piq）
qed
thus ？thesis
by（metis（no＿types）qloop homotopic＿loops＿sym homotopic＿paths＿imp＿homotopic＿loops
homotopic＿paths＿imp＿pathfinish homotopic＿paths＿sym）
qed
ultimately show ？thesis
by（blast intro：homotopic＿loops＿trans）
qed
lemma homotopic＿paths＿loop＿parts：
assumes loops：homotopic＿loops \(S(p+++\) reversepath \(q)\)（linepath a a）and path q
shows homotopic＿paths \(S p q\)
proof－
have paths：homotopic＿paths \(S\)（ \(p+++\) reversepath \(q\) ）（linepath（pathstart \(p\) ）
（pathstart p））
using homotopic＿loops＿imp＿homotopic＿paths＿null［OF loops］by simp
then have path \(p\)
using 〈path q〉 homotopic＿loops＿imp＿path loops path＿join path＿join＿path＿ends path＿reversepath by blast
show ？thesis
proof（cases pathfinish \(p=\) pathfinish \(q\) ）
case True
have pipq：path＿image \(p \subseteq S\) path＿image \(q \subseteq S\)
by（metis Un＿subset＿iff paths 〈path p〉〈path q〉 homotopic＿loops＿imp＿subset
homotopic＿paths＿imp＿path loops
path＿image＿join path＿image＿reversepath path＿imp＿reversepath path＿join＿eq）＋
have homotopic＿paths \(S p(p+++(\) linepath（pathfinish \(p)(\) pathfinish \(p))\) ）
using \(\langle p a t h p\rangle\left\langle p a t h \_i m a g e ~ p \subseteq S\right\rangle\) homotopic＿paths＿rid homotopic＿paths＿sym by blast
moreover have homotopic＿paths \(S(p+++\)（linepath（pathfinish \(p\) ）（pathfinish \(p)))(p+++(\) reversepath \(q+++q))\)
by（simp add：True 〈path p〉〈path q〉 pipq homotopic＿paths＿join homo－ topic＿paths＿linv homotopic＿paths＿sym）
moreover have homotopic＿paths \(S(p+++(\) reversepath \(q+++q))((p+++\) reversepath \(q\) ）\(+++q\) ）
by（simp add：True 〈path \(\left.p\rangle\langle p a t h ~ q\rangle ~ h o m o t o p i c \_p a t h s \_a s s o c ~ p i p q\right) ~\)
moreover have homotopic＿paths \(S((p+++\) reversepath \(q)+++q)\)（linepath \((\) pathstart \(p)(\) pathstart \(p)+++q)\)
by（simp add：〈path q〉 homotopic＿paths＿join paths pipq）
moreover then have homotopic＿paths \(S\)（linepath（pathstart p）（pathstart p） \(+++q) q\)
by（metis «path q〉 homotopic＿paths＿imp＿path homotopic＿paths＿lid linepath＿trivial path＿join＿path＿ends pathfinish＿def pipq（2））
```

 ultimately show ?thesis
 using homotopic_paths_trans by metis
 next
 case False
 then show ?thesis
 using <path q` homotopic_loops_imp_path loops path_join_path_ends by fastforce
 qed
 qed

```

\subsection*{6.18.8 Homotopy of "nearby" function, paths and loops}
lemma homotopic_with_linear:
fixes \(f g::{ }^{\prime} \Rightarrow\) ' \(b:\) :real_normed_vector
assumes contf: continuous_on \(S f\)
and contg:continuous_on \(S g\)
and sub: \(\bigwedge x . x \in S \Longrightarrow\) closed_segment \((f x)(g x) \subseteq t\)
shows homotopic_with_canon ( \(\lambda z\). True) \(S t f g\)
unfolding homotopic_with_def
apply \(\left(\right.\) rule_tac \(x=\lambda y .\left((1-(f s t y)) *_{R} f(\right.\) snd \(y)+(f s t y) *_{R} g(\) snd \(\left.y)\right)\) in exI)
using sub closed_segment_def
by (fastforce intro: continuous_intros continuous_on_subset [OF contf] contin-
uous_on_compose2 [where \(g=f\) ]
continuous_on_subset [OF contg] continuous_on_compose2 [where \(g=g\) ])
lemma homotopic_paths_linear:
fixes \(g h\) :: real \(\Rightarrow{ }^{\prime} a::\) real_normed_vector
assumes path \(g\) path \(h\) pathstart \(h=\) pathstart \(g\) pathfinish \(h=\) pathfinish \(g\)
\(\bigwedge t . t \in\{0 . .1\} \Longrightarrow\) closed_segment \((g t)(h t) \subseteq S\)
shows homotopic_paths \(S \mathrm{gh}\)
using assms
unfolding path_def
apply (simp add: closed_segment_def pathstart_def pathfinish_def homotopic_paths_def
homotopic_with_def)
apply \(\left(\right.\) rule_tac \(x=\lambda y .\left((1-(\right.\) fst \(y)) *_{R}(g \circ\) snd \(\left.) y+(f s t y) *_{R}(h \circ s n d) y\right)\)
in \(e x I\) )
apply (intro conjI subsetI continuous_intros; force)
done
lemma homotopic_loops_linear:
fixes \(g h\) :: real \(\Rightarrow\) 'a::real_normed_vector
assumes path \(g\) path \(h\) pathfinish \(g=\) pathstart \(g\) pathfinish \(h=\) pathstart \(h\)
\(\wedge t x . t \in\{0 . .1\} \Longrightarrow\) closed_segment \((g t)(h t) \subseteq S\)
shows homotopic_loops \(S \mathrm{~g} h\)
using assms
unfolding path_defs homotopic_loops_def homotopic_with_def
apply \(\left(\right.\) rule_tac \(x=\lambda y .\left((1-(f s t y)) *_{R} g(\right.\) snd \(\left.y)+(f s t y) *_{R} h(s n d y)\right)\) in exI)
by (force simp: closed_segment_def intro!: continuous_intros intro: continuous_on_compose2
[where \(g=g\) ] continuous_on_compose2 [where \(g=h]\) )

\section*{lemma homotopic_paths_nearby_explicit:}
assumes §: path \(g\) path \(h\) pathstart \(h=\) pathstart \(g\) pathfinish \(h=\) pathfinish \(g\) and no: \(\wedge t x . \llbracket t \in\{0 . .1\} ; x \notin S \rrbracket \Longrightarrow \operatorname{norm}(h t-g t)<\operatorname{norm}(g t-x)\)
shows homotopic_paths \(S \mathrm{~g} h\)
proof (rule homotopic_paths_linear [OF §])
show \(\wedge t . t \in\{0 . .1\} \Longrightarrow\) closed_segment \((g t)(h t) \subseteq S\)
by (metis no segment_bound (1) subsetI norm_minus_commute not_le)
qed
lemma homotopic_loops_nearby_explicit:
assumes §: path \(g\) path \(h\) pathfinish \(g=\) pathstart \(g\) pathfinish \(h=\) pathstart \(h\) and no: \(\bigwedge t x . \llbracket t \in\{0 . .1\} ; x \notin S \rrbracket \Longrightarrow \operatorname{norm}(h t-g t)<\operatorname{norm}(g t-x)\) shows homotopic_loops \(S \mathrm{~g} h\)
proof (rule homotopic_loops_linear [OF §])
show \(\wedge t . t \in\{0 . .1\} \Longrightarrow\) closed_segment \((g t)(h t) \subseteq S\)
by (metis no segment_bound(1) subsetI norm_minus_commute not_le)
qed
lemma homotopic_nearby_paths:
fixes \(g h\) :: real \(\Rightarrow{ }^{\prime} a::\) euclidean_space
assumes path \(g\) open \(S\) path_image \(g \subseteq S\)
shows \(\exists e .0<e \wedge\)
( \(\forall\) h. path \(h \wedge\)
pathstart \(h=\) pathstart \(g \wedge\) pathfinish \(h=\) pathfinish \(g \wedge\)
\((\forall t \in\{0 . .1\}\). norm \((h t-g t)<e) \longrightarrow\) homotopic_paths \(S g h)\)
proof -
obtain \(e\) where \(e>0\) and \(e: \bigwedge x y . x \in\) path_image \(g \Longrightarrow y \in-S \Longrightarrow e \leq\) dist \(x y\)
using separate_compact_closed [of path_image \(g-S\) ] assms by force
show ?thesis
using \(e\) [unfolded dist_norm] \(\langle e>0\rangle\)
by (fastforce simp: path_image_def intro!: homotopic_paths_nearby_explicit assms exI)
qed
lemma homotopic_nearby_loops:
fixes \(g h\) :: real \(\Rightarrow\) 'a::euclidean_space
assumes path \(g\) open \(S\) path_image \(g \subseteq S\) pathfinish \(g=\) pathstart \(g\)
shows \(\exists e .0<e \wedge\)
( \(\forall\) h. path \(h \wedge\) pathfinish \(h=\) pathstart \(h \wedge\)
\((\forall t \in\{0 . .1\} . \operatorname{norm}(h t-g t)<e) \longrightarrow\) homotopic_loops \(S g h)\)
proof -
obtain \(e\) where \(e>0\) and \(e: \bigwedge x y . x \in\) path_image \(g \Longrightarrow y \in-S \Longrightarrow e \leq\) dist \(x y\)
using separate_compact_closed [of path_image \(g-S\) ] assms by force
show ?thesis
using \(e\) [unfolded dist_norm] 〈e>0〉
by (fastforce simp: path_image_def intro!: homotopic_loops_nearby_explicit assms exI)
qed

\subsection*{6.18.9 Homotopy and subpaths}
lemma homotopic_join_subpaths1:
assumes path \(g\) and pag: path_image \(g \subseteq s\)
and \(u: u \in\{0 . .1\}\) and \(v: v \in\{0 . .1\}\) and \(w: w \in\{0 . .1\} u \leq v v \leq w\)
shows homotopic_paths s (subpath \(u v g+++\) subpath \(v w g)(\) subpath \(u w g)\)
proof -
have \(1: t * 2 \leq 1 \Longrightarrow u+t *(v * 2) \leq v+t *(u * 2)\) for \(t\)
using affine_ineq \(\langle u \leq v\rangle\) by fastforce
have \(2: t * 2>1 \Longrightarrow u+(2 * t-1) * v \leq v+(2 * t-1) * w\) for \(t\)
by (metis add_mono_thms_linordered_semiring(1) diff_gt_0_iff_gt less_eq_real_def
mult.commute mult_right_mono \(\langle u \leq v\rangle\langle v \leq w\rangle\) )
have \(t 2: \backslash t::\) real. \(t * 2=1 \Longrightarrow t=1 / 2\) by auto
have homotopic_paths (path_image g) (subpath \(u v g+++\) subpath \(v w g\) ) (subpath \(u w g\) )
proof (cases \(w=u\) )
case True
then show ?thesis
by (metis \(\langle p a t h ~ g\rangle\) homotopic_paths_rinv path_image_subpath_subset path_subpath pathstart_subpath reversepath_subpath subpath_refl u v)
next
case False
let ?f \(=\lambda t\). if \(t \leq 1 / 2\) then inverse \(((w-u)) *_{R}(2 *(v-u)) *_{R} t\) else inverse \(((w-u)) *_{R}\left((v-u)+(w-v) *_{R}\left(2 *_{R} t\right.\right.\)
- 1))
show? thesis
proof (rule homotopic_paths_sym [OF homotopic_paths_reparametrize [where \(f\) \(=? f]\) ])
show path (subpath \(u \mathrm{wg}\) )
using assms(1) path_subpath \(u w(1)\) by blast
show path_image (subpath \(u w g\) ) \(\subseteq\) path_image \(g\)
by (meson path_image_subpath_subset \(u w(1)\) )
show continuous_on \(\{0 . .1\}\) ?f
unfolding split_01
by (rule continuous_on_cases continuous_intros \(\mid\) force simp: pathfinish_def joinpaths_def dest!: t2)+
show ?f ' \(\{0 . .1\} \subseteq\{0 . .1\}\)
using False assms
by (force simp: field_simps not_le mult_left_mono affine_ineq dest!! 1 2)
show (subpath \(u v g+++\) subpath \(v w g) t=\) subpath \(u w g(\) ?f \(t)\) if \(t \in\) \(\{0 . .1\}\) for \(t\) using assms
unfolding joinpaths_def subpath_def by (auto simp add: divide_simps add.commute mult.commute mult.left_commute)
qed (use False in auto)
qed
then show ?thesis
by（rule homotopic＿paths＿subset［OF＿pag］）
qed
lemma homotopic＿join＿subpaths2：
assumes homotopic＿paths s（subpath \(u v g+++\) subpath \(v \mathrm{wg}\) ）（subpath \(u \mathrm{wg}\) ）
shows homotopic＿paths \(s\)（subpath \(w v g+++\) subpath \(v u g)\)（subpath \(w u g\) ） by（metis assms homotopic＿paths＿reversepath＿D pathfinish＿subpath pathstart＿subpath reversepath＿joinpaths reversepath＿subpath）
lemma homotopic＿join＿subpaths3：
assumes hom：homotopic＿paths \(s\)（subpath \(u v g+++\) subpath \(v w g\) ）（subpath \(u w g\) ）
and path \(g\) and pag：path＿image \(g \subseteq s\)
and \(u: u \in\{0 . .1\}\) and \(v: v \in\{0 . .1\}\) and \(w: w \in\{0 . .1\}\)
shows homotopic＿paths s（subpath \(v w g+++\) subpath \(w u g)\)（subpath \(v u g\) ） proof－
have homotopic＿paths s（subpath u wg +++ subpath \(w v g)((\) subpath \(u v g+++\) subpath \(v w g)+++\) subpath \(w v g\) ）
proof（rule homotopic＿paths＿join）
show homotopic＿paths s（subpath \(u \mathrm{wg}\) ）（subpath \(u v g+++\) subpath \(v \mathrm{wg}\) ）
using hom homotopic＿paths＿sym＿eq by blast
show homotopic＿paths s（subpath \(w v g\) ）（subpath \(w v g\) ）
by（metis «path g〉 homotopic＿paths＿eq pag path＿image＿subpath＿subset path＿subpath subset＿trans \(v w\) ）
qed auto
also have homotopic＿paths \(s\)（（subpath \(u v g+++\) subpath \(v w g)+++\) subpath \(w v g)(\) subpath \(u v g+++\) subpath \(v w g+++\) subpath \(w v g)\)
by（rule homotopic＿paths＿sym［OF homotopic＿paths＿assoc］）
（use assms in «simp＿all add：path＿image＿subpath＿subset［THEN order＿trans］〉）
also have homotopic＿paths s（subpath \(u v g+++\) subpath \(v \mathrm{wg}+++\) subpath \(w\) \(v g\) ）
（subpath \(u v g+++\) linepath（pathfinish（subpath \(u v g)\) ） （pathfinish（subpath \(u v g)\) ））
proof（rule homotopic＿paths＿join；simp）
show path（subpath \(u v g) \wedge\) path＿image（subpath \(u v g) \subseteq s\)
by（metis 〈path \(g\) 〉 order．trans pag path＿image＿subpath＿subset path＿subpath \(u\)
\(v)\)
show homotopic＿paths \(s\)（subpath \(v w g+++\) subpath \(w v g)\)（linepath \((g v)(g\) v））
by（metis（no＿types，lifting）＜path g＞homotopic＿paths＿linv order＿trans pag path＿image＿subpath＿subset path＿subpath pathfinish＿subpath reversepath＿subpath v w） qed
also have homotopic＿paths s（subpath uvg＋＋＋linepath（pathfinish（subpath
\(u v g))(\) pathfinish（subpath \(u v g))\) ）（subpath \(u v g)\) proof（rule homotopic＿paths＿rid）
show path（subpath \(u v g\) ）
using 〈path \(g\) 〉 path＿subpath \(u v\) by blast
show path＿image（subpath \(u v g\) ）\(\subseteq s\)
by（meson ‘path g〉order．trans pag path＿image＿subpath＿subset u v）
```

 qed
 finally have homotopic_paths s (subpath uwg+++ subpath w vg) (subpath u
 vg).
then show ?thesis
using homotopic_join_subpaths2 by blast
qed
proposition homotopic_join_subpaths:
\llbracketpath g; path_image g\subseteqs;u\in{0..1};v\in{0..1};w\in{0..1}\rrbracket
\Longrightarrow ~ h o m o t o p i c _ p a t h s ~ s ~ (s u b p a t h ~ u v g ~ + + + ~ s u b p a t h ~ v ~ w ~ g) ~ (s u b p a t h ~ u ~ w ~ g) ~
using le_cases3 [of u v w] homotopic_join_subpaths1 homotopic_join_subpaths2
homotopic_join_subpaths3
by metis

```

Relating homotopy of trivial loops to path-connectedness.
lemma path_component_imp_homotopic_points:
assumes path_component \(S\) a b
shows homotopic_loops \(S\) (linepath a a) (linepath bb)
proof -
obtain \(g::\) real \(\Rightarrow{ }^{\prime} a\) where \(g\) : continuous_on \(\{0 . .1\} g g^{\prime}\{0 . .1\} \subseteq S g 0=a\)
\(g 1=b\)
using assms by (auto simp: path_defs)
then have continuous_on \((\{0 . .1\} \times\{0 . .1\})(g \circ f s t)\)
by (fastforce intro!: continuous_intros)+
with \(g\) show ?thesis
by (auto simp add: homotopic_loops_def homotopic_with_def path_defs image_subset_iff)
qed
lemma homotopic_loops_imp_path_component_value:
\(\llbracket h o m o t o p i c \_l o o p s ~ S p q ; 0 \leq t ; t \leq 1 \rrbracket\)
\(\Longrightarrow\) path_component \(S(p t)(q t)\)
apply (clarsimp simp add: homotopic_loops_def homotopic_with_def path_defs)
apply (rule_tac \(x=h \circ(\lambda u .(u, t))\) in exI)
apply (fastforce elim!: continuous_on_subset intro!: continuous_intros)
done
lemma homotopic_points_eq_path_component:
homotopic_loops \(S\) (linepath a a) (linepath bb) \(\longleftrightarrow\) path_component \(S\) ab
by (auto simp: path_component_imp_homotopic_points
dest: homotopic_loops_imp_path_component_value [where \(t=1]\) )
lemma path_connected_eq_homotopic_points:
path_connected \(S \longleftrightarrow\)
\((\forall a b . a \in S \wedge b \in S \longrightarrow\) homotopic_loops \(S\) (linepath a a) (linepath bb))
by (auto simp: path_connected_def path_component_def homotopic_points_eq_path_component)

\subsection*{6.18.10 Simply connected sets}
defined as "all loops are homotopic (as loops)
```

definition simply_connected where
simply_connected $S \equiv$
$\forall p$. path $p \wedge$ pathfinish $p=$ pathstart $p \wedge$ path_image $p \subseteq S \wedge$
path $q \wedge$ pathfinish $q=$ pathstart $q \wedge$ path_image $q \subseteq S$
\longrightarrow homotopic_loops S p q
lemma simply_connected_empty [iff]: simply_connected $\}$
by (simp add: simply_connected_def)
lemma simply_connected_imp_path_connected:
fixes S :: _::real_normed_vector set
shows simply_connected $S \Longrightarrow$ path_connected S
by (simp add: simply_connected_def path_connected_eq_homotopic_points)
lemma simply_connected_imp_connected:
fixes S :: _::real_normed_vector set
shows simply_connected $S \Longrightarrow$ connected S
by (simp add: path_connected_imp_connected simply_connected_imp_path_connected)
lemma simply_connected_eq_contractible_loop_any:
fixes S :: _::real_normed_vector set
shows simply_connected $S \longleftrightarrow$
(\forall p a. path $p \wedge$ path_image $p \subseteq S \wedge$ pathfinish $p=$ pathstart $p \wedge a \in S$
\longrightarrow homotopic_loops S p (linepath a a))
(is ?lhs = ?rhs)
proof
assume ?lhs then show ?rhs
unfolding simply_connected_def by force
next
assume ?rhs then show?lhs
unfolding simply_connected_def
by (metis pathfinish_in_path_image subsetD homotopic_loops_trans homotopic_loops_sym)
qed
lemma simply_connected_eq_contractible_loop_some:
fixes S :: _::real_normed_vector set
shows simply_connected $S \longleftrightarrow$
path_connected $S \wedge$
$(\forall$. path $p \wedge$ path_image $p \subseteq S \wedge$ pathfinish $p=$ pathstart p
$\longrightarrow(\exists a . a \in S \wedge$ homotopic_loops $S p$ (linepath $a a)))$
(is ? $l h s=$? $r h s$)
proof
assume ?lhs
then show? ?hs
using simply_connected_eq_contractible_loop_any by (blast intro: simply_connected_imp_path_connected)
next
assume r : ?rhs
note $p a=r[$ THEN conjunct2, rule_format $]$
show?lhs

```
```

 proof (clarsimp simp add: simply_connected_eq_contractible_loop_any)
 fix \(p a\)
 assume path \(p\) and path_image \(p \subseteq S\) pathfinish \(p=\) pathstart \(p\)
 and \(a \in S\)
 with pa [of \(p\)] show homotopic_loops \(S p\) (linepath a a)
 using homotopic_loops_trans path_connected_eq_homotopic_points \(r\) by blast
 qed
 qed

```
lemma simply_connected_eq_contractible_loop_all:
    fixes \(S\) :: _::real_normed_vector set
    shows simply_connected \(S \longleftrightarrow\)
        \(S=\{ \} \vee\)
        \((\exists a \in S . \forall p\). path \(p \wedge\) path_image \(p \subseteq S \wedge\) pathfinish \(p=\) pathstart \(p\)
            \(\longrightarrow\) homotopic_loops \(S\) p (linepath a a) )
        (is ?lhs \(=\) ? \(r h s\) )
proof (cases \(S=\{ \}\) )
    case True then show?thesis by force
next
    case False
    then obtain \(a\) where \(a \in S\) by blast
    show ?thesis
    proof
        assume simply_connected \(S\)
        then show ?rhs
            using \(\langle a \in S\rangle\langle\) simply_connected \(S\rangle\) simply_connected_eq_contractible_loop_any
            by blast
    next
        assume? ?rhs
        then show simply_connected \(S\)
            unfolding simply_connected_eq_contractible_loop_any
        by (meson False homotopic_loops_refl homotopic_loops_sym homotopic_loops_trans
                path_component_imp_homotopic_points path_component_refl)
    qed
qed
lemma simply_connected_eq_contractible_path:
    fixes \(S\) :: _::real_normed_vector set
    shows simply_connected \(S \longleftrightarrow\)
                    path_connected \(S \wedge\)
                    \((\forall p\). path \(p \wedge\) path_image \(p \subseteq S \wedge\) pathfinish \(p=\) pathstart \(p\)
                    \(\longrightarrow\) homotopic_paths \(S\) p (linepath (pathstart \(p)(\) pathstart \(p))\) )
        (is ? \(\mathrm{lh} s=\) ? \(r h s\) )
proof
    assume ?lhs
    then show ?rhs
        unfolding simply_connected_imp_path_connected
        by (metis simply_connected_eq_contractible_loop_some homotopic_loops_imp_homotopic_paths_null)
```

next
assume ?rhs
then show?lhs
using homotopic_paths_imp_homotopic_loops simply_connected_eq_contractible_loop_some
by fastforce
qed
lemma simply_connected_eq_homotopic_paths:
fixes S :: _::real_normed_vector set
shows simply_connected S}
path_connected S ^
(}\forallp\mathrm{ q. path p}\wedge path_image p\subseteqS
path q^ path_image q\subseteqS^
pathstart q = pathstart p ^ pathfinish q = pathfinish p
homotopic_paths S p q)
(is ?lhs = ?rhs)
proof
assume ?lhs
then have pc: path_connected S
and *: \bigwedgep.\llbracketpath p; path_image p\subseteqS;
pathfinish p = pathstart p\rrbracket
\Longrightarrow ~ h o m o t o p i c < p a t h s ~ S ~ p ~ (l i n e p a t h ~ (p a t h s t a r t ~ p) (p a t h s t a r t ~ p)) ~
by (auto simp: simply_connected_eq_contractible_path)
have homotopic_paths S pq
if path p path_image p}\subseteqS\mathrm{ path q
path_image q\subseteqS pathstart q= pathstart p
pathfinish q = pathfinish p for pq
proof -
have homotopic_paths S p (p+++ linepath (pathfinish p) (pathfinish p))
by (simp add: homotopic_paths_rid homotopic_paths_sym that)
also have homotopic_paths S (p+++ linepath (pathfinish p)(pathfinish p))
(p+++ reversepath q +++q)
using that
by (metis homotopic_paths_join homotopic_paths_linv homotopic_paths_refl
homotopic_paths_sym_eq pathstart_linepath)
also have homotopic_paths S(p+++ reversepath q+++ q)
((}p+++\mathrm{ reversepath q) +++ q)
by (simp add: that homotopic_paths_assoc)
also have homotopic_paths S((p+++ reversepath q) +++ q)
(linepath (pathstart q) (pathstart q) +++ q)
using * [of p +++ reversepath q] that
by (simp add: homotopic_paths_join path_image_join)
also have homotopic_paths S (linepath (pathstart q) (pathstart q) +++ q) q
using that homotopic_paths_lid by blast
finally show ?thesis .
qed
then show ?rhs
by (blast intro: pc *)
next

```
```

 assume ?rhs
 then show? lh s
 by (force simp: simply_connected_eq_contractible_path)
 qed
proposition simply_connected_Times:
fixes S :: 'a::real_normed_vector set and T :: 'b::real_normed_vector set
assumes S : simply_connected S and T : simply_connected T
shows simply_connected $(S \times T)$
proof -
have homotopic_loops $(S \times T) p$ (linepath $(a, b)(a, b))$
if path p path_image $p \subseteq S \times T p 1=p 0 a \in S b \in T$
for $p a b$
proof -
have path ($f s t \circ p$)
by (simp add: continuous_on_fst Path_Connected.path_continuous_image [OF
<path $p\rangle$])
moreover have path_image ($f s t \circ p$) $\subseteq S$
using that by (force simp add: path_image_def)
ultimately have p1: homotopic_loops $S(f s t \circ p)(l i n e p a t h ~ a ~ a) ~$
using S that
by (simp add: simply_connected_eq_contractible_loop_any pathfinish_def path-
start_def)
have path $(s n d \circ p)$
by (simp add: continuous_on_snd Path_Connected.path_continuous_image [OF
(path p 〉])
moreover have path_image (snd $\circ p$) $\subseteq T$
using that by (force simp: path_image_def)
ultimately have p2: homotopic_loops $T($ snd $\circ p)$ (linepath $b b$)
using T that
by (simp add: simply_connected_eq_contractible_loop_any pathfinish_def path-
start_def)
show ?thesis
using p1 p2 unfolding homotopic_loops
apply clarify
subgoal for $h k$
by (rule_tac $x=\lambda z .(h z, k z)$ in exI) (force intro: continuous_intros simp:
path_defs)
done
qed
with assms show ?thesis
by (simp add: simply_connected_eq_contractible_loop_any pathfinish_def path-
start_def)
qed

```

\subsection*{6.18.11 Contractible sets}
definition contractible where
contractible \(S \equiv \exists a\). homotopic_with_canon ( \(\lambda x\). True) \(S S\) id \((\lambda x . a)\)
proposition contractible_imp_simply_connected:
fixes \(S\) :: _::real_normed_vector set
assumes contractible \(S\) shows simply_connected \(S\)
proof (cases \(S=\{ \}\) )
case True then show ?thesis by force
next
case False
obtain \(a\) where \(a\) : homotopic_with_canon ( \(\lambda x\). True) S S id ( \(\lambda x . a)\)
using assms by (force simp: contractible_def)
then have \(a \in S\)
by (metis False homotopic_constant_maps homotopic_with_symD homotopic_with_trans path_component_in_topspace topspace_euclidean_subtopology)
have \(\forall p\). path \(p \wedge\)
path_image \(p \subseteq S \wedge\) pathfinish \(p=\) pathstart \(p \longrightarrow\)
homotopic_loops \(S\) p (linepath a a)
using a apply (clarsimp simp add: homotopic_loops_def homotopic_with_def
path_defs)
apply \((\) rule_tac \(x=(h \circ(\lambda y .(f s t y,(p \circ\) snd \() y)))\) in exI \()\)
apply (intro conjI continuous_on_compose continuous_intros; force elim: con-
tinuous_on_subset)
done
with \(\langle a \in S\rangle\) show ?thesis
by (auto simp add: simply_connected_eq_contractible_loop_all False)
qed
corollary contractible_imp_connected:
fixes \(S\) :: _::real_normed_vector set
shows contractible \(S \Longrightarrow\) connected \(S\)
by (simp add: contractible_imp_simply_connected simply_connected_imp_connected)
lemma contractible_imp_path_connected:
fixes \(S\) :: _::real_normed_vector set
shows contractible \(S \Longrightarrow\) path_connected \(S\)
by (simp add: contractible_imp_simply_connected simply_connected_imp_path_connected)
lemma nullhomotopic_through_contractible:
fixes \(S\) :: _::topological_space set
assumes \(f\) : continuous_on \(S f f^{\prime} S \subseteq T\)
and \(g\) : continuous_on \(T g g^{\prime} T \subseteq U\)
and \(T\) : contractible \(T\)
obtains \(c\) where homotopic_with_canon ( \(\lambda h\). True) \(S U(g \circ f)(\lambda x . c)\)
proof -
obtain \(b\) where \(b\) : homotopic_with_canon ( \(\lambda x\). True) TTid \((\lambda x . b)\)
using assms by (force simp: contractible_def)
have homotopic_with_canon \((\lambda f\). True) \(T U(g \circ i d)(g \circ(\lambda x . b))\)
by (metis Abstract_Topology.continuous_map_subtopology_eu b g homotopic_with_compose_continuous_map_left)
then have homotopic_with_canon \((\lambda f\). True) \(S U(g \circ i d \circ f)(g \circ(\lambda x . b) \circ f)\)
by (simp add: f homotopic_with_compose_continuous_map_right)
```

 then show ?thesis
 by (simp add: comp_def that)
 qed
lemma nullhomotopic_into_contractible:
assumes f : continuous_on $S f f^{\prime} S \subseteq T$
and T : contractible T
obtains c where homotopic_with_canon (λh. True) STf $(\lambda x . c)$
by (rule nullhomotopic_through_contractible [OF f, of id T]) (use assms in auto)
lemma nullhomotopic_from_contractible:
assumes f : continuous_on $S f f$ ' $S \subseteq T$
and S : contractible S
obtains c where homotopic_with_canon (λh. True) $S T f(\lambda x . c)$
by (auto simp: comp_def intro: nullhomotopic_through_contractible [OF continu-
ous_on_id_f f])
lemma homotopic_through_contractible:
fixes S :: _::real_normed_vector set
assumes continuous_on S f1 f1' $S \subseteq T$
continuous_on T g1 g1 ' $T \subseteq U$
continuous_on S f2 f2 ' $S \subseteq T$
continuous_on T g2 g2 ' $T \subseteq U$
contractible T path_connected U
shows homotopic_with_canon $(\lambda h$. True) $S U(g 1 \circ f 1)(g 2 \circ f 2)$
proof -
obtain $c 1$ where $c 1$: homotopic_with_canon (λh. True) $S U(g 1 \circ f 1)(\lambda x . c 1)$
by (rule nullhomotopic_through_contractible [of S f1 T g1 U]) (use assms in
auto)
obtain $c 2$ where c 2: homotopic_with_canon (λh. True) $S U(g 2 \circ f 2)(\lambda x . c 2)$
by (rule nullhomotopic_through_contractible [of S f2 T g2 U]) (use assms in
auto)
have $S=\{ \} \vee(\exists t$. path_connected $t \wedge t \subseteq U \wedge c \mathcal{Z} \in t \wedge c 1 \in t)$
proof (cases $S=\{ \}$)
case True then show ?thesis by force
next
case False
with $c 1 c 2$ have $c 1 \in U c 2 \in U$
using homotopic_with_imp_continuous_maps by fastforce+
with 〈path_connected U 〉 show ?thesis by blast
qed
then have homotopic_with_canon ($\lambda h . \operatorname{True}) S U(\lambda x . c 2)(\lambda x . c 1)$
by (simp add: path_component homotopic_constant_maps)
then show ?thesis
using c1 c2 homotopic_with_symD homotopic_with_trans by blast
qed
lemma homotopic_into_contractible:
fixes S :: 'a::real_normed_vector set and $T:$ ' $b::$ real_normed_vector set

```
assumes \(f\) : continuous_on \(S f f\) ' \(S \subseteq T\)
and \(g\) : continuous_on \(S g g^{\prime} S \subseteq T\)
and \(T\) : contractible \(T\)
shows homotopic_with_canon ( \(\lambda h\). True) \(S T f g\)
using homotopic_through_contractible [of S f T id T g id]
by (simp add: assms contractible_imp_path_connected)
lemma homotopic_from_contractible:
fixes \(S\) :: 'a::real_normed_vector set and \(T:\) : ' \(b::\) real_normed_vector set
assumes \(f\) : continuous_on \(S f f^{\prime} S \subseteq T\)
and \(g\) : continuous_on \(S g g^{\prime} S \subseteq T\)
and contractible \(S\) path_connected \(T\)
shows homotopic_with_canon ( \(\lambda h\). True) \(S T f g\)
using homotopic_through_contractible [of S id S f T id g]
by (simp add: assms contractible_imp_path_connected)

\subsection*{6.18.12 Starlike sets}
definition starlike \(S \longleftrightarrow(\exists a \in S . \forall x \in S\). closed_segment \(a x \subseteq S)\)
lemma starlike_UNIV [simp]: starlike UNIV
by (simp add: starlike_def)
lemma convex_imp_starlike:
convex \(S \Longrightarrow S \neq\{ \} \Longrightarrow\) starlike \(S\)
unfolding convex_contains_segment starlike_def by auto
lemma starlike_convex_tweak_boundary_points:
fixes \(S\) :: 'a::euclidean_space set
assumes convex \(S S \neq\{ \}\) and \(S T\) : rel_interior \(S \subseteq T\) and \(T S: T \subseteq\) closure \(S\)
shows starlike \(T\)
proof -
have rel_interior \(S \neq\{ \}\)
by (simp add: assms rel_interior_eq_empty)
then obtain \(a\) where \(a: a \in\) rel_interior \(S\) by blast
with \(S T\) have \(a \in T\) by blast
have \(\bigwedge x . x \in T \Longrightarrow\) open_segment \(a x \subseteq\) rel_interior \(S\)
by (rule rel_interior_closure_convex_segment \([O F\langle\operatorname{convex} S\rangle a]\) ) (use assms in auto)
then have \(\forall x \in T . a \in T \wedge\) open_segment \(a x \subseteq T\)
using \(S T\) by (blast intro: \(a\langle a \in T\rangle\) rel_interior_closure_convex_segment [OF
(convex \(S\) 〉 a])
then show? thesis
unfolding starlike_def using bexI \(\left[O F_{-}\langle a \in T\rangle\right.\) ]
by (simp add: closed_segment_eq_open)
qed
lemma starlike_imp_contractible_gen:
fixes \(S\) :: 'a::real_normed_vector set
```

 assumes S: starlike S
 and P:\bigwedgeaT.\llbracketa\inS;0\leqT;T\leq1\rrbracket\LongrightarrowP(\lambdax. (1-T) \
 obtains a where homotopic_with_canon PSS (\lambdax.x) (\lambdax.a)
 proof -
obtain a where }a\inS\mathrm{ and }a:\x.x\inS\Longrightarrow\mathrm{ closed_segment a }x\subseteq
using S by (auto simp: starlike_def)
have }\tb.0\leqt\wedget\leq1
\existsu. (1-t)* *R b+t** a=(1-u)**}a+u\mp@subsup{*}{R}{}b\wedge0\lequ\wedgeu\leq
by (metis add_diff_cancel_right' diff_ge_0_iff_ge le_add_diff_inverse pth_c(1))
then have (\lambday. (1-fst y)**R snd y + fst y *R a)' ({0..1} }\timesS)\subseteq
using a [unfolded closed_segment_def] by force
then have homotopic_with_canon P S S (\lambdax.x) (\lambdax.a)
using <a \inS`
unfolding homotopic_with_def
apply (rule_tac x=\lambday. (1 - (fst y)) *R snd y + (fst y)** * a in exI)
apply (force simp add: P intro: continuous_intros)
done
then show ?thesis
using that by blast
qed
lemma starlike_imp_contractible:
fixes }S:: 'a::real_normed_vector set
shows starlike S\Longrightarrow contractible S
using starlike_imp_contractible_gen contractible_def by (fastforce simp: id_def)
lemma contractible_UNIV [simp]: contractible (UNIV :: 'a::real_normed_vector
set)
by (simp add: starlike_imp_contractible)
lemma starlike_imp_simply_connected:
fixes S :: 'a::real_normed_vector set
shows starlike S\Longrightarrow simply_connected S
by (simp add: contractible_imp_simply_connected starlike_imp_contractible)
lemma convex_imp_simply_connected:
fixes S :: 'a::real_normed_vector set
shows convex }S\Longrightarrow\mathrm{ simply_connected S
using convex_imp_starlike starlike_imp_simply_connected by blast
lemma starlike_imp_path_connected:
fixes S :: 'a::real_normed_vector set
shows starlike S\Longrightarrow path_connected S
by (simp add: simply_connected_imp_path_connected starlike_imp_simply_connected)
lemma starlike_imp_connected:
fixes S :: 'a::real_normed_vector set
shows starlike S\Longrightarrow connected S
by (simp add: path_connected_imp_connected starlike_imp_path_connected)

```
lemma is_interval_simply_connected_1:
fixes \(S\) :: real set
shows is_interval \(S \longleftrightarrow\) simply_connected \(S\)
using convex_imp_simply_connected is_interval_convex_1 is_interval_path_connected_1
simply_connected_imp_path_connected by auto
lemma contractible_empty [simp]: contractible \{\}
by (simp add: contractible_def homotopic_on_emptyI)
lemma contractible_convex_tweak_boundary_points:
fixes \(S\) :: 'a::euclidean_space set
assumes convex \(S\) and \(T S\) : rel_interior \(S \subseteq T T \subseteq\) closure \(S\)
shows contractible \(T\)
proof (cases \(S=\{ \}\) )
case True
with assms show ?thesis
by (simp add: subsetCE)
next
case False
show ?thesis
by (meson False assms starlike_convex_tweak_boundary_points starlike_imp_contractible)
qed
lemma convex_imp_contractible:
fixes \(S\) :: 'a::real_normed_vector set
shows convex \(S \Longrightarrow\) contractible \(S\)
using contractible_empty convex_imp_starlike starlike_imp_contractible by blast
lemma contractible_sing [simp]:
fixes \(a\) :: 'a::real_normed_vector
shows contractible \(\{a\}\)
by (rule convex_imp_contractible [OF convex_singleton])
lemma is_interval_contractible_1:
fixes \(S\) :: real set
shows is_interval \(S \longleftrightarrow\) contractible \(S\)
using contractible_imp_simply_connected convex_imp_contractible is_interval_convex_1 is_interval_simply_connected_1 by auto
lemma contractible_Times:
fixes \(S\) :: 'a::euclidean_space set and \(T\) :: 'b::euclidean_space set
assumes \(S\) : contractible \(S\) and \(T\) : contractible \(T\)
shows contractible \((S \times T)\)
proof -
obtain \(a h\) where conth: continuous_on \((\{0 . .1\} \times S) h\)
and hsub: \(h\) ' \((\{0 . .1\} \times S) \subseteq S\)
and [simp]: \(\bigwedge x . x \in S \Longrightarrow h(0, x)=x\)
and \([\) simp \(]: \bigwedge x . x \in S \Longrightarrow h(1::\) real, \(x)=a\)
```

 using S by (auto simp: contractible_def homotopic_with)
 obtain bk where contk: continuous_on ({0..1} }\timesT)
 and ksub: k' ({0..1} > T)\subseteqT
 and [simp]: \bigwedgex. x \inT\Longrightarrowk (0,x)=x
 and [simp]: \x. x < T\Longrightarrow k (1::real, x)=b
 using T by (auto simp: contractible_def homotopic_with)
 show ?thesis
 apply (simp add: contractible_def homotopic_with)
 apply (rule exI [where x=a])
 apply (rule exI [where }x=b]\mathrm{)
 apply (rule exI [where x = \lambdaz. (h(fst z, fst (snd z)),k (fst z, snd (snd z)))])
 using hsub ksub
 apply (fastforce intro!: continuous_intros continuous_on_compose2 [OF conth]
 continuous_on_compose2 [OF contk])
done
qed

```

\subsection*{6.18.13 Local versions of topological properties in general}
```

definition locally $::$ ('a::topological_space set \Rightarrow bool) \Rightarrow 'a set \Rightarrow bool
where
locally P $S \equiv$
$\forall w x$. openin (top_of_set S) $w \wedge x \in w$
$\longrightarrow(\exists u v$. openin $($ top_of_set $S) u \wedge P v \wedge x \in u \wedge u \subseteq v \wedge v \subseteq w)$

```
lemma locallyI:
    assumes \(\bigwedge w x\). openin \(\left.^{\left(t o p_{-} o f \_s e t ~\right.} S\right) w ; x \in w \rrbracket\)
                        \(\Longrightarrow \exists u v\). openin (top_of_set \(S) u \wedge P v \wedge x \in u \wedge u \subseteq v \wedge v \subseteq w\)
    shows locally P S
using assms by (force simp: locally_def)
lemma locallyE:
    assumes locally PS openin (top_of_set S) wx \(x \in w\)
    obtains \(u v\) where openin (top_of_set \(S\) ) u
                        \(P v x \in u u \subseteq v v \subseteq w\)
    using assms unfolding locally_def by meson
lemma locally_mono:
    assumes locally \(P S \wedge T . P T \Longrightarrow Q T\)
        shows locally \(Q S\)
by (metis assms locally_def)
lemma locally_open_subset:
    assumes locally \(P\) S openin (top_of_set \(S\) ) \(t\)
        shows locally \(P t\)
    using assms
    unfolding locally_def
    by (elim all_forward) (meson dual_order.trans openin_imp_subset openin_subset_trans
openin_trans)
lemma locally＿diff＿closed：
\(\llbracket l o c a l l y P S\) ；closedin（top＿of＿set \(S) t \rrbracket \Longrightarrow\) locally \(P(S-t)\)
using locally＿open＿subset closedin＿def by fastforce
lemma locally＿empty［iff］：locally \(P\) \｛\}
by（simp add：locally＿def openin＿subtopology）
lemma locally＿singleton［iff］：
fixes \(a\) ：：＇\(a::\) metric＿space
shows locally \(P\{a\} \longleftrightarrow P\{a\}\)
proof－
have \(\forall x:\) ：real．\(\neg 0<x \Longrightarrow P\{a\}\)
using zero＿less＿one by blast
then show？thesis
unfolding locally＿def
by（auto simp add：openin＿euclidean＿subtopology＿iff subset＿singleton＿iff conj＿disj＿distribR）
qed
lemma locally＿iff：
locally P \(S \longleftrightarrow\)
\((\forall T x\) ．open \(T \wedge x \in S \cap T \longrightarrow(\exists U\) ．open \(U \wedge(\exists V . P V \wedge x \in S \cap U \wedge\)
\(S \cap U \subseteq V \wedge V \subseteq S \cap T))\) ）
apply（simp add：le＿inf＿iff locally＿def openin＿open，safe）
apply（metis IntE IntI le＿inf＿iff）
apply（metis IntI Int＿subset＿iff）
done
lemma locally＿Int：
assumes \(S\) ：locally \(P S\) and \(T\) ：locally \(P T\)
and \(P: \wedge S T . P S \wedge P T \Longrightarrow P(S \cap T)\)
shows locally \(P(S \cap T)\)
unfolding locally＿iff
proof clarify
fix \(A x\)
assume open \(A x \in A x \in S x \in T\)
then obtain U1 V1 U2 V2
where open \(U 1 P V 1 x \in S \cap U 1 S \cap U 1 \subseteq V 1 \wedge V 1 \subseteq S \cap A\)
open U2 P V2 \(x \in T \cap U 2 T \cap U 2 \subseteq V 2 \wedge V 2 \subseteq T \cap A\)
using \(S T\) unfolding locally＿iff by（meson IntI）
then have \(S \cap T \cap(U 1 \cap U 2) \subseteq V 1 \cap V 2 V 1 \cap V 2 \subseteq S \cap T \cap A x \in S \cap\)
\(T \cap(U 1 \cap U 2)\) by blast＋
moreover have \(P(V 1 \cap V 2)\)
by（simp add：\(P\langle P\) V1〉〈P V2 \(\rangle)\)
ultimately show \(\exists U\) ．open \(U \wedge(\exists V . P V \wedge x \in S \cap T \cap U \wedge S \cap T \cap U\)
\(\subseteq V \wedge V \subseteq S \cap T \cap A)\)
using＜open U1〉＜open U2〉 by blast
qed
```

lemma locally_Times:
fixes $S::\left({ }^{\prime} a:: m e t r i c _s p a c e\right)$ set and $T::$ ('b::metric_space) set
assumes $P S$: locally $P S$ and $Q T$: locally $Q T$ and $R: \wedge S T . P S \wedge Q T \Longrightarrow$
$R(S \times T)$
shows locally $R(S \times T)$
unfolding locally_def
proof (clarify)
fix $W x y$
assume W : openin (top_of_set $(S \times T)) W$ and $x y:(x, y) \in W$
then obtain $U V$ where openin (top_of_set S) $U x \in U$
openin (top_of_set $T) V y \in V U \times V \subseteq W$
using Times_in_interior_subtopology by metis
then obtain U1 U2 V1 V2
where opeS: openin (top_of_set S) U1 $\wedge P U 2 \wedge x \in U 1 \wedge U 1 \subseteq U 2 \wedge$
$U 2 \subseteq U$
and opeT: openin (top_of_set $T) V 1 \wedge Q$ V2 $\wedge y \in V 1 \wedge V 1 \subseteq V 2 \wedge$
$V 2 \subseteq V$
by (meson PS QT locallyE)
then have openin (top_of_set $(S \times T))(U 1 \times V 1)$
by (simp add: openin_Times)
moreover have $R(U 2 \times V 2)$
by (simp add: R opeS opeT)
moreover have $U 1 \times V 1 \subseteq U 2 \times V 2 \wedge U 2 \times V 2 \subseteq W$
using ope S ope $T<U \times V \subseteq W$ by auto
ultimately show $\exists U V$. openin (top_of_set $(S \times T)) U \wedge R V \wedge(x, y) \in U \wedge$
$U \subseteq V \wedge V \subseteq W$
using opeS opeT by auto
qed

```
proposition homeomorphism_locally_imp:
fixes \(S\) :: 'a::metric_space set and \(T\) :: ' \(b::\) t2_space set
assumes \(S\) : locally \(P S\) and hom: homeomorphism \(S T f g\)
and \(Q: \bigwedge S S^{\prime} . \llbracket P S\); homeomorphism \(S S^{\prime} f g \rrbracket \Longrightarrow Q S^{\prime}\)
shows locally \(Q T\)
proof (clarsimp simp: locally_def)
fix \(W y\)
assume \(y \in W\) and openin (top_of_set \(T\) ) \(W\)
then obtain \(A\) where \(T\) : open \(A W=T \cap A\)
by (force simp: openin_open)
then have \(W \subseteq T\) by auto
have \(f: \bigwedge x . x \in S \Longrightarrow g(f x)=x f^{\prime} S=T\) continuous_on \(S f\)
and \(g: \bigwedge y . y \in T \Longrightarrow f(g y)=y g^{\prime} T=S\) continuous_on \(T g\)
using hom by (auto simp: homeomorphism_def)
have \(g w: g\) ' \(W=S \cap f-{ }^{\prime} W\)
using \(\langle W \subseteq T\rangle g\) by force
have o: openin (top_of_set \(S)(g\) ' \(W\) )
```

 proof -
 have continuous_on \(S f\)
 using \(f(3)\) by blast
 then show openin (top_of_set \(S\)) (\(g\) ' \(W\))
 by (simp add: gw Collect_conj_eq ‘openin (top_of_set \(T\)) W〉 continuous_on_open
 $f(2))$
qed
then obtain $U V$
where osu: openin (top_of_set S) U and $u v: P V g y \in U U \subseteq V V \subseteq g ' W$
using S [unfolded locally_def, rule_format, of g ' $W g y]\langle y \in W\rangle$ by force
have $V \subseteq S$ using uv by (simp add: $g w$)
have $f v: f^{\prime} V=T \cap\{x . g x \in V\}$
using $\langle f$ ' $S=T\rangle f\langle V \subseteq S\rangle$ by auto
have $f^{\prime} V \subseteq W$
using uv using Int_lower2 gw image_subsetI mem_Collect_eq subset_iff by auto
have contvf: continuous_on $V f$
using $\langle V \subseteq S\rangle$ continuous_on_subset $f(3)$ by blast
have contvg: continuous_on $(f$ ' $V) g$
using $\langle f$ ' $V \subseteq W\rangle\langle W \subseteq T\rangle$ continuous_on_subset $[O F g(3)]$ by blast
have $V \subseteq g{ }^{\prime} f$ ' V
by (metis $\langle V \subseteq S\rangle$ hom homeomorphism_def homeomorphism_of_subsets or-
der_refl)
then have homv: homeomorphism $V\left(f^{\prime} V\right) f g$
using $\langle V \subseteq S\rangle f$ by (auto simp add: homeomorphism_def contvf contvg)
have openin (top_of_set $\left.\left(g^{\prime} T\right)\right) U$
using $\left\langle g{ }^{\prime} T=S\right\rangle$ by (simp add: osu)
then have 1: openin (top_of_set $T)\left(T \cap g-{ }^{\prime} U\right)$
using 〈continuous_on T g〉continuous_on_open [THEN iffD1] by blast
have 2: $\exists V . Q V \wedge y \in(T \cap g-' U) \wedge(T \cap g-' U) \subseteq V \wedge V \subseteq W$
proof (intro exI conjI)
show $Q\left(f^{\prime} V\right)$
using Q homv $\langle P V\rangle$ by blast
show $y \in T \cap g-{ }^{\prime} U$
using $T(2)\langle y \in W\rangle\langle g y \in U\rangle$ by blast
show $T \cap g-{ }^{\prime} U \subseteq f^{\prime} V$
using $g(1)$ image_iff $u v(3)$ by fastforce
show f ' $V \subseteq W$
using $\langle f$ ' $V \subseteq W\rangle$ by blast
qed
show $\exists U$. openin (top_of_set $T) U \wedge(\exists v . Q v \wedge y \in U \wedge U \subseteq v \wedge v \subseteq W)$
by (meson 1 2)
qed
lemma homeomorphism_locally:
fixes $f::$ 'a::metric_space $\Rightarrow{ }^{\prime} b::$ metric_space
assumes hom: homeomorphism $S T f g$
and eq: $\bigwedge S T$. homeomorphism $S T f g \Longrightarrow(P S \longleftrightarrow Q T)$
shows locally $P S \longleftrightarrow$ locally $Q T$
(is ? lhs = ? $r h s$)

```
```

proof
assume ?lhs
then show ?rhs
using eq hom homeomorphism_locally_imp by blast
next
assume ?rhs
then show?lhs
using eq homeomorphism_sym homeomorphism_symD [OF hom]
by (blast intro: homeomorphism_locally_imp)
qed
lemma homeomorphic_locally:
fixes S:: 'a::metric_space set and T:: 'b::metric_space set
assumes hom: S homeomorphic T
and iff: }\bigwedgeXY.X homeomorphic Y\Longrightarrow(PX\longleftrightarrowQ Y
shows locally PS locally Q T
proof -
obtain fg}\mathrm{ where hom: homeomorphism STfg
using assms by (force simp: homeomorphic_def)
then show ?thesis
using homeomorphic_def local.iff
by (blast intro!: homeomorphism_locally)
qed
lemma homeomorphic_local_compactness:
fixes S:: 'a::metric_space set and T:: 'b::metric_space set
shows S homeomorphic T\Longrightarrow locally compact S \longleftrightarrow locally compact T
by (simp add: homeomorphic_compactness homeomorphic_locally)
lemma locally_translation:
fixes P :: 'a :: real_normed_vector set }=>\mathrm{ bool
shows (\bigwedgeS.P((+)a'S)=PS)\Longrightarrow locally P ((+) a'}S)=\mathrm{ locally P S
using homeomorphism_locally [OF homeomorphism_translation]
by (metis (full_types) homeomorphism_image2)
lemma locally_injective_linear_image:
fixes f :: 'a::euclidean_space => 'b::euclidean_space
assumes f:linear finj f and iff: \S.P(f'S)\longleftrightarrow \longleftrightarrowQS
shows locally P}(\mp@subsup{f}{}{\prime}S)\longleftrightarrow locally Q S
using homeomorphism_locally [of f'S _ _ f] linear_homeomorphism_image [OF f]
by (metis (no_types, lifting) homeomorphism_image2 iff)
lemma locally_open_map_image:
fixes f :: 'a::real_normed_vector }=>\mp@subsup{}{}{\prime}b::\mathrm{ :real_normed_vector
assumes P: locally P S
and f:continuous_on S f
and oo: \bigwedgeT. openin (top_of_set S)T\Longrightarrowopenin (top_of_set (f'S)) (f'T)
and Q:^T.\llbracketT\subseteqS;PT\rrbracket\LongrightarrowQ(f`T)
shows locally Q (f'S)

```
```

proof (clarsimp simp add: locally_def)
fix Wy
assume oiw: openin (top_of_set (f'S)) W and y \in W
then have W\subseteqf'S by (simp add: openin_euclidean_subtopology_iff)
have oivf: openin (top_of_set S) (S\capf -' W)
by (rule continuous_on_open [THEN iffD1, rule_format, OF f oiw])
then obtain }x\mathrm{ where }x\inSfx=
using \langleW\subseteqf'S\rangle\langley\inW\rangle by blast
then obtain U V
where openin (top_of_set S) UP V x \inU U\subseteqVV\subseteqS\capf-' W
using P [unfolded locally_def, rule_format, of (S\capf -' W) x] oivf \langley\inW`
by auto
then have openin (top_of_set (f'S)) (f'U)
by (simp add: oo)
then show }\existsX\mathrm{ . openin (top_of_set (f'S)) X ^(}\existsY.QY\wedge y\inX\wedgeX\subseteq
\wedge Y\subseteqW)
using Q\langlePV\rangle\langleU\subseteqV\rangle\langleV\subseteqS\capf-'}W\rangle\langlefx=y\rangle\langlex\inU\rangle\mathrm{ by blast
qed

```

\subsection*{6.18.14 An induction principle for connected sets}
proposition connected_induction:
assumes connected \(S\)
and \(o p D: \wedge T a . \llbracket o p e n i n\left(t o p_{-} o f_{-} s e t S\right) T ; a \in T \rrbracket \Longrightarrow \exists z . z \in T \wedge P z\)
and opI: \(\bigwedge a . a \in S\)
\(\Longrightarrow \exists T\). openin (top_of_set \(S\) ) \(T \wedge a \in T \wedge\)
\((\forall x \in T . \forall y \in T . P x \wedge P y \wedge Q x \longrightarrow Q y)\)
and etc: \(a \in S b \in S P a P b Q a\)
shows \(Q b\)
proof -
let \(? A=\{b . \exists T\). openin (top_of_set \(S\) ) \(T \wedge b \in T \wedge(\forall x \in T . P x \longrightarrow Q x)\}\)
let \(? B=\{b . \exists T\). openin \((\) top_of_set \(S) T \wedge b \in T \wedge(\forall x \in T . P x \longrightarrow \neg Q x)\}\)
have 1: openin (top_of_set S) ?A
by (subst openin_subopen, blast)
have 2: openin (top_of_set S) ?B
by (subst openin_subopen, blast)
have \(\S: ? A \cap ? B=\{ \}\)
by (clarsimp simp: set_eq_iff) (metis (no_types, hide_lams) Int_iff opD openin_Int)
have \(*: S \subseteq ? A \cup ? B\)
by clarsimp (meson opI)
have ? \(A=\{ \} \vee ? B=\{ \}\)
using 〈connected \(S\) 〉[unfolded connected_openin, simplified, rule_format, OF 1
§ * 2]
by blast
then show? ?thesis
by clarsimp (meson opI etc)
qed
lemma connected_equivalence_relation_gen:
```

 assumes connected \(S\)
 and etc: \(a \in S b \in S P a P b\)
 and trans: \(\lfloor x y z . \llbracket R x y ; R y z \rrbracket \Longrightarrow R x z\)
 and \(o p D: \bigwedge T a . \llbracket o p e n i n\left(t o p_{-} o f_{-} s e t S\right) T ; a \in T \rrbracket \Longrightarrow \exists z . z \in T \wedge P z\)
 and opI: \(\bigwedge a . a \in S\)
 \(\Longrightarrow \exists T\). openin (top_of_set \(S\)) \(T \wedge a \in T \wedge\)
 \((\forall x \in T . \forall y \in T . P x \wedge P y \longrightarrow R x y)\)
 shows \(R a b\)
 proof -
have $\bigwedge a b c . \llbracket a \in S ; P a ; b \in S ; c \in S ; P b ; P c ; R a b \rrbracket \Longrightarrow R a c$
apply (rule connected_induction [OF 〈connected S 〉opD], simp_all)
by (meson trans opI)
then show ?thesis by (metis etc opI)
qed
lemma connected_induction_simple:
assumes connected S
and etc: $a \in S b \in S P a$
and opI: $\bigwedge a . a \in S$
$\Longrightarrow \exists T$. openin (top_of_set S) $T \wedge a \in T \wedge$
$(\forall x \in T . \forall y \in T . P x \longrightarrow P y)$
shows $P b$
by (rule connected_induction [OF〈connected $S_{\text {_ }}$, where $P=\lambda x$. True])
(use opI etc in auto)
lemma connected_equivalence_relation:
assumes connected S
and etc: $a \in S b \in S$
and sym: $\bigwedge x y . \llbracket R x y ; x \in S ; y \in S \rrbracket \Longrightarrow R y x$
and trans: $\bigwedge x y z . \llbracket R x y ; R y z ; x \in S ; y \in S ; z \in S \rrbracket \Longrightarrow R x z$
and opI: $\bigwedge a . a \in S \Longrightarrow \exists T$. openin (top_of_set $S) T \wedge a \in T \wedge(\forall x \in T$.
R a x)
shows R ab
proof -
have $\bigwedge a b c . \llbracket a \in S ; b \in S ; c \in S ; R a b \rrbracket \Longrightarrow R a c$
apply (rule connected_induction_simple [OF〈connected S 〉], simp_all)
by (meson local.sym local.trans opI openin_imp_subset subsetCE)
then show ?thesis by (metis etc opI)
qed
lemma locally_constant_imp_constant:
assumes connected S
and $o p I: \bigwedge a . a \in S$
$\Longrightarrow \exists T$. openin (top_of_set $S) T \wedge a \in T \wedge(\forall x \in T . f x=f a)$
shows f constant_on S
proof -
have $\bigwedge x y . x \in S \Longrightarrow y \in S \Longrightarrow f x=f y$
apply (rule connected_equivalence_relation [OF〈connected $S\rangle$], simp_all)
by (metis opI)

```
```

 then show ?thesis
 by (metis constant_on_def)
 qed
lemma locally_constant:
assumes connected S
shows locally (\lambdaU.f constant_on U) S \longleftrightarrow constant_on S (is ?lhs = ?rhs)
proof
assume ?lhs

```

```

= fa)
unfolding locally_def
by (metis (mono_tags, hide_lams) constant_on_def constant_on_subset openin_subtopology_self)
then show ?rhs
using assms
by (simp add: locally_constant_imp_constant)
next
assume ?rhs then show ?lhs
using assms by (metis constant_on_subset locallyI openin_imp_subset order_refl)
qed

```

\subsection*{6.18.15 Basic properties of local compactness}
proposition locally_compact:
fixes \(s::{ }^{\prime} a\) :: metric_space set
shows
locally compact \(s \longleftrightarrow\)
\((\forall x \in s . \exists u v . x \in u \wedge u \subseteq v \wedge v \subseteq s \wedge\)
openin (top_of_set s) \(u \wedge\) compact \(v\) )
(is ?lhs \(=\) ? \(r\) rhs \()\)
proof
assume ?lhs
then show ?rhs
by (meson locallyE openin_subtopology_self)
next
assume \(r\) [rule_format]: ?rhs
have \(*: \exists u v\).
openin (top_of_set s) \(u \wedge\)
compact \(v \wedge x \in u \wedge u \subseteq v \wedge v \subseteq s \cap T\)
if open \(T x \in s x \in T\) for \(x T\)
proof -
obtain \(u v\) where \(u v: x \in u u \subseteq v v \subseteq s\) compact \(v\) openin (top_of_set s) \(u\)
using \(r\) [OF \(\langle x \in s\rangle\) ] by auto
obtain \(e\) where \(e>0\) and \(e\) : cball \(x e \subseteq T\)
using open_contains_cball 〈open \(T\rangle\langle x \in T\rangle\) by blast
show ?thesis
apply (rule_tac \(x=(s \cap\) ball \(x e) \cap u\) in exI)
apply (rule_tac \(x=\) cball \(x e \cap v\) in exI)
using that \(\langle e>0\rangle e u v\)
```

 apply auto
 done
 qed
 show ?lhs
 by (rule locallyI) (metis * Int_iff openin_open)
 qed
lemma locally_compactE:
fixes S ::' 'a :: metric_space set
assumes locally compact S
obtains uv where \x. x\inS\Longrightarrowx\inux^ux\subseteqvx^vx\subseteqS^
openin (top_of_set S) (ux)^ compact (vx)
using assms unfolding locally_compact by metis
lemma locally_compact_alt:
fixes S :: 'a :: heine_borel set
shows locally compact }S
(\forallx\inS.\existsU.x\inU^
openin (top_of_set S) U ^ compact(closure U)}\wedge closure U\subseteqS
(is ?lhs = ?rhs)
proof
assume ?lhs
then show ?rhs
by (meson bounded_subset closure_minimal compact_closure compact_imp_bounded
compact_imp_closed dual_order.trans locally_compactE)
next
assume ?rhs then show?lhs
by (meson closure_subset locally_compact)
qed
lemma locally_compact_Int_cball:
fixes S :: 'a :: heine_borel set
shows locally compact S \longleftrightarrow (\forallx\inS.\existse.0<e^\operatorname{closed}(\operatorname{cball}xe\capS))
(is ?lhs = ?rhs)
proof
assume L:?lhs
then have }\xUVe.\llbracketU\subseteqV;V\subseteqS; compact V;0<e;cball x e\capS\subseteqU
closed (cball x e \capS)
by (metis compact_Int compact_cball compact_imp_closed inf.absorb_iff2 inf.assoc
inf.orderE)
with L show ?rhs
by (meson locally_compactE openin_contains_cball)
next
assume R: ?rhs
show ?lhs unfolding locally_compact
proof
fix }
assume }x\in

```
```

 then obtain \(e\) where \(e>0\) and \(e\) : closed (cball \(x e \cap S)\)
 using \(R\) by blast
 then have compact (cball x e \(\cap S\))
 by (simp add: bounded_Int compact_eq_bounded_closed)
 moreover have \(\forall y \in\) ball \(x\) e \(\cap S . \exists \varepsilon>0\). cball \(y \varepsilon \cap S \subseteq\) ball \(x\) e
 by (meson Elementary_Metric_Spaces.open_ball IntD1 le_infI1 open_contains_cball_eq)
 moreover have openin (top_of_set \(S\)) (ball \(x e \cap S\))
 by (simp add: inf_commute openin_open_Int)
 ultimately show \(\exists U V . x \in U \wedge U \subseteq V \wedge V \subseteq S \wedge\) openin (top_of_set \(S\))
 $U \wedge$ compact V
by (metis Int_iff $\langle 0<e\rangle\langle x \in S\rangle$ ball_subset_cball centre_in_ball inf_commute
inf_le1 inf_mono order_refl)
qed
qed
lemma locally_compact_compact:
fixes S :: ' a :: heine_borel set
shows locally compact $S \longleftrightarrow$
$(\forall K . K \subseteq S \wedge$ compact K
$\longrightarrow(\exists U V . K \subseteq U \wedge U \subseteq V \wedge V \subseteq S \wedge$
openin (top_of_set $S) U \wedge$ compact $V)$)
(is ?lhs $=$? $r h s$)
proof
assume ?lhs
then obtain $u v$ where
$u v: \bigwedge x . x \in S \Longrightarrow x \in u x \wedge u x \subseteq v x \wedge v x \subseteq S \wedge$
openin (top_of_set $S)(u x) \wedge$ compact $(v x)$
by (metis locally_compactE)
have $*: \exists U V . K \subseteq U \wedge U \subseteq V \wedge V \subseteq S \wedge$ openin (top_of_set S) $U \wedge$ compact
V
if $K \subseteq S$ compact K for K
proof -
have $\wedge C .(\forall c \in C$. openin (top_of_set $K) c) \wedge K \subseteq \bigcup C \Longrightarrow$
$\exists D \subseteq C$. finite $D \wedge K \subseteq \bigcup D$
using that by (simp add: compact_eq_openin_cover)
moreover have $\forall c \in(\lambda x . K \cap u x)$ ' K. openin (top_of_set K) c
using that by clarify (metis subsetD inf.absorb_iffe openin_subset openin_subtopology_Int_subset
topspace_euclidean_subtopology uv)
moreover have $K \subseteq \bigcup((\lambda x . K \cap u x)$ ' $K)$
using that by clarsimp (meson subsetCE uv)
ultimately obtain D where $D \subseteq(\lambda x . K \cap u x)$ ' K finite $D K \subseteq \bigcup D$
by metis
then obtain T where $T: T \subseteq K$ finite $T K \subseteq \bigcup((\lambda x . K \cap u x)$ ' $T)$
by (metis finite_subset_image)
have Tuv: $\bigcup\left(u^{\prime} T\right) \subseteq \bigcup\left(v^{\prime} T\right)$
using T that by (force dest!: uv)
moreover
have openin (top_of_set $S)\left(\bigcup\left(u^{\prime} T\right)\right)$
using T that $u v$ by fastforce

```
```

 moreover
 have compact (U(v`}\)
 by (meson T compact_UN subset_eq that(1) uv)
 moreover have U(v'}T)\subseteq
 by (metis SUP_least T(1) subset_eq that(1) uv)
 ultimately show ?thesis
 using T by auto
 qed
 show ?rhs
 by (blast intro:*)
 next
assume ?rhs
then show?lhs
apply (clarsimp simp add: locally_compact)
apply (drule_tac x ={x} in spec, simp)
done
qed
lemma open_imp_locally_compact:
fixes S :: ' }a\mathrm{ :: heine_borel set
assumes open S
shows locally compact S
proof -
have *: \existsUV.x\inU\wedgeU\subseteqV^V\subseteqS^ openin(top_of_set S) U^ compact
V
if x\inS for }
proof -
obtain e where e>0 and e: cball x e\subseteqS
using open_contains_cball assms }\langlex\inS\rangle\mathrm{ by blast
have ope: openin (top_of_set S) (ball x e)
by (meson e open_ball ball_subset_cball dual_order.trans open_subset)
show ?thesis
proof (intro exI conjI)
let ? U = ball x e
let ?V = cball xe
show }x\in\mathrm{ ? U ? }U\subseteq\mathrm{ ? V ?V }\subseteqS compact ?V
using <e>0\ranglee by auto
show openin (top_of_set S) ?U
using ope by blast
qed
qed
show ?thesis
unfolding locally_compact by (blast intro: *)
qed
lemma closed_imp_locally_compact:
fixes S :: ' }a\mathrm{ :: heine_borel set
assumes closed S
shows locally compact S

```
```

proof -

```

```

V
if x\inS for }
apply (rule_tac x =S\capball x 1 in exI, rule_tac x =S\cap cball x 1 in exI)
using \langlex \inS` assms by auto
show ?thesis
unfolding locally_compact by (blast intro: *)
qed
lemma locally_compact_UNIV: locally compact (UNIV :: 'a :: heine_borel set)
by (simp add: closed_imp_locally_compact)
lemma locally_compact_Int:
fixes S :: 'a :: t2_space set
shows \llbracketlocally compact S; locally compact t\rrbracket\Longrightarrow locally compact (S\capt)
by (simp add: compact_Int locally_Int)
lemma locally_compact_closedin:
fixes S :: 'a :: heine_borel set
shows \llbracketclosedin (top_of_set S) t; locally compact S\rrbracket
\Longrightarrow ~ l o c a l l y ~ c o m p a c t ~ t ~
unfolding closedin_closed
using closed_imp_locally_compact locally_compact_Int by blast
lemma locally_compact_delete:
fixes S :: 'a :: t1_space set
shows locally compact S\Longrightarrow locally compact (S - {a})
by (auto simp: openin_delete locally_open_subset)
lemma locally_closed:
fixes S ::' 'a :: heine_borel set
shows locally closed }S\longleftrightarrow\mathrm{ locally compact S
(is ?lhs = ?rhs)
proof
assume ?lhs
then show ?rhs
unfolding locally_def
apply (elim all_forward imp_forward asm_rl exE)
apply(rule_tac x = u\cap ball x 1 in exI)
apply (rule_tac x = v \cap cball x 1 in exI)
apply (force intro: openin_trans)
done
next
assume ?rhs then show ?lhs
using compact_eq_bounded_closed locally_mono by blast
qed
lemma locally_compact_openin_Un:

```
fixes \(S\) :: 'a::euclidean_space set
assumes LCS: locally compact \(S\) and LCT:locally compact \(T\)
and opS: openin (top_of_set \((S \cup T)) S\)
and opT: openin (top_of_set \((S \cup T)) T\)
shows locally compact \((S \cup T)\)
proof -
have \(\exists e>0\). closed \((\) cball \(x e \cap(S \cup T))\) if \(x \in S\) for \(x\)
proof -
obtain e1 where e1>0 and e1: closed (cball x e1 \(\cap S\) )
using \(L C S\langle x \in S\rangle\) unfolding locally_compact_Int_cball by blast
moreover obtain \(e 2\) where \(e 2>0\) and \(e 2:\) cball \(x ~ e 2 \cap(S \cup T) \subseteq S\)
by (meson \(\langle x \in S\rangle\) opS openin_contains_cball)
then have cball \(x e 2 \cap(S \cup T)=\operatorname{cball} x e \mathcal{Z} \cap S\)
by force
ultimately have closed (cball \(x(\) min e1 eZ \() \cap(S \cup T))\)
by (metis (no_types, lifting) cball_min_Int closed_Int closed_cball inf_assoc
inf_commute)
then show ?thesis
by (metis \(\langle 0<e 1\rangle\langle 0<e 2\rangle\) min_def)
qed
moreover have \(\exists e>0\). closed \((\operatorname{cball} x e \cap(S \cup T))\) if \(x \in T\) for \(x\)
proof -
obtain \(e 1\) where \(e 1>0\) and \(e 1\) : closed \((\operatorname{cball} x\) e1 \(\cap T)\)
using \(L C T\langle x \in T\rangle\) unfolding locally_compact_Int_cball by blast
moreover obtain \(e 2\) where \(e 2>0\) and e2: cball \(x e 2 \cap(S \cup T) \subseteq T\)
by (meson \(\langle x \in T\rangle\) op \(T\) openin_contains_cball)
then have cball \(x\) e \(\mathcal{Z} \cap(S \cup T)=\) cball \(x e 2 \cap T\)
by force
moreover have closed (cball x e1 \(\cap(\) cball \(x\) e \(2 \cap T))\)
by (metis closed_Int closed_cball e1 inf_left_commute)
ultimately show ?thesis
by (rule_tac \(x=\min\) e1 e2 in exI) (simp add: \(\langle 0<e 2\rangle\) cball_min_Int inf_assoc)
qed
ultimately show ?thesis
by (force simp: locally_compact_Int_cball)
qed
lemma locally_compact_closedin_Un:
fixes \(S\) :: 'a::euclidean_space set
assumes \(L C S\) : locally compact \(S\) and \(L C T\) :locally compact \(T\) and clS: closedin (top_of_set \((S \cup T)) S\) and clT: closedin (top_of_set \((S \cup T)) T\)
shows locally compact \((S \cup T)\)

\section*{proof -}
have \(\exists e>0\). closed \((\) cball \(x e \cap(S \cup T))\) if \(x \in S x \in T\) for \(x\) proof -
obtain e1 where e1>0 and e1: closed (cball x e1 \(\cap S\) )
using \(L C S\langle x \in S\rangle\) unfolding locally_compact_Int_cball by blast moreover
```

 obtain e2 where e2 > 0 and e2: closed (cball x e2 \cap T)
 using LCT \langlex \inT\rangle unfolding locally_compact_Int_cball by blast
 moreover have closed (cball x (min e1 e2) \cap (S\cupT))
 proof -
 have closed (cball x e1 \cap (cball x e2 \cap S))
 by (metis closed_Int closed_cball e1 inf_left_commute)
 then show ?thesis
 by (simp add: Int_Un_distrib cball_min_Int closed_Int closed_Un e2 inf_assoc)
 qed
 ultimately show ?thesis
 by (rule_tac x=min e1 e2 in exI) linarith
 qed
moreover
have \existse>0.closed (cball x e\cap(S\cupT)) if x:x\inSx\not\inT for x
proof -
obtain e1 where e1>0 and e1: closed (cball x e1 \cap S)
using LCS <x \inS` unfolding locally_compact_Int_cball by blast moreover obtain e2 where e2>0 and cball x e2 \cap (S\cupT)\subseteqS - T using clT x by (fastforce simp: openin_contains_cball closedin_def) then have closed (cball x e2 \cap T) proof - have {} =T - (T-cball x e2) using Diff_subset Int_Diff <cball x e2 \cap (S\cupT)\subseteqS-T\rangle by auto then show ?thesis by (simp add: Diff_Diff_Int inf_commute) qed with e1 have closed ((cball x e1 \cap cball x e2) \cap (S\cupT)) apply (simp add: inf_commute inf_sup_distrib2) by (metis closed_Int closed_Un closed_cball inf_assoc inf_left_commute) then have closed (cball x (min e1 e2) \cap (S\cupT)) by (simp add: cball_min_Int inf_commute) ultimately show ?thesis using <0< e2` by (rule_tac x=min e1 e2 in exI) linarith
qed
moreover
have \existse>0.closed (cball x e\cap(S\cupT)) if x:x\not\inSx\inT for x
proof -
obtain e1 where e1>0 and e1: closed (cball x e1 \cap T)
using LCT \langlex \inT\rangle unfolding locally_compact_Int_cball by blast
moreover
obtain e2 where e2>0 and cball x e2 \cap (S\cupT)\subseteqS\cupT-S
using clS x by (fastforce simp: openin_contains_cball closedin_def)
then have closed (cball x e\mathcal{O}\capS)
by (metis Diff_disjoint Int_empty_right closed_empty inf.left_commute inf.orderE
inf_sup_absorb)
with e1 have closed ((cball x e1 \cap cball x e2) \cap (S\cupT))
apply (simp add: inf_commute inf_sup_distrib2)
by (metis closed_Int closed_Un closed_cball inf_assoc inf_left_commute)

```
```

 then have closed (cball x (min e1 eZ) \cap (S\cupT))
 by (auto simp: cball_min_Int)
 ultimately show ?thesis
 using <0< e2` by (rule_tac x=min e1 e2 in exI) linarith
 qed
 ultimately show ?thesis
 by (auto simp: locally_compact_Int_cball)
 qed
lemma locally_compact_Times:
fixes S :: 'a::euclidean_space set and T :: 'b::euclidean_space set
shows \llbracketlocally compact S; locally compact T\rrbracket \Longrightarrow locally compact (S 人 T)
by (auto simp: compact_Times locally_Times)
lemma locally_compact_compact_subopen:
fixes S :: 'a :: heine_borel set
shows
locally compact S}
(}\forallKT.K\subseteqS\wedge compact K^ open T ^ K\subseteqT
\longrightarrow(\existsUV.K\subseteqU^U\subseteqV^U\subseteqT^V\subseteqS^
openin (top_of_set S) U ^ compact V))
(is ?lhs = ?rhs)
proof
assume L:?lhs
show ?rhs
proof clarify
fix K :: 'a set and T :: 'a set
assume K\subseteqS and compact K and open T and K\subseteqT
obtain UV where }K\subseteqUU\subseteqVV\subseteqS compact V
and ope: openin (top_of_set S) U
using L unfolding locally_compact_compact by (meson〈K\subseteqS\rangle\langlecompact
K`)
show }\existsUV.K\subseteqU\wedgeU\subseteqV^U\subseteqT^
subseteq\subseteqS
openin (top_of_set S) U ^ compact V
proof (intro exI conjI)
show }K\subseteqU\cap
by (simp add: <K\subseteqT\rangle\langleK\subseteqU\rangle)
show }U\capT\subseteq\mathrm{ closure(}U\capT
by (rule closure_subset)
show closure (U\capT)\subseteqS
by (metis }\langleU\subseteqV\rangle\langleV\subseteqS\rangle\langlecompact V\rangle closure_closed closure_mon
compact_imp_closed inf.cobounded1 subset_trans)
show openin (top_of_set S)(U\capT)
by (simp add: <open T〉 ope openin_Int_open)
show compact (closure (U\capT))
by (meson Int_lower1 \langleU\subseteqV\rangle\langlecompact V\rangle bounded_subset compact_closure
compact_eq_bounded_closed)
qed auto
qed

```

\section*{next}
assume ？rhs then show ？lhs
unfolding locally＿compact＿compact
by（metis open＿openin openin＿topspace subtopology＿superset top．extremum topspace＿euclidean＿subtopology） qed

\section*{6．18．16 Sura－Bura＇s results about compact components of sets}
proposition Sura＿Bura＿compact：
fixes \(S\) ：：＇a：：euclidean＿space set
assumes compact \(S\) and \(C: C \in\) components \(S\)
shows \(C=\bigcap\{T . C \subseteq T \wedge\) openin（top＿of＿set \(S\) ）\(T \wedge\) closedin（top＿of＿set S）T\}
（is \(C=\bigcap ? \mathcal{T}\) ）
proof
obtain \(x\) where \(x: C=\) connected＿component＿set \(S x\) and \(x \in S\)
using \(C\) by（auto simp：components＿def）
have \(C \subseteq S\)
by（simp add：C in＿components＿subset）
have \(\bigcap\) ？ \(\mathcal{T} \subseteq\) connected＿component＿set \(S x\)
proof（rule connected＿component＿maximal）
have \(x \in C\)
by（simp add：\(\langle x \in S\rangle x\) ）
then show \(x \in \bigcap\) ？ \(\mathcal{T}\)
by blast
have clo：closed（ \(\cap\) ？T \()\)
by（simp add：〈compact \(S\rangle\) closed＿Inter closedin＿compact＿eq compact＿imp＿closed）
have False
if K1：closedin（top＿of＿set \((\bigcap\) ？ \(\mathcal{T}))\) K1 and
K2：closedin（top＿of＿set（ \(\bigcap\) ？T ））K2 and
K12＿Int：\(K 1 \cap K 2=\{ \}\) and K12＿Un：\(K 1 \cup K 2=\bigcap ? \mathcal{T}\) and \(K 1 \neq\{ \}\)
\(K 2 \neq\{ \}\)
for K1 K2
proof－
have closed K1 closed K2
using closedin＿closed＿trans clo K1 K2 by blast＋
then obtain V1 V2 where open V1 open V2 K1 \(\subseteq\) V1 K2 \(\subseteq\) V2 and V12：
\(V 1 \cap V 2=\{ \}\)
using separation＿normal \(\langle K 1 \cap K 2=\{ \}\rangle\) by metis
have SV12＿ne：\((S-(V 1 \cup V 2)) \cap(\bigcap ? \mathcal{T}) \neq\{ \}\)
proof（rule compact＿imp＿fip）
show compact \((S-(V 1 \cup V 2))\)
by（simp add：＜open V1〉〈open V2〉〈compact S〉compact＿diff open＿Un） show clo \(\mathcal{T}\) ：closed \(T\) if \(T \in ? ~\)＇ \(\mathcal{T}\) for \(T\)
using that 〈compact \(S\) 〉
by（force intro：closedin＿closed＿trans simp add：compact＿imp＿closed）
show \((S-(V 1 \cup V 2)) \cap \bigcap \mathcal{F} \neq\{ \}\) if finite \(\mathcal{F}\) and \(\mathcal{F}: \mathcal{F} \subseteq ? \mathcal{T}\) for \(\mathcal{F}\)
proof
```

 assume djo: (S-(V1\cupV2)) \cap\bigcap\mathcal{F}={}
 obtain D where opeD: openin (top_of_set S) D
 and cloD: closedin (top_of_set S) D
 and C\subseteqD and DV12:D\subseteqV1\cupV2
 proof (cases \mathcal{F}={})
case True
with \langleC\subseteqS\rangle djo that show ?thesis
by force
next
case False show ?thesis
proof
show ope: openin (top_of_set S) (\bigcap\mathcal{F})
using openin_Inter \langlefinite \mathcal{F}\rangle False \mathcal{F}}\mathrm{ by blast
then show closedin (top_of_set S)(\bigcap\mathcal{F})
by (meson clo\mathcal{T}\mathcal{F}}\mathrm{ closed_Inter closed_subset openin_imp_subset
subset_eq)
show C\subseteq\bigcap\mathcal{F}
using}\mathcal{F}\mathrm{ by auto
show }\bigcap\mathcal{F}\subseteqV1\cupV
using ope djo openin_imp_subset by fastforce
qed
qed
have connected C
by (simp add: x)
have closed D
using \compact S〉 cloD closedin_closed_trans compact_imp_closed by blast
have cloV1: closedin (top_of_set D) (D \cap closure V1)
and cloV2: closedin (top_of_set D)(D\cap closure V2)
by (simp_all add: closedin_closed_Int)
moreover have D\cap closure V1=D\cap V1 D\cap closure V2 = D\cap V2
using \langleD\subseteqV1\cupV2\rangle\langleopen V1>\langleopen V2>V12
by (auto simp add: closure_subset [THEN subsetD] closure_iff_nhds_not_empty,
blast+)
ultimately have cloDV1: closedin (top_of_set D) (D\capV1)
and cloDV2: closedin (top_of_set D) (D \cap V2)
by metis+
then obtain U1 U2 where closed U1 closed U2
and D1: D\capV1=D\capU1 and D2: D \cap V2 = D \cap U2
by (auto simp: closedin_closed)
have }D\capU1\capC\not={
proof
assume D\capU1\capC={}
then have *: C\subseteqD\cap V2
using D1 DV12 〈C\subseteqD` by auto have 1: openin (top_of_set S)(D\capV2) by (simp add:<open V2`opeD openin_Int_open)
have 2: closedin (top_of_set S) (D \cap V2)
using cloD cloDV2 closedin_trans by blast
have }\cap??\mathcal{T}\subseteqD\capV

```
```

 by (rule Inter_lower) (use * 12 in simp)
 then show False
 using K1 V12 <K1 \not= {}><K1\subseteq V1\rangle closedin_imp_subset by blast
 qed
moreover have D\capU2 \capC\not={}
proof
assume D\capU2\capC={}
then have *:C\subseteqD\capV1
using D2 DV12 〈C\subseteqD` by auto have 1:openin (top_of_set S) (D\capV1) by (simp add: <open V1> opeD openin_Int_open) have 2: closedin (top_of_set S) (D\capV1) using cloD cloDV1 closedin_trans by blast have }\cap?T\mathcal{T}\subseteqD\capV by (rule Inter_lower) (use * 1 2 in simp) then show False using K2 V12 <K2 \not= {}><K2 \subseteq V2\rangle closedin_imp_subset by blast qed ultimately show False using <connected C` [unfolded connected_closed, simplified, rule_format,
of concl: D \cap U1 D \cap U2]
using \langleC\subseteq D>D1 D2 V12 DV12 <closed U1\rangle\langleclosed U2\rangle\langleclosed D>
by blast
qed
qed
show False
by (metis (full_types) DiffE UnE Un_upper2 SV12_ne 〈K1 \subseteq V1><K2 \subseteq
V2) disjoint_iff_not_equal subsetCE sup_ge1 K12_Un)
qed
then show connected (}\cap\mathrm{ ?T T)
by (auto simp: connected_closedin_eq)
show \}
mathrm{ ?'T }\subseteq
by (fastforce simp:C in_components_subset)
qed
with x show }\bigcap??\mathcal{T}\subseteqC\mathrm{ by simp
qed auto
corollary Sura_Bura_clopen_subset:
fixes }S\mathrm{ :: 'a::euclidean_space set
assumes S:locally compact S and C:C components S and compact C
and U}\mathrm{ : open }UC\subseteq
obtains K where openin (top_of_set S) K compact K C\subseteqK K\subseteqU
proof (rule ccontr)
assume \neg thesis
with that have neg: \# K. openin (top_of_set S)K}
mathrm{ compact K}
C\K\wedge
\subseteq U
by metis
obtain V K where }C\subseteqVV\subseteqUV\subseteqKK\subseteqS compact

```
and opeSV：openin（top＿of＿set \(S\) ）\(V\)
using \(S U\) 〈compact \(C\) 〉 by（meson \(C\) in＿components＿subset locally＿compact＿compact＿subopen）
let \(? \mathcal{T}=\{T . C \subseteq T \wedge\) openin（top＿of＿set \(K) T \wedge\) compact \(T \wedge T \subseteq K\}\)
have \(C K: C \in\) components \(K\)
by（meson \(C\langle C \subseteq V\rangle\langle K \subseteq S\rangle\langle V \subseteq K\rangle\) components＿intermediate＿subset subset＿trans）
with \(\langle\) compact \(K\) 〉
have \(C=\bigcap\{T . C \subseteq T \wedge\) openin（top＿of＿set \(K) T \wedge\) closedin（top＿of＿set \(K\) ）
\(T\}\)
by（simp add：Sura＿Bura＿compact）
then have \(C e q: C=\bigcap ? \mathcal{T}\)
by（simp add：closedin＿compact＿eq 〈compact \(K\) 〉）
obtain \(W\) where open \(W\) and \(W: V=S \cap W\)
using opeSV by（auto simp：openin＿open）
have \(-(U \cap W) \cap \bigcap ? \mathcal{T} \neq\{ \}\)
proof（rule closed＿imp＿fip＿compact）
show \(-(U \cap W) \cap \bigcap \mathcal{F} \neq\{ \}\)
if finite \(\mathcal{F}\) and \(\mathcal{F}: \mathcal{F} \subseteq\) ？ \(\mathcal{T}\) for \(\mathcal{F}\)
proof（cases \(\mathcal{F}=\{ \}\) ）
case True
have False if \(U=U N I V W=U N I V\)
proof－
have \(V=S\)
by（ simp add：W〈W＝UNIV〉）
with neg show False using \(\langle C \subseteq V\rangle\langle K \subseteq S\rangle\langle V \subseteq K\rangle\langle V \subseteq U\rangle\langle\) compact \(K\rangle\) by auto
qed
with True show ？thesis
by auto
next
case False
show ？thesis
proof
assume \(-(U \cap W) \cap \bigcap \mathcal{F}=\{ \}\)
then have \(F U W: \bigcap \mathcal{F} \subseteq U \cap W\)
by blast
have \(C \subseteq \bigcap \mathcal{F}\)
using \(\mathcal{F}\) by auto
moreover have compact \((\bigcap \mathcal{F})\)
by（metis（no＿types，lifting）compact＿Inter False mem＿Collect＿eq subsetCE
\(\mathcal{F}\) ）
moreover have \(\bigcap \mathcal{F} \subseteq K\)
using False that（2）by fastforce
moreover have opeKF：openin（top＿of＿set K）\((\bigcap \mathcal{F})\)
using False \(\mathcal{F}\langle\) finite \(\mathcal{F}\rangle\) by blast
then have opeVF：openin（top＿of＿set \(V)(\bigcap \mathcal{F})\)
using \(W\langle K \subseteq S\rangle\langle V \subseteq K\rangle\) ope \(K F\langle\mathcal{F} \subseteq K\rangle F U W\) openin＿subset＿trans
by fastforce
then have openin（top＿of＿set \(S)(\bigcap \mathcal{F})\)
```

 by (metis opeSV openin_trans)
 moreover have }\bigcap\mathcal{F}\subseteq
 by (meson 〈V\subseteqU\rangle opeVF dual_order.trans openin_imp_subset)
 ultimately show False
 using neg by blast
 qed
 qed
 qed (use <open W〉 <open }U\mathrm{ \ in auto)
with W Ceq \langleC\subseteqV\rangle\langleC\subseteqU\rangle show False
by auto
qed
corollary Sura_Bura_clopen_subset_alt:
fixes S :: 'a::euclidean_space set
assumes S: locally compact S and C:C components S and compact C
and opeSU: openin (top_of_set S) U and C\subseteqU
obtains K where openin (top_of_set S) K compact K C\subseteqK K\subseteqU
proof -
obtain }V\mathrm{ where open V U =S }\cap
using opeSU by (auto simp: openin_open)
with \C\subseteqU\rangle have C\subseteqV
by auto
then show ?thesis
using Sura_Bura_clopen_subset [OF S C <compact C〉\langleopen V`] by (metis }\langleU=S\capV\rangle\mathrm{ inf.bounded_iff openin_imp_subset that) qed corollary Sura_Bura: fixes }S\mathrm{ :: 'a::euclidean_space set assumes locally compact S C \in components S compact C shows C}=\bigcap{K.C\subseteqK\wedge compact K ^ openin (top_of_set S)K (is C=?rhs) proof show ?rhs \subseteqC proof (clarsimp, rule ccontr) fix } assume *: }\forallX.C\subseteqX\wedge compact X ^ openin(top_of_set S) X \longrightarrowx\inX and x\not\inC obtain }UV\mathrm{ where open U open }V{x}\subseteqUC\subseteqVU\capV={ using separation_normal [of {x} C] by (metis Int_empty_left \langlex #C\rangle\langlecompact C\rangle closed_empty closed_insert compact_imp_closed insert_disjoint(1)) have }x\not\in using }\langleU\capV={}><{x}\subseteqU>\mathrm{ by blast then show False by (meson * Sura_Bura_clopen_subset 〈C\subseteqV\rangle\langleopen V`assms(1) assms(2)
assms(3) subsetCE)
qed

```
qed blast

\subsection*{6.18.17 Special cases of local connectedness and path connectedness}
```

lemma locally_connected_1:
assumes
\Vx.\llbracketopenin (top_of_set S) V;x\inV\rrbracket\Longrightarrow\existsU.openin (top_of_set S) U ^
connected }U\wedgex\inU\wedgeU\subseteq
shows locally connected S
by (metis assms locally_def)
lemma locally_connected_2:
assumes locally connected S
openin (top_of_set S) t
x\int
shows openin (top_of_set S) (connected_component_set t x)
proof -
{ fix }y:: '
let ?SS = top_of_set S
assume 1: openin ?SS t

```

```

v\wedgex\inu\wedgeu\subseteqv\wedgev\subseteqw))
and connected_component t x y
then have }y\int\mathrm{ and y:y connected_component_set t x
using connected_component_subset by blast+
obtain F where
\forallxy.(\existsw. openin ?SS w}\wedge(\existsu.connected u\wedgex\inw\wedgew\subsetequ\wedgeu\subseteqy)
=(openin ?SS (Fxy)^(\existsu. connected u\wedgex\inFxy^Fxy\subsetequ^u\subseteqy))
by moura
then obtain G where
\foralla A. (\existsU. openin ?SS U\wedge (\existsV. connected V \ a \inU^U\subseteqV ^V\subseteq
A))=(openin ?SS (FaA)\wedge connected (GaA)\wedge \ (F Fa A ^FaA\subseteqGa A
\wedge GaA\subseteqA)
by moura
then have *: openin ?SS (F y t) ^ connected (Gyt)\wedge y \inFyt\wedgeFyt\subseteq
Gyt\wedgeGyt\subseteqt
using 1 \langley \int\rangle by presburger
have G y t\subseteq connected_component_set t y
by (metis (no_types) * connected_component_eq_self connected_component_mono
contra_subsetD)
then have }\exists\mathrm{ A. openin ?SS A}\wedge y\inA\wedgeA\subseteq\mathrm{ connected_component_set t x
by (metis (no_types) * connected_component_eq dual_order.trans y)
}
then show ?thesis
using assms openin_subopen by (force simp:locally_def)
qed
lemma locally_connected_3:

```
assumes \(\wedge t x\). \(\llbracket o p e n i n\left(t o p \_o f \_s e t S\right) t ; x \in t \rrbracket\) \(\Longrightarrow\) openin (top_of_set \(S\) )
(connected_component_set \(t x\) )
openin (top_of_set S) vx \(x\)
shows \(\exists u\). openin (top_of_set \(S\) ) \(u \wedge\) connected \(u \wedge x \in u \wedge u \subseteq v\) using assms connected_component_subset by fastforce
lemma locally_connected:
locally connected \(S \longleftrightarrow\)
\((\forall v x\). openin (top_of_set \(S) v \wedge x \in v\)
\[
\longrightarrow(\exists u . \text { openin }(\text { top_of_set } S) u \wedge \text { connected } u \wedge x \in u \wedge u \subseteq v))
\]
by (metis locally_connected_1 locally_connected_2 locally_connected_3)
lemma locally_connected_open_connected_component:
locally connected \(S \longleftrightarrow\)
\(\left(\forall t x\right.\). openin \(\left(t o p_{-} o f_{-} s e t S\right) t \wedge x \in t\)
\[
\longrightarrow \text { openin (top_of_set } S)(\text { connected_component_set } t x))
\]
by (metis locally_connected_1 locally_connected_2 locally_connected_3)
lemma locally_path_connected_1:
assumes
\(\bigwedge v x . \llbracket o p e n i n\left(t o p_{-} o f_{-} s e t S\right) v ; x \in v \rrbracket\)
\(\Longrightarrow \exists u\). openin (top_of_set \(S\) ) \(u \wedge\) path_connected \(u \wedge x \in u \wedge u \subseteq v\)
shows locally path_connected \(S\)
by (force simp add: locally_def dest: assms)
lemma locally_path_connected_2:
assumes locally path_connected \(S\)
openin (top_of_set \(S\) ) \(t\)
\(x \in t\)
shows openin (top_of_set \(S\) ) (path_component_set \(t x\) )
proof -
\{ fix \(y::{ }^{\prime} a\)
let ? \(S S=\) top_of_set \(S\)
assume 1: openin ? \(S S t\)
\(\forall w x\). openin ? \(S S\) s \(\wedge x \in w \longrightarrow(\exists u\). openin? \(S S ~ u \wedge(\exists v\). path_connected
\(v \wedge x \in u \wedge u \subseteq v \wedge v \subseteq w))\)
and path_component \(t x y\)
then have \(y \in t\) and \(y: y \in\) path_component_set \(t x\)
using path_component_mem(2) by blast+
obtain \(F\) where
\(\forall x y\). \((\exists\). openin ? \(S S ~ w \wedge(\exists u\). path_connected \(u \wedge x \in w \wedge w \subseteq u \wedge u \subseteq\) \(y))=(\) openin ? \(S S(F x y) \wedge(\exists u\). path_connected \(u \wedge x \in F x y \wedge F x y \subseteq u \wedge u\) \(\subseteq y)\) )
by moura
then obtain \(G\) where
\(\forall a A\). ( \(\exists\) U. openin ?SS \(U \wedge(\exists V\). path_connected \(V \wedge a \in U \wedge U \subseteq V \wedge\) \(V \subseteq A))=(\) openin ? SS \((F a A) \wedge\) path_connected \((G a A) \wedge a \in F a A \wedge F a A\) \(\subseteq G a A \wedge G a A \subseteq A)\)
by moura
then have \(*\) : openin ? \(S S(F y t) \wedge\) path_connected \((G y t) \wedge y \in F y t \wedge F y\) \(t \subseteq G y t \wedge G y t \subseteq t\)
using \(1\langle y \in t\rangle\) by presburger
have \(G y t \subseteq\) path_component_set \(t y\)
using * path_component_maximal rev_subsetD by blast
then have \(\exists A\). openin ? \(S S A \wedge y \in A \wedge A \subseteq\) path_component_set \(t x\)
by (metis \(*\langle G y t \subseteq\) path_component_set \(t y\rangle\) dual_order.trans path_component_eq y)
\}
then show ?thesis
using assms openin_subopen by (force simp: locally_def)
qed
lemma locally_path_connected_3:
assumes \(\bigwedge t x\). openin \((\) top_of_set \(S) t ; x \in t \rrbracket\)
\(\Longrightarrow\) openin (top_of_set \(S\) ) (path_component_set \(t x)\)
openin (top_of_set \(S\) ) \(v x \in v\)
shows \(\exists u\). openin (top_of_set \(S\) ) \(u \wedge\) path_connected \(u \wedge x \in u \wedge u \subseteq v\)
proof -
have path_component \(v x x\)
by (meson assms(3) path_component_refl)
then show ?thesis
by (metis assms mem_Collect_eq path_component_subset path_connected_path_component) qed
proposition locally_path_connected:
locally path_connected \(S \longleftrightarrow\)
\((\forall V\) x. openin (top_of_set \(S) V \wedge x \in V\)
\(\longrightarrow(\exists U\). openin \((\) top_of_set \(S) U \wedge\) path_connected \(U \wedge x \in U \wedge U \subseteq\)
V))
by (metis locally_path_connected_1 locally_path_connected_2 locally_path_connected_3)
proposition locally_path_connected_open_path_component:
locally path_connected \(S \longleftrightarrow\)
\((\forall t x\). openin (top_of_set \(S) t \wedge x \in t\)
\(\longrightarrow\) openin (top_of_set \(S\) ) (path_component_set t \(x\) ))
by (metis locally_path_connected_1 locally_path_connected_2 locally_path_connected_3)
lemma locally_connected_open_component:
locally connected \(S \longleftrightarrow\)
\((\forall t\) c. openin (top_of_set \(S) t \wedge c \in\) components \(t\)
\(\longrightarrow\) openin (top_of_set S) c)
by (metis components_iff locally_connected_open_connected_component)
proposition locally_connected_im_kleinen:
locally connected \(S \longleftrightarrow\)
\((\forall v x\). openin \((\) top_of_set \(S) v \wedge x \in v\)
\(\longrightarrow(\exists u\) openin (top_of_set \(S) u \wedge\)
```

x\inu^u\subseteqv^
(\forally.y\inu\longrightarrow(\existsc. connected c\wedgec\subseteqv\wedgex\inc\wedgey\inc))))
(is ?lhs = ?rhs)
proof
assume ?lhs
then show ?rhs
by (fastforce simp add: locally_connected)
next
assume ?rhs
have *: \existsT. openin (top_of_set S)T}
mp@code{x\inT^T\subseteqc
if openin (top_of_set S) t and c:c\incomponents t and x\inc for tcx
proof -
from that 〈?rhs\rangle[rule_format, of t x]
obtain }u\mathrm{ where }u\mathrm{ :
openin (top_of_set S) u ^ x \in u^u\subseteqt^
(\forally.y\inu\longrightarrow(\existsc. connected c\wedgec\subseteqt\wedgex\inc\wedgey\inc))
using in_components_subset by auto
obtain F :: ' a set }=>\mathrm{ 'a set }=>\mp@subsup{'}{}{\prime}a\mathrm{ where
\forallxy.(\existsz.z\inx\wedge y= connected_component_set x z) = (F x y \in x ^ y=
connected_component_set x (F x y))
by moura
then have F:Ftc\int\wedgec= connected_component_set t (Ftc)
by (meson components_iff c)
obtain }G:: ' a set => 'a set => ' a where
G:\forallxy.(\existsz.z\iny^z\not\inx)=(Gxy\iny\wedgeGxy\not\inx)
by moura
have Gcu\not\inu\veeGcu\inc
using F by (metis (full_types) u connected_componentI connected_component_eq
mem_Collect_eq that(3))
then show ?thesis
using Gu by auto
qed
show ?lhs
unfolding locally_connected_open_component by (meson * openin_subopen)
qed
proposition locally_path_connected_im_kleinen:
locally path_connected S \longleftrightarrow
(\forallvx. openin (top_of_set S) v\wedgex\inv
\longrightarrow (\exists u . o p e n i n ~ (t o p _ o f _ s e t ~ S) ~ u \wedge
x\inu\wedgeu\subseteqv^
(\forally.y\inu\longrightarrow(\exists p. path p\wedge path_image p\subseteqv^
pathstart p = x ^ pathfinish p=y))))
(is ?lhs = ?rhs)
proof
assume ?lhs
then show ?rhs
apply (simp add: locally_path_connected path_connected_def)
apply (erule all_forward ex_forward imp_forward conjE | simp)+

```
```

 by (meson dual_order.trans)
 next
assume ?rhs
have *: \existsT. openin (top_of_set S) T ^
x\inT^T\subseteq path_component_set uz
if openin (top_of_set S) u and z\inu and c: path_component uzx for uzx
proof -
have }x\in
by (meson c path_component_mem(2))
with that 〈?rhs`[rule_format, of ux]
obtain U where U
openin(top_of_set S) U ^x\inU^U\subsetequ^
(\forally.y G U\longrightarrow(\existsp. path p\wedge path_image p\subsetequ^ pathstart p = x ^
pathfinish p = y))
by blast
show ?thesis
by (metis U c mem_Collect_eq path_component_def path_component_eq subsetI)
qed
show ?lhs
unfolding locally_path_connected_open_path_component
using * openin_subopen by fastforce
qed
lemma locally_path_connected_imp_locally_connected:
locally path_connected S\Longrightarrow locally connected S
using locally_mono path_connected_imp_connected by blast
lemma locally_connected_components:
\llbracket l o c a l l y ~ c o n n e c t e d ~ S ; c \in ~ c o m p o n e n t s ~ S \rrbracket \Longrightarrow ~ l o c a l l y ~ c o n n e c t e d ~ c
by (meson locally_connected_open_component locally_open_subset openin_subtopology_self)
lemma locally_path_connected_components:
\llbracketlocally path_connected S; c \in components S\rrbracket\Longrightarrow locally path_connected c
by (meson locally_connected_open_component locally_open_subset locally_path_connected_imp_locally_conne
openin_subtopology_self)
lemma locally_path_connected_connected_component:
locally path_connected S C locally path_connected (connected_component_set S
x)
by (metis components_iff connected_component_eq_empty locally_empty locally_path_connected_components
lemma open_imp_locally_path_connected:
fixes S :: 'a :: real_normed_vector set
assumes open S
shows locally path_connected S
proof (rule locally_mono)
show locally convex S
using assms unfolding locally_def
by (meson open_ball centre_in_ball convex_ball openE open_subset openin_imp_subset

```
```

openin_open_trans subset_trans)
show }\T::'a set. convex T\Longrightarrow path_connected T
using convex_imp_path_connected by blast
qed
lemma open_imp_locally_connected:
fixes S :: 'a :: real_normed_vector set
shows open S\Longrightarrow locally connected S
by (simp add: locally_path_connected_imp_locally_connected open_imp_locally_path_connected)
lemma locally_path_connected_UNIV: locally path_connected (UNIV ::'a :: real_normed_vector
set)
by (simp add: open_imp_locally_path_connected)
lemma locally_connected_UNIV : locally connected (UNIV ::'a :: real_normed_vector
set)
by (simp add: open_imp_locally_connected)
lemma openin_connected_component_locally_connected:
locally connected S
\Longrightarrowopenin (top_of_set S) (connected_component_set S x)
by (metis connected_component_eq_empty locally_connected_2 openin_empty openin_subtopology_self)
lemma openin_components_locally_connected:
\llbracket l o c a l l y ~ c o n n e c t e d ~ S ; ~ c ~ \in ~ c o m p o n e n t s ~ S \rrbracket \Longrightarrow o p e n i n ~ (t o p _ o f _ s e t ~ S) c
using locally_connected_open_component openin_subtopology_self by blast
lemma openin_path_component_locally_path_connected:
locally path_connected S
openin (top_of_set S)(path_component_set S x)
by (metis (no_types) empty_iff locally_path_connected_2 openin_subopen openin_subtopology_self
path_component_eq_empty)
lemma closedin_path_component_locally_path_connected:
assumes locally path_connected S
shows closedin (top_of_set S) (path_component_set S x)
proof -
have openin (top_of_set S)(\bigcup ({path_component_set S y |y.y\inS} - {path_component_set
S x}))
using locally_path_connected_2 assms by fastforce
then show ?thesis
by (simp add: closedin_def path_component_subset complement_path_component_Union)
qed
lemma convex_imp_locally_path_connected:
fixes S :: 'a:: real_normed_vector set
assumes convex }
shows locally path_connected S
proof (clarsimp simp add: locally_path_connected)

```
```

 fix V
 assume openin (top_of_set S) V and x
 then obtain Te where V=S\capTx\inS0<e ball x e\subseteqT
 by (metis Int_iff openE openin_open)
 then have openin (top_of_set S) (S\cap ball x e) path_connected (}S\cap\mathrm{ ball x e)
 by (simp_all add: assms convex_Int convex_imp_path_connected openin_open_Int)
 then show }\exists\textrm{U}.\mathrm{ openin (top_of_set S) U ^ path_connected }U\wedgex\inU\wedgeU
 V
using }\langle0<e\rangle\langleV=S\capT\rangle\langleball x e\subseteqT\rangle\langlex\inS\rangle\mathrm{ by auto
qed
lemma convex_imp_locally_connected:
fixes }S:: 'a:: real_normed_vector set
shows convex }S\Longrightarrow\mathrm{ locally connected S
by (simp add: locally_path_connected_imp_locally_connected convex_imp_locally_path_connected)

```

\subsection*{6.18.18 Relations between components and path components}
```

lemma path_component_eq_connected_component:
assumes locally path_connected S
shows (path_component Sx= connected_component Sx)
proof (cases x }\inS\mathrm{)
case True
have openin (top_of_set (connected_component_set S x)) (path_component_set S
x)
proof (rule openin_subset_trans)
show openin (top_of_set S) (path_component_set S x)
by (simp add: True assms locally_path_connected_2)
show connected_component_set S x\subseteqS
by (simp add: connected_component_subset)
qed (simp add: path_component_subset_connected_component)
moreover have closedin (top_of_set (connected_component_set S x) (path_component_set
Sx)
proof (rule closedin_subset_trans [of S])
show closedin (top_of_set S) (path_component_set S x)
by (simp add: assms closedin_path_component_locally_path_connected)
show connected_component_set S x \subseteqS
by (simp add: connected_component_subset)
qed (simp add: path_component_subset_connected_component)
ultimately have *: path_component_set S x = connected_component_set S x
by (metis connected_connected_component connected_clopen True path_component_eq_empty)
then show ?thesis
by blast
next
case False then show ?thesis
by (metis Collect_empty_eq_bot connected_component_eq_empty path_component_eq_empty)
qed
lemma path_component_eq_connected_component_set:

```
locally path_connected \(S \Longrightarrow\) (path_component_set \(S x=\) connected_component_set \(S x\) )
by (simp add: path_component_eq_connected_component)
lemma locally_path_connected_path_component:
locally path_connected \(S \Longrightarrow\) locally path_connected (path_component_set \(S x\) )
using locally_path_connected_connected_component path_component_eq_connected_component by fastforce
lemma open_path_connected_component:
fixes \(S\) :: ' \(a\) :: real_normed_vector set
shows open \(S \Longrightarrow\) path_component \(S x=\) connected_component \(S x\)
by (simp add: path_component_eq_connected_component open_imp_locally_path_connected)
lemma open_path_connected_component_set:
fixes \(S\) :: ' \(a\) :: real_normed_vector set
shows open \(S \Longrightarrow\) path_component_set \(S x=\) connected_component_set \(S x\)
by (simp add: open_path_connected_component)
proposition locally_connected_quotient_image:
assumes lcS: locally connected \(S\)
and \(o o: \wedge T . T \subseteq f^{\prime} S\)
\(\Longrightarrow\) openin (top_of_set \(S\) ) \((S \cap f-‘ T) \longleftrightarrow\)
openin (top_of_set \(\left.\left(f^{\prime} S\right)\right) T\)
shows locally connected ( \(f\) ' \(S\) )
proof (clarsimp simp: locally_connected_open_component)
fix \(U C\)
assume opefSU: openin (top_of_set \(\left.\left(f^{\prime} S\right)\right) U\) and \(C \in\) components \(U\)
then have \(C \subseteq U U \subseteq f\) ' \(S\)
by (meson in_components_subset openin_imp_subset)+
then have openin (top_of_set \(\left.\left(f^{\prime} S\right)\right) C \longleftrightarrow\)
openin (top_of_set \(S)\left(S \cap f-{ }^{\prime} C\right)\)
by (auto simp: oo)
moreover have openin (top_of_set \(S\) ) ( \(S \cap f\) - ' \(C\) )
proof (subst openin_subopen, clarify)
fix \(x\)
assume \(x \in S\) f \(x \in C\)
show \(\exists T\). openin (top_of_set \(S) T \wedge x \in T \wedge T \subseteq\left(S \cap f-{ }^{\prime} C\right)\)
proof (intro conjI exI)
show openin (top_of_set \(S\) ) (connected_component_set \((S \cap f-\) ' \(U\) ) \(x\) ) proof (rule ccontr)
assume **: \(\neg\) openin (top_of_set \(S\) ) (connected_component_set \(\left(S \cap f-{ }^{\prime} U\right.\) )
x)
then have \(x \notin\left(S \cap f-{ }^{\prime} U\right)\)
using 〈 \(\left.U \subseteq f^{\prime} S\right\rangle\) opefSU lcS locally_connected_2 oo by blast with \(* *\) show False by (metis (no_types) connected_component_eq_empty empty_iff openin_subopen) qed
next
```

 show }x\in\mathrm{ connected_component_set (S Of-'}U)
 using \C\subseteqU\rangle\langlef x \inC\rangle\langlex\inS\rangle by auto
 next
 have contf: continuous_on S f
 by (simp add: continuous_on_open oo openin_imp_subset)
 then have continuous_on (connected_component_set (S\capf -'U) x) f
 by (meson connected_component_subset continuous_on_subset inf.boundedE)
 then have connected (f'connected_component_set (S\capf-'U)x)
 by (rule connected_continuous_image [OF _ connected_connected_component])
 moreover have f' connected_component_set (S\capf-'U)x\subseteqU
 using connected_component_in by blast
 moreover have C\capf'connected_component_set (S\capf-'U)x\not={}
    ```

```

 ultimately have fC: f'(connected_component_set (S\capf-'U)x)\subseteqC
 by (rule components_maximal [OF \C \in components U\])
 have cUC: connected_component_set (S\capf -' U) x\subseteq(S\capf-' C)
 using connected_component_subset fC by blast
 have connected_component_set (S\capf-'U) x\subseteq connected_component_set
 (S\capf-'C) }
proof -
{ assume x connected_component_set (S \capf -`U) x
then have?thesis
using cUC connected_component_idemp connected_component_mono by
blast }
then show ?thesis
using connected_component_eq_empty by auto
qed
also have ...\subseteq(S\capf-'C)
by (rule connected_component_subset)
finally show connected_component_set (S\capf -' U) x\subseteq(S\capf -' C).
qed
qed
ultimately show openin (top_of_set (f 'S)) C
by metis
qed

```

The proof resembles that above but is not identical!
proposition locally_path_connected_quotient_image:
assumes lcS: locally path_connected \(S\)
and \(o o: \wedge T . T \subseteq f^{\prime} S\)
\[
\Longrightarrow \text { openin (top_of_set } S)\left(S \cap f-^{\prime} T\right) \longleftrightarrow \text { openin (top_of_set (f ‘ }
\]
S)) \(T\)
shows locally path_connected ( \(f\) ' \(S\) )
proof (clarsimp simp: locally_path_connected_open_path_component)
fix \(U y\)
assume opefSU: openin (top_of_set ( \(f\) ' \(S\) )) \(U\) and \(y \in U\)
then have path_component_set \(U y \subseteq U U \subseteq f^{\prime} S\)
by (meson path_component_subset openin_imp_subset)+
then have openin (top_of_set ( \(f\) ' \(S\) )) (path_component_set \(U y) \longleftrightarrow\)
```

 openin (top_of_set S)(S\capf -' path_component_set U y)
 proof -
 have path_component_set U y\subseteqf'S
 using \langleU\subseteqf'S\rangle\langlepath_component_set U y\subseteqU\rangle by blast
 then show ?thesis
 using oo by blast
 qed
moreover have openin (top_of_set S) (S\capf -' path_component_set U y)
proof (subst openin_subopen, clarify)
fix }
assume x \inS and Uyfx: path_component U y (fx)
then have fx\inU
using path_component_mem by blast

```

```

U y)
proof (intro conjI exI)
show openin (top_of_set S) (path_component_set (S\capf-'}U)x\mathrm{)
proof (rule ccontr)
assume **: \neg openin (top_of_set S) (path_component_set (S\capf-'}U)x
then have }x\not\in(S\capf-\mp@subsup{}{}{\prime}U
by (metis (no_types, lifting) <U\subseteqf'S> opefSU lcS oo locally_path_connected_open_path_component)
then show False
using **\langlepath_component_set }Uy\subseteqU\rangle\langlex\inS\rangle\langlepath_component U y (f
x)> by blast
qed
next
show }x\in\mathrm{ path_component_set (S Of -' U) x
by (simp add: \f x \in U\rangle\langlex\inS\rangle path_component_refl)
next
have contf: continuous_on S f
by (simp add: continuous_on_open oo openin_imp_subset)
then have continuous_on (path_component_set (S\capf-'U)x)f
by (meson Int_lower1 continuous_on_subset path_component_subset)
then have path_connected (f' path_component_set (S\capf-'U)x)
by (simp add: path_connected_continuous_image)
moreover have f'path_component_set (S\capf-'U)x\subseteqU
using path_component_mem by fastforce
moreover have fx\in f' path_component_set (S\capf-'}U)
by (force simp: }\langlex\inS\rangle\langlefx\inU\rangle\mathrm{ path_component_refl_eq)
ultimately have f'(path_component_set (S\capf-'U)x)\subseteq path_component_set
U(fx)
by (meson path_component_maximal)
also have ...\subseteq path_component_set U y
by (simp add: Uyfx path_component_maximal path_component_subset path_component_sym)
finally have fC: f'(path_component_set (S\capf-'U)x)\subseteq path_component_set
Uy.
have cUC: path_component_set (S\capf-` U) x\subseteq(S\capf -'path_component_set
U y)
using path_component_subset fC by blast

```
have path_component_set \((S \cap f-' U) x \subseteq\) path_component_set \((S \cap f-\) ' path_component_set \(U y) x\)
proof -
have \(\bigwedge a\). path_component_set (path_component_set \(\left.\left(S \cap f-{ }^{\prime} U\right) x\right) a \subseteq\) path_component_set ( \(S \cap f\)-' path_component_set \(U y\) ) a using cUC path_component_mono by blast
then show ?thesis using path_component_path_component by blast
qed
also have \(\ldots \subseteq(S \cap f-\) ' path_component_set \(U y)\)
by (rule path_component_subset)
finally show path_component_set \(\left(S \cap f-^{\prime} U\right) x \subseteq(S \cap f-\) ' path_component_set \(U y)\).
qed
qed
ultimately show openin (top_of_set \(\left(f^{\prime} S\right)\) ) (path_component_set \(U\) y)
by metis
qed

\subsection*{6.18.19 Components, continuity, openin, closedin}
lemma continuous_on_components_gen:
fixes \(f::\) 'a::topological_space \(\Rightarrow\) ' \(b::\) topological_space
assumes \(\bigwedge C . C \in\) components \(S \Longrightarrow\) openin (top_of_set \(S\) ) \(C \wedge\) continuous_on \(C f\)
shows continuous_on \(S f\)
proof (clarsimp simp: continuous_openin_preimage_eq)
fix \(t:: \quad\) ' \(b\) set
assume open \(t\)
have \(*: S \cap f-{ }^{\prime} t=\left(\bigcup c \in\right.\) components \(\left.S . c \cap f-{ }^{\prime} t\right)\)
by auto
show openin (top_of_set \(S\) ) \((S \cap f-‘ t)\)
unfolding * using <open t〉 assms continuous_openin_preimage_gen openin_trans
openin_Union by blast
qed
lemma continuous_on_components:
fixes \(f::\) 'a::topological_space \(\Rightarrow\) ' \(b::\) topological_space
assumes locally connected \(S \bigwedge C . C \in\) components \(S \Longrightarrow\) continuous_on \(C f\)
shows continuous_on \(S f\)
proof (rule continuous_on_components_gen)
fix \(C\)
assume \(C \in\) components \(S\)
then show openin (top_of_set \(S\) ) \(C \wedge\) continuous_on \(C f\)
by (simp add: assms openin_components_locally_connected)
qed
lemma continuous_on_components_eq: locally connected \(S\)
\(\Longrightarrow(\) continuous_on \(S f \longleftrightarrow(\forall c \in\) components \(S\). continuous_on \(c f))\)
by (meson continuous_on_components continuous_on_subset in_components_subset)
lemma continuous_on_components_open:
fixes \(S\) :: ' \(a:\) :real_normed_vector set
assumes open \(S\)
\(\bigwedge c . c \in\) components \(S \Longrightarrow\) continuous_on \(c f\)
shows continuous_on \(S f\)
using continuous_on_components open_imp_locally_connected assms by blast
lemma continuous_on_components_open_eq:
fixes \(S\) :: ' \(a\) ::real_normed_vector set
shows open \(S \Longrightarrow\) (continuous_on \(S f \longleftrightarrow(\forall c \in\) components \(S\). continuous_on
c f))
using continuous_on_subset in_components_subset
by (blast intro: continuous_on_components_open)
lemma closedin_union_complement_components:
assumes \(U\) : locally connected \(U\) and \(S\) : closedin (top_of_set \(U\) ) \(S\) and cuS: c \(\subseteq\) components \((U-S)\)
shows closedin (top_of_set \(U)(S \cup \bigcup c)\)
proof -
have \(\operatorname{di}:\left(\bigwedge S T . S \in c \wedge T \in c^{\prime} \Longrightarrow \operatorname{disjnt} S T\right) \Longrightarrow \operatorname{disjnt}(\bigcup c)\left(\bigcup c^{\prime}\right)\) for \(c^{\prime}\) by (simp add: disjnt_def) blast
have \(S \subseteq U\)
using \(S\) closedin_imp_subset by blast
moreover have \(U-S=\bigcup c \cup \bigcup\) (components \((U-S)-c)\)
by (metis Diff_partition Union_components Union_Un_distrib assms(3))
moreover have disjnt \((\bigcup c)(\bigcup\) (components \((U-S)-c))\) apply (rule di)
by (metis di DiffD1 DiffD2 assms(3) components_nonoverlap disjnt_def sub-
setCE)
ultimately have \(e q: S \cup \bigcup c=U-(\bigcup(\) components \((U-S)-c))\)
by (auto simp: disjnt_def)
have \(*\) : openin (top_of_set \(U)(\bigcup\) (components \((U-S)-c))\)
proof (rule openin_Union [OF openin_trans [of \(U-S]]\) )
show openin (top_of_set \((U-S)) T\) if \(T \in\) components \((U-S)-c\) for \(T\)
using that by (simp add: U S locally_diff_closed openin_components_locally_connected)
show openin (top_of_set \(U\) ) \((U-S)\) if \(T \in\) components \((U-S)-c\) for \(T\) using that by (simp add: openin_diff \(S\) )
qed
have closedin (top_of_set \(U\) ) \((U-\bigcup\) (components \((U-S)-c))\)
by (metis closedin_diff closedin_topspace topspace_euclidean_subtopology *)
then have openin (top_of_set \(U)(U-(U-\bigcup(\) components \((U-S)-c)))\)
by (simp add: openin_diff)
then show?thesis
by (force simp: eq closedin_def)
qed
```

lemma closed_union_complement_components:
fixes S :: ' a ::real_normed_vector set
assumes S :closed S and $c: c \subseteq$ components $(-S)$
shows $\operatorname{closed}(S \cup \bigcup c)$
proof -
have closedin (top_of_set UNIV) $(S \cup \bigcup c)$
by (metis Compl_eq_Diff_UNIV S c closed_closedin closedin_union_complement_components
locally_connected_UNIV subtopology_UNIV)
then show? ?thesis by simp
qed
lemma closedin_Un_complement_component:
fixes S :: ' a ::real_normed_vector set
assumes u : locally connected u
and S : closedin (top_of_set u) S
and $c: c \in$ components $(u-S)$
shows closedin (top_of_set $u)(S \cup c)$
proof -
have closedin (top_of_set u) $(S \cup \bigcup\{c\})$
using c by (blast intro: closedin_union_complement_components [OF u S $]$)
then show ?thesis
by simp
qed
lemma closed_Un_complement_component:
fixes S :: ' a ::real_normed_vector set
assumes $S:$ closed S and $c: c \in$ components $(-S)$
shows closed $(S \cup c)$
by (metis Compl_eq_Diff_UNIV S c closed_closedin closedin_Un_complement_component
locally_connected_UNIV subtopology_UNIV)

```

\subsection*{6.18.20 Existence of isometry between subspaces of same dimension}
lemma isometry_subset_subspace:
fixes \(S\) :: 'a::euclidean_space set and \(T::\) ' \(b::\) euclidean_space set
assumes \(S\) : subspace \(S\)
and \(T\) : subspace \(T\)
and \(d: \operatorname{dim} S \leq \operatorname{dim} T\)
obtains \(f\) where linear \(f f\) ' \(S \subseteq T \wedge x . x \in S \Longrightarrow \operatorname{norm}(f x)=\) norm \(x\)
proof -
obtain \(B\) where \(B \subseteq S\) and Borth: pairwise orthogonal \(B\)
and B1: \(\bigwedge x . x \in B \Longrightarrow\) norm \(x=1\)
and independent \(B\) finite \(B\) card \(B=\operatorname{dim} S\) span \(B=S\)
by (metis orthonormal_basis_subspace [OF S] independent_finite)
obtain \(C\) where \(C \subseteq T\) and Corth: pairwise orthogonal \(C\)
and \(C 1: \bigwedge x . x \in C \Longrightarrow\) norm \(x=1\)
and independent \(C\) finite \(C\) card \(C=\operatorname{dim} T\) span \(C=T\)
by（metis orthonormal＿basis＿subspace \([O F T]\) independent＿finite）
obtain \(f b\) where \(f b\)＇\(B \subseteq C\) inj＿on \(f b B\)
by（metis \(\langle\) card \(B=\operatorname{dim} S\rangle\langle\) card \(C=\operatorname{dim} T\rangle\langle\) inite \(B\rangle\langle\) finite \(C\rangle\) card＿le＿inj d）
then have pairwise＿orth＿fb：pairwise \((\lambda v j\) ．orthogonal \((f b v)(f b j)) B\)
using Corth unfolding pairwise＿def inj＿on＿def
by（blast intro：orthogonal＿clauses）
obtain \(f\) where linear \(f\) and \(f f b: \wedge x . x \in B \Longrightarrow f x=f b x\)
using linear＿independent＿extend 〈independent \(B\) 〉 by fastforce
have \(\operatorname{span}(f\)＇\(B) \subseteq \operatorname{span} C\)
by（metis \(\langle f b\)＇\(B \subseteq C\) 〉ffb image＿cong span＿mono）
then have \(f^{\prime} S \subseteq T\)
unfolding \(\langle\) span \(B=S\rangle\langle\) span \(C=T\rangle\) span＿linear＿image \([O F\langle l i n e a r f\rangle\) ］．
have \([\) simp \(]: ~ \bigwedge x . x \in B \Longrightarrow \operatorname{norm}(f b x)=\operatorname{norm} x\)
using \(B 1 C 1\left\langle f b{ }^{\prime} B \subseteq C\right\rangle\) by auto
have norm \((f x)=\) norm \(x\) if \(x \in S\) for \(x\)
proof－
interpret linear \(f\) by fact
obtain \(a\) where \(x: x=\left(\sum v \in B . a v *_{R} v\right)\)
using \(\langle\) finite \(B\rangle\langle\) span \(B=S\rangle\langle x \in S\rangle\) span＿finite by fastforce
have norm \((f x)^{\wedge} \mathcal{L}=\operatorname{norm}\left(\sum v \in B . a v *_{R} f b v\right)^{\wedge} \mathcal{L}\) by（simp add：sum scale ffb \(x\) ）
also have \(\ldots=\left(\sum v \in B . \operatorname{norm}\left(\left(a v *_{R} f b v\right)\right)^{\wedge} \mathcal{Z}\right)\)
proof（rule norm＿sum＿Pythagorean［OF〈finite \(B\rangle\) ］）
show pairwise（ \(\lambda v j\) ．orthogonal \(\left.\left(a v *_{R} f b v\right)\left(a j *_{R} f b j\right)\right) B\)
by（rule pairwise＿ortho＿scaleR［OF pairwise＿orth＿fb］）
qed
also have \(\ldots=\) norm \(x^{\wedge}\) ค
by（simp add：x pairwise＿ortho＿scaleR Borth norm＿sum＿Pythagorean［OF
〈finite \(B\) 〉］）
finally show ？thesis
by（simp add：norm＿eq＿sqrt＿inner）
qed
then show ？thesis
by（rule that \([O F\langle\) linear \(f\rangle\langle f\)＇\(S \subseteq T\rangle]\) ）
qed
proposition isometries＿subspaces：
fixes \(S::\)＇a：：euclidean＿space set
and \(T\) ：：＇\(b::\) euclidean＿space set
assumes \(S\) ：subspace \(S\)
and \(T\) ：subspace \(T\)
and \(d: \operatorname{dim} S=\operatorname{dim} T\)
obtains \(f g\) where linear flinear \(g f^{\prime} S=T g^{\prime} T=S\)
\(\bigwedge x . x \in S \Longrightarrow \operatorname{norm}(f x)=\) norm \(x\)
\(\bigwedge x . x \in T \Longrightarrow \operatorname{norm}(g x)=\) norm \(x\)
\(\bigwedge x . x \in S \Longrightarrow g(f x)=x\)
\(\bigwedge x . x \in T \Longrightarrow f(g x)=x\)
proof－
obtain \(B\) where \(B \subseteq S\) and Borth：pairwise orthogonal \(B\)
and B1：\(\wedge x . x \in B \Longrightarrow\) norm \(x=1\)
and independent \(B\) finite \(B\) card \(B=\operatorname{dim} S\) span \(B=S\)
by（metis orthonormal＿basis＿subspace［OF S］independent＿finite）
obtain \(C\) where \(C \subseteq T\) and Corth：pairwise orthogonal \(C\)
and \(C 1: \bigwedge x . x \in C \Longrightarrow\) norm \(x=1\)
and independent \(C\) finite \(C\) card \(C=\operatorname{dim} T\) span \(C=T\)
by（metis orthonormal＿basis＿subspace［OF T］independent＿finite）
obtain \(f b\) where bij＿betw fb \(B C\)
by（metis 〈finite B〉〈finite \(C\rangle\) bij＿betw＿iff＿card \(\langle\) card \(B=\operatorname{dim} S\rangle\langle\) card \(C=\operatorname{dim}\) T＞d）
then have pairwise＿orth＿fb：pairwise \((\lambda v j\) ．orthogonal \((f b v)(f b j)) B\)
using Corth unfolding pairwise＿def inj＿on＿def bij＿betw＿def
by（blast intro：orthogonal＿clauses）
obtain \(f\) where linear \(f\) and \(f f b: \bigwedge x . x \in B \Longrightarrow f x=f b x\)
using linear＿independent＿extend 〈independent \(B\) 〉 by fastforce
interpret \(f\) ：linear \(f\) by fact
define \(g b\) where \(g b \equiv\) inv＿into \(B f b\)
then have pairwise＿orth＿gb：pairwise（ \(\lambda v j\) ．orthogonal \((g b v)(g b j)) C\)
using Borth 〈bij＿betw fb B C〉 unfolding pairwise＿def bij＿betw＿def by force
obtain \(g\) where linear \(g\) and \(g g b: \bigwedge x . x \in C \Longrightarrow g x=g b x\)
using linear＿independent＿extend 〈independent \(C\) 〉 by fastforce
interpret \(g\) ：linear \(g\) by fact
have \(\operatorname{span}\left(f^{\prime} B\right) \subseteq \operatorname{span} C\)
by（metis 〈bij＿betw fb B C〉 bij＿betw＿imp＿surj＿on eq＿iff ffb image＿cong）
then have \(f\)＇\(S \subseteq T\)
unfolding \(\langle\) span \(B=S\rangle\langle\) span \(C=T\rangle\) span＿linear＿image \([O F\langle l i n e a r ~ f\rangle]\) ．
have \([\operatorname{simp}]: ~ \bigwedge x . x \in B \Longrightarrow \operatorname{norm}(f b x)=\) norm \(x\)
using B1 C1 〈bij＿betw fb B C〉bij＿betw＿imp＿surj＿on by fastforce
have \(f[\operatorname{simp}]\) ：norm \((f x)=\) norm \(x g(f x)=x\) if \(x \in S\) for \(x\)
proof－
obtain \(a\) where \(x: x=\left(\sum v \in B . a v *_{R} v\right)\)
using 〈finite \(B\rangle\langle\) span \(B=S\rangle\langle x \in S\rangle\) span＿finite by fastforce
have \(f x=\left(\sum v \in B . f\left(a v *_{R} v\right)\right)\)
using linear＿sum \([O F\langle l i n e a r f\rangle] x\) by auto
also have \(\ldots=\left(\sum v \in B . a v *_{R} f v\right)\)
by（simp add：f．sum f．scale）
also have \(\ldots=\left(\sum v \in B . a v *_{R} f b v\right)\)
by（simp add：ffb cong：sum．cong）
finally have \(*: f x=\left(\sum v \in B . a v *_{R} f b v\right)\) ．
then have \((\operatorname{norm}(f x))^{2}=\left(\operatorname{norm}\left(\sum v \in B . a v *_{R} f b v\right)\right)^{2}\) by simp
also have \(\ldots=\left(\sum v \in B . \operatorname{norm}\left(\left(a v *_{R} f b v\right)\right)^{\wedge}\right.\) Д）
proof（rule norm＿sum＿Pythagorean［OF〈finite B〉］）
show pairwise（ \(\lambda v j\) ．orthogonal \(\left.\left(a v *_{R} f b v\right)\left(a j *_{R} f b j\right)\right) B\)
by（rule pairwise＿ortho＿scaleR［OF pairwise＿orth＿fb］）
qed
also have \(\ldots=(\text { norm } x)^{2}\)
by（simp add：x pairwise＿ortho＿scaleR Borth norm＿sum＿Pythagorean［OF
```

〈finite $B\rangle$])
finally show norm $(f x)=$ norm x
by (simp add: norm_eq_sqrt_inner)
have $g(f x)=g\left(\sum v \in B\right.$. a $\left.v *_{R} f b v\right)$ by (simp add: *)
also have $\ldots=\left(\sum v \in B \cdot g\left(a v *_{R} f b v\right)\right)$
by (simp add: g.sum g.scale)
also have $\ldots=\left(\sum v \in B . a v *_{R} g(f b v)\right)$
by (simp add: g.scale)
also have $\ldots=\left(\sum v \in B . a v *_{R} v\right)$
proof (rule sum.cong [OF refl])
show $a x *_{R} g(f b x)=a x *_{R} x$ if $x \in B$ for x
using that 〈bij_betw fb B C〉bij_betwE bij_betw_inv_into_left gb_def ggb by
fastforce
qed
also have ... $=x$
using x by blast
finally show $g(f x)=x$.
qed
have $[$ simp $]: \bigwedge x . x \in C \Longrightarrow$ norm $(g b x)=$ norm x
by (metis B1 C1 〈bij_betw fb B C〉bij_betw_imp_surj_on gb_def inv_into_into)
have $g[$ simp $]: f(g x)=x$ if $x \in T$ for x
proof -
obtain a where $x: x=\left(\sum v \in C . a v *_{R} v\right)$
using 〈finite $C\rangle\langle$ span $C=T\rangle\langle x \in T\rangle$ span_finite by fastforce
have $g x=\left(\sum v \in C . g\left(a v *_{R} v\right)\right)$
by (simp add: x g.sum)
also have $\ldots=\left(\sum v \in C . a v *_{R} g v\right)$
by (simp add: g.scale)
also have $\ldots=\left(\sum v \in C . a v *_{R} g b v\right)$
by (simp add: ggb cong: sum.cong)
finally have $f(g x)=f\left(\sum v \in C . a v *_{R} g b v\right)$ by simp
also have $\ldots=\left(\sum v \in C . f\left(a v *_{R} g b v\right)\right)$
by (simp add: f.scale f.sum)
also have $\ldots=\left(\sum v \in C . a v *_{R} f(g b v)\right)$
by (simp add: f.scale f.sum)
also have $\ldots=\left(\sum v \in C . a v *_{R} v\right)$
using 〈bij_betw fb B C〉
by (simp add: bij_betw_def gb_def bij_betw_inv_into_right ffb inv_into_into)
also have $\ldots=x$
using x by blast
finally show $f(g x)=x$.
qed
have gim: g ' $T=S$
by (metis (full_types) $S T\langle f$ ' $S \subseteq T\rangle d$ dim_eq_span dim_image_le $f(2)$
g.linear_axioms
image_iff linear_subspace_image span_eq_iff subset_iff)
have fim: f ' $S=T$
using $\left\langle g{ }^{\prime} T=S\right.$ 〉 image_iff by fastforce
have [simp]: norm ($g x$) =norm x if $x \in T$ for x

```
```

 using fim that by auto
 show ?thesis
 by (rule that [OF〈linear f〉<linear g>]) (simp_all add: fim gim)
 qed
corollary isometry_subspaces:
fixes S :: 'a::euclidean_space set
and T :: 'b::euclidean_space set
assumes S: subspace }
and T: subspace T
and d: dim S = dim T
obtains f}\mathrm{ where linear ff'S=T \x. x
using isometries_subspaces [OF assms]
by metis
corollary isomorphisms_UNIV_UNIV:
assumes DIM('M) = DIM('N)
obtains f::'M
where linear f linear g
\x.norm(fx)=norm x \y.norm(g y) = norm y
\x.g(fx)=x \bigwedgey.f(gy)=y
using assms by (auto intro: isometries_subspaces [of UNIV ::'M set UNIV ::'N
set])
lemma homeomorphic_subspaces:
fixes S :: 'a::euclidean_space set
and T :: ' $b::$ euclidean_space set
assumes S : subspace S
and T : subspace T
and $d: \operatorname{dim} S=\operatorname{dim} T$
shows S homeomorphic T
proof -
obtain $f g$ where linear flinear $g f^{\prime} S=T g^{\prime} T=S$
$\bigwedge x . x \in S \Longrightarrow g(f x)=x \bigwedge x . x \in T \Longrightarrow f(g x)=x$
by (blast intro: isometries_subspaces [OF assms])
then show ?thesis
unfolding homeomorphic_def homeomorphism_def
apply (rule_tac $x=f$ in exI, rule_tac $x=g$ in exI)
apply (auto simp: linear_continuous_on linear_conv_bounded_linear)
done
qed
lemma homeomorphic_affine_sets:
assumes affine S affine T aff_dim $S=$ aff_dim T
shows S homeomorphic T
proof (cases $S=\{ \} \vee T=\{ \}$)
case True with assms aff_dim_empty homeomorphic_empty show ?thesis by metis
next

```
```

case False
then obtain ab where ab: a\inS b\inT by auto
then have ss: subspace ((+) (-a)'S) subspace ((+) (-b)'T)
using affine_diffs_subspace assms by blast+
have dd: dim ((+) (-a)'S) = dim ((+) (-b)'T)
using assms ab by (simp add: aff_dim_eq_dim [OF hull_inc] image_def)
have S homeomorphic ((+) (-a)'S)
by (fact homeomorphic_translation)
also have ... homeomorphic ((+) (-b)`T)
by (rule homeomorphic_subspaces [OF ss dd])
also have ... homeomorphic T
using homeomorphic_translation [of T - b] by (simp add: homeomorphic_sym
[of T])
finally show ?thesis.
qed

```

\subsection*{6.18.21 Retracts, in a general sense, preserve (co)homotopic triviality)}
locale Retracts \(=\)
fixes \(s h t k\)
assumes conth: continuous_on s \(h\)
and \(i m h: h\) ' \(s=t\)
and contk: continuous_on \(t k\)
and \(i m k: k\) ' \(t \subseteq s\)
and \(i d h k: \bigwedge y . y \in t \Longrightarrow h(k y)=y\)
begin
lemma homotopically_trivial_retraction_gen:
assumes \(P: \bigwedge f . \llbracket\) continuous_on \(U f ; f^{\prime} U \subseteq t ; Q f \rrbracket \Longrightarrow P(k \circ f)\)
and \(Q: \bigwedge f\). \(\llbracket\) continuous_on \(U f ; f^{\prime} U \subseteq s ; P f \rrbracket \Longrightarrow Q(h \circ f)\)
and \(Q e q: \bigwedge h k .(\bigwedge x . x \in U \Longrightarrow h x=k x) \Longrightarrow Q h=Q k\)
and hom: \(\bigwedge f g\). \(\llbracket\) continuous_on \(U f ; f^{\prime} U \subseteq s ; P f\);
continuous_on \(U g ; g^{\prime} U \subseteq s ; P g \rrbracket\) \(\Longrightarrow\) homotopic_with_canon \(P U s f g\)
and contf: continuous_on \(U f\) and \(\operatorname{imf}: f^{\prime} U \subseteq t\) and \(Q f: Q f\) and contg: continuous_on \(U g\) and img: \(g^{\prime} U \subseteq t\) and \(Q g: Q g\)
shows homotopic_with_canon \(Q U t f g\)
proof -
have continuous_on \(U(k \circ f)\)
using contf continuous_on_compose continuous_on_subset contk imf by blast
moreover have \((k \circ f\) )' \(U \subseteq s\)
using imf imk by fastforce
moreover have \(P(k \circ f)\)
by (simp add: P Qf contf imf)
moreover have continuous_on \(U(k \circ g)\)
using contg continuous_on_compose continuous_on_subset contk img by blast
moreover have \((k \circ g)\) ' \(U \subseteq s\)
```

 using img imk by fastforce
 moreover have \(P(k \circ g)\)
 by (simp add: \(P\) Qg contg img)
 ultimately have homotopic_with_canon PUs \((k \circ f)(k \circ g)\)
 by (rule hom)
 then have homotopic_with_canon \(Q U t(h \circ(k \circ f))(h \circ(k \circ g))\)
 apply (rule homotopic_with_compose_continuous_left [OF homotopic_with_mono])
 using \(Q\) by (auto simp: conth imh)
 then show ?thesis
 proof (rule homotopic_with_eq; simp)
 show \(\wedge h k .(\bigwedge x . x \in U \Longrightarrow h x=k x) \Longrightarrow Q h=Q k\)
 using Qeq topspace_euclidean_subtopology by blast
 show \(\wedge x . x \in U \Longrightarrow f x=h(k(f x)) \bigwedge x . x \in U \Longrightarrow g x=h(k(g x))\)
 using idhk imf img by auto
 qed
 qed
lemma homotopically_trivial_retraction_null_gen:
assumes $P: \wedge f$. $\llbracket c o n t i n u o u s _o n ~ U f ; f^{\prime} U \subseteq t ; Q f \rrbracket \Longrightarrow P(k \circ f)$
and $Q: \wedge f$. \llbracket continuous_on $U f ; f^{\prime} U \subseteq s ; P f \rrbracket \Longrightarrow Q(h \circ f)$
and Qeq: $\wedge h k .(\bigwedge x . x \in U \Longrightarrow h x=k x) \Longrightarrow Q h=Q k$
and hom: $\wedge f$. 【continuous_on $U f ; f^{\prime} U \subseteq s ; P f \rrbracket$
$\Longrightarrow \exists c$. homotopic_with_canon $P U s f(\lambda x . c)$
and contf: continuous_on $U f$ and $i m f: f^{\prime} U \subseteq t$ and $Q f: Q f$
obtains c where homotopic_with_canon $Q U t f(\lambda x . c)$
proof -
have feq: $\wedge x . x \in U \Longrightarrow(h \circ(k \circ f)) x=f x$ using idhk imf by auto
have continuous_on $U(k \circ f)$
using contf continuous_on_compose continuous_on_subset contk imf by blast
moreover have $(k \circ f)$ ' $U \subseteq s$
using imf imk by fastforce
moreover have $P(k \circ f)$
by (simp add: P Qf contf imf)
ultimately obtain c where homotopic_with_canon $P U s(k \circ f)(\lambda x . c)$
by (metis hom)
then have homotopic_with_canon $Q U t(h \circ(k \circ f))(h \circ(\lambda x . c))$
apply (rule homotopic_with_compose_continuous_left [OF homotopic_with_mono])
using Q by (auto simp: conth imh)
then have homotopic_with_canon $Q U t f(\lambda x . h c)$
proof (rule homotopic_with_eq)
show $\backslash x . x \in$ topspace (top_of_set $U) \Longrightarrow f x=(h \circ(k \circ f)) x$
using feq by auto
show $\wedge h k .(\Lambda x . x \in$ topspace (top_of_set $U) \Longrightarrow h x=k x) \Longrightarrow Q h=Q k$
using Qeq topspace_euclidean_subtopology by blast
qed auto
then show ?thesis
using that by blast
qed

```
```

lemma cohomotopically_trivial_retraction_gen:
assumes $P: \bigwedge f . \llbracket$ continuous_on $t f ; f^{\prime} t \subseteq U ; Q f \rrbracket \Longrightarrow P(f \circ h)$
and $Q: \bigwedge f . \llbracket$ continuous_on $s f ; f^{\prime} s \subseteq U ; P f \rrbracket \Longrightarrow Q(f \circ k)$
and Qeq: $\bigwedge h k .(\bigwedge x . x \in t \Longrightarrow h x=k x) \Longrightarrow Q h=Q k$
and hom: $\backslash f g . \llbracket$ continuous_on $s f ; f^{\prime} s \subseteq U ; P f$
continuous_on s $g ; g$ ' $s \subseteq U ; P g \rrbracket$
\Longrightarrow homotopic_with_canon $P s U f g$
and contf: continuous_on $t f$ and $i m f: f^{\prime} t \subseteq U$ and $Q f: Q f$
and contg: continuous_on tg and $i m g: g$ ' $t \subseteq U$ and $Q g: Q g$
shows homotopic_with_canon $Q t U f g$
proof -
have $f e q: \bigwedge x . x \in t \Longrightarrow(f \circ h \circ k) x=f x$ using idhk imf by auto
have geq: $\bigwedge x . x \in t \Longrightarrow(g \circ h \circ k) x=g x$ using idhkimg by auto
have continuous_on $s(f \circ h)$
using contf conth continuous_on_compose imh by blast
moreover have $(f \circ h)$ ' $s \subseteq U$
using imf imh by fastforce
moreover have $P(f \circ h)$
by (simp add: P Qf contf imf)
moreover have continuous_on $s(g \circ h)$
using contg continuous_on_compose continuous_on_subset conth imh by blast
moreover have $(g \circ h)$ ' $s \subseteq U$
using img imh by fastforce
moreover have $P(g \circ h)$
by (simp add: P Qg contg img)
ultimately have homotopic_with_canon P s $U(f \circ h)(g \circ h)$
by (rule hom)
then have homotopic_with_canon $Q t U(f \circ h \circ k)(g \circ h \circ k)$
apply (rule homotopic_with_compose_continuous_right [OF homotopic_with_mono])
using Q by (auto simp: contk imk)
then show? thesis
proof (rule homotopic_with_eq)
show $f x=(f \circ h \circ k) x g x=(g \circ h \circ k) x$
if $x \in$ topspace (top_of_set t) for x
using feq geq that by force+
qed (use Qeq topspace_euclidean_subtopology in blast)
qed
lemma cohomotopically_trivial_retraction_null_gen:
assumes $P: \bigwedge f . \llbracket$ continuous_on $t f ; f^{\prime} t \subseteq U ; Q f \rrbracket \Longrightarrow P(f \circ h)$
and $Q: \bigwedge f . \llbracket$ continuous_on $s f ; f^{\prime} s \subseteq U ; P f \rrbracket \Longrightarrow Q(f \circ k)$
and Qeq: $\bigwedge h k .(\bigwedge x . x \in t \Longrightarrow h x=k x) \Longrightarrow Q h=Q k$
and hom: $\bigwedge f g . \llbracket$ continuous_on $s f ; f^{\prime} s \subseteq U ; P f \rrbracket$
$\Longrightarrow \exists c$. homotopic_with_canon $P s U f(\lambda x . c)$
and contf: continuous_on $t f$ and $i m f: f^{\prime} t \subseteq U$ and $Q f: Q f$
obtains c where homotopic_with_canon $Q t U f(\lambda x . c)$
proof -
have $f e q: ~ \bigwedge x . x \in t \Longrightarrow(f \circ h \circ k) x=f x$ using idhk imf by auto
have continuous_on s ($f \circ h$)

```
using contf conth continuous_on_compose imh by blast
moreover have \((f \circ h) ' s \subseteq U\)
using imf imh by fastforce
moreover have \(P(f \circ h)\)
by (simp add: P Qf contf imf)
ultimately obtain \(c\) where homotopic_with_canon \(P s U(f \circ h)(\lambda x, c)\)
by (metis hom)
then have §: homotopic_with_canon \(Q t U(f \circ h \circ k)((\lambda x . c) \circ k)\)
proof (rule homotopic_with_compose_continuous_right [OF homotopic_with_mono])
show \(\bigwedge h\). \(\llbracket\) continuous_map (top_of_set s) (top_of_set \(U) h ; P h \rrbracket \Longrightarrow Q(h \circ k)\)
using \(Q\) by auto
qed (auto simp: contk imk)
moreover have homotopic_with_canon \(Q t U f(\lambda x . c)\)
using homotopic_with_eq [OF §] feq Qeq by fastforce
ultimately show ?thesis
using that by blast
qed
end
lemma simply_connected_retraction_gen:
shows \(\llbracket\) simply_connected \(S\); continuous_on \(S h ; h ' S=T\);
continuous_on \(T k ; k{ }^{\prime} T \subseteq S ; \bigwedge y . y \in T \Longrightarrow h(k y)=y \rrbracket\)
\(\Longrightarrow\) simply_connected \(T\)
apply (simp add: simply_connected_def path_def path_image_def homotopic_loops_def, clarify)
apply (rule Retracts.homotopically_trivial_retraction_gen
[of \(S h_{-} k_{-} \lambda p\). pathfinish \(p=\) pathstart \(p \quad \lambda p\). pathfinish \(p=\) pathstart \(\left.p\right]\) )
apply (simp_all add: Retracts_def pathfinish_def pathstart_def)
done
lemma homeomorphic_simply_connected:
\(\llbracket S\) homeomorphic \(T\); simply_connected \(S \rrbracket \Longrightarrow\) simply_connected \(T\)
by (auto simp: homeomorphic_def homeomorphism_def intro: simply_connected_retraction_gen)
lemma homeomorphic_simply_connected_eq:
\(S\) homeomorphic \(T \Longrightarrow\) (simply_connected \(S \longleftrightarrow\) simply_connected \(T\) )
by (metis homeomorphic_simply_connected homeomorphic_sym)

\subsection*{6.18.22 Homotopy equivalence}

\subsection*{6.18.23 Homotopy equivalence of topological spaces.}
definition homotopy_equivalent_space
(infix homotopy \({ }^{\prime}\)-equivalent'_space 50)
where \(X\) homotopy_equivalent_space \(Y \equiv\)
( \(\exists\) fg. continuous_map \(X Y f \wedge\)
continuous_map \(Y X g \wedge\)
homotopic_with \((\lambda x\). True) \(X X(g \circ f) i d \wedge\)
homotopic_with \((\lambda x\). True) \(Y Y(f \circ g) i d)\)
lemma homeomorphic_imp_homotopy_equivalent_space:
\(X\) homeomorphic_space \(Y \Longrightarrow X\) homotopy_equivalent_space \(Y\)
unfolding homeomorphic_space_def homotopy_equivalent_space_def
apply (erule ex_forward)+
by (simp add: homotopic_with_equal homotopic_with_sym homeomorphic_maps_def)
lemma homotopy_equivalent_space_refl:
\(X\) homotopy_equivalent_space \(X\)
by (simp add: homeomorphic_imp_homotopy_equivalent_space homeomorphic_space_refl)
lemma homotopy_equivalent_space_sym:
\(X\) homotopy_equivalent_space \(Y \longleftrightarrow Y\) homotopy_equivalent_space \(X\)
by (meson homotopy_equivalent_space_def)
lemma homotopy_eqv_trans [trans]:
assumes 1: \(X\) homotopy_equivalent_space \(Y\) and 2: \(Y\) homotopy_equivalent_space \(U\)
shows \(X\) homotopy_equivalent_space \(U\)
proof -
obtain f1 g1 where f1: continuous_map X Y f1
and g1: continuous_map Y X g1
and hom1: homotopic_with \((\lambda x\). True \() X X(g 1 \circ f 1) i d\) homotopic_with \((\lambda x\). True) \(Y Y(f 1 \circ g 1) i d\)
using 1 by (auto simp: homotopy_equivalent_space_def)
obtain f2 g2 where f2: continuous_map \(Y\) U f2
and g2: continuous_map \(U Y\) g2
and hom2: homotopic_with \((\lambda x\). True) \(Y Y(g 2 \circ f 2) i d\) homotopic_with \((\lambda x\). True \() U U(f 2 \circ g 2) i d\)
using 2 by (auto simp: homotopy_equivalent_space_def)
have homotopic_with \((\lambda f\). True) \(X Y(g 2 \circ f 2 \circ f 1)(i d \circ f 1)\)
using f1 hom2(1) homotopic_with_compose_continuous_map_right by metis
then have homotopic_with \((\lambda f\). True) \(X Y(g 2 \circ(f 2 \circ f 1))(i d \circ f 1)\)
by (simp add: o_assoc)
then have homotopic_with \((\lambda x\). True) \(X X\)
\((g 1 \circ(g 2 \circ(f 2 \circ f 1)))(g 1 \circ(i d \circ f 1))\)
by (simp add: g1 homotopic_with_compose_continuous_map_left)
moreover have homotopic_with \((\lambda x\). True) \(X X(g 1 \circ i d \circ f 1)\) id
using hom1 by simp
ultimately have \(S S\) : homotopic_with \((\lambda x\). True \() X X(g 1 \circ g 2 \circ(f 2 \circ f 1))\) id by (metis comp_assoc homotopic_with_trans id_comp)
have homotopic_with \((\lambda f\). True) \(U Y(f 1 \circ g 1 \circ g 2)(i d \circ g 2)\)
using g2 hom1(2) homotopic_with_compose_continuous_map_right by fastforce
then have homotopic_with \((\lambda f\). True \() U Y(f 1 \circ(g 1 \circ g 2))(i d \circ g 2)\)
by (simp add: o_assoc)
then have homotopic_with \((\lambda x\). True) \(U U\)
\((f 2 \circ(f 1 \circ(g 1 \circ g 2)))(f 2 \circ(i d \circ g 2))\)
by (simp add: f2 homotopic_with_compose_continuous_map_left)
moreover have homotopic_with \((\lambda x\). True) \(U U(f 2 \circ i d \circ g 2) i d\)
using hom2 by simp
ultimately have \(U U\) : homotopic_with \((\lambda x\). True \() U U(f 2 \circ f 1 \circ(g 1 \circ g 2)) i d\) by (simp add: fun.map_comp hom2(2) homotopic_with_trans)
show ?thesis
unfolding homotopy_equivalent_space_def
by (blast intro: f1 f2 g1 g2 continuous_map_compose SS UU)
qed
lemma deformation_retraction_imp_homotopy_equivalent_space:
\(\llbracket h o m o t o p i c \_w i t h(\lambda x\). True) \(X X(s \circ r) i d ;\) retraction_maps \(X\) Y r \(s \rrbracket\)
\(\Longrightarrow X\) homotopy_equivalent_space \(Y\)
unfolding homotopy_equivalent_space_def retraction_maps_def
using homotopic_with_id2 by fastforce
lemma deformation_retract_imp_homotopy_equivalent_space:
\(\llbracket h o m o t o p i c \_w i t h ~(~ \lambda x\). True) X X rid; retraction_maps X Y rid】
\(\Longrightarrow X\) homotopy_equivalent_space \(Y\)
using deformation_retraction_imp_homotopy_equivalent_space by force
lemma deformation_retract_of_space:
\(S \subseteq\) topspace \(X \wedge\)
( \(\exists\) r. homotopic_with \((\lambda x\). True) \(X X\) id \(r \wedge\) retraction_maps \(X\) (subtopology \(X\)
S) \(r i d) \longleftrightarrow\)
\(S\) retract_of_space \(X \wedge(\exists f\). homotopic_with \((\lambda x\). True) \(X X\) id \(f \wedge f\) ' topspace
\(X) \subseteq S)\)
proof (cases \(S \subseteq\) topspace \(X\) )
case True
moreover have ( \(\exists r\). homotopic_with \((\lambda x\). True) \(X X\) id \(r \wedge\) retraction_maps \(X\)
(subtopology X S) rid)
\(\longleftrightarrow\) (S retract_of_space \(X \wedge(\exists f\). homotopic_with \((\lambda x\). True) \(X X\) id \(f\)
\(\wedge f\) 'topspace \(X \subseteq S)\) )
unfolding retract_of_space_def
proof safe
fix \(f r\)
assume \(f\) : homotopic_with \((\lambda x\). True) \(X X i d f\)
and \(f S: f\) ' topspace \(X \subseteq S\)
and \(r\) : continuous_map \(X\) (subtopology X S) \(r\)
and req: \(\forall x \in S . r x=x\)
show \(\exists r\). homotopic_with \((\lambda x\). True) \(X X i d r \wedge\) retraction_maps \(X\) (subtopology
X S) rid
proof (intro exI conjI)
have homotopic_with ( \(\lambda x\). True) \(X X f r\)
proof (rule homotopic_with_eq)
show homotopic_with \((\lambda x\). True \() X X(r \circ f)(r \circ i d)\)
by (metis continuous_map_into_fulltopology f homotopic_with_compose_continuous_map_left
homotopic_with_symD r)
show \(f x=(r \circ f) x\) if \(x \in\) topspace \(X\) for \(x\)
using that \(f S\) req by auto
qed auto
```

 then show homotopic_with (}\lambdax\mathrm{ . True) X X id r
 by (rule homotopic_with_trans [OF f])
 next
 show retraction_maps X (subtopology X S) r id
 by (simp add: r req retraction_maps_def)
 qed
 qed (use True in <auto simp: retraction_maps_def topspace_subtopology_subset
 continuous_map_in_subtopology>)
ultimately show ?thesis by simp
qed (auto simp: retract_of_space_def retraction_maps_def)

```

\subsection*{6.18.24 Contractible spaces}

The definition (which agrees with "contractible" on subsets of Euclidean space) is a little cryptic because we don't in fact assume that the constant " \(a\) " is in the space. This forces the convention that the empty space / set is contractible, avoiding some special cases.
```

definition contractible_space where
contractible_space $X \equiv \exists a$. homotopic_with $(\lambda x$. True) X X id $(\lambda x . a)$
lemma contractible_space_top_of_set [simp]:contractible_space (top_of_set S) \longleftrightarrow
contractible S
by (auto simp: contractible_space_def contractible_def)
lemma contractible_space_empty:
topspace $X=\{ \} \Longrightarrow$ contractible_space X
unfolding contractible_space_def homotopic_with_def
apply (rule_tac $x=$ undefined in exI)
apply (rule_tac $x=\lambda(t, x)$. if $t=0$ then x else undefined in exI)
apply (auto simp: continuous_map_on_empty)
done
lemma contractible_space_singleton:
topspace $X=\{a\} \Longrightarrow$ contractible_space X
unfolding contractible_space_def homotopic_with_def
apply (rule_tac $x=a$ in exI)
apply (rule_tac $x=\lambda(t, x)$. if $t=0$ then x else a in exI)
apply (auto intro: continuous_map_eq $[$ where $f=\lambda z . a]$)
done
lemma contractible_space_subset_singleton:
topspace $X \subseteq\{a\} \Longrightarrow$ contractible_space X
by (meson contractible_space_empty contractible_space_singleton subset_singletonD)
lemma contractible_space_subtopology_singleton:
contractible_space(subtopology $X\{a\}$)
by (meson contractible_space_subset_singleton insert_subset path_connectedin_singleton
path_connectedin_subtopology subsetI)

```
```

lemma contractible_space:
contractible_space $X \longleftrightarrow$
topspace $X=\{ \} \vee$
$(\exists a \in$ topspace X. homotopic_with $(\lambda x$. True) $X X$ id $(\lambda x . a))$
proof (cases topspace $X=\{ \}$)
case False
then show ?thesis
using homotopic_with_imp_continuous_maps by (fastforce simp: contractible_space_def)
qed (simp add: contractible_space_empty)
lemma contractible_imp_path_connected_space:
assumes contractible_space X shows path_connected_space X
proof (cases topspace $X=\{ \}$)
case False
have *: path_connected_space X
if $a \in$ topspace X and conth: continuous_map (prod_topology (top_of_set \{0..1\})
X) $X h$
and $h: \forall x . h(0, x)=x \forall x . h(1, x)=a$
for a and $h::$ real $\times{ }^{\prime} a \Rightarrow^{\prime} a$
proof -
have path_component_of $X b a$ if $b \in$ topspace X for b
unfolding path_component_of_def
proof (intro exI conjI)
let ? $g=h \circ(\lambda x .(x, b))$
show pathin X ?g
unfolding pathin_def
proof (rule continuous_map_compose [OF _ conth])
show continuous_map (top_of_set \{0..1\}) (prod_topology (top_of_set \{0..1\})
$X)(\lambda x .(x, b))$
using that by (auto intro!: continuous_intros)
qed
qed (use h in auto)
then show? ?thesis
by (metis path_component_of_equiv path_connected_space_iff_path_component)
qed
show ?thesis
using assms False by (auto simp: contractible_space homotopic_with_def *)
qed (simp add: path_connected_space_topspace_empty)
lemma contractible_imp_connected_space:
contractible_space $X \Longrightarrow$ connected_space X
by (simp add: contractible_imp_path_connected_space path_connected_imp_connected_space)
lemma contractible_space_alt:
contractible_space $X \longleftrightarrow(\forall a \in$ topspace X. homotopic_with (λx. True) $X X$ id
$(\lambda x . a))($ is ?lhs $=? r h s)$
proof
assume X : ?lhs

```
```

 then obtain \(a\) where \(a\) : homotopic_with (\(\lambda x\). True) \(X X i d(\lambda x . a)\)
 by (auto simp: contractible_space_def)
 show ?rhs
 proof
 show homotopic_with \((\lambda x\). True) \(X X\) id \((\lambda x . b)\) if \(b \in\) topspace \(X\) for \(b\)
 proof (rule homotopic_with_trans [OF a])
 show homotopic_with \((\lambda x\). True) \(X X(\lambda x . a)(\lambda x . b)\)
 using homotopic_constant_maps path_connected_space_imp_path_component_of
 by (metis (full_types) X a continuous_map_const contractible_imp_path_connected_space
 homotopic_with_imp_continuous_maps that)
qed
qed
next
assume R : ?rhs
then show? lhs
unfolding contractible_space_def by (metis equals0I homotopic_on_emptyI)
qed
lemma compose_const $[$ simp $]: f \circ(\lambda x . a)=(\lambda x . f a)(\lambda x . a) \circ g=(\lambda x . a)$
by (simp_all add: o_def)
lemma nullhomotopic_through_contractible_space:
assumes f : continuous_map $X Y f$ and g : continuous_map $Y Z g$ and Y : con-
tractible_space Y
obtains c where homotopic_with $(\lambda h$. True) $X Z(g \circ f)(\lambda x . c)$
proof -
obtain b where b : homotopic_with (λx. True) YYid $(\lambda x . b)$
using Y by (auto simp: contractible_space_def)
show thesis
using homotopic_with_compose_continuous_map_right
[OF homotopic_with_compose_continuous_map_left $\left[\begin{array}{lll}O F & b & g\end{array}\right] f$
by (force simp add: that)
qed
lemma nullhomotopic_into_contractible_space:
assumes f : continuous_map $X Y f$ and Y : contractible_space Y
obtains c where homotopic_with (λh. True) $X Y f(\lambda x . c)$
using nullhomotopic_through_contractible_space $\left[O F f_{-} Y\right]$
by (metis continuous_map_id id_comp)
lemma nullhomotopic_from_contractible_space:
assumes f : continuous_map $X Y f$ and X : contractible_space X
obtains c where homotopic_with (λh. True) $X Y f(\lambda x . c)$
using nullhomotopic_through_contractible_space $[O F$ _ $f X]$
by (metis comp_id continuous_map_id)
lemma homotopy_dominated_contractibility:
assumes f : continuous_map $X Y f$ and g : continuous_map $Y X g$

```
and hom: homotopic_with \((\lambda x\). True \() Y Y(f \circ g) i d\) and \(X\) : contractible_space X
shows contractible_space \(Y\)
proof -
obtain \(c\) where \(c\) : homotopic_with ( \(\lambda h\). True) \(X Y f(\lambda x . c)\)
using nullhomotopic_from_contractible_space \([O F f X]\).
have homotopic_with \((\lambda x\). True \() Y Y(f \circ g)(\lambda x . c)\)
using homotopic_with_compose_continuous_map_right [OF c g] by fastforce
then have homotopic_with ( \(\lambda x\). True) Y Y id ( \(\lambda x . c\) )
using homotopic_with_trans [OF_hom] homotopic_with_symD by blast
then show ?thesis
unfolding contractible_space_def ..
qed
lemma homotopy_equivalent_space_contractibility:
\(X\) homotopy_equivalent_space \(Y \Longrightarrow\) (contractible_space \(X \longleftrightarrow\) contractible_space Y)
unfolding homotopy_equivalent_space_def
by (blast intro: homotopy_dominated_contractibility)
lemma homeomorphic_space_contractibility:
\(X\) homeomorphic_space \(Y\)
\(\Longrightarrow\) (contractible_space \(X \longleftrightarrow\) contractible_space \(Y\) )
by (simp add: homeomorphic_imp_homotopy_equivalent_space homotopy_equivalent_space_contractibility)
lemma contractible_eq_homotopy_equivalent_singleton_subtopology:
contractible_space \(X \longleftrightarrow\)
topspace \(X=\{ \} \vee(\exists a \in\) topspace \(X\). X homotopy_equivalent_space
(subtopology \(X\{a\})\) )(is ?lhs \(=\) ? rhs \()\)
proof (cases topspace \(X=\{ \}\) )
case False
show ?thesis
proof
assume ?lhs
then obtain \(a\) where \(a\) : homotopic_with \((\lambda x\). True) \(X X i d(\lambda x . a)\)
by (auto simp: contractible_space_def)
then have \(a \in\) topspace \(X\)
by (metis False continuous_map_const homotopic_with_imp_continuous_maps)
then have homotopic_with \((\lambda x\). True) (subtopology \(X\{a\})\) (subtopology \(X\{a\}\) )
id ( \(\lambda x\). a)
using connectedin_absolute connectedin_sing contractible_space_alt contractible_space_subtopology_singl
by fastforce
then have \(X\) homotopy_equivalent_space subtopology \(X\{a\}\)
unfolding homotopy_equivalent_space_def using \(\langle a \in\) topspace \(X\) 〉
by (metis (full_types) a comp_id continuous_map_const continuous_map_id_subt
empty_subsetI homotopic_with_symD
id_comp insertI1 insert_subset topspace_subtopology_subset)
with \(\langle a \in\) topspace \(X\rangle\) show ?rhs
by blast
```

next
assume ?rhs
then show ?lhs
by (meson False contractible_space_subtopology_singleton homotopy_equivalent_space_contractibility)
qed
qed (simp add: contractible_space_empty)
lemma contractible_space_retraction_map_image:
assumes retraction_map X Yf and X: contractible_space X
shows contractible_space Y
proof -
obtain g}\mathrm{ where f:continuous_map X Yf and g:continuous_map Y Xg and
fg:\forally\in topspace Y.f(gy)=y
using assms by (auto simp: retraction_map_def retraction_maps_def)
obtain a where a: homotopic_with (}\lambdax\mathrm{ . True) X X id (}\lambdax.a
using X by (auto simp: contractible_space_def)
have homotopic_with (}\lambdax.\mathrm{ True) Y Y id (}\lambdax.f a
proof (rule homotopic_with_eq)
show homotopic_with (}\lambdax\mathrm{ . True) Y Y (f ○id ○g) (f ○ (}\lambdax.a)\circg
using fg a homotopic_with_compose_continuous_map_left homotopic_with_compose_continuous_map_right
by metis
qed (use fg in auto)
then show ?thesis
unfolding contractible_space_def by blast
qed
lemma contractible_space_prod_topology:
contractible_space(prod_topology X Y) \longleftrightarrow
topspace }X={}\vee topspace Y={}\vee contractible_space X ^ contractible_space
Y
proof (cases topspace X={}\vee topspace Y={})
case True
then have topspace (prod_topology X Y) ={}
by simp
then show ?thesis
by (auto simp: contractible_space_empty)
next
case False
have contractible_space(prod_topology X Y) \longleftrightarrow contractible_space X ^ con-
tractible_space Y
proof safe
assume XY: contractible_space (prod_topology X Y)
with False have retraction_map (prod_topology X Y) X fst
by (auto simp: contractible_space False retraction_map_fst)
then show contractible_space X
by (rule contractible_space_retraction_map_image [OF _ XY])
have retraction_map (prod_topology X Y) Y snd
using False XY by (auto simp: contractible_space False retraction_map_snd)
then show contractible_space Y

```
```

 by (rule contractible_space_retraction_map_image \(\left[O F_{_} X Y\right]\))
 next
 assume contractible_space \(X\) and contractible_space \(Y\)
 with False obtain \(a b\)
 where \(a \in\) topspace \(X\) and \(a\) : homotopic_with \((\lambda x\). True) \(X X\) id \((\lambda x . a)\)
 and \(b \in\) topspace \(Y\) and \(b\) : homotopic_with (\(\lambda x\). True) \(Y Y i d(\lambda x . b)\)
 by (auto simp: contractible_space)
 with False show contractible_space (prod_topology X Y)
 apply (simp add: contractible_space)
 apply (rule_tac \(x=a\) in bexI)
 apply (rule_tac \(x=b\) in bexI)
 using homotopic_with_prod_topology [\(\left.\begin{array}{lll}O F & a & b\end{array}\right]\)
 apply (metis (no_types, lifting) case_prod_Pair case_prod_beta' eq_id_iff)
 apply auto
 done
 qed
 with False show ?thesis
 by auto
 qed
lemma contractible_space_product_topology:
contractible_space (product_topology X I) \longleftrightarrow
topspace (product_topology $X I)=\{ \} \vee(\forall i \in I$. contractible_space $(X i))$
proof (cases topspace (product_topology XI) $=\{ \}$)
case False
have 1: contractible_space ($\left.\begin{array}{l} \\ i\end{array}\right)$
if XI: contractible_space (product_topology $X I$) and $i \in I$
for i
proof (rule contractible_space_retraction_map_image [OF _ XI])
show retraction_map (product_topology X I) (X_{i}) ($\lambda x . x i$)
using False by (simp add: retraction_map_product_projection $\langle i \in I\rangle)$
qed
have 2: contractible_space (product_topology X I)
if $x \in$ topspace (product_topology $X I$) and cs: $\forall i \in I$. contractible_space $\binom{X}{$) }
for $x::{ }^{\prime} a \Rightarrow{ }^{\prime} b$
proof -
obtain f where $f: \bigwedge i . i \in I \Longrightarrow$ homotopic_with $\left(\lambda x\right.$. True) $\binom{X}{i}\binom{X}{i}$ id $(\lambda x$.
$f i)$
using cs unfolding contractible_space_def by metis
have homotopic_with (λx. True)
(product_topology X I) (product_topology X I) id (λx. restrict f
I)
by (rule homotopic_with_eq [OF homotopic_with_product_topology [OF f]])
(auto)
then show ?thesis
by (auto simp: contractible_space_def)
qed
show ?thesis

```
using False 12 by blast
qed (simp add: contractible_space_empty)
lemma contractible_space_subtopology_euclideanreal [simp]:
contractible_space(subtopology euclideanreal \(S\) ) \(\longleftrightarrow\) is_interval \(S\)
(is? \(? \mathrm{lhs}=\) ? \(r h s\) )
proof
assume ?lhs
then have path_connectedin (subtopology euclideanreal \(S\) ) \(S\)
using contractible_imp_path_connected_space path_connectedin_topspace path_connectedin_absolute by (simp add: contractible_imp_path_connected)
then show ?rhs
by (simp add: is_interval_path_connected_1)
next
assume ?rhs
then have convex \(S\)
by (simp add: is_interval_convex_1)
show ?lhs
proof (cases \(S=\{ \}\) )
case False
then obtain \(z\) where \(z \in S\)
by blast
show ?thesis
unfolding contractible_space_def homotopic_with_def
proof (intro exI conjI allI)
note § = convexD [OF 〈convex S〉, simplified]
show continuous_map (prod_topology (top_of_set \{0..1\}) (top_of_set \(S\) )) (top_of_set
S)
\[
(\lambda(t, x) \cdot(1-t) * x+t * z)
\]
using \(\langle z \in S\rangle\)
by (auto simp add: case_prod_unfold intro!: continuous_intros §)
qed auto
qed (simp add: contractible_space_empty)
qed
corollary contractible_space_euclideanreal: contractible_space euclideanreal
proof -
have contractible_space (subtopology euclideanreal UNIV)
using contractible_space_subtopology_euclideanreal by blast
then show? ?hesis
by simp
qed
abbreviation homotopy_eqv :: 'a::topological_space set \(\Rightarrow\) 'b::topological_space set
\(\Rightarrow\) bool
(infix homotopy'_eqv 50)
where \(S\) homotopy_eqv \(T \equiv\) top_of_set \(S\) homotopy_equivalent_space top_of_set \(T\)
lemma homeomorphic_imp_homotopy_eqv: \(S\) homeomorphic \(T \Longrightarrow S\) homotopy_eqv \(T\)
unfolding homeomorphic_def homeomorphism_def homotopy_equivalent_space_def
by (metis continuous_map_subtopology_eu homotopic_with_id2 openin_imp_subset openin_subtopology_self topspace_euclidean_subtopology)
lemma homotopy_eqv_inj_linear_image:
fixes \(f\) :: 'a::euclidean_space \(\Rightarrow\) ' \(b::\) euclidean_space
assumes linear \(f\) inj \(f\)
shows \((f\) ' \(S\) ) homotopy_eqv \(S\)
by (metis assms homeomorphic_sym homeomorphic_imp_homotopy_eqv linear_homeomorphic_image)
lemma homotopy_eqv_translation:
fixes \(S\) :: 'a::real_normed_vector set
shows (+) a' \(S\) homotopy_eqv \(S\)
using homeomorphic_imp_homotopy_eqv homeomorphic_translation homeomor-
phic_sym by blast
lemma homotopy_eqv_homotopic_triviality_imp:
fixes \(S\) :: 'a::real_normed_vector set
and \(T\) :: 'b::real_normed_vector set
and \(U::{ }^{\prime} c:\) :real_normed_vector set
assumes \(S\) homotopy_eqv \(T\)
and \(f\) : continuous_on \(U f f^{\prime} U \subseteq T\)
and \(g\) : continuous_on \(U g g^{\prime} U \subseteq T\)
and homUS: \(\wedge f g . \llbracket\) continuous_on \(U f ; f^{\prime} U \subseteq S\);
continuous_on \(U g ; g\) ' \(U \subseteq S \rrbracket\)
\(\Longrightarrow\) homotopic_with_canon ( \(\lambda x\). True) \(U S f g\)
shows homotopic_with_canon ( \(\lambda x\). True) \(U T f g\)

\section*{proof -}
obtain \(h k\) where \(h\) : continuous_on \(S h h\) ' \(S \subseteq T\)
and \(k\) : continuous_on \(T k k^{\prime} T \subseteq S\)
and hom: homotopic_with_canon ( \(\lambda x\). True) \(S S(k \circ h) i d\)
homotopic_with_canon \((\lambda x\). True) \(T T(h \circ k)\) id
using assms by (auto simp: homotopy_equivalent_space_def)
have homotopic_with_canon \((\lambda f\). True) \(U S(k \circ f)(k \circ g)\)
proof (rule homUS)
show continuous_on \(U(k \circ f)\) continuous_on \(U(k \circ g)\)
using continuous_on_compose continuous_on_subset \(f g k\) by blast +
qed (use \(f g k\) in 〈(force simp: o_def)+〉)
then have homotopic_with_canon \((\lambda x\). True) \(U T(h \circ(k \circ f))(h \circ(k \circ g))\)
by (rule homotopic_with_compose_continuous_left; simp add: \(h\) )
```

moreover have homotopic_with_canon $(\lambda x$. True) $U T(h \circ k \circ f)(i d \circ f)$
by (rule homotopic_with_compose_continuous_right [where $X=T$ and $Y=T]$;
simp add: hom f)
moreover have homotopic_with_canon $(\lambda x$. True) $U T(h \circ k \circ g)(i d \circ g)$
by (rule homotopic_with_compose_continuous_right [where $X=T$ and $Y=T]$;
simp add: hom g)
ultimately show homotopic_with_canon (λx. True) $U T f g$
unfolding o_assoc
by (metis homotopic_with_trans homotopic_with_sym id_comp)
qed
lemma homotopy_eqv_homotopic_triviality:
fixes S :: 'a::real_normed_vector set
and T :: 'b::real_normed_vector set
and U :: ' $c:$:real_normed_vector set
assumes S homotopy_eqv T
shows $\left(\forall f g\right.$. continuous_on $U f \wedge f^{\prime} U \subseteq S \wedge$
continuous_on $U g \wedge g^{\prime} U \subseteq S$
\longrightarrow homotopic_with_canon $(\lambda x$. True) $U S f g) \longleftrightarrow$
($\forall f$ g. continuous_on $U f \wedge f^{\prime} U \subseteq T \wedge$
continuous_on $U g \wedge g^{‘} U \subseteq T$
\longrightarrow homotopic_with_canon $(\lambda x$. True) $U T f g)$
(is? $? h s=? r h s)$
proof
assume ?lhs
then show ?rhs
by (metis assms homotopy_eqv_homotopic_triviality_imp)
next
assume ?rhs
moreover
have T homotopy_eqv S
using assms homotopy_equivalent_space_sym by blast
ultimately show ?lhs
by (blast intro: homotopy_eqv_homotopic_triviality_imp)
qed
lemma homotopy_eqv_cohomotopic_triviality_null_imp:
fixes S :: ' $a:$:real_normed_vector set
and T :: 'b::real_normed_vector set
and U :: ' $c:$:real_normed_vector set
assumes S homotopy_eqv T
and f : continuous_on $T f f^{\prime} T \subseteq U$
and homSU: $\bigwedge f$. 【continuous_on $S f ; f$ ' $S \subseteq U \rrbracket$
$\Longrightarrow \exists c$. homotopic_with_canon $(\lambda x$. True) $S U f(\lambda x . c)$
obtains c where homotopic_with_canon $(\lambda x$. True) $T U f(\lambda x . c)$
proof -
obtain $h k$ where h : continuous_on $S h h$ ' $S \subseteq T$
and k : continuous_on $T k k^{\prime} T \subseteq S$

```
and hom: homotopic_with_canon \((\lambda x\). True) \(S S(k \circ h) i d\)
homotopic_with_canon \((\lambda x\). True) \(T T(h \circ k)\) id
using assms by (auto simp: homotopy_equivalent_space_def)
obtain \(c\) where homotopic_with_canon \((\lambda x\). True) \(S U(f \circ h)(\lambda x . c)\)
proof (rule exE [OF homSU])
show continuous_on \(S(f \circ h)\)
using continuous_on_compose continuous_on_subset \(f h\) by blast
qed (use \(f h\) in force)
then have homotopic_with_canon \((\lambda x\). True \() T U((f \circ h) \circ k)((\lambda x . c) \circ k)\)
by (rule homotopic_with_compose_continuous_right [where \(X=S]\) ) (use \(k\) in auto)
moreover have homotopic_with_canon \((\lambda x\). True) \(T U(f \circ i d)(f \circ(h \circ k))\)
by (rule homotopic_with_compose_continuous_left [where \(Y=T]\) )
(use \(f\) in 〈auto simp add: hom homotopic_with_symD )
ultimately show ?thesis
using that homotopic_with_trans by (fastforce simp add: o_def)
qed
lemma homotopy_eqv_cohomotopic_triviality_null:
fixes \(S:\) :' \(a\) ::real_normed_vector set
and \(T\) :: ' \(b::\) :real_normed_vector set
and \(U\) :: ' \(c:\) :real_normed_vector set
assumes \(S\) homotopy_eqv \(T\)
shows \(\left(\forall f\right.\). continuous_on \(S f \wedge f^{\prime} S \subseteq U\)
\(\longrightarrow(\exists c\). homotopic_with_canon \((\lambda x\). True \() S U f(\lambda x . c))) \longleftrightarrow\)
( \(\forall f\). continuous_on \(T f \wedge f^{\prime} T \subseteq U\)
\(\longrightarrow(\exists c\). homotopic_with_canon \((\lambda x\). True \() T U f(\lambda x . c)))\)
by (rule iffI; metis assms homotopy_eqv_cohomotopic_triviality_null_imp homotopy_equivalent_space_sym)
Similar to the proof above
lemma homotopy_eqv_homotopic_triviality_null_imp:
fixes \(S::\) ' \(a:\) ::real_normed_vector set
and \(T::{ }^{\prime} b:\) :real_normed_vector set
and \(U\) :: ' \(c:\) :real_normed_vector set
assumes \(S\) homotopy_eqv \(T\)
and \(f\) : continuous_on \(U f f^{\prime} U \subseteq T\)
and homSU : \(\bigwedge f . \llbracket\) continuous_on \(U f ; f^{\prime} U \subseteq S \rrbracket\)
\(\Longrightarrow \exists c\). homotopic_with_canon \((\lambda x\). True) \(U S f(\lambda x . c)\)
shows \(\exists c\). homotopic_with_canon \((\lambda x\). True) \(U T f(\lambda x . c)\)
proof -
obtain \(h k\) where \(h\) : continuous_on \(S h h^{\prime} S \subseteq T\)
and \(k\) : continuous_on \(T k k^{\prime} T \subseteq S\)
and hom: homotopic_with_canon \((\lambda x\). True) \(S S(k \circ h) i d\)
homotopic_with_canon \((\lambda x\). True) \(T T(h \circ k)\) id
using assms by (auto simp: homotopy_equivalent_space_def)
obtain \(c::\) 'a where homotopic_with_canon \((\lambda x\). True) \(U S(k \circ f)(\lambda x . c)\)
proof (rule exE [OF homSU [of \(k \circ f]]\) )
show continuous_on \(U(k \circ f)\)
using continuous_on_compose continuous_on_subset fk blast
```

qed (use fk in force)
then have homotopic_with_canon (}\lambdax\mathrm{ . True) UT (h○(k○f)) (h○(}\lambdax.c)
by (rule homotopic_with_compose_continuous_left [where Y=S]) (use h in auto)
moreover have homotopic_with_canon (}\lambdax\mathrm{ . True) U T (id ○f) ((h○k) ○f)
by (rule homotopic_with_compose_continuous_right [where X=T])
(use f in <auto simp add: hom homotopic_with_symD`)
ultimately show ?thesis
using homotopic_with_trans by (fastforce simp add: o_def)
qed
lemma homotopy_eqv_homotopic_triviality_null:
fixes }S:: 'a::real_normed_vector set
and T :: 'b::real_normed_vector set
and U :: 'c::real_normed_vector set
assumes S homotopy_eqv T
shows (\forallf.continuous_on U f ^f'U\subseteqS
\longrightarrow(\existsc. homotopic_with_canon (}\lambdax.\mathrm{ True) US f (}\lambdax.c)))
(\forallf.continuous_on U f ^f'U\subseteqT
\longrightarrow (\exists c . h o m o t o p i c _ w i t h _ c a n o n ~ (~ \lambda x . ~ T r u e) ~ U T f (~ \lambda x . c)))
by (rule iffI; metis assms homotopy_eqv_homotopic_triviality_null_imp homotopy_equivalent_space_sym)
lemma homotopy_eqv_contractible_sets:
fixes S :: 'a::real_normed_vector set
and T :: 'b::real_normed_vector set
assumes contractible S contractible TS={}\longleftrightarrowT={}
shows S homotopy_eqv T
proof (cases S={})
case True with assms show ?thesis
by (simp add: homeomorphic_imp_homotopy_eqv)
next
case False
with assms obtain ab where a\inSb\inT
by auto
then show ?thesis
unfolding homotopy_equivalent_space_def
apply (rule_tac x=\lambdax.b in exI, rule_tac x=\lambdax.a in exI)
apply (intro assms conjI continuous_on_id' homotopic_into_contractible; force)
done
qed
lemma homotopy_eqv_empty1 [simp]:
fixes S :: 'a::real_normed_vector set
shows S homotopy_eqv ({}::'b::real_normed_vector set) \longleftrightarrowS={} (is ?lhs =
?rhs)
proof
assume?lhs then show ?rhs
by (metis continuous_map_subtopology_eu empty_iff equalityI homotopy_equivalent_space_def
image_subset_iff subsetI)
qed (simp add: homotopy_eqv_contractible_sets)

```
```

lemma homotopy_eqv_empty2 [simp]:
fixes S :: ' a ::real_normed_vector set
shows (\{\}::'b::real_normed_vector set) homotopy_eqv $S \longleftrightarrow S=\{ \}$
using homotopy_equivalent_space_sym homotopy_eqv_empty1 by blast
lemma homotopy_eqv_contractibility:
fixes S :: 'a::real_normed_vector set and T :: 'b::real_normed_vector set
shows S homotopy_eqv $T \Longrightarrow$ (contractible $S \longleftrightarrow$ contractible T)
by (meson contractible_space_top_of_set homotopy_equivalent_space_contractibility)
lemma homotopy_eqv_sing:
fixes S :: ' $a::$ real_normed_vector set and $a::$ ' $b::$ real_normed_vector
shows S homotopy_eqv $\{a\} \longleftrightarrow S \neq\{ \} \wedge$ contractible S
proof (cases $S=\{ \}$)
case False then show ?thesis
by (metis contractible_sing empty_not_insert homotopy_eqv_contractibility homo-
topy_eqv_contractible_sets)
qed simp
lemma homeomorphic_contractible_eq:
fixes S :: 'a::real_normed_vector set and T :: ' $b::$ real_normed_vector set
shows S homeomorphic $T \Longrightarrow($ contractible $S \longleftrightarrow$ contractible T)
by (simp add: homeomorphic_imp_homotopy_eqv homotopy_eqv_contractibility)
lemma homeomorphic_contractible:
fixes S :: 'a::real_normed_vector set and T :: 'b::real_normed_vector set
shows \llbracket contractible $S ; S$ homeomorphic $T \rrbracket \Longrightarrow$ contractible T
by (metis homeomorphic_contractible_eq)

```

\subsection*{6.18.25 Misc other results}
```

lemma bounded_connected_Compl_real:
fixes S :: real set
assumes bounded S and conn: connected $(-S)$
shows $S=\{ \}$
proof -
obtain $a b$ where $S \subseteq$ box a b
by (meson assms bounded_subset_box_symmetric)
then have $a \notin S b \notin S$
by auto
then have $\forall x . a \leq x \wedge x \leq b \longrightarrow x \in-S$
by (meson Compl_iff conn connected_iff_interval)
then show ?thesis
using $\langle S \subseteq$ box a b by auto
qed
corollary bounded_path_connected_Compl_real:
fixes S :: real set

```
assumes bounded \(S\) path＿connected \((-S)\) shows \(S=\{ \}\)
by（simp add：assms bounded＿connected＿Compl＿real path＿connected＿imp＿connected）
```

lemma bounded_connected_Compl_1:
fixes $S::$ 'a:: \{euclidean_space\} set
assumes bounded S and conn: connected $(-S)$ and 1: $\operatorname{DIM}\left({ }^{\prime} a\right)=1$
shows $S=\{ \}$
proof -
have $\operatorname{DIM}\left({ }^{\prime} a\right)=\operatorname{DIM}($ real $)$
by (simp add: 1)
then obtain $f::^{\prime} a \Rightarrow$ real and g
where linear $f \bigwedge x$. $\operatorname{norm}(f x)=\operatorname{norm} x$ and $f g: \bigwedge x . g(f x)=x \bigwedge y . f(g y)=$
y
by (rule isomorphisms_UNIV_UNIV) blast
with 〈bounded S 〉 have bounded (f ' S)
using bounded_linear_image linear_linear by blast
have bij f by (metis fg bijI')
have connected (f ' $(-S)$)
using connected_linear_image assms 〈linear $f\rangle$ by blast
moreover have $f^{\prime}(-S)=-\left(f^{\prime} S\right)$
by (simp add: <bij f〉bij_image_Compl_eq)
finally have connected $\left(-\left(f^{\prime} S\right)\right)$
by simp
then have f ' $S=\{ \}$
using 〈bounded (f ' S)〉 bounded_connected_Compl_real by blast
then show? ?thesis
by blast
qed

```

\section*{6．18．26 Some Uncountable Sets}
lemma uncountable＿closed＿segment：
fixes \(a\) ：：＇\(a:\) ：：real＿normed＿vector
assumes \(a \neq b\) shows uncountable（closed＿segment a b）
unfolding path＿image＿linepath［symmetric］path＿image＿def
using inj＿on＿linepath［OF assms］uncountable＿closed＿interval［of 0 1］
countable＿image＿inj＿on by auto
lemma uncountable＿open＿segment：
fixes \(a::{ }^{\prime} a::\) real＿normed＿vector
assumes \(a \neq b\) shows uncountable（open＿segment a \(b\) ）
by（simp add：assms open＿segment＿def uncountable＿closed＿segment uncountable＿minus＿countable）
lemma uncountable＿convex：
fixes \(a::{ }^{\prime} a::\) real＿normed＿vector
assumes convex \(S a \in S b \in S a \neq b\)
shows uncountable \(S\)
proof－
have uncountable（closed＿segment ab）
```

 by (simp add: uncountable_closed_segment assms)
 then show ?thesis
 by (meson assms convex_contains_segment countable_subset)
 qed
lemma uncountable_ball:
fixes a :: 'a::euclidean_space
assumes r>0
shows uncountable (ball a r)
proof -
have uncountable (open_segment a (a+r** (SOME i. i \in Basis)))
by (metis Basis_zero SOME_Basis add_cancel_right_right assms less_le scale_eq_0_iff
uncountable_open_segment)
moreover have open_segment a (a+r*R}(SOME i. i \in Basis))\subseteqball a r
using assms by (auto simp: in_segment algebra_simps dist_norm SOME_Basis)
ultimately show ?thesis
by (metis countable_subset)
qed
lemma ball_minus_countable_nonempty:
assumes countable (}A::\mp@subsup{:}{}{\prime}a\mathrm{ :: euclidean_space set) r>0
shows ball zr-A\not={}
proof
assume *: ball zr - A={}
have uncountable (ball z r - A)
by (intro uncountable_minus_countable assms uncountable_ball)
thus False by (subst (asm) *) auto
qed
lemma uncountable_cball:
fixes a :: 'a::euclidean_space
assumes r>0
shows uncountable (cball a r)
using assms countable_subset uncountable_ball by auto
lemma pairwise_disjnt_countable:
fixes \mathcal{N}:: nat set set
assumes pairwise disjnt }\mathcal{N
shows countable N
proof -
have inj_on (}\lambda\mathrm{ \. SOME n. n G X) (N - {{}})
by (clarsimp simp: inj_on_def) (metis assms disjnt_iff pairwiseD some_in_eq)
then show ?thesis
by (metis countable_Diff_eq countable_def)
qed
lemma pairwise_disjnt_countable_Union:
assumes countable (}\cup\mathcal{N})\mathrm{ and pwd: pairwise disjnt }\mathcal{N
shows countable \mathcal{N}

```
```

proof -
obtain f :: _ => nat where f: inj_on f (U\mathcal{N})
using assms by blast
then have pairwise disjnt (}\bigcupX\in\mathcal{N}.{\mp@subsup{f}{}{\prime}X}
using assms by (force simp: pairwise_def disjnt_inj_on_iff [OF f])
then have countable (}\bigcupX\in\mathcal{N}.{f'X}
using pairwise_disjnt_countable by blast
then show ?thesis
by (meson pwd countable_image_inj_on disjoint_image f inj_on_image pair-
wise_disjnt_countable)
qed
lemma connected_uncountable:
fixes S :: 'a::metric_space set
assumes connected Sa\inSb\inSa\not=b shows uncountable S
proof -
have continuous_on S (dist a)
by (intro continuous_intros)
then have connected (dist a 'S)
by (metis connected_continuous_image (connected S`)
then have closed_segment 0(dist a b)\subseteq(dist a'S)
by (simp add: assms closed_segment_subset is_interval_connected_1 is_interval_convex)
then have uncountable (dist a'S)
by (metis }\langlea\not=b\rangle\mathrm{ countable_subset dist_eq_0_iff uncountable_closed_segment)
then show ?thesis
by blast
qed
lemma path_connected_uncountable:
fixes S :: 'a::metric_space set
assumes path_connected S a GS b\inS S = b shows uncountable S
using path_connected_imp_connected assms connected_uncountable by metis
lemma connected_finite_iff_sing:
fixes S :: 'a::metric_space set
assumes connected S
shows finite S \longleftrightarrowS={}\vee(\existsa.S={a}) (is _ = ?rhs)
proof -
have uncountable S if }\neg\mathrm{ ?rhs
using connected_uncountable assms that by blast
then show ?thesis
using uncountable_infinite by auto
qed
lemma connected_card_eq_iff_nontrivial:
fixes S :: 'a::metric_space set
shows connected S\Longrightarrow uncountable S \longleftrightarrow }\longleftrightarrow(\existsa.S\subseteq{a}
by (metis connected_uncountable finite.emptyI finite.insertI rev_finite_subset sin-
gleton_iff subsetI uncountable_infinite)

```
```

lemma simple_path_image_uncountable:
fixes $g::$ real \Rightarrow ' $a::$ metric_space
assumes simple_path g
shows uncountable (path_image g)
proof -
have $g 0 \in$ path_image $g g(1 / 2) \in$ path_image g
by (simp_all add: path_defs)
moreover have $g 0 \neq g(1 / 2)$
using assms by (fastforce simp add: simple_path_def)
ultimately have $\forall a$. \neg path_image $g \subseteq\{a\}$
by blast
then show? thesis
using assms connected_simple_path_image connected_uncountable by blast
qed
lemma arc_image_uncountable:
fixes $g::$ real \Rightarrow ' $a:$:metric_space
assumes arc g
shows uncountable (path_image g)
by (simp add: arc_imp_simple_path assms simple_path_image_uncountable)

```

\subsection*{6.18.27 Some simple positive connection theorems}
proposition path_connected_convex_diff_countable:
fixes \(U\) :: 'a::euclidean_space set
assumes convex \(U \neg\) collinear \(U\) countable \(S\) shows path_connected \((U-S)\)
proof (clarsimp simp add: path_connected_def)
fix \(a b\)
assume \(a \in U a \notin S b \in U b \notin S\)
let \(? m=\) midpoint \(a b\)
show \(\exists\) g. path \(g \wedge\) path_image \(g \subseteq U-S \wedge\) pathstart \(g=a \wedge\) pathfinish \(g=b\)
proof (cases \(a=b\) )
case True
then show ? thesis
by (metis DiffI \(\langle a \in U\rangle\langle a \notin S\rangle\) path_component_def path_component_refl)
next
case False
then have \(a \neq ? m b \neq ? m\)
using midpoint_eq_endpoint by fastforce+
have ? \(m \in U\)
using \(\langle a \in U\rangle\langle b \in U\rangle\langle\) convex \(U\rangle\) convex_contains_segment by force obtain \(c\) where \(c \in U\) and nc_abc: \(\neg\) collinear \(\{a, b, c\}\)
by (metis False \(\langle a \in U\rangle\langle b \in U\rangle \measuredangle\) collinear \(U\rangle\) collinear_triples insert_absorb)
have ncoll_mca: \(\neg\) collinear \(\{? \mathrm{~m}, c, a\}\)
by (metis (full_types) \(\langle a \neq ?\) ? \(\rangle\) collinear_3_trans collinear_midpoint insert_commute nc_abc)
have ncoll_mcb: \(\neg\) collinear \(\{? m, c, b\}\)
```

 by (metis (full_types) <b \not= ?m> collinear_3_trans collinear_midpoint in-
 sert_commute nc_abc)
have c\not=?m
by (metis collinear_midpoint insert_commute nc_abc)
then have closed_segment ?m c\subseteqU
by (simp add: \langlec\inU\rangle\langle?m \inU\rangle\langleconvex U\rangle closed_segment_subset)
then obtain z where z:z\in closed_segment ?m c
and disjS:(closed_segment a z \cup closed_segment z b) \capS={}
proof -
have False if closed_segment ?m c\subseteq{z. (closed_segment a z\cup closed_segment
zb) \capS\not={}}
proof -
have closb: closed_segment ?m c\subseteq
{z\inclosed_segment ?m c. closed_segment az\capS\not={}}\cup{z\in
closed_segment ?m c. closed_segment z b \cap S\not={}}
using that by blast
have *: countable {z\in closed_segment ?m c. closed_segment zu\capS\not={}}
if u\inUu\not\inS and ncoll:\neg collinear {?m,c,u} for u
proof -
have **: False if x1:x1\in closed_segment ?m c and x2: x2 \in closed_segment
?m c
and x1 = x2 x1 f=u
and w:w\in closed_segment x1 uw\in closed_segment x2 u
and w\inS for x1 x2 w
proof -
have x1 \in affine hull {?m,c} x2 \in affine hull {?m,c}
using segment_as_ball x1 x2 by auto
then have coll_x1: collinear {x1,?m,c} and coll_x2: collinear {?m, c,
x2}
by (simp_all add: affine_hull_3_imp_collinear) (metis affine_hull_3_imp_collinear
insert_commute)
have ᄀ collinear {x1,u,x2}
proof
assume collinear {x1,u,x2}
then have collinear {?m,c,u}
by (metis (full_types) <c\not= ?m> coll_x1 coll_x2 collinear_3_trans
insert_commute ncoll \langlex1 = x2`)
with ncoll show False ..
qed
then have closed_segment x1 u\cap closed_segment ux2 ={u}
by (blast intro!: Int_closed_segment)
then have w}=
using closed_segment_commute w by auto
show ?thesis
using}\langleu\not\inS\rangle\langlew=u\rangle\mathrm{ that(7) by auto
qed
then have disj: disjoint ((\bigcupz\inclosed_segment ?m c. {closed_segment z u
\capS}))
by (fastforce simp: pairwise_def disjnt_def)

```
have cou：countable \(((\bigcup z \in\) closed＿segment ？m c．\(\{\) closed＿segment \(z u \cap\) \(S\})-\{\{ \}\})\)
apply（rule pairwise＿disjnt＿countable＿Union［OF＿pairwise＿subset［OF disj］］）
apply（rule countable＿subset［OF＿〈countable S〉］，auto）
done
define \(f\) where \(f \equiv \lambda X\) ．（THE z．\(z \in\) closed＿segment ？m \(c \wedge X=\) closed＿segment \(z u \cap S\) ）

\section*{show ？thesis}
proof（rule countable＿subset［OF＿countable＿image［OF cou，where \(f=f]\) ］， clarify）
fix \(x\)
assume \(x\) ：\(x \in\) closed＿segment ？m c closed＿segment \(x u \cap S \neq\{ \}\) show \(x \in f\)＇\(((\bigcup z \in\) closed＿segment ？\(m\) c．\(\{\) closed＿segment \(z u \cap S\})-\)
proof（rule＿tac \(x=\) closed＿segment \(x u \cap S\) in image＿eqI）
show \(x=f\)（closed＿segment \(x u \cap S\) ）
unfolding \(f_{-}\)def
by（rule the＿equality［symmetric］）（use \(x\) in \(\langle\) auto dest：\(* *\rangle\) ）
qed（use \(x\) in auto）
qed
qed
have uncountable（closed＿segment ？m c）
by（metis \(\langle c \neq ?\) ？\(>\) 〉 uncountable＿closed＿segment）
then show False
using closb \(*[O F\langle a \in U\rangle\langle a \notin S\rangle\) ncoll＿mca］\(*[O F\langle b \in U\rangle\langle b \notin S\rangle\)
ncoll＿mcb］
by（simp add：closed＿segment＿commute countable＿subset）
qed
then show ？thesis
by（force intro：that）
qed
show ？thesis
proof（intro exI conjI）
have path＿image（linepath a \(z+++\) linepath \(z b) \subseteq U\)
by（metis \(\langle a \in U\rangle\langle b \in U\rangle\left\langle c l o s e d \_s e g m e n t ? m \quad c \subseteq U\right\rangle z\langle\) convex \(U\rangle\) closed＿segment＿subset contra＿subsetD path＿image＿linepath subset＿path＿image＿join）
with disjS show path＿image（linepath a \(z+++\) linepath \(z b) \subseteq U-S\)
by（force simp：path＿image＿join）
qed auto
qed
qed
corollary connected＿convex＿diff＿countable：
fixes \(U\) ：：＇a：：euclidean＿space set
assumes convex \(U \neg\) collinear \(U\) countable \(S\)
shows connected \((U-S)\)
by（simp add：assms path＿connected＿convex＿diff＿countable path＿connected＿imp＿connected）
```

lemma path_connected_punctured_convex:
assumes convex S and aff: aff_dim $S \neq 1$
shows path_connected $(S-\{a\})$
proof -
consider aff_dim $S=-1 \mid$ aff_dim $S=0 \mid$ aff_dim $S \geq 2$
using assms aff_dim_geq [of $S]$ by linarith
then show? ?thesis
proof cases
assume aff_dim $S=-1$
then show ?thesis
by (metis aff_dim_empty empty_Diff path_connected_empty)
next
assume aff_dim $S=0$
then show? ?thesis
by (metis aff_dim_eq_0 Diff_cancel Diff_empty Diff_insert0 convex_empty con-
vex_imp_path_connected path_connected_singleton singletonD)
next
assume ge2: aff_dim $S \geq 2$
then have \neg collinear S
proof (clarsimp simp add: collinear_affine_hull)
fix $u v$
assume $S \subseteq$ affine hull $\{u, v\}$
then have aff_dim $S \leq$ aff_dim $\{u, v\}$
by (metis (no_types) aff_dim_affine_hull aff_dim_subset)
with ge2 show False
by (metis (no_types) aff_dim_2 antisym aff not_numeral_le_zero one_le_numeral
order_trans)
qed
moreover have countable $\{a\}$
by simp
ultimately show ?thesis
by (metis path_connected_convex_diff_countable [OF 〈convex S〉])
qed
qed
lemma connected_punctured_convex:
shows \llbracket convex S; aff_dim $S \neq 1 \rrbracket \Longrightarrow \operatorname{connected}(S-\{a\})$
using path_connected_imp_connected path_connected_punctured_convex by blast
lemma path_connected_complement_countable:
fixes S :: 'a::euclidean_space set
assumes $2 \leq D I M(' a)$ countable S
shows path_connected $(-S)$
proof -
have \neg collinear (UNIV ::'a set)
using assms by (auto simp: collinear_aff_dim [of UNIV :: 'a set])
then have path_connected (UNIV - S)
by (simp add: <countable S〉path_connected_convex_diff_countable)

```
```

 then show ?thesis
 by (simp add: Compl_eq_Diff_UNIV)
 qed
proposition path_connected_openin_diff_countable:
fixes S :: 'a::euclidean_space set
assumes connected S and ope: openin (top_of_set (affine hull S)) S
and \neg collinear S countable T
shows path_connected $(S-T)$
proof (clarsimp simp add: path_connected_component)
fix $x y$
assume $x y$: $x \in S x \notin T y \in S y \notin T$
show path_component $(S-T) x y$
proof (rule connected_equivalence_relation_gen [OF〈connected S), where $P=$
$\lambda x . x \notin T])$
show $\exists z . z \in U \wedge z \notin T$ if ope U : openin (top_of_set S) U and $x \in U$ for U
x
proof -
have openin (top_of_set (affine hull S)) U
using ope U ope openin_trans by blast
with $\langle x \in U\rangle$ obtain r where Usub: $U \subseteq$ affine hull S and $r>0$
and subU: ball $x r \cap$ affine hull $S \subseteq U$
by (auto simp: openin_contains_ball)
with $\langle x \in U\rangle$ have $x: x \in$ ball x affine hull S
by auto
have $\neg S \subseteq\{x\}$
using $\langle\neg$ collinear $S\rangle$ collinear_subset by blast
then obtain x^{\prime} where $x^{\prime} \neq x x^{\prime} \in S$
by blast
obtain y where $y: y \neq x y \in$ ball $x r \cap$ affine hull S
proof
show $x+\left(r / 2 / \operatorname{norm}\left(x^{\prime}-x\right)\right) *_{R}\left(x^{\prime}-x\right) \neq x$
using $\left\langle x^{\prime} \neq x\right\rangle\langle r>0\rangle$ by auto
show $x+\left(r / 2 / \operatorname{norm}\left(x^{\prime}-x\right)\right) *_{R}\left(x^{\prime}-x\right) \in$ ball $x r \cap$ affine hull S
using $\left\langle x^{\prime} \neq x\right\rangle\langle r>0\rangle\left\langle x^{\prime} \in S\right\rangle x$
by (simp add: dist_norm mem_affine_3_minus hull_inc)
qed
have convex (ball x $r \cap$ affine hull S)
by (simp add: affine_imp_convex convex_Int)
with x y sub U have uncountable U
by (meson countable_subset uncountable_convex)
then have $\neg U \subseteq T$
using <countable T〉 countable_subset by blast
then show ?thesis by blast
qed
show $\exists U$. openin (top_of_set $S) U \wedge x \in U \wedge$
$(\forall x \in U . \forall y \in U . x \notin T \wedge y \notin T \longrightarrow$ path_component $(S-T) x y)$
if $x \in S$ for x
proof -

```
```

 obtain r where Ssub: S\subseteqaffine hull S and r>0
 and subS: ball x r \cap affine hull S\subseteqS
 using ope \langlex \inS by (auto simp:openin_contains_ball)
 then have conv: convex (ball x r \cap affine hull S)
 by (simp add: affine_imp_convex convex_Int)
 have \negaff_dim (affine hull S) \leq1
 using <\neg collinear S\rangle collinear_aff_dim by auto
 then have \negaff_dim (ball x r \capaffine hull S)}\leq
 by (metis (no_types, hide_lams) aff_dim_convex_Int_open IntI open_ball <0
 < r> aff_dim_affine_hull affine_affine_hull affine_imp_convex centre_in_ball empty_iff
hull_subset inf_commute subsetCE that)
then have }\neg\mathrm{ collinear (ball x r }\cap\mathrm{ affine hull S)
by (simp add: collinear_aff_dim)
then have *: path_connected ((ball x r \cap affine hull S) - T)
by (rule path_connected_convex_diff_countable [OF conv _ <countable T\rangle])
have ST: ball x r\cap affine hull S-T\subseteqS - T
using subS by auto
show ?thesis
proof (intro exI conjI)
show }x\in\mathrm{ ball x r }\cap\mathrm{ affine hull }
using <x \inS\rangle\langler> 0\rangle by (simp add: hull_inc)
have openin (top_of_set (affine hull S)) (ball x r \cap affine hull S)
by (subst inf.commute) (simp add: openin_Int_open)
then show openin (top_of_set S)(ball x r \cap affine hull S)
by (rule openin_subset_trans [OF _ subS Ssub])
qed (use * path_component_trans in <auto simp: path_connected_component
path_component_of_subset [OF ST]>)
qed
qed (use xy path_component_trans in auto)
qed
corollary connected_openin_diff_countable:
fixes S :: 'a::euclidean_space set
assumes connected S and ope:openin (top_of_set (affine hull S)) S
and \neg collinear S countable T
shows connected(S - T)
by (metis path_connected_imp_connected path_connected_openin_diff_countable [OF
assms])
corollary path_connected_open_diff_countable:
fixes S :: 'a::euclidean_space set
assumes 2 \leq DIM('a) open S connected S countable T
shows path_connected (S - T)
proof (cases S={})
case True
then show ?thesis
by (simp)
next
case False

```
```

 show ?thesis
 proof (rule path_connected_openin_diff_countable)
 show openin (top_of_set (affine hull S)) S
 by (simp add: assms hull_subset open_subset)
 show \(\neg\) collinear \(S\)
 using assms False by (simp add: collinear_aff_dim aff_dim_open)
 qed (simp_all add: assms)
 qed
corollary connected_open_diff_countable:
fixes S :: 'a::euclidean_space set
assumes $2 \leq D I M\left({ }^{\prime} a\right)$ open S connected S countable T
shows connected $(S-T)$
by (simp add: assms path_connected_imp_connected path_connected_open_diff_countable)

```

\subsection*{6.18.28 Self-homeomorphisms shuffling points about}

The theorem homeomorphism_moving_points_exists
lemma homeomorphism_moving_point_1:
fixes \(a\) :: ' \(a:\) ::uclidean_space
assumes affine \(T a \in T\) and \(u: u \in\) ball a \(r \cap T\)
obtains \(f g\) where homeomorphism (cball a \(r \cap T)(\) cball a \(r \cap T) f g\)
\[
\text { f } a=u \bigwedge x . x \in \text { sphere } a r \Longrightarrow f x=x
\]
proof -
have nou: norm \((u-a)<r\) and \(u \in T\)
using \(u\) by (auto simp: dist_norm norm_minus_commute)
then have \(0<r\)
by (metis DiffD1 Diff_Diff_Int ball_eq_empty centre_in_ball not_le u)
define \(f\) where \(f \equiv \lambda x\). \((1-\operatorname{norm}(x-a) / r) *_{R}(u-a)+x\)
have \(*\) : False if eq: \(x+(\) norm \(y / r) *_{R} u=y+(\) norm \(x / r) *_{R} u\) and nou: norm \(u<r\) and \(y x\) : norm \(y<n o r m ~ x\) for \(x y\) and \(u::^{\prime} a\)
proof -
have \(x=y+(\) norm \(x / r-(\) norm \(y / r)) *_{R} u\)
using eq by (simp add: algebra_simps)
then have norm \(x=\operatorname{norm}\left(y+((\right.\) norm \(\left.x-\operatorname{norm} y) / r) *_{R} u\right)\) by (metis diff_divide_distrib)
also have \(\ldots \leq \operatorname{norm} y+\operatorname{norm}\left(((\right.\) norm \(\left.x-\operatorname{norm} y) / r) *_{R} u\right)\)
using norm_triangle_ineq by blast
also have \(\ldots=\) norm \(y+(\) norm \(x-\) norm \(y) *(\) norm \(u / r)\)
using \(y x\langle r>0\rangle\)
by (simp add: field_split_simps)
also have \(\ldots<\) norm \(y+(\) norm \(x-\operatorname{norm} y) * 1\)
proof (subst add_less_cancel_left)
show \((\) norm \(x-\operatorname{norm} y) *(\) norm \(u / r)<(\) norm \(x-\) norm \(y) * 1\)
proof (rule mult_strict_left_mono)
show norm \(u / r<1\)
using \(\langle 0<r\rangle\) divide_less_eq_1_pos nou by blast
qed (simp add: yx)
qed
```

 also have \(\ldots=\) norm \(x\)
 by simp
 finally show False by simp
 qed
 have inj \(f\)
 unfolding \(f_{-} d e f\)
 proof (clarsimp simp: inj_on_def)
 fix \(x y\)
 assume \((1-\operatorname{norm}(x-a) / r) *_{R}(u-a)+x=\)
 \((1-\operatorname{norm}(y-a) / r) *_{R}(u-a)+y\)
 then have eq: \((x-a)+(\) norm \((y-a) / r) *_{R}(u-a)=(y-a)+(\) norm
 $(x-a) / r) *_{R}(u-a)$
by (auto simp: algebra_simps)
show $x=y$
proof (cases norm $(x-a)=\operatorname{norm}(y-a))$
case True
then show ?thesis
using eq by auto
next
case False
then consider norm $(x-a)<\operatorname{norm}(y-a) \mid \operatorname{norm}(x-a)>\operatorname{norm}(y$
$-a)$
by linarith
then have False
proof cases
case 1 show False
using $*[O F$ _ nou 1] eq by simp
next
case 2 with * [OF eq nou] show False
by auto
qed
then show $x=y$..
qed
qed
then have inj_onf: inj_on f (cball a $r \cap T$)
using inj_on_Int by fastforce
have contf: continuous_on (cball a $r \cap T$) f
unfolding f_{-}def using $\langle 0<r\rangle$ by (intro continuous_intros) blast
have fim: f ' (cball a $r \cap T)=$ cball a $r \cap T$
proof
have $*$: norm $\left(y+(1-\right.$ norm $\left.y / r) *_{R} u\right) \leq r$ if norm $y \leq r$ norm $u<r$
for $y u::^{\prime} a$
proof -
have norm $\left(y+(1-\operatorname{norm} y / r) *_{R} u\right) \leq \operatorname{norm} y+\operatorname{norm}((1-$ norm $y /$
$\left.r) *_{R} u\right)$
using norm_triangle_ineq by blast
also have $\ldots=$ norm $y+\operatorname{abs}(1-\operatorname{norm} y / r) *$ norm u
by simp
also have $\ldots \leq r$

```
```

 proof -
 have (r - norm u)*(r - norm y) \geq0
 using that by auto
 then have r* norm u+r* norm y \leqr*r + norm u* norm y
 by (simp add: algebra_simps)
 then show ?thesis
 using that }\langle0<r\rangle\mathrm{ by (simp add: abs_if field_simps)
 qed
 finally show ?thesis .
 qed
 have f '(cball a r)\subseteqcball a r
 using * nou
 apply (clarsimp simp: dist_norm norm_minus_commute f_def)
 by (metis diff_add_eq diff_diff_add diff_diff_eq2 norm_minus_commute)
 moreover have f'T\subseteqT
 unfolding f_def using <affine T\rangle\langlea\inT\rangle\langleu\inT\rangle
 by (force simp: add.commute mem_affine_3_minus)
 ultimately show f '(cball a }r\capT)\subseteq\mathrm{ cball a }r\cap
 by blast
 next
show cball a r \capT\subseteqf`(cball a r \capT)
proof (clarsimp simp add: dist_norm norm_minus_commute)
fix }
assume x: norm (x-a)\leqr and x
have }\existsv\in{0..1}.((1-v)*r-norm ((x-a)-v** (u-a)))\cdot1=
by (rule ivt_decreasing_component_on_1) (auto simp: x continuous_intros)
then obtain v}\mathrm{ where 0
and v:(1-v)*r=norm ((x-a)-v*R}(u-a)
by auto
then have n: norm (a- (x-v*R (u-a))) =r -r*v
by (simp add: field_simps norm_minus_commute)
show }x\in\mp@subsup{f}{}{\prime}(cball a r \capT
proof (rule image_eqI)
show }x=f(x-v\mp@subsup{*}{R}{}(u-a)
using \langler> 0\ranglev by (simp add: f_def) (simp add: field_simps)
have }x-v\mp@subsup{*}{R}{}(u-a)\in\mathrm{ cball a r
using \langler>0\<0 \leqv\rangle
by (simp add: dist_norm n)
moreover have }x-v\mp@subsup{*}{R}{}(u-a)\in
by (simp add: f_def }\langleu\inT\rangle\langlex\inT\rangle\mathrm{ assms mem_affine_3_minus2)
ultimately show }x-v\mp@subsup{*}{R}{}(u-a)\in\mathrm{ cball a r }\cap
by blast
qed
qed
qed
have compact (cball a r \capT)
by (simp add: affine_closed compact_Int_closed \affine T〉)
then obtain g}\mathrm{ where homeomorphism (cball a r }\capT)(cball a r\capT)f
by (metis homeomorphism_compact [OF _ contf fim inj_onf])

```
```

 then show thesis
 apply (rule_tac f=f in that)
 using }\langler>0\rangle\mathrm{ by (simp_all add: f_def dist_norm norm_minus_commute)
 qed
corollary homeomorphism_moving_point_2:
fixes a :: 'a::euclidean_space
assumes affine T a \inT and u:u\in ball a r\capT and v:v\inball a r \capT
obtains fg}\mathrm{ where homeomorphism (cball a r }\capT)(cball a r\capT) f
fu=v\bigwedgex.\llbracketx\in sphere a r;x\inT\rrbracket\Longrightarrowfx=x
proof -
have 0<r
by (metis DiffD1 Diff_Diff_Int ball_eq_empty centre_in_ball not_le u)
obtain f1 g1 where hom1: homeomorphism (cball a r \cap T) (cball a r \capT) f1
g1
and f1 a = u and f1: \bigwedgex. x f sphere a r \Longrightarrowf1 x=x
using homeomorphism_moving_point_1 [OF \langleaffine T\rangle\langlea\inT\rangleu] by blast
obtain f2 g2 where hom2: homeomorphism (cball a r \capT) (cball a r \capT) f2
g2
and f2 }a=v\mathrm{ and f2: \x. x f sphere a r C f2 }x=
using homeomorphism_moving_point_1 [OF <affine T\rangle\langlea\inT\ranglevv] by blast
show ?thesis
proof
show homeomorphism(cball a }r\capT)(cball a r \cap T)(f2 ○ g1) (f1\circg2)
by (metis homeomorphism_compose homeomorphism_symD hom1 hom2)
have g1 u=a
using <0 < r\rangle\langlef1 a = u\rangle assms hom1 homeomorphism_apply1 by fastforce
then show (f2 ○ g1) u=v
by (simp add: <f2 a = v`)
show }\x.\llbracketx\in\mathrm{ sphere a r;x}\inT
Longrightarrow(f2 \circ g1) x=x
using f1 f2 hom1 homeomorphism_apply1 by fastforce
qed
qed
corollary homeomorphism_moving_point_3:
fixes a :: 'a::euclidean_space
assumes affine Ta}
inT\mathrm{ and ST: ball a r }\capT\subseteqSS\subseteq
and u:u b ball a }r\capT\mathrm{ and v:v ball a }r\cap
obtains fg}\mathrm{ where homeomorphism SSfg
fu=v{x.\neg(fx=x\wedgegx=x)}\subseteqball a r \capT
proof -
obtain fg}\mathrm{ where hom: homeomorphism (cball a r }\capT)(cball a r \capT)fg
and fu=v and fid: \x. \llbracketx\in sphere a r;x\inT\rrbracket\Longrightarrowfx=x
using homeomorphism_moving_point_2 [OF <affine T\rangle\langlea\inT\rangleuv] by blast
have gid: \}\x.\llbracketx\in\mathrm{ sphere a r; x
using fid hom homeomorphism_apply1 by fastforce
define ff where ff \equiv\lambdax. if x ball a r \cap T then f x else x
define gg where gg\equiv\lambdax. if }x\in\mathrm{ ball a }r\capT\mathrm{ then }g\mathrm{ x else }

```
```

show ?thesis
proof
show homeomorphism $S S$ ff gg
proof (rule homeomorphismI)
have continuous_on $(($ cball a $r \cap T) \cup(T-$ ball a r) $) f f$
unfolding $f f=d e f$
using homeomorphism_cont1 [OF hom]
by (intro continuous_on_cases) (auto simp: affine_closed 〈affine T〉 fid)
then show continuous_on S ff
by (rule continuous_on_subset) (use ST in auto)
have continuous_on $(($ cball a $r \cap T) \cup(T-$ ball a $r)) g g$
unfolding $g g_{-} d e f$
using homeomorphism_cont2 [OF hom]
by (intro continuous_on_cases) (auto simp: affine_closed 〈affine $T\rangle$ gid)
then show continuous_on S gg
by (rule continuous_on_subset) (use ST in auto)
show $f f$ ' $S \subseteq S$
proof (clarsimp simp add: ff_def)
fix x
assume $x \in S$ and x : dist $a x<r$ and $x \in T$
then have $f x \in$ cball a $r \cap T$
using homeomorphism_image1 [OF hom] by force
then show $f x \in S$
using $S T(1)\langle x \in T\rangle$ gid hom homeomorphism_def x by fastforce
qed
show $g g^{\prime} S \subseteq S$
proof (clarsimp simp add: gg_def)
fix x
assume $x \in S$ and x : dist $a x<r$ and $x \in T$
then have $g x \in$ cball a $r \cap T$
using homeomorphism_image2 [OF hom] by force
then have $g x \in$ ball a r
using homeomorphism_apply2 [OF hom]
by (metis Diff_Diff_Int Diff_iff $\langle x \in T\rangle$ cball_def fid le_less mem_Collect_eq
mem_ball mem_sphere x)
then show $g x \in S$
using $S T(1)\langle g x \in$ cball a $r \cap T\rangle$ by force
qed
show $\bigwedge x . x \in S \Longrightarrow g g(f f x)=x$
unfolding ff_def gg_def
using homeomorphism_apply1 [OF hom] homeomorphism_image1 [OF hom]
by simp (metis Int_iff homeomorphism_apply1 [OF hom] fid image_eqI
less_eq_real_def mem_cball mem_sphere)
show $\bigwedge x . x \in S \Longrightarrow f f(g g x)=x$
unfolding ff_def gg_def
using homeomorphism_apply2 [OF hom] homeomorphism_image2 [OF hom]
by simp (metis Int_iff fid image_eqI less_eq_real_def mem_cball mem_sphere)
qed
show ff $u=v$

```
```

 using }u\mathrm{ by (auto simp: ff_def <f u=v>)
 show {x.\neg(ff x=x\wedgeggx=x)}\subseteq ball a r \cap T
 by (auto simp: ff_def gg_def)
 qed
 qed
proposition homeomorphism_moving_point:
fixes a :: 'a::euclidean_space
assumes ope:openin (top_of_set (affine hull S)) S
and S\subseteqT
and TS:T\subseteq affine hull S
and S: connected S a \inS b\inS
obtains fg}\mathrm{ where homeomorphism TTfgfa=b

$$
\{x . \neg(f x=x \wedge g x=x)\} \subseteq S
$$

 bounded {x.\neg (f x=x\wedge g x=x)}
 proof -
have 1: \existshk. homeomorphism T Thk^h(fd)=d^
{x.\neg(hx=x\wedgekx=x)}\subseteqS^bounded {x.\neg (hx=x\wedgekx=x)}
if d\inSfd\inS and homfg: homeomorphism TTfg
and S:{x.\neg (fx=x^gx=x)}\subseteqS
and bo: bounded {x.\neg (fx=x\wedgegx=x)} for dfg
proof (intro exI conjI)
show homgf: homeomorphism T Tgf
by (metis homeomorphism_symD homfg)
then show g}(fd)=
by (meson }\langleS\subseteqT\rangle homeomorphism_def subsetD \d \inS\rangle
show {x.\neg(gx=x\wedgefx=x)}\subseteqS
using}S\mathrm{ by blast
show bounded {x.\neg (gx=x\wedgefx=x)}
using bo by (simp add: conj_commute)
qed
have 2: \existsfg. homeomorphism TT T g ^ fx=f2 (f1 x) ^
{x.\neg(fx=x\wedgegx=x)}\subseteqS\wedge bounded {x.\neg(fx=x\wedgegx=
x)}
if x \inS f1 x \inS f2 (f1 x) \inS
and hom: homeomorphism T T f1 g1 homeomorphism T T f2 g2
and sub: {x.\neg(f1 x = x^g1 x = x)}\subseteqS {x.\neg(f2 x=x^g2 x
=x)}\subseteqS
and bo: bounded {x.\neg (f1x=x\wedgeg1 x=x)} bounded {x.\neg(f2 x
=x\wedgeg2 x = x)}
for x f1 f2 g1 g2
proof (intro exI conjI)
show homgf: homeomorphism T T (f2 ○f1) (g1\circg2)
by (metis homeomorphism_compose hom)
then show (f2 ○f1) x=f2 (f1 x)
by force
show {x.\neg((f2 \circf1) x=x\wedge(g1\circg2) x=x)}\subseteqS
using sub by force

```
```

 have bounded \((\{x . \neg(f 1 x=x \wedge g 1 x=x)\} \cup\{x . \neg(f 2 x=x \wedge g 2 x=x)\})\)
 using bo by simp
 then show bounded \(\{x . \neg((f 2 \circ f 1) x=x \wedge(g 1 \circ g 2) x=x)\}\)
 by (rule bounded_subset) auto
 qed
 have 3: \(\exists U\). openin (top_of_set \(S\)) \(U \wedge\)
 \(d \in U \wedge\)
 (\(\forall x \in U\).
 \(\exists f\) g. homeomorphism \(T T f g \wedge f d=x \wedge\)
 \(\{x . \neg(f x=x \wedge g x=x)\} \subseteq S \wedge\)
 bounded \(\{x . \neg(f x=x \wedge g x=x)\})\)
 if \(d \in S\) for \(d\)
 proof -
 obtain \(r\) where \(r>0\) and \(r\) : ball \(d r \cap\) affine hull \(S \subseteq S\)
 by (metis \(\langle d \in S\rangle\) ope openin_contains_ball)
 have \(*: \exists f\) g. homeomorphism \(T T f g \wedge f d=e \wedge\)
 \(\{x . \neg(f x=x \wedge g x=x)\} \subseteq S \wedge\)
 bounded \(\{x . \neg(f x=x \wedge g x=x)\}\) if \(e \in S e \in\) ball \(d r\) for \(e\)
 apply (rule homeomorphism_moving_point_3 [of affine hull Sdrrde])
 using \(r\langle S \subseteq T\rangle T S\) that
 apply (auto simp: \(\langle d \in S\rangle\langle 0<r\rangle\) hull_inc)
 using bounded_subset by blast
 show ?thesis
 by (rule_tac \(x=S \cap\) ball \(d r\) in exI) (fastforce simp: openin_open_Int \(\langle 0<r\rangle\)
 that intro: *)
qed
have $\exists f g$. homeomorphism TTfg^fa=b^
$\{x . \neg(f x=x \wedge g x=x)\} \subseteq S \wedge$ bounded $\{x . \neg(f x=x \wedge g x=x)\}$
by (rule connected_equivalence_relation $[O F S]$; blast intro: 12 3)
then show ?thesis
using that by auto
qed

```
lemma homeomorphism_moving_points_exists_gen:
    assumes \(K\) : finite \(K \bigwedge i . i \in K \Longrightarrow x i \in S \wedge y i \in S\)
            pairwise \((\lambda i j .(x i \neq x j) \wedge(y i \neq y j)) K\)
            and \(2 \leq\) aff_dim \(S\)
            and ope: openin (top_of_set (affine hull \(S\) )) \(S\)
            and \(S \subseteq T T \subseteq\) affine hull \(S\) connected \(S\)
    shows \(\exists f\) g. homeomorphism \(T T f g \wedge(\forall i \in K . f(x i)=y i) \wedge\)
                \(\{x . \neg(f x=x \wedge g x=x)\} \subseteq S \wedge\) bounded \(\{x . \neg(f x=x \wedge g x=x)\}\)
    using assms
proof (induction K)
    case empty
    then show? case
        by (force simp: homeomorphism_ident)
next
    case (insert i K)
```

then have xney: $\bigwedge j . \llbracket j \in K ; j \neq i \rrbracket \Longrightarrow x i \neq x j \wedge y i \neq y j$
and pw: pairwise $(\lambda i j . x i \neq x j \wedge y i \neq y j) K$
and $x i \in S y i \in S$
and $x y S: \bigwedge i . i \in K \Longrightarrow x i \in S \wedge y i \in S$
by (simp_all add: pairwise_insert)
obtain $f g$ where homfg: homeomorphism $T T f g$ and $f e q: \wedge i . i \in K \Longrightarrow f(x$

```
i) \(=y i\)
            and fg_sub: \(\{x . \neg(f x=x \wedge g x=x)\} \subseteq S\)
            and bo_fg: bounded \(\{x . \neg(f x=x \wedge g x=x)\}\)
    using insert.IH [OF xyS pw] insert.prems by (blast intro: that)
then have \(\exists f g\). homeomorphism \(T T f g \wedge(\forall i \in K . f(x i)=y i) \wedge\)
\[
\{x . \neg(f x=x \wedge g x=x)\} \subseteq S \wedge \text { bounded }\{x . \neg(f x=x \wedge g x
\]
\[
=x)\}
\]
using insert by blast
have aff＿eq：affine hull \(\left(S-y^{\prime} K\right)=\) affine hull \(S\)
proof（rule affine＿hull＿Diff［OF ope］）
show finite（ \(y\)＇\(K\) ）
by（simp add：insert．hyps（1））
show y＇\(K \subset S\)
using \(\langle y i \in S\rangle\) insert．hyps（2）xney xyS by fastforce
qed
have \(f_{-} i n_{-} S: f x \in S\) if \(x \in S\) for \(x\)
using homfg fg＿sub homeomorphism＿apply1 \(\langle S \subseteq T\rangle\)
proof－
have \((f(f x) \neq f x \vee g(f x) \neq f x) \vee f x \in S\)
by（metis \(\langle S \subseteq T\rangle\) homfg subsetD homeomorphism＿apply1 that）
then show ？thesis
using fg＿sub by force
qed
obtain \(h k\) where homhk：homeomorphism \(T T h k\) and heq：\(h(f(x i))=y i\) and \(h k\)＿sub：\(\{x . \neg(h x=x \wedge k x=x)\} \subseteq S-y\)＇\(K\) and bo＿hk：bounded \(\{x . \neg(h x=x \wedge k x=x)\}\)
proof（rule homeomorphism＿moving＿point \(\left[\right.\) of \(\left.\left.S-y^{`} K T f(x i) y i\right]\right)\)
show openin（top＿of＿set（affine hull \(\left.\left(S-y^{\prime} K\right)\right)\) ）\(\left(S-y^{\prime} K\right)\)
by（simp add：aff＿eq openin＿diff finite＿imp＿closedin image＿subset＿iff hull＿inc insert xyS）
show \(S-y^{\prime} K \subseteq T\)
using \(\langle S \subseteq T\rangle\) by auto
show \(T \subseteq\) affine hull \(\left(S-y^{\prime} K\right)\)
using insert by（simp add：aff＿eq）
show connected（ \(S-y^{\prime} K\) ）
proof（rule connected＿openin＿diff＿countable［OF 〈connected S〉ope］）
show \(\neg\) collinear \(S\)
using collinear＿aff＿dim〈2 \(\leq\) aff＿dim \(S\rangle\) by force
show countable（ \(y^{\prime} K\) ）
using countable＿finite insert．hyps（1）by blast
qed
have \(\wedge k . \llbracket f(x i)=y k ; k \in K \rrbracket \Longrightarrow\) False
by（metis feq homfg \(\langle x i \in S\rangle\) homeomorphism＿def \(\langle S \subseteq T\rangle\langle i \notin K\rangle\) subset \(C E\)
```

xney xyS)
then show f(xi)\inS-y'K
by (auto simp: f_in_S\langlex i\inS〉)
show y i\inS-y'K
using insert.hyps xney by (auto simp: <y i G S`) qed blast show ?case proof (intro exI conjI) show homeomorphism TT (h\circf)(g\circk) using homfg homhk homeomorphism_compose by blast show }\foralli\in\mathrm{ insert i K. (h०f) (xi)= y i using feq hk_sub by (auto simp: heq) show {x.\neg ((h\circf)x=x^(g\circk)x=x)}\subseteqS using fg_sub hk_sub by force have bounded ({x. \neg(fx=x\wedge gx=x)}\cup{x.\neg(hx=x\wedgekx=x)}) using bo_fg bo_hk bounded_Un by blast then show bounded {x.\neg((h\circf)x=x\wedge(g\circk)x=x)} by (rule bounded_subset) auto qed qed proposition homeomorphism_moving_points_exists: fixes S :: 'a::euclidean_space set assumes 2: 2 \leq DIM('a) open S connected S S\subseteqT finite K and KS:^i. i G K\Longrightarrowxi\inS^yi\inS and pw: pairwise (\lambdaij. (xi\not=xj)^(yi\not=yj))K and S:S\subseteqTT\subseteqaffine hull S connected S obtains fg}\mathrm{ where homeomorphism TTfg \i.i}\=K\Longrightarrowf(xi)=y {x.\neg(fx=x\wedgegx=x)}\subseteqS bounded {x. }(\neg(fx=x\wedgegx x))} proof (cases S={}) case True then show ?thesis using KS homeomorphism_ident that by fastforce next case False then have affS: affine hull S=UNIV by (simp add: affine_hull_open <open S`)
then have ope: openin (top_of_set (affine hull S)) S
using (open S` open_openin by auto
have 2 \leq DIM('a) by (rule 2)
also have ... = aff_dim (UNIV :: 'a set)
by simp
also have ... \leqaff_dim S
by (metis aff_dim_UNIV aff_dim_affine_hull aff_dim_le_DIM affS)
finally have 2 \leqaff_dim S
by linarith
then show ?thesis
using homeomorphism_moving_points_exists_gen [OF〈finite K〉KS pw_ope S]

```

\section*{that by fastforce \\ qed}

The theorem homeomorphism_grouping_points_exists
lemma homeomorphism_grouping_point_1:
fixes \(a:\) :real and \(c::\) real
assumes \(a<b c<d\)
obtains \(f g\) where homeomorphism (cbox ab) (cbox cd)fgfa=cfb=d proof -
define \(f\) where \(f \equiv \lambda x .((d-c) /(b-a)) * x+(c-a *((d-c) /(b-\) a)))
have \(\exists g\). homeomorphism (cbox ab) (cbox cd)fg
proof (rule homeomorphism_compact)
show continuous_on (cbox a b) \(f\)
unfolding \(f_{-}\)def by (intro continuous_intros)
have \(f\) ' \(\{a . . b\}=\{c . . d\}\)
unfolding \(f_{-}\)def image_affinity_atLeastAtMost
using assms sum_sqs_eq by (auto simp: field_split_simps)
then show \(f\) ' cbox a \(b=\) cbox \(c d\)
by auto
show inj_on \(f\) (cbox a b)
unfolding f_def inj_on_def using assms by auto
qed auto
then obtain \(g\) where homeomorphism (cbox ab) (cbox cd)fg..
then show ?thesis
proof
show \(f a=c\)
by (simp add: \(f_{-} d e f\) )
show \(f b=d\)
using assms sum_sqs_eq [of ab] by (auto simp: \(f_{-}\)def field_split_simps)
qed
qed
lemma homeomorphism_grouping_point_2:
fixes \(a\) ::real and \(w:\) :real
assumes hom_ab: homeomorphism (cbox a b) (cbox uv)f1g1
and hom_bc: homeomorphism (cbox b c) (cbox vw) f2 g2
and \(b \in\) cbox a c \(v \in\) cbox \(u w\)
and eq: f1 \(a=u f 1 b=v\) f2 \(b=v\) f2 \(c=w\)
obtains \(f g\) where homeomorphism (cbox a c) (cboxuw)fgfa=ufc=w
\(\bigwedge x . x \in \operatorname{cbox} a b \Longrightarrow f x=f 1 x \bigwedge x . x \in \operatorname{cbox} b c \Longrightarrow f x=f 2 x\)
proof -
have \(l e: a \leq b b \leq c u \leq v v \leq w\)
using assms by simp_all
then have ac: cbox a \(c=c b o x a b \cup c b o x b c\) and \(u w\) : cbox \(u w=c b o x u v \cup\)
cbox \(v w\)
by auto
define \(f\) where \(f \equiv \lambda x\). if \(x \leq b\) then f1 \(x\) else f2 \(x\)
```

 have \(\exists g\). homeomorphism (cbox a c) (cbox uw)fg
 proof (rule homeomorphism_compact)
 have cf1: continuous_on (cbox a b) f1
 using hom_ab homeomorphism_cont1 by blast
 have cf2: continuous_on (cbox bc) f2
 using hom_bc homeomorphism_cont1 by blast
 show continuous_on (cbox a c) \(f\)
 unfolding \(f_{-} d e f\) using le eq
 by (force intro: continuous_on_cases_le [OF continuous_on_subset [OF cf1]
 continuous_on_subset [OF cf2]]])
have f ' cbox a $b=f 1$ ' cbox a $b f^{\prime} c b o x b c=f 2$ ' cbox $b c$
unfolding f_{-}def using eq by force +
then show f ' cbox a $c=$ cbox $u w$
unfolding ac uw image_Un by (metis hom_ab hom_bc homeomorphism_def)
have neq12: $f 1 x \neq f 2 y$ if $x: a \leq x x \leq b$ and $y: b<y y \leq c$ for $x y$
proof -
have $f 1 x \in$ cbox $u v$
by (metis hom_ab homeomorphism_def image_eqI mem_box_real(2) x)
moreover have f2 $y \in \operatorname{cbox} v w$
by (metis (full_types) hom_bc homeomorphism_def image_subset_iff mem_box_real(2)
not_le not_less_iff_gr_or_eq order_refl y)
moreover have f2 $y \neq f 2 b$
by (metis cancel_comm_monoid_add_class.diff_cancel diff_gt_0_iff_gt hom_bc
homeomorphism_def le(2) less_imp_le less_numeral_extra(3) mem_box_real(2) or-
der_refl y)
ultimately show ?thesis
using le eq by simp
qed
have inj_on f1 (cbox a b)
by (metis (full_types) hom_ab homeomorphism_def inj_onI)
moreover have inj_on f2 (cbox bc)
by (metis (full_types) hom_bc homeomorphism_def inj_onI)
ultimately show inj_on f (cbox a c)
apply (simp (no_asm) add: inj_on_def)
apply (simp add: f_{-}def inj_on_eq_iff)
using neq12 by force
qed auto
then obtain g where homeomorphism (cbox a c) (cbox u w) fg..
then show ?thesis
using eq f_{-}def le that by force
qed
lemma homeomorphism_grouping_point_3:
fixes a ::real
assumes cbox_sub: cbox c d \subseteq box a b cbox $u v \subseteq$ box ab
and box_ne: box c $d \neq\{ \}$ box $u v \neq\{ \}$
obtains $f g$ where homeomorphism (cbox ab) (cbox ab) fgfa=afb=b
$\bigwedge x . x \in \operatorname{cbox} c d \Longrightarrow f x \in \operatorname{cbox} u v$
proof -

```
```

have less: $a<c a<u d<b v<b c<d u<v$ cbox $c d \neq\{ \}$
using assms
by (simp_all add: cbox_sub subset_eq)
obtain f1 g1 where 1: homeomorphism (cbox a c) (cbox a u) f1 g1
and f1_eq: f1 $a=a f 1 c=u$
using homeomorphism_grouping_point_1 $[$ OF $\langle a<c\rangle\langle a<u\rangle]$.
obtain f2 g2 where 2: homeomorphism (cbox cd) (cbox uv) f2 g2
and f2_eq: f2 $c=u$ f2 $d=v$
using homeomorphism_grouping_point_1 $[O F\langle c<d\rangle\langle u<v\rangle]$.
obtain f3 g3 where 3: homeomorphism (cbox d b) (cbox v b) f3 g3
and f3_eq: f3 $d=v f 3 b=b$
using homeomorphism_grouping_point_1 $[O F\langle d<b\rangle\langle v<b\rangle]$.
obtain $f_{4} g 4$ where 4: homeomorphism (cbox a d) (cbox a v) $f_{4} g_{4}$ and $f_{4} a=$
$a f_{4} d=v$
and f4_eq: $\wedge x . x \in \operatorname{cbox}$ a $c \Longrightarrow f 4 x=f 1 x \bigwedge x . x \in$ cbox $c d \Longrightarrow$
$f 4 x=f 2 x$
using homeomorphism_grouping_point_2 [OF 1 2] less by (auto simp: f1_eq
f2_eq)
obtain $f g$ where $f g$: homeomorphism (cbox ab) (cbox ab) fgfa=afb=b
and $f_{-} e q: \bigwedge x . x \in$ cbox a $d \Longrightarrow f x=f_{4} x \bigwedge x . x \in \operatorname{cboxd} d \Longrightarrow f x$
$=f 3 x$
using homeomorphism_grouping_point_2 [OF 4 3] less by (auto simp: f4_eq
f3_eq f2_eq f1_eq)
show ?thesis
proof (rule that [OF fg])
show $f x \in \operatorname{cbox} u v$ if $x \in \operatorname{cbox} c d$ for x
using that f4_eq f_eq homeomorphism_image1 [OF 2]
by (metis atLeastAtMost_iff box_real(2) image_eqI less(1) less_eq_real_def
order_trans)
qed
qed

```
lemma homeomorphism_grouping_point_4:
fixes \(T\) :: real set
assumes open \(U\) open \(S\) connected \(S U \neq\{ \}\) finite \(K G \subseteq S U \subseteq S S \subseteq T\)
obtains \(f g\) where homeomorphism \(T T f g\)
\[
\begin{aligned}
& \bigwedge x . x \in K \Longrightarrow f x \in U\{x .(\neg(f x=x \wedge g x=x))\} \subseteq S \\
& \text { bounded }\{x .(\neg(f x=x \wedge g x=x))\}
\end{aligned}
\]
proof -
obtain \(c d\) where box \(c d \neq\{ \}\) cbox \(c d \subseteq U\)
proof -
obtain \(u\) where \(u \in U\)
using \(\langle U \neq\{ \}\rangle\) by blast
then obtain \(e\) where \(e>0\) cball \(u e \subseteq U\)
using 〈open \(U\) 〉 open_contains_cball by blast
then show ?thesis
by (rule_tac \(c=u\) and \(d=u+e\) in that) (auto simp: dist_norm subset_iff)
qed
```

have compact K
by (simp add: 〈finite K 〉 finite_imp_compact)
obtain $a b$ where box $a b \neq\{ \} K \subseteq$ cbox a b cbox a $b \subseteq S$
proof (cases $K=\{ \}$)
case True then show ?thesis
using 〈box c $d \neq\{ \}\rangle\langle c b o x$ c $d \subseteq U\rangle\langle U \subseteq S\rangle$ that by blast
next
case False
then obtain $a b$ where $a \in K b \in K$
and $a: \wedge x . x \in K \Longrightarrow a \leq x$ and $b: \bigwedge x . x \in K \Longrightarrow x \leq b$
using compact_attains_inf compact_attains_sup by (metis <compact K))+
obtain e where $e>0$ cball $b e \subseteq S$
using <open S 〉open_contains_cball
by (metis $\langle b \in K\rangle\langle K \subseteq S\rangle$ subsetD)
show ?thesis
proof
show box $a(b+e) \neq\{ \}$
using $\langle 0<e\rangle\langle b \in K\rangle$ a by force
show $K \subseteq$ cbox $a(b+e)$
using $\langle 0<e\rangle a b$ by fastforce
have $a \in S$
using $\langle a \in K\rangle \operatorname{assms}(6)$ by blast
have $b+e \in S$
using $\langle 0<e\rangle\langle c b a l l b e \subseteq S\rangle$ by (force simp: dist_norm)
show cbox a $(b+e) \subseteq S$
using $\langle a \in S\rangle\langle b+e \in S\rangle\langle c o n n e c t e d ~ S\rangle$ connected_contains_Icc by auto
qed
qed
obtain $w z$ where cbox $w z \subseteq S$ and sub_wz: cbox a $b \cup$ cbox c $d \subseteq b o x w z$
proof -
have $a \in S b \in S$
using 〈box a $b \neq\{ \}\rangle\langle c b o x$ a $b \subseteq S\rangle$ by auto
moreover have $c \in S d \in S$
using $\langle b o x c d \neq\{ \}\rangle\langle$ cbox $c d \subseteq U\rangle\langle U \subseteq S\rangle$ by force +
ultimately have $\min a c \in S \max b d \in S$
by linarith+
then obtain $e 1 e 2$ where $e 1>0 \operatorname{cball}(\min a c) e 1 \subseteq S e 2>0 \operatorname{cball}(\max$
bd) $e \mathcal{Z} \subseteq S$
using 〈open S 〉open_contains_cball by metis
then have $*: \min a c-e 1 \in S \max b d+e 2 \in S$
by (auto simp: dist_norm)
show ?thesis
proof
show $c b o x(\min a c-e 1)(\max b d+e 2) \subseteq S$
using * 〈connected S 〉 connected_contains_Icc by auto
show cbox ab cbox cd $d \subseteq \operatorname{box}(\min a c-e 1)(\max b d+e 2)$
using $\langle 0<e 1\rangle\langle 0<e 2\rangle$ by auto
qed
qed

```
```

then
obtain $f g$ where hom: homeomorphism (cbox wz) (cbox wz) fg
and $f w=w f z=z$
and fin: $\bigwedge x . x \in$ cbox $a b \Longrightarrow f x \in$ cbox $c d$
using homeomorphism_grouping_point_3 [of $a b w z c c l]$
using 〈box a $b \neq\{ \}\rangle\langle b o x c d \neq\{ \}\rangle$ by blast
have contfg: continuous_on (cbox wz)f continuous_on (cbox wz) g
using hom homeomorphism_def by blast+
define f^{\prime} where $f^{\prime} \equiv \lambda x$. if $x \in$ cbox $w z$ then $f x$ else x
define g^{\prime} where $g^{\prime} \equiv \lambda x$. if $x \in$ cbox $w z$ then $g x$ else x
show ?thesis
proof
have T : cbox $w z \cup(T-$ box $w z)=T$
using $\langle c b o x w z \subseteq S\rangle\langle S \subseteq T\rangle$ by auto
show homeomorphism $T T f^{\prime} g^{\prime}$
proof
have clo: closedin (top_of_set (cbox wzU(T-box wz))) (T-boxwz)
by (metis Diff_Diff_Int Diff_subset T closedin_def open_box openin_open_Int
topspace_euclidean_subtopology)
have $\wedge x . \llbracket w \leq x \wedge x \leq z ; w<x \longrightarrow \neg x<z \rrbracket \Longrightarrow f x=x$
using $\langle f w=w\rangle\langle f z=z\rangle$ by auto
moreover have $\bigwedge x . \llbracket w \leq x \wedge x \leq z ; w<x \longrightarrow \neg x<z \rrbracket \Longrightarrow g x=x$
using $\langle f w=w\rangle\langle f=\bar{z}\rangle$ hom homeomorphism_apply1 by fastforce
ultimately
have continuous_on (cbox $w z \cup(T-b o x w z)) f^{\prime}$ continuous_on (cbox $w z$
$\cup(T-b o x w z)) g^{\prime}$
unfolding f^{\prime} _def $g^{\prime}{ }_{-}$def
by (intro continuous_on_cases_local contfg continuous_on_id clo; auto simp:
closed_subset)+
then show continuous_on $T f^{\prime}$ continuous_on $T g^{\prime}$
by (simp_all only: T)
show f^{\prime} ' $T \subseteq T$
unfolding f^{\prime} _def
by clarsimp (metis \langle cbox $w z \subseteq S\rangle\langle S \subseteq T\rangle$ subsetD hom homeomorphism_def
imageI mem_box_real(2))
show $g^{\prime} \cdot T \subseteq T$
unfolding $g^{\prime}{ }_{\text {_ }}$ def
by clarsimp (metis \langle cbox $w z \subseteq S\rangle\langle S \subseteq T\rangle$ subsetD hom homeomorphism_def
imageI mem_box_real(2))
show $\bigwedge x . x \in T \Longrightarrow g^{\prime}\left(f^{\prime} x\right)=x$
unfolding f^{\prime} _def g^{\prime} _def
using homeomorphism_apply1 [OF hom] homeomorphism_image1 [OF hom]
by fastforce
show $\bigwedge y . y \in T \Longrightarrow f^{\prime}\left(g^{\prime} y\right)=y$
unfolding f^{\prime} _def g^{\prime} _def
using homeomorphism_apply2 [OF hom] homeomorphism_image2 [OF hom]
by fastforce
qed
show $\bigwedge x . x \in K \Longrightarrow f^{\prime} x \in U$

```
using fin sub＿wz 〈K \(\subseteq\) cbox a b〉〈cbox c \(d \subseteq U\rangle\) by（force simp：\(f^{\prime}\)＿def） show \(\left\{x . \neg\left(f^{\prime} x=x \wedge g^{\prime} x=x\right)\right\} \subseteq S\)
using «cbox \(w z \subseteq S\rangle\) by（auto simp：\(f^{\prime}{ }_{-}\)def \(g^{\prime}{ }_{-}\)def）
show bounded \(\left\{x . \neg\left(f^{\prime} x=x \wedge g^{\prime} x=x\right)\right\}\)
proof（rule bounded＿subset［of cbox w z］）
show bounded（cbox wz）
using bounded＿cbox by blast
show \(\left\{x . \neg\left(f^{\prime} x=x \wedge g^{\prime} x=x\right)\right\} \subseteq\) cbox \(w z\)
by（auto simp：\(f^{\prime}\)＿def \(g^{\prime} \_\)def）
qed
qed
qed
proposition homeomorphism＿grouping＿points＿exists：
fixes \(S\) ：：＇a：：euclidean＿space set
assumes open \(U\) open \(S\) connected \(S U \neq\{ \}\) finite \(K \subseteq \subseteq U \subseteq S S \subseteq T\)
obtains \(f g\) where homeomorphism \(T T f g\{x .(\neg(f x=x \wedge g x=x))\} \subseteq S\)
bounded \(\{x .(\neg(f x=x \wedge g x=x))\} \wedge x . x \in K \Longrightarrow f x \in U\)
proof（cases \(2 \leq D I M\left({ }^{\prime} a\right)\) ）
case True
have TS：\(T \subseteq\) affine hull \(S\)
using affine＿hull＿open assms by blast
have infinite \(U\)
using 〈open \(U\rangle\langle U \neq\{ \}\) 〉 finite＿imp＿not＿open by blast
then obtain \(P\) where \(P \subseteq U\) finite \(P\) card \(K=\operatorname{card} P\) using infinite＿arbitrarily＿large by metis
then obtain \(\gamma\) where \(\gamma\) ：bij＿betw \(\gamma K P\) using 〈finite \(K\) 〉 finite＿same＿card＿bij by blast
obtain \(f g\) where homeomorphism \(T T f g \bigwedge i . i \in K \Longrightarrow f(i d i)=\gamma i\{x\) ．\(\neg\) \((f x=x \wedge g x=x)\} \subseteq S\) bounded \(\{x . \neg(f x=x \wedge g x=x)\}\)
proof（rule homeomorphism＿moving＿points＿exists［OF True 〈open \(S\rangle\langle\) connected
\(S\rangle\langle S \subseteq T\rangle\langle\) finite \(K\rangle]\) ）
show \(\wedge i . i \in K \Longrightarrow i d i \in S \wedge \gamma i \in S\)
using \(\langle P \subseteq U\rangle\langle\) bij＿betw \(\gamma K P\rangle\langle K \subseteq S\rangle\langle U \subseteq S\rangle\) bij＿betwE by blast show pairwise \((\lambda i j\) ．id \(i \neq i d j \wedge \gamma i \neq \gamma j\) ）K
using \(\gamma\) by（auto simp：pairwise＿def bij＿betw＿def inj＿on＿def）
qed（use affine＿hull＿open assms that in auto）
then show ？thesis
using \(\gamma\langle P \subseteq U\rangle\) bij＿betwE by（fastforce simp add：intro！：that）
next
case False
with DIM＿positive have \(\operatorname{DIM}\left({ }^{\prime} a\right)=1\) by（simp add：dual＿order．antisym）
then obtain \(h::^{\prime} a \Rightarrow\) real and \(j\)
where linear \(h\) linear \(j\)
and noh：\(\bigwedge x\) ．norm \((h x)=\) norm \(x\) and noj：\(\bigwedge y\) ．norm \((j y)=\) norm \(y\)
and \(h j: \bigwedge x . j(h x)=x \bigwedge y . h(j y)=y\)
and ranh：surj \(h\)
using isomorphisms＿UNIV＿UNIV
by（metis（mono＿tags，hide＿lams）DIM＿real UNIV＿eq＿I range＿eqI）
obtain \(f g\) where hom：homeomorphism \(\left(h^{\prime} T\right)\left(h^{\prime} T\right) f g\)
and \(f: \wedge x . x \in h^{\prime} K \Longrightarrow f x \in h^{\prime} U\)
and sub：\(\{x . \neg(f x=x \wedge g x=x)\} \subseteq h ‘ S\)
and bou：bounded \(\{x . \neg(f x=x \wedge g x=x)\}\)
apply（rule homeomorphism＿grouping＿point＿4［of \(h\)＇\(U h^{\prime} S h\)＇\(K h\)＇T］）
by（simp＿all add：assms image＿mono 〈linear \(h\) 〉open＿surjective＿linear＿image connected＿linear＿image ranh）
have \(j f: j(f(h x))=x \longleftrightarrow f(h x)=h x\) for \(x\)
by（metis hj）
have \(j g: j(g(h x))=x \longleftrightarrow g(h x)=h x\) for \(x\)
by（metis hj）
have cont＿hj：continuous＿on \(X h\) continuous＿on \(Y j\) for \(X Y\)
by（simp＿all add：＜linear \(h\) 〉〈linear \(j\) 〉linear＿linear linear＿continuous＿on）
show ？thesis
proof
show homeomorphism \(T T(j \circ f \circ h)(j \circ g \circ h)\)
proof
show continuous＿on \(T(j \circ f \circ h)\) continuous＿on \(T(j \circ g \circ h)\)
using hom homeomorphism＿def
by（blast intro：continuous＿on＿compose cont＿hj）＋
show \((j \circ f \circ h)^{\prime} T \subseteq T(j \circ g \circ h){ }^{\prime} T \subseteq T\)
by auto（metis（mono＿tags，hide＿lams）hj（1）hom homeomorphism＿def imageE imageI）＋
show \(\bigwedge x . x \in T \Longrightarrow(j \circ g \circ h)((j \circ f \circ h) x)=x\)
using hj hom homeomorphism＿apply1 by fastforce
show \(\bigwedge y . y \in T \Longrightarrow(j \circ f \circ h)((j \circ g \circ h) y)=y\)
using hj hom homeomorphism＿apply2 by fastforce
qed
show \(\{x . \neg((j \circ f \circ h) x=x \wedge(j \circ g \circ h) x=x)\} \subseteq S\)
proof（clarsimp simp：jf jg hj）
show \(f(h x)=h x \longrightarrow g(h x) \neq h x \Longrightarrow x \in S\) for \(x\)
using sub［THEN subsetD，of \(h x] h j\) by simp（metis imageE）
qed
have bounded \((j\)＇\(\{x .(\neg(f x=x \wedge g x=x))\})\)
by（rule bounded＿linear＿image［OF bou］）（use 〈linear \(j\rangle\) linear＿conv＿bounded＿linear in auto）
moreover
have \(*:\{x . \neg((j \circ f \circ h) x=x \wedge(j \circ g \circ h) x=x)\}=j ‘\{x .(\neg(f x=x \wedge\) \(g x=x))\}\)
using \(h j\) by（auto simp：jf jg image＿iff，metis＋）
ultimately show bounded \(\{x . \neg((j \circ f \circ h) x=x \wedge(j \circ g \circ h) x=x)\}\)
by metis
show \(\bigwedge x . x \in K \Longrightarrow(j \circ f \circ h) x \in U\)
using \(f\) hj by fastforce
qed
qed
proposition homeomorphism＿grouping＿points＿exists＿gen：
fixes \(S\) ：：＇a：：euclidean＿space set
assumes ope \(U\) ：openin（top＿of＿set \(S\) ）\(U\)
and opeS：openin（top＿of＿set（affine hull \(S\) ））\(S\)
and \(U \neq\{ \}\) finite \(K K \subseteq S\) and \(S: S \subseteq T T \subseteq\) affine hull \(S\) connected \(S\)
obtains \(f g\) where homeomorphism \(T T f g\{x .(\neg(f x=x \wedge g x=x))\} \subseteq S\)
bounded \(\{x .(\neg(f x=x \wedge g x=x))\} \wedge x . x \in K \Longrightarrow f x \in U\)
proof（cases \(2 \leq\) aff＿dim \(S\) ）
case True
have ope \(U^{\prime}\) ：openin（top＿of＿set（affine hull S））U
using opeS opeU openin＿trans by blast
obtain \(u\) where \(u \in U u \in S\)
using \(\langle U \neq\{ \}\rangle\) ope \(U\) openin＿imp＿subset by fastforce＋
have infinite \(U\)
proof（rule infinite＿openin［OF opeU \(\langle u \in U\rangle]\) ）
show \(u\) islimpt \(S\)
using True \(\langle u \in S\rangle\) assms（8）connected＿imp＿perfect＿aff＿dim by fastforce
qed
then obtain \(P\) where \(P \subseteq U\) finite \(P\) card \(K=\operatorname{card} P\)
using infinite＿arbitrarily＿large by metis
then obtain \(\gamma\) where \(\gamma\) ：bij＿betw \(\gamma K P\)
using 〈finite \(K\) 〉 finite＿same＿card＿bij by blast
have \(\exists f g\) ．homeomorphism \(T T f g \wedge(\forall i \in K . f(i d i)=\gamma i) \wedge\)
\(\{x . \neg(f x=x \wedge g x=x)\} \subseteq S \wedge\) bounded \(\{x . \neg(f x=x \wedge g x=x)\}\)
proof（rule homeomorphism＿moving＿points＿exists＿gen［OF〈finite K〉－－True opeS S］）
show \(\wedge i . i \in K \Longrightarrow i d i \in S \wedge \gamma i \in S\)
by（metis id＿apply opeU openin＿contains＿cball subsetCE〈P \(\subseteq U\rangle\left\langle b i j \_b e t w \gamma\right.\) \(K P\rangle\langle K \subseteq S\rangle\) bij＿betwE）
show pairwise（ \(\lambda i j\) ．id \(i \neq i d j \wedge \gamma i \neq \gamma j\) ）K
using \(\gamma\) by（auto simp：pairwise＿def bij＿betw＿def inj＿on＿def）
qed
then show ？thesis
using \(\gamma\langle P \subseteq U\rangle\) bij＿betwE by（fastforce simp add：intro！：that）
next
case False
with aff＿dim＿geq［of \(S]\) consider aff＿dim \(S=-1 \mid\) aff＿dim \(S=0 \mid\) aff＿dim \(S=\)
1 by linarith
then show ？thesis
proof cases
assume aff＿dim \(S=-1\)
then have \(S=\{ \}\)
using aff＿dim＿empty by blast
then have False
using \(\langle U \neq\{ \}\rangle\langle K \subseteq S\rangle\) openin＿imp＿subset \([O F\) ope \(U\) ］by blast
then show ？thesis ．．
next
assume aff＿dim \(S=0\)
then obtain \(a\) where \(S=\{a\}\)
using aff_dim_eq_0 by blast
then have \(K \subseteq U\)
using \(\langle U \neq\{ \}\rangle\langle K \subseteq S\rangle\) openin_imp_subset \([O F\) ope \(U]\) by blast
show ?thesis
using \(\langle K \subseteq U\rangle\) by (intro that \([\) of id id]) (auto intro: homeomorphismI)
next
assume aff_dim \(S=1\)
then have affine hull \(S\) homeomorphic (UNIV :: real set)
by (auto simp: homeomorphic_affine_sets)
then obtain \(h::^{\prime} a \Rightarrow\) real and \(j\) where homhj: homeomorphism (affine hull \(S\) ) UNIV h \(j\)
using homeomorphic_def by blast
then have \(h: \bigwedge x . x \in\) affine hull \(S \Longrightarrow j(h(x))=x\) and \(j: \bigwedge y . j y \in\) affine hull \(S \wedge h(j y)=y\)
by (auto simp: homeomorphism_def)
have connh: connected ( \(h\) ' \(S\) )
by (meson Topological_Spaces.connected_continuous_image 〈connected \(S\) 〉 homeomorphism_cont1 homeomorphism_of_subsets homhj hull_subset top_greatest)
have \(h U S: h\) ' \(U \subseteq h\) ' \(S\)
by (meson homeomorphism_imp_open_map homeomorphism_of_subsets homhj hull_subset opeS opeU open_UNIV openin_open_eq)
have opn: openin (top_of_set (affine hull \(S\) )) \(U \Longrightarrow\) open ( \(h^{‘} U\) ) for \(U\)
using homeomorphism_imp_open_map [OF homhj] by simp
have open \((h\) ' \(U\) ) open \((h\) ' \(S\) )
by (auto intro: opeS opeU openin_trans opn)
then obtain \(f g\) where hom: homeomorphism \(\left(h^{‘} T\right)\left(h^{\prime} T\right) f g\)
and \(f: \wedge x . x \in h^{\prime} K \Longrightarrow f x \in h^{\prime} U\)
and sub: \(\{x . \neg(f x=x \wedge g x=x)\} \subseteq h ' S\)
and bou: bounded \(\{x . \neg(f x=x \wedge g x=x)\}\)
apply (rule homeomorphism_grouping_points_exists [of \(h\) ' \(U h\) ' \(S h\) ' \(K h\) '
T])
using assms by (auto simp: connh hUS)
have \(j f: \wedge x . x \in\) affine hull \(S \Longrightarrow j(f(h x))=x \longleftrightarrow f(h x)=h x\) by (metis \(h j\) )
have \(j g: \bigwedge x . x \in\) affine hull \(S \Longrightarrow j(g(h x))=x \longleftrightarrow g(h x)=h x\) by (metis \(h j\) )
have cont_hj: continuous_on \(T h\) continuous_on \(Y j\) for \(Y\)
proof (rule continuous_on_subset \(\left[O F \_\langle T \subseteq \text { affine hull } S\rangle\right]\) )
show continuous_on (affine hull \(S\) ) \(h\)
using homeomorphism_def homhj by blast
qed (meson continuous_on_subset homeomorphism_def homhj top_greatest)
define \(f^{\prime}\) where \(f^{\prime} \equiv \lambda x\). if \(x \in\) affine hull \(S\) then \((j \circ f \circ h) x\) else \(x\)
define \(g^{\prime}\) where \(g^{\prime} \equiv \lambda\). if \(x \in\) affine hull \(S\) then \((j \circ g \circ h) x\) else \(x\)
show ?thesis
proof
show homeomorphism \(T T f^{\prime} g^{\prime}\)
proof
have continuous_on \(T(j \circ f \circ h)\)
using hom homeomorphism_def by (intro continuous_on_compose cont_hj)
blast
then show continuous_on \(T f^{\prime}\)
apply (rule continuous_on_eq)
using \(\langle T \subseteq\) affine hull \(S\rangle f^{\prime}\) _def by auto
have continuous_on \(T(j \circ g \circ h)\)
using hom homeomorphism_def by (intro continuous_on_compose cont_hj) blast
then show continuous_on \(T g^{\prime}\)
apply (rule continuous_on_eq)
using \(\langle T \subseteq\) affine hull \(S\rangle g^{\prime}{ }_{-}\)def by auto
show \(f^{\prime}\) ' \(T \subseteq T\)
proof (clarsimp simp: \(f^{\prime}\) _def)
fix \(x\) assume \(x \in T\)
then have \(f(h x) \in h^{\prime} T\)
by (metis (no_types) hom homeomorphism_def image_subset_iff subset_refl)
then show \(j(f(h x)) \in T\)
using \(\langle T \subseteq\) affine hull \(S\rangle h\) by auto
qed
show \(g^{\prime} \cdot T \subseteq T\)
proof (clarsimp simp: \(g^{\prime}{ }_{-} d e f\) )
fix \(x\) assume \(x \in T\)
then have \(g(h x) \in h^{\prime} T\)
by (metis (no_types) hom homeomorphism_def image_subset_iff subset_refl)
then show \(j(g(h x)) \in T\)
using \(\langle T \subseteq\) affine hull \(S\rangle h\) by auto
qed
show \(\bigwedge x . x \in T \Longrightarrow g^{\prime}\left(f^{\prime} x\right)=x\)
using \(h j\) hom homeomorphism_apply1 by (fastforce simp add: \(f^{\prime}\) _def \(g^{\prime}\) _def)
show \(\bigwedge y . y \in T \Longrightarrow f^{\prime}\left(g^{\prime} y\right)=y\)
using \(h j\) hom homeomorphism_apply2 by (fastforce simp add: \(f^{\prime}\) _def
\(g^{\prime}\) _def)
qed
next
have \(\S: \bigwedge x y . \llbracket x \in\) affine hull \(S ; h x=h y ; y \in S \rrbracket \Longrightarrow x \in S\)
by (metis \(h\) hull_inc)
show \(\left\{x . \neg\left(f^{\prime} x=x \wedge g^{\prime} x=x\right)\right\} \subseteq S\)
using sub by (simp add: \(f^{\prime}\) _def \(g^{\prime}{ }_{-}\)def jf jg) (force elim: §)
next
have compact ( \(j\) ' closure \(\{x . \neg(f x=x \wedge g x=x)\})\)
using bou by (auto simp: compact_continuous_image cont_hj)
then have bounded \((j\) ' \(\{x . \neg(f x=x \wedge g x=x)\})\)
by (rule bounded_closure_image [OF compact_imp_bounded])
moreover
have \(*:\{x \in\) affine hull \(S . j(f(h x)) \neq x \vee j(g(h x)) \neq x\}=j '\{x .(\neg(f\) \(x=x \wedge g x=x))\}\)
using \(h j\) by (auto simp: image_iff; metis)
ultimately have bounded \(\{x \in\) affine hull \(S . j(f(h x)) \neq x \vee j(g(h x))\) \(\neq x\}\)
```

 by metis
 then show bounded {x.\neg(\mp@subsup{f}{}{\prime}x=x\wedge g
 by (simp add: f'_def g'_def Collect_mono bounded_subset)
 next
 show f'x}\=U\mathrm{ if }x\inK\mathrm{ for }
 proof -
 have }U\subseteq
 using opeU openin_imp_subset by blast
 then have j (f (hx)) \inU
 using f h hull_subset that by fastforce
 then show f'x
 using <K\subseteqS\rangleS f'_def that by auto
 qed
 qed
 qed
 qed

```

\subsection*{6.18.29 Nullhomotopic mappings}

A mapping out of a sphere is nullhomotopic iff it extends to the ball. This even works out in the degenerate cases when the radius is \(\leq 0\), and we also don't need to explicitly assume continuity since it's already implicit in both sides of the equivalence.
lemma nullhomotopic_from_lemma:
assumes contg: continuous_on (cball a \(r-\{a\}\) ) g
and fa: \(\bigwedge e .0<e\)
\(\Longrightarrow \exists d .0<d \wedge(\forall x . x \neq a \wedge \operatorname{norm}(x-a)<d \longrightarrow \operatorname{norm}(g x-f\)
a) \(<e\) )
and \(r: \bigwedge x . x \in\) cball \(a r \wedge x \neq a \Longrightarrow f x=g x\)
shows continuous_on (cball a r) f
proof (clarsimp simp: continuous_on_eq_continuous_within Ball_def)
fix \(x\)
assume \(x\) : dist a \(x \leq r\)
show continuous (at \(x\) within cball a r) \(f\)
proof (cases \(x=a\) )
case True
then show ?thesis by (metis continuous_within_eps_delta fa dist_norm dist_self r)
next
case False
show ?thesis
proof (rule continuous_transform_within \([\) where \(f=g\) and \(d=\operatorname{norm}(x-a)])\) have \(\exists d>0 . \forall x^{\prime} \in\) cball a \(r\).
dist \(x^{\prime} x<d \longrightarrow \operatorname{dist}\left(g x^{\prime}\right)(g x)<e\) if \(e>0\) for \(e\)
proof -
obtain \(d\) where \(d>0\)
and \(d: \bigwedge x^{\prime} . \llbracket\) dist \(x^{\prime} a \leq r ; x^{\prime} \neq a ;\) dist \(x^{\prime} x<d \rrbracket \Longrightarrow\)
dist \(\left(g x^{\prime}\right)(g x)<e\)
```

 using contg False x <e>0>
 unfolding continuous_on_iff by (fastforce simp add: dist_commute intro:
 that)
show ?thesis
using <d> >
langlex\not=a\rangle
by (rule_tac x=min d (norm (x-a)) in exI)
(auto simp: dist_commute dist_norm [symmetric] intro!: d)
qed
then show continuous (at x within cball a r) g
using contg False by (auto simp: continuous_within_eps_delta)
show 0<norm (x-a)
using False by force
show }x\in\mathrm{ cball a r
by (simp add: x)
show }
mp@subsup{x}{}{\prime}.\llbracket\mp@subsup{x}{}{\prime}\in\mathrm{ cball a r; dist }\mp@subsup{x}{}{\prime}x<norm (x-a)
\Longrightarrow g x ^ { \prime } = f x ^ { \prime }
by (metis dist_commute dist_norm less_le r)
qed
qed
qed
proposition nullhomotopic_from_sphere_extension:
fixes f :: 'M::euclidean_space = 'a::real_normed_vector
shows (}\exists\mathrm{ c. homotopic_with_canon (}\lambdax.\mathrm{ True) (sphere ar)Sf(}\lambdax.c))
(\existsg.continuous_on (cball a r) g\wedge g'(cball a r)\subseteqS^
(\forallx\in sphere a r.g x = fx))
(is ?lhs = ?rhs)
proof (cases r 0::real rule: linorder_cases)
case less
then show ?thesis
by (simp add: homotopic_on_emptyI)
next
case equal
show ?thesis
proof
assume L:?lhs
with equal have [simp]: fa\inS
using homotopic_with_imp_subset1 by fastforce
obtain }h::\mathrm{ real }\times\mp@subsup{}{}{\prime}M=\mp@subsup{}{}{\prime}
where h:continuous_on ({0..1} }\times{a})h\mp@subsup{h}{}{\prime}({0..1}\times{a})\subseteqSh(0,a
=fa
using L equal by (auto simp: homotopic_with)
then have continuous_on (cball a r) (\lambdax.h(0, a)) (\lambdax.h(0, a))'cball a r
\subseteq S
by (auto simp: equal)
then show ?rhs
using h(3) local.equal by force
next
assume ?rhs

```
```

 then show ?lhs
 using equal continuous_on_const by (force simp add: homotopic_with)
 qed
 next
case greater
let ?P = continuous_on {x. norm (x-a)=r}f^f'{x.norm(x-a)=r}
\subseteq S
have ?P if ?lhs using that
proof
fix }
assume c: homotopic_with_canon (}\lambdax.\mathrm{ True) (sphere a r)S f (}\lambdax.c
then have contf: continuous_on (sphere a r) f
by (metis homotopic_with_imp_continuous)
moreover have fim: f'sphere a r\subseteqS
by (meson continuous_map_subtopology_eu c homotopic_with_imp_continuous_maps)
show ?P
using contf fim by (auto simp: sphere_def dist_norm norm_minus_commute)
qed
moreover have ?P if ?rhs using that
proof
fix g
assume g:continuous_on (cball a r) g ^ g'cball a r\subseteqS^(\forallxa\insphere a r.
g xa=f xa)
then have f' {x.norm (x-a)=r}\subseteqS
using sphere_cball [of a r] unfolding image_subset_iff sphere_def
by (metis dist_commute dist_norm mem_Collect_eq subset_eq)
with g}\mathrm{ show ?P
by (auto simp: dist_norm norm_minus_commute elim!: continuous_on_eq [OF
continuous_on_subset])
qed
moreover have ?thesis if ?P
proof
assume ?lhs
then obtain c where homotopic_with_canon (}\lambdax\mathrm{ . True) (sphere a r)S (}\lambdax\mathrm{ .
c) f
using homotopic_with_sym by blast
then obtain h where conth:continuous_on ({0..1::real} > sphere a r)h
and him: h' ({0..1} > sphere a r)\subseteqS
and h:\bigwedgex.h(0,x)=c\bigwedgex.h(1,x)=fx
by (auto simp: homotopic_with_def)
obtain b1::'M where b1 \in Basis
using SOME_Basis by auto
have c \in h'({0..1} > sphere a r)
proof
show c=h(0,a+r*
by (simp add: h)
show (0,a+r**R b1) \in{0..1::real} x sphere a r
using greater <b1 \in Basis` by (auto simp: dist_norm)
qed

```
then have \(c \in S\)
using him by blast
have uconth: uniformly_continuous_on \((\{0 . .1::\) real \(\} \times(\) sphere a \(r)) h\)
by (force intro: compact_Times conth compact_uniformly_continuous)
let ? \(g=\lambda x\). \(h(\operatorname{norm}(x-a) / r\),
\(a+\left(\right.\) if \(x=a\) then \(r *_{R}\) b1 else \(\left.\left.(r / \operatorname{norm}(x-a)) *_{R}(x-a)\right)\right)\)
let \(? g^{\prime}=\lambda x . h\left(\operatorname{norm}(x-a) / r, a+(r / \operatorname{norm}(x-a)) *_{R}(x-a)\right)\)
show ?rhs
proof (intro exI conjI)
have continuous_on (cball a \(r-\{a\}\) ) ? \(g^{\prime}\)
using greater
by (force simp: dist_norm norm_minus_commute intro: continuous_on_compose2 [OF conth] continuous_intros)
then show continuous_on (cball a r)?g
proof (rule nullhomotopic_from_lemma)
show \(\exists d>0 . \forall x . x \neq a \wedge \operatorname{norm}(x-a)<d \longrightarrow \operatorname{norm}\left(? g^{\prime} x-? g a\right)<\) \(e\) if \(0<e\) for \(e\)
proof -
obtain \(d\) where \(0<d\)
and \(d: \bigwedge x x^{\prime} . \llbracket x \in\{0 . .1\} \times\) sphere a \(r ; x^{\prime} \in\{0 . .1\} \times\) sphere a \(r ;\) norm \(\left(x^{\prime}-x\right)<d \rrbracket\)
\[
\Longrightarrow \operatorname{norm}\left(h x^{\prime}-h x\right)<e
\]
using uniformly_continuous_onE \([O F\) uconth \(\langle 0<e\rangle]\) by (auto simp: dist_norm)
\[
\text { have } * \text { : norm }(h(\text { norm }(x-a) / r,
\]
\[
\left.\left.a+(r / \operatorname{norm}(x-a)) *_{R}(x-a)\right)-h\left(0, a+r *_{R} b 1\right)\right)
\]
\[
<e(\text { is norm }(? h a-? h b)<e)
\]
\[
\text { if } x \neq a \text { norm }(x-a)<r \text { norm }(x-a)<d * r \text { for } x
\]
proof -
have norm \((? h a-? h b)=\operatorname{norm}(? h a-h(0, a+(r / \operatorname{norm}(x-a))\)
\(\left.\left.*_{R}(x-a)\right)\right)\)
by (simp add: h)
also have \(\ldots<e\)
using greater \(\langle 0<d\rangle\langle b 1 \in\) Basis that
by (intro d) (simp_all add: dist_norm, simp add: field_simps)
finally show ?thesis .
qed
show ?thesis
using greater \(\langle 0<d\rangle\)
by (rule_tac \(x=\min r(d * r)\) in exI) (auto simp: \(*)\)
qed
show \(\wedge x . x \in\) cball \(a r \wedge x \neq a \Longrightarrow ? g x=? g^{\prime} x\) by auto
qed
next
show ? g' cball a \(r \subseteq S\)
using greater him \(\langle c \in S\rangle\)
by (force simp: \(h\) dist_norm norm_minus_commute)
next
```

 show }\forallx\in\mathrm{ sphere a r. ?g x = fx
 using greater by (auto simp: h dist_norm norm_minus_commute)
 qed
 next
 assume ?rhs
 then obtain g}\mathrm{ where contg: continuous_on (cball a r)g
 and gim: g'cball a r\subseteqS
 and gf: }\forallx\in\mathrm{ sphere a r.g x = fx
 by auto
 let ?h = \lambday.g(a+(fst y)*R
 have continuous_on ({0..1} }\times\mathrm{ sphere a r) ?h
 proof (rule continuous_on_compose2 [OF contg])
 show continuous_on ({0..1} 人 sphere a r) (\lambdax.a+fst x * * (snd x - a))
 by (intro continuous_intros)
 qed (auto simp: dist_norm norm_minus_commute mult_left_le_one_le)
 moreover
 have ?h'({0..1} }\times\mathrm{ sphere a r)}\subseteq
 by (auto simp: dist_norm norm_minus_commute mult_left_le_one_le gim [THEN
 subsetD])
moreover
have }\forallx\in\mathrm{ sphere a r. ?h (0, x)=g a }\forallx\in\mathrm{ sphere a r. ?h (}1,x)=f
by (auto simp: dist_norm norm_minus_commute mult_left_le_one_le gf)
ultimately have homotopic_with_canon (}\lambdax\mathrm{ . True) (sphere a r) S (}\lambdax.ga)
by (auto simp: homotopic_with)
then show ?lhs
using homotopic_with_symD by blast
qed
ultimately
show ?thesis by meson
qed
end

```

\subsection*{6.19 Homeomorphism Theorems}
theory Homeomorphism
imports Homotopy
begin
lemma homeomorphic_spheres':
fixes \(a\) ::'a::euclidean_space and \(b::\) 'b::euclidean_space
assumes \(0<\delta\) and dimeq: \(\operatorname{DIM}\left({ }^{\prime} a\right)=\operatorname{DIM}\left({ }^{\prime} b\right)\)
shows (sphere a \(\delta\) ) homeomorphic (sphere b \(\delta\) )
proof -
obtain \(f::{ }^{\prime} a \Rightarrow^{\prime} b\) and \(g\) where linear \(f\) linear \(g\)
and \(f g: \bigwedge x\). norm \((f x)=\operatorname{norm} x \bigwedge y . \operatorname{norm}(g y)=\operatorname{norm} y \wedge x . g(f x)=x\)
\(\bigwedge y . f(g y)=y\)
by (blast intro: isomorphisms_UNIV_UNIV [OF dimeq])
then have continuous_on UNIV f continuous_on UNIV g
```

 using linear_continuous_on linear_linear by blast+
 then show ?thesis
 unfolding homeomorphic_minimal
 \(\operatorname{apply}(\) rule_tac \(x=\lambda x . b+f(x-a)\) in exI)
 \(\operatorname{apply}(\) rule_tac \(x=\lambda x . a+g(x-b)\) in \(e x I)\)
 using assms
 apply (force intro: continuous_intros
 continuous_on_compose2 \(\left[o f_{-} f\right]\) continuous_on_compose2 \([o f\) _ \(g]\)
 simp: dist_commute dist_norm fg)
done
qed
lemma homeomorphic_spheres_gen:
fixes a :: ' $a::$ euclidean_space and $b::$ ' $b::$ euclidean_space
assumes $0<r 0<s$ DIM('a::euclidean_space) $=$ DIM('b::euclidean_space)
shows (sphere a r homeomorphic sphere bs)
using assms homeomorphic_trans [OF homeomorphic_spheres homeomorphic_spheres]
by auto

```

\subsection*{6.19.1 Homeomorphism of all convex compact sets with nonempty interior}

\section*{proposition}
fixes \(S::{ }^{\prime} a::\) euclidean_space set
assumes compact \(S\) and \(0: 0 \in\) rel_interior \(S\)
and star: \(\bigwedge x . x \in S \Longrightarrow\) open_segment \(0 x \subseteq\) rel_interior \(S\)
shows starlike_compact_projective1_0:
\(S\) - rel_interior \(S\) homeomorphic sphere \(01 \cap\) affine hull \(S\)
(is ?SMINUS homeomorphic ?SPHER)
and starlike_compact_projective2_0:
\(S\) homeomorphic cball \(01 \cap\) affine hull \(S\)
(is \(S\) homeomorphic ? CBALL)
proof -
have starI: \(\left(u *_{R} x\right) \in\) rel_interior \(S\) if \(x \in S 0 \leq u u<1\) for \(x u\)
proof (cases \(x=0 \vee u=0\) )
case True with 0 show ?thesis by force
next case False with that show ?thesis
by (auto simp: in_segment intro: star [THEN subsetD])
qed
have \(0 \in S\) using assms rel_interior_subset by auto
define proj where proj \(\equiv \lambda x::^{\prime} a . x / R\) norm \(x\)
have eqI: \(x=y\) if proj \(x=\) proj \(y\) norm \(x=\) norm \(y\) for \(x y\) using that by (force simp: proj_def)
then have iff_eq: \(\wedge x y .(\) proj \(x=\operatorname{proj} y \wedge\) norm \(x=\) norm \(y) \longleftrightarrow x=y\) by blast
have projI: \(x \in\) affine hull \(S \Longrightarrow\) proj \(x \in\) affine hull \(S\) for \(x\) by (metis \(\langle 0 \in S\rangle\) affine_hull_span_0 hull_inc span_mul proj_def)
have nproj1 \([\) simp \(]: x \neq 0 \Longrightarrow \operatorname{norm}(\operatorname{proj} x)=1\) for \(x\)
```

 by (simp add: proj_def)
 have projo_iff [simp]: proj \(x=0 \longleftrightarrow x=0\) for \(x\)
 by (simp add: proj-def)
 have cont_proj: continuous_on (UNIV - \{0\}) proj
 unfolding proj_def by (rule continuous_intros \(\mid\) force) +
 have proj_spherI: \(\backslash x . \llbracket x \in\) affine hull \(S ; x \neq 0 \rrbracket \Longrightarrow\) proj \(x \in\) ?SPHER
 by (simp add: projI)
 have bounded \(S\) closed \(S\)
 using 〈compact \(S\) 〉 compact_eq_bounded_closed by blast+
 have inj_on_proj: inj_on proj (\(S\) - rel_interior \(S\))
 proof
 fix \(x y\)
 assume \(x: x \in S\) - rel_interior \(S\)
 and \(y: y \in S\) - rel_interior \(S\) and eq: proj \(x=\) proj \(y\)
 then have xynot: \(x \neq 0\) y \(\neq 0 x \in S y \in S x \notin\) rel_interior \(S\) y \(\notin\) rel_interior
 S
using 0 by auto
consider norm $x=$ norm $y \mid$ norm $x<$ norm $y \mid$ norm $x>$ norm y by linarith
then show $x=y$
proof cases
assume norm $x=$ norm y
with iffeeq eq show $x=y$ by blast
next
assume $*$: norm $x<$ norm y
have $x / /_{R} \operatorname{norm} x=\operatorname{norm} x *_{R}(x / R \operatorname{norm} x) / R$ norm $\left(\operatorname{norm} x *_{R}(x / R\right.$
norm x))
by force
then have proj $\left((\right.$ norm $x /$ norm $\left.y) *_{R} y\right)=\operatorname{proj} x$
by (metis (no_types) divide_inverse local.proj_def eq scaleR_scaleR)
then have [simp]: (norm $x /$ norm $y) *_{R} y=x$
by (rule eqI) (simp add: $\langle y \neq 0$)
have no: $0 \leq$ norm $x /$ norm y norm $x /$ norm $y<1$
using * by (auto simp: field_split_simps)
then show $x=y$
using starI $[O F\langle y \in S\rangle$ no dynot by auto
next
assume $*$: norm $x>$ norm y
have $y /{ }_{R}$ norm $y=\operatorname{norm} y *_{R}(y / R$ norm $y) / R$ norm (norm $y *_{R}(y / R$
norm y))
by force
then have proj $\left((\right.$ norm $\left.y / \operatorname{norm} x) *_{R} x\right)=\operatorname{proj} y$
by (metis (no_types) divide_inverse local.proj_def eq scaleR_scaleR)
then have [simp]: (norm y / norm $x) *_{R} x=y$
by (rule eqI) (simp add: $\langle x \neq 0$)
have no: $0 \leq$ norm $y /$ norm x norm $y / n o r m ~ x<1$
using * by (auto simp: field_split_simps)
then show $x=y$
using starI $[O F\langle x \in S\rangle$ no dynot by auto
qed

```
```

 qed
 have \exists surf. homeomorphism (S - rel_interior S) ?SPHER proj surf
 proof (rule homeomorphism_compact)
 show compact (S - rel_interior S)
 using <compact S` compact_rel_boundary by blast
 show continuous_on (S - rel_interior S) proj
 using 0 by (blast intro: continuous_on_subset [OF cont_proj])
 show proj' }(S-\mathrm{ rel_interior }S)=\mathrm{ ?SPHER
 proof
 show proj ' (S - rel_interior S)\subseteq?SPHER
 using 0 by (force simp: hull_inc projI intro: nproj1)
 show ?SPHER \subseteq proj ' }S-\mathrm{ rel_interior S)
 proof (clarsimp simp: proj_def)
 fix }
 assume x }\in\mathrm{ affine hull S and nox: norm x = 1
 then have x\not=0 by auto
 obtain d where 0<d and dx: (d*R}x)\in\mathrm{ rel_frontier S
 and ri:\bigwedgee.\llbracket0\leqe;e<d\rrbracket\Longrightarrow (e*R}x)\in\mathrm{ rel_interior S
 using ray_to_rel_frontier [OF <bounded S\rangle 0] <x \in affine hull S\rangle\langlex # 0\rangle
 by auto
show }x\in(\lambdax.x/R norm x)'(S - rel_interior S
proof
show }x=d\mp@subsup{*}{R}{}x/\mp@subsup{/}{R}{}\operatorname{norm}(d\mp@subsup{*}{R}{}x
using <0 <d\rangle by (auto simp: nox)
show d * R}x\inS - rel_interior S
using dx <closed S` by (auto simp: rel_frontier_def) qed qed qed qed (rule inj_on_proj) then obtain surf where surf: homeomorphism (S - rel_interior S) ?SPHER proj surf by blast then have cont_surf: continuous_on (proj '(S - rel_interior S)) surf by (auto simp: homeomorphism_def) have surf_nz: \bigwedgex. x \in?SPHER \Longrightarrow surf }x\not= by (metis O DiffE homeomorphism_def imageI surf) have cont_nosp: continuous_on (?SPHER) (\lambdax. norm x *R ((surf o proj) x)) proof (intro continuous_intros) show continuous_on (sphere 0 1 \cap affine hull S) proj by (rule continuous_on_subset [OF cont_proj], force) show continuous_on (proj '(sphere 0 1 \cap affine hull S)) surf by (intro continuous_on_subset [OF cont_surf]) (force simp: homeomor- phism_image1 [OF surf] dest: proj_spherI) qed have surfpS: \bigwedgex. \llbracketnorm x = 1; x\in affine hull S\rrbracket\Longrightarrow surf (proj x) \inS by (metis (full_types) DiffE <0 \inS` homeomorphism_def image_eqI norm_zero
proj_spherI real_vector.scale_zero_left scaleR_one surf)
have *: \existsy. norm y = 1 ^ y Gaffine hull S ^x= surf (proj y)

```
```

 if \(x \in S x \notin\) rel_interior \(S\) for \(x\)
 proof -
 have proj \(x \in\) ?SPHER
 by (metis (full_types) 0 hull_inc proj_spherI that)
 moreover have surf \((\) proj \(x)=x\)
 by (metis Diff_iff homeomorphism_def surf that)
 ultimately show ?thesis
 by (metis \(\langle\backslash x . x \in ? S P H E R \Longrightarrow\) surf \(x \neq 0\rangle\) hull_inc inverse_1 local.proj_def
 norm_sgn projI scaleR_one sgn_div_norm that(1))
qed
have surfp_notin: $\backslash x$. \llbracket norm $x=1 ; x \in$ affine hull $S \rrbracket \Longrightarrow \operatorname{surf}($ proj $x) \notin$
rel_interior S
by (metis (full_types) DiffE one_neq_zero homeomorphism_def image_eqI norm_zero
proj_spherI surf)
have no_sp_im: $\left(\lambda x\right.$. norm $x *_{R}$ surf $\left.(p r o j x)\right)$ ' $(? S P H E R)=S-r e l_{-} i n t e r i o r ~ S ~$
by (auto simp: surfpS image_def Bex_def surfp_notin *)
have inj_spher: inj_on (λx. norm $x *_{R}$ surf (proj $\left.x\right)$) ?SPHER
proof
fix $x y$
assume $x y: x \in$?SPHER $y \in ? S P H E R$
and eq: norm $x *_{R} \operatorname{surf}($ proj $x)=$ norm $y *_{R} \operatorname{surf}($ proj $y)$
then have norm $x=1$ norm $y=1 x \in$ affine hull $S y \in$ affine hull S
using 0 by auto
with $e q$ show $x=y$
by (simp add: proj_def) (metis surf xy homeomorphism_def)
qed
have co01: compact ?SPHER
by (simp add: compact_Int_closed)
show ?SMINUS homeomorphic ?SPHER
using homeomorphic_def surf by blast
have proj_scaleR: $\bigwedge a x .0<a \Longrightarrow \operatorname{proj}\left(a *_{R} x\right)=\operatorname{proj} x$
by (simp add: proj_def)
have cont_sp0: continuous_on (affine hull $S-\{0\}$) (surf o proj)
proof (rule continuous_on_compose [OF continuous_on_subset [OF cont_proj]])
show continuous_on (proj' (affine hull $S-\{0\})$) surf
using homeomorphism_image1 proj_spherI surf by (intro continuous_on_subset
[OF cont_surf]) fastforce
qed auto
obtain B where $B>0$ and $B: \bigwedge x . x \in S \Longrightarrow$ norm $x \leq B$
by (metis compact_imp_bounded 〈compact S 〉 bounded_pos_less less_eq_real_def)
have cont_nosp: continuous (at x within ?CBALL) $\left(\lambda x\right.$. norm $x *_{R}$ surf (proj
$x)$)
if norm $x \leq 1 x \in$ affine hull S for x
proof (cases $x=0$)
case True
have $($ norm $\longrightarrow 0)($ at 0 within cball $01 \cap$ affine hull $S)$
by (simp add: tendsto_norm_zero eventually_at)
with True show ?thesis
apply (simp add: continuous_within)

```
apply (rule lim_null_scaleR_bounded [where \(B=B]\) )
using \(B\langle 0<B\rangle\) local.proj_def projI surfpS by (auto simp: eventually_at)
next
case False
then have \(\forall_{F} x\) in at \(x .(x \in\) affine hull \(S-\{0\})=(x \in\) affine hull \(S)\)
by (force simp: False eventually_at)
moreover
have continuous (at \(x\) within affine hull \(S-\{0\})(\lambda x\). surf \((\) proj \(x))\)
using cont_sp0 False that by (auto simp add: continuous_on_eq_continuous_within)
ultimately have \(*\) : continuous (at \(x\) within affine hull \(S\) ) \((\lambda x\). surf (proj \(x)\) )
by (simp add: continuous_within Lim_transform_within_set continuous_on_eq_continuous_within)
show ?thesis
by (intro continuous_within_subset [where \(s=\) affine hull \(S\), OF _ Int_lower2] continuous_intros *)
qed
have cont_nosp2: continuous_on ?CBALL \(\left(\lambda x\right.\). norm \(x *_{R}((\operatorname{surf}\) o proj) \(x))\)
by (simp add: continuous_on_eq_continuous_within cont_nosp)
have norm \(y *_{R} \operatorname{surf}(\) proj \(y) \in S\) if \(y \in\) cball 01 and yaff: \(y \in\) affine hull \(S\)
for \(y\)
proof (cases \(y=0\) )
case True then show ?thesis
by ( simp add: \(\langle 0 \in S\rangle\) )
next
case False
then have norm \(y *_{R} \operatorname{surf}(\operatorname{proj} y)=\operatorname{norm} y *_{R} \operatorname{surf}(\operatorname{proj}(y / R\) norm \(y))\)
by (simp add: proj_def)
have norm \(y \leq 1\) using that by simp
have \(\operatorname{surf}(\operatorname{proj}(y / R\) norm \(y)) \in S\)
using False local.proj_def nproj1 projI surfpS yaff by blast
then have surf \((\) proj \(y) \in S\)
by (simp add: False proj_def)
then show norm \(y *_{R} \operatorname{surf}(\) proj \(y) \in S\)
by (metis dual_order.antisym le_less_linear norm_ge_zero rel_interior_subset scaleR_one
\[
\text { starI subset_eq 〈norm } y \leq 1\rangle)
\]
qed
moreover have \(x \in\left(\lambda x\right.\). norm \(x *_{R}\) surf \((\) proj \(\left.x)\right)\) ' (?CBALL) if \(x \in S\) for \(x\)
proof (cases \(x=0\) )
case True with that hull_inc show ?thesis by fastforce
next
case False
then have psp: proj \((\operatorname{surf}(\operatorname{proj} x))=\operatorname{proj} x\) by (metis homeomorphism_def hull_inc proj_spherI surf that)
have \(n x x\) : norm \(x *_{R}\) proj \(x=x\)
by (simp add: False local.proj_def)
have affineI: (1/norm (surf \((\) proj \(x))) *_{R} x \in\) affine hull \(S\)
by (metis \(\langle 0 \in S\rangle\) affine_hull_span_0 hull_inc span_clauses(4) that)
have sproj_nz: surf \((\operatorname{proj} x) \neq 0\)
by (metis False projo_iff psp)
```

 then have proj x = proj (proj x)
 by (metis False nxx proj_scaleR zero_less_norm_iff)
 moreover have scaleproj: \ar.r * * proj a = (r/ norm a) *R a
 by (simp add: divide_inverse local.proj_def)
 ultimately have (norm (surf (proj x)) / norm x) *R x & rel_interior S
 by (metis (no_types) sproj_nz divide_self_if hull_inc norm_eq_zero nproj1 projI
 psp scaleR_one surfp_notin that)
then have (norm (surf (proj x)) / norm x) \geq1
using starI [OF that] by (meson starI [OF that] le_less_linear norm_ge_zero
zero_le_divide_iff)
then have nole: norm x \leq norm (surf (proj x))
by (simp add: le_divide_eq_1)
let ?inx =x/R norm (surf (proj x))
show ?thesis
proof
show x = norm ?inx * * surf (proj ?inx)
by (simp add: field_simps) (metis inverse_eq_divide nxx positive_imp_inverse_positive
proj_scaleR psp scaleproj sproj_nz zero_less_norm_iff)
qed (auto simp: field_split_simps nole affineI)
qed
ultimately have im_cball: (\lambdax. norm x *R surf (proj x))'?CBALL =S
by blast
have inj_cball: inj_on (}\lambdax\mathrm{ . norm }x\mp@subsup{*}{R}{\prime}\mathrm{ surf (proj x)) ?CBALL
proof
fix x y
assume x \& CBALL y f?CBALL
and eq: norm x *R surf (proj x)= norm y *R surf (proj y)
then have x:x\inaffine hull S and y:y\inaffine hull S
using 0 by auto
show }x=
proof (cases x=0 \vee y=0)
case True then show }x=y\mathrm{ using eq proj_spherI surf_nz x y by force
next
case False
with x y have speq: surf (proj x) = surf (proj y)
by (metis eq homeomorphism_apply2 proj_scaleR proj_spherI surf zero_less_norm_iff)
then have norm x = norm y
by (metis }\langlex\in\mathrm{ affine hull S><y {affine hull S` eq proj_spherI real_vector.scale_cancel_right
surf_nz)
moreover have proj x = proj y
by (metis (no_types) False speq homeomorphism_apply2 proj_spherI surf x y)
ultimately show }x=
using eq eqI by blast
qed
qed
have co01: compact ?CBALL
by (simp add: compact_Int_closed)
show S homeomorphic ?CBALL
using homeomorphic_compact [OF co01 cont_nosp2 [unfolded o_def] im_cball

```
```

inj_cball] homeomorphic_sym by blast
qed
corollary
fixes S :: 'a::euclidean_space set
assumes compact S and a:a frel_interior S
and star: }\bigwedgex.x\inS\Longrightarrow\mathrm{ open_segment a }x\subseteq\mathrm{ rel_interior }
shows starlike_compact_projective1:
S - rel_interior S homeomorphic sphere a 1 \cap affine hull S
and starlike_compact_projective2:
S homeomorphic cball a 1 \cap affine hull S
proof -
have 1: compact ((+) (-a)'S) by (meson assms compact_translation)
have 2:0 \in rel_interior ((+) (-a)'S)
using a rel_interior_translation [of - a S] by (simp cong: image_cong_simp)
have 3: open_segment 0x\subseteq rel_interior ((+) (-a)'S) if x\in((+)(-a)'S)
for }
proof -
have }x+a\inS\mathrm{ using that by auto
then have open_segment a (x+a)\subseteqrel_interior S by (metis star)
then show ?thesis using open_segment_translation [of a 0 x]
using rel_interior_translation [of - a S] by (fastforce simp add: ac_simps
image_iff cong: image_cong_simp)
qed
have S - rel_interior S homeomorphic ((+) (-a)`S) - rel_interior ((+) (-a) ` S)
by (metis rel_interior_translation translation_diff homeomorphic_translation)
also have ... homeomorphic sphere 0 1 \cap affine hull ((+) (-a)'S)
by (rule starlike_compact_projective1_0 [OF 1 2 3])
also have ... = (+) (-a)'(sphere a 1 \cap affine hull S)
by (metis affine_hull_translation left_minus sphere_translation translation_Int)
also have ... homeomorphic sphere a 1\cap affine hull S
using homeomorphic_translation homeomorphic_sym by blast
finally show S - rel_interior S homeomorphic sphere a 1 }\cap\mathrm{ affine hull S .
have S homeomorphic ((+) (-a)`}S by (metis homeomorphic_translation) also have ... homeomorphic cball 0 1 \cap affine hull ((+) (-a)`S)
by (rule starlike_compact_projective2_0 [OF 1 2 3])
also have ... = (+) (-a)`(cball a 1 \cap affine hull S)
by (metis affine_hull_translation left_minus cball_translation translation_Int)
also have ... homeomorphic cball a 1 \cap affine hull S
using homeomorphic_translation homeomorphic_sym by blast
finally show S homeomorphic cball a 1 \cap affine hull S .
qed
corollary starlike_compact_projective_special:
assumes compact S
and cb01:cball (0::'a::euclidean_space) 1\subseteqS

```
```

 and scale: \x u. \llbracketx 位 0\lequ;u<1\rrbracket\Longrightarrowu** x C S - frontier S
 shows S homeomorphic (cball (0::'a::euclidean_space) 1)
 proof -
have ball 0 1 \subseteq interior S
using cb01 interior_cball interior_mono by blast
then have 0:0\in rel_interior S
by (meson centre_in_ball subsetD interior_subset_rel_interior le_numeral_extra(2)
not_le)
have [simp]: affine hull S = UNIV
using <ball 0 1 \subseteq interior S> by (auto intro!: affine_hull_nonempty_interior)
have star:open_segment 0x\subseteq rel_interior S if x \inS for x
proof
fix p assume p}\in\mathrm{ open_segment 0x
then obtain u}\mathrm{ where }x\not=0\mathrm{ and }u:0\lequu<1\mathrm{ and p:u*R}x=
by (auto simp: in_segment)
then show p\in rel_interior S
using scale [OF that u] closure_subset frontier_def interior_subset_rel_interior
by fastforce
qed
show ?thesis
using starlike_compact_projective2_0 [OF <compact S` 0 star] by simp qed lemma homeomorphic_convex_lemma: fixes S :: 'a::euclidean_space set and T :: 'b::euclidean_space set assumes convex S compact S convex T compact T and affeq: aff_dim S = aff_dim T shows (S - rel_interior S) homeomorphic (}T-\mathrm{ rel_interior }T) S homeomorphic T proof (cases rel_interior S={}\vee rel_interior T = {}) case True then show ?thesis by (metis Diff_empty affeq 〈convex S〉<convex T〉 aff_dim_empty homeomor- phic_empty rel_interior_eq_empty aff_dim_empty) next case False then obtain ab where a: a\in rel_interior S and b:b\in rel_interior T by auto have starS: \x. x using rel_interior_closure_convex_segment a <convex S` closure_subset subsetCE by blast
have starT: \x. x G T\Longrightarrowopen_segment b x\subseteq rel_interior T
using rel_interior_closure_convex_segment
b <convex T> closure_subset subsetCE by blast
let ?aS = (+) (-a)'S and ? bT = (+) (-b)'T
have 0:0 G affine hull ?aS 0 G affine hull ?bT
by (metis a b subsetD hull_inc image_eqI left_minus rel_interior_subset)+
have subs: subspace (span ?aS) subspace (span ?bT)
by (rule subspace_span)+
moreover

```
```

have dim $(\operatorname{span}((+)(-a) ' S))=\operatorname{dim}(\operatorname{span}((+)(-b) \cdot T))$
by (metis 0 aff_dim_translation_eq aff_dim_zero affeq dim_span nat_int)
ultimately obtain $f g$ where linear f linear g
and fim: f ' span ? $a S=$ span ?bT
and gim: g ' span ?bT $=$ span ?aS
and fno: $\bigwedge x . x \in \operatorname{span} ? a S \Longrightarrow \operatorname{norm}(f x)=$ norm x
and gno: $\bigwedge x . x \in$ span ?bT \Longrightarrow norm $(g x)=$ norm x
and $g f: \wedge x, x \in \operatorname{span} ? a S \Longrightarrow g(f x)=x$
and $f g: \bigwedge x . x \in \operatorname{span} ? b T \Longrightarrow f(g x)=x$
by (rule isometries_subspaces) blast
have [simp]: continuous_on $A f$ for A
using 〈linear f 〉linear_conv_bounded_linear linear_continuous_on by blast
have [simp]: continuous_on $B g$ for B
using 〈linear g 〉 linear_conv_bounded_linear linear_continuous_on by blast
have eqspanS: affine hull ?aS = span ?aS
by (metis a affine_hull_span_0 subsetD hull_inc image_eqI left_minus rel_interior_subset)
have eqspanT: affine hull ?bT = span ?bT
by (metis baffine_hull_span_0 subsetD hull_inc image_eqI left_minus rel_interior_subset)
have S homeomorphic cball a $1 \cap$ affine hull S
by (rule starlike_compact_projective2 [OF 〈compact $S\rangle$ a starS])
also have ... homeomorphic (+) ($-a)^{\prime}$ (cball a $1 \cap$ affine hull $\left.S\right)$
by (metis homeomorphic_translation)
also have $\ldots=$ cball $01 \cap(+)(-a)$ '(affine hull $S)$
by (auto simp: dist_norm)
also have $\ldots=$ cball $01 \cap$ span ?aS
using eqspanS affine_hull_translation by blast
also have ... homeomorphic cball $01 \cap$ span? bT
proof (rule homeomorphicI)
show fim1: f ' $($ cball $01 \cap$ span ?aS $)=$ cball $01 \cap \operatorname{span} ? b T$
proof
show f ' $($ cball $01 \cap$ span ?aS $) \subseteq$ cball $01 \cap$ span ?bT
using fim fno by auto
show cball $01 \cap$ span ? b $\mathrm{b} T \subseteq f^{\prime}($ cball $01 \cap$ span ?aS $)$
by clarify (metis IntI fg gim gno image_eqI mem_cball_0)
qed
show g ' (cball $01 \cap$ span ?bT $)=$ cball $01 \cap$ span ?aS
proof
show g ' $($ cball $01 \cap$ span ?bT $) \subseteq$ cball $01 \cap \operatorname{span} ? a S$
using gim gno by auto
show cball $01 \cap$ span ?aS $\subseteq g^{\prime}($ cball $01 \cap$ span ?bT $)$
by clarify (metis IntI fim1 gf image_eqI)
qed
qed (auto simp: fg gf)
also have $\ldots=$ cball $01 \cap(+)(-b)$ ' (affine hull $T)$
using eqspanT affine_hull_translation by blast
also have $\ldots=(+)(-b)$ ' $($ cball $b 1 \cap$ affine hull $T)$
by (auto simp: dist_norm)
also have ... homeomorphic (cball b $1 \cap$ affine hull T)
by (metis homeomorphic_translation homeomorphic_sym)

```
also have ．．．homeomorphic \(T\)
by（metis starlike＿compact＿projective2［OF〈compact \(T\rangle b\) starT］homeomor－ phic＿sym）
finally have \(1: S\) homeomorphic \(T\) ．
have \(S\)－rel＿interior \(S\) homeomorphic sphere a \(1 \cap\) affine hull \(S\)
by（rule starlike＿compact＿projective1［OF〈compact S〉 a starS］）
also have ．．．homeomorphic \((+)(-a)\)＇（sphere a \(1 \cap\) affine hull \(S)\) by（metis homeomorphic＿translation）
also have \(\ldots=\) sphere \(01 \cap(+)(-a)\)＇（affine hull \(S)\)
by（auto simp：dist＿norm）
also have \(\ldots=\) sphere \(01 \cap\) span ？\(a S\)
using eqspanS affine＿hull＿translation by blast
also have ．．．homeomorphic sphere \(01 \cap\) span ？bT
proof（rule homeomorphicI）
show fim1：f＇（sphere \(01 \cap\) span ？\(a S)=\) sphere \(01 \cap\) span ？bT
proof
show \(f\)＇（sphere \(01 \cap\) span ？aS \() \subseteq\) sphere \(01 \cap\) span ？bT
using fim fno by auto
show sphere \(01 \cap\) span ？b \(T \subseteq f\)＇（sphere \(01 \cap\) span ？aS \()\)
by clarify（metis IntI fg gim gno image＿eqI mem＿sphere＿0）
qed
show \(g\)＇（sphere \(01 \cap\) span ？bT \()=\) sphere \(01 \cap\) span ？aS
proof
show \(g\)＇（sphere \(01 \cap\) span ？bT \() \subseteq\) sphere \(01 \cap\) span ？aS using gim gno by auto
show sphere \(01 \cap\) span ？aS \(\subseteq g^{\prime}(\) sphere \(01 \cap\) span ？bT） by clarify（metis IntI fim1 gf image＿eqI）
qed
qed（auto simp：\(f g g f\) ）
also have \(\ldots=\) sphere \(01 \cap(+)(-b)\)＇（ affine hull \(T)\)
using eqspanT affine＿hull＿translation by blast
also have \(\ldots=(+)(-b)\)＇\((\) sphere \(b 1 \cap\) affine hull \(T)\)
by（auto simp：dist＿norm）
also have ．．．homeomorphic（sphere b \(1 \cap\) affine hull \(T\) ）
by（metis homeomorphic＿translation homeomorphic＿sym）
also have ．．．homeomorphic \(T\)－rel＿interior \(T\)
by（metis starlike＿compact＿projective1［OF〈compact T〉b starT］homeomor－ phic＿sym）
finally have 2：\(S\)－rel＿interior \(S\) homeomorphic \(T\)－rel＿interior \(T\) ．
show ？thesis
using 12 by blast
qed
lemma homeomorphic＿convex＿compact＿sets：
fixes \(S\) ：：＇a：：euclidean＿space set and \(T::\)＇\(b::\) euclidean＿space set
assumes convex \(S\) compact \(S\) convex \(T\) compact \(T\)
and affeq：aff＿dim \(S=\) aff＿dim \(T\)
shows \(S\) homeomorphic \(T\)
using homeomorphic_convex_lemma [OF assms] assms
by (auto simp: rel_frontier_def)
lemma homeomorphic_rel_frontiers_convex_bounded_sets:
fixes \(S\) :: ' \(a::\) euclidean_space set and \(T\) :: ' \(b::\) euclidean_space set assumes convex \(S\) bounded \(S\) convex \(T\) bounded \(T\) and affeq: aff_dim \(S=\) aff_dim \(T\)
shows rel_frontier \(S\) homeomorphic rel_frontier \(T\)
using assms homeomorphic_convex_lemma [of closure \(S\) closure T]
by (simp add: rel_frontier_def convex_rel_interior_closure)

\subsection*{6.19.2 Homeomorphisms between punctured spheres and affine sets}

Including the famous stereoscopic projection of the \(3-\mathrm{D}\) sphere to the complex plane

The special case with centre 0 and radius 1
lemma homeomorphic_punctured_affine_sphere_affine_01:
assumes \(b \in\) sphere 01 affine \(T 0 \in T b \in T\) affine \(p\)
and aff \(T\) : aff_dim \(T=\) aff_dim \(p+1\)
shows (sphere \(01 \cap T)-\{b\}\) homeomorphic \(p\)
proof -
have \([\) simp \(]\) : norm \(b=1 b \cdot b=1\)
using assms by (auto simp: norm_eq_1)
have \([\) simp \(]: T \cap\{v . b \cdot v=0\} \neq\{ \}\)
using \(\langle 0 \in T\rangle\) by auto
have \([\) simp \(]\) : \(\neg T \subseteq\{v . b \cdot v=0\}\)
using \(\langle\) norm \(b=1\rangle\langle b \in T\rangle\) by auto
define \(f\) where \(f \equiv \lambda x\). \(2 *_{R} b+(2 /(1-b \cdot x)) *_{R}(x-b)\)
define \(g\) where \(g \equiv \lambda y . b+(4 /(\) norm \(y \wedge 2+4)) *_{R}\left(y-2 *_{R} b\right)\)
have \(f g[s i m p]: \bigwedge x . \llbracket x \in T ; b \cdot x=0 \rrbracket \Longrightarrow f(g x)=x\)
unfolding \(f_{-}\)def \(g_{-}\)def by (simp add: algebra_simps field_split_simps add_nonneg_eq_0_iff)
have no: \((\operatorname{norm}(f x))^{2}=4 *(1+b \cdot x) /(1-b \cdot x)\)
if norm \(x=1\) and \(b \cdot x \neq 1\) for \(x\)
using that sum_sqs_eq [of \(1 \mathrm{~b} \cdot x]\)
apply (simp flip: dot_square_norm add: norm_eq_1 nonzero_eq_divide_eq)
apply (simp add: f_def vector_add_divide_simps inner_simps)
apply (auto simp add: field_split_simps inner_commute)
done
have \([\) simp \(]: \bigwedge u::\) real. \(8+u *(u * 8)=u * 16 \longleftrightarrow u=1\) by algebra
have \(g f[\) simp \(]: \bigwedge x . \llbracket\) norm \(x=1 ; b \cdot x \neq 1 \rrbracket \Longrightarrow g(f x)=x\) unfolding \(g_{-}\)def no by (auto simp: \(f_{-}\)def field_split_simps)
have g1: norm \((g x)=1\) if \(x \in T\) and \(b \cdot x=0\) for \(x\)
using that
apply (simp only: g_def)
apply (rule power2_eq_imp_eq)
apply (simp_all add: dot_square_norm [symmetric] divide_simps vector_add_divide_simps)
```

apply (simp add: algebra_simps inner_commute)
done

```
have ne1: \(b \cdot g x \neq 1\) if \(x \in T\) and \(b \cdot x=0\) for \(x\)
using that unfolding \(g_{-} d e f\)
    apply (simp_all add: dot_square_norm [symmetric] divide_simps vector_add_divide_simps
add_nonneg_eq_0_iff)
    apply (auto simp: algebra_simps)
    done
have subspace \(T\)
    by (simp add: assms subspace_affine)
    have \(g T: \bigwedge x . \llbracket x \in T ; b \cdot x=0 \rrbracket \Longrightarrow g x \in T\)
    unfolding \(g_{-} d e f\)
    by (blast intro: 〈subspace \(T\rangle\langle b \in T\rangle\) subspace_add subspace_mul subspace_diff)
    have \(f\) ' \(\{x\). norm \(x=1 \wedge b \cdot x \neq 1\} \subseteq\{x . b \cdot x=0\}\)
    unfolding \(f_{-}\)def using norm \(b=1\) ) norm_eq_1
    by (force simp: field_simps inner_add_right inner_diff_right)
    moreover have \(f\) ' \(T \subseteq T\)
    unfolding \(f_{-}\)def using assms 〈subspace \(T\) 〉
    by (auto simp add: inner_add_right inner_diff_right mem_affine_3_minus sub-
space_mul)
    moreover have \(\{x . b \cdot x=0\} \cap T \subseteq f^{\prime}(\{x . \operatorname{norm} x=1 \wedge b \cdot x \neq 1\} \cap T)\)
    by clarify (metis (mono_tags) IntI ne1 fg gT g1 imageI mem_Collect_eq)
    ultimately have imf: \(f^{\prime}(\{x\). norm \(x=1 \wedge b \cdot x \neq 1\} \cap T)=\{x . b \cdot x=0\} \cap\)
\(T\)
    by blast
    have no4: \(\bigwedge y \cdot b \cdot y=0 \Longrightarrow \operatorname{norm}\left((y \cdot y+4) *_{R} b+4 *_{R}\left(y-2 *_{R} b\right)\right)=y \cdot y\)
\(+4\)
    apply (rule power2_eq_imp_eq)
    apply (simp_all flip: dot_square_norm)
    apply (auto simp: power2_eq_square algebra_simps inner_commute)
    done
    have \([\) simp \(]: \bigwedge x . \llbracket n o r m x=1 ; b \cdot x \neq 1 \rrbracket \Longrightarrow b \cdot f x=0\)
    by (simp add: f_def algebra_simps field_split_simps)
    have \([\) simp \(]: \bigwedge x . \llbracket x \in T ;\) norm \(x=1 ; b \cdot x \neq 1 \rrbracket \Longrightarrow f x \in T\)
    unfolding \(f_{-} d e f\)
    by (blast intro: 〈subspace \(T\rangle\langle b \in T\rangle\) subspace_add subspace_mul subspace_diff)
    have \(g '\{x . b \cdot x=0\} \subseteq\{x . \operatorname{norm} x=1 \wedge b \cdot x \neq 1\}\)
    unfolding \(g_{-}\)def
    apply (clarsimp simp: no4 vector_add_divide_simps divide_simps add_nonneg_eq_0_iff
dot_square_norm [symmetric])
    apply (auto simp: algebra_simps)
    done
    moreover have \(g\) ' \(T \subseteq T\)
    unfolding \(g_{-} d e f\)
    by (blast intro: 〈subspace \(T\rangle\langle b \in T\rangle\) subspace_add subspace_mul subspace_diff)
    moreover have \(\{x\). norm \(x=1 \wedge b \cdot x \neq 1\} \cap T \subseteq g^{\prime}(\{x . b \cdot x=0\} \cap T)\)
    by clarify (metis (mono_tags, lifting) IntI gf image_iff imf mem_Collect_eq)
    ultimately have \(\operatorname{img}: g^{\prime}(\{x . b \cdot x=0\} \cap T)=\{x\). norm \(x=1 \wedge b \cdot x \neq 1\}\)
\(\cap T\)
by blast
have aff：affine \((\{x . b \cdot x=0\} \cap T)\)
by（blast intro：affine＿hyperplane assms）
have contf：continuous＿on \((\{x\). norm \(x=1 \wedge b \cdot x \neq 1\} \cap T) f\)
unfolding \(f_{-}\)def by（rule continuous＿intros \(\mid\)force）+
have contg：continuous＿on \((\{x . b \cdot x=0\} \cap T) g\)
unfolding \(g_{-}\)def by（rule continuous＿intros \(\mid\)force simp：add＿nonneg＿eq＿0＿iff）＋
have（sphere \(01 \cap T)-\{b\}=\{x\). norm \(x=1 \wedge(b \cdot x \neq 1)\} \cap T\)
using \(\langle\) norm \(b=1\rangle\) by（auto simp：norm＿eq＿1）（metis vector＿eq \(\langle b \cdot b=1\rangle\) ）
also have ．．．homeomorphic \(\{x . b \cdot x=0\} \cap T\)
by（rule homeomorphicI［OF imf img contf contg］）auto
also have ．．．homeomorphic \(p\)
proof（rule homeomorphic＿affine＿sets［OF aff 〈affine p〉］）
show aff＿dim \((\{x . b \cdot x=0\} \cap T)=\) aff＿dim \(p\)
by（simp add：Int＿commute aff＿dim＿affine＿Int＿hyperplane［OF 〈affine T〉］affT）
qed
finally show ？thesis ．
qed
theorem homeomorphic＿punctured＿affine＿sphere＿affine：
fixes \(a\) ：：＇\(a\) ：：euclidean＿space
assumes \(0<r b \in\) sphere a \(r\) affine \(T a \in T b \in T\) affine \(p\) and aff：aff＿dim \(T=\) aff＿dim \(p+1\)
shows（sphere a \(r \cap T)-\{b\}\) homeomorphic \(p\)
proof－
have \(a \neq b\) using assms by auto
then have inj：inj（ \(\lambda x::^{\prime} a . x / R\) norm \((a-b)\) ）
by（simp add：inj＿on＿def）
have（（sphere a \(r \cap T)-\{b\})\) homeomorphic \((+)(-a)\)＇\(((\) sphere a \(r \cap T)-\{b\})\)
by（rule homeomorphic＿translation）
also have ．．．homeomorphic \(\left(*_{R}\right)\)（inverse \(r\) ）＇\((+)(-a)\)＇（sphere a \(r \cap T-\) \(\{b\})\)
by（metis \(\langle 0<r\rangle\) homeomorphic＿scaling inverse＿inverse＿eq inverse＿zero less＿irrefl）
also have \(\ldots=\) sphere \(\left.01 \cap\left(\left(*_{R}\right) \text {（inverse } r\right)^{\prime}(+)(-a)^{\prime} T\right)-\{(b-a) / R\) \(r\}\)
using assms by（auto simp：dist＿norm norm＿minus＿commute divide＿simps）
also have ．．．homeomorphic \(p\)
using assms affine＿translation［symmetric，of－a］aff＿dim＿translation＿eq［of \(-a]\)
by（intro homeomorphic＿punctured＿affine＿sphere＿affine＿01）（auto simp：dist＿norm norm＿minus＿commute affine＿scaling inj）
finally show ？thesis ．
qed
corollary homeomorphic＿punctured＿sphere＿affine：
fixes \(a\) ：：＇\(a\) ：：euclidean＿space
assumes \(0<r\) and \(b: b \in\) sphere \(a r\)
and affine \(T\) and affS：aff＿dim \(T+1=\operatorname{DIM}\left({ }^{\prime} a\right)\)
shows（sphere a \(r-\{b\}\) ）homeomorphic \(T\)
using homeomorphic＿punctured＿affine＿sphere＿affine［of rbaUNIV T］assms by auto
corollary homeomorphic＿punctured＿sphere＿hyperplane：
fixes \(a\) ：：＇\(a\) ：：euclidean＿space
assumes \(0<r\) and \(b: b \in\) sphere \(a r\)
and \(c \neq 0\)
shows（sphere a \(r-\{b\}\) ）homeomorphic \(\left\{x::^{\prime} a . c \cdot x=d\right\}\)
using assms
by（intro homeomorphic＿punctured＿sphere＿affine）（auto simp：affine＿hyperplane of＿nat＿diff）
proposition homeomorphic＿punctured＿sphere＿affine＿gen：
fixes \(a\) ：：＇\(a\) ：：euclidean＿space
assumes convex \(S\) bounded \(S\) and \(a\) ：a \(\in\) rel＿frontier \(S\) and affine \(T\) and affS：aff＿dim \(S=\) aff＿dim \(T+1\)
shows rel＿frontier \(S-\{a\}\) homeomorphic \(T\)
proof－
obtain \(U\) ：：＇a set where affine \(U\) convex \(U\) and affdS：aff＿dim \(U=\) aff＿dim \(S\)
using choose＿affine＿subset［OF affine＿UNIV aff＿dim＿geq］
by（meson aff＿dim＿affine＿hull affine＿affine＿hull affine＿imp＿convex）
have \(S \neq\{ \}\) using assms by auto
then obtain \(z\) where \(z \in U\)
by（metis aff＿dim＿negative＿iff equals0I affdS）
then have bne：ball \(z 1 \cap U \neq\{ \}\) by force
then have［simp］：aff＿dim（ball z \(1 \cap U)=\) aff＿dim \(U\)
using aff＿dim＿convex＿Int＿open［OF〈convex \(U\) 〉open＿ball］
by（fastforce simp add：Int＿commute）
have rel＿frontier \(S\) homeomorphic rel＿frontier（ball z \(1 \cap U\) ）
by（rule homeomorphic＿rel＿frontiers＿convex＿bounded＿sets）
（auto simp：〈affine \(U\) 〉affine＿imp＿convex convex＿Int affdS assms）
also have \(\ldots=\) sphere \(z 1 \cap U\)
using convex＿affine＿rel＿frontier＿Int［of ball z 1 U］
by（simp add：〈affine \(U\rangle\) bne）
finally have rel＿frontier \(S\) homeomorphic sphere \(z 1 \cap U\) ．
then obtain \(h k\) where him：\(h\)＇rel＿frontier \(S=\) sphere z \(1 \cap U\) and kim：\(k\)＇（sphere \(z 1 \cap U)=\) rel＿frontier \(S\) and hcon：continuous＿on（rel＿frontier \(S\) ）\(h\) and kcon：continuous＿on（sphere z \(1 \cap U\) ）\(k\) and \(k h: \wedge x . x \in\) rel＿frontier \(S \Longrightarrow k(h(x))=x\) and \(h k: \bigwedge y . y \in\) sphere \(z 1 \cap U \Longrightarrow h(k(y))=y\)
unfolding homeomorphic＿def homeomorphism＿def by auto
have rel＿frontier \(S-\{a\}\) homeomorphic（sphere z \(1 \cap U)-\left\{\begin{array}{ll}h & a\end{array}\right\}\)
proof（rule homeomorphicI）
show \(h\) ：\(h\)＇（rel＿frontier \(S-\{a\})=\) sphere \(z 1 \cap U-\{h a\}\)
using him a kh by auto metis
show \(k\)＇（sphere z \(\left.1 \cap U-\left\{\begin{array}{ll}h & a\end{array}\right\}\right)=\) rel＿frontier \(S-\{a\}\)
by（force simp：\(h\)［symmetric］image＿comp o＿def kh）
qed (auto intro: continuous_on_subset hcon kcon simp: \(k h h k\) )
also have ... homeomorphic \(T\)
by (rule homeomorphic_punctured_affine_sphere_affine)
(use a him in 〈auto simp: affS affdS \(\langle\) affine \(T\rangle\langle\) affine \(U\rangle\langle z \in U\rangle\rangle\) )
finally show ?thesis.
qed
When dealing with AR, ANR and ANR later, it's useful to know that every set is homeomorphic to a closed subset of a convex set, and if the set is locally compact we can take the convex set to be the universe.
proposition homeomorphic_closedin_convex:
fixes \(S\) :: ' \(m\) ::euclidean_space set
assumes aff_dim \(S<D I M\left({ }^{\prime} n\right)\)
obtains \(U\) and \(T::\) ' \(n::\) euclidean_space set
where convex \(U U \neq\{ \}\) closedin (top_of_set \(U\) ) \(T\)
\(S\) homeomorphic \(T\)
proof (cases \(S=\{ \}\) )
case True then show ?thesis
by (rule_tac \(U=U N I V\) and \(T=\{ \}\) in that) auto
next
case False
then obtain \(a\) where \(a \in S\) by auto
obtain \(i:: ' n\) where \(i: i \in\) Basis \(i \neq 0\)
using SOME_Basis Basis_zero by force
have \(0 \in\) affine hull \(((+)(-a)\) ' \(S\) )
by (simp add: \(\langle a \in S\rangle\) hull_inc)
then have \(\operatorname{dim}((+)(-a) \cdot S)=\) aff_dim \(((+)(-a) \cdot S)\)
by (simp add: aff_dim_zero)
also have \(\ldots<\operatorname{DIM}\left({ }^{\prime} n\right)\)
by (simp add: aff_dim_translation_eq_subtract assms cong: image_cong_simp)
finally have \(d d: \operatorname{dim}((+)(-a)\) ' \(S)<\operatorname{DIM}\left({ }^{\prime} n\right)\) by linarith
have span: span \(\{x . i \cdot x=0\}=\{x . i \cdot x=0\}\)
using span_eq_iff [symmetric, of \(\{x . i \cdot x=0\}\) ] subspace_hyperplane [of \(i\) ] by simp
have \(\operatorname{dim}((+)(-a) \cdot S) \leq \operatorname{dim}\{x . i \cdot x=0\}\)
using \(d d\) by (simp add: dim_hyperplane \([O F\langle i \neq 0\rangle]\) )
then obtain \(T\) where subspace \(T\) and Tsub: \(T \subseteq\{x . i \cdot x=0\}\)
and \(\operatorname{dim} T: \operatorname{dim} T=\operatorname{dim}((+)(-a) \cdot S)\)
by (rule choose_subspace_of_subspace) (simp add: span)
have subspace ( span \(((+)(-a)\) ' \(S)\) )
using subspace_span by blast
then obtain \(h k\) where linear \(h\) linear \(k\)
and heq: \(h ' \operatorname{span}((+)(-a) ' S)=T\)
and keq:k' \(T=\operatorname{span}((+)(-a) ' S)\)
and hinv [simp]: \(\bigwedge x . x \in \operatorname{span}\left((+)(-a)^{\prime} S\right) \Longrightarrow k(h x)=x\)
and kinv \([\operatorname{simp}]: \bigwedge x . x \in T \Longrightarrow h(k x)=x\)
by (auto simp: dimT intro: isometries_subspaces \(\left[O F_{-}\langle\right.\)subspace \(\left.T\rangle\right] \operatorname{dimT}\) )
have hcont: continuous_on \(A h\) and kcont: continuous_on \(B k\) for \(A B\)
using 〈linear \(h\) 〉〈linear \(k\) 〉 linear＿continuous＿on linear＿conv＿bounded＿linear by blast＋
have \(i h h h h[\operatorname{simp}]: \bigwedge x . x \in S \Longrightarrow i \cdot h(x-a)=0\)
using Tsub［THEN subsetD］heq span＿superset by fastforce
have sphere \(01-\{i\}\) homeomorphic \(\{x . i \cdot x=0\}\)
proof（rule homeomorphic＿punctured＿sphere＿affine）
show affine \(\{x, i \cdot x=0\}\)
by（auto simp：affine＿hyperplane）
show aff＿dim \(\{x . i \cdot x=0\}+1=\operatorname{int} \operatorname{DIM}\left({ }^{\prime} n\right)\)
using \(i\) by clarsimp（metis DIM＿positive Suc＿pred add．commute of＿nat＿Suc）
qed（use \(i\) in auto）
then obtain \(f g\) where \(f g\) ：homeomorphism（sphere \(01-\{i\})\{x . i \cdot x=0\}\) \(f g\)
by（force simp：homeomorphic＿def）
show ？thesis
proof
have \(h\)＇\((+)(-a)\)＇\(S \subseteq T\)
using heq span＿superset span＿linear＿image by blast
then have \(g^{\prime} h^{\prime}(+)(-a)^{\prime} S \subseteq g^{\prime}\{x . i \cdot x=0\}\)
using Tsub by（simp add：image＿mono）
also have \(\ldots \subseteq\) sphere \(01-\{i\}\)
by（simp add：fg［unfolded homeomorphism＿def］）
finally have \(g h \_s u b_{-} s p h:(g \circ h) '(+)(-a) ' S \subseteq\) sphere \(01-\{i\}\)
by（ metis image＿comp）
then have \(g h \_s u b_{-} c b:(g \circ h)^{\prime}(+)(-a)\)＇\(S \subseteq\) cball 01
by（metis Diff＿subset order＿trans sphere＿cball）
have \([\) simp \(]: \bigwedge u . u \in S \Longrightarrow \operatorname{norm}(g(h(u-a)))=1\)
using gh＿sub＿sph［THEN subsetD］by（auto simp：o＿def）
show convex（ball \(01 \cup(g \circ h)\)＇\((+)(-a)\)＇S）
by（meson ball＿subset＿cball convex＿intermediate＿ball gh＿sub＿cb sup．bounded＿iff sup．cobounded1）
show closedin（top＿of＿set \(\left(\right.\) ball \(\left.\left.01 \cup(g \circ h)^{\prime}(+)(-a)^{\prime} S\right)\right)\left((g \circ h)^{\prime}(+)\right.\) \((-a) \cdot S)\)
unfolding closedin＿closed
by（rule＿tac \(x=\) sphere 01 in exI）auto
have ghcont：continuous＿on \(((\lambda x . x-a)\)＇\(S)(\lambda x . g(h x))\)
by（rule continuous＿on＿compose2［OF homeomorphism＿cont2［OF fg］hcont］， force）
have \(k f\) cont：continuous＿on \(((\lambda x . g(h(x-a)))\)＇\(S)(\lambda x . k(f x))\)
proof（rule continuous＿on＿compose2［OF kcont］）
show continuous＿on \(((\lambda x . g(h(x-a)))\)＇\(S) f\)
using homeomorphism＿cont1［OF fg］gh＿sub＿sph by（fastforce intro：contin－
uous＿on＿subset）
qed auto
have \(S\) homeomorphic \((+)(-a)\)＇\(S\)
by（fact homeomorphic＿translation）
also have ．．．homeomorphic \((g \circ h)\)＇\((+)(-a)\)＇\(S\)
apply（simp add：homeomorphic＿def homeomorphism＿def cong：image＿cong＿simp）
apply（rule＿tac \(x=g \circ h\) in \(e x I\) ）
apply (rule_tac \(x=k \circ f\) in \(e x I\) )
apply (auto simp: ghcont kfcont span_base homeomorphism_apply2 [OF fg] image_comp cong: image_cong_simp)
done
finally show \(S\) homeomorphic \((g \circ h)^{\prime}(+)(-a)\) ' \(S\).
qed auto
qed

\subsection*{6.19.3 Locally compact sets in an open set}

Locally compact sets are closed in an open set and are homeomorphic to an absolutely closed set if we have one more dimension to play with.
```

lemma locally_compact_open_Int_closure:
fixes S :: ' a :: metric_space set
assumes locally compact S
obtains T where open $T S=T \cap$ closure S
proof -
have $\forall x \in S . \exists T v u . u=S \cap T \wedge x \in u \wedge u \subseteq v \wedge v \subseteq S \wedge$ open $T \wedge$ compact
v
by (metis assms locally_compact openin_open)
then obtain $t v$ where
$t v: \bigwedge x . x \in S$
$\Longrightarrow v x \subseteq S \wedge$ open $(t x) \wedge$ compact $(v x) \wedge(\exists u . x \in u \wedge u \subseteq v x \wedge$
$u=S \cap t x)$
by metis
then have o : open $\left(\bigcup\left(t^{\prime} S\right)\right)$
by blast
have $S=\bigcup\left(v^{\prime} S\right)$
using $t v$ by blast
also have $\ldots=\bigcup(t ' S) \cap$ closure S
proof
show $\bigcup\left(v^{\prime} S\right) \subseteq \bigcup\left(t^{\prime} S\right) \cap$ closure S
by clarify (meson IntD2 IntI UN_I closure_subset subsetD tv)
have $t x \cap$ closure $S \subseteq v x$ if $x \in S$ for x
proof -
have $t x \cap$ closure $S \subseteq$ closure $(t x \cap S)$
by (simp add: open_Int_closure_subset that tv)
also have $\ldots \subseteq v x$
by (metis Int_commute closure_minimal compact_imp_closed that tv)
finally show ?thesis .
qed
then show $\bigcup\left(t^{\prime} S\right) \cap$ closure $S \subseteq \bigcup\left(v^{\prime} S\right)$
by blast
qed
finally have $e: S=\bigcup\left(t^{\prime} S\right) \cap$ closure S.
show ?thesis
by (rule that $\left.\left[\begin{array}{lll}O F & o & e\end{array}\right]\right)$
qed

```
lemma locally_compact_closedin_open:
fixes \(S\) :: ' \(a\) :: metric_space set
assumes locally compact \(S\)
obtains \(T\) where open \(T\) closedin (top_of_set \(T\) ) \(S\)
by (metis locally_compact_open_Int_closure [OF assms] closed_closure closedin_closed_Int)
```

lemma locally_compact_homeomorphism_projection_closed:
assumes locally compact S
obtains T and $f::{ }^{\prime} a \Rightarrow{ }^{\prime} a::$ euclidean_space $\times{ }^{\prime} b::$ euclidean_space
where closed T homeomorphism $S T f$ fst
proof (cases closed S)
case True
show ?thesis
proof
show homeomorphism $S(S \times\{0\})(\lambda x .(x, 0))$ fst
by (auto simp: homeomorphism_def continuous_intros)
qed (use True closed_Times in auto)
next
case False
obtain U where open U and $U S: U \cap$ closure $S=S$
by (metis locally_compact_open_Int_closure [OF assms])
with False have Ucomp: $-U \neq\{ \}$
using closure_eq by auto
have $[$ simp $]$: closure $(-U)=-U$
by (simp add: <open U〉closed_Compl)
define $f::{ }^{\prime} a \Rightarrow{ }^{\prime} a \times{ }^{\prime} b$ where $f \equiv \lambda x$. $(x$, One $/ R$ setdist $\{x\}(-U))$
have continuous_on $U(\lambda x .(x$, One $/ R$ setdist $\{x\}(-U)))$
proof (intro continuous_intros continuous_on_setdist)
show $\forall x \in U$. setdist $\{x\}(-U) \neq 0$
by (simp add: Ucomp setdist_eq_0_sing_1)
qed
then have hom U : homeomorphism $U\left(f^{\prime} U\right) f f s t$
by (auto simp: f_def homeomorphism_def image_iff continuous_intros)
have cloS: closedin (top_of_set U) S
by (metis US closed_closure closedin_closed_Int)
have cont: isCont $((\lambda x$. setdist $\{x\}(-U))$ ofst) z for $z:: ' a \times ' b$
by (rule continuous_at_compose continuous_intros continuous_at_setdist)+
have setdist1D: setdist $\{a\}(-U) *_{R} b=$ One \Longrightarrow setdist $\{a\}(-U) \neq 0$ for
$a::^{\prime} a$ and $b::^{\prime} b$
by force
have $*: r *_{R} b=O n e \Longrightarrow b=(1 / r) *_{R}$ One for r and $b:: ' b$
by (metis One_non_0 nonzero_divide_eq_eq real_vector.scale_eq_0_iff real_vector.scale_scale
scaleR_one)
have $\bigwedge a b::^{\prime} b$. setdist $\{a\}(-U) *_{R} b=$ One $\Longrightarrow(a, b) \in(\lambda x .(x,(1 /$ setdist
$\{x\}(-U)) *_{R}$ One))' U
by (metis (mono_tags, lifting) * ComplI image_eqI setdist1D setdist_sing_in_set)
then have f ' $U=\left(\lambda z\right.$. $\left(\right.$ setdist $\{f$ st $z\}(-U) *_{R}$ snd $\left.\left.z\right)\right)-‘\{O n e\}$

```
by (auto simp: \(f_{-}\)def setdist_eq_0_sing_1 field_simps Ucomp)
then have clfU: closed \(\left(f^{\prime} U\right)\)
by (force intro: continuous_intros cont [unfolded o_def] continuous_closed_vimage)
have closed ( \(f\) ' \(S\) )
by (metis closedin_closed_trans [OF _ clfU] homeomorphism_imp_closed_map [OF homU cloS])
then show ?thesis
by (metis US homU homeomorphism_of_subsets inf_sup_ord(1) that)
qed
lemma locally_compact_closed_Int_open:
fixes \(S\) ::' \(a\) :: euclidean_space set
shows locally compact \(S \longleftrightarrow(\exists U V\). closed \(U \wedge\) open \(V \wedge S=U \cap V)\) (is
? lhs = ? rhs )
proof
show ?lhs \(\Longrightarrow\) ?rhs
by (metis closed_closure inf_commute locally_compact_open_Int_closure)
show ?rhs \(\Longrightarrow\) ?lhs
by (meson closed_imp_locally_compact locally_compact_Int open_imp_locally_compact)
qed
lemma lowerdim_embeddings:
assumes \(D I M(' a)<D I M(' b)\)
obtains \(f\) :: ' \(a::\) euclidean_space*real \(\Rightarrow\) ' \(b::\) euclidean_space
and \(g:: ' b \Rightarrow{ }^{\prime} a *\) real
and \(j::\) ' \(b\)
where linear flinear \(g \bigwedge z . g(f z)=z j \in\) Basis \(\bigwedge x . f(x, 0) \cdot j=0\)
proof -
let \(? B=\) Basis \(::\left({ }^{\prime} a *\right.\) real \()\) set
have b01: \((0,1) \in ? B\)
by (simp add: Basis_prod_def)
have \(\operatorname{DIM}\left({ }^{\prime} a *\right.\) real \() \leq D I M\left({ }^{\prime} b\right)\)
by (simp add: Suc_leI assms)
then obtain basf :: 'a*real \(\Rightarrow^{\prime} b\) where sbf:basf ' ? \(B \subseteq\) Basis and injbf: inj_on basf Basis by (metis finite_Basis card_le_inj)
define basg:: ' \(b \Rightarrow{ }^{\prime} a *\) real where basg \(\equiv \lambda i\). if \(i \in\) basf' Basis then inv_into Basis basf \(i\) else \((0,1)\)
have bgf [simp]: basg (basf \(i\) ) \(=i\) if \(i \in\) Basis for \(i\)
using inv_into_f_f injbf that by (force simp: basg_def)
have sbg: basg' Basis \(\subseteq\) ? B
by (force simp: basg_def injbf b01)
define \(f::\) 'a*real \(\Rightarrow{ }^{\prime} b\) where \(f \equiv \lambda u\). \(\sum j \in\) Basis. \((u \cdot\) basg \(j) *_{R} j\)
define \(g:: ' b \Rightarrow{ }^{\prime} a *\) real where \(g \equiv \lambda z\). \(\left(\sum i \in\right.\) Basis. \((z \cdot\) basf \(\left.i) *_{R} i\right)\)
show ?thesis
proof
show linear \(f\)
unfolding \(f_{-} d e f\)
by (intro linear_compose_sum linearI ballI) (auto simp: algebra_simps)
```

 show linear g
 unfolding g_def
 by (intro linear_compose_sum linearI ballI) (auto simp: algebra_simps)
 have *: (\suma\in Basis.a basf b* (x • basg a)) = x • b if b\inBasis for x b
 using sbf that by auto
 show gf: g}(fx)=x\mathrm{ for }
 proof (rule euclidean_eqI)
 show \}\b.b\inBasis\Longrightarrowg(fx)\cdotb=x \
 using f_def g_def sbf by auto
 qed
 show basf(0,1)\in Basis
 using b01 sbf by auto
 then show }f(x,0)\cdot\operatorname{basf}(0,1)=0\mathrm{ for }
 unfolding f_def inner_sum_left
 using b01 inner_not_same_Basis
 by (fastforce intro: comm_monoid_add_class.sum.neutral)
 qed
 qed
proposition locally_compact_homeomorphic_closed:
fixes S :: 'a::euclidean_space set
assumes locally compact S and dimlt: DIM('a) < DIM('b)
obtains T :: 'b::euclidean_space set where closed T S homeomorphic T
proof -
obtain U:: ('a*real)set and h
where closed U and homU: homeomorphism S U h fst
using locally_compact_homeomorphism_projection_closed assms by metis
obtain f ::' }a*\mathrm{ real }=>\mp@subsup{'}{}{\prime}b\mathrm{ and }g ::'b 'b'a*real
where linear f linear g and gf [simp]: \z.g(fz)=z
using lowerdim_embeddings [OF dimlt] by metis
then have inj f
by (metis injI)
have gfU:g'f'}U=
by (simp add: image_comp o_def)
have S homeomorphic U
using homU homeomorphic_def by blast
also have ... homeomorphic f' }
proof (rule homeomorphicI [OF refl gfU])
show continuous_on U f
by (meson 〈inj f` \linear f` homeomorphism_cont2 linear_homeomorphism_image)
show continuous_on (f' U)g
using 〈linear g` linear_continuous_on linear_conv_bounded_linear by blast
qed (auto simp: o_def)
finally show ?thesis
using <closed U\rangle\langleinj f\rangle\langlelinear f\rangle closed_injective_linear_image that by blast
qed

```
lemma homeomorphic_convex_compact_lemma:
```

 fixes \(S\) :: 'a::euclidean_space set
 assumes convex \(S\)
 and compact \(S\)
 and cball \(01 \subseteq S\)
 shows \(S\) homeomorphic (cball (\(0::^{\prime} a\)) 1)
 proof (rule starlike_compact_projective_special[OF assms(2-3)])
fix $x u$
assume $x \in S$ and $0 \leq u$ and $u<(1::$ real $)$
have open $\left(\right.$ ball $\left.\left(u *_{R} x\right)(1-u)\right)$
by (rule open_ball)
moreover have $u *_{R} x \in \operatorname{ball}\left(u *_{R} x\right)(1-u)$
unfolding centre_in_ball using $\langle u<1\rangle$ by simp
moreover have ball $\left(u *_{R} x\right)(1-u) \subseteq S$
proof
fix y
assume $y \in \operatorname{ball}\left(u *_{R} x\right)(1-u)$
then have $\operatorname{dist}\left(u *_{R} x\right) y<1-u$
unfolding mem_ball .
with $\langle u<1\rangle$ have inverse $(1-u) *_{R}\left(y-u *_{R} x\right) \in$ cball 01
by (simp add: dist_norm inverse_eq_divide norm_minus_commute)
with $\operatorname{assms}(3)$ have inverse $(1-u) *_{R}\left(y-u *_{R} x\right) \in S .$.
with $\operatorname{assms}(1)$ have $(1-u) *_{R}\left(\left(y-u *_{R} x\right) /_{R}(1-u)\right)+u *_{R} x \in S$
using $\langle x \in S\rangle\langle 0 \leq u\rangle\langle u<1\rangle$ [THEN less_imp_le] by (rule convexD_alt)
then show $y \in S$ using $\langle u<1\rangle$
by simp
qed
ultimately have $u *_{R} x \in$ interior S..
then show $u *_{R} x \in S-$ frontier S
using frontier_def and interior_subset by auto
qed
proposition homeomorphic_convex_compact_cball:
fixes e :: real
and $S::$ ' $a::$ euclidean_space set
assumes S : convex S compact S interior $S \neq\{ \}$ and $e>0$
shows S homeomorphic (cball ($b::^{\prime} a$) e)
proof (rule homeomorphic_trans[OF _ homeomorphic_balls(2)])
obtain a where $a \in$ interior S
using assms by auto
then show S homeomorphic cball ($\left.0::^{\prime} a\right) 1$
by (metis (no_types) aff_dim_cball S compact_cball convex_cball
homeomorphic_convex_lemma interior_rel_interior_gen zero_less_one)
qed (use $\langle e\rangle 0\rangle$ in auto)
corollary homeomorphic_convex_compact:
fixes S :: 'a::euclidean_space set
and $T::$ ' a set
assumes convex S compact S interior $S \neq\{ \}$
and convex T compact T interior $T \neq\{ \}$

```
```

shows S homeomorphic T
using assms
by (meson zero_less_one homeomorphic_trans homeomorphic_convex_compact_cball
homeomorphic_sym)
lemma homeomorphic_closed_intervals:
fixes }a\mathrm{ :: 'a::euclidean_space and b and c :: 'a::euclidean_space and d
assumes box a b}\not={}\mathrm{ and box c d}\not={
shows (cbox a b) homeomorphic (cbox c d)
by (simp add: assms homeomorphic_convex_compact)
lemma homeomorphic_closed_intervals_real:
fixes a::real and b and c::real and d
assumes }a<b\mathrm{ and }c<
shows {a..b} homeomorphic {c..d}
using assms by (auto intro: homeomorphic_convex_compact)

```

\subsection*{6.19.4 Covering spaces and lifting results for them}
definition covering_space
        \(:: ' a::\) topological_space set \(\Rightarrow\left({ }^{\prime} a \Rightarrow\right.\) 'b) \(\Rightarrow{ }^{\prime} b::\) topological_space set \(\Rightarrow\) bool
where
covering_space c \(p S \equiv\)
    continuous_on c \(p \wedge p\) ' \(c=S \wedge\)
    \((\forall x \in S . \exists T . x \in T \wedge\) openin (top_of_set \(S) T \wedge\)
        \((\exists v . \bigcup v=c \cap p-‘ T \wedge\)
                            \((\forall u \in v\). openin (top_of_set c) \(u) \wedge\)
                            pairwise disjnt \(v \wedge\)
                            \((\forall u \in v . \exists q\). homeomorphism u Tpq)))
lemma covering_space_imp_continuous: covering_space c p \(S \Longrightarrow\) continuous_on c \(p\)
by (simp add: covering_space_def)
lemma covering_space_imp_surjective: covering_space c \(p S \Longrightarrow p^{\prime} c=S\)
by (simp add: covering_space_def)
lemma homeomorphism_imp_covering_space: homeomorphism \(S T f g \Longrightarrow\) covering_space \(S\) f \(T\)
apply (clarsimp simp add: homeomorphism_def covering_space_def)
apply (rule_tac \(x=T\) in exI, simp)
apply (rule_tac \(x=\{S\}\) in exI, auto)
done
lemma covering_space_local_homeomorphism:
assumes covering_space c \(p S x \in c\)
obtains \(T u q\) where \(x \in T\) openin (top_of_set \(c\) ) \(T\)
\(p x \in u\) openin (top_of_set \(S\) ) \(u\)
homeomorphism \(T u p q\)
using assms
by (clarsimp simp add: covering_space_def) (metis IntI UnionE vimage_eq)
```

lemma covering_space_local_homeomorphism_alt:
assumes p : covering_space c $p S$ and $y \in S$
obtains $x T U q$ where $p x=y$
$x \in T$ openin (top_of_set c) T
$y \in U$ openin (top_of_set $S) U$
homeomorphism $T U p q$
proof -
obtain x where $p x=y x \in c$
using assms covering_space_imp_surjective by blast
show ?thesis
using that $\langle p x=y\rangle$ by (auto intro: covering_space_local_homeomorphism [OF
$p\langle x \in c\rangle]$)
qed

```
proposition covering_space_open_map:
    fixes \(S\) :: ' \(a\) :: metric_space set and \(T::\) ' \(b::\) metric_space set
    assumes \(p\) : covering_space c p \(S\) and \(T\) : openin (top_of_set c) T
        shows openin (top_of_set \(S\) ) ( \(p\) ' \(T\) )
proof -
    have \(p c e: p^{\prime} c=S\)
    and covs:
        \(\bigwedge x . x \in S \Longrightarrow\)
                            \(\exists X V S . x \in X \wedge\) openin (top_of_set \(S\) ) \(X \wedge\)
                                \(\bigcup V S=c \cap p-‘ X \wedge\)
                                    \((\forall u \in V S\). openin (top_of_set c) u) \(\wedge\)
                                    pairwise disjnt VS \(\wedge\)
                                    \((\forall u \in V S . \exists q\). homeomorphism \(u X p q)\)
        using \(p\) by (auto simp: covering_space_def)
    have \(T \subseteq c\) by (metis openin_euclidean_subtopology_iff \(T\) )
    have \(\exists \overline{\text {. }}\) openin (top_of_set \(S) X \wedge y \in X \wedge X \subseteq p ' T\)
                    if \(y \in p^{'} T\) for \(y\)
    proof -
        have \(y \in S\) using \(\langle T \subseteq c\rangle\) pce that by blast
        obtain \(U V S\) where \(y \in U\) and \(U\) : openin (top_of_set \(S\) ) \(U\)
                            and \(V S: \bigcup V S=c \cap p-‘ U\)
                            and open \(V S: \forall V \in V S\). openin (top_of_set c) \(V\)
                            and homVS: \(\bigwedge V . V \in V S \Longrightarrow \exists q\). homeomorphism \(V U p q\)
            using covs \([O F\langle y \in S\rangle]\) by auto
        obtain \(x\) where \(x \in c p x \in U x \in T p x=y\)
            using \(T\) [unfolded openin_euclidean_subtopology_iff] \(\langle y \in U\rangle\left\langle y \in p^{\prime} T\right\rangle\) by
blast
            with \(V S\) obtain \(V\) where \(x \in V V \in V S\) by auto
            then obtain \(q\) where \(q\) : homeomorphism \(V U p q\) using homVS by blast
            then have \(p t V: p^{\prime}(T \cap V)=U \cap q-‘(T \cap V)\)
            using \(V S\langle V \in V S\rangle\) by (auto simp: homeomorphism_def)
```

 have ocv: openin (top_of_set c) V
 by (simp add: <V \inVS> openVS)
 have openin (top_of_set (q'U)) (T\capV)
 using q unfolding homeomorphism_def
 by (metis T inf.absorb_iff2 ocv openin_imp_subset openin_subtopology_Int
 subtopology_subtopology)
then have openin (top_of_set U)(U\capq-`(T\capV)) using continuous_on_open homeomorphism_def q by blast then have os:openin (top_of_set S)(U\capq-`(T\capV))
using openin_trans [of U] by (simp add: Collect_conj_eq U)
show ?thesis
proof (intro exI conjI)
show openin (top_of_set S) (p'(T\capV))
by (simp only: ptV os)
qed (use \langlep x = y>\langlex\inV\rangle\langlex\inT\rangle\mathrm{ in auto)}
qed
with openin_subopen show ?thesis by blast
qed
lemma covering_space_lift_unique_gen:
fixes f :: 'a::topological_space = 'b::topological_space
fixes g1 :: ' }a>>'
mp@code{':real_normed_vector
assumes cov: covering_space c p S
and eq: g1 a = g2 a
and f:continuous_on Tf f`T\subseteqS
and g1: continuous_on T g1 g1'T\subseteqc
and fg1: \x. x \inT\Longrightarrowfx=p(g1 x)
and g2: continuous_on T g2 g2' T\subseteqc
and fg2: \bigwedgex. x \inT\Longrightarrowfx=p(g2x)
and u_compt: U\in components T and }a\inUx\in
shows g1 x = g2 x
proof -
have U\subseteqT by (rule in_components_subset [OF u_compt])
define G12 where G12 \equiv{x\inU.g1 x - g2 x=0}
have connected U by (rule in_components_connected [OF u_compt])
have contu: continuous_on U g1 continuous_on U g2
using \langleU\subseteqT\rangle continuous_on_subset g1 g2 by blast+
have o12: openin (top_of_set U) G12
unfolding G12_def
proof (subst openin_subopen, clarify)
fix z
assume z:z\inUg1z-g2 z=0
obtain vw w where g1 z\inv and ocv:openin (top_of_set c) v
and p(g1z)\inw and osw: openin (top_of_set S)w
and hom: homeomorphism v w pq
proof (rule covering_space_local_homeomorphism [OF cov])
show g1 z \inc
using \langleU\subseteqT\rangle\langlez\inU\rangle g1(2) by blast
qed auto

```
have \(g 2 z \in v\) using \(\langle g 1 z \in v\rangle z\) by auto
have \(g g: U \cap g-' v=U \cap g-'\left(v \cap g^{\prime} U\right)\) for \(g\)
by auto
have openin (top_of_set \(\left.\left(g 1^{\prime} U\right)\right)\left(v \cap g 1^{\prime} U\right)\)
using ocv \(\langle U \subseteq T\rangle\) g1 by (fastforce simp add: openin_open)
then have 1: openin (top_of_set \(U)(U \cap g 1-‘ v)\)
unfolding \(g g\) by (blast intro: contu continuous_on_open [THEN iffD1, rule_format])
have openin (top_of_set \(\left.\left(g 2^{\prime} U\right)\right)(v \cap g 2\) ' \(U\) )
using ocv \(\langle U \subseteq T\rangle\) g2 by (fastforce simp add: openin_open)
then have 2: openin (top_of_set \(U\) ) \((U \cap g 2-‘ v)\)
unfolding \(g g\) by (blast intro: contu continuous_on_open [THEN iffD1, rule_format])
let ? \(T=(U \cap g 1-‘ v) \cap(U \cap g 2-‘ v)\)
show \(\exists T\). openin (top_of_set \(U\) ) \(T \wedge z \in T \wedge T \subseteq\{z \in U . g 1 z-g 2 z=0\}\)
proof (intro exI conjI)
show openin (top_of_set \(U\) ) ?T
using 12 by blast
show \(z \in\) ?T
using \(z\) by (simp add: \(\langle g 1 z \in v\rangle\langle g 2 z \in v\rangle)\)
show ? \(T \subseteq\{z \in U \cdot g 1 z-g 2 z=0\}\)
using hom
by (clarsimp simp: homeomorphism_def) (metis \(\langle U \subseteq T\rangle\) fg1 fg2 subsetD)
qed
qed
have c12: closedin (top_of_set U) G12
unfolding G12_def
by (intro continuous_intros continuous_closedin_preimage_constant contu)
have \(G 12=\{ \} \vee G 12=U\)
by (intro connected_clopen [THEN iffD1, rule_format] 〈connected \(U\) 〉conjI o12 c12)
with \(e q\langle a \in U\rangle\) have \(\bigwedge x . x \in U \Longrightarrow g 1 x-g 2 x=0\) by (auto simp: G12_def)
then show ?thesis
using \(\langle x \in U\rangle\) by force
qed
proposition covering_space_lift_unique:
fixes \(f::\) ' \(a\) ::topological_space \(\Rightarrow\) ' \(b:\) :topological_space
fixes \(g 1::{ }^{\prime} a \Rightarrow{ }^{\prime} c::\) real_normed_vector
assumes covering_space c \(p S\)
\(g 1 a=g 2 a\)
continuous_on \(T f f^{\prime} T \subseteq S\)
continuous_on T g1 g1' \(T \subseteq c \bigwedge x . x \in T \Longrightarrow f x=p(g 1 x)\)
continuous_on \(T\) g2 \(g^{2}{ }^{\prime} T \subseteq c \bigwedge x . x \in T \Longrightarrow f x=p(g 2 x)\)
connected \(T \quad a \in T \quad x \in T\)
shows \(g 1 x=g 2 x\)
using covering_space_lift_unique_gen [of c p S] in_components_self assms ex_in_conv by blast
```

lemma covering_space_locally:
fixes p:: 'a::real_normed_vector }=>\mathrm{ ' 'b::real_normed_vector
assumes loc: locally \varphi C and cov:covering_space C p S
and pim: }\T.\llbracketT\subseteqC;\varphiT\rrbracket\Longrightarrow\psi(p'T
shows locally \psi S
proof -
have locally \psi (p'C)
proof (rule locally_open_map_image [OF loc])
show continuous_on C p
using cov covering_space_imp_continuous by blast
show }\bigwedgeT\mathrm{ . openin (top_of_set C) T < openin (top_of_set (p'C)) (p'T)
using cov covering_space_imp_surjective covering_space_open_map by blast
qed (simp add: pim)
then show ?thesis
using covering_space_imp_surjective [OF cov] by metis
qed
proposition covering_space_locally_eq:
fixes p :: 'a::real_normed_vector = 'b::real_normed_vector
assumes cov: covering_space C p S
and pim: \bigwedgeT.\llbracketT\subseteqC;\varphiT\rrbracket\Longrightarrow\psi(p'T)
and qim: \bigwedgeqU.\llbracketU}\subseteqS; continuous_on U q;\psiU\rrbracket\Longrightarrow\varphi(q'U
shows locally \psiS < locally \varphiC
(is ?lhs = ?rhs)
proof
assume L:?lhs
show ?rhs
proof (rule locallyI)
fix V
assume V:openin (top_of_set C) V and x
have px\inp'C
by (metis IntE V <x G V` imageI openin_open) then obtain T\mathcal{V}}\mathrm{ where px}\in and opeT: openin (top_of_set S) T and veq: \bigcup\mathcal{V}=C\capp-`}
and ope: }\forallU\in\mathcal{V}\mathrm{ . openin (top_of_set C) U
and hom: }\forallU\in\mathcal{V}.\existsq. homeomorphism U T p
using cov unfolding covering_space_def by (blast intro: that)
have }x\in\bigcup\mathcal{V
using V veq \langlep x \inT\rangle\langlex\inV\rangle openin_imp_subset by fastforce
then obtain U where }x\inUU\in\mathcal{V
by blast
then obtain q}\mathrm{ where opeU:openin (top_of_set C) U and q: homeomorphism
UTpq
using ope hom by blast
with V have openin (top_of_set C) (U\capV)
by blast
then have UV:openin (top_of_set S) (p'(U\capV))

```
using cov covering_space_open_map by blast
obtain \(W W^{\prime}\) where ope \(W\) : openin (top_of_set \(S\) ) \(W\) and \(\psi W^{\prime} p x \in W W\)
\(\subseteq W^{\prime}\) and \(W^{\prime}\) sub: \(W^{\prime} \subseteq p^{\prime}(U \cap V)\)
using locallyE [OF L UV] \(\langle x \in U\rangle\langle x \in V\rangle\) by blast
then have \(W \subseteq T\)
by (metis Int_lower1 q homeomorphism_image1 image_Int_subset order_trans)
show \(\exists U Z\). openin (top_of_set \(C) U \wedge\) \(\varphi Z \wedge x \in U \wedge U \subseteq Z \wedge Z \subseteq V\)
proof (intro exI conjI)
have openin (top_of_set T) W
by (meson ope \(W\) ope \(T\) openin_imp_subset openin_subset_trans \(\langle W \subseteq T\rangle\) )
then have openin (top_of_set \(U\) ) \(\left(q^{\prime} W\right)\)
by (meson homeomorphism_imp_open_map homeomorphism_symD q)
then show openin (top_of_set \(C)\left(q^{\prime} W\right)\)
using ope \(U\) openin_trans by blast
show \(\varphi\left(q^{\prime} W^{\prime}\right)\)
by (metis (mono_tags, lifting) Int_subset_iff \(U V W^{\prime}\) sub \(\left\langle\psi W^{\prime}\right\rangle\) continuous_on_subset dual_order.trans homeomorphism_def image_Int_subset openin_imp_subset q qim)
show \(x \in q\) ' \(W\)
by (metis \(\langle p x \in W\rangle\langle x \in U\rangle\) homeomorphism_def imageI \(q\) )
show \(q^{\prime} W \subseteq q^{\prime} W^{\prime}\)
using \(\left\langle W \subseteq W^{\prime}\right\rangle\) by blast
have \(W^{\prime} \subseteq p^{\prime} V\)
using \(W^{\prime}\) sub by blast
then show \(q^{\prime} W^{\prime} \subseteq V\)
using \(W^{\prime}\) 'sub homeomorphism_apply1 [OF q] by auto

\section*{qed}
qed
next
assume ?rhs
then show? lhs
using cov covering_space_locally pim by blast
qed
lemma covering_space_locally_compact_eq:
fixes \(p::\) ' \(a:\) :real_normed_vector \(\Rightarrow\) ' \(b:\) :real_normed_vector
assumes covering_space \(C p S\)
shows locally compact \(S \longleftrightarrow\) locally compact \(C\)
proof (rule covering_space_locally_eq [OF assms])
show \(\wedge T . \llbracket T \subseteq C\); compact \(T \rrbracket \Longrightarrow \operatorname{compact}\left(p^{\prime} T\right)\)
by (meson assms compact_continuous_image continuous_on_subset covering_space_imp_continuous)
qed (use compact_continuous_image in blast)
lemma covering_space_locally_connected_eq:
fixes \(p\) :: ' \(a::\) :real_normed_vector \(\Rightarrow{ }^{\prime} b::\) real_normed_vector
assumes covering_space \(C p S\)
shows locally connected \(S \longleftrightarrow\) locally connected \(C\)
proof (rule covering_space_locally_eq [OF assms])
```

 show \(\bigwedge T . \llbracket T \subseteq C\); connected \(T \rrbracket \Longrightarrow\) connected (\(p^{\prime} T\))
 by (meson connected_continuous_image assms continuous_on_subset covering_space_imp_continuous)
 qed (use connected_continuous_image in blast)
lemma covering_space_locally_path_connected_eq:
fixes $p::$ ' $a:$:real_normed_vector \Rightarrow ' $b:$:real_normed_vector
assumes covering_space $C p S$
shows locally path_connected $S \longleftrightarrow$ locally path_connected C
proof (rule covering_space_locally_eq [OF assms])
show $\bigwedge T . \llbracket T \subseteq C$; path_connected $T \rrbracket \Longrightarrow$ path_connected $\left(p^{\prime} T\right)$
by (meson path_connected_continuous_image assms continuous_on_subset cover-
ing_space_imp_continuous)
qed (use path_connected_continuous_image in blast)
lemma covering_space_locally_compact:
fixes $p::$ 'a::real_normed_vector \Rightarrow ' $b:$:real_normed_vector
assumes locally compact C covering_space $C p S$
shows locally compact S
using assms covering_space_locally_compact_eq by blast
lemma covering_space_locally_connected:
fixes $p::$ ' $a:$:real_normed_vector \Rightarrow ' $b:$:real_normed_vector
assumes locally connected C covering_space C p S
shows locally connected S
using assms covering_space_locally_connected_eq by blast
lemma covering_space_locally_path_connected:
fixes $p::$ ' $a:$:real_normed_vector \Rightarrow ' $b:$:real_normed_vector
assumes locally path_connected Covering_space C p S
shows locally path_connected S
using assms covering_space_locally_path_connected_eq by blast
proposition covering_space_lift_homotopy:
fixes $p::$ ' $a::$ real_normed_vector \Rightarrow ' $b::$ real_normed_vector
and $h::$ real $\times{ }^{\prime} c::$ real_normed_vector \Rightarrow ' b
assumes cov: covering_space $C p S$
and conth: continuous_on $(\{0 . .1\} \times U) h$
and him: h ' $(\{0 . .1\} \times U) \subseteq S$
and heq: $\bigwedge y . y \in U \Longrightarrow h(0, y)=p(f y)$
and contf: continuous_on $U f$ and $f i m: f^{\prime} U \subseteq C$
obtains k where continuous_on $(\{0 . .1\} \times U) k$
$k^{\prime}(\{0 . .1\} \times U) \subseteq C$
$\bigwedge y . y \in U \Longrightarrow k(0, y)=f y$
$\bigwedge z . z \in\{0 . .1\} \times U \Longrightarrow h z=p(k z)$
proof -
have $\exists V k$. openin (top_of_set U) $V \wedge y \in V \wedge$
continuous_on $(\{0 . .1\} \times V) k \wedge k^{\prime}(\{0 . .1\} \times V) \subseteq C \wedge$

```
```

 (\forallz\inV.k(0,z)=fz)\wedge(\forallz\in{0..1}\timesV.hz=p(kz))
 if }y\inU\mathrm{ for }
 proof -
 obtain UU where UU: \s.s\inS\Longrightarrows\in(UU s)^openin (top_of_set S)
 (UUs)^
(\exists\mathcal{V}.\cup\mathcal{V}=C\capp-`}UUs
(\forallU\in\mathcal{V}. openin (top_of_set C) U)^
pairwise disjnt \mathcal{V}^
(}\forallU\in\mathcal{V}.\existsq. homeomorphism U (UU s) p q)
using cov unfolding covering_space_def by (metis (mono_tags))
then have ope:\s.s\inS\Longrightarrows\in(UUs)^openin (top_of_set S)(UUs)
by blast
have \existskn i. open k}\wedge\mathrm{ open n ^
t\ink\wedgey\inn\wedgei\inS\wedgeh'(({0..1}\capk)\times(U\capn))\subseteqUU i if t
\in{0..1} for }
proof -
have hinS:}h(t,y)\in
using <y\inU\rangle him that by blast
then have (t,y)\in({0..1}\timesU)\caph-' UU(h(t,y))
using }\langley\inU\rangle\langlet\in{0..1}\rangle by (auto simp: ope
moreover have ope_01U: openin (top_of_set ({0..1} }\timesU))(({0..1}\timesU
\caph-'}UU(h(t,y))
using hinS ope continuous_on_open_gen [OF him] conth by blast
ultimately obtain V W where opeV: open V and t\in{0..1}\capV t\in
{0..1}\capV
and opeW: open W and y\inUy\inW
and}VW:({0..1}\capV)\times(U\capW)\subseteq(({0..1}\timesU)
h-' UU(h(t,y)))
by (rule Times_in_interior_subtopology) (auto simp: openin_open)
then show ?thesis
using hinS by blast
qed
then obtain KNNX where
K:\bigwedget.t\in{0..1}\Longrightarrowopen (K t)
and NN:^t.t\in{0..1}\Longrightarrowopen (NNt)
and inUS: ^t.t\in{0..1}\Longrightarrowt\inKt\wedgey\inNNt\wedgeXt\inS
and him: ^t.t\in{0..1}\Longrightarrow C'}(({0..1}\capKt)\times(U\capNNt))\subseteqU
(Xt)
by (metis (mono_tags))
obtain \mathcal{T}\mathrm{ where }\mathcal{T}\subseteq((\lambdai.Ki\timesNNi))'{0..1} finite \mathcal{T}{0::real.. 1} }\times{y
\subseteq \bigcup \mathcal { T }
proof (rule compactE)
show compact ({0::real..1} }\times{y}
by (simp add: compact_Times)
show {0..1} }\times{y}\subseteq(\bigcupi\in{0..1}.Ki\timesNNi
using K inUS by auto
show }\B.B\in(\lambdai.Ki\timesNNi)'{0..1}\Longrightarrow open B
using KNN by (auto simp:open_Times)
qed blast

```
```

 then obtain \(t k\) where \(t k \subseteq\{0 . .1\}\) finite \(t k\)
 and \(t k:\{0::\) real.. 1\(\} \times\{y\} \subseteq(\bigcup i \in t k . K i \times N N i)\)
 by (metis (no_types, lifting) finite_subset_image)
 then have \(t k \neq\{ \}\)
 by auto
 define \(n\) where \(n=\bigcap(N N ‘ t k)\)
 have \(y \in n\) open \(n\)
 using inUS NN \(\langle\) tk \(\subseteq\{0 . .1\}\rangle\langle\) finite \(t k\rangle\)
 by (auto simp: n_def open_INT subset_iff)
 obtain \(\delta\) where \(0<\delta\) and \(\delta: \wedge T . \llbracket T \subseteq\{0 . .1\} ;\) diameter \(T<\delta \rrbracket \Longrightarrow \exists B \in K\)
 ' $t k . T \subseteq B$
proof (rule Lebesgue_number_lemma $\left[\right.$ of $\left.\left.\{0 . .1\} K^{\prime} t k\right]\right)$
show K ' $t k \neq\{ \}$
using $\langle t k \neq\{ \}$ 〉 by auto
show $\{0 . .1\} \subseteq \bigcup\left(K^{\prime} t k\right)$
using $t k$ by auto
show $\bigwedge B . B \in K^{\prime} t k \Longrightarrow$ open B
using $\langle t k \subseteq\{0 . .1\}\rangle K$ by auto
qed auto
obtain N ::nat where $N: N>1 / \delta$
using reals_Archimedean2 by blast
then have $N>0$
using $\langle 0<\delta\rangle$ order.asym by force
have $*: \exists V k$. openin (top_of_set U) $V \wedge y \in V \wedge$
continuous_on (\{0..of_nat $n / N\} \times V) k \wedge$
k ' $(\{0$..of_nat $n / N\} \times V) \subseteq C \wedge$
$(\forall z \in V . k(0, z)=f z) \wedge$
$(\forall z \in\{0 .$. of_nat $n / N\} \times V . h z=p(k z))$ if $n \leq N$ for n
using that
proof (induction n)
case 0
show ?case
apply (rule_tac $x=U$ in exI)
apply (rule_tac $x=f \circ$ snd in exI)
apply (intro conjI $\langle y \in U\rangle$ continuous_intros continuous_on_subset [OF
contf])
using fim apply (auto simp: heq)
done
next
case (Suc n)
then obtain $V k$ where ope $U V$: openin (top_of_set U) V
and $y \in V$
and contk: continuous_on $(\{0 . . n / N\} \times V) k$
and kim: k ' $(\{0 . . n / N\} \times V) \subseteq C$
and keq: $\wedge z . z \in V \Longrightarrow k(0, z)=f z$
and heq: $\wedge z . z \in\{0 . . n / N\} \times V \Longrightarrow h z=p(k z)$
using Suc_leD by auto
have $n \leq N$
using Suc.prems by auto

```
```

obtain t where $t \in t k$ and $t:\{n / N . .(1+$ real $n) / N\} \subseteq K t$
proof (rule bexE [OF $\delta]$)
show $\{n / N . .(1+$ real $n) / N\} \subseteq\{0 . .1\}$
using Suc.prems by (auto simp: field_split_simps)
show diameter_less: diameter $\{n / N . .(1+$ real $n) / N\}<\delta$
using $\langle 0<\delta\rangle N$ by (auto simp: field_split_simps)
qed blast
have $101: t \in\{0 . .1\}$
using $\langle t \in t k\rangle\langle t k \subseteq\{0 . .1\}\rangle$ by blast
obtain \mathcal{V} where $\mathcal{V}: \cup \mathcal{V}=C \cap p-‘ U U(X t)$
and ope $C: \bigwedge U . U \in \mathcal{V} \Longrightarrow$ openin $($ top_of_set $C) U$
and pairwise disjnt \mathcal{V}
and homuu: $\bigwedge U . U \in \mathcal{V} \Longrightarrow \exists$. homeomorphism $U(U U(X t)) p q$
using inUS [OF t01] UU by meson
have $n_{-} d i v_{-} N_{-} i n: n / N \in\{n / N \ldots(1+$ real $n) / N\}$
using N by (auto simp: field_split_simps)
with t have $n N _i n_{-} k k t: n / N \in K t$
by blast
have $k(n / N, y) \in C \cap p-{ }^{\prime} U U(X t)$
proof (simp, rule conjI)
show $k(n / N, y) \in C$
using $\langle y \in V\rangle$ kim keq by force
have $p(k(n / N, y))=h(n / N, y)$
by (simp add: $\langle y \in V\rangle$ heq)
also have $\ldots \in h^{\prime}((\{0 . .1\} \cap K t) \times(U \cap N N t))$
using $\langle y \in V\rangle t 01\langle n \leq N\rangle$
by (simp add: nN_in_kkt $\langle y \in U$ 〉 inUS field_split_simps)
also have $\ldots \subseteq U U(X t)$
using him t01 by blast
finally show $p(k(n / N, y)) \in U U(X t)$.
qed
with \mathcal{V} have $k(n / N, y) \in \bigcup \mathcal{V}$
by blast
then obtain W where $W: k(n / N, y) \in W$ and $W \in \mathcal{V}$
by blast
then obtain p^{\prime} where ope C^{\prime} : openin (top_of_set C) W
and hom': homeomorphism $W(U U(X t)) p p^{\prime}$
using homuu opeC by blast
then have $W \subseteq C$
using openin_imp_subset by blast
define W^{\prime} where $W^{\prime}=U U(X t)$
have ope $V W$: openin (top_of_set $V)(V \cap(k \circ \operatorname{Pair}(n / N))-‘ W)$
proof (rule continuous_openin_preimage [OF _ ope $\left.C^{\prime}\right]$)
show continuous_on $V(k \circ \operatorname{Pair}(n / N))$
by (intro continuous_intros continuous_on_subset [OF contk], auto)
show $(k \circ \operatorname{Pair}(n / N)) \cdot V \subseteq C$
using kim by (auto simp: $\langle y \in V\rangle W$)
qed
obtain N^{\prime} where ope $U N^{\prime}$: openin (top_of_set U) N^{\prime}

```
```

 and \(y \in N^{\prime}\) and kimw: \(k^{\prime}\left(\{(n / N)\} \times N^{\prime}\right) \subseteq W\)
 proof
 show openin \((\) top_of_set \(U)\left(V \cap(k \circ \operatorname{Pair}(n / N))-{ }^{\prime} W\right)\)
 using opeUV opeVW openin_trans by blast
 qed (use \(\langle y \in V\rangle W\) in \(\langle\) force +\(\rangle\))
 obtain \(Q Q^{\prime}\) where ope \(U Q\) : openin (top_of_set \(U\)) \(Q\)
 and cloUQ': closedin (top_of_set \(U\)) \(Q^{\prime}\)
 and \(y \in Q \quad Q \subseteq Q^{\prime}\)
 and \(Q^{\prime}: Q^{\prime} \subseteq(U \cap N N(t)) \cap N^{\prime} \cap V\)
 proof -
obtain $V O V X$ where open $V O$ open $V X$ and $V O: V=U \cap V O$ and

```
\(V X: N^{\prime}=U \cap V X\)
            using opeUV opeUN' by (auto simp: openin_open)
    then have open \((N N(t) \cap V O \cap V X)\)
        using \(N N\) t01 by blast
    then obtain \(e\) where \(e>0\) and \(e\) : cball \(y e \subseteq N N(t) \cap V O \cap V X\)
        by (metis Int_iff \(\left\langle N^{\prime}=U \cap V X\right\rangle\langle V=U \cap V O\rangle\left\langle y \in N^{\prime}\right\rangle\langle y \in V\rangle\) in \(U S\)
open_contains_cball t01)
    show ?thesis
    proof
            show openin (top_of_set \(U)(U \cap\) ball \(y\) e)
                by blast
            show closedin (top_of_set \(U\) ) \((U \cap\) cball y e)
            using \(e\) by (auto simp: closedin_closed)
        qed (use \(\langle y \in U\rangle\langle e>0\rangle V O V X e\) in auto)
    qed
    then have \(y \in Q^{\prime} Q \subseteq(U \cap N N(t)) \cap N^{\prime} \cap V\)
        by blast+
    have neq: \(\{0 . . n / N\} \cup\{n / N . .(1+\) real \(n) / N\}=\{0 . .(1+\) real \(n) / N\}\)
            apply (auto simp: field_split_simps)
            by (metis not_less of_nat_0_le_iff of_nat_0_less_iff order_trans zero_le_mult_iff)
    then have neq \(Q^{\prime}:\{0 . . n / N\} \times Q^{\prime} \cup\{n / N . .(1+\) real \(n) / N\} \times Q^{\prime}=\{0 . .(1\)
+ real \(n\) ) \(/ N\} \times Q^{\prime}\)
            by blast
    have cont: continuous_on \(\left(\{0 . .(1+\right.\) real \(\left.n) / N\} \times Q^{\prime}\right)(\lambda x\). if \(x \in\{0 . . n / N\}\)
\(\times Q^{\prime}\) then \(k x\) else \(\left.\left(p^{\prime} \circ h\right) x\right)\)
            unfolding neq \(Q^{\prime}\) [symmetric]
    proof (rule continuous_on_cases_local, simp_all add: neqQ' del: comp_apply)
        have \(\exists T\). closed \(T \wedge\{0 \ldots n / N\} \times Q^{\prime}=\{0 . .(1+n) / N\} \times Q^{\prime} \cap T\)
            using \(n_{-} d i v_{-} N_{-} i n\)
            by (rule_tac \(x=\{0 . . n / N\} \times U N I V\) in exI) (auto simp: closed_Times)
            then show closedin (top_of_set \(\left(\{0 . .(1+\right.\) real \(\left.\left.n) / N\} \times Q^{\prime}\right)\right)(\{0 . . n / N\}\)
\(\times Q^{\prime}\) )
            by (simp add: closedin_closed)
            have \(\exists T\). closed \(T \wedge\{n / N . .(1+n) / N\} \times Q^{\prime}=\{0 . .(1+n) / N\} \times Q^{\prime} \cap T\)
            by \((\) rule_tac \(x=\{n / N . .(1+n) / N\} \times U N I V\) in exI) (auto simp: closed_Times
order_trans [rotated])
            then show closedin \(\left(\right.\) top_of_set \(\left(\{0 . .(1+\right.\) real \(\left.\left.n) / N\} \times Q^{\prime}\right)\right)(\{n / N . .(1\)
+ real \(\left.n) / N\} \times Q^{\prime}\right)\)
by (simp add: closedin_closed)
show continuous_on \(\left(\{0 . . n / N\} \times Q^{\prime}\right) k\)
using \(Q^{\prime}\) by (auto intro: continuous_on_subset [OF contk])
have continuous_on \(\left(\{n / N . .(1+\right.\) real \(\left.n) / N\} \times Q^{\prime}\right) h\)
proof (rule continuous_on_subset [OF conth])
show \(\{n / N . .(1+\) real \(n) / N\} \times Q^{\prime} \subseteq\{0 . .1\} \times U\)
proof (clarsimp, intro conjI)
fix \(a b\)
assume \(b \in Q^{\prime}\) and \(a: n / N \leq a a \leq(1+\) real \(n) / N\)
have \(0 \leq n / N(1+\) real \(n) / N \leq 1\)
using a Suc.prems by (auto simp: divide_simps)
with \(a\) show \(0 \leq a \quad a \leq 1\)
by linarith+
show \(b \in U\)
using \(\left\langle b \in Q^{\prime}\right\rangle\) cloUQ' closedin_imp_subset by blast

\section*{qed}
qed
moreover have continuous_on \(\left(h '\left(\{n / N . .(1+\right.\right.\) real \(\left.\left.n) / N\} \times Q^{\prime}\right)\right) p^{\prime}\)
proof (rule continuous_on_subset [OF homeomorphism_cont2 [OF hom \(]\) ])
have \(h^{\prime}\left(\{n / N . .(1+\right.\) real \(\left.n) / N\} \times Q^{\prime}\right) \subseteq h^{\prime}((\{0 . .1\} \cap K t) \times(U \cap\)
proof (rule image_mono)
show \(\{n / N . .(1+\) real \(n) / N\} \times Q^{\prime} \subseteq(\{0 . .1\} \cap K t) \times(U \cap N N t)\)
proof (clarsimp, intro conjI)
fix \(a\) ::real and \(b\)
assume \(b \in Q^{\prime} n / N \leq a a \leq(1+\) real \(n) / N\)
show \(0 \leq a\)
by (meson \(\langle n / N \leq a\rangle\) divide_nonneg_nonneg of_nat_0_le_iff order_trans)
show \(a \leq 1\)
using Suc.prems \(\langle a \leq(1+\) real \(n) / N\rangle\) order_trans by force
show \(a \in K t\)
using \(\langle a \leq(1+\) real \(n) / N\rangle\langle n / N \leq a\rangle t\) by auto
show \(b \in U\)
using \(\left\langle b \in Q^{\prime}\right\rangle\) cloUQ' closedin_imp_subset by blast
show \(b \in N N t\)
using \(Q^{\prime}\left\langle b \in Q^{\prime}\right\rangle\) by auto
qed
qed
with \(h\) im show \(h^{\prime}\left(\{n / N . .(1+\right.\) real \(\left.n) / N\} \times Q^{\prime}\right) \subseteq U U(X t)\)
using \(t 01\) by blast
qed
ultimately show continuous_on \(\left(\{n / N . .(1+\right.\) real \(\left.n) / N\} \times Q^{\prime}\right)\left(p^{\prime} \circ h\right)\)
by (rule continuous_on_compose)
have \(k(n / N, b)=p^{\prime}(h(n / N, b))\) if \(b \in Q^{\prime}\) for \(b\)
proof -
have \(k(n / N, b) \in W\)
using that \(Q^{\prime}\) kimw by force
then have \(k(n / N, b)=p^{\prime}(p(k(n / N, b)))\)
by (simp add: homeomorphism_apply1 [OF hom \(])\)
```

 then show ?thesis
 using Q' that by (force simp: heq)
 qed
 then show }\wedgex.x\in{n/N..(1+\mathrm{ real n)/N}
 x\in{0..n/N}\times \mp@subsup{Q}{}{\prime}\Longrightarrowkx=(\mp@subsup{p}{}{\prime}\circh)x
 by auto
 qed
 have h_in_UU:h(x,y)\inUU(Xt) if y G Q ᄀx\leqn/N0\leqx x\leq(1+
 real n) / N for x y
proof -
have }x\leq
using Suc.prems that order_trans by force
moreover have x
by (meson atLeastAtMost_iff le_less not_le subset_eq t that)
moreover have }y\in
using }\langley\inQ>\mathrm{ opeUQ openin_imp_subset by blast
moreover have y\inNNt
using \mp@subsup{Q}{}{\prime}}\mp@subsup{}{}{\prime}Q\subseteq\mp@subsup{Q}{}{\prime}\rangle\langley\inQ\rangle\mathrm{ by auto
ultimately have (x,y)\in(({0..1}\capKt)\times(U\capNNt))
using that by auto
then have h(x,y)\inh'(({0..1}\capKt)\times(U\capNNt))
by blast
also have .. \subseteq}\subseteqUU(Xt
by (metis him t01)
finally show ?thesis.
qed
let ?k =(\lambdax. if }x\in{0..n/N}\times\mp@subsup{Q}{}{\prime}\mathrm{ then kx else (}\mp@subsup{p}{}{\prime}\circh)x
show ?case
proof (intro exI conjI)
show continuous_on ({0..real (Suc n)/N} }\timesQ)?
using }\langleQ\subseteq\mp@subsup{Q}{}{\prime}\rangle\mathrm{ by (auto intro: continuous_on_subset [OF cont])
have }\xy.\llbracketx\leqn/N;y\in\mp@subsup{Q}{}{\prime};0\leqx\rrbracket\Longrightarrowk(x,y)\in
using kim Q' by force
moreover have }\mp@subsup{p}{}{\prime}(h(x,y))\inC\mathrm{ if }y\inQ\negx\leqn/N0\leqxx\leq(1
real n) / N for x y
proof (rule \langleW\subseteqC>[THEN subsetD])
show }\mp@subsup{p}{}{\prime}(h(x,y))\in
using homeomorphism_image2 [OF hom', symmetric] h_in_UU Q' <Q
\subseteq\mp@subsup{Q}{}{\prime}\rangle\langleW\subseteqC\rangle that by auto
qed
ultimately show ?k '({0..real (Suc n) / N} }\timesQ)\subseteq
using }\mp@subsup{Q}{}{\prime}\langleQ\subseteq\mp@subsup{Q}{}{\prime}>\mathrm{ by force
show }\forallz\inQ\mathrm{ . ? }k(0,z)=f
using Q ' keq \langleQ\subseteq Q '> by auto
show }\forallz\in{0..real (Suc n)/N}\timesQ.hz=p(?kz
using «Q\subseteqU\capNNt\cap N'\capV\rangle heq Q ' }\langleQ\subseteq\mp@subsup{Q}{}{\prime}
by (auto simp: homeomorphism_apply2 [OF hom` dest: h_in_UU)
qed (auto simp: }\langley\inQ>\mathrm{ opeUQ)
qed

```
```

 show ?thesis
 using \(*[\) OF order_refl \(] N\langle 0<\delta\rangle\) by (simp add: split: if_split_asm)
 qed
 then obtain \(V f_{s}\) where ope \(V: \bigwedge y . y \in U \Longrightarrow\) openin (top_of_set \(U\)) \((V y)\)
 and \(V: \bigwedge y . y \in U \Longrightarrow y \in V y\)
 and contfs: \(\bigwedge y . y \in U \Longrightarrow\) continuous_on \((\{0 . .1\} \times V y)(f s y)\)
 and \(*: \wedge y . y \in U \Longrightarrow(f s y) '(\{0 . .1\} \times V y) \subseteq C \wedge\)
 $$
\begin{aligned}
& (\forall z \in V y . f s y(0, z)=f z) \wedge \\
& (\forall z \in\{0 . .1\} \times V y . h z=p(f s y z))
\end{aligned}
$$

by (metis (mono_tags))
then have $V U: \bigwedge y . y \in U \Longrightarrow V y \subseteq U$
by (meson openin_imp_subset)
obtain k where contk: continuous_on $(\{0 . .1\} \times U) k$
and $k: \bigwedge x i . \llbracket i \in U ; x \in\{0 . .1\} \times U \cap\{0 . .1\} \times V i \rrbracket \Longrightarrow k x=$ fs $i x$
proof (rule pasting_lemma_exists)
let ? $X=$ top_of_set $(\{0 . .1::$ real $\} \times U)$
show topspace? $X \subseteq(\bigcup i \in U .\{0 . .1\} \times V i)$
using V by force
show $\bigwedge i . i \in U \Longrightarrow$ openin $($ top_of_set $(\{0 . .1\} \times U))(\{0 . .1\} \times V i)$
by (simp add: Abstract_Topology.openin_Times opeV)
show $\bigwedge i . i \in U \Longrightarrow$ continuous_map
(subtopology (top_of_set $(\{0 . .1\} \times U))(\{0 . .1\} \times V i))$ euclidean $(f s i)$
by (metis contfs subtopology_subtopology continuous_map_iff_continuous Times_Int_Times
VU inf.absorb_iff2 inf.idem)
show fs $i x=f s j x$ if $i \in U j \in U$ and $x: x \in$ topspace ? $X \cap\{0 . .1\} \times V i$
$\cap\{0 . .1\} \times V j$ for $i j x$
proof -
obtain $u y$ where $x=(u, y) y \in V i y \in V j 0 \leq u u \leq 1$ using x by auto
show ?thesis
proof (rule covering_space_lift_unique $[$ OF cov, of $-(0, y)-\{0 . .1\} \times\{y\} h])$ show $f s i(0, y)=f_{s} j(0, y)$
using $* V$ by (simp add: $\langle y \in V i\rangle\langle y \in V j\rangle$ that) show conth_y: continuous_on $(\{0 . .1\} \times\{y\}) h$ using $V U\langle y \in V j\rangle$ that by (auto intro: continuous_on_subset [OF conth]) show h ' $(\{0 . .1\} \times\{y\}) \subseteq S$
using $\langle y \in V i\rangle \operatorname{assms}(3) V U$ that by fastforce show continuous_on $(\{0 . .1\} \times\{y\})(f s i)$
using continuous_on_subset [OF contfs] $\langle i \in U\rangle$
by (simp add: $\langle y \in V$ i subset_iff)
show f s i ' $(\{0 . .1\} \times\{y\}) \subseteq C$
using $*\langle y \in V i\rangle\langle i \in U\rangle$ by fastforce
show $\bigwedge x . x \in\{0 . .1\} \times\{y\} \Longrightarrow h x=p($ fs $i x)$
using $*\langle y \in V i\rangle\langle i \in U\rangle$ by blast
show continuous_on $(\{0 . .1\} \times\{y\})(f s j)$
using continuous_on_subset $[O F$ contfs $]\langle j \in U\rangle$
by (simp add: $\langle y \in V j\rangle$ subset_iff)
show $f_{s} j$ ' $(\{0 . .1\} \times\{y\}) \subseteq C$

```
```

 using * \langley \in V j\rangle\langlej\inU\rangle by fastforce
 show }\x.x\in{0..1}\times{y}\Longrightarrowhx=p(fs jx
 using * \langley\inV j>\langlej\inU\rangle by blast
 show connected ({0..1::real} }\times{y}
 using connected_Icc connected_Times connected_sing by blast
 show (0,y)\in{0..1::real }}\times{y
 by force
 show }x\in{0..1}\times{y
 using <x = (u,y)\rangle x by blast
 qed
 qed
 qed force
show ?thesis
proof
show k'({0..1}\timesU)\subseteqC
using V*k VU by fastforce
show }\y.y\inU\Longrightarrowk(0,y)=f
by (simp add: V*k)
show \{z.z\in{0..1} }\timesU\Longrightarrowhz=p(kz
using V*k by auto
qed (auto simp: contk)
qed
corollary covering_space_lift_homotopy_alt:
fixes p :: 'a::real_normed_vector = 'b::real_normed_vector
and h::' c::real_normed_vector }\times\mathrm{ real }=>\mathrm{ 'b
assumes cov: covering_space C p S
and conth: continuous_on (U\times{0..1})h
and him: h' }(U\times{0..1})\subseteq
and heq: \y. y }\inU\Longrightarrowh(y,0)=p(fy
and contf:continuous_on U f and fim: f' U\subseteqC
obtains k where continuous_on (U\times{0..1})k
k'(U\times{0..1})\subseteqC
\.y\inU\Longrightarrowk(y,0)=fy
\z.z\inU
proof -
have continuous_on ({0..1} > U)(h\circ}(\lambdaz.(snd z, fst z))
by (intro continuous_intros continuous_on_subset [OF conth]) auto
then obtain k where contk:continuous_on ({0..1} }\timesU)
and kim: k'}({0..1}\timesU)\subseteq
and k0: \bigwedgey. y \inU\Longrightarrowk(0,y)=fy
and heqp: \bigwedgez.z\in{0..1} }\U\Longrightarrow(h\circ(\lambdaz.Pair (snd z)(fstz))
z=p(kz)
apply (rule covering_space_lift_homotopy [OF cov _ _ _ contf fim])
using him by (auto simp: contf heq)
show ?thesis
proof
show continuous_on (U × {0..1}) (k\circ(\lambdaz. (snd z, fst z)))
by (intro continuous_intros continuous_on_subset [OF contk]) auto

```
```

 qed (use kim heqp in 〈auto simp: \(k 0\) 〉)
 qed
corollary covering_space_lift_homotopic_function:
fixes $p::$ 'a::real_normed_vector \Rightarrow ' $b::$ real_normed_vector and $g::$ ' $c:$:real_normed_vector
$\Rightarrow{ }^{\prime} a$
assumes cov: covering_space $C p S$
and contg: continuous_on $U g$
and gim: g ' $U \subseteq C$
and pgeq: $\bigwedge y . y \in U \Longrightarrow p(g y)=f y$
and hom: homotopic_with_canon (λx. True) $U S f f^{\prime}$
obtains g^{\prime} where continuous_on $U g^{\prime}$ image $g^{\prime} U \subseteq C \bigwedge y . y \in U \Longrightarrow p\left(g^{\prime}\right.$
$y)=f^{\prime} y$
proof -
obtain h where conth: continuous_on $(\{0 . .1::$ real $\} \times U) h$
and him: h ' $(\{0 . .1\} \times U) \subseteq S$
and $h 0: \wedge x . h(0, x)=f x$
and $h 1: \bigwedge x$. $h(1, x)=f^{\prime} x$
using hom by (auto simp: homotopic_with_def)
have $\bigwedge y . y \in U \Longrightarrow h(0, y)=p(g y)$
by (simp add: h0 pgeq)
then obtain k where contk: continuous_on $(\{0 . .1\} \times U) k$
and kim: k ' $(\{0 . .1\} \times U) \subseteq C$
and $k 0: \wedge y . y \in U \Longrightarrow k(0, y)=g y$
and heq: $\wedge z . z \in\{0 . .1\} \times U \Longrightarrow h z=p(k z)$
using covering_space_lift_homotopy [OF cov conth him _ contg gim] by metis
show ?thesis
proof
show continuous_on U ($k \circ$ Pair 1)
by (meson contk atLeastAtMost_iff continuous_on_o_Pair order_refl zero_le_one)
show ($k \circ$ Pair 1)' $U \subseteq C$
using kim by auto
show $\bigwedge y . y \in U \Longrightarrow p((k \circ \operatorname{Pair} 1) y)=f^{\prime} y$
by (auto simp: h1 heq [symmetric])
qed
qed
corollary covering_space_lift_inessential_function:
fixes $p::$ ' $a:$:real_normed_vector \Rightarrow ' $b::$ real_normed_vector and $U::{ }^{\prime} c::$ real_normed_vector
set
assumes cov: covering_space C p S
and hom: homotopic_with_canon (λx. True) $U S f(\lambda x . a)$
obtains g where continuous_on $U g g^{\prime} U \subseteq C \bigwedge y . y \in U \Longrightarrow p(g y)=f y$
proof (cases $U=\{ \}$)
case True
then show?thesis
using that continuous_on_empty by blast
next
case False

```
```

 then obtain \(b\) where \(b: b \in C p b=a\)
 using covering_space_imp_surjective [OF cov] homotopic_with_imp_subset2 [OF
 hom]
by auto
then have gim: $(\lambda y . b) \cdot U \subseteq C$
by blast
show ?thesis
proof (rule covering_space_lift_homotopic_function [OF cov continuous_on_const
gim])
show $\bigwedge y . y \in U \Longrightarrow p b=a$
using b by auto
qed (use that homotopic_with_symD [OF hom] in auto)
qed

```

\subsection*{6.19.5 Lifting of general functions to covering space}
proposition covering_space_lift_path_strong:
fixes \(p::\) ' \(a:\) :real_normed_vector \(\Rightarrow\) ' \(b:\) :real_normed_vector and \(f::\) ' \(c::\) real_normed_vector \(\Rightarrow\) 'b
assumes cov: covering_space \(C p S\) and \(a \in C\) and path \(g\) and pag: path_image \(g \subseteq S\) and pas: pathstart \(g=p a\) obtains \(h\) where path \(h\) path_image \(h \subseteq C\) pathstart \(h=a\) and \(\wedge t . t \in\{0 . .1\} \Longrightarrow p(h t)=g t\)
proof -
obtain \(k::\) real \(\times{ }^{\prime} c \Rightarrow{ }^{\prime} a\)
where contk: continuous_on \((\{0 . .1\} \times\{\) undefined \(\}) k\) and kim: \(k\) ' \((\{0 . .1\} \times\{\) undefined \(\}) \subseteq C\) and \(k 0: k(0\), undefined \()=a\) and \(p k: \bigwedge z . z \in\{0 . .1\} \times\{\) undefined \(\} \Longrightarrow p(k z)=(g \circ f s t) z\)
proof (rule covering_space_lift_homotopy [OF cov, of \{undefined\} \(g \circ f s t]\) )
show continuous_on \(\left(\{0 . .1::\right.\) real \(\} \times\left\{\right.\) undefined \(\left.\left.::^{\prime} c\right\}\right)(g \circ f s t)\)
using \(\langle p a t h ~ g\rangle\) by (intro continuous_intros) (simp add: path_def)
show \((g \circ f s t)\) ' \((\{0 . .1\} \times\{\) undefined \(\}) \subseteq S\)
using pag by (auto simp: path_image_def)
show \((g \circ f s t)(0, y)=p a\) if \(y \in\{\) undefined \(\}\) for \(y::^{\prime} c\) by (metis comp_def fst_conv pas pathstart_def)
qed (use assms in auto)
show ?thesis
proof
show path \((k \circ(\lambda t\). Pair \(t\) undefined \())\) unfolding path_def by (intro continuous_on_compose continuous_intros continuous_on_subset [OF
contk]) auto
show path_image \((k \circ(\lambda t .(t\), undefined \())) \subseteq C\)
using kim by (auto simp: path_image_def)
show pathstart \((k \circ(\lambda t .(t\), undefined \()))=a\)
by (auto simp: pathstart_def k0)
show \(\wedge t . t \in\{0 . .1\} \Longrightarrow p((k \circ(\lambda t .(t\), undefined \())) t)=g t\)
by (auto simp: pk)

\section*{qed}
qed
corollary covering＿space＿lift＿path：
fixes \(p::\)＇\(a:\) ：real＿normed＿vector \(\Rightarrow{ }^{\prime} b::\) real＿normed＿vector
assumes cov：covering＿space \(C p S\) and path \(g\) and pig：path＿image \(g \subseteq S\)
obtains \(h\) where path \(h\) path＿image \(h \subseteq C \wedge t . t \in\{0 . .1\} \Longrightarrow p(h t)=g t\)
proof－
obtain \(a\) where \(a \in C\) pathstart \(g=p a\)
by（metis pig cov covering＿space＿imp＿surjective imageE pathstart＿in＿path＿image subsetCE）
show ？thesis
using covering＿space＿lift＿path＿strong \([O F\) cov \(\langle a \in C\rangle\langle p a t h ~ g\rangle p i g]\)
by（metis \(\langle p a t h s t a r t ~ g=p a\rangle\) that）
qed
proposition covering＿space＿lift＿homotopic＿paths：
fixes \(p::\)＇\(a:\) ：real＿normed＿vector \(\Rightarrow{ }^{\prime} b::\) real＿normed＿vector
assumes cov：covering＿space \(C\) p \(S\)
and path g1 and pig1：path＿image g1 \(\subseteq S\)
and path \(g 2\) and pig2：path＿image \(g 2 \subseteq S\)
and hom：homotopic＿paths \(S\) g1 g2
and path \(h 1\) and pih1：path＿image \(h 1 \subseteq C\) and ph1：\(\wedge t . t \in\{0 . .1\} \Longrightarrow\)
\(p(h 1 t)=g 1 t\)
and path h2 and pih2：path＿image h2 \(\subseteq C\) and ph2：\(\wedge t . t \in\{0 . .1\} \Longrightarrow\)
\(p(h 2 t)=g 2 t\)
and h1h2：pathstart h1＝pathstart h2
shows homotopic＿paths C h1 h2
proof－
obtain \(h\) ：：real \(\times\) real \(\Rightarrow{ }^{\prime} b\)
where conth：continuous＿on \((\{0 . .1\} \times\{0 . .1\}) h\)
and him：\(h^{\prime}(\{0 . .1\} \times\{0 . .1\}) \subseteq S\)
and \(h 0: \bigwedge x . h(0, x)=g 1 x\) and \(h 1: \bigwedge x . h(1, x)=g 2 x\)
and heq0：\(\wedge t . t \in\{0 . .1\} \Longrightarrow h(t, 0)=g 10\)
and heq1：\(\wedge t . t \in\{0 . .1\} \Longrightarrow h(t, 1)=g 11\)
using hom by（auto simp：homotopic＿paths＿def homotopic＿with＿def pathstart＿def pathfinish＿def）
obtain \(k\) where contk：continuous＿on \((\{0 . .1\} \times\{0 . .1\}) k\)
and kim：\(k\)＇\((\{0 . .1\} \times\{0 . .1\}) \subseteq C\)
and kh2：\(\bigwedge y . y \in\{0 . .1\} \Longrightarrow k(y, 0)=h 20\)
and \(h p k: \bigwedge z . z \in\{0 . .1\} \times\{0 . .1\} \Longrightarrow h z=p(k z)\)
proof（rule covering＿space＿lift＿homotopy＿alt［OF cov conth him］）
show \(\bigwedge y . y \in\{0 . .1\} \Longrightarrow h(y, 0)=p(h 20)\)
by（metis atLeastAtMost＿iff h1h2 heq0 order＿refl pathstart＿def ph1 zero＿le＿one）
qed（use path＿image＿def pih2 in 〈fastforce＋＞）
have contg1：continuous＿on \(\{0 . .1\}\) g1 and contg2：continuous＿on \(\{0 . .1\}\) g2 using 〈path g1〉 〈path g2〉 path＿def by blast＋
have g1im：\(g 1\)＇\(\{0 . .1\} \subseteq S\) and g2im：\(g 2\)＇\(\{0 . .1\} \subseteq S\)
using path＿image＿def pig1 pig2 by auto
have conth1：continuous＿on \(\{0 . .1\} h 1\) and conth2：continuous＿on \(\{0 . .1\}\) h2
using 〈path h1〉 〈path h2〉 path＿def by blast＋
have h1im：\(h 1\)＇\(\{0 . .1\} \subseteq C\) and h2im：\(h 2\)＇\(\{0 . .1\} \subseteq C\)
using path＿image＿def pih1 pih2 by auto
show ？thesis
unfolding homotopic＿paths pathstart＿def pathfinish＿def
proof（intro exI conjI ballI）
show keqh1：\(k(0, x)=h 1 x\) if \(x \in\{0 . .1\}\) for \(x\)
proof（rule covering＿space＿lift＿unique［OF cov＿contg1 g1im］）
show \(k(0,0)=h 10\)
by（metis atLeastAtMost＿iff h1h2 kh2 order＿refl pathstart＿def zero＿le＿one）
show continuous＿on \(\{0 . .1\}(\lambda a . k(0, a))\)
by（intro continuous＿intros continuous＿on＿compose2［OF contk］）auto
show \(\bigwedge x . x \in\{0 . .1\} \Longrightarrow g 1 x=p(k(0, x))\)
by（metis atLeastAtMost＿iff h0 hpk zero＿le＿one mem＿Sigma＿iff order＿refl）
qed（use conth1 h1im kim that in «auto simp：ph1〉）
show \(k(1, x)=h 2 x\) if \(x \in\{0 . .1\}\) for \(x\)
proof（rule covering＿space＿lift＿unique［OF cov＿contg2 g2im］）
show \(k(1,0)=h 20\)
by（metis atLeastAtMost＿iff kh2 order＿refl zero＿le＿one）
show continuous＿on \(\{0 . .1\}(\lambda a . k(1, a))\)
by（intro continuous＿intros continuous＿on＿compose2［OF contk］）auto
show \(\bigwedge x . x \in\{0 . .1\} \Longrightarrow g 2 x=p(k(1, x))\)
by（metis atLeastAtMost＿iff h1 hpk mem＿Sigma＿iff order＿refl zero＿le＿one）
qed（use conth2 h2im kim that in 〈auto simp：ph2〉）
show \(\wedge t . t \in\{0 . .1\} \Longrightarrow(k \circ \operatorname{Pair} t) 0=h 10\)
by（metis comp＿apply h1h2 kh2 pathstart＿def）
show \((k \circ\) Pair \(t) 1=h 11\) if \(t \in\{0 . .1\}\) for \(t\)
proof（rule covering＿space＿lift＿unique
［OF cov，of \(\lambda a .(k \circ\) Pair a） \(10 \lambda a . h 11\) \｛0．．1\} \(\lambda x . g 11])\)
show \((k \circ \operatorname{Pair} 0) 1=h 11\)
using keqh1 by auto
show continuous＿on \(\{0 . .1\}(\lambda a .(k \circ \operatorname{Pair} a) 1)\)
by（auto intro！：continuous＿intros continuous＿on＿compose2［OF contk］）
show \(\wedge x . x \in\{0 . .1\} \Longrightarrow g 11=p((k \circ \operatorname{Pair} x) 1)\)
using heq1 hpk by auto
qed（use contk kim g1im h1im that in 〈auto simp：ph1〉）
qed（use contk kim in auto）
qed
corollary covering＿space＿monodromy：
fixes \(p::\)＇\(a:\) ：real＿normed＿vector \(\Rightarrow\)＇\(b:\) ：real＿normed＿vector
assumes cov：covering＿space \(C p S\)
and path \(g 1\) and pig1：path＿image \(g 1 \subseteq S\)
and path 92 and pig2：path＿image \(g 2 \subseteq S\)
and hom：homotopic＿paths \(S\) g1 g2
and path \(h 1\) and pih1：path＿image \(h 1 \subseteq C\) and ph1：\(\wedge t . t \in\{0 . .1\} \Longrightarrow\)
\(p(h 1 t)=g 1 t\)
and path \(h 2\) and pih2: path_image \(h 2 \subseteq C\) and ph2: \(\wedge t . t \in\{0 . .1\} \Longrightarrow\) \(p(h 2 t)=g 2 t\)
and h1h2: pathstart h1 = pathstart h2
shows pathfinish h1 = pathfinish h2
using covering_space_lift_homotopic_paths [OF assms] homotopic_paths_imp_pathfinish by blast
corollary covering_space_lift_homotopic_path:
fixes \(p::\) ' \(a:\) ::real_normed_vector \(\Rightarrow\) ' \(b::\) :real_normed_vector
assumes cov: covering_space \(C p S\)
and hom: homotopic_paths \(S f^{\prime}{ }^{\prime}\)
and path \(g\) and pig: path_image \(g \subseteq C\)
and \(a\) : pathstart \(g=a\) and \(b\) : pathfinish \(g=b\)
and pgeq: \(\wedge t . t \in\{0 . .1\} \Longrightarrow p(g t)=f t\)
obtains \(g^{\prime}\) where path \(g^{\prime}\) path_image \(g^{\prime} \subseteq C\)
pathstart \(g^{\prime}=a\) pathfinish \(g^{\prime}=b \bigwedge t . t \in\{0 . .1\} \Longrightarrow p\left(g^{\prime} t\right)=f^{\prime} t\)
proof (rule covering_space_lift_path_strong [OF cov, of a \(\left.f^{\dagger}\right]\) )
show \(a \in C\)
using a pig by auto
show path \(f^{\prime}\) path_image \(f^{\prime} \subseteq S\)
using hom homotopic_paths_imp_path homotopic_paths_imp_subset by blast+
show pathstart \(f^{\prime}=p a\)
by (metis a atLeastAtMost_iff hom homotopic_paths_imp_pathstart order_refl pathstart_def pgeq zero_le_one)
qed (metis (mono_tags, lifting) assms cov covering_space_monodromy hom homotopic_paths_imp_path homotopic_paths_imp_subset pgeq pig)
proposition covering_space_lift_general:
fixes \(p::\) ' \(a:\) :real_normed_vector \(\Rightarrow\) ' \(b::\) real_normed_vector and \(f::\) ' \(c::\) real_normed_vector \(\Rightarrow\) ' \(b\)
assumes cov: covering_space \(C p S\) and \(a \in C z \in U\)
and \(U\) : path_connected \(U\) locally path_connected \(U\)
and contf: continuous_on \(U f\) and fim: \(f\) ' \(U \subseteq S\)
and feq: \(f z=p a\)
and hom: \(\bigwedge r\). \(\llbracket\) path \(r ;\) path_image \(r \subseteq U ;\) pathstart \(r=z\); pathfinish \(r=z \rrbracket\)
\(\Longrightarrow \exists\). path \(q \wedge\) path_image \(q \subseteq C \wedge\)
pathstart \(q=a \wedge\) pathfinish \(q=a \wedge\)
homotopic_paths \(S(f \circ r)(p \circ q)\)
obtains \(g\) where continuous_on \(U g g^{\prime} U \subseteq C g z=a \bigwedge y . y \in U \Longrightarrow p(g y)\)
\(=f y\)
proof -
have \(*: \exists g h\). path \(g \wedge\) path_image \(g \subseteq U \wedge\)
pathstart \(g=z \wedge\) pathfinish \(g=y \wedge\)
path \(h \wedge\) path_image \(h \subseteq C \wedge\) pathstart \(h=a \wedge\)
\((\forall t \in\{0 . .1\} . p(h t)=f(g t))\)
if \(y \in U\) for \(y\)
```

proof -
obtain g where path g path_image $g \subseteq U$ and pastg: pathstart $g=z$
and pafig: pathfinish $g=y$
using $U\langle z \in U\rangle\langle y \in U\rangle$ by (force simp: path_connected_def)
obtain h where path h path_image $h \subseteq C$ pathstart $h=a$
and $\wedge t . t \in\{0 . .1\} \Longrightarrow p(h t)=(f \circ g) t$
proof (rule covering_space_lift_path_strong $[O F \operatorname{cov}\langle a \in C\rangle])$
show path $(f \circ g)$
using $\langle p a t h ~ g\rangle\left\langle p a t h _i m a g e ~ g \subseteq U\right\rangle$ contf continuous_on_subset path_continuous_image
by blast
show path_image $(f \circ g) \subseteq S$
by (metis <path_image $g \subseteq U$ 〉fim image_mono path_image_compose sub-
set_trans)
show pathstart $(f \circ g)=p a$
by (simp add: feq pastg pathstart_compose)
qed auto
then show ?thesis
by (metis $\langle p a t h ~ g\rangle\left\langle p a t h _i m a g e ~ g \subseteq U\right\rangle$ comp_apply pafig pastg)
qed
have $\exists l . \forall g h$. path $g \wedge$ path_image $g \subseteq U \wedge$ pathstart $g=z \wedge$ pathfinish $g=$
$y \wedge$

```
                            path \(h \wedge\) path_image \(h \subseteq C \wedge\) pathstart \(h=a \wedge\)
                            \((\forall t \in\{0 . .1\} \cdot p(h t)=f(g t)) \longrightarrow\) pathfinish \(h=l\) for \(y\)
    proof -
    have pathfinish \(h=\) pathfinish \(h^{\prime}\)
            if \(g\) : path \(g\) path_image \(g \subseteq U\) pathstart \(g=z\) pathfinish \(g=y\)
                    and \(h\) : path \(h\) path_image \(h \subseteq C\) pathstart \(h=a\)
                    and \(p h g: \wedge t . t \in\{0 . .1\} \Longrightarrow p(h t)=f(g t)\)
                    and \(g^{\prime}:\) path \(g^{\prime}\) path_image \(g^{\prime} \subseteq U\) pathstart \(g^{\prime}=z\) pathfinish \(g^{\prime}=y\)
                and \(h^{\prime}:\) path \(h^{\prime}\) path_image \(h^{\prime} \subseteq C\) pathstart \(h^{\prime}=a\)
                and \(p h g^{\prime}: \wedge t . t \in\{0 . .1\} \Longrightarrow p\left(h^{\prime} t\right)=f\left(g^{\prime} t\right)\)
            for \(g h g^{\prime} h^{\prime}\)
    proof -
        obtain \(q\) where path \(q\) and piq: path_image \(q \subseteq C\) and pastq: pathstart \(q=\)
\(a\) and pafiq: pathfinish \(q=a\)
                            and homS: homotopic_paths \(S\left(f \circ g+++\right.\) reversepath \(\left.g^{\prime}\right)(p \circ q)\)
        using \(g g^{\prime}\) hom [of \(g+++\) reversepath \(\left.g\right]\) by (auto simp: subset_path_image_join)
            have papq: path ( \(p \circ q\) )
                    using homS homotopic_paths_imp_path by blast
                    have pipq: path_image \((p \circ q) \subseteq S\)
                            using homS homotopic_paths_imp_subset by blast
        obtain \(q^{\prime}\) where path \(q^{\prime}\) path_image \(q^{\prime} \subseteq C\)
            and pathstart \(q^{\prime}=\) pathstart \(q\) pathfinish \(q^{\prime}=\) pathfinish \(q\)
            and \(p q^{\prime} \_e q: \wedge t . t \in\{0 . .1\} \Longrightarrow p\left(q^{\prime} t\right)=(f \circ g+++\) reversepath
\(\left.g^{\prime}\right) t\)
            using covering_space_lift_homotopic_path [OF cov homotopic_paths_sym [OF
homS] 〈path q〉 piq refl refl]
            by auto
            have \(q^{\prime} t=\left(h \circ\left(*_{R}\right)\right.\) 2) \(t\) if \(0 \leq t t \leq 1 / 2\) for \(t\)
proof（rule covering＿space＿lift＿unique［OF cov，of \(q^{\prime} 0 h \circ\left(*_{R}\right) 2\{0 . .1 / 2\} f\) ○ \(\left.\left.g \circ\left(*_{R}\right) 2 t\right]\right)\)
\[
\text { show } q^{\prime} 0=\left(h \circ\left(*_{R}\right) \text { 2) } 0\right.
\]
by（metis \(\left\langle p a t h s t a r t ~ q^{\prime}=\right.\) pathstart \(q\) comp＿def \(h(3)\) pastq pathstart＿def pth＿4（2））
show continuous＿on \(\{0 . .1 / 2\}\left(f \circ g \circ\left(*_{R}\right)\right.\) 2）
proof（intro continuous＿intros continuous＿on＿path \([O F\langle p a t h ~ g\rangle]\) continu－ ous＿on＿subset［OF contf］）
show \(g\)＇\(\left(*_{R}\right) 2^{\prime}\{0 . .1 / 2\} \subseteq U\)
using \(g\) path＿image＿def by fastforce
qed auto
show \(\left(f \circ g \circ\left(*_{R}\right)\right.\) 2）＇\(\{0 . .1 / \mathcal{Z}\} \subseteq S\)
using \(g(2)\) path＿image＿def fim by fastforce
show \(\left(h \circ\left(*_{R}\right)\right.\) 2）＇\(\{0 . .1 / 2\} \subseteq C\)
using \(h\) path＿image＿def by fastforce
show \(q^{\prime}\)＇\(\{0 . .1 / 2\} \subseteq C\)
using＜path＿image \(q^{\prime} \subseteq C\) 〉 path＿image＿def by fastforce
show \(\bigwedge x . x \in\{0 . .1 / 2\} \Longrightarrow\left(f \circ g \circ\left(*_{R}\right)\right.\) 2）\(x=p\left(q^{\prime} x\right)\)
by（auto simp：joinpaths＿def \(p q^{\prime}\)＿eq）
show \(\bigwedge x . x \in\{0 . .1 / 2\} \Longrightarrow\left(f \circ g \circ\left(*_{R}\right) 2\right) x=p\left(\left(h \circ\left(*_{R}\right)\right.\right.\) 2）\(\left.x\right)\)
by（simp add：phg）
show continuous＿on \(\{0 . .1 / 2\} q^{\prime}\)
by（simp add：continuous＿on＿path \(\left.\left\langle p a t h q^{\prime}\right\rangle\right)\)
show continuous＿on \(\{0 . .1 / 2\}\left(h \circ\left(*_{R}\right)\right.\) 2）
by（intro continuous＿intros continuous＿on＿path［OF 〈path h＞］）auto
qed（use that in auto）
moreover have \(q^{\prime} t=\left(\right.\) reversepath \(\left.h^{\prime} \circ\left(\lambda t .2 *_{R} t-1\right)\right) t\) if \(1 / 2<t t \leq\) 1 for \(t\)
proof（rule covering＿space＿lift＿unique［OF cov，of \(q^{\prime} 1\) reversepath \(h^{\prime} \circ(\lambda t\) ． 2 \(\left.*_{R} t-1\right)\{1 / 2<. .1\} f \circ\) reversepath \(g^{\prime} \circ\left(\lambda t\right.\) ． \(\left.\left.\left.2 *_{R} t-1\right) t\right]\right)\)
show \(q^{\prime} 1=\left(\right.\) reversepath \(\left.h^{\prime} \circ\left(\lambda t .2 *_{R} t-1\right)\right) 1\)
using \(h^{\prime}\)＜pathfinish \(q^{\prime}=\) pathfinish \(\left.q\right\rangle\) pafiq
by（simp add：pathstart＿def pathfinish＿def reversepath＿def）
show continuous＿on \(\{1 / \mathcal{Z}<. .1\}\left(f \circ\right.\) reversepath \(g^{\prime} \circ\left(\lambda t\right.\) ． \(\left.\left.2 *_{R} t-1\right)\right)\)
proof（intro continuous＿intros continuous＿on＿path 〈path \(\left.g^{\prime}\right\rangle\) continuous＿on＿subset ［OF contf］）
show reversepath \(g^{\prime \prime}\left(\lambda t .2 *_{R} t-1\right) '\{1 / 2<. .1\} \subseteq U\)
using \(g^{\prime}\) by（auto simp：path＿image＿def reversepath＿def）
qed（use \(g^{\prime}\) in auto）
show \(\left(f \circ\right.\) reversepath \(\left.g^{\prime} \circ\left(\lambda t .2 *_{R} t-1\right)\right) '\{1 / \mathcal{2}<. .1\} \subseteq S\)
using \(g^{\prime}\)（2）path＿image＿def fim by（auto simp：image＿subset＿iff path＿image＿def reversepath＿def）
show \(q^{\prime}\)＇\(\{1 / 2<. .1\} \subseteq C\)
using＜path＿image \(q^{\prime} \subseteq C\) 〉path＿image＿def by fastforce
show（reversepath \(\left.h^{\prime} \circ\left(\lambda t .2 *_{R} t-1\right)\right) '\{1 / 2<. .1\} \subseteq C\)
using \(h^{\prime}\) by（simp add：path＿image＿def reversepath＿def subset＿eq）
show \(\wedge x . x \in\{1 / 2<. .1\} \Longrightarrow\left(f \circ\right.\) reversepath \(\left.g^{\prime} \circ\left(\lambda t .2 *_{R} t-1\right)\right) x=\) \(p\left(q^{\prime} x\right)\)
by（auto simp：joinpaths＿def \(p q^{\prime}\)＿eq）
```

 show \x. x { {1/2<..1}\Longrightarrow
    ```

```

2**R}t-1)) x
by (simp add: phg' reversepath_def)
show continuous_on {1/2<..1} q'
by (auto intro: continuous_on_path [OF <path q}\mp@subsup{q}{}{\prime}]\mathrm{)
show continuous_on {1/2<..1} (reversepath h'\circ}\circ(\lambdat.2 2 *Rt - 1))
by (intro continuous_intros continuous_on_path <path h'`) (use h' in auto) qed (use that in auto) ultimately have q' t=(h+++ reversepath h')t if 0\leqtt\leq1 for t using that by (simp add: joinpaths_def) then have path(}h+++\mathrm{ reversepath }\mp@subsup{h}{}{\prime} by (auto intro: path_eq [OF <path q}\mp@subsup{q}{}{\prime}]] then show ?thesis by (auto simp: <path h><path h'`)
qed
then show ?thesis by metis
qed
then obtain l :: 'c > '}
where l: \bigwedgey gh.\llbracketpath g; path_image g\subseteqU; pathstart g=z; pathfinish g
= y;
path h; path_image h\subseteqC; pathstart h =a;
\t.t\in{0..1}\Longrightarrowp(ht)=f(gt)\rrbracket\Longrightarrow pathfinish h=ly
by metis
show ?thesis
proof
show pleq: p (ly)=fy if y\inU for }
using*[OF \langley \inU`] by (metis l atLeastAtMost_iff order_refl pathfinish_def zero_le_one) show lz=a using l [of linepath z z z linepath a a] by (auto simp: assms) show LC:l''U\subseteqC by (clarify dest!: *) (metis (full_types) l pathfinish_in_path_image subsetCE) have }\existsT\mathrm{ . openin (top_of_set U)T^y if X: openin (top_of_set C) X and y\inUly\inX for X y proof - have }X\subseteq using X openin_euclidean_subtopology_iff by blast have fy\inS using fim }\langley\inU\rangle\mathrm{ by blast then obtain W\mathcal{V} where WV:fy\inW^ openin (top_of_set S) W^ (U\mathcal{V}=C\capp-`W^
(\forallU\in\mathcal{V}.openin (top_of_set C) U)^
pairwise disjnt \mathcal{V}\wedge
(\forallU\in\mathcal{V}.\existsq. homeomorphism U W pq))
using cov by (force simp: covering_space_def)
then have ly\in\bigcup\mathcal{V}
using <X\subseteqC\rangle pleq that by auto

```
then obtain \(W^{\prime}\) where \(l y \in W^{\prime}\) and \(W^{\prime} \in \mathcal{V}\)
by blast
with \(W V\) obtain \(p^{\prime}\) where ope \(C W^{\prime}\) : openin (top_of_set \(C\) ) \(W^{\prime}\) and homU \(W^{\prime}\) : homeomorphism \(W^{\prime} W p p^{\prime}\)
by blast
then have contp': continuous_on \(W p^{\prime}\) and \(p^{\prime} i m\) : \(p^{\prime}\) ' \(W \subseteq W^{\prime}\)
using homU \(W^{\prime}\) homeomorphism_image2 homeomorphism_cont2 by fastforce +
obtain \(V\) where \(y \in V y \in U\) and \(f i m W: f\) ' \(V \subseteq W V \subseteq U\) and path_connected \(V\) and ope \(U V\) : openin (top_of_set \(U\) ) \(V\)
proof -
have openin (top_of_set \(U\) ) \(\left(U \cap f-{ }^{\prime} W\right)\) using \(W V\) contf continuous_on_open_gen fim by auto
then obtain \(U O\) where openin (top_of_set \(U\) ) \(U O \wedge\) path_connected \(U O \wedge\) \(y \in U O \wedge U O \subseteq U \cap f-{ }^{\prime} W\) using \(U W V\langle y \in U\rangle\) unfolding locally_path_connected by (meson IntI vimage_eq)

\section*{then show ?thesis} by (meson \(\langle y \in U\rangle\) image_subset_iff_subset_vimage le_inf_iff that)
qed
have \(W^{\prime} \subseteq C W \subseteq S\)
using opeCW \(W^{\prime}\) WV openin_imp_subset by auto
have \(p^{\prime} i m: p^{\prime}{ }^{\prime} W \subseteq W^{\prime}\)
using homUW' homeomorphism_image2 by fastforce
show ?thesis
proof (intro exI conjI)
have openin (top_of_set \(S)\left(W \cap p^{\prime}-^{\prime}\left(W^{\prime} \cap X\right)\right)\)
proof (rule openin_trans) show openin (top_of_set \(W\) ) \(\left(W \cap p^{\prime}-^{\prime}\left(W^{\prime} \cap X\right)\right)\)
using \(X\left\langle W^{\prime} \subseteq C\right\rangle\) by (intro continuous_openin_preimage [OF contp \({ }^{\prime}\)
\(p^{\prime}\) im]) (auto simp: openin_open)
show openin (top_of_set \(S\) ) W
using \(W V\) by blast
qed
then show openin \((\) top_of_set \(U)\left(V \cap\left(U \cap\left(f-\right.\right.\right.\) ' \(\left(W \cap\left(p^{\prime}-‘\left(W^{\prime} \cap\right.\right.\right.\) \(X)\) ) ) ) )
by (blast intro: opeUV openin_subtopology_self continuous_openin_preimage [OF contf fim])
have \(p^{\prime}(f y) \in X\)
using \(\left\langle l y \in W^{\prime}\right\rangle\) homeomorphism_apply1 \([O F\) homUW \(]\) pleq \(\langle y \in U\rangle\langle l y\) \(\in X>\) by fastforce
then show \(y \in V \cap\left(U \cap f-‘\left(W \cap p^{\prime}-‘\left(W^{\prime} \cap X\right)\right)\right)\)
using \(\langle y \in U\rangle\langle y \in V\rangle W V p^{\prime}\) im by auto
show \(V \cap\left(U \cap f-'\left(W \cap p^{\prime}-^{\prime}\left(W^{\prime} \cap X\right)\right)\right) \subseteq U \cap l-' X\)
proof (intro subsetI IntI; clarify)
fix \(y^{\prime}\)
assume \(y^{\prime}: y^{\prime} \in V y^{\prime} \in U f y^{\prime} \in W p^{\prime}\left(f y^{\prime}\right) \in W^{\prime} p^{\prime}\left(f y^{\prime}\right) \in X\)
then obtain \(\gamma\) where path \(\gamma\) path_image \(\gamma \subseteq V\) pathstart \(\gamma=y\) pathfinish \(\gamma=y^{\prime}\)
by（meson \(\langle p a t h-c o n n e c t e d ~ V\rangle\langle y \in V\rangle\) path＿connected＿def）
obtain \(p p q q\) where \(p p:\) path \(p p\) path＿image \(p p \subseteq U\) pathstart \(p p=z\) pathfinish \(p p=y\)
and \(q q\) ：path \(q q\) path＿image \(q q \subseteq C\) pathstart \(q q=a\)
and pqqeq：\(\wedge t . t \in\{0 . .1\} \Longrightarrow p(q q t)=f(p p t)\)
using \(*[O F\langle y \in U\rangle]\) by blast
have finW：\(\bigwedge x . \llbracket 0 \leq x ; x \leq 1 \rrbracket \Longrightarrow f(\gamma x) \in W\)
using \(\left\langle p a t h \_i m a g e ~ \gamma \subseteq V\right\rangle\) by（auto simp：image＿subset＿iff path＿image＿def
fimW［THEN subsetD］）
have pathfinish \(\left(q q+++\left(p^{\prime} \circ f \circ \gamma\right)\right)=l y^{\prime}\)
proof（rule \(l\)［of \(\left.\left.p p+++\gamma y^{\prime} q q+++\left(p^{\prime} \circ f \circ \gamma\right)\right]\right)\)
show path（ \(p p+++\gamma\) ）
by（simp add：\(\langle\) path \(\gamma\rangle\langle\) path pp〉〈pathfinish pp \(=y\rangle\langle\) pathstart \(\gamma=y\rangle\) ）
show path＿image \((p p+++\gamma) \subseteq U\)
using \(\langle V \subseteq U\rangle\left\langle p a t h \_i m a g e ~ \gamma \subseteq V\right\rangle\left\langle p a t h \_i m a g e ~ p p \subseteq U\right\rangle\) not＿in＿path＿image＿join
by blast
```

show pathstart $(p p+++\gamma)=z$
by (simp add: \langle pathstart $p p=z\rangle$)
show pathfinish $(p p+++\gamma)=y^{\prime}$
by (simp add: $\left\langle\right.$ pathfinish $\left.\left.\gamma=y^{\prime}\right\rangle\right)$
have pathfinish $q q=l y$

```
            using \(\langle p a t h ~ p p\rangle\langle p a t h ~ q q\rangle\left\langle p a t h \_i m a g e ~ p p \subseteq U\right\rangle\left\langle p a t h \_i m a g e ~ q q \subseteq C\right\rangle\)
\(\langle\) pathfinish \(p p=y\rangle\langle\) pathstart \(p p=z\rangle\langle\) pathstart \(q q=a\rangle l\) pqqeq by blast
    also have \(\ldots=p^{\prime}(f y)\)
        using \(\left.<l y \in W^{\prime}\right\rangle\) hom \(U W^{\prime}\) homeomorphism_apply1 pleq that(2) by
fastforce
finally have pathfinish \(q q=p^{\prime}(f y)\).
    then have paqq: pathfinish \(q q=\) pathstart \(\left(p^{\prime} \circ f \circ \gamma\right)\)
        by (simp add: <pathstart \(\gamma=y\rangle\) pathstart_compose)
    have continuous_on (path_image \(\gamma\) ) ( \(p^{\prime} \circ f\) )
    proof (rule continuous_on_compose)
        show continuous_on (path_image \(\gamma\) ) \(f\)
        using <path_image \(\gamma \subseteq V\rangle\langle V \subseteq U\rangle\) contf continuous_on_subset by
blast
            show continuous_on ( \(f\) ' path_image \(\gamma\) ) \(p^{\prime}\)
            proof (rule continuous_on_subset [OF contp])
            show \(f\) ' path_image \(\gamma \subseteq W\)
                by (auto simp: path_image_def pathfinish_def pathstart_def fin \(W\) )
            qed
qed
then show path \(\left(q q+++\left(p^{\prime} \circ f \circ \gamma\right)\right)\)
    using 〈path \(\gamma\rangle\langle p a t h ~ q q\rangle\) paqq path_continuous_image path_join_imp by
blast
```

show path_image $\left(q q+++\left(p^{\prime} \circ f \circ \gamma\right)\right) \subseteq C$
proof (rule subset_path_image_join)
show path_image $q q \subseteq C$
by (simp add: $\left\langle p a t h _i m a g e ~ q q \subseteq C 〉\right)$
show path_image $\left(p^{\prime} \circ f \circ \gamma\right) \subseteq C$
by (metis $\left\langle W^{\prime} \subseteq C\right\rangle\left\langle p a t h _i m a g e ~ \gamma \subseteq V\right\rangle$ dual_order.trans fim W (1)

```
image_comp image_mono p'im path_image_compose)

\section*{qed}
show pathstart \(\left(q q+++\left(p^{\prime} \circ f \circ \gamma\right)\right)=a\)
by \((\) simp add: \(\langle\) pathstart \(q q=a 〉)\)
show \(p\left(\left(q q+++\left(p^{\prime} \circ f \circ \gamma\right)\right) \xi\right)=f((p p+++\gamma) \xi)\) if \(\xi: \xi \in\{0 . .1\}\)
for \(\xi\)
proof (simp add: joinpaths_def, safe)
show \(p(q q(2 * \xi))=f(p p(2 * \xi))\) if \(\xi * 2 \leq 1\)
using \(\langle\xi \in\{0 . .1\}\rangle\) pqqeq that by auto
show \(p\left(p^{\prime}(f(\gamma(2 * \xi-1)))\right)=f(\gamma(2 * \xi-1))\) if \(\neg \xi * 2 \leq 1\) using that \(\xi\) by (auto intro: homeomorphism_apply2 \(\left[O F\right.\) homUW \({ }^{\prime}\)
fin \(W]\) )

\section*{qed}
qed with \(\left\langle p a t h f i n i s h ~ \gamma=y^{\prime}\right\rangle\left\langle p^{\prime}\left(f y^{\prime}\right) \in X\right\rangle\) show \(y^{\prime} \in l-{ }^{\prime} X\)
unfolding pathfinish_join by (simp add: pathfinish_def) qed
qed
qed
then show continuous_on \(U l\)
by (metis IntD1 IntD2 vimage_eq openin_subopen continuous_on_open_gen [OF
\(L C]\) )
qed
qed
corollary covering_space_lift_stronger:
fixes \(p::\) 'a::real_normed_vector \(\Rightarrow\) ' \(b::\) real_normed_vector
and \(f::\) ' \(c:\) :real_normed_vector \(\Rightarrow\) ' \(b\)
assumes cov: covering_space \(C\) p \(S a \in C z \in U\)
and \(U\) : path_connected \(U\) locally path_connected \(U\)
and contf: continuous_on \(U f\) and fim: \(f^{\prime} U \subseteq S\)
and feq: \(f z=p a\)
and hom: \(\bigwedge r\). \(\llbracket\) path \(r ;\) path_image \(r \subseteq U ;\) pathstart \(r=z ;\) pathfinish \(r=z \rrbracket\)
\(\Longrightarrow \exists b\). homotopic_paths \(S(f \circ r)\) (linepath \(b b)\)
obtains \(g\) where continuous_on \(U g g^{\prime} U \subseteq C g z=a \bigwedge y . y \in U \Longrightarrow p(g y)\) \(=f y\)
proof (rule covering_space_lift_general [OF cov U contf fim feq])
fix \(r\)
assume path \(r\) path_image \(r \subseteq U\) pathstart \(r=z\) pathfinish \(r=z\)
then obtain \(b\) where \(b\) : homotopic_paths \(S(f \circ r)\) (linepath \(b b\) )
using hom by blast
then have \(f\) (pathstart \(r)=b\)
by (metis homotopic_paths_imp_pathstart pathstart_compose pathstart_linepath)
then have homotopic_paths \(S(f \circ r)\) (linepath \((f z)(f z))\)
by (simp add: b <pathstart \(r=z 〉\) )
then have homotopic_paths \(S(f \circ r)(p \circ\) linepath a a \()\)
by (simp add: o_def feq linepath_def)
then show \(\exists\). path \(q \wedge\)
\[
\text { path_image } q \subseteq C \wedge
\]
\[
\text { pathstart } q=a \wedge \text { pathfinish } q=a \wedge \text { homotopic_paths } S(f \circ r)(p
\]
- q)
by (force simp: \(\langle a \in C 〉)\)
qed auto
corollary covering_space_lift_strong:
fixes \(p::\) ' \(a:\) :real_normed_vector \(\Rightarrow\) ' \(b::\) :real_normed_vector
and \(f::\) ' \(c::\) real_normed_vector \(\Rightarrow\) 'b
assumes cov: covering_space \(C\) p \(S a \in C z \in U\)
and \(s c U\) : simply_connected \(U\) and lpc \(U\) : locally path_connected \(U\)
and contf: continuous_on \(U f\) and fim: \(f^{\prime} U \subseteq S\)
and feq: \(f z=p a\)
obtains \(g\) where continuous_on \(U g g^{\prime} U \subseteq C g z=a \bigwedge y . y \in U \Longrightarrow p(g y)\) \(=f y\)
proof (rule covering_space_lift_stronger [OF cov _ lpcU contf fim feq])
show path_connected \(U\)
using scU simply_connected_eq_contractible_loop_some by blast
fix \(r\)
assume \(r\) : path \(r\) path_image \(r \subseteq U\) pathstart \(r=z\) pathfinish \(r=z\)
have linepath \((f z)(f z)=f \circ\) linepath \(z z\)
by (simp add: o_def linepath_def)
then have homotopic_paths \(S(f \circ r)\) (linepath \((f z)(f z))\)
by (metis \(r\) contf fim homotopic_paths_continuous_image scU simply_connected_eq_contractible_path)
then show \(\exists b\). homotopic_paths \(S(f \circ r)\) (linepath \(b b)\)
by blast
qed blast
corollary covering_space_lift:
fixes \(p::\) ' \(a:\) :real_normed_vector \(\Rightarrow\) ' \(b:\) :real_normed_vector
and \(f::\) ' \(c::\) real_normed_vector \(\Rightarrow\) 'b
assumes cov: covering_space \(C\) p \(S\)
and \(U\) : simply_connected \(U\) locally path_connected \(U\)
and contf: continuous_on \(U f\) and fim: \(f^{\prime} U \subseteq S\)
obtains \(g\) where continuous_on \(U g g^{\prime} U \subseteq C \bigwedge y . y \in U \Longrightarrow p(g y)=f y\)
proof (cases \(U=\{ \}\) )
case True
with that show ?thesis by auto
next
case False
then obtain \(z\) where \(z \in U\) by blast
then obtain \(a\) where \(a \in C f z=p a\)
by (metis cov covering_space_imp_surjective fim image_iff image_subset_iff)
then show ?thesis
by (metis that covering_space_lift_strong [OF cov _ \(\langle z \in U\rangle U\) contf fim])
qed

\subsection*{6.19.6 Homeomorphisms of arc images}
lemma homeomorphism_arc:
```

 fixes \(g::\) real \(\Rightarrow{ }^{\prime} a\) ::t2_space
 assumes arc \(g\)
 obtains \(h\) where homeomorphism \(\{0 . .1\}\) (path_image g) \(g h\)
 using assms by (force simp: arc_def homeomorphism_compact path_def path_image_def)
lemma homeomorphic_arc_image_interval:
fixes $g::$ real $\Rightarrow{ }^{\prime} a::$ t2_space and $a::$ real
assumes arc $g a<b$
shows (path_image g) homeomorphic $\{a . . b\}$
proof -
have (path_image g) homeomorphic $\{0 . .1::$ real $\}$
by (meson assms (1) homeomorphic_def homeomorphic_sym homeomorphism_arc)
also have ... homeomorphic $\{a . . b\}$
using assms by (force intro: homeomorphic_closed_intervals_real)
finally show ?thesis .
qed
lemma homeomorphic_arc_images:
fixes $g::$ real $\Rightarrow{ }^{\prime} a::$ t2_space $^{\text {and }} h::$ real \Rightarrow ' $b::$ t2_space
assumes arc g arc h
shows (path_image g) homeomorphic (path_image h)
proof -
have (path_image g) homeomorphic $\{0 . .1::$ real $\}$
by (meson assms homeomorphic_def homeomorphic_sym homeomorphism_arc)
also have ... homeomorphic (path_image h)
by (meson assms homeomorphic_def homeomorphism_arc)
finally show ?thesis.
qed
end
theory Equivalence_Lebesgue_Henstock_Integration
imports
Lebesgue_Measure
Henstock_Kurzweil_Integration
Complete_Measure
Set_Integral
Homeomorphism
Cartesian_Euclidean_Space
begin
lemma LIMSEQ_if_less: $(\lambda k$. if $i<k$ then a else $b) \longrightarrow a$
by (rule_tac $k=S u c i$ in LIMSEQ_offset) auto
Note that the rhs is an implication. This lemma plays a specific role in one proof.
lemma le_left_mono: $x \leq y \Longrightarrow y \leq a \longrightarrow x \leq\left(a::^{\prime} a::\right.$ preorder $)$
by (auto intro: order_trans)

```
lemma ball_trans:
assumes \(y \in\) ball \(z q r+q \leq s\) shows ball \(y r \subseteq\) ball \(z s\)
using assms by metric
lemma has_integral_implies_lebesgue_measurable_cbox:
fixes \(f\) :: ' \(a\) :: euclidean_space \(\Rightarrow\) real
assumes \(f\) : (f has_integral I) (cbox x y)
shows \(f \in\) lebesgue_on (cbox x y) \(\rightarrow_{M}\) borel
proof (rule cld_measure.borel_measurable_cld)
let ? \(L=\) lebesgue_on \(^{\text {( }}\) cbox \(x\) y)
let \(? \mu=\) emeasure \(? L\)
let \(? \mu^{\prime}=\) outer_measure_of ? \(L\)
interpret \(L\) : finite_measure ?L
proof
show ? \(\mu(\) space ? \(L) \neq \infty\)
by (simp add: emeasure_restrict_space space_restrict_space emeasure_lborel_cbox_eq)
qed
show cld_measure ?L
proof
fix \(B A\) assume \(B \subseteq A A \in\) null_sets ? \(L\)
then show \(B \in\) sets ? \(L\)
using null_sets_completion_subset \([O F\langle B \subseteq A\rangle\), of lborel]
by (auto simp add: null_sets_restrict_space sets_restrict_space_iff intro: )
next
fix \(A\) assume \(A \subseteq\) space ? \(L \backslash B . B \in\) sets \(? L \Longrightarrow\) ? \(\mu B<\infty \Longrightarrow A \cap B \in\) sets? \(L\)
from this(1) this(2)[of space ? \(L]\) show \(A \in\) sets ? \(L\)
by (auto simp: Int_absorb2 less_top[symmetric])
qed auto
then interpret cld_measure ?L
have content_eq_L: \(A \in\) sets borel \(\Longrightarrow A \subseteq\) cbox \(x y \Longrightarrow\) content \(A=\) measure ? \(L A\) for \(A\)
by (subst measure_restrict_space) (auto simp: measure_def)
fix \(E\) and \(a b\) :: real assume \(E \in\) sets ? \(L a<b 0<? \mu E ? \mu E<\infty\)
then obtain \(M\) :: real where ? \(\mu E=M 0<M\)
by (cases ? \(\mu \mathrm{E}\) ) auto
define \(e\) where \(e=M /(4+2 /(b-a))\)
from \(\langle a<b\rangle\langle 0<M\rangle\) have \(0<e\)
by (auto intro!: divide_pos_pos simp: field_simps e_def)
have \(e<M /(3+2 /(b-a))\)
using \(\langle a<b\rangle\langle 0<M\rangle\)
unfolding e_def by (intro divide_strict_left_mono add_strict_right_mono mult_pos_pos)
(auto simp: field_simps)
```

 then have 2*e<(b-a)*(M-e*3)
 using \(\langle 0<M\rangle\langle 0<e\rangle\langle a<b\rangle\) by (simp add: field_simps)
 have e_less_M: \(e<M / 1\)
 unfolding \(e_{-} d e f\) using \(\langle a<b\rangle\langle 0<M\rangle\) by (intro divide_strict_left_mono) (auto
 simp: field_simps)
obtain d
where gauge d
and integral_f: $\forall p$. p tagged_division_of cbox $x y \wedge d$ fine $p \longrightarrow$
norm $\left(\left(\sum(x, k) \in p\right.\right.$. content $\left.\left.k *_{R} f x\right)-I\right)<e$
using $\langle 0<e\rangle f$ unfolding has_integral by auto
define C where $C X m=X \cap\{x$. ball $x(1 /$ Suc $m) \subseteq d x\}$ for $X m$
have incseq ($C X$) for X
unfolding C_def [abs_def]
by (intro monoI Collect_mono conj_mono imp_refl le_left_mono subset_ball di-
vide_left_mono Int_mono) auto
\{ fix X assume $X \subseteq$ space ? L and $e q: ? \mu^{\prime} X=? \mu E$
have (SUP m. outer_measure_of ? $L(C X m))=$ outer_measure_of ? $L(\bigcup m . C$
X m)
using $\langle X \subseteq$ space ? $L\rangle$ by (intro SUP_outer_measure_of_incseq \langle incseq $(C X)\rangle$)
(auto simp: C_def)
also have $(\bigcup m . C X m)=X$
proof -
$\{$ fix x
obtain e where $0<e$ ball $x e \subseteq d x$
using gauge $D[O F$ <gauge $d\rangle$, of $x]$ unfolding open_contains_ball by auto
moreover
obtain n where $1 /(1+$ real $n)<e$
using reals_Archimedean $[O F<0<e\rangle]$ by (auto simp: inverse_eq_divide)
then have ball $x(1 /(1+$ real $n)) \subseteq$ ball $x e$
by (intro subset_ball) auto
ultimately have $\exists n$. ball $x(1 /(1+$ real $n)) \subseteq d x$
by blast \}
then show ?thesis
by (auto simp: C_def)
qed
finally have (SUP m. outer_measure_of ? $L(C X m))=? \mu E$
using eq by auto
also have $\ldots>M-e$
using $\langle 0<M\rangle\langle ? \mu E=M\rangle\langle 0<e\rangle$ by (auto intro!: ennreal_lessI)
finally have $\exists m . M-e<$ outer_measure_of ? L ($C X m$)
unfolding less_SUP_iff by auto \}
note $C=$ this
let $? E=\{x \in E . f x \leq a\}$ and $? F=\{x \in E . b \leq f x\}$

```
```

have $\neg\left(? \mu^{\prime} ? E=? \mu E \wedge ? \mu^{\prime} ? F=? \mu E\right)$
proof
assume eq: ? $\mu^{\prime} ? E=? \mu E \wedge ? \mu^{\prime} ? F=? \mu E$
with $C[o f ? E] C[o f ? F]\langle E \in$ sets ? $L\rangle[$ THEN sets.sets_into_space $]$ obtain ma
$m b$
where $M-e<$ outer_measure_of ? $L(C$? $E m a) M-e<$ outer_measure_of
? $L(C ? F m b)$
by auto
moreover define m where $m=$ max ma mb
ultimately have M_minus_e: $M-e<$ outer_measure_of ? $L(C$?E m) $M-$
$e<$ outer_measure_of ? L (C ?F m)
using
incseqD $[$ OF \langle incseq $(C$? $E)\rangle$, of ma m, THEN outer_measure_of_mono]
incseq $D[O F<i n c s e q(C$? $F)$ 〉, of $m b$, THEN outer_measure_of_mono]
by (auto intro: less_le_trans)
define d^{\prime} where $d^{\prime} x=d x \cap$ ball $x(1 /(3 *$ Suc $m))$ for x
have gauge d^{\prime}
unfolding d^{\prime} _def by (intro gauge_Int 〈gauge d〉gauge_ball) auto
then obtain p where $p: p$ tagged_division_of cbox x y d' fine p
by (rule fine_division_exists)
then have d fine p
unfolding d^{\prime} _def $[$ abs_def] fine_def by auto
define s where $s=\left\{\left(x:^{\prime} a, k\right) . k \cap(C ? E m) \neq\{ \} \wedge k \cap(C ? F m) \neq\{ \}\right\}$
define T where $T E k=(S O M E x . x \in k \cap C E m)$ for $E k$
let ? $A=(\lambda(x, k)$. $(T$? $E k, k))$ ' $(p \cap s) \cup(p-s)$
let ? $B=(\lambda(x, k) .(T$? $F k, k))$ ' $(p \cap s) \cup(p-s)$

```
    \{ fix \(X\) assume \(X_{-} e q: X=? E \vee X=? F\)
    let ? \(T=(\lambda(x, k) .(T X k, k))\)
    let ? \(p=\) ? \(T\) ' \((p \cap s) \cup(p-s)\)
    have \(i n \_\_s:(x, k) \in s \Longrightarrow T X k \in k \cap C X m\) for \(x k\)
            using someI_ex[of \(\lambda x . x \in k \cap C X m] X_{-} e q\) unfolding ex_in_conv by
( auto simp: T_def s_def)
    \{ fix \(x k\) assume \((x, k) \in p(x, k) \in s\)
        have \(k: k \subseteq\) ball \(x(1 /(3 *\) Suc \(m))\)
            using \(\left\langle d^{\prime}\right.\) fine \(\left.p\right\rangle[\) THEN fineD, OF \(\langle(x, k) \in p\rangle]\) by (auto simp: \(d^{\prime}{ }_{-} d e f\) )
        then have \(x \in\) ball \((T X k)(1 /(3 *\) Suc \(m))\)
            using in_s \(\left.^{2}[O F «(x, k) \in s\rangle\right]\) by (auto simp: C_def subset_eq dist_commute)
        then have ball \(x(1 /(3 *\) Suc \(m)) \subseteq\) ball \((T X k)(1 /\) Suc \(m)\)
            by (rule ball_trans) (auto simp: field_split_simps)
        with \(k\) in_s \([O F<(x, k) \in s\rangle]\) have \(k \subseteq d(T X k)\)
        by (auto simp: C_def) \}
    then have \(d\) fine ?p
    using 〈d fine \(p\rangle\) by (auto intro!: fineI)
    moreover
    have ?p tagged_division_of cbox \(x\) y
```

 proof (rule tagged_division_ofI)
 show finite? ?
 using \(p(1)\) by auto
 next
 fix \(z k\) assume \(*:(z, k) \in ? p\)
 then consider \((z, k) \in p(z, k) \notin s\)
 \(\mid x^{\prime}\) where \(\left(x^{\prime}, k\right) \in p\left(x^{\prime}, k\right) \in s z=T X k\)
 by (auto simp: T_def)
 then have \(z \in k \wedge k \subseteq c b o x x\) y \(\wedge(\exists a b . k=c b o x a b)\)
 using \(p(1)\) by cases (auto dest: in_s)
 then show \(z \in k \in \subseteq c b o x x y \exists a b\). \(k=c b o x a b\)
 by auto
 next
 fix \(z k z^{\prime} k^{\prime}\) assume \((z, k) \in ? p\left(z^{\prime}, k^{\prime}\right) \in ? p(z, k) \neq\left(z^{\prime}, k^{\prime}\right)\)
 with tagged_division_ofD (5)[OF \(p(1)\),of _ \(\left.k_{-} k^{\prime}\right]\)
 show interior \(k \cap\) interior \(k^{\prime}=\{ \}\)
 by (auto simp: T_def dest: in_s)
 next
 have \(\{k . \exists x .(x, k) \in ? p\}=\{k . \exists x .(x, k) \in p\}\)
 by (auto simp: T_def image_iff Bex_def)
 then show \(\bigcup\{k . \exists x .(x, k) \in ? p\}=c b o x x y\)
 using \(p(1)\) by auto
 qed
 ultimately have \(I\) : norm \(\left(\left(\sum(x, k) \in ? p\right.\right.\). content \(\left.\left.k *_{R} f x\right)-I\right)<e\)
 using integral_f by auto
    ```
    have \(\left(\sum(x, k) \in ? p\right.\). content \(\left.k *_{R} f x\right)=\)
    \(\left(\sum(x, k) \in ? T\right.\) ' \((p \cap s)\). content \(\left.k *_{R} f x\right)+\left(\sum(x, k) \in p-s\right.\). content \(k\)
\(\left.*_{R} f x\right)\)
        using \(p(1)[T H E N\) tagged_division_ofD (1)]
        by (safe intro!: sum.union_inter_neutral) (auto simp: s_def T_def)
    also have \(\left(\sum(x, k) \in ? T\right.\) ' \((p \cap s)\). content \(\left.k *_{R} f x\right)=\left(\sum(x, k) \in p \cap s\right.\).
content \(\left.k *_{R} f(T X k)\right)\)
    proof (subst sum.reindex_nontrivial, safe)
        fix \(x 1 x 2 k\) assume \(1:(x 1, k) \in p(x 1, k) \in s\) and \(2:(x 2, k) \in p(x 2, k)\)
\(\in s\)
            and eq: content \(k *_{R} f(T X k) \neq 0\)
            with tagged_division_ofD (5)[OF p(1), of x1 \(k\) x2 \(k]\) tagged_division_ofD (4)[OF
\(p(1)\), of \(x 1 k]\)
            show \(x 1=x 2\)
            by (auto simp: content_eq_0_interior)
    qed (use \(p\) in 〈auto intro!: sum.cong〉)
    finally have eq: \(\left(\sum(x, k) \in\right.\) ? \(p\). content \(\left.k *_{R} f x\right)=\)
        \(\left(\sum(x, k) \in p \cap s\right.\). content \(\left.k *_{R} f(T X k)\right)+\left(\sum(x, k) \in p-s\right.\). content \(k\)
\(\left.*_{R} f x\right)\).
    have \(i n_{-} T:(x, k) \in s \Longrightarrow T X k \in X\) for \(x k\)
        using in_s \([\) of \(x k]\) by (auto simp: \(C_{-} d e f\) )
```

 note I eq in_T }
 note parts = this
 have p_in_L: (x,k)\inp\Longrightarrowk\in sets ? L for x k
 using tagged_division_ofD (3, 4)[OF p(1), of x k] by (auto simp: sets_restrict_space)
 have [simp]: finite p
 using tagged_division_ofD(1)[OF p(1)].
 have (M-3*e)*(b-a)\leq(\sum(x,k)\inp\caps.content k)*(b-a)
 proof (intro mult_right_mono)
 have fin:? }\mu(E\cap\bigcup{k\insnd'p.k\capCXm={}})<\infty\mathrm{ for }
 using \? }\muE<\infty)\mathrm{ by (rule le_less_trans[rotated]) (auto intro!: emeasure_mono
 <E\in sets ?L`) have sets:(E\cap\bigcup{k\insnd'p.k\capCXm={}})\in sets ?L for } using tagged_division_ofD(1)[OF p(1)] by (intro sets.Diff \langleE \in sets ?L> sets.finite_Union sets.Int) (auto intro: p_in_L) { fix X assume X\subseteqEM-e<? 白(CXm) have M-e\leq? 生(CXm) by (rule less_imp_le) fact also have .. \leq? ' ' ' (E-(E\cap\bigcup{k\insnd'p.k\capCXm={}})) proof (intro outer_measure_of_mono subsetI) fix v}\mathrm{ assume v}\inCX then have v}\in\mathrm{ cbox x y v}\in using \langleE\subseteq space ?L\rangle\langleX\subseteqE\rangle by (auto simp: space_restrict_space C_def) then obtain zk where (z,k)\inpv\ink using tagged_division_ofD(6)[OF p(1), symmetric] by auto then show v\inE-E\cap(\bigcup{k\insnd`}p.k\capCXm={}}
using}\langlev\inCXm\rangle\langlev\inE\rangle\mathrm{ by auto
qed
also have ... = ? }\muE-?\mu(E\cap\bigcup{k\insnd'p.k\capCXm={}}
using \langleE \in sets ?L\rangle fin[of X] sets[of X] by (auto intro!: emeasure_Diff)
finally have ? }\mu(E\cap\bigcup{k\insnd`'p.k\capCXm={}})\leq using <0 <e\rangle e_less_M by (cases ? }\mu(E\cap\bigcup{k\insnd\mp@subsup{}{}{6}p.k\capCXm={}}))(auto simp add:<? | < E=M> ennreal_minus ennreal_le_iff2) note this } note upper_bound = this have ? }\mu(E\cap\bigcup(snd`(p-s)))
?\mu((E\cap\bigcup{k\insnd'p.k\capC?E m={}})\cup(E\cap\bigcup{k\insnd'p.k\capC?F
m={}}))
by (intro arg_cong[where f=? }\mu\mathrm{]) (auto simp: s_def image_def Bex_def)
also have ···\leq?
\bigcup{k\insnd'p.k\capC?F}m={}}
using sets[of ?E] sets[of ?F] M_minus_e by (intro emeasure_subadditive)
auto
also have ... \leqe + ennreal e
using upper_bound[of ?E] upper_bound[of ?F] M_minus_e by (intro add_mono)

```
auto
finally have ? \(\mu E-2 * e \leq ? \mu\left(E-\left(E \cap \bigcup\left(s n d{ }^{4}(p-s)\right)\right)\right)\)
using \(\langle 0<e\rangle\langle E \in\) sets ? \(L\rangle\) tagged_division_ofD (1)[OF p(1)]
by (subst emeasure_Diff)
(auto simp: top_unique simp flip: ennreal_plus intro!: sets.Int sets.finite_UN ennreal_mono_minus intro: \(p_{-}\)in_L \(^{\prime} L\)
also have \(\ldots \leq ? \mu(\bigcup x \in p \cap\) s. snd \(x)\)
proof (safe intro!: emeasure_mono subsetI)
fix \(v\) assume \(v \in E\) and not: \(v \notin(\bigcup x \in p \cap\) s. snd \(x)\)
then have \(v \in\) cbox \(x y\)
using \(\langle E \subseteq\) space ? \(L\rangle\) by (auto simp: space_restrict_space)
then obtain \(z k\) where \((z, k) \in p v \in k\)
using tagged_division_ofD \((6)[\) OF \(p(1)\), symmetric \(]\) by auto
with not show \(v \in \bigcup(s n d\) ' \((p-s))\)
by (auto intro!: bexI[of \(-(z, k)]\) elim: ballE[of \(\left.\left.\__{-}(z, k)\right]\right)\)
qed (auto intro!: sets.Int sets.finite_UN ennreal_mono_minus intro: \(p_{-} i n_{-} L\) )
also have \(\ldots=\) measure ? \(L(\bigcup x \in p \cap\) s. snd \(x)\)
by (auto intro!: emeasure_eq_ennreal_measure)
finally have \(M-2 * e \leq\) measure ? \(L(\bigcup x \in p \cap s\) s snd \(x)\)
unfolding \(\langle ? \mu E=M\) 〉 using \(\langle 0<e\rangle\) by (simp add: ennreal_minus)
also have measure ? \(L(\bigcup x \in p \cap\) s. snd \(x)=\) content \((\bigcup x \in p \cap s\) snd \(x)\)
using tagged_division_ofD (1,3,4) [OF p(1)]
by (intro content_eq_L[symmetric])
(fastforce intro!: sets.finite_UN UN_least del: subsetI)+
also have content \((\bigcup x \in p \cap s\). snd \(x) \leq\left(\sum k \in p \cap s\right.\). content \((\) snd \(\left.k)\right)\)
using \(p(1)\) by (auto simp: emeasure_lborel_cbox_eq intro!: measure_subadditive_finite dest!: \(p(1)[T H E N\) tagged_division_ofD (4)])
finally show \(M-3 * e \leq\left(\sum(x, y) \in p \cap s\right.\). content \(\left.y\right)\)
using \(\langle 0<e\rangle\) by (simp add: split_beta)
qed (use \(\langle a<b\rangle\) in auto)
also have \(\ldots=\left(\sum(x, k) \in p \cap s\right.\). content \(\left.k *(b-a)\right)\)
by ( simp add: sum_distrib_right split_beta')
also have \(\ldots \leq\left(\sum(x, k) \in p \cap s\right.\). content \(k *(f(T ? F k)-f(T\) ? \(\left.E k))\right)\)
using parts(3) by (auto intro!: sum_mono mult_left_mono diff_mono)
also have \(\ldots=\left(\sum(x, k) \in p \cap s\right.\). content \(\left.k * f(T ? F k)\right)-\left(\sum(x, k) \in p \cap\right.\)
s. content \(k * f(T\) ? \(E k))\)
by (auto intro!: sum.cong simp: field_simps sum_subtractf [symmetric])
also have \(\ldots=\left(\sum(x, k) \in ? B\right.\). content \(\left.k *_{R} f x\right)-\left(\sum(x, k) \in ? A\right.\). content \(\left.k *_{R} f x\right)\)
by (subst (1 2) parts) auto
also have \(\ldots \leq \operatorname{norm}\left(\left(\sum(x, k) \in\right.\right.\) ?B. content \(\left.k *_{R} f x\right)-\left(\sum(x, k) \in\right.\) ? \(A\).
content \(\left.k *_{R} f x\right)\) )
by auto
also have \(\ldots \leq e+e\)
using parts(1)[of ?E] parts(1)[of ?F] by (intro norm_diff_triangle_le[of_I])
auto
finally show False
using \(\langle 2 * e<(b-a) *(M-e * 3)\rangle\) by (auto simp: field_simps)
qed
```

 moreover have \(? \mu^{\prime} ? E \leq ? \mu E ? \mu^{\prime} ? F \leq ? \mu E\)
 unfolding outer_measure_of_eq[OF \(\langle E \in\) sets ? \(L\rangle\), symmetric \(]\) by (auto intro!:
 outer_measure_of_mono)
ultimately show $\min \left(? \mu^{\prime} ? E\right)\left(? \mu^{\prime} ? F\right)<? \mu E$
unfolding min_less_iff_disj by (auto simp: less_le)
qed
lemma has_integral_implies_lebesgue_measurable_real:
fixes f :: ' a :: euclidean_space \Rightarrow real
assumes f : (f has_integral I) Ω
shows $(\lambda x . f x *$ indicator $\Omega x) \in$ lebesgue \rightarrow_{M} borel
proof -
define $B::$ nat \Rightarrow 'a set where $B n=\operatorname{cbox}\left(-\right.$ real $n *_{R}$ One) $\left(\right.$ real $n *_{R}$ One)
for n
show $(\lambda x . f x *$ indicator $\Omega x) \in$ lebesgue \rightarrow_{M} borel
proof (rule measurable_piecewise_restrict)
have $\left(\bigcup n\right.$. box $\left(-\right.$ real $n *_{R}$ One) $\left(\right.$ real $n *_{R}$ One $\left.)\right) \subseteq \bigcup\left(B^{\prime}\right.$ UNIV $)$
unfolding B_{-}def by (intro UN_mono box_subset_cbox order_refl)
then show countable (range B) space lebesgue $\subseteq \bigcup\left(B^{\prime}\right.$ UNIV)
by (auto simp: B_def UN_box_eq_UNIV)
next
fix Ω^{\prime} assume $\Omega^{\prime} \in$ range B
then obtain n where $\Omega^{\prime}: \Omega^{\prime}=B n$ by auto
then show $\Omega^{\prime} \cap$ space lebesgue \in sets lebesgue
by (auto simp: B_def)
have f integrable_on Ω
using f by auto
then have $(\lambda x . f x *$ indicator $\Omega x)$ integrable_on Ω
by (auto simp: integrable_on_def cong: has_integral_cong)
then have $(\lambda x . f x *$ indicator $\Omega x)$ integrable_on $(\Omega \cup B n)$
by (rule integrable_on_superset) auto
then have $(\lambda x . f x *$ indicator $\Omega x)$ integrable_on $B n$
unfolding B_{-}def by (rule integrable_on_subcbox) auto
then show $(\lambda x . f x *$ indicator $\Omega x) \in$ lebesgue_on $\Omega^{\prime} \rightarrow_{M}$ borel
unfolding B_{-}def Ω^{\prime} by (auto intro: has_integral_implies_lebesgue_measurable_cbox
simp: integrable_on_def)
qed
qed
lemma has_integral_implies_lebesgue_measurable:
fixes f :: ' a :: euclidean_space \Rightarrow ' b :: euclidean_space
assumes f : (f has_integral I) Ω
shows $\left(\lambda x\right.$. indicator $\left.\Omega x *_{R} f x\right) \in$ lebesgue \rightarrow_{M} borel
proof (intro borel_measurable_euclidean_space[where ' $c=$ 'b, THEN iffD2] ballI)
fix $i::{ }^{\prime} b$ assume $i \in$ Basis
have $(\lambda x .(f x \cdot i) *$ indicator $\Omega x) \in$ borel_measurable (completion lborel)
using has_integral_linear[OF f bounded_linear_inner_left, of i]
by (intro has_integral_implies_lebesgue_measurable_real) (auto simp: comp_def)

```
```

 then show (\(\lambda x\). indicator \(\left.\Omega x *_{R} f x \cdot i\right) \in\) borel_measurable (completion lborel)
 by (simp add: ac_simps)
 qed

```

\subsection*{6.19.7 Equivalence Lebesgue integral on lborel and HK-integral}
```

lemma has_integral_measure_lborel:
fixes A :: 'a::euclidean_space set
assumes $A[$ measurable $]: A \in$ sets borel and finite: emeasure lborel $A<\infty$
shows $((\lambda x .1)$ has_integral measure lborel $A) A$
proof -
\{ fix $l u::{ }^{\prime} a$
have (($\lambda x .1$) has_integral measure lborel (box l u)) (box l u)
proof cases
assume $\forall b \in$ Basis. $l \cdot b \leq u \cdot b$
then show ?thesis
using has_integral_const $[$ of 1 :: real l u]
by (simp fip: has_integral_restrict[OF box_subset_cbox] add: has_integral_spike_interior)
next
assume $\neg(\forall b \in$ Basis. $l \cdot b \leq u \cdot b)$
then have box $l u=\{ \}$
unfolding box_eq_empty by (auto simp: not_le intro: less_imp_le)
then show ?thesis
by simp
qed $\}$
note has_integral_box $=$ this
$\left\{\right.$ fix $a b::{ }^{\prime} a$ let $? M=\lambda A$. measure lborel $(A \cap b o x a b)$
have Int_stable (range $(\lambda(a, b)$. box a $b)$)
by (auto simp: Int_stable_def box_Int_box)
moreover have (range $(\lambda(a, b)$. box a b)) \subseteq Pow UNIV
by auto
moreover have $A \in$ sigma_sets UNIV (range $(\lambda(a, b)$. box a b))
using A unfolding borel_eq_box by simp
ultimately have ($(\lambda x .1)$ has_integral ? $M A)(A \cap$ box a $b)$
proof (induction rule: sigma_sets_induct_disjoint)
case (basic A) then show ?case
by (auto simp: box_Int_box has_integral_box)
next
case empty then show ?case
by simp
next
case (compl A)
then have [measurable]: $A \in$ sets borel
by (simp add: borel_eq_box)
have $((\lambda x .1)$ has_integral ?M (box a b)) (box a b)
by (simp add: has_integral_box)
moreover have $((\lambda x$. if $x \in A \cap$ box a b then 1 else 0) has_integral ?M A)

```
```

(box a b)
by (subst has_integral_restrict) (auto intro: compl)
ultimately have ((}\lambdax.1-(\mathrm{ if }x\inA\cap\mathrm{ box a b then 1 else 0)) has_integral
?M (box a b) - ?M A) (box a b)
by (rule has_integral_diff)
then have ((}\lambdax\mathrm{ . (if }x\in(UNIV - A)\cap box a b then 1 else 0)) has_integral
?M (box a b) - ?M A) (box a b)
by (rule has_integral_cong[THEN iffD1, rotated 1]) auto
then have ((\lambdax. 1) has_integral ?M (box a b) - ?M A) ((UNIV - A) \cap box
ab)
by (subst (asm) has_integral_restrict) auto
also have ?M (box a b) - ?M A = ?M (UNIV - A)
by (subst measure_Diff[symmetric]) (auto simp: emeasure_lborel_box_eq
Diff_Int_distrib2)
finally show ?case .
next
case (union F)
then have [measurable]: \i.Fi\in sets borel
by (simp add: borel_eq_box subset_eq)
have ((}\lambdax\mathrm{ . if }x\in\bigcup(F'UNIV) \cap box a b then 1 else 0) has_integral ?M
(Ui.Fi)) (box a b)
proof (rule has_integral_monotone_convergence_increasing)
let ?f = \lambdakx. \sumi<k. if x\inFi\cap box a b then 1 else 0 :: real
show }\wedgek\mathrm{ . (?f k has_integral (}\sumi<k\mathrm{ . ?M (F i))) (box a b)
using union.IH by (auto intro!: has_integral_sum simp del: Int_iff)
show \kx. ?f k x \leq ?f (Suc k) x
by (intro sum_mono2) auto
from union(1) have *: \bigwedgexi j. x \inFi\Longrightarrowx\inFj\longleftrightarrow < < = i
by (auto simp add: disjoint_family_on_def)
show (}\lambdak\mathrm{ . ?f }kx)\longrightarrow(\mathrm{ if }x\in\bigcup(F'UNIV) \cap box a b then 1 else 0
for }
by (auto simp:* sum.If_cases Iio_Int_singleton if_distrib LIMSEQ_if_less
cong: if_cong)
have *: emeasure lborel ((\bigcupx.F x) \cap box a b) \leqemeasure lborel (box a b)
by (intro emeasure_mono) auto
with union(1) show (}\lambdak.\sumi<k.?M (Fi))\longrightarrow ?M (\bigcupi.Fi
unfolding sums_def[symmetric] UN_extend_simps
by (intro measure_UNION) (auto simp: disjoint_family_on_def emea-
sure_lborel_box_eq top_unique)
qed
then show ?case
by (subst (asm) has_integral_restrict) auto
qed }
note * = this
show ?thesis
proof (rule has_integral_monotone_convergence_increasing)
let ?B = \lambdan::nat. box (- real n *R One) (real n *R One) :: 'a set

```
let ?f \(=\lambda n\) :: nat. \(\lambda x\). if \(x \in A \cap\) ? \(B n\) then 1 else 0 :: real
let ? \(M=\lambda n\). measure lborel \((A \cap\) ?B \(n)\)
show \(\bigwedge n\) ::nat. (?f \(n\) has_integral ?M n) \(A\)
using * by (subst has_integral_restrict) simp_all
show \(\wedge k x\). ?f \(k x \leq\) ?f (Suc \(k) x\)
by (auto simp: box_def)
\(\{\) fix \(x\) assume \(x \in A\)
moreover have \((\lambda k\). indicator \((A \cap ? B k) x::\) real \(\longrightarrow\) indicator \((\bigcup k:: n a t . A \cap ? B k) x\)
by (intro LIMSEQ_indicator_incseq) (auto simp: incseq_def box_def)
ultimately show \((\lambda k\). if \(x \in A \cap\) ? \(B k\) then 1 else \(0::\) real \() \longrightarrow 1\)
by (simp add: indicator_def UN_box_eq_UNIV) \}
have \((\lambda n\). emeasure lborel \((A \cap\) ?B \(n)) \longrightarrow\) emeasure lborel \((\bigcup n:: n a t . ~ A \cap\) ? \(B\) n)
by (intro Lim_emeasure_incseq) (auto simp: incseq_def box_def)
also have \((\lambda n\). emeasure lborel \((A \cap ? B n))=(\lambda n\). measure lborel \((A \cap\) ?B n))
proof (intro ext emeasure_eq_ennreal_measure)
fix \(n\) have emeasure lborel \((A \cap ? B n) \leq\) emeasure lborel \((? B n)\)
by (intro emeasure_mono) auto
then show emeasure lborel \((A \cap ? B n) \neq\) top
by (auto simp: top_unique)
qed
finally show \((\lambda n\). measure lborel \((A \cap\) ? \(B n)) \longrightarrow\) measure lborel \(A\)
using emeasure_eq_ennreal_measure [of lborel A] finite
by (simp add: UN_box_eq_UNIV less_top)
qed
qed
lemma nn_integral_has_integral:
fixes \(f:{ }^{\prime}\) 'a::euclidean_space \(\Rightarrow\) real
assumes \(f: f \in\) borel_measurable borel \(\bigwedge x .0 \leq f x\left(\int{ }^{+} x . f x\right.\) dlborel \()=\) ennreal \(r 0 \leq r\)
shows (f has_integral r) UNIV
using \(f\) proof (induct \(f\) arbitrary: r rule: borel_measurable_induct_real)
case (set \(A\) )
then have \(((\lambda x .1)\) has_integral measure lborel \(A) A\)
by (intro has_integral_measure_lborel) (auto simp: ennreal_indicator)
with set show ? case
by (simp add: ennreal_indicator measure_def) (simp add: indicator_def)
next
case (mult \(g c\) )
then have ennreal \(c *\left(\int+x . g x\right.\) dlborel \()=\) ennreal \(r\)
by (subst nn_integral_cmult[symmetric]) (auto simp: ennreal_mult)
with \(\langle 0 \leq r\rangle\langle 0 \leq c\rangle\)
obtain \(r^{\prime}\) where \((c=0 \wedge r=0) \vee\left(0 \leq r^{\prime} \wedge\left(\int^{+} x\right.\right.\). ennreal \((g x)\) dlborel \()=\) ennreal \(\left.r^{\prime} \wedge r=c * r^{\prime}\right)\)
```

 by (cases \(\int^{+} x\). ennreal (\(\left.g x\right)\) dlborel rule: ennreal_cases)
 (auto split: if_split_asm simp: ennreal_mult_top ennreal_mult[symmetric])
 with mult show ?case
by (auto intro!: has_integral_cmult_real)
next
case (add gh)
then have $\left(\int^{+} x . h x+g x\right.$ dlborel $)=\left(\int^{+} x . h x\right.$ dlborel $)+\left(\int^{+} x . g x\right.$
dlborel)
by (simp add: nn_integral_add)
with add obtain $a b$ where $0 \leq a 0 \leq b\left(\int^{+} x . h x\right.$ dlborel $)=$ ennreal $a\left(\int^{+}\right.$
$x . g x($ lborel $)=$ ennreal $b r=a+b$
by (cases $\int^{+} x . h x$ dlborel $\int^{+} x . g x$ Dlborel rule: ennreal2_cases)
(auto simp: add_top nn_integral_add top_add simp flip: ennreal_plus)
with add show ?case
by (auto intro!: has_integral_add)
next
case (seq U)
note $\operatorname{seq}(1)[$ measurable $]$ and $f[$ measurable $]$
have $U_{-} l e_{-} f: U i x \leq f x$ for $i x$
by (metis (no_types) LIMSEQ_le_const UNIV_I incseq_def le_fun_def seq.hyps(4)
seq.hyps(5) space_borel)

```
\(\{\) fix \(i\)
        have \(\left(\int{ }^{+} x . U\right.\) i \(x\) dlborel \() \leq\left(\int{ }^{+} x . f x\right.\) dlborel \()\)
        using \(\operatorname{seq}(2) f(2) U_{-} l e_{-} f\) by (intro nn_integral_mono) simp
    then obtain \(p\) where \(\left(\int{ }^{+} x\right.\). U ix \(\left.\mathrm{\partial lborel}\right)=\) ennreal \(p\) p \(\mathrm{r} 0 \leq p\)
        using \(\operatorname{seq}(6)\langle 0 \leq r\rangle\) by (cases \(\int{ }^{+} x\). \(U\) i \(x\) dlborel rule: ennreal_cases) (auto
simp: top_unique)
    moreover note seq
    ultimately have \(\exists p .\left(\int{ }^{+} x . U\right.\) i \(x\) dlborel \()=\) ennreal \(p \wedge 0 \leq p \wedge p \leq r \wedge\)
(U i has_integral p) UNIV
        by auto \}
    then obtain \(p\) where \(p: \bigwedge i .\left(\int{ }^{+} x\right.\). ennreal \((U i x)\) dlborel \()=\) ennreal \((p i)\)
        and bnd: \(\bigwedge i . p i \leq r \bigwedge i .0 \leq p i\)
        and U_int: \(\bigwedge i\). \((U\) i has_integral \((p i))\) UNIV by metis
    have int_eq: \(\bigwedge i\). integral UNIV \((U i)=p i\) using \(U\) _int by (rule integral_unique)
    have \(*: f\) integrable_on UNIV \(\wedge(\lambda k\). integral UNIV \((U k)) \longrightarrow\) integral UNIV
\(f\)
    proof (rule monotone_convergence_increasing)
        show \(\wedge k\). U \(k\) integrable_on UNIV using \(U_{-}\)int by auto
        show \(\bigwedge k x . x \in U N I V \Longrightarrow U k x \leq U\) (Suc \(k\) ) \(x\) using 〈incseq \(U\rangle\) by (auto
simp: incseq_def le_fun_def)
    then show bounded (range ( \(\lambda k\). integral UNIV \((U k)\) ))
        using bnd int_eq by (auto simp: bounded_real intro!: exI[of _ r])
    show \(\bigwedge x . x \in U N I V \Longrightarrow(\lambda k . U k x) \longrightarrow f x\)
        using seq by auto
```

 qed
 moreover have \(\left(\lambda i .\left(\int{ }^{+} x . U\right.\right.\) i \(x\) dlborel \(\left.)\right) \longrightarrow\left(\int{ }^{+} x . f x\right.\) dlborel \()\)
 using seq \(f(2) \quad U_{-} l e _f\) by (intro nn_integral_dominated_convergence[where
 $w=f]$) auto
ultimately have integral $U N I V f=r$
by (auto simp add: bnd int_eq p seq intro: LIMSEQ_unique)
with $*$ show ?case
by (simp add: has_integral_integral)
qed
lemma nn_integral_lborel_eq_integral:
fixes $f:: ' a::$ euclidean_space \Rightarrow real
assumes $f: f \in$ borel_measurable borel $\bigwedge x .0 \leq f x\left(\int{ }^{+} x . f x\right.$ dlborel $)<\infty$
shows $\left(\int^{+} x . f x\right.$ llborel $)=$ integral UNIV f
proof -
from $f(3)$ obtain r where $r:\left(\int^{+} x . f x\right.$ dlborel $)=$ ennreal $r 0 \leq r$
by (cases $\int{ }^{+} x . f x$ dlborel rule: ennreal_cases) auto
then show ?thesis
using nn_integral_has_integral $[$ OF $f(1,2) r]$ by (simp add: integral_unique)
qed
lemma nn_integral_integrable_on:
fixes $f:{ }^{\prime}$ 'a::euclidean_space \Rightarrow real
assumes $f: f \in$ borel_measurable borel $\bigwedge x .0 \leq f x\left(\int{ }^{+} x . f x\right.$ dlborel $)<\infty$
shows f integrable_on UNIV
proof -
from $f(3)$ obtain r where $r:\left(\int^{+} x . f x\right.$ dlborel $)=$ ennreal $r 0 \leq r$
by (cases $\int{ }^{+} x . f x$ dlborel rule: ennreal_cases) auto
then show ?thesis
by (intro has_integral_integrable[where $i=r]$ nn_integral_has_integral[where
$r=r] f$)
qed
lemma nn_integral_has_integral_lborel:
fixes f :: 'a::euclidean_space \Rightarrow real
assumes $f_{\text {_borel: }} f \in$ borel_measurable borel and nonneg: $\bigwedge x .0 \leq f x$
assumes I : (f has_integral I) UNIV
shows integral ${ }^{N}$ lborel $f=I$
proof -
from f _borel have $(\lambda x$. ennreal $(f x)) \in$ borel_measurable lborel by auto
from borel_measurable_implies_simple_function_sequence'[OF this]
obtain F where F : $\bigwedge i$. simple_function lborel $(F i)$ incseq F
$\bigwedge i x . F i x<\operatorname{top} \bigwedge x$. (SUP i.Fix)=ennreal $(f x)$
by blast
then have [measurable]: $\bigwedge i . F i \in$ borel_measurable lborel
by (metis borel_measurable_simple_function)
let ? $B=\lambda i:$ nat. box $\left(-\left(\right.\right.$ real $i *_{R}$ One $\left.)\right)\left(\right.$ real $i *_{R}$ One) $::$ 'a set
have $0 \leq I$

```
```

 using I by (rule has_integral_nonneg) (simp add: nonneg)
 have F_le_f: enn2real (Fix) \leqfx for ix
 using F(3,4)[where x=x] nonneg SUP_upper[of i UNIV \lambdai. F i x]
 by (cases F i x rule: ennreal_cases) auto
 let ?F = \lambdaix.Fix*indicator (?B i) x
 have (}\int+\mp@code{x. ennreal (fx) \partiallborel) = (SUP i. integral N lborel (}\lambdax.\mathrm{ ? ? i i x)}
 proof (subst nn_integral_monotone_convergence_SUP[symmetric])
 {fix }
 obtain j where j: x \in ?B j
 using UN_box_eq_UNIV by auto
 have ennreal (fx)=(SUP i.Fix)
 using F(4)[of x] nonneg[of x] by (simp add: max_def)
 also have ... = (SUP i. ?F i x)
 proof (rule SUP_eq)
 fix i show \existsj\inUNIV.Fix\leq ?F jx
 using j F(2)
 by (intro bexI[of _ max i j])
 (auto split: split_max split_indicator simp: incseq_def le_fun_def box_def)
 qed (auto intro!: F split: split_indicator)
 finally have ennreal (fx)=(SUP i. ?F i x).}
 then show (}\mp@subsup{\int}{}{+}\mathrm{ x. ennreal (f x) dlborel) = (}\mp@subsup{\int}{}{+}\mathrm{ x. (SUP i. ?F i x) dlborel)
 by simp
 qed (insert F, auto simp: incseq_def le_fun_def box_def split: split_indicator)
 also have ... \leq ennreal I
 proof (rule SUP_least)
 fix i :: nat
 have finite_F:(\int+ x. ennreal (enn2real (Fix)*indicator (?B i) x) \partiallborel)
 <\infty
proof (rule nn_integral_bound_simple_function)
have emeasure lborel {x\in space lborel. ennreal (enn2real (F i x) * indicator
(?B i) x) =0 0}\leq
emeasure lborel (?B i)
by (intro emeasure_mono) (auto split: split_indicator)
then show emeasure lborel {x\in space lborel. ennreal (enn2real (F i x)*
indicator (?B i) x)\not=0}<\infty
by (auto simp:less_top[symmetric] top_unique)
qed (auto split: split_indicator
intro!: F simple_function_compose1[where g=enn2real] simple_function_ennreal)
have int_F:(\lambdax. enn2real (Fix)* indicator (?B i) x) integrable_on UNIV
using F(4) finite_F
by (intro nn_integral_integrable_on) (auto split: split_indicator simp: enn2real_nonneg)
have (\int+ x. F ix * indicator (?B i) x dlborel)}
(\int+ x. ennreal (enn2real (Fix)*indicator (?B i) x) Dlborel)
using F(3,4)
by (intro nn_integral_cong) (auto simp: image_iff eq_commute split: split_indicator)

```
```

 also have ... = ennreal (integral UNIV (}\lambdax.\mathrm{ enn2real (Fix) * indicator (?B
 i) x))
using F
by (intro nn_integral_lborel_eq_integral[OF _ _ finite_F])
(auto split: split_indicator intro: enn2real_nonneg)
also have .. . \leqennreal I
by (auto intro!: has_integral_le[OF integrable_integral [OF int_F] I] nonneg
F_le_f
simp: <0 \leqI\rangle split: split_indicator)
finally show (\int+ x.Fix* indicator (?B i) x dlborel) \leq ennreal I .
qed
finally have (}\int
by (auto simp: less_top[symmetric] top_unique)
from nn_integral_lborel_eq_integral[OF assms(1,Q) this] I show ?thesis
by (simp add: integral_unique)
qed
lemma has_integral_iff_emeasure_lborel:
fixes A :: 'a::euclidean_space set
assumes A[measurable]: A sets borel and [simp]: 0 \leqr
shows ((\lambdax.1) has_integral r) A\longleftrightarrow emeasure lborel }A=\mathrm{ ennreal }
proof (cases emeasure lborel A=\infty)
case emeasure_A: True
have }\neg(\lambdax.1::real) integrable_on A
proof
assume int: (}\lambdax.1::real) integrable_on A
then have (indicator A::'a m real) integrable_on UNIV
unfolding indicator_def[abs_def] integrable_restrict_UNIV .
then obtain r where ((indicator A::' }a=>\mathrm{ real) has_integral r) UNIV
by auto
from nn_integral_has_integral_lborel[OF _ _ this] emeasure_A show False
by (simp add: ennreal_indicator)
qed
with emeasure_A show ?thesis
by auto
next
case False
then have ((}\lambdax.1) has_integral measure lborel A) A
by (simp add: has_integral_measure_lborel less_top)
with False show ?thesis
by (auto simp: emeasure_eq_ennreal_measure has_integral_unique)
qed
lemma ennreal_max_0: ennreal (max 0 x) = ennreal x
by (auto simp: max_def ennreal_neg)
lemma has_integral_integral_real:
fixes f::'a::euclidean_space }=>\mathrm{ real
assumes f: integrable lborel f

```
```

 shows (f has_integral (integral \({ }^{L}\) lborel \(\left.f\right)\)) UNIV
 proof -
from integrable $E[O F f]$ obtain $r q$
where $0 \leq r 0 \leq q$
and $r:\left(\int^{+} x\right.$. ennreal $(\max 0(f x))$ dlborel $)=$ ennreal r
and $q:\left(\int^{+}\right.$x. ennreal $(\max 0(-f x))$ dlborel $)=$ ennreal q
and $f: f \in$ borel_measurable lborel and eq: integral ${ }^{L}$ lborel $f=r-q$
unfolding ennreal_max_0 by auto
then have $((\lambda x . \max 0(f x))$ has_integral $r)$ UNIV $((\lambda x . \max 0(-f x))$
has_integral q) UNIV

```

```

auto
note has_integral_diff[OF this]
moreover have $(\lambda x . \max 0(f x)-\max 0(-f x))=f$
by auto
ultimately show ?thesis
by (simp add: eq)
qed
lemma has_integral_AE:
assumes $a e: A E x$ in lborel. $x \in \Omega \longrightarrow f x=g x$
shows $(f$ has_integral $x) \Omega=(g$ has_integral $x) \Omega$
proof -
from ae obtain N
where $N: N \in$ sets borel emeasure lborel $N=0\{x . \neg(x \in \Omega \longrightarrow f x=g x)\}$
$\subseteq N$
by (auto elim!: AE_E)
then have not_N: AE x in lborel. $x \notin N$
by (simp add: AE_iff_measurable)
show ?thesis
proof (rule has_integral_spike_eq[symmetric])
show $\backslash x . x \in \Omega-N \Longrightarrow f x=g x$ using $N(3)$ by auto
show negligible N
unfolding negligible_def
proof (intro allI)
fix $a b::{ }^{\prime} a$
let $? F=\lambda x::^{\prime} a$. if $x \in$ cbox a b then indicator $N x$ else $0::$ real
have integrable lborel ? $F=$ integrable lborel ($\lambda x::{ }^{\prime} a$. $0::$ real $)$
using $n o t _N N(1)$ by (intro integrable_cong_AE) auto
moreover have (LINT $x \mid$ lborel. ? $F x)=\left(\right.$ LINT $x::^{\prime} a \mid$ lborel. $0::$ real $)$
using $n o t _N N(1)$ by (intro integral_cong_AE) auto
ultimately have (?F has_integral 0) UNIV
using has_integral_integral_real[of ?F] by simp
then show (indicator N has_integral ($0::$ real $)$) (cbox ab)
unfolding has_integral_restrict_UNIV .
qed
qed
qed

```
```

lemma nn_integral_has_integral_lebesgue:
fixes f :: 'a::euclidean_space }=>\mathrm{ real
assumes nonneg: \x.0 \leqfx and I:(f has_integral I) \Omega
shows integral }\mp@subsup{}{}{N}\mathrm{ lborel (}\lambdax\mathrm{ . indicator }\Omegax*fx)=
proof -
from I have (}\lambdax\mathrm{ . indicator }\Omegax\mp@subsup{*}{R}{}fx)\in\mathrm{ lebesgue }\mp@subsup{->}{M}{M}\mathrm{ borel
by (rule has_integral_implies_lebesgue_measurable)
then obtain f' ::' }a=>\mathrm{ real
where [measurable]: f' \in borel }\mp@subsup{->}{M}{M}\mathrm{ borel and eq: AE x in lborel. indicator }
x*fx= f'x
by (auto dest: completion_ex_borel_measurable_real)
from I have ((\lambdax.abs (indicator \Omega x*fx)) has_integral I) UNIV
using nonneg by (simp add: indicator_def if_distrib[of \lambdax.x*fy for y] cong:
if_cong)
also have ((\lambdax.abs (indicator \Omega x*fx)) has_integral I) UNIV \longleftrightarrow ((\lambdax.abs
(f'x)) has_integral I) UNIV
using eq by (intro has_integral_AE) auto
finally have integral }\mp@subsup{}{}{N}\mathrm{ lborel (}\lambdax\mathrm{ . abs (}\mp@subsup{f}{}{\prime}x)\mathrm{) =I
by (rule nn_integral_has_integral_lborel[rotated 2]) auto
also have integral N
\Omegax*fx))
using eq by (intro nn_integral_cong_AE) auto
finally show ?thesis
using nonneg by auto
qed
lemma has_integral_iff_nn_integral_lebesgue:
assumes f: \x. 0\leqfx
shows (f has_integral r) UNIV \longleftrightarrow(f\inlebesgue }\mp@subsup{->}{M}{M}\mathrm{ borel ^ integral }\mp@subsup{}{}{N}\mathrm{ lebesgue
f=r\wedgeO\leqr) (is ?I = ?N)
proof
assume ?I
have 0\leqr
using has_integral_nonneg[OF\?I\] f by auto

 then show ?N
 using nn_integral_has_integral_lebesgue[OF f <?I\rangle]
 has_integral_implies_lebesgue_measurable[OF \?I\]
 by (auto simp: nn_integral_completion)
 next
assume ?N
then obtain f' where f': f' \in borel }\mp@subsup{->}{M}{\prime}\mathrm{ borel AE x in lborel. f x = f'x
by (auto dest: completion_ex_borel_measurable_real)
moreover have (}\mp@subsup{\int}{}{+}\mathrm{ + x. ennreal |f' }x|\mathrm{ dlborel })=(\mp@subsup{\int}{}{+}\mathrm{ x. ennreal }|fx|\mathrm{ dlborel }
using f' by (intro nn_integral_cong_AE) auto
moreover have ((\lambdax. |f' x|) has_integral r) UNIV \longleftrightarrow ((\lambdax. |fx|) has_integral
r) UNIV
using f' by (intro has_integral_AE) auto
moreover note nn_integral_has_integral [of \lambdax. |f' x| r]\?N`

```
```

 ultimately show ?I
 using f by (auto simp: nn_integral_completion)
 qed
context
fixes f::'a::euclidean_space => 'b::euclidean_space
begin
lemma has_integral_integral_lborel:
assumes f: integrable lborel f
shows (f has_integral (integral L
proof -
have ((\lambdax. \sumb\inBasis. (fx • b) *R b) has_integral (}\sum\textrm{b}\in\mp@subsup{B}{B}{\prime
(\lambdax.fx\cdotb)*R b)) UNIV
using f by (intro has_integral_sum finite_Basis ballI has_integral_scaleR_left
has_integral_integral_real) auto
also have eq_f: (\lambdax. \sumb\inBasis. (fx | b) *R
by (simp add: fun_eq_iff euclidean_representation)
also have (\sumb\inBasis. integral L lborel (}\lambdax.fx\cdotb)\mp@subsup{*}{R}{L}b)=\mp@subsup{\mathrm{ integral }}{}{L}\mathrm{ lborel }
using f by (subst (2) eq-f[symmetric]) simp
finally show ?thesis .
qed
lemma integrable_on_lborel: integrable lborel f}\Longrightarrowf\mathrm{ integrable_on UNIV
using has_integral_integral_lborel by auto
lemma integral_lborel: integrable lborel f \Longrightarrow integral UNIV f = (\int x.f x \partiallborel)
using has_integral_integral_lborel by auto

```
end
context
begin
private lemma has_integral_integral_lebesgue_real:
    fixes \(f\) :: 'a::euclidean_space \(\Rightarrow\) real
    assumes \(f\) : integrable lebesgue \(f\)
    shows (f has_integral (integral \({ }^{L}\) lebesgue f)) UNIV
proof -
    obtain \(f^{\prime}\) where \(f^{\prime}: f^{\prime} \in\) borel \(\rightarrow_{M}\) borel AE \(x\) in lborel. \(f x=f^{\prime} x\)
        using completion_ex_borel_measurable_real[OF borel_measurable_integrable[OF
\(f]\) ] by auto
    moreover have \(\left(\int^{+} x\right.\). ennreal (norm \(\left.(f x)\right)\) dlborel \()=\left(\int^{+}\right.\)x. ennreal (norm
\(\left.\left(f^{\prime} x\right)\right)\) dlborel)
        using \(f^{\prime}\) by (intro nn_integral_cong_AE) auto
    ultimately have integrable lborel f \({ }^{\prime}\)
        using \(f\) by (auto simp: integrable_iff_bounded nn_integral_completion cong:
\(\left.n n \_i n t e g r a l \_c o n g_{-} A E\right)\)
    note has_integral_integral_real[OF this]
```

 moreover have integral \({ }^{L}\) lebesgue \(f=\) integral \(^{L}\) lebesgue \(f^{\prime}\)
 using \(f^{\prime} f\) by (intro integral_cong_AE) (auto intro: AE_completion measur-
 able_completion)
moreover have integral ${ }^{L}$ lebesgue $f^{\prime}=$ integral L lborel f^{\prime}
using f^{\prime} by (simp add: integral_completion)
moreover have (f^{\prime} has_integral integral ${ }^{L}$ lborel f^{\prime}) UNIV $\longleftrightarrow(f$ has_integral
integral ${ }^{L}$ lborel f^{\prime}) UNIV
using f^{\prime} by (intro has_integral_AE) auto
ultimately show ?thesis
by auto
qed
lemma has_integral_integral_lebesgue:
fixes f :: ' $a:$:euclidean_space \Rightarrow ' $b::$ euclidean_space
assumes f : integrable lebesgue f
shows (f has_integral (integral ${ }^{L}$ lebesgue f)) UNIV
proof -
have $\left(\left(\lambda x . \sum b \in\right.\right.$ Basis. $\left.(f x \cdot b) *_{R} b\right)$ has_integral $\left(\sum b \in\right.$ Basis. integral L lebesgue
$\left.\left.(\lambda x . f x \cdot b) *_{R} b\right)\right)$ UNIV
using f by (intro has_integral_sum finite_Basis ballI has_integral_scaleR_left
has_integral_integral_lebesgue_real) auto
also have eq- $f:\left(\lambda x . \sum b \in\right.$ Basis. $\left.(f x \cdot b) *_{R} b\right)=f$
by (simp add: fun_eq_iff euclidean_representation)
also have $\left(\sum b \in\right.$ Basis. integral L lebesgue $\left.(\lambda x . f x \cdot b) *_{R} b\right)=$ integral L lebesgue
f
using f by (subst (2) eq_f f symmetric $]$) simp
finally show ?thesis .
qed
lemma has_integral_integral_lebesgue_on:
fixes f :: 'a::euclidean_space \Rightarrow ' $b::$ euclidean_space
assumes integrable (lebesgue_on S) $f S \in$ sets lebesgue
shows (f has_integral (integral ${ }^{L}$ (lebesgue_on S) f)) S
proof -
let ?f $=\lambda x$. if $x \in S$ then $f x$ else 0
have integrable lebesgue (λx. indicat_real $S x *_{R} f x$)
using indicator_scaleR_eq_if [of $S_{-} f$] assms
by (metis (full_types) integrable_restrict_space sets.Int_space_eq2)
then have integrable lebesgue?f
using indicator_scale $R_{-} e q_{-}$if $\left[\right.$of $\left.S_{-} f\right]$ assms by auto
then have (?f has_integral (integral ${ }^{L}$ lebesgue ?f)) UNIV
by (rule has_integral_integral_lebesgue)
then have (f has_integral (integral ${ }^{L}$ lebesgue ?f)) S
using has_integral_restrict_UNIV by blast
moreover
have $S \cap$ space lebesgue \in sets lebesgue
by (simp add: assms)
then have $\left(\right.$ integral L lebesgue ?f) $=\left(\right.$ integral $\left.^{L}(\text { lebesgue_on } S)^{\text {l }}\right)$
by (simp add: integral_restrict_space indicator_scale R_{-}eq_if)

```
```

 ultimately show ?thesis
 by auto
 qed
lemma lebesgue_integral_eq_integral:
fixes f :: 'a::euclidean_space = 'b::euclidean_space
assumes integrable (lebesgue_on S) fS sets lebesgue
shows integral }\mp@subsup{}{}{L}\mathrm{ (lebesgue_on S) f}=\mathrm{ integral S f
by (metis has_integral_integral_lebesgue_on assms integral_unique)
lemma integrable_on_lebesgue:
fixes f :: 'a::euclidean_space = 'b::euclidean_space
shows integrable lebesgue f \Longrightarrowf integrable_on UNIV
using has_integral_integral_lebesgue by auto
lemma integral_lebesgue:
fixes f :: 'a::euclidean_space => 'b::euclidean_space
shows integrable lebesgue f}\Longrightarrow\mathrm{ integral UNIV f}=(\intx.fx\mathrm{ dlebesgue)
using has_integral_integral_lebesgue by auto
end

```

\subsection*{6.19.8 Absolute integrability (this is the same as Lebesgue integrability)}
```

translations
LBINT x. $f==$ CONST lebesgue_integral CONST lborel $(\lambda x . f)$

```

\section*{translations}
```

LBINT $x: A . f==$ CONST set_lebesgue_integral CONST lborel $A(\lambda x . f)$
lemma set_integral_reflect:
fixes S and $f::$ real $\Rightarrow^{\prime} a::\{$ banach, second_countable_topology $\}$
shows $($ LBINT $x: S . f x)=($ LBINT $x:\{x .-x \in S\} . f(-x))$
unfolding set_lebesgue_integral_def
by (subst lborel_integral_real_affine[where $c=-1$ and $t=0]$)
(auto intro!: Bochner_Integration.integral_cong split: split_indicator)
lemma borel_integrable_atLeastAtMost':
fixes $f::$ real \Rightarrow 'a::\{banach, second_countable_topology\}
assumes f : continuous_on $\{a . . b\} f$
shows set_integrable lborel $\{a . . b\} f$
unfolding set_integrable_def
by (intro borel_integrable_compact compact_Icc f)
lemma integral_FTC_atLeastAtMost:
fixes $f::$ real $\Rightarrow{ }^{\prime} a$:: euclidean_space
assumes $a \leq b$ and $F: \wedge x . a \leq x \Longrightarrow x \leq b \Longrightarrow$ (F has_vector_derivative $f x$) (at x within $\{a$

```
```

.. b})
and f:continuous_on {a .. b} f
shows integral L
proof -
let ?f = \lambdax. indicator {a.. b} x * R f x
have (?f has_integral (}\intx\mathrm{ . ?f x Dlborel)) UNIV
using borel_integrable_atLeastAtMost'[OF f]
unfolding set_integrable_def by (rule has_integral_integral_lborel)
moreover
have (f has_integral F b - Fa) {a .. b}
by (intro fundamental_theorem_of_calculus ballI assms) auto
then have (?f has_integral Fb-Fa) {a .. b}
by (subst has_integral_cong[where g=f]) auto
then have (?f has_integral Fb-F a) UNIV
by (intro has_integral_on_superset[where T=UNIV and S={a..b}]) auto
ultimately show integral L}\mathrm{ lborel ?f =Fb-Fa
by (rule has_integral_unique)
qed
lemma set_borel_integral_eq_integral:
fixes f :: 'a::euclidean_space = 'b::euclidean_space
assumes set_integrable lborel S f
shows fintegrable_on S LINT x :S l lborel. f x = integral S f
proof -
let ?f = \lambdax. indicator S x**R fx
have (?f has_integral LINT x : S | lborel. f x) UNIV
using assms has_integral_integral_lborel
unfolding set_integrable_def set_lebesgue_integral_def by blast
hence 1:(f has_integral (set_lebesgue_integral lborel S f))S
by (simp add: indicator_scaleR_eq_if)
thus f integrable_on S
by (auto simp add: integrable_on_def)
with 1 have (f has_integral (integral S f)) S
by (intro integrable_integral, auto simp add: integrable_on_def)
thus LINT x : S | lborel. f x = integral S f
by (intro has_integral_unique [OF 1])
qed
lemma has_integral_set_lebesgue:
fixes f :: 'a::euclidean_space }=>\mathrm{ 'b::euclidean_space
assumes f: set_integrable lebesgue S f
shows (f has_integral (LINT x:S|lebesgue. f x)) S
using has_integral_integral_lebesgue f
by (fastforce simp add: set_integrable_def set_lebesgue_integral_def indicator_def
if_distrib[of \lambdax. x * 盾 _] cong: if_cong)
lemma set_lebesgue_integral_eq_integral:
fixes f :: 'a::euclidean_space = 'b::euclidean_space
assumes f:set_integrable lebesgue S f

```
shows \(f\) integrable_on \(S\) LINT \(x: S \mid\) lebesgue. \(f x=\) integral \(S f\)
using has_integral_set_lebesgue[OF f] by (auto simp: integral_unique integrable_on_def)
lemma lmeasurable_iff_has_integral:
\(S \in\) lmeasurable \(\longleftrightarrow((\) indicator \(S)\) has_integral measure lebesgue \(S)\) UNIV
by (subst has_integral_iff_nn_integral_lebesgue)
( auto simp: ennreal_indicator emeasure_eq_measure2 borel_measurable_indicator_iff intro!: fmeasurableI)
```

abbreviation
absolutely_integrable_on :: ('a::euclidean_space = 'b::{banach, second_countable_topology})
"'a set }=>\mathrm{ bool
(infixr absolutely'_integrable'_on 46)
where f absolutely_integrable_on s \equiv set_integrable lebesgue s f
lemma absolutely_integrable_zero [simp]: (\lambdax. 0) absolutely_integrable_on S
by (simp add: set_integrable_def)
lemma absolutely_integrable_on_def:
fixes f :: 'a::euclidean_space = 'b::euclidean_space
shows f absolutely_integrable_on S \longleftrightarrow f integrable_on S ^ (\lambdax.norm (f x)
integrable_on S
proof safe
assume f: f absolutely_integrable_on S
then have nf: integrable lebesgue (}\lambdax.\operatorname{norm (indicator S x *R f x)
using integrable_norm set_integrable_def by blast
show f integrable_on S
by (rule set_lebesgue_integral_eq_integral[OF f])
have (}\lambdax\mathrm{ . norm (indicator S x * R f x)) = (}\lambdax\mathrm{ . if }x\inS\mathrm{ then norm (f x) else 0)
by auto
with integrable_on_lebesgue[OF nf] show (}\lambdax.\operatorname{norm}(fx))\mathrm{ integrable_on S
by (simp add: integrable_restrict_UNIV)
next
assume f: f integrable_on S and nf: (}\lambdax\mathrm{ . norm (}fx)\mathrm{) integrable_on S
show f absolutely_integrable_on S
unfolding set_integrable_def
proof (rule integrableI_bounded)
show (}\lambdax\mathrm{ . indicator S x * R}f=x)\in\mathrm{ borel_measurable lebesgue
using f has_integral_implies_lebesgue_measurable[of f - S] by (auto simp:
integrable_on_def)
show (\int+ x. ennreal (norm (indicator S x * R f x)) \partiallebesgue) < <
using nf nn_integral_has_integral_lebesgue[of \lambdax.norm (fx) - S]
by (auto simp: integrable_on_def nn_integral_completion)
qed
qed
lemma integrable_on_lebesgue_on:
fixes f :: 'a::euclidean_space => 'b::euclidean_space

```
```

 assumes \(f\) : integrable (lebesgue_on \(S\)) \(f\) and \(S: S \in\) sets lebesgue
 shows \(f\) integrable_on \(S\)
 proof -
have integrable lebesgue (λx. indicator $S x *_{R} f x$)
using S f inf_top.comm_neutral integrable_restrict_space by blast
then show ?thesis
using absolutely_integrable_on_def set_integrable_def by blast
qed
lemma absolutely_integrable_imp_integrable:
assumes f absolutely_integrable_on $S S \in$ sets lebesgue
shows integrable (lebesgue_on S) f
by (meson assms integrable_restrict_space set_integrable_def sets.Int sets.top)
lemma absolutely_integrable_on_null [intro]:
fixes f :: 'a::euclidean_space \Rightarrow 'b::euclidean_space
shows content (cbox ab)=0 \Longrightarrow absolutely_integrable_on (cbox ab)
by (auto simp: absolutely_integrable_on_def)
lemma absolutely_integrable_on_open_interval:
fixes f :: ' a :: euclidean_space \Rightarrow ' b :: euclidean_space
shows f absolutely_integrable_on box a $b \longleftrightarrow$
f absolutely_integrable_on cbox a b
by (auto simp: integrable_on_open_interval absolutely_integrable_on_def)
lemma absolutely_integrable_restrict_UNIV:
(λx. if $x \in S$ then $f x$ else 0) absolutely_integrable_on UNIV $\longleftrightarrow f$ absolutely_integrable_on
S
unfolding set_integrable_def
by (intro arg_cong2[where $f=$ integrable $]$) auto
lemma absolutely_integrable_onI:
fixes f :: 'a::euclidean_space \Rightarrow 'b::euclidean_space
shows f integrable_on $S \Longrightarrow(\lambda x$. norm $(f x)$) integrable_on $S \Longrightarrow f$ abso-
lutely_integrable_on S
unfolding absolutely_integrable_on_def by auto
lemma nonnegative_absolutely_integrable_1:
fixes $f::$ ' a :: euclidean_space \Rightarrow real
assumes $f: f$ integrable_on A and $\bigwedge x . x \in A \Longrightarrow 0 \leq f x$
shows f absolutely_integrable_on A
by (rule absolutely_integrable_onI [OF f]) (use assms in ssimp add: integrable_eq〉)
lemma absolutely_integrable_on_iff_nonneg:
fixes $f::$ ' a :: euclidean_space \Rightarrow real
assumes $\bigwedge x . x \in S \Longrightarrow 0 \leq f x$ shows f absolutely_integrable_on $S \longleftrightarrow f$
integrable_on S
proof -
\{ assume f integrable_on S

```
```

 then have (}\lambdax\mathrm{ . if }x\inS\mathrm{ then f x else 0) integrable_on UNIV
 by (simp add: integrable_restrict_UNIV)
 then have (}\lambdax\mathrm{ . if }x\inS\mathrm{ then f x else 0) absolutely_integrable_on UNIV
 using <f integrable_on S〉 absolutely_integrable_restrict_UNIV assms nonnega-
 tive_absolutely_integrable_1 by blast
then have f absolutely_integrable_on S
using absolutely_integrable_restrict_UNIV by blast
}
then show ?thesis
unfolding absolutely_integrable_on_def by auto
qed
lemma absolutely_integrable_on_scaleR_iff:
fixes f ::'a::euclidean_space = 'b::euclidean_space
shows
(\lambdax.c**Rfx) absolutely_integrable_on S \longleftrightarrow
c=0\vee f absolutely_integrable_on S
proof (cases c=0)
case False
then show ?thesis
unfolding absolutely_integrable_on_def
by (simp add: norm_mult)
qed auto
lemma absolutely_integrable_spike:
fixes f :: 'a::euclidean_space = 'b::euclidean_space
assumes f absolutely_integrable_on T and S: negligible S \x.x 隹 T S C g
x=fx
shows g absolutely_integrable_on T
using assms integrable_spike
unfolding absolutely_integrable_on_def by metis
lemma absolutely_integrable_negligible:
fixes f :: 'a::euclidean_space = 'b::euclidean_space
assumes negligible S
shows f absolutely_integrable_on S
using assms by (simp add: absolutely_integrable_on_def integrable_negligible)
lemma absolutely_integrable_spike_eq:
fixes f :: 'a::euclidean_space }=>\mathrm{ 'b::euclidean_space
assumes negligible }S\bigwedgex.x\inT-S\Longrightarrowgx=f
shows (f absolutely_integrable_on T \longleftrightarrowg absolutely_integrable_on T)
using assms by (blast intro: absolutely_integrable_spike sym)
lemma absolutely_integrable_spike_set_eq:
fixes }f\mathrm{ :: 'a::euclidean_space = 'b::euclidean_space
assumes negligible {x\inS-T.fx\not=0} negligible {x\inT - S.fx\not=0}
shows (f absolutely_integrable_on S }\longleftrightarrow\mathrm{ fabsolutely_integrable_on T)
proof -

```
```

 have (}\lambdax\mathrm{ . if }x\inS\mathrm{ then f x else 0) absolutely_integrable_on UNIV }
 (}\lambdax\mathrm{ . if }x\inT\mathrm{ then f x else 0) absolutely_integrable_on UNIV
 proof (rule absolutely_integrable_spike_eq)
 show negligible ({x\inS-T.fx\not=0}\cup{x\inT-S.fx\not=0})
 by (rule negligible_Un [OF assms])
 qed auto
 with absolutely_integrable_restrict_UNIV show ?thesis
 by blast
 qed
lemma absolutely_integrable_spike_set:
fixes }f::' 'a::euclidean_space = 'b::euclidean_space

```

```

0} negligible {x\inT-S.fx\not=0}
shows f absolutely_integrable_on T
using absolutely_integrable_spike_set_eq f neg by blast
lemma absolutely_integrable_reflect[simp]:
fixes f :: 'a::euclidean_space = 'b::euclidean_space
shows (\lambdax.f(-x)) absolutely_integrable_on cbox (-b) (-a)\longleftrightarrow \longleftrightarrow absolutely_integrable_on
cbox a b
unfolding absolutely_integrable_on_def
by (metis (mono_tags, lifting) integrable_eq integrable_reflect)
lemma absolutely_integrable_reflect_real[simp]:
fixes }f:: real = 'b::euclidean_space
shows (}\lambdax.f(-x))\mathrm{ absolutely_integrable_on {-b .. -a} }\longleftrightarrowf\mathrm{ absolutely_integrable_on
{a..b::real}
unfolding box_real[symmetric] by (rule absolutely_integrable_reflect)
lemma absolutely_integrable_on_subcbox:
fixes f :: 'a::euclidean_space }=>\mathrm{ 'b::euclidean_space
shows \llbracketf absolutely_integrable_on S; cbox a b\subseteqS\rrbracket\Longrightarrowf absolutely_integrable_on
cbox a b
by (meson absolutely_integrable_on_def integrable_on_subcbox)
lemma absolutely_integrable_on_subinterval:
fixes f :: real = 'b::euclidean_space
shows \llbracketf absolutely_integrable_on S;{a..b}\subseteqS\rrbracket\Longrightarrowfabsolutely_integrable_on
{a..b}
using absolutely_integrable_on_subcbox by fastforce
lemma integrable_subinterval:
fixes f :: real \# 'a::euclidean_space
assumes integrable (lebesgue_on {a..b})f
and {c..d}\subseteq{a..b}
shows integrable (lebesgue_on {c..d}) f
proof (rule absolutely_integrable_imp_integrable)
show f absolutely_integrable_on {c..d}

```
```

proof -
have f integrable_on {c..d}
using assms integrable_on_lebesgue_on integrable_on_subinterval by fastforce
moreover have (}\lambdax.norm (fx)) integrable_on {c..d
proof (rule integrable_on_subinterval)
show (}\lambdax.norm (fx)) integrable_on {a..b
by (simp add: assms integrable_on_lebesgue_on)
qed (use assms in auto)
ultimately show ?thesis
by (auto simp:absolutely_integrable_on_def)
qed
qed auto
lemma indefinite_integral_continuous_real:
fixes f :: real => 'a::euclidean_space
assumes integrable (lebesgue_on {a..b}) f
shows continuous_on {a..b} (\lambdax. integral }\mp@subsup{}{}{L}\mathrm{ (lebesgue_on {a..x})f)
proof -
have f integrable_on {a..b}
by (simp add: assms integrable_on_lebesgue_on)
then have continuous_on {a..b} (\lambdax. integral {a..x} f)
using indefinite_integral_continuous_1 by blast
moreover have integral }\mp@subsup{}{}{L}\mathrm{ (lebesgue_on {a..x})f= integral {a..x} f if a}\leqx
\leqb for }
proof -
have {a...x}\subseteq{a..b}
using that by auto
then have integrable (lebesgue_on {a..x})f
using integrable_subinterval assms by blast
then show integral L
by (simp add:lebesgue_integral_eq_integral)
qed
ultimately show ?thesis
by (metis (no_types, lifting) atLeastAtMost_iff continuous_on_cong)
qed
lemmalmeasurable_iff_integrable_on:S Slmeasurable \longleftrightarrow(}\x.1::real) integrable_on
S
by (subst absolutely_integrable_on_iff_nonneg[symmetric])
(simp_all add: lmeasurable_iff_integrable set_integrable_def)
lemma lmeasure_integral_UNIV:S \inlmeasurable \Longrightarrow measure lebesgue S = inte-
gral UNIV (indicator S)
by (simp add:lmeasurable_iff_has_integral integral_unique)
lemma lmeasure_integral: S lmeasurable \Longrightarrow measure lebesgue S = integral S
(\lambdax. 1::real)
by (fastforce simp add: lmeasure_integral_UNIV indicator_def[abs_def] lmeasur-
able_iff_integrable_on)

```
```

lemma integrable_on_const: $S \in$ lmeasurable $\Longrightarrow(\lambda x . c)$ integrable_on S
unfolding lmeasurable_iff_integrable
by (metis (mono_tags, lifting) integrable_eq integrable_on_scaleR_left lmeasur-
able_iff_integrable lmeasurable_iff_integrable_on scaleR_one)
lemma integral_indicator:
assumes $(S \cap T) \in$ lmeasurable
shows integral T (indicator S) $=$ measure lebesgue $(S \cap T)$
proof -
have integral UNIV (indicator $(S \cap T)$) $=$ integral UNIV (λ a. if $a \in S \cap T$
then 1 ::real else 0)
by (meson indicator_def)
moreover have (indicator ($S \cap T$) has_integral measure lebesgue $(S \cap T)$)
UNIV
using assms by (simp add: lmeasurable_iff_has_integral)
ultimately have integral $\operatorname{UNIV}(\lambda x$. if $x \in S \cap T$ then 1 else 0$)=$ measure
lebesgue $(S \cap T)$
by (metis (no_types) integral_unique)
moreover have integral $T(\lambda a$. if $a \in S$ then $1::$ real else 0$)=\operatorname{integral}(S \cap T$
$\cap \operatorname{UNIV})(\lambda a .1)$
by (simp add: Henstock_Kurzweil_Integration.integral_restrict_Int)
moreover have integral T (indicat_real $S)=$ integral $T(\lambda a$. if $a \in S$ then 1 else
0)
by (meson indicator_def)
ultimately show ?thesis
by (simp add: assms lmeasure_integral)
qed
lemma measurable_integrable:
fixes S :: 'a::euclidean_space set
shows $S \in$ lmeasurable \longleftrightarrow (indicat_real S) integrable_on UNIV
by (auto simp: lmeasurable_iff_integrable absolutely_integrable_on_iff_nonneg [symmetric]
set_integrable_def)
lemma integrable_on_indicator:
fixes S :: 'a::euclidean_space set
shows indicat_real S integrable_on $T \longleftrightarrow(S \cap T) \in$ lmeasurable
unfolding measurable_integrable
unfolding integrable_restrict_UNIV [of T, symmetric]
by (fastforce simp add: indicator_def elim: integrable_eq)

```

\section*{lemma}
```

assumes \mathcal{D} : \mathcal{D} division_of S
shows lmeasurable_division: $S \in$ lmeasurable (is ?l)
and content_division: $\left(\sum k \in \mathcal{D}\right.$. measure lebesgue $\left.k\right)=$ measure lebesgue S (is
? m)
proof -
$\{$ fix $d 1 d 2$ assume $*: d 1 \in \mathcal{D} d 2 \in \mathcal{D} d 1 \neq d 2$

```
```

 then obtain abcd where d1 = cbox a b d2 = cbox c d
 using division_ofD(4)[OF D] by blast
 with division_ofD(5)[OF \mathcal{D *]}
 have d1 \in sets lborel d2 \in sets lborel d1 \cap d2 \subseteq(cbox a b - box a b) \cup (cbox
 c d - box c d)
by auto
moreover have (cbox a b - box a b) \cup (cbox c d - box c d) \in null_sets lborel
by (intro null_sets.Un null_sets_cbox_Diff_box)
ultimately have d1 \cap d2 \in null_sets lborel
by (blast intro: null_sets_subset) }
then show ?l ?m
unfolding division_ofD(6)[OF \mathcal{D},\mathrm{ symmetric }]
using division_ofD (1,4)[OF \mathcal{D}]
by (auto intro!: measure_Union_AE[symmetric] simp: completion.AE_iff_null_sets
Int_def[symmetric] pairwise_def null_sets_def)
qed
lemma has_measure_limit:
assumes S\inlmeasurable e >0
obtains B where B>0
\ab. ball 0 B\subseteq cbox a b \Longrightarrow |measure lebesgue (S\cap cbox a b) - measure
lebesgue S|<e
using assms unfolding lmeasurable_iff_has_integral has_integral_alt'
by (force simp: integral_indicator integrable_on_indicator)
lemma lmeasurable_iff_indicator_has_integral:
fixes S :: 'a::euclidean_space set
shows S \inlmeasurable ^m= measure lebesgue S \longleftrightarrow (indicat_real S has_integral
m) UNIV
by (metis has_integral_iff lmeasurable_iff_has_integral measurable_integrable)
lemma has_measure_limit_iff:
fixes f :: 'n::euclidean_space => 'a::banach
shows }S\in\mathrm{ lmeasurable }\wedgem=\mathrm{ measure lebesgue }S
(}\foralle>0.\existsB>0.\forallab. ball 0 B\subseteqcbox ab
(S\capcbox a b) \in lmeasurable ^ |measure lebesgue (S\capcbox a b) - m|
<e) (is ?lhs = ?rhs)
proof
assume?lhs then show ?rhs
by (meson has_measure_limit fmeasurable.Int lmeasurable_cbox)
next
assume RHS [rule_format]: ?rhs
then show?lhs
apply (simp add: lmeasurable_iff_indicator_has_integral has_integral' [where
i=m])
by (metis (full_types) integral_indicator integrable_integral integrable_on_indicator)
qed

```

\subsection*{6.19.9 Applications to Negligibility}
```

lemma negligible_iff_null_sets: negligible $S \longleftrightarrow S \in$ null_sets lebesgue
proof
assume negligible S
then have (indicator S has_integral ($0::$ real)) UNIV
by (auto simp: negligible)
then show $S \in$ null_sets lebesgue
by (subst (asm) has_integral_iff_nn_integral_lebesgue)
(auto simp: borel_measurable_indicator_iff nn_integral_0_iff_AE AE_iff_null_sets
indicator_eq_0_iff)
next
assume $S: S \in$ null_sets lebesgue
show negligible S
unfolding negligible_def
proof (safe intro!: has_integral_iff_nn_integral_lebesgue[THEN iffD2]
has_integral_restrict_UNIV[where $s=$ cbox _ _, THEN iffD1])
fix $a b$
show $(\lambda x$. if $x \in$ cbox a b then indicator $S x$ else 0$) \in$ lebesgue \rightarrow_{M} borel
using S by (auto intro!: measurable_If)
then show ($\int{ }^{+}$x. ennreal (if $x \in$ cbox a b then indicator $S x$ else 0) dlebesgue)
$=$ ennreal 0
using $S[T H E N$ AE_not_in] by (auto intro!: nn_integral_0_iff_AE[THEN iffD2])
qed auto
qed

```
corollary eventually_ae_filter_negligible:
    eventually \(P(\) ae_filter lebesgue \() \longleftrightarrow(\exists N\). negligible \(N \wedge\{x . \neg P x\} \subseteq N)\)
    by (auto simp: completion.AE_iff_null_sets negligible_iff_null_sets null_sets_completion_subset)
lemma starlike_negligible:
    assumes closed \(S\)
        and eq1: \(\bigwedge c x .\left(a+c *_{R} x\right) \in S \Longrightarrow 0 \leq c \Longrightarrow a+x \in S \Longrightarrow c=1\)
        shows negligible \(S\)
proof -
    have negligible \(((+)(-a)\) ' \(S)\)
    proof (subst negligible_on_intervals, intro allI)
        fix \(u v\)
        show negligible \(((+)(-a) ' S \cap\) cbox \(u v)\)
            using 〈closed \(S\) 〉eq1 by (auto simp add: negligible_iff_null_sets algebra_simps
            intro!: closed_translation_subtract starlike_negligible_compact cong: image_cong_simp)
            (metis add_diff_eq diff_add_cancel scale_right_diff_distrib)
    qed
    then show ?thesis
        by (rule negligible_translation_rev)
qed
lemma starlike_negligible_strong:
    assumes closed \(S\)
        and star: \(\bigwedge c x . \llbracket 0 \leq c ; c<1 ; a+x \in S \rrbracket \Longrightarrow a+c *_{R} x \notin S\)
```

 shows negligible \(S\)
 proof -
show ?thesis
proof (rule starlike_negligible [OF〈closed S〉, of a])
fix $c x$
assume $c x: a+c *_{R} x \in S 0 \leq c a+x \in S$
with star have $\neg(c<1)$ by auto
moreover have $\neg(c>1)$
using star [of $\left.1 / c c *_{R} x\right] c x$ by force
ultimately show $c=1$ by arith
qed
qed
lemma negligible_hyperplane:
assumes $a \neq 0 \vee b \neq 0$ shows negligible $\{x . a \cdot x=b\}$
proof -
obtain x where $x: a \cdot x \neq b$
using assms by (metis euclidean_all_zero_iff inner_zero_right)
moreover have $c=1$ if $a \cdot\left(x+c *_{R} w\right)=b a \cdot(x+w)=b$ for $c w$
using that
by (metis (no_types, hide_lams) add_diff_eq diff_0 diff_minus_eq_add inner_diff_right
inner_scaleR_right mult_cancel_right2 right_minus_eq x)
ultimately
show ?thesis
using starlike_negligible [OF closed_hyperplane, of x] by simp
qed
lemma negligible_lowdim:
fixes S :: ' N :: euclidean_space set
assumes $\operatorname{dim} S<\operatorname{DIM}\left({ }^{\prime} N\right)$
shows negligible S
proof -
obtain a where $a \neq 0$ and $a: \operatorname{span} S \subseteq\{x \cdot a \cdot x=0\}$
using lowdim_subset_hyperplane [OF assms] by blast
have negligible (span S)
using $\langle a \neq 0\rangle$ a negligible_hyperplane by (blast intro: negligible_subset)
then show ?thesis
using span_base by (blast intro: negligible_subset)
qed
proposition negligible_convex_frontier:
fixes $S::^{\prime} N$:: euclidean_space set
assumes convex S
shows negligible(frontier S)
proof -
have $n f$: negligible (frontier S) if convex $S 0 \in S$ for $S::{ }^{\prime} N$ set
proof -
obtain B where $B \subseteq S$ and indB: independent B
and spanB: $S \subseteq$ span B and cardB : card $B=\operatorname{dim} S$

```
```

 by (metis basis_exists)
 consider dim S<DIM('N)| dim S = DIM('N)
 using dim_subset_UNIV le_eq_less_or_eq by auto
 then show ?thesis
 proof cases
 case 1
 show ?thesis
 by (rule negligible_subset [of closure S])
 (simp_all add: frontier_def negligible_lowdim 1)
 next
 case 2
 obtain a where a\in interior (convex hull insert O B)
 proof (rule interior_simplex_nonempty [OF indB])
 show finite B
 by (simp add: indB independent_finite)
 show card B = DIM('N)
 by (simp add: cardB 2)
 qed
 then have a: a\in interior S
 by (metis }\langleB\subseteqS\rangle\langle0\inS\rangle\langleconvex S\rangle insert_absorb insert_subset interior_mono
 subset_hull)
show ?thesis
proof (rule starlike_negligible_strong [where a=a])
fix c::real and }
have eq: }a+c\mp@subsup{*}{R}{}x=(a+x)-(1-c)\mp@subsup{*}{R}{}((a+x)-a
by (simp add: algebra_simps)
assume 0 \leq c c<1 a+x\in frontier S
then show }a+c\mp@subsup{*}{R}{}x\not\in\mathrm{ frontier S
using eq mem_interior_closure_convex_shrink [OF 〈convex S> a,of_1-c]
unfolding frontier_def
by (metis Diff_iff add_diff_cancel_left' add_diff_eq diff_gt_0_iff_gt group_cancel.rule0
not_le)
qed auto
qed
qed
show ?thesis
proof (cases S={})
case True then show ?thesis by auto
next
case False
then obtain a where a\inS by auto
show ?thesis
using nf [of (}\lambdax.-a+x)'S
by (metis }\langlea\inS\rangle\mathrm{ add.left_inverse assms convex_translation_eq frontier_translation
image_eqI negligible_translation_rev)
qed
qed
corollary negligible_sphere: negligible (sphere a e)

```
using frontier_cball negligible_convex_frontier convex_cball by (blast intro: negligible_subset)
lemma non_negligible_UNIV [simp]: \(\neg\) negligible UNIV
unfolding negligible_iff_null_sets by (auto simp: null_sets_def)
lemma negligible_interval:
negligible \((\) cbox \(a b) \longleftrightarrow\) box a \(b=\{ \}\) negligible \((\) box a \(b) \longleftrightarrow\) box a \(b=\{ \}\)
by (auto simp: negligible_iff_null_sets null_sets_def prod_nonneg inner_diff_left
box_eq_empty
not_le emeasure_lborel_cbox_eq emeasure_lborel_box_eq intro: eq_refl antisym less_imp_le)
proposition open_not_negligible:
assumes open \(S S \neq\{ \}\)
shows \(\neg\) negligible \(S\)
proof
assume neg: negligible \(S\)
obtain \(a\) where \(a \in S\) using \(\langle S \neq\{ \}\rangle\) by blast
then obtain \(e\) where \(e>0\) cball a \(e \subseteq S\)
using «open \(S\) 〉open_contains_cball_eq by blast
let ? \(p=a-\left(e / D I M\left({ }^{\prime} a\right)\right) *_{R}\) One let ? \(q=a+\left(e / D I M\left({ }^{\prime} a\right)\right) *_{R}\) One
have cbox ? \(p\) ? \(q \subseteq\) cball a \(e\)
proof (clarsimp simp: mem_box dist_norm)
fix \(x\)
assume \(\forall i \in\) Basis. ? \(p \cdot i \leq x \cdot i \wedge x \cdot i \leq\) ? \(q \cdot i\)
then have ax: \(|(a-x) \cdot \bar{i}| \leq e /\) real DIM ('a) if \(i \in\) Basis for \(i\)
using that by (auto simp: algebra_simps)
have norm \((a-x) \leq\left(\sum i \in\right.\) Basis. \(\left.|(a-x) \cdot i|\right)\) by (rule norm_le_l1)
also have \(\ldots \leq \operatorname{DIM}\left({ }^{\prime} a\right) *\left(e / \operatorname{real} \operatorname{DIM}\left({ }^{\prime} a\right)\right)\)
by (intro sum_bounded_above ax)
also have \(\ldots=e\)
by simp
finally show norm \((a-x) \leq e\).
qed
then have negligible (cbox ?p ? q )
by (meson 〈cball a \(e \subseteq S\rangle\) neg negligible_subset)
with \(\langle e>0\rangle\) show False
by (simp add: negligible_interval box_eq_empty algebra_simps field_split_simps
mult_le_0_iff)
qed
lemma negligible_convex_interior:
convex \(S \Longrightarrow\) (negligible \(S \longleftrightarrow\) interior \(S=\{ \}\) )
by (metis Diff_empty closure_subset frontier_def interior_subset negligible_convex_frontier negligible_subset open_interior open_not_negligible)
lemma measure_eq_0_null_sets: \(S \in\) null_sets \(M \Longrightarrow\) measure \(M S=0\) by (auto simp: measure_def null_sets_def)
lemma negligible_imp_measure0: negligible \(S \Longrightarrow\) measure lebesgue \(S=0\)
by (simp add: measure_eq_0_null_sets negligible_iff_null_sets)
lemma negligible_iff_emeasure 0: \(S \in\) sets lebesgue \(\Longrightarrow\) (negligible \(S \longleftrightarrow\) emeasure lebesgue \(S=0\) )
by (auto simp: measure_eq_0_null_sets negligible_iff_null_sets)
lemma negligible_iff_measure0: \(S \in\) lmeasurable \(\Longrightarrow\) (negligible \(S \longleftrightarrow\) measure lebesgue \(S=0\) )
by (metis (full_types) completion.null_sets_outer negligible_iff_null_sets negligible_imp_measure0 order_refl)
lemma negligible_imp_sets: negligible \(S \Longrightarrow S \in\) sets lebesgue by (simp add: negligible_iff_null_sets null_setsD2)
lemma negligible_imp_measurable: negligible \(S \Longrightarrow S \in\) lmeasurable by (simp add: fmeasurableI_null_sets negligible_iff_null_sets)
lemma negligible_iff_measure: negligible \(S \longleftrightarrow S \in\) lmeasurable \(\wedge\) measure lebesgue \(S=0\)
by (fastforce simp: negligible_iff_measure0 negligible_imp_measurable dest: negligible_imp_measure0)
lemma negligible_outer:
negligible \(S \longleftrightarrow(\forall e>0 . \exists T . S \subseteq T \wedge T \in\) lmeasurable \(\wedge\) measure lebesgue \(T\) \(<e)\left(\right.\) is \(_{-}=\)? \(\left.r h s\right)\)
proof
assume negligible \(S\) then show ?rhs
by (metis negligible_iff_measure order_refl)
next
assume ?rhs then show negligible \(S\)
by (meson completion.null_sets_outer negligible_iff_null_sets)
qed
lemma negligible_outer_le:
negligible \(S \longleftrightarrow(\forall e>0 . \exists T . S \subseteq T \wedge T \in\) lmeasurable \(\wedge\) measure lebesgue \(T \leq e)\left(\right.\) is \(_{-}=? r\) rhs \()\)
proof
assume negligible \(S\) then show ?rhs
by (metis dual_order.strict_implies_order negligible_imp_measurable negligible_imp_measure0
order_refl)
next
assume ?rhs then show negligible \(S\)
by (metis le_less_trans negligible_outer field_lbound_gt_zero)
qed
lemma negligible_UNIV : negligible \(S \longleftrightarrow\) (indicat_real \(S\) has_integral 0) UNIV (is = ? \(r h s\) )
by (metis lmeasurable_iff_indicator_has_integral negligible_iff_measure)
lemma sets_negligible_symdiff:
\(\llbracket S \in\) sets lebesgue; negligible \(((S-T) \cup(T-S)) \rrbracket \Longrightarrow T \in\) sets lebesgue
by (metis Diff_Diff_Int Int_Diff_Un inf_commute negligible_Un_eq negligible_imp_sets sets.Diff sets.Un)
lemma lmeasurable_negligible_symdiff:
\(\llbracket S \in\) lmeasurable; negligible \(((S-T) \cup(T-S)) \rrbracket \Longrightarrow T \in\) lmeasurable
using integrable_spike_set_eq lmeasurable_iff_integrable_on by blast
lemma measure_Un3_negligible:
assumes meas: \(S \in\) lmeasurable \(T \in\) lmeasurable \(U \in\) lmeasurable
and neg: negligible \((S \cap T)\) negligible \((S \cap U)\) negligible \((T \cap U)\) and \(V: S \cup T\)
\(\cup U=V\)
shows measure lebesgue \(V=\) measure lebesgue \(S+\) measure lebesgue \(T+\) measure lebesgue \(U\)
proof -
have [simp]: measure lebesgue \((S \cap T)=0\)
using neg(1) negligible_imp_measure0 by blast
have \([\) simp \(]\) : measure lebesgue \((S \cap U \cup T \cap U)=0\)
using neg(2) neg(3) negligible_Un negligible_imp_measure0 by blast
have measure lebesgue \(V=\) measure lebesgue \((S \cup T \cup U)\)
using \(V\) by \(\operatorname{simp}\)
also have \(\ldots=\) measure lebesgue \(S+\) measure lebesgue \(T+\) measure lebesgue
\(U\)
by (simp add: measure_Un3 meas fmeasurable.Un Int_Un_distrib2)
finally show ?thesis.
qed
lemma measure_translate_add:
assumes meas: \(S \in\) lmeasurable \(T \in\) lmeasurable and \(U: S \cup\left((+) a^{\prime} T\right)=U\) and neg: negligible \(\left(S \cap\left((+) a^{\prime} T\right)\right)\)
shows measure lebesgue \(S+\) measure lebesgue \(T=\) measure lebesgue \(U\)
proof -
have [simp]: measure lebesgue \(\left(S \cap(+) a^{\prime} T\right)=0\)
using neg negligible_imp_measure0 by blast
have measure lebesgue \(\left(S \cup\left((+) a^{\prime} T\right)\right)=\) measure lebesgue \(S+\) measure lebesgue T
by (simp add: measure_Un3 meas measurable_translation measure_translation
fmeasurable.Un)
then show ?thesis using \(U\) by auto
qed
lemma measure_negligible_symdiff:
```

 assumes S: S\inlmeasurable
 and neg: negligible (S-T\cup(T-S))
 shows measure lebesgue T= measure lebesgue S
 proof -
have measure lebesgue (S -T) =0
using neg negligible_Un_eq negligible_imp_measure0 by blast
then show ?thesis
by (metis S Un_commute add.right_neutral lmeasurable_negligible_symdiff mea-
sure_Un2 neg negligible_Un_eq negligible_imp_measure0)
qed
lemma measure_closure:
assumes bounded S and neg: negligible (frontier S)
shows measure lebesgue (closure S) = measure lebesgue S
proof -
have measure lebesgue (frontier S)=0
by (metis neg negligible_imp_measure0)
then show ?thesis
by (metis assms lmeasurable_iff_integrable_on eq_iff_diff_eq_0 has_integral_interior
integrable_on_def integral_unique lmeasurable_interior lmeasure_integral measure_frontier)
qed
lemma measure_interior:
\llbracketbounded S; negligible(frontier S)\rrbracket\Longrightarrow measure lebesgue (interior S)= measure
lebesgue S
using measure_closure measure_frontier negligible_imp_measure0 by fastforce
lemma measurable_Jordan:
assumes bounded S and neg: negligible (frontier S)
shows S\inlmeasurable
proof -
have closure S\in lmeasurable
by (metis lmeasurable_closure \bounded S`) moreover have interior S\inlmeasurable by (simp add:lmeasurable_interior <bounded S`)
moreover have interior S\subseteqS
by (simp add: interior_subset)
ultimately show ?thesis
using assms by (metis (full_types) closure_subset completion.complete_sets_sandwich_fmeasurable
measure_closure measure_interior)
qed

```
lemma measurable_convex: \(\llbracket\) convex \(S\); bounded \(S \rrbracket \Longrightarrow S \in\) lmeasurable
    by (simp add: measurable_Jordan negligible_convex_frontier)
lemma content_cball_conv_ball: content \((\) cball cr) \(=\) content \((b a l l c r)\)
proof -

        by auto
```

 hence measure lebesgue (cball c r) = measure lebesgue (ball c r)
 using negligible_sphere[of cr r] by (intro measure_negligible_symdiff) simp_all
 thus ?thesis by simp
 qed

```

\subsection*{6.19.10 Negligibility of image under non-injective linear map}
lemma negligible_Union_nat:
assumes \(\bigwedge n:: n a t . n e g l i g i b l e(S n)\)
shows negligible \((\bigcup n . S n)\)
proof -
have negligible \((\bigcup m \leq k . S m)\) for \(k\) using assms by blast
then have 0: integral UNIV (indicat_real \((\bigcup m \leq k . S m))=0\)
and 1: (indicat_real \((\bigcup m \leq k\). \(S m\) ) ) integrable_on UNIV for \(k\)
by (auto simp: negligible has_integral_iff)
have 2: \(\wedge k x\). indicat_real \((\bigcup m \leq k . S m) x \leq(\) indicat_real \((\bigcup m \leq S u c k . S m)\)
x)
by (simp add: indicator_def)
have 3: \(\Lambda x\). \((\lambda k\). indicat_real \((\bigcup m \leq k . S m) x) \longrightarrow\) (indicat_real \((\bigcup n . S n)\) x)
by (force simp: indicator_def eventually_sequentially intro: tendsto_eventually)
have 4: bounded (range ( \(\lambda k\). integral UNIV (indicat_real \((\bigcup m \leq k . S m))\) ) by ( \(\operatorname{simp}\) add: 0)
have *: indicat_real \((\bigcup n . S n)\) integrable_on UNIV \(\wedge\)
\((\lambda k\). integral UNIV (indicat_real \((\bigcup m \leq k . S m))) \longrightarrow(\) integral UNIV
(indicat_real \((\bigcup n . S n))\) )
by (intro monotone_convergence_increasing 123 4)
then have integral UNIV (indicat_real \((\bigcup n . S n))=(0::\) real \()\)
using LIMSEQ_unique by (auto simp: 0)
then show ?thesis
using * by (simp add: negligible_UNIV has_integral_iff)
qed
lemma negligible_linear_singular_image:
fixes \(f\) :: ' \(n::\) euclidean_space \(\Rightarrow\) ' \(n\)
assumes linear \(f \neg \operatorname{inj} f\)
shows negligible ( \(f\) ' \(S\) )
proof -
obtain \(a\) where \(a \neq 0 \bigwedge S . f^{\prime} S \subseteq\{x . a \cdot x=0\}\)
using assms linear_singular_image_hyperplane by blast
then show negligible ( \(f\) ' \(S\) )
by (metis negligible_hyperplane negligible_subset)
qed
lemma measure_negligible_finite_Union:
assumes finite \(\mathcal{F}\)
and meas: \(\bigwedge S . S \in \mathcal{F} \Longrightarrow S \in\) lmeasurable
```

 and djointish: pairwise (}\lambdaST\mathrm{ . negligible (S คT)) F}\mathcal{F
 shows measure lebesgue (\bigcup\mathcal{F})=(\sumS\in\mathcal{F}.measure lebesgue S)
 using assms
 proof (induction)
case empty
then show ?case
by auto
next
case (insert S F F)
then have S\in lmeasurable \bigcup\mathcal{F}\inlmeasurable pairwise (}\lambdaST\mathrm{ T. negligible (S }
T))\mathcal{F}
by (simp_all add: fmeasurable.finite_Union insert.hyps(1) insert.prems(1) pair-
wise_insert subsetI)
then show ?case
proof (simp add: measure_Un3 insert)
have *: \bigwedgeT. T \in (\cap) S'\mathcal{F}\Longrightarrow negligible T
using insert by (force simp: pairwise_def)
have negligible(}S\cap\bigcup\mathcal{F}
unfolding Int_Union
by (rule negligible_Union) (simp_all add:* insert.hyps(1))
then show measure lebesgue (S\cap\bigcup\mathcal{F})=0
using negligible_imp_measure0 by blast
qed
qed
lemma measure_negligible_finite_Union_image:
assumes finite S
and meas: \x. x \inS\Longrightarrowfx\in lmeasurable
and djointish: pairwise (}\lambdaxy\mathrm{ y. negligible (fx }\capfy))
shows measure lebesgue }(\bigcup(f'S))=(\sumx\inS. measure lebesgue (f x)
proof -
have measure lebesgue }(\bigcup(f'S))=sum (measure lebesgue) (f'S
using assms by (auto simp: pairwise_mono pairwise_image intro: measure_negligible_finite_Union)
also have ... = sum (measure lebesgue ○f)S
using djointish [unfolded pairwise_def] by (metis inf.idem negligible_imp_measure0
sum.reindex_nontrivial [OF〈finite S>])
also have ... = (\sumx\inS. measure lebesgue (f x))
by simp
finally show ?thesis.
qed

```

\subsection*{6.19.11 Negligibility of a Lipschitz image of a negligible set}

The bound will be eliminated by a sort of onion argument
lemma locally_Lipschitz_negl_bounded:
fixes \(f\) :: ' \(M\) :: euclidean_space \(\Rightarrow\) ' \(N\) ::euclidean_space
assumes MleN: DIM \(\left({ }^{\prime} M\right) \leq \operatorname{DIM}\left({ }^{\prime} N\right) 0<B\) bounded \(S\) negligible \(S\)
and lips: \(\bigwedge x . x \in S\)
\(\Longrightarrow \exists T\). open \(T \wedge x \in T \wedge\)
```

 (\forally\inS\capT.norm(fy-fx)\leqB*\operatorname{norm}(y-x))
 shows negligible (f`}S unfolding negligible_iff_null_sets proof (clarsimp simp: completion.null_sets_outer) fix e::real assume 0<e have}S\in\mathrm{ lmeasurable using <negligible S> by (simp add: negligible_iff_null_sets fmeasurableI_null_sets) then have S sets lebesgue by blast have e22: 0 < e/2 / (2 * B * real DIM('M)) ` DIM('N)
using }\langle0<e\rangle\langle0<B\rangle\mathrm{ by (simp add: field_split_simps)
obtain T where open TS\subseteqT(T-S)\inlmeasurable
measure lebesgue (T - S)<e/2 / (2*B*DIM('M)) ^ DIM('N)
using sets_lebesgue_outer_open [OF <S \in sets lebesgue` e22] by (metis emeasure_eq_measure2 ennreal_leI linorder_not_le) then have T: measure lebesgue T \leqe/2 / (2 * B * DIM ('M)) ^ DIM ('N) using «negligible S` by (simp add: measure_Diff_null_set negligible_iff_null_sets)
have }\existsr.0<r\wedger\leq1/2
(x\inS\longrightarrow(\forally.norm(y-x)<r
\longrightarrowy\inT^(y\inS\longrightarrow\operatorname{norm}(fy-fx)\leqB*\operatorname{norm}(y-x))))
for }
proof (cases x }\inS\mathrm{)
case True
obtain U where open }Ux\inU\mathrm{ and }U:\bigwedgey.y\inS\capU\Longrightarrow\operatorname{norm}(fy-fx
\leqB*\operatorname{norm}(y-x)
using lips [OF \langlex \in S`] by auto
have }x\inT\cap
using }\langleS\subseteqT\rangle\langlex\inU\rangle\langlex\inS\rangle\mathrm{ by auto
then obtain }\varepsilon\mathrm{ where 0< \& ball x \&@T@U
by (metis <open T\rangle <open U\rangle openE open_Int)
then show ?thesis
by (rule_tac x=min (1/2) \varepsilon in exI) (simp add: U dist_norm norm_minus_commute
subset_iff)
next
case False
then show ?thesis
by (rule_tac x=1/4 in exI) auto
qed
then obtain R where R12: }\x.0<Rx\wedgeRx\leq1/
and RT: \x y.\llbracketx\inS; norm(y-x)<Rx\rrbracket\Longrightarrowy\inT
and RB:\xy.\llbracketx\inS;y\inS;norm(y-x)<Rx\rrbracket\Longrightarrow norm(fy
-fx)\leqB*\operatorname{norm}(y-x)
by metis+
then have gaugeR: gauge (}\lambdax\mathrm{ . ball }x(Rx)
by (simp add: gauge_def)
obtain c where c:S\subseteqcbox (-c**R One) (c**R One)box (-c**R One:: 'M)
(c**R One) }={{
proof -

```
```

 obtain B where B: \bigwedgex. x }\inS\Longrightarrow\mathrm{ norm x }\leq
 using <bounded S` bounded_iff by blast
 show ?thesis
 proof (rule_tac c=abs B+1 in that)
 show S\subseteqcbox (- (|B|+1) *R One) ((|B| + 1) *R One)
 using norm_bound_Basis_le Basis_le_norm
 by (fastforce simp: mem_box dest!: B intro: order_trans)
 show box (- (|B|+1)*R One) ((|B| + 1) *R One) }={
 by (simp add: box_eq_empty(1))
 qed
 qed
 obtain \mathcal{D}\mathrm{ where countable }\mathcal{D}
 and Dsub: \\mathcal{D}\subseteqcbox (-c**R One) (c**R One)
 and cbox: }\K.K\in\mathcal{D}\Longrightarrow\mathrm{ interior }K\not={}\wedge(\existscd.K=cbox c d
 and pw: pairwise (\lambdaA B. interior A\cap interior B ={}) D
 and Ksub: \bigwedgeK.K\in\mathcal{D \Longrightarrow\exists\existsx\inS\capK.K\subseteq(\lambdax. ball x (R x)) x}
 and exN: \bigwedgeuv. cbox uv\in\mathcal{D \Longrightarrow\existsn.}\foralli\inBasis.v\cdoti-u\cdoti=(2*c)/
 2^n
and S\subseteq\bigcup\mathcal{D}
using covering_lemma [OF c gaugeR] by force
have \existsuvz.K= cbox uv^ box uv\not={}\wedgez\inS\wedgez\incbox uv^
cbox uv\subseteqball z (Rz) if K}\in\mathcal{D}\mathrm{ for }
proof -
obtain }uv\mathrm{ where K=cbox uv
using }\langleK\in\mathcal{D}\rangle\mathrm{ cbox by blast
with that show ?thesis
by (metis Int_iff interior_cbox cbox Ksub)
qed
then obtain uf vf zf
where uvz: \bigwedgeK.K\in\mathcal{D}\Longrightarrow
K= cbox (ufK) (vf K) ^ box (uf K) (vf K) \not={} ^zf K\inS ^
zf K\incbox (ufK) (vf K) ^ cbox (ufK) (vf K)\subseteq ball (zf K) (R (zf
K))
by metis
define prj1 where prj1 \equiv\lambdax::'M. x • (SOME i. i \in Basis)
define fbx where fbx \equiv\lambdaD.cbox (f(zf D) - (B*DIM('M)* (prj1(vf D - uf
D))) *R One::'N)
(f(zf D) + (B*DIM('M)*\operatorname{prj1}(vf D -uf D))**
One)
have vu_pos: 0<prj1 (vf X - uf X) if X \in\mathcal{D for }X
using uvz [OF that] by (simp add: prj1_def box_ne_empty SOME_Basis in-
ner_diff_left)
have prj1_idem: prj1 (vf X - uf X) = (vf X -uf X) •i if X \in\mathcal{D}i\inBasis
for Xi
proof -
have cbox (uf X) (vf X)\in\mathcal{D}
using uvz \langleX \in\mathcal{D}\rangle\mathrm{ by auto}
with exN obtain n where \i. i G Basis \Longrightarrowvf X . i-ufX \ i=(2*c)/
2 ^n

```
by blast
then show ？thesis
by（simp add：\(\langle i \in\) Basis〉SOME＿Basis inner＿diff prj1＿def）
qed
have countbl：countable（ \(f b x\)＇ \(\mathcal{D}\) ）
using 〈countable \(\mathcal{D}\) 〉 by blast
have \(\left(\sum k \in f b x^{\prime} \mathcal{D}^{\prime}\right.\) ．measure lebesgue \(\left.k\right) \leq e / 2\) if \(\mathcal{D}^{\prime} \subseteq \mathcal{D}\) finite \(\mathcal{D}^{\prime}\) for \(\mathcal{D}^{\prime}\)
proof－
have BM＿ge0： \(0 \leq B *\left(D I M\left({ }^{\prime} M\right) * \operatorname{prj1}(v f X-u f X)\right)\) if \(X \in \mathcal{D}^{\prime}\) for \(X\)
using \(\langle 0<B\rangle\left\langle\mathcal{D}^{\prime} \subseteq \mathcal{D}\right\rangle\) that vu＿pos by fastforce
have \(\left\} \notin \mathcal{D}^{\prime}\right.\)
using cbox \(\left\langle\mathcal{D}^{\prime} \subseteq \mathcal{D}\right\rangle\) interior＿empty by blast
have \(\left(\sum k \in f b x^{\prime} \mathcal{D}^{\prime}\right.\) ．measure lebesgue \(\left.k\right) \leq\) sum（measure lebesgue ofbx） \(\mathcal{D}^{\prime}\) by（rule sum＿image＿le \(\left[O F\left\langle\right.\right.\) finite \(\left.\left.\mathcal{D}^{\prime}\right\rangle\right]\) ）（force simp：fbx＿def）
also have \(\ldots \leq\left(\sum X \in \mathcal{D}^{\prime} .(2 * B * D I M(' M))^{\wedge} \operatorname{DIM}\left({ }^{\prime} N\right) *\right.\) measure lebesgue
X）
proof（rule sum＿mono）
fix \(X\) assume \(X \in \mathcal{D}^{\prime}\)
then have \(X \in \mathcal{D}\) using \(\left\langle\mathcal{D}^{\prime} \subseteq \mathcal{D}\right\rangle\) by blast
then have ufvf：cbox（uf \(X\) ）（vf \(X)=X\)
using uvz by blast
have \(\operatorname{prj1}(v f X-u f X){ }^{\wedge} D I M\left({ }^{\prime} M\right)=\left(\prod i::^{\prime} M \in\right.\) Basis．prj1（vf \(X-u f\)
X））
by（rule prod＿constant［symmetric］）
also have \(\ldots=\left(\prod i \in\right.\) Basis．vf \(\left.X \cdot i-u f X \cdot i\right)\)
by（simp add：\(\langle X \in \mathcal{D}\rangle\) inner＿diff＿left prj1＿idem cong：prod．cong）
finally have prj1＿eq：prj1（vf \(X-u f X)^{\wedge} \operatorname{DIM}\left({ }^{\prime} M\right)=\left(\prod i \in\right.\) Basis．vf \(X \cdot\)
\(i-u f X \cdot i)\) ．
have uf \(X \in \operatorname{cbox}(u f X)(v f X)\) vf \(X \in \operatorname{cbox}(u f X)(v f X)\) using uvz \([O F\langle X \in \mathcal{D}\rangle]\) by（force simp：mem＿box）+
moreover have cbox \((u f X)(v f X) \subseteq\) ball \((z f X)(1 / 2)\) by（meson R12 order＿trans subset＿ball uvz \([O F\langle X \in \mathcal{D}\rangle])\)
ultimately have uf \(X \in\) ball \((z f X)(1 / 2)\) of \(X \in\) ball \((z f X)(1 / 2)\) by auto
then have dist \((v f X)(u f X) \leq 1\)
unfolding mem＿ball
by（metis dist＿commute dist＿triangle＿half＿l dual＿order．order＿iff＿strict）
then have 1：prj1 \((v f X-u f X) \leq 1\)
unfolding prj1＿def dist＿norm using Basis＿le＿norm SOME＿Basis order＿trans by fastforce
have \(0: 0 \leq \operatorname{prj} 1(\) vf \(X-u f X)\)
using \(\langle X \in \mathcal{D}\rangle\) prj1＿def vu＿pos by fastforce
have（measure lebesgue \(\circ f b x) X \leq(2 * B * D I M(' M)){ }^{\wedge} D I M(' N) *\) content （cbox（uf X）（vf X））
apply（simp add：fbx＿def content＿cbox＿cases algebra＿simps \(B M_{-} g e 0\left\langle X \in \mathcal{D}^{\prime}\right\rangle\)
\(\langle 0<B\rangle\) flip：prj1＿eq）
using MleN 01 uvz \(\langle X \in \mathcal{D}\rangle\)
by（fastforce simp add：box＿ne＿empty power＿decreasing）
also have \(\ldots=\left(2 * B * \operatorname{DIM}\left({ }^{\prime} M\right)\right)^{\wedge} \operatorname{DIM}\left({ }^{\prime} N\right) *\) measure lebesgue \(X\)
```

 by (subst (3) ufvf[symmetric]) simp
 finally show (measure lebesgue \(\circ \mathrm{fbx}) \mathrm{X} \leq\left(2 * B * D I M\left({ }^{\prime} M\right)\right)^{\wedge} D I M\left({ }^{\prime} N\right)\)
 * measure lebesgue X.
qed
also have $\ldots=\left(2 * B * D I M\left({ }^{\prime} M\right)\right)^{\wedge} \operatorname{DIM}\left({ }^{\prime} N\right) * \operatorname{sum}\left(\right.$ measure lebesgue) \mathcal{D}^{\prime}
by (simp add: sum_distrib_left)
also have $\ldots \leq e / 2$
proof -
have $\bigwedge K . K \in \mathcal{D}^{\prime} \Longrightarrow \exists a b . K=$ cbox $a b$
using cbox that by blast
then have div: \mathcal{D}^{\prime} division_of $\cup \mathcal{D}^{\prime}$
using pairwise_subset $\left[O F\right.$ pw $\left\langle\mathcal{D}^{\prime} \subseteq \mathcal{D}\right\rangle$] unfolding pairwise_def
by (force simp: 〈finite $\left.\mathcal{D}^{\prime}\right\rangle\left\langle\left\} \notin \mathcal{D}^{\prime}\right\rangle\right.$ division_of_def)
have le_meaT: measure lebesgue $\left(\bigcup^{\prime} \mathcal{D}^{\prime}\right) \leq$ measure lebesgue T
proof (rule measure_mono_fmeasurable)
show $\left(\bigcup \mathcal{D}^{\prime}\right) \in$ sets lebesgue
using div lmeasurable_division by auto
have $\cup \mathcal{D}^{\prime} \subseteq \bigcup \mathcal{D}$
using $\left\langle\mathcal{D}^{\prime} \subseteq \mathcal{D}\right\rangle$ by blast
also have $\ldots \subseteq T$
proof (clarify)
fix $x D$
assume $x \in D D \in \mathcal{D}$
show $x \in T$
using Ksub $[O F\langle D \in \mathcal{D}\rangle]$
by (metis $\langle x \in D$ 〉Int_iff dist_norm mem_ball norm_minus_commute
subsetD RT)
qed
finally show $\bigcup \mathcal{D}^{\prime} \subseteq T$.
show $T \in$ lmeasurable
using $\langle S \in$ lmeasurable $\langle S \subseteq T\rangle\langle T-S \in$ lmeasurable \langle fmeasurable_Diff_D
by blast
qed
have sum (measure lebesgue) $\mathcal{D}^{\prime}=$ sum content \mathcal{D}^{\prime}
using $\left\langle\mathcal{D}^{\prime} \subseteq \mathcal{D}\right\rangle$ cbox by (force intro: sum.cong)
then have $(2 * B * D I M(' M)){ }^{\wedge} D I M\left({ }^{\prime} N\right) * \operatorname{sum}$ (measure lebesgue) $\mathcal{D}^{\prime}=$
$(2 * B *$ real $D I M(' M)){ }^{\wedge} D I M(' N) *$ measure lebesgue $\left.(\cup \mathcal{D})^{\prime}\right)$
using content_division [OF div] by auto
also have $\ldots \leq(2 * B *$ real $D I M(' M)){ }^{\wedge} \operatorname{DIM}\left({ }^{\prime} N\right) *$ measure lebesgue T
using $\langle 0<B\rangle$
by (intro mult_left_mono [OF le_meaT]) (force simp add: algebra_simps)
also have $\ldots \leq e / 2$
using $T\langle 0<B\rangle$ by (simp add: field_simps)
finally show ?thesis.
qed
finally show ?thesis .
qed
then have $e 2$: sum (measure lebesgue) $\mathcal{G} \leq e / 2$ if $\mathcal{G} \subseteq f b x{ }^{\text {' }} \mathcal{D}$ finite \mathcal{G} for \mathcal{G}
by (metis finite_subset_image that)

```
```

show $\exists W \in$ lmeasurable. f ' $S \subseteq W \wedge$ measure lebesgue $W<e$
proof (intro bexI conjI)
have $\exists X \in \mathcal{D}$. $f y \in f b x X$ if $y \in S$ for y
proof -
obtain X where $y \in X X \in \mathcal{D}$
using $\langle S \subseteq \bigcup \mathcal{D}\rangle\langle y \in S\rangle$ by auto
then have $y: y \in \operatorname{ball}(z f X)(R(z f X))$
using uvz by fastforce
have conj_le_eq: $z-b \leq y \wedge y \leq z+b \longleftrightarrow a b s(y-z) \leq b$ for $z y b:: r e a l$
by auto
have yin: $y \in \operatorname{cbox}(u f X)(v f X)$ and zin: $(z f X) \in \operatorname{cbox}(u f X)(v f X)$
using uvz $\langle X \in \mathcal{D}\rangle\langle y \in X\rangle$ by auto
have norm $(y-z f X) \leq\left(\sum i \in\right.$ Basis. $\left.|(y-z f X) \cdot i|\right)$
by (rule norm_le_l1)
also have $\ldots \leq \operatorname{real} \operatorname{DIM}\left({ }^{\prime} M\right) * \operatorname{prj1}(v f X-u f X)$
proof (rule sum_bounded_above)
fix $j::^{\prime} M$ assume $j: j \in$ Basis
show $|(y-z f X) \cdot j| \leq \operatorname{prj1}(v f X-u f X)$
using yin zin j
by (fastforce simp add: mem_box prj1_idem $[O F\langle X \in \mathcal{D}\rangle j]$ inner_diff_left)
qed
finally have nole: norm $(y-z f X) \leq D I M(' M) * \operatorname{prj1}(v f X-u f X)$
by simp
have fle: $|f y \cdot i-f(z f X) \cdot i| \leq B * D I M\left({ }^{\prime} M\right) * \operatorname{prj1}(v f X-u f X)$ if $i \in$
Basis for i
proof -
have $|f y \cdot i-f(z f X) \cdot i|=|(f y-f(z f X)) \cdot i|$
by (simp add: algebra_simps)
also have $\ldots \leq \operatorname{norm}(f y-f(z f X))$
by (simp add: Basis_le_norm that)
also have $\ldots \leq B * \operatorname{norm}(y-z f X)$
by (metis uvz $R B\langle X \in \mathcal{D}\rangle$ dist_commute dist_norm mem_ball $\langle y \in S\rangle y)$
also have $\ldots \leq B *$ real $\operatorname{DIM}\left({ }^{\prime} M\right) * \operatorname{prj1}(v f X-u f X)$
using $\langle 0<B\rangle$ by (simp add: nole)
finally show ?thesis.
qed
show ?thesis
by (rule_tac $x=X$ in bexI)
(auto simp: fbx_def prj1_idem mem_box conj_le_eq inner_add inner_diff fle
$\langle X \in \mathcal{D}\rangle)$
qed
then show f ' $S \subseteq(\bigcup D \in \mathcal{D}$. fbx $D)$ by auto
next
have $1: \wedge D . D \in \mathcal{D} \Longrightarrow f b x D \in$ lmeasurable
by (auto simp: fbx_def)
have 2: $I^{\prime} \subseteq \mathcal{D} \Longrightarrow$ finite $I^{\prime} \Longrightarrow$ measure lebesgue $\left(\bigcup D \in I^{\prime} . f b x D\right) \leq e / 2$ for
I^{\prime}
by (rule order_trans[OF measure_Union_le e2]) (auto simp: fbx_def)
show $(\bigcup D \in \mathcal{D}$. fbx $D) \in$ lmeasurable

```
```

 by (intro fmeasurable_UN_bound[OF <countable D` 1 2])
 have measure lebesgue (}\cupD\in\mathcal{D}.fbx D)\leqe/
 by (intro measure_UN_bound[OF <countable \mathcal{D 1 2])}
 then show measure lebesgue (}\bigcupD\in\mathcal{D}.fbx D)<
 using <0<e〉 by linarith
 qed
 qed
proposition negligible_locally_Lipschitz_image:
fixes f :: 'M::euclidean_space = 'N
assumes MleN: DIM('M) \leqDIM('N) negligible S
and lips: }\x.x\in
\Longrightarrow\existsT B. open T^x\inT^
(\forally\inS\capT.norm(fy-fx)\leqB*\operatorname{norm}(y-x))
shows negligible (f`}S
proof -
let ?S = \lambdan. ({x\inS. norm x \leq n^
(\existsT. open T ^ x \inT^
(\forally\inS\capT.norm (fy-fx)\leq(real n + 1)* norm (y

- x)))})
have negfn: f`?S n \in null_sets lebesgue for n::nat
unfolding negligible_iff_null_sets[symmetric]
apply (rule_tac B = real n + 1 in locally_Lipschitz_negl_bounded)
by (auto simp:MleN bounded_iff intro: negligible_subset [OF <negligible S\])

have S=(\bigcupn. ?S n)
proof (intro set_eqI iffI)
fix x assume }x\in
with lips obtain TB where T: open T x 僤
and B:\bigwedgey.y\inS\capT\Longrightarrownorm(fy-fx)\leqB*\operatorname{norm}(y
- x)
by metis+
have no: norm (fy-fx)\leq(nat\lceilmax B (norm x)\rceil + 1)* norm (y-x) if
y}\inS\capT\mathrm{ for }
proof -
have B*\operatorname{norm}(y-x)\leq(nat\lceilmax B (norm x)\rceil+1)* norm (y-x)
by (meson max.cobounded1 mult_right_mono nat_ceiling_le_eq nat_le_iff_add
norm_ge_zero order_trans)
then show ?thesis
using B order_trans that by blast
qed
have norm x \leq real (nat \lceilmax B(norm x)\rceil)
by linarith
then have }x\in?S(\mathrm{ nat (ceiling (max B (norm x))))
using T no by (force simp: <x \inS` algebra_simps)
then show }x\in(\bigcupn\mathrm{ . ?S n) by force
qed auto
then show ?thesis
by (rule ssubst) (auto simp: image_Union negligible_iff_null_sets intro: negfn)
qed

```
```

corollary negligible_differentiable_image_negligible:
fixes f :: ' M ::euclidean_space \Rightarrow ' N ::euclidean_space
assumes MleN: DIM (' M) $\leq \operatorname{DIM}\left({ }^{\prime} N\right)$ negligible S
and diff_f: f differentiable_on S
shows negligible (f ' S)
proof -
have $\exists T$. open $T \wedge x \in T \wedge(\forall y \in S \cap T$. $\operatorname{norm}(f y-f x) \leq B * \operatorname{norm}(y$
$-x)$)
if $x \in S$ for x
proof -
obtain f^{\prime} where linear f^{\prime}
and $f^{\prime}: \bigwedge e . e>0 \Longrightarrow$
$\exists d>0 . \forall y \in S . \operatorname{norm}(y-x)<d \longrightarrow$
$\operatorname{norm}\left(f y-f x-f^{\prime}(y-x)\right) \leq e * \operatorname{norm}(y-x)$
using diff_f $\langle x \in S\rangle$
by (auto simp: linear_linear differentiable_on_def differentiable_def has_derivative_within_alt)
obtain B where $B>0$ and $B: \forall x$. norm $\left(f^{\prime} x\right) \leq B * \operatorname{norm} x$
using linear_bounded_pos 〈linear f^{\prime} ' by blast
obtain d where $d>0$
and $d: \bigwedge y . \llbracket y \in S ;$ norm $(y-x)<d \rrbracket \Longrightarrow$
norm $\left(f y-f x-f^{\prime}(y-x)\right) \leq \operatorname{norm}(y-x)$
using $f^{\prime}[$ of 1] by (force simp:)
show ?thesis
proof (intro exI conjI ballI)
show norm $(f y-f x) \leq(B+1) * \operatorname{norm}(y-x)$
if $y \in S \cap$ ball $x d$ for y
proof -
have norm $(f y-f x)-B * \operatorname{norm}(y-x) \leq \operatorname{norm}(f y-f x)-$ norm
$\left(f^{\prime}(y-x)\right)$
by (simp add: B)
also have $\ldots \leq \operatorname{norm}\left(f y-f x-f^{\prime}(y-x)\right)$
by (rule norm_triangle_ineq2)
also have $\ldots \leq \operatorname{norm}(y-x)$
by (metis IntE d dist_norm mem_ball norm_minus_commute that)
finally show ?thesis
by (simp add: algebra_simps)
qed
qed (use $\langle d>0\rangle$ in auto)
qed
with negligible_locally_Lipschitz_image assms show ?thesis by metis
qed
corollary negligible_differentiable_image_lowdim:
fixes f :: ' M ::euclidean_space \Rightarrow ' N ::euclidean_space
assumes MlessN: DIM ('M) < DIM ('N) and diff_f: f differentiable_on S
shows negligible (f ' S)
proof -
have $x \leq D I M(' M) \Longrightarrow x \leq D I M(' N)$ for x

```
```

 using Mless \(N\) by linarith
 obtain lift \(::{ }^{\prime} M *\) real \(\Rightarrow{ }^{\prime} N\) and drop \(:: ~ ' N \Rightarrow ' M *\) real and \(j:: ~ ' N\)
 where linear lift linear drop and dropl \([\) simp \(]: \bigwedge z\). drop \((\) lift \(z)=z\)
 and \(j \in\) Basis and \(j: \bigwedge x\). lift \((x, 0) \cdot j=0\)
 using lowerdim_embeddings [OF MlessN] by metis
 have negligible \(((\lambda x\). lift \((x, 0))\) ' \(S)\)
 proof -
 have negligible \(\{x . x \cdot j=0\}\)
 by (metis \(\langle j \in\) Basis negligible_standard_hyperplane)
 moreover have (\(\lambda m\). lift \((m, 0)\))' \(S \subseteq\{n . n \cdot j=0\}\)
 using \(j\) by force
 ultimately show ?thesis
 using negligible_subset by auto
 qed
 moreover
 have \(f \circ\) fst \(\circ\) drop differentiable_on \((\lambda x\). lift \((x, 0))\) ' \(S\)
 using diff_f
 apply (clarsimp simp add: differentiable_on_def)
 apply (intro differentiable_chain_within linear_imp_differentiable [OF <linear
 $d r o p\rangle]$
linear_imp_differentiable [OF linear_fst])
apply (force simp: image_comp o_def)
done
moreover
have $f=f \circ f$ st \circ drop $\circ(\lambda x$. lift $(x, 0))$
by (simp add: o_def)
ultimately show ?thesis
by (metis (no_types) image_comp negligible_differentiable_image_negligible or-
der_refl)
qed

```

\subsection*{6.19.12 Measurability of countable unions and intersections of various kinds.}

\section*{lemma}
assumes \(S: \bigwedge n . S n \in\) lmeasurable and leB: \(\bigwedge n\). measure lebesgue \((S n) \leq B\) and nest: \(\bigwedge n . S n \subseteq S(\) Suc \(n)\)
shows measurable_nested_Union: \((\bigcup n . S n) \in\) lmeasurable
and measure_nested_Union: \((\lambda n\). measure lebesgue \((S n)) \longrightarrow\) measure lebesgue
( \(\bigcup n . S n\) ) (is ?Lim)
proof -
have indicat_real \((\bigcup(\) range \(S))\) integrable_on UNIV \(\wedge\)
( \(\lambda n\). integral UNIV (indicat_real \((S n))\) )
\(\longrightarrow\) integral UNIV (indicat_real \((\bigcup\) (range \(S))\) )
proof (rule monotone_convergence_increasing)
show \(\wedge n\). (indicat_real \((S n)\) ) integrable_on UNIV
using \(S\) measurable_integrable by blast
show \(\bigwedge n x::^{\prime} a\). indicat_real \((S n) x \leq(\) indicat_real \((S(S u c ~ n)) x)\)
```

 by (simp add: indicator_leI nest rev_subsetD)
 have \(\bigwedge x .(\exists n . x \in S n) \longrightarrow\left(\forall_{F} n\right.\) in sequentially. \(\left.x \in S n\right)\)
 by (metis eventually_sequentiallyI lift_Suc_mono_le nest subsetCE)
 then
 show \(\Lambda x\). \((\lambda n\). indicat_real \((S n) x) \longrightarrow\left(\right.\) indicat_real \(\left(\bigcup\left(S^{\prime}\right.\right.\) UNIV \(\left.\left.)\right) x\right)\)
 by (simp add: indicator_def tendsto_eventually)
 show bounded (range (\(\lambda n\). integral UNIV (indicat_real \((S n)\)))
 using leB by (auto simp: lmeasure_integral_UNIV [symmetric] \(S\) bounded_iff)
 qed
 then have \((\bigcup n . S n) \in\) lmeasurable \(\wedge\) ? Lim
 by (simp add: lmeasure_integral_UNIV S cong: conj_cong) (simp add: measur-
 able_integrable)
then show $(\bigcup n . S n) \in$ lmeasurable ?Lim
by auto
qed

```

\section*{lemma}
```

assumes $S: \bigwedge n . S n \in$ lmeasurable
and djointish: pairwise (λm n. negligible $(S m \cap S n$)) UNIV
and leB: $\wedge n .\left(\sum k \leq n\right.$. measure lebesgue $\left.(S k)\right) \leq B$
shows measurable_countable_negligible_Union: $(\bigcup n . S n) \in$ lmeasurable
and measure_countable_negligible_Union: (λn. (measure lebesgue $(S n))$) sums
measure lebesgue ($\cup n . S n$) (is ?Sums)
proof -
have $1: \bigcup\left(S^{\prime}\{. . n\}\right) \in$ lmeasurable for n
using S by blast
have 2: measure lebesgue $(\bigcup(S$ ' $\{. . n\})) \leq B$ for n
proof -
have measure lebesgue $(\bigcup(S '\{. . n\})) \leq\left(\sum k \leq n\right.$. measure lebesgue $\left.(S k)\right)$ by (simp add: S fmeasurableD measure_UNION_le)
with leB show ?thesis
using order_trans by blast
qed
have 3: $\wedge n . \cup(S '\{. . n\}) \subseteq \bigcup(S '\{. . S u c n\})$
by (simp add: SUP_subset_mono)
have eqS: $(\bigcup n . S n)=(\bigcup n . \bigcup(S '\{. . n\}))$
using atLeastAtMost_iff by blast
also have $(\bigcup n . \bigcup(S \cdot\{. . n\})) \in$ lmeasurable
by (intro measurable_nested_Union [OF 1 2] 3)
finally show $(\bigcup n . S n) \in$ lmeasurable .
have eqm: $\left(\sum i \leq n\right.$. measure lebesgue $\left.(S i)\right)=$ measure lebesgue $(\bigcup(S$ ' $\{. . n\}))$
for n
using assms by (simp add: measure_negligible_finite_Union_image pairwise_mono)
have $(\lambda n$. (measure lebesgue $(S n)))$ sums measure lebesgue $(\bigcup n . \cup(S$ ' $\{. . n\}))$
by (simp add: sums_def' eqm atLeast0AtMost) (intro measure_nested_Union
[OF 1 1 2] 3)
then show? Sums
by (simp add: eqS)
qed

```
```

lemma negligible_countable_Union [intro]:
assumes countable \mathcal{F} and meas: $\bigwedge S . S \in \mathcal{F} \Longrightarrow$ negligible S
shows negligible $(\bigcup \mathcal{F})$
proof (cases $\mathcal{F}=\{ \}$)
case False
then show? thesis
by (metis from_nat_into range_from_nat_into assms negligible_Union_nat)
qed simp
lemma
assumes $S: \bigwedge n .(S n) \in$ lmeasurable
and djointish: pairwise (λm n. negligible $(S m \cap S n$)) UNIV
and bo: bounded $(\bigcup n . S n)$
shows measurable_countable_negligible_Union_bounded: $(\bigcup n . S n) \in l m e a s u r a b l e$
and measure_countable_negligible_Union_bounded: (λn. (measure lebesgue (S
$n)$)) sums measure lebesgue $(\bigcup n . S n)$ (is ?Sums)
proof -
obtain $a b$ where $a b:(\bigcup n . S n) \subseteq c b o x a b$
using bo bounded_subset_cbox_symmetric by metis
then have $B:\left(\sum k \leq n\right.$. measure lebesgue $\left.(S k)\right) \leq$ measure lebesgue (cbox a \quad)
for n
proof -
have $\left(\sum k \leq n\right.$. measure lebesgue $\left.(S k)\right)=$ measure lebesgue $(\bigcup(S$ ' $\{. . n\}))$
using measure_negligible_finite_Union_image [OF _ _ pairwise_subset] djointish
by (metis S finite_atMost subset_UNIV)
also have $\ldots \leq$ measure lebesgue (cbox a b)
proof (rule measure_mono_fmeasurable)
show $\bigcup(S '\{. . n\}) \in$ sets lebesgue using S by blast
qed (use ab in auto)
finally show ?thesis .
qed
show $(\bigcup n . S n) \in$ lmeasurable
by (rule measurable_countable_negligible_Union [OF S djointish B])
show ?Sums
by (rule measure_countable_negligible_Union [OF S djointish B])
qed
lemma measure_countable_Union_approachable:
assumes countable $\mathcal{D} e>0$ and meas $D: \Lambda d . d \in \mathcal{D} \Longrightarrow d \in$ lmeasurable
and $B: \bigwedge D^{\prime} . \llbracket D^{\prime} \subseteq \mathcal{D}$; finite $D^{\rrbracket} \Longrightarrow$ measure lebesgue $\left(\bigcup D^{\prime}\right) \leq B$
obtains D^{\prime} where $D^{\prime} \subseteq \mathcal{D}$ finite D^{\prime} measure lebesgue $(\bigcup \mathcal{D})-e<$ measure
lebesgue ($\cup D^{\prime}$)
proof (cases $\mathcal{D}=\{ \}$)
case True
then show ?thesis
by (simp add: $\langle e>0\rangle$ that)
next
case False

```
```

let $? S=\lambda n . \bigcup k \leq n$. from_nat_into $\mathcal{D} k$
have $(\lambda n$. measure lebesgue $(? S n)) \longrightarrow$ measure lebesgue $(\bigcup n$. ?S n)
proof (rule measure_nested_Union)
show ?S $n \in l m e a s u r a b l e$ for n
by (simp add: False fmeasurable.finite_UN from_nat_into measD)
show measure lebesgue $(? S n) \leq B$ for n
by (metis (mono_tags, lifting) B False finite_atMost finite_imageI from_nat_into
image_iff subsetI)
show ?S $n \subseteq$? S (Suc n) for n
by force
qed
then obtain N where $N: \bigwedge n . n \geq N \Longrightarrow$ dist (measure lebesgue (?S n))
(measure lebesgue $(\bigcup n$. ?S n)) $<e$
using metric_LIMSEQ_D $\langle e>0\rangle$ by blast
show ?thesis
proof
show from_nat_into \mathcal{D} ' $\{. . N\} \subseteq \mathcal{D}$
by (auto simp: False from_nat_into)
have eq: ($\bigcup n$. $\bigcup k \leq n$. from_nat_into $\mathcal{D} k)=(\bigcup \mathcal{D})$
using <countable \mathcal{D} 〉False
by (auto intro: from_nat_into dest: from_nat_into_surj [OF (countable Di])
show measure lebesgue $(\bigcup \mathcal{D})-e<$ measure lebesgue $(\bigcup$ (from_nat_into \mathcal{D} ‘
$\{. . N\})$)
using N [OF order_refl]
by (auto simp: eq algebra_simps dist_norm)
qed auto
qed

```

\subsection*{6.19.13 Negligibility is a local property}
lemma locally_negligible_alt:
negligible \(S \longleftrightarrow(\forall x \in S . \exists U\). openin (top_of_set \(S) U \wedge x \in U \wedge\) negligible U)
    \(\left(\right.\) is \(\left._{-}=? r h s\right)\)
proof
    assume negligible \(S\)
    then show? ?hs
        using openin_subtopology_self by blast
next
    assume ?rhs
    then obtain \(U\) where ope: \(\bigwedge x . x \in S \Longrightarrow\) openin (top_of_set \(S\) ) ( \(U x\) )
        and cov: \(\bigwedge x . x \in S \Longrightarrow x \in U x\)
        and neg: \(\bigwedge x . x \in S \Longrightarrow\) negligible \((U x)\)
        by metis
    obtain \(\mathcal{F}\) where \(\mathcal{F} \subseteq U\) 'S countable \(\mathcal{F}\) and \(e q: \bigcup \mathcal{F}=\bigcup\left(U^{\prime} S\right)\)
        using ope by (force intro: Lindelof_openin [of \(U\) ‘ \(S S\) ])
    then have negligible \((\bigcup \mathcal{F})\)
        by (metis imageE neg negligible_countable_Union subset_eq)
    with eq have negligible \(\left(\bigcup\left(U^{\prime} S\right)\right)\)
by metis
moreover have \(S \subseteq \bigcup(U ' S)\)
using cov by blast
ultimately show negligible \(S\)
using negligible＿subset by blast
qed
lemma locally＿negligible：locally negligible \(S \longleftrightarrow\) negligible \(S\)
unfolding locally＿def
by（metis locally＿negligible＿alt negligible＿subset openin＿imp＿subset openin＿subtopology＿self）

\section*{6．19．14 Integral bounds}
```

lemma set_integral_norm_bound:
fixes $f::{ }_{-}{ }^{\prime} a::\{$ banach, second_countable_topology $\}$
shows set_integrable $M k f \Longrightarrow$ norm (LINT $x: k \mid M . f x) \leq$ LINT $x: k \mid M$. norm
($f x$)
using integral_norm_bound $\left[\right.$ of $M \lambda x$.indicator $\left.k x *_{R} f x\right]$ by (simp add: set_lebesgue_integral_def)
lemma set_integral_finite_UN_AE:

```

```

 assumes finite \(I\)
 and \(a e: \bigwedge i j . i \in I \Longrightarrow j \in I \Longrightarrow A E x\) in \(M .(x \in A i \wedge x \in A j) \longrightarrow i=j\)
 and [measurable]: \(\bigwedge i . i \in I \Longrightarrow A i \in\) sets \(M\)
 and \(f: \bigwedge i . i \in I \Longrightarrow\) set_integrable \(M(A i) f\)
 shows LINT \(x:(\bigcup i \in I . A i) \mid M . f x=\left(\sum i \in I\right.\). LINT \(\left.x: A i \mid M . f x\right)\)
 using 〈finite \(I\) 〉 order_refl \([\) of \(I]\)
 proof (induction I rule: finite_subset_induct')
case (insert i I^{\prime})
have $A E x$ in $M .\left(\forall j \in I^{\prime} . x \in A i \longrightarrow x \notin A j\right)$
proof (intro AE_ball_countable[THEN iffD2] ballI)
fix j assume $j \in I^{\prime}$
with $\left\langle I^{\prime} \subseteq I\right\rangle\left\langle i \notin I^{\prime}\right\rangle$ have $i \neq j j \in I$
by auto
then show $A E x$ in $M . x \in A i \longrightarrow x \notin A j$
using ae[of $i j]\langle i \in I\rangle$ by auto
qed (use 〈finite $\left.I^{\prime}\right\rangle$ in 〈rule countable_finite〉)
then have $A E x \in A$ i in $M . \forall x a \in I^{\prime} . x \notin A x a$
by auto
with insert.hyps insert.IH[symmetric]
show ? case
by (auto intro!: set_integral_Un_AE sets.finite_UN f set_integrable_UN)
qed (simp add: set_lebesgue_integral_def)
lemma set_integrable_norm:
fixes $f::{ }^{\prime} a \Rightarrow$ ' $b::\{$ banach, second_countable_topology\}
assumes f : set_integrable Mkf shows set_integrable $M k(\lambda x$. norm $(f x))$
using integrable_norm f by (force simp add: set_integrable_def)

```
```

lemma absolutely_integrable_bounded_variation:
fixes f :: 'a::euclidean_space }=>\mathrm{ 'b::euclidean_space
assumes f:f absolutely_integrable_on UNIV
obtains B where }\foralld\mathrm{ . d division_of (Ud) }\longrightarrow\mathrm{ sum (}\lambdak\mathrm{ . norm (integral kf))d
\leqB
proof (rule that[of integral UNIV (\lambdax. norm (fx))]; safe)
fix d :: 'a set set assume d: d division_of \bigcupd
have *: k\ind\Longrightarrowf absolutely_integrable_on k for k
using f[THEN set_integrable_subset, of k] division_ofD(2,4)[OF d, of k] by
auto
note d' = division_ofD[OF d]
have (\sumk\ind.norm (integral kf))}=(\sumk\ind.norm (LINT x:k|lebesgue. f x))
by (intro sum.cong refl arg_cong[where f=norm] set_lebesgue_integral_eq_integral(2)[symmetric]
*)
also have ... \leq (\sumk\ind. LINT x:k|lebesgue. norm (f x))
by (intro sum_mono set_integral_norm_bound *)
also have ... = (\sumk\ind. integral k (}\lambdax.\operatorname{norm}(fx))
by (intro sum.cong refl set_lebesgue_integral_eq_integral(2) set_integrable_norm
*)
also have ... \leq integral (\d) (}\lambdax.\operatorname{norm}(fx)
using integrable_on_subdivision[OF d] assms f unfolding absolutely_integrable_on_def
by (subst integral_combine_division_topdown[OF _ d]) auto
also have ... \leq integral UNIV (}\lambdax\mathrm{ . norm (}fx)\mathrm{)
using integrable_on_subdivision[OF d] assms unfolding absolutely_integrable_on_def
by (intro integral_subset_le) auto
finally show (\sumk\ind.norm (integral kf)) \leqintegral UNIV (}\lambda\mathrm{ x. norm (fx)).
qed
lemma absdiff_norm_less:
assumes sum (}\lambdax\mathrm{ . norm (fx-gx))S<e
shows |sum (}\lambdax.\operatorname{norm}(fx))S-\operatorname{sum}(\lambdax.\operatorname{norm}(gx))S|<e(is?lhs<e
proof -
have ?lhs \leq (\sumi\inS.|norm (f i) - norm (g i)|)
by (metis (no_types) sum_abs sum_subtractf)
also have ... \leq (\sumx\inS.norm (fx-gx))
by (simp add: norm_triangle_ineq3 sum_mono)
also have ... < e
using assms(1) by blast
finally show ?thesis .
qed
proposition bounded_variation_absolutely_integrable_interval:
fixes f :: 'n::euclidean_space = 'm::euclidean_space
assumes f:f integrable_on cbox a b
and *: \bigwedged.d division_of (cbox a b)\Longrightarrowsum (}\lambda\mathrm{ K. norm(integral Kf)) d s B
shows f absolutely_integrable_on cbox a b
proof -
let ?f = \lambdad. \sumK\ind. norm (integral K f) and ?D = {d.d division_of (cbox a
b)}

```
```

 have \(D_{-} 1: ~ ? ~ D \neq\{ \}\)
 by (rule elementary_interval [of a b]) auto
 have D_2: bdd_above (?f??D)
 by (metis * mem_Collect_eq bdd_aboveI2)
 note \(D=D_{-1} D_{-2}\)
 let ? \(S=S U P x \in\) ? \(D\). ?f \(x\)
 have \(*: \exists \gamma\). gauge \(\gamma \wedge\)
 (\(\forall\) p. p tagged_division_of cbox a \(b \wedge\)
 \(\gamma\) fine \(p \longrightarrow\)
 norm \(\left(\left(\sum(x, k) \in p\right.\right.\). content \(k *_{R}\) norm \(\left.\left.\left.(f x)\right)-? S\right)<e\right)\)
 if \(e: e>0\) for \(e\)
 proof -
 have ? \(S-e / 2<\) ? \(S\) using \(\langle e>0\rangle\) by simp
 then obtain \(d\) where \(d\) : d division_of (cbox ab)? \(S-e / 2<\left(\sum k \in d\right.\). norm
 (integral $k f$))
unfolding less_cSUP_iff $[O F D]$ by auto
note $d^{\prime}=$ division_of $D[O F$ this (1)]
have $\exists e>0 . \forall i \in d . x \notin i \longrightarrow$ ball $x e \cap i=\{ \}$ for x
proof -
have $\exists d^{\prime}>0 . \forall x^{\prime} \in \bigcup\{i \in d . x \notin i\} . d^{\prime} \leq \operatorname{dist} x x^{\prime}$
proof (rule separate_point_closed)
show closed $(\bigcup\{i \in d . x \notin i\})$
using d^{\prime} by force
show $x \notin \bigcup\{i \in d . x \notin i\}$
by auto
qed
then show ?thesis
by force
qed
then obtain k where $k: \bigwedge x .0<k x \bigwedge i x . \llbracket i \in d ; x \notin i \rrbracket \Longrightarrow b a l l x(k x) \cap$
$i=\{ \}$
by metis
have $e / 2>0$
using e by auto
with Henstock_lemma[OF f]
obtain γ where g : gauge γ
$\bigwedge p . \llbracket p$ tagged_partial_division_of cbox a b; γ fine $p \rrbracket$
$\Longrightarrow\left(\sum(x, k) \in p . \operatorname{norm}\left(\right.\right.$ content $k *_{R} f x-$ integral $\left.\left.k f\right)\right)<e / \mathcal{Z}$
by (metis (no_types, lifting))
let ? $g=\lambda x . \gamma x \cap$ ball $x(k x)$
show ?thesis
proof (intro exI conjI allI impI)
show gauge ? g
using $g(1) k(1)$ by (auto simp: gauge_def)
next
fix p
assume p tagged_division_of (cbox ab) \wedge ? g fine p
then have $p: p$ tagged_division_of cbox a $b \gamma$ fine $p(\lambda x$. ball $x(k x))$ fine p

```
```

 by (auto simp: fine_Int)
 note \(p^{\prime}=\) tagged_division_of \(D[\) OF \(p(1)]\)
 define \(p^{\prime}\) where \(p^{\prime}=\{(x, k) \mid x k . \exists i l . x \in i \wedge i \in d \wedge(x, l) \in p \wedge k=i\)
 have $g p^{\prime}: \gamma$ fine p^{\prime}
using p (2) by (auto simp: p^{\prime} _def fine_def)
have $p^{\prime \prime}: p^{\prime}$ tagged_division_of (cbox a b)
proof (rule tagged_division_ofI)
show finite p^{\prime}
proof (rule finite_subset)
show $p^{\prime} \subseteq(\lambda(k, x, l) .(x, k \cap l))$ ' $(d \times p)$
by (force simp: p^{\prime} _def image_iff)
show finite $((\lambda(k, x, l) .(x, k \cap l))$ ' $(d \times p))$
by $\left(\operatorname{simp} a d d: d^{\prime}(1) p^{\prime}(1)\right)$
qed
next
fix $x K$
assume $(x, K) \in p^{\prime}$
then have $\exists i l . x \in i \wedge i \in d \wedge(x, l) \in p \wedge K=i \cap l$
unfolding p^{\prime} _def by auto
then obtain $i l$ where $i l: x \in i i \in d(x, l) \in p K=i \cap l$ by blast
show $x \in K$ and $K \subseteq$ cbox ab
using $p^{\prime}(2-3)[O F \overline{i l}(3)]$ il by auto
show $\exists a b$. $K=$ cbox $a b$
unfolding il using $p^{\prime}(4)[$ OF il(3) $] d^{\prime}(4)[$ OF il(2)] by (meson Int_interval)
next
fix $x 1$ K1
assume $(x 1, K 1) \in p^{\prime}$
then have $\exists i l . x 1 \in i \wedge i \in d \wedge(x 1, l) \in p \wedge K 1=i \cap l$
unfolding p^{\prime} _def by auto
then obtain $i 1 l 1$ where $i l 1: x 1 \in i 1 i 1 \in d(x 1, l 1) \in p K 1=i 1 \cap l 1$
by blast
fix $x 2$ K2
assume $(x 2, K 2) \in p^{\prime}$
then have $\exists i l . x 2 \in i \wedge i \in d \wedge(x 2, l) \in p \wedge K 2=i \cap l$
unfolding p^{\prime} _def by auto
then obtain i2 l2 where $i l 2: x 2 \in i 2 i 2 \in d(x 2, l 2) \in p K 2=i 2 \cap l 2$
by blast
assume $(x 1, K 1) \neq(x 2, K 2)$
then have interior i1 \cap interior $i 2=\{ \} \vee$ interior $l 1 \cap$ interior $l 2=\{ \}$
using $d^{\prime}(5)\left[O F\right.$ il1(2) il2(2)] $p^{\prime}(5)[O F$ il1(3) il2(3)] by (auto simp: il1
then show interior $K 1 \cap$ interior $K 2=\{ \}$
unfolding il1 il2 by auto
next
have $*: \forall(x, X) \in p^{\prime} . X \subseteq$ cbox a b
unfolding p^{\prime} _def using d^{\prime} by blast
show $\bigcup\left\{K . \exists x .(x, K) \in p^{\prime}\right\}=c b o x a b$
proof

```
\(\cap l\}\)
il2)
```

 show \(\bigcup\left\{k . \exists x .(x, k) \in p^{\prime}\right\} \subseteq\) cbox \(a b\)
 using \(*\) by auto
 next
 show cbox a \(b \subseteq \bigcup\left\{k . \exists x .(x, k) \in p^{\prime}\right\}\)
 proof
 fix \(y\)
 assume \(y: y \in c b o x a b\)
 obtain \(x L\) where \(x l:(x, L) \in p y \in L\)
 using \(y\) unfolding \(p^{\prime}(6)\) [symmetric] by auto
 obtain \(I\) where \(i: I \in d y \in I\)
 using \(y\) unfolding \(d^{\prime}(6)[\) symmetric \(]\) by auto
 have \(x \in I\)
 using fine \(D[O F p(3) x l(1)]\) using \(k(2) i x l\) by auto
 then show \(y \in \bigcup\left\{K . \exists x .(x, K) \in p^{\prime}\right\}\)
 proof -
 obtain \(x l\) where \(x l:(x, l) \in p y \in l\)
 using \(y\) unfolding \(p^{\prime}(6)[\) symmetric \(]\) by auto
 obtain \(i\) where \(i: i \in d y \in i\)
 using \(y\) unfolding \(d^{\prime}(6)[\) symmetric \(]\) by auto
 have \(x \in i\)
 using fineD[OF \(p(3) x l(1)]\) using \(k\) (2) \(i x l\) by auto
 then show?thesis
 unfolding \(p^{\prime}\) _def by (rule_tac \(X=i \cap l\) in UnionI) (use \(i x l\) in auto)
 qed
 qed
 qed
 qed
then have sum_less_e $2:\left(\sum(x, K) \in p^{\prime}\right.$. norm (content $K *_{R} f x-$ integral

```
\(K f))<e / 2\)
    using \(g(2) g p^{\prime}\) tagged_division_of_def by blast
have \(i n_{-} p^{\prime}:(x, I \cap L) \in p^{\prime}\) if \(x:(x, L) \in p I \in d\) and \(y: y \in I y \in L\)
    for \(x I L y\)
proof -
    have \(x \in I\)
        using fine \(D[\) OF \(p(3)\) that (1)] \(k(2)[O F\langle I \in d\rangle] y\) by auto
    with \(x\) have \((\exists i l . x \in i \wedge i \in d \wedge(x, l) \in p \wedge I \cap L=i \cap l)\)
        by blast
    then have \((x, I \cap L) \in p^{\prime}\)
        by (simp add: \(p^{\prime}{ }^{\prime}\) def)
    with \(y\) show ?thesis by auto
qed
moreover
have Ex_p-p': \(\exists\) y il. \((x, K)=(y, i \cap l) \wedge(y, l) \in p \wedge i \in d \wedge i \cap l \neq\{ \}\)
    if \(x K:(x, K) \in p^{\prime}\) for \(x K\)
proof -
    obtain \(i l\) where \(i l: x \in i i \in d(x, l) \in p K=i \cap l\)
        using \(x K\) unfolding \(p^{\prime}{ }_{-}\)def by auto
    then show ?thesis
using \(p^{\prime}(2)\) by fastforce
qed
ultimately have \(p^{\prime}\) alt: \(p^{\prime}=\{(x, I \cap L) \mid x I L .(x, L) \in p \wedge I \in d \wedge I \cap L\) \(\neq\{ \}\}\)
by auto
have sum_ \(p^{\prime}:\left(\sum(x, K) \in p^{\prime}\right.\). norm (integral \(\left.\left.K f\right)\right)=\left(\sum k \in\right.\) snd ' \(p^{\prime}\). norm (integral \(k f\) ))
proof (rule sum.over_tagged_division_lemma[OF \(\left.p^{\prime \prime}\right]\) )
show \(\Lambda u v\). box \(u v=\{ \} \Longrightarrow\) norm (integral (cbox uv)f) \(=0\)
by (auto intro: integral_null simp: content_eq_0_interior)
qed
have snd_p_div: snd ' \(p\) division_of cbox a b
by (rule division_of_tagged_division \([\) OF \(p(1)]\) )
note \(s n d \_p=\) division_ofD \([O F\) snd_p_div]
have fin_d_sndp: finite \((d \times\) snd ' \(p)\)
by (simp add: \(d^{\prime}(1)\) snd_p(1))
have \(*: \bigwedge\) sni \(s n i^{\prime} s f s f^{\prime} . \llbracket\left|s f^{\prime}-s n i^{\prime}\right|<e / 2 ; ? S-e / 2<s n i ; s n i^{\prime} \leq ? S ;\)
\[
s n i \leq s n i^{\prime} ; s f^{\prime}=s f \rrbracket \Longrightarrow|s f-? S|<e
\]
by arith
show norm \(\left(\left(\sum(x, k) \in p\right.\right.\). content \(\left.\left.k *_{R} \operatorname{norm}(f x)\right)-? S\right)<e\)
unfolding real_norm_def
proof (rule *)
show \(\mid\left(\sum(x, K) \in p^{\prime}\right.\). norm (content \(\left.\left.K *_{R} f x\right)\right)-\left(\sum(x, k) \in p^{\prime}\right.\). norm (integral \(k f)) \mid<e /\) 2
using \(p^{\prime \prime}\) sum_less_e2 unfolding split_def by (force intro!: absdiff_norm_less)
show \(\left(\sum(x, k) \in p^{\prime}\right.\). norm (integral \(\left.\left.k f\right)\right) \leq ? S\)
by (auto simp: sum_ \(p^{\prime}\) division_of_tagged_division[OF \(\left.p^{\prime \prime}\right] D\) intro!: cSUP_upper)
show \(\left(\sum k \in d . \operatorname{norm}(\right.\) integral \(\left.k f)\right) \leq\left(\sum(x, k) \in p^{\prime}\right.\). norm \((\) integral \(\left.k f)\right)\) proof -
have \(*:\left\{k \cap l \mid k l . k \in d \wedge l \in \operatorname{snd}{ }^{\prime} p\right\}=(\lambda(k, l) . k \cap l)\) ' \((d \times s n d\) ' \(p)\)
by auto
have \(\left(\sum K \in d\right.\). norm \((\) integral \(\left.K f)\right) \leq\left(\sum i \in d . \sum l \in\right.\) snd ' \(p\). norm (integral \((i \cap l) f)\) )
proof (rule sum_mono)
fix \(K\) assume \(k: K \in d\)
from \(d^{\prime}(4)[O F\) this] obtain \(u v\) where \(u v: K=c b o x u v\) by metis define \(d^{\prime}\) where \(d^{\prime}=\{\) cbox \(u v \cap l \mid l . l \in\) snd' \(p \wedge\) cbox \(u v \cap l \neq\{ \}\}\)
have uvab: cbox \(u v \subseteq\) cbox a \(b\)
using \(d(1) k u v\) by blast
have \(d^{\prime}\) _div: \(d^{\prime}\) division_of cbox \(u v\)
unfolding \(d^{\prime}{ }_{-} d e f\) by (rule division_inter_1 [OF snd_p_div uvab])
moreover have norm \(\left(\sum i \in d^{\prime}\right.\). integral if) \(\leq\left(\sum k \in d^{\prime}\right.\). norm (integral \(k f)\) )
by (simp add: sum_norm_le)
moreover have \(f\) integrable_on \(K\)
using \(f\) integrable_on_subcbox uv uvab by blast
moreover have \(d^{\prime}\) division_of \(K\)
using \(d^{\prime}\) _div uv by blast
ultimately have norm (integral \(K f) \leq \operatorname{sum}(\lambda k\). norm (integral \(k f)\) )
by (simp add: integral_combine_division_topdown)
also have \(\ldots=\left(\sum I \in\{K \cap L \mid L . L \in\right.\) snd' \(p\}\). norm (integral I f \()\) )
proof (rule sum.mono_neutral_left)
show finite \(\{K \cap L \mid L . L \in\) snd' ' \(p\}\)
by (simp add: snd_p(1))
show \(\forall i \in\{K \cap L \mid L . L \in\) snd ' \(p\}-d^{\prime}\). norm (integral if) \(=0\) \(d^{\prime} \subseteq\{K \cap L \mid L . L \in\) snd ' \(p\}\)
using \(d^{\prime}\) _def image_eqI uv by auto
qed
also have \(\ldots=\left(\sum l \in s n d\right.\) ' \(p\). norm \((\) integral \(\left.(K \cap l) f)\right)\)
unfolding Setcompr_eq_image
proof (rule sum.reindex_nontrivial [unfolded o_def])
show finite (snd ' \(p\) )
using snd_p (1) by blast
show norm (integral \((K \cap l) f)=0\)
if \(l \in\) snd' \(p y \in \operatorname{snd}\) ' \(p l \neq y K \cap l=K \cap y\) for \(l y\)
proof -
have interior \((K \cap l) \subseteq\) interior \((l \cap y)\) by (metis Int_lower2 interior_mono le_inf_iff that(4))
then have interior \((K \cap l)=\{ \}\)
by (simp add: snd_p(5) that)
moreover from \(d^{\prime}(4)[\) OF k] snd_p (4)[OF that(1)]
obtain u1 v1 u2 v2
where uv: \(K=\) cbox u1 u2 \(l=\) cbox v1 v2 by metis
ultimately show ?thesis
using that integral_null
unfolding uv Int_interval content_eq_0_interior
by (metis (mono_tags, lifting) norm_eq_zero)
qed
qed
finally show norm (integral \(K f) \leq\left(\sum l \in s n d\right.\) ' \(p\). norm (integral \((K \cap\)
l) f)) •
qed
also have \(\ldots=\left(\sum(i, l) \in d \times\right.\) snd' \(p\). norm (integral \(\left.\left.(i \cap l) f\right)\right)\)
by (simp add: sum.cartesian_product)
also have \(\ldots=\left(\sum x \in d \times\right.\) snd' \(p\). norm (integral (case_prod ( \(\cap\) ) \(\left.x\right) f\) ))
by (force simp: split_def intro!: sum.cong)
also have \(\ldots=\left(\sum k \in\{i \cap l \mid i l . i \in d \wedge l \in\right.\) snd' \(p\}\). norm (integral \(k\)
f))
proof -
have eq0: (integral \((l 1 \cap k 1) f)=0\)
if \(l 1 \cap k 1=12 \cap k 2(l 1, k 1) \neq(l 2, k 2)\)
\(l 1 \in d(j 1, k 1) \in p l 2 \in d(j 2, k 2) \in p\)
for \(l 1\) l2 \(k 1 k 2 j 1 j 2\)
proof -
obtain \(u 1\) v1 u2 v2 where \(u v: l 1=\) cbox u1 u2 \(k 1=c b o x ~ v 1 ~ v 2 ~\)
```

 using <(j1,k1) \inp\rangle\langlel1\ind\rangle d
 have l1 =l2 \vee k1 f= k2
 using that by auto
 then have interior k1 \cap interior k2 ={} \vee interior l1 \cap interior l2
 = {}
by (meson d'(5) old.prod.inject p'(5) that(3) that(4) that(5) that(6))
moreover have interior (l1 \cap k1) = interior (l2 \cap k2)
by (simp add: that(1))
ultimately have interior (l1 \cap k1)={}
by auto
then show ?thesis
unfolding uv Int_interval content_eq_0_interior[symmetric] by auto
qed
show ?thesis
unfolding *
apply (rule sum.reindex_nontrivial [OF fin_d_sndp, symmetric, unfolded
o_def])
apply clarsimp
by (metis eq0 fst_conv snd_conv)
qed
also have ... = (\sum(x,k) \in p'. norm (integral kf))
unfolding sum_p'
proof (rule sum.mono_neutral_right)
show finite {i\capl||l.i\ind\wedgel\in snd'p}
by (metis * finite_imageI[OF fin_d_sndp])
show snd ' p'\subseteq{i\capl|il.i\ind\wedgel\in snd'p}
by (clarsimp simp: p'_def) (metis image_eqI snd_conv)
show }\foralli\in{i\capl|il.i\ind\wedgel\insnd'p} - snd' p'.norm (integral i
f)=0
by clarsimp (metis Henstock_Kurzweil_Integration.integral_empty
disjoint_iff image_eqI in_p' snd_conv)
qed
finally show ?thesis .
qed
show (\sum(x,k)\in\mp@subsup{p}{}{\prime}.\operatorname{norm}(\mathrm{ content }k\mp@subsup{*}{R}{}fx))=(\sum(x,k)\inp.content k
*R norm (f x)
proof -
let ?S = {(x,i\capl) |xil. (x,l) \inp\wedgei\ind}
have *:?S = (\lambda(xl,i). (fst xl, snd xl \capi))'(p\timesd)
by force
have fin_pd: finite (}p\timesd\mathrm{)
using finite_cartesian_product[OF p}\mp@subsup{p}{}{\prime}(1)\mp@subsup{d}{}{\prime}(1)]\mathrm{ by metis
have }(\sum(x,k)\in\mp@subsup{p}{}{\prime}.norm (content k*Rf 隹)=(\sum(x,k)\in?S.| conten
k|*norm (fx))
unfolding norm_scaleR
proof (rule sum.mono_neutral_left)
show finite {(x,i\capl)|xil. (x,l)\inp\wedgei\ind}
by (simp add: * fin_pd)
qed (use p'alt in <force+>)

```
```

 also have \(\ldots=\left(\sum((x, l), i) \in p \times d . \mid\right.\) content \(\left.(l \cap i) \mid * \operatorname{norm}(f x)\right)\)
 proof -
 have \(\mid\) content \((l 1 \cap k 1) \mid * \operatorname{norm}(f x 1)=0\)
 if \((x 1, l 1) \in p(x 2, l 2) \in p k 1 \in d k 2 \in d\)
 \(x 1=x 2 l 1 \cap k 1=12 \cap k 2 x 1 \neq x 2 \vee l 1 \neq 12 \vee k 1 \neq k 2\)
 for \(x 1\) l1 k1 x2 l2 k2
 proof -
 obtain u1 v1 u2 v2 where uv: \(k 1=\) cbox u1 u2 \(l 1=c b o x ~ v 1 ~ v 2\)
 by (meson \(\langle(x 1, l 1) \in p\rangle\langle k 1 \in d\rangle d(1)\) division_ofD (4) \(\left.p^{\prime}(4)\right)\)
 have \(l 1 \neq l 2 \vee k 1 \neq k 2\)
 using that by auto
 then have interior \(k 1 \cap\) interior \(k 2=\{ \} \vee\) interior l1 \(\cap\) interior 12
 using that \(p^{\prime}(5) d^{\prime}(5)\) by (metis snd_conv)
 moreover have interior \((l 1 \cap k 1)=\) interior \((12 \cap k 2)\)
 unfolding that ..
 ultimately have interior \((l 1 \cap k 1)=\{ \}\)
 by auto
 then show \(\mid\) content \((l 1 \cap k 1) \mid * \operatorname{norm}(f x 1)=0\)
 unfolding uv Int_interval content_eq_0_interior[symmetric] by auto
 qed
 then show ?thesis
 unfolding *
 apply (subst sum.reindex_nontrivial [OF fin_pd])
 unfolding split_paired_all o_def split_def prod.inject
 by force+
 qed
also have $\ldots=\left(\sum(x, k) \in p\right.$. content $k *_{R}$ norm $\left.(f x)\right)$
proof -
have sumeq: ($\sum i \in d$. content $(l \cap i) *$ norm $\left.(f x)\right)=$ content $l *$ norm
if $(x, l) \in p$ for $x l$
proof -
note $x l=p^{\prime}(2-4)[$ OF that $]$
then obtain $u v$ where $u v: l=c b o x u v$ by blast
have $\left(\sum i \in d . \mid\right.$ content $\left.(l \cap i) \mid\right)=\left(\sum k \in d\right.$. content $(k \cap$ cbox u $\left.v)\right)$
by (simp add: Int_commute uv)
also have $\ldots=$ sum content $\{k \cap$ cbox $u v \mid k . k \in d\}$
proof -
have eq0: content $(k \cap$ cbox $u v)=0$
if $k \in d y \in d k \neq y$ and eq: $k \cap \operatorname{cbox} u v=y \cap \operatorname{cbox} u v$ for $k y$
proof -
from $d^{\prime}(4)\left[\right.$ OF that(1)] $d^{\prime}(4)[$ OF that(2)]
obtain $\alpha \beta$ where α : $k \cap$ cbox $u v=$ cbox $\alpha \beta$
by (meson Int_interval)
have $\}=$ interior $((k \cap y) \cap$ cbox u $v)$
by (simp add: $d^{\prime}(5)$ that)
also have $\ldots=\operatorname{interior}(y \cap(k \cap \operatorname{cbox} u v))$
by auto

```
```

 also have ... = interior (}k\cap\mathrm{ cbox u v)
 unfolding eq by auto
 finally show ?thesis
 unfolding \alpha content_eq_0_interior ..
 qed
then show ?thesis
unfolding Setcompr_eq_image
by (fastforce intro: sum.reindex_nontrivial [OF〈finite d>, unfolded
o_def,symmetric])
qed
also have ... = sum content {cbox uv\capk|k.k\ind ^ cbox uv\capk

{}}

 proof (rule sum.mono_neutral_right)
 show finite {k\cap cbox u v |k.k\ind}
 by (simp add: d}\mp@subsup{d}{}{\prime}(1)
 qed (fastforce simp: inf.commute)+
 finally have (\sumi\ind. |content (l\capi)|)= content (cbox u v)
 using additive_content_division[OF division_inter_1[OF d(1)]] uv xl(2)
 by auto
then show (\sumi\ind.content (l\capi)* norm (fx)) = content l * norm
(f x)
unfolding sum_distrib_right[symmetric] using uv by auto
qed
show ?thesis
by (subst sum_Sigma_product[symmetric]) (auto intro!: sumeq sum.cong
p' d')
qed
finally show ?thesis.
qed
qed (rule d)
qed
qed
then show ?thesis
using absolutely_integrable_onI [OF f has_integral_integrable] has_integral[of _
?S]
by blast
qed
lemma bounded_variation_absolutely_integrable:
fixes f :: ' }n::\mathrm{ :euclidean_space = 'm::euclidean_space
assumes f integrable_on UNIV
and }\foralld.d\mathrm{ division_of (}\cupd)\longrightarrow\operatorname{sum}(\lambdak.norm (integral kf))d\leq
shows f absolutely_integrable_on UNIV
proof (rule absolutely_integrable_onI, fact)
let ?f = \lambdaD. \sumk\inD. norm (integral kf) and ?D = {d.d division_of (Ud)}
define SDF where SDF \equivSUP d\in?D. ?f d
have D_1:?D \# {}
by (rule elementary_interval) auto

```
have D_2: bdd_above (?f‘?D)
using assms(2) by auto
have \(f_{-} i n t: ~ \bigwedge a b . f\) absolutely_integrable_on cbox a \(b\)
using assms integrable_on_subcbox
by (blast intro!: bounded_variation_absolutely_integrable_interval)
have \(\exists B>0 . \forall a b\). ball \(0 B \subseteq\) cbox ab \(\longrightarrow\)
\(\mid\) integral \((\) cbox a \(b)(\lambda x\). norm \((f x))-S D F \mid<e\)
if \(0<e\) for \(e\)
proof -
have \(\exists y \in ? f\) '? \(D . \neg y \leq S D F-e\)
proof (rule ccontr)
assume \(\neg\) ?thesis
then have \(S D F \leq S D F-e\)
unfolding \(S D F-d e f\)
by (metis (mono_tags) D_1 cSUP_least image_eqI)
then show False
using that by auto
qed
then obtain \(d K\) where ddiv: d division_of \(\bigcup d\) and \(K=\) ?f \(d S D F-e<K\) by (auto simp add: image_iff not_le)
then have \(d: S D F-e<? f d\)
by auto
note \(d^{\prime}=\) division_of \(D[O F d d i v]\)
have bounded \((\cup d)\)
using ddiv by blast
then obtain \(K\) where \(K: 0<K \forall x \in \bigcup d\). norm \(x \leq K\)
using bounded_pos by blast
show ?thesis
proof (intro conjI impI allI exI)
fix \(a b::\) ' \(n\)
assume ab: ball \(0(K+1) \subseteq\) cbox \(a b\)
have \(*: \bigwedge s s 1 . \llbracket S D F-e<s 1 ; s 1 \leq s ; s<S D F+e \rrbracket \Longrightarrow|s-S D F|<e\) by arith
show \(\mid\) integral (cbox a b) \((\lambda x\). norm \((f x))-S D F \mid<e\)
unfolding real_norm_def
proof (rule * \(\left[\begin{array}{ll}O F & d\end{array}\right]\) )
have ?f \(d \leq \operatorname{sum}(\lambda k\). integral \(k(\lambda x\). norm \((f x))) d\)
proof (intro sum_mono)
fix \(k\) assume \(k \in d\)
with \(d^{\prime}(4) f_{-}\)int show norm (integral \(\left.k f\right) \leq\) integral \(k(\lambda x\). norm \((f x))\)
by (force simp: absolutely_integrable_on_def integral_norm_bound_integral)
qed
also have \(\ldots=\) integral \((\bigcup d)(\lambda x\). norm \((f x))\)
by (metis (full_types) absolutely_integrable_on_def \(d^{\prime}(4)\) ddiv f_int integral_combine_division_bottomup)
also have \(\ldots \leq\) integral (cbox ab) ( \(\lambda x\). norm \((f x)\) )
proof -
have \(\bigcup d \subseteq\) cbox a \(b\)
using \(K(2) a b\) by fastforce
```

 then show ?thesis
 using integrable_on_subdivision[OF ddiv] f_int[of a b] unfolding abso-
 lutely_integrable_on_def
by (auto intro!: integral_subset_le)
qed
finally show ?f d \leq integral (cbox a b) (\lambdax. norm (fx)).
next
have e/2>0
using <e> 0\rangle by auto
moreover
have f:f integrable_on cbox a b (\lambdax. norm (f x)) integrable_on cbox a b
using f_int by (auto simp: absolutely_integrable_on_def)
ultimately obtain d1 where gauge d1
and d1: \bigwedgep.\llbracketp tagged_division_of (cbox a b);d1 fine p\rrbracket\Longrightarrow
norm ((\sum(x,k)\inp.content k\mp@subsup{*}{R}{}\mathrm{ norm (fx)) - integral (cbox a b) (}\lambdax\mathrm{ .}.
norm (f x))) <e/2
unfolding has_integral_integral has_integral by meson
obtain d2 where gauge d2
and d2: \bigwedgep. \llbracketp tagged_partial_division_of (cbox a b); d2 fine p\rrbracket\Longrightarrow
(\sum(x,k) \in p.norm (content k*R f x - integral kf))<e/2
by (blast intro: Henstock_lemma [OF f(1)\langlee/2>0\rangle])
obtain p where
p: p tagged_division_of (cbox a b) d1 fine p d2 fine p
by (rule fine_division_exists [OF gauge_Int [OF <gauge d1><gauge d2\], of

a b])
(auto simp add: fine_Int)
have *: \sf sf' si di. \llbracketsf'=sf; si\leqSDF; |sf - si| <e/2;
|s\mp@subsup{f}{}{\prime}-di|<e/2\rrbracket\Longrightarrowdi<SDF+e
by arith
have integral (cbox a b) (}\lambdax\mathrm{ . norm (f x)) < SDF +e
proof (rule *)
show |(\sum(x,k)\inp.norm (content k*R}fx))-(\sum(x,k)\inp.norm (integral
kf))|<e/2
unfolding split_def
proof (rule absdiff_norm_less)
show (\sump\inp.norm (content (snd p) *R f (fst p) - integral (snd p)f))
< e/2
using d2[of p] p(1,3) by (auto simp: tagged_division_of_def split_def)
qed
show |(\sum(x,k)\inp. content k *R norm (fx)) - integral (cbox a b) (\lambdax.
norm(fx))|<e/2
using d1[OF p(1,2)] by (simp only:real_norm_def)
show (\sum(x,k)\inp.content k *R norm (f x)) = (\sum(x,k) \in p. norm
(content k** f x)
by (auto simp: split_paired_all sum.cong [OF refl])
have (\sum(x,k)\inp.norm (integral kf))=(\sumk\insnd'p.norm (integral
kf))
apply (rule sum.over_tagged_division_lemma[OF p(1)])
by (metis Henstock_Kurzweil_Integration.integral_empty integral_open_interval

```
```

norm_zero)
also have ... \leqSDF
using partial_division_of_tagged_division[of p cbox a b] p(1)
by (auto simp:SDF_def tagged_partial_division_of_def intro!: cSUP_upper2
D_1 D_2)
finally show (\sum(x,k)\inp.norm (integral kf)) \leqSDF.
qed
then show integral (cbox a b) (\lambdax.norm (fx))<SDF+e
by simp
qed
qed (use K in auto)
qed
moreover have }\ab.(\lambdax.norm (fx)) integrable_on cbox a b
using absolutely_integrable_on_def f_int by auto
ultimately
have ((\lambdax. norm (f x)) has_integral SDF) UNIV
by (auto simp: has_integral_alt')
then show (}\lambdax.norm (fx)) integrable_on UNIV
by blast
qed

```

\subsection*{6.19.15 Outer and inner approximation of measurable sets by well-behaved sets.}
proposition measurable_outer_intervals_bounded:
assumes \(S \in\) lmeasurable \(S \subseteq\) cbox a \(b e>0\)
obtains \(\mathcal{D}\)
where countable \(\mathcal{D}\)
\(\wedge K . K \in \mathcal{D} \Longrightarrow K \subseteq\) cbox a \(b \wedge K \neq\{ \} \wedge(\exists c d . K=\) cbox c \(d)\)
pairwise \((\lambda A B\). interior \(A \cap\) interior \(B=\{ \}) \mathcal{D}\)
\(\bigwedge u v\). cbox \(u v \in \mathcal{D} \Longrightarrow \exists n . \forall i \in\) Basis. \(v \cdot i-u \cdot i=(b \cdot i-a \cdot i) / \mathscr{D}^{\wedge} n\) \(\wedge K . \llbracket K \in \mathcal{D} ;\) box a \(b \neq\{ \} \rrbracket \Longrightarrow\) interior \(K \neq\{ \}\)
\(S \subseteq \bigcup \mathcal{D} \bigcup \mathcal{D} \in\) lmeasurable measure lebesgue \((\bigcup \mathcal{D}) \leq\) measure lebesgue \(S\)
\(+e\)
proof (cases box a \(b=\{ \}\) )
    case True
    show ?thesis
    proof (cases cbox ab=\{\})
        case True
        with assms have [simp]: \(S=\{ \}\)
            by auto
        show ?thesis
        proof
            show countable \(\}\)
                by \(\operatorname{simp}\)
        qed (use \(\langle e>0\rangle\) in auto)
    next
        case False
        show ?thesis
```

 proof
 show countable {cbox a b}
 by simp
    ```

```

-a\cdoti)/2^ n
using False by (force simp: eq_cbox intro: exI [where x=0])
show measure lebesgue (}\bigcup{\mathrm{ cbox a b}) \ measure lebesgue S +e
using assms by (simp add: sum_content.box_empty_imp [OF True])
qed (use assms <cbox a b\not={}> in auto)
qed
next
case False
let ? }\mu=\mathrm{ measure lebesgue
have S\cap cbox a b lmeasurable
using <S \in lmeasurable> by blast
then have indS_int: (indicator S has_integral (?\mu S)) (cbox a b)
by (metis integral_indicator }\langleS\subseteqcbox a b> has_integral_integrable_integral
inf.orderE integrable_on_indicator)
with }\langlee>0\rangle\mathrm{ obtain }\gamma\mathrm{ where gauge }\gamma\mathrm{ and }\gamma\mathrm{ :

mathcal{D}.\llbracket\mathcal{D tagged_division_of (cbox a b); \gamma fine }\mathcal{D}\rrbracket\Longrightarrow norm ((\sum (x,K)\in\mathcal{D}.
content(K)*R indicator S x) - ? }\muS)<
by (force simp: has_integral)
have inteq: integral (cbox a b) (indicat_real S)= integral UNIV (indicator S)
using assms by (metis has_integral_iff indS_int lmeasure_integral_UNIV)
obtain \mathcal{D}\mathrm{ where }\mathcal{D}\mathrm{ : countable }\mathcal{D}\cup\mathcal{D}\subseteqcbox a b
and cbox: \bigwedgeK.K\in\mathcal{D}\Longrightarrow interior K}\not={}\wedge(\existscd.K=cbox c d)
and djointish: pairwise (}\lambdaA\mathrm{ B. interior }A\cap\mathrm{ interior B = {}) D
and covered: }\K.K\in\mathcal{D}\Longrightarrow\existsx\inS\capK.K\subseteq\gamma
and close: \uv. cbox uv\in\mathcal{D}\Longrightarrow\existsn.\foralli\inBasis.v\bulleti-u\bulleti=(b\cdoti-
a\cdoti)/2^n
and covers: S\subseteq\bigcup\mathcal{D}
using covering_lemma [of S a b \gamma] <gauge \gamma\rangle\langlebox a b}\not={}}\assms by forc
show ?thesis
proof
show }\K.K\in\mathcal{D}\LongrightarrowK\subseteq\mathrm{ cbox a b ^K}={{}\wedge(\existscd. K=cbox c d)
by (meson Sup_le_iff \mathcal{D}(2) cbox interior_empty)
have negl_int: negligible(}K\capL)\mathrm{ if }K\in\mathcal{D}L\in\mathcal{D}K\not=L\mathrm{ for }K
proof -
have interior K}\cap\mathrm{ interior L}={
using djointish pairwiseD that by fastforce
moreover obtain uvx y where K=cbox uv L=cbox x y
using cbox }\langleK\in\mathcal{D}\rangle\langleL\in\mathcal{D}\rangle\mathrm{ by blast
ultimately show ?thesis
by (simp add: Int_interval box_Int_box negligible_interval(1))
qed
have fincase:
mathcal{F}\inlmeasurable }\wedge? | (\bigcup\mathcal{F})\leq?\mu S+e if finite \mathcal{F}\mathcal{F}\subseteq\mathcal{D
for }\mathcal{F
proof -
obtain t where t:\bigwedgeK.K\in\mathcal{F}\LongrightarrowtK\inS\capK\wedgeK\subseteq\gamma(t K)

```
using covered \(\langle\mathcal{F} \subseteq \mathcal{D}\rangle\) subset \(D\) by metis
have \(\forall K \in \mathcal{F} . \forall L \in \mathcal{F} . K \neq L \longrightarrow\) interior \(K \cap\) interior \(L=\{ \}\)
using that djointish by (simp add: pairwise_def) (metis subsetD)
with cbox that \(\mathcal{D}\) have \(\mathcal{F}\) div: \(\mathcal{F}\) division_of \((\bigcup \mathcal{F})\)
by (fastforce simp: division_of_def dest: cbox)
then have \(1: \bigcup \mathcal{F} \in\) lmeasurable
by blast
have norme: \(\bigwedge p\). \(\llbracket p\) tagged_division_of cbox a \(b ; \gamma\) fine \(p \rrbracket\)
\(\Longrightarrow\) norm \(\left(\left(\sum(x, K) \in p\right.\right.\). content \(K *\) indicator \(\left.S x\right)-\) integral \((c b o x a b)\)
(indicator \(S)\) ) \(<e\)
by (auto simp: lmeasure_integral_UNIV assms inteq dest: \(\gamma\) )
have \(\forall x K\) y \(L .(x, K) \in(\lambda K .(t K, K))\) ' \(\mathcal{F} \wedge(y, L) \in(\lambda K .(t K, K))\) ' \(\mathcal{F} \wedge\) \((x, K) \neq(y, L) \longrightarrow \quad\) interior \(K \cap\) interior \(L=\{ \}\)
using that djointish by (clarsimp simp: pairwise_def) (metis subsetD)
with that \(\mathcal{D}\) have tagged: \((\lambda K .(t K, K))\) ' \(\mathcal{F}\) tagged_partial_division_of cbox \(a b\)
by (auto simp: tagged_partial_division_of_def dest: \(t\) cbox)
have fine: \(\gamma\) fine \((\lambda K .(t K, K))\) ' \(\mathcal{F}\)
using \(t\) by (auto simp: fine_def)
have \(*: y \leq\) ? \(\mu S \Longrightarrow|x-y| \leq e \Longrightarrow x \leq\) ? \(\mu S+e\) for \(x y\)
by arith
have ? \(\mu(\bigcup \mathcal{F}) \leq ? \mu S+e\)
proof (rule *)
have \(\left(\sum K \in \mathcal{F} . ? \mu(K \cap S)\right)=? \mu(\bigcup C \in \mathcal{F} . C \cap S)\)
proof (rule measure_negligible_finite_Union_image \([O F\langle\) finite \(\mathcal{F}\rangle\), symmetric])
show \(\bigwedge K . K \in \mathcal{F} \Longrightarrow K \cap S \in\) lmeasurable
using \(\mathcal{F}\) div \(\langle S \in\) lmeasurable \(\rangle\) by blast
show pairwise \((\lambda K y\). negligible \((K \cap S \cap(y \cap S))) \mathcal{F}\)
unfolding pairwise_def
by (metis inf.commute inf_sup_aci(3) negligible_Int subsetCE negl_int \(\langle\mathcal{F}\)
\(\subseteq \mathcal{D}\) )
qed
also have \(\ldots=? \mu(\bigcup \mathcal{F} \cap S)\)
by \(\operatorname{simp}\)
also have \(\ldots \leq ? \mu S\)
by (simp add: \(1\langle S \in\) lmeasurable〉 fmeasurableD measure_mono_fmeasurable sets.Int)
finally show \(\left(\sum K \in \mathcal{F} . ? \mu(K \cap S)\right) \leq ? \mu S\).
next
have ? \(\mu(\bigcup \mathcal{F})=\) sum ? \(\mu \mathcal{F}\)
by (metis \(\mathcal{F}\) div content_division)
also have \(\ldots=\left(\sum K \in \mathcal{F}\right.\). content \(\left.K\right)\)
using \(\mathcal{F}\) div by (force intro: sum.cong)
also have \(\ldots=\left(\sum x \in \mathcal{F}\right.\). content \(x *\) indicator \(\left.S(t x)\right)\)
using \(t\) by auto
finally have eq1: \(? \mu(\bigcup \mathcal{F})=\left(\sum x \in \mathcal{F}\right.\). content \(x *\) indicator \(\left.S(t x)\right)\).
have eq2: \(\left(\sum K \in \mathcal{F}\right.\). ? \(\left.\mu(K \cap S)\right)=\left(\sum K \in \mathcal{F}\right.\). integral \(K(\) indicator \(\left.S)\right)\)
apply (rule sum.cong [OF refl])
by (metis integral_indicator \(\mathcal{F}\) div \(\langle S \in\) lmeasurable \(\rangle\) division_ofD (4)
```

fmeasurable.Int inf.commute lmeasurable_cbox)
have |\sum(x,K)\in(\lambdaK.(t K,K))'\mathcal{F}.content K* indicator S x - integral
K(indicator S)
using Henstock_lemma_part1 [of indicator S::'a=>real,OF_\langlee>0\rangle\langlegauge
\gamma) - tagged fine]
indS_int norme by auto
then show |? }\mu(\cup\mathcal{F})-(\sumK\in\mathcal{F}.?\mu(K\capS))|\leq
by (simp add: eq1 eq2 comm_monoid_add_class.sum.reindex inj_on_def
sum_subtractf)
qed
with 1 show ?thesis by blast
qed
have }\bigcup\mathcal{D}\in\mathrm{ lmeasurable }\wedge? ? (\bigcup\mathcal{D})\leq? | S +
proof (cases finite D)
case True
with fincase show ?thesis
by blast
next
case False
let ?T = from_nat_into \mathcal{D}
have T: bij_betw ?T UNIV D
by (simp add: False \mathcal{D (1) bij_betw_from_nat_into)}
have TM: \n. ?T n lmeasurable
by (metis False cbox finite.emptyI from_nat_into lmeasurable_cbox)
have TN: \m n. m\not=n\Longrightarrow negligible (?T m \cap ?T n)
by (simp add: False \mathcal{D (1) from_nat_into infinite_imp_nonempty negl_int)}
have TB: (\sumk\leqn.? }\mu(?Tk))\leq?\muS+e for n
proof -
have }(\sumk\leqn.?\mu(?T k))=?\mu(\bigcup(?T'{..n})
by (simp add: pairwise_def TM TN measure_negligible_finite_Union_image)
also have ? }\mu(\bigcup(?T'{ {..n}))\leq?\mu S+
using fincase [of ?T' '{..n}] T by (auto simp: bij_betw_def)
finally show ?thesis.
qed
have }\bigcup\mathcal{D}\inlmeasurable
by (metis lmeasurable_compact T \mathcal{D}(2) bij_betw_def cbox compact_cbox
countable_Un_Int(1) fmeasurableD fmeasurableI2 rangeI)
moreover
have ? }\mu(\x.from_nat_into \mathcal{D }x)\leq? \ | S +
proof (rule measure_countable_Union_le [OF TM])
show ? }\mu(\bigcupx\leqn.from_nat_into \mathcal{D }x)\leq? ! S S + e for n
by (metis (mono_tags, lifting) False fincase finite.emptyI finite_atMost
finite_imageI from_nat_into imageE subsetI)
qed
ultimately show ?thesis by (metis T bij_betw_def)
qed
then show
mathcal{D}\inlmeasurable measure lebesgue (\bigcup\mathcal{D})\leq? }\muS+e\mathrm{ by blast+
qed (use \mathcal{D cbox djointish close covers in auto)}
qed

```

\subsection*{6.19.16 Transformation of measure by linear maps}
lemma emeasure_lebesgue_ball_conv_unit_ball:
fixes \(c::\) ' \(a\) :: euclidean_space
assumes \(r \geq 0\)
shows emeasure lebesgue (ball c r) = ennreal ( \(\left.r^{\wedge} \operatorname{DIM}\left({ }^{\prime} a\right)\right) *\) emeasure lebesgue (ball (0 :: 'a) 1)
proof (cases \(r=0\) )
case False
with assms have \(r: r>0\) by auto
have emeasure lebesgue \(\left((\lambda x . c+x)^{\prime}\left(\lambda x . r *_{R} x\right)^{\prime} \operatorname{ball}\left(0::{ }^{\prime} a\right) 1\right)=\) \(r^{\wedge} D I M(' a) *\) emeasure lebesgue (ball (0::'a) 1)
unfolding image_image using emeasure_lebesgue_affine[of rcball 0 1] assms by (simp add: add_ac)
also have \(\left(\lambda x . r *_{R} x\right)\) 'ball \(01=\operatorname{ball}(0:: ' a) r\) using \(r\) by (subst ball_scale) auto
also have \((\lambda x . c+x)^{\prime} \ldots=\) ball \(c r\) by (subst image_add_ball) (simp_all add: algebra_simps)
finally show? thesis by simp
qed auto
lemma content_ball_conv_unit_ball:
fixes \(c::\) ' \(a\) :: euclidean_space
assumes \(r \geq 0\)
shows content (ball cr) \(=r^{\wedge} \operatorname{DIM}\left({ }^{\prime} a\right) *\) content \((b a l l(0:: ' a) 1)\)
proof -
have ennreal (content (ball cr)) = emeasure lebesgue (ball c r) using emeasure_lborel_ball_finite[of cr] by (subst emeasure_eq_ennreal_measure)
auto
also have \(\ldots=\) ennreal \(\left(r^{\wedge} D I M(' a)\right) *\) emeasure lebesgue (ball (0 :: 'a) 1) using assms by (intro emeasure_lebesgue_ball_conv_unit_ball) auto
also have \(\ldots=\operatorname{ennreal}\left(r^{\wedge} \operatorname{DIM}\left({ }^{\prime} a\right) *\right.\) content (ball ( \(\left.\left.0::^{\prime} a\right) 1\right)\) ) using emeasure_lborel_ball_finite[of \(0::^{\prime}\) a 1] assms by (subst emeasure_eq_ennreal_measure) (auto simp: ennreal_mult')
finally show ?thesis
using assms by (subst (asm) ennreal_inj) auto
qed
lemma measurable_linear_image_interval:
linear \(f \Longrightarrow f^{\prime}(\) cbox a \(b) \in\) lmeasurable
by (metis bounded_linear_image linear_linear bounded_cbox closure_bounded_linear_image
closure_cbox compact_closure lmeasurable_compact)
proposition measure_linear_sufficient:
fixes \(f::\) ' \(n::\) euclidean_space \(\Rightarrow ' n\)
assumes linear \(f\) and \(S: S \in\) lmeasurable
and \(\mathrm{im}: \bigwedge a b\). measure lebesgue \(\left(f^{\prime}(\right.\) cbox \(\left.a b)\right)=m *\) measure lebesgue (cbox a b)
shows \(f\) ' \(S \in\) lmeasurable \(\wedge m *\) measure lebesgue \(S=\) measure lebesgue \(\left(f^{\prime} S\right)\)
using le_less_linear [of 0 m ]
```

proof
assume $m<0$
then show ?thesis
using im [of 0 One] by auto
next
assume $m \geq 0$
let ? $\mu=$ measure lebesgue
show ?thesis
proof (cases inj f)
case False
then have ? $\mu\left(f^{\prime} S\right)=0$
using 〈linear f 〉 negligible_imp_measure0 negligible_linear_singular_image by
blast
then have $m *$? $\mu($ cbox $0($ One $))=0$
by (metis False 〈linear $f\rangle$ cbox_borel content_unit im measure_completion
negligible_imp_measure0 negligible_linear_singular_image sets_lborel)
then show ?thesis
using 〈linear f 〉 negligible_linear_singular_image negligible_imp_measure0 False
by (auto simp: lmeasurable_iff_has_integral negligible_UNIV)
next
case True
then obtain h where linear h and $h f: \bigwedge x . h(f x)=x$ and $f h: \bigwedge x . f(h x)$
$=x$
using 〈linear f 〉 linear_injective_isomorphism by blast
have $f B S:(f$ ' $S) \in$ lmeasurable $\wedge m * ? \mu S=$? $\mu\left(f^{\prime} S\right)$
if bounded $S S \in$ lmeasurable for S
proof -
obtain $a b$ where $S \subseteq$ cbox $a b$
using 〈bounded S 〉 bounded_subset_cbox_symmetric by metis
have $f U D:\left(f^{\prime} \cup \mathcal{D}\right) \in$ lmeasurable $\wedge ? \mu\left(f^{\prime} \cup \mathcal{D}\right)=(m * ? \mu(\bigcup \mathcal{D}))$
if countable \mathcal{D}
and cbox: $\bigwedge K . K \in \mathcal{D} \Longrightarrow K \subseteq$ cbox $a b \wedge K \neq\{ \} \wedge(\exists c d . K=c b o x$
c d)
and intint: pairwise ($\lambda A B$. interior $A \cap$ interior $B=\{ \}) \mathcal{D}$
for \mathcal{D}
proof -
have conv: $\bigwedge K . K \in \mathcal{D} \Longrightarrow$ convex K
using cbox convex_box(1) by blast
have neg: negligible (g ' $K \cap g^{\prime} L$) if linear $g K \in \mathcal{D} L \in \mathcal{D} K \neq L$
for $K L$ and $g::{ }^{\prime} n \Rightarrow$ ' n
proof (cases inj g)
case True
have negligible (frontier $\left(g^{\prime} K \cap g^{\prime} L\right) \cup \operatorname{interior}\left(g\right.$ ‘ $\left.K \cap g^{\prime} L\right)$)
proof (rule negligible_Un)
show negligible (frontier $\left(g^{\prime} K \cap g^{\prime} L\right)$)
by (simp add: negligible_convex_frontier convex_Int conv convex_linear_image
that)
next
have $\forall p N$. pairwise $p N=(\forall N a .(N a:: ' n$ set $) \in N \longrightarrow(\forall N b . N b \in N$

```
by（metis pairwise＿def）
then have interior \(K \cap\) interior \(L=\{ \}\)
using intint that（2）that（3）that（4）by presburger
then show negligible（interior \(\left(g\right.\)＇\(\left.K \cap g^{\prime} L\right)\) ）
by（metis True empty＿imp＿negligible image＿Int image＿empty interior＿Int interior＿injective＿linear＿image that（1））
qed
moreover have \(g\) ‘ \(K \cap g^{\prime} L \subseteq\) frontier \(\left(g\right.\) ‘ \(\left.K \cap g^{\prime} L\right) \cup\) interior \((g\) ‘ \(\left.K \cap g^{\prime} L\right)\)
by（metis Diff＿partition Int＿commute calculation closure＿Un＿frontier fron－ tier＿def inf．absorb＿iff2 inf＿bot＿right inf＿sup＿absorb negligible＿Un＿eq open＿interior open＿not＿negligible sup＿commute）
ultimately show ？thesis
by（rule negligible＿subset）
next
case False
then show ？thesis
by（simp add：negligible＿Int negligible＿linear＿singular＿image 〈linear g〉）
qed
have negf：negligible \(\left(\left(f^{\prime} K\right) \cap\left(f^{\prime} L\right)\right)\)
and negid：negligible \((K \cap L)\) if \(K \in \mathcal{D} L \in \mathcal{D} K \neq L\) for \(K L\)
using neg \([O F\langle\) linear \(f\rangle]\) neg \([O F\) linear＿id］that by auto
show ？thesis
proof（cases finite \(\mathcal{D}\) ）
case True
then have ？\(\mu\left(\bigcup x \in \mathcal{D} . f^{\prime} x\right)=\left(\sum x \in \mathcal{D}\right.\) ．？\(\left.\mu\left(f^{\prime} x\right)\right)\)
using 〈linear \(f\) 〉 cbox measurable＿linear＿image＿interval negf by（blast intro：measure＿negligible＿finite＿Union＿image［unfolded pair－ wise＿def］）
also have \(\ldots=\left(\sum k \in \mathcal{D} . m * ? \mu k\right)\)
by（metis（no＿types，lifting）cbox im sum．cong）
also have \(\ldots=m * ? \mu(\bigcup \mathcal{D})\)
unfolding sum＿distrib＿left［symmetric］
by（metis True cbox lmeasurable＿cbox measure＿negligible＿finite＿Union ［unfolded pairwise＿def］negid）
finally show ？thesis
by（metis True 〈linear \(f\) 〉cbox image＿Union fmeasurable．finite＿UN measurable＿linear＿image＿interval）
next
case False
with «countable \(\mathcal{D}\) 〉 obtain \(X\) ：：nat \(\Rightarrow\)＇\(n\) set where \(S\) ：bij＿betw \(X\) UNIV
\(\mathcal{D}\)
using bij＿betw＿from＿nat＿into by blast
then have eq：\((\bigcup \mathcal{D})=(\bigcup n . X n)\left(f^{\prime} \bigcup \mathcal{D}\right)=\left(\bigcup n . f^{\prime} X n\right)\)
by（auto simp：bij＿betw＿def）
have meas：\(\bigwedge K . K \in \mathcal{D} \Longrightarrow K \in\) lmeasurable
using cbox by blast
with \(S\) have 1：\(\bigwedge n . X n \in\) lmeasurable
```

 by (auto simp: bij_betw_def)
 have 2: pairwise (}\lambdamn\mathrm{ n. negligible (}Xm\capXn)\mathrm{) UNIV
 using S unfolding bij_betw_def pairwise_def by (metis injD negid
 range_eqI)
have bounded (U\mathcal{D})
by (meson Sup_least bounded_cbox bounded_subset cbox)
then have 3: bounded (}\bigcupn.Xn
using S unfolding bij_betw_def by blast
have (\bigcupn.Xn)\inlmeasurable
by (rule measurable_countable_negligible_Union_bounded [OF 1 2 3])
with S have f1: \n.f'(X n) \in lmeasurable
unfolding bij_betw_def by (metis assms(1) cbox measurable_linear_image_interval
rangeI)
have f2: pairwise (\lambdam n. negligible (f` (X m) \capf`(X n))) UNIV
using S unfolding bij_betw_def pairwise_def by (metis injD negf rangeI)
have bounded (U\mathcal{D})
by (meson Sup_least bounded_cbox bounded_subset cbox)
then have f3: bounded (\n.f'X n)
using S unfolding bij_betw_def
by (metis bounded_linear_image linear_linear assms(1) image_Union
range_composition)
have (}\lambdan.?\mu(Xn)) sums ?\mu (Un. X n
by (rule measure_countable_negligible_Union_bounded [OF 1
have meq: ? }\mu(\bigcupn.f'Xn)=m*?\mu(U(X'UNIV)
proof (rule sums_unique2 [OF measure_countable_negligible_Union_bounded
[OF f1 f2 f3]])
have m: \n.? }\mu(\mp@subsup{f}{}{\prime}Xn)=(m*?\mu(Xn)
using S unfolding bij_betw_def by (metis cbox im rangeI)
show (\lambdan.? }\mu(f`Xn)) sums (m*? (| ((X'UNIV))
unfolding m
using measure_countable_negligible_Union_bounded [OF 1 2 3] sums_mult
by blast
qed
show ?thesis
using measurable_countable_negligible_Union_bounded [OF f1 f2 f3] meq
by (auto simp: eq [symmetric])
qed
qed
show ?thesis
unfolding completion.fmeasurable_measure_inner_outer_le
proof (intro conjI allI impI)
fix e :: real
assume e>0
have 1: cbox a b-S \ lmeasurable
by (simp add: fmeasurable.Diff that)
have 2: 0<e / (1+ |m|)
using <e>0\rangle by (simp add: field_split_simps abs_add_one_gt_zero)
obtain \mathcal{D}
where countable \mathcal{D}

```
and cbox：\(\wedge K . K \in \mathcal{D} \Longrightarrow K \subseteq\) cbox \(a b \wedge K \neq\{ \} \wedge(\exists c d . K=\) cbox c d）
and intdisj：pairwise（ \(\lambda A\) B．interior \(A \cap\) interior \(B=\{ \}\) ） \(\mathcal{D}\)
and \(D D\) ：cbox a \(b-S \subseteq \bigcup \mathcal{D} \bigcup \mathcal{D} \in\) lmeasurable
and \(l e\) ：？\(\mu(\bigcup \mathcal{D}) \leq ? \mu(\) cbox a \(b-S)+e /(1+|m|)\)
by（rule measurable＿outer＿intervals＿bounded［of cbox ab－S abe／（1＋ \(|m|)\) ］；use 12 pairwise＿def in force）
show \(\exists T \in\) lmeasurable．\(T \subseteq f^{\prime} S \wedge m * ? \mu S-e \leq ? \mu T\)
proof（intro bexI conjI）
show \(f^{\prime}(c b o x\) a \(b)-f^{\prime}(\bigcup \mathcal{D}) \subseteq f^{\prime} S\)
using «cbox a \(b-S \subseteq \bigcup \mathcal{D}\) 〉 by force
have \(m * ? \mu S-e \leq m *(? \mu S-e /(1+|m|))\)
using \(\langle m \geq 0\rangle\langle e>0\rangle\) by（simp add：field＿simps）
also have \(\ldots \leq\) ？\(\mu\left(f\right.\)＇cbox a b）- ？\(\mu\left(f^{\prime}(\bigcup \mathcal{D})\right)\)
proof－
have ？\(\mu(\) cbox a \(b-S)=? \mu(\) cbox a b）\(-? \mu S\) by（simp add：measurable＿measure＿Diff \(\langle S \subseteq\) cbox a b〉fmeasurableD that（2））
then have \((? \mu S-e /(1+m)) \leq(\) content \((\) cbox ab）\(-? \mu(\bigcup \mathcal{D}))\)
using \(\langle m \geq 0\) 〉 le by auto
then show ？thesis
using \(\langle m \geq 0\rangle\langle e>0\rangle\)
by（simp add：mult＿left＿mono im fUD［OF〈countable \(\mathcal{D}\) 〉cbox intdisj］ flip：right＿diff＿distrib）
qed
also have \(\ldots=? \mu\left(f\right.\)＇cbox a \(\left.b-f^{\prime} \cup \mathcal{D}\right)\)
proof（rule measurable＿measure＿Diff［symmetric］）
show \(f\)＇cbox a \(b \in\) lmeasurable
by（simp add：assms（1）measurable＿linear＿image＿interval）
show \(f\)＇\(\cup \mathcal{D} \in\) sets lebesgue
by（simp add：〈countable \(\mathcal{D}\rangle\) cbox fUD fmeasurableD intdisj）
show \(f\)＇\(\bigcup \mathcal{D} \subseteq f^{\prime}\) cbox ab
by（simp add：Sup＿le＿iff cbox image＿mono）
qed
finally show \(m * ? \mu S-e \leq ? \mu\left(f\right.\)＇cbox \(\left.a b-f^{\prime} \cup \mathcal{D}\right)\) ．
show \(f\)＇cbox a \(b-f^{\prime} \cup \mathcal{D} \in\) lmeasurable
by（simp add：fUD 〈countable \(\mathcal{D}\) 〉 〈linear \(f\) 〉 cbox fmeasurable．Diff intdisj measurable＿linear＿image＿interval）
qed
next
fix \(e\) ：：real
assume \(e>0\)
have em： \(0<e /(1+|m|)\)
using \(\langle e>0\rangle\) by（simp add：field＿split＿simps abs＿add＿one＿gt＿zero）
obtain \(\mathcal{D}\)
where countable \(\mathcal{D}\)
and cbox：\(\wedge K . K \in \mathcal{D} \Longrightarrow K \subseteq\) cbox \(a b \wedge K \neq\{ \} \wedge(\exists c d . K=c b o x\) c d）
and intdisj：pairwise \((\lambda A B\) ．interior \(A \cap\) interior \(B=\{ \}) \mathcal{D}\)
```

 and DD:S\subseteq\bigcup\mathcal{D}\bigcup\mathcal{D}\inlmeasurable
 and le:? }\mu(\bigcup\mathcal{D})\leq?\muS+e/(1+|m|
 by (rule measurable_outer_intervals_bounded [of S a b e/(1 + |m|)]; use<S
 \inlmeasurable>\langleS\subseteqcbox a b> em in force)
show }\existsU\in\mathrm{ lmeasurable. f'S}\subseteqU\wedge? | U\leqm*? | S +
proof (intro bexI conjI)
show f'S\subseteqf`(U\mathcal{D}) by (simp add: DD(1) image_mono) have ? }\mu(f`\cup\mathcal{D})\leqm*(?\muS+e/(1+|m|)
using <m\geq0` le mult_left_mono by (auto simp: fUD <countable \mathcal{D}\<linear f>cbox fmeasurable.Diff intdisj measurable_linear_image_interval) also have .. \leqm*? }\muS+ using\langlem\geq0\rangle\langlee> 0\rangle by (simp add: fUD [OF〈countable \mathcal{D}\ranglecbox intdisj] field_simps) finally show ? }\mu(f`\cup\mathcal{D})\leqm*? \ S +e
show f' }\cup\mathcal{D}\in\mathrm{ lmeasurable
by (simp add:<countable \mathcal{D}\ cbox fUD intdisj)
qed
qed
qed
show ?thesis
unfolding has_measure_limit_iff
proof (intro allI impI)
fix e :: real
assume e>0
obtain B where B>0 and B:
\ab.ball 0 B\subseteqcbox a b\Longrightarrow ? }\mu(S\cap\mathrm{ cbox a b) - ? }\muS|<e/(1+|m|
using has_measure_limit [OF S] \langlee> 0\rangle by (metis abs_add_one_gt_zero
zero_less_divide_iff)
obtain c d::'n where cd: ball 0 B \subseteq cbox c d
by (metis bounded_subset_cbox_symmetric bounded_ball)
with B have less: |? }\mu(S\cap\mathrm{ cbox c d) - ? }\muS|<e/(1+|m|)
obtain D where D>0 and D: cbox c d\subseteq ball 0 D
by (metis bounded_cbox bounded_subset_ballD)
obtain C where C>0 and C: \bigwedgex.norm (fx)\leqC* norm x
using linear_bounded_pos <linear f> by blast

```

```

 |?\mu(f'S\cap cbox a b) -m*? }\mu\textrm{S}|<
 if ball }0(D*C)\subseteqcbox ab for a
 proof -
 have bounded (S\caph'cbox a b)
 by (simp add: bounded_linear_image linear_linear <linear h> bounded_Int)
 moreover have Shab: S\caph' cbox a b flmeasurable
 by (simp add: S <linear h> fmeasurable.Int measurable_linear_image_interval)
 moreover have fim: f'}(S\cap\mp@subsup{h}{}{\prime}(cbox a b)) = (f'S)\cap cbox a b
 by (auto simp: hf rev_image_eqI fh)
 ultimately have 1:(f'S)\cap cbox a b \in lmeasurable
 and 2: ? }\mu((f'S)\cap\mathrm{ cbox a b) = m*? }\mu(S\caph'cbox a b
    ```
```

 using fBS [of S \cap(h'(cbox a b))] by auto
 have *:\llbracket|z-m|<e;z\leqw;w\leqm\rrbracket\Longrightarrow \ w - m| \leqe
 for }wzm\mathrm{ and e::real by auto
 have meas_adiff: |? }\mu(S\caph'cbox a b) - ?\mu S| \leqe/(1+|m|
 proof (rule * [OF less])
 show ? }\mu(S\capcbox c d)\leq? \ (S\caph'cbox a b)
 proof (rule measure_mono_fmeasurable [OF _ _ Shab])
 have f'ball 0 D\subseteq ball O (C*D)
 using C〈C> 0\rangle
 apply (clarsimp simp: algebra_simps)
 by (meson le_less_trans linordered_comm_semiring_strict_class.comm_mult_strict_left_mono)
 then have f'ball 0 D\subseteqcbox a b
 by (metis mult.commute order_trans that)
 have ball 0 D\subseteqh'cbox a b
 by (metis 〈f'ball 0 D\subseteqcbox a b〉 hf image_subset_iff subsetI)
 then show S\cap cbox c d\subseteqS\caph'cbox a b
 using D by blast
 next
 show S\cap cbox c d \in sets lebesgue
 using S fmeasurable_cbox by blast
 qed
 next
 show ? }\mu(S\caph'cbox a b) \leq ? \mu S
 by (simp add: S Shab fmeasurableD measure_mono_fmeasurable)
 qed
 have |?\mu(f`S\cap cbox a b) - m*? }\muS|\leq|?\muS-?\mu(S\caph'cbox a b)
 * m
by (metis 2 <m \geq 0\rangle abs_minus_commute abs_mult_pos mult.commute
order_refl right_diff_distrib')
also have .. \leqe/(1+m)*m
by (metis \m \geq0` abs_minus_commute abs_of_nonneg meas_adiff mult.commute
mult_left_mono)
also have ...<e
using }\langlee>0\rangle\langlem\geq0\rangle\mathrm{ by (simp add: field_simps)
finally have |? }\mu(f'S\capcbox a b) -m*?\muS|<e
with 1 show ?thesis by auto
qed
then show \existsB>0.\forallab. ball OB\subseteqcbox ab\longrightarrow
f'S\cap cbox a b lmeasurable }
|? }\mu(f'S\cap\mathrm{ cbox a b) - m*? }\muS|<
using }\langleC>0\rangle\langleD>0\rangle\mathrm{ by (metis mult_zero_left mult_less_iff1)
qed
qed
qed

```

\section*{6．19．17 Lemmas about absolute integrability}
lemma absolutely＿integrable＿linear：
fixes \(f::\)＇m：：euclidean＿space \(\Rightarrow\)＇\(n\) ：：euclidean＿space
and \(h:: ' n::\) euclidean_space \(\Rightarrow\) ' \(p:: e u c l i d e a n \_s p a c e\)
shows \(f\) absolutely_integrable_on \(s \Longrightarrow\) bounded_linear \(h \Longrightarrow(h \circ f)\) absolutely_integrable_on
\(s\)
using integrable_bounded_linear \(\left[\right.\) of \(h\) lebesgue \(\lambda x\). indicator s \(\left.x *_{R} f x\right]\)
by (simp add: linear_simps[of h] set_integrable_def)
lemma absolutely_integrable_sum:
fixes \(f:: ' a \Rightarrow\) ' \(n::\) euclidean_space \(\Rightarrow\) ' \(m::\) euclidean_space
assumes finite \(T\) and \(\bigwedge a . a \in T \Longrightarrow(f a)\) absolutely_integrable_on \(S\)
shows ( \(\lambda x\). sum ( \(\lambda a . f a x) T\) ) absolutely_integrable_on \(S\)
using assms by induction auto
lemma absolutely_integrable_integrable_bound:
fixes \(f::\) ' \(n\) ::euclidean_space \(\Rightarrow\) ' \(m::\) euclidean_space
assumes le: \(\bigwedge x . x \in S \Longrightarrow \operatorname{norm}(f x) \leq g x\) and \(f: f\) integrable_on \(S\) and \(g: g\)
integrable_on \(S\)
shows \(f\) absolutely_integrable_on \(S\)
unfolding set_integrable_def
proof (rule Bochner_Integration.integrable_bound)
have \(g\) absolutely_integrable_on \(S\) unfolding absolutely_integrable_on_def
proof
show ( \(\lambda x\). norm ( \(g x)\) ) integrable_on \(S\)
using le norm_ge_zero[of f ]
by (intro integrable_spike_finite[OF _ _ g, of \{\}])
(auto intro!: abs_of_nonneg intro: order_trans simp del: norm_ge_zero)
qed fact
then show integrable lebesgue ( \(\lambda x\). indicat_real \(\left.S x *_{R} g x\right)\) by (simp add: set_integrable_def)
show \(\left(\lambda x\right.\). indicat_real \(\left.S x *_{R} f x\right) \in\) borel_measurable lebesgue
using \(f\) by (auto intro: has_integral_implies_lebesgue_measurable simp: inte-
grable_on_def)
qed (use le in 〈force intro!: always_eventually split: split_indicator〉)
corollary absolutely_integrable_on_const [simp]:
fixes \(c\) :: ' \(a::\) euclidean_space
assumes \(S \in\) lmeasurable
shows ( \(\lambda x . c\) ) absolutely_integrable_on \(S\)
by (metis (full_types) assms absolutely_integrable_integrable_bound integrable_on_const
order_refl)
lemma absolutely_integrable_continuous:
fixes \(f\) :: 'a::euclidean_space \(\Rightarrow\) ' \(b::\) euclidean_space
shows continuous_on (cbox ab) \(f \Longrightarrow f\) absolutely_integrable_on cbox ab
using absolutely_integrable_integrable_bound
by (simp add: absolutely_integrable_on_def continuous_on_norm integrable_continuous)
lemma absolutely_integrable_continuous_real:
fixes \(f\) :: real \(\Rightarrow\) 'b::euclidean_space
```

 shows continuous_on \(\{a . . b\} f \Longrightarrow f\) absolutely_integrable_on \(\{a . . b\}\)
 by (metis absolutely_integrable_continuous box_real(2))
 lemma continuous_imp_integrable:
fixes f :: 'a::euclidean_space \Rightarrow ' $b::$ euclidean_space
assumes continuous_on (cbox a b) f
shows integrable (lebesgue_on (cbox a b)) f
proof -
have f absolutely_integrable_on cbox a b
by (simp add: absolutely_integrable_continuous assms)
then show ?thesis
by (simp add: integrable_restrict_space set_integrable_def)
qed
lemma continuous_imp_integrable_real:
fixes $f::$ real \Rightarrow 'b::euclidean_space
assumes continuous_on $\{a . . b\} f$
shows integrable (lebesgue_on $\{a . . b\}) f$
by (metis assms continuous_imp_integrable interval_cbox)

```

\subsection*{6.19.18 Componentwise}
proposition absolutely_integrable_componentwise_iff:
shows \(f\) absolutely_integrable_on \(A \longleftrightarrow(\forall b \in\) Basis. \((\lambda x . f x \cdot b)\) absolutely_integrable_on
A)
proof -
have \(*:(\lambda x\). norm \((f x))\) integrable_on \(A \longleftrightarrow(\forall b \in\) Basis. \((\lambda x . \operatorname{norm}(f x \cdot b))\)
integrable_on A) (is ?lhs = ? \(r\) rs \()\)
if \(f\) integrable_on \(A\)
proof
assume ?lhs
then show ?rhs
by (metis absolutely_integrable_on_def Topology_Euclidean_Space.norm_nth_le absolutely_integrable_integrable_bound integrable_component that)
next
assume \(R\) : ?rhs
have \(f\) absolutely_integrable_on \(A\)
proof (rule absolutely_integrable_integrable_bound)
show ( \(\lambda x\). \(\sum i \in\) Basis. norm \((f x \cdot i)\) ) integrable_on \(A\)
using \(R\) by (force intro: integrable_sum)
qed (use that norm_le_l1 in auto)
then show? \({ }^{\text {lhs }}\)
using absolutely_integrable_on_def by auto
qed
show ?thesis
unfolding absolutely_integrable_on_def
by (simp add: integrable_componentwise_iff [symmetric] ball_conj_distrib \(*\) cong:
conj_cong)
qed
lemma absolutely_integrable_componentwise:
shows \((\bigwedge b . b \in\) Basis \(\Longrightarrow(\lambda x . f x \cdot b)\) absolutely_integrable_on \(A) \Longrightarrow f\) absolutely_integrable_on \(A\)
using absolutely_integrable_componentwise_iff by blast
lemma absolutely_integrable_component:
\(f\) absolutely_integrable_on \(A \Longrightarrow(\lambda x . f x \cdot(b:: ' b\) :: euclidean_space \()\) ) absolutely_integrable_on \(A\)
by (drule absolutely_integrable_linear[OF _ bounded_linear_inner_left[of b]]) (simp add: o_def)
lemma absolutely_integrable_scaleR_left:
fixes \(f::\) ' \(n::\) euclidean_space \(\Rightarrow\) 'm::euclidean_space
assumes \(f\) absolutely_integrable_on \(S\)
shows \(\left(\lambda x . c *_{R} f x\right)\) absolutely_integrable_on \(S\)
proof -
have \(\left(\lambda x . c *_{R} x\right)\) of absolutely_integrable_on \(S\)
by (simp add: absolutely_integrable_linear assms bounded_linear_scaleR_right)
then show ?thesis
using assms by blast
qed
lemma absolutely_integrable_scaleR_right:
assumes \(f\) absolutely_integrable_on \(S\)
shows ( \(\lambda x . f x *_{R} c\) ) absolutely_integrable_on \(S\)
using assms by blast
lemma absolutely_integrable_norm:
fixes \(f\) :: ' \(a\) :: euclidean_space \(\Rightarrow\) ' \(b\) :: euclidean_space
assumes \(f\) absolutely_integrable_on \(S\)
shows (norm of) absolutely_integrable_on \(S\)
using assms by (simp add: absolutely_integrable_on_def o_def)
lemma absolutely_integrable_abs:
fixes \(f::\) ' \(a\) :: euclidean_space \(\Rightarrow\) ' \(b\) :: euclidean_space
assumes \(f\) absolutely_integrable_on \(S\)
shows \(\left(\lambda x . \sum i \in\right.\) Basis. \(|f x \cdot i| *_{R}\) i) absolutely_integrable_on \(S\)
(is ? g absolutely_integrable_on \(S\) )
proof -
have \(*:\left(\lambda y . \sum j \in\right.\) Basis. if \(j=i\) then \(y *_{R} j\) else 0\() \circ\)
\(\left(\lambda x\right.\). norm \(\left(\sum j \in\right.\) Basis. if \(j=i\) then \((x \cdot i) *_{R} j\) else 0\(\left.)\right) \circ f\)
absolutely_integrable_on \(S\)
if \(i \in\) Basis for \(i\)
proof -
have bounded_linear \(\left(\lambda y . \sum j \in\right.\) Basis. if \(j=i\) then \(y *_{R} j\) else 0\()\)
by (simp add: linear_linear algebra_simps linearI)
moreover have \(\left(\lambda x\right.\). norm \(\left(\sum j \in\right.\) Basis. if \(j=i\) then \((x \cdot i) *_{R} j\) else 0\(\left.)\right) \circ f\)
```

 absolutely_integrable_on S
 using assms <i \in Basis>
 unfolding o_def
 by (intro absolutely_integrable_norm [unfolded o_def])
 (auto simp: algebra_simps dest: absolutely_integrable_component)
 ultimately show ?thesis
 by (subst comp_assoc) (blast intro: absolutely_integrable_linear)
 qed
 have eq: ?g =
 (\lambdax. \sumi\inBasis. ((\lambday. \sumj\inBasis. if j=i then y *R j else 0) ○
 (\lambdax.norm (}\sumj\in\mathrm{ Basis. if }j=i\mathrm{ then }(x\cdoti)\mp@subsup{*}{R}{}j\mathrm{ else 0)) ○f) x)
 by (simp)
 show ?thesis
 unfolding eq
 by (rule absolutely_integrable_sum) (force simp: intro!: *)+
 qed
lemma abs_absolutely_integrableI_1:
fixes f :: ' }a\mathrm{ :: euclidean_space }=>\mathrm{ real
assumes f: f integrable_on }A\mathrm{ and (}\lambdax.|fx|) integrable_on
shows f absolutely_integrable_on A
by (rule absolutely_integrable_integrable_bound [OF _ assms]) auto
lemma abs_absolutely_integrableI:
assumes f:f integrable_on S and fcomp:(\lambdax. \sumi\inBasis. |fx | i| *R i) inte-
grable_on S
shows f absolutely_integrable_on S
proof -
have (\lambdax. (fx • i)*R i) absolutely_integrable_on S if i\in Basis for i
proof -
have (\lambdax. |f x • i|) integrable_on S
using assms integrable_component [OF fcomp, where y=i] that by simp
then have (}\lambdax.fx\cdoti) absolutely_integrable_on S
using abs_absolutely_integrableI_1 f integrable_component by blast
then show ?thesis
by (rule absolutely_integrable_scaleR_right)
qed
then have (}\lambdax.\sumi\in\mathrm{ Basis. (}fx\cdoti)\mp@subsup{*}{R}{}i)\mathrm{ absolutely_integrable_on S
by (simp add: absolutely_integrable_sum)
then show ?thesis
by (simp add: euclidean_representation)
qed
lemma absolutely_integrable_abs_iff:
f absolutely_integrable_on S \longleftrightarrow
f integrable_on S ^(}\lambdax.\sumi\inBasis. |fx • i| *R i) integrable_on S
(is ?lhs = ?rhs)

```
```

proof
assume?lhs then show ?rhs
using absolutely_integrable_abs absolutely_integrable_on_def by blast
next
assume ?rhs
moreover
have (\lambdax. if }x\inS\mathrm{ then }\sumi\inBasis. |fx \cdot i| *R i else 0) =(\lambdax. \sumi\inBasis. |(if
x\inS then f x else 0) - i| *R i)
by force
ultimately show ?lhs
by (simp only: absolutely_integrable_restrict_UNIV [of S, symmetric] inte-
grable_restrict_UNIV [of S, symmetric] abs_absolutely_integrableI)
qed
lemma absolutely_integrable_max:
fixes f :: ' }n:::uclidean_space => 'm::euclidean_space
assumes f absolutely_integrable_on S g absolutely_integrable_on S
shows (\lambdax. \sumi\inBasis. max (fx | i) (gx | i) *R i)
absolutely_integrable_on S
proof -
have (}\lambdax.\sumi\inBasis.max (fx\cdoti)(gx\cdoti)\mp@subsup{*}{R}{}i)

```

```

 proof (rule ext)
 fix }
    ```

```

• i + |fx • i-g x - i|) / 2) *R i)
by (force intro: sum.cong)

```

```

*R
by (simp add: scaleR_right.sum)

```

```

 by (simp add: sum.distrib algebra_simps euclidean_representation)
 finally
    ```

```

 (1/2) **
 qed
 moreover have (\lambdax. (1/2) *R
 i)))
absolutely_integrable_on S
using absolutely_integrable_abs [OF set_integral_diff(1) [OF assms]]
by (intro set_integral_add absolutely_integrable_scaleR_left assms) (simp add:
algebra_simps)
ultimately show ?thesis by metis
qed
corollary absolutely_integrable_max_1:
fixes f :: 'n::euclidean_space }=>\mathrm{ real
assumes f absolutely_integrable_on S g absolutely_integrable_on S
shows (}\lambdax.\operatorname{max (fx)(gx)) absolutely_integrable_on S

```
```

 using absolutely_integrable_max [OF assms] by simp
 lemma absolutely_integrable_min:
fixes $f::$ ' $n::$ euclidean_space \Rightarrow ' $m::$ euclidean_space
assumes f absolutely_integrable_on S g absolutely_integrable_on S
shows $\left(\lambda x . \sum i \in\right.$ Basis. $\left.\min (f x \cdot i)(g x \cdot i) *_{R} i\right)$
absolutely_integrable_on S
proof -
have $\left(\lambda x . \sum i \in\right.$ Basis. $\left.\min (f x \cdot i)(g x \cdot i) *_{R} i\right)=$
$\left(\lambda x .(1 / 2) *_{R}\left(f x+g x-\left(\sum i \in\right.\right.\right.$ Basis. $\left.\left.\left.|f x \cdot i-g x \cdot i| *_{R} i\right)\right)\right)$
proof (rule ext)
fix x
have $\left(\sum i \in\right.$ Basis. $\left.\min (f x \cdot i)(g x \cdot i) *_{R} i\right)=\left(\sum i \in\right.$ Basis. $((f x \cdot i+g x \cdot$
$i-|f x \cdot i-g x \cdot i|) /$ 2) $\left.*_{R} i\right)$
by (force intro: sum.cong)
also have $\ldots=(1 / 2) *_{R}\left(\sum i \in\right.$ Basis. $(f x \cdot i+g x \cdot i-|f x \cdot i-g x \cdot i|)$
$\left.*_{R} i\right)$
by (simp add: scaleR_right.sum)
also have $\ldots=(1 / 2) *_{R}\left(f x+g x-\left(\sum i \in\right.\right.$ Basis. $\left.\left.|f x \cdot i-g x \cdot i| *_{R} i\right)\right)$
by (simp add: sum.distrib sum_subtractf algebra_simps euclidean_representation)
finally
show $\left(\sum i \in\right.$ Basis. $\left.\min (f x \cdot i)(g x \cdot i) *_{R} i\right)=$
$(1 / 2) *_{R}\left(f x+g x-\left(\sum i \in\right.\right.$ Basis. $\left.\left.|f x \cdot i-g x \cdot i| *_{R} i\right)\right)$.
qed
moreover have $\left(\lambda x\right.$. (1/2) $*_{R}\left(f x+g x-\left(\sum i \in\right.\right.$ Basis. $|f x \cdot i-g x \cdot i| *_{R}$
i)))
absolutely_integrable_on S
using absolutely_integrable_abs [OF set_integral_diff(1) [OF assms]]
by (intro set_integral_add set_integral_diff absolutely_integrable_scaleR_left assms)
(simp add: algebra_simps)
ultimately show ?thesis by metis
qed
corollary absolutely_integrable_min_1:
fixes $f::$ ' $n::$ euclidean_space \Rightarrow real
assumes f absolutely_integrable_on S g absolutely_integrable_on S
shows (λx. min $(f x)(g x))$ absolutely_integrable_on S
using absolutely_integrable_min [OF assms] by simp
lemma nonnegative_absolutely_integrable:
fixes f :: ' a :: euclidean_space \Rightarrow ' b :: euclidean_space
assumes f integrable_on A and comp: $\bigwedge x b . \llbracket x \in A ; b \in B a s i s \rrbracket \Longrightarrow 0 \leq f x \cdot b$
shows f absolutely_integrable_on A
proof -
have $\left(\lambda x .(f x \cdot i) *_{R} i\right)$ absolutely_integrable_on A if $i \in$ Basis for i
proof -
have $(\lambda x . f x \cdot i)$ integrable_on A
by (simp add: assms(1) integrable_component)
then have $(\lambda x . f x \cdot i)$ absolutely_integrable_on A

```
```

 by (metis that comp nonnegative_absolutely_integrable_1)
 then show ?thesis
 by (rule absolutely_integrable_scaleR_right)
 qed
 then have (}\lambdax.\sumi\inBasis. (fx\cdoti)\mp@subsup{*}{R}{}i)\mathrm{ absolutely_integrable_on A
 by (simp add: absolutely_integrable_sum)
 then show ?thesis
 by (simp add: euclidean_representation)
 qed
lemma absolutely_integrable_component_ubound:
fixes f :: 'a :: euclidean_space = ' 'b :: euclidean_space
assumes f:f integrable_on A and g: g absolutely_integrable_on A
and comp: \xb.\llbracketx\inA;b\inBasis\rrbracket\Longrightarrowfx \ b \leqgx \cdot b
shows f absolutely_integrable_on A
proof -
have (\lambdax.gx-(gx-fx)) absolutely_integrable_on A
proof (rule set_integral_diff [OF g nonnegative_absolutely_integrable])
show (}\lambdax.gx-fx) integrable_on A
using Henstock_Kurzweil_Integration.integrable_diff absolutely_integrable_on_def
fg}\mathrm{ by blast
qed (simp add: comp inner_diff_left)
then show ?thesis
by simp
qed
lemma absolutely_integrable_component_lbound:
fixes f :: 'a :: euclidean_space => 'b :: euclidean_space
assumes f:f absolutely_integrable_on A and g: g integrable_on A
and comp: \bigwedgex b. \llbracketx\inA;b\inBasis\rrbracket\Longrightarrowfx | b \leqgx | b
shows g absolutely_integrable_on A
proof -
have (\lambdax.fx+(gx - f x)) absolutely_integrable_on A
proof (rule set_integral_add [OF f nonnegative_absolutely_integrable])
show (}\lambdax.gx-fx) integrable_on A
using Henstock_Kurzweil_Integration.integrable_diff absolutely_integrable_on_def
fg}\mathrm{ by blast
qed (simp add: comp inner_diff_left)
then show ?thesis
by simp
qed
lemma integrable_on_1_iff:
fixes f :: 'a::euclidean_space }=>\mathrm{ real^1
shows f integrable_on S \longleftrightarrow (\lambdax.fx\$ 1) integrable_on S
by (auto simp: integrable_componentwise_iff [of f] Basis_vec_def cart_eq_inner_axis)
lemma integral_on_1_eq:
fixes f :: 'a::euclidean_space }=>\mathrm{ real^1

```
```

 shows integral \(S f=\operatorname{vec}(\) integral \(S(\lambda x . f x \$ 1))\)
 by (cases fintegrable_on S) (simp_all add: integrable_on_1_iff vec_eq_iff not_integrable_integral)
lemma absolutely_integrable_on_1_iff:
fixes f :: 'a::euclidean_space \Rightarrow real^1
shows f absolutely_integrable_on $S \longleftrightarrow(\lambda x . f x \$ 1)$ absolutely_integrable_on S
unfolding absolutely_integrable_on_def
by (auto simp: integrable_on_1_iff norm_real)
lemma absolutely_integrable_absolutely_integrable_lbound:
fixes f :: 'm::euclidean_space \Rightarrow real
assumes $f: f$ integrable_on S and $g: g$ absolutely_integrable_on S
and $*: \bigwedge x . x \in S \Longrightarrow g x \leq f x$
shows f absolutely_integrable_on S
by (rule absolutely_integrable_component_lbound $[$ OF g f]) (simp add: *)
lemma absolutely_integrable_absolutely_integrable_ubound:
fixes $f::$ 'm::euclidean_space \Rightarrow real
assumes $f g$: f integrable_on $S g$ absolutely_integrable_on S
and $*: \bigwedge x . x \in S \Longrightarrow f x \leq g x$
shows f absolutely_integrable_on S
by (rule absolutely_integrable_component_ubound $[$ OF fg]) (simp add: *)
lemma has_integral_vec1_I_cbox:
fixes $f::$ real^1 $\Rightarrow{ }^{\prime} a::$ real_normed_vector
assumes (f has_integral y) (cbox ab)
shows $((f \circ$ vec $)$ has_integral $y)\{a \$ 1 . . b \$ 1\}$
proof -
have $\left((\lambda x . f(\right.$ vec $x))$ has_integral $\left.(1 / 1) *_{R} y\right)((\lambda x . x$ \$ 1)' cbox a b)
proof (rule has_integral_twiddle)
show $\exists w z::$ real^1. vec ' cbox $u v=\operatorname{cbox} w z$
content (vec‘cbox u v :: (real^1) set) =1* content (cbox uv) for $u v$
unfolding vec_cbox_1_eq
by (auto simp: content_cbox_if_cart interval_eq_empty_cart)
show $\exists w z .(\lambda x . x \$ 1)$ 'cbox $u v=$ cbox $w z$ for $u v::$ real^1
using vec_nth_cbox_1_eq by blast
qed (auto simp: continuous_vec assms)
then show ?thesis
by (simp add: o_def)
qed
lemma has_integral_vec1_I:
fixes $f::$ real^1 \Rightarrow 'a::real_normed_vector
assumes (f has_integral y) S
shows $(f \circ$ vec has_integral $y)((\lambda x . x \$ 1) ' S)$
proof -
have $*: \exists z .((\lambda x$. if $x \in(\lambda x . x \$ 1)$ ' S then $(f \circ v e c) x$ else 0) has_integral $z)$
$\{a . . b\} \wedge \operatorname{norm}(z-y)<e$
if int: $\bigwedge a b$. ball $0 B \subseteq$ cbox a $b \Longrightarrow$

```
```

 (\existsz. ((\lambdax. if }x\inS\mathrm{ then f x else 0) has_integral z) (cbox a b) ^
 norm (z-y)<e)
and B: ball 0 B\subseteq{a..b} for e Bab
proof -
have [simp]: (\existsy\inS.x=y\$1)\longleftrightarrow vec x\inS for }
by force
have B': ball (0::real^1) B\subseteqcbox (vec a) (vec b)
using B by (simp add: Basis_vec_def cart_eq_inner_axis [symmetric] mem_box
norm_real subset_iff)
show ?thesis
using int [OF B] by (auto simp: image_iff o_def cong: if_cong dest!: has_integral_vec1_I_cbox)
qed
show ?thesis
using assms
apply (subst has_integral_alt)
apply (subst (asm) has_integral_alt)
apply (simp add: has_integral_vec1_I_cbox split: if_split_asm)
subgoal by (metis vector_one_nth)
subgoal
apply (erule all_forward imp_forward ex_forward asm_rl)+
by (blast intro!: *)+
done
qed
lemma has_integral_vec1_nth_cbox:
fixes f :: real \# 'a::real_normed_vector
assumes (f has_integral y) {a..b}
shows ((\lambdax::real^1.f(x\$1)) has_integral y) (cbox (vec a) (vec b))
proof -
have ((\lambdax::real^1.f(x\$1)) has_integral (1 / 1) *R y) (vec`cbox a b) proof (rule has_integral_twiddle) show \exists wz::real. (\lambdax.x $ 1)'cbox u v = cbox wz content ((\lambdax.x $ 1)` cbox u v) = 1 * content (cbox u v) for u v::real^1
unfolding vec_cbox_1_eq by (auto simp: content_cbox_if_cart interval_eq_empty_cart)
show \existswz::real^1.vec'cbox uv= cbox wz for }uv:: rea
using vec_cbox_1_eq by auto
qed (auto simp: continuous_vec assms)
then show ?thesis
using vec_cbox_1_eq by auto
qed
lemma has_integral_vec1_D_cbox:
fixes f :: real^1 = 'a::real_normed_vector
assumes ((f\circvec) has_integral y) {a\$1..b\$1}
shows (f has_integral y) (cbox a b)
by (metis (mono_tags, lifting) assms comp_apply has_integral_eq has_integral_vec1_nth_cbox
vector_one_nth)

```
lemma has_integral_vec1_D:
```

 fixes \(f::\) real^\({ }^{\wedge} 1 \Rightarrow{ }^{\prime} a::\) real_normed_vector
 assumes \(((f \circ\) vec) has_integral \(y)((\lambda x . x \$ 1)\) 'S \()\)
 shows (f has_integral y) \(S\)
 proof -
have $*: \exists z$. $((\lambda x$. if $x \in S$ then $f x$ else 0) has_integral $z)($ cbox a $b) \wedge$ norm $(z$
$-y)<e$
if int: $\bigwedge a b$. ball $0 B \subseteq\{a . . b\} \Longrightarrow$
(\exists z. $((\lambda x$. if $x \in(\lambda x . x \$ 1)$ ' S then $(f \circ$ vec $) x$ else 0$)$
has_integral z) $\{a . . b\} \wedge$ norm $(z-y)<e)$
and B : ball $0 B \subseteq$ cbox $a b$ for $e B$ and $a b::$ real^1
proof -
have B^{\prime} : ball $0 B \subseteq\{a \$ 1 . . b \$ 1\}$
proof (clarsimp)
fix t
assume $|t|<B$ then show $a \$ 1 \leq t \wedge t \leq b \$ 1$
using subsetD [OF B]
by (metis (mono_tags, hide_lams) mem_ball_0 mem_box_cart(2) norm_real
vec_component)
qed
have eq: $(\lambda x$. if vec $x \in S$ then $f($ vec $x)$ else 0$)=(\lambda x$. if $x \in S$ then $f x$ else
0) ○ vec
by force
have $[$ simp] $:(\exists y \in S . x=y \$ 1) \longleftrightarrow$ vec $x \in S$ for x
by force
show ?thesis
using int [OF B] by (auto simp: image_iffe eq cong: if_cong dest!: has_integral_vec1_D_cbox)
qed
show ?thesis
using assms
apply (subst has_integral_alt)
apply (subst (asm) has_integral_alt)
apply (simp add: has_integral_vec1_D_cbox eq_cbox split: if_split_asm, blast)
apply (intro conjI impI)
subgoal by (metis vector_one_nth)
apply (erule thin_rl)
apply (erule all_forward ex_forward conj_forward)+
by (blast intro!: *)+
qed
lemma integral_vec1_eq:
fixes $f::$ real^1 \Rightarrow 'a::real_normed_vector
shows integral $S f=$ integral $((\lambda x . x \$ 1)$ 'S) $(f \circ$ vec $)$
using has_integral_vec1_I [of f] has_integral_vec1_D [of f]
by (metis has_integral_iff not_integrable_integral)
lemma absolutely_integrable_drop:
fixes $f::$ real^1 $\Rightarrow{ }^{\prime} b::$ euclidean_space
shows f absolutely_integrable_on $S \longleftrightarrow(f \circ$ vec) absolutely_integrable_on $(\lambda x . x$

```
```

\$ 1)'S
unfolding absolutely_integrable_on_def integrable_on_def
proof safe
fix yr
assume (f has_integral y) S ((\lambdax. norm (f x)) has_integral r) S
then show }\existsy.(f\circ\mathrm{ vec has_integral y) ((}\lambdax.x\$1)`S
\existsy. ((\lambdax. norm ((f\circvec) x)) has_integral y) ((\lambdax.x \$ 1)'S)
by (force simp: o_def dest!: has_integral_vec1_I)+
next
fix }y\mathrm{ :: 'b and r :: real
assume (f ○ vec has_integral y) ((\lambdax. x \$ 1)'S)
((\lambdax.norm ((f\circvec) x)) has_integral r) ((\lambdax. x \$ 1)'S)
then show }\existsy.(f\mathrm{ has_integral y) S ヨy. ((}\lambdax.norm (fx)) has_integral y)
by (force simp: o_def intro: has_integral_vec1_D)+
qed

```

\subsection*{6.19.19 Dominated convergence}
lemma dominated_convergence:
fixes \(f::\) nat \(\Rightarrow\) ' \(n::\) euclidean_space \(\Rightarrow\) ' \(m\) ::euclidean_space
assumes \(f: \wedge k\). \((f k)\) integrable_on \(S\) and \(h\) : \(h\) integrable_on \(S\)
and \(l e: \bigwedge k x . x \in S \Longrightarrow \operatorname{norm}(f k x) \leq h x\)
and conv: \(\bigwedge x . x \in S \Longrightarrow(\lambda k . f k x) \longrightarrow g x\)
shows \(g\) integrable_on \(S(\lambda k\). integral \(S(f k)) \longrightarrow\) integral \(S g\)
proof -
have 3: \(h\) absolutely_integrable_on \(S\) unfolding absolutely_integrable_on_def
proof
show ( \(\lambda x\). norm ( \(h x)\) ) integrable_on \(S\)
proof (intro integrable_spike_finite[OF _ _ \(h\), of \{\}] ballI)
fix \(x\) assume \(x \in S-\{ \}\) then show norm \((h x)=h x\)
by (metis Diff_empty abs_of_nonneg bot_set_def le norm_ge_zero order_trans
real_norm_def)
qed auto
qed fact
have 2: set_borel_measurable lebesgue \(S(f k)\) for \(k\)
unfolding set_borel_measurable_def
using \(f\) by (auto intro: has_integral_implies_lebesgue_measurable simp: inte-
grable_on_def)
then have 1: set_borel_measurable lebesgue \(S \mathrm{~g}\)
unfolding set_borel_measurable_def
by (rule borel_measurable_LIMSEQ_metric) (use conv in «auto split: split_indicator〉)
have 4: AE \(x\) in lebesgue. ( \(\lambda i\). indicator \(\left.S x *_{R} f i x\right) \longrightarrow\) indicator \(S x *_{R} g\)
\(x\)
AE \(x\) in lebesgue. norm (indicator \(\left.S x *_{R} f k x\right) \leq\) indicator \(S x *_{R} h x\) for \(k\) using conv le by (auto intro!: always_eventually split: split_indicator)
have \(g\) : \(g\) absolutely_integrable_on \(S\)
using 1234 unfolding set_borel_measurable_def set_integrable_def by (rule integrable_dominated_convergence)
```

 then show \(g\) integrable_on \(S\)
 by (auto simp: absolutely_integrable_on_def)
 have \((\lambda k\). \((\) LINT \(x: S \mid\) lebesgue. \(f k x)) \longrightarrow(\) LINT \(x: S \mid\) lebesgue. \(g x)\)
 unfolding set_borel_measurable_def set_lebesgue_integral_def
 using 1234 unfolding set_borel_measurable_def set_lebesgue_integral_def
 set_integrable_def
by (rule integral_dominated_convergence)
then show $(\lambda k$. integral $S(f k)) \longrightarrow$ integral $S g$
using g absolutely_integrable_integrable_bound[OF le f h]
by (subst (asm) (1 2) set_lebesgue_integral_eq_integral) auto
qed
lemma has_integral_dominated_convergence:
fixes $f::$ nat \Rightarrow ' $n::$ euclidean_space \Rightarrow 'm::euclidean_space
assumes $\wedge k$. ($f k$ has_integral y $k) S h$ integrable_on S
$\wedge k . \forall x \in S . \operatorname{norm}(f k x) \leq h x \forall x \in S .(\lambda k . f k x) \longrightarrow g x$
and $x: y \longrightarrow x$
shows (g has_integral x) S
proof -
have int_ $f: \bigwedge k .(f k)$ integrable_on S
using assms by (auto simp: integrable_on_def)
have (g has_integral (integral $S g$)) S
by (metis assms(2-4) dominated_convergence(1) has_integral_integral int_f)
moreover have integral $S g=x$
proof (rule LIMSEQ_unique)
show $(\lambda$ i. integral $S(f i)) \longrightarrow x$
using integral_unique[OF assms(1)] x by simp
show (λ i. integral $S(f i)$) integral $S g$
by (metis assms(2) assms(3) assms(4) dominated_convergence(2) int_f)
qed
ultimately show ?thesis
by simp
qed
lemma dominated_convergence_integrable_1:
fixes $f::$ nat \Rightarrow ' $n::$ euclidean_space \Rightarrow real
assumes $f: \wedge k$. $f k$ absolutely_integrable_on S
and h : h integrable_on S
and normg: $\bigwedge x . x \in S \Longrightarrow \operatorname{norm}(g x) \leq(h x)$
and lim: $\bigwedge x . x \in S \Longrightarrow(\lambda k . f k x) \longrightarrow g x$
shows g integrable_on S
proof -
have habs: h absolutely_integrable_on S
using h normg nonnegative_absolutely_integrable_1 norm_ge_zero order_trans by
blast
let ? $f=\lambda n x .(\min (\max (-h x)(f n x))(h x))$
have $h 0$: $h x \geq 0$ if $x \in S$ for x
using normg that by force
have leh: norm (?f $k x$) $\leq h x$ if $x \in S$ for $k x$

```
using h0 that by force
have limf: \((\lambda k\). ?f \(k x) \longrightarrow g x\) if \(x \in S\) for \(x\)
proof -
have \(\bigwedge e y .|f y x-g x|<e \Longrightarrow|\min (\max (-h x)(f y x))(h x)-g x|<e\) using h0 [OF that] normg [OF that] by simp
then show ?thesis
using lim [OF that] by (auto simp add: tendsto_iff dist_norm elim!: eventu-
ally_mono)
qed
show ?thesis
proof (rule dominated_convergence \([\) of ?f \(S h g]\) )
have \((\lambda x .-h x)\) absolutely_integrable_on \(S\)
using habs unfolding set_integrable_def by auto
then show ?f \(k\) integrable_on \(S\) for \(k\)
by (intro set_lebesgue_integral_eq_integral absolutely_integrable_min_1 absolutely_integrable_max_1 f habs)
qed (use assms leh limf in auto)
qed
lemma dominated_convergence_integrable:
fixes \(f::\) nat \(\Rightarrow\) ' \(n::\) euclidean_space \(\Rightarrow\) ' \(m::\) euclidean_space
assumes \(f: \wedge k . f k\) absolutely_integrable_on \(S\)
and \(h\) : \(h\) integrable_on \(S\)
and normg: \(\bigwedge x . x \in S \Longrightarrow \operatorname{norm}(g x) \leq(h x)\)
and lim: \(\bigwedge x . x \in S \Longrightarrow(\lambda k . f k x) \longrightarrow g x\)
shows \(g\) integrable_on \(S\)
using \(f\)
unfolding integrable_componentwise_iff [of g] absolutely_integrable_componentwise_iff
[where \(f=f k\) for \(k\) ]
proof clarify
fix \(b:: ' m\)
assume \(f b\) [rule_format]: \(\bigwedge k . \forall b \in\) Basis. \((\lambda x . f k x \cdot b)\) absolutely_integrable_on
\(S\) and \(b: b \in\) Basis
show \((\lambda x . g x \cdot b)\) integrable_on \(S\)
proof (rule dominated_convergence_integrable_1 [OF fb h])
fix \(x\)
assume \(x \in S\)
show \(\operatorname{norm}(g x \cdot b) \leq h x\)
using norm_nth_le \(\langle x \in S\rangle b\) normg order.trans by blast
show \((\lambda k . f k x \cdot b) \longrightarrow g x \cdot b\)
using \(\langle x \in S\rangle b\) lim tendsto_componentwise_iff by fastforce
qed (use \(b\) in auto)
qed
lemma dominated_convergence_absolutely_integrable:
fixes \(f::\) nat \(\Rightarrow\) ' \(n::\) euclidean_space \(\Rightarrow{ }^{\prime} m::\) euclidean_space
assumes \(f: \bigwedge k . f k\) absolutely_integrable_on \(S\)
and \(h\) : \(h\) integrable_on \(S\)
and normg: \(\bigwedge x . x \in S \Longrightarrow \operatorname{norm}(g x) \leq(h x)\)
```

 and lim: \(\bigwedge x . x \in S \Longrightarrow(\lambda k . f k x) \longrightarrow g x\)
 shows \(g\) absolutely_integrable_on \(S\)
 proof -
have g integrable_on S
by (rule dominated_convergence_integrable [OF assms])
with assms show ?thesis
by (blast intro: absolutely_integrable_integrable_bound [where $g=h]$)
qed

```
proposition integral_countable_UN:
    fixes \(f::\) real \(^{\wedge} m \Rightarrow\) real \(^{\wedge} n\)
    assumes \(f: f\) absolutely_integrable_on \((\bigcup(\) range \(s))\)
        and \(s: \bigwedge m\). s \(m \in\) sets lebesgue
    shows \(\bigwedge n\).f absolutely_integrable_on \((\bigcup m \leq n . s m)\)
        and \((\lambda n\). integral \((\bigcup m \leq n . s m) f) \longrightarrow\) integral \((\bigcup(s\) 'UNIV \()) f\) (is ?F
        \(\rightarrow\) ? I)
proof -
    show \(f U\) : \(f\) absolutely_integrable_on \((\bigcup m \leq n . s m)\) for \(n\)
        using assms by (blast intro: set_integrable_subset [OF f])
    have fint: \(f\) integrable_on \((\cup\) (range s))
        using absolutely_integrable_on_def \(f\) by blast
    let \(? h=\lambda x\). if \(x \in \bigcup(s\) 'UNIV \()\) then norm \((f x)\) else 0
    have ( \(\lambda n\). integral UNIV \((\lambda x\). if \(x \in(\bigcup m \leq n . s m)\) then \(f x\) else 0\())\)
        \(\longrightarrow\) integral UNIV \((\lambda x\). if \(x \in \bigcup(s\) 'UNIV \()\) then \(f x\) else 0\()\)
    proof (rule dominated_convergence)
        show \((\lambda x\). if \(x \in(\bigcup m \leq n\). s \(m\) ) then \(f x\) else 0\()\) integrable_on UNIV for \(n\)
            unfolding integrable_restrict_UNIV
            using fU absolutely_integrable_on_def by blast
        show ( \(\lambda x\). if \(x \in \bigcup(s\) 'UNIV) then norm \((f x)\) else 0) integrable_on UNIV
            by (metis (no_types) absolutely_integrable_on_def \(f\) integrable_restrict_UNIV)
        show \(\wedge x\). \((\lambda n\). if \(x \in(\bigcup m \leq n\). s \(m)\) then \(f x\) else 0\()\)
            \(\longrightarrow(\) if \(x \in \bigcup(s\) 'UNIV) then \(f x\) else 0\()\)
        by (force intro: tendsto_eventually eventually_sequentiallyI)
    qed auto
    then show ? \(F \longrightarrow\) ? I
        by (simp only: integral_restrict_UNIV)
qed

\subsection*{6.19.20 Fundamental Theorem of Calculus for the Lebesgue integral}

For the positive integral we replace continuity with Borel-measurability.
```

lemma
fixes $f::$ real \Rightarrow real
assumes [measurable]: $f \in$ borel_measurable borel
assumes $f: \bigwedge x . x \in\{a . . b\} \Longrightarrow D E R I V F x:>f x \bigwedge x . x \in\{a . . b\} \Longrightarrow 0 \leq f x$
and $a \leq b$

```
```

 shows nn_integral_FTC_Icc: \(\left(\int{ }^{+} x\right.\). ennreal \((f x) *\) indicator \(\{a . . b\} x\) dlborel \()\)
 $=F b-F a$ (is ?nn)
and has_bochner_integral_FTC_Icc_nonneg:
has_bochner_integral lborel $(\lambda x . f x *$ indicator $\{a . . b\} x)(F b-F a)$ (is
?has)
and integral_FTC_Icc_nonneg: $\left(\int x . f x *\right.$ indicator $\{a . . b\} x$ dlborel $)=F b-$
$F a$ (is ? eq)
and integrable_FTC_Icc_nonneg: integrable lborel $(\lambda x . f x *$ indicator $\{a . . b\}$

```
\(x)\) (is ? int)
proof -
    have \(*:(\lambda x . f x *\) indicator \(\{a . . b\} x) \in\) borel_measurable borel \(\bigwedge x .0 \leq f x *\)
indicator \(\{a . . b\} x\)
    using \(f(2)\) by (auto split: split_indicator)
    have F_mono: \(a \leq x \Longrightarrow x \leq y \Longrightarrow y \leq b \Longrightarrow F x \leq F y\) for \(x y\)
        using \(f\) by (intro DERIV_nonneg_imp_nondecreasing \(\left[\begin{array}{ll}\text { of } x & y\end{array}\right]\) ) (auto intro:
order_trans)
    have ( \(f\) has_integral \(F b-F a)\{a . . b\}\)
        by (intro fundamental_theorem_of_calculus)
            ( auto simp: has_field_derivative_iff_has_vector_derivative[symmetric]
                intro: has_field_derivative_subset[OF f(1)] 〈a \(\leq b\rangle\) )
    then have \(i:((\lambda x . f x *\) indicator \(\{a . . b\} x)\) has_integral \(F b-F a)\) UNIV
    unfolding indicator_def if_distrib[where \(f=\lambda x . a * x\) for \(a\) ]
    by (simp cong del: if_weak_cong del: atLeastAtMost_iff)
    then have \(n n:\left(\int{ }^{+} x . f x *\right.\) indicator \(\{a . . b\} x\) dlborel \()=F b-F a\)
        by (rule nn_integral_has_integral_lborel \([O F *]\) )
    then show ?has
        by (rule has_bochner_integral_nn_integral[rotated 3]) (simp_all add: * F_mono
〈 \(a \leq b\) 〉)
    then show?eq?int
        unfolding has_bochner_integral_iff by auto
    show ? \(n n\)
        by (subst nn[symmetric])
        (auto intro!: nn_integral_cong simp add: ennreal_mult \(f\) split: split_indicator)
qed
lemma
    fixes \(f::\) real \(\Rightarrow{ }^{\prime} a\) :: euclidean_space
    assumes \(a \leq b\)
    assumes \(\bigwedge x . a \leq x \Longrightarrow x \leq b \Longrightarrow\) (F has_vector_derivative \(f x\) ) (at \(x\) within \(\{a\)
.. \(b\}\) )
    assumes cont: continuous_on \(\{a\).. \(b\} f\)
    shows has_bochner_integral_FTC_Icc:
        has_bochner_integral lborel ( \(\lambda x\). indicator \(\left.\{a . . b\} x *_{R} f x\right)(F b-F a)\) (is
?has)
        and integral_FTC_Icc: \(\left(\int x\right.\). indicator \(\{a . . b\} x *_{R} f x\) dlborel \()=F b-F a\)
(is ? eq)
proof -
```

 let ?f \(=\lambda x\). indicator \(\{a . . b\} x *_{R} f x\)
 have int: integrable lborel ?f
 using borel_integrable_compact \([O F\) _ cont \(]\) by auto
 have (f has_integral \(F b-F a)\{a . . b\}\)
 using \(\operatorname{assms}(1,2)\) by (intro fundamental_theorem_of_calculus) auto
 moreover
 have (\(f\) has_integral integral \({ }^{L}\) lborel ?f) \(\{a . . b\}\)
 using has_integral_integral_lborel[\(O F\) int]
 unfolding indicator_def if_distrib[where \(f=\lambda x . x *_{R} a\) for \(\left.a\right]\)
 by (simp cong del: if_weak_cong del: atLeastAtMost_iff)
 ultimately show? eq
 by (auto dest: has_integral_unique)
 then show ?has
 using int by (auto simp: has_bochner_integral_iff)
 qed
lemma
fixes $f::$ real \Rightarrow real
assumes $a \leq b$
assumes deriv: $\bigwedge x . a \leq x \Longrightarrow x \leq b \Longrightarrow$ DERIV F $x:>f x$
assumes cont: $\bigwedge x . a \leq x \Longrightarrow x \leq b \Longrightarrow$ isCont $f x$
shows has_bochner_integral_FTC_Icc_real:
has_bochner_integral lborel ($\lambda x . f x *$ indicator $\{a . . b\} x)(F b-F a)$ (is
?has)
and integral_FTC_Icc_real: $\left(\int x . f x *\right.$ indicator $\{a . . b\} x$ dlborel $)=F b-F$
a (is ? eq)
proof -
have 1: $\wedge x . a \leq x \Longrightarrow x \leq b \Longrightarrow$ (F has_vector_derivative $f x$) (at x within $\{a$
.. $b\}$)
unfolding has_field_derivative_iff_has_vector_derivative[symmetric]
using deriv by (auto intro: DERIV_subset)
have 2: continuous_on $\{a$.. $b\} f$
using cont by (intro continuous_at_imp_continuous_on) auto
show ?has?eq
using has_bochner_integral_FTC_Icc[OF $\langle a \leq b\rangle 1$ 2] integral_FTC_Icc[OF $\langle a$
$\leq b>12]$
by (auto simp: mult.commute)
qed
lemma $n n$ _integral_FTC_atLeast:
fixes f :: real \Rightarrow real
assumes f _borel: $f \in$ borel_measurable borel
assumes $f: \bigwedge x . a \leq x \Longrightarrow D E R I V F x:>f x$
assumes nonneg: $\bigwedge x . a \leq x \Longrightarrow 0 \leq f x$
assumes lim: $(F \longrightarrow T)$ at_top
shows $\left(\int{ }^{+} x\right.$. ennreal $(f x) *$ indicator $\{a .\}$.$\left.x dlborel \right)=T-F a$
proof -
let ?f $=\lambda(i::$ nat $)(x::$ real $)$. ennreal $(f x) *$ indicator $\{a . . a+$ real $i\} x$
let ? $f R=\lambda x$. ennreal $(f x) *$ indicator $\{a$.. $\} x$

```
have \(F\) _mono: \(a \leq x \Longrightarrow x \leq y \Longrightarrow F x \leq F y\) for \(x y\)
using f nonneg by (intro DERIV_nonneg_imp_nondecreasing[of x y F]) (auto intro: order_trans)
then have \(F_{-} l e_{-} T: a \leq x \Longrightarrow F x \leq T\) for \(x\)
by (intro tendsto_lowerbound [OF lim])
(auto simp: eventually_at_top_linorder)
have \((S U P\) i. ?f \(i x)=\) ? \(f R x\) for \(x\)
proof (rule LIMSEQ_unique[OF LIMSEQ_SUP])
obtain \(n\) where \(x-a<\) real \(n\)
using reals_Archimedean2 \([\) of \(x-a]\)..
then have eventually ( \(\lambda n\). ?f \(n x=\) ? \(f R x\) ) sequentially
by (auto intro!: eventually_sequentiallyI[where \(c=n]\) split: split_indicator)
then show \((\lambda n\). ? \(f n x) \longrightarrow\) ? \(f R x\)
by (rule tendsto_eventually)
qed (auto simp: nonneg incseq_def le_fun_def split: split_indicator)
then have integral \({ }^{N}\) lborel ? \(f R=\left(\int^{+} x\right.\). (SUP \(i\). ?f \(\left.i x\right)\) dlborel \()\)
by simp
also have \(\ldots=\left(S U P i .\left(\int^{+} x\right.\right.\). ?f \(i x\) dlborel \()\) )
proof (rule nn_integral_monotone_convergence_SUP)
show incseq? \(f\)
using nonneg by (auto simp: incseq_def le_fun_def split: split_indicator)
show \(\bigwedge i\). (?f \(i) \in\) borel_measurable lborel
using \(f_{-} b o r e l\) by auto
qed
also have \(\ldots=(S U P\) i. ennreal \((F(a+\) real \(i)-F a))\)
by (subst nn_integral_FTC_Icc[OF f_borel \(f\) nonneg \(]\) ) auto
also have \(\ldots=T-F a\)
proof (rule LIMSEQ_unique[OF LIMSEQ_SUP])
have \((\lambda x . F(a+\) real \(x)) \longrightarrow T\)
by (auto intro: filterlim_compose[OF lim filterlim_tendsto_add_at_top] filter-
lim_real_sequentially)
then show \((\lambda n\). ennreal \((F(a+\) real \(n)-F a)) \longrightarrow\) ennreal \((T-F a)\)
by (simp add: F_mono F_le_T tendsto_diff)
qed (auto simp: incseq_def intro!: ennreal_le_iff[THEN iffD2] F_mono)
finally show ?thesis.
qed
lemma integral_power:
\(a \leq b \Longrightarrow\left(\int x . x^{\wedge} k *\right.\) indicator \(\{a . . b\} x\) dlborel \()=\left(b^{\wedge}\right.\) Suc \(\left.k-a^{\wedge} S u c k\right) /\) Suc k
proof (subst integral_FTC_Icc_real)
fix \(x\) show DERIV ( \(\lambda x . x^{\wedge}\) Suc \(\left.k / S u c k\right) x:>x^{\wedge} k\)
by (intro derivative_eq_intros) auto
qed (auto simp: field_simps simp del: of_nat_Suc)

\subsection*{6.19.21 Integration by parts}
lemma integral_by_parts_integrable:
fixes \(f g F\) : : real \(\Rightarrow\) real
assumes \(a \leq b\)
assumes cont_f \([\) intro \(]:!!x . a \leq x \Longrightarrow x \leq b \Longrightarrow\) isCont \(f x\)
assumes cont_g[intro]: !!x. \(a \leq x \Longrightarrow x \leq b \Longrightarrow\) isCont \(g x\)
assumes [intro]: !!x. DERIV F \(x:>f x\)
assumes [intro]: !!x. DERIV G \(x:>g x\)
shows integrable lborel \((\lambda x .((F x) *(g x)+(f x) *(G x)) *\) indicator \(\{a . . b\}\) x)
by (auto intro!: borel_integrable_atLeastAtMost continuous_intros) (auto intro!: DERIV_isCont)
lemma integral_by_parts:
fixes \(f g\) F \(G::\) real \(\Rightarrow\) real
assumes [arith]: \(a \leq b\)
assumes cont_f[intro]: !!x. \(a \leq x \Longrightarrow x \leq b \Longrightarrow\) isCont \(f x\)
assumes cont_g[intro]: !!x. \(a \leq x \Longrightarrow x \leq b \Longrightarrow\) isCont \(g x\)
assumes [intro]: !!x. DERIV F \(x:>f x\)
assumes [intro]: !!x. DERIV G \(x:>g x\)
shows \(\left(\int x .(F x * g x) *\right.\) indicator \(\{a . . b\} x\) dlborel \()\)
\[
=F b * G b-F a * G a-\int x .(f x * G x) * \text { indicator }\{a . . b\} x
\]
alborel
proof-
have \(\left(\int x .(F x * g x+f x * G x) *\right.\) indicator \(\{a . . b\} x\) dlborel \()\) \(=\) LBINT \(x . F x * g x *\) indicat_real \(\{a . . b\} x+f x * G x *\) indicat_real \(\{a . . b\}\) \(x\)
by (meson vector_space_over_itself.scale_left_distrib)
also have \(\ldots=\left(\int x .(F x * g x) *\right.\) indicator \(\{a \ldots b\} x\) dlborel \()+\int x .(f x * G\) \(x) *\) indicator \(\{a . . b\} x\) dlborel
proof (intro Bochner_Integration.integral_add borel_integrable_atLeastAtMost cont_f cont_g continuous_intros)
show \(\bigwedge x . \llbracket a \leq x ; x \leq b \rrbracket \Longrightarrow\) isCont \(F x \bigwedge x . \llbracket a \leq x ; x \leq b \rrbracket \Longrightarrow\) isCont \(G x\) using DERIV_isCont by blast+
qed
finally have \(\left(\int x .(F x * g x+f x * G x) *\right.\) indicator \(\{a . . b\} x\) dlborel \()=\) \(\left(\int x .(F x * g x) *\right.\) indicator \(\{a . . b\} x\) dlborel \()+\int x .(f x * G x) *\) indicator \(\{a . . b\} x\) dlborel .
moreover have \(\left(\int x .(F x * g x+f x * G x) *\right.\) indicator \(\{a . . b\} x\) dlborel \()=\) \(F b * G b-F a * G a\)
proof (intro integral_FTC_Icc_real derivative_eq_intros cont_f cont_g continuous_intros)
show \(\bigwedge x . \llbracket a \leq x ; x \leq b \rrbracket \Longrightarrow\) isCont \(F x \bigwedge x . \llbracket a \leq x ; x \leq b \rrbracket \Longrightarrow\) isCont \(G x\)
using DERIV_isCont by blast+
qed auto
ultimately show ?thesis by auto
qed
lemma integral_by_parts':
fixes \(f\) g \(F G::\) real \(\Rightarrow\) real
```

assumes $a \leq b$
assumes !! $x . a \leq x \Longrightarrow x \leq b \Longrightarrow$ isCont $f x$
assumes !! $x . a \leq x \Longrightarrow x \leq b \Longrightarrow$ isCont $g x$
assumes !!x. DERIV F $x:>f x$
assumes !!x. DERIV $G x:>g x$
shows $\left(\int x\right.$. indicator $\{a . . b\} x *_{R}(F x * g x)$ dlborel $)$
$=F b * G b-F a * G a-\int x$. indicator $\{a . . b\} x *_{R}(f x * G x)$
dlborel
using integral_by_parts[OF assms] by (simp add: ac_simps)

```
lemma has_bochner_integral_even_function:
    fixes \(f::\) real \(\Rightarrow{ }^{\prime} a::\{\) banach, second_countable_topology \(\}\)
    assumes \(f\) : has_bochner_integral lborel ( \(\lambda\) x. indicator \(\left.\{0 .\}. x *_{R} f x\right) x\)
    assumes even: \(\bigwedge x . f(-x)=f x\)
    shows has_bochner_integral lborel f \(\left(2 *_{R} x\right)\)
proof -
    have indicator: \(\bigwedge x::\) real. indicator \(\{. .0\}(-x)=\) indicator \(\{0 .\}\).
        by (auto split: split_indicator)
    have has_bochner_integral lborel ( \(\lambda x\). indicator \(\left.\{. .0\} x *_{R} f x\right) x\)
        by (subst lborel_has_bochner_integral_real_affine_iff \([\) where \(c=-1\) and \(t=0]\) )
            ( auto simp: indicator even f)
    with \(f\) have has_bochner_integral lborel ( \(\lambda x\).indicator \(\{0 .\}. x *_{R} f x+\) indicator
\(\{\).. 0\(\left.\} x *_{R} f x\right)(x+x)\)
        by (rule has_bochner_integral_add)
    then have has_bochner_integral lborel \(f(x+x)\)
        by (rule has_bochner_integral_discrete_difference[where \(X=\{0\}\), THEN iffD1,
rotated 4])
            (auto split: split_indicator)
    then show ?thesis
        by (simp add: scaleR_2)
qed
lemma has_bochner_integral_odd_function:
fixes \(f::\) real \(\Rightarrow{ }^{\prime} a::\{\) banach, second_countable_topology \(\}\)
assumes \(f\) : has_bochner_integral lborel ( \(\lambda\) x. indicator \(\left.\{0 .\}. x *_{R} f x\right) x\)
assumes odd: \(\bigwedge x . f(-x)=-f x\)
shows has_bochner_integral lborel f 0
proof -
have indicator: \(\bigwedge x:\) : real. indicator \(\{. .0\}(-x)=\) indicator \(\{0 .\}\). by (auto split: split_indicator)
have has_bochner_integral lborel ( \(\lambda x\). - indicator \(\left.\{. .0\} x *_{R} f x\right) x\) by (subst lborel_has_bochner_integral_real_affine_iff \([\) where \(c=-1\) and \(t=0]\) ) ( auto simp: indicator odd \(f\) )
from has_bochner_integral_minus[OF this]
have has_bochner_integral lborel ( \(\lambda x\). indicator \(\left.\{. .0\} x *_{R} f x\right)(-x)\) by \(\operatorname{simp}\)
with \(f\) have has_bochner_integral lborel ( \(\lambda x\). indicator \(\{0 .\}. x *_{R} f x+\) indicator
\(\left.\{. .0\} x *_{R} f x\right)(x+-x)\)
by (rule has_bochner_integral_add)
```

 then have has_bochner_integral lborel \(f(x+-x)\)
 by (rule has_bochner_integral_discrete_difference[where \(X=\{0\}\), THEN iffD1,
 rotated 4])
(auto split: split_indicator)
then show ?thesis
by simp
qed
lemma has_integral_O_closure_imp_0:
fixes f :: 'a::euclidean_space \Rightarrow real
assumes f : continuous_on (closure S) f
and nonneg_interior: $\backslash x . x \in S \Longrightarrow 0 \leq f x$
and pos: $0<$ emeasure lborel S
and finite: emeasure lborel $S<\infty$
and regular: emeasure lborel (closure S) $=$ emeasure lborel S
and opn: open S
assumes int: (f has_integral 0) (closure S)
assumes $x: x \in$ closure S
shows $f x=0$
proof -
have zero: emeasure lborel (frontier S) $=0$
using finite closure_subset regular
unfolding frontier_def
by (subst emeasure_Diff) (auto simp: frontier_def interior_open 〈open S 〉)
have nonneg: $0 \leq f x$ if $x \in$ closure S for x
using continuous_ge_on_closure[OF f that nonneg_interior] by simp
have $0=$ integral (closure S) f
by (blast intro: int sym)
also
note intl $=$ has_integral_integrable $[$ OF int $]$
have af: f absolutely_integrable_on (closure S)
using nonneg
by (intro absolutely_integrable_onI intl integrable_eq[OF intl]) simp
then have integral (closure S) $f=$ set_lebesgue_integral lebesgue (closure S) f
by (intro set_lebesgue_integral_eq_integral(2)[symmetric])
also have $\ldots=0 \longleftrightarrow\left(A E x\right.$ in lebesgue. indicator (closure S) $\left.x *_{R} f x=0\right)$
unfolding set_lebesgue_integral_def
proof (rule integral_nonneg_eq_0_iff_AE)
show integrable lebesgue (λx. indicat_real (closure S) $x *_{R} f x$)
by (metis af set_integrable_def)
qed (use nonneg in 〈auto simp: indicator_def〉)
also have $\cdots \longleftrightarrow(A E x$ in lebesgue. $x \in\{x . x \in$ closure $S \longrightarrow f x=0\})$
by (auto simp: indicator_def)
finally have (AE x in lebesgue. $x \in\{x . x \in$ closure $S \longrightarrow f x=0\}$) by simp
moreover have (AE x in lebesgue. $x \in-$ frontier S)
using zero
by (auto simp: eventually_ae_filter null_sets_def intro!: exI[where $x=$ frontier
S])
ultimately have ae: $A E x \in S$ in lebesgue. $x \in\{x \in$ closure S. $f x=0\}$ (is

```
```

?th)
by eventually_elim (use closure_subset in <auto simp: >)
have closed {0::real} by simp
with continuous_on_closed_vimage[OF closed_closure, of S f] f
have closed (}f-`{0}\cap\mathrm{ closure S) by blast then have closed {x\in closure S.fx=0} by (auto simp: vimage_def Int_def conj_commute) with <open S` have x\in{x\in closure S.fx=0} if x 隹 for x using ae that
by (rule mem_closed_if_AE_lebesgue_open)
then have fx=0 if x\inS for x using that by auto
from continuous_constant_on_closure[OF f this \langlex \in closure S〉]
show f}x=0
qed
lemma has_integral_0_cbox_imp_0:
fixes f :: 'a::euclidean_space => real
assumes f:continuous_on (cbox a b) f
and nonneg_interior: \x. x b box a b\Longrightarrow0\leqfx
assumes int:(f has_integral 0) (cbox a b)
assumes ne: box a b}\not={
assumes x:x\incbox a b
shows fx=0
proof -
have 0< emeasure lborel (box a b)
using ne x unfolding emeasure_lborel_box_eq
by (force intro!: prod_pos simp: mem_box algebra_simps)
then show ?thesis using assms
by (intro has_integral_0_closure_imp_0[of box a b f x])
(auto simp: emeasure_lborel_box_eq emeasure_lborel_cbox_eq algebra_simps mem_box)
qed

```

\subsection*{6.19.22 Various common equivalent forms of function measurability}
lemma indicator_sum_eq:
fixes \(m\) ::real and \(f:: ' a \Rightarrow\) real
assumes \(|m| \leq\) 2 ^ \(^{\wedge}(2 * n) m /\) \(^{\wedge} n \leq f x f x<(m+1) / \mathscr{D}^{\wedge} n m \in \mathbb{Z}\)
shows \(\quad\left(\sum k:\right.\) :real \(|k \in \mathbb{Z} \wedge| k \mid \leq 2^{\wedge}(2 * n)\).
\(k / \mathscr{Z}^{\wedge} n *\) indicator \(\left.\left\{y \cdot k / \mathbb{Z}^{\wedge} n \leq f y \wedge f y<(k+1) / \mathscr{Z}^{\wedge} n\right\} x\right)=m /{ }^{2} n\) (is sum ?f ? \(S=\) _)
proof -
have sum ?f ? \(S=\operatorname{sum}\left(\lambda k . k /\right.\) 2^n \(^{\wedge}\) indicator \(\left\{y . k /\right.\) 2\(^{\wedge} n \leq f y \wedge f y<\) \((k+1) /\) 2^n \(\left.\left.^{\wedge}\right\} x\right)\{m\}\)
proof (rule comm_monoid_add_class.sum.mono_neutral_right)
show finite? S
by (rule finite_abs_int_segment)
show \(\{m\} \subseteq\left\{k \in \mathbb{Z} .|k| \leq 2^{\wedge}(2 * n)\right\}\)
using assms by auto
show \(\forall i \in\left\{k \in \mathbb{Z} .|k| \leq 2^{\wedge}(2 * n)\right\}-\{m\}\). ?f \(i=0\)
using assms by (auto simp: indicator_def Ints_def abs_le_iff field_split_simps)
qed
also have \(\ldots=m /{ }^{2} n\)
using assms by (auto simp: indicator_def not_less)
finally show ?thesis .
qed
lemma measurable_on_sf_limit_lemma1:
fixes \(f\) :: 'a::euclidean_space \(\Rightarrow\) real
assumes \(\bigwedge a b .\{x \in S . a \leq f x \wedge f x<b\} \in\) sets \(\left(l e b e s g u e_{-} o n S\right)\)
obtains \(g\) where \(\bigwedge n . g n \in\) borel_measurable (lebesgue_on \(S\) )
\(\wedge n\). finite (range ( \(g n\) ) )
\(\bigwedge x .(\lambda n . g n x) \longrightarrow f x\)
proof
show \(\left(\lambda x \operatorname{sum}\left(\lambda k::\right.\right.\) real. \(k /\) \(^{\wedge} n *\) indicator \(\left\{y . k / \mathscr{Z}^{\wedge} n \leq f y \wedge f y<(k+1) /{ }^{\wedge}{ }^{\wedge} n\right\}\)
\(x\) )
\(\left.\left\{k \in \mathbb{Z} .|k| \leq 2^{\wedge}(2 * n)\right\}\right) \in\) borel_measurable (lebesgue_on \(S\) )
(is \(? g \in\) _) \(^{\text {) }}\) for \(n\)
proof -
have \(\wedge k . \llbracket k \in \mathbb{Z} ;|k| \leq 2^{\wedge}(2 * n) \rrbracket\)
\(\Longrightarrow\) Measurable.pred (lebesgue_on \(S)\left(\lambda x . k /\left(\right.\right.\) 2 \(\left.^{\wedge} n\right) \leq f x \wedge f x<(k+1)\)
/ (2^n))
using assms by (force simp: pred_def space_restrict_space)
then show ?thesis
by (simp add: field_class.field_divide_inverse)
qed
show finite (range (?g \(n\) )) for \(n\)
proof -
have range \((? g n) \subseteq\left(\lambda k . k / \mathscr{D}^{\wedge} n\right) ‘\left\{k \in \mathbb{Z} .|k| \leq \mathcal{Z}^{\wedge}(2 * n)\right\}\)
proof clarify
fix \(x\)
show ? \(g n x \in\left(\lambda k . k /\right.\) Dh \(\left.^{\wedge} n\right)\) ' \(\left\{k \in \mathbb{Z} .|k| \leq\right.\) 2 ^ \(\left.^{\wedge}(2 * n)\right\}\)
proof (cases \(\exists k::\) real. \(k \in \mathbb{Z} \wedge|k| \leq \mathcal{Z}^{\wedge}(2 * n) \wedge k / \mathcal{Z}^{\wedge} n \leq(f x) \wedge(f x)<\)
\(\left.(k+1) /{ }^{2}{ }^{\wedge} n\right)\)
case True
then show?thesis
apply clarify
by (subst indicator_sum_eq) auto
next
case False
then have ? \(g n x=0\) by auto
then show ?thesis by force

\section*{qed}
qed
moreover have finite \(\left(\left(\lambda k::\right.\right.\) real. \(\left.\left.\left(k / \mathscr{N}^{\wedge} n\right)\right) ’\left\{k \in \mathbb{Z} .|k| \leq \mathcal{Z}^{\wedge}(2 * n)\right\}\right)\)
by (simp add: finite_abs_int_segment)
ultimately show ?thesis
using finite_subset by blast
qed
```

show (}\lambdan\mathrm{ . ? g n x) }\longrightarrowfx\mathrm{ for }
proof (rule LIMSEQ_I)
fix e::real
assume e>0
obtain N1 where N1: |f x < < ` ^N1 using real_arch_pow by fastforce obtain N2 where N2:(1/2) ^ N2 < e using real_arch_pow_inv \langlee> 0\rangle by force have norm (?g n x - fx)<e if n: n\geqmax N1 N2 for n proof - define m}\mathrm{ where m 三floor(2^n * (fx)) have 1\leq | \^n| *e using n N2 <e > 0` less_eq_real_def less_le_trans by (fastforce simp add:
field_split_simps)
then have *: \llbracketx\leqy;y<x+1\rrbracket\Longrightarrowabs(x-y)<|\mathcal{D}n|*e for x y::real
by linarith
have |\mathscr{A`}n|*|m/\mathscr{2}n-fx|=|\mathscr{2}n*(m/\mathscr{2}n-fx)| by (simp add: abs_mult) also have ... = |real_of_int \2^n * fx\rfloor-fx* 2^n| by (simp add: algebra_simps m_def) also have ... < |2^n * *e by (rule *; simp add: mult.commute) finally have |2^n|* |m/\mp@subsup{\mathscr{N}}{}{\wedge}n-fx|<|\mp@code{2^n|*e.} then have me: }|m/\mp@subsup{\mathscr{D}}{}{\wedge}n-fx|< by simp have |real_of_int m| < 2 ` (2*n)
proof (cases fx<0)
case True
then have -\lfloorfx\rfloor\leq\lfloor(2::real) ^ N1\rfloor
using N1 le_floor_iff minus_le_iff by fastforce
with n True have |real_of_int \fx\| < 2 ^N1
by linarith
also have ... \leq 2^n
using n by (simp add: m_def)
finally have |real_of_int \lfloorfx\rfloor|* 2^n\leq2^n * 2`n
by simp
moreover

```

```

 proof -
    ```

```

 using True by (simp add: abs_if mult_less_0_iff)
 also have ... \leq - (real_of_int (\lfloor(2::real) ^ n\rfloor* \lfloorf x\rfloor))
 using le_mult_floor_Ints [of (2::real) ^ n] by simp
 also have ... \leq |real_of_int \lfloorf x\rfloor|* 2^n
 using True
 by simp
 finally show ?thesis.
 qed
 ultimately show ?thesis
    ```
by (metis (no_types, hide_lams) m_def order_trans power2_eq_square power_even_eq)
next
case False
with \(n\) N1 have \(f x \leq\) 2 \(^{\wedge} n\)
by (simp add: not_less) (meson less_eq_real_def one_le_numeral order_trans power_increasing)
moreover have \(0 \leq m\)
using False m_def by force
ultimately show ?thesis
by (metis abs_of_nonneg floor_mono le_floor_iff m_def of_int_0_le_iff power2_eq_square power_mult mult_le_cancel_iff1 zero_less_numeral mult.commute zero_less_power)

\section*{qed}
then have ? \(g n x=m /\) \(^{\wedge} n\)
by (rule indicator_sum_eq) (auto simp add: m_def field_split_simps, linarith)
then have norm (?g \(n x-f x)=\operatorname{norm}\left(m /\right.\) 2 \(\left.^{\wedge} n-f x\right)\)
by \(\operatorname{simp}\)
also have \(\ldots<e\)
by (simp add: me)
finally show? ?thesis.
qed
then show \(\exists\) no. \(\forall n \geq\) no. norm \((? g n x-f x)<e\)
by blast
qed
qed
lemma borel_measurable_simple_function_limit:
fixes \(f::\) 'a::euclidean_space \(\Rightarrow\) ' \(b::\) euclidean_space
shows \(f \in\) borel_measurable (lebesgue_on \(S\) ) \(\longleftrightarrow\)
\((\exists g .(\forall n .(g n) \in\) borel_measurable \((\) lebesgue_on \(S)) \wedge\)
\((\forall n\). finite \((\) range \((g n))) \wedge(\forall x .(\lambda n . g n x) \longrightarrow f x))\)
proof -
have \(\exists g .(\forall n .(g n) \in\) borel_measurable (lebesgue_on \(S)) \wedge\)
\((\forall\) n. finite \((\) range \((g n))) \wedge(\forall x .(\lambda n . g n x) \longrightarrow f x)\)
if \(f: \bigwedge a i . i \in\) Basis \(\Longrightarrow\{x \in S . f x \cdot i<a\} \in\) sets (lebesgue_on \(S\) )
proof -
have \(\exists g .(\forall n .(g n) \in\) borel_measurable (lebesgue_on \(S)) \wedge\)
\((\forall\) n. finite (image \((g n)\) UNIV \()) \wedge\)
\((\forall x .((\lambda n . g n x) \longrightarrow f x \cdot i))\) if \(i \in\) Basis for \(i\)
proof (rule measurable_on_sf_limit_lemma1 [of \(S \lambda x . f x \cdot i])\)
show \(\{x \in S . a \leq f x \cdot i \wedge f x \cdot i<b\} \in\) sets (lebesgue_on \(S\) ) for \(a b\)
proof -
have \(\{x \in S . a \leq f x \cdot i \wedge f x \cdot i<b\}=\{x \in S . f x \cdot i<b\}-\{x \in S\).
\(a>f x \cdot i\}\)
by auto
also have ... \(\in\) sets (lebesgue_on \(S\) )
using \(f\) that by blast
finally show ?thesis .
```

 qed
 qed blast
 then obtain g}\mathrm{ where g:
 \in. i G Basis \Longrightarrowgin borel_measurable (lebesgue_on S)
 \in.i Basis \Longrightarrowfinite(range (gin))
 \bigwedge \mp@code { \ i . i ~ B ~ B a s i s ~ \Longrightarrow ((\lambda n . g i n x) \longrightarrow f x . i) }
 by metis
 show ?thesis
 proof (intro conjI allI exI)
 show (}\lambdax.\sumi\inBasis.g i n x *R i) \in borel_measurable (lebesgue_on S) for n
 by (intro borel_measurable_sum borel_measurable_scaleR) (auto intro:g)
 show finite (range (}\lambdax.\sumi\inBasis.g in x * R i)) for
 proof -
 have range (}\lambdax.\sumi\inBasis.g in x * * i)\subseteq(\lambdah. \sumi\inBasis.hi* * i)'
 PiE Basis (\lambdai. range (g i n))
proof clarify
fix }
show (\sumi\inBasis.g in x * R i) \in(\lambdah. \sumi\inBasis.hi** i)'((\Pi
range (g i n))
by (rule_tac x=\lambdai\inBasis.g i n x in image_eqI) auto
qed
moreover have finite(PiE Basis (\lambdai. range (g i n)))
by (simp add: g finite_PiE)
ultimately show ?thesis
by (metis (mono_tags, lifting) finite_surj)
qed
show (\lambdan. \sumi\inBasis.gin x** i) \longrightarrow
proof -
have (\lambdan. \sumi\inBasis.g in x*R i)\longrightarrow(\sumi\inBasis. (fx | i)**
by (auto intro!: tendsto_sum tendsto_scaleR g)
moreover have (\sumi\inBasis. (fx • i) *R i) = fx
using euclidean_representation by blast
ultimately show ?thesis
by metis
qed
qed
qed
moreover have f\inborel_measurable (lebesgue_on S)
if meas_g: \n.g n \in borel_measurable (lebesgue_on S)
and fin: \n. finite (range (g n))
and to_f: \x. (\lambdan.g n x)\longrightarrowfx for g
by (rule borel_measurable_LIMSEQ_metric [OF meas_g to_f])
ultimately show ?thesis
using borel_measurable_vimage_halfspace_component_lt by blast
qed

```

\subsection*{6.19.23 Lebesgue sets and continuous images}
```

proposition lebesgue_regular_inner:

```
assumes \(S \in\) sets lebesgue
obtains \(K C\) where negligible \(K \bigwedge n\) ::nat. compact \((C n) S=(\bigcup n . C n) \cup K\)
proof -
have \(\exists T\). closed \(T \wedge T \subseteq S \wedge(S-T) \in\) lmeasurable \(\wedge\) emeasure lebesgue \((S\)
\(-T)<\operatorname{ennreal}((1 / 2) \wedge n)\) for \(n\) using sets_lebesgue_inner_closed assms
by (metis sets_lebesgue_inner_closed zero_less_divide_1_iff zero_less_numeral zero_less_power)
then obtain \(C\) where clo: \(\bigwedge n\). closed ( \(C n\) ) and \(\operatorname{subS}: \wedge n . C n \subseteq S\) and mea: \(\wedge n .(S-C n) \in\) lmeasurable and less: \(\wedge n\). emeasure lebesgue \((S-C n)<\operatorname{ennreal}\left((1 / 2){ }^{\wedge} n\right)\) by metis
have \(\exists F\). \((\forall n\) ::nat. compact \((F n)) \wedge(\bigcup n . F n)=C m\) for \(m:: n a t\) by (metis clo closed_Union_compact_subsets)
then obtain \(D::[n a t, n a t] \Rightarrow\) ' \(a\) set where \(D: \bigwedge m n\). compact \((D m n) \bigwedge m\).
\((\bigcup n . D m n)=C m\) by metis
let ? \(C\) = from_nat_into \((\bigcup m\). range \((D m))\)
have countable ( \(\bigcup m\). range \((D m)\) )
by blast
have range (from_nat_into \((\bigcup m\). range \((D m)))=(\bigcup m\). range \((D m))\)
using range_from_nat_into by simp
then have \(C D: \exists m n\). ? \(C k=D m n\) for \(k\) by (metis (mono_tags, lifting) UN_iff rangeE range_eqI)
show thesis
proof
show negligible \((S-(\bigcup n . C n))\)
proof (clarsimp simp: negligible_outer_le)
fix \(e\) :: real
assume \(e>0\)
then obtain \(n\) where \(n\) : (1/2) \({ }^{\wedge} n<e\)
using real_arch_pow_inv [of e 1/2] by auto
show \(\exists T . S-(\bigcup n . C n) \subseteq T \wedge T \in\) lmeasurable \(\wedge\) measure lebesgue \(T \leq\)
\(e\)
proof (intro exI conjI)
show \(S-(\bigcup n . C n) \subseteq S-C n\)
by blast
show \(S-C n \in\) lmeasurable
by (simp add: mea)
show measure lebesgue \((S-C n) \leq e\)
using less [of \(n\) ] \(n\)
by (simp add: emeasure_eq_measure2 less_le mea)
qed
qed
show compact (?C \(n\) ) for \(n\)
using \(C D D\) by metis
show \(S=(\bigcup n . ? C n) \cup(S-(\bigcup n . C n))\left(\right.\) is \({ }_{-}=\)? \(\left.r h s\right)\)
proof
show \(S \subseteq\) ?rhs
using \(D\) by fastforce
```

 show ?rhs \subseteqS
 using subS D CD by auto (metis Sup_upper range_eqI subsetCE)
 qed
 qed
 qed
lemma sets_lebesgue_continuous_image:
assumes T:T\in sets lebesgue and contf:continuous_on S f
and negim: }\T.\llbracketnegligible T;T\subseteqS\rrbracket\Longrightarrow negligible (f' T) and T\subseteq
shows f'T 新s lebesgue
proof -
obtain K C where negligible K and com: \n::nat. compact (Cn) and Teq: T
=(Un.C n)\cupK
using lebesgue_regular_inner [OF T] by metis
then have comf: \n::nat. compact(f'C n)
by (metis Un_subset_iff Union_upper }\langleT\subseteqS\rangle compact_continuous_image contf
continuous_on_subset rangeI)
have ((Un.f'Cn)\cupf'K) E sets lebesgue
proof (rule sets.Un)
have K\subseteqS
using Teq <T \subseteqS` by blast show (Un.f'C n) \in sets lebesgue proof (rule sets.countable_Union) show range (\lambdan.f'C n)\subseteq sets lebesgue using borel_compact comf by (auto simp: borel_compact) qed auto show f' }K\in\mathrm{ sets lebesgue by (simp add: <K\subseteqS\rangle<negligible K\rangle negim negligible_imp_sets) qed then show ?thesis by (simp add: Teq image_Un image_Union) qed lemma differentiable_image_in_sets_lebesgue: fixes f :: 'm::euclidean_space = ' }n\mathrm{ ::euclidean_space assumes S:S\in sets lebesgue and dim: DIM('m) \leq DIM('n) and f:fdiffer- entiable_on S shows f'S \in sets lebesgue proof (rule sets_lebesgue_continuous_image [OF S]) show continuous_on S f by (meson differentiable_imp_continuous_on f) show }\T.\llbracketnegligible T;T\subseteqS\rrbracket\Longrightarrow negligible (f`T
using differentiable_on_subset f
by (auto simp: intro!: negligible_differentiable_image_negligible [OF dim])
qed auto
lemma sets_lebesgue_on_continuous_image:
assumes S:S\in sets lebesgue and X:X 新s (lebesgue_on S) and contf:
continuous_on S f

```
```

 and negim: }\T.\llbracketnegligible T;T\subseteqS\rrbracket\Longrightarrow negligible(f` T
 shows f' }X\in\mathrm{ sets (lebesgue_on (f'S))
 proof -
have }X\subseteq
by (metis S X sets.Int_space_eq2 sets_restrict_space_iff)
moreover have f'S sets lebesgue
using S contf negim sets_lebesgue_continuous_image by blast
moreover have f' }X\in\mathrm{ sets lebesgue
by (metis S X contf negim sets_lebesgue_continuous_image sets_restrict_space_iff
space_restrict_space space_restrict_space2)
ultimately show ?thesis
by (auto simp: sets_restrict_space_iff)
qed
lemma differentiable_image_in_sets_lebesgue_on:
fixes f :: 'm::euclidean_space = ' 'n::euclidean_space
assumes S:S\in sets lebesgue and X:X \in sets (lebesgue_on S) and dim:
DIM('m) \leq DIM (' }n\mathrm{)
and f:f differentiable_on S
shows f` X \in sets (lebesgue_on (f`S))
proof (rule sets_lebesgue_on_continuous_image [OF S X])
show continuous_on S f
by (meson differentiable_imp_continuous_on f)
show }\T.\llbracketnegligible T;T\subseteqS\rrbracket\Longrightarrow negligible (f' T
using differentiable_on_subset f
by (auto simp: intro!: negligible_differentiable_image_negligible [OF dim])
qed

```

\subsection*{6.19.24 Affine lemmas}
```

lemma borel_measurable_affine:
fixes $f::$ ' a :: euclidean_space \Rightarrow ' b :: euclidean_space
assumes $f: f \in$ borel_measurable lebesgue and $c \neq 0$
shows $\left(\lambda x . f\left(t+c *_{R} x\right)\right) \in$ borel_measurable lebesgue
proof -
$\{$ fix $a b$
have $\{x . f x \in$ cbox a $b\} \in$ sets lebesgue
using f cbox_borel lebesgue_measurable_vimage_borel by blast
then have $\left(\lambda x .(x-t) /_{R} c\right)$ ' $\{x . f x \in$ cbox a $b\} \in$ sets lebesgue
proof (rule differentiable_image_in_sets_lebesgue)
show $(\lambda x .(x-t) / R c)$ differentiable_on $\{x . f x \in c b o x a b\}$
unfolding differentiable_on_def differentiable_def
by (rule $\langle c \neq 0$ 〉 derivative_eq_intros strip exI | simp)+
qed auto
moreover
have $\left\{x . f\left(t+c *_{R} x\right) \in c b o x\right.$ a $\left.b\right\}=(\lambda x .(x-t) / R c) \cdot\{x . f x \in c b o x a b\}$
using $\langle c \neq 0$ 〉 by (auto simp: image_def)
ultimately have $\left\{x . f\left(t+c *_{R} x\right) \in c b o x\right.$ a $\left.b\right\} \in$ sets lebesgue
by (auto simp: borel_measurable_vimage_closed_interval) \}

```
```

 then show ?thesis
 by (subst lebesgue_on_UNIV_eq [symmetric]; auto simp: borel_measurable_vimage_closed_interval)
 qed
lemma lebesgue_integrable_real_affine:
fixes }f\mathrm{ :: real \# 'a :: euclidean_space
assumes f: integrable lebesgue f and c\not=0
shows integrable lebesgue (}\lambdax.f(t+c*x)
proof -
have (\lambdax. norm (fx)) \in borel_measurable lebesgue
by (simp add: borel_measurable_integrable f)
then show ?thesis
using assms borel_measurable_affine [of f c]
unfolding integrable_iff_bounded
by (subst (asm) nn_integral_real_affine_lebesgue[where c=c and t=t]) (auto
simp: ennreal_mult_less_top)
qed
lemma lebesgue_integrable_real_affine_iff:
fixes f :: real = ' }a\mathrm{ :: euclidean_space
shows c\not=0\Longrightarrow integrable lebesgue (\lambdax.f(t+c*x))\longleftrightarrow integrable lebesgue f
using lebesgue_integrable_real_affine[of fct]
lebesgue_integrable_real_affine[of \lambdax.f(t+c*x) 1/c-t/c]
by (auto simp: field_simps)
lemma lebesgue_integral_real_affine:
fixes f :: real \# ' }a\mathrm{ :: euclidean_space and c :: real
assumes c:c\not=0 shows (\intx.fx \partial lebesgue) = |c| *R (\intx.f(t+c*x)
\partiallebesgue)
proof cases
have (\lambdax.t +c*x)\in lebesgue }\mp@subsup{->}{M}{M}\mathrm{ lebesgue
using lebesgue_affine_measurable[where c=\lambdax::real. c] \langlec\not=0\rangle by simp
moreover
assume integrable lebesgue f
ultimately show ?thesis
by (subst lebesgue_real_affine[OF c, of t]) (auto simp: integral_density inte-
gral_distr)
next
assume \neg integrable lebesgue f with c show ?thesis
by (simp add:lebesgue_integrable_real_affine_iff not_integrable_integral_eq)
qed
lemma has_bochner_integral_lebesgue_real_affine_iff:
fixes i :: ' }a\mathrm{ :: euclidean_space
shows c\not=0\Longrightarrow
has_bochner_integral lebesgue fi\longleftrightarrow
has_bochner_integral lebesgue (}\lambdax.f(t+c*x))(i/R|c|
unfolding has_bochner_integral_iff lebesgue_integrable_real_affine_iff
by (simp_all add: lebesgue_integral_real_affine[symmetric] divideR_right cong: conj_cong)

```
```

lemma has_bochner_integral_reflect_real_lemma[intro]:
fixes $f::$ real $\Rightarrow{ }^{\prime} a$::euclidean_space
assumes has_bochner_integral (lebesgue_on \{a..b\}) fi
shows has_bochner_integral (lebesgue_on $\{-b . .-a\})(\lambda x . f(-x)) i$
proof -
have eq: indicat_real $\{a . . b\}(-x) *_{R} f(-x)=$ indicat_real $\{-b . .-a\} x *_{R}$
$f(-x)$ for x
by (auto simp: indicator_def)
have i : has_bochner_integral lebesgue (λ x. indicator $\left.\{a . . b\} x *_{R} f x\right) i$
using assms by (auto simp: has_bochner_integral_restrict_space)
then have has_bochner_integral lebesgue (λx. indicator $\left.\{-b . .-a\} x *_{R} f(-x)\right) i$
using has_bochner_integral_lebesgue_real_affine_iff $[$ of -1 (λ x. indicator $\{a . . b\}$
$\left.x *_{R} f x\right) i 0$]
by (auto simp: eq)
then show ?thesis
by (auto simp: has_bochner_integral_restrict_space)
qed
lemma has_bochner_integral_reflect_real[simp]:
fixes $f::$ real $\Rightarrow{ }^{\prime} a::$ euclidean_space
shows has_bochner_integral (lebesgue_on $\{-b . .-a\})(\lambda x . f(-x)) i \longleftrightarrow$ has_bochner_integral
(lebesgue_on $\{a . . b\}) f i$
by (auto simp: dest: has_bochner_integral_reflect_real_lemma)
lemma integrable_reflect_real[simp]:
fixes $f::$ real $\Rightarrow{ }^{\prime} a:$:euclidean_space
shows integrable (lebesgue_on $\{-b . .-a\})(\lambda x . f(-x)) \longleftrightarrow$ integrable (lebesgue_on
\{a..b\}) f
by (metis has_bochner_integral_iff has_bochner_integral_reflect_real)
lemma integral_reflect_real[simp]:
fixes $f::$ real $\Rightarrow{ }^{\prime} a::$ euclidean_space
shows integral ${ }^{L}$ (lebesgue_on $\left.\{-b . .-a\}\right)(\lambda x . f(-x))=$ integral L (lebesgue_on
\{a..b::real\}) f
using has_bochner_integral_reflect_real [of ba f]
by (metis has_bochner_integral_iff not_integrable_integral_eq)

```

\subsection*{6.19.25 More results on integrability}
lemma integrable_on_all_intervals_UNIV:
fixes \(f\) :: ' \(a::\) euclidean_space \(\Rightarrow\) ' \(b::\) banach
assumes intf: \(\bigwedge a b\). fintegrable_on cbox ab
and normf: \(\bigwedge x\). norm \((f x) \leq g x\) and \(g: g\) integrable_on UNIV
shows \(f\) integrable_on UNIV
proof -
have intg: \((\forall a b . g\) integrable_on cbox a \(b)\)
and gle_e: \(\forall e>0 . \exists B>0 . \forall a b c d\).
ball \(0 B \subseteq\) cbox ab \(b\) cbox a \(b \subseteq\) cbox c \(d \longrightarrow\)
```

|integral (cbox a b) g-integral (cbox c d) g|
< e
using g
by (auto simp: integrable_alt_subset [of _ UNIV] intf)
have le: norm (integral (cbox a b) f-integral (cbox c d) f) \leq|integral (cbox a
b) g-integral (cbox c d) g|
if cbox ab\subseteqcbox cd for abcd
proof -
have norm (integral (cbox a b) f-integral (cbox c d) f) = norm (integral
(cbox c d - cbox a b) f)
using intf that by (simp add: norm_minus_commute integral_setdiff)
also have ... \leqintegral (cbox c d - cbox a b) g
proof (rule integral_norm_bound_integral [OF _ _ normf])
show f integrable_on cbox c d - cbox a b g integrable_on cbox c d - cbox a b
by (meson integrable_integral integrable_setdiff intf intg negligible_setdiff
that)+
qed
also have ... = integral (cbox c d) g-integral (cbox a b) g
using intg that by (simp add: integral_setdiff)
also have ... \leq |integral (cbox a b) g-integral (cbox c d)g|
by simp
finally show ?thesis.
qed
show ?thesis
using gle_e
apply (simp add: integrable_alt_subset [of _ UNIV] intf)
apply (erule imp_forward all_forward ex_forward asm_rl)+
by (meson not_less order_trans le)
qed
lemma integrable_on_all_intervals_integrable_bound:
fixes f :: 'a::euclidean_space = 'b::banach
assumes intf: \ab. (\lambdax. if x }\inS\mathrm{ then f x else 0) integrable_on cbox a b
and normf: \bigwedgex. x \inS\Longrightarrow norm (fx) \leqg x and g:g integrable_on S
shows fintegrable_on S
using integrable_on_all_intervals_UNIV [OF intf, of (}\lambdax\mathrm{ . if }x\inS\mathrm{ then g x else
0)]
by (simp add: g integrable_restrict_UNIV normf)
lemma measurable_bounded_lemma:
fixes f :: 'a::euclidean_space = 'b::euclidean_space
assumes f:f\in borel_measurable lebesgue and g:g integrable_on cbox a b
and normf: \x. x cbox a b\Longrightarrownorm(fx) \leqgx
shows f integrable_on cbox a b
proof -
have g absolutely_integrable_on cbox a b
by (metis (full_types) add_increasing g le_add_same_cancel1 nonnegative_absolutely_integrable_1
norm_ge_zero normf)
then have integrable (lebesgue_on (cbox a b))g

```
```

 by (simp add: integrable_restrict_space set_integrable_def)
 then have integrable (lebesgue_on (cbox a b)) f
 proof (rule Bochner_Integration.integrable_bound)
 show AE x in lebesgue_on (cbox a b). norm (f x) \leq norm (g x)
 by (rule AE_I2) (auto intro: normf order_trans)
 qed (simp add: f measurable_restrict_space1)
 then show ?thesis
 by (simp add: integrable_on_lebesgue_on)
 qed
proposition measurable_bounded_by_integrable_imp_integrable:
fixes f :: 'a::euclidean_space => 'b::euclidean_space
assumes f:f\inborel_measurable (lebesgue_on S) and g:g integrable_on S
and normf: \x. x \inS\Longrightarrow norm (fx) \leqgx and S:S sets lebesgue
shows fintegrable_on S
proof (rule integrable_on_all_intervals_integrable_bound [OF _ normf g])
show (}\lambdax\mathrm{ . if }x\inS\mathrm{ then f x else 0) integrable_on cbox a b for ab
proof (rule measurable_bounded_lemma)
show (}\lambdax\mathrm{ . if }x\inS\mathrm{ then }fx\mathrm{ else 0) Gborel_measurable lebesgue
by (simp add: S borel_measurable_if f)
show (}\lambdax\mathrm{ . if }x\inS\mathrm{ then g x else 0) integrable_on cbox a b
by (simp add: g integrable_altD(1))
show norm (if }x\inS\mathrm{ then f }x\mathrm{ else 0) }\leq(\mathrm{ if }x\inS\mathrm{ then g }x\mathrm{ else 0) for }
using normf by simp
qed
qed
lemma measurable_bounded_by_integrable_imp_lebesgue_integrable:
fixes f :: 'a::euclidean_space \Rightarrow ' $b::$ euclidean_space
assumes $f: f \in$ borel_measurable (lebesgue_on S) and g : integrable (lebesgue_on
S) g
and normf: $\wedge x . x \in S \Longrightarrow \operatorname{norm}(f x) \leq g x$ and $S: S \in$ sets lebesgue
shows integrable (lebesgue_on S) f
proof -
have f absolutely_integrable_on S
by (metis (no_types) S absolutely_integrable_integrable_bound fg integrable_on_lebesgue_on measurable_bounded_by_integrable_imp_integrable normf)
then show ?thesis
by (simp add: S integrable_restrict_space set_integrable_def)
qed
lemma measurable_bounded_by_integrable_imp_integrable_real:
fixes f :: 'a::euclidean_space \Rightarrow real
assumes $f \in$ borel_measurable (lebesgue_on S) g integrable_on $S \bigwedge x . x \in S \Longrightarrow$
$a b s(f x) \leq g x S \in$ sets lebesgue
shows f integrable_on S
using measurable_bounded_by_integrable_imp_integrable $[$ of f S g] assms by simp

```

\subsection*{6.19.26 Relation between Borel measurability and integrability.}
lemma integrable_imp_measurable_weak:
fixes \(f\) :: 'a::euclidean_space \(\Rightarrow{ }^{\prime} b::\) euclidean_space
assumes \(S \in\) sets lebesgue \(f\) integrable_on \(S\)
shows \(f \in\) borel_measurable (lebesgue_on \(S\) )
by (metis (mono_tags, lifting) assms has_integral_implies_lebesgue_measurable
borel_measurable_restrict_space_iff integrable_on_def sets.Int_space_eq2)
lemma integrable_imp_measurable:
fixes \(f\) :: 'a::euclidean_space \(\Rightarrow\) 'b::euclidean_space
assumes \(f\) integrable_on \(S\)
shows \(f \in\) borel_measurable (lebesgue_on \(S\) )
proof -
have (UNIV::'a set) \(\in\) sets lborel by simp
then show?thesis
by (metis (mono_tags, lifting) assms borel_measurable_if_D integrable_imp_measurable_weak integrable_restrict_UNIV lebesgue_on_UNIV_eq sets_lebesgue_on_refl)
qed
lemma integrable_iff_integrable_on:
fixes \(f\) :: 'a::euclidean_space \(\Rightarrow\) ' \(b::\) euclidean_space
assumes \(S \in\) sets lebesgue \(\left(\int^{+}\right.\)x. ennreal (norm \(\left.(f x)\right)\) dlebesgue_on \(\left.S\right)<\infty\)
shows integrable (lebesgue_on \(S\) ) \(f \longleftrightarrow f\) integrable_on \(S\)
using assms integrable_iff_bounded integrable_imp_measurable integrable_on_lebesgue_on
by blast
lemma absolutely_integrable_measurable:
fixes \(f\) :: 'a::euclidean_space \(\Rightarrow\) ' \(b::\) euclidean_space
assumes \(S \in\) sets lebesgue
shows \(f\) absolutely_integrable_on \(S \longleftrightarrow f \in\) borel_measurable (lebesgue_on \(S\) ) \(\wedge\)
integrable (lebesgue_on \(S\) ) (norm \(\circ f)\)
(is ?lhs =? \(r h s\) )
proof
assume \(L\) : ?lhs
then have \(f \in\) borel_measurable (lebesgue_on \(S\) )
by (simp add: absolutely_integrable_on_def integrable_imp_measurable)
then show ?rhs
using assms set_integrable_norm [of lebesgue \(S\) f] \(L\)
by (simp add: integrable_restrict_space set_integrable_def)
next
assume ?rhs then show?lhs
using assms integrable_on_lebesgue_on
by (metis absolutely_integrable_integrable_bound comp_def eq_iff measurable_bounded_by_integrable_imp_integrable)
qed
lemma absolutely_integrable_measurable_real:
fixes \(f\) :: 'a::euclidean_space \(\Rightarrow\) real
```

 assumes \(S \in\) sets lebesgue
 shows \(f\) absolutely_integrable_on \(S \longleftrightarrow\)
 \(f \in\) borel_measurable (lebesgue_on \(S) \wedge\) integrable (lebesgue_on \(S\)) \((\lambda x .|f x|)\)
 by (simp add: absolutely_integrable_measurable assms o_def)
    ```
lemma absolutely_integrable_measurable_real':
    fixes \(f::\) 'a::euclidean_space \(\Rightarrow\) real
    assumes \(S \in\) sets lebesgue
    shows \(f\) absolutely_integrable_on \(S \longleftrightarrow f \in\) borel_measurable (lebesgue_on \(S\) ) \(\wedge\)
( \(\lambda x .|f x|\) ) integrable_on \(S\)
    by (metis abs_absolutely_integrableI_1 absolutely_integrable_measurable_real assms
        measurable_bounded_by_integrable_imp_integrable order_refl real_norm_def
set_integrable_abs set_lebesgue_integral_eq_integral(1))
lemma absolutely_integrable_imp_borel_measurable:
fixes \(f\) :: 'a::euclidean_space \(\Rightarrow{ }^{\prime} b::\) euclidean_space
assumes \(f\) absolutely_integrable_on \(S S \in\) sets lebesgue
shows \(f \in\) borel_measurable (lebesgue_on \(S\) )
using absolutely_integrable_measurable assms by blast
lemma measurable_bounded_by_integrable_imp_absolutely_integrable:
fixes \(f\) :: 'a::euclidean_space \(\Rightarrow\) ' \(b::\) euclidean_space
assumes \(f \in\) borel_measurable (lebesgue_on \(S\) ) \(S \in\) sets lebesgue
and \(g\) integrable_on \(S\) and \(\bigwedge x . x \in S \Longrightarrow \operatorname{norm}(f x) \leq(g x)\)
shows \(f\) absolutely_integrable_on \(S\)
using assms absolutely_integrable_integrable_bound measurable_bounded_by_integrable_imp_integrable
by blast
proposition negligible_differentiable_vimage:
fixes \(f::{ }^{\prime} a \Rightarrow\) ' \(a::\) euclidean_space
assumes negligible \(T\)
and \(f^{\prime}: \bigwedge x . x \in S \Longrightarrow \operatorname{inj}\left(f^{\prime} x\right)\)
and derf: \(\bigwedge x . x \in S \Longrightarrow\left(f\right.\) has_derivative \(\left.f^{\prime} x\right)(\) at \(x\) within \(S)\)
shows negligible \(\{x \in S . f x \in T\}\)
proof -
define \(U\) where
\[
U \equiv \lambda n:: \text { nat. }\{x \in S . \forall y . y \in S \wedge \operatorname{norm}(y-x)<1 / n
\]
\[
\longrightarrow \operatorname{norm}(y-x) \leq n * \operatorname{norm}(f y-f x)\}
\]
have negligible \(\{x \in U n\). \(f x \in T\}\) if \(n>0\) for \(n\)
proof (subst locally_negligible_alt, clarify)
fix \(a\)
assume \(a: a \in U n\) and \(f a: f a \in T\)
define \(V\) where \(V \equiv\{x . x \in U n \wedge f x \in T\} \cap\) ball a (1/n/2)
show \(\exists V\). openin (top_of_set \(\{x \in U n . f x \in T\}\) ) \(V \wedge a \in V \wedge\) negligible \(V\) proof (intro exI conjI)
have noxy: \(\operatorname{norm}(x-y) \leq n * \operatorname{norm}(f x-f y)\) if \(x \in V y \in V\) for \(x y\)
using that unfolding \(U_{-} d e f V_{-} d e f\) mem_Collect_eq Int_iff mem_ball dist_norm
by (meson norm_triangle_half_r)
```

 then have inj_on f V
 by (force simp: inj_on_def)
    ```

```

 by (metis inv_into_f_f)
 have }\exists\mp@subsup{T}{}{\prime}B\mathrm{ . open }\mp@subsup{T}{}{\prime}\wedgefx\in\mp@subsup{T}{}{\prime}
 (\forally\inf'V\capT\cap倞.norm (gy-g(fx))\leqB*\operatorname{norm}(y-fx))
 if fx\inT x\inV for x
 using that noxy
 by (rule_tac x = ball (fx) 1 in exI) (force simp: g)
 then have negligible (g' (f'V \cap T))
 by (force simp: <negligible T> negligible_Int intro!: negligible_locally_Lipschitz_image)
 moreover have V\subseteqg'(f'V\capT)
 by (force simp: g image_iff V_def)
 ultimately show negligible V
 by (rule negligible_subset)
 qed (use a fa V_def that in auto)
 qed
with negligible_countable_Union have negligible (\bigcupn\in{0<..}. {x. }
mathrm{ \ }\inUn\wedge
x\inT})
by auto
moreover have {x\inS.fx\inT}\subseteq(\bigcupn\in{0<..}.{x. x\inUn\wedgefx\inT})
proof clarsimp
fix }
assume }x\inS\mathrm{ and fx
then obtain inj: inj(f' x) and der:(f has_derivative f' x) (at x within S)
using assms by metis
moreover have linear (f' }x\mathrm{)
and eps:\bigwedge\varepsilon. \varepsilon>0\Longrightarrow\exists\delta>0.\forally\inS.norm (y-x)<\delta\longrightarrow
norm (fy-fx-\mp@subsup{f}{}{\prime}x(y-x))\leq\varepsilon*norm (y-x)
using der by (auto simp: has_derivative_within_alt linear_linear)
ultimately obtain g}\mathrm{ where linear g and g:g० f'x=id
using linear_injective_left_inverse by metis
then obtain B where B>0 and B:\bigwedgez.B*\operatorname{norm}z\leq\operatorname{norm}(\mp@subsup{f}{}{\prime}xz)
using linear_invertible_bounded_below_pos <linear (}\mp@subsup{f}{}{\prime}x)\rangle\mathrm{ by blast
then obtain }i\mathrm{ where }i\not=0\mathrm{ and }i:1/ real i<
by (metis (full_types) inverse_eq_divide real_arch_invD)
then obtain }\delta\mathrm{ where }\delta>
and }\delta:\bigwedgey.\llbrackety\inS;norm (y-x)<\delta\rrbracket
norm (fy-fx-\mp@subsup{f}{}{\prime}x(y-x))\leq(B-1/real i)*\operatorname{norm}(y-x)
using eps [of B-1/i] by auto
then obtain j where j\not=0 and j: inverse (real j)<\delta
using real_arch_inverse by blast
have norm (y-x)/(max i j) \leqnorm (fy-fx)
if y\inS and less: norm }(y-x)<1/(\operatorname{max}ij)\mathrm{ for y
proof -
have 1 / real (max ij)<\delta
using j <j \not= 0\rangle\langle0< < >
by (auto simp: field_split_simps max_mult_distrib_left of_nat_max)
then have norm (y-x)<\delta

```
using less by linarith
with \(\delta\langle y \in S\rangle\) have le: norm \(\left(f y-f x-f^{\prime} x(y-x)\right) \leq B * \operatorname{norm}(y-\)
\(x)-\operatorname{norm}(y-x) / i\)
by (auto simp: algebra_simps)
have norm \((y-x) /\) real \((\max i j) \leq \operatorname{norm}(y-x) /\) real \(i\)
using \(\langle i \neq 0\rangle\langle j \neq 0\rangle\) by (simp add: field_split_simps max_mult_distrib_left of_nat_max less_max_iff_disj)
also have \(\ldots \leq \operatorname{norm}(f y-f x)\)
using \(B\) [of \(y-x]\) le norm_triangle_ineq3 [of \(f y-f x f^{\prime} x(y-x)\) ]
by linarith
finally show ?thesis.
qed
with \(\langle x \in S\rangle\langle i \neq 0\rangle\langle j \neq 0\rangle\) show \(\exists n \in\{0<..\} . x \in U n\)
by (rule_tac \(x=\max i j\) in bexI) (auto simp: field_simps U_def less_max_iff_disj) qed
ultimately show ?thesis
by (rule negligible_subset)
qed
lemma absolutely_integrable_Un:
fixes \(f\) :: 'a::euclidean_space \(\Rightarrow\) 'b::euclidean_space
assumes \(S: f\) absolutely_integrable_on \(S\) and \(T: f\) absolutely_integrable_on \(T\)
shows \(f\) absolutely_integrable_on \((S \cup T)\)
proof -
have \([\) simp \(]:\{x\). (if \(x \in A\) then \(f x\) else 0\() \neq 0\}=\{x \in A . f x \neq 0\}\) for \(A\)
by auto
let ?ST \(=\{x \in S . f x \neq 0\} \cap\{x \in T . f x \neq 0\}\)
have ?ST \(\in\) sets lebesgue
proof (rule Sigma_Algebra.sets.Int)
have \(f\) integrable_on \(S\)
using \(S\) absolutely_integrable_on_def by blast
then have ( \(\lambda x\). if \(x \in S\) then \(f x\) else 0) integrable_on UNIV
by (simp add: integrable_restrict_UNIV)
then have borel: \((\lambda x\). if \(x \in S\) then \(f x\) else 0\() \in\) borel_measurable (lebesgue_on UNIV)
using integrable_imp_measurable lebesgue_on_UNIV_eq by blast
then show \(\{x \in S . f x \neq 0\} \in\) sets lebesgue
unfolding borel_measurable_vimage_open
by (rule allE [where \(x=-\{0\}]\) ) auto
next
have \(f\) integrable_on \(T\)
using \(T\) absolutely_integrable_on_def by blast
then have \((\lambda x\). if \(x \in T\) then \(f x\) else 0\()\) integrable_on UNIV
by (simp add: integrable_restrict_UNIV)
then have borel: \((\lambda x\). if \(x \in T\) then \(f x\) else 0\() \in\) borel_measurable (lebesgue_on
UNIV)
using integrable_imp_measurable lebesgue_on_UNIV_eq by blast
then show \(\{x \in T . f x \neq 0\} \in\) sets lebesgue
unfolding borel_measurable_vimage_open
```

 by (rule allE \([\) where \(x=-\{0\}]\)) auto
 qed
then have f absolutely_integrable_on ?ST
by (rule set_integrable_subset [OF S]) auto
then have Int: (λx. if $x \in$?ST then f x else 0) absolutely_integrable_on UNIV
using absolutely_integrable_restrict_UNIV by blast
have $(\lambda x$. if $x \in S$ then $f x$ else 0) absolutely_integrable_on UNIV
(λx. if $x \in T$ then $f x$ else 0) absolutely_integrable_on UNIV
using S T absolutely_integrable_restrict_UNIV by blast+
then have $(\lambda x$. (if $x \in S$ then $f x$ else 0$)+($ if $x \in T$ then $f x$ else 0$)$) abso-
lutely_integrable_on UNIV
by (rule set_integral_add)
then have $(\lambda x$. ((if $x \in S$ then $f x$ else 0$)+($ if $x \in T$ then $f x$ else 0$))-($ if x
\in ?ST then $f x$ else 0$)$) absolutely_integrable_on UNIV
using Int by (rule set_integral_diff)
then have (λx. if $x \in S \cup T$ then f x else 0) absolutely_integrable_on UNIV
by (rule absolutely_integrable_spike) (auto intro: empty_imp_negligible)
then show ?thesis
unfolding absolutely_integrable_restrict_UNIV .
qed
lemma absolutely_integrable_on_combine:
fixes f :: real $\Rightarrow{ }^{\prime} a$::euclidean_space
assumes f absolutely_integrable_on $\{a . . c\}$
and f absolutely_integrable_on $\{c . . b\}$
and $a \leq c$
and $c \leq b$
shows f absolutely_integrable_on $\{a . . b\}$
by (metis absolutely_integrable_Un assms ivl_disj_un_two_touch(4))
lemma uniform_limit_set_lebesgue_integral_at_top:
fixes $f::$ ' $a \Rightarrow$ real \Rightarrow ' $b::\{b a n a c h$, second_countable_topology $\}$
and g :: real \Rightarrow real
assumes bound: $\bigwedge x y . x \in A \Longrightarrow y \geq a \Longrightarrow \operatorname{norm}(f x y) \leq g y$
assumes integrable: set_integrable $M\{a .\}$.
assumes measurable: $\bigwedge x . x \in A \Longrightarrow$ set_borel_measurable $M\{a .\}.(f x)$
assumes sets borel \subseteq sets M
shows uniform_limit $A(\lambda b x . \operatorname{LINT} y:\{a . . b\} \mid M . f x y)(\lambda x . \operatorname{LINT} y:\{a .\} \mid$.$M .$
f x y) at_top
proof (cases $A=\{ \})$
case False
then obtain x where $x: x \in A$ by auto
have g_nonneg: $g y \geq 0$ if $y \geq a$ for y
proof -
have $0 \leq \operatorname{norm}(f x y)$ by simp
also have $\ldots \leq g y$ using bound $[$ OF x that $]$ by simp
finally show ?thesis.
qed

```
```

 have integrable': set_integrable \(M\{a .\}.(\lambda y . f x y)\) if \(x \in A\) for \(x\)
 unfolding set_integrable_def
 proof (rule Bochner_Integration.integrable_bound)
 show integrable \(M\) (\(\lambda x\). indicator \(\{a .\} x * g x\).
 using integrable by (simp add: set_integrable_def)
 show (\(\lambda y\). indicat_real \(\left.\{a .\}. y *_{R} f x y\right) \in\) borel_measurable \(M\) using measur-
 able $[$ OF that $]$
by (simp add: set_borel_measurable_def)
show $A E y$ in M. norm (indicat_real $\left.\{a .\}. y *_{R} f x y\right) \leq$ norm (indicat_real
$\{a .\} y * g$.$y)$
using bound $[$ OF that $]$ by (intro AE_I2) (auto simp: indicator_def g_nonneg)
qed
show ?thesis
proof (rule uniform_limitI)
fix e :: real assume $e: e>0$
have sets [intro]: $A \in$ sets M if $A \in$ sets borel for A
using that assms by blast
have $((\lambda b . \operatorname{LINT} y:\{a . . b\} \mid M . g y) \longrightarrow(L I N T y:\{a .\} \mid. M . g y))$ at_top
by (intro tendsto_set_lebesgue_integral_at_top assms sets) auto
with e obtain $b 0::$ real where $b 0: \forall b \geq b 0$. |(LINT y:\{a..\}|M.g y) - (LINT
$y:\{a . . b\} \mid M . g y) \mid<e$
by (auto simp: tendsto_iff eventually_at_top_linorder dist_real_def abs_minus_commute)
define b where $b=\max a b 0$
have $a \leq b$ by (simp add: $b_{-} d e f$)
from $b 0$ have $|(\operatorname{LINT} y:\{a .\} \mid. M . g y)-(\operatorname{LINT} y:\{a . . b\} \mid M . g y)|<e$
by (auto simp: b_def)
also have $\{a .\}=.\{a . . b\} \cup\{b<.$.$\} by (auto simp: b_def)$
also have $\mid($ LINT $y: . . . \mid M . g y)-($ LINT $y:\{a . . b\} \mid M . g y)|=|(\operatorname{LINT} y:\{b<.\} \mid$.$M .$
g y)|
using $\langle a \leq b\rangle$ by (subst set_integral_Un) (auto intro!: set_integrable_subset[OF
integrable])
also have (LINT $y:\{b<.\} \mid. M . g y) \geq 0$
using g_nonneg $\langle a \leq b\rangle$ unfolding set_lebesgue_integral_def
by (intro Bochner_Integration.integral_nonneg) (auto simp: indicator_def)
hence $\mid($ LINT $y:\{b<.\} \mid. M . g y) \mid=(\operatorname{LINT} y:\{b<.\} \mid. M . g$ y) by simp
finally have less: $(\operatorname{LINT} y:\{b<.\} \mid. M . g y)<e$.
have eventually $(\lambda b . b \geq b 0)$ at_top by (rule eventually_ge_at_top)
moreover have eventually $(\lambda b . b \geq a)$ at_top by (rule eventually_ge_at_top)
ultimately show eventually $(\lambda b . \forall x \in A$.
dist (LINT y:\{a..b\}|M.fxy)(LINT y:\{a..\}|M.fxy)<e)
at_top
proof eventually_elim
case (elim b)
show ?case
proof
fix x assume $x: x \in A$

```
```

 have dist (LINT y:{a..b}|M.f f y)(LINT y:{a..}|M. f x y)=
 norm ((LINT y:{a..}|M.fxy)-(LINT y:{a..b}|M.f x y))
 by (simp add: dist_norm norm_minus_commute)
 also have {a..} ={a..b}\cup{b<..} using elim by auto
 also have (LINT y:...|M.f x y) - (LINT y:{a..b}|M.f x y) = (LINT
 y:{b<..}|M. f x y)
using elim x
by (subst set_integral_Un) (auto intro!: set_integrable_subset[OF integrable])
also have norm ... \leq (LINT y:{b<..}|M. norm (f x y)) using elim x
by (intro set_integral_norm_bound set_integrable_subset[OF integrable]) auto
also have ...\leq(LINT y:{b<..}|M.g y) using elim x bound g_nonneg
by (intro set_integral_mono set_integrable_norm set_integrable_subset[OF
integrable]
set_integrable_subset[OF integrable]) auto
also have (LINT y:{b<..}|M.g y)\geq0
using g_nonneg <a \leq b> unfolding set_lebesgue_integral_def
by (intro Bochner_Integration.integral_nonneg) (auto simp: indicator_def)
hence (LINT y:{b<..}|M.g y)=|(LINT y:{b<..}|M.g y)| by simp
also have ... = |(LINT y:{a..b}\cup{b<..}|M.g y) - (LINT y:{a..b}|M.g
y)|
using elim by (subst set_integral_Un) (auto intro!: set_integrable_subset[OF
integrable])
also have {a..b}\cup{b<..}={a..} using elim by auto
also have |(LINT y:{a..}|M.g y) - (LINT y:{a..b}|M.g y)|<e
using b0 elim by blast
finally show dist (LINT y:{a..b}|M.fxy)(LINT y:{a..}|M.f x y)<e.
qed
qed
qed
qed auto

```

\section*{Differentiability of inverse function (most basic form)}
```

proposition has_derivative_inverse_within:
fixes f :: 'a::real_normed_vector \Rightarrow ' $b::$ euclidean_space
assumes der_f: (f has_derivative f^{\prime}) (at a within S)
and cont_g: continuous (at (f a) within f ' S) g
and $a \in S$ linear g^{\prime} and $i d: g^{\prime} \circ f^{\prime}=i d$
and $g f: \bigwedge x . x \in S \Longrightarrow g(f x)=x$
shows (g has_derivative g^{\prime}) (at (f a) within f ' S)
proof -
have $[$ simp $]: g^{\prime}\left(f^{\prime} x\right)=x$ for x
by (simp add: local.id pointfree_idE)
have bounded_linear f^{\prime}
and $f^{\prime}: \bigwedge e . e>0 \Longrightarrow \exists d>0 . \forall y \in S . \operatorname{norm}(y-a)<d \longrightarrow$
norm $\left(f y-f a-f^{\prime}(y-a)\right) \leq e * \operatorname{norm}(y-a)$
using der_f by (auto simp: has_derivative_within_alt)
obtain C where $C>0$ and $C: \bigwedge x$.norm $\left(g^{\prime} x\right) \leq C *$ norm x using linear_bounded_pos [OF 〈linear $\left.\left.g^{\prime}\right\rangle\right]$ by metis

```
```

 obtain \(B k\) where \(B>0 k>0\)
 and \(B k: \bigwedge x . \llbracket x \in S ; \operatorname{norm}(f x-f a)<k \rrbracket \Longrightarrow \operatorname{norm}(x-a) \leq B * \operatorname{norm}(f\)
 $x-f a)$
proof -
obtain B where $B>0$ and $B: \bigwedge x . B * \operatorname{norm} x \leq \operatorname{norm}\left(f^{\prime} x\right)$
using linear_inj_bounded_below_pos [of f $]$ 〈linear $\left.g^{\prime}\right\rangle$ id der_f has_derivative_linear
linear_invertible_bounded_below_pos by blast
then obtain d where $d>0$
and $d: \bigwedge y . \llbracket y \in S ;$ norm $(y-a)<d \rrbracket \Longrightarrow$
$\operatorname{norm}\left(f y-f a-f^{\prime}(y-a)\right) \leq B / 2 * \operatorname{norm}(y-a)$
using $f^{\prime}[$ of $B /$ 2] by auto
then obtain e where $e>0$
and $e: \bigwedge x . \llbracket x \in S$; norm $(f x-f a)<e \rrbracket \Longrightarrow \operatorname{norm}(g(f x)-g(f a))<d$
using cont_g by (auto simp: continuous_within_eps_delta dist_norm)
show thesis
proof
show $2 / B>0$
using $\langle B\rangle 0\rangle$ by simp
show norm $(x-a) \leq 2 / B * \operatorname{norm}(f x-f a)$
if $x \in S$ norm $(f x-f a)<e$ for x
proof -
have $x a$: norm $(x-a)<d$
using $e[O F$ that $] g f$ by (simp add: $\langle a \in S\rangle$ that)
have $*$: $\llbracket \operatorname{norm}\left(y-f^{\prime}\right) \leq B / 2 * \operatorname{norm} x ; B * \operatorname{norm} x \leq n o r m ~ f \rrbracket$
\Longrightarrow norm $y \geq B / 2 *$ norm x for $y f^{\prime}::^{\prime} b$ and $x::^{\prime} a$
using norm_triangle_ineq3 [of y f ${ }^{\prime}$ by linarith
show ?thesis
using $*[O F d[O F\langle x \in S\rangle x a] B]\langle B>0\rangle$ by (simp add: field_simps $)$
qed
qed (use $\langle e>0\rangle$ in auto)
qed
show ?thesis
unfolding has_derivative_within_alt
proof (intro conjI impI allI)
show bounded_linear g^{\prime}
using 〈linear g^{\prime} ’ by (simp add: linear_linear)
next
fix e :: real
assume $e>0$
then obtain d where $d>0$
and $d: \bigwedge y . \llbracket y \in S ; \operatorname{norm}(y-a)<d \rrbracket \Longrightarrow$
$\operatorname{norm}\left(f y-f a-f^{\prime}(y-a)\right) \leq e /(B * C) * \operatorname{norm}(y-a)$
using $f^{\prime}[$ of $e /(B * C)]\langle B>0\rangle\langle C>0\rangle$ by auto
have norm $\left(x-a-g^{\prime}(f x-f a)\right) \leq e * \operatorname{norm}(f x-f a)$
if $x \in S$ and $l t_{l} k:$ norm $(f x-f a)<k$ and $l t_{-} d B:$ norm $(f x-f a)<d / B$
for x
proof -
have norm $(x-a) \leq B * \operatorname{norm}(f x-f a)$
using $B k l t_{-} k\langle x \in S\rangle$ by blast

```
```

 also have ... <d
 by (metis }<0<B\ranglelt_dB mult.commute pos_less_divide_eq)
 finally have lt_d: norm (x-a)<d.
 have norm (x-a- g'(fx-fa)) \leqnorm(g'(fx-fa-(f'(x-a))))
 by (simp add: linear_diff [OF <linear g}\mp@subsup{g}{}{\prime}\] norm_minus_commute)
 also have ... \leqC* norm (fx-fa-\mp@subsup{f}{}{\prime}(x-a))
 using C by blast
 also have ... \leqe * norm (fx-fa)
 proof -
 have norm (fx-fa-\mp@subsup{f}{}{\prime}(x-a))\leqe/(B*C)*\operatorname{norm}(x-a)
 using d [OF <x \inS>lt_d].
 also have ... \leq(norm (fx-fa)*e)/C
 using }\langleB>0\rangle\langleC>0\rangle\langlee> 0\rangle by (simp add: field_simps Bklt_k\langlex\inS\rangle
 finally show ?thesis
 using \langleC> 0\rangle by (simp add: field_simps)
 qed
 finally show ?thesis .
 qed
 with \langlek> 0\rangle\langleB> 0\rangle\langled> 0\rangle\langlea\inS\rangle
 show \existsd>0.}\forally\inf'S
 norm (y-fa)<d\longrightarrow
 norm (gy-g(fa)- g'(y-fa))\leqe*norm (y-fa)
 by (rule_tac x=min k(d/B) in exI) (auto simp:gf)
 qed
 qed
end

```

\subsection*{6.20 Complex Analysis Basics}

Definitions of analytic and holomorphic functions, limit theorems, complex differentiation
theory Complex_Analysis_Basics
imports Derivative HOL-Library.Nonpos_Ints
begin

\subsection*{6.20.1 General lemmas}
lemma nonneg_Reals_cmod_eq_Re: \(z \in \mathbb{R}_{\geq 0} \Longrightarrow\) norm \(z=R e z\) by (simp add: complex_nonneg_Reals_iff cmod_eq_Re)
lemma fact_cancel:
fixes \(c::{ }^{\prime} a::\) real_field
shows of_nat \((\) Suc \(n) * c /(\) fact \((\) Suc \(n))=c /(\) fact \(n)\)
using of_nat_neq_0 by force
lemma vector_derivative_cnj_within:
assumes at \(x\) within \(A \neq b o t\) and \(f\) differentiable at \(x\) within \(A\)
```

 shows vector_derivative (\lambdaz.cnj (fz)) (at x within A) =
 cnj (vector_derivative f(at x within A)) (is _ = cnj ?D)
 proof -
let ?D = vector_derivative f (at x within A)
from assms have (f has_vector_derivative ?D) (at x within A)
by (subst (asm) vector_derivative_works)
hence ((\lambdax.cnj (fx)) has_vector_derivative cnj ?D) (at x within A)
by (rule has_vector_derivative_cnj)
thus ?thesis using assms by (auto dest: vector_derivative_within)
qed
lemma vector_derivative_cnj:
assumes f differentiable at x
shows vector_derivative (\lambdaz.cnj (fz)) (at x)=cnj (vector_derivative f (at x))
using assms by (intro vector_derivative_cnj_within) auto
lemma
shows open_halfspace_Re_lt:open {z.Re(z)<b}
and open_halfspace_Re_gt:open {z.Re(z)>b}
and closed_halfspace_Re_ge:closed {z.Re(z)\geqb}
and closed_halfspace_Re_le:closed {z.Re(z)\leqb}
and closed_halfspace_Re_eq: closed {z.Re(z)=b}
and open_halfspace_Im_lt:open {z.Im (z)<b}
and open_halfspace_Im_gt:open {z.Im (z)>b}
and closed_halfspace_Im_ge: closed {z.Im (z)\geqb}
and closed_halfspace_Im_le: closed {z.Im (z)\leqb}
and closed_halfspace_Im_eq: closed {z.Im}(z)=b
by (intro open_Collect_less closed_Collect_le closed_Collect_eq continuous_on_Re
continuous_on_Im continuous_on_id continuous_on_const)+
lemma closed_complex_Reals: closed (\mathbb{R :: complex set)}
proof -
have}(\mathbb{R}:: complex set)={z.\operatorname{Im}z=0
by (auto simp: complex_is_Real_iff)
then show ?thesis
by (metis closed_halfspace_Im_eq)
qed
lemma closed_Real_halfspace_Re_le:closed (}\mathbb{R}\cap{w.Rew\leqx}
by (simp add: closed_Int closed_complex_Reals closed_halfspace_Re_le)
lemma closed_nonpos_Reals_complex [simp]: closed (}\mp@subsup{\mathbb{R}}{\leq0}{}\mathrm{ :: complex set)
proof -
have }\mp@subsup{\mathbb{R}}{\leq0}{}=\mathbb{R}\cap{z.\operatorname{Re}(z)\leq0
using complex_nonpos_Reals_iff complex_is_Real_iff by auto
then show ?thesis
by (metis closed_Real_halfspace_Re_le)
qed

```
```

lemma closed_Real_halfspace_Re_ge: closed $(\mathbb{R} \cap\{w . x \leq \operatorname{Re}(w)\})$
using closed_halfspace_Re_ge
by (simp add: closed_Int closed_complex_Reals)
lemma closed_nonneg_Reals_complex $[$ simp $]$: closed $\left(\mathbb{R}_{\geq 0}::\right.$ complex set $)$
proof -
have $\mathbb{R}_{\geq 0}=\mathbb{R} \cap\{z . \operatorname{Re}(z) \geq 0\}$
using complex_nonneg_Reals_iff complex_is_Real_iff by auto
then show ?thesis
by (metis closed_Real_halfspace_Re_ge)
qed
lemma closed_real_abs_le: closed $\{w \in \mathbb{R} .|R e w| \leq r\}$
proof -
have $\{w \in \mathbb{R} .|\operatorname{Re} w| \leq r\}=(\mathbb{R} \cap\{w . \operatorname{Re} w \leq r\}) \cap(\mathbb{R} \cap\{w . \operatorname{Re} w \geq-r\})$
by auto
then show closed $\{w \in \mathbb{R}$. \mid Re $w \mid \leq r\}$
by (simp add: closed_Int closed_Real_halfspace_Re_ge closed_Real_halfspace_Re_le)
qed
lemma real_lim:
fixes $l::$ complex
assumes $(f \longrightarrow l) F$ and \neg trivial_limit F and eventually $P F$ and $\bigwedge a . P a$
$\Longrightarrow f a \in \mathbb{R}$
shows $l \in \mathbb{R}$
proof (rule Lim_in_closed_set[OF closed_complex_Reals _ assms(2,1)])
show eventually $(\lambda x . f x \in \mathbb{R}) F$
using $\operatorname{assms}(3,4)$ by (auto intro: eventually_mono)
qed
lemma real_lim_sequentially:
fixes l::complex
shows $(f \longrightarrow l)$ sequentially $\Longrightarrow(\exists N . \forall n \geq N . f n \in \mathbb{R}) \Longrightarrow l \in \mathbb{R}$
by (rule real_lim [where $F=$ sequentially]) (auto simp: eventually_sequentially)
lemma real_series:
fixes $l::$ complex
shows f sums $l \Longrightarrow(\bigwedge n . f n \in \mathbb{R}) \Longrightarrow l \in \mathbb{R}$
unfolding sums_def
by (metis real_lim_sequentially sum_in_Reals)
lemma Lim_null_comparison_Re:
assumes eventually $(\lambda x . \operatorname{norm}(f x) \leq \operatorname{Re}(g x)) F(g \longrightarrow 0) F$ shows $(f \longrightarrow$
0) F
by (rule Lim_null_comparison[OF assms(1)] tendsto_eq_intros assms(2))+ simp

```

\subsection*{6.20.2 Holomorphic functions}
definition holomorphic_on :: \([\) complex \(\Rightarrow\) complex, complex set \(] \Rightarrow\) bool
(infixl (holomorphic'_on) 50)
where \(f\) holomorphic_on \(s \equiv \forall x \in s\).f field_differentiable (at \(x\) within \(s\) )
named_theorems holomorphic_intros structural introduction rules for holomorphic_on
lemma holomorphic_onI [intro?]: ( \(\bigwedge x . x \in s \Longrightarrow f\) field_differentiable (at \(x\) within \(s)) \Longrightarrow f\) holomorphic_on \(s\)
by (simp add: holomorphic_on_def)
lemma holomorphic_onD [dest?]: \(\llbracket f\) holomorphic_on \(s ; x \in s \rrbracket \Longrightarrow f\) field_differentiable (at \(x\) within \(s\) )
by (simp add: holomorphic_on_def)
lemma holomorphic_on_imp_differentiable_on:
\(f\) holomorphic_on \(s \Longrightarrow f\) differentiable_on s
unfolding holomorphic_on_def differentiable_on_def
by (simp add: field_differentiable_imp_differentiable)
lemma holomorphic_on_imp_differentiable_at:
\(\llbracket f\) holomorphic_on \(s\); open \(s ; x \in s \rrbracket \Longrightarrow f\) field_differentiable (at \(x\) )
using at_within_open holomorphic_on_def by fastforce
lemma holomorphic_on_empty [holomorphic_intros]: f holomorphic_on \{\} by (simp add: holomorphic_on_def)
lemma holomorphic_on_open: open \(s \Longrightarrow f\) holomorphic_on \(s \longleftrightarrow\left(\forall x \in s . \exists f^{\prime}\right.\). DERIV \(\left.f x:>f^{\prime}\right)\)
by (auto simp: holomorphic_on_def field_differentiable_def has_field_derivative_def at_within_open \([o f\) _ \(s]\) )
lemma holomorphic_on_imp_continuous_on:
\(f\) holomorphic_on \(s \Longrightarrow\) continuous_on s \(f\)
by (metis field_differentiable_imp_continuous_at continuous_on_eq_continuous_within holomorphic_on_def)
lemma holomorphic_on_subset [elim]:
\(f\) holomorphic_on \(s \Longrightarrow t \subseteq s \Longrightarrow f\) holomorphic_on \(t\)
unfolding holomorphic_on_def
by (metis field_differentiable_within_subset subsetD)
lemma holomorphic_transform: \(\llbracket f\) holomorphic_on \(s ; \bigwedge x . x \in s \Longrightarrow f x=g x \rrbracket\) \(\Longrightarrow g\) holomorphic_on s
by (metis field_differentiable_transform_within linordered_field_no_ub holomorphic_on_def)
lemma holomorphic_cong: \(s=t==>(\bigwedge x . x \in s \Longrightarrow f x=g x) \Longrightarrow f\) holomor-
phic_on \(s \longleftrightarrow g\) holomorphic_on \(t\)
by (metis holomorphic_transform)
```

lemma holomorphic_on_linear [simp, holomorphic_intros]:((*) c) holomorphic_on
s
unfolding holomorphic_on_def by (metis field_differentiable_linear)
lemma holomorphic_on_const [simp, holomorphic_intros]: (\lambdaz. c) holomorphic_on
s
unfolding holomorphic_on_def by (metis field_differentiable_const)
lemma holomorphic_on_ident [simp, holomorphic_intros]: (}\lambdax.x)\mathrm{ holomorphic_on
s
unfolding holomorphic_on_def by (metis field_differentiable_ident)
lemma holomorphic_on_id [simp, holomorphic_intros]: id holomorphic_on s
unfolding id_def by (rule holomorphic_on_ident)
lemma holomorphic_on_compose:
f holomorphic_on s \Longrightarrow g holomorphic_on (f's) \Longrightarrow(gof) holomorphic_on s
using field_differentiable_compose_within[of f_s g]
by (auto simp: holomorphic_on_def)
lemma holomorphic_on_compose_gen:
f holomorphic_on s\Longrightarrowg holomorphic_on t C f's\subseteqt\Longrightarrow(gof) holomor-
phic_on s
by (metis holomorphic_on_compose holomorphic_on_subset)
lemma holomorphic_on_balls_imp_entire:
assumes \negbdd_above A \bigwedger.r f A \Longrightarrowf holomorphic_on ball c r
shows f holomorphic_on B
proof (rule holomorphic_on_subset)
show f holomorphic_on UNIV unfolding holomorphic_on_def
proof
fix z :: complex
from «\negbdd_above A> obtain r where r: r f Ar> norm (z-c)
by (meson bdd_aboveI not_le)
with assms(2) have f holomorphic_on ball c r by blast
moreover from r have z\inball cr by (auto simp:dist_norm norm_minus_commute)
ultimately show f field_differentiable at z
by (auto simp: holomorphic_on_def at_within_open[of _ ball c r])
qed
qed auto
lemma holomorphic_on_balls_imp_entire':
assumes \r.r>0\Longrightarrowf holomorphic_on ball c r
shows f holomorphic_on B
proof (rule holomorphic_on_balls_imp_entire)
{
fix M :: real
have \existsx. x > max M 0 by (intro gt_ex)
hence }\existsx>0.x>M by aut

```
```

 }
 thus \negbdd_above {(0::real)<..} unfolding bdd_above_def
 by (auto simp: not_le)
 qed (insert assms, auto)

```
lemma holomorphic_on_minus [holomorphic_intros]: f holomorphic_on \(s \Longrightarrow(\lambda z\). \(-(f z))\) holomorphic_on s
by (metis field_differentiable_minus holomorphic_on_def)
lemma holomorphic_on_add [holomorphic_intros]:
\(\llbracket f\) holomorphic_on \(s ; g\) holomorphic_on \(s \rrbracket \Longrightarrow(\lambda z . f z+g z)\) holomorphic_on \(s\) unfolding holomorphic_on_def by (metis field_differentiable_add)
lemma holomorphic_on_diff [holomorphic_intros]:
\(\llbracket f\) holomorphic_on \(s ; g\) holomorphic_on \(s \rrbracket \Longrightarrow(\lambda z . f z-g z)\) holomorphic_on \(s\) unfolding holomorphic_on_def by (metis field_differentiable_diff)
lemma holomorphic_on_mult [holomorphic_intros]:
\(\llbracket f\) holomorphic_on \(s ; g\) holomorphic_on \(s \rrbracket \Longrightarrow(\lambda z . f z * g z)\) holomorphic_on s unfolding holomorphic_on_def by (metis field_differentiable_mult)
lemma holomorphic_on_inverse [holomorphic_intros]:
\(\llbracket f\) holomorphic_on \(s ; \bigwedge z . z \in s \Longrightarrow f z \neq 0 \rrbracket \Longrightarrow(\lambda z\). inverse \((f z))\) holomorphic_on s
unfolding holomorphic_on_def by (metis field_differentiable_inverse)
lemma holomorphic_on_divide [holomorphic_intros]:
\(\llbracket f\) holomorphic_on \(s ; g\) holomorphic_on \(s ; \bigwedge z . z \in s \Longrightarrow g z \neq 0 \rrbracket \Longrightarrow(\lambda z . f z /\)
\(g z)\) holomorphic_on \(s\)
unfolding holomorphic_on_def by (metis field_differentiable_divide)
lemma holomorphic_on_power [holomorphic_intros]:
\(f\) holomorphic_on \(s \Longrightarrow\left(\lambda z .(f z)^{\wedge} n\right)\) holomorphic_on s
unfolding holomorphic_on_def by (metis field_differentiable_power)
lemma holomorphic_on_sum [holomorphic_intros]:
\((\bigwedge i . i \in I \Longrightarrow(f i)\) holomorphic_on s) \(\Longrightarrow(\lambda x\).sum \((\lambda i . f i x) I)\) holomorphic_on
\(s\)
unfolding holomorphic_on_def by (metis field_differentiable_sum)
lemma holomorphic_on_prod [holomorphic_intros]:
\((\bigwedge i . i \in I \Longrightarrow(f i)\) holomorphic_on \(s) \Longrightarrow(\lambda x . \operatorname{prod}(\lambda i . f i x) I)\) holomorphic_on \(s\)
by (induction I rule: infinite_finite_induct) (auto intro: holomorphic_intros)
lemma holomorphic_pochhammer [holomorphic_intros]:
\(f\) holomorphic_on \(A \Longrightarrow(\lambda s\). pochhammer \((f s) n)\) holomorphic_on \(A\)
by (induction n) (auto intro!: holomorphic_intros simp: pochhammer_Suc)
lemma holomorphic＿on＿scaleR［holomorphic＿intros］：
\(f\) holomorphic＿on \(A \Longrightarrow\left(\lambda x . c *_{R} f x\right)\) holomorphic＿on \(A\)
by（auto simp：scaleR＿conv＿of＿real intro！：holomorphic＿intros）
lemma holomorphic＿on＿Un［holomorphic＿intros］：
assumes \(f\) holomorphic＿on \(A\) f holomorphic＿on \(B\) open \(A\) open \(B\)
shows \(f\) holomorphic＿on \((A \cup B)\)
using assms by（auto simp：holomorphic＿on＿def at＿within＿open［of＿\(A\) ］ at＿within＿open \(\left[o f_{-} B\right]\) at＿within＿open \(\left[o f_{-} A \cup B\right]\) open＿Un）
lemma holomorphic＿on＿If＿Un［holomorphic＿intros］：
assumes \(f\) holomorphic＿on \(A\) g holomorphic＿on \(B\) open \(A\) open \(B\)
assumes \(\bigwedge z . z \in A \Longrightarrow z \in B \Longrightarrow f z=g z\)
shows \(\quad(\lambda z\) ．if \(z \in A\) then \(f z\) else \(g z)\) holomorphic＿on \((A \cup B)\)（is？holomor－
phic＿on＿）
proof（intro holomorphic＿on＿Un）
note 〈f holomorphic＿on \(A\rangle\)
also have \(f\) holomorphic＿on \(A \longleftrightarrow\) ？h holomorphic＿on \(A\)
by（intro holomorphic＿cong）auto
finally show ．．．．
next
note 〈g holomorphic＿on B〉
also have \(g\) holomorphic＿on \(B \longleftrightarrow\) ？\(h\) holomorphic＿on \(B\) using assms by（intro holomorphic＿cong）auto
finally show ．．．．
qed（insert assms，auto）
lemma holomorphic＿derivI： \(\llbracket f\) holomorphic＿on \(S\) ；open \(S ; x \in S \rrbracket\) \(\Longrightarrow(f\) has＿field＿derivative deriv \(f x)\)（at \(x\) within \(T)\)
by（metis DERIV＿deriv＿iff＿field＿differentiable at＿within＿open holomorphic＿on＿def
has＿field＿derivative＿at＿within）
lemma complex＿derivative＿transform＿within＿open：
\(\llbracket f\) holomorphic＿on \(s ; g\) holomorphic＿on \(s ;\) open \(s ; z \in s ; \bigwedge w . w \in s \Longrightarrow f w=g\)
\(w \rrbracket\)
\(\Longrightarrow\) deriv \(f z=\operatorname{deriv} g z\)
unfolding holomorphic＿on＿def
by（rule DERIV＿imp＿deriv）
（ metis DERIV＿deriv＿iff＿field＿differentiable has＿field＿derivative＿transform＿within＿open
at＿within＿open）
lemma holomorphic＿nonconstant：
assumes holf：f holomorphic＿on \(S\) and open \(S \xi \in S\) deriv \(f \xi \neq 0\)
shows \(\neg f\) constant＿on \(S\)
by（rule nonzero＿deriv＿nonconstant \([\) of \(f \operatorname{deriv} f \xi \xi S])\)
（use assms in 〈auto simp：holomorphic＿derivI〉）

\subsection*{6.20.3 Analyticity on a set}
definition analytic_on (infixl (analytic \({ }^{\prime}\) _on) 50)
where \(f\) analytic_on \(S \equiv \forall x \in S . \exists e .0<e \wedge f\) holomorphic_on (ball \(x e\) )
named_theorems analytic_intros introduction rules for proving analyticity
lemma analytic_imp_holomorphic: \(f\) analytic_on \(S \Longrightarrow f\) holomorphic_on \(S\)
by (simp add: at_within_open [OF_open_ball] analytic_on_def holomorphic_on_def) (metis centre_in_ball field_differentiable_at_within)
lemma analytic_on_open: open \(S \Longrightarrow f\) analytic_on \(S \longleftrightarrow f\) holomorphic_on \(S\) apply (auto simp: analytic_imp_holomorphic) apply (auto simp: analytic_on_def holomorphic_on_def) by (metis holomorphic_on_def holomorphic_on_subset open_contains_ball)
lemma analytic_on_imp_differentiable_at:
\(f\) analytic_on \(S \Longrightarrow x \in S \Longrightarrow f\) field_differentiable (at x)
apply (auto simp: analytic_on_def holomorphic_on_def)
by (metis open_ball centre_in_ball field_differentiable_within_open)
lemma analytic_on_subset: \(f\) analytic_on \(S \Longrightarrow T \subseteq S \Longrightarrow f\) analytic_on \(T\) by (auto simp: analytic_on_def)
lemma analytic_on_Un: fanalytic_on \((S \cup T) \longleftrightarrow f\) analytic_on \(S \wedge f\) analytic_on \(T\)
by (auto simp: analytic_on_def)
lemma analytic_on_Union: \(f\) analytic_on \((\bigcup \mathcal{T}) \longleftrightarrow(\forall T \in \mathcal{T} . f\) analytic_on \(T)\) by (auto simp: analytic_on_def)
lemma analytic_on_UN: f analytic_on \((\bigcup i \in I . S i) \longleftrightarrow(\forall i \in I . f\) analytic_on \((S\) i))
by (auto simp: analytic_on_def)
lemma analytic_on_holomorphic:
\(f\) analytic_on \(S \longleftrightarrow(\exists T\). open \(T \wedge S \subseteq T \wedge f\) holomorphic_on \(T)\)
(is ?lhs \(=\) ? \(r h s\) )
proof -
have ?lhs \(\longleftrightarrow(\exists T\). open \(T \wedge S \subseteq T \wedge f\) analytic_on \(T)\)
proof safe
assume \(f\) analytic_on \(S\)
then show \(\exists T\). open \(T \wedge S \subseteq T \wedge f\) analytic_on \(T\)
apply (simp add: analytic_on_def)
apply (rule exI [where \(x=\bigcup\{U\). open \(U \wedge f\) analytic_on \(U\}\) ], auto)
apply (metis open_ball analytic_on_open centre_in_ball)
by (metis analytic_on_def)
next
fix \(T\)
assume open \(T S \subseteq T f\) analytic_on \(T\)
```

 then show f analytic_on S
 by (metis analytic_on_subset)
 qed
 also have ... \longleftrightarrow ?rhs
 by (auto simp: analytic_on_open)
 finally show ?thesis.
 qed
lemma analytic_on_linear [analytic_intros,simp]: ((*) c) analytic_on S
by (auto simp add: analytic_on_holomorphic)
lemma analytic_on_const [analytic_intros,simp]: (\lambdaz.c) analytic_on S
by (metis analytic_on_def holomorphic_on_const zero_less_one)
lemma analytic_on_ident [analytic_intros,simp]: (}\lambdax.x)\mathrm{ analytic_on S
by (simp add: analytic_on_def gt_ex)
lemma analytic_on_id [analytic_intros]: id analytic_on S
unfolding id_def by (rule analytic_on_ident)
lemma analytic_on_compose:
assumes f:f analytic_on S
and g:g analytic_on (}f\mathrm{ ' S)
shows (gof) analytic_on S
unfolding analytic_on_def
proof (intro ballI)
fix }
assume x: x \inS
then obtain e where e:0<e and fh: f holomorphic_on ball x e using f
by (metis analytic_on_def)
obtain }\mp@subsup{e}{}{\prime}\mathrm{ where e}\mp@subsup{e}{}{\prime}:0<\mp@subsup{e}{}{\prime}\mathrm{ and gh:g holomorphic_on ball (}fx)\mp@subsup{e}{}{\prime}\mathrm{ using g
by (metis analytic_on_def g image_eqI x)
have isCont fx
by (metis analytic_on_imp_differentiable_at field_differentiable_imp_continuous_at
fx)
with }\mp@subsup{e}{}{\prime}\mathrm{ obtain d where d: 0<d and fd: f'ball x d }\subseteq\mathrm{ ball (f x) e'
by (auto simp: continuous_at_ball)
have g\circf holomorphic_on ball x (min d e)
apply (rule holomorphic_on_compose)
apply (metis fh holomorphic_on_subset min.bounded_iff order_refl subset_ball)
by (metis fd gh holomorphic_on_subset image_mono min.cobounded1 subset_ball)
then show \existse>0.g\circf holomorphic_on ball x e
by (metis d e min_less_iff_conj)
qed
lemma analytic_on_compose_gen:
f analytic_on $S \Longrightarrow g$ analytic_on $T \Longrightarrow(\bigwedge z . z \in S \Longrightarrow f z \in T)$
$\Longrightarrow g$ of analytic_on S
by (metis analytic_on_compose analytic_on_subset image_subset_iff)

```
lemma analytic_on_neg [analytic_intros]:
\(f\) analytic_on \(S \Longrightarrow(\lambda z .-(f z))\) analytic_on \(S\)
by (metis analytic_on_holomorphic holomorphic_on_minus)
lemma analytic_on_add [analytic_intros]:
assumes \(f: f\) analytic_on \(S\)
and \(g: g\) analytic_on \(S\)
shows ( \(\lambda z . f z+g z\) ) analytic_on \(S\)
unfolding analytic_on_def
proof (intro ballI)
fix \(z\)
assume \(z: z \in S\)
then obtain \(e\) where \(e: 0<e\) and fh: f holomorphic_on ball \(z e\) using \(f\) by (metis analytic_on_def)
obtain \(e^{\prime}\) where \(e^{\prime}: 0<e^{\prime}\) and gh: g holomorphic_on ball \(z e^{\prime}\) using \(g\)
by (metis analytic_on_def \(g z\) )
have \((\lambda z . f z+g z)\) holomorphic_on ball \(z\left(\min e e^{\prime}\right)\)
apply (rule holomorphic_on_add)
apply (metis fh holomorphic_on_subset min.bounded_iff order_refl subset_ball)
by (metis gh holomorphic_on_subset min.bounded_iff order_refl subset_ball)
then show \(\exists e>0 .(\lambda z . f z+g z)\) holomorphic_on ball \(z e\)
by (metis e e min_less_iff_conj)
qed
lemma analytic_on_diff [analytic_intros]:
assumes \(f: f\) analytic_on \(S\)
and \(g: g\) analytic_on \(S\)
shows ( \(\lambda z . f z-g z\) ) analytic_on \(S\)
unfolding analytic_on_def
proof (intro ballI)
fix \(z\)
assume \(z: z \in S\)
then obtain \(e\) where \(e: 0<e\) and fh: f holomorphic_on ball \(z e\) using \(f\) by (metis analytic_on_def)
obtain \(e^{\prime}\) where \(e^{\prime}: 0<e^{\prime}\) and gh: g holomorphic_on ball \(z e^{\prime}\) using \(g\) by (metis analytic_on_def \(g z\) )
have ( \(\lambda z . f z-g z)\) holomorphic_on ball \(z\left(\min e e^{\prime}\right)\)
apply (rule holomorphic_on_diff)
apply (metis fh holomorphic_on_subset min.bounded_iff order_refl subset_ball)
by (metis gh holomorphic_on_subset min.bounded_iff order_refl subset_ball)
then show \(\exists e>0\). \((\lambda z . f z-g z)\) holomorphic_on ball \(z e\) by (metis e é min_less_iff_conj)
qed
lemma analytic_on_mult [analytic_intros]:
assumes \(f\) : \(f\) analytic_on \(S\)
and \(g: g\) analytic_on \(S\)
shows ( \(\lambda z . f z * g z\) ) analytic_on \(S\)
```

unfolding analytic_on_def
proof (intro ballI)
fix z
assume $z: z \in S$
then obtain e where $e: 0<e$ and fh: f holomorphic_on ball ze using f
by (metis analytic_on_def)
obtain e^{\prime} where $e^{\prime}: 0<e^{\prime}$ and gh: gholomorphic_on ball $z e^{\prime}$ using g
by (metis analytic_on_def $g z$)
have $(\lambda z . f z * g z)$ holomorphic_on ball $z\left(\min e e^{\prime}\right)$
apply (rule holomorphic_on_mult)
apply (metis fh holomorphic_on_subset min.bounded_iff order_refl subset_ball)
by (metis gh holomorphic_on_subset min.bounded_iff order_refl subset_ball)
then show $\exists e>0 .(\lambda z . f z * g z)$ holomorphic_on ball $z e$
by (metis e é min_less_iff_conj)
qed
lemma analytic_on_inverse [analytic_intros]:
assumes $f: f$ analytic_on S
and $n z:(\bigwedge z . z \in S \Longrightarrow f z \neq 0)$
shows (λz. inverse $(f z)$) analytic_on S
unfolding analytic_on_def
proof (intro ballI)
fix z
assume $z: z \in S$
then obtain e where $e: 0<e$ and fh: f holomorphic_on ball ze using f
by (metis analytic_on_def)
have continuous_on (ball ze) f
by (metis fh holomorphic_on_imp_continuous_on)
then obtain e^{\prime} where $e^{\prime}: 0<e^{\prime}$ and $n z^{\prime}: \bigwedge y$. dist $z y<e^{\prime} \Longrightarrow f y \neq 0$
by (metis open_ball centre_in_ball continuous_on_open_avoid e z nz)
have (λz. inverse $(f z)$) holomorphic_on ball $z\left(\min e e^{\prime}\right)$
apply (rule holomorphic_on_inverse)
apply (metis fh holomorphic_on_subset min.cobounded2 min.commute sub-
set_ball)
by (metis $n z^{\prime}$ mem_ball min_less_iff_conj)
then show $\exists e>0$. (λz. inverse $(f z))$ holomorphic_on ball $z e$
by (metis e e min_less_iff_conj)
qed
lemma analytic_on_divide [analytic_intros]:
assumes f : f analytic_on S
and $g: g$ analytic_on S
and $n z:(\bigwedge z . z \in S \Longrightarrow g z \neq 0)$
shows $(\lambda z . f z / g z)$ analytic_on S
unfolding divide_inverse
by (metis analytic_on_inverse analytic_on_mult $f g n z$)
lemma analytic_on_power [analytic_intros]:
f analytic_on $S \Longrightarrow\left(\lambda z .(f z)^{\wedge} n\right)$ analytic_on S

```
```

by (induct n) (auto simp: analytic_on_mult)
lemma analytic_on_sum [analytic_intros]:
$(\bigwedge i . i \in I \Longrightarrow(f i)$ analytic_on $S) \Longrightarrow(\lambda x$.sum $(\lambda i . f i x) I)$ analytic_on S
by (induct I rule: infinite_finite_induct) (auto simp: analytic_on_add)
lemma deriv_left_inverse:
assumes f holomorphic_on S and g holomorphic_on T
and open S and open T
and $f^{\prime} S \subseteq T$
and $[$ simp $]: \bigwedge z . z \in S \Longrightarrow g(f z)=z$
and $w \in S$
shows deriv $f w * \operatorname{deriv} g(f w)=1$
proof -
have $\operatorname{deriv} f w * \operatorname{deriv} g(f w)=\operatorname{deriv} g(f w) * \operatorname{deriv} f w$
by (simp add: algebra_simps)
also have $\ldots=\operatorname{deriv}(g o f) w$
using assms
by (metis analytic_on_imp_differentiable_at analytic_on_open deriv_chain im-
age_subset_iff)
also have ... = deriv id w
proof (rule complex_derivative_transform_within_open [where $s=S$])
show $g \circ f$ holomorphic_on S
by (rule assms holomorphic_on_compose_gen holomorphic_intros)+
qed (use assms in auto)
also have ... = 1
by simp
finally show ?thesis .
qed

```

\subsection*{6.20.4 Analyticity at a point}
lemma analytic_at_ball:
\(f\) analytic_on \(\{z\} \longleftrightarrow(\exists e .0<e \wedge f\) holomorphic_on ball \(z e)\)
by (metis analytic_on_def singleton_iff)
lemma analytic_at:
\(f\) analytic_on \(\{z\} \longleftrightarrow(\exists s\). open \(s \wedge z \in s \wedge f\) holomorphic_on \(s)\)
by (metis analytic_on_holomorphic empty_subsetI insert_subset)
lemma analytic_on_analytic_at:
\(f\) analytic_on \(s \longleftrightarrow(\forall z \in s . f\) analytic_on \(\{z\})\)
by (metis analytic_at_ball analytic_on_def)
lemma analytic_at_two:
\(f\) analytic_on \(\{z\} \wedge g\) analytic_on \(\{z\} \longleftrightarrow\)
( \(\exists\) s. open \(s \wedge z \in s \wedge f\) holomorphic_on \(s \wedge g\) holomorphic_on \(s)\)
(is?lhs =?rhs)
proof
```

assume ?lhs
then obtain $s t$
where st: open $s z \in s f$ holomorphic_on s
open $t z \in t$ gholomorphic_on t
by (auto simp: analytic_at)
show ?rhs
apply (rule_tac $x=s \cap t$ in exI)
using $s t$
apply (auto simp: holomorphic_on_subset)
done
next
assume ?rhs
then show?lhs
by (force simp add: analytic_at)
qed

```

\subsection*{6.20.5 Combining theorems for derivative with "analytic at" hypotheses}
lemma
assumes \(f\) analytic_on \(\{z\}\) g analytic_on \(\{z\}\)
shows complex_derivative_add_at: deriv \((\lambda w . f w+g w) z=\operatorname{deriv} f z+\operatorname{deriv} g\)
\(z\)
and complex_derivative_diff_at: deriv \((\lambda w . f w-g w) z=\operatorname{deriv} f z-\operatorname{deriv} g z\)
and complex_derivative_mult_at: deriv \((\lambda w . f w * g w) z=\) \(f z * \operatorname{deriv} g z+\operatorname{deriv} f z * g z\)
proof -
obtain \(s\) where \(s\) : open \(s z \in s\) fholomorphic_on s \(g\) holomorphic_on \(s\) using assms by (metis analytic_at_two)
show deriv \((\lambda w . f w+g w) z=\operatorname{deriv} f z+\operatorname{deriv} g z\) apply (rule DERIV_imp_deriv [OF DERIV_add]) using \(s\)
apply (auto simp: holomorphic_on_open field_differentiable_def DERIV_deriv_iff_field_differentiable) done
show deriv \((\lambda w . f w-g w) z=\operatorname{deriv} f z-\operatorname{deriv} g z\) apply (rule DERIV_imp_deriv [OF DERIV_diff]) using \(s\)
apply (auto simp: holomorphic_on_open field_differentiable_def DERIV_deriv_iff_field_differentiable) done
show deriv \((\lambda w . f w * g w) z=f z * \operatorname{deriv} g z+\operatorname{deriv} f z * g z\)
apply (rule DERIV_imp_deriv [OF DERIV_mult \(]\) )
using \(s\)
apply (auto simp: holomorphic_on_open field_differentiable_def DERIV_deriv_iff_field_differentiable) done
qed
lemma deriv_cmult_at:
\(f\) analytic_on \(\{z\} \Longrightarrow \operatorname{deriv}(\lambda w . c * f w) z=c * \operatorname{deriv} f z\)
by (auto simp: complex_derivative_mult_at)
lemma deriv_cmult_right_at:
\(f\) analytic_on \(\{z\} \Longrightarrow \operatorname{deriv}(\lambda w . f w * c) z=\operatorname{deriv} f z * c\)
by (auto simp: complex_derivative_mult_at)

\subsection*{6.20.6 Complex differentiation of sequences and series}
lemma has_complex_derivative_sequence:
fixes \(S\) :: complex set
assumes cus: convex \(S\)
and \(d f: \bigwedge n x . x \in S \Longrightarrow\left(f n\right.\) has_field_derivative \(\left.f^{\prime} n x\right)(\) at \(x\) within \(S)\) and conv: \(\bigwedge e .0<e \Longrightarrow \exists N . \forall n x . n \geq N \longrightarrow x \in S \longrightarrow \operatorname{norm}\left(f^{\prime} n x-\right.\)
\(\left.g^{\prime} x\right) \leq e\)
and \(\exists x l . x \in S \wedge((\lambda n . f n x) \longrightarrow l)\) sequentially
shows \(\exists g . \forall x \in S .((\lambda n . f n x) \longrightarrow g x)\) sequentially \(\wedge\)
( \(g\) has_field_derivative \(\left(g^{\prime} x\right)\) ) (at \(x\) within \(S\) )
proof -
from assms obtain \(x l\) where \(x: x \in S\) and \(t f:((\lambda n . f n x) \longrightarrow l)\) sequentially by blast
\{ fix \(e:\) :real assume \(e: e>0\)
then obtain \(N\) where \(N: \forall n \geq N . \forall x . x \in S \longrightarrow \operatorname{cmod}\left(f^{\prime} n x-g^{\prime} x\right) \leq e\) by (metis conv)
have \(\exists N . \forall n \geq N . \forall x \in S . \forall h . \operatorname{cmod}\left(f^{\prime} n x * h-g^{\prime} x * h\right) \leq e * \operatorname{cmod} h\) proof (rule exI [of \(-N\) ], clarify)
fix \(n y h\)
assume \(N \leq n y \in S\)
then have \(\operatorname{cmod}\left(f^{\prime} n y-g^{\prime} y\right) \leq e\)
by (metis \(N\) )
then have \(\operatorname{cmod} h * \operatorname{cmod}\left(f^{\prime} n y-g^{\prime} y\right) \leq \operatorname{cmod} h * e\)
by (auto simp: antisym_conv2 mult_le_cancel_left norm_triangle_ineq2)
then show \(\operatorname{cmod}\left(f^{\prime} n y * h-g^{\prime} y * h\right) \leq e * \operatorname{cmod} h\)
by (simp add: norm_mult [symmetric] field_simps)
qed
\} note \(* *=\) this
show ?thesis unfolding has_field_derivative_def
proof (rule has_derivative_sequence \([\) OF cvs _ \(x]\) ) show \((\lambda n . f n x) \longrightarrow l\)
by (rule tf)
next show \(\bigwedge e . e>0 \Longrightarrow \forall_{F} n\) in sequentially. \(\forall x \in S . \forall h . \operatorname{cmod}\left(f^{\prime} n x * h\right.\)
\(\left.-g^{\prime} x * h\right) \leq e * \operatorname{cmod} h\)
unfolding eventually_sequentially by (blast intro: **)
qed (metis has_field_derivative_def df)
qed
lemma has_complex_derivative_series:
fixes \(S\) :: complex set
assumes cvs: convex \(S\) and \(d f: \bigwedge n x . x \in S \Longrightarrow\left(f n h a s_{-} f i e l d \_d e r i v a t i v e f^{\prime} n x\right)(\) at \(x\) within \(S)\)
```

 and conv: \bigwedgee. 0<e\Longrightarrow\existsN.\forallnx. n\geqN\longrightarrowx\inS
 cmod}((\sumi<n.\mp@subsup{f}{}{\prime}ix)-\mp@subsup{g}{}{\prime}x)\leq
 and \existsxl. x \inS^((\lambdan.fnx) sums l)
 shows }\existsg.\forallx\inS.((\lambdan.fnx) sums g x) ^((g has_field_derivative g' x) (a
 x within S))
proof -
from assms obtain xl where x: x \inS and sf:((\lambdan.fnx) sums l)
by blast
{ fix e::real assume e: e>0
then obtain N where N:\forallnx.n\geqN\longrightarrowx
cmod}((\sumi<n.\mp@subsup{f}{}{\prime}ix)-\mp@subsup{g}{}{\prime}x)\leq
by (metis conv)
have }\existsN.\foralln\geqN.\forallx\inS.\forallh.cmod ((\sumi<n.h*\mp@subsup{f}{}{\prime}ix)-\mp@subsup{g}{}{\prime}x*h)\leqe
cmod h
proof (rule exI [of _ N], clarify)
fix nyh
assume N\leqny\inS
then have cmod ((\sumi<n. f'i y) - g' y)\leqe
by (metis N)
then have cmod h* cmod ((\sumi<n. f'i y) - g' y)\leqcmod h*e
by (auto simp: antisym_conv2 mult_le_cancel_left norm_triangle_ineq2)
then show cmod ((\sumi<n.h*\mp@subsup{f}{}{\prime}iy)-\mp@subsup{g}{}{\prime}y*h)\leqe*\operatorname{cmod}h
by (simp add: norm_mult [symmetric] field_simps sum_distrib_left)
qed
} note ** = this
show ?thesis
unfolding has_field_derivative_def
proof (rule has_derivative_series [OF cvs _ _ x])
fix n }
assume }x\in
then show ((f n) has_derivative (\lambdaz.z* f'nx)) (at x within S)
by (metis df has_field_derivative_def mult_commute_abs)
next show ((\lambdan.fnx) sums l)
by (rule sf)
next show \}\e.e>0\Longrightarrow\forallF n in sequentially. \forallx\inS.\forallh.cmod ((\sumi<n.h*
f' i (x) - g' x*h) \leqe* cmod h
unfolding eventually_sequentially by (blast intro: **)
qed
qed

```

\subsection*{6.20.7 Taylor on Complex Numbers}
lemma sum_Suc_reindex:
fixes \(f::\) nat \(\Rightarrow{ }^{\prime} a::\) ab_group_add
shows \(\operatorname{sum} f\{0 . . n\}=f 0-f(\) Suc \(n)+\operatorname{sum}(\lambda i . f(\) Suc \(i))\{0 . . n\}\)
by (induct \(n\) ) auto
lemma field_Taylor:
assumes \(S\) : convex \(S\)
and \(f: \bigwedge i x . x \in S \Longrightarrow i \leq n \Longrightarrow(f i\) has_field_derivative \(f(S u c i) x)(\) at \(x\) within \(S\) )
and \(B: \bigwedge x . x \in S \Longrightarrow \operatorname{norm}(f(\) Suc \(n) x) \leq B\)
and \(w: w \in S\)
and \(z: z \in S\)
shows \(\operatorname{norm}\left(f 0 z-\left(\sum i \leq n . f i w *(z-w)^{\wedge} i /(\right.\right.\) fact \(\left.\left.i)\right)\right)\)
proof -
    have wzs: closed_segment \(w z \subseteq S\) using assms
        by (metis convex_contains_segment)
    \{ fix \(u\)
    assume \(u \in\) closed_segment \(w z\)
    then have \(u \in S\)
        by (metis wzs subsetD)
    have \(\left(\sum i \leq n\right.\).fiu* (-of_nat \(\left.i *(z-u)^{\wedge}(i-1)\right) /(\) fact \(i)+\)
                                    \(f(\) Suc \(i) u *(z-u)^{\wedge} i /(\) fact \(\left.i)\right)=\)
                \(f(\) Suc \(n) u *(z-u){ }^{\wedge} n /(\) fact \(n)\)
    proof (induction \(n\) )
        case 0 show ?case by simp
        next
        case (Suc n)
        have \(\left(\sum i \leq\right.\) Suc n. fiu* (- of_nat \(\left.i *(z-u)^{\wedge}(i-1)\right) /(\) fact \(i)+\)
                        \(f(\) Suc \(i) u *(z-u)^{\wedge} i /(\) fact \(\left.i)\right)=\)
                    \(f(\) Suc \(n) u *(z-u) \wedge n /(\) fact \(n)+\)
                \(f(\) Suc \((\) Suc \(n)) u *((z-u) *(z-u) \wedge n) /(\) fact \((\) Suc \(n))-\)
                    \(f(\) Suc \(n) u *((1+\) of_nat \(n) *(z-u) \wedge n) /(\) fact (Suc n) \()\)
            using Suc by simp
        also have \(\ldots=f(\) Suc \((\) Suc \(n)) u *(z-u)^{\wedge}\) Suc n / (fact (Suc n) \()\)
        proof -
            have \((\) fact \((S u c ~ n))\) *
                        \((f(\) Suc \(n) u *(z-u)\) ^ \(n /(\) fact \(n)+\)
                        \(f(\) Suc \((\) Suc \(n)) u *((z-u) *(z-u) \wedge n) /(\operatorname{fact}(\) Suc \(n))-\)
                        \(f(\) Suc \(n) u *\left((1+\right.\) of_nat \(\left.\left.n) *(z-u)^{\wedge} n\right) /(f a c t(S u c n))\right)=\)
                    \(((\) fact \((\) Suc \(n)) *(f(\) Suc \(n) u *(z-u) \wedge n)) /(\) fact \(n)+\)
                    \(\left((\right.\) fact \((\) Suc \(n)) *\left(f(\operatorname{Suc}(\right.\) Suc \(\left.n)) u *\left((z-u) *(z-u)^{\wedge} n\right)\right) /(\) fact \((\) Suc \(\left.n))\right)\)
                    \(\left((f a c t(\right.\) Suc \(n)) *\left(f(\right.\) Suc \(\left.\left.n) u *\left(o f \_n a t(S u c n) *(z-u){ }^{\wedge} n\right)\right)\right) /(f a c t(S u c\)
\(n)\) )
            by (simp add: algebra_simps del: fact_Suc)
            also have \(\ldots=\left((\right.\) fact \((\) Suc \(n)) *\left(f(\right.\) Suc \(\left.\left.n) u *(z-u)^{\wedge} n\right)\right) /(\) fact \(n)+\)
                                    \(\left(f(\right.\) Suc \((\) Suc \(\left.n)) u *\left((z-u) *(z-u)^{\wedge} n\right)\right)-\)
                                    \(\left(f(\right.\) Suc \(n) u *\left((1+\right.\) of_nat \(\left.\left.n) *(z-u){ }^{\wedge} n\right)\right)\)
            by (simp del: fact_Suc)
            also have \(\ldots=\left(\right.\) of_nat \((\) Suc \(n) *\left(f(\right.\) Suc \(\left.\left.n) u *(z-u)^{\wedge} n\right)\right)+\)
                        \(\left(f(\right.\) Suc \((\) Suc \(\left.n)) u *\left((z-u) *(z-u)^{\wedge} n\right)\right)-\)
                        \((f(\) Suc \(n) u *((1+\) of_nat \(n) *(z-u) \wedge n))\)
            by (simp only: fact_Suc of_nat_mult ac_simps) simp
            also have \(\ldots=f(\) Suc \((\) Suc \(n)) u *\left((z-u) *(z-u){ }^{\wedge} n\right)\)
            by (simp add: algebra_simps)
```

 finally show ?thesis
 by (simp add: mult_left_cancel [where c = (fact (Suc n)), THEN iffD1]
 del: fact_Suc)
qed
finally show ?case .
qed
then have ((\lambdav. (\sumi\leqn.fiv*(z-v)^i / (fact i)))
has_field_derivative f(Suc n) u* (z-u) ^ n / (fact n))
(at u within S)
apply (intro derivative_eq_intros)
apply (blast intro: assms <u \inS`)
apply (rule refl)+
apply (auto simp: field_simps)
done
} note sum_deriv = this
{ fix u
assume u:u\in closed_segment wz
then have us:u\inS
by (metis wzs subsetD)
have norm (f (Suc n) u)* norm (z-u) ^ n \leq norm (f (Suc n)u) * norm
(u-z)^n
by (metis norm_minus_commute order_refl)
also have .. \leqnorm (f (Suc n)u)* norm (z-w) ^ n
by (metis mult_left_mono norm_ge_zero power_mono segment_bound [OF u])
also have ... \leqB* norm (z-w)^n
by (metis norm_ge_zero zero_le_power mult_right_mono B [OF us])
finally have norm (f (Suc n)u)* norm (z-u) ^n \leq B * norm (z-w)^
n.
} note cmod_bound = this
have (\sumi\leqn.fiz*(z-z)^i / (fact i))}=(\sumi\leqn.(fiz/(fact i))* 0^i
by simp
also have ... = f 0 z / (fact 0)
by (subst sum_zero_power) simp
finally have norm (f 0 z-(\sumi\leqn.fiw* (z-w) ^i / (fact i)))
\leqnorm ((\sumi\leqn.fiw*(z-w)^i / (fact i))-
(\sumi\leqn.fiz*(z-z)^i / (fact i)))
by (simp add: norm_minus_commute)
also have ... \leqB* norm (z-w)^n / (fact n)* norm (w-z)
apply (rule field_differentiable_bound
[where f' = \lambdaw.f(Suc n) w* (z-w)^n / (fact n)
and S = closed_segment wz,OF convex_closed_segment])
apply (auto simp: DERIV_subset [OF sum_deriv wzs]
norm_divide norm_mult norm_power divide_le_cancel cmod_bound)
done
also have ... \leqB* norm (z-w) ^Suc n / (fact n)
by (simp add: algebra_simps norm_minus_commute)
finally show ?thesis .
qed

```
```

lemma complex_Taylor:
assumes S:convex S
and f:\ix. x\inS\Longrightarrowi\leqn\Longrightarrow(fi has_field_derivative f (Suc i) x) (at x
within S)
and B: \bigwedgex. x G S cmod (f (Suc n) x) \leqB
and w:w\inS
and z:z\inS
shows cmod(f 0 z-(\sumi\leqn.fiw* (z-w)^i / (fact i)))
\leq B* cmod}(z-w)^^(Suc n) / fact n
using assms by (rule field_Taylor)

```

Something more like the traditional MVT for real components
```

lemma complex_mvt_line:
assumes $\bigwedge u . u \in$ closed_segment $w z \Longrightarrow\left(f\right.$ has_field_derivative $\left.f^{\prime}(u)\right)($ at $u)$
shows $\exists u . u \in$ closed_segment $w z \wedge \operatorname{Re}(f z)-\operatorname{Re}(f w)=\operatorname{Re}\left(f^{\prime}(u) *(z-\right.$
w))
proof -
have twz: $\wedge t .(1-t) *_{R} w+t *_{R} z=w+t *_{R}(z-w)$
by (simp add: real_vector.scale_left_diff_distrib real_vector.scale_right_diff_distrib)
note assms[unfolded has_field_derivative_def, derivative_intros]
show ?thesis
apply (cut_tac mvt_simple
[of 01 Re ofo $\left(\lambda t .(1-t) *_{R} w+t *_{R} z\right)$
λu. Reo $\left(\lambda h . f^{\prime}\left((1-u) *_{R} w+u *_{R} z\right) * h\right) o\left(\lambda t . t *_{R}(z-\right.$
w))])
apply auto
apply $\left(\right.$ rule_tac $x=(1-x) *_{R} w+x *_{R} z$ in exI)
apply (auto simp: closed_segment_def twz) []
apply (intro derivative_eq_intros has_derivative_at_withinI, simp_all)
apply (simp add: fun_eq_iff real_vector.scale_right_diff_distrib)
apply (force simp: twz closed_segment_def)
done
qed

```
lemma complex_Taylor_mvt:
assumes \(\bigwedge i x . \llbracket x \in\) closed_segment \(w z ; i \leq n \rrbracket \Longrightarrow((f i)\) has_field_derivative \(f\)
(Suc i) x) (at x)
    shows \(\exists u . u \in\) closed_segment \(w z \wedge\)
        \(\operatorname{Re}(f 0 z)=\)
        \(\operatorname{Re}\left(\left(\sum i=0 . . n . f i w *(z-w)^{\wedge} i /(\right.\right.\) fact \(\left.i)\right)+\)
            \(\left(f(\right.\) Suc \(n) u *(z-u)^{\wedge} n /(\) fact \(\left.\left.n)\right) *(z-w)\right)\)
proof -
    \{ fix \(u\)
            assume \(u: u \in\) closed_segment \(w z\)
            have ( \(\sum i=0 . . n\).
                \(\left(f(\right.\) Suc \(i) u *(z-u){ }^{\wedge} i-\) of_nat \(\left.i *\left(f i u *(z-u)^{\wedge}(i-S u c 0)\right)\right) /\)
                        \((\) fact \(i))=\)
                \(f\) (Suc 0) \(u\) -
                        \(\left(f(\right.\) Suc \((\) Suc \(n)) u *\left((z-u){ }^{\wedge}\right.\) Suc \(\left.n\right)-(\) of_nat \((\) Suc \(n)) *(z-u)^{\wedge} n\)
```

* f(Suc n) u) /
(fact (Suc n)) +
(\sumi=0..n.
(f (Suc (Suc i)) u* ((z-u)^ Suc i) - of_nat (Suc i)* (f (Suc i) u
* (z-u)^ i)) /
(fact (Suc i)))
by (subst sum_Suc_reindex) simp
also have ... =f (Suc 0) u-
(f (Suc (Suc n)) u* ((z-u) ^Suc n) - (of_nat (Suc n))* (z-u) ^ n
* f(Suc n) u) /
(fact (Suc n)) +
(\sumi=0..n.
f(Suc (Suc i)) u* ((z-u) ^ Suc i) / (fact (Suc i)) -
f(Suc i) u* (z-u) ^i / (fact i))
by (simp only: diff_divide_distrib fact_cancel ac_simps)
also have ... =f (Suc 0) u -
(f (Suc (Suc n)) u* (z-u) ^Suc n - of_nat (Suc n)* (z-u) ^ n*f
(Suc n) u) /
(fact (Suc n)) +
f(Suc (Suc n)) u* (z-u) ^ Suc n / (fact (Suc n)) - f (Suc 0) u
by (subst sum_Suc_diff) auto
also have ... = f (Suc n) u* (z-u) ^ n / (fact n)
by (simp only: algebra_simps diff_divide_distrib fact_cancel)
finally have (\sumi=0..n. (f (Suc i) u* (z-u) ^ i
- of_nat i*(fiu*(z-u) ^(i - Suc 0))) /(fact i))=
f(Suc n)u* (z-u)^n / (fact n).
then have ((\lambdau.\sumi=0..n.fiu* (z-u)^i / (fact i)) has_field_derivative
f(Suc n)u*(z-u)^n / (fact n)) (at u)
apply (intro derivative_eq_intros)+
apply (force intro: u assms)
apply (rule refl)+
apply (auto simp:ac_simps)
done
}
then show ?thesis
apply (cut_tac complex_mvt_line [of wz \lambdau.\sumi=0..n.fiu* (z-u)^i /
(fact i)
\lambdau. (f (Suc n) u* (z-u)^n / (fact n))])
apply (auto simp add: intro: open_closed_segment)
done
qed

```
end

\subsection*{6.21 Complex Transcendental Functions}

By John Harrison et al. Ported from HOL Light by L C Paulson (2015)
```

theory Complex_Transcendental
imports
Complex_Analysis_Basics Summation_Tests HOL_Library.Periodic_Fun
begin

```

\subsection*{6.21.1 Mbius transformations}
definition moebius a bcd \(\equiv(\lambda z .(a * z+b) /(c * z+d:: ' a::\) field \())\)
theorem moebius_inverse:
assumes \(a * d \neq b * c c * z+d \neq 0\)
shows moebius \(d(-b)(-c)\) a (moebius abcr \(d z)=z\)
proof -
from assms have \((-c) *\) moebius a b c \(d z+a \neq 0\) unfolding moebius_def by (simp add: field_simps)
with assms show ?thesis
unfolding moebius_def by (simp add: moebius_def divide_simps) (simp add:
algebra_simps)?
qed
lemma moebius_inverse':
assumes \(a * d \neq b * c c * z-a \neq 0\)
shows moebius a bcd (moebius \(d(-b)(-c) a z)=z\)
using assms moebius_inverse[of \(d a-b-c z]\)
by (auto simp: algebra_simps)
lemma cmod_add_real_less:
assumes \(\operatorname{Im} z \neq 0 r \neq 0\) shows \(\operatorname{cmod}(z+r)<\operatorname{cmod} z+|r|\)
proof (cases z)
case (Complex x y)
then have \(0<y * y\) using assms mult_neg_neg by force
with assms have \(r * x /|r|<\operatorname{sqrt}(x * x+y * y)\) by (simp add: real_less_rsqrt power2_eq_square)
then show ?thesis using assms Complex apply (simp add: cmod_def)
apply (rule power2_less_imp_less, auto)
apply (simp add: power2_eq_square field_simps) done
qed
lemma cmod_diff_real_less: Im \(z \neq 0 \Longrightarrow x \neq 0 \Longrightarrow \operatorname{cmod}(z-x)<\operatorname{cmod} z+|x|\)
using cmod_add_real_less [of \(z-x\) ]
by \(\operatorname{simp}\)
lemma cmod_square_less_1_plus:
assumes \(\operatorname{Im} z=0 \Longrightarrow|R e z|<1\) shows \((\operatorname{cmod} z)^{2}<1+\operatorname{cmod}\left(1-z^{2}\right)\)
```

proof (cases Im z=0\vee Rez=0)
case True
with assms abs_square_less_1 show ?thesis
by (force simp add: Re_power2 Im_power2 cmod_def)
next
case False
with cmod_diff_real_less [of 1-\mp@subsup{z}{}{2}}1]\mathrm{ show ?thesis
by (simp add: norm_power Im_power2)
qed

```

\subsection*{6.21.2 The Exponential Function}
lemma norm_exp_i_times \([\) simp \(]:\) norm \((\exp (\mathrm{i} *\) of_real \(y))=1\)
by \(\operatorname{simp}\)
lemma norm_exp_imaginary: \(\operatorname{norm}(\exp z)=1 \Longrightarrow R e z=0\)
by \(\operatorname{simp}\)
lemma field_differentiable_within_exp: exp field_differentiable (at z within s)
using DERIV_exp field_differentiable_at_within field_differentiable_def by blast
lemma continuous_within_exp:
fixes \(z::{ }^{\prime} a::\{\) real_normed_field,banach \(\}\)
shows continuous (at \(z\) within s) exp
by (simp add: continuous_at_imp_continuous_within)
lemma holomorphic_on_exp [holomorphic_intros]: exp holomorphic_on s
by (simp add: field_differentiable_within_exp holomorphic_on_def)
lemma holomorphic_on_exp \({ }^{\prime}\) [holomorphic_intros]:
\(f\) holomorphic_on \(s \Longrightarrow(\lambda x\). exp \((f x))\) holomorphic_on \(s\)
using holomorphic_on_compose[OF _ holomorphic_on_exp] by (simp add: o_def)

\subsection*{6.21.3 Euler and de Moivre formulas}

The sine series times \(i\)
lemma sin_i_eq: \(\left(\lambda n .\left(\mathrm{i} * \sin \_c o e f f n\right) * z^{\wedge} n\right) \operatorname{sums}(\mathrm{i} * \sin z)\)
proof -
have \(\left(\lambda n . \mathrm{i} * \sin n_{-}\right.\)coeff \(\left.n *_{R} z^{\wedge} n\right)\) sums \((\mathrm{i} * \sin z)\) using sin_converges sums_mult by blast
then show ?thesis by (simp add: scaleR_conv_of_real field_simps)
qed
theorem \(\exp\) _Euler: \(\exp (\mathrm{i} * z)=\cos (z)+\mathrm{i} * \sin (z)\)
proof -
have \(\left(\lambda n .\left(\right.\right.\) cos_coeff \(n+\mathrm{i} * \sin n_{-}\)coeff \(\left.\left.n\right) * z^{\wedge} n\right)=\left(\lambda n .(\mathrm{i} * z)^{\wedge} n / R(\right.\) fact \(\left.n)\right)\)
proof
fix \(n\)
```

 show (cos_coeff n + i * sin_coeff n)* z^n=(i*z) ^}n/R(fact n
 by (auto simp: cos_coeff_def sin_coeff_def scaleR_conv_of_real field_simps elim!:
 evenE oddE)
qed
also have ... sums (exp (i * z))
by (rule exp_converges)
finally have (\lambdan. (cos_coeff n + i * sin_coeff n)* *^n) sums (exp (i *z)).
moreover have (}\lambdan\mathrm{ . (cos_coeff n + i * sin_coeff n)* *^^n) sums (cos z+i
z)
using sums_add [OF cos_converges [of z] sin_i_eq [of z]]
by (simp add: field_simps scaleR_conv_of_real)
ultimately show ?thesis
using sums_unique2 by blast
qed
corollary exp_minus_Euler: }\operatorname{exp}(-(\textrm{i}*z))=\operatorname{cos}(z)-\textrm{i}*\operatorname{sin}(z
using exp_Euler [of -z]
by simp
lemma sin_exp_eq: sin z = (exp(i *z) - exp(-(i *z))) / (2*i)
by (simp add: exp_Euler exp_minus_Euler)
lemma sin_exp_eq': sin z= i * (exp(-(i*z)) - exp(i*z))/2
by (simp add: exp_Euler exp_minus_Euler)
lemma cos_exp_eq: coszz=(exp(i*z) + exp(-(i*z))) / 2
by (simp add: exp_Euler exp_minus_Euler)
theorem Euler: }\operatorname{exp}(z)=of_real(exp(Rez))
(of_real(cos(Im z)) + i * of_real(sin(Im z)))
by (cases z) (simp add: exp_add exp_Euler cos_of_real exp_of_real sin_of_real Com-
plex_eq)
lemma Re_sin: Re(sin z) = sin(Rez)*(exp(\operatorname{Im}z)+\operatorname{exp}(-(\operatorname{Im}z)))/2
by (simp add: sin_exp_eq field_simps Re_divide Im_exp)
lemma Im_sin: Im (sin z) = cos(Rez)*(exp(Imz) - exp(-(Imz)))/2
by (simp add: sin_exp_eq field_simps Im_divide Re_exp)
lemma Re_cos: Re(\operatorname{cos}z)=\operatorname{cos(Rez)*(exp(Imz) +exp(-(Imz))) / 2}
by (simp add: cos_exp_eq field_simps Re_divide Re_exp)
lemma Im_cos: Im (\operatorname{cos}z)=\operatorname{sin}(\operatorname{Rez}z)*(\operatorname{exp}(-(\operatorname{Im}z))-\operatorname{exp}(\operatorname{Im}z))/2
by (simp add: cos_exp_eq field_simps Im_divide Im_exp)
lemma Re_sin_pos: 0<Rez\LongrightarrowRez<pi\LongrightarrowRe (sin z)>0
by (auto simp: Re_sin Im_sin add_pos_pos sin_gt_zero)
lemma Im_sin_nonneg: Re z=0\Longrightarrow0\leqImz\Longrightarrow0\leqIm(sinz)

```
by (simp add: Re_sin Im_sin algebra_simps)
lemma Im_sin_nonneg2: \(R e z=p i \Longrightarrow \operatorname{Im} z \leq 0 \Longrightarrow 0 \leq \operatorname{Im}(\sin z)\)
by (simp add: Re_sin Im_sin algebra_simps)

\subsection*{6.21.4 Relationships between real and complex trigonometric and hyperbolic functions}
lemma real_sin_eq \([\) simp \(]: \operatorname{Re}\left(\sin \left(o f \_r e a l ~ x\right)\right)=\sin x\)
by (simp add: sin_of_real)
lemma real_cos_eq [simp]: \(\operatorname{Re}(\cos (o f\) _real \(x))=\cos x\)
by (simp add: cos_of_real)
lemma DeMoivre: \((\cos z+\mathrm{i} * \sin z)^{\wedge} n=\cos (n * z)+\mathrm{i} * \sin (n * z)\)
by (metis exp_Euler [symmetric] exp_of_nat_mult mult.left_commute)
lemma exp_cnj: \(c n j(\exp z)=\exp (c n j z)\)
proof -
have \(\left(\lambda n \cdot \operatorname{cnj}\left(z^{\wedge} n / R(\right.\right.\) fact \(\left.\left.n)\right)\right)=\left(\lambda n .(\operatorname{cnj} z)^{\wedge} n / R(\right.\) fact \(\left.n)\right)\)
by auto
also have ... sums (exp (cnj z))
by (rule exp_converges)
finally have \(\left(\lambda n . \operatorname{cnj}\left(z^{\wedge} n / R(f a c t n)\right)\right)\) sums \((\exp (\operatorname{cnj} z))\).
moreover have ( \(\lambda n\). cnj \(\left(z^{\wedge} n / R(\right.\) fact \(\left.\left.n)\right)\right)\) sums ( \(\left.c n j(\exp z)\right)\)
by (metis exp_converges sums_cnj)
ultimately show ?thesis
using sums_unique2
by blast
qed
lemma \(c n j \_s i n: ~ c n j(\sin z)=\sin (c n j z)\)
by (simp add: sin_exp_eq exp_cnj field_simps)
lemma \(\operatorname{cnj\_ cos:~} \operatorname{cnj}(\cos z)=\cos (c n j z)\)
by (simp add: cos_exp_eq exp_cnj field_simps)
lemma field_differentiable_at_sin: sin field_differentiable at z
using DERIV_sin field_differentiable_def by blast
lemma field_differentiable_within_sin: sin field_differentiable (at z within \(S\) )
by (simp add: field_differentiable_at_sin field_differentiable_at_within)
lemma field_differentiable_at_cos: cos field_differentiable at z
using DERIV_cos field_differentiable_def by blast
lemma field_differentiable_within_cos: cos field_differentiable (at z within S)
by (simp add: field_differentiable_at_cos field_differentiable_at_within)
```

lemma holomorphic_on_sin: sin holomorphic_on S
by (simp add: field_differentiable_within_sin holomorphic_on_def)
lemma holomorphic_on_cos:cos holomorphic_on S
by (simp add: field_differentiable_within_cos holomorphic_on_def)
lemma holomorphic_on_sin' [holomorphic_intros]:
assumes f holomorphic_on A
shows (}\lambdax.\operatorname{sin}(fx))\mathrm{ holomorphic_on A
using holomorphic_on_compose[OF assms holomorphic_on_sin] by (simp add:
o_def)
lemma holomorphic_on_cos' [holomorphic_intros]:
assumes f holomorphic_on A
shows (}\lambdax.\operatorname{cos}(fx))\mathrm{ holomorphic_on A
using holomorphic_on_compose[OF assms holomorphic_on_cos] by (simp add:
o_def)

```

\subsection*{6.21.5 More on the Polar Representation of Complex Numbers}
lemma exp_Complex: exp (Complex rt) \(=\) of_real \((\exp r) *\) Complex \((\cos t)(\sin t)\) by (simp add: Complex_eq exp_add exp_Euler exp_of_real sin_of_real cos_of_real)
```

lemma \exp _eq_1: $\exp z=1 \longleftrightarrow \operatorname{Re}(z)=0 \wedge\left(\exists n:: \operatorname{int} . \operatorname{Im}(z)=o f _i n t(2 * n) *\right.$
$p i)$
(is ?lhs = ?rhs)
proof
assume $\exp z=1$
then have $R e z=0$
by (metis exp_eq_one_iff norm_exp_eq_Re norm_one)
with 〈?lhs〉 show ?rhs
by (metis Re_exp complex_Re_of_int cos_one_2pi_int exp_zero mult.commute
mult_numeral_1 numeral_One of_int_mult of_int_numeral)
next
assume ?rhs then show?lhs
using Im_exp Re_exp complex_eq_iff
by (simp add: cos_one_2pi_int cos_one_sin_zero mult.commute)
qed
lemma exp_eq: exp $w=\exp z \longleftrightarrow\left(\exists n:: i n t . w=z+\left(o f _i n t(2 * n) * p i\right) *\right.$ i)
(is?lhs =? ? rhs)
proof -
have $\exp w=\exp z \longleftrightarrow \exp (w-z)=1$
by (simp add: exp_diff)
also have $\ldots \longleftrightarrow\left(\operatorname{Re} w=\operatorname{Re} z \wedge\left(\exists n:: i n t\right.\right.$. Im $w-\operatorname{Im} z=o f_{-} i n t(2 * n) *$
pi))
by (simp add: exp_eq_1)
also have $\ldots \longleftrightarrow$?rhs

```
```

 by (auto simp: algebra_simps intro!: complex_eqI)
 finally show ?thesis.
 qed
lemma exp_complex_eqI: |Im w-Imz|<2*pi\Longrightarrow exp w= expz\Longrightarroww=z
by (auto simp: exp_eq abs_mult)
lemma exp_integer_2pi:
assumes }n\in\mathbb{Z
shows }\operatorname{exp}((2*n*pi)*i)=
proof -
have}\operatorname{exp}((2*n*pi)*\textrm{i})=\operatorname{exp}
using assms unfolding Ints_def exp_eq by auto
also have ... = 1
by simp
finally show ?thesis.
qed
lemma exp_plus_2pin [simp]: exp (z+i * (of_int n * (of_real pi * 2))) = exp z
by (simp add: exp_eq)
lemma exp_integer_2pi_plus1:
assumes }n\in\mathbb{Z
shows }\operatorname{exp}(((2*n+1)*pi)*i)=-
proof -
from assms obtain n' where [simp]: n = of_int n'
by (auto simp: Ints_def)
have }\operatorname{exp}(((2*n+1)*pi)*i)=\operatorname{exp}(pi*i
using assms by (subst exp_eq) (auto intro!: exI[of _ n] simp: algebra_simps)
also have ... = - 1
by simp
finally show ?thesis.
qed
lemma inj_on_exp_pi:
fixes z::complex shows inj_on exp (ball z pi)
proof (clarsimp simp: inj_on_def exp_eq)
fix }y
assume distz(y+2 * of_int n * of_real pi* i) < pi
dist z y<pi
then have dist y(y+2* of_int n * of_real pi* i) < pi+pi
using dist_commute_lessI dist_triangle_less_add by blast
then have norm (2 * of_int n* of_real pi * i) < 2*pi
by (simp add: dist_norm)
then show n =0
by (auto simp: norm_mult)
qed
lemma cmod_add_squared:

```
fixes \(r 1\) r2::real
assumes \(r 1 \geq 0 r 2 \geq 0\)
shows \((\operatorname{cmod}(r 1 * \exp (\mathrm{i} * \vartheta 1)+r 2 * \exp (\mathrm{i} * \vartheta 2)))^{2}=r 1^{2}+r 2^{2}+2 * r 1\) \(* r 2 * \cos (\vartheta 1-\vartheta 2)\left(\right.\) is \(\left.(\operatorname{cmod}(? z 1+? z 2))^{2}=? r h s\right)\) proof -
have \((\operatorname{cmod}(? z 1+? z 2))^{2}=(? z 1+? z 2) * \operatorname{cnj}(? z 1+? z 2)\)
by (rule complex_norm_square)
also have \(\ldots=(? z 1 * c n j ? z 1+? z 2 * c n j ? z 2)+(? z 1 * c n j ? z 2+c n j ? z 1 *\) ? z2)
by (simp add: algebra_simps)
also have \(\ldots=(\text { norm ? } z 1)^{2}+(\text { norm ? z2 })^{2}+2 * \operatorname{Re}(? z 1 * c n j ? z 2)\)
unfolding complex_norm_square [symmetric] cnj_add_mult_eq_Re by simp
also have ... = ? rhs
by (simp add: norm_mult) (simp add: exp_Euler complex_is_Real_iff [THEN iffD1] cos_diff algebra_simps)
finally show ?thesis
using of_real_eq_iff by blast
qed
lemma cmod_diff_squared:
fixes r1 r2::real
assumes \(r 1 \geq 0 r 2 \geq 0\)
shows \((\operatorname{cmod}(r 1 * \exp (\mathrm{i} * \vartheta 1)-r \mathcal{Z} * \exp (\mathrm{i} * \vartheta \mathcal{Z})))^{2}=r 1^{2}+r \mathcal{Z}^{2}-\)
\(2 * r 1 * r 2 * \cos (\vartheta 1-\vartheta 2)\left(\right.\) is \(\left.(\operatorname{cmod}(? z 1-? z 2))^{2}=? r h s\right)\)
proof -
have \(\exp (\mathrm{i} *(\vartheta 2+p i))=-\exp (\mathrm{i} * \vartheta 2)\)
by (simp add: exp_Euler cos_plus_pi sin_plus_pi)
then have \((\operatorname{cmod}(? z 1-? z 2))^{2}=\operatorname{cmod}(? z 1+r 2 * \exp (\mathrm{i} *(\vartheta 2+p i)))^{\wedge} 2\) by \(\operatorname{simp}\)
also have \(\ldots=r 1^{2}+r 2^{2}+2 * r 1 * r 2 * \cos (\vartheta 1-(\vartheta 2+p i))\)
using assms cmod_add_squared by blast
also have \(\ldots=\) ? rhs
by (simp add: add.commute diff_add_eq_diff_diff_swap)
finally show ?thesis.
qed
lemma polar_convergence:
fixes \(R\) ::real
assumes \(\bigwedge j . r j>0 R>0\)
shows \(((\lambda j . r j * \exp (\mathrm{i} * \vartheta j)) \longrightarrow(R * \exp (\mathrm{i} * \Theta))) \longleftrightarrow\) \((r \longrightarrow R) \wedge\left(\exists k .\left(\lambda j . \vartheta j-o f \_i n t(k j) *(2 * p i)\right) \longrightarrow \Theta\right) \quad(\) is
\((? z \longrightarrow ? Z)=? r h s)\)
proof
assume \(L: ? z \longrightarrow\) ? \(Z\)
have \(r R: r \longrightarrow R\)
using tendsto_norm [OF L] assms by (auto simp: norm_mult abs_of_pos)
moreover obtain \(k\) where \((\lambda j . \vartheta j-\) of_int \((k j) *(2 * p i)) \longrightarrow \Theta\)
proof -
have \(\cos (\vartheta j-\Theta)=\left((r j)^{2}+R^{2}-(\operatorname{norm}(? z j-? Z))^{2}\right) /(2 * R * r j)\)

\section*{for \(j\)}
apply (subst cmod_diff_squared)
using assms by (auto simp: field_split_simps less_le)
moreover have \(\left(\lambda j .\left((r j)^{2}+R^{2}-(\operatorname{norm}(? z j-? Z))^{2}\right) /(2 * R * r j)\right)\)
\(\longrightarrow\left(\left(R^{2}+R^{2}-(\operatorname{norm}(? Z-? Z))^{2}\right) /(2 * R * R)\right)\)
by (intro \(L\) rR tendsto_intros) (use \(\langle R>0\rangle\) in force)
moreover have \(\left(\left(R^{2}+R^{2}-(\operatorname{norm}(? Z-? Z))^{2}\right) /(2 * R * R)\right)=1\)
using \(\langle R>0\rangle\) by (simp add: power2_eq_square field_split_simps)
ultimately have \((\lambda j \cdot \cos (\vartheta j-\Theta)) \longrightarrow 1\)
by auto
then show ?thesis
using that cos_diff_limit_1 by blast
qed
ultimately show ?rhs
by metis
next
assume \(R\) : ?rhs
show? \(z \longrightarrow\) ? \(Z\)
proof (rule tendsto_mult)
show ( \(\lambda x\). complex_of_real \((r x)\) ) \(\longrightarrow\) of_real \(R\) using \(R\) by (auto simp: tendsto_of_real_iff)
obtain \(k\) where \((\lambda j . \vartheta j\) - of_int \((k j) *(2 * p i)) \longrightarrow \Theta\)
using \(R\) by metis
then have \(\left(\lambda j\right.\). complex_of_real \(\left.\left(\vartheta j-o f_{-} i n t(k j) *(2 * p i)\right)\right) \longrightarrow o f\) real
\(\Theta\)
using tendsto_of_real_iff by force
then have \(\left(\lambda j\right.\). exp \(\left(\mathrm{i} *\right.\) of_real \(\left.\left.\left(\vartheta j-o f_{-} i n t(k j) *(2 * p i)\right)\right)\right) \longrightarrow \exp (\mathrm{i}\) * \(\Theta\) )
using tendsto_mult [OF tendsto_const] isCont_exp isCont_tendsto_compose by blast
moreover have \(\exp \left(\mathrm{i} *\right.\) of_real \(\left.\left(\vartheta j-o f_{-} i n t(k j) *(2 * p i)\right)\right)=\exp (\mathrm{i} * \vartheta\)
\(j)\) for \(j\)
unfolding exp_eq
by (rule_tac \(x=-k j\) in exI) (auto simp: algebra_simps)
ultimately show \((\lambda j\). \(\exp (\mathrm{i} * \vartheta j)) \longrightarrow \exp (\mathrm{i} * \Theta)\)
by auto
qed
qed
lemma sin_cos_eq_iff: sin \(y=\sin x \wedge \cos y=\cos x \longleftrightarrow(\exists n::\) int. \(y=x+2 *\)
\(p i * n\) )
proof -
\{ assume \(\sin y=\sin x \cos y=\cos x\)
then have \(\cos (y-x)=1\)
using cos_add \([\) of \(y-x]\) by simp
then have \(\exists n::\) int. \(y-x=2 * p i * n\)
using cos_one_2pi_int by auto \}
then show?thesis
apply (auto simp: sin_add cos_add)
```

 apply (metis add.commute diff_add_cancel)
 done
 qed
lemma exp_i_ne_1:
assumes $0<x x<2 * p i$
shows $\exp (\mathrm{i} *$ of_real $x) \neq 1$
proof
assume exp $(\mathrm{i} *$ of_real $x)=1$
then have $\exp (\mathrm{i} *$ of_real $x)=\exp 0$
by simp
then obtain n where $\mathrm{i} *$ of_real $x=($ of_int $(2 * n) * p i) * \mathrm{i}$
by (simp only: Ints_def exp_eq) auto
then have of_real $x=\left(o f _i n t(2 * n) * p i\right)$
by (metis complex_i_not_zero mult.commute mult_cancel_left of_real_eq_iff real_scaleR_def
scaleR_conv_of_real)
then have $x=($ of_int $(2 * n) * p i)$
by simp
then show False using assms
by (cases n) (auto simp: zero_less_mult_iff mult_less_0_iff)
qed
lemma sin_eq_0:
fixes z :: complex
shows $\sin z=0 \longleftrightarrow\left(\exists n:: i n t . z=o f_{-} r e a l(n * p i)\right)$
by (simp add: sin_exp_eq exp_eq)
lemma cos_eq_0:
fixes $z:$:complex
shows $\cos z=0 \longleftrightarrow(\exists n::$ int. $z=o f$ _real $(n * p i)+o f$ _real pi/2)
using sin_eq_0 [of z - of_real pi/2]
by (simp add: sin_diff algebra_simps)
lemma cos_eq_1:
fixes z :: complex
shows $\cos z=1 \longleftrightarrow\left(\exists n:: i n t . z=o f _r e a l(2 * n * p i)\right)$
proof -
have $\cos z=\cos (2 *(z / 2))$
by simp
also have $\ldots=1-2 * \sin (z / 2){ }^{\wedge} 2$
by (simp only: cos_double_sin)
finally have $[\operatorname{simp}]: \cos z=1 \longleftrightarrow \sin (z / 2)=0$
by simp
show ?thesis
by (auto simp: sin_eq_0)
qed
lemma csin_eq_1:
fixes z ::complex

```
```

shows $\sin z=1 \longleftrightarrow(\exists n::$ int. $z=o f$ _real $(2 * n * p i)+o f$ _real pi/2)
using cos_eq_1 [of $z-$ of_real pi/2]
by (simp add: cos_diff algebra_simps)
lemma csin_eq_minus1:
fixes z ::complex
shows $\sin z=-1 \longleftrightarrow\left(\exists n::\right.$ int. $\left.z=o f _r e a l(2 * n * p i)+3 / 2 * p i\right)$
(is ${ }_{-}=$? $\left.r h s\right)$
proof -
have $\sin z=-1 \longleftrightarrow \sin (-z)=1$
by (simp add: equation_minus_iff)
also have $\ldots \longleftrightarrow\left(\exists n:: i n t .-z=o f _r e a l(2 * n * p i)+o f\right.$ real pi/2)
by (simp only: csin_eq_1)
also have $\ldots \longleftrightarrow\left(\exists n:: i n t . z=-o f\right.$ _real $\left.(2 * n * p i)-o f _r e a l ~ p i / 2\right)$
by (rule iff_exI) (metis add.inverse_inverse add_uminus_conv_diff minus_add_distrib)
also have $\ldots=$? rhs
apply safe
apply (rule_tac [2] $x=-(x+1)$ in $e x I)$
apply (rule_tac $x=-(x+1)$ in $e x I$)
apply (simp_all add: algebra_simps)
done
finally show ?thesis .
qed
lemma ccos_eq_minus1:
fixes z ::complex
shows $\cos z=-1 \longleftrightarrow\left(\exists n:: i n t . z=o f _r e a l(2 * n * p i)+p i\right)$
using csin_eq_1 [of $z-$ of_real pi/2]
by (simp add: sin_diff algebra_simps equation_minus_iff)
lemma sin_eq_1: $\sin x=1 \longleftrightarrow(\exists n:: i n t . x=(2 * n+1 / 2) * p i)$
$\left(\right.$ is $\left._{-}=? r h s\right)$
proof -
have $\sin x=1 \longleftrightarrow \sin ($ complex_of_real $x)=1$
by (metis of_real_1 one_complex.simps(1) real_sin_eq sin_of_real)
also have $\ldots \longleftrightarrow(\exists n::$ int. complex_of_real $x=o f$ _real $(2 * n * p i)+o f$ _real
pi/2)
by (simp only: csin_eq_1)
also have $\ldots \longleftrightarrow\left(\exists n::\right.$ int. $x=o f$ _real $\left.(2 * n * p i)+o f _r e a l ~ p i / 2\right)$
by (rule iff_exI) (auto simp: algebra_simps intro: injD [OF inj_of_real [where
' $a=$ complex]])
also have...$=$? rhs
by (auto simp: algebra_simps)
finally show ?thesis.
qed
lemma sin_eq_minus1: sin $x=-1 \longleftrightarrow(\exists n:: i n t . x=(2 * n+3 / 2) * p i) \quad($ is
= ?rhs)
proof -

```
```

 have \(\sin x=-1 \longleftrightarrow \sin (\) complex_of_real \(x)=-1\)
 by (metis Re_complex_of_real of_real_def scaleR_minus1_left sin_of_real)
 also have \(\ldots \longleftrightarrow(\exists n:: i n t\). complex_of_real \(x=o f\) _real \((2 * n * p i)+3 / 2 * p i)\)
 by (simp only: csin_eq_minus1)
 also have \(\ldots \longleftrightarrow\left(\exists n::\right.\) int. \(\left.x=o f _r e a l(2 * n * p i)+3 / 2 * p i\right)\)
 by (rule iff_exI) (auto simp: algebra_simps intro: injD [OF inj_of_real [where
 ' $a=$ complex]])
also have $\ldots=$? rhs
by (auto simp: algebra_simps)
finally show ?thesis.
qed
lemma cos_eq_minus $1: \cos x=-1 \longleftrightarrow(\exists n::$ int. $x=(2 * n+1) * p i)$
(is $\left.{ }_{-}=? r h s\right)$
proof -
have $\cos x=-1 \longleftrightarrow \cos ($ complex_of_real $x)=-1$
by (metis Re_complex_of_real of_real_def scaleR_minus1_left cos_of_real)
also have $\ldots \longleftrightarrow\left(\exists n::\right.$ int. complex_of_real $\left.x=o f _r e a l(2 * n * p i)+p i\right)$
by (simp only: ccos_eq_minus1)
also have $\ldots \longleftrightarrow\left(\exists n::\right.$ int. $\left.x=o f _r e a l(2 * n * p i)+p i\right)$
by (rule iff_exI) (auto simp: algebra_simps intro: injD [OF inj_of_real [where
' $a=$ complex $]]$)
also have $\ldots=$? r hs
by (auto simp: algebra_simps)
finally show ?thesis .
qed
lemma dist_exp_i_1: $\operatorname{norm}(\exp (\mathrm{i} *$ of_real $t)-1)=2 *|\sin (t / 2)|$
proof -
have $\operatorname{sqrt}(2-\cos t * 2)=2 *|\sin (t / 2)|$
using cos_double_sin [of t/2] by (simp add: real_sqrt_mult)
then show ?thesis
by (simp add: exp_Euler cmod_def power2_diff sin_of_real cos_of_real algebra_simps)
qed
lemma sin_cx_2pi [simp]: $\llbracket z=o f _i n t ~ m ; ~ e v e n ~ m \rrbracket \Longrightarrow \sin (z *$ complex_of_real pi)
$=0$
by (simp add: sin_eq_0)
lemma cos_cx_2pi $[$ simp $]: \llbracket z=o f$ _int m; even $m \rrbracket \Longrightarrow \cos (z *$ complex_of_real pi $)$
$=1$
using cos_eq_1 by auto
lemma complex_sin_eq:
fixes w :: complex
shows $\sin w=\sin z \longleftrightarrow(\exists n \in \mathbb{Z} . w=z+$ of_real $(2 * n * p i) \vee w=-z+$
of_real $((2 * n+1) * p i))$
(is ?lhs $=$? $r h s$)
proof

```
```

assume ?lhs
then have $\sin w-\sin z=0$
by (auto simp: algebra_simps)
then have $\sin ((w-z) / 2) * \cos ((w+z) / 2)=0$
by (auto simp: sin_diff_sin)
then consider $\sin ((w-z) / 2)=0 \mid \cos ((w+z) / 2)=0$
using mult_eq_0_iff by blast
then show? ?hs
proof cases
case 1
then show ?thesis
by (simp add: sin_eq_0 algebra_simps) (metis Ints_of_int of_real_of_int_eq)
next
case 2
then show ?thesis
by (simp add: cos_eq_0 algebra_simps) (metis Ints_of_int of_real_of_int_eq)
qed
next
assume ?rhs
then consider $n::$ int where $w=z+o f$ _real ($2 *$ of_int $n * p i$)
$\mid n::$ int where $\quad w=-z+$ of_real $((2 *$ of_int $n+1) * p i)$
using Ints_cases by blast
then show? lhs
proof cases
case 1
then show ?thesis
using Periodic_Fun.sin.plus_of_int [of z n]
by (auto simp: algebra_simps)
next
case 2
then show? ?thesis
using Periodic_Fun.sin.plus_of_int $[o f-z n]$
apply (simp add: algebra_simps)
by (metis add.commute add.inverse_inverse add_diff_cancel_left diff_add_cancel
sin_plus_pi)
qed
qed
lemma complex_cos_eq:
fixes w :: complex
shows $\cos w=\cos z \longleftrightarrow\left(\exists n \in \mathbb{Z} . w=z+o f_{-} r e a l(2 * n * p i) \vee w=-z+\right.$
of_real($2 * n * p i)$)
(is ?lhs = ?rhs)
proof
assume? lhs
then have $\cos w-\cos z=0$
by (auto simp: algebra_simps)
then have $\sin ((w+z) / 2) * \sin ((z-w) / 2)=0$
by (auto simp: cos_diff_cos)

```
```

 then consider \(\sin ((w+z) / 2)=0 \mid \sin ((z-w) / 2)=0\)
 using mult_eq_0_iff by blast
 then show? ?hs
 proof cases
 case 1
 then obtain \(n\) where \(w+z=o f _i n t n *(\) complex_of_real pi \(* 2)\)
 by (auto simp: sin_eq_0 algebra_simps)
 then have \(w=-z+o f_{-} \operatorname{real}(2 *\) of_int \(n * p i)\)
 by (auto simp: algebra_simps)
 then show? ?thesis
 using Ints_of_int by blast
 next
 case 2
 then obtain \(n\) where \(z=w+\) of_int \(n *(\) complex_of_real pi * 2)
 by (auto simp: sin_eq_0 algebra_simps)
 then have \(w=z+\) complex_of_real (\(\left.2 * f_{-} \operatorname{int}(-n) * p i\right)\)
 by (auto simp: algebra_simps)
 then show?thesis
 using Ints_of_int by blast
 qed
 next
assume ?rhs
then obtain $n::$ int where $w: w=z+$ of_real (2* of_int $n * p i$) \vee
$w=-z+$ of_real $(2 * n * p i)$
using Ints_cases by (metis of_int_mult of_int_numeral)
then show? lhs
using Periodic_Fun.cos.plus_of_int [of z n]
apply (simp add: algebra_simps)
by (metis cos.plus_of_int cos_minus minus_add_cancel mult.commute)
qed
lemma sin_eq:
$\sin x=\sin y \longleftrightarrow(\exists n \in \mathbb{Z} . x=y+2 * n * p i \vee x=-y+(2 * n+1) * p i)$
using complex_sin_eq [of $x y$]
by (simp only: sin_of_real Re_complex_of_real of_real_add [symmetric] of_real_minus
[symmetric] of_real_mult [symmetric] of_real_eq_iff)
lemma cos_eq:
$\cos x=\cos y \longleftrightarrow(\exists n \in \mathbb{Z} . x=y+2 * n * p i \vee x=-y+2 * n * p i)$
using complex_cos_eq [of $x y$]
by (simp only: cos_of_real Re_complex_of_real of_real_add [symmetric] of_real_minus
[symmetric] of_real_mult [symmetric] of_real_eq_iff)
lemma sinh_complex:
fixes z :: complex
shows $(\exp z-$ inverse $(\exp z)) / 2=-\mathrm{i} * \sin (\mathrm{i} * z)$
by (simp add: sin_exp_eq field_split_simps exp_minus)

```
lemma sin_i_times:
```

 fixes \(z\) :: complex
 shows \(\sin (\mathrm{i} * z)=\mathrm{i} *((\exp z-\) inverse \((\exp z)) /\) 2)
 using sinh_complex by auto
 lemma sinh_real:
fixes x :: real
shows of_real $((\exp x-$ inverse $(\exp x)) / 2)=-\mathrm{i} * \sin (\mathrm{i} *$ of_real $x)$
by (simp add: exp_of_real sin_i_times)
lemma cosh_complex:
fixes z :: complex
shows $(\exp z+$ inverse $(\exp z)) / 2=\cos (\mathrm{i} * z)$
by (simp add: cos_exp_eq field_split_simps exp_minus exp_of_real)
lemma cosh_real:
fixes x :: real
shows of_real $((\exp x+$ inverse $(\exp x)) / 2)=\cos (\mathrm{i} *$ of_real $x)$
by (simp add: cos_exp_eq field_split_simps exp_minus exp_of_real)
lemmas cos_i_times $=$ cosh_complex $[$ symmetric $]$
lemma norm_cos_squared:
$\operatorname{norm}(\cos z)^{\wedge}$ 2 $=\cos (\operatorname{Re} z)^{\wedge}$ 2 $+(\exp (\operatorname{Im} z)-\operatorname{inverse}(\exp (\operatorname{Im} z)))^{\wedge}$ 2 / 4
proof (cases z)
case (Complex x1 x2)
then show ?thesis
apply (simp only: cos_add cmod_power2 cos_of_real sin_of_real Complex_eq)
apply (simp add: cos_exp_eq sin_exp_eq exp_minus exp_of_real Re_divide Im_divide
power_divide)
apply (simp only: left_diff_distrib [symmetric] power_mult_distrib sin_squared_eq)
apply (simp add: power2_eq_square field_split_simps)
done
qed
lemma norm_sin_squared:
$\operatorname{norm}(\sin z)^{\wedge} \mathcal{2}=(\exp (2 * \operatorname{Im} z)+\operatorname{inverse}(\exp (2 * \operatorname{Im} z))-2 * \cos (\mathcal{2} * \operatorname{Re}$
z)) / 4
proof (cases z)
case (Complex x1 x2)
then show ?thesis
apply (simp only: sin_add cmod_power2 cos_of_real sin_of_real cos_double_cos
exp_double Complex_eq)
apply (simp add: cos_exp_eq sin_exp_eq exp_minus exp_of_real Re_divide Im_divide
power_divide)
apply (simp only: left_diff_distrib [symmetric] power_mult_distrib cos_squared_eq)
apply (simp add: power2_eq_square field_split_simps)
done
qed

```
```

lemma exp_uminus_Im: exp (- Im z) \leq exp (cmod z)
using abs_Im_le_cmod linear order_trans by fastforce
lemma norm_cos_le:
fixes z::complex
shows norm(\operatorname{cos}z)\leqexp(norm z)
proof -
have Im z\leqcmod z
using abs_Im_le_cmod abs_le_D1 by auto
then have exp (-Imz)+\operatorname{exp}(\operatorname{Im}z)\leq\operatorname{exp}(\operatorname{cmod}z)*2
by (metis exp_uminus_Im add_mono exp_le_cancel_iff mult_2_right)
then show ?thesis
by (force simp add: cos_exp_eq norm_divide intro: order_trans [OF norm_triangle_ineq])
qed
lemma norm_cos_plus1_le:
fixes z::complex
shows norm(1+\operatorname{cos}z)\leq2*\operatorname{exp}(\mathrm{ norm z)}
proof -
have mono: \uwz::real. (1\leqw| 1\leqz)\Longrightarrow(w\lequ\&z\lequ)\Longrightarrow2+w+
z\leq4*u
by arith
have *: Im z\leqcmod z
using abs_Im_le_cmod abs_le_D1 by auto
have triangle3: \x y z.norm(x+y+z)\leqnorm(x) + norm(y) +norm(z)
by (simp add: norm_add_rule_thm)
have norm (1 + cosz)=cmod (1+(exp (i*z)+\operatorname{exp}(-(i*z)))/2)
by (simp add: cos_exp_eq)
also have ... = cmod ((2 + exp (i*z)+\operatorname{exp}(-(i*z)))/2)
by (simp add: field_simps)
also have ... = cmod (2 + exp (i*z) + exp (- (i*z))) / 2
by (simp add: norm_divide)
finally show ?thesis
by (metis exp_eq_one_iff exp_le_cancel_iff mult_2 norm_cos_le norm_ge_zero norm_one
norm_triangle_mono)
qed
lemma sinh_conv_sin: sinh z = - i * sin (i*z)
by (simp add: sinh_field_def sin_i_times exp_minus)
lemma cosh_conv_cos: cosh z=\operatorname{cos (i*z)}
by (simp add: cosh_field_def cos_i_times exp_minus)
lemma tanh_conv_tan: tanh z=-i * tan (i*z)
by (simp add: tanh_def sinh_conv_sin cosh_conv_cos tan_def)
lemma sin_conv_sinh: sin z = -i * sinh (i*z)
by (simp add: sinh_conv_sin)

```
```

lemma cos_conv_cosh: $\cos z=\cosh (\mathrm{i} * z)$
by (simp add: cosh_conv_cos)
lemma tan_conv_tanh: $\tan z=-\mathrm{i} * \tanh (\mathrm{i} * z)$
by (simp add: tan_def sin_conv_sinh cos_conv_cosh tanh_def)
lemma sinh_complex_eq_iff:
$\sinh (z::$ complex $)=\sinh w \longleftrightarrow$
$(\exists n \in \mathbb{Z} . z=w-2 * \mathrm{i} *$ of_real $n *$ of_real pi \vee
$z=-(2 *$ complex_of_real $n+1) * \mathrm{i} *$ complex_of_real pi $-w)(\mathbf{i s}$
$=$?rhs)
proof -
have $\sinh z=\sinh w \longleftrightarrow \sin (\mathrm{i} * z)=\sin (\mathrm{i} * w)$
by (simp add: sinh_conv_sin)
also have $\ldots \longleftrightarrow$? rhs
by (subst complex_sin_eq) (force simp: field_simps complex_eq_iff)
finally show ?thesis.
qed

```
6.21.6 Taylor series for complex exponential, sine and cosine
declare power_Suc [simp del]
lemma Taylor_exp_field:
fixes \(z:: ' a::\{\) banach,real_normed_field \(\}\)
shows norm \(\left(\exp z-\left(\sum i \leq n . z^{\wedge} i /\right.\right.\) fact \(\left.\left.i\right)\right) \leq \exp (\) norm \(z) *\left(\right.\) norm \(z^{\wedge}\) Suc
n) / fact \(n\)
proof (rule field_Taylor[of _ \(n \lambda k\). exp exp (norm z) \(0 z\), simplified \(]\) )
show convex (closed_segment 0 z)
        by (rule convex_closed_segment [of 0 z])
next
fix \(k x\)
assume \(x \in\) closed_segment \(0 z k \leq n\)
show (exp has_field_derivative exp \(x\) ) (at x within closed_segment 0 ) using DERIV_exp DERIV_subset by blast
next
fix \(x\)
assume \(x: x \in\) closed_segment \(0 z\)
have norm (exp x) \(\leq \exp\) (norm \(x\) ) by (rule norm_exp)
also have norm \(x \leq\) norm \(z\) using \(x\) by (auto simp: closed_segment_def intro!: mult_left_le_one_le)
finally show norm \((\exp x) \leq \exp (\) norm \(z)\) by simp
qed auto
lemma Taylor_exp:
\(\operatorname{norm}\left(\exp z-\left(\sum k \leq n . z^{\wedge} k /(\right.\right.\) fact \(\left.\left.k)\right)\right) \leq \exp |\operatorname{Re} z| *(\) norm \(z) \wedge(\) Suc n) /
(fact \(n\) )
```

proof (rule complex_Taylor [of _ $n \lambda k$. exp exp \mid Re $z \mid 0 z$, simplified])
show convex (closed_segment 0 z)
by (rule convex_closed_segment [of 0 z])
next
fix $k x$
assume $x \in$ closed_segment $0 z k \leq n$
show (exp has_field_derivative exp x) (at x within closed_segment $0 z$)
using DERIV_exp DERIV_subset by blast
next
fix x
assume $x \in$ closed_segment $0 z$
then obtain u where $u: x=$ complex_of_real $u * z 0 \leq u u \leq 1$
by (auto simp: closed_segment_def scaleR_conv_of_real)
then have $u * R e z \leq|R e z|$
by (metis abs_ge_self abs_ge_zero mult.commute mult.right_neutral mult_mono)
then show Re $x \leq|R e z|$
by (simp add: u)
qed auto
lemma
assumes $0 \leq u u \leq 1$
shows cmod_sin_le_exp: cmod $\left(\sin \left(u *_{R} z\right)\right) \leq \exp |\operatorname{Im} z|$
and cmod_cos_le_exp: cmod $\left(\cos \left(u *_{R} z\right)\right) \leq \exp |\operatorname{Im} z|$
proof -
have mono: $\lfloor u w z::$ real. $w \leq u \Longrightarrow z \leq u \Longrightarrow(w+z) / 2 \leq u$
by simp
have $*:(\operatorname{cmod}(\exp (\mathrm{i} *(u * z)))+\operatorname{cmod}(\exp (-(\mathrm{i} *(u * z))))) / 2 \leq \exp$
$|\operatorname{Im} z|$
proof (rule mono)
show $\operatorname{cmod}(\exp (\mathrm{i} *(u * z))) \leq \exp |\operatorname{Im} z|$
using assms
by (auto simp: abs_if mult_left_le_one_le not_less intro: order_trans [of _ 0])
show $\operatorname{cmod}(\exp (-(\mathrm{i} *(u * z)))) \leq \exp |\operatorname{Im} z|$
using assms
by (auto simp: abs_if mult_left_le_one_le mult_nonneg_nonpos intro: order_trans
[of - 0])
qed
have $\operatorname{cmod}\left(\sin \left(u *_{R} z\right)\right)=\operatorname{cmod}(\exp (\mathrm{i} *(u * z))-\exp (-(\mathrm{i} *(u * z)))) /$
2
by (auto simp: scaleR_conv_of_real norm_mult norm_power sin_exp_eq norm_divide)
also have $\ldots \leq(\operatorname{cmod}(\exp (\mathrm{i} *(u * z)))+\operatorname{cmod}(\exp (-(\mathrm{i} *(u * z))))) / 2$
by (intro divide_right_mono norm_triangle_ineq4) simp
also have $\ldots \leq \exp |\operatorname{Im} z|$
by (rule *)
finally show $\operatorname{cmod}\left(\sin \left(u *_{R} z\right)\right) \leq \exp |\operatorname{Im} z| \cdot$
have $\operatorname{cmod}\left(\cos \left(u *_{R} z\right)\right)=\operatorname{cmod}(\exp (\mathrm{i} *(u * z))+\exp (-(\mathrm{i} *(u * z)))) /$
2
by (auto simp: scaleR_conv_of_real norm_mult norm_power cos_exp_eq norm_divide)
also have $\ldots \leq(\operatorname{cmod}(\exp (\mathrm{i} *(u * z)))+\operatorname{cmod}(\exp (-(\mathrm{i} *(u * z))))) / 2$

```
```

 by (intro divide_right_mono norm_triangle_ineq) simp
 also have ... \leq exp |Im z|
 by (rule *)
 finally show cmod (\operatorname{cos}(u\mp@subsup{*}{R}{}z))\leq\operatorname{exp}|\operatorname{Im}z|.
 qed

```
lemma Taylor_sin:
    \(\operatorname{norm}\left(\sin z-\left(\sum k \leq n\right.\right.\). complex_of_real \(\left.\left.\left(\sin \_c o e f f ~ k\right) * z^{\wedge} k\right)\right)\)
        \(\leq \exp |\operatorname{Im} z| *(\) norm \(z){ }^{\wedge}(\) Suc \(n) /(\) fact \(n)\)
proof -
    have mono: \(\bigwedge u w z::\) real. \(w \leq u \Longrightarrow z \leq u \Longrightarrow w+z \leq u * 2\)
        by arith
    have \(*: \operatorname{cmod}(\sin z-\)
                        \(\left(\sum i \leq n .(-1) \wedge(i \operatorname{div} 2) *(\right.\) if even \(i\) then \(\sin 0\) else \(\cos 0) * z^{\wedge} i /\)
(fact i)))
            \(\leq \exp |\operatorname{Im} z| * \operatorname{cmod} z^{\wedge}\) Suc \(n /(\) fact \(n)\)
    proof (rule complex_Taylor [of closed_segment 0 z n
                                    \(\lambda k x .(-1)^{\wedge}(k\) div 2) \(*(\) if even \(k\) then \(\sin x\) else \(\cos x)\)
                    \(\exp |\operatorname{Im} z| 0 z\), simplified])
        fix \(k x\)
    show \(\left(\left(\lambda x .(-1){ }^{\wedge}(k\right.\right.\) div 2) \()\) (if even \(k\) then \(\sin x\) else \(\left.\left.\cos x\right)\right)\) has_field_derivative
                \((-1) \wedge(\) Suc \(k\) div 2) \(*(\) if odd \(k\) then \(\sin x\) else \(\cos x))\)
                (at \(x\) within closed_segment \(0 z\) )
        apply (auto simp: power_Suc)
        apply (intro derivative_eq_intros | simp)+
        done
    next
        fix \(x\)
    assume \(x \in\) closed_segment \(0 z\)
    then show \(\operatorname{cmod}\left((-1){ }^{\wedge}(\right.\) Suc \(n\) div 2 \() *(\) if odd \(n\) then \(\sin x\) else \(\left.\cos x)\right) \leq\)
\(\exp |\operatorname{Im} z|\)
        by (auto simp: closed_segment_def norm_mult norm_power cmod_sin_le_exp
cmod_cos_le_exp)
    qed
    have \(* *\) : \(\bigwedge k\). complex_of_real \((\) sin_coeff \(k) * z^{\wedge} k\)
            \(=(-1)^{\wedge}\left(k\right.\) div 2) \(*(\) if even \(k\) then sin 0 else \(\cos 0) * z^{\wedge} k /\) of_nat \((\) fact
k)
    by (auto simp: sin_coeff_def elim!: oddE)
    show ?thesis
    by (simp add: ** order_trans \(\left[O F_{-}\right.\)*])
qed
lemma Taylor_cos:
    \(\operatorname{norm}\left(\cos z-\left(\sum k \leq n\right.\right.\). complex_of_real \((\cos\) _coeff \(\left.\left.k) * z^{\wedge} k\right)\right)\)
    \(\leq \exp |\operatorname{Im} z| *(\) norm \(z) \wedge\) Suc \(n /(\) fact \(n)\)
proof -
    have mono: \(\bigwedge u w z::\) real. \(w \leq u \Longrightarrow z \leq u \Longrightarrow w+z \leq u * 2\)
        by arith
    have \(*: \operatorname{cmod}(\cos z-\)
```

 (\sumi\leqn.(-1)^(Suc i div 2)*(if even i then cos 0 else sin 0)*z
 ^ i / (fact i)))
\leq exp \Imz|* cmod z`Suc n / (fact n) proof (rule complex_Taylor [of closed_segment 0 z n \lambdakx.(-1)^(Suc k div 2)* (if even k then cos x else sin x) exp \Im z| 0 z, simplified]) fix }k assume x c closed_segment 0zk\leqn show ((\lambdax. (- 1) ^(Suc k div 2) * (if even k then cos x else sin x)) has_field_derivative (-1) ^Suc (k div 2) * (if odd k then cos x else sin x)) (at x within closed_segment 0 z) apply (auto simp: power_Suc) apply (intro derivative_eq_intros | simp)+ done next fix } assume x c closed_segment 0z then show cmod ((- 1) ^ Suc (n div 2) * (if odd n then cos x else sin x)) \leq exp |Imz| by (auto simp: closed_segment_def norm_mult norm_power cmod_sin_le_exp cmod_cos_le_exp) qed have **: \k. complex_of_real (cos_coeff k)* *` k
=(-1)^(Suc k div 2) * (if even k then cos 0 else sin 0) * z^k/of_nat
(fact k)
by (auto simp: cos_coeff_def elim!: evenE)
show ?thesis
by (simp add: ** order_trans [OF _ *])
qed
declare power_Suc [simp]

```
32-bit Approximation to e
lemma e_approx_32: \(|\exp (1)-5837465777 / 2147483648| \leq(\) inverse(2^32)::real)
    using Taylor_exp [of 1 14] exp_le
    apply (simp add: sum_distrib_right in_Reals_norm Re_exp atMost_nat_numeral
fact_numeral)
    apply (simp only: pos_le_divide_eq [symmetric])
    done
lemma e_less_272: exp \(1<(272 / 100::\) real \()\)
    using e_approx_32
    by (simp add: abs_if split: if_split_asm)
lemma ln_272_gt_1: ln \((272 / 100)>(1::\) real \()\)
    by (metis e_less_272 exp_less_cancel_iff exp_ln_iff less_trans ln_exp)

Apparently redundant. But many arguments involve integers.
```

lemma ln3_gt_1: ln 3 > (1::real)
by (simp add:less_trans [OF ln_272_gt_1])

```

\subsection*{6.21.7 The argument of a complex number (HOL Light version)}
```

definition is_Arg :: [complex, real] \Rightarrow bool
where is_Arg $z r \equiv z=o f_{-} r e a l(n o r m ~ z) * \exp (\mathrm{i} *$ of_real $r)$
definition Arg2pi :: complex \Rightarrow real
where Arg2pi $z \equiv$ if $z=0$ then 0 else THE $t .0 \leq t \wedge t<2 * p i \wedge$ is_Arg $z t$
lemma is_Arg_2pi_iff: is_Arg $z\left(r+o f _i n t k *(2 * p i)\right) \longleftrightarrow i s _A r g z r$
by (simp add: algebra_simps is_Arg_def)
lemma is_Arg_eq :
assumes r : is_Arg $z r$ and $s: i s _A r g z s$ and $r s: a b s(r-s)<2 * p i$ and $z \neq 0$
shows $r=s$
proof -
have $z r: z=(\operatorname{cmod} z) * \exp (\mathrm{i} * r)$ and $z s: z=(\operatorname{cmod} z) * \exp (\mathrm{i} * s)$
using $r s$ by (auto simp: is_Arg_def)
with $\langle z \neq 0\rangle$ have $\operatorname{eq}: \exp (\mathrm{i} * r)=\exp (\mathrm{i} * s)$
by (metis mult_eq_0_iff mult_left_cancel)
have $\mathrm{i} * r=\mathrm{i} * s$
by (rule exp_complex_eqI) (use rs in 〈auto simp: eq exp_complex_eqI〉)
then show ?thesis
by simp
qed

```

This function returns the angle of a complex number from its representation in polar coordinates. Due to periodicity, its range is arbitrary. Arg2pi follows HOL Light in adopting the interval \([0,2 \pi)\). But we have the same periodicity issue with logarithms, and it is usual to adopt the same interval for the complex logarithm and argument functions. Further on down, we shall define both functions for the interval \((-\pi, \pi]\). The present version is provided for compatibility.
lemma Arg2pi_0 [simp]: \(\operatorname{Arg2pi(0)}=0\)
by (simp add: Arg2pi_def)
lemma Arg2pi_unique_lemma:
assumes \(z\) : is_Arg \(z t\)
and \(z^{\prime}: i i_{-} \_A r g z t^{\prime}\)
and \(t: 0 \leq t \quad t<2 * p i\)
and \(t^{\prime}: 0 \leq t^{\prime} t^{\prime}<2 * p i\)
and \(n z: z \neq 0\)
shows \(t^{\prime}=t\)
proof -
have [dest]: \(\bigwedge x\) y \(z::\) real. \(x \geq 0 \Longrightarrow x+y<z \Longrightarrow y<z\)
```

 by arith
 have of_real (cmod z)*exp (i * of_real t') = of_real (cmod z) * exp (i * of_real
 t)
by (metis z z' is_Arg_def)
then have exp (i * of_real t')}=\operatorname{exp}(\textrm{i}*\mathrm{ of_real t)
by (metis nz mult_left_cancel mult_zero_left z is_Arg_def)
then have sin t'= sin t\wedge \operatorname{cos}\mp@subsup{t}{}{\prime}=\operatorname{cos}t
by (metis cis.simps cis_conv_exp)
then obtain n::int where n: t'}=t+2*n*p
by (auto simp: sin_cos_eq_iff)
then have n=0
by (cases n) (use t t' in <auto simp: mult_less_0_iff algebra_simps`)
then show t' = t
by (simp add: n)
qed
lemma Arg2pi:0\leqArg2pi z ^Arg2pi z < 2*pi^is_Argz (Arg2piz)
proof (cases z=0)
case True then show ?thesis
by (simp add: Arg2pi_def is_Arg_def)
next
case False
obtain t where t:0\leqtt<2*pi
and ReIm:Rez / cmod z=\operatorname{cos}t Im z / cmod z=\operatorname{sin}t
using sincos_total_2pi [OF complex_unit_circle [OF False]]
by blast
have z: is_Arg zt
unfolding is_Arg_def
using t False ReIm
by (intro complex_eqI) (auto simp: exp_Euler sin_of_real cos_of_real field_split_simps)
show ?thesis
apply (simp add: Arg2pi_def False)
apply (rule theI [where }a=t]\mathrm{)
using t z False
apply (auto intro: Arg2pi_unique_lemma)
done
qed
corollary
shows Arg2pi_ge_0:0\leqArg2pi z
and Arg2pi_lt_2pi: Arg2pi z < 2*pi
and Arg2pi_eq:z =of_real(norm z)*exp(i * of_real(Arg2pi z))
using Arg2pi is_Arg_def by auto
lemma complex_norm_eq_1_exp: norm z =1 \longleftrightarrowexp(i * of_real (Arg2piz))=z
by (metis Arg2pi_eq cis_conv_exp mult.left_neutral norm_cis of_real_1)
lemma Arg2pi_unique:\llbracketof_real r *exp(i * of_real a) =z;0<r;0\leqa;a<2*pi\rrbracket
\Longrightarrow A r g 2 p i z = a

```
by (rule Arg2pi_unique_lemma [unfolded is_Arg_def, OF_Arg2pi_eq]) (use Arg2pi [of z] in 〈auto simp: norm_mult \(\rangle\) )
lemma cos_Arg2pi: cmod \(z * \cos (A r g 2 p i z)=R e z\) and sin_Arg2pi:cmod \(z * \sin\) \((\) Arg2pi \(z)=\operatorname{Im} z\)
using Arg2pi_eq [of z] cis_conv_exp Re_rcis Im_rcis unfolding rcis_def by metis+
lemma Arg2pi_minus:
assumes \(z \neq 0\) shows Arg2pi \((-z)=(\) if Arg2pi \(z<\) pi then Arg2pi \(z+\) pi else Arg2piz-pi)
apply (rule Arg2pi_unique [of norm z, OF complex_eqI])
using cos_Arg2pi sin_Arg2pi Arg2pi_ge_0 Arg2pi_lt_2pi [of z] assms
by (auto simp: Re_exp Im_exp)
lemma Arg2pi_times_of_real [simp]:
assumes \(0<r\) shows Arg2pi (of_real \(r * z\) ) = Arg2pi z
proof (cases \(z=0\) )
case False
show ?thesis
by (rule Arg2pi_unique [of r * norm z]) (use Arg2pi False assms is_Arg_def in auto)
qed auto
lemma Arg2pi_times_of_real2 [simp]: \(0<r \Longrightarrow \operatorname{Arg2pi}(z *\) of_real \(r)=\operatorname{Arg2piz}\) by (metis Arg2pi_times_of_real mult.commute)
lemma Arg2pi_divide_of_real \([\) simp \(]: 0<r \Longrightarrow \operatorname{Arg2pi}(z /\) of_real \(r)=\) Arg2pi z by (metis Arg2pi_times_of_real2 less_numeral_extra(3) nonzero_eq_divide_eq of_real_eq_0_iff)
lemma Arg2pi_le_pi:Arg2pi \(z \leq p i \longleftrightarrow 0 \leq \operatorname{Im} z\)
proof (cases \(z=0\) )
case False
have \(0 \leq \operatorname{Im} z \longleftrightarrow 0 \leq \operatorname{Im}\left(o f \_r e a l(c m o d z) * \exp\right.\) ( \(\mathrm{i} *\) complex_of_real (Arg2pi
z)))
by (metis Arg2pi_eq)
also have \(\ldots=(0 \leq \operatorname{Im}(\exp (\mathrm{i} *\) complex_of_real \((\) Arg2pi z \())))\)
using False by (simp add: zero_le_mult_iff)
also have \(\ldots \longleftrightarrow\) Arg2pi \(z \leq p i\)
by (simp add: Im_exp) (metis Arg2pi_ge_0 Arg2pi_lt_2pi sin_lt_zero sin_ge_zero not_le)
finally show ?thesis by blast
qed auto
lemma Arg2pi_lt_pi: \(0<\) Arg2pi \(z \wedge\) Arg2pi \(z<p i \longleftrightarrow 0<\operatorname{Im} z\)
proof (cases \(z=0\) )
case False
have \(0<\operatorname{Im} z \longleftrightarrow 0<\operatorname{Im}(\) of_real (cmod \(z) * \exp\) (i \(*\) complex_of_real (Arg2pi \(z)\) ))
```

 by (metis Arg2pi_eq)
 also have \(\ldots=(0<\operatorname{Im}(\exp (\mathrm{i} *\) complex_of_real \((\) Arg2pi z \())))\)
 using False by (simp add: zero_less_mult_iff)
 also have \(\ldots \longleftrightarrow 0<\operatorname{Arg2pi} z \wedge \operatorname{Arg2piz}<p i\left(\right.\) is \({ }_{-}=\)?rhs \()\)
 proof -
 have \(0<\sin (\) Arg2pi \(z) \Longrightarrow\) ?rhs
 by (meson Arg2pi_ge_0 Arg2pi_lt_2pi less_le_trans not_le sin_le_zero sin_x_le_x)
 then show?thesis
 by (auto simp: Im_exp sin_gt_zero)
 qed
 finally show ?thesis
 by blast
 qed auto
lemma Arg2pi_eq_0: Arg2pi $z=0 \longleftrightarrow z \in \mathbb{R} \wedge 0 \leq \operatorname{Re} z$
proof (cases $z=0$)
case False
have $z \in \mathbb{R} \wedge 0 \leq \operatorname{Re} z \longleftrightarrow z \in \mathbb{R} \wedge 0 \leq \operatorname{Re}($ of_real $(\operatorname{cmod} z) * \exp (\mathrm{i} *$
complex_of_real (Arg2pi z)))
by (metis Arg2pi_eq)
also have $\ldots \longleftrightarrow z \in \mathbb{R} \wedge 0 \leq \operatorname{Re}(\exp (\mathrm{i} *$ complex_of_real $(\operatorname{Arg} 2 p i z)))$
using False by (simp add: zero_le_mult_iff)
also have $\ldots \longleftrightarrow$ Arg2pi $z=0$
proof -
have [simp]: Arg2pi $z=0 \Longrightarrow z \in \mathbb{R}$
using Arg2pi_eq [of z] by (auto simp: Reals_def)
moreover have $\llbracket z \in \mathbb{R} ; 0 \leq \cos ($ Arg2pi $z) \rrbracket \Longrightarrow \operatorname{Arg2pi} z=0$
by (metis Arg2pi_lt_pi Arg2pi_ge_0 Arg2pi_le_pi cos_pi complex_is_Real_iff leD
less_linear less_minus_one_simps(2) minus_minus neg_less_eq_nonneg order_refl)
ultimately show ?thesis
by (auto simp: Re_exp)
qed
finally show ?thesis
by blast
qed auto
corollary Arg2pi_gt_0:
assumes $z \notin \mathbb{R}_{\geq 0}$
shows Arg2pi $\bar{z}>0$
using Arg2pi_eq_0 Arg2pi_ge_0 assms dual_order.strict_iff_order
unfolding nonneg_Reals_def by fastforce
lemma Arg2pi_eq_pi: Arg2pi $z=p i \longleftrightarrow z \in \mathbb{R} \wedge \operatorname{Re} z<0$
using Arg2pi_le_pi [of z] Arg2pi_lt_pi [of z] Arg2pi_eq_0 [of z] Arg2pi_ge_0 [of
z]
by (fastforce simp: complex_is_Real_iff)
lemma Arg2pi_eq_0_pi: Arg2pi $z=0 \vee \operatorname{Arg2pi} z=p i \longleftrightarrow z \in \mathbb{R}$
using Arg2pi_eq_0 Arg2pi_eq_pi not_le by auto

```
```

lemma Arg2pi_of_real: Arg2pi (of_real r) $=($ if $r<0$ then pi else 0$)$
using Arg2pi_eq_0_pi Arg2pi_eq_pi by fastforce
lemma Arg2pi_real: $z \in \mathbb{R} \Longrightarrow$ Arg2pi $z=($ if $0 \leq$ Re z then 0 else pi)
using Arg2pi_eq_0 Arg2pi_eq_0_pi by auto
lemma Arg2pi_inverse: Arg2pi(inverse $z)=($ if $z \in \mathbb{R}$ then Arg2pi z else 2*pi -
Arg2pi z)
proof (cases $z=0$)
case False
show ?thesis
apply (rule Arg2pi_unique [of inverse (norm z)])
using Arg2pi_eq False Arg2pi_ge_0 [of z] Arg2pi_lt_2pi [of z] Arg2pi_eq_0 [of z]
by (auto simp: Arg2pi_real in_Reals_norm exp_diff field_simps)
qed auto
lemma Arg2pi_eq_iff:
assumes $w \neq 0 z \neq 0$
shows Arg2pi $w=$ Arg2pi $z \longleftrightarrow(\exists x .0<x \& w=$ of_real $x * z)$
using assms Arg2pi_eq [of z] Arg2pi_eq [of w]
apply auto
apply (rule_tac $x=$ norm $w / n o r m ~ z i n ~ e x I) ~$
apply (simp add: field_split_simps)
by (metis mult.commute mult.left_commute)

```
lemma Arg2pi_inverse_eq_0: Arg2pi(inverse \(z)=0 \longleftrightarrow\) Arg2pi \(z=0\)
    by (metis Arg2pi_eq_0 Arg2pi_inverse inverse_inverse_eq)
lemma Arg2pi_divide:
    assumes \(w \neq 0 z \neq 0\) Arg2pi \(w \leq\) Arg2pi \(z\)
        shows \(\operatorname{Arg2pi}(z / w)=\operatorname{Arg} 2 p i z-\operatorname{Arg} 2 p i w\)
    apply (rule Arg2pi_unique [of norm \((z / w)]\) )
    using assms Arg2pi_eq Arg2pi_ge_0 [of w] Arg2pi_lt_2pi [of z]
    apply (auto simp: exp_diff norm_divide field_simps)
    done
lemma Arg2pi_le_div_sum:
    assumes \(w \neq 0 z \neq 0\) Arg2pi \(w \leq \operatorname{Arg2piz}\)
        shows \(\operatorname{Arg2pi} z=\operatorname{Arg2pi} w+\operatorname{Arg2pi}(z / w)\)
    by (simp add: Arg2pi_divide assms)
lemma Arg2pi_le_div_sum_eq:
    assumes \(w \neq 0 z \neq 0\)
        shows \(\operatorname{Arg2pi} w \leq \operatorname{Arg2pi} z \longleftrightarrow \operatorname{Arg2pi} z=\operatorname{Arg2pi} w+\operatorname{Arg2pi}(z / w)\)
    using assms by (auto simp: Arg2pi_ge_0 intro: Arg2pi_le_div_sum)
lemma Arg2pi_diff:
    assumes \(w \neq 0 z \neq 0\)
shows Arg2pi \(w-\operatorname{Arg2pi} z=(\) if \(\operatorname{Arg2pi} z \leq \operatorname{Arg2pi} w\) then \(\operatorname{Arg2pi}(w / z)\) else \(\operatorname{Arg2pi}(w / z)-2 * p i)\)
using assms Arg2pi_divide Arg2pi_inverse [of w/z] Arg2pi_eq_0_pi by (force simp add: Arg2pi_ge_0 Arg2pi_divide not_le split: if_split_asm)
```

lemma Arg2pi_add:
assumes $w \neq 0 z \neq 0$
shows Arg2pi $w+$ Arg2pi $z=($ if Arg2pi $w+\operatorname{Arg2pi} z<2 * p i$ then $\operatorname{Arg2pi}(w$

* z) else $\operatorname{Arg2pi}(w * z)+2 * p i)$
using assms Arg2pi_diff [of $w * z z]$ Arg2pi_le_div_sum_eq [of $z w * z]$
apply (auto simp: Arg2pi_ge_0 Arg2pi_divide not_le)
apply (metis Arg2pi_lt_2pi add.commute)
apply (metis (no_types) Arg2pi add.commute diff_0 diff_add_cancel diff_less_eq
diff_minus_eq_add not_less)
done

```
lemma Arg2pi_times:
    assumes \(w \neq 0 z \neq 0\)
    shows \(\operatorname{Arg} 2 p i(w * z)=(\) if Arg2pi \(w+\operatorname{Arg2pi} z<2 * p i\) then Arg2pi \(w+\)
Arg2pi z
                        else (Arg2pi \(w+\) Arg2pi z) \(-2 * p i)\)
    using Arg2pi_add [OF assms]
    by auto
lemma Arg2pi_cnj_eq_inverse: \(z \neq 0 \Longrightarrow \operatorname{Arg2pi}(c n j z)=\operatorname{Arg2pi}(\) inverse \(z)\)
    apply (simp add: Arg2pi_eq_iff field_split_simps complex_norm_square [symmetric])
    by (metis of_real_power zero_less_norm_iff zero_less_power)
lemma Arg2pi_cnj: Arg2pi(cnj \(z)=(\) if \(z \in \mathbb{R}\) then Arg2pi \(z\) else \(2 * p i-\operatorname{Arg2pi}\)
z)
proof (cases \(z=0\) )
    case False
    then show? ?thesis
        by (simp add: Arg2pi_cnj_eq_inverse Arg2pi_inverse)
qed auto
lemma Arg2pi_exp: \(0 \leq \operatorname{Im} z \Longrightarrow \operatorname{Im} z<2 * p i \Longrightarrow \operatorname{Arg2pi}(\exp z)=\operatorname{Im} z\)
    by (rule Arg2pi_unique [of exp(Rez)]) (auto simp: exp_eq_polar)
lemma complex_split_polar:
    obtains \(r\) a::real where \(z=\) complex_of_real \(r *(\cos a+\mathrm{i} * \sin a) 0 \leq r 0 \leq\)
\(a a<2 * p i\)
    using Arg2pi cis.ctr cis_conv_exp unfolding Complex_eq is_Arg_def by fastforce
lemma Re_Im_le_cmod: Im \(w * \sin \varphi+\operatorname{Re} w * \cos \varphi \leq \operatorname{cmod} w\)
proof (cases w rule: complex_split_polar)
    case (1 ra) with sin_cos_le1 [of a \(\varphi\) ] show ?thesis
        apply (simp add: norm_mult cmod_unit_one)
    by (metis (no_types, hide_lams) abs_le_D1 distrib_left mult.commute mult.left_commute
```

mult_left_le)
qed

```

\subsection*{6.21.8 Analytic properties of tangent function}
```

lemma cnj_tan: cnj(tan z) = tan(cnjz)
by (simp add: cnj_cos cnj_sin tan_def)

```
lemma field_differentiable_at_tan: \(\cos z \neq 0 \Longrightarrow\) tan field_differentiable at \(z\)
    unfolding field_differentiable_def
    using DERIV_tan by blast
lemma field_differentiable_within_tan: \(\cos z \neq 0\)
    \(\Longrightarrow\) tan field_differentiable (at z within s)
    using field_differentiable_at_tan field_differentiable_at_within by blast
lemma continuous_within_tan: \(\cos z \neq 0 \Longrightarrow\) continuous (at \(z\) within s) tan
    using continuous_at_imp_continuous_within isCont_tan by blast
lemma continuous_on_tan [continuous_intros]: \((\bigwedge z . z \in s \Longrightarrow \cos z \neq 0) \Longrightarrow\)
continuous_on stan
    by (simp add: continuous_at_imp_continuous_on)
lemma holomorphic_on_tan: \((\bigwedge z . z \in s \Longrightarrow \cos z \neq 0) \Longrightarrow\) tan holomorphic_on s
    by (simp add: field_differentiable_within_tan holomorphic_on_def)

\subsection*{6.21.9 The principal branch of the Complex logarithm}
```

instantiation complex :: ln
begin
definition ln_complex :: complex }=>\mathrm{ complex
where ln_complex \equiv\lambdaz.THE w. exp w=z\&-pi< Im(w)\& Im (w)\leqpi

```

NOTE: within this scope, the constant Ln is not yet available!
```

lemma
assumes $z \neq 0$
shows \exp _Ln $[\operatorname{simp}]: \exp (\ln z)=z$
and mpi_less_Im_Ln: $-p i<\operatorname{Im}(\ln z)$
and $I m _L n_{-} l e _p i: \quad \operatorname{Im}(\ln z) \leq p i$
proof -
obtain ψ where $z: z /(\operatorname{cmod} z)=$ Complex $(\cos \psi)(\sin \psi)$
using complex_unimodular_polar [of z / (norm z)] assms
by (auto simp: norm_divide field_split_simps)
obtain φ where $\varphi:-p i<\varphi \varphi \leq p i \sin \varphi=\sin \psi \cos \varphi=\cos \psi$
using sincos_principal_value $[$ of $\psi]$ assms
by (auto simp: norm_divide field_split_simps)
have $\exp (\ln z)=z \&-p i<\operatorname{Im}(\ln z) \& \operatorname{Im}(\ln z) \leq p i$ unfolding l_{n} _complex_def
apply (rule theI [where $a=$ Complex $(\ln ($ norm $z)) \varphi])$

```
```

 using z assms }
 apply (auto simp: field_simps exp_complex_eqI exp_eq_polar cis.code)
 done
 then show exp(lnz)=z-pi<\operatorname{Im}(\operatorname{ln}z)\operatorname{Im}(\operatorname{ln}z)\leqpi
 by auto
 qed
lemma Ln_exp [simp]:
assumes -pi<Im(z) Im(z)\leqpi
shows }\operatorname{ln}(\operatorname{exp}z)=
proof (rule exp_complex_eqI)
show |Im (ln (expz)) - Im z|<2 * pi
using assms mpi_less_Im_Ln [of exp z] Im_Ln_le_pi [of exp z] by auto
qed auto

```

\subsection*{6.21.10 Relation to Real Logarithm}
```

lemma Ln_of_real:
assumes $0<z$
shows $\ln ($ of_real $z::$ complex $)=o f_{\text {_real }}(\ln z)$
proof -
have $\ln \left(o f_{-} r e a l(\exp (\ln z))::\right.$ complex $)=\ln \left(\exp \left(o f _r e a l(\ln z)\right)\right)$
by (simp add: exp_of_real)
also have.. = of_real ($\ln z)$
using assms by (subst Ln_exp) auto
finally show ?thesis
using assms by simp
qed
corollary Ln_in_Reals $[$ simp $]: z \in \mathbb{R} \Longrightarrow \operatorname{Re} z>0 \Longrightarrow \ln z \in \mathbb{R}$
by (auto simp: Ln_of_real elim: Reals_cases)
corollary Im_Ln_of_real [simp]: $r>0 \Longrightarrow \operatorname{Im}($ ln $($ of_real $r))=0$
by (simp add: Ln_of_real)
lemma cmod_Ln_Reals $[$ simp $]: z \in \mathbb{R} \Longrightarrow 0<\operatorname{Re} z \Longrightarrow \operatorname{cmod}(\ln z)=$ norm $(\ln$
(Rez))
using Ln_of_real by force
lemma Ln_Reals_eq: $\llbracket x \in \mathbb{R} ; \operatorname{Re} x>0 \rrbracket \Longrightarrow \ln x=o f _r e a l(\ln (\operatorname{Re} x))$
using Ln_of_real by force
lemma Ln_1 [simp]: ln $1=(0::$ complex $)$
proof -
have $\ln (\exp 0)=(0::$ complex $)$
by (simp add: del: exp_zero)
then show ?thesis
by simp
qed

```
lemma Ln_eq_zero_iff [simp]: \(x \notin \mathbb{R}_{\leq 0} \Longrightarrow \ln x=0 \longleftrightarrow x=1\) for \(x::\) complex by auto (metis exp_Ln exp_zero nonpos_Reals_zero_I)
instance
by intro_classes (rule ln_complex_def Ln_1)
end
abbreviation \(L n::\) complex \(\Rightarrow\) complex
where \(L n \equiv l n\)
lemma Ln_eq_iff: \(w \neq 0 \Longrightarrow z \neq 0 \Longrightarrow(\operatorname{Ln} w=L n z \longleftrightarrow w=z)\)
by (metis exp_Ln)
lemma Ln_unique: \(\exp (z)=w \Longrightarrow-p i<\operatorname{Im}(z) \Longrightarrow \operatorname{Im}(z) \leq p i \Longrightarrow \operatorname{Ln} w=z\) using Ln_exp by blast
lemma Re_Ln \([s i m p]: z \neq 0 \Longrightarrow \operatorname{Re}(\operatorname{Ln} z)=\ln (\) norm \(z)\)
by (metis exp_Ln ln_exp norm_exp_eq_Re)
corollary ln_cmod_le:
assumes \(z: z \neq 0\)
shows \(\ln (\operatorname{cmod} z) \leq \operatorname{cmod}(\operatorname{Ln} z)\)
using norm_exp [of Ln z, simplified exp_Ln [OF z]]
by (metis Re_Ln complex_Re_le_cmod z)
proposition exists_complex_root:
fixes \(z\) :: complex
assumes \(n \neq 0\) obtains \(w\) where \(z=w^{\wedge} n\)
proof (cases \(z=0\) )
case False
then show ?thesis
by (rule_tac \(w=\exp (\operatorname{Ln} z / n)\) in that) (simp add: assms exp_of_nat_mult [symmetric])
qed (use assms in auto)
corollary exists_complex_root_nonzero:
fixes \(z:\) :complex
assumes \(z \neq 0 n \neq 0\)
obtains \(w\) where \(w \neq 0 z=w^{\wedge} n\)
by (metis exists_complex_root \([\) of \(n z]\) assms power_0_left)

\subsection*{6.21.11 Derivative of Ln away from the branch cut}
lemma
assumes \(z \notin \mathbb{R}_{\leq 0}\)
shows has_field_derivative_Ln: (Ln has_field_derivative inverse(z)) (at z)
```

 and Im_Ln_less_pi: \(\quad \operatorname{Im}(L n z)<p i\)
 proof -
have $z n z[\operatorname{simp}]: z \neq 0$
using assms by auto
then have $\operatorname{Im}(L n z) \neq p i$
by (metis (no_types) Im_exp Ln_in_Reals assms complex_nonpos_Reals_iff com-
plex_is_Real_iff exp_Ln mult_zero_right not_less pi_neq_zero sin_pi znz)
then show $*$: $\operatorname{Im}(L n z)<p i$ using assms $I m_{-} L n_{-} l e _p i$
by (simp add: le_neq_trans)
let ? $U=\{w .-p i<\operatorname{Im}(w) \wedge \operatorname{Im}(w)<p i\}$
have 1: open? U
by (simp add: open_Collect_conj open_halfspace_Im_gt open_halfspace_Im_lt)
have 2: $\bigwedge x . x \in ? U \Longrightarrow$ (exp has_derivative blinfun_apply (Blinfun $((*)$ (exp
$x)$)) (at x)
by (simp add: bounded_linear_Blinfun_apply bounded_linear_mult_right has_field_derivative_imp_has_deri

```
    have 3: continuous_on ? \(U(\lambda x\). Blinfun \(((*)(\exp x)))\)
    unfolding blinfun_mult_right.abs_eq [symmetric] by (intro continuous_intros)
    have 4: Ln \(z \in\) ? \(U\)
    by (auto simp: mpi_less_Im_Ln *)
    have 5: Blinfun \(((*)(\) inverse \(z)) o_{L}\) Blinfun \(((*)(\exp (L n z)))=\) id_blinfun
    by (rule blinfun_eqI) (simp add: bounded_linear_mult_right bounded_linear_Blinfun_apply)
    obtain \(U^{\prime} V g g^{\prime}\) where open \(U^{\prime}\) and sub: \(U^{\prime} \subseteq ? U\)
    and \(L n z \in U^{\prime}\) open \(V z \in V\)
    and hom: homeomorphism \(U^{\prime} V \exp g\)
    and \(g: \bigwedge y . y \in V \Longrightarrow\left(g\right.\) has_derivative \(\left.\left(g^{\prime} y\right)\right)(\) at \(y)\)
    and \(g^{\prime}: \bigwedge y . y \in V \Longrightarrow g^{\prime} y=\operatorname{inv}((*)(\exp (g y)))\)
    and bij: \(\bigwedge y . y \in V \Longrightarrow \operatorname{bij}((*)(\exp (g y)))\)
    using inverse_function_theorem \(\left[O F 1 \begin{array}{llll}O & 3 & 4 & 5\end{array}\right]\)
    by (simp add: bounded_linear_Blinfun_apply bounded_linear_mult_right) blast
    show (Ln has_field_derivative inverse(z)) (at z)
    unfolding has_field_derivative_def
    proof (rule has_derivative_transform_within_open)
    show \(g_{-} e q_{-} L n: g y=L n y\) if \(y \in V\) for \(y\)
    proof -
        obtain \(x\) where \(y=\exp x x \in U^{\prime}\)
            using hom homeomorphism_image1 that \(\langle y \in V\rangle\) by blast
            then show ?thesis
            using sub hom homeomorphism_apply1 by fastforce
    qed
    have \(0 \notin V\)
        by (meson exp_not_eq_zero hom homeomorphism_def)
    then have \(\bigwedge y . y \in V \Longrightarrow g^{\prime} y=\operatorname{inv}((*) y)\)
            by (metis \(\left.\exp _{-} L n g^{\prime} g_{-} e q_{-} L n\right)\)
    then have \(g^{\prime}: g^{\prime} z=(\lambda x . x / z)\)
            by (metis (no_types, hide_lams) bij \(\langle z \in V\rangle\) bij_inv_eq_iff exp_Ln g_eq_Ln
nonzero_mult_div_cancel_left znz)
    show ( \(g\) has_derivative (*) (inverse \(z\) )) (at z)
        using \(g[O F\langle z \in V\rangle] g^{\prime}\)
```

 by (simp add: <z \inV` field_class.field_divide_inverse has_derivative_imp_has_field_derivative
 has_field_derivative_imp_has_derivative)
qed (auto simp: <z\inV\〈open V`)
qed
declare has_field_derivative_Ln [derivative_intros]
declare has_field_derivative_Ln [THEN DERIV_chain2, derivative_intros]
lemma field_differentiable_at_Ln: z }\not\in\mp@subsup{\mathbb{R}}{\leq0}{}\Longrightarrow\mathrm{ Ln field_differentiable at z
using field_differentiable_def has_field_derivative_Ln by blast
lemma field_differentiable_within_Ln: z}\not\in\mp@subsup{\mathbb{R}}{\leq0}{
\Longrightarrow ~ L n ~ f i e l d = d i f f e r e n t i a b l e ~ (a t ~ z ~ w i t h i n ~ S) ~
using field_differentiable_at_Ln field_differentiable_within_subset by blast
lemma continuous_at_Ln: z \& \mathbb{R}
by (simp add: field_differentiable_imp_continuous_at field_differentiable_within_Ln)
lemma isCont_Ln'[simp,continuous_intros]:
|isCont fz;fz\not\in\mp@subsup{\mathbb{R}}{\leq0}{}\rrbracket\Longrightarrow isCont (}\lambdax.\operatorname{Ln}(fx))
by (blast intro: isCont_o2 [OF _ continuous_at_Ln])
lemma continuous_within_Ln [continuous_intros]: z}\not\in\mp@subsup{\mathbb{R}}{\leq00}{\Longrightarrow}\mathrm{ continuous (at z
within S) Ln
using continuous_at_Ln continuous_at_imp_continuous_within by blast
lemma continuous_on_Ln [continuous_intros]: (\bigwedgez.z\inS\Longrightarrowz\not\in\mathbb{R}
tinuous_on S Ln
by (simp add: continuous_at_imp_continuous_on continuous_within_Ln)
lemma continuous_on_Ln' [continuous_intros]:
continuous_on Sf\Longrightarrow(\bigwedgez.z\inS\Longrightarrowfz\not=\mp@subsup{\mathbb{R}}{\leq0}{})\Longrightarrow\mathrm{ continuous_on S (}\lambdax.Ln
(fx))
by (rule continuous_on_compose2[OF continuous_on_Ln, of UNIV - nonpos_Reals
S f]) auto
lemma holomorphic_on_Ln [holomorphic_intros]: (\bigwedgez.z\inS\Longrightarrowz\not\in\mathbb{R}
Ln holomorphic_on S
by (simp add: field_differentiable_within_Ln holomorphic_on_def)
lemma holomorphic_on_Ln'[holomorphic_intros]:
(\bigwedgez.z\inA\Longrightarrowfz\not\in\mp@subsup{\mathbb{R}}{\leq0}{})\Longrightarrowf\mathrm{ holomorphic_on }A\Longrightarrow(\lambdaz.Ln (fz)) holomor-
phic_on A
using holomorphic_on_compose_gen[OF _ holomorphic_on_Ln, of f A - \mathbb{R}
by (auto simp: o_def)
lemma tendsto_Ln [tendsto_intros]:
fixes L F
assumes (f\longrightarrowL)FL\not\in\mp@subsup{\mathbb{R}}{\leq0}{}

```
```

 shows \(\quad((\lambda x . \operatorname{Ln}(f x)) \longrightarrow L n L) F\)
 proof -
have nhds $L \geq$ filtermap $f F$
using assms(1) by (simp add: filterlim_def)
moreover have $\forall_{F} y$ in nhds L. $y \in-\mathbb{R}_{\leq 0}$
using eventually_nhds_in_open[of $\left.-\mathbb{R}_{\leq 0} \bar{L}\right]$ assms by (auto simp: open_Compl)
ultimately have $\forall_{F} y$ in filtermap $f \bar{F} . y \in-\mathbb{R}_{\leq 0}$ by (rule filter_leD)
moreover have continuous_on $\left(-\mathbb{R}_{\leq 0}\right)$ Ln by (rule continuous_on_Ln) auto
ultimately show ?thesis using continuous_on_tendsto_compose $\left[\right.$ of $-\mathbb{R}_{\leq 0}$ Ln f
LF] assms
by (simp add: eventually_filtermap)
qed
lemma divide_ln_mono:
fixes $x y$::real
assumes $3 \leq x x \leq y$
shows $x / \ln x \leq y / \ln y$
proof (rule exE [OF complex_mvt_line [of $x y \lambda z . z / \operatorname{Ln} z \lambda z .1 /(\operatorname{Ln} z)-1 /(\operatorname{Ln}$
z) ^2]];
clarsimp simp add: closed_segment_Reals closed_segment_eq_real_ivl assms)
show $\bigwedge u . \llbracket x \leq u ; u \leq y \rrbracket \Longrightarrow((\lambda z . z / L n z)$ has_field_derivative $1 / L n u-$
$\left.1 /(L n u)^{2}\right)($ at $u)$
using $\langle 3 \leq x\rangle$ by (force intro!: derivative_eq_intros simp: field_simps power_eq_if)
show $x / \ln x \leq y / \ln y$
if $\operatorname{Re}(y / \operatorname{Ln} y)-\operatorname{Re}(x / \operatorname{Ln} x)=\left(\operatorname{Re}(1 / \operatorname{Ln} u)-\operatorname{Re}\left(1 /(L n u)^{2}\right)\right) *(y$
$-x)$
and $x: x \leq u u \leq y$ for u
proof -
have eq: $y / \ln y=\left(1 / \ln u-1 /(\ln u)^{2}\right) *(y-x)+x / \ln x$
using that $\langle 3 \leq x\rangle$ by (auto simp: Ln_Reals_eq in_Reals_norm group_add_class.diff_eq_eq)
show ?thesis
using exp_le $\langle 3 \leq x\rangle x$ by (simp add: eq) (simp add: power_eq_if divide_simps
ln_ge_iff)
qed
qed
theorem Ln_series:
fixes z :: complex
assumes norm $z<1$
shows $\left(\lambda n .(-1)^{\wedge} S u c n /\right.$ of_nat $\left.n * z^{\wedge} n\right)$ sums $\ln (1+z)\left(\right.$ is $\left(\lambda n\right.$. ?f $\left.n * z^{\wedge} n\right)$
sums _)
proof -
let ?F $=\lambda z$. $\sum n$. ?f $n * z^{\wedge} n$ and $? F^{\prime}=\lambda z$. $\sum n$. diffs ?f $n * z^{\wedge} n$
have r : conv_radius ?f $=1$
by (intro conv_radius_ratio_limit_nonzero $[$ of _ 1])
(simp_all add: norm_divide LIMSEQ_Suc_n_over_n del: of_nat_Suc)
have \exists c. $\forall z \in$ ball 0 1. $\ln (1+z)-? F z=c$
proof (rule has_field_derivative_zero_constant)

```
fix \(z\) :: complex assume \(z^{\prime}: z \in\) ball 01
hence \(z\) : norm \(z<1\) by simp
define \(t::\) complex where \(t=o f\) _real \((1+\) norm \(z) / 2\)
from \(z\) have \(t\) : norm \(z<\) norm \(t\) norm \(t<1\) unfolding \(t_{-}\)def by (simp_all add: field_simps norm_divide del: of_real_add)
have \(R e(-z) \leq\) norm \((-z)\) by (rule complex_Re_le_cmod)
also from \(z\) have \(\ldots<1\) by simp
finally have \(((\lambda z . \ln (1+z))\) has_field_derivative inverse \((1+z))\) (at \(z)\) by (auto intro!: derivative_eq_intros simp: complex_nonpos_Reals_iff)
moreover have (?F has_field_derivative ? \(F^{\prime} z\) ) (at z) using \(t r\)
by (intro termdiffs_strong \([\) of _ \(t\) ] summable_in_conv_radius) simp_all
ultimately have \(((\lambda z . \ln (1+z)-\) ?F \(z)\) has_field_derivative (inverse \((1+\) \(\left.z)-? F^{\prime} z\right)\) )
(at z within ball 0 1)
by (intro derivative_intros) (simp_all add: at_within_open[OF z ])
also have ( \(\lambda n\). of_nat \(n *\) ?f \(\left.n * z^{\wedge}(n-S u c 0)\right)\) sums ? \(F^{\prime} z\) using \(t r\)
by (intro diffs_equiv termdiff_converges[OF \(t(1)]\) summable_in_conv_radius) simp_all
from sums_split_initial_segment[OF this, of 1]
have \(\left(\lambda i .(-z)^{\wedge} i\right)\) sums \(? F^{\prime} z\) by (simp add: power_minus[of \(\left.z\right]\) del: of_nat_Suc)
hence \(? F^{\prime} z=\) inverse \((1+z) \mathbf{u s i n g} z\) by (simp add: sums_iff suminf_geometric divide_inverse)
also have inverse \((1+z)-\) inverse \((1+z)=0\) by simp
finally show \(((\lambda z \cdot \ln (1+z)-? F z)\) has_field_derivative 0\()\) (at \(z\) within ball 0 1).
qed simp_all
then obtain \(c\) where \(c: \bigwedge z . z \in\) ball \(01 \Longrightarrow \ln (1+z)-? F z=c\) by blast
from \(c[o f 0]\) have \(c=0\) by (simp only: powser_zero) simp
with \(c[o f z]\) assms have \(\ln (1+z)=? F z\) by simp
moreover have summable ( \(\lambda n\). ?f \(n * z^{\wedge} n\) ) using assms \(r\)
by (intro summable_in_conv_radius) simp_all
ultimately show ?thesis by (simp add: sums_iff)
qed
lemma Ln_series': cmod \(z<1 \Longrightarrow\left(\lambda n .-\left((-z)^{\wedge} n\right) /\right.\) of_nat \(\left.n\right)\) sums \(\ln (1+z)\)
by (drule Ln_series) (simp add: power_minus')
lemma \({ }^{\prime} n \_\)series \({ }^{\prime}\) :
assumes abs \((x::\) real \()<1\)
shows \(\quad\left(\lambda n .-\left((-x)^{\wedge} n\right) /\right.\) of_nat \(\left.n\right)\) sums \(\ln (1+x)\)
proof -
from assms have \(\left(\lambda n .-\left(\left(-o f_{-} \text {real } x\right)^{\wedge} n\right) /\right.\) of_nat \(\left.n\right)\) sums \(\ln (1+\) complex_of_real \(x\) )
by (intro Ln_series') simp_all
also have \(\left(\lambda n .-\left(\left(-o f \_r e a l\right) ~ x\right)^{\wedge} n\right) /\) of_nat \(\left.n\right)=\left(\lambda n\right.\). complex_of_real \(\left(-\left((-x)^{\wedge} n\right)\right.\)
/ of_nat n))
by (rule ext) simp
```

 also from assms have ln (1 + complex_of_real x) = of_real (ln (1 + x))
 by (subst Ln_of_real [symmetric]) simp_all
 finally show ?thesis by (subst (asm) sums_of_real_iff)
 qed
lemma Ln_approx_linear:
fixes z :: complex
assumes norm z<1
shows norm (ln (1+z)-z)\leqnorm z^2 / (1-norm z)
proof -
let ?f = \lambdan. (-1) ^Suc n / of_nat n
from assms have (\lambdan. ?f n* *^n) sums ln (1+z) using Ln_series by simp
moreover have (}\lambdan\mathrm{ . (if n=1 then 1 else 0) * *^n) sums z using powser_sums_if [of
1] by simp
ultimately have (\lambdan. (?f n - (if n=1 then 1 else 0)) * *^n) sums (ln (1 +
z) - z)
by (subst left_diff_distrib, intro sums_diff) simp_all
from sums_split_initial_segment[OF this, of Suc 1]
have (\lambdai. (-(z^2)) * inverse (2 + of_nat i)* (-z)^i) sums (Ln (1+z) - z)
by (simp add: power2_eq_square mult_ac power_minus[of z] divide_inverse)
hence (Ln (1+z)-z)=(\sumi.(-(z^2))* inverse (of_nat (i+2))* (-z)^i)
by (simp add: sums_iff)
also have A: summable (\lambdan. norm z^2 * (inverse (real_of_nat (Suc (Suc n)))*
cmod z ^ n))
by (rule summable_mult, rule summable_comparison_test_ev[OF _ summable_geometric[of
norm z]])
(auto simp: assms field_simps intro!: always_eventually)
hence norm (\sumi. (-(z^\mathscr{O}))* inverse (of_nat (i+\mathcal{Z}))*(-z)^i)
\leq (\sumi.norm (-(z^2) * inverse (of_nat (i+\mathcal{Z}))*(-z)^i))
by (intro summable_norm)
(auto simp: norm_power norm_inverse norm_mult mult_ac simp del: of_nat_add
of_nat_Suc)
also have norm ((-z)^2 * (-z)^i)* inverse (of_nat (i+2)) \leqnorm ((-z)^2

* (-z)^i) * 1 for i
by (intro mult_left_mono) (simp_all add: field_split_simps)
hence (\sumi.norm (-(z^2)* inverse (of_nat (i+2))* (-z)^i))
\leq (\sumi.norm (-(z^2)* (-z)^i))
using A assms
unfolding norm_power norm_inverse norm_divide norm_mult
apply (intro suminf_le summable_mult summable_geometric)
apply (auto simp: norm_power field_simps simp del: of_nat_add of_nat_Suc)
done
also have ... = norm z`^2 * (\sum i. norm z^i) using assms
by (subst suminf_mult [symmetric]) (auto intro!: summable_geometric simp:
norm_mult norm_power)
also have ((i. norm z^i) = inverse (1 - norm z) using assms
by (subst suminf_geometric) (simp_all add: divide_inverse)
also have norm z^2 * ... = norm z^2 / (1 - norm z) by (simp add: di-
vide_inverse)

```
```

 finally show ?thesis .
 qed

```

\subsection*{6.21.12 Quadrant-type results for Ln}
```

lemma cos_lt_zero_pi: pi/2 $<x \Longrightarrow x<3 * p i / 2 \Longrightarrow \cos x<0$
using cos_minus_pi cos_gt_zero_pi [of $x-p i$]
by simp
lemma Re_Ln_pos_lt:
assumes $z \neq 0$
shows $|\operatorname{Im}(\operatorname{Ln} z)|<p i / 2 \longleftrightarrow 0<\operatorname{Re}(z)$
proof -
\{ fix w
assume $w=L n z$
then have $w: \operatorname{Im} w \leq p i-p i<\operatorname{Im} w$
using $I m_{-} L n_{-} l e _p i[o f z]$ mpi_less_Im_Ln $[o f z]$ assms
by auto
have $|\operatorname{Im} w|<p i / 2 \longleftrightarrow 0<\operatorname{Re}(\exp w)$
proof
assume $|\operatorname{Im} w|<p i / 2$ then show $0<\operatorname{Re}(\exp w)$
by (auto simp: Re_exp cos_gt_zero_pi split: if_split_asm)
next
assume $R: 0<\operatorname{Re}(\exp w)$ then
have $|\operatorname{Im} w| \neq p i / 2$
by (metis cos_minus cos_pi_half mult_eq_0_iff Re_exp abs_if order_less_irrefl)
then show $|\operatorname{Im} w|<p i / 2$
using cos_lt_zero_pi [of -(Im w)] cos_lt_zero_pi [of (Im w)] wR
by (force simp: Re_exp zero_less_mult_iff abs_if not_less_iff_gr_or_eq)
qed
\}
then show ?thesis using assms
by auto
qed
lemma Re_Ln_pos_le:
assumes $z \neq 0$
shows $|\operatorname{Im}(\operatorname{Ln} z)| \leq p i / 2 \longleftrightarrow 0 \leq \operatorname{Re}(z)$
proof -
\{ fix w
assume $w=L n z$
then have w : $\operatorname{Im} w \leq p i-p i<\operatorname{Im} w$
using Im_Ln_le_pi [of z] mpi_less_Im_Ln [of z] assms
by auto
then have $|\operatorname{Im} w| \leq p i / 2 \longleftrightarrow 0 \leq \operatorname{Re}(\exp w)$
using cos_lt_zero_pi [of - (Im w)] cos_lt_zero_pi [of (Im w)] not_le
by (auto simp: Re_exp zero_le_mult_iff abs_if intro: cos_ge_zero)
\}
then show ?thesis using assms

```
```

 by auto
 qed
lemma $I m _L n _p o s _l t:$
assumes $z \neq 0$
shows $0<\operatorname{Im}(\operatorname{Ln} z) \wedge \operatorname{Im}(\operatorname{Ln} z)<p i \longleftrightarrow 0<\operatorname{Im}(z)$
proof -
$\{$ fix w
assume $w=\operatorname{Ln} z$
then have $w: \operatorname{Im} w \leq p i-p i<\operatorname{Im} w$
using $I m_{-} L n_{-} l e_{-} p i[o f z]$ mpi_less_Im_Ln [of $\left.z\right]$ assms
by auto
then have $0<\operatorname{Im} w \wedge \operatorname{Im} w<p i \longleftrightarrow 0<\operatorname{Im}(\exp w)$
using sin_gt_zero [of - (Im w)] sin_gt_zero [of (Im w)] less_linear
by (fastforce simp add: Im_exp zero_less_mult_iff)
\}
then show ?thesis using assms
by auto
qed

```
lemma \(I m \_L n \_p o s \_l e\)
    assumes \(z \neq 0\)
    shows \(0 \leq \operatorname{Im}(\operatorname{Ln} z) \wedge \operatorname{Im}(\operatorname{Ln} z) \leq p i \longleftrightarrow 0 \leq \operatorname{Im}(z)\)
proof -
    \(\{\) fix \(w\)
        assume \(w=\operatorname{Ln} z\)
        then have \(w: \operatorname{Im} w \leq p i-p i<\operatorname{Im} w\)
            using \(I m_{-} L n_{-} l e_{-} p i[o f z]\) mpi_less_Im_Ln \([o f z]\) assms
            by auto
            then have \(0 \leq \operatorname{Im} w \wedge \operatorname{Im} w \leq p i \longleftrightarrow 0 \leq \operatorname{Im}(\exp w)\)
            using sin_ge_zero [of - (Im w)] sin_ge_zero [of abs(Im w)] sin_zero_pi_iff [of
\(\operatorname{Im} w]\)
            by (force simp: Im_exp zero_le_mult_iff sin_ge_zero) \}
    then show ?thesis using assms
        by auto
qed
lemma Re_Ln_pos_lt_imp: \(0<\operatorname{Re}(z) \Longrightarrow|\operatorname{Im}(\operatorname{Ln} z)|<p i / 2\)
    by (metis Re_Ln_pos_lt less_irrefl zero_complex.simps(1))
lemma Im_Ln_pos_lt_imp: \(0<\operatorname{Im}(z) \Longrightarrow 0<\operatorname{Im}(\operatorname{Ln} z) \wedge \operatorname{Im}(\operatorname{Ln} z)<p i\)
    by (metis Im_Ln_pos_lt not_le order_refl zero_complex.simps(2))

A reference to the set of positive real numbers
lemma Im_Ln_eq_ \(0: z \neq 0 \Longrightarrow(\operatorname{Im}(\operatorname{Ln} z)=0 \longleftrightarrow 0<\operatorname{Re}(z) \wedge \operatorname{Im}(z)=0)\)
by (metis Im_complex_of_real Im_exp Ln_in_Reals Re_Ln_pos_lt Re_Ln_pos_lt_imp
Re_complex_of_real complex_is_Real_iff exp_Ln exp_of_real pi_gt_zero)
lemma \(I m \_L n \_e q-p i: z \neq 0 \Longrightarrow(\operatorname{Im}(\operatorname{Ln} z)=p i \longleftrightarrow \operatorname{Re}(z)<0 \wedge \operatorname{Im}(z)=0)\)
by (metis Im_Ln_eq_0 Im_Ln_pos_le Im_Ln_pos_lt add.left_neutral complex_eq less_eq_real_def mult_zero_right not_less_iff_gr_or_eq pi_ge_zero pi_neq_zero rcis_zero_arg rcis_zero_mod)

\subsection*{6.21.13 More Properties of Ln}
```

lemma $c n j$ _Ln: assumes $z \notin \mathbb{R}_{\leq 0}$ shows $\operatorname{cnj}(\operatorname{Ln} z)=\operatorname{Ln}(c n j z)$
proof (cases $z=0$)
case False
show ?thesis
proof (rule exp_complex_eqI)
have $|\operatorname{Im}(c n j(\operatorname{Ln} z))-\operatorname{Im}(\operatorname{Ln}(c n j z))| \leq|\operatorname{Im}(c n j(\operatorname{Ln} z))|+\mid \operatorname{Im}(\operatorname{Ln}(c n j$
$z)$)|
by (rule abs_triangle_ineq4)
also have..$<p i+p i$
proof -
have $|\operatorname{Im}(c n j(L n z))|<p i$
by (simp add: False Im_Ln_less_pi abs_if assms minus_less_iff mpi_less_Im_Ln)
moreover have $|\operatorname{Im}(L n(c n j z))| \leq p i$
by (meson abs_le_iff complex_cnj_zero_iff less_eq_real_def minus_less_iff False
Im_Ln_le_pi mpi_less_Im_Ln)
ultimately show?thesis
by simp
qed
finally show $|\operatorname{Im}(c n j(\operatorname{Ln} z))-\operatorname{Im}(\operatorname{Ln}(c n j z))|<2 * p i$
by simp
show $\exp (\operatorname{cnj}(L n z))=\exp (\operatorname{Ln}(\operatorname{cnj} z))$
by (metis False complex_cnj_zero_iff exp_Ln exp_cnj)
qed
qed (use assms in auto)
lemma Ln_inverse: assumes $z \notin \mathbb{R}_{\leq 0}$ shows $L n($ inverse $z)=-(L n z)$
proof (cases $z=0$)
case False
show ?thesis
proof (rule exp_complex_eqI)
have $\mid \operatorname{Im}(\operatorname{Ln}($ inverse $z))-\operatorname{Im}(-\operatorname{Ln} z)|\leq| \operatorname{Im}($ Ln $($ inverse $z))|+| \operatorname{Im}(-$
Ln $z) \mid$
by (rule abs_triangle_ineq4)
also have..$<p i+p i$
proof -
have $\mid \operatorname{Im}($ Ln (inverse $z)) \mid<p i$
by (simp add: False Im_Ln_less_pi abs_if assms minus_less_iff mpi_less_Im_Ln)
moreover have $|\operatorname{Im}(-L n z)| \leq p i$
using False Im_Ln_le_pi mpi_less_Im_Ln by fastforce
ultimately show ?thesis
by simp
qed

```
```

 finally show \(\mid \operatorname{Im}(\operatorname{Ln}(\) inverse \(z))-\operatorname{Im}(-\operatorname{Ln} z) \mid<2 * p i\)
 by \(\operatorname{simp}\)
 show \(\exp (\operatorname{Ln}(\) inverse \(z))=\exp (-L n z)\)
 by (simp add: False exp_minus)
 qed
 qed (use assms in auto)
lemma Ln_minus1 $[$ simp $]: \operatorname{Ln}(-1)=\mathrm{i} * p i$
proof (rule exp_complex_eqI)
show $|\operatorname{Im}(\operatorname{Ln}(-1))-\operatorname{Im}(\mathrm{i} * p i)|<2 * p i$
using $I m_{-} L n_{-} l e_{-} p i[o f-1]$ mpi_less_Im_Ln $[o f-1]$ by auto
qed auto
lemma Ln_ii [simp]: Ln i = i * of_real pi/2
using Ln_exp [of i * (of_real pi/2)]
unfolding exp_Euler
by simp
lemma Ln_minus_ii $[s i m p]: \operatorname{Ln}(-\mathrm{i})=-(\mathrm{i} * p i / 2)$
proof -
have $\operatorname{Ln}(-\mathrm{i})=\operatorname{Ln}$ (inverse i) by simp
also have $\ldots=-\binom{L n}{$ i }\quad using $L n$ _inverse by blast
also have $\ldots=-(\mathrm{i} * p i / 2) \quad$ by simp
finally show ?thesis .
qed
lemma Ln_times:
assumes $w \neq 0 z \neq 0$
shows $\operatorname{Ln}(w * z)=$
(if $\operatorname{Im}(\operatorname{Ln} w+L n z) \leq-p i$ then $(\operatorname{Ln}(w)+\operatorname{Ln}(z))+\mathrm{i} *$ of_real $(2 * p i)$
else if $\operatorname{Im}(\operatorname{Ln} w+\operatorname{Ln} z)>$ pi then $(\operatorname{Ln}(w)+\operatorname{Ln}(z))-\mathrm{i} *$ of_real(2*pi)
else $\operatorname{Ln}(w)+\operatorname{Ln}(z))$
using pi_ge_zero $I m_{-} L n_{-} l e_{-} p i[o f ~ w] ~ I m_{-} L n_{-} l e _p i[o f z]$
using assms mpi_less_Im_Ln [of w] mpi_less_Im_Ln [of $z]$
by (auto simp: exp_add exp_diff sin_double cos_double exp_Euler intro!: Ln_unique)
corollary Ln_times_simple:
$\llbracket w \neq 0 ; z \neq 0 ;-p i<\operatorname{Im}(\operatorname{Ln} w)+\operatorname{Im}(\operatorname{Ln} z) ; \operatorname{Im}(\operatorname{Ln} w)+\operatorname{Im}(\operatorname{Ln} z) \leq p i \rrbracket$
$\Longrightarrow \operatorname{Ln}(w * z)=\operatorname{Ln}(w)+\operatorname{Ln}(z)$
by (simp add: Ln_times)
corollary Ln_times_of_real:
$\llbracket r>0 ; z \neq 0 \rrbracket \Longrightarrow L n($ of_real $r * z)=\ln r+\operatorname{Ln}(z)$
using mpi_less_Im_Ln Im_Ln_le_pi
by (force simp: Ln_times)
corollary Ln_times_Reals:
$\llbracket r \in$ Reals $;$ Re $r>0 ; z \neq 0 \rrbracket \Longrightarrow \operatorname{Ln}(r * z)=\ln (\operatorname{Re} r)+\operatorname{Ln}(z)$
using Ln_Reals_eq Ln_times_of_real by fastforce

```
corollary Ln_divide_of_real:
\(\llbracket r>0 ; z \neq 0 \rrbracket \Longrightarrow \operatorname{Ln}(z /\) of_real \(r)=\operatorname{Ln}(z)-\ln r\)
using Ln_times_of_real [of inverse \(r z]\)
by (simp add: ln_inverse Ln_of_real mult.commute divide_inverse of_real_inverse [symmetric]
del: of_real_inverse)
corollary Ln_prod:
fixes \(f::{ }^{\prime} a \Rightarrow\) complex
assumes finite \(A \bigwedge x . x \in A \Longrightarrow f x \neq 0\)
shows \(\exists n . \operatorname{Ln}(\operatorname{prod} f A)=\left(\sum x \in A . \operatorname{Ln}(f x)+\left(o f \_i n t(n x) *(2 * p i)\right) * \mathrm{i}\right)\)
using assms
proof (induction A)
case (insert \(x A\) )
then obtain \(n\) where \(n: L n(p r o d f A)=\left(\sum x \in A\right.\). Ln \((f x)+o f\) _real (of_int \((n x) *(2 * p i)) *\) i)
by auto
define \(D\) where \(D \equiv \operatorname{Im}(\operatorname{Ln}(f x))+\operatorname{Im}(\operatorname{Ln}(\operatorname{prod} f A))\)
define \(q::\) int where \(q \equiv(\) if \(D \leq-p i\) then 1 else if \(D>\) pi then -1 else 0\()\)
have prod f \(A \neq 0 f x \neq 0\)
by (auto simp: insert.hyps insert.prems)
with insert.hyps pi_ge_zero show ?case
by (rule_tac \(x=n(x:=q)\) in exI) (force simp: Ln_times \(q_{-}\)def \(D_{-} d e f\) intro!:
sum.cong)
qed auto
lemma Ln_minus:
assumes \(z \neq 0\)
shows \(\operatorname{Ln}(-z)=(\) if \(\operatorname{Im}(z) \leq 0 \wedge \neg(\operatorname{Re}(z)<0 \wedge \operatorname{Im}(z)=0)\)

> then \(\operatorname{Ln}(z)+\mathrm{i} * p i\)
> else \(\operatorname{Ln}(z)-\mathrm{i} * p i)(\mathrm{is}=\) ?rhs \()\)
 Im_Ln_eq_pi [of z] Im_Ln_pos_lt [of z]
by (fastforce simp: exp_add exp_diff exp_Euler intro!: Ln_unique)
lemma Ln_inverse_if:
assumes \(z \neq 0\)
shows Ln (inverse \(z)=\left(\right.\) if \(z \in \mathbb{R}_{\leq 0}\) then \(-(\) Ln \(z)+\mathrm{i} * 2 *\) complex_of_real pi else - \((\operatorname{Ln} z)\) )
proof (cases \(z \in \mathbb{R}_{\leq 0}\) )
case False then show ?thesis
by (simp add: Ln_inverse)

\section*{next}
case True
then have \(z: \operatorname{Im} z=0\) Re \(z<0-z \notin \mathbb{R}_{\leq 0}\)
using assms complex_eq_iff complex_nonpos_Reals_iff by auto
have \(\operatorname{Ln}(\) inverse \(z)=\operatorname{Ln}(-(\) inverse \((-z)))\)
by \(\operatorname{simp}\)
```

 also have ... = Ln (inverse (-z)) + i * complex_of_real pi
 using assms z by (simp add: Ln_minus divide_less_0_iff)
 also have ... = - Ln (-z)+ i * complex_of_real pi
 using z Ln_inverse by presburger
 also have \ldots. = - (Lnz) + i * 2 * complex_of_real pi
 using Ln_minus assms z by auto
 finally show ?thesis by (simp add: True)
 qed
lemma Ln_times_ii:
assumes z}\not=
shows}\operatorname{Ln}(\textrm{i}*z)=(\mathrm{ if }0\leq\operatorname{Re}(z)|\operatorname{Im}(z)<
then Ln(z) + i * of_real pi/2
else Ln(z) - i * of_real(3 * pi/2))
using Im_Ln_le_pi [of z] mpi_less_Im_Ln [of z] assms
Im_Ln_eq_pi [of z] Im_Ln_pos_lt [of z] Re_Ln_pos_le [of z]
by (simp add: Ln_times) auto
lemma Ln_of_nat [simp]: 0 < n\Longrightarrow Ln (of_nat n) = of_real (ln (of_nat n))
by (subst of_real_of_nat_eq[symmetric], subst Ln_of_real[symmetric]) simp_all
lemma Ln_of_nat_over_of_nat:
assumes m>0n>0
shows Ln (of_nat m / of_nat n) = of_real (ln (of_nat m) - ln (of_nat n))
proof -
have of_nat m / of_nat n = (of_real (of_nat m / of_nat n) :: complex) by simp
also from assms have Ln ... = of_real (ln (of_nat m / of_nat n))
by (simp add: Ln_of_real[symmetric])
also from assms have ... = of_real (ln (of_nat m) - ln (of_nat n))
by (simp add: ln_div)
finally show ?thesis .
qed

```

\subsection*{6.21.14 The Argument of a Complex Number}

Finally: it's is defined for the same interval as the complex logarithm: \((-\pi, \pi]\).
definition \(\operatorname{Arg}::\) complex \(\Rightarrow\) real where \(\operatorname{Arg} z \equiv(\) if \(z=0\) then 0 else \(\operatorname{Im}(\operatorname{Ln} z))\)
lemma Arg_of_real: Arg (of_real \(r)=(\) if \(r<0\) then pi else 0\()\)
by (simp add: Im_Ln_eq_pi Arg_def)
lemma mpi_less_Arg: \(-p i<\operatorname{Arg} z\)
and Arg_le_pi: Arg \(z \leq p i\)
by (auto simp: Arg_def mpi_less_Im_Ln Im_Ln_le_pi)
```

lemma
assumes z}\not=
shows Arg_eq:z=of_real(norm z)*exp(i * Arg z)
using assms exp_Ln exp_eq_polar

```
```

 by (auto simp: Arg_def)
 lemma is_Arg_Arg:z\not=0\Longrightarrowis_Argz(Arg z)
by (simp add: Arg_eq is_Arg_def)
lemma Argument_exists:
assumes z\not=0 and R:R={r-pi<..r+pi}
obtains s where is_Arg zs s\inR
proof -
let ?rp = r - Arg z+pi
define k where k\equiv\lfloor?rp / (2*pi)\rfloor
have (Argz+of_int k* (2 * pi)) \inR
using floor_divide_lower [of 2*pi ?rp] floor_divide_upper [of 2*pi ?rp]
by (auto simp: k_def algebra_simps R)
then show ?thesis
using Arg_eq «z \not= 0` is_Arg_2pi_iff is_Arg_def that by blast
qed
lemma Argument_exists_unique:
assumes z = 0 and R:R={r-pi<..r+pi}
obtains s where is_Arg zs s\inR \t. \llbracketis_Argzt; t\inR\rrbracket\Longrightarrows=t
proof -
obtain s where s: is_Arg zs s\inR
using Argument_exists [OF assms] .
moreover have \tt. \llbracketis_Arg zt; t\inR\rrbracket\Longrightarrows=t
using assms s by (auto simp: is_Arg_eqI)
ultimately show thesis
using that by blast
qed
lemma Argument_Ex1:
assumes z =0 and R:R={r-pi<..r+pi}
shows \exists!s. is_Arg z s ^s\inR
using Argument_exists_unique [OF assms] by metis
lemma Arg_divide:
assumes w\not=0z\not=0
shows is_Arg (z/w)(Argz - Arg w)
using Arg_eq [of z] Arg_eq [of w] Arg_eq [of norm(z / w)] assms
by (auto simp: is_Arg_def norm_divide field_simps exp_diff Arg_of_real)
lemma Arg_unique_lemma:
assumes z: is_Arg zt
and z': is_Arg z t'
and t: - pi<t t\leqpi
and t': - pi< t' t'\leqpi
and nz:z\not=0
shows t' = t
using Arg2pi_unique_lemma [of - (inverse z)]

```
```

proof -
have $p i-t^{\prime}=p i-t$
proof (rule Arg2pi_unique_lemma [of - (inverse z)])
have $-($ inverse $z)=-($ inverse $($ of_real $($ norm $z) * \exp (\mathrm{i} * t)))$
by (metis is_Arg_def z)
also have $\ldots=(\operatorname{cmod}(-$ inverse $z)) * \exp (\mathrm{i} *(p i-t))$
by (auto simp: field_simps exp_diff norm_divide)
finally show is_Arg (- inverse z) ($p i-t$)
unfolding is_Arg_def .
have $-($ inverse $z)=-\left(\right.$ inverse $\left(\right.$ of_real $($ norm $\left.\left.z) * \exp \left(\mathrm{i} * t^{\prime}\right)\right)\right)$
by (metis is_Arg_def z^{\prime})
also have $\ldots=(\operatorname{cmod}(-$ inverse $z)) * \exp \left(\mathrm{i} *\left(p i-t^{\prime}\right)\right)$
by (auto simp: field_simps exp_diff norm_divide)
finally show is_Arg (- inverse z) $\left(p i-t^{\prime}\right)$
unfolding is_Arg_def .
qed (use assms in auto)
then show ?thesis
by simp
qed

```
lemma complex_norm_eq_1_exp_eq: norm \(z=1 \longleftrightarrow \exp (\mathrm{i} *(\operatorname{Arg} z))=z\)
    by (metis Arg_eq exp_not_eq_zero exp_zero mult.left_neutral norm_zero of_real_1
norm_exp_i_times)
lemma Arg_unique: 【of_real \(r * \exp (\mathrm{i} * a)=z ; 0<r ;-p i<a ; a \leq p i \rrbracket \Longrightarrow \operatorname{Arg}\)
\(z=a\)
    by (rule Arg_unique_lemma [unfolded is_Arg_def, OF _ Arg_eq])
        (use mpi_less_Arg Arg_le_pi in 〈auto simp: norm_mult〉)
lemma Arg_minus:
    assumes \(z \neq 0\)
    shows \(\operatorname{Arg}(-z)=(\) if \(\operatorname{Arg} z \leq 0\) then \(\operatorname{Arg} z+\) pi else \(\operatorname{Arg} z-p i)\)
proof -
    have \([\operatorname{simp}]: c m o d z * \cos (\operatorname{Arg} z)=\operatorname{Re} z\)
        using assms Arg_eq [of z] by (metis Re_exp exp_Ln norm_exp_eq_Re Arg_def)
    have \([\operatorname{simp}]: c \bmod z * \sin (\operatorname{Arg} z)=\operatorname{Im} z\)
        using assms Arg_eq [of z] by (metis Im_exp exp_Ln norm_exp_eq_Re Arg_def)
    show ?thesis
        apply (rule Arg_unique [of norm z, OF complex_eqI])
        using mpi_less_Arg [of \(z]\) Arg_le_pi \([o f z]\) assms
        by (auto simp: Re_exp Im_exp)
qed
lemma Arg_times_of_real [simp]:
    assumes \(0<r\) shows \(\operatorname{Arg}(\) of_real \(r * z)=\operatorname{Arg} z\)
proof (cases \(z=0\) )
    case True
    then show?thesis
        by (simp add: Arg_def)
```

next
case False
with Arg_eq assms show ?thesis
by (auto simp:mpi_less_Arg Arg_le_pi intro!: Arg_unique [of r * norm z])
qed
lemma Arg_times_of_real2 [simp]: 0<r\LongrightarrowArg (z*of_real r) = Arg z
by (metis Arg_times_of_real mult.commute)
lemma Arg_divide_of_real [simp]: 0<r\Longrightarrow Arg (z / of_real r) = Arg z
by (metis Arg_times_of_real2 less_numeral_extra(3) nonzero_eq_divide_eq of_real_eq_0_iff)
lemma Arg_less_0: 0\leq Arg z\longleftrightarrow0\leqImz
using Im_Ln_le_pi Im_Ln_pos_le
by (simp add: Arg_def)
lemma Arg_eq_pi:Arg z=pi\longleftrightarrow Rez<0^Imz=0
by (auto simp: Arg_def Im_Ln_eq_pi)
lemma Arg_lt_pi:0<Arg z^Argz<pi\longleftrightarrow0< Imz
using Arg_less_0 [of z] Im_Ln_pos_lt
by (auto simp: order.order_iff_strict Arg_def)
lemma Arg_eq_0: Arg z=0\longleftrightarrowz\in\mathbb{R}\wedge0\leqRez
using complex_is_Real_iff
by (simp add: Arg_def Im_Ln_eq_0) (metis less_eq_real_def of_real_Re of_real_def
scale_zero_left)
corollary Arg_ne_0: assumes z}\not\in\mp@subsup{\mathbb{R}}{\geq0}{}\mathrm{ shows }\operatorname{Arg}z\not=
using assms by (auto simp: nonneg_Reals_def Arg_eq_0)
lemma Arg_eq_pi_iff:Arg z=pi\longleftrightarrowz
proof (cases z=0)
case False
then show ?thesis
using Arg_eq_0 [of -z] Arg_eq_pi complex_is_Real_iff by blast
qed (simp add: Arg_def)
lemma Arg_eq_0_pi: Arg z=0\vee Arg z=pi\longleftrightarrowz (a|\mathbb{R}
using Arg_eq_pi_iff Arg_eq_0 by force
lemma Arg_real: z }\in\mathbb{R}\Longrightarrow\mathrm{ Arg z=(if 0 { Re z then 0 else pi)
using Arg_eq_0 Arg_eq_0_pi by auto
lemma Arg_inverse: Arg(inverse z)}=(\mathrm{ if }z\in\mathbb{R}\mathrm{ then Arg z else - Arg z)
proof (cases z }\in\mathbb{R}\mathrm{)
case True
then show ?thesis
by simp (metis Arg2pi_inverse Arg2pi_real Arg_real Reals_inverse)

```
```

next
case False
then have z: Arg z<piz\not=0
using Arg_eq_0_pi Arg_le_pi by (auto simp: less_eq_real_def)
show ?thesis
apply (rule Arg_unique [of inverse (norm z)])
using False z mpi_less_Arg [of z] Arg_eq [of z]
by (auto simp: exp_minus field_simps)
qed
lemma Arg_eq_iff:
assumes w\not=0z\not=0
shows Arg w=Arg z\longleftrightarrow(\existsx.0<x\wedgew=of_real x*z) (is ?lhs=?rhs)
proof
assume ?lhs
then have w = complex_of_real (cmod w/ cmod z)*z
by (metis Arg_eq assms divide_divide_eq_right eq_divide_eq exp_not_eq_zero of_real_divide)
then show ?rhs
using assms divide_pos_pos zero_less_norm_iff by blast
qed auto
lemma Arg_inverse_eq_0: Arg(inverse z)=0\longleftrightarrow Argz=0
by (metis Arg_eq_0 Arg_inverse inverse_inverse_eq)
lemma Arg_cnj_eq_inverse: z\not=0\Longrightarrow Arg (cnjz)=Arg (inverse z)
using Arg2pi_cnj_eq_inverse Arg2pi_eq_iff Arg_eq_iff by auto
lemma Arg_cnj: Arg(cnjz)=(if z\in\mathbb{R}\mathrm{ then Arg z else - Arg z)}
by (metis Arg_cnj_eq_inverse Arg_inverse Reals_0 complex_cnj_zero)
lemma Arg_exp: -pi< Im z\Longrightarrow Im z\leqpi\Longrightarrow Arg(exp z)=\operatorname{Im}z
by (rule Arg_unique [of exp(Re z)]) (auto simp: exp_eq_polar)
lemma Ln_Arg:z\not=0\LongrightarrowLn(z)=\operatorname{ln}(norm z)+i * Arg(z)
by (metis Arg_def Re_Ln complex_eq)
lemma continuous_at_Arg:
assumes z}\not\in\mp@subsup{\mathbb{R}}{\leq0}{
shows continuous (at z) Arg
proof -
have [simp]: (\lambdaz. Im (Lnz)) -z->\operatorname{Arg z}
using Arg_def assms continuous_at by fastforce
show ?thesis
unfolding continuous_at
proof (rule Lim_transform_within_open)
show }\w.\llbracketw\in-\mp@subsup{\mathbb{R}}{\leq0}{};w\not=z\rrbracket\Longrightarrow\operatorname{Im}(\operatorname{Ln}w)=\operatorname{Arg}
by (metis Arg_def Compl_iff nonpos_Reals_zero_I)
qed (use assms in auto)
qed

```
lemma continuous_within_Arg: \(z \notin \mathbb{R}_{\leq 0} \Longrightarrow\) continuous (at \(z\) within \(S\) ) Arg using continuous_at_Arg continuous_at_imp_continuous_within by blast

\subsection*{6.21.15 The Unwinding Number and the Ln product Formula}

Note that in this special case the unwinding number is \(-1,0\) or 1 . But it's always an integer.
```

lemma is_Arg_exp_Im: is_Arg (expz) (Im z)
using exp_eq_polar is_Arg_def norm_exp_eq_Re by auto
lemma is_Arg_exp_diff_2pi:
assumes is_Arg (expz) ϑ
shows $\exists k$. Im $z-o f _i n t k *(2 * p i)=\vartheta$
proof (intro exI is_Arg_eqI)
let $? k=\lfloor(\operatorname{Im} z-\vartheta) /(2 * p i)\rfloor$
show is_Arg $^{(e x p z)}$ (Im z - real_of_int ? $\left.k *(2 * p i)\right)$
by (metis diff_add_cancel is_Arg_2pi_iff is_Arg_exp_Im)
show $\left|\operatorname{Im} z-r e a l _o f _i n t ? k *(2 * p i)-\vartheta\right|<2 * p i$
using floor_divide_upper [of 2*pi Im z - ${ }^{2}$] floor_divide_lower [of 2*pi Im z-
v]
by (auto simp: algebra_simps abs_if)
qed (auto simp: is_Arg_exp_Im assms)
lemma Arg_exp_diff_2pi: $\exists k$. Im $z-o f_{-} i n t k *(2 * p i)=\operatorname{Arg}(\exp z)$
using is_Arg_exp_diff_2pi [OF is_Arg_Arg] by auto
lemma unwinding_in_Ints: $(z-\operatorname{Ln}(\exp z)) /($ of_real $(2 * p i) * i) \in \mathbb{Z}$
using Arg_exp_diff_2pi [of z]
by (force simp: Ints_def image_def field_simps Arg_def intro!: complex_eqI)
definition unwinding :: complex \Rightarrow int where
unwinding $z \equiv$ THE k. of_int $k=(z-\operatorname{Ln}(\exp z)) /\left(o f_{-} r e a l(2 * p i) * \mathrm{i}\right)$
lemma unwinding: of_int (unwinding $z)=(z-\operatorname{Ln}(\exp z)) /($ of_real(2*pi) $*$ i)
using unwinding_in_Ints [of z]
unfolding unwinding_def Ints_def by force
lemma unwinding_2pi: $(2 * p i) * \mathrm{i} * \operatorname{unwinding}(z)=z-\operatorname{Ln}(\exp z)$
by (simp add: unwinding)
lemma Ln_times_unwinding:
$w \neq 0 \Longrightarrow z \neq 0 \Longrightarrow \operatorname{Ln}(w * z)=\operatorname{Ln}(w)+\operatorname{Ln}(z)-(2 * p i) * \mathrm{i} * \operatorname{unwinding}(\operatorname{Ln}$
$w+\operatorname{Ln} z)$
using unwinding_2pi by (simp add: exp_add)

```

\subsection*{6.21.16 Relation between Ln and Arg2pi, and hence continuity of Arg2pi}
```

lemma Arg2pi_Ln:
assumes $0<\operatorname{Arg} 2 p i z$ shows $\operatorname{Arg2pi} z=\operatorname{Im}(\operatorname{Ln}(-z))+p i$
proof (cases $z=0$)
case True
with assms show ?thesis
by simp
next
case False
then have $z /$ of_real $($ norm $z)=\exp (\mathrm{i} *$ of_real $(\operatorname{Arg} 2 p i z))$
using Arg2pi [of z]
by (metis is_Arg_def abs_norm_cancel nonzero_mult_div_cancel_left norm_of_real
zero_less_norm_iff)
then have $-z /$ of_real (norm $z)=\exp (\mathrm{i} *($ of_real $($ Arg2pi $z)-p i))$
using cis_conv_exp cis_pi
by (auto simp: exp_diff algebra_simps)
then have $\ln (-z /$ of_real $($ norm $z))=\ln (\exp (\mathrm{i} *(o f$ _real $($ Arg2pi $z)-p i)))$
by simp
also have $\ldots=\mathrm{i} *($ of_real $(\operatorname{Arg2pi} z)-p i)$
using Arg2pi [of z] assms pi_not_less_zero
by auto
finally have $\operatorname{Arg2pi} z=\operatorname{Im}(\operatorname{Ln}(-z /$ of_real $(\operatorname{cmod} z)))+p i$
by simp
also have $\ldots=\operatorname{Im}(\operatorname{Ln}(-z)-\ln (\operatorname{cmod} z))+p i$
by (metis diff_0_right minus_diff_eq zero_less_norm_iff Ln_divide_of_real False)
also have $\ldots=\operatorname{Im}(\operatorname{Ln}(-z))+p i$
by simp
finally show ?thesis .
qed
lemma continuous_at_Arg2pi:
assumes $z \notin \mathbb{R}_{\geq 0}$
shows continuous (at z) Arg2pi
proof -
have $*$: isCont $(\lambda z . \operatorname{Im}(\operatorname{Ln}(-z))+p i) z$
by (rule Complex.isCont_Im isCont_Ln' continuous_intros | simp add: assms
complex_is_Real_iff)+
have $[\operatorname{simp}]: \operatorname{Im} x \neq 0 \Longrightarrow \operatorname{Im}(\operatorname{Ln}(-x))+p i=\operatorname{Arg} 2 p i x$ for x
using Arg2pi_Ln by (simp add: Arg2pi_gt_0 complex_nonneg_Reals_iff)
consider Re $z<0 \mid \operatorname{Im} z \neq 0$ using assms
using complex_nonneg_Reals_iff not_le by blast
then have $[\operatorname{simp}]:(\lambda z . \operatorname{Im}(\operatorname{Ln}(-z))+p i)-z \rightarrow \operatorname{Arg} 2 p i z$
using * by (simp add: Arg2pi_Ln Arg2pi_gt_0 assms continuous_within)
show ?thesis
unfolding continuous_at
proof (rule Lim_transform_within_open)
show $\bigwedge x . \llbracket x \in-\mathbb{R}_{\geq 0} ; x \neq z \rrbracket \Longrightarrow \operatorname{Im}(\operatorname{Ln}(-x))+p i=\operatorname{Arg} 2 p i x$
by (auto simp add: Arg2pi_Ln [OF Arg2pi_gt_0] complex_nonneg_Reals_iff)

```
```

qed (use assms in auto)
qed

```

Relation between Arg2pi and arctangent in upper halfplane
lemma Arg2pi_arctan_upperhalf:
assumes \(0<\operatorname{Im} z\)
        shows \(\operatorname{Arg} 2 p i z=p i / 2-\arctan (\operatorname{Re} z / \operatorname{Im} z)\)
proof (cases \(z=0\) )
    case False
    show ?thesis
    proof (rule Arg2pi_unique [of norm z])
        show \((\operatorname{cmod} z) * \exp (\mathrm{i} *(p i / 2-\arctan (\operatorname{Re} z / \operatorname{Im} z)))=z\)
            apply (rule complex_eqI)
            using assms norm_complex_def [of z, symmetric]
            unfolding exp_Euler cos_diff sin_diff sin_of_real cos_of_real
            by (simp_all add: field_simps real_sqrt_divide sin_arctan cos_arctan)
    qed (use False arctan [of Re \(z / \operatorname{Im} z]\) in auto)
qed (use assms in auto)
lemma Arg2pi_eq_Im_Ln:
    assumes \(0 \leq \operatorname{Im} z 0<\operatorname{Re} z\)
        shows Arg2pi \(z=\operatorname{Im}(\operatorname{Ln} z)\)
proof (cases Im \(z=0\) )
    case True then show ?thesis
        using Arg2pi_eq_0 Ln_in_Reals assms(2) complex_is_Real_iff by auto
next
    case False
    then have \(*: \operatorname{Arg2piz}>0\)
        using Arg2pi_gt_0 complex_is_Real_iff by blast
    then have \(z \neq 0\)
        by auto
    with \(*\) assms False show ?thesis
        by (subst Arg2pi_Ln) (auto simp: Ln_minus)
    qed
    lemma continuous_within_upperhalf_Arg2pi:
    assumes \(z \neq 0\)
        shows continuous (at \(z\) within \(\{z .0 \leq \operatorname{Im} z\}\) ) Arg2pi
proof (cases \(z \in \mathbb{R}_{\geq 0}\) )
    case False then show ?thesis
        using continuous_at_Arg2pi continuous_at_imp_continuous_within by auto
next
    case True
    then have \(z: z \in \mathbb{R} 0<R e z\)
        using assms by (auto simp: complex_nonneg_Reals_iff complex_is_Real_iff com-
plex_neq_0)
    then have [simp]: Arg2pi \(z=0 \operatorname{Im}(\operatorname{Ln} z)=0\)
        by (auto simp: Arg2pi_eq_0 Im_Ln_eq_0 assms complex_is_Real_iff)
    show ?thesis
```

 proof (clarsimp simp add: continuous_within Lim_within dist_norm)
 fix \(e\) ::real
 assume \(0<e\)
 moreover have continuous (at z) \((\lambda x\). Im \((\operatorname{Ln} x))\)
 using \(z\) by (simp add: continuous_at_Ln complex_nonpos_Reals_iff)
 ultimately
 obtain \(d\) where \(d: d>0 \bigwedge x . x \neq z \Longrightarrow \operatorname{cmod}(x-z)<d \Longrightarrow|\operatorname{Im}(\operatorname{Ln} x)|\)
 $<e$
by (auto simp: continuous_within Lim_within dist_norm)
$\{$ fix x
assume $\operatorname{cmod}(x-z)<\operatorname{Re} z / 2$
then have $|\operatorname{Re} x-\operatorname{Re} z|<\operatorname{Re} z / 2$
by (metis le_less_trans abs_Re_le_cmod minus_complex.simps(1))
then have $0<R e x$
using z by linarith
\}
then show $\exists d>0 . \forall x .0 \leq \operatorname{Im} x \longrightarrow x \neq z \wedge \operatorname{cmod}(x-z)<d \longrightarrow \mid \operatorname{Arg} 2 p i$
$x \mid<e$
apply (rule_tac $x=\min d(R e z / 2)$ in exI)
using $z d$ by (auto simp: Arg2pi_eq_Im_Ln)
qed
qed
lemma continuous_on_upperhalf_Arg2pi: continuous_on $\left(\begin{cases}z .0 \leq \operatorname{Im} z\}-\{0\}) ~\end{cases}\right.$
Arg2pi
unfolding continuous_on_eq_continuous_within
by (metis Diffe Diff_subset continuous_within_subset continuous_within_upperhalf_Arg2pi
insertCI)
lemma open_Arg2pi2pi_less_Int:
assumes $0 \leq s t \leq 2 * p i$
shows open $(\{y . s<\operatorname{Arg2pi} y\} \cap\{y$. Arg2pi $y<t\})$
proof -
have 1: continuous_on (UNIV $-\mathbb{R}_{\geq 0}$) Arg2pi
using continuous_at_Arg2pi continuous_at_imp_continuous_within
by (auto simp: continuous_on_eq_continuous_within)
have 2: open (UNIV $-\mathbb{R}_{\geq 0}::$ complex set) by (simp add: open_Diff)
have open $(\{z . s<z\} \cap\{z . z<t\})$
using open_lessThan [of t] open_greaterThan [of s]
by (metis greaterThan_def lessThan_def open_Int)
moreover have $\{y . s<$ Arg2pi $y\} \cap\{y$. Arg2pi $y<t\} \subseteq-\mathbb{R}_{\geq 0}$
using assms by (auto simp: Arg2pi_real complex_nonneg_Reals_iff complex_is_Real_iff)
ultimately show ?thesis
using continuous_imp_open_vimage [OF 1 2, of $\{z . \operatorname{Re} z>s\} \cap\{z . \operatorname{Re} z<$
$t\}]$
by auto
qed
lemma open_Arg2pi2pi_gt: open $\{z . t<\operatorname{Arg2piz}\}$

```
```

proof (cases $t<0$)
case True then have $\{z . t<\operatorname{Arg2pi} z\}=U N I V$
using Arg2pi_ge_0 less_le_trans by auto
then show? ?thesis
by simp
next
case False then show ?thesis
using open_Arg2pi2pi_less_Int [of $t 2 * p i$] Arg2pi_lt_2pi
by auto
qed
lemma closed_Arg2pi2pi_le: closed $\{z$. Arg2pi $z \leq t\}$
using open_Arg2pi2pi_gt [of t]
by (simp add: closed_def Set.Collect_neg_eq [symmetric] not_le)

```

\subsection*{6.21.17 Complex Powers}
lemma powr_to_1 [simp]: z powr \(1=(z::\) complex \()\)
by (simp add: powr_def)
lemma powr_nat:
fixes \(n:: n\) nat and \(z::\) complex shows \(z\) powr \(n=\left(\right.\) if \(z=0\) then 0 else \(\left.z^{\wedge} n\right)\)
by (simp add: exp_of_nat_mult powr_def)
lemma norm_powr_real: \(w \in \mathbb{R} \Longrightarrow 0<\operatorname{Re} w \Longrightarrow \operatorname{norm}(w \operatorname{powr} z)=\exp (\operatorname{Re} z\)
* \(\ln (R e w))\)
using \(L n_{-}\)Reals_eq norm_exp_eq_Re by (auto simp: Im_Ln_eq_0 powr_def norm_complex_def)
lemma powr_complexpow [simp]:
fixes \(x\) ::complex shows \(x \neq 0 \Longrightarrow x\) powr (of_nat \(n\) ) \(=x^{\wedge} n\)
by (induct \(n\) ) (auto simp: ac_simps powr_add)
lemma powr_complexnumeral [simp]:
fixes \(x\) ::complex shows \(x \neq 0 \Longrightarrow x\) powr (numeral \(n)=x^{\wedge}(\) numeral \(n)\)
by (metis of_nat_numeral powr_complexpow)
lemma cnj_powr:
assumes \(\operatorname{Im} a=0 \Longrightarrow \operatorname{Re} a \geq 0\)
shows \(\quad\) cnj \((\) a powr \(b)=c n j\) a powr cnj \(b\)
proof (cases \(a=0\) )
case False
with assms have \(a \notin \mathbb{R}_{\leq 0}\) by (auto simp: complex_eq_iff complex_nonpos_Reals_iff)
with False show ?thesis by (simp add: powr_def exp_cnj cnj_Ln)
qed \(\operatorname{simp}\)
lemma powr_real_real:
assumes \(w \in \mathbb{R} z \in \mathbb{R} 0<\operatorname{Re} w\)
shows \(w\) powr \(z=\exp (\operatorname{Re} z * \ln (\operatorname{Re} w))\)
proof -
```

 have \(w \neq 0\)
 using assms by auto
 with assms show ?thesis
 by (simp add: powr_def Ln_Reals_eq of_real_exp)
 qed
lemma powr_of_real:
fixes x ::real and $y:$:real
shows $0 \leq x \Longrightarrow$ of_real x powr (of_real $y::$ complex $)=$ of_real (x powr y)
by (simp_all add: powr_def exp_eq_polar)
lemma powr_of_int:
fixes $z::$ complex and $n::$ int
assumes $z \neq(0::$ complex $)$
shows z powr of_int $n=\left(\right.$ if $n \geq 0$ then z^{\wedge} nat n else inverse $\left.\left(z^{\wedge} n a t(-n)\right)\right)$
by (metis assms not_le of_int_of_nat powr_complexpow powr_minus)
lemma powr_Reals_eq: $\llbracket x \in \mathbb{R} ; y \in \mathbb{R} ; \operatorname{Re} x \geq 0 \rrbracket \Longrightarrow x$ powr $y=$ of_real (Re x
powr Re y)
by (metis of_real_Re powr_of_real)
lemma norm_powr_real_mono:
$\llbracket w \in \mathbb{R} ; 1<\operatorname{Re} w \rrbracket$
$\Longrightarrow \operatorname{cmod}(w$ powr $z 1) \leq \operatorname{cmod}(w$ powr $z 2) \longleftrightarrow \operatorname{Re} z 1 \leq \operatorname{Re} z 2$
by (auto simp: powr_def algebra_simps Reals_def Ln_of_real)
lemma powr_times_real:
$\llbracket x \in \mathbb{R} ; y \in \mathbb{R} ; 0 \leq \operatorname{Re} x ; 0 \leq \operatorname{Re} y \rrbracket$
$\Longrightarrow(x * y)$ powr $z=x$ powr $z * y$ powr z
by (auto simp: Reals_def powr_def Ln_times exp_add algebra_simps less_eq_real_def
Ln_of_real)
lemma Re_powr_le: $r \in \mathbb{R}_{\geq 0} \Longrightarrow R e(r$ powr $z) \leq R e r p o w r$ Re z
by (auto simp: powr_def nonneg_Reals_def order_trans [OF complex_Re_le_cmod])

```

\section*{lemma}
```

fixes $w::$ complex
shows Reals_powr $[$ simp $]: \llbracket w \in \mathbb{R}_{\geq 0} ; z \in \mathbb{R} \rrbracket \Longrightarrow w$ powr $z \in \mathbb{R}$
and nonneg_Reals_powr $[$ simp $]: \llbracket w \in \mathbb{R}_{\geq 0} ; z \in \mathbb{R} \rrbracket \Longrightarrow w$ powr $z \in \mathbb{R}_{\geq 0}$
by (auto simp: nonneg_Reals_def Reals_def powr_of_real)
lemma powr_neg_real_complex:
$(-$ of_real $x)$ powr $a=(-1)$ powr $\left(o f_{-} r e a l(\operatorname{sgn} x) * a\right) *$ of_real x powr $(a::$
complex)
proof (cases $x=0$)
assume $x: x \neq 0$
hence $(-x)$ powr $a=\exp (a * \ln (-o f$ _real $x))$ by (simp add: powr_def)
also from x have $\ln (-o f$ _real $x)=L n(o f$ _real $x)+o f _r e a l ~(s g n x) * p i * \mathrm{i}$
by (simp add: Ln_minus Ln_of_real)

```
```

 also from \(x\) have \(\exp (a * \ldots)=\) cis pi powr \((\) of_real \((\operatorname{sgn} x) * a) *\) of_real \(x\)
 powr a
by (simp add: powr_def exp_add algebra_simps Ln_of_real cis_conv_exp)
also note cis_pi
finally show ?thesis by simp
qed simp_all
lemma has_field_derivative_powr:
fixes z :: complex
assumes $z \notin \mathbb{R}_{\leq 0}$
shows $((\lambda z . z$ powr $s)$ has_field_derivative $(s * z \operatorname{powr}(s-1)))($ at $z)$
proof (cases $z=0$)
case False
then have §: $\exp (s * L n z) *$ inverse $z=\exp ((s-1) * L n z)$
by (simp add: divide_complex_def exp_diff left_diff_distrib')
show ?thesis
unfolding powr_def
proof (rule has_field_derivative_transform_within)
show $((\lambda z . \exp (s * L n z))$ has_field_derivative $s *($ if $z=0$ then 0 else $\exp ((s$
$-1) * \operatorname{Ln} z))$)
(at z)
by (intro derivative_eq_intros | simp add: assms False §)+
qed (use False in auto)
qed (use assms in auto)
declare has_field_derivative_powr[THEN DERIV_chain2, derivative_intros]
lemma has_field_derivative_powr_of_int:
fixes z :: complex
assumes gderiv:(g has_field_derivative $g d$) (at z within S) and $g z \neq 0$
shows ($(\lambda z . g$ z powr of_int $n)$ has_field_derivative $(n * g z$ powr (of_int $n-1)$

* gd)) (at z within S)
proof -
define $d d$ where $d d=$ of_int $n * g z$ powr (of_int $(n-1)) * g d$
obtain e where $e>0$ and e_{-}dist: $\forall y \in S$. dist $z y<e \longrightarrow g y \neq 0$
using DERIV_continuous[OF gderiv,THEN continuous_within_avoid] $\langle g z \neq 0\rangle$
by auto
have ?thesis when $n \geq 0$
proof -
define $d d^{\prime}$ where $d d^{\prime}=$ of_int $n * g z^{\wedge}($ nat $n-1) * g d$
have $d d=d d^{\prime}$
proof (cases $n=0$)
case False
then have $n-1 \geq 0$ using $\langle n \geq 0\rangle$ by auto
then have $g z$ powr (of_int $(n-1))=g z^{\wedge}($ nat $n-1)$
using powr_of_int[OF $\langle g z \neq 0\rangle, o f n-1]$ by (simp add: nat_diff_distrib')
then show ?thesis unfolding $d d_{-} d e f d d^{\prime}{ }_{-} d e f$ by simp
qed (simp add:dd_def $d d^{\prime}{ }_{-} d e f$)
then have ($(\lambda z . g$ z powr of_int $n)$ has_field_derivative dd) (at z within S)

```
```

 \longleftrightarrow((\lambdaz.g z powr of_int n) has_field_derivative dd')(at z within S)
 by simp
 also have ... \longleftrightarrow((\lambdaz.gz ^ nat n) has_field_derivative dd') (at z within S)
 proof (rule has_field_derivative_cong_eventually)
 show }\mp@subsup{\forall}{F}{}x\mathrm{ in at z within S.g x powr of_int n = g x ^ nat n
 unfolding eventually_at
 apply (rule exI[where }x=e]\mathrm{)
 using powr_of_int that \langlee>0\rangle e_dist by (simp add: dist_commute)
 qed (use powr_of_int <g z\not=0\rangle that in simp)
 also have ... unfolding dd'_def using gderiv that
 by (auto intro!: derivative_eq_intros)
 finally have ((}\lambdaz.gz powr of_int n) has_field_derivative dd) (at z within S)
 then show ?thesis unfolding dd_def by simp
 qed
 moreover have ?thesis when n<0
 proof -
 define dd' where dd'= of_int n/gz``(nat (1-n)) *gd
 have }dd=d\mp@subsup{d}{}{\prime
 proof -
 have g z powr of_int (}n-1)=\mathrm{ inverse (g z ^ nat (1-n))
 using powr_of_int[OF〈g z\not=0\rangle,of n-1] that by auto
 then show ?thesis
 unfolding dd_def dd'_def by (simp add: divide_inverse)
 qed
 then have ((\lambdaz.g z powr of_int n) has_field_derivative dd) (at z within S)
 \longleftrightarrow((\lambdaz.g z powr of_int n) has_field_derivative dd')(at z within S)
 by simp
 also have }\ldots\longleftrightarrow((\lambdaz. inverse (gz^^nat (-n))) has_field_derivative dd')(a
 z within S)
proof (rule has_field_derivative_cong_eventually)
show }\mp@subsup{\forall}{F}{}x\mathrm{ in at z within S.g x powr of_int n = inverse (g x ^ nat (}-n)\mathrm{)
unfolding eventually_at
apply (rule exI[where }x=e]\mathrm{)
using powr_of_int that \langlee>0\rangle e_dist by (simp add: dist_commute)
qed (use powr_of_int \langleg z\not=0\rangle that in simp)
also have ...
proof -
have nat (-n) + nat (1-n) - Suc 0 = nat (-n) + nat (-n)
by auto
then show ?thesis
unfolding dd'_def using gderiv that < }gz\not=0
by (auto intro!: derivative_eq_intros simp add:field_split_simps power_add[symmetric])
qed
finally have ((\lambdaz.g z powr of_int n) has_field_derivative dd) (at z within S) .
then show ?thesis unfolding dd_def by simp
qed
ultimately show ?thesis by force
qed

```
```

lemma field_differentiable_powr_of_int:
fixes z :: complex
assumes gderiv: g field_differentiable (at z within S) and $g z \neq 0$
shows ($\lambda z . g$ z powr of_int n) field_differentiable (at z within S)
using has_field_derivative_powr_of_int assms(2) field_differentiable_def gderiv by
blast

```
lemma holomorphic_on_powr_of_int [holomorphic_intros]:
    assumes holf: f holomorphic_on \(S\) and \(0: \bigwedge z . z \in S \Longrightarrow f z \neq 0\)
    shows ( \(\lambda z .(f z)\) powr of_int \(n)\) holomorphic_on \(S\)
proof (cases \(n \geq 0\) )
    case True
    then have ?thesis \(\longleftrightarrow\left(\lambda z .(f z)^{\wedge}\right.\) nat \(\left.n\right)\) holomorphic_on \(S\)
    by (metis (no_types, lifting) 0 holomorphic_cong powr_of_int)
    moreover have ( \(\lambda z .(f z)^{\wedge}\) nat \(n\) ) holomorphic_on \(S\)
    using holf by (auto intro: holomorphic_intros)
    ultimately show ?thesis by auto
next
    case False
    then have ?thesis \(\longleftrightarrow\left(\lambda z\right.\). inverse \((f z)^{\wedge}\) nat \(\left.(-n)\right)\) holomorphic_on \(S\)
        by (metis (no_types, lifting) 0 holomorphic_cong power_inverse powr_of_int)
    moreover have ( \(\lambda z\). inverse \((f z)^{\wedge}\) nat \((-n)\) ) holomorphic_on \(S\)
        using assms by (auto intro!:holomorphic_intros)
    ultimately show ?thesis by auto
qed
lemma has_field_derivative_powr_right [derivative_intros]:
    \(w \neq 0 \Longrightarrow((\lambda z . w\) powr \(z)\) has_field_derivative Ln \(w * w\) powr \(z)(\) at \(z)\)
    unfolding powr_def by (intro derivative_eq_intros \(\mid\) simp \()+\)
lemma field_differentiable_powr_right [derivative_intros]:
    fixes w::complex
    shows \(w \neq 0 \Longrightarrow(\lambda z . w\) powr \(z)\) field_differentiable (at \(z\) )
using field_differentiable_def has_field_derivative_powr_right by blast
lemma holomorphic_on_powr_right [holomorphic_intros]:
    assumes \(f\) holomorphic_on s
    shows \((\lambda z\). w powr \((f z))\) holomorphic_on \(s\)
proof (cases \(w=0\) )
    case False
    with assms show ?thesis
        unfolding holomorphic_on_def field_differentiable_def
        by (metis (full_types) DERIV_chain' has_field_derivative_powr_right)
qed \(\operatorname{simp}\)
lemma holomorphic_on_divide_gen [holomorphic_intros]:
assumes \(f: f\) holomorphic_on \(s\) and \(g: g\) holomorphic_on \(s\) and \(0: \bigwedge z z^{\prime} . \llbracket z \in\) \(s ; z^{\prime} \in s \rrbracket \Longrightarrow g z=0 \longleftrightarrow g z^{\prime}=0\)
shows ( \(\lambda z . f z / g z\) ) holomorphic_on \(s\)
```

proof (cases $\exists z \in s . g z=0$)
case True
with 0 have $g z=0$ if $z \in s$ for z
using that by blast
then show? ?thesis
using g holomorphic_transform by auto
next
case False
with 0 have $g z \neq 0$ if $z \in s$ for z
using that by blast
with holomorphic_on_divide show ?thesis
using $f g$ by blast
qed
lemma norm_powr_real_powr:
$w \in \mathbb{R} \Longrightarrow 0 \leq \operatorname{Re} w \Longrightarrow \operatorname{cmod}(w$ powr $z)=$ Re w powr Re z
by (metis dual_order.order_iff_strict norm_powr_real norm_zero of_real_0 of_real_Re
powr_def)
lemma tendsto_powr_complex:
fixes $f g::$ _ \Rightarrow complex
assumes $a: a \notin \mathbb{R}_{\leq 0}$
assumes $f:(f \longrightarrow a) F$ and $g:(g \longrightarrow b) F$
shows $\quad((\lambda z . f z$ powr $g z) \longrightarrow a$ powr $b) F$
proof -
from a have $[\operatorname{simp}]: a \neq 0$ by auto
from $f g a$ have $((\lambda z \cdot \exp (g z * \ln (f z))) \longrightarrow a$ powr b) F (is ?P)
by (auto intro!: tendsto_intros simp: powr_def)
also \{
have eventually $(\lambda z . z \neq 0)(n h d s a)$
by (intro t1_space_nhds) simp_all
with f have eventually $(\lambda z . f z \neq 0) F$ using filterlim_iff by blast
\}
hence ? $P \longleftrightarrow((\lambda z . f z$ powr $g z) \longrightarrow a$ powr $b) F$
by (intro tendsto_cong refl) (simp_all add: powr_def mult_ac)
finally show ?thesis .
qed
lemma tendsto_powr_complex_0:
fixes $f g::{ }^{\prime} a \Rightarrow$ complex
assumes $f:(f \longrightarrow 0) F$ and $g:(g \longrightarrow b) F$ and $b: R e b>0$
shows $\quad((\lambda z . f z$ powr $g z) \longrightarrow 0) F$
proof (rule tendsto_norm_zero_cancel)
define h where
$h=(\lambda z$. if $f z=0$ then 0 else exp $(\operatorname{Re}(g z) * \ln (\operatorname{cmod}(f z))+a b s(\operatorname{Im}(g$
$z)) * p i)$)
\{
fix $z::$ ' a assume $z: f z \neq 0$
define c where $c=a b s(\operatorname{Im}(g z)) * p i$

```
```

 from mpi_less_Im_Ln[OF z] Im_Ln_le_pi[OF z]
 have abs (Im (Ln (fz)))\leqpi by simp
 from mult_left_mono[OF this, of abs (Im (gz))]
 have abs (Im (gz)* Im (ln (fz))) \leqc by (simp add: abs_mult c_def)
 hence -Im (gz)*\operatorname{Im}(\operatorname{ln}(fz))\leqc}\mathrm{ by simp
 hence norm (}fz\mathrm{ powr }gz)\leqhz\mathrm{ by (simp add: powr_def field_simps h_def
 c_def)
}
hence le: norm (f z powr g z) \leqhz for z by (cases f x = 0) (simp_all add:
h_def)

```
    have \(g^{\prime}:(g \longrightarrow b)(\) inf \(F(\) principal \(\{z . f z \neq 0\}))\)
        by (rule tendsto_mono \(\left.\left[O F_{-} g\right]\right)\) simp_all
    have \(((\lambda x . \operatorname{norm}(f x)) \longrightarrow 0)(\) inf \(F(\) principal \(\{z . f z \neq 0\}))\)
        by (subst tendsto_norm_zero_iff, rule tendsto_mono[OF _ f]) simp_all
    moreover \{
        have filterlim \((\lambda x . \operatorname{norm}(f x))(\) principal \(\{0<.\}).(\) principal \(\{z . f z \neq 0\})\)
            by (auto simp: filterlim_def)
        hence filterlim \((\lambda x\). norm \((f x))(\) principal \(\{0<.\}\).
                (inf \(F(\) principal \(\{z . f z \neq 0\}))\)
            by (rule filterlim_mono) simp_all
    \}
    ultimately have norm: filterlim \((\lambda x\). norm \((f x))\) (at_right 0) (inf F (principal
\(\{z . f z \neq 0\})\) )
    by (simp add: filterlim_inf at_within_def)
    have A:LIM \(x \inf F(\) principal \(\{z . f z \neq 0\}) . \operatorname{Re}(g x) *-\ln (\operatorname{cmod}(f x)):>\)
at_top
    by (rule filterlim_tendsto_pos_mult_at_top tendsto_intros \(g^{\prime} b\)
                filterlim_compose[OF filterlim_uminus_at_top_at_bot] filterlim_compose[OF
ln_at_0] norm)+
    have B: LIM \(x\) inf \(F\) (principal \(\{z . f z \neq 0\}\) ).
            \(-|\operatorname{Im}(g x)| * p i+-(\operatorname{Re}(g x) * \ln (\operatorname{cmod}(f x))):>a t \_t o p\)
        by (rule filterlim_tendsto_add_at_top tendsto_intros \(\left.g^{\prime}\right)+(\) insert \(A\), simp_all \()\)
    have \(C:(h \longrightarrow 0) F\) unfolding \(h_{-} d e f\)
        by (intro filterlim_If tendsto_const filterlim_compose[OF exp_at_bot])
            (insert B, auto simp: filterlim_uminus_at_bot algebra_simps)
    show \(((\lambda x\). norm \((f x\) powr \(g x)) \longrightarrow 0) F\)
        by (rule Lim_null_comparison[OF always_eventually \(C\) ]) (insert le, auto)
qed
lemma tendsto_powr_complex \({ }^{\prime}\) [tendsto_intros]:
    fixes \(f g::\) _ \(\Rightarrow\) complex
    assumes \(a \notin \mathbb{R}_{\leq 0} \vee(a=0 \wedge \operatorname{Re} b>0)\) and \((f \longrightarrow a) F(g \longrightarrow b) F\)
    shows \(\quad((\lambda z . f z\) powr \(g z) \longrightarrow a\) powr \(b) F\)
    using assms tendsto_powr_complex tendsto_powr_complex_0 by fastforce
lemma tendsto_neg_powr_complex_of_real:
assumes filterlim \(f\) at_top \(F\) and Re \(s<0\)
```

 shows \(((\lambda x\). complex_of_real \((f x)\) powr \(s) \longrightarrow 0) F\)
 proof -
have $((\lambda x$. norm (complex_of_real $(f x)$ powr $s)) \longrightarrow 0) F$
proof (rule Lim_transform_eventually)
from $\operatorname{assms}(1)$ have eventually $(\lambda x . f x \geq 0) F$
by (auto simp: filterlim_at_top)
thus eventually $(\lambda x . f x$ powr Re $s=$ norm (of_real $(f x)$ powr $s)) F$
by eventually_elim (simp add: norm_powr_real_powr)
from assms show $((\lambda x . f x$ powr Re $s) \longrightarrow 0) F$
by (intro tendsto_neg_powr)
qed
thus ?thesis by (simp add: tendsto_norm_zero_iff)
qed
lemma tendsto_neg_powr_complex_of_nat:
assumes filterlim f at_top F and $\operatorname{Re} s<0$
shows $\quad((\lambda x$. of_nat $(f x)$ powr $s) \longrightarrow 0) F$
proof -
have $((\lambda x$. of_real $($ real $(f x))$ powr $s) \longrightarrow 0) F$ using assms(2)
by (intro filterlim_compose[OF _ tendsto_neg_powr_complex_of_real]
filterlim_compose[OF_assms(1)] filterlim_real_sequentially filterlim_ident)
auto
thus?thesis by simp
qed
lemma continuous_powr_complex:
assumes f (netlimit $F) \notin \mathbb{R}_{\leq 0}$ continuous $F f$ continuous $F g$
shows continuous F (λz.f z powr $g z::$ complex $)$
using assms unfolding continuous_def by (intro tendsto_powr_complex) simp_all
lemma isCont_powr_complex [continuous_intros]:
assumes $f z \notin \mathbb{R}_{\leq 0}$ isCont $f z$ isCont $g z$
shows isCont (λz.f z powr $g z$:: complex) z
using assms unfolding isCont_def by (intro tendsto_powr_complex) simp_all
lemma continuous_on_powr_complex [continuous_intros]:
assumes $A \subseteq\{z \cdot \operatorname{Re}(f z) \geq 0 \vee \operatorname{Im}(f z) \neq 0\}$
assumes $\bigwedge z . z \in A \Longrightarrow f z=0 \Longrightarrow \operatorname{Re}(g z)>0$
assumes continuous_on $A f$ continuous_on $A g$
shows continuous_on $A(\lambda z . f z$ powr $g z)$
unfolding continuous_on_def
proof
fix z assume $z: z \in A$
show $((\lambda z . f z$ powr $g z) \longrightarrow f z$ powr $g z)($ at z within $A)$
proof (cases fz=0)
case False
from $\operatorname{assms}(1,2) z$ have $\operatorname{Re}(f z) \geq 0 \vee \operatorname{Im}(f z) \neq 0 f z=0 \longrightarrow \operatorname{Re}(g z)$
>0 by auto
with $\operatorname{assms}(3,4) z$ show ?thesis

```
```

 by (intro tendsto_powr_complex')
 (auto elim!: nonpos_Reals_cases simp: complex_eq_iff continuous_on_def)
 next
 case True
 with assms z show ?thesis
 by (auto intro!: tendsto_powr_complex_0 simp: continuous_on_def)
 qed
 qed

```

\subsection*{6.21.18 Some Limits involving Logarithms}
lemma lim_Ln_over_power:
fixes \(s\) ::complex
assumes \(0<R e s\)
shows ( \(\lambda\) n. Ln (of_nat \(n\) ) / of_nat \(n\) powr \(s) \longrightarrow 0\)
proof (simp add: lim_sequentially dist_norm, clarify)
fix \(e\) ::real
assume \(e: 0<e\)
have \(\exists x o>0 . \forall x \geq x o .0<e * 2+(e * R e s * 2-2) * x+e *(R e s)^{2} * x^{2}\)
proof (rule_tac \(x=2 /\left(e *(R e s)^{2}\right)\) in exI, safe)
show \(0<2 /\left(e *(R e s)^{2}\right)\)
using \(e\) assms by (simp add: field_simps)
next
fix \(x\) ::real
assume \(x\) : 2 / \(\left(e *(\operatorname{Re} s)^{2}\right) \leq x\)
have 2 / \(\left(e *(\operatorname{Res})^{2}\right)>0\)
using e assms by simp
with \(x\) have \(x>0\)
by linarith
then have \(x * 2 \leq e *\left(x^{2} *(R e s)^{2}\right)\)
using \(e\) assms \(x\) by (auto simp: power2_eq_square field_simps)
also have \(\ldots<e *\left(2+\left(x *(\operatorname{Re} s * 2)+x^{2} *(\operatorname{Re} s)^{2}\right)\right)\)
using e assms \(\langle x>0\rangle\)
by (auto simp: power2_eq_square field_simps add_pos_pos)
finally show \(0<e * 2+(e * \operatorname{Re} s * 2-2) * x+e *(R e s)^{2} * x^{2}\) by (auto simp: algebra_simps)
qed
then have \(\exists x o>0 . \forall x \geq x o . x / e<1+(\operatorname{Re} s * x)+(1 / 2) *(\operatorname{Re} s * x)^{\wedge} \mathcal{Z}\) using \(e\) by (simp add: field_simps)
then have \(\exists x o>0 . \forall x \geq x o . x / e<\exp (R e s * x)\) using assms by (force intro: less_le_trans [OF _ exp_lower_Taylor_quadratic])
then obtain \(x o\) where \(x o>0\) and \(x o: \bigwedge x . x \geq x o \Longrightarrow x<e * \exp (\operatorname{Re} s * x)\) using \(e\) by (auto simp: field_simps)
have norm (Ln (of_nat \(n\) ) / of_nat \(n\) powr \(s)<e\) if \(n \geq\) nat 「exp xo \(\rceil\) for \(n\)
proof -
have \(\ln (\) real \(n) \geq x o\)
using that exp_gt_zero ln_ge_iff [of n] nat_ceiling_le_eq by fastforce
then show ?thesis
using e xo [of ln \(n]\) by (auto simp: norm_divide norm_powr_real field_split_simps)
    qed
    then show \(\exists\) no. \(\forall n \geq\) no. norm \((\) Ln (of_nat \(n) /\) of_nat \(n\) powr \(s)<e\)
        by blast
qed
lemma lim_Ln_over_n: \(\left(\left(\lambda n . L n\left(o f \_n a t ~ n\right) /\right.\right.\) of_nat \(\left.\left.n\right) \longrightarrow 0\right)\) sequentially
    using lim_Ln_over_power [of 1] by simp
    lemma lim_ln_over_power:
    fixes \(s\) :: real
    assumes \(0<s\)
    shows \(((\lambda n . \ln n /(n\) powr \(s)) \longrightarrow 0)\) sequentially
proof -
    have \((\lambda n . \ln (\) Suc \(n) /(\) Suc \(n)\) powr \(s) \longrightarrow 0\)
        using lim_Ln_over_power [of of_real s, THEN filterlim_sequentially_Suc [THEN
iffD2]] assms
            by (simp add: lim_sequentially dist_norm Ln_Reals_eq norm_powr_real_powr
norm_divide)
    then show ?thesis
        using filterlim_sequentially_Suc[of \(\lambda n\) ::nat. \(\ln n / n\) powr \(s]\) by auto
qed
lemma lim_ln_over_n \([\) tendsto_intros]: \(((\lambda n . \ln (\) real_of_nat \(n) /\) of_nat \(n) \longrightarrow 0)\)
sequentially
    using lim_ln_over_power [of 1] by auto
lemma lim_log_over_n [tendsto_intros]:
    \((\lambda n . \log k n / n) \longrightarrow 0\)
proof -
    have \(*: \log k n / n=(1 / \ln k) *(\ln n / n)\) for \(n\)
        unfolding log_def by auto
    have \((\lambda n .(1 / \ln k) *(\ln n / n)) \longrightarrow(1 / \ln k) * 0\)
        by (intro tendsto_intros)
    then show? ?hesis
        unfolding * by auto
qed
lemma lim_1_over_complex_power:
    assumes \(0<\operatorname{Re} s\)
    shows \((\lambda n .1 /\) of_nat \(n\) powr \(s) \longrightarrow 0\)
proof (rule Lim_null_comparison)
    have \(\forall n>0.3 \leq n \longrightarrow 1 \leq \ln (\) real_of_nat \(n)\)
        using ln_272_gt_1
        by (force intro: order_trans \([\) of _ \(\ln (272 / 100)])\)
    then show \(\forall_{F} x\) in sequentially. cmod (1/ of_nat \(x\) powr \(\left.s\right) \leq \operatorname{cmod}(\) Ln (of_nat
x) / of_nat \(x\) powr s)
    by (auto simp: norm_divide field_split_simps eventually_sequentially)
    show \((\lambda n\). cmod \((L n(\) of_nat \(n) /\) of_nat \(n\) powr \(s)) \longrightarrow 0\)
```

 using lim_Ln_over_power [OF assms] by (metis tendsto_norm_zero_iff)
 qed
lemma lim_1_over_real_power:
fixes }s\mathrm{ :: real
assumes 0<s
shows ((\lambdan.1 / (of_nat n powr s)) \longrightarrow0) sequentially
using lim_1_over_complex_power [of of_real s,THEN filterlim_sequentially_Suc
[THEN iffD2]] assms
apply (subst filterlim_sequentially_Suc [symmetric])
by (simp add: lim_sequentially dist_norm Ln_Reals_eq norm_powr_real_powr norm_divide)
lemma lim_1_over_Ln:((\lambdan. 1 / Ln(of_nat n))\longrightarrow 0) sequentially
proof (clarsimp simp add: lim_sequentially dist_norm norm_divide field_split_simps)
fix r::real
assume 0 < r
have ir: inverse (exp (inverse r)) > 0
by simp
obtain n where n: 1< of_nat n * inverse (exp (inverse r))
using ex_less_of_nat_mult [of _ 1,OF ir]
by auto
then have exp (inverse r) < of_nat n
by (simp add: field_split_simps)
then have ln (exp (inverse r))}<ln(\mathrm{ of_nat n)
by (metis exp_gt_zero less_trans ln_exp ln_less_cancel_iff)
with <0<r\rangle have 1<r*ln(real_of_nat n)
by (simp add: field_simps)
moreover have n>0 using n
using neq0_conv by fastforce
ultimately show \exists no. \forallk. Ln (of_nat k) = 0 \longrightarrow no \leqk\longrightarrow 1<r*cmod
(Ln (of_nat k))
using n<0< <r>
by (rule_tac x=n in exI) (force simp: field_split_simps intro:less_le_trans)
qed
lemma lim_1_over_ln:((\lambdan.1 / ln(real_of_nat n)) \longrightarrow 0) sequentially
using lim_1_over_Ln [THEN filterlim_sequentially_Suc [THEN iffD2]]
apply (subst filterlim_sequentially_Suc [symmetric])
by (simp add:lim_sequentially dist_norm Ln_Reals_eq norm_powr_real_powr norm_divide)
lemma lim_ln1_over_ln: (\lambdan. ln(Suc n) / ln n)\longrightarrow
proof (rule Lim_transform_eventually)
have (\lambdan.ln(1+1/n)/ln n)\longrightarrow0
proof (rule Lim_transform_bound)
show (inverse o real)\longrightarrow0
by (metis comp_def lim_inverse_n lim_explicit)
show }\mp@subsup{\forall}{F}{}n\mathrm{ in sequentially. norm (ln (1+1/n)/ln n) < norm ((inverse ○
real) n)
proof

```
```

 fix n::nat
 assume n: 3 \leq n
 then have ln 3\leqln n and ln0:0\leqln n
 by auto
 with ln3_gt_1 have 1/ ln n \leq 1
 by (simp add: field_split_simps)
 moreover have ln}(1+1/\mathrm{ real n)
 by (simp add: ln_add_one_self_le_self)
 ultimately have ln}(1+1/\mathrm{ real n) * (1/ln n) < (1/n)*1
 by (intro mult_mono) (use n in auto)
 then show norm (ln (1+1/n)/ln n)\leqnorm ((inverse ○ real) n)
 by (simp add: field_simps ln0)
 qed
 qed
 then show (\lambdan.1 + ln(1+1/n)/ln n)\longrightarrow1
 by (metis (full_types) add.right_neutral tendsto_add_const_iff)
 show }\mp@subsup{\forall}{F}{}k\mathrm{ in sequentially. }1+\operatorname{ln}(1+1/k)/\operatorname{ln}k=\operatorname{ln}(\mathrm{ Suc k) / ln k
 by (simp add: field_split_simps ln_div eventually_sequentiallyI [of 2])
 qed
lemma lim_ln_over_ln1:(\lambdan.ln n / ln(Suc n))\longrightarrow 1
proof -
have (}\lambdan\mathrm{ . inverse (ln (Suc n) / ln n)) }\longrightarrow\mathrm{ inverse 1
by (rule tendsto_inverse [OF lim_ln1_over_ln]) auto
then show ?thesis
by simp
qed

```

\subsection*{6.21.19 Relation between Square Root and \(\exp / \mathrm{ln}\), hence its derivative}
lemma csqrt_exp_Ln:
assumes \(z \neq 0\)
shows \(c\) sqrt \(z=\exp (\operatorname{Ln}(z) / 2)\)
proof -
have \((\exp (\operatorname{Lnz} / 2))^{2}=(\exp (\operatorname{Ln} z))\)
by (metis exp_double nonzero_mult_div_cancel_left times_divide_eq_right zero_neq_numeral)
also have \(\ldots=z\)
using assms exp_Ln by blast
finally have \(c s q r t z=\operatorname{csqrt}\left((\exp (\operatorname{Ln} z / 2))^{2}\right)\)
by \(\operatorname{simp}\)
also have \(\ldots=\exp (\operatorname{Ln} z / 2)\)
apply (rule csqrt_square)
using cos_gt_zero_pi [of (Im (Ln z) / 2)] Im_Ln_le_pi mpi_less_Im_Ln assms
by (fastforce simp: Re_exp Im_exp)
finally show ?thesis using assms csqrt_square
by \(\operatorname{simp}\)
qed
```

lemma csqrt_inverse:
assumes $z \notin \mathbb{R}_{\leq 0}$
shows csqrt (inverse z) $=$ inverse (csqrt z)
proof (cases $z=0$)
case False
then show ?thesis
using assms csqrt_exp_Ln Ln_inverse exp_minus
by (simp add: csqrt_exp_Ln Ln_inverse exp_minus)
qed auto
lemma cnj_csqrt:
assumes $z \notin \mathbb{R}_{<0}$
shows $\operatorname{cnj}(c s q r t z)=\operatorname{csqrt}(\operatorname{cnj} z)$
proof (cases $z=0$)
case False
then show ?thesis
by (simp add: assms cnj_Ln csqrt_exp_Ln exp_cnj)
qed auto
lemma has_field_derivative_csqrt:
assumes $z \notin \mathbb{R}_{\leq 0}$
shows (csqrt has_field_derivative inverse(2 * csqrt z)) (at z)
proof -
have $z: z \neq 0$
using assms by auto
then have $*$: inverse $z=$ inverse $(2 * z) * 2$
by (simp add: field_split_simps)
have $[\operatorname{simp}]: \exp (\operatorname{Lnz} /$ 2) $*$ inverse $z=$ inverse (csqrt $z)$
by (simp add: z field_simps csqrt_exp_Ln [symmetric]) (metis power2_csqrt
power2_eq_square)
have $\operatorname{Im} z=0 \Longrightarrow 0<R e z$
using assms complex_nonpos_Reals_iff not_less by blast
with z have $((\lambda z . \exp (\operatorname{Ln} z / 2))$ has_field_derivative inverse (2 * csqrt z)) (at
z)
by (force intro: derivative_eq_intros $* \operatorname{simp}$ add: assms)
then show ?thesis
proof (rule has_field_derivative_transform_within)
show $\bigwedge x$. dist $x z<\operatorname{cmod} z \Longrightarrow \exp (\operatorname{Ln} x / 2)=\operatorname{csqrt} x$
by (metis csqrt_exp_Ln dist_0_norm less_irrefl)
qed (use z in auto)
qed
lemma field_differentiable_at_csqrt:
$z \notin \mathbb{R}_{\leq 0} \Longrightarrow$ csqrt field_differentiable at z
using field_differentiable_def has_field_derivative_csqrt by blast
lemma field_differentiable_within_csqrt:
$z \notin \mathbb{R}_{\leq 0} \Longrightarrow$ csqrt field_differentiable (at z within s)
using field_differentiable_at_csqrt field_differentiable_within_subset by blast

```
lemma continuous_at_csqrt:
\(z \notin \mathbb{R}_{\leq 0} \Longrightarrow\) continuous (at z) csqrt
by (simp add: field_differentiable_within_csqrt field_differentiable_imp_continuous_at)
corollary isCont_csqrt' \([\) simp \(]\) :
\(\llbracket i s C o n t f z ; f z \notin \mathbb{R}_{\leq 0} \rrbracket \Longrightarrow\) isCont \((\lambda x\). csqrt \((f x)) z\)
by (blast intro: isCont_o2 [OF _ continuous_at_csqrt])
lemma continuous_within_csqrt:
\(z \notin \mathbb{R}_{\leq 0} \Longrightarrow\) continuous (at \(z\) within s) csqrt
by (simp add: field_differentiable_imp_continuous_at field_differentiable_within_csqrt)
lemma continuous_on_csqrt [continuous_intros]:
\(\left(\bigwedge z . z \in s \Longrightarrow z \notin \mathbb{R}_{\leq 0}\right) \Longrightarrow\) continuous_on s csqrt
by (simp add: continuous_at_imp_continuous_on continuous_within_csqrt)
lemma holomorphic_on_csqrt:
\[
\left(\bigwedge z . z \in s \Longrightarrow z \notin \mathbb{R}_{\leq 0}\right) \Longrightarrow \text { csqrt holomorphic_on s }
\]
by (simp add: field_differentiable_within_csqrt holomorphic_on_def)
lemma continuous_within_closed_nontrivial: closed \(s \Longrightarrow a \notin s==>\) continuous (at a within s) \(f\)
using open_Compl
by (force simp add: continuous_def eventually_at_topological filterlim_iff open_Collect_neg)
lemma continuous_within_csqrt_posreal: continuous (at zwithin \((\mathbb{R} \cap\{w .0 \leq \operatorname{Re}(w)\}))\) csqrt
proof (cases \(z \in \mathbb{R}_{\leq 0}\) )
case True
have [simp]: \(\operatorname{Im} z=0\) and \(0: \operatorname{Re} z<0 \vee z=0\)
using True cnj.code complex_cnj_zero_iff by (auto simp: Complex_eq com-
plex_nonpos_Reals_iff) fastforce
show ?thesis using 0
proof assume Re \(z<0\) then show? thesis by (auto simp: continuous_within_closed_nontrivial [OF closed_Real_halfspace_Re_ge])
next
assume \(z=0\) moreover have \(\bigwedge e .0<e\)
\(\Longrightarrow \forall x^{\prime} \in \mathbb{R} \cap\{w .0 \leq \operatorname{Re} w\} . \operatorname{cmod} x^{\prime}<e^{\wedge} 2 \longrightarrow \operatorname{cmod}\left(\operatorname{csqrt} x^{\prime}\right)<e\) by (auto simp: Reals_def real_less_lsqrt) ultimately show ?thesis
using zero_less_power by (fastforce simp: continuous_within_eps_delta)
qed
qed (blast intro: continuous_within_csqrt)

\subsection*{6.21.20 Complex arctangent}

The branch cut gives standard bounds in the real case.
definition Arctan :: complex \(\Rightarrow\) complex where
\(\operatorname{Arctan} \equiv \lambda z .(\mathrm{i} / 2) * \operatorname{Ln}((1-\mathrm{i} * z) /(1+\mathrm{i} * z))\)
lemma Arctan_def_moebius: \(\operatorname{Arctan} z=\mathrm{i} / 2 * \operatorname{Ln}(\) moebius \((-\mathrm{i}) 1\) i \(1 z)\)
by (simp add: Arctan_def moebius_def add_ac)
lemma Ln_conv_Arctan:
assumes \(z \neq-1\)
shows \(L n z=-2 * \mathrm{i} * \operatorname{Arctan}(\) moebius \(1(-1)(-\mathrm{i})(-\mathrm{i}) z)\)
proof -
have Arctan (moebius \(1(-1)(-\mathrm{i})(-\mathrm{i}) z)=\)
\(\mathrm{i} / 2 * \operatorname{Ln}\) (moebius \((-\mathrm{i}) 1\) i 1 (moebius \(1(-1)(-\mathrm{i})(-\mathrm{i}) z))\)
by (simp add: Arctan_def_moebius)
also from assms have \(\mathrm{i} * z \neq \mathrm{i} *(-1)\) by (subst mult_left_cancel) simp
hence \(\mathrm{i} * z--\mathrm{i} \neq 0\) by ( simp add: eq_neg_iff_add_eq_0)
from moebius_inverse' \(\left[O F_{-}\right.\)this, of 1 1]
have moebius (-i) 1 i 1 (moebius \(1(-1)(-\mathrm{i})(-\mathrm{i}) z)=z\) by \(\operatorname{simp}\) finally show ?thesis by (simp add: field_simps)
qed
lemma Arctan_0 [simp]: Arctan \(0=0\)
by (simp add: Arctan_def)
lemma Im_complex_div_lemma: \(\operatorname{Im}((1-\mathrm{i} * z) /(1+\mathrm{i} * z))=0 \longleftrightarrow \operatorname{Re} z=0\) by (auto simp: Im_complex_div_eq_0 algebra_simps)
lemma Re_complex_div_lemma: \(0<\operatorname{Re}((1-\mathrm{i} * z) /(1+\mathrm{i} * z)) \longleftrightarrow\) norm \(z<1\) by (simp add: Re_complex_div_gt_0 algebra_simps cmod_def power2_eq_square)
lemma tan_Arctan:
assumes \(z^{2} \neq-1\)
shows \([\operatorname{simp}]: \tan (\operatorname{Arctan} z)=z\)
proof -
have \(1+\mathrm{i} * z \neq 0\)
by (metis assms complex_i_mult_minus i_squared minus_unique power2_eq_square power2_minus)
moreover
have \(1-\mathrm{i} * z \neq 0\)
by (metis assms complex_i_mult_minus i_squared power2_eq_square power2_minus right_minus_eq)
ultimately
show ?thesis
by (simp add: Arctan_def tan_def sin_exp_eq cos_exp_eq exp_minus csqrt_exp_Ln
[symmetric]
divide_simps power2_eq_square [symmetric])
qed
```

lemma Arctan_tan [simp]:
assumes \mid Re $z \mid<p i / 2$
shows $\operatorname{Arctan}(\tan z)=z$
proof -
have $\operatorname{Ln}((1-\mathrm{i} * \tan z) /(1+\mathrm{i} * \tan z))=2 * z / \mathrm{i}$
proof (rule Ln_unique)
have ge_pi2: $\bigwedge n::$ int. $\left|o f _i n t(2 * n+1) * p i / 2\right| \geq p i / 2$
by (case_tac n rule: int_cases) (auto simp: abs_mult)
have $\exp (\mathrm{i} * z) * \exp (\mathrm{i} * z)=-1 \longleftrightarrow \exp (2 * \mathrm{i} * z)=-1$
by (metis distrib_right exp_add mult_2)
also have $\ldots \longleftrightarrow \exp (2 * \mathrm{i} * z)=\exp (\mathrm{i} * p i)$
using cis_conv_exp cis_pi by auto
also have $\ldots \longleftrightarrow \exp (2 * \mathrm{i} * z-\mathrm{i} * p i)=1$
by (metis (no_types) diff_add_cancel diff_minus_eq_add exp_add exp_minus_inverse
mult.commute)
also have $\ldots \longleftrightarrow \operatorname{Re}(\mathrm{i} * 2 * z-\mathrm{i} * p i)=0 \wedge\left(\exists n::\right.$ int. $\operatorname{Im}(\mathrm{i} * 2 * z-\mathrm{i} * p i)=o f_{-}$int
$(2 * n) * p i)$
by (simp add: exp_eq_1)
also have $\ldots \longleftrightarrow \operatorname{Im} z=0 \wedge(\exists n::$ int. $2 *$ Re $z=o f$ _int $(2 * n+1) * p i)$
by (simp add: algebra_simps)
also have $\ldots \longleftrightarrow$ False
using assms ge_pi2
apply (auto simp: algebra_simps)
by (metis abs_mult_pos not_less of_nat_less_0_iff of_nat_numeral)
finally have $\exp (\mathrm{i} * z) * \exp (\mathrm{i} * z)+1 \neq 0$
by (auto simp: add.commute minus_unique)
then show $\exp (2 * z / \mathrm{i})=(1-\mathrm{i} * \tan z) /(1+\mathrm{i} * \tan z)$
apply (simp add: tan_def sin_exp_eq cos_exp_eq exp_minus divide_simps)
by (simp add: algebra_simps flip: power2_eq_square exp_double)
qed (use assms in auto)
then show? ?thesis
by (auto simp: Arctan_def)
qed
lemma
assumes Re $z=0 \Longrightarrow|\operatorname{Im} z|<1$
shows Re_Arctan_bounds: $|\operatorname{Re}(\operatorname{Arctan} z)|<p i / 2$
and has_field_derivative_Arctan: (Arctan has_field_derivative inverse $\left(1+z^{2}\right)$)
(at z)
proof -
have $n z 0: 1+\mathrm{i} * z \neq 0$
using assms
by (metis abs_one add_diff_cancel_left' complex_i_mult_minus diff_0 i_squared
imaginary_unit.simps
less_asym neg_equal_iff_equal)
have $z \neq-\mathrm{i}$ using assms
by auto
then have $z z: 1+z * z \neq 0$

```
by (metis abs_one assms i_squared imaginary_unit.simps less_irrefl minus_unique square_eq_iff)
have \(n z 1: 1-\mathrm{i} * z \neq 0\)
using assms by (force simp add: i_times_eq_iff)
have \(n z 2\) : inverse \((1+\mathrm{i} * z) \neq 0\)
using assms
by (metis Im_complex_div_lemma Re_complex_div_lemma cmod_eq_Im divide_complex_def less_irrefl mult_zero_right zero_complex.simps(1) zero_complex.simps(2))
have \(n z i:((1-\mathrm{i} * z) *\) inverse \((1+\mathrm{i} * z)) \neq 0\)
using nz1 nz2 by auto
have \(\operatorname{Im}((1-\mathrm{i} * z) /(1+\mathrm{i} * z))=0 \Longrightarrow 0<\operatorname{Re}((1-\mathrm{i} * z) /(1+\mathrm{i} * z))\)
apply (simp add: divide_complex_def)
apply (simp add: divide_simps split: if_split_asm)
using assms
apply (auto simp: algebra_simps abs_square_less_1 [unfolded power2_eq_square])
done
then have \(*:((1-\mathrm{i} * z) /(1+\mathrm{i} * z)) \notin \mathbb{R}_{\leq 0}\)
by (auto simp add: complex_nonpos_Reals_iff)
show \(|\operatorname{Re}(\operatorname{Arctan} z)|<p i / 2\)
unfolding Arctan_def divide_complex_def
using mpi_less_Im_Ln [OF nzi]
by (auto simp: abs_if intro!: Im_Ln_less_pi * [unfolded divide_complex_def])
show (Arctan has_field_derivative inverse \(\left.\left(1+z^{2}\right)\right)(\) at \(z)\)
unfolding Arctan_def scaleR_conv_of_real
apply (intro derivative_eq_intros | simp add: nz0 *)+
using \(n z 1 z z\)
apply (simp add: field_split_simps power2_eq_square)
apply algebra
done
qed
lemma field_differentiable_at_Arctan: \((\operatorname{Re} z=0 \Longrightarrow|\operatorname{Im} z|<1) \Longrightarrow\) Arctan
field_differentiable at z
using has_field_derivative_Arctan
by (auto simp: field_differentiable_def)
lemma field_differentiable_within_Arctan:
\((\) Re \(z=0 \Longrightarrow|\operatorname{Im} z|<1) \Longrightarrow\) Arctan field_differentiable (at z within s)
using field_differentiable_at_Arctan field_differentiable_at_within by blast
declare has_field_derivative_Arctan [derivative_intros]
declare has_field_derivative_Arctan [THEN DERIV_chain2, derivative_intros]
lemma continuous_at_Arctan:
(Rez=0 \(\Longrightarrow|\operatorname{Im} z|<1) \Longrightarrow\) continuous (at z) Arctan
by (simp add: field_differentiable_imp_continuous_at field_differentiable_within_Arctan)
lemma continuous_within_Arctan:
\((\operatorname{Re} z=0 \Longrightarrow|\operatorname{Im} z|<1) \Longrightarrow\) continuous (at \(z\) within s) Arctan
using continuous_at_Arctan continuous_at_imp_continuous_within by blast
lemma continuous_on_Arctan [continuous_intros]:
\((\bigwedge z . z \in s \Longrightarrow \operatorname{Re} z=0 \Longrightarrow|\operatorname{Im} z|<1) \Longrightarrow\) continuous_on s Arctan
by (auto simp: continuous_at_imp_continuous_on continuous_within_Arctan)
lemma holomorphic_on_Arctan:
\((\bigwedge z . z \in s \Longrightarrow \operatorname{Re} z=0 \Longrightarrow|\operatorname{Im} z|<1) \Longrightarrow\) Arctan holomorphic_on s by (simp add: field_differentiable_within_Arctan holomorphic_on_def)
theorem Arctan_series:
assumes \(z\) : norm ( \(z\) :: complex) \(<1\)
defines \(g \equiv \lambda n\). if odd \(n\) then \(-\mathrm{i} * \mathrm{i}^{\wedge} n / n\) else 0
defines \(h \equiv \lambda z n\). \((-1)^{\wedge} n /\) of_nat \((2 * n+1) *(z:: \text { complex })^{\wedge}(2 * n+1)\)
shows ( \(\lambda n . g n * z^{\wedge} n\) ) sums Arctan \(z\)
and \(\quad h z\) sums Arctan \(z\)
proof -
define \(G\) where [abs_def]: \(G z=\left(\sum n . g n * z^{\wedge} n\right)\) for \(z\)
have summable: summable ( \(\lambda n . g n * u^{\wedge} n\) ) if norm \(u<1\) for \(u\)
proof (cases \(u=0\) )
assume \(u: u \neq 0\)
have \(\left(\lambda n\right.\). ereal \(\left(\right.\) norm \(\left(\begin{array}{ll}h & u \\ n\end{array}\right) / \operatorname{norm}(h u(\) Suc \(\left.\left.n))\right)\right)=(\lambda n\). ereal \((\) inverse
(normu) ^Z) *
ereal \(((2+\operatorname{inverse}(\operatorname{real}(\) Suc \(n))) /(2-\operatorname{inverse}(\) real \((\) Suc \(n)))))\)
proof
fix \(n\)
have \(\operatorname{ereal}(\operatorname{norm}(h u n) / \operatorname{norm}(h u(S u c n)))=\)
ereal (inverse \((\text { norm u) })^{\wedge}\) 2) \(* \operatorname{ereal}(((2 *\) Suc \(n+1) /(\) Suc \(n)) /\)
((2*Suc n-1) / (Suc n) ))
by (simp add: h_def norm_mult norm_power norm_divide field_split_simps
power2_eq_square eval_nat_numeral del: of_nat_add of_nat_Suc)
also have of_nat \((2 * S u c n+1) /\) of_nat \((S u c n)=(2::\) real \()+\) inverse (real
(Suc \(n\) ))
by (auto simp: field_split_simps simp del: of_nat_Suc) simp_all?
also have of_nat \((2 *\) Suc \(n-1) /\) of_nat \((\) Suc \(n)=(2::\) real \()-\) inverse (real (Suc n))
by (auto simp: field_split_simps simp del: of_nat_Suc) simp_all?

(norm u) ^2) *
ereal \(((2+\operatorname{inverse}(\operatorname{real}(\) Suc \(n))) /(2-\operatorname{inverse}(\) real \((\) Suc \(n))))\).
qed
also have \(\ldots \longrightarrow \operatorname{ereal}\left(\right.\) inverse \(\left.(\text { norm } u)^{\wedge} 2\right) * \operatorname{ereal}((2+0) /(2-0))\) by (intro tendsto_intros LIMSEQ_inverse_real_of_nat) simp_all
finally have liminf \((\lambda n\). ereal \((\operatorname{cmod}(h u n) / \operatorname{cmod}(h u(S u c n))))=\) inverse (norm u) \({ }^{\wedge} 2\)
by (intro lim_imp_Liminf) simp_all
moreover from power_strict_mono[OF that, of 2] \(u\) have inverse (norm u) ^2 \(>1\)
by (simp add: field_split_simps)
```

 ultimately have A: liminf (\lambdan. ereal (cmod (hun) / cmod (hu (Suc n))))
 > 1 by simp
from }u\mathrm{ have summable (}hu\mathrm{)
by (intro summable_norm_cancel[OF ratio_test_convergence[OF _ A]])
(auto simp: h_def norm_divide norm_mult norm_power simp del: of_nat_Suc
intro!: mult_pos_pos divide_pos_pos always_eventually)
thus summable (\lambdan.g n* u^n)
by (subst summable_mono_reindex[of \lambdan. 2*n+1, symmetric])
(auto simp: power_mult strict_mono_def g_def h_def elim!: oddE)
qed (simp add: h_def)
have \existsc.\forallu\inball 0 1. Arctan u-Gu=c
proof (rule has_field_derivative_zero_constant)
fix u :: complex assume }u\in\mathrm{ ball 0 1
hence u: norm u<1 by (simp)
define K where K=(norm u+1)/2
from u and abs_Im_le_cmod[of u] have Im_u: }|\operatorname{Im}u|<1\mathrm{ by linarith
from u have K:0\leqK norm u<KK<1 by (simp_all add: K_def)
hence (G has_field_derivative (\sumn. diffs g n * u ^ n)) (at u) unfolding G_def
by (intro termdiffs_strong[of _ of_real K] summable) simp_all
also have (\lambdan. diffs g n* |^n)=(}\lambdan\mathrm{ . if even n then (i*u)^n else 0)
by (intro ext) (simp_all del: of_nat_Suc add: g_def diffs_def power_mult_distrib)
also have suminf ···. = (\sumn. (-(u^2))^ n)
by (subst suminf_mono_reindex[of \lambdan. 2*n, symmetric])
(auto elim!: evenE simp: strict_mono_def power_mult power_mult_distrib)
also from u have norm u^2 < 1^2 by (intro power_strict_mono) simp_all
hence (\sumn.(-(\mp@subsup{u}{}{\wedge}2))^n)=inverse (1+ u^2)
by (subst suminf_geometric) (simp_all add: norm_power inverse_eq_divide)
finally have (G has_field_derivative inverse (1+\mp@subsup{u}{}{2}))(\mathrm{ at u).}
from DERIV_diff[OF has_field_derivative_Arctan this] Im_u u
show ((\lambdau. Arctan u - Gu) has_field_derivative 0) (at u within ball 0 1)
by (simp_all add: at_within_open[OF _ open_ball])
qed simp_all
then obtain c where c: \u. norm u<1\Longrightarrow Arctan u - Gu=c by auto
from this[of 0] have c=0 by (simp add: G_def g_def)
with cz have Arctan z=Gz by simp
with summable[OF z] show (\lambdan.gn* 吕n) sums Arctan z unfolding G_def
by (simp add: sums_iff)
thus h z sums Arctan z by (subst (asm) sums_mono_reindex[of \lambdan. 2*n+1,
symmetric])

```
                                    (auto elim!: oddE simp: strict_mono_def power_mult g_def
\(\left.h \_d e f\right)\)
qed

A quickly-converging series for the logarithm, based on the arctangent.
```

theorem ln_series_quadratic:
assumes $x: x>(0::$ real $)$
shows $(\lambda n$. $(2 *((x-1) /(x+1)) \wedge(2 * n+1) /$ of_nat $(2 * n+1)))$ sums $\ln x$
proof -

```
```

 define \(y\) :: complex where \(y=\) of_real \(((x-1) /(x+1))\)
 from \(x\) have \(x^{\prime}\) : complex_of_real \(x \neq\) of_real (-1) by (subst of_real_eq_iff) auto
 from \(x\) have \(|x-1|<|x+1|\) by linarith
 hence norm (complex_of_real \((x-1)\) / complex_of_real \((x+1))<1\)
 by (simp add: norm_divide del: of_real_add of_real_diff)
 hence norm \((\mathrm{i} * y)<1\) unfolding \(y_{-}\)def by (subst norm_mult) simp
 hence \(\left(\lambda n .(-2 * \mathrm{i}) *\left((-1)^{\wedge} n /\right.\right.\) of_nat \(\left.\left.(2 * n+1) *(\mathrm{i} * y)^{\wedge}(2 * n+1)\right)\right)\) sums \(((-2 * \mathrm{i})\)
 * $\operatorname{Arctan}(\mathrm{i} * y)$)
by (intro Arctan_series sums_mult) simp_all
also have $\left(\lambda n .(-2 * i) *\left((-1)^{\wedge} n /\right.\right.$ of_nat $\left.\left.(2 * n+1) *(i * y)^{\wedge}(2 * n+1)\right)\right)=$
($\lambda n .(-2 * \mathrm{i}) *\left((-1)^{\wedge} n *\left(\mathrm{i} * y *\left(-y^{2}\right)^{\wedge} n\right) /\right.$ of_nat $\left.\left.(2 * n+1)\right)\right)$
by (intro ext) (simp_all add: power_mult power_mult_distrib)
also have $\ldots=\left(\lambda n .2 * y *\left((-1) *\left(-y^{2}\right)\right) \wedge n /\right.$ of_nat $\left.(2 * n+1)\right)$
by (intro ext, subst power_mult_distrib) (simp add: algebra_simps power_mult)
also have $\ldots=\left(\lambda n .2 * y^{\wedge}(2 * n+1) /\right.$ of_nat $\left.(2 * n+1)\right)$
by (subst power_add, subst power_mult) (simp add: mult_ac)
also have $\ldots=\left(\lambda n\right.$. of_real $\left(2 *((x-1) /(x+1))^{\wedge}(2 * n+1) /\right.$ of_nat $\left.\left.(2 * n+1)\right)\right)$
by (intro ext) (simp add: y_def)
also have $\mathrm{i} * y=($ of_real $x-1) /(-\mathrm{i} *($ of_real $x+1))$
by (subst divide_divide_eq_left [symmetric]) (simp add: y_def)
also have $\ldots=$ moebius $1(-1)(-i)(-i)\left(o f _r e a l x\right)$ by (simp add: moebius_def
algebra_simps)
also from x^{\prime} have $-2 * \mathbf{i} * \operatorname{Arctan} \ldots=$ Ln (of_real x) by (intro Ln_conv_Arctan
[symmetric]) simp_all
also from x have $\ldots=\ln x$ by (rule Ln_of_real)
finally show ?thesis by (subst (asm) sums_of_real_iff)
qed

```

\subsection*{6.21.21 Real arctangent}
```

lemma Im_Arctan_of_real [simp]: Im $\left(\operatorname{Arctan}\left(o f _r e a l ~ x\right)\right)=0$
proof -
have $n e: 1+x^{2} \neq 0$
by (metis power_one sum_power2_eq_zero_iff zero_neq_one)
have ne1: $1+\mathrm{i} *$ complex_of_real $x \neq 0$
using Complex_eq complex_eq_cancel_iff2 by fastforce
have $\operatorname{Re}(\operatorname{Ln}((1-\mathrm{i} * x) *$ inverse $(1+\mathrm{i} * x)))=0$
apply (rule norm_exp_imaginary)
using ne
apply (simp add: ne1 cmod_def)
apply (auto simp: field_split_simps)
apply algebra
done
then show ?thesis
unfolding Arctan_def divide_complex_def by (simp add: complex_eq_iff)
qed
lemma arctan_eq_Re_Arctan: arctan $x=\operatorname{Re}\left(\operatorname{Arctan}\left(o f _r e a l ~ x\right)\right)$
proof (rule arctan_unique)

```
```

have (1-i * x)/(1+i * x)\not\in\mathbb{R}
by (auto simp: Im_complex_div_lemma complex_nonpos_Reals_iff)
then show - (pi / 2) < Re (Arctan (complex_of_real x))
by (simp add: Arctan_def Im_Ln_less_pi)
next
have *: (1-i i*x) / (1+i*x)}\not=
by (simp add: field_split_simps) (simp add: complex_eq_iff)
show Re (Arctan (complex_of_real x)) < pi / 2
using mpi_less_Im_Ln [OF *]
by (simp add: Arctan_def)
next
have tan (Re (Arctan (of_real x))) = Re (tan (Arctan (of_real x)))
by (auto simp: tan_def Complex.Re_divide Re_sin Re_cos Im_sin Im_cos field_simps
power2_eq_square)
also have ... = x
proof -
have (complex_of_real x)}\mp@subsup{)}{}{2}\not=-
by (metis diff_0_right minus_diff_eq mult_zero_left not_le of_real_1 of_real_eq_iff
of_real_minus of_real_power power2_eq_square real_minus_mult_self_le zero_less_one)
then show ?thesis
by simp
qed
finally show tan (Re (Arctan (complex_of_real x))) = x .
qed
lemma Arctan_of_real: Arctan (of_real x) = of_real (arctan x)
unfolding arctan_eq_Re_Arctan divide_complex_def
by (simp add: complex_eq_iff)
lemma Arctan_in_Reals [simp]:z\in\mathbb{R}\LongrightarrowArctan z }\in\mathbb{R
by (metis Reals_cases Reals_of_real Arctan_of_real)
declare arctan_one [simp]
lemma arctan_less_pi4_pos: x < 1 \Longrightarrow arctan x < pi/4
by (metis arctan_less_iff arctan_one)
lemma arctan_less_pi4_neg: -1 <x \Longrightarrow -(pi/4)< arctan x
by (metis arctan_less_iff arctan_minus arctan_one)
lemma arctan_less_pi4: }|x|<1\Longrightarrow |arctan x | < pi/4
by (metis abs_less_iff arctan_less_pi4_pos arctan_minus)
lemma arctan_le_pi4: }|x|\leq1\Longrightarrow|\operatorname{arctan x | < pi/4
by (metis abs_le_iff arctan_le_iff arctan_minus arctan_one)
lemma abs_arctan: |arctan x| = arctan |x|
by (simp add: abs_if arctan_minus)

```
```

lemma arctan_add_raw:
assumes $|\arctan x+\arctan y|<p i / 2$
shows $\arctan x+\arctan y=\arctan ((x+y) /(1-x * y))$
proof (rule arctan_unique [symmetric])
show 12: $-(p i / 2)<\arctan x+\arctan y \arctan x+\arctan y<p i / 2$
using assms by linarith +
show $\tan (\arctan x+\arctan y)=(x+y) /(1-x * y)$
using cos_gt_zero_pi [OF 12]
by (simp add: arctan tan_add)
qed
lemma arctan_inverse:
assumes $0<x$
shows $\arctan ($ inverse $x)=p i / 2-\arctan x$
proof -
have $\arctan ($ inverse $x)=\arctan (i n v e r s e(\tan (\arctan x)))$
by (simp add: arctan)
also have $\ldots=\arctan (\tan (p i / 2-\arctan x))$
by (simp add: tan_cot)
also have $\ldots=p i / 2-\arctan x$
proof -
have $0<p i-\arctan x$
using arctan_ubound [of x] pi_gt_zero by linarith
with assms show ?thesis
by (simp add: Transcendental.arctan_tan)
qed
finally show ?thesis .
qed
lemma arctan_add_small:
assumes $|x * y|<1$
shows $(\arctan x+\arctan y=\arctan ((x+y) /(1-x * y)))$
proof (cases $x=0 \vee y=0$)
case False
with assms have $|x|<$ inverse $|y|$
by (simp add: field_split_simps abs_mult)
with False have $|\arctan x|<p i / 2-|\arctan y|$ using assms
by (auto simp add: abs_arctan arctan_inverse [symmetric] arctan_less_iff)
then show ?thesis
by (intro arctan_add_raw) linarith
qed auto
lemma abs_arctan_le:
fixes x ::real shows $|\arctan x| \leq|x|$
proof -
have $1: \bigwedge x . x \in \mathbb{R} \Longrightarrow \operatorname{cmod}$ (inverse $\left.\left(1+x^{2}\right)\right) \leq 1$
by (simp add: norm_divide divide_simps in_Reals_norm complex_is_Real_iff power2_eq_square)
have $\operatorname{cmod}($ Arctan $w-\operatorname{Arctan} z) \leq 1 * \operatorname{cmod}(w-z)$ if $w \in \mathbb{R} z \in \mathbb{R}$ for $w z$
apply (rule field_differentiable_bound [OF convex_Reals, of Arctan _ 1])

```
```

 apply (rule has_field_derivative_at_within [OF has_field_derivative_Arctan])
 using 1 that by (auto simp: Reals_def)
 then have \(\operatorname{cmod}(\operatorname{Arctan}(\) of_real \(x)-\operatorname{Arctan} 0) \leq 1 * \operatorname{cmod}(\) of_real \(x-0)\)
 using Reals_0 Reals_of_real by blast
 then show ?thesis
 by (simp add: Arctan_of_real)
 qed
lemma arctan_le_self: $0 \leq x \Longrightarrow$ arctan $x \leq x$
by (metis abs_arctan_le abs_of_nonneg zero_le_arctan_iff)
lemma abs_tan_ge: $|x|<p i / 2 \Longrightarrow|x| \leq|\tan x|$
by (metis abs_arctan_le abs_less_iff arctan_tan minus_less_iff)
lemma arctan_bounds:
assumes $0 \leq x x<1$
shows arctan_lower_bound:
$\left(\sum k<2 * n .(-1)^{\wedge} k *\left(1 / \operatorname{real}(k * 2+1) * x^{\wedge}(k * 2+1)\right)\right) \leq \arctan x$
(is $\left.\left(\sum k<_{-} .(-1)^{\wedge} k * ? a k\right) \leq{ }_{-}\right)$
and arctan_upper_bound:
$\arctan x \leq\left(\sum k<2 * n+1 .(-1)^{\wedge} k *\left(1 / \operatorname{real}(k * 2+1) * x^{\wedge}(k * 2\right.\right.$
$+1)$))
proof -
have tendsto_zero: ? a $\longrightarrow 0$
proof (rule tendsto_eq_rhs)
show $\left(\lambda k .1 / \operatorname{real}(k * 2+1) * x^{\wedge}(k * 2+1)\right) \longrightarrow 0 * 0$
using assms
by (intro tendsto_mult real_tendsto_divide_at_top)
(auto simp: filterlim_real_sequentially filterlim_sequentially_iff_filterlim_real
intro!: real_tendsto_divide_at_top tendsto_power_zero filterlim_real_sequentially
tendsto_eq_intros filterlim_at_top_mult_tendsto_pos filterlim_tendsto_add_at_top)
qed simp
have nonneg: $0 \leq$? $a n$ for n
by (force intro!: divide_nonneg_nonneg mult_nonneg_nonneg zero_le_power assms)
have le: ?a (Suc n) \leq ? a n for n
by (rule mult_mono[OF _ power_decreasing]) (auto simp: field_split_simps assms
less_imp_le)
from summable_Leibniz'(4)[of ?a, OF tendsto_zero nonneg le, of $n]$
summable_Leibniz'(2)[of ?a, OF tendsto_zero nonneg le, of n]
assms
show $\left(\sum k<2 * n .(-1)^{\wedge} k * ? a k\right) \leq \arctan x \arctan x \leq\left(\sum k<2 * n+1 .(-\right.$

1) ^ $k *$? $a k)$
by (auto simp: arctan_series)
qed
```

\subsection*{6.21.22 Bounds on pi using real arctangent}
lemma pi_machin: \(p i=16 * \arctan (1 / 5)-4 * \arctan (1 / 239)\)
using machin by simp
```

lemma pi_approx: $3.141592653588 \leq$ pi pi ≤ 3.1415926535899
unfolding pi_machin
using arctan_bounds[of 1/5 4]
arctan_bounds[of 1/239 4]
by (simp_all add: eval_nat_numeral)

```
lemma pi_gt3: pi>3
    using pi_approx by simp

\subsection*{6.21.23 Inverse Sine}
```

definition Arcsin :: complex \Rightarrow complex where
$\operatorname{Arcsin} \equiv \lambda z .-\mathrm{i} * \operatorname{Ln}\left(\mathrm{i} * z+\operatorname{csqrt}\left(1-z^{2}\right)\right)$

```
lemma Arcsin_body_lemma: \(\mathrm{i} * z+\operatorname{csqrt}\left(1-z^{2}\right) \neq 0\)
    using power2_csqrt [of \(1-z^{2}\) ]
    by (metis add.inverse_inverse complex_i_mult_minus diff_0 diff_add_cancel diff_minus_eq_add
mult.assoc mult.commute numeral_One power2_eq_square zero_neq_numeral)
lemma Arcsin_range_lemma: \(|\operatorname{Re} z|<1 \Longrightarrow 0<\operatorname{Re}\left(\mathrm{i} * z+\operatorname{csqrt}\left(1-z^{2}\right)\right)\)
    using Complex.cmod_power2 [of \(z\), symmetric]
    by (simp add: real_less_rsqrt algebra_simps Re_power2 cmod_square_less_1_plus)
lemma \(\operatorname{Re} \_\operatorname{Arcsin}: \operatorname{Re}(\operatorname{Arcsin} z)=\operatorname{Im}\left(\operatorname{Ln}\left(\mathrm{i} * z+\operatorname{csqrt}\left(1-z^{2}\right)\right)\right)\)
    by (simp add: Arcsin_def)
lemma Im_Arcsin: \(\operatorname{Im}(\operatorname{Arcsin} z)=-\ln \left(\operatorname{cmod}\left(i * z+\operatorname{csqrt}\left(1-z^{2}\right)\right)\right)\)
    by (simp add: Arcsin_def Arcsin_body_lemma)
lemma one_minus_z2_notin_nonpos_Reals:
    assumes \(\operatorname{Im} z=0 \Longrightarrow|R e z|<1\)
    shows \(1-z^{2} \notin \mathbb{R}_{\leq 0}\)
proof (cases Im \(z=0\) )
    case True
    with assms show ?thesis
        by (simp add: complex_nonpos_Reals_iff flip: abs_square_less_1)
next
    case False
    have \(\neg(\operatorname{Im} z)^{2} \leq-1\)
        using False power2_less_eq_zero_iff by fastforce
    with False show ?thesis
        by (auto simp add: complex_nonpos_Reals_iff Re_power2 Im_power2)
qed
lemma isCont_Arcsin_lemma:
    assumes le0: \(\operatorname{Re}\left(\mathrm{i} * z+\operatorname{csqrt}\left(1-z^{2}\right)\right) \leq 0\) and \((\operatorname{Im} z=0 \Longrightarrow|\operatorname{Re} z|<1)\)
        shows False
proof (cases \(\operatorname{Im} z=0\) )
```

case True
then show ?thesis
using assms by (fastforce simp: cmod_def abs_square_less_1 [symmetric])
next
case False
have leim: (cmod (1- z
using le0 sqrt_le_D by fastforce
have neq: (cmod z)}\mp@subsup{)}{}{2}\not=1+\operatorname{cmod}(1-\mp@subsup{z}{}{2}
proof (clarsimp simp add: cmod_def)
assume (Rez\mp@subsup{)}{}{2}+(\operatorname{Im}z\mp@subsup{)}{}{2}=1+\operatorname{sqrt}((1-\operatorname{Re}(\mp@subsup{z}{}{2})\mp@subsup{)}{}{2}+(\operatorname{Im}(\mp@subsup{z}{}{2})\mp@subsup{)}{}{2})
then have }((\operatorname{Re}z\mp@subsup{)}{}{2}+(\operatorname{Im}z\mp@subsup{)}{}{2}-1\mp@subsup{)}{}{2}=((1-\operatorname{Re}(\mp@subsup{z}{}{2})\mp@subsup{)}{}{2}+(\operatorname{Im}(\mp@subsup{z}{}{2})\mp@subsup{)}{}{2}
by simp
then show False using False
by (simp add: power2_eq_square algebra_simps)
qed
moreover have 2: (Imz)
using leim cmod_power2 [of z] norm_triangle_ineq2 [of z^2 1]
by (simp add: norm_power Re_power2 norm_minus_commute [of 1])
ultimately show False
by (simp add: Re_power2 Im_power2 cmod_power2)
qed
lemma isCont_Arcsin:
assumes (Im z = 0\Longrightarrow |Rez|<1)
shows isCont Arcsin z
proof -
have 1: i * z+\operatorname{csqrt}(1-\mp@subsup{z}{}{2})\not\in\mp@subsup{\mathbb{R}}{\leq0}{}
by (metis isCont_Arcsin_lemma assms complex_nonpos_Reals_iff)
have 2: }1-\mp@subsup{z}{}{2}\not\in\mp@subsup{\mathbb{R}}{\leq0}{
by (simp add: one_minus_z2_notin_nonpos_Reals assms)
show ?thesis
using assms unfolding Arcsin_def by (intro isCont_Ln' isCont_csqrt' contin-
uous_intros 1 2)
qed
lemma isCont_Arcsin' [simp]:
shows isCont fz\Longrightarrow(Im (fz)=0\Longrightarrow |Re (fz)|<1)\Longrightarrow isCont (\lambdax. Arcsin
(f x)) z
by (blast intro: isCont_o2 [OF_ isCont_Arcsin])
lemma sin_Arcsin [simp]: sin(Arcsin z) =z
proof -
have i }*z*2+\operatorname{csqrt}(1-\mp@subsup{z}{}{2})*2=0\longleftrightarrow(\textrm{i}*z)*\mathcal{Z}+\operatorname{csqrt}(1-\mp@subsup{z}{}{2})*\mathcal{Z}=
by (simp add: algebra_simps) - Cancelling a factor of 2
moreover have ... \longleftrightarrow(i*z)+\operatorname{csqrt}(1-\mp@subsup{z}{}{2})=0
by (metis Arcsin_body_lemma distrib_right no_zero_divisors zero_neq_numeral)
ultimately show ?thesis
apply (simp add: sin_exp_eq Arcsin_def Arcsin_body_lemma exp_minus divide_simps)
apply (simp add:algebra_simps)

```
```

 apply (simp add: power2_eq_square [symmetric] algebra_simps)
 done
 qed
lemma Re_eq_pihalf_lemma:
$|\operatorname{Re} z|=p i / 2 \Longrightarrow \operatorname{Im} z=0 \Longrightarrow$
$R e((\exp (\mathrm{i} * z)+$ inverse $(\exp (\mathrm{i} * z))) / 2)=0 \wedge 0 \leq \operatorname{Im}((\exp (\mathrm{i} * z)+$ inverse
$(\exp (\mathrm{i} * z))) / 2)$
apply (simp add: cos_i_times [symmetric] Re_cos Im_cos abs_if del: eq_divide_eq_numeral1)
by (metis cos_minus cos_pi_half)

```
lemma Re_less_pihalf_lemma:
    assumes \(|R e z|<p i / 2\)
        shows \(0<\operatorname{Re}((\exp (\mathrm{i} * z)+\) inverse \((\exp (\mathrm{i} * z))) / 2)\)
proof -
    have \(0<\cos (R e z)\) using assms
        using cos_gt_zero_pi by auto
    then show ?thesis
        by (simp add: cos_i_times [symmetric] Re_cos Im_cos add_pos_pos)
qed
lemma Arcsin_sin:
    assumes \(|R e z|<p i / 2 \vee(|R e z|=p i / 2 \wedge \operatorname{Im} z=0)\)
        shows \(\operatorname{Arcsin}(\sin z)=z\)
proof -
    have \(\operatorname{Arcsin}(\sin z)=-(\mathrm{i} * \operatorname{Ln}(\operatorname{csqrt}(1-(\mathrm{i} *(\exp (\mathrm{i} * z)-\) inverse \((\exp\)
\(\left.(\mathrm{i} * z))))^{2} / 4\right)-(\) inverse \(\left.\left.(\exp (\mathrm{i} * z))-\exp (\mathrm{i} * z)) / 2\right)\right)\)
    by (simp add: sin_exp_eq Arcsin_def exp_minus power_divide)
    also have \(\ldots=-\left(\mathrm{i} * \operatorname{Ln}\left(\operatorname{csqrt}\left(((\exp (\mathrm{i} * z)+\text { inverse }(\exp (\mathrm{i} * z))) / 2)^{2}\right)-\right.\right.\)
(inverse \((\exp (\mathrm{i} * z))-\exp (\mathrm{i} * z)) / 2))\)
    by (simp add: field_simps power2_eq_square)
    also have \(\ldots=-(\mathrm{i} * \operatorname{Ln}(((\exp (\mathrm{i} * z)+\) inverse \((\exp (\mathrm{i} * z))) / \mathcal{Z})-(\) inverse \((\exp\)
\((\mathrm{i} * z))-\exp (\mathrm{i} * z)) / 2))\)
    apply (subst csqrt_square)
    using assms Re_eq_pihalf_lemma Re_less_pihalf_lemma by auto
    also have \(\ldots=-(\mathrm{i} * \operatorname{Ln}(\exp (\mathrm{i} * z)))\)
    by (simp add: field_simps power2_eq_square)
    also have \(\ldots=z\)
    using assms by (auto simp: abs_if simp del: eq_divide_eq_numeral1 split: if_split_asm)
    finally show ?thesis .
qed
lemma Arcsin_unique:
    \(\llbracket \sin z=w ;|\operatorname{Re} z|<p i / 2 \vee(|R e z|=p i / 2 \wedge \operatorname{Im} z=0) \rrbracket \Longrightarrow \operatorname{Arcsin} w=z\)
    by (metis Arcsin_sin)
lemma Arcsin_0 [simp]: Arcsin \(0=0\)
    by (metis Arcsin_sin norm_zero pi_half_gt_zero real_norm_def sin_zero zero_complex.simps(1))
lemma Arcsin_1 [simp]: Arcsin \(1=p i / 2\)
by (metis Arcsin_sin Im_complex_of_real Re_complex_of_real numeral_One of_real_numeral pi_half_ge_zero real_sqrt_abs real_sqrt_pow2 real_sqrt_power sin_of_real sin_pi_half)
lemma Arcsin_minus_1 [simp]: \(\operatorname{Arcsin}(-1)=-(p i / \mathcal{Z})\)
by (metis Arcsin_1 Arcsin_sin Im_complex_of_real Re_complex_of_real abs_of_nonneg of_real_minus pi_half_ge_zero power2_minus real_sqrt_abs sin_Arcsin sin_minus)
lemma has_field_derivative_Arcsin:
assumes \(\operatorname{Im} z=0 \Longrightarrow|R e z|<1\)
shows (Arcsin has_field_derivative inverse \((\cos (\operatorname{Arcsin} z)))(\) at z)
proof -
have \((\sin (\operatorname{Arcsin} z))^{2} \neq 1\)
using assms one_minus_z2_notin_nonpos_Reals by force
then have \(\cos (\operatorname{Arcsin} z) \neq 0\)
by (metis diff_0_right power_zero_numeral sin_squared_eq)
then show? thesis
by (rule has_field_derivative_inverse_basic [OF DERIV_sin _ _ open_ball [of z
1]]) (auto intro: isCont_Arcsin assms)
qed
declare has_field_derivative_Arcsin [derivative_intros]
declare has_field_derivative_Arcsin [THEN DERIV_chain2, derivative_intros]
lemma field_differentiable_at_Arcsin:
\((\operatorname{Im} z=0 \Longrightarrow|R e z|<1) \Longrightarrow\) Arcsin field_differentiable at \(z\)
using field_differentiable_def has_field_derivative_Arcsin by blast
lemma field_differentiable_within_Arcsin:
\((\operatorname{Im} z=0 \Longrightarrow|R e z|<1) \Longrightarrow\) Arcsin field_differentiable (at z within s)
using field_differentiable_at_Arcsin field_differentiable_within_subset by blast
lemma continuous_within_Arcsin:
( \(\operatorname{Im} z=0 \Longrightarrow|\operatorname{Re} z|<1) \Longrightarrow\) continuous (at z within s) Arcsin
using continuous_at_imp_continuous_within isCont_Arcsin by blast
lemma continuous_on_Arcsin [continuous_intros]:
\((\bigwedge z . z \in s \Longrightarrow \operatorname{Im} z=0 \Longrightarrow|R e z|<1) \Longrightarrow\) continuous_on s Arcsin
by (simp add: continuous_at_imp_continuous_on)
lemma holomorphic_on_Arcsin: \((\bigwedge z . z \in s \Longrightarrow \operatorname{Im} z=0 \Longrightarrow|R e z|<1) \Longrightarrow\)
Arcsin holomorphic_on s
by (simp add: field_differentiable_within_Arcsin holomorphic_on_def)

\subsection*{6.21.24 Inverse Cosine}
definition Arccos :: complex \(\Rightarrow\) complex where
\(\operatorname{Arccos} \equiv \lambda z .-\mathrm{i} * \operatorname{Ln}\left(z+\mathrm{i} * \operatorname{csqrt}\left(1-z^{2}\right)\right)\)
```

lemma Arccos_range_lemma: \mid Re $z \mid<1 \Longrightarrow 0<\operatorname{Im}\left(z+\mathrm{i} * \operatorname{csqrt}\left(1-z^{2}\right)\right)$
using Arcsin_range_lemma $[o f-z]$ by simp
lemma Arccos_body_lemma: $z+\mathrm{i} * \operatorname{csqrt}\left(1-z^{2}\right) \neq 0$
using Arcsin_body_lemma [of z]
by (metis Arcsin_body_lemma complex_i_mult_minus diff_minus_eq_add power2_minus
right_minus_eq)

```
lemma \(\operatorname{Re} \_\operatorname{Arccos}: \operatorname{Re}(\operatorname{Arccos} z)=\operatorname{Im}\left(\operatorname{Ln}\left(z+\mathrm{i} * \operatorname{csqrt}\left(1-z^{2}\right)\right)\right)\)
    by (simp add: Arccos_def)
lemma Im_Arccos: \(\operatorname{Im}(\operatorname{Arccos} z)=-\ln \left(\operatorname{cmod}\left(z+\mathrm{i} * \operatorname{csqrt}\left(1-z^{2}\right)\right)\right)\)
    by (simp add: Arccos_def Arccos_body_lemma)

A very tricky argument to find!
lemma isCont_Arccos_lemma:
    assumes eq0: \(\operatorname{Im}\left(z+\mathrm{i} * \operatorname{csqrt}\left(1-z^{2}\right)\right)=0\) and \((\operatorname{Im} z=0 \Longrightarrow|\operatorname{Re} z|<1)\)
        shows False
proof (cases Im \(z=0\) )
    case True
    then show ?thesis
        using assms by (fastforce simp add: cmod_def abs_square_less_1 [symmetric])
next
    case False
    have \(\operatorname{Im} z: \operatorname{Im} z=-\operatorname{sqrt}\left(\left(1+\left((\operatorname{Im} z)^{2}+\operatorname{cmod}\left(1-z^{2}\right)\right)-(\operatorname{Re} z)^{2}\right) / 2\right)\)
        using eq0 abs_Re_le_cmod [of \(\left.1-z^{2}\right]\)
        by (simp add: Re_power2 algebra_simps)
    have \((\operatorname{cmod} z)^{2}-1 \neq \operatorname{cmod}\left(1-z^{2}\right)\)
    proof (clarsimp simp add: cmod_def)
        assume \((\operatorname{Re} z)^{2}+(\operatorname{Im} z)^{2}-1=\operatorname{sqrt}\left(\left(1-\operatorname{Re}\left(z^{2}\right)\right)^{2}+\left(\operatorname{Im}\left(z^{2}\right)\right)^{2}\right)\)
        then have \(\left((\operatorname{Re} z)^{2}+(\operatorname{Im} z)^{2}-1\right)^{2}=\left(\left(1-\operatorname{Re}\left(z^{2}\right)\right)^{2}+\left(\operatorname{Im}\left(z^{2}\right)\right)^{2}\right)\)
            by \(\operatorname{simp}\)
        then show False using False
            by (simp add: power2_eq_square algebra_simps)
    qed
    moreover have \((\operatorname{Im} z)^{2}=\left(1+\left((\operatorname{Im} z)^{2}+\operatorname{cmod}\left(1-z^{2}\right)\right)-(\operatorname{Re} z)^{2}\right) / 2\)
        using abs_Re_le_cmod [of \(\left.1-z^{2}\right]\) by (subst Imz) (simp add: Re_power2)
    ultimately show False
        by (simp add: cmod_power2)
qed
lemma isCont_Arccos:
    assumes \((\operatorname{Im} z=0 \Longrightarrow|\operatorname{Re} z|<1)\)
        shows isCont Arccos \(z\)
proof -
    have \(z+\mathrm{i} * \operatorname{csqrt}\left(1-z^{2}\right) \notin \mathbb{R}_{\leq 0}\)
        by (metis complex_nonpos_Reals_iff isCont_Arccos_lemma assms)
    with assms show ?thesis
        unfolding Arccos_def
by (simp_all add: one_minus_z2_notin_nonpos_Reals assms)
qed
lemma isCont_Arccos \({ }^{\prime}[\) simp \(]\) :
isCont \(f z \Longrightarrow(\operatorname{Im}(f z)=0 \Longrightarrow|\operatorname{Re}(f z)|<1) \Longrightarrow \operatorname{isCont}(\lambda x . \operatorname{Arccos}(f x)) z\) by (blast intro: isCont_o2 [OF_isCont_Arccos])
lemma cos_Arccos \([\operatorname{simp}]: \cos (\operatorname{Arccos} z)=z\)
proof -
have \(z * 2+\mathrm{i} *\left(2 * \operatorname{csqrt}\left(1-z^{2}\right)\right)=0 \longleftrightarrow z * 2+\mathrm{i} * \operatorname{csqrt}\left(1-z^{2}\right) * \mathscr{2}=0\)
by (simp add: algebra_simps) - Cancelling a factor of 2
moreover have \(\ldots \longleftrightarrow z+\mathrm{i} * \operatorname{csqrt}\left(1-z^{2}\right)=0\)
by (metis distrib_right mult_eq_0_iff zero_neq_numeral)
ultimately show ?thesis
by (simp add: cos_exp_eq Arccos_def Arccos_body_lemma exp_minus field_simps flip: power2_eq_square)
qed
lemma Arccos_cos:
assumes \(0<\operatorname{Re} z \wedge \operatorname{Re} z<p i \vee\)
\[
\operatorname{Re} z=0 \wedge 0 \leq \operatorname{Im} z \vee
\]
\[
\operatorname{Re} z=p i \wedge \operatorname{Im} z \leq 0
\]
shows \(\operatorname{Arccos}(\cos z)=z\)

\section*{proof -}
have \(*:\left(\left(\mathrm{i}-(\exp (\mathrm{i} * z))^{2} * \mathrm{i}\right) /(2 * \exp (\mathrm{i} * z))\right)=\sin z\)
by (simp add: sin_exp_eq exp_minus field_simps power2_eq_square)
have \(1-(\exp (\mathrm{i} * z)+\text { inverse }(\exp (\mathrm{i} * z)))^{2} / 4=\left(\left(\mathrm{i}-(\exp (\mathrm{i} * z))^{2} * \mathrm{i}\right) /\right.\)
\((2 * \exp (\mathrm{i} * z)))^{2}\)
by (simp add: field_simps power2_eq_square)
then have \(\operatorname{Arccos}(\cos z)=-(\mathrm{i} * \operatorname{Ln}((\exp (\mathrm{i} * z)+\operatorname{inverse}(\exp (\mathrm{i} * z))) / 2\)
```

i * csqrt (((i - (exp (i*z))}\mp@subsup{)}{}{2}*\textrm{i})/(2*\operatorname{exp}(\textrm{i}*z))\mp@subsup{)}{}{2}))

```
by (simp add: cos_exp_eq Arccos_def exp_minus power_divide)
also have \(\ldots=-(\mathrm{i} * \operatorname{Ln}((\exp (\mathrm{i} * z)+\operatorname{inverse}(\exp (\mathrm{i} * z))) / 2+\) \(\left.\left.\mathrm{i} *\left(\left(\mathrm{i}-(\exp (\mathrm{i} * z))^{2} * \mathrm{i}\right) /(2 * \exp (\mathrm{i} * z))\right)\right)\right)\)
apply (subst csqrt_square)
using assms Re_sin_pos [of z] Im_sin_nonneg [of z] Im_sin_nonneg2 [of z]
by (auto simp: * Re_sin Im_sin)
also have \(\ldots=-(\mathrm{i} * \operatorname{Ln}(\exp (\mathrm{i} * z)))\)
by (simp add: field_simps power2_eq_square)
also have \(\ldots=z\)
using assms
by (subst Complex_Transcendental.Ln_exp, auto)
finally show ?thesis.
qed
lemma Arccos_unique:
\(\llbracket \cos z=w ;\)
\(0<\operatorname{Re} z \wedge \operatorname{Re} z<p i \vee\)
```

 Rez=0^0\leqIm z\vee
 Rez=pi^Imz\leq0\rrbracket\LongrightarrowArccos w=z
 using Arccos_cos by blast
 lemma Arccos_0 [simp]: Arccos 0 = pi/2
by (rule Arccos_unique) auto
lemma Arccos_1 [simp]: Arccos 1 = 0
by (rule Arccos_unique) auto
lemma Arccos_minus1: Arccos(-1) = pi
by (rule Arccos_unique) auto
lemma has_field_derivative_Arccos:
assumes (Im z = 0\Longrightarrow |Rez|<1)
shows (Arccos has_field_derivative - inverse(sin(Arccos z))) (at z)
proof -
have }\mp@subsup{x}{}{2}\not=-1\mathrm{ for }x::\mathrm{ real
by }(\operatorname{sos}((R<1+(([~1]*A=0)+(R<1*(R<1*[\mp@subsup{x}{--}{\prime}\mp@subsup{]}{}{\wedge}2)))))
with assms have (cos (Arccos z))}\mp@subsup{)}{}{2}\not=
by (auto simp: complex_eq_iff Re_power2 Im_power2 abs_square_eq_1)
then have - \operatorname{sin}(\operatorname{Arccos}z)\not=0
by (metis cos_squared_eq diff_0_right mult_zero_left neg_0_equal_iff_equal power2_eq_square)
then have (Arccos has_field_derivative inverse(-\operatorname{sin}(\operatorname{Arccos}z))) (at z)
by (rule has_field_derivative_inverse_basic [OF DERIV_cos _ _ open_ball [of z
1]])
(auto intro: isCont_Arccos assms)
then show ?thesis
by simp
qed
declare has_field_derivative_Arcsin [derivative_intros]
declare has_field_derivative_Arcsin [THEN DERIV_chain2, derivative_intros]
lemma field_differentiable_at_Arccos:
(Im z = 0\Longrightarrow |Rez| < 1)\Longrightarrow Arccos field_differentiable at z
using field_differentiable_def has_field_derivative_Arccos by blast
lemma field_differentiable_within_Arccos:
(Im z = 0\Longrightarrow |e z| < 1)\Longrightarrow Arccos field_differentiable (at z within s)
using field_differentiable_at_Arccos field_differentiable_within_subset by blast
lemma continuous_within_Arccos:
(Im z = 0 俉 z| < 1)\Longrightarrow continuous (at z within s) Arccos
using continuous_at_imp_continuous_within isCont_Arccos by blast
lemma continuous_on_Arccos [continuous_intros]:
(\bigwedgez.z s \Longrightarrow Im z = 0 \Longrightarrow |Re z| < 1)\Longrightarrow continuous_on s Arccos
by (simp add: continuous_at_imp_continuous_on)

```
lemma holomorphic_on_Arccos: \((\bigwedge z . z \in s \Longrightarrow \operatorname{Im} z=0 \Longrightarrow|R e z|<1) \Longrightarrow\) Arccos holomorphic_on s
by (simp add: field_differentiable_within_Arccos holomorphic_on_def)

\subsection*{6.21.25 Upper and Lower Bounds for Inverse Sine and Cosine}
lemma Arcsin_bounds: \(|\operatorname{Re} z|<1 \Longrightarrow|\operatorname{Re}(\operatorname{Arcsin} z)|<\) pi/2
unfolding Re_Arcsin
by (blast intro: Re_Ln_pos_lt_imp Arcsin_range_lemma)
lemma Arccos_bounds: \(|\operatorname{Re} z|<1 \Longrightarrow 0<\operatorname{Re}(\operatorname{Arccos} z) \wedge \operatorname{Re}(\operatorname{Arccos} z)<p i\) unfolding Re_Arccos
by (blast intro!: Im_Ln_pos_lt_imp Arccos_range_lemma)
lemma Re_Arccos_bounds: \(-p i<\operatorname{Re}(\operatorname{Arccos} z) \wedge \operatorname{Re}(\operatorname{Arccos} z) \leq p i\) unfolding Re_Arccos
by (blast intro!: mpi_less_Im_Ln Im_Ln_le_pi Arccos_body_lemma)
lemma Re_Arccos_bound: \(|\operatorname{Re}(\operatorname{Arccos} z)| \leq p i\)
by (meson Re_Arccos_bounds abs_le_iff less_eq_real_def minus_less_iff)
lemma Im_Arccos_bound: \(|\operatorname{Im}(\operatorname{Arccos} w)| \leq \operatorname{cmod} w\)
proof -
have \((\operatorname{Im}(\operatorname{Arccos} w))^{2} \leq(\operatorname{cmod}(\cos (\operatorname{Arccos} w)))^{2}-(\cos (\operatorname{Re}(\operatorname{Arccos} w)))^{2}\) using norm_cos_squared [of Arccos w] real_le_abs_sinh [of Im (Arccos w)] by (simp only: abs_le_square_iff) (simp add: field_split_simps)
also have \(\ldots \leq(\operatorname{cmod} w)^{2}\) by (auto simp: cmod_power2)
finally show ?thesis using abs_le_square_iff by force
qed
lemma Re_Arcsin_bounds: \(-p i<\operatorname{Re}(\operatorname{Arcsin} z) \& \operatorname{Re}(\operatorname{Arcsin} z) \leq p i\) unfolding Re_Arcsin
by (blast intro!: mpi_less_Im_Ln Im_Ln_le_pi Arcsin_body_lemma)
lemma Re_Arcsin_bound: \(|\operatorname{Re}(\operatorname{Arcsin} z)| \leq p i\)
by (meson Re_Arcsin_bounds abs_le_iff less_eq_real_def minus_less_iff)
lemma norm_Arccos_bounded:
fixes \(w\) :: complex
shows norm \((\operatorname{Arccos} w) \leq p i+n o r m w\)
proof -
have \(\operatorname{Re}:(\operatorname{Re}(\operatorname{Arccos} w))^{2} \leq p i^{2}(\operatorname{Im}(\operatorname{Arccos} w))^{2} \leq(\operatorname{cmod} w)^{2}\)
using Re_Arccos_bound [of w] Im_Arccos_bound [of w] abs_le_square_iff by
force+
have \(\operatorname{Arccos} w \cdot \operatorname{Arccos} w \leq p i^{2}+(\operatorname{cmod} w)^{2}\)
```

 using Re by (simp add: dot_square_norm cmod_power2 [of Arccos w])
 then have \(\operatorname{cmod}(\operatorname{Arccos} w) \leq p i+\operatorname{cmod}(\cos (\operatorname{Arccos} w))\)
 apply (simp add: norm_le_square)
 by (metis dot_square_norm norm_ge_zero norm_le_square pi_ge_zero triangle_lemma)
 then show \(\operatorname{cmod}(\operatorname{Arccos} w) \leq p i+\operatorname{cmod} w\)
 by auto
 qed

```

\subsection*{6.21.26 Interrelations between Arcsin and Arccos}
```

lemma cos_Arcsin_nonzero:
assumes $z^{2} \neq 1$ shows $\cos (\operatorname{Arcsin} z) \neq 0$
proof -
have eq: $\left(\mathrm{i} * z *\left(\operatorname{csqrt}\left(1-z^{2}\right)\right)\right)^{2}=z^{2} *\left(z^{2}-1\right)$
by (simp add: algebra_simps)
have $\mathrm{i} * z *\left(\operatorname{csqrt}\left(1-z^{2}\right)\right) \neq z^{2}-1$
proof
assume i $* z *\left(\operatorname{csqrt}\left(1-z^{2}\right)\right)=z^{2}-1$
then have $\left(\mathrm{i} * z *\left(\operatorname{csqrt}\left(1-z^{2}\right)\right)\right)^{2}=\left(z^{2}-1\right)^{2}$
by simp
then have $z^{2} *\left(z^{2}-1\right)=\left(z^{2}-1\right) *\left(z^{2}-1\right)$
using eq power2_eq_square by auto
then show False
using assms by simp
qed
then have $1+\mathrm{i} * z *(\operatorname{csqrt}(1-z * z)) \neq z^{2}$
by (metis add_minus_cancel power2_eq_square uminus_add_conv_diff)
then have $2 *(1+\mathrm{i} * z *(\operatorname{csqrt}(1-z * z))) \neq 2 * z^{2}$
by (metis mult_cancel_left zero_neq_numeral)
then have $\left(\mathrm{i} * z+\operatorname{csqrt}\left(1-z^{2}\right)\right)^{2} \neq-1$
using assms
apply (simp add: power2_sum)
apply (simp add: power2_eq_square algebra_simps)
done
then show ?thesis
apply (simp add: cos_exp_eq Arcsin_def exp_minus)
apply (simp add: divide_simps Arcsin_body_lemma)
apply (metis add.commute minus_unique power2_eq_square)
done
qed
lemma sin_Arccos_nonzero:
assumes $z^{2} \neq 1$ shows $\sin (\operatorname{Arccos} z) \neq 0$
proof -
have eq: $\left(\mathrm{i} * z *\left(\operatorname{csqrt}\left(1-z^{2}\right)\right)\right)^{2}=-\left(z^{2}\right) *\left(1-z^{2}\right)$
by (simp add: algebra_simps)
have i $* z *\left(\operatorname{csqrt}\left(1-z^{2}\right)\right) \neq 1-z^{2}$
proof
assume i $* z *\left(\operatorname{csqrt}\left(1-z^{2}\right)\right)=1-z^{2}$

```
```

 then have \(\left(\mathrm{i} * z *\left(\operatorname{csqrt}\left(1-z^{2}\right)\right)\right)^{2}=\left(1-z^{2}\right)^{2}\)
 by \(\operatorname{simp}\)
 then have \(-\left(z^{2}\right) *\left(1-z^{2}\right)=\left(1-z^{2}\right) *\left(1-z^{2}\right)\)
 using eq power2_eq_square by auto
 then have \(-\left(z^{2}\right)=\left(1-z^{2}\right)\)
 using assms
 by (metis add.commute add.right_neutral diff_add_cancel mult_right_cancel)
 then show False
 using assms by simp
 qed
then have $z^{2}+\mathrm{i} * z *\left(\operatorname{csqrt}\left(1-z^{2}\right)\right) \neq 1$
by (simp add: algebra_simps)
then have $2 *\left(z^{2}+\mathrm{i} * z *\left(\operatorname{csqrt}\left(1-z^{2}\right)\right)\right) \neq 2 * 1$
by (metis mult_cancel_left2 zero_neq_numeral)
then have $\left(z+\mathrm{i} * \operatorname{csqrt}\left(1-z^{2}\right)\right)^{2} \neq 1$
using assms
by (metis Arccos_def add.commute add.left_neutral cancel_comm_monoid_add_class.diff_cancel
cos_Arccos csqrt_0 mult_zero_right)
then show ?thesis
apply (simp add: sin_exp_eq Arccos_def exp_minus)
apply (simp add: divide_simps Arccos_body_lemma)
apply (simp add: power2_eq_square)
done
qed
lemma cos_sin_csqrt:
assumes $0<\cos (\operatorname{Re} z) \vee \cos (\operatorname{Re} z)=0 \wedge \operatorname{Im} z * \sin (\operatorname{Re} z) \leq 0$
shows $\cos z=\operatorname{csqrt}\left(1-(\sin z)^{2}\right)$
proof (rule csqrt_unique [THEN sym])
show $(\cos z)^{2}=1-(\sin z)^{2}$
by (simp add: cos_squared_eq)
qed (use assms in sauto simp: Re_cos Im_cos add_pos_pos mult_le_0_iff zero_le_mult_iff〉)
lemma sin_cos_csqrt:
assumes $0<\sin (R e z) \vee \sin (R e z)=0 \wedge 0 \leq \operatorname{Im} z * \cos (R e z)$
shows $\sin z=\operatorname{csqrt}\left(1-(\cos z)^{2}\right)$
proof (rule csqrt_unique [THEN sym])
show $(\sin z)^{2}=1-(\cos z)^{2}$
by (simp add: sin_squared_eq)
qed (use assms in sauto simp: Re_sin Im_sin add_pos_pos mult_le_0_iff zero_le_mult_iff〉)
lemma Arcsin_Arccos_csqrt_pos:
$(0<\operatorname{Re} z \mid \operatorname{Re} z=0 \& 0 \leq \operatorname{Im} z) \Longrightarrow \operatorname{Arcsin} z=\operatorname{Arccos}\left(\operatorname{csqrt}\left(1-z^{2}\right)\right)$
by (simp add: Arcsin_def Arccos_def Complex.csqrt_square add.commute)
lemma Arccos_Arcsin_csqrt_pos:
$(0<\operatorname{Re} z \mid \operatorname{Re} z=0 \& 0 \leq \operatorname{Im} z) \Longrightarrow \operatorname{Arccos} z=\operatorname{Arcsin}\left(\operatorname{csqrt}\left(1-z^{2}\right)\right)$
by (simp add: Arcsin_def Arccos_def Complex.csqrt_square add.commute)

```
lemma sin_Arccos:
\(0<\operatorname{Re} z \mid \operatorname{Re} z=0 \& 0 \leq \operatorname{Im} z \Longrightarrow \sin (\operatorname{Arccos} z)=\operatorname{csqrt}\left(1-z^{2}\right)\)
by (simp add: Arccos_Arcsin_csqrt_pos)
lemma cos_Arcsin:
\(0<\operatorname{Re} z \mid \operatorname{Re} z=0 \& 0 \leq \operatorname{Im} z \Longrightarrow \cos (\operatorname{Arcsin} z)=\operatorname{csqrt}\left(1-z^{2}\right)\)
by (simp add: Arcsin_Arccos_csqrt_pos)

\subsection*{6.21.27 Relationship with Arcsin on the Real Numbers}
```

lemma Im_Arcsin_of_real:
assumes $|x| \leq 1$
shows Im $(\operatorname{Arcsin}($ of_real $x))=0$
proof -
have csqrt $\left(1-(\text { of_real } x)^{2}\right)=\left(\right.$ if $x^{\wedge} 2 \leq 1$ then sqrt $\left(1-x^{\wedge} 2\right)$ else $\mathrm{i} *$ sqrt
$\left(x^{\wedge} 2-1\right)$)
by (simp add: of_real_sqrt del: csqrt_of_real_nonneg)
then have cmod (i $*$ of_real $\left.x+\operatorname{csqrt}\left(1-\left(o f _r e a l ~ x\right)^{2}\right)\right)^{\wedge} 2=1$
using assms abs_square_le_1
by (force simp add: Complex.cmod_power2)
then have $\operatorname{cmod}\left(\mathrm{i} *\right.$ of_real $\left.x+\operatorname{csqrt}\left(1-(\text { of_real } x)^{2}\right)\right)=1$
by (simp add: norm_complex_def)
then show ?thesis
by (simp add: Im_Arcsin exp_minus)
qed
corollary Arcsin_in_Reals $[$ simp $]: z \in \mathbb{R} \Longrightarrow|\operatorname{Re} z| \leq 1 \Longrightarrow \operatorname{Arcsin} z \in \mathbb{R}$
by (metis Im_Arcsin_of_real Re_complex_of_real Reals_cases complex_is_Real_iff)
lemma arcsin_eq_Re_Arcsin:
assumes $|x| \leq 1$
shows $\arcsin x=\operatorname{Re}\left(\operatorname{Arcsin}\left(o f_{-} r e a l x\right)\right)$
unfolding arcsin_def
proof (rule the_equality, safe)
show - (pi / 2) $\leq \operatorname{Re}(\operatorname{Arcsin}($ complex_of_real $x))$
using Re_Ln_pos_le [OF Arcsin_body_lemma, of of_real x]
by (auto simp: Complex.in_Reals_norm Re_Arcsin)
next
show $\operatorname{Re}($ Arcsin $($ complex_of_real $x)) \leq p i / 2$
using Re_Ln_pos_le [OF Arcsin_body_lemma, of of_real x]
by (auto simp: Complex.in_Reals_norm Re_Arcsin)
next
show $\sin (\operatorname{Re}(\operatorname{Arcsin}($ complex_of_real $x)))=x$
using Re_sin [of Arcsin (of_real x)] Arcsin_body_lemma [of of_real x]
by (simp add: Im_Arcsin_of_real assms)
next
fix x^{\prime}
assume $-(p i / 2) \leq x^{\prime} x^{\prime} \leq p i / 2 x=\sin x^{\prime}$
then show $x^{\prime}=\operatorname{Re}\left(\operatorname{Arcsin}\left(\right.\right.$ complex_of_real $\left.\left.\left(\sin x^{\prime}\right)\right)\right)$

```
```

 unfolding sin_of_real [symmetric]
 by (subst Arcsin_sin) auto
 qed
lemma of_real_arcsin: }|x|\leq1\Longrightarrow\mathrm{ of_real(arcsin x) = Arcsin(of_real x)
by (metis Im_Arcsin_of_real add.right_neutral arcsin_eq_Re_Arcsin complex_eq mult_zero_right
of_real_0)

```

\subsection*{6.21.28 Relationship with Arccos on the Real Numbers}
lemma Im_Arccos_of_real:
assumes \(|x| \leq 1\)
shows Im \((\) Arccos \((\) of_real \(x))=0\)
proof -
have csqrt \(\left(1-(o f \text { _real } x)^{2}\right)=\left(\right.\) if \(x^{\wedge} 2 \leq 1\) then sqrt \(\left(1-x^{\wedge} 2\right)\) else \(\mathrm{i} *\) sqrt
\(\left(x^{\wedge} 2-1\right)\) )
by (simp add: of_real_sqrt del: csqrt_of_real_nonneg)
then have cmod (of_real \(x+\mathrm{i} *\) csqrt \(\left.\left(1-\left(o f \_r e a l ~ x\right)^{2}\right)\right)^{\wedge} \mathcal{D}=1\)
using assms abs_square_le_1
by (force simp add: Complex.cmod_power2)
then have \(\operatorname{cmod}\left(\right.\) of_real \(\left.x+\mathrm{i} * \operatorname{csqrt}\left(1-(\text { of_real } x)^{2}\right)\right)=1\)
by (simp add: norm_complex_def)
then show ?thesis
by (simp add: Im_Arccos exp_minus)
qed
corollary Arccos_in_Reals \([\) simp \(]: z \in \mathbb{R} \Longrightarrow|\operatorname{Re} z| \leq 1 \Longrightarrow\) Arccos \(z \in \mathbb{R}\)
by (metis Im_Arccos_of_real Re_complex_of_real Reals_cases complex_is_Real_iff)
lemma arccos_eq_Re_Arccos:
assumes \(|x| \leq 1\)
shows \(\arccos x=\operatorname{Re}(\operatorname{Arccos}(o f\) _real \(x))\)
unfolding arccos_def
proof (rule the_equality, safe)
show \(0 \leq \operatorname{Re}(\) Arccos (complex_of_real \(x))\)
using Im_Ln_pos_le [OF Arccos_body_lemma, of of_real \(x\) ]
by (auto simp: Complex.in_Reals_norm Re_Arccos)
next
show \(\operatorname{Re}(\operatorname{Arccos}(\) complex_of_real \(x)) \leq p i\)
using Im_Ln_pos_le [OF Arccos_body_lemma, of of_real x]
by (auto simp: Complex.in_Reals_norm Re_Arccos)
next
show \(\cos (\operatorname{Re}(\operatorname{Arccos}(\) complex_of_real \(x)))=x\)
using Re_cos [of Arccos (of_real x)] Arccos_body_lemma [of of_real x]
by (simp add: Im_Arccos_of_real assms)
next
fix \(x^{\prime}\)
assume \(0 \leq x^{\prime} x^{\prime} \leq p i x=\cos x^{\prime}\)
then show \(x^{\prime}=\operatorname{Re}\left(\operatorname{Arccos}\left(\right.\right.\) complex_of_real \(\left.\left.\left(\cos x^{\prime}\right)\right)\right)\)
```

 unfolding cos_of_real [symmetric]
 by (subst Arccos_cos) auto
 qed

```
lemma of_real_arccos: \(|x| \leq 1 \Longrightarrow\) of_real \((\arccos x)=\operatorname{Arccos}\left(o f \_r e a l ~ x\right)\)
by (metis Im_Arccos_of_real add.right_neutral arccos_eq_Re_Arccos complex_eq mult_zero_right of_real_0)

\subsection*{6.21.29 Some interrelationships among the real inverse trig functions}
```

lemma arccos_arctan:
assumes $-1<x x<1$
shows $\arccos x=\operatorname{pi} / 2-\arctan \left(x / \operatorname{sqrt}\left(1-x^{2}\right)\right)$
proof -
have $\arctan \left(x / \operatorname{sqrt}\left(1-x^{2}\right)\right)-(p i / 2-\arccos x)=0$
proof (rule sin_eq_0_pi)
show $-p i<\arctan \left(x / \operatorname{sqrt}\left(1-x^{2}\right)\right)-(p i / 2-\arccos x)$
using arctan_lbound [of $x / \operatorname{sqrt}\left(1-x^{2}\right)$] arccos_bounded [of $\left.x\right]$ assms
by (simp add: algebra_simps)
next
show $\arctan \left(x / \operatorname{sqrt}\left(1-x^{2}\right)\right)-(p i / 2-\arccos x)<p i$
using arctan_ubound $\left[\right.$ of $x / \operatorname{sqrt}\left(1-x^{2}\right)$] arccos_bounded [of $\left.x\right]$ assms
by (simp add: algebra_simps)
next
show $\sin \left(\arctan \left(x / \operatorname{sqrt}\left(1-x^{2}\right)\right)-(\right.$ pi/2 $\left.-\arccos x)\right)=0$
using assms
by (simp add: algebra_simps sin_diff cos_add sin_arccos sin_arctan cos_arctan
power2_eq_square square_eq_1_iff)
qed
then show ?thesis
by simp
qed
lemma arcsin_plus_arccos:
assumes $-1 \leq x x \leq 1$
shows $\arcsin x+\arccos x=p i / 2$
proof -
have $\arcsin x=p i / 2-\arccos x$
apply (rule sin_inj_pi)
using assms arcsin [OF assms] arccos [OF assms]
by (auto simp: algebra_simps sin_diff)
then show ?thesis
by (simp add: algebra_simps)
qed
lemma arcsin_arccos_eq: $-1 \leq x \Longrightarrow x \leq 1 \Longrightarrow \arcsin x=p i / 2-\arccos x$
using arcsin_plus_arccos by force

```
```

lemma arccos_arcsin_eq: $-1 \leq x \Longrightarrow x \leq 1 \Longrightarrow \arccos x=p i / 2-\arcsin x$
using arcsin_plus_arccos by force
lemma arcsin_arctan: $-1<x \Longrightarrow x<1 \Longrightarrow \arcsin x=\arctan (x / \operatorname{sqrt}(1-$
x^{2}))
by (simp add: arccos_arctan arcsin_arccos_eq)
lemma csqrt_1_diff_eq: csqrt $\left(1-(o f \text { _real } x)^{2}\right)=\left(\right.$ if $x^{\wedge} 2 \leq 1$ then sqrt $\left(1-x^{\wedge}\right.$ 2 $)$
else i * sqrt ($x^{\wedge} 2-1$))
by (simp add: of_real_sqrt del: csqrt_of_real_nonneg)
lemma arcsin_arccos_sqrt_pos: $0 \leq x \Longrightarrow x \leq 1 \Longrightarrow \arcsin x=\arccos (\operatorname{sqrt}(1-$
x^{2}))
apply (simp add: abs_square_le_1 arcsin_eq_Re_Arcsin arccos_eq_Re_Arccos)
apply (subst Arcsin_Arccos_csqrt_pos)
apply (auto simp: power_le_one csqrt_1_diff_eq)
done

```
lemma arcsin_arccos_sqrt_neg: \(-1 \leq x \Longrightarrow x \leq 0 \Longrightarrow \arcsin x=-\arccos (\operatorname{sqrt}(1\)
\(\left.-x^{2}\right)\) )
    using arcsin_arccos_sqrt_pos [of \(-x\) ]
    by (simp add: arcsin_minus)
lemma arccos_arcsin_sqrt_pos: \(0 \leq x \Longrightarrow x \leq 1 \Longrightarrow \arccos x=\arcsin (\operatorname{sqrt}(1-\)
\(x^{2}\) )
    apply (simp add: abs_square_le_1 arcsin_eq_Re_Arcsin arccos_eq_Re_Arccos)
    apply (subst Arccos_Arcsin_csqrt_pos)
    apply (auto simp: power_le_one csqrt_1_diff_eq)
    done
lemma arccos_arcsin_sqrt_neg: \(-1 \leq x \Longrightarrow x \leq 0 \Longrightarrow\) arccos \(x=p i-a r c-\) \(\sin \left(\operatorname{sqrt}\left(1-x^{2}\right)\right)\)
using arccos_arcsin_sqrt_pos [of \(-x\) ]
by (simp add: arccos_minus)

\subsection*{6.21.30 Continuity results for arcsin and arccos}
lemma continuous_on_Arcsin_real [continuous_intros]:
continuous_on \(\{w \in \mathbb{R} .|R e w| \leq 1\}\) Arcsin
proof -
have continuous_on \(\{w \in \mathbb{R} .|R e w| \leq 1\}(\lambda x\). complex_of_real \((\arcsin (\operatorname{Re} x)))\) \(=\) continuous_on \(\{w \in \mathbb{R} . \mid\) Re \(w \mid \leq 1\}\) ( \(\lambda\) x. complex_of_real (Re (Arcsin (of_real \((\operatorname{Re} x))))\) )
by (rule continuous_on_cong [OF refl]) (simp add: arcsin_eq_Re_Arcsin)
also have \(\ldots=\) ?thesis
by (rule continuous_on_cong [OF refl]) simp
finally show ?thesis using continuous_on_arcsin [OF continuous_on_Re [OF continuous_on_id], of
```

$\{w \in \mathbb{R} .|R e w| \leq 1\}]$
continuous_on_of_real
by fastforce
qed

```
lemma continuous_within_Arcsin_real:
    continuous (at \(z\) within \(\{w \in \mathbb{R}\). \(\mid\) Re \(w \mid \leq 1\}\) ) Arcsin
proof (cases \(z \in\{w \in \mathbb{R} .|R e w| \leq 1\}\) )
    case True then show ?thesis
        using continuous_on_Arcsin_real continuous_on_eq_continuous_within
        by blast
next
    case False
    with closed_real_abs_le [of 1] show ?thesis
        by (rule continuous_within_closed_nontrivial)
qed
lemma continuous_on_Arccos_real:
        continuous_on \(\{w \in \mathbb{R} . \mid\) Re \(w \mid \leq 1\}\) Arccos
proof -
    have continuous_on \(\{w \in \mathbb{R} .|R e w| \leq 1\}(\lambda x\). complex_of_real \((\arccos (\operatorname{Re} x)))\)
\(=\)
        continuous_on \(\{w \in \mathbb{R} .|R e w| \leq 1\}\) ( \(\lambda\) x. complex_of_real (Re (Arccos (of_real
( \(\operatorname{Re} x)\) ))))
        by (rule continuous_on_cong [OF refl]) (simp add: arccos_eq_Re_Arccos)
    also have ... = ?thesis
        by (rule continuous_on_cong [OF refl]) simp
    finally show ?thesis
        using continuous_on_arccos [OF continuous_on_Re [OF continuous_on_id], of
\(\{w \in \mathbb{R}\). \(\mid\) Re \(w \mid \leq 1\}]\)
            continuous_on_of_real
        by fastforce
qed
lemma continuous_within_Arccos_real:
        continuous (at \(z\) within \(\{w \in \mathbb{R} .|R e w| \leq 1\}\) ) Arccos
proof (cases \(z \in\{w \in \mathbb{R}\). \(\mid\) Re \(w \mid \leq 1\}\) )
    case True then show ?thesis
        using continuous_on_Arccos_real continuous_on_eq_continuous_within
        by blast
next
    case False
    with closed_real_abs_le [of 1] show ?thesis
        by (rule continuous_within_closed_nontrivial)
qed
lemma sinh_ln_complex: \(x \neq 0 \Longrightarrow \sinh (\ln x::\) complex \()=(x-\) inverse \(x) / 2\)
    by (simp add: sinh_def exp_minus scaleR_conv_of_real exp_of_real)
lemma cosh_ln_complex: \(x \neq 0 \Longrightarrow \cosh (\ln x::\) complex \()=(x+\) inverse \(x) / 2\) by (simp add: cosh_def exp_minus scaleR_conv_of_real)
lemma tanh_ln_complex: \(x \neq 0 \Longrightarrow \tanh (\ln x::\) complex \()=\left(x^{\wedge} 2-1\right) /\left(x^{\wedge}\right.\) \(2+1)\)
by (simp add: tanh_def sinh_ln_complex cosh_ln_complex divide_simps power2_eq_square)

\subsection*{6.21.31 Roots of unity}
```

theorem complex_root_unity:
fixes $j:: n a t$
assumes $n \neq 0$
shows $\exp (2 * \text { of_real pi } * \mathrm{i} * \text { of_nat } j / \text { of_nat } n)^{\wedge} n=1$
proof -
have *: of_nat j * (complex_of_real pi * 2) = complex_of_real (2 * real j * pi)
by (simp)
then show ?thesis
apply (simp add: exp_of_nat_mult [symmetric] mult_ac exp_Euler)
apply (simp only: * cos_of_real sin_of_real)
apply simp
done
qed
lemma complex_root_unity_eq:
fixes $j:: n a t$ and $k:: n a t$
assumes $1 \leq n$
shows $(\exp (2 *$ of_real pi $* \mathrm{i} *$ of_nat $j /$ of_nat $n)=\exp (2 *$ of_real pi $* \mathrm{i} *$
of_nat k / of_nat n)
$\longleftrightarrow j \bmod n=k \bmod n)$
proof -
have $\left(\exists z::\right.$ int. $\mathrm{i} *\left(\right.$ of_nat $j *\left(o f _\right.$real pi * 2 $\left.)\right)=$
$\mathrm{i} *\left(\right.$ of_nat $\left.k *\left(o f _r e a l p i * 2\right)\right)+\mathrm{i} *\left(o f _i n t z *\left(o f _n a t n *\left(o f _r e a l ~ p i\right.\right.\right.$

* 2)))) \longleftrightarrow
$(\exists z::$ int. of_nat $j *(\mathrm{i} *($ of_real pi $* 2))=$
(of_nat $k+$ of_nat $n *$ of_int $\left.z) *\left(\mathrm{i} *\left(o f _r e a l ~ p i * 2\right)\right)\right)$
by (simp add: algebra_simps)
also have $\ldots \longleftrightarrow\left(\exists z:: i n t\right.$. of_nat $j=o f _n a t k+o f _n a t n *\left(o f _i n t z::\right.$ complex $\left.)\right)$
by simp
also have $\ldots \longleftrightarrow\left(\exists z::\right.$ int. of_nat $j=o f _n a t k+$ of_nat $\left.n * z\right)$
by (metis (mono_tags, hide_lams) of_int_add of_int_eq_iff of_int_mult of_int_of_nat_eq)
also have $\ldots \longleftrightarrow$ int j mod int $n=$ int k mod int n
by (auto simp: mod_eq_dvd_iff dvd_def algebra_simps)
also have $\ldots \longleftrightarrow j \bmod n=k \bmod n$
by (metis of_nat_eq_iff zmod_int)
finally have $\left(\exists z . \mathrm{i} *\left(\right.\right.$ of_nat $\left.j *\left(o f _r e a l ~ p i * 2\right)\right)=$
$\mathrm{i} *\left(\right.$ of_nat $k *($ of_real pi * 2) $)+\mathrm{i} *\left(o f _i n t z *\left(o f _n a t n *\left(o f _r e a l ~ p i\right.\right.\right.$
* 2)))) $\longleftrightarrow j \bmod n=k \bmod n$.
note $*=$ this
show ?thesis

```
```

 using assms
 by (simp add: exp_eq field_split_simps *)
 qed
corollary bij_betw_roots_unity:
bij_betw (\lambdaj. exp(2 * of_real pi * i * of_nat j / of_nat n))
{..<n} {exp(2 * of_real pi*i * of_nat j / of_nat n)|j.j<n}
by (auto simp: bij_betw_def inj_on_def complex_root_unity_eq)
lemma complex_root_unity_eq_1:
fixes j::nat and k::nat
assumes 1\leqn
shows exp(2 * of_real pi*i i of_nat j / of_nat n)=1\longleftrightarrowndvdj
proof -
have 1 = exp(2 * of_real pi* i *(of_nat n / of_nat n))
using assms by simp
then have exp(2 * of_real pi* i * (of_nat j / of_nat n))=1\longleftrightarrowj mod n=n
mod n
using complex_root_unity_eq [of n j n] assms
by simp
then show ?thesis
by auto
qed
lemma finite_complex_roots_unity_explicit:
finite {exp(2 * of_real pi * i * of_nat j / of_nat n)| j::nat. j < n}
by simp
lemma card_complex_roots_unity_explicit:
card {exp(2 * of_real pi* i * of_nat j / of_nat n)| j::nat. j<n} = n
by (simp add: Finite_Set.bij_betw_same_card [OF bij_betw_roots_unity, symmet-
ric])
lemma complex_roots_unity:
assumes 1\leqn
shows {z::complex. z}\mp@subsup{|}{}{\wedge}n=1}={\operatorname{exp}(2*\mathrm{ of_real pi * i * of_nat j / of_nat n)|
j. j<n}
apply (rule Finite_Set.card_seteq [symmetric])
using assms
apply (auto simp: card_complex_roots_unity_explicit finite_roots_unity complex_root_unity
card_roots_unity)
done
lemma card_complex_roots_unity: 1 \leqn\Longrightarrowcard {z::complex. z^n = 1}=n
by (simp add: card_complex_roots_unity_explicit complex_roots_unity)
lemma complex_not_root_unity:
1\leqn\Longrightarrow\existsu::complex. norm u=1^u^n\not=1
apply (rule_tac x=exp (of_real pi*i * of_real (1/n)) in exI)

```
apply (auto simp: Re_complex_div_eq_0 exp_of_nat_mult [symmetric] mult_ac exp_Euler) done
end

\subsection*{6.22 Harmonic Numbers}
theory Harmonic_Numbers
imports
Complex_Transcendental
Summation_Tests

\section*{begin}

The definition of the Harmonic Numbers and the Euler-Mascheroni constant.
Also provides a reasonably accurate approximation of \(\ln 2\) and the EulerMascheroni constant.

\subsection*{6.22.1 The Harmonic numbers}
definition harm \(::\) nat \(\Rightarrow{ }^{\prime} a\) :: real_normed_field where harm \(n=\left(\sum k=1 . . n\right.\). inverse (of_nat \(\left.\left.k\right)\right)\)
lemma harm_altdef: harm \(n=\left(\sum k<n\right.\). inverse \((\) of_nat \((\) Suc \(\left.k))\right)\) unfolding harm_def by (induction n) simp_all
lemma harm_Suc: harm (Suc \(n\) ) \(=\) harm \(n+\) inverse (of_nat (Suc \(n\) ))
by (simp add: harm_def)
lemma harm_nonneg: harm \(n \geq(0:: ' a\) :: \{real_normed_field,linordered_field \(\})\)
unfolding harm_def by (intro sum_nonneg) simp_all
lemma harm_pos: \(n>0 \Longrightarrow\) harm \(n>(0::\) ' \(a::\{\) real_normed_field,linordered_field \(\})\)
unfolding harm_def by (intro sum_pos) simp_all

by (simp add: harm_def sum_mono2)
lemma of_real_harm: of_real (harm n) \(=\) harm \(n\) unfolding harm_def by simp
lemma abs_harm [simp]: (abs (harm n) :: real) = harm \(n\) using harm_nonneg[of \(n]\) by (rule abs_of_nonneg)
lemma norm_harm: norm (harm n) \(=\) harm \(n\)
by (subst of_real_harm [symmetric]) (simp add: harm_nonneg)
lemma harm_expand:
harm \(0=0\)
```

 \(\operatorname{harm}(\) Suc 0\()=1\)
 harm \((\) numeral \(n)=\) harm (pred_numeral \(n)+\operatorname{inverse}(\) numeral \(n)\)
 proof -
have numeral $n=$ Suc (pred_numeral n) by simp
also have harm ... = harm (pred_numeral n) + inverse (n umeral n)
by (subst harm_Suc, subst numeral_eq_Suc[symmetric]) simp
finally show harm (numeral n) harm (pred_numeral n) + inverse (numeral
$n)$.
qed (simp_all add: harm_def)

```

```

proof -
have convergent $(\lambda n$. norm $(h a r m n:: ' a)) \longleftrightarrow$
convergent (harm :: nat \Rightarrow real) by (simp add: norm_harm)
also have $\ldots \longleftrightarrow$ convergent $\left(\lambda n . \sum k=\right.$ Suc $0 . . S u c n$. inverse (of_nat k) :: real)
unfolding harm_def[abs_def] by (subst convergent_Suc_iff) simp_all
also have $\ldots \longleftrightarrow$ convergent $\left(\lambda n . \sum k \leq n\right.$. inverse (of_nat (Suc k)) :: real)
by (subst sum.shift_bounds_cl_Suc_ivl) (simp add: atLeast0AtMost)
also have $\ldots \longleftrightarrow$ summable (λn. inverse (of_nat n) :: real)
by (subst summable_Suc_iff [symmetric]) (simp add: summable_iff_convergent')
also have $\neg .$. by (rule not_summable_harmonic)
finally show ?thesis by (blast dest: convergent_norm)
qed
lemma harm_pos_iff [simp]: harm $n>(0$:: ' a :: \{real_normed_field,linordered_field\})
$\longleftrightarrow n>0$
by (rule iffI, cases n, simp add: harm_expand, simp, rule harm_pos)
lemma $l n_{-}$diff_le_inverse:
assumes $x \geq(1::$ real $)$
shows $\ln (x+1)-\ln x<1 / x$
proof -
from assms have $\exists z>x . z<x+1 \wedge \ln (x+1)-\ln x=(x+1-x) *$
inverse z
by (intro MVT2) (auto intro!: derivative_eq_intros simp: field_simps)
then obtain z where $z: z>x z<x+1 \ln (x+1)-\ln x=$ inverse z by
auto
have $\ln (x+1)-\ln x=$ inverse z by fact
also from $z(1,2)$ assms have $\ldots<1 / x$ by (simp add: field_simps)
finally show ?thesis .
qed
lemma ln_le_harm: $\ln ($ real $n+1) \leq($ harm $n::$ real $)$
proof (induction n)
fix n assume $I H: \ln ($ real $n+1) \leq$ harm n
have $\ln ($ real $($ Suc $n)+1)=\ln ($ real $n+1)+(\ln ($ real $n+2)-\ln ($ real $n+$
1)) by simp
also have $(\ln ($ real $n+2)-\ln ($ real $n+1)) \leq 1 / \operatorname{real}($ Suc $n)$
using ln_diff_le_inverse[of real $n+1$] by (simp add: add_ac)

```
```

also note $I H$
also have harm $n+1 /$ real (Suc n) $=$ harm (Suc n) by (simp add: harm_Suc
field_simps)
finally show $\ln ($ real $(S u c n)+1) \leq \operatorname{harm}(S u c n)$ by $-\operatorname{simp}$
qed (simp_all add: harm_def)
lemma harm_at_top: filterlim (harm :: nat \Rightarrow real) at_top sequentially
proof (rule filterlim_at_top_mono)
show eventually (λ n. harm $n \geq \ln ($ real (Suc $n))$) at_top

```

```

 show filterlim \((\lambda n\). ln (real (Suc \(n)\))) at_top sequentially
 by (intro filterlim_compose[OF ln_at_top] filterlim_compose[OF filterlim_real_sequentially]
 filterlim_Suc)
 qed

```

\subsection*{6.22.2 The Euler-Mascheroni constant}

The limit of the difference between the partial harmonic sum and the natural logarithm (approximately 0.577216). This value occurs e.g. in the definition of the Gamma function.
definition euler_mascheroni :: 'a :: real_normed_algebra_1 where euler_mascheroni \(=\) of_real \((\lim (\lambda n\). harm \(n-\ln (\) of_nat \(n)))\)
lemma of_real_euler_mascheroni [simp]: of_real euler_mascheroni \(=\) euler_mascheroni by (simp add: euler_mascheroni_def)
lemma harm_ge_ln: harm \(n \geq \ln (\) real \(n+1)\)
proof -
have \(\ln (n+1)=\left(\sum j<n . \ln (\operatorname{real}(\operatorname{Suc} j+1))-\ln (\operatorname{real}(j+1))\right)\)
by (subst sum_lessThan_telescope) auto
also have \(\ldots \leq\left(\sum j<n .1 /(S u c j)\right)\)
proof (intro sum_mono, clarify)
fix \(j\) assume \(j: j<n\)
have \(\exists \xi . \xi>\operatorname{real} j+1 \wedge \xi<\operatorname{real} j+2 \wedge\)
\(\ln (\) real \(j+2)-\ln (\) real \(j+1)=(\) real \(j+2-(\operatorname{real} j+1)) *(1 / \xi)\)
by (intro MVT2) (auto intro!: derivative_eq_intros)
then obtain \(\xi\) :: real
where \(\xi: \xi \in\{\) real \(j+1\)..real \(j+2\} \ln (\) real \(j+2)-\ln (\) real \(j+1)=1\)
/ \(\xi\)
by auto
note \(\xi(2)\)
also have \(1 / \xi \leq 1 /(\) Suc \(j)\)
using \(\xi(1)\) by (auto simp: field_simps)
finally show \(\ln (\) real \((\) Suc \(j+1))-\ln (\operatorname{real}(j+1)) \leq 1 /(\) Suc \(j)\)
by (simp add: add_ac)
qed
also have ... = harm \(n\)
by (simp add: harm_altdef field_simps)
finally show ?thesis by (simp add: add_ac)

\section*{qed}
```

lemma decseq_harm_diff_ln: decseq (λ n. harm (Suc n) - ln (Suc n))
proof (rule decseq_SucI)
fix m :: nat
define n where $n=S u c m$
have $n>0$ by (simp add: $n_{-} d e f$)
have convex_on $\{0<.\}.(\lambda x$:: real. $-\ln x)$
by (rule convex_on_reall $\left[\right.$ where $\left.\left.f^{\prime}=\lambda x .-1 / x\right]\right)$
(auto intro!: derivative_eq_intros simp: field_simps)
hence $(-1 /(n+1)) *($ real $n-$ real $(n+1)) \leq(-\ln ($ real $n))-(-\ln ($ real
$(n+1))$)
using $\langle n>0\rangle$ by (intro convex_on_imp_above_tangent $[$ where $A=\{0<.\}$.$])$
(auto intro!: derivative_eq_intros simp: interior_open)
thus harm (Suc n) - ln (Suc n) \leq harm $n-\ln n$
by (auto simp: harm_Suc field_simps)
qed
lemma euler_mascheroni_sequence_nonneg:
assumes $n>0$
shows harm $n-\ln ($ real $n) \geq(0::$ real $)$
proof -
have $\ln ($ real $n) \leq \ln ($ real $n+1)$
using assms by simp
also have $\ldots \leq \operatorname{harm} n$
by (rule harm_ge_ln)
finally show? ?thesis by simp
qed

```
lemma euler_mascheroni_convergent: convergent ( \(\lambda n\). harm \(n-\ln n)\)
proof -
    have \(\operatorname{harm}(\) Suc \(n)-\ln (\operatorname{real}(\) Suc \(n)) \geq 0\) for \(n::\) nat
        using euler_mascheroni_sequence_nonneg[of Suc n] by simp
    hence convergent ( \(\lambda n\). harm (Suc n) \(-\ln (\) Suc \(n)\) )
        by (intro Bseq_monoseq_convergent decseq_bounded \([\) of _ 0 ] decseq_harm_diff_ln
decseq_imp_monoseq)
            auto
    thus ?thesis
        by (subst (asm) convergent_Suc_iff)
qed
lemma euler_mascheroni_sequence_decreasing:
    \(m>0 \Longrightarrow m \leq n \Longrightarrow\) harm \(n-l n(\) of_nat \(n) \leq\) harm \(m-l n\) (of_nat \(m::\)
real)
    using decseq \(D[\) OF decseq_harm_diff_ln, of \(m-1 n-1]\) by simp
lemma euler_mascheroni_LIMSEQ:
    ( \(\lambda n\). harm \(n-l n\left(o f \_n a t ~ n\right)::\) real \() \longrightarrow\) euler_mascheroni
    unfolding euler_mascheroni_def
by (simp add: convergent_LIMSEQ_iff [symmetric] euler_mascheroni_convergent)
```

lemma euler_mascheroni_LIMSEQ_of_real:

```
```

 \(\left(\lambda n\right.\). of_real \(\left(\right.\) harm \(\left.\left.n-l n\left(o f _n a t ~ n\right)\right)\right) \longrightarrow\)
    ```
        (euler_mascheroni :: 'a :: \{real_normed_algebra_1, topological_space\})
proof -
    have \((\lambda n\). of_real \((\) harm \(n-\ln (\) of_nat \(n))) \longrightarrow\) (of_real (euler_mascheroni)
:: 'a)
    by (intro tendsto_of_real euler_mascheroni_LIMSEQ)
    thus ?thesis by simp
qed
lemma euler_mascheroni_sum_real:
    \(\left(\lambda n\right.\). inverse \((\) of_nat \((n+1))+\ln (\) of_nat \(\left.(n+1))-\ln \left(o f \_n a t(n+2)\right):: ~ r e a l\right)\)
        sums euler_mascheroni
    using sums_add [OF telescope_sums[OF LIMSEQ_Suc[OF euler_mascheroni_LIMSEQ]]
                            telescope_sums'[OF LIMSEQ_inverse_real_of_nat]]
    by (simp_all add: harm_def algebra_simps)
lemma euler_mascheroni_sum:
    \(\left(\lambda n\right.\). inverse \(\left(o f_{-} n a t(n+1)\right)+\) of_real \(\left(\right.\) ln \(\left.\left(o f \_n a t(n+1)\right)\right)-\) of_real (ln (of_nat
\((n+2))))\)
        sums (euler_mascheroni :: 'a :: \{banach, real_normed_field \(\}\) )
proof -
    have \((\lambda n\). of_real (inverse (of_nat \((n+1))+\ln \left(o f \_n a t(n+1)\right)-l n\left(o f \_n a t\right.\)
\((n+2)))\) )
        sums (of_real euler_mascheroni :: 'a :: \{banach, real_normed_field \})
        by (subst sums_of_real_iff) (rule euler_mascheroni_sum_real)
    thus ?thesis by simp
qed
theorem alternating_harmonic_series_sums: \(\left(\lambda k .(-1)^{\wedge} k /\right.\) real_of_nat (Suc \(\left.\left.k\right)\right)\)
sums ln 2
```

proof -

```
    let ?f \(=\lambda n\). harm \(n-l n(\) real_of_nat \(n)\)
    let \(? g=\lambda n\). if even \(n\) then 0 else (2::real)
    let ?em \(=\lambda n\). harm \(n-l n\left(r e a l \_o f \_n a t ~ n\right) ~\)
    have eventually ( \(\lambda\) n. ?em \((2 * n)-\) ?em \(n+\ln 2=\left(\sum k<2 * n\right.\). \((-1)^{\wedge} k /\)
real_of_nat (Suc k))) at_top
    using eventually_gt_at_top [of \(0::\) nat \(]\)
    proof eventually_elim
    fix \(n::\) nat assume \(n: n>0\)
    have \(\left(\sum k<2 * n .(-1)^{\wedge} k / r e a l_{-} o f_{-} n a t(S u c k)\right)=\)
                            ( \(\sum k<2 * n .\left((-1)^{\wedge} k+? g k\right) /\) of_nat \(\left.(S u c k)\right)-\left(\sum k<2 * n . ? g k /\right.\)
of_nat (Suc k))
        by (simp add: sum.distrib algebra_simps divide_inverse)
    also have \(\left(\sum k<2 * n .\left((-1)^{\wedge} k+? g k\right) / r e a l \_o f \_n a t(S u c k)\right)=h a r m(2 * n)\)
            unfolding harm_altdef by (intro sum.cong) (auto simp: field_simps)
    also have \(\left(\sum k<2 * n\right.\). ?g \(k /\) real_of_nat \((\) Suc \(\left.k)\right)=\left(\sum k \mid k<2 * n \wedge\right.\) odd \(k\). ?g
```

k / of_nat (Suc k))
by (intro sum.mono_neutral_right) auto
also have ... = (\sumk|k<2*n ^ odd k. 2 / (real_of_nat (Suc k)))
by (intro sum.cong) auto
also have (\sumk|k<2*n ^ odd k. 2 / (real_of_nat (Suc k))) = harm n
unfolding harm_altdef
by (intro sum.reindex_cong[of \lambdan. 2*n+1]) (auto simp: inj_on_def field_simps
elim!: oddE)
also have harm (2*n) - harm n =?em (2*n) - ?em n + ln 2 using n
by (simp_all add: algebra_simps ln_mult)
finally show ?em (2*n) - ?em n + ln 2 = (\sumk<2*n. (-1)^k / real_of_nat
(Suc k)) ..
qed
moreover have (}\lambdan\mathrm{ . ?em (2*n) - ?em n + ln (2::real))
\longrightarrow ~ e u l e r _ m a s c h e r o n i ~ - ~ e u l e r _ m a s c h e r o n i ~ + ~ l n ~ 2 ~
by (intro tendsto_intros euler_mascheroni_LIMSEQ filterlim_compose[OF eu-
ler_mascheroni_LIMSEQ]
filterlim_subseq) (auto simp: strict_mono_def)
hence (}\lambdan\mathrm{ . ?em (2*n) - ?em n + ln (2::real)) —ln 2 by simp
ultimately have (\lambdan. (\sumk<2*n. (-1) ^k / real_of_nat (Suc k)))\longrightarrowln 2
by (blast intro: Lim_transform_eventually)
moreover have summable (}\lambdak.(-1)^k*\mathrm{ inverse (real_of_nat (Suc k)))
using LIMSEQ_inverse_real_of_nat
by (intro summable_Leibniz(1) decseq_imp_monoseq decseq_SucI) simp_all
hence A:(\lambdan. \sumk<n. (-1)^k / real_of_nat (Suc k))\longrightarrow \longrightarrow (\sumk. (-1)^k /
real_of_nat (Suc k))
by (simp add: summable_sums_iff divide_inverse sums_def)
from filterlim_compose[OF this filterlim_subseq[of (*) (2::nat)]]
have (\lambdan. \sumk<2*n. (-1)^k / real_of_nat (Suc k))\longrightarrow(\sumk. (-1) `^k /
real_of_nat (Suc k))
by (simp add: strict_mono_def)
ultimately have (\sumk. (- 1) ^ k / real_of_nat (Suc k)) = ln 2 by (intro
LIMSEQ_unique)
with A show ?thesis by (simp add: sums_def)
qed
lemma alternating_harmonic_series_sums':
(}\lambdak\mathrm{ . inverse (real_of_nat (2*k+1)) - inverse (real_of_nat (2*k+2))) sums ln 2
unfolding sums_def
proof (rule Lim_transform_eventually)
show (\lambdan. \sumk<2*n. (-1)^k / (real_of_nat (Suc k)))\longrightarrowln 2
using alternating_harmonic_series_sums unfolding sums_def
by (rule filterlim_compose) (rule mult_nat_left_at_top, simp)
show eventually (\lambdan. (\sumk<2*n. (-1)^k / (real_of_nat (Suc k)))}
(\sumk<n.inverse (real_of_nat (2*k+1)) - inverse (real_of_nat (2*k+2))))
sequentially
proof (intro always_eventually allI)
fix n :: nat

```
```

 show }(\sumk<2*n.(-1)^k / (real_of_nat (Suc k)))
 (\sumk<n. inverse (real_of_nat (2*k+1)) - inverse (real_of_nat (2*k+2)))
 by (induction n) (simp_all add: inverse_eq_divide)
 qed
 qed

```

\subsection*{6.22.3 Bounds on the Euler-Mascheroni constant}
lemma ln_inverse_approx_le:
assumes \((x:\) :real \()>0 a>0\)
shows \(\ln (x+a)-\ln x \leq a *(\) inverse \(x+\operatorname{inverse}(x+a)) / \mathscr{2}\) (is \(\leq ? A)\)
proof -
define \(f^{\prime}\) where \(f^{\prime}=(\) inverse \((x+a)-\) inverse \(x) / a\)
let ? \(f=\lambda t\). \((t-x) * f^{\prime}+\) inverse \(x\)
let ? \(F=\lambda t .(t-x)^{\wedge} 2 * f^{\prime} / 2+t *\) inverse \(x\)
have deriv: \(\exists D\). (( \(\lambda x\). ? \(F x-\ln x)\) has_field_derivative \(D)(\) at \(\xi) \wedge D \geq 0\) if \(\xi \geq x \xi \leq x+a\) for \(\xi\)
proof -
from that assms have \(t: 0 \leq(\xi-x) / a(\xi-x) / a \leq 1\) by simp_all
have inverse \(\xi=\) inverse \(\left((1-(\xi-x) / a) *_{R} x+((\xi-x) / a) *_{R}(x+\right.\) a) \()\left(\right.\) is \(\left._{-}=? A\right)\) using assms by (simp add: field_simps)
also from assms have convex_on \(\{x . . x+a\}\) inverse by (intro convex_on_inverse) auto
from convex_onD_Icc \([\) OF this _ \(t]\) assms have \(? A \leq(1-(\xi-x) / a) *\) inverse \(x+(\xi-x) / a *\) inverse \((x+a)\) by \(\operatorname{simp}\)
also have \(\ldots=(\xi-x) * f^{\prime}+\) inverse \(x\) using assms by (simp add: \(f^{\prime}\) _def divide_simps) (simp add: field_simps)
finally have ?f \(\xi-1 / \xi \geq 0\) by (simp add: field_simps)
moreover have \(((\lambda x\). ? \(F x-\ln x)\) has_field_derivative ?f \(\xi-1 / \xi)(\) at \(\xi)\) using that assms by (auto intro!: derivative_eq_intros simp: field_simps)
ultimately show ?thesis by blast
qed
have ? \(F x-\ln x \leq ? F(x+a)-\ln (x+a)\)
by (rule DERIV_nonneg_imp_nondecreasing \(\left[\right.\) of \(x x+a, O F_{-}\)deriv]) (use assms in auto)
thus ?thesis
using assms by (simp add: \(f^{\prime}\) _def divide_simps) (simp add: algebra_simps power2_eq_square)?
qed
lemma ln_inverse_approx_ge:
assumes \((x:\) :real \()>0 x<y\)
shows \(\ln y-\ln x \geq 2 *(y-x) /(x+y)\left(\right.\) is \(\left._{-} \geq ? A\right)\)
proof -
define \(m\) where \(m=(x+y) / 2\)
define \(f^{\prime}\) where \(f^{\prime}=-\) inverse \(\left(m^{\wedge} 2\right)\)
```

 from assms have \(m: m>0\) by (simp add: \(m_{-} d e f\))
 let ? \(F=\lambda t .(t-m)^{\wedge} 2 * f^{\prime} / 2+t / m\)
 let ?f \(=\lambda t .(t-m) * f^{\prime}+\) inverse \(m\)
 have deriv: \(\exists D .((\lambda x . \ln x-? F x)\) has_field_derivative \(D)(\) at \(\xi) \wedge D \geq 0\)
 if \(\xi \geq x \xi \leq y\) for \(\xi\)
 proof -
 from that assms have inverse \(\xi-\) inverse \(m \geq f^{\prime} *(\xi-m)\)
 by (intro convex_on_imp_above_tangent \([\) of \(\{0<.\}\).\(] convex_on_inverse)\)
 (auto simp: m_def interior_open \(f^{\prime}\) _def power2_eq_square intro!: deriva-
 tive_eq_intros)
hence $1 / \xi-$?f $\xi \geq 0$ by (simp add: field_simps f^{\prime} _def)
moreover have $((\lambda x . \ln x-$? $F x)$ has_field_derivative $1 / \xi-$?f $\xi)($ at $\xi)$
using that assms m by (auto intro!: derivative_eq_intros simp: field_simps)
ultimately show ?thesis by blast
qed
have $\ln x-? F x \leq \ln y-? F y$
by (rule DERIV_nonneg_imp_nondecreasing $\left[o f x y, O F_{-}\right.$deriv]) (use assms in
auto)
hence $\ln y-\ln x \geq$? $F y-? F x$
by (simp add: algebra_simps)
also have ? $F y-$? $F x=$? A
using assms by (simp add: f^{\prime} _def m_def divide_simps) (simp add: algebra_simps
power2_eq_square)
finally show ?thesis.
qed
lemma euler_mascheroni_lower:
euler_mascheroni \geq harm $($ Suc $n)-\ln ($ real_of_nat $(n+2))+1 / r e a l_{-} o f _n a t$
$(2 *(n+2))$
and euler_mascheroni_upper:
euler_mascheroni \leq harm $($ Suc $n)-\ln \left(r e a l _o f _n a t ~(n+2)\right)+1 / r e a l _o f _n a t$
$(2 *(n+1))$
proof -
define $D::$ _ \Rightarrow real
where $D n=$ inverse $($ of_nat $(n+1))+\ln ($ of_nat $(n+1))-\ln ($ of_nat $(n+2))$
for n
let ? $g=\lambda n$. ln $($ of_nat $(n+2))-l n($ of_nat $(n+1))-$ inverse $\left(o f _n a t(n+1)\right)$
:: real
define inv where $[$ abs_def]: inv $n=$ inverse (real_of_nat n) for n
fix n :: nat
note summable $=$ sums_summable $[$ OF euler_mascheroni_sum_real, folded D_def]
have sums: $(\lambda k$. $(\operatorname{inv}(\operatorname{Suc}(k+(n+1)))-\operatorname{inv}(S u c(S u c k+(n+1)))) / \mathcal{Z})$
sums $(($ inv $(S u c(0+(n+1)))-0) / 2)$
unfolding inv_def
by (intro sums_divide telescope_sums' LIMSEQ_ignore_initial_segment LIM-
SEQ_inverse_real_of_nat)
have sums': (λ k. $\operatorname{linv}($ Suc $(k+n))-$ inv $($ Suc $(S u c k+n))) /$ 2) sums $(($ inv
$(S u c(0+n))-0) / 2)$

```
```

 unfolding inv_def
 by (intro sums_divide telescope_sums' LIMSEQ_ignore_initial_segment LIM-
 SEQ_inverse_real_of_nat)
from euler_mascheroni_sum_real have euler_mascheroni $=\left(\sum k . D k\right)$
by (simp add: sums_iff D_def)
also have $\ldots=\left(\sum k . D(k+S u c n)\right)+\left(\sum k \leq n . D k\right)$
by (subst suminf_split_initial_segment [OF summable, of Suc n],
subst lessThan_Suc_atMost) simp

```
    finally have sum: \(\left(\sum k \leq n . D k\right)-\) euler_mascheroni \(=-\left(\sum k . D(k+S u c n)\right)\)
by \(\operatorname{simp}\)
```

note sum
also have $\ldots \leq-\left(\sum k\right.$. $\left.(\operatorname{inv}(k+\operatorname{Suc} n+1)-\operatorname{inv}(k+\operatorname{Suc} n+2)) / 2\right)$
proof (intro le_imp_neg_le suminf_le allI summable_ignore_initial_segment[OF
summable])
fix $k^{\prime}::$ nat
define k where $k=k^{\prime}+$ Suc n
hence $k: k>0$ by (simp add: $k_{-} d e f$)
have real_of_nat $(k+1)>0$ by $\left(\right.$ simp add: $\left.k_{-} d e f\right)$
with ln_inverse_approx_le[OF this zero_less_one]
have $\ln ($ of_nat $k+2)-\ln ($ of_nat $k+1) \leq(\operatorname{inv}(k+1)+\operatorname{inv}(k+2)) / 2$
by (simp add: inv_def add_ac)
hence $(\operatorname{inv}(k+1)-\operatorname{inv}(k+2)) / 2 \leq \operatorname{inv}(k+1)+\ln \left(o f _n a t(k+1)\right)-\ln$
(of_nat ($k+2$))
by (simp add: field_simps)
also have ... = D k unfolding $D_{-} d e f$ inv_def ..
finally show $D\left(k^{\prime}+\right.$ Suc $\left.n\right) \geq\left(\operatorname{inv}\left(k^{\prime}+\right.\right.$ Suc $\left.n+1\right)-\operatorname{inv}\left(k^{\prime}+\right.$ Suc $n+$
2)) / 2
by (simp add: $k_{-} d e f$)
from sums_summable[OF sums]
show summable $(\lambda k .(\operatorname{inv}(k+\operatorname{Suc} n+1)-i n v(k+S u c n+2)) / 2)$ by
simp
qed
also from sums have $\ldots=-i n v(n+2) / 2$ by (simp add: sums_iff)
finally have euler_mascheroni $\geq\left(\sum k \leq n . D k\right)+1 /($ of_nat $(2 *(n+2)))$
by (simp add: inv_def field_simps)
also have $\left(\sum k \leq n . D k\right)=h a r m(S u c n)-\left(\sum k \leq n\right.$. ln (real_of_nat $\left.(S u c k+1)\right)$

- ln (of_nat ($k+1$)))
unfolding harm_altdef $D_{-} d e f$ by (subst lessThan_Suc_atMost) (simp add:
sum.distrib sum_subtractf)
also have $\left(\sum k \leq n\right.$. ln (real_of_nat $\left.\left.(S u c k+1)\right)-\ln \left(o f _n a t(k+1)\right)\right)=\ln ($ of_nat
($n+2$))
by (subst atLeast0AtMost [symmetric], subst sum_Suc_diff) simp_all
finally show euler_mascheroni \geq harm (Suc n) - ln (real_of_nat $(n+2))+$
1/real_of_nat $(2 *(n+2))$
by simp
note sum
also have $-\left(\sum k . D(k+S u c n)\right) \geq-\left(\sum k\right.$. $($ inv $(S u c(k+n))-i n v(S u c$

```
```

$(S u c k+n))$)/2
proof (intro le_imp_neg_le suminf_le allI summable_ignore_initial_segment[OF
summable])
fix k^{\prime} :: nat
define k where $k=k^{\prime}+$ Suc n
hence $k: k>0$ by (simp add: $k_{-} d e f$)
have real_of_nat $(k+1)>0$ by $($ simp add: k _def)
from ln_inverse_approx_ge[of of_nat $k+1$ of_nat $k+2]$
have $2 /(2 *$ real_of_nat $k+3) \leq \ln ($ of_nat $(k+2))-\ln \left(r e a l_{-} o f_{-} n a t(k+1)\right)$
by (simp add: add_ac)
hence $D k \leq 1 /$ real_of_nat $(k+1)-2 /(2 *$ real_of_nat $k+3)$
by (simp add: D_def inverse_eq_divide inv_def)
also have $\ldots=\operatorname{inv}((k+1) *(2 * k+3))$ unfolding inv_def by (simp add:
field_simps)
also have $\ldots \leq \operatorname{inv}(2 * k *(k+1))$ unfolding inv_def using k
by (intro le_imp_inverse_le)
(simp add: algebra_simps, simp del: of_nat_add)
also have $\ldots=(\operatorname{inv} k-\operatorname{inv}(k+1)) / 2$ unfolding inv_def using k
by (simp add: divide_simps del: of_nat_mult) (simp add: algebra_simps)
finally show $D k \leq\left(\operatorname{inv}\left(\operatorname{Suc}\left(k^{\prime}+n\right)\right)-\operatorname{inv}\left(S u c\left(S u c k^{\prime}+n\right)\right)\right) / 2$ unfolding
$k_{-} d e f$ by simp
next
from sums_summable[OF sums $]$
show summable $(\lambda k$. $\operatorname{inv}(\operatorname{Suc}(k+n))-\operatorname{inv}(\operatorname{Suc}(\operatorname{Suc} k+n))) /$ 2) by
simp
qed
also from sums ${ }^{\prime}$ have $\left(\sum k .(\operatorname{inv}(\operatorname{Suc}(k+n))-\operatorname{inv}(S u c(S u c k+n))) /\right.$ 2)
$=\operatorname{inv}(n+1) / 2$
by (simp add: sums_iff)
finally have euler_mascheroni $\leq\left(\sum k \leq n . D k\right)+1 /$ of_nat $(2 *(n+1))$
by (simp add: inv_def field_simps)
also have $\left(\sum k \leq n . D k\right)=h a r m(S u c n)-\left(\sum k \leq n . l n\left(r e a l _o f _n a t(S u c k+1)\right)\right.$

- ln (of_nat (k+1)))
unfolding harm_altdef $D_{_} d e f$ by (subst lessThan_Suc_atMost) (simp add:
sum.distrib sum_subtractf)
also have $\left(\sum k \leq n\right.$. ln (real_of_nat $\left.(S u c k+1)\right)-\ln ($ of_nat $\left.(k+1))\right)=\ln ($ of_nat
($n+2$))
by (subst atLeast0AtMost [symmetric], subst sum_Suc_diff) simp_all
finally show euler_mascheroni $\leq \operatorname{harm}(S u c n)-\ln ($ real_of_nat $(n+2))+$
1/real_of_nat $(2 *(n+1))$
by simp
qed
lemma euler_mascheroni_pos: euler_mascheroni $>(0::$ real $)$
using euler_mascheroni_lower [of 0] ln_2_less_1 by (simp add: harm_def)
context
begin

```
```

private lemma ln_approx_aux:
fixes n :: nat and x :: real
defines }y\equiv(x-1)/(x+1
assumes x: x>0x\not=1
shows inverse (2*y^(2*n+1))*(ln x - (\sumk<n.2*y^(2*k+1) / of_nat (2*k+1)))
\epsilon
{0..(1 / (1 - y^2) / of_nat (2*n+1))}
proof -
from x have norm_y: norm y<1 unfolding y_def by simp
from power_strict_mono[OF this, of 2] have norm_y': norm y^2 < 1 by simp
let ?f = \lambdak.2* * `(2*k+1) / of_nat (2*k+1) note sums = ln_series_quadratic[OF x(1)] define c where c=inverse (2*y^(2*n+1)) let ?d = c* (ln x - (\sumk<n. ?f k)) have \k. y 2`k / of_nat (2*(k+n)+1)\leq y ^ ^ k / of_nat (2*n+1)
by (intro divide_left_mono mult_right_mono mult_pos_pos zero_le_power[of y^2])
simp_all
moreover {
have (}\lambdak\mathrm{ . ?f }(k+n))\mathrm{ sums (ln x - (}\sumk<n\mathrm{ . ?f k))
using sums_split_initial_segment[OF sums] by (simp add: y_def)
hence (}\lambdak.c*\mathrm{ ?f (}k+n)\mathrm{) sums ?d by (rule sums_mult)
also have (\lambdak.c*(2*y^(2*(k+n)+1) / of_nat (2*(k+n)+1)))=
(\lambdak.(c* (2*y^(2*n+1))) * ((y^2) ^k / of_nat (2*(k+n)+1)))
by (simp only: ring_distribs power_add power_mult) (simp add: mult_ac)
also from }x\mathrm{ have }c*(2*\mp@subsup{y}{}{\wedge}(2*n+1))=1 by (simp add:c_def y_def
finally have (}\lambdak\mathrm{ . ((^^) ` ^k / of_nat (2*(k+n)+1)) sums ?d by simp
} note sums' = this
moreover from norm_ y' have (}\lambdak.(\mp@subsup{y}{}{\wedge}2)^k / of_nat (2*n+1)) sums (1 / (1

- y^2) / of_nat (2*n+1))
by (intro sums_divide geometric_sums) (simp_all add: norm_power)
ultimately have ?d \leq (1 / (1 - y^2) / of_nat (2*n+1)) by (rule sums_le)
moreover have c*(ln x - (\sumk<n.2 * y^ (2*k+1) / real_of_nat (2*k
+1)))}\geq
by (intro sums_le[OF _ sums_zero sums \) simp_all
ultimately show ?thesis unfolding c_def by simp
qed

```

\section*{lemma}
```

fixes $n::$ nat and x :: real
defines $y \equiv(x-1) /(x+1)$
defines approx $\equiv\left(\sum k<n .2 * y^{\wedge}(2 * k+1) /\right.$ of_nat $\left.(2 * k+1)\right)$
defines $d \equiv y^{\wedge}(2 * n+1) /\left(1-y^{\wedge} 2\right) /$ of_nat $(2 * n+1)$
assumes $x: x>1$
shows $\quad \ln$ _approx_bounds: $\ln x \in\{$ approx..approx $+2 * d\}$
and $\quad l n _a p p r o x _a b s: \quad a b s(\ln x-($ approx $+d)) \leq d$
proof -
define c where $c=2 * y^{\wedge}(2 * n+1)$
from x have $c _p o s: c>0$ unfolding $c_{-} d e f y_{-} d e f$

```
```

 by (intro mult_pos_pos zero_less_power) simp_all
 have \(A\) : inverse \(c *\left(\ln x-\left(\sum k<n .2 * y^{\wedge}(2 * k+1) /\right.\right.\) of_nat \(\left.\left.(2 * k+1)\right)\right) \in\)
 \(\left\{0 . .\left(1 /\left(1-y^{\wedge} 2\right) /\right.\right.\) of_nat \(\left.\left.(2 * n+1)\right)\right\}\) using assms unfolding \(y_{-}\)def
 c_def
by (intro ln_approx_aux) simp_all
hence inverse $c *\left(\ln x-\left(\sum k<n\right.\right.$. $2 * y^{\wedge}(2 * k+1) /$ of_nat $\left.\left.(2 * k+1)\right)\right) \leq(1 /$
(1-y^2) / of_nat (2*n+1))
by simp
hence $\left(\ln x-\left(\sum k<n .2 * y^{\wedge}(2 * k+1) /\right.\right.$ of_nat $\left.\left.(2 * k+1)\right)\right) / c \leq\left(1 /\left(1-y^{\wedge} 2\right)\right.$
/ of_nat (2*n+1))
by (auto simp add: field_split_simps)
with $c _p o s$ have $\ln x \leq c /\left(1-y^{\wedge} 2\right) /$ of_nat $(2 * n+1)+$ approx
by (subst (asm) pos_divide_le_eq) (simp_all add: mult_ac approx_def)
moreover \{
from A c_pos have $0 \leq c *\left(\right.$ inverse $c *\left(\ln x-\left(\sum k<n .2 * y^{\wedge}(2 * k+1) /\right.\right.$
of_nat $(2 * k+1)))$)
by (intro mult_nonneg_nonneg $[$ of c]) simp_all
also have $\ldots=(c *$ inverse $c) *\left(\ln x-\left(\sum k<n .2 * y^{\wedge}(2 * k+1) /\right.\right.$ of_nat
(2*k+1)))
by (simp add: mult_ac)
also from c_{-}pos have $c *$ inverse $c=1$ by simp
finally have $\ln x \geq$ approx by (simp add: approx_def)
\}
ultimately show $\ln x \in\{$ approx..approx $+2 * d\}$ by (simp add: c_def d_def)
thus abs $(\ln x-($ approx $+d)) \leq d$ by auto
qed
end
lemma euler_mascheroni_bounds:
fixes $n::$ nat assumes $n \geq 1$ defines $t \equiv$ harm $n-\ln ($ of_nat (Suc n)) :: real
shows euler_mascheroni $\in\{t+$ inverse (of_nat $(2 *(n+1))) . . t+$ inverse (of_nat
$(2 * n))\}$
using assms euler_mascheroni_upper[of $n-1$] euler_mascheroni_lower[of $n-1$]
unfolding $t_{-} d e f$ by (cases n) (simp_all add: harm_Suc t_def inverse_eq_divide)
lemma euler_mascheroni_bounds':
fixes $n::$ nat assumes $n \geq 1$ ln (real_of_nat (Suc n) $) \in\{l<. .<u\}$
shows euler_mascheroni \in
$\{$ harm $n-u+$ inverse $($ of_nat $(2 *(n+1)))<. .<$ harm $n-l+$ inverse
(of_nat $(2 * n))\}$
using euler_mascheroni_bounds[OF assms(1)] assms(2) by auto

```

Approximation of \(\ln \left(2::^{\prime} a\right)\). The lower bound is accurate to about 0.03 ; the upper bound is accurate to about 0.0015 .
lemma ln2_ge_two_thirds: 2/3 \(\leq \ln\) (2::real)
and ln2_le_25_over_36: \(\ln (2::\) real \() \leq 25 / 36\)
using ln_approx_bounds[of 2 1, simplified, simplified eval_nat_numeral, simplified]
by simp_all

Approximation of the Euler-Mascheroni constant. The lower bound is accurate to about 0.0015 ; the upper bound is accurate to about 0.015 .
lemma euler_mascheroni_gt_19_over_33: (euler_mascheroni :: real) > 19/33 (is ?th1)
and euler_mascheroni_less_13_over_22: (euler_mascheroni :: real) < 13/22 (is ?th2)
proof -
have \(\ln (\) real \((\) Suc 7) \()=3 * \ln 2\) by (simp add: ln_powr [symmetric] \()\)
also from ln_approx_bounds[of 2 3] have ... \(\in\{3 * 307 / 443<. .<3 * 4615 / 6658\}\) by (simp add: eval_nat_numeral)
finally have \(\ln (\) real \((\) Suc 7) \() \in \ldots\).
from euler_mascheroni_bounds' \(\left[O F \_\right.\)this \(]\)have ?th1 \(\wedge\) ?th2 by (simp_all add: harm_expand)
thus ?th1 ?th2 by blast+
qed
end

\subsection*{6.23 The Gamma Function}
```

theory Gamma_Function
imports
Equivalence_Lebesgue_Henstock_Integration
Summation_Tests
Harmonic_Numbers
HOL-Library.Nonpos_Ints
HOL-Library.Periodic_Fun
begin

```

Several equivalent definitions of the Gamma function and its most important properties. Also contains the definition and some properties of the log-Gamma function and the Digamma function and the other Polygamma functions.
Based on the Gamma function, we also prove the Weierstraß product form of the sin function and, based on this, the solution of the Basel problem (the sum over all \(1 / \operatorname{real}\left(n^{2}\right)\).
lemma pochhammer_eq_0_imp_nonpos_Int:
pochhammer ( \(x:\) :' \(^{\prime} a:\) :field_char_0) \(n=0 \Longrightarrow x \in \mathbb{Z}_{\leq 0}\)
by (auto simp: pochhammer_eq_0_iff)
lemma closed_nonpos_Ints \([\) simp \(]:\) closed \(\left(\mathbb{Z}_{\leq 0}\right.\) :: ' \(a\) :: real_normed_algebra_1 set \()\)
proof -
have \(\mathbb{Z}_{<0}=(\) of_int' \(\{n . n \leq 0\}::\) 'a set \()\)
by (auto elim!: nonpos_Ints_cases intro!: nonpos_Ints_of_int)
also have closed ... by (rule closed_of_int_image)
finally show ?thesis.
qed
```

lemma plus_one_in_nonpos_Ints_imp: $z+1 \in \mathbb{Z}_{\leq 0} \Longrightarrow z \in \mathbb{Z}_{\leq 0}$
using nonpos_Ints_diff_Nats[of z+1 1] by simp_all
lemma of_int_in_nonpos_Ints_iff:
(of_int $n::$ ' $a::$ ring_char_0 $) \in \mathbb{Z}_{\leq 0} \longleftrightarrow n \leq 0$
by (auto simp: nonpos_Ints_def)
lemma one_plus_of_int_in_nonpos_Ints_iff:
$\left(1+\right.$ of_int $n::{ }^{\prime} a::$ ring_char_0 $) \in \mathbb{Z}_{\leq 0} \longleftrightarrow n \leq-1$
proof -
have $1+$ of_int $n=\left(\right.$ of_int $\left.(n+1)::{ }^{\prime} a\right)$ by simp
also have $\ldots \in \mathbb{Z}_{\leq 0} \longleftrightarrow n+1 \leq 0$ by (subst of_int_in_nonpos_Ints_iff) simp_all
also have $\ldots \longleftrightarrow n \leq-1$ by presburger
finally show ?thesis.
qed
lemma one_minus_of_nat_in_nonpos_Ints_iff:
$\left(1-\right.$ of_nat $n::$ ' a :: ring_char_0) $\in \mathbb{Z}_{\leq 0} \longleftrightarrow n>0$
proof -
have $\left(1-\right.$ of_nat $\left.n::{ }^{\prime} a\right)=o f_{-}$int $(1-$ int $n)$ by simp
also have $\ldots \in \mathbb{Z}_{\leq 0} \longleftrightarrow n>0$ by (subst of_int_in_nonpos_Ints_iff) presburger
finally show ?thesis.
qed
lemma fraction_not_in_ints:
assumes $\neg(n d v d m) n \neq 0$
shows of_int $m /$ of_int $n \notin\left(\mathbb{Z}::{ }^{\prime} a::\{\right.$ division_ring,ring_char_ 0$\}$ set $)$
proof
assume of_int $m /\left(\right.$ of_int $\left.n::{ }^{\prime} a\right) \in \mathbb{Z}$
then obtain k where of_int $m /$ of_int $n=\left(o f _i n t k::{ }^{\prime} a\right)$ by (elim Ints_cases)
with assms have of_int $m=\left(o f _i n t(k * n):: ~ ' a\right)$ by (auto simp add: field_split_simps)
hence $m=k * n$ by (subst (asm) of_int_eq_iff)
hence n dvd m by simp
with assms(1) show False by contradiction
qed
lemma fraction_not_in_nats:
assumes $\neg n$ dvd $m n \neq 0$
shows of_int $m /$ of_int $n \notin\left(\mathbb{N}::{ }^{\prime} a::\left\{d i v i s i o n _r i n g\right.\right.$, ring_char_0 $\}$ set $)$
proof
assume of_int m / of_int $n \in(\mathbb{N}::$ 'a set $)$
also note Nats_subset_Ints
finally have of_int $m /$ of_int $n \in(\mathbb{Z}::$ ' a set).
moreover have of_int m / of_int $n \notin(\mathbb{Z}:: ' a$ set $)$
using assms by (intro fraction_not_in_ints)
ultimately show False by contradiction
qed

```
```

lemma not_in_Ints_imp_not_in_nonpos_Ints: $z \notin \mathbb{Z} \Longrightarrow z \notin \mathbb{Z}_{\leq 0}$
by (auto simp: Ints_def nonpos_Ints_def)
lemma double_in_nonpos_Ints_imp:
assumes $2 *(z::$ ' $a::$ field_char_0 $) \in \mathbb{Z}_{\leq 0}$
shows $\quad z \in \mathbb{Z}_{\leq 0} \vee z+1 / 2 \in \mathbb{Z}_{\leq 0}$
proof-

```
    from assms obtain \(k\) where \(k: 2 * z=-\) of_nat \(k\) by (elim nonpos_Ints_cases')
    thus ?thesis by (cases even \(k\) ) (auto elim!: evenE oddE simp: field_simps)
qed
lemma sin_series: \(\left(\lambda n .\left((-1)^{\wedge} n /\right.\right.\) fact \(\left.\left.(2 * n+1)\right) *_{R} z^{\wedge}(2 * n+1)\right)\) sums \(\sin z\)
proof -
    from sin_converges \([\) of \(z]\) have \(\left(\lambda n . \sin \_c o e f f ~ n *_{R} z^{\wedge} n\right) \operatorname{sums} \sin z\).
    also have \(\left(\lambda n\right.\). sin_coeff \(\left.n *_{R} z^{\wedge} n\right)\) sums \(\sin z \longleftrightarrow\)
                            \(\left(\lambda n .((-1) \wedge n /\right.\) fact \(\left.(2 * n+1)) *_{R} z^{\wedge}(2 * n+1)\right)\) sums \(\sin z\)
        by (subst sums_mono_reindex \([\) of \(\lambda n .2 * n+1\), symmetric])
            (auto simp: sin_coeff_def strict_mono_def ac_simps elim!: oddE)
    finally show ?thesis.
qed
lemma cos_series: \(\left(\lambda n .\left((-1)^{\wedge} n /\right.\right.\) fact \(\left.\left.(2 * n)\right) *_{R} z^{\wedge}(2 * n)\right)\) sums \(\cos z\)
proof -
    from cos_converges \([\) of \(z]\) have \(\left(\lambda n . \cos \_\operatorname{coeff} n *_{R} z^{\wedge} n\right)\) sums \(\cos z\).
    also have \(\left(\lambda n\right.\). cos_coeff \(\left.n *_{R} z^{\wedge} n\right)\) sums \(\cos z \longleftrightarrow\)
                            ( \(\lambda n .\left((-1)^{\wedge} n /\right.\) fact \(\left.\left.(2 * n)\right) *_{R} z^{\wedge}(2 * n)\right)\) sums \(\cos z\)
        by (subst sums_mono_reindex [of \(\lambda n\). \(2 * n\), symmetric])
            (auto simp: cos_coeff_def strict_mono_def ac_simps elim! : evenE)
    finally show ?thesis.
qed
lemma sin_z_over_z_series:
    fixes \(z::{ }^{\prime} a::\{\) real_normed_field,banach \(\}\)
    assumes \(z \neq 0\)
    shows \(\left(\lambda n .(-1)^{\wedge} n /\right.\) fact \(\left.(2 * n+1) * z^{\wedge}(2 * n)\right) \operatorname{sums}(\sin z / z)\)
proof -
    from sin_series \([\) of \(z]\) have \(\left(\lambda n . z *\left((-1)^{\wedge} n / \operatorname{fact}(2 * n+1)\right) * z^{\wedge}(2 * n)\right)\) sums
\(\sin z\)
            by (simp add: field_simps scaleR_conv_of_real)
    from sums_mult [OF this, of inverse \(z]\) and assms show ?thesis
        by (simp add: field_simps)
qed
lemma sin_z_over_z_series':
    fixes \(z::{ }^{\prime} a::\{\) real_normed_field,banach \(\}\)
    assumes \(z \neq 0\)
    shows \(\left(\lambda n\right.\). sin_coeff \(\left.(n+1) *_{R} z^{\wedge} n\right)\) sums \((\sin z / z)\)
proof -
```

 from sums_split_initial_segment[OF sin_converges \([o f ~ z]\), of 1]
 have \(\left(\lambda n . z *\left(\right.\right.\) sin_coeff \(\left.\left.(n+1) *_{R} z^{\wedge} n\right)\right)\) sums \(\sin z\) by simp
 from sums_mult[OF this, of inverse z] assms show ?thesis by (simp add:
 field_simps)
qed
lemma has_field_derivative_sin_z_over_z:
fixes A :: 'a :: \{real_normed_field,banach \} set
shows ($(\lambda z$. if $z=0$ then 1 else $\sin z / z)$ has_field_derivative 0) (at 0 within A)
(is (?f has_field_derivative ?f ') _)
proof (rule has_field_derivative_at_within)
have $\left(\left(\lambda z::^{\prime} a\right.\right.$. $\sum n$. of_real (sin_coeff $\left.\left.(n+1)\right) * z^{\wedge} n\right)$
has_field_derivative $\left(\sum n\right.$. diffs $\left(\lambda n\right.$. of_real $\left.\left.\left.\left(\sin _c o e f f(n+1)\right)\right) n * 0^{\wedge} n\right)\right)$
(at 0)
proof (rule termdiffs_strong)
from summable_ignore_initial_segment[OF sums_summable[OF sin_converges[of
$\left.1::^{\prime} a\right]$], of 1]
show summable $(\lambda n$. of_real (sin_coeff $\left.(n+1)) *\left(1::^{\prime} a\right)^{\wedge} n\right)$ by (simp add:
of_real_def)
qed simp
also have $\left(\lambda z::{ }^{\prime} a\right.$. $\sum n$. of_real (sin_coeff $\left.\left.(n+1)\right) * z^{\wedge} n\right)=? f$
proof
fix z
show $\left(\sum n\right.$. of_real (sin_coeff $\left.\left.(n+1)\right) * z^{\wedge} n\right)=$?f z
by (cases $z=0$) (insert sin_z_over_z_series' $[$ of $z]$,
simp_all add: scaleR_conv_of_real sums_iff sin_coeff_def)
qed
also have $\left(\sum n\right.$. diffs $(\lambda n$. of_real (sin_coeff $\left.\left.(n+1))\right) n *\left(0::^{\prime} a\right)^{\wedge} n\right)=$
diffs (λn. of_real (sin_coeff (Suc n))) 0 by simp
also have $\ldots=0$ by (simp add: sin_coeff_def diffs_def)
finally show (($\lambda z::^{\prime} a$. if $z=0$ then 1 else $\left.\sin z / z\right)$ has_field_derivative 0) (at
0)
qed
lemma round_Re_minimises_norm:
norm $((z::$ complex $)-$ of_int $m) \geq$ norm $(z-$ of_int $($ round $($ Re $z)))$
proof -
let $? n=$ round $($ Re $z)$
have norm $(z-$ of_int ? $n)=\operatorname{sqrt}\left(\left(\text { Re } z-o f_{-} i n t ? n\right)^{2}+(\operatorname{Im} z)^{2}\right)$
by (simp add: cmod_def)
also have $\left|R e z-o f_{-} i n t ? n\right| \leq\left|R e z-o f_{-} i n t m\right|$ by (rule round_diff_minimal)
hence sqrt $\left(\left(\text { Re } z-o f _i n t ? n\right)^{2}+(\operatorname{Im} z)^{2}\right) \leq \operatorname{sqrt}\left(\left(\text { Re } z-o f _i n t m\right)^{2}+(\operatorname{Im}\right.$
$z)^{2}$)
by (intro real_sqrt_le_mono add_mono) (simp_all add: abs_le_square_iff)
also have $\ldots=$ norm $\left(z-o f _i n t m\right)$ by (simp add: cmod_def)
finally show ?thesis .
qed
lemma Re_pos_in_ball:

```
```

 assumes Re \(z>0 t \in\) ball \(z(\operatorname{Re} z / 2)\)
 shows Re \(t>0\)
 proof -
have $R e(z-t) \leq$ norm $(z-t)$ by (rule complex_Re_le_cmod)
also from assms have $\ldots<\operatorname{Re} z / 2$ by (simp add: dist_complex_def)
finally show Re $t>0$ using assms by simp
qed
lemma no_nonpos_Int_in_ball_complex:
assumes Re $z>0 t \in$ ball $z(\operatorname{Re} z / 2)$
shows $\quad t \notin \mathbb{Z}_{\leq 0}$
using Re_pos_in_ball[OF assms] by (force elim!: nonpos_Ints_cases)
lemma no_nonpos_Int_in_ball:
assumes $t \in$ ball $z($ dist z (round $($ Re $z))$)
shows $\quad t \notin \mathbb{Z}_{\leq 0}$
proof
assume $t \in \mathbb{Z}_{\leq 0}$
then obtain n where $t=o f_{-} i n t n$ by (auto elim!: nonpos_Ints_cases)
have dist $z($ of_int $n) \leq$ dist $z t+$ dist t (of_int n) by (rule dist_triangle)
also from assms have dist $z t<$ dist z (round (Re z)) by simp
also have $\ldots \leq$ dist z (of_int n)
using round_Re_minimises_norm $[$ of z] by (simp add: dist_complex_def)
finally have dist t (of_int n) >0 by simp
with $\langle t=$ of_int $n\rangle$ show False by simp
qed
lemma no_nonpos_Int_in_ball':
assumes $(z:: ' a::\{$ euclidean_space, real_normed_algebra_1 $\}) \notin \mathbb{Z}_{\leq 0}$
obtains d where $d>0 \wedge t . t \in$ ball $z d \Longrightarrow t \notin \mathbb{Z}_{\leq 0}$
proof (rule that)
from assms show setdist $\{z\} \mathbb{Z}_{\leq 0}>0$ by (subst setdist_gt_0_compact_closed)
auto
next
fix t assume $t \in$ ball z (setdist $\{z\} \mathbb{Z}_{\leq 0}$)
thus $t \notin \mathbb{Z}_{\leq 0}$ using setdist_le_dist $\left[\right.$ of $\left.z\{z\} t \mathbb{Z}_{\leq 0}\right]$ by force
qed
lemma no_nonpos_Real_in_ball:
assumes $z: z \notin \mathbb{R}_{\leq 0}$ and $t: t \in$ ball z (if Im $z=0$ then Re $z / 2$ else abs (Im
z) / 2)
shows $\quad t \notin \mathbb{R}_{\leq 0}$
using z
proof (cases Im $z=0$)
assume $A: \operatorname{Im} z=0$
with z have $R e z>0$ by (force simp add: complex_nonpos_Reals_iff)
with t A Re_pos_in_ball[of z t] show ?thesis by (force simp add: complex_nonpos_Reals_iff)
next
assume $A: \operatorname{Im} z \neq 0$

```
```

 have \(a b s(\operatorname{Im} z)-a b s(\operatorname{Im} t) \leq a b s(\operatorname{Im} z-\operatorname{Im} t)\) by linarith
 also have \(\ldots=a b s(\operatorname{Im}(z-t))\) by \(\operatorname{simp}\)
 also have \(\ldots \leq\) norm \((z-t)\) by (rule abs_Im_le_cmod)
 also from \(A t\) have \(\ldots \leq a b s(\operatorname{Im} z) / 2\) by (simp add: dist_complex_def)
 finally have abs (\(\operatorname{Im} t)>0\) using \(A\) by simp
 thus ?thesis by (force simp add: complex_nonpos_Reals_iff)
 qed

```

\subsection*{6.23.1 The Euler form and the logarithmic Gamma function}

We define the Gamma function by first defining its multiplicative inverse rGamma. This is more convenient because rGamma is entire, which makes proofs of its properties more convenient because one does not have to watch out for discontinuities. (e.g. rGamma fulfils rGamma \(z=z * r G a m m a\) \((z+1)\) everywhere, whereas the \(\Gamma\) function does not fulfil the analogous equation on the non-positive integers)
We define the \(\Gamma\) function (resp. its reciprocale) in the Euler form. This form has the advantage that it is a relatively simple limit that converges everywhere. The limit at the poles is 0 (due to division by 0 ). The functional equation Gamma \((z+1)=z * G a m m a z\) follows immediately from the definition.
definition Gamma_series :: ('a :: \{banach,real_normed_field \(\}\) ) \(\Rightarrow\) nat \(\Rightarrow^{\prime} a\) where
Gamma_series \(z n=\) fact \(n * \exp (z *\) of_real \((\ln (\) of_nat \(n))) /\) pochhammer \(z\) \((n+1)\)
definition Gamma_series' \(::(\) ( \(a\) :: \{banach,real_normed_field \(\}) \Rightarrow\) nat \(\Rightarrow{ }^{\prime} a\) where Gamma_series' \(z n=\) fact \((n-1) * \exp (z *\) of_real \((\ln (\) of_nat \(n))) /\) pochhammer \(z n\)
definition \(r\) Gamma_series :: (' \(a::\{\) banach,real_normed_field \(\}\) ) \(\Rightarrow\) nat \(\Rightarrow{ }^{\prime} a\) where \(r\) Gamma_series \(z n=\) pochhammer \(z(n+1) /(\) fact \(n * \exp (z *\) of_real (ln (of_nat n)))
lemma Gamma_series_altdef: Gamma_series z \(n=\) inverse (rGamma_series z \(n\) ) and rGamma_series_altdef: rGamma_series z \(n=\) inverse (Gamma_series z \(n\) ) unfolding Gamma_series_def rGamma_series_def by simp_all
lemma rGamma_series_minus_of_nat:
eventually ( \(\lambda n\). rGamma_series \((-\) of_nat \(k\) ) \(n=0\) ) sequentially using eventually_ge_at_top of \(k\) ]
by eventually_elim (auto simp: rGamma_series_def pochhammer_of_nat_eq_0_iff)
lemma Gamma_series_minus_of_nat:
eventually ( \(\lambda n\). Gamma_series ( - of_nat \(k\) ) \(n=0\) ) sequentially
using eventually_ge_at_top \([\) of \(k\) ]
by eventually_elim (auto simp: Gamma_series_def pochhammer_of_nat_eq_0_iff)
```

lemma Gamma_series'_minus_of_nat:
eventually (λn. Gamma_series' $(-$ of_nat $k) n=0)$ sequentially
using eventually_gt_at_top $[o f k]$
by eventually_elim (auto simp: Gamma_series'_def pochhammer_of_nat_eq_0_iff)
lemma rGamma_series_nonpos_Ints_LIMSEQ: $z \in \mathbb{Z}_{\leq 0} \Longrightarrow r$ Gamma_series $z \longrightarrow$
0
by (elim nonpos_Ints_cases', hypsubst, subst tendsto_cong, rule rGamma_series_minus_of_nat,
simp)
lemma Gamma_series_nonpos_Ints_LIMSEQ: $z \in \mathbb{Z}_{\leq 0} \Longrightarrow$ Gamma_series $z \longrightarrow$
0
by (elim nonpos_Ints_cases ${ }^{\prime}$, hypsubst, subst tendsto_cong, rule Gamma_series_minus_of_nat,
simp)
lemma Gamma_series'_nonpos_Ints_LIMSEQ: $z \in \mathbb{Z}_{\leq 0} \Longrightarrow$ Gamma_series' $^{\prime} z \longrightarrow$
0
by (elim nonpos_Ints_cases', hypsubst, subst tendsto_cong, rule Gamma_series'_minus_of_nat,
simp)
lemma Gamma_series_Gamma_series':
assumes $z: z \notin \mathbb{Z}_{\leq 0}$
shows (λn. Gamma_series ${ }^{\prime} z n /$ Gamma_series $\left.z n\right) \longrightarrow 1$
proof (rule Lim_transform_eventually)
from eventually_gt_at_top[of 0::nat]
show eventually ($\lambda n . z /$ of_nat $n+1=$ Gamma_series' $^{\prime} z n /$ Gamma_series
$z n)$ sequentially
proof eventually_elim
fix $n::$ nat assume $n: n>0$
from $n z$ have Gamma_series ${ }^{\prime} z n /$ Gamma_series $z n=(z+$ of_nat $n) /$
of_nat n
by (cases n, simp)
(auto simp add: Gamma_series_def Gamma_series'_def pochhammer_rec'
dest: pochhammer_eq_0_imp_nonpos_Int plus_of_nat_eq_0_imp)
also from n have $\ldots=z /$ of_nat $n+1$ by (simp add: field_split_simps)
finally show $z /$ of_nat $n+1=$ Gamma_series $^{\prime} z n / G a m m a _s e r i e s ~ z ~ n ~ . . ~$
qed
have $(\lambda x . z /$ of_nat $x) \longrightarrow 0$
by (rule tendsto_norm_zero_cancel)
(insert tendsto_mult $[O F$ tendsto_const $[$ of norm $z]$ lim_inverse_n],
simp add: norm_divide inverse_eq_divide)
from tendsto_add [OF this tendsto_const[of 1]] show ($\lambda n . z /$ of_nat $n+1$)
$\longrightarrow 1$ by simp
qed

```

We now show that the series that defines the \(\Gamma\) function in the Euler form converges and that the function defined by it is continuous on the complex halfspace with positive real part.
We do this by showing that the logarithm of the Euler series is continuous
and converges locally uniformly, which means that the log-Gamma function defined by its limit is also continuous.
This will later allow us to lift holomorphicity and continuity from the logGamma function to the inverse of the Gamma function, and from that to the Gamma function itself.
definition ln_Gamma_series :: ('a :: \{banach,real_normed_field,ln\}) \(\Rightarrow\) nat \(\Rightarrow{ }^{\prime} a\) where
ln_Gamma_series \(z n=z * \ln (\) of_nat \(n)-\ln z-\left(\sum k=1 . . n\right.\). \(\ln (z /\) of_nat \(k\) \(+1)\) )
definition ln_Gamma_series' \(::\) ('a :: \{banach,real_normed_field,ln\}) \(\Rightarrow n a t \Rightarrow{ }^{\prime} a\) where
ln_Gamma_series' \({ }^{\prime}\) z \(n=\)
- euler_mascheroni*z \(-\ln z+\left(\sum k=1 . . n . z /\right.\) of_nat \(n-\ln (z /\) of_nat \(k+\) 1))
definition \(l_{\text {_ }}\) Gamma \(::\left({ }^{\prime} a::\{\right.\) banach, real_normed_field, \(\left.\ln \}\right) \Rightarrow{ }^{\prime} a\) where ln_Gamma \(z=\) lim (ln_Gamma_series \(z\) )

We now show that the log-Gamma series converges locally uniformly for all complex numbers except the non-positive integers. We do this by proving that the series is locally Cauchy.
```

context
begin
private lemma ln_Gamma_series_complex_converges_aux:
fixes $z::$ complex and $k::$ nat
assumes $z: z \neq 0$ and k : of_nat $k \geq 2 *$ norm $z k \geq 2$
shows norm $(z * \ln (1-1 /$ of_nat $k)+\ln (z /$ of_nat $k+1)) \leq 2 *($ norm $z+$
norm z^{\wedge} 2) / of_nat k^{\wedge} 2
proof -
let $? k=$ of_nat $k::$ complex and ? $z=$ norm z
have $z * \ln (1-1 / ? k)+\ln (z / ? k+1)=z *(\ln (1-1 / ? k::$ complex $)+1 / ? k)$
$+(\ln (1+z / ? k)-z / ? k)$
by (simp add: algebra_simps)
also have norm $\ldots \leq ? z * \operatorname{norm}(\ln (1-1 / ? k)+1 / ? k::$ complex $)+$ norm $(\ln$
$(1+z / ? k)-z / ? k)$
by (subst norm_mult [symmetric], rule norm_triangle_ineq)
also have norm $(\operatorname{Ln}(1+-1 / ? k)-(-1 / ? k)) \leq(\operatorname{norm}(-1 / ? k))^{2} /(1-$
norm ($-1 / ? k)$)
using k by (intro Ln_approx_linear) (simp add: norm_divide)
hence ? $z * \operatorname{norm}(\ln (1-1 / ? k)+1 / ? k) \leq ? z *\left((\text { norm }(1 / ? k))^{\wedge} 2 /(1-n o r m\right.$
($1 / ? k)$))
by (intro mult_left_mono) simp_all
also have $\ldots \leq(? z *($ of_nat $k /($ of_nat $k-1))) /$ of_nat $k^{\wedge} 2$ using k
by (simp add: field_simps power2_eq_square norm_divide)
also have $\ldots \leq(? z * 2) /$ of_nat $k^{\wedge} 2$ using k
by (intro divide_right_mono mult_left_mono) (simp_all add: field_simps)

```
```

 also have norm \((\ln (1+z / ? k)-z / ? k) \leq \operatorname{norm}(z / ? k)^{\wedge} 2 /(1-\operatorname{norm}(z / ? k))\)
 using k
by (intro Ln_approx_linear) (simp add: norm_divide)
hence norm $($ ln $(1+z / ? k)-z / ? k) \leq ? z^{\wedge} 2 /$ of_nat $k \wedge 2 /(1-? z /$ of_nat $k)$
by (simp add: field_simps norm_divide)
also have $\ldots \leq\left(\right.$? $z^{\wedge} 2 *($ of_nat $k /($ of_nat $\left.k-? z))\right) /$ of_nat $k^{\wedge} 2$ using k
by (simp add: field_simps power2_eq_square)
also have $\ldots \leq\left(? z^{\wedge} 2 * 2\right) /$ of_nat $k^{\wedge} 2$ using k
by (intro divide_right_mono mult_left_mono) (simp_all add: field_simps)
also note add_divide_distrib [symmetric]
finally show ?thesis by (simp only: distrib_left mult.commute)
qed
lemma $l_{n-G a m m a _s e r i e s _c o m p l e x _c o n v e r g e s: ~}^{\text {_ }}$
assumes $z: z \notin \mathbb{Z}_{\leq 0}$
assumes $d: d>0 \bigwedge n . n \in \mathbb{Z}_{\leq 0} \Longrightarrow$ norm $(z-$ of_int $n)>d$
shows uniformly_convergent_on (ball zd) ($\lambda n z$. ln_Gamma_series $z n$:: complex)
proof (intro Cauchy_uniformly_convergent uniformly_Cauchy_onI')
fix $e::$ real assume $e: e>0$
define $e^{\prime \prime}$ where $e^{\prime \prime}=\left(S U P\right.$ t ball $z d$. norm $t+$ norm $\left.t^{\wedge} 2\right)$
define e^{\prime} where $e^{\prime}=e /\left(2 * e^{\prime \prime}\right)$
have bounded ((λ t. norm $t+$ norm $\left.t^{\wedge} 2\right)$ ' cball $\left.z d\right)$
by (intro compact_imp_bounded compact_continuous_image) (auto intro!: con-
tinuous_intros)
hence bounded ((λ t. norm $t+$ norm t^{\wedge} 2) 'ball $\left.z d\right)$ by (rule bounded_subset)
auto
hence bdd: bdd_above ((λt. norm t + norm t^2) ‘ball z d) by (rule bounded_imp_bdd_above)
with $z d(1) d(2)[$ of -1$]$ have $e^{\prime \prime}$ _pos: $e^{\prime \prime}>0$ unfolding $e^{\prime \prime}$ _def
by (subst less_cSUP_iff) (auto intro!: add_pos_nonneg bexI[of_z])
have $e^{\prime \prime}:$ norm $t+$ norm $t^{\wedge} 2 \leq e^{\prime \prime}$ if $t \in$ ball $z d$ for t unfolding $e^{\prime \prime}$ _def using
that
by (rule cSUP_upper $\left.\left[O F _b d d\right]\right)$
from $e z e^{\prime \prime}$ _pos have $e^{\prime}: e^{\prime}>0$ unfolding $e^{\prime}{ }_{\text {_ }}$ def
by (intro divide_pos_pos mult_pos_pos add_pos_pos) (simp_all add: field_simps)
have summable (λk. inverse ($(\text { real_of_nat } k)^{\wedge}$ ¿2))
by (rule inverse_power_summable) simp
from summable_partial_sum_bound $[$ OF this $e]$ guess M. note $M=$ this
define N where $N=\max 2(\max ($ nat $\lceil 2 *($ norm $z+d)\rceil) M)$
\{
from d have $\lceil 2 *(\operatorname{cmod} z+d)\rceil \geq\lceil 0::$ real \rceil
by (intro ceiling_mono mult_nonneg_nonneg add_nonneg_nonneg) simp_all
hence 2 * (norm $z+d) \leq$ of_nat (nat 「2 * (norm $z+d)\rceil$) unfolding N_def
by (simp_all)
also have ... \leq of_nat N unfolding N _def
by (subst of_nat_le_iff) (rule max.coboundedI2, rule max.cobounded1)
finally have of_nat $N \geq 2 *($ norm $z+d)$.

```
moreover have \(N \geq 2 N \geq M\) unfolding \(N_{-}\)def by simp_all
moreover have \(\left(\sum k=m\right.\)..n. \(\left.1 /(\text { of_nat } k)^{2}\right)<e^{\prime}\) if \(m \geq N\) for \(m n\)
using \(M[O F\) order.trans \([O F\langle N \geq M\rangle\) that \(]]\) unfolding real_norm_def
by (subst (asm) abs_of_nonneg) (auto intro: sum_nonneg simp: field_split_simps)
moreover note calculation
\} note \(N=\) this
show \(\exists M . \forall t \in\) ball \(z d . \forall m \geq M . \forall n>m\). dist (ln_Gamma_series \(t m)\left(l n \_G a m m a \_s e r i e s\right.\) \(t n)<e\)
unfolding dist_complex_def
proof (intro exI[of - N] ballI allI impI)
fix \(t m n\) assume \(t: t \in\) ball \(z d\) and \(m n: m \geq N n>m\)
from \(d\) (2)[of 0] \(t\) have \(0<\) dist \(z 0-\) dist \(z t\) by (simp add: field_simps
dist_complex_def)
also have dist z \(0-\) dist \(z t \leq \operatorname{dist} 0 t\) using dist_triangle \([o f 0 z t]\)
by (simp add: dist_commute)
finally have \(t \_n z: t \neq 0\) by auto
have norm \(t \leq\) norm \(z+\) norm \((t-z)\) by (rule norm_triangle_sub)
also from \(t\) have norm \((t-z)<d\) by (simp add: dist_complex_def norm_minus_commute)
also have \(2 *(\) norm \(z+d) \leq\) of_nat \(N\) by (rule \(N)\)
also have \(N \leq m\) by (rule \(m n\) )
finally have norm_t \(^{2}\) : \(2 *\) norm \(t<\) of_nat \(m\) by simp
have nn_Gamma_series \(t m-l n \_G a m m a \_s e r i e s ~_{t} n=\)
\[
\begin{aligned}
& (-(t * \text { Ln }(\text { of_nat n) }))-(-(t * L n(\text { of_nat m }))))+ \\
& \left(\left(\sum k=1 . . n . L n(t / \text { of_nat } k+1)\right)-\left(\sum k=1 . . m . \text { Ln }(t / \text { of_nat } k+\right.\right.
\end{aligned}
\]
1)))
by (simp add: ln_Gamma_series_def algebra_simps)
also have \(\left(\sum k=1 . . n\right.\). Ln \((t /\) of_nat \(\left.k+1)\right)-\left(\sum k=1 . . m\right.\). Ln \((t /\) of_nat \(k\) \(+1))=\)
( \(\sum k \in\{1 . . n\}-\{1 . . m\} . L n(t /\) of_nat \(\left.k+1)\right)\) using \(m n\)
by (simp add: sum_diff)
also from \(m n\) have \(\{1 . . n\}-\{1 . . m\}=\{\) Suc \(m . . n\}\) by fastforce
also have \(-\left(t * L n\left(o f_{-} n a t n\right)\right)-\left(-\left(t * L n\left(o f \_n a t m\right)\right)\right)=\)
\[
\left(\sum k=\text { Suc m..n. } t * \text { Ln }(\text { of_nat }(k-1))-t * \text { Ln }(\text { of_nat } k)\right)
\]
using \(m n\)
by (subst sum_telescope \({ }^{\prime \prime}\) [symmetric]) simp_all
also have \(\ldots=\left(\sum k=\right.\) Suc m..n. \(t *\) Ln (of_nat \((k-1) /\) of_nat \(\left.\left.k\right)\right)\) using \(m n N\)
by (intro sum_cong_Suc)
(simp_all del: of_nat_Suc add: field_simps Ln_of_nat Ln_of_nat_over_of_nat)
also have of_nat \((k-1) /\) of_nat \(k=1-1 /(\) of_nat \(k::\) complex \()\) if \(k \in\)
\(\{\) Suc \(m . . n\}\) for \(k\)
using that of_nat_eq_0_iff [of Suc \(i\) for \(i]\) by (cases \(k\) ) (simp_all add: field_split_simps)
hence \(\left(\sum k=\right.\) Suc m..n. \(t * \operatorname{Ln}(\) of_nat \((k-1) /\) of_nat \(\left.k)\right)=\)
( \(\sum k=\) Suc m..n. \(t * \operatorname{Ln}(1-1 /\) of_nat \(\left.k)\right)\) using \(m n N\)
by (intro sum.cong) simp_all
also note sum.distrib [symmetric]
```

 also have norm \(\left(\sum k=S u c\right.\) m..n. \(t * \operatorname{Ln}(1-1 /\) of_nat \(k)+\) Ln \(\left(t / o f _n a t k\right.\)
 $+1)) \leq$
$\left(\sum k=S u c\right.$ m..n. 2 * $\left(\right.$ norm $\left.\left.t+(n o r m t)^{2}\right) /(\text { real_of_nat } k)^{2}\right)$ using $t _n z$
N (2) mn norm_t
by (intro order.trans[OF norm_sum sum_mono[OF ln_Gamma_series_complex_converges_aux]])
simp_all
also have $\ldots \leq 2 *\left(\right.$ norm $t+$ norm t^{\wedge} 2 $) *\left(\sum k=\right.$ Suc m..n. $\left.1 /(\text { of_nat } k)^{2}\right)$
by (simp add: sum_distrib_left)
also have $\ldots<2 *\left(\right.$ norm $\left.t+n o r m t^{\wedge} 2\right) * e^{\prime}$ using mn $z t_{-} n z$
by (intro mult_strict_left_mono N mult_pos_pos add_pos_pos) simp_all
also from $e^{\prime \prime}$ _pos have $\ldots=e *\left(\left(\operatorname{cmod} t+(\operatorname{cmod} t)^{2}\right) / e^{\prime \prime}\right)$
by (simp add: e^{\prime} _def field_simps power2_eq_square)
also from $e^{\prime \prime}[O F t] e^{\prime \prime}$-pos e
have $\ldots \leq e * 1$ by (intro mult_left_mono) (simp_all add: field_simps)
finally show norm ($\ln _{-}$Gamma_series $\left.t m-l n_{-} G a m m a _s e r i e s t n\right)<e$ by
simp
qed
qed
end
lemma $l_{\text {__Gamma_series_complex_converges': }}$
assumes $z:(z::$ complex $) \notin \mathbb{Z}_{\leq 0}$
shows $\exists d>0$. uniformly_convergent_on (ball z d) $(\lambda n z . l n$ _Gamma_series $z n)$
proof -
define d^{\prime} where $d^{\prime}=R e z$
define d where $d=\left(\right.$ if $d^{\prime}>0$ then $d^{\prime} / 2$ else norm $\left(z-\right.$ of_int (round $\left.\left.d^{\prime}\right)\right)$)
2)
have of_int (round $\left.d^{\prime}\right) \in \mathbb{Z}_{\leq 0}$ if $d^{\prime} \leq 0$ using that
by (intro nonpos_Ints_of_int) (simp_all add: round_def)
with assms have d_pos: $d>0$ unfolding $d_{-} d e f$ by (force simp: not_less)
have $d<$ cmod $(z-$ of_int $n)$ if $n \in \mathbb{Z}_{\leq 0}$ for n
proof (cases Re $z>0$)
case True
from nonpos_Ints_nonpos[OF that] have $n: n \leq 0$ by simp
from True have $d=R e z / 2$ by (simp add: d_def $d^{\prime}{ }_{-} d e f$)
also from n True have $\ldots<\operatorname{Re}(z-$ of_int $n)$ by simp
also have $\ldots \leq \operatorname{norm}(z-$ of_int n) by (rule complex_Re_le_cmod)
finally show ?thesis .
next
case False
with assms nonpos_Ints_of_int[of round (Re z)]
have $z \neq$ of_int (round d') by (auto simp: not_less)
with False have $d<$ norm ($z-$ of_int (round $\left.d^{\prime}\right)$) by (simp add: d_def $d^{\prime}{ }_{-} d e f$)
also have $\ldots \leq$ norm ($z-$ of_int n) unfolding d^{\prime} _def by (rule round_Re_minimises_norm)
finally show ?thesis.
qed

```

by (intro ln_Gamma_series_complex_converges d_pos z) simp_all from d_pos conv show ?thesis by blast
qed
lemma ln_Gamma_series_complex_converges \({ }^{\prime \prime}:(z::\) complex \() \notin \mathbb{Z}_{\leq 0} \Longrightarrow\) convergent (ln_Gamma_series z)
by (drule ln_Gamma_series_complex_converges \(^{\prime}\) ) (auto intro: uniformly_convergent_imp_convergent)
theorem ln_Gamma_complex_LIMSEQ: \((z::\) complex \() \notin \mathbb{Z}_{\leq 0} \Longrightarrow\) ln_Gamma_series \(z \longrightarrow l n_{-} G a m m a z\)
using ln_Gamma_series_complex_converges \(^{\prime \prime}\) by (simp add: convergent_LIMSEQ_iff ln_Gamma_def)
lemma exp_ln_Gamma_series_complex:
assumes \(n>0 z \notin \mathbb{Z}_{\leq 0}\)
shows exp (ln_Gamma_series \(z n\) :: complex \()=\) Gamma_series \(z n\)
proof -
from assms obtain \(m\) where \(m: n=\) Suc \(m\) by (cases \(n\) ) blast
from assms have \(z \neq 0\) by (intro notI) auto
with assms have exp (ln_Gamma_series z n) =
(of_nat \(n\) ) powr \(z /\left(z *\left(\prod k=1 . . n . \exp (L n(z /\right.\right.\) of_nat \(\left.\left.k+1))\right)\right)\)

also from assms have \(\left(\prod k=1 . . n . \exp (L n(z /\right.\) of_nat \(\left.k+1))\right)=\left(\prod k=1 . . n\right.\).
\(z /\) of_nat \(k+1\) )
by (intro prod.cong[OF refl], subst exp_Ln) (auto simp: field_simps plus_of_nat_eq_0_imp)
also have \(\ldots=\left(\prod k=1 . . n . z+k\right) /\) fact \(n\)
by (simp add: fact_prod)
(subst prod_dividef [symmetric], simp_all add: field_simps)
also from \(m\) have \(z * \ldots=\left(\prod k=0 . . n . z+k\right) /\) fact \(n\)
by (simp add: prod.atLeast0_atMost_Suc_shift prod.atLeast_Suc_atMost_Suc_shift del: prod.cl_ivl_Suc)
also have \(\left(\prod k=0 . . n . z+k\right)=\) pochhammer \(z(\) Suc \(n)\)
unfolding pochhammer_prod
by (simp add: prod.atLeast0_atMost_Suc atLeastLessThanSuc_atLeastAtMost)
also have of_nat \(n\) powr \(z /(\) pochhammer \(z(S u c n) /\) fact \(n)=\) Gamma_series \(z n\)
unfolding Gamma_series_def using assms by (simp add: field_split_simps powr_def)
finally show ?thesis.
qed
lemma ln_Gamma_series'_aux:
assumes \((z:\) :complex \() \notin \mathbb{Z}_{\leq 0}\)
shows \((\lambda k . z /\) of_nat \((S u c k)-\ln (1+z /\) of_nat \((S u c k)))\) sums
\((\) ln_Gamma \(z+\) euler_mascheroni \(* z+\ln z)\) (is ?f sums ?s)
unfolding sums_def
proof (rule Lim_transform)
show \(\left(\lambda n\right.\). ln_Gamma_series \(z n+o f\) _real \(\left.\left(\operatorname{harm} n-\ln \left(o f \_n a t n\right)\right) * z+\ln z\right)\)
```

\longrightarrow ?s
(is $? g \longrightarrow$ _)
by (intro tendsto_intros ln_Gamma_complex_LIMSEQ euler_mascheroni_LIMSEQ_of_real
assms)

```
    have \(A\) : eventually \(\left(\lambda n .\left(\sum k<n\right.\right.\). ?f \(\left.k\right)-\) ? \(\left.g n=0\right)\) sequentially
        using eventually_gt_at_top [of \(0:: n a t]\)
    proof eventually_elim
    fix \(n::\) nat assume \(n: n>0\)
    have \(\left(\sum k<n\right.\). ?f \(\left.k\right)=\left(\sum k=1\right.\)..n. \(z /\) of_nat \(k-\ln (1+z /\) of_nat \(\left.k)\right)\)
    by (subst atLeast0LessThan [symmetric], subst sum.shift_bounds_Suc_ivl [symmetric],
                subst atLeastLessThanSuc_atLeastAtMost) simp_all
    also have \(\ldots=z *\) of_real (harm \(n)-\left(\sum k=1 . . n . \ln (1+z /\right.\) of_nat \(\left.k)\right)\)
            by (simp add: harm_def sum_subtractf sum_distrib_left divide_inverse)
    also from \(n\) have ... - ? \(g n=0\)
        by (simp add: ln_Gamma_series_def sum_subtractf algebra_simps)
    finally show \(\left(\sum k<n\right.\). ?f \(\left.k\right)-\) ? \(g n=0\).
    qed
    show \(\left(\lambda n .\left(\sum k<n\right.\right.\). ?f \(\left.k\right)-\) ? \(\left.g n\right) \longrightarrow 0\) by (subst tendsto_cong[OF A])
simp_all
qed
lemma uniformly_summable_deriv_ln_Gamma:
    assumes \(z:(z:: ' a::\{\) real_normed_field,banach \(\}) \neq 0\) and \(d: d>0 d \leq\) norm
\(z / 2\)
    shows uniformly_convergent_on (ball z d)
                    ( \(\lambda k z . \sum i<k\). inverse \(\left(o f \_n a t(S u c i)\right)-\) inverse \((z+\) of_nat (Suc i)))
            (is uniformly_convergent_on \(\quad\left(\lambda k z . \sum i<k\right.\). ?f \(\left.\left.i z\right)\right)\)
proof (rule Weierstrass_m_test'_ev)
    \{
        fix \(t\) assume \(t: t \in\) ball \(z d\)
        have norm \(z=\operatorname{norm}(t+(z-t))\) by simp
        have norm \((t+(z-t)) \leq\) norm \(t+\) norm \((z-t)\) by (rule norm_triangle_ineq)
        also from \(t d\) have norm \((z-t)<\) norm \(z / 2\) by (simp add: dist_norm)
        finally have \(A\) : norm \(t>\) norm \(z / 2\) using \(z\) by (simp add: field_simps)
        have norm \(t=\) norm \((z+(t-z))\) by simp
        also have \(\ldots \leq\) norm \(z+\) norm \((t-z)\) by (rule norm_triangle_ineq)
        also from \(t d\) have norm \((t-z) \leq\) norm \(z / 2\) by (simp add: dist_norm
    norm_minus_commute)
        also from \(z\) have \(\ldots<\) norm \(z\) by simp
        finally have \(B\) : norm \(t<2 *\) norm \(z\) by simp
        note \(A B\)
    \(\}\) note \(b a l l=\) this
    show eventually \((\lambda n . \forall t \in\) ball \(z d\). norm \((\) ?f \(n t) \leq 4 *\) norm \(z *\) inverse (of_nat
(Suc n) ^2)) sequentially
    using eventually_gt_at_top apply eventually_elim
```

 proof safe
 fix t::' 'a assume t: t\in ball zd
 from z ball[OF t] have t_nz: t\not=0 by auto
 fix n :: nat assume n:n> nat \lceil4* norm z\rceil
 from ball[OF t] t_nz have 4* norm z>2 * norm t by simp
 also from n have ... < of_nat n by linarith
 finally have n: of_nat n>2 * norm t.
 hence of_nat n > norm t by simp
 hence t':t\not= -of_nat (Suc n) by (intro notI) (simp del:of_nat_Suc)
 with t_nz have ?f n t=1 / (of_nat (Suc n) * (1 + of_nat (Suc n)/t))
 by (simp add: field_split_simps eq_neg_iff_add_eq_0 del: of_nat_Suc)
 also have norm ... = inverse (of_nat (Suc n))*inverse (norm (of_nat (Suc
 n)/t+1))
by (simp add: norm_divide norm_mult field_split_simps del: of_nat_Suc)
also {
from z t_nz ball[OF t] have of_nat (Suc n)/(4 * norm z) \leq of_nat (Suc n)
/ (2 * norm t)
by (intro divide_left_mono mult_pos_pos) simp_all
also have ... < norm (of_nat (Suc n) / t) - norm (1 :: 'a)
using t_nz n by (simp add: field_simps norm_divide del: of_nat_Suc)
also have ... \leqnorm (of_nat (Suc n)/t + 1) by (rule norm_diff_ineq)
finally have inverse (norm (of_nat (Suc n)/t+1))\leq4* norm z / of_nat
(Suc n)
using z by (simp add: field_split_simps norm_divide mult_ac del: of_nat_Suc)
}
also have inverse (real_of_nat (Suc n)) * (4 * norm z / real_of_nat (Suc n)) =
4* norm z * inverse (of_nat (Suc n)^2)
by (simp add: field_split_simps power2_eq_square del: of_nat_Suc)
finally show norm (?f nt) \leq4* norm z*inverse (of_nat (Suc n)^2)
by (simp del: of_nat_Suc)
qed
next
show summable (\lambdan. 4 * norm z * inverse ((of_nat (Suc n)) ^2))
by (subst summable_Suc_iff) (simp add: summable_mult inverse_power_summable)
qed

```

\subsection*{6.23.2 The Polygamma functions}
lemma summable_deriv_ln_Gamma:
\(z \neq(0::\) ' \(a::\{\) real_normed_field,banach \(\}) \Longrightarrow\) summable ( \(\lambda n\). inverse (of_nat (Suc n)) - inverse \((z+\) of_nat (Suc \(n))\) )
unfolding summable_iff_convergent
by (rule uniformly_convergent_imp_convergent, rule uniformly_summable_deriv_ln_Gamma \([\) of \(z\) norm z/2]) simp_all
definition Polygamma :: nat \(\Rightarrow\) ('a :: \{real_normed_field,banach \(\}) \Rightarrow{ }^{\prime} a\) where
Polygamma \(n z=(\) if \(n=0\) then ( \(\sum k\). inverse \(\left(o f_{-} n a t(S u c k)\right)-\) inverse \(\left.\left(z+o f_{-} n a t k\right)\right)-\) euler_mascheroni
```

else
$(-1)^{\wedge}$ Suc $n *$ fact $n *\left(\sum k\right.$. inverse $\left((z+\text { of_nat } k)^{\wedge}\right.$ Suc $\left.\left.\left.n\right)\right)\right)$

```
abbreviation Digamma :: ('a :: \{real_normed_field,banach\}) \(\Rightarrow^{\prime} a\) where
    Digamma \(\equiv\) Polygamma 0
lemma Digamma_def:
    Digamma \(z=\left(\sum k\right.\). inverse \((o f\) _nat \((\) Suc \(k))-\) inverse \((z+\) of_nat \(\left.k)\right)-e u-\)
ler_mascheroni
    by (simp add: Polygamma_def)
lemma summable_Digamma:
    assumes \((z\) :: 'a :: \{real_normed_field,banach \(\}) \neq 0\)
    shows summable ( \(\lambda\) n. inverse (of_nat (Suc \(n)\) ) - inverse \((z+\) of_nat \(n)\) )
proof -
    have sums: \((\lambda n\). inverse \((z+\) of_nat (Suc \(n))\) - inverse \((z+\) of_nat \(n))\) sums
                    ( \(0-\) inverse \((z+\) of_nat 0\())\)
        by (intro telescope_sums filterlim_compose[OF tendsto_inverse_0]
                tendsto_add_filterlim_at_infinity[OF tendsto_const] tendsto_of_nat)
    from summable_add[OF summable_deriv_ln_Gamma[OF assms] sums_summable[OF
sums]]
        show summable ( \(\lambda n\). inverse (of_nat (Suc \(n)\) ) - inverse \((z+\) of_nat \(n)\) ) by
simp
qed
lemma summable_offset:
    assumes summable \((\lambda n . f(n+k)::\) ' \(a\) :: real_normed_vector \()\)
    shows summable \(f\)
proof -
    from assms have convergent ( \(\lambda m\). \(\sum n<m . f(n+k)\) )
        using summable_iff_convergent by blast
    hence convergent \(\left(\lambda m .\left(\sum n<k . f n\right)+\left(\sum n<m . f(n+k)\right)\right)\)
        by (intro convergent_add convergent_const)
    also have \(\left(\lambda m .\left(\sum n<k . f n\right)+\left(\sum n<m . f(n+k)\right)\right)=\left(\lambda m . \sum n<m+k . f n\right)\)
    proof
        fix \(m\) :: nat
        have \(\{. .<m+k\}=\{. .<k\} \cup\{k . .<m+k\}\) by auto
        also have \(\left(\sum n \in \ldots f n\right)=\left(\sum n<k . f n\right)+\left(\sum n=k . .<m+k . f n\right)\)
            by (rule sum.union_disjoint) auto
        also have \(\left(\sum n=k . .<m+k . f n\right)=\left(\sum n=0 . .<m+k-k . f(n+k)\right)\)
            using sum.shift_bounds_nat_ivl [of f \(0 k m\) ] by simp
        finally show \(\left(\sum n<k . f n\right)+\left(\sum n<m . f(n+k)\right)=\left(\sum n<m+k . f n\right)\) by
    (simp add: atLeast0LessThan)
    qed
    finally have \((\lambda a . \operatorname{sum} f\{. .<a\}) \longrightarrow \lim (\lambda m . \operatorname{sum} f\{. .<m+k\})\)
        by (auto simp: convergent_LIMSEQ_iff dest: LIMSEQ_offset)
    thus ?thesis by (auto simp: summable_iff_convergent convergent_def)
qed
lemma Polygamma_converges:
fixes \(z:: ' a\) :: \{real_normed_field,banach \(\}\)
assumes \(z: z \neq 0\) and \(n: n \geq 2\)
shows uniformly_convergent_on (ball z d) ( \(\lambda k z . \sum i<k\). inverse \(((z+\) of_nat i) \({ }^{\wedge} n\) ))
proof (rule Weierstrass_m_test'_ev)
define \(e\) where \(e=(1+d /\) norm \(z)\)
define \(m\) where \(m=n a t\lceil n o r m z * e\rceil\)
\{
fix \(t\) assume \(t: t \in\) ball \(z d\)
have norm \(t=\) norm \((z+(t-z))\) by simp
also have \(\ldots \leq\) norm \(z+\) norm \((t-z)\) by (rule norm_triangle_ineq)
also from \(t\) have norm \((t-z)<d\) by (simp add: dist_norm norm_minus_commute)
finally have norm \(t<\) norm \(z * e\) using \(z\) by (simp add: divide_simps e_def)
\(\}\) note ball \(=\) this
show eventually \(\left(\lambda k . \forall t \in\right.\) ball \(z d\). norm \(\left(\right.\) inverse \(\left.\left(\left(t+o f \_n a t k\right){ }^{\wedge} n\right)\right) \leq\) inverse (of_nat \(\left.(k-m)^{\wedge} n\right)\) ) sequentially
using eventually_gt_at_top [of m] apply eventually_elim
proof (intro ballI)
fix \(k::\) nat and \(t::{ }^{\prime} a\) assume \(k: k>m\) and \(t: t \in\) ball \(z d\)
from \(k\) have real_of_nat \((k-m)=o f_{-} n a t k-o f_{-} n a t ~ m\) by (simp add:
of_nat_diff)
also have \(\ldots \leq\) norm (of_nat \(k::{ }^{\prime} a\) ) - norm \(z * e\)
unfolding m_def by (subst norm_of_nat) linarith
also from ball \([O F t]\) have \(\ldots \leq\) norm (of_nat \(k\) :: 'a) - norm \(t\) by simp
also have \(\ldots \leq\) norm (of_nat \(k+t\) ) by (rule norm_diff_ineq)
finally have inverse \(\left((\text { norm }(t+\text { of_nat } k))^{\wedge} n\right) \leq\) inverse (real_of_nat \((k-\)
\(m)^{\wedge} n\) ) using \(k n\)
by (intro le_imp_inverse_le power_mono) (simp_all add: add_ac del: of_nat_Suc)
thus norm (inverse \(\left.\left((t+\text { of_nat } k)^{\wedge} n\right)\right) \leq\) inverse \(\left(o f \_n a t(k-m) \wedge n\right)\)
by (simp add: norm_inverse norm_power power_inverse)
qed
have summable ( \(\lambda k\). inverse ( \(\left.(\text { real_of_nat } k)^{\wedge} n\right)\) )
using inverse_power_summable[of \(n\) ] \(n\) by simp
hence summable ( \(\lambda k\). inverse ( \(\left.\left.(\text { real_of_nat }(k+m-m))^{\wedge} n\right)\right)\) by simp
thus summable \(\left(\lambda k\right.\). inverse \(\left.\left(\left(r e a l_{-} o f_{-} n a t(k-m)\right)^{\wedge} n\right)\right)\) by (rule summable_offset)
qed
lemma Polygamma_converges':
fixes \(z::\) ' \(a::\) \{real_normed_field,banach \(\}\)
assumes \(z: z \neq 0\) and \(n: n \geq 2\)
shows summable \(\left(\lambda k\right.\). inverse \(\left.\left((z+\text { of_nat } k)^{\wedge} n\right)\right)\)
using uniformly_convergent_imp_convergent[OF Polygamma_converges[OF assms, of 1], of \(z]\)
by (simp add: summable_iff_convergent)
```

theorem Digamma_LIMSEQ:
fixes z ::'a :: {banach,real_normed_field}
assumes z: z\not=0
shows (\lambdam. of_real (ln (real m)) - (\sumn<m. inverse (z+of_nat n)))\longrightarrow
Digamma z
proof -
have }(\lambdan. of_real (ln (real n / (real (Suc n)))))\longrightarrow(of_real (ln 1) :: 'a)
by (intro tendsto_intros LIMSEQ_n_over_Suc_n) simp_all
hence (\lambdan. of_real (ln (real n / (real n + 1))))\longrightarrow \longrightarrow (0 :: 'a) by (simp add:
add_ac)
hence lim: (\lambdan. of_real (ln (real n)) - of_real (ln (real n + 1)))\longrightarrow(0::'a)
proof (rule Lim_transform_eventually)
show eventually (\lambdan. of_real (ln (real n / (real n + 1))) =
of_real (ln (real n)) - (of_real (ln (real n + 1)) :: 'a)) at_top
using eventually_gt_at_top[of 0::nat] by eventually_elim (simp add: ln_div)
qed
from summable_Digamma[OF z]
have (}\lambdan\mathrm{ . inverse (of_nat (}n+1)) - inverse (z + of_nat n)
sums (Digamma z + euler_mascheroni)
by (simp add: Digamma_def summable_sums)
from sums_diff[OF this euler_mascheroni_sum]
have (\lambdan. of_real (ln (real (Suc n) + 1)) - of_real (ln (real n + 1)) - inverse
(z + of_nat n))
sums Digamma z by (simp add: add_ac)
hence (\lambdam. (\sumn<m. of_real (ln (real (Suc n) + 1)) - of_real (ln (real n +
1))) -
(\sumn<m. inverse (z+of_nat n)))\longrightarrowDigamma z
by (simp add: sums_def sum_subtractf)
also have (\lambdam. (\sumn<m.of_real (ln (real (Suc n) + 1)) - of_real (ln (real n

+ 1)))) =
(\lambdam. of_real (ln (m+1)) :: 'a)
by (subst sum_lessThan_telescope) simp_all
finally show ?thesis by (rule Lim_transform) (insert lim, simp)
qed
theorem Polygamma_LIMSEQ:
fixes z :: ' a :: {banach,real_normed_field}
assumes z}\not=0\mathrm{ and n>0
shows (}\lambdak\mathrm{ . inverse ((z+of_nat k)^Suc n)) sums ((-1) ^ Suc n * Polygamma
nz / fact n)
using Polygamma_converges'[OF assms(1), of Suc n] assms(2)
by (simp add: sums_iff Polygamma_def)
theorem has_field_derivative_ln_Gamma_complex [derivative_intros]:
fixes z :: complex
assumes z:z\not\in\mp@subsup{\mathbb{R}}{\leq0}{}
shows (ln_Gamma has_field_derivative Digamma z) (at z)
proof -

```
```

 have not_nonpos_Int \([\) simp \(]: t \notin \mathbb{Z}_{\leq 0}\) if \(R e t>0\) for \(t\)
 using that by (auto elim!: nonpos_Ints_cases')
 from \(z\) have \(z^{\prime}: z \notin \mathbb{Z}_{\leq 0}\) and \(z^{\prime \prime}: z \neq 0\) using nonpos_Ints_subset_nonpos_Reals
 nonpos_Reals_zero_I
by blast+
let ? $f^{\prime}=\lambda z k$. inverse $($ of_nat $($ Suc $k))-$ inverse $(z+$ of_nat $(S u c k))$
let ?f $=\lambda z k . z /$ of_nat $($ Suc $k)-\ln (1+z /$ of_nat $($ Suc $k))$ and $? F^{\prime}=\lambda z$.
$\sum n$. ? $f^{\prime} z n$
define d where $d=\min (n o r m ~ z / 2)$ (if $\operatorname{Im} z=0$ then Re $z / 2$ else abs (Im
z) / 2)
from z have $d: d>0$ norm $z / 2 \geq d$ by (auto simp add: complex_nonpos_Reals_iff
d_def)
have ball: Im $t=0 \longrightarrow R e t>0$ if dist $z t<d$ for t
using no_nonpos_Real_in_ball $[O F z$, of $t]$ that unfolding $d_{-} d e f$ by (force simp
add: complex_nonpos_Reals_iff)
have sums: $(\lambda n$. inverse $(z+$ of_nat (Suc $n))$ - inverse $(z+$ of_nat $n))$ sums
(0 - inverse $(z+$ of_nat 0$))$
by (intro telescope_sums filterlim_compose $[$ OF tendsto_inverse_0]
tendsto_add_filterlim_at_infinity[OF tendsto_const] tendsto_of_nat)
have ($\left(\lambda z . \sum n\right.$. ?f $\left.z n\right)$ has_field_derivative ? $\left.F^{\prime} z\right)($ at $z)$
using $d z$ ln_Gamma_series'_aux[OF $\left.z^{\prime}\right]$
apply (intro has_field_derivative_series' (2) [of ball z d _ _ z] uniformly_summable_deriv_ln_Gamma)
apply (auto intro!: derivative_eq_intros add_pos_pos mult_pos_pos dest!: ball
simp: field_simps sums_iff nonpos_Reals_divide_of_nat_iff
simp del: of_nat_Suc)
apply (auto simp add: complex_nonpos_Reals_iff)
done
with z have $\left(\left(\lambda z .\left(\sum k\right.\right.\right.$. ?f $\left.z k\right)-$ euler_mascheroni $\left.* z-L n z\right)$ has_field_derivative
$? F^{\prime} z-$ euler_mascheroni - inverse $\left.z\right)($ at $z)$
by (force intro!: derivative_eq_intros simp: Digamma_def)
also have $? F^{\prime} z-$ euler_mascheroni - inverse $z=\left(? F^{\prime} z+\right.$-inverse $\left.z\right)-$
euler_mascheroni by simp
also from sums have -inverse $z=\left(\sum n\right.$. inverse $(z+$ of_nat (Suc $\left.n)\right)-$ inverse
($z+$ of_nat $n)$)
by (simp add: sums_iff)
also from sums summable_deriv_ln_Gamma[OF $\left.z^{\prime \prime}\right]$
have $? F^{\prime} z+\ldots=\left(\sum n\right.$. inverse (of_nat $\left.(S u c n)\right)-$ inverse $(z+$ of_nat $\left.n)\right)$
by (subst suminf_add) (simp_all add: add_ac sums_iff)
also have $\ldots-$ euler_mascheroni $=$ Digamma z by (simp add: Digamma_def)
finally have ($\left(\lambda z\right.$. ($\sum k$. ?f $\left.z k\right)$ - euler_mascheroni $\left.* z-L n z\right)$
has_field_derivative Digamma z) (at z) .
moreover from eventually_nhds_ball[OF d(1), of $z]$
have eventually (λz. ln_Gamma $z=\left(\sum k\right.$. ?f $\left.z k\right)-$ euler_mascheroni $* z-$
Ln z) (nhds z)
proof eventually_elim
fix t assume $t \in$ ball $z d$
hence $t \notin \mathbb{Z}_{\leq 0}$ by (auto dest!: ball elim!: nonpos_Ints_cases)
from $l n^{\prime}$ _Gamma_series ${ }^{\prime}$ _aux [OF this]

```
```

 show ln_Gamma t=(\sumk. ?f t k)- euler_mascheroni * t-Ln t by (simp
 add: sums_iff)
qed
ultimately show ?thesis by (subst DERIV_cong_ev[OF refl _ refl])
qed
declare has_field_derivative_ln_Gamma_complex[THEN DERIV_chain2, derivative_intros]

```
lemma Digamma_1 [simp]: Digamma (1 :: 'a :: \{real_normed_field,banach\}) = -
euler_mascheroni
    by (simp add: Digamma_def)
lemma Digamma_plus1:
    assumes \(z \neq 0\)
    shows Digamma \((z+1)=\) Digamma \(z+1 / z\)
proof -
    have sums: \((\lambda k\). inverse \((z+\) of_nat \(k)-\) inverse \((z+\) of_nat \((S u c k)))\)
                        sums (inverse \((z+\) of_nat 0) -0\()\)
        by (intro telescope_sums'[OF filterlim_compose[OF tendsto_inverse_0]]
                tendsto_add_filterlim_at_infinity[OF tendsto_const] tendsto_of_nat)
    have Digamma \((z+1)=\left(\sum k\right.\). inverse \((\) of_nat \((\) Suc \(k))-\) inverse \((z+\) of_nat
(Suc k))) -
                euler_mascheroni (is _ = suminf ?f - _) by (simp add: Digamma_def
add_ac)
    also have suminf ? \(f=\left(\sum k\right.\). inverse \((\) of_nat \((S u c k))-\) inverse \((z+\) of_nat \(\left.k)\right)\)
\(+\)
                                    ( \(\sum k\). inverse \((z+\) of_nat \(k)-\) inverse \((z+\) of_nat \(\left.(S u c k))\right)\)
        using summable_Digamma[OF assms] sums by (subst suminf_add) (simp_all
    add: add_ac sums_iff)
    also have \(\left(\sum k\right.\). inverse \((z+\) of_nat \(k)-\) inverse \((z+\) of_nat \(\left.(S u c k))\right)=1 / z\)
        using sums by (simp add: sums_iff inverse_eq_divide)
    finally show ?thesis by (simp add: Digamma_def [of z])
qed
theorem Polygamma_plus1:
    assumes \(z \neq 0\)
    shows Polygamma \(n(z+1)=\) Polygamma \(n z+(-1)^{\wedge} n *\) fact \(n /\left(z^{\wedge}\right.\) Suc
    n)
proof (cases \(n=0\) )
    assume \(n: n \neq 0\)
    let ?f \(=\lambda k\). inverse \(\left((z+\text { of_nat } k)^{\wedge}\right.\) Suc \(\left.n\right)\)
    have Polygamma \(n(z+1)=(-1)\) ^Suc \(n *\) fact \(n *\left(\sum k\right.\). ?f \(\left.(k+1)\right)\)
        using \(n\) by (simp add: Polygamma_def add_ac)
    also have \(\left(\sum k\right.\). ?f \(\left.(k+1)\right)+\left(\sum k<1\right.\). ?f \(\left.k\right)=\left(\sum k\right.\). ?f \(\left.k\right)\)
        using Polygamma_converges' \({ }^{\prime}\) OF assms, of Suc \(\left.n\right] n\)
        by (subst suminf_split_initial_segment [symmetric]) simp_all
    hence \(\left(\sum k\right.\). ?f \(\left.(k+1)\right)=\left(\sum k\right.\). ?f \(\left.k\right)-\) inverse \(\left(z^{\wedge}\right.\) Suc \(\left.n\right)\) by (simp add:
algebra_simps)
```

 also have \((-1)^{\wedge}\) Suc \(n *\) fact \(n *\left(\left(\sum k\right.\right.\). ?f \(\left.k\right)-\) inverse \(\left(z^{\wedge}\right.\) Suc \(\left.\left.n\right)\right)=\)
    ```
                    Polygamma \(n z+(-1)^{\wedge} n *\) fact \(n /\left(z^{\wedge}\right.\) Suc \(\left.n\right)\) using \(n\)
    by (simp add: inverse_eq_divide algebra_simps Polygamma_def)
    finally show ?thesis .
qed (insert assms, simp add: Digamma_plus1 inverse_eq_divide)
theorem Digamma_of_nat:
    Digamma (of_nat (Suc n) :: 'a :: \{real_normed_field,banach \(\}\) ) \(=\) harm \(n-e u-\)
ler_mascheroni
proof (induction \(n\) )
    case (Suc n)
    have Digamma (of_nat (Suc (Suc n)) :: 'a) = Digamma (of_nat \((\) Suc \(n)+1)\)
by simp
    also have \(\ldots=\) Digamma (of_nat (Suc n)) + inverse (of_nat (Suc n))
            by (subst Digamma_plus1) (simp_all add: inverse_eq_divide del: of_nat_Suc)
    also have Digamma (of_nat (Suc n) :: 'a) harm \(n-\) euler_mascheroni by
(rule Suc)
    also have ... + inverse (of_nat (Suc n)) \(=\) harm (Suc \(n\) ) - euler_mascheroni
        by (simp add: harm_Suc)
    finally show ?case .
qed (simp add: harm_def)
lemma Digamma_numeral: Digamma (numeral \(n)=\) harm \((\) pred_numeral \(n)-\)
euler_mascheroni
    by (subst of_nat_numeral[symmetric], subst numeral_eq_Suc, subst Digamma_of_nat)
(rule refl)
lemma Polygamma_of_real: \(x \neq 0 \Longrightarrow\) Polygamma \(n(o f\) _real \(x)=\) of_real (Polygamma
\(n x\) )
    unfolding Polygamma_def using summable_Digamma[of x] Polygamma_converges' \({ }^{\prime}\) [of
\(x\) Suc \(n\) ]
        by (simp_all add: suminf_of_real)
lemma Polygamma_Real: \(z \in \mathbb{R} \Longrightarrow z \neq 0 \Longrightarrow\) Polygamma \(n z \in \mathbb{R}\)
    by (elim Reals_cases, hypsubst, subst Polygamma_of_real) simp_all
    lemma Digamma_half_integer:
    Digamma (of_nat \(n+1 / 2\) :: 'a :: \{real_normed_field,banach \(\})=\)
        ( \(\sum k<\) n. 2 / of_nat \(\left.(2 * k+1)\right)\) - euler_mascheroni - of_real \((2 * \ln 2)\)
proof (induction \(n\) )
        case 0
        have Digamma (1/2 :: 'a) =of_real (Digamma (1/2)) by (simp add: Polygamma_of_real
[symmetric])
    also have Digamma (1/2::real) \(=\)
                            \(\left(\sum k\right.\). inverse \((\) of_nat \((\) Suc \(k))-\) inverse \(\left.\left(o f \_n a t ~ k+1 / 2\right)\right)-\)
euler_mascheroni
    by (simp add: Digamma_def add_ac)
    also have ( \(\sum k\). inverse (of_nat \((S u c k)::\) real) - inverse \(\left.\left(o f \_n a t k+1 / 2\right)\right)=\)
    \(\left(\sum k\right.\). inverse \((1 / 2) *(\) inverse \((2 *\) of_nat \((S u c k))-\) inverse \((2 *\)
```

of_nat k + 1)))
by (simp_all add: add_ac inverse_mult_distrib[symmetric] ring_distribs del: in-
verse_divide)
also have ... = - 2 * ln 2 using sums_minus[OF alternating_harmonic_series_sums]
by (subst suminf_mult) (simp_all add: algebra_simps sums_iff)
finally show ?case by simp
next
case (Suc n)
have nz: 2 * of_nat n + (1:: 'a) =0
using of_nat_neq_0[of 2*n] by (simp only: of_nat_Suc) (simp add: add_ac)
hence nz': of_nat n + (1/2::'a) \not=0 by (simp add: field_simps)
have Digamma (of_nat (Suc n) + 1/2 :: 'a) = Digamma (of_nat n + 1/2 + 1)
by simp
also from nz' have ... = Digamma (of_nat n + 1/2) + 1/(of_nat n + 1/2)
by (rule Digamma_plus1)
also from nz nz' have 1 / (of_nat n + 1/2 ::'a)= 2 / (2 * of_nat n + 1)
by (subst divide_eq_eq) simp_all
also note Suc
finally show ?case by (simp add: add_ac)
qed
lemma Digamma_one_half: Digamma (1/2) = - euler_mascheroni - of_real (2

* ln 2)
using Digamma_half_integer[of 0] by simp
lemma Digamma_real_three_halves_pos:Digamma (3/2 :: real) > 0
proof -
have -Digamma (3/2 :: real) = - Digamma (of_nat 1 + 1/2) by simp
also have ···=2* ln 2 + euler_mascheroni - 2 by (subst Digamma_half_integer)
simp
also note euler_mascheroni_less_13_over_22
also note ln2_le_25_over_36
finally show ?thesis by simp
qed
theorem has_field_derivative_Polygamma [derivative_intros]:
fixes z :: 'a :: {real_normed_field,euclidean_space}
assumes z: z\not\in\mp@subsup{\mathbb{Z}}{\leq0}{}
shows (Polygammă n has_field_derivative Polygamma (Suc n) z) (at z within A)
proof (rule has_field_derivative_at_within, cases n = 0)
assume n: n=0
let ?f = \lambdak z. inverse (of_nat (Suc k)) - inverse (z + of_nat k)
let ?F = \lambdaz. \sumk. ?f kz and ?f' = \lambdak z. inverse }((z+\mathrm{ of_nat k)
from no_nonpos_Int_in_ball'}[OFz] guess d. note d = thi
from z have summable: summable (}\lambdak\mathrm{ . inverse (of_nat (Suc k)) - inverse (z+
of_nat k))
by (intro summable_Digamma) force
from z have conv: uniformly_convergent_on (ball zd) (\lambdakz.\sumi<k. inverse ((z

```
```

+ of_nat i\mp@subsup{)}{}{2}))
by (intro Polygamma_converges) auto
with d have summable (}\lambdak\mathrm{ . inverse ((z + of_nat k)}\mp@subsup{)}{}{2}))\mathrm{ unfolding summable_iff_convergent
by (auto dest!: uniformly_convergent_imp_convergent simp: summable_iff_convergent
)

```
    have (?F has_field_derivative \(\left.\left(\sum k . ? f^{\prime} k z\right)\right)(\) at \(z)\)
    proof (rule has_field_derivative_series' \(\left[\right.\) of ball \(z d_{\ldots}\) _ \(]\) )
        fix \(k::\) nat and \(t::\) ' \(a\) assume \(t: t \in\) ball \(z d\)
        from \(t d(2)[\) of \(t]\) show ( \((\lambda z\). ?f \(k z)\) has_field_derivative ? \(\left.f^{\prime} k t\right)(\) at \(t\) within
ball \(z d\) )
    by (auto intro!: derivative_eq_intros simp: power2_eq_square simp del: of_nat_Suc
                dest!: plus_of_nat_eq_0_imp elim! : nonpos_Ints_cases)
    qed (insert \(d(1)\) summable conv, (assumption|simp)+)
    with \(z\) show (Polygamma \(n\) has_field_derivative Polygamma (Suc n) z) (at z)
        unfolding Digamma_def [abs_def] Polygamma_def [abs_def] using \(n\)
        by (force simp: power2_eq_square intro!: derivative_eq_intros)
next
    assume \(n: n \neq 0\)
    from \(z\) have \(z^{\prime}: z \neq 0\) by auto
    from no_nonpos_Int_in_ball' \([\) OF \(z]\) guess \(d\). note \(d=\) this
    define \(n^{\prime}\) where \(n^{\prime}=\) Suc \(n\)
    from \(n\) have \(n^{\prime}: n^{\prime} \geq 2\) by (simp add: \(n^{\prime}{ }_{-} d e f\) )
    have \(\left(\left(\lambda z . \sum k\right.\right.\). inverse \(\left((z+\right.\) of_nat \(\left.\left.k){ }^{\wedge} n^{\prime}\right)\right)\) has_field_derivative
                        \(\left(\sum k .-\right.\) of_nat \(n^{\prime} *\) inverse \(\left((z+\right.\) of_nat \(\left.\left.\left.k){ }^{\wedge}\left(n^{\prime}+1\right)\right)\right)\right)(\) at \(z)\)
    proof (rule has_field_derivative_series' \(\left[\right.\) of ball \(\left.\left.z d_{\ldots}, z\right]\right)\)
    fix \(k::\) nat and \(t::{ }^{\prime} a\) assume \(t: t \in\) ball \(z d\)
    with \(d\) have \(t^{\prime}: t \notin \mathbb{Z}_{\leq 0} t \neq 0\) by auto
    show \(\left(\left(\lambda a\right.\right.\). inverse \(\left.\left(\left(a+o f_{-} n a t k\right) \wedge n^{\prime}\right)\right)\) has_field_derivative
                        - of_nat \(n^{\prime} *\) inverse \(\left((t+\right.\) of_nat \(\left.\left.k){ }^{\wedge}\left(n^{\prime}+1\right)\right)\right)(\) at \(t\) within ball \(z d)\)
using \(t^{\prime}\)
            by (fastforce intro!: derivative_eq_intros simp: divide_simps power_diff dest:
plus_of_nat_eq_0_imp)
    next
        have uniformly_convergent_on (ball z d)
                            ( \(\lambda k z .\left(-\right.\) of_nat \(\left.n^{\prime}::{ }^{\prime} a\right) *\left(\sum i<k\right.\). inverse \(\left((z+\right.\) of_nat \(\left.\left.\left.i){ }^{\wedge}\left(n^{\prime}+1\right)\right)\right)\right)\)
        using \(z^{\prime} n\) by (intro uniformly_convergent_mult Polygamma_converges) (simp_all
add: \(n^{\prime}{ }_{-} d e f\) )
            thus uniformly_convergent_on (ball zd)
                    \(\left(\lambda k z . \sum i<k .-\right.\) of_nat \(n^{\prime} *\) inverse \(\left.\left(\left(z+\text { of_nat } i::{ }^{\prime} a\right)^{\wedge}\left(n^{\prime}+1\right)\right)\right)\)
        by (subst (asm) sum_distrib_left) simp
    qed (insert Polygamma_converges \({ }^{\prime}\left[O F z^{\prime} n\right] d\), simp_all)
    also have \(\left(\sum k\right.\). - of_nat \(n^{\prime} *\) inverse \(\left((z+\right.\) of_nat \(\left.\left.k){ }^{\wedge}\left(n^{\prime}+1\right)\right)\right)=\)
                    \(\left(-\right.\) of_nat \(\left.n^{\prime}\right) *\left(\sum k\right.\). inverse \(\left.\left((z+\text { of_nat } k)^{\wedge}\left(n^{\prime}+1\right)\right)\right)\)
    using Polygamma_converges \({ }^{\prime}\left[\right.\) OF \(z^{\prime}\), of \(\left.n^{\prime}+1\right] n^{\prime}\) by (subst suminf_mult) simp_all
    finally have \(\left(\left(\lambda z . \sum k\right.\right.\). inverse \(\left.\left(\left(z+o f \_n a t k\right)^{\wedge} n^{\prime}\right)\right)\) has_field_derivative
                        - of_nat \(n^{\prime} *\left(\sum k\right.\). inverse \(\left((z+\right.\) of_nat \(\left.\left.\left.k){ }^{\wedge}\left(n^{\prime}+1\right)\right)\right)\right)(\) at \(z)\).
    from DERIV_cmult[OF this, of \((-1)^{\wedge} S u c n *\) fact \(\left.n:: ' a\right]\)
    show (Polygamma \(n\) has_field_derivative Polygamma (Suc n) z) (at z)
```

 unfolding n'_def Polygamma_def[abs_def] using n by (simp add: algebra_simps)
 qed
declare has_field_derivative_Polygamma[THEN DERIV_chain2, derivative_intros]
lemma isCont_Polygamma [continuous_intros]:
fixes f::_ > 'a :: {real_normed_field,euclidean_space}

```

```

 by (rule isCont_o2[OF _ DERIV_isCont[OF has_field_derivative_Polygamma]])
    ```
lemma continuous_on_Polygamma:
    \(A \cap \mathbb{Z}_{\leq 0}=\{ \} \Longrightarrow\) continuous_on \(A\) (Polygamma \(\left.n::\right]^{\prime}{ }^{\prime} a::\{\) real_normed_field,euclidean_space \(\left.\}\right)\)
    by (intro continuous_at_imp_continuous_on isCont_Polygamma[OF continuous_ident]
    ballI) blast
    lemma isCont_ln_Gamma_complex [continuous_intros]:
    fixes \(f::\) ' \(a::\) t2_space \(\Rightarrow\) complex
    shows isCont \(f z \Longrightarrow f z \notin \mathbb{R}_{\leq 0} \Longrightarrow\) isCont \((\lambda z\). ln_Gamma \((f z)) z\)
    by (rule isCont_o2[OF _ DERIV_isCont[OF has_field_derivative_ln_Gamma_complex]])
lemma continuous_on_ln_Gamma_complex [continuous_intros]:
    fixes \(A\) :: complex set
    shows \(A \cap \mathbb{R}_{\leq 0}=\{ \} \Longrightarrow\) continuous_on A ln_Gamma
    by (intro continuous_at_imp_continuous_on ballI isCont_ln_Gamma_complex [OF
continuous_ident])
        fastforce
lemma deriv_Polygamma:
    assumes \(z \notin \mathbb{Z}_{\leq 0}\)
    shows deriv (Polygamma m) \(z=\)
        Polygamma (Suc m) (z :: 'a :: \{real_normed_field,euclidean_space \(\}\) )
    by (intro DERIV_imp_deriv has_field_derivative_Polygamma assms)
    thm has_field_derivative_Polygamma
lemma higher_deriv_Polygamma:
    assumes \(z \notin \mathbb{Z}_{\leq 0}\)
    shows (deriv ^^n) (Polygamma m) \(z=\)
        Polygamma \((m+n)(z:: ' a\) :: \{real_normed_field,euclidean_space \(\})\)
proof -
    have eventually \(\left(\lambda u .\left(\right.\right.\) deriv \(\left.{ }^{\wedge} n\right)(\) Polygamma \(m) u=\) Polygamma \(\left.(m+n) u\right)\)
(nhds z)
    proof (induction \(n\) )
        case (Suc n)
        from Suc.IH have eventually ( \(\lambda z\). eventually ( \(\lambda\) u. (deriv ^^ \(n\) ) (Polygamma
    m) \(u=\) Polygamma \((m+n) u)(n h d s z))(n h d s z)\)
            by (simp add: eventually_eventually)
        hence eventually ( \(\lambda\) z. deriv \(\left(\left(\right.\right.\) deriv \(\left.{ }^{\wedge} \wedge n\right)(\) Polygamma \(\left.m)\right) z=\)
                        deriv (Polygamma \((m+n)) z)(n h d s z)\)
            by eventually_elim (intro deriv_cong_ev refl)
```

 moreover have eventually (}\lambdaz.z\inUNIV - \mathbb{Z }\leq0) (nhdsz) using assm
 by (intro eventually_nhds_in_open open_Diff open_UNIV) auto
 ultimately show ?case by eventually_elim (simp_all add:deriv_Polygamma)
 qed simp_all
thus ?thesis by (rule eventually_nhds_x_imp_x)
qed
lemma deriv_ln_Gamma_complex:
assumes z}\not\in\mp@subsup{\mathbb{R}}{\leq0}{
shows deriv ln_Gamma z = Digamma (z :: complex)
by (intro DERIV_imp_deriv has_field_derivative_ln_Gamma_complex assms)

```

We define a type class that captures all the fundamental properties of the inverse of the Gamma function and defines the Gamma function upon that. This allows us to instantiate the type class both for the reals and for the complex numbers with a minimal amount of proof duplication.
```

class Gamma = real_normed_field + complete_space +
fixes rGamma :: ' }a=>\mathrm{ ' 'a
assumes rGamma_eq_zero_iff_aux: rGamma z=0 \longleftrightarrow(\existsn.z=- of_nat n)
assumes differentiable_rGamma_aux1:
(\n. z\not= - of_nat n)\Longrightarrow
let d = (THE d. (\lambdan. \sumk<n. inverse (of_nat (Suc k)) - inverse (z + of_nat
k))
in filterlim (\lambday.(rGamma y - rGamma z + rGamma z*d * (y-z))/R
norm (y-z)) (nhds 0) (at z)
assumes differentiable_rGamma_aux2:
let z = - of_nat n
in filterlim (\lambday.(rGamma y - rGamma z - (-1)^n*(prod of_nat {1..n})

* (y-z))/R
norm (y-z)) (nhds 0) (atz)
assumes rGamma_series_aux: (\bigwedgen.z\not=- of_nat n)\Longrightarrow
let fact' = (\lambdan. prod of_nat {1..n});
exp =(\lambdax. THE e. (\lambdan. \sumk<n. x^k/R fact k)\longrightarrowe);
pochhammer'}=(\lambdaan.(\prodn=0..n.a+of_nat n)
in filterlim (\lambdan. pochhammer'z n / (fact' n*exp (z*(ln (of_nat n)
*R 1))))
(nhds (rGamma z)) sequentially
begin
subclass banach ..
end
definition Gamma z = inverse (rGamma z)

```

\subsection*{6.23.3 Basic properties}
lemma Gamma_nonpos_Int: \(z \in \mathbb{Z}_{\leq 0} \Longrightarrow\) Gamma \(z=0\) and rGamma_nonpos_Int: \(z \in \mathbb{Z}_{\leq 0} \Longrightarrow r G a m m a z=0\)
using rGamma_eq_zero_iff_aux[of z] unfolding Gamma_def by (auto elim!: nonpos_Ints_cases')
lemma Gamma_nonzero: \(z \notin \mathbb{Z}_{\leq 0} \Longrightarrow\) Gamma \(z \neq 0\)
and rGamma_nonzero: \(z \notin \mathbb{Z}_{\leq 0} \Longrightarrow r G a m m a z \neq 0\)
using rGamma_eq_zero_iff_aux \([\) of \(z]\) unfolding Gamma_def by (auto elim!: nonpos_Ints_cases \({ }^{\prime}\) )
lemma Gamma_eq_zero_iff: Gamma \(z=0 \longleftrightarrow z \in \mathbb{Z}_{\leq 0}\)
and rGamma_eq_zero_iff: rGamma \(z=0 \longleftrightarrow z \in \mathbb{Z}_{\leq 0}\)
using rGamma_eq_zero_iff_aux [of z] unfolding Gamma_def by (auto elim!: nonpos_Ints_cases \({ }^{\prime}\) )
lemma rGamma_inverse_Gamma: rGamma \(z=\) inverse (Gamma z)
unfolding Gamma_def by simp
lemma rGamma_series_LIMSEQ [tendsto_intros]:
rGamma_series \(z \longrightarrow r G a m m a z\)
proof (cases \(z \in \mathbb{Z}_{\leq 0}\) )
case False
hence \(z \neq-\) of_nat \(n\) for \(n\) by auto
from rGamma_series_aux [OF this] show ?thesis
by (simp add: rGamma_series_def[abs_def] fact_prod pochhammer_Suc_prod exp_def of_real_def [symmetric] suminf_def sums_def [abs_def] atLeast0At-
Most)
qed (insert rGamma_eq_zero_iff[of z], simp_all add: rGamma_series_nonpos_Ints_LIMSEQ)
theorem Gamma_series_LIMSEQ [tendsto_intros]:
Gamma_series \(z \longrightarrow\) Gamma \(z\)
proof (cases \(z \in \mathbb{Z}_{\leq 0}\) )
case False
hence ( \(\lambda n\). inverse (rGamma_series z \(n\) )) \(\longrightarrow\) inverse (rGamma z)
by (intro tendsto_intros) (simp_all add: rGamma_eq_zero_iff)
also have \(\left(\lambda n\right.\). inverse \(\left.\left(r G a m m a \_s e r i e s ~ z ~ n\right)\right)=\) Gamma_series \(z\)
by (simp add: rGamma_series_def Gamma_series_def[abs_def])
finally show ?thesis by (simp add: Gamma_def)
qed (insert Gamma_eq_zero_iff[of z], simp_all add: Gamma_series_nonpos_Ints_LIMSEQ)
lemma Gamma_altdef: Gamma \(z=\lim\) (Gamma_series \(z\) )
using Gamma_series_LIMSEQ[of z] by (simp add: limI)
lemma rGamma_1 [simp]: rGamma \(1=1\)
proof -
have A: eventually ( \(\lambda n\). rGamma_series \(1 n=\) of_nat (Suc n) / of_nat \(n\) ) sequentially
using eventually_gt_at_top[of 0::nat]
by (force elim!: eventually_mono simp: rGamma_series_def exp_of_real pochhammer_fact
```

 have rGamma_series 1 \longrightarrow 1 by (subst tendsto_cong[OF A]) (rule LIM-
 SEQ_Suc_n_over_n)
moreover have rGamma_series 1 \longrightarrowrGamma 1 by (rule tendsto_intros)
ultimately show ?thesis by (intro LIMSEQ_unique)
qed
lemma rGamma_plus1:z*rGamma (z+1)=rGamma z
proof -
let ?f = \lambdan. (z+1)* inverse (of_nat n) + 1
have eventually (\lambdan. ?f n * rGamma_series z n = z*rGamma_series (z+1)
n) sequentially
using eventually_gt_at_top[of 0::nat]
proof eventually_elim
fix n :: nat assume n: n>0
hence z*rGamma_series (z+1) n= inverse (of_nat n)*
pochhammer z (Suc (Suc n)) / (fact n * exp (z * of_real (ln (of_nat
n))))
by (subst pochhammer_rec) (simp add: rGamma_series_def field_simps exp_add
exp_of_real)
also from n have ... = ?f n * rGamma_series z n
by (subst pochhammer_rec') (simp_all add: field_split_simps rGamma_series_def)
finally show ?f n *rGamma_series zn=z*rGamma_series (z+1) n ..
qed
moreover have (\lambdan. ?f n * rGamma_series z n) \longrightarrow((z+1)*0+1)*
rGamma z
by (intro tendsto_intros lim_inverse_n)
hence (}\lambdan\mathrm{ . ?f }n*rGamma_series z n) \longrightarrowrGamma z by simp
ultimately have (}\lambdan.z*rGamma_series (z+1)n)\longrightarrowrGamma z
by (blast intro: Lim_transform_eventually)
moreover have (\lambdan.z*rGamma_series (z+1) n)\longrightarrowz*rGamma }(z
1)
by (intro tendsto_intros)
ultimately show z*rGamma (z+1) = rGamma z using LIMSEQ_unique
by blast
qed

```
lemma pochhammer_rGamma: rGamma \(z=\) pochhammer \(z n * r G a m m a(z+\) of_nat n)
proof (induction \(n\) arbitrary: \(z\) )
    case (Suc nz)
    have rGamma \(z=\) pochhammer \(z n * r G a m m a\left(z+o f \_n a t n\right)\) by (rule Suc.IH)
    also note rGamma_plus1 [symmetric]
    finally show ?case by (simp add: add_ac pochhammer_rec')
qed simp_all
theorem Gamma_plus1: \(z \notin \mathbb{Z}_{\leq 0} \Longrightarrow \operatorname{Gamma}(z+1)=z * G a m m a z\) using rGamma_plus1[of z] by (simp add: rGamma_inverse_Gamma field_simps Gamma_eq_zero_iff)
```

theorem pochhammer_Gamma: $z \notin \mathbb{Z}_{\leq 0} \Longrightarrow$ pochhammer $z n=\operatorname{Gamma}(z+$
of_nat n) / Gamma z
using pochhammer_rGamma[of z]
by (simp add: rGamma_inverse_Gamma Gamma_eq_zero_iff field_simps)
lemma Gamma_0 [simp]: Gamma $0=0$
and rGamma_0 [simp]: rGamma $0=0$
and Gamma_neg_1 [simp]: Gamma $(-1)=0$
and rGamma_neg_1 [simp]: rGamma $(-1)=0$
and Gamma_neg_numeral [simp]: Gamma (- numeral n) $=0$
and rGamma_neg_numeral [simp]: rGamma $(-$ numeral $n)=0$
and Gamma_neg_of_nat [simp]: Gamma $(-$ of_nat $m)=0$
and rGamma_neg_of_nat [simp]: rGamma $(-$ of_nat $m)=0$
by (simp_all add: rGamma_eq_zero_iff Gamma_eq_zero_iff)

```
lemma Gamma_1 [simp]: Gamma 1 = 1 unfolding Gamma_def by simp
theorem Gamma_fact: Gamma \((1+\) of_nat \(n)=\) fact \(n\)
    by (simp add: pochhammer_fact pochhammer_Gamma of_nat_in_nonpos_Ints_iff
flip: of_nat_Suc)
lemma Gamma_numeral: Gamma (numeral \(n)=\) fact \((\) pred_numeral \(n)\)
    by (subst of_nat_numeral[symmetric], subst numeral_eq_Suc,
        subst of_nat_Suc, subst Gamma_fact) (rule refl)
lemma Gamma_of_int: Gamma (of_int \(n)=(\) if \(n>0\) then fact \((\) nat \((n-1))\)
else 0)
proof (cases \(n>0\) )
    case True
    hence Gamma \((\) of_int \(n)=\) Gamma (of_nat \((S u c(n a t(n-1))))\) by (subst
of_nat_Suc) simp_all
    with True show ?thesis by (subst (asm) of_nat_Suc, subst (asm) Gamma_fact)
simp
qed (simp_all add: Gamma_eq_zero_iff nonpos_Ints_of_int)
lemma rGamma_of_int: rGamma (of_int \(n\) ) \(=(\) if \(n>0\) then inverse (fact (nat
( \(n-1\) ))) else 0)
    by (simp add: Gamma_of_int rGamma_inverse_Gamma)
lemma Gamma_seriesI:
    assumes \(\left(\lambda n . g n / G a m m a \_\right.\)series \(\left.z n\right) \longrightarrow 1\)
    shows \(g \longrightarrow\) Gamma \(z\)
proof (rule Lim_transform_eventually)
    have \(1 / 2>(0::\) real \()\) by simp
    from tendsto \(D[\) OF assms, OF this]
        show eventually ( \(\lambda n . g n /\) Gamma_series \(z n * G a m m a \_\)series \(z n=g n\) )
sequentially
    by (force elim!: eventually_mono simp: dist_real_def)
```

 from assms have (\(\lambda n . g n /\) Gamma_series \(z n *\) Gamma_series \(z n) \longrightarrow 1\)
 * Gamma z
by (intro tendsto_intros)
thus $\left(\lambda n . g n / G a m m a _\right.$series $z n * G a m m a _$series $\left.z n\right) \longrightarrow G a m m a z$ by
simp
qed
lemma Gamma_seriesI':
assumes $f \longrightarrow r G a m m a z$
assumes $(\lambda n . g n * f n) \longrightarrow 1$
assumes $z \notin \mathbb{Z}_{\leq 0}$
shows $g \longrightarrow$ Gamma z
proof (rule Lim_transform_eventually)
have $1 / 2>(0::$ real $)$ by simp
from tendsto $D[O F \operatorname{assms}(2), O F$ this $]$ show eventually $(\lambda n . g n * f n / f n=$
$g n)$ sequentially
by (force elim!: eventually_mono simp: dist_real_def)
from assms have $(\lambda n . g n * f n / f n) \longrightarrow 1 / r G a m m a z$
by (intro tendsto_divide assms) (simp_all add: rGamma_eq_zero_iff)
thus $(\lambda n . g n * f n / f n) \longrightarrow G a m m a z$ by (simp add: Gamma_def di-
vide_inverse)
qed
lemma Gamma_series'_LIMSEQ: Gamma_series ${ }^{\prime} z \longrightarrow$ Gamma z
by (cases $z \in \mathbb{Z}_{\leq 0}$) (simp_all add: Gamma_nonpos_Int Gamma_seriesI[OF Gamma_series_Gamma_serie
Gamma_series'_nonpos_Ints_LIMSEQ[of z])

```

\subsection*{6.23.4 Differentiability}
```

lemma has_field_derivative_rGamma_no_nonpos_int:
assumes z}\not\in\mp@subsup{\mathbb{Z}}{\leq0}{
shows (rGamma has_field_derivative -rGamma z * Digamma z) (at z within
A)
proof (rule has_field_derivative_at_within)
from assms have z}\not=-\mathrm{ of_nat n for n by auto
from differentiable_rGamma_aux1[OF this]
show (rGamma has_field_derivative _rGamma z * Digamma z) (at z)
unfolding Digamma_def suminf_def sums_def[abs_def]
has_field_derivative_def has_derivative_def netlimit_at
by (simp add: Let_def bounded_linear_mult_right mult_ac of_real_def [symmetric])
qed
lemma has_field_derivative_rGamma_nonpos_int:
(rGamma has_field_derivative (-1) ^n* fact n) (at (- of_nat n) within A)
apply (rule has_field_derivative_at_within)
using differentiable_rGamma_aux2[of n]
unfolding Let_def has_field_derivative_def has_derivative_def netlimit_at
by (simp only: bounded_linear_mult_right mult_ac of_real_def [symmetric] fact_prod)
simp

```
```

lemma has_field_derivative_rGamma [derivative_intros]:
(rGamma has_field_derivative (if z }\in\mp@subsup{\mathbb{Z}}{\leq0}{}\mathrm{ then (-1)^(nat \norm z\)* fact (nat
\norm z\)
else -rGamma z * Digamma z)) (at z within A)
using has_field_derivative_rGamma_no_nonpos_int[of z A]
has_field_derivative_rGamma_nonpos_int[of nat \lfloornorm z\rfloorA]
by (auto elim!: nonpos_Ints_cases')
declare has_field_derivative_rGamma_no_nonpos_int [THEN DERIV_chain2, deriva-
tive_intros]
declare has_field_derivative_rGamma [THEN DERIV_chain2, derivative_intros]
declare has_field_derivative_rGamma_nonpos_int [derivative_intros]
declare has_field_derivative_rGamma_no_nonpos_int [derivative_intros]
declare has_field_derivative_rGamma [derivative_intros]
theorem has_field_derivative_Gamma [derivative_intros]:
z\not\in\mathbb{Z}
A)
unfolding Gamma_def [abs_def]
by (fastforce intro!: derivative_eq_intros simp: rGamma_eq_zero_iff)
declare has_field_derivative_Gamma[THEN DERIV_chain2,derivative_intros]

```
hide_fact rGamma_eq_zero_iff_aux differentiable_rGamma_aux1 differentiable_rGamma_aux2 differentiable_rGamma_aux2 rGamma_series_aux Gamma_class.rGamma_eq_zero_iff_aux
lemma continuous_on_rGamma [continuous_intros]: continuous_on A rGamma
by (rule DERIV_continuous_on has_field_derivative_rGamma)+
lemma continuous_on_Gamma [continuous_intros]: \(A \cap \mathbb{Z}_{\leq 0}=\{ \} \Longrightarrow\) continuous_on A Gamma
by (rule DERIV_continuous_on has_field_derivative_Gamma) + blast
lemma isCont_rGamma [continuous_intros]:
isCont \(f z \Longrightarrow\) isCont ( \(\lambda x\).rGamma \((f x)\) ) z
by (rule isCont_o2[OF _ DERIV_isCont[OF has_field_derivative_rGamma]])
lemma isCont_Gamma [continuous_intros]:
isCont \(f z \Longrightarrow f z \notin \mathbb{Z}_{\leq 0} \Longrightarrow\) isCont \((\lambda x\). Gamma \((f x)) z\)
by (rule isCont_o2[OF _ DERIV_isCont[OF has_field_derivative_Gamma]])

\subsection*{6.23.5 The complex Gamma function}
instantiation complex :: Gamma
begin
definition rGamma_complex :: complex \(\Rightarrow\) complex where
```

 rGamma_complex z = lim (rGamma_series z)
 lemma rGamma_series_complex_converges:
convergent (rGamma_series (z :: complex)) (is ?thesis1)
and rGamma_complex_altdef:

```

```

proof -
have ?thesis1 ^ ?thesis2
proof (cases z}\in\mp@subsup{\mathbb{Z}}{\leq0}{}\mathrm{)
case False
have rGamma_series z \longrightarrow exp (- ln_Gamma z)
proof (rule Lim_transform_eventually)
from ln_Gamma_series_complex_converges'[OF False] guess d by (elim exE
conjE)
from this(1) uniformly_convergent_imp_convergent[OF this(2), of z]
have ln_Gamma_series z\longrightarrow lim (ln_Gamma_series z) by (simp add:
convergent_LIMSEQ_iff)
thus }(\lambdan.exp (-ln_Gamma_series z n))\longrightarrow\operatorname{exp}(-ln_Gamma z
unfolding convergent_def ln_Gamma_def by (intro tendsto_exp tendsto_minus)
from eventually_gt_at_top[of 0::nat] exp_ln_Gamma_series_complex False
show eventually (\lambdan. exp (-ln_Gamma_series z n) = rGamma_series z n)
sequentially
by (force elim!: eventually_mono simp: exp_minus Gamma_series_def rGamma_series_def)
qed
with False show ?thesis
by (auto simp: convergent_def rGamma_complex_def intro!: limI)
next
case True
then obtain k where z=- of_nat k by (erule nonpos_Ints_cases')
also have rGamma_series ...\longrightarrow0
by (subst tendsto_cong[OF rGamma_series_minus_of_nat]) (simp_all add:con-
vergent_const)
finally show ?thesis using True
by (auto simp: rGamma_complex_def convergent_def intro!: limI)
qed
thus ?thesis1 ?thesis2 by blast+
qed
context
begin

```
private lemma rGamma_complex_plus1: \(z * \operatorname{rGamma}(z+1)=r \operatorname{Gamma}(z::\)
complex)
proof -
    let ?f \(=\lambda n .(z+1) *\) inverse (of_nat \(n)+1\)
    have eventually ( \(\lambda n\). ?f \(n * r G a m m a \_\)series \(z n=z * r G a m m a \_s e r i e s ~(z+1)\)
n) sequentially
    using eventually_gt_at_top[of 0::nat]
```

proof eventually_elim
fix n :: nat assume n: n>0
hence z * rGamma_series (z+1) n = inverse (of_nat n)*
pochhammer z (Suc (Suc n)) / (fact n * exp (z * of_real (ln (of_nat
n))))
by (subst pochhammer_rec) (simp add: rGamma_series_def field_simps exp_add
exp_of_real)
also from n have .. = ?f n * rGamma_series z n
by (subst pochhammer_rec') (simp_all add: field_split_simps rGamma_series_def
add_ac)
finally show ?f n * rGamma_series z n = z*rGamma_series (z+1)n ..
qed
moreover have (\lambdan. ?f n * rGamma_series z n) \longrightarrow((z+1)*0+1)*
rGamma z
using rGamma_series_complex_converges
by (intro tendsto_intros lim_inverse_n)
(simp_all add: convergent_LIMSEQ_iff rGamma_complex_def)
hence (\lambdan. ?f n*rGamma_series z n)\longrightarrowrGamma z by simp
ultimately have (}\lambdan.z*rGamma_series (z+1)n)\longrightarrowrGamma z
by (blast intro: Lim_transform_eventually)
moreover have (\lambdan.z*rGamma_series (z+1)n)\longrightarrowz*rGamma (z+
1)
using rGamma_series_complex_converges
by (auto intro!: tendsto_mult simp: rGamma_complex_def convergent_LIMSEQ_iff)
ultimately show z*rGamma (z+1) = rGamma z using LIMSEQ_unique
by blast
qed

```
private lemma has_field_derivative_rGamma_complex_no_nonpos_Int:
    assumes \((z\) :: complex \() \notin \mathbb{Z}_{\leq 0}\)
    shows (rGamma has_field_derivative - rGamma \(z * \operatorname{Digamma} z)(\) at \(z)\)
proof -
    have diff: (rGamma has_field_derivative - rGamma \(z *\) Digamma z) (at z) if
Re \(z>0\) for \(z\)
    proof (subst DERIV_cong_ev[OF refl_refl])
        from that have eventually \((\lambda t . t \in\) ball \(z(R e z / 2))(n h d s z)\)
            by (intro eventually_nhds_in_nhd) simp_all
        thus eventually ( \(\lambda\) t. rGamma \(\left.t=\exp \left(-l n_{-} G a m m a t\right)\right)(n h d s z)\)
            using no_nonpos_Int_in_ball_complex[OF that]
            by (auto elim!: eventually_mono simp: rGamma_complex_altdef)
    next
        have \(z \notin \mathbb{R}_{\leq 0}\) using that by (simp add: complex_nonpos_Reals_iff)
        with that show (( \(\lambda t\). exp ( \(-\ln\) _Gamma \(t)\) ) has_field_derivative ( \(-r G a m m a z\)
* Digamma z)) (at z)
    by (force elim!: nonpos_Ints_cases intro!: derivative_eq_intros simp: rGamma_complex_altdef)
    qed
    from assms show (rGamma has_field_derivative - rGamma \(z *\) Digamma ) (at
z)
```

 proof (induction nat \lfloor1 - Re z\rfloor arbitrary:z)
 case (Suc n z)
 from Suc.prems have z:z\not=0 by auto
 from Suc.hyps have n= nat \lfloor-Re z\rfloor by linarith
 hence A: n = nat \lfloor1-Re(z+1)\rfloor by simp
 from Suc.prems have B:z+1\not\in\mp@subsup{\mathbb{Z}}{\leq0}{}}\mathrm{ by (force dest: plus_one_in_nonpos_Ints_imp)
 have ((\lambdaz.z*(rGamma\circ(\lambdaz.z+1)) z) has_field_derivative
 -rGamma (z+1)*(Digamma (z+1)*z-1))(at z)
 by (rule derivative_eq_intros DERIV_chain Suc refl A B)+ (simp add: alge-
 bra_simps)
also have (\lambdaz.z*(rGamma\circ(\lambdaz.z+1 :: complex)) z)=rGamma
by (simp add: rGamma_complex_plus1)
also from z have Digamma (z+1)*z-1=z*Digamma z
by (subst Digamma_plus1) (simp_all add: field_simps)
also have -rGamma (z+1)*(z*Digamma z)=-rGamma z * Digamma
z
by (simp add: rGamma_complex_plus1[of z, symmetric])
finally show ?case .
qed (intro diff, simp)
qed
private lemma rGamma_complex_1:rGamma (1 :: complex) = 1
proof -
have A: eventually (}\lambdan.rGamma_series 1 n = of_nat (Suc n) / of_nat n
sequentially
using eventually_gt_at_top[of 0::nat]
by (force elim!: eventually_mono simp: rGamma_series_def exp_of_real pochham-
mer_fact
field_split_simps pochhammer_rec' dest!: pochhammer_eq_0_imp_nonpos_Int)
have rGamma_series 1 \longrightarrow 1 by (subst tendsto_cong[OF A]) (rule LIM-
SEQ_Suc_n_over_n)
thus rGamma 1 = (1 :: complex) unfolding rGamma_complex_def by (rule
limI)
qed
private lemma has_field_derivative_rGamma_complex_nonpos_Int:
(rGamma has_field_derivative (-1) ^n * fact n) (at (- of_nat n :: complex))
proof (induction n)
case 0
have A:(0::complex)+1\not\in\mp@subsup{\mathbb{Z}}{\leq0}{}\mathrm{ by simp}
have ((\lambdaz.z*(rGamma\circ(\lambdaz.z+1 :: complex)) z) has_field_derivative 1) (at
0)
by (rule derivative_eq_intros DERIV_chain refl
has_field_derivative_rGamma_complex_no_nonpos_Int A)+ (simp add:
rGamma_complex_1)
thus ?case by (simp add: rGamma_complex_plus1)
next
case (Suc n)

```
hence \(A\) : (rGamma has_field_derivative \((-1)^{\wedge} n *\) fact \(n\) )
(at (- of_nat (Suc n) 1 :: complex)) by simp
have \(((\lambda z . z *(r G a m m a \circ(\lambda z . z+1\) :: complex \()) z)\) has_field_derivative
(-1) ^Suc \(n *\) fact (Suc n)) (at (- of_nat (Suc n)))
by (rule derivative_eq_intros refl A DERIV_chain)+
(simp add: algebra_simps rGamma_complex_altdef)
thus ?case by (simp add: rGamma_complex_plus1)
qed

\section*{instance proof}
fix \(z\) :: complex show \((r G a m m a z=0) \longleftrightarrow(\exists n . z=-\) of_nat \(n)\) by (auto simp: rGamma_complex_altdef elim! : nonpos_Ints_cases')
next
fix \(z::\) complex assume \(\wedge n . z \neq-\) of_nat \(n\)
hence \(z \notin \mathbb{Z}_{\leq 0}\) by (auto elim!: nonpos_Ints_cases')
from has_field_derivative_rGamma_complex_no_nonpos_Int[OF this]
show let \(d=\left(\right.\) THE \(d .\left(\lambda n . \sum k<n\right.\). inverse (of_nat \((\) Suc \(\left.k)\right)-\) inverse \((z+\) of_nat \(k\) ))
\(\longrightarrow d)-\) euler_mascheroni \(*_{R} 1\) in ( \(\lambda y\). (rGamma \(y-\)
rGamma \(z+\)
\(r \operatorname{Gamma} z * d *(y-z)) / R \operatorname{cmod}(y-z))-z \rightarrow 0\)
by (simp add: has_field_derivative_def has_derivative_def Digamma_def sums_def [abs_def]
of_real_def [symmetric] suminf_def)
next
fix \(n\) :: nat
from has_field_derivative_rGamma_complex_nonpos_Int[of \(n\) ]
show let \(z=-\) of_nat \(n\) in \(\left(\lambda y\right.\). (rGamma \(y-r G a m m a z-(-1)^{\wedge} n * \operatorname{prod}\) of_nat \(\{1 . . n\} *\)
\((y-z)) / R \operatorname{cmod}(y-z))-z \rightarrow 0\)
by (simp add: has_field_derivative_def has_derivative_def fact_prod Let_def)
next
fix \(z\) :: complex
from rGamma_series_complex_converges[of \(z]\) have \(r\) Gamma_series \(z \longrightarrow\) rGamma \(z\)
by (simp add: convergent_LIMSEQ_iff rGamma_complex_def)
thus let fact' \(=\lambda n\). prod of_nat \(\{1 . . n\}\);
\(\exp =\lambda x\). THE \(e .\left(\lambda n . \sum k<n . x^{\wedge} k / R\right.\) fact \(\left.k\right) \longrightarrow e\);
pochhammer \({ }^{\prime}=\lambda a n . \prod n=0 . . n . a+\) of_nat \(n\)
in \(\left(\lambda n\right.\). pochhammer \({ }^{\prime} z n /\left(\right.\) fact \(^{\prime} n * \exp \left(z * \ln (\right.\) real_of_nat \(\left.\left.\left.n) *_{R} 1\right)\right)\right)\)
rGamma \(z\)
```

 by (simp add: fact_prod pochhammer_Suc_prod rGamma_series_def [abs_def]
 exp_def
of_real_def [symmetric] suminf_def sums_def [abs_def] atLeast0AtMost)
qed
end
end

```
lemma Gamma_complex_altdef:
Gamma \(z=\left(\right.\) if \(z \in \mathbb{Z}_{\leq 0}\) then 0 else exp (ln_Gamma \((z::\) complex \(\left.\left.)\right)\right)\)
unfolding Gamma_def rGamma_complex_altdef by (simp add: exp_minus)
```

lemma cnj_rGamma: cnj (rGammaz) $=$ rGamma $($ cnj $z)$
proof -
have r Gamma_series $(c n j z)=\left(\lambda n . c n j\left(r G a m m a _s e r i e s ~ z n\right)\right)$
by (intro ext) (simp_all add: rGamma_series_def exp_cnj)
also have $\ldots \longrightarrow c n j$ (rGamma z) by (intro tendsto_cnj tendsto_intros)
finally show ?thesis unfolding rGamma_complex_def by (intro sym[OF limI])
qed
lemma cnj_Gamma: cnj (Gamma z) = Gamma (cnj z)
unfolding Gamma_def by (simp add: cnj_rGamma)

```
lemma Gamma_complex_real:
    \(z \in \mathbb{R} \Longrightarrow\) Gamma \(z \in(\mathbb{R}::\) complex set) and rGamma_complex_real: \(z \in \mathbb{R}\)
\(\Longrightarrow\) rGamma \(z \in \mathbb{R}\)
    by (simp_all add: Reals_cnj_iff cnj_Gamma cnj_rGamma)
lemma field_differentiable_rGamma: rGamma field_differentiable (at z within A)
    using has_field_derivative_rGamma[of z] unfolding field_differentiable_def by
blast
lemma holomorphic_rGamma [holomorphic_intros]: rGamma holomorphic_on A
    unfolding holomorphic_on_def by (auto intro!: field_differentiable_rGamma)
lemma holomorphic_rGamma' [holomorphic_intros]:
    assumes \(f\) holomorphic_on \(A\)
    shows ( \(\lambda x\). rGamma \((f x)\) ) holomorphic_on \(A\)
proof -
    have rGamma \(\circ f\) holomorphic_on \(A\) using assms
        by (intro holomorphic_on_compose assms holomorphic_rGamma)
    thus ?thesis by (simp only: o_def)
qed
lemma analytic_rGamma: rGamma analytic_on \(A\) unfolding analytic_on_def by (auto intro!: exI[of _ 1] holomorphic_rGamma)
lemma field_differentiable_Gamma: \(z \notin \mathbb{Z}_{\leq 0} \Longrightarrow\) Gamma field_differentiable (at \(z\) within A) using has_field_derivative_Gamma[of z] unfolding field_differentiable_def by auto
lemma holomorphic_Gamma [holomorphic_intros]: \(A \cap \mathbb{Z}_{\leq 0}=\{ \} \Longrightarrow\) Gamma holomorphic_on A unfolding holomorphic_on_def by (auto intro!: field_differentiable_Gamma)
```

lemma holomorphic_Gamma' [holomorphic_intros]:

```
```

lemma holomorphic_Gamma' [holomorphic_intros]:

```


```

 shows (}\lambdax\mathrm{ . Gamma (fx)) holomorphic_on A
    ```
    shows ( }\lambdax\mathrm{ . Gamma (fx)) holomorphic_on A
proof -
proof -
    have Gamma \circf folomorphic_on A using assms
    have Gamma \circf folomorphic_on A using assms
        by (intro holomorphic_on_compose assms holomorphic_Gamma) auto
        by (intro holomorphic_on_compose assms holomorphic_Gamma) auto
    thus ?thesis by (simp only: o_def)
    thus ?thesis by (simp only: o_def)
qed
qed
lemma analytic_Gamma: }A\cap\mp@subsup{\mathbb{Z}}{\leq0}{}={}\Longrightarrow\mathrm{ Gamma analytic_on }
```

lemma analytic_Gamma: }A\cap\mp@subsup{\mathbb{Z}}{\leq0}{}={}\Longrightarrow\mathrm{ Gamma analytic_on }

```


```

 (auto intro!: holomorphic_Gamma)
    ```
        (auto intro!: holomorphic_Gamma)
lemma field_differentiable_ln_Gamma_complex:
    z\not\in\mp@subsup{\mathbb{R}}{\leq0}{}\Longrightarrowln_Gamma field_differentiable (at (z::complex) within A)
    by (rule field_differentiable_within_subset[of _ _ UNIV])
        (force simp: field_differentiable_def intro!: derivative_intros)+
lemma holomorphic_ln_Gamma [holomorphic_intros]: A\cap 政0 = {}\Longrightarrowln_Gamma
holomorphic_on A
    unfolding holomorphic_on_def by (auto intro!: field_differentiable_ln_Gamma_complex)
lemma analytic_ln_Gamma: A\cap 跤 = {}\Longrightarrowln_Gamma analytic_on }
    by (rule analytic_on_subset[of _ UNIV - 疎的, subst analytic_on_open)
        (auto intro!: holomorphic_ln_Gamma)
lemma has_field_derivative_rGamma_complex' [derivative_intros]:
```



```
\-Re z\rfloor) else
            -rGamma z * Digamma z)) (at z within A)
    using has_field_derivative_rGamma[of z] by (auto elim!: nonpos_Ints_cases')
declare has_field_derivative_rGamma_complex'[THEN DERIV_chain2,derivative_intros]
lemma field_differentiable_Polygamma:
    fixes z :: complex
    shows
    z\not\in\mp@subsup{\mathbb{Z}}{\leq0}{}\Longrightarrow\mathrm{ Polygamma n field_differentiable (at z within A)}
    using has_field_derivative_Polygamma[of z n] unfolding field_differentiable_def
by auto
lemma holomorphic_on_Polygamma [holomorphic_intros]: A\cap 政位{}\LongrightarrowPolygamma
n holomorphic_on A
    unfolding holomorphic_on_def by (auto intro!: field_differentiable_Polygamma)
lemma analytic_on_Polygamma: A\cap \mathbb{Z }
```

by (rule analytic_on_subset $\left[\right.$ of _ UNIV $\left.-\mathbb{Z}_{\leq 0}\right]$, subst analytic_on_open) (auto intro!: holomorphic_on_Polygamma)

6.23.6 The real Gamma function

lemma rGamma_series_real:
eventually (λn.rGamma_series $x=$ Re (rGamma_series (of_real $x) n$)) sequentially
using eventually_gt_at_top[of 0 :: nat]
proof eventually_elim
fix $n::$ nat assume $n: n>0$
have Re (rGamma_series (of_real x) n) $=$
Re (of_real (pochhammer x (Suc n)) / (fact $n *$ exp (of_real $(x * l n$
(real_of_nat n)))))
using n by (simp add: rGamma_series_def powr_def pochhammer_of_real)
also from n have $\ldots=\operatorname{Re}($ of_real $(($ pochhammer x (Suc n))) /
$($ fact $n *(\exp (x * \ln ($ real_of_nat $n))))))$
by (subst exp_of_real) simp
also from n have ... =rGamma_series $x n$
by (subst Re_complex_of_real) (simp add: rGamma_series_def powr_def)
finally show rGamma_series $x n=\operatorname{Re}\left(r G a m m a _s e r i e s ~\left(o f _r e a l ~ x\right) ~ n\right) ~ . . ~$
qed
instantiation real :: Gamma
begin
definition rGamma_real $x=\operatorname{Re}\left(r G a m m a\left(o f _r e a l ~ x::\right.\right.$ complex $\left.)\right)$
instance proof
fix x :: real
have rGamma $x=\operatorname{Re}\left(r G a m m a\left(o f _r e a l ~ x\right)\right)$ by (simp add: rGamma_real_def)
also have of_real $\ldots=r$ Gamma (of_real $x::$ complex)
by (intro of_real_Re rGamma_complex_real) simp_all
also have $\ldots=0 \longleftrightarrow x \in \mathbb{Z}_{<0}$ by (simp add: r Gamma_eq_zero_iff of_real_in_nonpos_Ints_iff)
also have $\ldots \longleftrightarrow(\exists n . x=-$ of_nat $n)$ by (auto elim!: nonpos_Ints_cases')
finally show $(r G a m m a x)=0 \longleftrightarrow(\exists n . x=-$ real_of_nat $n)$ by simp next
fix $x::$ real assume $\wedge n . x \neq-$ of_nat n
hence x : complex_of_real $x \notin \mathbb{Z}_{\leq 0}$
by (subst of_real_in_nonpos_Ints_iff) (auto elim! : nonpos_Ints_cases')
then have $x \neq 0$ by auto
with x have (rGamma has_field_derivative - rGamma x * Digamma $x)($ at $x)$
by (fastforce intro!: derivative_eq_intros has_vector_derivative_real_field
simp: Polygamma_of_real rGamma_real_def [abs_def])
thus let $d=\left(\right.$ THE $d .\left(\lambda n . \sum k<n\right.$. inverse $($ of_nat $($ Suc $k))-$ inverse $(x+$ of_nat k))

$$
\longrightarrow d) \text { - euler_mascheroni } *_{R} 1 \text { in }(\lambda y .(r G a m m a y-
$$

rGamma $x+$

$$
r G a m m a x * d *(y-x)) / R \quad \operatorname{norm}(y-x))-x \rightarrow 0
$$ by (simp add: has_field_derivative_def has_derivative_def Digamma_def sums_def

```
[abs_def]
    of_real_def[symmetric] suminf_def)
next
    fix \(n\) :: nat
    have (rGamma has_field_derivative (-1) ^n * fact \(n\) ) (at (- of_nat \(n ~:: ~ r e a l))\)
        by (fastforce intro!: derivative_eq_intros has_vector_derivative_real_field
                    simp: Polygamma_of_real rGamma_real_def [abs_def])
    thus let \(x=-\) of_nat \(n\) in \(\left(\lambda y .\left(r G a m m a ~ y-r G a m m a ~ x-(-1)^{\wedge} n *\right.\right.\) prod
of_nat \(\{1 . . n\}\) *
\((y-x)) / R \operatorname{norm}(y-x))-x::\) real \(\rightarrow 0\)
        by (simp add: has_field_derivative_def has_derivative_def fact_prod Let_def)
next
    fix \(x\) :: real
    have \(r\) Gamma_series \(x \longrightarrow\) GGamma \(x\)
    proof (rule Lim_transform_eventually)
        show \(\left(\lambda n\right.\). Re (rGamma_series \(\left.\left.\left(o f \_r e a l ~ x\right) n\right)\right) \longrightarrow r G a m m a x\) unfolding
rGamma_real_def
            by (intro tendsto_intros)
    qed (insert rGamma_series_real, simp add: eq_commute)
    thus let fact' \(=\lambda n\). prod of_nat \(\{1 . . n\}\);
                \(\exp =\lambda x\). THE \(e .\left(\lambda n . \sum k<n . x^{\wedge} k / R\right.\) fact \(\left.k\right) \longrightarrow e\);
                pochhammer \({ }^{\prime}=\lambda a n . \prod n=0 . . n . a+\) of_nat \(n\)
            in \(\left(\lambda n\right.\). pochhammer \({ }^{\prime} x n /\left(\right.\) fact \(^{\prime} n * \exp \left(x * \ln (\right.\) real_of_nat \(\left.\left.\left.n) *_{R} 1\right)\right)\right)\)
        \(\longrightarrow\) rGamma \(x\)
            by (simp add: fact_prod pochhammer_Suc_prod rGamma_series_def [abs_def]
exp_def
                        of_real_def [symmetric] suminf_def sums_def [abs_def] atLeast0AtMost)
qed
end
```

lemma rGamma_complex_of_real: rGamma (complex_of_real x) = complex_of_real (rGamma x)
unfolding rGamma_real_def using rGamma_complex_real by simp
lemma Gamma_complex_of_real: Gamma (complex_of_real x) $=$ complex_of_real (Gamma x)
unfolding Gamma_def by (simp add: rGamma_complex_of_real)
lemma rGamma_real_altdef: r Gamma $x=\lim \left(r G a m m a _s e r i e s ~(~ x ~:: ~ r e a l) ~\right) ~$
by (rule sym, rule limI, rule tendsto_intros)
lemma Gamma_real_altdef1: Gamma $x=\lim \left(G a m m a _s e r i e s ~(x:: r e a l)\right)$
by (rule sym, rule limI, rule tendsto_intros)
lemma Gamma_real_altdef2: Gamma $x=\operatorname{Re}(\operatorname{Gamma}($ of_real $x))$
using rGamma_complex_real[OF Reals_of_real[of x]]
by (elim Reals_cases)
(simp only: Gamma_def rGamma_real_def of_real_inverse[symmetric] Re_complex_of_real)
lemma $l_{\text {_ }}$ Gamma_series_complex_of_real:
$x>0 \Longrightarrow n>0 \Longrightarrow$ ln_Gamma_series (complex_of_real x) $n=o f$ _real (l_{n} Gamma_series $x n$)
proof -
assume $x n: x>0 n>0$
have Ln (complex_of_real $x /$ of_nat $k+1)=$ of_real $(\ln (x /$ of_nat $k+1))$ if
$k \geq 1$ for k
using that xn by (subst Ln_of_real [symmetric]) (auto intro!: add_nonneg_pos simp: field_simps)
with $x n$ show ?thesis by (simp add: ln_Gamma_series_def Ln_of_real)
qed
lemma $l n_{-} G a m m a _r e a l _c o n v e r g e s: ~$
assumes $(x::$ real $)>0$
shows convergent (ln_Gamma_series x)
proof -
have $(\lambda n$. ln_Gamma_series $($ complex_of_real $x) n) \longrightarrow \ln$ _Gamma (of_real x)
using assms
by (intro ln_Gamma_complex_LIMSEQ) (auto simp: of_real_in_nonpos_Ints_iff)
moreover from eventually_gt_at_top[of $0::$ nat]
have eventually (λn. complex_of_real (ln_Gamma_series $x n)=$
ln_Gamma_series (complex_of_real x) n) sequentially
by eventually_elim (simp add: ln_Gamma_series_complex_of_real assms)
ultimately have (λn. complex_of_real (ln_Gamma_series $x n$) $\longrightarrow l n_{-} G a m m a$
(of_real x)
by (subst tendsto_cong) assumption+
from tendsto_Re[OF this] show ?thesis by (auto simp: convergent_def)
qed
lemma $l n$ _Gamma_real_LIMSEQ: $(x::$ real $)>0 \Longrightarrow \ln$-Gamma_series $x \longrightarrow$ ln_Gamma x
using $l n_{-}$Gamma_real_converges $[o f x]$ unfolding $l n_{-} G a m m a _d e f$ by (simp add: convergent_LIMSEQ_iff)
lemma ln_Gamma_complex_of_real: $x>0 \Longrightarrow l n_{-} G a m m a($ complex_of_real $x)=$ of_real (ln_Gamma x) $^{\text {a }}$
proof (unfold ln_Gamma_def, rule limI, rule Lim_transform_eventually)
assume $x: x>0$
show eventually (λn. of_real (\ln _Gamma_series $x n)=$
ln_Gamma_series (complex_of_real x) n) sequentially
using eventually_gt_at_top[of 0::nat]
by eventually_elim (simp add: ln_Gamma_series_complex_of_real x)
qed (intro tendsto_of_real, insert ln_Gamma_real_LIMSEQ[of x], simp add: ln_Gamma_def)
lemma Gamma_real_pos_exp: $x>(0::$ real $) \Longrightarrow$ Gamma $x=\exp \left(\ln _{-} G a m m a x\right)$
by (auto simp: Gamma_real_altdef2 Gamma_complex_altdef of_real_in_nonpos_Ints_iff ln_Gamma_complex_of_real exp_of_real)

```
lemma ln_Gamma_real_pos: x > 0\Longrightarrowln_Gamma x = ln (Gamma x :: real)
    unfolding Gamma_real_pos_exp by simp
lemma ln_Gamma_complex_conv_fact: n>0\Longrightarrowln_Gamma (of_nat n :: complex)
= ln}(fact (n-1)
    using ln_Gamma_complex_of_real[of real n] Gamma_fact[of n - 1, where ' a =
real]
    by (simp add:ln_Gamma_real_pos of_nat_diff Ln_of_real [symmetric])
lemma ln_Gamma_real_conv_fact: n>0\Longrightarrowln_Gamma (real n)= ln (fact ( }n
1))
    using Gamma_fact[of n-1, where ' }a=\mathrm{ real]
    by (simp add:ln_Gamma_real_pos of_nat_diff Ln_of_real [symmetric])
lemma Gamma_real_pos [simp, intro]: x > (0::real) \Longrightarrow Gamma x>0
    by (simp add: Gamma_real_pos_exp)
lemma Gamma_real_nonneg [simp, intro]: x > (0::real)\Longrightarrow Gamma x \geq0
    by (simp add: Gamma_real_pos_exp)
lemma has_field_derivative_ln_Gamma_real [derivative_intros]:
    assumes x:x> (0::real)
    shows (ln_Gamma has_field_derivative Digamma x) (at x)
proof (subst DERIV_cong_ev[OF refl _ refl])
    from assms show ((Re\circln_Gamma ○ complex_of_real) has_field_derivative Digamma
    x) (at x)
        by (auto intro!: derivative_eq_intros has_vector_derivative_real_field
            simp: Polygamma_of_real o_def)
    from eventually_nhds_in_nhd[of x {0<..}] assms
    show eventually ( }\lambday.ln_Gamma y = (Re \circ ln_Gamma ○ of_real) y) (nhds x)
    by (auto elim!: eventually_mono simp: ln_Gamma_complex_of_real interior_open)
qed
lemma field_differentiable_ln_Gamma_real:
    x>0\Longrightarrowln_Gamma field_differentiable (at (x::real) within A)
    by (rule field_differentiable_within_subset[of _ _ UNIV])
    (auto simp: field_differentiable_def intro!: derivative_intros)+
declare has_field_derivative_ln_Gamma_real[THEN DERIV_chain2, derivative_intros]
lemma deriv_ln_Gamma_real:
    assumes z>0
    shows deriv ln_Gamma z = Digamma (z :: real)
    by (intro DERIV_imp_deriv has_field_derivative_ln_Gamma_real assms)
```

lemma has_field_derivative_rGamma_real' [derivative_intros]:
(rGamma has_field_derivative (if $x \in \mathbb{Z}_{\leq 0}$ then $(-1)^{\wedge}($ nat $\lfloor-x\rfloor) *$ fact (nat
$\lfloor-x\rfloor)$ else

$$
-r G a m m a x * \operatorname{Digamma} x))(\text { at } x \text { within } A)
$$

using has_field_derivative_rGamma[of $x]$ by (force elim!: nonpos_Ints_cases')
declare has_field_derivative_rGamma_real'[THEN DERIV_chain2, derivative_intros]
lemma Polygamma_real_odd_pos:
assumes $(x::$ real $) \notin \mathbb{Z}_{\leq 0}$ odd n
shows Polygamma $n x>0$
proof -
from assms have $x \neq 0$ by auto
with assms show ?thesis
unfolding Polygamma_def using Polygamma_converges' $[$ of x Suc n]
by (auto simp: zero_less_power_eq simp del: power_Suc
dest: plus_of_nat_eq_0_imp intro!: mult_pos_pos suminf_pos)
qed
lemma Polygamma_real_even_neg:
assumes $(x::$ real $)>0 n>0$ even n
shows Polygamma $n x<0$
using assms unfolding Polygamma_def using Polygamma_converges'[of x Suc
$n]$
by (auto intro!: mult_pos_pos suminf_pos)
lemma Polygamma_real_strict_mono:
assumes $x>0 x<(y:$:real $)$ even n
shows Polygamma $n x<$ Polygamma $n y$
proof -
have $\exists \xi . x<\xi \wedge \xi<y \wedge$ Polygamma $n y-P o l y g a m m a n x=(y-x) *$ Polygamma (Suc n) ξ
using assms by (intro MVT2 derivative_intros impI allI) (auto elim!: nonpos_Ints_cases)
then guess ξ by (elim exE conjE) note $\xi=$ this
note $\xi(3)$
also from $\xi(1,2)$ assms have $(y-x) * \operatorname{Polygamma}($ Suc $n) \xi>0$
by (intro mult_pos_pos Polygamma_real_odd_pos) (auto elim!: nonpos_Ints_cases)
finally show ?thesis by simp
qed
lemma Polygamma_real_strict_antimono:
assumes $x>0 x<(y::$ real $)$ odd n
shows Polygamma $n x>$ Polygamma $n y$
proof -
have $\exists \xi . x<\xi \wedge \xi<y \wedge$ Polygamma $n y-$ Polygamma $n x=(y-x) *$ Polygamma (Suc n) ξ
using assms by (intro MVT2 derivative_intros impI allI) (auto elim!: nonpos_Ints_cases)
then guess ξ by (elim exE conjE) note $\xi=$ this
note $\xi(3)$

```
    also from }\xi(1,2)\mathrm{ assms have (y-x)* Polygamma (Suc n) }\xi<
    by (intro mult_pos_neg Polygamma_real_even_neg) simp_all
    finally show ?thesis by simp
qed
lemma Polygamma_real_mono:
    assumes }x>0x\leq(y::real) even 
    shows Polygamma n x < Polygamma n y
    using Polygamma_real_strict_mono[OF assms(1) _ assms(3), of y] assms(2)
    by (cases }x=y)\mathrm{ simp_all
lemma Digamma_real_strict_mono:(0::real) < x \Longrightarrow x < y # Digamma x <
Digamma y
    by (rule Polygamma_real_strict_mono) simp_all
lemma Digamma_real_mono: (0::real) < 
y
    by (rule Polygamma_real_mono) simp_all
lemma Digamma_real_ge_three_halves_pos:
    assumes }x\geq3/
    shows Digamma (x :: real)>0
proof -
    have 0< Digamma (3/2 :: real) by (fact Digamma_real_three_halves_pos)
    also from assms have ... \leq Digamma x by (intro Polygamma_real_mono)
simp_all
    finally show ?thesis.
qed
lemma ln_Gamma_real_strict_mono:
    assumes }x\geq3/2x<
    shows ln_Gamma (x :: real) < ln_Gamma y
proof -
    have }\exists\xi.x<\xi\wedge\xi<y^ln_Gamma y - ln_Gamma x = (y-x)* Digamma
\xi
            using assms by (intro MVT2 derivative_intros impI allI) (auto elim!: non-
pos_Ints_cases)
    then guess }\xi\mathrm{ by (elim exE conjE) note }\xi=\mathrm{ this
    note }\xi(3
    also from }\xi(1,2)\mathrm{ assms have }(y-x)*Digamma \xi>
            by (intro mult_pos_pos Digamma_real_ge_three_halves_pos) simp_all
    finally show ?thesis by simp
qed
lemma Gamma_real_strict_mono:
    assumes }x\geq3/2x<
    shows Gamma (x :: real) < Gamma y
proof -
    from Gamma_real_pos_exp[of x] assms have Gamma x = exp (ln_Gamma x) by
```

```
simp
    also have .. < exp (ln_Gamma y) by (intro exp_less_mono ln_Gamma_real_strict_mono
assms)
    also from Gamma_real_pos_exp[of y] assms have ... = Gamma y by simp
    finally show ?thesis .
qed
theorem log_convex_Gamma_real: convex_on {0<..} (ln ○ Gamma :: real }=>\mathrm{ real)
    by (rule convex_on_realI[of _ _ Digamma])
        (auto intro!: derivative_eq_intros Polygamma_real_mono Gamma_real_pos
                simp:o_def Gamma_eq_zero_iff elim!: nonpos_Ints_cases')
```


6.23.7 The uniqueness of the real Gamma function

The following is a proof of the Bohr-Mollerup theorem, which states that any log-convex function G on the positive reals that fulfils $G(1)=1$ and satisfies the functional equation $G(x+1)=x G(x)$ must be equal to the Gamma function. In principle, if G is a holomorphic complex function, one could then extend this from the positive reals to the entire complex plane (minus the non-positive integers, where the Gamma function is not defined).

```
context
    fixes }G\mathrm{ :: real }=>\mathrm{ real
    assumes G_1:G1=1
    assumes G_plus1: x > 0\LongrightarrowG(x+1)=x*Gx
    assumes G_pos:x>0\LongrightarrowGx>0
    assumes log_convex_G: convex_on {0<..} (ln \circG)
begin
private lemma G_fact: G (of_nat n + 1) = fact n
    using G_plus1[of real n + 1 for n]
    by (induction n) (simp_all add: G_1 G_plus1)
```

private definition $S::$ real \Rightarrow real \Rightarrow real where
$S x y=(\ln (G y)-\ln (G x)) /(y-x)$
private lemma $S_{-} e q$:
$n \geq 2 \Longrightarrow S($ of_nat $n)($ of_nat $n+x)=(\ln (G($ real $n+x))-\ln ($ fact $(n-$
1))) / x
by (subst G_fact [symmetric]) (simp add: S_def add_ac of_nat_diff)
private lemma G_lower:
assumes $x: x>0$ and $n: n \geq 1$
shows Gamma_series $x n \leq G x$
proof -
have $(\ln \circ G)(\operatorname{real}($ Suc $n)) \leq((\ln \circ G)($ real $(S u c n)+x)-$
$(\ln \circ G)(\operatorname{real}($ Suc $n)-1)) /(\operatorname{real}(S u c n)+x-($ real $($ Suc $n)-1)) *$
$($ real $($ Suc $n)-($ real $($ Suc $n)-1))+($ ln $\circ G)($ real $($ Suc $n)-1)$
using $x n$ by (intro convex_onD_Icc' convex_on_subset $[$ OF log_convex_G]) auto
hence S (of_nat n) (of_nat (Suc n)) \leq (of_nat (Suc n)) (of_nat (Suc n) $+x$) unfolding $S_{-} d e f$ using x by (simp add: field_simps)
also have $S($ of_nat $n)($ of_nat $($ Suc $n))=\ln ($ fact $n)-\ln (f a c t(n-1))$ unfolding S_{-}def using n by (subst (1 2) G_fact [symmetric]) (simp_all add: add_ac of_nat_diff)
also have $\ldots=\ln ($ fact $n / f a c t(n-1))$ by (subst ln_div) simp_all
also from n have fact $n /$ fact $(n-1)=n$ by (cases n) simp_all
finally have $x * \ln ($ real $n)+\ln ($ fact $n) \leq \ln (G($ real $($ Suc $n)+x))$ using $x n$ by (subst (asm) S_eq) (simp_all add: field_simps)
also have $x * \ln ($ real $n)+\ln ($ fact $n)=\ln (\exp (x * \ln ($ real $n)) *$ fact $n)$
using x by (simp add: ln_mult)
finally have $\exp (x * \ln ($ real $n)) *$ fact $n \leq G($ real $($ Suc $n)+x)$ using x by (subst (asm) ln_le_cancel_iff) (simp_all add: G_pos)
also have $G($ real $($ Suc $n)+x)=$ pochhammer $x($ Suc $n) * G x$ using G_plus1[of real (Suc n) $+x$ for n] G_plus1[of $x] x$
by (induction n) (simp_all add: pochhammer_Suc add_ac)
finally show Gamma_series $x n \leq G x$
using x by (simp add: field_simps pochhammer_pos Gamma_series_def)
qed
private lemma G_upper:
assumes $x: x>0 x \leq 1$ and $n: n \geq 2$
shows $G x \leq$ Gamma_series $x n *(1+x /$ real $n)$
proof -
have $(\ln \circ G)($ real $n+x) \leq((\ln \circ G)($ real $n+1)-$ $(\ln \circ G)($ real $n)) /($ real $n+1-($ real $n)) *$ $(($ real $n+x)-$ real $n)+(l n \circ G)($ real $n)$
using $x n$ by (intro convex_onD_Icc' convex_on_subset $[O F$ log_convex_G]) auto
hence S (of_nat n) (of_nat $n+x) \leq S$ (of_nat n) (of_nat $n+1$)
unfolding S_{-}def using x by (simp add: field_simps)
also from n have $S($ of_nat $n)($ of_nat $n+1)=\ln (f a c t n)-\ln (f a c t(n-1))$
by (subst (1 2) G_fact [symmetric]) (simp add: S_def add_ac of_nat_diff)
also have $\ldots=\ln ($ fact $n /(f a c t(n-1)))$ using n by (subst ln_div) simp_all
also from n have fact $n /$ fact $(n-1)=n$ by (cases n) simp_all
finally have $\ln (G($ real $n+x)) \leq x * \ln ($ real $n)+\ln ($ fact $(n-1))$
using $x n$ by (subst (asm) S_eq) (simp_all add: field_simps)
also have $\ldots=\ln (\exp (x * \ln ($ real $n)) * \operatorname{fact}(n-1))$ using x
by (simp add: ln_mult)
finally have $G($ real $n+x) \leq \exp (x * \ln ($ real $n)) *$ fact $(n-1)$ using x
by (subst (asm) ln_le_cancel_iff) (simp_all add: G_pos)
also have $G($ real $n+x)=$ pochhammer $x n * G x$
using G_plus1[of real $n+x$ for $n] x$
by (induction n) (simp_all add: pochhammer_Suc add_ac)
finally have $G x \leq \exp (x * \ln ($ real $n)) *$ fact $(n-1) /$ pochhammer $x n$
using x by (simp add: field_simps pochhammer_pos)
also from n have fact $(n-1)=$ fact n / n by (cases n) simp_all
also have $\exp (x * \ln ($ real $n)) * \ldots / \operatorname{pochhammer} x n=$
Gamma_series $x n *(1+x /$ real $n)$ using $n x$
by (simp add: Gamma_series_def divide_simps pochhammer_Suc)

```
    finally show ?thesis .
qed
private lemma G_eq_Gamma_aux:
    assumes \(x: x>0 x \leq 1\)
    shows \(\quad G x=G a m m a x\)
proof (rule antisym)
    show \(G x \geq\) Gamma \(x\)
    proof (rule tendsto_upperbound)
    from G_lower \([\) of \(x]\) show eventually ( \(\lambda n\). Gamma_series \(x n \leq G x\) ) sequentially
        using \(x\) by (auto intro: eventually_mono[OF eventually_ge_at_top[of \(1:: n a t]]\) )
    qed (simp_all add: Gamma_series_LIMSEQ)
next
    show \(G x \leq G a m m a x\)
    proof (rule tendsto_lowerbound)
        have \((\lambda n\). Gamma_series \(x n *(1+x /\) real \(n)) \longrightarrow G a m m a x *(1+0)\)
            by (rule tendsto_intros real_tendsto_divide_at_top
                    Gamma_series_LIMSEQ filterlim_real_sequentially)+
        thus \((\lambda n\). Gamma_series \(x n *(1+x /\) real \(n)) \longrightarrow G a m m a x\) by simp
    next
            from G_upper [of \(x\) ] show eventually ( \(\lambda\) n. Gamma_series \(x n *(1+x /\) real
\(n) \geq G x)\) sequentially
            using \(x\) by (auto intro: eventually_mono[OF eventually_ge_at_top[of 2::nat]])
    qed simp_all
qed
theorem Gamma_pos_real_unique:
    assumes \(x: x>0\)
    shows \(\quad G x=G a m m a x\)
proof -
    have G_eq: \(G(\) real \(n+x)=\operatorname{Gamma}(\) real \(n+x)\) if \(x \in\{0<. .1\}\) for \(n x\) using
that
    proof (induction \(n\) )
        case (Suc n)
        from Suc have \(x+\) real \(n>0\) by simp
        hence \(x+\) real \(n \notin \mathbb{Z}_{\leq 0}\) by auto
        with Suc show ?case using G_plus1[of real \(n+x\) ] Gamma_plus1[of real \(n+\)
\(x]\)
            by (auto simp: add_ac)
    qed (simp_all add: G_eq_Gamma_aux)
    show ?thesis
    proof (cases frac \(x=0\) )
        case True
        hence \(x=o f \_i n t(\) floor \(x)\) by (simp add: frac_def)
        with \(x\) have \(x_{-} e q\) : \(x=o f \_n a t\) ( \(n a t(f l o o r ~ x)-1\) ) +1 by simp
        show ?thesis by (subst (1 2) x_eq, rule G_eq) simp_all
    next
    case False
```

```
    from assms have x_eq: x = of_nat (nat (floor x)) + frac x
    by (simp add: frac_def)
    have frac_le_1: frac x \leq 1 unfolding frac_def by linarith
    show ?thesis
        by (subst (1 2) x_eq, rule G_eq, insert False frac_le_1) simp_all
    qed
qed
end
```


6.23.8 The Beta function

definition Beta where Beta a $b=G a m m a ~ a * G a m m a ~ b / G a m m a ~(a+b)$
lemma Beta_altdef: Beta a $b=G a m m a ~ a * G a m m a ~ b * r \operatorname{Gamma}(a+b)$
by (simp add: inverse_eq_divide Beta_def Gamma_def)
lemma Beta_commute: Beta $a b=$ Beta $b a$
unfolding Beta_def by (simp add: ac_simps)
lemma has_field_derivative_Beta1 [derivative_intros]:
assumes $x \notin \mathbb{Z}_{\leq 0} x+y \notin \mathbb{Z}_{\leq 0}$
shows (λx. Beta $x y$) has_field_derivative (Beta $x y *$ (Digamma x - Digamma $(x+y))))$
(at x within A) unfolding Beta_altdef
by (rule DERIV_cong, (rule derivative_intros assms)+) (simp add: algebra_simps)
lemma Beta_pole1: $x \in \mathbb{Z}_{\leq 0} \Longrightarrow$ Beta $x y=0$
by (auto simp add: Beta_def elim!: nonpos_Ints_cases')
lemma Beta_pole2: $y \in \mathbb{Z}_{\leq 0} \Longrightarrow$ Beta $x y=0$
by (auto simp add: Beta_def elim!: nonpos_Ints_cases')
lemma Beta_zero: $x+y \in \mathbb{Z}_{\leq 0} \Longrightarrow$ Beta $x y=0$
by (auto simp add: Beta_def elim!: nonpos_Ints_cases')
lemma has_field_derivative_Beta2 [derivative_intros]:
assumes $y \notin \mathbb{Z}_{\leq 0} x+y \notin \mathbb{Z}_{\leq 0}$
shows ($(\lambda y$. Beta $x y)$ has_field_derivative (Beta $x y *$ (Digamma y - Digamma $(x+y)))$)
(at y within A)
using has_field_derivative_Beta1[of y x A] assms by (simp add: Beta_commute add_ac)
theorem Beta_plus1_plus1:
assumes $x \notin \mathbb{Z}_{\leq 0} y \notin \mathbb{Z}_{\leq 0}$
shows Beta $(x+1) y+\operatorname{Beta} x(y+1)=\operatorname{Beta} x y$
proof -
have $\operatorname{Beta}(x+1) y+\operatorname{Beta} x(y+1)=$

```
            (Gamma (x+1)*Gamma y +Gamma x * Gamma (y + 1)) *rGamma
((x+y)+1)
    by (simp add: Beta_altdef add_divide_distrib algebra_simps)
    also have ... = (Gamma x * Gamma y)* ((x+y)*rGamma ((x+y)+1))
    by (subst assms[THEN Gamma_plus1])+ (simp add: algebra_simps)
    also from assms have ... = Beta x y unfolding Beta_altdef by (subst rGamma_plus1)
simp
    finally show ?thesis .
qed
theorem Beta_plus1_left:
    assumes }x\not\in\mp@subsup{\mathbb{Z}}{\leq0}{
    shows }(x+y)*\operatorname{Beta}(x+1)y=x*Beta x y
proof -
    have}(x+y)*\operatorname{Beta}(x+1)y=Gamma (x+1)*Gamma y * ((x+y)
rGamma ((x+y)+1))
    unfolding Beta_altdef by (simp only: ac_simps)
    also have ... = x* Beta x y unfolding Beta_altdef
        by (subst assms[THEN Gamma_plus1] rGamma_plus1)+ (simp only: ac_simps)
    finally show ?thesis.
qed
theorem Beta_plus1_right:
    assumes }y\not\in\mp@subsup{\mathbb{Z}}{\leq0}{
    shows }(x+y)*Betax(y+1)=y*Beta x y
    using Beta_plus1_left[of y x] assms by (simp_all add: Beta_commute add.commute)
lemma Gamma_Gamma_Beta:
    assumes }x+y\not\in\mp@subsup{\mathbb{Z}}{\leq0}{
    shows Gamma x*Gamma y = Beta x y * Gamma (x+y)
    unfolding Beta_altdef using assms Gamma_eq_zero_iff [of x+y]
    by (simp add: rGamma_inverse_Gamma)
```


6.23.9 Legendre duplication theorem

```
context
```

begin
private lemma Gamma_legendre_duplication_aux:
fixes z :: ' a :: Gamma
assumes $z \notin \mathbb{Z}_{\leq 0} z+1 / 2 \notin \mathbb{Z}_{\leq 0}$
shows Gamma $z * \operatorname{Gamma}(z+1 / 2)=\exp ((1-2 * z) *$ of_real (ln 2) $) *$
Gamma (1/2) * Gamma (2*z)
proof -
let ?powr $=\lambda b a . \exp \left(a *\right.$ of_real $\left.\left(l n\left(o f _n a t b\right)\right)\right)$
let $? h=\lambda n$. $(\text { fact }(n-1))^{2} /$ fact $(2 * n-1) *$ of_nat $\left(2^{\wedge}(2 * n)\right) *$
$\exp (1 / 2 *$ of_real $(\ln ($ real_of_nat $n)))$
\{
fix $z:: ' a$ assume $z: z \notin \mathbb{Z}_{\leq 0} z+1 / 2 \notin \mathbb{Z}_{\leq 0}$
let ? $g=\lambda$. ?powr 2 $(2 * z) *$ Gamma_series $^{\prime} z n *$ Gamma_series' $^{\prime}(z+1 / 2)$ $n /$

Gamma_series' (2*z) (2*n)
have eventually (λn. ? g $n=? h n$) sequentially using eventually_gt_at_top
proof eventually_elim
fix $n::$ nat assume $n: n>0$
let $? f=$ fact $(n-1):: ' a$ and $? f^{\prime}=f a c t(2 * n-1)::^{\prime} a$
have $A: \exp t * \exp t=\exp \left(2 * t::{ }^{\prime} a\right)$ for t by (subst exp_add [symmetric]) simp
have A: Gamma_series' $z n *$ Gamma_series' $^{\prime}(z+1 / 2) n=? f^{\wedge} 2 * ? p o w r$ $n(2 * z+1 / 2) /$ (pochhammer $z n *$ pochhammer $(z+1 / 2) n$)
by (simp add: Gamma_series'_def exp_add ring_distribs power2_eq_square A mult_ac)
have B: Gamma_series' $(2 * z)(2 * n)=$
? $f^{\prime} *$?powr $2(2 * z) *$? powr $n(2 * z) /$
(of_nat $\left(2^{\wedge}(2 * n)\right) *$ pochhammer $z n * \operatorname{pochhammer}(z+1 / 2)$
n) using n
by (simp add: Gamma_series ${ }^{\prime}$ _def $\ln _$mult exp_add ring_distribs pochhammer_double)
from z have pochhammer $z n \neq 0$ by (auto dest: pochhammer_eq_0_imp_nonpos_Int)
moreover from z have pochhammer $(z+1 / 2) n \neq 0$ by (auto dest: pochhammer_eq_0_imp_nonpos_Int)
ultimately have ?powr 2 (2*z) * (Gamma_series ${ }^{\prime} z n *$ Gamma_series $^{\prime}(z$ $+1 / 2) n) /$ Gamma_series $^{\prime}(2 * z)(2 * n)=$
? f^{\wedge} 2 / ? $f^{\prime} *$ of_nat $\left(\mathscr{2}^{\wedge}(2 * n)\right) *($?powr $n((4 * z+1) / 2) *$?powr $n(-2 * z))$
using n unfolding $A B$ by (simp add: field_split_simps exp_minus)
also have ?powr $n((4 * z+1) / 2) *$?powr $n(-2 * z)=$?powr $n(1 / 2)$
by (simp add: algebra_simps exp_add[symmetric] add_divide_distrib)
finally show ? $g n=? h n$ by (simp only: mult_ac)
qed
moreover from z double_in_nonpos_Ints_imp[of $z]$ have $2 * z \notin \mathbb{Z}_{\leq 0}$ by auto
hence ? g \longrightarrow ?powr 2 $(2 * z) * G a m m a ~ z ~ * ~ G a m m a ~(z+1 / \mathcal{Z}) / G a m m a$ (2*z)
using LIMSEQ_subseq_LIMSEQ[OF Gamma_series'_LIMSEQ, of (*)2 2*z]
by (intro tendsto_intros Gamma_series'_LIMSEQ)
(simp_all add: o_def strict_mono_def Gamma_eq_zero_iff)
ultimately have ? $h \longrightarrow$?powr $2(2 * z) * G a m m a z * G a m m a(z+1 / 2) /$ Gamma (2*z)
by (blast intro: Lim_transform_eventually)
$\}$ note $\lim =$ this
from assms double_in_nonpos_Ints_imp $[$ of $z]$ have $z^{\prime}: 2 * z \notin \mathbb{Z}_{\leq 0}$ by auto
from fraction_not_in_ints[of 2 1] have $(1 / 2:: ' a) \notin \mathbb{Z}_{\leq 0}$
by (intro not_in_Ints_imp_not_in_nonpos_Ints) simp_all
with $\lim [$ of $1 / 2::$ 'a] have $? h \longrightarrow 2 * \operatorname{Gamma}(1 / 2::$ 'a) by (simp add: exp_of_real)
from LIMSEQ_unique[OF this lim[OF assms]] z^{\prime} show ?thesis
by (simp add: field_split_simps Gamma_eq_zero_iff ring_distribs exp_diff exp_of_real) qed

The following lemma is somewhat annoying. With a little bit of complex analysis (Cauchy's integral theorem, to be exact), this would be completely trivial. However, we want to avoid depending on the complex analysis session at this point, so we prove it the hard way.

```
private lemma Gamma_reflection_aux:
    defines \(h \equiv \lambda z::\) complex. if \(z \in \mathbb{Z}\) then 0 else
                            (of_real pi * cot (of_real pi*z) + Digamma \(z-\operatorname{Digamma}(1-z))\)
    defines \(a \equiv\) complex_of_real pi
    obtains \(h^{\prime}\) where continuous_on UNIV \(h^{\prime} \bigwedge z\). ( \(h\) has_field_derivative \(\left(h^{\prime} z\right)\) ) (at
z)
proof -
    define \(f\) where \(f n=a *\) of_real (cos_coeff \((n+1)-\sin\) _coeff \((n+2))\) for \(n\)
    define \(F\) where \(F z=(\) if \(z=0\) then 0 else \((\cos (a * z)-\sin (a * z) /(a * z)) / z)\)
for \(z\)
    define \(g\) where \(g n=\) complex_of_real (sin_coeff \((n+1)\) ) for \(n\)
    define \(G\) where \(G z=(\) if \(z=0\) then 1 else \(\sin (a * z) /(a * z)\) ) for \(z\)
    have \(a \_n z: a \neq 0\) unfolding \(a_{-} d e f\) by simp
    have \(\left(\lambda n . f n *(a * z){ }^{\wedge} n\right)\) sums \((F z) \wedge\left(\lambda n . g n *(a * z)^{\wedge} n\right)\) sums \((G z)\)
        if abs \((\operatorname{Re} z)<1\) for \(z\)
    proof (cases \(z=0\); rule conjI)
        assume \(z \neq 0\)
        note \(z=\) this that
        from \(z\) have sin_nz: sin \((a * z) \neq 0\) unfolding \(a_{-} d e f\) by (auto simp: sin_eq_ 0 )
    have \((\lambda n\). of_real ( \(\sin\) _coeff \(\left.n) *(a * z)^{\wedge} n\right)\) sums \((\sin (a * z))\) using sin_converges \([o f\)
\(a * z]\)
            by (simp add: scaleR_conv_of_real)
        from sums_split_initial_segment [OF this, of 1]
            have \(\left(\lambda n .(a * z) *\right.\) of_real \(\left.\left(\sin \_c o e f f(n+1)\right) *(a * z) \wedge\right)\) sums \((\sin (a * z))\) by
(simp add: mult_ac)
    from sums_mult [OF this, of inverse \((a * z)] z\) a_nz
            have \(A:\left(\lambda n . g n *(a * z)^{\wedge} n\right)\) sums \((\sin (a * z) /(a * z))\)
            by (simp add: field_simps g_def)
        with \(z\) show \(\left(\lambda n . g n *(a * z)^{\wedge} n\right)\) sums \((G z)\) by (simp add: G_def)
            from \(A\) z a_nz sin_nz have \(g \_n z:\left(\sum n . g n *(a * z)^{\wedge} n\right) \neq 0\) by (simp add:
sums_iff \(g_{-}\)def)
    have \([\) simp \(]\) : sin_coeff \((\) Suc 0\()=1\) by (simp add: sin_coeff_def)
    from sums_split_initial_segment \([O F\) sums_diff \([O F\) cos_converges \([o f a * z] A]\), of
1]
    have \(\left(\lambda n . z * f n *(a * z)^{\wedge} n\right)\) sums \((\cos (a * z)-\sin (a * z) /(a * z))\)
            by (simp add: mult_ac scaleR_conv_of_real ring_distribs \(\left.f_{-} d e f g_{-} d e f\right)\)
    from sums_mult \([O F\) this, of inverse \(z] z\) assms
            show ( \(\left.\lambda n . f n *(a * z)^{\wedge} n\right)\) sums \((F z)\) by (simp add: divide_simps mult_ac
\(f_{-}\)def \(F_{-}\)def)
```

```
next
    assume z:z=0
    have (\lambdan.fn*(a*z)^n) sums f 0 using powser_sums_zero[of f] z by simp
    with z show (\lambdan.fn*(a*z) ^n) sums (Fz)
        by (simp add: f_def F_def sin_coeff_def cos_coeff_def)
    have (\lambdan.gn* (a*z) ^ n) sums g 0 using powser_sums_zero[of g] z by simp
    with z show (\lambdan.gn*(a*z)^n) sums (Gz)
        by (simp add: g_def G_def sin_coeff_def cos_coeff_def)
    qed
    note sums = conjunct1[OF this] conjunct2[OF this]
define h2 where [abs_def]:
    h2 z = (\sumn.fn* (a*z)^n)/(\sumn.gn* (a*z) ^n) + Digamma (1 +z)-
Digamma (1-z) for z
    define POWSER where [abs_def]: POWSER fz=(\sumn.f n*(z^n :: complex ))
for fz
    define POWSER' where [abs_def]:POWSER'f z=(\sumn.diffs f n* (z^n)) for
f and z :: complex
    define h2' where [abs_def]:
        h2'z=a*(POWSER g(a*z)*POWSER'f(a*z)-POWSER f (a*z)*
POWSER'g(a*z))/
        (POWSER g (a*z))^2 + Polygamma 1 (1 +z) + Polygamma 1 (1-z) for
z
```

 have \(h_{-} e q: h t=h 2 t\) if \(a b s(\operatorname{Re} t)<1\) for \(t\)
 proof -
 from that have \(t: t \in \mathbb{Z} \longleftrightarrow t=0\) by (auto elim!: Ints_cases)
 hence \(h t=a * \cot (a * t)-1 / t+\operatorname{Digamma}(1+t)-\operatorname{Digamma}(1-t)\)
 unfolding \(h_{-}\)def using Digamma_plus1 \([\)of \(t]\) by (force simp: field_simps a_def)
 also have \(a * \cot (a * t)-1 / t=(F t) /(G t)\)
 using \(t\) by (auto simp add: divide_simps sin_eq_0 cot_def \(\left.a_{-} d e f F_{-} d e f G_{-} d e f\right)\)
 also have \(\ldots=\left(\sum n . f n *(a * t)^{\wedge} n\right) /\left(\sum n . g n *(a * t){ }^{\wedge} n\right)\)
 using sums \([\) of \(t]\) that by (simp add: sums_iff)
 finally show \(h t=h 2 t\) by (simp only: h2_def)
 qed
 let ? \(A=\{z\). abs \((\) Re \(z)<1\}\)
 have open \((\{z . \operatorname{Re} z<1\} \cap\{z . \operatorname{Re} z>-1\})\)
 using open_halfspace_Re_gt open_halfspace_Re_lt by auto
 also have \((\{z . \operatorname{Re} z<1\} \cap\{z \cdot \operatorname{Re} z>-1\})=\{z \cdot a b s(\operatorname{Re} z)<1\}\) by auto
 finally have open_A: open ? A.
 hence [simp]: interior ? \(A=? A\) by (simp add: interior_open \()\)
 have summable_f: summable (\(\lambda n . f n * z^{\wedge} n\)) for \(z\)
 by (rule powser_inside, rule sums_summable, rule sums[of \(\mathrm{i} *\) of_real (norm z
 $+1) / a]$)
(simp_all add: norm_mult a_def del: of_real_add)
have summable_g: summable ($\lambda n . g n * z^{\wedge} n$) for z
by (rule powser_inside, rule sums_summable, rule sums $[$ of $\mathrm{i} *$ of_real (norm z

```
+1)/a])
        (simp_all add: norm_mult a_def del: of_real_add)
    have summable_fg': summable ( }\lambdan\mathrm{ . diffs f n * z^n) summable ( }\lambdan\mathrm{ . diffs g n *
z^n) for }
    by (intro termdiff_converges_all summable_f summable_g)+
    have (POWSER f has_field_derivative (POWSER'f z)) (at z)
            (POWSER g has_field_derivative (POWSER'g z)) (atz) for z
        unfolding POWSER_def POWSER'_def
        by (intro termdiffs_strong_converges_everywhere summable_f summable_g)+
    note derivs = this[THEN DERIV_chain2[OF _ DERIV_cmult[OF DERIV_ident]],
unfolded POWSER_def]
    have isCont (POWSER f) z isCont (POWSER g) z isCont (POWSER' f) z
isCont (POWSER'g) z
    for z unfolding POWSER_def POWSER__def
    by (intro isCont_powser_converges_everywhere summable_f summable_g summable_fg')+
    note cont = this[THEN isCont_o2[rotated], unfolded POWSER_def POWSER'_def]
    {
        fix z :: complex assume z:abs (Re z)<1
        define d}\mathrm{ where d= i * of_real (norm z + 1)
        have d: abs (Re d)< 1 norm z < norm d by (simp_all add: d_def norm_mult
del: of_real_add)
    have eventually (\lambdaz.hz=h2 z) (nhds z)
                using eventually_nhds_in_nhd[of z ?A] using h_eq z
                by (auto elim!: eventually_mono)
    moreover from sums(2)[OF z] z have nz:(\sumn.gn* (a*z)^n)\not=0
            unfolding G_def by (auto simp: sums_iff sin_eq_0 a_def)
    have}A:z\in\mathbb{Z}\longleftrightarrowz=0 using z by (auto elim!: Ints_cases)
    have no_int: }1+z\in\mathbb{Z}\longleftrightarrowz=0\mathrm{ using z Ints_diff[of 1+z 1] A
            by (auto elim!: nonpos_Ints_cases)
        have no_int': 1 - z\in\mathbb{Z}\longleftrightarrowz=0 using z Ints_diff[of 1 1-z] A
            by (auto elim!: nonpos_Ints_cases)
    from no_int no_int' have no_int: }1-z\not\in\mathbb{Z}\leq0 1+z\not\in\mathbb{Z
    have (h2 has_field_derivative h2'z) (atz) unfolding h2_def
    by (rule DERIV_cong, (rule derivative_intros refl derivs[unfolded POWSER_def]
nz no_int)+)
            (auto simp: h2'_def POWSER_def field_simps power\_eq_square)
    ultimately have deriv: (h has_field_derivative h\mp@subsup{2}{}{\prime}}z)(\mathrm{ at z)
            by (subst DERIV_cong_ev[OF refl_refl])
    from sums(2)[OF z] z have (\sumn.gn*(a*z) ^ n)\not=0
            unfolding G_def by (auto simp: sums_iff a_def sin_eq_0)
            hence isCont h2' z using no_int unfolding h2'_def[abs_def] POWSER_def
POWSER'_def
            by (intro continuous_intros cont
                continuous_on_compose2[OF _ continuous_on_Polygamma[of {z. Re z>
0}]]) auto
    note deriv and this
```

```
    } note }A=thi
    interpret h: periodic_fun_simple' }
    proof
    fix z :: complex
    show }h(z+1)=h
    proof (cases z \in\mathbb{Z})
        assume z:z\not\in\mathbb{Z}
        hence A:z+1\not\in\mathbb{Z}z\not=0\mathrm{ using Ints_diff[of z+1 1] by auto}
        hence Digamma (z+1) - Digamma ( -z) = Digamma z - Digamma (-z
+1)
            by (subst (1 2) Digamma_plus1) simp_all
        with Az show h(z+1)=hz
            by (simp add: h_def sin_plus_pi cos_plus_pi ring_distribs cot_def)
    qed (simp add: h_def)
    qed
    have h2''_eq: h2' (z - 1) = h2' z if z: Re z>0 Re z<1 for z
    proof -
        have ((\lambdaz.h (z - 1)) has_field_derivative h2' (z - 1)) (at z)
        by (rule DERIV_cong, rule DERIV_chain'[OF _ A(1)])
            (insert z, auto intro!: derivative_eq_intros)
    hence (h has_field_derivative h2' (z-1)) (at z) by (subst (asm) h.minus_1)
            moreover from z have (h has_field_derivative h\mp@subsup{2}{}{\prime}z) (at z) by (intro A)
simp_all
    ultimately show h2' (z-1) = h2'z by (rule DERIV_unique)
    qed
    define h\mp@subsup{2}{}{\prime\prime}}\mathrm{ where h2'"}z=h\mp@subsup{2}{}{\prime}(z-of_int \lfloorRez\rfloor) for z
    have deriv: (h has_field_derivative h2" z) (atz) for z
    proof -
        fix z :: complex
    have B: |Re z - real_of_int \lfloorRe z\rfloor|< 1 by linarith
    have ((\lambdat.h (t - of_int \lfloorRez\rfloor)) has_field_derivative h\mp@subsup{2}{}{\prime\prime}z) (at z)
        unfolding h2''_def by (rule DERIV_cong, rule DERIV_chain'[OF _ A(1)])
                        (insert B, auto intro!: derivative_intros)
    thus (h has_field_derivative h2'' z) (at z) by (simp add: h.minus_of_int)
    qed
    have cont: continuous_on UNIV h2"
    proof (intro continuous_at_imp_continuous_on ballI)
    fix z :: complex
    define }r\mathrm{ where }r=\lfloorRez
    define }A\mathrm{ where }A={t. of_int r - 1 < Re t\wedge Re t<of_int r + 1
    have continuous_on A ( }\lambdat.h\mp@subsup{2}{}{\prime}(t-of_int r)) unfolding A_de
            by (intro continuous_at_imp_continuous_on isCont_o2[OF _ A(2)] ballI con-
tinuous_intros)
            (simp_all add: abs_real_def)
    moreover have h2''t=h2'(t-of_int r) if t:t\inA for t
```

```
    proof (cases Re \(t \geq\) of_int \(r\) )
        case True
            from \(t\) have of_int \(r-1<\operatorname{Re} t\) Re \(t<o f \_i n t r+1\) by (simp_all add:
```

A_def)
with True have $\lfloor\operatorname{Re} t\rfloor=\lfloor\operatorname{Re} z\rfloor$ unfolding r_{-}def by linarith
thus ?thesis by (auto simp: r_def h2 ${ }^{\prime \prime}$ _def)
next
case False
from t have t : of_int $r-1<R e t \operatorname{Re} t<o f _i n t r+1$ by (simp_all add:
A_def)
with False have $t^{\prime}:\lfloor\operatorname{Re} t\rfloor=\lfloor\operatorname{Re} z\rfloor-1$ unfolding $r_{-} d e f$ by linarith
moreover from t False have $h 2^{\prime}\left(t-o f _i n t r+1-1\right)=h 2^{\prime}\left(t-o f _i n t\right.$
$r+1)$
by (intro h2 ${ }^{\prime}$ _eq) simp_all
ultimately show ?thesis by (auto simp: r_def h2'"def algebra_simps t^{\prime})
qed
ultimately have continuous_on A h2" by (subst continuous_on_cong[OF refl])
moreover \{
have open (\{t. of_int $r-1<R e t\} \cap\{t$.of_int $r+1>R e t\})$
by (intro open_Int open_halfspace_Re_gt open_halfspace_Re_lt)
also have $\{t$. of_int $r-1<\operatorname{Re} t\} \cap\{t$. of_int $r+1>\operatorname{Re} t\}=A$
unfolding A_{-}def by blast
finally have open A.
\}
ultimately have C : isCont $h 2^{\prime \prime} t$ if $t \in A$ for t using that
by (subst (asm) continuous_on_eq_continuous_at) auto
have of_int $r-1<R e z R e z<o f _i n t r+1$ unfolding $r_{-} d e f$ by linarith +
thus isCont $h 2^{\prime \prime} z$ by (intro C) (simp_all add: A_def)
qed
from that $[$ OF cont deriv] show ?thesis .
qed
lemma Gamma_reflection_complex:
fixes z :: complex
shows Gamma z * Gamma $(1-z)=o f$ _real pi $/ \sin \left(o f _r e a l ~ p i * z\right)$
proof -
let $? g=\lambda z:$:complex. Gamma $z * \operatorname{Gamma}(1-z) * \sin \left(o f _r e a l p i * z\right)$
define g where [abs_def]: $g z=($ if $z \in \mathbb{Z}$ then of_real pi else ? $g z$) for $z::$
complex
let $? h=\lambda z:$:complex. (of_real pi $*$ cot $($ of_real pi*z) + Digamma $z-$ Digamma
$(1-z))$
define h where [abs_def]: $h z=($ if $z \in \mathbb{Z}$ then 0 else ?h $z)$ for $z::$ complex
$-g$ is periodic with period 1.
interpret g : periodic_fun_simple ${ }^{\prime} g$
proof
fix z :: complex
show $g(z+1)=g z$

```
    proof (cases z G\mathbb{Z})
    case False
    hence z * g z=z*Beta z (-z+1)* sin(of_real pi * z) by (simp add:
g_def Beta_def)
    also have z*Beta z (-z+1)=(z+1+-z)*\operatorname{Beta}(z+1)(-z+1)
        using False Ints_diff[of 1 1 - z] nonpos_Ints_subset_Ints
        by (subst Beta_plus1_left [symmetric]) auto
    also have \ldots.* sin (of_real pi*z)=z*(Beta (z+1) (-z)* sin (of_real
pi*(z+1)))
            using False Ints_diff[of z+1 1] Ints_minus[of -z] nonpos_Ints_subset_Ints
            by (subst Beta_plus1_right) (auto simp: ring_distribs sin_plus_pi)
    also from False have Beta (z+1) (-z)* sin (of_real pi* (z+1)) =g(z
+1)
            using Ints_diff[of z+1 1] by (auto simp: g_def Beta_def)
            finally show g(z+1)=gz using False by (subst (asm) mult_left_cancel)
auto
    qed (simp add: g_def)
    qed
    - g}\mathrm{ is entire.
    have g_g':(g has_field_derivative (hz*gz)) (at z) for z :: complex
    proof (cases z \in\mathbb{Z})
    let ? }\mp@subsup{h}{}{\prime}=\lambdaz. Betaz(1-z)*((Digamma z - Digamma (1-z))*\operatorname{sin}(z
of_real pi) +
                of_real pi * cos (z * of_real pi))
    case False
    from False have eventually ( }\lambdat.t\inUNIV - ZZ) (nhds z
        by (intro eventually_nhds_in_open) (auto simp: open_Diff)
    hence eventually ( }\lambdat.gt=?gt)(nhdsz) by eventually_elim (simp add: g_def
    moreover {
    from False Ints_diff[of 1 1-z] have 1-z\not\in\mathbb{Z}\mathrm{ by auto}
    hence (?g has_field_derivative ?h'z) (at z) using nonpos_Ints_subset_Ints
                by (auto intro!: derivative_eq_intros simp: algebra_simps Beta_def)
    also from False have sin (of_real pi*z)}\not=0\mathrm{ by (subst sin_eq_0) auto
    hence ? }\mp@subsup{h}{}{\prime}z=hz*g
                            using False unfolding g_def h_def cot_def by (simp add: field_simps
Beta_def)
            finally have (?g has_field_derivative (hz*gz)) (at z).
        }
        ultimately show ?thesis by (subst DERIV_cong_ev[OF refl _ refl])
    next
    case True
    then obtain n where z: z = of_int n by (auto elim!: Ints_cases)
    let ?t = (\lambdaz::complex. if z=0 then 1 else sin z / z) ○ ( }\lambdaz\mathrm{ .of_real pi*z)
    have deriv_0: (g has_field_derivative 0) (at 0)
    proof (subst DERIV_cong_ev[OF refl _ refl])
        show eventually (\lambdaz.g z = of_real pi * Gamma (1 +z)*Gamma (1 - z)
* ?t z) (nhds 0)
            using eventually_nhds_ball[OF zero_less_one, of 0::complex]
```

```
    proof eventually_elim
    fix z :: complex assume z:z\in ball 0 1
    show g}z=of_real pi*Gamma (1+z)*Gamma (1-z)*?t
    proof (cases z=0)
        assume z':}z\not=
        with z have \mp@subsup{z}{}{\prime\prime}:z\not\in\mp@subsup{\mathbb{Z}}{<0}{}z\not\in\mathbb{Z}\mathrm{ by (auto elim!: Ints_cases)}
            from Gamma_plus1[OF this(1)] have Gamma z=Gamma (z+1)/z
by simp
            with }\mp@subsup{z}{}{\prime\prime}\mp@subsup{z}{}{\prime}\mathrm{ show ?thesis by (simp add: g_def ac_simps)
            qed (simp add: g_def)
        qed
        have (?t has_field_derivative (0 * of_real pi)) (at 0)
            using has_field_derivative_sin_z_over_z[of UNIV :: complex set]
            by (intro DERIV_chain) simp_all
    thus ((\lambdaz. of_real pi * Gamma (1 + z)*Gamma (1-z) * ?tz) has_field_derivative
0)(at 0)
            by (auto intro!: derivative_eq_intros simp:o_def)
    qed
    have ((g\circ (\lambdax. x - of_int n)) has_field_derivative 0 * 1) (at (of_int n))
        using deriv_0 by (intro DERIV_chain) (auto intro!: derivative_eq_intros)
    also have g}0(\lambdax.x-of_int n)=g by (intro ext) (simp add: g.minus_of_int)
    finally show (g has_field_derivative (hz*gz)) (at z) by (simp add: z h_def)
    qed
    have g_eq:g(z/2)*g((z+1)/2)=Gamma(1/2)^2 *gz if Re z>-1 Re z
<2 for z
    proof (cases z }\in\mathbb{Z}\mathrm{ )
    case True
    with that have z=0\veez=1 by (force elim!: Ints_cases)
    moreover have g 0*g(1/2)=Gamma(1/2)^2 *g0
        using fraction_not_in_ints[where 'a = complex, of 2 1] by (simp add: g_def
power2_eq_square)
    moreover have g(1/2)*g1=Gamma (1/2)^2 *g1
        using fraction_not_in_ints[where ' }a=\mathrm{ complex, of 2 1]
        by (simp add: g_def power2_eq_square Beta_def algebra_simps)
    ultimately show ?thesis by force
    next
    case False
    hence z:z/2 & \mathbb{Z (z+1)/\mathcal{Z}\not\in\mathbb{Z}\mathrm{ using Ints_diff[of z+1 1] by (auto elim!:}}\mathbf{~}\mathrm{ (a)}
Ints_cases)
```



```
    from z have 1-z/\mathcal{D}\not\in\mathbb{Z}1-((z+1)/\mathscr{Q})\not\in\mathbb{Z}
        using Ints_diff[of 1 1-z/2] Ints_diff[of 1 1-((z+1)/2)] by auto
    hence }\mp@subsup{z}{}{\prime\prime}:1-z/2 \mathcal{Z}\mp@subsup{\mathbb{Z}}{<0}{}1-((z+1)/\mathcal{Q})\not\in\mp@subsup{\mathbb{Z}}{<0}{}\mathrm{ by (auto elim!: nonpos_Ints_cases)
    from z have g(z/2)*g((z+1)/2)=
    (Gamma (z/2) * Gamma ((z+1)/2))*(Gamma (1-z/2) * Gamma (1-((z+1)/2)))
*
            (sin (of_real pi*z/2) * sin(of_real pi*(z+1)/2))
```

by (simp add: g_def)
also from z^{\prime} Gamma_legendre_duplication_aux[of z/2]
have Gamma $(z / 2) * \operatorname{Gamma}((z+1) / \mathcal{D})=\exp ((1-z) *$ of_real $(\ln$ 2) $) *$ Gamma (1/2) * Gamma z
by (simp add: add_divide_distrib)
also from $z^{\prime \prime}$ Gamma_legendre_duplication_aux[of $1-(z+1) /$ 2]
have Gamma $(1-z / 2) * \operatorname{Gamma}(1-(z+1) / 2)=$ Gamma $(1-z) * \operatorname{Gamma}(1 / 2) * \exp (z *$ of_real (ln 2) $)$
by (simp add: add_divide_distrib ac_simps)
finally have $g(z / 2) * g((z+1) / \mathbb{2})=$ Gamma (1/2) ^2 $2 *(G a m m a z * G a m m a$ $(1-z)$ *
$\left.\left(2 *\left(\sin \left(o f _r e a l ~ p i * z / 2\right) * \sin \left(o f _r e a l ~ p i *(z+1) / 2\right)\right)\right)\right)$
by (simp add: add_ac power2_eq_square exp_add ring_distribs exp_diff exp_of_real)
also have sin $($ of_real $p i *(z+1) / 2)=\cos \left(o f_{-}\right.$real pi*z/2)
using cos_sin_eq[of - of_real pi*z/2, symmetric]
by (simp add: ring_distribs add_divide_distrib ac_simps)
also have $2 *\left(\sin \left(o f_{-} r e a l ~ p i * z / \mathcal{Z}\right) * \cos \left(o f_{-}\right.\right.$real $\left.\left.p i * z / \mathcal{Z}\right)\right)=\sin \left(o f_{-}\right.$real pi $*$ z)
by (subst sin_times_cos) (simp add: field_simps)
also have Gamma $z * \operatorname{Gamma}(1-z) * \sin ($ complex_of_real pi $* z)=g z$
using $\langle z \notin \mathbb{Z}\rangle$ by (simp add: g_def)
finally show ?thesis.
qed
have g_{-}eq: $g(z / 2) * g((z+1) / \mathcal{Z})=\operatorname{Gamma}(1 / 2)^{\wedge} \mathcal{Z} * g z$ for z
proof -
define r where $r=\lfloor\operatorname{Re} z / 2\rfloor$
have Gamma (1/2)^2 * gz=Gamma (1/2) ^2 $* g\left(z-o f _i n t(2 * r)\right)$ by (simp only: g.minus_of_int)
also have of_int $(2 * r)=2 *$ of_int r by simp
also have Rez-2* of_int $r>-1 R e z-2 *$ of_int $r<2$ unfolding $r_{-} d e f$
by linarith +
hence Gamma (1/2) $\mathcal{2} * g(z-2 *$ of_int $r)=$

$$
g((z-2 * \text { of_int } r) / 2) * g((z-2 * \text { of_int } r+1) / 2)
$$

unfolding r_{-}def by (intro $g_{-} e q[$ symmetric]) simp_all
also have $(z-2 *$ of_int $r) / 2=z / 2-o f _i n t ~ r y s i m p$
also have $g \ldots=g(z / \mathbb{Z})$ by (rule g.minus_of_int)
also have $(z-2 *$ of_int $r+1) / 2=(z+1) / 2-o f _i n t r$ by simp
also have $g \ldots=g((z+1) /$ 2) by (rule g.minus_of_int)
finally show ?thesis ..
qed
have $g_{-} n z[\operatorname{simp}]: g z \neq 0$ for $z::$ complex
unfolding g_{-}def using Ints_diff [of $\left.11-z\right]$
by (auto simp: Gamma_eq_zero_iff sin_eq_0 dest!: nonpos_Ints_Int)
have $h_{-} e q: h z=(h(z / 2)+h((z+1) / 2)) / 2$ for z
proof -
have $((\lambda t . g(t / 2) * g((t+1) / 2))$ has_field_derivative

$$
(g(z / 2) * g((z+1) / 2)) *((h(z / 2)+h((z+1) / 2)) / 2))(a t
$$

z)

by (auto intro!: derivative_eq_intros $g_{-} g^{\prime}[$ THEN DERIV_chain2] simp: field_simps)
hence $((\lambda t$. Gamma (1/2) ^2 $* g t$) has_field_derivative
Gamma (1/2) ^2 * g $z *((h(z / 2)+h((z+1) / 2)) / 2))($ at $z)$
by (subst (1 2) g_eq[symmetric]) simp
from DERIV_cmult[OF this, of inverse ((Gamma (1/2)) ^2)]
have (g has_field_derivative $(g z *((h(z / 2)+h((z+1) /$ 2) $) /$ 2 $)))($ at $z)$
using fraction_not_in_ints[where ' $a=$ complex, of 21 1]
by (simp add: divide_simps Gamma_eq_zero_iff not_in_Ints_imp_not_in_nonpos_Ints)
moreover have (g has_field_derivative $(g z * h z)$) (at z)
using $g_{-} g^{\prime}[o f z]$ by (simp add: ac_simps)
ultimately have $g z * h z=g z *((h(z / 2)+h((z+1) / 2)) / 2)$
by (intro DERIV_unique)
thus $h z=(h(z / 2)+h((z+1) / 2)) / 2$ by simp
qed
obtain h^{\prime} where h^{\prime} _cont: continuous_on UNIV h^{\prime} and
$h_{-} h^{\prime}: \bigwedge z$. (h has_field_derivative $h^{\prime} z$) (at z)
unfolding $h_{-} d e f$ by (erule Gamma_reflection_aux)
have h^{\prime}-eq: $h^{\prime} z=\left(h^{\prime}(z / 2)+h^{\prime}((z+1) / 2)\right) / 4$ for z
proof -
have $((\lambda t .(h(t / 2)+h((t+1) /$ 2 $)) /$ 2) has_field_derivative

$$
\left.\left(\left(h^{\prime}(z / 2)+h^{\prime}((z+1) / 2)\right) / 4\right)\right)(\text { at } z)
$$

by (fastforce intro!: derivative_eq_intros $h_{-} h^{\prime}[$ THEN DERIV_chain2] $\left.]\right)$
hence (h has_field_derivative $\left.\left(\left(h^{\prime}(z / 2)+h^{\prime}((z+1) / 2)\right) / 4\right)\right)$ (at $\left.z\right)$
by (subst (asm) h_eq[symmetric])
from $h_{-} h^{\prime}$ and this show $h^{\prime} z=\left(h^{\prime}(z / 2)+h^{\prime}((z+1) / 2)\right) / 4$ by (rule DERIV_unique)
qed
have h^{\prime} _zero: $h^{\prime} z=0$ for z
proof -
define m where $m=\max 1|R e z|$
define B where $B=\{t$. abs $(R e t) \leq m \wedge a b s(\operatorname{Im} t) \leq a b s(\operatorname{Im} z)\}$
have closed $(\{t$. Re $t \geq-m\} \cap\{t$. Re $t \leq m\} \cap$
$\{t . \operatorname{Im} t \geq-|\operatorname{Im} z|\} \cap\{t . \operatorname{Im} t \leq|\operatorname{Im} z|\})$
(is closed ?B) by (intro closed_Int closed_halfspace_Re_ge closed_halfspace_Re_le closed_halfspace_Im_ge closed_halfspace_Im_le)
also have ? $B=B$ unfolding B_{-}def by fastforce
finally have closed B.
moreover have bounded B unfolding bounded_iff
proof (intro ballI exI)
fix t assume $t: t \in B$
have norm $t \leq|R e t|+|I m t|$ by (rule cmod_le)
also from t have $|R e t| \leq m$ unfolding $B_{-} d e f$ by blast
also from t have $|\operatorname{Im} t| \leq|\operatorname{Im} z|$ unfolding $B_{-} d e f$ by blast
finally show norm $t \leq m+|\operatorname{Im} z|$ by - simp
qed
ultimately have compact: compact B by (subst compact_eq_bounded_closed) blast
define M where $M=\left(S U P z \in B\right.$. norm $\left.\left(h^{\prime} z\right)\right)$
have compact (h^{\prime} ' B)
by (intro compact_continuous_image continuous_on_subset $\left[O F h^{\prime}\right.$ _cont $]$ compact) blast+
hence bdd: bdd_above $\left(\left(\lambda z\right.\right.$. norm $\left.\left(h^{\prime} z\right)\right)$ ' $\left.B\right)$
using bdd_above_norm $\left[\right.$ of h^{\prime} ‘ B] by (simp add: image_comp o_def compact_imp_bounded)
have norm $\left(h^{\prime} z\right) \leq M$ unfolding M_{-}def by (intro cSUP_upper bdd) (simp_all add: B_def m_def)
also have $M \leq M / 2$
proof (subst M_def, subst cSUP_le_iff)
have $z \in B$ unfolding B_{-}def m_{-}def by simp
thus $B \neq\{ \}$ by auto
next
show $\forall z \in B$. norm $\left(h^{\prime} z\right) \leq M / 2$
proof
fix $t::$ complex assume $t: t \in B$
from $h^{\prime}{ }_{-} e q[$ of $t] t$ have $h^{\prime} t=\left(h^{\prime}(t / 2)+h^{\prime}((t+1) / 2)\right) / 4$ by (simp)
also have norm $\ldots=$ norm $\left(h^{\prime}(t / 2)+h^{\prime}((t+1) / 2)\right) / 4$ by simp
also have norm $\left(h^{\prime}(t / \mathcal{Z})+h^{\prime}((t+1) / \mathcal{Z})\right) \leq \operatorname{norm}\left(h^{\prime}(t / \mathcal{Z})\right)+$ norm $\left(h^{\prime}\right.$ $((t+1) / 2))$
by (rule norm_triangle_ineq)
also from t have abs $(R e((t+1) / 2)) \leq m$ unfolding $m_{-} d e f B_{-} d e f$ by auto
with t have $t / 2 \in B(t+1) / 2 \in B$ unfolding B_{-}def by auto
hence $\operatorname{norm}\left(h^{\prime}(t / 2)\right)+$ norm $\left(h^{\prime}((t+1) / 2)\right) \leq M+M$ unfolding $M_{\text {_def }}$ by (intro add_mono cSUP_upper bdd) (auto simp: B_def)
also have $(M+M) / 4=M / 2$ by simp
finally show norm $\left(h^{\prime} t\right) \leq M / 2$ by - simp_all
qed
qed (insert bdd, auto)
hence $M \leq 0$ by simp
finally show $h^{\prime} z=0$ by simp
qed
have $h_{-} h^{\prime}$-2: (h has_field_derivative 0) (at z) for z
using $h_{-} h^{\prime}[$ of $z] h^{\prime}$ _zero $[$ of $z]$ by simp
have g_{-}real: $g z \in \mathbb{R}$ if $z \in \mathbb{R}$ for z
unfolding g_{-}def using that by (auto intro!: Reals_mult Gamma_complex_real)
have $h _$real: $h z \in \mathbb{R}$ if $z \in \mathbb{R}$ for z
unfolding h_def using that by (auto intro!: Reals_mult Reals_add Reals_diff Polygamma_Real)
have $g_{-} n z: g z \neq 0$ for z unfolding g_{-}def using Ints_diff[of 1 1-z]
by (auto simp: Gamma_eq_zero_iff sin_eq_0)
from h^{\prime} _zero $h _h^{\prime}$ _2 have $\exists c . \forall z \in U N I V . h z=c$
by (intro has_field_derivative_zero_constant) (simp_all add: dist_0_norm)
then obtain c where $c: \bigwedge z . h z=c$ by auto
have $\exists u . u \in$ closed_segment $01 \wedge \operatorname{Re}(g 1)-\operatorname{Re}(g 0)=\operatorname{Re}(h u * g u *(1$ - 0))
by (intro complex_mvt_line $g_{-} g^{\prime}$)
then obtain u where $u: u \in$ closed_segment $01 \operatorname{Re}\left(\begin{array}{ll}g & 1)-\operatorname{Re}(g 0)=\operatorname{Re}(h)\end{array}\right.$ $u * g u$)
by auto
from $u(1)$ have $u^{\prime}: u \in \mathbb{R}$ unfolding closed_segment_def by (auto simp: scaleR_conv_of_real)
from $u^{\prime} g_{-}$real $[$of $u] g_{-} n z[$ of $u]$ have $R e(g u) \neq 0$ by (auto elim!: Reals_cases)
with $u(2) c[o f u] g_{-} r e a l[o f u] g_{-} n z[o f u] u^{\prime}$
have $R e c=0$ by (simp add: complex_is_Real_iff g.of_1)
with h _real $[$ of 0$] c[o f 0]$ have $c=0$ by (auto elim!: Reals_cases)
with c have $A: h z * g z=0$ for z by simp
hence (g has_field_derivative 0) (at z) for z using $g_{-} g^{\prime}[$ of $z]$ by simp
hence $\exists c^{\prime} . \forall z \in U N I V . g z=c^{\prime}$ by (intro has_field_derivative_zero_constant) simp_all
then obtain c^{\prime} where $c: \bigwedge z . g z=c^{\prime}$ by (force)
from this[of 0] have $c^{\prime}=p i$ unfolding $g_{-} d e f$ by simp
with c have $g z=p i$ by simp
show ?thesis
proof (cases $z \in \mathbb{Z}$)
case False
with $\langle g z=p i\rangle$ show ?thesis by (auto simp: g_def divide_simps)
next
case True
then obtain n where $n: z=o f_{-}$int n by (elim Ints_cases)
with sin_eq_ $0[$ of of_real $p i * z]$ have sin $\left(o f _r e a l ~ p i * z\right)=0$ by force
moreover have of_int $(1-n) \in \mathbb{Z}_{\leq 0}$ if $n>0$ using that by (intro nonpos_Ints_of_int) simp
ultimately show ?thesis using n
by (cases $n \leq 0$) (auto simp: Gamma_eq_zero_iff nonpos_Ints_of_int)
qed
qed
lemma rGamma_reflection_complex:
$r G a m m a z * r G a m m a(1-z::$ complex $)=\sin \left(o f_{-}\right.$real pi $\left.* z\right) /$ of_real pi using Gamma_reflection_complex $[$ of $z]$
by (simp add: Gamma_def field_split_simps split: if_split_asm)
lemma rGamma_reflection_complex':
rGamma $z *$ rGamma $(-z::$ complex $)=-z * \sin \left(o f _r e a l ~ p i * z\right) /$ of_real pi proof -
have $r \operatorname{Gamma} z * r \operatorname{Gamma}(-z)=-z *(r \operatorname{Gamma} z * r \operatorname{Gamma}(1-z))$
using rGamma_plus1[of $-z$, symmetric] by simp
also have rGamma $z * r \operatorname{Gamma}(1-z)=\sin \left(o f _\right.$real pi $\left.* z\right) /$ of_real pi
by (rule rGamma_reflection_complex)

```
    finally show ?thesis by simp
qed
```

lemma Gamma_reflection_complex':
Gamma $z * \operatorname{Gamma}(-z::$ complex $)=-$ of_real pi $/\left(z * \sin \left(o f _r e a l p i * z\right)\right)$
using rGamma_reflection_complex'[of z] by (force simp add: Gamma_def field_split_simps)

```
lemma Gamma_one_half_real: Gamma (1/2 :: real) \(=\) sqrt pi
proof -
    from Gamma_reflection_complex[of 1/2] fraction_not_in_ints \(\left[\right.\) where \({ }^{\prime} a=\) com-
plex, of 21 ]
    have Gamma (1/2 :: complex) \(\wedge^{\wedge} \mathcal{Z}=o f\) _real pi by (simp add: power2_eq_square)
    hence of_real pi = Gamma (complex_of_real (1/2)) ^2 by simp
    also have ... = of_real ((Gamma (1/2)) ^2) by (subst Gamma_complex_of_real)
simp_all
    finally have Gamma (1/2) \({ }^{\wedge} \mathcal{Z}=p i\) by (subst (asm) of_real_eq_iff) simp_all
    moreover have Gamma (1/2 :: real) \(\geq 0\) using Gamma_real_pos[of 1/2] by
simp
    ultimately show ?thesis by (rule real_sqrt_unique [symmetric])
qed
lemma Gamma_one_half_complex: Gamma (1/2 :: complex) = of_real (sqrt pi)
proof -
    have Gamma (1/2 :: complex) = Gamma (of_real (1/2)) by simp
    also have \(\ldots=\) of_real (sqrt pi) by (simp only: Gamma_complex_of_real Gamma_one_half_real)
    finally show ?thesis .
qed
theorem Gamma_legendre_duplication:
    fixes \(z\) :: complex
    assumes \(z \notin \mathbb{Z}_{\leq 0} z+1 / 2 \notin \mathbb{Z}_{\leq 0}\)
    shows Gamma \(\bar{z} * \operatorname{Gamma}(z+1 / 2)=\)
        \(\exp ((1-2 * z) *\) of_real (ln 2)) \(*\) of_real (sqrt pi) * Gamma \((2 * z)\)
    using Gamma_legendre_duplication_aux[OF assms] by (simp add: Gamma_one_half_complex)
```

end

6.23.10 Limits and residues

The inverse of the Gamma function has simple zeros:
lemma rGamma_zeros:
$(\lambda z . r G a m m a z /(z+$ of_nat $n))-(-$ of_nat $n) \rightarrow\left((-1)^{\wedge} n *\right.$ fact $n:: ' a::$
Gamma)
proof (subst tendsto_cong)
let ?f $=\lambda z$. pochhammer $z n *$ rGamma $(z+$ of_nat $($ Suc $n))::{ }^{\prime} a$
from eventually_at_ball' ${ }^{[}$OF zero_less_one, of - of_nat n :: 'a UNIV]
show eventually ($\lambda z . r G a m m a z /(z+$ of_nat $n)=$? $f z)($ at $(-$ of_nat $n))$

```
    by (subst pochhammer_rGamma[of _ Suc n])
    (auto elim!: eventually_mono simp: field_split_simps pochhammer_rec' eq_neg_iff_add_eq_0)
    have isCont ?f (- of_nat n) by (intro continuous_intros)
    thus ?f - (- of_nat n) }->(-1) ^ n* fact n unfolding isCont_def
        by (simp add: pochhammer_same)
qed
```

The simple zeros of the inverse of the Gamma function correspond to simple poles of the Gamma function, and their residues can easily be computed from the limit we have just proven:


```
proof -
    from eventually_at_ball' \([\) OF zero_less_one, of - of_nat \(n\) :: 'a UNIV]
        have eventually ( \(\lambda z . r G a m m a z \neq(0:: ' a))(\) at \((-\) of_nat \(n))\)
        by (auto elim!: eventually_mono nonpos_Ints_cases'
            simp: rGamma_eq_zero_iff dist_of_nat dist_minus)
    with isCont_rGamma[of - of_nat \(\left.\left.n:: ~ ' a, ~ O F ~ c o n t i n u o u s \_i d e n t\right] ~\right] ~\)
        have filterlim ( \(\lambda z\). inverse (rGamma z) :: 'a) at_infinity (at (- of_nat n))
    unfolding isCont_def by (intro filterlim_compose[OF filterlim_inverse_at_infinity])
                            (simp_all add: filterlim_at)
    moreover have ( \(\lambda z\). inverse (rGamma z) :: 'a) = Gamma
        by (intro ext) (simp add: rGamma_inverse_Gamma)
    ultimately show ?thesis by (simp only:)
qed
lemma Gamma_residues:
    \((\lambda z . G a m m a z *(z+\) of_nat \(n))-(-\) of_nat \(n) \rightarrow\left((-1)^{\wedge} n /\right.\) fact \(n::{ }^{\prime} a::\)
Gamma)
proof (subst tendsto_cong)
    let \({ }^{2} c=(-1)^{\wedge} n /\) fact \(n::{ }^{\prime} a\)
    from eventually_at_ball' \({ }^{[ }\)OF zero_less_one, of - of_nat \(n::\) ' \(a\) UNIV]
        show eventually \((\lambda z . G a m m a z *(z+\) of_nat \(n)=\) inverse \((r G a m m a z /(z\)
+ of_nat n)))
                        (at (- of_nat n))
    by (auto elim!: eventually_mono simp: field_split_simps rGamma_inverse_Gamma)
    have \((\lambda z\). inverse (rGamma \(z /(z+\) of_nat \(n)))-(-\) of_nat \(n) \rightarrow\)
                inverse ((-1) ^ \(n *\) fact \(n::\) ' \(a)\)
            by (intro tendsto_intros rGamma_zeros) simp_all
    also have inverse \(\left((-1)^{\wedge} n *\right.\) fact \(\left.n\right)=? c\)
            by (simp_all add: field_simps flip: power_mult_distrib)
    finally show \((\lambda z\). inverse \((r G a m m a z /(z+\) of_nat \(n)))-(-\) of_nat \(n) \rightarrow\) ? \(c\).
qed
```


6.23.11 Alternative definitions

Variant of the Euler form

definition Gamma_series_euler' where
Gamma_series_euler' ${ }^{\prime}$ n $=$

```
    inverse \(z *\left(\prod k=1\right.\)..n. exp \((z *\) of_real \((\ln (1+\) inverse \((\) of_nat \(k)))) /(1+\)
\(z /\) of_nat \(k)\) )
context
begin
private lemma Gamma_euler \({ }^{\prime}\) _aux1:
    fixes \(z::\) ' \(a::\) \{real_normed_field,banach \(\}\)
    assumes \(n\) : \(n>0\)
    shows \(\exp \left(z *\right.\) of_real \(\left.\left(l n\left(o f_{-} n a t h+1\right)\right)\right)=\left(\prod k=1 . . n\right.\). exp \((z *\) of_real \((l n\)
\((1+1 /\) of_nat \(k))))\)
proof -
    have \(\left(\prod k=1 . . n . \exp (z *\right.\) of_real \((\ln (1+1 /\) of_nat \(\left.k)))\right)=\)
                \(\exp \left(z *\right.\) of_real \(\left(\sum k=1 . . n . \ln (1+1 /\right.\) real_of_nat \(\left.\left.k)\right)\right)\)
    by (subst exp_sum [symmetric]) (simp_all add: sum_distrib_left)
    also have \(\left(\sum k=1 . . n . \ln (1+1 /\right.\) of_nat \(k)::\) real \()=\ln \left(\prod k=1 . . n .1+1 /\right.\)
real_of_nat \(k\) )
    by (subst ln_prod [symmetric]) (auto intro!: add_pos_nonneg)
    also have \(\left(\prod k=1 . . n .1+1 /\right.\) of_nat \(k::\) real \()=\left(\prod k=1 . . n .(\right.\) of_nat \(k+1) /\)
of_nat \(k\) )
    by (intro prod.cong) (simp_all add: field_split_simps)
    also have \(\left(\prod k=1\right.\)..n. (of_nat \(\left.k+1\right) /\) of_nat \(k::\) real \()=o f \_n a t n+1\)
    by (induction n) (simp_all add: prod.nat_ivl_Suc' field_split_simps)
    finally show ?thesis ..
qed
theorem Gamma_series_euler':
    assumes \(z:(z:: ' a::\) Gamma \() \notin \mathbb{Z}_{\leq 0}\)
    shows \(\left(\lambda n\right.\). Gamma_series_euler \(\left.{ }^{\prime} z n\right) \longrightarrow G a m m a z\)
proof (rule Gamma_seriesI, rule Lim_transform_eventually)
    let ?f \(=\lambda n\). fact \(n * \exp (z *\) of_real \((\ln (\) of_nat \(n+1))) /\) pochhammer \(z(n\)
    +1)
    let ? \(r=\lambda n\). ?f \(n /\) Gamma_series \(z n\)
    let \(?^{\prime} r^{\prime}=\lambda\). \(\exp (z *\) of_real \((\ln (\) of_nat \((S u c n) /\) of_nat \(n)))\)
    from \(z\) have \(z^{\prime}: z \neq 0\) by auto
    have eventually ( \(\lambda n\). ? \(r^{\prime} n=\) ? \(r n\) ) sequentially
        using \(z\) by (auto simp: field_split_simps Gamma_series_def ring_distribs exp_diff
ln_div
                            intro: eventually_mono eventually_gt_at_top[of \(0:: n a t]\) dest:
pochhammer_eq_0_imp_nonpos_Int)
    moreover have \(?^{\prime} r^{\prime} \longrightarrow \exp (z *\) of_real \((\ln 1))\)
        by (intro tendsto_intros LIMSEQ_Suc_n_over_n) simp_all
    ultimately show ?r \(\longrightarrow 1\) by (force intro: Lim_transform_eventually)
    from eventually_gt_at_top[of \(0:: n a t]\)
        show eventually ( \(\lambda n\). ? \(r ~ n=G a m m a \_\)series_euler' \(z n /\) Gamma_series \(z n\) )
sequentially
    proof eventually_elim
        fix \(n::\) nat assume \(n: n>0\)
```

```
    from n z' have Gamma_series_euler' z n=
        exp (z* of_real (ln (of_nat n + 1))) / (z* (\prodk=1..n. (1 + z / of_nat k)))
        by (subst Gamma_euler'_aux1)
            (simp_all add: Gamma_series_euler'_def prod.distrib
                            prod_inversef[symmetric] divide_inverse)
    also have (\prodk=1..n. (1+z/ of_nat k)) = pochhammer (z+1)n/fact n
    proof (cases n)
        case (Suc n')
        then show ?thesis
            unfolding pochhammer_prod fact_prod
            by (simp add: atLeastLessThanSuc_atLeastAtMost field_simps prod_dividef
                prod.atLeast_Suc_atMost_Suc_shift del: prod.cl_ivl_Suc)
    qed auto
    also have z*\ldots= pochhammer z (Suc n) / fact n by (simp add: pochham-
mer_rec)
    finally show ?r n = Gamma_series_euler' z n / Gamma_series z n by simp
    qed
qed
end
```


Weierstrass form

definition Gamma_series_Weierstrass :: ' a :: $\{$ banach,real_normed_field $\} \Rightarrow$ nat \Rightarrow ' a where
Gamma_series_Weierstrass z $n=$
$\exp (-$ euler_mascheroni $* z) / z *\left(\prod k=1 . . n . \exp (z /\right.$ of_nat $k) /(1+z /$ of_nat k))

definition

$r G a m m a _s e r i e s _W e i e r s t r a s s ~:: ~ ' ~ a ~:: ~\left\{b a n a c h, r e a l _n o r m e d _f i e l d\right\} \Rightarrow n a t \Rightarrow ' a$ where rGamma_series_Weierstrass $z n=$ $\exp ($ euler_mascheroni $* z) * z *\left(\prod k=1 . . n .(1+z /\right.$ of_nat $k) * \exp (-z /$ of_nat $k)$)
lemma Gamma_series_Weierstrass_nonpos_Ints:
eventually (λk. Gamma_series_Weierstrass (- of_nat n) $k=0$) sequentially
using eventually_ge_at_top[of n] by eventually_elim (auto simp: Gamma_series_Weierstrass_def)
lemma rGamma_series_Weierstrass_nonpos_Ints:
eventually (λ k.rGamma_series_Weierstrass (- of_nat n) $k=0$) sequentially
using eventually_ge_at_top[of n] by eventually_elim (auto simp: rGamma_series_Weierstrass_def)
theorem Gamma_Weierstrass_complex: Gamma_series_Weierstrass z \longrightarrow Gamma
(z :: complex)
proof (cases $z \in \mathbb{Z}_{\leq 0}$)
case True
then obtain n where $z=-$ of_nat n by (elim nonpos_Ints_cases')
also from True have Gamma_series_Weierstrass ... \longrightarrow Gamma z
by (simp add: tendsto_cong[OF Gamma_series_Weierstrass_nonpos_Ints] Gamma_nonpos_Int) finally show ?thesis .
next
case False
hence $z: z \neq 0$ by auto
let ?f $=(\lambda x . \Pi x=$ Suc 0..x. $\exp (z /$ of_nat $x) /(1+z /$ of_nat $x))$
have A : exp $(\ln (1+z /$ of_nat $n))=(1+z /$ of_nat $n)$ if $n \geq 1$ for $n::$ nat
using False that by (subst exp_Ln) (auto simp: field_simps dest!: plus_of_nat_eq_0_imp)
have $\left(\lambda n . \sum k=1 . . n . z /\right.$ of_nat $k-\ln (1+z /$ of_nat $\left.k)\right) \longrightarrow \ln$ _Gamma
$z+$ euler_mascheroni $* z+\ln z$
using ln_Gamma_series'_aux [OF False]
by (simp only: atLeastLessThanSuc_atLeastAtMost [symmetric] One_nat_def sum.shift_bounds_Suc_ivl sums_def atLeastOLessThan)
from tendsto_exp[OF this] False z have ?f $\longrightarrow z * \exp$ (euler_mascheroni $*$
z) * Gamma z
by (simp add: exp_add exp_sum exp_diff mult_ac Gamma_complex_altdef A)
from tendsto_mult [OF tendsto_const $[$ of $\exp (-$ euler_mascheroni $* z) / z]$ this] z show Gamma_series_Weierstrass $z \longrightarrow G a m m a z$
by (simp add: exp_minus field_split_simps Gamma_series_Weierstrass_def [abs_def])
qed
lemma tendsto_complex_of_real_iff: $((\lambda x$. complex_of_real $(f x)) \longrightarrow o f$ _real c) F
$=(f \longrightarrow c) F$
by (rule tendsto_of_real_iff)

```
lemma Gamma_Weierstrass_real: Gamma_series_Weierstrass x \longrightarrow\longrightarrow Gamma (x
:: real)
    using Gamma_Weierstrass_complex[of of_real x] unfolding Gamma_series_Weierstrass_def [abs_def]
    by (subst tendsto_complex_of_real_iff [symmetric])
    (simp_all add: exp_of_real[symmetric] Gamma_complex_of_real)
```

lemma rGamma_Weierstrass_complex: rGamma_series_Weierstrass $z \longrightarrow r G a m m a$
(z :: complex)
proof (cases $z \in \mathbb{Z}_{\leq 0}$)
case True
then obtain n where $z=-$ of_nat n by (elim nonpos_Ints_cases')
also from True have rGamma_series_Weierstrass ... \longrightarrow rGamma z
by (simp add: tendsto_cong[OF rGamma_series_Weierstrass_nonpos_Ints] rGamma_nonpos_Int)
finally show ?thesis .
next
case False
have rGamma_series_Weierstrass $z=(\lambda n$. inverse (Gamma_series_Weierstrass
$z n)$)
by (simp add: rGamma_series_Weierstrass_def[abs_def] Gamma_series_Weierstrass_def
exp_minus divide_inverse prod_inversef [symmetric] mult_ac)
also from False have ... \longrightarrow inverse (Gamma z)
by (intro tendsto_intros Gamma_Weierstrass_complex) (simp add: Gamma_eq_zero_iff)
finally show ?thesis by (simp add: Gamma_def)
qed

Binomial coefficient form

lemma Gamma_gbinomial:

```
    \(\left(\lambda n .((z+\right.\) of_nat \(n)\) gchoose \(n) * \exp \left(-z *\right.\) of_real \(\left.\left.\left(\ln \left(o f \_n a t ~ n\right)\right)\right)\right) \longrightarrow\)
```

rGamma $(z+1)$
proof (cases $z=0$)
case False
show ?thesis
proof (rule Lim_transform_eventually)
let ?powr $=\lambda a b$. exp $\left(b *\right.$ of_real $\left.\left(\ln \left(o f _n a t ~ a\right)\right)\right)$
show eventually (λn. rGamma_series $z n / z=$
$((z+$ of_nat $n)$ gchoose $n) *$?powr $n(-z))$ sequentially
proof (intro always_eventually allI)
fix $n::$ nat
from False have $((z+$ of_nat $n)$ gchoose $n)=$ pochhammer $z($ Suc $n) / z /$
fact n
by (simp add: gbinomial_pochhammer' pochhammer_rec)
also have pochhammer z (Suc n)/z/fact $n *$? powr $n(-z)=r G a m m a _$series
$z n / z$
by (simp add: rGamma_series_def field_split_simps exp_minus)
finally show rGamma_series $z n / z=((z+$ of_nat $n)$ gchoose $n) *$?powr
$n(-z)$..
qed
from False have $(\lambda n$. rGamma_series $z n / z) \longrightarrow r G a m m a z / z$ by (intro
tendsto_intros)
also from False have r Gamma $z / z=r \operatorname{Gamma}(z+1)$ using rGamma_plus1[of
z]
by (simp add: field_simps)
finally show $\left(\lambda n . r G a m m a _\right.$series $\left.z n / z\right) \longrightarrow r \operatorname{Gamma}(z+1)$.
qed
qed (simp_all add: binomial_gbinomial [symmetric])
lemma gbinomial_minus': $(a+$ of_nat $b)$ gchoose $b=(-1)^{\wedge} b *(-(a+1)$
gchoose b)
by (subst gbinomial_minus) (simp add: power_mult_distrib [symmetric])
lemma gbinomial_asymptotic:
fixes $z::$ ' a :: Gamma
shows $\left(\lambda n .(z\right.$ gchoose $n) /\left((-1)^{\wedge} n / \exp ((z+1) *\right.$ of_real $(\ln ($ real $\left.\left.n)))\right)\right)$
inverse (Gamma $(-z)$)
unfolding rGamma_inverse_Gamma [symmetric] using Gamma_gbinomial[of
$-z-1]$
by (subst (asm) gbinomial_minus')
(simp add: add_ac mult_ac divide_inverse power_inverse [symmetric])
lemma fact_binomial_limit:
(λ n. of_nat $((k+n)$ choose $n) /$ of_nat $\left.\left(n^{\wedge} k\right)::{ }^{\prime} a:: G a m m a\right) \longrightarrow 1 /$ fact
k

```
proof (rule Lim_transform_eventually)
    have ( \(\lambda n\). of_nat \(((k+n)\) choose \(n)\) / of_real (exp (of_nat \(k * l n\) (real_of_nat
\(n)\) )))
            \(\longrightarrow 1\) / Gamma (of_nat (Suc \(k\) ) :: 'a) (is ?f \(\longrightarrow\) _)
            using Gamma_gbinomial[of of_nat \(k::\) 'a]
    by (simp add: binomial_gbinomial Gamma_def field_split_simps exp_of_real [symmetric]
exp_minus)
    also have Gamma (of_nat (Suc \(k)\) ) \(=\) fact \(k\) by (simp add: Gamma_fact)
    finally show ?f \(\longrightarrow 1 /\) fact \(k\).
    show eventually \(\left(\lambda n\right.\). ?f \(n=o f \_n a t((k+n)\) choose \(n) /\) of_nat \(\left.\left(n^{\wedge} k\right)\right)\)
sequentially
            using eventually_gt_at_top[of \(0:: n a t]\)
    proof eventually_elim
            fix \(n::\) nat assume \(n: n>0\)
            from \(n\) have \(\exp \left(r e a l \_o f_{-} n a t k * l n\left(r e a l \_o f \_n a t ~ n\right)\right)=r e a l \_o f \_n a t\left(n^{\wedge} k\right)\)
                by (simp add: exp_of_nat_mult)
            thus ?f \(n=\) of_nat \(((k+n)\) choose \(n) /\) of_nat \(\left(n^{\wedge} k\right)\) by simp
    qed
qed
lemma binomial_asymptotic':
    ( \(\lambda\) n. of_nat \(((k+n)\) choose \(n) /\left(\right.\) of_nat \(\left(n^{\wedge} k\right) /\) fact \(\left.k\right)::^{\prime} a::\) Gamma \(\longrightarrow\)
1
    using tendsto_mult[OF fact_binomial_limit \([\) of \(k]\) tendsto_const \([\) of fact \(k\) :: 'a]] by
simp
lemma gbinomial_Beta:
    assumes \(z+1 \notin \mathbb{Z}_{\leq 0}\)
    shows \(\quad\left(\left(z::^{\prime} a:: G a m m a\right)\right.\) gchoose \(\left.n\right)=\) inverse \(((z+1) *\) Beta \((z-\) of_nat \(n\)
\(+1)(\) of_nat \(n+1)\) )
using assms
proof (induction \(n\) arbitrary: \(z\) )
    case 0
    hence \(z+2 \notin \mathbb{Z}_{\leq 0}\)
        using plus_one_in_nonpos_Ints_imp[of \(z+1]\) by (auto simp: add.commute)
    with 0 show ?case
    by (auto simp: Beta_def Gamma_eq_zero_iff Gamma_plus1 [symmetric] add.commute)
next
    case (Suc \(n z\) )
    show ? case
    proof (cases \(z \in \mathbb{Z}_{\leq 0}\) )
    case True
    with Suc.prems have \(z=0\)
    by (auto elim!: nonpos_Ints_cases simp: algebra_simps one_plus_of_int_in_nonpos_Ints_iff)
    show ?thesis
    proof (cases \(n=0\) )
        case True
        with \(\langle z=0\rangle\) show ?thesis
```

```
            by (simp add: Beta_def Gamma_eq_zero_iff Gamma_plus1 [symmetric])
    next
        case False
        with }\langlez=0\rangle\mathrm{ show ?thesis
            by (simp_all add: Beta_pole1 one_minus_of_nat_in_nonpos_Ints_iff)
        qed
    next
    case False
    have (z gchoose (Suc n)) =((z-1 + 1) gchoose (Suc n)) by simp
    also have ... = (z-1 gchoose n)* ((z-1) + 1) / of_nat (Suc n)
        by (subst gbinomial_factors) (simp add: field_simps)
    also from False have ... = inverse (of_nat (Suc n) * Beta (z - of_nat n)
(of_nat (Suc n)))
            (is _ = inverse ?x) by (subst Suc.IH) (simp_all add: field_simps Beta_pole1)
    also have of_nat (Suc n)}\not\in(\mp@subsup{\mathbb{Z}}{\leq0}{}:: 'a set) by (subst of_nat_in_nonpos_Ints_iff
simp_all
    hence ?}x=(z+1)*Beta(z-of_nat (Suc n) + 1)(of_nat (Suc n) + 1
            by (subst Beta_plus1_right [symmetric]) simp_all
    finally show ?thesis .
    qed
qed
theorem gbinomial_Gamma:
    assumes }z+1\not\in\mp@subsup{\mathbb{Z}}{\leq0}{
    shows (z gchoose n) = Gamma (z+1)/(fact n * Gamma (z - of_nat n +
1))
proof -
    have (z gchoose n)=Gamma (z+2)/(z+1)/(fact n * Gamma (z - of_nat
n+1))
            by (subst gbinomial_Beta[OF assms]) (simp_all add: Beta_def Gamma_fact
[symmetric] add_ac)
    also from assms have Gamma (z+2) / (z+1) = Gamma (z+1)
        using Gamma_plus1[of z+1] by (auto simp add: field_split_simps)
    finally show ?thesis .
qed
```


Integral form

lemma integrable_on_powr_from_0':
assumes $a: a>(-1::$ real $)$ and $c: c \geq 0$
shows ($\lambda x . x$ powr a) integrable_on $\{0<. . c\}$
proof -
from c have $*:\{0<. . c\}-\{0 . . c\}=\{ \}\{0 . . c\}-\{0<. . c\}=\{0\}$ by auto
show ?thesis
by (rule integrable_spike_set [OF integrable_on_powr_from_0[OF a c $]$]) (simp_all add: *)
qed
lemma absolutely_integrable_Gamma_integral:

```
assumes \(\operatorname{Re} z>0 a>0\)
shows ( \(\lambda t\). complex_of_real t powr \((z-1) /\) of_real \((\exp (a * t)))\)
    absolutely_integrable_on \(\{0<.\).\(\} (is ?f absolutely_integrable_on _)\)
proof -
    have \(((\lambda x .(\operatorname{Re} z-1) *(\ln x / x)) \longrightarrow(\operatorname{Re} z-1) * 0)\) at_top
        by (intro tendsto_intros ln_x_over_x_tendsto_0)
    hence \(((\lambda x\). \(((\operatorname{Re} z-1) * \ln x) / x) \longrightarrow 0)\) at_top by simp
    from order_tendstoD(2)[OF this, of \(a / 2]\) and \(\langle a>0\rangle\)
        have eventually \((\lambda x\). \(\operatorname{Re} z-1) * \ln x / x<a /\) Q \()\) at_top by simp
    from eventually_conj[OF this eventually_gt_at_top[of 0]]
        obtain \(x 0\) where \(\forall x \geq x 0\). \((\operatorname{Re} z-1) * \ln x / x<a / 2 \wedge x>0\)
        by (auto simp: eventually_at_top_linorder)
    hence \(x 0>0\) by simp
    have \(x \operatorname{powr}(\operatorname{Re} z-1) / \exp (a * x)<\exp (-(a / 2) * x)\) if \(x \geq x 0\) for \(x\)
    proof -
        from that and \(\langle\forall x \geq x 0\). \(\rangle\) have \(x:(\operatorname{Re} z-1) * \ln x / x<a / 2 x>0\) by
auto
    have \(x \operatorname{powr}(\operatorname{Re} z-1)=\exp ((\operatorname{Re} z-1) * \ln x)\)
            using \(\langle x>0\rangle\) by (simp add: powr_def)
    also from \(x\) have \((\operatorname{Re} z-1) * \ln x<(a * x) / 2\) by (simp add: field_simps)
    finally show ?thesis by (simp add: field_simps exp_add [symmetric])
    qed
    note \(x 0=\langle x 0>0\rangle\) this
    have ?f absolutely_integrable_on \((\{0<. . x 0\} \cup\{x 0 .\}\).
    proof (rule set_integrable_Un)
        show ?f absolutely_integrable_on \(\{0<. . x 0\}\)
            unfolding set_integrable_def
        proof (rule Bochner_Integration.integrable_bound [OF _ _ AE_I2])
            show integrable lebesgue ( \(\lambda x\). indicat_real \(\{0<\ldots x 0\} x *_{R} x\) powr \((R e z-1)\) )
                using \(x 0\) (1) assms
                    by (intro nonnegative_absolutely_integrable_1 [unfolded set_integrable_def]
integrable_on_powr_from_0') auto
            show \(\left(\lambda x\right.\). indicat_real \(\{0<. . x 0\} \quad x *_{R}(x\) powr \(\left.(z-1) / \exp (a * x))\right) \in\)
borel_measurable lebesgue
                by (intro measurable_completion)
                    (auto intro!: borel_measurable_continuous_on_indicator continuous_intros)
            fix \(x\) :: real
            have \(x \operatorname{powr}(\operatorname{Re} z-1) / \exp (a * x) \leq x \operatorname{powr}(\operatorname{Re} z-1) / 1\) if \(x \geq 0\)
                using that assms by (intro divide_left_mono) auto
            thus norm (indicator \(\{0<\ldots x 0\} x *_{R}\) ?f \(\left.x\right) \leq\)
                    norm (indicator \(\{0<\ldots x 0\} x *_{R} x\) powr \((\operatorname{Re} z-1)\) )
                by (simp_all add: norm_divide norm_powr_real_powr indicator_def)
    qed
    next
    show ?f absolutely_integrable_on \(\{x 0 .\).
            unfolding set_integrable_def
            proof (rule Bochner_Integration.integrable_bound [OF _ _ AE_I2])
```

show integrable lebesgue (λx. indicat_real $\left.\{x 0 .\}. x *_{R} \exp (-(a / 2) * x)\right)$ using assms
by (intro nonnegative_absolutely_integrable_1 [unfolded set_integrable_def] integrable_on_exp_minus_to_infinity) auto
show $\left(\lambda x\right.$. indicat_real $\left.\{x 0 .\} \quad. x *_{R}(x \operatorname{powr}(z-1) / \exp (a * x))\right) \in$ borel_measurable lebesgue using $x 0$ (1)
by (intro measurable_completion)
(auto intro!: borel_measurable_continuous_on_indicator continuous_intros)
fix x :: real
show norm (indicator $\{x 0 .\}. x *_{R}$?f $\left.x\right) \leq$
norm (indicator $\left.\{x 0 .\}. x *_{R} \exp (-(a / 2) * x)\right)$ using $x 0$
by (auto simp: norm_divide norm_powr_real_powr indicator_def less_imp_le)

qed

qed auto
also have $\{0<. . x 0\} \cup\{x 0 .\}=.\{0<.$.$\} using x 0(1)$ by auto
finally show ?thesis .
qed
lemma integrable_Gamma_integral_bound:
fixes $a c::$ real
assumes $a: a>-1$ and $c: c \geq 0$
defines $f \equiv \lambda x$. if $x \in\{0 . . c\}$ then x powr a else $\exp (-x / 2)$
shows fintegrable_on $\{0 .$.
proof -
have f integrable_on $\{0 . . c\}$
by (rule integrable_spike_finite[of $\left\}, O F_{__{-}}\right.$integrable_on_powr_from_0[of a c $]$]) (insert a c, simp_all add: $f_{-} d e f$)
moreover have $A:(\lambda x$. exp $(-x /$ Q $))$ integrable_on $\{c .$.
using integrable_on_exp_minus_to_infinity[of 1/2] by simp
have f integrable_on $\{c .$.
by (rule integrable_spike_finite[of $\left.\{c\}, O F_{__{2}} A\right]$) (simp_all add: $\left.f_{-} d e f\right)$
ultimately show f integrable_on $\{0 .$.
by (rule integrable_Un') (insert c, auto simp: max_def)
qed
theorem Gamma_integral_complex:
assumes z : Re $z>0$
shows ($(\lambda t$. of_real t powr $(z-1) /$ of_real (exp t)) has_integral Gamma $z)$
\{0.. $\}$
proof -
have A : $\left((\lambda t\right.$. (of_real $t)$ powr $(z-1) *$ of_real $\left.\left((1-t){ }^{\wedge} n\right)\right)$
has_integral (fact $n /$ pochhammer $z(n+1)))\{0 . .1\}$
if Re $z>0$ for $n z$ using that
proof (induction n arbitrary: z)
case 0
have $((\lambda t$. complex_of_real t powr $(z-1))$ has_integral
(of_real 1 powr $z / z-$ of_real 0 powr $z / z)$) $\{0 . .1\}$ using 0
by (intro fundamental_theorem_of_calculus_interior)
(auto intro!: continuous_intros derivative_eq_intros has_vector_derivative_real_field)

```
    thus ?case by simp
    next
    case (Suc n)
    let ?f \(=\lambda\). complex_of_real t powr \(z / z\)
    let \(? f^{\prime}=\lambda t\). complex_of_real \(t\) powr \((z-1)\)
    let \(? g=\lambda t .(1-\) complex_of_real \(t){ }^{\wedge}\) Suc \(n\)
    let \(? g^{\prime}=\lambda t .-\left((1-\text { complex_of_real } t)^{\wedge} n\right) *\) of_nat \((\) Suc \(n)\)
    have \(\left(\left(\lambda t\right.\right.\). ? \(\left.f^{\prime} t * ? g t\right)\) has_integral
        (of_nat (Suc n)) * fact \(n /\) pochhammer \(z(n+2))\{0 . .1\}\)
        (is (_ has_integral ?I) _)
    proof (rule integration_by_parts_interior \(\left[\right.\) where \(f^{\prime}=? f^{\prime}\) and \(\left.g=? g\right]\) )
        from Suc.prems show continuous_on \(\{0 . .1\}\) ?f continuous_on \(\{0 . .1\}\) ?g
            by (auto intro!: continuous_intros)
    next
        fix \(t::\) real assume \(t: t \in\{0<. .<1\}\)
        show (?f has_vector_derivative ? \(f^{\prime} t\) ) (at t) using \(t\) Suc.prems
        by (auto intro!: derivative_eq_intros has_vector_derivative_real_field)
    show (?g has_vector_derivative ? \(\left.g^{\prime} t\right)(\) at \(t)\)
        by (rule has_vector_derivative_real_field derivative_eq_intros refl)+ simp_all
    next
    from Suc.prems have [simp]: \(z \neq 0\) by auto
    from Suc.prems have \(A\) : \(\operatorname{Re}(z+\) of_nat \(n)>0\) for \(n\) by simp
    have [simp]: \(z+\) of_nat \(n \neq 0 z+1+\) of_nat \(n \neq 0\) for \(n\)
                using \(A[\) of \(n] A[\) of Suc \(n]\) by (auto simp add: add.assoc simp del:
plus_complex.sel)
    have \(\left(\left(\lambda x\right.\right.\). of_real \(x\) powr \(z *\) of_real \(\left((1-x)^{\wedge} n\right) *(-\) of_nat \(\left.(S u c n) / z)\right)\)
has_integral
            fact \(n /\) pochhammer \((z+1)(n+1) *(-\) of_nat (Suc \(n) / z))\{0 . .1\}\)
        (is (?A has_integral ?B) _)
        using Suc.IH[of z+1] Suc.prems by (intro has_integral_mult_left) (simp_all
add: add_ac pochhammer_rec)
    also have ? \(A=\left(\lambda t\right.\). ?f \(t *\) ? \(\left.g^{\prime} t\right)\) by (intro ext) (simp_all add: field_simps)
    also have \(? B=-(\) of_nat \((\) Suc \(n) *\) fact \(n /\) pochhammer \(z(n+2))\)
        by (simp add: field_split_simps pochhammer_rec
            prod.shift_bounds_cl_Suc_ivl del: of_nat_Suc)
    finally show \(\left(\left(\lambda t\right.\right.\). ?f \(\left.t * ? g^{\prime} t\right)\) has_integral (?f \(1 *\) ?g \(1-\) ?f \(0 *\) ?g \(0-\)
?I)) \(\{0 . .1\}\)
        by \(\operatorname{simp}\)
    qed (simp_all add: bounded_bilinear_mult)
    thus?case by simp
qed
have \(B:((\lambda t\). if \(t \in\{0\)..of_nat \(n\}\) then
                of_real \(t\) powr \((z-1) *(1-\text { of_real } t / \text { of_nat } n)^{\wedge} n\) else 0)
                has_integral (of_nat \(n\) powr \(z *\) fact \(n /\) pochhammer \(z(n+1))\) ) \(\{0 .\).\(\} for\)
\(n\)
    proof (cases \(n>0\) )
    case [simp]: True
    hence \([\) simp \(]: n \neq 0\) by auto
```

with has_integral_affinity01[OF $A[O F z$, of $n]$, of inverse (of_nat n) 0]
have $\left((\lambda x \text {. (of_nat } n-\text { of_real } x)^{\wedge} n *\left(o f _r e a l ~ x / o f _n a t n\right)\right.$ powr $(z-1) /$ of_nat $n^{\wedge} n$)
has_integral fact $n *$ of_nat $n / \operatorname{pochhammer} z(n+1))((\lambda x$. real $n *$ $x)\{0 . .1\})$
(is (?f has_integral ?I) ?ivl) by (simp add: field_simps scaleR_conv_of_real)
also from True have $((\lambda x$. real $n * x)\{0 . .1\})=\{0 .$. real $n\}$
by (subst image_mult_atLeastAtMost) simp_all
also have ?f $=(\lambda x$. (of_real $x /$ of_nat $n)$ powr $(z-1) *(1-$ of_real $x /$ of_nat n) ^ n)
using True by (intro ext) (simp add: field_simps)
finally have $((\lambda x$. (of_real $x /$ of_nat $n)$ powr $(z-1) *(1-o f$ _real $x /$ of_nat n) ^ n)

$$
\text { has_integral ?I) }\{0 . . \text { real } n\}(\text { is ?P). }
$$

also have ? $P \longleftrightarrow((\lambda x$. exp $((z-1) *$ of_real $(\ln (x /$ of_nat $n))) *(1-$ of_real x / of_nat n) ^ n) has_integral ?I) $\{0$..real $n\}$
by (intro has_integral_spike_finite_eq[of \{0\}]) (auto simp: powr_def Ln_of_real [symmetric])
also have $\ldots \longleftrightarrow((\lambda x . \exp ((z-1) *$ of_real $(\ln x-\ln ($ of_nat $n))) *(1-$ of_real x / of_nat n) ^ n) has_integral ?I) $\{0$..real $n\}$
by (intro has_integral_spike_finite_eq[of \{0\}]) (simp_all add: ln_div)
finally have
note $B=$ has_integral_mult_right[OF this, of exp $((z-1) * \ln ($ of_nat $n))]$
have $\left(\left(\lambda x\right.\right.$. exp $((z-1) *$ of_real $\left.(\ln x)) *\left(1-o f _ \text {real } x / \text { of_nat } n\right)^{\wedge} n\right)$
has_integral $(? I * \exp ((z-1) *$ ln $($ of_nat $n))))\{0$..real $n\}($ is ? $P)$
by (insert B, subst (asm) mult.assoc [symmetric], subst (asm) exp_add [symmetric])
(simp add: algebra_simps)
also have ? $P \longleftrightarrow\left(\left(\lambda x\right.\right.$. of_real x powr $(z-1) *\left(1-o f_{-} r e a l x /\right.$ of_nat $\left.n\right){ }^{\wedge}$ n)

$$
\text { has_integral }(? I * \exp ((z-1) * \ln (\text { of_nat } n))))\{0 \text {..real } n\}
$$

by (intro has_integral_spike_finite_eq[of \{0\}]) (simp_all add: powr_def Ln_of_real)
also have fact $n *$ of_nat $n /$ pochhammer $z(n+1) * \exp ((z-1) *$ Ln (of_nat n)) $=$
(of_nat n powr $z *$ fact $n /$ pochhammer $z(n+1)$)
by (auto simp add: powr_def algebra_simps exp_diff exp_of_real)
finally show ?thesis by (subst has_integral_restrict) simp_all next
case False
thus ?thesis by (subst has_integral_restrict) (simp_all add: has_integral_refl) qed
have eventually (λn. Gamma_series $z n=$
of_nat n powr $z *$ fact $n /$ pochhammer $z(n+1))$ sequentially
using eventually_gt_at_top[of 0::nat]
by eventually_elim (simp add: powr_def algebra_simps Gamma_series_def)
from this and Gamma_series_LIMSEQ[of z]

```
    have C:(\lambdak. of_nat k powr z* fact k / pochhammer z (k+1))\longrightarrow \longrightarrowamma
z
    by (blast intro: Lim_transform_eventually)
{
    fix x :: real assume x: x \geq0
    have lim_exp: (\lambdak. (1-x/ real k) ^ k)\longrightarrow exp (-x)
        using tendsto_exp_limit_sequentially[of -x] by simp
    have ( }\lambdak\mathrm{ . of_real x powr (z - 1)* of_real ((1 - x / of_nat k) ^ k))
                \longrightarrow o f \_ r e a l ~ x ~ p o w r ~ ( z - 1 ) * ~ o f = r e a l ~ ( e x p ~ ( - x ) ) ~ ( i s ~ ? P )
        by (intro tendsto_intros lim_exp)
    also from eventually_gt_at_top[of nat \lceilx\rceil]
        have eventually ( }\lambdak\mathrm{ . of_nat k>x) sequentially by eventually_elim linarith
    hence ?P \longleftrightarrow ( \lambdak. if }x\leq\mathrm{ of_nat k then
                    of_real x powr (z-1)* of_real ((1-x/ of_nat k) ^ k) else 0)
                        \longrightarrow ~ o f \_ r e a l ~ x ~ p o w r ~ ( z - 1 ) * ~ o f = r e a l ~ ( e x p ~ ( - x ) )
        by (intro tendsto_cong) (auto elim!: eventually_mono)
    finally have ... .
}
hence D: }\forallx\in{0..}. (\lambdak. if x { {0..real k} then
                                    of_real x powr (z - 1) * (1 - of_real x / of_nat k) ^ k else 0)
                        \longrightarrow ~ o f = r e a l ~ x ~ p o w r ~ ( z ~ - ~ 1 ) ~ / ~ o f = r e a l ~ ( e x p ~ x ) ~
    by (simp add: exp_minus field_simps cong: if_cong)
    have}((\lambdax.(\operatorname{Rez-1)*(\operatorname{ln}x/x))\longrightarrow(Rez-1)*0) at_top
    by (intro tendsto_intros ln_x_over_x_tendsto_0)
    hence ((\lambdax. ((Rez-1)* ln x) / x) \longrightarrow0) at_top by simp
    from order_tendstoD(2)[OF this, of 1/2]
        have eventually (\lambdax. (Rez - 1)* ln x/x<1/2) at_top by simp
    from eventually_conj[OF this eventually_gt_at_top[of O]]
    obtain x0 where }\forallx\geqx0.(Rez-1)*\operatorname{ln}x/x<1/2\wedgex>
    by (auto simp: eventually_at_top_linorder)
    hence x0: x0>0 \bigwedgex. x \geqx0\Longrightarrow(Rez-1)* ln x<x/2 by auto
    define }h\mathrm{ where }h=(\lambdax. if x\in{0..x0} then x powr (Rez - 1) else exp (-x/2))
    have le_h:x powr (Rez-1)* exp (-x)\leqhx if x:x\geq0 for x
    proof (cases x > x0)
    case True
    from True x0(1) have x powr (Re z-1)*\operatorname{exp}(-x)=\operatorname{exp}((\operatorname{Re}z-1)*\operatorname{ln}
x-x)
            by (simp add: powr_def exp_diff exp_minus field_simps exp_add)
    also from x0(2)[of x] True have ...<exp (-x/2)
        by (simp add: field_simps)
    finally show ?thesis using True by (auto simp add: h_def)
    next
    case False
    from x have x powr (Rez-1)*\operatorname{exp}(-x)\leqx powr (Rez-1)*1
        by (intro mult_left_mono) simp_all
    with False show ?thesis by (auto simp add: h_def)
    qed
```

have $E: \forall x \in\{0 .$.$\} . cmod (if x \in\{0$..real $k\}$ then of_real x powr $(z-1) *$
(1 - complex_of_real $x /$ of_nat $k)^{\wedge} k$ else 0$) \leq h x$
(is $\forall x \in_{-}$. ?f $x \leq{ }_{-}$) for k
proof safe
fix $x::$ real assume $x: x \geq 0$
\{
fix $x::$ real and $n::$ nat assume $x: x \leq$ of_nat n
have $(1-$ complex_of_real $x /$ of_nat $n)=$ complex_of_real $((1-x /$ of_nat
$n)$) by simp
also have norm $\ldots=\mid(1-x /$ real $n) \mid$ by (subst norm_of_real) (rule refl)
also from x have $\ldots=(1-x /$ real $n)$ by (intro abs_of_nonneg) (simp_all
add: field_split_simps)
finally have cmod $(1-$ complex_of_real $x /$ of_nat $n)=1-x /$ real n.
\} note $D=$ this
from $D[o f x k] x$
have ?f $x \leq$ (if of_nat $k \geq x \wedge k>0$ then x powr (Rez-1)* $(1-x /$
real k) ${ }^{\wedge} k$ else 0)
by (auto simp: norm_mult norm_powr_real_powr norm_power intro!: mult_nonneg_nonneg)
also have $\ldots \leq x$ powr $(\operatorname{Re} z-1) * \exp (-x)$
by (auto intro!: mult_left_mono exp_ge_one_minus_x_over_n_power_n)
also from x have $\ldots \leq h x$ by (rule le_h)
finally show ?f $x \leq h x$.
qed
have F : h integrable_on $\{0 .$.$\} unfolding h_{-}$def
by (rule integrable_Gamma_integral_bound) (insert assms x0(1), simp_all)
show ?thesis
by (rule has_integral_dominated_convergence $[$ OF $B \quad F E D C])$
qed
lemma Gamma_integral_real:
assumes $x: x>(0::$ real $)$
shows $((\lambda t . t$ powr $(x-1) /$ exp $t)$ has_integral Gamma $x)\{0 .$.
proof -
have A : $((\lambda t$. complex_of_real t powr (complex_of_real $x-1) /$ complex_of_real (exp t)) has_integral complex_of_real (Gamma x)) \{0..\}
using Gamma_integral_complex[of x] assms by (simp_all add: Gamma_complex_of_real powr_of_real)
have $((\lambda t$. complex_of_real $(t$ powr $(x-1) /$ exp $t))$ has_integral of_real (Gamma $x))\{0 .$.
by (rule has_integral_eq[OF _ A]) (simp_all add: powr_of_real [symmetric])
from has_integral_linear[OF this bounded_linear_Re] show ?thesis by (simp add:
o_def)
qed
lemma absolutely_integrable_Gamma_integral':
assumes Re $z>0$
shows (λt. complex_of_real t powr $(z-1) /$ of_real (exp t)) absolutely_integrable_on

```
\(\{0<.\).
    using absolutely_integrable_Gamma_integral [OF assms zero_less_one] by simp
lemma Gamma_integral_complex':
    assumes z: Re \(z>0\)
    shows \(((\lambda t\). of_real t powr \((z-1) /\) of_real \((\exp t))\) has_integral Gamma \(z)\)
\(\{0<.\).
proof -
    have \(((\lambda t\). of_real t powr \((z-1) /\) of_real \((\exp t))\) has_integral Gamma z) \{0..\}
        by (rule Gamma_integral_complex) fact+
    hence \(((\lambda t\). if \(t \in\{0<.\).\(\} then of_real t powr (z-1) /\) of_real ( \(\exp t)\) else 0)
                has_integral Gamma z) \(\{0 .\).
        by (rule has_integral_spike [of \(\{0\}\), rotated 2]) auto
    also have ?this \(=\) ?thesis
        by (subst has_integral_restrict) auto
    finally show ?thesis .
qed
lemma Gamma_conv_nn_integral_real:
    assumes \(s>(0::\) real \()\)
```



```
\((s-1) / \exp t))\)
    using nn_integral_has_integral_lebesgue[OF _ Gamma_integral_real[OF assms]] by
simp
lemma integrable_Beta:
    assumes \(a>0 b>(0::\) real \()\)
    shows set_integrable lborel \(\{0 . .1\}(\lambda t\). t powr \((a-1) *(1-t)\) powr \((b-1))\)
proof -
    define \(C\) where \(C=\max 1((1 / 2)\) powr \((b-1))\)
    define \(D\) where \(D=\max 1((1 / 2)\) powr \((a-1))\)
    have \(C\) : \((1-x)\) powr \((b-1) \leq C\) if \(x \in\{0 . .1 / 2\}\) for \(x\)
    proof (cases \(b<1\) )
        case False
            with that have \((1-x)\) powr \((b-1) \leq(1 \operatorname{powr}(b-1))\) by (intro
powr_mono2) auto
            thus ?thesis by (auto simp: C_def)
    qed (insert that, auto simp: max.coboundedI1 max.coboundedI2 powr_mono2'
powr_mono2 C_def)
    have \(D\) : \(x\) powr \((a-1) \leq D\) if \(x \in\{1 / 2 . .1\}\) for \(x\)
    proof (cases \(a<1\) )
        case False
        with that have \(x\) powr \((a-1) \leq(1\) powr \((a-1))\) by (intro powr_mono2)
auto
            thus ?thesis by (auto simp: D_def)
    next
        case True
        qed (insert that, auto simp: max.coboundedI1 max.coboundedI2 powr_mono2'
powr_mono2 D_def)
```

have [simp]: $C \geq 0 D \geq 0$ by (simp_all add: C_def $\left.D_{-} d e f\right)$
have I1: set_integrable lborel $\{0 . .1 / 2\}(\lambda t . t$ powr $(a-1) *(1-t)$ powr $(b-$ 1))
unfolding set_integrable_def
proof (rule Bochner_Integration.integrable_bound[OF _ AE_I2])
have $(\lambda t$. t powr $(a-1))$ integrable_on $\{0 . .1 / 2\}$ by (rule integrable_on_powr_from_0) (use assms in auto)
hence (λ t. t powr $(a-1))$ absolutely_integrable_on $\{0 . .1 / 2\}$ by (subst absolutely_integrable_on_iff_nonneg) auto
from integrable_mult_right [OF this [unfolded set_integrable_def], of C]
show integrable lborel $\left(\lambda x\right.$. indicat_real $\{0 . .1 / 2\} x *_{R}(C * x$ powr $\left.(a-1))\right)$ by (subst (asm) integrable_completion) (auto simp: mult_ac)
next
fix x :: real
have x powr $(a-1) *(1-x)$ powr $(b-1) \leq x$ powr $(a-1) * C$ if $x \in$ $\{0 . .1 / 2\}$
using that by (intro mult_left_mono powr_mono2 C) auto
thus norm (indicator $\{0 . .1 / 2\} x *_{R}(x \operatorname{powr}(a-1) *(1-x)$ powr $(b-$ 1))) \leq
norm (indicator $\left.\{0 . .1 / 2\} x *_{R}(C * x \operatorname{powr}(a-1))\right)$
by (auto simp: indicator_def abs_mult mult_ac)
qed (auto intro!: AE_I2 simp: indicator_def)
have I2: set_integrable lborel $\{1 / 2 . .1\}(\lambda t . t$ powr $(a-1) *(1-t)$ powr $(b-$ 1))
unfolding set_integrable_def
proof (rule Bochner_Integration.integrable_bound[OF _ _ AE_I2])
have $(\lambda t$. t powr $(b-1))$ integrable_on $\{0 . .1 / 2\}$
by (rule integrable_on_powr_from_0) (use assms in auto)
hence $(\lambda t$. t powr $(b-1))$ integrable_on ($\operatorname{cbox} 0(1 / 2))$ by simp
from integrable_affinity[OF this, of -1 1]
have $(\lambda t .(1-t)$ powr $(b-1))$ integrable_on $\{1 / 2 . .1\}$ by simp
hence $(\lambda t .(1-t)$ powr $(b-1))$ absolutely_integrable_on $\{1 / 2 . .1\}$
by (subst absolutely_integrable_on_iff_nonneg) auto
from integrable_mult_right [OF this [unfolded set_integrable_def], of D]
show integrable lborel (λ x. indicat_real $\{1 / 2 . .1\} x *_{R}(D *(1-x)$ powr $(b$ - 1)))
by (subst (asm) integrable_completion) (auto simp: mult_ac)
next
fix x :: real
have x powr $(a-1) *(1-x)$ powr $(b-1) \leq D *(1-x) \operatorname{powr}(b-1)$ if $x \in\{1 / 2 . .1\}$
using that by (intro mult_right_mono powr_mono2 D) auto
thus norm (indicator $\{1 / 2 . .1\} x *_{R}(x \operatorname{powr}(a-1) *(1-x)$ powr $(b-$ 1))) \leq
norm (indicator $\left.\{1 / 2 . .1\} x *_{R}(D *(1-x) \operatorname{powr}(b-1))\right)$
by (auto simp: indicator_def abs_mult mult_ac)
qed (auto intro!: AE_I2 simp: indicator_def)
have set_integrable lborel $(\{0 . .1 / 2\} \cup\{1 / 2 . .1\})(\lambda t$. t powr $(a-1) *(1-t)$ powr (b-1))
by (intro set_integrable_Un I1 I2) auto
also have $\{0 . .1 / 2\} \cup\{1 / 2 . .1\}=\{0 . .(1::$ real $)\}$ by auto
finally show ?thesis .
qed
lemma integrable_Beta':
assumes $a>0 b>(0::$ real $)$
shows $(\lambda t$. t powr $(a-1) *(1-t)$ powr $(b-1))$ integrable_on $\{0 . .1\}$
using integrable_Beta[OF assms] by (rule set_borel_integral_eq_integral)
theorem has_integral_Beta_real:
assumes $a: a>0$ and $b: b>(0::$ real $)$
shows $((\lambda t$. t powr $(a-1) *(1-t)$ powr $(b-1))$ has_integral Beta a b) \{0..1\}
proof -
define B where $B=$ integral $\{0 . .1\}$ (λ x. x powr $(a-1) *(1-x)$ powr $(b-$ 1))
have $[\operatorname{simp}]: B \geq 0$ unfolding B_{-}def using $a b$
by (intro integral_nonneg integrable_Beta') auto
from $a b$ have ennreal (Gamma $a *$ Gamma b) =
$\left(\int^{+} t\right.$. ennreal (indicator $\{0 .\} t *$.$\left.t powr (a-1) / \exp t\right)$ dlborel $) *$
$\left(\int^{+} t\right.$. ennreal (indicator $\{0 .\} t *$.$\left.t powr (b-1) / \exp t\right)$ dlborel)
by (subst ennreal_mult') (simp_all add: Gamma_conv_nn_integral_real)
also have $\ldots=\left(\int^{+} t . \int^{+} u\right.$. ennreal (indicator $\{0 .\} t *$.$t powr (a-1) / \exp$ t) *

$$
\text { ennreal (indicator }\{0 . .\} u * u \text { powr }(b-1) / \exp u) \text { dlborel }
$$

dlborel)
by (simp add: nn_integral_cmult nn_integral_multc)
also have $\ldots=\left(\int^{+} t . \int^{+} u\right.$. ennreal (indicator $(\{0 .\} \times.\{0 .\}).(t, u) * t$ powr $(a$ $-1) * u$ powr $(b-1)$
$/ \exp (t+u))$ dlborel dlborel)
by (intro nn_integral_cong)
(auto simp: indicator_def divide_ennreal ennreal_mult' [symmetric] exp_add)
also have $\ldots=\left(\int^{+} t . \int^{+} u\right.$. ennreal (indicator $(\{0 .\} \times.\{t .\}).(t, u) * t$ powr $(a$ $-1) *$

$$
(u-t) \operatorname{powr}(b-1) / \exp u) \text { dlborel dlborel })
$$

proof (rule nn_integral_cong, goal_cases)
case (1t)
have $\left(\int^{+} u\right.$. ennreal (indicator $(\{0 .\} \times.\{0 .\}).(t, u) * t$ powr $(a-1) *$ u powr $(b-1) / \exp (t+u))$ distr lborel borel $((+)$
$(-t)))=$
$\left(\int{ }^{+} u\right.$. ennreal (indicator $(\{0 .\} \times.\{t .\}).(t, u) * t$ powr $(a-1) *$
($u-t$) powr $(b-1) /$ exp u) Dlborel)
by (subst nn_integral_distr) (auto intro!: nn_integral_cong simp: indicator_def)
thus ?case by (subst (asm) lborel_distr_plus)
qed
also have $\ldots=\left(\int^{+} u . \int^{+} t\right.$. ennreal (indicator $(\{0 .\} \times.\{t .\}).(t, u) * t$ powr $(a$ $-1) *$

$$
(u-t) \text { powr }(b-1) / \exp u) \text { dlborel dlborel })
$$

by (subst lborel_pair.Fubini')
(auto simp: case_prod_unfold indicator_def cong: measurable_cong_sets)
also have $\ldots=\left(\int^{+} u . \int{ }^{+} t\right.$. ennreal (indicator $\{0 . . u\} t * t$ powr $(a-1) *(u$ $-t) \operatorname{powr}(b-1))$ *

$$
\text { ennreal (indicator }\{0 . .\} u / \exp u) \text { dlborel dlborel) }
$$

by (intro nn_integral_cong) (auto simp: indicator_def ennreal_mult' [symmetric])
also have $\ldots=\left(\int^{+} u .\left(\int^{+} t\right.\right.$. ennreal (indicator $\{0 . . u\} t * t$ powr $(a-1) *(u$ $-t) \operatorname{powr}(b-1))$
dlborel) * ennreal (indicator $\{0 .$.$\} u / exp u) Dlborel)$
by (subst nn_integral_multc [symmetric]) auto
also have $\ldots=\left(\int^{+} u .\left(\int^{+} t\right.\right.$. ennreal (indicator $\{0 . . u\} t * t$ powr $(a-1) *(u$ $-t) \operatorname{powr}(b-1))$
dlborel) * ennreal (indicator $\{0<.\}. u / \exp u)$ dlborel)
by (intro nn_integral_cong_AE eventually_mono[OF AE_lborel_singleton[of 0]]) (auto simp: indicator_def)
also have $\ldots=\left(\int^{+}\right.$u. ennreal $B *$ ennreal (indicator $\{0 .\}$.$u / exp u * u$ powr ($a+b-1$)) Dlborel)
proof (intro nn_integral_cong, goal_cases)
case (1u)
show ? case
proof (cases $u>0$)
case True
have $\left(\int{ }^{+} t\right.$. ennreal (indicator $\{0 . . u\} t * t$ powr $(a-1) *(u-t)$ powr $(b$ - 1)) dlborel) $=$
$\left(\int^{+} t\right.$. ennreal (indicator $\{0 . .1\} t *(u * t)$ powr $(a-1) *(u-u *$ t) $\operatorname{powr}(b-1))$
ddistr lborel borel $((*)(1 / u)))\left(\right.$ is _ $=n n_{-}$integral_ $\left.? f\right)$
using True
by (subst nn_integral_distr) (auto simp: indicator_def field_simps intro!: nn_integral_cong)
also have distr lborel borel $((*)(1 / u))=$ density lborel $\left(\lambda_{-} . u\right)$
using $\langle u\rangle 0\rangle$ by (subst lborel_distr_mult) auto
also have nn_integral ... ?f $=\left(\int{ }^{+}\right.$x. ennreal (indicator $\{0 . .1\} x *(u *(u$ * x) powr $(a-1)$ *

$$
(u *(1-x)) \text { powr }(b-1))) \text { dlborel }) \text { using }
$$

$\langle u>0\rangle$
by (subst nn_integral_density) (auto simp: ennreal_mult' [symmetric] algebra_simps)
also have $\ldots=\left(\int_{\text {ennreal (indicator }}{ }^{+}\right.$x. ennreal (u powr $(a+b-1\} x * x$ powr $(a-1) *$
$(1-x)$ powr $(b-1))$ dlborel $)$ using $\langle u>0\rangle a b$
by (intro nn_integral_cong)
(auto simp: indicator_def powr_mult powr_add powr_diff mult_ac ennreal_mult' [symmetric])
also have $\ldots=$ ennreal (u powr $(a+b-1)) *$
$\left(\int{ }^{+}\right.$x. ennreal (indicator $\{0 . .1\} x * x$ powr $(a-1) *$

```
                    (1 - x) powr (b - 1)) Dlborel)
    by (subst nn_integral_cmult) auto
    also have ((\lambdax.x powr (a-1)* (1-x) powr (b-1)) has_integral
        integral {0..1} (\lambdax.x powr (a-1)* (1-x) powr (b-1)))
{0..1}
    using a b by (intro integrable_integral integrable_Beta')
    from nn_integral_has_integral_lebesgue[OF _ this] a b
        have (\int +
                            (1-x) powr (b-1)) \partiallborel) = B by (simp add: mult_ac
B_def)
    finally show ?thesis using <u>0\rangle by (simp add: ennreal_mult' [symmetric]
mult_ac)
    qed auto
    qed
    also have ... = ennreal B * ennreal (Gamma (a+b))
    using a b by (subst nn_integral_cmult) (auto simp: Gamma_conv_nn_integral_real)
    also have ... = ennreal ( }B*\mathrm{ Gamma (a+b))
        by (subst (1 2) mult.commute, intro ennreal_mult' [symmetric]) (use a b in
auto)
    finally have B=Beta a b using a b Gamma_real_pos[of a + b]
    by (subst (asm) ennreal_inj) (auto simp: field_simps Beta_def Gamma_eq_zero_iff)
    moreover have (\lambdat. t powr (a-1)* (1 - t) powr (b-1)) integrable_on
{0..1}
    by (intro integrable_Beta' a b)
    ultimately show ?thesis by (simp add: has_integral_iff B_def)
qed
```


6.23.12 The Weierstraß product formula for the sine

theorem sin_product_formula_complex:
fixes z :: complex
shows $\left(\lambda n\right.$. of_real pi*z*(Пk=1..n. $1-z^{\wedge}$ Q $/$ of_nat k^{\wedge} 2) $) \longrightarrow$ sin $($ of_real $p i * z)$
proof -
let ?f $=r$ Gamma_series_Weierstrass
have $(\lambda n$. (- of_real pi * inverse $z) *($?f $z n *$?f $(-z) n))$
$(-$ of_real pi $*$ inverse $z) *(r G a m m a z * r G a m m a ~(-z))$
by (intro tendsto_intros rGamma_Weierstrass_complex)
also have $(\lambda n$. (- of_real pi * inverse $z) *($?f $z n *$?f $(-z) n))=$
(λ n. of_real pi $* z *\left(\prod k=1\right.$..n. $1-z^{\wedge} 2 /$ of_nat $k{ }^{\wedge}$ 2) $)$
proof
fix n :: nat
have $(-$ of_real pi * inverse $z) *(? f z n * ? f(-z) n)=$
of_real pi*z* (Пk=1..n. (of_nat $k-z) *\left(o f _n a t k+z\right) /$ of_nat k
^2)
by (simp add: rGamma_series_Weierstrass_def mult_ac exp_minus
divide_simps prod.distrib[symmetric] power2_eq_square)
also have $\left(\prod k=1\right.$..n. $($ of_nat $k-z) *\left(o f _n a t k+z\right) /$ of_nat $k{ }^{\wedge}$ 2 $)=$


```
            by (intro prod.cong) (simp_all add: power2_eq_square field_simps)
    finally show (- of_real pi * inverse z) * (?f z n * ?f (-z) n)=of_real pi*z
* ...
            by (simp add: field_split_simps)
    qed
    also have (- of_real pi * inverse z) * (rGamma z * rGamma (- z)) = sin
(of_real pi*z)
            by (subst rGamma_reflection_complex') (simp add: field_split_simps)
    finally show ?thesis.
qed
lemma sin_product_formula_real:
    (\lambdan.pi* (x::real)*(\prodk=1..n. 1 - x^2 / of_nat k^2)) \longrightarrow < < <n (pi*x)
proof -
    from sin_product_formula_complex[of of_real x]
        have (\lambdan. of_real pi * of_real x * (\prodk=1..n. 1 - (of_real x)^2 / (of_nat k)^2))
                    \longrightarrow \operatorname { s i n } ( o f \_ r e a l ~ p i * ~ o f ` r e a l ~ x ~ : : ~ c o m p l e x ) ~ ( i s ~ ? f ~ \longrightarrow ~ ? y ) .
    also have ?f = (\lambdan. of_real (pi*x*(\prodk=1..n. 1 - x^2 / (of_nat k^2)))) by
simp
    also have ?y =of_real (sin (pi*x)) by (simp only: sin_of_real [symmetric]
of_real_mult)
    finally show ?thesis by (subst (asm) tendsto_of_real_iff)
qed
lemma sin_product_formula_real':
    assumes }x\not=(0::real
    shows (\lambdan. (\prodk=1..n. 1 - x^2 / of_nat k^2)) \longrightarrow < sin (pi*x) / (pi*x)
    using tendsto_divide[OF sin_product_formula_real[of x] tendsto_const[of pi*x]]
assms
    by simp
theorem wallis: (\lambdan. \Pik=1..n. (4*real k^2) / (4*real k^2 - 1))\longrightarrowpi/2
proof -
    from tendsto_inverse[OF tendsto_mult[OF
        sin_product_formula_real[of 1/2] tendsto_const[of 2/pi]]]
```



```
            by (simp add: prod_inversef [symmetric])
    also have (\lambdan. (\prodk=1..n. inverse (1-(1/\mathcal{L}\mp@subsup{)}{}{2}/(real k)}\mp@subsup{)}{}{2})))
                    (\lambdan. (\prodk=1..n. (4*real k^2)/(4*real k^2 - 1)))
    by (intro ext prod.cong refl) (simp add: field_split_simps)
    finally show ?thesis.
qed
```


6.23.13 The Solution to the Basel problem

theorem inverse_squares_sums: $\left(\lambda n .1 /(n+1)^{2}\right)$ sums $\left(p i^{2} / 6\right)$
proof -
define P where $P x n=\left(\prod k=1\right.$..n. $1-x^{\wedge} \mathcal{Z} /$ of_nat k^{\wedge} 2 $)$ for $x::$ real and n define K where $K=\left(\sum n \text {. inverse (real_of_nat (Suc n) }\right)^{\wedge}$ 2)
define f where [abs_def]: $f x=\left(\sum n . P x n /\right.$ of_nat (Suc n) ^ $\left.\mathcal{Z}\right)$ for x define g where [abs_def]: $g x=(1-\sin (p i * x) /(p i * x))$ for x
have sums: (λn. P x n / of_nat (Suc n) ^2) sums (if $x=0$ then K else $g x /$ x^{\wedge} 2) for x
proof (cases $x=0$)
assume $x: x=0$
have summable (λn. inverse ($\left.(\text { real_of_nat }(S u c ~ n))^{2}\right)$)
using inverse_power_summable[of 2] by (subst summable_Suc_iff) simp
thus ?thesis by (simp add: x g_def P_{-}def K_{-}def inverse_eq_divide power_divide summable_sums)
next
assume $x: x \neq 0$
have $(\lambda n . P x n-P x(S u c n))$ sums $(P x 0-\sin (p i * x) /(p i * x))$
unfolding P _def using x by (intro telescope_sums' sin_product_formula_real')
also have $(\lambda n . P x n-P x(S u c n))=\left(\lambda n .\left(x^{\wedge}\right.\right.$ 2 $/$ of_nat $\left.(S u c n)^{\wedge} 2\right) * P x$ n)
unfolding P_{-}def by (simp add: prod.nat_ivl_Suc' algebra_simps)
also have $P \times 0=1$ by (simp add: $\left.P_{-} d e f\right)$
finally have $\left(\lambda n . x^{2} /(\text { of_nat }(\text { Suc } n))^{2} * P x n\right)$ sums $(1-\sin (p i * x) /$ $(p i * x))$.
from sums_divide[OF this, of x^{\wedge} ®] x show ?thesis unfolding g_{-}def by simp qed
have continuous_on (ball 0 1) f
proof (rule uniform_limit_theorem; (intro always_eventually allI)?)
show uniform_limit (ball 0 1) $\left(\lambda n x . \sum k<n . P x k / o f _n a t(S u c k)^{\wedge}\right.$ 2) f sequentially
proof (unfold f_{-}def, rule Weierstrass_m_test)
fix $n::$ nat and $x::$ real assume $x: x \in$ ball 01
\{
fix $k::$ nat assume $k: k \geq 1$
from x have $x^{\wedge} 2<1$ by (auto simp: abs_square_less_1)
also from k have $\ldots \leq$ of_nat $k^{\wedge} 2$ by simp
finally have $\left(1-x^{\wedge} 2 /\right.$ of_nat $\left.k^{\wedge} 2\right) \in\{0 . .1\}$ using k
by (simp_all add: field_simps del: of_nat_Suc)
\}
hence $\left(\prod k=1 . . n\right.$. abs $\left(1-x^{\wedge} 2 /\right.$ of_nat $\left.\left.k^{\wedge} 2\right)\right) \leq\left(\prod k=1 . . n\right.$. 1) by (intro prod_mono) simp
thus norm $(P x n /($ of_nat $($ Suc n) ^2) $) \leq 1 /$ of_nat (Suc n) ^2 unfolding $P_{-} d e f$ by (simp add: field_simps abs_prod del: of_nat_Suc)
qed (subst summable_Suc_iff, insert inverse_power_summable[of 2], simp add: inverse_eq_divide)
qed (auto simp: P_def intro!: continuous_intros)
hence isCont f 0 by (subst (asm) continuous_on_eq_continuous_at) simp_all
hence $(f-0 \rightarrow f 0)$ by (simp add: isCont_def)
also have $f 0=K$ unfolding f_{-}def P_{-}def K_{-}def by (simp add: inverse_eq_divide power_divide)
finally have $f-0 \rightarrow K$.

```
    moreover have \(f-0 \rightarrow p i^{\wedge} 2 / 6\)
    proof (rule Lim_transform_eventually)
    define \(f^{\prime}\) where \(\left[a b s \_d e f\right]: f^{\prime} x=\left(\sum n .-\sin \_\right.\)coeff \((n+3) * p i{ }^{\wedge}(n+2) *\)
\(x^{\wedge} n\) ) for \(x\)
    have eventually \((\lambda x . x \neq(0::\) real \())(\) at 0\()\)
            by (auto simp add: eventually_at intro!: exI \([\) of _ 1])
    thus eventually \(\left(\lambda x . f^{\prime} x=f x\right)(\) at 0\()\)
    proof eventually_elim
        fix \(x\) :: real assume \(x: x \neq 0\)
            have sin_coeff \(1=(1::\) real \()\) sin_coeff \(2=(0::\) real \()\) by (simp_all add:
sin_coeff_def)
            with sums_split_initial_segment[OF sums_minus[OF sin_converges], of \(3 p i * x\) ]
            have \(\left(\lambda n .-\left(\sin \_c o e f f(n+3) *(p i * x)^{\wedge}(n+3)\right)\right) \operatorname{sums}(p i * x-\sin (p i * x))\)
            by (simp add: eval_nat_numeral)
            from sums_divide \(\left[O F\right.\) this, of \(\left.x^{\wedge} 3 * p i\right] x\)
                have \(\left(\lambda n .-\left(\sin\right.\right.\) _coeff \(\left.\left.(n+3) * p i^{\wedge}(n+2) * x \wedge\right)\right)\) sums \(((1-\sin (p i * x)\)
\(/(p i * x)) / x^{\wedge}\) 2)
            by (simp add: field_split_simps eval_nat_numeral)
            with \(x\) have \(\left(\lambda n .-\left(s i n_{-} c o e f f(n+3) * p i^{\wedge}(n+2) * x^{\wedge} n\right)\right)\) sums \(\left(g x / x^{\wedge}\right.\) 2)
                by (simp add: \(\left.g_{-} d e f\right)\)
            hence \(f^{\prime} x=g x / x^{\wedge} 2\) by (simp add: sums_iff \(f^{\prime}{ }^{\prime} d e f\) )
            also have \(\ldots=f x\) using sums \([o f x] x\) by (simp add: sums_iff \(g_{-}\)def \(f_{-} d e f\) )
            finally show \(f^{\prime} x=f x\).
    qed
    have isCont \(f^{\prime} 0\) unfolding \(f^{\prime}\) _def
    proof (intro isCont_powser_converges_everywhere)
            fix \(x\) :: real show summable \(\left(\lambda n .-\sin\right.\) _coeff \(\left.(n+3) * p i^{\wedge}(n+2) * x^{\wedge} n\right)\)
            proof (cases \(x=0\) )
            assume \(x: x \neq 0\)
            from summable_divide[OF sums_summable[OF sums_split_initial_segment [OF
                    sin_converges[of \(p i * x]\) ], of 3], of \(\left.-p i * x^{\wedge} 3\right] x\)
            show ?thesis by (simp add: field_split_simps eval_nat_numeral)
        qed (simp only: summable_0_powser)
    qed
    hence \(f^{\prime}-0 \rightarrow f^{\prime} 0\) by (simp add: isCont_def)
    also have \(f^{\prime} 0=p i * p i /\) fact 3 unfolding \(f^{\prime}\) _def
        by (subst powser_zero) (simp add: sin_coeff_def)
    finally show \(f^{\prime}-0 \rightarrow p i^{\wedge} 2 / 6\) by (simp add: eval_nat_numeral)
    qed
    ultimately have \(K=p i^{\wedge} 2 / 6\) by (rule LIM_unique)
    moreover from inverse_power_summable[of 2]
    have summable ( \(\lambda n\). (inverse (real_of_nat \((\) Suc \(\left.n)))^{2}\right)\)
    by (subst summable_Suc_iff) (simp add: power_inverse)
    ultimately show ?thesis unfolding K_def
    by (auto simp add: sums_iff power_divide inverse_eq_divide)
qed
```

end
theory Interval_Integral
imports Equivalence_Lebesgue_Henstock_Integration
begin
definition einterval $a b=\{x . a<$ ereal $x \wedge$ ereal $x<b\}$
lemma einterval_eq[simp]:
shows einterval_eq_Icc: einterval (ereal a) (ereal b) $=\{a<. .<b\}$
and einterval_eq_Ici: einterval (ereal a) $\infty=\{a<.$.
and einterval_eq_Iic: einterval $(-\infty)($ ereal $b)=\{. .<b\}$ and einterval_eq_UNIV: einterval $(-\infty) \infty=U N I V$
by (auto simp: einterval_def)
lemma einterval_same: einterval $a \operatorname{a}=\{ \}$
by (auto simp: einterval_def)
lemma einterval_iff: $x \in$ einterval $a b \longleftrightarrow a<$ ereal $x \wedge$ ereal $x<b$
by (simp add: einterval_def)
lemma einterval_nonempty: $a<b \Longrightarrow \exists c . c \in$ einterval $a b$
by (cases a b rule: ereal2_cases, auto simp: einterval_def intro!: dense gt_ex lt_ex)
lemma open_einterval[simp]: open (einterval ab)
by (cases a b rule: ereal2_cases)
(auto simp: einterval_def intro!: open_Collect_conj open_Collect_less continuous_intros)
lemma borel_einterval[measurable]: einterval $a b \in$ sets borel
unfolding einterval_def by measurable

6.23.14 Approximating a (possibly infinite) interval

lemma filterlim_sup1: (LIM xF.fx:>G1) $\Longrightarrow(L I M x F . f x:>(\sup G 1 G 2))$ unfolding filterlim_def by (auto intro: le_supI1)
lemma ereal_incseq_approx:
fixes $a b$:: ereal
assumes $a<b$
obtains $X::$ nat \Rightarrow real where incseq $X \bigwedge i . a<X i \bigwedge i . X i<b X \longrightarrow b$
proof (cases b)
case PInf
with $\langle a<b\rangle$ have $a=-\infty \vee(\exists r . a=$ ereal $r)$
by (cases a) auto
moreover have $(\lambda x$. ereal $($ real $($ Suc $x))) \longrightarrow \infty$
by (simp add: Lim_PInfty filterlim_sequentially_Suc) (metis le_SucI of_nat_Suc

```
of_nat_mono order_trans real_arch_simple)
    moreover have \(\bigwedge r\). \((\lambda x\). ereal \((r+\operatorname{real}(\) Suc \(x))) \longrightarrow \infty\)
    by (simp add: filterlim_sequentially_Suc Lim_PInfty) (metis add.commute diff_le_eq
nat_ceiling_le_eq)
    ultimately show thesis
        by (intro that \([\) of \(\lambda i\). real_of_ereal \(a+S u c i])\)
            (auto simp: incseq_def PInf)
next
    case (real b')
    define \(d\) where \(d=b^{\prime}-\left(\right.\) if \(a=-\infty\) then \(b^{\prime}-1\) else real_of_ereal \(\left.a\right)\)
    with \(\langle a<b\rangle\) have \(a^{\prime}: 0<d\)
        by (cases a) (auto simp: real)
    moreover
    have \(\bigwedge i r . r<b^{\prime} \Longrightarrow\left(b^{\prime}-r\right) * 1<\left(b^{\prime}-r\right) * \operatorname{real}(S u c(S u c i))\)
        by (intro mult_strict_left_mono) auto
    with \(\langle a<b\rangle a^{\prime}\) have \(\bigwedge i . a<\operatorname{ereal}\left(b^{\prime}-d / \operatorname{real}(\right.\) Suc (Suc i)))
        by (cases a) (auto simp: real d_def field_simps)
    moreover
    have \(\left(\lambda i . b^{\prime}-d /\right.\) real \(\left.i\right) \longrightarrow b^{\prime}\)
        by (force intro: tendsto_eq_intros tendsto_divide_0[OF tendsto_const] filter-
lim_sup1
                    simp: at_infinity_eq_at_top_bot filterlim_real_sequentially)
    then have \(\left(\lambda i . b^{\prime}-d / \operatorname{Suc}(S u c i)\right) \longrightarrow b^{\prime}\)
        by (blast intro: dest: filterlim_sequentially_Suc [THEN iffD2])
    ultimately show thesis
        by (intro that[of \(\left.\left.\lambda i . b^{\prime}-d / S u c(S u c ~ i)\right]\right)\)
            (auto simp: real incseq_def intro!: divide_left_mono)
qed (insert \(\langle a<b\rangle\), auto)
lemma ereal_decseq_approx:
    fixes \(a b\) :: ereal
    assumes \(a<b\)
    obtains \(X\) :: nat \(\Rightarrow\) real where
        decseq \(X\) へi. \(a<X i \bigwedge i . X i<b X \longrightarrow a\)
proof -
    have \(-b<-a\) using \(\langle a<b\rangle\) by simp
    from ereal_incseq_approx \([O F\) this \(]\) guess \(X\).
    then show thesis
        apply (intro that \([\) of \(\lambda i .-X i]\) )
        apply (auto simp: decseq_def incseq_def simp flip: uminus_ereal.simps)
        apply (metis ereal_minus_less_minus ereal_uminus_uminus ereal_Lim_uminus)+
        done
qed
proposition einterval_Icc_approximation:
    fixes \(a b\) :: ereal
    assumes \(a<b\)
    obtains \(u l::\) nat \(\Rightarrow\) real where
        einterval \(a b=(\bigcup i .\{l i \quad . . u i\})\)
```

```
    incseq \(u\) decseq \(l\) ヘi.l \(i<u i \bigwedge i . a<l i \bigwedge i . u i<b\)
    \(l \longrightarrow a u \longrightarrow b\)
proof -
    from dense \([O F\langle a<b\rangle]\) obtain \(c\) where \(a<c c<b\) by safe
    from ereal_incseq_approx \([O F\langle c<b\rangle\) ] guess \(u\). note \(u=\) this
    from ereal_decseq_approx \([O F\langle a<c\rangle]\) guess \(l\). note \(l=\) this
    \{ fix \(i\) from less_trans \([O F\langle l i<c\rangle\langle c<u i\rangle]\) have \(l i<u i\) by simp \}
    have einterval a \(b=(\bigcup i .\{l i . . u i\})\)
    proof (auto simp: einterval_iff)
        fix \(x\) assume \(a<\) ereal \(x\) ereal \(x<b\)
        have eventually ( \(\lambda i\). ereal ( \(l i\) ) <ereal \(x\) ) sequentially
            using \(l(4)\langle a<\) ereal \(x\rangle\) by (rule order_tendstoD)
        moreover
        have eventually ( \(\lambda\) i. ereal \(x<\operatorname{ereal}(u i)\) ) sequentially
            using \(u(4)\) <ereal \(x<b\rangle\) by (rule order_tendstoD)
        ultimately have eventually ( \(\lambda i . l i<x \wedge x<u i\) ) sequentially
            by eventually_elim auto
        then show \(\exists i . l i \leq x \wedge x \leq u i\)
        by (auto intro: less_imp_le simp: eventually_sequentially)
    next
        fix \(x i\) assume \(l i \leq x x \leq u i\)
        with \(\langle a<\operatorname{ereal}(l i)\rangle\langle e r e a l(u i)<b\rangle\)
        show \(a<\) ereal \(x\) ereal \(x<b\)
        by (auto simp flip: ereal_less_eq(3))
    qed
    show thesis
        by (intro that) fact+
qed
```

definition interval_lebesgue_integral :: real measure \Rightarrow ereal \Rightarrow ereal \Rightarrow (real \Rightarrow $' a) \Rightarrow$ 'a::\{banach, second_countable_topology\} where interval_lebesgue_integral M abf $=$
(if $a \leq b$ then (LINT x :einterval $a b \mid M . f x)$ else $-(L I N T x: e i n t e r v a l b a \mid M$. $f x)$)

syntax

_ascii_interval_lebesgue_integral $::$ pttrn \Rightarrow real \Rightarrow real \Rightarrow real measure \Rightarrow real \Rightarrow real
$\left(\left(5 L I N T{ }_{-}=. . . \mid . . ._{-}\right)[0,60,60,61,100] 60\right)$

translations

LINT $x=a . . b \mid M . f==C O N S T$ interval_lebesgue_integral M a $b(\lambda x . f)$
definition interval_lebesgue_integrable :: real measure \Rightarrow ereal \Rightarrow ereal \Rightarrow (real \Rightarrow ' $a::\{$ banach, second_countable_topology\}) \Rightarrow bool where interval_lebesgue_integrable M a b $f=$
(if $a \leq b$ then set_integrable M (einterval a b) f else set_integrable M (einterval ba) f)

syntax

_ascii_interval_lebesgue_borel_integral $::$ pttrn \Rightarrow real \Rightarrow real \Rightarrow real \Rightarrow real ((4LBINT _=_.... _) $[0,60,60,61] 60)$

translations

LBINT $x=a . . b . f==$ CONST interval_lebesgue_integral CONST lborel a b (λx. f)

6.23.15 Basic properties of integration over an interval

lemma interval_lebesgue_integral_cong:
$a \leq b \Longrightarrow(\bigwedge x . x \in$ einterval $a b \Longrightarrow f x=g x) \Longrightarrow$ einterval $a b \in$ sets $M \Longrightarrow$ interval_lebesgue_integral M a bf=interval_lebesgue_integral M a b g
by (auto intro: set_lebesgue_integral_cong simp: interval_lebesgue_integral_def)
lemma interval_lebesgue_integral_cong_AE:
$f \in$ borel_measurable $M \Longrightarrow g \in$ borel_measurable $M \Longrightarrow$ $a \leq b \Longrightarrow A E x \in$ einterval $a b$ in $M . f x=g x \Longrightarrow$ einterval $a b \in$ sets M
\qquad interval_lebesgue_integral Mabf=interval_lebesgue_integral Mabg
by (auto intro: set_lebesgue_integral_cong_AE simp: interval_lebesgue_integral_def)
lemma interval_integrable_mirror:
shows interval_lebesgue_integrable lborel a $b(\lambda x . f(-x)) \longleftrightarrow$ interval_lebesgue_integrable lborel $(-b)(-a) f$
proof -
have $*$: indicator (einterval a b) $(-x)=($ indicator $($ einterval $(-b)(-a)) x::$ real)
for $a b$:: ereal and x :: real
by (cases a b rule: ereal2_cases) (auto simp: einterval_def split: split_indicator)
show ?thesis
unfolding interval_lebesgue_integrable_def
using lborel_integrable_real_affine_iff[symmetric, of $-1 \lambda x$. indicator (einterval

- -) $\left.x *_{R} f x 0\right]$ by (simp add: * set_integrable_def)
qed
lemma interval_lebesgue_integral_add [intro, simp]:
fixes $M a b f$
assumes interval_lebesgue_integrable Mabfinterval_lebesgue_integrable Mabg
shows interval_lebesgue_integrable $M a b(\lambda x . f x+g x)$ and
interval_lebesgue_integral Mab $(\lambda x . f x+g x)=$ interval_lebesgue_integral Mabf+interval_lebesgue_integral Mabg
using assms by (auto simp: interval_lebesgue_integral_def interval_lebesgue_integrable_def field_simps)
lemma interval_lebesgue_integral_diff [intro, simp]:
fixes $M a b f$
assumes interval_lebesgue_integrable $M a b f$ interval_lebesgue_integrable M abg
shows interval_lebesgue_integrable Mab $(\lambda x . f x-g x)$ and interval_lebesgue_integral Mab($\lambda x . f x-g x)=$ interval_lebesgue_integral M abf-interval_lebesgue_integral Mabg
using assms by (auto simp: interval_lebesgue_integral_def interval_lebesgue_integrable_def field_simps)
lemma interval_lebesgue_integrable_mult_right [intro, simp]:
fixes $M a b c$ and $f::$ real $\Rightarrow{ }^{\prime} a::\left\{b a n a c h, r e a l _n o r m e d _f i e l d, ~ s e c o n d _c o u n t a b l e _t o p o l o g y\right\} ~$
shows $(c \neq 0 \Longrightarrow$ interval_lebesgue_integrable M abf $) \Longrightarrow$
interval_lebesgue_integrable $M a b(\lambda x . c * f x)$
by (simp add: interval_lebesgue_integrable_def)
lemma interval_lebesgue_integrable_mult_left [intro, simp]:
fixes $M a b c$ and $f::$ real $\Rightarrow{ }^{\prime} a::\{$ banach, real_normed_field, second_countable_topology\}
shows $(c \neq 0 \Longrightarrow$ interval_lebesgue_integrable M abf) \Longrightarrow
interval_lebesgue_integrable Mab($\lambda x . f x * c)$
by (simp add: interval_lebesgue_integrable_def)
lemma interval_lebesgue_integrable_divide [intro, simp]:
fixes $M a b c$ and $f::$ real $\Rightarrow^{\prime} a::\{b a n a c h$, real_normed_field, field, second_countable_topology\}
shows $(c \neq 0 \Longrightarrow$ interval_lebesgue_integrable M abf $) \Longrightarrow$
interval_lebesgue_integrable $M a b(\lambda x . f x / c)$
by (simp add: interval_lebesgue_integrable_def)
lemma interval_lebesgue_integral_mult_right [simp]:
fixes $M a b c$ and $f::$ real $\Rightarrow^{\prime} a::\{$ banach, real_normed_field, second_countable_topology $\}$
shows interval_lebesgue_integral Mab($\lambda x . c * f x)=$ c * interval_lebesgue_integral Mabf
by (simp add: interval_lebesgue_integral_def)
lemma interval_lebesgue_integral_mult_left [simp]:
fixes $M a b c$ and $f::$ real $\Rightarrow{ }^{\prime} a::\{$ banach, real_normed_field, second_countable_topology\}
shows interval_lebesgue_integral $M a b(\lambda x . f x * c)=$ interval_lebesgue_integral Mabf*c
by (simp add: interval_lebesgue_integral_def)
lemma interval_lebesgue_integral_divide [simp]:
fixes $M a b c$ and $f::$ real $\Rightarrow^{\prime} a::\left\{b a n a c h, r e a l _n o r m e d _f i e l d\right.$, field, second_countable_topology $\}$
shows interval_lebesgue_integral $M a b(\lambda x . f x / c)=$
interval_lebesgue_integral Mabf/c
by (simp add: interval_lebesgue_integral_def)
lemma interval_lebesgue_integral_uminus:
interval_lebesgue_integral Mab($\lambda x .-f x)=-$ interval_lebesgue_integral Mab
f
by (auto simp: interval_lebesgue_integral_def interval_lebesgue_integrable_def set_lebesgue_integral_def)

```
lemma interval_lebesgue_integral_of_real:
    interval_lebesgue_integral Mab( \(\lambda x\). complex_of_real \((f x))=\)
        of_real (interval_lebesgue_integral Mabf)
    unfolding interval_lebesgue_integral_def
    by (auto simp: interval_lebesgue_integral_def set_integral_complex_of_real)
lemma interval_lebesgue_integral_le_eq:
    fixes \(a b f\)
    assumes \(a \leq b\)
    shows interval_lebesgue_integral Mabf=(LINT \(x\) : einterval ab|M.fx)
    using assms by (auto simp: interval_lebesgue_integral_def)
lemma interval_lebesgue_integral_gt_eq:
    fixes \(a b f\)
    assumes \(a>b\)
    shows interval_lebesgue_integral Mabf=-(LINT x: einterval ba|M.fx)
using assms by (auto simp: interval_lebesgue_integral_def less_imp_le einterval_def)
lemma interval_lebesgue_integral_gt_eq':
    fixes \(a b f\)
    assumes \(a>b\)
    shows interval_lebesgue_integral Mabf=-interval_lebesgue_integral Mbaf
using assms by (auto simp: interval_lebesgue_integral_def less_imp_le einterval_def)
lemma interval_integral_endpoints_same [simp]: \((\) LBINT \(x=a . . a . f x)=0\)
    by (simp add: interval_lebesgue_integral_def set_lebesgue_integral_def einterval_same)
lemma interval_integral_endpoints_reverse: \((\operatorname{LBINT} x=a . . b . f x)=-(\) LBINT \(x=b . . a\).
\(f x\) )
    by (cases a b rule: linorder_cases) (auto simp: interval_lebesgue_integral_def set_lebesgue_integral_def
einterval_same)
lemma interval_integrable_endpoints_reverse:
    interval_lebesgue_integrable lborel a \(b f \longleftrightarrow\)
        interval_lebesgue_integrable lborel b a \(f\)
    by (cases a b rule: linorder_cases) (auto simp: interval_lebesgue_integrable_def
einterval_same)
lemma interval_integral_reflect:
    \((\) LBINT \(x=a . . b . f x)=(\) LBINT \(x=-b . .-a . f(-x))\)
proof (induct a brule: linorder_wlog)
    case (sym ab) then show ?case
    by (auto simp: interval_lebesgue_integral_def interval_integrable_endpoints_reverse
                split: if_split_asm)
next
    case (le a b)
    have LBINT \(x:\{x .-x \in\) einterval \(a b\} . f(-x)=\) LBINT \(x\) :einterval \((-b)\)
\((-a) . f(-x)\)
        unfolding interval_lebesgue_integrable_def set_lebesgue_integral_def
```

```
    apply (rule Bochner_Integration.integral_cong [OF refl])
    by (auto simp: einterval_iff ereal_uminus_le_reorder ereal_uminus_less_reorder
not_less
            simp flip: uminus_ereal.simps
                split: split_indicator)
    then show ?case
    unfolding interval_lebesgue_integral_def
    by (subst set_integral_reflect) (simp add: le)
qed
lemma interval_lebesgue_integral_0_infty:
    interval_lebesgue_integrable \(M 0 \infty f \longleftrightarrow\) set_integrable \(M\{0<.\}\).
    interval_lebesgue_integral M \(0 \infty f=(\) LINT \(x:\{0<.\} \mid. M . f x)\)
    unfolding zero_ereal_def
    by (auto simp: interval_lebesgue_integral_le_eq interval_lebesgue_integrable_def)
lemma interval_integral_to_infinity_eq: (LINT \(x=\) ereal \(a . . \infty \mid M . f x)=(\) LINT \(x\)
\(:\{a<.\} \mid. M . f x)\)
    unfolding interval_lebesgue_integral_def by auto
proposition interval_integrable_to_infinity_eq: (interval_lebesgue_integrable Ma \(\infty\)
f) \(=\)
    (set_integrable \(M\{a<.\}\).\(f )\)
    unfolding interval_lebesgue_integrable_def by auto
```


6.23.16 Basic properties of integration over an interval wrt lebesgue measure

lemma interval_integral_zero [simp]:
fixes $a b$:: ereal
shows LBINT x=a..b. $0=0$
unfolding interval_lebesgue_integral_def set_lebesgue_integral_def einterval_eq
by simp
lemma interval_integral_const [intro, simp]:
fixes $a b c$:: real
shows interval_lebesgue_integrable lborel a $b(\lambda x . c)$ and LBINT $x=a . . b . c=c$

* $(b-a)$
unfolding interval_lebesgue_integral_def interval_lebesgue_integrable_def einterval_eq by (auto simp: less_imp_le field_simps measure_def set_integrable_def set_lebesgue_integral_def)
lemma interval_integral_cong_AE:
assumes [measurable]: $f \in$ borel_measurable borel $g \in$ borel_measurable borel
assumes $A E x \in$ einterval ($\min a b$) ($\max a b$) in lborel. $f x=g x$
shows interval_lebesgue_integral lborel a $b f=$ interval_lebesgue_integral lborel a
b g
using assms
proof (induct a b rule: linorder_wlog)
case (sym ab) then show ?case
by (simp add: min.commute max.commute interval_integral_endpoints_reverse[of ab])
next
case (le ab) then show ?case
by (auto simp: interval_lebesgue_integral_def max_def min_def
intro!: set_lebesgue_integral_cong_AE)
qed
lemma interval_integral_cong:
assumes $\wedge x . x \in$ einterval $(\min a b)(\max a b) \Longrightarrow f x=g x$
shows interval_lebesgue_integral lborel a b $f=$ interval_lebesgue_integral lborel a
bg
using assms
proof (induct a b rule: linorder_wlog)
case (sym a b) then show ?case
by (simp add: min.commute max.commute interval_integral_endpoints_reverse[of
a b])
next
case (le a b) then show ?case
by (auto simp: interval_lebesgue_integral_def max_def min_def
intro!: set_lebesgue_integral_cong)
qed
lemma interval_lebesgue_integrable_cong_AE:
$f \in$ borel_measurable lborel $\Longrightarrow g \in$ borel_measurable lborel \Longrightarrow
AE $x \in$ einterval ($\min a b$) ($\max a b$) in lborel. $f x=g x \Longrightarrow$
interval_lebesgue_integrable lborel a bfointerval_lebesgue_integrable lborel a bg
apply (simp add: interval_lebesgue_integrable_def)
apply (intro conjI impI set_integrable_cong_AE)
apply (auto simp: min_def max_def)
done
lemma interval_integrable_abs_iff:
fixes $f::$ real \Rightarrow real
shows $f \in$ borel_measurable lborel \Longrightarrow
interval_lebesgue_integrable lborel a $b(\lambda x .|f x|)=$ interval_lebesgue_integrable
lborel a bf
unfolding interval_lebesgue_integrable_def
by (subst (1 2) set_integrable_abs_iff ') simp_all
lemma interval_integral_Icc:
fixes $a b$:: real
shows $a \leq b \Longrightarrow($ LBINT $x=a . . b . f x)=($ LBINT $x:\{a . . b\} . f x)$
by (auto intro!: set_integral_discrete_difference [where $X=\{a, b\}]$
simp add: interval_lebesgue_integral_def)
lemma interval_integral_Icc':
$a \leq b \Longrightarrow($ LBINT $x=a . . b . f x)=($ LBINT $x:\{x . a \leq$ ereal $x \wedge$ ereal $x \leq b\} . f$
x)
by (auto intro!: set_integral_discrete_difference[where $X=\{$ real_of_ereal a, real_of_ereal b\}]
simp add: interval_lebesgue_integral_def einterval_iff)
lemma interval_integral_Ioc:

```
\(a \leq b \Longrightarrow(\) LBINT \(x=a . . b . f x)=(\) LBINT \(x:\{a<. . b\} . f x)\)
```

by (auto intro!: set_integral_discrete_difference $[$ where $X=\{a, b\}]$ simp add: interval_lebesgue_integral_def einterval_iff)
lemma interval_integral_Ioc':
$a \leq b \Longrightarrow($ LBINT $x=a . . b . f x)=($ LBINT $x:\{x . a<$ ereal $x \wedge$ ereal $x \leq b\} . f$ x)
by (auto intro!: set_integral_discrete_difference[where $X=\{$ real_of_ereal a, real_of_ereal b\}]
simp add: interval_lebesgue_integral_def einterval_iff)
lemma interval_integral_Ico:
$a \leq b \Longrightarrow($ LBINT $x=a . . b . f x)=($ LBINT $x:\{a . .<b\} . f x)$
by (auto intro!: set_integral_discrete_difference[where $X=\{a, b\}]$
simp add: interval_lebesgue_integral_def einterval_iff)
lemma interval_integral_Ioi:
$|a|<\infty \Longrightarrow($ LBINT $x=a . . \infty . f x)=($ LBINT $x:\{$ real_of_ereal $a<..\} . f x)$
by (auto simp: interval_lebesgue_integral_def einterval_iff)
lemma interval_integral_Ioo:
$a \leq b \Longrightarrow|a|<\infty==>|b|<\infty \Longrightarrow($ LBINT $x=a . . b . f x)=($ LBINT $x:$
$\{$ real_of_ereal $a<. .<$ real_of_ereal $b\} . f x)$
by (auto simp: interval_lebesgue_integral_def einterval_iff)
lemma interval_integral_discrete_difference:
fixes $f::$ real $\Rightarrow{ }^{\prime} b::\{$ banach, second_countable_topology\} and $a b::$ ereal assumes countable X
and $e q: \bigwedge x . a \leq b \Longrightarrow a<x \Longrightarrow x<b \Longrightarrow x \notin X \Longrightarrow f x=g x$
and anti_eq: $\bigwedge x . b \leq a \Longrightarrow b<x \Longrightarrow x<a \Longrightarrow x \notin X \Longrightarrow f x=g x$
assumes $\bigwedge x . x \in X \Longrightarrow$ emeasure $M\{x\}=0 \bigwedge x . x \in X \Longrightarrow\{x\} \in$ sets M
shows interval_lebesgue_integral Mabf=interval_lebesgue_integral Mabg
unfolding interval_lebesgue_integral_def set_lebesgue_integral_def
apply (intro if_cong refl arg_cong[where $f=\lambda x .-x]$ integral_discrete_difference[of
X] assms)
apply (auto simp: eq anti_eq einterval_iff split: split_indicator)
done
lemma interval_integral_sum:
fixes $a b c$:: ereal
assumes integrable: interval_lebesgue_integrable lborel $(\min a(\min b c))(\max a$
$(\max b c)) f$
shows $($ LBINT $x=a . . b . f x)+($ LBINT $x=b . . c . f x)=($ LBINT $x=a . . c . f x)$

```
proof -
    let ?I = \lambdaa b.LBINT x=a..b. f }
    {fix a b c:: ereal assume interval_lebesgue_integrable lborel a c f a\leqbb\leqc
    then have ord: a\leqbb\leqc a\leqc and f': set_integrable lborel (einterval a c)
f
            by (auto simp: interval_lebesgue_integrable_def)
    then have f: set_borel_measurable borel (einterval a c)f
            unfolding set_integrable_def set_borel_measurable_def
            by (drule_tac borel_measurable_integrable) simp
        have (LBINT x:einterval a c. f x ) = (LBINT x:einterval a b U einterval b c.f
x)
    proof (rule set_integral_cong_set)
            show AE x in lborel. ( }x\in\mathrm{ einterval a b U einterval b c) =( }x\in\mathrm{ einterval a c)
                using AE_lborel_singleton[of real_of_ereal b] ord
                by (cases a b c rule: ereal3_cases) (auto simp: einterval_iff)
            show set_borel_measurable lborel (einterval a c) f set_borel_measurable lborel
(einterval a b U einterval b c) f
            unfolding set_borel_measurable_def
            using ord by (auto simp: einterval_iff intro!: set_borel_measurable_subset[OF
f,unfolded set_borel_measurable_def])
            qed
            also have ... =(LBINT x:einterval a b. fx) +(LBINT x:einterval b c.f x )
            using ord
            by (intro set_integral_Un_AE) (auto intro!: set_integrable_subset[OF f ] simp:
einterval_iff not_less)
            finally have ?I a b + ?I b c=? ?I a c
            using ord by (simp add: interval_lebesgue_integral_def)
    } note 1 = this
    {fix a b c:: ereal assume interval_lebesgue_integrable lborel a c f a\leqbb\leqc
        from 1[OF this] have ?I b c + ?I a b = ?I a c
            by (metis add.commute)
    } note 2 = this
    have 3: \a b. b\leqa\Longrightarrow(LBINT x=a..b. f x ) = - (LBINT x=b..a.f x)
        by (rule interval_integral_endpoints_reverse)
    show ?thesis
        using integrable
            by (cases a b b c a c rule: linorder_le_cases[case_product linorder_le_cases
linorder_cases])
            (simp_all add: min_absorb1 min_absorb2 max_absorb1 max_absorb2 field_simps
123)
qed
lemma interval_integrable_isCont:
    fixes a b and f :: real # ' }a::{\mathrm{ banach, second_countable_topology}
    shows (\bigwedgex. min a b s x \Longrightarrow x \leq max a b \Longrightarrow isCont f x)\Longrightarrow
        interval_lebesgue_integrable lborel a b f
proof (induct a b rule: linorder_wlog)
    case (le a b) then show ?case
        unfolding interval_lebesgue_integrable_def set_integrable_def
```

```
    by (auto simp: interval_lebesgue_integrable_def
        intro!: set_integrable_subset[unfolded set_integrable_def,OF borel_integrable_compact[of
{a .. b }]]
        continuous_at_imp_continuous_on)
qed (auto intro: interval_integrable_endpoints_reverse[THEN iffD1])
lemma interval_integrable_continuous_on:
    fixes }ab\mathrm{ :: real and f
    assumes a\leqb and continuous_on {a..b}f
    shows interval_lebesgue_integrable lborel a b f
using assms unfolding interval_lebesgue_integrable_def apply simp
    by (rule set_integrable_subset, rule borel_integrable_atLeastAtMost' [of a b], auto)
lemma interval_integral_eq_integral:
    fixes f :: real => 'a::euclidean_space
    shows }a\leqb\Longrightarrow\mathrm{ set_integrable lborel {a..b} f CPINT x=a..b.f }x=\mathrm{ integral
{a..b}f
    by (subst interval_integral_Icc, simp) (rule set_borel_integral_eq_integral)
lemma interval_integral_eq_integral':
    fixes f :: real = 'a::euclidean_space
    shows }a\leqb\Longrightarrow\mathrm{ set_integrable lborel (einterval a b) f CM LBINT x=a..b.f x
= integral (einterval a b) f
    by (subst interval_lebesgue_integral_le_eq, simp)(rule set_borel_integral_eq_integral)
```


6.23.17 General limit approximation arguments

proposition interval_integral_Icc_approx_nonneg:
fixes $a b$:: ereal
assumes $a<b$
fixes $u l::$ nat \Rightarrow real
assumes approx: einterval $a b=(\bigcup i .\{l i \ldots u i\})$
incseq u decseq $l \bigwedge i . l i<u i \bigwedge i . a<l i \bigwedge i . u i<b$
$l \longrightarrow a u \longrightarrow b$
fixes $f::$ real \Rightarrow real
assumes f_integrable: $\bigwedge i$. set_integrable lborel $\{l i . . u i\} f$
assumes f_nonneg: AE x in lborel. $a<$ ereal $x \longrightarrow$ ereal $x<b \longrightarrow 0 \leq f x$
assumes f_measurable: set_borel_measurable lborel (einterval ab) f
assumes lbint_lim: (λi. LBINT $x=l$ i.. u i. $f x) \longrightarrow C$
shows
set_integrable lborel (einterval a b) f
$($ LBINT $x=a$..b. $f x)=C$
proof -
have 1 [unfolded set_integrable_def]: \i. set_integrable lborel $\{l i . . u i\} f$ by (rule f_integrable)
have 2: AE x in lborel. mono (λ n. indicator $\{l n$..u $\left.n\} x *_{R} f x\right)$
proof -
from f_nonneg have $A E x$ in lborel. $\forall i . l i \leq x \longrightarrow x \leq u i \longrightarrow 0 \leq f x$ by eventually_elim

```
            (metis approx(5) approx(6) dual_order.strict_trans1 ereal_less_eq(3) le_less_trans)
        then show ?thesis
            apply eventually_elim
            apply (auto simp: mono_def split: split_indicator)
            apply (metis approx(3) decseqD order_trans)
            apply (metis approx(2) incseqD order_trans)
            done
    qed
    have 3:AE x in lborel. (\lambdai. indicator {l i..u i} x *R fx)\longrightarrow < indicator
(einterval a b) x * *R fx
    proof -
        { fix x i assume l i\leqx x \lequi
            then have eventually ( }\lambdai.li\leqx\wedgex\lequi) sequentially
                apply (auto simp: eventually_sequentially intro!: exI[of _ i])
                apply (metis approx(3) decseqD order_trans)
                apply (metis approx(2) incseqD order_trans)
                done
            then have eventually (\lambdai.fx* indicator {l i..u i} x=fx) sequentially
                by eventually_elim auto }
        then show ?thesis
        unfolding approx(1) by (auto intro!: AE_I2 tendsto_eventually split: split_indicator)
    qed
    have 4:(\lambdai. \intx. indicator {l i..u i} x * *R f x dlborel) \longrightarrowC
    using lbint_lim by (simp add: interval_integral_Icc [unfolded set_lebesgue_integral_def]
approx less_imp_le)
    have 5: (\lambdax. indicat_real (einterval a b) x *R f x) \in borel_measurable lborel
        using f_measurable set_borel_measurable_def by blast
    have (LBINT x=a..b. f x) = lebesgue_integral lborel ( }\lambdax\mathrm{ . indicator (einterval a
b) }x\mp@subsup{*}{R}{}fx
    using assms by (simp add: interval_lebesgue_integral_def set_lebesgue_integral_def
less_imp_le)
    also have ... = C
        by (rule integral_monotone_convergence [OF 1 2 3 4 5])
    finally show (LBINT x=a..b. fx)=C .
    show set_integrable lborel (einterval a b) f
        unfolding set_integrable_def
        by (rule integrable_monotone_convergence[OF 1 2 3 4 5])
qed
proposition interval_integral_Icc_approx_integrable:
    fixes }ul:: nat => real and ab :: erea
    fixes f :: real # ' 'a::{banach, second_countable_topology}
    assumes a<b
    assumes approx: einterval a b=(\bigcupi.{li .. u i})
        incseq u decseq l \bigwedgei.li<ui \bigwedgei.a<li \bigwedgei.u i<b
        l \longrightarrow a u \longrightarrow b
    assumes f_integrable: set_integrable lborel (einterval a b) f
    shows (\lambdai.LBINT x=l i.. u i.fx)}\longrightarrow(LBINT x=a..b.f x)
proof -
```

```
have ( \(\lambda\) i. LBINT \(x:\{l i .\). u \(i\} . f x) \longrightarrow(\) LBINT \(x:\) einterval a b. \(f x)\)
    unfolding set_lebesgue_integral_def
proof (rule integral_dominated_convergence)
    show integrable lborel ( \(\lambda x\). norm (indicator (einterval ab) \(\left.x *_{R} f x\right)\) )
        using f_integrable integrable_norm set_integrable_def by blast
    show ( \(\lambda x\). indicat_real (einterval ab) \(\left.x *_{R} f x\right) \in\) borel_measurable lborel
        using \(f_{-}\)integrable by (simp add: set_integrable_def)
    then show \(\bigwedge i\). \(\left(\lambda x\right.\). indicat_real \(\left.\{l i . . u i\} x *_{R} f x\right) \in\) borel_measurable lborel
        by (rule set_borel_measurable_subset [unfolded set_borel_measurable_def]) (auto
simp: approx)
    show \(\bigwedge i\). AE \(x\) in lborel. norm (indicator \(\left\{l\right.\) i.. u i\} \(\left.x *_{R} f x\right) \leq\) norm (indicator
(einterval ab) \(x *_{R} f x\) )
        by (intro AE_I2) (auto simp: approx split: split_indicator)
        show \(A E x\) in lborel. ( \(\lambda i\). indicator \(\left.\left\{\begin{array}{lll}l & i . . u & i\end{array}\right\} x_{R} f x\right) \longrightarrow\) indicator
(einterval ab) \(x *_{R} f x\)
    proof (intro AE_I2 tendsto_intros tendsto_eventually)
        fix \(x\)
        \{ fix \(i\) assume \(l i \leq x x \leq u i\)
            with \(\langle\) incseq \(u\rangle[\) THEN incseq \(D\), of \(i]\) decseq \(l\rangle[\) THEN decseqD, of \(i]\)
            have eventually ( \(\lambda i\). \(l i \leq x \wedge x \leq u i\) ) sequentially
                by (auto simp: eventually_sequentially decseq_def incseq_def intro: or-
der_trans) \(\}\)
        then show eventually ( \(\lambda\) xa. indicator \(\{l x a . . u x a\} x=\) (indicator (einterval
a b) \(x::\) real)) sequentially
        using approx order_tendstoD (2)[OF \(\langle l \longrightarrow a\rangle\), of \(x]\) order_tendsto \(D(1)[O F\)
\(\langle u \longrightarrow b\rangle\), of \(x]\)
                by (auto split: split_indicator)
    qed
    qed
    with \(\langle a\langle b\rangle\langle\bigwedge i . l i<u i\rangle\) show ?thesis
        by (simp add: interval_lebesgue_integral_le_eq[symmetric] interval_integral_Icc
less_imp_le)
```

qed

6.23.18 A slightly stronger Fundamental Theorem of Calculus

Three versions: first, for finite intervals, and then two versions for arbitrary intervals.
lemma interval_integral_FTC_finite:
fixes $f F$:: real $\Rightarrow{ }^{\prime} a::$ euclidean_space and $a b$:: real
assumes f : continuous_on $\{\min$ a b..max a $b\} f$
assumes $F: \bigwedge x$. min $a b \leq x \Longrightarrow x \leq \max a b \Longrightarrow$ (F has_vector_derivative $(f$
x)) (at x within
$\{\min a b . . \max a b\})$
shows (LBINT $x=a$..b. $f x)=F b-F a$
proof (cases $a \leq b$)
case True

```
    have (LBINT \(x=a . . b . f x)=\left(\right.\) LBINT \(x\). indicat_real \(\left.\{a . . b\} x *_{R} f x\right)\)
    by (simp add: True interval_integral_Icc set_lebesgue_integral_def)
    also have \(\ldots=F b-F a\)
    proof (rule integral_FTC_atLeastAtMost [OF True])
        show continuous_on \(\{a . . b\} f\)
        using True \(f\) by linarith
    show \(\bigwedge x . \llbracket a \leq x ; x \leq b \rrbracket \Longrightarrow(F\) has_vector_derivative \(f x)\) (at \(x\) within \(\{a . . b\})\)
        by (metis \(F\) True max.commute max_absorb1 min_def)
    qed
    finally show?thesis.
next
    case False
    then have \(b \leq a\)
        by \(\operatorname{simp}\)
    have - interval_lebesgue_integral lborel (ereal b) (ereal a) \(f=-(\) LBINT \(x\).
indicat_real \(\left.\{b . . a\} \quad x *_{R} f x\right)\)
    by (simp add: \(\langle b \leq a\rangle\) interval_integral_Icc set_lebesgue_integral_def)
    also have \(\ldots=F b-F a\)
    proof (subst integral_FTC_atLeastAtMost \([O F\langle b \leq a\rangle])\)
        show continuous_on \(\{b . . a\} f\)
            using False \(f\) by linarith
        show \(\bigwedge x\). \(\llbracket b \leq x ; x \leq a \rrbracket\)
                \(\Longrightarrow(F\) has_vector_derivative \(f x)(\) at \(x\) within \(\{b . . a\})\)
            by (metis F False max_def min_def)
    qed auto
    finally show ?thesis
        by (metis interval_integral_endpoints_reverse)
qed
lemma interval_integral_FTC_nonneg:
    fixes \(f F\) :: real \(\Rightarrow\) real and \(a b\) :: ereal
    assumes \(a<b\)
    assumes \(F: \bigwedge x . a<\) ereal \(x \Longrightarrow\) ereal \(x<b \Longrightarrow\) DERIV \(F x:>f x\)
    assumes \(f: \bigwedge x . a<\) ereal \(x \Longrightarrow\) ereal \(x<b \Longrightarrow\) isCont \(f x\)
    assumes f_nonneg: AE \(x\) in lborel. \(a<\) ereal \(x \longrightarrow\) ereal \(x<b \longrightarrow 0 \leq f x\)
    assumes \(A:((F \circ\) real_of_ereal \() \longrightarrow A)(\) at_right \(a)\)
    assumes \(B:\left(\left(F \circ r e a l_{-} o f \_\right.\right.\)ereal \(\left.) \longrightarrow B\right)\left(a t \_l e f t ~ b\right)\)
    shows
        set_integrable lborel (einterval a b) \(f\)
        (LBINT \(x=a\)..b. \(f x)=B-A\)
proof -
    obtain \(u l\) where approx:
        einterval \(a b=(\bigcup i .\{l i \ldots u i\})\)
        incseq \(u \operatorname{decseq} l \bigwedge i . l i<u i \bigwedge i . a<l i \bigwedge i . u i<b\)
        \(l \longrightarrow a u \longrightarrow b\)
        by (blast intro: einterval_Icc_approximation[OF \(\langle a<b\rangle]\) )
    have \([\) simp \(]\) : \(\bigwedge x i . l i \leq x \Longrightarrow a<\) ereal \(x\)
        by (rule order_less_le_trans, rule approx, force)
```

```
have [simp]: \(\bigwedge x i . x \leq u i \Longrightarrow\) ereal \(x<b\)
    by (rule order_le_less_trans, subst ereal_less_eq(3), assumption, rule approx)
    have \(F T C i\) : \(\bigwedge i .(L B I N T x=l i . . u i . f x)=F(u i)-F(l i)\)
    using assms approx apply (intro interval_integral_FTC_finite)
    apply (auto simp: less_imp_le min_def max_def
        has_field_derivative_iff_has_vector_derivative[symmetric])
    apply (rule continuous_at_imp_continuous_on, auto intro!: f)
    by (rule DERIV_subset [OF F], auto)
    have 1: ^i. set_integrable lborel \(\{l i . . u i\} f\)
    proof -
    fix \(i\) show set_integrable lborel \(\{l i \quad . . u i\} f\)
        using \(\langle a<l i\rangle\langle u i<b\rangle\) unfolding set_integrable_def
            by (intro borel_integrable_compact \(f\) continuous_at_imp_continuous_on com-
pact_Icc ballI)
            (auto simp flip: ereal_less_eq)
    qed
    have 2: set_borel_measurable lborel (einterval a b) \(f\)
        unfolding set_borel_measurable_def
    by (auto simp del: real_scaleR_def intro!: borel_measurable_continuous_on_indicator
                simp: continuous_on_eq_continuous_at einterval_iff f)
    have 3: ( \(\lambda\) i. LBINT \(x=l\) i..u i. \(f x) \longrightarrow B-A\)
    apply (subst FTCi)
    apply (intro tendsto_intros)
    using \(B\) approx unfolding tendsto_at_iff_sequentially comp_def
    using tendsto_at_iff_sequentially[where 'a=real]
    apply (elim allE[of _ \(\lambda i\). ereal ( \(u\) i)], auto)
    using A approx unfolding tendsto_at_iff_sequentially comp_def
    by (elim allE \([\) of _ \(\lambda i\). ereal ( \(l i)]\), auto)
    show (LBINT \(x=a . . b . f x)=B-A\)
        by (rule interval_integral_Icc_approx_nonneg \([O F\langle a<b\rangle\) approx 1 f_nonneg 2
3])
    show set_integrable lborel (einterval a b) f
    by (rule interval_integral_Icc_approx_nonneg [OF <a < b〉 approx 1 f_nonneg 2
3])
qed
theorem interval_integral_FTC_integrable:
    fixes \(f F\) :: real \(\Rightarrow{ }^{\prime} a::\) euclidean_space and \(a b\) :: ereal
    assumes \(a<b\)
    assumes \(F: \bigwedge x . a<\) ereal \(x \Longrightarrow\) ereal \(x<b \Longrightarrow\) (F has_vector_derivative \(f x)\)
(at \(x\) )
    assumes \(f: \bigwedge x . a<\) ereal \(x \Longrightarrow\) ereal \(x<b \Longrightarrow\) isCont \(f x\)
    assumes \(f_{-}\)integrable: set_integrable lborel (einterval ab) \(f\)
    assumes \(A:((F \circ\) real_of_ereal \() \longrightarrow A)(\) at_right \(a)\)
    assumes \(B:((F \circ\) real_of_ereal \() \longrightarrow B)(\) at_left \(b)\)
    shows \((L B I N T x=a . . b . f x)=B-A\)
proof -
    obtain \(u l\) where approx:
        einterval \(a b=(\bigcup i .\{l i . . u i\})\)
```

```
    incseq \(u\) decseq \(l \bigwedge i . l i<u i \bigwedge i . a<l i \bigwedge i . u i<b\)
    \(l \longrightarrow a u \longrightarrow b\)
    by (blast intro: einterval_Icc_approximation[OF \(\langle a<b\rangle]\) )
    have \([\) simp \(]: \wedge x i . l i \leq x \Longrightarrow a<\) ereal \(x\)
        by (rule order_less_le_trans, rule approx, force)
    have [simp]: \(\bigwedge x\) i. \(x \leq u i \Longrightarrow\) ereal \(x<b\)
        by (rule order_le_less_trans, subst ereal_less_eq(3), assumption, rule approx)
    have FTCi: \(\bigwedge i .(L B I N T x=l i . . u i . f x)=F(u i)-F(l i)\)
        using assms approx
        by (auto simp: less_imp_le min_def max_def
            intro!: f continuous_at_imp_continuous_on interval_integral_FTC_finite
            intro: has_vector_derivative_at_within)
    have ( \(\lambda i\) i. LBINT \(x=l\) i..u i. \(f x) \longrightarrow B-A\)
        unfolding FTCi
    proof (intro tendsto_intros)
        show \((\lambda x . F(l x)) \longrightarrow A\)
            using \(A\) approx unfolding tendsto_at_iff_sequentially comp_def
            by (elim allE \([\) of _ \(\lambda i\). ereal (li)], auto)
        show \((\lambda x . F(u x)) \longrightarrow B\)
            using \(B\) approx unfolding tendsto_at_iff_sequentially comp_def
            by (elim allE[of _ \(\lambda i\). ereal ( \(u\) i)], auto)
    qed
    moreover have \((\lambda i . L B I N T x=l\) i..u i. \(f x) \longrightarrow(L B I N T x=a . . b . f x)\)
    by (rule interval_integral_Icc_approx_integrable [OF \(\langle a<b\rangle\) approx f_integrable])
    ultimately show ?thesis
        by (elim LIMSEQ_unique)
qed
```

theorem interval_integral_FTC2:
fixes $a b c$:: real and f :: real $\Rightarrow{ }^{\prime} a::$ euclidean_space
assumes $a \leq c c \leq b$
and contf: continuous_on $\{a . . b\} f$
fixes x :: real
assumes $a \leq x$ and $x \leq b$
shows $((\lambda u . L B I N T y=c . . u . f y)$ has_vector_derivative $(f x))$ (at x within $\{a . . b\})$
proof -
let $? F=(\lambda u . L B I N T y=a . . u . f y)$
have intf: set_integrable lborel $\{a . . b\} f$ by (rule borel_integrable_atLeastAtMost', rule contf)
have $((\lambda u$. integral $\{a . . u\} f)$ has_vector_derivative $f x)$ (at x within $\{a . . b\})$ using $\langle a \leq x\rangle\langle x \leq b\rangle$
by (auto intro: integral_has_vector_derivative continuous_on_subset [OF contf])
then have $((\lambda u$. integral $\{a . . u\} f)$ has_vector_derivative $(f x))$ (at x within $\{a . . b\})$ by simp
then have (?F has_vector_derivative $(f x)$) (at x within $\{a . . b\}$) by (rule has_vector_derivative_weaken)
(auto intro!: assms interval_integral_eq_integral[symmetric] set_integrable_subset

```
[OF intf])
    then have ((\lambdax. (LBINT y=c..a.f y) + ?F x) has_vector_derivative (fx)) (at x
within {a..b})
        by (auto intro!: derivative_eq_intros)
    then show ?thesis
    proof (rule has_vector_derivative_weaken)
    fix }u\mathrm{ assume }u\in{a..b
    then show (LBINT y=c..a.f y)+(LBINT y=a..u.f y)=(LBINT y=c..u.f
y)
            using assms
            apply (intro interval_integral_sum)
            apply (auto simp: interval_lebesgue_integrable_def simp del: real_scaleR_def)
            by (rule set_integrable_subset [OF intf], auto simp: min_def max_def)
    qed (insert assms, auto)
qed
proposition einterval_antiderivative:
    fixes a b :: ereal and f :: real }\mp@subsup{=>}{}{\prime}'a::euclidean_space
    assumes }a<b\mathrm{ and contf: \x :: real. }a<x\Longrightarrowx<b\Longrightarrow\mathrm{ isCont f x
    shows }\existsF.\forallx\mathrm{ :: real. }a<x\longrightarrowx<b\longrightarrow(F has_vector_derivative f x) (at x
proof -
    from einterval_nonempty [OF〈a<b\rangle] obtain c :: real where [simp]: a<c c
< b
    by (auto simp: einterval_def)
    let ?F = (\lambdau.LBINT y=c..u.f y)
    show ?thesis
    proof (rule exI, clarsimp)
        fix }x\mathrm{ :: real
    assume [simp]: a<x x< b
    have 1:a< min cx by simp
    from einterval_nonempty [OF 1] obtain d :: real where [simp]: a<d d<c
d< < 
            by (auto simp: einterval_def)
    have 2: max c x < b by simp
    from einterval_nonempty [OF 2] obtain e :: real where [simp]:c<ex<e
e<b
            by (auto simp: einterval_def)
    have (?F has_vector_derivative f x) (at x within {d<..<e})
    proof (rule has_vector_derivative_within_subset [of _ _ - {d..e}])
        have continuous_on {d..e} f
        proof (intro continuous_at_imp_continuous_on ballI contf; clarsimp)
            show }\x.\llbracketd\leqx;x\leqe\rrbracket\Longrightarrowa<ereal x
                    using <a < ereal d> ereal_less_ereal_Ex by auto
            show }\x.\llbracketd\leqx;x\leqe\rrbracket\Longrightarrow ereal x<
            using <ereal e<b> ereal_less_eq(3) le_less_trans by blast
        qed
        then show (?F has_vector_derivative f x) (at x within {d..e})
            by (intro interval_integral_FTC2) (use \langled < c\rangle\langlec<ee\rangle\langled< < 侪\langlex<e\rangle in
<linarith+>)
```

```
    qed auto
    then show (?F has_vector_derivative f x) (at x)
        by (force simp: has_vector_derivative_within_open [of - {d<..<e}])
    qed
qed
```


6.23.19 The substitution theorem

Once again, three versions: first, for finite intervals, and then two versions for arbitrary intervals.

```
theorem interval_integral_substitution_finite:
    fixes \(a b\) :: real and \(f\) :: real \(\Rightarrow\) 'a::euclidean_space
    assumes \(a \leq b\)
    and derivg: \(\bigwedge x . a \leq x \Longrightarrow x \leq b \Longrightarrow\left(g\right.\) has_real_derivative \(\left(g^{\prime} x\right)\) ) (at \(x\) within
\{a..b\})
    and contf : continuous_on ( \(g\) ‘ \(\{a . . b\}) f\)
    and contg': continuous_on \(\{a . . b\} g^{\prime}\)
    shows LBINT \(x=a . . b . g^{\prime} x *_{R} f(g x)=L B I N T y=g a . . g b . f y\)
proof-
    have \(v_{-}\)derivg: \(\bigwedge x . a \leq x \Longrightarrow x \leq b \Longrightarrow\) ( \(g\) has_vector_derivative \(\left(g^{\prime} x\right)\) ) (at \(x\)
within \(\{a . . b\}\) )
        using derivg unfolding has_field_derivative_iff_has_vector_derivative .
    then have contg [simp]: continuous_on \(\{a . . b\} g\)
        by (rule continuous_on_vector_derivative) auto
    have 1: \(\exists x \in\{a . . b\} . u=g x\) if \(\min (g a)(g b) \leq u u \leq \max (g a)(g b)\) for \(u\)
        by (cases \(g a \leq g b\) ) (use that assms IVT' \([\) of \(g a u b]\) IVT2' \([o f g b u a]\) in
    〈auto simp: min_def max_def〉)
    obtain \(c d\) where \(g_{\text {_im: }} g^{\prime}\{a . . b\}=\{c . . d\}\) and \(c \leq d\)
        by (metis continuous_image_closed_interval contg \(\langle a \leq b\rangle\) )
    obtain \(F\) where derivF:
                \(\bigwedge x . \llbracket a \leq x ; x \leq b \rrbracket \Longrightarrow(F\) has_vector_derivative \((f(g x)))(\) at \((g x)\) within
( \(g\) ' \(\{a . . b\})\) )
        using continuous_on_subset [OF contf] g_im
        by (metis antiderivative_continuous atLeastAtMost_iff image_subset_iff set_eq_subset)
    have contfg: continuous_on \(\{a . . b\}(\lambda x . f(g x))\)
        by (blast intro: continuous_on_compose2 contf contg)
    have LBINT \(x\). indicat_real \(\{a . . b\} x *_{R} g^{\prime} x *_{R} f(g x)=F\left(\begin{array}{ll}g & b\end{array}\right)-F\left(\begin{array}{ll}g & a)\end{array}\right.\)
        apply (rule integral_FTC_atLeastAtMost
                            [OF \(\langle a \leq b\rangle\) vector_diff_chain_within[OF v_derivg derivF, unfolded
comp_def]])
        apply (auto intro!: continuous_on_scaleR contg' contfg)
        done
    then have LBINT \(x=a . . b . g^{\prime} x *_{R} f(g x)=F(g b)-F(g a)\)
        by (simp add: assms interval_integral_Icc set_lebesgue_integral_def)
    moreover have LBINT \(y=(g a) . .(g b) . f y=F(g b)-F(g a)\)
    proof (rule interval_integral_FTC_finite)
        show continuous_on \(\{\min (g a)(g b) . . \max (g a)(g b)\} f\)
            by (rule continuous_on_subset [OF contf]) (auto simp: image_def 1)
        show (F has_vector_derivative \(f y)(\) at \(y\) within \(\{\min (g a)(g b) . . \max (g a)(g\)
```

b) \})
if $y: \min (g a)(g b) \leq y y \leq \max (g a)(g b)$ for y
proof -
obtain x where $a \leq x x \leq b y=g x$
using 1 y by force
then show ?thesis
by (auto simp: image_def intro!: 1 has_vector_derivative_within_subset [OF derivF])
qed
qed
ultimately show ?thesis by simp
qed
theorem interval_integral_substitution_integrable:
fixes f :: real $\Rightarrow{ }^{\prime} a::$ euclidean_space and $a b u v$:: ereal
assumes $a<b$
and deriv_g: $\bigwedge x . a<$ ereal $x \Longrightarrow$ ereal $x<b \Longrightarrow$ DERIV $g x:>g^{\prime} x$
and contf: $\bigwedge x . a<$ ereal $x \Longrightarrow$ ereal $x<b \Longrightarrow$ isCont $f(g x)$
and contg': $\bigwedge x . a<$ ereal $x \Longrightarrow$ ereal $x<b \Longrightarrow$ isCont $g^{\prime} x$
and $g^{\prime} _$nonneg: $\wedge x . a \leq$ ereal $x \Longrightarrow$ ereal $x \leq b \Longrightarrow 0 \leq g^{\prime} x$
and $A:(($ ereal $\circ g \circ$ real_of_ereal $) \longrightarrow A)($ at_right $a)$
and $B:(($ ereal $\circ g \circ$ real_of_ereal $) \longrightarrow B)($ at_left $b)$
and integrable: set_integrable lborel (einterval ab) $\left(\lambda x . g^{\prime} x *_{R} f(g x)\right)$
and integrable2: set_integrable lborel (einterval A B) $(\lambda x . f x)$
shows $(L B I N T x=A . . B . f x)=\left(\right.$ LBINT $\left.x=a . . b . g^{\prime} x *_{R} f(g x)\right)$
proof -
obtain $u l$ where approx [simp]:
einterval $a b=(\bigcup i .\{l i \quad . . u i\})$
incseq u decseq $l \bigwedge i . l i<u i \bigwedge i . a<l i \bigwedge i . u i<b$
$l \longrightarrow a u \longrightarrow b$
by (blast intro: einterval_Icc_approximation $[O F\langle a<b\rangle])$
note less_imp_le [simp]
have $[$ simp $]: \bigwedge x$ i. $l i \leq x \Longrightarrow a<$ ereal x
by (rule order_less_le_trans, rule approx, force)
have [simp]: $\bigwedge x i . x \leq u i \Longrightarrow$ ereal $x<b$
by (rule order_le_less_trans, subst ereal_less_eq(3), assumption, rule approx)
then have lessb[simp]: $\bigwedge i . l i<b$
using approx(4) less_eq_real_def by blast
have [simp]: $\bigwedge i . a<u i$
by (rule order_less_trans, rule approx, auto, rule approx)
have lle $[$ simp $]$: $\bigwedge i j . i \leq j \Longrightarrow l j \leq l i$ by (rule decseq D, rule approx)
have $[$ simp $]: ~ \bigwedge i j . i \leq j \Longrightarrow u i \leq u j$ by (rule incseqD, rule approx)
have g_nondec [simp]: $g x \leq g y$ if $a<x x \leq y y<b$ for $x y$
proof (rule DERIV_nonneg_imp_nondecreasing $[O F\langle x \leq y\rangle$], intro exI conjI)
show $\bigwedge u . x \leq u \Longrightarrow u \leq y \Longrightarrow\left(g\right.$ has_real_derivative $\left.g^{\prime} u\right)($ at $u)$
by (meson deriv_g ereal_less_eq(3) le_less_trans less_le_trans that)
show $\wedge u . x \leq u \Longrightarrow u \leq y \Longrightarrow 0 \leq g^{\prime} u$
by (meson assms(5) dual_order.trans le_ereal_le less_imp_le order_refl that) qed
have $A \leq B$ and un: einterval $A B=(\bigcup i .\{g(l i)<. .<g(u i)\})$
proof -
have $A 2:(\lambda i . g(l i)) \longrightarrow A$
using A apply (auto simp: einterval_def tendsto_at_iff_sequentially comp_def)
by (drule_tac $x=\lambda i$. ereal ($l i$ in spec, auto)
hence $A 3$: $\wedge i . g(l i) \geq A$
by (intro decseq_ge, auto simp: decseq_def)
have $B 2:(\lambda i . g(u i)) \longrightarrow B$
using B apply (auto simp: einterval_def tendsto_at_iff_sequentially comp_def)
by (drule_tac $x=\lambda i$. ereal ($u i$) in spec, auto)
hence B3: $\bigwedge i . g(u i) \leq B$
by (intro incseq_le, auto simp: incseq_def)
have $\operatorname{ereal}(g(l))) \leq \operatorname{ereal}\left(g\left(\begin{array}{ll}l & 0\end{array}\right)\right)$
by auto
then show $A \leq B$
by (meson A3 B3 order.trans)
\{ fix x :: real
assume $A<x$ and $x<B$
then have eventually (λ i. ereal $(g(l i))<x \wedge x<\operatorname{ereal}(g(u i)))$ sequentially
by (fast intro: eventually_conj order_tendstoD A2 B2)
hence $\exists i . g(l i)<x \wedge x<g(u i)$
by (simp add: eventually_sequentially, auto)
\} note $A B=$ this
show einterval $A B=(\bigcup i .\{g(l i)<. .<g(u i)\})$
proof
show einterval $A B \subseteq(\bigcup i .\{g(l i)<. .<g(u i)\})$
by (auto simp: einterval_def $A B$)
show $(\bigcup i .\{g(l i)<. .<g(u i)\}) \subseteq$ einterval $A B$
proof (clarsimp simp add: einterval_def, intro conjI)
show $\wedge x i . \llbracket g(l i)<x ; x<g(u i) \rrbracket \Longrightarrow A<$ ereal x
using A3 le_ereal_less by blast
show $\bigwedge x i . \llbracket g(l i)<x ; x<g(u i) \rrbracket \Longrightarrow$ ereal $x<B$
using $B 3$ ereal_le_less by blast
qed
qed
qed
have eq1: (LBINT $x=l i . . u$ i. $\left.g^{\prime} x *_{R} f(g x)\right)=($ LBINT $y=g(l i) . . g(u i) . f$
y) for i
apply (rule interval_integral_substitution_finite [OF _ DERIV_subset [OF de-
riv_g]])
unfolding has_field_derivative_iff_has_vector_derivative[symmetric]
apply (auto intro!: continuous_at_imp_continuous_on contf contg')
done
have $\left(\lambda i\right.$. LBINT $x=l$ i..u i. $\left.g^{\prime} x *_{R} f(g x)\right) \longrightarrow\left(\right.$ LBINT $x=a . . b . g^{\prime} x *_{R} f$
($g x)$)
apply (rule interval_integral_Icc_approx_integrable $[$ OF $\langle a<b\rangle$ approx] $)$

```
    by (rule assms)
    hence 2: (\lambdai. (LBINT y=g (l i)..g (u i).fy))\longrightarrow(LBINT x=a..b. g' }\mp@subsup{g}{}{\prime}\mp@subsup{*}{R}{
f(g x))
    by (simp add: eq1)
    have incseq: incseq ( }\lambdai.{g(li)<..<g(u i)}
    apply (auto simp: incseq_def)
    using lessb lle approx(5) g_nondec le_less_trans apply blast
    by (force intro:less_le_trans)
    have (\lambdai.set_lebesgue_integral lborel {g(l i)<..<g(u i)}f)
            \longrightarrow ~ s e t \_ l e b e s g u e \_ i n t e g r a l ~ l b o r e l ~ ( e i n t e r v a l ~ A ~ B ) ~ f ~
        unfolding un by (rule set_integral_cont_up) (use incseq integrable2 un in
auto)
    then have (\lambdai.(LBINT y=g (l i)..g (u i).fy))\longrightarrow(LBINT x = A..B.f 
        by (simp add: interval_lebesgue_integral_le_eq \A \leq B )
    thus ?thesis by (intro LIMSEQ_unique [OF _ 2])
qed
```

theorem interval_integral_substitution_nonneg:
fixes $f g g^{\prime}::$ real \Rightarrow real and $a b u v$:: ereal
assumes $a<b$
and deriv_g: $\bigwedge x . a<$ ereal $x \Longrightarrow$ ereal $x<b \Longrightarrow$ DERIV $g x:>g^{\prime} x$
and contf: $\bigwedge x . a<$ ereal $x \Longrightarrow$ ereal $x<b \Longrightarrow$ isCont $f(g x)$
and contg': $\bigwedge x . a<$ ereal $x \Longrightarrow$ ereal $x<b \Longrightarrow$ isCont $g^{\prime} x$
and f_nonneg: $\bigwedge x . a<$ ereal $x \Longrightarrow$ ereal $x<b \Longrightarrow 0 \leq f(g x)$
and g^{\prime} _nonneg: $\bigwedge x . a \leq$ ereal $x \Longrightarrow$ ereal $x \leq b \Longrightarrow 0 \leq g^{\prime} x$
and $A:(($ ereal $\circ g \circ$ real_of_ereal $) \longrightarrow A)($ at_right $a)$
and $B:(($ ereal $\circ g \circ$ real_of_ereal $) \longrightarrow B)($ at_left $b)$
and integrable_fg: set_integrable lborel (einterval ab) $\left(\lambda x . f(g x) * g^{\prime} x\right)$
shows
set_integrable lborel (einterval A B) f
$($ LBINT $x=$ A..B. $f x)=\left(\right.$ LBINT $\left.x=a . . b . ~\left(f(g x) * g^{\prime} x\right)\right)$
proof -
from einterval_Icc_approximation $[O F\langle a<b\rangle$] guess $u l$. note approx [simp]
$=$ this
note less_imp_le [simp]
have aless $[$ simp $]: \bigwedge x i . l i \leq x \Longrightarrow a<$ ereal x
by (rule order_less_le_trans, rule approx, force)
have lessb[simp]: $\bigwedge x i . x \leq u i \Longrightarrow$ ereal $x<b$
by (rule order_le_less_trans, subst ereal_less_eq(3), assumption, rule approx)
have $l l b[\operatorname{simp}]: \bigwedge i . l i<b$
using lessb approx(4) less_eq_real_def by blast
have alu[simp]: \i. $a<u i$
by (rule order_less_trans, rule approx, auto, rule approx)
have $[$ simp $]: ~ \bigwedge i j . i \leq j \Longrightarrow l j \leq l i$ by (rule decseq D, rule approx)
have uleu[simp]: $\bigwedge i j . i \leq j \Longrightarrow u i \leq u j$ by (rule incseqD, rule approx)
have g_{-}nondec [simp]: $g x \leq g y$ if $a<x x \leq y y<b$ for $x y$
proof (rule DERIV_nonneg_imp_nondecreasing $[O F\langle x \leq y\rangle$], intro exI conjI)

```
    show \(\bigwedge u . x \leq u \Longrightarrow u \leq y \Longrightarrow\left(g\right.\) has_real_derivative \(\left.g^{\prime} u\right)(\) at \(u)\)
    by (meson deriv_g ereal_less_eq(3) le_less_trans less_le_trans that)
    show \(\wedge u\). \(x \leq u \Longrightarrow u \leq y \Longrightarrow 0 \leq g^{\prime} u\)
    by (meson g'_nonneg less_ereal.simps(1) less_trans not_less that)
qed
have \(A \leq B\) and un: einterval \(A B=(\bigcup i .\{g(l i)<. .<g(u i)\})\)
proof -
    have \(A\) 2: \((\lambda i . g(l i)) \longrightarrow A\)
        using \(A\) apply (auto simp: einterval_def tendsto_at_iff_sequentially comp_def)
        by \((\) drule_tac \(x=\lambda i\). ereal ( \(l i)\) in spec, auto \()\)
    hence \(A 3: \wedge i . g(l i) \geq A\)
        by (intro decseq_ge, auto simp: decseq_def)
    have \(B 2:(\lambda i . g(u i)) \longrightarrow B\)
        using \(B\) apply (auto simp: einterval_def tendsto_at_iff_sequentially comp_def)
        by (drule_tac \(x=\lambda i\).ereal ( \(u i\) ) in spec, auto)
    hence B3: \(\wedge i . g(u i) \leq B\)
        by (intro incseq_le, auto simp: incseq_def)
    have ereal \((g(l 0)) \leq \operatorname{ereal}\left(g\left(\begin{array}{ll}( & 0\end{array}\right)\right)\)
        by auto
    then show \(A \leq B\)
        by (meson A3 B3 order.trans)
    \{ fix \(x\) :: real
        assume \(A<x\) and \(x<B\)
    then have eventually \((\lambda i\). ereal \((g(l i))<x \wedge x<\operatorname{ereal}(g(u i)))\) sequentially
        by (fast intro: eventually_conj order_tendstoD A2 B2)
            hence \(\exists\) i. \(g(l i)<x \wedge x<g(u i)\)
        by (simp add: eventually_sequentially, auto)
    \} note \(A B=\) this
    show einterval \(A B=(\bigcup i .\{g(l i)<. .<g(u \quad i)\})\)
    proof
        show einterval \(A B \subseteq(\bigcup i .\{g(l i)<. .<g(u i)\})\)
            by (auto simp: einterval_def \(A B\) )
            show \((\bigcup i .\{g(l i)<. .<g(u i)\}) \subseteq\) einterval \(A B\)
            apply (clarsimp simp: einterval_def, intro conjI)
            using \(A 3\) le_ereal_less apply blast
            using B3 ereal_le_less by blast
    qed
qed
have eq1: (LBINT \(x=l\) i.. u i. \(\left.\left(f(g x) * g^{\prime} x\right)\right)=(\) LBINT \(y=g(l i) . . g(u i) . f\)
y) for \(i\)
proof -
    have (LBINT \(x=l i .\). u i. \(\left.g^{\prime} x *_{R} f(g x)\right)=(\) LBINT \(y=g(l i) . . g(u i) . f y)\)
        apply (rule interval_integral_substitution_finite [OF _ DERIV_subset [OF
deriv_g]])
            unfolding has_field_derivative_iff_has_vector_derivative[symmetric]
                apply (auto intro!: continuous_at_imp_continuous_on contf contg')
            done
    then show ?thesis
```

```
    by (simp add: ac_simps)
    qed
    have incseq: incseq (\lambdai. {g(l i)<..<g (u i)})
        apply (clarsimp simp add: incseq_def, intro conjI)
        apply (meson llb antimono_def approx(3) approx(5) g_nondec le_less_trans)
        using alu uleu approx(6) g_nondec less_le_trans by blast
    have img:\existsc\geqli.c\lequi}^x=gc\mathrm{ if g(l i) \x x <g(ui) for xi
    proof -
        have continuous_on {l i..u i} g
            by (force intro!: DERIV_isCont deriv_g continuous_at_imp_continuous_on)
    with that show ?thesis
            using IVT'[of g] approx(4) dual_order.strict_implies_order by blast
    qed
    have continuous_on {g(l i)..g (u i)} f for i
        apply (intro continuous_intros continuous_at_imp_continuous_on)
        using contf img by force
    then have int_f: \i. set_integrable lborel {g(li)<..<g(u i)}f
    by (rule set_integrable_subset [OF borel_integrable_atLeastAtMost`) (auto intro:
less_imp_le)
    have integrable: set_integrable lborel (\bigcup i. {g(l i)<..<g (u i)})f
    proof (intro pos_integrable_to_top incseq int_f)
    let ?l = (LBINT x =a..b. f(gx)* g' }x
    have (\lambdai.LBINT x=l i..u i.f (gx)* g' x)\longrightarrow ?l
        by (intro assms interval_integral_Icc_approx_integrable [OF<a<b> approx])
    hence (\lambdai. (LBINT y=g (l i)..g (u i).f y))\longrightarrow \longrightarrowl
        by (simp add: eq1)
    then show (\lambdai. set_lebesgue_integral lborel {g(l i)<..<g(u i)}f)\longrightarrow?l
        unfolding interval_lebesgue_integral_def by auto
    have }\xi.g(li)\leqx\Longrightarrowx\leqg(ui)\Longrightarrow0\leqf
        using aless f_nonneg img lessb by blast
    then show \x i. x \in{g(li)<..<g(u i)}\Longrightarrow0\leqfx
        using less_eq_real_def by auto
    qed (auto simp: greaterThanLessThan_borel)
    thus set_integrable lborel (einterval A B) f
        by (simp add: un)
    have (LBINT x=A..B.f x) =(LBINT x=a..b. g' x * R}f(gx)
    proof (rule interval_integral_substitution_integrable)
        show set_integrable lborel (einterval a b) (\lambdax. g' }x\mp@subsup{*}{R}{\prime}f(gx)
        using integrable_fg by (simp add: ac_simps)
    qed fact+
    then show (LBINT x=A..B.f }x)=(LBINT x=a..b. (f (gx)* g' x)
        by (simp add: ac_simps)
qed
```

syntax _complex_lebesgue_borel_integral :: pttrn \Rightarrow real \Rightarrow complex
((2CLBINT _. _) $[0,60] 60)$
translations CLBINT x. $f==$ CONST complex_lebesgue_integral CONST lborel ($\lambda x . f$)
syntax _complex_set_lebesgue_borel_integral $::$ pttrn \Rightarrow real set \Rightarrow real \Rightarrow complex ((3CLBINT .:.. -) $[0,60,61] 60)$

translations

CLBINT $x: A . f==$ CONST complex_set_lebesgue_integral CONST lborel $A(\lambda x$. f)
abbreviation complex_interval_lebesgue_integral :: real measure \Rightarrow ereal \Rightarrow ereal \Rightarrow (real \Rightarrow complex $) \Rightarrow$ complex where complex_interval_lebesgue_integral $M a b f \equiv$ interval_lebesgue_integral Mabf
abbreviation complex_interval_lebesgue_integrable ::
real measure \Rightarrow ereal \Rightarrow ereal \Rightarrow (real \Rightarrow complex $) \Rightarrow$ bool where
complex_interval_lebesgue_integrable Mabf三interval_lebesgue_integrable Mab f
syntax
_ascii_complex_interval_lebesgue_borel_integral :: pttrn \Rightarrow ereal \Rightarrow ereal \Rightarrow real \Rightarrow complex
$((4 C L B I N T$ _ =..... _) $[0,60,60,61] 60)$
translations
CLBINT $x=a$..b. $f==$ CONST complex_interval_lebesgue_integral CONST lborel $a b(\lambda x . f)$
proposition interval_integral_norm:
fixes $f::$ real $\Rightarrow^{\prime} a::\{$ banach, second_countable_topology $\}$
shows interval_lebesgue_integrable lborel a b $f \Longrightarrow a \leq b \Longrightarrow$ norm (LBINT $t=a . . b$. $f t$) \leq LBINT $t=a . . b$. norm ($f t$)
using integral_norm_bound $\left[\right.$ of lborel λx. indicator (einterval a b) $\left.x *_{R} f x\right]$
by (auto simp: interval_lebesgue_integral_def interval_lebesgue_integrable_def set_lebesgue_integral_def)
proposition interval_integral_norm2:
interval_lebesgue_integrable lborel a b $f \Longrightarrow$ norm $(L B I N T ~ t=a . . b . f t) \leq|L B I N T t=a . . b . \operatorname{norm}(f t)|$
proof (induct a b rule: linorder_wlog)
case (sym ab) then show ?case
by (simp add: interval_integral_endpoints_reverse[of a b] interval_integrable_endpoints_reverse[of
a b])
next
case (le a b)
then have \mid LBINT $t=a . . b$. norm $(f t) \mid=L B I N T t=a . . b$. norm ($f t$)
using integrable_norm [of lborel λx. indicator (einterval a b) $\left.x *_{R} f x\right]$
by (auto simp: interval_lebesgue_integral_def interval_lebesgue_integrable_def set_lebesgue_integral_def intro!: integral_nonneg_AE abs_of_nonneg)
then show? case
using le by (simp add: interval_integral_norm)
qed
lemma integral_cos: $t \neq 0 \Longrightarrow$ LBINT $x=a . . b . \cos (t * x)=\sin (t * b) / t-$ $\sin (t * a) / t$
apply (intro interval_integral_FTC_finite continuous_intros)
by (auto intro!: derivative_eq_intros simp: has_field_derivative_iff_has_vector_derivative[symmetric])
end

6.24 Integration by Substition for the Lebesgue Integral

```
theory Lebesgue_Integral_Substitution
imports Interval_Integral
begin
lemma nn_integral_substitution_aux:
    fixes f :: real }=>\mathrm{ ennreal
    assumes Mf:f\in borel_measurable borel
    assumes nonnegf: \x.fx\geq0
    assumes derivg: \x. x \in{a..b}\Longrightarrow(g has_real_derivative g' }\mp@subsup{g}{}{\prime}\mathrm{ ) (at x)
    assumes contg': continuous_on {a..b} g'
    assumes derivg_nonneg: \x. x { {a..b}\Longrightarrow \Longrightarrow g}x\geq
    assumes a<b
    shows (\int+ x.fx* indicator {ga..g b} x dlborel) =
                ( }\int\mp@subsup{}{}{+}x.f(gx)*\mp@subsup{g}{}{\prime}x*\mathrm{ indicator {a..b} x dlborel)
proof-
    from \langlea<b\rangle have [simp]: a\leqb by simp
    from derivg have contg: continuous_on {a..b} g by (rule has_real_derivative_imp_continuous_on)
    from this and contg' have Mg: set_borel_measurable borel {a..b} g and
                    Mg': set_borel_measurable borel {a..b} g'
        by (simp_all only: set_measurable_continuous_on_ivl)
    from derivg have derivg': \x. x { {a..b} \Longrightarrow(g has_vector_derivative g' }x\mathrm{ ) (at
x)
    by (simp only: has_field_derivative_iff_has_vector_derivative)
    have real_ind[simp]: \bigwedgeA x. enn2real (indicator A x) = indicator A x
        by (auto split: split_indicator)
    have ennreal_ind[simp]: \A x. ennreal (indicator A x) = indicator A x
        by (auto split: split_indicator)
    have [simp]: \x A. indicator A (gx)= indicator (g-` A) x
        by (auto split: split_indicator)
    from derivg derivg_nonneg have monog: \x y. a\leqx\Longrightarrow x \leq y y 
gx \leqgy
```

```
    by (rule deriv_nonneg_imp_mono) simp_all
    with monog have [simp]: ga\leqgb by (auto intro: mono_onD)
    show ?thesis
    proof (induction rule: borel_measurable_induct[OF Mf, case_names cong set mult
add sup])
    case (cong f1 f2)
    from cong.hyps(3) have f1 = f2 by auto
    with cong show ?case by simp
    next
    case (set A)
    from set.hyps show ?case
    proof (induction rule: borel_set_induct)
        case empty
        thus ?case by simp
    next
        case (interval c d)
        {
            fix uv :: real assume asm: {u..v}\subseteq{ga..gb} u\leqv
        obtain u}\mp@subsup{u}{}{\prime}\mp@subsup{v}{}{\prime}\mathrm{ where }\mp@subsup{u}{}{\prime}\mp@subsup{v}{}{\prime}:{a..b}\capg-{{u..v}={\mp@subsup{u}{}{\prime}..v`} \mp@subsup{u}{}{\prime}\leq\mp@subsup{v}{}{\prime}g\mp@subsup{u}{}{\prime}=u
v}=
            using asm by (rule_tac continuous_interval_vimage_Int[OF contg monog,
of u v]) simp_all
    hence {\mp@subsup{u}{}{\prime}..v
    with }\mp@subsup{u}{}{\prime}\mp@subsup{v}{}{\prime}(2) have u'\ing-`{u..v} v'\ing-'{u..v} by aut
    from }\mp@subsup{u}{}{\prime}\mp@subsup{v}{}{\prime}(1)\mathrm{ have [simp]:{a..b} คg-'{u..v} G sets borel by simp
    have A: continuous_on {min u' v'..max u' v'} g'
                by (simp only: u'v' max_absorb2 min_absorb1)
                    (intro continuous_on_subset[OF contg], insert u'v', auto)
    have }\x.x\in{\mp@subsup{u}{}{\prime}..v\mp@subsup{v}{}{\prime}}\Longrightarrow(g\mathrm{ has_real_derivative g' x) (at x within { 'u'..v'})
        using asm by (intro has_field_derivative_subset[OF derivg] subsetD[OF
<{u'..v'}\subseteq{a..b}>]) auto
    hence B: \bigwedgex. min u' v
                    (g has_vector_derivative g' x) (at x within {min u' v'..max u' v}\mp@subsup{v}{}{\prime}}
                by (simp only: u'v' max_absorb2 min_absorb1)
                    (auto simp: has_field_derivative_iff_has_vector_derivative)
            have integrable lborel ( }\lambdax\mathrm{ . indicator ({a..b} }\capg-`{u..v}) x * *R g' x
                using set_integrable_subset borel_integrable_atLeastAtMost'[OF contg}
                by (metis }{{\mp@subsup{u}{}{\prime}..v'} }\subseteq{a..b}> eucl_ivals(5) set_integrable_def sets_lborel
u'v
    hence ({+
                            LBINT x:{a..b} \cap g-'{u..v}. g' 
    unfolding set_lebesgue_integral_def
    by (subst nn_integral_eq_integral[symmetric])
        (auto intro!: derivg_nonneg nn_integral_cong split: split_indicator)
    also from interval_integral_FTC_finite[OF A B}
        have LBINT x:{a..b}\capg-'{u..v}. g' }x=v-
```

by (simp add: $u^{\prime} v^{\prime}$ interval_integral_Icc $\langle u \leq v\rangle$)
finally have $\left(\int+x\right.$. ennreal $\left(g^{\prime} x\right) *$ indicator $(\{a . . b\} \cap g-‘\{u . . v\}) x$ (loorel) $=$

$$
\text { ennreal }(v-u) .
$$

$\}$ note $A=$ this
have $\left(\int{ }^{+} x\right.$. indicator $\{c . . d\}(g x) *$ ennreal $\left(g^{\prime} x\right) *$ indicator $\{a . . b\} x$ (lborel) $=$

$$
\left(\int^{+} x . \text { ennreal }\left(g^{\prime} x\right) * \text { indicator }(\{a . . b\} \cap g-‘\{c . . d\}) x \text { dlborel }\right)
$$

by (intro nn_integral_cong) (simp split: split_indicator)
also have $\{a . . b\} \cap g-‘\{c . . d\}=\{a . . b\} \cap g-‘\{\max (g a) c . . \min (g b) d\}$ using $\langle a \leq b\rangle\langle c \leq d\rangle$
by (auto intro!: monog intro: order.trans)
also have $\left(\int^{+} x\right.$. ennreal $\left(g^{\prime} x\right) *$ indicator...x dlborel $)=$
(if $\max (g a) c \leq \min (g b) d$ then $\min (g b) d-\max (g a) c$ else 0$)$
using $\langle c \leq d\rangle$ by (simp add: A)
also have $\ldots=\left(\int^{+}\right.$x. indicator $(\{g a . . g b\} \cap\{c . . d\}) x$ dlborel $)$
by (subst nn_integral_indicator) (auto intro!: measurable_sets Mg simp:)
also have $\ldots=\left(\int^{+} x\right.$. indicator $\{c . . d\} x *$ indicator $\{g$ a..g b $\}$ x dlborel $)$
by (intro nn_integral_cong) (auto split: split_indicator)
finally show ?case ..
next
case (compl A)
note $\langle A \in$ sets borel $\rangle[$ measurable]
from emeasure_mono[of $A \cap\{g a . . g b\}\{g a . . g b\}$ lborel]
have $[$ simp $]$: emeasure lborel $(A \cap\{g a . . g b\}) \neq$ top by (auto simp: top_unique)
have $[$ simp $]: g-' A \cap\{a . . b\} \in$ sets borel
by (rule set_borel_measurable_sets $[O F M g]$) auto
have $[$ simp $]: g-{ }^{\prime}(-A) \cap\{a . . b\} \in$ sets borel
by (rule set_borel_measurable_sets $[O F M g]$) auto
have $\left(\int{ }^{+} x\right.$. indicator $(-A) x *$ indicator $\{g a . . g b\} x$ dlborel $)=$ ($\int{ }^{+}$x. indicator $(-A \cap\{g$ a..g b $\}$) x dlborel $)$
by (rule nn_integral_cong) (simp split: split_indicator)
 rivg_nonneg
by (simp add: vimage_Compl diff_eq Int_commute $[$ of $-A]$)
also have $\{g a . . g b\}-A=\{g a . . g b\}-A \cap\{g a . . g b\}$ by blast
also have emeasure lborel $\ldots=g b-g a-$ emeasure lborel $(A \cap\{g a . . g b\})$
using $\langle A \in$ sets borel〉 by (subst emeasure_Diff) (auto simp:)
also have emeasure lborel $(A \cap\{g a . . g b\})=$
$\int{ }^{+} x$. indicator $A x *$ indicator $\left\{\begin{array}{ll}g & a . . g \\ b\end{array}\right\}$ x dlborel
using $\langle A \in$ sets borel \rangle
by (subst nn_integral_indicator[symmetric], simp, intro nn_integral_cong)
(simp split: split_indicator)
also have $\ldots=\int{ }^{+} x$. indicator $(g-' A \cap\{a . . b\}) x *$ ennreal ($g^{\prime} x *$ indicator $\{a . . b\} x)$ dlborel (is $\left.{ }_{-}=? I\right)$
by (subst compl.IH, intro nn_integral_cong) (simp split: split_indicator)
also have $g b-g a=\operatorname{LBINT} x:\{a . . b\} . g^{\prime} x$ using derivg ${ }^{\prime}$
unfolding set_lebesgue_integral_def
by (intro integral_FTC_atLeastAtMost[symmetric])
(auto intro: continuous_on_subset[OF contg] has_field_derivative_subset[OF derivg]
has_vector_derivative_at_within)
also have ennreal $\ldots=\int{ }^{+} x . g^{\prime} x *$ indicator $\{a . . b\} x$ dlborel
using borel_integrable_atLeastAtMost'[OF contg] unfolding set_lebesgue_integral_def by (subst nn_integral_eq_integral)
(simp_all add: mult.commute derivg_nonneg set_integrable_def split: split_indicator)
also have $M g^{\prime \prime}:\left(\lambda x\right.$. indicator $\left(g-{ }^{`} A \cap\{a . . b\}\right) x *$ ennreal $\left(g^{\prime} x *\right.$ indicator $\{a . . b\} x)$)

$$
\in \text { borel_measurable borel using } M g^{\prime}
$$

by (intro borel_measurable_times_ennreal borel_measurable_indicator)
(simp_all add: mult.commute set_borel_measurable_def)
have le: $\left(\int{ }^{+} x\right.$. indicator $(g-' A \cap\{a . . b\}) x *$ ennreal $\left(g^{\prime} x *\right.$ indicator $\{a . . b\}$ x) дlborel) \leq

$$
\left(\int{ }^{+} x . \text { ennreal }\left(g^{\prime} x\right) * \text { indicator }\{a . . b\} x \text { dlborel }\right)
$$

by (intro nn_integral_mono) (simp split: split_indicator add: derivg_nonneg)
note integrable $=$ borel_integrable_atLeastAtMost ${ }^{[}[$OF contg $]$
with le have notinf: $\left(\int{ }^{+} x\right.$. indicator $(g-' A \cap\{a . . b\}) x *$ ennreal $\left(g^{\prime} x *\right.$ indicator $\{a . . b\} x)$ dlborel $) \neq$ top
by (auto simp: real_integrable_def nn_integral_set_ennreal mult.commute top_unique set_integrable_def)
have $\left(\int{ }^{+} x . g^{\prime} x *\right.$ indicator $\{a . . b\} x$ dlborel $)-? I=$
$\int+x$. ennreal $\left(g^{\prime} x *\right.$ indicator $\left.\{a . . b\} x\right)-$
indicator $(g-‘ A \cap\{a . . b\}) x *$ ennreal $\left(g^{\prime} x *\right.$ indicator $\{a . . b\}$
x) $\partial \mathrm{lborel}$
apply (intro nn_integral_diff [symmetric])
apply (insert $M g^{\prime}$, simp add: mult.commute set_borel_measurable_def) []
apply (insert $\mathrm{Mg}^{\prime \prime}$, simp) []
apply (simp split: split_indicator add: derivg_nonneg)
apply (rule notinf)
apply (simp split: split_indicator add: derivg_nonneg)
done
also have $\ldots=\int{ }^{+} x$. indicator $(-A)(g x) *$ ennreal $\left(g^{\prime} x\right) *$ indicator $\{a . . b\}$ x dlborel
by (intro nn_integral_cong) (simp split: split_indicator)
finally show ?case.

next

case (union f)
then have $[$ simp $]: \bigwedge i .\{a . . b\} \cap g-‘ f i \in$ sets borel
by (subst Int_commute, intro set_borel_measurable_sets[OF Mg]) auto
have $g-‘(\bigcup i . f i) \cap\{a . . b\}=\left(\bigcup i .\{a . . b\} \cap g-{ }^{\prime} f i\right)$ by auto
hence $g-‘(\bigcup i . f i) \cap\{a . . b\} \in$ sets borel by (auto simp del: UN_simps)
have $\left(\int{ }^{+} x\right.$. indicator $(\bigcup i . f i) x *$ indicator $\{g$ a.. $g b\}$ d dborel $)=$ $\int{ }^{+} x$. indicator $(\bigcup i .\{g a . . g b\} \cap f i) x$ dlborel
by (intro nn_integral_cong) (simp split: split_indicator)
also from union have $\ldots=$ emeasure lborel $\left(\bigcup i .\left\{\begin{array}{l}\text { a } . . . g b\} \cap f i) \text { by simp }, ~\end{array}\right.\right.$
also from union have $\ldots=\left(\sum i\right.$. emeasure lborel $\left.\left(\left\{\begin{array}{ll}g a . . g b\end{array}\right\} \cap f i\right)\right)$
by (intro suminf_emeasure[symmetric]) (auto simp: disjoint_family_on_def)
also from union have $\ldots=\left(\sum i . \int{ }^{+} x\right.$. indicator $(\{g a . . g b\} \cap f i) x$ dlborel $)$ by simp
also have $\left(\lambda i . \int{ }^{+} x\right.$. indicator $(\{g a . . g b\} \cap f i) x$ dlborel $)=$
($\lambda i . \int{ }^{+} x$ indicator $(f i) x *$ indicator $\{g a . . g b\} x$ dlborel)
by (intro ext nn_integral_cong) (simp split: split_indicator)
also from union.IH have $\left(\sum i . \int^{+}\right.$x. indicator $(f i) x *$ indicator $\{g a . . g b\}$ x (lborel) $=$
$\left(\sum i . \int^{+} x\right.$. indicator $(f i)(g x) *$ ennreal $\left(g^{\prime} x\right) *$ indicator $\{a . . b\} x$ dlborel) by simp
also have $\left(\lambda i . \int{ }^{+} x\right.$. indicator $(f i)(g x) *$ ennreal $\left(g^{\prime} x\right) *$ indicator $\{a . . b\}$ x (lborel) $=$
($\lambda i . \int+x$. ennreal $\left(g^{\prime} x *\right.$ indicator $\left.\{a . . b\} x\right) *$ indicator (\{a..b\} $\cap g-‘ f i) x$ dlborel)
by (intro ext nn_integral_cong) (simp split: split_indicator)
also have $\left(\sum i . \ldots i\right)=\int+x$. (\sum i. ennreal $\left(g^{\prime} x *\right.$ indicator $\left.\{a . . b\} x\right) *$ indicator ($\left.\{a . . b\} \cap g-{ }^{\prime} f i\right) x$) dlborel
using $M g^{\prime}$
apply (intro nn_integral_suminf[symmetric])
apply (rule borel_measurable_times_ennreal, simp add: mult.commute set_borel_measurable_def)
apply (rule borel_measurable_indicator, subst sets_lborel)
apply (simp_all split: split_indicator add: derivg_nonneg)
done
also have (λx i. ennreal $\left(g^{\prime} x *\right.$ indicator $\left.\{a . . b\} x\right) *$ indicator $(\{a . . b\} \cap g$ $\left.\left.-{ }^{\prime} f i\right) x\right)=$
(λ x i. ennreal $\left(g^{\prime} x *\right.$ indicator $\left.\{a . . b\} x\right) *$ indicator $\left.\left(g-{ }^{\prime} f i\right) x\right)$
by (intro ext) (simp split: split_indicator)
also have $\left(\int^{+} x\right.$. (\sum i. ennreal $\left(g^{\prime} x *\right.$ indicator $\left.\{a . . b\} x\right) *$ indicator $(g-‘$ fi) x) dlborel) $=$

$$
\int+x . \text { ennreal }\left(g^{\prime} x * \text { indicator }\{a . . b\} x\right) *\left(\sum i . \text { indicator }(g-‘\right.
$$

fi) x) Dlborel
by (intro nn_integral_cong) (auto split: split_indicator simp: derivg_nonneg)
also from union have $\left(\lambda x . \sum i\right.$ indicator $(g-‘ f i) x::$ ennreal $)=(\lambda x$. indicator $(\bigcup i . g-‘ f i) x)$
by (intro ext suminf_indicator) (auto simp: disjoint_family_on_def)
also have $\left(\int{ }^{+} x\right.$. ennreal $\left(g^{\prime} x *\right.$ indicator $\left.\{a . . b\} x\right) * \ldots x$ dlborel $)=$
$\left(\int^{+} x\right.$. indicator $(\bigcup i . f i)(g x) *$ ennreal $\left(g^{\prime} x\right) *$ indicator $\{a . . b\}$
x Dlborel)
by (intro nn_integral_cong) (simp split: split_indicator)
finally show ?case .
qed
next
case (mult $f c$)
note $M f[$ measurable $]=\langle f \in$ borel_measurable borel \rangle
let ? $I=$ indicator $\{a . . b\}$
have $\left(\lambda x . f(g x *\right.$?I $x) *$ ennreal $\left.\left(g^{\prime} x * ? I x\right)\right) \in$ borel_measurable borel using $M g M g^{\prime}$
by (intro borel_measurable_times_ennreal measurable_compose[OF _ Mf])
(simp_all add: mult.commute set_borel_measurable_def)
also have $\left(\lambda x . f(g x *\right.$?I $x) *$ ennreal $\left(g^{\prime} x *\right.$?I $\left.\left.x\right)\right)=(\lambda x . f(g x) *$ ennreal $\left(g^{\prime} x\right) *$? $\left.I x\right)$
by (intro ext) (simp split: split_indicator)
finally have $M f^{\prime}:\left(\lambda x . f(g x) *\right.$ ennreal $\left.\left(g^{\prime} x\right) * ? I x\right) \in$ borel_measurable borel
with mult show ?case
by (subst (1 2 3) mult_ac, subst (1 2) nn_integral_cmult) (simp_all add: mult_ac)

next

case (add f2 f1)
let ? $I=$ indicator $\{a . . b\}$
\{
fix $f::$ real \Rightarrow ennreal assume $M f: f \in$ borel_measurable borel
have $\left(\lambda x . f(g x * ? I x) *\right.$ ennreal $\left.\left(g^{\prime} x * ? I x\right)\right) \in$ borel_measurable borel using $M g M g^{\prime}$
by (intro borel_measurable_times_ennreal measurable_compose $\left.\left[O F ~ _~ M f\right]\right)$
(simp_all add: mult.commute set_borel_measurable_def)
also have $\left(\lambda x . f(g x * ? I x) *\right.$ ennreal $\left.\left(g^{\prime} x * ? I x\right)\right)=(\lambda x . f(g x) *$ ennreal $\left(g^{\prime} x\right) *$? $\left.I x\right)$
by (intro ext) (simp split: split_indicator)
finally have $\left(\lambda x . f(g x) *\right.$ ennreal $\left.\left(g^{\prime} x\right) * ? I x\right) \in$ borel_measurable borel.
\} note $M f^{\prime}=$ this $[O F\langle f 1 \in$ borel_measurable borel $\rangle]$ this $[O F\langle f 2 \in$ borel_measurable borel)]
have $\left(\int{ }^{+} x .(f 1 x+f 2 x) *\right.$ indicator $\{g a . . g b\} x$ dlborel $)=$
$\left(\int+x . f 1 x *\right.$ indicator $\{g a . . g b\} x+f 2 x *$ indicator $\{g a . . g b\} x$ dlborel)
by (intro nn_integral_cong) (simp split: split_indicator)
also from add have $\ldots=\left(\int^{+} x . f 1(g x) *\right.$ ennreal $\left(g^{\prime} x\right) *$ indicator $\{a . . b\}$ x dlborel) +

$$
\left(\int+x . f 2(g x) * \text { ennreal }\left(g^{\prime} x\right) * \text { indicator }\{a . . b\} x\right.
$$

alborel)
by (simp_all add: nn_integral_add)
also from add have $\ldots=\left(\int+x . f 1(g x) *\right.$ ennreal $\left(g^{\prime} x\right) *$ indicator $\{a . . b\}$ $x+$
f2 $(g x) *$ ennreal $\left(g^{\prime} x\right) *$ indicator $\{a . . b\} x$ dlborel $)$
by (intro nn_integral_add[symmetric])
(auto simp add: $M f^{\prime}$ derivg_nonneg split: split_indicator)
also have $\ldots=\int{ }^{+} x .(f 1(g x)+f 2(g x)) *$ ennreal $\left(g^{\prime} x\right) *$ indicator $\{a . . b\}$ x dlborel
by (intro nn_integral_cong) (simp split: split_indicator add: distrib_right)
finally show ?case .

```
next
    case (sup F)
    {
        fix }
        let ?I = indicator {a..b}
        have (\lambdax.Fi(gx* ?I x) * ennreal (g'x * ?I x)) \in borel_measurable borel
using Mg Mg'
        by (rule_tac borel_measurable_times_ennreal, rule_tac measurable_compose[OF
_ sup.hyps(1)])
            (simp_all add: mult.commute set_borel_measurable_def)
    also have (\lambdax.Fi(gx*?I x)* ennreal (g' x* ?I x) ) = (\lambdax.Fi Fi g x )*
ennreal (g' }\mp@subsup{g}{}{\prime}\mathrm{ * ? ?I }x
            by (intro ext) (simp split: split_indicator)
            finally have ... \in borel_measurable borel .
    } note Mf' = this
    have (\int +
                \int+}x.(SUP i. F i x* indicator {g a..g b} x) Dlborel
            by (intro nn_integral_cong) (simp split: split_indicator)
    also from sup have ... = (SUP i. \int +}\mp@subsup{}{}{+}x.Fix* indicator {g a..g b} x dlborel
        by (intro nn_integral_monotone_convergence_SUP)
            (auto simp: incseq_def le_fun_def split: split_indicator)
    also from sup have ... = (SUP i. \int }\mp@subsup{}{}{+}x.Fi(gx)* ennreal ( g' 的)* indicator
{a..b} x \partiallborel)
            by simp
    also from sup have ... = \int + }x.(SUP i.Fi(g x)* ennreal ( g' x)* indicator
{a..b} x) \partiallborel
            by (intro nn_integral_monotone_convergence_SUP[symmetric])
                (auto simp: incseq_def le_fun_def derivg_nonneg Mf' split: split_indicator
                intro!: mult_right_mono)
    also from sup have ... = \int + x. (SUP i.Fi(g x))* ennreal ( }\mp@subsup{g}{}{\prime}x)*\mathrm{ indicator
{a..b} x Dlborel
            by (subst mult.assoc, subst mult.commute, subst SUP_mult_left_ennreal)
                (auto split: split_indicator simp: derivg_nonneg mult_ac)
    finally show ?case by (simp add: image_comp)
    qed
qed
theorem nn_integral_substitution:
    fixes f :: real }=>\mathrm{ real
    assumes Mf[measurable]: set_borel_measurable borel {ga..g b} f
```



```
    assumes contg': continuous_on {a..b} g'
    assumes derivg_nonneg: }\x.x\in{a..b}\Longrightarrow\mp@subsup{g}{}{\prime}x\geq
    assumes a\leqb
    shows (\int +}x.fx*\mathrm{ indicator {g a..g b} x dlborel ) =
        ( \int + x.f (gx)* g' x * indicator {a..b} x dlborel)
proof (cases a=b)
```

```
assume \(a \neq b\)
with \(\langle a \leq b\rangle\) have \(a<b\) by auto
let \(?^{\prime} f^{\prime}=\lambda x . f x *\) indicator \(\{g a . . g b\} x\)
```

from derivg derivg_nonneg have monog: $\bigwedge x y . a \leq x \Longrightarrow x \leq y \Longrightarrow y \leq b \Longrightarrow$ $g x \leq g y$
by (rule deriv_nonneg_imp_mono) simp_all
have bounds: $\bigwedge x . x \geq a \Longrightarrow x \leq b \Longrightarrow g x \geq g a \bigwedge x . x \geq a \Longrightarrow x \leq b \Longrightarrow g$ $x \leq g b$
by (auto intro: monog)
from derivg_nonneg have nonneg:
$\bigwedge f x . x \geq a \Longrightarrow x \leq b \Longrightarrow g^{\prime} x \neq 0 \Longrightarrow f x *$ ennreal $\left(g^{\prime} x\right) \geq 0 \Longrightarrow f x \geq 0$ by (force simp: field_simps)
have nonneg': $\bigwedge x . a \leq x \Longrightarrow x \leq b \Longrightarrow \neg 0 \leq f(g x) \Longrightarrow 0 \leq f(g x) * g^{\prime} x$ $\Longrightarrow g^{\prime} x=0$
by (metis atLeastAtMost_iff derivg_nonneg eq_iff mult_eq_0_iff mult_le_0_iff)
have $\left(\int{ }^{+} x . f x *\right.$ indicator $\{g a . . g b\} x$ olborel $)=$ $\left(\int^{+} x\right.$. ennreal $\left(? f^{\prime} x\right) *$ indicator $\{g a . . g b\} x$ dlborel $)$
by (intro nn_integral_cong)
(auto split: split_indicator split_max simp: zero_ennreal.rep_eq ennreal_neg)
also have $\ldots=\int+x$. ? $f^{\prime}(g x) *$ ennreal $\left(g^{\prime} x\right) *$ indicator $\{a . . b\} x$ dlborel using $M f$
by (subst nn_integral_substitution_aux[OF _ derivg contg' derivg_nonneg $\langle a<$ $b\rangle]$)
(auto simp add: mult.commute set_borel_measurable_def)
also have $\ldots=\int^{+} x . f(g x) *$ ennreal $\left(g^{\prime} x\right) *$ indicator $\{a . . b\}$ d dlborel
by (intro nn_integral_cong) (auto split: split_indicator simp: max_def dest: bounds)
also have $\ldots=\int{ }^{+}$x. ennreal $\left(f(g x) * g^{\prime} x *\right.$ indicator $\left.\{a . . b\} x\right)$ dlborel
by (intro nn_integral_cong) (auto simp: mult.commute derivg_nonneg ennreal_mult' ${ }^{\prime}$
split: split_indicator)
finally show ?thesis.
qed auto
theorem integral_substitution:
assumes integrable: set_integrable lborel $\{g a . . g b\} f$
assumes derivg: $\bigwedge x . x \in\{a . . b\} \Longrightarrow\left(g\right.$ has_real_derivative $\left.g^{\prime} x\right)($ at $x)$
assumes contg': continuous_on $\{a . . b\} g^{\prime}$
assumes derivg_nonneg: $\bigwedge x . x \in\{a . . b\} \Longrightarrow g^{\prime} x \geq 0$
assumes $a \leq b$
shows set_integrable lborel $\{a . . b\}\left(\lambda x . f(g x) * g^{\prime} x\right)$
and (LBINT x.f $x *$ indicator $\{g a . . g b\} x)=\left(\right.$ LBINT $x . f(g x) * g^{\prime} x *$ indicator $\{a . . b\} x)$
proof-
from derivg have contg: continuous_on $\{a . . b\} g$ by (rule has_real_derivative_imp_continuous_on)
with contg' have Mg: set_borel_measurable borel $\{a . . b\} g$
and $M g^{\prime}$: set_borel_measurable borel $\{a . . b\} g^{\prime}$
by (simp_all only: set_measurable_continuous_on_ivl)
from derivg derivg_nonneg have monog: $\bigwedge x y . a \leq x \Longrightarrow x \leq y \Longrightarrow y \leq b \Longrightarrow$ $g x \leq g y$
by (rule deriv_nonneg_imp_mono) simp_all
have $(\lambda x$. ennreal $(f x) *$ indicator $\{g a . . g b\} x)=$
(λ x. ennreal $(f x *$ indicator $\{g a . . g b\} x))$
by (intro ext) (simp split: split_indicator)
with integrable have M1: $\left(\lambda x . f x *\right.$ indicator $\left.\left\{\begin{array}{ll}g & a . . g \\ b\end{array}\right\} x\right) \in$ borel_measurable borel
by (force simp: mult.commute set_integrable_def)
from integrable have M2: $(\lambda x .-f x *$ indicator $\{g a . . g b\} x) \in$ borel_measurable borel
by (force simp: mult.commute set_integrable_def)
have LBINT x. $(f x::$ real $) *$ indicator $\{g a . . g b\} x=$
enn2real $\left(\int^{+}\right.$x. ennreal $(f x) *$ indicator $\{g a . . g b\} x$ dlborel $)-$ enn2real $\left(\int^{+} x\right.$. ennreal $(-(f x)) *$ indicator $\{g$ a.. $g b\} x$ dlborel $)$ using integrable
unfolding set_integrable_def
by (subst real_lebesgue_integral_def) (simp_all add: nn_integral_set_ennreal mult.commute)
also have $*:\left(\int^{+} x\right.$. ennreal $(f x) *$ indicator $\{g a . . g b\} x$ dlborel $)=$
($\int{ }^{+} x$. ennreal $\left(f x *\right.$ indicator $\left\{\begin{array}{l}g \text { a.. } g b\}\end{array}\right.$) dlborel $)$
by (intro nn_integral_cong) (simp split: split_indicator)
also from $M 1 *$ have $A:\left(\int^{+}\right.$x. ennreal $\left(f x *\right.$ indicator $\left.\left\{\begin{array}{ll}g a . . g & b\end{array}\right\}\right)$ dlborel $)$
$\left(\int{ }^{+} x\right.$. ennreal $\left(f(g x) * g^{\prime} x *\right.$ indicator $\left.\{a . . b\} x\right)$ dlborel $)$
by (subst nn_integral_substitution [OF _ derivg contg' derivg_nonneg $\langle a \leq b\rangle]$)
(auto simp: nn_integral_set_ennreal mult.commute set_borel_measurable_def)
also have $* *:\left(\int^{+}\right.$x. ennreal $(-(f x)) *$ indicator $\{g$ a.. $g b\} x$ dlborel $)=$ ($\int{ }^{+} x$. ennreal $(-(f x) *$ indicator $\{g a . . g b\} x)$ Dlborel $)$
by (intro nn_integral_cong) (simp split: split_indicator)
also from M2 ** have $B:\left(\int{ }^{+}\right.$x. ennreal $(-(f x) *$ indicator $\{g a . . g b\} x)$
alborel $)=$
$\left(\int+\right.$ x. ennreal $\left(-(f(g x)) * g^{\prime} x *\right.$ indicator $\left.\{a . . b\} x\right)$ dlborel $)$
by (subst nn_integral_substitution[OF _ derivg contg' derivg_nonneg 〈 $a \leq b\rangle$])
(auto simp: nn_integral_set_ennreal mult.commute set_borel_measurable_def)
also \{
from integrable have Mf: set_borel_measurable borel $\left\{\begin{array}{l}g a . . g b\} f\end{array}\right.$
unfolding set_borel_measurable_def set_integrable_def by simp
from measurable_compose $M g M f g^{\prime}$ borel_measurable_times
have $(\lambda x . f(g x *$ indicator $\{a . . b\} x) *$ indicator $\{g a . . g b\}(g x *$ indicator $\{a . . b\} x)$ *
$\left(g^{\prime} x *\right.$ indicator $\left.\left.\{a . . b\} x\right)\right) \in$ borel_measurable borel (is ?f $\in{ }_{-}$)
by (simp add: mult.commute set_borel_measurable_def)
also have ? $f=\left(\lambda x . f(g x) * g^{\prime} x *\right.$ indicator $\left.\{a . . b\} x\right)$
using monog by (intro ext) (auto split: split_indicator)
finally show set_integrable lborel $\{a . . b\}\left(\lambda x . f(g x) * g^{\prime} x\right)$
using A B integrable unfolding real_integrable_def set_integrable_def by (simp_all add: nn_integral_set_ennreal mult.commute)
\} note integrable ${ }^{\prime}=$ this

```
have enn2real \(\left(\int^{+}\right.\)x. ennreal \(\left(f(g x) * g^{\prime} x *\right.\) indicator \(\left.\{a . . b\} x\right)\) dlborel \()-\)
```

 enn2real \(\left(\int+x\right.\). ennreal \(\left(-f(g x) * g^{\prime} x *\right.\) indicator \(\left.\{a . . b\} x\right)\)
 (lborel) $=$
(LBINT $x . f(g x) * g^{\prime} x *$ indicator $\left.\{a . . b\} x\right)$
using integrable' unfolding set_integrable_def
by (subst real_lebesgue_integral_def) (simp_all add: field_simps)
finally show (LBINT $x . f x *$ indicator $\{g a . . g b\} x)=$
(LBINT x.f $(g x) * g^{\prime} x *$ indicator $\left.\{a . . b\} x\right)$.
qed
theorem interval_integral_substitution:
assumes integrable: set_integrable lborel $\{g a . . g b\} f$
assumes derivg: $\bigwedge x . x \in\{a . . b\} \Longrightarrow\left(g\right.$ has_real_derivative $\left.g^{\prime} x\right)($ at $x)$
assumes contg': continuous_on $\{a . . b\} g^{\prime}$
assumes derivg_nonneg: $\bigwedge x . x \in\{a . . b\} \Longrightarrow g^{\prime} x \geq 0$
assumes $a \leq b$
shows set_integrable lborel $\{a . . b\}\left(\lambda x . f(g x) * g^{\prime} x\right)$
and (LBINT $x=g a . . g b . f x)=\left(\right.$ LBINT $\left.x=a . . b . f(g x) * g^{\prime} x\right)$
apply (rule integral_substitution[OF assms], simp, simp)
apply (subst (1 2) interval_integral_Icc, fact)
apply (rule deriv_nonneg_imp_mono[OF derivg derivg_nonneg], simp, simp, fact)
using integral_substitution(2)[OF assms]
apply (simp add: mult.commute set_lebesgue_integral_def)
done
lemma set_borel_integrable_singleton[simp]: set_integrable lborel $\{x\}$ (f :: real \Rightarrow
real)
unfolding set_integrable_def
by (subst integrable_discrete_difference $\left[\right.$ where $X=\{x\}$ and $\left.g=\lambda_{-} .0\right]$) auto
end

6.25 The Volume of an n-Dimensional Ball

theory Ball_Volume
imports Gamma_Function Lebesgue_Integral_Substitution begin

We define the volume of the unit ball in terms of the Gamma function. Note that the dimension need not be an integer; we also allow fractional dimensions, although we do not use this case or prove anything about it for now.

```
definition unit_ball_vol :: real \(\Rightarrow\) real where
    unit_ball_vol \(n=\) pi powr \((n / 2) / \operatorname{Gamma}(n / 2+1)\)
```

lemma unit_ball_vol_pos [simp]: $n \geq 0 \Longrightarrow$ unit_ball_vol $n>0$
by (force simp: unit_ball_vol_def intro: divide_nonneg_pos)
lemma unit_ball_vol_nonneg [simp]: $n \geq 0 \Longrightarrow$ unit_ball_vol $n \geq 0$
by (simp add: dual_order.strict_implies_order)
We first need the value of the following integral, which is at the core of computing the measure of an $n+1$-dimensional ball in terms of the measure of an n-dimensional one.
lemma emeasure_cball_aux_integral:
$\left(\int{ }^{+}\right.$x. indicator $\{-1 . .1\} x * \operatorname{sqrt}\left(1-x^{2}\right)^{\wedge} n$ dlborel $)=$ ennreal (Beta (1/2) (real n/2 +1))
proof -
have $((\lambda t . t$ powr $(-1 / 2) *(1-t)$ powr (real n / 2)) has_integral $\operatorname{Beta}(1 / 2)($ real $n / 2+1))\{0 . .1\}$
using has_integral_Beta_real[of 1/2n/2+1] by simp
from nn_integral_has_integral_lebesgue $[O F$ _ this $]$ have ennreal $(\operatorname{Beta}(1 / 2)($ real $n / 2+1))=$ nn_integral lborel (λ. ennreal $(t$ powr $(-1 / 2) *(1-t)$ powr (real $n / 2)$

```
                                    indicator {0^2..1^2} t))
```

by (simp add: mult_ac ennreal_mult ${ }^{\prime}$ ennreal_indicator)
also have $\ldots=\left(\int^{+}\right.$x. ennreal (x^{2} powr $-(1 / 2) *\left(1-x^{2}\right)$ powr (real $n /$ 2) $*(2 * x) *$
indicator $\{0 . .1\} x$) dlborel)
by (subst nn_integral_substitution[where $g=\lambda x . x^{\wedge} 2$ and $g^{\prime}=\lambda x$. 2 $\left.* x\right]$)
(auto intro!: derivative_eq_intros continuous_intros simp: set_borel_measurable_def)
also have $\ldots=\left(\int^{+}\right.$x. 2 $*$ ennreal $\left(\left(1-x^{2}\right)\right.$ powr (real $\left.n / 2\right) *$ indicator $\{0 . .1\}$ x) Dlborel)
by (intro nn_integral_cong_AE AE_I[of _ _ \{0\}])
(auto simp: indicator_def powr_minus powr_half_sqrt field_split_simps ennreal_mult')
also have $\ldots=\left(\int^{+}\right.$x. ennreal $\left(\left(1-x^{2}\right)\right.$ powr (real $\left.n / 2\right) *$ indicator $\{0 . .1\}$
x) (lborel) +
$\left(\int+x\right.$. ennreal $\left(\left(1-x^{2}\right)\right.$ powr (real $\left.n / 2\right) *$ indicator $\left.\{0 . .1\} x\right)$
dlborel)
(is _ $=? I+_{+}$) by (simp add: mult_2 nn_integral_add)
also have ? $I=\left(\int+x\right.$. ennreal $\left(\left(1-x^{2}\right)\right.$ powr (real n/2) $*$ indicator $\{-1 . .0\}$
x) dlborel)
by (subst nn_integral_real_affine[of _ - 100)
(auto simp: indicator_def intro!: nn_integral_cong)
hence ?I + ?I $=\ldots+$?I by simp
also have $\ldots=\left(\int^{+} x\right.$. ennreal $\left(\left(1-x^{2}\right)\right.$ powr (real $\left.n / 2\right) *$

$$
\text { (indicator }\{-1 . .0\} x+\text { indicator }\{0 . .1\} x) \text {) dlborel) }
$$

by (subst nn_integral_add [symmetric]) (auto simp: algebra_simps)
also have $\ldots=\left(\int^{+}\right.$x. ennreal $\left(\left(1-x^{2}\right)\right.$ powr (real $\left.n / 2\right) *$ indicator $\{-1 . .1\}$
x) Dlborel$)$
by (intro nn_integral_cong_AE AE_I[of _ _ $\{0\}]$) (auto simp: indicator_def)

```
    also have \(\ldots=\left(\int^{+} x\right.\). ennreal (indicator \(\left.\{-1 . .1\} x * \operatorname{sqrt}\left(1-x^{2}\right)^{\wedge} n\right)\)
alborel)
    by (intro nn_integral_cong_AE AE_I[of _ _ \{1, -1 \(\}]\) )
        (auto simp: powr_half_sqrt [symmetric] indicator_def abs_square_le_1
        abs_square_eq_1 powr_def exp_of_nat_mult [symmetric] emeasure_lborel_countable)
    finally show ?thesis ..
qed
lemma real_sqrt_le_iff ': \(x \geq 0 \Longrightarrow y \geq 0 \Longrightarrow s q r t x \leq y \longleftrightarrow x \leq y\) ^2
    using real_le_lsqrt sqrt_le_D by blast
lemma power2_le_iff_abs_le: \(y \geq 0 \Longrightarrow(x:: \text { real })^{\wedge} 2 \leq y^{\wedge} 2 \longleftrightarrow a b s x \leq y\)
    by (subst real_sqrt_le_iff' [symmetric]) auto
```

Isabelle's type system makes it very difficult to do an induction over the dimension of a Euclidean space type, because the type would change in the inductive step. To avoid this problem, we instead formulate the problem in a more concrete way by unfolding the definition of the Euclidean norm.

```
lemma emeasure_cball_aux:
    assumes finite \(A r>0\)
    shows emeasure ( \(P i_{M} A\) ( \(\lambda_{\text {_. }}\) lborel \()\) )
            \(\left(\left\{f . \operatorname{sqrt}\left(\sum i \in A .(f i)^{2}\right) \leq r\right\} \cap \operatorname{space}\left(P i_{M} A\left(\lambda_{-} . l b o r e l\right)\right)\right)=\)
            ennreal (unit_ball_vol (real (card A)) \(* r^{\wedge}\) card \(A\) )
    using assms
proof (induction arbitrary: \(r\) )
    case (empty r)
    thus ?case
        by (simp add: unit_ball_vol_def space_PiM)
next
    case (insert i Ar)
    interpret product_sigma_finite \(\lambda_{\_}\). lborel
        by standard
    have emeasure ( \(P i_{M}\) (insert i \(A\) ) ( \(\lambda_{-.}\)lborel) )
                \(\left(\left\{f . \operatorname{sqrt}\left(\sum i \in\right.\right.\right.\) insert \(\left.\left.i A .(f i)^{2}\right) \leq r\right\} \cap\) space \(\left(P i_{M}(\right.\) insert \(i A)\left(\lambda_{-}\right.\).
lborel))) \(=\)
                nn_integral ( \(P i_{M}\) (insert i A) ( \(\lambda_{\text {_. }}\) lborel \()\) )
                    (indicator \(\left(\left\{f\right.\right.\). sqrt \(\left(\sum i \in\right.\) insert \(\left.\left.i A .(f i)^{2}\right) \leq r\right\} \cap\)
                space (Pi \({ }_{M}\) (insert i A) \(\left(\lambda_{-}\right.\). lborel) \(\left.)\right)\))
        by (subst nn_integral_indicator) auto
    also have \(\ldots=\left(\int^{+} y . \int^{+} x\right.\). indicator \(\left(\left\{f . \operatorname{sqrt}\left((f i)^{2}+\left(\sum i \in A .(f i)^{2}\right)\right) \leq\right.\right.\)
\(r\} \cap\)
                                    space \(\left(P i_{M}(\right.\) insert \(i A)\left(\lambda_{-}\right.\). lborel \(\left.\left.)\right)\right)(x(i:=y))\)
                                    \(\partial P i_{M} A\left(\lambda_{\text {. }}\right.\) lborel \(\left.) \partial l b o r e l\right)\)
        using insert.prems insert.hyps by (subst product_nn_integral_insert_rev) auto
    also have \(\ldots=\left(\int^{+}(y::\right.\) real \() . \int^{+} x\). indicator \(\{-r . . r\} y *\) indicator \((\{f\). sqrt
\(\left(\left(\sum i \in A .(f i)^{2}\right)\right) \leq\)
                        \(\left.\left.\operatorname{sqrt}\left(r^{\wedge} 2-y^{\wedge} 2\right)\right\} \cap \operatorname{space}\left(P i_{M} A\left(\lambda_{-} . l b o r e l\right)\right)\right) x \partial P i_{M} A\left(\lambda_{\text {. }}\right.\).
lborel) dlborel)
    proof (intro nn_integral_cong, goal_cases)
```

```
    case (1yf)
    have \(*: y \in\{-r . . r\}\) if \(y^{\wedge} \mathcal{Z}+c \leq r^{\wedge} \mathcal{Z} c \geq 0\) for \(c\)
    proof -
    have \(y^{\wedge} 2 \leq y^{\wedge} 2+c\) using that by \(\operatorname{simp}\)
    also have \(\ldots \leq r^{\wedge} 2\) by fact
    finally show ?thesis
        using \(\langle r\rangle 0\rangle\) by (simp add: power2_le_iff_abs_le abs_if split: if_splits)
    qed
    have \(\left.\left(\sum x \in A \text {. (if } x=i \text { then } y \text { else } f x\right)^{2}\right)=\left(\sum x \in A .(f x)^{2}\right)\)
    using insert.hyps by (intro sum.cong) auto
    thus ?case using \(1\langle r>0\rangle\)
        by (auto simp: sum_nonneg real_sqrt_le_iff ' indicator_def PiE_def space_PiM
dest!: *)
    qed
    also have \(\ldots=\left(\int^{+}(y:\right.\) :real \()\). indicator \(\{-r . . r\} y *\left(\int^{+} x\right.\). indicator \((\{f\). sqrt
\(\left(\left(\sum i \in A .(f i)^{2}\right)\right)\)
                                    \(\left.\leq \operatorname{sqrt}\left(r^{\wedge} 2-y^{\wedge} 2\right)\right\} \cap \operatorname{space}\left(P i_{M} A\left(\lambda_{-}\right.\right.\). lborel \(\left.\left.)\right)\right) x\)
                                    \(\partial P i_{M} A\left(\lambda_{.}\right.\)lborel) \()\)dlborel) by (subst nn_integral_cmult) auto
    also have \(\ldots=\left(\int^{+}(y::\right.\) real \()\). indicator \(\{-r . . r\} y *\) emeasure (PiM A \(\left(\lambda_{-}\right.\).
lborel))
            \(\left(\left\{f . \operatorname{sqrt}\left(\left(\sum i \in A .(f i)^{2}\right)\right) \leq \operatorname{sqrt}\left(r^{\wedge} \mathcal{Z}-y^{\wedge} 2\right)\right\} \cap \operatorname{space}\left(P i_{M} A\left(\lambda_{-}\right.\right.\right.\).
lborel))) Dlborel)
            using \(\langle\) finite \(A\rangle\) by (intro nn_integral_cong, subst nn_integral_indicator) auto
    also have \(\ldots=\left(\int^{+}(y::\right.\) real). indicator \(\{-r . . r\} y *\) ennreal (unit_ball_vol (real
\((\operatorname{card} A)) *\)
                                    (sqrt (r^2-y^2)) ^card A) Dlborel)
    proof (intro nn_integral_cong_AE, goal_cases)
    case 1
    have \(A E y\) in lborel. \(y \notin\{-r, r\}\)
        by (intro AE_not_in countable_imp_null_set_lborel) auto
    thus ?case
    proof eventually_elim
            case (elim y)
            show ?case
            proof (cases \(y \in\{-r<. .<r\}\) )
            case True
            hence \(y^{2}<r^{2}\) by (subst real_sqrt_less_iff [symmetric]) auto
            thus ?thesis by (subst insert.IH) (auto)
            qed (insert elim, auto)
    qed
qed
    also have \(\ldots=\) ennreal (unit_ball_vol (real (card A))) *
                        \(\left(\int^{+}(y:: r e a l)\right.\). indicator \(\{-r . . r\} y *\left(s q r t\left(r^{\wedge} 2-y^{\wedge} \text { 2 }\right)\right)^{\wedge}\) card
A dlborel)
    by (subst nn_integral_cmult [symmetric])
    (auto simp: mult_ac ennreal_mult' [symmetric] indicator_def intro!: nn_integral_cong)
    also have \(\left(\int^{+}(y::\right.\) real \()\). indicator \(\{-r . . r\} y *\left(s q r t\left(r^{\wedge} 2-y^{\wedge} 2\right)\right)^{\wedge}\) card \(A\)
(lborel) \(=\)
\(\left(\int^{+}(y::\right.\) real \() . r^{\wedge} \operatorname{card} A *\) indicator \(\{-1 . .1\} y *\left(\operatorname{sqrt}\left(1-y^{\wedge} 2\right)\right)\)
```

^ card A
$\partial($ distr lborel borel $((*)(1 / r))))$ using $\langle r>0\rangle$
by (subst nn_integral_distr)
(auto simp: indicator_def field_simps real_sqrt_divide intro!: nn_integral_cong)
also have $\ldots=\left(\int^{+} x\right.$. ennreal $\left(r^{\wedge} \operatorname{Suc}(\operatorname{card} A)\right) *$
(indicator $\{-1 . .1\} x * \operatorname{sqrt}\left(1-x^{2}\right)^{\wedge}$ card $\left.A\right)$ Dlborel) using $\langle r>0\rangle$
by (subst lborel_distr_mult) (auto simp: nn_integral_density ennreal_mult' $[$ symmetric]
mult_ac)
also have $\ldots=$ ennreal $\left(r^{\wedge} \operatorname{Suc}(\operatorname{card} A)\right) *\left(\int+x\right.$. indicator $\{-1 . .1\} x *$
sqrt $\left(1-x^{2}\right)^{\wedge}$ card A dlborel)
by (subst nn_integral_cmult) auto
also note emeasure_cball_aux_integral
also have ennreal (unit_ball_vol (real $(\operatorname{card} A))) *\left(\right.$ ennreal $\left(r^{\wedge} \operatorname{Suc}(\operatorname{card} A)\right) *$
ennreal $($ Beta $(1 / 2)(\operatorname{card} A / 2+1)))=$
ennreal (unit_ball_vol (card A) * Beta (1/2) (card A/2 + 1) * r^{\wedge}
Suc $(\operatorname{card} A))$
using $\langle r\rangle 0\rangle$ by (simp add: ennreal_mult' [symmetric] mult_ac)
also have unit_ball_vol $(\operatorname{card} A) * \operatorname{Beta}(1 / 2)(\operatorname{card} A / 2+1)=$ unit_ball_vol
(Suc (card A))
by (auto simp: unit_ball_vol_def Beta_def Gamma_eq_zero_iff field_simps
Gamma_one_half_real powr_half_sqrt [symmetric] powr_add [symmetric])
also have Suc $(\operatorname{card} A)=\operatorname{card}($ insert $i A)$ using insert.hyps by simp
finally show ?case .
qed

We now get the main theorem very easily by just applying the above lemma.

```
context
    fixes c :: 'a :: euclidean_space and r :: real
    assumes r:r\geq0
begin
```

theorem emeasure_cball:
emeasure lborel (cball cr) $=$ ennreal (unit_ball_vol $\left.\left(\operatorname{DIM}\left({ }^{\prime} a\right)\right) * r^{\wedge} D I M(' a)\right)$
proof (cases $r=0$)
case False
with r have $r: r>0$ by simp
have (lborel :: 'a measure) $=$
$\operatorname{distr}\left(P i_{M}\right.$ Basis $\left(\lambda_{_}\right.$. lborel $\left.)\right)$borel $\left(\lambda f . \sum b \in\right.$ Basis. $\left.f b *_{R} b\right)$
by (rule lborel_eq)
also have emeasure $\ldots($ cball 0 r $)=$
emeasure ($P i_{M}$ Basis (λ_{-}lborel))
($\left\{y\right.$. dist $0\left(\sum b \in\right.$ Basis. $\left.\left.y b *_{R} b::{ }^{\prime} a\right) \leq r\right\} \cap$ space $\left(P i_{M}\right.$ Basis $\left(\lambda_{-}\right.$.
lborel)))
by (subst emeasure_distr) (auto simp: cball_def)
also have $\left\{f\right.$. dist $0\left(\sum b \in\right.$ Basis. $\left.\left.f b *_{R} b::{ }^{\prime} a\right) \leq r\right\}=\left\{f\right.$. sqrt $\left(\sum i \in\right.$ Basis. $(f$
$\left.\left.i)^{2}\right) \leq r\right\}$
by (subst euclidean_dist_l2) (auto simp: L2_set_def)
also have emeasure $\left(P i_{M}\right.$ Basis $\left.\left(\lambda_{-} . l b o r e l\right)\right)\left(\ldots \cap \operatorname{space}\left(P i_{M}\right.\right.$ Basis $\left(\lambda_{-}\right.$.
(borel))) =

```
            ennreal (unit_ball_vol (real DIM('a)) * r ` DIM('a))
        using r by (subst emeasure_cball_aux) simp_all
    also have emeasure lborel (cball 0 r :: 'a set)=
            emeasure (distr lborel borel ( }\lambdax.c+x))(cball c r
    by (subst emeasure_distr) (auto simp: cball_def dist_norm norm_minus_commute)
    also have distr lborel borel ( }\lambdax.c+x)=lbore
        using lborel_affine[of 1 c] by (simp add:density_1)
    finally show ?thesis .
qed auto
corollary content_cball:
    content (cball c r) = unit_ball_vol (DIM('a)) *r ` DIM('a)
    by (simp add: measure_def emeasure_cball r)
corollary emeasure_ball:
    emeasure lborel (ball c r) = ennreal (unit_ball_vol (DIM('a)) * r ^ DIM ('a))
proof -
    from negligible_sphere[of c r] have sphere c r f null_sets lborel
    by (auto simp: null_sets_completion_iff negligible_iff_null_sets negligible_convex_frontier)
    hence emeasure lborel (ball c r \cup sphere c r :: 'a set) = emeasure lborel (ball c
r :: 'a set)
            by (intro emeasure_Un_null_set) auto
    also have ball c r \cup sphere c r = (cball c r :: 'a set) by auto
    also have emeasure lborel ... = ennreal (unit_ball_vol (real DIM('a)) * r ^
DIM('a))
            by (rule emeasure_cball)
    finally show ?thesis ..
qed
corollary content_ball:
    content (ball c r) = unit_ball_vol (DIM('a)) * r ^ DIM('a)
    by (simp add: measure_def r emeasure_ball)
end
```

Lastly, we now prove some nicer explicit formulas for the volume of the unit balls in the cases of even and odd integer dimensions.

```
lemma unit_ball_vol_even:
    unit_ball_vol \((\) real \((2 * n))=p i{ }^{\wedge} n / f a c t n\)
    by (simp add: unit_ball_vol_def add_ac powr_realpow Gamma_fact)
lemma unit_ball_vol_odd':
    unit_ball_vol \((\) real \((2 * n+1))=p i \wedge n / \operatorname{pochhammer}(1 / 2)(S u c n)\)
    and unit_ball_vol_odd:
    unit_ball_vol \((\) real \((2 * n+1))=\)
        (2 ^ \((2 *\) Suc \(n) *\) fact \((\) Suc \(n)) /\) fact \((2 *\) Suc \(n) * p i{ }^{\wedge} n\)
proof -
    have unit_ball_vol \((\) real \((2 * n+1))=\)
        pi powr \((\) real \(n+1 / 2) / \operatorname{Gamma}(1 / 2+\operatorname{real}(\) Suc \(n))\)
```

by (simp add: unit_ball_vol_def field_simps)
also have pochhammer $(1 / 2)(S u c n)=\operatorname{Gamma}(1 / 2+\operatorname{real}(S u c n)) /$ Gamma (1 / 2)
by (intro pochhammer_Gamma) auto
hence $\operatorname{Gamma}(1 / 2+\operatorname{real}(S u c n))=\operatorname{sqrt} p i * \operatorname{pochhammer}(1 / 2)(S u c n)$
by (simp add: Gamma_one_half_real)
also have pi powr (real $n+1 / 2) / \ldots=p i \wedge n / \operatorname{pochhammer}(1 / 2)$ (Suc n)
by (simp add: powr_add powr_half_sqrt powr_realpow)
finally show unit_ball_vol $($ real $(2 * n+1))=\ldots$.
also have pochhammer (1/2 :: real) $($ Suc $n)=$ fact $(2 *$ Suc n) / (2 ^ (2 * Suc n) * fact (Suc n))
using fact_double[of Suc n, where ?' $a=$ real] by (simp add: divide_simps mult_ac)
also have $p i{ }^{\wedge} n / \ldots=\left(2^{\wedge}(2 * S u c n) *\right.$ fact $($ Suc $\left.n)\right) /$ fact $(2 * S u c n) *$ $p i{ }^{\wedge} n$

$$
\text { by } \operatorname{simp}
$$

finally show unit_ball_vol $($ real $(2 * n+1))=\ldots$.
qed
lemma unit_ball_vol_numeral:
unit_ball_vol (numeral (Num.Bit0 n)) $=p i{ }^{\wedge}$ numeral $n /$ fact (numeral n) (is ?th1)
unit_ball_vol (numeral $($ Num.Bit1 $n))=2$ ^ $(2 *$ Suc $($ numeral $n)) *$ fact $($ Suc
(numeral n)) /
fact $(2 *$ Suc (numeral $n)) * p i{ }^{\wedge}$ numeral n (is ?th2)
proof -
have numeral (Num.Bit0 $n)=(2 *$ numeral $n::$ nat $)$
by (simp only: numeral_Bit0 mult_2 ring_distribs)
also have unit_ball_vol $\ldots=p i{ }^{\wedge}$ numeral $n /$ fact ($\left.n u m e r a l ~ n\right)$
by (rule unit_ball_vol_even)
finally show? ?th1 by simp
next
have numeral (Num.Bit1 $n)=(2 *$ numeral $n+1::$ nat $)$
by (simp only: numeral_Bit1 mult_2)
also have unit_ball_vol $\ldots=2^{\wedge}(2 *$ Suc (numeral $\left.n)\right) *$ fact (Suc (numeral n)) /
fact $(2 *$ Suc $($ numeral $n)) * p i{ }^{\wedge}$ numeral n
by (rule unit_ball_vol_odd)
finally show ?th2 by simp
qed
lemmas eval_unit_ball_vol = unit_ball_vol_numeral fact_numeral
Just for fun, we compute the volume of unit balls for a few dimensions.
lemma unit_ball_vol_0 [simp]: unit_ball_vol $0=1$
using $u n i t _b a l l_{-} v o l _e v e n[o f ~ 0]$ by simp
lemma unit_ball_vol_1 [simp]: unit_ball_vol $1=2$

```
    using unit_ball_vol_odd[of 0] by simp
corollary
            unit_ball_vol_2: unit_ball_vol \(2=p i\)
            and unit_ball_vol_3: unit_ball_vol \(3=4 / 3 * p i\)
            and unit_ball_vol_4: unit_ball_vol \(4=p i^{2} / 2\)
            and unit_ball_vol_5: unit_ball_vol \(5=8 / 15 * p i^{2}\)
    by (simp_all add: eval_unit_ball_vol)
corollary circle_area:
    \(r \geq 0 \Longrightarrow\) content (ball cr \(::\left(\right.\) real ^ 2) set) \(=r^{\wedge} 2 * p i\)
    by (simp add: content_ball unit_ball_vol_2)
corollary sphere_volume:
    \(r \geq 0 \Longrightarrow\) content \(\left(\right.\) ball c r \(::\left(\right.\) real ^ 3) set) \(=4 / 3 * r^{\wedge} 3 * p i\)
    by (simp add: content_ball unit_ball_vol_3)
Useful equivalent forms
corollary content_ball_eq_0_iff [simp]: content (ball cr)=0 \(\longleftrightarrow r \leq 0\)
proof -
    have \(r>0 \Longrightarrow\) content (ball cr)>0
        by (simp add: content_ball unit_ball_vol_def)
    then show ?thesis
        by (fastforce simp: ball_empty)
qed
corollary content_ball_gt_0_iff [simp]: \(0<\) content \((\) ball \(z r) \longleftrightarrow 0<r\)
    by (auto simp: zero_less_measure_iff)
corollary content_cball_eq_0_iff [simp]: content (cball cr)=0 \(\longleftrightarrow r \leq 0\)
proof (cases \(r=0\) )
    case False
    moreover have \(r>0 \Longrightarrow\) content (cball cr) \(>0\)
        by (simp add: content_cball unit_ball_vol_def)
    ultimately show ?thesis
        by fastforce
qed auto
corollary content_cball_gt_0_iff [simp]: \(0<\) content \((\) cball z r) \(\longleftrightarrow 0<r\)
    by (auto simp: zero_less_measure_iff)
end
```


6.26 Integral Test for Summability

theory Integral_Test
imports Henstock_Kurzweil_Integration
begin

The integral test for summability. We show here that for a decreasing nonnegative function, the infinite sum over that function evaluated at the natural numbers converges iff the corresponding integral converges.
As a useful side result, we also provide some results on the difference between the integral and the partial sum. (This is useful e.g. for the definition of the Euler-Mascheroni constant)
locale antimono_fun_sum_integral_diff =
fixes $f:$ real \Rightarrow real
assumes dec: $\bigwedge x y . x \geq 0 \Longrightarrow x \leq y \Longrightarrow f x \geq f y$
assumes nonneg: $\backslash x . x \geq 0 \Longrightarrow f x \geq 0$
assumes cont: continuous_on $\{0 .\}$.
begin
definition sum_integral_diff_series $n=\left(\sum k \leq n . f\left(o f _n a t k\right)\right)-\left(\right.$ integral $\left\{0 . . o f _n a t\right.$ $n\} f$)
lemma sum_integral_diff_series_nonneg:
sum_integral_diff_series $n \geq 0$
proof -
note int $=$ integrable_continuous_real[$O F$ continuous_on_subset $[$ OF cont $]]$
let ? int $=\lambda a b$. integral $\left\{o f _n a t ~ a . . o f _n a t ~ b\right\} f$
have -sum_integral_diff_series $n=$?int $0 n-\left(\sum k \leq n . f\left(o f _n a t ~ k\right)\right)$
by (simp add: sum_integral_diff_series_def)
also have ?int $0 n=\left(\sum k<n\right.$. ?int k (Suc $\left.\left.k\right)\right)$
proof (induction n) case (Suc n) have ? int $0($ Suc $n)=$? int $0 n+$? int n (Suc n)
by (intro integral_combine[symmetric] int) simp_all
with Suc show ?case by simp
qed simp_all
also have $\ldots \leq\left(\sum k<n\right.$. integral $\{o f$ _nat k..of_nat (Suc $\left.k)\right\}$ ($\lambda_{-}:$:real. f (of_nat k)))
by (intro sum_mono integral_le int) (auto intro: dec)
also have $\ldots=\left(\sum k<n . f\left(o f_{-} n a t k\right)\right)$ by simp
also have $\ldots-\left(\sum k \leq n . f(\right.$ of_nat $\left.k)\right)=-\left(\sum k \in\{. . n\}-\{. .<n\} . f(\right.$ of_nat $\left.k)\right)$ by (subst sum_diff) auto
also have $\ldots \leq 0$ by (auto intro!: sum_nonneg nonneg)
finally show sum_integral_diff_series $n \geq 0$ by simp
qed
lemma sum_integral_diff_series_antimono:
assumes $m \leq n$
shows sum_integral_diff_series $m \geq$ sum_integral_diff_series n
proof -
let ?int $=\lambda a b$. integral $\{o f$ _nat $a . . o f$ _nat $b\} f$
note int $=$ integrable_continuous_real[$O F$ continuous_on_subset $[$ OF cont $]]$
have d_mono: sum_integral_diff_series (Suc n) \leq sum_integral_diff_series n for n proof -
fix n :: nat
have sum_integral_diff_series (Suc n) - sum_integral_diff_series $n=$ $f($ of_nat $($ Suc $n))+($?int $0 n-$?int $0($ Suc $n))$
unfolding sum_integral_diff_series_def by (simp add: algebra_simps)
also have ?int $0 n-$? int 0 (Suc n) $=-$? int n (Suc n)
by (subst integral_combine [symmetric, of of_nat 0 of_nat n of_nat (Suc n)]) (auto intro!: int simp: algebra_simps)
also have ?int $n(S u c n) \geq$ integral $\left\{o f _n a t\right.$ n..of_nat (Suc n) \} ($\lambda_{-}::$real. f (of_nat (Suc n)))
by (intro integral_le int) (auto intro: dec)
hence $f($ of_nat $($ Suc $n))+-$?int $n($ Suc $n) \leq 0$ by (simp add: algebra_simps)
finally show sum_integral_diff_series (Suc n) \leq sum_integral_diff_series n by simp
qed
with assms show ?thesis
by (induction rule: inc_induct) (auto intro: order.trans[OF _ d_mono])
qed
lemma sum_integral_diff_series_Bseq: Bseq sum_integral_diff_series
proof -
from sum_integral_diff_series_nonneg and sum_integral_diff_series_antimono
have norm (sum_integral_diff_series n) \leq sum_integral_diff_series 0 for n by simp
thus Bseq sum_integral_diff_series by (rule BseqI')
qed
lemma sum_integral_diff_series_monoseq: monoseq sum_integral_diff_series using sum_integral_diff_series_antimono unfolding monoseq_def by blast
lemma sum_integral_diff_series_convergent: convergent sum_integral_diff_series using sum_integral_diff_series_Bseq sum_integral_diff_series_monoseq by (blast intro!: Bseq_monoseq_convergent)
theorem integral_test:
summable $(\lambda n . f($ of_nat $n)) \longleftrightarrow$ convergent $(\lambda n$. integral $\{0$..of_nat $n\} f)$
proof -
have summable $\left(\lambda n . f\left(o f _n a t n\right)\right) \longleftrightarrow$ convergent $\left(\lambda n . \sum k \leq n . f\left(o f _n a t k\right)\right)$
by (simp add: summable_iff_convergent')
also have $\ldots \longleftrightarrow$ convergent $(\lambda n$. integral $\{0$..of_nat $n\} f$)
proof
assume convergent $\left(\lambda n . \sum k \leq n . f\left(o f _n a t k\right)\right)$
from convergent_diff [OF this sum_integral_diff_series_convergent]
show convergent (λn. integral \{0..of_nat $n\} f$)
unfolding sum_integral_diff_series_def by simp
next
assume convergent $(\lambda n$. integral $\{0$..of_nat $n\} f)$
from convergent_add[OF this sum_integral_diff_series_convergent]
show convergent $\left(\lambda n . \sum k \leq n . f\left(o f _n a t k\right)\right)$ unfolding sum_integral_diff_series_def
by simp

```
    qed
    finally show ?thesis by simp
qed
end
end
```


6.27 Continuity of the indefinite integral; improper integral theorem

theory Improper_Integral
imports Equivalence_Lebesgue_Henstock_Integration
begin

6.27.1 Equiintegrability

The definition here only really makes sense for an elementary set. We just use compact intervals in applications below.
definition equiintegrable_on (infixr equiintegrable'_on 46)
where F equiintegrable_on $I \equiv$
$(\forall f \in F . f$ integrable_on $I) \wedge$
($\forall e>0 . \exists \gamma$. gauge $\gamma \wedge$
$(\forall f \mathcal{D} . f \in F \wedge \mathcal{D}$ tagged_division_of $I \wedge \gamma$ fine \mathcal{D}
$\longrightarrow \operatorname{norm}\left(\left(\sum(x, K) \in \mathcal{D}\right.\right.$. content $\left.K *_{R} f x\right)-$ integral $\left.I f\right)$
$<e)$)
lemma equiintegrable_on_integrable:
$\llbracket F$ equiintegrable_on $I ; f \in F \rrbracket \Longrightarrow f$ integrable_on I
using equiintegrable_on_def by metis
lemma equiintegrable_on_sing [simp]:
$\{f\}$ equiintegrable_on cbox $a b \longleftrightarrow f$ integrable_on cbox a b
by (simp add: equiintegrable_on_def has_integral_integral has_integral integrable_on_def)
lemma equiintegrable_on_subset: $\llbracket F$ equiintegrable_on $I ; G \subseteq F \rrbracket \Longrightarrow G$ equiintegrable_on I
unfolding equiintegrable_on_def Ball_def
by (erule conj_forward imp_forward all_forward ex_forward | blast)+
lemma equiintegrable_on_Un:
assumes F equiintegrable_on $I G$ equiintegrable_on I
shows $(F \cup G)$ equiintegrable_on I
unfolding equiintegrable_on_def
proof (intro conjI impI allI)
show $\forall f \in F \cup G$. f integrable_on I
using assms unfolding equiintegrable_on_def by blast
show $\exists \gamma$. gauge $\gamma \wedge$

```
                (\forallf\mathcal{D}.f\inF\cupG^
                    D tagged_division_of I ^ \gamma fine \mathcal{D}\longrightarrow
                        norm }((\sum(x,K)\in\mathcal{D}.content K**R f x) - integral If )<\varepsilon
        if }\varepsilon>0\mathrm{ for }
    proof -
    obtain }\gamma1\mathrm{ where gauge }\gamma
```



```
                        norm}((\sum(x,K)\in\mathcal{D}\mathrm{ . content K *R f x ) - integral If )}<
            using assms <\varepsilon> 0` unfolding equiintegrable_on_def by auto
    obtain \gamma2 where gauge \gamma2
```



```
                    norm}((\sum(x,K)\in\mathcal{D}. content K**R f x ) - integral If )<
            using assms }<<>0\rangle\mathrm{ unfolding equiintegrable_on_def by auto
    have gauge ( }\lambdax.\gamma1x\cap\gamma2x
            using <gauge \gamma1\rangle\langlegauge \gamma2\rangle by blast
    moreover have }\forallf\mathcal{D}.f\inF\cupG\wedge\mathcal{D}\mathrm{ tagged_division_of I ^( }\lambdax.\gamma1x\cap\gamma
x) fine }\mathcal{D}
                norm}((\sum(x,K)\in\mathcal{D}. content K *R fx) - integral If ) < &
            using \gamma1 \gamma2 by (auto simp: fine_Int)
    ultimately show ?thesis
        by (intro exI conjI) assumption+
    qed
qed
```

lemma equiintegrable_on_insert:
assumes f integrable_on cbox a b F equiintegrable_on cbox a b
shows (insert $f F$) equiintegrable_on cbox a b
by (metis assms equiintegrable_on_Un equiintegrable_on_sing insert_is_Un)
lemma equiintegrable_cmul:
assumes F : F equiintegrable_on I
shows $\left(\bigcup c \in\{-k . . k\} . \bigcup f \in F .\left\{\left(\lambda x . c *_{R} f x\right)\right\}\right)$ equiintegrable_on I
unfolding equiintegrable_on_def
proof (intro conjI impI allI ballI)
show f integrable_on I
if $f \in\left(\bigcup c \in\{-k . . k\} . \bigcup f \in F .\left\{\lambda x . c *_{R} f x\right\}\right)$
for $f::{ }^{\prime} a \Rightarrow{ }^{\prime} b$
using that assms equiintegrable_on_integrable integrable_cmul by blast
show $\exists \gamma$. gauge $\gamma \wedge\left(\forall f \mathcal{D} . f \in\left(\bigcup c \in\{-k . . k\} . \bigcup f \in F .\left\{\lambda x . c *_{R} f x\right\}\right) \wedge \mathcal{D}\right.$ tagged_division_of I

$$
\wedge \gamma \text { fine } \mathcal{D} \longrightarrow \operatorname{norm}\left(\left(\sum(x, K) \in \mathcal{D} . \text { content } K *_{R} f x\right)-\text { integral } I f\right)<
$$

$\varepsilon)$
if $\varepsilon>0$ for ε
proof -
obtain γ where gauge γ and $\gamma: \bigwedge f \mathcal{D} . \llbracket f \in F ; \mathcal{D}$ tagged_division_of $I ; \gamma$ fine $\mathcal{D} \rrbracket$
$\Longrightarrow \operatorname{norm}\left(\left(\sum(x, K) \in \mathcal{D}\right.\right.$. content $\left.K *_{R} f x\right)-$ integral $\left.I f\right)<\varepsilon$

```
/ (|k| + 1)
    using assms }\langle\varepsilon>0\rangle\mathrm{ unfolding equiintegrable_on_def
        by (metis add.commute add.right_neutral add_strict_mono divide_pos_pos
norm_eq_zero real_norm_def zero_less_norm_iff zero_less_one)
    moreover have norm ((\sum(x,K)\in\mathcal{D}.content K *R c**R (fx)) - integral I
(\lambdax.c**R fx))<\varepsilon
    if c:c\in{-k..k}
            and f}\inF\mathcal{D}\mathrm{ tagged_division_of I }\gamma\mathrm{ fine }\mathcal{D
            for D cf
    proof -
    have norm ((\sumx\in\mathcal{D}. case x of (x,K) => content K **R c**R}fx)- integral
I (\lambdax.c**R fx))
        = |c|* norm ((\sumx\in\mathcal{D}. case x of (x,K) => content K**R fx) - integral
If)
    by (simp add: algebra_simps scale_sum_right case_prod_unfold flip: norm_scaleR)
    also have \ldots\leq (|k| + 1)* norm ((\sumx\in\mathcal{D}\mathrm{ . case }x\mathrm{ of ( }x,K)=>\mathrm{ content K}
*R fx) - integral If )
            using c by (auto simp: mult_right_mono)
        also have .. < (|k| + 1)*(\varepsilon/(|k| + 1))
            by (rule mult_strict_left_mono) (use \gamma less_eq_real_def that in auto)
        also have ... = = 
            by auto
        finally show ?thesis .
    qed
    ultimately show ?thesis
    by (rule_tac x=\gamma in exI) auto
    qed
qed
```

lemma equiintegrable_add:
assumes F : F equiintegrable_on I and G : G equiintegrable_on I
shows $(\bigcup f \in F . \bigcup g \in G .\{(\lambda x . f x+g x)\})$ equiintegrable_on I
unfolding equiintegrable_on_def
proof (intro conjI impI allI ballI)
show f integrable_on I
if $f \in(\bigcup f \in F . \bigcup g \in G .\{\lambda x . f x+g x\})$ for f
using that equiintegrable_on_integrable assms by (auto intro: integrable_add)
show $\exists \gamma$. gauge $\gamma \wedge(\forall f \mathcal{D} . f \in(\bigcup f \in F . \bigcup g \in G .\{\lambda x . f x+g x\}) \wedge \mathcal{D}$
tagged_division_of I
$\wedge \gamma$ fine $\mathcal{D} \longrightarrow$ norm $\left(\left(\sum(x, K) \in \mathcal{D}\right.\right.$. content $\left.K *_{R} f x\right)-$ integral If $)<$
$\varepsilon)$
if $\varepsilon>0$ for ε
proof -
obtain $\gamma 1$ where gauge $\gamma 1$
and $\gamma 1: \bigwedge f \mathcal{D} . \llbracket f \in F ; \mathcal{D}$ tagged_division_of $I ; \gamma 1$ fine $\mathcal{D} \rrbracket$
\Longrightarrow norm $\left(\left(\sum(x, K) \in \mathcal{D}\right.\right.$. content $\left.K *_{R} f x\right)-$ integral $\left.I f\right)<\varepsilon /$ 2
using assms $\langle\varepsilon>0\rangle$ unfolding equiintegrable_on_def by (meson half_gt_zero_iff)
obtain $\gamma 2$ where gauge γ^{2}

```
    and \(\gamma 2: \bigwedge g \mathcal{D} . \llbracket g \in G ; \mathcal{D}\) tagged_division_of \(I ; \gamma 2\) fine \(\mathcal{D} \rrbracket\)
        \(\Longrightarrow\) norm \(\left(\left(\sum(x, K) \in \mathcal{D}\right.\right.\). content \(\left.K *_{R} g x\right)-\) integral \(\left.I g\right)<\varepsilon / \mathcal{D}\)
    using assms \(\langle\varepsilon>0\rangle\) unfolding equiintegrable_on_def by (meson half_gt_zero_iff)
    have gauge ( \(\lambda x . \gamma 1 x \cap \gamma 2 x\) )
    using 〈gauge \(\gamma 1\) 〉 〈gauge \(\gamma 2\rangle\) by blast
    moreover have norm \(\left(\left(\sum(x, K) \in \mathcal{D}\right.\right.\). content \(\left.K *_{R} h x\right)-\) integral I \(\left.h\right)<\varepsilon\)
    if \(h: h \in(\bigcup f \in F . \bigcup g \in G\). \(\{\lambda x . f x+g x\})\)
        and \(\mathcal{D}: \mathcal{D}\) tagged_division_of \(I\) and fine: \((\lambda x . \gamma 1 x \cap \gamma 2 x)\) fine \(\mathcal{D}\)
    for \(h \mathcal{D}\)
    proof -
    obtain \(f g\) where \(f \in F g \in G\) and heq: \(h=(\lambda x . f x+g x)\)
        using \(h\) by blast
    then have int: \(f\) integrable_on I \(g\) integrable_on I
        using \(F G\) equiintegrable_on_def by blast+
    have norm \(\left(\left(\sum(x, K) \in \mathcal{D}\right.\right.\). content \(\left.K *_{R} h x\right)\) - integral I \(\left.h\right)\)
        \(=\operatorname{norm}\left(\left(\sum(x, K) \in \mathcal{D}\right.\right.\). content \(K *_{R} f x+\) content \(\left.K *_{R} g x\right)-(\) integral
\(I f+\) integral \(I g)\) )
            by (simp add: heq algebra_simps integral_add int)
    also have \(\ldots=\operatorname{norm}\left(\left(\left(\sum(x, K) \in \mathcal{D}\right.\right.\right.\). content \(\left.K *_{R} f x\right)-\) integral \(I f+\)
\(\left(\sum(x, K) \in \mathcal{D}\right.\). content \(\left.K *_{R} g x\right)-\) integral \(\left.\left.I g\right)\right)\)
        by (simp add: sum.distrib algebra_simps case_prod_unfold)
    also have \(\ldots \leq \operatorname{norm}\left(\left(\sum(x, K) \in \mathcal{D}\right.\right.\). content \(\left.K *_{R} f x\right)-\) integral I \(\left.f\right)+\)
norm \(\left(\left(\sum(x, K) \in \mathcal{D}\right.\right.\). content \(\left.K *_{R} g x\right)-\) integral I \(\left.g\right)\)
        by (metis (mono_tags) add_diff_eq norm_triangle_ineq)
    also have \(\ldots<\varepsilon / 2+\varepsilon / 2\)
        using \(\gamma 1[O F\langle f \in F\rangle \mathcal{D}] \gamma 2[O F\langle g \in G\rangle \mathcal{D}]\) fine by (simp add: fine_Int)
        finally show ?thesis by simp
    qed
    ultimately show ?thesis
        by meson
    qed
qed
lemma equiintegrable＿minus：
assumes \(F\) equiintegrable＿on \(I\)
shows \((\bigcup f \in F .\{(\lambda x .-f x)\})\) equiintegrable＿on \(I\)
by（force intro：equiintegrable＿on＿subset［OF equiintegrable＿cmul［OF assms，of 1］］）
lemma equiintegrable＿diff：
assumes \(F\) ：\(F\) equiintegrable＿on \(I\) and \(G\) ：\(G\) equiintegrable＿on \(I\)
shows \((\bigcup f \in F . \bigcup g \in G .\{(\lambda x . f x-g x)\})\) equiintegrable＿on \(I\)
by（rule equiintegrable＿on＿subset［OF equiintegrable＿add［OF F equiintegrable＿minus ［OF G］］］）auto
```

lemma equiintegrable＿sum：
fixes F ：：（＇a：：euclidean＿space $\Rightarrow{ }^{\prime} b::$ euclidean＿space）set
assumes F equiintegrable＿on cbox a b

```
    shows (\bigcupI\inCollect finite. \bigcup c \in {c. (\foralli\inI.ci\geq0)\wedge sum c I= 1}.
        Uf\inI->F.{(\lambdax. sum (\lambdai::'j. c i**R fix)I)}) equiintegrable_on cbox
        ab
    (is ?G equiintegrable_on _)
    unfolding equiintegrable_on_def
proof (intro conjI impI allI ballI)
    show f integrable_on cbox a b if f}\in?G\mathrm{ for f
        using that assms by (auto simp: equiintegrable_on_def intro!: integrable_sum
integrable_cmul)
    show }\exists\gamma.gauge 
                \wedge}(\forallg\mathcal{D}.g\in?G\wedge\mathcal{D}\mathrm{ tagged_division_of cbox a b}\wedge \gamma fine \mathcal{D
                norm}((\sum(x,K)\in\mathcal{D}. content K**g g x) - integral (cbox a b)g
< \varepsilon)
        if }\varepsilon>0\mathrm{ for }
    proof -
        obtain }\gamma\mathrm{ where gauge }
```



```
                                    norm}((\sum(x,K)\in\mathcal{D}\mathrm{ . content }K\mp@subsup{*}{R}{}fx)-\mathrm{ integral (cbox a
```

b) $f)<\varepsilon / 2$
using assms $\langle\varepsilon>0\rangle$ unfolding equiintegrable_on_def by (meson half_gt_zero_iff)
moreover have norm $\left(\left(\sum(x, K) \in \mathcal{D}\right.\right.$. content $\left.K *_{R} g x\right)$ - integral (cbox a
b) $g)<\varepsilon$
if $g: g \in ? G$
and $\mathcal{D}: \mathcal{D}$ tagged_division_of cbox $a b$
and fine: γ fine \mathcal{D}
for $\mathcal{D} g$
proof -
obtain $I c f$ where finite I and $0: \bigwedge i::^{\prime} j . i \in I \Longrightarrow 0 \leq c i$
and $1:$ sum $c I=1$ and $f: f \in I \rightarrow F$ and geq: $g=\left(\bar{\lambda} x . \sum i \in I . c i *_{R} f\right.$
$i x)$
using g by auto
have fi_int: fi integrable_on cbox a bif $i \in I$ for i
by (metis Pi_iff assms equiintegrable_on_def f that)
have $*$: integral $\left(\right.$ cbox a b) $\left(\lambda x . c i *_{R} f i x\right)=\left(\sum(x, K) \in \mathcal{D}\right.$. integral $K(\lambda x$.
$\left.c i *_{R} f i x\right)$)
if $i \in I$ for i
proof -
have $f i$ integrable_on cbox a b
by (metis Pi_iff assms equiintegrable_on_def f that)
then show? thesis
by (intro \mathcal{D} integrable_cmul integral_combine_tagged_division_topdown)
qed
have finite \mathcal{D}
using \mathcal{D} by blast
have swap: $\left(\sum(x, K) \in \mathcal{D}\right.$. content $\left.K *_{R}\left(\sum i \in I . c i *_{R} f i x\right)\right)$
$=\left(\sum i \in I . c i *_{R}\left(\sum(x, K) \in \mathcal{D}\right.\right.$. content $\left.\left.K *_{R} f i x\right)\right)$
by (simp add: scale_sum_right case_prod_unfold algebra_simps) (rule sum.swap)
have norm $\left(\left(\sum(x, K) \in \mathcal{D}\right.\right.$. content $\left.K *_{R} g x\right)$ - integral $($ cbox a b) g)
$=\operatorname{norm}\left(\left(\sum i \in I . c i *_{R}\left(\left(\sum(x, K) \in \mathcal{D}\right.\right.\right.\right.$. content $\left.K *_{R} f i x\right)-$ integral

```
(cbox a b) (f i))))
        unfolding geq swap
            by (simp add: scaleR_right.sum algebra_simps integral_sum fi_int inte-
grable_cmul 〈finite I〉 sum_subtractf flip: sum_diff)
    also have ... \leq(\sumi\inI.ci*\varepsilon/2)
    proof (rule sum_norm_le)
        show norm (ci i *R
ab)(fi)))}\leqci*\varepsilon/
            if }i\inI\mathrm{ for }
            proof -
                have norm ((\sum(x,K)\in\mathcal{D}. content K*R fix) - integral (cbox a b) (f
i))}\leq\varepsilon/
                    using \gamma [OF _ D fine, of fi] funcset_mem [OF f] that by auto
                then show ?thesis
                    using that by (auto simp: 0 mult.assoc intro: mult_left_mono)
            qed
        qed
        also have ... < < 
            using 1 «\varepsilon> 0\rangle by (simp add: flip: sum_divide_distrib sum_distrib_right)
        finally show ?thesis.
    qed
    ultimately show ?thesis
        by (rule_tac x=\gamma in exI) auto
    qed
qed
corollary equiintegrable_sum_real:
    fixes F :: (real m 'b::euclidean_space) set
    assumes F equiintegrable_on {a..b}
    shows (\bigcupI\inCollect finite. \bigcupc\in{c. (\foralli\inI.ci\geq0)\wedge sum c I=1}.
        Uf\inI->F.{(\lambdax.sum (\lambdai.ci**R fix)I)})
        equiintegrable_on {a..b}
    using equiintegrable_sum [of F a b] assms by auto
Basic combining theorems for the interval of integration.
lemma equiintegrable_on_null [simp]:
content \((\) cbox \(a b)=0 \Longrightarrow F\) equiintegrable_on cbox a \(b\)
unfolding equiintegrable_on_def
by (metis diff_zero gauge_trivial integrable_on_null integral_null norm_zero sum_content_null)
Main limit theorem for an equiintegrable sequence.
theorem equiintegrable_limit:
fixes \(g:: ' a\) :: euclidean_space \(\Rightarrow\) ' \(b\) :: banach
assumes feq: range \(f\) equiintegrable_on cbox a \(b\)
and to_g: \(\bigwedge x . x \in\) cbox \(a b \Longrightarrow(\lambda n . f n x) \longrightarrow g x\)
shows \(g\) integrable_on cbox a \(b \wedge(\lambda n\). integral \((\) cbox a \(b)(f n)) \longrightarrow\) integral
(cbox a b) \(g\)
proof -
have Cauchy ( \(\lambda\) n. integral (cbox a b) ( \(f n\) ) )
```

 proof (clarsimp simp add: Cauchy_def)
 fix \(e\) ::real
 assume \(0<e\)
 then have \(e 3: 0<e / 3\)
 by simp
 then obtain \(\gamma\) where gauge \(\gamma\)
 and \(\gamma: \bigwedge n \mathcal{D} . \llbracket \mathcal{D}\) tagged_division_of cbox a \(b ; \gamma\) fine \(\mathcal{D} \rrbracket\)
 \(\Longrightarrow \operatorname{norm}\left(\left(\sum(x, K) \in \mathcal{D}\right.\right.\). content \(\left.K *_{R} f n x\right)-\) integral (cbox
 ab) $(f n))<e / 3$
using feq unfolding equiintegrable_on_def

obtain \mathcal{D} where \mathcal{D} : \mathcal{D} tagged_division_of $(c b o x a b)$ and γ fine \mathcal{D} finite \mathcal{D}
by (meson 〈gauge γ 〉 fine_division_exists tagged_division_of_finite)
with γ have $\delta T: \bigwedge n$. dist $\left(\left(\sum(x, K) \in \mathcal{D}\right.\right.$. content $\left.K *_{R} f n x\right)$) (integral (cbox
$a b)(f n))<e / 3$
by (force simp: dist_norm)
have $\left(\lambda n . \sum(x, K) \in \mathcal{D}\right.$. content $\left.K *_{R} f n x\right) \longrightarrow\left(\sum(x, K) \in \mathcal{D}\right.$. content K
$\left.*_{R} g x\right)$
using \mathcal{D} to_g by (auto intro!: tendsto_sum tendsto_scaleR)
then have Cauchy $\left(\lambda n . \sum(x, K) \in \mathcal{D}\right.$. content $\left.K *_{R} f n x\right)$
by (meson convergent_eq_Cauchy)
with $e 3$ obtain M where
$M: \bigwedge m n . \llbracket m \geq M ; n \geq M \rrbracket \Longrightarrow \operatorname{dist}\left(\sum(x, K) \in \mathcal{D}\right.$. content $\left.K *_{R} f m x\right)$
$\left(\sum(x, K) \in \mathcal{D}\right.$. content $\left.K *_{R} f n x\right)$

$$
<e / 3
$$

unfolding Cauchy_def by blast
have $\wedge m n$. $\llbracket m \geq M ; n \geq M$;
dist $\left(\sum(x, K) \in \mathcal{D}\right.$. content $\left.K *_{R} f m x\right)\left(\sum(x, K) \in \mathcal{D}\right.$. content $K *_{R}$
$f n x)<e / 3 \rrbracket$
\Longrightarrow dist (integral (cbox ab) (fm)) (integral (cbox ab) $(f n))<e$
by (metis δT dist_commute dist_triangle_third $\left[O F \mathcal{Z}_{-} \delta T\right]$)
then show $\exists M . \forall m \geq M . \forall n \geq M$. dist (integral (cbox a b) (fm)) (integral
$($ cbox a b) $(f n))<e$
using M by auto
qed
then obtain L where $L:(\lambda n$. integral $($ cbox a $b)(f n)) \longrightarrow L$
by (meson convergent_eq_Cauchy)
have (g has_integral L) (cbox a b)
proof (clarsimp simp: has_integral)
fix e :: real assume $0<e$
then have $e 2: 0<e / 2$ by simp
then obtain γ where gauge γ
and $\gamma: \bigwedge n \mathcal{D}$. $\llbracket \mathcal{D}$ tagged_division_of cbox a $b ; \gamma$ fine $\mathcal{D} \rrbracket$
$\Longrightarrow \operatorname{norm}\left(\left(\sum(x, K) \in \mathcal{D}\right.\right.$. content $\left.K *_{R} f n x\right)-$ integral (cbox a
b) $(f n))<e / 2$ using feq unfolding equiintegrable_on_def by (meson image_eqI iso_tuple_UNIV_I)
moreover

```
    have norm \(\left(\left(\sum(x, K) \in \mathcal{D}\right.\right.\). content \(\left.\left.K *_{R} g x\right)-L\right)<e\)
            if \(\mathcal{D}\) tagged_division_of cbox ab fine \(\mathcal{D}\) for \(\mathcal{D}\)
    proof -
    have norm \(\left(\left(\sum(x, K) \in \mathcal{D}\right.\right.\). content \(\left.\left.K *_{R} g x\right)-L\right) \leq e / 2\)
    proof (rule Lim_norm_ubound)
        show \(\left(\lambda n .\left(\sum(x, K) \in \mathcal{D}\right.\right.\). content \(\left.K *_{R} f n x\right)-\) integral \((\) cbox a b) \((f n))\)
            \(\left(\sum(x, K) \in \mathcal{D}\right.\). content \(\left.K *_{R} g x\right)-L\)
            using to_g that \(L\)
                by (intro tendsto_diff tendsto_sum) (auto simp: tag_in_interval tend-
sto_scaleR)
            show \(\forall_{F} n\) in sequentially.
                norm \(\left(\left(\sum(x, K) \in \mathcal{D}\right.\right.\). content \(\left.K *_{R} f n x\right)-\) integral \((\) cbox a \(b)(f\)
n) \() \leq e / 2\)
            by (intro eventuallyI less_imp_le \(\gamma\) that)
            qed auto
            with \(\langle 0<e\rangle\) show ?thesis
            by linarith
    qed
    ultimately
    show \(\exists \gamma\). gauge \(\gamma \wedge\)
                \((\forall \mathcal{D} . \mathcal{D}\) tagged_division_of cbox a \(b \wedge \gamma\) fine \(\mathcal{D} \longrightarrow\)
                norm \(\left(\left(\sum(x, K) \in \mathcal{D}\right.\right.\). content \(\left.\left.\left.K *_{R} g x\right)-L\right)<e\right)\)
            by meson
qed
with \(L\) show ?thesis
    by \((\) simp add: \(\langle(\lambda n\). integral \((\) cbox a \(b)(f n)) \longrightarrow L\rangle\) has_integral_integrable_integral \()\)
qed
```

lemma equiintegrable_reflect:
assumes F equiintegrable_on cbox a b
shows $(\lambda f . f \circ$ uminus $)$ ' F equiintegrable_on cbox $(-b)(-a)$
proof -
have $\S: \exists \gamma$. gauge $\gamma \wedge$
$(\forall f \mathcal{D} . f \in(\lambda f . f \circ$ uminus $) ' F \wedge \mathcal{D}$ tagged_division_of cbox $(-b)(-$ a) $\wedge \gamma$ fine $\mathcal{D} \longrightarrow$ norm $\left(\left(\sum(x, K) \in \mathcal{D}\right.\right.$. content $\left.K *_{R} f x\right)-$ integral $($ cbox $(-b)$
$(-a)) f)<e)$
if gauge γ and
$\gamma: \bigwedge f \mathcal{D} . \llbracket f \in F ; \mathcal{D}$ tagged_division_of cbox a $b ; \gamma$ fine $\mathcal{D} \rrbracket \Longrightarrow$ norm $\left(\left(\sum(x, K) \in \mathcal{D}\right.\right.$. content $\left.K *_{R} f x\right)-$ integral $($ cbox a b) $f)$
$<e$ for $e \gamma$
proof (intro exI, safe)
show gauge $(\lambda x$. uminus ' $\gamma(-x))$
by (metis 〈gauge γ 〉 gauge_reflect)
show norm $\left(\left(\sum(x, K) \in \mathcal{D}\right.\right.$. content $K *_{R}(f \circ$ uminus $\left.) x\right)-$ integral (cbox
$(-b)(-a))(f \circ$ uminus $))<e$
if $f \in F$ and tag: \mathcal{D} tagged_division_of cbox $(-b)(-a)$
and fine: $(\lambda x$. uminus' $\gamma(-x))$ fine \mathcal{D} for $f \mathcal{D}$
proof -
have $1:(\lambda(x, K) .(-x$, uminus ' $K))$ ' \mathcal{D} tagged_partial_division_of cbox a b
if \mathcal{D} tagged_partial_division_of cbox $(-b)(-a)$
proof -
have $-y \in$ cbox ab
if $\wedge x K .(x, K) \in \mathcal{D} \Longrightarrow x \in K \wedge K \subseteq \operatorname{cbox}(-b)(-a) \wedge(\exists a b . K=$ cbox a b)

$$
(x, Y) \in \mathcal{D} y \in Y \text { for } x Y y
$$

proof -
have $y \in$ uminus ' cbox a b
using that by auto
then show $-y \in$ cbox $a b$
by force
qed
with that show ?thesis
by (fastforce simp: tagged_partial_division_of_def interior_negations im-
age_iff)

qed

have 2: $\exists K .\left(\exists x .(x, K) \in(\lambda(x, K) .(-x\right.$, uminus ' $\left.K)){ }^{\prime} \mathcal{D}\right) \wedge x \in K$
if $\bigcup\{K . \exists x .(x, K) \in \mathcal{D}\}=\operatorname{cbox}(-b)(-a) x \in c b o x a b$ for x
proof -
have $x m: x \in$ uminus ' $\bigcup\{A . \exists a .(a, A) \in \mathcal{D}\}$
by (simp add: that)
then obtain $a X$ where $-x \in X(a, X) \in \mathcal{D}$
by auto
then show ?thesis
by (metis (no_types, lifting) add.inverse_inverse image_iff pair_imageI)
qed
have 3: $\bigwedge x X y . \llbracket \mathcal{D}$ tagged_partial_division_of cbox $(-b)(-a) ;(x, X) \in \mathcal{D} ;$ $y \in X \rrbracket \Longrightarrow-y \in$ cbox ab
by (metis (no_types, lifting) equation_minus_iff imageE subsetD tagged_partial_division_ofD(3) uminus_interval_vector)
have tag' $^{\prime}:(\lambda(x, K) .(-x$, uminus ' $K))$ ' \mathcal{D} tagged_division_of cbox a b
using tag by (auto simp: tagged_division_of_def dest: 12 3)
have fine': γ fine $(\lambda(x, K) .(-x$, uminus ' $K))$ ' \mathcal{D}
using fine by (fastforce simp: fine_def)
have inj: inj_on $(\lambda(x, K) .(-x$, uminus ' $K)) \mathcal{D}$
unfolding inj_on_def by force
have eq: content (uminus ' I) $=$ content I
if $I:(x, I) \in \mathcal{D}$ and $f n z: f(-x) \neq 0$ for $x I$
proof -
obtain $a b$ where $I=$ cbox $a b$
using tag I that by (force simp: tagged_division_of_def tagged_partial_division_of_def)
then show ?thesis
using content_image_affinity_cbox $[o f-10]$ by auto
qed
have $\left(\sum(x, K) \in(\lambda(x, K) .(-x\right.$, uminus ' $K))$ ' \mathcal{D}. content $\left.K *_{R} f x\right)=$ $\left(\sum(x, K) \in \mathcal{D}\right.$. content $\left.K *_{R} f(-x)\right)$
by (auto simp add: eq sum.reindex [OF inj] intro!: sum.cong)

```
        then show ?thesis
            using \gamma [OF\langlef \inF\rangletag' fine ] integral_reflect
            by (metis (mono_tags,lifting) Henstock_Kurzweil_Integration.integral_cong
comp_apply split_def sum.cong)
    qed
    qed
    show ?thesis
        using assms
        apply (auto simp: equiintegrable_on_def)
    subgoal for f
        by (metis (mono_tags, lifting) comp_apply integrable_eq integrable_reflect)
    using § by fastforce
qed
```


6.27.2 Subinterval restrictions for equiintegrable families

First, some technical lemmas about minimizing a "flat" part of a sum over a division.

```
lemma lemma0:
    assumes \(i \in\) Basis
            shows content (cbox u v) / (interval_upperbound (cbox u v) •i-inter-
val_lowerbound (cbox u v) • i) =
            (if content (cbox uv) \(=0\) then 0
            else \(\prod j \in\) Basis - \{i\}. interval_upperbound \((\) cbox uv) \(\cdot j-\) inter-
val_lowerbound (cbox uv) • j)
proof (cases content (cbox \(u v)=0\) )
    case True
    then show? ?thesis by simp
next
    case False
    then show ?thesis
        using prod.subset_diff [of \{i\} Basis] assms
            by (force simp: content_cbox_if divide_simps split: if_split_asm)
qed
lemma content_division_lemma1:
    assumes div: \(\mathcal{D}\) division_of \(S\) and \(S: S \subseteq\) cbox a \(b\) and \(i: i \in\) Basis
            and \(m t: \bigwedge K . K \in \mathcal{D} \Longrightarrow\) content \(K \neq 0\)
            and disj: \((\forall K \in \mathcal{D} . K \cap\{x . x \cdot i=a \cdot i\} \neq\{ \}) \vee(\forall K \in \mathcal{D} . K \cap\{x . x \cdot\)
\(i=b \cdot i\} \neq\{ \})\)
            shows \((b \cdot i-a \cdot i) *\left(\sum K \in \mathcal{D}\right.\). content \(K /(\) interval_upperbound \(K \cdot i-\)
interval_lowerbound \(K \cdot i)\) )
                \(\leq\) content \((\) cbox a b) (is ?lhs \(\leq ? r h s)\)
proof -
    have finite \(\mathcal{D}\)
        using div by blast
    define extend where
    extend \(\equiv \lambda K\). cbox \(\left(\sum j \in\right.\) Basis. if \(j=i\) then \((a \cdot i) *_{R} i\) else (interval_lowerbound
```

```
\(\left.K \cdot j) *_{R} j\right)\)
                ( \(\sum j \in\) Basis. if \(j=i\) then \((b \cdot i) *_{R} i\) else (interval_upperbound
\(\left.K \cdot j) *_{R} j\right)\)
    have div_subset_cbox: \(\bigwedge K . K \in \mathcal{D} \Longrightarrow K \subseteq\) cbox a \(b\)
    using \(S\) div by auto
    have \(\wedge K . K \in \mathcal{D} \Longrightarrow K \neq\{ \}\)
        using div by blast
    have extend_cbox: \(\bigwedge K . K \in \mathcal{D} \Longrightarrow \exists a b\). extend \(K=c b o x a b\)
        using extend_def by blast
    have extend: extend \(K \neq\{ \}\) extend \(K \subseteq\) cbox ab if \(K: K \in \mathcal{D}\) for \(K\)
    proof -
        obtain \(u v\) where \(K: K=\) cbox \(u v K \neq\{ \} K \subseteq\) cbox a \(b\)
        using \(K\) cbox_division_memE [OF _ div] by (meson div_subset_cbox)
        with \(i\) show extend \(K \subseteq\) cbox ab
        by (auto simp: extend_def subset_box box_ne_empty)
        have \(a \cdot i \leq b \cdot i\)
        using \(K\) by (metis bot.extremum_uniqueI box_ne_empty(1) i)
        with \(K\) show extend \(K \neq\{ \}\)
        by (simp add: extend_def i box_ne_empty)
    qed
    have int_extend_disjoint:
        interior \((\) extend K1 \() \cap\) interior \((\) extend K2 \()=\{ \}\) if \(K: K 1 \in \mathcal{D} K 2 \in \mathcal{D} K 1\)
\(\neq K 2\) for \(K 1 K 2\)
    proof -
        obtain \(u v\) where \(K 1\) : \(K 1=\) cbox \(u v K 1 \neq\{ \} K 1 \subseteq\) cbox a \(b\)
        using \(K\) cbox_division_memE [OF_div] by (meson div_subset_cbox)
        obtain \(w z\) where \(K 2: K 2=c b o x w z K 2 \neq\{ \} K 2 \subseteq\) cbox a \(b\)
            using \(K\) cbox_division_memE [OF _ div] by (meson div_subset_cbox)
        have cboxes: cbox \(u v \in \mathcal{D}\) cbox \(w z \in \mathcal{D}\) cbox \(u v \neq\) cbox \(w z\)
            using K1 K2 that by auto
        with div have interior \((\operatorname{cbox} u v) \cap\) interior \((\operatorname{cbox} w z)=\{ \}\)
        by blast
    moreover
    have \(\exists x . x \in\) box \(u v \wedge x \in\) box \(w z\)
            if \(x \in\) interior (extend K1) \(x \in\) interior (extend K2) for \(x\)
        proof -
            have \(a \cdot i<x \cdot i x \cdot i<b \cdot i\)
                and \(u x: \bigwedge k . k \in\) Basis \(-\{i\} \Longrightarrow u \cdot k<x \cdot k\)
                and \(x v: \bigwedge k . k \in\) Basis \(-\{i\} \Longrightarrow x \cdot k<v \cdot k\)
                and \(w x: \bigwedge k . k \in\) Basis \(-\{i\} \Longrightarrow w \cdot k<x \cdot k\)
                and \(x z: \bigwedge k . k \in\) Basis \(-\{i\} \Longrightarrow x \cdot k<z \cdot k\)
                using that K1 K2 \(i\) by (auto simp: extend_def box_ne_empty mem_box)
            have box \(u v \neq\{ \}\) box \(w z \neq\{ \}\)
                using cboxes interior_cbox by (auto simp: content_eq_0_interior dest: mt)
            then obtain \(q s\)
                where \(q: \bigwedge k . k \in\) Basis \(\Longrightarrow w \cdot k<q \cdot k \wedge q \cdot k<z \cdot k\)
                    and \(s: \bigwedge k . k \in\) Basis \(\Longrightarrow u \cdot k<s \cdot k \wedge s \cdot k<v \cdot k\)
            by (meson all_not_in_conv mem_box(1))
        show ?thesis using disj
```


proof

assume $\forall K \in \mathcal{D} . K \cap\{x . x \cdot i=a \cdot i\} \neq\{ \}$
then have uva: $($ cbox $u v) \cap\{x . x \cdot i=a \cdot i\} \neq\{ \}$
and $w z a:($ cbox $w z) \cap\{x . x \cdot i=a \cdot i\} \neq\{ \}$
using cboxes by (auto simp: content_eq_0_interior)
then obtain $r t$ where $r \cdot i=a \cdot i$ and $r: \bigwedge k . k \in$ Basis $\Longrightarrow w \cdot k \leq r$ - $k \wedge r \cdot k \leq z \cdot k$
and $t \cdot i=a \cdot i$ and $t: \bigwedge k . k \in$ Basis $\Longrightarrow u \cdot k \leq t \cdot k \wedge t \cdot$
$k \leq v \cdot k$
by (fastforce simp: mem_box)
have $u: u \cdot i<q \cdot i$
using $i K 2(1) K 2(3)\langle t \cdot i=a \cdot i\rangle q s t[O F i]$ by (force simp: subset_box)
have $w: w \cdot i<s \cdot i$
using $i K 1(1) K 1(3)\langle r \cdot i=a \cdot i\rangle s r[O F i]$ by (force simp: subset_box)
define ξ where $\xi \equiv\left(\sum j \in\right.$ Basis. if $j=i$ then $\min (q \cdot i)(s \cdot i) *_{R} i$ else $\left.(x \cdot j) *_{R} j\right)$
have $[$ simp $]: \xi \cdot j=($ if $j=i$ then $\min (q \cdot j)(s \cdot j)$ else $x \cdot j)$ if $j \in$ Basis for j

unfolding ξ_{-}def

by (intro sum_if_inner that $\langle i \in$ Basis $)$
show ?thesis
proof (intro exI conjI)
have $\min (q \cdot i)(s \cdot i)<v \cdot i$
using $i s$ by fastforce
with $\langle i \in$ Basis s u ux $x v$
show $\xi \in$ box $u v$
by (force simp: mem_box)
have $\min (q \cdot i)(s \cdot i)<z \cdot i$
using $i q$ by force
with $\langle i \in$ Basis \downarrow w wx $x z$
show $\xi \in$ box $w z$
by (force simp: mem_box)
qed
next
assume $\forall K \in \mathcal{D} . K \cap\{x . x \cdot i=b \cdot i\} \neq\{ \}$
then have uva: $($ cbox $u v) \cap\{x . x \cdot i=b \cdot i\} \neq\{ \}$
and wza: $($ cbox wz) $\cap\{x . x \cdot i=b \cdot i\} \neq\{ \}$
using cboxes by (auto simp: content_eq_0_interior)
then obtain $r t$ where $r \cdot i=b \cdot i$ and $r: \bigwedge k . k \in$ Basis $\Longrightarrow w \cdot k \leq r$ - $k \wedge r \cdot k \leq z \cdot k$
and $t \cdot i=b \cdot i$ and $t: \bigwedge k . k \in$ Basis $\Longrightarrow u \cdot k \leq t \cdot k \wedge t \cdot$
$k \leq v \cdot k$
by (fastforce simp: mem_box)
have $z: s \cdot i<z \cdot i$
using $K 1(1) K 1(3)\langle r \cdot i=b \cdot i\rangle r[O F i] i s$ by (force simp: subset_box)
have $v: q \cdot i<v \cdot i$
using K2(1)K2(3) $\langle t \cdot i=b \cdot i\rangle t[O F i] i q$ by (force simp: subset_box)
define ξ where $\xi \equiv\left(\sum j \in\right.$ Basis. if $j=i$ then $\max (q \cdot i)(s \cdot i) *_{R} i$ else $\left.(x \cdot j) *_{R} j\right)$
have $[$ simp $]: \xi \cdot j=($ if $j=i$ then $\max (q \cdot j)(s \cdot j)$ else $x \cdot j)$ if $j \in$ Basis for j
unfolding $\xi_{-} d e f$
by (intro sum_if_inner that $\langle i \in$ Basis $\rangle)$
show ?thesis
proof (intro exI conjI)
show $\xi \in b o x u v$
using $\langle i \in$ Basis〉s by (force simp: mem_box ux v xv)
show $\xi \in$ box $w z$
using $\langle i \in$ Basis \rangle by (force simp: mem_box wx xz z)
qed
qed
qed
ultimately show ?thesis by auto
qed
define interv_diff where interv_diff $\equiv \lambda K$. $\lambda i::^{\prime}$ a. interval_upperbound $K \cdot i-$ interval_lowerbound $K \cdot i$
have ?lhs $=\left(\sum K \in \mathcal{D} .(b \cdot i-a \cdot i) *\right.$ content $K /($ interv_diff $\left.K i)\right)$
by (simp add: sum_distrib_left interv_diff_def)
also have $\ldots=\operatorname{sum}($ content \circ extend) \mathcal{D}
proof (rule sum.cong [OF refi])
fix K assume $K \in \mathcal{D}$
then obtain $u v$ where $K: K=$ cbox $u v$ cbox $u v \neq\{ \} K \subseteq$ cbox ab
using cbox_division_memE [OF _ div] div_subset_cbox by metis
then have $u v: u \cdot i<v \cdot i$
using $m t[O F\langle K \in \mathcal{D}\rangle]\langle i \in$ Basis \rangle content_eq_0 by fastforce
have insert $i($ Basis $\cap-\{i\})=$ Basis
using $\langle i \in$ Basis \rangle by auto
then have $(b \cdot i-a \cdot i) *$ content $K /($ interv_diff $K i)$

$$
=(b \cdot i-a \cdot i) *\left(\prod i \in \text { insert } i(\text { Basis } \cap-\{i\}) . v \cdot i-u \cdot i\right) /
$$

(interv_diff $(c b o x u v) i)$
using K box_ne_empty(1) content_cbox by fastforce
also have $\ldots=\left(\prod x \in\right.$ Basis. if $x=i$ then $b \cdot x-a \cdot x$
else (interval_upperbound (cbox $u v$) - interval_lowerbound (cbox
$u v)) \cdot x$
using $\langle i \in$ Basis〉K uv by (simp add: prod.If_cases interv_diff_def) (simp add: algebra_simps)
also have $\ldots=\left(\prod k \in\right.$ Basis.
$\left(\sum j \in\right.$ Basis. if $j=i$ then $(b \cdot i-a \cdot i) *_{R} i$
else ((interval_upperbound (cbox uv) - interval_lowerbound
$\left.\left.(\operatorname{cbox} u v)) \cdot j) *_{R} j\right) \cdot k\right)$
using $\langle i \in$ Basis \rangle by (subst prod.cong [OF refl sum_if_inner]; simp)
also have $\ldots=\left(\prod k \in\right.$ Basis.
($\sum j \in$ Basis. if $j=i$ then $(b \cdot i) *_{R}$ i else (interval_upperbound
$\left.(\operatorname{cbox} u v) \cdot j) *_{R} j\right) \cdot k-$
($\sum j \in$ Basis. if $j=i$ then $(a \cdot i) *_{R} i$ else (interval_lowerbound
$($ cbox $\left.\left.u v) \cdot j) *_{R} j\right) \cdot k\right)$
using $\langle i \in$ Basis \rangle
by (intro prod.cong [OF refl]) (subst sum_if_inner; simp add: algebra_simps)+

```
    also have ... = (content }\circ\mathrm{ extend) K
    using <i \in Basis` K box_ne_empty }\langleK\in\mathcal{D}\rangle\mathrm{ extend(1)
    by (auto simp add: extend_def content_cbox_if)
    finally show (b • i - a \cdoti)* content K / (interv_diff K i) = (content \circ
extend) K .
    qed
    also have ... = sum content (extend ' }\mathcal{D}
    proof -
        have }\llbracketK1\in\mathcal{D};K2\in\mathcal{D};K1\not=K2; extend K1 = extend K2\rrbracket\Longrightarrow conten
(extend K1) = 0 for K1 K2
    using int_extend_disjoint [of K1 K2] extend_def by (simp add: content_eq_0_interior)
        then show ?thesis
        by (simp add: comm_monoid_add_class.sum.reindex_nontrivial [OF <finite \mathcal{D}\])
    qed
    also have ... \leq?rhs
    proof (rule subadditive_content_division)
        show extend ' \mathcal{ division_of }\bigcup\mathrm{ (extend ' }\mathcal{D})
            using int_extend_disjoint by (auto simp:division_of_def〈finite \mathcal{D}}\mathrm{ 〉 extend
extend_cbox)
        show \(extend '\mathcal{D})\subseteqcbox a b
            using extend by fastforce
    qed
    finally show ?thesis .
qed
```

proposition sum_content_area_over_thin_division:
assumes div: \mathcal{D} division_of S and $S: S \subseteq c b o x a b$ and $i: i \in$ Basis
and $a \cdot i \leq c c \leq b \cdot i$
and nonmt: $\bigwedge K . K \in \mathcal{D} \Longrightarrow K \cap\{x . x \cdot i=c\} \neq\{ \}$
shows $(b \cdot i-a \cdot i) *\left(\sum K \in \mathcal{D}\right.$. content $K /$ (interval_upperbound $K \cdot i-$ interval_lowerbound $K \cdot i$))
$\leq 2 * \operatorname{content}($ cbox a b)
proof (cases content (cbox ab) $=0$)
case True
have ($\sum K \in \mathcal{D}$. content $K /\left(\right.$ interval_upperbound $K \cdot i-i n t e r v a l _l o w e r b o u n d ~ K$

- $i))=0$
using S div by (force intro!: sum.neutral content_0_subset [OF True])
then show ?thesis
by (auto simp: True)
next
case False
then have content (cbox ab) >0
using zero_less_measure_iff by blast
then have $a \cdot i<b \cdot i$ if $i \in$ Basis for i
using content_pos_lt_eq that by blast
have finite \mathcal{D}
using div by blast
define Dlec where Dlec $\equiv\{L \in(\lambda L . L \cap\{x . x \cdot i \leq c\})$ ' \mathcal{D}. content $L \neq 0\}$
define Dgec where Dgec $\equiv\{L \in(\lambda L . L \cap\{x . x \cdot i \geq c\})$＇ \mathcal{D} ．content $L \neq 0\}$
define a^{\prime} where $a^{\prime} \equiv\left(\sum j \in\right.$ Basis．（if $j=i$ then c else $\left.a \cdot j\right) *_{R} j$ ）
define b^{\prime} where $b^{\prime} \equiv\left(\sum j \in\right.$ Basis．（if $j=i$ then c else $\left.b \cdot j\right) *_{R} j$ ）
define interv＿diff where interv＿diff $\equiv \lambda K$ ．$\lambda i::{ }^{\prime} a$ ．interval＿upperbound $K \cdot i-$ interval＿lowerbound $K \cdot i$
have Dlec＿cbox：$\bigwedge K . K \in D l e c \Longrightarrow \exists a b . K=c b o x a b$
using interval＿split［OF i］div by（fastforce simp：Dlec＿def division＿of＿def）
then have lec＿is＿cbox：\llbracket content $(L \cap\{x . x \cdot i \leq c\}) \neq 0 ; L \in \mathcal{D} \rrbracket \Longrightarrow \exists a b . L$
$\cap\{x . x \cdot i \leq c\}=c b o x a b$ for L
using Dlec＿def by blast
have Dgec＿cbox：$\bigwedge K . K \in D g e c \Longrightarrow \exists a b . K=c b o x a b$
using interval＿split［OF i］div by（fastforce simp：Dgec＿def division＿of＿def）
then have gec＿is＿cbox：\llbracket content $(L \cap\{x . x \cdot i \geq c\}) \neq 0 ; L \in \mathcal{D} \rrbracket \Longrightarrow \exists a b . L$ $\cap\{x . x \cdot i \geq c\}=c b o x a b$ for L using Dgec＿def by blast
have zero＿left：$\bigwedge x y . \llbracket x \in \mathcal{D} ; y \in \mathcal{D} ; x \neq y ; x \cap\{x . x \cdot i \leq c\}=y \cap\{x . x \cdot i$ $\leq c\} \rrbracket$

$$
\Longrightarrow \text { content }(y \cap\{x . x \cdot i \leq c\})=0
$$

by（metis division＿split＿left＿inj［OF div］lec＿is＿cbox content＿eq＿0＿interior）
have zero＿right：$\bigwedge x y . \llbracket x \in \mathcal{D} ; y \in \mathcal{D} ; x \neq y ; x \cap\{x . c \leq x \cdot i\}=y \cap\{x . c$ $\leq x \cdot i\} \rrbracket$
\Longrightarrow content $(y \cap\{x . c \leq x \cdot i\})=0$
by（metis division＿split＿right＿inj［OF div］gec＿is＿cbox content＿eq＿0＿interior）
have $\left(b^{\prime} \cdot i-a \cdot i\right) *\left(\sum K \in\right.$ Dlec．content $K /$ interv＿diff $\left.K i\right) \leq \operatorname{content}(c b o x$ $a b^{\prime}$ ）
unfolding interv＿diff＿def
proof（rule content＿division＿lemma1）
show Dlec division＿of \bigcup Dlec
unfolding division＿of＿def
proof（intro conjI ballI Dlec＿cbox）
show $\bigwedge K 1$ K2．$\llbracket K 1 \in$ Dlec $; K 2 \in$ Dlec $\rrbracket \Longrightarrow K 1 \neq K 2 \longrightarrow$ interior $K 1 \cap$ interior $K 2=\{ \}$
by（clarsimp simp：Dlec＿def）（use div in auto）
qed（use 〈finite \mathcal{D} 〉Dlec＿def in auto）
show \bigcup Dlec \subseteq cbox a b^{\prime}
using Dlec＿def div S by（auto simp：b^{\prime}＿def division＿of＿def mem＿box）
show $(\forall K \in$ Dlec．$K \cap\{x . x \cdot i=a \cdot i\} \neq\{ \}) \vee(\forall K \in$ Dlec．$K \cap\{x . x \cdot i=$ $\left.\left.b^{\prime} \cdot i\right\} \neq\{ \}\right)$
using nonmt by（fastforce simp：Dlec＿def b^{\prime}＿def i ）
qed（use i Dlec＿def in auto）
moreover
have $\left(\sum K \in\right.$ Dlec．content $K /($ interv＿diff $\left.K i)\right)=\left(\sum K \in(\lambda K . K \cap\{x . x \cdot i\right.$ $\leq c\})$＇ \mathcal{D} ．content $K /$ interv＿diff $K i)$
unfolding Dlec＿def using 〈finite \mathcal{D} 〉 by（auto simp：sum．mono＿neutral＿left）
moreover have ．．．$=$
$\left(\sum K \in \mathcal{D} .((\lambda K\right.$. content $K /($ interv＿diff $K i)) \circ((\lambda K . K \cap\{x . x \cdot i \leq$ c\}))) K ）

```
    by (simp add: zero_left sum.reindex_nontrivial \([\) OF 〈finite \(\mathcal{D}\rangle]\) )
    moreover have \(\left(b^{\prime} \cdot i-a \cdot i\right)=(c-a \cdot i)\)
    by ( \(\operatorname{simp}\) add: \(\left.b^{\prime}{ }_{-} d e f i\right)\)
    ultimately
    have lec: \((c-a \cdot i) *\left(\sum K \in \mathcal{D} .((\lambda K\right.\). content \(K /(\) interv_diff \(K i)) \circ((\lambda K\).
\(K \cap\{x \cdot x \cdot i \leq c\}))) K\) )
            \(\leq\) content (cbox a \(b^{\prime}\) )
    by \(\operatorname{simp}\)
```

 have \(\left(b \cdot i-a^{\prime} \cdot i\right) *\left(\sum K \in D g e c\right.\). content \(K /(\) interv_diff \(\left.K i)\right) \leq \operatorname{content}(c b o x\)
 $a^{\prime} b$)
unfolding interv_diff_def
proof (rule content_division_lemma1)
show Dgec division_of \bigcup Dgec
unfolding division_of_def
proof (intro conjI ballI Dgec_cbox)
show $\bigwedge K 1$ K2. $\llbracket K 1 \in$ Dgec $; K 2 \in D g e c \rrbracket \Longrightarrow K 1 \neq K 2 \longrightarrow$ interior $K 1 \cap$
interior $K 2=\{ \}$
by (clarsimp simp: Dgec_def) (use div in auto)
qed (use 〈finite $\mathcal{D}\rangle$ Dgec_def in auto)
show $\bigcup D g e c \subseteq c b o x a^{\prime} b$
using Dgec_def div S by (auto simp: a^{\prime} _def division_of_def mem_box)
show $\left(\forall K \in D\right.$ gec. $\left.K \cap\left\{x . x \cdot i=a^{\prime} \cdot i\right\} \neq\{ \}\right) \vee(\forall K \in D g e c . K \cap\{x . x \cdot i$
$=b \cdot i\} \neq\{ \})$
using nonmt by (fastforce simp: Dgec_def $a^{\prime}{ }^{\prime}$ def i)
qed (use i Dgec_def in auto)
moreover
have $\left(\sum K \in D g e c\right.$. content $K /($ interv_diff $\left.K i)\right)=\left(\sum K \in(\lambda K . K \cap\{x . c \leq x\right.$

- i\}) ' \mathcal{D}.
content K / interv_diff $K i)$
unfolding Dgec_def using (finite \mathcal{D}) by (auto simp: sum.mono_neutral_left)
moreover have ... =
$\left(\sum K \in \mathcal{D} .((\lambda K\right.$. content $K /($ interv_diff $K i)) \circ((\lambda K . K \cap\{x . x \cdot i \geq$
c\}))) K
by (simp add: zero_right sum.reindex_nontrivial $[$ OF 〈finite $\mathcal{D}\rangle])$
moreover have $\left(b \cdot i-a^{\prime} \cdot i\right)=(b \cdot i-c)$
by (simp add: $\left.a^{\prime}{ }_{-} d e f i\right)$
ultimately
have gec: $(b \cdot i-c) *\left(\sum K \in \mathcal{D} .((\lambda K\right.$. content $K /($ interv_diff $K i)) \circ((\lambda K$.
$K \cap\{x . x \cdot i \geq c\}))) K$)
\leq content $\left(\right.$ cbox $\left.a^{\prime} b\right)$
by simp
show ?thesis
proof $($ cases $c=a \cdot i \vee c=b \cdot i)$
case True
then show ?thesis
proof
assume $c: c=a \cdot i$

moreover

have $\left(\sum j \in\right.$ Basis. $($ if $j=i$ then $a \cdot i$ else $\left.a \cdot j) *_{R} j\right)=a$
using euclidean_representation [of a] sum.cong [OF refl, of Basis λi. ($a \cdot$
i) $*_{R}$ i] by presburger
ultimately have $a^{\prime}=a$
by (simp add: i $a^{\prime}{ }_{-}$def cong: if_cong)
then have content (cbox $\left.a^{\prime} b\right) \leq 2 *$ content $($ cbox a b) by simp
moreover
have eq: $\left(\sum K \in \mathcal{D}\right.$. content $(K \cap\{x . a \cdot i \leq x \cdot i\}) /$ interv_diff $(K \cap\{x$. $a \cdot i \leq x \cdot i\}) i)$
$=\left(\sum K \in \mathcal{D}\right.$. content $K /$ interv_diff $\left.K i\right)$
(is sum ? $f_{-}=s u m ? g_{-}$)
proof (rule sum.cong [OF refl])
fix K assume $K \in \mathcal{D}$
then have $a \cdot i \leq x \cdot i$ if $x \in K$ for x
by (metis S UnionI div division_ofD (6) i mem_box(2) subsetCE that)
then have $K \cap\{x . a \cdot i \leq x \cdot i\}=K$
by blast
then show ?f $K=$? $g K$
by simp
qed
ultimately show ?thesis
using gec c eq interv_diff_def by auto
next
assume $c: c=b \cdot i$
moreover have $\left(\sum j \in\right.$ Basis. $($ if $j=i$ then $b \cdot i$ else $\left.b \cdot j) *_{R} j\right)=b$
using euclidean_representation [of b] sum.cong [OF refl, of Basis $\lambda i .(b \cdot i)$
$\left.*_{R} i\right]$ by presburger
ultimately have $b^{\prime}=b$
by (simp add: i b^{\prime} _def cong: if_cong)
then have content (cbox a b^{\prime}) $\leq 2 *$ content (cbox ab) by simp moreover
have eq: $\left(\sum K \in \mathcal{D}\right.$. content $(K \cap\{x . x \cdot i \leq b \cdot i\}) /$ interv_diff $(K \cap\{x . x$ - $i \leq b \cdot i\}) ~ i)$
$=\left(\sum K \in \mathcal{D}\right.$. content $K /$ interv_diff $\left.K i\right)$
(is sum ? $f_{-}=s u m ? g g_{-}$)
proof (rule sum.cong [OF refl])
fix K assume $K \in \mathcal{D}$
then have $x \cdot i \leq b \cdot i$ if $x \in K$ for x
by (metis S UnionI div division_ofD (6) i mem_box(2) subsetCE that)
then have $K \cap\{x . x \cdot i \leq b \cdot i\}=K$
by blast
then show ?f $K=$? $g K$
by simp
qed
ultimately show ?thesis
using lec c eq interv_diff_def by auto
qed
next

```
    case False
    have prod_if:(\prodk\inBasis \cap-{i}.fk)=(\prodk\inBasis. f k)/fi if fi\not=
(0::real) for }
    proof -
    have fi * prod f(Basis \cap-{i})= prod f Basis
            using that mk_disjoint_insert [OF i]
                    by (metis Int_insert_left_if0 finite_Basis finite_insert le_iff_inf order_refl
prod.insert subset_Compl_singleton)
            then show ?thesis
            by (metis nonzero_mult_div_cancel_left that)
    qed
    have abc:a • i<c c< b . i
        using False assms by auto
    then have (\sumK\in\mathcal{D}.((\lambdaK. content K / (interv_diff K i)) ○ (( }\lambdaK.K\cap{x.
- i 
                \leq content(cbox a b
                    (\sumK\in\mathcal{D}.((\lambdaK. content K / (interv_diff K i)) ○ ((\lambdaK.K \cap{x.x . i
\geqc})))K
                        \leqcontent(cbox a'b)/(b - i-c)
        using lec gec by (simp_all add: field_split_simps)
    moreover
    have (\sumK\in\mathcal{D}.content K / (interv_diff K i))
        \leq (\sumK\in\mathcal{D}.((\lambdaK. content K/( interv_diff K i)) \circ((\lambdaK.K\cap{x.x .i
sc})))}\overline{K
            (\sumK\in\mathcal{D}.((\lambdaK.content K / (interv_diff K i)) ○((\lambdaK.K\cap{x.x •i\geq
c}))) K)
            (is ?lhs \leq?rhs)
    proof -
        have ?lhs \leq
            (\sumK\in\mathcal{D}.((\lambdaK. content K / (interv_diff K i)) \circ((\lambdaK.K \cap {x.x • i\leq
c}))) K+
                            ((\lambdaK. content K / (interv_diff K i))\circ((\lambdaK.K\cap{x.x •i\geqc})))
K)
            (is sum ?f _ \leq sum ?g _)
        proof (rule sum_mono)
            fix }K\mathrm{ assume }K\in\mathcal{D
            then obtain }uv\mathrm{ where uv: K=cbox uv
            using div by blast
```



```
                            cbox uv\cap{x.c\leqx 识 cbox u'v
                            \k.k\in Basis \Longrightarrow u'}\cdotk=(\mathrm{ if }k=i\mathrm{ then max ( }u\cdoti)
else u}\cdotk
                                    \k.k B Basis \Longrightarrow v'}\cdotk=(ifk=i then min (v | i) 
else v}\cdotk
            using i by (auto simp: interval_split)
            have *:\llbracketcontent (cbox u v
(cbox u v) =0
            content (cbox u'v)\not=0\Longrightarrow content (cbox u v)\not=0
            content (cbox u v
```

using $i u v u^{\prime}$ by (auto simp: content_eq_0 le_max_iff_disj min_le_iff_disj split: if_split_asm intro: order_trans)
have uniq: $\bigwedge j . \llbracket j \in$ Basis; $\neg u \cdot j \leq v \cdot j \rrbracket \Longrightarrow j=i$
by (metis $\langle K \in \mathcal{D}\rangle$ box_ne_empty (1) div division_of_def uv)
show ?f $K \leq$?g K
using i uv $u v^{\prime}$ by (auto simp add: interv_diff_def lemma0 dest: uniq * intro!: prod_nonneg)
qed
also have $\ldots=$? r hs
by (simp add: sum.distrib)
finally show ?thesis .
qed
moreover have content $\left(\right.$ cbox $\left.a b^{\prime}\right) /(c-a \cdot i)=$ content $(c b o x a b) /(b \cdot i$ $-a \cdot i)$
using $i a b c$
apply (simp add: field_simps a^{\prime} _def b^{\prime} _def measure_lborel_cbox_eq inner_diff)
apply (auto simp: if_distrib if_distrib [of $\lambda f . f x$ for x] prod.If_cases [of Basis
$\lambda x . x=i$, simplified] prod_if field_simps)
done
moreover have content $\left(\right.$ cbox $\left.a^{\prime} b\right) /(b \cdot i-c)=$ content $(c b o x a b) /(b \cdot i$ $-a \cdot i)$
using $i a b c$
apply (simp add: field_simps $a^{\prime}{ }_{-}$def b^{\prime} _def measure_lborel_cbox_eq inner_diff)
apply (auto simp: if_distrib prod.If_cases [of Basis $\lambda x . x=i$, simplified]
prod_if field_simps)

done

ultimately
have $\left(\sum K \in \mathcal{D}\right.$. content $K /($ interv_diff $\left.K i)\right) \leq 2 *$ content $(\operatorname{cbox} a b) /(b$. $i-a \cdot i)$
by linarith
then show?thesis using abc interv_diff_def by (simp add: field_split_simps)
qed
qed
proposition bounded_equiintegral_over_thin_tagged_partial_division:
fixes $f::$ 'a::euclidean_space \Rightarrow 'b::euclidean_space
assumes F : F equiintegrable_on cbox a b and $f: f \in F$ and $0<\varepsilon$
and norm_f: $\bigwedge h x . \llbracket h \in F ; x \in \operatorname{cbox} a b \rrbracket \Longrightarrow \operatorname{norm}(h x) \leq \operatorname{norm}(f x)$
obtains γ where gauge γ
^ciSh. $\llbracket c \in$ cbox a b; i \in Basis; S tagged_partial_division_of cbox ab; γ fine $S ; h \in F ; \bigwedge x K .(x, K) \in S \Longrightarrow(K \cap\{x . x \cdot i=c \cdot$
$i\} \neq\{ \}) \rrbracket$

$$
\Longrightarrow\left(\sum(x, K) \in S . \text { norm }(\text { integral } K h)\right)<\varepsilon
$$

proof (cases content (cbox ab) $=0$)
case True
show ?thesis
proof

```
    show gauge ( }\lambdax\mathrm{ . ball x 1)
    by (simp add: gauge_trivial)
    show (\sum(x,K) \inS.norm (integral K h))}<
        if S tagged_partial_division_of cbox a b (\lambdax.ball x 1) fine S for S and h::
' }a>>'\mp@code{'
    proof -
        have}(\sum(x,K)\inS.norm (integral K h)) =
        using that True content_0_subset
        by (fastforce simp: tagged_partial_division_of_def intro: sum.neutral)
    with }\langle0<\varepsilon\rangle\mathrm{ show ?thesis
        by simp
    qed
    qed
next
    case False
    then have contab_gt0: content(cbox a b)>0
        by (simp add: zero_less_measure_iff)
    then have a_less_b: \bigwedgei. i G Basis \Longrightarrowa}\=i<b\cdot
        by (auto simp: content_pos_lt_eq)
    obtain }\gamma0\mathrm{ where gauge }\gamma
                and \gamma0:\S h. \llbracketS tagged_partial_division_of cbox a b; \gamma0 fine S;h }\inF
                                    \Longrightarrow(\sum(x,K) \inS. norm (content K** hx - integral K
h))<\varepsilon/2
    proof -
        obtain }\gamma\mathrm{ where gauge }
                        and }\gamma:\bigwedgef\mathcal{D}.\llbracketf\inF;\mathcal{D}\mathrm{ tagged_division_of cbox a b; }\gamma\mathrm{ fine }\mathcal{D}
                        norm}((\sum(x,K)\in\mathcal{D}.content K * *R f x) - integral
(cbox a b) f)
                        <\varepsilon/(5*(Suc DIM('b)))
    proof -
        have e5: \varepsilon/(5*(Suc DIM('b))) > 0
        using <\varepsilon> 0\rangle by auto
        then show ?thesis
        using F that by (auto simp: equiintegrable_on_def)
    qed
    show ?thesis
    proof
        show gauge }
        by (rule <gauge \gamma>)
        show }(\sum(x,K)\inS.norm (content K *R h x - integral Kh)) < </2
            if S tagged_partial_division_of cbox a b \gamma fine Sh\inF for Sh
        proof -
        have (\sum(x,K) \inS.norm (content K *R h x - integral Kh)) \leq2 * real
DIM('b) * (\varepsilon/(5 * Suc DIM('b)))
        proof (rule Henstock_lemma_part2 [of habl)
            show h integrable_on cbox a b
                using that F equiintegrable_on_def by metis
            show gauge \gamma
                by (rule \gauge \gamma`)
```

```
        qed (use that }\langle\varepsilon>0\rangle\gamma\mathrm{ in auto)
        also have ...<\varepsilon/2
            using <\varepsilon> 0\rangle by (simp add: divide_simps)
            finally show ?thesis.
        qed
        qed
    qed
    define }\gamma\mathrm{ where }\gamma\equiv\lambdax.\gamma0x
                        ball x ((\varepsilon/8 / (norm(fx) + 1))*(INF m\inBasis.b •m-a
```

- m) / content(cbox ab))
define interv_diff where interv_diff $\equiv \lambda K$. $\lambda i::^{\prime} a$. interval_upperbound $K \cdot i-$
interval_lowerbound $K \cdot i$
have $8 *$ content $($ cbox ab) $+\operatorname{norm}(f x) *(8 *$ content $($ cbox ab)) >0 for x
by (metis add.right_neutral add_pos_pos contab_gt0 mult_pos_pos mult_zero_left
norm_eq_zero zero_less_norm_iff zero_less_numeral)
then have gauge (λx. ball x
$(\varepsilon *($ INF $m \in$ Basis. $b \cdot m-a \cdot m) /((8 * \operatorname{norm}(f x)+8) *$
content (cbox a b))))
using $\left\langle 0<\mathrm{content}(\right.$ cbox a b) $\rangle\langle 0<\varepsilon\rangle a_{-} l e s s _b$
by (auto simp add: gauge_def field_split_simps add_nonneg_eq_0_iff finite_less_Inf_iff)
then have gauge γ
unfolding γ_{-}def using $\langle g a u g e ~ \gamma 0\rangle$ gauge_Int by auto
moreover
have $\left(\sum(x, K) \in S\right.$. norm (integral $\left.\left.K h\right)\right)<\varepsilon$
if $c \in$ cbox a b $i \in$ Basis and $S: S$ tagged_partial_division_of cbox ab
and γ fine $S h \in F$ and $n e: \bigwedge x K .(x, K) \in S \Longrightarrow K \cap\{x . x \cdot i=c \cdot$
$i\} \neq\{ \}$ for $c i S h$
proof -
have cbox $c b \subseteq$ cbox $a b$
by (meson mem_box(2) order_refl subset_box(1) that(1))
have finite S
using S unfolding tagged_partial_division_of_def by blast
have $\gamma 0$ fine S and fineS:
$(\lambda x$. ball $x(\varepsilon *($ INF $m \in$ Basis. $b \cdot m-a \cdot m) /((8 * \operatorname{norm}(f x)+8) *$
content (cbox a b)))) fine S
using $\langle\gamma$ fine $S\rangle$ by (auto simp: γ_{-}def fine_Int)
then have $\left(\sum(x, K) \in S\right.$. norm $\left(\right.$ content $K *_{R} h x-$ integral $\left.\left.K h\right)\right)<\varepsilon / 2$
by (intro $\gamma 0$ that fine S)
moreover have $\left(\sum(x, K) \in S\right.$. norm (integral $K h$) - norm (content $K *_{R} h$
$x-$ integral $K h)) \leq \varepsilon / 2$
proof -
have $\left(\sum(x, K) \in S\right.$. norm (integral $\left.K h\right)$ - norm (content $K *_{R} h x-$
integral $K h)$)
$\leq\left(\sum(x, K) \in S\right.$. norm $\left(\right.$ content $\left.\left.K *_{R} h x\right)\right)$
proof (clarify intro!: sum_mono)
fix $x K$
assume $x K:(x, K) \in S$
have norm (integral $K h$) $-\operatorname{norm}\left(\right.$ content $\left.K *_{R} h x-\operatorname{integral} K h\right) \leq$
norm (integral $K h-\left(\right.$ integral $K h-$ content $\left.K *_{R} h x\right)$)

```
    by (metis norm_minus_commute norm_triangle_ineq2)
    also have ... \leqnorm (content K*R}h\mp@code{x}\mathrm{ )
    by simp
    finally show norm (integral Kh) - norm (content K * 
h) \leqnorm (content K *R hx).
    qed
    also have ...\leq(\sum(x,K)\inS.\varepsilon/4*(b • i-a . i) / content (cbox a b)*
content K / interv_diff K i)
    proof (clarify intro!: sum_mono)
            fix x K
            assume xK:(x,K)\inS
            then have }x:x\incbox a 
            using S unfolding tagged_partial_division_of_def by (meson subset_iff)
            show norm (content K *R hx) \leq\varepsilon/4* (b | i-a | i) / content (cbox a
b) * content K / interv_diff K i
            proof (cases content K=0)
            case True
            then show ?thesis by simp
            next
                case False
            then have Kgt0: content K>0
                using zero_less_measure_iff by blast
            moreover
            obtain }uv\mathrm{ where uv: K= cbox uv
                using S<(x,K) \inS` unfolding tagged_partial_division_of_def by blast
            then have u_less_v: \bigwedgei.i\inBasis \Longrightarrowu
                using content_pos_lt_eq uv Kgt0 by blast
            then have dist_uv: dist uv>0
                using that by auto
            ultimately have norm (hx)\leq(\varepsilon* (b •i-a\cdoti)) / (4* content (cbox
                a b)*interv_diff K i)
            proof -
                have dist x u<\varepsilon*(INF m\inBasis. b •m-a m m) / (4* (norm (f x)
+1)* content (cbox a b))/2
                            dist x v<\varepsilon*(INF m\inBasis. b m m a m m)/(4*(norm (fx) +
1) * content (cbox a b)) / 2
                using fineS u_less_v uv xK
                by (force simp: fine_def mem_box field_simps dest!: bspec)+
            moreover have \varepsilon*(INF m\inBasis. b m - a m m) / (4* (norm (f x)
+1)* content (cbox a b))/2
                \leq\varepsilon*(b\cdoti-a\cdoti)/(4*(norm (fx)+1)* content (cbox a b))
/ 2
            proof (intro mult_left_mono divide_right_mono)
                    show (INF m\inBasis. b \cdot m-a m) \leqb \cdoti-a .i
                    using <i B Basis\rangle by (auto intro!: cInf_le_finite)
            qed (use <0< < in auto)
            ultimately
            have dist xu<\varepsilon*(b\cdoti-a\cdoti)/(4*(norm (fx)+1)* content
(cbox a b)) / 2
```

dist $x v<\varepsilon *(b \cdot i-a \cdot i) /(4 *(\operatorname{norm}(f x)+1) *$ content (cbox ab)) / 2
by linarith +
then have duv: dist $u v<\varepsilon *(b \cdot i-a \cdot i) /(4 *(\operatorname{norm}(f x)+1) *$ content (cbox ab))
using dist_triangle_half_r by blast
have uvi: $|v \cdot i-u \cdot i| \leq \operatorname{norm}(v-u)$
by (metis inner_commute inner_diff_right $\langle i \in$ Basis Basis_le_norm)
have norm ($h x$) $\leq \operatorname{norm}(f x)$
using x that by (auto simp: norm_f)
also have $\ldots<(\operatorname{norm}(f x)+1)$
by simp
also have $\ldots<\varepsilon *(b \cdot i-a \cdot i) / \operatorname{dist} u v /(4 *$ content $(c b o x a b))$
proof -
have $0<\operatorname{norm}(f x)+1$
by (simp add: add.commute add_pos_nonneg)
then show ?thesis
using duv dist_uv contab_gt0
by (simp only: mult_ac divide_simps) auto
qed
also have $\ldots=\varepsilon *(b \cdot i-a \cdot i) / \operatorname{norm}(v-u) /(4 *$ content (cbox $a b)$)
by (simp add: dist_norm norm_minus_commute)
also have $\ldots \leq \varepsilon *(b \cdot i-a \cdot i) /|v \cdot i-u \cdot i| /(4 * \operatorname{content}$ (cbox a b))
proof (intro mult_right_mono divide_left_mono divide_right_mono uvi)
show norm $(v-u) *|v \cdot i-u \cdot i|>0$
using u_less_v [OF $\langle i \in$ Basis \rangle]
by (auto simp: less_eq_real_def zero_less_mult_iff that)
show $\varepsilon *(b \cdot i-a \cdot i) \geq 0$
using a_less_b $\langle 0<\varepsilon\rangle\langle i \in$ Basis \rangle by force
qed auto
also have $\ldots=\varepsilon *(b \cdot i-a \cdot i) /(4 *$ content $($ cbox ab) $*$ interv_diff $\left.K^{i}\right)$
using uv False that(2) u_less_v interv_diff_def by fastforce
finally show ?thesis by simp
qed
with Kgt0 have norm (content $\left.K *_{R} h x\right) \leq$ content $K *((\varepsilon / 4 *(b \cdot i$
$-a \cdot i) /$ content $($ cbox a b)) / interv_diff $K i)$
using mult_left_mono by fastforce
also have $\ldots=\varepsilon / 4 *(b \cdot i-a \cdot i) /$ content $($ cbox ab) \quad content $K /$ interv_diff $K i$
by (simp add: field_split_simps)
finally show? ?hesis .
qed
qed
also have $\ldots=\left(\sum K \in \operatorname{snd}\right.$ ' $S . \varepsilon / 4 *(b \cdot i-a \cdot i) / \operatorname{content}(c b o x a b) *$ content $K /$ interv_diff $K i$)
unfolding interv_diff_def
apply (rule sum.over_tagged_division_lemma [OF tagged_partial_division_of_Union_self [OF S]])
apply (simp add: box_eq_empty(1) content_eq_0)
done
also have $\ldots=\varepsilon / 2 *\left((b \cdot i-a \cdot i) /(2 *\right.$ content $($ cbox $a b)) *\left(\sum K \in \operatorname{snd}\right.$
' S. content $K /$ interv_diff $K i)$)
by (simp add: interv_diff_def sum_distrib_left mult.assoc)
also have $\ldots \leq(\varepsilon / 2) * 1$
proof (rule mult_left_mono)
have $(b \cdot i-a \cdot i) *\left(\sum K \in\right.$ snd ' S. content $K /$ interv_diff $\left.K i\right) \leq 2 *$ content (cbox a b)
unfolding interv_diff_def
proof (rule sum_content_area_over_thin_division)
show snd' S division_of $\bigcup($ snd ' S)
by (auto intro: S tagged_partial_division_of_Union_self division_of_tagged_division)
show $\bigcup($ snd ' $S) \subseteq$ cbox a b
using S unfolding tagged_partial_division_of_def by force
show $a \cdot i \leq c \cdot i c \cdot i \leq b \cdot i$
using mem_box(2) that by blast+
qed (use that in auto)
then show $(b \cdot i-a \cdot i) /(2 * \operatorname{content}(c b o x a b)) *\left(\sum K \in s n d\right.$ ' S.
content $K /$ interv_diff $K i) \leq 1$
by (simp add: contab_gt0)
qed (use $\langle 0<\varepsilon\rangle$ in auto)
finally show ?thesis by simp
qed
then have $\left(\sum(x, K) \in S\right.$. norm (integral $\left.\left.K h\right)\right)-\left(\sum(x, K) \in S\right.$. norm (content $K *_{R} h x-$ integral $\left.\left.K h\right)\right) \leq \varepsilon / 2$
by (simp add: Groups_Big.sum_subtractf [symmetric])
ultimately show $\left(\sum(x, K) \in S\right.$. norm (integral $\left.\left.K h\right)\right)<\varepsilon$
by linarith
qed
ultimately show ?thesis using that by auto
qed
proposition equiintegrable_halfspace_restrictions_le:
fixes f :: 'a::euclidean_space \Rightarrow 'b::euclidean_space
assumes F : F equiintegrable_on cbox a b and $f: f \in F$
and norm_f: $\bigwedge h x . \llbracket h \in F ; x \in \operatorname{cbox} a b \rrbracket \Longrightarrow \operatorname{norm}(h x) \leq \operatorname{norm}(f x)$
shows $(\bigcup i \in$ Basis. $\bigcup c . \bigcup h \in F .\{(\lambda x$. if $x \cdot i \leq c$ then $h x$ else 0$)\})$
equiintegrable_on cbox a b
proof (cases content (cbox ab) $=0$)
case True
then show? ?thesis by simp
next
case False
then have content (cbox ab) >0
using zero_less_measure_iff by blast
then have $a \cdot i<b \cdot i$ if $i \in$ Basis for i
using content_pos_lt_eq that by blast
have int_F: f integrable_on cbox a b if $f \in F$ for f
using F that by (simp add: equiintegrable_on_def)
let ? $C I=\lambda K h x$. content $K *_{R} h x-$ integral $K h$
show ?thesis
unfolding equiintegrable_on_def
proof (intro conjI; clarify)
show int_lec: $\llbracket i \in$ Basis $; h \in F \rrbracket \Longrightarrow(\lambda x$. if $x \cdot i \leq c$ then $h x$ else 0$)$ integrable_on cbox ab for $i c h$
using integrable_restrict_Int $[$ of $\{x . x \cdot i \leq c\} h]$
by (simp add: inf_commute int_F integrable_split(1))
show $\exists \gamma$. gauge $\gamma \wedge$
$(\forall f T . f \in(\bigcup i \in$ Basis. $\bigcup c . \bigcup h \in F .\{\lambda x$. if $x \cdot i \leq c$ then $h x$ else 0$\})$
\wedge
T tagged_division_of cbox ab^ \quad fine $T \longrightarrow$ norm $\left(\left(\sum(x, K) \in T\right.\right.$. content $\left.K *_{R} f x\right)-$ integral $($ cbox a b) $f)$
$<\varepsilon$)
if $\varepsilon>0$ for ε
proof -
obtain $\gamma 0$ where gauge $\gamma 0$ and $\gamma 0$:
$\bigwedge c i S h . \llbracket c \in$ cbox $a b ; i \in$ Basis; S tagged_partial_division_of cbox a b;
$\gamma 0$ fine $S ; h \in F ; \bigwedge x K .(x, K) \in S \Longrightarrow(K \cap\{x . x \cdot i=c \cdot$
$i\} \neq\{ \}) \rrbracket$

$$
\Longrightarrow\left(\sum(x, K) \in S . \text { norm }(\text { integral } K h)\right)<\varepsilon / 12
$$

proof (rule bounded_equiintegral_over_thin_tagged_partial_division [OF F f, of〈 $\varepsilon / 12\rangle]$)
show $\wedge h x . \llbracket h \in F ; x \in \operatorname{cbox}$ a $b \rrbracket \Longrightarrow \operatorname{norm}(h x) \leq \operatorname{norm}(f x)$
by (auto simp: norm_f)
qed (use $\langle\varepsilon>0$ 〉in auto)
obtain $\gamma 1$ where gauge $\gamma 1$
and $\gamma 1: \bigwedge h T . \llbracket h \in F ; T$ tagged_division_of cbox a $b ; \gamma 1$ fine $T \rrbracket$

$$
\Longrightarrow \operatorname{norm}\left(\left(\sum(x, K) \in T . \text { content } K *_{R} h x\right)-\right.\text { integral }
$$

(cbox ab) h)

$$
<\varepsilon /\left(7 *\left(S u c \operatorname{DIM}\left({ }^{\prime} b\right)\right)\right)
$$

proof -
have $e 5: \varepsilon /\left(7 *\left(\right.\right.$ Suc $\left.\left.\operatorname{DIM}\left({ }^{\prime} b\right)\right)\right)>0$
using $\langle\varepsilon>0\rangle$ by auto
then show ?thesis
using F that by (auto simp: equiintegrable_on_def)
qed
have h_less3: $\left(\sum(x, K) \in T\right.$. norm $\left.(? C I K h x)\right)<\varepsilon / 3$
if T tagged_partial_division_of cbox a $b \gamma 1$ fine $T h \in F$ for $T h$
proof -
have $\left(\sum(x, K) \in T\right.$.norm $\left.(? C I K h x)\right) \leq 2 *$ real $\operatorname{DIM}\left({ }^{\prime} b\right) *(\varepsilon /(7 * S u c$ DIM('b)))
proof (rule Henstock_lemma_part2 [of habl)
show h integrable_on cbox ab
using that F equiintegrable_on_def by metis
qed (use that $\langle\varepsilon>0\rangle\langle$ gauge $\gamma 1\rangle \gamma 1$ in auto)
also have ... $<\varepsilon / 3$
using $\langle\varepsilon>0\rangle$ by (simp add: divide_simps)
finally show ?thesis.
qed
have $*$: norm $\left(\left(\sum(x, K) \in T\right.\right.$. content $\left.K *_{R} f x\right)-$ integral $($ cbox a b) f) $<\varepsilon$ if $f: f=(\lambda x$. if $x \cdot i \leq c$ then $h x$ else 0$)$ and T : T tagged_division_of cbox ab
and fine: $(\lambda x . \gamma 0 x \cap \gamma 1 x)$ fine T and $i \in$ Basis $h \in F$ for $f T i c h$
proof (cases $a \cdot i \leq c \wedge c \leq b \cdot i)$
case True
have finite T
using T by blast
define T^{\prime} where $T^{\prime} \equiv\{(x, K) \in T . K \cap\{x . x \cdot i \leq c\} \neq\{ \}\}$
then have $T^{\prime} \subseteq T$
by auto
then have finite T^{\prime}
using 〈finite T 〉infinite_super by blast
have T^{\prime} _tagged: T^{\prime} tagged_partial_division_of cbox a b
by (meson $T\left\langle T^{\prime} \subseteq T\right\rangle$ tagged_division_of_def tagged_partial_division_subset)
have fine ': $\gamma 0$ fine $T^{\prime} \gamma 1$ fine T^{\prime}
using $\left\langle T^{\prime} \subseteq T\right\rangle$ fine_Int fine_subset fine by blast +
have int_KK': $\left(\sum(x, K) \in T\right.$. integral $\left.K f\right)=\left(\sum(x, K) \in T^{\prime}\right.$. integral $\left.K f\right)$
proof (rule sum.mono_neutral_right $\left[O F\langle\right.$ finite $\left.T\rangle\left\langle T^{\prime} \subseteq T\right\rangle\right]$)
show $\forall i \in T-T^{\prime}$. (case i of $(x, K) \Rightarrow$ integral $\left.K f\right)=0$
using $f\langle$ finite $T\rangle\left\langle T^{\prime} \subseteq T\right\rangle$ integral_restrict_Int $[o f-\{x . x \cdot i \leq c\} h]$
by (auto simp: T^{\prime} _def Int_commute)
qed
have $\left(\sum(x, K) \in T\right.$. content $\left.K *_{R} f x\right)=\left(\sum(x, K) \in T^{\prime}\right.$. content $K *_{R} f$
x)
proof (rule sum.mono_neutral_right $\left[O F\langle\right.$ finite $\left.T\rangle\left\langle T^{\prime} \subseteq T\right\rangle\right]$)
show $\forall i \in T-T^{\prime}$. (case i of $(x, K) \Rightarrow$ content $\left.K *_{R} f x\right)=0$
using $T f\langle$ finite $T\rangle\left\langle T^{\prime} \subseteq T\right\rangle$ by (force simp: $T^{\prime}{ }_{-}$def)
qed
moreover have norm $\left(\left(\sum(x, K) \in T^{\prime}\right.\right.$. content $\left.K *_{R} f x\right)$ - integral (cbox
a b) f) $<\varepsilon$

```
    proof -
        have \(*\) : norm \(y<\varepsilon\) if norm \(x<\varepsilon / 3 \operatorname{norm}(x-y) \leq 2 * \varepsilon / 3\) for \(x y\) ::'b
        proof -
        have norm \(y \leq \operatorname{norm} x+\operatorname{norm}(x-y)\)
            by (metis norm_minus_commute norm_triangle_sub)
        also have \(\ldots<\varepsilon / 3+2 * \varepsilon / 3\)
            using that by linarith
        also have \(\ldots=\varepsilon\)
            by \(\operatorname{simp}\)
        finally show ?thesis.
    qed
    have norm \(\left(\sum(x, K) \in T^{\prime}\right.\). ? \(\left.C I K h x\right)\)
```

```
        \leq (\sum(x,K)\in T'.norm (?CI Khx))
        by (simp add: norm_sum split_def)
        also have ... < / 3
            by (intro h_less3 T'_tagged fine' that)
    finally have norm (\sum (x,K) \in T'. ?CI K h x < < &/3 .
    moreover have integral (cbox a b) f=(\sum(x,K) \inT. integral Kf)
    using int_lec that by (auto simp: integral_combine_tagged_division_topdown)
    moreover have norm (\sum(x,K) \in T'. ?CI Khx - ?CI K f x)
        \leq2*\varepsilon/3
    proof -
    define }\mp@subsup{T}{}{\prime\prime}\mathrm{ where }\mp@subsup{T}{}{\prime\prime}\equiv{(x,K)\in\mp@subsup{T}{}{\prime}.\neg(K\subseteq{x.x\cdoti\leqc})
    then have }\mp@subsup{T}{}{\prime\prime}\subseteq\mp@subsup{T}{}{\prime
        by auto
    then have finite T"
        using <finite T'` infinite_super by blast
    have T'_tagged: T'' tagged_partial_division_of cbox a b
        using T'_tagged }\langle\mp@subsup{T}{}{\prime\prime}\subseteq\mp@subsup{T}{}{\prime}\rangle\mathrm{ tagged_partial_division_subset by blast
    have fine": }\gamma0\mathrm{ fine T"'}\gamma1\mathrm{ fine T"
    using <T'\prime}\subseteq\mp@subsup{T}{}{\prime}\rangle\mathrm{ fine' by (blast intro: fine_subset)+
    have (\sum(x,K)\in T'.?CI Khx- ?CI K f x )
        =(\sum(x,K)\inT'\.?CI Khx - ?CI K f x )
    proof (clarify intro!: sum.mono_neutral_right [OF <finite T
    fix }x
    assume (x,K)\in T'(x,K)\not\inT\mp@subsup{T}{}{\prime\prime}
    then have }x\inKx\cdoti\leqc{x.x\cdoti\leqc}\capK=
            using T''_def T'_tagged tagged_partial_division_of_def by blast+
    then show ?CI Khx - ?CI K fx=0
        using integral_restrict_Int [of_ {x.x •i\leqc} h] by (auto simp: f)
    qed
    moreover have norm (\sum(x,K) \in T''. ?CI Khx - ?CI Kf x) \leq2*\varepsilon/3
    proof -
    define }A\mathrm{ where }A\equiv{(x,K)\in\mp@subsup{T}{}{\prime\prime}.x\cdoti\leqc
    define }B\mathrm{ where }B\equiv{(x,K)\in\mp@subsup{T}{}{\prime\prime}.x\cdoti>c
    then have }A\subseteq\mp@subsup{T}{}{\prime\prime}B\subseteq\mp@subsup{T}{}{\prime\prime}\mathrm{ and disj: A }\capB={}\mathrm{ and }\mp@subsup{T}{}{\prime\prime}\mp@subsup{}{-}{}eq: T"
=A\cupB
            by (auto simp: A_def B_def)
    then have finite A finite }
        using 〈finite T ''> by (auto intro: finite_subset)
    have A_tagged: A tagged_partial_division_of cbox a b
        using T'\prime_tagged <A\subseteq T'\}\mathrm{ tagged_partial_division_subset by blast
    have fineA: }\gamma0\mathrm{ fine A }\gamma1\mathrm{ fine A
        using \langleA\subseteq T'\ fine" by (blast intro: fine_subset)+
    have B_tagged: B tagged_partial_division_of cbox a b
            using T'\prime_tagged <B\subseteqT'\}\mathrm{ tagged_partial_division_subset by blast
    have fineB: }\gamma0\mathrm{ fine }B\gamma1\mathrm{ fine }
            using \langleB\subseteq T'\}\mathrm{ fine " by (blast intro: fine_subset)+
    have norm (\sum(x,K) \inT''. ?CI Khx - ?CI K f x)
                        \leq (\sum(x,K)\inT'|.norm (?CI Khx - ?CI K fx))
            by (simp add: norm_sum split_def)
```

```
    also have ... = (\sum(x,K) \in A. norm (?CI Khx - ?CI K f x ))+
                        (\sum(x,K) \in B.norm (?CI Khx - ?CI K f x ) )
    by (simp add: sum.union_disjoint T'__eq disj 〈finite A〉\langlefinite B>)
    also have ... = (\sum(x,K) \inA.norm (integral Kh - integral Kf )) +
                        (\sum(x,K)\inB.norm (?CI Kh x + integral K f))
    by (auto simp: A_def B_def f norm_minus_commute intro!: sum.cong
arg_cong2 [where f=(+)])
    also have ... }\leq(\sum(x,K)\inA.norm (integral Kh)) +
                                    (\sum(x,K)\in(\lambda(x,K).(x,K\cap{x.x 谅 c}))'A. norm
(integral K h))
```



```
        (\sum(x,K)\in(\lambda(x,K).(x,K\cap{x.c\leqx • i}))'B.norm
(integral K h)))
    proof (rule add_mono)
        show (\sum(x,K)\inA. norm (integral K h - integral K f))
            \leq (\sum(x,K)\inA. norm (integral Kh))+
                        (\sum(x,K)\in(\lambda(x,K).(x,K\cap{x.x\cdoti\leqc}))'A.
                        norm (integral K h))
        proof (subst sum.reindex_nontrivial [OF〈{inite A〉], clarsimp)
            fix x KL
            assume (x,K) \inA (x,L) \inA
                and int_ne0: integral (L\cap {x.x \cdoti\leqc}) h\not=0
                and eq:K\cap{x.x\cdoti\leqc}=L\cap{x.x\cdoti\leqc}
            have False if K\not=L
            proof -
            obtain }uv\mathrm{ where uv: L= cbox uv
                            using T'_tagged }\langle(x,L)\inA\rangle\langleA\subseteq\mp@subsup{T}{}{\prime\prime}\rangle\langle\mp@subsup{T}{}{\prime\prime}\subseteq\mp@subsup{T}{}{\prime}\rangle\mathrm{ by (blast
dest: tagged_partial_division_ofD)
            have interior ( }K\cap{x.x\cdoti\leqc})={
            proof (rule tagged_division_split_left_inj [OF _ <(x,K) \in A><(x,L)
\inA>])
                show A tagged_division_of U(snd`A)
                            using A_tagged tagged_partial_division_of_Union_self by auto
                    show }K\cap{x.x\cdoti\leqc}=L\cap{x.x\cdoti\leqc
                    using eq〈i < Basis` by auto
            qed (use that in auto)
            then show False
            using interval_split [OF <i \in Basis`] int_ne0 content_eq_0_interior
eq uv by fastforce
    qed
    then show K=L by blast
    next
    show (\sum(x,K)\inA.norm (integral K h-integral K f))
                    \leq (\sum(x,K) \inA.norm (integral K h)) +
                    sum ((\lambda(x,K).norm (integral K h)) ○ (\lambda(x,K). (x,K\cap{x.
x • i \leq c}))) A
            using integral_restrict_Int [of - {x. x • i\leqc} h] f
                            by (auto simp: Int_commute A_def [symmetric] sum.distrib
```

[symmetric] intro!: sum_mono norm_triangle_ineq4)
qed
next
show $\left(\sum(x, K) \in B\right.$. norm $(? C I K h x+$ integral $\left.K f)\right)$ $\leq\left(\sum(x, K) \in B\right.$. norm $($? $\left.C I K h x)\right)+\left(\sum(x, K) \in B\right.$. norm
$($ integral $K h))+$
$\left(\sum(x, K) \in(\lambda(x, K) .(x, K \cap\{x . c \leq x \cdot i\}))\right.$ 'B.norm (integral Kh))
proof (subst sum.reindex_nontrivial $[$ OF 〈finite B〉], clarsimp)
fix $x K L$
assume $(x, K) \in B(x, L) \in B$
and int_ne $0:$ integral $(L \cap\{x . c \leq x \cdot i\}) h \neq 0$
and $e q: K \cap\{x . c \leq x \cdot i\}=L \cap\{x . c \leq x \cdot i\}$
have False if $K \neq L$
proof -
obtain $u v$ where $u v: L=$ cbox $u v$ using T^{\prime} _tagged $\langle(x, L) \in B\rangle\left\langle B \subseteq T^{\prime \prime}\right\rangle\left\langle T^{\prime \prime} \subseteq T^{\prime}\right\rangle$ by (blast dest: tagged_partial_division_ofD)
have interior $(K \cap\{x . c \leq x \cdot i\})=\{ \}$
proof (rule tagged_division_split_right_inj $\left[O F_{-}\langle(x, K) \in B\rangle\langle(x, L)\right.$
$\in B\rangle])$
show B tagged_division_of $\bigcup($ snd ' $B)$
using B_{-}tagged tagged_partial_division_of_Union_self by auto
show $K \cap\{x . c \leq x \cdot i\}=L \cap\{x . c \leq x \cdot i\}$
using eq $\langle i \in$ Basis by auto
qed (use that in auto)
then show False
using interval_split [OF $\langle i \in$ Basis $]$ int_ne0
content_eq_0_interior eq uv by fastforce
qed
then show $K=L$ by blast
next
show $\left(\sum_{(x, K) \in B . \operatorname{norm}(? C I K h x+\text { integral } K f)) ~}^{\text {(} K}\right.$)
$\leq\left(\sum(x, K) \in B . \operatorname{norm}(\right.$?CI $\left.K h x)\right)+$
$\left(\sum(x, K) \in B\right.$. norm $($ integral $\left.K h)\right)+\operatorname{sum}((\lambda(x, K)$. norm
(integral $K h)) \circ(\lambda(x, K) .(x, K \cap\{x . c \leq x \cdot i\}))) B$
proof (clarsimp simp: B_def [symmetric] sum.distrib [symmetric]
intro!: sum_mono)
fix $x K$
assume $(x, K) \in B$
have $*: i=i 1+i 2 \Longrightarrow \operatorname{norm}(c+i 1) \leq$ norm $c+$ norm $i+$
norm(i2)
for $i::^{\prime} b$ and c i1 i2
by (metis add.commute add.left_commute add_diff_cancel_right ${ }^{\prime}$
dual_order.refl norm_add_rule_thm norm_triangle_ineq4)
obtain $u v$ where $u v: K=c b o x u v$
using T^{\prime} _tagged $\langle(x, K) \in B\rangle\left\langle B \subseteq T^{\prime \prime}\right\rangle\left\langle T^{\prime \prime} \subseteq T^{\prime}\right\rangle$ by (blast
dest: tagged_partial_division_ofD)
have huv: h integrable_on cbox $u v$

```
    proof (rule integrable_on_subcbox)
    show cbox \(u v \subseteq\) cbox ab
using \(B\) _tagged \(\langle(x, K) \in B\rangle\) uv by (blast dest: tagged_partial_division_ofD)
        show \(h\) integrable_on cbox a \(b\)
        by (simp add: int_F \(\langle h \in F\rangle)\)
    qed
    have integral \(K h=\) integral \(K f+\) integral \((K \cap\{x . c \leq x \cdot i\}) h\)
        using integral_restrict_Int [of _ \(\{x . x \cdot i \leq c\} h] f\) uv \(\langle i \in\) Basis \(\rangle\)
        by (simp add: Int_commute integral_split [OF huv \(\langle i \in\) Basis \(\rangle\) ])
    then show norm (?CI \(K h x+\) integral \(K f\) )
    \(\leq \operatorname{norm}(? C I K h x)+\) norm (integral \(K h)+\) norm
(integral \((K \cap\{x . c \leq x \cdot i\}) h)\)
        by (rule *)
    qed
    qed
qed
also have ... \(\leq 2 * \varepsilon / 3\)
proof -
    have overlap: \(K \cap\{x . x \cdot i=c\} \neq\{ \}\) if \((x, K) \in T^{\prime \prime}\) for \(x K\)
    proof -
    obtain \(y y^{\prime}\) where \(y: y^{\prime} \in K c<y^{\prime} \cdot i y \in K y \cdot i \leq c\)
        using that \(T^{\prime \prime}\) _def \(T^{\prime}\) _def \(\left\langle(x, K) \in T^{\prime \prime}\right\rangle\) by fastforce
    obtain \(u v\) where \(u v: K=c b o x u v\)
    using \(T^{\prime \prime}\) _tagged \(\left\langle(x, K) \in T^{\prime \prime}\right\rangle\) by (blast dest: tagged_partial_division_ofD)
    then have connected \(K\)
        by (simp add: is_interval_connected)
    then have \((\exists z \in K . z \cdot i=c)\)
        using y connected_ivt_component by fastforce
    then show ?thesis
        by fastforce
    qed
    have \(* *: \llbracket x<\varepsilon / 12 ; y<\varepsilon / 12 ; z \leq \varepsilon / 2 \rrbracket \Longrightarrow x+y+z \leq 2 * \varepsilon / 3\)
for \(x y z\)
    by auto
    show ?thesis
    proof (rule **)
    have \(c b \_a b:\left(\sum j \in\right.\) Basis. if \(j=i\) then \(c *_{R}\) i else \(\left.(a \cdot j) *_{R} j\right) \in\)
cbox a b
    using \(\langle i \in\) Basis \(\rangle\) True \(\langle\bigwedge i . i \in\) Basis \(\Longrightarrow a \cdot i<b \cdot i\rangle\)
    by (force simp add: mem_box sum_if_inner \([\) where \(f=\lambda j . c])\)
    show \(\left(\sum(x, K) \in A\right.\). norm (integral \(\left.\left.K h\right)\right)<\varepsilon / 12\)
    using \(\left\langle i \in\right.\) Basis \(\left\langle A \subseteq T^{\prime \prime}\right\rangle\) overlap
    by (force simp add: sum_if_inner [where \(f=\lambda j . c\) ]
            intro!: \(\gamma 0\) [OF cb_ab \(\langle i \in\) Basis \(\rangle\) A_tagged fineA(1) \(\langle h \in F\rangle])\)
    let ? \(F=\lambda(x, K) .(x, K \cap\{x . x \cdot i \leq c\})\)
    have 1: ?F' A tagged_partial_division_of cbox a b
    unfolding tagged_partial_division_of_def
    proof (intro conjI strip)
    show \(\bigwedge x K .(x, K) \in ? F^{\prime} A \Longrightarrow \exists a b . K=c b o x a b\)
```

using A＿tagged interval＿split（1）［OF $\langle i \in B a s i s\rangle$ ，of＿＿$c]$
by（force dest：tagged＿partial＿division＿ofD（4））
show $\bigwedge x K .(x, K) \in ? F^{\prime} A \Longrightarrow x \in K$
using A_{-}def A_{-}tagged by（fastforce dest：tagged＿partial＿division＿ofD）
qed（use A＿tagged in 〈fastforce dest：tagged＿partial＿division＿ofD〉）＋ have 2：$\gamma 0$ fine $(\lambda(x, K) .(x, K \cap\{x . x \cdot i \leq c\}))$＇$A$
using fineA（1）fine＿def by fastforce
show $\left(\sum(x, K) \in(\lambda(x, K) .(x, K \cap\{x . x \cdot i \leq c\}))\right.$＇A．norm（integral $K h))<\varepsilon / 12$
using $\langle i \in$ Basis $\rangle\left\langle A \subseteq T^{\prime \prime}\right\rangle$ overlap
by（force simp add：sum＿if＿inner［where $f=\lambda j$ ．c ］ intro！：$\gamma 0$［OF cb＿ab $\langle i \in$ Basis〉 $12\langle h \in F\rangle]$ ）
have $*: \llbracket x<\varepsilon / 3 ; y<\varepsilon / 12 ; z<\varepsilon / 12 \rrbracket \Longrightarrow x+y+z \leq \varepsilon / 2$ for x
by auto
show $\left(\sum(x, K) \in B\right.$ ．norm $\left.(? C I K h x)\right)+$ $\left(\sum(x, K) \in B\right.$. norm（integral $\left.\left.K h\right)\right)+$ $\left(\sum(x, K) \in(\lambda(x, K) .(x, K \cap\{x . c \leq x \cdot i\}))\right.$＇B．norm（integral
K h））

$$
\leq \varepsilon / 2
$$

proof（rule＊）
show $\left(\sum(x, K) \in B\right.$ ．norm $\left.(? C I K h x)\right)<\varepsilon / 3$
by（intro h＿less3 B＿tagged fineB that）
show $\left(\sum(x, K) \in B\right.$ ．norm（integral $\left.\left.K h\right)\right)<\varepsilon / 12$
using $\langle i \in$ Basis $\rangle\left\langle B \subseteq T^{\prime \prime}\right\rangle$ overlap
by（force simp add：sum＿if＿inner $[$ where $f=\lambda j . c]$ intro！：$\gamma 0$［OF cb＿ab $\left\langle i \in\right.$ Basis B_{-}tagged fineB（1）$\left.\left.\langle h \in F\rangle\right]\right)$
let ？$F=\lambda(x, K) .(x, K \cap\{x . c \leq x \cdot i\})$
have 1：？F＇B tagged＿partial＿division＿of cbox ab
unfolding tagged＿partial＿division＿of＿def
proof（intro conjI strip）
show $\bigwedge x K .(x, K) \in ? F{ }^{\prime} B \Longrightarrow \exists a b . K=c b o x a b$
using B＿tagged interval＿split（2）［OF $\langle i \in$ Basis \rangle ，of＿＿c］
by（force dest：tagged＿partial＿division＿ofD（4））
show $\bigwedge x K .(x, K) \in ? F^{\prime} B \Longrightarrow x \in K$
using B_{-}def B_{-}tagged by（fastforce dest：tagged＿partial＿division＿ofD）
qed（use B_{-}tagged in 〈fastforce dest：tagged＿partial＿division＿ofD〉）＋
have 2：$\gamma 0$ fine $(\lambda(x, K) .(x, K \cap\{x . c \leq x \cdot i\}))$＇$B$
using fine $B(1)$ fine＿def by fastforce
show $\left(\sum(x, K) \in(\lambda(x, K) .(x, K \cap\{x . c \leq x \cdot i\}))\right.$＇B．norm
$($ integral $K h))<\varepsilon / 12$
using $\left\langle i \in\right.$ Basis $\left\langle A \subseteq T^{\prime \prime}\right\rangle$ overlap
by（force simp add：B＿def sum＿if＿inner $[$ where $f=\lambda j$ ．$c]$ intro！：$\gamma 0$［OF cb＿ab $\langle i \in$ Basis $12\langle h \in F\rangle])$
qed
qed
qed
finally show ？thesis ．
qed

```
        ultimately show ?thesis by metis
        qed
        ultimately show ?thesis
            by (simp add: sum_subtractf [symmetric] int_KK'*)
    qed
        ultimately show ?thesis by metis
    next
    case False
    then consider c<a \cdot i| b \cdoti<c
        by auto
    then show ?thesis
    proof cases
        case 1
        then have f0: fx=0 if x\incbox a b for x
            using that f <i G Basis\rangle mem_box(2) by force
            then have int_f0: integral (cbox a b) f=0
            by (simp add: integral_cong)
            have f0_tag: f}x=0\mathrm{ if (x,K) GT for x K
            using T f0 that by (meson tag_in_interval)
            then have (\sum(x,K) \inT. content K*R f x)=0
                by (metis (mono_tags, lifting) real_vector.scale_eq_0_iff split_conv
sum.neutral surj_pair)
            then show ?thesis
            using <0 < & by (simp add: int_f0)
    next
            case 2
            then have fh: fx=hx if x\in cbox a b for x
            using that f<i }\in\mathrm{ Basis〉 mem_box(2) by force
            then have int_f: integral (cbox a b) f= integral (cbox a b)h
            using integral_cong by blast
            have fh_tag: fx=hx if (x,K) \inT for x K
            using T fh that by (meson tag_in_interval)
        then have fh: (\sum(x,K)\inT. content K** f x)=(\sum(x,K)\inT. content
K*R
            by (metis (mono_tags, lifting) split_cong sum.cong)
        show ?thesis
            unfolding fh int_f
        proof (rule less_trans [OF 
            show \gamma1 fine T
                    by (meson fine fine_Int)
            show \varepsilon/(7*Suc DIM('b))<\varepsilon
            using <0< < by (force simp: divide_simps)+
        qed (use that in auto)
    qed
    qed
    have gauge ( }\lambdax.\gamma0x\cap\gamma1x
        by (simp add: <gauge \gamma0\rangle\langlegauge \gamma1> gauge_Int)
    then show ?thesis
    by (auto intro: *)
```

```
        qed
    qed
qed
```

corollary equiintegrable_halfspace_restrictions_ge:
fixes f :: 'a::euclidean_space \Rightarrow ' $b::$ euclidean_space
assumes F : F equiintegrable_on cbox a b and $f: f \in F$
and norm_f: $\bigwedge h x . \llbracket h \in F ; x \in \operatorname{cbox} a b \rrbracket \Longrightarrow \operatorname{norm}(h x) \leq \operatorname{norm}(f x)$
shows $(\bigcup i \in$ Basis. $\bigcup c . \bigcup h \in F .\{(\lambda x$. if $x \cdot i \geq c$ then $h x$ else 0$)\})$
equiintegrable_on cbox ab
proof -
have $*:\left(\bigcup i \in\right.$ Basis. $\bigcup c . \bigcup h \in(\lambda f . f \circ$ uminus $){ }^{\prime} F$. $\{\lambda x$. if $x \cdot i \leq c$ then $h x$
else 0\})
equiintegrable_on cbox $(-b)(-a)$
proof (rule equiintegrable_halfspace_restrictions_le)
show ($\lambda f . f \circ$ uminus $)$ ' F equiintegrable_on cbox $(-b)(-a)$
using F equiintegrable_reflect by blast
show $f \circ$ uminus $\in(\lambda f . f \circ$ uminus $)$ ' F
using f by auto
show $\wedge h x . \llbracket h \in(\lambda f . f \circ$ uminus $) ' F ; x \in \operatorname{cbox}(-b)(-a) \rrbracket \Longrightarrow \operatorname{norm}(h$
$x) \leq \operatorname{norm}((f \circ$ uminus $) x)$
using f unfolding comp_def image_iff
by (metis (no_types, lifting) equation_minus_iff imageE norm_f uminus_interval_vector)
qed
have $e q:(\lambda f . f \circ \text { uminus })^{\prime}$
$(\bigcup i \in$ Basis. $\bigcup c . \bigcup h \in F .\{\lambda x$. if $x \cdot i \leq c$ then $(h \circ$ uminus $) x$ else 0$\})$
$=$
$(\bigcup i \in$ Basis. $\bigcup c . \bigcup h \in F .\{\lambda x$. if $c \leq x \cdot i$ then $h x$ else 0$\}) \quad$ (is ?lhs $=$
?rhs)
proof
show ?lhs \subseteq ? rhs
using minus_le_iff by fastforce
show ?rhs \subseteq ? lhs
apply clarsimp
apply (rule_tac $x=\lambda x$. if $c \leq(-x) \cdot i$ then $h(-x)$ else 0 in image_eqI)
using le_minus_iff by fastforce+
qed
show ?thesis
using equiintegrable_reflect $[O F *]$ by (auto simp: eq)
qed
corollary equiintegrable_halfspace_restrictions_lt:
fixes f :: 'a::euclidean_space \Rightarrow 'b::euclidean_space
assumes F : F equiintegrable_on cbox a b and $f: f \in F$
and norm_f: $\bigwedge h x$. $\llbracket h \in F ; x \in \operatorname{cbox} a b \rrbracket \Longrightarrow \operatorname{norm}(h x) \leq \operatorname{norm}(f x)$
shows $(\bigcup i \in$ Basis. $\bigcup c . \bigcup h \in F .\{(\lambda x$. if $x \cdot i<c$ then $h x$ else 0$)\})$ equiin-
tegrable_on cbox a b
(is ? G equiintegrable_on cbox ab)

```
proof -
    have *:(\bigcupi\inBasis. \bigcupc. \bigcuph\inF.{\lambdax. if c\leqx • i then hx else 0}) equiinte-
grable_on cbox a b
        using equiintegrable_halfspace_restrictions_ge [OF F f] norm_f by auto
    have ( }\lambdax\mathrm{ . if }x\cdoti<c\mathrm{ then h x else 0) = ( }\lambdax.hx-(\mathrm{ if }c\leqx\cdoti\mathrm{ then h x else
0))
    if i\inBasis h\inF for ich
    using that by force
    then show ?thesis
        by (blast intro: equiintegrable_on_subset [OF equiintegrable_diff [OF F *]])
qed
corollary equiintegrable_halfspace_restrictions_gt:
    fixes }f\mathrm{ :: 'a::euclidean_space }=>\mathrm{ ' 'b::euclidean_space
    assumes F:F equiintegrable_on cbox a b and f:f\inF
        and norm_f: \hx. \llbracketh G F;x\in cbox a b\rrbracket\Longrightarrow norm(h x) \leqnorm(fx)
    shows (\bigcupi\inBasis.\bigcupc.\bigcuph\inF.{(\lambdax. if x - i>c then h x else 0) }) equiin-
tegrable_on cbox a b
            (is ?G equiintegrable_on cbox a b)
proof -
    have *:(\bigcupi\inBasis. \bigcupc. \bigcuph\inF.{\lambdax. if c\geqx • i then h x else 0}) equiinte-
grable_on cbox a b
    using equiintegrable_halfspace_restrictions_le [OF F f] norm_f by auto
    have ( }\lambdax\mathrm{ . if }x\cdoti>c\mathrm{ then h x else 0) = ( }\lambdax.hx-(\mathrm{ if }c\geqx\cdoti then h x else
0))
    if i\inBasis h\inF for ich
    using that by force
    then show ?thesis
        by (blast intro: equiintegrable_on_subset [OF equiintegrable_diff [OF F *]])
qed
proposition equiintegrable_closed_interval_restrictions:
    fixes f :: 'a::euclidean_space = 'b::euclidean_space
    assumes f:f integrable_on cbox a b
    shows (Ucd. {(\lambdax. if x c cbox c d then f x else 0)}) equiintegrable_on cbox a b
proof -
```



```
    have *: insert f(Ucd. {?g B c d}) equiintegrable_on cbox a b if B\subseteq Basis for
B
    proof -
        have finite B
            using finite_Basis finite_subset <B\subseteq Basis> by blast
        then show ?thesis using <B\subseteq Basis\rangle
        proof (induction B)
            case empty
            with f show ?case by auto
        next
            case (insert i B)
            then have i\in Basis B\subseteqBasis
```

```
    by auto
    have \(*\) : norm \((h x) \leq \operatorname{norm}(f x)\)
    if \(h \in \operatorname{insert} f(\bigcup c d .\{? g B c d\}) x \in c b o x a b\) for \(h x\)
    using that by auto
    define \(F\) where \(F \equiv(\bigcup i \in\) Basis.
            \(\bigcup \xi . \bigcup h \in \operatorname{insert} f(\bigcup i \in\) Basis. \(\bigcup \psi . \bigcup h \in\) insert \(f(\bigcup c d .\{? g B c d\})\).
\(\{\lambda x\). if \(x \cdot i \leq \psi\) then \(h x\) else 0\(\})\).
                \(\{\lambda x\). if \(\xi \leq x \cdot i\) then \(h x\) else 0\(\}\) )
    show ?case
    proof (rule equiintegrable_on_subset)
    have \(F\) equiintegrable_on cbox a \(b\)
            unfolding \(F_{-} d e f\)
    proof (rule equiintegrable_halfspace_restrictions_ge)
            show insert \(f(\bigcup i \in\) Basis. \(\bigcup\} . \bigcup h \in\) insert \(f(\bigcup c d .\{? g B c d\})\).
                \(\{\lambda x\). if \(x \cdot i \leq \xi\) then \(h x\) else 0\(\}\) ) equiintegrable_on cbox ab
            by (intro \(* f\) equiintegrable_on_insert equiintegrable_halfspace_restrictions_le
[OF insert.IH insertI1] 〈B \(\subseteq\) Basis \(\rangle)\)
            show \(\operatorname{norm}(h x) \leq \operatorname{norm}(f x)\)
                if \(h \in \operatorname{insert} f(\bigcup i \in\) Basis. \(\bigcup\} . \bigcup h \in \operatorname{insert} f(\bigcup c d .\{? g B c d\}) .\{\lambda x\).
if \(x \cdot i \leq \xi\) then \(h x\) else 0\(\}\) )
                \(x \in\) cbox a \(b\) for \(h x\)
            using that by auto
            qed auto
            then show insert \(f F\)
                equiintegrable_on cbox a b
            by (blast intro: f equiintegrable_on_insert)
            show insert \(f(\bigcup c d .\{\lambda x\). if \(\forall j \in\) insert \(i B . c \cdot j \leq x \cdot j \wedge x \cdot j \leq d \cdot j\)
then \(f x\) else 0\(\}\) )
                \(\subseteq\) insert \(f F\)
            using \(\langle i \in\) Basis \(\rangle\)
            apply clarify
            apply ( simp add: F_def)
            apply (drule_tac \(x=i\) in bspec, assumption)
            apply (drule_tac \(x=c \cdot i\) in spec, clarify)
            apply (drule_tac \(x=i\) in bspec, assumption)
            apply (drule_tac \(x=d \cdot i\) in spec)
            apply (clarsimp simp: fun_eq_iff)
            apply (drule_tac \(x=c\) in spec)
            apply (drule_tac \(x=d\) in spec)
            apply (simp split: if_split_asm)
            done
        qed
    qed
    qed
    show ?thesis
    by (rule equiintegrable_on_subset \([O F *[O F\) subset_refl \(]\) ) (auto simp: mem_box)
qed
```


6.27.3 Continuity of the indefinite integral

proposition indefinite_integral_continuous:
fixes $f::$ ' a :: euclidean_space \Rightarrow ' b :: euclidean_space
assumes int_f: fintegrable_on cbox a b
and $c: c \in c b o x a b$ and $d: d \in c b o x a b 0<\varepsilon$
obtains δ where $0<\delta$
$\bigwedge c^{\prime} d^{\prime} . \llbracket c^{\prime} \in \operatorname{cbox}$ a $b ; d^{\prime} \in \operatorname{cbox}$ a $b ; \operatorname{norm}\left(c^{\prime}-c\right) \leq \delta ; \operatorname{norm}\left(d^{\prime}-\right.$
d) $\leq \delta \rrbracket$

```
#norm(integral(cbox c' d
```

proof -
$\left\{\right.$ assume $\exists c^{\prime} d^{\prime} . c^{\prime} \in \operatorname{cbox}$ a $b \wedge d^{\prime} \in \operatorname{cbox} a b \wedge \operatorname{norm}\left(c^{\prime}-c\right) \leq \delta \wedge \operatorname{norm}\left(d^{\prime}\right.$ $-d) \leq \delta \wedge$
norm(integral $\left(\right.$ cbox $\left.\left.c^{\prime} d^{\prime}\right) f-\operatorname{integral}(\operatorname{cbox} c d) f\right) \geq \varepsilon$
(is $\exists c^{\prime} d^{\prime}$. ? $\Phi c^{\prime} d^{\prime} \delta$) if $0<\delta$ for δ
then have $\exists c^{\prime} d^{\prime}$. ? $\Phi c^{\prime} d^{\prime}(1 /$ Suc $n)$ for n by simp
then obtain $u v$ where $\wedge n$.? $\Phi(u n)(v n)(1 /$ Suc $n)$
by metis
then have $u: u n \in c b o x a b$ and norm_u: $\operatorname{norm}(u n-c) \leq 1 / S u c n$ and $v: v n \in c b o x a b$ and norm_v: norm $(v n-d) \leq 1 /$ Suc n and ε : $\varepsilon \leq$ norm (integral (cbox $(u n)(v n)) f-\operatorname{integral}(\operatorname{cbox} c d) f)$ for
n
by blast+
then have False
proof -
have uvn: cbox $(u n)(v n) \subseteq c b o x a b$ for n by (meson u v mem_box(2) subset_box(1))
define S where $S \equiv \bigcup i \in$ Basis. $\{x . x \cdot i=c \cdot i\} \cup\{x . x \cdot i=d \cdot i\}$
have negligible S
unfolding S_def by force
then have int_f $:(\lambda x$. if $x \in S$ then 0 else $f x)$ integrable_on cbox a b
by (force intro: integrable_spike assms)
have get_n: $\exists n . \forall m \geq n . x \in \operatorname{cbox}(u m)(v m) \longleftrightarrow x \in c b o x c d$ if $x: x \notin S$ for x
proof -
define ε where $\varepsilon \equiv \operatorname{Min}((\lambda i . \min |x \cdot i-c \cdot i||x \cdot i-d \cdot i|)$ 'Basis $)$
have $\varepsilon>0$ using $\langle x \notin S\rangle$ by (auto simp: S_def $\varepsilon_{-} d e f$)
then obtain n where $n \neq 0$ and $n: 1 /($ real $n)<\varepsilon$ by (metis inverse_eq_divide real_arch_inverse)
have emin: $\varepsilon \leq \min |x \cdot i-c \cdot i||x \cdot i-d \cdot i|$ if $i \in$ Basis for i unfolding $\varepsilon_{-} d e f$ by (meson Min.coboundedI euclidean_space_class.finite_Basis finite_imageI image_iff that)
have $1 / \operatorname{real}($ Suc $n)<\varepsilon$
using $n\langle n \neq 0\rangle\langle\varepsilon>0\rangle$ by (simp add: field_simps)
have $x \in c b o x(u m)(v m) \longleftrightarrow x \in c b o x c d$ if $m \geq n$ for m
proof -
have $*: \llbracket|u-c| \leq n ;|v-d| \leq n ; N<|x-c| ; N<|x-d| ; n \leq N \rrbracket$
$\Longrightarrow u \leq x \wedge x \leq v \longleftrightarrow c \leq x \wedge x \leq d$ for $N n u v c d$ and $x::$ real by linarith
have $(u m \cdot i \leq x \cdot i \wedge x \cdot i \leq v m \cdot i)=(c \cdot i \leq x \cdot i \wedge x \cdot i \leq d \cdot i)$
if $i \in$ Basis for i
proof (rule *)
show $|u m \cdot i-c \cdot i| \leq 1 /$ Suc m
using norm_u [of m]
by (metis (full_types) order_trans Basis_le_norm inner_commute inner_diff_right that)
show $|v m \cdot i-d \cdot i| \leq 1 / \operatorname{real}(S u c m)$
using norm_v [of m]
by (metis (full_types) order_trans Basis_le_norm inner_commute inner_diff_right that)
show $1 / n<|x \cdot i-c \cdot i| 1 / n<|x \cdot i-d \cdot i|$
using $n\langle n \neq 0\rangle$ emin [OF $\langle i \in$ Basis \rangle]
by (simp_all add: inverse_eq_divide)
show $1 / \operatorname{real}($ Suc $m) \leq 1 /$ real n
using $\langle n \neq 0\rangle\langle m \geq n\rangle$ by (simp add: field_split_simps)
qed
then show? ?thesis by (simp add: mem_box)
qed
then show ?thesis by blast
qed
have 1: range ($\lambda n x$. if $x \in \operatorname{cbox}(u n)(v n)$ then if $x \in S$ then 0 else $f x$ else 0) equiintegrable_on cbox a b
by (blast intro: equiintegrable_on_subset [OF equiintegrable_closed_interval_restrictions
[OF int_f $\]$])

have 2: $(\lambda n$. if $x \in \operatorname{cbox}(u n)(v n)$ then if $x \in S$ then 0 else $f x$ else 0$)$ \rightarrow (if $x \in$ cbox $c d$ then if $x \in S$ then 0 else $f x$ else 0) for x
by (fastforce simp: dest: get_n intro: tendsto_eventually eventually_sequentiallyI)

using $c d$ by (force simp: mem_box)
have [simp]: cbox $(u n)(v n) \cap \operatorname{cbox} a b=\operatorname{cbox}(u n)(v n)$ for n using $u v$ by (fastforce simp: mem_box intro: order.trans)
have $\bigwedge y A . y \in A-S \Longrightarrow f y=(\lambda x$. if $x \in S$ then 0 else $f x) y$ by simp
then have $\bigwedge A$. integral $A(\lambda x$. if $x \in S$ then 0 else $f(x))=\operatorname{integral} A(\lambda x$. $f(x))$
by (blast intro: integral_spike [OF〈negligible $S\rangle$])

moreover

obtain N where dist (integral $(\operatorname{cbox}(u N)(v N))(\lambda x$. if $x \in S$ then 0 else $f x)$)
(integral $($ cbox c d) $)(\lambda x$. if $x \in S$ then 0 else $f x))<\varepsilon$
using equiintegrable_limit [OF 1 2] $\langle 0<\varepsilon\rangle$ by (force simp: integral_restrict_Int lim_sequentially)
ultimately have dist (integral $(\operatorname{cbox}(u N)(v N)) f)($ integral $(c b o x c d) f)$ $<\varepsilon$
by simp
then show False

```
        by (metis dist_norm not_le \varepsilon)
    qed
}
then show ?thesis
    by (meson not_le that)
qed
corollary indefinite_integral_uniformly_continuous:
    fixes f :: 'a :: euclidean_space => 'b :: euclidean_space
    assumes f integrable_on cbox a b
    shows uniformly_continuous_on (cbox (Pair a a) (Pair b b)) ( \lambday. integral (cbox
(fst y) (snd y)) f)
proof -
    show ?thesis
    proof (rule compact_uniformly_continuous, clarsimp simp add: continuous_on_iff)
    fix c d and \varepsilon::real
    assume c:c\incbox a b and d:d\incbox a b and 0<\varepsilon
    obtain }\delta\mathrm{ where 0< < and }\delta\mathrm{ :
                        \c}\mp@subsup{c}{}{\prime}\mp@subsup{d}{}{\prime}.\llbracket\mp@subsup{c}{}{\prime}\incbox a b; d' \in cbox a b; norm( cc' - c) \leq\delta; norm( (d' -
d)}\leq\delta
\[
\begin{gathered}
\Longrightarrow \text { norm }\left(\text { integral }\left(\operatorname{cbox} c^{\prime} d^{\prime}\right) f-\right. \\
\quad \text { integral }(\operatorname{cbox} c c c) f)<\varepsilon
\end{gathered}
\]
#norm(integral(cbox c' d')f-
                                    integral(cbox c d) f)<\varepsilon
        using indefinite_integral_continuous <0< < assms c d by blast
    show }\exists\delta>0.\forall\mp@subsup{x}{}{\prime}\in\operatorname{cbox}(a,a)(b,b)
                    dist }\mp@subsup{x}{}{\prime}(c,d)<\delta
                        dist (integral (cbox (fst x') (snd x')) f)
                    (integral (cbox c d)f)
                    <\varepsilon
        using < 0< < >
            by (force simp: dist_norm intro: \delta order_trans [OF norm_fst_le] order_trans
[OF norm_snd_le] less_imp_le)
    qed auto
qed
```

corollary bounded_integrals_over_subintervals:
fixes f :: ' a :: euclidean_space \Rightarrow ' b :: euclidean_space
assumes f integrable_on cbox a b
shows bounded $\{$ integral (cbox cd) $f \mid c d$. cbox $c d \subseteq c b o x a b\}$
proof -
have bounded $((\lambda y$. integral $(\operatorname{cbox}(f s t y)(s n d y)) f) \cdot \operatorname{cbox}(a, a)(b, b))$
(is bounded ?I)
by (blast intro: bounded_cbox bounded_uniformly_continuous_image indefinite_integral_uniformly_continuous
[OF assms])
then obtain B where $B>0$ and $B: \wedge x . x \in ? I \Longrightarrow$ norm $x \leq B$
by (auto simp: bounded_pos)
have norm $x \leq B$ if $x=$ integral $(\operatorname{cbox} c d) f$ cbox $c d \subseteq c b o x a b$ for $x c d$
proof (cases cbox c $d=\{ \}$)
case True

```
    with \(\langle 0<B\rangle\) that show ?thesis by auto
    next
    case False
    then have \(\exists x \in \operatorname{cbox}(a, a)(b, b)\). integral (cbox cd) \(f=\) integral (cbox (fst
x) \((\) snd \(x)) f\)
    using that by (metis cbox_Pair_iff interval_subset_is_interval is_interval_cbox
prod.sel)
    then show ?thesis
        using \(B\) that(1) by blast
    qed
    then show ?thesis
        by (blast intro: boundedI)
qed
```

An existence theorem for "improper" integrals. Hake's theorem implies that if the integrals over subintervals have a limit, the integral exists. We only need to assume that the integrals are bounded, and we get absolute integrability, but we also need a (rather weak) bound assumption on the function.
theorem absolutely_integrable_improper:
fixes f :: ' M ::euclidean_space \Rightarrow ' N ::euclidean_space
assumes int_f: $\bigwedge c d$. cbox c $d \subseteq$ box a $b \Longrightarrow f$ integrable_on cbox c d
and bo: bounded \{integral (cbox c d) $f \mid c d$. cbox c $d \subseteq b o x$ a $b\}$
and absi: $\bigwedge i . i \in$ Basis
$\Longrightarrow \exists g . g$ absolutely_integrable_on cbox a $b \wedge$
$((\forall x \in$ cbox a b. $f x \cdot i \leq g x) \vee(\forall x \in$ cbox ab. $f x \cdot i \geq g x))$
shows f absolutely_integrable_on cbox a b
proof (cases content (cbox ab) $=0$)
case True
then show ?thesis
by auto
next
case False
then have pos: content (cbox ab) >0
using zero_less_measure_iff by blast
show ?thesis
unfolding absolutely_integrable_componentwise_iff [where $f=f$]
proof
fix $j::^{\prime} N$
assume $j \in$ Basis
then obtain g where absint_g: g absolutely_integrable_on cbox a b
and $g:(\forall x \in$ cbox a b. $f x \cdot j \leq g x) \vee(\forall x \in$ cbox a b. $f x \cdot j \geq$
$g x)$
using absi by blast
have int_gab: g integrable_on cbox $a b$
using absint_g set_lebesgue_integral_eq_integral(1) by blast
define α where $\alpha \equiv \lambda k$. $a+(b-a) / R$ real k
define β where $\beta \equiv \lambda k$. $b-(b-a) / R$ real k
define I where $I \equiv \lambda k$. cbox $(\alpha k)(\beta k)$

```
    have ISuc_box:I (Suc n)\subseteqbox a b for n
    using pos unfolding I_def
    by (intro subset_box_imp) (auto simp: \alpha_def \beta_def content_pos_lt_eq alge-
bra_simps)
    have ISucSuc: I (Suc n)\subseteqI (Suc (Suc n)) for n
    proof -
        have }\i.i\in\mathrm{ Basis
            \Longrightarrow a \cdot i / S u c n + b \cdot i / ( r e a l ~ n ~ + ~ 2 ) ~ \leq b ~ b ~ i / S u c ~ n ~ + a \cdot i /
(real n + 2)
            using pos
            by (simp add: content_pos_lt_eq divide_simps) (auto simp: algebra_simps)
            then show ?thesis
            unfolding I_def
            by (intro subset_box_imp) (auto simp: algebra_simps inverse_eq_divide \alpha_def
\beta_def)
    qed
    have getN: \existsN::nat. }\forallk.k\geqN\longrightarrowx\inI
        if x:x\in box a b for }
    proof -
        define }\Delta\mathrm{ where }\Delta\equiv(\bigcupi\in\mathrm{ Basis. {((x-a) •i) / ((b-a) • i), (b-x).
i / ((b-a) • i)})
        obtain N where N: real N>1 / Inf \Delta
            using reals_Archimedean2 by blast
        moreover have }\Delta:\operatorname{Inf}\Delta>
            using that by (auto simp: \Delta_def finite_less_Inf_iff mem_box algebra_simps
divide_simps)
    ultimately have N>0
        using of_nat_0_less_iff by fastforce
    show ?thesis
    proof (intro exI impI allI)
        fix k assume N\leqk
        with \langle0<N\rangle have k>0
            by linarith
            have xa_gt: (x-a)\cdoti> ((b-a)\cdoti)/(real k) if i\inBasis for i
            proof -
                have *: Inf \Delta \leq ((x-a) \cdot i) / ((b-a) • i)
                    unfolding \Delta_def using that by (force intro: cInf_le_finite)
            have 1/Inf \Delta \geq((b-a)\cdoti)/((x-a)\cdoti)
                    using le_imp_inverse_le [OF * \Delta]
                    by (simp add: field_simps)
            with N have k> ((b-a) \cdot i) / ((x-a) \cdoti)
                    using \langleN \leqk\rangle by linarith
                    with x that show ?thesis
                    by (auto simp: mem_box algebra_simps field_split_simps)
        qed
        have bx_gt: (b-x) \cdot i> ((b-a) \cdoti)/k if i\inBasis for i
        proof -
            have *: Inf \Delta \leq ((b-x) • i) / ((b-a) • i)
                    using that unfolding \Delta_def by (force intro: cInf_le_finite)
```

have $1 / \operatorname{Inf} \Delta \geq((b-a) \cdot i) /((b-x) \cdot i)$
using le_imp_inverse_le $[O F * \Delta]$
by (simp add: field_simps)
with N have $k>((b-a) \cdot i) /((b-x) \cdot i)$
using $\langle N \leq k\rangle$ by linarith
with x that show ?thesis
by (auto simp: mem_box algebra_simps field_split_simps)
qed
show $x \in I k$
using that $\Delta\langle k>0\rangle$ unfolding I_{-}def
by (auto simp: α_{-}def $\beta_{_} d e f$ mem_box algebra_simps divide_inverse dest: $\left.x a _g t b x _g t\right)$
qed
qed
obtain $B f$ where $B f: \bigwedge c d$. cbox $c d \subseteq b o x a b \Longrightarrow$ norm (integral (cbox c d) $f) \leq B f$
using bo unfolding bounded_iff by blast
obtain $B g$ where $B g: \bigwedge c d$. cbox $c d \subseteq$ cbox a $b \Longrightarrow \mid$ integral $(c b o x c d) g \mid \leq$ Bg
using bounded_integrals_over_subintervals [OF int_gab] unfolding bounded_iff real_norm_def by blast
show $(\lambda x . f x \cdot j)$ absolutely_integrable_on cbox a b using g
proof - A lot of duplication in the two proofs
assume $f g$ [rule_format]: $\forall x \in \operatorname{cbox}$ a $b . f x \cdot j \leq g x$
have $(\lambda x .(f x \cdot j))=(\lambda x . g x-(g x-(f x \cdot j)))$
by simp
moreover have $(\lambda x . g x-(g x-(f x \cdot j)))$ integrable_on cbox a b
proof (rule Henstock_Kurzweil_Integration.integrable_diff [OF int_gab])
define φ where $\varphi \equiv \lambda k x$. if $x \in I($ Suc $k)$ then $g x-f x \cdot j$ else 0
have ($\lambda x . g x-f x \cdot j$) integrable_on box a b
proof (rule monotone_convergence_increasing [of φ, THEN conjunct1])
have $*: I($ Suc $k) \cap$ box $a b=I($ Suc $k)$ for k
using box_subset_cbox ISuc_box by fastforce
show φk integrable_on box $a b$ for k
proof -
have $I($ Suc $k) \subseteq$ cbox a b
using * box_subset_cbox by blast
moreover have $(\lambda m . f m \cdot j)$ integrable_on $I(S u c k)$
by (metis ISuc_box I_def int_f integrable_component)
ultimately have ($\lambda m . g m-f m \cdot j$) integrable_on I (Suc k)
by (metis Henstock_Kurzweil_Integration.integrable_diff I_def int_gab integrable_on_subcbox)

then show ?thesis

by (simp add: * φ_{-}def integrable_restrict_Int)
qed
show $\varphi k x \leq \varphi($ Suc $k) x$ if $x \in b o x a b$ for $k x$
using ISucSuc box_subset_cbox that by (force simp: φ_{-}def intro!: fg)
show $(\lambda k . \varphi k x) \longrightarrow g x-f x \cdot j$ if $x: x \in b o x a b$ for x

```
    proof (rule tendsto_eventually)
    obtain N::nat where N:\k.k\geqN\Longrightarrowx\inIk
            using getN [OF x] by blast
            show }\mp@subsup{\forall}{F}{}k\mathrm{ in sequentially. }\varphikx=gx-fx\cdot
    proof
            fix k::nat assume N\leqk
            have }x\inI(Suck
                by (metis }\langleN\leqk\ranglele_Suc_eq N
            then show }\varphikx=gx-fx\cdot
                by (simp add: \varphi_def)
    qed
    qed
    have |integral (box a b) (\lambdax. if x f I (Suc k) then g x - fx | j else 0) | 
Bg+Bf for }
    proof -
            have ABK_def [simp]: I (Suc k)\cap box a b=I (Suc k)
                using ISuc_box by (simp add: Int_absorb2)
            have int_fI: f integrable_on I (Suc k)
                using ISuc_box I_def int_f by auto
            moreover
            have |integral (I (Suc k)) (\lambdax.fx | j)| \leqnorm (integral (I (Suc k)) f)
                by (simp add: Basis_le_norm int_fI <j \in Basis`)
            with ISuc_box ABK_def have |integral (I (Suc k)) (\lambdax.fx | j)| \leqBf
            by (metis Bf I_def <j G Basis` int_fI integral_component_eq norm_bound_Basis_le)
            ultimately
            have |integral (I (Suc k))g-integral (I (Suc k)) (\lambdax.fx\cdotj)| \leq Bg
+Bf
            using * box_subset_cbox unfolding I_def
            by (blast intro: Bg add_mono order_trans [OF abs_triangle_ineq4])
            moreover have g integrable_on I (Suc k)
                    by (metis ISuc_box I_def int_gab integrable_on_open_interval inte-
grable_on_subcbox)
            moreover have ( }\lambdax.fx\cdotj) integrable_on I (Suc k
                using int_fI by (simp add: integrable_component)
            ultimately show ?thesis
                by (simp add: integral_restrict_Int integral_diff)
            qed
            then show bounded (range ( }\lambdak\mathrm{ . integral (box a b) ( }\varphik))\mathrm{ )
            by (auto simp add: bounded_iff \varphi_def)
    qed
    then show ( }\lambdax.gx-fx\cdotj) integrable_on cbox a b
        by (simp add: integrable_on_open_interval)
    qed
    ultimately have ( }\lambdax.fx\cdotj) integrable_on cbox a b
        by auto
    then show ?thesis
        using absolutely_integrable_component_ubound [OF_absint_g] fg by force
    next
```

```
    assume \(g f\) [rule_format]: \(\forall x \in\) cbox a b. \(g x \leq f x \cdot j\)
    have \((\lambda x .(f x \cdot j))=(\lambda x .((f x \cdot j)-g x)+g x)\)
    by \(\operatorname{simp}\)
    moreover have \((\lambda x .(f x \cdot j-g x)+g x)\) integrable_on cbox a \(b\)
    proof (rule Henstock_Kurzweil_Integration.integrable_add [OF _ int_gab])
    let \(? \varphi=\lambda k x\). if \(x \in I(\) Suc \(k)\) then \(f x \cdot j-g x\) else 0
    have \((\lambda x . f x \cdot j-g x)\) integrable_on box a \(b\)
    proof (rule monotone_convergence_increasing [of ? \(\varphi\), THEN conjunct1])
        have *: \(I(\) Suc \(k) \cap\) box \(a b=I(\) Suc \(k)\) for \(k\)
            using box_subset_cbox ISuc_box by fastforce
    show ? \(\varphi k\) integrable_on box a \(b\) for \(k\)
    proof (simp add: integrable_restrict_Int integral_restrict_Int *)
            show \((\lambda x . f x \cdot j-g x)\) integrable_on I (Suc \(k\) )
    by (metis ISuc_box Henstock_Kurzweil_Integration.integrable_diff I_def int_f
int_gab integrable_component integrable_on_open_interval integrable_on_subcbox)
    qed
    show ? \(\varphi k x \leq\) ? \(\varphi(S u c k) x\) if \(x \in b o x a b\) for \(k x\)
        using ISucSuc box_subset_cbox that by (force simp: I_def intro!: gf)
    show \((\lambda k\). ? \(\varphi k x) \longrightarrow f x \cdot j-g x\) if \(x: x \in b o x a b\) for \(x\)
    proof (rule tendsto_eventually)
        obtain \(N:: n a t\) where \(N: \bigwedge k . k \geq N \Longrightarrow x \in I k\)
            using getN \([O F x]\) by blast
            then show \(\forall_{F} k\) in sequentially. ? \(\varphi k x=f x \cdot j-g x\)
                by (metis (no_types, lifting) eventually_at_top_linorderI le_Suc_eq)
    qed
    have integral (box a b)
                            \((\lambda x\). if \(x \in I(\) Suc \(k)\) then \(f x \cdot j-g x\) else 0\() \mid \leq B f+B g\) for \(k\)
    proof -
        define \(A B K\) where \(A B K \equiv \operatorname{cbox}\left(a+(b-a) /_{R}(1+\right.\) real \(\left.k)\right)(b-\)
\((b-a) / R(1+\operatorname{real} k))\)
            have \(A B K_{-} e q[\) simp \(]: A B K \cap\) box a \(b=A B K\)
                using * I_def \(\alpha_{-}\)def \(\beta_{-}\)def \(A B K_{-}\)def by auto
            have int_fI: \(f\) integrable_on \(A B K\)
                unfolding \(A B K_{-} d e f\)
                using ISuc_box I_def \(\alpha_{-}\)def \(\beta_{-} d e f\) int_f by force
            then have \((\lambda x . f x \cdot j)\) integrable_on \(A B K\)
                by (simp add: integrable_component)
            moreover have \(g\) integrable_on \(A B K\)
                    by (metis ABK_def ABK_eq IntE box_subset_cbox int_gab inte-
grable_on_subcbox subset_eq)
            moreover
            have \(\mid\) integral \(A B K(\lambda x . f x \cdot j) \mid \leq\) norm (integral \(A B K f)\)
                by (simp add: Basis_le_norm int_fI \(\langle j \in\) Basis〉)
            then have \(\mid\) integral \(A B K(\lambda x . f x \cdot j) \mid \leq B f\)
                by (metis ABK_eq ABK_def Bf IntE dual_order.trans subset_eq)
            ultimately show ?thesis
                using * box_subset_cbox
                apply (simp add: integral_restrict_Int integral_diff ABK_def I_def \(\alpha_{-}\)def
\(\left.\beta \_d e f\right)\)
```

```
                    by (blast intro: Bg add_mono order_trans [OF abs_triangle_ineq4])
        qed
        then show bounded (range ( }\lambdak\mathrm{ . integral (box a b) (? }\varphik))\mathrm{ )
            by (auto simp add: bounded_iff)
        qed
        then show ( }\lambdax.fx\cdotj-gx) integrable_on cbox a b
        by (simp add: integrable_on_open_interval)
        qed
        ultimately have ( }\lambdax.fx\cdotj) integrable_on cbox a b
            by auto
            then show ?thesis
            using absint_g absolutely_integrable_absolutely_integrable_lbound gf by blast
        qed
    qed
qed
```


6.27.4 Second mean value theorem and corollaries

```
lemma level_approx:
    fixes f :: real => real and n::nat
    assumes f:^x. x S S\Longrightarrow0\leqfx^fx\leq1 and x S S n\not=0
    shows }|fx-(\sumk=Suc 0..n. if k/n\leqfx then inverse n else 0)|<inverse n
        (is ?lhs < -)
proof -
    have n*fx\geq0
        using assms by auto
    then obtain m::nat where m: floor (n*fx)= int m
        using nonneg_int_cases zero_le_floor by blast
    then have kn: real k / real n\leqfx \longleftrightarrowk\leqm for k
        using }\langlen\not=0\rangle\mathrm{ by (simp add: field_split_simps) linarith
    then have Suc n / real n\leqfx\longleftrightarrow Suc n\leqm
        by blast
    have real n*fx\leq real n
        by (simp add: <x \in S` f mult_left_le)
    then have m}\leq
        using m by linarith
    have ?lhs = |f x - (\sumk\in{Suc 0..n} \cap{..m}. inverse n)|
        by (subst sum.inter_restrict) (auto simp: kn)
    also have .. < inverse n
        using <m \leq n`\langlen\not=0\ranglem
        by (simp add: min_absorb2 field_split_simps) linarith
    finally show ?thesis.
qed
```

lemma SMVT_lemma2:
fixes $f::$ real \Rightarrow real
assumes $f: f$ integrable_on $\{a . . b\}$
and $g: \bigwedge x y . x \leq y \Longrightarrow g x \leq g y$

```
    shows \((\bigcup y\) ::real. \(\{\lambda x\). if \(g x \geq y\) then \(f x\) else 0\(\})\) equiintegrable_on \(\{a . . b\}\)
proof -
    have ffab: \(\{f\}\) equiintegrable_on \(\{a . . b\}\)
        by (metis equiintegrable_on_sing finterval_cbox)
    then have \(f f:\{f\}\) equiintegrable_on (cbox a b)
        by \(\operatorname{simp}\)
    have ge: \((\bigcup c .\{\lambda x\). if \(x \geq c\) then \(f x\) else 0\(\})\) equiintegrable_on \(\{a . . b\}\)
        using equiintegrable_halfspace_restrictions_ge [OF ff] by auto
    have gt: \((\bigcup c .\{\lambda x\). if \(x>c\) then \(f x\) else 0\(\})\) equiintegrable_on \(\{a . . b\}\)
        using equiintegrable_halfspace_restrictions_gt [OF ff] by auto
    have 0: \(\{(\lambda x .0)\}\) equiintegrable_on \(\{a . . b\}\)
        by (metis box_real(2) equiintegrable_on_sing integrable_0)
    have \(\dagger:(\lambda x\). if \(g x \geq y\) then \(f x\) else 0\() \in\{(\lambda x .0), f\} \cup(\cup z .\{\lambda x\). if \(z<x\) then
\(f x\) else 0\(\}) \cup(\bigcup z\). \(\{\lambda x\). if \(z \leq x\) then \(f x\) else 0\(\})\)
    for \(y\)
    proof \((\) cases \((\forall x . g x \geq y) \vee(\forall x . \neg(g x \geq y)))\)
    let \(? \mu=\operatorname{Inf}\{x . g x \geq y\}\)
    case False
    have lower: ? \(\mu \leq x\) if \(g x \geq y\) for \(x\)
    proof (rule cInf_lower)
        show \(x \in\{x . y \leq g x\}\)
            using False by (auto simp: that)
        show bdd_below \(\{x . y \leq g x\}\)
            by (metis False bdd_belowI dual_order.trans g linear mem_Collect_eq)
    qed
    have greatest: \(? \mu \geq z\) if \((\bigwedge x . g x \geq y \Longrightarrow z \leq x)\) for \(z\)
        by (metis False cInf_greatest empty_iff mem_Collect_eq that)
    show ?thesis
    proof (cases \(g\) ? \(\mu \geq y\) )
        case True
        then obtain \(\zeta\) where \(\zeta: \wedge x . g x \geq y \longleftrightarrow x \geq \zeta\)
            by (metis \(g\) lower order.trans) - in fact y is \(\operatorname{Inf}\{x . y \leq g x\}\)
        then show ?thesis
            by (force simp: \(\zeta\) )
        next
        case False
        have \((y \leq g x) \longleftrightarrow(? \mu<x)\) for \(x\)
        proof
            show \(? \mu<x\) if \(y \leq g x\)
                    using that False less_eq_real_def lower by blast
            show \(y \leq g x\) if \(? \mu<x\)
                by (metis \(g\) greatest le_less_trans that less_le_trans linear not_less)
        qed
        then obtain \(\zeta\) where \(\zeta: \bigwedge x . g x \geq y \longleftrightarrow x>\zeta .\).
        then show ?thesis
            by (force simp: \(\zeta\) )
        qed
    qed auto
    show ?thesis
```

using \dagger by (simp add: UN_subset_iff equiintegrable_on_subset [OF equiintegrable_on_Un [OF gt equiintegrable_on_Un [OF ge equiintegrable_on_Un [OF ffab 0]]]])
qed
lemma SMVT_lemma4:
fixes $f::$ real \Rightarrow real
assumes $f: f$ integrable_on $\{a . . b\}$
and $a \leq b$
and $g: \wedge x y \cdot x \leq y \Longrightarrow g x \leq g y$
and 01: $\bigwedge x . \llbracket a \leq x ; x \leq b \rrbracket \Longrightarrow 0 \leq g x \wedge g x \leq 1$
obtains c where $a \leq c c \leq b\left(\left(\lambda x . g x *_{R} f x\right)\right.$ has_integral integral $\left.\{c . . b\} f\right)$ \{a..b\}
proof -
have connected $((\lambda x$. integral $\{x . . b\} f)$ ' $\{a . . b\})$
by (simp add: f indefinite_integral_continuous_1' connected_continuous_image)
moreover have compact $((\lambda x$. integral $\{x . . b\} f) '\{a . . b\})$
by (simp add: compact_continuous_image findefinite_integral_continuous_1')
ultimately obtain $m M$ where int_fab: $(\lambda x$. integral $\{x . . b\} f) \cdot\{a . . b\}=$ $\{m . . M\}$
using connected_compact_interval_1 by meson
have $\exists c . c \in\{a . . b\} \wedge$
integral $\{c . . b\} f=$
integral $\{a . . b\}\left(\lambda x .\left(\sum k=1\right.\right.$..n. if $g x \geq$ real $k /$ real n then inverse
$n *_{R} f x$ else 0$)$) for n
proof (cases $n=0$)
case True
then show ?thesis
using $\langle a \leq b\rangle$ by auto
next
case False
have ($\bigcup c::$ real. $\{\lambda x$. if $g x \geq c$ then $f x$ else 0$\}$) equiintegrable_on $\{a . . b\}$ using SMVT_lemma2 [OF f g].
then have int: $(\lambda x$. if $g x \geq c$ then $f x$ else 0$)$ integrable_on $\{a . . b\}$ for c by (simp add: equiintegrable_on_def)
have int': (λx. if $g x \geq c$ then $u * f x$ else 0) integrable_on $\{a . . b\}$ for $c u$ proof -
have $(\lambda x$. if $g x \geq c$ then $u * f x$ else 0$)=(\lambda x . u *($ if $g x \geq c$ then $f x$ else
0))
by (force simp: if_distrib)
then show ?thesis
using integrable_on_cmult_left [OF int] by simp
qed
have $\exists d . d \in\{a . . b\} \wedge$ integral $\{a . . b\}(\lambda x$. if $g x \geq y$ then $f x$ else 0$)=$ integral $\{d . . b\} f$ for y
proof -
let $? X=\{x . g x \geq y\}$
have $*: \exists a$. ? $X=\{a ..\} \vee$? $X=\{a<.$.

```
    if \(1: ? X \neq\{ \}\) and 2: ? \(X \neq U N I V\)
    proof -
    let \(? \mu=\operatorname{Inf}\{x . g x \geq y\}\)
    have lower: ? \(\mu \leq x\) if \(g x \geq y\) for \(x\)
    proof (rule cInf_lower)
        show \(x \in\{x . y \leq g x\}\)
            using 12 by (auto simp: that)
            show bdd_below \(\{x . y \leq g x\}\)
                unfolding bdd_below_def
            by (metis 2 UNIV_eq_I dual_order.trans g less_eq_real_def mem_Collect_eq
not_le)
    qed
    have greatest: \(? ~ \mu \geq z\) if \(\bigwedge x . g x \geq y \Longrightarrow z \leq x\) for \(z\)
        by (metis cInf_greatest mem_Collect_eq that 1)
    show ?thesis
    proof (cases \(g\) ? \(\mu \geq y\) )
            case True
            then obtain \(\zeta\) where \(\zeta: \bigwedge x . g x \geq y \longleftrightarrow x \geq \zeta\)
                    by (metis \(g\) lower order.trans) - in fact y is \(\operatorname{Inf}\{x . y \leq g x\}\)
            then show ?thesis
                by (force simp: \(\zeta\) )
            next
            case False
            have \((y \leq g x)=(? \mu<x)\) for \(x\)
            proof
                show \(? \mu<x\) if \(y \leq g x\)
                    using that False less_eq_real_def lower by blast
                show \(y \leq g x\) if \(? \mu<x\)
                    by (metis \(g\) greatest le_less_trans that less_le_trans linear not_less)
            qed
            then obtain \(\zeta\) where \(\zeta: \bigwedge x . g x \geq y \longleftrightarrow x>\zeta .\).
            then show ?thesis
                by (force simp: \(\zeta\) )
            qed
            qed
            then consider \(? X=\{ \}|? X=U N I V|(\) intv \() d\) where \(? X=\{d ..\} \vee ? X\)
\(=\{d<.\).
            by metis
    then have \(\exists d . d \in\{a . . b\} \wedge\) integral \(\{a . . b\}(\lambda x\). if \(x \in\) ? \(X\) then \(f x\) else 0\()\)
\(=\) integral \(\{d . . b\} f\)
    proof cases
        case (intv d)
        show ?thesis
    proof (cases \(d<a\) )
            case True
            with intv have integral \(\{a . . b\}(\lambda x\). if \(y \leq g x\) then \(f x\) else 0\()=\) integral
\(\{a . . b\} f\)
            by (intro Henstock_Kurzweil_Integration.integral_cong) force
            then show ?thesis
```

```
        by (rule_tac x=a in exI) (simp add: <a\leqb\rangle)
    next
        case False
        show ?thesis
        proof (cases b<d)
            case True
            have integral {a..b} (\lambdax. if }x\in{x.y\leqgx} then f x else 0)= integral
{a..b} (\lambdax.0)
            by (rule Henstock_Kurzweil_Integration.integral_cong) (use intv True in
fastforce)
            then show ?thesis
                using <a \leqb\rangle by auto
            next
        case False
            with }\negd<a\rangle\mathrm{ have eq:{d...} ค{a..b} ={d..b}{d<...} ค{a..b}=
{d<..b}
            by force+
            moreover have integral {d<..b} f= integral {d..b} f
            by (rule integral_spike_set [OF empty_imp_negligible negligible_subset
[OF negligible_sing [of d]]]) auto
            ultimately
            have integral {a..b} (\lambdax. if }x\in{x.y\leqgx} then f x else 0)= integral
{d..b}f
            unfolding integral_restrict_Int using intv by presburger
                moreover have d\in{a..b}
                using <\negd< <a\rangle\langlea\leqb\rangle False by auto
                    ultimately show ?thesis
                    by auto
            qed
        qed
    qed (use <a \leqb> in auto)
    then show ?thesis
        by auto
    qed
    then have }\forallk.\existsd.d\in{a..b}\wedge integral {a..b} (\lambdax. if real k / real n\leqgx
then f x else 0) = integral {d..b}f
    by meson
    then obtain d where dab: \k.d k\in{a..b}
    and deq:\k::nat. integral {a..b} (\lambdax. if }k/n\leqgx\mathrm{ then f x else 0) = integral
{d k..b} f
        by metis
```



```
/R}n\in{m..M
            unfolding scaleR_right.sum
    proof (intro conjI allI impI convex [THEN iffD1, rule_format])
    show integral {a..b} (\lambdaxa. if real k / real n \leqg xa then f xa else 0) }\in{m..M
for }
            by (metis (no_types, lifting) deq image_eqI int_fab dab)
    qed (use <n\not=0` in auto)
```

then have $\exists c . c \in\{a . . b\} \wedge$
integral $\{c . . b\} f=$ inverse $n *_{R}\left(\sum k=1 . . n\right.$. integral $\{a . . b\}(\lambda x$. if g $x \geq$ real $k /$ real n then $f x$ else 0$)$)
by (metis (no_types, lifting) int_fab imageE)
then show ?thesis
by (simp add: sum_distrib_left if_distrib integral_sum int' flip: integral_mult_right cong: if_cong)
qed
then obtain c where $c a b: \bigwedge n . c n \in\{a . . b\}$
and $c: \bigwedge n$. integral $\{c n . . b\} f=$ integral $\{a . . b\}\left(\lambda x .\left(\sum k=1\right.\right.$..n. if $g x \geq$ real $k /$ real n then $f x / R n$ else 0$)$)
by metis
obtain d and $\sigma::$ nat \Rightarrow nat
where $d \in\{a . . b\}$ and $\sigma:$ strict_mono σ and $d:(c \circ \sigma) \longrightarrow d$ and non0: $\wedge n . \sigma n \geq$ Suc 0
proof -
have compact $\{a . . b\}$
by auto
with $c a b$ obtain d and $s 0$
where $d \in\{a . . b\}$ and $s 0:$ strict_mono $s 0$ and tends: $(c \circ s 0) \longrightarrow d$
unfolding compact_def
using that by blast
show thesis
proof
show $d \in\{a . . b\}$
by fact
show strict_mono (s0 ○ Suc)
using $s 0$ by (auto simp: strict_mono_def)
show $(c \circ(s 0 \circ S u c)) \longrightarrow d$
by (metis tends LIMSEQ_subseq_LIMSEQ Suc_less_eq comp_assoc strict_mono_def)
show $\bigwedge n$. (s0 ○ Suc) $n \geq$ Suc 0
by (metis comp_apply le0 not_less_eq_eq old.nat.exhaust s0 seq_suble)

qed

qed
define φ where $\varphi \equiv \lambda n x . \sum k=$ Suc $0 . . \sigma n$. if $k /(\sigma n) \leq g x$ then $f x / R(\sigma$
n) else 0
define ψ where $\psi \equiv \lambda n x . \sum k=S u c 0 . . \sigma n$. if $k /(\sigma n) \leq g x$ then inverse $(\sigma$
n) else 0
have $* *:\left(\lambda x . g x *_{R} f x\right)$ integrable_on cbox a $b \wedge$
$\left(\lambda n\right.$. integral $($ cbox a b) $(\varphi n)) \longrightarrow$ integral $\left(\right.$ cbox ab) $\left(\lambda x . g x *_{R} f x\right)$ proof (rule equiintegrable_limit)
have $\dagger:\left(\left(\lambda n . \lambda x .\left(\sum k=\right.\right.\right.$ Suc 0..n. if $k / n \leq g x$ then inverse $n *_{R} f x$ else 0)) ' $\{$ Suc 0.. $\}$) equiintegrable_on $\{a . . b\}$
proof -
have $*:(\bigcup c::$ real. $\{\lambda x$. if $g x \geq c$ then $f x$ else 0$\})$ equiintegrable_on $\{a . . b\}$
using SMVT_lemmaz [OF fg].
show ?thesis
apply (rule equiintegrable_on_subset [OF equiintegrable_sum_real $[O F *]$, clarify)

```
    apply (rule_tac a={Suc 0..n} in UN_I, force)
    apply (rule_tac a=\lambdak. inverse n in UN_I, auto)
    apply (rule_tac }x=\lambdakx\mathrm{ . if real k / real n s g x then f x else 0 in bexI)
    apply (force intro: sum.cong)+
    done
    qed
    show range \varphi equiintegrable_on cbox a b
        unfolding \varphi_def
        by (auto simp: non0 intro: equiintegrable_on_subset [OF \dagger])
    show (\lambdan.\varphi n x) \longrightarrowg x*R}f
    if x:x\in cbox a b for x
    proof -
    have eq: \varphi nx=\psi nx*R fx for n
        by (auto simp: \varphi_def \psi_def sum_distrib_right if_distrib intro: sum.cong)
    show ?thesis
        unfolding eq
    proof (rule tendsto_scaleR [OF _ tendsto_const])
        show }(\lambdan.\psinx)\longrightarrowg
            unfolding lim_sequentially dist_real_def
        proof (intro allI impI)
            fix e :: real
            assume e>0
            then obtain N where N\not=00< inverse (real N) and N: inverse (real
N)<e
                using real_arch_inverse by metis
            moreover have }|\psinx-gx|<inverse (real N) if n\geqN for 
            proof -
                have }|gx-\psinx|<inverse (real (\sigma n)
                    unfolding \psi_def
                proof (rule level_approx [of {a..b} g])
                    show \sigma n\not=0
                            by (metis Suc_n_not_le_n non0)
                qed (use x 01 non0 in auto)
                also have .. . \leq inverse N
                    using seq_suble [OF \sigma]<N\not=0\rangle non0 that by (auto intro: order_trans
simp: field_split_simps)
                finally show ?thesis
                    by linarith
            qed
            ultimately show }\existsN.\foralln\geqN. |\psi nx - gx < <
                using less_trans by blast
            qed
        qed
    qed
qed
show thesis
proof
    show }a\leqdd\leq
        using <d \in{a..b}> atLeastAtMost_iff by blast+
```

```
        show ((\lambdax.g x *R f x) has_integral integral {d..b} f) {a..b}
        unfolding has_integral_iff
        proof
        show ( }\lambdax.gx\mp@subsup{*}{R}{}fx)\mathrm{ integrable_on {a..b}
            using ** by simp
```



```
        proof (rule tendsto_unique)
            show (\lambdan. integral {c(\sigma n)..b} f)\longrightarrow integral {a..b} (\lambdax.g x < *R f x)
                using ** by (simp add:c \varphi_def)
            have continuous (at d within {a..b}) (\lambdax. integral {x..b} f)
                using indefinite_integral_continuous_1' [OF f] \langled \in {a..b}\rangle
                by (simp add: continuous_on_eq_continuous_within)
            then show }(\lambdan.\mathrm{ integral {c( }\sigman)..b}f)\longrightarrowintegral {d..b}
                using d cab unfolding o_def
                by (simp add: continuous_within_sequentially o_def)
        qed auto
        qed
    qed
qed
```

theorem second_mean_value_theorem_full:
fixes $f::$ real \Rightarrow real
assumes $f: f$ integrable_on $\{a . . b\}$ and $a \leq b$
and $g: \bigwedge x y . \llbracket a \leq x ; x \leq y ; y \leq b \rrbracket \Longrightarrow g x \leq g y$
obtains c where $c \in\{a . . b\}$
and $((\lambda x . g x * f x)$ has_integral $(g a *$ integral $\{a . . c\} f+g b *$ integral $\{c . . b\}$
f)) $\{a . . b\}$
proof -
have $g a b: g a \leq g b$
using $\langle a \leq b\rangle g$ by blast
then consider $g a<g b \mid g a=g b$
by linarith
then show thesis
proof cases
case 1
define h where $h \equiv \lambda x$. if $x<a$ then 0 else if $b<x$ then 1
else $(g x-g a) /(g b-g a)$
obtain c where $a \leq c c \leq b$ and $c:\left(\left(\lambda x . h x *_{R} f x\right)\right.$ has_integral integral
$\{c . . b\} f)\{a . . b\}$
proof (rule SMVT_lemma4 $[$ OF $f\langle a \leq b\rangle$, of $h]$)
show $h x \leq h$ y $0 \leq h x \wedge h x \leq 1$ if $x \leq y$ for $x y$
using that gab by (auto simp: divide_simps $g h_{-} d e f$)
qed
show ?thesis
proof
show $c \in\{a . . b\}$
using $\langle a \leq c\rangle\langle c \leq b\rangle$ by auto
have $I:((\lambda x . g x * f x-g a * f x)$ has_integral $(g b-g a) *$ integral $\{c . . b\}$

```
f) {a..b}
    proof (subst has_integral_cong)
        show g x*fx-ga*fx=(gb-ga)*hx**R}f
            if }x\in{a..b}\mathrm{ for }
            using 1 that by (simp add: h_def field_split_simps)
            show ((\lambdax. (gb-ga)*hx\mp@subsup{*}{R}{}fx) has_integral (gb-ga)* integral
{c..b} f) {a..b}
            using has_integral_mult_right [OF c, of g b - ga].
    qed
    have II:((\lambdax.ga*fx) has_integral g a * integral {a..b} f) {a..b}
        using has_integral_mult_right [where c=ga,OF integrable_integral [OF
f]].
    have ((\lambdax.g x * fx) has_integral (gb-ga)* integral {c..b}f+ga*
integral {a..b} f) {a..b}
        using has_integral_add [OF I II] by simp
    then show ((\lambdax.g x*fx) has_integral ga*integral {a..c} f+gb*integral
{c..b} f) {a..b}
            by (simp add: algebra_simps flip: integral_combine [OF <a \leqc\rangle\langlec\leqb>f])
        qed
    next
        case 2
        show ?thesis
    proof
            show }a\in{a..b
                by (simp add: <a \leqb>)
            have ((\lambdax.g x*fx) has_integral g a* integral {a..b}f) {a..b}
            proof (rule has_integral_eq)
                show ((\lambdax.ga*fx) has_integral ga* integral {a..b} f) {a..b}
                    using f has_integral_mult_right by blast
                show ga*fx=gx*fx
                        if }x\in{a..b}\mathrm{ for }
                by (metis atLeastAtMost_iff g less_eq_real_def not_le that 2)
            qed
            then show ((\lambdax.gx*fx) has_integral ga* integral {a..a}f+gb*integral
{a..b} f) {a..b}
                by (simp add: 2)
            qed
    qed
qed
corollary second_mean_value_theorem:
    fixes f :: real # real
    assumes f:f integrable_on {a..b} and a\leqb
    and g:\x y.\llbracketa\leqx;x\leqy;y\leqb\rrbracket\Longrightarrowgx\leqgy
obtains c where c}\in{a..b
                    integral {a..b} (\lambdax.g x*fx)=ga* integral {a..c} f+gb*
integral {c..b} f
    using second_mean_value_theorem_full [where g=g,OF assms]
```

by (metis (full_types) integral_unique)
end

6.28 Continuous Extensions of Functions

theory Continuous_Extension
imports Starlike
begin

6.28.1 Partitions of unity subordinate to locally finite open coverings

A difference from HOL Light: all summations over infinite sets equal zero, so the "support" must be made explicit in the summation below!

```
proposition subordinate_partition_of_unity:
    fixes \(S\) :: 'a::metric_space set
    assumes \(S \subseteq \bigcup \mathcal{C}\) and op \(C: \wedge T . T \in \mathcal{C} \Longrightarrow\) open \(T\)
        and fin: \(\wedge x . x \in S \Longrightarrow \exists V\). open \(V \wedge x \in V \wedge\) finite \(\{U \in \mathcal{C} . U \cap V \neq\)
\{\}\}
    obtains \(F::\left[\right.\) 'a set, \(\left.{ }^{\prime} a\right] \Rightarrow\) real
        where \(\wedge U . U \in \mathcal{C} \Longrightarrow\) continuous_on \(S(F U) \wedge(\forall x \in S .0 \leq F U x)\)
            and \(\bigwedge x U . \llbracket U \in \mathcal{C} ; x \in S ; x \notin U \rrbracket \Longrightarrow F U x=0\)
            and \(\Lambda x . x \in S \Longrightarrow \operatorname{supp}_{-}\)sum \((\lambda W . F W x) \mathcal{C}=1\)
            and \(\wedge x . x \in S \Longrightarrow \exists V\). open \(V \wedge x \in V \wedge\) finite \(\{U \in \mathcal{C} . \exists x \in V . F U x\)
\(\neq 0\}\)
proof (cases \(\exists W . W \in \mathcal{C} \wedge S \subseteq W)\)
    case True
            then obtain \(W\) where \(W \in \mathcal{C} S \subseteq W\) by metis
            then show?thesis
                by (rule_tac \(F=\lambda V x\). if \(V=W\) then 1 else 0 in that) (auto simp:
supp_sum_def support_on_def)
next
    case False
            have nonneg: \(0 \leq\) supp_sum \((\lambda V\). setdist \(\{x\}(S-V)) \mathcal{C}\) for \(x\)
                by (simp add: supp_sum_def sum_nonneg)
            have sd_pos: \(0<\) setdist \(\{x\}(S-V)\) if \(V \in \mathcal{C} x \in S x \in V\) for \(V x\)
            proof -
                have closedin (top_of_set \(S\) ) \((S-V)\)
                    by (simp add: Diff_Diff_Int closedin_def opC openin_open_Int \(\langle V \in \mathcal{C}\rangle)\)
            with that False setdist_pos_le \([o f\{x\} S-V]\)
            show ?thesis
                    using setdist_gt_0_closedin by fastforce
            qed
            have ss_pos: \(0<\) supp_sum \((\lambda V\). setdist \(\{x\}(S-V)) \mathcal{C}\) if \(x \in S\) for \(x\)
            proof -
                obtain \(U\) where \(U \in \mathcal{C} x \in U\) using \(\langle x \in S\rangle\langle S \subseteq \bigcup \mathcal{C}\rangle\)
                    by blast
```

```
    obtain \(V\) where open \(V x \in V\) finite \(\{U \in \mathcal{C} . U \cap V \neq\{ \}\}\)
        using \(\langle x \in S\rangle\) fin by blast
    then have \(*\) : finite \(\{A \in \mathcal{C} . \neg S \subseteq A \wedge x \notin\) closure \((S-A)\}\)
        using closure_def that by (blast intro: rev_finite_subset)
    have \(x \notin\) closure \((S-U)\)
        using \(\langle U \in \mathcal{C}\rangle\langle x \in U\rangle\) op \(C\) open_Int_closure_eq_empty by fastforce
    then show ?thesis
        apply (simp add: setdist_eq_0_sing_1 supp_sum_def support_on_def)
        apply (rule ordered_comm_monoid_add_class.sum_pos2 [OF *, of U])
        using \(\langle U \in \mathcal{C}\rangle\langle x \in U\rangle\) False
        apply (auto simp: sd_pos that)
        done
    qed
    define \(F\) where
        \(F \equiv \lambda W x\). if \(x \in S\) then setdist \(\{x\}(S-W) /\) supp_sum \((\lambda V\). setdist \(\{x\}\)
\((S-V)) \mathcal{C}\) else 0
    show ?thesis
    proof (rule_tac \(F=F\) in that)
        have continuous_on \(S(F U)\) if \(U \in \mathcal{C}\) for \(U\)
        proof -
            have \(*\) : continuous_on \(S(\lambda x\). supp_sum \((\lambda V\). setdist \(\{x\}(S-V)) \mathcal{C})\)
            proof (clarsimp simp add: continuous_on_eq_continuous_within)
            fix \(x\) assume \(x \in S\)
            then obtain \(X\) where open \(X\) and \(x: x \in S \cap X\) and finX: finite \(\{U\)
\(\in \mathcal{C} . U \cap X \neq\{ \}\}\)
            using assms by blast
            then have \(O S X\) : openin (top_of_set \(S)(S \cap X)\) by blast
            have sumeq: \(\bigwedge x . x \in S \cap X \Longrightarrow\)
                    \(\left(\sum V \mid V \in \mathcal{C} \wedge V \cap X \neq\{ \}\right.\). setdist \(\left.\{x\}(S-V)\right)\)
                    \(=\) supp_sum \((\lambda V\). setdist \(\{x\}(S-V)) \mathcal{C}\)
            apply (simp add: supp_sum_def)
            apply (rule sum.mono_neutral_right \([O F\) finX])
            apply (auto simp: setdist_eq_0_sing_1 support_on_def subset_iff)
            apply (meson DiffI closure_subset disjoint_iff_not_equal subsetCE)
            done
            show continuous (at \(x\) within \(S\) ) ( \(\lambda x\). supp_sum \((\lambda V\). setdist \(\{x\}(S-\)
V)) \(\mathcal{C}\) )
            apply (rule continuous_transform_within_openin
                            [where \(f=\lambda x\). \((\operatorname{sum}(\lambda V\). setdist \(\{x\}(S-V))\{V \in \mathcal{C} . V \cap\)
\(X \neq\{ \}\}\) )
                                    and \(S=S \cap X]\) )
            apply (rule continuous_intros continuous_at_setdist continuous_at_imp_continuous_at_within
OSX \(x\) )+
        apply (simp add: sumeq)
        done
    qed
    show ?thesis
        apply ( simp add: F_def)
        apply (rule continuous_intros *)+
```

```
            using ss_pos apply force
            done
    qed
    moreover have \llbracketU\in\mathcal{C};x\inS\rrbracket\Longrightarrow0\leqFU x for Ux
            using nonneg [of x] by (simp add: F_def field_split_simps)
            ultimately show }\U.U\in\mathcal{C}\Longrightarrow\mathrm{ continuous_on S (FU)^(}\forallx\inS.0\leq
U x)
            by metis
    next
        show }\xU.\llbracketU\in\mathcal{C};x\inS;x\not\inU\rrbracket\LongrightarrowFUx=
            by (simp add: setdist_eq_0_sing_1 closure_def F_def)
    next
        show supp_sum (\lambdaW.FW x)\mathcal{C}=1\mathrm{ if }x\inS\mathrm{ for }x
            using that ss_pos [OF that]
            by (simp add: F_def field_split_simps supp_sum_divide_distrib [symmetric])
    next
        show }\existsV\mathrm{ . open }V\wedgex\inV\wedge finite {U\in\mathcal{C}.\existsx\inV.FUx\not=0} if x\in
for }
            using fin [OF that] that
        by (fastforce simp: setdist_eq_0_sing_1 closure_def F_def elim!: rev_finite_subset)
    qed
qed
```


6.28.2 Urysohn's Lemma for Euclidean Spaces

For Euclidean spaces the proof is easy using distances.

```
lemma Urysohn_both_ne:
    assumes US: closedin (top_of_set U) S
        and UT: closedin (top_of_set U) T
        and \(S \cap T=\{ \} S \neq\{ \} T \neq\{ \} a \neq b\)
    obtains \(f\) ::' \(a::\) :euclidean_space \(\Rightarrow\) ' \(b:\) :real_normed_vector
        where continuous_on \(U f\)
            \(\bigwedge x . x \in U \Longrightarrow f x \in\) closed_segment \(a b\)
            \(\wedge x . x \in U \Longrightarrow(f x=a \longleftrightarrow x \in S)\)
            \(\wedge x . x \in U \Longrightarrow(f x=b \longleftrightarrow x \in T)\)
proof -
    have \(S 0: \wedge x . x \in U \Longrightarrow\) setdist \(\{x\} S=0 \longleftrightarrow x \in S\)
        using \(\langle S \neq\{ \}\rangle\) US setdist_eq_O_closedin by auto
    have T0: \(\wedge x . x \in U \Longrightarrow\) setdist \(\{x\} T=0 \longleftrightarrow x \in T\)
        using \(\langle T \neq\{ \}\rangle\) UT setdist_eq_-_closedin by auto
    have sdpos: \(0<\) setdist \(\{x\} S+\) setdist \(\{x\} T\) if \(x \in U\) for \(x\)
    proof -
        have \(\neg(\) setdist \(\{x\} S=0 \wedge\) setdist \(\{x\} T=0)\)
            using assms by (metis IntI empty_iff setdist_eq_O_closedin that)
        then show ?thesis
        by (metis add.left_neutral add.right_neutral add_pos_pos linorder_neqE_linordered_idom
not_le setdist_pos_le)
    qed
    define \(f\) where \(f \equiv \lambda x . a+(\operatorname{setdist}\{x\} S /(\operatorname{set} \operatorname{list}\{x\} S+\operatorname{setdist}\{x\} T))\)
```

```
\(*_{R}(b-a)\)
    show ?thesis
    proof (rule_tac \(f=f\) in that)
        show continuous_on \(U f\)
            using sdpos unfolding \(f_{-}\)def
            by (intro continuous_intros | force) +
        show \(f x \in\) closed_segment \(a b\) if \(x \in U\) for \(x\)
            unfolding \(f_{-} d e f\)
        apply (simp add: closed_segment_def)
        apply (rule_tac \(x=(\) setdist \(\{x\} S /(\) setdist \(\{x\} S+\) setdist \(\{x\} T))\) in exI)
        using sdpos that apply (simp add: algebra_simps)
        done
        show \(\bigwedge x . x \in U \Longrightarrow(f x=a \longleftrightarrow x \in S)\)
            using \(S 0\langle a \neq b\rangle f_{-}\)def sdpos by force
        show \((f x=b \longleftrightarrow x \in T)\) if \(x \in U\) for \(x\)
        proof -
            have \(f x=b \longleftrightarrow(\) setdist \(\{x\} S /(\) setdist \(\{x\} S+\) setdist \(\{x\} T))=1\)
            unfolding \(f_{-} d e f\)
            apply (rule iffI)
            apply (metis \(\langle a \neq b\rangle\) add_diff_cancel_left' eq_iff_diff_eq_0 pth_1 real_vector.scale_right_imp_eq,
force)
            done
            also have \(\ldots \longleftrightarrow\) setdist \(\{x\} T=0 \wedge\) setdist \(\{x\} S \neq 0\)
            using sdpos that
            by (simp add: field_split_simps) linarith
            also have \(\ldots \longleftrightarrow x \in T\)
            using \(\langle S \neq\{ \}\rangle\langle T \neq\{ \}\rangle\langle S \cap T=\{ \}\rangle\) that
            by (force simp: S0 T0)
            finally show ?thesis .
        qed
    qed
qed
proposition Urysohn_local_strong:
    assumes US: closedin (top_of_set U) S
            and \(U T\) : closedin (top_of_set \(U\) ) \(T\)
            and \(S \cap T=\{ \} a \neq b\)
    obtains \(f\) :: 'a::euclidean_space \(\Rightarrow{ }^{\prime} b::\) euclidean_space
        where continuous_on \(U f\)
            \(\bigwedge x . x \in U \Longrightarrow f x \in\) closed_segment \(a b\)
            \(\bigwedge x . x \in U \Longrightarrow(f x=a \longleftrightarrow x \in S)\)
            \(\bigwedge x . x \in U \Longrightarrow(f x=b \longleftrightarrow x \in T)\)
proof (cases \(S=\{ \}\) )
    case True show ?thesis
    proof (cases \(T=\{ \}\) )
        case True show ?thesis
        proof (rule_tac \(f=\lambda x\). midpoint a \(b\) in that)
            show continuous_on \(U\) ( \(\lambda x\). midpoint \(a b)\)
            by (intro continuous_intros)
```

```
            show midpoint a b closed_segment a b
            using csegment_midpoint_subset by blast
            show (midpoint a b=a)=(x\inS) for x
                using \langleS={}\rangle\langlea\not=b\rangle by simp
            show (midpoint a b=b)=(x\inT) for x
            using }\langleT={}\rangle\langlea\not=b\rangle\mathrm{ by simp
        qed
    next
        case False
        show ?thesis
        proof (cases T=U)
            case True with }\langleS={}\rangle\langlea\not=b\rangle\mathrm{ show ?thesis
            by (rule_tac f=\lambdax.b in that)(auto)
        next
            case False
            with UT closedin_subset obtain c where c:c\inUc\not\inT
            by fastforce
            obtain f}\mathrm{ where f: continuous_on U f
                    \x. x 
                    \x.x\inU\Longrightarrow(fx= midpoint a b \longleftrightarrow x = c)
                    \x.x\inU\Longrightarrow(fx=b\longleftrightarrowx\inT)
            apply (rule Urysohn_both_ne [of U {c} T midpoint a b b])
            using c<T\not={}` assms apply simp_all
            done
        show ?thesis
            apply (rule_tac f=f in that)
            using <S = {}><T\not={}> f csegment_midpoint_subset notin_segment_midpoint
[OF<a\not=b\rangle]
            apply force+
            done
        qed
    qed
next
    case False
    show ?thesis
    proof (cases T={})
        case True show ?thesis
        proof (cases S=U)
            case True with \langleT = {}\rangle\langlea\not=b\rangle show ?thesis
            by (rule_tac f=\lambdax.a in that)(auto)
        next
        case False
        with US closedin_subset obtain c where c:c\inUc\not\inS
            by fastforce
        obtain f}\mathrm{ where f: continuous_on U f
                            \x. x \inU\Longrightarrowfx\in closed_segment a (midpoint a b)
```



```
                            \x.x\inU\Longrightarrow(fx=a\longleftrightarrowx\inS)
            apply (rule Urysohn_both_ne [of U S {c} a midpoint a b])
```

```
        using c<S\not={}`assms apply simp_all
        apply (metis midpoint_eq_endpoint)
        done
    show ?thesis
        apply (rule_tac f=f in that)
        using \langleS\not={}\rangle\langleT={}\ranglef\langlea\not=b\rangle
        apply simp_all
        apply (metis (no_types) closed_segment_commute csegment_midpoint_subset
midpoint_sym subset_iff)
            apply (metis closed_segment_commute midpoint_sym notin_segment_midpoint)
            done
    qed
    next
        case False
        show ?thesis
            using Urysohn_both_ne [OF US UT <S\capT={}\rangle\langleS\not={}><T\not={}\rangle\langlea\not=
b)] that
            by blast
    qed
qed
lemma Urysohn_local:
    assumes US: closedin (top_of_set U) S
            and UT: closedin (top_of_set U)T
            and S\capT={}
    obtains f :: 'a::euclidean_space = 'b::euclidean_space
        where continuous_on Uf
            \x.x\inU\Longrightarrowfx\in closed_segment a b
            \x. x \inS\Longrightarrowfx=a
            \x.x\inT\Longrightarrowfx=b
proof (cases a=b)
    case True then show ?thesis
        by (rule_tac f=\lambdax.b in that)(auto)
next
    case False
    then show ?thesis
        apply (rule Urysohn_local_strong [OF assms])
        apply (erule that, assumption)
        apply (meson US closedin_singleton closedin_trans)
        apply (meson UT closedin_singleton closedin_trans)
        done
qed
lemma Urysohn_strong:
    assumes US: closed S
            and UT: closed T
            and S\capT={} a\not=b
    obtains f :: 'a::euclidean_space }=>\mathrm{ ' 'b::euclidean_space
        where continuous_on UNIV f
```

$\bigwedge x . f x \in$ closed_segment $a b$
$\bigwedge x . f x=a \longleftrightarrow x \in S$
$\bigwedge x . f x=b \longleftrightarrow x \in T$
using assms by (auto intro: Urysohn_local_strong [of UNIV S T])
proposition Urysohn:
assumes $U S$: closed S
and $U T$: closed T
and $S \cap T=\{ \}$
obtains $f::$ 'a::euclidean_space $\Rightarrow{ }^{\prime} b::$ euclidean_space
where continuous_on UNIV f
$\bigwedge x . f x \in$ closed_segment $a b$
$\bigwedge x . x \in S \Longrightarrow f x=a$
$\wedge x . x \in T \Longrightarrow f x=b$
using assms by (auto intro: Urysohn_local [of UNIV $S T$ a b])

6.28.3 Dugundji's Extension Theorem and Tietze Variants

See [2].
lemma convex_supp_sum:
assumes convex S and 1: supp_sum $u I=1$
and $\bigwedge i . i \in I \Longrightarrow 0 \leq u i \wedge(u i=0 \vee f i \in S)$
shows supp_sum $\left(\lambda i . u i *_{R} f i\right) I \in S$
proof -
have fin: finite $\{i \in I . u i \neq 0\}$
using 1 sum.infinite by (force simp: supp_sum_def support_on_def)
then have supp_sum $\left(\lambda i . u i *_{R} f i\right) I=\operatorname{sum}\left(\lambda i . u i *_{R} f i\right)\{i \in I . u i \neq 0\}$
by (force intro: sum.mono_neutral_left simp: supp_sum_def support_on_def)
also have $\ldots \in S$
using 1 assms by (force simp: supp_sum_def support_on_def intro: convex_sum
[OF fin 〈convex $S\rangle]$)
finally show ?thesis .
qed
theorem Dugundji:
fixes $f::{ }^{\prime} a::\{$ metric_space,second_countable_topology $\} \Rightarrow{ }^{\prime} b::$ real_inner
assumes convex $C C \neq\{ \}$
and cloin: closedin (top_of_set U) S
and contf: continuous_on $S f$ and f ' $S \subseteq C$
obtains g where continuous_on $U g g^{\prime} U \subseteq C$
$\wedge x . x \in S \Longrightarrow g x=f x$
proof (cases $S=\{ \}$)
case True then show thesis apply (rule_tac $g=\lambda x$. SOME $y . y \in C$ in that)
apply (rule continuous_intros)
apply (meson all_not_in_conv $\langle C \neq\{ \}$ 〉image_subsetI someI_ex, simp) done
next
case False

```
then have sd_pos: \(\bigwedge x . \llbracket x \in U ; x \notin S \rrbracket \Longrightarrow 0<\operatorname{setdist}\{x\} S\)
    using setdist_eq_0_closedin [OF cloin] le_less setdist_pos_le by fastforce
define \(\mathcal{B}\) where \(\mathcal{B}=\{\) ball \(x\) (setdist \(\{x\} S / 2) \mid x . x \in U-S\}\)
have \([\) simp \(]: \wedge T . T \in \mathcal{B} \Longrightarrow\) open \(T\)
    by (auto simp: \(\mathcal{B}_{-} d e f\) )
have \(U S S: U-S \subseteq \cup \mathcal{B}\)
    by (auto simp: sd_pos \(\mathcal{B}_{-} d e f\) )
obtain \(\mathcal{C}\) where USsub: \(U-S \subseteq \bigcup \mathcal{C}\)
        and nbrhd: \(\wedge U . U \in \mathcal{C} \Longrightarrow\) open \(U \wedge(\exists T . T \in \mathcal{B} \wedge U \subseteq T)\)
        and fin: \(\wedge x . x \in U-S \Longrightarrow \exists V\). open \(V \wedge x \in V \wedge\) finite \(\{U . U \in \mathcal{C} \wedge\)
\(U \cap V \neq\{ \}\}\)
    by (rule paracompact [OF USS]) auto
have \(\exists v a . v \in U \wedge v \notin S \wedge a \in S \wedge\)
                    \(T \subseteq\) ball \(v(\) setdist \(\{v\} S / 2) \wedge\)
                    dist \(v a \leq 2 *\) setdist \(\{v\} S\) if \(T \in \mathcal{C}\) for \(T\)
proof -
    obtain \(v\) where \(v: T \subseteq\) ball \(v(\) setdist \(\{v\} S / 2) v \in U v \notin S\)
        using \(\langle T \in \mathcal{C}\rangle\) nbrhd by (force simp: \(\mathcal{B}_{-}\)def)
    then obtain \(a\) where \(a \in S\) dist \(v a<2 *\) setdist \(\{v\} S\)
        using setdist_ltE \([\) of \(\{v\} S 2 *\) setdist \(\{v\} S]\)
        using False sd_pos by force
    with \(v\) show ?thesis
        apply (rule_tac \(x=v\) in \(e x I\) )
        apply (rule_tac \(x=a\) in exI, auto)
        done
    qed
    then obtain \(\mathcal{V} \mathcal{A}\) where
        VA: \(\wedge T . T \in \mathcal{C} \Longrightarrow \mathcal{V} T \in U \wedge \mathcal{V} T \notin S \wedge \mathcal{A} T \in S \wedge\)
                \(T \subseteq \operatorname{ball}(\mathcal{V} T)(\) setdist \(\{\mathcal{V} T\} S / 2) \wedge\)
                dist \((\mathcal{V} T)(\mathcal{A} T) \leq 2 *\) setdist \(\{\mathcal{V} T\} S\)
    by metis
have sdle: setdist \(\{\mathcal{V} T\} S \leq 2 *\) setdist \(\{v\} S\) if \(T \in \mathcal{C} v \in T\) for \(T v\)
    using setdist_Lipschitz [of \(\mathcal{V} T S v] V A[O F\langle T \in \mathcal{C}\rangle]\langle v \in T\rangle\) by auto
have d6: dist \(a(\mathcal{A} T) \leq 6 *\) dist \(a v\) if \(T \in \mathcal{C} v \in T a \in S\) for \(T v a\)
proof -
    have \(\operatorname{dist}(\mathcal{V} T) v<\operatorname{setdist}\{\mathcal{V} T\} S / 2\)
        using that VA mem_ball by blast
    also have \(\ldots \leq\) setdist \(\{v\} S\)
        using sdle \([O F\langle T \in \mathcal{C}\rangle\langle v \in T\rangle]\) by simp
    also have \(v S\) : setdist \(\{v\} S \leq\) dist a \(v\)
        by (simp add: setdist_le_dist setdist_sym \(\langle a \in S\rangle\) )
    finally have \(V T V: \operatorname{dist}(\mathcal{V} T) v<d i s t ~ a v\).
    have VTS: setdist \(\{\mathcal{V} T\} S \leq 2 *\) dist a \(v\)
        using sdle that \(v S\) by force
    have dist \(a(\mathcal{A} T) \leq \operatorname{dist} a v+\operatorname{dist} v(\mathcal{V} T)+\operatorname{dist}(\mathcal{V} T)(\mathcal{A} T)\)
    by (metis add.commute add_le_cancel_left dist_commute dist_triangle2 dist_triangle_le)
    also have \(\ldots \leq \operatorname{dist}\) a \(v+\operatorname{dist}\) a \(v+\operatorname{dist}(\mathcal{V} T)(\mathcal{A} T)\)
        using \(V T V\) by (simp add: dist_commute)
    also have \(\ldots \leq 2 *\) dist a \(v+2 *\) setdist \(\{\mathcal{V} T\} S\)
```

```
        using \(V A[O F\langle T \in \mathcal{C}\rangle]\) by auto
        finally show ?thesis
    using VTS by linarith
    qed
    obtain \(H\) :: ['a set, 'a] \(\Rightarrow\) real
    where Hcont: \(\bigwedge Z . Z \in \mathcal{C} \Longrightarrow\) continuous_on \((U-S)(H Z)\)
        and Hge0: \(\wedge Z x . \llbracket Z \in \mathcal{C} ; x \in U-S \rrbracket \Longrightarrow 0 \leq H Z x\)
        and Heq0: \(\bigwedge x Z . \llbracket Z \in \mathcal{C} ; x \in U-S ; x \notin Z \rrbracket \Longrightarrow H Z x=0\)
        and \(H 1: \bigwedge x . x \in U-S \Longrightarrow\) supp_sum \((\lambda W . H W x) \mathcal{C}=1\)
        and Hfin: \(\wedge x . x \in U-S \Longrightarrow \exists V\). open \(V \wedge x \in V \wedge\) finite \(\{U \in \mathcal{C} . \exists x \in V\).
\(H U x \neq 0\}\)
    apply (rule subordinate_partition_of_unity [OF USsub _ fin])
    using nbrhd by auto
    define \(g\) where \(g \equiv \lambda x\). if \(x \in S\) then \(f x\) else supp_sum \(\left(\lambda T\right.\). H T \(x *_{R} f(\mathcal{A}\)
T)) \(\mathcal{C}\)
    show ?thesis
    proof (rule that)
    show continuous_on \(U g\)
    proof (clarsimp simp: continuous_on_eq_continuous_within)
        fix \(a\) assume \(a \in U\)
        show continuous (at a within \(U\) ) \(g\)
        proof (cases a \(\in S\) )
            case True show ?thesis
            proof (clarsimp simp add: continuous_within_topological)
                    fix \(W\)
                assume open \(W g a \in W\)
                then obtain \(e\) where \(0<e\) and \(e\) : ball \((f a) e \subseteq W\)
                    using openE True g_def by auto
                    have continuous (at a within S) \(f\)
                    using True contf continuous_on_eq_continuous_within by blast
                    then obtain \(d\) where \(0<d\)
                            and \(d: \wedge x . \llbracket x \in S ;\) dist \(x a<d \rrbracket \Longrightarrow \operatorname{dist}(f x)(f a)<e\)
                    using continuous_within_eps_delta \(\langle 0<e\rangle\) by force
                    have \(g y \in \operatorname{ball}(f a) e\) if \(y \in U\) and \(y: y \in\) ball \(a(d / 6)\) for \(y\)
                    proof (cases \(y \in S\) )
                        case True
                        then have dist \((f a)(f y)<e\)
                    by (metis ball_divide_subset_numeral dist_commute in_mono mem_ball y
d)
                    then show ?thesis
                        by (simp add: True g_def)
                next
                    case False
                    have \(*: \operatorname{dist}(f(\mathcal{A} T))(f a)<e\) if \(T \in \mathcal{C} H T y \neq 0\) for \(T\)
                    proof -
                    have \(y \in T\)
                        using Heq0 that False \(\langle y \in U\rangle\) by blast
                    have \(\operatorname{dist}(\mathcal{A} T) a<d\)
                        using \(d 6[O F\langle T \in \mathcal{C}\rangle\langle y \in T\rangle\langle a \in S\rangle] y\)
```

```
                by (simp add: dist_commute mult.commute)
                then show ?thesis
                    using \(V A[O F\langle T \in \mathcal{C}\rangle]\) by (auto simp: \(d\) )
        qed
        have supp_sum \(\left(\lambda T . H T y *_{R} f(\mathcal{A} T)\right) \mathcal{C} \in \operatorname{ball}(f a) e\)
            apply (rule convex_supp_sum [OF convex_ball])
            apply (simp_all add: False H1 Hge0 \(\langle y \in U\rangle\) )
            by (metis dist_commute *)
            then show ?thesis
                by (simp add: False g_def)
            qed
            then show \(\exists A\). open \(A \wedge a \in A \wedge(\forall y \in U . y \in A \longrightarrow g y \in W)\)
            apply (rule_tac \(x=\) ball \(a(d / 6)\) in exI)
            using \(e\langle 0<d\rangle\) by fastforce
    qed
next
    case False
    obtain \(N\) where \(N\) : open \(N a \in N\)
                and finN: finite \(\{U \in \mathcal{C} . \exists a \in N . H U a \neq 0\}\)
        using Hfin False \(\langle a \in U\) b by auto
    have oUS: openin (top_of_set \(U\) ) \((U-S)\)
        using cloin by (simp add: openin_diff)
    have HcontU: continuous (at a within \(U)(H T)\) if \(T \in \mathcal{C}\) for \(T\)
        using Hcont \([O F\langle T \in \mathcal{C}\rangle]\) False \(\langle a \in U\rangle\langle T \in \mathcal{C}\rangle\)
        apply (simp add: continuous_on_eq_continuous_within continuous_within)
        apply (rule Lim_transform_within_set)
        using oUS
            apply (force simp: eventually_at openin_contains_ball dist_commute dest!:
bspec) +
            done
    show ?thesis
    proof (rule continuous_transform_within_openin [OF _oUS])
    show continuous (at a within \(U)\left(\lambda x\right.\).supp_sum \(\left(\lambda T . H T x *_{R} f(\mathcal{A} T)\right)\)
    proof (rule continuous_transform_within_openin)
        show continuous (at a within \(U\) )
                    \(\left(\lambda x . \sum T \in\{U \in \mathcal{C} . \exists x \in N . H U x \neq 0\} . H T x *_{R} f(\mathcal{A} T)\right)\)
                by (force intro: continuous_intros HcontU)+
            next
            show openin (top_of_set \(U\) ) \(((U-S) \cap N)\)
                using \(N\) oUS openin_trans by blast
            next
                show \(a \in(U-S) \cap N\) using False \(\langle a \in U\rangle N\) by blast
            next
                show \(\wedge x . x \in(U-S) \cap N \Longrightarrow\)
                    \(\left(\sum T \in\{U \in \mathcal{C} . \exists x \in N . H U x \neq 0\} . H T x *_{R} f(\mathcal{A} T)\right)\)
                    \(=\) supp_sum \(\left(\lambda T . H T x *_{R} f(\mathcal{A} T)\right) \mathcal{C}\)
                by (auto simp: supp_sum_def support_on_def
                    intro: sum.mono_neutral_right [OF finN])
```

C)

```
            qed
        next
            show }a\inU-S\mathrm{ using False }\langlea\inU\rangle\mathrm{ by blast
        next
            show }\x.x\inU-S\Longrightarrow\operatorname{supp_sum}(\lambdaT.HTx\mp@subsup{*}{R}{}f(\mathcal{A}T))\mathcal{C}=g
            by (simp add: g_def)
        qed
        qed
    qed
    show g' U\subseteqC
        using <f'S\subseteqC>VA
        by (fastforce simp: g_def Hge0 intro!: convex_supp_sum [OF 〈convex C`] H1)
        show }\x.x\inS\Longrightarrowgx=f
        by (simp add: g_def)
    qed
qed
corollary Tietze:
    fixes f :: 'a::{metric_space,second_countable_topology} = 'b::real_inner
    assumes continuous_on S f
        and closedin (top_of_set U)S
        and 0\leqB
        and }\bigwedgex.x\inS\Longrightarrow\operatorname{norm}(fx)\leq
    obtains g}\mathrm{ where continuous_on Ug\x. x 隹 C g x = fx
        \ x . x \in U \Longrightarrow \operatorname { n o r m } ( g x ) \leq B
    using assms by (auto simp: image_subset_iff intro: Dugundji [of cball 0 B U S
f])
corollary Tietze_closed_interval:
```



```
    assumes continuous_on S f
        and closedin (top_of_set U)S
        and cbox a b}={
        and }\bigwedgex.x\inS\Longrightarrowfx\incbox a b
    obtains g}\mathrm{ where continuous_on Ug \x. x 隹 \ gx=fx
        \x. x\inU\Longrightarrowgx\incbox ab
    apply (rule Dugundji [of cbox a b U S f])
    using assms by auto
corollary Tietze_closed_interval_1:
    fixes f :: 'a::{metric_space,second_countable_topology} }=>\mathrm{ real
    assumes continuous_on S f
        and closedin (top_of_set U)S
        and a\leqb
        and }\bigwedgex.x\inS\Longrightarrowfx\incbox a b
    obtains g}\mathrm{ where continuous_on Ug \x. x 隹 S g gx=fx
        \x.x\inU\Longrightarrowgx\incbox a b
    apply (rule Dugundji [of cbox a b U S f])
```

```
    using assms by (auto simp: image_subset_iff)
corollary Tietze_open_interval:
    fixes f :: 'a::{metric_space,second_countable_topology} 吘 'b::euclidean_space
    assumes continuous_on S f
        and closedin (top_of_set U)S
        and box a b}\not={
        and }\bigwedgex.x\inS\Longrightarrowfx\inbox a b
    obtains g}\mathrm{ where continuous_on U g \x. x f S בgx=fx
        \x.x\inU\Longrightarrowgx 殒 a b
    apply (rule Dugundji [of box a b U S f])
    using assms by auto
corollary Tietze_open_interval_1:
    fixes f :: 'a::{metric_space,second_countable_topology} }=>\mathrm{ real
    assumes continuous_on S f
        and closedin (top_of_set U)S
        and a<b
        and no: \bigwedgex. x \inS\Longrightarrowfx\in box a b
    obtains g where continuous_on U g \bigwedgex. x 隹 = g x = fx
        \x. x \inU\Longrightarrowgx 旃 a a b
    apply (rule Dugundji [of box a b U S f])
    using assms by (auto simp: image_subset_iff)
corollary Tietze_unbounded:
    fixes f :: 'a::{metric_space,second_countable_topology} 缶 'b::real_inner
    assumes continuous_on S f
        and closedin (top_of_set U)S
    obtains g where continuous_on U g \x. x \inS\Longrightarrowg x=fx
    apply (rule Dugundji [of UNIV U S f])
    using assms by auto
```

end

6．29 Equivalence Between Classical Borel Measur－ ability and HOL Light＇s

theory Equivalence＿Measurable＿On＿Borel
imports Equivalence＿Lebesgue＿Henstock＿Integration Improper＿Integral Continu－ ous＿Extension
begin

abbreviation sym＿diff $::$＇a set \Rightarrow＇a set \Rightarrow＇a set where sym＿diff $A B \equiv((A-B) \cup(B-A))$

6．29．1 Austin＇s Lemma

lemma Austin＿Lemma：
fixes \mathcal{D} ：：＇$a::$ euclidean＿space set set
assumes finite \mathcal{D} and $\mathcal{D}: \wedge D . D \in \mathcal{D} \Longrightarrow \exists k a b . D=$ cbox a $b \wedge(\forall i \in$ Basis．
$b \cdot i-a \cdot i=k$ ）
obtains \mathcal{C} where $\mathcal{C} \subseteq \mathcal{D}$ pairwise disjnt \mathcal{C}
measure lebesgue $(\cup \mathcal{C}) \geq$ measure lebesgue $(\bigcup \mathcal{D}) / 3^{\wedge}\left(\right.$ DIM $\left.\left({ }^{\prime} a\right)\right)$
using assms
proof（induction card \mathcal{D} arbitrary： \mathcal{D} thesis rule：less＿induct）
case less
show ？case
proof（cases $\mathcal{D}=\{ \}$ ）
case True
then show thesis
using less by auto
next
case False
then have Max（Sigma＿Algebra．measure lebesgue＇ $\mathcal{D}) \in$ Sigma＿Algebra．measure
lebesgue＇ \mathcal{D}
using Max＿in finite＿imageI 〈finite \mathcal{D} 〉 by blast
then obtain D where $D \in \mathcal{D}$ and measure lebesgue $D=\operatorname{Max}$（measure
lebesgue＇ \mathcal{D} ）
by auto
then have $D: \wedge C . C \in \mathcal{D} \Longrightarrow$ measure lebesgue $C \leq$ measure lebesgue D
by（simp add：＜finite \mathcal{D} ）
let $? \mathcal{E}=\{C . C \in \mathcal{D}-\{D\} \wedge$ disjnt $C D\}$
obtain \mathcal{D}^{\prime} where \mathcal{D}^{\prime} sub： $\mathcal{D}^{\prime} \subseteq$ ？ \mathcal{E} and \mathcal{D}^{\prime} dis：pairwise disjnt \mathcal{D}^{\prime}
and \mathcal{D}^{\prime} m：measure lebesgue $\left(\bigcup \mathcal{D}^{\prime}\right) \geq$ measure lebesgue $(\bigcup ? \mathcal{E}) / 3^{\wedge}\left(D I M\left({ }^{\prime} a\right)\right)$
proof（rule less．hyps）
have $*: ? \mathcal{E} \subset \mathcal{D}$
using $\langle D \in \mathcal{D}\rangle$ by auto
then show card ？ $\mathcal{E}<$ card \mathcal{D} finite ？ \mathcal{E}
by（auto simp：〈finite $\mathcal{D}\rangle$ psubset＿card＿mono）
show $\exists k a b$ ．$D=$ cbox $a b \wedge(\forall i \in$ Basis．$b \cdot i-a \cdot i=k)$ if $D \in ? \mathcal{E}$ for D
using less．prems（3）that by auto
qed
then have［simp］：$\bigcup \mathcal{D}^{\prime}-D=\bigcup \mathcal{D}^{\prime}$
by（auto simp：disjnt＿iff）
show ？thesis
proof（rule less．prems）
show insert $D \mathcal{D}^{\prime} \subseteq \mathcal{D}$
using \mathcal{D}^{\prime} sub $\langle D \in \mathcal{D}\rangle$ by blast
show disjoint（insert $D \mathcal{D}^{\prime}$ ）
using \mathcal{D}^{\prime} dis \mathcal{D}^{\prime} sub by（fastforce simp add：pairwise＿def disjnt＿sym）
obtain a3 b3 where m3：content（cbox a3 b3）$=3{ }^{\wedge}$ DIM $\left({ }^{\prime} a\right) *$ measure lebesgue D
and sub3：$\bigwedge C . \llbracket C \in \mathcal{D} ; \neg \operatorname{disjnt} C D \rrbracket \Longrightarrow C \subseteq$ cbox a3 b3
proof－
obtain $k a b$ where $a b: D=c b o x a b$ and $k: \bigwedge i . i \in B a s i s \Longrightarrow b \cdot i-a \cdot i$
$=k$
using less．prems $\langle D \in \mathcal{D}\rangle$ by meson
then have eqk：$\bigwedge i . i \in$ Basis $\Longrightarrow a \cdot i \leq b \cdot i \longleftrightarrow k \geq 0$
by force
show thesis
proof
let ？$a=(a+b) / R_{R} 2-(3 / 2) *_{R}(b-a)$
let $? b=(a+b) / R 2+(3 / 2) *_{R}(b-a)$
have eq：$\left(\prod i \in\right.$ Basis．$\left.b \cdot i * 3-a \cdot i * 3\right)=\left(\prod i \in\right.$ Basis．$\left.b \cdot i-a \cdot i\right)$
＊ 3 ＾$D I M(' a)$
by（simp add：comm＿monoid＿mult＿class．prod．distrib flip：left＿diff＿distrib inner＿diff＿left）
show content（cbox ？a ？b）$=3{ }^{\wedge} \operatorname{DIM}\left({ }^{\prime} a\right) *$ measure lebesgue D
by（simp add：content＿cbox＿if box＿eq＿empty algebra＿simps eq ab k）
show $C \subseteq$ cbox ？a ？b if $C \in \mathcal{D}$ and $C D: \neg \operatorname{disjnt} C D$ for C
proof－
obtain $k^{\prime} a^{\prime} b^{\prime}$ where $a b^{\prime}: C=\operatorname{cbox} a^{\prime} b^{\prime}$ and $k^{\prime}: \bigwedge i . i \in$ Basis \Longrightarrow $b^{\prime} \cdot i-a^{\prime} \cdot i=k^{\prime}$
using less．prems $\langle C \in \mathcal{D}\rangle$ by meson
then have eqk＇：$\bigwedge i . i \in$ Basis $\Longrightarrow a^{\prime} \cdot i \leq b^{\prime} \cdot i \longleftrightarrow k^{\prime} \geq 0$
by force
show ？thesis
proof（clarsimp simp add：disjoint＿interval disjnt＿def ab ab＇not＿less subset＿box algebra＿simps）

$$
\text { show } a \cdot i * 2 \leq a^{\prime} \cdot i+b \cdot i \wedge a \cdot i+b^{\prime} \cdot i \leq b \cdot i * 2
$$

if $*[$ rule＿format $]: \forall j \in$ Basis．$a^{\prime} \cdot j \leq b^{\prime} \cdot j$ and $i \in$ Basis for i
proof－
have $a^{\prime} \cdot i \leq b^{\prime} \cdot i \wedge a \cdot i \leq b \cdot i \wedge a \cdot i \leq b^{\prime} \cdot i \wedge a^{\prime} \cdot i \leq b \cdot i$
using $\langle i \in$ Basis〉CD by（simp＿all add：disjoint＿interval disjnt＿def
$a b a b^{\prime}$ not＿less）
then show ？thesis
using $D[O F\langle C \in \mathcal{D}\rangle]\langle i \in$ Basis \rangle
apply（simp add：ab ab＇$k k^{\prime}$ eqk eqk＇content＿cbox＿cases）
using $k k^{\prime}$ by fastforce
qed
qed
qed
qed
qed
have $\mathcal{D} l m: ~ \bigwedge D . D \in \mathcal{D} \Longrightarrow D \in$ lmeasurable
using less．prems（3）by blast
have measure lebesgue $(\bigcup \mathcal{D}) \leq$ measure lebesgue（cbox a3 b3 $\cup(\bigcup \mathcal{D}-$ cbox a3 b3））
proof（rule measure＿mono＿fmeasurable）
show $\bigcup \mathcal{D} \in$ sets lebesgue
using \mathcal{D} lm 〈finite \mathcal{D} 〉 by blast
show cbox a3 b3 $\cup(\bigcup \mathcal{D}-$ cbox a3 b3 $) \in$ lmeasurable
by（simp add：Dlm fmeasurable．Un fmeasurable．finite＿Union less．prems（2） subset＿eq）
qed auto
also have $\ldots=$ content (cbox a3 b3) + measure lebesgue $(\bigcup \mathcal{D}-$ cbox a3 b3)
by (simp add: \mathcal{D} lm fmeasurable.finite_Union less.prems(2) measure_Un2 subsetI)
also have $\ldots \leq\left(\right.$ measure lebesgue $D+$ measure lebesgue $\left.\left(\bigcup \mathcal{D}^{\prime}\right)\right) * 3^{\wedge}$ DIM ('a)
proof -
have $(\bigcup \mathcal{D}-$ cbox a3 b3 $) \subseteq \bigcup$? \mathcal{E}
using sub3 by fastforce
then have measure lebesgue $(\bigcup \mathcal{D}-$ cbox a3 b3) \leq measure lebesgue $(\bigcup$? $\mathcal{E})$
proof (rule measure_mono_fmeasurable)
show $\bigcup \mathcal{D}-$ cbox a3 b3 \in sets lebesgue
by (simp add: Dlm fmeasurableD less.prems(2) sets.Diff sets.finite_Union subsetI)
show $\bigcup\{C \in \mathcal{D}-\{D\}$. disjnt $C D\} \in$ lmeasurable
using \mathcal{D} lm less.prems(2) by auto
qed
then have measure lebesgue $\left(\bigcup \mathcal{D}-\right.$ cbox a3 b3) / $3^{\wedge} D I M\left({ }^{\prime} a\right) \leq$ measure lebesgue ($\cup \mathcal{D}^{\prime}$)
using $\mathcal{D}^{\prime} m$ by (simp add: field_split_simps)
then show? ?thesis
by (simp add: m3 field_simps)
qed
also have $\ldots \leq$ measure lebesgue $\left(\bigcup\left(\right.\right.$ insert $\left.\left.D \mathcal{D}^{\prime}\right)\right) * 3{ }^{\wedge} \operatorname{DIM}\left({ }^{\prime} a\right)$
proof (simp add: $\mathcal{D} l m\langle D \in \mathcal{D}\rangle)$
show measure lebesgue $D+$ measure lebesgue $\left(\bigcup^{\prime}\right) \leq$ measure lebesgue $\left(D \cup \bigcup \mathcal{D}^{\prime}\right)$
proof (subst measure_Un2)
show $\bigcup \mathcal{D}^{\prime} \in$ lmeasurable
by (meson $\left.\mathcal{D} l m<i n s e r t D \mathcal{D}^{\prime} \subseteq \mathcal{D}\right\rangle$ fmeasurable.finite_Union less.prems(2) finite_subset subset_eq subset_insertI)
show measure lebesgue $D+$ measure lebesgue $\left(\cup \mathcal{D}^{\prime}\right) \leq$ measure lebesgue $D+$ measure lebesgue $\left(\bigcup \mathcal{D}^{\prime}-D\right)$
using <insert $D \mathcal{D}^{\prime} \subseteq \mathcal{D}$ 〉infinite_super less.prems(2) by force
qed (simp add: $\mathcal{D} l m\langle D \in \mathcal{D}\rangle)$
qed
finally show measure lebesgue $(\bigcup \mathcal{D}) / 3^{\wedge} \operatorname{DIM}\left({ }^{\prime} a\right) \leq$ measure lebesgue $\left(\bigcup\right.$ (insert $\left.\left.D \mathcal{D}^{\prime}\right)\right)$
by (simp add: field_split_simps)
qed
qed
qed

6.29.2 A differentiability-like property of the indefinite integral.
 proposition integrable_ccontinuous_explicit:
 fixes $f::$ 'a::euclidean_space \Rightarrow ' $b::$ euclidean_space

```
assumes \bigwedgea b::'a. f integrable_on cbox a b
obtains N}\mathrm{ where
    negligible N
    \xe.\llbracketx\not\inN;0<e\rrbracket\Longrightarrow
            \existsd>0.\forallh.0<h\wedgeh<d \longrightarrow
```



```
x)<e
proof -
    define BOX where BOX \equiv\lambdah. \lambdax::'a.cbox x (x+h** One)
    define BOX2 where BOX2 \equiv \lambdah. \lambdax::'a.cbox (x-h**R One) ( }x+h\mp@subsup{*}{R}{}\mathrm{ One)
    define i where i\equiv\lambdah x. integral (BOX hx) f/R h ` DIM('a)
    define \Psi where }\Psi\equiv\lambdaxr.\foralld>0.\existsh.0<h\wedgeh<d\wedger\leqnorm(ihx-
x)
    let ?N = {x. \existse>0.\Psi x e}
    have }\existsN\mathrm{ . negligible }N\wedge(\forallxe.x\not\inN\wedge0<e\longrightarrow\neg\Psixe
    proof (rule exI ; intro conjI allI impI)
        let ?M M Un.{x.\Psi x (inverse(real n + 1))}
        have negligible ({x.\Psi x \mu} \cap cbox a b)
        if }\mu>0\mathrm{ for ab 
        proof (cases negligible(cbox a b))
        case True
        then show ?thesis
            by (simp add: negligible_Int)
        next
        case False
        then have box a b}\not={
                by (simp add: negligible_interval)
        then have ab: \bigwedgei.i\in Basis \Longrightarrowa\cdoti<b\cdoti
            by (simp add: box_ne_empty)
        show ?thesis
            unfolding negligible_outer_le
        proof (intro allI impI)
            fix e::real
            let ?ee= (e*\mu)/2 / 6 ^}(DIM('a))
            assume e>0
            then have gt0: ?ee > 0
                    using \langle }\mu>0\rangle\mathrm{ by auto
            have f}\mp@subsup{f}{}{\prime}:f\mathrm{ integrable_on cbox ( a - One) (b + One)
                    using assms by blast
            obtain }\gamma\mathrm{ where gauge }
                    and }\gamma:\bigwedgep.\llbracketp tagged_partial_division_of (cbox (a - One) (b + One)); \gamma
fine p\rrbracket
                            \Longrightarrow(\sum(x,k)\inp.norm (content k*R}f=x-integral kf))< ?e
            using Henstock_lemma [OF f'gt0] that by auto
            let ? E = {x. x f cbox a b ^\Psi x \mu}
            have \existsh>0.BOX hx\subseteq\gammax^
                        BOX h x\subseteqcbox (a-One) (b + One) ^ \mu\leqnorm (ihx - fx)
            if x\incbox ab\Psi x | for x
            proof -
```

obtain d where $d>0$ and d ：ball $x d \subseteq \gamma x$
using gaugeD［OF＜gauge γ 〉，of x ］openE by blast
then obtain h where $0<h h<1$ and hless：$h<d / \operatorname{real} \operatorname{DIM}\left({ }^{\prime} a\right)$
and mule：$\mu \leq$ norm $(i h x-f x)$
using $\langle\Psi x \mu\rangle$［unfolded $\Psi _d e f$, rule＿format，of $\left.\min 1\left(d / \operatorname{DIM}\left({ }^{\prime} a\right)\right)\right]$
by auto
show ？thesis
proof（intro exI conjI）
show $0<h \mu \leq \operatorname{norm}(i h x-f x)$ by fact +
have BOX $h x \subseteq$ ball $x d$
proof（clarsimp simp：BOX＿def mem＿box dist＿norm algebra＿simps）
fix y
assume $\forall i \in$ Basis．$x \cdot i \leq y \cdot i \wedge y \cdot i \leq h+x \cdot i$
then have $l t:|(x-y) \cdot i|<d /$ real DIM（＇a）if $i \in$ Basis for i
using hless that by（force simp：inner＿diff＿left）
have norm $(x-y) \leq\left(\sum i \in\right.$ Basis．$\left.|(x-y) \cdot i|\right)$
using norm＿le＿l1 by blast
also have ．．．＜d
using sum＿bounded＿above＿strict［of Basis $\lambda i .|(x-y) \cdot i| d / D I M\left({ }^{\prime} a\right)$ ，
OF $l t]$
by auto
finally show norm $(x-y)<d$ ．
qed
with d show $B O X h x \subseteq \gamma x$
by blast
show BOX hx cbox $(a-$ One）$(b+$ One $)$
using that $\langle h<1\rangle$
by（force simp：BOX＿def mem＿box algebra＿simps intro：subset＿box＿imp） qed
qed
then obtain η where $h 0: \bigwedge x . x \in ? E \Longrightarrow \eta x>0$ and $B O_{-} \gamma: \bigwedge x . x \in ? E \Longrightarrow B O X(\eta x) x \subseteq \gamma x$
and $\wedge x . x \in ? E \Longrightarrow B O X(\eta x) x \subseteq \operatorname{cbox}(a-O n e)(b+O n e) \wedge \mu \leq$ norm $(i(\eta x) x-f x)$
by simp metis
then have $B O X _c b o x: \bigwedge x . x \in ? E \Longrightarrow B O X(\eta x) x \subseteq \operatorname{cbox}(a-O n e)(b$ + One）
and $\mu_{-} l e: \bigwedge x . x \in ? E \Longrightarrow \mu \leq \operatorname{norm}(i(\eta x) x-f x)$
by blast＋
define γ^{\prime} where $\gamma^{\prime} \equiv \lambda$ ．if $x \in$ cbox ab $b \wedge \Psi x \mu$ then ball $x(\eta x)$ else γx
have gauge γ^{\prime}
using 〈gauge γ 〉 by（auto simp：h0 gauge＿def $\gamma^{\prime}{ }_{-}$def）
obtain \mathcal{D} where countable \mathcal{D}
and $\mathcal{D}: \bigcup \mathcal{D} \subseteq$ cbox ab
$\wedge K . K \in \mathcal{D} \Longrightarrow$ interior $K \neq\{ \} \wedge(\exists c d . K=$ cbox $c d)$
and Dcovered：$\bigwedge K . K \in \mathcal{D} \Longrightarrow \exists x . x \in$ cbox $a b \wedge \Psi x \mu \wedge x \in K \wedge K$
$\subseteq \gamma^{\prime} x$
and $s u b U D: ? E \subseteq \bigcup \mathcal{D}$
by（rule covering＿lemma［of ？E a b $\left.\gamma^{\prime}\right]$ ）（simp＿all add：Bex＿def 〈box a $b \neq$

```
\(\left\} 〉\left\langle\right.\right.\) gauge \(\left.\left.\gamma^{\prime}\right\rangle\right)\)
    then have \(\mathcal{D} \subseteq\) sets lebesgue
        by fastforce
    show \(\exists T .\{x . \Psi x \mu\} \cap\) cbox \(a b \subseteq T \wedge T \in\) lmeasurable \(\wedge\) measure lebesgue
\(T \leq e\)
    proof (intro exI conjI)
        show \(\{x . \Psi x \mu\} \cap\) cbox \(a b \subseteq \bigcup \mathcal{D}\)
        apply auto
            using subUD by auto
            have \(m U E\) : measure lebesgue \((\bigcup \mathcal{E}) \leq\) measure lebesgue (cbox a \(\quad\) )
                if \(\mathcal{E} \subseteq \mathcal{D}\) finite \(\mathcal{E}\) for \(\mathcal{E}\)
            proof (rule measure_mono_fmeasurable)
                show \(\bigcup \mathcal{E} \subseteq\) cbox a \(b\)
                using \(\mathcal{D}(1)\) that(1) by blast
            show \(\bigcup \mathcal{E} \in\) sets lebesgue
                by (metis \(\mathcal{D}(2)\) fmeasurable.finite_Union fmeasurableD lmeasurable_cbox
subset_eq that)
            qed auto
            then show \(\bigcup \mathcal{D} \in\) lmeasurable
            by (metis \(\mathcal{D}(2)\) ) countable \(\mathcal{D}\) 〉 fmeasurable_Union_bound lmeasurable_cbox)
            then have leab: measure lebesgue \((\bigcup \mathcal{D}) \leq\) measure lebesgue (cbox a b)
    by (meson \(\mathcal{D}(1)\) fmeasurableD lmeasurable_cbox measure_mono_fmeasurable)
            obtain \(\mathcal{F}\) where \(\mathcal{F} \subseteq \mathcal{D}\) finite \(\mathcal{F}\)
            and \(\mathcal{F}\) : measure lebesgue \((\bigcup \mathcal{D}) \leq 2 *\) measure lebesgue \((\bigcup \mathcal{F})\)
            proof (cases measure lebesgue \((\bigcup \mathcal{D})=0\) )
                case True
                then show ?thesis
                    by (force intro: that \([\) where \(\mathcal{F}=\{ \}])\)
            next
                case False
                obtain \(\mathcal{F}\) where \(\mathcal{F} \subseteq \mathcal{D}\) finite \(\mathcal{F}\)
                and \(\mathcal{F}\) : measure lebesgue \((\bigcup \mathcal{D}) / 2<\) measure lebesgue \((\bigcup \mathcal{F})\)
            proof (rule measure_countable_Union_approachable [of \(\mathcal{D}\) measure lebesgue
\((\bigcup \mathcal{D}) / 2\) content (cbox ab)])
            show countable \(\mathcal{D}\)
                    by fact
            show \(0<\) measure lebesgue \((\bigcup \mathcal{D}) / 2\)
                    using False by (simp add: zero_less_measure_iff)
            show Dlm: \(D \in\) lmeasurable if \(D \in \mathcal{D}\) for \(D\)
                    using \(\mathcal{D}(2)\) that by blast
            show measure lebesgue \((\bigcup \mathcal{F}) \leq\) content (cbox a b)
                if \(\mathcal{F} \subseteq \mathcal{D}\) finite \(\mathcal{F}\) for \(\mathcal{F}\)
            proof -
                    have measure lebesgue \((\bigcup \mathcal{F}) \leq\) measure lebesgue \((\bigcup \mathcal{D})\)
                    proof (rule measure_mono_fmeasurable)
                    show \(\bigcup \mathcal{F} \subseteq \bigcup \mathcal{D}\)
                            by (simp add: Sup_subset_mono \(\langle\mathcal{F} \subseteq \mathcal{D}\rangle\) )
                show \(\bigcup \mathcal{F} \in\) sets lebesgue
                    by (meson Dlm fmeasurableD sets.finite_Union subset_eq that)
```

```
            show \\mathcal{D}\inlmeasurable
                by fact
            qed
            also have ... \leq measure lebesgue (cbox a b)
            proof (rule measure_mono_fmeasurable)
                show }\bigcup\mathcal{D}\in\mathrm{ sets lebesgue
                    by (simp add: \U\mathcal{D}\inlmeasurable` fmeasurableD)
            qed (auto simp:\mathcal{D}(1))
            finally show ?thesis
                by simp
            qed
    qed auto
    then show ?thesis
    using that by auto
qed
obtain tag where tag_in_E: \D. D\in\mathcal{D \Longrightarrowtag D G?E}
    and tag_in_self: \D. D\in\mathcal{D}\Longrightarrowtag D GD
    and tag_sub: }\D.D\in\mathcal{D}\LongrightarrowD\subseteq\mp@subsup{\gamma}{}{\prime}(\operatorname{tag}D
    using Dcovered by simp metis
then have sub_ball_tag: \D. D\in\mathcal{D \LongrightarrowD\subseteqball (tag D) ( }\eta(\operatorname{tag}D))
    by (simp add: }\mp@subsup{\gamma}{}{\prime
define }\Phi\mathrm{ where }\Phi\equiv\lambdaD.BOX (\eta(tag D)) (tag D
define \Phi2 where \Phi2 \equiv \D. BOX2 (\eta(tag D)) (tag D)
obtain }\mathcal{C}\mathrm{ where }\mathcal{C}\subseteq\Phi2 ' \mathcal{F}\mathrm{ pairwise disjnt }\mathcal{C
    measure lebesgue (\\mathcal{C})\geq measure lebesgue (U(\Phi2`\mathcal{F}))/ 3 ^ (DIM ('a))
proof (rule Austin_Lemma)
    show finite ($2`F)
            using 〈finite \mathcal{F}}\mathrm{ 〉 by blast
    have \existskab. Ф2 D = cbox a b ^( }\foralli\in\mathrm{ Basis. b • i-a . i=k) if D 
            apply (rule_tac x=2 * \eta(tag D) in exI)
            apply (rule_tac x=tag D - \eta(tag D) *R
            apply (rule_tac x=tag D + \eta(tag D) *R
            using that
            apply (auto simp: Ф2_def BOX2_def algebra_simps)
            done
                            then show }\D.D\in\Phi2' '\mathcal{F \Longrightarrow\existskab. D=cbox ab^(\foralli\inBasis.b
            by blast
    qed auto
    then obtain \mathcal{G where \mathcal{G}\subseteq\mathcal{F}}\mathrm{ and disj: pairwise disjnt ($2'G)}
            and measure lebesgue (U(\Phi2`\mathcal{G}))\geq measure lebesgue (U(\Phi2`F)) / 3
    unfolding $2_def subset_image_iff
    by (meson empty_subsetI equals0D pairwise_imageI)
    moreover
    have measure lebesgue (U(\Phi2 `\mathcal{G}))* 3 ` DIM('a) \leqe/2
    proof -
        have finite \mathcal{G}
```

\mathcal{F} for D

- $i-a \cdot i=k)$
^ $\left(D I M\left({ }^{\prime} a\right)\right)$

```
    using \langle{inite \mathcal{F}\rangle\langle\mathcal{G}\subseteq\mathcal{F}\rangle\mathrm{ infinite_super by blast}
    have BOX2_m: \x. x tag'\mathcal{G}\LongrightarrowBOX2 ( }\etax\mathrm{ ( ) x lmeasurable
    by (auto simp: BOX2_def)
```



```
    by (auto simp: BOX_def)
    have BOX_sub: BOX ( }\etax)x\subseteqBOX2 ( \eta x) x for x
    by (auto simp: BOX_def BOX2_def subset_box algebra_simps)
    have DISJ2: BOX2 ( }\eta(\operatorname{tag}X))(\operatorname{tag}X)\capBOX2 ( \eta (tag Y)) (tag Y
= {}
            if X\in\mathcal{G}Y\in\mathcal{G}\operatorname{tag}X\not=\operatorname{tag}Y\mathrm{ for X Y}
            proof -
            obtain i where i:i\inBasis tag X . i\not= tag Y • i
                using <tag X \not=tag Y> by (auto simp: euclidean_eq_iff [of tag X])
            have }XY:X\in\mathcal{D}Y\in\mathcal{D
                using }\langle\mathcal{F}\subseteq\mathcal{D}\rangle\langle\mathcal{G}\subseteq\mathcal{F}\rangle\mathrm{ that by auto
            then have 0\leq \eta(tagX)0\leq \eta(tag Y)
            by (meson h0 le_cases not_le tag_in_E)+
            with XYi have BOX2 ( }\eta(\operatorname{tag}X))(\operatorname{tag}X)\not=BOX2 (\eta(tag Y)) (tag
Y)
            unfolding eq_iff
            by (fastforce simp add: BOX__def subset_box algebra_simps)
            then show ?thesis
            using disj that by (auto simp: pairwise_def disjnt_def Ф2_def)
                    qed
                            then have BOX2_disj: pairwise ( }\lambdaxy\mathrm{ . negligible (BOX2 ( }\etax)x\capBOX
(\eta y) y))(tag `\mathcal{G}
    by (simp add: pairwise_imageI)
    then have BOX_disj: pairwise ( }\lambdax\mathrm{ y. negligible (BOX ( }\eta\mathrm{ x) x }\capBO
(\eta y) y))(tag'\mathcal{G})
    proof (rule pairwise_mono)
        show negligible (BOX ( }\etax)x\capBOX (\eta y) y
            if negligible (BOX2 ( }\etax)x\capBOX2 ( \eta y) y) for x y
                by (metis (no_types, hide_lams) that Int_mono negligible_subset
BOX_sub)
            qed auto
            have eq: \box. (\lambdaD.box (\eta (tag D)) (tag D))'\mathcal{G}=(\lambdat.box (\etat)t)'
tag '\mathcal{G}
            by (simp add: image_comp)
            have measure lebesgue (BOX2 ( }\etat)t)*3\mp@subsup{}{}{`}\operatorname{DIM}('a
            = measure lebesgue (BOX (\etat)t)* (2*3) ^ DIM('a)
        if t\intag'\mathcal{G}\mathrm{ for }t
    proof -
        have content (cbox (t-\etat**R One) (t+\etat**R One))
            = content (cbox t (t+\etat** One))* 2 ^ DIM('a)
            using that by (simp add: algebra_simps content_cbox_if box_eq_empty)
            then show ?thesis
                by (simp add: BOX2_def BOX_def flip: power_mult_distrib)
    qed
```

then have measure lebesgue $(\bigcup(\Phi 2$＇ $\mathcal{G})) * 3^{\wedge} \operatorname{DIM}\left({ }^{\prime} a\right)=$ measure
lebesgue $\left(\bigcup\left(\Phi{ }^{\prime} \mathcal{G}\right)\right) * 6^{\wedge} \operatorname{DIM}\left({ }^{\prime} a\right)$
unfolding Ф＿def $^{\text {2L＿def eq }}$
by（simp add：measure＿negligible＿finite＿Union＿image
〈finite \mathcal{G} 〉BOX2＿m BOX＿m BOX2＿disj BOX＿disj sum＿distrib＿right del：UN＿simps）
also have $\ldots \leq e / 2$
proof－
have $\mu *$ measure lebesgue $(\bigcup D \in \mathcal{G} . \Phi D) \leq \mu *\left(\sum D \in \Phi^{\text {＇G }}\right.$ ．measure lebesgue D）
using $\langle\mu>0\rangle\langle$ finite $\mathcal{G}\rangle$ by（force simp：BOX＿m Φ_{-}def fmeasurableD
intro：measure＿Union＿le）
also have $\ldots=\left(\sum D \in \Phi \mathcal{G}\right.$ ．measure lebesgue $\left.D * \mu\right)$
by（metis mult．commute sum＿distrib＿right）
also have $\ldots \leq\left(\sum(x, K) \in(\lambda D .(\operatorname{tag} D, \Phi D))\right.$＇ \mathcal{G} ．norm（content
$K *_{R} f x-$ integral $\left.K f\right)$ ）
proof（rule sum＿le＿included；clarify？）
fix D
assume $D \in \mathcal{G}$
then have $\eta(\operatorname{tag} D)>0$
using $\langle\mathcal{F} \subseteq \mathcal{D}\rangle\langle\mathcal{G} \subseteq \mathcal{F}\rangle$ h0 tag＿in＿E by auto
then have $m_{-} \Phi$ ：measure lebesgue $(\Phi D)>0$
by（simp add：Φ_{-}def $\left.B O X _d e f ~ a l g e b r a _s i m p s\right) ~$
have $\mu \leq \operatorname{norm}(i(\eta(\operatorname{tag} D))(\operatorname{tag} D)-f(\operatorname{tag} D))$
using $\mu_{-} l e\langle D \in \mathcal{G}\rangle\langle\mathcal{F} \subseteq \mathcal{D}\rangle\langle\mathcal{G} \subseteq \mathcal{F}\rangle$ tag＿in＿E by auto
also have $\ldots=$ norm $\left(\left(\right.\right.$ content $(\Phi D) *_{R} f(\operatorname{tag} D)-\operatorname{integral}(\Phi$
D）f）／R measure lebesgue（ Φ D））
using m＿Φ
unfolding i＿def Φ_{-}def $B O X_{-}$def
by（simp add：algebra＿simps content＿cbox＿plus norm＿minus＿commute）
finally have measure lebesgue $(\Phi D) * \mu \leq \operatorname{norm}\left(\right.$ content $(\Phi D) *_{R}$
$f(\operatorname{tag} D)-$ integral $(\Phi D) f)$
using $m_{_} \Phi$ by simp（simp add：field＿simps）
then show $\exists y \in(\lambda D .(\operatorname{tag} D, \Phi D))$＇ \mathcal{G} ．
snd $y=\Phi D \wedge$ measure lebesgue $(\Phi D) * \mu \leq($ case y of $(x$,
$k) \Rightarrow \operatorname{norm}\left(\right.$ content $k *_{R} f x-$ integral $\left.\left.k f\right)\right)$
using $\langle D \in \mathcal{G}\rangle$ by auto
qed（use 〈finite $\mathcal{G}\rangle$ in auto）
also have ．．．＜？ee
proof（rule γ ）
show $(\lambda D .(\operatorname{tag} D, \Phi D))$＇ \mathcal{G} tagged＿partial＿division＿of cbox $(a-$
One）$(b+$ One $)$
unfolding tagged＿partial＿division＿of＿def
proof（intro conjI allI impI ；clarify ？）
show $\operatorname{tag} D \in \Phi D$
if $D \in \mathcal{G}$ for D
using that $\langle\mathcal{F} \subseteq \mathcal{D}\rangle\langle\mathcal{G} \subseteq \mathcal{F}\rangle$ h0 tag＿in＿E
by（auto simp：$\Phi_{_}$def $B O X _d e f$ mem＿box algebra＿simps
eucl＿less＿le＿not＿le in＿mono）

```
    show y f cbox (a-One) (b+One) if D\in\mathcal{G}y\in\PhiD for D y
    using that BOX_cbox \Phi_def \langle\mathcal{F}\subseteq\mathcal{D}\rangle\langle\mathcal{G}\subseteq\mathcal{F}\rangle\mathrm{ tag_in_E by blast}
show tag D = tag E^\Phi D=\PhiE
    if D\in\mathcal{G E G\mathcal{G}}\mathrm{ and ne: interior ( }\PhiD)\cap\mathrm{ interior ( }\PhiE)\not={}
for DE
    proof -
    have BOX2 ( }\eta(\operatorname{tag}D))(\operatorname{tag}D)\capBOX2 (\eta(\operatorname{tag}E))(tagE)
{}\vee tag E = tag D
            using DISJ2 }\langleD\in\mathcal{G}\rangle\langleE\in\mathcal{G}\rangle\mathrm{ by force
                            then have BOX (\eta(tag D)) (tag D) \cap BOX ( }\eta(\operatorname{tag}E))(\operatorname{tag}E
={}\vee tag E=tag D
                using BOX_sub by blast
                    then show tag D=tag E^\PhiD=\PhiE
                by (metis \Phi_def interior_Int interior_empty ne)
            qed
                qed (use <finite \mathcal{G}}\mp@subsup{\Phi}{_}{\prime}def BOX_def in auto
                show \gamma fine ( }\lambdaD.(\operatorname{tag}D,\PhiD))'\mathcal{G
                            unfolding fine_def \Phi_def using BOX_\gamma}\langle\mathcal{F}\subseteq\mathcal{D}\rangle\langle\mathcal{G}\subseteq\mathcal{F}\rangletag_in_E
by blast
            qed
            finally show ?thesis
            using }\langle\mu>0\rangle\mathrm{ by (auto simp: field_split_simps)
        qed
        finally show ?thesis .
    qed
    moreover
    have measure lebesgue ( }\bigcup\mathcal{F})\leq\mathrm{ measure lebesgue ( }\(\Phi2`\mathcal{F})
    proof (rule measure_mono_fmeasurable)
        have D\subseteqball (tag D) (\eta(\operatorname{tag}D)) if D\in\mathcal{F}\mathrm{ for D}
            using <\mathcal{F}\subseteq\mathcal{D}\rangle\mathrm{ sub_ball_tag that by blast}
        moreover have ball (tag D) (\eta(tag D))\subseteqBOX2 ( }\eta(\operatorname{tag}D))(\operatorname{tag}D)\mathrm{ if
D\in\mathcal{F}}\mathrm{ for }
    proof (clarsimp simp: Ф2_def BOX2_def mem_box algebra_simps dist_norm)
        fix }x\mathrm{ and }i::\mp@subsup{:}{}{\prime}
        assume norm (tag D - x)<\eta(tag D) and i\in Basis
        then have |tag D \cdot i-x \cdoti| \leq \eta(tag D)
        by (metis eucl_less_le_not_le inner_commute inner_diff_right norm_bound_Basis_le)
            then show tag D • i\leqx •i+\eta(tag D)^x •i\leq\eta(tag D) + tag D
-i
            by (simp add: abs_diff_le_iff)
        qed
        ultimately show \\mathcal{F}\subseteq\bigcup(\Phi2`\mathcal{F})
            by (force simp: Ф2_def)
            show }\bigcup\mathcal{F}\in\mathrm{ sets lebesgue
            using <finite \mathcal{F}\rangle\langle\mathcal{D}\subseteq\mathrm{ sets lebesgue}\rangle\langle\mathcal{F}\subseteq\mathcal{D}\rangle\mathrm{ by blast}
            show U(\Phi2`F) \in lmeasurable
                unfolding $2_def BOX2_def using 〈finite \mathcal{F}\ by blast
    qed
    ultimately
```

```
            have measure lebesgue ( }\cup\mathcal{F})\leqe/
                    by (auto simp: field_split_simps)
            then show measure lebesgue ( \bigcup\mathcal{D})\leqe
                    using \mathcal{F by linarith}
            qed
        qed
    qed
    then have }\j. negligible {x.\Psi x (inverse(real j + 1))
        using negligible_on_intervals
    by (metis (full_types) inverse_positive_iff_positive le_add_same_cancel1 linorder_not_le
nat_le_real_less not_add_less1 of_nat_0)
    then have negligible ?M
        by auto
    moreover have ?N}\subseteq\mathrm{ ?M
    proof (clarsimp simp: dist_norm)
        fix ye
        assume 0<e
            and ye [rule_format]: \Psi y e
            then obtain k where k:0<k inverse (real k+1)<e
            by (metis One_nat_def add.commute less_add_same_cancel2 less_imp_inverse_less
less_trans neq0_conv of_nat_1 of_nat_Suc reals_Archimedean zero_less_one)
            with ye show }\existsn.\Psiy(\mathrm{ inverse (real n + 1))
            apply (rule_tac x=k in exI)
            unfolding \Psi_def
            by (force intro:less_le_trans)
    qed
    ultimately show negligible ?N
            by (blast intro: negligible_subset)
    show }\neg\Psixe\mathrm{ if }x\not\in?N\\wedge0<e\mathrm{ for }x
            using that by blast
    qed
    with that show ?thesis
        unfolding i_def BOX_def \Psi_def by (fastforce simp add: not_le)
qed
```


6.29.3 HOL Light measurability

```
definition measurable_on :: ('a::euclidean_space \(\Rightarrow\) ' \(b::\) real_normed_vector) \(\Rightarrow{ }^{\prime} a\)
set \(\Rightarrow\) bool
    (infixr measurable'_on 46)
    where \(f\) measurable_on \(S \equiv\)
        \(\exists N\) g. negligible \(N \wedge\)
            \((\forall n\). continuous_on UNIV \((g n)) \wedge\)
                    \((\forall x . x \notin N \longrightarrow(\lambda n . g n x) \longrightarrow(\) if \(x \in S\) then \(f x\) else 0\())\)
lemma measurable_on_UNIV:
    ( \(\lambda\) x. if \(x \in S\) then \(f x\) else 0) measurable_on UNIV \(\longleftrightarrow f\) measurable_on \(S\)
    by (auto simp: measurable_on_def)
```

```
lemma measurable_on_spike_set:
    assumes \(f\) : \(f\) measurable_on \(S\) and neg: negligible \(((S-T) \cup(T-S))\)
    shows \(f\) measurable_on \(T\)
proof -
    obtain \(N\) and \(F\)
        where \(N\) : negligible \(N\)
            and conF: \(\bigwedge n\). continuous_on UNIV \((F n)\)
            and tendsF: \(\bigwedge x . x \notin N \Longrightarrow(\lambda n . F n x) \longrightarrow(\) if \(x \in S\) then \(f x\) else 0\()\)
        using \(f\) by (auto simp: measurable_on_def)
    show ?thesis
        unfolding measurable_on_def
    proof (intro exI conjI allI impI)
        show continuous_on UNIV \((\lambda x . F n x)\) for \(n\)
            by (intro conF continuous_intros)
        show negligible \((N \cup(S-T) \cup(T-S))\)
            by (metis (full_types) \(N\) neg negligible_Un_eq)
        show \((\lambda n . F n x) \longrightarrow(\) if \(x \in T\) then \(f x\) else 0\()\)
            if \(x \notin(N \cup(S-T) \cup(T-S))\) for \(x\)
            using that tendsF [of \(x\) ] by auto
    qed
qed
```

Various common equivalent forms of function measurability.

```
lemma measurable_on_0 \([\) simp \(]:(\lambda x .0)\) measurable_on \(S\)
    unfolding measurable_on_def
proof (intro exI conjI allI impI)
    show \((\lambda n .0) \longrightarrow\left(\right.\) if \(x \in S\) then \(0:::^{\prime} b\) else 0\()\) for \(x\)
        by force
qed auto
lemma measurable_on_scaleR_const:
    assumes \(f: f\) measurable_on \(S\)
    shows \(\left(\lambda x . c *_{R} f x\right)\) measurable_on \(S\)
proof -
    obtain \(N F\) and \(F\)
        where NF: negligible NF
            and conF: \(\bigwedge n\). continuous_on UNIV \((F n)\)
            and tendsF: \(\bigwedge x . x \notin N F \Longrightarrow(\lambda n . F n x) \longrightarrow(\) if \(x \in S\) then \(f x\) else 0\()\)
        using \(f\) by (auto simp: measurable_on_def)
    show ?thesis
        unfolding measurable_on_def
    proof (intro exI conjI allI impI)
        show continuous_on UNIV \(\left(\lambda x . c *_{R} F n x\right)\) for \(n\)
            by (intro conF continuous_intros)
        show \(\left(\lambda n . c *_{R} F n x\right) \longrightarrow\left(\right.\) if \(x \in S\) then \(c *_{R} f x\) else 0\()\)
            if \(x \notin N F\) for \(x\)
            using tendsto_scale \(R\) [OF tendsto_const tendsF, of \(x]\) that by auto
    qed (auto simp: NF)
qed
```

```
lemma measurable_on_cmul:
    fixes \(c\) :: real
    assumes \(f\) measurable_on \(S\)
    shows \((\lambda x, c * f x)\) measurable_on \(S\)
    using measurable_on_scaleR_const [OF assms] by simp
lemma measurable_on_cdivide:
    fixes \(c::\) real
    assumes \(f\) measurable_on \(S\)
    shows ( \(\lambda x . f x / c\) ) measurable_on \(S\)
proof (cases \(c=0\) )
    case False
    then show ?thesis
        using measurable_on_cmul [of fS 1/c]
        by (simp add: assms)
qed auto
lemma measurable_on_minus:
    \(f\) measurable_on \(S \Longrightarrow(\lambda x .-(f x))\) measurable_on \(S\)
```



```
lemma continuous_imp_measurable_on:
    continuous_on UNIV \(f \Longrightarrow f\) measurable_on UNIV
    unfolding measurable_on_def
    apply (rule_tac \(x=\{ \}\) in exI)
    apply (rule_tac \(x=\lambda n . f\) in exI, auto)
    done
proposition integrable_subintervals_imp_measurable:
    fixes \(f::\) ' \(a::\) euclidean_space \(\Rightarrow\) ' \(b::\) euclidean_space
    assumes \(\bigwedge a b\). fintegrable_on cbox a b
    shows \(f\) measurable_on UNIV
proof -
    define \(B O X\) where \(B O X \equiv \lambda h . \lambda x:^{\prime}{ }^{\prime}\). cbox \(x\left(x+h *_{R}\right.\) One)
    define \(i\) where \(i \equiv \lambda h x\). integral (BOX \(h x\) ) \(f /{ }_{R} h^{\wedge} \operatorname{DIM}(' a)\)
    obtain \(N\) where negligible \(N\)
        and \(k: \bigwedge x e . \llbracket x \notin N ; 0<e \rrbracket\)
            \(\Longrightarrow \exists d>0 . \forall h .0<h \wedge h<d \longrightarrow\)
                norm (integral ( \(\operatorname{cbox} x\left(x+h *_{R}\right.\) One \(\left.\left.)\right) f / R h^{\wedge} \operatorname{DIM}\left({ }^{\prime} a\right)-f x\right)\)
\(<e\)
    using integrable_ccontinuous_explicit assms by blast
    show ?thesis
        unfolding measurable_on_def
    proof (intro exI conjI allI impI)
        show continuous_on UNIV \(((\lambda n x . i(\) inverse \((S u c n)) x) n)\) for \(n\)
```

```
    proof (clarsimp simp: continuous_on_iff)
    show \(\exists d>0 . \forall x^{\prime}\). dist \(x^{\prime} x<d \longrightarrow\) dist \(\left(i(\right.\) inverse \((1+\) real \(\left.n)) x^{\prime}\right)(i\)
(inverse \((1+\) real \(n)) x)<e\)
        if \(0<e\)
        for \(x e\)
    proof -
        let \(? e=e /(1+\text { real } n)^{\wedge} \operatorname{DIM}\left({ }^{\prime} a\right)\)
        have ? \(e>0\)
            using \(\langle e>0\rangle\) by auto
        moreover have \(x \in \operatorname{cbox}\left(x-2 *_{R}\right.\) One \()\left(x+2 *_{R}\right.\) One \()\)
            by (simp add: mem_box inner_diff_left inner_left_distrib)
        moreover have \(x+\) One \(/_{R}\) real (Suc n) \(\operatorname{cbox}\left(x-2 *_{R}\right.\) One) \((x+2\)
\(*_{R}\) One)
            by (auto simp: mem_box inner_diff_left inner_left_distrib field_simps)
        ultimately obtain \(\delta\) where \(\delta>0\)
            and \(\delta: \wedge c^{\prime} d^{\prime} . \llbracket c^{\prime} \in \operatorname{cbox}\left(x-2 *_{R}\right.\) One \()\left(x+2 *_{R}\right.\) One \()\);
                \(d^{\prime} \in \operatorname{cbox}\left(x-2 *_{R}\right.\) One) \(\left(x+2 *_{R}\right.\) One \() ;\)
                \(\operatorname{norm}\left(c^{\prime}-x\right) \leq \delta ; \operatorname{norm}\left(d^{\prime}-(x+\right.\) One \(/ R\) Suc \(\left.n)\right) \leq \delta \rrbracket\)
                        \(\Longrightarrow\) norm \(\left(\right.\) integral \(\left(\right.\) cbox \(\left.c^{\prime} d^{\prime}\right) f-\operatorname{integral(cboxx}(x+\) One
\(/ R\) Suc n)) f) \(<\) ? e
            by (blast intro: indefinite_integral_continuous \(\left[o f f_{~_{-}} x\right]\) assms)
        show ?thesis
        proof (intro exI impI conjI allI)
            show \(\min \delta 1>0\)
            using \(\langle\delta>0\rangle\) by auto
            show dist \((i(\) inverse \((1+\) real \(n)) y)(i(\) inverse \((1+\) real \(n)) x)<e\)
            if dist \(y x<\min \delta 1\) for \(y\)
            proof -
            have no: norm \((y-x)<1\)
                using that by (auto simp: dist_norm)
            have le1: inverse \((1+\) real \(n) \leq 1\)
                by (auto simp: field_split_simps)
            have norm (integral (cbox \(y(y+\) One \(/ R\) real \((\) Suc \(n))) f\)
                            \(-\operatorname{integral}(\operatorname{cbox} x(x+\) One \(/ R\) real \((\) Suc \(n))) f)\)
                    \(<e /(1+\) real \(n){ }^{\wedge} \operatorname{DIM}\left({ }^{\prime} a\right)\)
            proof (rule \(\delta\) )
                show \(y \in \operatorname{cbox}\left(x-2 *_{R}\right.\) One \()\left(x+2 *_{R}\right.\) One \()\)
                    using no by (auto simp: mem_box algebra_simps dest: Basis_le_norm
[of \(-y-x]\) )
            show \(y+\) One \(/ R\) real (Suc \(n) \in \operatorname{cbox}\left(x-2 *_{R}\right.\) One \()\left(x+2 *_{R}\right.\)
One)
            proof (simp add: dist_norm mem_box algebra_simps, intro ballI conjI)
                        fix \(i::^{\prime} a\)
                            assume \(i \in\) Basis
                            then have \(1:|y \cdot i-x \cdot i|<1\)
                        by (metis inner_commute inner_diff_right no norm_bound_Basis_lt)
                            moreover have \(\ldots<(2+\operatorname{inverse}(1+\operatorname{real} n)) 1 \leq 2-i n v e r s e\)
\((1+\) real \(n)\)
            by (auto simp: field_simps)
```

```
                    ultimately show }x\cdoti\leqy\cdoti+(2+inverse (1 + real n)
                        y\cdoti+inverse (1 + real n) \leqx 粐 2
            by linarith+
                qed
            show norm (y-x)\leq\deltanorm (y+One /R real (Suc n) - (x+One
/R real (Suc n))) \leq 
            using that by (auto simp: dist_norm)
                qed
                then show ?thesis
                using that by (simp add: dist_norm i_def BOX_def flip: scaleR_diff_right)
(simp add: field_simps)
                    qed
                    qed
            qed
        qed
        show negligible N
            by (simp add: <negligible N`)
        show (\lambdan.i (inverse (Suc n)) x)\longrightarrow(if }x\in\mathrm{ UNIV then }fx\mathrm{ else 0)
            if }x\not\inN\mathrm{ for }
            unfolding lim_sequentially
        proof clarsimp
            show \existsno.\foralln\geqno.dist (i (inverse (1 + real n)) x) (fx)<e
                if 0<e for e
            proof -
                obtain d where d>0
                and d:\h.\llbracket0<h;h<d\rrbracket\Longrightarrow
                    norm (integral (cbox x (x+h*R One)) f/R 有^ DIM('a) - fx )<e
                    using k[of x e] \langlex\not\inN\rangle\langle0<e\rangle by blast
                then obtain M where M:M\not=00< inverse (real M) inverse (real M)
<d
                using real_arch_invD by auto
                show ?thesis
                proof (intro exI allI impI)
                show dist (i (inverse (1+ real n)) x) (fx)<e
                    if M\leqn for n
                proof -
                    have *: 0 < inverse (1 + real n) inverse (1 + real n)\leq inverse M
                        using that }\langleM\not=0\rangle\mathrm{ by auto
                    show ?thesis
                        using that M
                        apply (simp add: i_def BOX_def dist_norm)
                        apply (blast intro: le_less_trans *d)
                        done
                qed
                qed
            qed
        qed
    qed
qed
```


6.29.4 Composing continuous and measurable functions; a few variants

```
lemma measurable_on_compose_continuous:
    assumes f:f measurable_on UNIV and g:continuous_on UNIV g
    shows (g\circf) measurable_on UNIV
proof -
    obtain N and F
        where negligible N
            and conF: \bigwedgen.continuous_on UNIV (F n)
            and tendsF: \bigwedgex. x\not\inN\Longrightarrow(\lambdan.Fnx)\longrightarrowfx
        using f by (auto simp: measurable_on_def)
    show ?thesis
        unfolding measurable_on_def
    proof (intro exI conjI allI impI)
        show negligible N
            by fact
        show continuous_on UNIV (g\circ(Fn)) for n
            using conF continuous_on_compose continuous_on_subset g by blast
        show (\lambdan. (g\circFn)x)\longrightarrow(if }x\in\mathrm{ UNIV then (g○f) x else 0)
            if }x\not\inN\mathrm{ for }x:: '
        using that g tendsF by (auto simp: continuous_on_def intro: tendsto_compose)
    qed
qed
```

lemma measurable_on_compose_continuous_0:
assumes f : f measurable_on S and g :continuous_on UNIV g and $g 0=0$
shows $(g \circ f)$ measurable_on S
proof -
have $f^{\prime}:(\lambda x$. if $x \in S$ then $f x$ else 0) measurable_on UNIV
using f measurable_on_UNIV by blast
show ?thesis
using measurable_on_compose_continuous $\left[O F f^{\prime} g\right]$
by (simp add: measurable_on_UNIV o_def if_distrib $\langle g 0=0\rangle$ cong: if_cong)
qed
lemma measurable_on_compose_continuous_box:
assumes $f m$: f measurable_on UNIV and $f a b: \bigwedge x . f x \in b o x a b$
and contg: continuous_on (box a b) g
shows $(g \circ f)$ measurable_on UNIV
proof -
have $\exists \gamma .(\forall n$. continuous_on UNIV $(\gamma n)) \wedge(\forall x . x \notin N \longrightarrow(\lambda n . \gamma n x)$
$\longrightarrow g(f x))$
if negligible N
and conth [rule_format]: $\forall n$. continuous_on UNIV $(\lambda x . h n x)$
and tends [rule_format]: $\forall x . x \notin N \longrightarrow(\lambda n . h n x) \longrightarrow f x$
for N and $h:: n a t \Rightarrow^{\prime} a \Rightarrow{ }^{\prime} b$
proof -
define ϑ where $\vartheta \equiv \lambda n x .\left(\sum i \in\right.$ Basis. $(\max (a \cdot i+(b \cdot i-a \cdot i) / \operatorname{real}(n+\mathcal{Z}))$

$(\min ((h n x) \cdot i)$

$$
\left.(b \cdot i-(b \cdot i-a \cdot i) / \operatorname{real}(n+2)))) *_{R} i\right)
$$

have aibi: $\bigwedge i . i \in$ Basis $\Longrightarrow a \cdot i<b \cdot i$
using box_ne_empty(2) fab by auto
then have $*: \bigwedge i n . i \in$ Basis $\Longrightarrow a \cdot i+\operatorname{real} n *(a \cdot i)<b \cdot i+\operatorname{real} n *$ (b $\cdot i$)
by (meson add_mono_thms_linordered_field(3) less_eq_real_def mult_left_mono of_nat_0_le_iff)
show ?thesis
proof (intro exI conjI allI impI)
show continuous_on UNIV $(g \circ(\vartheta n))$ for $n::$ nat
unfolding $\vartheta_{-} d e f$
apply (intro continuous_on_compose2 [OF contg] continuous_intros conth)
apply (auto simp: aibi * mem_box less_max_iff_disj min_less_iff_disj field_split_simps)
done
show $(\lambda n .(g \circ \vartheta n) x) \longrightarrow g(f x)$
if $x \notin N$ for x
unfolding o_def
proof (rule isCont_tendsto_compose [where $g=g]$)
show isCont $g(f x)$
using contg fab continuous_on_eq_continuous_at by blast
have $(\lambda n . \vartheta n x) \longrightarrow\left(\sum i \in\right.$ Basis. $\max (a \cdot i)(\min (f x \cdot i)(b \cdot i)) *_{R}$
i)
unfolding ϑ _def
proof (intro tendsto_intros $\langle x \notin N$ tends)
fix $i::^{\prime} b$
assume $i \in$ Basis
have $a:(\lambda n . a \cdot i+(b \cdot i-a \cdot i) /$ real $n) \longrightarrow a \cdot i+0$
by (intro tendsto_add lim_const_over_n tendsto_const)
show $(\lambda n . a \cdot i+(b \cdot i-a \cdot i) / \operatorname{real}(n+2)) \longrightarrow a \cdot i$
using LIMSEQ_ignore_initial_segment $[$ where $k=2$, OF a] by simp
have $b:(\lambda n . b \cdot i-(b \cdot i-a \cdot i) /($ real $n)) \longrightarrow b \cdot i-0$
by (intro tendsto_diff lim_const_over_n tendsto_const)
show $(\lambda n . b \cdot i-(b \cdot i-a \cdot i) / \operatorname{real}(n+2)) \longrightarrow b \cdot i$
using LIMSEQ_ignore_initial_segment $[$ where $k=2$, OF b] by simp
qed
also have $\left(\sum i \in\right.$ Basis. $\left.\max (a \cdot i)(\min (f x \cdot i)(b \cdot i)) *_{R} i\right)=\left(\sum i \in\right.$ Basis.
$\left.(f x \cdot i) *_{R} i\right)$
apply (rule sum.cong)
using $f a b$
apply auto
apply (intro order_antisym)
apply (auto simp: mem_box)
using less_imp_le apply blast
by (metis (full_types) linear max_less_iff_conj min.bounded_iff not_le)
also have $\ldots=f x$
using euclidean_representation by blast
finally show $(\lambda n . \vartheta n x) \longrightarrow f x$.
qed

```
        qed
    qed
    then show ?thesis
        using fm by (auto simp: measurable_on_def)
qed
lemma measurable_on_Pair:
    assumes f: f measurable_on S and g: g measurable_on S
    shows ( }\lambdax.(fx,gx)) measurable_on S
proof -
    obtain NF and F
        where NF: negligible NF
            and conF: \bigwedgen.continuous_on UNIV (F n)
            and tendsF: \x. x\not\inNF\Longrightarrow(\lambdan.Fnx)\longrightarrow(if x < S then f x else 0)
        using f by (auto simp: measurable_on_def)
    obtain NG and G
        where NG: negligible NG
            and conG: \bigwedgen.continuous_on UNIV (G n)
            and tendsG: \bigwedgex. x\not\inNG\Longrightarrow(\lambdan.Gnx)\longrightarrow(if }x\inS\mathrm{ then g x else 0)
        using g by (auto simp: measurable_on_def)
    show ?thesis
        unfolding measurable_on_def
    proof (intro exI conjI allI impI)
        show negligible (NF\cupNG)
            by (simp add: NF NG)
        show continuous_on UNIV ( }\lambdax.(Fnx,Gnx))\mathrm{ for n
            using conF conG continuous_on_Pair by blast
        show (\lambdan.(Fnx,Gnx))\longrightarrow(if x\inS then (fx,gx) else 0)
            if }x\not\inNF\cupNG\mathrm{ for }
            using tendsto_Pair [OF tendsF tendsG, of x x ] that unfolding zero_prod_def
            by (simp add: split: if_split_asm)
    qed
qed
lemma measurable_on_combine:
    assumes f:f measurable_on S and g:g measurable_on S
        and h: continuous_on UNIV ( }\lambdax.h(fst x) (snd x)) and h 0 0 = 0 
    shows (\lambdax.h(fx)(gx)) measurable_on S
proof -
    have *: (\lambdax.h(fx)(gx))=(\lambdax.h(fst x) (snd x)) ○ (\lambdax. (fx,g x))
        by auto
    show ?thesis
            unfolding * by (auto simp: measurable_on_compose_continuous_0 measur-
able_on_Pair assms)
qed
lemma measurable_on_add:
    assumes f:f measurable_on S and g:g measurable_on S
    shows ( }\lambdax.fx+gx) measurable_on S
```

by (intro continuous_intros measurable_on_combine [OF assms]) auto
lemma measurable_on_diff:
assumes f : f measurable_on S and $g: g$ measurable_on S
shows ($\lambda x . f x-g x)$ measurable_on S
by (intro continuous_intros measurable_on_combine $[O F$ assms $]$) auto
lemma measurable_on_scaleR:
assumes $f: f$ measurable_on S and $g: g$ measurable_on S
shows $\left(\lambda x . f x *_{R} g x\right)$ measurable_on S
by (intro continuous_intros measurable_on_combine [OF assms]) auto
lemma measurable_on_sum:
assumes finite $I \bigwedge i . i \in I \Longrightarrow f i$ measurable_on S
shows (λx.sum ($\lambda i . f i x) I$) measurable_on S
using assms by (induction I) (auto simp: measurable_on_add)
lemma measurable_on_spike:
assumes $f: f$ measurable_on T and negligible S and $g f: \bigwedge x . x \in T-S \Longrightarrow g$ $x=f x$
shows g measurable_on T
proof -
obtain $N F$ and F
where $N F$: negligible $N F$
and conF: $\bigwedge n$. continuous_on UNIV $(F n)$
and tendsF: $\wedge x . x \notin N F \Longrightarrow(\lambda n . F n x) \longrightarrow($ if $x \in T$ then $f x$ else 0$)$
using f by (auto simp: measurable_on_def)
show ?thesis
unfolding measurable_on_def
proof (intro exI conjI allI impI)
show negligible $(N F \cup S)$
by (simp add: NF «negligible S)
show $\bigwedge x . x \notin N F \cup S \Longrightarrow(\lambda n . F n x) \longrightarrow($ if $x \in T$ then $g x$ else 0$)$
by (metis (full_types) Diff_iff Un_iff gf tendsF)
qed (auto simp: conF)
qed
proposition indicator_measurable_on:
assumes $S \in$ sets lebesgue
shows indicat_real S measurable_on UNIV
proof -
\{ fix $n:$:nat
let $? \varepsilon=(1::$ real $) /\left(2 * 2{ }^{\wedge} n\right)$
have $\varepsilon: ? \varepsilon>0$
by auto
obtain T where closed $T T \subseteq S S-T \in$ lmeasurable and $S T$: emeasure
lebesgue $(S-T)<? \varepsilon$
by (meson ε assms sets_lebesgue_inner_closed)
obtain U where open $U S \subseteq U(U-S) \in$ lmeasurable and $U S$: emeasure
lebesgue $(U-S)<? \varepsilon$
by (meson ε assms sets_lebesgue_outer_open)
have $e q:-T \cap U=(S-T) \cup(U-S)$
using $\langle T \subseteq S\rangle\langle S \subseteq U\rangle$ by auto
have emeasure lebesgue $((S-T) \cup(U-S)) \leq$ emeasure lebesgue $(S-T)+$ emeasure lebesgue $(U-S)$
using $\langle S-T \in$ lmeasurable $\langle U-S \in$ lmeasurable \rangle emeasure_subadditive
by blast
also have $\ldots<? \varepsilon+? \varepsilon$
using ST US add_mono_ennreal by metis
finally have le: emeasure lebesgue $(-T \cap U)<$ ennreal $\left(1 / 2^{\wedge} n\right)$ by (simp add: eq)
have 1: continuous_on $(T \cup-U)$ (indicat_real S)
unfolding indicator_def
proof (rule continuous_on_cases $[$ OF \langle closed $T\rangle]$)
show closed (-U)
using «open U 〉 by blast
show continuous_on $T(\lambda x$. $1::$ real $)$ continuous_on $(-U)(\lambda x .0::$ real $)$
by (auto simp: continuous_on)
show $\forall x . x \in T \wedge x \notin S \vee x \in-U \wedge x \in S \longrightarrow(1::$ real $)=0$
using $\langle T \subseteq S\rangle\langle S \subseteq U\rangle$ by auto
qed
have 2: closedin (top_of_set UNIV) $(T \cup-U)$
using 〈closed $T\rangle\langle$ open $U\rangle$ by auto
obtain g where continuous_on UNIV $g \bigwedge x . x \in T \cup-U \Longrightarrow g x=$ indicat_real $S x \wedge x . \operatorname{norm}(g x) \leq 1$
by (rule Tietze [OF 1 2, of 1]) auto
with le have $\exists g E$. continuous_on UNIV $g \wedge(\forall x \in-E . g x=$ indicat_real S x) \wedge
$(\forall x . \operatorname{norm}(g x) \leq 1) \wedge E \in$ sets lebesgue \wedge emeasure lebesgue
$E<\operatorname{ennreal}(1 / 2 \wedge n)$
apply (rule_tac $x=g$ in $e x I$)
apply (rule_tac $x=-T \cap U$ in exI)
using $\langle S-T \in$ lmeasurable $\langle U-S \in$ lmeasurable \rangle eq by auto
\}
then obtain $g E$ where cont: $\bigwedge n$. continuous_on UNIV ($g n$)
and geq: $\bigwedge n x . x \in-E n \Longrightarrow g n x=$ indicat_real $S x$
and ng1: $\wedge n x . \operatorname{norm}(g n x) \leq 1$
and Eset: $\bigwedge n$. E $n \in$ sets lebesgue
and Em: $\bigwedge n$. emeasure lebesgue $(E n)<$ ennreal $\left(1 / 2^{\wedge} n\right)$
by metis
have null: limsup $E \in$ null_sets lebesgue
proof (rule borel_cantelli_limsup1 [OF Eset])
show emeasure lebesgue ($E n$) $<\infty$ for n
by (metis Em infinity_ennreal_def order.asym top.not_eq_extremum)
show summable (λn. measure lebesgue ($E n$))
proof (rule summable_comparison_test' [OF summable_geometric, of 1/2 0])
show norm (measure lebesgue $(E n)$) $\leq(1 / 2)^{\wedge} n$ for n
using Em [of n] by (simp add: measure_def enn2real_leI power_one_over)

```
        qed auto
    qed
    have tends: (\lambdan.gnx)\longrightarrow indicat_real S x if x\not\inlimsup E for }
    proof -
        have }\mp@subsup{\forall}{F}{}n\mathrm{ in sequentially. }x\in-E
        using that by (simp add: mem_limsup_iff not_frequently)
    then show ?thesis
        unfolding tendsto_iff dist_real_def
        by (simp add: eventually_mono geq)
    qed
    show ?thesis
        unfolding measurable_on_def
    proof (intro exI conjI allI impI)
        show negligible (limsup E)
            using negligible_iff_null_sets null by blast
        show continuous_on UNIV (g n) for n
            using cont by blast
    qed (use tends in auto)
qed
lemma measurable_on_restrict:
    assumes f:f measurable_on UNIV and S:S\in sets lebesgue
    shows ( }\lambdax\mathrm{ . if }x\inS\mathrm{ then f x else 0) measurable_on UNIV
proof -
    have indicat_real S measurable_on UNIV
        by (simp add: S indicator_measurable_on)
    then show ?thesis
        using measurable_on_scaleR [OF _ f, of indicat_real S]
        by (simp add: indicator_scaleR_eq_if)
qed
lemma measurable_on_const_UNIV:(\lambdax.k) measurable_on UNIV
    by (simp add: continuous_imp_measurable_on)
lemma measurable_on_const [simp]: S \in sets lebesgue \Longrightarrow(\lambdax.k) measurable_on
S
    using measurable_on_UNIV measurable_on_const_UNIV measurable_on_restrict by
blast
lemma simple_function_indicator_representation_real:
    fixes f ::'a m real
    assumes f: simple_function Mf and x: x f space M and nn: \x.fx\geq0
    shows fx=(\sumy\inf`space M. y* indicator (f -`{y}\cap space M) x)
proof -
    have f': simple_function M (ennreal \circf)
        by (simp add: f)
    have *: fx=
        enn2real
        ( }\sumy\in\mathrm{ ennreal ' }f\mathrm{ ' space M.
```

```
    y* indicator ((ennreal \circf) -`{y}\cap space M) x)
using arg_cong [OF simple_function_indicator_representation [OF f' x], of
enn2real, simplified nn o_def] nn
    unfolding o_def image_comp
    by (metis enn2real_ennreal)
    have enn2real (\sumy\inennreal ' }f\mathrm{ 'space M. if ennreal (fx)=y^x 的 space M
then y else 0)
        sum(enn2real \circ ( }\lambday\mathrm{ . if ennreal (f x)=y^x space M then y else 0))
        (ennreal 'f'space M)
    by (rule enn2real_sum) auto
    also have ... = sum (enn2real \circ ( \lambday. if ennreal (fx)=y^x\in space M then
y else 0) ○ ennreal)
                        (f`space M)
    by (rule sum.reindex) (use nn in <auto simp: inj_on_def intro: sum.cong>)
    also have ... = (\sumy\inf'space M. if f x=y^x\in space M then y else 0)
    using nn
    by (auto simp: inj_on_def intro: sum.cong)
    finally show ?thesis
    by (subst *) (simp add: enn2real_sum indicator_def if_distrib cong: if_cong)
qed
lemma simple_function_induct_real
    [consumes 1, case_names cong set mult add, induct set: simple_function]:
    fixes }u:: ' a m real
    assumes u: simple_function Mu
    assumes cong: \fg. simple_function Mf \Longrightarrow simple_function Mg \Longrightarrow(AEx
in M.fx=gx)\LongrightarrowPf\LongrightarrowPg
    assumes set: }\A.A\in\mathrm{ sets }M\LongrightarrowP(\mathrm{ indicator A)
    assumes mult: }\uc.Pu\LongrightarrowP(\lambdax.c*ux
    assumes add: \bigwedgeuv.Pu\LongrightarrowPv\LongrightarrowP(\lambdax.ux+vx)
    and nn:\x.ux\geq0
    shows Pu
proof (rule cong)
    from AE_space show AE x in M. (\sumy\inu'space M. y* indicator (u -'{y}
\cap space M) x) = ux
    proof eventually_elim
        fix x assume x: x \in space M
        from simple_function_indicator_representation_real[OF ux] nn
        show (\sumy\inu's space M. y* indicator (u-'{y}\cap space M) x)=ux
            by metis
    qed
next
    from u}\mathrm{ have finite ( }u\mathrm{ ' space M)
        unfolding simple_function_def by auto
    then show P}(\lambdax.\sumy\inu'space M. y* indicator (u-'{y}\cap space M) x
    proof induct
        case empty
        then show ?case
            using set[of {}] by (simp add: indicator_def[abs_def])
```

```
    next
    case (insert a F)
    have eq: \sum{y.ux=y^(y=a\veey\inF)\wedge x\in space M}
                    =(if ux=a\wedgex\in space M then a else 0) + \sum{y.ux=y^y\inF
\wedgex\in space M} for x
    proof (cases x }\in\mathrm{ space M)
        case True
        have *: {y.ux=y^(y=a\veey\inF)}={y.ux=a^y=a}\cup{y.ux
=y\wedgey\inF}
            by auto
            show ?thesis
            using insert by (simp add: * True)
    qed auto
    have a: P(\lambdax.a* indicator ( }u-\mp@subsup{|}{}{\prime}{a}\cap\mathrm{ space M) x)
    proof (intro mult set)
        show }u-`{a}\cap\mathrm{ space M 
            using u by auto
    qed
    show ?case
        using nn insert a
        by (simp add: eq indicator_times_eq_if [where f=\lambdax.a] add)
    qed
next
    show simple_function M (\lambdax. (\sumy\inu'space M. y* indicator (u -'{y}\cap space
M) x))
    apply (subst simple_function_cong)
    apply (rule simple_function_indicator_representation_real[symmetric])
    apply (auto intro: u nn)
    done
qed fact
proposition simple_function_measurable_on_UNIV:
    fixes f :: 'a::euclidean_space }=>\mathrm{ real
    assumes f:simple_function lebesgue f and nn: \bigwedgex.fx\geq0
    shows f measurable_on UNIV
    using f
proof (induction f)
    case (cong fg)
    then obtain N where negligible N {x.g x\not=fx}\subseteqN
        by (auto simp: eventually_ae_filter_negligible eq_commute)
    then show ?case
        by (blast intro: measurable_on_spike cong)
next
    case (set S)
    then show ?case
        by (simp add: indicator_measurable_on)
next
    case (mult uc)
    then show ?case
```

```
        by (simp add: measurable_on_cmul)
    case (add \(u v\) )
    then show ?case
    by (simp add: measurable_on_add)
qed (auto simp: nn)
lemma simple_function_lebesgue_if:
    fixes \(f\) :: 'a::euclidean_space \(\Rightarrow\) real
    assumes \(f\) : simple_function lebesgue \(f\) and \(S: S \in\) sets lebesgue
    shows simple_function lebesgue \((\lambda x\). if \(x \in S\) then \(f x\) else 0\()\)
proof -
    have ffin: finite (range \(f\) ) and fsets: \(\forall x . f-‘\{f x\} \in\) sets lebesgue
        using \(f\) by (auto simp: simple_function_def)
    have finite ( \(f\) ' \(S\) )
        by (meson finite_subset subset_image_iff ffin top_greatest)
    moreover have finite \(((\lambda x .0::\) real \()\) ' \(T)\) for \(T::\) 'a set
        by (auto simp: image_def)
    moreover have if_sets: \((\lambda x\). if \(x \in S\) then \(f x\) else 0\()-‘\{f a\} \in\) sets lebesgue
for \(a\)
    proof -
        have \(*:(\lambda x\). if \(x \in S\) then \(f x\) else 0) \(-‘\{f a\}\)
                        \(=\left(\right.\) if \(f a=0\) then \(-S \cup f-^{\prime}\{f a\}\) else \(\left.(f-‘\{f a\}) \cap S\right)\)
        by (auto simp: split: if_split_asm)
        show ?thesis
            unfolding * by (metis Compl_in_sets_lebesgue \(S\) sets.Int sets.Un fsets)
    qed
    moreover have \((\lambda x\). if \(x \in S\) then \(f x\) else 0\()-{ }^{\prime}\{0\} \in\) sets lebesgue
    proof (cases \(0 \in\) range \(f\) )
        case True
        then show ?thesis
            by (metis (no_types, lifting) if_sets rangeE)
    next
        case False
        then have \((\lambda x\). if \(x \in S\) then \(f x\) else 0\()-‘\{0\}=-S\)
            by auto
        then show? ?thesis
            by (simp add: Compl_in_sets_lebesgue S)
    qed
    ultimately show ?thesis
        by (auto simp: simple_function_def)
qed
corollary simple_function_measurable_on:
    fixes \(f\) :: 'a::euclidean_space \(\Rightarrow\) real
    assumes \(f\) : simple_function lebesgue \(f\) and \(n n: \bigwedge x . f x \geq 0\) and \(S: S \in\) sets
lebesgue
    shows \(f\) measurable_on \(S\)
    by (simp add: measurable_on_UNIV [symmetric, of f] Sf simple_function_lebesgue_if
nn simple_function_measurable_on_UNIV)
```

```
lemma
    fixes \(f\) :: 'a::euclidean_space \(\Rightarrow\) 'b::ordered_euclidean_space
    assumes \(f\) : \(f\) measurable_on \(S\) and \(g: g\) measurable_on \(S\)
    shows measurable_on_sup: \((\lambda x\). sup \((f x)(g x))\) measurable_on \(S\)
    and measurable_on_inf: \((\lambda x . \inf (f x)(g x))\) measurable_on \(S\)
proof -
    obtain \(N F\) and \(F\)
        where \(N F\) : negligible \(N F\)
        and conF: \(\bigwedge n\). continuous_on UNIV \((F n)\)
        and tendsF: \(\bigwedge x . x \notin N F \Longrightarrow(\lambda n . F n x) \longrightarrow(\) if \(x \in S\) then \(f x\) else 0\()\)
        using \(f\) by (auto simp: measurable_on_def)
    obtain \(N G\) and \(G\)
        where \(N G\) : negligible \(N G\)
        and conG: \(\bigwedge n\). continuous_on UNIV ( \(G n\) )
        and tends \(G: \bigwedge x . x \notin N G \Longrightarrow(\lambda n . G n x) \longrightarrow(\) if \(x \in S\) then \(g x\) else 0\()\)
        using \(g\) by (auto simp: measurable_on_def)
    show \((\lambda x\). sup \((f x)(g x))\) measurable_on \(S\)
        unfolding measurable_on_def
    proof (intro exI conjI allI impI)
        show continuous_on UNIV \((\lambda x\). sup \((F n x)(G n x))\) for \(n\)
            unfolding sup_max eucl_sup by (intro conF con \(G\) continuous_intros)
        show \((\lambda n\). sup \((F n x)(G n x)) \longrightarrow(\) if \(x \in S\) then sup \((f x)(g x)\) else 0\()\)
            if \(x \notin N F \cup N G\) for \(x\)
            using tendsto_sup [OF tendsF tends \(G\), of \(x\) x] that by auto
    qed (simp add: \(N F\) NG)
    show ( \(\lambda x\).inf \((f x)(g x))\) measurable_on \(S\)
        unfolding measurable_on_def
    proof (intro exI conjI allI impI)
        show continuous_on UNIV \((\lambda x\).inf \((F n x)(G n x))\) for \(n\)
            unfolding inf_min eucl_inf by (intro conF con \(G\) continuous_intros)
        show \((\lambda n\). inf \((F n x)(G n x)) \longrightarrow(\) if \(x \in S\) then inf \((f x)(g x)\) else 0)
            if \(x \notin N F \cup N G\) for \(x\)
            using tendsto_inf [OF tendsF tends \(G\), of \(x x\) ] that by auto
    qed (simp add: \(N F N G\) )
qed
proposition measurable_on_componentwise_UNIV:
    \(f\) measurable_on UNIV \(\longleftrightarrow\left(\forall i \in\right.\) Basis. \(\left(\lambda x .(f x \cdot i) *_{R} i\right)\) measurable_on UNIV \()\)
    (is? \(l h s=\) ? \(r h s\) )
proof
    assume \(L\) :?lhs
    show ?rhs
    proof
        fix \(i::^{\prime} b\)
        assume \(i \in\) Basis
        have cont: continuous_on UNIV \(\left(\lambda x .(x \cdot i) *_{R} i\right)\)
            by (intro continuous_intros)
        show \(\left(\lambda x .(f x \cdot i) *_{R} i\right)\) measurable_on UNIV
```

```
        using measurable_on_compose_continuous [OF L cont]
        by (simp add: o_def)
    qed
next
    assume ?rhs
    then have }\existsNg\mathrm{ . negligible }N
                ( }\forall\mathrm{ n. continuous_on UNIV (g n)) ^
                    (\forallx.x\not\inN\longrightarrow(\lambdan.gnx)\longrightarrow(fx\cdoti)**
    if i\inBasis for i
    by (simp add: measurable_on_def that)
    then obtain Ng}\mathrm{ where N:\i.i Basis C negligible (Ni)
            and cont: \bigwedgein. i G Basis \Longrightarrowcontinuous_on UNIV (g i n)
```



```
i
        by metis
    show ?lhs
    unfolding measurable_on_def
    proof (intro exI conjI allI impI)
        show negligible ( \bigcup i E Basis. N i)
            using N eucl.finite_Basis by blast
        show continuous_on UNIV ( }\lambdax.(\sumi\inBasis.g i n x)) for 
            by (intro continuous_intros cont)
    next
        fix }
        assume x}\not\in(\bigcupi\in\mathrm{ Basis.N i)
        then have \}\i.i\in\mathrm{ Basis }\Longrightarrowx\not\inN
        by auto
        then have (\lambdan. (\sumi\inBasis.g inx))\longrightarrow(\sumi\inBasis. (fx | i) ** i)
        by (intro tends tendsto_intros)
    then show (\lambdan. (\sumi\inBasis.g in x)) \longrightarrow(if }x\in\mathrm{ UNIV then f x else 0)
        by (simp add: euclidean_representation)
    qed
qed
corollary measurable_on_componentwise:
    fmeasurable_on S \longleftrightarrow(\foralli\inBasis. (\lambdax. (fx | i) *R i) measurable_on S)
    apply (subst measurable_on_UNIV [symmetric])
    apply (subst measurable_on_componentwise_UNIV)
    apply (simp add: measurable_on_UNIV if_distrib [of \lambdax. inner x _] if_distrib [of
\lambdax. scaleR x _] cong: if_cong)
    done
```

lemma borel_measurable_implies_simple_function_sequence_real:
fixes $u::^{\prime} a \Rightarrow$ real
assumes $u[$ measurable]: $u \in$ borel_measurable M and $n n: ~ \bigwedge x . u x \geq 0$
shows $\exists f$. incseq $f \wedge(\forall$ i. simple_function $M(f i)) \wedge(\forall x$. bdd_above (range $(\lambda i$.
$f i x))) \wedge$

```
        (\forallix.0\leqfix)\wedgeu=(SUP i.fi)
proof -
    define f where [abs_def]:
        fix = real_of_int (floor ((min i (u x)) * 2^i)) / 2^i for i x
    have [simp]: 0\leqfix for ix
        by (auto simp: f_def intro!: divide_nonneg_nonneg mult_nonneg_nonneg nn)
    have *: 2^n * real_of_int x = real_of_int (2^n * x) for n x
        by simp
    have real_of_int \lfloorreal i*2 ` i\rfloor= real_of_int \lfloori * 2 ` i\rfloorfor i
    by (intro arg_cong[where f=real_of_int]) simp
    then have [simp]: real_of_int \lfloorreal i*2 ` i\rfloor= i*2 ^ i for }
    unfolding floor_of_nat by simp
    have bdd: bdd_above (range (\lambdai.fi i )) for x
        by (rule bdd_aboveI [where M=u x]) (auto simp: f_def field_simps min_def)
    have incseq f
    proof (intro monoI le_funI)
    fix m n :: nat and x assume m}\leq
    moreover
    { fix d :: nat
        have \2^d::real\rfloor* \2^m * (min (of_nat m) (u x) ) \rfloor\leq \2^d * (2^m * (min
(of_nat m)(u x)))\rfloor
            by (rule le_mult_floor) (auto simp: nn)
        also have ... \leq \lfloor2^d * (2^m* (min (of_nat d + of_nat m) (u x)))\rfloor
            by (intro floor_mono mult_mono min.mono)
                (auto simp: nn min_less_iff_disj of_nat_less_top)
        finally have fmx\leqf(m+d)x
            unfolding f_def
            by (auto simp: field_simps power_add * simp del: of_int_mult) }
    ultimately show fmx\leqfn x
        by (auto simp: le_iff_add)
    qed
    then have inc_f: incseq ( \lambdai.fix) for x
        by (auto simp: incseq_def le_fun_def)
    moreover
    have simple_function M (fi) for i
    proof (rule simple_function_borel_measurable)
        have \lfloor(min (of_nat i) (ux))* 2 ` i\rfloor\leq \int i* 2 ` i i for x
        by (auto split: split_min intro!: floor_mono)
    then have fi'space M\subseteq(\lambdan.real_of_int n / 2^i)`{0 .. of_nat i * 2`i
        unfolding floor_of_int by (auto simp: f_def nn intro!: imageI)
    then show finite (fi'space M)
        by (rule finite_subset) auto
    show fi i\in borel_measurable M
        unfolding f_def enn2real_def by measurable
```

```
qed
moreover
{fix }
    have (SUP i. (f i x ) ) = u x
    proof -
        obtain n where ux\leq of_nat n using real_arch_simple by auto
        then have min_eq_r: \forall}\mp@subsup{F}{F}{}i\mathrm{ in sequentially. min (real i) (ux)=ux
            by (auto simp: eventually_sequentially intro!: exI[of _ n] split: split_min)
        have (\lambdai.real_of_int \lfloormin (real i) (ux)* 2^i\rfloor/ 2^i)\longrightarrowux
        proof (rule tendsto_sandwich)
            show (\lambdan.ux-(1/2)^n)\longrightarrowux
                by (auto intro!: tendsto_eq_intros LIMSEQ_power_zero)
            show }\mp@subsup{\forall}{F}{}n\mathrm{ in sequentially. real_of_int \min (real n) (ux) * 2 ` n \/ 2 ` n
\lequx
            using min_eq_r by eventually_elim (auto simp: field_simps)
            have *: ux*(2 ^ n * 2 ` n) \leq2`n + 2`n * real_of_int \lfloorux* 2 ^ n\rfloor for n
                using real_of_int_floor_ge_diff_one[of ux* 2^n,THEN mult_left_mono, of
2^n]
            by (auto simp: field_simps)
            show }\mp@subsup{\forall}{F}{}n\mathrm{ in sequentially. u x - (1/2) ^n s real_of_int \min (real n)(u
x)*2 ^ n」/ 2 ` n
                using min_eq_r by eventually_elim (insert *, auto simp: field_simps)
    qed auto
    then have (\lambdai. (fix))\longrightarrowux
            by (simp add: f_def)
        from LIMSEQ_unique LIMSEQ_incseq_SUP [OF bdd inc_f] this
        show ?thesis
            by blast
        qed }
        ultimately show ?thesis
        by (intro exI [of _ \lambdai x.f i x]) (auto simp:<incseq f>bdd image_comp)
qed
lemma homeomorphic_open_interval_UNIV:
    fixes a b:: real
    assumes a<b
    shows {a<..<b} homeomorphic (UNIV::real set)
proof -
    have {a<..<b} = ball ((b+a) / 2) ((b-a) / 2)
        using assms
        by (auto simp: dist_real_def abs_if field_split_simps split:if_split_asm)
    then show ?thesis
        by (simp add: homeomorphic_ball_UNIV assms)
qed
proposition homeomorphic_box_UNIV:
    fixes a b:: 'a::euclidean_space
    assumes box a b}\not={
```

```
    shows box a b homeomorphic (UNIV::'a set)
proof -
    have \(\{a \cdot i<. .<b \cdot i\}\) homeomorphic (UNIV::real set) if \(i \in\) Basis for \(i\)
    using assms box_ne_empty that by (blast intro: homeomorphic_open_interval_UNIV)
    then have \(\exists f g .(\forall x . a \cdot i<x \wedge x<b \cdot i \longrightarrow g(f x)=x) \wedge\)
                            \((\forall y \cdot a \cdot i<g y \wedge g y<b \cdot i \wedge f(g y)=y) \wedge\)
                    continuous_on \(\{a \cdot i<. .<b \cdot i\} f \wedge\)
                        continuous_on (UNIV::real set) \(g\)
    if \(i \in\) Basis for \(i\)
    using that by (auto simp: homeomorphic_minimal mem_box Ball_def)
    then obtain \(f g\) where \(g f: \bigwedge i x . \llbracket i \in\) Basis; \(a \cdot i<x ; x<b \cdot i \rrbracket \Longrightarrow g i(f i\)
\(x)=x\)
                and \(f g: \wedge i y . i \in\) Basis \(\Longrightarrow a \cdot i<g i y \wedge g i y<b \cdot i \wedge f i(g i y)\)
\(=y\)
                and contf: \(\bigwedge i . i \in\) Basis \(\Longrightarrow\) continuous_on \(\{a \cdot i<. .<b \cdot i\}(f i)\)
                and contg: \(\bigwedge i . i \in\) Basis \(\Longrightarrow\) continuous_on (UNIV::real set) \((g i)\)
        by metis
    define \(F\) where \(F \equiv \lambda x\). \(\sum i \in\) Basis. \((f i(x \cdot i)) *_{R} i\)
    define \(G\) where \(G \equiv \lambda x\). \(\sum i \in\) Basis. \((g i(x \cdot i)) *_{R} i\)
    show ?thesis
        unfolding homeomorphic_minimal
    proof (intro exI conjI ballI)
        show \(G y \in b o x a b\) for \(y\)
            using \(f g\) by (simp add: G_def mem_box)
            show \(G(F x)=x\) if \(x \in b o x\) a \(b\) for \(x\)
            using that by (simp add: F_def G_def gf mem_box euclidean_representation)
            show \(F(G y)=y\) for \(y\)
            by (simp add: F_def G_def fg mem_box euclidean_representation)
            show continuous_on (box a b) \(F\)
            unfolding \(F_{-} d e f\)
            proof (intro continuous_intros continuous_on_compose2 [OF contf continu-
ous_on_inner])
            show \((\lambda x . x \cdot i)\) ' box \(a b \subseteq\{a \cdot i<. .<b \cdot i\}\) if \(i \in\) Basis for \(i\)
            using that by (auto simp: mem_box)
    qed
    show continuous_on UNIV G
            unfolding G_def
                by (intro continuous_intros continuous_on_compose2 [OF contg continu-
ous_on_inner]) auto
    qed auto
qed
```

lemma diff_null_sets_lebesgue: $\llbracket N \in$ null_sets (lebesgue_on S); $X-N \in$ sets (lebesgue_on S); $N \subseteq X \rrbracket$
$\Longrightarrow X \in$ sets (lebesgue_on S)
by (metis Int_Diff_Un inf.commute inf.orderE null_setsD2 sets.Un)

```
lemma borel_measurable_diff_null:
    fixes f :: 'a::euclidean_space = 'b::euclidean_space
    assumes N:N\in null_sets (lebesgue_on S) and S:S\in sets lebesgue
    shows f\in borel_measurable (lebesgue_on (S-N)) \longleftrightarrowf\in borel_measurable
(lebesgue_on S)
    unfolding in_borel_measurable space_lebesgue_on sets_restrict_UNIV
proof (intro ball_cong iffI)
    show f -`}T\capS\in\mathrm{ sets (lebesgue_on S)
        if f-`}T\cap(S-N)\in\mathrm{ sets (lebesgue_on (S-N)) for T
    proof -
        have N\capS=N
            by (metis N S inf.orderE null_sets_restrict_space)
        moreover have N\capS\in sets lebesgue
            by (metis N S inf.orderE null_setsD2 null_sets_restrict_space)
        moreover have f-'}T\capS\cap(f-`T\capN)\in\mathrm{ sets lebesgue
        by (metis N S completion.complete inf.absorb2 inf_le2 inf_mono null_sets_restrict_space)
        ultimately show ?thesis
        by (metis Diff_Int_distrib Int_Diff_Un S inf_le2 sets.Diff sets.Un sets_restrict_space_iff
space_lebesgue_on space_restrict_space that)
    qed
    show f -` T\cap (S-N) \in sets (lebesgue_on (S-N))
        if f-`}T\capS\in\mathrm{ sets (lebesgue_on S) for T
    proof -
        have }(S-N)\capf-`'T=(S-N)\cap(f-` T\capS
        by blast
        then have (S-N)\capf-`}T\in\mathrm{ sets.restricted_space lebesgue (S - N)
            by (metis S image_iff sets.Int_space_eq2 sets_restrict_space_iff that)
        then show ?thesis
        by (simp add: inf.commute sets_restrict_space)
    qed
qed auto
lemma lebesgue_measurable_diff_null:
    fixes f :: 'a::euclidean_space = 'b::euclidean_space
    assumes N\in null_sets lebesgue
    shows }f\in\mathrm{ borel_measurable (lebesgue_on ( }-N))\longleftrightarrowf\in\mathrm{ borel_measurable lebesgue
    by (simp add: Compl_eq_Diff_UNIV assms borel_measurable_diff_null lebesgue_on_UNIV_eq)
```

proposition measurable_on_imp_borel_measurable_lebesgue_UNIV:
fixes f :: 'a::euclidean_space \Rightarrow ' $b::$ euclidean_space
assumes f measurable_on UNIV
shows $f \in$ borel_measurable lebesgue
proof -
obtain N and F
where NF: negligible N
and conF: $\bigwedge n$. continuous_on UNIV ($F n$)
and tendsF: $\wedge x . x \notin N \Longrightarrow(\lambda n . F n x) \longrightarrow f x$
using assms by (auto simp: measurable_on_def)
obtain N where $N \in$ null_sets lebesgue $f \in$ borel_measurable (lebesgue_on $(-N)$)
proof
show $f \in$ borel_measurable (lebesgue_on $(-N)$)
proof (rule borel_measurable_LIMSEQ_metric)
show $F i \in$ borel_measurable (lebesgue_on $(-N)$) for i
by (meson Compl_in_sets_lebesgue NF conF continuous_imp_measurable_on_sets_lebesgue
continuous_on_subset negligible_imp_sets subset_UNIV)
show $(\lambda i . F i x) \longrightarrow f x$ if $x \in$ space (lebesgue_on $(-N)$) for x
using that
by (simp add: tendsF)
qed
show $N \in$ null_sets lebesgue
using NF negligible_iff_null_sets by blast
qed
then show?thesis
using lebesgue_measurable_diff_null by blast
qed
corollary measurable_on_imp_borel_measurable_lebesgue:
fixes f :: 'a::euclidean_space \Rightarrow 'b::euclidean_space
assumes f measurable_on S and $S: S \in$ sets lebesgue
shows $f \in$ borel_measurable (lebesgue_on S)
proof -
have $(\lambda x$. if $x \in S$ then $f x$ else 0) measurable_on UNIV using assms(1) measurable_on_UNIV by blast
then show ?thesis
by (simp add: borel_measurable_if_D measurable_on_imp_borel_measurable_lebesgue_UNIV) qed
proposition measurable_on_limit:
fixes $f::$ nat \Rightarrow ' $a::$ euclidean_space \Rightarrow ' $b::$ euclidean_space
assumes $f: \bigwedge n . f n$ measurable_on S and N : negligible N
and lim: $\bigwedge x . x \in S-N \Longrightarrow(\lambda n . f n x) \longrightarrow g x$
shows g measurable_on S
proof -
have box ($0::$ 'b) One homeomorphic (UNIV ::'b set)
by (simp add: homeomorphic_box_UNIV)
then obtain $h h^{\prime}:: ~ ' b \nRightarrow^{\prime} b$ where $h h^{\prime}: \bigwedge x . x \in$ box 0 One $\Longrightarrow h\left(h^{\prime} x\right)=x$
and h^{\prime} im: h^{\prime} 'box 0 One $=$ UNIV
and conth: continuous_on UNIV h and conth': continuous_on (box 0 One) h^{\prime} and $h^{\prime} h: \quad \bigwedge y . h^{\prime}(h y)=y$ and rangeh: range $h=$ box 0 One
by (auto simp: homeomorphic_def homeomorphism_def)
have norm $y \leq D I M(' b)$ if $y: y \in b o x 0$ One for $y::{ }^{\prime} b$
proof -
have y01: $0<y \cdot i y \cdot i<1$ if $i \in$ Basis for i

```
    using that \(y\) by (auto simp: mem_box)
    have norm \(y \leq\left(\sum i \in\right.\) Basis. \(\left.|y \cdot i|\right)\)
    using norm_le_l1 by blast
    also have \(\ldots \leq\left(\sum i::^{\prime} b \in\right.\) Basis. 1 \()\)
    proof (rule sum_mono)
        show \(|y \cdot i| \leq 1\) if \(i \in\) Basis for \(i\)
        using y01 that by fastforce
    qed
    also have \(\ldots \leq \operatorname{DIM}(' b)\)
        by auto
    finally show ?thesis.
qed
then have norm_le: norm ( \(h y\) ) \(\leq \operatorname{DIM}\) ('b) for \(y\)
    by (metis UNIV_I image_eqI rangeh)
have \(\left(h^{\prime} \circ(h \circ(\lambda x\right.\). if \(x \in S\) then \(g x\) else 0\(\left.))\right)\) measurable_on UNIV
proof (rule measurable_on_compose_continuous_box)
    let ? \(\chi=h \circ(\lambda x\). if \(x \in S\) then \(g x\) else 0\()\)
    let? \(=\lambda n . h \circ(\lambda x\). if \(x \in S\) then \(f n x\) else 0\()\)
    show ? \(\chi\) measurable_on UNIV
    proof (rule integrable_subintervals_imp_measurable)
    show ? \(\chi\) integrable_on cbox \(a b\) for \(a b\)
    proof (rule integrable_spike_set)
        show ? \(\chi\) integrable_on (cbox a b-N)
        proof (rule dominated_convergence_integrable)
            show const: ( \(\lambda x\). DIM ('b)) integrable_on cbox a \(b-N\)
                by (simp add: \(N\) has_integral_iff integrable_const integrable_negligible
integrable_setdiff negligible_diff)
            show norm \(((h \circ(\lambda x\). if \(x \in S\) then \(g x\) else 0\()) x) \leq D I M\left({ }^{\prime} b\right)\) if \(x \in c b o x\)
\(a b-N\) for \(x\)
                using that norm_le by (simp add: o_def)
            show \((\lambda k\). ?f \(k x) \longrightarrow\) ? \(\chi x\) if \(x \in\) cbox \(a b-N\) for \(x\)
                using that lim [of \(x\) ] conth
                by (auto simp: continuous_on_def intro: tendsto_compose)
            show (?f \(n\) ) absolutely_integrable_on cbox a \(b-N\) for \(n\)
            proof (rule measurable_bounded_by_integrable_imp_absolutely_integrable)
                        show ?f \(n \in\) borel_measurable (lebesgue_on (cbox a \(b-N\) )
                proof (rule measurable_on_imp_borel_measurable_lebesgue [OF measur-
able_on_spike_set])
                    show ?f \(n\) measurable_on cbox ab
                            unfolding measurable_on_UNIV [symmetric, of _ cbox a b]
                proof (rule measurable_on_restrict)
                            have \(f^{\prime}:(\lambda x\). if \(x \in S\) then \(f n x\) else 0) measurable_on UNIV
                            by (simp add: f measurable_on_UNIV)
                    show ?f \(n\) measurable_on UNIV
                    using measurable_on_compose_continuous \(\left[O F f^{\prime}\right.\) conth \(]\) by auto
                qed auto
                show negligible (sym_diff (cbox a b) (cbox a b-N))
                    by (auto intro: negligible_subset [OF N])
                    show cbox a \(b-N \in\) sets lebesgue
```

```
                    by (simp add: N negligible_imp_sets sets.Diff)
                qed
                show cbox a b-N\in sets lebesgue
                    by (simp add: N negligible_imp_sets sets.Diff)
                show norm (?f n x) \leq DIM('b)
                    if }x\incbox ab-N for x
                    using that local.norm_le by simp
                qed (auto simp: const)
            qed
            show negligible {x\in cbox a b-N-cbox a b. ?\chi x = 0}
                by (auto simp: empty_imp_negligible)
            have {x\in cbox a b-(cbox a b -N). ?\chi x\not=0}\subseteqN
                    by auto
            then show negligible {x\in cbox a b-(cbox ab-N).? }\chi=x\not=0
                        using N negligible_subset by blast
        qed
    qed
    show ? \chi x box 0 One for x
        using rangeh by auto
    show continuous_on (box 0 One) h'
        by (rule conth')
    qed
    then show ?thesis
        by (simp add: o_def h'h measurable_on_UNIV)
qed
```

lemma measurable_on_if_simple_function_limit:
fixes f :: 'a::euclidean_space \Rightarrow ' $b::$ euclidean_space
shows $\llbracket \bigwedge n . g n$ measurable_on UNIV; $\bigwedge n$. finite (range $(g n)) ; \bigwedge x .(\lambda n . g n$ $x) \longrightarrow f x \rrbracket$
$\Longrightarrow f$ measurable_on UNIV
by (force intro: measurable_on_limit [where $N=\{ \}]$)
lemma lebesgue_measurable_imp_measurable_on_nnreal_UNIV:
fixes u :: 'a::euclidean_space \Rightarrow real
assumes $u: u \in$ borel_measurable lebesgue and $n n: \bigwedge x . u x \geq 0$
shows u measurable_on UNIV
proof -
obtain f where $\operatorname{incseq} f$ and $f: \forall i$. simple_function lebesgue $(f i)$
and bdd: $\bigwedge x$. bdd_above (range ($\lambda i . f i x)$)
and $n n f: \bigwedge i x .0 \leq f i x$ and $*: u=(S U P i . f i)$
using borel_measurable_implies_simple_function_sequence_real nn u by metis
show ?thesis
unfolding *
proof (rule measurable_on_if_simple_function_limit [of concl: Sup (range f)]) show ($f i$) measurable_on UNIV for i
by (simp add: fnnf simple_function_measurable_on_UNIV)

```
    show finite (range (fi)) for i
    by (metis f simple_function_def space_borel space_completion space_lborel)
    show (\lambdai.fix)\longrightarrowSup (range f) }x\mathrm{ for }
    proof -
    have incseq (\lambdai.f i x)
        using <incseq f> apply (auto simp: incseq_def)
        by (simp add:le_funD)
    then show ?thesis
        by (metis SUP_apply bdd LIMSEQ_incseq_SUP)
    qed
qed
qed
lemma lebesgue_measurable_imp_measurable_on_nnreal:
    fixes u :: 'a::euclidean_space => real
    assumes }u\in\mathrm{ borel_measurable lebesgue }\x.ux\geq0S\in sets lebesgue
    shows u measurable_on S
    unfolding measurable_on_UNIV [symmetric, of u]
    using assms
    by (auto intro: lebesgue_measurable_imp_measurable_on_nnreal_UNIV)
lemma lebesgue_measurable_imp_measurable_on_real:
    fixes }u\mathrm{ :: 'a::euclidean_space }=>\mathrm{ real
    assumes u:u\inborel_measurable lebesgue and S:S\in sets lebesgue
    shows u measurable_on S
proof -
    let ?f = \lambdax. |ux| +ux
    let ?g = \lambdax. |ux| - ux
    have ?f measurable_on S ?g measurable_on S
        using S u by (auto intro: lebesgue_measurable_imp_measurable_on_nnreal)
    then have ( }\lambdax\mathrm{ . (?f }x-?gx)/\mathrm{ 2) measurable_on S
        using measurable_on_cdivide measurable_on_diff by blast
    then show ?thesis
        by auto
qed
proposition lebesgue_measurable_imp_measurable_on:
fixes \(f\) :: 'a::euclidean_space \(\Rightarrow\) 'b::euclidean_space
assumes \(f: f \in\) borel_measurable lebesgue and \(S: S \in\) sets lebesgue
shows \(f\) measurable_on \(S\)
unfolding measurable_on_componentwise \([\) of f]
proof
fix \(i::^{\prime} b\)
assume \(i \in\) Basis
have \((\lambda x .(f x \cdot i)) \in\) borel_measurable lebesgue
using \(\langle i \in\) Basis borel_measurable_euclidean_space \(f\) by blast
then have \((\lambda x .(f x \cdot i))\) measurable_on \(S\)
using \(S\) lebesgue_measurable_imp_measurable_on_real by blast
```

```
    then show ( }\lambdax.(fx\cdoti)\mp@subsup{*}{R}{}\mathrm{ i) measurable_on S
    by (intro measurable_on_scaleR measurable_on_const S)
qed
proposition measurable_on_iff_borel_measurable:
    fixes f :: 'a::euclidean_space }=>\mathrm{ 'b::euclidean_space
    assumes S}\in\mathrm{ sets lebesgue
    shows f measurable_on S \longleftrightarrow S\in borel_measurable (lebesgue_on S) (is ?lhs =
?rhs)
proof
    show f \in borel_measurable (lebesgue_on S)
        if f measurable_on S
        using that by (simp add: assms measurable_on_imp_borel_measurable_lebesgue)
next
    assume f \in borel_measurable (lebesgue_on S)
    then have ( }\lambda\mathrm{ a. if a }\inS\mathrm{ then f a else 0) measurable_on UNIV
    by (simp add: assms borel_measurable_if lebesgue_measurable_imp_measurable_on)
    then show f measurable_on S
        using measurable_on_UNIV by blast
qed
```


6.29.5 Measurability on generalisations of the binary product

lemma measurable_on_bilinear:
fixes h :: 'a::euclidean_space \Rightarrow 'b::euclidean_space $\Rightarrow{ }^{\prime} c::$ euclidean_space
assumes h : bilinear h and $f: f$ measurable_on S and $g: g$ measurable_on S
shows $(\lambda x . h(f x)(g x))$ measurable_on S
proof (rule measurable_on_combine [where $h=h]$)
show continuous_on UNIV $(\lambda x . h(f s t x)(s n d x))$
by (simp add: bilinear_continuous_on_compose [OF continuous_on_fst continuous_on_snd h])
show $h 00=0$
by (simp add: bilinear_lzero h)
qed (auto intro: assms)
lemma borel_measurable_bilinear:
fixes $h::$ 'a::euclidean_space \Rightarrow ' $b::$ euclidean_space $\Rightarrow{ }^{\prime} c::$ euclidean_space
assumes bilinear $h f \in$ borel_measurable (lebesgue_on S) $g \in$ borel_measurable
(lebesgue_on S)
and $S: S \in$ sets lebesgue
shows $(\lambda x . h(f x)(g x)) \in$ borel_measurable (lebesgue_on S)
using assms measurable_on_bilinear [of $h f S g$]
by (simp flip: measurable_on_iff_borel_measurable)
lemma absolutely_integrable_bounded_measurable_product:
fixes h :: 'a::euclidean_space \Rightarrow 'b::euclidean_space $\Rightarrow{ }^{\prime} c::$ euclidean_space
assumes bilinear h and $f: f \in$ borel_measurable (lebesgue_on S) $S \in$ sets lebesgue and bou: bounded (f ' S) and g : g absolutely_integrable_on S

```
    shows \((\lambda x . h(f x)(g x))\) absolutely_integrable_on \(S\)
proof -
    obtain \(B\) where \(B>0\) and \(B: \bigwedge x y\). norm \((h x y) \leq B *\) norm \(x *\) norm \(y\)
        using bilinear_bounded_pos 〈bilinear \(h\rangle\) by blast
    obtain \(C\) where \(C>0\) and \(C: \bigwedge x . x \in S \Longrightarrow \operatorname{norm}(f x) \leq C\)
        using bounded_pos by (metis bou imageI)
    show ?thesis
    proof (rule measurable_bounded_by_integrable_imp_absolutely_integrable [OF _ 〈S
\(\in\) sets lebesguè])
        show norm \((h(f x)(g x)) \leq B * C * \operatorname{norm}(g x)\) if \(x \in S\) for \(x\)
            by (meson less_le mult_left_mono mult_right_mono norm_ge_zero order_trans
that \(\langle B>0\rangle B C)\)
    show \((\lambda x . h(f x)(g x)) \in\) borel_measurable (lebesgue_on \(S\) )
            using 〈bilinear \(h\) 〉 \(f g\)
        by (blast intro: borel_measurable_bilinear dest: absolutely_integrable_measurable)
    show \((\lambda x . B * C * \operatorname{norm}(g x))\) integrable_on \(S\)
        using \(\langle 0<B\rangle\langle 0<C\rangle\) absolutely_integrable_on_def \(g\) by auto
    qed
qed
lemma absolutely_integrable_bounded_measurable_product_real:
    fixes \(f\) :: real \(\Rightarrow\) real
    assumes \(f \in\) borel_measurable (lebesgue_on \(S\) ) \(S \in\) sets lebesgue
        and bounded \((f\) ' \(S\) ) and \(g\) absolutely_integrable_on \(S\)
    shows \((\lambda x . f x * g x)\) absolutely_integrable_on \(S\)
    using absolutely_integrable_bounded_measurable_product bilinear_times assms by
blast
```

lemma borel_measurable_AE:
fixes $f::$ 'a::euclidean_space \Rightarrow ' $b::$ euclidean_space
assumes $f \in$ borel_measurable lebesgue and ae: AEx in lebesgue. $f x=g x$
shows $g \in$ borel_measurable lebesgue
proof -
obtain N where $N: N \in$ null_sets lebesgue $\bigwedge x . x \notin N \Longrightarrow f x=g x$
using ae unfolding completion.AE_iff_null_sets by auto
have f measurable_on UNIV
by (simp add: assms lebesgue_measurable_imp_measurable_on)
then have g measurable_on UNIV
by (metis Diff_iff N measurable_on_spike negligible_iff_null_sets)
then show? ?hesis
using measurable_on_imp_borel_measurable_lebesgue_UNIV by blast
qed
lemma has_bochner_integral_combine:
fixes $f::$ real $\Rightarrow{ }^{\prime} a$::euclidean_space
assumes $a \leq c c \leq b$
and ac: has_bochner_integral (lebesgue_on $\{a . . c\}) f i$
and cb: has_bochner_integral (lebesgue_on $\{c . . b\}$) fj

```
    shows has_bochner_integral (lebesgue_on \(\{a . . b\}) f(i+j)\)
proof -
    have \(i\) : has_bochner_integral lebesgue \(\left(\lambda x\right.\). indicator \(\left.\{a . . c\} x *_{R} f x\right) i\)
    and \(j\) : has_bochner_integral lebesgue ( \(\lambda x\). indicator \(\left.\{c . . b\} x *_{R} f x\right) j\)
            using assms by (auto simp: has_bochner_integral_restrict_space)
    have \(A E: A E x\) in lebesgue. indicat_real \(\{a . . c\} x *_{R} f x+\) indicat_real \(\{c . . b\} x\)
\(*_{R} f x=\) indicat_real \(\{a . . b\} x *_{R} f x\)
    proof (rule AE_I')
    have eq: indicat_real \(\{a . . c\} x *_{R} f x+\) indicat_real \(\{c . . b\} x *_{R} f x=\) indicat_real
\(\{a . . b\} x *_{R} f x\) if \(x \neq c\) for \(x\)
            using assms that by (auto simp: indicator_def)
            then show \(\left\{x \in\right.\) space lebesgue. indicat_real \(\{a . . c\} x *_{R} f x+\) indicat_real
\(\{c . . b\} x *_{R} f x \neq\) indicat_real \(\left.\{a . . b\} x *_{R} f x\right\} \subseteq\{c\}\)
            by auto
    qed auto
    have has_bochner_integral lebesgue ( \(\lambda\) x. indicator \(\left.\{a . . b\} x *_{R} f x\right)(i+j)\)
    proof (rule has_bochner_integralI_AE [OF has_bochner_integral_add [OF i j] -
\(A E]\) )
    have eq: indicat_real \(\{a . . c\} x *_{R} f x+\) indicat_real \(\{c . . b\} x *_{R} f x=\) indicat_real
\(\{a . . b\} x *_{R} f x\) if \(x \neq c\) for \(x\)
            using assms that by (auto simp: indicator_def)
            show ( \(\lambda x\). indicat_real \(\left.\{a . . b\} x *_{R} f x\right) \in\) borel_measurable lebesgue
            proof (rule borel_measurable_AE [OF borel_measurable_add AE])
                show ( \(\lambda x\). indicator \(\left.\{a . . c\} x *_{R} f x\right) \in\) borel_measurable lebesgue
                    ( \(\lambda x\). indicator \(\left.\{c . . b\} x *_{R} f x\right) \in\) borel_measurable lebesgue
                    using \(i j\) by auto
        qed
    qed
    then show ?thesis
        by (simp add: has_bochner_integral_restrict_space)
qed
lemma integrable_combine:
    fixes \(f\) :: real \(\Rightarrow{ }^{\prime} a\) ::euclidean_space
    assumes integrable (lebesgue_on \(\{a . . c\}\) ) fintegrable (lebesgue_on \(\{c . . b\}\) ) \(f\)
        and \(a \leq c c \leq b\)
    shows integrable (lebesgue_on \(\{a . . b\}) f\)
    using assms has_bochner_integral_combine has_bochner_integral_iff by blast
lemma integral_combine:
    fixes \(f\) :: real \(\Rightarrow{ }^{\prime} a\) ::euclidean_space
    assumes \(f\) : integrable (lebesgue_on \(\{a . . b\}) f\) and \(a \leq c c \leq b\)
    shows integral \({ }^{L}\) (lebesgue_on \(\left.\{a . . b\}\right) f=\) integral \(^{L}\) (lebesgue_on \(\left.\{a . . c\}\right) f+\)
integral \(^{L}\) (lebesgue_on \(\left.\{c . . b\}\right) f\)
proof -
    have \(i\) : has_bochner_integral (lebesgue_on \(\{a . . c\}) f\left(\right.\) integral \({ }^{L}\) (lebesgue_on \(\left.\{a . . c\}\right)\)
f)
    using integrable_subinterval 〈 \(c \leq b\) 〉 \(f\) has_bochner_integral_iff by fastforce
    have \(j\) : has_bochner_integral (lebesgue_on \(\{c . . b\}) f\left(\right.\) integral \(^{L}\) (lebesgue_on \(\left.\{c . . b\}\right)\)
```

```
f)
    using integrable_subinterval <a \leq c>f has_bochner_integral_iff by fastforce
    show ?thesis
    by (meson }\langlea\leqc\rangle\langlec\leqb\ranglehas_bochner_integral_combine has_bochner_integral_iff
i j)
qed
lemma has_bochner_integral_null [intro]:
    fixes f :: 'a::euclidean_space = 'b::euclidean_space
    assumes N\in null_sets lebesgue
    shows has_bochner_integral (lebesgue_on N) f 0
    unfolding has_bochner_integral_iff - strange that the proof's so long
proof
    show integrable (lebesgue_on N) f
    proof (subst integrable_restrict_space)
        show N\cap space lebesgue }\in\mathrm{ sets lebesgue
            using assms by force
    show integrable lebesgue ( }\lambdax\mathrm{ . indicat_real N x * *R f x)
    proof (rule integrable_cong_AE_imp)
            show integrable lebesgue ( }\lambdax.0
                by simp
            show *:AE x in lebesgue. 0 = indicat_real N x *R f x
                using assms
                by (simp add: indicator_def completion.null_sets_iff_AE eventually_mono)
            show ( }\lambdax\mathrm{ . indicat_real N x**R f x) G borel_measurable lebesgue
                by (auto intro: borel_measurable_AE [OF _ *])
            qed
    qed
    show integral L
    proof (rule integral_eq_zero_AE)
        show AE x in lebesgue_on N. f x = 0
        by (rule AE_I'[where N=N]) (auto simp: assms null_setsD2 null_sets_restrict_space)
    qed
qed
lemma has_bochner_integral_null_eq[simp]:
    fixes f :: 'a::euclidean_space = 'b::euclidean_space
    assumes N\in null_sets lebesgue
    shows has_bochner_integral (lebesgue_on N) fi\longleftrightarrow < i=0
    using assms has_bochner_integral_eq by blast
end
```


6.30 Embedding Measure Spaces with a Function

theory Embed_Measure
imports Binary_Product_Measure
begin

Given a measure space on some carrier set Ω and a function f, we can define a push-forward measure on the carrier set $f(\Omega)$ whose σ-algebra is the one generated by mapping f over the original sigma algebra.
This is useful e.g. when f is injective, i.e. it is some kind of "tagging" function. For instance, suppose we have some algebraaic datatype of values with various constructors, including a constructor RealVal for real numbers. Then embed_measure allows us to lift a measure on real numbers to the appropriate subset of that algebraic datatype.
definition embed_measure :: 'a measure $\Rightarrow\left({ }^{\prime} a \Rightarrow{ }^{\prime} b\right) \Rightarrow{ }^{\prime} b$ measure where embed_measure $M f=$ measure_of $(f$ 'space $M)\left\{f^{\prime} A \mid A . A \in\right.$ sets $\left.M\right\}$
$\left(\lambda A\right.$. emeasure $M\left(f-{ }^{\prime} A \cap\right.$ space $\left.\left.M\right)\right)$
lemma space_embed_measure: space (embed_measure $M f$) $=f$ 'space M unfolding embed_measure_def by (subst space_measure_of) (auto dest: sets.sets_into_space)

```
lemma sets_embed_measure':
    assumes inj: inj_on f (space M)
    shows sets(embed_measure Mf)={f`A|A.A\in sets M }
    unfolding embed_measure_def
proof (intro sigma_algebra.sets_measure_of_eq sigma_algebra_iff2[THEN iffD2] conjI
allI ballI impI)
    fix }s\mathrm{ assume }s\in{f`A|A.A\in\mathrm{ sets }M
    then obtain }\mp@subsup{s}{}{\prime}\mathrm{ where }\mp@subsup{s}{}{\prime}\mathrm{ _props: }s=\mp@subsup{f}{}{\prime}\mp@subsup{s}{}{\prime}\mp@subsup{s}{}{\prime}\in\mathrm{ sets }M\mathrm{ by auto
    hence f'space M - s=f'(space M - s') using inj
        by (auto dest: inj_onD sets.sets_into_space)
    also have ...\in{f'A AA.A\in sets M} using s'_props by auto
    finally show f' space M -s\in{f'A |A.A\in sets M}.
next
    fix }A:: nat => _ assume range A\subseteq{f'A|A.A\in sets M
    then obtain }\mp@subsup{A}{}{\prime}\mathrm{ where }\mp@subsup{A}{}{\prime}:\i.Ai=f'A'i\\. A' i sets 
        by (auto simp: subset_eq choice_iff)
    then have }(\bigcupx.\mp@subsup{f}{}{\prime}\mp@subsup{A}{}{\prime}x)=\mp@subsup{f}{}{\prime}(\bigcupx.\mp@subsup{A}{}{\prime}x)\mathrm{ by blast
    with A' show }(\cupi.Ai)\in{f`A|A.A\in sets M
        by simp blast
qed (auto dest: sets.sets_into_space)
lemma the_inv_into_vimage:
    inj_on f X \LongrightarrowA\subseteqX\Longrightarrow the_inv_into }Xf\mp@subsup{|}{}{\prime}A\cap(\mp@subsup{f}{}{\prime}X)=f'
    by (auto simp: the_inv_into_f_f)
lemma sets_embed_eq_vimage_algebra:
    assumes inj_on f (space M)
    shows sets (embed_measure Mf) = sets (vimage_algebra (f`space M) (the_inv_into
(space M) f) M)
    by (auto simp: sets_embed_measure'[OF assms] Pi_iff the_inv_into_f_f assms sets_vimage_algebra2
Setcompr_eq_image
    dest: sets.sets_into_space
```

> intro!: image_cong the_inv_into_vimage[symmetric])
lemma sets_embed_measure:
assumes $i n j: i n j f$
shows sets (embed_measure $M f$) $=\{f$ ' $A \mid A . A \in$ sets $M\}$
using assms by (subst sets_embed_measure') (auto intro!: inj_onI dest: injD)
lemma in_sets_embed_measure: $A \in$ sets $M \Longrightarrow f^{\prime} A \in$ sets (embed_measure $M f$)
unfolding embed_measure_def
by (intro in_measure_of) (auto dest: sets.sets_into_space)
lemma measurable_embed_measure1:
assumes $g:(\lambda x . g(f x)) \in$ measurable $M N$
shows $g \in$ measurable (embed_measure $M f$) N
unfolding measurable_def
proof safe
fix A assume $A \in$ sets N
with g have $(\lambda x . g(f x))-{ }^{\prime} A \cap$ space $M \in$ sets M by (rule measurable_sets)
then have f ' $((\lambda x . g(f x))-‘ A \cap$ space $M) \in$ sets (embed_measure $M f)$
by (rule in_sets_embed_measure)
also have f ' $((\lambda x . g(f x))-‘ A \cap$ space $M)=g-‘ A \cap$ space (embed_measure $M f$)
by (auto simp: space_embed_measure)
finally show $g-{ }^{\prime} A \cap$ space (embed_measure $\left.M f\right) \in$ sets (embed_measure $M f$)
qed (insert measurable_space[OF assms], auto simp: space_embed_measure)
lemma measurable_embed_measure2':
assumes inj_on f (space M)
shows $f \in$ measurable M (embed_measure $M f$)
proof -
\{
fix A assume $A: A \in$ sets M
also from A have $A=A \cap$ space M by auto
also have $\ldots=f-‘ f$ ' $A \cap$ space M using A assms
by (auto dest: inj_onD sets.sets_into_space)
finally have $f-{ }^{\prime} f$ ' $A \cap$ space $M \in$ sets M.
\}
thus ?thesis using assms unfolding embed_measure_def
by (intro measurable_measure_of) (auto dest: sets.sets_into_space)
qed
lemma measurable_embed_measure2:
assumes [simp]: inj f shows $f \in$ measurable M (embed_measure $M f$)
by (auto simp: inj_vimage_image_eq embed_measure_def intro!: measurable_measure_of dest: sets.sets_into_space)
lemma embed_measure_eq_distr':

```
    assumes inj_on f (space \(M\) )
    shows embed_measure \(M f=\) distr \(M\) (embed_measure \(M f) f\)
proof-
    have distr \(M\) (embed_measure \(M f) f=\)
                measure_of \((f\) 'space \(M)\left\{f^{\prime} A \mid A . A \in\right.\) sets \(\left.M\right\}\)
                    ( \(\lambda\) A. emeasure \(M(f-‘ A \cap\) space \(M)\) ) unfolding distr_def
        by (simp add: space_embed_measure sets_embed_measure' \([\) OF assms \(]\) )
    also have ... = embed_measure \(M f\) unfolding embed_measure_def ..
    finally show ?thesis ..
qed
lemma embed_measure_eq_distr:
    \(\operatorname{inj} f \Longrightarrow\) embed_measure \(M f=\operatorname{distr} M\) (embed_measure \(M f) f\)
    by (rule embed_measure_eq_distr \({ }^{\prime}\) ) (auto intro!: inj_onI dest: injD)
lemma nn_integral_embed_measure':
    inj_on \(f(\) space \(M) \Longrightarrow g \in\) borel_measurable (embed_measure \(M f) \Longrightarrow\)
    nn_integral (embed_measure \(M f) g=n n \_i n t e g r a l ~ M(\lambda x . g(f x))\)
    apply (subst embed_measure_eq_distr', simp)
    apply (subst nn_integral_distr)
    apply (simp_all add: measurable_embed_measure2')
    done
lemma nn_integral_embed_measure:
    inj \(f \Longrightarrow g \in\) borel_measurable (embed_measure \(M f\) ) \(\Longrightarrow\)
    nn_integral (embed_measure \(M f\) ) \(g=n n \_i n t e g r a l ~ M(\lambda x . g(f x))\)
    by(erule nn_integral_embed_measure'[OF subset_inj_on]) simp
lemma emeasure_embed_measure':
    assumes inj_on \(f(\) space \(M) A \in\) sets (embed_measure \(M f\) )
    shows emeasure (embed_measure \(M f\) ) \(A=\) emeasure \(M\left(f-{ }^{\prime} A \cap\right.\) space \(\left.M\right)\)
    by (subst embed_measure_eq_distr' [OF assms(1)])
    (simp add: emeasure_distr[OF measurable_embed_measure2'[OF assms(1)] assms(2)])
lemma emeasure_embed_measure:
            assumes \(\operatorname{inj} f A \in\) sets (embed_measure \(M f\) )
            shows emeasure (embed_measure \(M f\) ) \(A=\) emeasure \(M\left(f-{ }^{`} A \cap\right.\) space \(\left.M\right)\)
    using assms by (intro emeasure_embed_measure') (auto intro!: inj_onI dest: injD)
lemma embed_measure_comp:
    assumes [simp]: inj finj \(g\)
    shows embed_measure (embed_measure \(M f) g=\) embed_measure \(M(g \circ f)\)
proof-
    have \([\) simp \(]: \operatorname{inj}(\lambda x . g(f x))\) by (subst o_def[symmetric]) (auto intro: inj_compose)
    note measurable_embed_measure2[measurable]
    have embed_measure (embed_measure \(M f\) ) \(g=\)
                distr \(M\) (embed_measure (embed_measure Mf) g) ( \(g \circ f\) )
        by (subst (1 2) embed_measure_eq_distr)
            (simp_all add: distr_distr sets_embed_measure cong: distr_cong)
```

```
also have \(\ldots=\) embed_measure \(M(g \circ f)\)
    by (subst (3) embed_measure_eq_distr, simp add: o_def, rule distr_cong)
        (auto simp: sets_embed_measure o_def image_image[symmetric]
                intro: inj_compose cong: distr_cong)
```

 finally show ?thesis.
 qed
lemma sigma_finite_embed_measure:
assumes sigma_finite_measure M and $i n j: i n j f$
shows sigma_finite_measure (embed_measure $M f$)
proof -
from $\operatorname{assms}(1)$ interpret sigma_finite_measure M.
from sigma_finite_countable obtain A where
A_props: countable $A \subset$ sets $M \bigcup A=$ space $M \bigwedge X . X \in A \Longrightarrow$ emeasure
M $X \neq \infty$ by blast
from A_props have countable (($) f^{\prime} A$) by auto
moreover
from inj and A_props have (`) \(f^{‘} A \subseteq\) sets (embed_measure \(M f\)) by (auto simp: sets_embed_measure) moreover from A_props and inj have \(\bigcup\left(\left({ }^{\prime}\right) f^{\prime} A\right)=\) space (embed_measure \(M f\)) by (auto simp: space_embed_measure intro!: imageI) moreover from A_props and \(\operatorname{inj}\) have \(\forall a \in\left({ }^{\prime}\right) f\) 'A. emeasure (embed_measure \(M f\)) \(a \neq\) \(\infty\) by (intro ballI, subst emeasure_embed_measure) (auto simp: inj_vimage_image_eq intro: in_sets_embed_measure) ultimately show ?thesis by - (standard, blast) qed lemma embed_measure_count_space': inj_on \(f A \Longrightarrow\) embed_measure (count_space \(A\)) \(f=\) count_space \(\left(f^{\star} A\right)\) apply (subst distr_bij_count_space[of f A f \(A\), symmetric]) apply (simp add: inj_on_def bij_betw_def) apply (subst embed_measure_eq_distr ') apply simp apply(auto 43 intro!: measure_eqI imageI simp add: sets_embed_measure' sub- set_image_iff) apply (subst (1 2) emeasure_distr) apply (auto simp: space_embed_measure sets_embed_measure') done lemma embed_measure_count_space: inj \(f \Longrightarrow\) embed_measure (count_space A) \(f=\) count_space \(\left(f^{\star} A\right)\) by (rule embed_measure_count_space')(erule subset_inj_on, simp) lemma sets_embed_measure_alt: inj \(f \Longrightarrow\) sets (embed_measure \(M f\)) \(=((`) f)\) 'sets M
by (auto simp: sets_embed_measure)

```
lemma emeasure_embed_measure_image':
    assumes inj_on \(f\) (space \(M\) ) \(X \in\) sets \(M\)
    shows emeasure (embed_measure \(M f)\left(f^{f} X\right)=\) emeasure \(M X\)
proof-
    from assms have emeasure (embed_measure \(M f)\left(f^{\prime} X\right)=\) emeasure \(M\left(f-{ }^{\prime} f\right.\)
- \(X \cap\) space \(M\) )
            by (subst emeasure_embed_measure') (auto simp: sets_embed_measure')
    also from assms have \(f-{ }^{\prime} f ' X \cap\) space \(M=X\) by (auto dest: inj_onD
sets.sets_into_space)
    finally show ?thesis .
qed
lemma emeasure_embed_measure_image:
    inj \(f \Longrightarrow X \in\) sets \(M \Longrightarrow\) emeasure (embed_measure \(M f\) ) \(\left(f^{\prime} X\right)=\) emeasure
M X
    by (simp_all add: emeasure_embed_measure in_sets_embed_measure inj_vimage_image_eq)
lemma embed_measure_eq_iff:
    assumes inj f
    shows embed_measure \(A f=\) embed_measure \(B f \longleftrightarrow A=B\) (is ? \(M=\) ? \(N \longleftrightarrow\)
-)
proof
    from assms have \(I: \operatorname{inj}\left(\left({ }^{\circ}\right) f\right)\) by (auto intro: injI dest: injD)
    assume asm: ? \(M=? N\)
    hence sets (embed_measure \(A f\) ) \(=\) sets (embed_measure \(B f\) ) by simp
    with assms have sets \(A=\) sets \(B\) by (simp only: I inj_image_eq_iff sets_embed_measure_alt)
    moreover \{
        fix \(X\) assume \(X \in\) sets \(A\)
        from asm have emeasure ? \(M\left(f^{\prime} X\right)=\) emeasure ? \(N\left(f^{f} X\right)\) by simp
        with \(\langle X \in\) sets \(A\rangle\) and \(\langle\) sets \(A=\) sets \(B\rangle\) and assms
            have emeasure \(A X=\) emeasure \(B X\) by (simp add: emeasure_embed_measure_image)
    \}
    ultimately show \(A=B\) by (rule measure_eqI)
qed \(\operatorname{simp}\)
lemma the_inv_into_in_Pi: inj_on \(f\left(\Longrightarrow\right.\) the_inv_into \(A f \in f^{\prime} A \rightarrow A\)
    by (auto simp: the_inv_into_f_f)
lemma map_prod_image: map_prod \(f g^{\prime}(A \times B)=\left(f^{\star} A\right) \times\left(g^{\prime} B\right)\)
    using map_prod_surj_on[OF refl refl].
lemma map_prod_vimage: map_prod \(f g-{ }^{\prime}(A \times B)=(f-‘ A) \times\left(g-{ }^{\prime} B\right)\)
    by auto
lemma embed_measure_prod:
assumes \(f\) : inj \(f\) and \(g\) : inj \(g\) and [simp]: sigma_finite_measure \(M\) sigma_finite_measure \(N\)
shows embed_measure \(M f \otimes_{M}\) embed_measure \(N g=\) embed_measure \(\left(M \otimes_{M}\right.\)
```

$N)(\lambda(x, y) .(f x, g y))$
(is ? $L={ }_{\text {_ }}$)
unfolding map_prod_def[symmetric]
proof (rule pair_measure_eqI)
have $f g[$ simp $]: \bigwedge A$. inj_on (map_prod $f g) A \bigwedge A$. inj_on $f A \bigwedge A$. inj_on $g A$ using $f g$ by (auto simp: inj_on_def)
note complete_lattice_class.Sup_insert[simp del] ccSup_insert[simp del] ccSUP_insert[simp del]
show sets: sets ? $L=$ sets $\left(\right.$ embed_measure $\left(M \bigotimes_{M} N\right)($ map_prod $\left.f g)\right)$
unfolding map_prod_def[symmetric]
apply (simp add: sets_pair_eq_sets_fst_snd sets_embed_eq_vimage_algebra cong: vimage_algebra_cong)
apply (subst sets_vimage_Sup_eq[where $\left.\left.Y=\operatorname{space}\left(M \bigotimes_{M} N\right)\right]\right)$
apply (simp_all add: space_pair_measure[symmetric])
apply (auto simp add: the_inv_into_f_f
simp del: map_prod_simp
del: prod_fun_imageE) []
apply auto []
apply (subst (1 234) vimage_algebra_vimage_algebra_eq)
apply (simp_all add: the_inv_into_in_Pi Pi_iff [of snd] Pi_iff [of fst] space_pair_measure)
apply (simp_all add: Pi_iff [of snd] Pi_iff [of fst] the_inv_into_in_Pi vimage_algebra_vimage_algebra_eq space_pair_measure[symmetric] map_prod_image[symmetric])
apply (intro arg_cong[where $f=$ sets $]$ arg_cong $[$ where $f=S u p]$ arg_cong2[where
$f=$ insert] vimage_algebra_cong)
apply (auto simp: map_prod_image the_inv_into_f_f
simp del: map_prod_simp del: prod_fun_imageE)
apply (simp_all add: the_inv_into_f_f space_pair_measure)
done
note measurable_embed_measure2 [measurable]
fix $A B$ assume $A B: A \in$ sets (embed_measure $M f$) $B \in$ sets (embed_measure $N g$)
moreover have $f-‘ A \times g-‘ B \cap$ space $\left(M \bigotimes_{M} N\right)=(f-‘ A \cap$ space $M)$
$\times(g-‘ B \cap$ space $N)$
by (auto simp: space_pair_measure)
ultimately show emeasure (embed_measure Mf) A* emeasure (embed_measure Ng) $B=$
emeasure (embed_measure $\left(M \bigotimes_{M} N\right)($ map_prod $\left.f g)\right)(A \times B)$
by (simp add: map_prod_vimage sets[symmetric] emeasure_embed_measure sigma_finite_measure.emeasure_pair_measure_Times)
qed (insert assms, simp_all add: sigma_finite_embed_measure)
lemma mono_embed_measure:
space $M=$ space $M^{\prime} \Longrightarrow$ sets $M \subseteq$ sets $M^{\prime} \Longrightarrow$ sets (embed_measure $M f$) \subseteq sets (embed_measure $M^{\prime} f$)
unfolding embed_measure_def
apply (subst (1 2) sets_measure_of)
apply (blast dest: sets.sets_into_space)

```
    apply (blast dest: sets.sets_into_space)
    apply simp
    apply (intro sigma_sets_mono')
    apply safe
    apply (simp add: subset_eq)
    apply metis
    done
lemma density_embed_measure:
    assumes \(\operatorname{inj}: \operatorname{inj} f\) and \(M g[m e a s u r a b l e]: g \in\) borel_measurable (embed_measure
\(M f\) )
    shows density (embed_measure \(M f) g=\) embed_measure \((\) density \(M(g \circ f)) f\)
(is ? \(M 1=? M 2\) )
proof (rule measure_eqI)
    fix \(X\) assume \(X: X \in\) sets ?M1
    from inj have \(M f[\) measurable \(]: f \in\) measurable \(M\) (embed_measure \(M f\) )
        by (rule measurable_embed_measure2)
    from \(M g\) and \(X\) have emeasure ?M1 \(X=\int+x . g x *\) indicator \(X x\) dem-
bed_measure \(M f\)
            by (subst emeasure_density) simp_all
    also from \(X\) have \(\ldots=\int+x . g(f x) *\) indicator \(X(f x) \partial M\)
        by (subst embed_measure_eq_distr[OF inj], subst nn_integral_distr) auto
    also have \(\ldots=\int{ }^{+} x . g(f x) *\) indicator \((f-‘ X \cap\) space \(M) x \partial M\)
            by (intro nn_integral_cong) (auto split: split_indicator)
    also from \(X\) have \(\ldots=\) emeasure \((\) density \(M(g \circ f))\left(f-{ }^{`} X \cap\right.\) space \(\left.M\right)\)
            by (subst emeasure_density) (simp_all add: measurable_comp \([\) OF Mf Mg] mea-
surable_sets[OF Mf])
    also from \(X\) and inj have \(\ldots=\) emeasure ?M2 \(X\)
        by (subst emeasure_embed_measure) (simp_all add: sets_embed_measure)
    finally show emeasure ?M1 \(X=\) emeasure ?M2 \(X\).
qed (simp_all add: sets_embed_measure inj)
```

lemma density_embed_measure':
assumes inj: injf and inv: $\bigwedge x . f^{\prime}(f x)=x$ and $M g[$ measurable $]: g \in$ borel_measurable
M
shows density (embed_measure $M f)\left(g \circ f^{\prime}\right)=$ embed_measure (density $\left.M g\right) f$
proof-
have density (embed_measure $M f)\left(g \circ f^{\prime}\right)=$ embed_measure (density $M(g \circ$
$\left.\left.f^{\prime} \circ f\right)\right) f$
by (rule density_embed_measure[OF inj])
(rule measurable_comp, rule measurable_embed_measure1, subst measur-
able_cong,
rule inv, rule measurable_ident_sets, simp, rule Mg)
also have density $M\left(g \circ f^{\prime} \circ f\right)=$ density $M g$
by (intro density_cong) (subst measurable_cong, simp add: o_def inv, simp_all
add: $M g$ inv)
finally show ?thesis .
qed

```
lemma inj_on_image_subset_iff:
    assumes inj_on \(f C A \subseteq C B \subseteq C\)
    shows \(f^{\prime} A \subseteq f^{\prime} B \longleftrightarrow A \subseteq B\)
proof (intro iffI subsetI)
    fix \(x\) assume \(A: f^{\prime} A \subseteq f^{\prime} B\) and \(B: x \in A\)
    from \(B\) have \(f x \in f^{\prime} A\) by blast
    with \(A\) have \(f x \in f^{\prime} B\) by blast
    then obtain \(y\) where \(f x=f y\) and \(y \in B\) by blast
    with assms and \(B\) have \(x=y\) by (auto dest: inj_onD)
    with \(\langle y \in B\rangle\) show \(x \in B\) by simp
qed auto
```

lemma AE_embed_measure':
assumes inj: inj_on f (space M)
shows $(A E x$ in embed_measure $M f . P x) \longleftrightarrow(A E x$ in $M . P(f x))$
proof
let $? M=$ embed_measure $M f$
assume $A E x$ in ? M. $P x$
then obtain A where $A_{\text {_props }: ~} A \in$ sets ? M emeasure ? $M A=0\{x \in$ space ? M.
$\neg P x\} \subseteq A$
by (force elim: AE_E)
then obtain A^{\prime} where A^{\prime} _props: $A=f^{\prime} A^{\prime} A^{\prime} \in$ sets M by (auto simp:
sets_embed_measure' inj)
moreover have $B:\{x \in$ space $? M . \neg P x\}=f$ ' $\{x \in$ space $M . \neg P(f x)\}$
by (auto simp: inj space_embed_measure)
from A_{-}props (3) have $\{x \in$ space $M . \neg P(f x)\} \subseteq A^{\prime}$
by (subst (asm) B, subst (asm) A^{\prime} _props, subst (asm) inj_on_image_subset_iff[OF
inj])
(insert A^{\prime} _props, auto dest: sets.sets_into_space)
moreover from $A_{\text {_props }} A^{\prime}$ _props have emeasure $M A^{\prime}=0$
by (simp add: emeasure_embed_measure_image' inj)
ultimately show $A E x$ in $M . P(f x)$ by (intro $\left.A E_{-} I\right)$
next
let $? M=$ embed_measure $M f$
assume $A E x$ in $M . P(f x)$
then obtain A where A _props: $A \in$ sets M emeasure $M A=0\{x \in$ space M.
$\neg P(f x)\} \subseteq A$
by (force elim: AE_E)
hence $f^{\star} A \in$ sets ? M emeasure ? $M\left(f^{\star} A\right)=0\{x \in$ space ? $M . \neg P x\} \subseteq f^{\star} A$
by (auto simp: space_embed_measure emeasure_embed_measure_image' sets_embed_measure'
inj)
thus $A E x$ in ? M. P x by (intro $\left.A E_{-} I\right)$
qed
lemma $A E _e m b e d _m e a s u r e:$
assumes $i n j$: inj f
shows $(A E x$ in embed_measure $M f . P x) \longleftrightarrow(A E x$ in $M . P(f x))$
using assms by (intro AE_embed_measure') (auto intro!: inj_onI dest: injD)
lemma nn_integral_monotone_convergence_SUP_countable:
fixes $f::{ }^{\prime} a \Rightarrow{ }^{\prime} b \Rightarrow$ ennreal
assumes nonempty: $Y \neq\{ \}$
and chain: Complete_Partial_Order.chain $(\leq)\left(f^{\prime} Y\right)$
and countable: countable B
shows $\left(\int^{+} x .(S U P \quad i \in Y . f i x)\right.$ dcount_space B) $=\left(S U P i \in Y .\left(\int^{+} x . f i x\right.\right.$ dcount_space B))
(is ?lhs = ? $r h s$)
proof -
let ?f $=(\lambda i x . f i($ from_nat_into $B x) *$ indicator $($ to_nat_on $B \times B) x)$
have ?lhs $=\int{ }^{+}{ }^{x}$. $(S U P i \in Y$.fi $($ from_nat_into $B($ to_nat_on $B x)))$ dcount_space B
by (rule nn_integral_cong)(simp add: countable)
also have $\ldots=\int+x$. (SUP $\left.i \in Y . f i\left(f r o m _n a t _i n t o ~ B x\right)\right) ~ \partial c o u n t _s p a c e$
(to_nat_on B'B)
by (simp add: embed_measure_count_space' $[$ symmetric] inj_on_to_nat_on countable nn_integral_embed_measure' measurable_embed_measure1)
also have $\ldots=\int{ }^{+} x$. (SUP $i \in Y$. ?f $\left.i x\right)$ dcount_space UNIV
by(simp add: nn_integral_count_space_indicator ennreal_indicator[symmetric] SUP_mult_right_ennreal nonempty)
also have $\ldots=\left(S U P i \in Y . \int^{+}\right.$x. ?f ix dcount_space UNIV $)$
proof $($ rule nn_integral_monotone_convergence_SUP_nat)
show Complete_Partial_Order.chain (\leq) (?f' Y)
by(rule chain_imageI[OF chain, unfolded image_image])(auto intro!: le_funI split: split_indicator dest: le_funD)
qed fact
also have $\ldots=\left(S U P i \in Y . \int{ }^{+}\right.$x. fi (from_nat_into $\left.B x\right)$ dcount_space (to_nat_on $B ' B)$)
by (simp add: nn_integral_count_space_indicator)
also have $\ldots=\left(S U P i \in Y . \int^{+} x . f i\left(f r o m _n a t _i n t o ~ B\left(t o _n a t _o n ~ B x\right)\right)\right.$
dcount_space B)
by (simp add: embed_measure_count_space' $[$ symmetric] inj_on_to_nat_on countable nn_integral_embed_measure' measurable_embed_measure1)
also have $\ldots=$? r hs
by $\left(\right.$ intro arg_cong2 $\left[\right.$ where $f=\lambda A f$. Sup ($\left.\left.f^{\prime} A\right)\right]$ ext nn_integral_cong_AE) $($ simp_all add: AE_count_space countable)
finally show ?thesis.
qed
end

6.31 Brouwer's Fixed Point Theorem

theory Brouwer_Fixpoint
imports Homeomorphism Derivative
begin

6.31.1 Retractions

lemma retract_of_contractible:
assumes contractible $T S$ retract_of T
shows contractible S
using assms
apply (clarsimp simp add: retract_of_def contractible_def retraction_def homotopic_with)
apply (rule_tac $x=r a$ in exI)
apply (rule_tac $x=r \circ h$ in exI)
apply (intro conjI continuous_intros continuous_on_compose)
apply (erule continuous_on_subset | force)+
done
lemma retract_of_path_connected:
\llbracket path_connected $T ; S$ retract_of $T \rrbracket \Longrightarrow$ path_connected S
by (metis path_connected_continuous_image retract_of_def retraction)
lemma retract_of_simply_connected:
\llbracket simply_connected $T ; S$ retract_of $T \rrbracket \Longrightarrow$ simply_connected S
apply (simp add: retract_of_def retraction_def, clarify)
apply (rule simply_connected_retraction_gen)
apply (force elim!: continuous_on_subset)+
done
lemma retract_of_homotopically_trivial:
assumes ts: T retract_of S
and hom: $\bigwedge f g . \llbracket$ continuous_on $U f ; f^{\prime} U \subseteq S$;
continuous_on $U g ; g^{\prime} U \subseteq S \rrbracket$ \Longrightarrow homotopic_with_canon (λx. True) $U S f g$
and continuous_on $U f f$ ' $U \subseteq T$
and continuous_on $U g g^{\prime} U \subseteq T$
shows homotopic_with_canon (λx. True) $U T f g$
proof -
obtain r where r ' $S \subseteq S$ continuous_on $S r \forall x \in S . r(r x)=r x T=r{ }^{\prime} S$
using $t s$ by (auto simp: retract_of_def retraction)
then obtain k where Retracts $S r T k$
unfolding Retracts_def
by (metis continuous_on_subset dual_order.trans image_iff image_mono)
then show ?thesis
apply (rule Retracts.homotopically_trivial_retraction_gen)
using assms
apply (force simp: hom) +
done
qed
lemma retract_of_homotopically_trivial_null:
assumes $t s$: T retract_of S
and hom: $\bigwedge f . \llbracket c o n t i n u o u s _o n ~ U f ; f^{\prime} U \subseteq S \rrbracket$
$\Longrightarrow \exists c$. homotopic_with_canon $(\lambda x$. True) $U S f(\lambda x . c)$
and continuous_on $U f f^{\prime} U \subseteq T$

```
    obtains \(c\) where homotopic_with_canon ( \(\lambda x\). True) \(U T f(\lambda x . c)\)
proof -
    obtain \(r\) where \(r\) ' \(S \subseteq S\) continuous_on \(S\) r \(\forall x \in S . r(r x)=r x T=r ' S\)
        using \(t s\) by (auto simp: retract_of_def retraction)
    then obtain \(k\) where Retracts \(S r T k\)
        unfolding Retracts_def
        by (metis continuous_on_subset dual_order.trans image_iff image_mono)
    then show ?thesis
        apply (rule Retracts.homotopically_trivial_retraction_null_gen)
        apply (rule TrueI refl assms that | assumption)+
        done
qed
lemma retraction_openin_vimage_iff:
    openin (top_of_set \(S\) ) \(\left(S \cap r-{ }^{`} U\right) \longleftrightarrow\) openin (top_of_set \(\left.T\right) U\)
    if retraction: retraction \(S T r\) and \(U \subseteq T\)
    using retraction apply (rule retractionE)
    apply (rule continuous_right_inverse_imp_quotient_map [where \(g=r]\) )
    using \(\langle U \subseteq T\rangle\) apply (auto elim: continuous_on_subset)
    done
lemma retract_of_locally_compact:
    fixes \(S\) :: ' \(a\) :: \{heine_borel,real_normed_vector \(\}\) set
    shows \(\llbracket\) locally compact \(S ; T\) retract_of \(S \rrbracket \Longrightarrow\) locally compact \(T\)
    by (metis locally_compact_closedin closedin_retract)
lemma homotopic_into_retract:
    \(\llbracket f^{\prime} S \subseteq T ; g^{\prime} S \subseteq T ; T\) retract_of \(U\); homotopic_with_canon ( \(\lambda x\). True) \(S U f\)
\(g \rrbracket\)
    \(\Longrightarrow\) homotopic_with_canon ( \(\lambda x\). True) \(S T f g\)
apply (subst (asm) homotopic_with_def)
apply (simp add: homotopic_with retract_of_def retraction_def, clarify)
apply (rule_tac \(x=r \circ h\) in exI)
apply (rule conjI continuous_intros | erule continuous_on_subset | force simp: im-
age_subset_iff)+
done
lemma retract_of_locally_connected:
    assumes locally connected \(T S\) retract_of \(T\)
    shows locally connected \(S\)
    using assms
    by (auto simp: idempotent_imp_retraction intro!: retraction_openin_vimage_iff elim!:
locally_connected_quotient_image retract_ofE)
lemma retract_of_locally_path_connected:
    assumes locally path_connected TS retract_of T
    shows locally path_connected \(S\)
    using assms
    by (auto simp: idempotent_imp_retraction intro!: retraction_openin_vimage_iff elim!:
```

locally_path_connected_quotient_image retract_ofE)
A few simple lemmas about deformation retracts

```
lemma deformation_retract_imp_homotopy_eqv:
    fixes S :: 'a::euclidean_space set
    assumes homotopic_with_canon ( }\lambdax\mathrm{ . True) S S id r and r: retraction S Tr
    shows S homotopy_eqv T
proof -
    have homotopic_with_canon ( }\lambdax\mathrm{ . True) S S (id or) id
        by (simp add:assms(1) homotopic_with_symD)
    moreover have homotopic_with_canon ( }\lambdax\mathrm{ . True) T T (r ○id) id
        using r unfolding retraction_def
        by (metis eq_id_iff homotopic_with_id2 topspace_euclidean_subtopology)
    ultimately
    show ?thesis
        unfolding homotopy_equivalent_space_def
        by (metis (no_types, lifting) continuous_map_subtopology_eu continuous_on_id'
id_def image_id r retraction_def)
qed
lemma deformation_retract:
    fixes S :: 'a::euclidean_space set
```



```
            T retract_of S ^(\existsf. homotopic_with_canon ( }\lambdax.True)SS\mathrm{ id f ^f 'S
\subseteq T )
        (is ?lhs = ?rhs)
proof
    assume ?lhs
    then show ?rhs
        by (auto simp: retract_of_def retraction_def)
next
    assume ?rhs
    then show?lhs
        apply (clarsimp simp add: retract_of_def retraction_def)
        apply (rule_tac x=r in exI, simp)
        apply (rule homotopic_with_trans, assumption)
        apply (rule_tac f=r\circf and g=r\circid in homotopic_with_eq)
            apply (rule_tac Y=S in homotopic_with_compose_continuous_left)
            apply (auto simp: homotopic_with_sym)
        done
qed
```

lemma deformation_retract_of_contractible_sing:
fixes S :: 'a::euclidean_space set
assumes contractible $S a \in S$
obtains r where homotopic_with_canon (λx. True) $S S$ id retraction $S\{a\} r$
proof -
have $\{a\}$ retract_of S
by (simp add: $\langle a \in S\rangle)$

```
    moreover have homotopic_with_canon \((\lambda x\). True) \(S S i d(\lambda x . a)\)
        using assms
        by (auto simp: contractible_def homotopic_into_contractible image_subset_iff)
    moreover have \((\lambda x, a)^{\prime} S \subseteq\{a\}\)
    by (simp add: image_subsetI)
    ultimately show ?thesis
    using that deformation_retract by metis
qed
```

lemma continuous＿on＿compact＿surface＿projection＿aux：
fixes S ：：＇a：：t2＿space set
assumes compact $S S \subseteq T$ image $q T \subseteq S$
and contp：continuous＿on $T p$
and $\bigwedge x . x \in S \Longrightarrow q x=x$
and $[$ simp $]: \bigwedge x . x \in T \Longrightarrow q(p x)=q x$
and $\bigwedge x . x \in T \Longrightarrow p(q x)=p x$
shows continuous＿on $T q$
proof－
have $*$ ：image $p T=$ image $p S$
using assms by auto（metis imageI subset＿iff）
have contp＇：continuous＿on S p
by（rule continuous＿on＿subset［OF contp $\langle S \subseteq T\rangle]$ ）
have continuous＿on $(p$＇$T) q$
by（simp add：＊assms（1）assms（2）assms（5）continuous＿on＿inv contp＇rev＿subsetD）
then have continuous＿on $T(q \circ p)$
by（rule continuous＿on＿compose［OF contp］）
then show ？thesis
by（rule continuous＿on＿eq $\left.\left[o f f_{-} q \circ p\right]\right)($ simp add：o＿def）
qed
lemma continuous＿on＿compact＿surface＿projection：
fixes S ：：＇$a:$ ：real＿normed＿vector set
assumes compact S
and $S: S \subseteq V-\{0\}$ and cone V
and iff：$\wedge x k . x \in V-\{0\} \Longrightarrow 0<k \wedge\left(k *_{R} x\right) \in S \longleftrightarrow d x=k$
shows continuous＿on $(V-\{0\})\left(\lambda x . d x *_{R} x\right)$
proof（rule continuous＿on＿compact＿surface＿projection＿aux［OF 〈compact $S\rangle S]$ ）
show $\left(\lambda x . d x *_{R} x\right)$＇$(V-\{0\}) \subseteq S$
using iff by auto
show continuous＿on $(V-\{0\})\left(\lambda x\right.$ ．inverse $($ norm $\left.x) *_{R} x\right)$
by（intro continuous＿intros）force
show $\bigwedge x . x \in S \Longrightarrow d x *_{R} x=x$
by（metis S zero＿less＿one local．iff scale R_{-}one subset＿eq）
show $d(x / R$ norm $x) *_{R}(x / R$ norm $x)=d x *_{R} x$ if $x \in V-\{0\}$ for x using iff［of inverse（norm $x) *_{R}$ x norm $x * d x$ ，symmetric］iff that 〈cone V 〉
by（simp add：field＿simps cone＿def zero＿less＿mult＿iff）
show $d x *_{R} x / R \operatorname{norm}\left(d x *_{R} x\right)=x / R$ norm x if $x \in V-\{0\}$ for x
proof－

```
    have 0<dx
    using local.iff that by blast
    then show ?thesis
    by simp
qed
qed
```


6.31.2 Kuhn Simplices

lemma bij_betw_singleton_eq:
assumes f : bij_betw $f A B$ and $g:$ bij_betw $g A B$ and $a: a \in A$
assumes $e q:(\bigwedge x . x \in A \Longrightarrow x \neq a \Longrightarrow f x=g x)$
shows $f a=g a$
proof -
have f ' $(A-\{a\})=g^{\prime}(A-\{a\})$
by (intro image_cong) (simp_all add: eq)
then have $B-\{f a\}=B-\{g a\}$
using $f g$ a by (auto simp: bij_betw_def inj_on_image_set_diff set_eq_iff)
moreover have $f a \in B g a \in B$
using $f g$ a by (auto simp: bij_betw_def)
ultimately show ?thesis
by auto
qed
lemma swap_image:
Fun.swap $i j f$ ' $A=\left(\right.$ if $i \in A$ then (if $j \in A$ then $f^{\prime} A$ else f ' $((A-\{i\}) \cup$ $\{j\})$)
else (if $j \in A$ then f ' $((A-\{j\}) \cup\{i\})$ else f ' $A))$
by (auto simp: swap_def cong: image_cong_simp)
lemmas swap_apply1 = swap_apply (1)
lemmas swap_apply2 $=$ swap_apply (2)
lemma pointwise_minimal_pointwise_maximal:
fixes $s::(n a t \Rightarrow$ nat $)$ set
assumes finite s
and $s \neq\{ \}$
and $\forall x \in s . \forall y \in s . x \leq y \vee y \leq x$
shows $\exists a \in s . \forall x \in s . a \leq x$
and $\exists a \in s . \forall x \in s . x \leq a$
using assms
proof (induct s rule: finite_ne_induct)
case (insert bs)
assume $*: \forall x \in$ insert b s. $\forall y \in$ insert b s. $x \leq y \vee y \leq x$
then obtain $u l$ where $l \in s \forall b \in s . l \leq b u \in s \forall b \in s . b \leq u$
using insert by auto
with $*$ show $\exists a \in$ insert b s. $\forall x \in$ insert b s. $a \leq x \exists a \in$ insert b s. $\forall x \in$ insert b
s. $x \leq a$
using $*[$ rule_format, of $b u] *[$ rule_format, of $b l]$ by (metis insert_iff or-

```
der.trans)+
qed auto
lemma kuhn_labelling_lemma:
    fixes P Q :: 'a::euclidean_space }=>\mathrm{ bool
    assumes }\forallx.Px\longrightarrowP(fx
        and }\forallx.Px\longrightarrow(\foralli\inBasis.Qi\longrightarrow0\leqx\bulleti\wedgex\bulleti\leq1
    shows \existsl. (\forallx.\foralli\inBasis.lxi\leq(1::nat))^
                (\forallx.\foralli\inBasis. P x ^Q i^(x\cdoti=0) \longrightarrow(lxi=0))^
                    (\forallx.\foralli\inBasis. P x ^Qi^(x\cdoti=1) \longrightarrow(lxi=1))^
                    (\forallx.\foralli\inBasis. P x ^ Q i^(lxi=0) \longrightarrowx\bulleti\leqfx\bulleti)^
                    (\forallx.\foralli\inBasis. P x ^Q i^(lxi=1) \longrightarrowfx\cdoti\leqx\cdoti)
proof -
    {fix x i
        let ?R= \y. (Px\wedgeQ i\wedgex\cdoti=0\longrightarrowy=(0::nat) )}
            (Px\wedgeQ i\wedgex\cdoti=1\longrightarrowy=1)^
            (Px\wedgeQ i\wedge y=0\longrightarrowx •i\leqfx}\cdoti)
            (Px\wedgeQi\wedge y=1\longrightarrowfx\cdoti\leqx\cdoti)
```

 \{ assume \(P x Q\) i \(i \in\) Basis with assms have \(0 \leq f x \cdot i \wedge f x \cdot i \leq 1\) by
 auto \}
then have $i \in$ Basis $\Longrightarrow ? R 0 \vee ? R 1$ by auto $\}$
then show ?thesis
unfolding all_conj_distrib[symmetric] Ball_def
by (subst choice_iff $[$ symmetric] $)+$ blast
qed

The key "counting" observation, somewhat abstracted

lemma kuhn_counting_lemma:
fixes bnd compo compo' face S F
defines $n F s==$ card $\left\{f \in F\right.$. face $f s \wedge$ compo $\left.^{\prime} f\right\}$
assumes [simp, intro]: finite F - faces and [simp, intro]: finite S - simplices
and $\bigwedge f . f \in F \Longrightarrow$ bnd $f \Longrightarrow$ card $\{s \in S$. face $f s\}=1$
and $\bigwedge f . f \in F \Longrightarrow \neg$ bnd $f \Longrightarrow$ card $\{s \in S$. face $f s\}=2$
and $\bigwedge s . s \in S \Longrightarrow$ compo $s \Longrightarrow n F s=1$
and $\bigwedge s . s \in S \Longrightarrow \neg$ compo $s \Longrightarrow n F s=0 \vee n F s=2$
and odd (card $\{f \in F$. compo $f \wedge$ bnd $f\})$
shows odd (card $\{s \in S$. compo $s\}$)
proof -
have $\left(\sum s \mid s \in S \wedge \neg\right.$ compo s. $\left.n F s\right)+\left(\sum s \mid s \in S \wedge\right.$ compo s. $\left.n F s\right)=$ ($\sum s \in S . n F s$)
by (subst sum.union_disjoint[symmetric]) (auto intro!: sum.cong)
also have $\ldots=\left(\sum s \in S\right.$. card $\{f \in\{f \in F$. compo' $f \wedge$ bnd $f\}$. face $\left.f s\}\right)+$ ($\sum s \in S$. card $\left\{f \in\left\{f \in F\right.\right.$. compo ${ }^{\prime} f \wedge \neg$ bnd $\left.f\right\}$. face $\left.f s\right\}$)
unfolding sum.distrib[symmetric]
by (subst card_Un_disjoint[symmetric])
(auto simp: $n F_{-}$def intro!: sum.cong arg_cong[where $f=$ card $]$)
also have $\ldots=1 *$ card $\{f \in F$. compo' $f \wedge b n d f\}+2 *$ card $\{f \in F$. compo' f $\wedge \neg b n d f\}$

```
    using \(\operatorname{assms}(4,5)\) by (fastforce intro!: arg_cong2[where \(f=(+)]\) sum_multicount)
    finally have odd \(\left(\left(\sum s \mid s \in S \wedge \neg\right.\right.\) compo \(\left.s . n F s\right)+\) card \(\{s \in S\). compo \(\left.s\}\right)\)
    using assms \((6,8)\) by simp
    moreover have \(\left(\sum s \mid s \in S \wedge \neg\right.\) compo \(\left.s . n F s\right)=\)
    \(\left(\sum s \mid s \in S \wedge \neg\right.\) compo \(\left.s \wedge n F s=0 . n F s\right)+\left(\sum s \mid s \in S \wedge \neg\right.\) compo \(s \wedge\)
\(n F s=2 . n F s)\)
            using assms(7) by (subst sum.union_disjoint[symmetric]) (fastforce intro!:
sum.cong) +
    ultimately show ?thesis
    by auto
qed
```

The odd/even result for faces of complete vertices, generalized
lemma kuhn_complete_lemma:
assumes [simp]: finite simplices
and face: $\bigwedge f s$. face $f s \longleftrightarrow(\exists a \in s . f=s-\{a\})$
and card_s $[$ simp $]: \bigwedge s . s \in$ simplices \Longrightarrow card $s=n+2$
and $r l_{-} b d: \bigwedge s . s \in$ simplices $\Longrightarrow r l ' s \subseteq\{. . S u c n\}$
and bnd: $\lfloor f s . s \in$ simplices \Longrightarrow face $f s \Longrightarrow$ bnd $f \Longrightarrow$ card $\{s \in$ simplices.
face $f s\}=1$
and nbnd: $\lfloor f s . s \in$ simplices \Longrightarrow face $f s \Longrightarrow \neg$ bnd $f \Longrightarrow$ card $\{s \in$ simplices.
face $f s\}=2$
and odd_card: odd (card $\{f .(\exists$ s simplices. face $f s) \wedge r l ' f=\{. . n\} \wedge$ bnd $f\})$
shows odd (card $\{s \in$ simplices. (rl's $=\{.$. Suc $n\})\}$)
proof (rule kuhn_counting_lemma)
have finite_s $[$ simp $]: \bigwedge s . s \in$ simplices \Longrightarrow finite s
by (metis add_is_0 zero_neq_numeral card.infinite assms(3))
let $? F=\{f . \exists s \in$ simplices. face $f s\}$
have $F_{-} e q: ? F=(\bigcup s \in$ simplices. $\bigcup a \in s .\{s-\{a\}\})$
by (auto simp: face)
show finite? F
using 〈finite simplices〉unfolding $F_{-} e q$ by auto
show card $\{s \in$ simplices. face $f s\}=1$ if $f \in ? F$ bnd f for f
using bnd that by auto
show card $\{s \in$ simplices. face $f s\}=2$ if $f \in$? $F \neg b n d f$ for f
using nbnd that by auto
show odd (card $\{f \in\{f . \exists s \in$ simplices. face $f s\} . r l ' f=\{. . n\} \wedge$ bnd $f\})$
using odd_card by simp
fix s assume $s[$ simp $]: s \in$ simplices
let $? S=\{f \in\{f . \exists s \in$ simplices. face $f s\}$. face $f s \wedge r l ‘ f=\{. . n\}\}$
have ? $S=(\lambda a . s-\{a\}) '\{a \in s . r l '(s-\{a\})=\{. . n\}\}$
using s by (fastforce simp: face)
then have card_S: card ? $S=$ card $\{a \in s . r l '(s-\{a\})=\{. . n\}\}$
by (auto intro!: card_image inj_onI)

```
\{ assume \(r l\) : \(r l\) ' \(s=\{. . S u c n\}\)
    then have inj_rl: inj_on rl s
    by (intro eq_card_imp_inj_on) auto
    moreover obtain \(a\) where \(r l a=S u c n a \in s\)
    by (metis atMost_iff image_iff le_Suc_eq rl)
    ultimately have \(n:\{. . n\}=r l '(s-\{a\})\)
        by (auto simp: inj_on_image_set_diff rl)
    have \(\{a \in s . r l '(s-\{a\})=\{. . n\}\}=\{a\}\)
        using inj_rl \(\langle a \in s\rangle\) by (auto simp: n inj_on_image_eq_iff[OF inj_rl])
    then show card ? \(S=1\)
        unfolding card_S by simp \(\}\)
```

 \{ assume \(r l: r l ' s \neq\{\)..Suc \(n\}\)
 show card \(? S=0 \vee\) card \(? S=2\)
 proof cases
 assume \(*:\{. . n\} \subseteq r l\) ' \(s\)
 with \(r l\) rl_bd[OF \(s]\) have \(r l_{-} s: r l ' s=\{. . n\}\)
 by (auto simp: atMost_Suc subset_insert_iff split: if_split_asm)
 then have \(\neg\) inj_on rls
 by (intro pigeonhole) simp
 then obtain \(a b\) where \(a b: a \in s b \in s\) rl \(a=r l b a \neq b\)
 by (auto simp: inj_on_def)
 then have \(e q: r l '(s-\{a\})=r l ' s\)
 by auto
 with \(a b\) have inj: inj_on rl \((s-\{a\})\)
 by (intro eq_card_imp_inj_on) (auto simp: rl_s card_Diff_singleton_if)
 \(\{\) fix \(x\) assume \(x \in s x \notin\{a, b\}\)
 then have \(r l ' s-\{r l x\}=r l '((s-\{a\})-\{x\})\)
 by (auto simp: eq inj_on_image_set_diff[\([O F\) inj])
 also have \(\ldots=r l\) ' \((s-\{x\})\)
 using \(a b\langle x \notin\{a, b\}\rangle\) by auto
 also assume \(\ldots=r l\) ' \(s\)
 finally have False
 using \(\langle x \in s\rangle\) by auto \}
 moreover
 \(\{\) fix \(x\) assume \(x \in\{a, b\}\) with \(a b\) have \(x \in s \wedge r l '(s-\{x\})=r l ' s\)
 by (simp add: set_eq_iff image_iff Bex_def) metis \}
 ultimately have \(\left\{a \in s . r l^{\prime}(s-\{a\})=\{. . n\}\right\}=\{a, b\}\)
 unfolding rl_s[symmetric] by fastforce
 with \(\langle a \neq b\rangle\) show card ? \(S=0 \vee \operatorname{card} ? S=2\)
 unfolding card_S by simp
 next
 assume \(\neg\{. . n\} \subseteq r l\) ' \(s\)
 then have \(\wedge x . r l '(s-\{x\}) \neq\{. . n\}\)
 by auto
 then show card \(? S=0 \vee\) card \(? S=2\)
    ```
    unfolding card_S by simp
    qed }
qed fact
locale kuhn_simplex =
    fixes p n and base upd and s :: (nat => nat) set
    assumes base: base }\in{..<n}->{..<p
    assumes base_out: \bigwedgei. n \leqi\Longrightarrow base i=p
    assumes upd: bij_betw upd {..<n} {..< n}
    assumes s_pre:s=(\lambdaij. if j fupd`{..< i} then Suc (base j) else base j)'{..
n}
begin
definition enum i j = (if j\inupd`{..<i} then Suc(base j) else base j)
lemma s_eq: s = enum' {.. n}
    unfolding s_pre enum_def[abs_def] ..
lemma upd_space: }i<n\Longrightarrow\mathrm{ upd i<n
    using upd by (auto dest!: bij_betwE)
lemma s_space: s\subseteq{..< n} }->{.. p
proof -
    { fix i assume i\leqn then have enum i\in{..<n} }->{...p
        proof (induct i)
            case 0 then show ?case
                using base by (auto simp: Pi_iff less_imp_le enum_def)
        next
            case (Suc i) with base show ?case
                by (auto simp: Pi_iff Suc_le_eq less_imp_le enum_def intro:upd_space)
        qed }
    then show ?thesis
        by (auto simp: s_eq)
qed
lemma inj_upd: inj_on upd {..< n}
    using upd by (simp add: bij_betw_def)
lemma inj_enum: inj_on enum {.. n}
proof -
    { fix x y :: nat assume }x\not=yx\leqny\leq
        with upd have upd' {..< x} F upd' {..<y}
            by (subst inj_on_image_eq_iff[where C={..< n}]) (auto simp: bij_betw_def)
        then have enum x f enum y
            by (auto simp: enum_def fun_eq_iff) }
    then show ?thesis
        by (auto simp: inj_on_def)
qed
```

```
lemma enum_0: enum \(0=\) base
    by (simp add: enum_def[abs_def])
lemma base_in_s: base \(\in s\)
    unfolding s_eq by (subst enum_O[symmetric]) auto
lemma enum_in: \(i \leq n \Longrightarrow\) enum \(i \in s\)
    unfolding s_eq by auto
lemma one_step:
    assumes \(a: a \in s j<n\)
    assumes \(*: \bigwedge a^{\prime} . a^{\prime} \in s \Longrightarrow a^{\prime} \neq a \Longrightarrow a^{\prime} j=p^{\prime}\)
    shows \(a j \neq p^{\prime}\)
proof
    assume \(a j=p^{\prime}\)
    with * \(a\) have \(\bigwedge a^{\prime} . a^{\prime} \in s \Longrightarrow a^{\prime} j=p^{\prime}\)
        by auto
    then have \(\bigwedge i . i \leq n \Longrightarrow\) enum \(i j=p^{\prime}\)
        unfolding s_eq by auto
    from this [of 0\(]\) this \([\) of \(n]\) have \(j \notin u p d '\{. .<n\}\)
        by (auto simp: enum_def fun_eq_iff split: if_split_asm)
    with upd \(\langle j<n\rangle\) show False
        by (auto simp: bij_betw_def)
qed
lemma upd_inj: \(i<n \Longrightarrow j<n \Longrightarrow u p d i=u p d j \longleftrightarrow i=j\)
    using upd by (auto simp: bij_betw_def inj_on_eq_iff)
lemma upd_surj: upd' \(\{. .<n\}=\{. .<n\}\)
    using upd by (auto simp: bij_betw_def)
lemma in_upd_image: \(A \subseteq\{. .<n\} \Longrightarrow i<n \Longrightarrow\) upd \(i \in u p d\) ' \(A \longleftrightarrow i \in A\)
    using inj_on_image_mem_iff \([\) of upd \(\{. .<n\}]\) upd
    by (auto simp: bij_betw_def)
lemma enum_inj: \(i \leq n \Longrightarrow j \leq n \Longrightarrow\) enum \(i=\) enum \(j \longleftrightarrow i=j\)
    using inj_enum by (auto simp: inj_on_eq_iff)
lemma in_enum_image: \(A \subseteq\{. . n\} \Longrightarrow i \leq n \Longrightarrow\) enum \(i \in\) enum ' \(A \longleftrightarrow i \in A\)
    using inj_on_image_mem_iff \([O F\) inj_enum \(]\) by auto
lemma enum_mono: \(i \leq n \Longrightarrow j \leq n \Longrightarrow\) enum \(i \leq\) enum \(j \longleftrightarrow i \leq j\)
    by (auto simp: enum_def le_fun_def in_upd_image Ball_def[symmetric])
lemma enum_strict_mono: \(i \leq n \Longrightarrow j \leq n \Longrightarrow\) enum \(i<\) enum \(j \longleftrightarrow i<j\)
    using enum_mono[of \(i j]\) enum_inj[of \(i j]\) by (auto simp: le_less)
lemma chain: \(a \in s \Longrightarrow b \in s \Longrightarrow a \leq b \vee b \leq a\)
    by (auto simp: s_eq enum_mono)
```

```
lemma less: \(a \in s \Longrightarrow b \in s \Longrightarrow a i<b i \Longrightarrow a<b\)
    using chain \(\left[\begin{array}{lll}\text { of } & a & b] \\ \text { by (auto simp: less_fun_def le_fun_def not_le[symmetric]) }\end{array}\right.\)
lemma enum_0_bot: \(a \in s \Longrightarrow a=\) enum \(0 \longleftrightarrow\left(\forall a^{\prime} \in s . a \leq a^{\prime}\right)\)
    unfolding \(s_{-} e q\) by (auto simp: enum_mono Ball_def)
lemma enum_n_top: \(a \in s \Longrightarrow a=\) enum \(n \longleftrightarrow\left(\forall a^{\prime} \in s . a^{\prime} \leq a\right)\)
    unfolding s_eq by (auto simp: enum_mono Ball_def)
lemma enum_Suc: \(i<n \Longrightarrow\) enum \((\) Suc \(i)=(\) enum \(i)(\) upd \(i:=\) Suc (enum \(i\)
(upd i)))
    by (auto simp: fun_eq_iff enum_def upd_inj)
lemma enum_eq_p: \(i \leq n \Longrightarrow n \leq j \Longrightarrow\) enum \(i j=p\)
    by (induct i) (auto simp: enum_Suc enum_0 base_out upd_space not_less[symmetric])
lemma out_eq_p: \(a \in s \Longrightarrow n \leq j \Longrightarrow a j=p\)
    unfolding \(s_{-} e q\) by (auto simp: enum_eq_p)
lemma \(s_{-} l e \_p: a \in s \Longrightarrow a j \leq p\)
    using out_eq_p [of a j] s_space by (cases \(j<n\) ) auto
lemma le_Suc_base: \(a \in s \Longrightarrow a j \leq\) Suc (base \(j\) )
    unfolding s_eq by (auto simp: enum_def)
lemma base_le: \(a \in s \Longrightarrow\) base \(j \leq a j\)
    unfolding \(s_{-} e q\) by (auto simp: enum_def)
lemma enum_le_p: \(i \leq n \Longrightarrow j<n \Longrightarrow\) enum \(i j \leq p\)
    using enum_in[of \(i]\) s_space by auto
lemma enum_less: \(a \in s \Longrightarrow i<n \Longrightarrow\) enum \(i<a \longleftrightarrow\) enum (Suc \(i\) ) \(\leq a\)
    unfolding \(s_{-} e q\) by (auto simp: enum_strict_mono enum_mono)
lemma ksimplex_0:
    \(n=0 \Longrightarrow s=\{(\lambda x . p)\}\)
    using s_eq enum_def base_out by auto
lemma replace_0:
    assumes \(j<n a \in s\) and \(p: \forall x \in s-\{a\} . x j=0\) and \(x \in s\)
    shows \(x \leq a\)
proof cases
    assume \(x \neq a\)
    have \(a j \neq 0\)
        using assms by (intro one_step [where \(a=a]\) ) auto
    with less[OF \(\langle x \in s\rangle\langle a \in s\rangle\), of \(j] p\left[r u l e_{-}\right.\)format, of \(\left.x\right]\langle x \in s\rangle\langle x \neq a\rangle\)
    show ?thesis
        by auto
```

```
qed \(\operatorname{simp}\)
lemma replace_1:
    assumes \(j<n a \in s\) and \(p: \forall x \in s-\{a\} . x j=p\) and \(x \in s\)
    shows \(a \leq x\)
proof cases
    assume \(x \neq a\)
    have \(a j \neq p\)
        using assms by (intro one_step \([\) where \(a=a]\) ) auto
    with enum_le_p \(\left[o f_{-} j\right]\langle j<n\rangle\langle a \in s\rangle\)
    have \(a j<p\)
        by (auto simp: less_le s_eq)
    with less[OF \(\langle a \in s\rangle\langle x \in s\rangle\), of \(j] p[\) rule_format, of \(x]\langle x \in s\rangle\langle x \neq a\rangle\)
    show ?thesis
        by auto
qed \(\operatorname{simp}\)
end
```

locale kuhn_simplex_pair $=s$: kuhn_simplex p n b_s u_s s + t: kuhn_simplex p n $b_{-} t u_{-} t t$
for $p n b_{-} s u_{-} s s b_{-} t u_{-} t t$
begin
lemma enum_eq:
assumes $l: i \leq l l \leq j$ and $j+d \leq n$
assumes eq: s.enum' $\{i . . j\}=$ t.enum ' $\{i+d . . j+d\}$
shows s.enum $l=t . e n u m(l+d)$
using l proof (induct l rule: dec_induct)
case base
then have s: s.enum $i \in$ t.enum' $\{i+d . . j+d\}$ and t : t.enum $(i+d) \in$
s.enum ' $\{i . . j\}$
using eq by auto
from $t\langle i \leq j\rangle\langle j+d \leq n\rangle$ have $s . e n u m ~ i \leq t . e n u m ~(i+d)$
by (auto simp: s.enum_mono)
moreover from $s\langle i \leq j\rangle\langle j+d \leq n\rangle$ have t.enum $(i+d) \leq$ s.enum i
by (auto simp: t.enum_mono)
ultimately show ?case
by auto
next
case (step l)
moreover from step.prems $\langle j+d \leq n\rangle$ have
s.enum $l<$ s.enum (Suc l)
t.enum $(l+d)<t . e n u m ~($ Suc $l+d)$
by (simp_all add: s.enum_strict_mono t.enum_strict_mono)
moreover have
s.enum $($ Suc $l) \in$ t.enum ' $\{i+d . . j+d\}$
t.enum $($ Suc $l+d) \in$ s.enum ' $\{i$.. $j\}$
using step $\langle j+d \leq n\rangle$ eq by (auto simp: s.enum_inj t.enum_inj)

```
    ultimately have s.enum \((\) Suc \(l)=\) t.enum \((S u c(l+d))\)
    using \(\langle j+d \leq n\rangle\)
    by (intro antisym s.enum_less[THEN iffD1] t.enum_less[THEN iffD1])
        (auto intro!: s.enum_in t.enum_in)
    then show? case by simp
qed
lemma ksimplex_eq_bot:
    assumes \(a: a \in s \bigwedge a^{\prime} . a^{\prime} \in s \Longrightarrow a \leq a^{\prime}\)
    assumes \(b: b \in t \bigwedge b^{\prime} . b^{\prime} \in t \Longrightarrow b \leq b^{\prime}\)
    assumes eq: \(s-\{a\}=t-\{b\}\)
    shows \(s=t\)
proof cases
    assume \(n=0\) with s.ksimplex_0 t.ksimplex_0 show ?thesis by simp
next
    assume \(n \neq 0\)
    have \(s . e n u m 0=(\operatorname{s.enum}(\) Suc 0\())\left(u \_s 0:=\operatorname{s.enum}\left(\right.\right.\) Suc 0) \(\left(u_{-}\right.\)s 0) -1\()\)
            t.enum \(0=(\) t.enum \((\) Suc 0\())\left(u_{-} t 0:=t . e n u m(S u c 0)\left(u \_t 0\right)-1\right)\)
        using \(\langle n \neq 0\rangle\) by (simp_all add: s.enum_Suc t.enum_Suc)
    moreover have e0: \(a=\) s.enum \(0 b=t\).enum 0
        using \(a b\) by (simp_all add: s.enum_0_bot t.enum_0_bot)
    moreover
    \{ fix \(j\) assume \(0<j j \leq n\)
        moreover have \(s-\{a\}=\) s.enum' \(\{\) Suc 0 .. \(n\} t-\{b\}=\) t.enum' \(\{\) Suc 0
    .. \(n\}\)
            unfolding s.s_eq t.s_eq e0 by (auto simp: s.enum_inj t.enum_inj)
        ultimately have s.enum \(j=\) t.enum \(j\)
            using enum_eq[of \(1 j n 0] e q\) by auto \(\}\)
    note enum_eq \(=\) this
    then have s.enum (Suc 0) \(=\) t.enum (Suc 0)
        using \(\langle n \neq 0\rangle\) by auto
    moreover
    \(\{\) fix \(j\) assume Suc \(j<n\)
        with enum_eq[of Suc j] enum_eq[of Suc (Suc j)]
        have u_s (Suc \(j)=u_{-} t(S u c j)\)
            using s.enum_Suc[of Suc j] t.enum_Suc[of Suc \(j\) ]
            by (auto simp: fun_eq_iff split: if_split_asm) \}
    then have \(\bigwedge j .0<j \Longrightarrow j<n \Longrightarrow u_{\_} s j=u_{-} t j\)
        by (auto simp: gr0_conv_Suc)
    with \(\langle n \neq 0\rangle\) have \(u_{-} t 0=u_{-} s 0\)
        by (intro bij_betw_singleton_eq[OF t.upd s.upd, of 0]) auto
    ultimately have \(a=b\)
        by simp
    with assms show \(s=t\)
        by auto
qed
lemma ksimplex_eq_top:
    assumes \(a: a \in s \bigwedge a^{\prime} . a^{\prime} \in s \Longrightarrow a^{\prime} \leq a\)
```

```
    assumes \(b: b \in t \bigwedge b^{\prime} . b^{\prime} \in t \Longrightarrow b^{\prime} \leq b\)
    assumes eq: \(s-\{a\}=t-\{b\}\)
    shows \(s=t\)
proof (cases \(n\) )
    assume \(n=0\) with s.ksimplex_0 t.ksimplex_0 show ?thesis by simp
next
    case (Suc \(n^{\prime}\) )
    have s.enum \(n=\left(\right.\) s.enum \(\left.n^{\prime}\right)\left(u \_s n^{\prime}:=\right.\) Suc (s.enum \(\left.\left.n^{\prime}\left(u \_s n^{\prime}\right)\right)\right)\)
        t.enum \(n=\left(t . e n u m n^{\prime}\right)\left(u_{-} t n^{\prime}:=\right.\) Suc (t.enum \(\left.\left.n^{\prime}\left(u_{-} t n^{\prime}\right)\right)\right)\)
        using Suc by (simp_all add: s.enum_Suc t.enum_Suc)
    moreover have en: \(a=s . e n u m n b=t\).enum \(n\)
        using \(a b\) by (simp_all add: s.enum_n_top t.enum_n_top)
    moreover
    \{ fix \(j\) assume \(j<n\)
        moreover have \(s-\{a\}=\) s.enum' \(\{0\).. \(n\) ' \(t-\{b\}=\) t.enum' \(\{0\).. \(n\) ' \(\}\)
        unfolding s.s_eq t.s_eq en by (auto simp: s.enum_inj t.enum_inj Suc)
        ultimately have s.enum \(j=t . e n u m j\)
        using enum_eq[of \(\left.0 j n^{\prime} 0\right]\) eq Suc by auto \}
    note enum_eq \(=\) this
    then have s.enum \(n^{\prime}=t\).enum \(n^{\prime}\)
        using Suc by auto
    moreover
    \(\left\{\right.\) fix \(j\) assume \(j<n^{\prime}\)
        with enum_eq[of j] enum_eq[of Suc \(j\) ]
        have \(u_{-} s j=u_{-} t j\)
        using s.enum_Suc[of j] t.enum_Suc \([o f j]\)
        by (auto simp: Suc fun_eq_iff split: if_split_asm) \}
    then have \(\bigwedge j . j<n^{\prime} \Longrightarrow u_{\_} s j=u_{-} t j\)
        by (auto simp: gr0_conv_Suc)
    then have \(u_{-} t n^{\prime}=u \_s n^{\prime}\)
        by (intro bij_betw_singleton_eq[OF t.upd s.upd, of \(n \boldsymbol{\eta}]\) ) (auto simp: Suc)
    ultimately have \(a=b\)
    by \(\operatorname{simp}\)
    with assms show \(s=t\)
        by auto
qed
end
inductive ksimplex for \(p n\) :: nat where
    ksimplex: kuhn_simplex \(p n\) base upd \(s \Longrightarrow\) ksimplex \(p n s\)
lemma finite_ksimplexes: finite \(\{s\). ksimplex \(p n s\}\)
proof (rule finite_subset)
    \{ fix \(a s\) assume ksimplex \(p\) n \(s a \in s\)
    then obtain \(b u\) where kuhn_simplex \(p n b u s\) by (auto elim: ksimplex.cases)
    then interpret kuhn_simplex \(p n b u s\).
    from s_space \(\langle a \in s\rangle\) out_eq_p \([O F\langle a \in s\rangle]\)
    have \(a \in(\lambda f x \text {. if } n \leq x \text { then } p \text { else } f x)^{\prime}\left(\{. .<n\} \rightarrow_{E}\{. . p\}\right)\)
```

```
    by (auto simp: image_iff subset_eq Pi_iff split: if_split_asm
        intro!: bexI[of _ restrict a {..<n}]) }
    then show {s.ksimplex p n s}\subseteqPow ((\lambdafx. if n \leq x then p else f x)' ({..<
n} }\mp@subsup{->}{E}{E}{..p})
    by auto
qed (simp add: finite_PiE)
lemma ksimplex_card:
    assumes ksimplex p n s shows card s=Suc n
using assms proof cases
    case (ksimplex u b)
    then interpret kuhn_simplex p nubs.
    show ?thesis
    by (simp add: card_image s_eq inj_enum)
qed
lemma simplex_top_face:
    assumes 0<p\forallx\in\mp@subsup{s}{}{\prime}.xn=p
    shows ksimplex pn s'\longleftrightarrow}\longleftrightarrow(\existss\mathrm{ a. ksimplex p (Suc n) s^a}\ins\wedge\mp@subsup{s}{}{\prime}=s-{a}
    using assms
proof safe
    fix s a assume ksimplex p (Suc n)s and a: a\ins and na: }\forallx\ins-{a}.x n
p
    then show ksimplex p n (s-{a})
    proof cases
    case (ksimplex base upd)
    then interpret kuhn_simplex p Suc n base upd s .
    have a n<p
        using one_step[of a n p] na <a\ins\rangle s_space by (auto simp: less_le)
    then have a= enum 0
        using <a \in s` na by (subst enum_0_bot) (auto simp: le_less intro!: less[of a _
n])
    then have s_eq: s - {a}=enum'Suc'{..n}
        using s_eq by (simp add: atMost_Suc_eq_insert_0 insert_ident in_enum_image
subset_eq)
    then have enum 1\ins-{a}
        by auto
    then have upd 0=n
        using \langlea n < p\rangle\langlea= enum 0\rangle na[rule_format, of enum 1]
        by (auto simp: fun_eq_iff enum_Suc split: if_split_asm)
    then have bij_betw upd (Suc ' {..<n}) {..<n}
        using upd
        by (subst notIn_Un_bij_betw3[where b=0])
            (auto simp: lessThan_Suc[symmetric] lessThan_Suc_eq_insert_0)
    then have bij_betw (upd\circSuc) {..<n} {..<n}
        by (rule bij_betw_trans[rotated]) (auto simp: bij_betw_def)
    have a n = p-1
```

using enum_Suc[of 0] na[rule_format, OF <enum $1 \in s-\{a\}\rangle]\langle a=$ enum 0 by (auto simp: $\langle u p d 0=n\rangle$)
show ?thesis
proof (rule ksimplex.intros, standard)
show bij_betw (updoSuc) $\{. .<n\}\{. .<n\}$ by fact
show $\operatorname{base}(n:=p) \in\{. .<n\} \rightarrow\{. .<p\} \bigwedge i . n \leq i \Longrightarrow(\operatorname{base}(n:=p)) i=p$
using base base_out by (auto simp: Pi_iff)
have $\wedge i$. Suc ' $\{. .<i\}=\{. .<$ Suc $i\}-\{0\}$
by (auto simp: image_iff Ball_def) arith
then have upd_Suc: $\bigwedge i . i \leq n \Longrightarrow(u p d \circ S u c) '\{. .<i\}=$ upd ' $\{. .<$ Suc $i\}$ $-\{n\}$
using 〈upd $0=n\rangle$ upd_inj by (auto simp add: image_iff less_Suc_eq_0_disj)
have $n_{-} i n_{-} u p d: \bigwedge i . n \in \operatorname{upd}$ ' $\{. .<S u c i\}$
using \langle upd $0=n\rangle$ by auto
define f^{\prime} where $f^{\prime} i j=$
$($ if $j \in(u p d \circ S u c) ‘\{. .<i\}$ then Suc $((\operatorname{base}(n:=p)) j)$ else $($ base $(n:=p)) j)$
for $i j$
$\{\boldsymbol{f i x} x i$
assume i [arith]: $i \leq n$
with upd_Suc have (upd \circ Suc) ' $\{. .<i\}=$ upd' $\{. .<$ Suc $i\}-\{n\}$.
with $\langle a n<p\rangle\langle a=$ enum 0$\rangle\langle u p d 0=n\rangle\langle a n=p-1\rangle$
have enum (Suc i) $x=f^{\prime}$ i x
by (auto simp add: f^{\prime} _def enum_def) \}
then show $s-\{a\}=f^{\prime}$ ' $\{. . n\}$
unfolding s_eq image_comp by (intro image_cong) auto qed
qed
next
assume ksimplex $p n s^{\prime}$ and $*: \forall x \in s^{\prime} . x n=p$
then show \exists s a. ksimplex $p($ Suc $n) s \wedge a \in s \wedge s^{\prime}=s-\{a\}$
proof cases
case (ksimplex base upd)
then interpret kuhn_simplex p n base upd s^{\prime}.
define b where $b=b a s e(n:=p-1)$
define u where $u i=($ case i of $0 \Rightarrow n \mid$ Suc $i \Rightarrow$ upd i) for i
have ksimplex $p(S u c n)\left(s^{\prime} \cup\{b\}\right)$
proof (rule ksimplex.intros, standard)
show $b \in\{. .<$ Suc $n\} \rightarrow\{. .<p\}$
using base $\langle 0<p\rangle$ unfolding lessThan_Suc b_def by (auto simp: PiE_iff)
show $\bigwedge i$. Suc $n \leq i \Longrightarrow b i=p$
using base_out by (auto simp: b_def)
have bij_betw $u(S u c$ ' $\{. .<n\} \cup\{0\})(\{. .<n\} \cup\{u 0\})$
using upd
by (intro notIn_Un_bij_betw) (auto simp: u_def bij_betw_def image_comp

```
comp_def inj_on_def)
    then show bij_betw u {..<Suc n} {..<Suc n}
        by (simp add: u_def lessThan_Suc[symmetric] lessThan_Suc_eq_insert_0)
    define f}\mp@subsup{f}{}{\prime}\mathrm{ where }\mp@subsup{f}{}{\prime}ij=(\mathrm{ if }j\inu{{..<i} then Suc (b j) else b j) for i j
    have u_eq: \bigwedgei. i\leqn\Longrightarrow u'{..< Suc i}=upd'{..<i}\cup{n}
        by (auto simp: u_def image_iff upd_inj Ball_def split: nat.split) arith
    { fix }x\mathrm{ have }x\leqn\Longrightarrown\not\inupd'{..<x
        using upd_space by (simp add: image_iff neq_iff ) }
    note n_not_upd = this
    have *: f' ' {.. Suc n} = f'`(Suc '{.. n}\cup{0})
        unfolding atMost_Suc_eq_insert_0 by simp
    also have ... = (f'\circSuc)'{..n}\cup{b}
        by (auto simp: f'_def)
    also have (f'\circSuc)'{.. n}= s'
        using <0 < p> base_out[of n]
        unfolding s_eq enum_def[abs_def] f'_def[abs_def] upd_space
        by (intro image_cong) (simp_all add: u_eq b_def fun_eq_iff n_not_upd)
    finally show }\mp@subsup{s}{}{\prime}\cup{b}=\mp@subsup{f}{}{\prime}'{..Suc n} ..
    qed
    moreover have b\not\in s'
        using * <0 < p\rangle by (auto simp: b_def)
    ultimately show ?thesis by auto
    qed
qed
lemma ksimplex_replace_0:
    assumes s: ksimplex p ns and a: a\ins
    assumes j:j<n and p:}\forallx\ins-{a}.xj=
    shows card {s'. ksimplex pn s'^(\existsb\in\mp@subsup{s}{}{\prime}.\mp@subsup{s}{}{\prime}-{b}=s-{a})}=1
    using s
proof cases
    case (ksimplex b_s u_s)
    { fix t b assume ksimplex p n t
    then obtain b_t u_t where kuhn_simplex p n b_t u_t t
        by (auto elim: ksimplex.cases)
    interpret kuhn_simplex_pair p n b_s u_s s b_t u_t t
        by intro_locales fact+
    assume b:b\intt-{b}=s-{a}
    with a j p s.replace_O[of _ a] t.replace_O[of _ b] have s=t
        by (intro ksimplex_eq_top[of a b]) auto }
    then have {s'.ksimplex p n s'^}\wedge(\existsb\in\mp@subsup{s}{}{\prime}.\mp@subsup{s}{}{\prime}-{b}=s-{a})}={s
    using }s<a\ins\rangle\mathrm{ by auto
    then show ?thesis
```

```
    by simp
qed
lemma ksimplex_replace_1:
    assumes s: ksimplex p n s and a: a \ins
    assumes j: j<n and p:\forallx\ins-{a}. xj=p
    shows card {s'. ksimplex p n s}\mp@subsup{s}{}{\prime}\wedge(\existsb\in\mp@subsup{s}{}{\prime}.\mp@subsup{s}{}{\prime}-{b}=s-{a})}=
    using }
proof cases
    case (ksimplex b_s u_s)
```

 \(\{\) fix \(t b\) assume ksimplex \(p n t\)
 then obtain \(b_{-} t u_{-} t\) where \(k u h n_{-} s i m p l e x p n \quad b_{-} t u_{-} t t\)
 by (auto elim: ksimplex.cases)
 interpret kuhn_simplex_pair p \(n b_{-} s u_{-} s s b_{-} t u_{-} t t\)
 by intro_locales fact+
 assume \(b: b \in t t-\{b\}=s-\{a\}\)
 with ajp s.replace_1[of _ a] t.replace_1 \(\left[o f f_{-} b\right]\) have \(s=t\)
 by (intro ksimplex_eq_bot[of a b]) auto \}
 then have \(\left\{s^{\prime}\right.\). ksimplex pn \(\left.s^{\prime} \wedge\left(\exists b \in s^{\prime} . s^{\prime}-\{b\}=s-\{a\}\right)\right\}=\{s\}\)
 using \(s\langle a \in s\rangle\) by auto
 then show? ?hesis
 by \(\operatorname{simp}\)
 qed
lemma ksimplex_replace_2:
assumes s : ksimplex $p n s$ and $a \in s$ and $n \neq 0$
and $l b: \forall j<n . \exists x \in s-\{a\} . x j \neq 0$
and $u b: \forall j<n . \exists x \in s-\{a\} . x j \neq p$
shows card $\left\{s^{\prime}\right.$. ksimplex p $\left.n s^{\prime} \wedge\left(\exists b \in s^{\prime} . s^{\prime}-\{b\}=s-\{a\}\right)\right\}=2$
using s
proof cases
case (ksimplex base upd)
then interpret kuhn_simplex p base upd s.
from $\langle a \in s\rangle$ obtain i where $i \leq n a=$ enum i
unfolding $s_{-} e q$ by auto
from $\langle i \leq n\rangle$ have $i=0 \vee i=n \vee(0<i \wedge i<n)$
by linarith
then have $\exists!s^{\prime} . s^{\prime} \neq s \wedge$ ksimplex p $n s^{\prime} \wedge\left(\exists b \in s^{\prime} . s-\{a\}=s^{\prime}-\{b\}\right)$
proof (elim disjE conjE)
assume $i=0$
define rot where [abs_def]: rot $i=($ if $i+1=n$ then 0 else $i+1)$ for i
let ?upd $=$ upd \circ rot
have rot: bij_betw rot $\{. .<n\}\{. .<n\}$
by (auto simp: bij_betw_def inj_on_def image_iff Ball_def rot_def)

```
    arith+
    from rot upd have bij_betw? upd \(\{. .<n\}\{. .<n\}\)
    by (rule bij_betw_trans)
    define \(f^{\prime}\) where [abs_def]: \(f^{\prime} i j=\)
    (if \(j \in\) ? upd \({ }^{〔}\{. .<i\}\) then Suc (enum (Suc 0) \(j\) ) else enum (Suc 0) \(j\) ) for \(i j\)
    interpret b: kuhn_simplex \(p\) n enum (Suc 0) upd \(\circ\) rot \(f^{\prime}\) ' \(\{. . n\}\)
    proof
    from \(\langle a=\) enum \(i\rangle u b\langle n \neq 0\rangle\langle i=0\rangle\)
    obtain \(i^{\prime}\) where \(i^{\prime} \leq n\) enum \(i^{\prime} \neq\) enum 0 enum \(i^{\prime}(\) upd 0\() \neq p\)
        unfolding \(s_{-} e q\) by (auto intro: upd_space simp: enum_inj)
    then have enum \(1 \leq\) enum \(i^{\prime}\) enum \(i^{\prime}(\) upd 0\()<p\)
    using enum_le_p \(\left[\right.\) of \(i^{\prime}\) upd 0] by (auto simp: enum_inj enum_mono upd_space)
    then have enum \(1(\) upd 0\()<p\)
        by (auto simp: le_fun_def intro: le_less_trans)
    then show enum \((\) Suc 0\() \in\{. .<n\} \rightarrow\{. .<p\}\)
    using base \(\langle n \neq 0\rangle\) by (auto simp: enum_0 enum_Suc PiE_iff extensional_def
upd_space)
```

 \{ fix \(i\) assume \(n \leq i\) then show enum (Suc 0) \(i=p\)
 using \(\langle n \neq 0\rangle\) by (auto simp: enum_eq_p) \}
 show bij_betw? ?upd \(\{. .<n\}\{. .<n\}\) by fact
 qed (simp add: $f^{\prime}{ }_{-} d e f$)
have $k s_{-} f^{\prime}:$ ksimplex $p n\left(f^{\prime}\right.$ ' $\left.\{. . n\}\right)$
by rule unfold_locales
have b_{-}enum: b.enum $=f^{\prime}$ unfolding f^{\prime} _def $b . e n u m _d e f\left[a b s _d e f\right]$..
with b.inj_enum have inj_f f^{\prime} inj_on $f^{\prime}\{. . n\}$ by simp
have f^{\prime} _eq_enum: $f^{\prime} j=$ enum (Suc j) if $j<n$ for j
proof -
from that have rot ' $\{. .<j\}=\{0<. .<$ Suc $j\}$
by (auto simp: rot_def image_Suc_lessThan cong: image_cong_simp)
with that $\langle n \neq 0\rangle$ show ?thesis
by (simp only: f^{\prime} _def enum_def fun_eq_iff image_comp [symmetric])
(auto simp add: upd_inj)
qed
then have enum'Suc' $\{. .<n\}=f^{\prime}$ ' $\{. .<n\}$
by (force simp: enum_inj)
also have Suc' $\{. .<n\}=\{. . n\}-\{0\}$
by (auto simp: image_iff Ball_def) arith
also have $\{. .<n\}=\{. . n\}-\{n\}$
by auto
finally have $e q: s-\{a\}=f^{\prime} \cdot\{. . n\}-\left\{f^{\prime} n\right\}$
unfolding $s_{-} e q\langle a=$ enum $i\rangle\langle i=0\rangle$
by (simp add: inj_on_image_set_diff[OF inj_enum] inj_on_image_set_diff[OF
inj_f 〕]

```
    have enum \(0<f^{\prime} 0\)
    using \(\langle n \neq 0\rangle\) by (simp add: enum_strict_mono \(f^{\prime}\) _eq_enum)
    also have \(\ldots<f^{\prime} n\)
    using \(\langle n \neq 0\) 〉 b.enum_strict_mono[of \(0 n]\) unfolding b_enum by simp
    finally have \(a \neq f^{\prime} n\)
    using \(\langle a=\) enum \(i\rangle\langle i=0\rangle\) by auto
    \(\{\) fix \(t c\) assume ksimplex p \(n t c \in t\) and eq_sma: \(s-\{a\}=t-\{c\}\)
    obtain \(b u\) where kuhn_simplex \(p n b u t\)
        using 〈ksimplex \(p n t\rangle\) by (auto elim: ksimplex.cases)
    then interpret \(t\) : kuhn_simplex p \(n b u t\).
    \{ fix \(x\) assume \(x \in s x \neq a\)
        then have \(x(\) upd 0\()=\) enum (Suc 0) (upd 0)
            by (auto simp: \(\langle a=\) enum \(i\rangle\langle i=0\rangle\) s_eq enum_def enum_inj) \}
    then have eq-upd0: \(\forall x \in t-\{c\} . x(u p d 0)=\operatorname{enum}(\) Suc 0) \((\) upd 0)
        unfolding eq_sma [symmetric \(]\) by auto
    then have \(c\) (upd 0) \(\neq\) enum (Suc 0) (upd 0)
        using \(\langle n \neq 0\rangle\) by (intro t.one_step \([O F\langle c \in t\rangle]\) ) (auto simp: upd_space)
    then have \(c(\) upd 0\()<\operatorname{enum}(\) Suc 0\()(\) upd 0\() \vee c(u p d ~ 0)>\operatorname{enum}(\) Suc 0\()\)
(upd 0)
        by auto
    then have \(t=s \vee t=f^{\prime}\) ' \(\{. . n\}\)
    proof (elim disjE conjE)
        assume *: c (upd 0) < enum (Suc 0) (upd 0)
        interpret st: kuhn_simplex_pair p \(n\) base upd s b ut ..
        \{ fix \(x\) assume \(x \in t\) with \(*\langle c \in t\rangle\) eq_upd \(0[\) rule_format, of \(x]\) have \(c \leq x\)
            by (auto simp: le_less intro!: t.less[of _ upd 0]) \}
        note top \(=\) this
        have \(s=t\)
            using \(\langle a=\) enum \(i\rangle\langle i=0\rangle\langle c \in t\rangle\)
```



```
                (auto simp: s_eq enum_mono t.s_eq t.enum_mono top)
        then show? ?hesis by simp
    next
        assume *: c (upd 0) > enum (Suc 0) (upd 0)
        interpret st: kuhn_simplex_pair p n enum (Suc 0) upd ○ rot f' ' \(\{. . n\}\) b u
\(t\)..
    have eq: \(f^{\prime}\) ' \(\{. . n\}-\left\{f^{\prime} n\right\}=t-\{c\}\)
            using eq_sma eq by simp
    \(\left\{\right.\) fix \(x\) assume \(x \in t\) with \(*\langle c \in t\rangle\) eq_upd \(0\left[r u l e \_f o r m a t\right.\), of \(\left.x\right]\) have \(x \leq c\)
                by (auto simp: le_less intro!: t.less[of _ _ upd 0]) \}
    note top \(=\) this
    have \(f^{\prime}\) ' \(\{. . n\}=t\)
        using \(\langle a=\) enum \(i\rangle\langle i=0\rangle\langle c \in t\rangle\)
        by (intro st.ksimplex_eq_top[OF _ _ _ eq])
            (auto simp: b.s_eq b.enum_mono t.s_eq t.enum_mono b_enum[symmetric]
top)
```

then show? ?thesis by simp
qed $\}$
with $k s_{-} f^{\prime} e q\left\langle a \neq f^{\prime} n\right\rangle\langle n \neq 0\rangle$ show ?thesis
apply (intro ex1I[of f^{\prime} ' $\left.\{. . n\}\right]$)
apply auto []
apply metis
done
next
assume $i=n$
from $\langle n \neq 0\rangle$ obtain n^{\prime} where $n^{\prime}: n=$ Suc n^{\prime}
by (cases n) auto
define rot where rot $i=\left(\right.$ case i of $\left.0 \Rightarrow n^{\prime} \mid S u c i \Rightarrow i\right)$ for i
let ?upd $=$ upd \circ rot
have rot: bij_betw rot $\{. .<n\}\{. .<n\}$
by (auto simp: bij_betw_def inj_on_def image_iff Bex_def rot_def n' split: nat.splits)
arith
from rot upd have bij_betw? upd $\{. .<n\}\{. .<n\}$
by (rule bij_betw_trans)
define b where $b=$ base (upd $n^{\prime}:=$ base (upd $\left.n^{\prime}\right)-1$)
define f^{\prime} where [abs_def]: $f^{\prime} i j=($ if $j \in$? upd $‘\{. .<i\}$ then Suc ($b j$) else b
j) for $i j$
interpret b: kuhn_simplex p n b upd \circ rot f^{\prime} ' $\{. . n\}$
proof
\{ fix i assume $n \leq i$ then show $b i=p$
using base_out[of i] upd_space[of $n\rceil$ by (auto simp: b_def n^{\prime}) \}
show $b \in\{. .<n\} \rightarrow\{. .<p\}$
using base $\langle n \neq 0$ 〉 upd_space[of n]
by (auto simp: b_def PiE_def Pi_iff Ball_def upd_space extensional_def n')
show bij_betw ?upd $\{. .<n\}\{. .<n\}$ by fact
qed (simp add: f^{\prime} _def)
have f^{\prime} : b.enum $=f^{\prime}$ unfolding f^{\prime} _def b.enum_def[abs_def] ..
have $k s_{-} f^{\prime}$: ksimplex p (b.enum ' $\{. . n\}$)
unfolding f^{\prime} by rule unfold_locales
have $0<n$
using $\langle n \neq 0$ 〉 by auto
$\{$ from $\langle a=$ enum $i\rangle\langle n \neq 0\rangle\langle i=n\rangle l b$ upd_space[of n]
obtain i^{\prime} where $i^{\prime} \leq n$ enum $i^{\prime} \neq$ enum $n 0<$ enum i^{\prime} (upd n^{\prime})
unfolding $s_{-} e q$ by (auto simp: enum_inj n^{\prime})
moreover have enum $i^{\prime}\left(\right.$ upd $\left.n^{\prime}\right)=$ base (upd $\left.n^{\prime}\right)$
unfolding enum_def using $\left\langle i^{\prime} \leq n\right\rangle\left\langle e n u m i^{\prime} \neq\right.$ enum $\left.n\right\rangle$ by (auto simp: n^{\prime} upd_inj enum_inj)
ultimately have $0<b$ ase (upd n^{\prime})

by auto \}

then have benum1：b．enum（Suc 0）$=$ base
unfolding b．enum＿Suc $[O F\langle 0<n\rangle]$ b．enum＿0 by（auto simp：b＿def rot＿def）
have $[$ simp $]: \bigwedge j$ ．Suc $j<n \Longrightarrow \operatorname{rot}{ }^{‘}\{. .<$ Suc $j\}=\left\{n^{\prime}\right\} \cup\{. .<j\}$
by（auto simp：rot＿def image＿iff Ball＿def split：nat．splits）
have rot＿simps：$\bigwedge j$ ．rot $(S u c j)=j$ rot $0=n^{\prime}$
by（simp＿all add：rot＿def）
\｛ fix j assume j ：Suc $j \leq n$ then have b．enum $(S u c j)=$ enum j by（induct j）（auto simp：benum1 enum＿0 b．enum＿Suc enum＿Suc rot＿simps）
note b_{-}enum＿eq＿enum $=$this
then have enum＇$\{. .<n\}=$ b．enum＇Suc＇$\{. .<n\}$
by（auto simp：image＿comp intro！：image＿cong）
also have Suc＇$\{. .<n\}=\{. . n\}-\{0\}$
by（auto simp：image＿iff Ball＿def）arith
also have $\{. .<n\}=\{. . n\}-\{n\}$
by auto
finally have eq：$s-\{a\}=$ b．enum＇$\{. . n\}-\{b$ ．enum 0$\}$
unfolding $s_{-} e q\langle a=$ enum $i\rangle\langle i=n\rangle$
using inj＿on＿image＿set＿diff［OF inj＿enum Diff＿subset，of $\{n\}]$ inj＿on＿image＿set＿diff［OF b．inj＿enum Diff＿subset，of $\{0\}]$
by（simp add：comp＿def）
have b．enum $0 \leq b . e n u m n$
by（simp add：b．enum＿mono）
also have b．enum $n<$ enum n
using $\langle n \neq 0\rangle$ by（simp add：enum＿strict＿mono b＿enum＿eq＿enum n^{\prime} ）
finally have $a \neq b$ ．enum 0
using $\langle a=$ enum $i\rangle\langle i=n\rangle$ by auto
\｛ fix $t c$ assume ksimplex $p n t c \in t$ and eq＿sma：$s-\{a\}=t-\{c\}$
obtain $b^{\prime} u$ where kuhn＿simplex $p n b^{\prime} u t$
using 〈ksimplex p n t 〉 by（auto elim：ksimplex．cases）
then interpret t ：kuhn＿simplex $p n b^{\prime} u t$ ．
\｛ fix x assume $x \in s x \neq a$ then have $x\left(\right.$ upd $\left.n^{\prime}\right)=$ enum $n^{\prime}\left(\right.$ upd $\left.n^{\prime}\right)$
by（auto simp：$\langle a=$ enum $i\rangle n^{\prime}\langle i=n\rangle$ s＿eq enum＿def enum＿inj in＿upd＿image）\}
then have eq＿upd0：$\forall x \in t-\{c\} . x\left(\right.$ upd $\left.n^{\prime}\right)=$ enum $n^{\prime}\left(\right.$ upd $\left.n^{\prime}\right)$
unfolding eq＿sma［symmetric］by auto
then have $c\left(\right.$ upd $\left.n^{\prime}\right) \neq$ enum $n^{\prime}\left(\right.$ upd $\left.n^{\prime}\right)$
using $\langle n \neq 0\rangle$ by（intro t ．one＿step $[O F\langle c \in t\rangle]$ ）（auto simp：n^{\prime} upd＿space［unfolded n 〕）
then have $c\left(\right.$ upd $\left.n^{\prime}\right)<$ enum $n^{\prime}\left(\right.$ upd $\left.n^{\prime}\right) \vee c\left(\right.$ upd $\left.n^{\prime}\right)>$ enum $n^{\prime}\left(\right.$ upd $\left.n^{\prime}\right)$
by auto
then have $t=s \vee t=$ b．enum＇$\{. . n\}$

```
    proof (elim disjE conjE)
    assume \(*: c\left(\right.\) upd \(\left.n^{\prime}\right)>\) enum \(n^{\prime}\left(\right.\) upd \(\left.n^{\prime}\right)\)
    interpret st: kuhn_simplex_pair p \(n\) base upd s \(b^{\prime} u t\)..
    \{ fix \(x\) assume \(x \in t\) with \(*\langle c \in t\rangle\) eq_upd \(0\left[r u l e_{-}\right.\)format, of \(\left.x\right]\) have \(x \leq c\)
            by (auto simp: le_less intro!: t.less[of _ upd \(n\) ]) \}
    note top \(=\) this
    have \(s=t\)
        using \(\langle a=\) enum \(i\rangle\langle i=n\rangle\langle c \in t\rangle\)
        by (intro st.ksimplex_eq_top[OF _ _ _ eq_sma])
            (auto simp: s_eq enum_mono t.s_eq t.enum_mono top)
    then show? ?thesis by simp
    next
    assume \(*: c\left(\right.\) upd \(\left.n^{\prime}\right)<\operatorname{enum} n^{\prime}\left(\right.\) upd \(\left.n^{\prime}\right)\)
    interpret st: kuhn_simplex_pair p n bupd o rot f' ' \(\{. . n\} b^{\prime} u t .\).
    have eq: \(f^{\prime}\) ' \(\{. . n\}-\{\) b.enum 0\(\}=t-\{c\}\)
        using eq_sma eq \(f^{\prime}\) by simp
    \{ fix \(x\) assume \(x \in t\) with \(*\langle c \in t\rangle\) eq_upd \(0\left[r u l e_{-} f o r m a t\right.\), of \(\left.x\right]\) have \(c \leq x\)
                by (auto simp: le_less intro!: t.less [of _ _ upd \(n\rceil\) ) \}
    note \(b o t=\) this
    have \(f^{\prime}\) ' \(\{. . n\}=t\)
        using \(\langle a=\) enum \(i\rangle\langle i=n\rangle\langle c \in t\rangle\)
        by (intro st.ksimplex_eq_bot \([O F \ldots \ldots\) _ eq])
                (auto simp: b.s_eq b.enum_mono t.s_eq t.enum_mono bot)
    with \(f^{\prime}\) show ?thesis by simp
    qed \(\}\)
with \(k s_{-} f^{\prime}\) eq \(\langle a \neq b\).enum 0\(\rangle\langle n \neq 0\rangle\) show ?thesis
    apply (intro ex1I[of - b.enum ' \(\{. . n\}]\) )
    apply auto []
    apply metis
    done
next
    assume \(i\) : \(0<i i<n\)
    define \(i^{\prime}\) where \(i^{\prime}=i-1\)
    with \(i\) have Suc \(i^{\prime}<n\)
        by simp
    with \(i\) have Suc_ \(i^{\prime}:\) Suc \(i^{\prime}=i\)
        by (simp add: \(i^{\prime}{ }^{\prime}\) def)
    let ?upd \(=\) Fun.swap \(i^{\prime} i\) upd
    from \(i\) upd have bij_betw ?upd \(\{. .<n\}\{. .<n\}\)
        by (subst bij_betw_swap_iff) (auto simp: \(i^{\prime}{ }_{-} d e f\) )
    define \(f^{\prime}\) where \(\left[\right.\) abs_def]: \(f^{\prime} i j=(\) if \(j \in\) ?upd \(\{\)... \(<i\}\) then Suc (base \(j\) ) else
base j)
        for \(i j\)
    interpret b: kuhn_simplex \(p\) n base ?upd \(f^{\prime}\) ' \(\{. . n\}\)
    proof
    show base \(\in\{. .<n\} \rightarrow\{. .<p\}\) by (rule base)
    \{ fix \(i\) assume \(n \leq i\) then show base \(i=p\) by (rule base_out) \(\}\)
```

```
    show bij_betw? upd \(\{. .<n\}\{. .<n\}\) by fact
qed (simp add: \(f^{\prime}\) _def)
have \(f^{\prime}\) : b.enum \(=f^{\prime}\) unfolding \(f^{\prime}\) _def b.enum_def[abs_def] ..
have \(k s_{-} f^{\prime}\) : ksimplex \(p\) (b.enum ' \(\{. . n\}\) )
    unfolding \(f^{\prime}\) by rule unfold_locales
have \(\{i\} \subseteq\{. . n\}\)
    using \(i\) by auto
\(\{\) fix \(j\) assume \(j \leq n\)
    moreover have \(j<i \vee i=j \vee i<j\) by arith
    moreover note \(i\)
    ultimately have enum \(j=\) b.enum \(j \longleftrightarrow j \neq i\)
        unfolding enum_def[abs_def] b.enum_def[abs_def]
        by (auto simp: fun_eq_iff swap_image \(i^{\prime}\) _def
                in_upd_image inj_on_image_set_diff \([O F\) inj_upd]) \}
note enum_eq_benum = this
then have enum' \((\{. . n\}-\{i\})=\) b.enum' \((\{. . n\}-\{i\})\)
    by (intro image_cong) auto
then have eq:s-\{a\}=b.enum' \(\{. . n\}-\{b . e n u m i\}\)
    unfolding \(s_{-} e q\) 〈 \(a=\) enum \(\left.i\right\rangle\)
    using inj_on_image_set_diff[OF inj_enum Diff_subset \(\langle\{i\} \subseteq\{. . n\}\rangle]\)
        inj_on_image_set_diff \([O F\) b.inj_enum Diff_subset \(\langle\{i\} \subseteq\{. . n\}\rangle]\)
    by (simp add: comp_def)
```

have $a \neq b$.enum i
using $\langle a=$ enum $i\rangle$ enum_eq_benum i by auto
$\{$ fix $t c$ assume ksimplex $p n t c \in t$ and eq_sma: $s-\{a\}=t-\{c\}$
obtain $b^{\prime} u$ where kuhn_simplex $p n b^{\prime} u t$
using 〈ksimplex $\left.p n^{\prime}\right\rangle$ by (auto elim: ksimplex.cases)
then interpret t : kuhn_simplex $p n b^{\prime} u t$.
have enum $i^{\prime} \in s-\{a\}$ enum $(i+1) \in s-\{a\}$
using $\langle a=$ enum $i\rangle i$ enum_in by (auto simp: enum_inj $\left.i^{\prime}{ }_{-} d e f\right)$
then obtain $l k$ where
l : t.enum $l=$ enum $i^{\prime} l \leq n$ t.enum $l \neq c$ and
k : t.enum $k=$ enum $(i+1) k \leq n$ t.enum $k \neq c$
unfolding eq_sma by (auto simp: t.s_eq)
with i have t.enum $l<t$.enum k
by (simp add: enum_strict_mono i^{\prime} _def)
with $\langle l \leq n\rangle\langle k \leq n\rangle$ have $l<k$
by (simp add: t.enum_strict_mono)
\{ assume Suc $l=k$
have enum $\left(\right.$ Suc $\left.\left(S u c i^{\prime}\right)\right)=t . e n u m ~(S u c ~ l)$
using i by (simp add: $\left.k\langle S u c l=k\rangle i^{\prime}{ }_{-} d e f\right)$
then have False
using $\langle l<k\rangle\langle k \leq n\rangle\left\langle S u c i^{\prime}<n\right\rangle$
by (auto simp: t.enum_Suc enum_Suc l upd_inj fun_eq_iff split: if_split_asm)
(metis Suc_lessD n_not_Suc_n upd_inj) \}
with $\langle l<k\rangle$ have Suc $l<k$

```
    by arith
    have \(c_{-} e q: c=t . e n u m\) (Suc \(l\) )
    proof (rule ccontr)
    assume \(c \neq t\).enum (Suc l)
    then have t.enum \((\) Suc \(l) \in s-\{a\}\)
        using \(\langle l<k\rangle\langle k \leq n\rangle\) by (simp add: t.s_eq eq_sma)
    then obtain \(j\) where t.enum (Suc l)=enum \(j j \leq n\) enum \(j \neq\) enum \(i\)
        unfolding \(s_{-} e q\langle a=\) enum \(i\rangle\) by auto
    with \(i\) have t.enum (Suc \(l\) ) \(\leq\) t.enum \(l \vee\) t.enum \(k \leq t . e n u m ~(S u c l)\)
        by (auto simp: \(i^{\prime}\) _def enum_mono enum_inj \(l k\) )
    with \(\langle S u c l<k\rangle\langle k \leq n\rangle\) show False
        by (simp add: t.enum_mono)
    qed
    \(\{\) have t.enum \((\) Suc \((\) Suc \(l)) \in s-\{a\}\)
        unfolding eq_sma c_eq t.s_eq using \(\langle S u c l<k\rangle\langle k \leq n\rangle\) by (auto simp:
t.enum_inj)
    then obtain \(j\) where eq: t.enum \((\) Suc \((S u c l))=\operatorname{enum} j\) and \(j \leq n j \neq i\)
        by (auto simp: s_eq 〈a = enum \(i\) )
    moreover have enum \(i^{\prime}<t . e n u m\) (Suc (Suc l))
            unfolding \(l(1)\) [symmetric] using \(\langle\) Suc \(l<k\rangle\langle k \leq n\rangle\) by (auto simp:
t.enum_strict_mono)
    ultimately have \(i^{\prime}<j\)
        using \(i\) by (simp add: enum_strict_mono \(i^{\prime}\) _def)
    with \(\langle j \neq i\rangle\langle j \leq n\rangle\) have t.enum \(k \leq\) t.enum (Suc (Suc l))
        unfolding \(i^{\prime}{ }_{-}\)def by (simp add: enum_mono \(k\) eq)
    then have \(k \leq\) Suc (Suc l)
        using \(\langle k \leq n\rangle\langle S u c l<k\rangle\) by (simp add: t.enum_mono) \}
    with \(\langle\) Suc \(l<k\rangle\) have Suc (Suc \(l\) ) \(=k\) by simp
    then have enum \(\left(S u c\left(S u c i^{\prime}\right)\right)=t . e n u m ~(S u c ~(S u c ~ l)) ~\)
    using \(i\) by (simp add: \(k i^{\prime}{ }_{-} d e f\) )
    also have \(\ldots=\left(\right.\) enum \(\left.i^{\prime}\right)\left(\right.\) u \(l:=\) Suc (enum \(\left.i^{\prime}(u l)\right)\), u (Suc \(\left.l\right):=\) Suc
(enum \(\left.\left.i^{\prime}(u(S u c l))\right)\right)\)
    using \(\langle\) Suc \(l<k\rangle\langle k \leq n\rangle\) by (simp add: t.enum_Suc lt.upd_inj)
    finally have \(\left(u l=u p d i^{\prime} \wedge u(\right.\) Suc \(\left.l)=u p d\left(S u c i^{\prime}\right)\right) \vee\)
        \(\left(u l=u p d\left(S u c i^{\prime}\right) \wedge u(\right.\) Suc \(\left.l)=u p d i^{\prime}\right)\)
        using \(\left\langle S u c i^{\prime}<n\right\rangle\) by (auto simp: enum_Suc fun_eq_iff split: if_split_asm)
    then have \(t=s \vee t=\) b.enum' \(\{. . n\}\)
    proof (elim disjE conjE)
        assume \(u: u l=u p d i^{\prime}\)
        have \(c=t . e n u m\) (Suc \(l\) ) unfolding \(c_{\_} e q\)..
        also have t.enum (Suc l) \(=\) enum (Suc \(i^{\prime}\) )
        using \(u\langle l<k\rangle\langle k \leq n\rangle\left\langle S u c i^{\prime}<n\right\rangle\) by (simp add: enum_Suc t.enum_Suc
l)
            also have ... \(=a\)
                using \(\langle a=\) enum \(i\rangle i\) by (simp add: \(i^{\prime}\) _def)
            finally show ?thesis
                using eq_sma \(\langle a \in s\rangle\langle c \in t\rangle\) by auto
```

```
    next
    assume u: u l=upd (Suc i')
    define B where B = b.enum' {..n}
    have b.enum i'}=\mathrm{ enum i'
            using enum_eq_benum[of i] i by (auto simp: i'_def gr0_conv_Suc)
    have c = t.enum (Suc l) unfolding c_eq ..
    also have t.enum (Suc l)= b.enum (Suc i')
        using u<l<k\rangle\langlek\leqn\rangle\langleSuc i'< n
        by (simp_all add: enum_Suc t.enum_Suc l b.enum_Suc <b.enum i' = enum
i`)
            (simp add:Suc_i')
        also have ... = b.enum i
            using i by (simp add: i'_def)
    finally have c=b.enum i .
    then have }t-{c}=B-{c}c\in
            unfolding eq_sma[symmetric] eq B_def using i by auto
    with }\langlec\int\rangle\mathrm{ have }t=
            by auto
        then show ?thesis
            by (simp add: B_def)
        qed }
    with ks_f` eq <a \not= b.enum i\rangle\langlen\not=0\rangle\langlei\leqn\rangle}\mathrm{ show ?thesis
        apply (intro ex1I[of - b.enum'{.. n}])
        apply auto []
        apply metis
        done
    qed
    then show ?thesis
        using s <a\in s` by (simp add: card_2_iff' Ex1_def) metis
qed
```

Hence another step towards concreteness.
lemma kuhn_simplex_lemma:
assumes $\forall s$. ksimplex $p($ Suc $n) s \longrightarrow r l ' s \subseteq\{$.. Suc $n\}$
and odd (card $\{f . \exists s$ a. ksimplex $p($ Suc $n) s \wedge a \in s \wedge(f=s-\{a\}) \wedge$
$r l ' f=\{. . n\} \wedge((\exists j \leq n . \forall x \in f . x j=0) \vee(\exists j \leq n . \forall x \in f . x j=p))\})$
shows odd (card \{s. ksimplex $p($ Suc $n) s \wedge r l ' s=\{$..Suc $n\}\})$
proof (rule kuhn_complete_lemma[OF finite_ksimplexes refl, unfolded mem_Collect_eq,
where $b n d=\lambda f .(\exists j \in\{. . n\} . \forall x \in f . x j=0) \vee(\exists j \in\{. . n\} . \forall x \in f . x j=p)]$,
safe del: notI)
have $*: ~ \bigwedge x y . x=y \Longrightarrow$ odd $(\operatorname{card} x) \Longrightarrow$ odd $(\operatorname{card} y)$
by auto
show odd (card $\{f .(\exists s \in\{s$. ksimplex $p($ Suc $n) s\} . \exists a \in s . f=s-\{a\}) \wedge$
$r l ' f=\{. . n\} \wedge((\exists j \in\{. . n\} . \forall x \in f . x j=0) \vee(\exists j \in\{. . n\} . \forall x \in f . x j=p))\})$
apply (rule $\left.*\left[O F_{-} \operatorname{assms}(2)\right]\right)$
apply (auto simp: atLeastOAtMost)
done

next

fix s assume s : ksimplex $p(S u c n) s$
then show card $s=n+2$
by (simp add: ksimplex_card)
fix a assume $a: a \in s$ then show $r l a \leq S u c n$ using assms(1) s by (auto simp: subset_eq)
let $? S=\{t$. ksimplex $p(S u c n) t \wedge(\exists b \in t . s-\{a\}=t-\{b\})\}$
\{ fix j assume $j: j \leq n \forall x \in s-\{a\} . x j=0$
with s a show card? $S=1$
using ksimplex_replace_0[of pn+1saj]
by (subst eq_commute) simp $\}$
\{ fix j assume $j: j \leq n \forall x \in s-\{a\} . x j=p$ with s a show card? $S=1$
using ksimplex_replace_1[of pn+1saj]
by (subst eq_commute) simp $\}$
\{ assume card $? S \neq 2 \neg(\exists j \in\{. . n\} . \forall x \in s-\{a\} . x j=p)$
with s a show $\exists j \in\{. . n\} . \forall x \in s-\{a\} . x j=0$
using ksimplex_replace_2[of p $n+1$ sa] by (subst (asm) eq_commute) auto \}
qed

Reduced labelling

definition reduced $::$ nat $\Rightarrow($ nat \Rightarrow nat $) \Rightarrow$ nat where reduced $n x=($ LEAST
$k . k=n \vee x k \neq 0$)
lemma reduced_labelling:
shows reduced $n x \leq n$
and $\forall i<$ reduced $n x . x i=0$
and reduced $n x=n \vee x($ reduced $n x) \neq 0$
proof -
show reduced $n x \leq n$
unfolding reduced_def by (rule LeastI2_wellorder [where $a=n]$) auto
show $\forall i<$ reduced $n x$. $x i=0$
unfolding reduced_def by (rule LeastI2_wellorder[where $a=n]$) fastforce+
show reduced $n x=n \vee x($ reduced $n x) \neq 0$
unfolding reduced_def by (rule LeastI2_wellorder $[$ where $a=n]$) fastforce +
qed
lemma reduced_labelling_unique:
$r \leq n \Longrightarrow \forall i<r . x i=0 \Longrightarrow r=n \vee x r \neq 0 \Longrightarrow$ reduced $n x=r$
unfolding reduced_def by (rule LeastI2_wellorder[where $a=n]$) (metis le_less not_le)+
lemma reduced_labelling_zero: $j<n \Longrightarrow x j=0 \Longrightarrow$ reduced $n x \neq j$
using reduced_labelling $[$ of $n x]$ by auto
lemma reduce_labelling_zero[simp]: reduced $0 x=0$
by (rule reduced_labelling_unique) auto
lemma reduced_labelling_nonzero: $j<n \Longrightarrow x j \neq 0 \Longrightarrow$ reduced $n x \leq j$ using reduced_labelling $[$ of $n x]$ by (elim allE $[$ where $x=j]$) auto
lemma reduced_labelling_Suc: reduced (Suc n) $x \neq$ Suc $n \Longrightarrow$ reduced (Suc n) x $=$ reduced $n x$
using reduced_labelling[of Suc $n x$]
by (intro reduced_labelling_unique [symmetric]) auto
lemma complete_face_top:
assumes $\forall x \in f . \forall j \leq n . x j=0 \longrightarrow$ lab $x j=0$ and $\forall x \in f . \forall j \leq n . x j=p \longrightarrow l a b x j=1$
and eq: (reduced (Suc n) ○ lab)' $f=\{. . n\}$
shows $((\exists j \leq n . \forall x \in f . x j=0) \vee(\exists j \leq n . \forall x \in f . x j=p)) \longleftrightarrow(\forall x \in f . x n=$
p)
proof (safe del: disjCI)
fix $x j$ assume $j: j \leq n \forall x \in f . x j=0$
\{ fix x assume $x \in f$ with assms j have reduced (Suc n) (lab x) $\neq j$
by (intro reduced_labelling_zero) auto \}
moreover have $j \in($ reduced (Suc n) \circ lab)' f using j eq by auto
ultimately show $x n=p$ by force
next
fix $x j$ assume $j: j \leq n \forall x \in f . x j=p$ and $x: x \in f$
have $j=n$
proof (rule ccontr)
assume \neg ?thesis
\{ fix x assume $x \in f$
with assms j have reduced (Suc n) (lab $x) \leq j$
by (intro reduced_labelling_nonzero) auto
then have reduced (Suc n) (lab $x) \neq n$
using $\langle j \neq n\rangle\langle j \leq n\rangle$ by $\operatorname{simp}\}$
moreover
have $n \in($ reduced $($ Suc $n) \circ l a b)$ ' f
using eq by auto
ultimately show False
by force
qed
moreover have $j \in($ reduced (Suc n) \circ lab) ' f using j eq by auto
ultimately show $x n=p$
using $j x$ by auto
qed auto

Hence we get just about the nice induction.
lemma kuhn_induction:
assumes $0<p$
and lab_0: $\forall x . \forall j \leq n .(\forall j . x j \leq p) \wedge x j=0 \longrightarrow l a b x j=0$
and lab_1: $\forall x . \forall j \leq n$. $(\forall j . x j \leq p) \wedge x j=p \longrightarrow l a b x j=1$
and odd: odd (card $\{s$. ksimplex p $n s \wedge$ (reduced nolab)' $s=\{. . n\}\}$)
shows odd (card \{s. ksimplex $p($ Suc $n) s \wedge($ reduced $($ Suc $n) \circ l a b)$ ' $s=\{. . S u c$ $n\}\}$)
proof -
let $? r l=$ reduced $(S u c n) \circ l a b$ and ? $e x t=\lambda f v . \exists j \leq n . \forall x \in f . x j=v$
let ?ext $=\lambda s .(\exists j \leq n . \forall x \in s . x j=0) \vee(\exists j \leq n . \forall x \in s . x j=p)$
have $\forall s$. ksimplex p (Suc n) $s \longrightarrow$? rl' $s \subseteq\{$..Suc $n\}$
by (simp add: reduced_labelling subset_eq)
moreover
have $\{s$. ksimplex $p n s \wedge($ reduced $n \circ$ lab $) ' s=\{. . n\}\}=$
$\{f . \exists s$ a. ksimplex $p($ Suc $n) s \wedge a \in s \wedge f=s-\{a\} \wedge$?rl'f $=\{. . n\} \wedge$
? ext f $\}$
proof (intro set_eqI, safe del: disjCI equalityI disjE)
fix s assume s : ksimplex $p n s$ and $r l:($ reduced $n \circ l a b) ' s=\{. . n\}$
from s obtain $u b$ where kuhn_simplex $p n u b s$ by (auto elim: ksimplex.cases)
then interpret kuhn_simplex p $n u b s$.
have all_eq_p: $\forall x \in s$. $x n=p$
by (auto simp: out_eq_p)
moreover
\{ fix x assume $x \in s$
with lab_1[rule_format, of $n x]$ all_eq_p s_le_p $[o f x]$
have ? $r l x \leq n$
by (auto intro!: reduced_labelling_nonzero)
then have ? $r l x=$ reduced $n(\operatorname{lab} x)$
by (auto intro!: reduced_labelling_Suc) \}
then have ? $r l$ ' $s=\{. . n\}$
using $r l$ by (simp cong: image_cong)
moreover
obtain $t a$ where ksimplex p (Suc n) $t a \in t s=t-\{a\}$
using s unfolding simplex_top_face $[O F\langle 0<p\rangle$ all_eq_ $p]$ by auto
ultimately
show $\exists t$ a. ksimplex $p($ Suc $n) t \wedge a \in t \wedge s=t-\{a\} \wedge$?rl' $s=\{. . n\} \wedge$
?ext s
by auto
next
fix x s assume s : ksimplex $p(S u c n) s$ and $r l$: ? $r l$ ' $(s-\{a\})=\{. . n\}$ and $a: a \in s$ and ?ext $(s-\{a\})$
from s obtain $u b$ where kuhn_simplex $p(S u c n) u b s$ by (auto elim: ksimplex.cases)
then interpret kuhn_simplex p Suc $n u b s$.
have all_eq_p: $\forall x \in s . x($ Suc $n)=p$ by (auto simp: out_eq_p)
$\{$ fix x assume $x \in s-\{a\}$

```
    then have ?rl }x\in\mathrm{ ?rl'( }s-{a}
    by auto
    then have ?rl }x\leq
    unfolding rl by auto
    then have ?rl x = reduced n (lab x)
    by (auto intro!: reduced_labelling_Suc) }
    then show rl':(reduced nolab)'(s-{a})={..n}
    unfolding rl[symmetric] by (intro image_cong) auto
    from \?ext (s - {a})>
    have all_eq_p: }\forallx\ins-{a}.x n=
    proof (elim disjE exE conjE)
    fix j assume j\leqn \forallx\ins-{a}. xj=0
    with lab_0[rule_format, of j] all_eq_p s_le_p
    have }\x.x\ins-{a}\Longrightarrow\mathrm{ reduced (Suc n) (lab x) #j
            by (intro reduced_labelling_zero) auto
    moreover have j\in?rl'(s-{a})
            using <j \leqn` unfolding rl by auto
    ultimately show ?thesis
            by force
    next
    fix j assume j\leqn and eq_p: }\forallx\ins-{a}. x j=
    show ?thesis
    proof cases
            assume j = n with eq_p show ?thesis by simp
    next
        assume j\not=n
        { fix x assume x:x\ins-{a}
            have reduced n (lab x) \leqj
            proof (rule reduced_labelling_nonzero)
                show lab x j\not=0
                        using lab_1[rule_format, of j x] x s_le_p[of x] eq_p <j \leq n` by auto
                    show j<n
                        using}\langlej\leqn\rangle\langlej\not=n\rangle\mathrm{ by simp
            qed
                then have reduced n (lab x)}\not=
                using }\langlej\leqn\rangle\langlej\not=n\rangle\mathrm{ by simp }
            moreover have n (reduced nolab)'(s-{a})
                unfolding rl' by auto
            ultimately show ?thesis
                by force
        qed
    qed
    show ksimplex p n (s-{a})
        unfolding simplex_top_face[OF <0< p> all_eq_p] using s a by auto
    qed
    ultimately show ?thesis
    using assms by (intro kuhn_simplex_lemma) auto
qed
```

And so we get the final combinatorial result.

```
lemma ksimplex_0: ksimplex p \(0 s \longleftrightarrow s=\{(\lambda x . p)\}\)
proof
    assume ksimplex p \(0 s\) then show \(s=\{(\lambda x . p)\}\)
    by (blast dest: kuhn_simplex.ksimplex_0 elim: ksimplex.cases)
next
    assume \(s: s=\{(\lambda x . p)\}\)
    show ksimplex p 0 s
    proof (intro ksimplex, unfold_locales)
        show \(\left(\lambda_{\text {. }} p\right) \in\{. .<0 \because:\) nat \(\} \rightarrow\{. .<p\}\) by auto
        show bij_betw id \(\{. .<0\}\{. .<0\}\)
            by \(\operatorname{simp}\)
    qed (auto simp: s)
qed
lemma kuhn_combinatorial:
assumes \(0<p\)
        and \(\forall x j\). \((\forall j . x j \leq p) \wedge j<n \wedge x j=0 \longrightarrow l a b x j=0\)
        and \(\forall x j\). \((\forall j . x j \leq p) \wedge j<n \wedge x j=p \longrightarrow l a b x j=1\)
    shows odd (card \{s. ksimplex p n s \(\wedge\) (reduced nolab)' \(s=\{. . n\}\})\)
        (is odd \((\operatorname{card}(? M n)))\)
    using assms
proof (induct \(n\) )
    case 0 then show? case
        by (simp add: ksimplex_0 cong: conj_cong)
    next
    case (Suc n)
    then have odd (card (?M n))
        by force
    with Suc show ?case
        using kuhn_induction[of \(p n\) ] by (auto simp: comp_def)
    qed
    lemma kuhn_lemma:
    fixes \(n p::\) nat
    assumes \(0<p\)
        and \(\forall x .(\forall i<n . x i \leq p) \longrightarrow(\forall i<n\). label \(x i=(0::\) nat \() \vee\) label \(x i=1)\)
        and \(\forall x .(\forall i<n . x i \leq p) \longrightarrow(\forall i<n . x i=0 \longrightarrow\) label \(x i=0)\)
        and \(\forall x .(\forall i<n . x i \leq p) \longrightarrow(\forall i<n . x i=p \longrightarrow\) label \(x i=1)\)
    obtains \(q\) where \(\forall i<n . q i<p\)
        and \(\forall i<n . \exists r s .(\forall j<n . q j \leq r j \wedge r j \leq q j+1) \wedge(\forall j<n . q j \leq s j \wedge s j\)
    \(\leq q j+1) \wedge\) label \(r i \neq\) label s \(i\)
proof -
    let ? \(r l=\) reduced \(n \circ\) label
    let \(? A=\{s\). ksimplex \(p n s \wedge\) ? \(r l\) ' \(s=\{. . n\}\}\)
    have odd (card ?A)
        using assms by (intro kuhn_combinatorial[of \(p\) n label]) auto
    then have ? \(A \neq\{ \}\)
        by (rule odd_card_imp_not_empty)
```

```
    then obtain \(s b u\) where \(k u h n \_\)simplex \(p n b u s\) and \(r l: ? r l\) ' \(s=\{. . n\}\)
    by (auto elim: ksimplex.cases)
    interpret kuhn_simplex pnbus by fact
    show ?thesis
    proof (intro that [of b] allI impI)
        fix \(i\)
    assume \(i<n\)
    then show \(b i<p\)
        using base by auto
    next
    fix \(i\)
    assume \(i<n\)
    then have \(i \in\{. . n\}\) Suc \(i \in\{. . n\}\)
        by auto
    then obtain \(u v\) where \(u: u \in s\) Suc \(i=? r l u\) and \(v: v \in s i=? r l v\)
        unfolding rl[symmetric] by blast
    have label \(u i \neq\) label \(v i\)
        using reduced_labelling [of \(n\) label \(u\) ] reduced_labelling [of \(n\) label \(v\) ]
            \(u(2)[\) symmetric \(] v(2)[\) symmetric \(]\langle i<n\rangle\)
            by auto
    moreover
    have \(b j \leq u j u j \leq b j+1 b j \leq v j v j \leq b j+1\) if \(j<n\) for \(j\)
    using that base_le[OF \(\langle u \in s\rangle]\) le_Suc_base[OF \(\langle u \in s\rangle]\) base_le[OF \(\langle v \in s\rangle]\) le_Suc_base[OF
\(\langle v \in s\rangle]\)
            by auto
    ultimately show \(\exists r s .(\forall j<n . b j \leq r j \wedge r j \leq b j+1) \wedge\)
            \((\forall j<n . b j \leq s j \wedge s j \leq b j+1) \wedge\) label \(r i \neq\) label \(s i\)
        by blast
    qed
qed
```


Main result for the unit cube

lemma kuhn_labelling_lemma':
assumes $(\forall x::$ nat \Rightarrow real. $P x \longrightarrow P(f x))$
and $\forall x . P x \longrightarrow(\forall i::$ nat. $Q i \longrightarrow 0 \leq x i \wedge x i \leq 1)$
shows $\exists l .(\forall x i . l x i \leq(1::$ nat $)) \wedge$
$(\forall x i . P x \wedge Q i \wedge x i=0 \longrightarrow l x i=0) \wedge$
$(\forall x i . P x \wedge Q i \wedge x i=1 \longrightarrow l x i=1) \wedge$
$(\forall x i . P x \wedge Q i \wedge l x i=0 \longrightarrow x i \leq f x i) \wedge$
$(\forall x i . P x \wedge Q i \wedge l x i=1 \longrightarrow f x i \leq x i)$
proof -
have and_forall_thm: $\wedge P Q .(\forall x . P x) \wedge(\forall x . Q x) \longleftrightarrow(\forall x . P x \wedge Q x)$
by auto
have $*: \forall x$ y: :real. $0 \leq x \wedge x \leq 1 \wedge 0 \leq y \wedge y \leq 1 \longrightarrow x \neq 1 \wedge x \leq y \vee x$
$\neq 0 \wedge y \leq x$
by auto

```
show ?thesis
    unfolding and_forall_thm
    apply (subst choice_iff [symmetric])+
    apply rule
    apply rule
proof -
    fix \(x x^{\prime}\)
    let \(? R=\lambda y::\) nat.
        \(\left(P x \wedge Q x^{\prime} \wedge x x^{\prime}=0 \longrightarrow y=0\right) \wedge\)
        \(\left(P x \wedge Q x^{\prime} \wedge x x^{\prime}=1 \longrightarrow y=1\right) \wedge\)
        \(\left(P x \wedge Q x^{\prime} \wedge y=0 \longrightarrow x x^{\prime} \leq(f x) x^{\prime}\right) \wedge\)
        \(\left(P x \wedge Q x^{\prime} \wedge y=1 \longrightarrow(f x) x^{\prime} \leq x x^{\prime}\right)\)
    have \(0 \leq f x x^{\prime} \wedge f x x^{\prime} \leq 1\) if \(P x Q x^{\prime}\)
        using assms(2)[rule_format, of \(f x x]\) that
        apply (drule_tac assms(1)[rule_format])
        apply auto
        done
    then have ? \(R 0 \vee ? R 1\)
        by auto
    then show \(\exists y \leq 1\).? \(R y\)
        by auto
    qed
qed
```


6.31.3 Brouwer's fixed point theorem

We start proving Brouwer's fixed point theorem for the unit cube $=c b o x 0$
One.
lemma brouwer_cube:
fixes f :: 'a::euclidean_space $\Rightarrow{ }^{\prime} a$
assumes continuous_on (cbox 0 One) f
and f ' cbox 0 One \subseteq cbox 0 One
shows $\exists x \in$ cbox 0 One. $f x=x$
proof (rule ccontr)
define n where $n=\operatorname{DIM}\left({ }^{\prime} a\right)$
have $n: 1 \leq n 0<n n \neq 0$
unfolding n_{-}def by (auto simp: Suc_le_eq)
assume \neg ? thesis
then have $*$: $\neg(\exists x \in$ cbox 0 One. $f x-x=0)$
by auto
obtain d where
$d: d>0 \bigwedge x . x \in$ cbox 0 One $\Longrightarrow d \leq \operatorname{norm}(f x-x)$
apply (rule brouwer_compactness_lemma[OF compact_cbox _ *])
apply (rule continuous_intros assms)+
apply blast
done
have $*: \forall x . x \in$ cbox 0 One $\longrightarrow f x \in$ cbox 0 One
$\forall x . x \in($ cbox 0 One::'a set $) \longrightarrow(\forall i \in$ Basis. True $\longrightarrow 0 \leq x \cdot i \wedge x \cdot i \leq 1)$
using assms(2)[unfolded image_subset_iff Ball_def]

```
    unfolding cbox_def
    by auto
obtain label \(::{ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow\) nat where label [rule_format]:
    \(\forall x\). \(\forall i \in\) Basis. label \(x i \leq 1\)
    \(\forall x . \forall i \in\) Basis. \(x \in\) cbox 0 One \(\wedge x \cdot i=0 \longrightarrow\) label \(x i=0\)
    \(\forall x . \forall i \in\) Basis. \(x \in\) cbox 0 One \(\wedge x \cdot i=1 \longrightarrow\) label \(x i=1\)
    \(\forall x . \forall i \in\) Basis. \(x \in\) cbox 0 One \(\wedge\) label \(x i=0 \longrightarrow x \cdot i \leq f x \cdot i\)
    \(\forall x . \forall i \in\) Basis. \(x \in\) cbox 0 One \(\wedge\) label \(x i=1 \longrightarrow f x \cdot i \leq x \cdot i\)
    using kuhn_labelling_lemma \([O F *\) ] by auto
note label \(=\) this [rule_format \(]\)
have lem1: \(\forall x \in\) cbox 0 One. \(\forall y \in\) cbox 0 One. \(\forall i \in\) Basis. label \(x i \neq\) label y \(i \longrightarrow\)
    \(|f x \cdot i-x \cdot i| \leq \operatorname{norm}(f y-f x)+\operatorname{norm}(y-x)\)
proof safe
    fix \(x y::^{\prime} a\)
    assume \(x: x \in \operatorname{cbox} 0\) One and \(y: y \in\) cbox 0 One
    fix \(i\)
    assume \(i\) : label \(x i \neq\) label y \(i i \in\) Basis
    have \(*: \bigwedge x y f x f y\) :: real. \(x \leq f x \wedge f y \leq y \vee f x \leq x \wedge y \leq f y \Longrightarrow\)
        \(|f x-x| \leq|f y-f x|+|y-x|\) by auto
    have \(|(f x-x) \cdot i| \leq|(f y-f x) \cdot i|+|(y-x) \cdot i|\)
    proof (cases label \(x i=0\) )
        case True
        then have \(f x y\) : \(\neg f y \cdot i \leq y \cdot i \Longrightarrow f x \cdot i \leq x \cdot i\)
            by (metis True i label(1) label(5) le_antisym less_one not_le_imp_less y)
        show ?thesis
        unfolding inner_simps
        by (rule *) (auto simp: True i label \(x\) y fxy)
    next
        case False
    then show ?thesis
        using label [OF \(\langle i \in\) Basis \(\rangle\) ] \(i(1) x y\)
        apply (auto simp: inner_diff_left le_Suc_eq)
        by (metis *)
    qed
    also have \(\ldots \leq \operatorname{norm}(f y-f x)+\operatorname{norm}(y-x)\)
    by (simp add: add_mono i(2) norm_bound_Basis_le)
    finally show \(|f x \cdot i-x \cdot i| \leq \operatorname{norm}(f y-f x)+\operatorname{norm}(y-x)\)
    unfolding inner_simps .
qed
have \(\exists e>0 . \forall x \in \operatorname{cbox} 0\) One. \(\forall y \in \operatorname{cbox} 0\) One. \(\forall z \in \operatorname{cbox} 0\) One. \(\forall i \in\) Basis.
    norm \((x-z)<e \longrightarrow\) norm \((y-z)<e \longrightarrow\) label \(x i \neq\) label \(y i \longrightarrow\)
        \(|(f(z)-z) \cdot i|<d /(\) real \(n)\)
proof -
    have \(d^{\prime}: d /\) real \(n / 8>0\)
        using \(d(1)\) by (simp add: n_def)
    have *: uniformly_continuous_on (cbox 0 One) \(f\)
        by (rule compact_uniformly_continuous[OF assms(1) compact_cbox])
    obtain \(e\) where \(e\) :
        \(e>0\)
```

```
    \(\bigwedge x x^{\prime} . x \in\) cbox 0 One \(\Longrightarrow\)
        \(x^{\prime} \in\) cbox 0 One \(\Longrightarrow\)
        norm \(\left(x^{\prime}-x\right)<e \Longrightarrow\)
        norm \(\left(f x^{\prime}-f x\right)<d /\) real \(n / 8\)
    using \(*\) [unfolded uniformly_continuous_on_def,rule_format,OF d']
    unfolding dist_norm
    by blast
    show ?thesis
    proof (intro exI conjI ballI impI)
    show \(0<\min (e / 2)(d /\) real \(n / 8)\)
        using \(d^{\prime} e\) by auto
    fix \(x y z i\)
    assume as:
        \(x \in\) cbox 0 One \(y \in\) cbox 0 One \(z \in\) cbox 0 One
        norm \((x-z)<\min (e / 2)(d /\) real \(n / 8)\)
        norm \((y-z)<\min (e / 2)(d /\) real \(n / 8)\)
        label \(x i \neq\) label \(y i\)
    assume \(i: i \in\) Basis
    have *: \(\bigwedge z f z x\) fx n1 n2 n3 n4 d4 \(d::\) real. \(|f x-x| \leq n 1+n 2 \Longrightarrow\)
        \(|f x-f z| \leq n 3 \Longrightarrow|x-z| \leq n 4 \Longrightarrow\)
        \(n 1<d_{4} \Longrightarrow n 2<2 * d_{4} \Longrightarrow n 3<d_{4} \Longrightarrow n_{4}<d_{4} \Longrightarrow\)
        \((8 * d 4=d) \Longrightarrow|f z-z|<d\)
        by auto
    show \(|(f z-z) \cdot i|<d /\) real \(n\)
        unfolding inner_simps
    proof (rule *)
        show \(|f x \cdot i-x \cdot i| \leq \operatorname{norm}(f y-f x)+\operatorname{norm}(y-x)\)
            using \(\operatorname{as}(1)\) as(2) as(6) i lem1 by blast
        show norm \((f x-f z)<d /\) real \(n / 8\)
            using \(d^{\prime} e\) as by auto
        show \(|f x \cdot i-f z \cdot i| \leq \operatorname{norm}(f x-f z)|x \cdot i-z \cdot i| \leq \operatorname{norm}(x-z)\)
            unfolding inner_diff_left[symmetric]
            by (rule Basis_le_norm [OF i])+
    have tria: norm \((y-x) \leq \operatorname{norm}(y-z)+\operatorname{norm}(x-z)\)
            using dist_triangle[of \(y x z\), unfolded dist_norm]
            unfolding norm_minus_commute
            by auto
    also have \(\ldots<e / 2+e / 2\)
            using as(4) as(5) by auto
            finally show norm \((f y-f x)<d /\) real \(n / 8\)
            using as(1) as(2) e(2) by auto
        have norm \((y-z)+\operatorname{norm}(x-z)<d /\) real \(n / 8+d /\) real \(n / 8\)
            using as(4) as(5) by auto
        with tria show norm \((y-x)<2 *(d /\) real \(n / 8)\)
            by auto
    qed (use as in auto)
qed
qed
then
```

```
obtain \(e\) where \(e\) :
    \(e>0\)
    \(\bigwedge x y z i . x \in\) cbox 0 One \(\Longrightarrow\)
        \(y \in\) cbox 0 One \(\Longrightarrow\)
        \(z \in\) cbox 0 One \(\Longrightarrow\)
        \(i \in\) Basis \(\Longrightarrow\)
        norm \((x-z)<e \wedge\) norm \((y-z)<e \wedge\) label \(x i \neq\) label \(y i \Longrightarrow\)
        \(|(f z-z) \cdot i|<d /\) real \(n\)
    by blast
obtain \(p::\) nat where \(p: 1+\) real \(n / e \leq\) real \(p\)
    using real_arch_simple ..
have \(1+\) real \(n / e>0\)
    using \(e(1) n\) by (simp add: add_pos_pos)
then have \(p>0\)
    using \(p\) by auto
obtain \(b::\) nat \(\Rightarrow{ }^{\prime} a\) where \(b\) : bij_betw \(b\{. .<n\}\) Basis
    by atomize_elim (auto simp: n_def intro!: finite_same_card_bij)
define \(b^{\prime}\) where \(b^{\prime}=\) inv_into \(\{. .<n\} b\)
then have \(b^{\prime}:\) bij_betw \(b^{\prime}\) Basis \(\{. .<n\}\)
    using bij_betw_inv_into[OF b] by auto
then have \(b^{\prime}{ }_{-}\)Basis: \(\bigwedge i . i \in\) Basis \(\Longrightarrow b^{\prime} i \in\{. .<n\}\)
    unfolding bij_betw_def by (auto simp: set_eq_iff)
have \(b b^{\prime}[\) simp \(]: \bigwedge i . i \in\) Basis \(\Longrightarrow b\left(b^{\prime} i\right)=i\)
    unfolding \(b^{\prime}\) _def
    using \(b\)
    by (auto simp: \(f_{-} i n v_{-} i n t o_{-} f\) bij_betw_def)
have \(b^{\prime} b[s i m p]: \bigwedge i . i<n \Longrightarrow b^{\prime}(b i)=i\)
    unfolding \(b^{\prime}\) _def
    using \(b\)
    by (auto simp: inv_into_f_eq bij_betw_def)
have \(*: \bigwedge x::\) nat. \(x=0 \vee x=1 \longleftrightarrow x \leq 1\)
    by auto
have \(b^{\prime \prime}: \bigwedge j . j<n \Longrightarrow b j \in\) Basis
    using \(b\) unfolding bij_betw_def by auto
have q1: \(0<p \forall x .(\forall i<n . x i \leq p) \longrightarrow\)
    \(\left(\forall i<n\right.\). (label \(\left(\sum i \in\right.\) Basis. \(\left(\right.\) real \(\left.\left.\left.\left(x\left(b^{\prime} i\right)\right) / \operatorname{real} p\right) *_{R} i\right) \circ b\right) i=0 \vee\)
            (label \(\left(\sum i \in\right.\) Basis. \(\left(\right.\) real \(\left(x\left(b^{\prime} i\right)\right) /\) real \(\left.\left.\left.\left.p\right) *_{R} i\right) \circ b\right) i=1\right)\)
    unfolding *
    using \(\langle p>0\rangle\langle n>0\rangle\)
    using label(1)[OF \(\left.b^{\prime \prime}\right]\)
    by auto
\(\{\) fix \(x::\) nat \(\Rightarrow\) nat and \(i\) assume \(\forall i<n . x i \leq p i<n x i=p \vee x i=0\)
    then have \(\left(\sum i \in\right.\) Basis. \(\left(\right.\) real \(\left(x\left(b^{\prime} i\right)\right) /\) real \(\left.\left.p\right) *_{R} i\right) \in(\) cbox 0 One::'a set)
        using \(b^{\prime}\) _Basis
        by (auto simp: cbox_def bij_betw_def zero_le_divide_iff divide_le_eq_1) \}
note cube \(=\) this
have q2: \(\forall x .(\forall i<n . x i \leq p) \longrightarrow(\forall i<n . x i=0 \longrightarrow\)
        (label \(\left(\sum i \in\right.\) Basis. \(\left(\right.\) real \(\left(x\left(b^{\prime} i\right)\right) /\) real \(\left.\left.\left.\left.p\right) *_{R} i\right) \circ b\right) i=0\right)\)
```

```
    unfolding o_def using cube \(\langle p>0\rangle\) by (intro allI impI label(2)) (auto simp:
```

$b^{\prime \prime}$)
have $q 3: \forall x .(\forall i<n . x i \leq p) \longrightarrow(\forall i<n . x i=p \longrightarrow$
$\left(\right.$ label $\left(\sum i \in\right.$ Basis. $\left(\right.$ real $\left(x\left(b^{\prime} i\right)\right) /$ real $\left.\left.\left.\left.p\right) *_{R} i\right) \circ b\right) i=1\right)$
using cube $\langle p>0\rangle$ unfolding o_def by (intro allI impI label(3)) (auto simp:
$b^{\prime \prime}$)
obtain q where q :
$\forall i<n . q i<p$
$\forall i<n$.
$\exists r s .(\forall j<n . q j \leq r j \wedge r j \leq q j+1) \wedge$
$(\forall j<n . q j \leq s j \wedge s j \leq q j+1) \wedge$

(label $\left(\sum i \in\right.$ Basis. $\left(\right.$ real $\left(s\left(b^{\prime} i\right)\right) /$ real $\left.\left.\left.p\right) *_{R} i\right) \circ b\right) i$
by (rule kuhn_lemma[OF q1 q2 q3])
define $z:$: ' a where $z=\left(\sum i \in\right.$ Basis. $\left(\right.$ real $\left(q\left(b^{\prime} i\right)\right) /$ real $\left.\left.p\right) *_{R} i\right)$
have $\exists i \in$ Basis. $d /$ real $n \leq|(f z-z) \cdot i|$
proof (rule ccontr)
have $\forall i \in$ Basis. $q\left(b^{\prime} i\right) \in\{0 \ldots p\}$
using $q(1) b^{\prime}$
by (auto intro: less_imp_le simp: bij_betw_def)
then have $z \in$ cbox 0 One
unfolding $z_{\text {_ }}$ def cbox_def
using b^{\prime} _Basis
by (auto simp: bij_betw_def zero_le_divide_iff divide_le_eq_1)
then have $d_{-} f z_{-} z: d \leq \operatorname{norm}(f z-z)$
by (rule d)
assume \neg ?thesis
then have as: $\forall i \in$ Basis. $|f z \cdot i-z \cdot i|<d /$ real n
using $\langle n>0\rangle$
by (auto simp: not_le inner_diff)
have $\operatorname{norm}(f z-z) \leq\left(\sum i \in\right.$ Basis. $\left.|f z \cdot i-z \cdot i|\right)$
unfolding inner_diff_left[symmetric]
by (rule norm_le_l1)
also have $\ldots<\left(\sum\left(i::^{\prime} a\right) \in\right.$ Basis. $d /$ real $\left.n\right)$
by (meson as finite_Basis nonempty_Basis sum_strict_mono)
also have $\ldots=d$
using DIM_positive[where ${ }^{\prime} a={ }^{\prime} a$] by (auto simp: $n_{_} d e f$)
finally show False
using $d_{-} f z_{-} z$ by auto
qed
then obtain i where $i: i \in$ Basis $d /$ real $n \leq|(f z-z) \cdot i|$..
have $*$: $b^{\prime} i<n$
using i and $b^{\prime}[$ unfolded bij_betw_def $]$
by auto
obtain $r s$ where $r s$:
$\bigwedge j . j<n \Longrightarrow q j \leq r j \wedge r j \leq q j+1$
$\wedge j . j<n \Longrightarrow q j \leq s j \wedge s j \leq q j+1$
(label $\left(\sum i \in\right.$ Basis. $\left(\right.$ real $\left(r\left(b^{\prime} i\right)\right) /$ real $\left.\left.\left.p\right) *_{R} i\right) \circ b\right)\left(b^{\prime} i\right) \neq$
(label $\left(\sum i \in\right.$ Basis. $\left(\right.$ real $\left(s\left(b^{\prime} i\right)\right) /$ real $\left.\left.\left.p\right) *_{R} i\right) \circ b\right)\left(b^{\prime} i\right)$

```
    using \(q(2)\) [rule_format, \(O F\) *] by blast
have \(b^{\prime} \_i m\) : \(\bigwedge i . i \in\) Basis \(\Longrightarrow b^{\prime} i<n\)
    using \(b^{\prime}\) unfolding bij_betw_def by auto
define \(r^{\prime}::^{\prime} a\) where \(r^{\prime}=\left(\sum i \in\right.\) Basis. \(\left(\right.\) real \(\left(r\left(b^{\prime} i\right)\right) /\) real \(\left.\left.p\right) *_{R} i\right)\)
have \(\bigwedge i . i \in\) Basis \(\Longrightarrow r\left(b^{\prime} i\right) \leq p\)
    apply (rule order_trans)
    apply (rule rs(1)[OF \(b^{\prime}{ }_{-}\)im,THEN conjunct2])
    using \(q(1)\) [rule_format, \(\left.O F \quad b^{\prime} \_i m\right]\)
    apply (auto simp: Suc_le_eq)
    done
then have \(r^{\prime} \in\) cbox 0 One
    unfolding \(r^{\prime}\) _def cbox_def
    using \(b^{\prime}\) _Basis
    by (auto simp: bij_betw_def zero_le_divide_iff divide_le_eq_1)
define \(s^{\prime}::{ }^{\prime} a\) where \(s^{\prime}=\left(\sum i \in\right.\) Basis. \(\left(\right.\) real \(\left(s\left(b^{\prime} i\right)\right) /\) real \(\left.\left.p\right) *_{R} i\right)\)
have \(\bigwedge i . i \in\) Basis \(\Longrightarrow s\left(b^{\prime} i\right) \leq p\)
    using \(b^{\prime}\) _im \(q(1) r s(2)\) by fastforce
then have \(s^{\prime} \in\) cbox 0 One
    unfolding \(s^{\prime}\) _def cbox_def
    using \(b^{\prime}{ }_{-}\)Basis by (auto simp: bij_betw_def zero_le_divide_iff divide_le_eq_1)
have \(z \in\) cbox 0 One
    unfolding \(z_{-}\)def cbox_def
    using \(b^{\prime}{ }_{-}\)Basis \(q(1)\left[\right.\) rule_format, \(\left.O F \quad b^{\prime}{ }_{-} i m\right]\langle p>0\rangle\)
    by (auto simp: bij_betw_def zero_le_divide_iff divide_le_eq_1 less_imp_le)
\{
    have \(\left(\sum i \in\right.\) Basis. \(\mid\) real \(\left.\left(r\left(b^{\prime} i\right)\right)-\operatorname{real}\left(q\left(b^{\prime} i\right)\right) \mid\right) \leq\left(\sum\left(i::^{\prime} a\right) \in\right.\) Basis. 1\()\)
        by (rule sum_mono) (use rs(1)[OF \(\left.b^{\prime} \_i m\right]\) in force)
    also have \(\ldots<e *\) real \(p\)
        using \(p\langle e>0\rangle\langle p>0\rangle\)
        by (auto simp: field_simps n_def)
    finally have \(\left(\sum i \in\right.\) Basis. \(\mid\) real \(\left.\left(r\left(b^{\prime} i\right)\right)-\operatorname{real}\left(q\left(b^{\prime} i\right)\right) \mid\right)<e *\) real \(p\).
\}
moreover
\{
    have \(\left(\sum i \in\right.\) Basis. \(\mid\) real \(\left.\left(s\left(b^{\prime} i\right)\right)-\operatorname{real}\left(q\left(b^{\prime} i\right)\right) \mid\right) \leq\left(\sum\left(i::^{\prime} a\right) \in\right.\) Basis. 1)
        by (rule sum_mono) (use rs(2)[OF \(\left.b^{\prime} \_i m\right]\) in force)
    also have \(\ldots<e *\) real \(p\)
        using \(p\langle e>0\rangle\langle p>0\rangle\)
        by (auto simp: field_simps n_def)
    finally have \(\left(\sum i \in\right.\) Basis. \(\mid\) real \(\left.\left(s\left(b^{\prime} i\right)\right)-\operatorname{real}\left(q\left(b^{\prime} i\right)\right) \mid\right)<e *\) real \(p\).
\}
ultimately
have norm \(\left(r^{\prime}-z\right)<e\) and norm \(\left(s^{\prime}-z\right)<e\)
    unfolding \(r^{\prime}\) _def \(s^{\prime}\) _def \(z_{\_} d e f\)
    using \(\langle p>0\) 〉
    apply (rule_tac[!] le_less_trans[OF norm_le_l1])
    apply (auto simp: field_simps sum_divide_distrib[symmetric] inner_diff_left)
    done
then have \(|(f z-z) \cdot i|<d /\) real \(n\)
```

```
    using \(r s(3) i\)
    unfolding \(r^{\prime} \_\operatorname{def}\left[\right.\) symmetric] \(s^{\prime} \_\)def [symmetric] o_def \(b b^{\prime}\)
    by (intro e(2)[OF \(\left\langle r^{\prime} \in\right.\) cbox 0 One〉 \(\left\langle s^{\prime} \in\right.\) cbox 0 One \(\rangle z \in\) cbox 0 One〉]) auto
    then show False
    using \(i\) by auto
qed
```

Next step is to prove it for nonempty interiors.

```
lemma brouwer_weak:
    fixes \(f\) :: 'a::euclidean_space \(\Rightarrow{ }^{\prime} a\)
    assumes compact \(S\)
        and convex \(S\)
        and interior \(S \neq\{ \}\)
        and continuous_on \(S f\)
        and \(f\) ' \(S \subseteq S\)
    obtains \(x\) where \(x \in S\) and \(f x=x\)
proof -
    let ? \(U=\) cbox 0 One :: 'a set
    have \(\sum\) Basis \(/ R\) 2 \(\in\) interior ? \(U\)
    proof (rule interiorI)
        let ? \(I=\left(\bigcap i \in\right.\) Basis. \(\left.\left\{x::^{\prime} a .0<x \cdot i\right\} \cap\{x . x \cdot i<1\}\right)\)
        show open?I
            by (intro open_INT finite_Basis ballI open_Int, auto intro: open_Collect_less
simp: continuous_on_inner)
            show \(\sum\) Basis \(/_{R}{ }^{2} \in ? I\)
            by \(\operatorname{simp}\)
            show ?I \(\subseteq\) cbox 0 One
            unfolding cbox_def by force
    qed
    then have \(*\) : interior ? \(U \neq\{ \}\) by fast
    have \(*\) : ? \(U\) homeomorphic \(S\)
    using homeomorphic_convex_compact[OF convex_box(1) compact_cbox \(* \operatorname{assms}(2,1,3)]\)
    have \(\forall f\). continuous_on? \(U f \wedge f^{\prime}\) ? \(U \subseteq\) ? \(U \longrightarrow\)
        \((\exists x \in\) ? U. \(f x=x)\)
        using brouwer_cube by auto
    then show ?thesis
        unfolding homeomorphic_fixpoint_property[OF *]
        using assms
        by (auto intro: that)
qed
```

Then the particular case for closed balls.
lemma brouwer_ball:
fixes $f::$ ' $a::$ euclidean_space $\Rightarrow{ }^{\prime} a$
assumes $e>0$
and continuous_on (cball a e) f
and f ' cball $a \operatorname{e} \subseteq$ cball a e
obtains x where $x \in$ cball a e and $f x=x$
using brouwer_weak[OF compact_cball convex_cball, of a ef] unfolding interior_cball ball_eq_empty
using assms by auto
And finally we prove Brouwer's fixed point theorem in its general version.

```
theorem brouwer:
    fixes \(f::\) 'a::euclidean_space \(\Rightarrow{ }^{\prime} a\)
    assumes \(S\) : compact \(S\) convex \(S S \neq\{ \}\)
        and contf: continuous_on \(S f\)
        and fim: \(f\) ' \(S \subseteq S\)
    obtains \(x\) where \(x \in S\) and \(f x=x\)
proof -
    have \(\exists e>0 . S \subseteq\) cball \(0 e\)
        using compact_imp_bounded \([O F\) 〈compact \(S\) 〉] unfolding bounded_pos
        by auto
    then obtain \(e\) where \(e: e>0 S \subseteq\) cball \(0 e\)
        by blast
    have \(\exists x \in\) cball \(0 e .(f \circ\) closest_point \(S) x=x\)
    proof (rule_tac brouwer_ball[OF e(1)])
        show continuous_on (cball 0 e) ( \(f \circ\) closest_point \(S\) )
            apply (rule continuous_on_compose)
            using \(S\) compact_eq_bounded_closed continuous_on_closest_point apply blast
            by (meson S contf closest_point_in_set compact_imp_closed continuous_on_subset
image_subsetI)
            show \((f \circ\) closest_point \(S)\) 'cball \(0 e \subseteq\) cball \(0 e\)
            by clarsimp (metis \(S\) fim closest_point_exists(1) compact_eq_bounded_closed
e(2) image_subset_iff mem_cball_0 subsetCE)
    qed (use assms in auto)
    then obtain \(x\) where \(x: x \in\) cball \(0 e(f \circ\) closest_point \(S) x=x\)..
    have \(x \in S\)
            by (metis closest_point_in_set comp_apply compact_imp_closed fim image_eqI
\(S(1) S(3)\) subset_iff \(x(2))\)
    then have \(*\) : closest_point \(S x=x\)
        by (rule closest_point_self)
    show thesis
    proof
        show closest_point \(S x \in S\)
            by ( simp add: * \(\langle x \in S\rangle\) )
        show \(f\) (closest_point \(S x)=\) closest_point \(S x\)
            using \(* x\) (2) by auto
    qed
qed
```


6.31.4 Applications

So we get the no-retraction theorem.
corollary no_retraction_cball:
fixes a :: ' $a::$ euclidean_space
assumes $e>0$

```
    shows \(\neg(\) frontier \((\) cball a e) retract_of (cball a e))
proof
    assume *: frontier (cball a e) retract_of (cball a e)
    have \(* *: ~ \bigwedge x a . a-\left(2 *_{R} a-x a\right)=-(a-x a)\)
        using scaleR_left_distrib[of 11 a] by auto
    obtain \(x\) where \(x: x \in\{x\). norm \((a-x)=e\} 2 *_{R} a-x=x\)
    proof (rule retract_fixpoint_property[OF *, of \(\lambda\) x. scaleR 2 \(a-x]\) )
        show continuous_on (frontier (cball a e)) ((-) ( \(\left.2 *_{R} a\right)\) )
        by (intro continuous_intros)
    show \((-)\left(2 *_{R} a\right)\) 'frontier \((\) cball a e) \(\subseteq\) frontier (cball a e)
        by clarsimp (metis ** dist_norm norm_minus_cancel)
    qed (auto simp: dist_norm intro: brouwer_ball[OF assms])
    then have scaleR \(2 a=\) scaleR \(1 x+\operatorname{scaleR} 1 x\)
        by (auto simp: algebra_simps)
    then have \(a=x\)
        unfolding scaleR_left_distrib[symmetric]
        by auto
    then show False
        using \(x\) assms by auto
qed
corollary contractible_sphere:
    fixes \(a\) :: ' \(a\) ::euclidean_space
    shows contractible(sphere ar) \(\longleftrightarrow r \leq 0\)
proof (cases \(0<r\) )
    case True
    then show?thesis
        unfolding contractible_def nullhomotopic_from_sphere_extension
        using no_retraction_cball [OF True, of a]
        by (auto simp: retract_of_def retraction_def)
next
    case False
    then show ?thesis
        unfolding contractible_def nullhomotopic_from_sphere_extension
        using less_eq_real_def by auto
qed
corollary connected_sphere_eq:
    fixes \(a\) :: ' \(a\) :: euclidean_space
    shows connected \((\) sphere a \(r) \longleftrightarrow 2 \leq \operatorname{DIM}\left({ }^{\prime} a\right) \vee r \leq 0\)
        (is? \(l h s=\) ? \(r h s\) )
proof (cases r 0:: real rule: linorder_cases)
    case less
    then show ?thesis by auto
next
    case equal
    then show ?thesis by auto
next
    case greater
```

```
    show ?thesis
    proof
        assume \(L\) :?lhs
        have False if 1: \(\operatorname{DIM}\left({ }^{\prime} a\right)=1\)
        proof -
            obtain \(x y\) where \(x y\) : sphere a \(r=\{x, y\} x \neq y\)
            using sphere_1D_doubleton [OF 1 greater]
            by (metis dist_self greater insertI1 less_add_same_cancel1 mem_sphere mult_2
not_le zero_le_dist)
            then have finite (sphere a r)
            by auto
            with \(L\langle r>0\rangle x y\) show False
            using connected_finite_iff_sing by auto
    qed
    with greater show ?rhs
            by (metis DIM_ge_Suc0 One_nat_def Suc_1 le_antisym not_less_eq_eq)
    next
        assume? rhs
        then show? lhs
            using connected_sphere greater by auto
    qed
qed
corollary path_connected_sphere_eq:
    fixes \(a\) :: ' \(a\) :: euclidean_space
    shows path_connected \((\) sphere \(a r) \longleftrightarrow 2 \leq \operatorname{DIM}\left({ }^{\prime} a\right) \vee r \leq 0\)
            (is ?lhs = ? rhs)
proof
    assume ?lhs
    then show ?rhs
        using connected_sphere_eq path_connected_imp_connected by blast
next
    assume \(R\) : ?rhs
    then show? lhs
    by (auto simp: contractible_imp_path_connected contractible_sphere path_connected_sphere)
qed
proposition frontier_subset_retraction:
    fixes \(S\) :: 'a::euclidean_space set
    assumes bounded \(S\) and fros: frontier \(S \subseteq T\)
        and contf: continuous_on (closure \(S\) ) f
        and fim: \(f^{\text {' }} S \subseteq T\)
        and fid: \(\wedge x . x \in T \Longrightarrow f x=x\)
        shows \(S \subseteq T\)
proof (rule ccontr)
    assume \(\neg S \subseteq T\)
    then obtain \(a\) where \(a \in S a \notin T\) by blast
    define \(g\) where \(g \equiv \lambda z\). if \(z \in\) closure \(S\) then \(f z\) else \(z\)
    have continuous_on (closure \(S \cup\) closure \((-S)) g\)
```

```
    unfolding g_def
    apply (rule continuous_on_cases)
    using fros fid frontier_closures by (auto simp: contf)
moreover have closure S\cup closure (-S)=UNIV
    using closure_Un by fastforce
ultimately have contg: continuous_on UNIV g by metis
obtain B where 0<B and B: closure S\subseteq ball a B
    using <bounded S` bounded_subset_ballD by blast
have notga: g x\not=a for x
    unfolding g_def using fros fim \langlea\not\inT\rangle
    apply (auto simp: frontier_def)
    using fid interior_subset apply fastforce
    by (simp add: <a }\inS\rangle\mathrm{ closure_def)
define h where h}\equiv(\lambday.a+(B/\operatorname{norm}(y-a))\mp@subsup{*}{R}{}(y-a))\circ
have }\neg(\mathrm{ frontier (cball a B) retract_of (cball a B))
    by (metis no_retraction_cball <0 < B`)
    then have }\wedgek.\neg\mathrm{ retraction (cball a B) (frontier (cball a B)) k
    by (simp add: retract_of_def)
    moreover have retraction (cball a B) (frontier (cball a B)) h
    unfolding retraction_def
    proof (intro conjI ballI)
    show frontier (cball a B)\subseteqcball a B
        by force
    show continuous_on (cball a B) h
        unfolding h_def
        by (intro continuous_intros) (use contg continuous_on_subset notga in auto)
    show h'cball a B\subseteq frontier (cball a B)
            using <0 < B by (auto simp: h_def notga dist_norm)
    show }\x.x\in\mathrm{ frontier (cball a B) Chx=x
            apply (auto simp: h_def algebra_simps)
            apply (simp add: vector_add_divide_simps notga)
    by (metis (no_types, hide_lams) B add.commute dist_commute dist_norm g_def
mem_ball not_less_iff_gr_or_eq subset_eq)
    qed
    ultimately show False by simp
qed
Punctured affine hulls, etc
lemma rel_frontier_deformation_retract_of_punctured_convex:
    fixes S :: 'a::euclidean_space set
    assumes convex S convex T bounded S
        and arelS:a < rel_interior S
        and relS: rel_frontier S\subseteqT
        and affS: T\subseteqaffine hull S
    obtains r where homotopic_with_canon (\lambdax. True) (T-{a}) (T-{a}) id r
                retraction (T - {a})(rel_frontier S)r
proof -
    have }\existsd.0<d\wedge(a+d\mp@subsup{*}{R}{}l)\in\mathrm{ rel_frontier S^
```

```
            \(\left(\forall e .0 \leq e \wedge e<d \longrightarrow\left(a+e *_{R} l\right) \in\right.\) rel_interior \(\left.S\right)\)
            if \((a+l) \in\) affine hull \(S l \neq 0\) for \(l\)
    apply (rule ray_to_rel_frontier [OF 〈bounded \(S\) 〉 arelS])
    apply (rule that) +
    by metis
    then obtain \(d d\)
        where \(d d 1: \wedge l . \llbracket(a+l) \in\) affine hull \(S ; l \neq 0 \rrbracket \Longrightarrow 0<d d l \wedge\left(a+d d l *_{R}\right.\)
\(l) \in\) rel_frontier \(S\)
        and dd2: \(\bigwedge l e . \llbracket(a+l) \in\) affine hull \(S ; e<d d l ; 0 \leq e ; l \neq 0 \rrbracket\)
                        \(\Longrightarrow\left(a+e *_{R} l\right) \in\) rel_interior \(S\)
        by metis+
    have aaffS: \(a \in\) affine hull \(S\)
    by (meson arelS subsetD hull_inc rel_interior_subset)
    have \(((\lambda z . z-a)\) '(affine hull \(S-\{a\}))=((\lambda z . z-a)\) ' \((\) affine hull \(S))-\)
\(\{0\}\)
    by auto
    moreover have continuous_on \((((\lambda z . z-a)\) ' (affine hull \(S))-\{0\})(\lambda x . d d x\)
\(\left.*_{R} x\right)\)
    proof (rule continuous_on_compact_surface_projection)
    show compact (rel_frontier \(((\lambda z . z-a)\) ' \(S\) ))
    by (simp add: 〈bounded \(S\rangle\) bounded_translation_minus compact_rel_frontier_bounded)
    have releq: rel_frontier \(((\lambda z . z-a) ' S)=(\lambda z . z-a)\) 'rel_frontier \(S\)
            using rel_frontier_translation [of \(-a\) ] add.commute by simp
    also have \(\ldots \subseteq(\lambda z . z-a)\) ' (affine hull \(S)-\{0\}\)
            using rel_frontier_affine_hull arelS rel_frontier_def by fastforce
    finally show rel_frontier \(((\lambda z . z-a) ' S) \subseteq(\lambda z . z-a)\) ' (affine hull \(S)-\)
\(\{0\}\).
    show cone \(((\lambda z . z-a)\) ' \((\) affine hull \(S))\)
            by (rule subspace_imp_cone)
            (use aaffS in «simp add: subspace_affine image_comp o_def affine_translation_aux
[of \(a]^{\prime}\) )
    show \(\left(0<k \wedge k *_{R} x \in\right.\) rel_frontier \(\left.\left((\lambda z . z-a)^{\prime} S\right)\right) \longleftrightarrow(d d x=k)\)
        if \(x: x \in(\lambda z . z-a)\) '(affine hull \(S)-\{0\}\) for \(k x\)
    proof
        show \(d d x=k \Longrightarrow 0<k \wedge k *_{R} x \in\) rel_frontier \(((\lambda z . z-a) ' S)\)
            using dd1 [of x] that image_iff by (fastforce simp add: releq)
    next
        assume \(k: 0<k \wedge k *_{R} x \in\) rel_frontier \(((\lambda z . z-a)\) ' \(S)\)
            have False if \(d d x<k\)
            proof -
            have \(k \neq 0 a+k *_{R} x \in\) closure \(S\)
                using \(k\) closure_translation \([o f-a\) ]
                by (auto simp: rel_frontier_def cong: image_cong_simp)
            then have segsub: open_segment \(a\left(a+k *_{R} x\right) \subseteq\) rel_interior \(S\)
                by (metis rel_interior_closure_convex_segment \([O \bar{F}\langle\) convex \(S\rangle\) arelS \(]\) )
            have \(x \neq 0\) and xaffS: \(a+x \in\) affine hull \(S\)
                using \(x\) by auto
            then have \(0<d d x\) and \(\operatorname{inS}: a+d d x *_{R} x \in\) rel_frontier \(S\)
                using \(d d 1\) by auto
```

```
    moreover have a+dd x*R}x\in\mathrm{ open_segment a ( }a+k\mp@subsup{*}{R}{}x
    using }k\langlex\not=0\rangle\langle0<ddx
    apply (simp add: in_segment)
    apply (rule_tac x = dd x/k in exI)
    apply (simp add: field_simps that)
    apply (simp add: vector_add_divide_simps algebra_simps)
    done
    ultimately show ?thesis
    using segsub by (auto simp: rel_frontier_def)
    qed
    moreover have False if k<dd x
        using x k that rel_frontier_def
        by (fastforce simp:algebra_simps releq dest!:dd2)
        ultimately show dd x = k
        by fastforce
    qed
qed
ultimately have *: continuous_on ((\lambdaz.z-a)'(affine hull S - {a})) (\lambdax.dd
x*R}x
    by auto
    have continuous_on (affine hull S - {a}) ((\lambdax.a+dd x *R x)\circ(\lambdaz.z - a))
    by (intro * continuous_intros continuous_on_compose)
    with affS have contdd: continuous_on (T - {a}) ((\lambdax.a+dd x**R x) ○( (\lambdaz.
z-a))
    by (blast intro: continuous_on_subset)
    show ?thesis
    proof
        show homotopic_with_canon (\lambdax. True) (T-{a}) (T-{a})id (\lambdax.a+dd
(x-a)*R}(x-a)
    proof (rule homotopic_with_linear)
            show continuous_on (T - {a}) id
                by (intro continuous_intros continuous_on_compose)
            show continuous_on (T-{a}) (\lambdax.a+dd (x-a)*R (x-a))
            using contdd by (simp add: o_def)
            show closed_segment (id x) (a+dd (x-a) *R (x-a))\subseteqT-{a}
                if }x\inT-{a}\mathrm{ for }
            proof (clarsimp simp: in_segment, intro conjI)
            fix u::real assume u:0\lequu\leq1
            have }a+dd(x-a)\mp@subsup{*}{R}{}(x-a)\in
            by (metis DiffD1 DiffD2 add.commute add.right_neutral affS dd1 diff_add_cancel
relS singletonI subsetCE that)
            then show (1-u)*R}x+u\mp@subsup{*}{R}{}(a+dd (x-a)\mp@subsup{*}{R}{}(x-a))\in
            using convexD [OF <convex T>] that u by simp
            have iff: (1-u)*R}x+u\mp@subsup{*}{R}{}(a+d\mp@subsup{*}{R}{}(x-a))=a
                    (1-u+u*d)**}(x-a)=0\mathrm{ for }
                    by (auto simp: algebra_simps)
            have }x\inTx\not=a\mathrm{ using that by auto
            then have axa: a+(x-a)\in affine hull S
                by (metis (no_types) add.commute affS diff_add_cancel rev_subsetD)
```

```
    then have }\negdd(x-a)\leq0\wedgea+dd (x-a)*R(x-a)\in rel_frontier S
    using <x \not=a`dd1 by fastforce
    with }\langlex\not=a\rangle\mathrm{ show (1-u)*R
        apply (auto simp: iff)
        using less_eq_real_def mult_le_0_iff not_less u by fastforce
    qed
qed
show retraction (T-{a}) (rel_frontier S) (\lambdax.a+dd (x-a)* * (x-a))
proof (simp add: retraction_def, intro conjI ballI)
    show rel_frontier S\subseteqT-{a}
    using arelS relS rel_frontier_def by fastforce
    show continuous_on (T-{a}) (\lambdax.a+dd (x-a)** (x-a))
    using contdd by (simp add: o_def)
    show }(\lambdax.a+dd(x-a)\mp@subsup{*}{R}{}(x-a))'(T-{a})\subseteqrel_frontier S
        apply (auto simp: rel_frontier_def)
    apply (metis Diff_subset add.commute affS dd1 diff_add_cancel eq_iff_diff_eq_0
rel_frontier_def subset_iff)
    by (metis DiffE add.commute affS dd1 diff_add_cancel eq_iff_diff_eq_0 rel_frontier_def
rev_subsetD)
    show }a+dd(x-a)\mp@subsup{*}{R}{}(x-a)=x\mathrm{ if }x:x\in\mathrm{ rel_frontier S for }
    proof -
        have }x\not=
            using that arelS by (auto simp:rel_frontier_def)
            have False if dd (x-a)<1
            proof -
            have }x\in\mathrm{ closure S
                using }x\mathrm{ by (auto simp: rel_frontier_def)
            then have segsub:open_segment a x\subseteq rel_interior S
                by (metis rel_interior_closure_convex_segment [OF 〈convex S〉 arelS])
            have xaffS: x a affine hull S
                using affS relS x by auto
                then have 0<dd (x-a) and inS: a+dd (x-a)*R}(x-a)
rel_frontier S
                using dd1 by (auto simp: \langlex \not=a\rangle)
            moreover have }a+dd(x-a)*R(x-a)\in\mathrm{ open_segment a x
                using \langlex\not=a\rangle\langle0<dd (x-a)\rangle
                apply (simp add: in_segment)
                apply (rule_tac x = dd (x-a) in exI)
                apply (simp add: algebra_simps that)
                done
            ultimately show ?thesis
                using segsub by (auto simp: rel_frontier_def)
            qed
            moreover have False if 1<dd (x-a)
                using x that dd2 [of x - a 1] <x\not= a\rangleclosure_affine_hull
                by (auto simp: rel_frontier_def)
            ultimately have dd (x-a)=1-similar to another proof above
                by fastforce
            with that show ?thesis
```

```
                by (simp add: rel_frontier_def)
            qed
        qed
    qed
qed
corollary rel_frontier_retract_of_punctured_affine_hull:
    fixes S :: 'a::euclidean_space set
    assumes bounded S convex S a \in rel_interior S
        shows rel_frontier S retract_of (affine hull S - {a})
apply (rule rel_frontier_deformation_retract_of_punctured_convex [of S affine hull S
a])
apply (auto simp:affine_imp_convex rel_frontier_affine_hull retract_of_def assms)
done
corollary rel_boundary_retract_of_punctured_affine_hull:
    fixes S :: 'a::euclidean_space set
    assumes compact S convex S a \in rel_interior S
    shows (S - rel_interior S) retract_of (affine hull S - {a})
by (metis assms closure_closed compact_eq_bounded_closed rel_frontier_def
            rel_frontier_retract_of_punctured_affine_hull)
lemma homotopy_eqv_rel_frontier_punctured_convex:
    fixes }S\mathrm{ :: 'a::euclidean_space set
    assumes convex S bounded S a f rel_interior S convex T rel_frontier S\subseteqT T
\subseteq \text { affine hull S}
    shows (rel_frontier S) homotopy_eqv (T - {a})
    apply (rule rel_frontier_deformation_retract_of_punctured_convex [of S T])
    using assms
    apply auto
    using deformation_retract_imp_homotopy_eqv homotopy_equivalent_space_sym by
blast
lemma homotopy_eqv_rel_frontier_punctured_affine_hull:
    fixes S :: 'a::euclidean_space set
    assumes convex S bounded S a \in rel_interior S
        shows (rel_frontier S) homotopy_eqv (affine hull S - {a})
apply (rule homotopy_eqv_rel_frontier_punctured_convex)
    using assms rel_frontier_affine_hull by force+
lemma path_connected_sphere_gen:
    assumes convex S bounded S aff_dim S}\not=
    shows path_connected(rel_frontier S)
proof (cases rel_interior S={})
    case True
    then show ?thesis
        by (simp add:<convex S> convex_imp_path_connected rel_frontier_def)
next
    case False
```

```
    then show ?thesis
    by (metis aff_dim_affine_hull affine_affine_hull affine_imp_convex all_not_in_conv
assms path_connected_punctured_convex rel_frontier_retract_of_punctured_affine_hull
retract_of_path_connected)
qed
lemma connected_sphere_gen:
    assumes convex S bounded S aff_dim S}\not=
    shows connected(rel_frontier S)
    by (simp add: assms path_connected_imp_connected path_connected_sphere_gen)
```


Borsuk-style characterization of separation

lemma continuous_on_Borsuk_map:

$$
a \notin s \Longrightarrow \text { continuous_on } s\left(\lambda x . \text { inverse }(\text { norm }(x-a)) *_{R}(x-a)\right)
$$

by (rule continuous_intros \mid force $)+$
lemma Borsuk_map_into_sphere:
$\left(\lambda x\right.$. inverse $\left.(\operatorname{norm}(x-a)) *_{R}(x-a)\right)$ ' $s \subseteq$ sphere $01 \longleftrightarrow(a \notin s)$
by auto (metis eq_iff_diff_eq_0 left_inverse norm_eq_zero)
lemma Borsuk_maps_homotopic_in_path_component:
assumes path_component $(-s) a b$
shows homotopic_with_canon $(\lambda x$. True) s (sphere 0 1)
$\left(\lambda x\right.$. inverse $\left.(\operatorname{norm}(x-a)) *_{R}(x-a)\right)$
$\left(\lambda x\right.$. inverse $\left.(\operatorname{norm}(x-b)) *_{R}(x-b)\right)$
proof -
obtain g where path g path_image $g \subseteq-s$ pathstart $g=a$ pathfinish $g=b$
using assms by (auto simp: path_component_def)
then show ?thesis
apply (simp add: path_def path_image_def pathstart_def pathfinish_def homo-
topic_with_def)
apply $\left(\right.$ rule_tac $x=\lambda z . \operatorname{inverse}(\operatorname{norm}(\operatorname{snd} z-(g \circ f s t) z)) *_{R}($ snd $z-(g \circ$
$f s t) z$) in exI)
apply (intro conjI continuous_intros)
apply (rule continuous_intros | erule continuous_on_subset | fastforce simp:
divide_simps sphere_def)+
done
qed
lemma non_extensible_Borsuk_map:
fixes a :: ' a :: euclidean_space
assumes compact s and cin: $c \in$ components $(-s)$ and boc: bounded c and a
$\in c$
shows $\neg(\exists g$. continuous_on $(s \cup c) g \wedge$
$g^{\prime}(s \cup c) \subseteq$ sphere $01 \wedge$
$\left.\left(\forall x \in \operatorname{s.g} x=\operatorname{inverse}(\operatorname{norm}(x-a)) *_{R}(x-a)\right)\right)$
proof -
have closed s using assms by (simp add: compact_imp_closed)

```
have \(c \subseteq-s\)
    using assms by (simp add: in_components_subset)
with \(\langle a \in c\rangle\) have \(a \notin s\) by blast
then have ceq: \(c=\) connected_component_set \((-s) a\)
    by (metis \(\langle a \in c\rangle\) cin components_iff connected_component_eq)
then have bounded ( \(s \cup\) connected_component_set \((-s) a\) )
    using 〈compact s〉 boc compact_imp_bounded by auto
with bounded_subset_ballD obtain \(r\) where \(0<r\) and \(r:(s \cup\) connected_component_set
\((-s) a) \subseteq\) ball a r
    by blast
\{ fix \(g\)
    assume continuous_on \((s \cup c) g\)
        \(g^{\prime}(s \cup c) \subseteq\) sphere 01
        and \([\operatorname{simp}]: \bigwedge x . x \in s \Longrightarrow g x=(x-a) / R \operatorname{norm}(x-a)\)
    then have [simp]: \(\bigwedge x . x \in s \cup c \Longrightarrow\) norm \((g x)=1\)
    by force
    have cb_eq: cball ar \(=(s \cup\) connected_component_set \((-s) a) \cup\)
                            (cball a \(r\) - connected_component_set \((-s) a)\)
        using ball_subset_cball [of a r] \(r\) by auto
    have cont1: continuous_on ( \(s \cup\) connected_component_set \((-s) a)\)
                    \(\left(\lambda x . a+r *_{R} g x\right)\)
    apply (rule continuous_intros) +
    using 〈continuous_on \((s \cup c) g\) ceq by blast
    have cont2: continuous_on (cball ar-connected_component_set \((-s) a\) )
            \(\left(\lambda x \cdot a+r *_{R}((x-a) / R \operatorname{norm}(x-a))\right)\)
        by (rule continuous_intros | force simp: \(\langle a \notin s\rangle)+\)
    have 1: continuous_on (cball a r)
            ( \(\lambda x\). if connected_component \((-s) a x\)
                then \(a+r *_{R} g x\)
                else \(\left.a+r *_{R}((x-a) / R \operatorname{norm}(x-a))\right)\)
    apply (subst cb_eq)
    apply (rule continuous_on_cases [OF _ _ cont1 cont2])
        using ceq cin
    apply (auto intro: closed_Un_complement_component
                simp: 〈closed s〉open_Compl open_connected_component)
    done
    have 2: \(\left(\lambda x . a+r *_{R} g x\right)\) ' \((\) cball a \(r \cap\) connected_component_set \((-s) a)\)
                            \(\subseteq\) sphere a \(r\)
    using \(\langle 0<r\rangle\) by (force simp: dist_norm ceq)
    have retraction (cball a \(r\) ) (sphere a \(r\) )
        ( \(\lambda x\). if \(x \in\) connected_component_set \((-s) a\)
                then \(a+r *_{R} g x\)
                else \(\left.a+r *_{R}((x-a) / R \operatorname{norm}(x-a))\right)\)
    using \(\langle 0<r\rangle\)
    apply (simp add: retraction_def dist_norm 1 2, safe)
    apply (force simp: dist_norm abs_if mult_less_0_iff divide_simps \(\langle a \notin s\rangle\) )
    using \(r\)
    by (auto simp: dist_norm norm_minus_commute)
    then have False
```

using no_retraction_cball
[OF $\langle 0<r\rangle$, of a, unfolded retract_of_def, simplified, rule_format, of λx. if $x \in$ connected_component_set $(-s) a$ then $a+r *_{R} g x$ else $\left.a+r *_{R} \operatorname{inverse}(\operatorname{norm}(x-a)) *_{R}(x-a)\right]$
by blast
\}
then show ?thesis
by blast
qed

Proving surjectivity via Brouwer fixpoint theorem

```
lemma brouwer_surjective:
    fixes \(f::\) ' \(n::\) euclidean_space \(\Rightarrow{ }^{\prime} n\)
    assumes compact \(T\)
        and convex \(T\)
        and \(T \neq\{ \}\)
        and continuous_on \(T f\)
        and \(\bigwedge x y . \llbracket x \in S ; y \in T \rrbracket \Longrightarrow x+(y-f y) \in T\)
        and \(x \in S\)
    shows \(\exists y \in T\). \(f y=x\)
proof -
    have \(*: \bigwedge x y . f y=x \longleftrightarrow x+(y-f y)=y\)
        by (auto simp add: algebra_simps)
    show ?thesis
            unfolding *
            apply (rule brouwer [OF assms \((1-3)\), of \(\lambda y \cdot x+(y-f y)])\)
            apply (intro continuous_intros)
            using assms
            apply auto
            done
qed
lemma brouwer_surjective_cball:
    fixes \(f::\) ' \(n::\) euclidean_space \(\Rightarrow\) ' \(n\)
    assumes continuous_on (cball a e) \(f\)
        and \(e>0\)
        and \(x \in S\)
        and \(\bigwedge x y . \llbracket x \in S ; y \in\) cball a \(e \rrbracket \Longrightarrow x+(y-f y) \in\) cball a \(e\)
    shows \(\exists y \in\) cball a e. f \(y=x\)
    apply (rule brouwer_surjective)
    apply (rule compact_cball convex_cball)+
    unfolding cball_eq_empty
    using assms
    apply auto
    done
```


Inverse function theorem

See Sussmann: "Multidifferential calculus", Theorem 2.1.1

```
lemma sussmann_open_mapping:
    fixes \(f\) :: 'a::real_normed_vector \(\Rightarrow\) 'b::euclidean_space
    assumes open \(S\)
        and contf: continuous_on \(S f\)
        and \(x \in S\)
    and derf: (f has_derivative \(\left.f^{\prime}\right)(\) at \(x)\)
    and bounded_linear \(g^{\prime} f^{\prime} \circ g^{\prime}=i d\)
    and \(T \subseteq S\)
    and \(x: x \in\) interior \(T\)
    shows \(f x \in \operatorname{interior}\left(f^{\prime} T\right)\)
proof -
    interpret \(f^{\prime}\) : bounded_linear \(f^{\prime}\)
        using assms unfolding has_derivative_def by auto
    interpret \(g^{\prime}\) : bounded_linear \(g^{\prime}\)
        using assms by auto
    obtain \(B\) where \(B: 0<B \forall x\). norm \(\left(g^{\prime} x\right) \leq \operatorname{norm} x * B\)
        using bounded_linear.pos_bounded[OF assms(5)] by blast
    hence \(*: 1 /(2 * B)>0\) by auto
    obtain \(e 0\) where \(e 0\) :
        \(0<e 0\)
        \(\forall y . \operatorname{norm}(y-x)<e 0 \longrightarrow \operatorname{norm}\left(f y-f x-f^{\prime}(y-x)\right) \leq 1 /(2 * B) *\)
norm \((y-x)\)
        using derf unfolding has_derivative_at_alt
        using \(*\) by blast
    obtain e1 where e1: \(0<e 1\) cball \(x\) e1 \(\subseteq T\)
    using mem_interior_cball \(x\) by blast
    have \(*: 0<e 0 / B 0<e 1 / B\) using e0 e1 B by auto
    obtain \(e\) where \(e: 0<e e<e 0 / B e<e 1 / B\)
    using field_lbound_gt_zero[OF *] by blast
    have lem: \(\exists y \in \operatorname{cball}(f x)\) e. \(f\left(x+g^{\prime}(y-f x)\right)=z\) if \(z \in \operatorname{cball}(f x)(e / 2)\)
for \(z\)
    proof (rule brouwer_surjective_cball)
        have \(z: z \in S\) if as: \(y \in \operatorname{cball}(f x) e z=x+\left(g^{\prime} y-g^{\prime}(f x)\right)\) for \(y z\)
    proof-
        have dist \(x z=\) norm \(\left(g^{\prime}(f x)-g^{\prime} y\right)\)
            unfolding as(2) and dist_norm by auto
        also have \(\ldots \leq \operatorname{norm}(f x-y) * B\)
                by (metis B(2) \(g^{\prime}\).diff)
        also have \(\ldots \leq e * B\)
            by (metis \(B(1)\) dist_norm mem_cball mult_le_cancel_iff1 that(1))
        also have \(\ldots \leq e 1\)
            using \(B(1) e(3)\) pos_less_divide_eq by fastforce
            finally have \(z \in \operatorname{cball} x\) e 1
                by force
            then show \(z \in S\)
                using e1 assms(7) by auto
```

qed
show continuous_on $(\operatorname{cball}(f x) e)\left(\lambda y . f\left(x+g^{\prime}(y-f x)\right)\right)$
unfolding g^{\prime}.diff
proof (rule continuous_on_compose2 [OF _ _ order_refl, of _ _ f])
show continuous_on $\left(\left(\lambda y \cdot x+\left(g^{\prime} y-g^{\prime}(f x)\right)\right)\right.$ 'cball $(f x)$ e) f
by (rule continuous_on_subset[OF contf]) (use z in blast)
show continuous_on $(\operatorname{cball}(f x) e)\left(\lambda y . x+\left(g^{\prime} y-g^{\prime}(f x)\right)\right)$
by (intro continuous_intros linear_continuous_on [OF 〈bounded_linear $\left.\left.g^{\prime}\right\rangle\right]$)
qed
next
fix $y z$
assume $y: y \in \operatorname{cball}(f x)(e / 2)$ and $z: z \in \operatorname{cball}(f x) e$
have norm $\left(g^{\prime}(z-f x)\right) \leq \operatorname{norm}(z-f x) * B$
using B by auto
also have $\ldots \leq e * B$
by (metis B(1) z dist_norm mem_cball norm_minus_commute mult_le_cancel_iff1)
also have $\ldots<e 0$
using $B(1) e(2)$ pos_less_divide_eq by blast
finally have $*$: norm $\left(x+g^{\prime}(z-f x)-x\right)<e 0$
by auto
have $* *: f x+f^{\prime}\left(x+g^{\prime}(z-f x)-x\right)=z$
using assms(6)[unfolded o_def id_def,THEN cong]
by auto
have $\operatorname{norm}\left(f x-\left(y+\left(z-f\left(x+g^{\prime}(z-f x)\right)\right)\right)\right) \leq$ $\operatorname{norm}\left(f\left(x+g^{\prime}(z-f x)\right)-z\right)+\operatorname{norm}(f x-y)$
using norm_triangle_ineq[of $\left.f\left(x+g^{\prime}(z-f x)\right)-z f x-y\right]$
by (auto simp add: algebra_simps)
also have $\ldots \leq 1 /(B * 2) * \operatorname{norm}\left(g^{\prime}(z-f x)\right)+\operatorname{norm}(f x-y)$
using $e 0$ (2)[rule_format, $O F *$]
by (simp only: algebra_simps **) auto
also have $\ldots \leq 1 /(B * 2) * \operatorname{norm}\left(g^{\prime}(z-f x)\right)+e / 2$
using y by (auto simp: dist_norm)
also have $\ldots \leq 1 /(B * 2) * B * \operatorname{norm}(z-f x)+e / 2$
using $* B$ by (auto simp add: field_simps)
also have $\ldots \leq 1 / 2 * \operatorname{norm}(z-f x)+e / 2$
by auto
also have $\ldots \leq e / 2+e / 2$
using $B(1)\langle$ norm $(z-f x) * B \leq e * B\rangle$ by auto
finally show $y+\left(z-f\left(x+g^{\prime}(z-f x)\right)\right) \in \operatorname{cball}(f x) e$
by (auto simp: dist_norm)
qed (use e that in auto)
show ?thesis
unfolding mem_interior
proof (intro exI conjI subsetI)
fix y
assume $y \in \operatorname{ball}(f x)(e / \mathcal{Z})$
then have $*: y \in \operatorname{cball}(f x)(e / 2)$
by auto
obtain z where $z: z \in \operatorname{cball}(f x)$ ef $\left(x+g^{\prime}(z-f x)\right)=y$

```
        using lem * by blast
    then have norm (g' (z-fx)) \leqnorm (z-fx)*B
        using }
        by (auto simp add: field_simps)
    also have ... \leqe*B
    by (metis B(1) dist_norm mem_cball norm_minus_commute mult_le_cancel_iff1
z(1))
    also have ... \leqe1
        using e B unfolding less_divide_eq by auto
    finally have }x+\mp@subsup{g}{}{\prime}(z-fx)\in
    by (metis add_diff_cancel diff_diff_add dist_norm e1(2) mem_cball norm_minus_commute
subset_eq)
    then show y f f'T
        using z by auto
    qed (use e in auto)
qed
```

Hence the following eccentric variant of the inverse function theorem. This has no continuity assumptions, but we do need the inverse function. We could put $f^{\prime} \circ g=I$ but this happens to fit with the minimal linear algebra theory I've set up so far.

```
lemma has_derivative_inverse_strong:
    fixes \(f::\) ' \(n:\) :euclidean_space \(\Rightarrow{ }^{\prime} n\)
    assumes open \(S\)
        and \(x \in S\)
        and contf: continuous_on \(S f\)
        and \(g f: \wedge x . x \in S \Longrightarrow g(f x)=x\)
        and derf: (f has_derivative \(\left.f^{\prime}\right)(\) at \(x)\)
        and \(i d: f^{\prime} \circ g^{\prime}=i d\)
    shows ( \(g\) has_derivative \(g^{\prime}\) ) (at ( \(\left.f x\right)\) )
proof -
    have linf: bounded_linear \(f^{\prime}\)
        using derf unfolding has_derivative_def by auto
    then have ling: bounded_linear \(g^{\prime}\)
        unfolding linear_conv_bounded_linear[symmetric]
        using id right_inverse_linear by blast
    moreover have \(g^{\prime} \circ f^{\prime}=i d\)
        using id linf ling
        unfolding linear_conv_bounded_linear[symmetric]
        using linear_inverse_left
        by auto
    moreover have \(*: \wedge T . \llbracket T \subseteq S ; x \in\) interior \(T \rrbracket \Longrightarrow f x \in \operatorname{interior}\left(f^{\prime} T\right)\)
        apply (rule sussmann_open_mapping)
        apply (rule assms ling) +
        apply auto
        done
    have continuous (at \((f x)) g\)
        unfolding continuous_at Lim_at
    proof (rule, rule)
```

```
    fix e :: real
    assume e>0
    then have fx\in interior (f'(ball x e\capS))
        using *[rule_format,of ball x e \capS]\langlex \inS\rangle
        by (auto simp add: interior_open[OF open_ball] interior_open[OF assms(1)])
    then obtain d where d: 0<d ball (fx)d\subseteqf'(ball x e\capS)
        unfolding mem_interior by blast
    show \existsd>0.\forally.0<dist y (fx)^dist y (fx)<d \longrightarrow dist (gy) (g(fx))
< e
    proof (intro exI allI impI conjI)
        fix }
        assume 0<dist y (fx)^dist y (fx)<d
        then have g y fg'f'(ball x e \capS)
            by (metis d(2) dist_commute mem_ball rev_image_eqI subset_iff)
        then show dist (g y) (g(fx))<e
            using gf[OF<<x\inS\rangle]
            by (simp add: assms(4) dist_commute image_iff)
    qed (use d in auto)
    qed
    moreover have f x finterior (f'S)
    apply (rule sussmann_open_mapping)
    apply (rule assms ling)+
    using interior_open[OF assms(1)] and \langlex < S >
    apply auto
    done
    moreover have f(gy)=y if y\in interior (f'S) for y
    by (metis gf imageE interiorE subsetD that)
    ultimately show ?thesis using assms
    by (metis has_derivative_inverse_basic_x open_interior)
qed
```

A rewrite based on the other domain.

```
lemma has_derivative_inverse_strong_x:
    fixes \(f::\) ' \(a::\) euclidean_space \(\Rightarrow{ }^{\prime} a\)
    assumes open \(S\)
    and \(g y \in S\)
    and continuous_on \(S f\)
    and \(\bigwedge x . x \in S \Longrightarrow g(f x)=x\)
    and \(\left(f\right.\) has_derivative \(\left.f^{\prime}\right)(\) at \((g y))\)
    and \(f^{\prime} \circ g^{\prime}=i d\)
    and \(f(g y)=y\)
    shows ( \(g\) has_derivative \(g^{\prime}\) ) (at y)
    using has_derivative_inverse_strong[OF assms(1-6)]
    unfolding assms(7)
    by \(\operatorname{simp}\)
```

On a region.
theorem has_derivative_inverse_on:
fixes $f::$ ' $n::$ euclidean_space \Rightarrow ' n

```
assumes open \(S\)
    and derf: \(\bigwedge x . x \in S \Longrightarrow\left(f\right.\) has_derivative \(\left.f^{\prime}(x)\right)(\) at \(x)\)
    and \(\bigwedge x, x \in S \Longrightarrow g(f x)=x\)
    and \(f^{\prime} x \circ g^{\prime} x=i d\)
    and \(x \in S\)
    shows ( \(g\) has_derivative \(g^{\prime}(x)\) ) (at \((f x)\) )
proof (rule has_derivative_inverse_strong \(\left[\right.\) where \(g^{\prime}=g^{\prime} x\) and \(\left.f=f\right]\) )
    show continuous_on \(S f\)
    unfolding continuous_on_eq_continuous_at[OF 〈open \(S\) 〉]
    using derf has_derivative_continuous by blast
qed (use assms in auto)
end
```


6.32 Fashoda Meet Theorem

theory Fashoda_Theorem

imports Brouwer_Fixpoint Path_Connected Cartesian_Euclidean_Space
begin

6.32.1 Bijections between intervals

definition interval_bij :: ' $a \times{ }^{\prime} a \Rightarrow{ }^{\prime} a \times{ }^{\prime} a \Rightarrow^{\prime} a \Rightarrow{ }^{\prime} a::$ euclidean_space where interval_bij $=$
$\left(\lambda(a, b)(u, v) x .\left(\sum i \in\right.\right.$ Basis. $(u \cdot i+(x \cdot i-a \cdot i) /(b \cdot i-a \cdot i) *(v \cdot i-u \cdot i))$
$\left.\left.*_{R} i\right)\right)$
lemma interval_bij_affine:
interval_bij $(a, b)(u, v)=\left(\lambda x .\left(\sum i \in\right.\right.$ Basis. $((v \cdot i-u \cdot i) /(b \cdot i-a \cdot i) *(x \cdot i))$
$\left.*_{R} i\right)+$
$\left(\sum i \in\right.$ Basis. $\left.\left.(u \cdot i-(v \cdot i-u \cdot i) /(b \cdot i-a \cdot i) *(a \cdot i)) *_{R} i\right)\right)$
by (auto simp add: interval_bij_def sum.distrib [symmetric] scaleR_add_left [symmetric] fun_eq_iff intro!: sum.cong)
(simp add: algebra_simps diff_divide_distrib [symmetric])
lemma continuous_interval_bij:
fixes $a b$:: 'a::euclidean_space
shows continuous (at x) (interval_bij $(a, b)(u, v))$
by (auto simp add: divide_inverse interval_bij_def intro!: continuous_sum contin-
uous_intros)
lemma continuous_on_interval_bij: continuous_on s (interval_bij $(a, b)(u, v))$
apply(rule continuous_at_imp_continuous_on)
apply (rule, rule continuous_interval_bij)
done
lemma in_interval_interval_bij:
fixes $a b u v x$:: ' $a::$ euclidean_space

```
    assumes \(x \in\) cbox ab
    and cbox \(u v \neq\{ \}\)
    shows interval_bij \((a, b)(u, v) x \in\) cbox \(u v\)
    apply (simp only: interval_bij_def split_conv mem_box inner_sum_left_Basis cong:
ball_cong)
    apply safe
proof -
    fix \(i::{ }^{\prime} a\)
    assume \(i: i \in\) Basis
    have cbox a \(b \neq\{ \}\)
        using assms by auto
    with \(i\) have \(*: a \cdot i \leq b \cdot i u \cdot i \leq v \cdot i\)
        using assms(2) by (auto simp add: box_eq_empty)
    have \(x\) : \(a \cdot i \leq x \cdot i x \cdot i \leq b \cdot i\)
        using assms(1)[unfolded mem_box] using \(i\) by auto
    have \(0 \leq(x \cdot i-a \cdot i) /(b \cdot i-a \cdot i) *(v \cdot i-u \cdot i)\)
        using \(* x\) by auto
    then show \(u \cdot i \leq u \cdot i+(x \cdot i-a \cdot i) /(b \cdot i-a \cdot i) *(v \cdot i-u \cdot i)\)
        using \(*\) by auto
    have \(((x \cdot i-a \cdot i) /(b \cdot i-a \cdot i)) *(v \cdot i-u \cdot i) \leq 1 *(v \cdot i-u \cdot i)\)
        apply (rule mult_right_mono)
        unfolding divide_le_eq_1
        using \(* x\)
        apply auto
        done
    then show \(u \cdot i+(x \cdot i-a \cdot i) /(b \cdot i-a \cdot i) *(v \cdot i-u \cdot i) \leq v \cdot i\)
        using \(*\) by auto
qed
lemma interval_bij_bij:
    \(\forall\left(i::^{\prime} a::\right.\) euclidean_space \() \in\) Basis. \(a \cdot i<b \cdot i \wedge u \cdot i<v \cdot i \Longrightarrow\)
        interval_bij \((a, b)(u, v)(\) interval_bij \((u, v)(a, b) x)=x\)
    by (auto simp: interval_bij_def euclidean_eq_iff \(\left[\right.\) where \(\left.{ }^{\prime} a={ }^{\prime} a\right]\) )
lemma interval_bij_bij_cart: fixes \(x::\) real \(^{\wedge \prime} n\) assumes \(\forall i . a \$ i<b \$ i \wedge u \$ i<v \$ i\)
    shows interval_bij \((a, b)(u, v)\) (interval_bij \((u, v)(a, b) x)=x\)
    using assms by (intro interval_bij_bij) (auto simp: Basis_vec_def inner_axis)
```


6.32.2 Fashoda meet theorem

```
lemma infnorm_2:
    fixes }x\mathrm{ :: real^2
    shows infnorm x = max |x$1| |x$2|
    unfolding infnorm_cart UNIV_2 by (rule cSup_eq) auto
lemma infnorm_eq_1_2:
    fixes x :: real^2
    shows infnorm x=1 \longleftrightarrow
        |x$1|\leq1^ |x$2|\leq1^(x$1=-1\veex$1=1\veex$2=-1\veex$2=1)
```

```
    unfolding infnorm_2 by auto
lemma infnorm_eq_1_imp:
    fixes \(x\) :: real^2
    assumes infnorm \(x=1\)
    shows \(|x \$ 1| \leq 1\) and \(|x \$ 2| \leq 1\)
    using assms unfolding infnorm_eq_1_2 by auto
proposition fashoda_unit:
    fixes \(f g\) :: real \(\Rightarrow\) real ^2
    assumes \(f\) ' \(\{-1\).. 1\(\} \subseteq \operatorname{cbox}(-1) 1\)
        and \(g\) ' \(\{-1 . .1\} \subseteq \operatorname{cbox}(-1) 1\)
        and continuous_on \(\{-1 . .1\} f\)
        and continuous_on \(\{-1\).. 1\(\} g\)
        and \(f(-1) \$ 1=-1\)
        and \(f 1 \$ 1=1 g(-1) \$ 2=-1\)
        and \(g 1 \$ 2=1\)
    shows \(\exists s \in\{-1 . .1\}\). \(\exists t \in\{-1 . .1\} . f s=g t\)
proof (rule ccontr)
    assume \(\neg\) ?thesis
    note as = this[unfolded bex_simps,rule_format]
    define sqprojection
        where [abs_def]: sqprojection \(z=(\) inverse \((\) infnorm \(z)) *_{R} z\) for \(z::\) real^2
    define negatex \(::\) real^2 \(\Rightarrow\) real \({ }^{\wedge} 2\)
        where negatex \(x=(\) vector \([-(x \$ 1), x \$ 2])\) for \(x\)
    have lem1: \(\forall z::\) real^2. infnorm (negatex \(z\) ) \(=\) infnorm \(z\)
        unfolding negatex_def infnorm_2 vector_2 by auto
    have lem2: \(\forall z, z \neq 0 \longrightarrow\) infnorm (sqprojection \(z\) ) \(=1\)
        unfolding sqprojection_def infnorm_mul[unfolded scalar_mult_eq_scaleR]
        by (simp add: real_abs_infnorm infnorm_eq_0)
    let ? \(F=\lambda w:\) :real^2. \((f \circ(\lambda x . x \$ 1)) w-(g \circ(\lambda x . x \$ 2)) w\)
    have \(*\) : \(\bigwedge i .(\lambda x:\) :real^2. \(x \$ i) ’ \operatorname{cbox}(-1) 1=\{-1 . .1\}\)
    proof
        show ( \(\lambda x\) :: real^2. \(x \$ i\) )'cbox \((-1) 1 \subseteq\{-1 . .1\}\) for \(i\)
            by (auto simp: mem_box_cart)
        show \(\{-1 . .1\} \subseteq(\lambda x:: \text { real^2. } x \$ i)^{\prime}\) cbox \((-1) 1\) for \(i\)
        by (clarsimp simp: image_iff mem_box_cart Bex_def) (metis (no_types, hide_lams)
vec_component)
    qed
    \{
        fix \(x\)
        assume \(x \in\left(\lambda w .\left(f \circ(\lambda x . x\right.\right.\) \$ 1) \() w-(g \circ(\lambda x . x \text { \$ 2) }) w)^{\prime}(\operatorname{cbox}(-1)\)
(1::real^2))
    then obtain \(w::\) real 22 where \(w\) :
                \(w \in \operatorname{cbox}(-1) 1\)
                \(x=(f \circ(\lambda x . x \$ 1)) w-(g \circ(\lambda x . x \$\) 2 \()) w\)
            unfolding image_iff ..
            then have \(x \neq 0\)
                using as[of w\$1 w\$2]
```

unfolding mem_box_cart atLeastAtMost_iff
by auto
\} note $x 0=$ this
have 1 : box $(-1)\left(1::\right.$ real $\left.^{\wedge} 2\right) \neq\{ \}$
unfolding interval_eq_empty_cart by auto
have negatex $(x+y) \$ i=($ negatex $x+$ negatex $y) \$ i \wedge$ negatex $\left(c *_{R} x\right) \$ i$
$=\left(c *_{R}\right.$ negatex $\left.x\right) \$ i$
for $i x y c$
using exhaust_2 [of i] by (auto simp: negatex_def)
then have bounded_linear negatex
by (simp add: bounded_linearI' vec_eq_iff)
then have 2: continuous_on (cbox $(-1) 1)($ negatex \circ sqprojection $\circ ? F)$
apply (intro continuous_intros continuous_on_component)
unfolding * sqprojection_def
apply (intro assms continuous_intros)+
apply (simp_all add: infnorm_eq_0 x0 linear_continuous_on)
done
have 3: (negatex \circ sqprojection $\circ ? F)$ ' cbox $(-1) 1 \subseteq \operatorname{cbox}(-1) 1$
unfolding subset_eq
proof (rule, goal_cases)
case (1 x)
then obtain $y::$ real $^{\wedge} 2$ where y :
$y \in \operatorname{cbox}(-1) 1$
$x=($ negatex \circ sqprojection $\circ(\lambda w .(f \circ(\lambda x . x \$ 1)) w-(g \circ(\lambda x . x$ \$ 2 $))$
w)) y
unfolding image_iff ..
have ? F y $\neq 0$
by (rule $x 0$) (use y in auto)
then have $*$: infnorm (sqprojection (?F y)) $=1$
unfolding y o_def
by - (rule lem2[rule_format])
have inf1: infnorm $x=1$
unfolding $*$ [symmetric $]$ y o_def
by (rule lem1[rule_format])
show $x \in \operatorname{cbox}(-1) 1$
unfolding mem_box_cart interval_cbox_cart infnorm_2
proof
fix i
show $(-1) \$ i \leq x \$ i \wedge x \$ i \leq 1 \$ i$
using exhaust_2 [of i] inf1 by (auto simp: infnorm_2)
qed
qed
obtain x :: real ${ }^{\wedge} 2$ where x :
$x \in \operatorname{cbox}(-1) 1$
$($ negatex \circ sqprojection $\circ(\lambda w .(f \circ(\lambda x . x \$ 1)) w-(g \circ(\lambda x . x$ \$ 2) $) w)) x$ $=x$
apply (rule brouwer_weak[of cbox (-1) (1::real^2) negatex \circ sqprojection \circ ? ${ }^{F}$])
apply (rule compact_cbox convex_box)+

```
    unfolding interior_cbox
    apply (rule 123 ) +
    apply blast
    done
    have ? \(F x \neq 0\)
    by (rule x0) (use \(x\) in auto)
    then have \(*\) : infnorm (sqprojection \((? F x)\) ) \(=1\)
    unfolding o_def
    by (rule lem2[rule_format])
    have \(n x\) : infnorm \(x=1\)
    apply (subst \(x\) (2)[symmetric])
    unfolding \(*\) [symmetric \(]\) o_def
    apply (rule lem1 \([\) rule_format \(]\) )
    done
    have iff: \(0<\) sqprojection \(x \$ i \longleftrightarrow 0<x \$ i\) sqprojection \(x \$ i<0 \longleftrightarrow x \$ i<0\)
if \(x \neq 0\) for \(x i\)
    proof -
    have inverse (infnorm \(x\) ) \(>0\)
        by (simp add: infnorm_pos_lt that)
    then show \((0<\) sqprojection \(x \$ i)=(0<x \$ i)\)
        and (sqprojection \(x \$ i<0)=(x \$ i<0)\)
        unfolding sqprojection_def vector_component_simps vector_scaleR_component
real_scaleR_def
        unfolding zero_less_mult_iff mult_less_0_iff
        by (auto simp add: field_simps)
    qed
    have \(x 1: x \$ 1 \in\{-1 . .1::\) real \(\} x \$ 2 \in\{-1 . .1::\) real \(\}\)
    using \(x(1)\) unfolding mem_box_cart by auto
    then have \(n z: f(x \$ 1)-g(x \$ 2) \neq 0\)
        using as by auto
    consider \(x \$ 1=-1|x \$ 1=1| x \$ 2=-1 \mid x \$ 2=1\)
        using \(n x\) unfolding infnorm_eq_1_2 by auto
    then show False
    proof cases
    case 1
    then have \(*: f(x \$ 1) \$ 1=-1\)
        using assms(5) by auto
    have sqprojection \((f(x \$ 1)-g(x \$ 2)) \$ 1>0\)
        using \(x\) (2)[unfolded o_def vec_eq_iff,THEN spec[where \(x=1\) ]]
        by (auto simp: negatex_def 1)
    moreover
    from \(x 1\) have \(g(x \$ 2) \in \operatorname{cbox}(-1) 1\)
        using assms(2) by blast
    ultimately show False
        unfolding iff \([O F n z]\) vector_component_simps * mem_box_cart
        using not_le by auto
    next
    case 2
    then have \(*: f(x \$ 1) \$ 1=1\)
```

```
        using assms (6) by auto
    have sqprojection \((f(x \$ 1)-g(x \$ 2)) \$ 1<0\)
        using \(x\) (2)[unfolded o_def vec_eq_iff,THEN spec[where \(x=1\) ]] 2
        by (auto simp: negatex_def)
    moreover have \(g(x\) \$ 2) \(\in \operatorname{cbox}(-1) 1\)
        using assms(2) x1 by blast
    ultimately show False
        unfolding iff \([O F n z]\) vector_component_simps \(*\) mem_box_cart
        using not_le by auto
    next
    case 3
    then have \(*: g(x \$ 2) \$ 2=-1\)
        using assms (7) by auto
    have sqprojection \((f(x \$ 1)-g(x \$ 2)) \$ 2<0\)
        using \(x\) (2)[unfolded o_def vec_eq_iff,THEN spec[where \(x=2]\) ] 3 by (auto
simp: negatex_def)
    moreover
    from \(x 1\) have \(f(x \$ 1) \in \operatorname{cbox}(-1) 1\)
        using assms(1) by blast
    ultimately show False
        unfolding iff [OF nz] vector_component_simps * mem_box_cart
        by (erule_tac \(x=2\) in allE) auto
    next
    case 4
    then have \(*: g(x \$ 2) \$ 2=1\)
        using assms(8) by auto
    have sqprojection \((f(x \$ 1)-g(x \$ 2)) \$\) 2 \(>0\)
            using \(x(2)[\) unfolded o_def vec_eq_iff,THEN spec[where \(x=2]]\) \& by (auto
simp: negatex_def)
    moreover
    from \(x 1\) have \(f(x \$ 1) \in \operatorname{cbox}(-1) 1\)
            using assms(1) by blast
    ultimately show False
        unfolding iff [OF nz] vector_component_simps * mem_box_cart
        by (erule_tac \(x=2\) in allE) auto
    qed
qed
proposition fashoda_unit_path:
    fixes \(f g\) :: real \(\Rightarrow\) real^2
    assumes path \(f\)
        and path \(g\)
        and path_image \(f \subseteq\) cbox \((-1) 1\)
        and path_image \(g \subseteq\) cbox \((-1) 1\)
        and \((\) pathstart \(f) \$ 1=-1\)
        and \((\) pathfinish \(f) \$ 1=1\)
        and \((\) pathstart \(g) \$ 2=-1\)
        and \((\) pathfinish \(g) \$ 2=1\)
    obtains \(z\) where \(z \in\) path_image \(f\) and \(z \in\) path_image \(g\)
```

```
proof -
    note assms=assms[unfolded path_def pathstart_def pathfinish_def path_image_def]
    define iscale where [abs_def]: iscale z = inverse 2 *R
    have isc: iscale '{-1..1}\subseteq{0..1}
        unfolding iscale_def by auto
    have \existss\in{-1..1}.\existst\in{-1..1}.(f\circ iscale) }s=(g\circ\mathrm{ iscale ) }
    proof (rule fashoda_unit)
        show (f\circ iscale)'{-1..1}\subseteqcbox (-1) 1(g\circiscale)'{-1..1}\subseteqcbox
(- 1) 1
        using isc and assms(3-4) by (auto simp add: image_comp [symmetric])
        have *:continuous_on {-1..1} iscale
        unfolding iscale_def by (rule continuous_intros)+
    show continuous_on {-1..1}(f\circ iscale) continuous_on {-1..1}(g\circ iscale)
        apply -
        apply (rule_tac[!] continuous_on_compose[OF *])
        apply (rule_tac[!] continuous_on_subset[OF _ isc])
        apply (rule assms)+
        done
    have *: (1 / 2) ** (1 + (1::real^1)) = 1
        unfolding vec_eq_iff by auto
    show (f\circiscale) (-1)$ 1 = - 1
        and (f\circ iscale) 1 $ 1 = 1
        and (g\circ iscale) (-1)$ 2 = - 1
        and (g\circ iscale) 1 $ 2 = 1
        unfolding o_def iscale_def
        using assms
        by (auto simp add: *)
    qed
    then obtain st where st:
        s\in{-1..1}
        t\in{-1..1}
        (f\circiscale) s=(g\circiscale) t
        by auto
    show thesis
    apply (rule_tac z = f(iscale s) in that)
    using st
    unfolding o_def path_image_def image_iff
    apply -
    apply (rule_tac x=iscale s in bexI)
    prefer 3
    apply (rule_tac x=iscale t in bexI)
    using isc[unfolded subset_eq, rule_format]
    apply auto
    done
qed
theorem fashoda:
    fixes b :: real^2
    assumes path f
```

```
    and path g
    and path_image f\subseteqcbox a b
    and path_image g\subseteqcbox a b
    and (pathstart f)$1 =a$1
    and (pathfinish f)$1=b$1
    and (pathstart g)$2 =a$2
    and (pathfinish g)$2 = b$2
    obtains z where z\in path_image f and z\in path_image g
proof -
    fix PQS
    presume P\veeQ\veeSP\Longrightarrow thesis and Q thesis and S\Longrightarrow thesis
    then show thesis
        by auto
next
    have cbox a b}\not={
        using assms(3) using path_image_nonempty[of f] by auto
    then have a \leqb
        unfolding interval_eq_empty_cart less_eq_vec_def by (auto simp add: not_less)
    then show a$1=b$1\veea$2=b$2\vee (a$1<b$1^a$2<b$2)
        unfolding less_eq_vec_def forall_2 by auto
next
    assume as:a$1=b$1
    have }\existsz\in\mathrm{ path_image g. z$2 = (pathstart f)$2
        apply (rule connected_ivt_component_cart)
        apply (rule connected_path_image assms)+
        apply (rule pathstart_in_path_image)
        apply (rule pathfinish_in_path_image)
    unfolding assms using assms(3)[unfolded path_image_def subset_eq,rule_format,of
f 0]
            unfolding pathstart_def
            apply (auto simp add: less_eq_vec_def mem_box_cart)
            done
    then obtain z :: real^2 where z: z f path_image g z $ 2 = pathstart f $ 2 ..
    have z cbox a b
        using z(1) assms(4)
        unfolding path_image_def
        by blast
    then have z=f0
        unfolding vec_eq_iff forall_2
        unfolding z(2) pathstart_def
        using assms(3)[unfolded path_image_def subset_eq mem_box_cart,rule_format,of
f O 1]
            unfolding mem_box_cart
        apply(erule_tac x=1 in allE)
        using as
        apply auto
        done
    then show thesis
        apply -
```

```
    apply (rule that \(\left[O F_{-} z(1)\right]\) )
    unfolding path_image_def
    apply auto
    done
next
    assume as: \(a \$ 2=b \$ 2\)
    have \(\exists z \in\) path_image \(f . z \$ 1=(\) pathstart \(g) \$ 1\)
        apply (rule connected_ivt_component_cart)
        apply (rule connected_path_image assms)+
        apply (rule pathstart_in_path_image)
        apply (rule pathfinish_in_path_image)
        unfolding assms
        using assms(4)[unfolded path_image_def subset_eq,rule_format,of g 0]
        unfolding pathstart_def
        apply (auto simp add: less_eq_vec_def mem_box_cart)
        done
    then obtain \(z\) where \(z: z \in\) path_image \(f z \$ 1=\) pathstart \(g \$ 1 .\).
    have \(z \in\) cbox a \(b\)
        using \(z(1)\) assms(3)
        unfolding path_image_def
        by blast
    then have \(z=g 0\)
    unfolding vec_eq_iff forall_2
    unfolding \(z(2)\) pathstart_def
    using assms(4)[unfolded path_image_def subset_eq mem_box_cart,rule_format,of
g 0 2]
    unfolding mem_box_cart
        apply (erule_tac \(x=2\) in allE)
        using as
        apply auto
        done
    then show thesis
        apply -
        apply (rule that \([\) OF \(z(1)]\) )
        unfolding path_image_def
        apply auto
        done
next
    assume as: \(a \$ 1<b \$ 1 \wedge a \$ 2<b \$ 2\)
    have int_nem: cbox \((-1)\left(1::\right.\) real \(\left.{ }^{\wedge} 2\right) \neq\{ \}\)
        unfolding interval_eq_empty_cart by auto
    obtain \(z\) :: real^^2 where \(z\) :
        \(z \in(\) interval_bij \((a, b)(-1,1) \circ f) '\{0 . .1\}\)
        \(z \in(\) interval_bij \((a, b)(-1,1) \circ g) ‘\{0 . .1\}\)
    apply (rule fashoda_unit_path[of interval_bij \((a, b)(-1,1) \circ f\) interval_bij \((a, b)\)
\((-1,1) \circ g])\)
    unfolding path_def path_image_def pathstart_def pathfinish_def
    apply (rule_tac[1-2] continuous_on_compose)
    apply (rule assms[unfolded path_def] continuous_on_interval_bij)+
```

```
    unfolding subset_eq
    \(\operatorname{apply}(\) rule_tac[1-2] ballI)
proof -
    fix \(x\)
    assume \(x \in(\) interval_bij \((a, b)(-1,1) \circ f)\) ' \(\{0 . .1\}\)
    then obtain \(y\) where \(y\) :
        \(y \in\{0 . .1\}\)
        \(x=(\) interval_bij \((a, b)(-1,1) \circ f) y\)
        unfolding image_iff ..
    show \(x \in \operatorname{cbox}(-1) 1\)
        unfolding \(y\) o_def
        apply (rule in_interval_interval_bij)
        using \(y(1)\)
        using assms(3)[unfolded path_image_def subset_eq] int_nem
        apply auto
        done
next
    fix \(x\)
    assume \(x \in(\) interval_bij \((a, b)(-1,1) \circ g) '\{0 . .1\}\)
    then obtain \(y\) where \(y\) :
        \(y \in\{0 . .1\}\)
        \(x=(\) interval_bij \((a, b)(-1,1) \circ g) y\)
        unfolding image_iff ..
    show \(x \in \operatorname{cbox}(-1) 1\)
        unfolding \(y\) o_def
        apply (rule in_interval_interval_bij)
        using \(y(1)\)
        using assms(4)[unfolded path_image_def subset_eq] int_nem
        apply auto
        done
next
    show (interval_bij \((a, b)(-1,1) \circ f) 0 \$ 1=-1\)
        and (interval_bij \((a, b)(-1,1) \circ f) 1 \$ 1=1\)
        and (interval_bij \((a, b)(-1,1) \circ g) 0 \$ 2=-1\)
        and (interval_bij \((a, b)(-1,1) \circ g) 1 \$ 2=1\)
        using assms as
    by (simp_all add: cart_eq_inner_axis pathstart_def pathfinish_def interval_bij_def)
            (simp_all add: inner_axis)
qed
from \(z(1)\) obtain \(z f\) where \(z f\) :
        \(z f \in\{0 . .1\}\)
        \(z=(\) interval_bij \((a, b)(-1,1) \circ f) z f\)
    unfolding image_iff ..
from \(z(2)\) obtain \(z g\) where \(z g\) :
        \(z g \in\{0 . .1\}\)
        \(z=(\) interval_bij \((a, b)(-1,1) \circ g) z g\)
    unfolding image_iff ..
have \(*\) : \(\forall i\). (- 1) \(\$ i<(1::\) real^2) \(\$ i \wedge a \$ i<b \$ i\)
    unfolding forall_2
```

```
    using as
    by auto
    show thesis
    proof (rule_tac z=interval_bij (- 1,1) (a,b)z in that)
    show interval_bij (- 1, 1) (a,b) z \in path_image f
        using zf by (simp add: interval_bij_bij_cart[OF *] path_image_def)
    show interval_bij (- 1, 1) (a,b)z\in path_image g
        using zg by (simp add: interval_bij_bij_cart[OF *] path_image_def)
    qed
qed
```


6.32.3 Some slightly ad hoc lemmas I use below

```
lemma segment_vertical:
    fixes a :: real^2
    assumes a$1=b$1
    shows }x\in\mathrm{ closed_segment a b }
```



```
a$2)
    (is _ = ?R)
proof -
    let ? L = \existsu. (x $ 1 = (1-u)*a$ 1 +u*b$ 1 ^x $ 2 = (1-u)*a$ 2
+u*b$2)}\wedge0\lequ\wedgeu\leq
    {
        presume ?L \Longrightarrow?R and ?R C?L
        then show ?thesis
            unfolding closed_segment_def mem_Collect_eq
        unfolding vec_eq_iff forall_2 scalar_mult_eq_scaleR[symmetric] vector_component_simps
            by blast
    }
    {
        assume ?L
        then obtain }u\mathrm{ where }u\mathrm{ :
        x$1=(1-u)*a$ 1 +u*b$1
        x$2 = (1-u)*a$2 +u*b$2
        0}\leq
        u}\leq
        by blast
    {fix b a
        assume b +u*a>a+u*b
        then have (1-u)*b>(1-u)*a
                by (auto simp add:field_simps)
            then have b\geqa
                apply (drule_tac mult_left_less_imp_less)
                using u
                apply auto
                done
            then have u*a\lequ*b
                apply -
```

```
            apply (rule mult_left_mono[OF _ u(3)])
            using u(3-4)
            apply (auto simp add: field_simps)
            done
    } note * = this
    {
            fix ab
            assume }u*b>u*
            then have (1-u)*a\leq(1-u)*b
                apply -
                apply (rule mult_left_mono)
                apply (drule mult_left_less_imp_less)
                using u
                apply auto
                done
            then have }a+u*b\leqb+u*
                by (auto simp add: field_simps)
    } note ** = this
    then show ?R
            unfolding u assms
            using u
            by (auto simp add:field_simps not_le intro:***)
}
{
            assume ?R
            then show ?L
            proof (cases x$2 = b$2)
            case True
            then show ?L
                apply (rule_tac x = (x$2 - a$2) / (b$2 - a$2) in exI)
                unfolding assms True using \?R` apply (auto simp add: field_simps)
                done
    next
        case False
        then show ?L
            apply (rule_tac x=1 - (x$2 - b$2) / (a$2 - b$2) in exI)
            unfolding assms using 〈?R` apply (auto simp add: field_simps)
            done
    qed
    }
qed
lemma segment_horizontal:
    fixes a :: real^2
    assumes a$2 = b$2
    shows }x\in\mathrm{ closed_segment a b }
    x$2 = a$2 ^ x$2 = b$2 ^ (a$1 \leq x$1 ^ x$1\leqb$1\veeb$1\leqx$1^x$1\leq
a$1)
    (is _ = ?R)
```

```
proof -
    let ?L = \existsu. (x $ 1 = (1-u)*a$ 1 +u*b$ 1 ^x $ 2 = (1-u)*a$ 2
+u*b$ 2)}\wedge0\lequ\wedgeu\leq
    {
        presume ?L \Longrightarrow?R and ?R\Longrightarrow ?L
        then show ?thesis
            unfolding closed_segment_def mem_Collect_eq
        unfolding vec_eq_iff forall_2 scalar_mult_eq_scaleR[symmetric] vector_component_simps
            by blast
    }
    {
    assume ?L
    then obtain u}\mathrm{ where u:
        x$1=(1-u)*a$1+u*b$1
        x$2=(1-u)*a$2+u*b$2
        0\lequ
        u}\leq
        by blast
    {
        fix b a
        assume b +u*a>a+u*b
        then have (1-u)*b>(1-u)*a
        by (auto simp add: field_simps)
        then have b \geqa
            apply (drule_tac mult_left_less_imp_less)
            using u
            apply auto
            done
            then have u*a\lequ*b
            apply -
            apply (rule mult_left_mono[OF _ u(3)])
            using u(3-4)
            apply (auto simp add: field_simps)
            done
        } note * = this
    {
            fix ab
            assume }u*b>u*
            then have (1-u)*a\leq(1-u)*b
            apply -
            apply (rule mult_left_mono)
            apply (drule mult_left_less_imp_less)
            using u
            apply auto
            done
            then have }a+u*b\leqb+u*
            by (auto simp add: field_simps)
        } note ** = this
    then show ?R
```

```
            unfolding u assms
            using u
            by (auto simp add: field_simps not_le intro: * **)
}
{
    assume ?R
    then show ?L
    proof (cases x$1=b$1)
        case True
        then show ?L
            apply (rule_tac x = (x$1-a$1) / (b$1 - a$1) in exI)
            unfolding assms True
            using <?R>
            apply (auto simp add: field_simps)
            done
        next
            case False
            then show ?L
            apply (rule_tac x=1 - (x$1-b$1)/(a$1-b$1) in exI)
            unfolding assms
            using <?R`
            apply (auto simp add: field_simps)
            done
    qed
    }
qed
```


6.32.4 Useful Fashoda corollary pointed out to me by Tom Hales

corollary fashoda_interlace:
fixes a :: real^2
assumes path f
and path g
and paf: path_image $f \subseteq$ cbox a b
and pag: path_image $g \subseteq$ cbox a b
and $($ pathstart f) $\$ 2=a \$ 2$
and (pathfinish f) $\$ 2=a \$ 2$
and $($ pathstart $g) \$ 2=a \$ 2$
and $($ pathfinish $g) \$ 2=a \$ 2$
and (pathstart f) $\$ 1<($ pathstart $g) \$ 1$
and (pathstart $g) \$ 1<($ pathfinish $f) \$ 1$
and (pathfinish f) $\$ 1<($ pathfinish $g) \$ 1$
obtains z where $z \in$ path_image f and $z \in$ path_image g
proof -
have cbox a $b \neq\{ \}$
using path_image_nonempty[of f] using assms(3) by auto

have pathstart $f \in$ cbox $a b$

```
    and pathfinish \(f \in\) cbox a \(b\)
    and pathstart \(g \in\) cbox \(a b\)
    and pathfinish \(g \in\) cbox a \(b\)
    using pathstart_in_path_image pathfinish_in_path_image
    using assms (3-4)
    by auto
note startfin \(=\) this[unfolded mem_box_cart forall_2]
let ?P1 = linepath \((\) vector \([a \$ 1-2, a \$ 2-2])(v e c t o r[(p a t h s t a r t ~ f) \$ 1, a \$ 2-\)
2]) +++
    linepath \((\) vector \([(\) pathstart \(f) \$ 1, a \$ 2-2])(\) pathstart \(f)+++f+++\)
    linepath \((\) pathfinish \(f)(\) vector \([(\) pathfinish \(f) \$ 1, a \$ 2-2])+++\)
    linepath (vector \([(\) pathfinish f) \(\$ 1, a \$ 2-2])(v e c t o r[b \$ 1+2, a \$ 2-2])\)
    let ? P2 \(=\operatorname{linepath}(\) vector \([(\) pathstart g) \(\$ 1,(\) pathstart \(g) \$ 2-3])(\) pathstart g)
\(+++g+++\)
    linepath \((\) pathfinish \(g)(v e c t o r[(\) pathfinish g)\$1,a\$2 - 1]) +++
    linepath \((\) vector \([(\) pathfinish \(g) \$ 1, a \$ 2-1])(v e c t o r[b \$ 1+1, a \$ 2-1])+++\)
    linepath \((\) vector \([b \$ 1+1, a \$ 2-1])(v e c t o r[b \$ 1+1, b \$ 2+3])\)
    let \(? a=\) vector \([a \$ 1-2, a \$ 2-3]\)
    let \(? b=\) vector \([b \$ 1+2, b \$ 2+3]\)
    have P1P2: path_image ?P1 = path_image (linepath (vector[a\$1-2, a\$2 -
2]) \((\) vector \([(\) pathstart f \() \$ 1, a \$ 2-2])) \cup\)
    path_image (linepath(vector[(pathstart f)\$1,a\$2-2])(pathstart f)) \(\cup\) path_image
\(f \cup\)
        path_image \((\) linepath \((\) pathfinish \(f)(\) vector \([(\) pathfinish \(f) \$ 1, a \$ 2-2])) \cup\)
        path_image (linepath (vector \([(\) pathfinish \(f) \$ 1, a \$ 2-2])(v e c t o r[b \$ 1+2, a \$ 2\)
- 2]))
    path_image ?P2 = path_image(linepath(vector[(pathstart g)\$1, (pathstart g)\$2
- 3]) \((\) pathstart \(g)) \cup\) path_image \(g \cup\)
        path_image \((\) linepath \((\) pathfinish \(g)(\) vector \([(\) pathfinish g) \(\$ 1, a \$ 2-1])) \cup\)
        path_image(linepath \((\) vector \([(\) pathfinish \(g) \$ 1, a \$ 2-1])(\) vector \([b \$ 1+1, a \$ 2-\)
1])) \(\cup\)
        path_image(linepath(vector \([b \$ 1+1, a \$ 2-1])(v e c t o r[b \$ 1+1, b \$ 2+3]))\)
using assms(1-2)
        by (auto simp add: path_image_join)
    have abab: cbox a \(b \subseteq c b o x\) ? \(a ? b\)
    unfolding interval_cbox_cart[symmetric]
    by (auto simp add:less_eq_vec_def forall_2)
    obtain \(z\) where
        \(z \in\) path_image
            (linepath (vector \([a \$ 1-2, a \$ 2-2])(v e c t o r[p a t h s t a r t f \$ 1, a \$ 2\)
- 2]) +++
            linepath (vector [pathstart f \$ 1, a \$ 2 - 2]) (pathstart f) +++
            \(f+++\)
            linepath (pathfinish f) (vector [pathfinish f \$ 1, a \$ 2 - 2]) +++
            linepath (vector \([\) pathfinish \(f \$ 1, a \$ 2-2])(v e c t o r[b \$ 1+2, a \$ 2\)
- 2]))
    \(z \in\) path_image
            (linepath (vector \([\) pathstart g \$ 1, pathstart g \$ 2 - 3]) (pathstart g) +++
                \(g+++\)
```

linepath (pathfinish g) (vector [pathfinish g \$ 1, a \$ 2 - 1]) +++
linepath (vector $[$ pathfinish $g \$ 1, a \$ 2-1])(v e c t o r[b \$ 1+1, a \$ 2$ - 1]) +++
linepath (vector $[b \$ 1+1, a \$ 2-1])(v e c t o r[b \$ 1+1, b \$ 2+3]))$ apply (rule fashoda[of ?P1 ?P2 ?a ? ?b])
unfolding pathstart_join pathfinish_join pathstart_linepath pathfinish_linepath vector_2
proof -
show path ?P1 and path ?P2
using assms by auto
show path_image ?P1 \subseteq cbox ?a ?b path_image ?P2 \subseteq cbox ?a ?b
unfolding P1P2 path_image_linepath using startfin paf pag
by (auto simp: mem_box_cart segment_horizontal segment_vertical forall_2)
show $a \$ 1-2=a \$ 1-2$
and $b \$ 1+2=b \$ 1+2$
and pathstart $g \$ 2-3=a \$ 2-3$
and $b \$ 2+3=b \$ 2+3$
by (auto simp add: assms)
qed
note $z=$ this[unfolded P1P2 path_image_linepath]
show thesis
proof (rule that[of z])
have ($z \in$ closed_segment (vector $[a \$ 1-2, a \$ 2-2])$ (vector $[$ pathstart f \$ 1, a \$ 2 - 2]) \vee
$z \in$ closed_segment (vector [pathstart f \$ 1, a \$ 2 - 2]) (pathstart f)) V
$z \in$ closed_segment (pathfinish f) (vector [pathfinish f \$ 1, a \$ 2 - 2]) \vee
$z \in$ closed_segment (vector [pathfinish f \$ 1, a \$ 2 - 2]) (vector [b\$1+2,
a \$ 2 - 2]) \Longrightarrow
$(((z \in$ closed_segment (vector $[$ pathstart $g \$ 1$, pathstart g \$ 2 - 3]) (pathstart
g)) \vee
$z \in$ closed_segment (pathfinish g) (vector [pathfinish g \$ 1, a \$ 2 - 1])) V
$z \in$ closed_segment (vector $[$ pathfinish $g \$ 1, a \$ 2-1])(v e c t o r[b \$ 1+1$, $a \$ 2-1])) \vee$
$z \in$ closed_segment (vector $[b \$ 1+1, a \$ 2-1])($ vector $[b \$ 1+1, b \$$ $2+3]) \Longrightarrow$ False
proof (simp only: segment_vertical segment_horizontal vector_2, goal_cases)
case prems: 1
have pathfinish $f \in$ cbox a b
using assms(3) pathfinish_in_path_image $[o f f]$ by auto
then have $1+b \$ 1 \leq$ pathfinish $f \$ 1 \Longrightarrow$ False unfolding mem_box_cart forall_2 by auto
then have $z \$ 1 \neq$ pathfinish $f \$ 1$
using prems(2)
using assms ab
by (auto simp add: field_simps)
moreover have pathstart $f \in$ cbox a b
using assms(3) pathstart_in_path_image[of f]
by auto
then have $1+b \$ 1 \leq$ pathstart $f \$ 1 \Longrightarrow$ False

```
    unfolding mem_box_cart forall_2
    by auto
    then have z$1 = pathstart f$1
    using prems(2) using assms ab
    by (auto simp add: field_simps)
    ultimately have *: z$2 =a$2 - 2
    using prems(1) by auto
    have z$1\not= pathfinish g$1
    using prems(2) assms ab
    by (auto simp add: field_simps *)
    moreover have pathstart g cbox a b
    using assms(4) pathstart_in_path_image[of g]
    by auto
    note this[unfolded mem_box_cart forall_2]
    then have z$1 = pathstart g$1
    using prems(1) assms ab
    by (auto simp add: field_simps *)
    ultimately have a$2 - 1\leqz$2^z$2 < b$2 + 3\veeb$2 + 3 \leqz
$2^z$2\leqa$2-1
            using prems(2) unfolding * assms by (auto simp add: field_simps)
            then show False
            unfolding * using ab by auto
    qed
    then have z f path_image f \veez\in path_image g
        using z unfolding Un_iff by blast
    then have }\mp@subsup{z}{}{\prime}:z\incbox a b
        using assms(3-4) by auto
    have a$2=z$2\Longrightarrow(z$1= pathstart f$1\veez$1= pathfinish f$1)
\Longrightarrow
        z= pathstart f \veez= pathfinish f
        unfolding vec_eq_iff forall_2 assms
        by auto
    with z' show z & path_image f
        using}z(1
        unfolding Un_iff mem_box_cart forall_2
            by (simp only: segment_vertical segment_horizontal vector_2) (auto simp:
assms)
    have a$2 = z$2 2 (z$1 = pathstart g$1\veez$1= pathfinish g$ 1)
\Longrightarrow
        z= pathstart g}\veez= pathfinish g
        unfolding vec_eq_iff forall_2 assms
        by auto
    with z' show z\in path_image g
        using z(2)
        unfolding Un_iff mem_box_cart forall_2
            by (simp only: segment_vertical segment_horizontal vector_2) (auto simp:
assms)
    qed
qed
```

end

6.33 Vector Cross Products in 3 Dimensions

```
theory Cross3
    imports Determinants Cartesian_Euclidean_Space
begin
context includes no_Set_Product_syntax
begin - locally disable syntax for set product, to avoid warnings
definition cross3 :: [real^3, real^3] => real^3 (infixr }\times80
    where }a\timesb
        vector [a$2*b$3-a$3*b$2,
        a$3*b$1-a$1*b$3,
        a$1*b$2-a$2*b$1]
end
bundle cross3_syntax begin
notation cross3 (infixr }\times80\mathrm{ )
no_notation Product_Type.Times (infixr }\times80\mathrm{ )
end
bundle no_cross3_syntax begin
no_notation cross3 (infixr }\times80\mathrm{ )
notation Product_Type.Times (infixr > 80)
end
unbundle cross3_syntax
```


6.33.1 Basic lemmas

lemmas cross3_simps $=$ cross3_def inner_vec_def sum_3 det_3 vec_eq_iff vector_def algebra_simps
lemma dot_cross_self: $x \cdot(x \times y)=0 x \cdot(y \times x)=0(x \times y) \cdot y=0(y \times x)$

- $y=0$
by (simp_all add: orthogonal_def cross3_simps)
lemma orthogonal_cross: orthogonal $(x \times y) x$ orthogonal $(x \times y) y$ orthogonal $y(x \times y)$ orthogonal $(x \times y) x$
by (simp_all add: orthogonal_def dot_cross_self)
lemma cross_zero_left $[$ simp $]: 0 \times x=0$ and cross_zero_right $[$ simp $]: x \times 0=0$
for $x:$:real^3
by (simp_all add: cross3_simps)

```
lemma cross_skew: \((x \times y)=-(y \times x)\) for \(x::\) real^3
```

 by (simp add: cross3_simps)
 lemma cross_refl $[$ simp $]: x \times x=0$ for $x::$ real^3
by (simp add: cross3_simps)
lemma cross_add_left: $(x+y) \times z=(x \times z)+(y \times z)$ for $x::$ real^3
by (simp add: cross3_simps)
lemma cross_add_right: $x \times(y+z)=(x \times y)+(x \times z)$ for $x::$ real^3
by (simp add: cross3_simps)
lemma cross_mult_left: $\left(c *_{R} x\right) \times y=c *_{R}(x \times y)$ for $x::$ real ${ }^{\wedge} 3$
by (simp add: cross3_simps)
lemma cross_mult_right: $x \times\left(c *_{R} y\right)=c *_{R}(x \times y)$ for $x::$ real^ 3
by (simp add: cross3_simps)
lemma cross_minus_left [simp]: $(-x) \times y=-(x \times y)$ for $x::$ real^3
by (simp add: cross3_simps)
lemma cross_minus_right $[$ simp $]: x \times-y=-(x \times y)$ for $x::$ real^3
by (simp add: cross3_simps)
lemma left_diff_distrib: $(x-y) \times z=x \times z-y \times z$ for x :: real^3
by (simp add: cross3_simps)
lemma right_diff_distrib: $x \times(y-z)=x \times y-x \times z$ for x :: real^3
by (simp add: cross3_simps)
hide_fact (open) left_diff_distrib right_diff_distrib
proposition Jacobi: $x \times(y \times z)+y \times(z \times x)+z \times(x \times y)=0$ for $x::$ real^ 3
by (simp add: cross3_simps)
proposition Lagrange: $x \times(y \times z)=(x \cdot z) *_{R} y-(x \cdot y) *_{R} z$
by (simp add: cross3_simps) (metis (full_types) exhaust_3)
proposition cross_triple: $(x \times y) \cdot z=(y \times z) \cdot x$
by (simp add: cross3_def inner_vec_def sum_3 vec_eq_iff algebra_simps)
lemma cross_components:
$(x \times y) \$ 1=x \$ 2 * y \$ 3-y \$ 2 * x \$ 3(x \times y) \$ 2=x \$ 3 * y \$ 1-y \$ 3 * x \$ 1(x$
$\times y) \$ 3=x \$ 1 * y \$ 2-y \$ 1 * x \$ 2$
by (simp_all add: cross3_def inner_vec_def sum_3 vec_eq_iff algebra_simps)
lemma cross_basis: $\left(\begin{array}{ll}\text { axis } 1 & 1\end{array}\right) \times($ axis 21$)=$ axis $31($ axis 21$) \times(\operatorname{axis} 11)=$
-(axis 3 1)
$($ axis 21$) \times($ axis 31$)=$ axis $11($ axis 31$) \times($ axis 21$)=-($ axis
11)
$($ axis 31$) \times($ axis 11$)=$ axis $21($ axis 11$) \times($ axis 31$)=-($ axis
21)
using exhaust_3
by (force simp add: axis_def cross3_simps) +
lemma cross_basis_nonzero:
$u \neq 0 \Longrightarrow u \times$ axis $11 \neq 0 \vee u \times$ axis $21 \neq 0 \vee u \times$ axis $31 \neq 0$
by (clarsimp simp add: axis_def cross3_simps) (metis exhaust_3)
lemma cross_dot_cancel:
fixes $x:$:real^3
assumes deq: $x \cdot y=x \cdot z$ and veq: $x \times y=x \times z$ and $x: x \neq 0$
shows $y=z$
proof -
have $x \cdot x \neq 0$
by (simp add: x)
then have $y-z=0$ using veq
by (metis (no_types, lifting) Cross3.right_diff_distrib Lagrange deq eq_iff_diff_eq_0 inner_diff_right scale_eq_0_iff)
then show ?thesis
using eq_iff_diff_eq_0 by blast
qed
lemma norm_cross_dot: $(\text { norm }(x \times y))^{2}+(x \cdot y)^{2}=(\text { norm } x * \text { norm } y)^{2}$
unfolding power2_norm_eq_inner power_mult_distrib
by (simp add: cross3_simps power2_eq_square)
lemma dot_cross_det: $x \cdot(y \times z)=\operatorname{det}(\operatorname{vector}[x, y, z])$
by (simp add: cross3_simps)
lemma cross_cross_det: $(w \times x) \times(y \times z)=\operatorname{det}(\operatorname{vector}[w, x, z]) *_{R} y-\operatorname{det}(\operatorname{vector}[w, x, y])$ $*_{R} z$
using exhaust_3 by (force simp add: cross3_simps)
proposition dot_cross: $(w \times x) \cdot(y \times z)=(w \cdot y) *(x \cdot z)-(w \cdot z) *(x \cdot y)$
by (force simp add: cross3_simps)
proposition norm_cross: $(\text { norm }(x \times y))^{2}=(\text { norm } x)^{2} *(\text { norm } y)^{2}-(x \cdot y)^{2}$ unfolding power2_norm_eq_inner power_mult_distrib
by (simp add: cross3_simps power2_eq_square)

```
lemma cross_eq_ \(0: x \times y=0 \longleftrightarrow\) collinear \(\{0, x, y\}\)
proof -
    have \(x \times y=0 \longleftrightarrow\) norm \((x \times y)=0\)
        by \(\operatorname{simp}\)
    also have \(\ldots \longleftrightarrow(\text { norm } x * \text { norm } y)^{2}=(x \cdot y)^{2}\)
        using norm_cross [of \(x y\) ] by (auto simp: power_mult_distrib)
```

```
    also have \(\ldots \longleftrightarrow|x \cdot y|=\) norm \(x *\) norm \(y\)
    using power2_eq_iff
    by (metis (mono_tags, hide_lams) abs_minus abs_norm_cancel abs_power2 norm_mult
power_abs real_norm_def)
    also have \(\ldots \longleftrightarrow\) collinear \(\{0, x, y\}\)
        by (rule norm_cauchy_schwarz_equal)
    finally show ?thesis .
qed
lemma cross_eq_self: \(x \times y=x \longleftrightarrow x=0 x \times y=y \longleftrightarrow y=0\)
    apply (metis cross_zero_left dot_cross_self (1) inner_eq_zero_iff)
    by (metis cross_zero_right dot_cross_self(2) inner_eq_zero_iff)
lemma norm_and_cross_eq_0:
    \(x \cdot y=0 \wedge x \times y=0 \longleftrightarrow x=0 \vee y=0\) (is ?lhs =? ?rhs)
proof
    assume ?lhs
    then show? rhs
    by (metis cross_dot_cancel cross_zero_right inner_zero_right)
qed auto
lemma bilinear_cross: bilinear \((\times)\)
    apply (auto simp add: bilinear_def linear_def)
    apply unfold_locales
    apply (simp add: cross_add_right)
    apply (simp add: cross_mult_right)
    apply (simp add: cross_add_left)
    apply (simp add: cross_mult_left)
    done
```


6.33.2 Preservation by rotation, or other orthogonal transformation up to sign

lemma cross_matrix_mult: transpose $A * v((A * v x) \times(A * v y))=\operatorname{det} A *_{R}(x$ $\times y$)
apply (simp add: vec_eq_iff)
apply (simp add: vector_matrix_mult_def matrix_vector_mult_def forall_3 cross3_simps)
done
lemma cross_orthogonal_matrix:
assumes orthogonal_matrix A
shows $(A * v x) \times(A * v y)=\operatorname{det} A *_{R}(A * v(x \times y))$
proof -
have mat $1=$ transpose $(A * *$ transpose A)
by (metis (no_types) assms orthogonal_matrix_def transpose_mat)
then show ?thesis
by (metis (no_types) vector_matrix_mul_rid vector_transpose_matrix cross_matrix_mult
matrix_vector_mul_assoc matrix_vector_mult_scaleR)
qed
lemma cross_rotation_matrix: rotation_matrix $A \Longrightarrow(A * v x) \times(A * v y)=A$ $* v(x \times y)$
by (simp add: rotation_matrix_def cross_orthogonal_matrix)
lemma cross_rotoinversion_matrix: rotoinversion_matrix $A \Longrightarrow(A * v x) \times(A * v$ $y)=-A * v(x \times y)$
by (simp add: rotoinversion_matrix_def cross_orthogonal_matrix scaleR_matrix_vector_assoc)
lemma cross_orthogonal_transformation:
assumes orthogonal_transformation f
shows $(f x) \times(f y)=\operatorname{det}($ matrix $f) *_{R} f(x \times y)$
proof -
have orth: orthogonal_matrix (matrix f) using assms orthogonal_transformation_matrix by blast
have matrix $f * v z=f z$ for z
using assms orthogonal_transformation_matrix by force
with cross_orthogonal_matrix [OF orth] show ?thesis by simp
qed
lemma cross_linear_image:
\llbracket linear $f ; \bigwedge x$. norm $(f x)=\operatorname{norm} x ; \operatorname{det}($ matrix $f)=1 \rrbracket$ $\Longrightarrow(f x) \times(f y)=f(x \times y)$
by (simp add: cross_orthogonal_transformation orthogonal_transformation)

6.33.3 Continuity

lemma continuous_cross: \llbracket continuous $F f$; continuous $F g \rrbracket \Longrightarrow$ continuous $F(\lambda x$. $(f x) \times(g x))$
apply (subst continuous_componentwise)
apply (clarsimp simp add: cross3_simps)
apply (intro continuous_intros; simp)
done
lemma continuous_on_cross:
fixes $f::$ ' $a::$ t2_space \Rightarrow real^3
shows \llbracket continuous_on $S f ;$ continuous_on $S g \rrbracket \Longrightarrow$ continuous_on $S(\lambda x .(f x) \times$
($g x)$)
by (simp add: continuous_on_eq_continuous_within continuous_cross)
unbundle no_cross3_syntax
end

6.34 Bounded Continuous Functions

theory Bounded_Continuous_Function imports

```
    Topology_Euclidean_Space
    Uniform_Limit
begin
```


6.34.1 Definition

```
definition bcontfun ={f.continuous_on UNIV f ^ bounded (range f)}
```

typedef (overloaded) $\left({ }^{\prime} a,{ }^{\prime} b\right)$ bcontfun $\left(\left(-\Rightarrow_{C} /-\right)[22,21]\right.$ 21 $)=$
bcontfun::('a::topological_space \Rightarrow 'b::metric_space) set
morphisms apply_bcontfun Bcontfun
by (auto intro: continuous_intros simp: bounded_def bcontfun_def)
declare [[coercion apply_bcontfun :: ('a::topological_space $\Rightarrow_{C}{ }^{\prime} b::$ metric_space) \Rightarrow
$\left.{ }^{\prime} a \Rightarrow{ }^{\prime} b\right]$]
setup_lifting type_definition_bcontfun
lemma continuous_on_apply_bcontfun[intro, simp]: continuous_on T (apply_bcontfun
x)
and bounded_apply_bcontfun[intro, simp]: bounded (range (apply_bcontfun x))
using apply_bcontfun[of x]
by (auto simp: bcontfun_def intro: continuous_on_subset)
lemma bcontfun_eqI: ($\bigwedge x$. apply_bcontfun $f x=$ apply_bcontfun $g x) \Longrightarrow f=g$
by transfer auto
lemma bcontfunE:
assumes $f \in$ bcontfun
obtains g where $f=$ apply_bcontfun g
by (blast intro: apply_bcontfun_cases assms)
lemma const_bcontfun: $(\lambda x . b) \in b c o n t f u n$
by (auto simp: bcontfun_def image_def)
lift_definition const_bcontfun::'b::metric_space $\Rightarrow\left({ }^{\prime} a::\right.$ topological_space \Rightarrow_{C} 'b) is
$\lambda c . . c$
by (rule const_bcontfun)
instantiation bcontfun :: (topological_space, metric_space) metric_space
begin
lift_definition dist_bcontfun $::{ }^{\prime} a \Rightarrow_{C}{ }^{\prime} b \Rightarrow{ }^{\prime} a \Rightarrow_{C}{ }^{\prime} b \Rightarrow$ real
is $\lambda f g$. $(S U P x$. dist $(f x)(g x))$.
definition uniformity_bcontfun :: ($\left.{ }^{\prime} a \Rightarrow_{C}{ }^{\prime} b \times{ }^{\prime} a \Rightarrow_{C}{ }^{\prime} b\right)$ filter
where uniformity_bcontfun $=($ INF $e \in\{0<.$.$\} . principal \{(x, y)$. dist $x y<e\})$

```
definition open_bcontfun :: ( \(\left.{ }^{\prime} a \Rightarrow_{C}{ }^{\prime} b\right)\) set \(\Rightarrow\) bool
    where open_bcontfun \(S=\left(\forall x \in S . \forall_{F}\left(x^{\prime}, y\right)\right.\) in uniformity. \(\left.x^{\prime}=x \longrightarrow y \in S\right)\)
lemma bounded_dist_le_SUP_dist:
    bounded \((\) range \(f) \Longrightarrow\) bounded (range \(g) \Longrightarrow \operatorname{dist}(f x)(g x) \leq(S U P x . \operatorname{dist}(f\)
x) \((g x))\)
    by (auto intro!: cSUP_upper bounded_imp_bdd_above bounded_dist_comp)
lemma dist_bounded:
    fixes \(f g\) :: ' \(a \Rightarrow_{C}{ }^{\prime} b\)
    shows dist \((f x)(g x) \leq \operatorname{dist} f g\)
    by transfer (auto intro!: bounded_dist_le_SUP_dist simp: bcontfun_def)
lemma dist_bound:
    fixes \(f g\) :: ' \(a \Rightarrow_{C}{ }^{\prime} b\)
    assumes \(\wedge x\). dist \((f x)(g x) \leq b\)
    shows dist \(f g \leq b\)
    using assms
    by transfer (auto intro!: cSUP_least)
lemma dist_fun_lt_imp_dist_val_lt:
    fixes \(f g\) :: ' \(a \Rightarrow_{C}{ }^{\prime} b\)
    assumes dist \(f g<e\)
    shows dist \((f x)(g x)<e\)
    using dist_bounded assms by (rule le_less_trans)
instance
proof
    fix \(f g h::{ }^{\prime} a \Rightarrow_{C}{ }^{\prime} b\)
    show dist \(f g=0 \longleftrightarrow f=g\)
    proof
        have \(\wedge x\). dist \((f x)(g x) \leq \operatorname{dist} f g\)
        by (rule dist_bounded)
        also assume dist f \(g=0\)
        finally show \(f=g\)
            by (auto simp: apply_bcontfun_inject[symmetric])
    qed (auto simp: dist_bcontfun_def intro!: cSup_eq)
    show dist \(f g \leq \operatorname{dist} f h+\) dist \(g h\)
    proof (rule dist_bound)
        fix \(x\)
        have \(\operatorname{dist}(f x)(g x) \leq \operatorname{dist}(f x)(h x)+\operatorname{dist}(g x)(h x)\)
            by (rule dist_triangle2)
        also have dist \((f x)(h x) \leq \operatorname{dist} f h\)
        by (rule dist_bounded)
        also have dist \((g x)(h x) \leq d i s t ~ g h\)
            by (rule dist_bounded)
        finally show dist \((f x)(g x) \leq \operatorname{dist} f h+\operatorname{dist} g h\)
            by \(\operatorname{simp}\)
    qed
```

```
qed (rule open_bcontfun_def uniformity_bcontfun_def)+
end
```

lift_definition PiC::'a::topological_space set $\Rightarrow\left({ }^{\prime} a \Rightarrow{ }^{\prime} b\right.$ set $) \Rightarrow\left({ }^{\prime} a \Rightarrow_{C}{ }^{\prime} b::\right.$ metric_space $)$
set
is $\lambda I X$. Pi $I X \cap$ bcontfun
by auto
lemma mem_PiC_iff: $x \in$ PiC I $X \longleftrightarrow$ apply_bcontfun $x \in$ Pi I X
by transfer simp
lemmas mem_PiCD $=$ mem_PiC_iff[THEN iffD1]
and mem_PiCI $^{2}=$ mem_PiC_iff 2 THEN iffD2]
lemma tendsto_bcontfun_uniform_limit:
fixes $f::^{\prime} i \Rightarrow$ ' $a:$:topological_space \Rightarrow_{C} 'b::metric_space
assumes $(f \longrightarrow l) F$
shows uniform_limit UNIV fl F
proof (rule uniform_limitI)
fix $e:$:real assume $e>0$
from tendsto $D[O F$ assms this $]$ have $\forall_{F} x$ in F. dist $(f x) l<e$.
then show $\forall_{F} n$ in $F . \forall x \in U N I V$. dist $((f n) x)(l x)<e$
by eventually_elim (auto simp: dist_fun_lt_imp_dist_val_lt)
qed
lemma uniform_limit_tendsto_bcontfun:
fixes $f:: ' i \Rightarrow$ ' $a::$ topological_space $\Rightarrow_{C}{ }^{\prime} b::$ metric_space
and $l::{ }^{\prime} a::$ topological_space \Rightarrow_{C} ' $b::$ metric_space
assumes uniform_limit UNIV fl F
shows $(f \longrightarrow l) F$
proof (rule tendstoI)
fix e ::real assume $e>0$
then have $e / 2>0$ by simp
from uniform_limitD[OF assms this]
have $\forall_{F} i$ in $F . \forall x$. dist $(f i x)(l x)<e / 2$ by simp
then have $\forall_{F} x$ in F. dist $(f x) l \leq e / 2$
by eventually_elim (blast intro: dist_bound less_imp_le)
then show $\forall_{F} x$ in F. dist $(f x) l<e$
by eventually_elim (use $\langle 0<e\rangle$ in auto)
qed
lemma uniform_limit_bcontfunE:
fixes $f:: ' i \Rightarrow$ ' $a::$ topological_space $\Rightarrow_{C}{ }^{\prime} b::$ metric_space
and $l:::^{\prime} a::$ topological_space $\Rightarrow ' b::$ metric_space
assumes uniform_limit UNIV fl F F \neq bot
obtains $l^{\prime}:: ' a::$ topological_space \Rightarrow_{C} 'b::metric_space
where $l=l^{\prime}\left(f \longrightarrow l^{\prime}\right) F$
by (metis (mono_tags, lifting) always_eventually apply_bcontfun apply_bcontfun_cases
assms
bcontfun_def mem_Collect_eq uniform_limit_bounded uniform_limit_tendsto_bcontfun uniform_limit_theorem)
lemma closed_PiC:
fixes I :: 'a::metric_space set
and $X:: ' a \Rightarrow$ ' $b::$ complete_space set
assumes $\bigwedge i . i \in I \Longrightarrow$ closed $(X i)$
shows closed (PiC I X)
unfolding closed_sequential_limits
proof safe
fix $f l$
assume seq: $\forall n . f n \in \operatorname{PiCIX}$ and lim: $f \longrightarrow l$
show $l \in P i C I X$
proof (safe intro!: mem_PiCI)
fix x assume $x \in I$
then have closed ($X x$) using assms by simp
moreover have eventually ($\lambda i . f i x \in X x$) sequentially using seq $\langle x \in I\rangle$ by (auto intro!: eventuallyI dest!: mem_PiCD simp: Pi_iff)
moreover note sequentially_bot
moreover have $(\lambda n .(f n) x) \longrightarrow l x$
using tendsto_bcontfun_uniform_limit [OF lim]
by (rule tendsto_uniform_limitI) simp
ultimately show $l x \in X x$
by (rule Lim_in_closed_set)
qed
qed

6.34.2 Complete Space

instance bcontfun :: (metric_space, complete_space) complete_space proof
fix $f::$ nat $\Rightarrow\left({ }^{\prime} a,{ }^{\prime} b\right)$ bcontfun
assume Cauchy f - Cauchy equals uniform convergence
then obtain g where uniform_limit UNIV $f g$ sequentially using uniformly_convergent_eq_cauchy $\left[\right.$ of $\lambda_{\text {_. }}$ True $\left.f\right]$
unfolding Cauchy_def uniform_limit_sequentially_iff by (metis dist_fun_lt_imp_dist_val_lt)
from uniform_limit_bcontfunE[OF this sequentially_bot]
obtain l^{\prime} where $g=$ apply_bcontfun $l^{\prime}\left(f \longrightarrow l^{\prime}\right)$ by metis
then show convergent f
by (intro convergentI)
qed

6.34.3 Supremum norm for a normed vector space

instantiation bcontfun :: (topological_space, real_normed_vector) real_vector

begin

lemma uminus_cont: $f \in$ bcontfun $\Longrightarrow(\lambda x .-f x) \in b c o n t f u n$ for $f::^{\prime} a \Rightarrow{ }^{\prime} b$
by (auto simp: bcontfun_def intro!: continuous_intros)
lemma plus_cont: $f \in$ bcontfun $\Longrightarrow g \in b$ contfun $\Longrightarrow(\lambda x . f x+g x) \in$ bcontfun for $f g::^{\prime} a \Rightarrow$ ' b
by (auto simp: bcontfun_def intro!: continuous_intros bounded_plus_comp)
lemma minus_cont: $f \in$ bcontfun $\Longrightarrow g \in$ bcontfun $\Longrightarrow(\lambda x . f x-g x) \in$ bcontfun
for $f g::^{\prime} a \Rightarrow$ ' b
by (auto simp: bcontfun_def intro!: continuous_intros bounded_minus_comp)
lemma scaleR_cont: $f \in$ bcontfun $\Longrightarrow\left(\lambda x . a *_{R} f x\right) \in b$ contfun for $f::{ }^{\prime} a \Rightarrow{ }^{\prime} b$ by (auto simp: bcontfun_def intro!: continuous_intros bounded_scaleR_comp)
lemma bcontfun_normI: continuous_on UNIV $f \Longrightarrow(\bigwedge x . \operatorname{norm}(f x) \leq b) \Longrightarrow f$ \in bcontfun
by (auto simp: bcontfun_def intro: boundedI)
lift_definition uminus_bcontfun::($\left.a={ }_{C}{ }^{\prime} b\right) \Rightarrow{ }^{\prime} a \Rightarrow_{C}{ }^{\prime} b$ is $\lambda f x .-f x$ by (rule uminus_cont)
lift_definition plus_bcontfun: $:\left({ }^{\prime} a \Rightarrow_{C}{ }^{\prime} b\right) \Rightarrow\left({ }^{\prime} a \Rightarrow_{C}{ }^{\prime} b\right) \Rightarrow^{\prime} a \Rightarrow_{C}{ }^{\prime} b$ is $\lambda f g x . f$ $x+g x$
by (rule plus_cont)
lift_definition minus_bcontfun::($\left.{ }^{\prime} a \Rightarrow_{C}{ }^{\prime} b\right) \Rightarrow\left({ }^{\prime} a \Rightarrow_{C}{ }^{\prime} b\right) \Rightarrow^{\prime} a \Rightarrow_{C}{ }^{\prime} b$ is $\lambda f g x$.
$f x-g x$
by (rule minus_cont)
lift_definition zero_bcontfun::' $a \Rightarrow_{C}$ ' b is $\lambda_{\text {_ }} 0$
by (rule const_bcontfun)
lemma const_bcontfun_0_eq_0[simp]: const_bcontfun $0=0$
by transfer simp
lift_definition scaleR_bcontfun:: real $\Rightarrow\left({ }^{\prime} a \Rightarrow_{C}{ }^{\prime} b\right) \Rightarrow{ }^{\prime} a \Rightarrow_{C}{ }^{\prime} b$ is $\lambda r g x . r *_{R} g$ x
by (rule scaleR_cont)
lemmas $[$ simp $]=$
const_bcontfun.rep_eq
uminus_bcontfun.rep_eq
plus_bcontfun.rep_eq
minus_bcontfun.rep_eq
zero_bcontfun.rep_eq
scaleR_bcontfun.rep_eq

```
instance
    by standard (auto intro!: bcontfun_eqI simp: algebra_simps)
end
lemma bounded_norm_le_SUP_norm:
    bounded (range \(f\) ) \(\Longrightarrow\) norm \((f x) \leq(S U P\) x. norm \((f x))\)
    by (auto intro!: cSUP_upper bounded_imp_bdd_above simp: bounded_norm_comp)
instantiation bcontfun :: (topological_space, real_normed_vector) real_normed_vector
begin
definition norm_bcontfun :: ('a, 'b) bcontfun \(\Rightarrow\) real
    where norm_bcontfun \(f=\operatorname{dist} f 0\)
definition \(\operatorname{sgn}\left(f::\left({ }^{\prime} a, ' b\right) b c o n t f u n\right)=f / R \operatorname{norm} f\)
instance
proof
    fix \(a\) :: real
    fix \(f g::\left({ }^{\prime} a,{ }^{\prime} b\right)\) bcontfun
    show dist \(f g=\operatorname{norm}(f-g)\)
        unfolding norm_bcontfun_def
        by transfer (simp add: dist_norm)
    show norm \((f+g) \leq\) norm \(f+\) norm \(g\)
        unfolding norm_bcontfun_def
        by transfer
        (auto intro!: cSUP_least norm_triangle_le add_mono bounded_norm_le_SUP_norm
            simp: dist_norm bcontfun_def)
    show norm \(\left(a *_{R} f\right)=|a| * \operatorname{norm} f\)
        unfolding norm_bcontfun_def
        apply transfer
        by (rule trans[OF _ continuous_at_Sup_mono[symmetric]])
            (auto intro!: monoI mult_left_mono continuous_intros bounded_imp_bdd_above
                simp: bounded_norm_comp bcontfun_def image_comp)
qed (auto simp: norm_bcontfun_def sgn_bcontfun_def)
end
lemma norm_bounded:
    fixes \(f\) :: ('a::topological_space, 'b::real_normed_vector) bcontfun
    shows norm (apply_bcontfun \(f x\) ) \(\leq \operatorname{norm} f\)
    using dist_bounded[of f x 0]
    by (simp add: dist_norm)
lemma norm_bound:
    fixes \(f\) :: ('a::topological_space, 'b::real_normed_vector) bcontfun
    assumes \(\bigwedge x\). norm (apply_bcontfun \(f x) \leq b\)
```

```
shows norm \(f \leq b\)
using dist_bound [of f 0 b] assms
by (simp add: dist_norm)
```


6.34.4 (bounded) continuous extenstion

lemma continuous_on_cbox_bcontfunE:
fixes $f:: ' a::$ euclidean_space \Rightarrow ' $b::$ metric_space
assumes continuous_on (cbox a b) f
obtains $g::^{\prime} a \Rightarrow_{C}{ }^{\prime} b$ where
$\bigwedge x . x \in$ cbox $a b \Longrightarrow g x=f x$
$\bigwedge x . g x=f($ clamp $a b x)$
proof -
define g where $g \equiv$ ext_cont $f a b$
have $g \in$ bcontfun
using assms
by (auto intro!: continuous_on_ext_cont simp: g_def bcontfun_def)
(auto simp: g_def ext_cont_def
intro!: clamp_bounded compact_imp_bounded[OF compact_continuous_image]
assms)
then obtain h where $h: g=$ apply_bcontfun h by (rule bcontfunE)
then have $h x=f x$ if $x \in$ cbox $a b$ for x
by (auto simp: $h\left[\right.$ symmetric] g_{-}def that)
moreover
have $h x=f($ clamp $a b x)$ for x
by (auto simp: $h\left[\right.$ symmetric] $g_{-} d e f$ ext_cont_def)
ultimately show ?thesis ..
qed
lifting_update bcontfun.lifting
lifting_forget bcontfun.lifting
end

6.35 Lindelöf spaces

theory Lindelof_Spaces
imports T1_Spaces
begin
definition Lindelof_space where
Lindelof_space $X \equiv$
$\forall \mathcal{U} .(\forall U \in \mathcal{U}$. openin $X U) \wedge \bigcup \mathcal{U}=$ topspace X $\longrightarrow(\exists \mathcal{V}$. countable $\mathcal{V} \wedge \mathcal{V} \subseteq \mathcal{U} \wedge \cup \mathcal{V}=$ topspace $X)$
lemma Lindelof_spaceD:
\llbracket Lindelof_space $X ; \bigwedge U . U \in \mathcal{U} \Longrightarrow$ openin $X U ; \bigcup \mathcal{U}=$ topspace $X \rrbracket$
$\Longrightarrow \exists \mathcal{V}$. countable $\mathcal{V} \wedge \mathcal{V} \subseteq \mathcal{U} \wedge \bigcup \mathcal{V}=$ topspace X
by (auto simp: Lindelof_space_def)

```
lemma Lindelof_space_alt:
    Lindelof_space \(X \longleftrightarrow\)
        \((\forall \mathcal{U} .(\forall U \in \mathcal{U}\). openin \(X U) \wedge\) topspace \(X \subseteq \bigcup \mathcal{U}\)
            \(\longrightarrow(\exists \mathcal{V}\). countable \(\mathcal{V} \wedge \mathcal{V} \subseteq \mathcal{U} \wedge\) topspace \(X \subseteq \bigcup \mathcal{V}))\)
    unfolding Lindelof_space_def
    using openin_subset by fastforce
lemma compact_imp_Lindelof_space:
    compact_space \(X \Longrightarrow\) Lindelof_space \(X\)
    unfolding Lindelof_space_def compact_space
    by (meson uncountable_infinite)
lemma Lindelof_space_topspace_empty:
    topspace \(X=\{ \} \Longrightarrow\) Lindelof_space \(X\)
    using compact_imp_Lindelof_space compact_space_topspace_empty by blast
lemma Lindelof_space_Union:
    assumes \(\mathcal{U}\) : countable \(\mathcal{U}\) and lin: \(\bigwedge U . U \in \mathcal{U} \Longrightarrow\) Lindelof_space (subtopology
\(X U)\)
    shows Lindelof_space (subtopology \(X(\bigcup \mathcal{U}))\)
proof -
    have \(\exists \mathcal{V}\). countable \(\mathcal{V} \wedge \mathcal{V} \subseteq \mathcal{F} \wedge \bigcup \mathcal{U} \cap \bigcup \mathcal{V}=\) topspace \(X \cap \bigcup \mathcal{U}\)
        if \(\mathcal{F}: \mathcal{F} \subseteq\) Collect (openin \(X\) ) and \(U F: \bigcup \mathcal{U} \cap \bigcup \mathcal{F}=\) topspace \(X \cap \bigcup \mathcal{U}\)
        for \(\mathcal{F}\)
    proof -
        have \(\wedge U . \llbracket U \in \mathcal{U} ; U \cap \bigcup \mathcal{F}=\) topspace \(X \cap U \rrbracket\)
                            \(\Longrightarrow \exists \mathcal{V}\). countable \(\mathcal{V} \wedge \mathcal{V} \subseteq \mathcal{F} \wedge U \cap \bigcup \mathcal{V}=\) topspace \(X \cap U\)
            using \(\operatorname{lin} \mathcal{F}\)
        unfolding Lindelof_space_def openin_subtopology_alt Ball_def subset_iff [symmetric]
            by (simp add: all_subset_image imp_conjL ex_countable_subset_image)
        then obtain \(g\) where \(g: \bigwedge U . \llbracket U \in \mathcal{U} ; U \cap \bigcup \mathcal{F}=\) topspace \(X \cap U \rrbracket\)
                                    \(\Longrightarrow\) countable \((g U) \wedge(g U) \subseteq \mathcal{F} \wedge U \cap \bigcup(g U)=\)
topspace \(X \cap U\)
            by metis
    show ?thesis
    proof (intro exI conjI)
            show countable \((\bigcup(g\) ' \(\mathcal{U}))\)
            using Int_commute UF \(g\) by (fastforce intro: countable_UN [OF \(\mathcal{U}]\) )
            show \(\bigcup\left(g^{\prime} \mathcal{U}\right) \subseteq \mathcal{F}\)
            using \(g U F\) by blast
            show \(\bigcup \mathcal{U} \cap \bigcup\left(\bigcup\left(g^{\prime} \mathcal{U}\right)\right)=\) topspace \(X \cap \bigcup \mathcal{U}\)
            proof
                show \(\bigcup \mathcal{U} \cap \bigcup\left(\bigcup\left(g^{\prime} \mathcal{U}\right)\right) \subseteq\) topspace \(X \cap \bigcup \mathcal{U}\)
                    using \(g\) UF by blast
            show topspace \(X \cap \bigcup \mathcal{U} \subseteq \bigcup \mathcal{U} \cap \bigcup\left(\bigcup\left(g^{\prime} \mathcal{U}\right)\right)\)
            proof clarsimp
                show \(\exists y \in \mathcal{U} . \exists W \in g y . x \in W\)
                    if \(x \in\) topspace \(X x \in V V \in \mathcal{U}\) for \(x V\)
```

```
            proof -
                    have }V\cap\bigcup\mathcal{F}=\mathrm{ topspace }X\cap
                    using UF <V \in\mathcal{U}\rangle\mathrm{ by blast}
                    with that g[OF<V\in\mathcal{U}\rangle] show ?thesis by blast
                    qed
            qed
        qed
        qed
    qed
    then show ?thesis
        unfolding Lindelof_space_def openin_subtopology_alt Ball_def subset_iff [symmetric]
        by (simp add: all_subset_image imp_conjL ex_countable_subset_image)
qed
lemma countable_imp_Lindelof_space:
    assumes countable(topspace X)
    shows Lindelof_space X
proof -
    have Lindelof_space (subtopology X (\bigcupx\in topspace X. {x}))
    proof (rule Lindelof_space_Union)
        show countable ((\lambdax.{x})'topspace X)
        using assms by blast
        show Lindelof_space (subtopology X U)
        if U\in(\lambdax.{x})'topspace }X\mathrm{ for }
    proof -
        have compactin X U
            using that by force
        then show ?thesis
            by (meson compact_imp_Lindelof_space compact_space_subtopology)
        qed
    qed
    then show ?thesis
        by simp
qed
lemma Lindelof_space_subtopology:
    Lindelof_space(subtopology X S)\longleftrightarrow
        (\forall\mathcal{U}.(\forallU\in\mathcal{U}. openin X U)^ topspace X \capS\subseteq\bigcup\mathcal{U}
            \longrightarrow(\existsV.countable V}\wedgeV\subseteq\mathcal{U}\wedge\mathrm{ topspace }X\capS\subseteq\bigcupV)
proof -
    have *: (S\cap\bigcup\mathcal{U}=\mathrm{ topspace }X\capS)=(\mathrm{ topspace X }\capS\subseteq\bigcup\mathcal{U})
        if }\Lambdax.x\in\mathcal{U}\Longrightarrow\mathrm{ openin }Xx\mathrm{ for }\mathcal{U
        by (blast dest: openin_subset [OF that])
    moreover have (\mathcal{V}\subseteq\mathcal{U}\wedgeS\cap\bigcup\mathcal{V}= topspace X \capS)=(\mathcal{V}\subseteq\mathcal{U}\wedge topspace X
\S\subseteq\bigcup\mathcal{V})
    if }\forallx.x\in\mathcal{U}\longrightarrow\mathrm{ openin X x topspace }X\capS\subseteq\bigcup\mathcal{U}\mathrm{ countable }\mathcal{V}\mathrm{ for }\mathcal{U}\mathcal{V
    using that * by blast
    ultimately show ?thesis
    unfolding Lindelof_space_def openin_subtopology_alt Ball_def
    apply (simp add: all_subset_image imp_conjL ex_countable_subset_image flip:
```

```
subset_iff)
    apply (intro all_cong1 imp_cong ex_cong, auto)
    done
qed
```

lemma Lindelof_space_subtopology_subset:
$S \subseteq$ topspace X
\Longrightarrow (Lindelof_space(subtopology X S) \longleftrightarrow
$(\forall \mathcal{U} .(\forall U \in \mathcal{U}$. openin $X U) \wedge S \subseteq \bigcup \mathcal{U}$
$\longrightarrow(\exists V$. countable $V \wedge V \subseteq \mathcal{U} \wedge S \subseteq \bigcup V)))$
by (metis Lindelof_space_subtopology topspace_subtopology topspace_subtopology_subset)
lemma Lindelof_space_closedin_subtopology:
assumes X : Lindelof_space X and clo: closedin $X S$
shows Lindelof_space (subtopology X S)
proof -
have $S \subseteq$ topspace X
by (simp add: clo closedin_subset)
then show ?thesis
proof (clarsimp simp add: Lindelof_space_subtopology_subset)
show $\exists V$. countable $V \wedge V \subseteq \mathcal{F} \wedge S \subseteq \bigcup V$
if $\forall U \in \mathcal{F}$. openin $X U$ and $S \subseteq \bigcup \mathcal{F}$ for \mathcal{F}
proof -
have $\exists \mathcal{V}$. countable $\mathcal{V} \wedge \mathcal{V} \subseteq$ insert (topspace $X-S$) $\mathcal{F} \wedge \bigcup \mathcal{V}=$ topspace X
proof (rule Lindelof_spaceD [OF X, of insert (topspace $X-S) \mathcal{F}]$)
show openin $X U$
if $U \in$ insert (topspace $X-S$) \mathcal{F} for U
using that $\langle\forall U \in \mathcal{F}$. openin $X U\rangle$ clo by blast
show $\bigcup($ insert $($ topspace $X-S) \mathcal{F})=$ topspace X
apply auto
apply (meson in_mono openin_closedin_eq that(1))
using UnionE $\langle S \subseteq \bigcup \mathcal{F}\rangle$ by auto
qed
then obtain \mathcal{V} where countable $\mathcal{V} \mathcal{V} \subseteq$ insert (topspace $X-S) \mathcal{F} \cup \mathcal{V}=$
topspace X
by metis
with $\langle S \subseteq$ topspace $X\rangle$
show ?thesis
by (rule_tac $x=(\mathcal{V}-\{$ topspace $X-S\})$ in exI) auto
qed
qed
qed
lemma Lindelof_space_continuous_map_image:
assumes X : Lindelof_space X and f : continuous_map $X Y f$ and fim: f '
(topspace X) $=$ topspace Y
shows Lindelof_space Y
proof -
have $\exists \mathcal{V}$. countable $\mathcal{V} \wedge \mathcal{V} \subseteq \mathcal{U} \wedge \bigcup \mathcal{V}=$ topspace Y

```
    if \(\mathcal{U}: \wedge U . U \in \mathcal{U} \Longrightarrow\) openin \(Y U\) and \(U U: \bigcup \mathcal{U}=\) topspace \(Y\) for \(\mathcal{U}\)
    proof -
    define \(\mathcal{V}\) where \(\mathcal{V} \equiv(\lambda U .\{x \in\) topspace \(X . f x \in U\})\) ' \(\mathcal{U}\)
    have \(\wedge V . V \in \mathcal{V} \Longrightarrow\) openin \(X V\)
        unfolding \(\mathcal{V}\) _def using \(\mathcal{U}\) continuous_map \(f\) by fastforce
    moreover have \(\cup \mathcal{V}=\) topspace \(X\)
        unfolding \(\mathcal{V}_{-}\)def using \(U U\) fim by fastforce
    ultimately have \(\exists \mathcal{W}\). countable \(\mathcal{W} \wedge \mathcal{W} \subseteq \mathcal{V} \wedge \bigcup \mathcal{W}=\) topspace \(X\)
        using \(X\) by (simp add: Lindelof_space_def)
    then obtain \(\mathcal{C}\) where countable \(\mathcal{C} \mathcal{C} \subseteq \mathcal{U}\) and \(\mathcal{C}:(\bigcup U \in \mathcal{C} .\{x \in\) topspace \(X . f\)
\(x \in U\})=\) topspace \(X\)
        by (metis (no_types, lifting) \(\mathcal{V}_{-}\)def countable_subset_image)
    moreover have \(\bigcup \mathcal{C}=\) topspace \(Y\)
    proof
        show \(\bigcup \mathcal{C} \subseteq\) topspace \(Y\)
            using \(U U \mathcal{C}\langle\mathcal{C} \subseteq \mathcal{U}\rangle\) by fastforce
        have \(y \in \bigcup \mathcal{C}\) if \(y \in\) topspace \(Y\) for \(y\)
        proof -
            obtain \(x\) where \(x \in\) topspace \(X y=f x\)
                using that fim by (metis \(\langle y \in\) topspace \(Y\rangle\) image \(E\) )
            with \(\mathcal{C}\) show ?thesis by auto
        qed
        then show topspace \(Y \subseteq \bigcup \mathcal{C}\) by blast
    qed
    ultimately show ?thesis
        by blast
    qed
    then show ?thesis
    unfolding Lindelof_space_def
    by auto
qed
lemma Lindelof_space_quotient_map_image:
    \(\llbracket q u o t i e n t \_m a p ~ X ~ Y ~ q ; ~ L i n d e l o f \_s p a c e ~ X \rrbracket \Longrightarrow ~ L i n d e l o f \_s p a c e ~ Y ~\)
    by (meson Lindelof_space_continuous_map_image quotient_imp_continuous_map
quotient_imp_surjective_map)
lemma Lindelof_space_retraction_map_image:
    \(\llbracket\) retraction_map X Yr; Lindelof_space \(X \rrbracket \Longrightarrow\) Lindelof_space \(Y\)
    using Abstract_Topology.retraction_imp_quotient_map Lindelof_space_quotient_map_image
by blast
lemma locally_finite_cover_of_Lindelof_space:
    assumes \(X\) : Lindelof_space \(X\) and \(U U\) : topspace \(X \subseteq \bigcup \mathcal{U}\) and fin: locally_finite_in
\(X \mathcal{U}\)
    shows countable \(\mathcal{U}\)
proof -
    have \(U U_{-} e q: ~ \bigcup \mathcal{U}=\) topspace \(X\)
        by (meson UU fin locally_finite_in_def subset_antisym)
```

obtain T where $T: \wedge x . x \in$ topspace $X \Longrightarrow$ openin $X(T x) \wedge x \in T x \wedge$ finite $\{U \in \mathcal{U} . U \cap T x \neq\{ \}\}$
using fin unfolding locally＿finite＿in＿def by metis
then obtain I where countable $I I \subseteq$ topspace X and I ：topspace $X \subseteq \bigcup(T$＇
I）
using X unfolding Lindelof＿space＿alt
by（drule＿tac $x=$ image T（topspace X ）in spec）（auto simp：ex＿countable＿subset＿image）
show ？thesis
proof（rule countable＿subset）
have $\bigwedge i . i \in I \Longrightarrow$ countable $\{U \in \mathcal{U} . U \cap T i \neq\{ \}\}$
using T
by（meson $\langle I \subseteq$ topspace X 〉in＿mono uncountable＿infinite）
then show countable（insert $\}(\bigcup i \in I .\{U \in \mathcal{U} . U \cap T i \neq\{ \}\}))$
by（simp add：〈countable I〉）
qed（use UU＿eq I in auto）
qed
lemma Lindelof＿space＿proper＿map＿preimage：
assumes f ：proper＿map $X Y f$ and Y ：Lindelof＿space Y
shows Lindelof＿space X
proof（clarsimp simp：Lindelof＿space＿alt）
show $\exists \mathcal{V}$ ．countable $\mathcal{V} \wedge \mathcal{V} \subseteq \mathcal{U} \wedge$ topspace $X \subseteq \bigcup \mathcal{V}$ if $\mathcal{U}: \forall U \in \mathcal{U}$ ．openin $X U$ and sub＿UU：topspace $X \subseteq \bigcup \mathcal{U}$ for \mathcal{U}
proof－
have $\exists \mathcal{V}$ ．finite $\mathcal{V} \wedge \mathcal{V} \subseteq \mathcal{U} \wedge\{x \in$ topspace $X . f x=y\} \subseteq \bigcup \mathcal{V}$ if $y \in$ topspace
Y for y
proof（rule compactinD）
show compactin $X\{x \in$ topspace $X . f x=y\}$
using f proper＿map＿def that by fastforce
qed（use sub＿$U U \mathcal{U}$ in auto）
then obtain \mathcal{V} where $\mathcal{V}: \wedge y . y \in$ topspace $Y \Longrightarrow$ finite $(\mathcal{V} y) \wedge \mathcal{V} y \subseteq \mathcal{U} \wedge$
$\{x \in$ topspace $X . f x=y\} \subseteq \bigcup(\mathcal{V} y)$
by meson
define \mathcal{W} where $\mathcal{W} \equiv(\lambda y$ ．topspace $Y-$ image $f($ topspace $X-\bigcup(\mathcal{V} y)))$＇
topspace Y
have $\forall U \in \mathcal{W}$ ．openin $Y U$
using $f \mathcal{U} \mathcal{V}$ unfolding \mathcal{W}_{-}def proper＿map＿def closed＿map＿def
by（simp add：closedin＿diff openin＿Union openin＿diff subset＿iff）
moreover have topspace $Y \subseteq \bigcup \mathcal{W}$
using \mathcal{V} unfolding $\mathcal{W}_{\text {＿def }}$ by clarsimp fastforce
ultimately have $\exists \mathcal{V}$ ．countable $\mathcal{V} \wedge \mathcal{V} \subseteq \mathcal{W} \wedge$ topspace $Y \subseteq \cup \mathcal{V}$
using Y by（simp add：Lindelof＿space＿alt）
then obtain I where countable $I I \subseteq$ topspace Y
and I ：topspace $Y \subseteq\left(\bigcup i \in I\right.$ ．topspace $Y-f^{\prime}($ topspace $\left.X-\bigcup(\mathcal{V} i))\right)$
unfolding \mathcal{W}_{-}def ex＿countable＿subset＿image by metis
show ？thesis
proof（intro exI conjI）
have $\bigwedge i . i \in I \Longrightarrow$ countable $(\mathcal{V} i)$

```
            by (meson \mathcal{V}\langleI\subseteq topspace Y> in_mono uncountable_infinite)
            with <countable I\rangle show countable (U(\mathcal{V}'I))
            by auto
            show }\bigcup(\mathcal{V}'I)\subseteq\mathcal{U
            using \mathcal{V}\langleI\subseteq topspace Y} \\mathrm{ by fastforce
            show topspace }X\subseteq\bigcup(\bigcup(\mathcal{V}'I)
            proof
            show }x\in\bigcup(\bigcup(\mathcal{V}'I)) if x\in topspace X for x
            proof -
                    have f x \in topspace Y
                by (meson f image_subset_iff proper_map_imp_subset_topspace that)
                    then show ?thesis
                using that I by auto
            qed
            qed
    qed
    qed
qed
lemma Lindelof_space_perfect_map_image:
                            \llbracketLindelof_space X; perfect_map X Y f\rrbracket \Longrightarrow Lindelof_space Y
                            using Lindelof_space_quotient_map_image perfect_imp_quotient_map by blast
lemma Lindelof_space_perfect_map_image_eq:
    perfect_map X Yf \Longrightarrow Lindelof_space X \longleftrightarrow Lindelof_space Y
    using Lindelof_space_perfect_map_image Lindelof_space_proper_map_preimage per-
fect_map_def by blast
end
```


6.36 Infinite Products

theory Infinite_Products
imports Topology_Euclidean_Space Complex_Transcendental
begin

6.36.1 Preliminaries

lemma sum_le_prod:
fixes $f::$ ' $a \Rightarrow$ ' $b::$ linordered_semidom
assumes $\bigwedge x . x \in A \Longrightarrow f x \geq 0$
shows sum $f A \leq\left(\prod x \in A .1+f x\right)$
using assms
proof (induction A rule: infinite_finite_induct)
case (insert $x A$)
from insert.hyps have sum $f A+f x *\left(\prod x \in A .1\right) \leq\left(\prod x \in A .1+f x\right)+f x$

* $\left(\prod x \in A .1+f x\right)$
by (intro add_mono insert mult_left_mono prod_mono) (auto intro: insert.prems)
with insert.hyps show ?case by (simp add: algebra_simps)

```
qed simp_all
lemma prod_le_exp_sum:
    fixes f :: 'a m real
    assumes }\x.x\inA\Longrightarrowfx\geq
    shows prod ( }\lambdax.1+fx)A\leq\operatorname{exp}(\operatorname{sum}fA
    using assms
proof (induction A rule: infinite_finite_induct)
    case (insert x A)
    have}(1+fx)*(\prodx\inA.1+fx)\leq\operatorname{exp}(fx)*\operatorname{exp}(\operatorname{sum}fA
    using insert.prems by (intro mult_mono insert prod_nonneg exp_ge_add_one_self)
auto
    with insert.hyps show ?case by (simp add: algebra_simps exp_add)
qed simp_all
lemma lim_ln_1_plus_x_over_x_at_0: (\lambdax::real. ln (1 + x) / x) - 0 > 1
proof (rule lhopital)
    show }(\lambdax::real. ln (1+x)) -0->
        by (rule tendsto_eq_intros refl | simp)+
    have eventually (\lambdax::real. x }\in{-1/2<..<1/2})(nhds 0
        by (rule eventually_nhds_in_open) auto
    hence *: eventually ( }\lambdax::\mathrm{ real. }x\in{-1/2<..<1/2}) (at 0)
        by (rule filter_leD [rotated]) (simp_all add: at_within_def)
    show eventually ( }\lambdax::real. ((\lambdax.ln (1 + x)) has_field_derivative inverse (1+
x))(at x)) (at 0)
        using * by eventually_elim (auto intro!: derivative_eq_intros simp: field_simps)
    show eventually ( }\lambdax::real. (( \lambdax.x) has_field_derivative 1) (at x)) (at 0
        using * by eventually_elim (auto intro!: derivative_eq_intros simp: field_simps)
    show }\mp@subsup{\forall}{F}{}x\mathrm{ in at 0. x =0 by (auto simp: at_within_def eventually_inf_principal)
    show ( }\lambdax\mathrm{ ::real. inverse (1 + x)/1)-0) 
        by (rule tendsto_eq_intros refl | simp)+
qed auto
```


6.36.2 Definitions and basic properties

definition raw_has_prod $::\left[n a t \Rightarrow{ }^{\prime} a::\left\{t 2 _s p a c e\right.\right.$, comm_semiring_1 $\}$, nat, $\left.' a\right] \Rightarrow$ bool
where raw_has_prod f $M p \equiv\left(\lambda n . \prod i \leq n . f(i+M)\right) \longrightarrow p \wedge p \neq 0$
The nonzero and zero cases, as in Complex Analysis by Joseph Bak and Donald J.Newman, page 241

definition

has_prod $::\left(\right.$ nat $\Rightarrow{ }^{\prime} a::\{$ t2_space, comm_semiring_1 $\left.\}\right) \Rightarrow^{\prime} a \Rightarrow$ bool (infixr has'_prod 80)
where f has_prod $p \equiv$ raw_has_prod f $0 p \vee(\exists i q . p=0 \wedge f i=0 \wedge$ raw_has_prod f (Suc i) q)
definition convergent_prod $::\left(\right.$ nat $\Rightarrow{ }^{\prime} a$:: \{t2_space,comm_semiring_1 $\left.\}\right) \Rightarrow$ bool where

```
convergent_prod \(f \equiv \exists M\) p. raw_has_prod \(f M p\)
definition prodinf \(::\left(\right.\) nat \(\Rightarrow{ }^{\prime} a::\left\{t 2 \_\right.\)space, comm_semiring_1 \(\left.\}\right) \Rightarrow^{\prime} a\)
    (binder П10)
    where prodinf \(f=(\) THE p. \(f\) has_prod \(p)\)
lemmas prod_defs \(=\) raw_has_prod_def has_prod_def convergent_prod_def prodinf_def
lemma has_prod_subst[trans]: \(f=g \Longrightarrow g\) has_prod \(z \Longrightarrow f\) has_prod \(z\)
    by \(\operatorname{simp}\)
lemma has_prod_cong: \((\bigwedge n . f n=g n) \Longrightarrow f\) has_prod \(c \longleftrightarrow g\) has_prod \(c\)
    by presburger
lemma raw_has_prod_nonzero [simp]: \(\neg\) raw_has_prod f M 0
    by (simp add: raw_has_prod_def)
lemma raw_has_prod_eq_0:
    fixes \(f::\) nat \(\Rightarrow{ }^{\prime} a::\{\) semidom,t2_space \(\}\)
    assumes \(p\) : raw_has_prod \(f m p\) and \(i: f i=0 i \geq m\)
    shows \(p=0\)
proof -
    have eq0: \(\left(\prod k \leq n . f(k+m)\right)=0\) if \(i-m \leq n\) for \(n\)
    proof -
        have \(\exists k \leq n . f(k+m)=0\)
        using \(i\) that by auto
        then show ?thesis
        by auto
    qed
    have \(\left(\lambda n . \prod i \leq n . f(i+m)\right) \longrightarrow 0\)
        by (rule LIMSEQ_offset [where \(k=i-m\) ]) (simp add: eq0)
        with \(p\) show ?thesis
            unfolding raw_has_prod_def
        using LIMSEQ_unique by blast
qed
lemma raw_has_prod_Suc:
    raw_has_prod \(f(\) Suc \(M) a \longleftrightarrow\) raw_has_prod \((\lambda n . f(S u c n)) M a\)
    unfolding raw_has_prod_def by auto
lemma has_prod_0_iff: f has_prod \(0 \longleftrightarrow(\exists i . f i=0 \wedge(\exists\) p. raw_has_prod \(f\) (Suc
i) \(p\) ))
    by (simp add: has_prod_def)
lemma has_prod_unique2:
    fixes \(f::\) nat \(\Rightarrow{ }^{\prime} a::\{\) semidom,t2_space \(\}\)
    assumes \(f\) has_prod a \(f\) has_prod \(b\) shows \(a=b\)
    using assms
    by (auto simp: has_prod_def raw_has_prod_eq_0) (meson raw_has_prod_def sequen-
```

```
tially_bot tendsto_unique)
lemma has_prod_unique:
    fixes \(f::\) nat \(\Rightarrow{ }^{\prime} a::\{\) semidom,t2_space \(\}\)
    shows \(f\) has_prod \(s \Longrightarrow s=\) prodinf \(f\)
    by (simp add: has_prod_unique2 prodinf_def the_equality)
lemma convergent_prod_altdef:
    fixes \(f::\) nat \(\Rightarrow{ }^{\prime} a::\left\{t 2 \_\right.\)space,comm_semiring_1 \(\}\)
    shows convergent_prod \(f \longleftrightarrow\left(\exists M L .(\forall n \geq M . f n \neq 0) \wedge\left(\lambda n . \prod i \leq n . f(i+M)\right)\right.\)
\(\longrightarrow L \wedge L \neq 0)\)
proof
    assume convergent_prod \(f\)
    then obtain \(M L\) where \(*:\left(\lambda n . \prod i \leq n . f(i+M)\right) \longrightarrow L L \neq 0\)
        by (auto simp: prod_defs)
    have \(f i \neq 0\) if \(i \geq M\) for \(i\)
    proof
        assume \(f i=0\)
        have \(* *\) : eventually \(\left(\lambda n .\left(\prod i \leq n . f(i+M)\right)=0\right)\) sequentially
        using eventually_ge_at_top \([\) of \(i-M]\)
        proof eventually_elim
        case (elim n)
            with \(\langle f i=0\rangle\) and \(\langle i \geq M\rangle\) show ?case
                by (auto intro!: bexI[of _ \(i-M]\) prod_zero)
        qed
        have \(\left(\lambda n .\left(\prod i \leq n . f(i+M)\right)\right) \longrightarrow 0\)
            unfolding filterlim_iff
            by (auto dest!: eventually_nhds_x_imp_x intro!: eventually_mono[OF **])
            from tendsto_unique \(\left[O F \_\right.\)this \(\left.*(1)\right]\) and \(*\) (2)
            show False by simp
    qed
    with \(* \operatorname{show}\left(\exists M L .(\forall n \geq M . f n \neq 0) \wedge\left(\lambda n . \prod i \leq n . f(i+M)\right) \longrightarrow L \wedge\right.\)
\(L \neq 0\) )
    by blast
qed (auto simp: prod_defs)
```


6.36.3 Absolutely convergent products

definition abs_convergent_prod $::($ nat \Rightarrow _) \Rightarrow bool where abs_convergent_prod $f \longleftrightarrow$ convergent_prod $(\lambda i .1+\operatorname{norm}(f i-1))$
lemma abs_convergent_prodI:
assumes convergent $\left(\lambda n . \prod i \leq n .1+\operatorname{norm}(f i-1)\right)$
shows abs_convergent_prod f
proof -
from assms obtain L where $L:\left(\lambda n . \prod i \leq n .1+\operatorname{norm}(f i-1)\right) \longrightarrow L$
by (auto simp: convergent_def)
have $L \geq 1$
proof (rule tendsto_le)

```
    show eventually ( }\lambdan.(\prodi\leqn.1+\operatorname{norm}(fi-1))\geq1) sequentially
    proof (intro always_eventually allI)
        fix n
        have (\prodi\leqn.1 + norm (fi - 1))\geq(\prodi\leqn.1)
        by (intro prod_mono) auto
        thus (\prodi\leqn.1 + norm (fi-1))\geq1 by simp
    qed
qed (use L in simp_all)
hence L\not=0 by auto
    with L show ?thesis unfolding abs_convergent_prod_def prod_defs
    by (intro exI[of _ 0::nat] exI[of _ L]) auto
qed
lemma
    fixes f :: nat => ' a :: {topological_semigroup_mult,t2_space,idom}
    assumes convergent_prod f
    shows convergent_prod_imp_convergent: convergent (\lambdan.\Pii\leqn.fi)
    and convergent_prod_to_zero_iff [simp]:(\lambdan. \Pii\leqn.fi)\longrightarrow 
fi=0)
proof -
    from assms obtain ML
        where M: \n. n\geqM\Longrightarrowfn\not=0 and (\lambdan. \prodi\leqn.f(i+M))\longrightarrowL
and L\not=0
    by (auto simp: convergent_prod_altdef)
    note this(2)
    also have (\lambdan. \Pii\leqn.f(i+M))=(\lambdan.\prodi=M..M+n.fi)
        by (intro ext prod.reindex_bij_witness[of _ \lambdan.n - M \lambdan. n + M]) auto
    finally have (\lambdan. (\prodi<M.fi)*(\prodi=M..M+n.fi))\longrightarrow(\prodi<M.fi)*
L
    by (intro tendsto_mult tendsto_const)
    also have (\lambdan.(\prodi<M.fi)*(\prodi=M..M+n.fi))=(\lambdan.(\prodi\in{..<M}\cup{M..M+n}.
fi))
    by (subst prod.union_disjoint) auto
    also have (\lambdan. {..<M}\cup{M..M+n})=(\lambdan.{..n+M}) by auto
    finally have lim: (\lambdan.prod f{..n})\longrightarrow prod f{..<M}*L
        by (rule LIMSEQ_offset)
    thus convergent ( }\lambdan.\prodi\leqn.fi
        by (auto simp: convergent_def)
    show }(\lambdan.\Pii\leqn.fi)\longrightarrow0\longleftrightarrow(\existsi.fi=0
    proof
    assume }\existsi.fi=
    then obtain i where fi=0 by auto
    moreover with }M\mathrm{ have }i<M\mathrm{ by (cases i<M) auto
    ultimately have (\prodi<M.fi)=0 by auto
    with lim show (\lambdan. \Pii\leqn.fi)\longrightarrow0 by simp
    next
    assume (\lambdan. \Pii\leqn.fi)\longrightarrow0
    from tendsto_unique[OF _ this lim] and }\langleL\not=0
```

```
        show \(\exists i . f i=0\) by auto
    qed
qed
lemma convergent_prod_iff_nz_lim:
    fixes \(f::\) nat \(\Rightarrow{ }^{\prime} a::\) \{topological_semigroup_mult,t2_space,idom \(\}\)
    assumes \(\bigwedge i\). \(f i \neq 0\)
    shows convergent_prod \(f \longleftrightarrow\left(\exists L .\left(\lambda n . \prod i \leq n . f i\right) \longrightarrow L \wedge L \neq 0\right)\)
        (is?lhs \(\longleftrightarrow\) ?rhs)
proof
    assume ?lhs then show ?rhs
    using assms convergentD convergent_prod_imp_convergent convergent_prod_to_zero_iff
by blast
next
    assume ?rhs then show?lhs
        unfolding prod_defs
        by (rule_tac \(x=0\) in exI) auto
qed
lemma convergent_prod_iff_convergent:
    fixes \(f::\) nat \(\Rightarrow{ }^{\prime} a::\{\) topological_semigroup_mult,t2_space,idom \(\}\)
    assumes \(\wedge i . f i \neq 0\)
    shows convergent_prod \(f \longleftrightarrow\) convergent \(\left(\lambda n . \prod i \leq n . f i\right) \wedge \lim \left(\lambda n . \prod i \leq n . f\right.\)
i) \(\neq 0\)
    by (force simp: convergent_prod_iff_nz_lim assms convergent_def limI)
lemma bounded_imp_convergent_prod:
    fixes \(a::\) nat \(\Rightarrow\) real
    assumes 1: \(\bigwedge n\). a \(n \geq 1\) and bounded: \(\bigwedge n\). \(\left(\prod i \leq n . a i\right) \leq B\)
    shows convergent_prod \(a\)
proof -
    have bdd_above (range \(\left(\lambda n . \prod i \leq n\right.\). a \(\left.i\right)\) )
        by (meson bdd_aboveI2 bounded)
    moreover have incseq \(\left(\lambda n . \prod i \leq n . a i\right)\)
    unfolding mono_def by (metis 1 prod_mono2 atMost_subset_iff dual_order.trans
finite_atMost zero_le_one)
    ultimately obtain \(p\) where \(p:\left(\lambda n . \prod i \leq n . a i\right) \longrightarrow p\)
        using LIMSEQ_incseq_SUP by blast
    then have \(p \neq 0\)
        by (metis 1 not_one_le_zero prod_ge_1 LIMSEQ_le_const)
    with \(1 p\) show ?thesis
        by (metis convergent_prod_iff_nz_lim not_one_le_zero)
qed
lemma abs_convergent_prod_altdef:
fixes \(f::\) nat \(\Rightarrow\) ' \(a::\{\) one,real_normed_vector \(\}\)
shows abs_convergent_prod \(f \longleftrightarrow\) convergent \(\left(\lambda n . \prod i \leq n .1+\operatorname{norm}(f i-1)\right)\)
proof
```

assume abs_convergent_prod f
thus convergent $\left(\lambda n . \prod i \leq n .1+\operatorname{norm}(f i-1)\right)$
by (auto simp: abs_convergent_prod_def intro!: convergent_prod_imp_convergent) qed (auto intro: abs_convergent_prodI)
lemma Weierstrass_prod_ineq:
fixes $f::^{\prime} a \Rightarrow$ real
assumes $\wedge x . x \in A \Longrightarrow f x \in\{0 . .1\}$
shows $1-\operatorname{sum} f A \leq\left(\prod x \in A .1-f x\right)$
using assms
proof (induction A rule: infinite_finite_induct)
case (insert $x A$)
from insert.hyps and insert.prems
have $1-\operatorname{sum} f A+f x *\left(\prod x \in A .1-f x\right) \leq\left(\prod x \in A .1-f x\right)+f x *$ (Пx $x \in$. 1)
by (intro insert.IH add_mono mult_left_mono prod_mono) auto
with insert.hyps show ?case by (simp add: algebra_simps)
qed simp_all
lemma norm_prod_minus1_le_prod_minus1:
fixes $f::$ nat $\Rightarrow{ }^{\prime} a::\left\{r e a l _n o r m e d _d i v_{-} a l g e b r a, c o m m _r i n g _1\right\}$
shows norm $(\operatorname{prod}(\lambda n .1+f n) A-1) \leq \operatorname{prod}(\lambda n .1+\operatorname{norm}(f n)) A-1$
proof (induction A rule: infinite_finite_induct)
case (insert $x A$)
from insert.hyps have
norm $\left(\left(\prod n \in\right.\right.$ insert $\left.\left.x A .1+f n\right)-1\right)=$ norm $\left(\left(\prod n \in A .1+f n\right)-1+f x *\left(\prod n \in A .1+f n\right)\right)$
by (simp add: algebra_simps)
also have $\ldots \leq \operatorname{norm}\left(\left(\prod n \in A .1+f n\right)-1\right)+\operatorname{norm}\left(f x *\left(\prod n \in A .1+f\right.\right.$ $n)$)
by (rule norm_triangle_ineq)
also have $\operatorname{norm}\left(f x *\left(\prod n \in A .1+f n\right)\right)=\operatorname{norm}(f x) *\left(\prod x \in A . \operatorname{norm}(1+\right.$ $f x)$)
by (simp add: prod_norm norm_mult)
also have $\left(\prod x \in A\right.$. norm $\left.(1+f x)\right) \leq\left(\prod x \in A\right.$. norm $\left.\left(1::^{\prime} a\right)+\operatorname{norm}(f x)\right)$
by (intro prod_mono norm_triangle_ineq ballI conjI) auto
also have norm $\left(1::^{\prime} a\right)=1$ by simp
also note insert.IH
also have $\left(\prod n \in A .1+\operatorname{norm}(f n)\right)-1+\operatorname{norm}(f x) *\left(\prod x \in A .1+\operatorname{norm}(f\right.$
$x))=$

$$
\left(\prod n \in \operatorname{insert} x A .1+\operatorname{norm}(f n)\right)-1
$$

using insert.hyps by (simp add: algebra_simps)
finally show? ?case by - (simp_all add: mult_left_mono)
qed simp_all
lemma convergent_prod_imp_ev_nonzero:
fixes $f::$ nat $\Rightarrow^{\prime} a::\{$ t2_space,comm_semiring_1 $\}$
assumes convergent_prod f
shows eventually $(\lambda n . f n \neq 0)$ sequentially

```
    using assms by (auto simp: eventually_at_top_linorder convergent_prod_altdef)
lemma convergent_prod_imp_LIMSEQ:
    fixes \(f::\) nat \(\Rightarrow{ }^{\prime} a::\{\) real_normed_field \(\}\)
    assumes convergent_prod \(f\)
    shows \(f \longrightarrow 1\)
proof -
    from assms obtain \(M L\) where \(L:\left(\lambda n . \prod i \leq n . f(i+M)\right) \longrightarrow L \bigwedge n . n \geq\)
\(M \Longrightarrow f n \neq 0 L \neq 0\)
        by (auto simp: convergent_prod_altdef)
    hence \(L^{\prime}:\left(\lambda n . \prod i \leq S u c n . f(i+M)\right) \longrightarrow L\) by (subst filterlim_sequentially_Suc)
    have \(\left(\lambda n .\left(\prod i \leq S u c n . f(i+M)\right) /\left(\prod i \leq n . f(i+M)\right)\right) \longrightarrow L / L\)
        using \(L L^{\prime}\) by (intro tendsto_divide) simp_all
    also from \(L\) have \(L / L=1\) by simp
    also have \(\left(\lambda n .\left(\prod i \leq S u c n . f(i+M)\right) /\left(\prod i \leq n . f(i+M)\right)\right)=(\lambda n . f(n+S u c\)
M)
        using assms L by (auto simp: fun_eq_iff atMost_Suc)
    finally show ?thesis by (rule LIMSEQ_offset)
qed
lemma abs_convergent_prod_imp_summable:
    fixes \(f::\) nat \(\Rightarrow{ }^{\prime} a\) :: real_normed_div_algebra
    assumes abs_convergent_prod \(f\)
    shows summable ( \(\lambda\) i. norm ( \(f i-1\) ))
proof -
    from assms have convergent \(\left(\lambda n . \prod i \leq n .1+\operatorname{norm}(f i-1)\right)\)
        unfolding abs_convergent_prod_def by (rule convergent_prod_imp_convergent)
    then obtain \(L\) where \(L:(\lambda n . \Pi i \leq n .1+\operatorname{norm}(f i-1)) \longrightarrow L\)
        unfolding convergent_def by blast
    have convergent \(\left(\lambda n . \sum i \leq n\right.\). norm \(\left.(f i-1)\right)\)
    proof (rule Bseq_monoseq_convergent)
        have eventually \(\left(\lambda n .\left(\prod i \leq n .1+\operatorname{norm}(f i-1)\right)<L+1\right)\) sequentially
            using \(L(1)\) by (rule order_tendstoD) simp_all
        hence \(\forall_{F} x\) in sequentially. norm \(\left(\sum i \leq x\right.\).norm \(\left.(f i-1)\right) \leq L+1\)
        proof eventually_elim
            case (elim n)
            have \(\operatorname{norm}\left(\sum i \leq n . \operatorname{norm}(f i-1)\right)=\left(\sum i \leq n . \operatorname{norm}(f i-1)\right)\)
                unfolding real_norm_def by (intro abs_of_nonneg sum_nonneg) simp_all
            also have \(\ldots \leq\left(\prod i \leq n .1+\operatorname{norm}(f i-1)\right)\) by (rule sum_le_prod) auto
            also have \(\ldots<L+1\) by (rule elim)
            finally show? ?case by simp
        qed
        thus Bseq \(\left(\lambda n . \sum i \leq n . \operatorname{norm}(f i-1)\right)\) by (rule BfunI)
    next
        show monoseq \(\left(\lambda n . \sum i \leq n . \operatorname{norm}(f i-1)\right)\)
            by (rule mono_SucI1) auto
    qed
    thus summable ( \(\lambda\) i. norm \((f i-1)\) ) by (simp add: summable_iff_convergent')
qed
```

```
lemma summable_imp_abs_convergent_prod:
    fixes \(f::\) nat \(\Rightarrow{ }^{\prime} a\) :: real_normed_div_algebra
    assumes summable ( \(\lambda i\). norm ( \(f i-1\) ))
    shows abs_convergent_prod \(f\)
proof (intro abs_convergent_prodI Bseq_monoseq_convergent)
    show monoseq \(\left(\lambda n . \prod i \leq n .1+\operatorname{norm}(f i-1)\right)\)
        by (intro mono_SucI1)
            (auto simp: atMost_Suc algebra_simps intro!: mult_nonneg_nonneg prod_nonneg)
next
    show Bseq \(\left(\lambda n . \prod i \leq n .1+\operatorname{norm}(f i-1)\right)\)
    proof (rule Bseq_eventually_mono)
        show eventually \(\left(\lambda\right.\) n. norm \(\left(\prod i \leq n .1+\operatorname{norm}(f i-1)\right) \leq\)
                        norm \(\left.\left(\exp \left(\sum i \leq n . \operatorname{norm}(f i-1)\right)\right)\right)\) sequentially
        by (intro always_eventually allI) (auto simp: abs_prod exp_sum intro!: prod_mono)
    next
        from assms have \(\left(\lambda n . \sum i \leq n . \operatorname{norm}(f i-1)\right) \longrightarrow\left(\sum i . \operatorname{norm}(f i-1)\right)\)
            using sums_def_le by blast
        hence \(\left(\lambda n \cdot \exp \left(\sum i \leq n . \operatorname{norm}(f i-1)\right)\right) \longrightarrow \exp \left(\sum i . \operatorname{norm}(f i-1)\right)\)
        by (rule tendsto_exp)
            hence convergent \(\left(\lambda\right.\) n. \(\left.\exp \left(\sum i \leq n . \operatorname{norm}(f i-1)\right)\right)\)
            by (rule convergentI)
            thus Bseq \(\left(\lambda n . \exp \left(\sum i \leq n . \operatorname{norm}(f i-1)\right)\right)\)
            by (rule convergent_imp_Bseq)
    qed
qed
theorem abs_convergent_prod_conv_summable:
fixes \(f::\) nat \(\Rightarrow{ }^{\prime} a\) :: real_normed_div_algebra
shows abs_convergent_prod \(f \longleftrightarrow\) summable \((\lambda i . \operatorname{norm}(f i-1))\)
by (blast intro: abs_convergent_prod_imp_summable summable_imp_abs_convergent_prod)
lemma abs_convergent_prod_imp_LIMSEQ:
fixes \(f::\) nat \(\Rightarrow{ }^{\prime} a::\{\) comm_ring_1, real_normed_div_algebra \(\}\)
assumes abs_convergent_prod \(f\)
shows \(f \longrightarrow 1\)
proof -
from assms have summable ( \(\lambda\) n. norm \((f n-1)\) )
by (rule abs_convergent_prod_imp_summable)
from summable_LIMSEQ_zero \([O F\) this \(]\) have \((\lambda n . f n-1) \longrightarrow 0\) by (simp add: tendsto_norm_zero_iff)
from tendsto_add[OF this tendsto_const[of 1]] show ?thesis by simp qed
lemma abs_convergent_prod_imp_ev_nonzero:
fixes \(f::\) nat \(\Rightarrow{ }^{\prime} a::\{\) comm_ring_1, real_normed_div_algebra \(\}\)
assumes abs_convergent_prod \(f\)
shows eventually \((\lambda n . f n \neq 0)\) sequentially
proof -
```

```
    from assms have \(f \longrightarrow 1\)
    by (rule abs_convergent_prod_imp_LIMSEQ)
    hence eventually ( \(\lambda n\). dist \((f n) 1<1)\) at_top
    by (auto simp: tendsto_iff)
    thus ?thesis by eventually_elim auto
qed
```


6.36.4 Ignoring initial segments

```
lemma convergent_prod_offset:
    assumes convergent_prod ( }\lambdan.f(n+m)
    shows convergent_prod f
proof -
    from assms obtain ML where (\lambdan. \Pik\leqn.f(k+(M+m)))\longrightarrowL}\longrightarrowL\not
0
    by (auto simp: prod_defs add.assoc)
    thus convergent_prod f
        unfolding prod_defs by blast
qed
lemma abs_convergent_prod_offset:
    assumes abs_convergent_prod (\lambdan.f(n+m))
    shows abs_convergent_prod f
    using assms unfolding abs_convergent_prod_def by (rule convergent_prod_offset)
```

lemma raw_has_prod_ignore_initial_segment:
fixes $f::$ nat $\Rightarrow{ }^{\prime} a$:: real_normed_field
assumes raw_has_prod f M p $N \geq M$
obtains q where raw_has_prod $f N q$
proof -
have $p:\left(\lambda n . \prod k \leq n . f(k+M)\right) \longrightarrow p$ and $p \neq 0$
using assms by (auto simp: raw_has_prod_def)
then have $n z: \bigwedge n . n \geq M \Longrightarrow f n \neq 0$
using assms by (auto simp: raw_has_prod_eq_0)
define C where $C=\left(\prod k<N-M . f(k+M)\right)$
from $n z$ have $[$ simp $]: C \neq 0$
by (auto simp: C_def)
from p have $(\lambda i . \Pi k \leq i+(N-M) . f(k+M)) \longrightarrow p$
by (rule LIMSEQ_ignore_initial_segment)
also have $(\lambda i . \Pi k \leq i+(N-M) . f(k+M))=\left(\lambda n . C *\left(\prod k \leq n . f(k+N)\right)\right)$
proof (rule ext, goal_cases)
case (1 n)
have $\{. . n+(N-M)\}=\{. .<(N-M)\} \cup\{(N-M) . . n+(N-M)\}$ by auto
also have $\left(\prod k \in \ldots f(k+M)\right)=C *\left(\prod k=(N-M) . . n+(N-M) . f(k+\right.$
M))
unfolding C_{-}def by (rule prod.union_disjoint) auto
also have $\left(\prod k=(N-M) . . n+(N-M) . f(k+M)\right)=\left(\prod k \leq n . f(k+(N-M)\right.$

```
+M))
    by (intro ext prod.reindex_bij_witness[of_ _ k. k + (N-M) \lambdak.k-(N-M)])
auto
    finally show ?case
        using }\langleN\geqM\rangle\mathrm{ by (simp add:add_ac)
    qed
    finally have (\lambdan.C*(\prodk\leqn.f(k+N))/C)\longrightarrowp/C
        by (intro tendsto_divide tendsto_const) auto
    hence ( }\lambdan.\Pik\leqn.f(k+N))\longrightarrowp/C by sim
    moreover from }\langlep\not=0\rangle\mathrm{ have p/C 看0 by simp
    ultimately show ?thesis
        using raw_has_prod_def that by blast
qed
corollary convergent_prod_ignore_initial_segment:
    fixes f :: nat => ' }a\mathrm{ :: real_normed_field
    assumes convergent_prod f
    shows convergent_prod (\lambdan.f (n+m))
    using assms
    unfolding convergent_prod_def
    apply clarify
    apply (erule_tac N=M+m in raw_has_prod_ignore_initial_segment)
    apply (auto simp add: raw_has_prod_def add_ac)
    done
corollary convergent_prod_ignore_nonzero_segment:
    fixes f :: nat => 'a :: real_normed_field
    assumes f:convergent_prod f}\mathrm{ and nz:\i. i \M"fi}=
    shows }\exists\textrm{p}\mathrm{ . raw_has_prod f M p
    using convergent_prod_ignore_initial_segment [OF f]
    by (metis convergent_LIMSEQ_iff convergent_prod_iff_convergent le_add_same_cancel2
nz prod_defs(1) zero_order(1))
corollary abs_convergent_prod_ignore_initial_segment:
    assumes abs_convergent_prod f
    shows abs_convergent_prod ( }\lambdan.f(n+m)
    using assms unfolding abs_convergent_prod_def
    by (rule convergent_prod_ignore_initial_segment)
```


6.36.5 More elementary properties

theorem abs_convergent_prod_imp_convergent_prod:
fixes $f::$ nat $\Rightarrow{ }^{\prime} a::\left\{r e a l_{-} n o r m e d _d i v_{-} a l g e b r a, c o m p l e t e _s p a c e, c o m m _r i n g _1\right\}$
assumes abs_convergent_prod f
shows convergent_prod f
proof -
from assms have eventually $(\lambda n . f n \neq 0)$ sequentially
by (rule abs_convergent_prod_imp_ev_nonzero)
then obtain N where $N: f n \neq 0$ if $n \geq N$ for n
by (auto simp: eventually_at_top_linorder)
let $? P=\lambda n . \prod i \leq n . f(i+N)$ and $? Q=\lambda n . \prod i \leq n .1+\operatorname{norm}(f(i+N)$ - 1)
have Cauchy ?P
proof (rule CauchyI', goal_cases)
case (1 $\begin{aligned} & \text {) }) ~\end{aligned}$
from assms have abs_convergent_prod $(\lambda n . f(n+N))$
by (rule abs_convergent_prod_ignore_initial_segment)
hence Cauchy?Q
unfolding abs_convergent_prod_def
by (intro convergent_Cauchy convergent_prod_imp_convergent)
from Cauchy $D[$ OF this 1] obtain M where M : norm $(? Q m-? Q n)<\varepsilon$ if $m \geq M n \geq M$ for $m n$ by blast
show ? case
proof (rule exI[of _ M], safe, goal_cases) case (1 mn)
have dist $(? P m)(? P n)=\operatorname{norm}(? P n-? P m)$
by (simp add: dist_norm norm_minus_commute)
also from 1 have $\{. . n\}=\{. . m\} \cup\{m<. . n\}$ by auto
hence norm $(? P n-? P m)=\operatorname{norm}\left(? P m *\left(\prod k \in\{m<. . n\} . f(k+N)\right)\right.$

- ? P m)
by (subst prod.union_disjoint [symmetric]) (auto simp: algebra_simps)
also have $\ldots=\operatorname{norm}\left(? P m *\left(\left(\prod k \in\{m<. . n\} . f(k+N)\right)-1\right)\right)$
by (simp add: algebra_simps)
also have $\ldots=\left(\prod k \leq m\right.$. norm $\left.(f(k+N))\right) * \operatorname{norm}\left(\left(\prod k \in\{m<. . n\} . f(k\right.\right.$ $+N)$) 1)
by (simp add: norm_mult prod_norm)
also have $\ldots \leq ? Q m *\left(\left(\prod k \in\{m<. . n\} .1+\operatorname{norm}(f(k+N)-1)\right)-1\right)$
using norm_prod_minus1_le_prod_minus1[of $\lambda k . f(k+N)-1\{m<. . n\}]$
norm_triangle_ineq[of $1 f k-1$ for k]
by (intro mult_mono prod_mono ballI conjI norm_prod_minus1_le_prod_minus1
prod_nonneg) auto
also have $\ldots=? Q m *\left(\prod k \in\{m<. . n\} .1+\operatorname{norm}(f(k+N)-1)\right)-? Q$
m
by (simp add: algebra_simps)
also have ? $Q m *\left(\prod k \in\{m<. . n\} .1+\operatorname{norm}(f(k+N)-1)\right)=$
$\left(\prod k \in\{. . m\} \cup\{m<. . n\} .1+\operatorname{norm}(f(k+N)-1)\right)$
by (rule prod.union_disjoint [symmetric]) auto
also from 1 have $\{. . m\} \cup\{m<. . n\}=\{. . n\}$ by auto
also have ? $Q n-? Q m \leq \operatorname{norm}(? Q n-? Q m)$ by simp
also from 1 have $\ldots<\varepsilon$ by (intro M) auto
finally show ?case .
qed
qed
hence conv: convergent ?P by (rule Cauchy_convergent)
then obtain L where $L: ? P \longrightarrow L$
by (auto simp: convergent_def)

have $L \neq 0$

proof
assume $[$ simp $]: L=0$
from tendsto_norm $[$ OF $L]$ have limit: $(\lambda n . \Pi k \leq n . \operatorname{norm}(f(k+N))) \longrightarrow$ 0
by (simp add: prod_norm)
from assms have $(\lambda n . f(n+N)) \longrightarrow 1$
by (intro abs_convergent_prod_imp_LIMSEQ abs_convergent_prod_ignore_initial_segment)
hence eventually $(\lambda n$. norm $(f(n+N)-1)<1)$ sequentially
by (auto simp: tendsto_iff dist_norm)
then obtain $M 0$ where $M 0: \operatorname{norm}(f(n+N)-1)<1$ if $n \geq M 0$ for n
by (auto simp: eventually_at_top_linorder)

\{

fix M assume $M: M \geq M 0$
with $M 0$ have $M: \operatorname{norm}(f(n+N)-1)<1$ if $n \geq M$ for n using that by simp
have $(\lambda n . \Pi k \leq n .1-\operatorname{norm}(f(k+M+N)-1)) \longrightarrow 0$
proof (rule tendsto_sandwich)
show eventually $\left(\lambda n .\left(\prod k \leq n .1-\operatorname{norm}(f(k+M+N)-1)\right) \geq 0\right)$ sequentially
using M by (intro always_eventually prod_nonneg allI ballI) (auto intro: less_imp_le)
have norm $\left(1::^{\prime} a\right)-\operatorname{norm}(f(i+M+N)-1) \leq \operatorname{norm}(f(i+M+$ $N)$) for i
using norm_triangle_ineq3[of $f(i+M+N) 1]$ by simp
thus eventually $\left(\lambda n .\left(\prod k \leq n .1-\operatorname{norm}(f(k+M+N)-1)\right) \leq\left(\prod k \leq n\right.\right.$. $\operatorname{norm}(f(k+M+N)))$) at_top
using M by (intro always_eventually allI prod_mono ballI conjI) (auto intro: less_imp_le)
define C where $C=\left(\prod k<M\right.$. norm $\left.(f(k+N))\right)$
from N have [simp]: $C \neq 0$ by (auto simp: C_{-}def)
from L have $\left(\lambda n\right.$. norm $\left.\left(\prod k \leq n+M . f(k+N)\right)\right) \longrightarrow 0$
by (intro LIMSEQ_ignore_initial_segment) (simp add: tendsto_norm_zero_iff)
also have $\left(\lambda n\right.$. norm $\left.\left(\prod k \leq n+M . f(k+N)\right)\right)=\left(\lambda n . C *\left(\prod k \leq n\right.\right.$. norm $(f(k+M+N))))$
proof (rule ext, goal_cases)
case (1 n)
have $\{. . n+M\}=\{. .<M\} \cup\{M . . n+M\}$ by auto
also have $\operatorname{norm}\left(\prod k \in \ldots f(k+N)\right)=C * \operatorname{norm}\left(\prod k=M . . n+M . f(k\right.$ $+N)$)
unfolding C_{-}def by (subst prod.union_disjoint) (auto simp: norm_mult prod_norm)
also have $\left(\prod k=M . . n+M . f(k+N)\right)=\left(\prod k \leq n . f(k+N+M)\right)$
by (intro prod.reindex_bij_witness[of _ $\lambda i . i+M \lambda i . i-M])$ auto

```
            finally show ?case by (simp add: add_ac prod_norm)
        qed
        finally have (\lambdan.C*(\prodk\leqn. norm (f (k+M+N)))/C)\longrightarrow0 /
```

C
by (intro tendsto_divide tendsto_const) auto
thus $\left(\lambda n . \prod k \leq n\right.$. $\left.\operatorname{norm}(f(k+M+N))\right) \longrightarrow 0$ by simp
qed simp_all
have $1-\left(\sum i . \operatorname{norm}(f(i+M+N)-1)\right) \leq 0$
proof (rule tendsto_le)
show eventually $\left(\lambda n .1-\left(\sum k \leq n . \operatorname{norm}(f(k+M+N)-1)\right) \leq\right.$
$\left.\left(\prod k \leq n .1-\operatorname{norm}(f(k+M+N)-1)\right)\right)$ at_top
using M by (intro always_eventually allI Weierstrass_prod_ineq) (auto
intro: less_imp_le)
show $\left(\lambda n . \prod k \leq n .1-\operatorname{norm}(f(k+M+N)-1)\right) \longrightarrow 0$ by fact
show $\left(\lambda n .1-\left(\sum k \leq n . \operatorname{norm}(f(k+M+N)-1)\right)\right)$
$\longrightarrow 1-\left(\sum i . \operatorname{norm}(f(i+M+N)-1)\right)$
by (intro tendsto_intros summable_LIMSEQ' summable_ignore_initial_segment
abs_convergent_prod_imp_summable assms)
qed simp_all
hence $\left(\sum i\right.$. norm $\left.(f(i+M+N)-1)\right) \geq 1$ by simp
also have $\ldots+\left(\sum i<M . \operatorname{norm}(f(i+N)-1)\right)=\left(\sum i . \operatorname{norm}(f(i+N)\right.$

- 1))
by (intro suminf_split_initial_segment [symmetric] summable_ignore_initial_segment
abs_convergent_prod_imp_summable assms)
finally have $1+\left(\sum i<M . \operatorname{norm}(f(i+N)-1)\right) \leq\left(\sum i . \operatorname{norm}(f(i+\right.$
$N)-1)$ by simp
\} note $*=$ this
have $1+\left(\sum i . \operatorname{norm}(f(i+N)-1)\right) \leq\left(\sum i . \operatorname{norm}(f(i+N)-1)\right)$
proof (rule tendsto_le)
show $\left(\lambda M .1+\left(\sum i<M . \operatorname{norm}(f(i+N)-1)\right)\right) \longrightarrow 1+\left(\sum i . n o r m\right.$
$(f(i+N)-1))$
by (intro tendsto_intros summable_LIMSEQ summable_ignore_initial_segment
abs_convergent_prod_imp_summable assms)
show eventually $\left(\lambda M .1+\left(\sum i<M . \operatorname{norm}(f(i+N)-1)\right) \leq\left(\sum i . n o r m\right.\right.$
$(f(i+N)-1)))$ at_top
using eventually_ge_at_top[of MO] by eventually_elim (use * in auto)
qed simp_all
thus False by simp
qed
with L show ?thesis by (auto simp: prod_defs)
qed
lemma raw_has_prod_cases:
fixes $f::$ nat $\Rightarrow{ }^{\prime} a::\{$ idom,topological_semigroup_mult,t2_space $\}$
assumes raw_has_prod $f M p$

```
    obtains \(i\) where \(i<M f i=0 \mid p\) where raw_has_prod f \(0 p\)
proof -
    have \(\left(\lambda n . \prod i \leq n . f(i+M)\right) \longrightarrow p p \neq 0\)
        using assms unfolding raw_has_prod_def by blast+
    then have \(\left(\lambda n . \operatorname{prod} f\{. .<M\} *\left(\prod i \leq n . f(i+M)\right)\right) \longrightarrow \operatorname{prod} f\{. .<M\} *\)
p
    by (metis tendsto_mult_left)
    moreover have \(\operatorname{prod} f\{. .<M\} *\left(\prod i \leq n . f(i+M)\right)=\operatorname{prod} f\{. . n+M\}\) for \(n\)
    proof -
        have \(\{. . n+M\}=\{. .<M\} \cup\{M . . n+M\}\)
        by auto
        then have \(\operatorname{prod} f\{. . n+M\}=\operatorname{prod} f\{. .<M\} * \operatorname{prod} f\{M . . n+M\}\)
            by simp (subst prod.union_disjoint; force)
        also have \(\ldots=\operatorname{prod} f\{. .<M\} *\left(\prod i \leq n . f(i+M)\right)\)
        by (metis (mono_tags, lifting) add.left_neutral atMost_atLeast0 prod.shift_bounds_cl_nat_ivl)
        finally show ?thesis by metis
    qed
    ultimately have \((\lambda n . \operatorname{prod} f\{. . n\}) \longrightarrow \operatorname{prod} f\{. .<M\} * p\)
        by (auto intro: LIMSEQ_offset [where \(k=M\) ])
    then have raw_has_prod f0(prod \(f\{. .<M\} * p)\) if \(\forall i<M . f i \neq 0\)
        using \(\langle p \neq 0\rangle\) assms that by (auto simp: raw_has_prod_def)
    then show thesis
        using that by blast
qed
corollary convergent_prod_offset_0:
    fixes \(f::\) nat \(\Rightarrow\) ' \(a::\{\) idom,topological_semigroup_mult,t2_space \(\}\)
    assumes convergent_prod \(f \bigwedge i . f i \neq 0\)
    shows \(\exists p\). raw_has_prod f \(0 p\)
    using assms convergent_prod_def raw_has_prod_cases by blast
lemma prodinf_eq_lim:
    fixes \(f::\) nat \(\Rightarrow{ }^{\prime} a\) :: \{idom,topological_semigroup_mult,t2_space\}
    assumes convergent_prod \(f \bigwedge i . f i \neq 0\)
    shows prodinf \(f=\lim \left(\lambda n . \prod i \leq n . f i\right)\)
    using assms convergent_prod_offset_0 [OF assms]
    by (simp add: prod_defs lim_def) (metis (no_types) assms(1) convergent_prod_to_zero_iff)
lemma has_prod_one[simp, intro]: ( \(\lambda n .1\) ) has_prod 1
    unfolding prod_defs by auto
lemma convergent_prod_one[simp, intro]: convergent_prod ( \(\lambda\) n. 1)
    unfolding prod_defs by auto
lemma prodinf_cong: \((\bigwedge n . f n=g n) \Longrightarrow\) prodinf \(f=\operatorname{prodinf} g\)
    by presburger
lemma convergent_prod_cong:
    fixes \(f g::\) nat \(\Rightarrow{ }^{\prime} a::\{\) field,topological_semigroup_mult,t2_space \(\}\)
```

assumes ev: eventually $(\lambda x . f x=g x)$ sequentially and $f: \bigwedge i . f i \neq 0$ and g : ^i. $g i \neq 0$
shows convergent_prod $f=$ convergent_prod g
proof -
from assms obtain N where $N: \forall n \geq N . f n=g n$
by (auto simp: eventually_at_top_linorder)
define C where $C=\left(\prod k<N . f k / g k\right)$
with g have $C \neq 0$ by (simp add: f)
have $*$: eventually (λn. prod $f\{. . n\}=C * \operatorname{prod} g\{. . n\}$) sequentially using eventually_ge_at_top[of N]
proof eventually_elim case (elim n) then have $\{. . n\}=\{. .<N\} \cup\{N . . n\}$ by auto
also have $\operatorname{prod} f \ldots=\operatorname{prod} f\{. .<N\} * \operatorname{prod} f\{N . . n\}$
by (intro prod.union_disjoint) auto
also from N have $\operatorname{prod} f\{N . . n\}=\operatorname{prod} g\{N . . n\}$
by (intro prod.cong) simp_all
also have $\operatorname{prod} f\{. .<N\} * \operatorname{prod} g\{N . . n\}=C *(\operatorname{prod} g\{. .<N\} * \operatorname{prod} g$
$\{N . . n\}$)
unfolding $C _d e f$ by (simp add: g prod_dividef)
also have prod $g\{. .<N\} * \operatorname{prod} g\{N . . n\}=\operatorname{prod} g(\{. .<N\} \cup\{N . . n\})$
by (intro prod.union_disjoint [symmetric]) auto
also from elim have $\{. .<N\} \cup\{N . . n\}=\{. . n\}$
by auto
finally show $\operatorname{prod} f\{. . n\}=C * \operatorname{prod} g\{. . n\}$.
qed
then have cong: convergent $(\lambda n . \operatorname{prod} f\{. . n\})=$ convergent $(\lambda n . C * \operatorname{prod} g$ $\{. . n\}$)
by (rule convergent_cong)
show ?thesis

proof

assume $c f$: convergent_prod f
then have $\neg(\lambda n$. prod $g\{. . n\}) \longrightarrow 0$
using tendsto_mult_left $*$ convergent_prod_to_zero_iff ffilterlim_cong by fastforce
then show convergent_prod g
by (metis convergent_mult_const_iff $\langle C \neq 0\rangle$ cong cf convergent_LIMSEQ_iff
convergent_prod_iff_convergent convergent_prod_imp_convergent g)
next
assume cg: convergent_prod g
have $\exists a . C * a \neq 0 \wedge(\lambda n . \operatorname{prod} g\{. . n\}) \longrightarrow a$
by (metis (no_types) $\langle C \neq 0\rangle$ cg convergent_prod_iff_nz_lim divide_eq_0_iff g nonzero_mult_div_cancel_right)
then show convergent_prod f
using * tendsto_mult_left filterlim_cong
by (fastforce simp add: convergent_prod_iff_nz_lim f)
qed
qed

```
lemma has_prod_finite:
    fixes \(f::\) nat \(\Rightarrow{ }^{\prime} a::\{\) semidom,t2_space \(\}\)
    assumes [simp]: finite \(N\)
        and \(f: \wedge n . n \notin N \Longrightarrow f n=1\)
    shows \(f\) has_prod \(\left(\prod n \in N . f n\right)\)
proof -
    have eq: prod \(f\{. . n+\operatorname{Suc}(\operatorname{Max} N)\}=\operatorname{prod} f N\) for \(n\)
    proof (rule prod.mono_neutral_right)
        show \(N \subseteq\{. . n+\operatorname{Suc}(\operatorname{Max} N)\}\)
        by (auto simp: le_Suc_eq trans_le_add2)
        show \(\forall i \in\{. . n+\operatorname{Suc}(\operatorname{Max} N)\}-N . f i=1\)
        using \(f\) by blast
    qed auto
    show ?thesis
    proof (cases \(\forall n \in N . f n \neq 0\) )
    case True
    then have \(\operatorname{prod} f N \neq 0\)
        by simp
    moreover have \((\lambda n\). prod \(f\{. . n\}) \longrightarrow \operatorname{prod} f N\)
        by (rule LIMSEQ_offset[of _ Suc (Max N)]) (simp add: eq atLeast0LessThan
del: add_Suc_right)
    ultimately show ?thesis
        by (simp add: raw_has_prod_def has_prod_def)
    next
    case False
    then obtain \(k\) where \(k \in N f k=0\)
        by auto
    let \(? Z=\{n \in N . f n=0\}\)
    have maxge: Max ? \(Z \geq n\) if \(f n=0\) for \(n\)
        using Max_ge [of ? Z ] 〈finite \(N\rangle\langle f n=0\rangle\)
        by (metis (mono_tags) Collect_mem_eq f finite_Collect_conjI mem_Collect_eq
zero_neq_one)
    let ? \(q=\operatorname{prod} f\{S u c(\operatorname{Max} ? Z) . . \operatorname{Max} N\}\)
    have \([\) simp \(]: ? q \neq 0\)
        using maxge Suc_n_not_le_n le_trans by force
    have eq: \(\left(\prod i \leq n+\operatorname{Max} N . f(\operatorname{Suc}(i+\operatorname{Max} ? Z))\right)=? q\) for \(n\)
    proof -
        have \(\left(\prod i \leq n+\operatorname{Max} N . f(\operatorname{Suc}(i+\operatorname{Max} ? Z))\right)=\operatorname{prod} f\{\operatorname{Suc}(\operatorname{Max}\) ?Z)..n
+ Max N + Suc (Max?Z)\}
            proof (rule prod.reindex_cong \([\) where \(l=\lambda i . i+S u c\) (Max ?Z), THEN
sym])
            show \(\{\operatorname{Suc}(\operatorname{Max} ? Z) . . n+\operatorname{Max} N+\operatorname{Suc}(\operatorname{Max} ? Z)\}=(\lambda i . i+\operatorname{Suc}(\operatorname{Max}\)
?Z))' \(\{. . n+\operatorname{Max} N\}\)
            using \(l e_{-} S u c_{-} e x\) by fastforce
        qed (auto simp: inj_on_def)
        also have \(\ldots=? q\)
            by (rule prod.mono_neutral_right)
                (use Max.coboundedI [OF〈finite \(N\rangle\) ] \(f\) in 〈force+〉)
```

```
        finally show ?thesis .
        qed
        have q: raw_has_prod f (Suc (Max ?Z)) ?q
        proof (simp add: raw_has_prod_def)
            show (\lambdan. \Pii\leqn.f(Suc (i+Max?Z)))\longrightarrow??
            by (rule LIMSEQ_offset[of_(Max N)]) (simp add: eq)
        qed
        show ?thesis
            unfolding has_prod_def
        proof (intro disjI2 exI conjI)
            show prod f N = 0
            using \langlef k= 0\rangle\langlek \inN\rangle\langlefinite N\rangle prod_zero by blast
            show f (Max ?Z) = 0
            using Max_in [of ?Z] \langlefinite N\rangle\langlef k= 0\rangle\langlek\inN\rangle by auto
        qed (use q in auto)
    qed
qed
corollary has_prod_0:
    fixes f :: nat => 'a::{semidom,t2_space}
    assumes \n.fn=1
    shows f has_prod 1
    by (simp add: assms has_prod_cong)
lemma prodinf_zero[simp]: prodinf (\lambdan. 1::'a::real_normed_field) = 1
    using has_prod_unique by force
lemma convergent_prod_finite:
    fixes f :: nat }\mp@subsup{=>}{}{\prime}a::{{idom,t2_space
    assumes finite N \n.n\not\inN\Longrightarrowfn=1
    shows convergent_prod f
proof -
    have \existsn p. raw_has_prod f n p
        using assms has_prod_def has_prod_finite by blast
    then show ?thesis
        by (simp add: convergent_prod_def)
qed
lemma has_prod_If_finite_set:
    fixes f :: nat = 'a::{idom,t2_space}
    shows finite A\Longrightarrow(\lambdar. if r A A then fr else 1) has_prod (\prodr\inA.fr)
    using has_prod_finite[of A (\lambdar. if r }\inA\mathrm{ A then fr else 1)]
    by simp
lemma has_prod_If_finite:
fixes \(f::\) nat \(\Rightarrow\) 'a::\{idom,t2_space \(\}\)
shows finite \(\{r . P r\} \Longrightarrow\left(\lambda r\right.\). if \(P r\) then \(f r\) else 1) has_prod \(\left(\prod r \mid P r . f r\right)\) using has_prod_If_finite_set[of \(\{r . P r\}]\) by simp
```

```
lemma convergent_prod_If__inite_set[simp, intro]:
    fixes f :: nat 和'a::{idom,t2_space}
    shows finite A\Longrightarrow convergent_prod ( }\lambdar\mathrm{ . if }r\inA\mathrm{ then fr else 1)
    by (simp add: convergent_prod_finite)
lemma convergent_prod_If_finite[simp, intro]:
    fixes f :: nat =>''a::{idom,t2_space}
    shows finite {r. Pr}\Longrightarrow convergent_prod ( }\lambdar\mathrm{ . if Pr then fr else 1)
    using convergent_prod_def has_prod_If_finite has_prod_def by fastforce
lemma has_prod_single:
    fixes f :: nat }=>\mp@subsup{}{}{\prime}a::{idom,t2_space
    shows (\lambdar. if r=i then fr else 1) has_prod f i
    using has_prod_If_finite[of \lambdar.r=i] by simp
context
    fixes f :: nat => 'a :: real_normed_field
begin
lemma convergent_prod_imp_has_prod:
    assumes convergent_prod f
    shows \exists p.f has_prod p
proof -
    obtain M p where p: raw_has_prod f M p
        using assms convergent_prod_def by blast
    then have p\not=0
        using raw_has_prod_nonzero by blast
    with p have fnz: fi\not=0 if i\geqM for i
        using raw_has_prod_eq_0 that by blast
    define C where C = (\prodn<M.fn)
    show ?thesis
    proof (cases \foralln\leqM.fn\not=0)
        case True
        then have C\not=0
            by (simp add: C_def)
        then show ?thesis
        by (meson True assms convergent_prod_offset_0 fnz has_prod_def nat_le_linear)
    next
        case False
        let ? N = GREATEST n.f n=0
        have 0: f?N = 0
            using fnz False
            by (metis (mono_tags, lifting) GreatestI_ex_nat nat_le_linear)
        have fi\not=0 if i> ?N for }
            by (metis (mono_tags, lifting) Greatest_le_nat fnz leD linear that)
        then have }\existsp\mathrm{ . raw_has_prod f(Suc ?N) p
            using assms by (auto simp: intro!: convergent_prod_ignore_nonzero_segment)
        then show ?thesis
            unfolding has_prod_def using 0 by blast
```

```
    qed
qed
lemma convergent_prod_has_prod [intro]:
    shows convergent_prod f \Longrightarrowf has_prod (prodinf f)
    unfolding prodinf_def
    by (metis convergent_prod_imp_has_prod has_prod_unique theI')
lemma convergent_prod_LIMSEQ:
    shows convergent_prod f \Longrightarrow(\lambdan.\prodi\leqn.fi)\longrightarrowprodinf f
    by (metis convergent_LIMSEQ_iff convergent_prod_has_prod convergent_prod_imp_convergent
    convergent_prod_to_zero_iff raw_has_prod_eq_0 has_prod_def prodinf_eq_lim zero_le)
theorem has_prod_iff: f has_prod }x\longleftrightarrow\mathrm{ convergent_prod f ^ prodinf f =x
proof
    assume f has_prod x
    then show convergent_prod f ^ prodinf f}=
        apply safe
        using convergent_prod_def has_prod_def apply blast
        using has_prod_unique by blast
qed auto
lemma convergent_prod_has_prod_iff: convergent_prod f \longleftrightarrow f has_prod prodinf f
    by (auto simp: has_prod_iff convergent_prod_has_prod)
lemma prodinf_finite:
    assumes N: finite N
        and f:\bigwedgen. n\not\inN\Longrightarrowfn=1
    shows prodinf f}=(\prodn\inN.fn
    using has_prod_finite[OF assms, THEN has_prod_unique] by simp
end
```


6.36.6 Infinite products on ordered topological monoids

```
lemma LIMSEQ_prod_0:
    fixes \(f::\) nat \(\Rightarrow{ }^{\prime} a::\{\) semidom,topological_space \(\}\)
    assumes \(f i=0\)
    shows \((\lambda n . \operatorname{prod} f\{. . n\}) \longrightarrow 0\)
proof (subst tendsto_cong)
    show \(\forall_{F} n\) in sequentially. prod \(f\{. . n\}=0\)
    proof
        show \(\operatorname{prod} f\{. . n\}=0\) if \(n \geq i\) for \(n\)
            using that assms by auto
    qed
qed auto
lemma LIMSEQ_prod_nonneg:
```

```
fixes \(f::\) nat \(\Rightarrow{ }^{\prime} a::\{\) linordered_semidom,linorder_topology\}
assumes \(0: \bigwedge n .0 \leq f n\) and \(a:(\lambda n . \operatorname{prod} f\{. . n\}) \longrightarrow a\)
shows \(a \geq 0\)
by (simp add: 0 prod_nonneg LIMSEQ_le_const [OF \(a\) ])
```

context
fixes $f::$ nat $\Rightarrow{ }^{\prime} a::\{$ linordered_semidom,linorder_topology\}
begin
lemma has_prod_le:
assumes $f: f$ has_prod a and $g: g$ has_prod b and $l e: \bigwedge n .0 \leq f n \wedge f n \leq g n$
shows $a \leq b$
proof (cases $a=0 \vee b=0$)
case True
then show ?thesis
proof
assume $[\operatorname{simp}]: a=0$
have $b \geq 0$
proof (rule LIMSEQ_prod_nonneg)
show (λn. prod $g\{. . n\}) \longrightarrow b$
using g by (auto simp: has_prod_def raw_has_prod_def LIMSEQ_prod_0)
qed (use le order_trans in auto)
then show? ?thesis
by auto
next
assume $[$ simp $]: b=0$
then obtain i where $g i=0$
using g by (auto simp: prod_defs)
then have $f i=0$
using antisym le by force
then have $a=0$
using f by (auto simp: prod_defs LIMSEQ_prod_0 LIMSEQ_unique)
then show ?thesis
by auto
qed
next
case False
then show ?thesis
using assms
unfolding has_prod_def raw_has_prod_def
by (force simp: LIMSEQ_prod_0 intro!: LIMSEQ_le prod_mono)
qed
lemma prodinf_le:
assumes $f: f$ has_prod a and $g: g$ has_prod b and $l e: \bigwedge n .0 \leq f n \wedge f n \leq g n$ shows prodinf $f \leq$ prodinf g
using has_prod_le [OF assms] has_prod_unique $f g$ by blast
end
lemma prod_le_prodinf:
fixes $f::$ nat \Rightarrow ' $a::\{$ linordered_idom,linorder_topology $\}$
assumes f has_prod $a \bigwedge i .0 \leq f i \bigwedge i . i \geq n \Longrightarrow 1 \leq f i$
shows prod $f\{. .<n\} \leq$ prodinf f
by(rule has_prod_le[OF has_prod_If_finite_set]) (use assms has_prod_unique in auto)
lemma prodinf_nonneg:
fixes $f::$ nat \Rightarrow 'a::\{linordered_idom,linorder_topology $\}$
assumes f has_prod a $\bigwedge i .1 \leq f i$
shows $1 \leq$ prodinf f
using prod_le_prodinf[of falla assms
by (metis order_trans prod_ge_1 zero_le_one)
lemma prodinf_le_const:
fixes $f::$ nat \Rightarrow real
assumes convergent_prod $f \bigwedge n . \operatorname{prod} f\{. .<n\} \leq x$
shows prodinf $f \leq x$
by (metis lessThan_Suc_atMost assms convergent_prod_LIMSEQ LIMSEQ_le_const2)
lemma prodinf_eq_one_iff [simp]:
fixes $f::$ nat \Rightarrow real
assumes f : convergent_prod f and ge1: $\bigwedge n .1 \leq f n$
shows prodinf $f=1 \longleftrightarrow(\forall n . f n=1)$
proof
assume prodinf $f=1$
then have $\left(\lambda n . \prod i<n . f i\right) \longrightarrow 1$
using convergent_prod_LIMSEQ[off] assms by (simp add: LIMSEQ_lessThan_iff_atMost)
then have $\wedge i .\left(\prod n \in\{i\} . f n\right) \leq 1$
proof (rule LIMSEQ_le_const)
have $1 \leq \operatorname{prod} f n$ for n
by (simp add: ge1 prod_ge_1)
have $\operatorname{prod} f\{. .<n\}=1$ for n
by (metis $\langle\backslash n .1 \leq \operatorname{prod} f n\rangle\langle p r o d i n f f=1\rangle$ antisym f convergent_prod_has_prod
ge1 order_trans prod_le_prodinf zero_le_one)
then have $\left(\prod n \in\{i\} . f n\right) \leq \operatorname{prod} f\{. .<n\}$ if $n \geq S u c i$ for $i n$
by (metis mult.left_neutral order_refl prod.cong prod.neutral_const prod.lessThan_Suc)
then show $\exists N . \forall n \geq N$. (Пne\{i\}.fn) $\leq \operatorname{prod} f\{. .<n\}$ for i
by blast
qed
with ge1 show $\forall n$. $f n=1$
by (auto intro!: antisym)
qed (metis prodinf_zero fun_eq_iff)
lemma prodinf_pos_iff:
fixes $f::$ nat \Rightarrow real

```
assumes convergent_prod \(f \wedge n .1 \leq f n\)
shows \(1<\) prodinf \(f \longleftrightarrow(\exists i .1<f i)\)
using prod_le_prodinf[of f 1] prodinf_eq_one_iff
by (metis convergent_prod_has_prod assms less_le prodinf_nonneg)
lemma less_1_prodinf2:
    fixes \(f::\) nat \(\Rightarrow\) real
    assumes convergent_prod \(f \bigwedge n .1 \leq f n 1<f i\)
    shows \(1<\) prodinf \(f\)
proof -
    have \(1<\left(\prod n<\right.\) Suc i. f \(\left.n\right)\)
        using assms by (intro less_1_prod2[where \(i=i]\) ) auto
    also have \(\ldots \leq \operatorname{prodinf} f\)
        by (intro prod_le_prodinf) (use assms order_trans zero_le_one in 〈blast+〉)
    finally show ?thesis.
qed
lemma less_1_prodinf:
    fixes \(f::\) nat \(\Rightarrow\) real
    shows \(\llbracket\) convergent_prod \(f ; \bigwedge n .1<f n \rrbracket \Longrightarrow 1<\operatorname{prodinf} f\)
    by (intro less_1_prodinf2[where \(i=1\) ]) (auto intro: less_imp_le)
lemma prodinf_nonzero:
    fixes \(f::\) nat \(\Rightarrow{ }^{\prime} a::\{\) idom,topological_semigroup_mult,t2_space \(\}\)
    assumes convergent_prod \(f \bigwedge i . f i \neq 0\)
    shows prodinf \(f \neq 0\)
    by (metis assms convergent_prod_offset_0 has_prod_unique raw_has_prod_def has_prod_def)
lemma less_0_prodinf:
    fixes \(f::\) nat \(\Rightarrow\) real
    assumes \(f\) : convergent_prod \(f\) and \(0: \bigwedge i . f i>0\)
    shows \(0<\) prodinf \(f\)
proof -
    have prodinf \(f \neq 0\)
        by (metis assms less_irrefl prodinf_nonzero)
    moreover have \(0<\left(\prod n<i\right.\). \(f n\) ) for \(i\)
        by (simp add: 0 prod_pos)
    then have prodinf \(f \geq 0\)
        using convergent_prod_LIMSEQ [OF f] LIMSEQ_prod_nonneg 0 less_le by blast
    ultimately show ?thesis
        by auto
    qed
lemma prod_less_prodinf2:
    fixes \(f::\) nat \(\Rightarrow\) real
    assumes \(f:\) convergent_prod \(f\) and \(1: \bigwedge m . m \geq n \Longrightarrow 1 \leq f m\) and \(0: \bigwedge m .0<\)
\(f m\) and \(i: n \leq i 1<f i\)
    shows \(\operatorname{prod} f\{. .<n\}<\operatorname{prodinf} f\)
proof -
```

```
    have \(\operatorname{prod} f\{. .<n\} \leq \operatorname{prod} f\{. .<i\}\)
    by (rule prod_monoz) (use assms less_le in auto)
    then have \(\operatorname{prod} f\{. .<n\}<f i * \operatorname{prod} f\{. .<i\}\)
        using mult_less_le_imp_less[of 1 fi prod \(f\{. .<n\} \operatorname{prod} f\{. .<i\}]\) assms
        by (simp add: prod_pos)
    moreover have prod \(f\{. .<\) Suc \(i\} \leq \operatorname{prodinf} f\)
        using prod_le_prodinf[of f_Suc i]
    by (meson 01 Suc_leD convergent_prod_has_prod \(f\) < \(\left.n \leq i\rangle l e \_t r a n s l e s s \_e q \_r e a l \_d e f\right)\)
    ultimately show ?thesis
        by (metis le_less_trans mult.commute not_le prod.lessThan_Suc)
qed
lemma prod_less_prodinf:
    fixes \(f::\) nat \(\Rightarrow\) real
    assumes \(f:\) convergent_prod \(f\) and \(1: \bigwedge m . m \geq n \Longrightarrow 1<f m\) and \(0: \wedge m .0<\)
\(f m\)
    shows prod \(f\{. .<n\}<\operatorname{prodinf} f\)
    by (meson 01 fle_less prod_less_prodinf2)
lemma raw_has_prodI_bounded:
    fixes \(f::\) nat \(\Rightarrow\) real
    assumes pos: \(\wedge n .1 \leq f n\)
        and \(l e: \bigwedge n .\left(\prod i<n . f i\right) \leq x\)
    shows \(\exists p\). raw_has_prod f \(0 p\)
    unfolding raw_has_prod_def add_0_right
proof (rule exI LIMSEQ_incseq_SUP conjI)+
    show bdd_above (range ( \(\lambda n\). prod \(f\{. . n\})\) )
        by (metis bdd_aboveI2 le lessThan_Suc_atMost)
    then have \((S U P i . \operatorname{prod} f\{. . i\})>0\)
            by (metis UNIV_I cSUP_upper less_le_trans pos prod_pos zero_less_one)
    then show \((S U P i . \operatorname{prod} f\{. . i\}) \neq 0\)
            by auto
    show incseq \((\lambda n . \operatorname{prod} f\{. . n\})\)
    using pos order_trans [OF zero_le_one] by (auto simp: mono_def intro!: prod_mono2)
qed
lemma convergent_prodI_nonneg_bounded:
    fixes \(f::\) nat \(\Rightarrow\) real
    assumes \(\bigwedge n .1 \leq f n \bigwedge n .\left(\prod i<n . f i\right) \leq x\)
    shows convergent_prod \(f\)
    using convergent_prod_def raw_has_prodI_bounded [OF assms] by blast
```


6.36.7 Infinite products on topological spaces

```
context
    fixes f g :: nat => ' 'a::{t2_space,topological_semigroup_mult,idom}
begin
```

lemma raw_has_prod_mult: $\llbracket r a w_{-} h a s_{-} p r o d f ~ M a ; ~ r a w _h a s _p r o d ~ g M b \rrbracket \Longrightarrow r a w _h a s _p r o d ~$

```
(\lambdan.fn*gn)M(a*b)
    by (force simp add: prod.distrib tendsto_mult raw_has_prod_def)
lemma has_prod_mult_nz: \llbracketf has_prod a;g has_prod b;a\not=0;b\not=0\rrbracket\Longrightarrow(\lambdan.fn
* g n) has_prod (a*b)
    by (simp add:raw_has_prod_mult has_prod_def)
end
context
    fixes fg :: nat =>' 'a::real_normed_field
begin
lemma has_prod_mult:
    assumes f:f has_prod a and g: g has_prod b
    shows (\lambdan.f n*gn) has_prod (a*b)
    using f [unfolded has_prod_def]
proof (elim disjE exE conjE)
    assume f0: raw_has_prod f 0 a
    show ?thesis
        using g [unfolded has_prod_def]
    proof (elim disjE exE conjE)
        assume g0: raw_has_prod g 0 b
        with f0 show ?thesis
        by (force simp add: has_prod_def prod.distrib tendsto_mult raw_has_prod_def)
    next
        fix jq
        assume b = 0 and gj=0 and q: raw_has_prod g (Suc j) q
        obtain p}\mathrm{ where p: raw_has_prod f (Suc j) p
        using f0 raw_has_prod_ignore_initial_segment by blast
        then have Ex (raw_has_prod (\lambdan.fn*g n) (Suc j))
            using q raw_has_prod_mult by blast
        then show ?thesis
        using \langleb=0\rangle\langlegj = 0\rangle has_prod_0_iff by fastforce
    qed
next
    fix ip
    assume a=0 and fi=0 and p: raw_has_prod f (Suc i) p
    show ?thesis
        using g [unfolded has_prod_def]
    proof (elim disjE exE conjE)
    assume g0: raw_has_prod g 0 b
    obtain q}\mathrm{ where q: raw_has_prod g (Suc i) q
        using g0 raw_has_prod_ignore_initial_segment by blast
    then have Ex (raw_has_prod (\lambdan.fn*gn) (Suc i))
        using raw_has_prod_mult p by blast
    then show ?thesis
        using <a = 0\rangle\langlef i = 0\rangle has_prod_0_iff by fastforce
```

```
    next
        fix jq
        assume b=0 and gj=0 and q: raw_has_prod g (Suc j) q
        obtain p' where p': raw_has_prod f (Suc (max i j)) p'
            by (metis raw_has_prod_ignore_initial_segment max_Suc_Suc max_def p)
    moreover
    obtain q' where q': raw_has_prod g (Suc (max ij)) q'
        by (metis raw_has_prod_ignore_initial_segment max.cobounded2 max_Suc_Suc
q)
    ultimately show ?thesis
        using }\langleb=0\rangle\mathrm{ by (simp add: has_prod_def) (metis 〈f i = 0〉〈g j = 0〉
raw_has_prod_mult max_def)
    qed
qed
lemma convergent_prod_mult:
    assumes f:convergent_prod f}\mathrm{ and g: convergent_prod g
    shows convergent_prod (\lambdan.fn*gn)
    unfolding convergent_prod_def
proof -
    obtain M p Nq where p: raw_has_prod f M p and q: raw_has_prod g Nq
        using convergent_prod_def f g by blast+
    then obtain p' q' where p': raw_has_prod f (max M N) p' and q': raw_has_prod
g(max MN) q'
    by (meson raw_has_prod_ignore_initial_segment max.cobounded1 max.cobounded2)
    then show \exists M p.raw_has_prod (\lambdan.fn*g n)Mp
        using raw_has_prod_mult by blast
qed
lemma prodinf_mult: convergent_prod f \Longrightarrow convergent_prod g \Longrightarrow prodinf f*
prodinf g}=(\prodn.fn*gn
    by (intro has_prod_unique has_prod_mult convergent_prod_has_prod)
end
context
    fixes f :: 'i # nat = 'a::real_normed_field
        and I :: 'i set
begin
lemma has_prod_prod:(\bigwedgei.i 
has_prod (\prodi\inI.x i)
    by (induct I rule: infinite_finite_induct) (auto intro!: has_prod_mult)
lemma prodinf_prod:(\bigwedgei.i 
n)=(\prodi\inI. Пn.fin)
    using has_prod_unique[OF has_prod_prod, OF convergent_prod_has_prod] by simp
lemma convergent_prod_prod: (\i. i \in I \Longrightarrow convergent_prod (f i)) \Longrightarrow conver-
```

```
gent_prod (\lambdan. \i\inI.fin)
    using convergent_prod_has_prod_iff has_prod_prod prodinf_prod by force
end
```


6.36.8 Infinite summability on real normed fields

context
fixes $f::$ nat \Rightarrow 'a::real_normed_field
begin
lemma raw_has_prod_Suc_iff: raw_has_prod $f M(a * f M) \longleftrightarrow$ raw_has_prod $(\lambda n$.
$f($ Suc $n)) M a \wedge f M \neq 0$
proof -
have raw_has_prod $f M(a * f M) \longleftrightarrow\left(\lambda i . \prod j \leq\right.$ Suc $\left.i . f(j+M)\right) \longrightarrow a * f$
$M \wedge a * f M \neq 0$
by (subst filterlim_sequentially_Suc) (simp add: raw_has_prod_def)
also have $\ldots \longleftrightarrow\left(\lambda i .\left(\prod j \leq i . f(S u c j+M)\right) * f M\right) \longrightarrow a * f M \wedge a * f$
$M \neq 0$
by (simp add: ac_simps atMost_Suc_eq_insert_0 image_Suc_atMost prod.atLeast1_atMost_eq
lessThan_Suc_atMost
del: prod.cl_ivl_Suc)
also have $\ldots \longleftrightarrow$ raw_has_prod $(\lambda n . f(S u c n)) M a \wedge f M \neq 0$
proof safe
assume tends: $\left(\lambda i .\left(\prod j \leq i . f(S u c j+M)\right) * f M\right) \longrightarrow a * f M$ and $0: a$

* $f M \neq 0$
with tendsto_divide[OF tends tendsto_const, of $f M]$
show raw_has_prod ($\lambda n . f(S u c ~ n)) M a$
by (simp add: raw_has_prod_def)
qed (auto intro: tendsto_mult_right simp: raw_has_prod_def)
finally show? ?thesis.
qed
lemma has_prod_Suc_iff:
assumes $f 0 \neq 0$ shows $(\lambda n . f(S u c n))$ has_prod $a \longleftrightarrow f$ has_prod $(a * f 0)$
proof (cases $a=0$)
case True
then show ?thesis
proof (simp add: has_prod_def, safe)
fix $i x$
assume $f($ Suc $i)=0$ and raw_has_prod (λ n. f (Suc n)) (Suc i) x
then obtain y where raw_has_prod f (Suc (Suc i)) y
by (metis (no_types) raw_has_prod_eq_0 Suc_n_not_le_n raw_has_prod_Suc_iff
raw_has_prod_ignore_initial_segment raw_has_prod_nonzero linear)
then show $\exists i . f i=0 \wedge E x($ raw_has_prod $f($ Suc $i))$
using $\langle f($ Suc $i)=0\rangle$ by blast
next
fix $i x$
assume $f i=0$ and x : raw_has_prod $f(S u c i) x$

```
    then obtain j where j:i=Suc j
        by (metis assms not0_implies_Suc)
    moreover have \exists y. raw_has_prod (\lambdan.f(Suc n)) i y
        using }x\mathrm{ by (auto simp: raw_has_prod_def)
    then show \existsi.f(Suc i)=0^Ex(raw_has_prod (\lambdan.f(Suc n)) (Suc i))
        using 〈fi=0` j by blast
    qed
next
    case False
    then show ?thesis
        by (auto simp: has_prod_def raw_has_prod_Suc_iff assms)
qed
lemma convergent_prod_Suc_iff [simp]:
    shows convergent_prod (\lambdan.f (Suc n)) = convergent_prod f
proof
    assume convergent_prod f
    then obtain ML where M_nz:\foralln\geqM.fn\not=0 and
            M_L:(\lambdan. \i\leqn.f(i+M))\longrightarrowL \ and L\not=0
        unfolding convergent_prod_altdef by auto
    have (\lambdan. \Pii\leqn.f(Suc (i+M)))\longrightarrowL/fM
    proof -
        have (\lambdan. \prodi\in{0..Suc n}.f(i+M))\longrightarrowL
            using M_L
            apply (subst (asm) filterlim_sequentially_Suc[symmetric])
            using atLeast0AtMost by auto
        then have (\lambdan.fM*(\prodi\in{0..n}.f(Suc (i+M))))\longrightarrowL
        apply (subst (asm) prod.atLeast0_atMost_Suc_shift)
        by simp
        then have (\lambdan. (\prodi\in{0..n}.f(Suc (i+M))))\longrightarrowL/f M
        apply (drule_tac tendsto_divide)
        using M_nz[rule_format,of M,simplified] by auto
        then show ?thesis unfolding atLeast0AtMost .
    qed
    then show convergent_prod ( }\lambdan.f(Suc n)) unfolding convergent_prod_altdef
        apply (rule_tac exI[where x=M])
        apply (rule_tac exI[where }x=L/f M]
        using M_nz\langleL\not=0\rangle by auto
next
    assume convergent_prod (\lambdan.f (Suc n))
    then obtain M where \existsL. (\foralln\geqM.f(Suc n)\not=0)\wedge(\lambdan.\prodi\leqn.f(Suc (i
+M)))\longrightarrowL^L\not=0
        unfolding convergent_prod_altdef by auto
    then show convergent_prod f unfolding convergent_prod_altdef
        apply (rule_tac exI[where x=Suc M])
        using Suc_le_D by auto
qed
lemma raw_has_prod_inverse:
```

assumes raw_has_prod f $M a$ shows raw_has_prod $(\lambda n$. inverse $(f n)) M$ (inverse a)
using assms unfolding raw_has_prod_def by (auto dest: tendsto_inverse simp: prod_inversef [symmetric])
lemma has_prod_inverse:
assumes f has_prod a shows (λn. inverse $(f n)$) has_prod (inverse a)
using assms raw_has_prod_inverse unfolding has_prod_def by auto
lemma convergent_prod_inverse:
assumes convergent_prod f
shows convergent_prod (λn. inverse ($f n$))
using assms unfolding convergent_prod_def by (blast intro: raw_has_prod_inverse elim:)
end
context
fixes f :: nat \Rightarrow ' $a::$:real_normed_field
begin
lemma raw_has_prod_Suc_iff ': raw_has_prod $f M a \longleftrightarrow$ raw_has_prod ($\lambda n . f$ (Suc n)) $M(a / f M) \wedge f M \neq 0$
by (metis raw_has_prod_eq_0 add.commute add.left_neutral raw_has_prod_Suc_iff raw_has_prod_nonzero le_add1 nonzero_mult_div_cancel_right times_divide_eq_left)
lemma has_prod_divide: f has_prod $a \Longrightarrow g$ has_prod $b \Longrightarrow(\lambda n . f n / g n)$ has_prod (a / b) unfolding divide_inverse by (intro has_prod_inverse has_prod_mult)
lemma convergent_prod_divide:
assumes f : convergent_prod f and g : convergent_prod g
shows convergent_prod ($\lambda n . f n / g n$)
using $f g$ has_prod_divide has_prod_iff by blast
lemma prodinf_divide: convergent_prod $f \Longrightarrow$ convergent_prod $g \Longrightarrow$ prodinf $f /$ prodinf $g=\left(\prod n . f n / g n\right)$
by (intro has_prod_unique has_prod_divide convergent_prod_has_prod)
lemma prodinf_inverse: convergent_prod $f \Longrightarrow(\Pi n$. inverse $(f n))=$ inverse $(\Pi n$. $f n$)
by (intro has_prod_unique [symmetric] has_prod_inverse convergent_prod_has_prod)
lemma has_prod_Suc_imp:
assumes ($\lambda n . f(S u c ~ n))$ has_prod a
shows f has_prod $(a * f 0)$
proof -
have f has_prod $(a * f 0)$ when raw_has_prod $(\lambda n . f(S u c n)) 0$ a apply (cases f $0=0$)

```
    using that unfolding has_prod_def raw_has_prod_Suc
    by (auto simp add: raw_has_prod_Suc_iff)
    moreover have f has_prod (a*f0) when
    (\existsiq.a}=0\wedgef(Suc i)=0^raw_has_prod (\lambdan.f(Suc n)) (Suc i) q)
    proof -
    from that
    obtain iq where a=0f(Suc i)=0 raw_has_prod (\lambdan.f(Suc n))(Suc i)q
        by auto
    then show ?thesis unfolding has_prod_def
        by (auto intro!:exI[where x=Suc i] simp:raw_has_prod_Suc)
    qed
    ultimately show f has_prod ( a*f 0) using assms unfolding has_prod_def by
auto
qed
lemma has_prod_iff_shift:
    assumes \i. i<n\Longrightarrowfi\not=0
    shows }(\lambdai.f(i+n)) has_prod a\longleftrightarrowf has_prod (a*(\prodi<n.fi)
    using assms
proof (induct n arbitrary: a)
    case 0
    then show ?case by simp
next
    case (Suc n)
    then have (\lambdai.f (Suc i + n)) has_prod a\longleftrightarrow(\lambdai.f(i+n)) has_prod (a*f
n)
    by (subst has_prod_Suc_iff) auto
    with Suc show ?case
        by (simp add: ac_simps)
qed
corollary has_prod_iff_shift':
    assumes \i. i<n\Longrightarrowfi\not=0
    shows }(\lambdai.f(i+n)) has_prod (a/(\prodi<n.fi))\longleftrightarrow \longleftrightarrow has_prod a
    by (simp add: assms has_prod_iff_shift)
lemma has_prod_one_iff_shift:
    assumes \i. i<n \Longrightarrowfi=1
    shows (\lambdai.f(i+n)) has_prod a\longleftrightarrow(\lambdai.fi) has_prod a
    by (simp add: assms has_prod_iff_shift)
lemma convergent_prod_iff_shift [simp]:
    shows convergent_prod (\lambdai.f(i+n))\longleftrightarrow convergent_prod f
    apply safe
    using convergent_prod_offset apply blast
    using convergent_prod_ignore_initial_segment convergent_prod_def by blast
lemma has_prod_split_initial_segment:
    assumes f has_prod a \bigwedgei. i<n\Longrightarrowfi\not=0
```

```
shows (\lambdai.f (i+n)) has_prod (a / (\prodi<n.fi))
using assms has_prod_iff_shift' by blast
lemma prodinf_divide_initial_segment:
    assumes convergent_prod f \i.i<n\Longrightarrowfi\not=0
    shows}(\prodi.f(i+n))=(\prodi.fi)/(\prodi<n.fi
    by (rule has_prod_unique[symmetric]) (auto simp: assms has_prod_iff_shift)
lemma prodinf_split_initial_segment:
    assumes convergent_prod f \i.i<n\Longrightarrowfi\not=0
    shows prodinf f}=(\prodi.f(i+n))*(\prodi<n.fi
    by (auto simp add: assms prodinf_divide_initial_segment)
lemma prodinf_split_head:
    assumes convergent_prod ff 0}\not=
    shows (\prodn.f (Suc n)) = prodinf f / f 0
    using prodinf_split_initial_segment[of 1] assms by simp
end
context
    fixes f :: nat => 'a::real_normed_field
begin
lemma convergent_prod_inverse_iff [simp]: convergent_prod (\lambdan. inverse (f n)) \longleftrightarrow
convergent_prod f
    by (auto dest: convergent_prod_inverse)
lemma convergent_prod_const_iff [simp]:
    fixes c :: ' }a\mathrm{ :: {real_normed_field}
    shows convergent_prod ( }\mp@subsup{\lambda}{-}{}.c)\longleftrightarrowc=
proof
    assume convergent_prod ( }\mp@subsup{\lambda}{_}{\prime}.c
    then show c=1
        using convergent_prod_imp_LIMSEQ LIMSEQ_unique by blast
next
    assume c=1
    then show convergent-prod ( }\mp@subsup{\lambda}{-}{\prime}c
        by auto
qed
lemma has_prod_power: f has_prod a \Longrightarrow (\lambdai.fi ^ n) has_prod (a ` n)
    by (induction n) (auto simp: has_prod_mult)
```

lemma convergent_prod_power: convergent_prod $f \Longrightarrow$ convergent_prod ($\lambda i . f i^{\wedge}$
n)
by (induction n) (auto simp: convergent_prod_mult)
lemma prodinf_power: convergent_prod $f \Longrightarrow \operatorname{prodinf}\left(\lambda i . f i^{\wedge} n\right)=p r o d i n f f{ }^{\wedge} n$

> by (metis has_prod_unique convergent_prod_imp_has_prod has_prod_power)
end

6.36.9 Exponentials and logarithms

context
fixes $f::$ nat \Rightarrow ' $a::\left\{r e a l_{-n o r m e d-f i e l d, b a n a c h ~}\right\}$
begin
lemma sums_imp_has_prod_exp:
assumes f sums s
shows raw_has_prod (λi. exp (fi)) 0 (exp s)
using assms continuous_on_exp [of UNIV $\lambda x:$:' $\left.^{\prime} a . x\right]$
using continuous_on_tendsto_compose $[$ of $U N I V \exp (\lambda n . \operatorname{sum} f\{. . n\}) s]$
by (simp add: prod_defs sums_def_le exp_sum)
lemma convergent_prod_exp:
assumes summable f
shows convergent_prod (λi. exp ($f i)$)
using sums_imp_has_prod_exp assms unfolding summable_def convergent_prod_def
by blast
lemma prodinf_exp:
assumes summable f
shows prodinf $(\lambda i . \exp (f i))=\exp (\operatorname{suminf} f)$
proof -
have f sums suminf f
using assms by blast
then have $(\lambda i . \exp (f i))$ has_prod $\exp (\operatorname{suminf} f)$ by (simp add: has_prod_def sums_imp_has_prod_exp)
then show?thesis
by (rule has_prod_unique [symmetric])
qed
end
theorem convergent_prod_iff_summable_real:
fixes $a::$ nat \Rightarrow real
assumes $\bigwedge n$. $a n>0$
shows convergent_prod $(\lambda k .1+a k) \longleftrightarrow$ summable a (is ?lhs $=$?rhs)
proof
assume ?lhs
then obtain p where raw_has_prod $(\lambda k .1+a k) 0 p$
by (metis assms add_less_same_cancel2 convergent_prod_offset_0 not_one_less_zero)
then have to_p: $(\lambda n . \Pi k \leq n .1+a k) \longrightarrow p$ by (auto simp: raw_has_prod_def)
moreover have $l e:\left(\sum k \leq n . a k\right) \leq\left(\prod k \leq n .1+a k\right)$ for n by (rule sum_le_prod) (use assms less_le in force)

```
have \(\left(\prod k \leq n .1+a k\right) \leq p\) for \(n\)
proof (rule incseq_le [OF _ to_p])
    show \(\operatorname{incseq}\left(\lambda n . \prod k \leq n .1+a k\right)\)
        using assms by (auto simp: mono_def order.strict_implies_order intro!:
prod_mono2)
    qed
    with le have \(\left(\sum k \leq n\right.\). \(\left.a k\right) \leq p\) for \(n\)
        by (metis order_trans)
    with assms bounded_imp_summable show ?rhs
        by (metis not_less order.asym)
next
    assume \(R\) : ?rhs
    have \(\left(\prod k \leq n .1+a k\right) \leq \exp (\operatorname{suminf} a)\) for \(n\)
    proof -
    have \(\left(\prod k \leq n .1+a k\right) \leq \exp \left(\sum k \leq n . a k\right)\) for \(n\)
        by (rule prod_le_exp_sum) (use assms less_le in force)
    moreover have \(\exp \left(\sum k \leq n\right.\). a \(\left.k\right) \leq \exp (\operatorname{suminf} a)\) for \(n\)
        unfolding exp_le_cancel_iff
        by (meson sum_le_suminf \(R\) assms finite_atMost less_eq_real_def)
    ultimately show ?thesis
        by (meson order_trans)
    qed
    then obtain \(L\) where \(L:(\lambda n . \Pi k \leq n .1+a k) \longrightarrow L\)
    by (metis assms bounded_imp_convergent_prod convergent_prod_iff_nz_lim le_add_same_cancel1
le_add_same_cancel2 less_le not_le zero_le_one)
    moreover have \(L \neq 0\)
    proof
        assume \(L=0\)
        with \(L\) have \((\lambda n . \Pi k \leq n .1+a k) \longrightarrow 0\)
        by \(\operatorname{simp}\)
    moreover have \(\left(\prod k \leq n .1+a k\right)>1\) for \(n\)
        by (simp add: assms less_1_prod)
    ultimately show False
        by (meson Lim_bounded2 not_one_le_zero less_imp_le)
    qed
    ultimately show? lhs
        using assms convergent_prod_iff_nz_lim
        by (metis add_less_same_cancel1 less_le not_le zero_less_one)
qed
lemma exp_suminf_prodinf_real:
    fixes \(f::\) nat \(\Rightarrow\) real
    assumes ge0: \(\backslash n . f n \geq 0\) and ac:abs_convergent_prod \((\lambda n . \exp (f n))\)
    shows prodinf \((\lambda i . \exp (f i))=\exp (\operatorname{suminf} f)\)
proof -
    have summable \(f\)
        using ac unfolding abs_convergent_prod_conv_summable
    proof (elim summable_comparison_test')
        fix \(n\)
```

```
    have \(|f n|=f n\)
    by (simp add: ge0)
    also have \(\ldots \leq \exp (f n)-1\)
        by (metis diff_diff_add exp_ge_add_one_self ge_iff_diff_ge_0)
    finally show norm \((f n) \leq \operatorname{norm}(\exp (f n)-1)\)
        by \(\operatorname{simp}\)
    qed
    then show ?thesis
    by (simp add: prodinf_exp)
qed
lemma has_prod_imp_sums_ln_real:
    fixes \(f::\) nat \(\Rightarrow\) real
    assumes raw_has_prod f \(0 p\) and \(0: \bigwedge x . f x>0\)
    shows \((\lambda i . \ln (f i))\) sums \((\ln p)\)
proof -
    have \(p>0\)
    using assms unfolding prod_defs by (metis LIMSEQ_prod_nonneg less_eq_real_def)
    then show ?thesis
    using assms continuous_on_ln \([o f\{0<..\} \quad \lambda x . x]\)
    using continuous_on_tendsto_compose \([\) of \(\{0<..\} \ln (\lambda n . \operatorname{prod} f\{. . n\}) p]\)
    by (auto simp: prod_defs sums_def_le ln_prod order_tendstoD)
qed
lemma summable_ln_real:
    fixes \(f::\) nat \(\Rightarrow\) real
    assumes \(f:\) convergent_prod \(f\) and \(0: \bigwedge x . f x>0\)
    shows summable ( \(\lambda i . \ln (f i)\) )
proof -
    obtain \(M p\) where raw_has_prod f \(M p\)
        using \(f\) convergent_prod_def by blast
    then consider \(i\) where \(i<M f i=0 \mid p\) where raw_has_prod f \(0 p\)
        using raw_has_prod_cases by blast
    then show ?thesis
    proof cases
        case 1
        with 0 show ?thesis
            by (metis less_irrefl)
    next
        case 2
        then show?thesis
        using 0 has_prod_imp_sums_ln_real summable_def by blast
    qed
qed
lemma suminf_ln_real:
    fixes \(f::\) nat \(\Rightarrow\) real
    assumes \(f\) : convergent_prod \(f\) and \(0: \bigwedge x . f x>0\)
    shows \(\operatorname{suminf}(\lambda i . \ln (f i))=\ln (\operatorname{prodinf} f)\)
```

```
proof -
    have \(f\) has_prod prodinf \(f\)
        by (simp add: f has_prod_iff)
    then have raw_has_prod f0 (prodinf f)
        by (metis 0 has_prod_def less_irrefl)
    then have \((\lambda i . \ln (f i))\) sums \(\ln (\operatorname{prodinf} f)\)
        using 0 has_prod_imp_sums_ln_real by blast
    then show? ?hesis
        by (rule sums_unique [symmetric])
qed
lemma prodinf_exp_real:
    fixes \(f::\) nat \(\Rightarrow\) real
    assumes \(f\) : convergent_prod \(f\) and \(0: \bigwedge x . f x>0\)
    shows prodinf \(f=\exp (\operatorname{suminf}(\lambda i \cdot \ln (f i)))\)
    by (simp add: 0 f less_0_prodinf suminf_ln_real)
theorem Ln_prodinf_complex:
    fixes \(z::\) nat \(\Rightarrow\) complex
    assumes \(z: \bigwedge j . z j \neq 0\) and \(\xi: \xi \neq 0\)
    shows \(\left(\left(\lambda n . \prod j \leq n . z j\right) \longrightarrow \xi\right) \longleftrightarrow\left(\exists k .\left(\lambda n .\left(\sum j \leq n . \operatorname{Ln}(z j)\right)\right) \longrightarrow\right.\)
Ln \(\xi+\) of_int \(\left.k *\left(o f \_r e a l(2 * p i) * \mathrm{i}\right)\right)(\) is ?lhs \(=\) ? \(r h s)\)
proof
    assume \(L\) : ?lhs
    have \(p n z:\left(\prod j \leq n . z j\right) \neq 0\) for \(n\)
        using \(z\) by auto
    define \(\Theta\) where \(\Theta \equiv \operatorname{Arg} \xi+2 * p i\)
    then have \(\Theta>p i\)
        using Arg_def mpi_less_Im_Ln by fastforce
    have \(\xi_{-} e q: \xi=\operatorname{cmod} \xi * \exp (\mathrm{i} * \Theta)\)
        using Arg_def Arg_eq \(\xi\) unfolding \(\Theta_{-}\)def by (simp add: algebra_simps exp_add)
    define \(\vartheta\) where \(\vartheta \equiv \lambda n\). THE t. is_Arg \(\left(\prod j \leq n . z j\right) t \wedge t \in\{\Theta-p i<. . \Theta+p i\}\)
    have uniq: \(\exists\) !s. is_Arg \(\left(\prod j \leq n . z j\right) s \wedge s \in\{\Theta-p i<. . \Theta+p i\}\) for \(n\)
        using Argument_exists_unique [OF pnz] by metis
    have \(\vartheta: i_{-} A r g\left(\prod j \leq n . z j\right)(\vartheta n)\) and \(\vartheta \_i n t e r v a l: \vartheta n \in\{\Theta-p i<. . \Theta+p i\}\) for \(n\)
        unfolding \(\vartheta \_d e f\)
        using theI' \({ }^{\prime}\) OF uniq] by metis +
    have \(\vartheta \_\)pos: \(\bigwedge j . \vartheta j>0\)
        using \(\vartheta_{-}\)interval \(\langle\Theta>\) pi〉 by simp (meson diff_gt_0_iff_gt less_trans)
    have \(\left(\prod j \leq n . z j\right)=\operatorname{cmod}\left(\prod j \leq n . z j\right) * \exp (\mathrm{i} * \vartheta n)\) for \(n\)
        using \(\vartheta\) by (auto simp: is_Arg_def)
    then have eq: \(\left(\lambda n . \prod j \leq n . z j\right)=\left(\lambda n . \operatorname{cmod}\left(\prod j \leq n . z j\right) * \exp (\mathrm{i} * \vartheta n)\right)\)
        by simp
    then have \(\left(\lambda n .\left(\operatorname{cmod}\left(\prod j \leq n . z j\right)\right) * \exp (\mathrm{i} *(\vartheta n))\right) \longrightarrow \xi\)
        using \(L\) by force
    then obtain \(k\) where \(k:\left(\lambda j . \vartheta j-o f \_i n t(k j) *(2 * p i)\right) \longrightarrow \Theta\)
        using \(L\) by (subst (asm) \(\xi_{-}\)eq) (auto simp add: eq z \(\xi\) polar_convergence)
    moreover have \(\forall_{F} n\) in sequentially. \(k n=0\)
```

```
    proof -
    have *: \(k j=0\) if dist ( \(v j\) - real_of_int \(k j * 2\) ) \(V<1 v j \in\{V-1<. . V+\)
1\} for \(k j v j V\)
            using that by (auto simp: dist_norm)
    have \(\forall_{F} j\) in sequentially. dist \(\left(\vartheta j-o f_{-} i n t(k j) *(2 * p i)\right) \Theta<p i\)
        using tendstoD \([\) OF k] pi_gt_zero by blast
    then show? ?thesis
    proof (rule eventually_mono)
        fix \(j\)
        assume d: dist \(\left(\vartheta j-r e a l \_o f \_i n t ~(k j) *(2 * p i)\right) \Theta<p i\)
        show \(k j=0\)
            by (rule * [of \(\left.\left.\vartheta j / p i_{-} \Theta / p i\right]\right)\)
                (use \(\vartheta\) _interval \([\) of \(j] d\) in 〈simp_all add: divide_simps dist_norm〉)
    qed
qed
ultimately have \(\vartheta t o \Theta: \vartheta \longrightarrow \Theta\)
    apply (simp only: tendsto_def)
    apply (erule all_forward imp_forward asm_rl)+
    apply (drule (1) eventually_conj)
    apply (auto elim: eventually_mono)
    done
then have to0: \((\lambda n . \mid \vartheta(\) Suc \(n)-\vartheta n \mid) \longrightarrow 0\)
    by (metis (full_types) diff_self filterlim_sequentially_Suc tendsto_diff tendsto_rabs_zero)
    have \(\exists k\). Im \(\left(\sum j \leq n\right.\). Ln \(\left.(z j)\right)\) - of_int \(k *(2 * p i)=\vartheta n\) for \(n\)
    proof (rule is_Arg_exp_diff_2pi)
    show \(i s_{-} \operatorname{Arg}\left(\exp \left(\sum j \leq n . \operatorname{Ln}(z j)\right)\right)(\vartheta n)\)
        using pnz \(\vartheta\) by (simp add: is_Arg_def exp_sum prod_norm)
    qed
    then have \(\exists k\). \(\left(\sum j \leq n\right.\). Im \(\left.(\operatorname{Ln}(z j))\right)=\vartheta n+\) of_int \(k *(2 * p i)\) for \(n\)
        by (simp add: algebra_simps)
    then obtain \(k\) where \(k: \bigwedge n .\left(\sum j \leq n . \operatorname{Im}(L n(z j))\right)=\vartheta n+o f \_i n t(k n) *\)
(2*pi)
    by metis
    obtain \(K\) where \(\forall_{F} n\) in sequentially. \(k n=K\)
    proof -
    have \(k\) _le: \((2 * p i) * \mid k(\) Suc \(n)-k n|\leq| \vartheta(\) Suc \(n)-\vartheta n|+| \operatorname{Im}(\operatorname{Ln}(z(\) Suc
\(n)\) ))| for \(n\)
    proof -
        have \(\left(\sum j \leq\right.\) Suc n. \(\left.\operatorname{Im}(\operatorname{Ln}(z j))\right)-\left(\sum j \leq n . \operatorname{Im}(\operatorname{Ln}(z j))\right)=\operatorname{Im}(\operatorname{Ln}(z\)
(Suc n)))
            by \(\operatorname{simp}\)
        then show ?thesis
            using \(k\) [of Suc \(n\) ] \(k\) [of \(n]\) by (auto simp: abs_if algebra_simps)
        qed
        have \(z \longrightarrow 1\)
        using \(L \xi\) convergent_prod_iff_nz_lim \(z\) by (blast intro: convergent_prod_imp_LIMSEQ)
        with \(z\) have \((\lambda n . L n(z n)) \longrightarrow L n 1\)
        using isCont_tendsto_compose [OF continuous_at_Ln] nonpos_Reals_one_I by
blast
```

```
    then have \((\lambda n . L n(z n)) \longrightarrow 0\)
    by simp
    then have \((\lambda n . \mid \operatorname{Im}(\operatorname{Ln}(z(\) Suc \(n))) \mid) \longrightarrow 0\)
    by (metis LIMSEQ_unique \(\langle z \longrightarrow 1\rangle\) continuous_at_Ln filterlim_sequentially_Suc
isCont_tendsto_compose nonpos_Reals_one_I tendsto_Im tendsto_rabs_zero_iff zero_complex.simps(2))
    then have \(\forall_{F} n\) in sequentially. \(\mid \operatorname{Im}(\operatorname{Ln}(z(\) Suc \(n))) \mid<1\)
    by (simp add: order_tendsto_iff)
    moreover have \(\forall_{F} n\) in sequentially. \(\mid \vartheta(\) Suc \(n)-\vartheta n \mid<1\)
    using to0 by (simp add: order_tendsto_iff)
    ultimately have \(\forall_{F} n\) in sequentially. (2*pi) \(* \mid k\) (Suc \(n\) ) \(-k n \mid<1+1\)
    proof (rule eventually_elim2)
        fix \(n\)
        assume \(\mid \operatorname{Im}(\operatorname{Ln}(z(\) Suc \(n))) \mid<1\) and \(\mid \vartheta(\) Suc \(n)-\vartheta n \mid<1\)
        with \(k_{-} l e[o f n]\) show \(2 * p i *\) real_of_int \(|k(S u c n)-k n|<1+1\)
        by linarith
    qed
    then have \(\forall_{F} n\) in sequentially. real_of_int \(\mid k(\) Suc \(n)-k n \mid<1\)
    proof (rule eventually_mono)
        fix \(n\) :: nat
        assume 2 * pi * \(\mid k(\) Suc \(n)-k n \mid<1+1\)
        then have \(\mid k(\) Suc \(n)-k n \mid<2 /(2 * p i)\)
        by (simp add: field_simps)
        also have ... \(<1\)
        using pi_ge_two by auto
        finally show real_of_int \(\mid k\) (Suc \(n)-k n \mid<1\).
    qed
    then obtain \(N\) where \(N: \bigwedge n . n \geq N \Longrightarrow \mid k(\) Suc \(n)-k n \mid=0\)
    using eventually_sequentially less_irrefl of_int_abs by fastforce
    have \(k(N+i)=k N\) for \(i\)
    proof (induction i)
    case (Suc i)
    with \(N\) [of \(N+i]\) show ?case
        by auto
    qed simp
    then have \(\bigwedge n . n \geq N \Longrightarrow k n=k N\)
    using \(l e_{-} S u c_{-} e x\) by auto
    then show? ?thesis
    by (force simp add: eventually_sequentially intro: that)
    qed
    with \(\vartheta t o \Theta\) have \(\left(\lambda n .\left(\sum j \leq n . \operatorname{Im}(\operatorname{Ln}(z j))\right)\right) \longrightarrow \Theta+\) of_int \(K *(2 * p i)\)
    by (simp add: \(k\) tendsto_add tendsto_mult tendsto_eventually)
    moreover have \(\left(\lambda n .\left(\sum k \leq n . \operatorname{Re}(\operatorname{Ln}(z k))\right)\right) \longrightarrow \operatorname{Re}(\operatorname{Ln} \xi)\)
    using assms continuous_imp_tendsto [OF isCont_ln tendsto_norm [OF L]]
    by (simp add: o_def flip: prod_norm ln_prod)
    ultimately show ?rhs
    by (rule_tac \(x=K+1\) in exI) (auto simp: tendsto_complex_iff \(\Theta_{-} d e f\) Arg_def
assms algebra_simps)
next
    assume ?rhs
```

```
    then obtain \(r\) where \(r:\left(\lambda n .\left(\sum k \leq n . \operatorname{Ln}(z k)\right)\right) \longrightarrow\) Ln \(\xi+\) of_int \(r *\)
(of_real( \(2 * p i) *\) i) ..
    have \(\left(\lambda n . \exp \left(\sum k \leq n . \operatorname{Ln}(z k)\right)\right) \longrightarrow \xi\)
        using assms continuous_imp_tendsto [OF isCont_exp r] exp_integer_2pi [of r]
        by (simp add: o_def exp_add algebra_simps)
    moreover have \(\exp \left(\sum k \leq n\right.\). Ln \(\left.(z k)\right)=\left(\prod k \leq n . z k\right)\) for \(n\)
        by (simp add: exp_sum add_eq_0_iff assms)
    ultimately show? ?hs
        by auto
qed
```

Prop 17.2 of Bak and Newman, Complex Analysis, p. 242
proposition convergent_prod_iff_summable_complex:
fixes $z::$ nat \Rightarrow complex
assumes $\bigwedge k . z k \neq 0$
shows convergent_prod $(\lambda k . z k) \longleftrightarrow$ summable $(\lambda k . \operatorname{Ln}(z k))($ is ?lhs $=$? rhs $)$
proof
assume? lhs
then obtain p where $p:(\lambda n . \Pi k \leq n . z k) \longrightarrow p$ and $p \neq 0$
using convergent_prod_LIMSEQ prodinf_nonzero add_eq_0_iff assms by fastforce
then show ?rhs
using Ln_prodinf_complex assms
by (auto simp: prodinf_nonzero summable_def sums_def_le)
next
assume R : ?rhs
have $(\Pi k \leq n . z k)=\exp \left(\sum k \leq n . \operatorname{Ln}(z k)\right)$ for n
by (simp add: exp_sum add_eq_0_iff assms)
then have $(\lambda n . \Pi k \leq n . z k) \longrightarrow \exp (\operatorname{suminf}(\lambda k . \operatorname{Ln}(z k)))$
using continuous_imp_tendsto [OF isCont_exp summable_LIMSEQ' [OF R]] by
(simp add: o_def)
then show? lhs
by (subst convergent_prod_iff_convergent) (auto simp: convergent_def tendsto_Lim
assms add_eq_0_iff)
qed

Prop 17.3 of Bak and Newman, Complex Analysis
proposition summable_imp_convergent_prod_complex:
fixes $z::$ nat \Rightarrow complex
assumes $z:$ summable $(\lambda k . \operatorname{norm}(z k))$ and non0: $\wedge k . z k \neq-1$
shows convergent_prod $(\lambda k .1+z k)$
proof -
note $i f_{-}$cong [cong] power_Suc [simp del]
obtain N where $N: \wedge k . k \geq N \Longrightarrow$ norm $(z k)<1 / 2$
using summable_LIMSEQ_zero [OF z]
by (metis diff_zero dist_norm half_gt_zero_iff less_numeral_extra(1) lim_sequentially
tendsto_norm_zero_iff)
have $\operatorname{norm}(\operatorname{Ln}(1+z k)) \leq 2 * \operatorname{norm}(z k)$ if $k \geq N$ for k
proof (cases $z k=0$)
case False

```
let ?f \(=\lambda i\).cmod \(\left((-1){ }^{\wedge} i * z k^{\wedge} i /\right.\) of_nat (Suc \(\left.\left.i\right)\right)\)
have normf: \(\operatorname{norm}(\) ?f \(n) \leq(1 / 2) \wedge n\) for \(n\)
proof -
    have norm (?f \(n)=\operatorname{cmod}(z k){ }^{\wedge} n / \operatorname{cmod}\left(1+o f \_n a t n\right)\)
        by (auto simp: norm_divide norm_mult norm_power)
    also have \(\ldots \leq \operatorname{cmod}(z k){ }^{\wedge} n\)
        by (auto simp: field_split_simps mult_le_cancel_left1 in_Reals_norm)
    also have \(\ldots \leq(1 / 2)^{\wedge} n\)
        using \(N\) [OF that] by (simp add: power_mono)
    finally show norm \((\) ?f \(n) \leq(1 / 2){ }^{\wedge} n\).
    qed
    have summablef: summable ?f
    by (intro normf summable_comparison_test' \([\) OF summable_geometric [of 1/2]])
auto
    have ( \(\lambda n .(-1)^{\wedge}\) Suc \(n /\) of_nat \(\left.n * z k{ }^{\wedge} n\right)\) sums Ln \((1+z k)\)
        using Ln_series [of \(z k\) ] \(N\) that by fastforce
    then have \(*:\left(\lambda i . z k *\left(\left((-1)^{\wedge} i * z k^{\wedge} i\right) /(S u c i)\right)\right)\) sums Ln \((1+z k)\)
        using sums_split_initial_segment [where \(n=1\) ] by (force simp: power_Suc
mult_ac)
    then have norm \((\operatorname{Ln}(1+z k))=\) norm \(\left(\operatorname{suminf}\left(\lambda i . z k *\left(\left((-1)^{\wedge} i * z k\right.\right.\right.\right.\)
    ^ \(i) /(\) Suc \(i)))\) )
        using sums_unique by force
    also have \(\ldots=\operatorname{norm}\left(z k * \operatorname{suminf}\left(\lambda i .\left((-1){ }^{\wedge} i * z k{ }^{\wedge} i\right) /(\right.\right.\) Suc \(\left.\left.i)\right)\right)\)
        apply (subst suminf_mult)
        using * False
        by (auto simp: sums_summable intro: summable_mult_D \([\) of z k])
    also have \(\ldots=\operatorname{norm}(z k) * \operatorname{norm}\left(\operatorname{suminf}\left(\lambda i .\left((-1){ }^{\wedge} i * z k{ }^{\wedge} i\right) /(S u c\right.\right.\)
i)))
    by (simp add: norm_mult)
    also have \(\ldots \leq \operatorname{norm}(z k) * \operatorname{suminf}\left(\lambda i\right.\). norm \(\left(\left((-1){ }^{\wedge} i * z k^{\wedge} i\right) /(S u c\right.\)
i)))
            by (intro mult_left_mono summable_norm summablef) auto
    also have \(\ldots \leq \operatorname{norm}(z k) * \operatorname{suminf}(\lambda i\). (1/2) ^i)
    by (intro mult_left_mono suminf_le) (use summable_geometric [of 1/2] summablef
normf in auto)
    also have \(\ldots \leq \operatorname{norm}(z k) * 2\)
        using suminf_geometric [of 1/2:: real] by simp
    finally show ?thesis
        by (simp add: mult_ac)
    qed \(\operatorname{simp}\)
    then have summable \((\lambda k . \operatorname{Ln}(1+z k))\)
    by (metis summable_comparison_test summable_mult z)
    with non0 show ?thesis
    by (simp add: add_eq_0_iff convergent_prod_iff_summable_complex)
qed
lemma summable_Ln_complex:
    fixes \(z::\) nat \(\Rightarrow\) complex
    assumes convergent_prod \(z \wedge k . z k \neq 0\)
```

```
shows summable ( \(\lambda k\). Ln \((z k)\) )
using convergent_prod_def assms convergent_prod_iff_summable_complex by blast
```


6.36.10 Embeddings from the reals into some complete real normed field

```
lemma tendsto_eq_of_real_lim:
    assumes (\lambdan. of_real (f n):: 'a::{complete_space,real_normed_field})\longrightarrowq
    shows q}=of_real (limf
proof -
    have convergent ( }\lambdan\mathrm{ . of_real (f n) :: 'a)
        using assms convergent_def by blast
    then have convergent f
        unfolding convergent_def
        by (simp add: convergent_eq_Cauchy Cauchy_def)
    then show ?thesis
    by (metis LIMSEQ_unique assms convergentD sequentially_bot tendsto_Lim tend-
sto_of_real)
qed
lemma tendsto_eq_of_real:
    assumes (\lambdan. of_real (f n) :: 'a::{complete_space,real_normed_field})}\longrightarrow
    obtains r where q}=\mathrm{ of_real r
    using tendsto_eq_of_real_lim assms by blast
lemma has_prod_of_real_iff [simp]:
    (\lambdan. of_real (f n) :: 'a::{ complete_space,real_normed_field}) has_prod of_real c \longleftrightarrow
f has_prod c
    (is ?lhs = ?rhs)
proof
    assume ?lhs
    then show ?rhs
    apply (auto simp: prod_defs LIMSEQ_prod_0 tendsto_of_real_iff simp flip: of_real_prod)
        using tendsto_eq_of_real
        by (metis of_real_0 tendsto_of_real_iff)
next
    assume ?rhs
    with tendsto_of_real_iff show ?lhs
        by (fastforce simp: prod_defs simp flip: of_real_prod)
qed
end
```


6.37 Sums over Infinite Sets

theory Infinite_Set_Sum
imports Set_Integral
begin

```
lemma sets_eq_countable:
    assumes countable \(A\) space \(M=A \bigwedge x . x \in A \Longrightarrow\{x\} \in\) sets \(M\)
    shows sets \(M=\) Pow \(A\)
proof (intro equalityI subsetI)
    fix \(X\) assume \(X \in\) Pow \(A\)
    hence \((\cup x \in X .\{x\}) \in\) sets \(M\)
            by (intro sets.countable_UN' countable_subset[OF _ assms(1)]) (auto intro!:
assms(3))
    also have \((\bigcup x \in X .\{x\})=X\) by auto
    finally show \(X \in\) sets \(M\).
next
    fix \(X\) assume \(X \in\) sets \(M\)
    from sets.sets_into_space[OF this] and assms
        show \(X \in\) Pow \(A\) by simp
qed
lemma measure_eqI_countable':
    assumes spaces: space \(M=A\) space \(N=A\)
    assumes sets: \(\bigwedge x . x \in A \Longrightarrow\{x\} \in\) sets \(M \bigwedge x . x \in A \Longrightarrow\{x\} \in\) sets \(N\)
    assumes \(A\) : countable \(A\)
    assumes eq: \(\bigwedge a . a \in A \Longrightarrow\) emeasure \(M\{a\}=\) emeasure \(N\{a\}\)
    shows \(M=N\)
proof (rule measure_eqI_countable)
    show sets \(M=\) Pow \(A\)
        by (intro sets_eq_countable assms)
    show sets \(N=\) Pow \(A\)
        by (intro sets_eq_countable assms)
qed fact+
lemma count_space_PiM_finite:
    fixes \(B::{ }^{\prime} a \Rightarrow\) ' \(b\) set
    assumes finite \(A \bigwedge i\). countable \((B i)\)
    shows PiM A ( \(\lambda_{i}\). count_space \(\left(\begin{array}{ll}B & i\end{array}\right)=\) count_space \((\) PiE A B)
proof (rule measure_eqI_countable')
    show space (PiM A ( \(\lambda i\). count_space \((B i)))=\operatorname{PiE} A B\)
        by (simp add: space_PiM)
    show space (count_space (PiE A B)) \(=\) PiE A B by simp
next
    fix \(f\) assume \(f: f \in \operatorname{PiE} A B\)
    hence PiE \(A(\lambda x .\{f x\}) \in \operatorname{sets}\left(P i_{M} A(\lambda i\right.\).count_space \(\left.(B i))\right)\)
        by (intro sets_PiM_I_finite assms) auto
    also from \(f\) have \(\operatorname{PiE} A(\lambda x .\{f x\})=\{f\}\)
        by (intro PiE_singleton) (auto simp: PiE_def)
    finally show \(\{f\} \in\) sets \(\left(P i_{M} A(\lambda i\right.\). count_space \(\left.(B i))\right)\).
next
    interpret product_sigma_finite ( \(\lambda i\). count_space ( \(B i\) ) )
        by (intro product_sigma_finite.intro sigma_finite_measure_count_space_countable
assms)
```

```
    thm sigma_finite_measure_count_space
    fix \(f\) assume \(f: f \in \operatorname{PiE} A B\)
    hence \(\{f\}=\operatorname{PiE} A(\lambda x\). \(\{f x\})\)
        by (intro PiE_singleton [symmetric]) (auto simp: PiE_def)
    also have emeasure \(\left(P i_{M} A(\lambda i\right.\) count_space \(\left.(B i))\right) \ldots=\)
                            ( \(\left.\left.\prod_{i \in A . ~ e m e a s u r e ~\left(c o u n t \_s p a c e ~\right.}(B i)\right)\{f i\}\right)\)
        using \(f\) assms by (subst emeasure_PiM) auto
    also have \(\ldots=\left(\prod i \in A .1\right)\)
    by (intro prod.cong refl, subst emeasure_count_space_finite) (use \(f\) in auto)
    also have \(\ldots=\) emeasure (count_space (PiEAB)) \(\{f\}\)
    using \(f\) by (subst emeasure_count_space_finite) auto
    finally show emeasure \(\left(P i_{M} A(\lambda i\right.\). count_space \(\left.(B i))\right)\{f\}=\)
        emeasure (count_space ( \(\left.P i_{E} A B\right)\) ) \(\{f\}\).
qed (simp_all add: countable_PiE assms)
```

definition abs_summable_on ::
$\left({ }^{\prime} a \Rightarrow\right.$ ' $b::\{$ banach, second_countable_topology $\left.\}\right) \Rightarrow{ }^{\prime}$ a set \Rightarrow bool
(infix abs'_summable'_on 50)
where
fabs_summable_on $A \longleftrightarrow$ integrable (count_space A) f
definition infsetsum ::
$\left({ }^{\prime} a \Rightarrow\right.$ ' $b::\{$ banach, second_countable_topology $\left.\}\right) \Rightarrow^{\prime} a$ set $\Rightarrow{ }^{\prime} b$
where
infsetsum f A $=$ lebesgue_integral (count_space A) f
syntax (ASCII)
_infsetsum $::$ pttrn $\Rightarrow{ }^{\prime} a$ set $\Rightarrow{ }^{\prime} b \Rightarrow$ ' $b::\{b a n a c h$, second_countable_topology\}
((3INFSETSUM _:../ _) $[0,51,10] 10)$
syntax
_infsetsum :: pttrn \Rightarrow 'a set \Rightarrow ' $b \Rightarrow{ }^{\prime} b::\{$ banach, second_countable_topology\}

translations - Beware of argument permutation!
$\sum_{a} i \in A . b \rightleftharpoons C O N S T$ infsetsum (λi. b) A
syntax (ASCII)
_uinfsetsum $::$ pttrn $\Rightarrow^{\prime} a$ set $\Rightarrow^{\prime} b \Rightarrow{ }^{\prime} b::\{$ banach, second_countable_topology $\}$
((3INFSETSUM _:_./ _) $[0,51,10] 10)$
syntax
_uinfsetsum $::$ pttrn \Rightarrow ' $b \Rightarrow{ }^{\prime} b::\{$ banach, second_countable_topology\}
((2 $\sum_{a-.} /{ }_{-}$) $\left.[0,10] 10\right)$
translations - Beware of argument permutation!
$\sum_{a} i . b \rightleftharpoons C O N S T \operatorname{infsetsum}(\lambda i . b)(C O N S T$ UNIV)
syntax (ASCII)
_qinfsetsum $::$ pttrn \Rightarrow bool $\Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a::\{b a n a c h$, second_countable_topology\}

```
((3INFSETSUM _ |/ ../ _) [0, 0, 10] 10)
syntax
_qinfsetsum :: pttrn \(\Rightarrow\) bool \(\Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a::\{b a n a c h\), second_countable_topology \}
((2 \(\sum_{a-} \mid(-) \cdot / \quad\) ) \(\left.[0,0,10] 10\right)\)
translations
    \(\sum_{a} x \mid P . t=>\) CONST infsetsum \((\lambda x . t)\{x . P\}\)
```

print_translation
let
fun sum_tr' $\left[\right.$ Abs $(x, T x, t)$, Const (const_syntax \langle Collect $\left.\rangle,{ }^{\prime}\right) \$$ Abs $\left.(y, T y, P)\right]$
$=$
if $x<>y$ then raise Match
else
let
val $x^{\prime}=$ Syntax_Trans.mark_bound_body $(x, T x)$;
val $t^{\prime}=$ subst_bound $\left(x^{\prime}, t\right)$;
val $P^{\prime}=$ subst_bound (x^{\prime}, P);
in
Syntax.const syntax_const ${ }_{\text {_q }}$ qinfsetsum〉 \$ Syntax_Trans.mark_bound_abs
$(x, T x) \$ P^{\prime} \$ t^{\prime}$
end
|sum_tr ${ }^{\prime}$ _ = raise Match;
in $[($ const_syntax \langle infsetsum \rangle, K sum_tr' $)]$ end
$>$
lemma restrict_count_space_subset:
$A \subseteq B \Longrightarrow$ restrict_space (count_space B) $A=$ count_space A by (subst restrict_count_space) (simp_all add: Int_absorb2)
lemma abs_summable_on_restrict:
fixes $f::{ }^{\prime} a \Rightarrow$ ' $b::\{b a n a c h$, second_countable_topology $\}$
assumes $A \subseteq B$
shows f abs_summable_on $A \longleftrightarrow\left(\lambda x\right.$. indicator $\left.A x *_{R} f x\right)$ abs_summable_on
B
proof -
have count_space $A=$ restrict_space (count_space B) A
by (rule restrict_count_space_subset [symmetric]) fact+
also have integrable $\ldots f \longleftrightarrow$ set_integrable (count_space B) $A f$
by (simp add: integrable_restrict_space set_integrable_def)
finally show ?thesis
unfolding abs_summable_on_def set_integrable_def .
qed
lemma abs_summable_on_altdef: fabs_summable_on $A \longleftrightarrow$ set_integrable (count_space UNIV) Af
unfolding abs_summable_on_def set_integrable_def
by (metis (no_types) inf_top.right_neutral integrable_restrict_space restrict_count_space sets_UNIV)
lemma abs_summable_on_altdef ':
$A \subseteq B \Longrightarrow f$ abs_summable_on $A \longleftrightarrow$ set_integrable (count_space B) $A f$
unfolding abs_summable_on_def set_integrable_def
by (metis (no_types) Pow_iff abs_summable_on_def inf.orderE integrable_restrict_space restrict_count_space_subset sets_count_space space_count_space)
lemma abs_summable_on_norm_iff [simp]:
(λx. norm $(f x))$ abs_summable_on $A \longleftrightarrow f$ abs_summable_on A
by (simp add: abs_summable_on_def integrable_norm_iff)
lemma $a b s$ _summable_on_normI: f abs_summable_on $A \Longrightarrow(\lambda x$.norm $(f x))$ abs_summable_on A
by simp
lemma abs_summable_complex_of_real [simp]: (λ n. complex_of_real $(f n)$) abs_summable_on $A \longleftrightarrow f$ abs_summable_on A by (simp add: abs_summable_on_def complex_of_real_integrable_eq)
lemma abs_summable_on_comparison_test:
assumes g abs_summable_on A
assumes $\wedge x . x \in A \Longrightarrow \operatorname{norm}(f x) \leq \operatorname{norm}(g x)$
shows fabs_summable_on A
using assms Bochner_Integration.integrable_bound[of count_space A gf] unfolding abs_summable_on_def by (auto simp: AE_count_space)
lemma abs_summable_on_comparison_test':
assumes g abs_summable_on A
assumes $\bigwedge x . x \in A \Longrightarrow$ norm $(f x) \leq g x$
shows fabs_summable_on A
proof (rule abs_summable_on_comparison_test[OF $\operatorname{assms}(1)$, of f])
fix x assume $x \in A$
with $\operatorname{assms}(2)$ have $\operatorname{norm}(f x) \leq g x$.
also have $\ldots \leq \operatorname{norm}(g x)$ by simp
finally show norm $(f x) \leq$ norm $(g x)$.
qed
lemma abs_summable_on_cong [cong]:
$(\bigwedge x . x \in A \Longrightarrow f x=g x) \Longrightarrow A=B \Longrightarrow(f$ abs_summable_on $A) \longleftrightarrow(g$
abs_summable_on B)
unfolding abs_summable_on_def by (intro integrable_cong) auto
lemma abs_summable_on_cong_neutral:
assumes $\bigwedge x . x \in A-B \Longrightarrow f x=0$
assumes $\bigwedge x . x \in B-A \Longrightarrow g x=0$
assumes $\bigwedge x . x \in A \cap B \Longrightarrow f x=g x$
shows f abs_summable_on $A \longleftrightarrow g$ abs_summable_on B
unfolding abs_summable_on_altdef set_integrable_def using assms
by (intro Bochner_Integration.integrable_cong refl)

```
(auto simp: indicator_def split: if_splits)
```

lemma abs_summable_on_restrict':
fixes $f::{ }^{\prime} a \Rightarrow$ ' $b::$ \{banach, second_countable_topology \}
assumes $A \subseteq B$
shows f abs_summable_on $A \longleftrightarrow(\lambda x$. if $x \in A$ then f else 0$)$ abs_summable_on
B
by (subst abs_summable_on_restrict[OF assms]) (intro abs_summable_on_cong,
auto)
lemma abs_summable_on_nat_iff:
f abs_summable_on $(A::$ nat set $) \longleftrightarrow$ summable $(\lambda n$. if $n \in A$ then norm $(f n)$
else 0)
proof -
have f abs_summable_on $A \longleftrightarrow$ summable $(\lambda x$. norm (if $x \in A$ then $f x$ else 0))
by (subst abs_summable_on_restrict' ${ }^{[}$of _ UNIV])
(simp_all add: abs_summable_on_def integrable_count_space_nat_iff)
also have $(\lambda x$. norm (if $x \in A$ then $f x$ else 0$))=(\lambda x$. if $x \in A$ then norm $(f$
x) else 0)
by auto
finally show ?thesis.
qed
lemma abs_summable_on_nat_iff':
f abs_summable_on (UNIV :: nat set) \longleftrightarrow summable (λ n. norm $(f n)$)
by (subst abs_summable_on_nat_iff) auto
lemma nat_abs_summable_on_comparison_test:
fixes $f::$ nat $\Rightarrow{ }^{\prime} a::\{$ banach, second_countable_topology $\}$
assumes g abs_summable_on I
assumes $\bigwedge n . \llbracket n \geq N ; n \in I \rrbracket \Longrightarrow \operatorname{norm}(f n) \leq g n$
shows fabs_summable_on I
using assms by (fastforce simp add: abs_summable_on_nat_iff intro: summable_comparison_test')
lemma abs_summable_comparison_test_ev:
assumes g abs_summable_on I
assumes eventually $(\lambda x . x \in I \longrightarrow \operatorname{norm}(f x) \leq g x)$ sequentially
shows fabs_summable_on I
by (metis (no_types, lifting) nat_abs_summable_on_comparison_test eventually_at_top_linorder
assms)
lemma abs_summable_on_Cauchy:
f abs_summable_on $(U N I V::$ nat set $) \longleftrightarrow\left(\forall e>0 . \exists N . \forall m \geq N . \forall n .\left(\sum x=\right.\right.$ $m . .<n . \operatorname{norm}(f x))<e)$
by (simp add: abs_summable_on_nat_iff'summable_Cauchy sum_nonneg)
lemma abs_summable_on_finite [simp]: finite $A \Longrightarrow f$ abs_summable_on A
unfolding abs_summable_on_def by (rule integrable_count_space)

```
lemma abs_summable_on_empty [simp, intro]: f abs_summable_on {}
    by simp
lemma abs_summable_on_subset:
    assumes f abs_summable_on B and A\subseteqB
    shows fabs_summable_on A
    unfolding abs_summable_on_altdef
    by (rule set_integrable_subset) (insert assms, auto simp: abs_summable_on_altdef)
lemma abs_summable_on_union [intro]:
    assumes f abs_summable_on A and f abs_summable_on B
    shows fabs_summable_on ( }A\cupB
    using assms unfolding abs_summable_on_altdef by (intro set_integrable_Un)
auto
lemma abs_summable_on_insert_iff [simp]:
    f abs_summable_on insert x A \longleftrightarrow f abs_summable_on A
proof safe
    assume f abs_summable_on insert x A
    thus f abs_summable_on A
        by (rule abs_summable_on_subset) auto
next
    assume fabs_summable_on A
    from abs_summable_on_union[OF this, of {x}]
        show f abs_summable_on insert x A by simp
qed
lemma abs_summable_sum:
    assumes }\x.x\inA\Longrightarrowfxabs_summable_on B
    shows (\lambday.\sumx\inA.fxy)abs_summable_on B
    using assms unfolding abs_summable_on_def by (intro Bochner_Integration.integrable_sum)
lemma abs_summable_Re: fabs_summable_on A \Longrightarrow (\lambdax.Re (fx)) abs_summable_on
A
    by (simp add: abs_summable_on_def)
lemma abs_summable_Im: fabs_summable_on A \Longrightarrow( }\lambdax.Im(fx))\mathrm{ abs_summable_on
A
    by (simp add: abs_summable_on_def)
lemma abs_summable_on_finite_diff:
    assumes f abs_summable_on A A\subseteqB finite ( }B-A\mathrm{ )
    shows fabs_summable_on B
proof -
    have fabs_summable_on }(A\cup(B-A)
        by (intro abs_summable_on_union assms abs_summable_on_finite)
    also from assms have A\cup(B-A)=B by blast
    finally show ?thesis.
qed
```

lemma abs_summable_on_reindex_bij_betw:
assumes bij_betw g A B
shows $(\lambda x . f(g x))$ abs_summable_on $A \longleftrightarrow f$ abs_summable_on B
proof -
have *: count_space $B=$ distr (count_space $A)($ count_space B) g
by (rule distr_bij_count_space [symmetric]) fact
show ?thesis unfolding abs_summable_on_def
by (subst *, subst integrable_distr_eq[of _ _ count_space B])
(insert assms, auto simp: bij_betw_def)
qed
lemma abs_summable_on_reindex:
assumes $(\lambda x . f(g x))$ abs_summable_on A
shows f abs_summable_on (g ' A)
proof -
define g^{\prime} where $g^{\prime}=$ inv_into $A g$
from assms have $(\lambda x . f(g x))$ abs_summable_on $\left(g^{\prime}{ }^{\prime} g\right.$ ' $\left.A\right)$
by (rule abs_summable_on_subset) (auto simp: $g^{\prime}{ }_{\text {_ }}$ def inv_into_into)
also have ?this $\longleftrightarrow\left(\lambda x . f\left(g\left(g^{\prime} x\right)\right)\right)$ abs_summable_on $\left(g^{\prime} A\right)$ unfolding $g^{\prime}{ }_{-}$def
by (intro abs_summable_on_reindex_bij_betw [symmetric] inj_on_imp_bij_betw
inj_on_inv_into) auto
also have $\ldots \longleftrightarrow f$ abs_summable_on $(g$ ' $A)$
by (intro abs_summable_on_cong refl) (auto simp: $\left.g^{\prime}{ }_{-} d e f f_{-} i n v_{-} i n t o _f\right)$
finally show ?thesis .
qed
lemma abs_summable_on_reindex_iff:
inj_on $g A \Longrightarrow(\lambda x . f(g x))$ abs_summable_on $A \longleftrightarrow f$ abs_summable_on (g ' A)
by (intro abs_summable_on_reindex_bij_betw inj_on_imp_bij_betw)
lemma abs_summable_on_Sigma_project2:
fixes $A::$ ' a set and $B::{ }^{\prime} a \Rightarrow$ ' b set
assumes f abs_summable_on (Sigma $A B$) $x \in A$
shows $(\lambda y . f(x, y))$ abs_summable_on ($B x$)
proof -
from assms(2) have f abs_summable_on (Sigma $\{x\}$ B)
by (intro abs_summable_on_subset [OF assms(1)]) auto
also have ?this $\longleftrightarrow(\lambda z . f(x$, snd $z))$ abs_summable_on (Sigma $\{x\} B)$
by (rule abs_summable_on_cong) auto
finally have $(\lambda y . f(x, y))$ abs_summable_on (snd'Sigma $\{x\}$ B)
by (rule abs_summable_on_reindex)
also have snd'Sigma $\{x\} B=B x$
using assms by (auto simp: image_iff)
finally show ?thesis.
qed
lemma abs_summable_on_Times_swap:
f abs_summable_on $A \times B \longleftrightarrow(\lambda(x, y) . f(y, x))$ abs_summable_on $B \times A$

```
proof -
    have bij: bij_betw }(\lambda(x,y).(y,x))(B\timesA)(A\timesB
        by (auto simp: bij_betw_def inj_on_def)
    show ?thesis
        by (subst abs_summable_on_reindex_bij_betw[OF bij, of f, symmetric])
            (simp_all add: case_prod_unfold)
qed
lemma abs_summable_on_0 [simp, intro]: (\lambda_. 0) abs_summable_on A
    by (simp add:abs_summable_on_def)
lemma abs_summable_on_uminus [intro]:
    f abs_summable_on A \Longrightarrow(\lambdax. -f x) abs_summable_on A
    unfolding abs_summable_on_def by (rule Bochner_Integration.integrable_minus)
```

lemma abs_summable_on_add [intro]:
assumes f abs_summable_on A and g abs_summable_on A
shows $(\lambda x . f x+g x)$ abs_summable_on A
using assms unfolding abs_summable_on_def by (rule Bochner_Integration.integrable_add)
lemma abs_summable_on_diff [intro]:
assumes f abs_summable_on A and g abs_summable_on A
shows ($\lambda x . f x-g x)$ abs_summable_on A
using assms unfolding abs_summable_on_def by (rule Bochner_Integration.integrable_diff)
lemma abs_summable_on_scaleR_left [intro]:
assumes $c \neq 0 \Longrightarrow f$ abs_summable_on A
shows $\left(\lambda x . f x *_{R} c\right)$ abs_summable_on A
using assms unfolding abs_summable_on_def by (intro Bochner_Integration.integrable_scaleR_left)
lemma abs_summable_on_scaleR_right [intro]:
assumes $c \neq 0 \Longrightarrow f$ abs_summable_on A
shows $\left(\lambda x . c *_{R} f x\right)$ abs_summable_on A
using assms unfolding abs_summable_on_def by (intro Bochner_Integration.integrable_scaleR_right)
lemma abs_summable_on_cmult_right [intro]:
fixes $f:: ' a \Rightarrow{ }^{\prime} b::\left\{b a n a c h, r e a l _n o r m e d _a l g e b r a, ~ s e c o n d _c o u n t a b l e _t o p o l o g y\right\} ~$
assumes $c \neq 0 \Longrightarrow f$ abs_summable_on A
shows $(\lambda x, c * f x)$ abs_summable_on A
using assms unfolding abs_summable_on_def by (intro Bochner_Integration.integrable_mult_right)
lemma abs_summable_on_cmult_left [intro]:
fixes $f::{ }^{\prime} a \Rightarrow$ ' $b::$ \{banach, real_normed_algebra, second_countable_topology $\}$
assumes $c \neq 0 \Longrightarrow f$ abs_summable_on A
shows $(\lambda x . f x * c)$ abs_summable_on A
using assms unfolding abs_summable_on_def by (intro Bochner_Integration.integrable_mult_left)
lemma abs_summable_on_prod_PiE:
fixes $f:: ' a \Rightarrow{ }^{\prime} b \Rightarrow^{\prime} c::\left\{r e a l _n o r m e d _f i e l d, b a n a c h, s e c o n d _c o u n t a b l e _t o p o l o g y\right\}$

```
assumes finite: finite \(A\) and countable: \(\bigwedge x . x \in A \Longrightarrow\) countable ( \(B x\) )
assumes summable: \(\bigwedge x . x \in A \Longrightarrow f x\) abs_summable_on \(B x\)
shows \(\left(\lambda g . \prod x \in A . f x(g x)\right)\) abs_summable_on PiE A B
proof -
    define \(B^{\prime}\) where \(B^{\prime}=(\lambda x\). if \(x \in A\) then \(B x\) else \(\{ \})\)
    from assms have \([\) simp \(]\) : countable \(\left(B^{\prime} x\right)\) for \(x\)
        by (auto simp: \(B^{\prime}{ }_{-} d e f\) )
    then interpret product_sigma_finite count_space \(\circ B^{\prime}\)
    unfolding o_def by (intro product_sigma_finite.intro sigma_finite_measure_count_space_countable)
    from assms have integrable (PiM A (count_space ○ \(\left.\left.B^{\prime}\right)\right)\left(\lambda g . \prod x \in A . f x(g x)\right)\)
    by (intro product_integrable_prod) (auto simp: abs_summable_on_def B'_def)
    also have PiM \(A\) (count_space \(\left.\circ B^{\prime}\right)=\) count_space ( \(\operatorname{PiE} A B^{\prime}\) )
    unfolding o_def using finite by (intro count_space_PiM_finite) simp_all
    also have PiE A \(B^{\prime}=P i E A B\) by (intro PiE_cong) (simp_all add: \(B^{\prime}{ }_{-} d e f\) )
    finally show ?thesis by (simp add: abs_summable_on_def)
qed
```

lemma not_summable_infsetsum_eq:
$\neg f$ abs_summable_on $A \Longrightarrow$ infsetsum $f A=0$
by (simp add: abs_summable_on_def infsetsum_def not_integrable_integral_eq)
lemma infsetsum_altdef:
infsetsum f A set_lebesgue_integral (count_space UNIV) Af
unfolding set_lebesgue_integral_def
by (subst integral_restrict_space [symmetric])
(auto simp: restrict_count_space_subset infsetsum_def)
lemma infsetsum_altdef ${ }^{\prime}$:
$A \subseteq B \Longrightarrow$ infsetsum $f A=$ set_lebesgue_integral (count_space B) Af
unfolding set_lebesgue_integral_def
by (subst integral_restrict_space [symmetric])
(auto simp: restrict_count_space_subset infsetsum_def)
lemma nn_integral_conv_infsetsum:
assumes f abs_summable_on $A \bigwedge x . x \in A \Longrightarrow f x \geq 0$
shows nn_integral (count_space A) $f=$ ennreal (infsetsum f A)
using assms unfolding infsetsum_def abs_summable_on_def
by (subst nn_integral_eq_integral) auto
lemma infsetsum_conv_nn_integral:
assumes nn_integral (count_space A) $f \neq \infty \bigwedge x . x \in A \Longrightarrow f x \geq 0$
shows infsetsum $f A=$ enn2real (nn_integral (count_space A) f)
unfolding infsetsum_def using assms
by (subst integral_eq_nn_integral) auto
lemma infsetsum_cong [cong]:
$(\bigwedge x . x \in A \Longrightarrow f x=g x) \Longrightarrow A=B \Longrightarrow$ infsetsum $f A=$ infsetsum $g B$

```
    unfolding infsetsum_def by (intro Bochner_Integration.integral_cong) auto
lemma infsetsum_0 [simp]: infsetsum ( \(\left.\lambda_{-} 0\right) A=0\)
    by (simp add: infsetsum_def)
lemma infsetsum_all_ \(0:(\bigwedge x . x \in A \Longrightarrow f x=0) \Longrightarrow \operatorname{infsetsum~} f A=0\)
    by \(\operatorname{simp}\)
lemma infsetsum_nonneg: \((\bigwedge x . x \in A \Longrightarrow f x \geq(0::\) real \()) \Longrightarrow \operatorname{infsetsum~} f A \geq 0\)
    unfolding infsetsum_def by (rule Bochner_Integration.integral_nonneg) auto
lemma sum_infsetsum:
    assumes \(\bigwedge x . x \in A \Longrightarrow f x\) abs_summable_on \(B\)
    shows \(\quad\left(\sum x \in A . \sum_{a} y \in B . f x y\right)=\left(\sum_{a} y \in B . \sum x \in A . f x y\right)\)
    using assms by (simp add: infsetsum_def abs_summable_on_def Bochner_Integration.integral_sum)
lemma Re_infsetsum: \(f\) abs_summable_on \(A \Longrightarrow \operatorname{Re}(\operatorname{infsetsum~} f A)=\left(\sum_{a} x \in A\right.\).
\(\operatorname{Re}(f x))\)
    by (simp add: infsetsum_def abs_summable_on_def)
lemma Im_infsetsum: \(f\) abs_summable_on \(A \Longrightarrow \operatorname{Im}(\operatorname{infsetsum~} f A)=\left(\sum_{a} x \in A\right.\).
\(\operatorname{Im}(f x))\)
    by (simp add: infsetsum_def abs_summable_on_def)
lemma infsetsum_of_real:
    shows infsetsum ( \(\lambda x\). of_real ( \(f x\) )
                            :: 'a :: \{real_normed_algebra_1,banach,second_countable_topology,real_inner\})
\(A=\)
            of_real (infsetsum f A)
    unfolding infsetsum_def
    by (rule integral_bounded_linear'[OF bounded_linear_of_real bounded_linear_inner_left[of
1]]) auto
lemma infsetsum_finite \([\) simp \(]\) : finite \(A \Longrightarrow\) infsetsum \(f A=\left(\sum x \in A . f x\right)\)
    by (simp add: infsetsum_def lebesgue_integral_count_space_finite)
lemma infsetsum_nat:
    assumes \(f\) abs_summable_on \(A\)
    shows infsetsum \(f A=\left(\sum n\right.\). if \(n \in A\) then \(f n\) else 0\()\)
proof -
    from assms have infsetsum \(f A=\left(\sum n\right.\). indicator \(\left.A n *_{R} f n\right)\)
    unfolding infsetsum_altdef abs_summable_on_altdef set_lebesgue_integral_def set_integrable_def
    by (subst integral_count_space_nat) auto
    also have \(\left(\lambda n\right.\). indicator \(\left.A n *_{R} f n\right)=(\lambda n\). if \(n \in A\) then \(f n\) else 0\()\)
        by auto
    finally show ?thesis .
qed
lemma infsetsum_nat':
```

```
assumes \(f\) abs_summable_on UNIV
shows infsetsum \(f\) UNIV \(=\left(\sum n . f n\right)\)
using assms by (subst infsetsum_nat) auto
lemma sums_infsetsum_nat:
    assumes \(f\) abs_summable_on \(A\)
    shows ( \(\lambda n\). if \(n \in A\) then \(f n\) else 0\()\) sums infsetsum \(f A\)
proof -
    from assms have summable ( \(\lambda n\). if \(n \in A\) then norm \((f n)\) else 0 )
        by (simp add: abs_summable_on_nat_iff)
    also have \((\lambda n\). if \(n \in A\) then norm \((f n)\) else 0\()=(\lambda n\). norm (if \(n \in A\) then \(f\)
\(n\) else 0 ))
            by auto
    finally have summable ( \(\lambda n\). if \(n \in A\) then \(f n\) else 0 )
        by (rule summable_norm_cancel)
    with assms show ?thesis
    by (auto simp: sums_iff infsetsum_nat)
qed
lemma sums_infsetsum_nat':
    assumes \(f\) abs_summable_on UNIV
    shows \(f\) sums infsetsum \(f\) UNIV
    using sums_infsetsum_nat \([O F\) assms \(]\) by simp
lemma infsetsum_Un_disjoint:
    assumes \(f\) abs_summable_on \(A\) fabs_summable_on \(B A \cap B=\{ \}\)
    shows \(\operatorname{infsetsum} f(A \cup B)=\operatorname{infsetsum} f A+\operatorname{infsetsum} f B\)
    using assms unfolding infsetsum_altdef abs_summable_on_altdef
    by (subst set_integral_Un) auto
lemma infsetsum_Diff:
    assumes \(f\) abs_summable_on \(B A \subseteq B\)
    shows \(\operatorname{infsetsum} f(B-A)=\operatorname{infsetsum} f B-\operatorname{infsetsum} f A\)
proof -
    have \(\operatorname{infsetsum} f((B-A) \cup A)=\operatorname{infsetsum} f(B-A)+\operatorname{infsetsum} f A\)
        using assms(2) by (intro infsetsum_Un_disjoint abs_summable_on_subset[OF
\(\operatorname{assms}(1)])\) auto
    also from \(\operatorname{assms}(2)\) have \((B-A) \cup A=B\)
        by auto
    ultimately show ?thesis
        by (simp add: algebra_simps)
qed
lemma infsetsum_Un_Int:
    assumes \(f\) abs_summable_on \((A \cup B)\)
    shows infsetsum \(f(A \cup B)=\operatorname{infsetsum} f A+\operatorname{infsetsum} f B-\operatorname{infsetsum} f(A\)
\(\cap B\) )
proof -
    have \(A \cup B=A \cup(B-A \cap B)\)
```

```
    by auto
    also have infsetsum f_..= infsetsum fA + infsetsum f(B-A\capB)
    by (intro infsetsum_Un_disjoint abs_summable_on_subset[OF assms]) auto
    also have infsetsum f(B-A\capB)=\operatorname{infsetsum fB-infsetsum f ( }A\capB)
    by (intro infsetsum_Diff abs_summable_on_subset[OF assms]) auto
    finally show ?thesis
    by (simp add: algebra_simps)
qed
lemma infsetsum_reindex_bij_betw:
    assumes bij_betw g A B
    shows infsetsum (\lambdax.f(gx)) A= infsetsum fB
proof -
    have *: count_space B = distr (count_space A) (count_space B)g
        by (rule distr_bij_count_space [symmetric]) fact
    show ?thesis unfolding infsetsum_def
        by (subst *, subst integral_distr[of _ _ count_space B])
            (insert assms, auto simp: bij_betw_def)
qed
theorem infsetsum_reindex:
    assumes inj_on g A
    shows infsetsum f(g'A) = infsetsum (\lambdax.f(g x))A
    by (intro infsetsum_reindex_bij_betw [symmetric] inj_on_imp_bij_betw assms)
lemma infsetsum_cong_neutral:
    assumes \x. x \in A-B\Longrightarrowfx=0
    assumes \x. x \in B-A\Longrightarrowgx=0
    assumes }\x.x\inA\capB\Longrightarrowfx=g
    shows infsetsum f A = infsetsum g B
    unfolding infsetsum_altdef set_lebesgue_integral_def using assms
    by (intro Bochner_Integration.integral_cong refl)
        (auto simp: indicator_def split: if_splits)
    lemma infsetsum_mono_neutral:
    fixes fg :: 'a m real
    assumes f abs_summable_on A and g abs_summable_on B
    assumes }\x.x\inA\Longrightarrowfx\leqg
    assumes \x. x \inA-B\Longrightarrowfx\leq0
    assumes }\x.x\inB-A\Longrightarrowgx\geq
    shows infsetsum f A < infsetsum g B
    using assms unfolding infsetsum_altdef set_lebesgue_integral_def abs_summable_on_altdef
set_integrable_def
    by (intro Bochner_Integration.integral_mono) (auto simp: indicator_def)
lemma infsetsum_mono_neutral_left:
    fixes fg :: 'a m real
    assumes f abs_summable_on A and g abs_summable_on B
    assumes }\x.x\inA\Longrightarrowfx\leqg
```

```
assumes \(A \subseteq B\)
assumes \(\bigwedge x . x \in B-A \Longrightarrow g x \geq 0\)
shows infsetsum \(f A \leq\) infsetsum \(g B\)
using \(\langle A \subseteq B\rangle\) by (intro infsetsum_mono_neutral assms) auto
lemma infsetsum_mono_neutral_right:
    fixes \(f g::{ }^{\prime} a \Rightarrow\) real
    assumes \(f\) abs_summable_on \(A\) and \(g\) abs_summable_on \(B\)
    assumes \(\bigwedge x . x \in A \Longrightarrow f x \leq g x\)
    assumes \(B \subseteq A\)
    assumes \(\bigwedge x . x \in A-B \Longrightarrow f x \leq 0\)
    shows infsetsum \(f A \leq\) infsetsum \(g B\)
    using \(\langle B \subseteq A\rangle\) by (intro infsetsum_mono_neutral assms) auto
lemma infsetsum_mono:
    fixes \(f g::{ }^{\prime} a \Rightarrow\) real
    assumes \(f\) abs_summable_on \(A\) and \(g\) abs_summable_on \(A\)
    assumes \(\bigwedge x . x \in A \Longrightarrow f x \leq g x\)
    shows infsetsum \(f A \leq\) infsetsum \(g A\)
    by (intro infsetsum_mono_neutral assms) auto
lemma norm_infsetsum_bound:
    norm \((\operatorname{infsetsum~} f A) \leq \operatorname{infsetsum}(\lambda x\). norm \((f x)) A\)
    unfolding abs_summable_on_def infsetsum_def
    by (rule Bochner_Integration.integral_norm_bound)
theorem infsetsum_Sigma:
    fixes \(A::\) ' \(a\) set and \(B::{ }^{\prime} a \Rightarrow\) ' \(b\) set
    assumes [simp]: countable \(A\) and \(\bigwedge i\). countable \((B i)\)
    assumes summable: fabs_summable_on (Sigma A B)
    shows infsetsum \(f(\operatorname{Sigma} A B)=\operatorname{infsetsum}(\lambda x . \operatorname{infsetsum}(\lambda y . f(x, y))(B\)
x)) \(A\)
proof -
    define \(B^{\prime}\) where \(B^{\prime}=(\bigcup i \in A . B i)\)
    have [simp]: countable \(B^{\prime}\)
        unfolding \(B^{\prime}\) _def by (intro countable_UN assms)
    interpret pair_sigma_finite count_space \(A\) count_space \(B^{\prime}\)
        by (intro pair_sigma_finite.intro sigma_finite_measure_count_space_countable)
fact+
```

have integrable (count_space $\left.\left(A \times B^{\prime}\right)\right)\left(\lambda z\right.$. indicator $\left.(\operatorname{Sigma} A B) z *_{R} f z\right)$
using summable
by (metis (mono_tags, lifting) abs_summable_on_altdef abs_summable_on_def
integrable_cong integrable_mult_indicator set_integrable_def sets_UNIV)
also have ?this \longleftrightarrow integrable (count_space $A \bigotimes_{M}$ count_space $\left.B^{\prime}\right)(\lambda(x, y)$.
indicator $\left.(B x) y *_{R} f(x, y)\right)$
by (intro Bochner_Integration.integrable_cong)
(auto simp: pair_measure_countable indicator_def split: if_splits)
finally have integrable:
have infsetsum $(\lambda x$. infsetsum $(\lambda y . f(x, y))(B x)) A=$ $\left(\int x . \operatorname{infsetsum}(\lambda y . f(x, y))(B x)\right.$ Dcount_space $\left.A\right)$
unfolding infsetsum_def by simp
also have $\ldots=\left(\int x . \int y\right.$. indicator $(B x) y *_{R} f(x, y)$ dcount_space B^{\prime}
dcount_space A)
proof (rule Bochner_Integration.integral_cong [OF refl])
show $\bigwedge x . x \in$ space (count_space $A) \Longrightarrow$
$\left(\sum_{a} y \in B x . f(x, y)\right)=$ LINT $y \mid$ count_space B^{\prime}. indicat_real $(B x) y *_{R} f$
(x, y)
using infsetsum_altdef ${ }^{\prime}[o f$ _ B '
unfolding set_lebesgue_integral_def B^{\prime} _def
by auto
qed
also have $\ldots=\left(\int(x, y)\right.$. indicator $(B x) y *_{R} f(x, y) \partial\left(\right.$ count_space $A \bigotimes_{M}$ count_space B^{\prime}))
by (subst integral_fst [OF integrable]) auto
also have $\ldots=\left(\int z\right.$. indicator (Sigma $\left.A B\right) z *_{R} f z$ dcount_space $\left.\left(A \times B^{\prime}\right)\right)$
by (intro Bochner_Integration.integral_cong)
(auto simp: pair_measure_countable indicator_def split: if_splits)
also have $\ldots=\operatorname{infsetsum} f(\operatorname{Sigma} A B)$
unfolding set_lebesgue_integral_def [symmetric]
by (rule infsetsum_altdef' ${ }^{\prime}$ symmetric]) (auto simp: B^{\prime} _def)
finally show ?thesis ..
qed
lemma infsetsum_Sigma':
fixes $A::{ }^{\prime} a$ set and $B::{ }^{\prime} a \Rightarrow{ }^{\prime} b$ set
assumes [simp]: countable A and $\bigwedge i$. countable $(B i)$
assumes summable: $(\lambda(x, y) . f x y)$ abs_summable_on (Sigma A B)
shows infsetsum $(\lambda x$. infsetsum $(\lambda y . f x y)(B x)) A=\operatorname{infsetsum}(\lambda(x, y) . f x$
y) (Sigma A B)
using assms by (subst infsetsum_Sigma) auto
lemma infsetsum_Times:
fixes A :: ' a set and $B::$ ' b set
assumes [simp]: countable A and countable B
assumes summable: f abs_summable_on $(A \times B)$
shows infsetsum $f(A \times B)=\operatorname{infsetsum}(\lambda x$.infsetsum $(\lambda y . f(x, y)) B) A$
using assms by (subst infsetsum_Sigma) auto
lemma infsetsum_Times':
fixes $A::$ ' a set and $B::$ ' b set
fixes $f::{ }^{\prime} a \Rightarrow{ }^{\prime} b \Rightarrow^{\prime} c::\{$ banach, second_countable_topology $\}$
assumes [simp]: countable A and [simp]: countable B
assumes summable: $(\lambda(x, y) . f x y)$ abs_summable_on $(A \times B)$
shows infsetsum (λx.infsetsum $(\lambda y . f x y) B$) $A=\operatorname{infsetsum}(\lambda(x, y) . f x y)$
$(A \times B)$
using assms by (subst infsetsum_Times) auto

```
lemma infsetsum_swap:
    fixes \(A\) ::' \(a\) set and \(B::\) ' \(b\) set
    fixes \(f::{ }^{\prime} a \Rightarrow{ }^{\prime} b \Rightarrow^{\prime} c::\{\) banach, second_countable_topology\}
    assumes [simp]: countable \(A\) and [simp]: countable \(B\)
    assumes summable: \((\lambda(x, y)\). \(f x y)\) abs_summable_on \(A \times B\)
    shows infsetsum \((\lambda x\). infsetsum \((\lambda y . f x y) B) A=\operatorname{infsetsum}\) ( \(\lambda y\). infsetsum
\((\lambda x . f x y) A) B\)
proof -
    from summable have summable \({ }^{\prime}:(\lambda(x, y) . f y x)\) abs_summable_on \(B \times A\)
        by (subst abs_summable_on_Times_swap) auto
    have bij: bij_betw \((\lambda(x, y) .(y, x))(B \times A)(A \times B)\)
        by (auto simp: bij_betw_def inj_on_def)
    have infsetsum \((\lambda x\). infsetsum \((\lambda y . f x y) B) A=\operatorname{infsetsum}(\lambda(x, y) . f x y)(A\)
    \(\times B\) )
        using summable by (subst infsetsum_Times) auto
    also have \(\ldots=\operatorname{infsetsum}(\lambda(x, y) . f y x)(B \times A)\)
        by (subst infsetsum_reindex_bij_betw[OF bij, of \(\lambda(x, y) . f x y\), symmetric \(])\)
            (simp_all add: case_prod_unfold)
    also have \(\ldots=\operatorname{infsetsum}(\lambda y\). infsetsum \((\lambda x . f x y) A) B\)
        using summable' by (subst infsetsum_Times) auto
    finally show ?thesis.
qed
theorem abs_summable_on_Sigma_iff:
    assumes [simp]: countable \(A\) and \(\bigwedge x . x \in A \Longrightarrow\) countable \((B x)\)
    shows \(f\) abs_summable_on Sigma \(A B \longleftrightarrow\)
                \((\forall x \in A .(\lambda y . f(x, y))\) abs_summable_on \(B x) \wedge\)
                \(((\lambda x\). infsetsum \((\lambda y . \operatorname{norm}(f(x, y)))(B x))\) abs_summable_on \(A)\)
proof safe
    define \(B^{\prime}\) where \(B^{\prime}=(\bigcup x \in A . B x)\)
    have [simp]: countable \(B^{\prime}\)
        unfolding \(B^{\prime}\) _def using assms by auto
    interpret pair_sigma_finite count_space \(A\) count_space \(B^{\prime}\)
        by (intro pair_sigma_finite.intro sigma_finite_measure_count_space_countable)
fact +
    \{
        assume \(*:\) f abs_summable_on Sigma \(A B\)
        thus \((\lambda y . f(x, y))\) abs_summable_on \(B x\) if \(x \in A\) for \(x\)
            using that by (rule abs_summable_on_Sigma_project2)
        have set_integrable (count_space \(\left.\left(A \times B^{\prime}\right)\right)(\) Sigma A B) \((\lambda z . \operatorname{norm}(f z))\)
            using abs_summable_on_normI[OF *]
            by (subst abs_summable_on_altdef' [symmetric]) (auto simp: B'_def)
            also have count_space \(\left(A \times B^{\prime}\right)=\) count_space \(A \bigotimes_{M}\) count_space \(B^{\prime}\)
            by (simp add: pair_measure_countable)
        finally have integrable (count_space A)
                                    ( \(\lambda\) x. lebesgue_integral (count_space \(B^{\prime}\) )
                                    \(\left(\lambda y\right.\). indicator \(\left.\left.(\operatorname{Sigma} A B)(x, y) *_{R} \operatorname{norm}(f(x, y))\right)\right)\)
```

```
        unfolding set_integrable_def by (rule integrable_fst')
    also have ?this \longleftrightarrow integrable (count_space A)
                ( }\lambda\mathrm{ x. lebesgue_integral (count_space B')
                        (\lambday. indicator (B x) y *R norm (f (x,y))))
        by (intro integrable_cong refl) (simp_all add: indicator_def)
    also have }\ldots\longleftrightarrow\mathrm{ integrable (count_space A) ( }\lambdax.\operatorname{infsetsum ( }\lambday.\operatorname{norm}(f)(x
y))) (B x )
        unfolding set_lebesgue_integral_def [symmetric]
        by (intro integrable_cong refl infsetsum_altdef' [symmetric]) (auto simp:
B'_def)
    also have }\ldots\longleftrightarrow(\lambdax.\operatorname{infsetsum ( }\lambday.\operatorname{norm}(f(x,y)))(Bx))\mathrm{ abs_summable_on
A
            by (simp add: abs_summable_on_def)
        finally show ... .
    }
    {
        assume *: }\forallx\inA.(\lambday.f(x,y)) abs_summable_on B x
        assume ( }\lambdax.\mp@subsup{\sum}{a}{}y\inBx.norm (f(x,y))) abs_summable_on A
    also have ?this \longleftrightarrow(\lambdax.\inty\inB x. norm (f(x,y)) \partialcount_space B') abs_summable_on
A
            by (intro abs_summable_on_cong refl infsetsum_altdef') (auto simp: B'_def)
    also have }\ldots\longleftrightarrow(\lambdax.\inty. indicator (Sigma A B) (x,y) *R norm (f (x,y)
\partialcount_space B')
                        abs_summable_on A (is _ \longleftrightarrow?h abs_summable_on _)
            unfolding set_lebesgue_integral_def
            by (intro abs_summable_on_cong) (auto simp: indicator_def)
    also have ... \longleftrightarrow integrable (count_space A)?h
            by (simp add: abs_summable_on_def)
    finally have **: ... .
    have integrable (count_space A 囚 M count_space B') (\lambdaz. indicator (Sigma A
B) }z\mp@subsup{*}{R}{}fz
    proof (rule Fubini_integrable, goal_cases)
        case 3
        {
        fix }x\mathrm{ assume }x:x\in
        with * have ( }\lambday.f(x,y))\mathrm{ abs_summable_on B x
            by blast
        also have ?this \longleftrightarrow integrable (count_space B')
                            (\lambday. indicator (Bx) y *R f (x,y))
            unfolding set_integrable_def [symmetric]
        using x by (intro abs_summable_on_altdef ') (auto simp: B'_def)
        also have (\lambday. indicator (Bx) y*R f (x,y))=
                    (\lambday. indicator (Sigma A B) (x,y)*R f(x,y))
            using }x\mathrm{ by (auto simp: indicator_def)
        finally have integrable (count_space B')
            (\lambday. indicator (Sigma A B) (x,y) *R f (x,y)).
        }
        thus ?case by (auto simp: AE_count_space)
```

```
    qed (insert \(* *\), auto simp: pair_measure_countable)
    moreover have count_space \(A \bigotimes_{M}\) count_space \(B^{\prime}=\) count_space \(\left(A \times B^{\prime}\right)\)
        by (simp add: pair_measure_countable)
    moreover have set_integrable (count_space \(\left.\left(A \times B^{\prime}\right)\right)(\) Sigma A B) \(f \longleftrightarrow\)
                    f abs_summable_on Sigma A B
        by (rule abs_summable_on_altdef' \([\) symmetric \(]\) ) (auto simp: \(\left.B^{\prime}{ }_{-} d e f\right)\)
        ultimately show \(f\) abs_summable_on Sigma \(A B\)
        by (simp add: set_integrable_def)
    \}
qed
lemma abs_summable_on_Sigma_project1:
    assumes \((\lambda(x, y) . f x y)\) abs_summable_on Sigma \(A B\)
    assumes [simp]: countable \(A\) and \(\wedge x . x \in A \Longrightarrow\) countable \((B x)\)
    shows \((\lambda x\). infsetsum \((\lambda y\). norm \((f x y))(B x))\) abs_summable_on \(A\)
    using assms by (subst (asm) abs_summable_on_Sigma_iff) auto
lemma abs_summable_on_Sigma_project1':
    assumes \((\lambda(x, y) . f x y)\) abs_summable_on Sigma \(A B\)
    assumes [simp]: countable \(A\) and \(\wedge x . x \in A \Longrightarrow\) countable \((B x)\)
    shows ( \(\lambda x\). infsetsum \((\lambda y . f x y)(B x)\) ) abs_summable_on \(A\)
    by (intro abs_summable_on_comparison_test' \([\) OF abs_summable_on_Sigma_project1 [OF
assms]]
    norm_infsetsum_bound)
    theorem infsetsum_prod_PiE:
    fixes \(f:: ' a \Rightarrow{ }^{\prime} b \Rightarrow{ }^{\prime} c::\{\) real_normed_field,banach,second_countable_topology\}
    assumes finite: finite \(A\) and countable: \(\bigwedge x . x \in A \Longrightarrow\) countable ( \(B x\) )
    assumes summable: \(\bigwedge x . x \in A \Longrightarrow f x\) abs_summable_on \(B x\)
    shows infsetsum \(\left(\lambda g . \prod x \in A . f x(g x)\right)(\) PiE A B) \()=\left(\prod x \in A\right.\). infsetsum \((f\)
    x) \((B x)\) )
    proof -
    define \(B^{\prime}\) where \(B^{\prime}=(\lambda x\). if \(x \in A\) then \(B\) else \(\{ \})\)
    from assms have \([\) simp \(]\) : countable \(\left(B^{\prime} x\right)\) for \(x\)
        by (auto simp: \(B^{\prime}{ }_{-} d e f\) )
    then interpret product_sigma_finite count_space \(\circ B^{\prime}\)
    unfolding o_def by (intro product_sigma_finite.intro sigma_finite_measure_count_space_countable)
    have infsetsum \(\left(\lambda g . \prod x \in A . f x(g x)\right)(\operatorname{PiE} A B)=\)
                \(\left(\int g .\left(\prod x \in A . f x(g x)\right)\right.\) Dcount_space (PiE A B) )
        by (simp add: infsetsum_def)
    also have PiE A \(B=\operatorname{PiE} A B^{\prime}\)
        by (intro PiE_cong) (simp_all add: B'_def)
    hence count_space (PiE A B) = count_space (PiE A B')
        by \(\operatorname{simp}\)
    also have \(\ldots=P i M A\) (count_space \(\circ B^{\prime}\) )
        unfolding o_def using finite by (intro count_space_PiM_finite [symmetric])
    simp_all
    also have \(\left(\int g .\left(\prod x \in A . f x(g x)\right) \partial \ldots\right)=\left(\prod x \in A . \operatorname{infsetsum}(f x)\left(B^{\prime} x\right)\right)\)
        by (subst product_integral_prod)
```

(insert summable finite, simp_all add: infsetsum_def B^{\prime} _def abs_summable_on_def)
also have $\ldots=\left(\prod x \in A\right.$. infsetsum $\left.(f x)(B x)\right)$
by (intro prod.cong refl) (simp_all add: B^{\prime} _def)
finally show ?thesis.
qed
lemma infsetsum_uminus: infsetsum $(\lambda x .-f x) A=-\operatorname{infsetsum} f A$
unfolding infsetsum_def abs_summable_on_def
by (rule Bochner_Integration.integral_minus)
lemma infsetsum_add:
assumes f abs_summable_on A and g abs_summable_on A shows infsetsum $(\lambda x . f x+g x) A=\operatorname{infsetsum} f A+\operatorname{infsetsumg} A$
using assms unfolding infsetsum_def abs_summable_on_def
by (rule Bochner_Integration.integral_add)
lemma infsetsum_diff:
assumes f abs_summable_on A and g abs_summable_on A
shows infsetsum $(\lambda x . f x-g x) A=\operatorname{infsetsum} f A-\operatorname{infsetsum} g A$
using assms unfolding infsetsum_def abs_summable_on_def
by (rule Bochner_Integration.integral_diff)
lemma infsetsum_scaleR_left:
assumes $c \neq 0 \Longrightarrow f$ abs_summable_on A
shows infsetsum $\left(\lambda x . f x *_{R} c\right) A=\operatorname{infsetsum} f A *_{R} c$
using assms unfolding infsetsum_def abs_summable_on_def
by (rule Bochner_Integration.integral_scaleR_left)
lemma infsetsum_scaleR_right:
infsetsum $\left(\lambda x . c *_{R} f x\right) A=c *_{R} \operatorname{infsetsum} f A$
unfolding infsetsum_def abs_summable_on_def
by (subst Bochner_Integration.integral_scaleR_right) auto
lemma infsetsum_cmult_left:
fixes $f::{ }^{\prime} a \Rightarrow$ ' $b::$ \{banach, real_normed_algebra, second_countable_topology\}
assumes $c \neq 0 \Longrightarrow f$ abs_summable_on A
shows infsetsum $(\lambda x . f x * c) A=\operatorname{infsetsum} f A * c$
using assms unfolding infsetsum_def abs_summable_on_def
by (rule Bochner_Integration.integral_mult_left)
lemma infsetsum_cmult_right:
fixes $f:: ' a \Rightarrow{ }^{\prime} b::\{$ banach, real_normed_algebra, second_countable_topology $\}$
assumes $c \neq 0 \Longrightarrow f$ abs_summable_on A
shows infsetsum $(\lambda x . c * f x) A=c *$ infsetsum $f A$
using assms unfolding infsetsum_def abs_summable_on_def
by (rule Bochner_Integration.integral_mult_right)
lemma infsetsum_cdiv:
fixes $f::{ }^{\prime} a \Rightarrow$ ' $b::$ \{banach, real_normed_field, second_countable_topology $\}$

```
assumes \(c \neq 0 \Longrightarrow f\) abs_summable_on \(A\)
shows infsetsum \((\lambda x . f x / c) A=\operatorname{infsetsum} f A / c\)
using assms unfolding infsetsum_def abs_summable_on_def by auto
```

```
lemma
    fixes f :: ' }a>>'\mp@code{' :: {banach, real_normed_field, second_countable_topology}
    assumes [simp]: countable A and [simp]: countable B
    assumes f abs_summable_on A and g abs_summable_on B
    shows abs_summable_on_product: }(\lambda(x,y).fx*gy) abs_summable_on A < B
        and infsetsum_product: infsetsum ( }\lambda(x,y).fx*gy)(A\timesB)
                                    infsetsum f A * infsetsum g B
proof -
    from assms show (\lambda(x,y).fx*g y) abs_summable_on A 
        by (subst abs_summable_on_Sigma_iff)
            (auto intro!: abs_summable_on_cmult_right simp: norm_mult infsetsum_cmult_right)
    with assms show infsetsum ( }\lambda(x,y).fx*gy)(A\timesB)=\operatorname{infsetsum f A*
infsetsum g B
    by (subst infsetsum_Sigma)
        (auto simp: infsetsum_cmult_left infsetsum_cmult_right)
qed
end
```


6.38 Faces, Extreme Points, Polytopes, Polyhedra etc

Ported from HOL Light by L C Paulson
theory Polytope
imports Cartesian_Euclidean_Space Path_Connected
begin

6.38.1 Faces of a (usually convex) set

definition face_of :: ['a::real_vector set, 'a set] \Rightarrow bool (infixr (face'_of) 50) where
T face_of $S \longleftrightarrow$
$T \subseteq S \wedge$ convex $T \wedge$
$(\forall a \in S . \forall b \in S . \forall x \in T . x \in$ open_segment $a b \longrightarrow a \in T \wedge b \in T)$
lemma face_ofD: $\llbracket T$ face_of $S ; x \in$ open_segment a $b ; a \in S ; b \in S ; x \in T \rrbracket \Longrightarrow$ $a \in T \wedge b \in T$
unfolding face_of_def by blast
lemma face_of_translation_eq [simp]:
$((+) a ‘ T$ face_of $(+) a ‘ S) \longleftrightarrow T$ face_of S

```
proof -
    have *: \(\bigwedge a T S . T\) face_of \(S \Longrightarrow\left((+) a^{\prime} T\right.\) face_of \(\left.(+) a^{\prime} S\right)\)
        by (simp add: face_of_def)
    show ?thesis
        by (force simp: image_comp o_def dest: * \([\) where \(a=-a]\) intro: *)
qed
lemma face_of_linear_image:
    assumes linear \(f \operatorname{inj} f\)
        shows \((f\) ' c face_of \(f\) ' \(S) \longleftrightarrow c\) face_of \(S\)
by (simp add: face_of_def inj_image_subset_iff inj_image_mem_iff open_segment_linear_image
assms)
lemma face_of_refl: convex \(S \Longrightarrow S\) face_of \(S\)
    by (auto simp: face_of_def)
lemma face_of_refl_eq: \(S\) face_of \(S \longleftrightarrow\) convex \(S\)
    by (auto simp: face_of_def)
lemma empty_face_of [iff]: \{\} face_of \(S\)
    by (simp add: face_of_def)
lemma face_of_empty [simp]: S face_of \(\} \longleftrightarrow S=\{ \}\)
    by (meson empty_face_of face_of_def subset_empty)
lemma face_of_trans [trans]: \(\llbracket\) S face_of \(T ; T\) face_of \(u \rrbracket \Longrightarrow S\) face_of \(u\)
    unfolding face_of_def by (safe; blast)
lemma face_of_face: \(T\) face_of \(S \Longrightarrow\left(f f a c e_{-} o f ~ T \longleftrightarrow f\right.\) face_of \(\left.S \wedge f \subseteq T\right)\)
    unfolding face_of_def by (safe; blast)
lemma face_of_subset: \(\llbracket F\) face_of \(S ; F \subseteq T ; T \subseteq S \rrbracket \Longrightarrow F\) face_of \(T\)
    unfolding face_of_def by (safe; blast)
lemma face_of_slice: \(\llbracket F\) face_of \(S\); convex \(T \rrbracket \Longrightarrow(F \cap T)\) face_of \((S \cap T)\)
    unfolding face_of_def by (blast intro: convex_Int)
lemma face_of_Int: \(\llbracket t 1\) face_of \(S\); t2 face_of \(S \rrbracket \Longrightarrow(t 1 \cap t 2)\) face_of \(S\)
    unfolding face_of_def by (blast intro: convex_Int)
lemma face_of_Inter: \(\llbracket A \neq\{ \} ; \wedge T . T \in A \Longrightarrow T\) face_of \(S \rrbracket \Longrightarrow(\bigcap A)\) face_of \(S\)
    unfolding face_of_def by (blast intro: convex_Inter)
lemma face_of_Int_Int: \(\llbracket F\) face_of \(T ; F^{\prime}\) face_of \(t^{\prime} \rrbracket \Longrightarrow\left(F \cap F^{\prime}\right)\) face_of \(\left(T \cap t^{\prime}\right)\)
    unfolding face_of_def by (blast intro: convex_Int)
lemma face_of_imp_subset: \(T\) face_of \(S \Longrightarrow T \subseteq S\)
    unfolding face_of_def by blast
```

```
proposition face_of_imp_eq_affine_Int:
    fixes S :: 'a::euclidean_space set
    assumes S:convex S and T:T face_of S
    shows T=(affine hull T) \capS
proof -
    have convex T using T by (simp add: face_of_def)
    have *: False if x:x\in affine hull T and }x\inSx\not\inT\mathrm{ and }y:y\in\mathrm{ rel_interior
T for x y
    proof -
        obtain e where e>0 and e:cball y e\cap affine hull T\subseteqT
            using y by (auto simp: rel_interior_cball)
        have y}\not=xy\inSy\in
            using face_of_imp_subset rel_interior_subset T that by blast+
        then have zne: \u. \llbracketu\in{0<..<1}; (1-u)** y +u*R x 隹 \ \Longrightarrow False
            using }\langlex\inS\rangle\langlex\not\inT\rangle\langleT face_of S\rangle unfolding face_of_def
            by (meson greaterThanLessThan_iff in_segment(2))
        have in01: min (1/2) (e/ norm (x-y))\in{0<..<1}
            using \langley}\not=x\rangle\langlee>0\rangle\mathrm{ by simp
        have §: norm (min (1/2) (e/norm (x-y)) *R y-min (1/2) (e / norm
(x-y))*R
            using <e>0\rangle
            by (simp add: scaleR_diff_right [symmetric] norm_minus_commute min_mult_distrib_right)
        show False
            apply (rule zne [OF in01 e [THEN subsetD]])
            using \langley }\inT
                apply (simp add: hull_inc mem_affine x)
                by (simp add: dist_norm algebra_simps §)
    qed
    show ?thesis
    proof (rule subset_antisym)
        show }T\subseteq\mathrm{ affine hull T }\cap
            using assms by (simp add: hull_subset face_of_imp_subset)
        show affine hull T\capS\subseteqT
            using * \langleconvex T\rangle rel_interior_eq_empty by fastforce
    qed
qed
lemma face_of_imp_closed:
    fixes S :: 'a::euclidean_space set
    assumes convex S closed S T face_of S shows closed T
    by (metis affine_affine_hull affine_closed closed_Int face_of_imp_eq_affine_Int assms)
lemma face_of_Int_supporting_hyperplane_le_strong:
    assumes convex( }S\cap{x.a\cdotx=b})\mathrm{ and aleb: }\x.x\inS\Longrightarrowa\cdotx\leq
        shows (S\cap{x.a\cdotx=b}) face_of S
proof -
    have *:a }a=u=a\cdotx\mathrm{ if }x\in\mathrm{ open_segment }uvu\inSv\inS\mathrm{ and b:b=a}\cdot
                for uvx
    proof (rule antisym)
```

```
    show \(a \cdot u \leq a \cdot x\)
    using aleb \(\langle u \in S\rangle\langle b=a \cdot x\rangle\) by blast
    next
    obtain \(\xi\) where \(b=a \cdot\left((1-\xi) *_{R} u+\xi *_{R} v\right) 0<\xi \xi<1\)
        using \(\langle b=a \cdot x\rangle\langle x \in\) open_segment \(u v\rangle\) in_segment
        by (auto simp: open_segment_image_interval split: if_split_asm)
    then have \(b+\xi *(a \cdot u) \leq a \cdot u+\xi * b\)
        using aleb \([O F\langle v \in S\rangle]\) by (simp add: algebra_simps)
    then have \((1-\xi) * b \leq(1-\xi) *(a \cdot u)\)
        by (simp add: algebra_simps)
    then have \(b \leq a \cdot u\)
        using \(\langle\xi<1\rangle\) by auto
    with \(b\) show \(a \cdot x \leq a \cdot u\) by \(\operatorname{simp}\)
    qed
    show ?thesis
    using * open_segment_commute by (fastforce simp add: face_of_def assms)
qed
lemma face_of_Int_supporting_hyperplane_ge_strong:
    \(\llbracket\) convex \((S \cap\{x . a \cdot x=b\}) ; \bigwedge x . x \in S \Longrightarrow a \cdot x \geq b \rrbracket\)
    \(\Longrightarrow(S \cap\{x . a \cdot x=b\})\) face_of \(S\)
    using face_of_Int_supporting_hyperplane_le_strong [of \(S-a-b]\) by simp
lemma face_of_Int_supporting_hyperplane_le:
    \(\llbracket\) convex \(S ; \bigwedge x . x \in S \Longrightarrow a \cdot x \leq b \rrbracket \Longrightarrow(S \cap\{x . a \cdot x=b\})\) face_of \(S\)
    by (simp add: convex_Int convex_hyperplane face_of_Int_supporting_hyperplane_le_strong)
lemma face_of_Int_supporting_hyperplane_ge:
            \(\llbracket\) convex \(S ; \bigwedge x . x \in S \Longrightarrow a \cdot x \geq b \rrbracket \Longrightarrow(S \cap\{x . a \cdot x=b\})\) face_of \(S\)
    by (simp add: convex_Int convex_hyperplane face_of_Int_supporting_hyperplane_ge_strong)
lemma face_of_imp_convex: \(T\) face_of \(S \Longrightarrow\) convex \(T\)
    using face_of_def by blast
lemma face_of_imp_compact:
    fixes \(S\) :: 'a::euclidean_space set
    shows \(\llbracket\) convex \(S\); compact \(S ; T\) face_of \(S \rrbracket \Longrightarrow\) compact \(T\)
    by (meson bounded_subset compact_eq_bounded_closed face_of_imp_closed face_of_imp_subset)
lemma face_of_Int_subface:
    \(\llbracket A \cap B\) face_of \(A ; A \cap B\) face_of \(B ; C\) face_of \(A ; D\) face_of \(B \rrbracket\)
    \(\Longrightarrow(C \cap D)\) face_of \(C \wedge(C \cap D)\) face_of \(D\)
    by (meson face_of_Int_Int face_of_face inf_le1 inf_le2)
lemma subset_of_face_of:
    fixes \(S\) :: ' \(a:\) :real_normed_vector set
    assumes \(T\) face_of \(S u \subseteq S T \cap(\) rel_interior \(u) \neq\{ \}\)
        shows \(u \subseteq T\)
proof
```

```
fix \(c\)
assume \(c \in u\)
obtain \(b\) where \(b \in T b \in\) rel_interior \(u\) using assms by auto
then obtain \(e\) where \(e>0 b \in u\) and \(e\) : cball \(b e \cap\) affine hull \(u \subseteq u\)
    by (auto simp: rel_interior_cball)
    show \(c \in T\)
    proof (cases \(b=c\) )
        case True with \(\langle b \in T\rangle\) show ?thesis by blast
    next
    case False
    define \(d\) where \(d=b+(e / \operatorname{norm}(b-c)) *_{R}(b-c)\)
    have \(d \in\) cball \(b e \cap\) affine hull \(u\)
        using \(\langle e>0\rangle\langle b \in u\rangle\langle c \in u\rangle\)
        by (simp add: d_def dist_norm hull_inc mem_affine_3_minus False)
    with \(e\) have \(d \in u\) by blast
    have nbc: norm \((b-c)+e>0\) using \(\langle e>0\rangle\)
        by (metis add.commute le_less_trans less_add_same_cancel2 norm_ge_zero)
    then have [simp]: \(d \neq c\) using False scaleR_cancel_left \([\) of \(1+(e /\) norm \((b\)
\(-c)) b c]\)
        by (simp add: algebra_simps d_def) (simp add: field_split_simps)
    have \([\) simp \(]:((e-e * e /(e+\operatorname{norm}(b-c))) / \operatorname{norm}(b-c))=(e /(e+\)
norm \((b-c))\) )
        using False nbc
        by (simp add: divide_simps) (simp add: algebra_simps)
    have \(b \in\) open_segment \(d c\)
        apply (simp add: open_segment_image_interval)
        apply (simp add: d_def algebra_simps image_def)
        apply (rule_tac \(x=e /(e+\) norm \((b-c))\) in bexI)
        using False nbc \(\langle 0<e\rangle\) by (auto simp: algebra_simps)
    then have \(d \in T \wedge c \in T\)
        by (meson \(\langle b \in T\rangle\langle c \in u\rangle\langle d \in u\rangle\) assms face_ofD subset_iff)
    then show ?thesis ..
    qed
qed
lemma face_of_eq:
    fixes \(S\) :: 'a::real_normed_vector set
    assumes \(T\) face_of \(S\) dace_of \(S\) (rel_interior \(T) \cap(\) rel_interior \(U) \neq\{ \}\)
    shows \(T=U\)
    using assms
    unfolding disjoint_iff_not_equal
    by (metis IntI empty_iff face_of_imp_subset mem_rel_interior_ball subset_antisym
subset_of_face_of)
lemma face_of_disjoint_rel_interior:
    fixes \(S\) :: ' \(a\) ::real_normed_vector set
    assumes \(T\) face_of \(S T \neq S\)
        shows \(T \cap\) rel_interior \(S=\{ \}\)
    by (meson assms subset_of_face_of face_of_imp_subset order_refl subset_antisym)
```

lemma face_of_disjoint_interior:
fixes S :: ' $a:$:real_normed_vector set
assumes T face_of $S T \neq S$
shows $T \cap$ interior $S=\{ \}$
proof -
have $T \cap$ interior $S \subseteq$ rel_interior S
by (meson inf_sup_ord(2) interior_subset_rel_interior order.trans)
thus ?thesis
by (metis (no_types) Int_greatest assms face_of_disjoint_rel_interior inf_sup_ord(1)
subset_empty)
qed
lemma face_of_subset_rel_boundary:
fixes S :: ' $a:$:real_normed_vector set
assumes T face_of $S T \neq S$
shows $T \subseteq(S-$ rel_interior $S)$
by (meson DiffI assms disjoint_iff_not_equal face_of_disjoint_rel_interior face_of_imp_subset
rev_subsetD subsetI)
lemma face_of_subset_rel_frontier:
fixes S :: 'a::real_normed_vector set
assumes T face_of $S T \neq S$
shows $T \subseteq$ rel_frontier S
using assms closure_subset face_of_disjoint_rel_interior face_of_imp_subset rel_frontier_def
by fastforce
lemma face_of_aff_dim_lt:
fixes S :: 'a::euclidean_space set
assumes convex $S T$ face_of $S T \neq S$
shows aff_dim $T<$ aff_dim S
proof -
have aff_dim $T \leq$ aff_dim S
by (simp add: face_of_imp_subset aff_dim_subset assms)
moreover have aff_dim $T \neq$ aff_dim S
proof (cases $T=\{ \}$)
case True then show ?thesis
by (metis aff_dim_empty $\langle T \neq S\rangle$)
next case False then show ?thesis
by (metis Set.set_insert assms convex_rel_frontier_aff_dim dual_order.irrefl face_of_imp_convex
face_of_subset_rel_frontier insert_not_empty subsetI)
qed
ultimately show ?thesis
by simp
qed
lemma subset_of_face_of_affine_hull:
fixes S :: 'a::euclidean_space set
assumes T : T face_of S and convex $S U \subseteq S$ and dis: $\neg \operatorname{disjnt}$ (affine hull T)
（rel＿interior U ）
shows $U \subseteq T$
proof（rule subset＿of＿face＿of $[O F T\langle U \subseteq S\rangle]$ ）
show $T \cap$ rel＿interior $U \neq\{ \}$
using face＿of＿imp＿eq＿affine＿Int［OF 〈convex S〉T］rel＿interior＿subset［of U］dis
$\langle U \subseteq S\rangle$ disjnt＿def
by fastforce
qed
lemma affine＿hull＿face＿of＿disjoint＿rel＿interior：
fixes S ：：＇a：：euclidean＿space set
assumes convex S F face＿of $S F \neq S$
shows affine hull $F \cap$ rel＿interior $S=\{ \}$
by（metis assms disjnt＿def face＿of＿imp＿subset order＿refl subset＿antisym subset＿of＿face＿of＿affine＿hull）
lemma affine＿diff＿divide：
assumes affine $S k \neq 0 k \neq 1$ and $x y: x \in S y /{ }_{R}(1-k) \in S$
shows $(x-y) / R k \in S$
proof－
have inverse $(k) *_{R}(x-y)=(1-\operatorname{inverse} k) *_{R} \operatorname{inverse}(1-k) *_{R} y+$
inverse $(k) *_{R} x$
using assms
by（simp add：algebra＿simps）（simp add：scaleR＿left＿distrib［symmetric］field＿split＿simps）
then show ？thesis
using 〈affine S 〉xy by（auto simp：affine＿alt）
qed
proposition face＿of＿convex＿hulls：
assumes S ：finite $S T \subseteq S$ and disj：affine hull $T \cap$ convex hull $(S-T)=$
shows（convex hull T）face＿of（convex hull S）
proof－
have fin：finite T finite $(S-T)$ using assms
by（auto simp：finite＿subset）
have $*: x \in$ convex hull T
if $x: x \in$ convex hull S and $y: y \in$ convex hull S and $w: w \in$ convex hull
$T w \in$ open＿segment $x y$
for $x y w$
proof－
have waff：$w \in$ affine hull T
using convex＿hull＿subset＿affine＿hull w by blast
obtain $a b$ where $a: \bigwedge i . i \in S \Longrightarrow 0 \leq a i$ and asum：sum a $S=1$ and aeqx：$\left(\sum i \in S . a i *_{R} i\right)=x$
and $b: \bigwedge i . i \in S \Longrightarrow 0 \leq b i$ and bsum：sum $b S=1$ and beqy：
$\left(\sum i \in S . b i *_{R} i\right)=y$
using x y by（auto simp：assms convex＿hull＿finite）
obtain u where $(1-u) *_{R} x+u *_{R} y \in$ convex hull $T x \neq y$ and weq：w
$=(1-u) *_{R} x+u *_{R} y$
and $u 01: 0<u u<1$
using w by (auto simp: open_segment_image_interval split: if_split_asm)
define c where $c i=(1-u) * a i+u * b i$ for i
have cge0: $\bigwedge i . i \in S \Longrightarrow 0 \leq c i$
using a b u01 by (simp add: c_def)
have sumc1: sum c $S=1$
by (simp add: c_def sum.distrib sum_distrib_left [symmetric] asum bsum)
have sumci_xy: $\left(\sum i \in S . c i *_{R} i\right)=(1-u) *_{R} x+u *_{R} y$
apply (simp add: c_def sum.distrib scaleR_left_distrib)
by (simp only: scaleR_scaleR [symmetric] Real_Vector_Spaces.scaleR_right.sum [symmetric] aeqx beqy)
show ?thesis
proof $($ cases sum $c(S-T)=0)$
case True
have ci0: $\bigwedge i . i \in(S-T) \Longrightarrow c i=0$
using True cge0 fin(2) sum_nonneg_eq_0_iff by auto
have a0: a $i=0$ if $i \in(S-T)$ for i
using ci0 [OF that] u01 a [of i] b [of i] that
by (simp add: c_def Groups.ordered_comm_monoid_add_class.add_nonneg_eq_0_iff)
have [simp]: sum a $T=1$
using assms by (metis sum.mono_neutral_cong_right a0 asum)
show ?thesis
apply (simp add: convex_hull_finite 〈finite $T\rangle$)
apply (rule_tac $x=a$ in $e x I$)
using a0 assms
apply (auto simp: cge0 a aeqx [symmetric] sum.mono_neutral_right)
done
next
case False
define k where $k=\operatorname{sum} c(S-T)$
have $k>0$ using False
unfolding $k_{-} d e f$ by (metis DiffD1 antisym_conv cge0 sum_nonneg not_less)
have weq_sumsum: $w=\operatorname{sum}\left(\lambda x . c x *_{R} x\right) T+\operatorname{sum}\left(\lambda x . c x *_{R} x\right)(S-$
T)
by (metis (no_types) add.commute $S(1) S(2)$ sum.subset_diff sumci_xy weq)
show ?thesis
proof (cases $k=1$)
case True
then have sum c $T=0$
by (simp add: S k_def sum_diff sumc1)
then have $[\operatorname{simp}]$: sum $c(S-T)=1$
by (simp add: S sum_diff sumc1)
have ci0: $\bigwedge i . i \in T \Longrightarrow c i=0$
by (meson \langle finite $T\rangle\langle s u m$ c $T=0\rangle\langle T \subseteq S\rangle$ cge0 sum_nonneg_eq_0_iff subsetCE)
then have [simp]: $\left(\sum i \in S-T . c i *_{R} i\right)=w$
by (simp add: weq_sumsum)
have $w \in$ convex hull $(S-T)$
apply (simp add: convex_hull_finite fin)
apply (rule_tac $x=c$ in $e x I$)

```
        apply (auto simp: cge0 weq True k_def)
        done
    then show ?thesis
        using disj waff by blast
    next
    case False
    then have sumcf: sum c T=1-k
        by (simp add: S k_def sum_diff sumc1)
    have ge0: \bigwedgex. x f T\Longrightarrow0\leq inverse (1-k)*cx
    by (metis }\langleT\subseteqS\rangle\mathrm{ cge0 inverse_nonnegative_iff_nonnegative mult_nonneg_nonneg
subsetD sum_nonneg sumcf)
    have eq1: (\sumx\inT. inverse (1-k)*cx)=1
        by (metis False eq_iff_diff_eq_0 mult.commute right_inverse sum_distrib_left
sumcf)
    have (\sumi\inT.ci**R i)/R (1-k)\in convex hull T
        apply (simp add: convex_hull_finite fin)
        apply (rule_tac x=\lambdai. inverse (1-k)*ci in exI)
            by (metis (mono_tags, lifting) eq1 ge0 scaleR_scaleR scale_sum_right
sum.cong)
    with }\langle0<k\rangle\mathrm{ have inverse(k)**R(w-sum (\i.c i * *R i)T) Gaffine hull
T
            by (simp add: affine_diff_divide [OF affine_affine_hull] False waff con-
vex_hull_subset_affine_hull [THEN subsetD])
    moreover have inverse(k)**}(w-\operatorname{sum}(\lambdax.cx\mp@subsup{*}{R}{\prime}x)T)\inconvex hull
(S - T)
            apply (simp add: weq_sumsum convex_hull_finite fin)
            apply (rule_tac x=\lambdai. inverse k*ci in exI)
            using <k>0\rangle cge0
            apply (auto simp: scaleR_right.sum sum_distrib_left [symmetric] k_def
[symmetric])
                done
            ultimately show ?thesis
                using disj by blast
            qed
        qed
    qed
    have [simp]: convex hull T\subseteq convex hull S
        by (simp add: <T\subseteqS`hull_mono)
    show ?thesis
        using open_segment_commute by (auto simp: face_of_def intro: *)
qed
proposition face_of_convex_hull_insert:
    assumes finite S a & affine hull S and T:T face_of convex hull S
    shows T face_of convex hull insert a S
proof -
    have convex hull S face_of convex hull insert a S
        by (simp add: assms face_of_convex_hulls insert_Diff_if subset_insertI)
    then show ?thesis
```

using T face＿of＿trans by blast
qed
proposition face＿of＿affine＿trivial：
assumes affine $S T$ face＿of S
shows $T=\{ \} \vee T=S$
proof（rule ccontr，clarsimp）
assume $T \neq\{ \} T \neq S$
then obtain a where $a \in T$ by auto
then have $a \in S$
using 〈T face＿of S 〉 face＿of＿imp＿subset by blast
have $S \subseteq T$
proof
fix b assume $b \in S$
show $b \in T$
proof（cases $a=b$ ）
case True with $\langle a \in T\rangle$ show ？thesis by auto
next
case False
then have $a \neq 2 *_{R} a-b$ by（simp add：scaleR＿2） with False have $a \in$ open＿segment $\left(2 *_{R} a-b\right) b$
apply（clarsimp simp：open＿segment＿def closed＿segment＿def）
apply（rule＿tac $x=1 / 2$ in exI）
by（simp add：algebra＿simps）
moreover have $2 *_{R} a-b \in S$
by（rule mem＿affine $[O F\langle a f f i n e ~ S\rangle\langle a \in S\rangle\langle b \in S\rangle$ ，of $2-1$ ，simplified $]$ ）
moreover note $\langle b \in S\rangle\langle a \in T\rangle$
ultimately show ？thesis
by（rule face＿ofD［OF 〈T face＿of S ，THEN conjunct2］）
qed
qed
then show False
using $\langle T \neq S\rangle\langle T$ face＿of $S\rangle$ face＿of＿imp＿subset by blast
qed
lemma face＿of＿affine＿eq：
affine $S \Longrightarrow(T$ face＿of $S \longleftrightarrow T=\{ \} \vee T=S)$
using affine＿imp＿convex face＿of＿affine＿trivial face＿of＿refl by auto

```
proposition Inter_faces_finite_altbound:
    fixes \(T\) :: 'a::euclidean_space set set
    assumes \(c f a I: \bigwedge c . c \in T \Longrightarrow c\) face_of \(S\)
    shows \(\exists F^{\prime}\). finite \(F^{\prime} \wedge F^{\prime} \subseteq T \wedge \operatorname{card} F^{\prime} \leq \operatorname{DIM}\left({ }^{\prime} a\right)+2 \wedge \bigcap F^{\prime}=\bigcap T\)
proof (cases \(\forall F^{\prime}\). finite \(F^{\prime} \wedge F^{\prime} \subseteq T \wedge\) card \(F^{\prime} \leq \operatorname{DIM}\left({ }^{\prime} a\right)+2 \longrightarrow(\exists c . c \in T\)
\(\left.\left.\wedge c \cap\left(\bigcap F^{\prime}\right) \subset\left(\bigcap F^{\prime}\right)\right)\right)\)
    case True
```

```
then obtain \(c\) where \(c\) :
\(\bigwedge F^{\prime}\). \(\llbracket\) finite \(F^{\prime} ; F^{\prime} \subseteq T ;\) card \(F^{\prime} \leq D I M\left({ }^{\prime} a\right)+2 \rrbracket \Longrightarrow c F^{\prime} \in T \wedge c F^{\prime} \cap\)
\(\left(\bigcap F^{\prime}\right) \subset\left(\bigcap F^{\prime}\right)\)
    by metis
    define \(d\) where \(d=\) rec_nat \(\{c\}\}(\lambda n r\). insert \((c r) r)\)
    have \([\) simp \(]: d 0=\{c\{ \}\}\)
    by (simp add: d_def)
    have \(d\) Suc \([\) simp \(]: \bigwedge n . d(\) Suc \(n)=\operatorname{insert}(c(d n))(d n)\)
        by (simp add: d_def)
    have dn_notempty: \(d n \neq\{ \}\) for \(n\)
        by (induction \(n\) ) auto
    have \(d n \_l e \_S u c: d n \subseteq T \wedge\) finite \((d n) \wedge \operatorname{card}(d n) \leq S u c n\) if \(n \leq D I M\left({ }^{\prime} a\right)+\)
2 for \(n\)
    using that
    proof (induction n)
        case 0
        then show ?case by (simp add: c)
    next
        case (Suc n)
        then show ?case by (auto simp: c card_insert_if)
    qed
    have aff_dim_le: \(\operatorname{aff} \_\operatorname{dim}(\bigcap(d n)) \leq D I M\left({ }^{\prime} a\right)-i n t n\) if \(n \leq D I M\left({ }^{\prime} a\right)+2\) for
\(n\)
    using that
    proof (induction \(n\) )
        case 0
        then show ?case
        by (simp add: aff_dim_le_DIM)
    next
        case (Suc n)
        have \(f s: \bigcap(d(\) Suc \(n))\) face_of \(S\)
        by (meson Suc.prems cfaI dn_le_Suc dn_notempty face_of_Inter subsetCE)
        have condn: convex \((\bigcap(d n))\)
        using Suc.prems nat_le_linear not_less_eq_eq
        by (blast intro: face_of_imp_convex cfaI convex_Inter dest: dn_le_Suc)
    have \(f d n: \bigcap(d(\) Suc \(n))\) face_of \(\bigcap(d n)\)
        by (metis (no_types, lifting) Inter_anti_mono Suc.prems dSuc cfaI dn_le_Suc
```



```
    have \(n e: \bigcap(d(\) Suc \(n)) \neq \bigcap(d n)\)
    by (metis (no_types, lifting) Suc.prems Suc_leD c complete_lattice_class.Inf_insert
dSuc dn_le_Suc less_irrefl order.trans)
    have \(*: \bigwedge m:: i n t . ~ \bigwedge d . \bigwedge d^{\prime}:: i n t . d<d^{\prime} \wedge d^{\prime} \leq m-n \Longrightarrow d \leq m-o f \_n a t(n+1)\)
        by arith
    have aff_dim \((\bigcap(d(\) Suc \(n)))<\operatorname{aff}\) _dim \((\bigcap(d n))\)
        by (rule face_of_aff_dim_lt [OF condn fdn ne])
    moreover have aff_dim \((\bigcap(d n)) \leq \operatorname{int}\left(D I M\left({ }^{\prime} a\right)\right)-\) int \(n\)
        using Suc by auto
    ultimately
    have aff_dim \((\cap(d(\) Suc \(n))) \leq \operatorname{int}\left(\operatorname{DIM}\left({ }^{\prime} a\right)\right)-(n+1)\) by arith
```

```
        then show ?case by linarith
    qed
    have aff_dim (\bigcap(d (DIM('a) + 2))) \leq - 2
        using aff_dim_le [OF order_refl] by simp
    with aff_dim_geq [of \bigcap(d (DIM('a) + 2))] show ?thesis
        using order.trans by fastforce
next
    case False
    then show ?thesis
        apply simp
        apply (erule ex_forward)
        by blast
qed
lemma faces_of_translation:
    {F.F face_of image (\lambdax.a+x)S}= image (image (\lambdax.a+x)) {F.F face_of
S}
proof -
    have }\F.F\mathrm{ face_of (+) a'}S\Longrightarrow\existsG.G face_of S ^F=(+) a'G
        by (metis face_of_imp_subset face_of_translation_eq subset_imageE)
    then show ?thesis
        by (auto simp: image_iff)
qed
proposition face_of_Times:
    assumes F face_of S and F' face_of S'
        shows (F\times\mp@subsup{F}{}{\prime})\mathrm{ face_of (S 人 S')}
proof -
    have F}\times\mp@subsup{F}{}{\prime}\subseteqS\times\mp@subsup{S}{}{\prime
        using assms [unfolded face_of_def] by blast
    moreover
    have convex (F\timesF')
        using assms [unfolded face_of_def] by (blast intro: convex_Times)
    moreover
        have a\inF\wedge a'\in F'^b b F ^ b
            if a\inSb\inS a'\in S' b
            for a b a' b}\mp@subsup{b}{}{\prime}
    proof (cases b=a\vee b
        case True with that show ?thesis
            using assms
            by (force simp: in_segment dest: face_ofD)
    next
        case False with assms [unfolded face_of_def] that show ?thesis
            by (blast dest!: open_segment_PairD)
    qed
    ultimately show ?thesis
        unfolding face_of_def by blast
qed
```

```
corollary face_of_Times_decomp:
    fixes \(S\) :: 'a::euclidean_space set and \(S^{\prime}\) :: 'b::euclidean_space set
    shows \(C\) face_of \(\left(S \times S^{\prime}\right) \longleftrightarrow\left(\exists F F^{\prime}\right.\). F face_of \(S \wedge F^{\prime}\) face_of \(S^{\prime} \wedge C=F\)
\(\times F^{\prime}\) )
    (is ?lhs \(=\) ? \(r h s\) )
proof
    assume \(C\) : ?lhs
    show ?rhs
    proof (cases \(C=\{ \}\) )
        case True then show ?thesis by auto
    next
        case False
        have 1: \(f s t\) ' \(C \subseteq S\) snd ' \(C \subseteq S^{\prime}\)
        using \(C\) face_of_imp_subset by fastforce+
        have convex \(C\)
        using \(C\) by (metis face_of_imp_convex)
        have conv: convex ( \(f s t\) ' \(C\) ) convex (snd ' \(C\) )
        by (simp_all add: 〈convex \(C\rangle\) convex_linear_image linear_fst linear_snd)
        have fstab: \(a \in f s t{ }^{\prime} C \wedge b \in f s t{ }^{\prime} C\)
                if \(a \in S b \in S x \in\) open_segment \(a b\left(x, x^{\prime}\right) \in C\) for \(a b x x^{\prime}\)
        proof -
            have \(*:\left(x, x^{\prime}\right) \in\) open_segment \(\left(a, x^{\prime}\right)\left(b, x^{\prime}\right)\)
            using that by (auto simp: in_segment)
        show ?thesis
            using face_ofD [OF C *] that face_of_imp_subset [OF C] by force
        qed
        have fst: \(f s t\) ' \(C\) face_of \(S\)
        by (force simp: face_of_def 1 conv fstab)
        have sndab: \(a^{\prime} \in\) snd ' \(C \wedge b^{\prime} \in\) snd ' \(C\)
        if \(a^{\prime} \in S^{\prime} b^{\prime} \in S^{\prime} x^{\prime} \in\) open_segment \(a^{\prime} b^{\prime}(x, x) \in C\) for \(a^{\prime} b^{\prime} x x^{\prime}\)
    proof -
        have \(*:\left(x, x^{\prime}\right) \in\) open_segment \(\left(x, a^{\prime}\right)\left(x, b^{\prime}\right)\)
            using that by (auto simp: in_segment)
        show ?thesis
            using face_ofD [OF C *] that face_of_imp_subset [OF C] by force
    qed
    have snd: snd ' \(C\) face_of \(S^{\prime}\)
        by (force simp: face_of_def 1 conv sndab)
    have cc: rel_interior \(C \subseteq\) rel_interior \((f s t ' C) \times\) rel_interior \((s n d\) ' \(C\) )
            by (force simp: face_of_Times rel_interior_Times conv fst snd 〈convex C〉
    linear_fst linear_snd rel_interior_convex_linear_image [symmetric])
    have \(C=f s t\) ' \(C \times s n d\) ' \(C\)
    proof (rule face_of_eq [OF C])
        show \(f s t\) ' \(C \times\) snd ' \(C\) face_of \(S \times S^{\prime}\)
            by (simp add: face_of_Times rel_interior_Times conv fst snd)
            show rel_interior \(C \cap\) rel_interior \((f s t ' C \times\) snd' \(C) \neq\{ \}\)
            using False rel_interior_eq_empty 〈convex \(C\) 〉cc
            by (auto simp: face_of_Times rel_interior_Times conv fst)
    qed
```

with fst snd show ?thesis by metis
qed
next
assume ?rhs with face_of_Times show ?lhs by auto
qed
lemma face_of_Times_eq:
fixes S :: 'a::euclidean_space set and $S^{\prime}::{ }^{\prime} b::$ euclidean_space set
shows $\left(F \times F^{\prime}\right)$ face_of $\left(S \times S^{\prime}\right) \longleftrightarrow$
$F=\{ \} \vee F^{\prime}=\{ \} \vee F$ face_of $S \wedge F^{\prime}$ face_of S^{\prime}
by (auto simp: face_of_Times_decomp times_eq_iff)
lemma hyperplane_face_of_halfspace_le: $\{x . a \cdot x=b\}$ face_of $\{x . a \cdot x \leq b\}$
proof -
have $\{x \cdot a \cdot x \leq b\} \cap\{x \cdot a \cdot x=b\}=\{x \cdot a \cdot x=b\}$
by auto
with face_of_Int_supporting_hyperplane_le [OF convex_halfspace_le [of a b], of a b]
show ?thesis by auto
qed
lemma hyperplane_face_of_halfspace_ge: $\{x . a \cdot x=b\}$ face_of $\{x . a \cdot x \geq b\}$
proof -
have $\{x . a \cdot x \geq b\} \cap\{x . a \cdot x=b\}=\{x \cdot a \cdot x=b\}$
by auto
with face_of_Int_supporting_hyperplane_ge [OF convex_halfspace_ge [of ba], of b
a]
show ?thesis by auto
qed
lemma face_of_halfspace_le:
fixes a :: ' n ::euclidean_space
shows F face_of $\{x . a \cdot x \leq b\} \longleftrightarrow$
$F=\{ \} \vee F=\{x . a \cdot x=b\} \vee F=\{x . a \cdot x \leq b\}$
(is ? $\mathrm{lh} s=$? $r h s$)
proof (cases $a=0$)
case True then show ?thesis
using face_of_affine_eq affine_UNIV by auto
next
case False
then have ine: interior $\{x . a \cdot x \leq b\} \neq\{ \}$
using halfspace_eq_empty_lt interior_halfspace_le by blast
show ?thesis
proof
assume L : ?lhs
have F face_of $\{x . a \cdot x=b\}$ if $F \neq\{x . a \cdot x \leq b\}$
proof -
have F face_of rel_frontier $\{x . a \cdot x \leq b\}$
proof (rule face_of_subset [OF L])
show $F \subseteq$ rel_frontier $\{x . a \cdot x \leq b\}$

```
            by (simp add: L face_of_subset_rel_frontier that)
            qed (force simp: rel_frontier_def closed_halfspace_le)
            then show ?thesis
            using False
            by (simp add: frontier_halfspace_le rel_frontier_nonempty_interior [OF ine])
    qed
    with L show ?rhs
        using affine_hyperplane face_of_affine_eq by blast
    next
    assume ?rhs
    then show?lhs
    by (metis convex_halfspace_le empty_face_of face_of_refl hyperplane_face_of_halfspace_le)
    qed
qed
lemma face_of_halfspace_ge:
    fixes a :: ' }n::euclidean_spac
    shows F face_of {x.a\cdotx\geqb}\longleftrightarrow
        F={}\veeF={x.a\cdotx=b}\veeF={x.a\cdotx\geqb}
using face_of_halfspace_le [of F-a-b] by simp
```


6.38.2 Exposed faces

That is, faces that are intersection with supporting hyperplane
definition exposed_face_of :: ['a::euclidean_space set, 'a set] \Rightarrow bool
(infixr (exposed'_face '_of) 50)
where T exposed_face_of $S \longleftrightarrow$
T face_of $S \wedge(\exists a b . S \subseteq\{x . a \cdot x \leq b\} \wedge T=S \cap\{x . a \cdot x=b\})$
lemma empty_exposed_face_of [iff]: \{\} exposed_face_of S
apply (simp add: exposed_face_of_def)
apply (rule_tac $x=0$ in exI)
apply (rule_tac $x=1$ in exI, force)
done
lemma exposed_face_of_refl_eq [simp]: S exposed_face_of $S \longleftrightarrow$ convex S
proof
assume S : convex S
have $S \subseteq\{x .0 \cdot x \leq 0\} \wedge S=S \cap\{x .0 \cdot x=0\}$
by auto
with S show S exposed_face_of S using exposed_face_of_def face_of_refl_eq by blast
qed (simp add: exposed_face_of_def face_of_refl_eq)
lemma exposed_face_of_refl: convex $S \Longrightarrow S$ exposed_face_of S
by simp
lemma exposed_face_of: T exposed_face_of $S \longleftrightarrow$

```
            T face_of S ^
            (T={}\vee T=S\vee
            (\existsab.a\not=0\wedgeS\subseteq{x.a\cdotx\leqb}\wedgeT=S\cap{x.a\cdotx=b}))
proof (cases T={})
    case True then show ?thesis
        by simp
next
    case False
    show ?thesis
    proof (cases T=S)
        case True then show ?thesis
            by (simp add: face_of_refl_eq)
    next
        case False
        with }\langleT\not={}\rangle\mathrm{ show ?thesis
            apply (auto simp: exposed_face_of_def)
            apply (metis inner_zero_left)
            done
    qed
qed
lemma exposed_face_of_Int_supporting_hyperplane_le:
    \llbracket c o n v e x ~ S ; ~ \ x . ~ x \in S \Longrightarrow a \cdot x \leq b \rrbracket \Longrightarrow ( S \cap \{ x . a \cdot x = b \} ) ~ e x p o s e d \_ f a c e \_ o f ~
S
by (force simp: exposed_face_of_def face_of_Int_supporting_hyperplane_le)
lemma exposed_face_of_Int_supporting_hyperplane_ge:
    \llbracket c o n v e x ~ S ; ~ \ x . ~ x ~ G ~ S \Longrightarrow a \cdot x \geq b \rrbracket \Longrightarrow ( S \cap \{ x . a \cdot x = b \} ) ~ e x p o s e d \_ f a c e \_ o f ~
S
using exposed_face_of_Int_supporting_hyperplane_le [of S -a -b] by simp
proposition exposed_face_of_Int:
    assumes T exposed_face_of S
            and u exposed_face_of S
        shows (T\capu) exposed_face_of S
proof -
    obtain ab where T:S\cap{x.a\cdotx=b} face_of S
                    and S:S\subseteq{x.a\cdotx\leqb}
                    and teq:T}=S\cap{x.\overline{a}\cdotx=b
        using assms by (auto simp: exposed_face_of_def)
    obtain }\mp@subsup{a}{}{\prime}\mp@subsup{b}{}{\prime}\mathrm{ where }u:S\cap{x.\mp@subsup{a}{}{\prime}\cdotx=\mp@subsup{b}{}{\prime}}\mathrm{ face_of S
                    and s}\mp@subsup{s}{}{\prime}:S\subseteq{x.\mp@subsup{a}{}{\prime}\cdotx\leq\mp@subsup{b}{}{\prime}
                    and ueq:u}=S\cap{x.\mp@subsup{a}{}{\prime}\cdotx=\mp@subsup{b}{}{\prime}
        using assms by (auto simp: exposed_face_of_def)
    have tu:T\capu face_of S
        using T teq u ueq by (simp add: face_of_Int)
    have ss:S\subseteq{x.(a+\mp@subsup{a}{}{\prime})\cdotx\leqb+\mp@subsup{b}{}{\prime}}
        using S s' by (force simp: inner_left_distrib)
    show ?thesis
```

```
    apply (simp add: exposed_face_of_def tu)
    apply (rule_tac x=a+\mp@subsup{a}{}{\prime}\mathrm{ in exI)}
    apply (rule_tac x=b+b' in exI)
    using S s
    apply (fastforce simp: ss inner_left_distrib teq ueq)
    done
qed
proposition exposed_face_of_Inter:
    fixes P :: 'a::euclidean_space set set
    assumes P}\not={
        and }\bigwedgeT.T\inP\LongrightarrowT exposed_face_of S
    shows }\bigcapP\mathrm{ exposed_face_of }
proof -
    obtain Q where finite Q and QsubP:Q\subseteqP card Q\leqDIM('a) + 2 and
IntQ:\bigcapQ =\bigcapP
    using Inter_faces_finite_altbound [of P S] assms [unfolded exposed_face_of]
    by force
    show ?thesis
    proof (cases Q = {})
    case True then show ?thesis
        by (metis IntQ Inter_UNIV_conv(2) assms(1) assms(2) ex_in_conv)
    next
        case False
        have }Q\subseteq{T.T exposed_face_of S
        using QsubP assms by blast
    moreover have Q\subseteq{T.T exposed_face_of S} \Longrightarrow\bigcapQ exposed_face_of S
        using <finite Q> False
        by (induction Q rule: finite_induct; use exposed_face_of_Int in fastforce)
    ultimately show ?thesis
        by (simp add: IntQ)
    qed
qed
proposition exposed_face_of_sums:
    assumes convex S and convex T
        and F exposed_face_of {x+y|xy.x\inS\wedgey\inT}
            (is F exposed_face_of ?ST)
    obtains kl
        where k exposed_face_of S l exposed_face_of T
                F={x+y|xy.x\ink\wedgey\inl}
proof (cases F={})
    case True then show ?thesis
        using that by blast
next
    case False
    show ?thesis
    proof (cases F = ?ST)
    case True then show ?thesis
```

```
        using assms exposed_face_of_refl_eq that by blast
    next
    case False
    obtain p where p\inF using \langleF \not={}> by blast
    moreover
    obtain uz where T:?ST \cap {x.u\cdotx=z} face_of ?ST
                    and S:?ST\subseteq{x.u\cdotx\leqz}
                and feq:F=?ST\cap{x.u\cdotx=z}
        using assms by (auto simp: exposed_face_of_def)
    ultimately obtain a0 b0
            where p:p=a0+b0 and a0\inS b0\inT and z:u}\cdot\mp@code{p=z
            by auto
    have lez: u}\cdot(x+y)\leqz\mathrm{ if }x\inSy\inT\mathrm{ for }x
            using S that by auto
    have sef: S \cap{x.u\cdotx=u\cdota0} exposed_face_of S
    proof (rule exposed_face_of_Int_supporting_hyperplane_le [OF\convex S\])
            show }\x.x\inS\Longrightarrowu\cdotx\lequ\cdota
            by (metis p z add_le_cancel_right inner_right_distrib lez [OF_< < O \inT\rangle])
    qed
    have tef:T\cap{x.u\cdotx=u\cdotb0} exposed_face_of T
    proof (rule exposed_face_of_Int_supporting_hyperplane_le [OF \convex T〉])
        show }\x.x\inT\Longrightarrowu\cdotx\lequ\cdotb
            by (metis p z add.commute add_le_cancel_right inner_right_distrib lez [OF
<a0 \inS〉])
    qed
    have {x+y |xy.x\inS\wedgeu\cdotx=u\cdota0^y\inT^u•y=u\cdotb0}\subseteqF
            by (auto simp: feq) (metis inner_right_distrib p z)
    moreover have F\subseteq{x+y |xy.x\inS\wedgeu\cdotx=u\cdota0\wedge y\inT^u\cdoty
=u\cdotb0}
    proof -
        have \}\xy.\llbracketz=u\cdot(x+y);x\inS;y\inT
            \Longrightarrowu\cdotx=u\cdota0^u\cdoty=u\cdotb0
            using zp\langlea0 \inS\rangle\langleb0\inT\rangle
            apply (simp add: inner_right_distrib)
            apply (metis add_le_cancel_right antisym lez [unfolded inner_right_distrib]
add.commute)
            done
            then show ?thesis
            using feq by blast
    qed
    ultimately have F}={x+y|xy.x\inS\cap{x.u\cdotx=u\cdota0}\wedgey\inT
{x.u\cdotx=u\cdotb0}}
            by blast
    then show ?thesis
            by (rule that [OF sef tef])
    qed
qed
proposition exposed_face_of_parallel:
```

```
    T exposed_face_of S}
    T face_of S \
    (\existsab.S\subseteq{x.a\cdotx\leqb}\wedgeT=S\cap{x.a\cdotx=b}^
                (T\not={}\longrightarrowT\not=S\longrightarrowa\not=0)^
                (T\not=S\longrightarrow(\forallw\inaffine hull S. (w+a)\in affine hull S)))
    (is?lhs = ?rhs)
proof
    assume ?lhs then show ?rhs
    proof (clarsimp simp: exposed_face_of_def)
        fix ab
        assume faceS:S\cap{x.a\cdotx=b} face_of S and Ssub:S\subseteq{x.a\cdotx\leqb}
    show \existscd.S\subseteq{x.c\cdotx\leqd}^
            S\cap{x.a\cdotx=b}=S\cap{x.c\cdotx=d}^
            (S\cap{x.a\cdotx=b}\not={}\longrightarrowS\cap{x.a\cdotx=b}\not=S\longrightarrowc\not=0)^
```



```
hull S))
    proof (cases affine hull S\cap{x. -a\cdotx\leq-b}={}\vee affine hull S\subseteq{x.-
a\cdotx\leq-b})
        case True
        then show ?thesis
        proof
            assume affine hull S\cap {x. -a\cdotx\leq-b}={}
            then show ?thesis
                apply (rule_tac x=0 in exI)
                apply (rule_tac x=1 in exI)
                using hull_subset by fastforce
    next
        assume affine hull S\subseteq{x.-a\cdotx\leq-b}
        then show ?thesis
            apply (rule_tac x=0 in exI)
            apply (rule_tac x=0 in exI)
            using Ssub hull_subset by fastforce
    qed
next
    case False
    then obtain }\mp@subsup{a}{}{\prime}\mp@subsup{b}{}{\prime}\mathrm{ where }\mp@subsup{a}{}{\prime}\not=
        and le: affine hull S\cap{x. a'}\cdotx\leq\mp@subsup{b}{}{\prime}}=\mathrm{ affine hull S }\cap{x.-a\cdotx\leq-b
        and eq: affine hull S\cap{x. a'}\cdotx=\mp@subsup{b}{}{\prime}}=\mathrm{ affine hull S }\cap{x.-a\cdotx=-b
        and mem: \w.w\in affine hull S\Longrightarroww+\mp@subsup{a}{}{\prime}\in\mathrm{ affine hull S}
        using affine_parallel_slice affine_affine_hull by metis
    show ?thesis
    proof (intro conjI impI allI ballI exI)
        have *:S\subseteq-(affine hull S\cap{x.P x})\cup affine hull S\cap{x.Q x} \LongrightarrowS
\subseteq \{ x . \neg P x \vee Q x \}
        for PQ
        using hull_subset by fastforce
        have}S\subseteq{x.\neg(\mp@subsup{a}{}{\prime}\cdotx\leq\mp@subsup{b}{}{\prime})\vee\mp@subsup{a}{}{\prime}\cdotx=\mp@subsup{b}{}{\prime}
            by (rule *) (use le eq Ssub in auto)
        then show S\subseteq{x.- a'. x \leq- b}
```

```
            by auto
        show }S\cap{x.a\cdotx=b}=S\cap{x.-\mp@subsup{a}{}{\prime}\cdotx=-\mp@subsup{b}{}{\prime}
            using eq hull_subset [of S affine] by force
        show \llbracketS\cap{x.a\cdotx=b}\not={};S\cap{x.a\cdotx=b}\not=S\rrbracket\Longrightarrow-\mp@subsup{a}{}{\prime}\not=0
            using <a'}=0\rangle\mathrm{ by auto
        show }w+-\mp@subsup{a}{}{\prime}\in\mathrm{ affine hull }
            if S\cap{x.a\cdotx=b}\not=Sw\inaffine hull S for w
        proof -
            have w+1**}(w-(w+\mp@subsup{a}{}{\prime}))\in\mathrm{ affine hull S
            using affine_affine_hull mem mem_affine_3_minus that(2) by blast
            then show ?thesis by simp
        qed
        qed
    qed
qed
next
    assume ?rhs then show ?lhs
        unfolding exposed_face_of_def by blast
qed
```


6.38.3 Extreme points of a set: its singleton faces

definition extreme_point_of :: ['a::real_vector, 'a set $] \Rightarrow$ bool
(infixr (extreme'_point'_of) 50)
where x extreme_point_of $S \longleftrightarrow$

$$
x \in S \wedge(\forall a \in S . \forall b \in S . x \notin \text { open_segment } a b)
$$

lemma extreme_point_of_stillconvex:
convex $S \Longrightarrow(x$ extreme_point_of $S \longleftrightarrow x \in S \wedge$ convex $(S-\{x\}))$
by (fastforce simp add: convex_contains_segment extreme_point_of_def open_segment_def)
lemma face_of_singleton:
$\{x\}$ face_of $S \longleftrightarrow x$ extreme_point_of S
by (fastforce simp add: extreme_point_of_def face_of_def)
lemma extreme_point_not_in_REL_INTERIOR:
fixes S :: ' $a:$:real_normed_vector set
shows $\llbracket x$ extreme_point_of $S ; S \neq\{x\} \rrbracket \Longrightarrow x \notin$ rel_interior S
by (metis disjoint_iff face_of_disjoint_rel_interior face_of_singleton insertI1)
lemma extreme_point_not_in_interior:
fixes S :: 'a::\{real_normed_vector, perfect_space\} set
assumes x extreme_point_of S shows $x \notin$ interior S
proof (cases $S=\{x\}$)
case False
then show ?thesis
by (meson assms subsetD extreme_point_not_in_REL_INTERIOR interior_subset_rel_interior)
qed (simp add: empty_interior_finite)
lemma extreme_point_of_face:
F face_of $S \Longrightarrow v$ extreme_point_of $F \longleftrightarrow v$ extreme_point_of $S \wedge v \in F$
by (meson empty_subsetI face_of_face face_of_singleton insert_subset)
lemma extreme_point_of_convex_hull:
x extreme_point_of (convex hull S) $\Longrightarrow x \in S$
using hull_minimal $[$ of S (convex hull $S)-\{x\}$ convex $]$
using hull_subset [of S convex]
by (force simp add: extreme_point_of_stillconvex)
proposition extreme_points_of_convex_hull:
$\{x$. x extreme_point_of (convex hull $S)\} \subseteq S$
using extreme_point_of_convex_hull by auto
lemma extreme_point_of_empty [simp]: ᄀ (x extreme_point_of \{\})
by (simp add: extreme_point_of_def)
lemma extreme_point_of_singleton [iff]: x extreme_point_of $\{a\} \longleftrightarrow x=a$ using extreme_point_of_stillconvex by auto
lemma extreme_point_of_translation_eq:
$(a+x)$ extreme_point_of (image $(\lambda x . a+x) S) \longleftrightarrow x$ extreme_point_of S
by (auto simp: extreme_point_of_def)
lemma extreme_points_of_translation:
$\{x . x$ extreme_point_of (image $(\lambda x . a+x) S)\}=$
$(\lambda x . a+x)$ ' $\{x . x$ extreme_point_of $S\}$
using extreme_point_of_translation_eq
by auto (metis (no_types, lifting) image_iff mem_Collect_eq minus_add_cancel)
lemma extreme_points_of_translation_subtract:
$\{x . x$ extreme_point_of $($ image $(\lambda x . x-a) S)\}=$
$(\lambda x . x-a) \cdot\{x . x$ extreme_point_of $S\}$
using extreme_points_of_translation [of -aS]
by simp
lemma extreme_point_of_Int:
$\llbracket x$ extreme_point_of $S ; x$ extreme_point_of $T \rrbracket \Longrightarrow x$ extreme_point_of $(S \cap T)$
by (simp add: extreme_point_of_def)
lemma extreme_point_of_Int_supporting_hyperplane_le:
$\llbracket S \cap\{x . a \cdot x=b\}=\{c\} ; \wedge x . x \in S \Longrightarrow a \cdot x \leq b \rrbracket \Longrightarrow c$ extreme_point_of S
by (metis convex_singleton face_of_Int_supporting_hyperplane_le_strong face_of_singleton)
lemma extreme_point_of_Int_supporting_hyperplane_ge:
$\llbracket S \cap\{x . a \cdot x=b\}=\{c\} ; \wedge x . x \in S \Longrightarrow a \cdot x \geq b \rrbracket \Longrightarrow c$ extreme_point_of S
using extreme_point_of_Int_supporting_hyperplane_le [of $S-a-b c$]
by simp
lemma exposed_point_of_Int_supporting_hyperplane_le:
$\llbracket S \cap\{x . a \cdot x=b\}=\{c\} ; \bigwedge x . x \in S \Longrightarrow a \cdot x \leq b \rrbracket \Longrightarrow\{c\}$ exposed_face_of S unfolding exposed_face_of_def
by (force simp: face_of_singleton extreme_point_of_Int_supporting_hyperplane_le)
lemma exposed_point_of_Int_supporting_hyperplane_ge:
$\llbracket S \cap\{x . a \cdot x=b\}=\{c\} ; \bigwedge x . x \in S \Longrightarrow a \cdot x \geq b \rrbracket \Longrightarrow\{c\}$ exposed_face_of S using exposed_point_of_Int_supporting_hyperplane_le [of $S-a-b c$]
by simp
lemma extreme_point_of_convex_hull_insert:
assumes finite S a \notin convex hull S
shows a extreme_point_of (convex hull (insert a S))
proof (cases $a \in S$)
case False
then show ?thesis
using face_of_convex_hulls [of insert a S \{a\}] assms
by (auto simp: face_of_singleton hull_same)
qed (use assms in 〈simp add: hull_inc〉)

6.38.4 Facets

definition facet_of :: ['a::euclidean_space set, 'a set] \Rightarrow bool
(infixr (facet'_of) 50)
where F facet_of $S \longleftrightarrow F$ face_of $S \wedge F \neq\{ \} \wedge$ aff_dim $F=$ aff_dim $S-1$
lemma facet_of_empty [simp]: \neg S facet_of $\}$
by (simp add: facet_of_def)
lemma facet_of_irrefl [simp]: \neg S facet_of S
by (simp add: facet_of_def)
lemma facet_of_imp_face_of: F facet_of $S \Longrightarrow F$ face_of S
by (simp add: facet_of_def)
lemma facet_of_imp_subset: F facet_of $S \Longrightarrow F \subseteq S$
by (simp add: face_of_imp_subset facet_of_def)
lemma hyperplane_facet_of_halfspace_le:
$a \neq 0 \Longrightarrow\{x . a \cdot x=b\}$ facet_of $\{x . a \cdot x \leq b\}$
unfolding facet_of_def hyperplane_eq_empty
by (auto simp: hyperplane_face_of_halfspace_ge hyperplane_face_of_halfspace_le Suc_leI of_nat_diff aff_dim_halfspace_le)
lemma hyperplane_facet_of_halfspace_ge:
$a \neq 0 \Longrightarrow\{x . a \cdot x=b\}$ facet_of $\{x . a \cdot x \geq b\}$
unfolding facet_of_def hyperplane_eq_empty
by (auto simp: hyperplane_face_of_halfspace_le hyperplane_face_of_halfspace_ge Suc_leI of_nat_diff aff_dim_halfspace_ge)
lemma facet_of_halfspace_le:
F facet_of $\{x . a \cdot x \leq b\} \longleftrightarrow a \neq 0 \wedge F=\{x . a \cdot x=b\}$
(is ?lhs $=$? $r h s$)
proof
assume c : ?lhs
with c facet_of_irrefl show ?rhs
by (force simp: aff_dim_halfspace_le facet_of_def face_of_halfspace_le cong: conj_cong
split: if_split_asm)
next
assume ?rhs then show?lhs
by (simp add: hyperplane_facet_of_halfspace_le)
qed
lemma facet_of_halfspace_ge:
F facet_of $\{x . a \cdot x \geq b\} \longleftrightarrow a \neq 0 \wedge F=\{x . a \cdot x=b\}$
using facet_of_halfspace_le [of $F-a-b]$ by simp

6.38.5 Edges: faces of affine dimension 1

definition edge_of :: ['a::euclidean_space set, 'a set] \Rightarrow bool (infixr (edge'_of) 50)
where e edge_of $S \longleftrightarrow e$ face_of $S \wedge$ aff_dim $e=1$
lemma edge_of_imp_subset:
S edge_of $T \Longrightarrow S \subseteq T$
by (simp add: edge_of_def face_of_imp_subset)

6.38.6 Existence of extreme points

proposition different_norm_3_collinear_points:
fixes a :: ' $a::$ euclidean_space
assumes $x \in$ open_segment $a b \operatorname{norm}(a)=\operatorname{norm}(b) \operatorname{norm}(x)=\operatorname{norm}(b)$
shows False
proof -
obtain u where norm $\left((1-u) *_{R} a+u *_{R} b\right)=$ norm b
and $a \neq b$
and $u 01$: $0<u u<1$
using assms by (auto simp: open_segment_image_interval if_splits)
then have $(1-u) *_{R} a \cdot(1-u) *_{R} a+((1-u) * 2) *_{R} a \cdot u *_{R} b=$ $(1-u * u) *_{R}(a \cdot a)$
using assms by (simp add: norm_eq algebra_simps inner_commute)
then have $(1-u) *_{R}\left((1-u) *_{R} a \cdot a+(2 * u) *_{R} a \cdot b\right)=$ $(1-u) *_{R}\left((1+u) *_{R}(a \cdot a)\right)$
by (simp add: algebra_simps)
then have $(1-u) *_{R}(a \cdot a)+(2 * u) *_{R}(a \cdot b)=(1+u) *_{R}(a \cdot a)$
using $u 01$ by auto
then have $a \cdot b=a \cdot a$
using $u 01$ by (simp add: algebra_simps)
then have $a=b$
using $\langle\operatorname{norm}(a)=$ norm $(b)\rangle$ norm_eq vector_eq by fastforce

```
    then show ?thesis
    using <a\not=b\rangle by force
qed
proposition extreme_point_exists_convex:
    fixes S :: 'a::euclidean_space set
    assumes compact S convex S S}\not={
    obtains x where x extreme_point_of S
proof -
    obtain x where }x\inS\mathrm{ and xsup: \y. y f S C norm y n norm x
        using distance_attains_sup [of S 0] assms by auto
```



```
    proof -
        have noax: norm a n norm x and nobx: norm b \leq norm x using xsup that
by auto
        have a\not=b
            using empty_iff open_segment_idem x by auto
        show False
            by (metis dist_0_norm dist_decreases_open_segment noax nobx not_le x)
    qed
    then show ?thesis
        by (meson }\langlex\inS\rangle\mathrm{ extreme_point_of_def that)
qed
```


6.38.7 Krein-Milman, the weaker form

```
proposition Krein_Milman:
    fixes S :: 'a::euclidean_space set
    assumes compact S convex S
        shows S = closure(convex hull {x. x extreme_point_of S})
proof (cases S={})
    case True then show ?thesis by simp
next
    case False
    have closed S
        by (simp add: <compact S〉compact_imp_closed)
    have closure (convex hull {x. x extreme_point_of S})\subseteqS
    by (simp add:\closed S` assms closure_minimal extreme_point_of_def hull_minimal)
    moreover have }u\in\mathrm{ closure (convex hull {x.x extreme_point_of S})
                    if u\inS for }
    proof (rule ccontr)
    assume unot: u & closure(convex hull {x. x extreme_point_of S})
        then obtain ab where a \cdotu<b
            and ab:\x.x closure(convex hull {x. x extreme_point_of S})\Longrightarrowb<
a • x
            using separating_hyperplane_closed_point [of closure(convex hull {x.x ex-
treme_point_of S})]
            by blast
        have continuous_on S((`)a)
```

```
    by (rule continuous_intros)+
    then obtain \(m\) where \(m \in S\) and \(m: \bigwedge y . y \in S \Longrightarrow a \cdot m \leq a \cdot y\)
    using continuous_attains_inf \([\) of \(S \lambda x . a \cdot x]\langle\) compact \(S\rangle\langle u \in S\rangle\)
    by auto
    define \(T\) where \(T=S \cap\{x . a \cdot x=a \cdot m\}\)
    have \(m \in T\)
        by ( simp add: \(\left.T_{-} d e f\langle m \in S\rangle\right)\)
    moreover have compact \(T\)
    by (simp add: T_def compact_Int_closed [OF 〈compact S〉closed_hyperplane])
    moreover have convex \(T\)
    by (simp add: T_def convex_Int [OF 〈convex S〉convex_hyperplane])
    ultimately obtain \(v\) where \(v: v\) extreme_point_of \(T\)
    using extreme_point_exists_convex [of \(T\) ] by auto
    then have \(\{v\}\) face_of \(T\)
    by (simp add: face_of_singleton)
    also have \(T\) face_of \(S\)
        by (simp add: T_def \(m\) face_of_Int_supporting_hyperplane_ge [OF 〈convex \(S\rangle\) ])
    finally have \(v\) extreme_point_of \(S\)
        by (simp add: face_of_singleton)
    then have \(b<a \cdot v\)
        using closure_subset by (simp add: closure_hull hull_inc ab)
    then show False
        using \(\langle a \cdot u\langle b\rangle\langle\{v\}\) face_of \(T\rangle\) face_of_imp_subset \(m\) T_def that by fastforce
qed
ultimately show ?thesis
    by blast
qed
Now the sharper form．
lemma Krein＿Milman＿Minkowski＿aux：
fixes \(S\) ：：＇a：：euclidean＿space set
    assumes \(n\) : \(\operatorname{dim} S=n\) and \(S\) : compact \(S\) convex \(S 0 \in S\)
        shows \(0 \in\) convex hull \(\{x\). x extreme_point_of \(S\}\)
using \(n S\)
proof (induction \(n\) arbitrary: \(S\) rule: less_induct)
    case (less \(n S\) ) show ?case
    proof (cases \(0 \in\) rel_interior \(S\) )
    case True with Krein_Milman less.prems
    show ?thesis
    by (metis subsetD convex_convex_hull convex_rel_interior_closure rel_interior_subset)
next
    case False
    have rel_interior \(S \neq\{ \}\)
        by (simp add: rel_interior_convex_nonempty_aux less)
    then obtain \(c\) where \(c: c \in\) rel_interior \(S\) by blast
    obtain \(a\) where \(a \neq 0\)
                            and \(l e \_a y: \bigwedge y . y \in S \Longrightarrow a \cdot 0 \leq a \cdot y\)
                    and less_ay: \(\bigwedge y . y \in\) rel_interior \(S \Longrightarrow a \cdot 0<a \cdot y\)
        by (blast intro: supporting_hyperplane_rel_boundary intro!: less False)
```

have face：$S \cap\{x . a \cdot x=0\}$ face＿of S
using face＿of＿Int＿supporting＿hyperplane＿ge le＿ay 〈convex S 〉 by auto
then have co：compact $(S \cap\{x . a \cdot x=0\})$ convex $(S \cap\{x . a \cdot x=0\})$
using less．prems by（blast intro：face＿of＿imp＿compact face＿of＿imp＿convex）＋
have $a \cdot y=0$ if $y \in \operatorname{span}(S \cap\{x . a \cdot x=0\})$ for y
proof－
have $y \in \operatorname{span}\{x . a \cdot x=0\}$
by（metis inf．cobounded2 span＿mono subsetCE that）
then show ？thesis
by（blast intro：span＿induct［OF＿subspace＿hyperplane］）
qed
then have $\operatorname{dim}(S \cap\{x . a \cdot x=0\})<n$
by（metis（no＿types）less＿ay c subsetD dim＿eq＿span inf．strict＿order＿iff inf＿le1 〈dim $S=n\rangle$ not＿le rel＿interior＿subset span＿0 span＿base）
then have $0 \in$ convex hull $\{x . x$ extreme＿point＿of $(S \cap\{x . a \cdot x=0\})\}$
by（rule less．IH）（auto simp：co less．prems）
then show ？thesis
by（metis（mono＿tags，lifting）Collect＿mono＿iff face extreme＿point＿of＿face hull＿mono subset＿iff）
qed
qed
theorem Krein＿Milman＿Minkowski：
fixes S ：：＇a：：euclidean＿space set
assumes compact S convex S
shows $S=$ convex hull $\{x . x$ extreme＿point＿of $S\}$
proof
show $S \subseteq$ convex hull $\{x . x$ extreme＿point＿of $S\}$
proof
fix a assume $[\operatorname{simp}]: a \in S$
have 1：compact $((+)(-a)$＇$S)$
by（simp add：〈compact S 〉 compact＿translation＿subtract cong：image＿cong＿simp）
have 2：convex $((+)(-a)$＇$S)$
by（simp add：〈convex S 〉compact＿translation＿subtract）
show a＿invex：$a \in$ convex hull $\{x . x$ extreme＿point＿of $S\}$
using Krein＿Milman＿Minkowski＿aux［OF refl 1 2］
convex＿hull＿translation $[$ of $-a]$
by（auto simp：extreme＿points＿of＿translation＿subtract translation＿assoc cong：
image＿cong＿simp）
qed
next
show convex hull $\{x . x$ extreme＿point＿of $S\} \subseteq S$
proof－
have $\{a$ ．a extreme＿point＿of $S\} \subseteq S$
using extreme＿point＿of＿def by blast
then show ？thesis by（simp add：〈convex S 〉hull＿minimal）
qed
qed

6.38.8 Applying it to convex hulls of explicitly indicated finite sets

corollary Krein_Milman_polytope:
fixes S :: 'a::euclidean_space set
shows
finite S
\Longrightarrow convex hull $S=$ convex hull $\{x . x$ extreme_point_of (convex hull $S)\}$
by (simp add: Krein_Milman_Minkowski finite_imp_compact_convex_hull)
lemma extreme_points_of_convex_hull_eq:
fixes S :: 'a::euclidean_space set
shows
\llbracket compact $S ; \wedge T . T \subset S \Longrightarrow$ convex hull $T \neq$ convex hull $S \rrbracket$ $\Longrightarrow\{x . x$ extreme_point_of $($ convex hull $S)\}=S$
by (metis (full_types) Krein_Milman_Minkowski compact_convex_hull convex_convex_hull extreme_points_of_convex_hull psubsetI)
lemma extreme_point_of_convex_hull_eq:
fixes S :: 'a::euclidean_space set
shows
\llbracket compact $S ; \wedge T . T \subset S \Longrightarrow$ convex hull $T \neq$ convex hull $S \rrbracket$
$\Longrightarrow(x$ extreme_point_of $($ convex hull $S) \longleftrightarrow x \in S)$
using extreme_points_of_convex_hull_eq by auto
lemma extreme_point_of_convex_hull_convex_independent:
fixes S :: 'a::euclidean_space set
assumes compact S and $S: \bigwedge a . a \in S \Longrightarrow a \notin$ convex hull $(S-\{a\})$
shows (x extreme_point_of (convex hull $S) \longleftrightarrow x \in S$)
proof -
have convex hull $T \neq$ convex hull S if $T \subset S$ for T
proof -
obtain a where $T \subseteq S a \in S a \notin T$ using $\langle T \subset S\rangle$ by blast
then show ?thesis
by (metis (full_types) Diff_eq_empty_iff Diff_insert0 S hull_mono hull_subset
insert_Diff_single subsetCE)
qed
then show ?thesis
by (rule extreme_point_of_convex_hull_eq [OF 〈compact $S\rangle]$)
qed
lemma extreme_point_of_convex_hull_affine_independent:
fixes S :: 'a::euclidean_space set
shows
\neg affine_dependent S

```
\Longrightarrow ( x ~ e x t r e m e \_ p o i n t \_ o f ~ ( c o n v e x ~ h u l l ~ S ) ~ \longleftrightarrow x ~ \in S )
```

by (metis aff_independent_finite affine_dependent_def affine_hull_convex_hull extreme_point_of_convex_hull finite_imp_compact hull_inc)

Elementary proofs exist, not requiring Euclidean spaces and all this development
lemma extreme_point_of_convex_hull_2:
fixes x :: 'a::euclidean_space
shows x extreme_point_of (convex hull $\{a, b\}) \longleftrightarrow x=a \vee x=b$
proof -
have x extreme_point_of (convex hull $\{a, b\}) \longleftrightarrow x \in\{a, b\}$
by (intro extreme_point_of_convex_hull_affine_independent affine_independent_2)
then show ?thesis
by simp
qed
lemma extreme_point_of_segment:
fixes x :: 'a::euclidean_space
shows
x extreme_point_of closed_segment $a b \longleftrightarrow x=a \vee x=b$
by (simp add: extreme_point_of_convex_hull_2 segment_convex_hull)
lemma face_of_convex_hull_subset:
fixes S :: 'a::euclidean_space set
assumes compact S and T : T face_of (convex hull S)
obtains s^{\prime} where $s^{\prime} \subseteq S T=$ convex hull s^{\prime}
proof
show $\{x . x$ extreme_point_of $T\} \subseteq S$
using T extreme_point_of_convex_hull extreme_point_of_face by blast
show $T=$ convex hull $\{x$. x extreme_point_of $T\}$
proof (rule Krein_Milman_Minkowski)
show compact T
using T assms compact_convex_hull face_of_imp_compact by auto
show convex T
using T face_of_imp_convex by blast
qed
qed
lemma face_of_convex_hull_aux:
assumes eq: $x *_{R} p=u *_{R} a+v *_{R} b+w *_{R} c$
and $x: u+v+w=x x \neq 0$ and S : affine $S a \in S b \in S c \in S$
shows $p \in S$
proof -
have $p=\left(u *_{R} a+v *_{R} b+w *_{R} c\right) /{ }_{R} x$
by (metis $\langle x \neq 0\rangle$ eq mult.commute right_inverse scaleR_one scaleR_scale R)
moreover have affine hull $\{a, b, c\} \subseteq S$
by (simp add: S hull_minimal)
moreover have $\left(u *_{R} a+v *_{R} b+w *_{R} c\right) /{ }_{R} x \in$ affine hull $\{a, b, c\}$

```
    apply (simp add: affine_hull_3)
    apply (rule_tac x=u/x in exI)
    apply (rule_tac x=v/x in exI)
    apply (rule_tac x=w/x in exI)
    using x apply (auto simp: field_split_simps)
    done
    ultimately show ?thesis by force
qed
proposition face_of_convex_hull_insert_eq:
    fixes a :: ' }a\mathrm{ :: euclidean_space
    assumes finite S and a:a\not\in affine hull S
    shows (F face_of (convex hull (insert a S)) \longleftrightarrow
        F face_of (convex hull S) \vee
        (\exists\mp@subsup{F}{}{\prime}.\mp@subsup{F}{}{\prime}\mathrm{ face_of (convex hull S)}\wedgeF= convex hull (insert a F')))
        (is F face_of ?CAS \longleftrightarrow _)
proof safe
    assume F:F face_of ?CAS
        and *: #F\mp@subsup{F}{}{\prime}.\mp@subsup{F}{}{\prime}\mathrm{ face_of convex hull S ^F= convex hull insert a F'}
    obtain T where T:T\subseteq insert a S and FeqT:F= convex hull T
    by (metis F<finite S> compact_insert finite_imp_compact face_of_convex_hull_subset)
    show F face_of convex hull S
    proof (cases a }\inT\mathrm{ )
        case True
    have F= convex hull insert a (convex hull T \cap convex hull S)
    proof
        have T\subseteq insert a (convex hull T\cap convex hull S)
            using T hull_subset by fastforce
        then show F\subseteqconvex hull insert a (convex hull T\cap convex hull S)
            by (simp add: FeqT hull_mono)
        show convex hull insert a (convex hull T \cap convex hull S)\subseteqF
            by (simp add: FeqT True hull_inc hull_minimal)
    qed
    moreover have convex hull T \cap convex hull S face_of convex hull S
        by (metis F FeqT convex_convex_hull face_of_slice hull_mono inf.absorb_iff2
subset_insertI)
    ultimately show ?thesis
        using * by force
    next
        case False
        then show ?thesis
        by (metis FeqT F T face_of_subset hull_mono subset_insert subset_insertI)
    qed
next
    assume F face_of convex hull S
    show F face_of ?CAS
        by (simp add: <F face_of convex hull S〉 a face_of_convex_hull_insert 〈finite S`)
next
    fix F
```

assume F : F face_of convex hull S
show convex hull insert a F face_of ?CAS
proof (cases $S=\{ \}$)
case True
then show ?thesis
using F face_of_affine_eq by auto
next
case False
have anotc: $a \notin$ convex hull S
by (metis (no_types) a affine_hull_convex_hull hull_inc)
show ?thesis
proof (cases $F=\{ \}$)
case True show ?thesis
using anotc by (simp add: $\langle F=\{ \}\rangle\langle f i n i t e ~ S\rangle$ extreme_point_of_convex_hull_insert
face_of_singleton)
next
case False
have convex hull insert a $F \subseteq$?CAS
by (simp add: Fa<finite $S\rangle$ convex_hull_subset face_of_convex_hull_insert face_of_imp_subset hull_inc)

moreover

have $\left(\exists y v .(1-u b) *_{R} a+u b *_{R} b=(1-v) *_{R} a+v *_{R} y \wedge\right.$ $0 \leq v \wedge v \leq 1 \wedge y \in F) \wedge$
$\left(\exists x u .(1-u c) *_{R} a+u c *_{R} c=(1-u) *_{R} a+u *_{R} x \wedge\right.$
$0 \leq u \wedge u \leq 1 \wedge x \in F)$
if $*:(1-u x) *_{R} a+u x *_{R} x$

$$
\in \text { open_segment }\left((1-u b) *_{R} a+u b *_{R} b\right)\left((1-u c) *_{R} a+u c *_{R}\right.
$$

c)
and $0 \leq u b u b \leq 10 \leq u c u c \leq 10 \leq u x u x \leq 1$
and $b: b \in$ convex hull S and $c: c \in$ convex hull S and $x \in F$
for $b c u b u c u x x$
proof -
have xah: $x \in$ affine hull S
using F convex_hull_subset_affine_hull face_of_imp_subset $\langle x \in F\rangle$ by blast
have ah: $b \in$ affine hull $S c \in$ affine hull S
using b c convex_hull_subset_affine_hull by blast+
obtain v where $n e:(1-u b) *_{R} a+u b *_{R} b \neq(1-u c) *_{R} a+u c *_{R} c$ and eq: $(1-u x) *_{R} a+u x *_{R} x=$

$$
(1-v) *_{R}\left((1-u b) *_{R} a+u b *_{R} b\right)+v *_{R}\left((1-u c) *_{R} a+\right.
$$

$\left.u c *_{R} c\right)$
and $0<v v<1$
using $*$ by (auto simp: in_segment)
then have $0:((1-u x)-((1-v) *(1-u b)+v *(1-u c))) *_{R} a+$ $\left(u x *_{R} x-\left(((1-v) * u b) *_{R} b+(v * u c) *_{R} c\right)\right)=0$
by (auto simp: algebra_simps)
then have $((1-u x)-((1-v) *(1-u b)+v *(1-u c))) *_{R} a=$ $((1-v) * u b) *_{R} b+(v * u c) *_{R} c+(-u x) *_{R} x$
by (auto simp: algebra_simps)
then have $a \in$ affine hull S if $1-u x-((1-v) *(1-u b)+v *(1-$
uc)) $\neq 0$
by (rule face_of_convex_hull_aux) (use b c xah ah that in <auto simp: algebra_simps〉)
then have $1-u x-((1-v) *(1-u b)+v *(1-u c))=0$
using a by blast
with 0 have equx: $(1-v) * u b+v * u c=u x$
and $u x x: u x *_{R} x=\left(((1-v) * u b) *_{R} b+(v * u c) *_{R} c\right)$
by auto (auto simp: algebra_simps)
show ?thesis
proof (cases uc=0)
case True
then show ?thesis
using equx $\langle 0 \leq u b\rangle\langle u b \leq 1\rangle\langle v<1\rangle u x x\langle x \in F\rangle$ by force
next
case False
show ?thesis
proof (cases $u b=0$)
case True
then show ?thesis
using equx $\langle 0 \leq u c\rangle\langle u c \leq 1\rangle\langle 0<v\rangle u x x\langle x \in F\rangle$ by force
next
case False
then have $0<u b 0<u c$
using $\langle u c \neq 0\rangle\langle 0 \leq u b\rangle\langle 0 \leq u c\rangle$ by auto
then have $(1-v) * u b>0 v * u c>0$
by (simp_all add: $\langle 0<u c\rangle\langle 0<v\rangle\langle v<1\rangle)$
then have $u x \neq 0$
using equx $\langle 0<v\rangle$ by auto
have $b \in F \wedge c \in F$
proof (cases $b=c$)
case True
then show ?thesis
by (metis $\langle u x \neq 0\rangle$ equx real_vector.scale_cancel_left scaleR_add_left
$u x x\langle x \in F 〉)$
next
case False
have $x=\left(((1-v) * u b) *_{R} b+(v * u c) *_{R} c\right) / R u x$
by (metis $\langle u x \neq 0\rangle u x x$ mult.commute right_inverse scaleR_one
scaleR_scale R)
also have $\ldots=(1-v * u c / u x) *_{R} b+(v * u c / u x) *_{R} c$
using $\langle u x \neq 0\rangle$ equx apply (auto simp: field_split_simps)
by (metis add.commute add_diff_eq add_divide_distrib diff_add_cancel
scaleR_add_left)
finally have $x=(1-v * u c / u x) *_{R} b+(v * u c / u x) *_{R} c$.
then have $x \in$ open_segment $b c$
apply (simp add: in_segment $\langle b \neq c\rangle$)
apply (rule_tac $x=(v * u c) / u x$ in $e x I)$
using $\langle 0 \leq u x\rangle\langle u x \neq 0\rangle\langle 0<u c\rangle\langle 0<v\rangle\langle 0<u b\rangle\langle v<1\rangle$ equx
apply (force simp: field_split_simps)

```
                    done
                    then show ?thesis
                        by (rule face_ofD [OF F _ b c<x \in F`])
                qed
                with \langle0 \leq ub\rangle\langleub\leq1\rangle\langle0\lequc\rangle\langleuc\leq 1\rangle show ?thesis by blast
                qed
            qed
            qed
            moreover have convex hull F=F
                by (meson F convex_hull_eq face_of_imp_convex)
            ultimately show ?thesis
            unfolding face_of_def by (fastforce simp: convex_hull_insert_alt 〈S # {}><F
\not={}>)
        qed
    qed
qed
lemma face_of_convex_hull_insert2:
    fixes a :: 'a :: euclidean_space
    assumes S: finite S and a: a \not\in affine hull S and F:F face_of convex hull S
    shows convex hull (insert a F) face_of convex hull (insert a S)
    by (metis F face_of_convex_hull_insert_eq [OF S a])
proposition face_of_convex_hull_affine_independent:
    fixes S :: 'a::euclidean_space set
    assumes \negaffine_dependent S
        shows (T face_of (convex hull S) \longleftrightarrow(\existsc.c\subseteqS\wedgeT= convex hull c))
            (is ?lhs = ?rhs)
proof
    assume ?lhs
    then show ?rhs
    by (meson <T face_of convex hull S` aff_independent_finite assms face_of_convex_hull_subset
finite_imp_compact)
next
    assume ?rhs
    then obtain c where c\subseteqS and T:T= convex hull c
        by blast
    have affine hull c \cap affine hull (S-c)={}
        by (intro disjoint_affine_hull [OF assms «c \subseteqS`], auto)
    then have affine hull c\cap convex hull (S-c)={}
        using convex_hull_subset_affine_hull by fastforce
    then show?!hs
        by (metis face_of_convex_hulls «c \subseteqS> aff_independent_finite assms T)
qed
lemma facet_of_convex_hull_affine_independent:
    fixes S :: 'a::euclidean_space set
    assumes \negaffine_dependent S
        shows T facet_of (convex hull S) \longleftrightarrow
```

```
        T\not={}\wedge(\existsu.u\inS\wedgeT= convex hull (S-{u}))
        (is ?lhs = ?rhs)
proof
    assume ?lhs
    then have T face_of (convex hull S) T\not={}
        and afft: aff_dim T = aff_dim (convex hull S) - 1
        by (auto simp: facet_of_def)
    then obtain c where c\subseteqS and c:T=convex hull c
        by (auto simp: face_of_convex_hull_affine_independent [OF assms])
    then have affs: aff_dim S = aff_dim c + 1
        by (metis aff_dim_convex_hull afft eq_diff_eq)
    have }\neg\mathrm{ affine_dependent c
        using 〈c\subseteqS` affine_dependent_subset assms by blast
    with affs have card (S-c)=1
        apply (simp add: aff_dim_affine_independent [symmetric] aff_dim_convex_hull)
            by (metis aff_dim_affine_independent aff_independent_finite One_nat_def <c \subseteq
S> add.commute
                    add_diff_cancel_right' assms card_Diff_subset card_mono of_nat_1
of_nat_diff of_nat_eq_iff)
    then obtain u where u:u\inS - c
    by (metis DiffI 〈c\subseteqS`aff_independent_finite assms cancel_comm_monoid_add_class.diff_cancel
                card_Diff_subset subsetI subset_antisym zero_neq_one)
    then have u:S= insert uc
        by (metis Diff_subset \langlec\subseteqS\rangle\langlecard (S-c)=1\rangle card_1_singletonE double_diff
insert_Diff insert_subset singletonD)
    have T = convex hull (c-{u})
        by (metis Diff_empty Diff_insert0 <T facet_of convex hull S〉 c facet_of_irrefl
insert_absorb u)
    with }\langleT\not={}\rangle\mathrm{ show ?rhs
        using cu by auto
    next
    assume ?rhs
    then obtain }u\mathrm{ where T}\not={}u\inS\mathrm{ and }u:T=\mathrm{ convex hull (S-{u})
        by (force simp: facet_of_def)
    then have }\negS\subseteq{u
        using <T \not={}> u by auto
    have aff_dim (S-{u}) = aff_dim S - 1
        using assms }\langleu\inS
        unfolding affine_dependent_def
        by (metis add_diff_cancel_right' aff_dim_insert insert_Diff [of u S])
    then have aff_dim (convex hull (S - {u})) =aff_dim (convex hull S) - 1
        by (simp add: aff_dim_convex_hull)
    then show?lhs
        by (metis Diff_subset 〈T\not={}\rangle assms face_of_convex_hull_affine_independent
facet_of_def u)
qed
lemma facet_of_convex_hull_affine_independent_alt:
    fixes S :: 'a::euclidean_space set
```

```
    assumes \negaffine_dependent S
    shows (T facet_of (convex hull S) \longleftrightarrow2 \leq card S ^(\existsu.u GS ^T= convex
hull (S - {u})))
            (is ?lhs = ?rhs)
proof
    assume L:?lhs
    then obtain }x\mathrm{ where
        x S and x:T = convex hull (S-{x}) and finite S
        using assms facet_of_convex_hull_affine_independent aff_independent_finite by
blast
    moreover have Suc (Suc 0) \leq card S
```



```
    by (metis Suc_leI assms card.remove convex_hull_eq_empty card_gt_0_iff facet_of_convex_hull_affine_inder
finite_Diff not_less_eq_eq)
    ultimately show ?rhs
        by auto
next
    assume ?rhs then show ?lhs
        using assms
        by (auto simp: facet_of_convex_hull_affine_independent Set.subset_singleton_iff)
qed
lemma segment_face_of:
    assumes (closed_segment a b) face_of S
    shows a extreme_point_of S b extreme_point_of S
proof -
    have as: {a} face_of S
    by (metis (no_types) assms convex_hull_singleton empty_iff extreme_point_of_convex_hull_insert
face_of_face face_of_singleton finite.emptyI finite.insertI insert_absorb insert_iff seg-
ment_convex_hull)
    moreover have {b} face_of S
    proof -
        have b}\in\mathrm{ convex hull {a}` b extreme_point_of convex hull {b,a}
            by (meson extreme_point_of_convex_hull_insert finite.emptyI finite.insertI)
        moreover have closed_segment a b= convex hull {b,a}
            using closed_segment_commute segment_convex_hull by blast
            ultimately show ?thesis
            by (metis as assms face_of_face convex_hull_singleton empty_iff face_of_singleton
insertE)
            qed
    ultimately show a extreme_point_of S b extreme_point_of S
        using face_of_singleton by blast+
qed
```

proposition Krein_Milman_frontier:
fixes S :: 'a::euclidean_space set
assumes convex S compact S
shows $S=$ convex hull (frontier S)

```
    (is ?lhs = ?rhs)
proof
    have ?lhs \subseteqconvex hull {x.x extreme_point_of S}
        using Krein_Milman_Minkowski assms by blast
    also have .. \subseteq? ?rhs
    proof (rule hull_mono)
        show {x. x extreme_point_of S}\subseteq frontier S
            using closure_subset
            by (auto simp: frontier_def extreme_point_not_in_interior extreme_point_of_def)
    qed
    finally show ?lhs \subseteq?rhs .
next
    have ?rhs \subseteq convex hull S
    by (metis Diff_subset \compact S` closure_closed compact_eq_bounded_closed fron-
tier_def hull_mono)
    also have ... }\subseteq\mathrm{ ?lhs
        by (simp add: <convex S` hull_same)
    finally show ?rhs \subseteq? ?lhs .
qed
```


6.38.9 Polytopes

definition polytope where
polytope $S \equiv \exists v$. finite $v \wedge S=$ convex hull v
lemma polytope_translation_eq: polytope (image $(\lambda x . a+x) S) \longleftrightarrow$ polytope S
proof -
have $\bigwedge a$ A. polytope $A \Longrightarrow$ polytope $\left((+) a{ }^{\prime} A\right)$
by (metis (no_types) convex_hull_translation finite_imageI polytope_def)
then show ?thesis
by (metis (no_types) add.left_inverse image_add_0 translation_assoc)
qed
lemma polytope_linear_image: $\llbracket l$ linear $f ;$ polytope $p \rrbracket \Longrightarrow$ polytope (image f p) unfolding polytope_def using convex_hull_linear_image by blast
lemma polytope_empty: polytope $\}$
using convex_hull_empty polytope_def by blast
lemma polytope_convex_hull: finite $S \Longrightarrow$ polytope (convex hull S)
using polytope_def by auto
lemma polytope_Times: \llbracket polytope S; polytope $T \rrbracket \Longrightarrow$ polytope $(S \times T)$
unfolding polytope_def
by (metis finite_cartesian_product convex_hull_Times)
lemma face_of_polytope_polytope:
fixes S :: 'a::euclidean_space set shows \llbracket polytope $S ; F$ face_of $S \rrbracket \Longrightarrow$ polytope F

```
unfolding polytope_def
by (meson face_of_convex_hull_subset finite_imp_compact finite_subset)
lemma finite_polytope_faces:
    fixes S :: 'a::euclidean_space set
    assumes polytope S
    shows finite {F.F face_of S}
proof -
    obtain v where finite vS= convex hull v
        using assms polytope_def by auto
    have finite ((hull) convex ' {T.T\subseteqv})
        by (simp add:<finite v>)
    moreover have {F.F face_of S}\subseteq((hull) convex ' {T.T\subseteqv})
    by (metis (no_types, lifting) <finite v>\langleS = convex hull v〉 face_of_convex_hull_subset
finite_imp_compact image_eqI mem_Collect_eq subsetI)
    ultimately show ?thesis
        by (blast intro: finite_subset)
qed
lemma finite_polytope_facets:
    assumes polytope S
    shows finite {T.T facet_of S}
by (simp add: assms facet_of_def finite_polytope_faces)
lemma polytope_scaling:
    assumes polytope S shows polytope (image ( }\lambdax.c\mp@subsup{*}{R}{}x)S\mathrm{ )
by (simp add: assms polytope_linear_image)
lemma polytope_imp_compact:
    fixes S :: 'a::real_normed_vector set
    shows polytope S\Longrightarrow compact }
by (metis finite_imp_compact_convex_hull polytope_def)
lemma polytope_imp_convex: polytope S C convex }
    by (metis convex_convex_hull polytope_def)
lemma polytope_imp_closed:
    fixes S :: 'a::real_normed_vector set
    shows polytope S closed S
by (simp add: compact_imp_closed polytope_imp_compact)
lemma polytope_imp_bounded:
    fixes S :: 'a::real_normed_vector set
    shows polytope S\Longrightarrow bounded S
by (simp add: compact_imp_bounded polytope_imp_compact)
lemma polytope_interval: polytope(cbox a b)
    unfolding polytope_def by (meson closed_interval_as_convex_hull)
```

```
lemma polytope_sing: polytope {a}
    using polytope_def by force
lemma face_of_polytope_insert:
    \llbracketpolytope S; a \not\in affine hull S;F face_of S\rrbracket\LongrightarrowF face_of convex hull (insert a
S)
    by (metis (no_types, lifting) affine_hull_convex_hull face_of_convex_hull_insert hull_insert
polytope_def)
proposition face_of_polytope_insert2:
    fixes a :: ' }a\mathrm{ :: euclidean_space
    assumes polytope S a #affine hull S F face_of S
    shows convex hull (insert a F) face_of convex hull (insert a S)
proof -
    obtain V where finite V S = convex hull V
        using assms by (auto simp: polytope_def)
    then have convex hull (insert a F) face_of convex hull (insert a V)
        using affine_hull_convex_hull assms face_of_convex_hull_insert2 by blast
    then show ?thesis
        by (metis }\langleS=\mathrm{ convex hull V` hull_insert)
qed
```


6.38.10 Polyhedra

definition polyhedron where

polyhedron $S \equiv$

```
\(\exists F\). finite \(F \wedge\)
    \(S=\bigcap F \wedge\)
    \((\forall h \in F . \exists a b . a \neq 0 \wedge h=\{x \cdot a \cdot x \leq b\})\)
```

lemma polyhedron_Int [intro,simp]:
$\llbracket p o l y h e d r o n S$; polyhedron $T \rrbracket \Longrightarrow$ polyhedron $(S \cap T)$
apply (clarsimp simp add: polyhedron_def)
subgoal for $F G$
by (rule_tac $x=F \cup G$ in exI, auto)
done
lemma polyhedron_UNIV [iff]: polyhedron UNIV
unfolding polyhedron_def
by (rule_tac $x=\{ \}$ in exI) auto
lemma polyhedron_Inter [intro,simp]:
\llbracket finite $F ; \wedge S . S \in F \Longrightarrow$ polyhedron $S \rrbracket \Longrightarrow$ polyhedron $(\bigcap F)$
by (induction F rule: finite_induct) auto
lemma polyhedron_empty [iff]: polyhedron (\{\} :: 'a :: euclidean_space set)
proof -
define $i::^{\prime} a$ where $(i \equiv$ SOME $i . i \in$ Basis $)$

```
    have \(\exists a . a \neq 0 \wedge(\exists b .\{x . i \cdot x \leq-1\}=\{x \cdot a \cdot x \leq b\})\)
    by (rule_tac \(x=i\) in exI) (force simp: \(i_{\text {_def SOME_Basis nonzero_Basis) }}\)
    moreover have \(\exists a b . a \neq 0 \wedge\{x .-i \cdot x \leq-1\}=\{x . a \cdot x \leq b\}\)
        apply (rule_tac \(x=-i\) in \(e x I\) )
        apply (rule_tac \(x=-1\) in exI)
        apply (simp add: i_def SOME_Basis nonzero_Basis)
        done
    ultimately show? thesis
        unfolding polyhedron_def
        by (rule_tac \(x=\{\{x . i \cdot x \leq-1\},\{x .-i \cdot x \leq-1\}\}\) in exI) force
qed
lemma polyhedron_halfspace_le:
    fixes \(a\) :: ' \(a\) :: euclidean_space
    shows polyhedron \(\{x . a \cdot x \leq b\}\)
proof (cases \(a=0\) )
    case True then show ?thesis by auto
next
    case False
    then show? ?thesis
        unfolding polyhedron_def
        by (rule_tac \(x=\{\{x . a \cdot x \leq b\}\}\) in exI) auto
qed
lemma polyhedron_halfspace_ge:
    fixes \(a\) :: ' \(a\) :: euclidean_space
    shows polyhedron \(\{x . a \cdot x \geq b\}\)
using polyhedron_halfspace_le \([\) of \(-a-b]\) by simp
lemma polyhedron_hyperplane:
    fixes \(a\) :: ' \(a\) :: euclidean_space
    shows polyhedron \(\{x . a \cdot x=b\}\)
proof -
    have \(\{x . a \cdot x=b\}=\{x \cdot a \cdot x \leq b\} \cap\{x . a \cdot x \geq b\}\)
        by force
    then show ?thesis
        by (simp add: polyhedron_halfspace_ge polyhedron_halfspace_le)
qed
lemma affine_imp_polyhedron:
    fixes \(S\) :: 'a :: euclidean_space set
    shows affine \(S \Longrightarrow\) polyhedron \(S\)
by (metis affine_hull_eq polyhedron_Inter polyhedron_hyperplane affine_hull_finite_intersection_hyperplanes
[of \(S\) ])
lemma polyhedron_imp_closed:
    fixes \(S\) :: 'a :: euclidean_space set
    shows polyhedron \(S \Longrightarrow\) closed \(S\)
    by (metis closed_Inter closed_halfspace_le polyhedron_def)
```

lemma polyhedron_imp_convex:
fixes S :: ' a :: euclidean_space set
shows polyhedron $S \Longrightarrow$ convex S
by (metis convex_Inter convex_halfspace_le polyhedron_def)
lemma polyhedron_affine_hull:
fixes S :: ' a :: euclidean_space set
shows polyhedron(affine hull S)
by (simp add: affine_imp_polyhedron)

6.38.11 Canonical polyhedron representation making facial structure explicit

proposition polyhedron_Int_affine:
fixes $S::{ }^{\prime} a$:: euclidean_space set
shows polyhedron $S \longleftrightarrow$
$(\exists F$. finite $F \wedge S=($ affine hull $S) \cap \bigcap F \wedge$
$(\forall h \in F . \exists a b . a \neq 0 \wedge h=\{x . a \cdot x \leq b\}))$
(is ?lhs =?rhs)
proof
assume ?lhs then show ?rhs
using hull_subset polyhedron_def by fastforce
next
assume ?rhs then show? ?lhs
by (metis polyhedron_Int polyhedron_Inter polyhedron_affine_hull polyhedron_halfspace_le)
qed
proposition rel_interior_polyhedron_explicit:
assumes finite F
and seq: $S=$ affine hull $S \cap \bigcap F$
and faceq: $\bigwedge h . h \in F \Longrightarrow a h \neq 0 \wedge h=\{x . a h \cdot x \leq b h\}$
and psub: $\bigwedge F^{\prime} . F^{\prime} \subset F \Longrightarrow S \subset$ affine hull $S \cap \cap F^{\prime}$
shows rel_interior $S=\{x \in S . \forall h \in F . a h \cdot x<b h\}$
proof -
have rels: $\bigwedge x . x \in$ rel_interior $S \Longrightarrow x \in S$
by (meson IntE mem_rel_interior)
moreover have $a i \cdot x<b i$ if $x: x \in$ rel_interior S and $i \in F$ for $x i$
proof -
have fif: $F-\{i\} \subset F$
using $\langle i \in F\rangle$ Diff_insert_absorb Diff_subset set_insert psubsetI by blast
then have $S \subset$ affine hull $S \cap \bigcap(F-\{i\})$
by (rule psub)
then obtain z where ssub: $S \subseteq \bigcap(F-\{i\})$ and zint: $z \in \bigcap(F-\{i\})$
and $z \notin S$ and zaff: $z \in$ affine hull S
by auto
have $z \neq x$
using 〈 $z \notin S$ 〉 rels x by blast
have $z \notin$ affine hull $S \cap \bigcap F$
using $\langle z \notin S\rangle$ seq by auto
then have aiz: a $i \cdot z>b i$
using faceq zint zaff by fastforce
obtain e where $e>0 x \in S$ and e : ball $x e \cap$ affine hull $S \subseteq S$
using x by (auto simp: mem_rel_interior_ball)
then have ins: $\bigwedge y$. \llbracket norm $(x-y)<e ; y \in$ affine hull $S \rrbracket \Longrightarrow y \in S$
by (metis IntI subsetD dist_norm mem_ball)
define ξ where $\xi=\min (1 / 2)(e / 2 / \operatorname{norm}(z-x))$
have $\operatorname{norm}\left(\xi *_{R} x-\xi *_{R} z\right)=\operatorname{norm}\left(\xi *_{R}(x-z)\right)$
by (simp add: ξ _def algebra_simps norm_mult)
also have $\ldots=\xi *$ norm $(x-z)$
using $\langle e>0\rangle$ by (simp add: $\xi_{-} d e f$)
also have $\ldots<e$
using $\langle z \neq x\rangle\langle e\rangle 0\rangle$ by (simp add: ξ_{-}def min_def field_split_simps norm_minus_commute)
finally have lte: norm $\left(\xi *_{R} x-\xi *_{R} z\right)<e$.
have ξ_{-}aff: $\xi *_{R} z+(1-\xi) *_{R} x \in$ affine hull S
by (metis $\langle x \in S\rangle$ add.commute affine_affine_hull diff_add_cancel hull_inc
mem_affine zaff)
have $\xi *_{R} z+(1-\xi) *_{R} x \in S$
using ins $\left[O F_{-} \xi_{-} a f f\right]$ by (simp add: algebra_simps lte)
then obtain l where $l: 0<l l<1$ and $l s:\left(l *_{R} z+(1-l) *_{R} x\right) \in S$
using $\langle e>0\rangle\langle z \neq x\rangle$
by (rule_tac $l=\xi$ in that) (auto simp: ξ_{-}def)
then have $i: l *_{R} z+(1-l) *_{R} x \in i$
using seq $\langle i \in F\rangle$ by auto
have $b i * l+(a i \cdot x) *(1-l)<a i \cdot\left(l *_{R} z+(1-l) *_{R} x\right)$
using l by (simp add: algebra_simps aiz)
also have $\ldots \leq b i$ using $i l$
using faceq mem_Collect_eq $\langle i \in F\rangle$ by blast
finally have $(a i \cdot x) *(1-l)<b i *(1-l)$
by (simp add: algebra_simps)
with l show ?thesis
by simp
qed
moreover have $x \in$ rel_interior S
if $x \in S$ and less: $\bigwedge h . h \in F \Longrightarrow a h \cdot x<b h$ for x
proof -
have 1: $\bigwedge h . h \in F \Longrightarrow x \in$ interior h
by (metis interior_halfspace_le mem_Collect_eq less faceq)
have 2: $\bigwedge y . \llbracket \forall h \in F . y \in$ interior $h ; y \in$ affine hull $S \rrbracket \Longrightarrow y \in S$
by (metis IntI Inter_iff subsetD interior_subset seq)
show ?thesis
apply (simp add: rel_interior $\langle x \in S\rangle$)
apply (rule_tac $x=\bigcap h \in F$. interior h in $e x I$)
apply (auto simp: 〈finite F〉open_INT 1 2)
done
qed
ultimately show ?thesis by blast
qed

```
lemma polyhedron_Int_affine_parallel:
    fixes \(S::\) ' \(a\) :: euclidean_space set
    shows polyhedron \(S \longleftrightarrow\)
            ( \(\exists F\). finite \(F \wedge\)
                \(S=(\) affine hull \(S) \cap(\cap F) \wedge\)
                \((\forall h \in F . \exists a b . a \neq 0 \wedge h=\{x . a \cdot x \leq b\} \wedge\)
                                    \((\forall x \in\) affine hull \(S .(x+a) \in\) affine hull \(S)))\)
    (is ?lhs =?rhs)
proof
    assume ?lhs
    then obtain \(F\) where finite \(F\) and seq: \(S=(\) affine hull \(S) \cap \bigcap F\)
                                    and faces: \(\bigwedge h . h \in F \Longrightarrow \exists a b . a \neq 0 \wedge h=\{x . a \cdot x \leq b\}\)
    by (fastforce simp add: polyhedron_Int_affine)
    then obtain \(a b\) where \(a b: \bigwedge h . h \in F \Longrightarrow a h \neq 0 \wedge h=\{x . a h \cdot x \leq b h\}\)
    by metis
    show ?rhs
    proof -
    have \(\exists a^{\prime} b^{\prime} . a^{\prime} \neq 0 \wedge\)
                affine hull \(S \cap\left\{x . a^{\prime} \cdot x \leq b^{\prime}\right\}=\) affine hull \(S \cap h \wedge\)
                \(\left(\forall w \in\right.\) affine hull \(S .\left(w+a^{\prime}\right) \in\) affine hull \(\left.S\right)\)
        if \(h \in F \neg(\) affine hull \(S \subseteq h)\) for \(h\)
    proof -
        have \(a h \neq 0\) and \(h=\{x . a h \cdot x \leq b h\} h \cap \bigcap F=\bigcap F\)
            using \(\langle h \in F\rangle a b\) by auto
            then have (affine hull \(S\) ) \(\cap\{x . a h \cdot x \leq b h\} \neq\{ \}\)
            by (metis (no_types) affine_hull_eq_empty inf.absorb_iff2 inf_assoc inf_bot_right
inf_commute seq that(2))
            moreover have \(\neg(\) affine hull \(S \subseteq\{x . a h \cdot x \leq b h\})\)
                using \(\langle h=\{x\). a \(h \cdot x \leq b h\}\) ) that(2) by blast
            ultimately show ?thesis
            using affine_parallel_slice [of affine hull \(S\) ]
            by (metis \(\langle h=\{x . a h \cdot x \leq b h\}\) affine_affine_hull)
    qed
    then obtain \(a b\)
            where \(a b: \wedge h . \llbracket h \in F ; \neg(\) affine hull \(S \subseteq h) \rrbracket\)
                \(\Longrightarrow a h \neq 0 \wedge\)
                            affine hull \(S \cap\{x . a h \cdot x \leq b h\}=\) affine hull \(S \cap h \wedge\)
                            \((\forall w \in\) affine hull \(S .(w+a h) \in\) affine hull \(S)\)
        by metis
    have seq2: \(S=\) affine hull \(S \cap(\bigcap h \in\{h \in F . \neg\) affine hull \(S \subseteq h\} .\{x . a h \cdot\)
\(x \leq b h\}\) )
            by (subst seq) (auto simp: ab INT_extend_simps)
    show ?thesis
            apply (rule_tac \(x=(\lambda h .\{x . a h \cdot x \leq b h\}) '\{h . h \in F \wedge \neg(\) affine hull \(S \subseteq\)
\(h)\}\) in \(e x I\) )
            apply (intro conjI seq2)
            using 〈finite \(F\) 〉apply force
```

```
        using ab apply blast
        done
    qed
next
    assume ?rhs then show ?lhs
        by (metis polyhedron_Int_affine)
qed
proposition polyhedron_Int_affine_parallel_minimal:
    fixes S ::' ' a :: euclidean_space set
    shows polyhedron S \longleftrightarrow
            ( }\existsF\mathrm{ . finite F }
                S=(affine hull S)\cap (\bigcapF)^
                (\forallh\inF.\existsab.a\not=0^h={x.a\cdotx\leqb}^
                                    (\forallx\inaffine hull S. (x+a)\in affine hull S)) ^
            (\forall\mp@subsup{F}{}{\prime}.\mp@subsup{F}{}{\prime}\subsetF\longrightarrowS\subset(\mathrm{ affine hull S) }\cap(\bigcap\mp@subsup{F}{}{\prime}))}
        (is ?lhs = ?rhs)
proof
    assume ?lhs
    then obtain f0
                where f0: finite f0
                    S=(affine hull S)\cap(\bigcapf0)
                        (is ?P f0)
            \forallh\inf0.\existsab.a\not=0^h={x.a\cdotx\leqb}^
                        (\forallx\in affine hull S. (x+a)\in affine hull S)
                    (is ?Q f0)
        by (force simp: polyhedron_Int_affine_parallel)
    define n where n=(LEAST n. \existsF. card F=n ^ finite F ^?P F ^?Q F)
    have nf: \existsF.card F = n ^ finite F}\wedge ?P F\wedge?Q F
        apply (simp add: n_def)
        apply (rule LeastI [where k= card f0])
        using f0 apply auto
        done
    then obtain F where F: card F=n finite F and seq:?P F and aff: ?Q F
        by blast
    then have }\neg(\mathrm{ finite g}\wedge?P g\wedge?Q g) if card g<n for g
        using that by (auto simp: n_def dest!: not_less_Least)
    then have *: \neg(?P g\wedge?Q g) if g\subsetF for g
        using that 〈finite F\rangle psubset_card_mono <card F = n>
        by (metis finite_Int inf.strict_order_iff)
    have 1: \F'. F'` }\subsetF\LongrightarrowS\subseteq\mathrm{ affine hull }S\cap\bigcap\mp@subsup{F}{}{\prime
        by (subst seq) blast
    have 2: S\not= affine hull }S\cap\bigcap\mp@subsup{F}{}{\prime}\mathrm{ if }\mp@subsup{F}{}{\prime}\subsetF\mathrm{ for }\mp@subsup{F}{}{\prime
        using * [OF that] by (metis IntE aff inf.strict_order_iff that)
    show ?rhs
        by (metis 〈finite F〉 seq aff psubsetI 1 2)
next
    assume ?rhs then show ?lhs
```

```
    by (auto simp: polyhedron_Int_affine_parallel)
qed
lemma polyhedron_Int_affine_minimal:
    fixes S ::' ' a :: euclidean_space set
    shows polyhedron S \longleftrightarrow
            (\existsF. finite F ^S=(affine hull S) \cap\bigcapF^
                    (\forallh\inF.\existsab.a\not=0^h={x.a\cdotx\leqb})^
                    (\forall\mp@subsup{F}{}{\prime}.\mp@subsup{F}{}{\prime}\subsetF\longrightarrowS\subset(\mathrm{ affine hull S) }\cap\bigcap\mp@subsup{F}{}{\prime})}
        (is ?lhs = ?rhs)
proof
    assume ?lhs
    then show ?rhs
        by (force simp: polyhedron_Int_affine_parallel_minimal elim!: ex_forward)
qed (auto simp: polyhedron_Int_affine elim!: ex_forward)
proposition facet_of_polyhedron_explicit:
    assumes finite F
        and seq: }S=\mathrm{ affine hull }S\cap\bigcap
        and faceq: \h. h\inF\Longrightarrowah\not=0^h={x.ah . x \leqbh}
        and psub: \F'. F'\subsetF\LongrightarrowS\subset affine hull S\cap\bigcap 
    shows C facet_of S \longleftrightarrow 
proof (cases S={})
    case True with psub show ?thesis by force
next
    case False
    have polyhedron S
        unfolding polyhedron_Int_affine by (metis 〈finite F〉 faceq seq)
    then have convex S
        by (rule polyhedron_imp_convex)
    with False rel_interior_eq_empty have rel_interior S }\not={}{\mathrm{ by blast
    then obtain x where x\in rel_interior S by auto
    then obtain T where open Tx}\\inTx\inST\cap\mathrm{ affine hull S}\subseteq
        by (force simp: mem_rel_interior)
    then have xaff:x\in affine hull S and xint: }x\in\bigcap
        using seq hull_inc by auto
    have rel_interior S = {x\inS.\forallh\inF.ah•x<bh}
        by (rule rel_interior_polyhedron_explicit [OF〈finite F〉 seq faceq psub])
    with \langlex \in rel_interior S\rangle
    have [simp]: \bigwedgeh. h\inF\Longrightarrowah • < < b h by blast
    have *:(S\cap{x.ah\cdotx=bh}) facet_of S if h\inF for h
    proof -
        have S \subset affine hull S \cap\bigcap(F-{h})
        using psub that by (metis Diff_disjoint Diff_subset insert_disjoint(2) psubsetI)
        then obtain z where zaff: z affine hull S and zint:z\in\bigcap(F-{h}) and
z\not\inS
            by force
            then have z\not=xz\not\inh using seq <x \inS`\mathrm{ by auto}
```

```
    have \(x \in h\) using that xint by auto
    then have able: \(a h \cdot x \leq b h\)
        using faceq that by blast
    also have \(\ldots<a h \cdot z\) using \(\langle z \notin h\rangle\) faceq [OF that] xint by auto
    finally have xltz: \(a h \cdot x<a h \cdot z\).
    define \(l\) where \(l=(b h-a h \cdot x) /(a h \cdot z-a h \cdot x)\)
    define \(w\) where \(w=(1-l) *_{R} x+l *_{R} z\)
    have \(0<l l<1\)
        using able xltz \(\langle b h<a h \cdot z\rangle\langle h \in F\rangle\)
        by (auto simp: l_def field_split_simps)
    have awlt: \(a i \cdot w<b i\) if \(i \in F i \neq h\) for \(i\)
    proof -
    have \((1-l) *(a i \cdot x)<(1-l) * b i\)
        by (simp add: \(\langle l<1\rangle\langle i \in F\rangle)\)
    moreover have \(l *(a i \cdot z) \leq l * b i\)
    proof (rule mult_left_mono)
        show \(a i \cdot z \leq b i\)
            by (metis Diff_insert_absorb Inter_iff Set.set_insert \(\langle h \in F\rangle\) faceq insertE
mem_Collect_eq that zint)
            qed (use \(\langle 0<l\rangle\) in auto)
            ultimately show ?thesis by (simp add: w_def algebra_simps)
    qed
    have weq: \(a h \cdot w=b h\)
        using xltz unfolding \(w_{-}\)def l_def
        by (simp add: algebra_simps) (simp add: field_simps)
    have face \(S: S \cap\{x . a h \cdot x=b h\}\) face_of \(S\)
    proof (rule face_of_Int_supporting_hyperplane_le)
        show \(\bigwedge x . x \in S \Longrightarrow a h \cdot x \leq b h\)
            using faceq seq that by fastforce
    qed fact
    have \(w \in\) affine hull \(S\)
        by (simp add: w_def mem_affine xaff zaff)
    moreover have \(w \in \bigcap F\)
        using \(\langle a h \cdot w=b h\rangle\) awlt faceq less_eq_real_def by blast
    ultimately have \(w \in S\)
        using seq by blast
    with weq have \(n e: S \cap\{x . a h \cdot x=b h\} \neq\{ \}\) by blast
    moreover have affine hull \((S \cap\{x . a h \cdot x=b h\})=(\) affine hull \(S) \cap\{x . a\)
\(h \cdot x=b h\}\)
    proof
        show affine hull \((S \cap\{x . a h \cdot x=b h\}) \subseteq\) affine hull \(S \cap\{x . a h \cdot x=b\)
\(h\}\)
            apply (intro Int_greatest hull_mono Int_lower1)
            apply (metis affine_hull_eq affine_hyperplane hull_mono inf_le2)
            done
    next
        show affine hull \(S \cap\{x . a h \cdot x=b h\} \subseteq\) affine hull \((S \cap\{x . a h \cdot x=b\)
h\})
    proof
```

```
    fix }
    assume yaff:y \in affine hull S\cap{y.ah | y = b h}
    obtain T where 0<T
        and T:\bigwedgej.\llbracketj\inF;j\not=h\rrbracket\LongrightarrowT* (aj | y-aj \cdotw) \leqbj - aj
- w
    proof (cases F-{h} = {})
        case True then show ?thesis
            by (rule_tac T=1 in that) auto
        next
        case False
        then obtain }\mp@subsup{h}{}{\prime}\mathrm{ where }\mp@subsup{h}{}{\prime}:\mp@subsup{h}{}{\prime}\inF-{h} by aut
        let ?body = (\lambdaj. if 0<aj • y-aj \cdotw
        then (bj-aj\cdotw) / (aj\cdoty-aj\cdotw) else 1)'(F-{h})
    define inff where inff = Inf ?body
    from 〈finite F〉 have finite ?body
        by blast
    moreover from }\mp@subsup{h}{}{\prime}\mathrm{ have ?body }\not={
            by blast
    moreover have j>0 if j\in?body for j
    proof -
            from that obtain x where }x\inF\mathrm{ and }x\not=h\mathrm{ and *: j=
                (if 0<ax • y-ax\cdotw
                    then (bx-ax\cdotw)/(ax\cdoty-ax\cdotw) else 1)
            by blast
            with awlt [of x] have ax - w<bx
                by simp
            with * show ?thesis
            by simp
    qed
    ultimately have 0< inff
            by (simp_all add: finite_less_Inf_iff inff_def)
        moreover have inff * (aj | y-aj |w)\leqbj -aj | w
                        if j\inFj\not=h for j
    proof (cases a j • w<aj | y)
            case True
            then have inff \leq(bj-aj\cdotw)/(aj\cdoty-aj\cdotw)
                unfolding inff_def
                    using 〈finite F〉 by (auto intro: cInf_le_finite simp add: that split:
if_split_asm)
            then show ?thesis
                using <0 < inff> awlt [OF that] mult_strict_left_mono
                by (fastforce simp add: field_split_simps split: if_split_asm)
    next
            case False
            with <0 < inff> have inff * (aj | y - aj \cdotw)\leq0
                by (simp add: mult_le_0_iff)
            also have ...<bj - aj . w
                by (simp add: awlt that)
            finally show ?thesis by simp
```

```
    qed
    ultimately show ?thesis
        by (blast intro: that)
    qed
    define C where C=(1-T)** w+T**R}
    have (1-T)**}w+T\mp@subsup{*}{R}{}y\inj\mathrm{ if }j\inF\mathrm{ for }
    proof (cases j=h)
        case True
        have (1-T)*R}w+T\mp@subsup{*}{R}{}y\in{x.ah\cdotx\leqbh
        using weq yaff by (auto simp: algebra_simps)
        with True faceq [OF that] show ?thesis by metis
    next
        case False
        with T that have (1-T)** w+T * * y f {x.aj | x \leq b j}
        by (simp add: algebra_simps)
    with faceq [OF that] show ?thesis by simp
    qed
    moreover have (1-T) *R}w+T\mp@subsup{*}{R}{}y\in\mathrm{ affine hull S
    using yaff }\langlew\in\mathrm{ affine hull S> affine_affine_hull affine_alt by blast
    ultimately have C \inS
    using seq by (force simp: C_def)
    moreover have ah •C=b h
    using yaff by (force simp: C_def algebra_simps weq)
    ultimately have caff:C affine hull ( }S\cap{y.ah\cdoty=bh}
    by (simp add: hull_inc)
    have waff:w a affine hull (S\cap{y.ah\cdoty=b h})
    using }\langlew\inS\rangle\mathrm{ weq by (blast intro: hull_inc)
have yeq: y = (1 - inverse T) ** w+C/R T
    using {0<T\rangle by (simp add: C_def algebra_simps)
show y Gaffine hull ( }S\cap{y.ah\cdoty=bh}
    by (metis yeq affine_affine_hull [simplified affine_alt, rule_format, OF waff
caff])
        qed
    qed
    ultimately have aff_dim (affine hull (S\cap{x.ah •x=b h}))=aff_dim S
- 1
    using <b h<ah •z`zaff by (force simp: aff_dim_affine_Int_hyperplane)
    then show ?thesis
    by (simp add: ne faceS facet_of_def)
qed
show ?thesis
proof
    show \existsh. h\inF\wedgeC=S\cap{x.ah•x=bh}\LongrightarrowC facet_of S
        using * by blast
next
    assume C facet_of S
    then have C face_of S convex C C = {} and affc: aff_dim C=aff_dim S - 1
    by (auto simp: facet_of_def face_of_imp_convex)
    then obtain }x\mathrm{ where }x:x\in\mathrm{ rel_interior C
```

```
    by (force simp: rel_interior_eq_empty)
    then have }x\in
    by (meson subsetD rel_interior_subset)
    then have }x\in
    using \C facet_of S` facet_of_imp_subset by blast
    have rels: rel_interior S ={x\inS.\forallh\inF.ah.x<bh}
    by (rule rel_interior_polyhedron_explicit [OF assms])
    have C\not=S
    using 〈C facet_of S` facet_of_irrefl by blast
    then have x & rel_interior S
    by (metis IntI empty_iff }\langlex\inC\rangle\langleC\not=S\rangle\langleC face_of S\rangle face_of_disjoint_rel_interior
    with rels }\langlex\inS\rangle\mathrm{ obtain i where i}\inF\mathrm{ and i:a i . x \ bi
    by force
    have }x\in{u.ai\cdotu\leqbi
    by (metis IntD2 InterE <i\inF\rangle\langlex\inS\rangle faceq seq)
    then have ai\cdotx\leqbi by simp
    then have a i \cdotx=bi using i by auto
    have}C\subseteqS\cap{x.ai\cdotx=bi
    proof (rule subset_of_face_of [of_S])
        show }S\cap{x.ai\cdotx=bi} face_of 
            by (simp add: * <i \in F` facet_of_imp_face_of)
        show C}\subseteq
            by (simp add: \C face_of S` face_of_imp_subset)
        show }S\cap{x.ai\cdotx=bi}\cap rel_interior C \not={
            using <a i \cdotx=bi\rangle\langlex\inS\ranglex by blast
    qed
    then have cface:C face_of (S\cap{x.ai}\cdotx=bi}
        by (meson \C face_of S` face_of_subset inf_le1)
    have con: convex (S\cap{x.ai \cdot x=bi})
        by (simp add: <convex S` convex_Int convex_hyperplane)
    show \existsh.h\inF\wedgeC=S\cap{x.ah•x=bh}
        apply (rule_tac x=i in exI)
        by (metis (no_types) * <i \inF\rangle affc facet_of_def less_irrefl face_of_aff_dim_lt
[OF con cface])
    qed
qed
lemma face_of_polyhedron_subset_explicit:
    fixes }S::\mp@subsup{}{}{\prime}a\mathrm{ :: euclidean_space set
    assumes finite F
        and seq: S = affine hull S\cap\bigcapF
        and faceq: \h. h\inF\Longrightarrowah\not=0^h={x.ah . x \leq b h}
        and psub: }\\mp@subsup{F}{}{\prime}.\mp@subsup{F}{}{\prime}\subsetF\LongrightarrowS\subset\mathrm{ affine hull }S\cap\bigcap\mp@subsup{F}{}{\prime
        and C:C face_of S and C}={}C\not=
    obtains h}\mathrm{ where }h\inFC\subseteqS\cap{x.ah\cdotx=bh
proof -
    have C}\subseteq\subseteqS\mathrm{ using <C face_of S〉
        by (simp add: face_of_imp_subset)
```

```
    have polyhedron \(S\)
    by (metis 〈finite \(F\) 〉 faceq polyhedron_Int polyhedron_Inter polyhedron_affine_hull
polyhedron_halfspace_le seq)
    then have convex \(S\)
        by (simp add: polyhedron_imp_convex)
    then have \(*:(S \cap\{x . a h \cdot x=b h\})\) face_of \(S\) if \(h \in F\) for \(h\)
        using faceq seq face_of_Int_supporting_hyperplane_le that by fastforce
    have rel_interior \(C \neq\{ \}\)
        using \(C\langle C \neq\{ \}\rangle\) face_of_imp_convex rel_interior_eq_empty by blast
    then obtain \(x\) where \(x \in\) rel_interior \(C\) by auto
    have rels: rel_interior \(S=\{x \in S . \forall h \in F . a h \cdot x<b h\}\)
        by (rule rel_interior_polyhedron_explicit [OF〈finite F〉seq faceq psub])
    then have xnot: \(x \notin\) rel_interior \(S\)
        by (metis IntI \(\langle x \in\) rel_interior \(C\rangle C\langle C \neq S\rangle\) contra_subsetD empty_iff
face_of_disjoint_rel_interior rel_interior_subset)
    then have \(x \in S\)
        using \(\langle C \subseteq S\rangle\langle x \in\) rel_interior \(C\rangle\) rel_interior_subset by auto
    then have xint: \(x \in \bigcap F\)
        using seq by blast
    have \(F \neq\{ \}\) using assms
    by (metis affine_Int affine_Inter affine_affine_hull ex_in_conv face_of_affine_trivial)
    then obtain \(i\) where \(i \in F \neg(a i \cdot x<b i)\)
        using \(\langle x \in S\rangle\) rels xnot by auto
    with xint have ai \(\cdot x=b i\)
        by (metis eq_iff mem_Collect_eq not_le Inter_iff faceq)
    have face: \(S \cap\{x . a i \cdot x=b i\}\) face_of \(S\)
        by (simp add:*〈i \(\in F\rangle\) )
    show ?thesis
    proof
        show \(C \subseteq S \cap\{x . a i \cdot x=b i\}\)
            using subset_of_face_of \([\) OF face \(\langle C \subseteq S\rangle]\langle a i \cdot x=b i\rangle\langle x \in\) rel_interior \(C\rangle\)
\(\langle x \in S\rangle\) by blast
    qed fact
qed
Initial part of proof duplicates that above
proposition face_of_polyhedron_explicit:
    fixes \(S::{ }^{\prime} a\) :: euclidean_space set
    assumes finite \(F\)
        and seq: \(S=\) affine hull \(S \cap \bigcap F\)
        and faceq: \(\bigwedge h . h \in F \Longrightarrow a h \neq 0 \wedge h=\{x . a h \cdot x \leq b h\}\)
        and psub: \(\wedge F^{\prime} . F^{\prime} \subset F \Longrightarrow S \subset\) affine hull \(S \cap \bigcap F^{\prime}\)
        and \(C\) : \(C\) face_of \(S\) and \(C \neq\{ \} C \neq S\)
        shows \(C=\bigcap\{S \cap\{x . a h \cdot x=b h\} \mid h . h \in F \wedge C \subseteq S \cap\{x . a h \cdot x=b\)
\(h\}\}\)
proof -
    let \(? a b=\lambda h .\{x . a h \cdot x=b h\}\)
    have \(C \subseteq S\) using 〈 \(C\) face_of \(S\rangle\)
        by (simp add: face_of_imp_subset)
```

```
have polyhedron \(S\)
    by (metis 〈finite \(F\rangle\) faceq polyhedron_Int polyhedron_Inter polyhedron_affine_hull
polyhedron_halfspace_le seq)
    then have convex \(S\)
        by (simp add: polyhedron_imp_convex)
    then have \(*:(S \cap\) ?ab \(h)\) face_of \(S\) if \(h \in F\) for \(h\)
        using faceq seq face_of_Int_supporting_hyperplane_le that by fastforce
    have rel_interior \(C \neq\{ \}\)
        using \(C\langle C \neq\{ \}\rangle\) face_of_imp_convex rel_interior_eq_empty by blast
    then obtain \(z\) where \(z: z \in\) rel_interior \(C\) by auto
    have rels: rel_interior \(S=\{z \in S . \forall h \in F . a h \cdot z<b h\}\)
        by (rule rel_interior_polyhedron_explicit [OF〈finite F〉 seq faceq psub])
    then have xnot: \(z \notin\) rel_interior \(S\)
        by (metis IntI \(\langle z \in\) rel_interior \(C\rangle C\langle C \neq S\rangle\) contra_subsetD empty_iff
face_of_disjoint_rel_interior rel_interior_subset)
    then have \(z \in S\)
        using \(\langle C \subseteq S\rangle\langle z \in\) rel_interior \(C\rangle\) rel_interior_subset by auto
    with seq have xint: \(z \in \bigcap F\) by blast
    have open \((\bigcap h \in\{h \in F . a h \cdot z<b h\} .\{w . a h \cdot w<b h\})\)
        by (auto simp: 〈finite \(F\rangle\) open_halfspace_lt open_INT)
    then obtain \(e\) where \(0<e\)
                ball \(z e \subseteq(\bigcap h \in\{h \in F . a h \cdot z<b h\} .\{w . a h \cdot w<b h\})\)
        by (auto intro: openE \([\) of _ z])
    then have \(e: \bigwedge h . \llbracket h \in F ; a h \cdot z<b h \rrbracket \Longrightarrow\) ball \(z e \subseteq\{w . a h \cdot w<b h\}\)
        by blast
    have \(C \subseteq(S \cap ? a b h) \longleftrightarrow z \in S \cap ? a b h\) if \(h \in F\) for \(h\)
    proof
        show \(z \in S \cap\) ?ab \(h \Longrightarrow C \subseteq S \cap\) ?ab \(h\)
        by (metis * Collect_cong IntI 〈C \(\subseteq\) S〉empty_iff subset_of_face_of that \(z\) )
    next
        show \(C \subseteq S \cap\) ?ab \(h \Longrightarrow z \in S \cap\) ?ab \(h\)
        using \(\langle z \in\) rel_interior \(C\rangle\) rel_interior_subset by force
    qed
    then have \(* *:\{S \cap\) ? \(a b h \mid h . h \in F \wedge C \subseteq S \wedge C \subseteq\) ?ab \(h\}=\)
                                    \(\{S \cap ? a b h \mid h . h \in F \wedge z \in S \cap ? a b h\}\)
    by blast
    have bsub: ball \(z e \cap\) affine hull \(\bigcap\{S \cap\) ?ab \(h \mid h . h \in F \wedge a h \cdot z=b h\}\)
                \(\subseteq\) affine hull \(S \cap \bigcap F \cap \bigcap\{? a b h \mid h . h \in F \wedge a h \cdot z=b h\}\)
                if \(i \in F\) and \(i: a i \cdot z=b i\) for \(i\)
    proof -
        have sub: ball ze \(\cap \bigcap\{? a b h \mid h . h \in F \wedge a h \cdot z=b h\} \subseteq j\)
            if \(j \in F\) for \(j\)
    proof -
        have \(a j \cdot z \leq b j\) using faceq that xint by auto
        then consider \(a j \cdot z<b j \mid a j \cdot z=b j\) by linarith
        then have \(\exists G . G \in\{\) ? \(a b h \mid h . h \in F \wedge a h \cdot z=b h\} \wedge\) ball \(z e \cap G \subseteq j\)
        proof cases
            assume \(a j \cdot z<b j\)
            then have ball \(z e \cap\{x . a i \cdot x=b i\} \subseteq j\)
```

```
            using \(e[O F\langle j \in F\rangle]\) faceq that
            by (fastforce simp: ball_def)
        then show ?thesis
            by (rule_tac \(x=\{x . a i \cdot x=b i\}\) in exI) (force simp: \(\langle i \in F\rangle i)\)
        next
            assume eq: \(a j \cdot z=b j\)
            with faceq that show ?thesis
            by (rule_tac \(x=\{x . a j \cdot x=b j\}\) in exI) (fastforce simp add: \(\langle j \in F\rangle\) )
        qed
        then show ?thesis by blast
    qed
    have 1: affine hull \(\bigcap\{S \cap\) ?ab \(h \mid h . h \in F \wedge a h \cdot z=b h\} \subseteq\) affine hull \(S\)
        using that \(\langle z \in S\rangle\) by (intro hull_mono) auto
    have 2: affine hull \(\bigcap\{S \cap\) ? \(a b h \mid h . h \in F \wedge a h \cdot z=b h\}\)
        \(\subseteq \bigcap\{? a b h \mid h . h \in F \wedge a h \cdot z=b h\}\)
        by (rule hull_minimal) (auto intro: affine_hyperplane)
    have 3: ball ze \(\cap \bigcap\{? a b h \mid h . h \in F \wedge a h \cdot z=b h\} \subseteq \bigcap F\)
    by (iprover intro: sub Inter_greatest)
    have \(*: \llbracket A \subseteq\left(B::{ }^{\prime}\right.\) a set \() ; A \subseteq C ; E \cap C \subseteq D \rrbracket \Longrightarrow E \cap A \subseteq(B \cap D) \cap C\)
        for \(A B C D E\) by blast
    show ?thesis by (intro * 12 3)
    qed
    have \(\exists h . h \in F \wedge C \subseteq ? a b h\)
        using assms
    by (metis face_of_polyhedron_subset_explicit [OF〈finite F〉 seq faceq psub] le_inf_iff)
    then have fac: \(\bigcap\{S \cap\) ?ab \(h \mid h . h \in F \wedge C \subseteq S \cap\) ?ab \(h\}\) face_of \(S\)
    using * by (force simp: \(\langle C \subseteq S\rangle\) intro: face_of_Inter)
    have red: \((\bigwedge a . P a \Longrightarrow T \subseteq S \cap \bigcap\{F X \mid X . P X\}) \Longrightarrow T \subseteq \bigcap\{S \cap F X\)
\(\mid X::^{\prime}\) a set. \(\left.P X\right\}\) for \(P T F\)
    by blast
    have ball \(z e \cap\) affine hull \(\cap\{S \cap\) ?ab \(h \mid h . h \in F \wedge a h \cdot z=b h\}\)
        \(\subseteq \bigcap\{S \cap ? a b h \mid h . h \in F \wedge a h \cdot z=b h\}\)
    by (rule red) (metis seq bsub)
    with \(\langle 0<e\rangle\) have zinrel: \(z \in\) rel_interior
                                    \((\bigcap\{S \cap ? a b h \mid h . h \in F \wedge z \in S \wedge a h \cdot z=b h\})\)
    by (auto simp: mem_rel_interior_ball \(\langle z \in S\rangle\) )
    show ?thesis
    using \(z\) zinrel
    by (intro face_of_eq [OF C fac]) (force simp: **)
qed
```


6.38.12 More general corollaries from the explicit representation

corollary facet_of_polyhedron:
assumes polyhedron S and C facet_of S
obtains $a b$ where $a \neq 0 S \subseteq\{x . a \cdot x \leq b\} C=S \cap\{x . a \cdot x=b\}$
proof -
obtain F where finite F and seq: $S=$ affine hull $S \cap \bigcap F$

```
            and faces: \bigwedgeh. h\inF\Longrightarrow\existsab. }a\not=0\wedgeh={x.a\cdotx\leqb
            and min: }\bigwedge\mp@subsup{F}{}{\prime}.\mp@subsup{F}{}{\prime}\subsetF\LongrightarrowS\subset(\mathrm{ affine hull S) }\cap\bigcap\mp@subsup{F}{}{\prime
    using assms by (simp add: polyhedron_Int_affine_minimal) meson
    then obtain ab where ab: \bigwedgeh. h\inF\Longrightarrowah\not=0^h={x.ah . x \leq b h}
        by metis
    obtain i}\mathrm{ where }i\inF\mathrm{ and }C:C=S\cap{x.ai \cdotx=bi
    using facet_of_polyhedron_explicit [OF〈{inite F〉 seq ab min] assms
    by force
    moreover have ssub:S\subseteq{x.ai\cdotx\leqbi}
        using }\langlei\inF\rangle\mathrm{ ab by (subst seq) auto
    ultimately show ?thesis
    by (rule_tac a = a i and b=b i in that) (simp_all add: ab)
qed
corollary face_of_polyhedron:
    assumes polyhedron S and C face_of S and C\not={} and C\not=S
    shows }C=\bigcap{F.F facet_of S\wedgeC\subseteqF
proof -
    obtain F where finite F and seq: S = affine hull S\cap\bigcapF
                and faces: \bigwedgeh. h\inF\Longrightarrow\existsab. a\not=0^h={x.a\cdotx\leqb}
                and min: \F'.. F'\subsetF\LongrightarrowS\subset(affine hull S) \cap\bigcapF'
        using assms by (simp add: polyhedron_Int_affine_minimal) meson
    then obtain ab where ab: \bigwedgeh. h\inF\Longrightarrowah\not=0^h={x.ah | x \leqbh}
        by metis
    show ?thesis
        apply (subst face_of_polyhedron_explicit [OF <finite F> seq ab min])
    apply (auto simp: assms facet_of_polyhedron_explicit [OF〈finite F〉 seq ab min]
cong: Collect_cong)
    done
qed
lemma face_of_polyhedron_subset_facet:
    assumes polyhedron S and C face_of S and C\not={} and C\not=S
    obtains F where F facet_of S C\subseteqF
    using face_of_polyhedron assms
    by (metis (no_types, lifting) Inf_greatest antisym_conv face_of_imp_subset mem_Collect_eq)
```

lemma exposed_face_of_polyhedron:
assumes polyhedron S
shows F exposed_face_of $S \longleftrightarrow F$ face_of S
proof
show F exposed_face_of $S \Longrightarrow F$ face_of S
by (simp add: exposed_face_of_def)
next
assume F face_of S
show F exposed_face_of S
proof (cases $F=\{ \} \vee F=S$)
case True then show ?thesis

```
        using <F face_of S` exposed_face_of by blast
    next
        case False
        then have {g.g facet_of S}\wedgeF\subseteqg}\not={
        by (metis Collect_empty_eq_bot 〈F face_of S\ assms empty_def face_of_polyhedron_subset_facet)
    moreover have }\bigwedgeT.\llbracketT facet_of S;F\subseteqT\rrbracket\LongrightarrowT exposed_face_of 
        by (metis assms exposed_face_of facet_of_imp_face_of facet_of_polyhedron)
    ultimately have }\bigcap{G.G facet_of S\wedgeF\subseteqG} exposed_face_of S
            by (metis (no_types, lifting) mem_Collect_eq exposed_face_of_Inter)
    then show ?thesis
            using False <F face_of S〉 assms face_of_polyhedron by fastforce
    qed
qed
lemma face_of_polyhedron_polyhedron:
    fixes S :: ' }a\mathrm{ :: euclidean_space set
    assumes polyhedron S c face_of S shows polyhedron c
by (metis assms face_of_imp_eq_affine_Int polyhedron_Int polyhedron_affine_hull poly-
hedron_imp_convex)
lemma finite_polyhedron_faces:
    fixes S :: ' }a\mathrm{ :: euclidean_space set
    assumes polyhedron S
        shows finite {F.F face_of S}
proof -
    obtain F where finite F and seq: S=affine hull S\cap\bigcapF
                and faces: \bigwedgeh. h\inF\Longrightarrow\existsab. a\not=0^h={x.a\cdotx\leqb}
                and min: }\bigwedge\mp@subsup{F}{}{\prime}.\mp@subsup{F}{}{\prime}\subsetF\LongrightarrowS\subset(\mathrm{ affine hull S) }\cap\bigcap\mp@subsup{F}{}{\prime
        using assms by (simp add: polyhedron_Int_affine_minimal) meson
    then obtain ab where ab: \h. h\inF\Longrightarrowah\not=0^h={x.ah | x \leqbh}
        by metis
    have finite {\bigcap{S\cap{x.ah 片 = b h} |h. h\in F'}| F'. F', Pow F}
        by (simp add: <finite F`)
    moreover have {F.F face_of S}-{{},S}\subseteq{\bigcap{S\cap{x.ah \cdot x=bh} |h.
h\in\mp@subsup{F}{}{\prime}}|}\mp@subsup{F}{}{\prime}.\mp@subsup{F}{}{\prime}\in\mathrm{ Pow F}
    apply clarify
    apply (rename_tac c)
    apply (drule face_of_polyhedron_explicit [OF〈finite F〉 seq ab min, simplified],
simp_all)
    apply(rule_tac x={h\inF.c\subseteqS\cap{x.ah\cdotx=bh}} in exI,auto)
    done
    ultimately show ?thesis
        by (meson finite.emptyI finite.insertI finite_Diff2 finite_subset)
qed
lemma finite＿polyhedron＿exposed＿faces：
    polyhedron S \Longrightarrow finite {F.F exposed_face_of S}
using exposed_face_of_polyhedron finite_polyhedron_faces by fastforce
```

```
lemma finite_polyhedron_extreme_points:
    fixes \(S\) :: ' \(a\) :: euclidean_space set
    assumes polyhedron \(S\) shows finite \(\{v . v\) extreme_point_of \(S\}\)
proof -
    have finite \(\{v .\{v\}\) face_of \(S\}\)
    using assms by (intro finite_subset [OF_finite_vimageI [OF finite_polyhedron_faces]],
auto)
    then show ?thesis
        by (simp add: face_of_singleton)
qed
lemma finite_polyhedron_facets:
    fixes \(S\) :: ' \(a\) :: euclidean_space set
    shows polyhedron \(S \Longrightarrow\) finite \(\{F\). F facet_of \(S\}\)
    unfolding facet_of_def
    by (blast intro: finite_subset [OF - finite_polyhedron_faces])
proposition rel_interior_of_polyhedron:
    fixes \(S\) :: ' \(a\) :: euclidean_space set
    assumes polyhedron \(S\)
        shows rel_interior \(S=S-\bigcup\{F . F\) facet_of \(S\}\)
    proof -
    obtain \(F\) where finite \(F\) and seq: \(S=\) affine hull \(S \cap \bigcap F\)
                    and faces: \(\bigwedge h . h \in F \Longrightarrow \exists a b . a \neq 0 \wedge h=\{x . a \cdot x \leq b\}\)
                and min: \(\wedge F^{\prime} . F^{\prime} \subset F \Longrightarrow S \subset(\) affine hull \(S) \cap \bigcap F^{\prime}\)
        using assms by (simp add: polyhedron_Int_affine_minimal) meson
    then obtain \(a b\) where \(a b: \bigwedge h . h \in F \Longrightarrow a h \neq 0 \wedge h=\{x . a h \cdot x \leq b h\}\)
        by metis
    have facet: \((c\) facet_of \(S) \longleftrightarrow(\exists h . h \in F \wedge c=S \cap\{x . a h \cdot x=b h\})\) for \(c\)
        by (rule facet_of_polyhedron_explicit [OF〈finite \(F\rangle\) seq ab min])
    have rel: rel_interior \(S=\{x \in S . \forall h \in F . a h \cdot x<b h\}\)
        by (rule rel_interior_polyhedron_explicit [OF 〈finite F〉seq ab min])
    have \(a h \cdot x<b h\) if \(x \in S h \in F\) and xnot: \(x \notin \bigcup\{F\). \(F\) facet_of \(S\}\) for \(x h\)
    proof -
    have \(x \in \bigcap F\) using seq that by force
    with \(\langle h \in F\rangle a b\) have \(a h \cdot x \leq b h\) by auto
    then consider \(a h \cdot x<b h \mid a h \cdot x=b h\) by linarith
    then show ?thesis
    proof cases
        case 1 then show ?thesis .
    next
        case 2
        have Collect \(((\in) x) \notin\) Collect \(((\in)(\bigcup\{A\). A facet_of \(S\}))\)
        using xnot by fastforce
            then have \(F \notin\) Collect \(((\in) h)\)
                using \(2\langle x \in S\rangle\) facet by blast
            with 2 that \(\langle x \in \bigcap F\rangle\) show ?thesis
                by blast
```


qed

qed
moreover have $\exists h \in F . a h \cdot x \geq b h$ if $x \in \bigcup\{F$. F facet_of $S\}$ for x using that by (force simp: facet)
ultimately show ?thesis
by (force simp: rel)
qed
lemma rel_boundary_of_polyhedron:
fixes S :: ' a :: euclidean_space set
assumes polyhedron S
shows S - rel_interior $S=\bigcup\{F . F$ facet_of $S\}$
using facet_of_imp_subset by (fastforce simp add: rel_interior_of_polyhedron assms)
lemma rel_frontier_of_polyhedron:
fixes $S::{ }^{\prime} a$:: euclidean_space set
assumes polyhedron S
shows rel_frontier $S=\bigcup\{F . F$ facet_of $S\}$
by (simp add: assms rel_frontier_def polyhedron_imp_closed rel_boundary_of_polyhedron)
lemma rel_frontier_of_polyhedron_alt:
fixes S :: ' a :: euclidean_space set
assumes polyhedron S
shows rel_frontier $S=\bigcup\{F . F$ face_of $S \wedge F \neq S\}$
proof
show rel_frontier $S \subseteq \bigcup\{F . F$ face_of $S \wedge F \neq S\}$
by (force simp: rel_frontier_of_polyhedron facet_of_def assms)
qed (use face_of_subset_rel_frontier in fastforce)
A characterization of polyhedra as having finitely many faces
proposition polyhedron_eq_finite_exposed_faces:
fixes $S::{ }^{\prime} a$:: euclidean_space set
shows polyhedron $S \longleftrightarrow$ closed $S \wedge$ convex $S \wedge$ finite $\{F . F$ exposed_face_of $S\}$
(is ?lhs = ? $r h s$)
proof
assume ?lhs
then show? rhs
by (auto simp: polyhedron_imp_closed polyhedron_imp_convex finite_polyhedron_exposed_faces)
next
assume ?rhs
then have closed S convex S and fin: finite $\{F$. F exposed_face_of $S\}$ by auto
show ?lhs
proof (cases $S=\{ \}$)
case True then show ?thesis by auto
next
case False
define F where $F=\{h . h$ exposed_face_of $S \wedge h \neq\{ \} \wedge h \neq S\}$
have finite F by (simp add: fin F_{-}def)
have hface: h face_of S
and $\exists a b . a \neq 0 \wedge S \subseteq\{x . a \cdot x \leq b\} \wedge h=S \cap\{x . a \cdot x=b\}$
if $h \in F$ for h
using exposed＿face＿of F＿def that by blast＋
then obtain $a b$ where $a b$ ：
$\wedge h . h \in F \Longrightarrow a h \neq 0 \wedge S \subseteq\{x . a h \cdot x \leq b h\} \wedge h=S \cap\{x . a h \cdot x=$ bh\}
by metis
have＊：False
if paff：$p \in$ affine hull S and $p \notin S$
and pint：$p \in \bigcap\{\{x . a h \cdot x \leq b h\} \mid h . h \in F\}$ for p
proof－
have rel＿interior $S \neq\{ \}$
by（simp add：$\langle S \neq\{ \}\rangle\langle c o n v e x ~ S\rangle$ rel＿interior＿eq＿empty）
then obtain c where $c: c \in$ rel＿interior S by auto
with rel＿interior＿subset have $c \in S$ by blast
have ccp：closed＿segment c $p \subseteq$ affine hull S
by（meson affine＿affine＿hull affine＿imp＿convex c closed＿segment＿subset hull＿subset paff rel＿interior＿subset subsetCE）
have oS：openin（top＿of＿set（closed＿segment c p））（closed＿segment c p \cap rel＿interior S ）
by（force simp：openin＿rel＿interior openin＿Int intro：openin＿subtopology＿Int＿subset ［OF－ccp］）
obtain x where $x c l: x \in$ closed＿segment $c p$ and $x \in S$ and xnot：$x \notin$ rel＿interior S
using connected＿openin［of closed＿segment c p］
apply simp
apply（drule＿tac $x=$ closed＿segment c $p \cap$ rel＿interior S in spec）
apply（drule $m p[O F-o S]$ ）
apply（drule＿tac $x=$ closed＿segment c $p \cap(-S)$ in spec）
using rel＿interior＿subset 〈closed $S\rangle c\langle p \notin S\rangle$ apply blast
done
then obtain μ where $0 \leq \mu \mu \leq 1$ and xeq：$x=(1-\mu) *_{R} c+\mu *_{R} p$
by（auto simp：in＿segment）
show False
proof（cases $\mu=0 \vee \mu=1$ ）
case True with xeq c xnot $\langle x \in S\rangle\langle p \notin S\rangle$
show False by auto
next
case False
then have xos：$x \in$ open＿segment $c p$
using $\langle x \in S\rangle$ c open＿segment＿def that（2）xcl xnot by auto
have xclo：$x \in$ closure S
using $\langle x \in S\rangle$ closure＿subset by blast
obtain d where $d \neq 0$
and dle：$\bigwedge y . y \in$ closure $S \Longrightarrow d \cdot x \leq d \cdot y$
and dless：$\bigwedge y . y \in$ rel＿interior $S \Longrightarrow d \cdot x<d \cdot y$
by（metis supporting＿hyperplane＿relative＿frontier［OF 〈convex $S\rangle$ xclo xnot］）
have sex：$S \cap\{y . d \cdot y=d \cdot x\}$ exposed＿face＿of S
by（simp add：〈closed S 〉dle exposed＿face＿of＿Int＿supporting＿hyperplane＿ge

```
[OF〈convex S\])
            have sne: S\cap{y.d\cdoty=d}\cdotx}\not={
            using \langlex \inS\rangle by blast
            have sns: }S\cap{y.d\cdoty=d\cdotx}\not=
                by (metis (mono_tags) Int_Collect c subsetD dless not_le order_refl
rel_interior_subset)
            obtain }h\mathrm{ where }h\inFx\in
                using F_def \langlex \inS\rangle sex sns by blast
            have abface: {y.ah \cdot y = b h} face_of {y.ah \cdot y \leqbh}
                using hyperplane_face_of_halfspace_le by blast
            then have c\inh
                using face_ofD [OF abface xos] \langlec\inS\rangle\langleh\inF\rangle ab pint \langlex \inh\rangle by blast
            with c have h\cap rel_interior S}\not={}\mathrm{ by blast
            then show False
                using }\langleh\inF\rangleF\mp@subsup{F}{-}{}def face_of_disjoint_rel_interior hface by aut
            qed
    qed
    have S\subseteqaffine hull S\cap\bigcap{{x.ah 片\leqbh} |h. h\inF}
            using ab by (auto simp: hull_subset)
    moreover have affine hull S\cap\bigcap{{x.ah\cdotx\leqbh} |h.h\inF}\subseteqS
            using * by blast
    ultimately have S = affine hull S\cap\bigcap {{x.ah • x \leqbh} |h.h\inF}..
    then show ?thesis
        apply (rule ssubst)
        apply (force intro: polyhedron_affine_hull polyhedron_halfspace_le simp:<finite
F`)
        done
    qed
qed
corollary polyhedron_eq_finite_faces:
    fixes S :: 'a :: euclidean_space set
    shows polyhedron }S\longleftrightarrow\mathrm{ closed }S\wedge\mathrm{ convex }S\wedge\mathrm{ finite {F.F face_of S}
            (is ?lhs = ?rhs)
proof
    assume ?lhs
    then show ?rhs
    by (simp add: finite_polyhedron_faces polyhedron_imp_closed polyhedron_imp_convex)
next
    assume ?rhs
    then show?lhs
    by (force simp: polyhedron_eq_finite_exposed_faces exposed_face_of intro: finite_subset)
qed
lemma polyhedron_linear_image_eq:
    fixes }h:: 'a :: euclidean_space => 'b :: euclidean_space
    assumes linear h bij h
        shows polyhedron ( }h\mathrm{ ' }S\mathrm{ ) }\longleftrightarrow\mathrm{ polyhedron S
proof -
```

```
have \(*:\{f . P f\}=(\text { image } h)^{\prime}\{f . P(h ‘ f)\}\) for \(P\)
    apply safe
    apply (rule_tac \(x=i n v h\) ' \(x\) in image_eqI)
    apply (auto simp: 〈bij h〉bij_is_surj image_f_inv_f)
    done
have inj \(h\) using bij_is_inj assms by blast
then have injim: inj_on ( ( \() h\) ) \(A\) for \(A\)
    by (simp add: inj_on_def inj_image_eq_iff)
    show ?thesis
    using 〈linear \(h\rangle\langle i n j h\rangle\)
    apply (simp add: polyhedron_eq_finite_faces closed_injective_linear_image_eq)
    apply (simp add: * face_of_linear_image [of \(h_{-}\)S, symmetric] finite_image_iff
injim)
    done
qed
lemma polyhedron_negations:
    fixes \(S::{ }^{\prime} a\) :: euclidean_space set
    shows polyhedron \(S \Longrightarrow\) polyhedron(image uminus \(S\) )
    by (subst polyhedron_linear_image_eq) (auto simp: bij_uminus intro!: linear_uminus)
```


6．38．13 Relation between polytopes and polyhedra

```
proposition polytope＿eq＿bounded＿polyhedron：
fixes \(S::{ }^{\prime} a\) ：：euclidean＿space set
shows polytope \(S \longleftrightarrow\) polyhedron \(S \wedge\) bounded \(S\)
（is ？lhs＝？ rhs ）
proof
assume ？lhs
then show ？rhs
by（simp add：finite＿polytope＿faces polyhedron＿eq＿finite＿faces polytope＿imp＿closed polytope＿imp＿convex polytope＿imp＿bounded）
next
assume \(R\) ：？rhs
then have finite \(\{v . v\) extreme＿point＿of \(S\}\)
by（simp add：finite＿polyhedron＿extreme＿points）
moreover have \(S=\) convex hull \(\{v . v\) extreme＿point＿of \(S\}\)
using \(R\) by（simp add：Krein＿Milman＿Minkowski compact＿eq＿bounded＿closed
polyhedron＿imp＿closed polyhedron＿imp＿convex）
ultimately show ？lhs unfolding polytope＿def by blast
qed
lemma polytope＿Int：
fixes \(S\) ：：＇\(a\) ：：euclidean＿space set
shows \(\llbracket\) polytope \(S\) ；polytope \(T \rrbracket \Longrightarrow\) polytope \((S \cap T)\)
by（simp add：polytope＿eq＿bounded＿polyhedron bounded＿Int）
```

```
lemma polytope_Int_polyhedron:
    fixes S ::' 'a :: euclidean_space set
    shows \llbracketpolytope S; polyhedron T\rrbracket \Longrightarrow polytope(S \capT)
    by (simp add: bounded_Int polytope_eq_bounded_polyhedron)
lemma polyhedron_Int_polytope:
    fixes S :: ' }a\mathrm{ :: euclidean_space set
    shows \llbracketpolyhedron S; polytope T\rrbracket \Longrightarrow polytope(S \cap T)
    by (simp add: bounded_Int polytope_eq_bounded_polyhedron)
lemma polytope_imp_polyhedron:
    fixes S :: 'a :: euclidean_space set
    shows polytope S\Longrightarrow polyhedron S
    by (simp add: polytope_eq_bounded_polyhedron)
lemma polytope_facet_exists:
    fixes p ::' }a\mathrm{ :: euclidean_space set
    assumes polytope p 0<aff_dim p
    obtains F}\mathrm{ where F facet_of p
proof (cases p={})
    case True with assms show ?thesis by auto
next
    case False
    then obtain v}\mathrm{ where v extreme_point_of p
        using extreme_point_exists_convex
        by (blast intro:<polytope p> polytope_imp_compact polytope_imp_convex)
    then
    show ?thesis
        by (metis face_of_polyhedron_subset_facet polytope_imp_polyhedron aff_dim_sing
        all_not_in_conv assms face_of_singleton less_irrefl singletonI that)
qed
lemma polyhedron_interval [iff]: polyhedron(cbox a b)
by (metis polytope_imp_polyhedron polytope_interval)
lemma polyhedron_convex_hull:
    fixes S :: 'a :: euclidean_space set
    shows finite S \Longrightarrow polyhedron(convex hull S)
by (simp add: polytope_convex_hull polytope_imp_polyhedron)
```


6.38.14 Relative and absolute frontier of a polytope

```
lemma rel_boundary_of_convex_hull:
    fixes \(S\) :: 'a::euclidean_space set
    assumes \(\neg\) affine_dependent \(S\)
        shows (convex hull \(S)\) - rel_interior (convex hull \(S)=(\bigcup a \in S\). convex hull
\((S-\{a\}))\)
proof -
    have finite \(S\) by (metis assms aff_independent_finite)
```

```
then consider card \(S=0 \mid\) card \(S=1 \mid 2 \leq \operatorname{card} S\) by arith
then show ?thesis
proof cases
    case 1 then have \(S=\{ \}\) by (simp add: 〈finite \(S\rangle\) )
    then show? ?thesis by simp
    next
        case 2 show ?thesis
        by (auto intro: card_1_singletonE \([O F\langle\) card \(S=1\rangle]\) )
    next
    case 3
    with assms show ?thesis
    by (auto simp: polyhedron_convex_hull rel_boundary_of_polyhedron facet_of_convex_hull_affine_independent_alt
〈finite \(S\) 〉)
    qed
qed
proposition frontier_of_convex_hull:
    fixes \(S\) :: 'a::euclidean_space set
    assumes card \(S=\operatorname{Suc}\left(\operatorname{DIM}\left({ }^{\prime} a\right)\right)\)
        shows frontier (convex hull \(S)=\bigcup\) \{convex hull \((S-\{a\}) \mid a . a \in S\}\)
proof (cases affine_dependent \(S\) )
    case True
        have [iff]: finite \(S\)
            using assms using card.infinite by force
    then have ccs: closed (convex hull S)
        by (simp add: compact_imp_closed finite_imp_compact_convex_hull)
        \{ fix \(x T\)
            assume \(\operatorname{int}(\) card \(T) \leq\) aff_dim \(S+1\) finite \(T T \subseteq S x \in\) convex hull \(T\)
            then have \(S \neq T\)
            using True 〈finite \(S\rangle\) aff_dim_le_card affine_independent_iff_card by fastforce
            then obtain \(a\) where \(a \in S a \notin T\)
                using \(\langle T \subseteq S\rangle\) by blast
            then have \(\exists y \in S . x \in\) convex hull \((S-\{y\})\)
            using True affine_independent_iff_card [of \(S\) ]
            by (metis (no_types, hide_lams) Diff_eq_empty_iff Diff_insert0 \(\langle a \notin T\rangle\langle T \subseteq\)
    \(S\rangle\langle x \in\) convex hull \(T\rangle\) hull_mono insert_Diff_single subsetCE)
        \} note \(*=\) this
        have 1: convex hull \(S \subseteq(\bigcup a \in S\). convex hull \((S-\{a\}))\)
        by (subst caratheodory_aff_dim) (blast dest: *)
    have 2: \(\bigcup((\lambda a\). convex hull \((S-\{a\}))\) ' \(S) \subseteq\) convex hull \(S\)
        by (rule Union_least) (metis (no_types, lifting) Diff_subset hull_mono imageE)
        show ?thesis using True
            apply (simp add: segment_convex_hull frontier_def)
            using interior_convex_hull_eq_empty [OF assms]
            apply (simp add: closure_closed [OF ccs])
            using 12 by auto
next
    case False
    then have frontier (convex hull \(S\) ) \(=\) closure (convex hull \(S\) ) - interior (convex
```

```
hull S)
    by (simp add: rel_boundary_of_convex_hull frontier_def)
    also have \(\ldots=(\) convex hull \(S)-\) rel_interior \((\) convex hull \(S)\)
    by (metis False aff_independent_finite assms closure_convex_hull finite_imp_compact_convex_hull
hull_hull interior_convex_hull_eq_empty rel_interior_nonempty_interior)
    also have \(\ldots=\bigcup\{\) convex hull \((S-\{a\}) \mid a . a \in S\}\)
    proof -
    have convex hull \(S\) - rel_interior (convex hull \(S\) ) \(=\) rel_frontier (convex hull \(S\) )
    by (simp add: False aff_independent_finite polyhedron_convex_hull rel_boundary_of_polyhedron
rel_frontier_of_polyhedron)
    then show ?thesis
            by (simp add: False rel_frontier_convex_hull_cases)
    qed
    finally show ?thesis .
qed
```


6.38.15 Special case of a triangle

proposition frontier_of_triangle:
fixes a :: ' $a::$ euclidean_space
assumes $\operatorname{DIM}\left({ }^{\prime} a\right)=2$
shows frontier $($ convex hull $\{a, b, c\})=$ closed_segment $a b \cup$ closed_segment $b c$
\cup closed_segment ca
(is ? lhs = ? rhs)
proof (cases $b=a \vee c=a \vee c=b$)
case True then show ?thesis
by (auto simp: assms segment_convex_hull frontier_def empty_interior_convex_hull insert_commute card_insert_le_m1 hull_inc insert_absorb)
next
case False then have [simp]: card $\{a, b, c\}=\operatorname{Suc}\left(\operatorname{DIM}\left({ }^{\prime} a\right)\right)$
by (simp add: card.insert_remove Set.insert_Diff_if assms)
show ?thesis
proof
show ?lhs \subseteq ? rhs
using False
by (force simp: segment_convex_hull frontier_of_convex_hull insert_Diff_if in-
sert_commute split: if_split_asm)
show ?rhs \subseteq ? lhs
using False
apply (simp add: frontier_of_convex_hull segment_convex_hull)
apply (intro conjI subsetI)
apply (rule_tac $X=$ convex hull $\{a, b\}$ in UnionI; force simp: Set.insert_Diff_if)
apply (rule_tac $X=$ convex hull $\{b, c\}$ in UnionI; force)
apply (rule_tac $X=$ convex hull $\{a, c\}$ in UnionI; force simp: insert_commute
Set.insert_Diff_if)
done
qed
qed
corollary inside_of_triangle:
fixes a :: ' $a::$ euclidean_space
assumes $\operatorname{DIM}\left({ }^{\prime} a\right)=2$
shows inside (closed_segment $a b \cup$ closed_segment $b c \cup$ closed_segment c a)
$=$ interior (convex hull $\{a, b, c\}$)
by (metis assms frontier_of_triangle bounded_empty bounded_insert convex_convex_hull inside_frontier_eq_interior bounded_convex_hull)
corollary interior_of_triangle:
fixes a :: ' $a::$ euclidean_space
assumes $\operatorname{DIM}\left({ }^{\prime} a\right)=2$
shows interior (convex hull $\{a, b, c\})=$ convex hull $\{a, b, c\}-($ closed_segment $a b \cup$ closed_segment $b c \cup$
closed_segment ca)
using interior_subset
by (force simp: frontier_of_triangle [OF assms, symmetric] frontier_def Diff_Diff_Int)

6.38.16 Subdividing a cell complex

```
lemma subdivide_interval:
    fixes \(x\) ::real
    assumes \(a<|x-y| 0<a\)
    obtains \(n\) where \(n \in \mathbb{Z} x<n * a \wedge n * a<y \vee y<n * a \wedge n * a<x\)
proof -
    consider \(a+x<y \mid a+y<x\)
    using assms by linarith
    then show ?thesis
    proof cases
        case 1
        let ? \(n=\) of_int \((\) floor \((x / a))+1\)
        have \(x: x<? n * a\)
        by (meson \(\langle 0<a\rangle\) divide_less_eq floor_eq_iff)
    have ? \(n * a \leq a+x\)
        apply (simp add: algebra_simps)
        by (metis assms(2) floor_divide_lower mult.commute)
    also have ... \(<y\)
        by (rule 1)
    finally have ? \(n * a<y\).
    with \(x\) show ?thesis
        using Ints_1 Ints_add Ints_of_int that by blast
    next
    case 2
    let \(? n=\) of_int \((\) floor \((y / a))+1\)
    have \(y: y<? n * a\)
        by (meson \(\langle 0<a\rangle\) divide_less_eq floor_eq_iff)
    have ? \(n * a \leq a+y\)
        apply (simp add: algebra_simps)
        by (metis assms(2) floor_divide_lower mult.commute)
    also have \(\ldots<x\)
```

```
        by (rule 2)
    finally have ? n * a<x .
    then show ?thesis
        using Ints_1 Ints_add Ints_of_int that y by blast
    qed
qed
lemma cell_subdivision_lemma:
    assumes finite \mathcal{F}
        and }\X.X\in\mathcal{F}\Longrightarrow\mathrm{ polytope }
        and }\bigwedgeX.X\in\mathcal{F}\Longrightarrow\mathrm{ aff_dim X 
        and }\bigwedgeXY.\llbracketX\in\mathcal{F};Y\in\mathcal{F}\rrbracket\Longrightarrow(X\capY) face_of X
        and finite I
        shows }\exists\mathcal{G}.\bigcup\mathcal{G}=\bigcup\mathcal{F}
            finite \mathcal{G ^}
            (\forallC\in\mathcal{G}.\existsD.D\in\mathcal{F}\wedgeC\subseteqD)^
            (\forallC\in\mathcal{F}.\forallx\inC.\existsD.D\in\mathcal{G}\wedgex\inD\wedgeD\subseteqC)^
            (}\forallX\in\mathcal{G}.\mathrm{ polytope }X)
            (\forallX G\mathcal{G}.aff_dim X\leqd)^
            (\forallX\in\mathcal{G.}.\forallY\in\mathcal{G. }X\capY\mathrm{ face_of X) ^}
            (}\forallX\in\mathcal{G}.\forallx\inX.\forally\inX.\forallab
                (a,b) \inI\longrightarrowa\cdotx\leqb^a\cdoty\leqb\vee
                                    a}\cdotx\geqb\wedgea\cdoty\geqb
    using \finite I\
proof induction
    case empty
    then show ?case
        by (rule_tac x=\mathcal{F}}\mathrm{ in exI) (auto simp: assms)
next
    case (insert ab I)
    then obtain \mathcal{G}}\mathrm{ where eq: \GG}=\bigcup\mathcal{F}\mathrm{ and finite }\mathcal{G
                and sub1: }\C.C\in\mathcal{G}\Longrightarrow\existsD.D\in\mathcal{F}\wedgeC\subseteq
                and sub2: \C x. C \in\mathcal{F}\wedgex\inC\Longrightarrow\existsD. D\in\mathcal{G}\wedgex\inD^D
\subseteq C
            and poly: }\X.X\in\mathcal{G}\Longrightarrow\mathrm{ polytope }
            and aff: }\bigwedgeX.X\in\mathcal{G \Longrightarrowaff_dim X\leqd
                            and face: }\XY.\llbracketX\in\mathcal{G};Y\in\mathcal{G}\Longrightarrow\LongrightarrowX\capY face_of X
                            and I:\bigwedgeX x y a b. \llbracketX \in\mathcal{G; x \inX; y \inX; (a,b) \inI\rrbracket\Longrightarrow}
                a\cdotx\leqb^a\cdoty\leqb\veea\cdotx\geqb^a\cdoty\geqb
            by (auto simp: that)
    obtain ab}\mathrm{ where ab=(a,b)
        by fastforce
```



```
    have eqInt: }(S\cap\mathrm{ Collect P) ค(T Collect Q ) = (S }\capT)\cap(Collect P \cap Collect
Q) for S T::'a set and PQ
    by blast
    show ?case
    proof (intro conjI exI)
    show \?G\mathcal{G}=\bigcup\mathcal{F}
```

```
    by (force simp: eq [symmetric])
    show finite ?G
    using \finite \mathcal{G}> by force
    show }\forallX\in\mathrm{ ?G. polytope }
    by (force simp: poly polytope_Int_polyhedron polyhedron_halfspace_le polyhe-
dron_halfspace_ge)
    show }\forallX\in?\mathcal{G}.aff_dim X\leq
        by (auto; metis order_trans aff aff_dim_subset inf_le1)
    show }\forallX\in?\mathcal{G}.\forallx\inX.\forally\inX.\forallab
                                    (a,b) \in insert ab I \longrightarrowa\cdotx\leqb^a\cdoty\leqb\vee
                                    a\cdotx\geqb
        using <ab = (a,b)\rangleI by fastforce
    show }\forallX\in\mathrm{ ?G. }\forallY\in\mathrm{ ?G. }X\capY\mathrm{ face_of }
            by (auto simp: eqInt halfspace_Int_eq face_of_Int_Int face face_of_halfspace_le
face_of_halfspace_ge)
    show }\forallC\in?\mathcal{G.}\existsD.D\in\mathcal{F}\wedgeC\subseteq
            using sub1 by force
    show }\forallC\in\mathcal{F}.\forallx\inC.\existsD.D\in?\mathcal{G}\wedgex\inD\wedgeD\subseteq
    proof (intro ballI)
        fix C z
        assume C \in\mathcal{F}z\inC
        with sub2 obtain D where D:D\in\mathcal{G}z\inD D\subseteqC by blast
        have }D\in\mathcal{G}\wedgez\inD\cap{x.a\cdotx\leqb}\wedgeD\cap{x.a\cdotx\leqb}\subseteqC
                D\in\mathcal{G}\wedgez\inD\cap{x.a\cdotx\geqb}\wedgeD\cap{x.a\cdotx\geqb}\subseteqC
            using linorder_class.linear [of a | z b] D by blast
            then show \existsD.D\in?\mathcal{G }}\z\inD\wedgeD\subseteq
            by blast
        qed
    qed
qed
proposition cell_complex_subdivision_exists:
    fixes \mathcal{F :: 'a::euclidean_space set set}
    assumes 0<e finite \mathcal{F}
        and poly:}\bigwedgeX.X\in\mathcal{F}\Longrightarrow\mathrm{ polytope }
        and aff: }\bigwedgeX.X \in\mathcal{F}\Longrightarrow\mathrm{ aff_dim X 
        and face: }\XY.\llbracketX\in\mathcal{F};Y\in\mathcal{F}\rrbracket\LongrightarrowX\capY face_of X
    obtains }\mp@subsup{\mathcal{F}}{}{\prime}\mathrm{ where finite }\mp@subsup{\mathcal{F}}{}{\prime}\bigcup\mp@subsup{\mathcal{F}}{}{\prime}=\bigcup\mathcal{F}\bigwedgeX.X\in\mp@subsup{\mathcal{F}}{}{\prime}\Longrightarrow\mathrm{ diameter }X<
                \X.X \in \mathcal{F}
                        \XY.\llbracketX\in\mathcal{F}}
                        \C.C\in\mathcal{F}
                \Cx.C\in\mathcal{F}\wedgex\inC\Longrightarrow\existsD.D\in\mathcal{F}
proof -
    have bounded (\cup\mathcal{F})
    by (simp add:〈finite \mathcal{F}\rangle poly bounded_Union polytope_imp_bounded)
    then obtain B where B>0 and B:\bigwedgex.x\in\bigcup\mathcal{F}\Longrightarrownorm x<B
    by (meson bounded_pos_less)
    define C where C ={z\in\mathbb{Z.}|z*e/ 2 / real DIM('a)|\leqB}
```

define I where $I \equiv \bigcup i \in$ Basis. $\bigcup j \in C .\left\{\left(i::^{\prime} a, j * e / 2 / D I M\left({ }^{\prime} a\right)\right)\right\}$
have $C \subseteq\left\{x \in \mathbb{Z}\right.$. $-B /\left(e / 2 /\right.$ real $\left.\operatorname{DIM}\left({ }^{\prime} a\right)\right) \leq x \wedge x \leq B /(e / 2 /$ real DIM ('a)) \}
using $\langle 0<e\rangle$ by (auto simp: field_split_simps C_def)
then have finite C
using finite_int_segment finite_subset by blast
then have finite I
by (simp add: I_def)
obtain \mathcal{F}^{\prime} where $e q: \bigcup \mathcal{F}^{\prime}=\bigcup \mathcal{F}$ and finite \mathcal{F}^{\prime}
and poly: $\wedge X . X \in \mathcal{F}^{\prime} \Longrightarrow$ polytope X
and aff: $\bigwedge X . X \in \mathcal{F}^{\prime} \Longrightarrow$ aff_dim $X \leq d$
and face: $\wedge X Y . \llbracket X \in \mathcal{F}^{\prime} ; Y \in \mathcal{F}^{\prime} \rrbracket \Longrightarrow X \cap Y$ face_of X
and $I: \bigwedge X x$ y ab. $\llbracket X \in \mathcal{F}^{\prime} ; x \in X ; y \in X ;(a, b) \in I \rrbracket \Longrightarrow$
$a \cdot x \leq b \wedge a \cdot y \leq b \vee a \cdot x \geq b \wedge a \cdot y \geq b$
and sub1: $\wedge C . C \in \mathcal{F}^{\prime} \Longrightarrow \exists D . D \in \mathcal{F} \wedge C \subseteq D$
and sub2: $\bigwedge C x . C \in \mathcal{F} \wedge x \in C \Longrightarrow \exists D . D \in \mathcal{F}^{\prime} \wedge x \in D \wedge D \subseteq C$
apply (rule exE [OF cell_subdivision_lemma])
using assms 〈finite I 〉 by auto
show ?thesis
proof (rule_tac $\mathcal{F}^{\prime}=\mathcal{F}^{\prime}$ in that)
show diameter $X<e$ if $X \in \mathcal{F}^{\prime}$ for X
proof -
have diameter $X \leq e / 2$
proof (rule diameter_le)
show norm $(x-y) \leq e / 2$ if $x \in X y \in X$ for $x y$
proof -
have norm $x<B$ norm $y<B$
using $B\left\langle X \in \mathcal{F}^{\prime}\right\rangle$ eq that by blast+
have norm $(x-y) \leq\left(\sum b \in\right.$ Basis. $\left.|(x-y) \cdot b|\right)$
by (rule norm_le_l1)
also have $\ldots \leq$ of_nat $\left(D I M\left({ }^{\prime} a\right)\right) *(e / 2 / D I M(' a))$
proof (rule sum_bounded_above)
fix $i::^{\prime} a$
assume $i \in$ Basis
then have $I^{\prime}: \bigwedge z b . \llbracket z \in C ; b=z * e /\left(2 * \operatorname{real} \operatorname{DIM}\left({ }^{\prime} a\right)\right) \rrbracket \Longrightarrow i \cdot x$ $\leq b \wedge i \cdot y \leq b \vee i \cdot x \geq b \wedge i \cdot y \geq b$
using $I[$ of $X x y]\left\langle X \in \mathcal{F}^{\prime}\right\rangle$ that unfolding $I_{-} d e f$ by auto
show $|(x-y) \cdot i| \leq e / 2 / r e a l \operatorname{DIM}\left({ }^{\prime} a\right)$
proof (rule ccontr)
assume $\neg|(x-y) \cdot i| \leq e / 2 /$ real DIM $\left.{ }^{\prime}{ }^{\prime} a\right)$
then have $x y i:|i \cdot x-i \cdot y|>e / 2 / r e a l \operatorname{DIM}\left({ }^{\prime} a\right)$
by (simp add: inner_commute inner_diff_right)
obtain n where $n \in \mathbb{Z}$ and $n: i \cdot x<n *\left(e / \mathcal{Z} / \operatorname{real} \operatorname{DIM}\left({ }^{\prime} a\right)\right) \wedge$ $n *\left(e / 2 / \operatorname{real} \operatorname{DIM}\left({ }^{\prime} a\right)\right)<i \cdot y \vee i \cdot y<n *\left(e / 2 / r e a l \operatorname{DIM}\left({ }^{\prime} a\right)\right) \wedge n *(e$ / 2 / real $\left.\operatorname{DIM}\left({ }^{\prime} a\right)\right)<i \cdot x$
using subdivide_interval [OF xyi] DIM_positive $\langle 0<e\rangle$
by (auto simp: zero_less_divide_iff)
have $|i \cdot x|<B$
by (metis $\langle i \in B a s i s\rangle\langle n o r m x<B\rangle$ inner_commute norm_bound_Basis_lt)

```
            have |i . y|<B
            by (metis <i \in Basis` \norm y < B` inner_commute norm_bound_Basis_lt)
            have *: }|n*e|\leqB*(2* real DIM('a)
                if }|ix|<B|iy|<
                    and ix:ix*(2 * real DIM('a))<n*e
                        and iy: n*e<iy*(2 * real DIM('a)) for ix iy
            proof (rule abs_leI)
                    have iy*(2 * real DIM('a)) \leqB*(2* real DIM('a))
                        by (rule mult_right_mono) (use \|iy|<B> in linarith)+
            then show n*e\leqB*(2* real DIM('a))
                    using iy by linarith
            next
            have - ix * (2 * real DIM('a)) \leqB*(2 * real DIM('a))
                by (rule mult_right_mono) (use \ |ix| < B> in linarith)+
            then show - (n*e)\leqB*(2* real DIM('a))
                using ix by linarith
            qed
            have }n\in
            using }\langlen\in\mathbb{Z}\ranglen\mathrm{ by (auto simp: C_def divide_simps intro: * \| i • x 
< B> \|i • y | < B>)
            show False
                    using I' [OF<n\inC` refl ] n by auto
            qed
            qed
            also have ... = e / 2
            by simp
            finally show ?thesis.
            qed
            qed (use <0 < e> in force)
            also have ... <e
            by (simp add: <0 < e〉)
            finally show ?thesis.
    qed
    qed (auto simp: eq poly aff face sub1 sub2 <finite \mathcal{F}
qed
```


6.38.17 Simplexes

The notion of n-simplex for integer $-\left(1::^{\prime} a\right) \leq n$
definition simplex :: int $\Rightarrow{ }^{\prime} a$::euclidean_space set \Rightarrow bool (infix simplex 50)
where n simplex $S \equiv \exists C$. \neg affine_dependent $C \wedge \operatorname{int}(\operatorname{card} C)=n+1 \wedge S=$ convex hull C
lemma simplex:

$$
\begin{aligned}
n \text { simplex } S \longleftrightarrow & (\exists C . \text { finite } C \wedge \\
& \neg \text { affine_dependent } C \wedge \\
& \text { int }(\text { card } C)=n+1 \wedge \\
& S=\text { convex hull } C)
\end{aligned}
$$

by (auto simp add: simplex_def intro: aff_independent_finite)
lemma simplex_convex_hull:
\neg affine_dependent $C \wedge \operatorname{int}(\operatorname{card} C)=n+1 \Longrightarrow n \operatorname{simplex}($ convex hull $C)$
by (auto simp add: simplex_def)
lemma convex_simplex: n simplex $S \Longrightarrow$ convex S
by (metis convex_convex_hull simplex_def)
lemma compact_simplex: n simplex $S \Longrightarrow$ compact S
unfolding simplex
using finite_imp_compact_convex_hull by blast
lemma closed_simplex: n simplex $S \Longrightarrow$ closed S
by (simp add: compact_imp_closed compact_simplex)
lemma simplex_imp_polytope:
n simplex $S \Longrightarrow$ polytope S
unfolding simplex_def polytope_def
using aff_independent_finite by blast
lemma simplex_imp_polyhedron:
n simplex $S \Longrightarrow$ polyhedron S
by (simp add: polytope_imp_polyhedron simplex_imp_polytope)
lemma simplex_dim_ge: n simplex $S \Longrightarrow-1 \leq n$
by (metis (no_types, hide_lams) aff_dim_geq affine_independent_iff_card diff_add_cancel
diff_diff_eq2 simplex_def)
lemma simplex_empty [simp]: n simplex $\} \longleftrightarrow n=-1$
proof
assume n simplex $\}$
then show $n=-1$
unfolding simplex by (metis card.empty convex_hull_eq_empty diff_0 diff_eq_eq
of_nat_0)
next
assume $n=-1$ then show n simplex $\}$
by (fastforce simp: simplex)
qed
lemma simplex_minus_1 [simp]: -1 simplex $S \longleftrightarrow S=\{ \}$
by (metis simplex cancel_comm_monoid_add_class.diff_cancel card_0_eq diff_minus_eq_add
of_nat_eq_0_iff simplex_empty)
lemma aff_dim_simplex:
n simplex $S \Longrightarrow$ aff_dim $S=n$
by (metis simplex add.commute add_diff_cancel_left' aff_dim_convex_hull affine_independent_iff_card)
lemma zero_simplex_sing: 0 simplex $\{a\}$

```
apply (simp add: simplex_def)
using affine_independent_1 card_1_singleton_iff convex_hull_singleton by blast
```

lemma simplex_sing [simp]: n simplex $\{a\} \longleftrightarrow n=0$
using aff_dim_simplex aff_dim_sing zero_simplex_sing by blast
lemma simplex_zero: 0 simplex $S \longleftrightarrow(\exists a . S=\{a\})$
by (metis aff_dim_eq_0 aff_dim_simplex simplex_sing)
lemma one_simplex_segment: $a \neq b \Longrightarrow 1$ simplex closed_segment $a b$
unfolding simplex_def
by (rule_tac $x=\{a, b\}$ in exI) (auto simp: segment_convex_hull)
lemma simplex_segment_cases:
(if $a=b$ then 0 else 1) simplex closed_segment $a b$
by (auto simp: one_simplex_segment)
lemma simplex_segment:
$\exists n$. n simplex closed_segment $a b$
using simplex_segment_cases by metis
lemma polytope_lowdim_imp_simplex:
assumes polytope P aff_dim $P \leq 1$
obtains n where n simplex P
proof (cases $P=\{ \}$)
case True
then show? ?thesis
by (simp add: that)
next
case False
then show ?thesis
by (metis assms compact_convex_collinear_segment collinear_aff_dim polytope_imp_compact
polytope_imp_convex simplex_segment_cases that)
qed
lemma simplex_insert_dimplus1:
fixes $n:$:int
assumes n simplex S and a : $a \notin$ affine hull S
shows $(n+1)$ simplex (convex hull (insert a S))
proof -
obtain C where C : finite $C \neg$ affine_dependent $C \operatorname{int}(\operatorname{card} C)=n+1$ and S :
$S=$ convex hull C
using assms unfolding simplex by force
show ?thesis
unfolding simplex
proof (intro exI conjI)
have aff_dim $S=n$
using aff_dim_simplex assms(1) by blast
moreover have $a \notin$ affine hull C
using S a affine_hull_convex_hull by blast
moreover have $a \notin C$
using S a hull_inc by fastforce
ultimately show \neg affine_dependent (insert a C)
by (simp add: C S aff_dim_convex_hull aff_dim_insert affine_independent_iff_card)
next
have $a \notin C$
using S a hull_inc by fastforce
then show int $($ card $($ insert a $C))=n+1+1$
by (simp add: C)
next
show convex hull insert a $S=$ convex hull (insert a C)
by (simp add: S convex_hull_insert_segments)
qed (use C in auto)
qed

6.38.18 Simplicial complexes and triangulations

definition simplicial_complex where
simplicial_complex $\mathcal{C} \equiv$
finite $\mathcal{C} \wedge$
$(\forall S \in \mathcal{C} . \exists n . n$ simplex $S) \wedge$
$(\forall F S . S \in \mathcal{C} \wedge F$ face_of $S \longrightarrow F \in \mathcal{C}) \wedge$
$\left(\forall S S^{\prime} . S \in \mathcal{C} \wedge S^{\prime} \in \mathcal{C} \longrightarrow\left(S \cap S^{\prime}\right)\right.$ face_of $\left.S\right)$
definition triangulation where

```
triangulation }\mathcal{T}
finite \mathcal{T}^
(\forallT\in\mathcal{T}.\existsn.n simplex T)^
(\forallT T'. T\in\mathcal{T}\wedge T'\in\mathcal{T}\longrightarrow(T\cap T') face_of T)
```


6.38.19 Refining a cell complex to a simplicial complex

proposition convex_hull_insert_Int_eq:
fixes z :: ' a :: euclidean_space
assumes $z: z \in$ rel_interior S
and $T: T \subseteq$ rel_frontier S
and $U: U \subseteq$ rel_frontier S
and convex S convex T convex U
shows convex hull (insert z T) \cap convex hull (insert $z U$) $=$ convex hull (insert $z(T \cap U))$
(is ?lhs = ? $r h s$)
proof
show ?lhs \subseteq ?rhs
proof (cases $T=\{ \} \vee U=\{ \}$)
case True then show ?thesis by auto
next
case False
then have $T \neq\{ \} U \neq\{ \}$ by auto
have $T U$: convex $(T \cap U)$

```
    by (simp add: <convex T\rangle <convex U\rangle convex_Int)
    have ( \bigcupx\inT.closed_segment z x) \cap(\bigcupx\inU. closed_segment z x)
        \subseteq(if T\capU={} then {z} else \bigcup((closed_segment z)'(T\capU))) (is_
\subseteq ? I F )
    proof clarify
        fix }xt
        assume xt:x closed_segment zt
        and xu: x c closed_segment zu
        and}t\inTu\in
        then have ne: t\not=zu\not=z
            using TU z unfolding rel_frontier_def by blast+
        show }x\in\mathrm{ ?IF
        proof (cases x=z)
        case True then show ?thesis by auto
        next
        case False
        have t:t\in closure S
            using T\langlet \inT\rangle rel_frontier_def by auto
        have u:u\in closure S
            using U\langleu\inU\rangle rel_frontier_def by auto
        show ?thesis
        proof (cases t=u)
            case True
            then show ?thesis
                using \langlet \inT\rangle\langleu\inU\rangle xt by auto
            next
                case False
                have tnot: t & closed_segment u z
                proof -
                    have t\in closure S - rel_interior S
                        using T<t \in T\rangle rel_frontier_def by blast
            then have t}\not\in\mathrm{ open_segment zu
                by (meson DiffD2 rel_interior_closure_convex_segment [OF <convex S〉
zu] subsetD)
            then show ?thesis
            by (simp add: <t \not=u\rangle\langlet\not=z\rangle open_segment_commute open_segment_def)
            qed
            moreover have }u\not\in\mathrm{ closed_segment zt
            using rel_interior_closure_convex_segment [OF <convex S\ranglezt]\langleu\inU\rangle\langleu
\not=z>
            U [unfolded rel_frontier_def] tnot
            by (auto simp: closed_segment_eq_open)
        ultimately
        have }\neg\mathrm{ (between }(t,u)z|\mathrm{ between (u,z)t| between (z,t)u) if x}=
            using that xt xu
                    by (meson between_antisym between_mem_segment between_trans_2
ends_in_segment(2))
        then have }\neg\mathrm{ collinear {t,z,u} if }x\not=
            by (auto simp: that collinear_between_cases between_commute)
```

moreover have collinear $\{t, z, x\}$
by (metis closed_segment_commute collinear_2 collinear_closed_segment collinear_triples ends_in_segment(1) insert_absorb insert_absorb2 xt)
moreover have collinear $\{z, x, u\}$
by (metis closed_segment_commute collinear_2 collinear_closed_segment collinear_triples ends_in_segment(1) insert_absorb insert_absorb2 xu)
ultimately have False
using collinear_3_trans $[$ of $t z x u]\langle x \neq z\rangle$ by blast
then show ?thesis by metis

qed

qed
qed
then show ?thesis
using False 〈convex $T\rangle\langle$ convex $U\rangle T U$
by (simp add: convex_hull_insert_segments hull_same split: if_split_asm)
qed
show ?rhs \subseteq ?lhs
by (metis inf_greatest hull_mono inf.cobounded1 inf.cobounded2 insert_mono)
qed
lemma simplicial_subdivision_aux:
assumes finite \mathcal{M}
and $\bigwedge C . C \in \mathcal{M} \Longrightarrow$ polytope C
and $\bigwedge C . C \in \mathcal{M} \Longrightarrow$ aff_dim $C \leq$ of_nat n
and $\bigwedge C F . \llbracket C \in \mathcal{M} ; F$ face_of $C \rrbracket \Longrightarrow F \in \mathcal{M}$
and $\wedge C 1 C 2 . \llbracket C 1 \in \mathcal{M} ; C 2 \in \mathcal{M} \rrbracket \Longrightarrow C 1 \cap$ C2 face_of C1
shows $\exists \mathcal{T}$. simplicial_complex $\mathcal{T} \wedge$
$(\forall K \in \mathcal{T}$. aff_dim $K \leq$ of_nat $n) \wedge$
$\bigcup \mathcal{T}=\bigcup \mathcal{M} \wedge$
$(\forall C \in \mathcal{M}$. $\exists F$. finite $F \wedge F \subseteq \mathcal{T} \wedge C=\bigcup F) \wedge$
$(\forall K \in \mathcal{T} . \exists C . C \in \mathcal{M} \wedge K \subseteq C)$
using assms
proof (induction n arbitrary: \mathcal{M} rule: less_induct)
case (less n)
then have poly $\mathcal{M}: \wedge C . C \in \mathcal{M} \Longrightarrow$ polytope C
and aff $\mathcal{M}: \quad \bigwedge C . C \in \mathcal{M} \Longrightarrow$ aff_dim $C \leq$ of_nat n
and face $\mathcal{M}: \quad \bigwedge C F . \llbracket C \in \mathcal{M} ; F$ face_of $C \rrbracket \Longrightarrow F \in \mathcal{M}$
and intface $\mathcal{M}: \bigwedge C 1 C 2 . \llbracket C 1 \in \mathcal{M} ; C 2 \in \mathcal{M} \rrbracket \Longrightarrow C 1 \cap C 2$ face_of C1
by metis+
show ?case
proof (cases $n \leq 1$)
case True
have $\bigwedge s . \llbracket n \leq 1 ; s \in \mathcal{M} \rrbracket \Longrightarrow \exists m$. m simplex s
using poly \mathcal{M} aff \mathcal{M} by (force intro: polytope_lowdim_imp_simplex)
then show ?thesis
unfolding simplicial_complex_def using True
by (rule_tac $x=\mathcal{M}$ in exI) (auto simp: less.prems)
next
case False
define \mathcal{S} where $\mathcal{S} \equiv\{C \in \mathcal{M}$. aff_dim $C<n\}$
have finite $\mathcal{S} \bigwedge C . C \in \mathcal{S} \Longrightarrow$ polytope $C \wedge C . C \in \mathcal{S} \Longrightarrow$ aff_dim $C \leq \operatorname{int}(n$ - 1)
$\bigwedge C 1 C 2 . \llbracket C 1 \in \mathcal{S} ; C 2 \in \mathcal{S} \rrbracket \Longrightarrow C 1 \cap C 2$ face_of $C 1$
using less.prems by (auto simp: $\mathcal{S}_{-} d e f$)
moreover have $\S: \bigwedge C F . \llbracket C \in \mathcal{S} ; F$ face_of $C \rrbracket \Longrightarrow F \in \mathcal{S}$
using less.prems unfolding $\mathcal{S}_{-} d e f$
by (metis (no_types, lifting) mem_Collect_eq aff_dim_subset face_of_imp_subset less_le not_le)
ultimately obtain \mathcal{U} where simplicial_complex \mathcal{U}
and aff_dim $\mathcal{U}: \wedge K . K \in \mathcal{U} \Longrightarrow$ aff_dim $K \leq \operatorname{int}(n-1)$
and $\quad \cup \mathcal{U}=\bigcup \mathcal{S}$
and fin $\mathcal{U}: \wedge C . C \in \mathcal{S} \Longrightarrow \exists F$. finite $F \wedge F \subseteq \mathcal{U} \wedge C=\bigcup F$
and $C \mathcal{U}: \quad \bigwedge K . K \in \mathcal{U} \Longrightarrow \exists C . C \in \mathcal{S} \wedge K \subseteq C$
using less.IH [of $n-1 \mathcal{S}$] False by auto
then have finite \mathcal{U}
and simplU $: \bigwedge S . S \in \mathcal{U} \Longrightarrow \exists n$. n simplex S
and face $\mathcal{U}: ~ \bigwedge F S . \llbracket S \in \mathcal{U} ; F$ face_of $S \rrbracket \Longrightarrow F \in \mathcal{U}$
and faceIU: $\wedge S S^{\prime} . \llbracket S \in \mathcal{U} ; S^{\prime} \in \mathcal{U} \rrbracket \Longrightarrow\left(S \cap S^{\prime}\right)$ face_of S
by (auto simp: simplicial_complex_def)
define \mathcal{N} where $\mathcal{N} \equiv\{C \in \mathcal{M}$. aff_dim $C=n\}$
have finite \mathcal{N}
by (simp add: $\mathcal{N} _$def less.prems (1))
have poly $\mathcal{N}: \wedge C . C \in \mathcal{N} \Longrightarrow$ polytope C
and convex $\mathcal{N}: \wedge C . C \in \mathcal{N} \Longrightarrow$ convex C
and closed $\mathcal{N}: \wedge C . C \in \mathcal{N} \Longrightarrow$ closed C
by (auto simp: \mathcal{N} _def poly \mathcal{M} polytope_imp_convex polytope_imp_closed)
have in_rel_interior: (SOME z. z \in rel_interior $C) \in$ rel_interior C if $C \in \mathcal{N}$ for C
using that poly \mathcal{M} polytope_imp_convex rel_interior_aff_dim some_in_eq by (fastforce simp: \mathcal{N}_{-}def)
have $*: \exists T$. \neg affine_dependent $T \wedge$ card $T \leq n \wedge$ aff_dim $K<n \wedge K=$ convex hull T
if $K \in \mathcal{U}$ for K
proof -
obtain r where r : r simplex K
using $\langle K \in \mathcal{U}\rangle$ simplU \mathcal{U} by blast
have $r=$ aff_dim K
using $\langle r$ simplex K 〉 aff_dim_simplex by blast
with r
show ?thesis
unfolding simplex_def
using False $\langle\backslash K . K \in \mathcal{U} \Longrightarrow$ aff_dim $K \leq \operatorname{int}(n-1)\rangle$ that by fastforce
qed
have ahK_C_disjoint: affine hull $K \cap$ rel_interior $C=\{ \}$
if $C \in \mathcal{N} K \in \mathcal{U} K \subseteq$ rel_frontier C for $C K$
proof -
have convex C closed C
by (auto simp: convex \mathcal{N} closed $\mathcal{N}\langle C \in \mathcal{N}\rangle$)

```
    obtain F where F: F face_of C and F}\not=CK\subseteq
    proof -
    obtain L where L\in\mathcal{S K\subseteqL}
        using \langleK\in\mathcal{U}\rangleC\mathcal{U}\mathrm{ by blast}
    have K\leqrel_frontier C
        by (simp add: <K\subseteq rel_frontier C`)
    also have ... \leqC
        by (simp add: <closed C> rel_frontier_def subset_iff)
    finally have }K\subseteqC\mathrm{ .
    have L\capC face_of C
```



```
    moreover have L\capC\not=C
        using }\langleC\in\mathcal{N}\rangle\langleL\in\mathcal{S}
```



```
not_le order_refl §)
            moreover have K\subseteqL\capC
            using }\langleC\in\mathcal{N}\rangle\langleL\in\mathcal{S}\rangle\langleK\subseteqC\rangle\langleK\subseteqL\rangle by (auto simp: \mathcal{N_def S_def)
            ultimately show ?thesis using that by metis
    qed
    have affine hull F\cap rel_interior C={}
    by (rule affine_hull_face_of_disjoint_rel_interior [OF\convex C> F〈F\not=C\rangle])
    with hull_mono [OF〈K\subseteqF`]
    show affine hull K\cap rel_interior }C={
        by fastforce
    qed
```



```
                                    {convex hull (insert (SOME z. z \in rel_interior C) K)})
    have }\exists\mathcal{T}\mathrm{ . simplicial_complex }\mathcal{T}
                    (\forallK\in\mathcal{T}.aff_dim K}\leq\mathrm{ of_nat n)^
                    (\forallC\in\mathcal{M}.\existsF.F\subseteq\mathcal{T}\wedgeC=\bigcupF)^
            (\forallK\in\mathcal{T}.\existsC.C\in\mathcal{M}\wedgeK\subseteqC)
    proof (rule exI, intro conjI ballI)
    show simplicial_complex ( }\mathcal{U}\cup\mathrm{ ?T T)
        unfolding simplicial_complex_def
    proof (intro conjI impI ballI allI)
        show finite (\mathcal{U}\cup?T)
            using \langlefinite }\mathcal{U}\rangle\langlefinite \mathcal{N}\rangle\mathrm{ by simp
            show }\existsn.n\mathrm{ simplex }S\mathrm{ if }S\in\mathcal{U}\cup?\mathcal{T}\mathrm{ for }
            using that ahK_C_disjoint in_rel_interior simplU simplex_insert_dimplus1
by fastforce
    show }F\in\mathcal{U}\cup??\mathcal{T}\mathrm{ if }S:S\in\mathcal{U}\cup?\mathcal{T}\wedgeF\mathrm{ face_of S for F S
    proof -
            have }F\in\mathcal{U}\mathrm{ if S 
            using S faceU that by blast
            moreover have F}\in\mathcal{U}\cup?\mathcal{T
            if F face_of S C\in\mathcal{N}K}
                    and S:S = convex hull insert (SOME z. z \in rel_interior C) K for C
K
        proof -
```

```
    let ?z = SOME z. z \in rel_interior C
    have ?z \in rel_interior C
    by (simp add: in_rel_interior }\langleC\in\mathcal{N}\rangle
    moreover
    obtain I where \negaffine_dependent I card I \leq n aff_dim K < int n K
= convex hull I
    using * [OF \langleK \in\mathcal{U}\rangle] by auto
    ultimately have ?z # affine hull I
        using ahK_C_disjoint affine_hull_convex_hull that by blast
    have compact I finite I
            by (auto simp:〈\neg affine_dependent I` aff_independent_finite fi-
nite_imp_compact)
    moreover have F face_of convex hull insert ?z I
        by (metis S \langleF face_of S\rangle\langleK= convex hull I\rangle convex_hull_eq_empty
convex_hull_insert_segments hull_hull)
    ultimately obtain J where J\subseteqinsert ?z I F = convex hull J
        using face_of_convex_hull_subset [of insert ?z I F] by auto
    show ?thesis
    proof (cases ?z z J)
        case True
        have F}\in(\bigcupK\in\mathcal{U}\cap\mathrm{ Pow (rel_frontier C). {convex hull insert ?z K})
        proof
            have convex hull ( }J-{?z}) face_of 
        by (metis True }\langleJ\subseteq\mathrm{ insert ?z I \<K= convex hull I\<口 affine_dependent
I) face_of_convex_hull_affine_independent subset_insert_iff)
            then have convex hull (J - {?z}) \in\mathcal{U}
            by (rule face\mathcal{U}[OF\langleK\in\mathcal{U}\])
            moreover
            have }\x.x\in\mathrm{ convex hull ( }J-{?z})\Longrightarrowx\in\mathrm{ rel_frontier C
                    by (metis True <J\subseteq insert ?z I\rangle\langleK= convex hull I\rangle subsetD
hull_mono subset_insert_iff that(4))
                            ultimately show convex hull (J - {?z}) \in\mathcal{U}\cap\mathrm{ Pow (rel_frontier}
C) by auto
    let ?F = convex hull insert ?z (convex hull (J - {?z}))
    have F\subseteq?F
                            apply (clarsimp simp: \langleF= convex hull J〉)
                            by (metis True subsetD hull_mono hull_subset subset_insert_iff)
            moreover have ?F\subseteqF
            apply (clarsimp simp: \langleF= convex hull J\rangle)
                    by (metis (no_types, lifting) True convex_hull_eq_empty con-
vex_hull_insert_segments hull_hull insert_Diff)
            ultimately
            show }F\in{?F}\mathrm{ by auto
            qed
            with }\langleC\in\mathcal{N}\rangle\mathrm{ show ?thesis by auto
        next
            case False
            then have F}\in\mathcal{U
                using face_of_convex_hull_affine_independent [OF }\neg\mathrm{ affine_dependent
```


I)]

by (metis Int_absorb2 Int_insert_right_if0 $\langle F=$ convex hull $J\rangle\langle J \subseteq$ insert ? $z I\rangle\langle K=$ convex hull $I\rangle$ faceU inf_le2 $\langle K \in \mathcal{U}\rangle$)
then show $F \in \mathcal{U} \cup ? \mathcal{T}$
by blast
qed
qed
ultimately show ?thesis
using that by auto
qed
have $\S: X \cap Y$ face_of $X \wedge X \cap Y$ face_of Y
if $X Y: X \in \mathcal{U} Y \in ? \mathcal{T}$ for $X Y$
proof -
obtain $C K$
where $C \in \mathcal{N} K \in \mathcal{U} K \subseteq$ rel_frontier C
and $Y: Y=$ convex hull insert (SOME z. $z \in$ rel_interior C) K
using $X Y$ by blast
have convex C
by (simp add: $\langle C \in \mathcal{N}\rangle$ convex \mathcal{N})
have $K \subseteq C$
by (metis Diffe $\langle C \in \mathcal{N}\rangle\langle K \subseteq$ rel_frontier $C\rangle$ closed \mathcal{N} closure_closed
rel_frontier_def subset_iff)
let ? $z=(S O M E z . z \in$ rel_interior $C)$
have $z: ? z \in$ rel_interior C
using $\langle C \in \mathcal{N}\rangle$ in_rel_interior by blast
obtain D where $D \in \mathcal{S} X \subseteq D$
using $C \mathcal{U}\langle X \in \mathcal{U}\rangle$ by blast
have $D \cap$ rel_interior $C=(C \cap D) \cap$ rel_interior C
using rel_interior_subset by blast
also have $(C \cap D) \cap$ rel_interior $C=\{ \}$
proof (rule face_of_disjoint_rel_interior)
show $C \cap D$ face_of C
using \mathcal{N} _def $\mathcal{S}_{-} d e f\langle C \in \mathcal{N}\rangle\langle D \in \mathcal{S}\rangle$ intface \mathcal{M} by blast
show $C \cap D \neq C$
by (metis (mono_tags, lifting) Int_lower2 \mathcal{N} _def \mathcal{S} _def $\langle C \in \mathcal{N}\rangle\langle D \in$
\mathcal{S}) aff_dim_subset mem_Collect_eq not_le)
qed
finally have $D C: D \cap$ rel_interior $C=\{ \}$.
have eq: $X \cap$ convex hull (insert ? $z K$) $=X \cap$ convex hull K
proof (rule Int_convex_hull_insert_rel_exterior $[O F\langle$ convex $C\rangle\langle K \subseteq C\rangle$
$z])$
show disjnt X (rel_interior C)
using $D C$ by (meson $\langle X \subseteq D$ 〉disjnt_def disjnt_subset1)
qed
obtain I where I : ᄀaffine_dependent I
and Keq: $K=$ convex hull I and [simp]: convex hull $K=K$
using $*\langle K \in \mathcal{U}\rangle$ by force
then have ? $z \notin$ affine hull I
using $a h K_{-} C_{-}$disjoint $\langle C \in \mathcal{N}\rangle\langle K \in \mathcal{U}\rangle\langle K \subseteq$ rel_frontier $C\rangle$ affine_hull_convex_hull
z by blast
have $X \cap K$ face_of K
by (simp add: $X Y(1)\langle K \in \mathcal{U}\rangle$ faceIU inf_commute)
also have ... face_of convex hull insert ? z K
by (metis I Keq «?z \notin affine hull I〉 aff_independent_finite convex_convex_hull face_of_convex_hull_insert face_of_refl hull_insert)
finally have $X \cap K$ face_of convex hull insert ?z K .
then show ?thesis
by $($ simp add: $X Y(1) Y\langle K \in \mathcal{U}\rangle$ eq faceIU $)$
qed
show $S \cap S^{\prime}$ face_of S
if $S \in \mathcal{U} \cup ? \mathcal{T} \wedge S^{\prime} \in \mathcal{U} \cup ? \mathcal{T}$ for $S S^{\prime}$
using that
proof (elim conjE UnE)
fix $X Y$
assume $X \in \mathcal{U}$ and $Y \in \mathcal{U}$
then show $X \cap Y$ face_of X
by (simp add: faceIU)
next
fix $X Y$
assume $X Y: X \in \mathcal{U} Y \in ? \mathcal{T}$
then show $X \cap Y$ face_of $X Y \cap X$ face_of Y
using $\S[O F X Y]$ by (auto simp: Int_commute)
next
fix $X Y$
assume $X Y: X \in ? \mathcal{T} Y \in ? \mathcal{T}$
show $X \cap Y$ face_of X
proof -
obtain $C K D L$
where $C \in \mathcal{N} K \in \mathcal{U} K \subseteq$ rel_frontier C and $X: X=$ convex hull insert (SOME z. $z \in$ rel_interior $C) K$ and $D \in \mathcal{N} L \in \mathcal{U} L \subseteq$ rel_frontier D
and $Y: Y=$ convex hull insert (SOME z. $z \in$ rel_interior $D) L$
using $X Y$ by blast
let ? $z=(S O M E z . z \in$ rel_interior $C)$
have $z: ? z \in$ rel_interior C
using $\langle C \in \mathcal{N}\rangle$ in_rel_interior by blast
have convex C
by (simp add: $\langle C \in \mathcal{N}\rangle$ convex $\mathcal{N})$
have convex K
using $*\langle K \in \mathcal{U}\rangle$ by blast
have convex L
by (meson $\langle L \in \mathcal{U}\rangle$ convex_simplex simplU $)$
show ?thesis
proof (cases $D=C$)
case True
then have $L \subseteq$ rel_frontier C
using $\langle L \subseteq$ rel_frontier $D\rangle$ by auto
have convex hull insert（SOME z．z \in rel＿interior $C)(K \cap L)$ face＿of convex hull insert（SOME z．$z \in$ rel＿interior C ）K
by（metis face＿of＿polytope＿insert2 $*$ Int $I\langle C \in \mathcal{N}\rangle$ aff＿independent＿finite ahK＿C＿disjoint empty＿iff faceIU polytope＿def $z\langle K \in \mathcal{U}\rangle\langle L \in \mathcal{U}\rangle\langle K \subseteq$ rel＿frontier C）
then show ？thesis
using True $X Y\langle K \subseteq$ rel＿frontier $C\rangle\langle L \subseteq$ rel＿frontier $C\rangle\langle$ convex $C\rangle$〈convex K 〉＜convex L 〉 convex＿hull＿insert＿Int＿eq z by force
next
case False
have convex D
by（simp add：$\langle D \in \mathcal{N}\rangle$ convex $\mathcal{N})$
have $K \subseteq C$
by（metis Diffe $\langle C \in \mathcal{N}\rangle\langle K \subseteq$ rel＿frontier $C\rangle$ closed \mathcal{N} closure＿closed rel＿frontier＿def subset＿eq）
have $L \subseteq D$
by（metis Diffe $\langle D \in \mathcal{N}\rangle\langle L \subseteq$ rel＿frontier $D\rangle$ closed \mathcal{N} closure＿closed rel＿frontier＿def subset＿eq）
let ？$w=(S O M E w . w \in$ rel＿interior $D)$
have w ：？$w \in$ rel＿interior D
using $\langle D \in \mathcal{N}\rangle$ in＿rel＿interior by blast
have $C \cap$ rel＿interior $D=(D \cap C) \cap$ rel＿interior D
using rel＿interior＿subset by blast
also have $(D \cap C) \cap$ rel＿interior $D=\{ \}$
proof（rule face＿of＿disjoint＿rel＿interior）
show $D \cap C$ face＿of D
using \mathcal{N}_{-}def $\langle C \in \mathcal{N}\rangle\langle D \in \mathcal{N}\rangle$ intface \mathcal{M} by blast
have $D \in \mathcal{M} \wedge$ aff＿dim $D=$ int n
using $\mathcal{N} _$def $\langle D \in \mathcal{N}\rangle$ by blast
moreover have $C \in \mathcal{M} \wedge$ aff＿dim $C=$ int n
using $\mathcal{N}_{-} \operatorname{def}\langle C \in \mathcal{N}\rangle$ by blast
ultimately show $D \cap C \neq D$
by（metis Int＿commute False face＿of＿aff＿dim＿lt inf．idem inf＿le1
intface \mathcal{M} not＿le poly \mathcal{M} polytope＿imp＿convex）
qed
finally have $C D: C \cap($ rel＿interior $D)=\{ \}$ ．
have $z K C$ ：（convex hull insert ？$z K) \subseteq C$
by（metis Diffe $\langle C \in \mathcal{N}\rangle\langle K \subseteq$ rel＿frontier $C\rangle$ closed \mathcal{N} closure＿closed convex \mathcal{N} hull＿minimal insert＿subset rel＿frontier＿def rel＿interior＿subset subset＿iff z） have disjnt（convex hull insert（SOME z．z \in rel＿interior C ）K） （rel＿interior D）
using $z K C$ CD by（force simp：disjnt＿def）
then have eq：convex hull（insert ？z K）\cap convex hull（insert ？w L ）$=$ convex hull（insert ？z K）\cap convex hull L
by（rule Int＿convex＿hull＿insert＿rel＿exterior $[O F\langle$ convex $D\rangle\langle L \subseteq D\rangle$ $w]$ ）
have ch＿id：convex hull $K=K$ convex hull $L=L$
using $*\langle K \in \mathcal{U}\rangle\langle L \in \mathcal{U}\rangle$ hull＿same by auto
have convex C

```
    by (simp add: <C \in\mathcal{N}\rangle convex\mathcal{N})
    have convex hull (insert ?z K) \capL=L\cap convex hull (insert ?z K)
    by blast
    also have ... = convex hull K \cap L
    proof (subst Int_convex_hull_insert_rel_exterior [OF〈convex C><K\subseteq
C> z])
    have }(C\capD)\cap\mathrm{ rel_interior }C={
    proof (rule face_of_disjoint_rel_interior)
        show }C\capD\mathrm{ face_of }
        using \mathcal{N_def }\langleC\in\mathcal{N}\rangle\langleD\in\mathcal{N}\rangle intface\mathcal{M}}\mathrm{ by blast
    have D\in\mathcal{M aff_dim D = int n}
        using \mathcal{N_def }\langleD\in\mathcal{N}\rangle\mathrm{ by fastforce+}
    moreover have }C\in\mathcal{M}\mathrm{ aff_dim C= int n
        using \mathcal{N_def }\langleC\in\mathcal{N}\rangle\mathrm{ by fastforce+}
    ultimately have aff_dim D+-1*aff_dim C \leq 0
        by fastforce
    then have ᄀ C face_of D
            using False <convex D> face_of_aff_dim_lt by fastforce
    show C\capD}\not=
                by (metis inf_commute }\langleC\in\mathcal{M}\rangle\langleD\in\mathcal{M}\rangle\langle\negC face_of D
intfaceM)
qed
then have \(D \cap\) rel_interior \(C=\{ \}\)
    by (metis inf.absorb_iff2 inf_assoc inf_sup_aci(1) rel_interior_subset)
    then show disjnt L (rel_interior C)
    by (meson 〈L\subseteqD`disjnt_def disjnt_subset1)
next
    show }L\cap\mathrm{ convex hull }K=\mathrm{ convex hull }K\cap
        by force
qed
finally have chKL: convex hull (insert ?z K) \capL= convex hull K \cap
L.
have convex hull insert ?z K \cap convex hull L face_of K
    by (simp add: }\langleK\in\mathcal{U}\rangle\langleL\in\mathcal{U}\rangle ch_id chKL faceI\mathcal{U}
also have ... face_of convex hull insert ?z K
proof -
    obtain I where I: \neg affine_dependent I K = convex hull I
        using * [OF}\langleK\in\mathcal{U}\rangle] by aut
    then have }\a.a\not\in\mathrm{ rel_interior }C\veea\not\in\mathrm{ affine hull I
        using ahK_C_disjoint }\langleC\in\mathcal{N}\rangle\langleK\in\mathcal{U}\rangle\langleK\subseteq\mathrm{ rel_frontier C}
affine_hull_convex_hull by blast
                            then show ?thesis
                            by (metis I affine_independent_insert face_of_convex_hull_affine_independent
hull_insert subset_insertI z)
                    qed
                            finally have 1: convex hull insert ?z K \cap convex hull L face_of convex
hull insert ?z K .
    have convex hull insert ?z K \cap convex hull L face_of L
    by (metis }\langleK\in\mathcal{U}\rangle\langleL\in\mathcal{U}\rangle chKL ch_id faceIU inf_commute)
```

also have ... face_of convex hull insert ?w L
proof -
obtain I where $I: \neg$ affine_dependent $I L=$ convex hull I
using $*[O F\langle L \in \mathcal{U}\rangle]$ by auto
then have $\bigwedge a$. $a \notin$ rel_interior $D \vee a \notin$ affine hull I
using $\langle D \in \mathcal{N}\rangle\langle L \in \mathcal{U}\rangle\langle L \subseteq$ rel_frontier $D\rangle$ affine_hull_convex_hull ahK_C_disjoint by blast
then show?thesis
by (metis I aff_independent_finite convex_convex_hull face_of_convex_hull_insert face_of_refl hull_insert w)
qed
finally have 2: convex hull insert ? $z K \cap$ convex hull L face_of convex hull insert ? w L .
show ?thesis
by (simp add: X Yeq 1 2)

qed

qed
qed
qed
show $\exists F \subseteq \mathcal{U} \cup ?$? $. C=\bigcup F$ if $C \in \mathcal{M}$ for C
proof (cases $C \in \mathcal{S}$)
case True
then show ?thesis
by (meson UnCI finU subsetD subsetI)
next
case False
then have $C \in \mathcal{N}$
by (simp add: \mathcal{N} _def \mathcal{S}_{-}def aff \mathcal{M} less_le that)
let ? $z=S O M E z . z \in$ rel_interior C
have $z: ? z \in$ rel_interior C
using $\langle C \in \mathcal{N}\rangle$ in_rel_interior by blast
let ? $F=\bigcup K \in \mathcal{U} \cap$ Pow (rel_frontier C). $\{$ convex hull (insert ?z K) \}
have ? $F \subseteq$?T
using $\langle C \in \mathcal{N}\rangle$ by blast
moreover have $C \subseteq \bigcup ? F$
proof
fix x
assume $x \in C$
have convex C
using $\langle C \in \mathcal{N}\rangle$ convex \mathcal{N} by blast
have bounded C
using $\langle C \in \mathcal{N}\rangle$ by (simp add: poly \mathcal{M} polytope_imp_bounded that)
have polytope C
using $\langle C \in \mathcal{N}\rangle$ poly \mathcal{N} by auto
have $\neg(? z=x \wedge C=\{? z\})$
using $\langle C \in \mathcal{N}\rangle$ aff_dim_sing $[o f ? z]\langle\neg n \leq 1\rangle$ by (force simp: $\mathcal{N} _$def)
then obtain y where $y: y \in$ rel_frontier C and $x z y: x \in$ closed_segment
and sub: open_segment ? $z y \subseteq$ rel_interior C

```
    by (blast intro: segment_to_rel_frontier [OF〈convex C>\langlebounded C> z\langlex
\inC`])
    then obtain F where y f F F face_of C F \not=C
    by (auto simp: rel_frontier_of_polyhedron_alt [OF polytope_imp_polyhedron
[OF〈polytope C`]])
```



```
    by (metis (mono_tags, lifting) S_def \langleC\in\mathcal{M}\rangle\langleconvex C\rangle aff \mathcal{M face\mathcal{M}}\mathbf{M}\mathrm{ )}
face_of_aff_dim_lt fin\mathcal{U le_less_trans mem_Collect_eq not_less)}
    then obtain }K\mathrm{ where }y\inKK\in\mathcal{G
            using }\langley\inF\rangle\mathrm{ by blast
    moreover have x:x\in convex hull {?z,y}
            using segment_convex_hull xzy by auto
    moreover have convex hull {?z,y}\subseteq convex hull insert ?z K
            by (metis (full_types) <y G K hull_mono empty_subsetI insertCI in-
sert_subset)
    moreover have }K\in\mathcal{U
            using }\langleK\in\mathcal{G}\rangle\langle\mathcal{G}\subseteq\mathcal{U}\rangle\mathrm{ by blast
            moreover have K\subseteqrel_frontier C
            using }\langleF=\bigcup\mathcal{G}\rangle\langleF\not=C\rangle\langleF face_of C\rangle\langleK\in\mathcal{G}\rangle\mathrm{ face_of_subset_rel_frontier
by fastforce
            ultimately show }x\in\?
            by force
    qed
    moreover
    have convex hull insert (SOME z.z e rel_interior C) K\subseteqC
        if K\in\mathcal{U}K\subseteqrel_frontier C for K
    proof (rule hull_minimal)
        show insert (SOME z. z\in rel_interior C) K\subseteqC
        using that }\langleC\in\mathcal{N}\rangle\mathrm{ in_rel_interior rel_interior_subset
        by (force simp: closure_eq rel_frontier_def closedN}\mathrm{ )
        show convex C
        by (simp add: <C \in \mathcal{N` convexN )}
    qed
    then have }\?F\subseteq
        by auto
    ultimately show ?thesis
        by blast
    qed
    have (\existsC.C\in\mathcal{M}\wedgeL\subseteqC)^aff_dim L\leqint n if L\in\mathcal{U}\cup?T}\mathrm{ for }
    using that
    proof
    assume L\in\mathcal{U}
    then show ?thesis
        using CU S_def * by fastforce
    next
    assume L\in?T
    then obtain C K where C\in\mathcal{N}
        and L:L = convex hull insert (SOME z.z\in rel_interior C) K
        and K:K}\mathcal{U}K\\mathrm{ rel_frontier C
```

```
    by auto
    then have convex hull \(C=C\)
    by (meson convex \(\mathcal{N}\) convex_hull_eq)
    then have convex \(C\)
        by (metis (no_types) convex_convex_hull)
    have rel_frontier \(C \subseteq C\)
    by (metis Diffe closed \(\mathcal{N}\langle C \in \mathcal{N}\rangle\) closure_closed rel_frontier_def subsetI)
    have \(K \subseteq C\)
    using \(K\) 〈rel_frontier \(C \subseteq C\rangle\) by blast
    have \(C \in \mathcal{M}\)
    using \(\mathcal{N}\) _def \(\langle C \in \mathcal{N}\rangle\) by auto
    moreover have \(L \subseteq C\)
    using \(K L\langle C \in \mathcal{N}\rangle\)
        by (metis \(\langle K \subseteq C\rangle\langle\) convex hull \(C=C\rangle\) contra_subsetD hull_mono
in_rel_interior insert_subset rel_interior_subset)
            ultimately show ?thesis
            using 〈rel_frontier \(C \subseteq C\rangle\langle L \subseteq C\rangle\) aff \(\mathcal{M}\) aff_dim_subset \(\langle C \in \mathcal{M}\rangle\)
dual_order.trans by blast
            qed
            then show \(\exists C . C \in \mathcal{M} \wedge L \subseteq C\) aff_dim \(L \leq\) int \(n\) if \(L \in \mathcal{U} \cup\) ? \(\mathcal{T}\) for \(L\)
            using that by auto
    qed
    then show?thesis
        apply (rule ex_forward, safe)
            apply (meson Union_iff subsetCE, fastforce)
        by (meson infinite_super simplicial_complex_def)
    qed
qed
lemma simplicial_subdivision_of_cell_complex_lowdim:
    assumes finite \(\mathcal{M}\)
    and poly: \(\wedge C . C \in \mathcal{M} \Longrightarrow\) polytope \(C\)
    and face: \(\bigwedge C 1 C 2 . \llbracket C 1 \in \mathcal{M} ; C 2 \in \mathcal{M} \rrbracket \Longrightarrow C 1 \cap C 2\) face_of \(C 1\)
    and aff: \(\wedge C . C \in \mathcal{M} \Longrightarrow\) aff_dim \(C \leq d\)
    obtains \(\mathcal{T}\) where simplicial_complex \(\mathcal{T} \bigwedge K . K \in \mathcal{T} \Longrightarrow\) aff_dim \(K \leq d\)
                    \(\cup \mathcal{T}=\bigcup \mathcal{M}\)
                    \(\wedge C . C \in \mathcal{M} \Longrightarrow \exists F\). finite \(F \wedge F \subseteq \mathcal{T} \wedge C=\bigcup F\)
                    \(\wedge K . K \in \mathcal{T} \Longrightarrow \exists C . C \in \mathcal{M} \wedge K \subseteq C\)
proof (cases \(d \geq 0\) )
    case True
    then obtain \(n\) where \(n: d=o f\) _nat \(n\)
        using zero_le_imp_eq_int by blast
    have \(\exists \mathcal{T}\). simplicial_complex \(\mathcal{T} \wedge\)
            \((\forall K \in \mathcal{T}\). aff_dim \(K \leq\) int \(n) \wedge\)
            \(\bigcup \mathcal{T}=\bigcup(\bigcup C \in \mathcal{M}\). \(\{F . F\) face_of \(C\}) \wedge\)
            \((\forall C \in \bigcup C \in \mathcal{M} .\{F . F\) face_of \(C\}\).
            \(\exists F\). finite \(F \wedge F \subseteq \mathcal{T} \wedge C=\bigcup F) \wedge\)
        \((\forall K \in \mathcal{T} . \exists C . C \in(\bigcup C \in \mathcal{M} .\{F . F\) face_of \(C\}) \wedge K \subseteq C)\)
```

```
proof (rule simplicial_subdivision_aux)
    show finite \((\bigcup C \in \mathcal{M} .\{F . F\) face_of \(C\})\)
        using 〈finite \(\mathcal{M}\) 〉 poly polyhedron_eq_finite_faces polytope_imp_polyhedron by
fastforce
    show polytope \(F\) if \(F \in(\bigcup C \in \mathcal{M} .\{F . F\) face_of \(C\})\) for \(F\)
        using poly that face_of_polytope_polytope by blast
    show aff_dim \(F \leq \operatorname{int} n\) if \(F \in(\bigcup C \in \mathcal{M} .\{F . F\) face_of \(C\})\) for \(F\)
        using that
        by clarify (metis n aff_dim_subset aff face_of_imp_subset order_trans)
    show \(F \in(\bigcup C \in \mathcal{M} .\{F . F\) face_of \(C\})\)
        if \(G \in(\bigcup C \in \mathcal{M}\). \(\{F . F\) face_of \(C\})\) and \(F\) face_of \(G\) for \(F G\)
        using that face_of_trans by blast
    next
        fix F1 F2
    assume \(F 1 \in(\bigcup C \in \mathcal{M} .\{F . F\) face_of \(C\})\) and \(F 2 \in(\bigcup C \in \mathcal{M} .\{F . F\) face_of
C\})
    then obtain \(C 1 C 2\) where \(C 1 \in \mathcal{M} C 2 \in \mathcal{M}\) and \(F\) : F1 face_of \(C 1\) F2 face_of
C2
        by auto
    show F1 \(\cap\) F2 face_of F1
        using face_of_Int_subface [OF _ _ F]
        by (metis \(\langle C 1 \in \mathcal{M}\rangle\langle C 2 \in \mathcal{M}\rangle\) face inf_commute)
    qed
    moreover
    have \(\bigcup(\bigcup C \in \mathcal{M} .\{F . F\) face_of \(C\})=\bigcup \mathcal{M}\)
    using face_of_imp_subset face by blast
    ultimately show ?thesis
    using face_of_imp_subset \(n\)
    by (fastforce intro!: that simp add: poly face_of_refl polytope_imp_convex)
next
    case False
    then have \(m 1: \wedge C . C \in \mathcal{M} \Longrightarrow\) aff_dim \(C=-1\)
        by (metis aff aff_dim_empty_eq aff_dim_negative_iff dual_order.trans not_less)
    then have face \(\mathcal{M}: \wedge F S . \llbracket S \in \mathcal{M} ; F\) face_of \(S \rrbracket \Longrightarrow F \in \mathcal{M}\)
        by (metis aff_dim_empty face_of_empty)
    show ?thesis
    proof
        have \(\bigwedge S . S \in \mathcal{M} \Longrightarrow \exists n . n\) simplex \(S\)
        by (metis (no_types) m1 aff_dim_empty simplex_minus_1)
    then show simplicial_complex \(\mathcal{M}\)
        by (auto simp: simplicial_complex_def 〈finite \(\mathcal{M}\rangle\) face intro: face \(\mathcal{M}\) )
    show aff_dim \(K \leq d\) if \(K \in \mathcal{M}\) for \(K\)
        by (simp add: that aff)
    show \(\exists F\). finite \(F \wedge F \subseteq \mathcal{M} \wedge C=\bigcup F\) if \(C \in \mathcal{M}\) for \(C\)
        using \(\langle C \in \mathcal{M}\rangle\) equals0I by auto
    show \(\exists C . C \in \mathcal{M} \wedge K \subseteq C\) if \(K \in \mathcal{M}\) for \(K\)
        using \(\langle K \in \mathcal{M}\rangle\) by blast
    qed auto
qed
```

proposition simplicial_subdivision_of_cell_complex:
assumes finite \mathcal{M}
and poly: $\wedge C . C \in \mathcal{M} \Longrightarrow$ polytope C
and face: $\wedge C 1 C 2 . \llbracket C 1 \in \mathcal{M} ; C 2 \in \mathcal{M} \rrbracket \Longrightarrow C 1 \cap C 2$ face_of C1
obtains \mathcal{T} where simplicial_complex \mathcal{T}
$\cup \mathcal{T}=\bigcup \mathcal{M}$
$\wedge C . C \in \mathcal{M} \Longrightarrow \exists F$. finite $F \wedge F \subseteq \mathcal{T} \wedge C=\bigcup F$
$\wedge K . K \in \mathcal{T} \Longrightarrow \exists C . C \in \mathcal{M} \wedge K \subseteq C$
by (blast intro: simplicial_subdivision_of_cell_complex_lowdim [OF assms aff_dim_le_DIM])
corollary fine_simplicial_subdivision_of_cell_complex:
assumes $0<e$ finite \mathcal{M}
and poly: $\wedge C . C \in \mathcal{M} \Longrightarrow$ polytope C
and face: $\wedge C 1 C 2 . \llbracket C 1 \in \mathcal{M} ; C 2 \in \mathcal{M} \rrbracket \Longrightarrow C 1 \cap C 2$ face_of C1
obtains \mathcal{T} where simplicial_complex \mathcal{T}
$\wedge K . K \in \mathcal{T} \Longrightarrow$ diameter $K<e$
$\bigcup \mathcal{T}=\bigcup \mathcal{M}$
$\wedge C . C \in \mathcal{M} \Longrightarrow \exists F$. finite $F \wedge F \subseteq \mathcal{T} \wedge C=\bigcup F$
$\wedge K . K \in \mathcal{T} \Longrightarrow \exists C . C \in \mathcal{M} \wedge K \subseteq C$
proof -
obtain \mathcal{N} where \mathcal{N} : finite $\mathcal{N} \cup \mathcal{N}=\bigcup \mathcal{M}$
and diapoly: $\bigwedge X . X \in \mathcal{N} \Longrightarrow$ diameter $X<e \bigwedge X . X \in \mathcal{N} \Longrightarrow$
polytope X
and $\quad \wedge X Y . \llbracket X \in \mathcal{N} ; Y \in \mathcal{N} \rrbracket \Longrightarrow X \cap Y$ face_of X
and \mathcal{N} covers: $\bigwedge C x . C \in \mathcal{M} \wedge x \in C \Longrightarrow \exists D . D \in \mathcal{N} \wedge x \in D \wedge$
$D \subseteq C$
and \mathcal{N} covered: $\bigwedge C . C \in \mathcal{N} \Longrightarrow \exists D . D \in \mathcal{M} \wedge C \subseteq D$
by (blast intro: cell_complex_subdivision_exists $[O F\langle 0<e\rangle\langle f i n i t e ~ \mathcal{M}\rangle$ poly aff_dim_le_DIM face])
then obtain \mathcal{T} where \mathcal{T} : simplicial_complex $\mathcal{T} \bigcup \mathcal{T}=\bigcup \mathcal{N}$
and \mathcal{T} covers: $\wedge C . C \in \mathcal{N} \Longrightarrow \exists F$. finite $F \wedge F \subseteq \mathcal{T} \wedge C=\bigcup F$
and \mathcal{T} covered: $\bigwedge K . K \in \mathcal{T} \Longrightarrow \exists C . C \in \mathcal{N} \wedge K \subseteq C$
using simplicial_subdivision_of_cell_complex $[$ OF \langle finite $\mathcal{N}\rangle]$ by metis
show ?thesis
proof
show simplicial_complex \mathcal{T}
by (rule \mathcal{T})
show diameter $K<e$ if $K \in \mathcal{T}$ for K
by (metis le_less_trans diapoly \mathcal{T} covered diameter_subset polytope_imp_bounded that)
show $\bigcup \mathcal{T}=\bigcup \mathcal{M}$
by (simp add: $\mathcal{N}(\mathcal{Z}) \bigcup \mathcal{T}=\bigcup \mathcal{N}>)$
show $\exists F$. finite $F \wedge F \subseteq \mathcal{T} \wedge C=\bigcup F$ if $C \in \mathcal{M}$ for C
proof -
$\{$ fix x
assume $x \in C$
then obtain D where $D \in \mathcal{T} x \in D D \subseteq C$
using \mathcal{N} covers $\langle C \in \mathcal{M}\rangle \mathcal{T}$ covers by force

```
        then have }\existsX\in\mathcal{T}\cap\mathrm{ Pow C. x }\in
        using}\langleD\in\mathcal{T}\rangle\langleD\subseteqC\rangle\langlex\inD\rangle\mathrm{ by blast
    }
    moreover
    have finite ( }\mathcal{T}\cap\mathrm{ Pow C)
    using <simplicial_complex }\mathcal{T}\mathrm{ 〉 simplicial_complex_def by auto
    ultimately show ?thesis
    by (rule_tac x=(\mathcal{T}\cap Pow C) in exI) auto
    qed
    show \existsC.C\in\mathcal{M}\wedgeK\subseteqC if K\in\mathcal{T}\mathrm{ for }K
    by (meson \mathcal{N}\mathrm{ covered }\mathcal{T}\mathrm{ covered order_trans that)}
qed
qed
```


6．38．20 Some results on cell division with full－dimensional cells only

lemma convex＿Union＿fulldim＿cells：
assumes finite \mathcal{S} and clo：$\bigwedge C . C \in \mathcal{S} \Longrightarrow$ closed C and con：$\bigwedge C . C \in \mathcal{S} \Longrightarrow$ convex C
and eq：$\bigcup \mathcal{S}=U$ and convex U
shows $\bigcup\{C \in \mathcal{S}$ ．aff＿dim $C=$ aff＿dim $U\}=U$（is ？lhs $=U$ ）
proof－
have closed U
using 〈finite \mathcal{S} 〉clo eq by blast
have ？lhs $\subseteq U$
using eq by blast
moreover have $U \subseteq$ ？lhs
proof（cases $\forall C \in \mathcal{S}$ ．aff＿dim $C=$ aff＿dim U ）
case True
then show ？thesis
using eq by blast
next
case False
have closed？？hs
by（simp add：〈finite $\mathcal{S}\rangle$ clo closed＿Union）
moreover have $U \subseteq$ closure ？lhs
proof－
have $U \subseteq$ closure $\left(\bigcap\left\{U-C \mid C . C \in \mathcal{S} \wedge\right.\right.$ aff＿dim $\left.\left.C<\operatorname{aff} _d i m ~ U\right\}\right)$
proof（rule Baire［OF〈closed $U\rangle]$ ）
show countable $\{U-C \mid C . C \in \mathcal{S} \wedge$ aff＿dim $C<$ aff＿dim $U\}$
using 〈finite \mathcal{S} 〉 uncountable＿infinite by fastforce
have $\wedge C . C \in \mathcal{S} \Longrightarrow$ openin（top＿of＿set U ）$(U-C)$
by（metis Sup＿upper clo closed＿limpt closedin＿limpt eq openin＿diff openin＿subtopology＿self）
then show openin（top＿of＿set U ）$T \wedge U \subseteq$ closure T
if $T \in\left\{U-C \mid C . C \in \mathcal{S} \wedge\right.$ aff＿dim $\left.C<a f f_{-} \operatorname{dim} U\right\}$ for T
using that dense＿complement＿convex＿closed \langle closed $U\rangle\langle c o n v e x ~ U\rangle$ by auto
qed
also have...\subseteq closure ？lhs

```
    proof -
    obtain C where C \in\mathcal{S}\mathrm{ aff_dim C < aff_dim U}
            by (metis False Sup_upper aff_dim_subset eq eq_iff not_le)
    have }\existsX.X|\mathcal{S}\wedge\mathrm{ aff_dim X=aff_dim U ^ x 
            if }\wedgeV.(\existsC.V=U-C\wedgeC\in\mathcal{S}\wedge aff_dim C<aff_dim U)\Longrightarrowx
for }
            proof -
            have }x\inU\wedgex\in\bigcup\mathcal{S
                using \langleC \in\mathcal{S}\rangle\langleaff_dim C < aff_dim U\rangle eq that by blast
            then show ?thesis
            by (metis Diff_iff Sup_upper Union_iff aff_dim_subset dual_order.order_iff_strict
eq that)
            qed
            then show ?thesis
            by (auto intro!: closure_mono)
        qed
        finally show ?thesis .
    qed
    ultimately show ?thesis
        using closure_subset_eq by blast
    qed
    ultimately show ?thesis by blast
qed
proposition fine_triangular_subdivision_of_cell_complex:
    assumes 0<e finite }\mathcal{M
        and poly: }\bigwedgeC.C\in\mathcal{M}\Longrightarrow\mathrm{ polytope C
        and aff: }\C.C\in\mathcal{M}\Longrightarrow\mathrm{ aff_dim C=d
        and face: \C1 C2. \llbracketC1 \in\mathcal{M}; C2 }\in\mathcal{M}\rrbracket\LongrightarrowC1\capC2 face_of C
    obtains }\mathcal{T}\mathrm{ where triangulation }\mathcal{T}\k.k\in\mathcal{T}\Longrightarrow\mathrm{ diameter }k<
                \k.k\in\mathcal{T}\Longrightarrow\mathrm{ aff_dim k=d UT}=\bigcup\mathcal{M}
                    \C.C\in\mathcal{M \Longrightarrow\existsf. finite f}\wedgef\subseteq\mathcal{T}\wedgeC=\bigcupf
                    \k.k\in\mathcal{T}\Longrightarrow\existsC.C\in\mathcal{M}\wedgek\subseteqC
proof -
    obtain }\mathcal{T}\mathrm{ where simplicial_complex }\mathcal{T
            and dia}\mathcal{T}:\bigwedgeK.K\in\mathcal{T}\Longrightarrow\mathrm{ diameter }K<
            and}\cup\mathcal{T}=\bigcup\mathcal{M
            and in\mathcal{M}:\bigwedgeC.C\in\mathcal{M}\Longrightarrow\existsF. finite F\wedgeF\subseteq\mathcal{T}\wedgeC=\bigcupF
            and in\mathcal{T}:\bigwedgeK.K\in\mathcal{T}\Longrightarrow\existsC.C\in\mathcal{M}\wedgeK\subseteqC
            by (blast intro: fine_simplicial_subdivision_of_cell_complex [OF \langlee> 0\rangle\langlefinite
M> poly face])
    let ?T ={K\in\mathcal{T}.aff_dim K=d}
    show thesis
    proof
            show triangulation ?T
            using <simplicial_complex }\mathcal{T}>\mathrm{ by (auto simp: triangulation_def simplicial_complex_def)
            show diameter L<e if L\in{K\in\mathcal{T}.aff_dim K=d} for L
            using that by (auto simp: dia\mathcal{T})
            show aff_dim L = d if L}\in{K\in\mathcal{T}.aff_dim K=d} for L
```

```
        using that by auto
    show }\existsF\mathrm{ . finite }F\wedgeF\subseteq{K\in\mathcal{T}.aff_dim K=d}\wedgeC=\bigcupF if C\in\mathcal{M
for C
    proof -
        obtain F where finite F F\subseteq\mathcal{T C = \bigcupF}
            using in\mathcal{M}[OF \langleC \in\mathcal{M}\rangle] by auto
        show ?thesis
        proof (intro exI conjI)
            show finite {K\inF.aff_dim K=d}
                by (simp add: <finite F〉)
            show {K\inF.aff_dim K=d}\subseteq{K\in\mathcal{T}.aff_dim K=d}
                using \langleF\subseteq\mathcal{T}\rangle\mathrm{ by blast}
            have d}=\mathrm{ aff_dim C
                by (simp add: aff that)
            moreover have }\K.K\inF\Longrightarrow\mathrm{ closed }K\wedge\mathrm{ convex }
                using \langlesimplicial_complex }\mathcal{T}\rangle\langleF\subseteq\mathcal{T}
            unfolding simplicial_complex_def by (metis subsetCE \langleF\subseteq\mathcal{T}\rangle closed_simplex
convex_simplex)
            moreover have convex ( UF)
                using }\langleC=\bigcupF\rangle\mathrm{ poly polytope_imp_convex that by blast
            ultimately show C=\bigcup{K\inF.aff_dim K=d}
                by (simp add: convex_Union_fulldim_cells }\langleC=\bigcupF\rangle\langlefinite F\rangle
            qed
    qed
    then show }\bigcup{K\in\mathcal{T}.aff_dim K=d}=\bigcup\mathcal{M
            by auto (meson in\mathcal{T} subsetCE)
    show \existsC.C\in\mathcal{M}\wedgeL\subseteqC
        if }L\in{K\in\mathcal{T}\mathrm{ . aff_dim K=d} for L
        using that by (auto simp: in \mathcal{T}
    qed
qed
end
```


6.39 Arcwise-Connected Sets

```
theory Arcwise_Connected
imports Path_Connected Ordered_Euclidean_Space HOL-Computational_Algebra.Primes
begin
lemma path_connected_interval [simp]:
    fixes a b::'a::ordered_euclidean_space
    shows path_connected {a..b}
    using is_interval_cc is_interval_path_connected by blast
lemma segment_to_closest_point:
    fixes S :: 'a :: euclidean_space set
    shows \llbracketclosed S;S\not={}\rrbracket\Longrightarrow open_segment a (closest_point Sa)\capS={}
    unfolding disjoint_iff
```

by (metis closest_point_le dist_commute dist_in_open_segment not_le)

```
lemma segment_to_point_exists:
    fixes \(S\) :: ' \(a\) :: euclidean_space set
        assumes closed \(S S \neq\{ \}\)
        obtains \(b\) where \(b \in S\) open_segment \(a b \cap S=\{ \}\)
    by (metis assms segment_to_closest_point closest_point_exists that)
```


6.39.1 The Brouwer reduction theorem

```
theorem Brouwer_reduction_theorem_gen:
    fixes \(S\) :: 'a::euclidean_space set
    assumes closed \(S \varphi S\)
        and \(\varphi: \bigwedge F . \llbracket \bigwedge n . \operatorname{closed}(F n) ; \bigwedge n . \varphi(F n) ; \bigwedge n . F(S u c n) \subseteq F n \rrbracket \Longrightarrow\)
\(\varphi(\bigcap(\) range \(F))\)
    obtains \(T\) where \(T \subseteq S\) closed \(T \varphi T \wedge U . \llbracket U \subseteq S\); closed \(U ; \varphi U \rrbracket \Longrightarrow \neg(U\)
\(\subset T\) )
proof -
    obtain \(B\) :: nat \(\Rightarrow{ }^{\prime}\) a set
        where \(\operatorname{inj} B \bigwedge n\). open \((B n)\) and open_cov: \(\bigwedge S\). open \(S \Longrightarrow \exists K . S=\bigcup(B ‘\)
K)
            by (metis Setcompr_eq_image that univ_second_countable_sequence)
    define \(A\) where \(A \equiv\) rec_nat \(S(\lambda n a\). if \(\exists U . U \subseteq a \wedge\) closed \(U \wedge \varphi U \wedge U \cap\)
\((B n)=\{ \}\)
                            then SOME \(U . U \subseteq a \wedge\) closed \(U \wedge \varphi U \wedge U \cap\)
\((B n)=\{ \}\)
                                else a)
    have \([\) simp \(]: A 0=S\)
        by (simp add: A_def)
    have ASuc: \(A(\) Suc \(n)=(\) if \(\exists U . U \subseteq A n \wedge\) closed \(U \wedge \varphi U \wedge U \cap(B n)=\)
\{\}
                            then SOME \(U . U \subseteq A n \wedge\) closed \(U \wedge \varphi U \wedge U \cap(B n)=\{ \}\)
                            else \(A n\) ) for \(n\)
        by (auto simp: A_def)
    have sub: \(\bigwedge n\). \(A(\) Suc \(n) \subseteq A n\)
        by (auto simp: ASuc dest!: someI_ex)
    have subS: \(A \subseteq S\) for \(n\)
        by (induction \(n\) ) (use sub in auto)
    have clo: closed \((A n) \wedge \varphi(A n)\) for \(n\)
        by (induction \(n\) ) (auto simp: assms ASuc dest!: someI_ex)
    show ?thesis
    proof
        show \(\bigcap(\) range \(A) \subseteq S\)
            using \(\langle\bigwedge n . A n \subseteq S\rangle\) by blast
        show closed \((\bigcap(A \cdot U N I V))\)
            using clo by blast
        show \(\varphi\left(\bigcap\left(A^{\prime}\right.\right.\) UNIV \(\left.)\right)\)
            by (simp add: clo \(\varphi\) sub)
        show \(\neg U \subset \bigcap(A ` U N I V)\) if \(U \subseteq S\) closed \(U \varphi U\) for \(U\)
```

```
proof -
    have \(\exists y . x \notin A y\) if \(x \notin U\) and \(U s u b: U \subseteq(\bigcap x . A x)\) for \(x\)
    proof -
    obtain \(e\) where \(e>0\) and \(e\) : ball \(x e \subseteq-U\)
            using <closed \(U\rangle\langle x \notin U\rangle\) open \(E[o f-U]\) by blast
    moreover obtain \(K\) where \(K\) : ball \(x e=\bigcup(B ‘ K)\)
            using open_cov [of ball \(x\) e] by auto
    ultimately have \(\bigcup\left(B^{\prime} K\right) \subseteq-U\)
                by blast
    have \(K \neq\{ \}\)
            using \(\langle 0<e\rangle\left\langle\right.\) ball \(\left.x e=\bigcup\left(B^{\prime} K\right)\right\rangle\) by auto
    then obtain \(n\) where \(n \in K x \in B n\)
                by (metis \(K\) UN_E \(\langle 0<e\rangle\) centre_in_ball)
    then have \(U \cap B n=\{ \}\)
                using \(K e\) by auto
    show ?thesis
    proof (cases \(\exists U \subseteq A n\). closed \(U \wedge \varphi U \wedge U \cap B n=\{ \})\)
            case True
            then show ?thesis
                apply (rule_tac \(x=\) Suc \(n\) in exI)
                apply ( simp add: ASuc)
                apply (erule someI2_ex)
                using \(\langle x \in B n\rangle\) by blast
    next
            case False
            then show ?thesis
                by (meson Inf_lower Usub \(\langle U \cap B n=\{ \}\rangle\langle\varphi U\rangle\langle c l o s e d U\rangle\) range_eqI
subset_trans)
            qed
        qed
        with that show ?thesis
            by (meson Inter_iff psubsetE rangeI subsetI)
        qed
    qed
qed
corollary Brouwer_reduction_theorem:
    fixes \(S\) :: 'a::euclidean_space set
    assumes compact \(S \varphi S S \neq\{ \}\)
        and \(\varphi: \bigwedge F . \llbracket \bigwedge n . \operatorname{compact}(F n) ; \bigwedge n . F n \neq\{ \} ; \bigwedge n . \varphi(F n) ; \bigwedge n . F(\) Suc \(n)\)
\(\subseteq F n \rrbracket \Longrightarrow \varphi(\bigcap(\) range \(F))\)
    obtains \(T\) where \(T \subseteq S\) compact \(T T \neq\{ \} \varphi T\)
                \(\wedge U . \llbracket U \subseteq S ;\) closed \(U ; U \neq\{ \} ; \varphi U \rrbracket \Longrightarrow \neg(U \subset T)\)
proof (rule Brouwer_reduction_theorem_gen \([\) of \(S \lambda T . T \neq\{ \} \wedge T \subseteq S \wedge \varphi T])\)
    fix \(F\)
    assume cloF: \(\bigwedge n\). closed ( \(F n\) )
        and \(F: \wedge n\). \(F n \neq\{ \} \wedge F n \subseteq S \wedge \varphi(F n)\) and Fsub: \(\bigwedge n . F(S u c n) \subseteq F n\)
    show \(\bigcap\left(F^{\prime} U N I V\right) \neq\{ \} \wedge \bigcap\left(F^{\prime} U N I V\right) \subseteq S \wedge \varphi\left(\bigcap\left(F^{\prime} U N I V\right)\right)\)
    proof (intro conjI)
```

```
    show \(\bigcap\left(F^{\prime}\right.\) UNIV \() \neq\{ \}\)
    by (metis F Fsub 〈compact \(S\rangle\) cloF closed_Int_compact compact_nest inf.orderE
lift_Suc_antimono_le)
    show \(\bigcap\left(F^{\prime} U N I V\right) \subseteq S\)
            using \(F\) by blast
    show \(\varphi\left(\bigcap\left(F^{\prime}\right.\right.\) UNIV \(\left.)\right)\)
        by (metis \(F\) Fsub \(\varphi\) <compact \(S\rangle\) cloF closed_Int_compact inf.orderE)
    qed
next
    show \(S \neq\{ \} \wedge S \subseteq S \wedge \varphi S\)
    by (simp add: assms)
qed (meson assms compact_imp_closed seq_compact_closed_subset seq_compact_eq_compact)+
```


6.39.2 Arcwise Connections

6.39.3 Density of points with dyadic rational coordinates

proposition closure_dyadic_rationals: closure $(\bigcup k . \bigcup f \in$ Basis $\rightarrow \mathbb{Z}$.
$\left\{\sum i:: ' a\right.$:: euclidean_space \in Basis. $\left.\left.\left(f i / 2^{\wedge} k\right) *_{R} i\right\}\right)=U N I V$
proof -
have $x \in$ closure $\left(\bigcup k . \bigcup f \in\right.$ Basis $\rightarrow \mathbb{Z} .\left\{\sum i \in\right.$ Basis. $\left.\left.\left(f i / 2^{\wedge} k\right) *_{R} i\right\}\right)$ for $x::^{\prime} a$
proof (clarsimp simp: closure_approachable)
fix $e:$:real
assume $e>0$
then obtain k where $k:(1 / 2)^{\wedge} k<e / D I M(' a)$
by (meson DIM_positive divide_less_eq_1_pos of_nat_0_less_iff one_less_numeral_iff
real_arch_pow_inv semiring_norm(76) zero_less_divide_iff zero_less_numeral)
have dist ($\sum i \in$ Basis. (real_of_int $\left.\left\lfloor\mathcal{Z}^{\wedge} k *(x \cdot i)\right\rfloor / \mathcal{Z}^{\wedge} k\right) *_{R}$ i) $x=$
dist $\left(\sum i \in\right.$ Basis. (real_of_int $\left.\left.\left\lfloor 2^{\wedge} k *(x \cdot i)\right\rfloor / 2^{\wedge} k\right) *_{R} i\right)\left(\sum i \in\right.$ Basis. $(x \cdot$
i) $*_{R} i$)
by (simp add: euclidean_representation)
also have $\ldots=$ norm $\left(\left(\sum i \in\right.\right.$ Basis. (real_of_int $\left.\left\lfloor 2^{\wedge} k *(x \cdot i)\right\rfloor / 2^{\wedge} k\right) *_{R} i-(x$

- i) $\left.*_{R} i\right)$)
by (simp add: dist_norm sum_subtractf)
also have $\ldots \leq D I M\left({ }^{\prime} a\right) *\left((1 / 2)^{\wedge} k\right)$
proof (rule sum_norm_bound, simp add: algebra_simps)
fix $i::^{\prime} a$
assume $i \in$ Basis
then have norm $\left(\left(\right.\right.$ real_of_int $\left.\left.\left\lfloor x \cdot i * \mathcal{Z}^{\wedge} k\right\rfloor / 2^{\wedge} k\right) *_{R} i-(x \cdot i) *_{R} i\right)=$
\mid real_of_int $\left\lfloor x \cdot i *\right.$ n $\left.^{\wedge} k\right\rfloor /$ 2^k $^{\wedge} k \cdot x \mid$
by (simp add: scaleR_left_diff_distrib [symmetric])
also have $\ldots \leq(1 / 2)^{\wedge} k$
by (simp add: divide_simps) linarith
finally show norm ((real_of_int $\left\lfloor x \cdot i *\right.$ 2 $\left.^{\wedge} k\right\rfloor /$ 2 $\left.\left.^{\wedge} k\right) *_{R} i-(x \cdot i) *_{R} i\right) \leq$
(1/2) ${ }^{\wedge} k$.
qed
also have..$<\operatorname{DIM}\left({ }^{\prime} a\right) *\left(e / D I M\left({ }^{\prime} a\right)\right)$
using DIM_positive k linordered_comm_semiring_strict_class.comm_mult_strict_left_mono

```
of_nat_0_less_iff by blast
    also have ... = e
        by simp
    finally have dist (\sumi\inBasis. (\lfloor2^`**(x•i)\rfloor/ 2``k) *R i) x<e.
    with Ints_of_int
    show \existsk. \existsf\in Basis }->\mathbb{Z}\mathrm{ . dist (\b Basis. (fb/ 2^k) *R b) x<e
        by fastforce
    qed
    then show ?thesis by auto
qed
corollary closure_rational_coordinates:
```



```
= UNIV
proof -
    have *:(\bigcupk.\bigcupf\inBasis }->\mathbb{Z}.{\sumi::'a\inBasis. (fi/ / 2^k) *R i })
                \subseteq ( \bigcup f \in \text { Basis } \rightarrow \mathbb { Q } . \{ \sum i \in \text { Basis. fi*R i \})}
    proof clarsimp
        fix }k\mathrm{ and f :: ' }a=>\mathrm{ real
        assume f:f\inBasis }->\mathbb{Z
        show }\existsx\in\mathrm{ Basis }->\mathbb{Q}.(\sumi\inBasis. (fi// 2^k) *R i)=(\sumi\inBasis. x i
*R
            apply (rule_tac x=\lambdai.fi / 2^k in bexI)
            using Ints_subset_Rats f by auto
    qed
    show ?thesis
        using closure_dyadic_rationals closure_mono [OF *] by blast
qed
lemma closure_dyadic_rationals_in_convex_set:
    \llbracketconvex S; interior S}\not={}
            closure(S\cap
                        (\bigcupk.\bigcupf\in Basis }->\mathbb{Z}
                            {\sumi :: 'a :: euclidean_space \in Basis. (fi/\mathscr{D}k) *R i }))=
                    closure S
    by (simp add: closure_dyadic_rationals closure_convex_Int_superset)
lemma closure_rationals_in_convex_set:
    convex S; interior S }\not={}
        closure(S \cap(\bigcupf\inBasis }->\mathbb{Q}.{\sumi ::'a :: euclidean_space \inBasis. f
*R
        closure S
    by (simp add: closure_rational_coordinates closure_convex_Int_superset)
```

Every path between distinct points contains an arc, and hence path connection is equivalent to arcwise connection for distinct points. The proof is based on Whyburn's "Topological Analysis".
lemma closure_dyadic_rationals_in_convex_set_pos_1:
fixes S :: real set
assumes convex S and intnz: interior $S \neq\{ \}$ and pos: $\bigwedge x . x \in S \Longrightarrow 0 \leq x$ shows $\operatorname{closure}\left(S \cap\left(\bigcup k m\right.\right.$. $\left\{\right.$ of_nat $\left.\left.\left.m / 2^{\wedge} k\right\}\right)\right)=$ closure S proof -
have $\exists m$. $f 1 / \mathscr{Z}^{\wedge} k=$ real $m / 2^{\wedge} k$ if $(f 1) /$ 2^ $^{\wedge} k \in S f \in \mathbb{Z}$ for k and $f::$ real \Rightarrow real
using that by (force simp: Ints_def zero_le_divide_iff power_le_zero_eq dest: pos zero_le_imp_eq_int)
then have $S \cap\left(\bigcup k m\right.$. $\left\{\right.$ real $\left.\left.m / 2^{\wedge} k\right\}\right)=S \cap$

$$
\left(\bigcup k . \bigcup f \in \text { Basis } \rightarrow \mathbb{Z} .\left\{\sum i \in \text { Basis. }\left(f i / \mathscr{Z}^{\wedge} k\right) *_{R} i\right\}\right)
$$

by force
then show? ?thesis
using closure_dyadic_rationals_in_convex_set $[O F 〈$ convex $S\rangle$ intnz] by simp qed
definition dyadics :: 'a::field_char_0 set where dyadics $\equiv \bigcup k$ m. \{of_nat m / $\left.2^{\wedge} k\right\}$
lemma real_in_dyadics $[$ simp $]$: real $m \in$ dyadics
by (simp add: dyadics_def) (metis divide_numeral_1 numeral_One power_0)
lemma nat_neq_4k1: of_nat $m \neq(4 *$ of_nat $k+1) /\left(2 * 2^{\wedge} n:: ' a:: f i e l d _c h a r_{-} 0\right)$ proof
assume of_nat $m=(4 *$ of_nat $k+1) /\left(2 * \mathcal{Z}^{\wedge} n::{ }^{\prime} a\right)$
then have of_nat $(m *(2 * 2 \wedge n))=\left(\right.$ of_nat $\left.(S u c(4 * k))::{ }^{\prime} a\right)$
by (simp add: field_split_simps)
then have $m *\left(2 * 2{ }^{\wedge} n\right)=\operatorname{Suc}(4 * k)$
using of_nat_eq_iff by blast
then have odd $\left(m *\left(2 * 2^{\wedge} n\right)\right)$
by simp
then show False
by simp
qed
lemma nat_neq_4k3: of_nat $m \neq(4 *$ of_nat $k+3) /\left(2 * 2 \wedge n:: ' a:: f i e l d _c h a r _0\right)$
proof
assume of_nat $m=(4 *$ of_nat $k+3) /\left(2 * 2{ }^{\wedge} n:: ' a\right)$
then have of_nat $\left(m *\left(2 * 2{ }^{\wedge} n\right)\right)=\left(\right.$ of_nat $\left.(4 * k+3)::{ }^{\prime} a\right)$
by (simp add: field_split_simps)
then have $m *(2 * 2 \wedge n)=(4 * k)+3$
using of_nat_eq_iff by blast
then have odd $\left(m *\left(2 * 2^{\wedge} n\right)\right)$
by simp
then show False
by simp
qed
lemma iff_4k:
assumes $r=$ real k odd k

```
    shows \((4 *\) real \(m+r) /\left(2 *\right.\) 2 \(\left.^{\wedge} n\right)=\left(4 *\right.\) real \(\left.m^{\prime}+r\right) /\left(2 * 2^{\wedge} n\right) \longleftrightarrow\)
\(m=m^{\prime} \wedge n=n^{\prime}\)
proof -
    \(\left\{\right.\) assume \((4 *\) real \(m+r) /\left(2 * \mathcal{Z}^{\wedge} n\right)=\left(4 *\right.\) real \(\left.m^{\prime}+r\right) /\left(2 * 2^{\wedge} n^{\prime}\right)\)
    then have real \(\left((4 * m+k) *\left(2 * 2^{\wedge} n^{\prime}\right)\right)=\operatorname{real}\left(\left(4 * m^{\prime}+k\right) *\left(2 * 2{ }^{\wedge} n\right)\right)\)
        using assms by (auto simp: field_simps)
        then have \((4 * m+k) *\left(2 * 2^{\wedge} n\right)=\left(4 * m^{\prime}+k\right) *\left(2 * 2^{\wedge} n\right)\)
            using of_nat_eq_iff by blast
        then have \((4 * m+k) *\left(2^{\wedge} n^{\prime}\right)=\left(4 * m^{\prime}+k\right) *\left(2^{\wedge} n\right)\)
            by linarith
        then obtain \(4 * m+k=4 * m^{\prime}+k n=n^{\prime}\)
            using prime_power_cancel2 [OF two_is_prime_nat] assms
            by (metis even_mult_iff even_numeral odd_add)
        then have \(m=m^{\prime} n=n^{\prime}\)
            by auto
    \}
    then show ?thesis by blast
qed
lemma neq_4k1_k43: \((4 *\) real \(m+1) /(2 * 2 \wedge n) \neq\left(4 *\right.\) real \(\left.m^{\prime}+3\right) /(2 * 2\)
    ^ \(n^{\prime}\) )
proof
    assume \((4 *\) real \(m+1) /\left(2 * 2^{\wedge} n\right)=\left(4 *\right.\) real \(\left.m^{\prime}+3\right) /\left(2 * 2^{\wedge} n^{\prime}\right)\)
    then have real \(\left(\operatorname{Suc}(4 * m) *\left(2 * 2^{\wedge} n^{\prime}\right)\right)=\operatorname{real}\left(\left(4 * m^{\prime}+3\right) *\left(2 * 2^{\wedge} n\right)\right)\)
        by (auto simp: field_simps)
    then have Suc \((4 * m) *\left(2 * 2^{\wedge} n^{\prime}\right)=\left(4 * m^{\prime}+3\right) *\left(2 * 2^{\wedge} n\right)\)
        using of_nat_eq_iff by blast
    then have \(\operatorname{Suc}(4 * m) *\left(2^{\wedge} n^{\prime}\right)=\left(4 * m^{\prime}+3\right) *\left(2^{\wedge} n\right)\)
        by linarith
    then have \(\operatorname{Suc}(4 * m)=\left(4 * m^{\prime}+3\right)\)
        by (rule prime_power_cancel2 [OF two_is_prime_nat]) auto
    then have \(1+2 * m^{\prime}=2 * m\)
        using \(\left\langle\operatorname{Suc}(4 * m)=4 * m^{\prime}+3\right\rangle\) by linarith
    then show False
        using even_Suc by presburger
qed
lemma dyadic_413_cases:
    obtains (of_nat m::'a::field_char_0) / 2^k \(\in\) Nats
    | \(m^{\prime} k^{\prime}\) where \(k^{\prime}<k\) (of_nat \(\left.m::^{\prime} a\right) /\) 2 \(^{\wedge} k=\) of_nat \(\left(4 * m^{\prime}+1\right) /\) 2^Suc \(^{\prime} k^{\prime}\)
    | \(m^{\prime} k^{\prime}\) where \(k^{\prime}<k\) (of_nat \(\left.m::{ }^{\prime} a\right) / 2^{\wedge} k=\) of_nat \(\left(4 * m^{\prime}+3\right) /\) 2 \(^{\wedge} S u c k^{\prime}\)
proof (cases \(m>0\) )
    case False
    then have \(m=0\) by simp
    with that show ?thesis by auto
next
    case True
    obtain \(k^{\prime} m^{\prime}\) where \(m^{\prime}\) : odd \(m^{\prime}\) and \(k^{\prime}: m=m^{\prime} * 2^{\wedge} k^{\prime}\)
        using prime_power_canonical [OF two_is_prime_nat True] by blast
```

```
    then obtain \(q r\) where \(q: m^{\prime}=4 * q+r\) and \(r: r<4\)
    by (metis not_add_less2 split_div zero_neq_numeral)
    show ?thesis
    proof (cases \(k \leq k^{\prime}\) )
    case True
    have (of_nat \(m:: ~ ' a) / \mathcal{Z}^{\wedge} k=o f \_n a t m^{\prime} *\left(\mathcal{Z}^{\wedge} k^{\prime} / \mathbb{Z}^{\wedge} k\right)\)
        using \(k^{\prime}\) by (simp add: field_simps)
    also have \(\ldots=\left(\right.\) of_nat \(\left.m^{\prime}::^{\prime} a\right) * 2^{\wedge}\left(k^{\prime}-k\right)\)
        using \(k^{\prime}\) True by (simp add: power_diff)
    also have \(\ldots \in \mathbb{N}\)
        by (metis Nats_mult of_nat_in_Nats of_nat_numeral of_nat_power)
    finally show? ?thesis by (auto simp: that)
next
    case False
    then obtain \(k d\) where \(k d\) : Suc \(k d=k-k^{\prime}\)
        using Suc_diff_Suc not_less by blast
    have (of_nat \(m:: ~ ' a) / \mathcal{Z}^{\wedge} k=o f \_n a t m^{\prime} *\left(\mathcal{Z}^{\wedge} k^{\prime} / \mathbb{Z}^{\wedge} k\right)\)
        using \(k^{\prime}\) by (simp add: field_simps)
    also have...\(=\left(\right.\) of_nat \(\left.m^{\prime}::^{\prime} a\right) / 2^{\wedge}\left(k-k^{\prime}\right)\)
        using \(k^{\prime}\) False by (simp add: power_diff)
    also have \(\ldots=\left((\right.\) of_nat \(r+4 *\) of_nat \(\left.q)::^{\prime} a\right) / 2^{\wedge}\left(k-k^{\prime}\right)\)
        using \(q\) by force
    finally have meq: (of_nat \(\left.m::^{\prime} a\right) / 2^{\wedge} k=(\) of_nat \(r+4 *\) of_nat \(q) / 2^{\wedge}(k\)
\(-k^{\prime}\) )
    have \(r \neq 0 r \neq 2\)
        using \(q m^{\prime}\) by presburger +
    with \(r\) consider \(r=1 \mid r=3\)
        by linarith
    then show ?thesis
    proof cases
        assume \(r=1\)
        with meq kd that(2) [of \(k d q\) ] show ?thesis
            by \(\operatorname{simp}\)
    next
        assume \(r=3\)
        with meq kd that(3) [of kd q] show ?thesis
            by \(\operatorname{simp}\)
    qed
    qed
qed
lemma dyadics_iff:
    (dyadics :: 'a::field_char_0 set) =
    Nats \(\cup\left(\bigcup k m .\left\{o f \_n a t(4 * m+1) / 2^{\wedge} S u c k\right\}\right) \cup\left(\bigcup k m .\left\{o f \_n a t(4 * m+3)\right.\right.\)
/ 2^Suc \(k\}\) )
        (is \({ }_{-}=\)?rhs)
proof
    show dyadics \(\subseteq\) ? rhs
```

```
    unfolding dyadics_def
    apply clarify
    apply (rule dyadic_413_cases, force+)
    done
next
    have range of_nat \subseteq(Uk m.{(of_nat m::'a) / 2 ` k})
    by clarsimp (metis divide_numeral_1 numeral_One power_0)
    moreover have \k m. \existsk' m'. ((1::'a) + 4* of_nat m) / 2 ` Suc k = of_nat
m'/ 2 ^ k'
    by (metis (no_types) of_nat_Suc of_nat_mult of_nat_numeral)
    moreover have \k m. \existsk' m'.(4* of_nat m + (3::'a)) / 2 ^ Suc k =of_nat
m'/ 2 ` k'
    by (metis of_nat_add of_nat_mult of_nat_numeral)
    ultimately show ?rhs \subseteq dyadics
        by (auto simp:dyadics_def Nats_def)
qed
function (domintros) dyad_rec :: [nat }=>\mp@subsup{}{}{\prime}a,\mp@subsup{,}{}{\prime}a\mp@subsup{=>}{}{\prime}a,', a>''a, real] =>' 'a wher
    dyad_rec blr (real m)=b m
    | dyad_rec blr l(4* real m + 1) / 2 ` (Suc n)) = l (dyad_rec b lr ((2*m + 1)
( 2`n))
    | dyad_rec b l r ((4 * real m + 3) / 2 ` (Suc n)) =r (dyad_rec b l r ((2*m +
1) / 2^n))
    | x & dyadics \Longrightarrowdyad_rec b l r x = undefined
    using iff_4k [of _ 1] iff_4k [of _ 3]
    apply (simp_all add: nat_neq_4k1 nat_neq_4k3 neq_4k1_k43 dyadics_iff
Nats_def)
    by (fastforce simp: field_simps)+
lemma dyadics_levels: dyadics =(\bigcupK.\bigcupk<K.\bigcup m.{of_nat m / 2^k})
    unfolding dyadics_def by auto
lemma dyad_rec_level_termination:
    assumes k<K
    shows dyad_rec_dom(b,l,r, real m / 2^k)
    using assms
proof (induction K arbitrary: k m)
    case 0
    then show ?case by auto
next
    case (Suc K)
    then consider k=K|k<K
        using less_antisym by blast
    then show ?case
    proof cases
        assume k=K
        show ?case
        proof (rule dyadic_413_cases [of m k, where 'a=real])
```

```
    show real m / 2^k 
    by (force simp: Nats_def nat_neq_4k1 nat_neq_4k3 intro:dyad_rec.domintros)
    show ?case if k'<k and eq: real m/ 2`k=real (4* m' + 1)/ 2`Suc k'
for m}\mp@subsup{m}{}{\prime}\mp@subsup{k}{}{\prime
    proof -
        have dyad_rec_dom (b,l,r,(4*real m' + 1) / 2`Suc k')
        proof (rule dyad_rec.domintros)
            fix mn
            assume (4*real m' + 1) / (2* 2` k') = (4*real m + 1) / (2 * 2^n)
            then have m'=m k'=n using iff_4k [of _ 1]
                by auto
            have dyad_rec_dom (b,l,r,real (2*m+1) / 2 ` k')
            using Suc.IH \langlek=K\rangle\langlek'<k\rangle by blast
            then show dyad_rec_dom (b,l,r,(2 * real m + 1)/ 2^n)
                using }\langle\mp@subsup{k}{}{\prime}=n\rangle\mathrm{ by (auto simp: algebra_simps)
            next
            fix mn
            assume (4*real m' + 1)/(2* 2 ^ k})=(4*real m+3)/(2* 2^n
            then have False
                    by (metis neq_4k1_k43)
            then show dyad_rec_dom (b,l,r,(2* real m + 1) / 2^n)..
        qed
        then show ?case by (simp add: eq add_ac)
        qed
        show ?case if k'<k and eq: real m / 2^k = real (4* m'+3)/ 2^Suc k'
for m' }\mp@subsup{k}{}{\prime
    proof -
        have dyad_rec_dom (b,l,r,(4*real m' + 3)/ 2 `Suc k')
        proof (rule dyad_rec.domintros)
            fix mn
            assume (4*real m' + 3) / (2* 2 ` k') = (4*real m + 1) / (2 * 2^n)
            then have False
                by (metis neq_4k1_k43)
            then show dyad_rec_dom (b,l,r,(2*real m+1)/ 2^n)..
        next
            fix mn
            assume (4*real m' + 3)/(2* 2 ^ k') = (4 * real m + 3)/ (2 * 2^n)
            then have m'=m k'=n using iff_4k[of _ 3]
                by auto
            have dyad_rec_dom (b,l,r,real (2*m+1)/2 ` k}
            using Suc.IH \langlek=K\rangle\langlek'<k\rangle by blast
            then show dyad_rec_dom ( b,l,r,(2* real m+1)/ 2^n)
            using }\langle\mp@subsup{k}{}{\prime}=n\rangle\mathrm{ by (auto simp: algebra_simps)
        qed
        then show ?case by (simp add: eq add_ac)
        qed
    qed
    next
    assume k<K
```

```
    then show ?case
        using Suc.IH by blast
    qed
qed
```

lemma dyad_rec_termination: $x \in$ dyadics \Longrightarrow dyad_rec_dom (b, l, r, x)
by (auto simp: dyadics_levels intro: dyad_rec_level_termination)
lemma dyad_rec_of_nat [simp]:dyad_rec blr $($ real m)=bm
by (simp add: dyad_rec.psimps dyad_rec_termination)
lemma dyad_rec_41 [simp]: dyad_rec blr $\left((4 *\right.$ real $m+1) / 2^{\wedge}($ Suc $\left.n)\right)=l$
(dyad_rec blr $\left.\left((2 * m+1) / \mathbf{2}^{\wedge} n\right)\right)$
proof (rule dyad_rec.psimps)
show dyad_rec_dom $\left(b, l, r,(4\right.$ * real $m+1) / 2{ }^{\text {^ Suc } n)}$
by (metis add.commute dyad_rec_level_termination lessI of_nat_Suc of_nat_mult
of_nat_numeral)
qed
lemma dyad_rec_43 [simp]: dyad_rec blr $\left((4\right.$ * real $\left.m+3) / 2{ }^{\wedge}(S u c n)\right)=r$
(dyad_rec blr ((2*m + 1) / 2^n))
proof (rule dyad_rec.psimps)
show dyad_rec_dom $\left(b, l, r,(4 *\right.$ real $\left.m+3) / 2^{\wedge} S u c n\right)$
by (metis dyad_rec_level_termination lessI of_nat_add of_nat_mult of_nat_numeral)
qed
lemma dyad_rec_41_times2:
assumes $n>0$
shows dyad_rec blr $\left(2 *\left((4 *\right.\right.$ real $\left.\left.m+1) / 2^{\wedge} S u c n\right)\right)=l($ dyad_rec blr $(2$

* $(2 *$ real $m+1) /$ 2^ $\left.^{\wedge} n\right)$)
proof -
obtain n^{\prime} where $n^{\prime}: n=$ Suc n^{\prime}
using assms not0_implies_Suc by blast
have dyad_rec blr $\left(2 \times\left((4 *\right.\right.$ real $\left.\left.m+1) / \mathbb{Z}^{\wedge} S u c n\right)\right)=$ dyad_rec blr $((2 *$
$(4 *$ real $m+1)) /(2 * 2 \wedge n)$
by auto
also have $\ldots=$ dyad_rec blr $\left((4 *\right.$ real $\left.m+1) / 2^{\wedge} n\right)$
by (subst mult_divide_mult_cancel_left) auto
also have $\ldots=l\left(\right.$ dyad_rec b lr $\left((2 *\right.$ real $\left.\left.m+1) / 2^{\wedge} n^{\prime}\right)\right)$
by (simp add: add.commute [of 1] n^{\prime} del: power_Suc)
also have $\ldots=l\left(\right.$ dyad_rec blr $\left((2 *(2 * \operatorname{real} m+1)) /\left(2 * 2\right.\right.$ ^ $\left.\left.\left.n^{\prime}\right)\right)\right)$
by (subst mult_divide_mult_cancel_left) auto
also have $\ldots=l($ dyad_rec blr $(2 *(2 *$ real $m+1) / 2 \wedge n))$
by (simp add: add.commute n^{\prime})
finally show ?thesis .
qed
lemma dyad_rec_43_times2:

```
    assumes n>0
    shows dyad_rec blr (2 * ((4 * real m + 3) / 2^Suc n)) =r (dyad_rec b l r
(2* (2*real m + 1)/ 2^n))
proof -
    obtain }\mp@subsup{n}{}{\prime}\mathrm{ where }\mp@subsup{n}{}{\prime}:n=\mathrm{ Suc n'
        using assms not0_implies_Suc by blast
    have dyad_rec b l r (2 * ((4 * real m + 3) / 2^Suc n)) = dyad_rec b lr ((2 *
(4*real m+3)) / (2* 2^n))
    by auto
    also have ... = dyad_rec b lr ((4* real m + 3) / 2^n)
    by (subst mult_divide_mult_cancel_left) auto
    also have ... =r (dyad_rec b lr ((2 * real m + 1) / 2 ^ n'))
    by (simp add: n' del: power_Suc)
    also have ... =r (dyad_rec b lr ((2* (2 * real m + 1)) / (2 * 2 ` n')))
    by (subst mult_divide_mult_cancel_left) auto
    also have ... = r(dyad_rec b lr (2 * (2 * real m + 1)/ 2^n))
        by (simp add: n')
    finally show ?thesis .
qed
definition dyad_rec2
    where dyad_rec2 u v lc rc x =
        dyad_rec (\lambdaz. (u,v)) (\lambda(a,b). (a, lc a b (midpoint a b))) (\lambda(a,b). (rc a b
(midpoint a b),b))(2*x)
abbreviation leftrec where leftrec u v lc rc x \equivfst (dyad_rec2 u v lc rc x)
abbreviation rightrec where rightrec u v lc rc x \equiv snd (dyad_rec2 u v lc rc x)
lemma leftrec_base:leftrec u v lc rc (realm / 2) =u
    by (simp add: dyad_rec2_def)
```

lemma leftrec_41: $n>0 \Longrightarrow$ leftrec uvlc rc $\left((4 *\right.$ real $m+1) / 2^{\wedge}($ Suc $\left.n)\right)=$
leftrec u v lc rc $\left((2 *\right.$ real $\left.m+1) / 2{ }^{\wedge} n\right)$
unfolding dyad_rec2_def dyad_rec_41_times2
by (simp add: case_prod_beta)
lemma leftrec_43: $n>0 \Longrightarrow$
leftrec uv lc rc $\left((4 *\right.$ real $m+3) / 2^{\wedge}($ Suc $\left.n)\right)=$
rc (leftrec u v lc rc $\left((2 *\right.$ real $\left.\left.m+1) / \mathbb{2}^{\wedge} n\right)\right)($ rightrec u v lc rc $((2$

* real $m+1$) $/$ 2^ $\left.^{\wedge} n\right)$)
(midpoint (leftrec u v lc rc $\left((2 *\right.$ real $m+1) /$ 2 $\left.\left.^{\wedge} n\right)\right)($ rightrec u v lc
rc $\left((2 *\right.$ real $\left.\left.\left.m+1) / 2^{\wedge} n\right)\right)\right)$
unfolding dyad_rec2_def dyad_rec_43_times2
by (simp add: case_prod_beta)
lemma rightrec_base: rightrec u v lc rc $($ real $m / 2)=v$
by (simp add: dyad_rec2_def)
lemma rightrec_41: $n>0 \Longrightarrow$
rightrec uv lc rc $\left((4 *\right.$ real $\left.m+1) / 2^{\wedge}(S u c n)\right)=$
lc (leftrec u v lc rc $\left((2 \times\right.$ real $\left.\left.m+1) / \mathfrak{2}^{\wedge} n\right)\right)($ rightrec u v lc rc $((2)$
* real $m+1$) / 2 n))
(midpoint (leftrec u v lc rc ((2* real $m+1) /$ 2 $\left.\left.^{\wedge} n\right)\right)($ rightrec u v lc rc ((2* real $\left.\left.\left.m+1) / 2{ }^{\wedge} n\right)\right)\right)$
unfolding dyad_rec2_def dyad_rec_41_times2
by (simp add: case_prod_beta)
lemma rightrec_43: $n>0 \Longrightarrow$ rightrec u v lc rc $\left((4 *\right.$ real $m+3) / 2^{\wedge}($ Suc $\left.n)\right)$ $=$ rightrec uv lc rc $\left((2 *\right.$ real $\left.m+1) / 2{ }^{\wedge} n\right)$
unfolding dyad_rec2_def dyad_rec_43_times2
by (simp add: case_prod_beta)
lemma dyadics_in_open_unit_interval:
$\{0<. .<1\} \cap\left(\bigcup k m .\left\{\right.\right.$ real $\left.\left.m / \mathfrak{Z}^{\wedge} k\right\}\right)=\left(\bigcup k . \bigcup m \in\left\{0<. .<\mathfrak{Z}^{\wedge} k\right\} .\{\right.$ real $m /$ $\left.2^{\wedge} k\right\}$)
by (auto simp: field_split_simps)

```
theorem homeomorphic_monotone_image_interval:
    fixes \(f\) :: real \(\Rightarrow{ }^{\prime} a::\{\) real_normed_vector,complete_space \(\}\)
    assumes cont_f: continuous_on \(\{0 . .1\} f\)
        and conn: \(\bigwedge y\). connected \((\{0 . .1\} \cap f-‘\{y\})\)
        and \(f_{-} 1\) not \(0: f 1 \neq f 0\)
    shows \((f\) ‘ \(\{0 . .1\})\) homeomorphic \(\{0 . .1::\) real \(\}\)
proof -
    have \(\exists c d . a \leq c \wedge c \leq m \wedge m \leq d \wedge d \leq b \wedge\)
                \((\forall x \in\{c . . d\} . f x=f m) \wedge\)
                \((\forall x \in\{a . .<c\} .(f x \neq f m)) \wedge\)
                \((\forall x \in\{d<. . b\} .(f x \neq f m)) \wedge\)
                \((\forall x \in\{a . .<c\} . \forall y \in\{d<. . b\} . f x \neq f y)\)
    if \(m: m \in\{a . . b\}\) and \(a b 01:\{a . . b\} \subseteq\{0 . .1\}\) for \(a b m\)
    proof -
    have comp: compact \((f-‘\{f m\} \cap\{0 . .1\})\)
    by (simp add: compact_eq_bounded_closed bounded_Int closed_vimage_Int cont_f)
    obtain \(c 0 d 0\) where \(c d 0:\{0 . .1\} \cap f-‘\{f m\}=\{c 0 . . d 0\}\)
        using connected_compact_interval_1 [of \(\{0 . .1\} \cap f-‘\{f m\}]\) conn comp
        by (metis Int_commute)
    with that have \(m \in c b o x c 0 d 0\)
        by auto
    obtain \(c d\) where \(c d:\{a . . b\} \cap f-‘\{f m\}=\{c . . d\}\)
        using ab01 cd0
        by (rule_tac \(c=\max a c 0\) and \(d=\min b d 0\) in that) auto
    then have \(c d a b:\{c . . d\} \subseteq\{a . . b\}\)
        by blast
    show ?thesis
    proof (intro exI conjI ballI)
        show \(a \leq c d \leq b\)
```

using $c d a b c d m$ by auto
show $c \leq m m \leq d$
using $c d m$ by auto
show $\bigwedge x . x \in\{c . . d\} \Longrightarrow f x=f m$
using $c d$ by blast
show $f x \neq f m$ if $x \in\{a . .<c\}$ for x
using that m cd [THEN equalityD1, THEN subsetD] $\langle c \leq m\rangle$ by force
show $f x \neq f m$ if $x \in\{d<. . b\}$ for x
using that m cd [THEN equalityD1, THEN subsetD, of $x]\langle m \leq d\rangle$ by force show $f x \neq f y$ if $x \in\{a . .<c\} y \in\{d<. . b\}$ for $x y$
proof (cases $f x=f m \vee f y=f m$)
case True
then show ?thesis
using $\langle\backslash x . x \in\{a . .<c\} \Longrightarrow f x \neq f m\rangle$ that by auto
next
case False
have False if $f x=f y$
proof -
have $x \leq m m \leq y$
using $\langle c \leq m\rangle\langle x \in\{a . .<c\}\rangle\langle m \leq d\rangle\langle y \in\{d<. . b\}\rangle$ by auto
then have $x \in(\{0 . .1\} \cap f-‘\{f y\}) y \in(\{0 . .1\} \cap f-'\{f y\})$
using $\langle x \in\{a . .<c\}\rangle\langle y \in\{d<. . b\}\rangle$ ab01 by (auto simp: that)
then have $m \in(\{0 . .1\} \cap f-'\{f y\})$
by (meson $\langle m \leq y\rangle\langle x \leq m\rangle$ is_interval_connected_1 conn [of fy] is_interval_1)
with False show False by auto
qed
then show ?thesis by auto
qed
qed
qed
then obtain leftcut rightcut where $L R$:
$\bigwedge a b m . \llbracket m \in\{a . . b\} ;\{a . . b\} \subseteq\{0 . .1\} \rrbracket \Longrightarrow$
($a \leq$ leftcut $a b m \wedge$ leftcut $a b m \leq m \wedge m \leq$ rightcut $a b m \wedge$ rightcut $a b m \leq b \wedge$
$(\forall x \in\{$ leftcut $a b m$..rightcut abm\}. $f x=f m) \wedge$
$(\forall x \in\{a . .<$ leftcut $a b m\} . f x \neq f m) \wedge$
$(\forall x \in\{$ rightcut a $b m<. . b\} . f x \neq f m) \wedge$
$(\forall x \in\{a . .<$ leftcut $a b m\} . \forall y \in\{$ rightcut $a b m<. . b\} . f x \neq f y))$
apply atomize
apply (clarsimp simp only: imp_conjL [symmetric] choice_iff choice_iff ')
apply (rule that, blast)
done
then have left_right: $\bigwedge a b m . \llbracket m \in\{a . . b\} ;\{a . . b\} \subseteq\{0 . .1\} \rrbracket \Longrightarrow a \leq$ leftcut a $b m \wedge$ rightcut a $b m \leq b$
and left_right_m: $\bigwedge a b m . \llbracket m \in\{a . . b\} ;\{a . . b\} \subseteq\{0 . .1\} \rrbracket \Longrightarrow$ leftcut $a b m$ $\leq m \wedge m \leq$ rightcut abm
by auto
have left_neq: $\llbracket a \leq x ; x<$ leftcut $a b m ; a \leq m ; m \leq b ;\{a . . b\} \subseteq\{0 . .1\} \rrbracket \Longrightarrow$

```
\(f x \neq f m\)
\(\Longrightarrow f x \neq f m\)
\(m ; m \leq b ;\{a . . b\} \subseteq\{0 . .1\} \rrbracket \Longrightarrow f x \neq f m\)
\(\{0 . .1\} \rrbracket\)
\[
\Longrightarrow f x=f m \text { for } a b m x y
\]
```

 and right_neq: \(\llbracket\) rightcut \(a b m<x ; x \leq b ; a \leq m ; m \leq b ;\{a . . b\} \subseteq\{0 . .1\} \rrbracket\)
 and left_right_neq: \(\llbracket a \leq x ; x<l e f t c u t ~ a b m ; r i g h t c u t ~ a b m<y ; y \leq b ; a \leq\)
 and feqm: 【leftcut a b \(m \leq x ; x \leq\) rightcut \(a b m ; a \leq m ; m \leq b ;\{a . . b\} \subseteq\)
 by (meson atLeastAtMost_iff greaterThanAtMost_iff atLeastLessThan_iff LR)+
have $f_{-} e q I: \bigwedge a b m x y$. $\llbracket l e f t c u t a b m \leq x ; x \leq$ rightcut $a b m$; leftcut $a b m \leq$ $y ; y \leq$ rightcut abm;

$$
a \leq m ; m \leq b ;\{a . . b\} \subseteq\{0 . .1\} \rrbracket \Longrightarrow f x=f y
$$

by (metis feqm)
define u where $u \equiv$ rightcut 010
have $l c[$ simp $]$: leftcut $010=0$ and $u 01: 0 \leq u u \leq 1$
using $L R$ [of 001$]$ by (auto simp: u_def)
have f0u: $\bigwedge x . x \in\{0 . . u\} \Longrightarrow f x=f 0$
using $L R$ [of 0001$]$ unfolding u_{-}def [symmetric]
by (metis «leftcut $010=0$ 〉 atLeastAtMost_iff order_refl zero_le_one)
have fu1: $\wedge x . x \in\{u<. .1\} \Longrightarrow f x \neq f 0$
using $L R$ [of 001$]$ unfolding u_{-}def [symmetric] by fastforce
define v where $v \equiv$ leftcut $u 11$
have $r c[$ simp $]$: rightcut $u 11=1$ and $v 01: u \leq v v \leq 1$
using $L R\left[\right.$ of 1 u 1] u01 by (auto simp: v_{-}def)
have fuv: $\bigwedge x . x \in\{u . .<v\} \Longrightarrow f x \neq f 1$
using $L R$ [of 1 u 1] u01 v_def by fastforce
have fOv: $\wedge x . x \in\{0 . .<v\} \Longrightarrow f x \neq f 1$
by (metis f_1not0 atLeastAtMost_iff atLeastLessThan_iff f0u fuv linear)
have $f v 1: \bigwedge x . x \in\{v . .1\} \Longrightarrow f x=f 1$
using LR [of 1 u 1] u01 v_def by (metis atLeastAtMost_iff atLeastatMost_subset_iff order_refl rc)
define a where $a \equiv$ leftrec $u v$ leftcut rightcut
define b where $b \equiv$ rightrec u v leftcut rightcut
define c where $c \equiv \lambda x$. midpoint ($a x$) ($b x$)
have a_real $[$ simp $]: a($ real $j)=u$ for j
using a_def leftrec_base
by (metis nonzero_mult_div_cancel_right of_nat_mult of_nat_numeral zero_neq_numeral)
have b_real $[$ simp $]: b($ real $j)=v$ for j
using b_def rightrec_base
by (metis nonzero_mult_div_cancel_right of_nat_mult of_nat_numeral zero_neq_numeral)
have $a 41: a\left((4 *\right.$ real $\left.m+1) / 2^{\wedge} S u c n\right)=a\left((2 *\right.$ real $\left.m+1) / 2^{\wedge} n\right)$ if n
>0 for $m n$
using that a_def leftrec_41 by blast
have $b 41: b\left((4 *\right.$ real $\left.m+1) / 2^{\wedge} S u c n\right)=$
leftcut $\left(a\left((2 *\right.\right.$ real $\left.\left.m+1) / 2^{\wedge} n\right)\right)$
$\left(b\left((2 *\right.\right.$ real $\left.\left.m+1) / 2^{\wedge} n\right)\right)$
$\left(c\left((2 *\right.\right.$ real $\left.\left.m+1) / 2{ }^{\wedge} n\right)\right)$ if $n>0$ for $m n$
using that a_def b_def c_def rightrec_41 by blast
have $a 43: a\left((4 *\right.$ real $m+3) / 2^{\wedge}$ Suc $\left.n\right)=$

```
rightcut (a ((2 * real m + 1) / 2^n))
    (b ((2* real m+1)/ 2^n))
    (c ((2* real m+1)/ 2^n)) if n>0 for m n
```

 using that \(a_{-}\)def \(b_{-}\)def \(c_{-}\)def leftrec_43 by blast
 have \(b_{4} 3: b((4 *\) real \(m+3) / 2 \wedge\) Suc \(n)=b\left((2 *\right.\) real \(\left.m+1) / 2^{\wedge} n\right)\) if \(n>\)
 0 for $m n$
using that b_def rightrec_43 by blast
have uabv: $u \leq a\left(\right.$ real $\left.m / 2^{\wedge} n\right) \wedge a\left(\right.$ real $\left.m / 2^{\wedge} n\right) \leq b\left(\right.$ real $\left.m / 2^{\wedge} n\right) \wedge$
$b\left(\right.$ real $\left.m / \mathcal{2}^{\wedge} n\right) \leq v$ for $m n$
proof (induction n arbitrary: m)
case 0
then show ?case by (simp add: v01)
next
case (Suc n p)
show ?case
proof (cases even p)
case True
then obtain m where $p=2 * m$ by (metis evenE)
then show ?thesis
by (simp add: Suc.IH)
next
case False
then obtain m where $m: p=2 * m+1$ by (metis oddE)
show ?thesis
proof (cases n)
case 0
then show ?thesis
by (simp add: a_def b_def leftrec_base rightrec_base v01)
next
case (Suc n^{\prime})
then have $n>0$ by simp
have $a_{-} l e _c: a\left(\right.$ real $\left.m / 2{ }^{\wedge} n\right) \leq c\left(\right.$ real $\left.m / 2^{\wedge} n\right)$ for m
unfolding $c_{-} d e f$ by (metis Suc.IH ge_midpoint_1)
have $c_{-} l e _b: c\left(\right.$ real $\left.m / 2^{\wedge} n\right) \leq b\left(\right.$ real $\left.m / \mathscr{2}^{\wedge} n\right)$ for m
unfolding c_{-}def by (metis Suc.IH le_midpoint_1)
have $c_{-} g e_{-} u$: $c\left(\right.$ real $\left.m / 2^{\wedge} n\right) \geq u$ for m
using Suc.IH a_le_c order_trans by blast
have $c_{-} l e _v: c\left(\right.$ real $\left.m / \mathbb{2}^{\wedge} n\right) \leq v$ for m
using Suc.IH c_le_b order_trans by blast
have $a_{_} g \ell_{-} 0: 0 \leq a\left(\right.$ real $m / 2^{\wedge} n$) for m
using Suc.IH order_trans u01(1) by blast
have $b_{-} l e_{-} 1: b\left(\right.$ real $\left.m / 2^{\wedge} n\right) \leq 1$ for m
using Suc.IH order_trans v01(2) by blast
have left_le: leftcut $\left(a\left((\right.\right.$ real $m) /$ 2^n $\left.\left.^{\wedge}\right)\right)(b(($ real m) / 2^n $))(c(($ real m) /
$\left.\left.2^{\wedge} n\right)\right) \leq c\left((\right.$ real $m) /$ 2 $\left.^{\wedge} n\right)$ for m
by (simp add: LR a_ge_0 a_le_c b_le_1 c_le_b)
have right_ge: rightcut $\left(a\left((\right.\right.$ real $\left.\left.m) / 2^{\wedge} n\right)\right)(b(($ real m)/2^n)) $(c(($ real
$\left.\left.m) / 2^{\wedge} n\right)\right) \geq c\left((\right.$ real $\left.m) / 2^{\wedge} n\right)$ for m
by (simp add: LR a_ge_0 a_le_c b_le_1 c_le_b)

```
    show ?thesis
    proof (cases even m)
    case True
    then obtain r where r:m=2*r by (metis evenE)
    show ?thesis
            using order_trans [OF left_le c_le_v, of 1+2*r] Suc.IH [of m+1]
            using a_le_c [of m+1] c_le_b [of m+1] a_ge_0 [of m+1] b_le_1 [of m+1]
left_right <n > 0\rangle
            by (simp_all add: r m add.commute [of 1] a41 b41 del: power_Suc)
        next
            case False
            then obtain r where r:m=2*r+1 by (metis oddE)
            show ?thesis
            using order_trans [OF c_ge_u right_ge, of 1+2*r] Suc.IH [of m]
            using a_le_c [of m] c_le_b [of m] a_ge_0 [of m] b_le_1 [of m] left_right <n
> 0>
            apply (simp_all add: r m add.commute [of 3] a43 b43 del: power_Suc)
                    by (simp add: add.commute)
            qed
        qed
    qed
qed
    have a_ge_0 [simp]: 0 \leqa(m/ 2^n) and b_le_1 [simp]: b(m/2^n) \leq 1 for
m::nat and n
    using uabv order_trans u01 v01 by blast+
    then have b_ge_0 [simp]: 0 \leqb(m/ 2^n) and a_le_1 [simp]:a(m / 2`n) \leq 1
for m::nat and n
    using uabv order_trans by blast+
    have alec [simp]:a(m/2^^n)\leqc(m/2^n) and cleb [simp]:c(m/2^ n ) \leq b (m
/ 2^n) for m::nat and n
    by (auto simp: c_def ge_midpoint_1 le_midpoint_1 uabv)
    have c_ge_0 [simp]: 0 \leqc(m / 2^n) and c_le_1 [simp]: c(m / 2^n) \leq 1 for
m::nat and n
    using a_ge_0 alec b_le_1 cleb order_trans by blast+
    have \llbracketd = m-n; odd j; |real i / 2^m - real j / 2^n|< < //2 ^n\rrbracket
```



```
n
    proof (induction d arbitrary: j n rule: less_induct)
    case (less d j n)
    show ?case
    proof (cases m\leqn)
        case True
        have |\mathscr{``}n|*|real i / 2`m - real j / 2` n | = 0
        proof (rule Ints_nonzero_abs_less1)
            have (real i* 2`n - real j* 2^m) / 2^m = (real i* 2^n)/ 2^ m - (real j
    * 2^m) / 2`m
                using diff_divide_distrib by blast
                also have ... = (real i* 2 ^ (n-m)) - (real j)
                using True by (auto simp: power_diff field_simps)
```

```
    also have \(\ldots \in \mathbb{Z}\)
    by \(\operatorname{simp}\)
    finally have \(\left(\right.\) real \(i *\) 2 \(^{\wedge} n-\operatorname{real} j *\) 2 \(\left.^{\wedge} m\right) /\) 2 \(^{\wedge} m \in \mathbb{Z}\).
    with True Ints_abs show \(\left|2^{\wedge} n\right| *\left|r e a l ~ i / 2 \wedge m-r e a l j / 2{ }^{\wedge} n\right| \in \mathbb{Z}\)
    by (fastforce simp: field_split_simps)
    show \(\left|\left|2^{\wedge} n\right| *\right|\) real \(i / 2\) ² \(m-r e a l j / 2 ` n \|<1\)
    using less.prems by (auto simp: field_split_simps)
    qed
    then have real \(i / 2^{\wedge} m=\) real \(j / 2^{\wedge} n\)
    by auto
    then show ?thesis
    by auto
next
    case False
    then have \(n<m\) by auto
    obtain \(k\) where \(k: j=\operatorname{Suc}(2 * k)\)
        using 〈odd \(j\) 〉 oddE by fastforce
    show ?thesis
    proof (cases \(n>0\) )
        case False
        then have \(a\left(\operatorname{real} j / 2^{\wedge} n\right)=u\)
            by simp
    also have \(\ldots \leq c\left(\right.\) real \(i /\) 2 \(\left.^{\wedge} m\right)\)
            using alec uabv by (blast intro: order_trans)
    finally have \(a c: a\left(\right.\) real \(\left.j / 2^{\wedge} n\right) \leq c\left(\right.\) real \(\left.i / 2^{\wedge} m\right)\).
    have \(c\left(\right.\) real \(i /\) 2^ \(\left.^{\wedge} m\right) \leq v\)
            using cleb uabv by (blast intro: order_trans)
    also have \(\ldots=b\left(\right.\) real \(\left.j / 2^{\wedge} n\right)\)
            using False by simp
    finally show ?thesis
            by (auto simp: ac)
    next
    case True show ?thesis
    proof (cases \(i /\) 2 \(^{\wedge} m j /\) 2 \(^{\wedge} n\) rule: linorder_cases)
            case less
            moreover have real \((4 * k+1) / 2^{\wedge}\) Suc \(n+1 /\left(2^{\wedge} S u c n\right)=\operatorname{real} j\)
/ \(2^{\wedge} n\)
            using \(k\) by (force simp: field_split_simps)
            moreover have \(\mid\) real \(i / 2^{\wedge} m-j / 2^{\wedge} n \mid<2 /\left(2^{\wedge}\right.\) Suc \(\left.n\right)\)
            using less.prems by simp
            ultimately have closer: \(\mid\) real \(i / 2{ }^{\wedge} m-\operatorname{real}(4 * k+1) / 2^{\wedge}\) Suc \(n \mid\)
<1/(2^Suc n)
            using less.prems by linarith
            have \(a\left(\right.\) real \(\left.(4 * k+1) / 2^{\wedge} S u c n\right) \leq c\left(i / 2^{\wedge} m\right) \wedge\)
                \(c\left(\right.\) real \(\left.i / 2^{\wedge} m\right) \leq b\left(\right.\) real \((4 * k+1) / 2^{\wedge}\) Suc \(\left.n\right)\)
            proof (rule less.IH [OF _refl])
            show \(m-\) Suc \(n<d\)
                using \(\langle n<m\rangle\) diff_less_mono2 less.prems(1) lessI by presburger
            show \(\mid\) real \(i / 2{ }^{\wedge} m-\operatorname{real}(4 * k+1) / 2^{\wedge} S u c n \mid<1 / 2^{\wedge} S u c n\)
```

```
            using closer }\langlen<m\rangle\langled=m-n\rangle\mathrm{ by (auto simp: field_split_simps <n
< m>diff_less_mono2)
    qed auto
    then show ?thesis
            using LR [of c((2*k+1) / 2`n) a((2*k+1)/ 2^n) b((2*k + 1) /
2^n)]
                    using alec [of 2*k+1] cleb [of 2*k+1] a_ge_0 [of 2*k+1] b_le_1 [of
2*k+1]
            using k a41 b41<0< < n
            by (simp add: add.commute)
    next
        case equal then show ?thesis by simp
    next
        case greater
        moreover have real (4*k+3)/2 `Suc n - 1/(2 ` Suc n) = real j
/ 2 ` n
        using k by (force simp: field_split_simps)
        moreover have |real i / 2 ` m - realj / 2` n|<2* / (2 ` Suc n)
        using less.prems by simp
        ultimately have closer: |real i / 2 `m - real (4*k+3) / 2` Suc n|
< 1/(2` Suc n)
        using less.prems by linarith
        have a (real (4*k+3)/ 2 `Suc n) \leqc (real i/ 2 ` m)^
                c(real i / 2` m) \leqb (real (4*k+3) / 2 ` Suc n)
        proof (rule less.IH [OF _ refl])
            show m - Suc n <d
            using \ n < m> diff_less_mono2 less.prems(1) by blast
            show |real i / 2 ` m-real (4*k+3) / 2` Suc n|<1/2 ` Suc n
            using closer \langlen<m\rangle\langled=m-n\rangle by (auto simp: field_split_simps <n
< m> diff_less_mono2)
            qed auto
        then show ?thesis
            using}LR[of c((2*k+1)/ 2^n) a((2*k+1)/ 2^n) b((2*k+1)
2^n)]
                    using alec [of 2*k+1] cleb [of 2*k+1] a_ge_0 [of 2*k+1] b_le_1 [of
2*k+1]
                using k a43 b43 <0 < n>
                by (simp add: add.commute)
            qed
        qed
    qed
    qed
    then have aj_le_ci: a (real j / 2 ` n) \leqc(real i / 2 ` m)
        and ci_le_bj:c (real i / 2 ` m) \leqb (real j / 2 ^ n) if odd j |real i / 2`m -
real j / 2^ n|< 1/2 ^ n for i jm n
    using that by blast+
    have close_ab: odd m\Longrightarrow \a(real m/2^n) - b (real m/2`^n)| < 2 / 2^n
for mn
    proof (induction n arbitrary: m)
```

```
    case 0
    with u01 v01 show ?case by auto
    next
    case (Suc n m)
    with oddE obtain k where k:m=Suc (2*k) by fastforce
    show ?case
    proof (cases n>0)
        case False
        with u01 v01 show ?thesis
            by (simp add: a_def b_def leftrec_base rightrec_base)
    next
        case True
        show ?thesis
        proof (cases even k)
        case True
        then obtain j where j:k=2*j by (metis evenE)
```



```
^n
        proof -
            have odd (Suc k)
                using True by auto
            then show ?thesis
                by (metis (no_types) Groups.add_ac(2) Suc.IH j of_nat_Suc of_nat_mult
of_nat_numeral)
            qed
            moreover have a ((2 * real j + 1) / 2 ` n) \leq
                    leftcut (a ((2 * real j + 1) / 2 ^ n)) (b ((2 * real j + 1) / 2 ^
n))}(c((2* real j + 1) / 2 ` n))
            using alec [of 2*j+1] cleb [of 2*j+1] a_ge_0 [of 2*j+1] b_le_1 [of 2*j+1]
            by (auto simp: add.commute left_right)
        moreover have leftcut (a ((2 * real j + 1) / 2 ` n)) (b ((2* real j + 1)
/ 2 ` n)) (c ((2 * real j + 1) / 2 ` n)) \leq
                    c((2* real j + 1)/ 2 ` n)
        using alec [of 2*j+1] cleb [of 2*j+1] a_ge_0 [of 2*j+1] b_le_1 [of 2*j+1]
            by (auto simp: add.commute left_right_m)
        ultimately have |a ((2* real j + 1) / 2 ^n) -
                    leftcut (a ((2* real j + 1) / 2 ^ n)) (b ((2* real j + 1) / 2
n)) (c ((2 * real j + 1) / 2 ` n))
                    \leq2/2 ^Suc n
        by (simp add: c_def midpoint_def)
    with jk\langlen> 0` show ?thesis
        by (simp add: add.commute [of 1] a41 b41 del: power_Suc)
    next
    case False
    then obtain j where j:k=2*j+1 by (metis oddE)
    have |a ((2 * real j + 1)/ 2 ` n) - (b ((2*real j + 1) / 2 ` n) ) | < 2/2
^n
            using Suc.IH [OF False] j by (auto simp: algebra_simps)
    moreover have c((2*real j + 1) / 2^n)\leq
```

```
                    rightcut \(\left(a\left((2 *\right.\right.\) real \(\left.\left.j+1) / 2^{\wedge} n\right)\right)(b((2 *\) real \(j+1) / 2\)
\(\left.\left.{ }^{\wedge} n\right)\right)\left(c\left((2 *\right.\right.\) real \(\left.\left.j+1) / 2^{\wedge} n\right)\right)\)
            using alec \([\) of \(2 * j+1]\) cleb \([\) of \(2 * j+1] a_{-} g e_{-} 0[o f 2 * j+1] \quad b_{-} l e_{-} 1[o f 2 * j+1]\)
                by (auto simp: add.commute left_right_m)
            moreover have rightcut \(\left(a\left((2 *\right.\right.\) real \(\left.\left.j+1) / 2^{\wedge} n\right)\right)(b((2 *\) real \(j+\)
1) \(\left.\left./ 2^{\wedge} n\right)\right)\left(c\left((2 *\right.\right.\) real \(\left.\left.j+1) / 2^{\wedge} n\right)\right) \leq\)
\[
b\left((2 * \operatorname{real} j+1) / 2^{\wedge} n\right)
\]
using alec \([\) of \(2 * j+1]\) cleb \([\) of \(2 * j+1] a_{-} g e_{-} 0[o f 2 * j+1] \quad b_{-} l e \_1[o f 2 * j+1]\) by (auto simp: add.commute left_right)
ultimately have \(\mid\) rightcut \(\left(a\left((2 *\right.\right.\) real \(j+1) /\) 2 \(\left.\left.^{\wedge} n\right)\right)(b((2 *\) real \(j+\) 1) / \(\left.\left.2^{\wedge} n\right)\right)\left(c\left((2 *\right.\right.\) real \(\left.\left.j+1) / 2^{\wedge} n\right)\right)-\)
\(b\left((2 * \operatorname{real} j+1) / 2^{\wedge} n\right) \mid \leq 2 / 2^{\wedge}\) Suc \(n\)
by (simp add: c_def midpoint_def)
with \(j k\langle n>0\rangle\) show ?thesis by (simp add: add.commute [of 3] a43 b43 del: power_Suc)
qed
qed
qed
have m1_to_3: \(4 *\) real \(k-1=\operatorname{real}(4 *(k-1))+3\) if \(0<k\) for \(k\)
using that by auto
have \(f b_{-} e q_{-} f a: \llbracket 0<j ; 2 * j<\mathcal{Z}^{\wedge} n \rrbracket \Longrightarrow f\left(b\left((2 *\right.\right.\) real \(\left.\left.j-1) /{ }^{2} n\right)\right)=f(a((2\)
* real \(j+1\) ) / 2^n)) for \(n j\)
proof (induction \(n\) arbitrary: \(j\) )
case 0
then show? case by auto
next
case (Suc \(n j\) ) show ?case
proof (cases \(n>0\) )
case False
with Suc.prems show ?thesis by auto
next
case True
show ?thesis proof (cases even \(j\) )
case True
then obtain \(k\) where \(k: j=2 * k\) by (metis evenE)
with \(\langle 0<j\rangle\) have \(k>02 * k<2{ }^{\wedge} n\)
using Suc.prems(2) \(k\) by auto
with \(k\langle 0<n\rangle S u c\).IH [of \(k\) ] show ?thesis
by (simp add: m1_to_3 a41 b43 del: power_Suc) (auto simp: of_nat_diff)
```


next

```
case False
then obtain \(k\) where \(k: j=2 * k+1\) by (metis oddE)
have \(f\left(\right.\) leftcut \(\left(a\left((2 * k+1) /\right.\right.\) 2 \(\left.\left.^{\wedge} n\right)\right)\left(b\left((2 * k+1) /\right.\right.\) 2 \(\left.\left.{ }^{\wedge} n\right)\right)(c((2 * k\) +1) / 2^n)))
\[
=f\left(c\left((2 * k+1) / 2^{\wedge} n\right)\right)
\]
\(f\left(c\left((2 * k+1) /{ }^{\wedge} n\right)\right)\)
\(=f\left(\right.\) rightcut \(\left(a\left((2 * k+1) /{ }^{\wedge}{ }^{\wedge} n\right)\right)\left(b\left((2 * k+1) /{ }^{2}{ }^{\wedge} n\right)\right)(c((2\) * \(k+1) /\) 2 \(\left.^{\wedge} n\right)\) )
using alec \([\) of \(2 * k+1 n]\) cleb \([o f 2 * k+1 n] \quad a_{-} g e_{-} 0[o f 2 * k+1 n] \quad b_{-} l e \_1[o f\)
```

$2 * k+1 n] k$
using left_right_m $\left[\right.$ of $c\left((2 * k+1) /\right.$ 2^ $\left.^{\wedge}\right) a\left((2 * k+1) /\right.$ 2^ $\left.^{\wedge} n\right) b((2 * k+$

1) / ${ }^{\wedge} n$)]
by (auto simp: add.commute feqm [OF order_refl] feqm [OF_order_refl, symmetric])
then
show ?thesis
by (simp add: k add.commute [of 1] add.commute [of 3] a43 b41〈0<n〉 del: power_Suc)
qed
qed
qed
have $f_{-} e q_{-} f c: \llbracket 0<j ; j<2^{\wedge} n \rrbracket$

$$
\begin{aligned}
\Longrightarrow & f\left(b\left((2 * j-1) / 2^{\wedge}(\text { Suc } n)\right)\right)=f\left(c\left(j / \mathscr{Z}^{\wedge} n\right)\right) \wedge \\
& f\left(a\left((2 * j+1) / 2^{\wedge}(\text { Suc } n)\right)\right)=f\left(c\left(j / 2^{\wedge} n\right)\right) \text { for } n \text { and } j:: n a t
\end{aligned}
$$

proof (induction n arbitrary: j)
case 0
then show ?case by auto
next
case (Suc n)
show ?case
proof (cases even j)
case True
then obtain k where $k: j=2 * k$ by (metis evenE)
then have less2n: $k<2{ }^{\text {^ }} n$ using Suc.prems(2) by auto
have $0<k$ using $\langle 0<j\rangle k$ by linarith
then have m1_to_3: real $(4 * k-$ Suc 0$)=\operatorname{real}(4 *(k-1))+3$
by auto
then show ?thesis
using Suc.IH [of k] $k\langle 0<k\rangle$
by (simp add: less2n add.commute [of 1] m1_to_3 a41 b43 del: power_Suc)
(auto simp: of_nat_diff)
next
case False
then obtain k where $k: j=2 * k+1$ by (metis oddE)
with Suc.prems have $k<2^{\wedge} n$ by auto
show ?thesis
using alec $[$ of $2 * k+1$ Suc $n]$ cleb [of $2 * k+1$ Suc n] $a_{-} g e_{-} 0[o f 2 * k+1$ Suc
$n] \quad b_{-} l e _1$ [of $2 * k+1$ Suc $\left.n\right] k$
using left_right_m $\left[\right.$ of $c\left((2 * k+1) / 2^{\wedge} S u c n\right) a\left((2 * k+1) / 2{ }^{\wedge}\right.$ Suc $\left.n\right)$ $\left.b\left((2 * k+1) / 2^{\wedge} S u c n\right)\right]$
apply (simp add: add.commute [of 1] add.commute [of 3] m1_to_3 b41 a43
del: power_Suc)
apply (force intro: feqm)
done
qed
qed
define $D 01$ where $D 01 \equiv\{0<. .<1\} \cap(\bigcup k m$. $\{$ real m/2^k $\})$

```
have cloD01 [simp]: closure D01 \(=\{0 . .1\}\)
    unfolding D01_def
    by (subst closure_dyadic_rationals_in_convex_set_pos_1) auto
    have uniformly_continuous_on D01 ( \(f \circ c\) )
    proof (clarsimp simp: uniformly_continuous_on_def)
    fix \(e\) ::real
    assume \(0<e\)
    have ucontf: uniformly_continuous_on \(\{0 . .1\} f\)
        by (simp add: compact_uniformly_continuous \([\) OF cont_f])
    then obtain \(d\) where \(0<d\) and \(d: \bigwedge x x^{\prime} . \llbracket x \in\{0 . .1\} ; x^{\prime} \in\{0 . .1\} ;\) norm
\(\left(x^{\prime}-x\right)<d \rrbracket \Longrightarrow\) norm \(\left(f x^{\prime}-f x\right)<e / 2\)
        unfolding uniformly_continuous_on_def dist_norm
        by (metis \(\langle 0<e\rangle\) less_divide_eq_numeral1(1) mult_zero_left)
    obtain \(n\) where \(n: 1 / 2{ }^{\wedge} n<\min d 1\)
    by (metis \(\langle 0<d\rangle\) divide_less_eq_1 less_numeral_extra(1) min_def one_less_numeral_iff
power_one_over real_arch_pow_inv semiring_norm(76) zero_less_numeral)
    with grOI have \(n>0\)
        by (force simp: field_split_simps)
    show \(\exists d>0 . \forall x \in D 01 . \forall x^{\prime} \in D 01\). dist \(x^{\prime} x<d \longrightarrow \operatorname{dist}\left(f\left(c x^{\prime}\right)\right)(f(c x))\)
\(<e\)
    proof (intro exI ballI impI conjI)
        show \((0::\) real \()<1 /\) 2 \(^{\wedge} n\) by auto
    next
        have dist_fc_close: \(\operatorname{dist}\left(f\left(c\left(\right.\right.\right.\) real \(\left.\left.\left.i / 2{ }^{\wedge} m\right)\right)\right)(f(c(\) real j / 2^n \()))<e /\) 2
            if \(i: 0<i i<2^{\wedge} m\) and \(j: 0<j j<2{ }^{\wedge} n\) and clo: abs \(\left(i / 2^{\wedge} m-j /\right.\)
\(\left.2^{\wedge} n\right)<1 /\) 2 \(^{\wedge} n\) for \(i j m\)
            proof -
                have abs3: \(|x-a|<e \Longrightarrow x=a \vee|x-(a-e / 2)|<e / 2 \vee \mid x-(a+\)
\(e / 2) \mid<e / 2\) for \(x\) a \(e:\) :real
            by linarith
                consider \(i /\) 2 \(^{\wedge} m=j / 2^{\wedge} n\)
                    \(\left|\mid i / 2{ }^{\wedge} m-(2 * j-1) / 2^{\wedge}\right.\) Suc \(\left.n\right|<1 / 2\) ^Suc \(n\)
                    \(\left|\mid i /\right.\) 2 \(^{\wedge} m-(2 * j+1) /\) 2 \(\left.^{\wedge} S u c n\right|<1 /\) 2 \(^{\wedge} S u c n\)
                    using abs3 [OF clo] \(j\) by (auto simp: field_simps of_nat_diff)
        then show? ?thesis
        proof cases
            case 1 with \(\langle 0<e\rangle\) show ?thesis by auto
                next
                    case 2
            have *: \(a b s(a-b) \leq 1 / 2^{\wedge} n \wedge 1 / 2^{\wedge} n<d \wedge a \leq c \wedge c \leq b \Longrightarrow b-\)
\(c<d\) for \(a b c\)
                by auto
            have norm \(\left(c\left(\right.\right.\) real \(i /\) 2 \(\left.^{\wedge} m\right)-b\left(\operatorname{real}(2 * j-1) /\right.\) 2 \(^{\wedge}\) Suc n \(\left.) ~\right)<d\)
                using \(2 j n\) close_ab [of \(2 * j-1\) Suc n]
                using b_ge_0 [of \(2 * j-1\) Suc n] b_le_1 [of \(2 * j-1\) Suc \(n]\)
                using aj_le_ci [of \(2 * j-1\) i m Suc n]
                using ci_le_bj [of \(2 * j-1\) i m Suc n]
                apply (simp add: divide_simps of_nat_diff del: power_Suc)
                apply (auto simp: divide_simps intro!: *)
```

```
        done
        moreover have f(c(j/ 2^n)) =f(b ((2*j - 1) / 2 ^ (Suc n)))
            using f_eq-fc [OF j] by metis
        ultimately show ?thesis
            by (metis dist_norm atLeastAtMost_iff b_ge_0 b_le_1 c_ge_0 c_le_1 d)
        next
        case 3
        have *: abs (a-b)\leq1/2 ^ n ^1/2 ^ n < d ^a\leqc^c\leqb\Longrightarrowc-
a<d for a bc
        by auto
        have norm (c (real i / 2 `m) - a (real (2*j + 1) / 2 ` Suc n)) <d
            using 3 j n close_ab [of 2*j+1 Suc n]
            using b_ge_0 [of 2*j+1 Suc n] b_le_1 [of 2*j+1 Suc n]
            using aj_le_ci [of 2*j+1 i m Suc n]
            using ci_le_bj [of 2*j+1 i m Suc n]
            apply (simp add: divide_simps of_nat_diff del: power_Suc)
            apply (auto simp: divide_simps intro!: *)
            done
    moreover have f(c(j/ 2^n)) =f(a((2*j + 1) / 2 ^(Suc n)))
            using f_eq- fc [OF j] by metis
            ultimately show ?thesis
            by (metis dist_norm a_ge_0 atLeastAtMost_iff a_ge_0 a_le_1 c_ge_0 c_le_1
d)
            qed
    qed
    show dist (f (c x')) (f (c x))<e
        if }x\inD01 \mp@subsup{x}{}{\prime}\inD01 dist \mp@subsup{x}{}{\prime}x<1/\mp@subsup{\mathbb{D}}{}{\wedge}n\mathrm{ for }x\mp@subsup{x}{}{\prime
        using that unfolding D01_def dyadics_in_open_unit_interval
proof clarsimp
    fix ik::nat and mp
    assume i:0<ii<2 ^m and k:0<kk<2 ^p
    assume clo:dist (real k/ 2 ^p) (real i / 2 ^m) < 1/2 ` n
    obtain j::nat where 0<jj<2 ` n
        and clo_ij:abs(i/ 2^m-j/ 2`n)< 1/\mathscr{2 `}n
        and clo_kj:abs(k/2^p-j/2^n)<1/2 ^`n
    proof -
        have max (2^ n * i / 2^m) (2^n* * / 2^p) \geq0
        by (auto simp: le_max_iff_disj)
        then obtain j where floor (max (2`n*i / 2^m) (2^n*k / 2^ p ) ) = int j
            using zero_le_floor zero_le_imp_eq_int by blast
        then have j_le: real j \leq max (2`n * i/ 2^m) (2^n * k/ 2^p)
            and less_j1: max (2^n*i/ 2^m) (2^n*k/ 2^p)<real j+1
        using floor_correct [of max (2`n * / / 2`m) (2^ n * k/ 2` `)] by linarith+
        show thesis
        proof (cases j=0)
            case True
            show thesis
            proof
                show (1::nat)<2 ^ n
```

```
    by (metis Suc_1 <0 < n` lessI one_less_power)
        show |real i / 2 ` m - real 1/2 ` n|< 1/2 ` n
                            using i less_j1 by (simp add: dist_norm field_simps True)
        show |real k/2 ` p - real 1/2 ` n|< 1/2 `n
            using k less_j1 by (simp add: dist_norm field_simps True)
        qed simp
        next
    case False
    have 1: real j* 2 ` m < real i * 2 ^ n
        if j: real j* 2 ` p}\leq\mathrm{ real k*2` n and k:real k*2 ` m < real i*2
    ^p
        for ikmp
        proof -
    have real j * 2 ` p * 2 ` m s real k* 2 ` n * 2 ` m
            using j by simp
    moreover have real k*2 ^ m*2 ^ n < real i * 2 ` p * 2 ` n
            using }k\mathrm{ by simp
            ultimately have real j*2 ^ p*2` m<real i*2` p * 2 ` n
            by (simp only: mult_ac)
            then show ?thesis
            by simp
    qed
    have 2: real j*2 ` m<2 ^ m + real i*2 ` n
        if j:real j*2 ` p}\leq\mathrm{ real k*2 ` n and k: real k*(2` m*2 ^n)<
2 ` m * 2 ` p + real i * (2 ^ n * 2 ` p)
        for ikmp
    proof -
        havereal j* 2 ^ p * 2 ` m
            using j by simp
        also have ...<2 ^ m*2 ` p + real i * (2 ^ n * 2 ` p)
            by (rule k)
finally have (real j* 2 ^ m)* 2 ` p< (2` m + real i * 2 ` n) * 2 ` p
            by (simp add: algebra_simps)
        then show ?thesis
            by simp
qed
have 3: real j* 2 ^ p<2 ` p + real k* 2^ n
    if j: real j*2` m}\leq\mathrm{ real i*2^`n and i: real i*2 ^ p s real k*2`
m
proof -
    have real j* 2 ^ m*2 ` p sreal i * 2 ^ n * 2 ` p
        using j by simp
    moreover have real i * 2 ` p * 2 ^ n \leqreal k*2 ` m*2 `n
            using i by simp
    ultimately have real j*2^ m*2 ^ p\leqreal k*2 ^ m*2 ^}
            by (simp only: mult_ac)
            then have real j*2` p s real k*2` n
                by simp
    also have ... < 2 ` p+real k* 2 ` n
```

```
            by auto
            finally show ?thesis by simp
        qed
        show ?thesis
        proof
            have 2 ` n * real i / 2 ` m<2 ^ n 2 ^ n*real k/2 ` p<2 ` n
        using ik by (auto simp: field_simps)
            then have max (2^n * i/ 2`m) (2^n * k/ 2^ p) < 2^n
                by simp
            with j_le have real j<2 ` n by linarith
            then show j<2 ` n
                by auto
            have |real i*2 ` n-real j*2` m|<2 ` m
                using clo less_j1 j_le
                by (auto simp:le_max_iff_disj field_split_simps dist_norm abs_if split:
if_split_asm dest: 1 2)
            then show |real i / 2 ` m-real j / 2 ` n|<1/2 ` n
                by (auto simp: field_split_simps)
                    have |real k* 2 ^n-real j*2 ^ p|< 2 `p
                using clo less_j1 j_le
                            by (auto simp: le_max_iff_disj field_split_simps dist_norm abs_if split:
if_split_asm dest: 3 2)
                    then show |real k/2 ``p-real j / 2 ` n < < 1/2 ` n
                            by (auto simp: le_max_iff_disj field_split_simps dist_norm)
            qed (use False in simp)
            qed
        qed
        show dist (f (c (real k / 2 ^p))) (f(c(real i / 2` m) ) ) <e
        proof (rule dist_triangle_half_l)
            show dist (f (c (real k / 2 ` p ) ) ) (f(c(j / 2`n) ) ) <e/2
            using <0 < j〉<j < 2 ^ n> k clo_kj
            by (intro dist_fc_close) auto
            show dist (f (c (real i / 2 `m)) ) (f (c (real j / 2 ` n) ) ) <e/2
            using <0<j\rangle\langlej<2 ` n> i clo_ij
            by (intro dist_fc_close) auto
        qed
        qed
    qed
    qed
    then obtain h}\mathrm{ where ucont_h:uniformly_continuous_on {0..1} h
        and fc_eq: \x. x \ D01 \Longrightarrow(f\circc) x=hx
    proof (rule uniformly_continuous_on_extension_on_closure [of D01 f oc])
    qed (use closure_subset [of D01] in <auto intro!: that>)
    then have cont_h:continuous_on {0..1} h
        using uniformly_continuous_imp_continuous by blast
    have h_eq: h(real k/2 ` m)=f(c(real k/ 2 ^ m)) if 0<kk< 2^m for km
    using fc_eq that by (force simp: D01_def)
    have h'{0..1} =f'{0..1}
    proof
```

```
    have h'(closure D01)\subseteqf'{0..1}
    proof (rule image_closure_subset)
        show continuous_on (closure D01) h
            using cont_h by simp
    show closed (f '{0..1})
        using compact_continuous_image [OF cont_f] compact_imp_closed by blast
    show h'D01\subseteqf'{0..1}
    by (force simp: dyadics_in_open_unit_interval D01_def h_eq)
    qed
    with cloD01 show h'{0..1}\subseteqf'{0..1} by simp
    have a12 [simp]: a (1/2) = u
        by (metis a_def leftrec_base numeral_One of_nat_numeral)
    have b12 [simp]: b (1/2) =v
    by (metis b_def rightrec_base numeral_One of_nat_numeral)
    have f'{0..1}\subseteq closure(h'D01)
proof (clarsimp simp: closure_approachable dyadics_in_open_unit_interval D01_def)
    fix x e::real
    assume 0\leq x x < 1 0 <e
    have ucont_f:uniformly_continuous_on {0..1}f
        using compact_uniformly_continuous cont_f by blast
    then obtain }\delta\mathrm{ where }\delta>
        and \delta:\bigwedgex x'. \llbracketx\in{0..1}; \mp@subsup{x}{}{\prime}\in{0..1}; dist }\mp@subsup{x}{}{\prime}x<\delta\rrbracket\Longrightarrow\mathrm{ norm (f x' - f
x)<e
        using <0 <e` by (auto simp: uniformly_continuous_on_def dist_norm)
    have *: \existsm::nat. \existsy. odd m ^ 0<m^m<2^^n ^ y f {a(m / 2`n)..
b(m/ 2^n)}^fy=fx
        if n\not=0 for }
        using that
    proof (induction n)
        case 0 then show ?case by auto
    next
        case (Suc n)
        show ?case
        proof (cases n=0)
            case True
            consider }x\in{0..u}|x\in{u..v}|x\in{v..1
                using <0 \leq x\rangle\langlex\leq 1> by force
            then have \existsy\geqa(real 1/2). y\leqb(real 1/2)}\wedgefy=f
            proof cases
                case 1
            then show ?thesis
                    using uabv [of 1 1] f0u [of u] f0u [of x] by force
            next
                    case 2
                    then show ?thesis
                    by (rule_tac x=x in exI) auto
            next
                case 3
            then show ?thesis
```

using uabv [of 1 1] fv1 [of v] fv1 [of x] by force
qed
with $\langle n=0\rangle$ show ?thesis by (rule_tac $x=1$ in exI) auto
next
case False
with Suc obtain $m y$
where odd $m 0<m$ and mless: $m<2{ }^{\wedge} n$
and $y: y \in\left\{a\left(\right.\right.$ real $\left.m / 2^{\wedge} n\right) . . b\left(\right.$ real $\left.\left.m / 2^{\wedge} n\right)\right\}$ and feq: $f y=f x$ by metis
then obtain j where $j: m=2 * j+1$ by (metis oddE)
have $j_{4}: 4 * j+1<2{ }^{\wedge}$ Suc n
using mless j by (simp add: algebra_simps)
consider $y \in\left\{a\left((2 * j+1) / 2^{\wedge} n\right) . . b\left((4 * j+1) / 2^{\wedge}(\right.\right.$ Suc $\left.\left.n)\right)\right\}$
$\mid y \in\left\{b\left((4 * j+1) / \mathscr{2}^{\wedge}(\right.\right.$ Suc $\left.n)\right) . . a\left((4 * j+3) / \mathscr{2}^{\wedge}(\right.$ Suc $\left.\left.n)\right)\right\}$
$\mid y \in\left\{a\left((4 * j+3) / 2^{\wedge}(\right.\right.$ Suc $\left.\left.n)\right) . . b\left((2 * j+1) / 2^{\wedge} n\right)\right\}$
using $y j$ by force
then show ?thesis
proof cases
case 1
show ?thesis
proof (intro exI conjI)
show $y \in\left\{a\left(\operatorname{real}(4 * j+1) / 2^{\wedge} S u c n\right) . . b\left(\right.\right.$ real $(4 * j+1) / 2^{\wedge}$
Suc n) \}
using mless $j\langle n \neq 0\rangle 1$ by (simp add: a41 b41 add.commute [of 1] del: power_Suc)
qed (use feq j_{4} in auto)
next
case 2
show ?thesis
proof (intro exI conjI)
show $b\left(\right.$ real $\left.(4 * j+1) / 2^{\wedge} \operatorname{Suc} n\right) \in\left\{a\left(\right.\right.$ real $(4 * j+1) / 2^{\wedge}$ Suc $\left.n) . . b\left(\operatorname{real}(4 * j+1) / 2^{\wedge} \operatorname{Suc} n\right)\right\}$
using $\langle n \neq 0$ 〉 alec $[$ of $2 * j+1 n]$ cleb $[$ of $2 * j+1 n]$ a_ge_0 $[o f 2 * j+1$
$n] b_{-} l e _1\left[\begin{array}{ll} \\ 2 * \\ 2 * j+1 & n\end{array}\right]$
using left_right $\left[\right.$ of $c\left((2 * j+1) /\right.$ 2 $\left.^{\wedge} n\right) a((2 * j+1) / 2 \wedge n) b((2 * j$ +1)/ $\left.\left.2^{\wedge} n\right)\right]$
by (simp add: a41 b41 add.commute [of 1] del: power_Suc)
show $f\left(b\left(\right.\right.$ real $\left.\left.(4 * j+1) / 2^{\wedge} \operatorname{Suc} n\right)\right)=f x$
using $\langle n \neq 0$ 〉 2
using alec $[$ of $2 * j+1 n]$ cleb $[o f 2 * j+1 n] ~ a_{-} g e_{-} 0[o f 2 * j+1 n] \quad b_{-} l e _1$
$\left[\begin{array}{lll} & 2 * j+1 & n\end{array}\right]$
by (force simp add: b41 a43 add.commute [of 1] feq [symmetric] simp del: power_Suc intro: $\left.f_{-} e q I\right)$
qed (use $j 4$ in auto)
next
case 3
show ?thesis

```
    proof (intro exI conjI)
    show 4*j+3<2 ` Suc n
            using mless j by simp
            show fy=fx
            by fact
    show }y\in{a(\mathrm{ real (4*j+3)/2 ^ Suc n)..b (real (4*j+3)/2
` Suc n)}
                using 3 False b43 [of n j] by (simp add: add.commute)
            qed (use 3 in auto)
        qed
        qed
    qed
    obtain n where n: 1/\mathscr{2^}n<\operatorname{min}(\delta/2) 1
        by (metis <0 < \delta` divide_less_eq_1 less_numeral_extra(1) min_less_iff_conj
one_less_numeral_iff power_one_over real_arch_pow_inv semiring_norm(76) zero_less_divide_iff
zero_less_numeral)
    with grOI have n\not=0
        by fastforce
    with * obtain m::nat and y
        where odd m 0<m and mless: m<2 ^n
            and y:a(m/2 \^n) \leq y ^ y \leqb(m/2^^n) and feq: fx=fy
        by (metis atLeastAtMost_iff)
    then have 0\leqy y\leq1
        by (meson a_ge_0 b_le_1 order.trans)+
    moreover have y<\delta+c(real m / 2 `n) c (real m / 2 ^n) < N + y
        using y alec [of m n] cleb [of m n] n field_sum_of_halves close_ab [OF<odd
m>, of n]
        by linarith+
    moreover note <0<m> mless }\langle0\leqx\rangle\langlex\leq1
    ultimately have dist (h (real m / 2 ^ n)) (fx)<e
        by (auto simp: dist_norm h_eq feq \delta)
    then show }\existsk.\existsm\in{0<..<\mp@subsup{\mathscr{2}}{}{`}k}.dist (h(real m / 2``k)) (fx)<
        using {0<m> greaterThanLessThan_iff mless by blast
    qed
    also have ...\subseteqh'{0..1}
    proof (rule closure_minimal)
        show h'D01\subseteqh'{0..1}
            using cloD01 closure_subset by blast
        show closed (h'{0..1})
            using compact_continuous_image [OF cont_h] compact_imp_closed by auto
    qed
    finally show f'{0..1}\subseteqh'{0..1} .
    qed
    moreover have inj_on h {0..1}
    proof -
    have }u<
        by (metis atLeastAtMost_iff f0u f_1not0 fv1 order.not_eq_order_implies_strict
u01(1) u01(2) v01(1))
    have f_not_fu: \x. \llbracketu< x;x\leqv\rrbracket\Longrightarrow fx\not=fu
```

by (metis atLeastAtMost_iff f0u fu1 greaterThanAtMost_iff order_refl order_trans u01(1) v01(2))
have $f_{-} n o t_{-} f v: \bigwedge x . \llbracket u \leq x ; x<v \rrbracket \Longrightarrow f x \neq f v$
by (metis atLeastAtMost_iff order_refl order_trans v01(2) atLeastLessThan_iff fuv fv1)
have $a_{-} l e s s_{-} b$:
$a\left(j /\right.$ 2^n $\left.^{\wedge}\right)<b\left(j /\right.$ 2 $\left.^{\wedge} n\right) \wedge$
$\left(\forall x \cdot a\left(j /\right.\right.$ 2^ $\left.^{\wedge} n\right)<x \longrightarrow x \leq b\left(j /\right.$ 2^n $\left.^{\wedge}\right) \longrightarrow f x \neq f\left(a\left(j /\right.\right.$ 2^n $\left.\left.\left.^{\wedge}\right)\right)\right) \wedge$
$\left(\forall x \cdot a\left(j /\right.\right.$ 2^ $\left.^{\wedge} n\right) \leq x \longrightarrow x<b\left(j /\right.$ 2^ $\left.^{\wedge} n\right) \longrightarrow f x \neq f\left(b\left(j /\right.\right.$ 2^n $\left.\left.^{\wedge} n\right)\right)$ for n
and $j:: n a t$
proof (induction n arbitrary: j)
case 0 then show ?case
by (simp add: $\left.\langle u<v\rangle f_{-} n o t-f u f_{-} n o t _f v\right)$
next
case (Suc $n j$) show ?case
proof (cases $n>0$)
case False then show ?thesis
by (auto simp: a_def b_def leftrec_base rightrec_base $\left.\langle u<v\rangle f_{-} n o t_{-} f u f_{-} n o t _f v\right)$ next
case True show ?thesis
proof (cases even j)
case True
with $\langle 0<n\rangle$ Suc.IH show ?thesis
by (auto elim!: evenE)
next
case False
then obtain k where $k: j=2 * k+1$ by (metis oddE)
then show ?thesis
proof (cases even k)
case True
then obtain m where $m: k=2 * m$ by (metis evenE)
have fleft: f (leftcut $\left(a\left((2 * m+1) /\right.\right.$ 2^n $\left.\left.^{\wedge}\right)\right)\left(b\left((2 * m+1) /\right.\right.$ 2 $\left.\left.^{\wedge} n\right)\right)(c$ $\left((2 * m+1) /\right.$ 2 $\left.\left.\left.^{\wedge} n\right)\right)\right)=$

$$
f\left(c\left((2 * m+1) / 2^{\wedge} n\right)\right)
$$

using alec $[$ of $2 * m+1 n]$ cleb $[$ of $2 * m+1 n] a_{-} g e_{-} 0[o f 2 * m+1 n] \quad b_{-} l e _1$ [of $2 * m+1 n]$
using left_right_m $\left[\right.$ of $c\left((2 * m+1) / 2^{\wedge} n\right) a\left((2 * m+1) / 2^{\wedge} n\right) b((2 * m$ +1)/2^n)]
by (auto intro: $f_{-} e q I$)
show ?thesis
proof (intro conjI impI notI allI)
have False if $b\left(\right.$ real $\left.j / 2^{\wedge} S u c n\right) \leq a($ real j / 2 `Suc n)
proof -
have $f\left(c\left((1+\right.\right.$ real $\left.\left.m * 2) / 2^{\wedge} n\right)\right)=f(a((1+$ real $m * 2) / 2$
$\left.{ }^{\wedge} n\right)$)
using $k m\langle 0<n\rangle$ fleft that $a 41$ [of $n m$] b41 [of $n m$]
using alec $[o f 2 * m+1 n]$ cleb $[o f 2 * m+1 n]$ a_ge_0 [of $2 * m+1 n]$
$b_{-} l e_{-} 1[o f 2 * m+1 n]$
using left_right $\left[\right.$ of $c\left((2 * m+1) /\right.$ 2 $\left.^{\wedge} n\right) a\left((2 * m+1) / 2{ }^{\wedge} n\right) b((2 * m$
+1)/ 2^n)]
by (auto simp: algebra_simps)
moreover have $a\left(\right.$ real $\left.(1+m * 2) / 2^{\wedge} n\right)<c($ real $(1+m *$
2) $/ 2^{\wedge} n$)
using Suc.IH [of $1+m * 2]$ by (simp add: c_def midpoint_def)
moreover have $c\left(\right.$ real $\left.(1+m * 2) / 2^{\wedge} n\right) \leq b($ real $(1+m *$
2) $/ 2^{\wedge} n$)
using cleb by blast
ultimately show ?thesis
using Suc.IH [of $1+m * 2]$ by force
qed
then show $a\left(\right.$ real $j / 2{ }^{\wedge}$ Suc $\left.n\right)<b\left(\right.$ real $j / 2{ }^{\wedge}$ Suc n) by force next
fix x
assume $a\left(\right.$ real $j /$ 2 $^{\wedge}$ Suc $\left.n\right)<x x \leq b($ real j / 2^ Suc n) $f x=f$
(a (real j/2 ^ Suc n))
then show False
using Suc.IH [of $1+m * 2$, THEN conjunct2, THEN conjunct1]
using $k m\langle 0<n\rangle a 41$ [of $n m$] b41 [of $n m$]
using alec $[$ of $2 * m+1 n]$ cleb $[$ of $2 * m+1 n]$ a_ge_0 $[$ of $2 * m+1 n]$
$b_{-} l e_{-} 1[o f 2 * m+1 n]$
using left_right_m $\left[\right.$ of $c\left((2 * m+1) /{ }^{\wedge} n\right) a\left((2 * m+1) / 2^{\wedge} n\right)$
$b\left((2 * m+1) /\right.$ 2^ $\left.\left.^{\wedge}\right)\right]$
by (auto simp: algebra_simps)
next
fix x
 (b (real j / 2 ${ }^{\wedge}$ Suc n))
then show False
using $k m\langle 0<n\rangle a 41$ [of $n m$] b41 [of $n m$] fleft left_neq
using alec $[$ of $2 * m+1 n]$ cleb [of $2 * m+1 n] a_{-} g e_{-} 0[o f ~ 2 * m+1 n]$
b_le_1 $[$ of $2 * m+1 n]$
by (auto simp: algebra_simps)
qed
next
case False
with oddE obtain m where m : $k=S u c(2 * m)$ by fastforce
have fright: f (rightcut $\left(a\left((2 * m+1) /\right.\right.$ 2 $\left.\left.^{\wedge} n\right)\right)\left(b\left((2 * m+1) /{ }^{2} n\right)\right)$ $\left.\left(c\left((2 * m+1) / 2^{\wedge} n\right)\right)\right)=f\left(c\left((2 * m+1) / 2^{\wedge} n\right)\right)$
using alec $[$ of $2 * m+1 n]$ cleb $[$ of $2 * m+1 n]$ a_ge_0 $[o f 2 * m+1 n] \quad b_{-} l e _1$ [of $2 * m+1 n]$
using left_right_m $\left[\right.$ of $c\left((2 * m+1) /\right.$ 2^n $\left.^{\wedge}\right) a\left((2 * m+1) /\right.$ 2^n $\left.^{\wedge}\right) b((2 * m$ +1)/ 2^n)]
by (auto intro: f_{-}eqI [OF_order_refl $]$)
show ?thesis
proof (intro conjI impI notI allI)
have False if $b\left(\right.$ real $\left.j / 2^{\wedge} S u c n\right) \leq a($ real j / 2 ^ Suc n)
proof -
have $f\left(c\left((1+\right.\right.$ real $\left.\left.m * 2) / 2^{\wedge} n\right)\right)=f(b((1+$ real $m * 2) / 2$
^n)
using $k m\langle 0<n\rangle$ fright that a43 [of $n m$] b43 [of $n m$]
using alec $[o f 2 * m+1 n]$ cleb $[o f 2 * m+1 n] ~ a _g e _0[o f ~ 2 * m+1 n]$ $b_{-} l e _1[o f 2 * m+1 n]$
using left_right $\left[\right.$ of $c\left((2 * m+1) / 2{ }^{\wedge} n\right) a\left((2 * m+1) / 2{ }^{\wedge} n\right) b((2 * m$ +1) / 2^n)]
by (auto simp: algebra_simps)
moreover have $a\left(\right.$ real $\left.(1+m * 2) / 2^{\wedge} n\right) \leq c($ real $(1+m *$
2) $/ 2^{\wedge} n$)
using alec by blast
moreover have $c\left(\right.$ real $\left.(1+m * 2) / 2^{\wedge} n\right)<b($ real $(1+m *$
2) $/ 2^{\wedge} n$)
using Suc.IH [of $1+m * 2]$ by (simp add: c_def midpoint_def)
ultimately show ?thesis
using Suc.IH [of $1+m * 2$] by force
qed
then show $a\left(\right.$ real $\left.j / 2{ }^{\text {^ Suc }} n\right)<b\left(\right.$ real $j / 2^{\wedge}$ Suc n) by force next
fix x
assume $a($ real j/2^Suc $n)<x x \leq b($ real j/2^Suc n) $f x=f$
(a (real j/2 ^ Suc n))
then show False
using $k m\langle 0<n\rangle a 43$ [of $n m$] b43 [of $n m$] fright right_neq
using alec $[$ of $2 * m+1 n]$ cleb $[$ of $2 * m+1 n] \quad a_{-} g e_{-} 0[o f ~ 2 * m+1 n]$
$b_{-} l e_{-} 1[o f 2 * m+1 n]$
by (auto simp: algebra_simps)
next
fix x
assume $a($ real j/2^Suc $n) \leq x x<b\left(\right.$ real $\left.j / 2^{\wedge} S u c n\right) f x=f$
(b (real j / 2 ^ Suc n))
then show False
using Suc.IH [of $1+m * 2$, THEN conjunct2, THEN conjunct2]
using $k m\langle 0<n\rangle a 43$ [of $n m$] b43 [of $n m$]
using alec $[$ of $2 * m+1 n]$ cleb [of $2 * m+1 n]$ a_ge_0 $[$ of $2 * m+1 n]$
$b_{-} l e_{-} 1[o f 2 * m+1 n]$
using left_right_m $\left[\right.$ of $c\left((2 * m+1) / 2^{\wedge} n\right) a\left((2 * m+1) / 2^{\wedge} n\right)$
$\left.b\left((2 * m+1) / 2^{\wedge} n\right)\right]$
by (auto simp: algebra_simps fright simp del: power_Suc)
qed
qed
qed
qed
qed
have $c_{-} g t_{-} 0[s i m p]: 0<c\left(m / 2^{\wedge} n\right)$ and $c_{-} l e s s_{-} 1[\operatorname{simp}]: c\left(m / 2^{\wedge} n\right)<1$ for $m:: n a t$ and n
using a_less_b $[$ of $m n]$ apply (simp_all add: c_{-}def midpoint_def)
using $a_{-} g e_{-} 0[$ of $m n] b _l e_{-} 1[o f m n]$ by linarith +
have approx: $\exists j$ n. odd $j \wedge n \neq 0 \wedge$

$$
\text { real } i / 2^{\wedge} m \leq \text { real } j / 2^{\wedge} n \wedge
$$

```
real j / 2^n s real k / 2^p^
|real i / 2` m - real j / 2 ` n < < 1/2^n ^
|real k / 2 ` p - real j / 2 ` n | < 1/2^n
    if 0<ii<2` m 0<kk<2^pi/2^m<k/2^pm+p=N for Nm
pik
    using that
    proof (induction N arbitrary: m pik rule: less_induct)
        case (less N)
```



```
1/2 1/2<i/ 2`m
        by linarith
    then show ?case
    proof cases
        case 1
        with less.prems show ?thesis
        by (rule_tac x=1 in exI)+(fastforce simp: field_split_simps)
    next
        case 2 show ?thesis
        proof (cases m)
            case 0 with less.prems show ?thesis
                by auto
        next
            case (Suc m') show ?thesis
            proof (cases p)
                case 0 with less.prems show ?thesis by auto
            next
                case (Suc p')
                have §: False if real i*2 ` p'<real k*2 ` m' k<2 ^ p'2 ` m'si
                proof -
                    have real k* 2 ` m'< 2 ` p'* 2 ` m'
                        using that by simp
                    then have real i* 2 ` p'< 2 ` p'* 2 ` m'
                            using that by linarith
                    with that show ?thesis by simp
                    qed
                moreover have *: real i / 2 ^ m
                    using less.prems <m=Suc m'> 2 Suc by (force simp: field_split_simps)+
                    moreover have i<2 ` m'
                    using §* by (clarsimp simp: divide_simps linorder_not_le) (meson
linorder_not_le)
                ultimately show ?thesis
                    using less.IH [of m'+p' i m'k p] less.prems <m=Suc m'>2 Suc
                    by (force simp: field_split_simps)
        qed
        qed
        next
            case 3 show ?thesis
            proof (cases m)
                case 0 with less.prems show ?thesis
```

```
        by auto
    next
    case (Suc \(m^{\prime}\) ) show ?thesis
    proof (cases p)
        case 0 with less.prems show ?thesis by auto
    next
            case (Suc \(p^{\prime}\) )
            have real \(\left(i-2^{\wedge} m^{\prime}\right) / 2^{\wedge} m^{\prime}<\operatorname{real}\left(k-2^{\wedge} p^{\prime}\right) / 2^{\wedge} p^{\prime}\)
                using less.prems \(\left\langle m=\right.\) Suc \(\left.m^{\prime}\right\rangle\) Suc 3 by (auto simp: field_simps
of_nat_diff)
            moreover have \(k-2^{\wedge} p^{\prime}<2^{\wedge} p^{\prime} i-2^{\wedge} m^{\prime}<2^{\wedge} m^{\prime}\)
            using less.prems Suc \(\left\langle m=\right.\) Suc \(m^{\prime}\) 〉 by auto
            moreover
            have 2 ^ \(p^{\prime} \leq k 2^{\wedge} p^{\prime} \neq k\)
                using less.prems \(\left\langle m=\right.\) Suc \(m^{\prime}\) 〉Suc 3 by auto
            then have 2 \(^{\text {^ }} p^{\prime}<k\)
                by linarith
                    ultimately show ?thesis
                using less.IH [of \(m^{\prime}+p^{\prime} i-2^{\wedge} m^{\prime} m^{\prime} k-2{ }^{\wedge} p^{\prime} p\) ] less.prems \(\langle m=\)
Suc m's Suc 3
                    apply (clarsimp simp: field_simps of_nat_diff)
                    apply (rule_tac \(x=2\) ^ \(n+j\) in exI, simp)
                    apply (rule_tac \(x=\) Suc \(n\) in exI)
                        apply (auto simp: field_simps)
                    done
            qed
        qed
        qed
    qed
    have clec: \(c\left(\right.\) real \(\left.i / 2^{\wedge} m\right) \leq c\left(\right.\) real \(j /\) 2^ \(\left.^{\wedge} n\right)\)
        if \(i: 0<i i<2^{\wedge} m\) and \(j: 0<j j<2{ }^{\wedge} n\) and \(i j: i / 2^{\wedge} m<j / 2^{\wedge} n\) for
\(m i n j\)
    proof -
        obtain \(j^{\prime} n^{\prime}\) where odd \(j^{\prime} n^{\prime} \neq 0\)
            and \(i_{-} l l_{-} j\) : real \(i / 2^{\wedge} m \leq\) real \(j^{\prime} / 2^{\wedge} n^{\prime}\)
            and j_le_j: real j' / 2 ^ \(n^{\prime} \leq\) real \(j / 2{ }^{\wedge} n\)
            and clo_ij: |real \(i / 2{ }^{\wedge} m-r e a l j^{\prime} / 2^{\wedge} n^{\prime} \mid<1 / 2^{\wedge} n^{\prime}\)
            and clo_jj: \(\mid\) real \(j / 2^{\wedge} n-r e a l j j^{\prime} / 2^{\wedge} n^{\prime} \mid<1 / 2^{\wedge} n^{\prime}\)
            using approx [of \(i m j n m+n\) ] that \(i j i j\) by auto
            with oddE obtain \(q\) where \(q: j^{\prime}=\) Suc \((2 * q)\) by fastforce
            have \(c\left(\right.\) real \(\left.i / 2^{\wedge} m\right) \leq c\left((2 * q+1) / \mathcal{Z}^{\wedge} n^{\prime}\right)\)
            proof \(\left(\right.\) cases \(i / 2^{\wedge} m=(2 * q+1) /\) 2 \(\left.^{\wedge} n^{\prime}\right)\)
            case True then show ?thesis by simp
            next
            case False
            with i_le_j clo_ij \(q\) have \(\mid\) real \(i / 2{ }^{\wedge} m-\operatorname{real}(4 * q+1) / 2^{\wedge} S u c n^{\prime} \mid<\)
\(1 / 2{ }^{\text {^ Suc } n^{\prime}}\)
            by (auto simp: field_split_simps)
            then have \(c\left(i / 2^{\wedge} m\right) \leq b\left(\operatorname{real}(4 * q+1) / 2^{\wedge}\left(\right.\right.\) Suc \(\left.\left.n^{\prime}\right)\right)\)
```

by（meson ci＿le＿bj even＿mult＿iff even＿numeral even＿plus＿one＿iff）
then show ？thesis
using alec［of $2 * q+1$ n〕 cleb［of $2 * q+1$ n $] a_{-} g e_{-} 0[o f 2 * q+1 n\rceil b_{-} l e _1$ $\left[\right.$ of $\left.2 * q+1 n^{\prime}\right] b 41\left[\right.$ of $\left.n^{\prime} q\right]\left\langle n^{\prime} \neq 0\right\rangle$
using left＿right＿m $\left[\right.$ of $c\left((2 * q+1) / 2^{\wedge} n^{\prime}\right) a\left((2 * q+1) / 2^{\wedge} n^{\prime}\right) b((2 * q+$ 1）／ $\left.\left.2^{\wedge} n^{\prime}\right)\right]$
by（auto simp：algebra＿simps）
qed
also have $\ldots \leq c\left(\right.$ real $j /$ 2 $\left.^{\wedge} n\right)$
proof（cases $j /$ 2＾n $^{\wedge}=(2 * q+1) /$ 2＾n $\left.^{\wedge}\right)$
case True
then show？？thesis by simp
next
case False
with $j_{-} l e_{-} j q$ have less：$(2 * q+1) /$ 2 $^{\wedge} n^{\prime}<j /$ 2 $^{\wedge} n$
by auto
have $*: \llbracket q<i ; a b s(i-q)<s * 2 ; r=q+s \rrbracket \Longrightarrow a b s(i-r)<s$ for $i q s$ $r:$ ：real
by auto
have \mid real j／2＾n $-\operatorname{real}(4 * q+3) / 2^{\wedge}$ Suc $n^{\prime} \mid<1 / 2{ }^{\text {＾Suc } n^{\prime}}$ by（rule＊［OF less］）（use j＿le＿j clo＿jj q in 〈auto simp：field＿split＿simps〉）
then have $a\left(\operatorname{real}(4 * q+3) / 2^{\wedge}(\right.$ Suc $\left.n ')\right) \leq c\left(j / 2{ }^{\wedge} n\right)$
by（metis Suc3＿eq＿add＿3 add．commute aj＿le＿ci even＿Suc even＿mult＿iff even＿numeral）
then show ？thesis
using alec［of $2 * q+1 n]$ cleb［of $2 * q+1 n] a_{-} g e_{-} 0[o f 2 * q+1 n] b_{-} l e_{-} 1$ ［of $\left.2 * q+1 n^{\prime}\right]$ a43 $\left[\right.$ of $\left.n^{\prime} q\right]\left\langle n^{\prime} \neq 0\right\rangle$
using left＿right＿m $\left[\right.$ of $c\left((2 * q+1) /\right.$ 2 $\left.^{\wedge} n\right) a\left((2 * q+1) / 2^{\wedge} n^{\prime}\right) b((2 * q+$ 1）／ $\left.\left.2^{\wedge} n^{\prime}\right)\right]$ by（auto simp：algebra＿simps）
qed
finally show？thesis ．
qed
have $x=y$ if $0 \leq x x \leq 10 \leq y y \leq 1 h x=h y$ for $x y$
using that
proof（induction x y rule：linorder＿class．linorder＿less＿wlog）
case（less x1 x2）
obtain $m n$ where $m: 0<m m<2{ }^{\wedge} n$
and x 12：$x 1<m / 2^{\wedge} n m /$ 2 $^{\wedge} n<x 2$
and neq：$h x 1 \neq h\left(\right.$ real $\left.m / 2^{\wedge} n\right)$
proof－
have $(x 1+x 2) / 2 \in$ closure D01
using cloD01 less．hyps less．prems by auto
with less obtain y where $y \in D 01$ and dist－y：dist $y((x 1+x 2) / 2)<$ $(x 2-x 1) / 64$
unfolding closure＿approachable
by（metis diff＿gt＿0＿iff＿gt less＿divide＿eq＿numeral1（1）mult＿zero＿left）
obtain $m n$ where $m: 0<m m<2$＾n
and clo： \mid real $m / 2^{\wedge} n-(x 1+x 2) / 2 \mid<(x 2-x 1) / 64$

```
                    and n: 1/2^n < (x2 - x1) / 128
    proof -
    have min 1 ((x2 - x1) / 128)>0 1/2< (1::real)
        using less by auto
    then obtain N where N: 1/2^N < min 1 ((x2 - x1) / 128)
        by (metis power_one_over real_arch_pow_inv)
    then have N>0
        using less_divide_eq_1 by force
    obtain pq where p:p<2 ^ q p}=0\mathrm{ and yeq: y = real p / 2 ` q
        using <y G D01> by (auto simp:zero_less_divide_iff D01_def)
    show ?thesis
    proof
        show 0< 2^N*p
            using p by auto
        show 2 ` N * p<2 ` ( N+q)
            by (simp add: p power_add)
        have |real (2` N*p)/ 2` (N+q)-(x1 + x2) / 2 | = |real p / 2`
q-(x1 + x2) / 2 |
            by (simp add: power_add)
        also have ... = |y-(x1 + x2) / 2 |
                by (simp add: yeq)
            also have ... < (x2 - x1) / 64
                using dist_y by (simp add: dist_norm)
                finally show |real (2 ` N*p)/ 2 ` (N+q) - (x1 + x2) / 2 | < (x2
-x1) / 64.
            have (1::real) / 2 ` (N+q) \leq 1/2^N
                by (simp add: field_simps)
            also have ... < (x2 - x1) / 128
                using }N\mathrm{ by force
            finally show 1/2 ^ (N+q)< (x2 - x1) / 128.
        qed
    qed
    obtain m' n' m" n' where 0 < m' m'<2 ^ n' x1< m' / 2^ n' m' / 2` n'
< x2
```



```
    and neq: h(real m" / 2^n') ) = h(real m' / 2^n')
    proof
    show 0<Suc (2*m)
            by simp
    show m21: Suc (2*m)<2` Suc n
            using m by auto
    show x1 < real (Suc (2 * m)) / 2 ` Suc n
        using clo by (simp add: field_simps abs_if split: if_split_asm)
    show real (Suc (2 * m)) / 2 ` Suc n < x2
            using n clo by (simp add: field_simps abs_if split: if_split_asm)
    show 0<4*m+3
            by simp
    have m+1\leq2 ^ n
            using m by simp
```

```
    then have 4*(m+1)\leq4*(2 ` n)
    by simp
    then show m43: 4*m+3<2^(n+2)
    by (simp add: algebra_simps)
    show x1<real (4*m+3)/ 2 ` (n + 2)
        using clo by (simp add: field_simps abs_if split: if_split_asm)
    show real (4*m+3)/2 ` ( n + 2) < x2
        using n clo by (simp add: field_simps abs_if split: if_split_asm)
    have c_fold: midpoint (a ((2 * real m + 1) / 2 ` Suc n)) (b ((2 * real m
+ 1)/2`Suc n))=c((2*real m + 1) / 2 ` Suc n)
    by (simp add: c_def)
    define R where R = rightcut (a ((2* real m+1)/2 ` Suc n)) (b ((2
* real m+1) / 2 ^ Suc n)) (c ((2* real m+1) / 2 ` Suc n))
    have R<b ((2 * real m+1)/ 2 ` Suc n)
        unfolding R_def using a_less_b [of 4*m + 3 n+2] a43 [of Suc n m]
b43 [of Suc n m]
            by simp
    then have Rless: R<midpoint R(b ((2 * real m + 1)/ 2` Suc n))
        by (simp add: midpoint_def)
    have midR_le: midpoint R (b ((2 * real m + 1) / 2 ` Suc n)) \leqb ((2*
real m+1)/(2*2 `n))
            using <R<b ((2 * real m+1) / 2 ` Suc n)>
            by (simp add: midpoint_def)
                            have (real (Suc (2*m))/2` Suc n) \inD01 real (4*m+3)/2 ^ (n
+ 2) \in D01
    by (simp_all add: D01_def m21 m43 del: power_Suc of_nat_Suc of_nat_add
add_2_eq_Suc') blast+
    then show h(real (4*m+3)/2 ^ (n+2)) \not=h(real (Suc (2*m))
/ 2` Suc n)
            using a_less_b [of 4*m + 3n+2,THEN conjunct1]
            using a43 [of Suc n m] b43 [of Suc n m]
            using alec [of 2*m+1 Suc n] cleb [of 2*m+1 Suc n] a_ge_0 [of 2*m+1
Suc n] b_le_1 [of 2*m+1 Suc n]
            apply (simp add: fc_eq [symmetric] c_def del: power_Suc)
            apply (simp only: add.commute [of 1] c_fold R_def [symmetric])
            apply (rule right_neq)
            using Rless apply (simp add: R_def)
                apply (rule midR_le, auto)
            done
            qed
            then show ?thesis by (metis that)
            qed
            have m_div: 0<m/2^^n m / 2^ n < 1
            using m by (auto simp: field_split_simps)
            have closure0m: {0..m / 2^n} = closure ({0<..< m/2^ n n \cap (Ukm.{real
m / 2 ` k ))
            by (subst closure_dyadic_rationals_in_convex_set_pos_1, simp_all add: not_le
m)
            have 2^ n > m
```

by (simp add: m (2) not_le)
then have closurem1: $\left\{m / 2^{\wedge} n . .1\right\}=$ closure $\left(\left\{m /\right.\right.$ 2 $\left.^{\wedge} n<. .<1\right\} \cap(\bigcup k$ m. $\left\{\right.$ real $\left.\left.m / 2^{\wedge} k\right\}\right)$)
using closure_dyadic_rationals_in_convex_set_pos_1 m_div(1) by fastforce
have cont_h': continuous_on (closure $(\{u<. .<v\} \cap(\bigcup k m .\{$ real m / 2 ^ $k\})$) h
if $0 \leq u v \leq 1$ for $u v$
using that by (intro continuous_on_subset [OF cont_h] closure_minimal [OF subsetI]) auto
have closed_f': closed $\left(f^{\prime}\{u . . v\}\right)$ if $0 \leq u v \leq 1$ for $u v$
by (metis compact_continuous_image cont_f compact_interval atLeastatMost_subset_iff
compact_imp_closed continuous_on_subset that)
have less_2I: $\wedge k i$. real $i / 2^{\wedge} k<1 \Longrightarrow i<2^{\wedge} k$
by simp
have h ' $\left(\left\{0<. .<m / \mathscr{Z}^{\wedge} n\right\} \cap\left(\bigcup q p .\left\{\right.\right.\right.$ real $p /$ 2 $\left.\left.\left.^{\wedge} q\right\}\right)\right) \subseteq f$ ' $\{0 . . c(m / 2$ ^ n) $\}$
proof clarsimp
fix $p q$
assume $p: 0<$ real $p /$ 2 $^{\wedge} q$ real $p / 2{ }^{\wedge} q<\operatorname{real} m /$ 2 $^{\wedge} n$
then have $[\operatorname{simp}]: 0<p$
by (simp add: field_split_simps)
have [simp]: $p<2$ ^ q
by (blast intro: p less_2I m_div less_trans)
have $f\left(c\left(\right.\right.$ real $\left.\left.p / 2^{\wedge} q\right)\right) \in f^{`}\left\{0 . . c\left(\right.\right.$ real $\left.\left.m / 2^{\wedge} n\right)\right\}$
by (auto simp: clec $p m$)
then show $h\left(\right.$ real $\left.p / 2^{\wedge} q\right) \in f^{\prime}\left\{0 . . c\left(\right.\right.$ real $\left.\left.m / 2^{\wedge} n\right)\right\}$
by (simp add: h_eq)
qed
with m_{-}div have h ' $\left\{0\right.$.. $\left.m / 2^{\wedge} n\right\} \subseteq f$ ' $\left\{0 . . c\left(m / \mathbb{2}^{\wedge} n\right)\right\}$
apply (subst closure0m)
by (rule image_closure_subset [OF cont_h' closed_f ']) auto
then have $h x 1: h x 1 \in f^{\prime}\left\{0\right.$.. $\left.c\left(m / 2^{\wedge} n\right)\right\}$
using $x 12$ less.prems(1) by auto
then obtain $t 1$ where $t 1: h x 1=f t 10 \leq t 1 t 1 \leq c\left(m / 2^{\wedge} n\right)$
by auto
have $h ‘\left(\left\{m / 2^{\wedge} n<. .<1\right\} \cap\left(\bigcup q p .\left\{\right.\right.\right.$ real $\left.\left.\left.p / 2^{\wedge} q\right\}\right)\right) \subseteq f$ ' $\left\{c\left(m / 2^{\wedge}\right.\right.$ $n) . .1\}$
proof clarsimp
fix $p q$
assume p : real $m / \mathcal{Z}^{\wedge} n<\operatorname{real} p / \mathcal{Z}^{\wedge} q$ and $[\operatorname{simp}]: p<\mathcal{Z}^{\wedge} q$
then have $[$ simp $]: 0<p$
using gr_zeroI m_div by fastforce
have $f\left(c\left(\operatorname{real} p / 2^{\wedge} q\right)\right) \in f^{\prime}\left\{c\left(m / 2^{\wedge} n\right) . .1\right\}$
by (auto simp: clec p m)
then show $h\left(\right.$ real $\left.p / 2^{\wedge} q\right) \in f^{\wedge}\left\{c\left(\right.\right.$ real $\left.\left.m / Z^{\wedge} n\right) . .1\right\}$
by (simp add: $h _e q$)
qed
with m have $h '\left\{m / 2^{\wedge} n . .1\right\} \subseteq f$ ' $\left\{c\left(m / 2^{\wedge} n\right) . .1\right\}$

```
            apply (subst closurem1)
            by (rule image_closure_subset [OF cont_h' closed_f ]) auto
            then have hx2: h x2 & f`{c(m/ 2^n)..1}
            using x12 less.prems by auto
            then obtain t2 where t2: h x2 = ft2 c (m/ 2 ^ n) \leq t2 t2 \leq 1
            by auto
            with t1 less neq have False
            using conn [of h x2, unfolded is_interval_connected_1 [symmetric] is_interval_1,
rule_format, of t1 t2 c(m/2^n)]
            by (simp add: h_eq m)
            then show ?case by blast
    qed auto
    then show ?thesis
        by (auto simp: inj_on_def)
    qed
    ultimately have {0..1::real} homeomorphic f'{0..1}
    using homeomorphic_compact [OF _ cont_h] by blast
    then show ?thesis
    using homeomorphic_sym by blast
qed
```

theorem path_contains_arc:
fixes $p::$ real $\Rightarrow{ }^{\prime} a::\{$ complete_space, real_normed_vector $\}$
assumes path p and a : pathstart $p=a$ and b : pathfinish $p=b$ and $a \neq b$
obtains q where arc q path_image $q \subseteq$ path_image p pathstart $q=a$ pathfinish
$q=b$
proof -
have ucont_p: uniformly_continuous_on $\{0 . .1\} p$
using $\langle p a t h ~ p 〉$ unfolding path_def
by (metis compact_Icc compact_uniformly_continuous)
define φ where $\varphi \equiv \lambda S . S \subseteq\{0 . .1\} \wedge 0 \in S \wedge 1 \in S \wedge$
$(\forall x \in S . \forall y \in S$. open_segment $x y \cap S=\{ \} \longrightarrow p x=p y)$
obtain T where closed $T \varphi T$ and $T: \wedge U . \llbracket$ closed $U ; \varphi U \rrbracket \Longrightarrow \neg(U \subset T)$
proof (rule Brouwer_reduction_theorem_gen $[o f\{0 . .1\} \varphi]$)
have $*:\{x<. .<y\} \cap\{0 . .1\}=\{x<. .<y\}$ if $0 \leq x y \leq 1 x \leq y$ for $x y::$ real
using that by auto
show $\varphi\{0 . .1\}$
by (auto simp: φ_{-}def open_segment_eq_real_ivl *)
show $\varphi\left(\bigcap\left(F^{\prime}\right.\right.$ UNIV $\left.)\right)$
if $\bigwedge n$. closed $(F n)$ and $\varphi: \bigwedge n . \varphi(F n)$ and $F s u b: \bigwedge n . F(S u c n) \subseteq F n$
for F
proof -
have $F 01: \wedge n . F n \subseteq\{0 . .1\} \wedge 0 \in F n \wedge 1 \in F n$
and peq: $\bigwedge n x y . \llbracket \bar{x} \in F n ; y \in F n ;$ open_segment $x y \cap F n=\{ \} \rrbracket \Longrightarrow p$
$x=p y$
by (metis $\left.\varphi \varphi_{-} d e f\right)+$
have $p q F$: False if $\forall u . x \in F u \forall x . y \in F x$ open_segment $x y \cap(\bigcap x . F x)$
$=\{ \}$ and neg: $p x \neq p y$

```
    for \(x y\)
    using that
    proof (induction x y rule: linorder_class.linorder_less_wlog)
    case (less \(x y\) )
    have \(x y: x \in\{0 . .1\} y \in\{0 . .1\}\)
            by (metis less.prems subsetCE F01)+
    have \(\operatorname{norm}(p x-p y) / 2>0\)
            using less by auto
    then obtain \(e\) where \(e>0\)
        and \(e: \bigwedge u v . \llbracket u \in\{0 . .1\} ; v \in\{0 . .1\} ;\) dist \(v u<e \rrbracket \Longrightarrow \operatorname{dist}(p v)(p u)\)
\(<\operatorname{norm}(p x-p y) / 2\)
            by (metis uniformly_continuous_onE [OF ucont_p])
    have minxy: min \(e(y-x)<(y-x) *(3 / 2)\)
            by (subst min_less_iff_disj) (simp add: less)
    define \(w\) where \(w \equiv x+(\min e(y-x) / 3)\)
    define \(z\) where \(z \equiv y-(\min e(y-x) / 3)\)
    have \(w<z\) and \(w: w \in\{x<. .<y\}\) and \(z: z \in\{x<. .<y\}\)
            and wxe: \(\operatorname{norm}(w-x)<e\) and zye: \(n o r m(z-y)<e\)
            using minxy \(\langle 0<e\rangle\) less unfolding \(w_{-}\)def \(z_{-}\)def by auto
    have Fclo: \(\bigwedge T . T \in\) range \(F \Longrightarrow\) closed \(T\)
            by (metis 〈 \(\backslash n\). closed ( \(F\) n) > image_iff)
    have \(e q:\{w . . z\} \cap \bigcap(F \cdot U N I V)=\{ \}\)
            using less \(w z\) by (simp add: open_segment_eq_real_ivl disjoint_iff)
            then obtain \(K\) where finite \(K\) and \(K:\{w . . z\} \cap\left(\cap\left(F^{\prime} K\right)\right)=\{ \}\)
            by (metis finite_subset_image compact_imp_fip [OF compact_interval Fclo])
    then have \(K \neq\{ \}\)
            using \(\langle w<z\rangle\left\langle\{w . . z\} \cap \bigcap\left(F^{\prime} K\right)=\{ \}\right\rangle\) by auto
    define \(n\) where \(n \equiv \operatorname{Max} K\)
    have \(n \in K\) unfolding \(n_{-}\)def by (metis \(\langle K \neq\{ \}\rangle\langle\) finite \(K\rangle\) Max_in)
    have \(F n \subseteq \bigcap\left(F^{\prime} K\right)\)
    unfolding \(n_{-}\)def by (metis Fsub Max_ge \(\langle K \neq\{ \}\rangle\langle\) finite \(K\rangle\) cINF_greatest
lift_Suc_antimono_le)
    with \(K\) have wzF_null: \(\{w . . z\} \cap F n=\{ \}\)
            by (metis disjoint_iff_not_equal subset_eq)
    obtain \(u\) where \(u: u \in F n u \in\{x . . w\}(\{u . . w\}-\{u\}) \cap F n=\{ \}\)
    proof (cases \(w \in F n\) )
            case True
            then show ?thesis
                    by (metis wzF_null \(\langle w<z\rangle\) atLeastAtMost_iff disjoint_iff_not_equal
less_eq_real_def)
    next
            case False
            obtain \(u\) where \(u \in F n u \in\{x . . w\}\{u<. .<w\} \cap F n=\{ \}\)
            proof (rule segment_to_point_exists [of \(F n \cap\{x . . w\} w]\) )
            show closed \((F \cap \cap\{x . . w\})\)
                    by (metis 〈 \(\backslash n\). closed ( \(F n\) ) > closed_Int closed_real_atLeastAtMost)
            show \(F n \cap\{x . . w\} \neq\{ \}\)
            by (metis atLeastAtMost_iff disjoint_iff_not_equal greaterThanLessThan_iff
less.prems(1) less_eq_real_def w)
```

```
    qed (auto simp: open_segment_eq_real_ivl intro!: that)
    with False show thesis
    by (auto simp add: disjoint_iff less_eq_real_def intro!: that)
    qed
    obtain \(v\) where \(v: v \in F n v \in\{z . . y\}(\{z . . v\}-\{v\}) \cap F n=\{ \}\)
    proof (cases \(z \in F n\) )
    case True
    have \(z \in\{w . . z\}\)
        using \(\langle w<z\rangle\) by auto
    then show? thesis
        by (metis wzF_null Int_iff True empty_iff)
    next
    case False
    show ?thesis
    proof (rule segment_to_point_exists [of \(F n \cap\{z . . y\} z])\)
            show closed ( \(F \cap \cap\{z . . y\}\) )
            by (metis 〈 \(\backslash n\). closed \((F n)\rangle\) closed_Int closed_atLeastAtMost)
            show \(F n \cap\{z . . y\} \neq\{ \}\)
    by (metis atLeastAtMost_iff disjoint_iff_not_equal greaterThanLessThan_iff
less.prems(2) less_eq_real_def z)
            show \(\wedge b . \llbracket b \in F n \cap\{z . . y\} ;\) open_segment \(z b \cap(F n \cap\{z . . y\})=\{ \} \rrbracket\)
\(\Longrightarrow\) thesis
            proof
            show \(\bigwedge b . \llbracket b \in F n \cap\{z . . y\} ;\) open_segment \(z b \cap(F n \cap\{z . . y\})=\{ \} \rrbracket\)
\(\Longrightarrow(\{z . . b\}-\{b\}) \cap F n=\{ \}\)
                using False by (auto simp: open_segment_eq_real_ivl less_eq_real_def)
            qed auto
        qed
    qed
    obtain \(u v\) where \(u \in\{0 . .1\} v \in\{0 . .1\} \operatorname{norm}(u-x)<e \operatorname{norm}(v-y)\)
\(<e p u=p v\)
    proof
        show \(u \in\{0 . .1\} v \in\{0 . .1\}\)
            by (metis F01 \(\langle u \in F n\rangle\langle v \in F n\rangle\) subsetD) +
            show \(\operatorname{norm}(u-x)<e \operatorname{norm}(v-y)<e\)
            using \(\langle u \in\{x . . w\}\rangle\langle v \in\{z . . y\}\rangle\) atLeastAtMost_iff real_norm_def wxe zye
by auto
    show \(p u=p v\)
    proof (rule peq)
            show \(u \in F n v \in F n\)
                by (auto simp: uv)
            have False if \(\xi \in F n u<\xi \xi<v\) for \(\xi\)
            proof -
                have \(\xi \notin\{z . . v\}\)
                by (metis DiffI disjoint_iff_not_equal less_irrefl singletonD that \((1,3)\)
\(v(3))\)
                moreover have \(\xi \notin\{w . . z\} \cap F n\)
                    by (metis equals0D wzF_null)
                ultimately have \(\xi \in\{u . . w\}\)
```

```
                    using that by auto
                    then show ?thesis
                            by (metis DiffI disjoint_iff_not_equal less_eq_real_def not_le singletonD
that(1,2) u(3))
            qed
            moreover
            have }\llbracket\xi\inFn;v<\xi;\xi<u\rrbracket\Longrightarrow\mathrm{ False for }
                using }\langleu\in{x..w}\rangle\langlev\in{z..y}\rangle\langlew<z\rangle\mathrm{ by simp
            ultimately
            show open_segment uv\capFn={}
                by (force simp: open_segment_eq_real_ivl)
            qed
        qed
        then show ?case
            using e [of x u] e [of yv] xy
            by (metis dist_norm dist_triangle_half_r order_less_irrefl)
    qed (auto simp: open_segment_commute)
    show ?thesis
                            unfolding \varphi_def by (metis (no_types, hide_lams) INT_I Inf_lower2 rangeI
that(3) F01 subsetCE pqF)
    qed
    show closed {0..1::real} by auto
    qed (meson \varphi_def)
    then have T\subseteq{0..1} 0\inT 1\inT
        and peq: \bigwedgex y.\llbracketx\inT;y\inT;open_segment x y \capT={}\rrbracket\Longrightarrowpx=py
        unfolding \varphi_def by metis+
    then have T}\not={}\mathrm{ by auto
    define }h\mathrm{ where }h\equiv\lambdax.p(SOME y. y\inT\wedge open_segment x y \capT={}
    have py=pz if y\inTz\inT and xyT: open_segment x y \capT={} and xzT:
open_segment xz \capT={}
    for x yz
    proof (cases x \inT)
    case True
    with that show ?thesis by (metis }\langle\varphiT\rangle\mp@subsup{\varphi}{-}{}def
    next
        case False
    have insert x (open_segment x y U open_segment x z) \capT={}
        by (metis False Int_Un_distrib2 Int_insert_left Un_empty_right xyT xzT)
        moreover have open_segment y z \capT\subseteq insert x (open_segment x y U
open_segment x z) \capT
        by (auto simp: open_segment_eq_real_ivl)
        ultimately have open_segment y z\capT={}
        by blast
    with that peq show ?thesis by metis
    qed
    then have h_eq_p_gen: hx=py if y\inT open_segment x y \capT={} for x y
        using that unfolding h_def
        by (metis (mono_tags, lifting) some_eq_ex)
    then have h_eq_p: \bigwedgex. x \inT\Longrightarrowhx=px
```

by simp
have disjoint：$\bigwedge x . \exists y . y \in T \wedge$ open＿segment $x y \cap T=\{ \}$
by（meson $\langle T \neq\{ \}\rangle\langle c l o s e d ~ T\rangle$ segment＿to＿point＿exists）
have heq：$h x=h x^{\prime}$ if open＿segment $x x^{\prime} \cap T=\{ \}$ for $x x^{\prime}$
proof（cases $x \in T \vee x^{\prime} \in T$ ）
case True
then show ？thesis

next
case False
obtain $y y^{\prime}$ where $y \in T$ open＿segment $x y \cap T=\{ \} h x=p y$
$y^{\prime} \in T$ open＿segment $x^{\prime} y^{\prime} \cap T=\{ \} h x^{\prime}=p y^{\prime}$
by（meson disjoint $\left.h_{-} e q_{-} p_{-} g e n\right)$
moreover have open＿segment $y y^{\prime} \subseteq\left(\right.$ insert x（insert x^{\prime}（open＿segment $x y \cup$
open＿segment $x^{\prime} y^{\prime} \cup$ open＿segment $\left.\left.x x^{\prime}\right)\right)$ ）
by（auto simp：open＿segment＿eq＿real＿ivl）
ultimately show ？thesis using False that by（fastforce simp add：h＿eq－p intro！：peq）
qed
have h＇$\{0 . .1\}$ homeomorphic $\{0 . .1::$ real $\}$
proof（rule homeomorphic＿monotone＿image＿interval）
show continuous＿on $\{0 . .1\} h$
proof（clarsimp simp add：continuous＿on＿iff）
fix u ع：：real
assume $0<\varepsilon 0 \leq u u \leq 1$
then obtain δ where $\delta>0$ and $\delta: \wedge v . v \in\{0 . .1\} \Longrightarrow$ dist $v u<\delta \longrightarrow$
dist $(p v)(p u)<\varepsilon / 2$
using ucont＿p［unfolded uniformly＿continuous＿on＿def］
by（metis atLeastAtMost＿iff half＿gt＿zero＿iff）
then have dist $(h v)(h u)<\varepsilon$ if $v \in\{0 . .1\}$ dist $v u<\delta$ for v
proof（cases open＿segment $u v \cap T=\{ \}$ ）
case True
then show ？thesis
using $\langle 0<\varepsilon$ 〉 heq by auto
next
case False
have uvT：closed（closed＿segment $u v \cap T$ ）closed＿segment $u v \cap T \neq\{ \}$
using False open＿closed＿segment by（auto simp：〈closed T〉 closed＿Int）
obtain w where $w \in T$ and $w: w \in$ closed＿segment $u v$ open＿segment $u w$
$\cap T=\{ \}$
proof（rule segment＿to＿point＿exists［OF uvT］）
fix b
assume $b \in$ closed＿segment $u v \cap T$ open＿segment $u b \cap$（closed＿segment $u v \cap T)=\{ \}$
then show thesis
by（metis IntD1 IntD2 ends＿in＿segment（1）inf．orderE inf＿assoc sub－ set＿oc＿segment that）
qed
then have puw：dist $\left(\begin{array}{l}p u)(p w)<\varepsilon / 2\end{array}\right.$
by (metis (no_types) $\langle T \subseteq\{0 . .1\}\rangle\langle$ dist $v u<\delta\rangle \delta$ dist_commute dist_in_closed_segment le_less_trans subsetCE)
obtain z where $z \in T$ and $z: z \in$ closed_segment u open_segment $v z \cap$ $T=\{ \}$
proof (rule segment_to_point_exists [OF uvT])
fix b
assume $b \in$ closed_segment $u v \cap T$ open_segment $v b \cap$ (closed_segment $u v \cap T)=\{ \}$
then show thesis
by (metis IntD1 IntD2 ends_in_segment(2) inf.orderE inf_assoc subset_oc_segment that)
qed
then have $\operatorname{dist}(p u)(p z)<\varepsilon / 2$
by (metis $\langle T \subseteq\{0 . .1\}\rangle$ dist $v u<\delta\rangle \delta$ dist_commute dist_in_closed_segment le_less_trans subsetCE)
then show ?thesis
using puw by (metis (no_types) $\langle w \in T\rangle\langle z \in T\rangle$ dist_commute dist_triangle_half_l h_eq_p_gen $w(2) z(2))$
qed
with $\langle 0<\delta\rangle$ show $\exists \delta>0 . \forall v \in\{0 . .1\}$. dist $v u<\delta \longrightarrow \operatorname{dist}(h v)(h u)<\varepsilon$
by blast
qed
show connected ($\{0 . .1\} \cap h-‘\{z\}$) for z
proof (clarsimp simp add: connected_iff_connected_component)
fix $u v$
assume huv_eq: $h v=h u$ and $u v: 0 \leq u u \leq 10 \leq v v \leq 1$
have $\exists T$. connected $T \wedge T \subseteq\{0 . .1\} \wedge T \subseteq h-‘\{h u\} \wedge u \in T \wedge v \in T$
proof (intro exI conjI)
show connected (closed_segment $u v$)
by simp
show closed_segment $u v \subseteq\{0 . .1\}$
by (simp add: uv closed_segment_eq_real_ivl)
have $p x y$: $p x=p y$
if $T \subseteq\{0 . .1\} 0 \in T 1 \in T x \in T y \in T$
and disjT: open_segment $x y \cap(T-$ open_segment $u v)=\{ \}$
and xynot: $x \notin$ open_segment $u v y \notin$ open_segment $u v$
for $x y$
proof (cases open_segment $x y \cap$ open_segment $u v=\{ \}$)
case True
then show ?thesis
by (metis Diff_Int_distrib Diff_empty peq disjT $\langle x \in T\rangle\langle y \in T\rangle)$
next
case False
then have open_segment $x u \cup$ open_segment $y v \subseteq$ open_segment $x y-$ open_segment $u v \vee$
open_segment $y u \cup$ open_segment $x \quad$ open_segment $x y-$ open_segment $u v$ (is ?xuyv \vee ?yuxv)
using xynot by (fastforce simp add: open_segment_eq_real_ivl not_le not_less split: if_split_asm)

```
    then show \(p x=p y\)
    proof
        assume ? \(x u y v\)
        then have open_segment \(x u \cap T=\{ \}\) open_segment \(y v \cap T=\{ \}\)
            using disjT by auto
            then have \(h x=h y\)
            using heq huv_eq by auto
        then show ?thesis
        using \(h_{-} e q \_p\langle x \in T\rangle\langle y \in T\rangle\) by auto
    next
        assume ?yuxv
        then have open_segment \(y u \cap T=\{ \}\) open_segment \(x v \cap T=\{ \}\)
        using disjT by auto
        then have \(h x=h y\)
        using heq [of \(y u\) ] heq [of \(x v\) ] huv_eq by auto
    then show ?thesis
        using \(h_{-} e q_{-} p\langle x \in T\rangle\langle y \in T\rangle\) by auto
    qed
qed
have \(\neg T\) - open_segment \(u v \subset T\)
proof (rule \(T\) )
    show closed ( \(T\) - open_segment \(u v\) )
    by (simp add: closed_Diff \([O F\langle c l o s e d ~ T\rangle]\) open_segment_eq_real_ivl)
    have \(0 \notin\) open_segment u v \(1 \notin\) open_segment \(u v\)
    using open_segment_eq_real_ivl uv by auto
    then show \(\varphi(T-\) open_segment \(u v)\)
    using \(\langle T \subseteq\{0 . .1\}\rangle\langle 0 \in T\rangle\langle 1 \in T\rangle\)
    by (auto simp: \(\varphi_{-}\)def) (meson peq pxy)
qed
then have open_segment \(u v \cap T=\{ \}\)
    by blast
then show closed_segment \(u v \subseteq h-‘\{h u\}\)
by (force intro: heq simp: open_segment_eq_real_ivl closed_segment_eq_real_ivl
split: if_split_asm)+
    qed auto
    then show connected_component \((\{0 . .1\} \cap h-'\{h u\}) u v\)
    by (simp add: connected_component_def)
    show \(h 1 \neq h 0\)
        by (metis \(\langle\varphi T\rangle \varphi_{-}\)def \(a\langle a \neq b\rangle b h_{-} e q_{-} p\) pathfinish_def pathstart_def)
    then obtain \(f\) and \(g::\) real \(\Rightarrow^{\prime} a\)
        where gfeq: \((\forall x \in h '\{0 . .1\} .(g(f x)=x))\) and fhim: \(f{ }^{\prime} h{ }^{\prime}\{0 . .1\}=\{0 . .1\}\)
and contf: continuous_on ( \(h\) ' \(\{0 . .1\}\) ) \(f\)
    and fgeq: \((\forall y \in\{0 . .1\} .(f(g y)=y))\) and pag: path_image \(g=h^{\prime}\{0 . .1\}\) and
contg: continuous_on \(\{0 . .1\} g\)
    by (auto simp: homeomorphic_def homeomorphism_def path_image_def)
    then have arc \(g\)
    by (metis arc_def path_def inj_on_def)
```

 qed
 qed
    ```
    obtain uv where }u\in{0..1}a=guv\in{0..1}b=g
            by (metis (mono_tags, hide_lams)\langle\varphi T\rangle \varphi_def a b fhim gfeq h_eq_p imageI
path_image_def pathfinish_def pathfinish_in_path_image pathstart_def pathstart_in_path_image)
    then have a\in path_image gb\in path_image g
            using path_image_def by blast+
    have ph: path_image h\subseteq path_image p
            by (metis image_mono image_subset_iff path_image_def disjoint h_eq_p_gen <T\subseteq
{0..1}>)
    show ?thesis
    proof
            show pathstart (subpath uvg) = a pathfinish (subpath uvg)=b
            by (simp_all add: <a =g u\rangle\langleb=gv\rangle)
            show path_image (subpath uvg)\subseteq path_image p
            by (metis }\langleu\in{0..1}\rangle\langlev\in{0..1}\rangle order_trans pag path_image_def path_image_subpath_subset
ph)
            show arc (subpath u vg)
            using \langlearc g\rangle\langlea=g u\rangle\langleb=gv\rangle\langleu\in{0..1}\rangle\langlev\in{0..1}\ranglearc_subpath_arc \langlea
Fb>}\mathrm{ by blast
    qed
qed
```

corollary path_connected_arcwise:
fixes $S::$ ' $a::\{$ complete_space,real_normed_vector $\}$ set
shows path_connected $S \longleftrightarrow$
$(\forall x \in S . \forall y \in S . x \neq y \longrightarrow(\exists g$. arc $g \wedge$ path_image $g \subseteq S \wedge$ pathstart g
$=x \wedge$ pathfinish $g=y)$)
(is ?lhs = ? $r h s$)
proof (intro iffI impI ballI)
fix $x y$
assume path_connected $S x \in S y \in S x \neq y$
then obtain p where p : path p path_image $p \subseteq S$ pathstart $p=x$ pathfinish p
$=y$
by (force simp: path_connected_def)
then show $\exists g$. arc $g \wedge$ path_image $g \subseteq S \wedge$ pathstart $g=x \wedge$ pathfinish $g=y$
by (metis $\langle x \neq y\rangle$ order_trans path_contains_arc)
next
assume R [rule_format]: ?rhs
show ?lhs
unfolding path_connected_def
proof (intro ballI)
fix $x y$
assume $x \in S y \in S$
show $\exists g$. path $g \wedge$ path_image $g \subseteq S \wedge$ pathstart $g=x \wedge$ pathfinish $g=y$
proof (cases $x=y$)
case True with $\langle x \in S\rangle$ path_component_def path_component_refl show ?thesis
by blast
next
case False with $R[O F\langle x \in S\rangle\langle y \in S\rangle]$ show ?thesis

```
            by (auto intro:arc_imp_path)
        qed
    qed
qed
```

corollary arc＿connected＿trans：
fixes g ：：real $\Rightarrow{ }^{\prime} a::\{$ complete＿space，real＿normed＿vector $\}$
assumes arc g arc h pathfinish $g=$ pathstart h pathstart $g \neq$ pathfinish h
obtains i where arc i path＿image $i \subseteq$ path＿image $g \cup$ path＿image h
pathstart $i=$ pathstart g pathfinish $i=$ pathfinish h
by（metis（no＿types，hide＿lams）arc＿imp＿path assms path＿contains＿arc path＿image＿join
path＿join pathfinish＿join pathstart＿join）

6．39．4 Accessibility of frontier points

lemma dense＿accessible＿frontier＿points：
fixes $S::$＇$a::\{$ complete＿space，＿real＿normed＿vector $\}$ set
assumes open S and opeSV：openin（top＿of＿set（frontier S ））V and $V \neq\{ \}$
obtains g where arc $g g^{\prime}\{0 . .<1\} \subseteq S$ pathstart $g \in S$ pathfinish $g \in V$
proof－
obtain z where $z \in V$
using $\langle V \neq\{ \}\rangle$ by auto
then obtain r where $r>0$ and r ：ball $z r \cap$ frontier $S \subseteq V$ by（metis openin＿contains＿ball opeSV）
then have $z \in$ frontier S
using $\langle z \in V\rangle$ opeSV openin＿contains＿ball by blast
then have $z \in$ closure $S z \notin S$
by（simp＿all add：frontier＿def assms interior＿open）
with $\langle r>0\rangle$ have infinite（ $S \cap$ ball $z r$ ）
by（auto simp：closure＿def islimpt＿eq＿infinite＿ball）
then obtain y where $y \in S$ and $y: y \in$ ball $z r$
using infinite＿imp＿nonempty by force
then have $y \notin$ frontier S
by（meson 〈open S 〉disjoint＿iff＿not＿equal frontier＿disjoint＿eq）
have $y \neq z$
using $\langle y \in S\rangle\langle z \notin S\rangle$ by blast
have path＿connected（ball $z r$ ）
by（simp add：convex＿imp＿path＿connected）
with $y\langle r\rangle 0\rangle$ obtain g where arc g and pig：path＿image $g \subseteq$ ball $z r$
and g ：pathstart $g=y$ pathfinish $g=z$
using $\langle y \neq z\rangle$ by（force simp：path＿connected＿arcwise）
have continuous＿on $\{0 . .1\} g$
using 〈arc g 〉 arc＿imp＿path path＿def by blast
then have compact（ $g-{ }^{\prime}$ frontier $S \cap\{0 . .1\}$ ）
by（simp add：bounded＿Int closed＿Diff closed＿vimage＿Int compact＿eq＿bounded＿closed）
moreover have $g-‘$ frontier $S \cap\{0 . .1\} \neq\{ \}$
proof－
have $\exists r . r \in g-'$ frontier $S \wedge r \in\{0 . .1\}$
by（metis $\langle z \in$ frontier $S\rangle g(2)$ imageE path＿image＿def pathfinish＿in＿path＿image vimageI2）
then show？？thesis
by blast
qed
ultimately obtain t where $g t: g t \in$ frontier S and $0 \leq t t \leq 1$
and $t: \bigwedge u . \llbracket g u \in$ frontier $S ; 0 \leq u ; u \leq 1 \rrbracket \Longrightarrow t \leq u$
by（force simp：dest！：compact＿attains＿inf）
moreover have $t \neq 0$
by（metis $\langle y \notin$ frontier $S\rangle g(1)$ gt pathstart＿def）
ultimately have $t 01: 0<t t \leq 1$
by auto
have $V \subseteq$ frontier S
using opeSV openin＿contains＿ball by blast
show ？thesis
proof
show arc（subpath $0 t g$ ）
by（simp add：$\langle 0 \leq t\rangle\langle t \leq 1\rangle\langle a r c g\rangle\langle t \neq 0\rangle$ arc＿subpath＿arc）
have $g 0 \in S$
by（metis $\langle y \in S\rangle g(1)$ pathstart＿def）
then show pathstart（subpath $0 t g$ ）$\in S$
by auto
have $g t \in V$
by（metis IntI atLeastAtMost＿iff gt image＿eqI path＿image＿def pig r subsetCE $\langle 0 \leq t\rangle\langle t \leq 1\rangle)$
then show pathfinish（subpath $0 \operatorname{tg}) \in V$
by auto
then have inj＿on（subpath $0 t g$ ）$\{0 . .1\}$
using $t 01$ 〈arc（subpath $0 t g$ ）〉arc＿imp＿inj＿on by blast
then have subpath $0 \operatorname{tg}{ }^{\prime}\{0 . .<1\} \subseteq$ subpath $0 \operatorname{tg}{ }^{\prime}\{0 . .1\}-\{$ subpath $0 t g$
1\}
by（force simp：dest：inj＿onD）
moreover have False if subpath $0 \operatorname{tg}(\{0 . .<1\})-S \neq\{ \}$
proof－
have contg：continuous＿on $\{0 . .1\} g$
using 〈arc g 〉 by（auto simp：arc＿def path＿def）
have subpath 0 t g＇$\{0 . .<1\} \cap$ frontier $S \neq\{ \}$
proof（rule connected＿Int＿frontier $\left[O F_{-}\right.$that $]$）
show connected（subpath $0 t g^{\prime}\{0 . .<1\}$ ）
proof（rule connected＿continuous＿image）
show continuous＿on $\{0 . .<1\}$（subpath $0 t g$ ）
by（meson 〈arc（subpath $0 t g$ ）〉arc＿def atLeastLessThan＿subseteq＿atLeastAtMost＿iff continuous＿on＿subset order＿refl path＿def）
qed auto
show subpath $0 \operatorname{tg}$＇$\{0 . .<1\} \cap S \neq\{ \}$
using $\langle y \in S\rangle g(1)$ by（force simp：subpath＿def image＿def pathstart＿def）
qed
then obtain x where $x \in$ subpath $0 \operatorname{tg}\{0 . .<1\} x \in$ frontier S
by blast

```
            with t01<0 \leqt\rangle mult_le_one t show False
            by (fastforce simp: subpath_def)
    qed
    then have subpath 0tg'{0..1} - {subpath 0tg 1}\subseteqS
            using subsetD by fastforce
    ultimately show subpath 0tg'{0..<1}\subseteqS
        by auto
    qed
qed
lemma dense＿accessible＿frontier＿points＿connected：
fixes \(S::{ }^{\prime} a::\{\) complete＿space，real＿normed＿vector \(\}\) set
assumes open \(S\) connected \(S x \in S V \neq\{ \}\)
and ope：openin（top＿of＿set（frontier \(S\) ））\(V\)
obtains \(g\) where arc \(g\) g＇\(\{0 . .<1\} \subseteq S\) pathstart \(g=x\) pathfinish \(g \in V\)
proof－
have \(V \subseteq\) frontier \(S\)
using ope openin＿imp＿subset by blast
with \(\langle\) open \(S\rangle\langle x \in S\rangle\) have \(x \notin V\)
using interior＿open by（auto simp：frontier＿def）
obtain \(g\) where arc \(g\) and \(g: g\)＇\(\{0 . .<1\} \subseteq S\) pathstart \(g \in S\) pathfinish \(g \in V\)
by（metis dense＿accessible＿frontier＿points \([\) OF＜open \(S\rangle\) ope \(\langle V \neq\{ \}\rangle]\) ）
then have path＿connected \(S\)
by（simp add：assms connected＿open＿path＿connected）
with＜pathstart \(g \in S\rangle\langle x \in S\rangle\) have path＿component \(S x\)（pathstart \(g\) ）
by（simp add：path＿connected＿component）
then obtain \(f\) where path \(f\) and \(f\) ：path＿image \(f \subseteq S\) pathstart \(f=x\) pathfinish
\(f=\) pathstart \(g\)
by（auto simp：path＿component＿def）
then have path \((f+++g)\)
by（simp add：〈arc g〉 arc＿imp＿path）
then obtain \(h\) where arc \(h\)
and \(h\) ：path＿image \(h \subseteq\) path＿image \((f+++g)\) pathstart \(h=x\)
pathfinish \(h=\) pathfinish \(g\)
using path＿contains＿arc \([\) of \(f+++g x\) pathfinish \(g]\langle x \notin V\rangle\langle\) pathfinish \(g \in V\rangle\)
\(f\)
by（metis pathfinish＿join pathstart＿join）
have path＿image \(h \subseteq\) path＿image \(f \cup\) path＿image \(g\)
using \(h(1)\) path＿image＿join＿subset by auto
then have \(h '\{0 . .1\}-\left\{\begin{array}{ll}h & 1\end{array}\right\} \subseteq S\)
using \(f g h\)
apply（simp add：path＿image＿def pathfinish＿def subset＿iff image＿def Bex＿def）
by（metis le＿less）
then have \(h\)＇\(\{0 . .<1\} \subseteq S\)
using 〈arc \(h\) 〉 by（force simp：arc＿def dest：inj＿onD）
then show thesis
using 〈arc \(h\rangle g(3) h\) that by presburger
qed
```

lemma dense_access_fp_aux:
fixes $S::{ }^{\prime} a::\{$ complete_space,_real_normed_vector $\}$ set
assumes S : open S connected S
and opeSU: openin (top_of_set (frontier S)) U
and opeSV: openin (top_of_set (frontier S)) V and $V \neq\{ \} \neg U \subseteq V$
obtains g where arc g pathstart $g \in U$ pathfinish $g \in V g '\{0<. .<1\} \subseteq S$
proof -
have $S \neq\{ \}$
using opeS $V\langle V \neq\{ \}\rangle$ by (metis frontier_empty openin_subtopology_empty)
then obtain x where $x \in S$ by auto
obtain g where arc g and $g: g '\{0 . .<1\} \subseteq S$ pathstart $g=x$ pathfinish $g \in V$
using dense_accessible_frontier_points_connected $[$ OF $S\langle x \in S\rangle\langle V \neq\{ \}\rangle$ opeSV]
by blast
obtain h where arc h and $h: h^{\prime}\{0 . .<1\} \subseteq S$ pathstart $h=x$ pathfinish $h \in U$

- \{pathfinish $g\}$
proof (rule dense_accessible_frontier_points_connected $[$ OF $S\langle x \in S\rangle]$)
show $U-\{$ pathfinish $g\} \neq\{ \}$
using \langle pathfinish $g \in V\rangle\langle\neg U \subseteq V\rangle$ by blast
show openin (top_of_set (frontier $S)$) ($U-\{$ pathfinish $g\}$)
by (simp add: opeSU openin_delete)
qed auto
obtain γ where arc γ
and γ : path_image $\gamma \subseteq$ path_image (reversepath $h+++g$) pathstart $\gamma=$ pathfinish h pathfinish $\gamma=$ pathfinish g
proof (rule path_contains_arc [of (reversepath $h+++g$) pathfinish h pathfinish
g])
show path (reversepath $h+++g$)
by (simp add: $\langle\operatorname{arc} g\rangle\langle a r c h\rangle\langle p a t h s t a r t ~ g=x\rangle\langle p a t h s t a r t h=x\rangle$ arc_imp_path)
show pathstart (reversepath $h+++g$) $=$ pathfinish h
pathfinish (reversepath $h+++g$) $=$ pathfinish g
by auto
show pathfinish $h \neq$ pathfinish g
using 〈pathfinish $h \in U-\{$ pathfinish $g\}$ 〉 by auto
qed auto
show ?thesis
proof
show arc γ pathstart $\gamma \in U$ pathfinish $\gamma \in V$
using $\gamma\langle$ arc $\gamma\rangle\langle$ pathfinish $h \in U-\{$ pathfinish $g\}\rangle\langle$ pathfinish $g \in V\rangle$ by auto
have path_image $\gamma \subseteq$ path_image $h \cup$ path_image g
by (metis $\gamma(1) g(2) h(2)$ path_image_join path_image_reversepath pathfinish_reversepath)
then have γ ' $\{0 . .1\}-\{\gamma 0, \gamma 1\} \subseteq S$
using $\gamma g h$
apply (simp add: path_image_def pathstart_def pathfinish_def subset_iff image_def Bex_def)
by (metis linorder_neqE_linordered_idom not_less)

```
    then show \gamma'{0<..<1}\subseteqS
        using <arc h>\langlearc \gamma>
        by (metis arc_imp_simple_path path_image_def pathfinish_def pathstart_def sim-
ple_path_endless)
    qed
qed
lemma dense_accessible_frontier_point_pairs:
    fixes S :: 'a::{complete_space,real_normed_vector} set
    assumes S: open S connected S
            and opeSU: openin (top_of_set (frontier S)) U
            and opeSV: openin (top_of_set (frontier S)) V
            and }U\not={}V\not={}U\not=
            obtains g where arc g pathstart g}\inU\mathrm{ pathfinish g G Vg'{0<..<1}}\subseteq
proof -
    consider }\negU\subseteqV|\negV\subseteq
            using \langleU}\not==V\rangle\mathrm{ by blast
    then show ?thesis
    proof cases
            case 1 then show ?thesis
            using assms dense_access_fp_aux [OF S opeSU opeSV] that by blast
    next
        case 2
        obtain g}\mathrm{ where arc g and g: pathstart g G V pathfinish g G Ug'{0<..<1}
\subseteq S
            using assms dense_access_fp_aux [OF S opeSV opeSU] 2 by blast
        show ?thesis
        proof
            show arc (reversepath g)
                by (simp add: <arc g> arc_reversepath)
            show pathstart (reversepath g) \inU pathfinish (reversepath g) \inV
                using g}\mathrm{ by auto
            show reversepath g' {0<..<1}\subseteqS
            using g}\mathrm{ by (auto simp: reversepath_def)
        qed
    qed
qed
end
```


6.40 Absolute Retracts, Absolute Neighbourhood Retracts and Euclidean Neighbourhood Retracts

theory Retracts
imports
Brouwer_Fixpoint
Continuous_Extension

begin

Absolute retracts (AR), absolute neighbourhood retracts (ANR) and also Euclidean neighbourhood retracts (ENR). We define AR and ANR by specializing the standard definitions for a set to embedding in spaces of higher dimension.

John Harrison writes: "This turns out to be sufficient (since any set in \mathbb{R}^{n} can be embedded as a closed subset of a convex subset of \mathbb{R}^{n+1}) to derive the usual definitions, but we need to split them into two implications because of the lack of type quantifiers. Then ENR turns out to be equivalent to ANR plus local compactness."
definition $A R$:: ' $a::$ topological_space set \Rightarrow bool where $A R S \equiv \forall U . \forall S^{\prime}::\left({ }^{\prime} a *\right.$ real $)$ set.
S homeomorphic $S^{\prime} \wedge$ closedin (top_of_set U) $S^{\prime} \longrightarrow S^{\prime}$ retract_of U

```
definition \(A N R\) :: 'a::topological_space set \(\Rightarrow\) bool where
ANR \(S \equiv \forall U . \forall S^{\prime}::\left({ }^{\prime} a *\right.\) real \()\) set.
    \(S\) homeomorphic \(S^{\prime} \wedge\) closedin (top_of_set \(U\) ) \(S^{\prime}\)
    \(\longrightarrow\left(\exists T\right.\). openin \(\left(t_{0} p_{-} f_{-} s e t U\right) T \wedge S^{\prime}\) retract_of \(\left.T\right)\)
definition ENR :: 'a::topological_space set \(\Rightarrow\) bool where
\(E N R S \equiv \exists U\). open \(U \wedge S\) retract_of \(U\)
```

First, show that we do indeed get the "usual" properties of ARs and ANRs.
lemma AR_imp_absolute_extensor:
fixes f :: 'a::euclidean_space \Rightarrow ' $b:$:euclidean_space
assumes $A R S$ and contf: continuous_on $T f$ and $f^{\prime} T \subseteq S$
and cloUT: closedin (top_of_set U) T
obtains g where continuous_on $U g g^{\prime} U \subseteq S \bigwedge x . x \in T \Longrightarrow g x=f x$
proof -
have aff_dim $S<\operatorname{int}(D I M(' b \times$ real $))$
using aff_dim_le_DIM [of S] by simp
then obtain C and $S^{\prime}::\left({ }^{\prime} b *\right.$ real $)$ set
where C : convex $C C \neq\{ \}$
and cloCS: closedin (top_of_set C) S^{\prime}
and hom: S homeomorphic S^{\prime}
by (metis that homeomorphic_closedin_convex)
then have S^{\prime} retract_of C
using $\langle A R S\rangle$ by (simp add: AR_def)
then obtain r where $S^{\prime} \subseteq C$ and contr: continuous_on $C r$
and $r^{'} C \subseteq S^{\prime}$ and rid: $\bigwedge x . x \in S^{\prime} \Longrightarrow r x=x$
by (auto simp: retraction_def retract_of_def)
obtain $g h$ where homeomorphism $S S^{\prime} g h$
using hom by (force simp: homeomorphic_def)
then have continuous_on $(f$ ' $T) g$
by (meson $\langle f$ ' $T \subseteq S\rangle$ continuous_on_subset homeomorphism_def)
then have contgf: continuous_on $T(g \circ f)$
by (metis continuous_on_compose contf)

```
have \(g f T C:(g \circ f){ }^{\prime} T \subseteq C\)
proof -
    have \(g\) ' \(S=S^{\prime}\)
        by (metis (no_types) 〈homeomorphism \(\left.S S^{\prime} g h\right\rangle\) homeomorphism_def)
    with \(\left\langle S^{\prime} \subseteq C\right\rangle\langle f\) ' \(T \subseteq S\rangle\) show ?thesis by force
qed
obtain \(f^{\prime}\) where \(f^{\prime}\) : continuous_on \(U f^{\prime} f^{\prime}\) ' \(U \subseteq C\)
                    \(\bigwedge x . x \in T \Longrightarrow f^{\prime} x=(g \circ f) x\)
    by (metis Dugundji [OF C cloUT contgf gfTC])
    show ?thesis
    proof (rule_tac \(g=h \circ r \circ f^{\prime}\) in that)
    show continuous_on \(U\left(h \circ r \circ f^{\prime}\right)\)
    proof (intro continuous_on_compose \(f^{\prime}\) )
        show continuous_on ( \(f^{\prime}\) ' \(U\) ) r
            using continuous_on_subset contr f' by blast
        show continuous_on ( \(r^{\prime} f^{\prime}\) ' \(U\) ) \(h\)
            using 〈homeomorphism \(\left.S S^{\prime} g h\right\rangle\left\langle f^{\prime}\right.\) ' \(\left.U \subseteq C\right\rangle\)
            unfolding homeomorphism_def
        by (metis \(\left\langle r\right.\) ' \(\left.C \subseteq S^{\prime}\right\rangle\) continuous_on_subset image_mono)
    qed
    show ( \(h \circ r \circ f^{\prime}\) )' \(U \subseteq S\)
        using 〈homeomorphism \(\left.S S^{\prime} g h\right\rangle\left\langle r r^{\prime} C \subseteq S^{\prime}\right\rangle\left\langle f^{\prime}\right.\) ' \(\left.U \subseteq C\right\rangle\)
        by (fastforce simp: homeomorphism_def)
    show \(\bigwedge x . x \in T \Longrightarrow\left(h \circ r \circ f^{\prime}\right) x=f x\)
        using 〈homeomorphism \(\left.S S^{\prime} g h\right\rangle\langle f ‘ T \subseteq S\rangle f^{\prime}\)
        by (auto simp: rid homeomorphism_def)
    qed
qed
lemma \(A R \_i m p \_a b s o l u t e \_r e t r a c t: ~\)
    fixes \(S\) :: 'a::euclidean_space set and \(S^{\prime}::\) ' \(b::\) euclidean_space set
    assumes \(A R S S\) homeomorphic \(S^{\prime}\)
        and clo: closedin (top_of_set U) \(S^{\prime}\)
        shows \(S^{\prime}\) retract_of \(U\)
proof -
    obtain \(g h\) where hom: homeomorphism \(S S^{\prime} g h\)
        using assms by (force simp: homeomorphic_def)
    obtain \(h\) : continuous_on \(S^{\prime} h h^{\prime} S^{\prime} \subseteq S\)
    using hom homeomorphism_def by blast
    obtain \(h^{\prime}\) where \(h^{\prime}\) : continuous_on \(U h^{\prime} h^{\prime}\) ' \(U \subseteq S\)
                and \(h^{\prime} h: \bigwedge x . x \in S^{\prime} \Longrightarrow h^{\prime} x=h x\)
    by (blast intro: AR_imp_absolute_extensor [OF〈AR S〉h clo])
    have \([\) simp \(]: S^{\prime} \subseteq U\) using clo closedin_limpt by blast
    show ?thesis
    proof (simp add: retraction_def retract_of_def, intro exI conjI)
    show continuous_on \(U\left(g \circ h^{\prime}\right)\)
        by (meson continuous_on_compose continuous_on_subset h' hom homeomor-
phism_cont1)
    show \(\left(g \circ h^{\prime}\right){ }^{\prime} U \subseteq S^{\prime}\)
```

using h^{\prime} by clarsimp (metis hom subsetD homeomorphism_def imageI)
show $\forall x \in S^{\prime} .\left(g \circ h^{\prime}\right) x=x$
by clarsimp (metis h'h hom homeomorphism_def)
qed
qed
lemma $A R_{-} i m p _a b s o l u t e _r e t r a c t _U N I V$:
fixes S :: ' $a::$ euclidean_space set and S^{\prime} :: 'b::euclidean_space set
assumes $A R S$ homeomorphic S^{\prime} closed S^{\prime}
shows S^{\prime} retract_of UNIV
using AR_imp_absolute_retract assms by fastforce
lemma absolute_extensor_imp_AR:
fixes S :: 'a::euclidean_space set
assumes $\bigwedge f::{ }^{\prime} a *$ real $\Rightarrow{ }^{\prime} a$.
$\bigwedge U T$. \llbracket continuous_on $T f ; f^{\prime} T \subseteq S$;
closedin (top_of_set U) T】 $\Longrightarrow \exists g$. continuous_on $U g \wedge g^{\prime} U \subseteq S \wedge(\forall x \in T . g x=f x)$
shows $A R S$
proof (clarsimp simp: AR_def)
fix U and $T::\left({ }^{\prime} a *\right.$ real $)$ set
assume S homeomorphic T and clo: closedin (top_of_set U) T
then obtain $g h$ where hom: homeomorphism $S T g h$
by (force simp: homeomorphic_def)
obtain h : continuous_on $T h h^{‘} T \subseteq S$
using hom homeomorphism_def by blast
obtain h^{\prime} where h^{\prime} : continuous_on $U h^{\prime} h^{\prime}$ ' $U \subseteq S$
and $h^{\prime} h: \forall x \in T . h^{\prime} x=h x$
using assms [OF h clo] by blast
have $[$ simp $]: T \subseteq U$
using clo closedin_imp_subset by auto
show T retract_of U
proof (simp add: retraction_def retract_of_def, intro exI conjI)
show continuous_on $U\left(g \circ h^{\prime}\right)$
by (meson continuous_on_compose continuous_on_subset h^{\prime} hom homeomor-
phism_cont1)
show $\left(g \circ h^{\prime}\right){ }^{\prime} U \subseteq T$
using h^{\prime} by clarsimp (metis hom subsetD homeomorphism_def imageI)
show $\forall x \in T$. $\left(g \circ h^{\prime}\right) x=x$
by clarsimp (metis h'h hom homeomorphism_def)
qed
qed
lemma $A R_{\text {_ eq_absolute_extensor: }}$
fixes S :: 'a::euclidean_space set
shows $A R S \longleftrightarrow$
($\forall f::^{\prime} a *$ real $\Rightarrow{ }^{\prime} a$.
$\forall U T$. continuous_on $T f \longrightarrow f^{\prime} T \subseteq S \longrightarrow$
closedin (top_of_set U) $T \longrightarrow$

```
    (\existsg. continuous_on }Ug\wedgeg'U\subseteqS\wedge(\forallx\inT.gx=fx))
    by (metis (mono_tags, hide_lams) AR_imp_absolute_extensor absolute_extensor_imp_AR)
lemma AR_imp_retract:
    fixes S :: 'a::euclidean_space set
    assumes AR S^ closedin (top_of_set U)S
        shows S retract_of U
using AR_imp_absolute_retract assms homeomorphic_refl by blast
lemma AR_homeomorphic_AR:
    fixes S :: 'a::euclidean_space set and T :: 'b::euclidean_space set
    assumes AR T S homeomorphic T
        shows AR S
unfolding AR_def
by (metis assms AR_imp_absolute_retract homeomorphic_trans [of _ S] homeomor-
phic_sym)
lemma homeomorphic_AR_iff_AR:
    fixes S :: 'a::euclidean_space set and T :: 'b::euclidean_space set
    shows S homeomorphic T\LongrightarrowARS\longleftrightarrowAR T
by (metis AR_homeomorphic_AR homeomorphic_sym)
```

lemma ANR_imp_absolute_neighbourhood_extensor:
fixes f :: 'a::euclidean_space \Rightarrow 'b::euclidean_space
assumes $A N R S$ and contf: continuous_on $T f$ and $f^{\prime} T \subseteq S$
and cloUT: closedin (top_of_set U) T
obtains $V g$ where $T \subseteq V$ openin (top_of_set U) V
continuous_on V g
$g^{\prime} V \subseteq S \bigwedge x . x \in T \Longrightarrow g x=f x$
proof -
have aff_dim $S<\operatorname{int}(D I M(' b \times$ real $))$
using aff_dim_le_DIM [of S] by simp
then obtain C and $S^{\prime}::(' b *$ real $)$ set
where C : convex $C C \neq\{ \}$
and cloCS: closedin (top_of_set C) S^{\prime}
and hom: S homeomorphic S^{\prime}
by (metis that homeomorphic_closedin_convex)
then obtain D where op D : openin (top_of_set C) D and S^{\prime} retract_of D
using $\langle A N R S\rangle$ by (auto simp: ANR_def)
then obtain r where $S^{\prime} \subseteq D$ and contr: continuous_on $D r$
and $r{ }^{\prime} D \subseteq S^{\prime}$ and rid: $\bigwedge x . x \in S^{\prime} \Longrightarrow r x=x$
by (auto simp: retraction_def retract_of_def)
obtain $g h$ where homgh: homeomorphism $S S^{\prime} g h$
using hom by (force simp: homeomorphic_def)
have continuous_on $\left(f^{\prime} T\right) g$
by (meson $\langle f$ ' $T \subseteq S\rangle$ continuous_on_subset homeomorphism_def homgh)
then have contgf: continuous_on $T(g \circ f)$
by (intro continuous_on_compose contf)

```
    have \(g f T C:(g \circ f)\) ' \(T \subseteq C\)
    proof -
    have \(g ' S=S^{\prime}\)
        by (metis (no_types) homeomorphism_def homgh)
    then show ?thesis
        by (metis (no_types) assms(3) cloCS closedin_def image_comp image_mono
order.trans topspace_euclidean_subtopology)
    qed
    obtain \(f^{\prime}\) where contf \({ }^{\prime}\) : continuous_on \(U f^{\prime}\)
                and \(f^{\prime \prime} U \subseteq C\)
                    and \(e q: \bigwedge x . x \in T \Longrightarrow f^{\prime} x=(g \circ f) x\)
    by (metis Dugundji [OF C cloUT contgf gfTC])
    show ?thesis
    proof (rule_tac \(V=U \cap f^{\prime}-‘ D\) and \(g=h \circ r \circ f^{\prime}\) in that)
    show \(T \subseteq U \cap f^{\prime}-{ }^{\prime} D\)
        using cloUT closedin_imp_subset \(\left\langle S^{\prime} \subseteq D\right\rangle\langle f\) ' \(T \subseteq S\rangle\) eq homeomor-
phism_image1 homgh
            by fastforce
        show ope: openin (top_of_set \(U\) ) \(\left(U \cap f^{\prime}-‘ D\right)\)
            using \(\left\langle f^{\prime}\right.\) ' \(\left.U \subseteq C\right\rangle\) by (auto simp: opD contf' continuous_openin_preimage)
            have conth: continuous_on \(\left(r \times f^{\prime}\right.\) ' \(\left.\left(U \cap f^{\prime}-‘ D\right)\right) h\)
            proof (rule continuous_on_subset [of \(S\) '])
            show continuous_on \(S^{\prime} h\)
            using homeomorphism_def homgh by blast
    qed (use \(\left\langle r\right.\) ' \(D \subseteq S^{\prime}\) ’ in blast)
    show continuous_on \(\left(U \cap f^{\prime}-‘ D\right)\left(h \circ r \circ f^{\prime}\right)\)
            by (blast intro: continuous_on_compose conth continuous_on_subset [OF contr]
continuous_on_subset [OF contf 〕])
    show \(\left(h \circ r \circ f^{\prime}\right) \cdot\left(U \cap f^{\prime}-' D\right) \subseteq S\)
            using 〈homeomorphism \(\left.S S^{\prime} g h\right\rangle\left\langle f^{\prime} ' U \subseteq C\right\rangle\left\langle r r^{\prime} D \subseteq S^{\prime}\right\rangle\)
            by (auto simp: homeomorphism_def)
    show \(\bigwedge x . x \in T \Longrightarrow\left(h \circ r \circ f^{\prime}\right) x=f x\)
            using 〈homeomorphism \(\left.S S^{\prime} g h\right\rangle\langle f\) ' \(T \subseteq S\rangle e q\)
            by (auto simp: rid homeomorphism_def)
    qed
qed
```

corollary ANR＿imp＿absolute＿neighbourhood＿retract：
fixes S ：：＇a：：euclidean＿space set and $S^{\prime}::{ }^{\prime} b::$ euclidean＿space set
assumes $A N R S S$ homeomorphic S^{\prime}
and clo：closedin（top＿of＿set U ）S^{\prime}
obtains V where openin（top＿of＿set U ）V S^{\prime} retract＿of V
proof－
obtain $g h$ where hom：homeomorphism $S S^{\prime} g h$
using assms by（force simp：homeomorphic＿def）
obtain h ：continuous＿on $S^{\prime} h h^{\prime} S^{\prime} \subseteq S$
using hom homeomorphism＿def by blast
from ANR＿imp＿absolute＿neighbourhood＿extensor $[O F\langle A N R S\rangle h c l o]$

```
    obtain \(V h^{\prime}\) where \(S^{\prime} \subseteq V\) and op \(U V\) : openin (top_of_set \(U\) ) \(V\)
                        and \(h^{\prime}\) : continuous_on \(V h^{\prime} h^{\prime}\) ' \(V \subseteq S\)
                        and \(h^{\prime} h: \wedge x . x \in S^{\prime} \Longrightarrow h^{\prime} x=h x\)
    by (blast intro: ANR_imp_absolute_neighbourhood_extensor [OF 〈ANR S〉h clo])
    have \(S^{\prime}\) retract_of \(V\)
    proof (simp add: retraction_def retract_of_def, intro exI conjI \(\left\langle S^{\prime} \subseteq V\right\rangle\) )
    show continuous_on \(V\left(g \circ h^{\prime}\right)\)
        by (meson continuous_on_compose continuous_on_subset \(h^{\prime}(1) h^{\prime}(2)\) hom
homeomorphism_cont1)
    show \(\left(g \circ h^{\prime}\right) \cdot V \subseteq S^{\prime}\)
        using \(h^{\prime}\) by clarsimp (metis hom subsetD homeomorphism_def imageI)
    show \(\forall x \in S^{\prime} .\left(g \circ h^{\prime}\right) x=x\)
        by clarsimp (metis \(h\) ' \(h\) hom homeomorphism_def)
    qed
    then show ?thesis
    by (rule that \([O F\) op \(U V]\) )
qed
corollary ANR_imp_absolute_neighbourhood_retract_UNIV:
    fixes \(S\) :: ' \(a::\) euclidean_space set and \(S^{\prime}::\) ' \(b::\) euclidean_space set
    assumes \(A N R S\) and hom: \(S\) homeomorphic \(S^{\prime}\) and clo: closed \(S^{\prime}\)
    obtains \(V\) where open \(V S^{\prime}\) retract_of \(V\)
    using ANR_imp_absolute_neighbourhood_retract [OF \(\langle A N R S\rangle\) hom \(]\)
by (metis clo closed_closedin open_openin subtopology_UNIV)
corollary neighbourhood_extension_into_ANR:
    fixes \(f\) :: 'a::euclidean_space \(\Rightarrow\) ' \(b::\) euclidean_space
    assumes contf: continuous_on \(S f\) and fim: \(f\) ' \(S \subseteq T\) and \(A N R T\) closed \(S\)
    obtains \(V g\) where \(S \subseteq V\) open \(V\) continuous_on \(V g\)
                \(g^{\prime} V \subseteq T \bigwedge x . x \in S \Longrightarrow g x=f x\)
    using ANR_imp_absolute_neighbourhood_extensor [OF \(\langle A N R ~ T\rangle\) contf fim]
    by (metis 〈closed \(S\rangle\) closed_closedin open_openin subtopology_UNIV)
lemma absolute_neighbourhood_extensor_imp_ANR:
    fixes \(S\) :: 'a::euclidean_space set
    assumes \(\bigwedge f::{ }^{\prime} a *\) real \(\Rightarrow{ }^{\prime} a\).
        \(\bigwedge U T . \llbracket\) continuous_on \(T f ; f^{‘} T \subseteq S\);
            closedin (top_of_set U) T】
            \(\Longrightarrow \exists V g . T \subseteq V \wedge\) openin (top_of_set \(U) V \wedge\)
                        continuous_on \(V g \wedge g^{\prime} V \subseteq S \wedge(\forall x \in T . g x=f x)\)
    shows \(A N R S\)
proof (clarsimp simp:ANR_def)
    fix \(U\) and \(T::\left({ }^{\prime} a *\right.\) real \()\) set
    assume \(S\) homeomorphic \(T\) and clo: closedin (top_of_set \(U\) ) \(T\)
    then obtain \(g h\) where hom: homeomorphism \(S T g h\)
        by (force simp: homeomorphic_def)
    obtain \(h\) : continuous_on \(T h h h^{`} T \subseteq S\)
        using hom homeomorphism_def by blast
    obtain \(V h^{\prime}\) where \(T \subseteq V\) and op \(V\) : openin (top_of_set \(U\) ) \(V\)
```

$$
\text { and } h^{\prime}: \text { continuous_on } V h^{\prime} h^{\prime} \text { ' } V \subseteq S
$$

and $h^{\prime} h: \forall x \in T . h^{\prime} x=h x$
using assms [OF h clo] by blast
have $[$ simp $]: T \subseteq U$
using clo closedin_imp_subset by auto
have T retract_of V
proof (simp add: retraction_def retract_of_def, intro exI conjI $\langle T \subseteq V\rangle$)
show continuous_on $V\left(g \circ h^{\prime}\right)$
by (meson continuous_on_compose continuous_on_subset h' hom homeomorphism_cont1)
show $\left(g \circ h^{\prime}\right)$ ' $V \subseteq T$
using h^{\prime} by clarsimp (metis hom subsetD homeomorphism_def imageI)
show $\forall x \in T$. $\left(g \circ h^{\prime}\right) x=x$
by clarsimp (metis h'h hom homeomorphism_def)
qed
then show $\exists V$. openin (top_of_set U) $V \wedge T$ retract_of V
using op V by blast
qed
lemma ANR_eq_absolute_neighbourhood_extensor:
fixes S :: 'a::euclidean_space set
shows $A N R S \longleftrightarrow$
$\left(\forall f:: ' a *\right.$ real $\Rightarrow{ }^{\prime} a$.
$\forall U T$. continuous_on $T f \longrightarrow f^{\prime} T \subseteq S \longrightarrow$ closedin (top_of_set U) $T \longrightarrow$ $(\exists V$ g. $T \subseteq V \wedge$ openin (top_of_set $U) V \wedge$
continuous_on $\left.V g \wedge g^{\prime} V \subseteq S \wedge(\forall x \in T . g x=f x)\right)$) (is -
$=$? $r h s)$
proof
assume $A N R S$ then show ?rhs
by (metis ANR_imp_absolute_neighbourhood_extensor)
qed (simp add: absolute_neighbourhood_extensor_imp_ANR)
lemma $A N R$ _imp_neighbourhood_retract:
fixes S :: 'a::euclidean_space set
assumes $A N R S$ closedin (top_of_set U) S
obtains V where openin (top_of_set U) V S retract_of V
using ANR_imp_absolute_neighbourhood_retract assms homeomorphic_refl by blast
lemma ANR_imp_absolute_closed_neighbourhood_retract:
fixes S :: ' $a::$ euclidean_space set and $S^{\prime}::$ ' $b::$ euclidean_space set
assumes $A N R S S$ homeomorphic S^{\prime} and $U S^{\prime}$: closedin (top_of_set U) S^{\prime}
obtains $V W$
where openin (top_of_set U) V
closedin (top_of_set U) W
$S^{\prime} \subseteq V V \subseteq W S^{\prime}$ retract_of W
proof -
obtain Z where openin (top_of_set U) Z and $S^{\prime} Z: S^{\prime}$ retract_of Z
by (blast intro: assms ANR_imp_absolute_neighbourhood_retract)

```
then have \(U U Z\) : closedin (top_of_set \(U)(U-Z)\)
    by auto
have \(S^{\prime} \cap(U-Z)=\{ \}\)
    using \(\left\langle S^{\prime}\right.\) retract_of \(\left.Z\right\rangle\) closedin_retract closedin_subtopology by fastforce
then obtain \(V W\)
        where openin (top_of_set \(U\) ) \(V\)
            and openin (top_of_set \(U\) ) \(W\)
            and \(S^{\prime} \subseteq V U-Z \subseteq W V \cap W=\{ \}\)
        using separation_normal_local [OF US' UUZ] by auto
    moreover have \(S^{\prime}\) retract_of \(U-W\)
    proof (rule retract_of_subset [OF \(\left.S^{\prime} Z\right]\) )
        show \(S^{\prime} \subseteq U-W\)
        using \(U S^{\prime}\left\langle S^{\prime} \subseteq V\right\rangle\langle V \cap W=\{ \}\rangle\) closedin_subset by fastforce
    show \(U-W \subseteq Z\)
        using Diff_subset_conv \(\langle U-Z \subseteq W\rangle\) by blast
    qed
    ultimately show ?thesis
    by (metis Diff_subset_conv Diff_triv Int_Diff_Un Int_absorb1 openin_closedin_eq
that topspace_euclidean_subtopology)
qed
lemma ANR_imp_closed_neighbourhood_retract:
    fixes \(S\) :: 'a::euclidean_space set
    assumes \(A N R S\) closedin (top_of_set \(U\) ) \(S\)
    obtains \(V W\) where openin (top_of_set \(U\) ) \(V\)
                    closedin (top_of_set U) W
                        \(S \subseteq V V \subseteq W S\) retract_of \(W\)
by (meson ANR_imp_absolute_closed_neighbourhood_retract assms homeomorphic_refl)
lemma ANR_homeomorphic_ANR:
    fixes \(S\) :: 'a::euclidean_space set and \(T\) :: 'b::euclidean_space set
    assumes \(A N R T S\) homeomorphic \(T\)
        shows \(A N R S\)
unfolding \(A N R_{-}\)def
by (metis assms ANR_imp_absolute_neighbourhood_retract homeomorphic_trans [of
- S] homeomorphic_sym)
lemma homeomorphic_ANR_iff_ANR:
fixes \(S\) :: 'a::euclidean_space set and \(T::\) ' \(b::\) euclidean_space set
    shows \(S\) homeomorphic \(T \Longrightarrow A N R S \longleftrightarrow A N R T\)
by (metis ANR_homeomorphic_ANR homeomorphic_sym)
```


6.40.1 Analogous properties of ENRs

```
lemma ENR_imp_absolute_neighbourhood_retract:
fixes \(S\) :: 'a::euclidean_space set and \(S^{\prime}\) :: 'b::euclidean_space set
assumes ENR \(S\) and hom: \(S\) homeomorphic \(S^{\prime}\)
and \(S^{\prime} \subseteq U\)
obtains \(V\) where openin (top_of_set \(U\) ) \(V S^{\prime}\) retract_of \(V\)
```

```
proof -
    obtain \(X\) where open \(X\) retract_of \(X\)
        using 〈ENR \(S\) 〉 by (auto simp: ENR_def)
    then obtain \(r\) where retraction \(X S r\)
        by (auto simp: retract_of_def)
    have locally compact \(S^{\prime}\)
        using retract_of_locally_compact open_imp_locally_compact
            homeomorphic_local_compactness \(\langle S\) retract_of \(X\rangle\langle o p e n ~ X\rangle\) hom by blast
    then obtain \(W\) where \(U W\) : openin (top_of_set \(U\) ) W
                        and \(W S^{\prime}\) : closedin (top_of_set W) \(S^{\prime}\)
        apply (rule locally_compact_closedin_open)
    by (meson Int_lower2 assms (3) closedin_imp_subset closedin_subset_trans le_inf_iff
openin_open)
    obtain \(f g\) where hom: homeomorphism \(S S^{\prime} f g\)
        using assms by (force simp: homeomorphic_def)
    have contg: continuous_on \(S^{\prime} g\)
        using hom homeomorphism_def by blast
    moreover have \(g\) ' \(S^{\prime} \subseteq S\) by (metis hom equalityE homeomorphism_def)
    ultimately obtain \(h\) where conth: continuous_on \(W h\) and \(h g: \bigwedge x . x \in S^{\prime} \Longrightarrow\)
\(h x=g x\)
            using Tietze_unbounded [of \(\left.S^{\prime} g W\right] W S^{\prime}\) by blast
    have \(W \subseteq U\) using \(U W\) openin_open by auto
    have \(S^{\prime} \subseteq W\) using \(W S^{\prime}\) closedin_closed by auto
    have him: \(\bigwedge x . x \in S^{\prime} \Longrightarrow h x \in X\)
        by (metis (no_types) 〈S retract_of \(X\) 〉 hg hom homeomorphism_def image_insert
insert_absorb insert_iff retract_of_imp_subset subset_eq)
    have \(S^{\prime}\) retract_of ( \(W \cap h-{ }^{\prime} X\) )
    proof (simp add: retraction_def retract_of_def, intro exI conjI)
        show \(S^{\prime} \subseteq W S^{\prime} \subseteq h-{ }^{\prime} X\)
            using him \(W S^{\prime}\) closedin_imp_subset by blast+
            show continuous_on \(\left(W \cap h-{ }^{\prime} X\right)(f \circ r \circ h)\)
            proof (intro continuous_on_compose)
            show continuous_on \(\left(W \cap h-{ }^{\prime} X\right) h\)
                    by (meson conth continuous_on_subset inf_le1)
            show continuous_on ( \(h\) ' \((W \cap h-' X)\) ) r
            proof -
                have \(h\) ' \(\left(W \cap h-{ }^{\prime} X\right) \subseteq X\)
                    by blast
                    then show continuous_on \(\left(h\right.\) ' \(\left.\left(W \cap h-{ }^{\prime} X\right)\right) r\)
                    by (meson〈retraction \(X S\) r〉continuous_on_subset retraction)
            qed
            show continuous_on ( \(r\) ' \(h\) ' \((W \cap h-‘ X)) f\)
            proof (rule continuous_on_subset [of \(S]\) )
                show continuous_on \(S f\)
                    using hom homeomorphism_def by blast
            show \(r\) ' \(h\) ' \((W \cap h-' X) \subseteq S\)
                    by (metis 〈retraction X S r〉image_mono image_subset_iff_subset_vimage
inf_le2 retraction)
            qed
```

```
    qed
    show (f\circr\circh)'(W\caph-'X)\subseteq\mp@subsup{S}{}{\prime}
        using <retraction X S r` hom
        by (auto simp: retraction_def homeomorphism_def)
    show }\forallx\in\mp@subsup{S}{}{\prime}.(f\circr\circh)x=
    using 〈retraction X S r` hom by (auto simp: retraction_def homeomorphism_def
hg)
    qed
    then show ?thesis
        using UW <open X` conth continuous_openin_preimage_eq openin_trans that by
    blast
qed
corollary ENR_imp_absolute_neighbourhood_retract_UNIV:
    fixes S :: 'a::euclidean_space set and S' :: 'b::euclidean_space set
    assumes ENR S S homeomorphic S'
    obtains T' where open T' }\mp@subsup{T}{}{\prime}\mathrm{ retract_of T'
by (metis ENR_imp_absolute_neighbourhood_retract UNIV_I assms(1) assms(2) open_openin
subsetI subtopology_UNIV)
lemma ENR_homeomorphic_ENR:
    fixes S :: 'a::euclidean_space set and T :: 'b::euclidean_space set
    assumes ENR TS homeomorphic T
    shows ENR S
unfolding ENR_def
by (meson ENR_imp_absolute_neighbourhood_retract_UNIV assms homeomorphic_sym)
lemma homeomorphic_ENR_iff_ENR:
    fixes S :: 'a::euclidean_space set and T :: 'b::euclidean_space set
    assumes S homeomorphic T
        shows ENR S\longleftrightarrowENR T
    by (meson ENR_homeomorphic_ENR assms homeomorphic_sym)
    lemma ENR_translation:
    fixes S :: 'a::euclidean_space set
    shows ENR(image (\lambdax.a+x)S)\longleftrightarrow ENR S
    by (meson homeomorphic_sym homeomorphic_translation homeomorphic_ENR_iff_ENR)
lemma ENR_linear_image_eq:
    fixes f :: 'a::euclidean_space }=>\mathrm{ 'b::euclidean_space
    assumes linear f inj f
    shows ENR (image f S) \longleftrightarrowENR S
    by (meson assms homeomorphic_ENR_iff_ENR linear_homeomorphic_image)
```

Some relations among the concepts. We also relate AR to being a retract of UNIV, which is often a more convenient proxy in the closed case.
lemma AR_imp_ANR: AR $S \Longrightarrow A N R S$
using $A N R_{_} d e f$ AR_def by fastforce
fixes S :: 'a::euclidean_space set
shows $E N R S \Longrightarrow A N R S$
by (meson ANR_def ENR_imp_absolute_neighbourhood_retract closedin_imp_subset)

```
lemma ENR_ANR:
    fixes S :: 'a::euclidean_space set
    shows ENR S \longleftrightarrowANR S^ locally compact S
proof
    assume ENR S
    then have locally compact S
        using ENR_def open_imp_locally_compact retract_of_locally_compact by auto
    then show ANR S^ locally compact S
        using ENR_imp_ANR <ENR S` by blast
next
    assume ANR S ^ locally compact S
    then have ANR S locally compact S by auto
    then obtain T:: (' }a*\mathrm{ real) set where closed T S homeomorphic T
        using locally_compact_homeomorphic_closed
        by (metis DIM_prod DIM_real Suc_eq_plus1 lessI)
    then show ENR S
        using <ANR S`
    by (meson ANR_imp_absolute_neighbourhood_retract_UNIV ENR_def ENR_homeomorphic_ENR)
qed
```

lemma $A R _A N R$:
fixes $S::{ }^{\prime} a::$ euclidean_space set
shows $A R S \longleftrightarrow A N R S \wedge$ contractible $S \wedge S \neq\{ \}$
(is?lhs =?rhs)
proof
assume ?lhs
have aff_dim $S<\operatorname{int} \operatorname{DIM('a\times real)}$
using aff_dim_le_DIM [of S] by auto
then obtain C and $S^{\prime}::\left({ }^{\prime} a *\right.$ real $)$ set
where convex $C C \neq\{ \}$ closedin (top_of_set C) $S^{\prime} S$ homeomorphic S^{\prime}
using homeomorphic_closedin_convex by blast
with $\langle A R S\rangle$ have contractible S
by (meson AR_def convex_imp_contractible homeomorphic_contractible_eq re-
tract_of_contractible)
with $\langle A R S\rangle$ show ? $r h s$
using $A R_{-} i m p _A N R$ AR_imp_retract by fastforce
next
assume ?rhs
then obtain a and $h::$ real $\times{ }^{\prime} a \Rightarrow^{\prime} a$
where conth: continuous_on $(\{0 . .1\} \times S) h$
and $h S: h \cdot(\{0 . .1\} \times S) \subseteq S$
and $[\operatorname{simp}]: \bigwedge x . h(0, x)=x$
and $[$ simp $]: \bigwedge x . h(1, x)=a$

```
            and ANR SS\not={}
    by (auto simp: contractible_def homotopic_with_def)
    then have }a\in
    by (metis all_not_in_conv atLeastAtMost_iff image_subset_iff mem_Sigma_iff or-
der_refl zero_le_one)
    have \existsg.continuous_on W g^g'W\subseteqS^(\forallx\inT.gx=fx)
            if f: continuous_on Tff`}T\subseteq
                and WT: closedin (top_of_set W) T
            for WT and f :: ' }a\timesreal => '
    proof -
    obtain Ug
        where T\subseteqU and WU:openin (top_of_set W) U
            and contg:continuous_on U g
            and g'U\subseteqS and gf: \bigwedgex. x G T\Longrightarrowgx=fx
    using iffD1 [OF ANR_eq_absolute_neighbourhood_extensor <ANR S\,rule_format,
OF f WT]
            by auto
    have WWU: closedin (top_of_set W) (W - U)
            using WU closedin_diff by fastforce
    moreover have ( W-U)\capT={}
            using }\langleT\subseteqU\rangle\mathrm{ by auto
    ultimately obtain V V '
            where W\mp@subsup{V}{}{\prime}: openin (top_of_set W) V'
                and WV: openin (top_of_set W) V
                and W-U\subseteq\mp@subsup{V}{}{\prime}T\subseteqV V'\capV={}
            using separation_normal_local [of W W-U T] WT by blast
    then have WVT:T\cap(W-V)={}
            by auto
    have WWV: closedin (top_of_set W) (W - V)
            using WV closedin_diff by fastforce
    obtain j :: 'a < real # real
            where contj: continuous_on W j
            and j: \bigwedgex. x 倞 \Longrightarrowjx\in{0..1}
            and j0:\bigwedgex.x\inW-V\Longrightarrowjx=1
            and j1: \bigwedgex. x 
            by (rule Urysohn_local [OF WT WWV WVT, of 0 1::real]) (auto simp:
in_segment)
    have Weq: W=(W-V)\cup(W-V')
            using \langleV'\cap}\capV={}\rangle by forc
    show ?thesis
    proof (intro conjI exI)
            have *: continuous_on ( W - V') (\lambdax.h (j x,g x))
            proof (rule continuous_on_compose2 [OF conth continuous_on_Pair])
                show continuous_on ( }W-\mp@subsup{V}{}{\prime}\mathrm{ ) j
                    by (rule continuous_on_subset [OF contj Diff_subset])
            show continuous_on ( }W-\mp@subsup{V}{}{\prime}\mathrm{ ) g
                    by (metis Diff_subset_conv <W - U\subseteq V'\rangle contg continuous_on_subset
Un_commute)
            show (\lambdax. (jx,gx))'(W-V')\subseteq{0..1} }\times
```

```
            using j<g`}U\subseteqS\rangle\langleW-U\subseteq\mp@subsup{V}{}{\prime}\rangle\mathrm{ by fastforce
        qed
        show continuous_on W ( }\lambdax\mathrm{ . if }x\inW-V\mathrm{ then a else h (jx,gx))
        proof (subst Weq, rule continuous_on_cases_local)
            show continuous_on (W - V') (\lambdax.h (j x,g x))
                using * by blast
        qed (use WWV WV' Weq j0 j1 in auto)
        next
        have h(j (x,y),g(x,y))\inS if (x,y)\inW (x,y)\inV for x y
        proof -
            have }j(x,y)\in{0..1
                using j that by blast
            moreover have g(x,y)\inS
                using \langleV'\cap}\capV={}\rangle\langleW-U\subseteq\mp@subsup{V}{}{\prime}\rangle\langleg'U\subseteqS\rangle\mathrm{ that by fastforce
            ultimately show ?thesis
                using hS by blast
    qed
    with }\langlea\inS\rangle\langleg'U\subseteqS
        show ( }\lambdax\mathrm{ . if }x\inW-V\mathrm{ then a else h (jx,g x))'W}\subseteq\
            by auto
    next
        show }\forallx\inT\mathrm{ . (if }x\inW-V\mathrm{ then a else h (jx,g x)) =fx
            using }\langleT\subseteqV\rangle\mathrm{ by (auto simp: j0 j1 gf)
        qed
    qed
    then show ?lhs
        by (simp add: AR_eq_absolute_extensor)
qed
lemma ANR_retract_of_ANR:
    fixes S :: 'a::euclidean_space set
    assumes ANR T and ST: S retract_of T
    shows ANR S
proof (clarsimp simp add: ANR_eq_absolute_neighbourhood_extensor)
    fix f::'a }\times\mathrm{ real > ' }a\mathrm{ and }U
    assume W:continuous_on W ff' W\subseteqS closedin (top_of_set U)W
    then obtain r where S\subseteqT and r: continuous_on Trr ' T}\subseteqS\forallx\inS.r
=x continuous_on Wff' W\subseteqS
                                    closedin (top_of_set U) W
        by (meson ST retract_of_def retraction_def)
    then have f'W\subseteqT
        by blast
    with W obtain Vg where V:W\subseteqV openin (top_of_set U)V continuous_on
Vgg'V\subseteqT\forallx\inW.gx=fx
        by (metis ANR_imp_absolute_neighbourhood_extensor <ANR T〉)
    with r have continuous_on V (r\circg)^(r\circg)'V\subseteqS^(\forallx\inW. (r\circg)x
= fx)
    by (metis (no_types, lifting) comp_apply continuous_on_compose continuous_on_subset
```

```
image_subset_iff)
    then show }\existsV.W\subseteqV\wedge\mathrm{ openin (top_of_set }U)V\wedge(\existsg.continuous_on V g
\wedge g'V\subseteqS^(\forallx\inW.gx=fx))
        by (meson V)
qed
lemma AR_retract_of_AR:
    fixes S :: 'a::euclidean_space set
    shows \llbracketAR T; S retract_of T\rrbracket\LongrightarrowAR S
using ANR_retract_of_ANR AR_ANR retract_of_contractible by fastforce
lemma ENR_retract_of_ENR:
    ENR T; S retract_of T\rrbracket\LongrightarrowENR S
by (meson ENR_def retract_of_trans)
lemma retract_of_UNIV:
    fixes S :: 'a::euclidean_space set
    shows S retract_of UNIV \longleftrightarrowAR S^ closed S
by (metis AR_ANR AR_imp_retract ENR_def ENR_imp_ANR closed_UNIV closed_closedin
contractible_UNIV empty_not_UNIV open_UNIV retract_of_closed retract_of_contractible
retract_of_empty(1) subtopology_UNIV)
lemma compact_AR:
    fixes }S\mathrm{ :: 'a::euclidean_space set
    shows compact S}\wedge AR S\longleftrightarrow compact S ^ S retract_of UNIV
using compact_imp_closed retract_of_UNIV by blast
More properties of ARs, ANRs and ENRs
lemma not_AR_empty [simp]: ᄀ AR({})
    by (auto simp: AR_def)
lemma ENR_empty [simp]: ENR {}
    by (simp add: ENR_def)
lemma ANR_empty [simp]:ANR ({} :: 'a::euclidean_space set)
    by (simp add: ENR_imp_ANR)
lemma convex_imp_AR:
    fixes S :: 'a::euclidean_space set
    shows \llbracketconvex S;S\not={}\rrbracket\LongrightarrowARS
    by (metis (mono_tags, lifting) Dugundji absolute_extensor_imp_AR)
lemma convex_imp_ANR:
    fixes S :: 'a::euclidean_space set
    shows convex S\LongrightarrowANR S
using ANR_empty AR_imp_ANR convex_imp_AR by blast
lemma ENR_convex_closed:
    fixes S :: 'a::euclidean_space set
```

```
    shows \(\llbracket\) closed \(S\); convex \(S \rrbracket \Longrightarrow E N R S\)
using ENR_def ENR_empty convex_imp_AR retract_of_UNIV by blast
```



```
    using retract_of_UNIV by auto
lemma \(A N R_{-} U N I V[\) simp]: ANR (UNIV :: 'a::euclidean_space set)
    by (simp add: AR_imp_ANR)
lemma ENR_UNIV [simp]:ENR UNIV
    using ENR_def by blast
lemma \(A R\) _singleton:
        fixes \(a\) :: ' \(a\) ::euclidean_space
        shows \(A R\{a\}\)
    using retract_of_UNIV by blast
lemma \(A N R\) _singleton:
        fixes \(a\) :: ' \(a::\) euclidean_space
        shows \(A N R\{a\}\)
    by (simp add: AR_imp_ANR AR_singleton)
lemma \(E N R\) _singleton: \(E N R\{a\}\)
    using ENR_def by blast
ARs closed under union
lemma \(A R_{-}\)closed_Un_local_aux:
    fixes \(U\) :: 'a::euclidean_space set
    assumes closedin (top_of_set U) S
            closedin (top_of_set U) T
                \(A R S A R T A R(S \cap T)\)
    shows \((S \cup T)\) retract_of \(U\)
proof -
    have \(S \cap T \neq\{ \}\)
        using assms AR_def by fastforce
    have \(S \subseteq U T \subseteq U\)
        using assms by (auto simp: closedin_imp_subset)
    define \(S^{\prime}\) where \(S^{\prime} \equiv\{x \in U\). setdist \(\{x\} S \leq\) setdist \(\{x\} T\}\)
    define \(T^{\prime}\) where \(T^{\prime} \equiv\{x \in U\). setdist \(\{x\} T \leq\) setdist \(\{x\} S\}\)
    define \(W\) where \(W \equiv\{x \in U\). setdist \(\{x\} S=\operatorname{setdist}\{x\} T\}\)
    have \(U S^{\prime}\) : closedin (top_of_set \(U\) ) \(S^{\prime}\)
        using continuous_closedin_preimage [of \(U \lambda\) x. setdist \(\{x\} S-\) setdist \(\{x\} T\)
\{..0\}]
            by (simp add: \(S^{\prime}\) _def vimage_def Collect_conj_eq continuous_on_diff continu-
ous_on_setdist)
    have \(U T^{\prime}\) : closedin (top_of_set \(U\) ) \(T^{\prime}\)
            using continuous_closedin_preimage \([\) of \(U \lambda x\). setdist \(\{x\} T-\operatorname{setdist}\{x\} S\)
\{..0\}]
            by (simp add: \(T^{\prime}\) _def vimage_def Collect_conj_eq continuous_on_diff continu-
```

```
ous_on_setdist)
    have \(S \subseteq S^{\prime}\)
        using \(S^{\prime}\) _def \(\langle S \subseteq U\) 〉 setdist_sing_in_set by fastforce
    have \(T \subseteq T^{\prime}\)
        using \(T^{\prime}\) _def \(\langle T \subseteq U\rangle\) setdist_sing_in_set by fastforce
    have \(S \cap T \subseteq W W \subseteq U\)
        using \(\langle S \subseteq U\rangle\) by (auto simp: W_def setdist_sing_in_set)
    have \((S \cap T)\) retract_of \(W\)
    proof (rule AR_imp_absolute_retract \([O F\langle A R(S \cap T)\rangle])\)
    show \(S \cap T\) homeomorphic \(S \cap T\)
        by (simp add: homeomorphic_refl)
        show closedin (top_of_set \(W\) ) \((S \cap T)\)
        by (meson \(\langle S \cap T \subseteq W\rangle\langle W \subseteq U\rangle\) assms closedin_Int closedin_subset_trans)
    qed
    then obtain \(r 0\)
        where \(S \cap T \subseteq W\) and contr0: continuous_on \(W\) r0
        and \(r 0{ }^{\prime} W \subseteq S \cap T\)
        and \(r 0[\) simp \(]: \wedge x . x \in S \cap T \Longrightarrow r 0 x=x\)
        by (auto simp: retract_of_def retraction_def)
    have \(S T: x \in W \Longrightarrow x \in S \longleftrightarrow x \in T\) for \(x\)
        using setdist_eq_0_closedin \(\langle S \cap T \neq\{ \}\rangle\) assms
        by (force simp: W_def setdist_sing_in_set)
    have \(S^{\prime} \cap T^{\prime}=W\)
        by (auto simp: \(S^{\prime}{ }_{-}\)def \(T^{\prime}\) _def \(W_{-}\)def)
    then have clo \(U W\) : closedin (top_of_set \(U\) ) W
        using closedin_Int \(U S^{\prime} U T^{\prime}\) by blast
    define \(r\) where \(r \equiv \lambda x\). if \(x \in W\) then r0 \(x\) else \(x\)
    have contr: continuous_on \((W \cup(S \cup T)) r\)
    unfolding \(r_{-} d e f\)
    proof (rule continuous_on_cases_local [OF _ _ contr0 continuous_on_id])
        show closedin (top_of_set \((W \cup(S \cup T))) W\)
        using \(\langle S \subseteq U\rangle\langle T \subseteq U\rangle\langle W \subseteq U\rangle\left\langle c l o s e d i n\left(t o p \_o f \_s e t ~ U\right) W\right\rangle\) closedin_subset_trans
by fastforce
    show closedin (top_of_set \((W \cup(S \cup T)))(S \cup T)\)
        by (meson \(\langle S \subseteq U\rangle\langle T \subseteq U\rangle\langle W \subseteq U\rangle\) assms closedin_Un closedin_subset_trans
sup.bounded_iff sup.cobounded2)
    show \(\bigwedge x . x \in W \wedge x \notin W \vee x \in S \cup T \wedge x \in W \Longrightarrow r 0 x=x\)
        by (auto simp: ST)
    qed
    have rim: \(r\) ' \((W \cup S) \subseteq S r^{\prime}(W \cup T) \subseteq T\)
        using 〈r0' \(W \subseteq S \cap T\rangle r_{-}\)def by auto
    have cloUWS: closedin (top_of_set \(U\) ) \((W \cup S)\)
        by (simp add: cloUW assms closedin_Un)
    obtain \(g\) where contg: continuous_on \(U g\)
        and \(g{ }^{\prime} U \subseteq S\) and geqr: \(\bigwedge x . x \in W \cup S \Longrightarrow g x=r x\)
    proof (rule AR_imp_absolute_extensor [OF \(\langle A R S\rangle\) _ _ cloUWS])
        show continuous_on \((W \cup S) r\)
            using continuous_on_subset contr sup_assoc by blast
    qed (use rim in auto)
```

```
    have cloUWT: closedin (top_of_set \(U\) ) \((W \cup T)\)
    by (simp add: cloUW assms closedin_Un)
    obtain \(h\) where conth: continuous_on \(U h\)
        and \(h^{\prime} U \subseteq T\) and heqr: \(\bigwedge x . x \in W \cup T \Longrightarrow h x=r x\)
    proof (rule AR_imp_absolute_extensor [OF \(\langle A R T\rangle\) _ cloUWT])
    show continuous_on \((W \cup T) r\)
        using continuous_on_subset contr sup_assoc by blast
    qed (use rim in auto)
    have \(U: U=S^{\prime} \cup T^{\prime}\)
    by (force simp: \(S^{\prime} \_\)def \(T^{\prime} \_d e f\) )
    have cont: continuous_on \(U\left(\lambda x\right.\). if \(x \in S^{\prime}\) then \(g x\) else \(\left.h x\right)\)
    unfolding \(U\)
    apply (rule continuous_on_cases_local)
    using \(U S^{\prime} U T^{\prime}\left\langle S^{\prime} \cap T^{\prime}=W\right\rangle\left\langle U=S^{\prime} \cup T^{\prime}\right\rangle\)
            contg conth continuous_on_subset geqr heqr by auto
    have UST: \(\left(\lambda x\right.\). if \(x \in S^{\prime}\) then \(g\) x else \(\left.h x\right)\) ' \(U \subseteq S \cup T\)
    using \(\left\langle g{ }^{\prime} U \subseteq S\right\rangle\left\langle h^{\prime} U \subseteq T\right\rangle\) by auto
    show ?thesis
    apply (simp add: retract_of_def retraction_def \(\langle S \subseteq U\rangle\langle T \subseteq U\rangle\) )
    apply (rule_tac \(x=\lambda x\). if \(x \in S^{\prime}\) then \(g x\) else \(h x\) in exI)
    using \(S T\) UST \(\left\langle S \subseteq S^{\prime}\right\rangle\left\langle S^{\prime} \cap T^{\prime}=W\right\rangle\left\langle T \subseteq T^{\prime}\right\rangle\) cont geqr heqr r_def by auto
qed
lemma \(A R_{-}\)closed_Un_local:
    fixes \(S\) :: 'a::euclidean_space set
    assumes \(S T S\) : closedin (top_of_set \((S \cup T)) S\)
        and STT: closedin (top_of_set \((S \cup T)) T\)
        and \(A R S A R T A R(S \cap T)\)
        shows \(A R(S \cup T)\)
proof -
    have \(C\) retract_of \(U\)
        if hom: \(S \cup T\) homeomorphic \(C\) and \(U C\) : closedin (top_of_set \(U\) ) \(C\)
        for \(U\) and \(C::\left({ }^{\prime} a *\right.\) real \()\) set
    proof -
        obtain \(f g\) where hom: homeomorphism \((S \cup T) C f g\)
        using hom by (force simp: homeomorphic_def)
        have US: closedin (top_of_set \(U\) ) \(\left(C \cap g-{ }^{\prime} S\right)\)
        by (metis STS continuous_on_imp_closedin hom homeomorphism_def closedin_trans
[ \(O F\) _ \(U C]\) )
    have \(U T\) : closedin (top_of_set \(U)\left(C \cap g-{ }^{‘} T\right)\)
        by (metis STT continuous_on_closed hom homeomorphism_def closedin_trans
[OF _ UC])
    have homeomorphism \((C \cap g-‘ S) S g f\)
        using hom
        apply (auto simp: homeomorphism_def elim!: continuous_on_subset)
        apply (rule_tac \(x=f x\) in image_eqI, auto)
        done
    then have \(A R S: A R(C \cap g-' S)\)
```

using 〈AR S 〉homeomorphic＿AR＿iff＿AR homeomorphic＿def by blast
have homeomorphism $\left(C \cap g-{ }^{\prime} T\right) T g f$
using hom
apply（auto simp：homeomorphism＿def elim！：continuous＿on＿subset）
apply（rule＿tac $x=f x$ in image＿eqI，auto）
done
then have $A R T: A R\left(C \cap g-{ }^{`} T\right)$
using $\langle A R T\rangle$ homeomorphic＿AR＿iff＿AR homeomorphic＿def by blast
have homeomorphism $\left(C \cap g-{ }^{\prime} S \cap\left(C \cap g-{ }^{\prime} T\right)\right)(S \cap T) g f$
using hom
apply（auto simp：homeomorphism＿def elim！：continuous＿on＿subset）
apply（rule＿tac $x=f x$ in image＿eqI，auto）
done
then have $A R I: A R\left(\left(C \cap g-{ }^{‘} S\right) \cap\left(C \cap g-{ }^{‘} T\right)\right)$
using $\langle A R(S \cap T)$ 〉homeomorphic＿AR＿iff＿AR homeomorphic＿def by blast
have $C=(C \cap g-‘ S) \cup(C \cap g-‘ T)$
using hom by（auto simp：homeomorphism＿def）
then show ？thesis
by（metis AR＿closed＿Un＿local＿aux［OF US UT ARS ART ARI］）
qed
then show ？thesis
by（force simp：AR＿def）
qed
corollary AR＿closed＿Un：
fixes S ：：＇a：：euclidean＿space set
shows \llbracket closed S ；closed $T ; A R S ; A R T ; A R(S \cap T) \rrbracket \Longrightarrow A R(S \cup T)$
by（metis AR＿closed＿Un＿local＿aux closed＿closedin retract＿of＿UNIV subtopology＿UNIV）
ANRs closed under union
lemma $A N R$＿closed＿Un＿local＿aux：
fixes U ：：＇a：：euclidean＿space set
assumes US：closedin（top＿of＿set U ）S
and UT：closedin（top＿of＿set U）T
and $A N R S A N R T A N R(S \cap T)$
obtains V where openin（top＿of＿set $U) V(S \cup T)$ retract＿of V
proof（cases $S=\{ \} \vee T=\{ \}$ ）
case True with assms that show ？thesis
by（metis ANR＿imp＿neighbourhood＿retract Un＿commute inf＿bot＿right sup＿inf＿absorb）
next
case False
then have［simp］：$S \neq\{ \} T \neq\{ \}$ by auto
have $S \subseteq U T \subseteq U$
using assms by（auto simp：closedin＿imp＿subset）
define S^{\prime} where $S^{\prime} \equiv\{x \in U$ ．setdist $\{x\} S \leq$ setdist $\{x\} T\}$
define T^{\prime} where $T^{\prime} \equiv\{x \in U$ ．setdist $\{x\} T \leq \operatorname{setdist}\{x\} S\}$
define W where $W \equiv\{x \in U$ ．setdist $\{x\} S=\operatorname{setdist}\{x\} T\}$
have cloUS＇：closedin（top＿of＿set U ）S^{\prime}
using continuous＿closedin＿preimage $[$ of $U \lambda x$ ．setdist $\{x\} S-$ setdist $\{x\} T$
by（simp add：S^{\prime}＿def vimage＿def Collect＿conj＿eq continuous＿on＿diff continu－ ous＿on＿setdist）
have cloUT＇：closedin（top＿of＿set U）T^{\prime}
using continuous＿closedin＿preimage $[$ of $U \lambda x$ ．setdist $\{x\} T-$ setdist $\{x\} S$ \｛．．0\}]
by（simp add：T^{\prime}＿def vimage＿def Collect＿conj＿eq continuous＿on＿diff continu－ ous＿on＿setdist）
have $S \subseteq S^{\prime}$
using S^{\prime}＿def $\langle S \subseteq U\rangle$ setdist＿sing＿in＿set by fastforce
have $T \subseteq T^{\prime}$
using T^{\prime}＿def $\langle T \subseteq U\rangle$ setdist＿sing＿in＿set by fastforce
have $S^{\prime} \cup T^{\prime}=U$
by（auto simp：$S^{\prime} _d e f T^{\prime} _d e f$ ）
have $W \subseteq S^{\prime}$
by（simp add：Collect＿mono S^{\prime}＿def $W_{-} d e f$ ）
have $W \subseteq T^{\prime}$
by（simp add：Collect＿mono T^{\prime}＿def W_{-}def）
have $S T_{-} W: S \cap T \subseteq W$ and $W \subseteq U$
using $\langle S \subseteq U\rangle$ by（force simp：W＿def setdist＿sing＿in＿set）+
have $S^{\prime} \cap T^{\prime}=W$
by（auto simp：$S^{\prime} _$def $T^{\prime} _$def $W_{-} d e f$ ）
then have cloUW：closedin（top＿of＿set U ）W
using closedin＿Int cloUS＇cloUT＇by blast
obtain $W^{\prime} W 0$ where openin（top＿of＿set W ）W^{\prime}
and cloWW0：closedin（top＿of＿set W）W0
and $S \cap T \subseteq W^{\prime} W^{\prime} \subseteq W 0$
and ret：$(S \cap T)$ retract＿of $W 0$
by（meson ANR＿imp＿closed＿neighbourhood＿retract $S T_{-} W U S U T\langle W \subseteq U\rangle$ $\langle A N R(S \cap T)\rangle$ closedin＿Int closedin＿subset＿trans）
then obtain U0 where opeUU0：openin（top＿of＿set U）U0
and $U 0: S \cap T \subseteq U 0 U 0 \cap W \subseteq W 0$
unfolding openin＿open using $\langle W \subseteq U\rangle$ by blast
have $W O \subseteq U$
using 〈 $W \subseteq U$ 〉cloWW0 closedin＿subset by fastforce
obtain $r 0$
where $S \cap T \subseteq W 0$ and contr0：continuous＿on W0 r0 and r0＇W0 $\subseteq S \cap T$
and $r 0[$ simp $]: \wedge x . x \in S \cap T \Longrightarrow r 0 x=x$
using ret by（force simp：retract＿of＿def retraction＿def）
have $S T: x \in W \Longrightarrow x \in S \longleftrightarrow x \in T$ for x
using assms by（auto simp：W＿def setdist＿sing＿in＿set dest！：setdist＿eq＿0＿closedin）
define r where $r \equiv \lambda x$ ．if $x \in W 0$ then r0 x else x
have r＇$(W 0 \cup S) \subseteq S r{ }^{\prime}(W 0 \cup T) \subseteq T$
using 〈r0＇$W 0 \subseteq S \cap T$ r＿def by auto
have contr：continuous＿on $(W 0 \cup(S \cup T)) r$
unfolding $r_{-} d e f$
proof（rule continuous＿on＿cases＿local［OF＿＿contr0 continuous＿on＿id］）
show closedin（top＿of＿set $(W 0 \cup(S \cup T)))$ W0
using closedin＿subset＿trans［of U］
by（metis le＿sup＿iff order＿refl cloWW0 cloUW closedin＿trans $\langle W 0 \subseteq U\rangle\langle S \subseteq$ $U\rangle\langle T \subseteq U\rangle)$
show closedin（top＿of＿set $(W 0 \cup(S \cup T)))(S \cup T)$
by（meson $\langle S \subseteq U\rangle\langle T \subseteq U\rangle\langle W 0 \subseteq U\rangle$ assms closedin＿Un closedin＿subset＿trans sup．bounded＿iff sup．cobounded2）
show $\wedge x . x \in W 0 \wedge x \notin W 0 \vee x \in S \cup T \wedge x \in W 0 \Longrightarrow r 0 x=x$
using $S T$ cloWW0 closedin＿subset by fastforce
qed
have $c l o S^{\prime} W S$ ：closedin（top＿of＿set $\left.S^{\prime}\right)(W 0 \cup S)$
by（meson closedin＿subset＿trans $U S$ cloUS＇$\left\langle S \subseteq S^{\prime}\right\rangle\left\langle W \subseteq S^{\prime}\right\rangle$ cloUW cloWW0
closedin＿Un closedin＿imp＿subset closedin＿trans）
obtain $W 1 g$ where $W 0 \cup S \subseteq W 1$ and contg：continuous＿on $W 1 g$
and opeSW1：openin（top＿of＿set S^{\prime} ）W1
and $g{ }^{\prime} W 1 \subseteq S$ and geqr：$\bigwedge x . x \in W 0 \cup S \Longrightarrow g x=r x$
proof（rule ANR＿imp＿absolute＿neighbourhood＿extensor［OF $\langle A N R S\rangle$＿$\langle r$＇（W0
$\left.\left.\cup S) \subseteq S\rangle c l o S^{\prime} W S\right]\right)$
show continuous＿on $(W 0 \cup S) r$
using continuous＿on＿subset contr sup＿assoc by blast
qed auto
have clo $T^{\prime} W T$ ：closedin（top＿of＿set $\left.T^{\prime}\right)(W 0 \cup T)$
by（meson closedin＿subset＿trans UT cloUT ${ }^{\prime}\left\langle T \subseteq T^{\prime}\right\rangle\left\langle W \subseteq T^{\prime}\right\rangle$ cloUW cloWW0
closedin＿Un closedin＿imp＿subset closedin＿trans）
obtain $W 2 h$ where $W 0 \cup T \subseteq W 2$ and conth：continuous＿on $W 2 h$ and opeSW2：openin（top＿of＿set T^{\prime} ）W2
and $h^{\prime} W 2 \subseteq T$ and heqr：$\bigwedge x . x \in W 0 \cup T \Longrightarrow h x=r x$
proof（rule ANR＿imp＿absolute＿neighbourhood＿extensor［OF $\langle A N R T\rangle _\langle r \text {＇（W0 }$ $\left.\left.\cup T) \subseteq T \succ \operatorname{clo} T^{\prime} W T\right]\right)$
show continuous＿on $(W 0 \cup T) r$
using continuous＿on＿subset contr sup＿assoc by blast
qed auto
have $S^{\prime} \cap T^{\prime}=W$
by（force simp：$S^{\prime}{ }_{-}$def T^{\prime}＿def $W_{-} d e f$ ）
obtain O1 O2 where O12：open O1 W1 $=S^{\prime} \cap$ O1 open O2 W2 $=T^{\prime} \cap$ O2
using opeSW1 opeSW2 by（force simp：openin＿open）
show ？thesis
proof
have eq：$W 1-(W-U 0) \cup(W 2-(W-U 0))$ $=\left(\left(U-T^{\prime}\right) \cap O 1 \cup\left(U-S^{\prime}\right) \cap O 2 \cup U \cap O 1 \cap O 2\right)-(W-U 0)$
（is ？$W W 1 \cup$ ？$W W 2=$ ？$r h s$ ）
using $\langle U 0 \cap W \subseteq W 0\rangle\langle W 0 \cup S \subseteq W 1\rangle\langle W 0 \cup T \subseteq W 2\rangle$
by（auto simp：$\left\langle S^{\prime} \cup T^{\prime}=U\right\rangle[$ symmetric $]\left\langle S^{\prime} \cap T^{\prime}=W\right\rangle$［symmetric $]\langle W 1$ $\left.\left.=S^{\prime} \cap O 1\right\rangle\left\langle W 2=T^{\prime} \cap O 2\right\rangle\right)$
show openin（top＿of＿set U ）（？WW1 U ？WW2）
by（simp add：eq 〈open O1〉〈open O2〉 cloUS＇cloUT＇cloUW closedin＿diff opeUU0 openin＿Int＿open openin＿Un openin＿diff）
obtain $S U^{\prime}$ where closed $S U^{\prime} S^{\prime}=U \cap S U^{\prime}$
using cloUS＇by（auto simp add：closedin＿closed）

```
    moreover have ?WW1 = (?WW1 \cup ?WW2) \capSU'
        using <\mp@subsup{S}{}{\prime}=U\capS\mp@subsup{U}{}{\prime}\rangle\langleW1= S'\capO1\rangle\langle\mp@subsup{S}{}{\prime}\cup\mp@subsup{T}{}{\prime}=U\rangle\langleW2= T'\capO2\rangle
\langleS'\cap T'}=W\rangle\langleW0\cupS\subseteqW1\rangleU
        by auto
    ultimately have cloW1: closedin (top_of_set (W1 - (W - U0) \cup (W2 - (W
- U0))))(W1 - (W - U0))
            by (metis closedin_closed_Int)
    obtain TU' where closed TU' T'}=U\capT\mp@subsup{U}{}{\prime
        using cloUT' by (auto simp add: closedin_closed)
    moreover have ?WW2 = (?WW1 \cup?WW2) \capTU'
        using }\langle\mp@subsup{T}{}{\prime}=U\capT\mp@subsup{U}{}{\prime}\rangle\langleW1=\mp@subsup{S}{}{\prime}\capO1\rangle\langle\mp@subsup{S}{}{\prime}\cup\mp@subsup{T}{}{\prime}=U\rangle\langleW2= T'\capO2
<S'\cap T'=W\rangle\langleW0\cupT\subseteqW2\rangleU0
            by auto
    ultimately have cloW2: closedin (top_of_set (?WW1 U ?WW2)) ?WW2
            by (metis closedin_closed_Int)
    let ?gh = \lambdax. if }x\in\mp@subsup{S}{}{\prime}\mathrm{ then g x else h }
    have \existsr.continuous_on (?WW1\cup?WW2) r ^ r'(?WW1 \cup?WW2) \subseteqS \cup
T^(\forallx\inS\cupT.r x = x )
    proof (intro exI conjI)
        show }\forallx\inS\cupT\mathrm{ . ?gh }x=
        using ST <S'\cap T'=W` geqr heqr O12
                by (metis Int_iff Un_iff <W0 US\subseteqW1\rangle\langleW0\cupT\subseteqW2\rangle r0 r_def
sup.order_iff)
            have }\x.x\in?WW1^x\not\in\mp@subsup{S}{}{\prime}\veex\in?WW2 \wedge x\in S'\Longrightarrowgx=h
            using O12
            by (metis (full_types) DiffD1 DiffD2 DiffI IntE IntI U0(2) UnCI <S'\cap T'
= W` geqr heqr in_mono)
            then show continuous_on (?WW1 \cup?WW2) ?gh
            using continuous_on_cases_local [OF cloW1 cloW2 continuous_on_subset [OF
contg] continuous_on_subset [OF conth]]
            by simp
            show ?gh '(?WW1 \cup?WW2) \subseteqS\cupT
            using <W1 = S'\capO1\rangle\langleW2 = T'\capO2\rangle\langleS'\cap T'=W\rangle\langleg'`W1\subseteqS\rangle\langleh
` W2 \subseteqT\rangle\langleU0\capW\subseteqW0\rangle\langleW0\cupS\subseteqW1\rangle
            by (auto simp add: image_subset_iff)
    qed
    then show S \cupT retract_of ?WW1 \cup?WW2
            using <W0\cupS\subseteqW1\rangle\langleW0\cupT\subseteqW2\rangleST opeUU0 U0
            by (auto simp: retract_of_def retraction_def)
    qed
qed
lemma \(A N R\) _closed_Un_local:
fixes \(S::{ }^{\prime} a::\) euclidean_space set
assumes \(S T S\) : closedin (top_of_set \((S \cup T)) S\)
and STT: closedin (top_of_set \((S \cup T)) T\)
and \(A N R S A N R T A N R(S \cap T)\)
shows \(A N R(S \cup T)\)
```

```
proof -
    have }\existsT\mathrm{ . openin (top_of_set U) T^C retract_of T
        if hom: S\cupT homeomorphic C and UC: closedin (top_of_set U) C
        for }U\mathrm{ and C :: ('a* real) set
    proof -
        obtain fg}\mathrm{ where hom: homeomorphism (S UT) Cfg
        using hom by (force simp: homeomorphic_def)
        have US: closedin (top_of_set U) (C\capg-'S)
        by (metis STS UC closedin_trans continuous_on_imp_closedin hom homeomor-
phism_def)
    have UT: closedin (top_of_set U) ( C \capg -` T)
        by (metis STT UC closedin_trans continuous_on_imp_closedin hom homeomor-
phism_def)
    have homeomorphism (C\capg-`S)Sgf
        using hom
        apply (auto simp: homeomorphism_def elim!: continuous_on_subset)
        by (rule_tac x=f x in image_eqI, auto)
    then have ANRS:ANR (C\capg-'S)
        using \ANR S` homeomorphic_ANR_iff_ANR homeomorphic_def by blast
    have homeomorphism (C\capg-'T)Tgf
    using hom apply (auto simp: homeomorphism_def elim!: continuous_on_subset)
        by (rule_tac x=f x in image_eqI, auto)
    then have ANRT:ANR (C\capg-' T)
        using \ANR T\rangle homeomorphic_ANR_iff_ANR homeomorphic_def by blast
    have homeomorphism (C\capg-'S\cap(C\capg-'T))(S\capT)gf
        using hom
        apply (auto simp: homeomorphism_def elim!: continuous_on_subset)
        by (rule_tac x=f x in image_eqI, auto)
    then have ANRI: ANR ((C\capg-'S)\cap(C\capg-'T))
        using \ANR (S\capT)` homeomorphic_ANR_iff_ANR homeomorphic_def by
    blast
        have C=(C\capg-'S)\cup(C\capg-'T)
        using hom by (auto simp: homeomorphism_def)
        then show ?thesis
        by (metis ANR_closed_Un_local_aux [OF US UT ANRS ANRT ANRI])
    qed
    then show ?thesis
        by (auto simp:ANR_def)
qed
corollary ANR_closed_Un:
    fixes S :: 'a::euclidean_space set
    shows \llbracketclosed S; closed T; ANR S; ANR T; ANR (S \capT)\rrbracket\LongrightarrowANR (S\cupT)
by (simp add: ANR_closed_Un_local closedin_def diff_eq open_Compl openin_open_Int)
lemma ANR_openin:
    fixes S :: 'a::euclidean_space set
    assumes ANR T and opeTS: openin (top_of_set T) S
    shows ANR S
```

```
proof (clarsimp simp only:ANR_eq_absolute_neighbourhood_extensor)
    fix \(f:: ' a \times r e a l \Rightarrow{ }^{\prime} a\) and \(U C\)
    assume contf: continuous_on \(C f\) and fim: \(f\) ' \(C \subseteq S\)
            and cloUC: closedin (top_of_set U) C
    have \(f\) ' \(C \subseteq T\)
        using fim opeTS openin_imp_subset by blast
    obtain \(W g\) where \(C \subseteq W\)
                and \(U W\) : openin (top_of_set \(U\) ) \(W\)
                    and contg: continuous_on \(W g\)
                and gim: \(g\) ' \(W \subseteq T\)
                and geq: \(\bigwedge x . x \in C \Longrightarrow g x=f x\)
        using ANR_imp_absolute_neighbourhood_extensor [OF〈ANR T〉contf \(\langle f\) ' \(C \subseteq\)
\(T\) ) cloUC] fim by auto
    show \(\exists V g . C \subseteq V \wedge\) openin (top_of_set \(U\) ) \(V \wedge\) continuous_on \(V g \wedge g^{\prime} V \subseteq\)
\(S \wedge(\forall x \in C . g x=f x)\)
    proof (intro exI conjI)
        show \(C \subseteq W \cap g-' S\)
            using \(\langle C \subseteq W\rangle\) fim geq by blast
        show openin (top_of_set \(U\) ) \((W \cap g-' S)\)
            by (metis (mono_tags, lifting) UW contg continuous_openin_preimage gim
opeTS openin_trans)
        show continuous_on \(\left(W \cap g-{ }^{\prime} S\right) g\)
            by (blast intro: continuous_on_subset [OF contg])
        show \(g\) ' \((W \cap g-' S) \subseteq S\)
            using gim by blast
        show \(\forall x \in C . g x=f x\)
            using geq by blast
    qed
qed
lemma ENR_openin:
    fixes \(S\) :: ' \(a::\) euclidean_space set
    assumes ENR \(T\) openin (top_of_set \(T\) ) \(S\)
    shows ENR \(S\)
    by (meson ANR_openin ENR_ANR assms locally_open_subset)
lemma ANR_neighborhood_retract:
    fixes \(S\) :: ' \(a::\) euclidean_space set
    assumes \(A N R U S\) retract_of \(T\) openin (top_of_set \(U\) ) \(T\)
    shows \(A N R S\)
    using \(A N R_{-}\)openin \(A N R\) _retract_of_ANR assms by blast
lemma ENR_neighborhood_retract:
    fixes \(S\) :: 'a::euclidean_space set
    assumes ENR U S retract_of \(T\) openin (top_of_set \(U\) ) \(T\)
    shows ENR \(S\)
    using ENR_openin ENR_retract_of_ENR assms by blast
lemma \(A N R\) _rel_interior:
```

fixes S :: 'a::euclidean_space set shows $A N R S \Longrightarrow A N R($ rel_interior S)
by (blast intro: ANR_openin openin_set_rel_interior)
lemma ANR_delete:
fixes $S::{ }^{\prime} a::$ euclidean_space set
shows $A N R S \Longrightarrow A N R(S-\{a\})$
by (blast intro: ANR_openin openin_delete openin_subtopology_self)
lemma ENR_rel_interior:
fixes S :: 'a::euclidean_space set
shows $E N R S \Longrightarrow E N R($ rel_interior S)
by (blast intro: ENR_openin openin_set_rel_interior)
lemma ENR_delete:
fixes S :: 'a::euclidean_space set
shows $E N R S \Longrightarrow E N R(S-\{a\})$
by (blast intro: ENR_openin openin_delete openin_subtopology_self)
lemma open_imp_ENR: open $S \Longrightarrow E N R S$
using ENR_def by blast
lemma open_imp_ANR:
fixes S :: 'a::euclidean_space set
shows open $S \Longrightarrow A N R S$
by (simp add: ENR_imp_ANR open_imp_ENR)
lemma ANR_ball [iff]:
fixes $a::$ ' $a:$:euclidean_space
shows $A N R(b a l l$ a r)
by (simp add: convex_imp_ANR)
lemma ENR_ball [iff]: $\operatorname{ENR}($ ball a r)
by (simp add: open_imp_ENR)
lemma $A R_{\text {_ball }[\text { simp }]:}$
fixes a :: 'a::euclidean_space
shows $A R($ ball a $r) \longleftrightarrow 0<r$
by (auto simp: AR_ANR convex_imp_contractible)
lemma ANR_cball [iff]:
fixes a :: ' $a::$ euclidean_space
shows $A N R($ cball a r)
by (simp add: convex_imp_ANR)
lemma ENR_cball:
fixes a :: 'a::euclidean_space
shows ENR(cball a r)
using ENR_convex_closed by blast

```
lemma AR_cball [simp]:
    fixes \(a\) :: 'a::euclidean_space
    shows \(A R(\) cball a \(r) \longleftrightarrow 0 \leq r\)
    by (auto simp: AR_ANR convex_imp_contractible)
lemma ANR_box [iff]:
    fixes \(a\) :: 'a::euclidean_space
    shows \(A N R(c b o x\) a \(b) \operatorname{ANR}(b o x a b)\)
    by (auto simp: convex_imp_ANR open_imp_ANR)
lemma ENR_box [iff]:
    fixes \(a\) :: 'a::euclidean_space
    shows \(\operatorname{ENR}(\) cbox a b) \(\operatorname{ENR}(\) box a b)
    by (simp_all add: ENR_convex_closed closed_cbox open_box open_imp_ENR)
lemma \(A\) R_box [simp]:
    \(A R(\) cbox \(a b) \longleftrightarrow\) cbox \(a b \neq\{ \} A R(b o x\) a \(b) \longleftrightarrow b o x a b \neq\{ \}\)
    by (auto simp: AR_ANR convex_imp_contractible)
lemma ANR_interior:
    fixes \(S\) :: 'a::euclidean_space set
    shows \(A N R(\) interior \(S\) )
    by (simp add: open_imp_ANR)
lemma ENR_interior:
    fixes \(S\) :: 'a::euclidean_space set
    shows ENR(interior \(S\) )
    by (simp add: open_imp_ENR)
lemma AR_imp_contractible:
    fixes \(S\) :: 'a::euclidean_space set
    shows \(A R S \Longrightarrow\) contractible \(S\)
    by (simp add: AR_ANR)
lemma ENR_imp_locally_compact:
    fixes \(S\) :: 'a::euclidean_space set
    shows \(E N R S \Longrightarrow\) locally compact \(S\)
    by (simp add: ENR_ANR)
lemma ANR_imp_locally_path_connected:
    fixes \(S\) :: 'a::euclidean_space set
    assumes \(A N R S\)
        shows locally path_connected \(S\)
proof -
    obtain \(U\) and \(T::\left({ }^{\prime} a \times\right.\) real \()\) set
        where convex \(U U \neq\{ \}\)
            and UT: closedin (top_of_set \(U\) ) \(T\) and \(S\) homeomorphic \(T\)
    proof (rule homeomorphic_closedin_convex)
```

```
    show aff_dim S < int DIM('a }\times\mathrm{ real)
    using aff_dim_le_DIM [of S] by auto
qed auto
then have locally path_connected T
    by (meson ANR_imp_absolute_neighbourhood_retract
        assms convex_imp_locally_path_connected locally_open_subset retract_of_locally_path_connected)
    then have S: locally path_connected S
        if openin (top_of_set U) V T retract_of V U}\not={}\mathrm{ for }
    using \S homeomorphic T\rangle homeomorphic_locally homeomorphic_path_connectedness
by blast
    obtain Ta where (openin (top_of_set U) Ta ^ T retract_of Ta)
    using ANR_def UT〈S homeomorphic T〉 assms by moura
    then show ?thesis
    using S〈U\not={}` by blast
qed
lemma ANR_imp_locally_connected:
    fixes S :: 'a::euclidean_space set
    assumes ANR S
        shows locally connected S
using locally_path_connected_imp_locally_connected ANR_imp_locally_path_connected
assms by auto
lemma AR_imp_locally_path_connected:
    fixes }S:: 'a::euclidean_space se
    assumes AR S
    shows locally path_connected S
by (simp add: ANR_imp_locally_path_connected AR_imp_ANR assms)
lemma AR_imp_locally_connected:
    fixes S :: 'a::euclidean_space set
    assumes AR S
        shows locally connected S
    using ANR_imp_locally_connected AR_ANR assms by blast
    lemma ENR_imp_locally_path_connected:
    fixes S :: 'a::euclidean_space set
    assumes ENR S
        shows locally path_connected S
    by (simp add: ANR_imp_locally_path_connected ENR_imp_ANR assms)
    lemma ENR_imp_locally_connected:
    fixes S :: 'a::euclidean_space set
    assumes ENR S
        shows locally connected S
    using ANR_imp_locally_connected ENR_ANR assms by blast
    lemma ANR_Times:
    fixes S :: 'a::euclidean_space set and T :: 'b::euclidean_space set
```

assumes $A N R S A N R T$ shows $A N R(S \times T)$
proof（clarsimp simp only：ANR＿eq＿absolute＿neighbourhood＿extensor）
fix $f:: \quad\left({ }^{\prime} a \times{ }^{\prime} b\right) \times$ real $\Rightarrow^{\prime} a \times{ }^{\prime} b$ and $U C$
assume continuous＿on $C f$ and fim：f＇$C \subseteq S \times T$
and cloUC：closedin（top＿of＿set U ）C
have contf1：continuous＿on $C(f s t \circ f)$
by（simp add：〈continuous＿on C f 〉continuous＿on＿fst）
obtain $W 1 g$ where $C \subseteq W 1$
and UW1：openin（top＿of＿set U）W1
and contg：continuous＿on W1 g
and gim：g＇$W 1 \subseteq S$
and geq：$\bigwedge x . x \in C \Longrightarrow g x=(f s t \circ f) x$
proof（rule ANR＿imp＿absolute＿neighbourhood＿extensor［OF $\langle A N R S\rangle$ contf1＿ cloUC］）
show $(f s t \circ f)$＇$C \subseteq S$
using fim by auto
qed auto
have contf2：continuous＿on $C(s n d \circ f)$
by（simp add：〈continuous＿on $C f\rangle$ continuous＿on＿snd）
obtain $W 2 h$ where $C \subseteq W 2$
and UW2：openin（top＿of＿set U）W2
and conth：continuous＿on W2 h
and him：h＇W2 $\subseteq T$
and heq：$\bigwedge x . x \in C \Longrightarrow h x=($ snd $\circ f) x$
proof（rule ANR＿imp＿absolute＿neighbourhood＿extensor［OF $\langle A N R T\rangle$ contf2－ cloUC］）
show $($ snd $\circ f)$＇$C \subseteq T$
using fim by auto
qed auto
show $\exists V g . C \subseteq V \wedge$
openin（top＿of＿set U ）$V \wedge$
continuous＿on $V g \wedge g^{\prime} V \subseteq S \times T \wedge(\forall x \in C . g x=f x)$
proof（intro exI conjI）
show $C \subseteq W 1 \cap W 2$
by（simp add：$\langle C \subseteq W 1\rangle\langle C \subseteq W 2\rangle)$
show openin（top＿of＿set U ）（W1 \cap W2）
by（simp add：UW1 UW2 openin＿Int）
show continuous＿on（W1 \cap W2）$(\lambda x .(g x, h x))$
by（metis（no＿types）contg conth continuous＿on＿Pair continuous＿on＿subset
inf＿commute inf＿le1）
show $(\lambda x .(g x, h x)) \cdot(W 1 \cap W 2) \subseteq S \times T$
using gim him by blast
show $(\forall x \in C .(g x, h x)=f x)$
using geq heq by auto
qed
qed
lemma AR＿Times：
fixes S ：：＇a：：euclidean＿space set and T ：：＇b：：euclidean＿space set
assumes $A R S A R T$ shows $A R(S \times T)$
using assms by (simp add: AR_ANR ANR_Times contractible_Times)

6.40.2 More advanced properties of ANRs and ENRs

lemma ENR_rel_frontier_convex:
fixes S :: 'a::euclidean_space set
assumes bounded S convex S
shows ENR(rel_frontier S)
proof (cases $S=\{ \}$)
case True then show?thesis
by simp
next
case False
with assms have rel_interior $S \neq\{ \}$
by (simp add: rel_interior_eq_empty)
then obtain a where $a: a \in$ rel_interior S
by auto
have ahS: affine hull $S-\{a\} \subseteq\{x$. closest_point (affine hull S) $x \neq a\}$ by (auto simp: closest_point_self)
have rel_frontier S retract_of affine hull $S-\{a\}$
by (simp add: assms a rel_frontier_retract_of_punctured_affine_hull)
also have ... retract_of $\{x$. closest_point (affine hull S) $x \neq a\}$
unfolding retract_of_def retraction_def ahS
apply (rule_tac $x=$ closest_point (affine hull S) in exI)
apply (auto simp: False closest_point_self affine_imp_convex closest_point_in_set continuous_on_closest_point)
done
finally have rel_frontier S retract_of $\{x$. closest_point (affine hull S) $x \neq a\}$. moreover have openin (top_of_set UNIV) (UNIV \cap closest_point (affine hull S) $-\quad(-\{a\}))$
by (intro continuous_openin_preimage_gen) (auto simp: False affine_imp_convex continuous_on_closest_point)
ultimately show ?thesis
by (meson ENR_convex_closed ENR_delete ENR_retract_of_ENR〈rel_frontier S
retract_of affine hull $S-\{a\}$ >
closed_affine_hull convex_affine_hull)
qed
lemma ANR_rel_frontier_convex:
fixes S :: 'a::euclidean_space set
assumes bounded S convex S
shows $A N R($ rel_frontier S)
by (simp add: ENR_imp_ANR ENR_rel_frontier_convex assms)
lemma ENR_closedin_Un_local:
fixes S :: 'a::euclidean_space set
shows $\llbracket E N R S ; E N R T ; E N R(S \cap T)$;
closedin (top_of_set $(S \cup T)) S$; closedin (top_of_set $(S \cup T)) T \rrbracket$

$$
\Longrightarrow E N R(S \cup T)
$$

by (simp add: ENR_ANR ANR_closed_Un_local locally_compact_closedin_Un)
lemma ENR_closed_Un:
fixes S :: 'a::euclidean_space set
shows \llbracket closed S; closed $T ; E N R S ; E N R T ; E N R(S \cap T) \rrbracket \Longrightarrow E N R(S \cup T)$
by (auto simp: closed_subset ENR_closedin_Un_local)
lemma absolute_retract_Un:
fixes S :: 'a::euclidean_space set
shows $\llbracket S$ retract_of UNIV; T retract_of UNIV; $(S \cap T)$ retract_of UNIV】 $\Longrightarrow(S \cup T)$ retract_of UNIV
by (meson AR_closed_Un_local_aux closed_subset retract_of_UNIV retract_of_imp_subset)
lemma retract_from_Un_Int:
fixes S :: 'a::euclidean_space set
assumes clS: closedin (top_of_set $(S \cup T)) S$
and clT: closedin (top_of_set $(S \cup T)) T$
and Un: $(S \cup T)$ retract_of U and Int: $(S \cap T)$ retract_of T
shows S retract_of U
proof -
obtain r where r : continuous_on $T r r^{\prime} T \subseteq S \cap T \forall x \in S \cap T . r x=x$ using Int by (auto simp: retraction_def retract_of_def)
have S retract_of $S \cup T$
unfolding retraction_def retract_of_def
proof (intro exI conjI)
show continuous_on $(S \cup T)(\lambda x$. if $x \in S$ then x else $r x)$
using r by (intro continuous_on_cases_local [$\mathrm{OF} \mathrm{clS} c l T]$) auto
qed (use r in auto)
also have ... retract_of U
by (rule Un)
finally show? ?thesis.

qed

lemma $A R_{-}$from_Un_Int_local:
fixes S :: 'a::euclidean_space set
assumes clS: closedin (top_of_set $(S \cup T)) S$
and clT: closedin (top_of_set $(S \cup T)) T$
and $U n: A R(S \cup T)$ and Int: $A R(S \cap T)$
shows $A R S$
by (meson AR_imp_retract AR_retract_of_AR Un assms closedin_closed_subset local.Int
retract_from_Un_Int retract_of_refl sup_ge2)
lemma $A R_{-}$from_Un_Int_local':
fixes S :: 'a::euclidean_space set
assumes closedin (top_of_set $(S \cup T)) S$ and closedin (top_of_set $(S \cup T)) T$ and $A R(S \cup T) A R(S \cap T)$
shows $A R T$
using $A R_{-}$from_Un_Int_local [of T S] assms by (simp add: Un_commute Int_commute)
lemma $A R_{-}$from_Un_Int:
fixes S :: 'a::euclidean_space set
assumes clo: closed S closed T and $U n: A R(S \cup T)$ and Int: $A R(S \cap T)$
shows $A R S$
by (metis AR_from_Un_Int_local [OF _ _ Un Int] Un_commute clo closed_closedin
closedin_closed_subset inf_sup_absorb subtopology_UNIV top_greatest)
lemma $A N R_{-}$from_Un_Int_local:
fixes $S:$: 'a::euclidean_space set
assumes clS: closedin (top_of_set $(S \cup T)) S$
and clT: closedin (top_of_set $(S \cup T)) T$
and $U n: A N R(S \cup T)$ and Int: $A N R(S \cap T)$
shows $A N R S$
proof -
obtain V where clo: closedin (top_of_set $(S \cup T))(S \cap T)$
and ope: openin (top_of_set $(S \cup T)) V$
and ret: $S \cap T$ retract_of V
using ANR_imp_neighbourhood_retract [OF Int] by (metis clS clT closedin_Int)
then obtain r where r : continuous_on $V r$ and rim: $r^{\prime} V \subseteq S \cap T$ and req:
$\forall x \in S \cap T . r x=x$
by (auto simp: retraction_def retract_of_def)
have Vsub: $V \subseteq S \cup T$
by (meson ope openin_contains_cball)
have Vsup: $S \cap T \subseteq V$
by (simp add: retract_of_imp_subset ret)
then have eq: $S \cup V=((S \cup T)-T) \cup V$
by auto
have $e q^{\prime}: S \cup V=S \cup(V \cap T)$
using Vsub by blast
have continuous_on $(S \cup V \cap T)(\lambda x$. if $x \in S$ then x else $r x)$
proof (rule continuous_on_cases_local)
show closedin (top_of_set $(S \cup V \cap T)) S$
using clS closedin_subset_trans inf.boundedE by blast
show closedin (top_of_set $(S \cup V \cap T))(V \cap T)$
using clT Vsup by (auto simp: closedin_closed)
show continuous_on $(V \cap T) r$
by (meson Int_lower1 continuous_on_subset r)
qed (use req continuous_on_id in auto)
with rim have S retract_of $S \cup V$
unfolding retraction_def retract_of_def using eq' by fastforce
then show ?thesis
using ANR_neighborhood_retract [OF Un]
using $\langle S \cup V=S \cup T-T \cup V\rangle$ clT ope by fastforce
qed
lemma $A N R_{-}$from_Un_Int:
fixes S :: 'a::euclidean_space set
assumes clo: closed S closed T and $U n: A N R(S \cup T)$ and $\operatorname{lnt}: A N R(S \cap T)$ shows ANR S
by (metis ANR_from_Un_Int_local [OF _ _ Un Int $]$ Un_commute clo closed_closedin closedin_closed_subset inf_sup_absorb subtopology_UNIV top_greatest)
lemma $A N R$ _finite_Union_convex_closed:
fixes \mathcal{T} :: 'a::euclidean_space set set
assumes \mathcal{T} : finite \mathcal{T} and clo: $\bigwedge C . C \in \mathcal{T} \Longrightarrow$ closed C and con: $\bigwedge C . C \in \mathcal{T}$
\Longrightarrow convex C
shows $A N R(\bigcup \mathcal{T})$
proof -
have $A N R(\bigcup \mathcal{T})$ if card $\mathcal{T}<n$ for n
using assms that
proof (induction n arbitrary: \mathcal{T})
case 0 then show ?case by simp
next
case (Suc n)
have $A N R(\bigcup \mathcal{U})$ if finite $\mathcal{U} \mathcal{U} \subseteq \mathcal{T}$ for \mathcal{U}
using that
proof (induction \mathcal{U})
case empty
then show? ?ase by simp next
case (insert $C \mathcal{U}$)
have $A N R(C \cup \bigcup \mathcal{U})$
proof (rule ANR_closed_Un)
show $A N R(C \cap \bigcup \mathcal{U})$
unfolding Int_Union
proof (rule Suc)
show finite $((\cap) C$ ' $\mathcal{U})$
by (simp add: insert.hyps(1))
show $\bigwedge C a . C a \in(\cap) C \cdot \mathcal{U} \Longrightarrow$ closed $C a$
by (metis (no_types, hide_lams) Suc.prems(2) closed_Int subsetD imageE insert.prems insertI1 insertI2)
show $\bigwedge C a . C a \in(\cap) C ' \mathcal{U} \Longrightarrow$ convex $C a$
by (metis (mono_tags, lifting) Suc.prems(3) convex_Int imageE insert.prems insert_subset subsetCE)
show $\operatorname{card}((\cap) C \cdot \mathcal{U})<n$
proof -
have card $\mathcal{T} \leq n$
by (meson Suc.prems(4) not_less not_less_eq)
then show ?thesis
by (metis Suc.prems (1) card_image_le card_seteq insert.hyps insert.prems insert_subset le_trans not_less)
qed
qed
show closed $(\bigcup \mathcal{U})$
using Suc.prems(2) insert.hyps(1) insert.prems by blast

```
        qed (use Suc.prems convex_imp_ANR insert.prems insert.IH in auto)
        then show ?case
            by simp
    qed
    then show ?case
        using Suc.prems(1) by blast
    qed
    then show ?thesis
        by blast
qed
lemma finite_imp_ANR:
    fixes S :: 'a::euclidean_space set
    assumes finite S
    shows ANR S
proof -
    have ANR(\bigcupx\inS.{x})
        by (blast intro: ANR_finite_Union_convex_closed assms)
    then show ?thesis
        by simp
qed
lemma ANR_insert:
    fixes S :: 'a::euclidean_space set
    assumes ANR S closed S
    shows ANR(insert a S)
    by (metis ANR_closed_Un ANR_empty ANR_singleton Diff_disjoint Diff_insert_absorb
assms closed_singleton insert_absorb insert_is_Un)
lemma ANR_path_component_ANR:
    fixes S :: 'a::euclidean_space set
    shows ANR S\LongrightarrowANR(path_component_set S x)
    using ANR_imp_locally_path_connected ANR_openin openin_path_component_locally_path_connected
by blast
lemma ANR_connected_component_ANR:
    fixes S :: 'a::euclidean_space set
    shows ANR S\LongrightarrowANR(connected_component_set S x)
    by (metis ANR_openin openin_connected_component_locally_connected ANR_imp_locally_connected)
lemma ANR_component_ANR:
    fixes S :: 'a::euclidean_space set
    assumes ANR Sc\in components S
    shows ANR c
    by (metis ANR_connected_component_ANR assms componentsE)
```


6.40.3 Original ANR material, now for ENRs

lemma ENR_bounded:

fixes S :: 'a::euclidean_space set

assumes bounded S
shows $E N R S \longleftrightarrow(\exists U$. open $U \wedge$ bounded $U \wedge S$ retract_of $U)$ (is ?lhs = ? $r h s$)
proof
obtain r where $0<r$ and $r: S \subseteq$ ball $0 r$ using bounded_subset_ballD assms by blast
assume? lhs
then show? rhs
by (meson ENR_def Elementary_Metric_Spaces.open_ball bounded_Int bounded_ball inf_le2 $l e _i n f-i f f$
open_Int r retract_of_imp_subset retract_of_subset)
next
assume ?rhs
then show? lhs using $E N R_{-}$def by blast
qed
lemma absolute_retract_imp_AR_gen:
fixes S :: 'a::euclidean_space set and S^{\prime} :: 'b::euclidean_space set
assumes S retract_of T convex $T T \neq\{ \} S$ homeomorphic S^{\prime} closedin (top_of_set
U) S^{\prime}
shows S^{\prime} retract_of U
proof -
have $A R T$
by (simp add: assms convex_imp_AR)
then have $A R S$
using $A R$ _retract_of_AR assms by auto
then show ?thesis
using assms AR_imp_absolute_retract by metis
qed
lemma absolute_retract_imp_AR:
fixes S :: 'a::euclidean_space set and $S^{\prime}::$ ' $b::$ euclidean_space set
assumes S retract_of UNIV S homeomorphic S^{\prime} closed S^{\prime}
shows S^{\prime} retract_of UNIV
using $A R_{-} i m p_{-} a b s o l u t e_{-} r e t r a c t _U N I V ~ a s s m s ~ r e t r a c t _o f _U N I V ~ b y ~ b l a s t ~$
lemma homeomorphic_compact_arness:
fixes S :: ' $a::$ euclidean_space set and $S^{\prime}::$ ' $b::$ euclidean_space set
assumes S homeomorphic S^{\prime}
shows compact $S \wedge S$ retract_of UNIV \longleftrightarrow compact $S^{\prime} \wedge S^{\prime}$ retract_of UNIV
using assms homeomorphic_compactness
by (metis compact_AR homeomorphic_AR_iff_AR)
lemma absolute_retract_from_Un_Int:
fixes S :: 'a::euclidean_space set

```
assumes \((S \cup T)\) retract_of UNIV \((S \cap T)\) retract_of UNIV closed \(S\) closed \(T\)
shows \(S\) retract_of UNIV
using \(A R_{-}\)from_Un_Int assms retract_of_UNIV by auto
lemma ENR_from_Un_Int_gen:
    fixes \(S\) :: 'a::euclidean_space set
    assumes closedin (top_of_set \((S \cup T)) S\) closedin (top_of_set \((S \cup T)) T E N R(S\)
\(\cup T) \operatorname{ENR}(S \cap T)\)
    shows ENR S
    by (meson ANR_from_Un_Int_local ANR_imp_neighbourhood_retract ENR_ANR
ENR_neighborhood_retract assms)
lemma \(E N R_{-}\)from_Un_Int:
    fixes \(S\) :: 'a::euclidean_space set
    assumes closed \(S\) closed \(T \operatorname{ENR}(S \cup T) \operatorname{ENR}(S \cap T)\)
    shows ENR \(S\)
    by (meson ENR_from_Un_Int_gen assms closed_subset sup_ge1 sup_ge2)
lemma ENR_finite_Union_convex_closed:
    fixes \(\mathcal{T}\) :: ' \(a:\) :euclidean_space set set
    assumes \(\mathcal{T}\) : finite \(\mathcal{T}\) and clo: \(\bigwedge C . C \in \mathcal{T} \Longrightarrow\) closed \(C\) and con: \(\bigwedge C . C \in \mathcal{T}\)
\(\Longrightarrow\) convex \(C\)
    shows \(E N R(\bigcup \mathcal{T})\)
    by (simp add: ENR_ANR ANR_finite_Union_convex_closed \(\mathcal{T}\) clo closed_Union
closed_imp_locally_compact con)
lemma finite_imp_ENR:
    fixes \(S\) :: 'a::euclidean_space set
    shows finite \(S \Longrightarrow E N R S\)
    by (simp add: ENR_ANR finite_imp_ANR finite_imp_closed closed_imp_locally_compact)
lemma ENR_insert:
    fixes \(S\) :: 'a::euclidean_space set
    assumes closed \(S\) ENR \(S\)
    shows ENR(insert a \(S\) )
proof -
    have \(E N R(\{a\} \cup S)\)
    by (metis ANR_insert ENR_ANR Un_commute Un_insert_right assms closed_imp_locally_compact
closed_insert sup_bot_right)
    then show?thesis
        by auto
qed
lemma ENR_path_component_ENR:
    fixes \(S\) :: 'a::euclidean_space set
    assumes ENR \(S\)
    shows \(\operatorname{ENR}\) (path_component_set \(S x\) )
```

by (metis ANR_imp_locally_path_connected ENR_empty ENR_imp_ANR ENR_openin assms
locally_path_connected_2 openin_subtopology_self path_component_eq_empty)

6.40.4 Finally, spheres are ANRs and ENRs

```
lemma absolute_retract_homeomorphic_convex_compact:
    fixes S :: 'a::euclidean_space set and U :: 'b::euclidean_space set
    assumes S homeomorphic US}\not={}S\subseteqT convex U compact U
    shows S retract_of T
    by (metis UNIV_I assms compact_AR convex_imp_AR homeomorphic_AR_iff_AR
homeomorphic_compactness homeomorphic_empty(1) retract_of_subset subsetI)
lemma frontier_retract_of_punctured_universe:
    fixes S :: 'a::euclidean_space set
    assumes convex S bounded Sa}\in\mathrm{ interior S
    shows (frontier S) retract_of (-{a})
    using rel_frontier_retract_of_punctured_affine_hull
    by (metis Compl_eq_Diff_UNIV affine_hull_nonempty_interior assms empty_iff
rel_frontier_frontier rel_interior_nonempty_interior)
lemma sphere_retract_of_punctured_universe_gen:
    fixes a :: 'a::euclidean_space
    assumes b \in ball a r
    shows sphere a r retract_of (- {b})
proof -
    have frontier (cball a r) retract_of (- {b})
        using assms frontier_retract_of_punctured_universe interior_cball by blast
    then show ?thesis
        by simp
qed
lemma sphere_retract_of_punctured_universe:
    fixes a :: 'a::euclidean_space
    assumes 0<r
    shows sphere a r retract_of (-{a})
    by (simp add: assms sphere_retract_of_punctured_universe_gen)
lemma ENR_sphere:
    fixes a :: 'a::euclidean_space
    shows ENR(sphere a r)
proof (cases 0<r)
    case True
    then have sphere a r retract_of -{a}
        by (simp add: sphere_retract_of_punctured_universe)
    with open_delete show ?thesis
        by (auto simp: ENR_def)
next
    case False
```

```
    then show ?thesis
        using finite_imp_ENR
    by (metis finite_insert infinite_imp_nonempty less_linear sphere_eq_empty sphere_trivial)
qed
corollary ANR_sphere:
    fixes a :: 'a::euclidean_space
    shows ANR(sphere a r)
    by (simp add: ENR_imp_ANR ENR_sphere)
```


6.40.5 Spheres are connected, etc

```
lemma locally_path_connected_sphere_gen:
fixes \(S\) :: 'a::euclidean_space set
assumes bounded \(S\) and convex \(S\)
shows locally path_connected (rel_frontier S)
proof (cases rel_interior \(S=\{ \}\) )
case True
with assms show ?thesis
by (simp add: rel_interior_eq_empty)
next
case False
then obtain \(a\) where \(a: a \in\) rel_interior \(S\)
by blast
show ?thesis
proof (rule retract_of_locally_path_connected)
show locally path_connected (affine hull \(S-\{a\}\) )
by (meson convex_affine_hull convex_imp_locally_path_connected locally_open_subset
openin_delete openin_subtopology_self)
show rel_frontier \(S\) retract_of affine hull \(S-\{a\}\)
using a assms rel_frontier_retract_of_punctured_affine_hull by blast
qed
qed
lemma locally_connected_sphere_gen:
fixes \(S\) :: 'a::euclidean_space set
assumes bounded \(S\) and convex \(S\)
shows locally connected (rel_frontier \(S\) )
by (simp add: ANR_imp_locally_connected ANR_rel_frontier_convex assms)
lemma locally_path_connected_sphere:
fixes \(a\) :: ' \(a::\) euclidean_space
shows locally path_connected (sphere a r)
using ENR_imp_locally_path_connected ENR_sphere by blast
lemma locally_connected_sphere:
fixes \(a\) :: 'a::euclidean_space
shows locally connected(sphere a r)
using ANR_imp_locally_connected ANR_sphere by blast
```


6.40.6 Borsuk homotopy extension theorem

It's only this late so we can use the concept of retraction, saying that the domain sets or range set are ENRs.
theorem Borsuk_homotopy_extension_homotopic:
fixes f :: 'a::euclidean_space \Rightarrow ' $b::$ euclidean_space
assumes cloTS: closedin (top_of_set T) S
and anr: $(A N R S \wedge A N R T) \vee A N R U$
and contf: continuous_on $T f$
and $f^{\prime} T \subseteq U$
and homotopic_with_canon $(\lambda x$. True) $S U f g$
obtains g^{\prime} where homotopic_with_canon (λx. True) TUf g^{\prime}
continuous_on $T g^{\prime}$ image $g^{\prime} T \subseteq U$
$\bigwedge x . x \in S \Longrightarrow g^{\prime} x=g x$
proof -
have $S \subseteq T$ using assms closedin_imp_subset by blast
obtain h where conth: continuous_on $(\{0 . .1\} \times S) h$ and him: h ' $(\{0 . .1\} \times S) \subseteq U$ and $[$ simp $]: \bigwedge x . h(0, x)=f x \bigwedge x . h(1::$ real, $x)=g x$
using assms by (auto simp: homotopic_with_def)
define h^{\prime} where $h^{\prime} \equiv \lambda z$. if snd $z \in S$ then $h z$ else $(f \circ$ snd $) z$
define B where $B \equiv\{0::$ real $\} \times T \cup\{0 . .1\} \times S$
have clo0T: closedin (top_of_set $(\{0 . .1\} \times T))(\{0::$ real $\} \times T)$ by (simp add: Abstract_Topology.closedin_Times)
moreover have cloT1S: closedin (top_of_set $(\{0 . .1\} \times T))(\{0 . .1\} \times S)$ by (simp add: Abstract_Topology.closedin_Times assms)
ultimately have clo0TB:closedin (top_of_set $(\{0 . .1\} \times T)) B$ by (auto simp: B_def)
have cloBS: closedin (top_of_set $B)(\{0 . .1\} \times S)$
by (metis (no_types) Un_subset_iff B_def closedin_subset_trans [OF cloT1S]
clo0TB closedin_imp_subset closedin_self)
moreover have cloBT: closedin (top_of_set B) $(\{0\} \times T)$
using $\langle S \subseteq T\rangle$ closedin_subset_trans [OF clo0T]
by (metis B_def Un_upper1 clo0TB closedin_closed inf_le1)
moreover have continuous_on $(\{0\} \times T)(f \circ$ snd $)$
proof (rule continuous_intros)+
show continuous_on $($ snd ' $(\{0\} \times T)) f$
by (simp add: contf)
qed
ultimately have continuous_on $(\{0 . .1\} \times S \cup\{0\} \times T)(\lambda x$. if snd $x \in S$ then
$h x$ else $(f \circ$ snd $) x$)
by (auto intro!: continuous_on_cases_local conth simp: B_def Un_commute [of
$\{0\} \times T])$
then have conth ${ }^{\prime}$: continuous_on $B h^{\prime}$
by (simp add: h^{\prime} _def B_{-}def Un_commute $[$of $\{0\} \times T]$)
have image $h^{\prime} B \subseteq U$
using $\langle f$ ' $T \subseteq U\rangle$ him by (auto simp: h^{\prime} _def B_{-}def)
obtain $V k$ where $B \subseteq V$ and opeTV: openin (top_of_set $(\{0 . .1\} \times T)) V$ and contk: continuous_on $V k$ and $k i m: k^{\prime} V \subseteq U$

```
    and keq: \bigwedgex. x B B\Longrightarrowkx= h'x
    using anr
    proof
    assume ST:ANR S\wedgeANR T
    have eq: ({0}\timesT\cap{0..1}\timesS)={0::real }}\times
        using \langleS\subseteqT\rangle by auto
    have ANR B
        unfolding B_def
    proof (rule ANR_closed_Un_local)
        show closedin (top_of_set ({0} }\timesT\cup{0..1}\timesS))({0::real} > T
        by (metis cloBT B_def)
        show closedin (top_of_set ({0} }\timesT\cup{0..1}\timesS))({0..1::real} < S)
            by (metis Un_commute cloBS B_def)
    qed (simp_all add: ANR_Times convex_imp_ANR ANR_singleton ST eq)
    note Vk = that
    have *: thesis if openin (top_of_set ({0..1::real} }\timesT))
                    retraction V Br for Vr
    proof -
        have continuous_on V ( }\mp@subsup{h}{}{\prime}\circr
            using conth' continuous_on_compose retractionE that(2) by blast
            moreover have ( }\mp@subsup{h}{}{\prime}\circr\mathrm{ )' }V\subseteq
                by (metis <h' ' B\subseteqU` image_comp retractionE that(2))
        ultimately show ?thesis
            using Vk [of V h'\circr] by (metis comp_apply retraction that)
    qed
    show thesis
        by (meson * ANR_imp_neighbourhood_retract 〈ANR B〉 clo0TB retract_of_def)
    next
    assume ANR U
    with ANR_imp_absolute_neighbourhood_extensor \langleh'' B\subseteqU` clo0TB conth'
that
    show ?thesis by blast
    qed
    define S' where S' }\equiv{\mp@code{\mp@subsup{S}{}{\prime}.\existsu::real. u }\in{0..1}\wedge(u,x::'a)\in{0..1}\timesT
V}
    have closedin (top_of_set T) S'
    unfolding S'_def using closedin_self opeTV
    by (blast intro: closedin_compact_projection)
    have }\mp@subsup{S}{}{\prime}\mp@subsup{}{_}{\prime}def: S' = {x. \existsu::real. (u, x::'a) \in{0..1} > T-V
    by (auto simp: S '_def)
    have cloTS': closedin (top_of_set T) S'
    using }\mp@subsup{S}{}{\prime
    have S\cap S'={}
    using }\mp@subsup{S}{}{\prime}_\mathrm{ def B_def }\langleB\subseteqV\rangle\mathrm{ by force
    obtain a ::' 'a m real where conta: continuous_on T a
        and }\x.x\inT\Longrightarrowax\in\mathrm{ closed_segment 10
        and a1: \bigwedgex.x 位\Longrightarrowax=1
        and a0: \bigwedgex. x \in S'\Longrightarrowax=0
    by (rule Urysohn_local [OF cloTS cloTS ' «S \cap S'={}`, of 1 0], blast)
```

```
    then have ain: \(\bigwedge x . x \in T \Longrightarrow a x \in\{0 . .1\}\)
        using closed_segment_eq_real_ivl by auto
    have \(\operatorname{in} V:(u * a t, t) \in V\) if \(t \in T 0 \leq u u \leq 1\) for \(t u\)
    proof (rule ccontr)
    assume \((u * a t, t) \notin V\)
    with ain \([O F\langle t \in T\rangle]\) have \(a t=0\)
        apply simp
    by (metis (no_types, lifting) a0 DiffI \(S^{\prime}\) _def SigmaI atLeastAtMost_iff mem_Collect_eq
mult_le_one mult_nonneg_nonneg that)
    show False
        using \(B\) _def \(\langle(u * a t, t) \notin V\rangle\langle B \subseteq V\rangle\langle a t=0\rangle\) that by auto
    qed
    show ?thesis
    proof
    show hom: homotopic_with_canon ( \(\lambda x\). True) TUf \((\lambda x . k(a x, x))\)
    proof (simp add: homotopic_with, intro exI conjI)
        show continuous_on \((\{0 . .1\} \times T)\left(k \circ\left(\lambda z .\left(f s t z *_{R}(a \circ\right.\right.\right.\) snd \() z\), snd \(\left.\left.\left.z\right)\right)\right)\)
            apply (intro continuous_on_compose continuous_intros)
            apply (force intro: in V continuous_on_subset [OF contk] continuous_on_subset
[OF conta])+
                done
            show \(\left(k \circ\left(\lambda z .\left(f s t z *_{R}(a \circ\right.\right.\right.\) snd \() z\), snd \(\left.\left.\left.z\right)\right)\right) \cdot(\{0 . .1\} \times T) \subseteq U\)
                using in \(V\) kim by auto
            show \(\forall x \in T\). \(\left(k \circ\left(\lambda z .\left(f\right.\right.\right.\) st \(z *_{R}(a \circ\) snd \() z\), snd \(\left.\left.\left.z\right)\right)\right)(0, x)=f x\)
                by (simp add: B_def \(h^{\prime}\) _def keq)
            show \(\forall x \in T .\left(k \circ\left(\lambda z .\left(f s t z *_{R}(a \circ\right.\right.\right.\) snd \() z\), snd \(\left.\left.\left.z\right)\right)\right)(1, x)=k(a x, x)\)
                by auto
    qed
    show continuous_on \(T(\lambda x . k(a x, x))\)
        using homotopic_with_imp_continuous_maps [OF hom] by auto
    show \((\lambda x . k(a x, x))\) ' \(T \subseteq U\)
    proof clarify
        fix \(t\)
        assume \(t \in T\)
        show \(k(a t, t) \in U\)
        by (metis \(\langle t \in T\rangle\) image_subset_iff in V kim not_one_le_zero linear mult_cancel_right1)
    qed
    show \(\bigwedge x . x \in S \Longrightarrow k(a x, x)=g x\)
        by (simp add: B_def a1 \(h^{\prime} \_\)def keq)
    qed
qed
```

corollary nullhomotopic_into_ANR_extension:
fixes f :: 'a::euclidean_space \Rightarrow ' $b::$ euclidean_space
assumes closed S
and contf: continuous_on $S f$
and $A N R T$
and fim: f ' $S \subseteq T$

```
        and}S\not={
    shows ( }\exists\mathrm{ c. homotopic_with_canon ( }\lambdax.True)STf(\lambdax.c))
        (\existsg.continuous_on UNIV g^ range g\subseteqT^(\forallx\inS.gx=fx))
    (is ?lhs = ?rhs)
proof
    assume ?lhs
    then obtain c where c: homotopic_with_canon ( }\lambdax\mathrm{ . True) S T ( }\lambdax.c)
    by (blast intro: homotopic_with_symD)
    have closedin (top_of_set UNIV)S
        using 〈closed S` closed_closedin by fastforce
    then obtain g}\mathrm{ where continuous_on UNIV g range g}\subseteq
                    \x. x 
    proof (rule Borsuk_homotopy_extension_homotopic)
        show range ( }\lambdax.c)\subseteq
        using 〈S # {}` c homotopic_with_imp_subset1 by fastforce
    qed (use assms c in auto)
    then show ?rhs by blast
next
    assume ?rhs
    then obtain g}\mathrm{ where continuous_on UNIV g range g}\subseteqT\x.x\inS\Longrightarrowgx
fx
    by blast
    then obtain c where homotopic_with_canon ( }\lambdah.\mathrm{ True) UNIV T g ( }\lambdax.c
        using nullhomotopic_from_contractible [of UNIV g T] contractible_UNIV by
blast
    then have homotopic_with_canon ( }\lambdax.\mathrm{ True) ST T ( }\lambdax.c
        by (simp add: homotopic_from_subtopology)
    then show ?lhs
        by (force elim: homotopic_with_eq [of _ _ g \lambdax.c] simp:<\x. x \inS\Longrightarrowg x
= fx>)
qed
corollary nullhomotopic_into_rel_frontier_extension:
    fixes f :: 'a::euclidean_space = 'b::euclidean_space
    assumes closed S
        and contf:continuous_on S f
        and convex T bounded T
        and fim: f'S\subseteqrel_frontier T
        and S\not={}
    shows (\existsc.homotopic_with_canon ( }\lambdax.\mathrm{ True) S (rel_frontier T) f( }\lambdax.c))
                        (\existsg.continuous_on UNIV g^range g\subseteqrel_frontier T ^ (\forallx\inS.g x =
fx))
by (simp add: nullhomotopic_into_ANR_extension assms ANR_rel_frontier_convex)
corollary nullhomotopic_into_sphere_extension:
    fixes f :: 'a::euclidean_space }=>\mathrm{ ' 'b :: euclidean_space
    assumes closed S and contf:continuous_on S f
            and S\not={} and fim: f'S\subseteq sphere a r
        shows ((\existsc. homotopic_with_canon (\lambdax. True) S (sphere a r) f(\lambdax.c))\longleftrightarrow}
```

$(\exists g$. continuous＿on UNIV $g \wedge$ range $g \subseteq$ sphere a $r \wedge(\forall x \in S . g x=f$
x）））
（is ？lhs＝？rhs）
proof（cases $r=0$ ）
case True with fim show ？thesis
by（metis ANR＿sphere \langle closed $S\rangle\langle S \neq\{ \}\rangle$ contf nullhomotopic＿into＿ANR＿extension）
next
case False
then have eq：sphere a $r=$ rel＿frontier（cball a r ）by simp
show ？thesis
using fim nullhomotopic＿into＿rel＿frontier＿extension［OF 〈closed $S\rangle$ contf con－ vex＿cball bounded＿cball］
by（simp add：$\langle S \neq\{ \}\rangle$ eq）
qed
proposition Borsuk＿map＿essential＿bounded＿component：
fixes a ：：＇a ：：euclidean＿space
assumes compact S and $a \notin S$
shows bounded（connected＿component＿set $(-S) a) \longleftrightarrow$ $\neg(\exists$ c．homotopic＿with＿canon $(\lambda x$ ．True）$S($ sphere 01$)$
$\left.\left(\lambda x . \operatorname{inverse}(\operatorname{norm}(x-a)) *_{R}(x-a)\right)(\lambda x . c)\right)$
（is ？lhs＝？r hs）
proof（cases $S=\{ \}$ ）
case True then show ？thesis
by simp
next
case False
have closed S bounded S
using＜compact S 〉compact＿eq＿bounded＿closed by auto
have s01：$(\lambda x .(x-a) / R$ norm $(x-a))$＇$S \subseteq$ sphere 01
using $\langle a \notin S\rangle$ by clarsimp（metis dist＿eq＿0＿iff dist＿norm mult．commute right＿inverse）
have aincc：$a \in$ connected＿component＿set $(-S) a$
by（ simp add：$\langle a \notin S\rangle$ ）
obtain r where $r>0$ and $r: S \subseteq$ ball $0 r$
using bounded＿subset＿ballD 〈bounded S 〉 by blast
have \neg ？rhs $\longleftrightarrow \neg$ ？lhs
proof
assume notr：ᄀ？？rhs
have nog：$\ddagger g$ ．continuous＿on $(S \cup$ connected＿component＿set $(-S) a) g \wedge$
g＇$(S \cup$ connected＿component＿set $(-S) a) \subseteq$ sphere $01 \wedge$ $(\forall x \in S . g x=(x-a) / R \operatorname{norm}(x-a))$
if bounded（connected＿component＿set $(-S)$ a）
using non＿extensible＿Borsuk＿map［OF〈compact S〉componentsI＿aincc］〈a \notin
S ）that by auto
obtain g where range $g \subseteq$ sphere 01 continuous＿on UNIV g

$$
\bigwedge x . x \in S \Longrightarrow g x=(x-a) / R \operatorname{norm}(x-a)
$$

using notr
by（auto simp：nullhomotopic＿into＿sphere＿extension
［OF〈closed $S\rangle$ continuous＿on＿Borsuk＿map $[O F\langle a \notin S\rangle$ False s01］）

```
    with 〈a\not\inS\rangle show \neg ?lhs
        by (metis UNIV_I continuous_on_subset image_subset_iff nog subsetI)
    next
    assume \neg?lhs
    then obtain b where b:b\in connected_component_set (-S)a and r\leqnorm
b
            using bounded_iff linear by blast
    then have bnot: b\not\in ball 0 r
        by simp
    have homotopic_with_canon ( }\lambdax\mathrm{ . True) S (sphere 0 1) ( }\lambdax.(x-a)/R norm
(x-a))
                                    (\lambdax. (x-b)/R norm (x-b))
    proof -
        have path_component (-S) ab
        by (metis (full_types) <closed S` b mem_Collect_eq open_Compl open_path_connected_component)
        then show ?thesis
            using Borsuk_maps_homotopic_in_path_component by blast
    qed
    moreover
    obtain c where homotopic_with_canon ( }\lambdax.\mathrm{ True) (ball 0 r) (sphere 0 1)
                            (\lambdax. inverse (norm (x-b))*R}(x-b))(\lambdax.c
    proof (rule nullhomotopic_from_contractible)
        show contractible (ball (0::'a) r)
            by (metis convex_imp_contractible convex_ball)
        show continuous_on (ball 0 r) ( }\lambdax\mathrm{ . inverse(norm ( }x-b\mathrm{ )) *R (x-b))
            by (rule continuous_on_Borsuk_map [OF bnot])
        show ( }\lambdax.(x-b)/R norm (x-b))'ball 0r\subseteq sphere 0 1
            using bnot Borsuk_map_into_sphere by blast
    qed blast
    ultimately have homotopic_with_canon ( }\lambdax\mathrm{ . True) S (sphere 0 1) ( }\lambdax.(x
a)/R norm (x-a)) (\lambdax.c)
        by (meson homotopic_with_subset_left homotopic_with_trans r)
    then show \neg ?rhs
        by blast
    qed
    then show ?thesis by blast
qed
lemma homotopic_Borsuk_maps_in_bounded_component:
    fixes a :: ' a :: euclidean_space
    assumes compact S and a\not\inS\mathrm{ and }b\not\inS
        and boc: bounded (connected_component_set (-S) a)
        and hom: homotopic_with_canon (\lambdax. True)S (sphere 0 1)
            (\lambdax.(x-a)/R norm (x-a))
    shows connected_component (-S) ab
proof (rule ccontr)
    assume notcc: ᄀ connected_component (-S) a b
    let ?T = S \cup connected_component_set (-S)a
```

have $\ddagger g$ ．continuous＿on $(S \cup$ connected＿component＿set $(-S) a) g \wedge$ g＇$(S \cup$ connected＿component＿set $(-S) a) \subseteq$ sphere $01 \wedge$ $(\forall x \in S . g x=(x-a) / R \operatorname{norm}(x-a))$
by（simp add：$\langle a \notin S\rangle$ componentsI non＿extensible＿Borsuk＿map［OF〈compact $S\rangle-b o c])$
moreover obtain g where continuous＿on $(S \cup$ connected＿component＿set $(-S)$
a）g
$g^{\prime}(S \cup$ connected_component_set $(-S) a) \subseteq$ sphere 01
$\bigwedge x . x \in S \Longrightarrow g x=(x-a) / R$ norm $(x-a)$
proof（rule Borsuk＿homotopy＿extension＿homotopic）
show closedin（top＿of＿set？T）S
by（simp add：〈compact S 〉closed＿subset compact＿imp＿closed）
show continuous＿on？$T(\lambda x .(x-b) / R \operatorname{norm}(x-b))$
by（simp add：$\langle b \notin S\rangle$ notcc continuous＿on＿Borsuk＿map）
show $(\lambda x .(x-b) / R \operatorname{norm}(x-b))$＇？T \subseteq sphere 01
by（simp add：$\langle b \notin S\rangle$ notcc Borsuk＿map＿into＿sphere）
show homotopic＿with＿canon $(\lambda x$ ．True）S（sphere 0 1）
$(\lambda x .(x-b) / R \operatorname{norm}(x-b))(\lambda x .(x-a) / R \operatorname{norm}(x-a))$
by（simp add：hom homotopic＿with＿symD）
qed（auto simp：ANR＿sphere intro：that）
ultimately show False by blast

qed

lemma Borsuk＿maps＿homotopic＿in＿connected＿component＿eq：
fixes a ：：＇a ：：euclidean＿space
assumes S ：compact $S a \notin S b \notin S$ and 2：2 $\leq \operatorname{DIM}\left({ }^{\prime} a\right)$
shows（homotopic＿with＿canon $(\lambda x$ ．True）S（sphere 0 1）
$(\lambda x .(x-a) / R \operatorname{norm}(x-a))$
$(\lambda x .(x-b) / R \operatorname{norm}(x-b)) \longleftrightarrow$
connected＿component $(-S)$ a b）
（is？lhs＝？rhs）
proof
assume L ：？lhs
show ？rhs
proof（cases bounded（connected＿component＿set（－S）a））
case True
show ？thesis
by（rule homotopic＿Borsuk＿maps＿in＿bounded＿component［OF S True L］）
next
case not＿bo＿a：False
show ？thesis
proof（cases bounded（connected＿component＿set $(-S)$ b））
case True
show ？thesis
using homotopic＿Borsuk＿maps＿in＿bounded＿component［OF S］
by（simp add：L True assms connected＿component＿sym homotopic＿Borsuk＿maps＿in＿bounded＿compone homotopic＿with＿sym）
next

case False

then show ?thesis
using cobounded_unique_unbounded_component $\left[\begin{array}{lll}o f & S & a\end{array}\right]$ 〈compact S 〉
not_bo_a
by (auto simp: compact_eq_bounded_closed assms connected_component_eq_eq) qed
qed
next
assume R : ?rhs
then have path_component $(-S) a b$
using assms(1) compact_eq_bounded_closed open_Compl open_path_connected_component_set
by fastforce
then show? ?hs
by (simp add: Borsuk_maps_homotopic_in_path_component)
qed

6.40.7 More extension theorems

lemma extension_from_clopen:
assumes ope: openin (top_of_set S) T
and clo: closedin (top_of_set S) T
and contf: continuous_on $T f$ and fim: f ' $T \subseteq U$ and null: $U=\{ \} \Longrightarrow S$
$=\{ \}$
obtains g where continuous_on $S g g^{\prime} S \subseteq U \bigwedge x . x \in T \Longrightarrow g x=f x$
proof (cases $U=\{ \}$)
case True
then show?thesis
by (simp add: null that)
next
case False
then obtain a where $a \in U$
by auto
let $? g=\lambda x$. if $x \in T$ then $f x$ else a
have $S e q: S=T \cup(S-T)$
using clo closedin_imp_subset by fastforce
show ?thesis
proof
have continuous_on $(T \cup(S-T)) ? g$
using Seq clo ope by (intro continuous_on_cases_local) (auto simp: contf)
with Seq show continuous_on S?g
by metis
show ?g' $S \subseteq U$
using $\langle a \in U\rangle$ fim by auto
show $\bigwedge x, x \in T \Longrightarrow$? $g x=f x$ by auto
qed
qed
lemma extension＿from＿component：
fixes $f::{ }^{\prime} a$ ：：euclidean＿space \Rightarrow＇b ：：euclidean＿space
assumes S ：locally connected $S \vee$ compact S and ANR U
and $C: C \in$ components S and contf：continuous＿on $C f$ and fim：$f^{\text {＇}} C \subseteq U$
obtains g where continuous＿on $S g g^{\prime} S \subseteq U \bigwedge x . x \in C \Longrightarrow g x=f x$
proof－
obtain $T g$ where ope：openin（top＿of＿set S ）T and clo：closedin（top＿of＿set S ）T and $C \subseteq T$ and contg：continuous＿on $T g$ and gim：$g{ }^{'} T \subseteq U$ and $g f: \wedge x . x \in C \Longrightarrow g x=f x$
using S
proof
assume locally connected S
show ？thesis
by（metis C 〈locally connected $S\rangle$ openin＿components＿locally＿connected closedin＿component
contf fim order＿refl that）
next
assume compact S
then obtain $W g$ where $C \subseteq W$ and ope W ：openin（top＿of＿set S ）W
and contg：continuous＿on $W g$
and gim：$g{ }^{\prime} W \subseteq U$ and $g f: \bigwedge x . x \in C \Longrightarrow g x=f x$
using ANR＿imp＿absolute＿neighbourhood＿extensor［of U Cf l ］$C\langle A N R U\rangle$
closedin＿component contf fim by blast
then obtain V where open V and $V: W=S \cap V$
by（auto simp：openin＿open）
moreover have locally compact S
by（simp add：〈compact $S\rangle$ closed＿imp＿locally＿compact compact＿imp＿closed）
ultimately obtain K where ope K ：openin（top＿of＿set S ）K and compact K
$C \subseteq K K \subseteq V$
by（metis C Int＿subset＿iff 〈 $C \subseteq W$ 〉＜compact $S\rangle$ compact＿components Sura＿Bura＿clopen＿subset）
show ？thesis
proof
show closedin（top＿of＿set S）K
by（meson 〈compact K 〉（compact S 〉closedin＿compact＿eq opeK openin＿imp＿subset）
show continuous＿on $K g$
by（metis Int＿subset＿iff $V\langle K \subseteq V\rangle$ contg continuous＿on＿subset opeK
openin＿subtopology subset＿eq）
show g＇$K \subseteq U$
using $V\langle K \subseteq V\rangle$ gim opeK openin＿imp＿subset by fastforce
qed（use opeK gf $\langle C \subseteq K\rangle$ in auto）
qed
obtain h where continuous＿on $S h h^{\prime} S \subseteq U \bigwedge x . x \in T \Longrightarrow h x=g x$
using extension＿from＿clopen
by（metis C bot．extremum＿uniqueI clo contg gim fim image＿is＿empty in＿components＿nonempty ope）
then show ？thesis
by（metis $\langle C \subseteq T\rangle g f$ subset＿eq that）
qed

```
lemma tube_lemma:
    fixes \(S\) :: ' \(a::\) euclidean_space set and \(T::\) ' \(b::\) euclidean_space set
    assumes compact \(S\) and \(S: S \neq\{ \}(\lambda x .(x, a))\) ' \(S \subseteq U\)
        and ope: openin (top_of_set \((S \times T)) U\)
    obtains \(V\) where openin (top_of_set \(T) V a \in V S \times V \subseteq U\)
proof -
    let ? \(W=\{y . \exists x . x \in S \wedge(x, y) \in(S \times T-U)\}\)
    have \(U \subseteq S \times T\) closedin (top_of_set \((S \times T))(S \times T-U)\)
        using ope by (auto simp: openin_closedin_eq)
    then have closedin (top_of_set \(T\) ) ? \(W\)
        using 〈compact \(S\) 〉 closedin_compact_projection by blast
    moreover have \(a \in T-\) ? \(W\)
        using \(\langle U \subseteq S \times T\rangle S\) by auto
    moreover have \(S \times(T-\) ? \(W) \subseteq U\)
        by auto
    ultimately show ?thesis
    by (metis (no_types, lifting) Sigma_cong closedin_def that topspace_euclidean_subtopology)
qed
lemma tube_lemma_gen:
    fixes \(S\) :: 'a::euclidean_space set and \(T\) :: ' \(b::\) euclidean_space set
    assumes compact \(S S \neq\{ \} T \subseteq T^{\prime} S \times T \subseteq U\)
        and ope: openin (top_of_set \(\left.\left(S \times T^{\prime}\right)\right) U\)
    obtains \(V\) where openin (top_of_set \(\left.T^{\prime}\right) V T \subseteq V S \times V \subseteq U\)
proof -
    have \(\wedge x . x \in T \Longrightarrow \exists V\). openin (top_of_set \(T^{\prime}\) ) \(V \wedge x \in V \wedge S \times V \subseteq U\)
        using assms by (auto intro: tube_lemma [OF (compact \(S\) 〉])
    then obtain \(F\) where \(F: \wedge x . x \in T \Longrightarrow\) openin (top_of_set \(\left.T^{\prime}\right)(F x) \wedge x \in F\)
\(x \wedge S \times F x \subseteq U\)
        by metis
    show ?thesis
    proof
        show openin (top_of_set \(\left.T^{\prime}\right)\left(\bigcup\left(F^{\prime} T\right)\right)\)
        using \(F\) by blast
        show \(T \subseteq \bigcup\left(F^{\prime} T\right)\)
        using \(F\) by blast
        show \(S \times \bigcup\left(F^{\prime} T\right) \subseteq U\)
        using \(F\) by auto
    qed
qed
proposition homotopic_neighbourhood_extension:
    fixes \(f\) :: 'a::euclidean_space \(\Rightarrow\) 'b::euclidean_space
    assumes contf: continuous_on \(S f\) and fim: \(f\) ' \(S \subseteq U\)
        and contg: continuous_on \(S g\) and gim: \(g\) ' \(S \subseteq U\)
        and clo: closedin (top_of_set S) T
        and \(A N R U\) and hom: homotopic_with_canon ( \(\lambda x\). True) TUfg
    obtains \(V\) where \(T \subseteq V\) openin (top_of_set \(S\) ) \(V\)
```

```
            homotopic_with_canon ( }\lambdax.True) VUf
proof -
    have T\subseteqS
        using clo closedin_imp_subset by blast
    obtain }h\mathrm{ where conth: continuous_on ({0..1::real} }\timesT)
                and him: h' ({0..1} \timesT)\subseteqU
                and h0: \bigwedgex. h(0, x)=fx and h1: \bigwedgex. h(1, x)=gx
        using hom by (auto simp: homotopic_with_def)
    define }\mp@subsup{h}{}{\prime}\mathrm{ where }\mp@subsup{h}{}{\prime}\equiv\lambdaz\mathrm{ . if fst z}\in{0} then f(snd z
                else if fst z\in{1} then g(snd z)
                else h z
    let ?S0}={0::\mathrm{ real }}\timesS\mathrm{ and ?S1 = {1::real }}\times
    have continuous_on(?S0\cup(?S1\cup{0..1} 
        unfolding }\mp@subsup{h}{}{\prime
    proof (intro continuous_on_cases_local)
        show closedin (top_of_set (?S0 \cup(?S1 \cup {0..1} × T)))?S0
                closedin (top_of_set (?S1 \cup {0..1} }\timesT))?S
        using }\langleT\subseteqS\rangle\mathrm{ by (force intro: closedin_Times closedin_subset_trans [of {0..1}
* S])+
    show closedin (top_of_set (?S0\cup(?S1 \cup {0..1} > T)))(?S1\cup{0..1} > T)
                closedin (top_of_set (?S1 \cup{0..1} }\timesT))({0..1}\timesT
            using }\langleT\subseteqS\rangle\mathrm{ by (force intro: clo closedin_Times closedin_subset_trans [of
{0..1} }\timesS])
    show continuous_on (?S0) ( }\lambdax.f(snd x)
            by (intro continuous_intros continuous_on_compose2 [OF contf]) auto
    show continuous_on (?S1) ( }\lambdax.g(snd x)
            by (intro continuous_intros continuous_on_compose2 [OF contg]) auto
    qed (use h0 h1 conth in auto)
    then have continuous_on ({0,1}\timesS\cup({0..1} }\timesT))\mp@subsup{h}{}{\prime
        by (metis Sigma_Un_distrib1 Un_assoc insert_is_Un)
    moreover have h'`({0,1}\timesS\cup{0..1} }\timesT)\subseteq
        using fim gim him <T \subseteqS` unfolding }\mp@subsup{h}{}{\prime}_def by forc
    moreover have closedin (top_of_set ({0..1::real} }\timesS))({0,1}\timesS\cup{0..1::real
* T)
    by (intro closedin_Times closedin_Un clo) (simp_all add: closed_subset)
    ultimately
    obtain Wk where W: ({0,1} }\times\mathrm{ S) U({0..1} }\timesT)\subseteq
                and opeW:openin (top_of_set ({0..1} }\timesS))
                and contk:continuous_on W k
                and kim: k' W\subseteqU
                and }k\mp@subsup{h}{}{\prime}:\bigwedgex.x\in({0,1}\timesS)\cup({0..1}\timesT)\Longrightarrowkx=\mp@subsup{h}{}{\prime}
    by (metis ANR_imp_absolute_neighbourhood_extensor [OF〈ANR U\, of ({0,1}
*S)\cup({0..1} > T) h'{0..1} }\timesS]
    obtain T' where opeT': openin (top_of_set S) T'
                    and T\subseteq\mp@subsup{T}{}{\prime}}\mathrm{ and }TW:{0..1}\times\mp@subsup{T}{}{\prime}\subseteq
    using tube_lemma_gen [of {0..1::real} TS W] W〈T\subseteqS〉opeW by auto
    moreover have homotopic_with_canon ( }\lambdax\mathrm{ . True) T' Ufg
    proof (simp add: homotopic_with, intro exI conjI)
    show continuous_on ({0..1} }\times\mp@subsup{T}{}{\prime})
```

using $T W$ continuous_on_subset contk by auto
show k ' $\left(\{0 . .1\} \times T^{\prime}\right) \subseteq U$
using $T W$ kim by fastforce
have $T^{\prime} \subseteq S$
by (meson ope T^{\prime} subsetD openin_imp_subset)
then show $\forall x \in T^{\prime} . k(0, x)=f x \forall x \in T^{\prime} . k(1, x)=g x$
by (auto simp: $k h^{\prime} h^{\prime}{ }_{-} d e f$)
qed
ultimately show ?thesis
by (blast intro: that)
qed
Homotopy on a union of closed-open sets.
proposition homotopic_on_clopen_Union:
fixes \mathcal{F} :: 'a::euclidean_space set set
assumes $\wedge S . S \in \mathcal{F} \Longrightarrow$ closedin (top_of_set $(\bigcup \mathcal{F})$) S
and $\bigwedge S . S \in \mathcal{F} \Longrightarrow$ openin (top_of_set $(\bigcup \mathcal{F})) S$
and $\bigwedge S . S \in \mathcal{F} \Longrightarrow$ homotopic_with_canon (λx. True) $S T f g$
shows homotopic_with_canon $(\lambda x$. True $)(\bigcup \mathcal{F}) T f g$
proof -
obtain \mathcal{V} where $\mathcal{V} \subseteq \mathcal{F}$ countable \mathcal{V} and $e q U: \bigcup \mathcal{V}=\bigcup \mathcal{F}$
using Lindelof_openin assms by blast
show ?thesis
proof (cases $\mathcal{V}=\{ \}$)
case True
then show?thesis
by (metis Union_empty eqU homotopic_with_canon_on_empty)
next
case False
then obtain $V::$ nat \Rightarrow 'a set where V : range $V=\mathcal{V}$
using range_from_nat_into 〈countable \mathcal{V} 〉 by metis
with $\langle\mathcal{V} \subseteq \mathcal{F}\rangle$ have clo: $\bigwedge n$. closedin (top_of_set $(\bigcup \mathcal{F}))(V n)$
and ope: $\bigwedge n$. openin (top_of_set $(\bigcup \mathcal{F}))(V n)$
and hom: $\bigwedge n$. homotopic_with_canon (λx. True) (Vn)Tfg
using assms by auto
then obtain h where conth: $\bigwedge n$. continuous_on $(\{0 . .1:: r e a l\} \times V n)(h n)$ and him: $\bigwedge n . h n^{\prime}(\{0 . .1\} \times V n) \subseteq T$
and $h 0: \bigwedge n . \bigwedge x . x \in V n \Longrightarrow h n(0, x)=f x$
and $h 1: \bigwedge n . \bigwedge x . x \in V n \Longrightarrow h n(1, x)=g x$
by (simp add: homotopic_with) metis
have wop: $b \in V x \Longrightarrow \exists k . b \in V k \wedge(\forall j<k . b \notin V j)$ for $b x$
using nat_less_induct [where $P=\lambda i . b \notin V i]$ by meson
obtain ζ where cont: continuous_on $\left(\{0 . .1\} \times \bigcup\left(V^{\prime}\right.\right.$ UNIV $\left.)\right) \zeta$
and eq: $\bigwedge x i . \llbracket x \in\{0 . .1\} \times \bigcup\left(V^{\prime} U N I V\right) \cap$

$$
\{0 . .1\} \times(V i-(\bigcup m<i . V m)) \rrbracket \Longrightarrow \zeta x=h i x
$$

proof (rule pasting_lemma_exists)
let ? $X=$ top_of_set $(\{0 . .1::$ real $\} \times \bigcup($ range $V))$
show topspace? $X \subseteq(\bigcup i .\{0 . .1::$ real $\} \times(V i-(\bigcup m<i . V m)))$
by (force simp: Ball_def dest: wop)

```
    show openin (top_of_set ({0..1} }\\bigcup(V'UNIV))
            ({0..1::real} }\times(Vi-(\bigcupm<i.Vm))) for 
    proof (intro openin_Times openin_subtopology_self openin_diff)
    show openin (top_of_set (U(V'UNIV))) (V i)
        using ope V eqU by auto
    show closedin (top_of_set (U(V'UNIV))) (\bigcupm<i. V m)
        using V clo eqU by (force intro: closedin_Union)
    qed
    show continuous_map (subtopology ?X ({0..1} }\times(Vi-U(V'{..<i})))
euclidean (h i) for }
    by (auto simp add: subtopology_subtopology intro!: continuous_on_subset [OF
conth])
    show \\ijx. x topspace ?X \cap {0..1} }\times(Vi-(\bigcupm<i.Vm))\cap{0..1
\times (Vj-(\bigcupm<j.Vm))
                    "hix =hjx
            by clarsimp (metis lessThan_iff linorder_neqE_nat)
    qed auto
    show ?thesis
    proof (simp add: homotopic_with eqU [symmetric], intro exI conjI ballI)
        show continuous_on ({0..1} }\times\\cup\mathcal{V})
            using V eqU by (blast intro!: continuous_on_subset [OF cont])
            show \zeta`}({0..1}\times\bigcup\mathcal{V})\subseteq
            proof clarsimp
            fix }t:: real and y :: 'a and X :: 'a se
            assume y 
            then obtain k where }y\inVk\mathrm{ and j: }\forallj<k.y\not\inV
                by (metis image_iff V wop)
            with him t show }\zeta(t,y)\in
                by (subst eq) force+
            qed
            fix X y
            assume X\in\mathcal{V}y\inX
            then obtain k}\mathrm{ where }y\inVk\mathrm{ and j: }\forallj<k.y\not\inV
            by (metis image_iff V wop)
            then show }\zeta(0,y)=fy\mathrm{ and }\zeta(1,y)=g
            by (subst eq [where i=k]; force simp: h0 h1)+
        qed
    qed
qed
lemma homotopic_on_components_eq:
    fixes S ::' ' }::\mathrm{ euclidean_space set and T :: 'b :: euclidean_space set
    assumes S: locally connected S\vee compact S and ANR T
    shows homotopic_with_canon ( }\lambdax\mathrm{ . True) STfg }
                (continuous_on S f ^f'S\subseteqT^ continuous_on S g\wedgeg'S\subseteqT)^
                (\forallC\in components S. homotopic_with_canon ( }\lambdax\mathrm{ . True) C Tfgg)
        (is ?lhs \longleftrightarrow?C ^ ?rhs)
proof -
    have continuous_on S ff'S\subseteqT continuous_on Sgg'S\subseteqT if ?lhs
```

using homotopic＿with＿imp＿continuous homotopic＿with＿imp＿subset1 homotopic＿with＿imp＿subset2 that by blast＋
moreover have ？lhs \longleftrightarrow ？rhs
if contf：continuous＿on $S f$ and fim：f＇$S \subseteq T$ and contg：continuous＿on $S g$
and gim：g＇$S \subseteq T$
proof
assume ？lhs
with that show ？rhs
by（simp add：homotopic＿with＿subset＿left in＿components＿subset）
next
assume R ：？rhs
have $\exists U . C \subseteq U \wedge$ closedin（top＿of＿set S ）$U \wedge$
openin（top＿of＿set S ）$U \wedge$
homotopic＿with＿canon（ λx ．True）$U T f g$ if $C: C \in$ components S for
C
proof－
have $C \subseteq S$
by（simp add：in＿components＿subset that）
show ？thesis

using S

proof
assume locally connected S
show ？thesis
proof（intro exI conjI）
show closedin（top＿of＿set S）C
by（simp add：closedin＿component that）
show openin（top＿of＿set S）C
by（simp add：〈locally connected S 〉openin＿components＿locally＿connected
that）
show homotopic＿with＿canon（ λx ．True）$C T f g$
by（simp add：R that）
qed auto
next
assume compact S
have hom：homotopic＿with＿canon（ λx ．True）$C T f g$
using R that by blast
obtain U where $C \subseteq U$ and ope U ：openin（top＿of＿set S ）U
and hom：homotopic＿with＿canon（ λx ．True）UTfg
using homotopic＿neighbourhood＿extension［OF contf fim contg gim＿$\langle A N R$
T＞hom］
$\langle C \in$ components $S\rangle$ closedin＿component by blast
then obtain V where open V and $V: U=S \cap V$
by（auto simp：openin＿open）
moreover have locally compact S
by（simp add：〈compact S 〉closed＿imp＿locally＿compact compact＿imp＿closed）
ultimately obtain K where opeK：openin（top＿of＿set S ）K and compact
$K C \subseteq K K \subseteq V$
by（metis C Int＿subset＿iff Sura＿Bura＿clopen＿subset $\langle C \subseteq U\rangle\langle c o m p a c t ~ S\rangle$
compact＿components）

```
    show ?thesis
proof (intro exI conjI)
    show closedin (top_of_set S) K
    by (meson 〈compact K〉 <compact S` closedin_compact_eq opeK openin_imp_subset)
    show homotopic_with_canon (\lambdax. True) K T f g
    using V\langleK\subseteqV\rangle hom homotopic_with_subset_left opeK openin_imp_subset
by fastforce
            qed (use opeK \C\subseteqK` in auto)
        qed
    qed
    then obtain }\varphi\mathrm{ where }\varphi:\C.C\in\mathrm{ components S C}\subseteq\\varphi
                            and clo\varphi: \bigwedgeC.C components S\Longrightarrowclosedin (top_of_set S) (\varphiC)
                        and ope\varphi: \C.C components S\Longrightarrowopenin (top_of_set S) ( }\varphiC\mathrm{ )
                        and hom\varphi: \bigwedgeC.C\in components S\Longrightarrow homotopic_with_canon ( }\lambdax\mathrm{ .
True) (\varphi C)Tfg
            by metis
    have Seq:S=\bigcup(\varphi'components S)
    proof
            show S\subseteq\bigcup(\varphi'components S)
            by (metis Sup_mono Union_components \varphi imageI)
            show U(\varphi'components S)\subseteqS
            using ope\varphi openin_imp_subset by fastforce
    qed
    show ?lhs
            apply (subst Seq)
            using Seq clo\varphi оре\varphi hom\varphi by (intro homotopic_on_clopen_Union) auto
    qed
    ultimately show ?thesis by blast
qed
lemma cohomotopically_trivial_on_components:
fixes \(S\) ::' \(a\) :: euclidean_space set and \(T::\) ' \(b\) :: euclidean_space set
assumes \(S\) : locally connected \(S \vee\) compact \(S\) and \(A N R T\)
shows
( \(\forall f\) g. continuous_on \(S f \longrightarrow f\) 'S \(\subseteq T \longrightarrow\) continuous_on \(S g \longrightarrow g^{\prime} S \subseteq T\)
```

\qquad

```
homotopic_with_canon ( \(\lambda x\). True) STfg)
```


\longleftrightarrow

```
( \(\forall C \in\) components \(S\).
\(\forall f g\). continuous_on \(C f \longrightarrow f^{\prime} C \subseteq T \longrightarrow\) continuous_on \(C g \longrightarrow g{ }^{\prime} C \subseteq\)
\(T \longrightarrow\)
homotopic_with_canon ( \(\lambda x\). True) CTfg)
(is ? \(/ \mathrm{hs}=\) ? \(r\) rhs)
proof
assume \(L[\) rule_format \(]\) : ?lhs
show ?rhs
proof clarify
fix \(C f g\)
```

assume contf: continuous_on $C f$ and fim: $f^{\prime} C \subseteq T$
and contg: continuous_on $C g$ and gim: $g^{\prime} C \subseteq T$ and $C: C \in$ components
S
obtain f^{\prime} where contf': continuous_on $S f^{\prime}$ and f^{\prime} im: $f^{\prime} ' S \subseteq T$ and $f^{\prime} f$:
$\wedge x . x \in C \Longrightarrow f^{\prime} x=f x$
using extension_from_component [OF $S\langle A N R T\rangle C$ contf fim] by metis
obtain g^{\prime} where contg': continuous_on $S g^{\prime}$ and g^{\prime} im: $g^{\prime} \cdot S \subseteq T$ and $g^{\prime} g$:
$\wedge x . x \in C \Longrightarrow g^{\prime} x=g x$
using extension_from_component [OF S $\langle A N R T\rangle$ C contg gim] by metis
have homotopic_with_canon (λx. True) $C T f^{\prime} g^{\prime}$
using $L\left[\right.$ OF contf ${ }^{\prime} f^{\prime}$ im contg $g^{\prime} g^{\prime}$ im $]$ homotopic_with_subset_left C in_components_subset
by fastforce
then show homotopic_with_canon (λx. True) CTfg
using $f^{\prime} f$ g'g homotopic_with_eq by force
qed
next
assume R [rule_format]: ?rhs
show? ?hs
proof clarify
fix $f g$
assume contf: continuous_on $S f$ and fim: f ' $S \subseteq T$
and contg: continuous_on S g and gim: g ' $S \subseteq T$
moreover have homotopic_with_canon (λx. True) $C T f g$ if $C \in$ components
S for C
using R [OF that]
by (meson contf contg continuous_on_subset fim gim image_mono in_components_subset
order.trans that)
ultimately show homotopic_with_canon (λx. True) $S T f g$
by (subst homotopic_on_components_eq [OFS〈ANR T〉]) auto
qed
qed

6.40.8 The complement of a set and path-connectedness

Complement in dimension N i 1 of set homeomorphic to any interval in any dimension is (path-)connected. This naively generalizes the argument in Ryuji Maehara's paper "The Jordan curve theorem via the Brouwer fixed point theorem", American Mathematical Monthly 1984.
lemma unbounded_components_complement_absolute_retract:
fixes S :: 'a::euclidean_space set
assumes $C: C \in$ components $(-S)$ and S : compact $S A R S$
shows \neg bounded C
proof -
obtain y where y : $C=$ connected_component_set $(-S) y$ and $y \notin S$
using C by (auto simp: components_def)
have open $(-S)$
using S by (simp add: closed_open compact_eq_bounded_closed)
have S retract_of UNIV
using S compact＿AR by blast
then obtain r where contr：continuous＿on UNIV r and ontor：range $r \subseteq S$ and $r: \bigwedge x . x \in S \Longrightarrow r x=x$
by（auto simp：retract＿of＿def retraction＿def）
show ？thesis

proof

assume bounded C
have connected＿component＿set $(-S) y \subseteq S$
proof（rule frontier＿subset＿retraction）
show bounded（connected＿component＿set $(-S) y$ ）
using 〈bounded C 〉 y by blast
show frontier（connected＿component＿set $(-S) y) \subseteq S$
using C 〈compact $S\rangle$ compact＿eq＿bounded＿closed frontier＿of＿components＿closed＿complement
y by blast
show continuous＿on（closure（connected＿component＿set（－S）y））r
by（blast intro：continuous＿on＿subset［OF contr］）
qed（use ontor r in auto）
with $\langle y \notin S\rangle$ show False by force
qed
qed
lemma connected＿complement＿absolute＿retract：
fixes S ：：＇a：：euclidean＿space set
assumes S ：compact $S A R S$ and 2： $2 \leq \operatorname{DIM}\left(^{\prime} a\right)$
shows connected $(-S)$
proof－
have S retract＿of UNIV
using S compact＿AR by blast
show ？thesis
proof（clarsimp simp：connected＿iff＿connected＿component＿eq）
have \neg bounded（connected＿component＿set $(-S) x)$ if $x \notin S$ for x
by（meson Compl＿iff assms componentsI that unbounded＿components＿complement＿absolute＿retract）
then show connected＿component＿set $(-S) x=$ connected＿component＿set $(-$
S）y
if $x \notin S y \notin S$ for $x y$
using cobounded＿unique＿unbounded＿component［OF＿2］
by（metis 〈compact S 〉compact＿imp＿bounded double＿compl that）
qed
qed
lemma path＿connected＿complement＿absolute＿retract：
fixes S ：：＇a：：euclidean＿space set
assumes compact S AR S 2 $\leq \operatorname{DIM}\left({ }^{\prime} a\right)$
shows path＿connected $(-S)$
using connected＿complement＿absolute＿retract［OF assms］
using 〈compact S 〉compact＿eq＿bounded＿closed connected＿open＿path＿connected by
blast
theorem connected＿complement＿homeomorphic＿convex＿compact：

```
    fixes \(S\) :: 'a::euclidean_space set and \(T\) :: 'b::euclidean_space set
    assumes hom: \(S\) homeomorphic \(T\) and \(T\) : convex \(T\) compact \(T\) and \(2: 2 \leq\)
DIM ('a)
    shows connected \((-S)\)
proof (cases \(S=\{ \}\) )
    case True
    then show? thesis
        by (simp add: connected_UNIV)
next
    case False
    show ?thesis
    proof (rule connected_complement_absolute_retract)
        show compact \(S\)
            using (compact \(T\) 〉 hom homeomorphic_compactness by auto
        show \(A R S\)
        by (meson AR_ANR False (convex T) convex_imp_ANR convex_imp_contractible
hom homeomorphic_ANR_iff_ANR homeomorphic_contractible_eq)
    qed (rule 2)
qed
corollary path_connected_complement_homeomorphic_convex_compact:
    fixes \(S\) :: 'a::euclidean_space set and \(T\) :: 'b::euclidean_space set
    assumes hom: S homeomorphic \(T\) convex \(T\) compact \(T 2 \leq \operatorname{DIM}\left({ }^{\prime} a\right)\)
        shows path_connected ( \(-S\) )
    using connected_complement_homeomorphic_convex_compact [OF assms]
    using 〈compact \(T\) 〉 compact_eq_bounded_closed connected_open_path_connected hom
homeomorphic_compactness by blast
lemma path_connected_complement_homeomorphic_interval:
    fixes \(S\) :: 'a::euclidean_space set
    assumes \(S\) homeomorphic cbox ab2 \(2 \leq \operatorname{DIM}(' a)\)
    shows path_connected \((-S)\)
    using assms compact_cbox convex_box(1) path_connected_complement_homeomorphic_convex_compact
by blast
lemma connected_complement_homeomorphic_interval:
    fixes \(S\) :: 'a::euclidean_space set
    assumes \(S\) homeomorphic cbox ab \(2 \leq \operatorname{DIM}(' a)\)
    shows connected \((-S)\)
    using assms path_connected_complement_homeomorphic_interval path_connected_imp_connected
by blast
end
```


6．41 Extending Continous Maps，Invariance of Do－ main，etc

Ported from HOL Light（moretop．ml）by L C Paulson

```
theory Further_Topology
    imports Weierstrass_Theorems Polytope Complex_Transcendental Equivalence_Lebesgue_Henstock_Integ
Retracts
begin
```


6．41．1 A map from a sphere to a higher dimensional sphere is nullhomotopic

lemma spheremap＿lemma1：
fixes f ：：＇a：：euclidean＿space \Rightarrow＇$a::$ euclidean＿space
assumes subspace S subspace T and $\operatorname{dimST}: \operatorname{dim} S<\operatorname{dim} T$ and $S \subseteq T$ and diff＿f：f differentiable＿on sphere $01 \cap S$
shows f＇（sphere $01 \cap S) \neq$ sphere $01 \cap T$
proof
assume fim：f＇（sphere $01 \cap S)=$ sphere $01 \cap T$
have inS：$\wedge x . \llbracket x \in S ; x \neq 0 \rrbracket \Longrightarrow(x / R$ norm $x) \in S$ using subspace＿mul 〈subspace S by blast
have subS01：$(\lambda x . x / R$ norm $x)$＇$(S-\{0\}) \subseteq$ sphere $01 \cap S$ using 〈subspace S 〉 subspace＿mul by fastforce
then have diff＿f＇：f differentiable＿on $(\lambda x . x / R$ norm $x)$＇$(S-\{0\})$ by（rule differentiable＿on＿subset［OF diff＿f］）
define g where $g \equiv \lambda x$ ．norm $x *_{R} f$（inverse（norm $\left.x\right) *_{R} x$ ）
have gdiff：g differentiable＿on $S-\{0\}$
unfolding $g_{-} d e f$
by（rule diff＿f＇derivative＿intros differentiable＿on＿compose［where $f=f] \mid$ force $)+$
have geq：$g '(S-\{0\})=T-\{0\}$
proof
have $\bigwedge u . \llbracket u \in S ;$ norm $u *_{R} f(u / R$ norm $u) \notin T \rrbracket \Longrightarrow u=0$
by（metis（mono＿tags，lifting）DiffI subS01 subspace＿mul［OF〈subspace T〉］
fim image＿subset＿iff inf＿le2 singletonD）
then have $g^{\prime}(S-\{0\}) \subseteq T$
using g_{-}def by blast
moreover have $g^{\prime}(S-\{0\}) \subseteq U N I V-\{0\}$
proof（clarsimp simp：g＿def）
fix y
assume $y \in S$ and f0：$f(y / R$ norm $y)=0$
then have $y \neq 0 \Longrightarrow y / R$ norm $y \in$ sphere $01 \cap S$
by（auto simp：subspace＿mul［OF〈subspace $S\rangle]$ ）
then show $y=0$
by（metis fim f0 Int＿iff image＿iff mem＿sphere＿0 norm＿eq＿zero zero＿neq＿one）
qed
ultimately show $g^{\prime}(S-\{0\}) \subseteq T-\{0\}$
by auto
next
have $*$ ：sphere $01 \cap T \subseteq f^{\prime}($ sphere $01 \cap S)$
using fim by（simp add：image＿subset＿iff）
have $x \in\left(\lambda x\right.$ ．norm $x *_{R} f(x / R$ norm $\left.x)\right)$＇$(S-\{0\})$
if $x \in T x \neq 0$ for x

```
    proof -
    have \(x / R\) norm \(x \in T\)
        using «subspace \(T\) 〉 subspace_mul that by blast
    then obtain \(u\) where \(u: f u \in T x /_{R}\) norm \(x=f u\) norm \(u=1 u \in S\)
        using \(*[\) THEN subsetD, of \(x / R\) norm \(x]\langle x \neq 0\rangle\) by auto
    with that have [simp]: norm \(x *_{R} f u=x\)
        by (metis divideR_right norm_eq_zero)
    moreover have norm \(x *_{R} u \in S-\{0\}\)
        using «subspace \(S\) 〉subspace_scale that(2) \(u\) by auto
    with \(u\) show ?thesis
        by (simp add: image_eqI [where \(\left.x=\operatorname{norm} x *_{R} u\right]\) )
    qed
    then have \(T-\{0\} \subseteq\left(\lambda x\right.\). norm \(\left.x *_{R} f(x / R \operatorname{norm} x)\right)\) ' \((S-\{0\})\)
        by force
    then show \(T-\{0\} \subseteq g^{\prime}(S-\{0\})\)
    by (simp add: g_def)
qed
define \(T^{\prime}\) where \(T^{\prime} \equiv\{y . \forall x \in T\). orthogonal \(x y\}\)
have subspace \(T^{\prime}\)
    by (simp add: subspace_orthogonal_to_vectors \(T^{\prime}\) _def)
have \(\operatorname{dim}_{-} e q: \operatorname{dim} T^{\prime}+\operatorname{dim} T=\operatorname{DIM}\left({ }^{\prime} a\right)\)
    using dim_subspace_orthogonal_to_vectors [of T UNIV] 〈subspace T〉
    by (simp add: \(T^{\prime}\) _def)
have \(\exists v 1\) 22. v1 \(\in \operatorname{span} T \wedge(\forall w \in \operatorname{span} T\). orthogonal \(v 2 w) \wedge x=v 1+v 2\)
for \(x\)
    by (force intro: orthogonal_subspace_decomp_exists [of T x])
    then obtain \(p 1\) p2 where p1span: \(p 1 x \in \operatorname{span} T\)
                and \(\Lambda w . w \in \operatorname{span} T \Longrightarrow\) orthogonal \((p 2 x) w\)
                and eq: p1 \(x+p 2 x=x\) for \(x\)
    by metis
    then have \(p 1: \bigwedge z . p 1 z \in T\) and ortho: \(\bigwedge w . w \in T \Longrightarrow\) orthogonal \((p 2 x) w\)
for \(x\)
    using span_eq_iff 〈subspace \(T\rangle\) by blast+
    then have p2: \(\bigwedge z . p 2 z \in T^{\prime}\)
    by (simp add: \(T^{\prime}\) _def orthogonal_commute)
    have p12_eq: \(\bigwedge x y . \llbracket x \in T ; y \in T \rrbracket \Longrightarrow p 1(x+y)=x \wedge p 2(x+y)=y\)
    proof (rule orthogonal_subspace_decomp_unique [OF eq p1span, where \(T=T\) ])
    show \(\bigwedge x y . \llbracket x \in T ; y \in T \rrbracket \Longrightarrow p 2(x+y) \in \operatorname{span} T^{\prime}\)
        using span_eq_iff p2 <subspace \(T^{\prime}\) 〉 by blast
    show \(\bigwedge a b . \llbracket a \in T ; b \in T^{\rrbracket} \rrbracket\) orthogonal \(a b\)
        using \(T^{\prime}\) _def by blast
    qed (auto simp: span_base)
    then have \(\wedge c x . p 1\left(c *_{R} x\right)=c *_{R} p 1 x \wedge p 2\left(c *_{R} x\right)=c *_{R} p 2 x\)
    proof -
    fix \(c\) :: real and \(x::{ }^{\prime} a\)
    have \(f 1\) : \(c *_{R} x=c *_{R} p 1 x+c *_{R} p 2 x\)
        by (metis eq pth_6)
    have f2: \(c *_{R} p 2 x \in T^{\prime}\)
        by (simp add: «subspace \(T^{\prime} 〉\) p2 subspace_scale)
```

```
    have \(c *_{R} p 1 x \in T\)
    by (metis (full_types) assms(2) p1span span_eq_iff subspace_scale)
    then show \(p 1\left(c *_{R} x\right)=c *_{R} p 1 x \wedge p 2\left(c *_{R} x\right)=c *_{R} p 2 x\)
    using f2 f1 p12_eq by presburger
    qed
    moreover have lin_add: \(\wedge x y \cdot p 1(x+y)=p 1 x+p 1 y \wedge p 2(x+y)=p 2\)
\(x+p 2 y\)
    proof (rule orthogonal_subspace_decomp_unique [OF_p1span, where \(T=T\) ])
        show \(\bigwedge x y \cdot p 1(x+y)+p 2(x+y)=p 1 x+p 1 y+(p 2 x+p 2 y)\)
            by (simp add: add.assoc add.left_commute eq)
        show \(\bigwedge a b . \llbracket a \in T ; b \in T^{\top} \rrbracket\) orthogonal \(a b\)
            using \(T^{\prime}\) _def by blast
    qed (auto simp: p1span p2 span_base span_add)
    ultimately have linear p1 linear p2
        by unfold_locales auto
    have \(g\) differentiable_on \(p 1\) ' \(\left\{x+y \mid x y . x \in S-\{0\} \wedge y \in T^{\prime}\right\}\)
        using p12_eq \(\langle S \subseteq T\rangle\) by (force intro: differentiable_on_subset [OF gdiff])
    then have \((\lambda z . g(p 1 z))\) differentiable_on \(\{x+y \mid x y . x \in S-\{0\} \wedge y \in T\}\)
        by (rule differentiable_on_compose [OF linear_imp_differentiable_on \([O F\) 〈linear
p1〉]])
    then have diff: \((\lambda x . g(p 1 x)+p 2 x)\) differentiable_on \(\{x+y \mid x y . x \in S-\)
\(\left.\{0\} \wedge y \in T^{\prime}\right\}\)
            by (intro derivative_intros linear_imp_differentiable_on [OF 〈linear p2〉])
    have \(\operatorname{dim}\left\{x+y \mid x y . x \in S-\{0\} \wedge y \in T^{\prime}\right\} \leq \operatorname{dim}\{x+y \mid x y . x \in S \wedge y\)
\(\left.\in T^{\prime}\right\}\)
        by (blast intro: dim_subset)
    also have \(\ldots=\operatorname{dim} S+\operatorname{dim} T^{\prime}-\operatorname{dim}\left(S \cap T^{\prime}\right)\)
        using dim_sums_Int [OF <subspace \(S\rangle\left\langle\right.\) subspace \(\left.T^{\prime}\right\rangle\) ]
        by (simp add: algebra_simps)
    also have \(\ldots<\operatorname{DIM}\left({ }^{\prime} a\right)\)
        using dimST dim_eq by auto
    finally have neg: negligible \(\left\{x+y \mid x y . x \in S-\{0\} \wedge y \in T^{\prime}\right\}\)
        by (rule negligible_lowdim)
    have negligible \(((\lambda x . g(p 1 x)+p 2 x) '\{x+y \mid x y . x \in S-\{0\} \wedge y \in T\})\)
            by (rule negligible_differentiable_image_negligible [OF order_refl neg diff])
    then have negligible \(\left\{x+y \mid x y . x \in g^{\prime}(S-\{0\}) \wedge y \in T^{\prime}\right\}\)
    proof (rule negligible_subset)
        have \(\llbracket t^{\prime} \in T^{\prime} ; s \in S ; s \neq 0 \rrbracket\)
                \(\Longrightarrow g s+t^{\prime} \in(\lambda x \cdot g(p 1 x)+p 2 x) \cdot\)
                    \(\left\{x+t^{\prime} \mid x t^{\prime} . x \in S \wedge x \neq 0 \wedge t^{\prime} \in T^{\prime}\right\}\) for \(t^{\prime} s\)
            using \(\langle S \subseteq T\rangle\) p12_eq by (rule_tac \(x=s+t^{\prime}\) in image_eqI) auto
        then show \(\left\{x+y \mid x y . x \in g^{\prime}(S-\{0\}) \wedge y \in T^{\prime}\right\}\)
                        \(\subseteq(\lambda x \cdot g(p 1 x)+p 2 x)^{\prime}\left\{x+y \mid x y \cdot x \in S-\{0\} \wedge y \in T^{\prime}\right\}\)
        by auto
    qed
    moreover have \(-T^{\prime} \subseteq\left\{x+y \mid x y . x \in g^{\prime}(S-\{0\}) \wedge y \in T^{\prime}\right\}\)
    proof clarsimp
        fix \(z\) assume \(z \notin T^{\prime}\)
        show \(\exists x y . z=x+y \wedge x \in g^{\prime}(S-\{0\}) \wedge y \in T^{\prime}\)
```

```
    by (metis Diff_iff \(\left\langle z \notin T^{\prime}\right.\) ’add.left_neutral eq geq p1 p2 singletonD)
qed
ultimately have negligible \(\left(-T^{\prime}\right)\)
    using negligible_subset by blast
    moreover have negligible \(T^{\prime}\)
    using negligible_lowdim
    by (metis add.commute assms(3) diff_add_inverse2 diff_self_eq_0 dim_eq le_add1
le_antisym linordered_semidom_class.add_diff_inverse not_less0)
    ultimately have negligible \(\left(-T^{\prime} \cup T^{\prime}\right)\)
        by (metis negligible_Un_eq)
    then show False
    using negligible_Un_eq non_negligible_UNIV by simp
qed
lemma spheremap_lemma2:
    fixes \(f\) :: 'a::euclidean_space \(\Rightarrow{ }^{\prime} a:\) :euclidean_space
    assumes \(S T\) : subspace \(S\) subspace \(T \operatorname{dim} S<\operatorname{dim} T\)
        and \(S \subseteq T\)
        and contf: continuous_on (sphere \(01 \cap S\) ) \(f\)
        and fim: \(f\) ' (sphere \(01 \cap S) \subseteq\) sphere \(01 \cap T\)
    shows \(\exists\) c. homotopic_with_canon ( \(\lambda x\). True) (sphere \(01 \cap S\) ) (sphere \(01 \cap\)
T) \(f(\lambda x, c)\)
proof -
    have \([\) simp \(]: \bigwedge x . \llbracket\) norm \(x=1 ; x \in S \rrbracket \Longrightarrow \operatorname{norm}(f x)=1\)
        using fim by (simp add: image_subset_iff)
    have compact (sphere \(01 \cap S\) )
    by (simp add: 〈subspace \(S\) 〉 closed_subspace compact_Int_closed)
    then obtain \(g\) where \(p f g\) : polynomial_function \(g\) and gim: \(g\) ' (sphere \(01 \cap S)\)
\(\subseteq T\)
                            and g12: \(\bigwedge x . x \in\) sphere \(01 \cap S \Longrightarrow \operatorname{norm}(f x-g x)<1 / 2\)
    apply (rule Stone_Weierstrass_polynomial_function_subspace [OF _ contf_ <subspace
\(T\), of \(1 / 2]\) )
    using fim by auto
    have \(g n z: g x \neq 0\) if \(x \in\) sphere \(01 \cap S\) for \(x\)
    proof -
    have norm \((f x)=1\)
        using fim that by (simp add: image_subset_iff)
    then show ?thesis
        using 912 [OF that] by auto
    qed
    have diffg: g differentiable_on sphere \(01 \cap S\)
    by (metis pfg differentiable_on_polynomial_function)
    define \(h\) where \(h \equiv \lambda x\). inverse(norm \((g x)) *_{R} g x\)
    have \(h\) : \(x \in\) sphere \(01 \cap S \Longrightarrow h x \in\) sphere \(01 \cap T\) for \(x\)
    unfolding \(h_{-} d e f\)
    using gnz [of \(x\) ]
    by (auto simp: subspace_mul [OF 〈subspace T〉] subsetD [OF gim])
    have diffh: \(h\) differentiable_on sphere \(01 \cap S\)
```

```
    unfolding h_def using gnz
    by (fastforce intro: derivative_intros diffg differentiable_on_compose [OF diffg])
    have homfg: homotopic_with_canon (\lambdaz.True) (sphere 0 1 \capS)(T-{0})fg
    proof (rule homotopic_with_linear [OF contf])
    show continuous_on (sphere 0 1 \capS)g
        using pfg by (simp add:differentiable_imp_continuous_on diffg)
    next
    have nonOfg: 0 & closed_segment ( fx) (gx) if norm x = 1 x f S for x
    proof -
        have fx f sphere 0 1
            using fim that by (simp add: image_subset_iff)
            moreover have norm(fx-gx)<1/2
            using g12 that by auto
            ultimately show ?thesis
                by (auto simp: norm_minus_commute dest: segment_bound)
    qed
    show closed_segment (fx)(gx)\subseteqT-{0} if x\in sphere 0 1\capS for x
    proof -
        have convex T
            by (simp add:<subspace T〉 subspace_imp_convex)
            then have convex hull {f x,gx}\subseteqT
            by (metis IntD2 closed_segment_subset fim gim image_subset_iff segment_convex_hull
that)
            then show ?thesis
            using that nonOfg segment_convex_hull by fastforce
        qed
    qed
    obtain d where d:d ( sphere 0 1 \capT) - h'(sphere 0 1 \cap S)
        using h spheremap_lemma1 [OF ST \langleS \subseteqT\rangle diffh] by force
    then have non0hd: 0 & closed_segment (hx) (-d) if norm x = 1x\inS for x
        using midpoint_between [of 0 h x - d] that h [of x]
        by (auto simp: between_mem_segment midpoint_def)
    have conth:continuous_on (sphere 0 1 \cap S) h
        using differentiable_imp_continuous_on diffh by blast
    have hom_hd: homotopic_with_canon (\lambdaz. True)(sphere 0 1 \capS)(T-{0})h
(\lambdax. -d)
    proof (rule homotopic_with_linear [OF conth continuous_on_const])
        fix }
        assume x: x f sphere 0 1 \capS
        have convex hull {hx,-d}\subseteqT
        proof (rule hull_minimal)
            show {hx,-d}\subseteqT
            using hdx by (force simp: subspace_neg [OF〈subspace T>])
    qed (simp add: subspace_imp_convex [OF〈subspace T\])
    with x segment_convex_hull show closed_segment (hx) (-d)\subseteqT-{0}
            by (auto simp add: subset_Diff_insert nonOhd)
    qed
    have conT0: continuous_on (T-{0}) (\lambday.inverse(norm y) *R y)
        by (intro continuous_intros) auto
```

```
    have sub0T: (\lambday.y/R norm y)'(T-{0})\subseteq sphere 0 1 \cap T
        by (fastforce simp:assms(2) subspace_mul)
    obtain c where homhc: homotopic_with_canon(\lambdaz. True) (sphere 0 1 \cap S)
(sphere 0 1 \cap T) h( \lambdax.c)
    proof
        show homotopic_with_canon (\lambdaz.True)(sphere 0 1 \cap S)(sphere 0 1 \capT)h
(\lambdax. - d)
            using}
            by (force simp: h_def
                intro: homotopic_with_eq homotopic_with_compose_continuous_left [OF
hom_hd conT0 sub0T])
    qed
    have homotopic_with_canon ( }\lambdax\mathrm{ . True) (sphere 0 1 }\capS)(sphere 0 1 \capT)f
        by (force simp: h_def
            intro: homotopic_with_eq homotopic_with_compose_continuous_left [OF
homfg conT0 sub0T])
    then show ?thesis
        by (metis homotopic_with_trans [OF _ homhc])
qed
```

lemma spheremap＿lemma3：
assumes bounded S convex S subspace U and affSU: aff_dim $S \leq \operatorname{dim} U$
obtains T where subspace $T T \subseteq U S \neq\{ \} \Longrightarrow$ aff_dim $T=$ aff_dim S
(rel_frontier S) homeomorphic (sphere $01 \cap T$)
proof (cases $S=\{ \}$)
case True
with 〈subspace U 〉 subspace_0 show ?thesis
by (rule_tac $T=\{0\}$ in that) auto
next
case False
then obtain a where $a \in S$
by auto
then have affS: aff_dim $S=\operatorname{int}(\operatorname{dim}((\lambda x .-a+x) ' S))$
by (metis hull_inc aff_dim_eq_dim)
with affS U have $\operatorname{dim}((\lambda x .-a+x) ‘ S) \leq \operatorname{dim} U$
by linarith
with choose_subspace_of_subspace
obtain T where subspace $T T \subseteq$ span U and $\operatorname{dim} T: \operatorname{dim} T=\operatorname{dim}((\lambda x .-a+x)$
' S) .
show ?thesis
proof (rule that [OF <subspace $T\rangle$])
show $T \subseteq U$
using span_eq_iff $\langle s u b s p a c e ~ U\rangle\langle T \subseteq$ span $U\rangle$ by blast
show aff_dim $T=$ aff_dim S
using dimT 〈subspace T〉 affS aff_dim_subspace by fastforce
show rel_frontier S homeomorphic sphere $01 \cap T$
proof -
have aff_dim (ball $01 \cap T)=$ aff_dim (T)
by（metis IntI interior＿ball 〈subspace T〉 aff＿dim＿convex＿Int＿nonempty＿interior centre＿in＿ball empty＿iff inf＿commute subspace＿0 subspace＿imp＿convex zero＿less＿one）
then have affS＿eq：aff＿dim $S=$ aff＿dim（ball $01 \cap T)$
using $\left\langle a f f _\right.$dim $T=$ aff＿dim $\left.S\right\rangle$ by simp
have rel＿frontier S homeomorphic rel＿frontier（ball $01 \cap T$ ）
proof（rule homeomorphic＿rel＿frontiers＿convex＿bounded＿sets［OF 〈convex S 〉〈bounded S 〉］）
show convex（ball $01 \cap T$ ）
by（simp add：〈subspace $T\rangle$ convex＿Int subspace＿imp＿convex）
show bounded（ball $01 \cap T$ ）
by（simp add：bounded＿Int）
show aff＿dim $S=$ aff＿dim $($ ball $01 \cap T)$
by（rule affS＿eq）
qed
also have $\ldots=$ frontier（ball 01 ）$\cap T$
proof（rule convex＿affine＿rel＿frontier＿Int［OF convex＿ball］）
show affine T
by（simp add：＜subspace T 〉subspace＿imp＿affine）
show interior（ball 0 1）$\cap T \neq\{ \}$
using 〈subspace T 〉 subspace＿0 by force
qed
also have $\ldots=$ sphere $01 \cap T$
by auto
finally show ？thesis．
qed
qed
qed
proposition inessential＿spheremap＿lowdim＿gen：
fixes f ：：＇M：：euclidean＿space $\Rightarrow{ }^{\prime} a::$ euclidean＿space
assumes convex S bounded S convex T bounded T
and affST：aff＿dim $S<$ aff＿dim T
and contf：continuous＿on（rel＿frontier S）f
and fim：f＇（rel＿frontier $S) \subseteq$ rel＿frontier T
obtains c where homotopic＿with＿canon（ λz ．True）（rel＿frontier S ）（rel＿frontier
T）$f(\lambda x . c)$
proof（cases $S=\{ \}$ ）
case True
then show ？thesis
by（simp add：that）
next
case False
then show ？thesis
proof（cases $T=\{ \}$ ）
case True
then show？thesis
using fim that by auto
next

```
    case False
    obtain T':: 'a set
    where subspace T' and affT': aff_dim T' =aff_dim T
        and homT: rel_frontier T homeomorphic sphere 0 1 \cap T'
    apply (rule spheremap_lemma3 [OF 〈bounded T\rangle\langleconvex T\rangle subspace_UNIV,
where ' }b='='a]
    using }\langleT\not={}\rangle by (auto simp add: aff_dim_le_DIM
    with homeomorphic_imp_homotopy_eqv
    have relT: sphere 0 1 \cap T' homotopy_eqv rel_frontier T
    using homotopy_equivalent_space_sym by blast
    have aff_dim S \leqint (dim T')
    using affT'`subspace T'` affST aff_dim_subspace by force
    with spheremap_lemma3 [OF <bounded S\rangle\langleconvex S〉\langlesubspace T'`] <S # {}>
    obtain S':: 'a set where subspace S' S'\subseteq T'
        and affS': aff_dim S'=aff_dim S
        and homT: rel_frontier S homeomorphic sphere 0 1 \cap S'
        by metis
    with homeomorphic_imp_homotopy_eqv
    have relS: sphere 0 1 \cap S' homotopy_eqv rel_frontier S
        using homotopy_equivalent_space_sym by blast
    have dimST': }\operatorname{dim}\mp@subsup{S}{}{\prime}<\operatorname{dim}\mp@subsup{T}{}{\prime
        by (metis \langleS'\subseteq}\subseteq\mp@subsup{T}{}{\prime}\rangle\langlesubspace S'\rangle\langlesubspace T'\rangle aff\mp@subsup{S}{}{\prime} affST affT' less_irref
not_le subspace_dim_equal)
    have \existsc. homotopic_with_canon (\lambdaz. True)(rel_frontier S)(rel_frontier T) f
(\lambdax.c)
            apply (rule homotopy_eqv_homotopic_triviality_null_imp [OF relT contf fim])
            apply (rule homotopy_eqv_cohomotopic_triviality_null[OF relS, THEN iffD1,
rule_format])
            apply (metis dimST'\}\mp@subsup{}{}{\prime}\mathrm{ subspace }\mp@subsup{S}{}{\prime}\rangle\langle\mathrm{ subspace }\mp@subsup{T}{}{\prime}\rangle\langle\mp@subsup{S}{}{\prime}\subseteq\mp@subsup{T}{}{\prime}\rangle\mathrm{ spheremap_lemma2,
blast)
            done
            with that show ?thesis by blast
    qed
qed
lemma inessential_spheremap_lowdim:
    fixes f :: 'M::euclidean_space = 'a::euclidean_space
    assumes
    DIM('M) < DIM('a) and f: continuous_on (sphere a r) ff'(sphere a r)\subseteq
(sphere b s)
    obtains c where homotopic_with_canon ( }\lambda\mathrm{ z. True) (sphere a r) (sphere b s) f
(\lambdax.c)
proof (cases s\leq0)
    case True then show ?thesis
        by (meson nullhomotopic_into_contractible f contractible_sphere that)
next
    case False
    show ?thesis
    proof (cases r }\leq0
```

```
    case True then show ?thesis
        by (meson f nullhomotopic_from_contractible contractible_sphere that)
    next
        case False
        with }\langle\negs\leq0\rangle\mathrm{ have r>0s>0 by auto
        show thesis
            apply (rule inessential_spheremap_lowdim_gen [of cball a r cball b s f])
            using }\langle0<r\rangle\langle0<s\rangleassms(1) that by (simp_all add: f aff_dim_cball
    qed
qed
```


6.41.2 Some technical lemmas about extending maps from cell complexes

lemma extending_maps_Union_aux:
assumes fin: finite \mathcal{F}
and $\bigwedge S . S \in \mathcal{F} \Longrightarrow$ closed S
and $\bigwedge S T . \llbracket S \in \mathcal{F} ; T \in \mathcal{F} ; S \neq T \rrbracket \Longrightarrow S \cap T \subseteq K$
and $\wedge S . S \in \mathcal{F} \Longrightarrow \exists g$. continuous_on $S g \wedge g^{\prime} S \subseteq T \wedge(\forall x \in S \cap K . g$ $x=h x)$
shows $\exists g$. continuous_on $(\bigcup \mathcal{F}) g \wedge g^{\prime}(\bigcup \mathcal{F}) \subseteq T \wedge(\forall x \in \bigcup \mathcal{F} \cap K . g x=$ $h x)$
using assms
proof (induction \mathcal{F})
case empty show ?case by simp
next
case (insert $S \mathcal{F}$)
then obtain f where contf: continuous_on $(S) f$ and fim: f ' $S \subseteq T$ and feq: $\forall x \in S \cap K . f x=h x$
by (meson insertI1)
obtain g where contg: continuous_on $(\bigcup \mathcal{F}) g$ and gim: g ' $\bigcup \mathcal{F} \subseteq T$ and geq:
$\forall x \in \bigcup \mathcal{F} \cap K . g x=h x$
using insert by auto
have $f g: f x=g x$ if $x \in T T \in \mathcal{F} x \in S$ for $x T$
proof -
have $T \cap S \subseteq K \vee S=T$
using that by (metis (no_types) insert.prems(2) insertCI)
then show?thesis
using UnionI feq geq $\langle S \notin \mathcal{F}\rangle$ subset D that by fastforce
qed
show ?case
apply (rule_tac $x=\lambda x$. if $x \in S$ then $f x$ else $g x$ in exI, simp)
apply (intro conjI continuous_on_cases)
using fim gim feq geq
apply (force simp: insert closed_Union contf contg inf_commute intro: fg)+ done
qed
lemma extending_maps_Union:

```
assumes fin: finite \(\mathcal{F}\)
    and \(\bigwedge S . S \in \mathcal{F} \Longrightarrow \exists g\). continuous_on \(S g \wedge g ' S \subseteq T \wedge(\forall x \in S \cap K . g\)
\(x=h x)\)
    and \(\wedge S . S \in \mathcal{F} \Longrightarrow\) closed \(S\)
    and \(K: \wedge X Y . \llbracket X \in \mathcal{F} ; Y \in \mathcal{F} ; \neg X \subseteq Y ; \neg Y \subseteq X \rrbracket \Longrightarrow X \cap Y \subseteq K\)
    shows \(\exists g\). continuous_on \((\bigcup \mathcal{F}) g \wedge g^{\prime}(\bigcup \mathcal{F}) \subseteq T \wedge(\forall x \in \bigcup \mathcal{F} \cap K . g x=\)
\(h x)\)
apply (simp flip: Union_maximal_sets [OF fin])
apply (rule extending_maps_Union_aux)
apply (simp_all add: Union_maximal_sets [OF fin] assms)
by (metis K psubsetI)
```

lemma extend_map_lemma:
assumes finite $\mathcal{F} \mathcal{G} \subseteq \mathcal{F}$ convex T bounded T
and poly: $\bigwedge X . X \in \mathcal{F} \Longrightarrow$ polytope X
and aff: $\bigwedge X . X \in \mathcal{F}-\mathcal{G} \Longrightarrow$ aff_dim $X<$ aff_dim T
and face: $\backslash S T . \llbracket S \in \mathcal{F} ; T \in \mathcal{F} \rrbracket \Longrightarrow(S \cap T)$ face_of S
and contf: continuous_on $(\bigcup \mathcal{G}) f$ and fim: $f^{\prime}(\bigcup \mathcal{G}) \subseteq$ rel_frontier T
obtains g where continuous_on $(\bigcup \mathcal{F}) g g^{\prime}(\bigcup \mathcal{F}) \subseteq$ rel_frontier $T \wedge x . x \in \bigcup \mathcal{G}$
$\Longrightarrow g x=f x$
proof (cases $\mathcal{F}-\mathcal{G}=\{ \}$)
case True
show ?thesis
proof
show continuous_on $(\bigcup \mathcal{F}) f$
using True $\langle\mathcal{G} \subseteq \mathcal{F}\rangle$ contf by auto
show f ' $\cup \mathcal{F} \subseteq$ rel_frontier T
using True fim by auto
qed auto
next
case False
then have $0 \leq$ aff_dim T
by (metis aff aff_dim_empty aff_dim_geq aff_dim_negative_iff all_not_in_conv
not_less)
then obtain $i::$ nat where i : int $i=$ aff_dim T
by (metis nonneg_eq_int)
have Union_empty_eq: $\bigcup\{D . D=\{ \} \wedge P D\}=\{ \}$ for $P::{ }^{\prime}$ a set \Rightarrow bool
by auto
have face': $\wedge S T . \llbracket S \in \mathcal{F} ; T \in \mathcal{F} \rrbracket \Longrightarrow(S \cap T)$ face_of $S \wedge(S \cap T)$ face_of T
by (metis face inf_commute)
have extendf: $\exists g$. continuous_on $(\bigcup(\mathcal{G} \cup\{D . \exists C \in \mathcal{F} . D$ face_of $C \wedge$ aff_dim
$D<i\})) g \wedge$
$g^{\prime}(\bigcup(\mathcal{G} \cup\{D . \exists C \in \mathcal{F} . D$ face_of $C \wedge$ aff_dim $D<i\})) \subseteq$
rel_frontier $T \wedge$
$(\forall x \in \bigcup \mathcal{G} . g x=f x)$
if $i \leq$ aff_dim T for $i:: n a t$
using that
proof (induction i)
case 0
show ?case
using 0 contf fim by (auto simp add: Union_empty_eq)
next
case (Suc p)
with 〈bounded T 〉 have rel_frontier $T \neq\{ \}$
by (auto simp: rel_frontier_eq_empty affine_bounded_eq_lowdim [of T])
then obtain t where $t: t \in$ rel_frontier T by auto
have ple: int $p \leq$ aff_dim T using Suc.prems by force
obtain h where conth: continuous_on $(\bigcup(\mathcal{G} \cup\{D . \exists C \in \mathcal{F} . D$ face_of $C \wedge$
aff_dim $D<p\})$) h
and him: $h^{\prime}(\bigcup(\mathcal{G} \cup\{D . \exists C \in \mathcal{F} . D$ face_of $C \wedge$ aff_dim $D<p\}))$ \subseteq rel_frontier T
and heq: $\bigwedge x . x \in \bigcup \mathcal{G} \Longrightarrow h x=f x$
using Suc.IH [OF ple] by auto
let ?Faces $=\{D . \exists C \in \mathcal{F} . D$ face_of $C \wedge$ aff_dim $D \leq p\}$
have extendh: $\exists g$. continuous_on $D g \wedge$
$g^{\prime} D \subseteq$ rel_frontier $T \wedge$
$(\forall x \in D \cap \bigcup(\mathcal{G} \cup\{D . \exists C \in \mathcal{F} . D$ face_of $C \wedge$ aff_dim $D<$
p\}). $g x=h x$)
if $D: D \in \mathcal{G} \cup$?Faces for D
proof $($ cases $D \subseteq \bigcup(\mathcal{G} \cup\{D . \exists C \in \mathcal{F} . D$ face_of $C \wedge \operatorname{aff}-\operatorname{dim} D<p\}))$
case True
have continuous_on $D h$
using True conth continuous_on_subset by blast
moreover have h ' $D \subseteq$ rel_frontier T
using True him by blast
ultimately show ?thesis
by blast
next
case False
note notDsub $=$ False
show ?thesis
proof (cases $\exists a . D=\{a\}$)
case True
then obtain a where $D=\{a\}$ by auto
with notDsub t show ?thesis
by (rule_tac $x=\lambda x . t$ in $e x I$) simp
next
case False
have $D \neq\{ \}$ using notDsub by auto
have Dnotin: $D \notin \mathcal{G} \cup\{D . \exists C \in \mathcal{F} . D$ face_of $C \wedge$ aff_dim $D<p\}$
using notDsub by auto
then have $D \notin \mathcal{G}$ by simp
have $D \in$? Faces $-\{D . \exists C \in \mathcal{F} . D$ face_of $C \wedge$ aff_dim $D<p\}$
using Dnotin that by auto
then obtain C where $C \in \mathcal{F} D$ face_of C and affD: aff_dim $D=$ int p by auto
then have bounded D
using face_of_polytope_polytope poly polytope_imp_bounded by blast
then have $[$ simp $]: \neg$ affine D
using affine_bounded_eq_trivial False $\langle D \neq\{ \}\rangle\langle$ bounded $D\rangle$ by blast
have $\{F . F$ facet_of $D\} \subseteq\{E . E$ face_of $C \wedge$ aff_dim $E<i n t p\}$
by clarify (metis $\langle D$ face_of $C\rangle$ affD eq_iff face_of_trans facet_of_def zle_diff1_eq)
moreover have polyhedron D
using $\langle C \in \mathcal{F}\rangle\langle D$ face_of $C\rangle$ face_of_polytope_polytope poly polytope_imp_polyhedron
by auto
ultimately have relf_sub: rel_frontier $D \subseteq \bigcup\{E . E$ face_of $C \wedge$ aff_dim E
$<p\}$
by (simp add: rel_frontier_of_polyhedron Union_mono)
then have him_relf: h ' rel_frontier $D \subseteq$ rel_frontier T
using $\langle C \in \mathcal{F}\rangle$ him by blast
have convex D
by (simp add: <polyhedron D> polyhedron_imp_convex)
have affD_lessT: aff_dim $D<$ aff_dim T
using Suc.prems affD by linarith
have contDh: continuous_on (rel_frontier D) h
using $\langle C \in \mathcal{F}\rangle$ relf_sub by (blast intro: continuous_on_subset [OF conth])
then have $*:(\exists c$. homotopic_with_canon (λx. True) (rel_frontier $D)$
$($ rel_frontier $T) h(\lambda x . c))=$
$(\exists$ g. continuous_on UNIV $g \wedge$ range $g \subseteq$ rel_frontier $T \wedge$
$(\forall x \in$ rel_frontier $D . g x=h x)$)
by (simp add: assms rel_frontier_eq_empty him_relf nullhomotopic_into_rel_frontier_extension [OF closed_rel_frontier])
have (\exists c. homotopic_with_canon $(\lambda x$. True) (rel_frontier $D)($ rel_frontier $T)$ $h(\lambda x . c))$
by (metis inessential_spheremap_lowdim_gen
$[$ OF 〈convex $D\rangle\langle b o u n d e d ~ D\rangle\langle c o n v e x ~ T\rangle\langle b o u n d e d ~ T\rangle$ affD_lessT contDh him_relf])
then obtain g where contg: continuous_on UNIV g
and gim: range $g \subseteq$ rel_frontier T
and $g h: \bigwedge x . x \in$ rel_frontier $D \Longrightarrow g x=h x$
by (metis *)
have $D \cap E \subseteq$ rel_frontier D
if $E \in \mathcal{G} \cup\left\{D . B \operatorname{ex} \mathcal{F}\left(\left(f a c e _o f\right) D\right) \wedge\right.$ aff_dim $\left.D<\operatorname{int} p\right\}$ for E
proof (rule face_of_subset_rel_frontier)
show $D \cap E$ face_of D
using that
proof safe
assume $E \in \mathcal{G}$
then show $D \cap E$ face_of D
by (meson $\langle C \in \mathcal{F}\rangle\langle D$ face_of $C\rangle$ assms(2) face' face_of_Int_subface
face_of_refl_eq poly polytope_imp_convex subsetD)
next
fix x
assume aff_dim $E<\operatorname{int} p x \in \mathcal{F}$ E face_of x
then show $D \cap E$ face_of D

```
                by (meson \C \in\mathcal{F}\rangle\langleD face_of C` face' face_of_Int_subface that)
        qed
        show }D\capE\not=
            using that notDsub by auto
        qed
        moreover have continuous_on D g
            using contg continuous_on_subset by blast
        ultimately show ?thesis
            by (rule_tac x=g in exI) (use gh gim in fastforce)
    qed
    qed
    have intle: i<1+ int j\longleftrightarrow < < int j for ij
    by auto
    have finite \mathcal{G}
    using \langlefinite \mathcal{F}\rangle\langle\mathcal{G}\subseteq\mathcal{F}\rangle\mathrm{ rev_finite_subset by blast}
    moreover have finite (?Faces)
    proof -
```



```
        by (auto simp: <finite \mathcal{F}\rangle finite_polytope_faces poly)
    show ?thesis
        by (auto intro: finite_subset [OF _ §])
    qed
    ultimately have fin:finite (\mathcal{G}\cup?Faces)
        by simp
    have clo: closed S if S\in\mathcal{G}\cup\mathrm{ ?Faces for S}
    using that \langle\mathcal{G}\subseteq\mathcal{F}\rangle face_of_polytope_polytope poly polytope_imp_closed by blast
    have K:X\capY\subseteq\bigcup(\mathcal{G}\cup{D.\existsC\in\mathcal{F}.D face_of C ^aff_dim D < int p})
                if X\in\mathcal{G}\cup\mathrm{ ?Faces }Y\in\mathcal{G}\cup\mathrm{ ?Faces }\negY\subseteqX for X Y
    proof -
        have ff: X \cap Y face_of }X\wedgeX\capY\mathrm{ face_of Y
```



```
            by (rule face_of_Int_subface [OF _ _XY]) (auto simp: face' DE)
    show ?thesis
            using that
            apply auto
            apply (drule_tac x=X \capY in spec, safe)
            using ff face_of_imp_convex [of X] face_of_imp_convex [of Y]
            apply (fastforce dest: face_of_aff_dim_lt)
            by (meson face_of_trans ff)
    qed
    obtain g}\mathrm{ where continuous_on ( }\bigcup(\mathcal{G}\cup\mathrm{ ?Faces)) g
                    g`\bigcup(\mathcal{G}\cup?Faces)\subseteq rel_frontier T
                    (\forallx\in\bigcup(\mathcal{G}\cup\mathrm{ ?Faces ) }\cap
                            U\mathcal{G}\cup{D.\existsC\in\mathcal{F}.D face_of C ^aff_dim D<p}).gx=h
x)
    by (rule exE [OF extending_maps_Union [OF fin extendh clo K]], blast+)
    then show ?case
        by (simp add: intle local.heq [symmetric], blast)
qed
```

```
have eq: \(\bigcup(\mathcal{G} \cup\{D . \exists C \in \mathcal{F} . D\) face_of \(C \wedge\) aff_dim \(D<i\})=\bigcup \mathcal{F}\)
proof
    show \(\bigcup(\mathcal{G} \cup\{D . \exists C \in \mathcal{F} . D\) face_of \(C \wedge\) aff_dim \(D<i n t i\}) \subseteq \bigcup \mathcal{F}\)
        using \(\langle\mathcal{G} \subseteq \mathcal{F}\rangle\) face_of_imp_subset by fastforce
    show \(\bigcup \mathcal{F} \subseteq \bigcup(\mathcal{G} \cup\{D . \exists C \in \mathcal{F} . D\) face_of \(C \wedge\) aff_dim \(D<i\})\)
    proof (rule Union_mono)
        show \(\mathcal{F} \subseteq \mathcal{G} \cup\{D . \exists C \in \mathcal{F} . D\) face_of \(C \wedge\) aff_dim \(D<i n t i\}\)
            using face by (fastforce simp: aff i)
    qed
qed
have int \(i \leq\) aff_dim \(T\) by (simp add: i)
then show? ?thesis
    using extendf [of i] unfolding eq by (metis that)
qed
lemma extend_map_lemma_cofinite0:
    assumes finite \(\mathcal{F}\)
        and pairwise \((\lambda S T . S \cap T \subseteq K) \mathcal{F}\)
        and \(\bigwedge S . S \in \mathcal{F} \Longrightarrow \exists a g . a \notin U \wedge\) continuous_on \((S-\{a\}) g \wedge g^{\prime}(S-\)
\(\{a\}) \subseteq T \wedge(\forall x \in S \cap K . g x=h x)\)
            and \(\wedge S . S \in \mathcal{F} \Longrightarrow\) closed \(S\)
        shows \(\exists C\) g. finite \(C \wedge\) disjnt \(C U \wedge\) card \(C \leq \operatorname{card} \mathcal{F} \wedge\)
                    continuous_on \((\bigcup \mathcal{F}-C) g \wedge g^{\prime}(\bigcup \mathcal{F}-C) \subseteq T\)
                \(\wedge(\forall x \in(\bigcup \mathcal{F}-C) \cap K . g x=h x)\)
    using assms
proof induction
    case empty then show ?case
        by force
next
    case (insert \(X \mathcal{F}\) )
    then have closed \(X\) and clo: \(\bigwedge X . X \in \mathcal{F} \Longrightarrow\) closed \(X\)
        and \(\mathcal{F}: \wedge S . S \in \mathcal{F} \Longrightarrow \exists a g . a \notin U \wedge\) continuous_on \((S-\{a\}) g \wedge g '\)
\((S-\{a\}) \subseteq T \wedge(\forall x \in S \cap K . g x=h x)\)
            and \(p w X: \wedge Y . Y \in \mathcal{F} \wedge Y \neq X \longrightarrow X \cap Y \subseteq K \wedge Y \cap X \subseteq K\)
            and pwF: pairwise \((\lambda S T . S \cap T \subseteq K) \mathcal{F}\)
        by (simp_all add: pairwise_insert)
    obtain \(C g\) where \(C\) : finite \(C\) disjnt \(C U\) card \(C \leq \operatorname{card} \mathcal{F}\)
                            and contg: continuous_on \((\bigcup \mathcal{F}-C) g\)
                            and gim: \(g^{\prime}(\bigcup \mathcal{F}-C) \subseteq T\)
                            and \(g h: \bigwedge x . x \in(\bigcup \mathcal{F}-C) \cap K \Longrightarrow g x=h x\)
        using insert.IH [ \(O F\) pwF \(\mathcal{F}\) clo] by auto
    obtain \(a f\) where \(a \notin U\)
            and contf: continuous_on \((X-\{a\}) f\)
            and fim: \(f\) ' \((X-\{a\}) \subseteq T\)
            and \(f h:(\forall x \in X \cap K . \bar{f} x=h x)\)
        using insert.prems by (meson insertI1)
    show ?case
    proof (intro exI conjI)
        show finite (insert a C)
```

by (simp add: C)
show disjnt (insert a C) U
using $C\langle a \notin U\rangle$ by simp
show card $($ insert a $C) \leq$ card $($ insert $X \mathcal{F})$
by (simp add: C card_insert_if insert.hyps le_SucI)
have closed $(\bigcup \mathcal{F})$
using clo insert.hyps by blast
have continuous_on (X - insert a C) f
using contf by (force simp: elim: continuous_on_subset)
moreover have continuous_on ($\bigcup \mathcal{F}$ - insert a C) g
using contg by (force simp: elim: continuous_on_subset)
ultimately
have continuous_on $(X-$ insert a $C \cup(\bigcup \mathcal{F}-$ insert a $C))(\lambda x$. if $x \in X$ then $f x$ else $g x$)
apply (intro continuous_on_cases_local; simp add: closedin_closed)
using (closed X 〉 apply blast
using 〈closed $(\bigcup \mathcal{F})\rangle$ apply blast
using fh gh insert.hyps pwX by fastforce
then show continuous_on $(\bigcup($ insert $X \mathcal{F})$ - insert a $C)(\lambda a$. if $a \in X$ then f a else g a)
by (blast intro: continuous_on_subset)
show $\forall x \in(\bigcup($ insert $X \mathcal{F})-$ insert a $C) \cap K$. (if $x \in X$ then f else $g x)=$ $h x$
using $g h$ by (auto simp: fh)
show $(\lambda a$. if $a \in X$ then f a else $g a)$ ' $(\bigcup($ insert $X \mathcal{F})-$ insert $a C) \subseteq T$
using fim gim by auto force
qed
qed
lemma extend_map_lemma_cofinite1:
assumes finite \mathcal{F}
and $\mathcal{F}: \wedge X . X \in \mathcal{F} \Longrightarrow \exists a g . a \notin U \wedge$ continuous_on $(X-\{a\}) g \wedge g '(X$ $-\{a\}) \subseteq T \wedge(\forall x \in X \cap K . g x=h x)$
and clo: $\wedge X . X \in \mathcal{F} \Longrightarrow$ closed X
and $K: \bigwedge X Y . \llbracket X \in \mathcal{F} ; Y \in \mathcal{F} ; \neg X \subseteq Y ; \neg Y \subseteq X \rrbracket \Longrightarrow X \cap Y \subseteq K$
obtains $C g$ where finite C disjnt $C U$ card $C \leq \operatorname{card} \mathcal{F}$ continuous_on $(\cup \mathcal{F}$ -C) g

$$
g^{\prime}(\bigcup \mathcal{F}-C) \subseteq T
$$

$$
\bigwedge x . x \in(\bigcup \mathcal{F}-C) \cap K \Longrightarrow g x=h x
$$

proof -
let ? $\mathcal{F}=\{X \in \mathcal{F} . \forall Y \in \mathcal{F} . \neg X \subset Y\}$
have $[$ simp $]: ~ \bigcup ? \mathcal{F}=\bigcup \mathcal{F}$
by (simp add: Union_maximal_sets assms)
have fin: finite? \mathcal{F}
by (force intro: finite_subset $\left[O F_{-}\langle\right.$finite $\left.\mathcal{F}\rangle\right]$)
have pw: pairwise ($\lambda S T . S \cap T \subseteq K$) ? \mathcal{F} by (simp add: pairwise_def) (metis K psubsetI)
have $\operatorname{card}\{X \in \mathcal{F} . \forall Y \in \mathcal{F} . \neg X \subset Y\} \leq \operatorname{card} \mathcal{F}$

```
    by (simp add: \finite \mathcal{F}\card_mono)
    moreover
    obtain C g where finite C ^ disjnt C U ^ card C\leqcard ?F ^ ^
                    continuous_on ( \bigcup?F - -C) g^g'(\bigcup?\mathcal{F}-C)\subseteqT
                        \wedge(\forallx\in(\bigcup?\mathcal{F}-C)\capK.gx=hx)
    using extend_map_lemma_cofinite0 [OF fin pw, of U T h] by (fastforce intro!:
clo \mathcal{F})
    ultimately show ?thesis
    by (rule_tac C=C and g=g in that) auto
qed
lemma extend_map_lemma_cofinite:
    assumes finite \mathcal{FGG\mathcal{F}}\mathrm{ and T: convex T bounded T}
        and poly: }\X.X\in\mathcal{F}\Longrightarrow\mathrm{ polytope }
        and contf:continuous_on ( \bigcup\mathcal{G})f}\mathrm{ and fim: f'(\G)}\subseteq\mathrm{ rel_frontier T
        and face: }\bigwedgeXY.\llbracketX\in\mathcal{F};Y\in\mathcal{F}\rrbracket\Longrightarrow(X\capY) face_of X
        and aff: }\bigwedgeX.X\in\mathcal{F}-\mathcal{G}\Longrightarrow\mathrm{ aff_dim X 
    obtains Cg}\mathrm{ where
    finite C disjnt C(\bigcup\mathcal{G}) card C\leq card \mathcal{F continuous_on ( }\cup\mathcal{F}-C)g
    g'(\bigcup\mathcal{F}-C)\subseteqrel_frontier T \bigwedgex.x\in\bigcup\mathcal{G}\Longrightarrowgx=fx
proof -
    define }\mathcal{H}\mathrm{ where }\mathcal{H}\equiv\mathcal{G}\cup{D.\existsC\in\mathcal{F}-\mathcal{G}.D face_of C ^aff_dim D<aff_dim
T}
    have finite \mathcal{G}
        using assms finite_subset by blast
    have *: finite ( }\bigcup{{D.D face_of C} |C.C \in F F )
    using finite_polytope_faces poly 〈finite \mathcal{F}\rangle\mathrm{ by force}
    then have finite }\mathcal{H
        by (auto simp: \mathcal{H_def <finite \mathcal{G}\rangle intro: finite_subset [OF _ *])}
    have face': }\ST.\llbracketS\in\mathcal{F};T\in\mathcal{F}\rrbracket\Longrightarrow(S\capT) face_of S\wedge(S\capT) face_of T
    by (metis face inf_commute)
    have *: \bigwedgeX Y.\llbracketX\in\mathcal{H; Y G\mathcal{H}\Longrightarrow\LongrightarrowX\cap Y face_of X}
        unfolding }\mp@subsup{\mathcal{H_}}{-}{\prime
        using subsetD [OF \langle\mathcal{G}\subseteq\mathcal{F}\rangle] apply (auto simp add: face)
    apply (meson face' face_of_Int_subface face_of_refl_eq poly polytope_imp_convex)+
        done
    obtain h where conth: continuous_on (\bigcup\mathcal{H})h\mathrm{ and him: h' (\H)}\subseteq\mathrm{ rel_frontier}
T
```



```
    proof (rule extend_map_lemma [OF <finite \mathcal{H}\[unfolded \mathcal{H_def] Un_upper1 T])}
    show }\X.\llbracketX\in\mathcal{G}\cup{D.\existsC\in\mathcal{F}-\mathcal{G}.D face_of C^aff_dim D<aff_dim T}
polytope X
        using }\langle\mathcal{G}\subseteq\mathcal{F}\rangle\mathrm{ face_of_polytope_polytope poly by fastforce
    qed (use * H__def contf fim in auto)
    have bounded (\bigcup\mathcal{G})
        using <finite \mathcal{G}\rangle\langle\mathcal{G}\subseteq\mathcal{F}\rangle poly polytope_imp_bounded by blast
    then have \bigcup\mathcal{G}\not=UNIV
        by auto
```

```
    then obtain \(a\) where \(a: a \notin \bigcup \mathcal{G}\)
    by blast
have \(\mathcal{F}: \exists a g . a \notin \bigcup \mathcal{G} \wedge\) continuous_on \((D-\{a\}) g \wedge\)
                    \(g^{\prime}(D-\{a\}) \subseteq\) rel_frontier \(T \wedge(\forall x \in D \cap \bigcup \mathcal{H} . g x=h x)\)
        if \(D \in \mathcal{F}\) for \(D\)
proof (cases \(D \subseteq \bigcup \mathcal{H})\)
    case True
    then have \(h^{\prime}(D-\{a\}) \subseteq\) rel_frontier \(T\) continuous_on \((D-\{a\}) h\)
        using him by (blast intro!: \(\langle a \notin \bigcup \mathcal{G}\rangle\) continuous_on_subset [OF conth])+
    then show ?thesis
            using \(a\) by blast
next
    case False
    note D_not_subset \(=\) False
    show ?thesis
    proof (cases \(D \in \mathcal{G}\) )
        case True
        with D_not_subset show ?thesis
            by (auto simp: \(\mathcal{H}_{-} d e f\) )
    next
        case False
            then have affD: aff_dim \(D \leq\) aff_dim \(T\)
            by (simp add: \(\langle D \in \mathcal{F}\rangle\) aff \()\)
            show ?thesis
            proof (cases rel_interior \(D=\{ \}\) )
            case True
            with \(\langle D \in \mathcal{F}\rangle\) poly a show ?thesis
                by (force simp: rel_interior_eq_empty polytope_imp_convex)
            next
            case False
            then obtain \(b\) where brelD: \(b \in\) rel_interior \(D\)
                by blast
            have polyhedron \(D\)
                    by (simp add: poly polytope_imp_polyhedron that)
            have rel_frontier \(D\) retract_of affine hull \(D-\{b\}\)
                    by (simp add: rel_frontier_retract_of_punctured_affine_hull poly poly-
tope_imp_bounded polytope_imp_convex that brelD)
            then obtain \(r\) where relfD: rel_frontier \(D \subseteq\) affine hull \(D-\{b\}\)
                    and contr: continuous_on (affine hull \(D-\{b\}\) ) \(r\)
                    and rim: \(r\) ' (affine hull \(D-\{b\}) \subseteq\) rel_frontier \(D\)
                    and rid: \(\bigwedge x . x \in\) rel_frontier \(D \Longrightarrow r x=x\)
                    by (auto simp: retract_of_def retraction_def)
            show ?thesis
            proof (intro exI conjI ballI)
                show \(b \notin \bigcup \mathcal{G}\)
                proof clarify
                        fix \(E\)
                        assume \(b \in E E \in \mathcal{G}\)
                            then have \(E \cap D\) face_of \(E \wedge E \cap D\) face_of \(D\)
```

```
    using \langle\mathcal{G}\subseteq\mathcal{F}\rangle face' that by auto
    with face_of_subset_rel_frontier }\langleE\in\mathcal{G}\rangle\langleb\inE\rangle\mathrm{ brelD rel_interior_subset
[of D]
            D_not_subset rel_frontier_def \mathcal{H_def}
    show False
    by blast
    qed
    have r'( }D-{b})\subseteqr'(affine hull D - {b}
    by (simp add: Diff_mono hull_subset image_mono)
    also have ...\subseteq rel_frontier D
    by (rule rim)
    also have }\ldots\subseteq\bigcup{E.E face_of D\wedge aff_dim E<aff_dim T
    using affD
by (force simp: rel_frontier_of_polyhedron [OF <polyhedron D`] facet_of_def)
    also have ...\subseteq\bigcup(\mathcal{H})
        using D_not_subset H_def that by fastforce
    finally have rsub: r' (D - {b})\subseteq\bigcup(\mathcal{H}).
    show continuous_on ( D - {b}) (h\circr)
    proof (rule continuous_on_compose)
        show continuous_on (D - {b})r
        by (meson Diff_mono continuous_on_subset contr hull_subset order_refl)
    show continuous_on (r'(D - {b})) h
        by (simp add: Diff_mono hull_subset continuous_on_subset [OF conth
rsub])
    qed
    show (h\circr)'(D - {b})\subseteqrel_frontier T
        using brelD him rsub by fastforce
    show (h\circr) x=hx if x: x\inD\cap\bigcup\mathcal{H}\mathrm{ for }x
    proof -
        consider }A\mathrm{ where }x\inDA\in\mathcal{G}x\in
            | A B where }x\inDA\mathrm{ face_of B B 倓 B}\not\in\mathcal{G}\mathrm{ aff_dim A<aff_dim
T x \inA
            using x by (auto simp: \mathcal{H_def)}
            then have xrel: x frel_frontier D
    proof cases
        case 1 show ?thesis
        proof (rule face_of_subset_rel_frontier [THEN subsetD])
            show D\capA face_of D
            using }\langleA\in\mathcal{G}\rangle\langle\mathcal{G}\subseteq\mathcal{F}\rangle\mathrm{ face }\langleD\in\mathcal{F}\rangle\mathrm{ by blast
            show }D\capA\not=
            using 〈A\in\mathcal{G}\rangle D_not_subset H_H_def by blast
        qed (auto simp: 1)
    next
        case 2 show ?thesis
        proof (rule face_of_subset_rel_frontier [THEN subsetD])
            have D face_of D
                by (simp add: <polyhedron D> polyhedron_imp_convex face_of_refl)
            then show D\capA face_of D
            by (meson 2(2) 2(3)<D\in\mathcal{F}\face' face_of_Int_Int face_of_face)
```

```
                    show }D\capA\not=
                        using 2 D_not_subset \mathcal{H_def by blast}
                        qed (auto simp: 2)
                qed
                    show ?thesis
                        by (simp add: rid xrel)
                qed
                qed
        qed
        qed
    qed
    have clo: }\S.S\in\mathcal{F}\Longrightarrow\mathrm{ closed S
        by (simp add: poly polytope_imp_closed)
    obtain Cg}\mathrm{ where finite C disjnt C (\G) card C s card F}\mathcal{F}\mathrm{ continuous_on ( }\cup\mathcal{F
-C)g
                        g'(\bigcup\mathcal{F}-C)\subseteqrel_frontier T
            and gh:\x.x\in(\bigcup\mathcal{F}-C)\cap\bigcup\mathcal{H}\Longrightarrowgx=hx
    proof (rule extend_map_lemma_cofinite1 [OF〈finite \mathcal{F}}\mathcal{F
```



```
        proof (cases X \in\mathcal{G})
            case True
            then show ?thesis
            by (auto simp: H_def)
        next
            case False
            have }X\capY\not=
            using }\neg\negX\subseteqY\rangle\mathrm{ by blast
            with XY
            show ?thesis
                by (clarsimp simp: \mathcal{H_def)}
                    (metis Diff_iff Int_iff aff antisym_conv face face_of_aff_dim_lt face_of_refl
                                    not_le poly polytope_imp_convex)
        qed
    qed (blast)+
    with }\langle\mathcal{G}\subseteq\mathcal{F}\rangle\mathrm{ show ?thesis
        by (rule_tac C=C and g=g in that) (auto simp: disjnt_def hf [symmetric]
H_def intro!: gh)
qed
```

The next two proofs are similar
theorem extend_map_cell_complex_to_sphere:
assumes finite \mathcal{F} and $S: S \subseteq \bigcup \mathcal{F}$ closed S and T : convex T bounded T
and poly: $\bigwedge X . X \in \mathcal{F} \Longrightarrow$ polytope X
and aff: $\bigwedge X . X \in \mathcal{F} \Longrightarrow$ aff_dim $X<$ aff_dim T
and face: $\bigwedge X Y . \llbracket X \in \mathcal{F} ; Y \in \mathcal{F} \rrbracket \Longrightarrow(X \cap Y)$ face_of X
and contf: continuous_on $S f$ and fim: f ' $S \subseteq$ rel_frontier T
obtains g where continuous_on $(\bigcup \mathcal{F}) g$
$g^{\prime}(\bigcup \mathcal{F}) \subseteq$ rel_frontier $T \wedge x . x \in S \Longrightarrow g x=f x$
proof -
obtain $V g$ where $S \subseteq V$ open V continuous＿on $V g$ and gim：g＇$V \subseteq$ rel＿frontier T and $g f: \bigwedge x . x \in S \Longrightarrow g x=f x$
using neighbourhood＿extension＿into＿ANR［OF contf fim＿〈closed $S\rangle$ ］ANR＿rel＿frontier＿convex
T by blast
have compact S
by（meson assms compact＿Union poly polytope＿imp＿compact seq＿compact＿closed＿subset seq＿compact＿eq＿compact）
then obtain d where $d>0$ and $d: \bigwedge x y . \llbracket x \in S ; y \in-V \rrbracket \Longrightarrow d \leq$ dist $x y$ using separate＿compact＿closed［of $S-V]\langle o p e n ~ V\rangle\langle S \subseteq V\rangle$ by force
obtain \mathcal{G} where finite $\mathcal{G} \bigcup \mathcal{G}=\bigcup \mathcal{F}$
and dia $G: \wedge X . X \in \mathcal{G} \Longrightarrow$ diameter $X<d$
and poly $G: \bigwedge X . X \in \mathcal{G} \Longrightarrow$ polytope X
and aff $G: \bigwedge X . X \in \mathcal{G} \Longrightarrow$ aff＿dim $X \leq$ aff＿dim $T-1$
and face $G: \bigwedge X Y . \llbracket X \in \mathcal{G} ; Y \in \mathcal{G} \rrbracket \Longrightarrow X \cap Y$ face＿of X
proof（rule cell＿complex＿subdivision＿exists $[O F\langle d>0\rangle\langle f i n i t e \mathcal{F}\rangle$ poly＿face］）
show $\bigwedge X . X \in \mathcal{F} \Longrightarrow$ aff＿dim $X \leq$ aff＿dim $T-1$
by（simp add：aff）
qed auto
obtain h where conth：continuous＿on $(\bigcup \mathcal{G}) h$ and him：h＇$\bigcup \mathcal{G} \subseteq$ rel＿frontier
T and $h g: \bigwedge x . x \in \bigcup(\mathcal{G} \cap$ Pow $V) \Longrightarrow h x=g x$
proof（rule extend＿map＿lemma $[$ of $\mathcal{G} \mathcal{G} \cap$ Pow $V T \mathrm{~g}]$ ）
show continuous＿on $(\bigcup(\mathcal{G} \cap$ Pow $V)) g$
by（metis Union＿Int＿subset Union＿Pow＿eq〈continuous＿on V g〉continu－
ous＿on＿subset le＿inf＿iff）
qed（use 〈finite \mathcal{G} 〉 T poly G aff G face G gim in fastforce）+
show ？thesis
proof
show continuous＿on $(\bigcup \mathcal{F}) h$
using $\bigcup \mathcal{G}=\bigcup \mathcal{F}\rangle$ conth by auto
show $h ‘ \cup \mathcal{F} \subseteq$ rel＿frontier T
using $\bigcup \mathcal{G}=\bigcup \mathcal{F}\rangle$ him by auto
show $h x=f x$ if $x \in S$ for x
proof－
have $x \in \bigcup \mathcal{G}$
using $\langle\mathcal{G}=\bigcup \mathcal{F}\rangle\langle S \subseteq \bigcup \mathcal{F}\rangle$ that by auto
then obtain X where $x \in X X \in \mathcal{G}$ by blast
then have diameter $X<d$ bounded X by（auto simp：dia $G\langle X \in \mathcal{G}\rangle$ poly G polytope＿imp＿bounded）
then have $X \subseteq V$ using $d[O F\langle x \in S\rangle]$ diameter＿bounded＿bound $[O F$
（bounded $X\rangle\langle x \in X\rangle$ ］
by fastforce
have $h x=g x$
using $\langle X \in \mathcal{G}\rangle\langle X \subseteq V\rangle\langle x \in X\rangle$ hg by auto
also have $\ldots=f x$
by（simp add：gf that）
finally show $h x=f x$ ．
qed
qed
qed

```
theorem extend_map_cell_complex_to_sphere_cofinite:
    assumes finite \(\mathcal{F}\) and \(S: S \subseteq \bigcup \mathcal{F}\) closed \(S\) and \(T\) : convex \(T\) bounded \(T\)
        and poly: \(\bigwedge X . X \in \mathcal{F} \Longrightarrow\) polytope \(X\)
        and aff: \(\bigwedge X . X \in \mathcal{F} \Longrightarrow\) aff_dim \(X \leq\) aff_dim \(T\)
        and face: \(\bigwedge X Y . \llbracket X \in \mathcal{F} ; Y \in \mathcal{F} \rrbracket \Longrightarrow(X \cap Y)\) face_of \(X\)
        and contf: continuous_on \(S f\) and fim: \(f^{\prime} S \subseteq\) rel_frontier \(T\)
    obtains \(C g\) where finite \(C\) disjnt \(C S\) continuous_on \((\bigcup \mathcal{F}-C) g\)
        \(g^{\prime}(\bigcup \mathcal{F}-C) \subseteq\) rel_frontier \(T \bigwedge x . x \in S \Longrightarrow g x=f x\)
proof -
    obtain \(V g\) where \(S \subseteq V\) open \(V\) continuous_on \(V g\) and gim: \(g^{\text {' }} V \subseteq\) rel_frontier
\(T\) and \(g f: \bigwedge x . x \in S \Longrightarrow g x=f x\)
    using neighbourhood_extension_into_ANR [OF contf fim_ <closed \(S\rangle\) ] ANR_rel_frontier_convex
\(T\) by blast
    have compact \(S\)
    by (meson assms compact_Union poly polytope_imp_compact seq_compact_closed_subset
seq_compact_eq_compact)
    then obtain \(d\) where \(d>0\) and \(d: \bigwedge x y . \llbracket x \in S ; y \in-V \rrbracket \Longrightarrow d \leq \operatorname{dist} x y\)
    using separate_compact_closed \([\) of \(S-V]\langle o p e n ~ V\rangle\langle S \subseteq V\rangle\) by force
    obtain \(\mathcal{G}\) where finite \(\mathcal{G} \bigcup \mathcal{G}=\bigcup \mathcal{F}\)
                            and diaG: \(\bigwedge X . X \in \mathcal{G} \Longrightarrow\) diameter \(X<d\)
                    and poly \(G: \bigwedge X . X \in \mathcal{G} \Longrightarrow\) polytope \(X\)
                    and aff \(G: \wedge X . X \in \mathcal{G} \Longrightarrow\) aff_dim \(X \leq\) aff_dim \(T\)
            and face \(G: \bigwedge X Y . \llbracket X \in \mathcal{G} ; Y \in \mathcal{G} \rrbracket \Longrightarrow X \cap Y\) face_of \(X\)
    by (rule cell_complex_subdivision_exists \([O F\langle d\rangle 0\rangle\langle\) finite \(\mathcal{F}\rangle\) poly aff face \(]\) ) auto
    obtain \(C h\) where finite \(C\) and dis: disjnt \(C(\bigcup(\mathcal{G} \cap\) Pow \(V))\)
                    and card: card \(C \leq\) card \(\mathcal{G}\) and conth: continuous_on \((\bigcup \mathcal{G}-C) h\)
                    and him: \(h^{\prime}(\bigcup \mathcal{G}-C) \subseteq\) rel_frontier \(T\)
                    and \(h g: \wedge x . x \in \bigcup(\mathcal{G} \cap\) Pow \(V) \Longrightarrow h x=g x\)
    proof (rule extend_map_lemma_cofinite \([\) of \(\mathcal{G} \mathcal{G} \cap\) Pow \(V T g]\) )
    show continuous_on \((\bigcup(\mathcal{G} \cap\) Pow \(V)) g\)
            by (metis Union_Int_subset Union_Pow_eq 〈continuous_on \(V\) \(g\rangle\) continu-
ous_on_subset le_inf_iff)
    show \(g^{\prime} \cup(\mathcal{G} \cap\) Pow \(V) \subseteq\) rel_frontier \(T\)
        using gim by force
    qed (auto intro: 〈finite \(\mathcal{G}\rangle T\) poly \(G\) affG dest: face \(G\) )
    have \(S\) sub: \(S \subseteq \bigcup(\mathcal{G} \cap\) Pow \(V)\)
    proof
        fix \(x\)
    assume \(x \in S\)
    then have \(x \in \bigcup \mathcal{G}\)
            using \(\bigcup \mathcal{G}=\bigcup \mathcal{F}\rangle\langle S \subseteq \bigcup \mathcal{F}\rangle\) by auto
    then obtain \(X\) where \(x \in X X \in \mathcal{G}\) by blast
    then have diameter \(X<d\) bounded \(X\)
            by (auto simp: diaG \(\langle X \in \mathcal{G}\rangle\) poly \(G\) polytope_imp_bounded)
    then have \(X \subseteq V\) using \(d[O F\langle x \in S\rangle\) ] diameter_bounded_bound [OF 〈bounded
\(X\rangle\langle x \in X\rangle]\)
            by fastforce
```

```
    then show }x\in\bigcup(\mathcal{G}\cap\mathrm{ Pow }V
    using \langleX \in\mathcal{G}\rangle\langlex\inX\rangle by blast
qed
show ?thesis
proof
    show continuous_on ( }\bigcup\mathcal{F}-C)
        using \\mathcal{G}=\bigcup\mathcal{F}\rangle\mathrm{ conth by auto}
    show h'(\bigcup\mathcal{F}-C)\subseteqrel_frontier T
        using\U\mathcal{G}=\bigcup\mathcal{F}\ him by auto
    show hx=fx if x G S for }
    proof -
        have hx=gx
            using Ssub hg that by blast
        also have ... = fx
            by (simp add:gf that)
        finally show hx=fx.
    qed
    show disjnt C S
        using dis Ssub by (meson disjnt_iff subset_eq)
    qed (intro 〈finite C`)
qed
```


6.41.3 Special cases and corollaries involving spheres

```
lemma disjnt_Diff1: X\subseteq Y'\Longrightarrow disjnt (X - Y) ( }\mp@subsup{X}{}{\prime}-\mp@subsup{Y}{}{\prime}
    by (auto simp: disjnt_def)
proposition extend_map_affine_to_sphere_cofinite_simple:
    fixes f :: 'a::euclidean_space }=>\mathrm{ 'b::euclidean_space
    assumes compact }S\mathrm{ convex }U\mathrm{ bounded U
        and aff: aff_dim T \leq aff_dim U
        and S\subseteqT and contf:continuous_on S f
        and fim: f'S\subseteq rel_frontier U
    obtains Kg}\mathrm{ where finite K K}\subseteqT\mathrm{ disjnt K S continuous_on (T - K)g
\[
\begin{aligned}
& g '(T-K) \subseteq \text { rel_frontier } U \\
& \bigwedge x \cdot x \in S \Longrightarrow g x=f x
\end{aligned}
\]
proof -
have \(\exists K g\). finite \(K \wedge\) disjnt \(K S \wedge\) continuous_on \((T-K) g \wedge\)
            g'(T-K)\subseteqrel_frontier }U\wedge(\forallx\inS.gx=fx
        if affine TS\subseteqT and aff: aff_dim T\leqaff_dim U for T
    proof (cases S={})
        case True
        show ?thesis
        proof (cases rel_frontier U = {})
            case True
            with 〈bounded U> have aff_dim U\leq0
            using affine_bounded_eq_lowdim rel_frontier_eq_empty by auto
            with aff have aff_dim T\leq0 by auto
            then obtain a where T\subseteq{a}
```

using 〈affine T〉affine＿bounded＿eq＿lowdim affine＿bounded＿eq＿trivial by auto then show ？thesis
using $\langle S=\{ \}$ 〉 fim
by（metis Diff＿cancel contf disjnt＿empty2 finite．emptyI finite＿insert fi－
nite＿subset）
next
case False
then obtain a where $a \in$ rel＿frontier U
by auto
then show ？thesis
using continuous＿on＿const $[$ of＿$a]\langle S=\{ \}\rangle$ by force
qed
next
case False
have bounded S
by（simp add：〈compact S 〉compact＿imp＿bounded）
then obtain b where $b: S \subseteq$ cbox $(-b) b$
using bounded＿subset＿cbox＿symmetric by blast
define bbox where bbox \equiv cbox $(-(b+$ One $))(b+$ One $)$
have $c b o x(-b) b \subseteq b b o x$
by（auto simp：bbox＿def algebra＿simps intro！：subset＿box＿imp）
with $b\langle S \subseteq T\rangle$ have $S \subseteq b b o x \cap T$
by auto
then have Ssub：$S \subseteq \bigcup\{b b o x \cap T\}$
by auto
then have aff＿dim $(b b o x \cap T) \leq$ aff＿dim U
by（metis aff aff＿dim＿subset inf＿commute inf＿le1 order＿trans）
obtain $K g$ where K ：finite K disjnt $K S$
and contg：continuous＿on $(\bigcup\{b b o x \cap T\}-K) g$
and gim：g＇$(\bigcup\{b b o x \cap T\}-K) \subseteq$ rel＿frontier U
and $g f: \bigwedge x . x \in S \Longrightarrow g x=f x$
proof（rule extend＿map＿cell＿complex＿to＿sphere＿cofinite
［OF＿Ssub＿＜convex $U\rangle\langle b o u n d e d ~ U\rangle \ldots \ldots$ contf fim］）
show closed S
using 〈compact S 〉compact＿eq＿bounded＿closed by auto
show poly：$\bigwedge X . X \in\{$ bbox $\cap T\} \Longrightarrow$ polytope X
by（simp add：polytope＿Int＿polyhedron bbox＿def polytope＿interval affine＿imp＿polyhedron〈affine T 〉）
show $\bigwedge X Y . \llbracket X \in\{b b o x \cap T\} ; Y \in\{b b o x \cap T\} \rrbracket \Longrightarrow X \cap Y$ face＿of X
by（simp add：poly face＿of＿refl polytope＿imp＿convex）
show $\wedge X . X \in\{$ bbox $\cap T\} \Longrightarrow$ aff＿dim $X \leq$ aff＿dim U
by（simp add：«aff＿dim $(b b o x \cap T) \leq$ aff＿dim $U \backslash)$
qed auto
define fro where fro $\equiv \lambda$ ．frontier $\left(\operatorname{cbox}\left(-\left(b+d *_{R}\right.\right.\right.$ One $\left.)\right)\left(b+d *_{R}\right.$ One $\left.)\right)$
obtain d where $d 12: 1 / 2 \leq d d \leq 1$ and $d d$ ：disjnt K（fro $d)$
proof（rule disjoint＿family＿elem＿disjnt［OF＿〈finite K〉］）
show infinite $\{1 / 2 . .1::$ real $\}$
by（simp add：infinite＿Icc）
have dis1：disjnt（fro x ）（fro y ）if $x<y$ for $x y$
by（auto simp：algebra＿simps that subset＿box＿imp disjnt＿Diff1 frontier＿def fro＿def）
then show disjoint＿family＿on fro $\{1 / 2 . .1\}$
by（auto simp：disjoint＿family＿on＿def disjnt＿def neq＿iff）
qed auto
define c where $c \equiv b+d *_{R}$ One
have cbsub：cbox $(-b) b \subseteq b o x(-c) c$ cbox $(-b) b \subseteq \operatorname{cbox}(-c) c$ cbox $(-c)$ $c \subseteq b b o x$
using d12 by（auto simp：algebra＿simps subset＿box＿imp c＿def bbox＿def）
have clo＿cbT：closed（cbox $(-c) c \cap T)$
by（simp add：affine＿closed closed＿Int closed＿cbox 〈affine $T\rangle$ ）
have cpT＿ne：cbox $(-c) c \cap T \neq\{ \}$
using $\langle S \neq\{ \}\rangle b \operatorname{cbsub}(2)\langle S \subseteq T\rangle$ by fastforce
have closest＿point（cbox $(-c) c \cap T) x \notin K$ if $x \in T x \notin K$ for x
proof（cases $x \in \operatorname{cbox}(-c) c$ ）
case True with that show ？thesis
by（simp add：closest＿point＿self）
next
case False
have int＿ne：interior $(\operatorname{cbox}(-c) c) \cap T \neq\{ \}$
using $\langle S \neq\{ \}\rangle\langle S \subseteq T\rangle b\langle c b o x(-b) b \subseteq b o x(-c) c\rangle$ by force
have convex T
by（meson 〈affine $T\rangle$ affine＿imp＿convex）
then have $x \in$ affine hull（cbox $(-c) c \cap T)$
by（metis Int＿commute Int＿iff $\langle S \neq\{ \}\rangle\langle S \subseteq T\rangle$ cbsub（1）$\langle x \in T\rangle$ affine＿hull＿convex＿Int＿nonempty＿interior all＿not＿in＿conv b hull＿inc inf．orderE inte－ rior＿cbox）
then have $x \in$ affine hull（cbox $(-c) c \cap T)$－rel＿interior $(c b o x(-c) c$ $\cap T$ ）
by（meson DiffI False Int＿iff rel＿interior＿subset subsetCE）
then have closest＿point（cbox $(-c) c \cap T) x \in$ rel＿frontier $(c b o x(-c) c \cap$ T）
by（rule closest＿point＿in＿rel＿frontier［OF clo＿cbT cpT＿ne］）
moreover have（rel＿frontier（cbox $(-c) c \cap T)) \subseteq$ fro d
by（subst convex＿affine＿rel＿frontier＿Int［OF＿〈affine T〉int＿ne］）（auto simp： fro＿def c＿def）
ultimately show ？thesis
using dd by（force simp：disjnt＿def）
qed
then have cpt＿subset：closest＿point $($ cbox $(-c) c \cap T) '(T-K) \subseteq \bigcup\{b b o x$ $T\}-K$
using closest＿point＿in＿set［OF clo＿cbT cpT＿ne］cbsub（3）by force
show ？thesis
proof（intro conjI ballI exI）
have continuous＿on $(T-K)($ closest＿point $(c b o x(-c) c \cap T))$
proof（rule continuous＿on＿closest＿point）
show convex（cbox $(-c) c \cap T)$
by（simp add：affine＿imp＿convex convex＿Int 〈affine T ）
show closed（cbox $(-c) c \cap T)$

```
            using clo_cbT by blast
            show cbox (-c)c\capT\not={}
            using \langleS\not={}` cbsub(2) b that by auto
        qed
        then show continuous_on (T - K) (g\circ closest_point (cbox (-c) c \capT))
        by (metis continuous_on_compose continuous_on_subset [OF contg cpt_subset])
        have (g\circ closest_point (cbox (-c)c\capT))'(T - K)\subseteqg'(\bigcup{bbox\cap T}
- K)
            by (metis image_comp image_mono cpt_subset)
        also have ...\subseteq rel_frontier U
            by (rule gim)
        finally show (g\circ closest_point (cbox (-c)c\capT))'(T-K)\subseteqrel_frontier
U
        show (g\circ closest_point (cbox (-c)c\capT)) x = f x if x\inS for }
        proof -
            have (g\circ closest_point (cbox (-c)c\capT)) x = g x
            unfolding o_def
            by (metis IntI \langleS\subseteqT`b cbsub(2) closest_point_self subset_eq that)
            also have ... = fx
                by (simp add: that gf)
            finally show ?thesis.
        qed
    qed (auto simp: K)
    qed
    then obtain Kg}\mathrm{ where finite K disjnt K S
                and contg:continuous_on (affine hull T - K)g
                and gim: g'(affine hull T-K)\subseteq rel_frontier U
                    and gf: }\x.x\inS\Longrightarrowgx=f
    by (metis aff affine_affine_hull aff_dim_affine_hull
                order_trans [OF <S\subseteqT> hull_subset [of T affine]])
    then obtain Kg}\mathrm{ where finite K disjnt K S
                and contg:continuous_on (T - K)g
                and gim: g'(T - K)\subseteqrel_frontier U
                and gf: \}\x.x\inS\Longrightarrowgx=f
            by (rule_tac K=K and g=g in that) (auto simp: hull_inc elim: continu-
ous_on_subset)
    then show ?thesis
        by (rule_tac K=K \capT and g=g in that) (auto simp: disjnt_iff Diff_Int contg)
qed
```


6.41.4 Extending maps to spheres

lemma extend_map_affine_to_sphere1:
fixes $f::{ }^{\prime} a::$ euclidean_space \Rightarrow ' $b::$ topological_space
assumes finite K affine U and contf: continuous_on $(U-K) f$
and fim: f ' $(U-K) \subseteq T$
and comps: $\bigwedge C . \llbracket C \in$ components $(U-S) ; C \cap K \neq\{ \} \rrbracket \Longrightarrow C \cap L \neq\{ \}$
and clo: closedin (top_of_set U) S and K : disjnt $K S K \subseteq U$
obtains g where continuous_on $(U-L) g g^{\prime}(U-L) \subseteq \bar{T} \bigwedge x . x \in S \Longrightarrow g$

```
x=fx
proof (cases K={})
    case True
    then show ?thesis
        by (metis Diff_empty Diff_subset contf fim continuous_on_subset image_subsetI
rev_image_eqI subset_iff that)
next
    case False
    have S\subseteqU
        using clo closedin_limpt by blast
    then have (U-S)\capK\not={}
        by (metis Diff_triv False Int_Diff K disjnt_def inf.absorb_iff2 inf_commute)
    then have }\bigcup(\mathrm{ components }(U-S))\capK\not={
        using Union_components by simp
    then obtain C0 where C0:C0\in components (U-S)C0\capK\not={}
        by blast
    have convex }
        by (simp add: affine_imp_convex <affine U`)
    then have locally connected U
        by (rule convex_imp_locally_connected)
    have \existsag. a\inC^a\inL^continuous_on (S\cup(C-{a}))g^
                g'(S\cup(C-{a}))\subseteqT^(\forallx\inS.g x=fx)
            if C:C\in components }(U-S)\mathrm{ and CK:C }\capK\not={} for 
    proof -
        have C\subseteqU-SC\capL\not={}
            by (simp_all add: in_components_subset comps that)
        then obtain a where a: a\inC a \inL by auto
        have opeUC: openin (top_of_set U) C
        proof (rule openin_trans)
            show openin (top_of_set (U-S)) C
            by (simp add: <locally connected U\ clo locally_diff_closed openin_components_locally_connected
[OF _ C])
            show openin (top_of_set U) (U - S)
            by (simp add: clo openin_diff)
        qed
        then obtain d where C\subseteqU0<d and d: cball a d\capU\subseteqC
            using openin_contains_cball by (metis <a }\inC\
        then have ball a d \capU\subseteqC
            by auto
        obtain hk where homhk: homeomorphism (S\cupC) (S\cupC)hk
                    and subC: {x. (\neg(hx=x\wedgekx=x))}\subseteqC
                    and bou: bounded {x.(\neg(hx=x\wedgekx=x))}
                    and hin: }\bigwedgex.x\inC\capK\Longrightarrowhx\in ball a d \capU
    proof (rule homeomorphism_grouping_points_exists_gen [of C ball a d \capUC\cap
KS\cupC])
            show openin (top_of_set C) (ball a d \capU)
            by (metis open_ball <C\subseteqU\rangle\langleball a d \capU\subseteqC> inf.absorb_iff2 inf.orderE
inf_assoc open_openin openin_subtopology)
        show openin (top_of_set (affine hull C)) C
```

by（metis $\langle a \in C\rangle\left\langle o p e n i n\left(t o p_{-} o f _s e t ~ U\right) C\right\rangle$ affine＿hull＿eq affine＿hull＿openin all＿not＿in＿conv＜affine U 〉）
show ball a $d \cap U \neq\{ \}$
using $\langle 0<d\rangle\langle C \subseteq U\rangle\langle a \in C\rangle$ by force
show finite $(C \cap K)$
by（simp add：〈finite K 〉）
show $S \cup C \subseteq$ affine hull C
by（metis $\langle C \subseteq U\rangle\langle S \subseteq U\rangle\langle a \in C\rangle$ opeUC affine＿hull＿eq affine＿hull＿openin
all＿not＿in＿conv assms（2）sup．bounded＿iff）
show connected C
by（metis C in＿components＿connected）
qed auto
have $a_{-} B U: a \in$ ball a $d \cap U$
using $\langle 0<d\rangle\langle C \subseteq U\rangle\langle a \in C\rangle$ by auto
have rel＿frontier（cball a d $\cap U$ ）retract＿of（affine hull（cball a $d \cap U$ ）－$\{a\}$ ）
proof（rule rel＿frontier＿retract＿of＿punctured＿affine＿hull）
show bounded（cball a $d \cap U$ ）convex（cball a $d \cap U$ ）
by（auto simp：〈convex $U\rangle$ convex＿Int）
show $a \in$ rel＿interior（cball a $d \cap U$ ）
by（metis 〈affine U 〉convex＿cball empty＿iff interior＿cball a＿BU rel＿interior＿convex＿Int＿affine）
qed
moreover have rel＿frontier（cball a $d \cap U$ ）$=$ frontier（cball a d）$\cap U$
by（metis $a_{-} B U\langle a f f i n e ~ U\rangle$ convex＿affine＿rel＿frontier＿Int convex＿cball equals0D interior＿cball）
moreover have affine hull（cball a $d \cap U$ ）$=U$
by（metis 〈convex U 〉 $a_{-} B U$ affine＿hull＿convex＿Int＿nonempty＿interior affine＿hull＿eq〈affine U 〉 equals0D inf．commute interior＿cball）
ultimately have frontier（cball ad）$\cap U$ retract＿of $(U-\{a\})$
by metis
then obtain r where contr：continuous＿on $(U-\{a\}) r$
and rim：$r^{\prime}(U-\{a\}) \subseteq$ sphere a d $r^{\prime}(U-\{a\}) \subseteq U$
and req：$\wedge x . x \in$ sphere a $d \cap U \Longrightarrow r x=x$
using $\langle a f f i n e ~ U\rangle$ by（auto simp：retract＿of＿def retraction＿def hull＿same）
define j where $j \equiv \lambda x$ ．if $x \in$ ball a d then $r x$ else x
have $k j: \bigwedge x . x \in S \Longrightarrow k(j x)=x$
using $\langle C \subseteq U-S\rangle\langle S \subseteq U\rangle\langle$ ball a $d \cap U \subseteq C\rangle j_{-} d e f$ sub C by auto
have Uaeq：$U-\{a\}=($ cball a $d-\{a\}) \cap U \cup(U-$ ball $a d)$
using $\langle 0<d\rangle$ by auto
have jim：j＇$(S \cup(C-\{a\})) \subseteq(S \cup C)-$ ball a d
proof clarify
fix y assume $y \in S \cup(C-\{a\})$
then have $y \in U-\{a\}$
using $\langle C \subseteq U-S\rangle\langle S \subseteq U\rangle\langle a \in C\rangle$ by auto
then have $r y \in$ sphere $a d$
using rim by auto
then show $j y \in S \cup C-$ ball ad
unfolding j＿def
using $\langle r y \in$ sphere $a d\rangle\langle y \in U-\{a\}\rangle\langle y \in S \cup(C-\{a\})\rangle d$ rim by（metis Diff＿iff Int＿iff Un＿iff subsetD cball＿diff＿eq＿sphere image＿subset＿iff）

```
    qed
    have contj: continuous_on ( U - {a}) j
    unfolding j_def Uaeq
    proof (intro continuous_on_cases_local continuous_on_id, simp_all add: req
closedin_closed Uaeq [symmetric])
    show }\existsT\mathrm{ . closed T ^(cball a d - {a}) }\capU=(U-{a})\cap
        using affine_closed «affine U> by (rule_tac x=(cball a d) \capU in exI) blast
    show \exists}T\mathrm{ . closed }T\wedgeU-\mathrm{ ball a d = (U-{a}) }\cap
        using <0<d\rangle\langleaffine U\rangle
        by (rule_tac x=U - ball a d in exI) (force simp: affine_closed)
    show continuous_on ((cball a d - {a}) \capU)r
        by (force intro: continuous_on_subset [OF contr])
    qed
    have fT: }x\inU-K\Longrightarrowfx\inT\mathrm{ for }
    using fim by blast
    show ?thesis
    proof (intro conjI exI)
    show continuous_on (S\cup(C-{a}))(f\circk\circj)
    proof (intro continuous_on_compose)
        have S\cup(C-{a})\subseteqU-{a}
        using }\langleC\subseteqU-S\rangle\langleS\subseteqU\rangle\langlea\inC\rangle\mathrm{ by force
    then show continuous_on (S\cup(C-{a})) j
        by (rule continuous_on_subset [OF contj])
    have j'(S\cup(C-{a}))\subseteqS\cupC
        using jim \langleC\subseteqU-S\rangle\langleS\subseteqU\rangle\langleball a d \capU\subseteqC\rangle j_def by blast
        then show continuous_on ( j'( S\cup(C-{a}))) k
        by (rule continuous_on_subset [OF homeomorphism_cont2 [OF homhk]])
    show continuous_on ( k'j'(S\cup(C-{a}))) f
    proof (clarify intro!: continuous_on_subset [OF contf])
        fix y assume y G S\cup(C-{a})
        have ky:k y\inS\cupC
                            using homeomorphism_image2 [OF homhk]<y \inS U(C-{a})\rangle by
blast
        have jy: jy\inS\cupC-ball a d
            using Un_iff }\langley\inS\cup(C-{a})\rangle jim by aut
        have k (j y) \inU
                using \langleC\subseteqU\rangle\langleS\subseteqU\rangle homeomorphism_image2 [OF homhk] jy by
blast
        moreover have k (j y)\not\inK
            using K unfolding disjnt_iff
                by (metis DiffE Int_iff Un_iff hin homeomorphism_def homhk image_eqI
jy)
        ultimately show }k(jy)\inU-
            by blast
        qed
    qed
    have ST: \x. x G S\Longrightarrow(f\circk\circj)x\inT
    proof (simp add: kj)
        show }\x.x\inS\Longrightarrowfx\in
```

using K unfolding disjnt＿iff by（metis DiffI $\langle S \subseteq U\rangle$ subsetD fim image＿subset＿iff）
qed
moreover have $(f \circ k \circ j) x \in T$ if $x \in C x \neq a x \notin S$ for x
proof－
have $r x: r x \in$ sphere a d
using $\langle C \subseteq U\rangle$ rim that by fastforce
have $j j: j x \in S \cup C-$ ball ad
using jim that by blast
have $k(j x)=j x \longrightarrow k(j x) \in C \vee j x \in C$
by（metis Diff＿iff Int＿iff Un＿iff $\langle S \subseteq U$ 〉 subsetD d j＿def jj rx sphere＿cball that（1））
then have $k j: k(j x) \in C$
using homeomorphism＿apply2［OF homhk，of j $x] \quad\langle C \subseteq U\rangle\langle S \subseteq U\rangle$ a rx
by（metis（mono＿tags，lifting）Diff＿iff subsetD jj mem＿Collect＿eq subC）
then show？？thesis
by（metis Diffe DiffI IntD1 IntI $\langle C \subseteq U\rangle$ comp＿apply fT hin homeomor－ phism＿apply2 homhk jj kj subset＿eq）
qed
ultimately show $(f \circ k \circ j)^{\prime}(S \cup(C-\{a\})) \subseteq T$ by force
show $\forall x \in S .(f \circ k \circ j) x=f x$ using $k j$ by simp
qed（auto simp：a）
qed
then obtain $a h$ where
ah：$\wedge C . \llbracket C \in$ components $(U-S) ; C \cap K \neq\{ \} \rrbracket$
$\Longrightarrow a C \in C \wedge a C \in L \wedge$ continuous＿on $(S \cup(C-\{a C\}))(h C) \wedge$
$h C^{\prime}(S \cup(C-\{a C\})) \subseteq T \wedge(\forall x \in S . h C x=f x)$
using that by metis
define F where $F \equiv\{C \in$ components $(U-S) . C \cap K \neq\{ \}\}$
define G where $G \equiv\{C \in$ components $(U-S)$ ．$C \cap K=\{ \}\}$
define $U F$ where $U F \equiv(\bigcup C \in F . C-\{a C\})$
have $C 0 \in F$
by（auto simp：F＿def C0）
have finite F
proof（subst finite＿image＿iff［of $\lambda C . C \cap K F$ ，symmetric］）
show inj＿on $(\lambda C . C \cap K) F$
unfolding F_{-}def inj＿on＿def
using components＿nonoverlap by blast
show finite $((\lambda C . C \cap K) \cdot F)$
unfolding $F_{-} d e f$
by（rule finite＿subset［of＿Pow K］）（auto simp：〈finite K〉）
qed
obtain g where contg：continuous＿on $(S \cup U F) g$
and $g h: \bigwedge x i . \llbracket i \in F ; x \in(S \cup U F) \cap(S \cup(i-\{a i\})) \rrbracket$

$$
\Longrightarrow g x=h i x
$$

proof（rule pasting＿lemma＿exists＿closed［OF〈\｛inite F〉］）
let ？$X=$ top＿of＿set $(S \cup U F)$
show topspace？$X \subseteq(\bigcup C \in F . S \cup(C-\{a C\}))$
using $\langle C 0 \in F\rangle$ by (force simp: UF_def)
show closedin (top_of_set $(S \cup U F))(S \cup(C-\{a C\}))$
if $C \in F$ for C
proof (rule closedin_closed_subset [of $U S \cup C]$)
have $C \in$ components $(U-S)$
using F_{-}def that by blast
then show closedin (top_of_set $U)(S \cup C)$
by (rule closedin_Un_complement_component $[O F 〈 l o c a l l y ~ c o n n e c t e d ~ U 〉 c l o])$
next
have $x=a C^{\prime}$ if $C^{\prime} \in F \quad x \in C^{\prime} x \notin U$ for $x C^{\prime}$
proof -
have $\forall A . x \in \bigcup A \vee C^{\prime} \notin A$ using $\left\langle x \in C^{\prime}\right.$ by blast
with that show $x=a C^{\prime}$ by (metis (lifting) DiffD1 F_def Union_components mem_Collect_eq)
qed
then show $S \cup U F \subseteq U$ using $\langle S \subseteq U\rangle$ by (force simp: UF \quad-def)
next
show $S \cup(C-\{a C\})=(S \cup C) \cap(S \cup U F)$
using F_{-}def $U F_{-}$def components_nonoverlap that by auto
qed
show continuous_map (subtopology? $X\left(S \cup\left(C^{\prime}-\left\{a C^{\prime}\right\}\right)\right)$) euclidean $\left(h C^{\prime}\right)$
if $C^{\prime} \in F$ for C^{\prime}
proof -
have $C^{\prime}: C^{\prime} \in$ components $(U-S) C^{\prime} \cap K \neq\{ \}$
using F_{-}def that by blast+
show ?thesis
using ah [OF C $]$ by (auto simp: F_def subtopology_subtopology intro:
continuous_on_subset)
qed
show $\bigwedge i j x . \llbracket i \in F ; j \in F$;
$x \in$ topspace ? $X \cap(S \cup(i-\{a i\})) \cap(S \cup(j-\{a j\})) \rrbracket$ $\Longrightarrow h i x=h j x$
using components_eq by (fastforce simp: components_eq F_def ah)
qed auto
have $S U^{\prime}: S \cup \bigcup G \cup(S \cup U F) \subseteq U$
using $\langle S \subseteq U\rangle$ in_components_subset by (auto simp: F_def G_def UF_def)
have clo1: closedin (top_of_set $(S \cup \bigcup G \cup(S \cup U F)))(S \cup \bigcup G)$
proof (rule closedin_closed_subset [OF _ SU $]$)
have $*: \bigwedge C . C \in F \Longrightarrow$ openin (top_of_set U) C
unfolding $F_{-} d e f$
by clarify (metis (no_types, lifting) <locally connected U > clo closedin_def lo-
cally_diff_closed openin_components_locally_connected openin_trans topspace_euclidean_subtopology)
show closedin (top_of_set U) $(U-U F)$
unfolding $U F_{-} d e f$
by (force intro: openin_delete *)
show $S \cup \bigcup G=(U-U F) \cap(S \cup \bigcup G \cup(S \cup U F))$
using $\left\langle S \subseteq U\right.$ apply (auto simp: F_def G_{-}def UF_def)

```
        apply (metis Diff_iff UnionI Union_components)
        apply (metis DiffD1 UnionI Union_components)
    by (metis (no_types, lifting) IntI components_nonoverlap empty_iff)
    qed
    have clo2: closedin (top_of_set (S\cup\bigcupG\cup(S\cupUF)))(S\cupUF)
    proof (rule closedin_closed_subset [OF _ SU ])
        show closedin (top_of_set U) (\bigcupC\inF.S\cupC)
    proof (rule closedin_Union)
        show }\T.T\in(\cup)S'F\Longrightarrow closedin (top_of_set U)
            using F_def <locally connected U` clo closedin_Un_complement_component
by blast
    qed (simp add: <finite F`)
    show }S\cupUF=(\bigcupC\inF.S\cupC)\cap(S\cup\bigcupG\cup(S\cupUF)
        using \langleS\subseteqU\rangle apply (auto simp: F_def G_def UF_def)
        using C0 apply blast
        by (metis components_nonoverlap disjoint_iff)
    qed
    have SUG:S\cup\bigcupG\subseteqU-K
    using \S\subseteqU\rangleK apply (auto simp: G_def disjnt_iff)
    by (meson Diff_iff subsetD in_components_subset)
    then have contf': continuous_on (S\cup\bigcupG)f
        by (rule continuous_on_subset [OF contf])
    have contg': continuous_on ( }S\cupUF)
        by (simp add: contg)
    have }\x.\llbracketS\subseteqU;x\inS\rrbracket\Longrightarrowfx=g
    by (subst gh) (auto simp: ah C0 intro: <C0 \inF`)
    then have f_eq-g: \x. x GS\cupUF ^x\inS\cup\bigcupG\Longrightarrowfx=gx
    using 〈S\subseteqU\ apply (auto simp: F_def G_def UF_def dest: in_components_subset)
        using components_eq by blast
    have cont: continuous_on (S\cup\bigcupG\cup(S\cupUF))( }\lambda\mathrm{ (x. if }x\inS\cup\bigcupG\mathrm{ then }f
else g x)
    by (blast intro: continuous_on_cases_local [OF clo1 clo2 contf' contg' f_eq_g, of
\lambdax. x\inS\cup\bigcupG])
    show ?thesis
    proof
        have UF:UF-L\subseteqUF
            unfolding F_def UF_def using ah by blast
        have U-S -L=\bigcup(components (U-S))-L
            by simp
    also have ... = \bigcupF\cup\bigcupG-L
            unfolding F_def G_def by blast
    also have .. \subseteq}\subseteqUF\cup\bigcup
        using UF by blast
    finally have }U-L\subseteqS\cup\bigcupG\cup(S\cupUF
        by blast
    then show continuous_on ( U-L) ( }\lambdax\mathrm{ . if }x\inS\cup\bigcupG\mathrm{ then f x else g x)
        by (rule continuous_on_subset [OF cont])
    have }((U-L)\cap{x.x\not\inS\wedge(\forallxa\inG.x\not\inxa)})\subseteq((U-L)\cap(-S\capUF)
        using}\langleU-L\subseteqS\cup\bigcupG\cup(S\cupUF)\rangle\mathrm{ by auto
```

```
    moreover have \(g^{\prime}((U-L) \cap(-S \cap U F)) \subseteq T\)
    proof -
    have \(g x \in T\) if \(x \in U x \notin L x \notin S C \in F x \in C x \neq a C\) for \(x C\)
    proof (subst gh)
        show \(x \in(S \cup U F) \cap(S \cup(C-\{a C\}))\)
            using that by (auto simp: UF_def)
        show \(h C x \in T\)
        using ah that by (fastforce simp add: F_def)
    qed (rule that)
    then show ?thesis
        by (force simp: UF_def)
    qed
    ultimately have \(g^{\prime}((U-L) \cap\{x . x \notin S \wedge(\forall x a \in G . x \notin x a)\}) \subseteq T\)
    using image_mono order_trans by blast
moreover have \(f^{\prime}((U-L) \cap(S \cup \bigcup G)) \subseteq T\)
    using fim SUG by blast
    ultimately show \((\lambda x\). if \(x \in S \cup \bigcup G\) then \(f\) x else \(g x)\) ' \((U-L) \subseteq T\)
    by force
    show \(\bigwedge x . x \in S \Longrightarrow(\) if \(x \in S \cup \bigcup G\) then \(f x\) else \(g x)=f x\)
    by (simp add: F_def G_def)
qed
qed
lemma extend_map_affine_to_sphere2:
    fixes \(f\) :: 'a::euclidean_space \(\Rightarrow\) 'b::euclidean_space
    assumes compact \(S\) convex \(U\) bounded \(U\) affine \(T S \subseteq T\)
        and affTU: aff_dim \(T \leq\) aff_dim \(U\)
        and contf: continuous_on \(S f\)
        and fim: \(f\) ' \(S \subseteq\) rel_frontier \(U\)
        and ovlap: \(\wedge C . C \in \operatorname{components}(T-S) \Longrightarrow C \cap L \neq\{ \}\)
    obtains \(K g\) where finite \(K K \subseteq L K \subseteq T\) disjnt \(K S\)
                continuous_on \((T-K) g g^{\prime}(T-K) \subseteq\) rel_frontier \(U\)
                    \(\bigwedge x . x \in S \Longrightarrow g x=f x\)
proof -
    obtain \(K g\) where \(K\) : finite \(K K \subseteq T\) disjnt \(K S\)
            and contg: continuous_on \((T-K) g\)
            and gim: \(g{ }^{\prime}(T-K) \subseteq\) rel_frontier \(U\)
            and \(g f: \bigwedge x . x \in S \Longrightarrow g x=f x\)
        using assms extend_map_affine_to_sphere_cofinite_simple by metis
    have \((\exists y C . C \in\) components \((T-S) \wedge x \in C \wedge y \in C \wedge y \in L)\) if \(x \in K\)
for \(x\)
    proof -
        have \(x \in T-S\)
            using \(\langle K \subseteq T\rangle\langle\) disjnt \(K S\rangle\) disjnt_def that by fastforce
            then obtain \(C\) where \(C \in\) components \((T-S) x \in C\)
            by (metis UnionE Union_components)
        with ovlap [of \(C\) ] show ?thesis
            by blast
```

```
    qed
    then obtain }\xi\mathrm{ where }\xi:\x.x\inK\Longrightarrow\existsC.C\in\mathrm{ components (T-S)^ }\=x
C^\xix\inC^\xix\inL
    by metis
    obtain h}\mathrm{ where conth: continuous_on (T- 諒 h
            and him: h' (T-\xi'K)\subseteqrel_frontier U
            and hg: \x. x 保\Longrightarrowhx=gx
    proof (rule extend_map_affine_to_sphere1 [OF\finite K\rangle\affine T\rangle contg gim, of
S \xi'K])
    show cloTS: closedin (top_of_set T) S
        by (simp add: <compact S\rangle\langleS\subseteqT\rangle closed_subset compact_imp_closed)
    show }\C.\llbracketC\in\mathrm{ components (T-S);C ПK}={}\rrbracket\LongrightarrowC\cap\xi'K\not={
        using }\xi\mathrm{ components_eq by blast
    qed (use K in auto)
    show ?thesis
    proof
        show *: \xi' }K\subseteq
            using }\xi\mathrm{ by blast
        show finite (\xi`K)
            by (simp add: K)
    show \xi' }K\subseteq
            by clarify (meson \xi Diff_iff contra_subsetD in_components_subset)
    show continuous_on (T-\xi'K)h
            by (rule conth)
    show disjnt (\xi'K)S
        using K \xi in_components_subset by (fastforce simp: disjnt_def)
    qed (simp_all add: him hg gf)
qed
proposition extend_map_affine_to_sphere_cofinite_gen:
    fixes f :: 'a::euclidean_space = 'b::euclidean_space
    assumes SUT: compact S convex U bounded U affine TS\subseteqT
        and aff: aff_dim T \leq aff_dim U
        and contf:continuous_on S f
        and fim: f'S\subseteq rel_frontier U
        and dis: \bigwedgeC.\llbracketC\in components(T - S); bounded C\rrbracket\LongrightarrowC\cap L\not={}
obtains Kg}\mathrm{ where finite K K}\subseteqLK\subseteqT disjnt KS continuous_on (T - K)
                    g'(T-K)\subseteqrel_frontier }
                    \ x . x \in S \Longrightarrow g x = f x
proof (cases S={})
    case True
    show ?thesis
    proof (cases rel_frontier U = {})
        case True
        with aff have aff_dim T\leq0
            using affine_bounded_eq_lowdim \bounded U\ order_trans
            by (auto simp add: rel_frontier_eq_empty)
        with aff_dim_geq [of T] consider aff_dim T = - 1 | aff_dim T = 0
```

```
    by linarith
    then show ?thesis
    proof cases
    assume aff_dim T= -1
    then have T={}
        by (simp add: aff_dim_empty)
    then show ?thesis
        by (rule_tac K={} in that) auto
    next
    assume aff_dim T=0
    then obtain a where T={a}
        using aff_dim_eq_0 by blast
    then have }a\in
        using dis [of {a}]\S = {}〉 by (auto simp: in_components_self)
    with \langleS ={}\rangle\langleT={a}\rangle show ?thesis
        by (rule_tac K={a} and g=f in that) auto
    qed
next
    case False
    then obtain }y\mathrm{ where }y\in\mathrm{ rel_frontier }
        by auto
    with 〈S={}` show ?thesis
    by (rule_tac K={} and g=\lambdax.y in that) (auto)
    qed
next
    case False
    have bounded S
        by (simp add: assms compact_imp_bounded)
    then obtain b}\mathrm{ where b:S؟cbox (-b)b
        using bounded_subset_cbox_symmetric by blast
    define LU where LU\equivL\cup(U{C\in components (T - S). ᄀbounded C } -
cbox (-(b+One)) (b+One))
    obtain Kg}\mathrm{ where finite K K}\subseteqLUK\subseteqT disjnt K
                    and contg:continuous_on (T-K)g
                    and gim: g'(T-K)\subseteqrel_frontier U
                            and gf: \x. x 
    proof (rule extend_map_affine_to_sphere2 [OF SUT aff contf fim])
    show C\capLU\not={} if C\in components (T-S) for C
    proof (cases bounded C)
        case True
        with dis that show ?thesis
            unfolding LU_def by fastforce
    next
        case False
        then have }\neg\mathrm{ bounded ( }\bigcup{C\in\mathrm{ components (T - S). ᄀ bounded C})
            by (metis (no_types, lifting) Sup_upper bounded_subset mem_Collect_eq that)
            then show ?thesis
            apply (clarsimp simp: LU_def Int_Un_distrib Diff_Int_distrib Int_UN_distrib)
            by (metis (no_types, lifting) False Sup_upper bounded_cbox bounded_subset
```

```
inf.orderE mem_Collect_eq that)
    qed
    qed blast
    have \(*\) : False if \(x \in \operatorname{cbox}\left(-b-m *_{R}\right.\) One \()\left(b+m *_{R}\right.\) One \()\)
                    \(x \notin \operatorname{box}\left(-b-n *_{R}\right.\) One) \(\left(b+n *_{R}\right.\) One)
                    \(0 \leq m m<n n \leq 1\) for \(m n x\)
        using that by (auto simp: mem_box algebra_simps)
    have disjoint_family_on \(\left(\lambda d\right.\). frontier ( \(\operatorname{cbox}\left(-b-d *_{R}\right.\) One \()\left(b+d *_{R}\right.\) One)))
\{1/2..1\}
        by (auto simp: disjoint_family_on_def neq_iff frontier_def dest: *)
    then obtain \(d\) where \(d 12: 1 / 2 \leq d d \leq 1\)
                and ddis: disjnt \(K\) (frontier \(\left(\operatorname{cbox}\left(-\left(b+d *_{R}\right.\right.\right.\) One \(\left.)\right)\left(b+d *_{R}\right.\)
One)))
        using disjoint_family_elem_disjnt [of \{1/2..1::real\} \(K \lambda d\). frontier (cbox \((-(b\)
\(+d *_{R}\) One) \()\left(b+d *_{R}\right.\) One \()\) )]
        by (auto simp: 〈finite \(K\) ))
    define \(c\) where \(c \equiv b+d *_{R}\) One
    have cbsub: cbox \((-b) b \subseteq\) box \((-c) c\)
                cbox \((-b) b \subseteq c b o x(-c) c\)
                cbox \((-c) c \subseteq c b o x(-(b+\) One \())(b+\) One \()\)
        using d12 by (simp_all add: subset_box c_def inner_diff_left inner_left_distrib)
    have clo_cT: closed (cbox \((-c) c \cap T)\)
        using affine_closed 〈affine \(T\) 〉 by blast
    have cT_ne: cbox \((-c) c \cap T \neq\{ \}\)
        using \(\langle S \neq\{ \}\rangle\langle S \subseteq T\rangle b\) cbsub by fastforce
    have \(S_{-} s u b_{-} c c: S \subseteq\) cbox \((-c) c\)
        using \(\langle c b o x(-b) b \subseteq c b o x(-c) c\rangle b\) by auto
    show ?thesis
    proof
        show finite \((K \cap \operatorname{cbox}(-(b+O n e))(b+O n e))\)
            using \(\langle\) finite \(K\rangle\) by blast
        show \(K \cap \operatorname{cbox}(-(b+\) One \())(b+\) One \() \subseteq L\)
            using \(\langle K \subseteq L U\rangle\) by (auto simp: LU_def)
    show \(K \cap \overline{c b o x}(-(b+\) One \())(b+\) One \() \subseteq T\)
            using \(\langle K \subseteq T\rangle\) by auto
    show disjnt \((K \cap \operatorname{cbox}(-(b+O n e))(b+\) One \()) S\)
    using 〈disjnt \(K S\rangle\) by (simp add: disjnt_def disjoint_eq_subset_Compl inf.coboundedI1)
    have cloTK: closest_point (cbox \((-c) c \cap T) x \in T-K\)
                if \(x \in T\) and Knot: \(x \in K \longrightarrow x \notin \operatorname{cbox}(-b-O n e)(b+O n e)\)
for \(x\)
    proof (cases \(x \in \operatorname{cbox}(-c) c\) )
        case True
        with \(\langle x \in T\rangle\) show ?thesis
            using cbsub(3) Knot by (force simp: closest_point_self)
    next
        case False
        have clo_in_rf: closest_point (cbox \((-c) c \cap T) x \in\) rel_frontier (cbox \((-c)\)
\(c \cap T)\)
        proof (intro closest_point_in_rel_frontier [OF clo_cT cT_ne] DiffI notI)
```

```
    have T\cap interior (cbox (-c)c)\not={}
    using \langleS \not={}>\langleS\subseteqT\rangle b cbsub(1) by fastforce
    then show }x\in\mathrm{ affine hull (cbox (-c)c }\capT
    by (simp add: Int_commute affine_hull_affine_Int_nonempty_interior <affine
T> hull_inc that(1))
    next
        show False if x frel_interior (cbox (-c)c\capT)
        proof -
            have interior (cbox (-c) c) \capT\not={}
                using \langleS \not={}\rangle\langleS\subseteqT> b cbsub(1) by fastforce
            then have affine hull ( }T\cap\mathrm{ cbox (-c) c) =T
                using affine_hull_convex_Int_nonempty_interior [of T cbox (-c) c]
                by (simp add:affine_imp_convex <affine T> inf_commute)
            then show ?thesis
                by (meson subsetD le_inf_iff rel_interior_subset that False)
    qed
qed
have closest_point (cbox (-c)c\capT) }x\not\in
proof
    assume inK: closest_point (cbox (-c) c \capT) x\inK
    have }\x.x\inK\Longrightarrowx\not\in\mathrm{ frontier (cbox (- (b+d**R One)) (b+d**R
One))
            by (metis ddis disjnt_iff)
    then show False
            by (metis DiffI Int_iff \langleaffine T\rangle cT_ne c_def clo_cT clo_in_rf clos-
est_point_in_set
                    convex_affine_rel_frontier_Int convex_box(1) empty_iff frontier_cbox
inK interior_cbox)
    qed
    then show ?thesis
        using cT_ne clo_cT closest_point_in_set by blast
    qed
    show continuous_on (T - K \ cbox (- (b + One)) (b + One)) (g\circ closest_point
(cbox (-c)c\capT))
    using cloTK
        apply (intro continuous_on_compose continuous_on_closest_point continu-
ous_on_subset [OF contg])
    by (auto simp add: clo_cT affine_imp_convex \affine T〉 convex_Int cT_ne)
    have g(closest_point (cbox (-c) c\capT) x)\in rel_frontier U
            if }x\inTx\inK\longrightarrowx\not\incbox (-b-One) (b+One) for x
        using gim [THEN subsetD] that cloTK by blast
    then show (g\circ closest_point (cbox (-c)c\capT))'(T - K\cap cbox (- (b+
One))(b + One))
                    \subseteq \text { rel_frontier U}
        by force
    show }\x.x\inS\Longrightarrow(g\circ\mathrm{ closest_point (cbox (-c)c }\capT))x=f
    by simp (metis (mono_tags, lifting) IntI }\langleS\subseteqT\ranglecT_ne clo_cT closest_point_refl
gf subsetD S_sub_cc)
    qed
```

qed
corollary extend＿map＿affine＿to＿sphere＿cofinite：
fixes f ：：＇a：：euclidean＿space \Rightarrow＇$b::$ euclidean＿space
assumes SUT：compact S affine $T S \subseteq T$
and aff：aff＿dim $T \leq \operatorname{DIM}(' b)$ and $0 \leq r$
and contf：continuous＿on $S f$
and fim：f＇$S \subseteq$ sphere a r
and dis：$\wedge C . \llbracket C \in$ components $(T-S)$ ；bounded $C \rrbracket \Longrightarrow C \cap L \neq\{ \}$
obtains $K g$ where finite $K K \subseteq L K \subseteq T$ disjnt $K S$ continuous＿on（ $T-K$ ）
g $g^{\prime}(T-K) \subseteq$ sphere ar $\bigwedge x . x \in S \Longrightarrow g x=f x$
proof（cases $r=0$ ）
case True
with fim show ？thesis
by（rule＿tac $K=\{ \}$ and $g=\lambda x$ ．a in that）（auto）
next
case False
with assms have $0<r$ by auto
then have aff＿dim $T \leq$ aff＿dim（cball a r ） by（simp add：aff aff＿dim＿cball）
then show？thesis apply（rule extend＿map＿affine＿to＿sphere＿cofinite＿gen
［OF 〈compact $S\rangle$ convex＿cball bounded＿cball 〈affine $T\rangle\langle S \subseteq T\rangle$－contf］） using fim apply（auto simp：assms False that dest：dis）
done
qed
corollary extend＿map＿UNIV＿to＿sphere＿cofinite：
fixes f ：：＇a：：euclidean＿space \Rightarrow＇$b::$ euclidean＿space
assumes $\operatorname{DIM}(' a) \leq \operatorname{DIM}(' b)$ and $0 \leq r$
and compact S
and continuous＿on $S f$
and f＇$S \subseteq$ sphere a r
and $\wedge C . \llbracket C \in$ components $(-S)$ ；bounded $C \rrbracket \Longrightarrow C \cap L \neq\{ \}$
obtains $K g$ where finite $K K \subseteq L$ disjnt $K S$ continuous＿on（ $-K$ ）g
$g '(-K) \subseteq$ sphere a $r \bigwedge x . x \in S \Longrightarrow g x=f x$
using extend＿map＿affine＿to＿sphere＿cofinite
［OF 〈compact S 〉affine＿UNIV subset＿UNIV］assms
by（metis Compl＿eq＿Diff＿UNIV aff＿dim＿UNIV of＿nat＿le＿iff）
corollary extend＿map＿UNIV＿to＿sphere＿no＿bounded＿component：
fixes f ：：＇a：：euclidean＿space \Rightarrow＇b：：euclidean＿space
assumes aff： $\operatorname{DIM}\left({ }^{\prime} a\right) \leq \operatorname{DIM}\left({ }^{\prime} b\right)$ and $0 \leq r$
and SUT：compact S
and contf：continuous＿on $S f$
and fim：f＇$S \subseteq$ sphere a r
and dis：$\wedge C . C \in$ components $(-S) \Longrightarrow \neg$ bounded C
obtains g where continuous＿on UNIV $g g^{\prime} U N I V \subseteq$ sphere a $r \bigwedge x . x \in S \Longrightarrow$ $g x=f x$
apply（rule extend＿map＿UNIV＿to＿sphere＿cofinite［OF aff $\langle 0 \leq r\rangle\langle c o m p a c t ~ S\rangle$ contf fim，of \｛\}])
apply（auto dest：dis）

done

theorem Borsuk＿separation＿theorem＿gen：
fixes S ：：＇a：：euclidean＿space set
assumes compact S
shows $(\forall c \in$ components $(-S)$ ．\neg bounded $c) \longleftrightarrow$
$\left(\forall f\right.$ ．continuous＿on $S f \wedge f^{\prime} S \subseteq$ sphere $\left(0::^{\prime} a\right) 1$
$\longrightarrow(\exists c$. homotopic＿with＿canon $(\lambda x$. True $) S($ sphere 0 1）$f(\lambda x . c)))$
（is ？lhs＝？$r h s$ ）
proof
assume L［rule＿format］：？lhs
show ？rhs
proof clarify
fix $f::{ }^{\prime} a \Rightarrow{ }^{\prime} a$
assume contf：continuous＿on $S f$ and fim：f＇$S \subseteq$ sphere 01
obtain g where contg：continuous＿on UNIV g and gim：range $g \subseteq$ sphere 01 and $g f: \wedge x . x \in S \Longrightarrow g x=f x$
by（rule extend＿map＿UNIV＿to＿sphere＿no＿bounded＿component［OF＿＿〈compact S 〉contf fim $L]$ ）auto
then obtain c where c ：homotopic＿with＿canon（ λ h．True）UNIV（sphere 0 1） $g(\lambda x . c)$
using contractible＿UNIV nullhomotopic＿from＿contractible by blast
then show $\exists c$ ．homotopic＿with＿canon（ λx ．True）S（sphere 0 1）$f(\lambda x . c)$
by（metis assms compact＿imp＿closed contf contg contractible＿empty fim gf gim nullhomotopic＿from＿contractible nullhomotopic＿into＿sphere＿extension）
qed
next
assume R［rule＿format］：？rhs
show ？lhs
unfolding components＿def
proof clarify
fix a
assume $a \notin S$ and a ：bounded（connected＿component＿set $(-S) a$ ）
have $\forall x \in S$ ．norm $(x-a) \neq 0$
using $\langle a \notin S\rangle$ by auto
then have cont：continuous＿on $S\left(\lambda x\right.$ ．inverse $\left.(\operatorname{norm}(x-a)) *_{R}(x-a)\right)$ by（intro continuous＿intros）
have $\operatorname{im}:\left(\lambda x\right.$ ．inverse $\left.(\operatorname{norm}(x-a)) *_{R}(x-a)\right)$＇$S \subseteq$ sphere 01
by clarsimp（metis $\langle a \notin S\rangle$ eq＿iff＿diff＿eq＿0 left＿inverse norm＿eq＿zero）
show False
using R cont im Borsuk＿map＿essential＿bounded＿component［OF 〈compact $S\rangle$
〈 $a \notin S\rangle$ ］a by blast
qed
qed

```
corollary Borsuk_separation_theorem:
    fixes \(S\) :: 'a::euclidean_space set
    assumes compact \(S\) and 2: \(2 \leq \operatorname{DIM}\left({ }^{\prime} a\right)\)
        shows connected \((-S) \longleftrightarrow\)
            \(\left(\forall f\right.\). continuous_on \(S f \wedge f\) ' \(S \subseteq\) sphere \(\left(0::^{\prime} a\right) 1\)
                        \(\longrightarrow(\exists\) c. homotopic_with_canon \((\lambda x\). True) \(S(\) sphere 0 1) \(f(\lambda x . c)))\)
            (is ? lhs \(=\) ? \(r\) rhs \()\)
proof
    assume L: ?lhs
    show ?rhs
    proof (cases \(S=\{ \}\) )
        case True
        then show? ?thesis by auto
    next
        case False
        then have \((\forall c \in\) components \((-S)\). \(\neg\) bounded \(c)\)
        by (metis L assms(1) bounded_empty cobounded_imp_unbounded compact_imp_bounded
in_components_maximal order_refl)
            then show ?thesis
            by (simp add: Borsuk_separation_theorem_gen [OF〈compact S〉])
    qed
next
    assume \(R\) : ?rhs
    then show? ?hs
        apply (simp add: Borsuk_separation_theorem_gen [OF 〈compact S〉, symmetric])
        apply (auto simp: components_def connected_iff_eq_connected_component_set)
        using connected_component_in apply fastforce
        using cobounded_unique_unbounded_component \([O F\) _ 2, of -S] 〈compact \(S\) 〉
compact_eq_bounded_closed by fastforce
qed
lemma homotopy_eqv_separation:
    fixes \(S\) :: 'a::euclidean_space set and \(T\) :: 'a set
    assumes \(S\) homotopy_eqv \(T\) and compact \(S\) and compact \(T\)
    shows connected \((-S) \longleftrightarrow\) connected \((-T)\)
proof -
    consider \(\operatorname{DIM}\left({ }^{\prime} a\right)=1 \mid 2 \leq \operatorname{DIM}\left({ }^{\prime} a\right)\)
        by (metis DIM_ge_Suc0 One_nat_def Suc_1 dual_order.antisym not_less_eq_eq)
    then show ?thesis
    proof cases
        case 1
        then show ?thesis
            using bounded_connected_Compl_1 compact_imp_bounded homotopy_eqv_empty1
homotopy_eqv_empty2 assms by metis
    next
        case 2
```

```
        with assms show ?thesis
        by (simp add: Borsuk_separation_theorem homotopy_eqv_cohomotopic_triviality_null)
    qed
qed
proposition Jordan_Brouwer_separation:
    fixes }S::' 'a::euclidean_space set and a::'a
    assumes hom: S homeomorphic sphere a r and 0<r
        shows \neg connected (-S)
proof -
    have - sphere a r \cap ball a r}\not={
        using <0 < r> by (simp add: Int_absorb1 subset_eq)
    moreover
    have eq: - sphere a r - ball a r = - cball a r
        by auto
    have - cball a r }\not={
    proof -
        have frontier (cball a r)}\not={
        using <0<r\rangle by auto
        then show ?thesis
        by (metis frontier_complement frontier_empty)
    qed
    with eq have - sphere a r - ball a r }\not={
        by auto
    moreover
    have connected (-S) = connected (- sphere a r)
    proof (rule homotopy_eqv_separation)
        show S homotopy_eqv sphere a r
            using hom homeomorphic_imp_homotopy_eqv by blast
        show compact (sphere a r)
        by simp
        then show compact S
            using hom homeomorphic_compactness by blast
    qed
    ultimately show ?thesis
        using connected_Int_frontier [of - sphere a r ball a r] by (auto simp: <0 < r`)
qed
proposition Jordan_Brouwer_frontier:
    fixes }S\mathrm{ :: 'a::euclidean_space set and a::'a
    assumes S:S homeomorphic sphere a r and T:T\incomponents(-S) and 2:
2 \leq DIM ('a)
    shows frontier T=S
proof (cases r rule: linorder_cases)
    assume r<0
    with S T show ?thesis by auto
next
    assume r=0
```

with $S T$ card＿eq＿SucD obtain b where $S=\{b\}$ by（auto simp：homeomorphic＿finite $[o f \quad\{a\} S]$ ）
have components $(-\{b\})=\{-\{b\}\}$
using $T\langle S=\{b\}\rangle$ by（auto simp：components＿eq＿sing＿iff connected＿punctured＿universe
2）
with T show ？thesis
by（metis $\langle S=\{b\}\rangle$ cball＿trivial frontier＿cball frontier＿complement singletonD
sphere＿trivial）
next
assume $r>0$
have compact S
using homeomorphic＿compactness compact＿sphere S by blast
show ？thesis
proof（rule frontier＿minimal＿separating＿closed）
show closed S
using 〈compact S 〉compact＿eq＿bounded＿closed by blast
show \neg connected $(-S)$
using Jordan＿Brouwer＿separation $S\langle 0<r\rangle$ by blast
obtain $f g$ where hom：homeomorphism S（sphere a r）fg
using S by（auto simp：homeomorphic＿def）
show connected $(-T)$ if closed $T T \subset S$ for T
proof－
have f＇$T \subseteq$ sphere a r
using $\langle T \subset S\rangle$ hom homeomorphism＿image1 by blast
moreover have $f^{\text {＇}} T \neq$ sphere a r
using $\langle T \subset S\rangle$ hom
by（metis homeomorphism＿image2 homeomorphism＿of＿subsets order＿refl psubsetE）
ultimately have $f^{\prime} T \subset$ sphere a r by blast
then have connected $\left(-f^{\prime} T\right)$
by（rule psubset＿sphere＿Compl＿connected $\left.\left[O F _\langle 0<r\rangle 2\right]\right)$
moreover have compact T
using 〈compact S 〉bounded＿subset compact＿eq＿bounded＿closed that by blast
moreover then have compact（ f＇T ）
by（meson compact＿continuous＿image continuous＿on＿subset hom homeomor－ phism＿def psubsetE $\langle T \subset S\rangle$ ）
moreover have T homotopy＿eqv f＇T
by（meson $\langle f$＇$T \subseteq$ sphere a $r\rangle$ dual＿order．strict＿implies＿order hom homeomor－
phic＿def homeomorphic＿imp＿homotopy＿eqv homeomorphism＿of＿subsets $\langle T \subset S\rangle)$
ultimately show ？thesis
using homotopy＿eqv＿separation［of $T f^{‘} T$ ］by blast
qed
qed（rule T ）
qed
proposition Jordan＿Brouwer＿nonseparation：
fixes S ：：＇$a:$ ：euclidean＿space set and $a::^{\prime} a$
assumes $S: S$ homeomorphic sphere $a r$ and $T \subset S$ and 2： $2 \leq D I M\left({ }^{\prime} a\right)$ shows connected $(-T)$

```
proof -
    have *: connected (C\cup(S-T)) if C components (-S) for C
    proof (rule connected_intermediate_closure)
        show connected C
            using in_components_connected that by auto
        have S= frontier C
            using 2 Jordan_Brouwer_frontier S that by blast
        with closure_subset show C \cup (S-T)\subseteq closure C
            by (auto simp: frontier_def)
    qed auto
    have components (-S)\not={}
    by (metis S bounded_empty cobounded_imp_unbounded compact_eq_bounded_closed
compact_sphere
                components_eq_empty homeomorphic_compactness)
    then have - T=(\bigcupC\incomponents (-S).C\cup(S-T))
        using Union_components [of -S] \langleT\subsetS\rangle by auto
    moreover have connected ...
        using }\langleT\subsetS\rangle\mathrm{ by (intro connected_Union) (auto simp:*)
    ultimately show ?thesis
        by simp
qed
```


6．41．5 Invariance of domain and corollaries

lemma invariance＿of＿domain＿ball：
fixes $f::{ }^{\prime} a \Rightarrow$＇$a:$ ：euclidean＿space
assumes contf：continuous＿on（cball a r）f and $0<r$ and inj：inj＿on f（cball a r）
shows open $(f$＇ball a r）
proof（cases DIM（＇a）＝1）
case True
obtain $h::^{\prime} a \Rightarrow$ real and k where linear h linear $k h^{\prime}$ UNIV $=$ UNIV $k{ }^{\prime}$ UNIV $=$ UNIV
$\bigwedge x$ ．norm $(h x)=\operatorname{norm} x \bigwedge x$ ．norm $(k x)=\operatorname{norm} x$
and $k h: \bigwedge x . k(h x)=x$ and $\bigwedge x . h(k x)=x$
proof（rule isomorphisms＿UNIV＿UNIV）
show $\operatorname{DIM}\left({ }^{\prime} a\right)=D I M($ real $)$
using True by force
qed（metis UNIV＿I UNIV＿eq＿I imageI）
have cont：continuous＿on $S h$ continuous＿on $T k$ for $S T$
by（simp＿all add：〈linear $h\rangle\langle l i n e a r ~ k\rangle$ linear＿continuous＿on linear＿linear）
have continuous＿on（ h＇cball a r ）（ $h \circ f \circ k$ ）
by（intro continuous＿on＿compose cont continuous＿on＿subset［OF contf］）（auto simp：kh）
moreover have is＿interval（ h＇cball a r ）
by（simp add：is＿interval＿connected＿1 〈linear h〉 linear＿continuous＿on lin－ ear＿linear connected＿continuous＿image）
moreover have inj＿on（ $h \circ f \circ k$ ）（ h＇cball a r）
using inj by（simp add：inj＿on＿def）（metis 〈 $\backslash x . k(h x)=x\rangle)$

```
    ultimately have \(*: \bigwedge T\). \(\llbracket\) open \(T ; T \subseteq h^{\prime}\) cball a \(r \rrbracket \Longrightarrow\) open \(((h \circ f \circ k)\) '
```

T)
using injective_eq_1d_open_map_UNIV by blast
have open $((h \circ f \circ k)$ ' $(h$ 'ball a $r))$
by $($ rule $*)$ (auto simp: 〈linear $h\rangle\langle$ range $h=U N I V\rangle$ open_surjective_linear_image)
then have open $((h \circ f)$ 'ball a $r)$
by (simp add: image_comp 〈\x.k(hx)=x〉cong: image_cong)
then show ?thesis
unfolding image_comp [symmetric]
by (metis open_bijective_linear_image_eq 〈linear $h\rangle k h\langle r a n g e ~ h=U N I V\rangle$ bijI
inj_on_def)
next
case False
then have 2: $\operatorname{DIM}\left({ }^{\prime} a\right) \geq 2$
by (metis DIM_ge_Suc0 One_nat_def Suc_1 antisym not_less_eq_eq)
have fimsub: f ' ball a $r \subseteq-f$ ' sphere a r
using inj by clarsimp (metis inj_onD less_eq_real_def mem_cball order_less_irrefl)
have hom: f 'sphere a r homeomorphic sphere a r
by (meson compact_sphere contf continuous_on_subset homeomorphic_compact
homeomorphic_sym inj inj_on_subset sphere_cball)
then have nconn: \neg connected $(-f$ 'sphere a r)
by (rule Jordan_Brouwer_separation) (auto simp: $\langle 0<r\rangle$)
have bounded (f 'sphere a r)
by (meson compact_imp_bounded compact_continuous_image_eq compact_sphere
contf inj sphere_cball)
then obtain C where $C: C \in$ components $(-f$ 'sphere a r) and bounded C
using cobounded_has_bounded_component [OF _ nconn] 2 by auto
moreover have $f^{\prime}($ ball a $r)=C$
proof
have $C \neq\{ \}$
by (rule in_components_nonempty [OF C])
show $C \subseteq f$ ' ball a r
proof (rule ccontr)
assume nonsub: $\neg C \subseteq f^{\prime}$ ball a r
have $-f^{\text {' }}$ cball a $r \subseteq C$
proof (rule components_maximal [OF C])
have f ' cball a r homeomorphic cball a r
using compact_cball contf homeomorphic_compact homeomorphic_sym inj
by blast
then show connected $(-f$ ' cball a $r)$
by (auto intro: connected_complement_homeomorphic_convex_compact 2)
show - f ' cball a $r \subseteq-f$ 'sphere a r
by auto
then show $C \cap-f$ ' cball a $r \neq\{ \}$
using 〈 $C \neq\{ \}\rangle$ in_components_subset $[O F C]$ nonsub
using image_iff by fastforce
qed
then have bounded ($-f^{\prime}$ cball a r)
using bounded_subset 〈bounded C 〉 by auto

```
    then have \neg bounded (f` cball a r)
    using cobounded_imp_unbounded by blast
    then show False
    using compact_continuous_image [OF contf] compact_cball compact_imp_bounded
by blast
    qed
    with 〈C\not={}` have C\capf`}\mathrm{ ball a }r\not={
        by (simp add: inf.absorb_iff1)
    then show f'ball a r\subseteqC
        by (metis components_maximal [OF C _ fimsub] connected_continuous_image
ball_subset_cball connected_ball contf continuous_on_subset)
    qed
    moreover have open (-f'sphere a r)
    using hom compact_eq_bounded_closed compact_sphere homeomorphic_compactness
by blast
    ultimately show ?thesis
        using open_components by blast
qed
Proved by L. E. J. Brouwer (1912)
theorem invariance_of_domain:
    fixes f :: 'a व 'a::euclidean_space
    assumes continuous_on S f open S inj_on f S
        shows open(f 'S)
    unfolding open_subopen [of f'S]
proof clarify
    fix }
    assume }a\in
    obtain }\delta\mathrm{ where }\delta>0\mathrm{ and }\delta\mathrm{ : cball a }\delta\subseteq
        using <open S\rangle\langlea\inS\rangle open_contains_cball_eq by blast
    show \exists}T\mathrm{ . open }T\wedgefa\inT\wedgeT\subseteqf'
    proof (intro exI conjI)
        show open (f`(ball a }\delta)\mathrm{ )
        by (meson \delta <0< < \assms continuous_on_subset inj_on_subset invariance_of_domain_ball)
        show fa\inf'ball a \delta
            by (simp add: <0 < < )
        show f'ball a }\delta\subseteqf\mathrm{ 'S
            using \delta ball_subset_cball by blast
    qed
qed
lemma inv_of_domain_ss0:
    fixes f :: 'a = 'a::euclidean_space
    assumes contf: continuous_on Uf and injf: inj_on f U and fim: f'U\subseteqS
        and subspace S and dimS: dim S = DIM('b::euclidean_space)
            and ope:openin (top_of_set S) U
        shows openin (top_of_set S) (f'U)
proof -
    have }U\subseteq
```

using ope openin_imp_subset by blast
have (UNIV ::'b set) homeomorphic S
by (simp add: 〈subspace $S\rangle$ dimS homeomorphic_subspaces)
then obtain $h k$ where homhk: homeomorphism (UNIV::'b set) $S h k$
using homeomorphic_def by blast
have homkh: homeomorphism $S(k$ ' $S) k h$
using homhk homeomorphism_image2 homeomorphism_sym by fastforce
have open $((k \circ f \circ h) ' k$ ' U)
proof (rule invariance_of_domain)
show continuous_on $(k$ ' $U)(k \circ f \circ h)$
proof (intro continuous_intros)
show continuous_on (k ' U) h
by (meson continuous_on_subset [OF homeomorphism_cont1 [OF homhk]]
top_greatest)
have $h^{\prime} k$ ' $U \subseteq U$
by (metis $\langle U \subseteq S\rangle$ dual_order.eq_iff homeomorphism_image2 homeomor-
phism_of_subsets homkh)
then show continuous_on $\left(h{ }^{\prime} k\right.$ ' U) f
by (rule continuous_on_subset [OF contf])
have f ' h ' k ' $U \subseteq S$
using $\left\langle h^{\prime} k\right.$ ' $U \subseteq U$ 〉 fim by blast
then show continuous_on ($f^{\prime} h{ }^{\prime} k$ ' U) k
by (rule continuous_on_subset [OF homeomorphism_cont2 [OF homhk]])
qed
have ope_iff: $\bigwedge T$. open $T \longleftrightarrow$ openin (top_of_set $(k$ ' S)) T
using homhk homeomorphism_image2 open_openin by fastforce
show open (k ‘ U)
by (simp add: ope_iff homeomorphism_imp_open_map [OF homkh ope])
show inj_on $(k \circ f \circ h)(k ' U)$
apply (clarsimp simp: inj_on_def)
by (metis $\langle U \subseteq S\rangle$ fim homeomorphism_apply2 homhk image_subset_iff inj_onD
injf subsetD)
qed
moreover
have eq: f ' $U=h$ ' $(k \circ f \circ h \circ k)$ ' U
unfolding image_comp [symmetric] using $\langle U \subseteq S\rangle$ fim
by (metis homeomorphism_image2 homeomorphism_of_subsets homkh subset_image_iff)
ultimately show ?thesis
by (metis (no_types, hide_lams) homeomorphism_imp_open_map homhk im-
age_comp open_openin subtopology_UNIV)
qed
lemma inv_of_domain_ss1:
fixes $f::{ }^{\prime} a \Rightarrow{ }^{\prime} a::$ euclidean_space
assumes contf: continuous_on $U f$ and injf: inj_on $f U$ and fim: f ' $U \subseteq S$
and subspace S
and ope: openin (top_of_set S) U
shows openin (top_of_set S) (f ' U)
proof -

```
define S' where S'}\equiv\mp@subsup{S}{}{\prime}\equiv{y.\forallx\inS.0rthogonal x y
have subspace S'
    by (simp add: S'_def subspace_orthogonal_to_vectors)
    define g}\mathrm{ where }g\equiv\lambdaz::'a*'a.((f\circfst)z, snd z
    have openin (top_of_set (S\times S')) (g'(U\times S'))
    proof (rule inv_of_domain_ss0)
    show continuous_on (U\times S')g
        unfolding g_def
        by (auto intro!: continuous_intros continuous_on_compose2 [OF contf contin-
uous_on_fst])
    show g'(U\times S')\subseteqS\times S'
        using fim by (auto simp: g_def)
    show inj_on g ( U < S')
        using injf by (auto simp: g_def inj_on_def)
    show subspace (S\times S')
        by (simp add: <subspace S'〉\langlesubspace S〉 subspace_Times)
    show openin (top_of_set (S\times S'))(U\times S')
        by (simp add: openin_Times [OF ope])
    have }\operatorname{dim}(S\times\mp@subsup{S}{}{\prime})=\operatorname{dim}S+\operatorname{dim}\mp@subsup{S}{}{\prime
        by (simp add: \subspace S'\<subspace S\rangledim_Times)
    also have ... = DIM('a)
        using dim_subspace_orthogonal_to_vectors [OF \subspace S` subspace_UNIV]
        by (simp add: add.commute S'_def)
    finally show }\operatorname{dim}(S\times\mp@subsup{S}{}{\prime})=\operatorname{DIM}('a)
    qed
    moreover have g'(U\times S')= f`}U\times\mp@subsup{S}{}{\prime
    by (auto simp: g_def image_iff)
    moreover have 0}\in\mp@subsup{S}{}{\prime
    using <subspace S'` subspace_affine by blast
    ultimately show ?thesis
        by (auto simp: openin_Times_eq)
qed
corollary invariance_of_domain_subspaces:
    fixes f :: 'a::euclidean_space = 'b::euclidean_space
    assumes ope: openin (top_of_set U)S
        and subspace U subspace V and VU:\operatorname{dim}V\leq\operatorname{dim}U
        and contf:continuous_on S f and fim: f'S\subseteqV
        and injf: inj_on f S
    shows openin (top_of_set V) (f'S)
proof -
    obtain }\mp@subsup{V}{}{\prime}\mathrm{ where subspace }\mp@subsup{V}{}{\prime}\mp@subsup{V}{}{\prime}\subseteqU\operatorname{dim}\mp@subsup{V}{}{\prime}=\operatorname{dim}
        using choose_subspace_of_subspace [OF VU]
        by (metis span_eq_iff <subspace U\)
    then have V homeomorphic V'
        by (simp add: <subspace V` homeomorphic_subspaces)
    then obtain hk where homhk: homeomorphism V V'hk
    using homeomorphic_def by blast
```

```
    have eq: \(f\) ' \(S=k\) ' \((h \circ f)\) ' \(S\)
    proof -
    have \(k\) ' \(h\) ' \(f\) ' \(S=f^{\prime} S\)
        by (meson fim homeomorphism_def homeomorphism_of_subsets homhk sub-
set_refl)
    then show?thesis
        by (simp add: image_comp)
    qed
    show ?thesis
    unfolding \(e q\)
    proof (rule homeomorphism_imp_open_map)
    show homkh: homeomorphism \(V^{\prime} V k h\)
            by (simp add: homeomorphism_symD homhk)
    have \(h f V^{\prime}:(h \circ f)\) ' \(S \subseteq V^{\prime}\)
            using fim homeomorphism_image1 homhk by fastforce
    moreover have openin (top_of_set \(U\) ) \(((h \circ f)\) ' \(S\) )
    proof (rule inv_of_domain_ss1)
            show continuous_on \(S(h \circ f)\)
            by (meson contf continuous_on_compose continuous_on_subset fim homeo-
morphism_cont1 homhk)
            show inj_on \((h \circ f) S\)
                apply (clarsimp simp: inj_on_def)
                    by (metis fim homeomorphism_apply2 [OF homkh] image_subset_iff inj_onD
injf)
            show \((h \circ f)\) ' \(S \subseteq U\)
            using \(\left\langle V^{\prime} \subseteq U\right\rangle h f V^{\prime}\) by auto
            qed (auto simp: assms)
            ultimately show openin (top_of_set \(\left.V^{\prime}\right)((h \circ f)\) ' \(S\) )
            using openin_subset_trans \(\left\langle V^{\prime} \subseteq U\right\rangle\) by force
    qed
qed
corollary invariance_of_dimension_subspaces:
    fixes \(f::\) ' \(a::\) euclidean_space \(\Rightarrow\) ' \(b::\) euclidean_space
    assumes ope: openin (top_of_set \(U\) ) \(S\)
        and subspace \(U\) subspace \(V\)
        and contf: continuous_on \(S f\) and fim: \(f\) ' \(S \subseteq V\)
        and injf: inj_on \(f S\) and \(S \neq\{ \}\)
        shows \(\operatorname{dim} U \leq \operatorname{dim} V\)
proof -
    have False if \(\operatorname{dim} V<\operatorname{dim} U\)
    proof -
    obtain \(T\) where subspace \(T T \subseteq U \operatorname{dim} T=\operatorname{dim} V\)
        using choose_subspace_of_subspace [of dim V U]
        by (metis 〈dim \(V<\operatorname{dim} U\rangle \operatorname{assms}(2)\) order.strict_implies_order span_eq_iff)
        then have \(V\) homeomorphic \(T\)
            by (simp add: 〈subspace \(V\) 〉 homeomorphic_subspaces)
            then obtain \(h k\) where homhk: homeomorphism \(V T h k\)
            using homeomorphic_def by blast
```

```
    have continuous_on S (h\circf)
    by (meson contf continuous_on_compose continuous_on_subset fim homeomor-
phism_cont1 homhk)
    moreover have ( }h\circf\mathrm{ )' 'S}\subseteq
        using 〈T\subseteqU\rangle fim homeomorphism_image1 homhk by fastforce
    moreover have inj_on ( }h\circf\mathrm{ )S
        apply (clarsimp simp: inj_on_def)
        by (metis fim homeomorphism_apply1 homhk image_subset_iff inj_onD injf)
    ultimately have ope_hf: openin (top_of_set U) ((h\circf)'S)
        using invariance_of_domain_subspaces [OF ope <subspace U\<subspace U\rangle] by
blast
    have (h\circf)'S\subseteqT
        using fim homeomorphism_image1 homhk by fastforce
    then have dim ((h\circf)'S)\leq\operatorname{dim}T
        by (rule dim_subset)
    also have dim ((h\circf)'S)=\operatorname{dim}U
        using \S\not={}`\langlesubspace U>
        by (blast intro: dim_openin ope_hf)
    finally show False
        using}\langle\operatorname{dim}V<\operatorname{dim}U\rangle\langle\operatorname{dim}T=\operatorname{dim}V\rangle\mathrm{ by simp
    qed
    then show ?thesis
        using not_less by blast
qed
corollary invariance_of_domain_affine_sets:
    fixes f :: 'a::euclidean_space = 'b::euclidean_space
    assumes ope: openin (top_of_set U)S
        and aff: affine U affine V aff_dim V \leqaff_dim U
        and contf:continuous_on S f and fim: f'S\subseteqV
        and injf: inj_on f S
    shows openin (top_of_set V) (f'S)
proof (cases S={})
    case True
    then show ?thesis by auto
next
    case False
    obtain ab where a \inS a\inUb\inV
        using False fim ope openin_contains_cball by fastforce
    have openin (top_of_set ((+) (-b)'V)) (((+) (-b)\circf\circ(+)a)'(+)(-a)
    'S)
    proof (rule invariance_of_domain_subspaces)
        show openin (top_of_set ((+) (-a)`U)) ((+) (- a)`S)
            by (metis ope homeomorphism_imp_open_map homeomorphism_translation
translation_galois)
    show subspace ((+) (-a)`U)
        by (simp add: <a \in U\ affine_diffs_subspace_subtract <affine U\rangle cong: im-
    age_cong_simp)
    show subspace ((+) (-b)`V)
```

by (simp add: $\langle b \in V\rangle$ affine_diffs_subspace_subtract 〈affine $V\rangle$ cong: image_cong_simp)
show $\operatorname{dim}\left((+)(-b)^{\prime} V\right) \leq \operatorname{dim}((+)(-a) ‘ U)$
by (metis $\langle a \in U\rangle\langle b \in V\rangle$ aff_dim_eq_dim affine_hull_eq aff of_nat_le_iff)
show continuous_on $((+)(-a) ' S)((+)(-b) \circ f \circ(+) a)$
by (metis contf continuous_on_compose homeomorphism_cont2 homeomorphism_translation translation_galois)
show $((+)(-b) \circ f \circ(+) a)^{\prime}(+)(-a)^{\prime} S \subseteq(+)(-b)^{\prime} V$
using fim by auto
show inj_on $((+)(-b) \circ f \circ(+) a)((+)(-a) ‘ S)$
by (auto simp: inj_on_def) (meson inj_onD injf)
qed
then show ?thesis
by (metis (no_types, lifting) homeomorphism_imp_open_map homeomorphism_translation image_comp translation_galois)
qed
corollary invariance_of_dimension_affine_sets:
fixes $f::$ 'a::euclidean_space \Rightarrow 'b::euclidean_space
assumes ope: openin (top_of_set U) S
and aff: affine U affine V
and contf: continuous_on $S f$ and fim: f ' $S \subseteq V$
and injf: inj_on $f S$ and $S \neq\{ \}$
shows aff_dim $U \leq$ aff_dim V
proof -
obtain $a b$ where $a \in S a \in U b \in V$
using $\langle S \neq\{ \}\rangle$ fim ope openin_contains_cball by fastforce
have $\operatorname{dim}((+)(-a) \cdot U) \leq \operatorname{dim}((+)(-b) ‘ V)$
proof (rule invariance_of_dimension_subspaces)
show openin (top_of_set $((+)(-a) \cdot U))((+)(-a) \cdot S)$
by (metis ope homeomorphism_imp_open_map homeomorphism_translation translation_galois)
show subspace $((+)(-a)$ ' $U)$
by (simp add: $\langle a \in U\rangle$ affine_diffs_subspace_subtract $\langle a f f i n e ~ U\rangle$ cong: image_cong_simp)
show subspace $((+)(-b)$ ' $V)$
by (simp add: $\langle b \in V\rangle$ affine_diffs_subspace_subtract $\langle a f f i n e ~ V\rangle$ cong: image_cong_simp)
show continuous_on $((+)(-a)$ 'S) $(++)(-b) \circ f \circ(+) a)$
by (metis contf continuous_on_compose homeomorphism_cont2 homeomor-
phism_translation translation_galois)
show $((+)(-b) \circ f \circ(+) a)^{\prime}(+)(-a) \cdot S \subseteq(+)(-b)^{\prime} V$
using fim by auto
show inj_on $((+)(-b) \circ f \circ(+) a)((+)(-a) \cdot S)$
by (auto simp: inj_on_def) (meson inj_onD injf)
qed (use $\langle S \neq\{ \}\rangle$ in auto)
then show ?thesis
by (metis $\langle a \in U\rangle\langle b \in V\rangle$ aff_dim_eq_dim affine_hull_eq aff of_nat_le_iff)
qed

```
corollary invariance_of_dimension:
    fixes \(f\) :: ' \(a::\) euclidean_space \(\Rightarrow\) ' \(b::\) euclidean_space
    assumes contf: continuous_on \(S f\) and open \(S\)
        and injf: inj_on \(f S\) and \(S \neq\{ \}\)
        shows \(\operatorname{DIM}\left({ }^{\prime} a\right) \leq D I M\left({ }^{\prime} b\right)\)
    using invariance_of_dimension_subspaces [of UNIV S UNIV f] assms
    by auto
corollary continuous_injective_image_subspace_dim_le:
    fixes \(f\) :: ' \(a:\) :euclidean_space \(\Rightarrow\) ' \(b::\) euclidean_space
    assumes subspace \(S\) subspace \(T\)
        and contf: continuous_on \(S f\) and fim: \(f\) ' \(S \subseteq T\)
        and injf: inj_on f \(S\)
        shows \(\operatorname{dim} S \leq \operatorname{dim} T\)
    using invariance_of_dimension_subspaces \(\left[\right.\) of \(\left.S S_{-} f\right]\) assms by (auto simp: sub-
space_affine)
lemma invariance_of_dimension_convex_domain:
    fixes \(f\) :: 'a::euclidean_space \(\Rightarrow\) ' \(b::\) euclidean_space
    assumes convex \(S\)
            and contf: continuous_on \(S f\) and fim: \(f\) ' \(S \subseteq\) affine hull \(T\)
            and injf: inj_on f \(S\)
        shows aff_dim \(S \leq\) aff_dim \(T\)
proof (cases \(S=\{ \}\) )
    case True
    then show ?thesis by (simp add: aff_dim_geq)
next
    case False
    have aff_dim (affine hull \(S\) ) \(\leq\) aff_dim (affine hull \(T\) )
    proof (rule invariance_of_dimension_affine_sets)
        show openin (top_of_set (affine hull \(S\) )) (rel_interior \(S\) )
            by (simp add: openin_rel_interior)
        show continuous_on (rel_interior \(S\) ) \(f\)
            using contf continuous_on_subset rel_interior_subset by blast
        show \(f\) ' rel_interior \(S \subseteq\) affine hull \(T\)
            using fim rel_interior_subset by blast
        show inj_on \(f\) (rel_interior \(S\) )
            using inj_on_subset injf rel_interior_subset by blast
        show rel_interior \(S \neq\{ \}\)
            by (simp add: False 〈convex \(S\) 〉 rel_interior_eq_empty)
    qed auto
    then show ?thesis
        by \(\operatorname{simp}\)
qed
```

lemma homeomorphic_convex_sets_le:

```
    assumes convex \(S S\) homeomorphic \(T\)
    shows aff_dim \(S \leq\) aff_dim \(T\)
proof -
    obtain \(h k\) where homhk: homeomorphism S Thk
        using homeomorphic_def assms by blast
    show ?thesis
    proof (rule invariance_of_dimension_convex_domain [OF 〈convex \(S\rangle]\) )
        show continuous_on \(S h\)
            using homeomorphism_def homhk by blast
        show \(h\) ' \(S \subseteq\) affine hull \(T\)
            by (metis homeomorphism_def homhk hull_subset)
        show inj_on \(h S\)
            by (meson homeomorphism_apply1 homhk inj_on_inverseI)
    qed
qed
lemma homeomorphic_convex_sets:
    assumes convex \(S\) convex \(T S\) homeomorphic \(T\)
    shows aff_dim \(S=\) aff_dim \(T\)
    by (meson assms dual_order.antisym homeomorphic_convex_sets_le homeomor-
phic_sym)
lemma homeomorphic_convex_compact_sets_eq:
    assumes convex \(S\) compact \(S\) convex \(T\) compact \(T\)
    shows \(S\) homeomorphic \(T \longleftrightarrow\) aff_dim \(S=\) aff_dim \(T\)
    by (meson assms homeomorphic_convex_compact_sets homeomorphic_convex_sets)
lemma invariance_of_domain_gen:
    fixes \(f\) :: 'a::euclidean_space \(\Rightarrow\) ' \(b::\) euclidean_space
    assumes open \(S\) continuous_on \(S\) finj_on \(f S D I M\left({ }^{\prime} b\right) \leq D I M\left({ }^{\prime} a\right)\)
        shows open \((f\) ' \(S\) )
    using invariance_of_domain_subspaces [of UNIV S UNIV f] assms by auto
lemma injective_into_1d_imp_open_map_UNIV:
    fixes \(f\) :: 'a::euclidean_space \(\Rightarrow\) real
    assumes open \(T\) continuous_on \(S\) finj_on \(f S T \subseteq S\)
        shows open ( \(f\) ' \(T\) )
    apply (rule invariance_of_domain_gen [OF 〈open \(T\rangle\) ])
    using assms by (auto simp: elim: continuous_on_subset subset_inj_on)
lemma continuous_on_inverse_open:
    fixes \(f\) :: 'a::euclidean_space \(\Rightarrow\) 'b::euclidean_space
    assumes open \(S\) continuous_on \(S f D I M(' b) \leq D I M(' a)\) and \(g f: \bigwedge x . x \in S \Longrightarrow\)
\(g(f x)=x\)
            shows continuous_on \((f\) ' \(S\) ) \(g\)
proof (clarsimp simp add: continuous_openin_preimage_eq)
    fix \(T\) :: 'a set
    assume open \(T\)
    have \(e q: f\) ' \(S \cap g-{ }^{\prime} T=f\) ' \((S \cap T)\)
```

```
    by (auto simp: gf)
    have open ( }f\mathrm{ '}S\mathrm{ )
    by (rule invariance_of_domain_gen) (use assms inj_on_inverseI in auto)
    moreover have open (f'(S\capT))
    using assms
    by (metis <open T` continuous_on_subset inj_onI inj_on_subset invariance_of_domain_gen
openin_open openin_open_eq)
    ultimately show openin (top_of_set (f'S)) (f'S\capg-' T)
    unfolding eq by (auto intro:open_openin_trans)
qed
lemma invariance_of_domain_homeomorphism:
    fixes f :: 'a::euclidean_space }=>\mathrm{ 'b::euclidean_space
    assumes open S continuous_on S f DIM('b) \leq DIM('a) inj_on f S
    obtains g}\mathrm{ where homeomorphism S (f`}S)f
proof
    show homeomorphism S (f'S)f(inv_into S f)
        by (simp add: assms continuous_on_inverse_open homeomorphism_def)
qed
corollary invariance_of_domain_homeomorphic:
    fixes f :: 'a::euclidean_space = 'b::euclidean_space
    assumes open S continuous_on S f DIM('b) \leqDIM('a) inj_on f S
    shows S homeomorphic (f'S)
    using invariance_of_domain_homeomorphism [OF assms]
    by (meson homeomorphic_def)
lemma continuous_image_subset_interior:
    fixes f ::'a::euclidean_space = 'b::euclidean_space
    assumes continuous_on S finj_on f S DIM('b) \leq DIM('a)
    shows f'(interior S)\subseteqinterior (f'S)
proof -
    have open (f` interior S}\mathrm{ )
        using assms
        by (intro invariance_of_domain_gen) (auto simp: subset_inj_on interior_subset
    continuous_on_subset)
    then show ?thesis
        by (simp add: image_mono interior_maximal interior_subset)
qed
lemma homeomorphic_interiors_same_dimension:
    fixes S :: 'a::euclidean_space set and T :: 'b::euclidean_space set
    assumes S homeomorphic T and dimeq: DIM('a) = DIM('b)
    shows (interior S) homeomorphic (interior T)
    using assms [unfolded homeomorphic_minimal]
    unfolding homeomorphic_def
proof (clarify elim!: ex_forward)
    fix fg
    assume S: \forallx\inS.fx\inT^g(fx)=x and T:\forally\inT.gy\inS\wedgef(gy)=y
```

and contf：continuous＿on $S f$ and contg：continuous＿on $T g$
then have $f S T: f^{\prime} S=T$ and $g T S: g{ }^{\prime} T=S$ and inj＿on $f S$ inj＿on $g T$
by（auto simp：inj＿on＿def intro：rev＿image＿eqI）metis＋
have fim：f＇interior $S \subseteq$ interior T
using continuous＿image＿subset＿interior［OF contf 〈inj＿on f S〉］dimeq fST by simp
have gim：g＇interior $T \subseteq$ interior S
using continuous＿image＿subset＿interior［OF contg〈inj＿on g T〉］dimeq gTS by simp
show homeomorphism（interior S ）（interior $T) f g$
unfolding homeomorphism＿def
proof（intro conjI ballI）
show $\bigwedge x . x \in$ interior $S \Longrightarrow g(f x)=x$
by（meson $\langle\forall x \in S . f x \in T \wedge g(f x)=x\rangle$ subsetD interior＿subset）
have interior $T \subseteq f^{\prime}$ interior S
proof
fix x assume $x \in$ interior T
then have $g x \in$ interior S
using gim by blast
then show $x \in f$＇interior S
by（metis $T\langle x \in$ interior $T\rangle$ image＿iff interior＿subset subsetCE）
qed
then show f＇interior $S=$ interior T
using fim by blast
show continuous＿on（interior S ）f
by（metis interior＿subset continuous＿on＿subset contf）
show $\bigwedge y . y \in$ interior $T \Longrightarrow f(g y)=y$
by（meson T subsetD interior＿subset）
have interior $S \subseteq g^{\prime}$ interior T
proof
fix x assume $x \in$ interior S
then have $f x \in$ interior T
using fim by blast
then show $x \in g$＇interior T
by（metis $S\langle x \in$ interior $S\rangle$ image＿iff interior＿subset subsetCE）
qed
then show g＇interior $T=$ interior S
using gim by blast
show continuous＿on（interior T）g
by（metis interior＿subset continuous＿on＿subset contg）
qed
qed
lemma homeomorphic＿open＿imp＿same＿dimension：
fixes S ：：＇a：：euclidean＿space set and $T::{ }^{\prime} b::$ euclidean＿space set
assumes S homeomorphic T open $S S \neq\{ \}$ open $T T \neq\{ \}$
shows $\operatorname{DIM}\left({ }^{\prime} a\right)=\operatorname{DIM}\left({ }^{\prime} b\right)$
using assms
apply（simp add：homeomorphic＿minimal）

```
    apply (rule order_antisym; metis inj_onI invariance_of_dimension)
    done
proposition homeomorphic_interiors:
    fixes S :: 'a::euclidean_space set and T :: 'b::euclidean_space set
    assumes S homeomorphic T interior S={}\longleftrightarrow interior T={}
        shows (interior S) homeomorphic (interior T)
proof (cases interior T={})
    case True
    with assms show ?thesis by auto
next
    case False
    then have DIM('a) = DIM('b)
        using assms
        apply (simp add: homeomorphic_minimal)
            apply (rule order_antisym; metis continuous_on_subset inj_onI inj_on_subset
interior_subset invariance_of_dimension open_interior)
        done
    then show ?thesis
        by (rule homeomorphic_interiors_same_dimension [OF〈S homeomorphic T〉])
qed
lemma homeomorphic_frontiers_same_dimension:
    fixes S :: 'a::euclidean_space set and T :: 'b::euclidean_space set
    assumes S homeomorphic T closed S closed T and dimeq: DIM('a) = DIM('b)
    shows (frontier S) homeomorphic (frontier T)
    using assms [unfolded homeomorphic_minimal]
    unfolding homeomorphic_def
proof (clarify elim!: ex_forward)
    fix fg
    assume S:}\forallx\inS.fx\inT\wedgeg(fx)=x and T:\forally\inT.gy\inS\wedgef(gy)=
        and contf:continuous_on S f and contg:continuous_on T g
    then have fST: f'S=T and gTS: g' T = S and inj_on f S inj_on g T
        by (auto simp: inj_on_def intro: rev_image_eqI) metis+
    have g'interior T\subseteq interior S
        using continuous_image_subset_interior [OF contg〈inj_on g T〉] dimeq gTS by
    simp
    then have fim: f' frontier S\subseteq frontier T
        unfolding frontier_def
        using continuous_image_subset_interior assms(2) assms(3) S by auto
    have f' interior S\subseteq interior T
        using continuous_image_subset_interior [OF contf <inj_on f S`] dimeq fST by
    simp
    then have gim: g' frontier T\subseteq frontier S
        unfolding frontier_def
        using continuous_image_subset_interior T assms(2) assms(3) by auto
    show homeomorphism (frontier S) (frontier T) fg
        unfolding homeomorphism_def
    proof (intro conjI ballI)
```

```
    show \(g f: \bigwedge x . x \in\) frontier \(S \Longrightarrow g(f x)=x\)
    by (simp add: \(S\) assms(2) frontier_def)
    show \(f g: \bigwedge y . y \in\) frontier \(T \Longrightarrow f(g y)=y\)
    by (simp add: \(T\) assms(3) frontier_def)
    have frontier \(T \subseteq f^{\prime}\) frontier \(S\)
    proof
        fix \(x\) assume \(x \in\) frontier \(T\)
        then have \(g x \in\) frontier \(S\)
            using gim by blast
        then show \(x \in f\) ' frontier \(S\)
            by (metis fg \(\langle x \in\) frontier \(T\rangle\) imageI)
    qed
    then show \(f\) ' frontier \(S=\) frontier \(T\)
        using fim by blast
    show continuous_on (frontier \(S\) ) \(f\)
        by (metis Diff_subset assms(2) closure_eq contf continuous_on_subset fron-
tier_def)
    have frontier \(S \subseteq g\) 'frontier \(T\)
    proof
        fix \(x\) assume \(x \in\) frontier \(S\)
        then have \(f x \in\) frontier \(T\)
            using fim by blast
            then show \(x \in g\) 'frontier \(T\)
            by (metis \(g f\langle x \in\) frontier \(S\rangle\) imageI)
    qed
    then show \(g\) 'frontier \(T=\) frontier \(S\)
            using gim by blast
    show continuous_on (frontier T) \(g\)
            by (metis Diff_subset assms(3) closure_closed contg continuous_on_subset
frontier_def)
    qed
qed
lemma homeomorphic_frontiers:
    fixes \(S\) :: ' \(a::\) euclidean_space set and \(T\) :: 'b::euclidean_space set
    assumes \(S\) homeomorphic \(T\) closed \(S\) closed \(T\)
                interior \(S=\{ \} \longleftrightarrow\) interior \(T=\{ \}\)
        shows (frontier \(S\) ) homeomorphic (frontier \(T\) )
proof (cases interior \(T=\{ \}\) )
    case True
    then show ?thesis
        by (metis Diff_empty assms closure_eq frontier_def)
next
    case False
    then have \(\operatorname{DIM}\left({ }^{\prime} a\right)=\operatorname{DIM}\left({ }^{\prime} b\right)\)
        using assms homeomorphic_interiors homeomorphic_open_imp_same_dimension
by blast
    then show ?thesis
        using assms homeomorphic_frontiers_same_dimension by blast
```


qed

lemma continuous＿image＿subset＿rel＿interior：
fixes $f::$＇a：：euclidean＿space \Rightarrow＇$b::$ euclidean＿space
assumes contf：continuous＿on $S f$ and injf：inj＿on $f S$ and fim：f＇$S \subseteq T$
and $T S$ ：aff＿dim $T \leq$ aff＿dim S
shows f＇（rel＿interior $S) \subseteq$ rel＿interior $(f$＇S ）
proof（rule rel＿interior＿maximal）
show f＇rel＿interior $S \subseteq f^{\prime} S$ by（simp add：image＿mono rel＿interior＿subset）
show openin（top＿of＿set（affine hull f＇S ））（ f＇rel＿interior S ）
proof（rule invariance＿of＿domain＿affine＿sets）
show openin（top＿of＿set（affine hull S ））（rel＿interior S ）
by（simp add：openin＿rel＿interior）
show aff＿dim（affine hull f＇S）\leq aff＿dim（affine hull S ）
by（metis aff＿dim＿affine＿hull aff＿dim＿subset fim TS order＿trans）
show f＇rel＿interior $S \subseteq$ affine hull f＇S
by（meson 〈 f＇rel＿interior $S \subseteq f$＇S 〉hull＿subset order＿trans）
show continuous＿on（rel＿interior S ）f
using contf continuous＿on＿subset rel＿interior＿subset by blast
show inj＿on f（rel＿interior S ）
using inj＿on＿subset injf rel＿interior＿subset by blast
qed auto
qed
lemma homeomorphic＿rel＿interiors＿same＿dimension：
fixes S ：：＇$a::$ euclidean＿space set and $T::$＇$b::$ euclidean＿space set
assumes S homeomorphic T and aff：aff＿dim $S=$ aff＿dim T
shows（rel＿interior S ）homeomorphic（rel＿interior T ）
using assms［unfolded homeomorphic＿minimal］
unfolding homeomorphic＿def
proof（clarify elim！：ex＿forward）
fix $f g$
assume $S: \forall x \in S . f x \in T \wedge g(f x)=x$ and $T: \forall y \in T . g y \in S \wedge f(g y)=y$ and contf：continuous＿on $S f$ and contg：continuous＿on $T g$
then have $f S T: f$＇$S=T$ and $g T S: g$＇$T=S$ and inj＿on $f S$ inj＿on $g T$ by（auto simp：inj＿on＿def intro：rev＿image＿eqI）metis＋
have fim：f＇rel＿interior $S \subseteq$ rel＿interior T
by（metis 〈inj＿on $f S$ 〉 aff contf continuous＿image＿subset＿rel＿interior fST or－
der＿refl）
have gim：g＇rel＿interior $T \subseteq$ rel＿interior S
by（metis 〈inj＿on $g T\rangle$ aff contg continuous＿image＿subset＿rel＿interior gTS or－
der＿refl）
show homeomorphism（rel＿interior S ）（rel＿interior $T) f g$
unfolding homeomorphism＿def
proof（intro conjI ballI）
show $g f: \wedge x . x \in$ rel＿interior $S \Longrightarrow g(f x)=x$
using S rel＿interior＿subset by blast
show $f g: \bigwedge y . y \in$ rel＿interior $T \Longrightarrow f(g y)=y$

```
            using T mem_rel_interior_ball by blast
    have rel_interior T\subseteqf'rel_interior S
    proof
            fix x assume x E rel_interior T
            then have gx\in rel_interior S
            using gim by blast
            then show }x\inf\mathrm{ 'rel_interior S
            by (metis fg}\langlex\in\mathrm{ rel_interior T> imageI)
    qed
    moreover have f'rel_interior S\subseteqrel_interior T
            by (metis <inj_on f S` aff contf continuous_image_subset_rel_interior fST or-
der_refl)
            ultimately show f'rel_interior S = rel_interior T
            by blast
            show continuous_on (rel_interior S) f
            using contf continuous_on_subset rel_interior_subset by blast
            have rel_interior S\subseteqg'rel_interior T
    proof
            fix x assume x frel_interior S
            then have fx\in rel_interior T
            using fim by blast
            then show }x\ing'rel_interior 
            by (metis gf <x < rel_interior S> imageI)
    qed
    then show g`rel_interior T = rel_interior S
            using gim by blast
    show continuous_on (rel_interior T) g
            using contg continuous_on_subset rel_interior_subset by blast
    qed
qed
lemma homeomorphic_aff_dim_le:
    fixes S :: 'a::euclidean_space set
    assumes S homeomorphic T rel_interior S }\not={
        shows aff_dim (affine hull S) \leqaff_dim (affine hull T)
proof -
    obtain fg
            where S:\forallx\inS.fx\inT\wedgeg(fx)=x and T:\forally\inT.gy\inS\wedgef(gy)=y
                and contf:continuous_on S f and contg:continuous_on Tg
            using assms [unfolded homeomorphic_minimal] by auto
    show ?thesis
    proof (rule invariance_of_dimension_affine_sets)
            show continuous_on (rel_interior S) f
            using contf continuous_on_subset rel_interior_subset by blast
            show f'rel_interior S \subseteqaffine hull T
            by (meson S hull_subset image_subsetI rel_interior_subset rev_subsetD)
            show inj_on f (rel_interior S)
            by (metis S inj_on_inverseI inj_on_subset rel_interior_subset)
```

```
    qed (simp_all add: openin_rel_interior assms)
qed
lemma homeomorphic_rel_interiors:
    fixes S :: 'a::euclidean_space set and T :: 'b::euclidean_space set
    assumes S homeomorphic T rel_interior S={}\longleftrightarrow rel_interior T={}
        shows (rel_interior S) homeomorphic (rel_interior T)
proof (cases rel_interior T = {})
    case True
    with assms show ?thesis by auto
next
    case False
    have aff_dim (affine hull S) \leq aff_dim (affine hull T)
        using False assms homeomorphic_aff_dim_le by blast
    moreover have aff_dim (affine hull T) \leq aff_dim (affine hull S)
        using False assms(1) homeomorphic_aff_dim_le homeomorphic_sym by auto
    ultimately have aff_dim S = aff_dim T by force
    then show ?thesis
        by (rule homeomorphic_rel_interiors_same_dimension [OF <S homeomorphic
T\])
qed
```

lemma homeomorphic_rel_boundaries_same_dimension:
fixes S :: ' $a::$ euclidean_space set and T :: ' $b::$ euclidean_space set
assumes S homeomorphic T and aff: aff_dim $S=$ aff_dim T
shows (S - rel_interior S) homeomorphic (T - rel_interior T)
using assms [unfolded homeomorphic_minimal]
unfolding homeomorphic_def
proof (clarify elim!: ex_forward)
fix $f g$
assume $S: \forall x \in S . f x \in T \wedge g(f x)=x$ and $T: \forall y \in T . g y \in S \wedge f(g y)=y$
and contf: continuous_on $S f$ and contg: continuous_on $T g$
then have $f S T: f$ ' $S=T$ and $g T S: g$ ' $T=S$ and inj_on $f S$ inj_on $g T$
by (auto simp: inj_on_def intro: rev_image_eqI) metis+
have fim: f ' rel_interior $S \subseteq$ rel_interior T
by (metis 〈inj_on f S 〉 aff contf continuous_image_subset_rel_interior fST or-
der_refl)
have gim: g ' rel_interior $T \subseteq$ rel_interior S
by (metis 〈inj_on $g T$ 〉 aff contg continuous_image_subset_rel_interior gTS or-
der_refl)
show homeomorphism $(S-$ rel_interior $S)\left(T-r e l _i n t e r i o r ~ T\right) f g$
unfolding homeomorphism_def
proof (intro conjI ballI)
show $g f: \bigwedge x . x \in S-$ rel_interior $S \Longrightarrow g(f x)=x$
using S rel_interior_subset by blast
show fg: $\bigwedge y . y \in T$ - rel_interior $T \Longrightarrow f(g y)=y$
using T mem_rel_interior_ball by blast
show f ' $(S-$ rel_interior $S)=T-$ rel_interior T
using S fST fim gim by auto
show continuous_on $(S-$ rel_interior S) f
using contf continuous_on_subset rel_interior_subset by blast
show g ' $(T-$ rel_interior $T)=S-$ rel_interior S
using T gTS gim fim by auto
show continuous_on (T - rel_interior $T) g$
using contg continuous_on_subset rel_interior_subset by blast
qed
qed
lemma homeomorphic_rel_boundaries:
fixes S :: 'a::euclidean_space set and $T::{ }^{\prime} b::$ euclidean_space set
assumes S homeomorphic T rel_interior $S=\{ \} \longleftrightarrow$ rel_interior $T=\{ \}$
shows $(S-$ rel_interior $S)$ homeomorphic (T - rel_interior $T)$
proof (cases rel_interior $T=\{ \}$)
case True
with assms show ?thesis by auto
next
case False
obtain $f g$
where $S: \forall x \in S . f x \in T \wedge g(f x)=x$ and $T: \forall y \in T . g y \in S \wedge f(g y)=y$
and contf: continuous_on $S f$ and contg: continuous_on $T g$
using assms [unfolded homeomorphic_minimal] by auto
have aff_dim (affine hull S) \leq aff_dim (affine hull T)
using False assms homeomorphic_aff_dim_le by blast
moreover have aff_dim (affine hull T) \leq aff_dim (affine hull S)
by (meson False assms(1) homeomorphic_aff_dim_le homeomorphic_sym)
ultimately have aff_dim $S=$ aff_dim T by force
then show ?thesis
by (rule homeomorphic_rel_boundaries_same_dimension [OF〈S homeomorphic T〉])
qed
proposition uniformly_continuous_homeomorphism_UNIV_trivial:
fixes $f::$ 'a::euclidean_space $\Rightarrow{ }^{\prime} a$
assumes contf: uniformly_continuous_on $S f$ and hom: homeomorphism S UNIV
$f g$
shows $S=U N I V$
proof (cases $S=\{ \}$)
case True
then show ?thesis
by (metis UNIV_I hom empty_iff homeomorphism_def image_eqI)
next
case False
have inj g
by (metis UNIV_I hom homeomorphism_apply2 injI)
then have open (g 'UNIV)
by (blast intro: invariance_of_domain hom homeomorphism_cont2)
then have open S

```
    using hom homeomorphism_image2 by blast
    moreover have complete S
    unfolding complete_def
    proof clarify
    fix }
    assume }\sigma:\foralln.\sigman\inS\mathrm{ and Cauchy }
    have Cauchy (fo \sigma)
        using uniformly_continuous_imp_Cauchy_continuous 〈Cauchy \sigma〉 \sigma contf by
blast
    then obtain l where (f\circ\sigma)\longrightarrowl
        by (auto simp: convergent_eq_Cauchy [symmetric])
    show }\existsl\inS.\sigma\longrightarrow
    proof
        show gl\inS
            using hom homeomorphism_image2 by blast
        have (g\circ(f\circ\sigma))\longrightarrowgl
            by (meson UNIV_I<(f\circ\sigma)\longrightarrowl`continuous_on_sequentially hom
homeomorphism_cont2)
            then show }\sigma\longrightarrowg
            proof -
            have }\foralln.\sigma n=(g\circ(f\circ\sigma))
                by (metis (no_types) \sigma comp_eq_dest_lhs hom homeomorphism_apply1)
            then show ?thesis
                by (metis (no_types) LIMSEQ_iff <(g\circ(f\circ\sigma))\longrightarrow \longrightarrow 
            qed
    qed
    qed
    then have closed S
        by (simp add: complete_eq_closed)
    ultimately show ?thesis
        using clopen [of S] False by simp
qed
```


6.41.6 Formulation of loop homotopy in terms of maps out of type complex

lemma homotopic_circlemaps_imp_homotopic_loops:
assumes homotopic_with_canon (λh. True) (sphere 0 1) Sfg
shows homotopic_loops $S(f \circ \exp \circ(\lambda t .2 *$ of_real pi $*$ of_real $t * \mathrm{i}))$ $(g \circ$ exp $\circ(\lambda t .2 *$ of_real pi $*$ of_real $t * \mathrm{i}))$
proof -
have homotopic_with_canon (λf. True) $\{z$. cmod $z=1\} S f g$ using assms by (auto simp: sphere_def)
moreover have continuous_on $\{0 . .1\}(\exp \circ(\lambda t$. 2 $*$ of_real pi $*$ of_real $t * i)$) by (intro continuous_intros)
moreover have (exp $\circ(\lambda t$. $2 *$ of_real pi $*$ of_real $t * \mathrm{i})$)' $\{0 . .1\} \subseteq\{z$.cmod $z=1\}$
by (auto simp: norm_mult)
ultimately

```
    show ?thesis
    apply (simp add: homotopic_loops_def comp_assoc)
    apply (rule homotopic_with_compose_continuous_right)
        apply (auto simp: pathstart_def pathfinish_def)
    done
qed
lemma homotopic_loops_imp_homotopic_circlemaps:
    assumes homotopic_loops \(S p q\)
    shows homotopic_with_canon ( \(\lambda\). True) (sphere 0 1) \(S\)
```

 \((p \circ(\lambda z .(\) Arg2pi z / \((2 * p i))))\)
 $(q \circ(\lambda z .($ Arg2pi z / $(2 * p i))))$
proof -
obtain h where conth: continuous_on $(\{0 . .1::$ real $\} \times\{0 . .1\}) h$
and him: h ' $(\{0 . .1\} \times\{0 . .1\}) \subseteq S$
and $h 0:(\forall x . h(0, x)=p x)$
and $h 1:(\forall x . h(1, x)=q x)$
and $h 01:(\forall t \in\{0 . .1\} . h(t, 1)=h(t, 0))$
using assms
by (auto simp: homotopic_loops_def sphere_def homotopic_with_def pathstart_def
pathfinish_def)
define j where $j \equiv \lambda z$. if $0 \leq \operatorname{Im}(\operatorname{snd} z)$
then $h(f s t z, \operatorname{Arg2pi}($ snd $z) /(2 * p i))$
else $h(f$ fst $z, 1-\operatorname{Arg} 2 p i(c n j(s n d z)) /(2 * p i))$
have Arg2pi_eq: $1-\operatorname{Arg2pi}(\operatorname{cnj} y) /(2 * p i)=\operatorname{Arg2pi} y /(2 * p i) \vee \operatorname{Arg} 2 p i$
$y=0 \wedge \operatorname{Arg2pi}(\operatorname{cnj} y)=0$ if $\operatorname{cmod} y=1$ for y
using that Arg2pi_eq_0_pi Arg2pi_eq_pi by (force simp: Arg2pi_cnj field_split_simps)
show ?thesis
proof (simp add: homotopic_with; intro conjI ballI exI)
show continuous_on $(\{0 . .1\} \times$ sphere 01$)(\lambda w . h($ fst $w, \operatorname{Arg2pi}($ snd $w) /(2$

* pi)))
proof (rule continuous_on_eq)
show $j: j x=h($ fst $x, \operatorname{Arg} 2 p i($ snd $x) /(2 * p i))$ if $x \in\{0 . .1\} \times$ sphere 0
1 for x
using Arg2pi_eq that h01 by (force simp: j_{-}def)
have eq: $S=S \cap(U N I V \times\{z .0 \leq \operatorname{Im} z\}) \cup S \cap(U N I V \times\{z . \operatorname{Im} z \leq$
$0\}$) for $S::($ real $*$ complex) set
by auto
have c1: continuous_on $\left(\{0 . .1\} \times\right.$ sphere $01 \cap$ UNIV $\left.\times\left\{\begin{array}{c} \\ \text {. } 0 \leq \operatorname{Im} z\end{array}\right\}\right)$
$(\lambda x . h(f s t x, \operatorname{Arg} 2 p i(s n d x) /(2 * p i)))$
apply (intro continuous_intros continuous_on_compose2 [OF conth] contin-
uous_on_compose2 [OF continuous_on_upperhalf_Arg2pi])
apply (auto simp: Arg2pi)
apply (meson Arg2pi_lt_2pi linear not_le)
done
have c2: continuous_on $(\{0 . .1\} \times$ sphere $01 \cap U N I V \times\{z . \operatorname{Im} z \leq 0\})$
(λx. $h(f s t x, 1-\operatorname{Arg2pi}(c n j(s n d x)) /(2 * p i)))$
apply (intro continuous_intros continuous_on_compose2 [OF conth] contin-
uous_on_compose2 [OF continuous_on_upperhalf_Arg2pi])

```
            apply (auto simp: Arg2pi)
            apply (meson Arg2pi_lt_2pi linear not_le)
            done
show continuous_on ({0..1} }\times\mathrm{ sphere 0 1) j
            apply (simp add: j_def)
            apply (subst eq)
            apply (rule continuous_on_cases_local)
            using Arg2pi_eq h01
            by (force simp add: eq [symmetric] closedin_closed_Int closed_Times closed_halfspace_Im_le
closed_halfspace_Im_ge c1 c2)+
            qed
            have (\lambdaw.h (fst w, Arg2pi (snd w)/(2*pi)))'({0..1} \times sphere 0 1)\subseteqh'
({0..1} }\times{0..1}
            by (auto simp: Arg2pi_ge_0 Arg2pi_lt_2pi less_imp_le)
            also have ...\subseteqS
            using him by blast
            finally show (\lambdaw.h (fst w, Arg2pi (snd w)/(2*pi)))'({0..1} }\times\mathrm{ sphere 0
1) \subseteqS .
    qed (auto simp: h0 h1)
qed
lemma simply_connected_homotopic_loops:
    simply_connected S}
            (\forallpq. homotopic_loops S p p^ homotopic_loovs S q q \longrightarrow homotopic_loops
Spq)
unfolding simply_connected_def using homotopic_loops_refl by metis
lemma simply_connected_eq_homotopic_circlemaps1:
    fixes f :: complex }=>\mp@subsup{}{}{\prime}a::topological_space and g :: complex 吘'
    assumes S: simply_connected S
        and contf:continuous_on (sphere 0 1) f and fim: f'(sphere 0 1)\subseteqS
        and contg:continuous_on (sphere 0 1) g and gim: g'(sphere 0 1)\subseteqS
        shows homotopic_with_canon ( }\lambda\textrm{h}\mathrm{ . True) (sphere 0 1) Sfg
proof -
    have homotopic_loops S(f\circexp\circ(\lambdat. of_real(2 * pi*t)* i))(g\circexp\circ(\lambdat.
of_real(2 * pi * t) * i))
    apply (rule S [unfolded simply_connected_homotopic_loops,rule_format])
            apply (simp add: homotopic_circlemaps_imp_homotopic_loops contf fim contg
gim)
            done
    then show ?thesis
    apply (rule homotopic_with_eq [OF homotopic_loops_imp_homotopic_circlemaps])
                apply (auto simp:o_def complex_norm_eq_1_exp mult.commute)
        done
qed
lemma simply_connected_eq_homotopic_circlemaps2a:
fixes \(h\) :: complex \(\Rightarrow\) ' \(a::\) topological_space
```

assumes conth: continuous_on (sphere 0 1) h and him: h ' (sphere 01$) \subseteq S$
and hom: $\bigwedge f g::$ complex $\Rightarrow{ }^{\prime} a$.
\llbracket continuous_on (sphere 0 1) $f ; f^{\prime}($ sphere 01$) \subseteq S$;
continuous_on (sphere 0 1) g; g ' $($ sphere 01$) \subseteq S \rrbracket$
\Longrightarrow homotopic_with_canon (λ. True) (sphere 0 1) $S f g$
shows $\exists a$. homotopic_with_canon (λh. True) (sphere 0 1) $S h(\lambda x . a)$
apply (rule_tac $x=h 1$ in exI)
apply (rule hom)
using assms by (auto)
lemma simply_connected_eq_homotopic_circlemaps2b:
fixes S :: ' $a:$:real_normed_vector set
assumes $\bigwedge f g::$ complex $\Rightarrow{ }^{\prime} a$.
\llbracket continuous_on (sphere 0 1) $f ; f^{\prime}($ sphere 01$) \subseteq S$;
continuous_on (sphere 0 1) $g ; g$ ' $($ sphere 01$) \subseteq S \rrbracket$
\Longrightarrow homotopic_with_canon (λ h. True) (sphere 0 1) Sfg
shows path_connected S
proof (clarsimp simp add: path_connected_eq_homotopic_points)
fix $a b$
assume $a \in S b \in S$
then show homotopic_loops S (linepath a a) (linepath bb)
using homotopic_circlemaps_imp_homotopic_loops [OF assms [of λx. $a \quad \lambda x$.b] $]$
by (auto simp: o_def linepath_def)
qed
lemma simply_connected_eq_homotopic_circlemaps3:
fixes $h::$ complex $\Rightarrow{ }^{\prime} a::$ real_normed_vector
assumes path_connected S
and hom: $\bigwedge f::$ complex $\Rightarrow{ }^{\prime} a$.
\llbracket continuous_on (sphere 01$) f ; f^{\prime}($ sphere 01$) \subseteq S \rrbracket$
$\Longrightarrow \exists a$. homotopic_with_canon (λ h. True) (sphere 0 1) $S f(\lambda x . a)$
shows simply_connected S
proof (clarsimp simp add: simply_connected_eq_contractible_loop_some assms)
fix p
assume p : path p path_image $p \subseteq S$ pathfinish $p=$ pathstart p
then have homotopic_loops $S p p$
by (simp add: homotopic_loops_refl)
then obtain a where homp: homotopic_with_canon (λ. True) (sphere 0 1) S $(p \circ(\lambda z . A r g 2 p i z /(2 * p i)))(\lambda x . a)$
by (metis homotopic_with_imp_subset2 homotopic_loops_imp_homotopic_circlemaps homotopic_with_imp_continuous hom)
show $\exists a . a \in S \wedge$ homotopic_loops $S p$ (linepath $a a)$
proof (intro exI conjI)
show $a \in S$
using homotopic_with_imp_subset2 [OF homp]
by (metis dist_0_norm image_subset_iff mem_sphere norm_one)
have teq: $\wedge t . \llbracket 0 \leq t ; t \leq 1 \rrbracket$
$\Longrightarrow t=\operatorname{Arg} 2 p i(\exp (2 *$ of_real pi $*$ of_real $t * \mathrm{i})) /(2 * p i) \vee t=1$
$\wedge \operatorname{Arg2pi}(\exp (2 *$ of_real pi $*$ of_real $t * \mathrm{i}))=0$

```
    using Arg2pi_of_real [of 1] by (force simp: Arg2pi_exp)
    have homotopic_loops S p (p\circ(\lambdaz. Arg2pi z / (2 * pi)) ○ exp ○ (\lambdat. \mathcal{L *}
complex_of_real pi * complex_of_real t * i))
        using p teq by (fastforce simp: pathfinish_def pathstart_def intro: homo-
topic_loops_eq [OF p])
    then show homotopic_loops S p (linepath a a)
    by (simp add: linepath_refl homotopic_loops_trans [OF _ homotopic_circlemaps_imp_homotopic_loops
[OF homp, simplified K_record_comp]])
    qed
qed
proposition simply_connected_eq_homotopic_circlemaps:
    fixes S :: 'a::real_normed_vector set
    shows simply_connected S}
        ( }\forallfg\mathrm{ ::complex }=>\mp@subsup{}{}{\prime}a
                            continuous_on (sphere 0 1) f ^f'(sphere 0 1)\subseteqS ^
    continuous_on (sphere 0 1) g\wedge g'(sphere 0 1)\subseteqS
    \longrightarrow h o m o t o p i c \_ w i t h . c a n o n ~ ( \lambda h . T r u e ) ~ ( s p h e r e ~ 0 ~ 1 ) S ~ f g )
    apply (rule iffI)
    apply (blast dest: simply_connected_eq_homotopic_circlemaps1)
    by (simp add: simply_connected_eq_homotopic_circlemaps2a simply_connected_eq_homotopic_circlemaps2b
simply_connected_eq_homotopic_circlemaps3)
proposition simply_connected_eq_contractible_circlemap:
    fixes S :: 'a::real_normed_vector set
    shows simply_connected S}
        path_connected S ^
        ( }\forallf::\mathrm{ complex }=>\mp@subsup{)}{}{\prime}a\mathrm{ .
            continuous_on (sphere 0 1) f}\wedgef'(sphere 0 1)\subseteq
            \longrightarrow ( \exists a . h o m o t o p i c \_ w i t h . c a n o n ~ ( \lambda h . T r u e ) ( s p h e r e ~ 0 ~ 1 ) S ~ f ~ ( \lambda x . a ) ) )
    apply (rule iffI)
    apply (simp add: simply_connected_eq_homotopic_circlemaps1 simply_connected_eq_homotopic_circlemaps2a
simply_connected_eq_homotopic_circlemaps2b)
    using simply_connected_eq_homotopic_circlemaps3 by blast
corollary homotopy_eqv_simple_connectedness:
    fixes S :: 'a::real_normed_vector set and T :: 'b::real_normed_vector set
    shows S homotopy_eqv T\Longrightarrow simply_connected S \longleftrightarrow simply_connected T
    by (simp add: simply_connected_eq_homotopic_circlemaps homotopy_eqv_homotopic_triviality)
```


6.41.7 Homeomorphism of simple closed curves to circles

proposition homeomorphic_simple_path_image_circle:
fixes a :: complex and $\gamma::$ real $\Rightarrow{ }^{\prime} a::$ t2_space
assumes simple_path γ and loop: pathfinish $\gamma=$ pathstart γ and $0<r$
shows (path_image γ) homeomorphic sphere a r
proof -
have homotopic_loops (path_image γ) $\gamma \gamma$
by (simp add: assms homotopic_loops_refl simple_path_imp_path)
then have hom: homotopic_with_canon (λ h. True) (sphere 0 1) (path_image γ)

$$
(\gamma \circ(\lambda z . \operatorname{Arg2pi} z /(2 * p i)))(\gamma \circ(\lambda z . \operatorname{Arg} 2 p i z /(2 * p i)))
$$

by (rule homotopic_loops_imp_homotopic_circlemaps)
have $\exists g$. homeomorphism (sphere 0 1) (path_image γ) ($\gamma \circ(\lambda z$. Arg2pi $z /$ $(2 * p i))) g$
proof (rule homeomorphism_compact)
show continuous_on (sphere 0 1) ($\gamma \circ(\lambda z$. Arg2pi z / (2*pi)))
using hom homotopic_with_imp_continuous by blast
show inj_on $(\gamma \circ(\lambda z . A r g 2 p i z /(2 * p i)))($ sphere 01$)$
proof
fix $x y$
assume xy: $x \in$ sphere $01 y \in$ sphere 01
and $e q:(\gamma \circ(\lambda z . A r g 2 p i z /(2 * p i))) x=(\gamma \circ(\lambda z$. Arg2pi $z /(2 * p i))) y$
then have (Arg2pi $x /(2 * p i))=($ Arg2pi y $/(2 * p i))$
proof -
have $($ Arg2pi $x /(2 * p i)) \in\{0 . .1\}($ Arg2pi $y /(2 * p i)) \in\{0 . .1\}$
using Arg2pi_ge_0 Arg2pi_lt_2pi dual_order.strict_iff_order by fastforce+
with eq show ?thesis
using 〈simple_path γ 〉Arg2pi_lt_2pi unfolding simple_path_def o_def
by (metis eq_divide_eq_1 not_less_iff_gr_or_eq)
qed
with $x y$ show $x=y$
by (metis is_Arg_def Arg2pi Arg2pi_0 dist_0_norm divide_cancel_right dual_order.strict_iff_order mem_sphere)
qed
have $\bigwedge z . \operatorname{cmod} z=1 \Longrightarrow \exists x \in\{0 . .1\} . \gamma($ Arg2pi $z /(2 * p i))=\gamma x$
by (metis Arg2pi_ge_0 Arg2pi_lt_2pi atLeastAtMost_iff divide_less_eq_1 less_eq_real_def zero_less_mult_iff pi_gt_zero zero_le_divide_iff zero_less_numeral)
moreover have $\exists z \in \operatorname{sphere} 0$ 1. $\gamma x=\gamma($ Arg2pi $z /(2 * p i))$ if $0 \leq x x \leq 1$
for x
proof (cases $x=1$)
case True
with Arg2pi_of_real [of 1] loop show ?thesis
by (rule_tac $x=1$ in bexI) (auto simp: pathfinish_def pathstart_def $\langle 0 \leq x\rangle$)
next
case False
then have $*:(\operatorname{Arg} 2 p i(\exp (\mathrm{i} *(2 *$ of_real pi* of_real $x))) /(2 * p i))=x$ using that by (auto simp: Arg2pi_exp field_split_simps)
show ?thesis
by (rule_tac $x=\exp (\mathrm{i} *$ of_real $(2 * p i * x))$ in bexI) (auto simp: $*)$
qed
ultimately show $(\gamma \circ(\lambda z$. Arg2pi z $/(2 * p i)))$ 'sphere $01=$ path_image γ
by (auto simp: path_image_def image_iff)
qed auto
then have path_image γ homeomorphic sphere ($0::$ complex) 1
using homeomorphic_def homeomorphic_sym by blast
also have ... homeomorphic sphere a r
by (simp add: assms homeomorphic_spheres)

```
    finally show ?thesis .
qed
```

lemma homeomorphic_simple_path_images:
fixes $\gamma 1$:: real $\Rightarrow{ }^{\prime} a::$ t2_space and $\gamma 2$:: real $\Rightarrow{ }^{\prime} b::$ t2_space
assumes simple_path $\gamma 1$ and loop: pathfinish $\gamma 1=$ pathstart $\gamma 1$
assumes simple_path $\gamma 2$ and loop: pathfinish $\gamma 2=$ pathstart $\gamma 2$
shows (path_image $\gamma 1$) homeomorphic (path_image $\gamma 2$)
by (meson assms homeomorphic_simple_path_image_circle homeomorphic_sym home-
omorphic_trans loop pi_gt_zero)

6.41.8 Dimension-based conditions for various homeomorphisms

lemma homeomorphic_subspaces_eq:
fixes S :: 'a::euclidean_space set and T :: 'b::euclidean_space set
assumes subspace S subspace T
shows S homeomorphic $T \longleftrightarrow \operatorname{dim} S=\operatorname{dim} T$
proof
assume S homeomorphic T
then obtain $f g$ where hom: homeomorphism $S T f g$
using homeomorphic_def by blast
show $\operatorname{dim} S=\operatorname{dim} T$
proof (rule order_antisym)
show $\operatorname{dim} S \leq \operatorname{dim} T$
by (metis assms dual_order.refl inj_onI homeomorphism_cont1 [OF hom] home-
omorphism_apply1 [OF hom] homeomorphism_image1 [OF hom] continuous_injective_image_subspace_dim_le)
show $\operatorname{dim} T \leq \operatorname{dim} S$
by (metis assms dual_order.refl inj_onI homeomorphism_cont2 [OF hom] home-
omorphism_apply2 [OF hom] homeomorphism_image2 [OF hom] continuous_injective_image_subspace_dim_le)
qed
next
assume $\operatorname{dim} S=\operatorname{dim} T$
then show S homeomorphic T
by (simp add: assms homeomorphic_subspaces)
qed
lemma homeomorphic_affine_sets_eq:
fixes S :: ' $a::$ euclidean_space set and T :: ' $b::$ euclidean_space set
assumes affine S affine T
shows S homeomorphic $T \longleftrightarrow$ aff_dim $S=$ aff_dim T
proof (cases $S=\{ \} \vee T=\{ \}$)
case True
then show ?thesis
using assms homeomorphic_affine_sets by force
next
case False
then obtain $a b$ where $a \in S b \in T$
by blast

```
    then have subspace ((+) (-a)'S) subspace ((+) (-b)`T)
        using affine_diffs_subspace assms by blast+
    then show ?thesis
    by (metis affine_imp_convex assms homeomorphic_affine_sets homeomorphic_convex_sets)
qed
lemma homeomorphic_hyperplanes_eq:
    fixes a :: 'a::euclidean_space and c :: 'b::euclidean_space
    assumes }a\not=0c\not=
    shows ({x.a\cdotx=b} homeomorphic {x.c\cdotx=d}\longleftrightarrow DIM('a) = DIM('b))
    apply (auto simp: homeomorphic_affine_sets_eq affine_hyperplane assms)
    by (metis DIM_positive Suc_pred)
lemma homeomorphic_UNIV_UNIV:
    shows (UNIV::'a set) homeomorphic (UNIV::'b set) \longleftrightarrow
        DIM('a::euclidean_space) = DIM('b::euclidean_space)
    by (simp add: homeomorphic_subspaces_eq)
lemma simply_connected_sphere_gen:
    assumes convex S bounded S and 3: 3\leqaff_dim S
    shows simply_connected(rel_frontier S)
proof -
    have pa: path_connected (rel_frontier S)
        using assms by (simp add: path_connected_sphere_gen)
    show ?thesis
    proof (clarsimp simp add: simply_connected_eq_contractible_circlemap pa)
        fix f
        assume f:continuous_on (sphere (0::complex) 1) ff'sphere 0 1\subseteq rel_frontier
S
        have eq: sphere (0::complex) 1 = rel_frontier(cball 0 1)
        by simp
        have convex (cball (0::complex) 1)
        by (rule convex_cball)
    then obtain c where homotopic_with_canon ( }\lambdaz.\mathrm{ True) (sphere (0::complex)
1)(rel_frontier S) f(\lambdax.c)
        apply (rule inessential_spheremap_lowdim_gen [OF _ bounded_cball \convex S`
    <bounded S`, where f=f])
        using f 3
                apply (auto simp: aff_dim_cball)
        done
    then show \existsa.homotopic_with_canon (\lambdah. True)(sphere 0 1) (rel_frontier S)
f(\lambdax.a)
        by blast
    qed
qed
```


6.41.9 more invariance of domain

proposition invariance_of_domain_sphere_affine_set_gen:

```
    fixes \(f\) :: 'a::euclidean_space \(\Rightarrow\) ' \(b::\) euclidean_space
    assumes contf: continuous_on \(S f\) and injf: inj_on \(f S\) and fim: \(f\) ' \(S \subseteq T\)
        and \(U\) : bounded \(U\) convex \(U\)
        and affine \(T\) and affTU: aff_dim \(T<\) aff_dim \(U\)
        and ope: openin (top_of_set (rel_frontier \(U\) )) S
    shows openin (top_of_set \(T)(f\) ' \(S\) )
proof (cases rel_frontier \(U=\{ \}\) )
    case True
    then show ?thesis
        using ope openin_subset by force
next
    case False
    obtain \(b c\) where \(b: b \in\) rel_frontier \(U\) and \(c: c \in\) rel_frontier \(U\) and \(b \neq c\)
        using 〈bounded \(U\) 〉rel_frontier_not_sing \([o f ~ U]\) subset_singletonD False by
fastforce
    obtain \(V\) :: 'a set where affine \(V\) and aff \(V\) : aff_dim \(V=\) aff_dim \(U-1\)
    proof (rule choose_affine_subset [OF affine_UNIV])
        show \(-1 \leq\) aff_dim \(U-1\)
        by (metis aff_dim_empty aff_dim_geq aff_dim_negative_iff affTU diff_0 diff_right_mono
    not_le)
        show aff_dim \(U-1 \leq\) aff_dim (UNIV ::'a set)
        by (metis aff_dim_UNIV aff_dim_le_DIM le_cases not_le zle_diff1_eq)
    qed auto
    have \(S U: S \subseteq\) rel_frontier \(U\)
        using ope openin_imp_subset by auto
    have homb: rel_frontier \(U-\{b\}\) homeomorphic \(V\)
    and homc: rel_frontier \(U-\{c\}\) homeomorphic \(V\)
        using homeomorphic_punctured_sphere_affine_gen \([\) of \(U\) _ \(V]\)
        by (simp_all add: \(\langle a f f i n e ~ V\rangle\) aff \(V \quad U b c\) )
    then obtain \(g h j k\)
            where gh: homeomorphism (rel_frontier \(U-\{b\}\) ) V gh
                and \(j k\) : homeomorphism (rel_frontier \(U-\{c\}\) ) Vjk
        by (auto simp: homeomorphic_def)
    with \(S U\) have hgsub: \((h ' g\) ' \((S-\{b\})) \subseteq S\) and \(k j s u b:(k ' j '(S-\{c\})) \subseteq S\)
        by (simp_all add: homeomorphism_def subset_eq)
    have [simp]: aff_dim \(T \leq\) aff_dim \(V\)
        by (simp add: affTU affV)
    have openin (top_of_set \(T)((f \circ h)\) ' \(g\) ' \((S-\{b\}))\)
    proof (rule invariance_of_domain_affine_sets \(\left.\left[O F_{-}\langle a f f i n e ~ V\rangle\right]\right)\)
        have openin (top_of_set (rel_frontier \(U-\{b\})\) ) \((S-\{b\})\)
            by (meson Diff_mono Diff_subset SU ope openin_delete openin_subset_trans
order_refl)
    then show openin (top_of_set \(V)(g\) ' \((S-\{b\}))\)
        by (rule homeomorphism_imp_open_map [OF gh])
    show continuous_on \((g\) ' \((S-\{b\}))(f \circ h)\)
    proof (rule continuous_on_compose)
        show continuous_on (g' \((S-\{b\})) h\)
            by (meson Diff_mono SU homeomorphism_def homeomorphism_of_subsets gh
set_eq_subset)
```

qed (use contf continuous_on_subset hgsub in blast)
show inj_on $(f \circ h)(g '(S-\{b\}))$
using kjsub
apply (clarsimp simp add: inj_on_def)
by (metis SU b homeomorphism_def inj_onD injf insert_Diff insert_iff gh rev_subsetD)
show $(f \circ h) ' g{ }^{\prime}(S-\{b\}) \subseteq T$
by (metis fim image_comp image_mono hgsub subset_trans)
qed (auto simp: assms)
moreover
have openin (top_of_set $T)\left((f \circ k){ }^{\prime} j\right.$ ' $\left.(S-\{c\})\right)$
proof (rule invariance_of_domain_affine_sets $\left.\left[O F_{-}\langle a f f i n e ~ V\rangle\right]\right)$
show openin (top_of_set $V)(j$ ' $(S-\{c\}))$
by (meson Diff_mono Diff_subset SU ope openin_delete openin_subset_trans
order_refl homeomorphism_imp_open_map [OF jk])
show continuous_on $(j$ ' $(S-\{c\}))(f \circ k)$
proof (rule continuous_on_compose)
show continuous_on $(j$ ' $(S-\{c\})) k$
by (meson Diff_mono SU homeomorphism_def homeomorphism_of_subsets jk set_eq_subset)
qed (use contf continuous_on_subset kjsub in blast)
show inj_on $(f \circ k)(j ‘(S-\{c\}))$
using kjsub
apply (clarsimp simp add: inj_on_def)
by (metis SU c homeomorphism_def inj_onD injf insert_Diff insert_iff $j k$ rev_subsetD)
show $(f \circ k)$ ' $j ‘(S-\{c\}) \subseteq T$
by (metis fim image_comp image_mono kjsub subset_trans)
qed (auto simp: assms)
ultimately have openin (top_of_set $T)((f \circ h)$ ' g ' $(S-\{b\}) \cup((f \circ k)$ ' j ‘ $(S-\{c\}))$)
by (rule openin_Un)
moreover have $(f \circ h)^{\prime} g$ ' $(S-\{b\})=f$ ' $(S-\{b\})$
proof -
have $h ' g{ }^{\prime}(S-\{b\})=(S-\{b\})$
proof
show h ' g ' $(S-\{b\}) \subseteq S-\{b\}$
using homeomorphism_apply1 [OF gh] SU
by (fastforce simp add: image_iff image_subset_iff)
show $S-\{b\} \subseteq h^{\prime} g$ ' $(S-\{b\})$
apply clarify
by (metis SU subsetD homeomorphism_apply1 [OF gh] image_iff mem-
ber_remove remove_def)
qed
then show ?thesis
by (metis image_comp)
qed
moreover have $(f \circ k){ }^{\prime} j ‘(S-\{c\})=f$ ' $(S-\{c\})$
proof -

```
    have }k\mp@subsup{}{}{\prime}j`(S-{c})=(S-{c}
    proof
        show k'j'(S-{c})\subseteqS-{c}
        using homeomorphism_apply1 [OF jk] SU
        by (fastforce simp add: image_iff image_subset_iff)
    show S-{c}\subseteqk`j`(S-{c})
        apply clarify
            by (metis SU subsetD homeomorphism_apply1 [OF jk] image_iff mem-
ber_remove remove_def)
    qed
    then show ?thesis
        by (metis image_comp)
    qed
    moreover have f'(S-{b})\cupf'(S-{c}) = f'(S)
        using }\langleb\not=c\rangle\mathrm{ by blast
    ultimately show ?thesis
        by simp
qed
lemma invariance_of_domain_sphere_affine_set:
    fixes f :: 'a::euclidean_space = 'b::euclidean_space
    assumes contf:continuous_on S f and injf:inj_on fS and fim:f'S\subseteqT
        and r\not=0 affine T and affTU: aff_dim T < DIM('a)
        and ope:openin (top_of_set (sphere a r)) S
    shows openin (top_of_set T) (f`}S
proof (cases sphere a r= {})
    case True
    then show ?thesis
        using ope openin_subset by force
next
    case False
    show ?thesis
    proof (rule invariance_of_domain_sphere_affine_set_gen [OF contf injf fim bounded_cball
convex_cball <affine T〉])
    show aff_dim T < aff_dim (cball a r)
            by (metis False affTU aff_dim_cball assms(4) linorder_cases sphere_empty)
        show openin (top_of_set (rel_frontier (cball a r))) S
            by (simp add: <r \not= 0\rangle ope)
    qed
qed
lemma no_embedding_sphere_lowdim:
    fixes f :: 'a::euclidean_space }=>\mp@subsup{}{}{\prime}b::euclidean_space
    assumes contf: continuous_on (sphere a r) f}\mathrm{ and injf:inj_on f (sphere a r)
and r>0
    shows DIM('a) \leq DIM('b)
proof -
    have False if DIM('a) > DIM('b)
```

3012

```
    proof -
    have compact (f'sphere a r)
        using compact_continuous_image
        by (simp add: compact_continuous_image contf)
    then have }\neg\mathrm{ open ( }f\mathrm{ 'sphere a r)
            using compact_open
            by (metis assms(3) image_is_empty not_less_iff_gr_or_eq sphere_eq_empty)
    then show False
            using invariance_of_domain_sphere_affine_set [OF contf injf subset_UNIV]<r
> 0>
            by (metis aff_dim_UNIV affine_UNIV less_irrefl of_nat_less_iff open_openin
openin_subtopology_self subtopology_UNIV that)
    qed
    then show ?thesis
        using not_less by blast
qed
lemma simply_connected_sphere:
    fixes a :: 'a::euclidean_space
    assumes 3 \leq DIM('a)
        shows simply_connected(sphere a r)
proof (cases rule: linorder_cases [of r 0])
    case less
    then show ?thesis by simp
next
    case equal
    then show ?thesis by (auto simp: convex_imp_simply_connected)
next
    case greater
    then show ?thesis
        using simply_connected_sphere_gen [of cball a r] assms
        by (simp add: aff_dim_cball)
qed
lemma simply_connected_sphere_eq:
    fixes a :: 'a::euclidean_space
    shows simply_connected(sphere a r)\longleftrightarrow3\leqDIM('a)\veer\leq0 (is ?lhs = ?rhs)
proof (cases r\leq0)
    case True
    have simply_connected (sphere a r)
        using True less_eq_real_def by (auto intro: convex_imp_simply_connected)
    with True show ?thesis by auto
next
    case False
    show ?thesis
    proof
        assume L:?lhs
        have False if DIM('a)=1\vee DIM ('a) = 2
            using that
```

```
    proof
    assume DIM('a)=1
    with L show False
        using connected_sphere_eq simply_connected_imp_connected
        by (metis False Suc_1 not_less_eq_eq order_refl)
    next
    assume DIM('a) = 2
    then have sphere a r homeomorphic sphere (0::complex) 1
    by (metis DIM_complex False homeomorphic_spheres_gen not_less zero_less_one)
    then have simply_connected(sphere (0::complex) 1)
        using L homeomorphic_simply_connected_eq by blast
    then obtain a::complex where homotopic_with_canon ( }\lambda\textrm{h}\mathrm{ . True) (sphere 0
1) (sphere 0 1) id (\lambdax.a)
    by (metis continuous_on_id' id_apply image_id subset_refl simply_connected_eq_contractible_circlemap)
    then show False
            using contractible_sphere contractible_def not_one_le_zero by blast
    qed
    with False show ?rhs
        apply simp
    by (metis DIM_ge_Suc0 le_antisym not_less_eq_eq numeral_2_eq_2 numeral_3_eq_3)
    next
        assume ?rhs
        with False show ?lhs by (simp add: simply_connected_sphere)
    qed
qed
lemma simply_connected_punctured_universe_eq:
    fixes a :: 'a::euclidean_space
    shows simply_connected (- {a})\longleftrightarrow \longleftrightarrow < DIM('a)
proof -
    have [simp]: a \in rel_interior (cball a 1)
        by (simp add: rel_interior_nonempty_interior)
    have [simp]: affine hull cball a 1-{a}=-{a}
        by (metis Compl_eq_Diff_UNIV aff_dim_cball aff_dim_lt_full not_less_iff_gr_or_eq
zero_less_one)
    have sphere a 1 homotopy_eqv - {a}
        using homotopy_eqv_rel_frontier_punctured_affine_hull [of cball a 1 a] by auto
    then have simply_connected (-{a})\longleftrightarrow simply_connected(sphere a 1)
        using homotopy_eqv_simple_connectedness by blast
    also have ... \longleftrightarrow3\leqDIM('a)
        by (simp add: simply_connected_sphere_eq)
    finally show ?thesis.
qed
lemma not_simply_connected_circle:
    fixes }a\mathrm{ :: complex
    shows 0<r\Longrightarrow ᄀ simply_connected(sphere a r)
by (simp add: simply_connected_sphere_eq)
```

```
proposition simply_connected_punctured_convex:
    fixes \(a\) :: 'a::euclidean_space
    assumes convex \(S\) and \(3: 3 \leq\) aff_dim \(S\)
        shows simply_connected \((S-\{a\})\)
proof (cases a \(\in\) rel_interior \(S\) )
    case True
    then obtain \(e\) where \(a \in S 0<e\) and \(e\) :cball a \(e \cap\) affine hull \(S \subseteq S\)
        by (auto simp: rel_interior_cball)
    have con: convex (cball a e \(\cap\) affine hull \(S\) )
        by (simp add: convex_Int)
    have bo: bounded (cball a \(e \cap\) affine hull \(S\) )
        by (simp add: bounded_Int)
    have affine hull \(S \cap\) interior (cball a e) \(\neq\{ \}\)
        using \(\langle 0<e\rangle\langle a \in S\rangle\) hull_subset by fastforce
    then have \(3 \leq\) aff_dim (affine hull \(S \cap\) cball a e)
        by (simp add: 3 aff_dim_convex_Int_nonempty_interior [OF convex_affine_hull])
    also have \(\ldots=\) aff_dim (cball a e \(\cap\) affine hull \(S\) )
        by (simp add: Int_commute)
    finally have \(3 \leq\) aff_dim (cball a e \(\cap\) affine hull \(S\) ) .
    moreover have rel_frontier (cball a e \(\cap\) affine hull \(S\) ) homotopy_eqv \(S-\{a\}\)
    proof (rule homotopy_eqv_rel_frontier_punctured_convex)
        show \(a \in\) rel_interior (cball a \(e \cap\) affine hull \(S\) )
            by (meson IntI Int_mono \(\langle a \in S\rangle\langle 0<e\rangle e\langle c b a l l\) a \(e \cap\) affine hull \(S \subseteq S\rangle\)
ball_subset_cball centre_in_cball dual_order.strict_implies_order hull_inc hull_mono mem_rel_interior_ball)
        have closed (cball a e \(\cap\) affine hull \(S\) )
            by blast
        then show rel_frontier (cball a e \(\cap\) affine hull \(S\) ) \(\subseteq S\)
            by (metis Diff_subset closure_closed dual_order.trans e rel_frontier_def)
        show \(S \subseteq\) affine hull (cball a e \(\cap\) affine hull \(S\) )
        by (metis (no_types, lifting) IntI \(\langle a \in S\rangle\langle 0<e\rangle\) affine_hull_convex_Int_nonempty_interior
centre_in_ball convex_affine_hull empty_iff hull_subset inf_commute interior_cball sub-
setCE subsetI)
            qed (auto simp: assms con bo)
    ultimately show ?thesis
        using homotopy_eqv_simple_connectedness simply_connected_sphere_gen [OF con
\(b o]\)
    by blast
next
    case False
    then have rel_interior \(S \subseteq S-\{a\}\)
        by (simp add: False rel_interior_subset subset_Diff_insert)
    moreover have \(S-\{a\} \subseteq\) closure \(S\)
        by (meson Diff_subset closure_subset subset_trans)
    ultimately show ?thesis
    by (metis contractible_imp_simply_connected contractible_convex_tweak_boundary_points
[OF <convex \(S\rangle\) ])
qed
```

```
corollary simply_connected_punctured_universe:
    fixes \(a\) :: ' \(a::\) euclidean_space
    assumes \(3 \leq \operatorname{DIM}\left({ }^{\prime} a\right)\)
    shows simply_connected \((-\{a\})\)
proof -
    have [simp]: affine hull cball a \(1=\) UNIV
        by (simp add: aff_dim_cball affine_hull_UNIV)
    have \(a \in\) rel_interior (cball a 1)
        by (simp add: rel_interior_interior)
    then
    have simply_connected (rel_frontier (cball a 1)) = simply_connected (affine hull
cball a 1 - \(\{a\}\) )
    using homotopy_eqv_rel_frontier_punctured_affine_hull homotopy_eqv_simple_connectedness
by blast
    then show ?thesis
    using simply_connected_sphere [of a 1, OF assms] by (auto simp: Compl_eq_Diff_UNIV)
qed
```


6.41.10 The power, squaring and exponential functions as covering maps

proposition covering_space_power_punctured_plane:
assumes $0<n$
shows covering_space $(-\{0\})\left(\lambda z::\right.$ complex. $\left.z^{\wedge} n\right)(-\{0\})$
proof -
consider $n=1 \mid 2 \leq n$ using assms by linarith
then obtain e where $0<e$
and $e: \bigwedge w z \cdot \operatorname{cmod}(w-z)<e * \operatorname{cmod} z \Longrightarrow\left(w^{\wedge} n=z^{\wedge} n \longleftrightarrow w=\right.$
z)
proof cases
assume $n=1$ then show ?thesis
by (rule_tac $e=1$ in that) auto
next
assume $2 \leq n$
have eq_if_pow_eq:
$w=z$ if $l t: \operatorname{cmod}(w-z)<2 * \sin (p i / \operatorname{real} n) * \operatorname{cmod} z$
and $e q: w^{\wedge} n=z^{\wedge} n$ for $w z$
proof (cases $z=0$)
case True with eq assms show ?thesis by (auto simp: power_0_left)
next
case False
then have $z \neq 0$ by auto
have $(w / z)^{\wedge} n=1$
by (metis False divide_self_if eq power_divide power_one)
then obtain j where $j: w / z=\exp (2 *$ of_real $p i * \mathrm{i} * j / n)$ and $j<n$ using Suc_leI assms $\langle 2 \leq n\rangle$ complex_roots_unity [THEN eqset_imp_iff, of n $w / z]$ by force

```
    have cmod (w/z-1)<2* sin (pi / real n)
        using lt assms }\langlez\not=0\rangle\mathrm{ by (simp add: field_split_simps norm_divide)
    then have cmod (exp (i * of_real (2*pi*j/n)) - 1)<2* sin (pi / real
n)
        by (simp add: j field_simps)
    then have 2* |sin((2*pi*j/n)/2)|<2*\operatorname{sin}(pi/real n)
        by (simp only: dist_exp_i_1)
    then have sin_less: sin ((pi*j / n)) < sin (pi / real n)
        by (simp add: field_simps)
    then have w/z=1
    proof (cases j=0)
        case True then show ?thesis by (auto simp: j)
    next
        case False
        then have sin (pi / real n) \leq sin((pi*j / n))
        proof (cases j / n \leq 1/2)
            case True
            show ?thesis
                using <j\not=0 \\langlej<n`True
                by (intro sin_monotone_2pi_le) (auto simp: field_simps intro: order_trans
[of - 0])
        next
            case False
            then have seq: sin}(pi*j/n)=\operatorname{sin}(pi*(n-j)/n
                using <j<n\rangle by (simp add: algebra_simps diff_divide_distrib of_nat_diff)
            show ?thesis
                unfolding seq
                using <j < n` False
                by (intro sin_monotone_2pi_le) (auto simp: field_simps intro: order_trans
[of _ 0])
            qed
            with sin_less show ?thesis by force
            qed
            then show ?thesis by simp
        qed
        show ?thesis
        proof
            show 0<2* sin (pi / real n)
            by (force simp:<2 \leq n> sin_pi_divide_n_gt_0)
        qed (meson eq_if_pow_eq)
    qed
    have zn1:continuous_on (- {0}) (\lambdaz::complex. z^n)
        by (rule continuous_intros)+
    have zn2: (\lambdaz::complex. z^n)'}(-{0})=-{0
        using assms by (auto simp: image_def elim: exists_complex_root_nonzero [where
n=n])
    have zn3: \existsT. z^n 
                                    (\existsv.\bigcupv=-{0}\cap(\lambdaz. z^n}n)-\mp@subsup{}{}{`}T
                                    (}\forallu\inv.\mathrm{ open }u\wedge0\not\inu)
```

```
            pairwise disjnt v ^
            (\forallu\inv. Ex (homeomorphism u T (\lambdaz. z^n))))
            if z\not=0 for z::complex
    proof -
    define d}\mathrm{ where d}\=\operatorname{min}(1/2)(e/4)* norm z
    have 0<d
        by (simp add: d_def <0<e\rangle\langlez\not=0\rangle)
    have iff_x_eq_y: x^n = y^n}\longleftrightarrow<<x=
        if eq: w^n = z^n and x: x\in ball wd and y:y\in ball wd for wxy
    proof -
        have [simp]: norm z = norm w using that
        by (simp add: assms power_eq_imp_eq_norm)
    show ?thesis
    proof (cases w=0)
        case True with }\langlez\not=0\rangle\mathrm{ assms eq
        show ?thesis by (auto simp: power_0_left)
    next
        case False
        have cmod (x-y)<2*d
            using x y
                by (simp add: dist_norm [symmetric]) (metis dist_commute mult_2
dist_triangle_less_add)
        also have ... \leq2*e/4* norm w
            using \langlee> 0\rangle by (simp add: d_def min_mult_distrib_right)
        also have ... =e*(cmod w / 2)
            by simp
        also have ... }\leqe*\mathrm{ cmod }
        proof (rule mult_left_mono)
            have cmod }(w-y)<\operatorname{cmod}w/2\Longrightarrow\operatorname{cmod}w/2\leqcmod
                by (metis (no_types) dist_0_norm dist_norm norm_triangle_half_l not_le
order_less_irrefl)
            then show cmod w/2 \leq cmod y
            using y by (simp add: dist_norm d_def min_mult_distrib_right)
        qed (use \langlee> 0\rangle in auto)
        finally have cmod (x-y)<e*\operatorname{cmod}y.
        then show ?thesis by (rule e)
    qed
    qed
    then have inj: inj_on ( }\lambdaw.\mp@subsup{w}{}{\wedge}n)(ball z d
        by (simp add: inj_on_def)
    have cont: continuous_on (ball z d) ( }\lambdaw.\mp@subsup{w}{}{`} n
        by (intro continuous_intros)
    have noncon: ᄀ (\lambdaw::complex. w^n) constant_on UNIV
        by (metis UNIV_I assms constant_on_def power_one zero_neq_one zero_power)
    have im_eq: (\lambdaw. w^n)'ball z' d=(\lambdaw. w^n)'ball z d
            if }\mp@subsup{z}{}{\prime}:\mp@subsup{z}{}{\prime^}n=\mp@subsup{z}{}{\wedge}n\mathrm{ for }\mp@subsup{z}{}{\prime
    proof -
    have nz': norm z' = norm z using that assms power_eq_imp_eq_norm by blast
        have (w\in(\lambdaw. w^n)`ball z' d) = (w\in(\lambdaw. w^n)`ball zd) for w
```

proof (cases w=0)
case True with assms show ?thesis
by (simp add: image_def ball_def $n z^{\prime}$)
next
case False
have $z^{\prime} \neq 0$ using $\langle z \neq 0\rangle n z^{\prime}$ by force
have $1:\left(z * x / z^{\prime}\right)^{\wedge} n=x^{\wedge} n$ if $x \neq 0$ for x
using z^{\prime} that by (simp add: field_simps $\left.\langle z \neq 0\rangle\right)$
have 2: $\operatorname{cmod}\left(z-z * x / z^{\prime}\right)=\operatorname{cmod}\left(z^{\prime}-x\right)$ if $x \neq 0$ for x
proof -
have $\operatorname{cmod}\left(z-z * x / z^{\prime}\right)=\operatorname{cmod} z * \operatorname{cmod}\left(1-x / z^{\prime}\right)$
by (metis (no_types) ab_semigroup_mult_class.mult_ac(1) divide_complex_def mult.right_neutral norm_mult right_diff_distrib')
also have $\ldots=\operatorname{cmod} z^{\prime} * \operatorname{cmod}\left(1-x / z^{\prime}\right)$
by (simp add: $n z^{\prime}$)
also have $\ldots=\operatorname{cmod}\left(z^{\prime}-x\right)$
by (simp add: $\left\langle z^{\prime} \neq 0\right\rangle$ diff_divide_eq_iff norm_divide)
finally show ?thesis.
qed
have 3: $\left(z^{\prime} * x / z\right)^{\wedge} n=x^{\wedge} n$ if $x \neq 0$ for x
using z^{\prime} that by (simp add: field_simps $\left.\langle z \neq 0\rangle\right)$
have 4: $\operatorname{cmod}\left(z^{\prime}-z^{\prime} * x / z\right)=\operatorname{cmod}(z-x)$ if $x \neq 0$ for x
proof -
have $\operatorname{cmod}(z *(1-x *$ inverse $z))=\operatorname{cmod}(z-x)$
by (metis $\langle z \neq 0\rangle$ diff_divide_distrib divide_complex_def divide_self_if nonzero_eq_divide_eq semiring_normalization_rules(7))
then show ?thesis
by (metis (no_types) mult.assoc divide_complex_def mult.right_neutral norm_mult $n z^{\prime}$ right_diff_distrib')

qed

show ?thesis
by (simp add: set_eq_iff image_def ball_def) (metis 1234 diff_zero dist_norm $n z^{\prime}$)
qed
then show ?thesis by blast
qed
have ex_ball: $\exists B .\left(\exists z^{\prime} . B=\right.$ ball $\left.z^{\prime} d \wedge z^{\prime \wedge} n=z^{\wedge} n\right) \wedge x \in B$
if $x \neq 0$ and $e q: x^{\wedge} n=w^{\wedge} n$ and dzw: dist $z w<d$ for $x w$
proof -
have $w \neq 0$ by (metis assms power_eq_0_iff that(1) that(2))
have $[\operatorname{simp}]: \operatorname{cmod} x=\operatorname{cmod} w$
using assms power_eq_imp_eq_norm eq by blast
have [simp]: $\operatorname{cmod}(x * z / w-x)=\operatorname{cmod}(z-w)$
proof -
have $\operatorname{cmod}(x * z / w-x)=\operatorname{cmod} x * \operatorname{cmod}(z / w-1)$
by (metis (no_types) mult.right_neutral norm_mult right_diff_distrib' times_divide_eq_right)
also have $\ldots=\operatorname{cmod} w * \operatorname{cmod}(z / w-1)$

```
    by simp
    also have ... = cmod (z-w)
    by (simp add: <w\not= 0\rangle divide_diff_eq_iff nonzero_norm_divide)
    finally show ?thesis.
    qed
    show ?thesis
    proof (intro exI conjI)
        show (z/w*x) ^}n=\mp@subsup{z}{}{`}
        by (metis }\langlew\not=0\rangle\mathrm{ eq nonzero_eq_divide_eq power_mult_distrib)
    show }x\in\mathrm{ ball (z/w*x)d
            using \langled> 0\rangle that
                by (simp add: ball_eq_ball_iff }\langlez\not=0\rangle\langlew\not=0\rangle\mathrm{ field_simps) (simp add:
dist_norm)
            qed auto
    qed
    show ?thesis
    proof (rule exI, intro conjI)
        show z ` n \in (\lambdaw. w ^ n)`ball z d
            using <d > 0\rangle by simp
    show open ((\lambdaw. w ^ n)`ball z d)
        by (rule invariance_of_domain [OF cont open_ball inj])
    show 0}\not\in(\lambdaw.\mp@subsup{w}{}{`}n)`ball z
            using <z\not=0\rangle assms by (force simp: d_def)
    show \existsv.\bigcupv=-{0}\cap(\lambdaz. z`^n)-`(\lambdaw. w' n)'ball zd^
                            (\forallu\inv. open u ^0\not\inu)^
                            disjoint v ^
                            (\forallu\inv. Ex (homeomorphism u ((\lambdaw. w` n)`ball zd) (\lambdaz. z^ n)))
    proof (rule exI, intro ballI conjI)
```



```
'ball zd (is ?l = ?r)
        proof
            have }\bigwedge\mp@subsup{z}{}{\prime}.\operatorname{cmod}\mp@subsup{z}{}{\prime}<d\Longrightarrow\mp@subsup{z}{}{\prime}^n\not=z``
            by (auto simp add:assms d_def power_eq_imp_eq_norm that)
            then show ?l }\subseteq?
                by auto (metis im_eq image_eqI mem_ball)
            show ?r \subseteq?l
            by auto (meson ex_ball)
    qed
```



```
            by (force simp add: assms d_def power_eq_imp_eq_norm that)
```



```
    proof (clarsimp simp add: pairwise_def disjnt_iff)
        fix }\xi\zeta
        assume }\mp@subsup{\xi}{}{\wedge}n=\mp@subsup{z}{}{\wedge}n\mp@subsup{\zeta}{}{\wedge}n=\mp@subsup{z}{}{\wedge}n\mathrm{ ball }\xid\not=\mathrm{ ball }\zeta
            and dist }\xix<d\mathrm{ dist }\zetax<
        then have dist \xi\zeta<d+d
            using dist_triangle_less_add by blast
```

```
            then have cmod (\xi-\zeta)<2*d
            by (simp add: dist_norm)
            also have ... }\leqe*\operatorname{cmod}
            using mult_right_mono <0 < e> that by (auto simp: d_def)
            finally have }\operatorname{cmod}(\xi-\zeta)<e*\operatorname{cmod}z
            with e have }\xi=
                            by (metis }\langle\mp@subsup{\xi}{}{\wedge}n=\mp@subsup{z}{}{\wedge}n\rangle\langle\zeta^^n=\mp@subsup{z}{}{\wedge}n\rangle\mathrm{ assms power_eq_imp_eq_norm)
                    then show False
                        using <ball \xi d \not= ball \zeta d> by blast
qed
show Ex (homeomorphism u ((\lambdaw.w ^ n)`ball z d) (\lambdaz. z``n))
    if }u\in{\mathrm{ ball z'd | ''. z'^^n= z ^ n} for u
proof (rule invariance_of_domain_homeomorphism [of u \lambdaz. z^n])
    show open u
            using that by auto
    show continuous_on u ( }\lambdaz.\mp@subsup{z}{}{`}n
                            by (intro continuous_intros)
                            show inj_on (\lambdaz. z^ n)u
                            using that by (auto simp: iff_x_eq_y inj_on_def)
                            show \g. homeomorphism u ((\lambdaz.z``n)`}u)(\lambdaz.z\mp@subsup{}{}{`}n)g\LongrightarrowE
(homeomorphism u ((\lambdaw. w ^n)`ball z d) (\lambdaz. z ^ n))
            using im_eq that by clarify metis
            qed auto
        qed auto
        qed
    qed
    show ?thesis
        using assms
        apply (simp add: covering_space_def zn1 zn2)
        apply (subst zn2 [symmetric])
        apply (simp add: openin_open_eq open_Compl zn3)
        done
qed
corollary covering_space_square_punctured_plane:
    covering_space (-{0}) (\lambdaz::complex. z^2) (- {0})
    by (simp add: covering_space_power_punctured_plane)
proposition covering_space_exp_punctured_plane:
    covering_space UNIV (\lambdaz::complex. exp z) (- {0})
proof (simp add: covering_space_def, intro conjI ballI)
    show continuous_on UNIV ( }\lambdaz::\mathrm{ complex. exp z)
        by (rule continuous_on_exp [OF continuous_on_id])
    show range exp =-{0::complex }
        by auto (metis exp_Ln range_eqI)
    show \exists T. z\inT^ openin (top_of_set (-{0}))T^
        (\existsv. \bigcupv = exp -' T ^(\forallu\inv. open u)^ disjoint v ^
            (\forallu\inv.\existsq. homeomorphism u T exp q))
```

```
        if \(z \in-\{0::\) complex \(\}\) for \(z\)
    proof -
    have \(z \neq 0\)
        using that by auto
    have ball (Lnz) \(1 \subseteq\) ball (Lnz) pi
        using pi_ge_two by (simp add: ball_subset_ball_iff)
    then have inj_exp: inj_on exp (ball (Ln z) 1)
        using inj_on_exp_pi inj_on_subset by blast
    define \(\mathcal{V}\) where \(\mathcal{V} \equiv\) range \(\left(\lambda n .\left(\lambda x . x+o f_{-}\right.\right.\)real \((2 *\) of_int \(n * p i) *\) i) ‘
(ball(Lnz) 1))
    show ?thesis
    proof (intro exI conjI)
        show \(z \in \exp\) ' \((\operatorname{ball}(\operatorname{Ln} z) 1)\)
            by (metis \(\langle z \neq 0\rangle\) centre_in_ball exp_Ln rev_image_eqI zero_less_one)
        have open ( \(-\{0::\) complex \(\}\) )
            by blast
        with inj_exp show openin (top_of_set (-\{0\})) (exp'ball (Lnz) 1)
            by (auto simp: openin_open_eq invariance_of_domain continuous_on_exp [OF
continuous_on_id])
            show \(\bigcup \mathcal{V}=\exp -‘ \exp\) 'ball \((L n z) 1\)
            by (force simp: V_def Complex_Transcendental.exp_eq image_iff)
            show \(\forall V \in \mathcal{V}\). open \(V\)
            by (auto simp: \(\mathcal{V}_{-}\)def inj_on_def continuous_intros invariance_of_domain)
            have \(x y\) : \(2 \leq\) cmod \((2 *\) of_int \(x *\) of_real pi \(* \mathrm{i}-2 *\) of_int \(y *\) of_real pi \(*\)
i)
                    if \(x<y\) for \(x y\)
    proof -
            have \(1 \leq a b s(x-y)\)
                using that by linarith
            then have \(1 \leq\) cmod (of_int \(x-\) of_int \(y) * 1\)
            by (metis mult.right_neutral norm_of_int of_int_1_le_iff of_int_abs of_int_diff)
            also have \(\ldots \leq\) cmod (of_int \(x-\) of_int \(y) *\) of_real pi
                using pi_ge_two
                by (intro mult_left_mono) auto
            also have \(\ldots \leq\) cmod \(\left(\left(o f_{-} i n t x-o f_{-} i n t y\right) * o f_{-} r e a l ~ p i * i\right)\)
                by (simp add: norm_mult)
            also have \(\ldots \leq\) cmod (of_int \(x *\) of_real pi \(* \mathrm{i}-\) of_int \(y *\) of_real pi \(* \mathrm{i}\) )
                by (simp add: algebra_simps)
            finally have \(1 \leq\) cmod (of_int \(x *\) of_real pi \(\left.* \mathrm{i}-o f_{-} i n t y * o f \_r e a l ~ p i * i\right)\).
            then have \(2 * 1 \leq\) cmod \((2 *\) (of_int \(x *\) of_real pi \(* \mathrm{i}-\) of_int \(y *\) of_real
\(p i *\) i)
            by (metis mult_le_cancel_left_pos norm_mult_numeral1 zero_less_numeral)
            then show ?thesis
                by (simp add: algebra_simps)
    qed
    show disjoint \(\mathcal{V}\)
        apply (clarsimp simp add: \(\mathcal{V}_{-}\)def pairwise_def disjnt_def add.commute [of _
\(x * y\) for \(x y]\)
                ball_eq_ball_iff intro!: disjoint_ballI)
```

apply (auto simp: dist_norm neq_iff)
by (metis norm_minus_commute xy)+
show $\forall u \in \mathcal{V}$. \exists q. homeomorphism $u(\exp ' b a l l(L n z) 1) \exp q$
proof
fix u
assume $u \in \mathcal{V}$
then obtain n where $n: u=(\lambda x . x+$ of_real $(2 *$ of_int $n * p i) * \mathrm{i})$ ‘
(ball(Lnz) 1) by (auto simp: \mathcal{V}_{-}def)
have compact (cball (Ln z) 1) by simp
moreover have continuous_on (cball (Ln z) 1) exp by (rule continuous_on_exp [OF continuous_on_id])
moreover have inj_on exp (cball (Lnz) 1) apply (rule inj_on_subset [OF inj_on_exp_pi [of Ln z]]) using pi_ge_two by (simp add: cball_subset_ball_iff)
ultimately obtain γ where hom: homeomorphism (cball (Lnz) 1) (exp' cball (Ln z) 1) exp γ
using homeomorphism_compact by blast
have eq1: exp' $u=\exp$ 'ball (Lnz) 1 apply (auto simp: algebra_simps n)
apply (rule_tac $x={ }_{-}+\mathrm{i} *\left(o f _i n t \mid n *\left(o f _r e a l ~ p i * 2\right)\right)$ in image_eqI) apply (auto simp: image_iff)
done
have $\gamma \exp : \gamma(\exp x)+2 *$ of_int $n *$ of_real $p i * \mathrm{i}=x$ if $x \in u$ for x
proof -
have exp $x=\exp \left(x-2 *\right.$ of_int $\left.n * o f _r e a l ~ p i * i\right)$
by (simp add: exp_eq)
then have $\gamma(\exp x)=\gamma(\exp (x-2 *$ of_int $n *$ of_real pi $*$ i $))$
by simp
also have $\ldots=x-2 *$ of_int $n *$ of_real $p i *$ i
using $\langle x \in u\rangle$ by (auto simp: n intro: homeomorphism_apply1 [OF hom])
finally show ?thesis
by simp
qed
have $\exp 2 n: \exp (\gamma(\exp x)+2 *$ of_int $n *$ complex_of_real pi $* \mathrm{i})=\exp x$ if dist $(\operatorname{Ln} z) x<1$ for x
using that by (auto simp: exp_eq homeomorphism_apply1 [OF hom])
have continuous_on (exp'ball (Ln z) 1) γ
by (meson ball_subset_cball continuous_on_subset hom homeomorphism_cont2 image_mono)
then have cont: continuous_on (exp'ball (Lnz) 1) $(\lambda x . \gamma x+2 * o f$ _int $n *$ complex_of_real pi * i)
by (intro continuous_intros)
show \exists q. homeomorphism $u(\exp ' b a l l(L n z) 1) \exp q$
apply (rule_tac $x=\left(\lambda x . x+o f_{-} r e a l(2 * n * p i) *\right.$ i) $\circ \gamma$ in exI)
unfolding homeomorphism_def
apply (intro conjI ballI eq1 continuous_on_exp [OF continuous_on_id])
apply (auto simp: $\gamma \exp \exp 2 n$ cont n)

```
                apply (force simp: image_iff homeomorphism_apply1 [OF hom])+
                done
        qed
    qed
    qed
qed
```


6.41.11 Hence the Borsukian results about mappings into circles

lemma inessential_eq_continuous_logarithm:
fixes f :: 'a::real_normed_vector \Rightarrow complex
shows $(\exists a$. homotopic_with_canon $(\lambda h . \operatorname{True}) S(-\{0\}) f(\lambda t . a)) \longleftrightarrow$ $(\exists g$.continuous_on $S g \wedge(\forall x \in S . f x=\exp (g x)))$
(is?lhs \longleftrightarrow ? $r h s$)
proof
assume ?lhs thus ?rhs
by (metis covering_space_lift_inessential_function covering_space_exp_punctured_plane) next
assume ?rhs
then obtain g where contg: continuous_on $S g$ and $f: \bigwedge x . x \in S \Longrightarrow f x=$ $\exp (g x)$
by metis
obtain a where homotopic_with_canon (λh. True) $S\left(-\left\{o f_{-} r e a l ~ 0\right\}\right)(e x p \circ g)$ ($\lambda x . a)$
proof (rule nullhomotopic_through_contractible [OF contg subset_UNIV _ _ contractible_UNIV])
show continuous_on (UNIV::complex set) exp
by (intro continuous_intros)
show range exp $\subseteq-\{0\}$
by auto
qed force
then have homotopic_with_canon $(\lambda h$. True) $S(-\{0\}) f(\lambda t . a)$
using f homotopic_with_eq by fastforce
then show? lhs ..
qed
corollary inessential_imp_continuous_logarithm_circle:
fixes f :: 'a::real_normed_vector \Rightarrow complex
assumes homotopic_with_canon $(\lambda h$. True) S (sphere 01$) f(\lambda t . a)$
obtains g where continuous_on $S g$ and $\bigwedge x . x \in S \Longrightarrow f x=\exp (g x)$
proof -
have homotopic_with_canon (λ. True) $S(-\{0\}) f(\lambda t . a)$
using assms homotopic_with_subset_right by fastforce
then show ?thesis
by (metis inessential_eq_continuous_logarithm that)
qed

```
lemma inessential_eq_continuous_logarithm_circle:
    fixes \(f\) :: 'a::real_normed_vector \(\Rightarrow\) complex
    shows \((\exists a\). homotopic_with_canon \((\lambda h\). True) \(S(\) sphere 0 1) \(f(\lambda t . a)) \longleftrightarrow\)
        \(\left(\exists g\right.\). continuous_on \(\left.S g \wedge\left(\forall x \in S . f x=\exp \left(\mathrm{i} * f_{-} \operatorname{real}(g x)\right)\right)\right)\)
    (is ?lhs \(\longleftrightarrow\) ? \(r h s\) )
proof
    assume \(L\) : ?lhs
    then obtain \(g\) where contg: continuous_on \(S g\) and \(g: \bigwedge x . x \in S \Longrightarrow f x=\)
\(\exp (g x)\)
            using inessential_imp_continuous_logarithm_circle by blast
    have \(f\) ' \(S \subseteq\) sphere 01
        by (metis L homotopic_with_imp_subset1)
    then have \(\bigwedge x . x \in S \Longrightarrow \operatorname{Re}(g x)=0\)
        using \(g\) by auto
    then show? ?rhs
    by (rule_tac \(x=I m \circ g\) in exI) (auto simp: Euler \(g\) intro: contg continuous_intros)
next
    assume ?rhs
    then obtain \(g\) where contg: continuous_on \(S g\) and \(g: \bigwedge x . x \in S \Longrightarrow f x=\)
\(\exp (\mathrm{i} *\) of_real \((g x)\) )
        by metis
    obtain \(a\) where homotopic_with_canon ( \(\lambda h\). True) \(S(\) sphere 01\()((\exp \circ(\lambda z\).
\(\mathrm{i} * z)) \circ(\) of_real \(\circ g))(\lambda x . a)\)
    proof (rule nullhomotopic_through_contractible)
        show continuous_on \(S\) (complex_of_real \(\circ g\) )
            by (intro conjI contg continuous_intros)
        show (complex_of_real \(\circ g\) )' \(S \subseteq \mathbb{R}\)
            by auto
        show continuous_on \(\mathbb{R}(\exp \circ(*) \mathrm{i})\)
            by (intro continuous_intros)
        show \((\exp \circ(*) \mathrm{i})\) ' \(\mathbb{R} \subseteq\) sphere 01
            by (auto simp: complex_is_Real_iff)
    qed (auto simp: convex_Reals convex_imp_contractible)
    moreover have \(\bigwedge x . x \in S \Longrightarrow(\) exp \(\circ(*) \mathrm{i} \circ(\) complex_of_real \(\circ g)) x=f x\)
        by (simp add: g)
    ultimately have homotopic_with_canon ( \(\lambda\) h. True) \(S\) (sphere 0 1) \(f(\lambda t . a)\)
        using homotopic_with_eq by force
    then show? lhs ..
qed
proposition homotopic_with_sphere_times:
    fixes \(f::\) 'a::real_normed_vector \(\Rightarrow\) complex
    assumes hom: homotopic_with_canon ( \(\lambda x\). True) \(S\) (sphere 0 1) fg and conth:
continuous_on \(S h\)
            and hin: \(\bigwedge x . x \in S \Longrightarrow h x \in\) sphere 01
        shows homotopic_with_canon \((\lambda x\). True) \(S(\) sphere 01\()(\lambda x . f x * h x)(\lambda x . g\)
\(x * h x)\)
proof -
    obtain \(k\) where contk: continuous_on \((\{0 . .1::\) real \(\} \times S) k\)
```

```
            and kim: }k\mathrm{ ' ({0..1} }\timesS)\subseteq\mathrm{ sphere 0 1
            and k0: \bigwedgex.k(0,x)=fx
            and k1: \bigwedgex.k(1,x)=gx
    using hom by (auto simp: homotopic_with_def)
    show ?thesis
    apply (simp add: homotopic_with)
    apply (rule_tac x=\lambdaz.kz*(h\circsnd)z in exI)
    using kim hin by (fastforce simp: conth norm_mult k0 k1 intro!: contk contin-
uous_intros)+
qed
proposition homotopic_circlemaps_divide:
    fixes f :: 'a::real_normed_vector }=>\mathrm{ complex
        shows homotopic_with_canon ( }\lambdax\mathrm{ . True) S (sphere 0 1) fg }
            continuous_on S f ^f'S\subseteq sphere 0 1 ^
            continuous_on S g ^ g'S\subseteq sphere 0 1 ^
                (\existsc.homotopic_with_canon ( }\lambdax.True)S(sphere 0 1) (\lambdax.fx/gx) (\lambdax
c))
proof -
    have homotopic_with_canon ( }\lambdax.\mathrm{ True) S (sphere 0 1) ( }\lambdax.fx/gx)(\lambdax.1
        if homotopic_with_canon ( }\lambdax.T\mathrm{ True) S (sphere 0 1) ( }\lambdax.fx/gx)(\lambdax.c
for c
    proof -
        have S={}\vee path_component (sphere 0 1) 1c
        using homotopic_with_imp_subset2 [OF that] path_connected_sphere [of 0::complex
1]
        by (auto simp: path_connected_component)
        then have homotopic_with_canon ( }\lambdax.\mathrm{ True) S (sphere 0 1) ( }\lambdax.1) ( \lambdax.c
        by (simp add: homotopic_constant_maps)
    then show ?thesis
        using homotopic_with_symD homotopic_with_trans that by blast
    qed
    then have *: (\existsc. homotopic_with_canon ( }\lambdax.\mathrm{ True) S (sphere 0 1) ( }\lambdax.fx/
x)}(\lambdax,c))
                            homotopic_with_canon ( }\lambdax.True)S(sphere 0 1) ( \lambdax.fx/gx) (\lambdax
1)
    by auto
    have homotopic_with_canon ( }\lambdax\mathrm{ . True) S (sphere 0 1) fg }
                continuous_on S f ^f'S\subseteq sphere 0 1 ^
                continuous_on S g}\wedge g'S\subseteq sphere 0 1 ^
                homotopic_with_canon ( }\lambdax.\mathrm{ True) S (sphere 0 1) ( }\lambdax.fx/gx)(\lambdax.1
            (is ?lhs \longleftrightarrow ?rhs)
proof
    assume L:?lhs
    have geq1 [simp]: \x. x\inS\Longrightarrowcmod (gx)=1
        using homotopic_with_imp_subset2 [OF L]
        by (simp add: image_subset_iff)
    have cont:continuous_on S (inverse ○ g)
    proof (rule continuous_intros)
```

```
            show continuous_on Sg
            using homotopic_with_imp_continuous [OF L] by blast
            show continuous_on (g'S) inverse
                by (rule continuous_on_subset [of sphere 0 1,OF continuous_on_inverse])
auto
    qed
    have [simp]: \x. x 保\Longrightarrowgx\not=0
            using geq1 by fastforce
            have homotopic_with_canon ( }\lambdax.\mathrm{ True) S (sphere 0 1) ( }\lambdax.fx/gx)(\lambdax.1
            apply (rule homotopic_with_eq [OF homotopic_with_sphere_times [OF L cont]])
            by (auto simp: divide_inverse norm_inverse)
    with L show ?rhs
    by (auto simp: homotopic_with_imp_continuous dest: homotopic_with_imp_subset1
homotopic_with_imp_subset2)
    next
        assume ?rhs then show ?lhs
            by (elim conjE homotopic_with_eq [OF homotopic_with_sphere_times]; force)
    qed
    then show ?thesis
        by (simp add:*)
qed
```


6.41.12 Upper and lower hemicontinuous functions

And relation in the case of preimage map to open and closed maps, and fact that upper and lower hemicontinuity together imply continuity in the sense of the Hausdorff metric (at points where the function gives a bounded and nonempty set).

Many similar proofs below.

```
lemma upper_hemicontinuous:
    assumes \(\backslash x . x \in S \Longrightarrow f x \subseteq T\)
        shows ( \((\forall U\). openin (top_of_set \(T) U\)
                        \(\longrightarrow\) openin (top_of_set S) \(\{x \in S . f x \subseteq U\}) \longleftrightarrow\)
            ( \(\forall\) U. closedin (top_of_set \(T\) ) \(U\)
                        \(\longrightarrow\) closedin (top_of_set \(S\) ) \(\{x \in S . f x \cap U \neq\{ \}\}))\)
            (is ? \(\mathrm{lh} \mathrm{h}=\) ? rhs )
proof (intro iffI allI impI)
    fix \(U\)
    assume * [rule_format]: ?lhs and closedin (top_of_set T) \(U\)
    then have openin (top_of_set \(T\) ) \((T-U)\)
        by (simp add: openin_diff)
    then have openin (top_of_set \(S\) ) \(\{x \in S . f x \subseteq T-U\}\)
        using * \([\) of \(T-U]\) by blast
    moreover have \(S-\{x \in S . f x \subseteq T-U\}=\{x \in S . f x \cap U \neq\{ \}\}\)
        using assms by blast
    ultimately show closedin (top_of_set \(S\) ) \(\{x \in S . f x \cap U \neq\{ \}\}\)
        by (simp add: openin_closedin_eq)
next
```

```
fix \(U\)
assume * [rule_format]: ?rhs and openin (top_of_set T) U
then have closedin (top_of_set \(T)(T-U)\)
    by (simp add: closedin_diff)
    then have closedin (top_of_set \(S\) ) \(\{x \in S . f x \cap(T-U) \neq\{ \}\}\)
    using * [of \(T-U]\) by blast
    moreover have \(\{x \in S . f x \cap(T-U) \neq\{ \}\}=S-\{x \in S . f x \subseteq U\}\)
        using assms by auto
    ultimately show openin (top_of_set \(S\) ) \(\{x \in S . f x \subseteq U\}\)
    by (simp add: openin_closedin_eq)
qed
lemma lower_hemicontinuous:
    assumes \(\bigwedge x . x \in S \Longrightarrow f x \subseteq T\)
        shows \(((\forall U\). closedin (top_of_set \(T) U\)
                        \(\longrightarrow\) closedin (top_of_set \(S)\{x \in S . f x \subseteq U\}) \longleftrightarrow\)
            \((\forall\) U. openin (top_of_set \(T) U\)
                \(\longrightarrow\) openin (top_of_set \(S)\{x \in S . f x \cap U \neq\{ \}\}))\)
            (is ?lhs = ?rhs)
proof (intro iffI allI impI)
    fix \(U\)
    assume * [rule_format]:? ?hs and openin (top_of_set T) U
    then have closedin (top_of_set \(T)(T-U)\)
        by (simp add: closedin_diff)
    then have closedin (top_of_set \(S\) ) \(\{x \in S . f x \subseteq T-U\}\)
        using * [of \(T-U]\) by blast
    moreover have \(\{x \in S . f x \subseteq T-U\}=S-\{x \in S . f x \cap U \neq\{ \}\}\)
        using assms by auto
    ultimately show openin (top_of_set \(S\) ) \(\{x \in S . f x \cap U \neq\{ \}\}\)
        by (simp add: openin_closedin_eq)
next
    fix \(U\)
    assume \(*[\) rule_format \(]\) : ?rhs and closedin (top_of_set \(T\) ) \(U\)
    then have openin (top_of_set \(T)(T-U)\)
        by (simp add: openin_diff)
    then have openin (top_of_set \(S)\{x \in S . f x \cap(T-U) \neq\{ \}\}\)
        using \(*[o f T-U]\) by blast
    moreover have \(S-\{x \in S . f x \cap(T-U) \neq\{ \}\}=\{x \in S . f x \subseteq U\}\)
        using assms by blast
    ultimately show closedin (top_of_set \(S\) ) \(\{x \in S . f x \subseteq U\}\)
        by (simp add: openin_closedin_eq)
qed
lemma open_map_iff_lower_hemicontinuous_preimage:
    assumes \(f\) ' \(S \subseteq T\)
        shows \(((\forall U\). openin (top_of_set \(S) U\)
            \(\longrightarrow\) openin (top_of_set \(\left.T)\left(f^{\prime} U\right)\right) \longleftrightarrow\)
            ( \(\forall\) U. closedin (top_of_set \(S\) ) \(U\)
                \(\longrightarrow\) closedin (top_of_set \(T)\{y \in T .\{x . x \in S \wedge f x=y\} \subseteq U\}))\)
```

```
    (is ?lhs = ?rhs)
proof (intro iffI allI impI)
    fix }
    assume * [rule_format]: ?lhs and closedin (top_of_set S) U
    then have openin (top_of_set S) (S - U)
        by (simp add: openin_diff)
    then have openin (top_of_set T) (f`}(S-U)
        using *[of S-U] by blast
    moreover have T-(f'(S-U)) ={y\inT.{x\inS.fx=y}\subseteqU}
        using assms by blast
    ultimately show closedin (top_of_set T) {y\inT.{x\inS.fx=y}\subseteqU}
        by (simp add: openin_closedin_eq)
next
    fix }
    assume * [rule_format]:?rhs and opeSU:openin (top_of_set S) U
    then have closedin (top_of_set S)(S-U)
        by (simp add: closedin_diff)
    then have closedin (top_of_set T) {y\inT. {x\inS.fx=y}\subseteqS-U}
        using * [of S-U] by blast
    moreover have {y\inT.{x\inS.fx=y}\subseteqS-U}=T-(f`U)
        using assms openin_imp_subset [OF opeSU] by auto
    ultimately show openin (top_of_set T) (f'U)
    using assms openin_imp_subset [OF opeSU] by (force simp: openin_closedin_eq)
qed
lemma closed_map_iff_upper_hemicontinuous_preimage:
    assumes f'S\subseteqT
        shows ((\forallU. closedin (top_of_set S) U
                        \longrightarrow ~ c l o s e d i n ~ ( t o p \_ o f \_ s e t ~ T ) ~ ( f ' U ) ) \longleftrightarrow ~ \longleftrightarrow ~
                        ( }\forall\mathrm{ U. openin (top_of_set S) U
                        \longrightarrow \mp@code { o p e n i n ~ ( t o p _ o f _ s e t ~ T ) ~ \{ y \in T . \{ x . x \in S \wedge f x = y \} \subseteq U \} ) ) }
            (is ?lhs = ?rhs)
proof (intro iffI allI impI)
    fix }
    assume * [rule_format]:?lhs and opeSU:openin (top_of_set S) U
    then have closedin (top_of_set S) (S-U)
        by (simp add: closedin_diff)
    then have closedin (top_of_set T) (f'(S -U))
        using * [of S-U] by blast
    moreover have f'(S-U)=T- {y\inT.{x.x\inS\wedgefx=y}\subseteqU}
        using assms openin_imp_subset [OF opeSU] by auto
    ultimately show openin (top_of_set T) {y\inT.{x.x\inS\wedgefx=y}\subseteqU}
        using assms openin_imp_subset [OF opeSU] by (force simp: openin_closedin_eq)
next
    fix }
    assume * [rule_format]: ?rhs and cloSU: closedin (top_of_set S) U
    then have openin (top_of_set S) (S - U)
        by (simp add: openin_diff)
    then have openin (top_of_set T) {y\inT.{x\inS.fx=y}\subseteqS-U}
```

```
    using * \([\) of \(S-U]\) by blast
    moreover have \(\left(f^{\prime} U\right)=T-\{y \in T .\{x \in S . f x=y\} \subseteq S-U\}\)
    using assms closedin_imp_subset \([O F\) cloSU] by auto
    ultimately show closedin (top_of_set \(T)\left(f^{\prime} U\right)\)
    by (simp add: openin_closedin_eq)
qed
proposition upper_lower_hemicontinuous_explicit:
    fixes \(T::\left(' b::\left\{r e a l \_n o r m e d \_v e c t o r, h e i n e \_b o r e l\right\}\right) ~ s e t ~\)
    assumes \(f S T: \wedge x . x \in S \Longrightarrow f x \subseteq T\)
        and ope: \(\bigwedge U\). openin (top_of_set \(T) U\)
                        \(\Longrightarrow\) openin (top_of_set \(S\) ) \(\{x \in S . f x \subseteq U\}\)
        and clo: \(\bigwedge U\). closedin (top_of_set \(T) U\)
            \(\Longrightarrow\) closedin (top_of_set \(S\) ) \(\{x \in S . f x \subseteq U\}\)
        and \(x \in S 0<e\) and bofx: bounded \((f x)\) and fx_ne: \(f x \neq\{ \}\)
    obtains \(d\) where \(0<d\)
            \(\bigwedge x^{\prime} . \llbracket x^{\prime} \in S ;\) dist \(x x^{\prime}<d \rrbracket\)
                \(\Longrightarrow\left(\forall y \in f x . \exists y^{\prime} . y^{\prime} \in f x^{\prime} \wedge\right.\) dist \(\left.y y^{\prime}<e\right) \wedge\)
                            \(\left(\forall y^{\prime} \in f x^{\prime} . \exists y . y \in f x \wedge\right.\) dist \(\left.y^{\prime} y<e\right)\)
proof -
    have openin (top_of_set \(T)(T \cap(\bigcup a \in f x . \bigcup b \in\) ball \(0 e .\{a+b\}))\)
        by (auto simp: open_sums openin_open_Int)
    with ope have openin (top_of_set \(S\) )
                            \(\{u \in S . f u \subseteq T \cap(\bigcup a \in f x . \bigcup b \in\) ball \(0 e .\{a+b\})\}\) by blast
    with \(\langle 0<e\rangle\langle x \in S\rangle\) obtain \(d 1\) where \(d 1>0\) and
        \(d 1: \bigwedge x^{\prime} . \llbracket x^{\prime} \in S ;\) dist \(x^{\prime} x<d 1 \rrbracket \Longrightarrow f x^{\prime} \subseteq T \wedge f x^{\prime} \subseteq(\bigcup a \in f x . \bigcup b \in\)
ball \(0 e .\{a+b\}\) )
        by (force simp: openin_euclidean_subtopology_iff dest: fST)
    have oo: \(\bigwedge U\). openin (top_of_set \(T\) ) \(U \Longrightarrow\)
                openin (top_of_set \(S\) ) \(\{x \in S . f x \cap U \neq\{ \}\}\)
    apply (rule lower_hemicontinuous [THEN iffD1, rule_format])
    using fST clo by auto
    have compact (closure \((f x)\) )
        by (simp add: bofx)
    moreover have closure \((f x) \subseteq(\bigcup a \in f x\). ball a (e/Z))
    using \(\langle 0<e\rangle\) by (force simp: closure_approachable simp del: divide_const_simps)
    ultimately obtain \(C\) where \(C \subseteq f x\) finite \(C\) closure \((f x) \subseteq(\bigcup a \in C\). ball a
(e/2))
    apply (rule compactE, force)
    by (metis finite_subset_image)
    then have fx_cover: \(f x \subseteq(\bigcup a \in C\). ball a (e/2))
    by (meson closure_subset order_trans)
    with fx_ne have \(C \neq\{ \}\)
        by blast
    have xin: \(x \in(\bigcap a \in C .\{x \in S . f x \cap T \cap\) ball \(a(e / \mathcal{Z}) \neq\{ \}\})\)
        using \(\langle x \in S\rangle\langle 0<e\rangle f S T\langle C \subseteq f x\rangle\) by force
    have openin (top_of_set \(S)\{x \in S . f x \cap(T \cap\) ball \(a(e / 2)) \neq\{ \}\}\) for \(a\)
    by (simp add: openin_open_Int oo)
    then have openin (top_of_set \(S)(\bigcap a \in C .\{x \in S . f x \cap T \cap\) ball a \((e / \mathcal{Z}) \neq\)
```


\{\}\})

by (simp add: Int_assoc openin_INT2 [OF \langle finite $C\rangle\langle C \neq\{ \}\rangle])$
with $x i n$ obtain $d 2$ where $d 2>0$
and $d 2: \wedge u v . \llbracket u \in S ;$ dist $u x<d 2 ; v \in C \rrbracket \Longrightarrow f u \cap T \cap$ ball v $(e / 2) \neq\{ \}$
unfolding openin_euclidean_subtopology_iff using xin by fastforce
show ?thesis
proof (intro that conjI ballI)
show $0<\min d 1 d 2$ using $\langle 0<d 1\rangle\langle 0<d 2\rangle$ by linarith
next
fix $x^{\prime} y$
assume $x^{\prime} \in S$ dist $x x^{\prime}<\min d 1 d 2 y \in f x$
then have dd2: dist $x^{\prime} x<d 2$
by (auto simp: dist_commute)
obtain a where $a \in C y \in$ ball a (e/2)
using $f x$ _cover $\langle y \in f x\rangle$ by auto
then show $\exists y^{\prime} . y^{\prime} \in f x^{\prime} \wedge$ dist $y y^{\prime}<e$
using d2 $\left[O F\left\langle x^{\prime} \in S\right\rangle d d 2\right]$ dist_triangle_half_r by fastforce
next
fix $x^{\prime} y^{\prime}$
assume $x^{\prime} \in S$ dist $x x^{\prime}<\min d 1 d 2 y^{\prime} \in f x^{\prime}$
then have dist $x^{\prime} x<d 1$
by (auto simp: dist_commute)
then have $y^{\prime} \in(\bigcup a \in f x$. $\bigcup b \in$ ball 0 e. $\{a+b\})$
using $d 1$ [OF $\left.\left\langle x^{\prime} \in S\right\rangle\right]\left\langle y^{\prime} \in f x^{\prime}\right\rangle$ by force
then show $\exists y . y \in f x \wedge$ dist $y^{\prime} y<e$
by clarsimp (metis add_diff_cancel_left' dist_norm)
qed
qed

6.41.13 Complex logs exist on various "well-behaved" sets

lemma continuous_logarithm_on_contractible:
fixes f :: 'a::real_normed_vector \Rightarrow complex
assumes continuous_on $S f$ contractible $S \bigwedge z . z \in S \Longrightarrow f z \neq 0$
obtains g where continuous_on $S g \bigwedge x . x \in S \Longrightarrow f x=\exp (g x)$
proof -
obtain c where hom: homotopic_with_canon (λ h. True) $S(-\{0\}) f(\lambda x . c)$
using nullhomotopic_from_contractible assms
by (metis imageE subset_Compl_singleton)
then show? ?hesis
by (metis inessential_eq_continuous_logarithm that)
qed
lemma continuous_logarithm_on_simply_connected:
fixes f :: 'a::real_normed_vector \Rightarrow complex
assumes contf: continuous_on $S f$ and S : simply_connected S locally path_connected S
and $f: \bigwedge z . z \in S \Longrightarrow f z \neq 0$
obtains g where continuous_on $S g \bigwedge x . x \in S \Longrightarrow f x=\exp (g x)$
using covering_space_lift [OF covering_space_exp_punctured_plane S contf]
by (metis (full_types) fimageE subset_Compl_singleton)

```
lemma continuous_logarithm_on_cball:
    fixes f :: 'a::real_normed_vector }=>\mathrm{ complex
    assumes continuous_on (cball a r) f and }\bigwedgez.z\in\mathrm{ cball a r < fz}=
    obtains h where continuous_on (cball a r) h \bigwedgez.z c cball ar\Longrightarrowfz=\operatorname{exp}(h
z)
    using assms continuous_logarithm_on_contractible convex_imp_contractible by blast
```

 lemma continuous_logarithm_on_ball:
 fixes \(f\) :: 'a::real_normed_vector \(\Rightarrow\) complex
 assumes continuous_on (ball a r) \(f\) and \(\bigwedge z . z \in\) ball a \(r \Longrightarrow f z \neq 0\)
 obtains \(h\) where continuous_on (ball a \(r\)) \(h \bigwedge z . z \in\) ball a \(r \Longrightarrow f z=\exp (h z)\)
 using assms continuous_logarithm_on_contractible convex_imp_contractible by blast
 lemma continuous_sqrt_on_contractible:
 fixes \(f\) :: ' \(a:\) :real_normed_vector \(\Rightarrow\) complex
 assumes continuous_on \(S f\) contractible \(S\)
 and \(\bigwedge z . z \in S \Longrightarrow f z \neq 0\)
 obtains \(g\) where continuous_on \(S g \bigwedge x . x \in S \Longrightarrow f x=(g x)^{\wedge}\) 。2
 proof -
obtain g where contg: continuous_on $S g$ and feq: $\Lambda x . x \in S \Longrightarrow f x=\exp (g$
x)
using continuous_logarithm_on_contractible [OF assms] by blast
show ?thesis
proof
show continuous_on $S(\lambda z . \exp (g z / 2))$
by (rule continuous_on_compose2 [of UNIV exp]; intro continuous_intros contg
subset_UNIV) auto
show $\bigwedge x . x \in S \Longrightarrow f x=(\exp (g x / 2))^{2}$
by (metis exp_double feq nonzero_mult_div_cancel_left times_divide_eq_right
zero_neq_numeral)
qed
qed
lemma continuous_sqrt_on_simply_connected:
fixes $f::$ ' $a::$ real_normed_vector \Rightarrow complex
assumes contf: continuous_on $S f$ and S : simply_connected S locally path_connected
S
and $f: \wedge z . z \in S \Longrightarrow f z \neq 0$
obtains g where continuous_on $S g \bigwedge x . x \in S \Longrightarrow f x=(g x)^{\wedge}{ }^{\text {2 }}$
proof -
obtain g where contg: continuous_on $S g$ and $f e q: \bigwedge x . x \in S \Longrightarrow f x=\exp (g$
x)
using continuous_logarithm_on_simply_connected [OF assms] by blast
show ?thesis

```
    proof
        show continuous_on S ( \lambdaz. exp (gz / 2))
            by (rule continuous_on_compose2 [of UNIV exp]; intro continuous_intros contg
subset_UNIV) auto
    show }\x.x\inS\Longrightarrowfx=(\operatorname{exp}(gx/2)\mp@subsup{)}{}{2
            by (metis exp_double feq nonzero_mult_div_cancel_left times_divide_eq_right
zero_neq_numeral)
    qed
qed
```


6.41.14 Another simple case where sphere maps are nullhomotopic

lemma inessential_spheremap_2_aux:
fixes f :: 'a::euclidean_space \Rightarrow complex
assumes 2: $2<D I M(' a)$ and contf: continuous_on (sphere a r) f and fim: f '(sphere a $r) \subseteq($ sphere 01$)$
obtains c where homotopic_with_canon (λz. True) (sphere ar) (sphere 01) f
($\lambda x . c$)
proof -
obtain g where contg: continuous_on (sphere a r) g
and feq: $\bigwedge x . x \in$ sphere a $r \Longrightarrow f x=\exp (g x)$
proof (rule continuous_logarithm_on_simply_connected [OF contf])
show simply_connected (sphere a r)
using 2 by (simp add: simply_connected_sphere_eq)
show locally path_connected (sphere a r) by (simp add: locally_path_connected_sphere)
show $\bigwedge z . \quad z \in$ sphere a $r \Longrightarrow f z \neq 0$
using fim by force
qed auto
have $\exists g$. continuous_on (sphere a r) $g \wedge(\forall x \in$ sphere a r. f $x=\exp (\mathrm{i} *$ com-
plex_of_real ($g x)$))
proof (intro exI conjI)
show continuous_on (sphere a r) (Im $\circ g$)
by (intro contg continuous_intros continuous_on_compose)
show $\forall x \in$ sphere a r. $f x=\exp (\mathrm{i} *$ complex_of_real $((\operatorname{Im} \circ g) x))$
using exp_eq_polar feq fim norm_exp_eq_Re by auto
qed
with inessential_eq_continuous_logarithm_circle that show ?thesis by metis
qed
lemma inessential_spheremap_2:
fixes $f::$ 'a::euclidean_space \Rightarrow 'b::euclidean_space
assumes a2: $2<\operatorname{DIM}\left({ }^{\prime} a\right)$ and $b 2: D I M\left({ }^{\prime} b\right)=2$
and contf: continuous_on (sphere a r) f and fim: f '(sphere a r) $\subseteq($ sphere b
s)
obtains c where homotopic_with_canon (λz. True) (sphere ar) (sphere bs)f ($\lambda x . c$)

```
proof (cases s \leq 0)
    case True
    then show ?thesis
    using contf contractible_sphere fim nullhomotopic_into_contractible that by blast
next
    case False
    then have sphere b s homeomorphic sphere (0::complex) 1
        using assms by (simp add: homeomorphic_spheres_gen)
    then obtain hk where hk: homeomorphism (sphere b s) (sphere (0::complex)
1) hk
        by (auto simp: homeomorphic_def)
    then have conth: continuous_on (sphere b s)h
            and contk:continuous_on (sphere 0 1) k
            and him: h' sphere bs\subseteq sphere 0 1
            and kim: k' sphere 0 1 \subseteq sphere b s
        by (simp_all add: homeomorphism_def)
    obtain c where homotopic_with_canon ( }\lambdaz\mathrm{ . True) (sphere a r) (sphere 0 1) (h
\circ f) ( }\lambdax.c
    proof (rule inessential_spheremap_2_aux [OF a2])
        show continuous_on (sphere a r) (h\circf)
            by (meson continuous_on_compose [OF contf] conth continuous_on_subset fim)
        show (h\circf)'sphere a r\subseteq sphere 0 1
            using fim him by force
    qed auto
    then have homotopic_with_canon ( }\lambdaf.True) (sphere a r) (sphere b s) (k\circ(h
f))(k\circ(\lambdax.c))
    by (rule homotopic_with_compose_continuous_left [OF _ contk kim])
    then have homotopic_with_canon ( }\lambdaz.\mathrm{ True) (sphere a r) (sphere b s)f( }\lambdax.
c)
    apply (rule homotopic_with_eq, auto)
    by (metis fim hk homeomorphism_def image_subset_iff mem_sphere)
    then show ?thesis
        by (metis that)
qed
```


6.41.15 Holomorphic logarithms and square roots

lemma g_imp_holomorphic_log:
assumes holf: f holomorphic_on S
and contg: continuous_on $S g$ and feq: $\bigwedge x . x \in S \Longrightarrow f x=\exp (g x)$
and $f n z: \bigwedge z . z \in S \Longrightarrow f z \neq 0$
obtains g where g holomorphic_on $S \bigwedge z . z \in S \Longrightarrow f z=\exp (g z)$
proof -
have contf: continuous_on $S f$
by (simp add: holf holomorphic_on_imp_continuous_on)
have g field_differentiable at z within S if f field_differentiable at z within $S z \in$
S for z
proof -
obtain f^{\prime} where $f^{\prime}:\left((\lambda y .(f y-f z) /(y-z)) \longrightarrow f^{\prime}\right)($ at z within $S)$
using 〈f field_differentiable at z within $S\rangle$ by (auto simp: field_differentiable_def has_field_derivative_iff)
then have $e e:\left((\lambda x .(\exp (g x)-\exp (g z)) /(x-z)) \longrightarrow f^{\prime}\right)($ at z within $S)$
by (simp add: feq $\langle z \in S\rangle$ Lim_transform_within [OF _ zero_less_one])
have $(((\lambda y$. if $y=g z$ then $\exp (g z)$ else $(\exp y-\exp (g z)) /(y-g z)) \circ$ $g) \longrightarrow \exp (g z))$ (at z within S)
proof (rule tendsto_compose_at) show $(g \longrightarrow g z)($ at z within $S)$
using contg continuous_on $\langle z \in S\rangle$ by blast
show $(\lambda y$. if $y=g z$ then $\exp (g z)$ else $(\exp y-\exp (g z)) /(y-g z))-g$ $z \rightarrow \exp (g z)$
by (simp add: LIM_offset_zero_iff DERIV_D cong: if_cong Lim_cong_within) qed auto
then have $d d:((\lambda x$. if $g x=g z$ then $\exp (g z)$ else $(\exp (g x)-\exp (g z)) /(g$ $x-g z)) \longrightarrow \exp (g z))($ at z within $S)$
by (simp add: o_def)
have continuous (at z within S) g
using contg continuous_on_eq_continuous_within $\langle z \in S\rangle$ by blast
then have $\left(\forall_{F} x\right.$ in at z within S. dist $\left.(g x)(g z)<2 * p i\right)$
by (simp add: continuous_within tendsto_iff)
then have $\forall_{F} x$ in at z within $S . \exp (g x)=\exp (g z) \longrightarrow g x \neq g z \longrightarrow x$ $=z$
by (rule eventually_mono) (auto simp: exp_eq dist_norm norm_mult)
then have $\left((\lambda y .(g y-g z) /(y-z)) \longrightarrow f^{\prime} / \exp (g z)\right)($ at z within $S)$
by (auto intro!: Lim_transform_eventually [OF tendsto_divide [OF ee dd]])
then show ?thesis
by (auto simp: field_differentiable_def has_field_derivative_iff)
qed
then have g holomorphic_on S
using holf holomorphic_on_def by auto
then show ?thesis
using feq that by auto
qed
lemma contractible_imp_holomorphic_log:
assumes holf: f holomorphic_on S
and S : contractible S
and $f n z: \wedge z . z \in S \Longrightarrow f z \neq 0$
obtains g where g holomorphic_on $S \bigwedge z . z \in S \Longrightarrow f z=\exp (g z)$
proof -
have contf: continuous_on $S f$
by (simp add: holf holomorphic_on_imp_continuous_on)
obtain g where contg: continuous_on $S g$ and feq: $\bigwedge x . x \in S \Longrightarrow f x=\exp (g$ x)
by (metis continuous_logarithm_on_contractible [OF contf S fnz])
then show thesis
using fnz g_imp_holomorphic_log holf that by blast
qed

```
lemma simply_connected_imp_holomorphic_log:
    assumes holf: f holomorphic_on \(S\)
        and \(S\) : simply_connected \(S\) locally path_connected \(S\)
        and \(f n z: \wedge z . z \in S \Longrightarrow f z \neq 0\)
    obtains \(g\) where \(g\) holomorphic_on \(S \bigwedge z . z \in S \Longrightarrow f z=\exp (g z)\)
proof -
    have contf: continuous_on \(S f\)
        by (simp add: holf holomorphic_on_imp_continuous_on)
    obtain \(g\) where contg: continuous_on \(S g\) and feq: \(\bigwedge x . x \in S \Longrightarrow f x=\exp (g\)
x)
    by (metis continuous_logarithm_on_simply_connected [OF contf \(S\) fnz])
    then show thesis
        using fnz g_imp_holomorphic_log holf that by blast
qed
lemma contractible_imp_holomorphic_sqrt:
    assumes holf: f holomorphic_on \(S\)
        and \(S\) : contractible \(S\)
        and fnz: \(\bigwedge z . z \in S \Longrightarrow f z \neq 0\)
    obtains \(g\) where \(g\) holomorphic_on \(S \bigwedge z . z \in S \Longrightarrow f z=g z^{\wedge}\) 2
proof -
    obtain \(g\) where holg: \(g\) holomorphic_on \(S\) and feq: \(\bigwedge z . z \in S \Longrightarrow f z=\exp (g\)
z)
            using contractible_imp_holomorphic_log [OF assms] by blast
    show ?thesis
    proof
        show exp \(\circ(\lambda z . z / 2) \circ g\) holomorphic_on \(S\)
            by (intro holomorphic_on_compose holg holomorphic_intros) auto
        show \(\wedge z . z \in S \Longrightarrow f z=((\exp \circ(\lambda z . z / 2) \circ g) z)^{2}\)
        by (simp add: feq flip: exp_double)
    qed
qed
lemma simply_connected_imp_holomorphic_sqrt:
    assumes holf: f holomorphic_on \(S\)
        and \(S\) : simply_connected \(S\) locally path_connected \(S\)
        and \(f n z: \wedge z, z \in S \Longrightarrow f z \neq 0\)
    obtains \(g\) where \(g\) holomorphic_on \(S \wedge z . z \in S \Longrightarrow f z=g z^{\wedge} \mathcal{Z}\)
proof -
    obtain \(g\) where holg: \(g\) holomorphic_on \(S\) and \(f e q: \wedge z . z \in S \Longrightarrow f z=\exp (g\)
z)
    using simply_connected_imp_holomorphic_log [OF assms] by blast
    show ?thesis
    proof
        show exp \(\circ(\lambda z . z / 2) \circ g\) holomorphic_on \(S\)
        by (intro holomorphic_on_compose holg holomorphic_intros) auto
    show \(\wedge z . z \in S \Longrightarrow f z=((\exp \circ(\lambda z . z / 2) \circ g) z)^{2}\)
        by (simp add: feq flip: exp_double)
```

```
    qed
qed
```

Related theorems about holomorphic inverse cosines.

```
lemma contractible_imp_holomorphic_arccos:
    assumes holf: f holomorphic_on \(S\) and \(S\) : contractible \(S\)
        and non1: \(\bigwedge z . z \in S \Longrightarrow f z \neq 1 \wedge f z \neq-1\)
    obtains \(g\) where \(g\) holomorphic_on \(S \bigwedge z . z \in S \Longrightarrow f z=\cos (g z)\)
proof -
    have hol1f: \(\left(\lambda z .1-f z^{\wedge}\right.\) 2) holomorphic_on \(S\)
        by (intro holomorphic_intros holf)
    obtain \(g\) where holg: \(g\) holomorphic_on \(S\) and \(e q: \bigwedge z . z \in S \Longrightarrow 1-(f z)^{2}=\)
\((g z)^{2}\)
        using contractible_imp_holomorphic_sqrt [OF hol1f S]
        by (metis eq_iff_diff_eq_0 non1 power2_eq_1_iff)
    have holfg: \((\lambda z . f z+\mathrm{i} * g z)\) holomorphic_on \(S\)
        by (intro holf holg holomorphic_intros)
    have \(\bigwedge z . z \in S \Longrightarrow f z+\mathrm{i} * g z \neq 0\)
    by (metis Arccos_body_lemma eq add.commute add.inverse_unique complex_i_mult_minus
power2_csqrt power2_eq_iff)
    then obtain \(h\) where holh: \(h\) holomorphic_on \(S\) and fgeq: \(\bigwedge z . z \in S \Longrightarrow f z+\)
\(\mathrm{i} * g z=\exp (h z)\)
        using contractible_imp_holomorphic_log [OF holfg S] by metis
    show ?thesis
    proof
        show ( \(\lambda z .-\mathrm{i} * h z\) ) holomorphic_on \(S\)
            by (intro holh holomorphic_intros)
        show \(f z=\cos (-\mathrm{i} * h z)\) if \(z \in S\) for \(z\)
        proof -
            have \((f z+\mathrm{i} * g z) *(f z-\mathrm{i} * g z)=1\)
                using that eq by (auto simp: algebra_simps power2_eq_square)
            then have \(f z-\mathrm{i} * g z=\) inverse \((f z+\mathrm{i} * g z)\)
                using inverse_unique by force
            also have \(\ldots=\exp (-h z)\)
                by (simp add: exp_minus fgeq that)
            finally have \(f z=\exp (-h z)+\mathrm{i} * g z\)
                by (simp add: diff_eq_eq)
            then show ?thesis
                apply (simp add: cos_exp_eq)
                by (metis fgeq add.assoc mult_2_right that)
        qed
    qed
qed
```

lemma contractible_imp_holomorphic_arccos_bounded:
assumes holf: f holomorphic_on S and S : contractible S and $a \in S$
and non1: $\wedge z . z \in S \Longrightarrow f z \neq 1 \wedge f z \neq-1$
obtains g where g holomorphic_on $S \operatorname{norm}(g a) \leq p i+\operatorname{norm}(f a) \bigwedge z . z \in S$

```
\(\Longrightarrow f z=\cos (g z)\)
proof -
    obtain \(g\) where holg: \(g\) holomorphic_on \(S\) and \(f e q: \wedge z . z \in S \Longrightarrow f z=\cos (g\)
z)
    using contractible_imp_holomorphic_arccos [OF holf S non1] by blast
    obtain \(b\) where \(\cos b=f a\) norm \(b \leq p i+\operatorname{norm}(f a)\)
        using cos_Arccos norm_Arccos_bounded by blast
    then have \(\cos b=\cos (g a)\)
        by (simp add: \(\langle a \in S\rangle\) feq)
    then consider \(n\) where \(n \in \mathbb{Z} b=g a+\) of_real \((2 * n * p i) \mid n\) where \(n \in \mathbb{Z} b\)
\(=-g a+\) of_real ( \(2 * n * p i\) )
        by (auto simp: complex_cos_eq)
    then show ?thesis
    proof cases
        case 1
        show ?thesis
        proof
            show ( \(\left.\lambda z . g z+o f \_r e a l(2 * n * p i)\right)\) holomorphic_on \(S\)
            by (intro holomorphic_intros holg)
            show \(\operatorname{cmod}(g a+o f-r e a l(2 * n * p i)) \leq p i+\operatorname{cmod}(f a)\)
            using \(1\langle\operatorname{cmod} b \leq p i+\operatorname{cmod}(f a)\rangle\) by blast
            show \(\bigwedge z . z \in S \Longrightarrow f z=\cos (g z+\) complex_of_real \((2 * n * p i))\)
            by (metis \(\langle n \in \mathbb{Z}\rangle\) complex_cos_eq feq)
        qed
    next
        case 2
        show ?thesis
        proof
            show \(\left(\lambda z .-g z+o f \_r e a l(2 * n * p i)\right)\) holomorphic_on \(S\)
            by (intro holomorphic_intros holg)
            show cmod \(\left(-g a+o f \_r e a l(2 * n * p i)\right) \leq p i+\operatorname{cmod}(f a)\)
            using \(2\langle c \bmod b \leq p i+\operatorname{cmod}(f a)\rangle\) by blast
            show \(\bigwedge z . z \in S \Longrightarrow f z=\cos (-g z+\) complex_of_real \((2 * n * p i))\)
            by (metis \(\langle n \in \mathbb{Z}\rangle\) complex_cos_eq feq)
        qed
    qed
qed
```


6.41.16 The "Borsukian" property of sets

This doesn't have a standard name. Kuratowski uses "contractible with respect to $\left[S^{1}\right]$ " while Whyburn uses "property b". It's closely related to unicoherence.

```
definition Borsukian where
    Borsukian \(S \equiv\)
    \(\forall f\). continuous_on \(S f \wedge f^{\prime} S \subseteq(-\{0::\) complex \(\})\)
        \(\longrightarrow(\exists a\). homotopic_with_canon \((\lambda h\). True \() S(-\{0\}) f(\lambda x . a))\)
```

lemma Borsukian_retraction_gen:

```
    assumes Borsukian S continuous_on S h h` S = T
            continuous_on T k k'T\subseteqS \bigwedgey. y \in T\Longrightarrowh(ky)=y
    shows Borsukian T
proof -
    interpret R: Retracts S h Tk
        using assms by (simp add: Retracts.intro)
    show ?thesis
        using assms
        apply (clarsimp simp add: Borsukian_def)
        apply (rule R.cohomotopically_trivial_retraction_null_gen [OF TrueI TrueI refl,
of -{0}], auto)
    done
qed
lemma retract_of_Borsukian: \llbracketBorsukian T; S retract_of T\rrbracket \Longrightarrow Borsukian S
    apply (auto simp: retract_of_def retraction_def)
    apply (erule (1) Borsukian_retraction_gen)
    apply (meson retraction retraction_def)
        apply (auto)
        done
lemma homeomorphic_Borsukian: \llbracketBorsukian S;S homeomorphic T\rrbracket \Longrightarrow Bor-
sukian T
    using Borsukian_retraction_gen order_refl
    by (fastforce simp add: homeomorphism_def homeomorphic_def)
lemma homeomorphic_Borsukian_eq:
    S homeomorphic T\Longrightarrow Borsukian S \longleftrightarrow Borsukian T
    by (meson homeomorphic_Borsukian homeomorphic_sym)
lemma Borsukian_translation:
    fixes S :: 'a::real_normed_vector set
    shows Borsukian (image ( }\lambdax.a+x)S)\longleftrightarrow\mathrm{ Borsukian S
    using homeomorphic_Borsukian_eq homeomorphic_translation by blast
lemma Borsukian_injective_linear_image:
    fixes f :: 'a::euclidean_space = 'b::euclidean_space
    assumes linear finj f
        shows Borsukian(f'S)\longleftrightarrow Borsukian S
    using assms homeomorphic_Borsukian_eq linear_homeomorphic_image by blast
lemma homotopy_eqv_Borsukianness:
    fixes S :: 'a::real_normed_vector set
        and T :: 'b::real_normed_vector set
        assumes S homotopy_eqv T
            shows (Borsukian S Borsukian T)
    by (meson Borsukian_def assms homotopy_eqv_cohomotopic_triviality_null)
```

lemma Borsukian_alt:

fixes S :: ' a ::real_normed_vector set
 shows

Borsukian $S \longleftrightarrow$
$(\forall f g$.continuous_on $S f \wedge f$ ' $S \subseteq-\{0\} \wedge$
continuous_on $S g \wedge g$ ' $S \subseteq-\{0\}$
\longrightarrow homotopic_with_canon $(\lambda h$. True) $S(-\{0::$ complex $\}) f g)$
unfolding Borsukian_def homotopic_triviality
by (simp add: path_connected_punctured_universe)
lemma Borsukian_continuous_logarithm:
fixes S :: ' $a:$:real_normed_vector set
shows Borsukian $S \longleftrightarrow$
$\left(\forall f\right.$. continuous_on $S f \wedge f^{\prime} S \subseteq(-\{0::$ complex $\})$
$\longrightarrow(\exists g$. continuous_on $S g \wedge(\forall x \in S . f x=\exp (g x))))$
by (simp add: Borsukian_def inessential_eq_continuous_logarithm)

```
lemma Borsukian_continuous_logarithm_circle:
    fixes \(S\) :: ' \(a:\) :real_normed_vector set
    shows Borsukian \(S \longleftrightarrow\)
                ( \(\forall f\). continuous_on \(S f \wedge f\) ' \(S \subseteq\) sphere ( \(0::\) complex) 1
                    \(\longrightarrow(\exists g\). continuous_on \(S g \wedge(\forall x \in S . f x=\exp (g x))))\)
    (is ? lhs \(=\) ? \(r h s\) )
proof
    assume ?lhs then show ?rhs
        by (force simp: Borsukian_continuous_logarithm)
    next
    assume \(R H S\) [rule_format]: ?rhs
    show ?lhs
    proof (clarsimp simp: Borsukian_continuous_logarithm)
        fix \(f::{ }^{\prime} a \Rightarrow\) complex
        assume contf: continuous_on \(S f\) and \(0: 0 \notin f\) ' \(S\)
        then have continuous_on \(S(\lambda x . f x /\) complex_of_real \((\operatorname{cmod}(f x)))\)
        by (intro continuous_intros) auto
        moreover have \((\lambda x . f x /\) complex_of_real \((\operatorname{cmod}(f x)))\) ' \(S \subseteq\) sphere 01
            using 0 by (auto simp: norm_divide)
        ultimately obtain \(g\) where contg: continuous_on \(S g\)
            and \(f g: \forall x \in S . f x /\) complex_of_real \((\operatorname{cmod}(f x))=\exp (g x)\)
        using RHS [of \(\lambda x\). \(f x /\) of_real \((\operatorname{norm}(f x))]\) by auto
        show \(\exists g\). continuous_on \(S g \wedge(\forall x \in S . f x=\exp (g x))\)
        proof (intro exI ballI conjI)
            show continuous_on \(S(\lambda x .(L n \circ\) of_real \(\circ\) norm \(\circ f) x+g x)\)
            by (intro continuous_intros contf contg conjI) (use 0 in auto)
            show \(f x=\exp ((L n \circ\) complex_of_real \(\circ\) cmod \(\circ f) x+g x)\) if \(x \in S\) for \(x\)
            using 0 that
            apply (simp add: exp_add)
        by (metis div_by_0 exp_Ln exp_not_eq_zero fg mult.commute nonzero_eq_divide_eq)
        qed
    qed
qed
```

```
lemma Borsukian_continuous_logarithm_circle_real:
    fixes \(S\) :: 'a::real_normed_vector set
    shows Borsukian \(S \longleftrightarrow\)
        \(\left(\forall f\right.\). continuous_on \(S f \wedge f^{\prime} S \subseteq\) sphere ( \(0::\) complex) 1
                \(\longrightarrow(\exists g\). continuous_on \(S\) (complex_of_real \(\circ g) \wedge(\forall x \in S . f x=\exp (\mathrm{i}\)
* of_real \((g x)))\) )
    (is ?lhs =? ? rh )
proof
    assume \(L H S\) : ?lhs
    show ?rhs
    proof (clarify)
        fix \(f::{ }^{\prime} a \Rightarrow\) complex
        assume continuous_on \(S f\) and f01: \(f\) ' \(S \subseteq\) sphere 01
        then obtain \(g\) where contg: continuous_on \(S g\) and \(\bigwedge x . x \in S \Longrightarrow f x=\)
\(\exp (g x)\)
            using LHS by (auto simp: Borsukian_continuous_logarithm_circle)
            then have \(\forall x \in S\). \(f x=\exp (\mathrm{i} *\) complex_of_real \(((\operatorname{Im} \circ g) x))\)
                using f01 exp_eq_polar norm_exp_eq_Re by auto
            then show \(\exists g\). continuous_on \(S(\) complex_of_real \(\circ g) \wedge(\forall x \in S . f x=\exp (\mathrm{i}\)
* complex_of_real ( \(g x)\) ))
            by (rule_tac \(x=I m \circ g\) in exI) (force intro: continuous_intros contg)
        qed
next
    assume RHS [rule_format]: ?rhs
    show ?lhs
    proof (clarsimp simp: Borsukian_continuous_logarithm_circle)
            fix \(f::{ }^{\prime} a \Rightarrow\) complex
            assume continuous_on \(S f\) and f01: \(f\) ' \(S \subseteq\) sphere 01
            then obtain \(g\) where contg: continuous_on \(S\) (complex_of_real \(\circ g\) ) and \(\bigwedge x\).
\(x \in S \Longrightarrow f x=\exp (\mathrm{i} * \operatorname{of}-\operatorname{real}(g x))\)
            by (metis RHS)
            then show \(\exists g\). continuous_on \(S g \wedge(\forall x \in S . f x=\exp (g x))\)
            by (rule_tac \(x=\lambda x\). i* of_real \((g x)\) in exI) (auto simp: continuous_intros contg)
    qed
qed
lemma Borsukian_circle:
    fixes \(S\) :: ' \(a:\) :real_normed_vector set
    shows Borsukian \(S \longleftrightarrow\)
        \((\forall f\). continuous_on \(S f \wedge f\) ' \(S \subseteq\) sphere ( \(0::\) complex) 1
            \(\longrightarrow(\exists\) a. homotopic_with_canon \((\lambda h\). True) \(S\) (sphere (0::complex) 1)
\(f(\lambda x . a)))\)
by (simp add: inessential_eq_continuous_logarithm_circle Borsukian_continuous_logarithm_circle_real)
lemma contractible_imp_Borsukian: contractible \(S \Longrightarrow\) Borsukian \(S\)
    by (meson Borsukian_def nullhomotopic_from_contractible)
```

```
lemma simply_connected_imp_Borsukian:
    fixes \(S\) :: 'a::real_normed_vector set
    shows 【simply_connected \(S\); locally path_connected \(S \rrbracket \Longrightarrow\) Borsukian \(S\)
    by (metis (no_types, lifting) Borsukian_continuous_logarithm continuous_logarithm_on_simply_connected
image_eqI subset_Compl_singleton)
lemma starlike_imp_Borsukian:
    fixes \(S\) :: 'a::real_normed_vector set
    shows starlike \(S \Longrightarrow\) Borsukian \(S\)
    by (simp add: contractible_imp_Borsukian starlike_imp_contractible)
lemma Borsukian_empty: Borsukian \{\}
    by (auto simp: contractible_imp_Borsukian)
lemma Borsukian_UNIV: Borsukian (UNIV :: 'a::real_normed_vector set)
    by (auto simp: contractible_imp_Borsukian)
lemma convex_imp_Borsukian:
    fixes \(S\) :: 'a::real_normed_vector set
    shows convex \(S \Longrightarrow\) Borsukian \(S\)
    by (meson Borsukian_def convex_imp_contractible nullhomotopic_from_contractible)
proposition Borsukian_sphere:
    fixes \(a\) :: ' \(a::\) euclidean_space
    shows \(3 \leq \operatorname{DIM}\left({ }^{\prime} a\right) \Longrightarrow\) Borsukian (sphere a r)
    using ENR_sphere
    by (blast intro: simply_connected_imp_Borsukian ENR_imp_locally_path_connected
    simply_connected_sphere)
    lemma Borsukian_Un_lemma:
    fixes \(S\) :: ' \(a:\) :real_normed_vector set
    assumes BS: Borsukian \(S\) and \(B T\) : Borsukian \(T\) and \(S T\) : connected \((S \cap T)\)
        and \(*: ~ \bigwedge f g:: ' a \Rightarrow\) complex.
            【continuous_on \(S f ;\) continuous_on \(T g ; \bigwedge x . x \in S \wedge x \in T \Longrightarrow f x\)
    \(=g x \rrbracket\)
            \(\Longrightarrow\) continuous_on \((S \cup T)(\lambda x\). if \(x \in S\) then \(f x\) else \(g x)\)
        shows Borsukian \((S \cup T)\)
    proof (clarsimp simp add: Borsukian_continuous_logarithm)
    fix \(f::{ }^{\prime} a \Rightarrow\) complex
    assume contf: continuous_on \((S \cup T) f\) and \(0: 0 \notin f^{\prime}(S \cup T)\)
    then have contfS: continuous_on \(S f\) and contfT: continuous_on \(T f\)
        using continuous_on_subset by auto
    have \(\llbracket\) continuous_on \(S f ; f^{\prime} S \subseteq-\{0\} \rrbracket \Longrightarrow \exists g\).continuous_on \(S g \wedge(\forall x \in S\).
\(f x=\exp (g x))\)
        using \(B S\) by (auto simp: Borsukian_continuous_logarithm)
    then obtain \(g\) where contg: continuous_on \(S g\) and \(f g: \bigwedge x . x \in S \Longrightarrow f x=\)
    \(\exp (g x)\)
    using 0 contfS by blast
    have 【continuous_on \(T f ; f^{\prime} T \subseteq-\{0\} \rrbracket \Longrightarrow \exists g\). continuous_on \(T g \wedge(\forall x \in\)
```

```
T.fx=exp(g x))
    using BT by (auto simp: Borsukian_continuous_logarithm)
    then obtain h where conth: continuous_on Th and fh: \x. x f T\Longrightarrow fx=
exp(hx)
    using 0 contfT by blast
    show \existsg.continuous_on }(S\cupT)g\wedge(\forallx\inS\cupT.fx=\operatorname{exp}(gx)
    proof (cases S\capT={})
        case True
        show ?thesis
        proof (intro exI conjI)
            show continuous_on (S\cupT) ( }\lambdax\mathrm{ . if }x\inS\mathrm{ then g x else h x)
            using True * [OF contg conth]
            by (meson disjoint_iff)
        show }\forallx\inS\cupT.fx=\operatorname{exp}(\mathrm{ if }x\inS\mathrm{ then g x else h x)
            using fg fh by auto
        qed
    next
        case False
        have ( }\lambdax.gx-hx) constant_on S \cap
        proof (rule continuous_discrete_range_constant [OF ST])
            show continuous_on (S\capT) ( }\lambdax.gx-hx
            proof (intro continuous_intros)
                show continuous_on (S\capT)g
                    by (meson contg continuous_on_subset inf_le1)
            show continuous_on (S\capT)h
                by (meson conth continuous_on_subset inf_sup_ord(2))
            qed
            show \existse>0.\forally.y\inS\capT^gy-hy\not=gx-hx\longrightarrowe\leqcmod (gy
-hy-(gx-hx))
                if }x\inS\capT\mathrm{ for }
            proof -
            have g}y-gx=hy-h
                    if y\inSy\inT\operatorname{cmod}(gy-gx-(hy-hx))<2*pi for y
            proof (rule exp_complex_eqI)
                    have}|\operatorname{Im}(gy-gx)-\operatorname{Im}(hy-hx)|\leq\operatorname{cmod}(gy-gx-(hy-
x))
                by (metis abs_Im_le_cmod minus_complex.simps(2))
            then show |Im (gy-gx)-\operatorname{Im}(hy-hx)|<2*pi
                    using that by linarith
            have exp (gx) = exp (hx) exp (gy) = exp (hy)
                    using fg fh that \langlex \inS\capT\rangle by fastforce+
            then show exp (gy-gx)=\operatorname{exp}(hy-hx)
                by (simp add: exp_diff)
        qed
        then show ?thesis
            by (rule_tac x=2*pi in exI) (fastforce simp add: algebra_simps)
        qed
    qed
    then obtain a where a: \x. x \inS\capT\Longrightarrowgx-hx=a
```

```
        by (auto simp: constant_on_def)
        with False have exp a=1
        by (metis IntI disjoint_iff_not_equal divide_self_if exp_diff exp_not_eq_zero fg fh)
    with a show ?thesis
        apply (rule_tac x=\lambdax. if x G S then g x else a+hx in exI)
        apply (intro * contg conth continuous_intros conjI)
        apply (auto simp: algebra_simps fg fh exp_add)
        done
    qed
qed
proposition Borsukian_open_Un:
    fixes S :: 'a::real_normed_vector set
    assumes opeS: openin (top_of_set (S\cupT)) S
        and opeT: openin (top_of_set (S\cupT)) T
        and BS: Borsukian S and BT: Borsukian T and ST: connected (S\capT)
        shows Borsukian(S\cupT)
    by (force intro: Borsukian_Un_lemma [OF BS BT ST] continuous_on_cases_local_open
[OF opeS opeT])
lemma Borsukian_closed_Un:
    fixes S :: 'a::real_normed_vector set
    assumes cloS: closedin (top_of_set (S\cupT)) S
        and cloT: closedin (top_of_set (S\cupT))T
        and BS:Borsukian S and BT: Borsukian T and ST: connected (S\capT)
    shows Borsukian(S\cupT)
    by (force intro: Borsukian_Un_lemma [OF BS BT ST] continuous_on_cases_local
[OF cloS cloT])
lemma Borsukian_separation_compact:
    fixes S :: complex set
    assumes compact S
        shows Borsukian S < connected (-S)
    by (simp add: Borsuk_separation_theorem Borsukian_circle assms)
lemma Borsukian_monotone_image_compact:
    fixes f :: 'a::euclidean_space = 'b::euclidean_space
    assumes Borsukian S and contf:continuous_on S f and fim: f'S=T
        and compact S and conn: \y. y \inT\Longrightarrow connected {x. x 价 \^fx=y}
        shows Borsukian T
proof (clarsimp simp add: Borsukian_continuous_logarithm)
    fix g :: 'b b complex
    assume contg: continuous_on T g and 0:0\not\ing'T
    have continuous_on S (g\circf)
        using contf contg continuous_on_compose fim by blast
    moreover have (g\circf)'S\subseteq-{0}
        using fim 0 by auto
    ultimately obtain h where conth: continuous_on S h and gfh: \bigwedgex. x f S\Longrightarrow
(g\circf)x= exp(hx)
```

using 〈Borsukian $S\rangle$ by（auto simp：Borsukian＿continuous＿logarithm）
have $\bigwedge y . \exists x . y \in T \longrightarrow x \in S \wedge f x=y$
using fim by auto
then obtain f^{\prime} where $f^{\prime}: \bigwedge y . y \in T \longrightarrow f^{\prime} y \in S \wedge f\left(f^{\prime} y\right)=y$ by metis
have $*:\left(\lambda x . h x-h\left(f^{\prime} y\right)\right)$ constant＿on $\{x . x \in S \wedge f x=y\}$ if $y \in T$ for y
proof（rule continuous＿discrete＿range＿constant［OF conn［OF that］，of λx ．$h x$
$\left.-h\left(f^{\prime} y\right)\right]$ ，simp＿all add：algebra＿simps）
show continuous＿on $\{x \in S . f x=y\}\left(\lambda x . h x-h\left(f^{\prime} y\right)\right)$
by（intro continuous＿intros continuous＿on＿subset［OF conth］）auto
show $\exists e>0 . \forall u . u \in S \wedge f u=y \wedge h u \neq h x \longrightarrow e \leq \operatorname{cmod}(h u-h x)$
if $x: x \in S \wedge f x=y$ for x
proof－
have $h u=h x$ if $u \in S f u=y \operatorname{cmod}(h u-h x)<2 * p i$ for u
proof（rule exp＿complex＿eqI）
have $|\operatorname{Im}(h u)-\operatorname{Im}(h x)| \leq \operatorname{cmod}(h u-h x)$
by（metis abs＿Im＿le＿cmod minus＿complex．simps（2））
then show $|\operatorname{Im}(h u)-\operatorname{Im}(h x)|<2 * p i$
using that by linarith
show $\exp (h u)=\exp (h x)$
by（simp add：gfh［symmetric］x that）

qed

then show ？thesis
by（rule＿tac $x=2 * p i$ in exI）（fastforce simp add：algebra＿simps）
qed
qed
show $\exists h$. continuous＿on $T h \wedge(\forall x \in T . g x=\exp (h x))$
proof（intro exI conjI）
show continuous＿on $T\left(h \circ f^{\prime}\right)$
proof（rule continuous＿from＿closed＿graph［of h＇$S]$ ）
show compact（ $h^{\prime} S$ ）
by（simp add：〈compact $S\rangle$ compact＿continuous＿image conth）
show $\left(h \circ f^{\prime}\right) \cdot T \subseteq h ' S$
by（auto simp：f^{\prime} ）
have $h x=h\left(f^{\prime}(f x)\right)$ if $x \in S$ for x
using＊［of $f x]$ fim that unfolding constant＿on＿def by clarsimp（metis f^{\prime} imageI right＿minus＿eq）
moreover have $\bigwedge x . x \in T \Longrightarrow \exists u . u \in S \wedge x=f u \wedge h\left(f^{\prime} x\right)=h u$
using f^{\prime} by fastforce
ultimately
have eq：$\left(\left(\lambda x .\left(x,\left(h \circ f^{\prime}\right) x\right)\right)\right.$＇$\left.T\right)=$
$\{p . \exists x . x \in S \wedge(x, p) \in(S \times U N I V) \cap((\lambda z$. snd $z-((f \circ f s t) z$,
$(h \circ f s t) z))-‘\{0\})\}$
using fim by（auto simp：image＿iff）
moreover have closed．．．
apply（intro closed＿compact＿projection［OF〈compact S 〕］continuous＿closed＿preimage continuous＿intros continuous＿on＿subset［OF contf］continu－
ous＿on＿subset［OF conth］）
by（auto simp：〈compact $S\rangle$ closed＿Times compact＿imp＿closed）

```
        ultimately show closed ((\lambdax. (x,(h\circ\mp@subsup{f}{}{\prime})x))`}\mp@subsup{)}{}{`}
            by simp
        qed
    qed (use f' gfh in fastforce)
qed
lemma Borsukian＿open＿map＿image＿compact：
fixes \(f\) ：：＇a：：euclidean＿space \(\Rightarrow\)＇b：：euclidean＿space
assumes Borsukian \(S\) and contf：continuous＿on \(S f\) and fim：\(f\)＇\(S=T\) and compact \(S\)
and ope：\(\bigwedge U\) ．openin（top＿of＿set \(S\) ）\(U\) \(\Longrightarrow\) openin \((\) top＿of＿set \(T)\left(f^{\prime} U\right)\)
shows Borsukian T
proof（clarsimp simp add：Borsukian＿continuous＿logarithm＿circle＿real）
fix \(g::\)＇\(b \Rightarrow\) complex
assume contg：continuous＿on \(T g\) and gim：\(g{ }^{\prime} T \subseteq\) sphere 01
have continuous＿on \(S(g \circ f)\)
using contf contg continuous＿on＿compose fim by blast
moreover have \((g \circ f)\)＇\(S \subseteq\) sphere 01
using fim gim by auto
ultimately obtain \(h\) where cont＿cxh：continuous＿on \(S(\) complex＿of＿real \(\circ h)\) and \(g f h: \wedge x . x \in S \Longrightarrow(g \circ f) x=\exp \left(\mathrm{i} * o f \_r e a l(h x)\right)\)
using 〈Borsukian \(S\) 〉Borsukian＿continuous＿logarithm＿circle＿real by metis
then have conth：continuous＿on \(S h\)
by simp
have \(\exists x . x \in S \wedge f x=y \wedge\left(\forall x^{\prime} \in S . f x^{\prime}=y \longrightarrow h x \leq h x^{\prime}\right)\) if \(y \in T\) for \(y\)
proof－
have 1：compact（ \(h\)＇\(\{x \in S . f x=y\}\) ）
proof（rule compact＿continuous＿image）
show continuous＿on \(\{x \in S\) ．\(f x=y\} h\)
by（rule continuous＿on＿subset［OF conth］）auto
have compact（ \(S \cap f-‘\{y\}\) ）
by（rule proper＿map＿from＿compact［OF contf＿〈compact \(S\rangle\) ，of \(T]\) ）（simp＿all
add：fim that）
then show compact \(\{x \in S . f x=y\}\)
by（auto simp：vimage＿def Int＿def）
qed
have 2：\(h\)＇\(\{x \in S . f x=y\} \neq\{ \}\)
using fim that by auto
have \(\exists s \in h '\{x \in S . f x=y\} . \forall t \in h '\{x \in S . f x=y\} . s \leq t\) using compact＿attains＿inf［OF 1 2］by blast
then show ？thesis by auto
```


qed

```
then obtain \(k\) where \(k T S: \bigwedge y . y \in T \Longrightarrow k y \in S\)
and \(f k: \bigwedge y . y \in T \Longrightarrow f(k y)=y\)
and \(h l e: \bigwedge x^{\prime} y . \llbracket y \in T ; x^{\prime} \in S ; f x^{\prime}=y \rrbracket \Longrightarrow h(k y) \leq h x^{\prime}\)
by metis
have continuous＿on \(T(h \circ k)\)
```

```
    proof (clarsimp simp add: continuous_on_iff)
    fix }y\mathrm{ and e::real
    assume y G T0<e
    moreover have uniformly_continuous_on S (complex_of_real \circ h)
        using <compact S` cont_cxh compact_uniformly_continuous by blast
    ultimately obtain d}\mathrm{ where 0<d
                            and d: \bigwedgex x'. \llbracketx\inS; x'\inS; dist x' }x<d\rrbracket\Longrightarrow\operatorname{dist}(hx) (hx)<
        by (force simp: uniformly_continuous_on_def)
    obtain }\delta\mathrm{ where 0< < and }\delta\mathrm{ :
        \ x ^ { \prime } . \llbracket x ^ { \prime } \in T ; \text { dist y } x ^ { \prime } < \delta \rrbracket
            \Longrightarrow ( \forall v \in \{ z \in S . f z = y \} . \exists v ^ { \prime } . v ^ { \prime } \in \{ z \in S . f z = x ^ { \prime } \} \wedge \text { dist v v}
<d)}
                            (\forall\mp@subsup{v}{}{\prime}\in{z\inS.fz=x'}.\existsv.v\in{z\inS.fz=y}\wedge dist v}\mp@subsup{v}{}{\prime}v<d
        proof (rule upper_lower_hemicontinuous_explicit [of T \lambday.{z\inS.fz=y}S])
        show }\U.\mathrm{ openin (top_of_set S)U
            openin (top_of_set T) {x\inT.{z\inS.fz=x}\subseteqU}
        using closed_map_iff_upper_hemicontinuous_preimage [OF fim [THEN equal-
ityD1]]
            by (simp add: Abstract_Topology_2.continuous_imp_closed_map \compact S`
contf fim)
        show }\U.closedin(top_of_set S)U
                            closedin (top_of_set T) {x\inT.{z\inS.fz=x}\subseteqU}
            using ope open_map_iff_lower_hemicontinuous_preimage [OF fim [THEN
equalityD1]]
            by meson
        show bounded {z\inS.fz=y}
        by (metis (no_types, lifting) compact_imp_bounded [OF <compact S`] bounded_subset
mem_Collect_eq subsetI)
    qed (use \langley \inT\rangle\langle0<d\ranglefk kTS in <force+>)
    have dist (h(k y')) (h(ky))<e if y'\inT dist y y'<\delta for y'
    proof -
        have k1: k y GS f(ky)=y and k2: k y'}\inSf(k\mp@subsup{y}{}{\prime})=\mp@subsup{y}{}{\prime
            by (auto simp: }\langley\inT\rangle\langle\mp@subsup{y}{}{\prime}\inT\ranglekTS fk
        have 1: \bigwedgev. \llbracketv\inS;fv=y\rrbracket\Longrightarrow\exists\mp@subsup{v}{}{\prime}.\mp@subsup{v}{}{\prime}\in{z\inS.fz=\mp@subsup{y}{}{\prime}}\wedge\mathrm{ dist v v' <d}
            and 2: }\\mp@subsup{v}{}{\prime}.\llbracket\mp@subsup{v}{}{\prime}\inS;f\mp@subsup{v}{}{\prime}=y\rrbracket\Longrightarrow\existsv.v\in{z\inS.fz=y}\wedge\mathrm{ dist v}\mp@subsup{v}{}{\prime}v
d
            using \delta [OF that] by auto
            then obtain w'w where w'}\mp@subsup{w}{}{\prime}\inSf\mp@subsup{w}{}{\prime}=\mp@subsup{y}{}{\prime}\operatorname{dist}(ky)\mp@subsup{w}{}{\prime}<
            and}w\inSfw=y\operatorname{dist}(k\mp@subsup{y}{}{\prime})w<
            using 1 [OF k1] 2 [OF k2] by auto
        then show ?thesis
            using d [of w k y ] d [of w' k y] k1 kQ \langley' \inT\rangle\langley \inT\rangle hle
            by (fastforce simp: dist_norm abs_diff_less_iff algebra_simps)
    qed
    then show \existsd>0.\forall\mp@subsup{x}{}{\prime}\inT.dist \mp@subsup{x}{}{\prime}y<d\longrightarrow\operatorname{dist}(h(k\mp@subsup{x}{}{\prime}))(h(ky))<e
        using }\langle0<\delta\rangle\mathrm{ by (auto simp: dist_commute)
    qed
    then show \existsh.continuous_on T h\wedge (\forallx\inT.g x = exp (i * complex_of_real ( }
x)))
```

using $f k$ gfh $k T S$ by force
qed
If two points are separated by a closed set, there's a minimal one.
proposition closed_irreducible_separator:
fixes a :: 'a::real_normed_vector
assumes closed S and $a b: \neg$ connected_component $(-S) a b$
obtains T where $T \subseteq S$ closed $T T \neq\{ \} \neg$ connected_component $(-T)$ ab
$\bigwedge U . U \subset T \Longrightarrow$ connected_component $(-U) a b$
proof (cases $a \in S \vee b \in S$)
case True
then show? ?thesis
proof
assume $*: a \in S$
show ?thesis
proof
show $\{a\} \subseteq S$
using * by blast
show \neg connected_component $(-\{a\}) a b$
using connected_component_in by auto
show $\bigwedge U . U \subset\{a\} \Longrightarrow$ connected_component $(-U) a b$
by (metis connected_component_UNIV UNIV_I compl_bot_eq connected_component_eq_eq
less_le_not_le subset_singletonD)
qed auto
next
assume $*: b \in S$
show ?thesis
proof
show $\{b\} \subseteq S$ using $*$ by blast
show \neg connected_component $(-\{b\}) a b$
using connected_component_in by auto
show $\bigwedge U . U \subset\{b\} \Longrightarrow$ connected_component $(-U) a b$
by (metis connected_component_UNIV UNIV_I compl_bot_eq connected_component_eq_eq
less_le_not_le subset_singletonD)
qed auto
qed
next
case False
define A where $A \equiv$ connected_component_set $(-S) a$
define B where $B \equiv$ connected_component_set (- (closure $A)) b$
have $a \in A$
using False A_{-}def by auto
have $b \in B$
unfolding A_{-}def $B_{-} d e f$ closure_Un_frontier
using ab False 〈closed S 〉 frontier_complement frontier_of_connected_component_subset
frontier_subset_closed by force
have frontier $B \subseteq$ frontier (connected_component_set (- closure A) b)
using B_{-}def by blast

```
    also have frsub: ... \(\subseteq\) frontier \(A\)
    proof -
    have \(\bigwedge A\). closure \((-\) closure \((-A)) \subseteq\) closure \(A\)
            by (metis (no_types) closure_mono closure_subset compl_le_compl_iff dou-
ble_compl)
    then show ?thesis
            by (metis (no_types) closure_closure double_compl frontier_closures fron-
tier_of_connected_component_subset le_inf_iff subset_trans)
    qed
    finally have \(f r B A\) : frontier \(B \subseteq\) frontier \(A\).
    show ?thesis
    proof
        show frontier \(B \subseteq S\)
        proof -
            have frontier \(S \subseteq S\)
                by (simp add: 〈closed \(S\) 〉frontier_subset_closed)
            then show ?thesis
                using frsub frontier_complement frontier_of_connected_component_subset
                unfolding \(A_{-} d e f B_{-} d e f\) by blast
        qed
        show closed (frontier B)
            by \(\operatorname{simp}\)
        show \(\neg\) connected_component \((-\) frontier B) ab
            unfolding connected_component_def
        proof clarify
            fix \(T\)
            assume connected \(T\) and \(T B: T \subseteq-\) frontier \(B\) and \(a \in T\) and \(b \in T\)
            have \(a \notin B\)
            by (metis \(A_{-}\)def \(B_{-} d e f\) ComplD \(\langle a \in A\rangle\) assms (1) closed_open connected_component_subset
in_closure_connected_component subsetD)
            have \(T \cap B \neq\{ \}\)
                using \(\langle b \in B\rangle\langle b \in T\rangle\) by blast
            moreover have \(T-B \neq\{ \}\)
                using \(\langle a \notin B\rangle\langle a \in T\rangle\) by blast
            ultimately show False
                using connected_Int_frontier [of T B] TB〈connected \(T\rangle\) by blast
    qed
    moreover have connected_component (-frontier B) ab if frontier \(B=\{ \}\)
            using connected_component_eq_UNIV that by auto
            ultimately show frontier \(B \neq\{ \}\)
                by blast
            show connected_component \((-U) a b\) if \(U \subset\) frontier \(B\) for \(U\)
            proof -
                obtain \(p\) where Usub: \(U \subseteq\) frontier \(B\) and \(p: p \in \operatorname{frontier} B \notin U\)
                using \(\langle U \subset\) frontier \(B\rangle\) by blast
            show ?thesis
                unfolding connected_component_def
            proof (intro exI conjI)
                have connected \(((\) insert \(p A) \cup(\) insert \(p B))\)
```

```
    proof (rule connected_Un)
    show connected (insert pA)
        by (metis A_def IntD1 frBA <p\in frontier B` closure_insert closure_subset
connected_connected_component connected_intermediate_closure frontier_closures in-
sert_absorb subsetCE subset_insertI)
    show connected (insert p B)
            by (metis B_def IntD1 < }p\in\mathrm{ frontier B> closure_insert closure_subset con-
nected_connected_component connected_intermediate_closure frontier_closures insert_absorb
subset_insertI)
    qed blast
    then show connected (insert p (B\cupA))
        by (simp add: sup.commute)
    have }A\subseteq-
    using A_def Usub <frontier B\subseteqS` connected_component_subset by fastforce
    moreover have B\subseteq-U
        using B_def Usub connected_component_subset frBA frontier_closures by
fastforce
            ultimately show insert p}(B\cupA)\subseteq-
            using }p\mathrm{ by auto
        qed (auto simp: <a \in A\rangle\langleb\inB>)
    qed
    qed
qed
lemma frontier_minimal_separating_closed_pointwise:
    fixes S :: 'a::real_normed_vector set
    assumes S:closed S a\not\inS and nconn: \neg connected_component (-S) ab
            and conn: \T.\llbracketclosed T;T\subsetS\rrbracket\Longrightarrow connected_component (-T) ab
        shows frontier(connected_component_set (-S)a)=S(is ?F=S)
proof -
    have ?F}\subseteq
        by (simp add: S componentsI frontier_of_components_closed_complement)
    moreover have False if ?F}\subset
    proof -
        have connected_component (- ?F) ab
        by (simp add: conn that)
    then obtain T where connected T T\subseteq-?F a\inTb\inT
        by (auto simp: connected_component_def)
    moreover have T\cap?F\not={}
    proof (rule connected_Int_frontier [OF <connected T\rangle])
        show T\cap connected_component_set (-S)a\not={}
            using }\langlea\not\inS\rangle\langlea\inT\rangle\mathrm{ by fastforce
        show T - connected_component_set (-S) a\not={}
            using }\langleb\inT\rangle nconn by blas
    qed
    ultimately show ?thesis
        by blast
    qed
    ultimately show ?thesis
```

```
    by blast
qed
```


6.41.17 Unicoherence (closed)

definition unicoherent where
unicoherent $U \equiv$
$\forall S T$. connected $S \wedge$ connected $T \wedge S \cup T=U \wedge$
closedin (top_of_set $U) S \wedge$ closedin (top_of_set U) T
\longrightarrow connected $(S \cap T)$
lemma unicoherentI [intro?]:
assumes $\wedge S T$. \llbracket connected $S ;$ connected $T ; U=S \cup T ;$ closedin (top_of_set U)
S; closedin (top_of_set U) T】
\Longrightarrow connected $(S \cap T)$
shows unicoherent U
using assms unfolding unicoherent_def by blast
lemma unicoherentD:
assumes unicoherent U connected S connected $T U=S \cup T$ closedin (top_of_set
$U) S$ closedin (top_of_set U) T
shows connected $(S \cap T)$
using assms unfolding unicoherent_def by blast
proposition homeomorphic_unicoherent:
assumes $S T$: S homeomorphic T and S : unicoherent S
shows unicoherent T
proof -
obtain $f g$ where $g f: \bigwedge x . x \in S \Longrightarrow g(f x)=x$ and $f i m: T=f^{\prime} S$ and $g f i m$:
$g^{\prime} f{ }^{\prime} S=S$
and contf: continuous_on $S f$ and contg: continuous_on $(f$ ' $S) g$
using ST by (auto simp: homeomorphic_def homeomorphism_def)
show ?thesis
proof
fix $U V$
assume connected U connected V and $T: T=U \cup V$
and cloU: closedin (top_of_set T) U
and cloV: closedin (top_of_set T) V
have $f^{\prime}\left(g^{\prime} U \cap g^{\prime} V\right) \subseteq U f^{\prime}\left(g^{\prime} U \cap g^{\prime} V\right) \subseteq V$
using gf fim T by auto (metis UnCI image_iff)+
moreover have $U \cap V \subseteq f^{\prime}\left(g{ }^{\prime} U \cap g^{\prime} V\right)$
using $g f$ fim by (force simp: image_iff T)
ultimately have $U \cap V=f^{\prime}\left(g^{\prime} U \cap g^{\prime} V\right)$ by blast
moreover have connected $\left(f\right.$ ' $\left.\left(g{ }^{\prime} U \cap g^{\prime} V\right)\right)$
proof (rule connected_continuous_image)
show continuous_on (g ‘ $\left.U \cap g^{\prime} V\right) f$
using T fim gfim by (metis Un_upper1 contf continuous_on_subset image_mono inf_le1)
show connected $\left(g\right.$ ' $\left.U \cap g^{\prime} V\right)$

```
    proof (intro conjI unicoherentD [OF S])
            show connected (g'U) connected (g'V)
            using <connected U> cloU <connected V> cloV
            by (metis Topological_Spaces.connected_continuous_image closedin_imp_subset
contg continuous_on_subset fim)+
            show }S=\mp@subsup{g}{}{\prime}U\cup\mp@subsup{g}{}{\prime}
                using T fim gfim by auto
            have hom: homeomorphism TS gf
                by (simp add: contf contg fim gf gfim homeomorphism_def)
            have closedin (top_of_set T) U closedin (top_of_set T) V
            by (simp_all add: cloU cloV)
            then show closedin (top_of_set S) (g'U)
                    closedin (top_of_set S) (g'V)
            by (blast intro: homeomorphism_imp_closed_map [OF hom])+
            qed
        qed
    ultimately show connected ( }U\capV)\mathrm{ by metis
    qed
qed
lemma homeomorphic_unicoherent_eq:
    S homeomorphic T (unicoherent S \longleftrightarrow unicoherent T)
    by (meson homeomorphic_sym homeomorphic_unicoherent)
lemma unicoherent_translation:
    fixes S :: 'a::real_normed_vector set
    shows
    unicoherent (image ( }\lambdax.a+x)S)\longleftrightarrowu\mathrm{ unicoherent S
    using homeomorphic_translation homeomorphic_unicoherent_eq by blast
lemma unicoherent_injective_linear_image:
    fixes f :: 'a::euclidean_space => 'b::euclidean_space
    assumes linear f inj f
    shows (unicoherent (f'S)\longleftrightarrowunicoherent S)
    using assms homeomorphic_unicoherent_eq linear_homeomorphic_image by blast
lemma Borsukian_imp_unicoherent:
    fixes U :: 'a::euclidean_space set
    assumes Borsukian U shows unicoherent U
    unfolding unicoherent_def
proof clarify
    fix ST
    assume connected S connected T U =S\cupT
        and cloS: closedin (top_of_set (S\cupT))S
        and cloT: closedin (top_of_set (S\cupT)) T
    show connected ( }S\capT\mathrm{ )
        unfolding connected_closedin_eq
```

```
    proof clarify
    fix }V
    assume closedin (top_of_set (S\capT)) V
        and closedin (top_of_set (S\capT))W
        and VW:V\cupW=S\capTV\capW={} and V\not={}W\not={}
    then have cloV: closedin (top_of_set U) V and cloW: closedin (top_of_set U)
W
        using}\langleU=S\cupT\rangle cloS cloT closedin_trans by blast
    obtain q}\mathrm{ where contq: continuous_on U q
            and q01: \bigwedgex. x \inU\Longrightarrowq }\Longrightarrow\mathrm{ { {0..1::real }
```



```
        by (rule Urysohn_local [OF cloV cloW\langleV\capW={}〉, of 0 1])
            (fastforce simp: closed_segment_eq_real_ivl)
    let ?h = \lambdax. if x G S then exp (pi* i *qx) else 1 / exp(pi* i *qx)
    have eqST: exp(pi*\textrm{i}*qx)=1/\operatorname{exp}(pi*\textrm{i}*qx) if x\inS\capT for x
    proof -
        have }x\inV\cup
            using that }\langleV\cupW=S\capT\rangle\mathrm{ by blast
        with qV qW show ?thesis by force
    qed
    obtain g}\mathrm{ where contg: continuous_on U g
        and circle: g' U\subseteq sphere 0 1
        and}S:\bigwedgex.x\inS\Longrightarrowgx=\operatorname{exp}(pi*\textrm{i}*qx
        and}T:\bigwedgex.x\inT\Longrightarrowgx=1/\operatorname{exp}(pi*\textrm{i}*qx
    proof
        show continuous_on U ?h
            unfolding }\langleU=S\cupT
        proof (rule continuous_on_cases_local [OF cloS cloT])
            show continuous_on S ( }\lambdax.\operatorname{exp}(pi*\textrm{i}*qx)
            proof (intro continuous_intros)
                show continuous_on S q
                    using }\langleU=S\cupT\rangle\mathrm{ continuous_on_subset contq by blast
            qed
            show continuous_on T (\lambdax.1 / exp (pi* i *qx))
            proof (intro continuous_intros)
                show continuous_on T q
                    using }\langleU=S\cupT\rangle\mathrm{ continuous_on_subset contq by auto
            qed auto
        qed (use eqST in auto)
    qed (use eqST in <auto simp: norm_divide`)
    then obtain h where conth: continuous_on U h and heq: \x. x\inU\Longrightarrowgx
= exp (hx)
            by (metis Borsukian_continuous_logarithm_circle assms)
    obtain vw where v\inVw\inW
        using\langleV\not={}\rangle\langleW\not={}\rangle by blast
    then have vw:v\inS\capTw\inS\capT
        using VW by auto
    have iff:2 * pi\leqcmod (2* of_int m * of_real pi * i - 2 * of_int n * of_real
pi* i)
```

```
        \(\longleftrightarrow 1 \leq a b s(m-n)\) for \(m n\)
    proof -
    have \(2 * p i \leq \operatorname{cmod}(2 *\) of_int \(m *\) of_real \(p i * \mathrm{i}-2 *\) of_int \(n *\) of_real pi
* i)
            \(\longleftrightarrow 2 * p i \leq \operatorname{cmod}\left((2 * p i * \mathrm{i}) *\left(o f \_i n t m-o f \_i n t n\right)\right)\)
        by (simp add: algebra_simps)
    also have \(\ldots \longleftrightarrow 2 * p i \leq 2 * p i *\) cmod (of_int \(\left.m-o f \_i n t n\right)\)
        by (simp add: norm_mult)
    also have \(\ldots \longleftrightarrow 1 \leq a b s(m-n)\)
        by simp (metis norm_of_int of_int_1_le_iff of_int_abs of_int_diff)
    finally show ?thesis.
    qed
    have \(*\) : \(\exists n::\) int. \(h x-(p i * \mathrm{i} * q x)=\left(o f \_i n t(2 * n) * p i\right) * \mathrm{i}\) if \(x \in S\) for \(x\)
    using that \(S\langle U=S \cup T\rangle\) heq exp_eq [symmetric] by (simp add: algebra_simps)
    moreover have \((\lambda x . h x-(p i * \mathrm{i} * q x))\) constant_on \(S\)
    proof (rule continuous_discrete_range_constant [OF 〈connected S〉])
    have continuous_on \(S\) h continuous_on \(S q\)
        using \(\langle U=S \cup T\rangle\) continuous_on_subset conth contq by blast +
    then show continuous_on \(S(\lambda x . h x-(p i * \mathrm{i} * q x))\)
        by (intro continuous_intros)
    have \(2 * p i \leq \operatorname{cmod}(h y-(p i * \mathrm{i} * q y)-(h x-(p i * \mathrm{i} * q x)))\)
        if \(x \in S y \in S\) and \(n e: h y-(p i * \mathrm{i} * q y) \neq h x-(p i * \mathrm{i} * q x)\) for \(x y\)
        using \(*[O F\langle x \in S\rangle] *[O F\langle y \in S\rangle]\) ne by (auto simp: iff)
    then show \(\bigwedge x . x \in S \Longrightarrow\)
        \(\exists e>0 . \forall y . y \in S \wedge h y-(p i * \mathrm{i} * q y) \neq h x-(p i * \mathrm{i} * q x) \longrightarrow\)
                \(e \leq \operatorname{cmod}(h y-(p i * \mathrm{i} * q y)-(h x-(p i * \mathrm{i} * q x)))\)
        by (rule_tac \(x=2 * p i\) in exI) auto
    qed
    ultimately
    obtain \(m\) where \(m: \bigwedge x . x \in S \Longrightarrow h x-(p i * \mathrm{i} * q x)=\left(o f \_i n t(2 * m) * p i\right)\)
* i
    using \(v w\) by (force simp: constant_on_def)
    have \(*: \exists n\) : : int. \(h x=-(p i * \mathrm{i} * q x)+\left(o f_{-} \operatorname{int}(2 * n) * p i\right) * \mathrm{i}\) if \(x \in T\) for \(x\)
    unfolding exp_eq [symmetric]
        using that \(T\langle U=S \cup T\rangle\) by (simp add: exp_minus field_simps heq
[symmetric])
    moreover have \((\lambda x . h x+(p i * \mathrm{i} * q x))\) constant_on \(T\)
    proof (rule continuous_discrete_range_constant [OF 〈connected T〉])
        have continuous_on \(T h\) continuous_on \(T q\)
            using \(\langle U=S \cup T\rangle\) continuous_on_subset conth contq by blast +
            then show continuous_on \(T(\lambda x . h x+(p i * \mathrm{i} * q x))\)
                by (intro continuous_intros)
            have \(2 * p i \leq \operatorname{cmod}(h y+(p i * \mathrm{i} * q y)-(h x+(p i * \mathrm{i} * q x)))\)
                if \(x \in T y \in T\) and \(n e: h y+(p i * \mathrm{i} * q y) \neq h x+(p i * \mathrm{i} * q x)\) for \(x y\)
                using \(*[O F\langle x \in T\rangle] *[O F\langle y \in T\rangle]\) ne by (auto simp: iff)
            then show \(\bigwedge x . x \in T \Longrightarrow\)
            \(\exists e>0 . \forall y . y \in T \wedge h y+(p i * \mathrm{i} * q y) \neq h x+(p i * \mathrm{i} * q x) \longrightarrow\)
                \(e \leq \operatorname{cmod}(h y+(p i * \mathrm{i} * q y)-(h x+(p i * \mathrm{i} * q x)))\)
            by (rule_tac \(x=2 * p i\) in exI) auto
```

```
    qed
    ultimately
    obtain n where n: \x. x f T\Longrightarrowhx (pi* i * qx)=(of_int(2*n)*pi)
* i
            using vw by (force simp: constant_on_def)
        show False
            using m [of v] m [of w] n [of v] n [of w] vw
            by (auto simp: algebra_simps }\langlev\inV\rangle\langlew\inW\rangleqVqW
    qed
qed
```

corollary contractible_imp_unicoherent:
fixes U :: 'a::euclidean_space set
assumes contractible U shows unicoherent U
by (simp add: Borsukian_imp_unicoherent assms contractible_imp_Borsukian)
corollary convex_imp_unicoherent:
fixes U :: 'a::euclidean_space set
assumes convex U shows unicoherent U
by (simp add: Borsukian_imp_unicoherent assms convex_imp_Borsukian)

If the type class constraint can be relaxed, I don't know how!
corollary unicoherent_UNIV: unicoherent (UNIV :: 'a :: euclidean_space set)
by (simp add: convex_imp_unicoherent)
lemma unicoherent_monotone_image_compact:
fixes $T::$ ' $b::$ t2_space set
assumes S : unicoherent S compact S and contf: continuous_on $S f$ and fim: f
' $S=T$
and conn: $\bigwedge y . y \in T \Longrightarrow$ connected $(S \cap f-‘\{y\})$
shows unicoherent T
proof
fix $U V$
assume $U V$: connected U connected $V T=U \cup V$
and cloU: closedin (top_of_set T) U
and cloV: closedin (top_of_set T) V
moreover have compact T using 〈compact S 〉compact_continuous_image contf fim by blast
ultimately have closed U closed V
by (auto simp: closedin_closed_eq compact_imp_closed)
let ? $S U V=\left(S \cap f-^{\prime} U\right) \cap\left(S \cap f-^{\prime} V\right)$
have $U V_{-} e q: f$ ' ? $S U V=U \cap V$
using $\langle T=U \cup V\rangle$ fim by force +
have connected (f ' ? SUV)
proof (rule connected_continuous_image)
show continuous_on ? SUV f
by (meson contf continuous_on_subset inf_le1)

```
show connected? ?SUV
proof (rule unicoherentD [OF «unicoherent \(S\), of \(\left.S \cap f-{ }^{\prime} U S \cap f-{ }^{\prime} V\right]\) )
    have \(\wedge C\). closedin (top_of_set \(S\) ) \(C \Longrightarrow\) closedin (top_of_set \(T)\left(f^{\prime} C\right)\)
        by (metis 〈compact \(S\) 〉closed_subset closedin_compact closedin_imp_subset
compact_continuous_image compact_imp_closed contf continuous_on_subset fim im-
age_mono)
    then show connected \((S \cap f-‘ U)\) connected \((S \cap f-‘ V)\)
        using \(U V\) by (auto simp: conn intro: connected_closed_monotone_preimage
[OF contf fim])
    show \(S=(S \cap f-‘ U) \cup(S \cap f-‘ V)\)
            using \(U V\) fim by blast
        show closedin (top_of_set \(S\) ) \(\left(S \cap f-{ }^{\prime} U\right)\)
                closedin (top_of_set \(S\) ) \(\left(S \cap f-{ }^{\prime} V\right)\)
            by (auto simp: continuous_on_imp_closedin cloU cloV contf fim)
    qed
    qed
    with \(U V_{-} e q\) show connected \((U \cap V)\)
    by \(\operatorname{simp}\)
qed
```


6.41.18 Several common variants of unicoherence

lemma connected_frontier_simple:
fixes $S::{ }^{\prime} a$:: euclidean_space set
assumes connected S connected $(-S)$ shows connected (frontier S)
unfolding frontier_closures
by (rule unicoherentD [OF unicoherent_UNIV]; simp add: assms connected_imp_connected_closure
flip: closure_Un)
lemma connected_frontier_component_complement:
fixes $S::{ }^{\prime} a$:: euclidean_space set
assumes connected $S C \in$ components $(-S)$ shows connected (frontier C)
by (meson assms component_complement_connected connected_frontier_simple in_components_connected)
lemma connected_frontier_disjoint:
fixes $S::{ }^{\prime} a$:: euclidean_space set
assumes connected S connected T disjnt $S T$ and $S T$: frontier $S \subseteq$ frontier T
shows connected (frontier S)
proof (cases $S=U N I V$)
case True then show ?thesis
by simp
next
case False
then have $-S \neq\{ \}$
by blast
then obtain C where $C: C \in$ components $(-S)$ and $T \subseteq C$
by (metis ComplI disjnt_iff subsetI exists_component_superset $\langle d i s j n t ~ S ~ T\rangle$
(connected T)
moreover have frontier $S=$ frontier C

```
    proof -
        have frontier \(C \subseteq\) frontier \(S\)
            using C frontier_complement frontier_of_components_subset by blast
    moreover have \(x \in\) frontier \(C\) if \(x \in\) frontier \(S\) for \(x\)
    proof -
        have \(x \in\) closure \(C\)
            using that unfolding frontier_def
                by (metis (no_types) Diff_eq \(S T\langle T \subseteq C\rangle\) closure_mono contra_subsetD
frontier_def le_inf_iff that)
            moreover have \(x \notin\) interior \(C\)
            using that unfolding frontier_def
                    by (metis C Compl_eq_Diff_UNIV Diff_iff subsetD in_components_subset
interior_diff interior_mono)
            ultimately show ?thesis
                by (auto simp: frontier_def)
    qed
    ultimately show ?thesis
        by blast
    qed
    ultimately show ?thesis
        using 〈connected \(S\) 〉connected_frontier_component_complement by auto
qed
```


6.41.19 Some separation results

```
lemma separation_by_component_closed_pointwise:
    fixes \(S\) :: ' \(a\) :: euclidean_space set
    assumes closed \(S \neg\) connected_component \((-S) a b\)
    obtains \(C\) where \(C \in\) components \(S \neg\) connected_component \((-C) a b\)
proof (cases \(a \in S \vee b \in S\) )
    case True
    then show? thesis
        using connected_component_in componentsI that by fastforce
next
    case False
    obtain \(T\) where \(T \subseteq S\) closed \(T T \neq\{ \}\)
                and nab: \(\neg\) connected_component \((-T) a b\)
                and conn: \(\wedge U . U \subset T \Longrightarrow\) connected_component \((-U) a b\)
        using closed_irreducible_separator [OF assms] by metis
    moreover have connected \(T\)
    proof -
    have ab: frontier (connected_component_set \((-T) a)=T\) frontier (connected_component_set
\((-T) b)=T\)
        using frontier_minimal_separating_closed_pointwise
            by (metis False \(\langle T \subseteq S\rangle\langle\) closed \(T\rangle\) connected_component_sym conn con-
nected_component_eq_empty connected_component_intermediate_subset empty_subsetI
\(n a b)+\)
    have connected (frontier (connected_component_set \((-T) a)\) )
    proof (rule connected_frontier_disjoint)
```

```
    show disjnt (connected_component_set \((-T) a)\) (connected_component_set (-
```

T) b)
unfolding disjnt_iff
by (metis connected_component_eq connected_component_eq_empty con-
nected_component_idemp mem_Collect_eq nab)
show frontier (connected_component_set $(-T) a) \subseteq$ frontier (connected_component_set
$(-T) b)$
by (simp add: ab)
qed auto
with $a b\langle$ closed $T\rangle$ show ?thesis
by simp
qed
ultimately obtain C where $C \in$ components $S T \subseteq C$
using exists_component_superset [of T S] by blast
then show ?thesis
by (meson Compl_anti_mono connected_component_of_subset nab that)
qed
lemma separation_by_component_closed:
fixes $S::{ }^{\prime} a$:: euclidean_space set
assumes closed $S \neg$ connected $(-S)$
obtains C where $C \in$ components $S \neg$ connected $(-C)$
proof -
obtain $x y$ where closed $S x \notin S y \notin S$ and \neg connected_component $(-S) x y$ using assms by (auto simp: connected_iff_connected_component)
then obtain C where $C \in$ components $S \neg$ connected_component $(-C) x y$ using separation_by_component_closed_pointwise by metis
then show thesis
by (metis Compl_iff $\langle x \notin S\rangle\langle y \notin S\rangle$ connected_component_eq_self in_components_subset
mem_Collect_eq subsetD that)
qed
lemma separation_by_Un_closed_pointwise:
fixes S :: ' a :: euclidean_space set
assumes $S T$: closed S closed $T S \cap T=\{ \}$
and conS: connected_component $(-S) a b$ and conT: connected_component
$(-T) a b$
shows connected_component $(-(S \cup T)) a b$
proof (rule ccontr)
have $a \notin S b \notin S a \notin T b \notin T$
using conS conT connected_component_in by auto
assume \neg connected_component $(-(S \cup T)) a b$
then obtain C where $C \in$ components $(S \cup T)$ and C : \neg connected_component (-
C) $a b$
using separation_by_component_closed_pointwise assms by blast
then have $C \subseteq S \vee C \subseteq T$
proof -
have connected $C C \subseteq S \cup T$

```
            using }\langleC\in\mathrm{ components (S UT)\ in_components_subset by (blast elim:
componentsE)+
    moreover then have C\capT={}\veeC\capS={}
            by (metis Int_empty_right ST inf.commute connected_closed)
    ultimately show ?thesis
            by blast
    qed
    then show False
        by (meson Compl_anti_mono C conS conT connected_component_of_subset)
qed
lemma separation_by_Un_closed:
    fixes S :: ' }a\mathrm{ :: euclidean_space set
    assumes ST: closed S closed TS\capT={} and conS: connected (-S) and
conT: connected (- T)
    shows connected(- (S\cupT))
    using assms separation_by_Un_closed_pointwise
    by (fastforce simp add: connected_iff_connected_component)
lemma open_unicoherent_UNIV:
    fixes S :: ' }a\mathrm{ :: euclidean_space set
    assumes open S open T connected S connected T S\cupT=UNIV
    shows connected(S\capT)
proof -
    have connected (- (-S\cup-T))
    by (metis closed_Compl compl_sup compl_top_eq double_compl separation_by_Un_closed
assms)
    then show ?thesis
        by simp
qed
lemma separation_by_component_open_aux:
    fixes S :: 'a :: euclidean_space set
    assumes ST: closed S closed T S\capT={}
        and S\not={} T\not={}
    obtains C where C\in components(-(S\cupT))C\not={} frontier C\capS\not={}
frontier C\capT\not={}
proof (rule ccontr)
    let ?S =S U\bigcup{C\in components (- (S\cupT)). frontier C\subseteqS}
    let ?T =T\cup\bigcup{C\in components }(-(S\cupT)).\mathrm{ frontier C}\subseteqT
    assume \neg thesis
    with that have *: frontier C\capS={} \vee frontier C\capT={}
                if C:C\in components }(-(S\cupT))C\not={}\mathrm{ for C
        using C by blast
    have \existsA B::'a set. closed }A\wedge\mathrm{ closed }B\wedgeUNIV\subseteqA\cupB\wedgeA\capB={}\wedge
# {}\wedgeB\not={}
    proof (intro exI conjI)
        have frontier }(\bigcup{C\in\mathrm{ components (-S \-T). frontier C }\subseteqS})\subseteq
            using subset_trans [OF frontier_Union_subset_closure]
```

by（metis（no＿types，lifting）SUP＿least 〈closed S〉closure＿minimal mem＿Collect＿eq）
then have frontier ？$S \subseteq S$
by（simp add：frontier＿subset＿eq assms subset＿trans［OF frontier＿Un＿subset］）
then show closed？S
using frontier＿subset＿eq by fastforce
have frontier $(\bigcup\{C \in$ components $(-S \cap-T)$ ．frontier $C \subseteq T\}) \subseteq T$
using subset＿trans［OF frontier＿Union＿subset＿closure］
by（metis（no＿types，lifting）SUP＿least 〈closed T〉 closure＿minimal mem＿Collect＿eq）
then have frontier ？$T \subseteq T$
by（simp add：frontier＿subset＿eq assms subset＿trans［OF frontier＿Un＿subset］）
then show closed？T
using frontier＿subset＿eq by fastforce
have $U N I V \subseteq(S \cup T) \cup \bigcup($ components $(-(S \cup T)))$
using Union＿components by blast
also have $\ldots \subseteq$ ？$S \cup$ ？T
proof－
have $C \in$ components $(-(S \cup T)) \wedge$ frontier $C \subseteq S \vee$
$C \in$ components $(-(S \cup T)) \wedge$ frontier $C \subseteq T$ if $C \in$ components $(-(S \cup T)) C \neq\{ \}$ for C using $*[O F$ that $]$ that
by clarify（metis（no＿types，lifting）UnE 〈closed $S\rangle\langle c l o s e d ~ T\rangle$ closed＿Un
disjoint＿iff＿not＿equal frontier＿of＿components＿closed＿complement subsetCE）
then show ？thesis
by blast
qed
finally show $U N I V \subseteq ? S \cup ? T$ ．
have $\bigcup\{C \in$ components $(-(S \cup T))$ ．frontier $C \subseteq S\} \cup$
$\bigcup\{C \in$ components $(-(S \cup T))$ ．frontier $C \subseteq T\} \subseteq-(S \cup T)$
using in＿components＿subset by fastforce
moreover have $\bigcup\{C \in$ components $(-(S \cup T))$ ．frontier $C \subseteq S\} \cap$
$\bigcup\{C \in$ components $(-(S \cup T))$ ．frontier $C \subseteq T\}=\{ \}$
proof－
have $C \cap C^{\prime}=\{ \}$ if $C \in$ components $(-(S \cup T))$ frontier $C \subseteq S$ $C^{\prime} \in$ components $(-(S \cup T))$ frontier $C^{\prime} \subseteq \bar{T}$ for $C C^{\prime}$
proof－
have $N U N:-S \cap-T \neq U N I V$
using $\langle T \neq\{ \}\rangle$ by blast
have $C \neq C^{\prime}$
proof
assume $C=C^{\prime}$
with that have frontier $C^{\prime} \subseteq S \cap T$
by simp
also have $\ldots=\{ \}$
using $\langle S \cap T=\{ \}\rangle$ by blast
finally have $C^{\prime}=\{ \} \vee C^{\prime}=$ UNIV
using frontier＿eq＿empty by auto
then show False
using $\left\langle C=C^{\prime}\right\rangle$ NUN that by（force simp：dest：in＿components＿nonempty in＿components＿subset）

```
        qed
        with that show ?thesis
            by (simp add: components_nonoverlap [of _ - (S\cupT)])
        qed
        then show ?thesis
        by blast
    qed
    ultimately show ?S \cap?T = {}
        using ST by blast
    show ?S }\not={}\mathrm{ ? ?T }\not={
    using 〈S \not={}>〈T \not={}> by blast+
qed
    then show False
        by (metis Compl_disjoint connected_UNIV compl_bot_eq compl_unique con-
nected_closedD inf_sup_absorb sup_compl_top_left1 top.extremum_uniqueI)
qed
proposition separation_by_component_open:
    fixes S ::' 'a :: euclidean_space set
    assumes open S and non: ᄀ connected (-S)
    obtains C where C components S ᄀ connected (-C)
proof -
    obtain TU
        where closed T closed U and TU:T\cupU=-S T\capU={}T\not={}U\not=
{}
            using assms by (auto simp: connected_closed_set closed_def)
    then obtain C where C:C\incomponents(-(T\cupU))C\not={}
            and frontier C\capT\not={} frontier C\capU\not={}
            using separation_by_component_open_aux [OF 〈closed T\rangle\langleclosed U\rangle\langleT\capU=
{})] by force
    show thesis
    proof
            show C components S
            using C(1) TU(1) by auto
            show \neg connected (-C)
            proof
            assume connected (- C)
            then have connected (frontier C)
            using connected_frontier_simple [of C] <C\in components S\rangle in_components_connected
by blast
            then show False
                unfolding connected_closed
                    by (metis C(1) TU(2) <closed T\rangle\langleclosed U\rangle\langlefrontier C\capT\not={}〉〈frontier
C\capU\not={}> closed_Un frontier_of_components_closed_complement inf_bot_right
inf_commute)
        qed
    qed
qed
```

```
lemma separation_by_Un_open:
    fixes \(S\) :: ' \(a\) :: euclidean_space set
    assumes open \(S\) open \(T S \cap T=\{ \}\) and \(c S\) : connected \((-S)\) and \(c T\) : con-
nected \((-T)\)
    shows connected \((-(S \cup T))\)
    using assms unicoherent_UNIV unfolding unicoherent_def by force
```

lemma nonseparation_by_component_eq:
fixes S :: ' a :: euclidean_space set
assumes open $S \vee$ closed S
shows $((\forall C \in$ components S. connected $(-C)) \longleftrightarrow$ connected $(-S))$ (is?lhs $=$
?rhs)
proof
assume ?lhs with assms show ?rhs
by (meson separation_by_component_closed separation_by_component_open)
next
assume ?rhs with assms show ?lhs
using component_complement_connected by force
qed

Another interesting equivalent of an inessential mapping into C-0

```
proposition inessential_eq_extensible:
    fixes f :: 'a::euclidean_space }=>\mathrm{ complex
    assumes closed S
    shows (\existsa.homotopic_with_canon (\lambdah. True) S (-{0}) f(\lambdat.a))\longleftrightarrow
        (\existsg.continuous_on UNIV g}\wedge(\forallx\inS.gx=fx)^(\forallx.gx\not=0)
        (is ?lhs = ?rhs)
proof
    assume ?lhs
    then obtain a where a: homotopic_with_canon (\lambdah. True) S (-{0})f(\lambdat.a)
show ?rhs
    proof (cases S={})
        case True
        with a show ?thesis by force
    next
        case False
        have anr: ANR (-{0::complex})
            by (simp add: ANR_delete open_Compl open_imp_ANR)
        obtain g}\mathrm{ where contg: continuous_on UNIV g and gim: g'UNIV }\subseteq-{0
                                    and gf: \x. x 
    proof (rule Borsuk_homotopy_extension_homotopic [OF _ _ continuous_on_const
_ homotopic_with_symD [OF a]])
        show closedin (top_of_set UNIV)S
            using assms by auto
        show range (\lambdat.a)\subseteq-{0}
            using a homotopic_with_imp_subset2 False by blast
```

```
    qed (use anr that in <force+>)
    then show ?thesis
        by force
    qed
next
    assume ?rhs
    then obtain g}\mathrm{ where contg: continuous_on UNIV g
        and gf: \bigwedgex. x f S\Longrightarrowgx=fx and non0: \bigwedgex.g x\not=0
        by metis
    obtain h k::'a ='a where hk: homeomorphism (ball 0 1) UNIV h k
        using homeomorphic_ball01_UNIV homeomorphic_def by blast
    then have continuous_on (ball 0 1) (g\circh)
    by (meson contg continuous_on_compose continuous_on_subset homeomorphism_cont1
top_greatest)
    then obtain j where contj: continuous_on (ball 0 1) j
                and j: \bigwedgez. z\in ball 0 1 \Longrightarrow exp (jz)=(g\circh)z
            by (metis (mono_tags, hide_lams) continuous_logarithm_on_ball comp_apply
non0)
    have [simp]: \x. x 位 \Longrightarrowh(kx)=x
        using hk homeomorphism_apply2 by blast
    have \exists\zeta.continuous_on S \zeta^(\forallx\inS.fx=exp (\zeta x))
    proof (intro exI conjI ballI)
        show continuous_on S (j\circk)
        proof (rule continuous_on_compose)
            show continuous_on S k
            by (meson continuous_on_subset hk homeomorphism_cont2 top_greatest)
            show continuous_on (k'S) j
                    by (auto intro: continuous_on_subset [OF contj] simp flip: homeomor-
phism_image2 [OF hk])
        qed
        show fx= exp ((j\circk)x) if }x\inS\mathrm{ for }
        proof -
            have fx=(g\circh)(kx)
            by (simp add: gf that)
            also have ... = exp (j (kx))
                    by (metis rangeI homeomorphism_image2 [OF hk] j)
            finally show ?thesis by simp
        qed
    qed
    then show?lhs
        by (simp add: inessential_eq_continuous_logarithm)
    qed
    lemma inessential_on_clopen_Union:
    fixes \mathcal{F :: 'a::euclidean_space set set}
    assumes T: path_connected T
        and }\bigwedgeS.S\in\mathcal{F}\Longrightarrow\mathrm{ closedin (top_of_set (UF)
        and }\bigwedgeS.S\in\mathcal{F}\Longrightarrow\mathrm{ openin (top_of_set (UFF))S
```



```
a)
    obtains a where homotopic_with_canon (\lambdax. True) (\bigcup\mathcal{F})Tf(\lambdax.a)
proof (cases \\mathcal{F}={})
    case True
    with that show ?thesis
        by force
next
    case False
    then obtain C where C\in\mathcal{F}C\not={}
        by blast
    then obtain a where clo:closedin (top_of_set (\bigcup\mathcal{F}))C
        and ope: openin (top_of_set (\\mathcal{F})) C
        and homotopic_with_canon ( }\lambdax.True) CT Tf ( \lambdax.a
        using assms by blast
    with \langleC\not={}\rangle have f' C\subseteqTa G T
        using homotopic_with_imp_subset1 homotopic_with_imp_subset2 by blast+
    have homotopic_with_canon ( }\lambdax\mathrm{ . True) ( }\bigcup\mathcal{F})Tf(\lambdax.a
    proof (rule homotopic_on_clopen_Union)
        show }\S.S\in\mathcal{F}\Longrightarrow\mathrm{ closedin (top_of_set (UF))S
            \S.S G\mathcal{F}\Longrightarrowopenin (top_of_set (\bigcup\mathcal{F}))S
            by (simp_all add: assms)
        show homotopic_with_canon ( }\lambdax\mathrm{ . True) STf ( }\lambdax.a)\mathrm{ if S 仹 for S
        proof (cases S={})
            case True
            then show ?thesis
                by auto
    next
        case False
        then obtain b}\mathrm{ where b}\in
            by blast
        obtain c where c: homotopic_with_canon ( }\lambdax\mathrm{ . True) STf( \x.c)
```



```
            then have c\inT
                using <b G S homotopic_with_imp_subset2 by blast
            then have homotopic_with_canon ( }\lambdax.True)ST(\lambdax.a) ( \lambdax.c
                using T\langlea\inT\rangle homotopic_constant_maps path_connected_component
                by (simp add: homotopic_constant_maps path_connected_component)
            then show ?thesis
                using c homotopic_with_symD homotopic_with_trans by blast
        qed
    qed
    then show ?thesis ..
qed
proposition Janiszewski_dual:
    fixes S :: complex set
    assumes
    compact S compact T connected S connected T connected(- (S\cupT))
shows connected(S\capT)
```

```
proof -
    have ST: compact (S\cupT)
        by (simp add: assms compact_Un)
    with Borsukian_imp_unicoherent [of S \cupT] ST assms
    show ?thesis
    by (auto simp: closed_subset compact_imp_closed Borsukian_separation_compact
unicoherent_def)
qed
end
```


6.42 The Jordan Curve Theorem and Applications

theory Jordan_Curve
imports Arcwise_Connected Further_Topology
begin

6.42.1 Janiszewski's theorem

lemma Janiszewski_weak:
fixes $a b$::complex
assumes compact S compact T and conST: connected $(S \cap T)$
and $c c S$: connected_component $(-S) a b$ and $c c T$: connected_component (-
T) $a b$
shows connected_component $(-(S \cup T)) a b$
proof -
have [simp]: $a \notin S a \notin T b \notin S b \notin T$
by (meson ComplD ccS ccT connected_component_in)+
have clo: closedin (top_of_set $(S \cup T)) S$ closedin (top_of_set $(S \cup T)$) T
by (simp_all add: assms closed_subset compact_imp_closed)
obtain g where contg: continuous_on $S g$
and $g: \bigwedge x . x \in S \Longrightarrow \exp ($ i* of_real $(g x))=(x-a) / R \operatorname{cmod}(x-$
a) $/((x-b) / R \operatorname{cmod}(x-b))$ using $c c S$ <compact S 〉
apply (simp add: Borsuk_maps_homotopic_in_connected_component_eq [symmetric]) apply (subst (asm) homotopic_circlemaps_divide)
apply (auto simp: inessential_eq_continuous_logarithm_circle)
done
obtain h where conth: continuous_on $T h$
and $h: \bigwedge x . x \in T \Longrightarrow \exp (\mathrm{i} *$ of_real $(h x))=(x-a) / R \operatorname{cmod}(x-$
a) $/((x-b) / R \operatorname{cmod}(x-b))$ using $c c T$ 〈compact $T\rangle$
apply (simp add: Borsuk_maps_homotopic_in_connected_component_eq [symmetric])
apply (subst (asm) homotopic_circlemaps_divide)
apply (auto simp: inessential_eq_continuous_logarithm_circle)
done
have continuous_on $(S \cup T)(\lambda x .(x-a) / R \operatorname{cmod}(x-a))$ continuous_on $(S$
$\cup T)(\lambda x .(x-b) / R \operatorname{cmod}(x-b))$ by (intro continuous_intros; force)+
moreover have $\left(\lambda x .(x-a) /{ }_{R} \operatorname{cmod}(x-a)\right)$ ' $(S \cup T) \subseteq$ sphere 01 (λx. $\left.(x-b) /{ }_{R} \operatorname{cmod}(x-b)\right)$ ' $(S \cup T) \subseteq$ sphere 01 by (auto simp: divide_simps)
moreover have $\exists g$. continuous_on $(S \cup T) g \wedge$

$$
(\forall x \in S \cup T .(x-a) / R \operatorname{cmod}(x-a) /((x-b) / R \operatorname{cmod}(x-
$$

$b))=\exp (\mathrm{i} *$ complex_of_real $(g x)))$
proof (cases $S \cap T=\{ \}$)
case True
have continuous_on $(S \cup T)(\lambda x$. if $x \in S$ then $g x$ else $h x)$
apply (rule continuous_on_cases_local [OF clo contg conth])
using True by auto
then show? ?thesis
by (rule_tac $x=(\lambda x$. if $x \in S$ then $g x$ else $h x)$ in exI) (auto simp: $g h$)
next
case False
have diffpi: $\exists n . g x=h x+2 *$ of_int $n * p i$ if $x \in S \cap T$ for x
proof -
have exp (i* of_real $(g x))=\exp$ (i* of_real $(h x)$)
using that by (simp add: gh)
then obtain n where complex_of_real $(g x)=$ complex_of_real $(h x)+2 *$ of_int $n *$ complex_of_real pi
apply (auto simp: exp_eq)
by (metis complex_i_not_zero distrib_left mult.commute mult_cancel_left)
then show ?thesis
apply (rule_tac $x=n$ in exI)
using of_real_eq_iff by fastforce
qed
have contgh: continuous_on $(S \cap T)(\lambda x . g x-h x)$
by (intro continuous_intros continuous_on_subset [OF contg] continuous_on_subset
[OF conth]) auto
moreover have disc:
$\exists e>0 . \forall y . y \in S \cap T \wedge g y-h y \neq g x-h x \longrightarrow e \leq$ norm $((g y-h$
$y)-(g x-h x))$
if $x \in S \cap T$ for x
proof -
obtain $n x$ where $n x: g x=h x+2 *$ of_int $n x * p i$
using $\langle x \in S \cap T\rangle$ diffpi by blast
have $2 * p i \leq \operatorname{norm}(g y-h y-(g x-h x))$ if $y: y \in S \cap T$ and neq: $g y$
$-h y \neq g x-h x$ for y
proof -
obtain $n y$ where $n y: g y=h y+2 *$ of_int $n y * p i$ using $\langle y \in S \cap T\rangle$ diffpi by blast
\{ assume $n x \neq n y$
then have $1 \leq\left|r e a l _o f _i n t ~ n y-r e a l _o f _i n t ~ n x\right|$
by linarith
then have $(2 * p i) * 1 \leq(2 * p i) * \mid r e a l_{-} o f$ _int $n y$ - real_of_int $n x \mid$ by simp
also have $\ldots=\mid 2 *$ real_of_int $n y * p i-2 *$ real_of_int $n x * p i \mid$
by (simp add: algebra_simps abs_if)

```
        finally have 2*pi\leq |2*real_of_int ny*pi - 2*real_of_int nx*pi| by simp
    }
    with neq show ?thesis
        by (simp add: nx ny)
    qed
    then show ?thesis
        by (rule_tac x=2*pi in exI) auto
    qed
    ultimately have ( }\lambdax.gx-hx) constant_on S \cap
        using continuous_discrete_range_constant [OF conST contgh] by blast
    then obtain z where z:\x. x \inS \capT\Longrightarrowgx-hx=z
    by (auto simp: constant_on_def)
    obtain w where exp(i* of_real(hw))=exp(i*of_real (z+hw))
    using disc z False
    by auto (metis diff_add_cancel g h of_real_add)
    then have [simp]: exp (i* of_real z)=1
    by (metis cis_conv_exp cis_mult exp_not_eq_zero mult_cancel_right1)
    show ?thesis
    proof (intro exI conjI)
    show continuous_on (S\cupT) ( }\lambdax\mathrm{ . if }x\inS\mathrm{ then g x else z+hx)
        apply (intro continuous_intros continuous_on_cases_local [OF clo contg]
conth)
            using z by fastforce
    qed (auto simp:g h algebra_simps exp_add)
qed
ultimately have *: homotopic_with_canon ( }\lambdax\mathrm{ . True) (S ( T) (sphere 0 1)
                    (\lambdax. (x-a)/R cmod (x-a)) (\lambdax. (x-b)/R cmod ( }x
b))
    by (subst homotopic_circlemaps_divide) (auto simp: inessential_eq_continuous_logarithm_circle)
    show ?thesis
    apply (rule Borsuk_maps_homotopic_in_connected_component_eq [THEN iffD1])
    using assms by (auto simp:*)
qed
theorem Janiszewski:
    fixes a b :: complex
    assumes compact S closed T and conST: connected (S\capT)
        and ccS: connected_component (-S) ab and ccT: connected_component (-
    T) ab
        shows connected_component (- (S \cupT)) a b
proof -
    have path_component(-T) ab
        by (simp add: \closed T` ccT open_Compl open_path_connected_component)
    then obtain g}\mathrm{ where g: path g path_image g}\subseteq-T\mathrm{ pathstart }g=a pathfinis
g=b
    by (auto simp: path_component_def)
    obtain C where C: compact C connected C a\inCb\inCC C T={}
    proof
```

```
    show compact (path_image g)
    by (simp add: <path g` compact_path_image)
    show connected (path_image g)
    by (simp add: <path g> connected_path_image)
qed (use g in auto)
obtain r where 0<r and r:C\cupS\subseteq ball 0 r
    by (metis \compact C><compact S> bounded_Un compact_imp_bounded bounded_subset_ballD)
    have connected_component (- (S\cup(T\cap cball 0r U sphere 0 r))) a b
    proof (rule Janiszewski_weak [OF <compact S\])
    show comT': compact ((T\cap cball 0 r) \cup sphere 0 r)
        by (simp add: <closed T`closed_Int_compact compact_Un)
    have S\cap(T\cap cball 0r U sphere 0r)=S\capT
        using }r\mathrm{ by auto
    with conST show connected (S\cap(T\cap cball 0r U sphere 0 r)}
        by simp
    show connected_component (- (T\cap cball 0 r U sphere 0r r)) ab
        using conST C r
        apply (simp add: connected_component_def)
        apply (rule_tac x=C in exI)
        by auto
    qed (simp add: ccS)
    then obtain U where U: connected U U\subseteq-SU\subseteq-T U - cball 0 r U\subseteq
- sphere 0 r a \inU b\inU
    by (auto simp: connected_component_def)
    show ?thesis
        unfolding connected_component_def
    proof (intro exI conjI)
        show }U\subseteq-(S\cupT
            using Ur <0<r\rangle\langlea\inC\rangle connected_Int_frontier [of U cball 0 r]
            apply simp
            by (metis ball_subset_cball compl_inf disjoint_eq_subset_Compl disjoint_iff_not_equal
inf.orderE inf_sup_aci(3) subsetCE)
    qed (auto simp: U)
qed
lemma Janiszewski_connected:
    fixes S :: complex set
    assumes ST: compact S closed T connected (S\capT)
        and notST: connected (-S) connected (-T)
    shows connected (- (S\cupT))
using Janiszewski [OF ST]
by (metis IntD1 IntD2 notST compl_sup connected_iff_connected_component)
```


6.42.2 The Jordan Curve theorem

lemma exists_double_arc:
fixes g :: real \Rightarrow 'a::real_normed_vector
assumes simple_path g pathfinish $g=$ pathstart $g a \in$ path_image $g b \in$ path_image
$g a \neq b$

```
    obtains \(u d\) where arc \(u\) arc \(d\) pathstart \(u=a\) pathfinish \(u=b\)
                        pathstart \(d=b\) pathfinish \(d=a\)
                            \((\) path_image \(u) \cap(\) path_image \(d)=\{a, b\}\)
    \((\) path_image \(u) \cup(\) path_image \(d)=\) path_image \(g\)
proof -
    obtain \(u\) where \(u: 0 \leq u u \leq 1 g u=a\)
        using assms by (auto simp: path_image_def)
    define \(h\) where \(h \equiv\) shiftpath \(u g\)
    have simple_path \(h\)
        using «simple_path g〉 simple_path_shiftpath \(\langle 0 \leq u\rangle\langle u \leq 1\rangle\) assms(2) \(h \_d e f\) by
blast
    have pathstart \(h=g u\)
        by (simp add: \(\langle u \leq 1\rangle h_{\text {_def }}\) pathstart_shiftpath)
    have pathfinish \(h=g u\)
        by (simp add: \(\langle 0 \leq u\rangle\) assms \(h_{-}\)def pathfinish_shiftpath)
    have pihg: path_image \(h=\) path_image \(g\)
        by (simp add: \(\langle 0 \leq u\rangle\langle u \leq 1\rangle\) assms \(h_{-}\)def path_image_shiftpath)
    then obtain \(v\) where \(v: 0 \leq v v \leq 1 h v=b\)
    using assms by (metis (mono_tags, lifting) atLeastAtMost_iff imageE path_image_def)
    show ?thesis
    proof
        show arc (subpath 0 v )
        by (metis (no_types) \(\langle p a t h s t a r t h=g u\rangle\left\langle s i m p l e \_p a t h ~ h\right\rangle a r c \_s i m p l e \_p a t h \_s u b p a t h\)
\(\langle a \neq b\rangle\) atLeastAtMost_iff zero_le_one order_refl pathstart_def \(u(3) v)\)
        show arc (subpath v 1 h)
        by (metis (no_types) 〈pathfinish \(h=g u\rangle\langle\) simple_path \(h\rangle\) arc_simple_path_subpath
    \(\langle a \neq b\rangle\) atLeastAtMost_iff zero_le_one order_refl pathfinish_def u(3) v)
        show pathstart (subpath \(0 v h\) ) \(=a\)
            by (metis «pathstart \(h=g u\rangle\) pathstart_def pathstart_subpath \(u(3)\) )
        show pathfinish (subpath \(0 v h)=b\) pathstart (subpath \(v 1 h)=b\)
            by (simp_all add: v(3))
        show pathfinish (subpath v \(1 h\) ) \(=a\)
            by (metis \(\langle p a t h f i n i s h ~ h=g u\rangle\) pathfinish_def pathfinish_subpath \(u(3)\) )
        show path_image (subpath \(0 v h\) ) \(\cap\) path_image (subpath \(v 1 h)=\{a, b\}\)
        proof
            show path_image (subpath \(0 v h\) ) \(\cap\) path_image (subpath \(v 1 h\) ) \(\subseteq\{a, b\}\)
                using \(v\langle\) pathfinish (subpath \(v 1 h\) ) \(=a\rangle\langle\) simple_path \(h\rangle\)
                apply (auto simp: simple_path_def path_image_subpath image_iff Ball_def)
                by (metis (full_types) less_eq_real_def less_irrefl less_le_trans)
            show \(\{a, b\} \subseteq\) path_image (subpath \(0 v h) \cap\) path_image (subpath v \(1 h\) )
                using \(v\langle\) pathstart (subpath \(0 v h)=a\rangle\langle\) pathfinish \((\) subpath \(v 1 h)=a\rangle\)
                apply (auto simp: path_image_subpath image_iff)
                by (metis atLeastAtMost_iff order_refl)
        qed
        show path_image (subpath \(0 v h) \cup\) path_image \((\) subpath \(v 1 h)=\) path_image \(g\)
            using \(v\) apply (simp add: path_image_subpath pihg [symmetric])
            using path_image_def by fastforce
    qed
qed
```

```
theorem Jordan_curve:
    fixes c :: real => complex
    assumes simple_path c and loop: pathfinish c = pathstart c
    obtains inner outer where
                    inner }\not={}\mathrm{ open inner connected inner
                    outer }\not={}\mathrm{ open outer connected outer
                    bounded inner }\neg\mathrm{ bounded outer inner }\cap\mathrm{ outer }={
                    inner \cup outer = - path_image c
                    frontier inner = path_image c
                    frontier outer = path_image c
proof -
    have path c
        by (simp add: assms simple_path_imp_path)
    have hom:(path_image c) homeomorphic (sphere(0::complex) 1)
    by (simp add: assms homeomorphic_simple_path_image_circle)
    with Jordan_Brouwer_separation have }\neg\mathrm{ connected (- (path_image c))
        by fastforce
    then obtain inner where inner: inner }\in\mathrm{ components (- path_image c) and
bounded inner
    using cobounded_has_bounded_component [of - (path_image c)]
    using \\neg connected (- path_image c)\rangle\langlesimple_path c\rangle bounded_simple_path_image
by force
    obtain outer where outer: outer }\in\mathrm{ components (- path_image c) and }\neg\mathrm{ bounded
outer
    using cobounded_unbounded_components [of - (path_image c)]
    using <path c` bounded_path_image by auto
    show ?thesis
    proof
        show inner }\not={
            using inner in_components_nonempty by auto
        show open inner
            by (meson «simple_path c` compact_imp_closed compact_simple_path_image
inner open_Compl open_components)
    show connected inner
            using in_components_connected inner by blast
    show outer }\not={
            using outer in_components_nonempty by auto
    show open outer
            by (meson «simple_path c〉 compact_imp_closed compact_simple_path_image
outer open_Compl open_components)
    show connected outer
            using in_components_connected outer by blast
    show inner }\cap\mathrm{ outer }={
    by (meson «\neg bounded outer〉〈bounded inner〉〈connected outer〉 bounded_subset
components_maximal in_components_subset inner outer)
    show fro_inner: frontier inner = path_image c
        by (simp add: Jordan_Brouwer_frontier [OF hom inner])
```

show fro＿outer：frontier outer $=$ path＿image c
by（simp add：Jordan＿Brouwer＿frontier［OF hom outer］）
have False if m ：middle \in components $(-$ path＿image $c)$ and middle \neq inner middle \neq outer for middle
proof－
have frontier middle $=$ path＿image c
by（simp add：Jordan＿Brouwer＿frontier［OF hom］that）
have middle：open middle connected middle middle $\neq\{ \}$
apply（meson 〈simple＿path c〉 compact＿imp＿closed compact＿simple＿path＿image m open＿Compl open＿components）
using in＿components＿connected in＿components＿nonempty m by blast＋
obtain $a 0$ b0 where $a 0 \in$ path＿image c b0 \in path＿image c a $0 \neq b 0$
using simple＿path＿image＿uncountable［OF 〈simple＿path c〉］
by（metis Diff＿cancel countable＿Diff＿eq countable＿empty insert＿iff subsetI subset＿singleton＿iff）
obtain $a b g$ where $a b: a \in$ path＿image $c b \in$ path＿image $c a \neq b$
and arc g pathstart $g=a$ pathfinish $g=b$
and pag＿sub：path＿image $g-\{a, b\} \subseteq$ middle
proof（rule dense＿accessible＿frontier＿point＿pairs［OF〈open middle〉〈connected middlè，of path＿image $c \cap$ ball a0（dist a0 b0）path＿image $c \cap$ ball b0（dist a0 b0）］）
show openin（top＿of＿set（frontier middle））（path＿image $c \cap$ ball a0（dist a0 b0））
openin（top＿of＿set（frontier middle））（path＿image $c \cap$ ball b0（dist a0 b0））
by（simp＿all add：〈frontier middle $=$ path＿image $c\rangle$ openin＿open＿Int $)$
show path＿image $c \cap$ ball a0（dist a0 b0）\neq path＿image $c \cap$ ball b0（dist a0 b0）
using $\langle a 0 \neq b 0\rangle\langle b 0 \in$ path＿image $c\rangle$ by auto
show path＿image $c \cap$ ball a0（dist a0 b0）$\neq\{ \}$
using $\langle a 0 \in$ path＿image $c\rangle\langle a 0 \neq b 0\rangle$ by auto
show path＿image $c \cap$ ball b0（dist a0 b0）$\neq\{ \}$
using $\langle b 0 \in$ path＿image $c\rangle\langle a 0 \neq b 0\rangle$ by auto
qed（use arc＿distinct＿ends arc＿imp＿simple＿path simple＿path＿endless that in fastforce）
obtain $u d$ where arc u arc d
and pathstart $u=a$ pathfinish $u=b$ pathstart $d=b$ pathfinish d
$=a$
and ud＿ab：$($ path＿image $u) \cap($ path＿image $d)=\{a, b\}$
and ud＿Un：$($ path＿image $u) \cup($ path＿image $d)=$ path＿image c
using exists＿double＿arc［OF assms ab］by blast
obtain $x y$ where $x \in$ inner $y \in$ outer
using＜inner $\neq\{ \}$ 〉＜outer $\neq\{ \}$ 〉 by auto
have inner \cap middle $=\{ \}$ middle \cap outer $=\{ \}$
using components＿nonoverlap inner outer m that by blast +
have connected＿component $(-$（path＿image $u \cup$ path＿image $g \cup$（path＿image $d \cup$ path＿image g ）））$x y$
proof（rule Janiszewski）
show compact（path＿image $u \cup$ path＿image g）
by（simp add：$\langle\operatorname{arc} g\rangle\langle a r c u\rangle$ compact＿Un compact＿arc＿image）
show closed（path＿image $d \cup$ path＿image g ）
by（simp add：〈arc d〉〈arc g〉closed＿Un closed＿arc＿image）
show connected $(($ path＿image $u \cup$ path＿image $g) \cap($ path＿image $d \cup$ path＿image g））
by（metis Un＿Diff＿cancel 〈arc $g\rangle\left\langle p a t h _i m a g e ~ u \cap\right.$ path＿image $d=\{a$ ， $b\}\rangle\langle p a t h f i n i s h ~ g=b\rangle\langle p a t h s t a r t ~ g=a\rangle$ connected＿arc＿image insert＿Diff1 pathfin－ ish＿in＿path＿image pathstart＿in＿path＿image sup＿bot．right＿neutral sup＿commute sup＿inf＿distrib1）
show connected＿component $(-($ path＿image $u \cup$ path＿image $g)) x y$
unfolding connected＿component＿def
proof（intro exI conjI）
have connected $(($ inner $\cup($ path＿image c－path＿image $u)) \cup($ outer \cup （path＿image c－path＿image $u)$ ））
proof（rule connected＿Un）
show connected（inner $\cup\left(\right.$ path＿image $\left.\left.c-p a t h _i m a g e ~ u\right)\right)$
apply（rule connected＿intermediate＿closure［OF 〈connected inner〉］）
using fro＿inner［symmetric］apply（auto simp：closure＿subset fron－
tier＿def）
done
show connected（outer $\cup\left(\right.$ path＿image $\left.\left.c-p a t h _i m a g e ~ u\right)\right)$
apply（rule connected＿intermediate＿closure［OF 〈connected outer〉］）
using fro＿outer［symmetric］apply（auto simp：closure＿subset fron－
tier＿def）
done
have $($ inner \cap outer $) \cup($ path＿image $c-$ path＿image $u) \neq\{ \}$
by（metis 〈arc d〉 ud＿ab Diff＿Int Diff＿cancel Un＿Diff 〈inner \cap
outer $=\{ \}\rangle\langle$ pathfinish $d=a\rangle\langle$ pathstart $d=b\rangle$ arc＿simple＿path insert＿commute nonempty＿simple＿path＿endless sup＿bot＿left ud＿Un）
then show（inner $\cup($ path＿image c－path＿image $u)) \cap($ outer \cup
$\left(\right.$ path＿image $\left.\left.c-p a t h _i m a g e ~ u\right)\right) \neq\{ \}$
by auto
qed
then show connected $\left(\right.$ inner \cup outer $\cup\left(\right.$ path＿image $\left.\left.c-p a t h _i m a g e ~ u\right)\right)$
by（metis sup．right＿idem sup＿assoc sup＿commute）
have inner $\subseteq-$ path＿image u outer $\subseteq-$ path＿image u
using in＿components＿subset inner outer ud＿Un by auto
moreover have inner \subseteq－path＿image g outer \subseteq－path＿image g
using 〈inner \cap middle $=\{ \}$ 〉〈inner $\subseteq-$ path＿image u»
using 〈middle \cap outer $=\{ \}$ 〉＜outer $\subseteq-$ path＿image u〉pag＿sub ud＿ab
by fastforce＋
moreover have path＿image c－path＿image $u \subseteq-$ path＿image g
using in＿components＿subset m pag＿sub ud＿ab by fastforce
ultimately show inner \cup outer $\cup($ path＿image $c-$ path＿image $u) \subseteq-$ （path＿image $u \cup$ path＿image g ）
by force
show $x \in$ inner \cup outer \cup（path＿image c－path＿image $u)$
by（auto simp：$\langle x \in$ inner \rangle ）
show $y \in$ inner \cup outer $\cup($ path＿image $c-$ path＿image $u)$
by（auto simp：$\langle y \in$ outer \rangle ）
qed
show connected＿component $(-($ path＿image $d \cup$ path＿image $g)) x y$
unfolding connected＿component＿def
proof（intro exI conjI）
have connected $(($ inner $\cup($ path＿image $c-$ path＿image $d)) \cup($ outer \cup
（path＿image c－path＿image $d)$ ））
proof（rule connected＿Un）
show connected（inner $\cup\left(\right.$ path＿image $\left.\left.c-p a t h _i m a g e ~ d\right)\right)$
apply（rule connected＿intermediate＿closure［OF＜connected inner〉］）
using fro＿inner［symmetric］apply（auto simp：closure＿subset fron－
tier＿def）
done
show connected（outer $\cup\left(\right.$ path＿image $\left.\left.c-p a t h _i m a g e ~ d\right)\right)$
apply（rule connected＿intermediate＿closure［OF（connected outer）］） using fro＿outer［symmetric］apply（auto simp：closure＿subset fron－
tier＿def）
done
have $($ inner \cap outer $) \cup($ path＿image $c-$ path＿image $d) \neq\{ \}$
using 〈arc $u\rangle\langle$ pathfinish $u=b\rangle\langle p a t h s t a r t u=a\rangle$ arc＿imp＿simple＿path nonempty＿simple＿path＿endless ud＿Un ud＿ab by fastforce
then show（inner $\cup($ path＿image $c-$ path＿image $d)) \cap($ outer \cup
$($ path＿image $c-$ path＿image $d)) \neq\{ \}$
by auto
qed
then show connected $\left(\right.$ inner \cup outer $\cup\left(\right.$ path＿image $\left.\left.c-p a t h _i m a g e ~ d\right)\right)$
by（metis sup．right＿idem sup＿assoc sup＿commute）
have inner $\subseteq-$ path＿image d outer $\subseteq-$ path＿image d
using in＿components＿subset inner outer ud＿Un by auto
moreover have inner $\subseteq-$ path＿image g outer $\subseteq-$ path＿image g
using 〈inner \cap middle $=\{ \}\rangle\langle$ inner $\subseteq-$ path＿image $d\rangle$
using «middle \cap outer $=\{ \}$ 〉outer $\subseteq-$ path＿image d〉pag＿sub ud＿ab
by fastforce＋
moreover have path＿image $c-$ path＿image $d \subseteq-$ path＿image g
using in＿components＿subset m pag＿sub ud＿ab by fastforce
ultimately show inner \cup outer $\cup($ path＿image $c-$ path＿image $d) \subseteq-$ （path＿image $d \cup$ path＿image g ）
by force
show $x \in$ inner \cup outer $\cup($ path＿image $c-$ path＿image $d)$
by（auto simp：$\langle x \in$ inner \rangle ）
show $y \in$ inner \cup outer \cup（path＿image $c-$ path＿image $d)$
by（auto simp：$\langle y \in$ outer \rangle ）
qed
qed
then have connected＿component $(-($ path＿image $u \cup$ path＿image $d \cup$ path＿image g））$x y$
by（simp add：Un＿ac）
moreover have $\neg($ connected＿component $(-($ path＿image $c)) x y)$
by（metis（no＿types，lifting）\neg bounded outer $\rangle\langle$ bounded inner $\rangle\langle x \in$ inner \rangle $\langle y \in$ outer \rangle componentsE connected＿component＿eq inner mem＿Collect＿eq outer）

```
        ultimately show False
            by (auto simp: ud_Un [symmetric] connected_component_def)
    qed
    then have components (- path_image c)={inner,outer }
    using inner outer by blast
    then have Union (components (- path_image c)) = inner }\cup\mathrm{ outer
    by simp
    then show inner U outer =- path_image c
    by auto
    qed (auto simp:<bounded inner`\\neg bounded outer`)
qed
corollary Jordan_disconnected:
    fixes c :: real => complex
    assumes simple_path c pathfinish c = pathstart c
        shows \neg connected(- path_image c)
using Jordan_curve [OF assms]
    by (metis Jordan_Brouwer_separation assms homeomorphic_simple_path_image_circle
zero_less_one)
corollary Jordan_inside_outside:
    fixes c :: real }=>\mathrm{ complex
    assumes simple_path c pathfinish c = pathstart c
        shows inside(path_image c) }={}^
            open(inside(path_image c)) ^
            connected(inside(path_image c)) ^
            outside(path_image c)\not={}^
            open(outside(path_image c)) ^
            connected(outside(path_image c)) ^
            bounded(inside(path_image c)) ^
            \checkmark bounded(outside(path_image c)) ^
            inside(path_image c) \cap outside(path_image c)={}^
            inside(path_image c)\cupoutside(path_image c)=
            - path_image c ^
            frontier (inside(path_image c)) = path_image c ^
            frontier(outside(path_image c)) = path_image c
proof -
    obtain inner outer
        where *: inner }\not={}\mathrm{ open inner connected inner
                outer }\not={}\mathrm{ open outer connected outer
                bounded inner }\neg\mathrm{ bounded outer inner }\cap\mathrm{ outer = {}
                inner U outer = - path_image c
                frontier inner = path_image c
                frontier outer = path_image c
            using Jordan_curve [OF assms] by blast
    then have inner: inside(path_image c)= inner
            by (metis dual_order.antisym inside_subset interior_eq interior_inside_frontier)
```

```
    have outer: outside(path_image c) = outer
    using <inner U outer = - path_image c><inside (path_image c)= inner>
        outside_inside <inner }\cap\mathrm{ outer ={}` by auto
    show ?thesis
    using * by (auto simp: inner outer)
qed
```


Triple-curve or "theta-curve" theorem

Proof that there is no fourth component taken from Kuratowski's Topology vol 2, para 61, II.

```
theorem split_inside_simple_closed_curve:
    fixes \(c::\) real \(\Rightarrow\) complex
    assumes simple_path \(c 1\) and \(c 1\) : pathstart \(c 1=a\) pathfinish \(c 1=b\)
        and simple_path \(c 2\) and c2: pathstart \(c \mathcal{2}=a\) pathfinish \(c \mathcal{2}=b\)
        and simple_path \(c\) and \(c\) : pathstart \(c=a\) pathfinish \(c=b\)
        and \(a \neq b\)
    and c1c2: path_image c1 \(\cap\) path_image \(c 2=\{a, b\}\)
    and c1c: path_image c1 \(\cap\) path_image \(c=\{a, b\}\)
    and c2c: path_image c2 \(\cap\) path_image \(c=\{a, b\}\)
    and ne_12: path_image \(c \cap\) inside (path_image c1 \(\cup\) path_image c2) \(\neq\{ \}\)
    obtains inside \((\) path_image \(c 1 \cup\) path_image \(c) \cap\) inside \((\) path_image \(c \mathcal{L} \cup\) path_image
c) \(=\{ \}\)
            inside \((\) path_image \(c 1 \cup\) path_image \(c) \cup\) inside \((\) path_image \(c \mathcal{2} \cup\) path_image
c) \(\cup\)
            \((\) path_image \(c-\{a, b\})=\) inside \((\) path_image \(c 1 \cup\) path_image \(c\) 2)
proof -
    let ? \(\Theta=\) path_image \(c\) let ? \(\Theta 1=\) path_image c1 let ? \(\Theta 2=\) path_image c2
    have sp: simple_path \((c 1+++\) reversepath \(c 2)\) simple_path \((c 1+++\) reversepath
c) simple_path (c2 +++ reversepath \(c)\)
            using assms by (auto simp: simple_path_join_loop_eq arc_simple_path sim-
ple_path_reversepath)
    then have op_in12: open (inside \((? \Theta 1 \cup ? \Theta 2))\)
        and op_out12: open (outside \((? \Theta 1 \cup ? \Theta 2))\)
        and op_in1c: open \((\) inside \((? \Theta 1 \cup ? \Theta))\)
        and op_in2c: open (inside \((? \Theta 2 \cup ? \Theta))\)
        and op_out1c: open (outside \((? \Theta 1 \cup ? \Theta))\)
        and op_out2c: open (outside \((? \Theta 2 \cup ? \Theta))\)
        and co_in1c: connected (inside \((? \Theta 1 \cup ? \Theta))\)
        and co_in2c: connected (inside \((? \Theta 2 \cup ? \Theta)\) )
        and co_out12c: connected (outside \((? \Theta 1 \cup\) ? \(\Theta 2)\) )
        and co_out1c: connected (outside \((? \Theta 1 \cup ? \Theta)\) )
        and co_out2c: connected (outside \((? \Theta 2 \cup ? \Theta))\)
        and pa_c: ? \(\Theta-\{\) pathstart \(c\), pathfinish \(c\} \subseteq-? \Theta 1\)
            \(? \Theta-\{\) pathstart \(c\), pathfinish \(c\} \subseteq-\) ? \(\Theta 2\)
        and pa_c1: ? \(\Theta 1-\{\) pathstart c1, pathfinish \(c 1\} \subseteq-\) ? \(\Theta 2\)
            \(? \Theta 1-\{\) pathstart \(c 1\), pathfinish \(c 1\} \subseteq-\) ? \(\Theta\)
        and pa_c2: ? \(\Theta 2\) - \(\{\) pathstart c2, pathfinish c2 \(\} \subseteq-\) ? \(\Theta 1\)
            \(? \Theta 2-\{\) pathstart \(c \mathcal{Z}\), pathfinish \(c \mathcal{Z}\} \subseteq-? \Theta\)
```

```
    and co_c: connected(?\Theta - {pathstart c,pathfinish c})
    and co_c1: connected(?\Theta1 - {pathstart c1,pathfinish c1})
    and co_c2: connected(?\Theta2 - {pathstart c2,pathfinish c2})
    and fr_in: frontier(inside(?\Theta1 \cup?\Theta2)) =? (\Theta1 \cup?\Theta2
    frontier (inside (?\Theta2 \cup? (\Theta)) =? ? 2 \cup? }
    frontier (inside (?\Theta1 \cup?\Theta)) =?? 
    and fr_out: frontier(outside (?\Theta1 \cup?\Theta2)) =? }\mathcal{1}\cup?\Theta2
        frontier (outside (?\Theta2 \cup? })\mathrm{ ) =? ( 2 U ? }
        frontier(outside(? }\mathcal{1}\cup?`))=?\Theta1\cup?
    using Jordan_inside_outside [of c1 +++ reversepath c2]
    using Jordan_inside_outside [of c1 +++ reversepath c]
    using Jordan_inside_outside [of c2 +++ reversepath c] assms
        apply (simp_all add: path_image_join closed_Un closed_simple_path_image
open_inside open_outside)
            apply (blast elim:| metis connected_simple_path_endless)+
        done
    have inout_12: inside (?\Theta1\cup?\Theta2) \cap(?\Theta - {pathstart c, pathfinish c})}\not={
    by (metis (no_types, lifting) c c1c ne_12 Diff_Int_distrib Diff_empty Int_empty_right
Int_left_commute inf_sup_absorb inf_sup_aci(1) inside_no_overlap)
    have pi_disjoint: ? \Theta \cap outside(?\Theta1 \cup?\Theta2) = {}
    proof (rule ccontr)
    assume ? \Theta \cap outside (?\Theta1\cup?\Theta2) }\not={
    then show False
        using connectedD [OF co_c, of inside(?\Theta1\cup? ? 2) outside(?\Theta1 \cup?\Theta2)]
        using c c1c2 pa_c op_in12 op_out12 inout_12
        apply auto
        apply (metis Un_Diff_cancel2 Un_iff compl_sup disjoint_insert(1) inf_commute
inf_compl_bot_left2 inside_Un_outside mk_disjoint_insert sup_inf_absorb)
            done
    qed
    have out_sub12: outside(?\Theta1 \cup?\Theta2) \subseteqoutside (?\Theta1\cup?\Theta) outside(?\Theta1 \cup?\Theta2)
\subseteq \mp@code { o u t s i d e ( ? \Theta 2 ~ \cup ? \Theta ) }
    by (metis Un_commute pi_disjoint outside_Un_outside_Un)+
    have pa1_disj_in2: ? \Theta1 \cap inside (?\Theta2 \cup?\Theta)={}
    proof (rule ccontr)
    assume ne: ? }\mathcal{1}\cap\mathrm{ inside (? }\Theta\mathcal{Z}\cup?\Theta)\not={
    have 1: inside (?\Theta\cup?\Theta2) \cap ?\Theta = {}
        by (metis (no_types) Diff_Int_distrib Diff_cancel inf_sup_absorb inf_sup_aci(3)
inside_no_overlap)
    have 2: outside (?\Theta\cup?\Theta2) \cap?\Theta = {}
        by (metis (no_types) Int_empty_right Int_left_commute inf_sup_absorb out-
side_no_overlap)
    have outside (?\Theta2 \cup?\Theta)\subseteq outside (?\Theta1 \cup?\Theta2)
        apply (subst Un_commute, rule outside_Un_outside_Un)
            using connectedD [OF co_c1, of inside(?\Theta2 \cup?\Theta) outside(? (\mathcal{2 U ? })\mathrm{ ]}]
                pa_c1 op_in2c op_out2c ne c1 c2c 1 2 by (auto simp:inf_sup_aci)
    with out_sub12
    have outside(?\Theta1 \cup?\Theta2) = outside(?\Theta2 \cup?\Theta) by blast
    then have frontier (outside (?\Theta1 \cup?\Theta2)) = frontier (outside (?\Theta2 \cup ? \Theta))
```

```
        by simp
    then show False
    using inout_12 pi_disjoint c c1c c2c fr_out by auto
    qed
    have pa2_disj_in1: ?\Theta2 \cap inside(?\Theta1 \cup?\Theta) ={}
    proof (rule ccontr)
    assume ne:?\Theta2 \cap inside (?\Theta1 \cup?\Theta) }={
    have 1: inside (? }\Theta\cup?\Theta1)\cap?\Theta={
        by (metis (no_types) Diff_Int_distrib Diff_cancel inf_sup_absorb inf_sup_aci(3)
inside_no_overlap)
    have 2: outside (? \Theta ? ? 1) \cap?\Theta = {}
            by (metis (no_types) Int_empty_right Int_left_commute inf_sup_absorb out-
side_no_overlap)
    have outside (? \Theta1 \cup? })\subseteq\mathrm{ outside (? }\mathcal{1}\cup?\Theta2
        apply (rule outside_Un_outside_Un)
        using connectedD [OF co_c2, of inside(? (1 \cup?\Theta) outside(? }\mathcal{Q}\cup?\Theta)
        pa_c2 op_in1c op_out1c ne c2 c1c 1 2 by (auto simp: inf_sup_aci)
    with out_sub12
    have outside(?\Theta1\cup?\Theta2) = outside(?\Theta1\cup?\Theta)
        by blast
    then have frontier (outside (?\Theta1\cup?\Theta2)) = frontier (outside (?\Theta1 \cup?\Theta))
        by simp
    then show False
        using inout_12 pi_disjoint c c1c c2c fr_out by auto
    qed
    have in_sub_in1: inside(? (\Theta1 \cup?\Theta)\subseteq inside(?\Theta1 \cup?\Theta2)
    using pa2_disj_in1 out_sub12 by (auto simp: inside_outside)
    have in_sub_in2: inside (?\Theta2 \cup?\Theta)\subseteqinside (? \Theta1 \cup ?\Theta2)
    using pa1_disj_in2 out_sub12 by (auto simp: inside_outside)
    have in_sub_out12: inside(? }\Theta1\cup?\Theta)\subseteq\mathrm{ outside (? (2 Ч? }
    proof
    fix }
    assume x:x inside (? }\mathcal{1}\cup?`
    then have xnot: x\not\in?\Theta
        by (simp add: inside_def)
    obtain z where zim: z & ?\Theta1 and zout: z\in outside(? \Theta2 \cup? }
        apply (auto simp: outside_inside)
        using nonempty_simple_path_endless [OF <simple_path c1\]
        by (metis Diff_Diff_Int Diff_iff ex_in_conv c1 c1c c1c2 pa1_disj_in2)
    obtain e where e>0 and e: ball ze\subseteqoutside(?\Theta\mathcal{L}\cup?\Theta)
            using zout op_out2c open_contains_ball_eq by blast
    have z frontier (inside (?\Theta1\cup?`))
        using zim by (auto simp: fr_in)
    then obtain w where w1:w\in inside (?\Theta1\cup?\Theta) and dwz: dist wz<e
        using zim \langlee > 0\rangle by (auto simp: frontier_def closure_approachable)
    then have w2: w\in outside (? \Theta2 \cup ? }
        by (metis e dist_commute mem_ball subsetCE)
    then have connected_component (- ?\Theta2 \cap - ? \Theta) zw
        apply (simp add: connected_component_def)
```

```
        apply (rule_tac x = outside(?\Theta2 \cup ?\Theta) in exI)
        using zout apply (auto simp: co_out2c)
        apply (simp_all add:outside_inside)
        done
    moreover have connected_component (- ?\Theta2 \cap - ?\Theta) wx
    unfolding connected_component_def
        using pa2_disj_in1 co_in1c x w1 union_with_outside by fastforce
    ultimately have eq: connected_component_set (- ?\Theta2 \cap - ? \Theta) x =
                connected_component_set (- ?\Theta2 \cap - ?\Theta) z
        by (metis (mono_tags, lifting) connected_component_eq mem_Collect_eq)
    show }x\in\mathrm{ outside (?丹2 U? ?)
    using zout x pa2_disj_in1 by (auto simp: outside_def eq xnot)
qed
    have in_sub_out21: inside(?\Theta2 \cup?\Theta)\subseteq outside(?\Theta1 \cup?\Theta)
    proof
    fix }
    assume x: x f inside (?\Theta2 \cup ?\Theta)
    then have xnot: x &?\Theta
        by (simp add: inside_def)
    obtain z where zim:z\in?\Theta2 and zout:z\in outside(?\Theta1\cup?\Theta)
        apply (auto simp: outside_inside)
        using nonempty_simple_path_endless [OF〈simple_path c2\]
        by (metis (no_types, hide_lams) Diff_Diff_Int Diff_iff c1c2 c2 c2c ex_in_conv
pa2_disj_in1)
    obtain e where e>0 and e: ball ze\subseteqoutside(?\Theta1 \cup?\Theta)
        using zout op_out1c open_contains_ball_eq by blast
    have z frontier (inside (?\Theta2 \cup?\Theta))
        using zim by (auto simp: fr_in)
    then obtain w where w2: w\in inside (?\Theta2\cup?\Theta) and dwz: dist wz<e
        using zim \langlee>0\rangle by (auto simp: frontier_def closure_approachable)
    then have w1:w\in outside (?\Theta1\cup?\Theta)
        by (metis e dist_commute mem_ball subsetCE)
    then have connected_component (- ?\Theta1 \cap - ?\Theta) z w
        apply (simp add: connected_component_def)
        apply (rule_tac x = outside(? }\Theta1\cup\mathrm{ ? }\Theta)\mathrm{ in exI)
        using zout apply (auto simp: co_out1c)
        apply (simp_all add: outside_inside)
        done
    moreover have connected_component (- ?\Theta1 \cap - ?\Theta) wx
    unfolding connected_component_def
    using pa1_disj_in2 co_in2c x w2 union_with_outside by fastforce
    ultimately have eq: connected_component_set (- ?\Theta1\cap-?\Theta) x =
                connected_component_set (- ?\Theta1 \cap - ?\Theta) z
    by (metis (no_types, lifting) connected_component_eq mem_Collect_eq)
    show }x\in\mathrm{ outside (? }\Theta\cup? ?\Theta
    using zout x pa1_disj_in2 by (auto simp: outside_def eq xnot)
qed
show ?thesis
proof
```

show inside $(? \Theta 1 \cup ? \Theta) \cap$ inside $(? \Theta 2 \cup ? \Theta)=\{ \}$
by（metis Int＿Un＿distrib in＿sub＿out12 bot＿eq＿sup＿iff disjoint＿eq＿subset＿Compl outside＿inside）
have $*:$ outside $(? \Theta 1 \cup ? \Theta) \cap$ outside $(? \Theta 2 \cup ? \Theta) \subseteq$ outside $(? \Theta 1 \cup ? \Theta 2)$
proof（rule components＿maximal）
show out＿in：outside $(? \Theta 1 \cup ? \Theta 2) \in$ components $(-(? \Theta 1 \cup ? \Theta 2))$
apply（simp only：outside＿in＿components co＿out12c）
by（metis bounded＿empty fr＿out（1）frontier＿empty unbounded＿outside）
have conn＿U ：connected $(-($ closure $($ inside $(? \Theta 1 \cup ? \Theta)) \cup$ closure（inside $(? \Theta 2 \cup ? \Theta))))$
proof（rule Janiszewski＿connected，simp＿all）
show bounded（inside $(? \Theta 1 \cup ? \Theta)$ ）
by（simp add：〈simple＿path c1〉〈simple＿path c〉 bounded＿inside bounded＿simple＿path＿image）
have if1：$-($ inside $(? \Theta 1 \cup ? \Theta) \cup$ frontier $($ inside $(? \Theta 1 \cup ? \Theta)))=-? \Theta 1$
$\cap-? \Theta \cap-$ inside $(? \Theta 1 \cup ? \Theta)$
by（metis（no＿types，lifting）Int＿commute Jordan＿inside＿outside c c1 compl＿sup path＿image＿join path＿image＿reversepath pathfinish＿join pathfinish＿reversepath pathstart＿join pathstart＿reversepath sp（2）closure＿Un＿frontier fr＿out（3））
then show connected $(-$ closure $($ inside $(? \Theta 1 \cup ? \Theta)))$
by（metis Compl＿Un outside＿inside co＿out1c closure＿Un＿frontier）
have if2：$-($ inside $(? \Theta 2 \cup ? \Theta) \cup$ frontier $($ inside $(? \Theta 2 \cup ? \Theta)))=-$ ？$\Theta 2$
$\cap-$ ？$\Theta \cap-$ inside $(? \Theta 2 \cup ? \Theta)$
by（metis（no＿types，lifting）Int＿commute Jordan＿inside＿outside c c2 compl＿sup path＿image＿join path＿image＿reversepath pathfinish＿join pathfinish＿reversepath pathstart＿join pathstart＿reversepath sp（3）closure＿Un＿frontier fr＿out（2））
then show connected $(-$ closure $($ inside $(? \Theta 2 \cup ? \Theta)))$ by（metis Compl＿Un outside＿inside co＿out2c closure＿Un＿frontier）
have connected（？Θ ）
by（metis 〈simple＿path c〉 connected＿simple＿path＿image）
moreover
have closure $($ inside $(? \Theta 1 \cup ? \Theta)) \cap$ closure $($ inside $(? \Theta 2 \cup ? \Theta))=? \Theta$ （is？lhs＝？rhs）
proof
show ？lhs \subseteq ？rhs proof clarify
fix x
assume $x: x \in$ closure（inside $(? \Theta 1 \cup ? \Theta)) x \in$ closure（inside $(? \Theta 2 \cup$
？Θ ）$)$
then have $x \notin$ inside $(? \Theta 1 \cup ? \Theta)$
by（meson closure＿iff＿nhds＿not＿empty in＿sub＿out12 inside＿Int＿outside op＿in1c）
with $f_{r} i n x$ show $x \in ? \Theta$
by（metis c1c c1c2 closure＿Un＿frontier pa1＿disj＿in2 Int＿iff Un＿iff
insert＿disjoint（2）insert＿subset subsetI subset＿antisym）

> qed
show ？rhs \subseteq ？lhs
using if1 if2 closure＿Un＿frontier by fastforce
qed
ultimately

```
            show connected (closure (inside (?\Theta1\cup?\Theta)) \cap closure (inside (?\Theta2 \cup
?(\Theta)))
            by auto
    qed
    show connected (outside (? ( 1 \cup?\Theta) \cap outside (?\Theta2 \cup?\Theta))
            using fr_in conn_U by (simp add: closure_Un_frontier outside_inside
Un_commute)
            show outside (?\Theta1 \cup?\Theta) \cap outside (?\Theta2 \cup? })\subseteq-(?\Theta1\cup?\Theta2
                by clarify (metis Diff_Compl Diff_iff Un_iff inf_sup_absorb outside_inside)
            show outside (?\Theta1\cup?\Theta2) \cap
            (outside (? \Theta1 \cup?\Theta) \cap outside (?\Theta2\cup?\Theta)) }={{
            by (metis Int_assoc out_in inf.orderE out_sub12(1) out_sub12(2) out-
side_in_components)
    qed
    show inside (? \Theta1 }\cup?\Theta)\cup\mathrm{ inside (? (2) }\cup?\Theta)\cup(?\Theta - {a,b}) = inside (?\Theta1
\cup?\Theta2)
            (is ?lhs = ?rhs)
        proof
            show ?lhs \subseteq?rhs
                apply (simp add: in_sub_in1 in_sub_in2)
                using c1c c2c inside_outside pi_disjoint by fastforce
            have inside (?\Theta1\cup?\Theta2)\subseteq inside (?\Theta1\cup?\Theta)\cup inside (?\Theta2 \cup?\Theta) \cup(?\Theta)
                using Compl_anti_mono [OF *] by (force simp: inside_outside)
            moreover have inside (?\Theta1\cup?\Theta2) \subseteq-{a,b}
                using c1 union_with_outside by fastforce
            ultimately show ?rhs \subseteq?lhs by auto
        qed
    qed
qed
end
```


6.43 Polynomial Functions: Extremal Behaviour and Root Counts

theory Poly_Roots
imports Complex_Main
begin

6.43.1 Basics about polynomial functions: extremal behaviour and root counts

lemma sub_polyfun:
fixes $x::{ }^{\prime} a::\{$ comm_ring,monoid_mult $\}$
shows $\left(\sum i \leq n . a i * x^{\wedge} i\right)-\left(\sum i \leq n . a i * y^{\wedge} i\right)=$
$(x-y) *\left(\sum j<n . \sum k=S u c j . . n . a k * y^{\wedge}(k-S u c j) * x^{\wedge} j\right)$
proof -
have $\left(\sum i \leq n . a i * x^{\wedge} i\right)-\left(\sum i \leq n . a i * y^{\wedge} i\right)=$

3080
$\left(\sum i \leq n . a i *\left(x^{\wedge} i-y^{\wedge} i\right)\right)$
by (simp add: algebra_simps sum_subtractf [symmetric])
also have $\ldots=\left(\sum i \leq n . a i *(x-y) *\left(\sum j<i . y^{\wedge}(i-S u c j) * x^{\wedge} j\right)\right)$
by (simp add: power_diff_sumr2 ac_simps)
also have $\ldots=(x-y) *\left(\sum i \leq n .\left(\sum j<i . a i * y^{\wedge}(i-S u c j) * x^{\wedge} j\right)\right)$
by (simp add: sum_distrib_left ac_simps)
also have $\ldots=(x-y) *\left(\sum j<n .\left(\sum i=S u c j . . n\right.\right.$. a $\left.\left.i * y^{\wedge}(i-S u c j) * x^{\wedge} j\right)\right)$
by (simp add: sum.nested_swap')
finally show ?thesis.
qed
lemma sub_polyfun_alt:
fixes $x::{ }^{\prime} a::\{$ comm_ring,monoid_mult $\}$
shows $\left(\sum i \leq n\right.$. $\left.a i * x^{\wedge} i\right)-\left(\sum i \leq n . a i * y^{\wedge} i\right)=$ $(x-y) *\left(\sum j<n . \sum k<n-j . a(j+k+1) * y^{\wedge} k * x^{\wedge} j\right)$
proof -
$\{$ fix j
have $\left(\sum k=\right.$ Suc j..n. a $\left.k * y^{\wedge}(k-S u c j) * x^{\wedge} j\right)=$ $\left(\sum k<n-j . a(S u c(j+k)) * y^{\wedge} k * x^{\wedge} j\right)$
by (rule sum.reindex_bij_witness[where $i=\lambda i . i+S u c j$ and $j=\lambda i . i-S u c$
j]) auto \}
then show ?thesis
by (simp add: sub_polyfun)
qed
lemma polyfun_linear_factor:
fixes a ::' $a::\{$ comm_ring, monoid_mult $\}$
shows $\exists b . \forall z .\left(\sum i \leq n . c i * z^{\wedge} i\right)=$
$(z-a) *\left(\sum i<n . b i * z^{\wedge} i\right)+\left(\sum i \leq n . c i * a^{\wedge} i\right)$
proof -
\{ fix z
have $\left(\sum i \leq n . c i * z^{\wedge} i\right)-\left(\sum i \leq n . c i * a^{\wedge} i\right)=$
$(z-\bar{a}) *\left(\sum j<n .\left(\sum k=\right.\right.$ Suc j..n. $\left.\left.c k * a^{\wedge}(k-S u c j)\right) * z^{\wedge} j\right)$
by (simp add: sub_polyfun sum_distrib_right)
then have $\left(\sum i \leq n . c i * z^{\wedge} i\right)=$

$$
(z-a) *\left(\sum j<n .\left(\sum k=S u c j . . n . c k * a^{\wedge}(k-S u c j)\right) * z^{\wedge} j\right)
$$

$+\left(\sum i \leq n . c i * a^{\wedge} i\right)$
by (simp add: algebra_simps) \}
then show ?thesis
by (intro exI allI)
qed
lemma polyfun_linear_factor_root:
fixes a :: ' $a::\{$ comm_ring,monoid_mult $\}$
assumes $\left(\sum i \leq n . c i * a^{\wedge} i\right)=0$
shows $\exists b . \forall z .\left(\sum i \leq n . c i * z^{\wedge} i\right)=(z-a) *\left(\sum i<n . b i * z^{\wedge} i\right)$
using polyfun_linear_factor [of callalassms
by simp
lemma adhoc_norm_triangle: $a+\operatorname{norm}(y) \leq b==>\operatorname{norm}(x) \leq a==>\operatorname{norm}(x$ $+y) \leq b$
by (metis norm_triangle_mono order.trans order_refl)
proposition polyfun_extremal_lemma:
fixes $c::$ nat $\Rightarrow{ }^{\prime} a::$ real_normed_div_algebra
assumes $e>0$
shows $\exists M . \forall z . M \leq \operatorname{norm} z \longrightarrow \operatorname{norm}\left(\sum i \leq n . c i * z^{\wedge} i\right) \leq e * \operatorname{norm}(z)^{\wedge}$
Suc n
proof (induction n)
case 0
show ?case
by (rule exI [where $x=$ norm ($\begin{gathered}\text { 0 }\end{gathered}$) / e]) (auto simp: mult.commute pos_divide_le_eq assms)
next
case (Suc n)
then obtain M where $M: \forall z . M \leq \operatorname{norm} z \longrightarrow \operatorname{norm}\left(\sum i \leq n . c i * z^{\wedge} i\right) \leq e$

* norm z^{\wedge} Suc n..
show ? case
proof (rule exI [where $x=\max 1(\max M((e+\operatorname{norm}(c($ Suc $n))) / e))]$, clarify $)$ fix $z::^{\prime} a$
assume $\max 1(\max M((e+\operatorname{norm}(c($ Suc $n))) / e)) \leq$ norm z
then have norm1: $0<$ norm $z M \leq \operatorname{norm} z(e+\operatorname{norm}(c($ Suc n) $)) / e \leq$
norm z
by auto
then have norm2: $(e+\operatorname{norm}(c($ Suc $n))) \leq e * \operatorname{norm} z \quad($ norm $z *$ norm z
^ $n)>0$
apply (metis assms less_divide_eq mult.commute not_le)
using norm1 apply (metis mult_pos_pos zero_less_power)
done
have $e *\left(\operatorname{norm} z * \operatorname{norm} z^{\wedge} n\right)+\operatorname{norm}\left(c(S u c n) *\left(z * z^{\wedge} n\right)\right)=$
$(e+\operatorname{norm}(c(S u c n))) *\left(\right.$ norm $z *$ norm $\left.z^{\wedge} n\right)$
by (simp add: norm_mult norm_power algebra_simps)
also have $\ldots \leq(e *$ norm $z) *\left(\right.$ norm $z *$ norm $\left.z^{\wedge} n\right)$
using norm2
using assms mult_mono by fastforce
also have $\ldots=e *\left(\right.$ norm $z *\left(\right.$ norm $z *$ norm $\left.\left.z^{\wedge} n\right)\right)$
by (simp add: algebra_simps)
finally have $e *\left(\operatorname{norm} z * \operatorname{norm} z^{\wedge} n\right)+\operatorname{norm}\left(c(S u c n) *\left(z * z^{\wedge} n\right)\right)$ $\leq e *\left(\right.$ norm $z *\left(\right.$ norm $z *$ norm $\left.\left.z^{\wedge} n\right)\right)$.
then show norm $\left(\sum i \leq S u c\right.$ n. c $\left.i * z^{\wedge} i\right) \leq e * \operatorname{norm} z^{\wedge}$ Suc (Suc n) using
M norm1 by (drule_tac $x=z$ in spec) (auto simp: intro!: adhoc_norm_triangle)
qed
qed
lemma norm_lemma_xy: assumes $|b|+1 \leq \operatorname{norm}(y)-a \operatorname{norm}(x) \leq a$ shows $b \leq \operatorname{norm}(x+y)$
proof -

```
    have b\leqnorm y - norm x
        using assms by linarith
    then show ?thesis
        by (metis (no_types) add.commute norm_diff_ineq order_trans)
qed
proposition polyfun_extremal:
    fixes c :: nat # 'a::real_normed_div_algebra
    assumes \existsk.k\not=0^k\leqn^ck\not=0
        shows eventually (\lambdaz.norm(\sumi\leqn.ci* ( \^i)\geqB) at_infinity
using assms
proof (induction n)
    case 0 then show ?case
        by simp
next
    case (Suc n)
    show ?case
    proof (cases c (Suc n)=0)
            case True
            with Suc show ?thesis
                by auto (metis diff_is_0_eq diffs0_imp_equal less_Suc_eq_le not_less_eq)
    next
            case False
            with polyfun_extremal_lemma [of norm(c (Suc n)) / 2 c n]
            obtain M where M: \z.M\leqnorm z\Longrightarrow
                    norm (\sumi\leqn.ci* z^i)\leqnorm(c(Suc n))/2* norm z ^ Suc n
            by auto
            show ?thesis
            unfolding eventually_at_infinity
            proof (rule exI [where x=max M (max 1 ((|B| + 1)/(norm (c (Suc n))/
2)))], clarsimp)
            fix z::'a
            assume les:M\leqnormz 1 n normz (|B|*2 + 2)/ norm (c (Suc n))\leq
norm z
            then have }|B|*2+2\leqnorm z*norm (c (Suc n)
            by (metis False pos_divide_le_eq zero_less_norm_iff)
            then have |B|*2 + 2 \leqnorm z^ (Suc n)* norm (c (Suc n))
            by (metis \1 \leqnorm z` order.trans mult_right_mono norm_ge_zero self_le_power
zero_less_Suc)
            then show B\leqnorm ((\sumi\leqn.ci*\mp@subsup{z}{}{\wedge}i)+c(Suc n)*(z*\mp@subsup{z}{}{\wedge}n))}\mathrm{ ) using
                M les
            apply auto
            apply (rule norm_lemma_xy [where a= norm (c (Suc n)) * norm z ^ (Suc
n) / 2])
            apply (simp_all add: norm_mult norm_power)
            done
        qed
    qed
qed
```

```
proposition polyfun_rootbound:
    fixes \(c::\) nat \(\Rightarrow\) ' \(a::\{\) comm_ring,real_normed_div_algebra \(\}\)
    assumes \(\exists k . k \leq n \wedge c k \neq 0\)
    shows finite \(\left\{z .\left(\sum i \leq n . c i * z^{\wedge} i\right)=0\right\} \wedge \operatorname{card}\left\{z .\left(\sum i \leq n . c i * z^{\wedge} i\right)=0\right\}\)
\(\leq n\)
using assms
proof (induction \(n\) arbitrary: \(c\) )
case (Suc n) show ?case
proof (cases \(\left\{z .\left(\sum i \leq\right.\right.\) Suc n. c \(\left.\left.\left.i * z^{\wedge} i\right)=0\right\}=\{ \}\right)\)
    case False
    then obtain \(a\) where \(a:\left(\sum i \leq\right.\) Suc n. \(\left.c i * a^{\wedge} i\right)=0\)
        by auto
    from polyfun_linear_factor_root [OF this]
    obtain \(b\) where \(\bigwedge z .\left(\sum i \leq\right.\) Suc n. c \(\left.i * z^{\wedge} i\right)=(z-a) *\left(\sum i<S u c n . b i *\right.\)
\(\left.z^{\wedge} i\right)\)
            by auto
    then have \(b: \bigwedge z .\left(\sum i \leq\right.\) Suc n. \(\left.c i * z^{\wedge} i\right)=(z-a) *\left(\sum i \leq n . b i * z^{\wedge} i\right)\)
        by (metis lessThan_Suc_atMost)
    then have ins_ab: \(\left\{z .\left(\sum i \leq\right.\right.\) Suc n. \(\left.\left.c i * z^{\wedge} i\right)=0\right\}=\operatorname{insert} a\left\{z .\left(\sum i \leq n . b i\right.\right.\)
* \(\left.\left.z^{\wedge} i\right)=0\right\}\)
            by auto
    have \(c 0: c 0=-(a * b 0)\) using \(b[o f 0]\)
            by simp
    then have extr_prem: \(\neg(\exists k \leq n . b k \neq 0) \Longrightarrow \exists k . k \neq 0 \wedge k \leq\) Suc \(n \wedge c k\)
\(\neq 0\)
            by (metis Suc.prems le0 minus_zero mult_zero_right)
    have \(\exists k \leq n\). \(b k \neq 0\)
            apply (rule ccontr)
            using polyfun_extremal [OF extr_prem, of 1]
            apply (auto simp: eventually_at_infinity b simp del: sum.atMost_Suc)
```



```
            done
    then show ?thesis using Suc.IH [of b] ins_ab
            by (auto simp: card_insert_if)
    qed simp
qed \(\operatorname{simp}\)
corollary
    fixes \(c::\) nat \(\Rightarrow{ }^{\prime} a::\{\) comm_ring,real_normed_div_algebra \(\}\)
    assumes \(\exists k . k \leq n \wedge c k \neq 0\)
        shows polyfun_rootbound_finite: finite \(\left\{z .\left(\sum i \leq n . c i * z^{\wedge} i\right)=0\right\}\)
            and polyfun_rootbound_card: card \(\left\{z .\left(\sum i \leq n . c i * z^{\wedge} i\right)=0\right\} \leq n\)
using polyfun_rootbound [OF assms] by auto
proposition polyfun_finite_roots:
    fixes \(c::\) nat \(\Rightarrow\) ' \(a::\{\) comm_ring,real_normed_div_algebra \(\}\)
        shows finite \(\left\{z .\left(\sum i \leq n . c i * z^{\wedge} i\right)=0\right\} \longleftrightarrow(\exists k . k \leq n \wedge c k \neq 0)\)
proof (cases \(\exists k \leq n . c k \neq 0)\)
```

```
    case True then show ?thesis
        by (blast intro: polyfun_rootbound_finite)
next
    case False then show ?thesis
        by (auto simp: infinite_UNIV_char_0)
qed
lemma polyfun_eq_0:
    fixes \(c::\) nat \(\Rightarrow{ }^{\prime} a::\{\) comm_ring,real_normed_div_algebra\}
        shows \(\left(\forall z .\left(\sum i \leq n . c i * z^{\wedge} i\right)=0\right) \longleftrightarrow(\forall k . k \leq n \longrightarrow c k=0)\)
proof (cases \(\left.\left(\forall z .\left(\sum i \leq n . c i * z^{\wedge} i\right)=0\right)\right)\)
    case True
    then have \(\neg\) finite \(\left\{z .\left(\sum i \leq n . c i * z^{\wedge} i\right)=0\right\}\)
        by (simp add: infinite_UNIV_char_0)
    with True show ?thesis
        by (metis (poly_guards_query) polyfun_rootbound_finite)
next
    case False
    then show ?thesis
        by auto
qed
theorem polyfun_eq_const:
    fixes \(c::\) nat \(\Rightarrow{ }^{\prime} a::\{\) comm_ring, real_normed_div_algebra \(\}\)
        shows \(\left(\forall z .\left(\sum i \leq n . c i * z^{\wedge} i\right)=k\right) \longleftrightarrow c 0=k \wedge(\forall k . k \neq 0 \wedge k \leq n \longrightarrow\)
ck=0)
proof -
    \{fix \(z\)
        have \(\left(\sum i \leq n . c i * z^{\wedge} i\right)=\left(\sum i \leq n\right.\). (if \(i=0\) then \(c 0-k\) else \(\left.\left.c i\right) * z^{\wedge} i\right)+k\)
        by (induct \(n\) ) auto
    \(\}\) then
    have \(\left(\forall z .\left(\sum i \leq n . c i * z^{\wedge} i\right)=k\right) \longleftrightarrow\left(\forall z\right.\). ( \(\sum i \leq n\). (if \(i=0\) then \(c 0-k\)
else ci)* \(\left.z^{\wedge} i\right)=0\) )
            by auto
    also have \(\ldots \longleftrightarrow c 0=k \wedge(\forall k . k \neq 0 \wedge k \leq n \longrightarrow c k=0)\)
            by (auto simp: polyfun_eq_0)
    finally show ?thesis.
qed
end
```


6.44 Generalised Binomial Theorem

The proof of the Generalised Binomial Theorem and related results. We prove the generalised binomial theorem for complex numbers, following the proof at: https://proofwiki.org/wiki/Binomial_Theorem/General_Binomial_ Theorem
theory Generalised_Binomial_Theorem

```
imports
    Complex_Main
    Complex_Transcendental
    Summation_Tests
begin
lemma gbinomial_ratio_limit:
    fixes a :: ' }a\mathrm{ :: real_normed_field
    assumes }a\not\in\mathbb{N
    shows (\lambdan. (a gchoose n) / (a gchoose Suc n)) \longrightarrow - < 
proof (rule Lim_transform_eventually)
    let ?f = \lambdan. inverse (a / of_nat (Suc n) - of_nat n / of_nat (Suc n))
    from eventually_gt_at_top[of 0::nat]
        show eventually ( }\lambdan\mathrm{ . ?f }n=(a\mathrm{ gchoose }n)/(a\mathrm{ gchoose Suc n)) sequentially
    proof eventually_elim
        fix n :: nat assume n: n>0
        then obtain q}\mathrm{ where q:n=Suc q by (cases n) blast
        let ?P = \i=0..<n.a - of_nat i
        from n have (a gchoose n) / (a gchoose Suc n) = (of_nat (Suc n) :: 'a)*
                (?P / (\prodi=0..n. a - of_nat i))
        by (simp add: gbinomial_prod_rev atLeastLessThanSuc_atLeastAtMost)
        also from q have (\prodi=0..n. a - of_nat i) =?P * (a - of_nat n)
        by (simp add: prod.atLeast0_atMost_Suc atLeastLessThanSuc_atLeastAtMost)
    also have ?P / ... = (?P / ?P) / (a - of_nat n) by (rule divide_divide_eq_left[symmetric])
        also from assms have ?P / ?P = 1 by auto
        also have of_nat (Suc n)*(1/(a-of_nat n)) =
            inverse (inverse (of_nat (Suc n)) * (a - of_nat n)) by (simp add:
field_simps)
        also have inverse (of_nat (Suc n)) * (a - of_nat n) =a / of_nat (Suc n) -
of_nat n / of_nat (Suc n)
        by (simp add: field_simps del: of_nat_Suc)
    finally show ?f n = (a gchoose n)/(a gchoose Suc n) by simp
    qed
    have (\lambdan. norm a / (of_nat (Suc n)))\longrightarrow0
        unfolding divide_inverse
        by (intro tendsto_mult_right_zero LIMSEQ_inverse_real_of_nat)
    hence (\lambdan. a / of_nat (Suc n)) \longrightarrow0
    by (subst tendsto_norm_zero_iff[symmetric]) (simp add: norm_divide del: of_nat_Suc)
    hence ?f \longrightarrow inverse (0-1)
        by (intro tendsto_inverse tendsto_diff LIMSEQ_n_over_Suc_n) simp_all
    thus ?f \longrightarrow-1 by simp
qed
lemma conv_radius_gchoose:
    fixes a :: 'a :: {real_normed_field,banach}
    shows conv_radius ( }\lambdan.a\mp@code{gchoose n)}=(\mathrm{ if }a\in\mathbb{N}\mathrm{ then }\infty\mathrm{ else 1)
proof (cases a }\in\mathbb{N}\mathrm{ )
    assume a:a\in\mathbb{N}
```

```
    have eventually ( }\lambdan.(a\mathrm{ gchoose n)=0) sequentially
    using eventually_gt_at_top[of nat \lfloornorm a \]
    by eventually_elim (insert a, auto elim!: Nats_cases simp: binomial_gbinomial[symmetric])
    from conv_radius_cong'[OF this] a show ?thesis by simp
next
    assume a: a\not\in\mathbb{N}
    from tendsto_norm[OF gbinomial_ratio_limit[OF this]]
        have conv_radius ( }\lambdan\mathrm{ . a gchoose n)=1
        by (intro conv_radius_ratio_limit_nonzero[of _ 1]) (simp_all add: norm_divide)
    with a show ?thesis by simp
qed
theorem gen_binomial_complex:
    fixes z :: complex
    assumes norm z<1
    shows (\lambdan.(a gchoose n)*\mp@subsup{z}{}{\wedge}n) sums (1+z) powr a
proof -
    define K where K=1-(1-norm z) / 2
    from assms have K:K>0 K<1 norm z<K
        unfolding K_def by (auto simp: field_simps intro!: add_pos_nonneg)
    let ?f = \lambdan. a gchoose n and ?f' = diffs (\lambdan. a gchoose n)
    have summable_strong: summable ( }\lambdan\mathrm{ . ?f n * z^^n) if norm z<1 for z using
that
    by (intro summable_in_conv_radius) (simp_all add: conv_radius_gchoose)
    with K have summable: summable (\lambdan. ?f n * z ` n) if norm z<K for z
using that by auto
    hence summable': summable ( }\lambdan\mathrm{ . ?f' }n*\mp@subsup{*}{}{\wedge}n)\mathrm{ if norm }z<K\mathrm{ for z using
that
    by (intro termdiff_converges[of _ K]) simp_all
    define }f\mp@subsup{f}{}{\prime}\mathrm{ where [abs_def]: fz=(\n. ?f n * z ^ n) f}\mp@subsup{f}{}{\prime}z=(\sumn. ?f' n* z^
n) for z
    {
        fix z :: complex assume z: norm z<K
        from summable_mult2[OF summable'[OF z], of z]
            have summable1: summable ( }\lambdan\mathrm{ .? ? ' n * z ^ Suc n) by (simp add: mult_ac)
            hence summable2: summable ( \lambdan. of_nat n * ?f n * z^n)
                unfolding diffs_def by (subst (asm) summable_Suc_iff)
            have }(1+z)*\mp@subsup{f}{}{\prime}z=(\sumn.?\mp@subsup{f}{}{\prime}n*\mp@subsup{z}{}{\wedge}n)+(\sumn.?\mp@subsup{f}{}{\prime}n*\mp@subsup{z}{}{\wedge}Suc n
            unfolding f_f'_def using summable' z by (simp add: algebra_simps sum-
inf_mult)
    also have (\sumn.? f' n* *^ n)=(\sumn. of_nat (Suc n)* ?f (Suc n)* *^n)
                by (intro suminf_cong) (simp add: diffs_def)
            also have (\sumn. ?f' n * 生Suc n)=(\sumn. of_nat n* ?f n* * ^ n)
                using summable1 suminf_split_initial_segment[OF summable1] unfolding
diffs_def
            by (subst suminf_split_head, subst (asm) summable_Suc_iff) simp_all
            also have (\sumn. of_nat (Suc n)* ?f (Suc n)* z^n) + (\sumn. of_nat n * ?f n
```

```
* z^n)}
                    (\sumn.a* ?f n* *^n)
    by (subst gbinomial_mult_1, subst suminf_add)
            (insert summable'[OF z] summable2,
            simp_all add: summable_powser_split_head algebra_simps diffs_def)
    also have ... =a*fz unfolding f_ f '_def
            by (subst suminf_mult[symmetric]) (simp_all add: summable[OF z] mult_ac)
    finally have a*fz=(1+z)*\mp@subsup{f}{}{\prime}z\mathrm{ by simp}
    } note deriv = this
    have [derivative_intros]: (f has_field_derivative f'z) (at z) if norm z<of_real K
for }
            unfolding f- f'_def using K that
            by (intro termdiffs_strong[of ?f K z] summable_strong) simp_all
    have f 0 = (\sumn. if n=0 then 1 else 0) unfolding f_f '_def by (intro sum-
inf_cong) simp
    also have ... = 1 using sums_single[of 0 \lambda_. 1::complex] unfolding sums_iff
by simp
    finally have [simp]: f0=1.
    have \existsc.\forallz\inball 0 K.fz* (1+z) powr (-a)=c
    proof (rule has_field_derivative_zero_constant)
        fix z :: complex assume z':}z\in\mathrm{ ball 0 K
        hence z: norm z<K by simp
        with K have nz: 1 + z =0 by (auto dest!: minus_unique)
        from zK have norm z<1 by simp
    hence (1+z)\not\in\mathbb{R}\leq0 by (cases z) (auto simp: Complex_eq complex_nonpos_Reals_iff)
        hence ((\lambdaz.fz*\overline{(1+z) powr (-a)) has_field_derivative}
                    f
using z
        by (auto intro!: derivative_eq_intros)
    also from z have }a*fz=(1+z)*\mp@subsup{f}{}{\prime}z\mathrm{ by (rule deriv)
    finally show ((\lambdaz.fz* (1+z) powr (-a)) has_field_derivative 0) (at z within
ball 0 K)
            using nz by (simp add: field_simps powr_diff at_within_open[OF z\)
    qed simp_all
    then obtain c where c:\bigwedgez.z\in ball 0 K\Longrightarrowfz*(1+z) powr (-a)=c by
blast
    from }c[of 0] and K have c=1 by sim
    with c[of z] have fz=(1+z) powr a using K
        by (simp add: powr_minus field_simps dist_complex_def)
    with summable K show ?thesis unfolding f_f '_def by (simp add: sums_iff)
qed
lemma gen_binomial_complex':
    fixes }xy\mathrm{ :: real and a :: complex
    assumes }|x|<|y
    shows (\lambdan.(a gchoose n)* of_real x^n * of_real y powr (a - of_nat n)) sums
        of_real (x+y) powr a (is ?P x y)
```

```
proof -
    \{
        fix \(x y\) :: real assume \(x y:|x|<|y| y \geq 0\)
        hence \(y>0\) by \(\operatorname{simp}\)
    note \(x y=x y\) this
    from \(x y\) have \((\lambda n\). (a gchoose \(n) *\) of_real \(\left.(x / y){ }^{\wedge} n\right)\) sums \((1+\) of_real \((x\)
```

/ y)) powr a
by (intro gen_binomial_complex) (simp add: norm_divide)
hence $(\lambda n$. (a gchoose $n) *$ of_real $(x / y)^{\wedge} n * y$ powr $\left.a\right)$ sums
$((1+$ of_real $(x / y))$ powr $a * y$ powr a)
by (rule sums_mult2)
also have $(1+$ complex_of_real $(x / y))=$ complex_of_real $(1+x / y)$ by simp
also from $x y$ have \ldots powr $a *$ of_real y powr $a=(\ldots * y)$ powr a
by (subst powr_times_real[symmetric]) (simp_all add: field_simps)
also from $x y$ have complex_of_real $(1+x / y) *$ complex_of_real $y=o f$ _real
$(x+y)$
by (simp add: field_simps)
finally have ? P $x y$ using $x y$ by (simp add: field_simps powr_diff powr_nat)
\} note $A=$ this
show ?thesis
proof (cases $y<0$)
assume $y: y<0$
with assms have $x y: x+y<0$ by simp
with assms have $|-x|<|-y|-y \geq 0$ by simp_all
note $A[O F$ this $]$
also have complex_of_real $(-x+-y)=-$ complex_of_real $(x+y)$ by simp
also from $x y$ assms have \ldots powr $a=(-1)$ powr $-a *$ of_real $(x+y)$ powr a
by (subst powr_neg_real_complex) (simp add: abs_real_def split: if_split_asm)
also \{
fix n :: nat
from y have (a gchoose n) * of_real $(-x)^{\wedge} n *$ of_real $(-y)$ powr ($a-$
of_nat n) $=$
$($ a gchoose $n) *\left(- \text { of_real } x /-o f_{-} \text {real } y\right)^{\wedge} n *(-$ of_real $y)$
powr a
by (subst power_divide) (simp add: powr_diff powr_nat)
also from y have (- of_real y) powr $a=(-1)$ powr $-a *$ of_real y powr a
by (subst powr_neg_real_complex) simp
also have -complex_of_real $x /$ - complex_of_real $y=$ complex_of_real $x /$
complex_of_real y
by simp
also have ... ^ $n=o f$ real $x{ }^{\wedge} n$ / of_real y ^ n by (simp add: power_divide)
also have $(a \operatorname{gchoose} n) * \ldots *((-1)$ powr $-a *$ of_real y powr $a)=$
(-1) powr $-a *\left((a\right.$ gchoose $n) *$ of_real $x^{\wedge} n *$ of_real y powr $(a$
$-n)$)
by (simp add: algebra_simps powr_diff powr_nat)
finally have (a gchoose n) * of_real $(-x)^{\wedge} n *$ of_real $(-y)$ powr $(a-$
of_nat n) $=$
(-1) powr $-a *\left((a\right.$ gchoose $n) *$ of_real $x^{\wedge} n *$ of_real y powr

```
\((a-\) of_nat \(n))\).
    \}
    note sums_cong[OF this]
    finally show ?thesis by (simp add: sums_mult_iff)
    qed (insert \(A[\) of \(x y]\) assms, simp_all add: not_less)
qed
lemma gen_binomial_complex \({ }^{\prime \prime}\) :
    fixes \(x y\) :: real and \(a\) :: complex
    assumes \(|y|<|x|\)
    shows \((\lambda n\). (a gchoose \(n) *\) of_real \(x\) powr \(\left(a-o f_{-} n a t n\right) *\) of_real \(y\) ^ \(\left.n\right)\) sums
                of_real \((x+y)\) powr a
    using gen_binomial_complex \({ }^{\prime}[\) OF assms \(]\) by (simp add: mult_ac add.commute)
lemma gen_binomial_real:
    fixes \(z\) :: real
    assumes \(|z|<1\)
    shows \(\left(\lambda n .(a\right.\) gchoose \(\left.n) * z^{\wedge} n\right)\) sums \((1+z)\) powr a
proof -
    from assms have norm (of_real \(z\) :: complex) \(<1\) by simp
    from gen_binomial_complex[OF this]
        have ( \(\lambda n\). (of_real a gchoose \(n\) :: complex) * of_real \(z^{\wedge} n\) ) sums
            (of_real \((1+z)\) ) powr (of_real a) by simp
    also have (of_real \((1+z)::\) complex \()\) powr (of_real a) \(=\) of_real \(((1+z)\) powr
a)
    using assms by (subst powr_of_real) simp_all
    also have (of_real a gchoose \(n\) :: complex) \(=\) of_real (a gchoose \(n\) ) for \(n\)
    by (simp add: gbinomial_prod_rev)
    hence \((\lambda n\). (of_real a gchoose \(n::\) complex \() *\) of_real \(\left.z^{\wedge} n\right)=\)
            ( \(\lambda\) n. of_real \(\left((a\right.\) gchoose \(\left.n) * z^{\wedge} n\right)\) ) by (intro ext) simp
    finally show ?thesis by (simp only: sums_of_real_iff)
qed
lemma gen_binomial_real':
    fixes \(x\) y \(a\) :: real
    assumes \(|x|<y\)
    shows \((\lambda n\). \((a\) gchoose \(n) * x \wedge n * y\) powr \((a-\) of_nat \(n))\) sums \((x+y)\) powr a
proof -
    from assms have \(y>0\) by simp
    note \(x y=\) this assms
    from assms have \(|x / y|<1\) by simp
    hence \((\lambda n\). (a gchoose \(\left.n) *(x / y){ }^{\wedge} n\right)\) sums \((1+x / y)\) powr a
        by (rule gen_binomial_real)
    hence \((\lambda n\). (a gchoose \(n) *(x / y)^{\wedge} n * y\) powr a) sums \(((1+x / y)\) powr a
* y powr a)
        by (rule sums_mult2)
    with \(x y\) show ?thesis
        by (simp add: field_simps powr_divide powr_diff powr_realpow)
qed
```

```
lemma one_plus_neg_powr_powser:
    fixes \(z s\) :: complex
    assumes norm ( \(z::\) complex \()<1\)
    shows \(\left(\lambda n .(-1) \wedge n *((s+n-1)\right.\) gchoose \(\left.n) * z^{\wedge} n\right)\) sums \((1+z)\) powr \((-s)\)
        using gen_binomial_complex [OF assms, of \(-s\) ] by (simp add: gbinomial_minus)
lemma gen_binomial_real \({ }^{\prime \prime}\) :
    fixes \(x\) y \(a\) :: real
    assumes \(|y|<x\)
    shows \((\lambda n\). (a gchoose \(n) * x\) powr \((a-\) of_nat \(\left.n) * y^{\wedge} n\right)\) sums \((x+y)\) powr \(a\)
    using gen_binomial_real' \([\) OF assms \(]\) by (simp add: mult_ac add.commute)
lemma sqrt_series':
    \(|z|<a \Longrightarrow\left(\lambda n .((1 / 2)\right.\) gchoose \(\left.n) * a \operatorname{powr}\left(1 / 2-r e a l_{-} f_{-} n a t n\right) * z^{\wedge} n\right)\) sums
                            sqrt \((a+z::\) real \()\)
    using gen_binomial_real' \({ }^{\prime}[\) of z a 1/2] by (simp add: powr_half_sqrt)
lemma sqrt_series:
    \(|z|<1 \Longrightarrow(\lambda n\). ((1/2) gchoose \(\left.n) * z^{\wedge} n\right)\) sums sqrt \((1+z)\)
    using gen_binomial_real[of z 1/2] by (simp add: powr_half_sqrt)
end
```


6.45 Vitali Covering Theorem and an Application to Negligibility

theory Vitali_Covering_Theorem
imports Equivalence_Lebesgue_Henstock_Integration HOL-Library.Permutations

begin
lemma stretch_Galois:
fixes x :: real ${ }^{\wedge} n$
shows $(\bigwedge k . m k \neq 0) \Longrightarrow((y=(\chi k . m k * x \$ k)) \longleftrightarrow(\chi k . y \$ k / m k)=x)$
by auto
lemma lambda_swap_Galois:
$(x=(\chi$ i. y \$ Fun.swap $m n$ id $i) \longleftrightarrow(\chi i . x \$$ Fun.swap $m n i d i)=y)$ by (auto; simp add: pointfree_idE vec_eq_iff)
lemma lambda_add_Galois:
fixes x :: real ${ }^{\wedge} n$
shows $m \neq n \Longrightarrow(x=(\chi$ i. if $i=m$ then $y \$ m+y \$ n$ else $y \$ i) \longleftrightarrow(\chi$ i. if i $=m$ then $x \$ m-x \$ n$ else $x \$ i)=y)$
by (safe; simp add: vec_eq_iff)

```
lemma Vitali_covering_lemma_cballs_balls:
    fixes \(a::{ }^{\prime} a \Rightarrow\) ' \(b::\) euclidean_space
    assumes \(\bigwedge i . i \in K \Longrightarrow 0<r i \wedge r i \leq B\)
    obtains \(C\) where countable \(C C \subseteq K\)
        pairwise ( \(\lambda i j\). disjnt (cball (ai) (ri)) (cball (aj) (rj))) C
        \(\bigwedge i . i \in K \Longrightarrow \exists j . j \in C \wedge\)
                        \(\neg\) disjnt \((\) cball \((a i)(r i))(\) cball \((a j)(r j)) \wedge\)
                        \(\operatorname{cball}(a i)(r i) \subseteq b a l l(a j)(5 * r j)\)
proof (cases \(K=\{ \}\) )
    case True
    with that show ?thesis
        by auto
next
    case False
    then have \(B>0\)
        using assms less_le_trans by auto
    have \(\operatorname{rgt} 0[\operatorname{simp}]: ~ \bigwedge i . i \in K \Longrightarrow 0<r i\)
        using assms by auto
    let ? djnt \(=\) pairwise \((\lambda i j\). disjnt \((\) cball \((a i)(r i))(\) cball \((a j)(r j)))\)
    have \(\exists C . \forall n .(C n \subseteq K \wedge\)
        \(\left(\forall i \in C n . B / \mathscr{D}^{\wedge} n \leq r i\right) \wedge ? d j n t(C n) \wedge\)
            ( \(\forall i \in K . B /{ }^{\text {® }}{ }^{\wedge} n<r i\)
                \(\longrightarrow(\exists j . j \in C n \wedge\)
                    \(\neg \operatorname{disjnt}(\) cball \((a i)(r i))(\) cball \((a j)(r j)) \wedge\)
                        \(\operatorname{cball}(a i)(r i) \subseteq b a l l(a j)(5 * r j)))) \wedge(C n \subseteq C(S u c n))\)
    proof (rule dependent_nat_choice, safe)
        fix \(C n\)
        define \(D\) where \(D \equiv\left\{i \in K . B / \mathcal{D}^{\wedge}\right.\) Suc \(n<r i \wedge(\forall j \in C . \operatorname{disjnt}(\operatorname{cball}(a\)
\(i)(r i))(\) cball \((a j)(r j)))\}\)
        let ? cover_ar \(=\lambda i j\). \(\neg\) disjnt \((\) cball \((a i)(r i))(c b a l l(a j)(r j)) \wedge\)
                            \(\operatorname{cball}(a i)(r i) \subseteq b a l l(a j)(5 * r j)\)
    assume \(C \subseteq K\)
        and Ble: \(\forall i \in C . B / \mathcal{D}^{\wedge} n \leq r i\)
        and djntC: ?djnt \(C\)
        and cov_n: \(\forall i \in K . B / 2^{\wedge} n<r i \longrightarrow(\exists j . j \in C \wedge\) ?cover_ar \(i j)\)
    have \(*: \forall C \in\) chains \(\{C . C \subseteq D \wedge\) ?djnt \(C\} . \cup C \in\{C . C \subseteq D \wedge\) ?djnt \(C\}\)
    proof (clarsimp simp: chains_def)
            fix \(C\)
            assume \(C: C \subseteq\{C . C \subseteq D \wedge\) ? djnt \(C\}\) and chain \(_{\subseteq} C\)
            show \(\cup C \subseteq D \wedge\) ? djnt \((\bigcup C)\)
            unfolding pairwise_def
            proof (intro ballI conjI impI)
            show \(\bigcup C \subseteq D\)
            using \(C\) by blast
            next
                fix \(x y\)
            assume \(x \in \bigcup C\) and \(y \in \bigcup C\) and \(x \neq y\)
            then obtain \(X Y\) where \(X Y: x \in X X \in C y \in Y Y \in C\)
                by blast
```

```
        then consider X\subseteqY|Y\subseteqX
            by (meson <chain}\subseteqC>chain_subset_def
    then show disjnt (cball (ax) (rx)) (cball (a y) (ry))
    proof cases
            case 1
            with C XY \langlex\not=y> show ?thesis
            unfolding pairwise_def by blast
        next
            case 2
            with C XY \langlex\not=y show ?thesis
            unfolding pairwise_def by blast
        qed
        qed
    qed
    obtain E where E\subseteqD and djntE: ?djnt E and maximalE: }\X.\llbracketX\subseteqD
?djnt }X;E\subseteqX\rrbracket\LongrightarrowX=
    using Zorn_Lemma [OF *] by safe blast
    show }\exists\textrm{L}.(L\subseteqK
                (\foralli\inL.B/2 ^ Suc n \leqri)^ ?djnt L^
                (\foralli\inK.B/2 ^ Suc n <ri\longrightarrow }
    proof (intro exI conjI ballI)
    show }C\cupE\subseteq
        using D_def }\langleC\subseteqK\rangle\langleE\subseteqD`\mathrm{ by blast
    show B/\mp@subsup{}{}{`}}\mp@subsup{}{}{\wedge}Suc n\leqri if i:i\inC\cupE for i
        using i
    proof
        assume i\inC
        have B/2 ^ Suc n \leq B/2 ^ n
            using }\langleB>0\rangle\mathrm{ by (simp add: field_split_simps)
            also have ... \leqri
            using Ble <i }\inC\rangle\mathrm{ by blast
            finally show ?thesis.
    qed (use D_def \langleE\subseteqD> in auto)
    show ?djnt (C\cupE)
            using D_def }\langleC\subseteqK\rangle\langleE\subseteqD\rangledjntC djnt
            unfolding pairwise_def disjnt_def by blast
    next
    fix }
    assume i\inK
    show B/2 ^ Suc n<ri\longrightarrow(\existsj.j\inC\cupE^?cover_ar i j)
    proof (cases r i\leqB/2^n)
        case False
        then show ?thesis
            using cov_n }\langlei\inK`\mathrm{ by auto
        next
            case True
            have cball (a i) (ri)\subseteqball (aj) (5*rj)
            if less:B/2 ` Suc n <ri and j: j\inC\cupE
                and nondis: ᄀ disjnt (cball (a i) (ri)) (cball (aj) (rj)) for j
```

```
    proof -
    obtain x where x: dist (a i) x \leqri dist (a j) x \leqr j
            using nondis by (force simp: disjnt_def)
    have dist (a i) (aj) \leq dist (a i) x + dist x (aj)
            by (simp add: dist_triangle)
    also have ... \leqri +rj
            by (metis add_mono_thms_linordered_semiring(1) dist_commute x)
            finally have aij: dist (ai) (aj)+ri< 5*rj if ri<2*rj
            using that by auto
    show ?thesis
            using j
    proof
            assume j }\in
            have B/2^n<2 * rj
            using Ble True }\langlej\inC`\mathrm{ less by auto
            with aij True show cball (a i) (ri)\subseteq ball (aj) (5*rj)
            by (simp add: cball_subset_ball_iff)
    next
            assume j }\in
            then have B/2 ` n < 2 *rj
                using D_def \langleE\subseteqD` by auto
            with True have ri<2*rj
                by auto
            with aij show cball (a i) (ri)\subseteqball (aj) (5*rj)
                by (simp add: cball_subset_ball_iff)
    qed
    qed
    moreover have }\existsj.j\inC\cupE\wedge\neg\operatorname{disjnt}(cball (a i)(ri))(cball (aj) (
j))
    if B/2 ^ Suc n<ri
    proof (rule classical)
    assume NON: ᄀ?thesis
    show ?thesis
    proof (cases i\inD)
        case True
        have insert i E=E
        proof (rule maximalE)
            show insert i E\subseteqD
                by (simp add: True 〈E\subseteqD>)
            show pairwise (\lambdaij. disjnt (cball (a i) (r i)) (cball (a j) (r j))) (insert
i E)
                using False NON by (auto simp: pairwise_insert djntE disjnt_sym)
        qed auto
        then show ?thesis
            using <i \inK\rangle assms by fastforce
        next
        case False
        with that show ?thesis
            by (auto simp: D_def disjnt_def <i < K>)
```

```
            qed
        qed
        ultimately
        show B/2 ` Suc n <ri \longrightarrow
            (\existsj.j\inC\cupE^
                \neg \text { disjnt (cball (a i) (ri)) (cball (aj) (rj)) ^}
                    cball (a i) (ri)\subseteqball (aj) (5*rj))
        by blast
        qed
    qed auto
    qed (use assms in force)
    then obtain F where FK: \n.F n\subseteqK
            and Fle: \n i. i }\inFn\LongrightarrowB/\mp@subsup{2}{}{\wedge}n\leqr
            and Fdjnt: \n. ?djnt (F n)
            and FF: \ni.\llbracketi\inK;B/2 ^n<ri\rrbracket
```



```
^
                    cball (a i) (ri)\subseteqball (aj) (5*rj)
            and inc: \bigwedgen.Fn\subseteqF(Suc n)
    by (force simp: all_conj_distrib)
    show thesis
    proof
    have *: countable I
        if I\subseteqK and pw: pairwise (\lambdaij. disjnt (cball (a i) (ri)) (cball (aj) (rj)))
I for I
    proof -
        show ?thesis
        proof (rule countable_image_inj_on [of \lambdai.cball(a i)(r i)])
            show countable ((\lambdai. cball (a i) (r i))'I)
            proof (rule countable_disjoint_nonempty_interior_subsets)
            show disjoint ((\lambdai. cball (a i) (ri))'I)
                        by (auto simp: dest: pairwiseD [OF pw] intro: pairwise_imageI)
            show }\S.\llbracketS\in(\lambdai.cball (a i)(ri))'I; interior S={}\rrbracket\LongrightarrowS={
                    using \I\subseteqK>
                by (auto simp: not_less [symmetric])
            qed
        next
            have }\xy.\llbracketx\inI;y\inI;ax=ay;rx=ry\rrbracket\Longrightarrowx=
                using pw<I\subseteqK\rangle assms
                apply (clarsimp simp: pairwise_def disjnt_def)
                by (metis assms centre_in_cball subsetD empty_iff inf.idem less_eq_real_def)
            then show inj_on (\lambdai. cball (a i) (ri)) I
                using <I\subseteqK> by (fastforce simp: inj_on_def cball_eq_cball_iff dest: assms)
        qed
    qed
    show (Union(range F))\subseteqK
        using FK by blast
    moreover show pairwise (\lambdai j. disjnt (cball (a i) (r i)) (cball (a j) (r j)))
(Union(range F))
```

```
    proof (rule pairwise_chain_Union)
        show chain}\subseteq(\mathrm{ range F)
            unfolding chain_subset_def by clarify (meson inc lift_Suc_mono_le linear
subsetCE)
    qed (use Fdjnt in blast)
    ultimately show countable (Union(range F))
        by (blast intro: *)
    next
        fix i assume i\inK
        then obtain n where (1/2) ^ n<ri/B
            using \langleB > 0\rangle assms real_arch_pow_inv by fastforce
        then have B2: B/2 ` n <ri
            using \langleB> 0\rangle by (simp add: field_split_simps)
    have 0<riri\leqB
        by (auto simp: <i \inK> assms)
    show \existsj.j\in(Union(range F))}
                \neg disjnt (cball (a i) (ri)) (cball (aj) (rj))^
                cball (a i) (ri)\subseteqball (aj) (5*rj)
            using FF [OF <i GK> B2] by auto
    qed
qed
```


6.45.1 Vitali covering theorem

```
lemma Vitali_covering_lemma_cballs:
    fixes a :: 'a = 'b::euclidean_space
    assumes S:S\subseteq(\bigcupi\inK.cball (a i) (ri))
        and r:\bigwedgei. i\inK\Longrightarrow0<ri^ri\leqB
    obtains C where countable C C\subseteqK
        pairwise (\lambdaij. disjnt (cball (a i) (r i)) (cball (a j) (r j))) C
        S\subseteq(\bigcupi\inC.cball (a i) (5*ri))
proof -
    obtain C where C: countable C C\subseteqK
                                    pairwise (\lambdai j. disjnt (cball (a i) (ri)) (cball (aj) (r j))) C
            and cov: \bigwedgei. i\inK\Longrightarrow\existsj.j\inC^\neg disjnt (cball (a i) (r i)) (cball (a
j) (rj))^
                                    cball (a i) (ri)\subseteqball (aj) (5*rj)
        by (rule Vitali_covering_lemma_cballs_balls [OF r, where a=a]) (blast intro:
that)+
    show ?thesis
    proof
        have (\bigcupi\inK.cball (a i) (ri))\subseteq(\bigcupi\inC.cball (a i) (5 * r i))
            using cov subset_iff by fastforce
        with S show S\subseteq(\bigcupi\inC.cball (ai) (5*ri))
            by blast
    qed (use C in auto)
qed
```

lemma Vitali_covering_lemma_balls:

```
    fixes \(a::{ }^{\prime} a \Rightarrow{ }^{\prime} b::\) euclidean_space
    assumes \(S: S \subseteq(\bigcup i \in K\). ball \((a i)(r i))\)
        and \(r: \wedge i . i \in K \Longrightarrow 0<r i \wedge r i \leq B\)
    obtains \(C\) where countable \(C C \subseteq K\)
        pairwise ( \(\lambda i j\). disjnt (ball (ai) (ri)) (ball (aj) (rj))) C
        \(S \subseteq(\bigcup i \in C\). ball \((a i)(5 * r i))\)
proof -
    obtain \(C\) where \(C\) : countable \(C C \subseteq K\)
                and pw: pairwise ( \(\lambda i j\). disjnt (cball \((a i)(r i))(\) cball \((a j)(r j))) C\)
            and cov: \(\bigwedge i . i \in K \Longrightarrow \exists j . j \in C \wedge \neg \operatorname{disjnt}(\) cball \((a i)(r i))(\) cball \((a\)
j) \((r j)) \wedge\)
                                    cball \((a i)(r i) \subseteq b a l l(a j)(5 * r j)\)
        by (rule Vitali_covering_lemma_cballs_balls [OF r, where \(a=a]\) ) (blast intro:
that)+
    show ?thesis
    proof
        have \((\bigcup i \in K\). ball \((a i)(r i)) \subseteq(\bigcup i \in C\). ball \((a i)(5 * r i))\)
            using cov subset_iff
            by clarsimp (meson less_imp_le mem_ball mem_cball subset_eq)
            with \(S\) show \(S \subseteq(\bigcup i \in C\). ball \((a i)(5 * r i))\)
                by blast
        show pairwise ( \(\lambda i j\). disjnt (ball \((a i)(r i))(b a l l(a j)(r j))) C\)
            using \(p w\)
            by (clarsimp simp: pairwise_def) (meson ball_subset_cball disjnt_subset1 dis-
jnt_subset2)
    qed (use \(C\) in auto)
qed
```

theorem Vitali_covering_theorem_cballs:
fixes $a::{ }^{\prime} a \Rightarrow$ ' $n::$ euclidean_space
assumes $r: \bigwedge i . i \in K \Longrightarrow 0<r i$
and $S: \bigwedge x d . \llbracket x \in S ; 0<d \rrbracket$
$\Longrightarrow \exists i . i \in K \wedge x \in \operatorname{cball}(a i)(r i) \wedge r i<d$
obtains C where countable $C C \subseteq K$
pairwise ($\lambda i j$. disjnt (cball (ai) (ri)) (cball $(a j)(r j))) C$
negligible $(S-(\bigcup i \in C$. cball $(a i)(r i)))$
proof -
let $? \mu=$ measure lebesgue
have $*: \exists C$. countable $C \wedge C \subseteq K \wedge$
pairwise ($\lambda i j$. disjnt (cball $(a \operatorname{i})(r i))($ cball $(a j)(r j))) C \wedge$
negligible $(S-(\bigcup i \in C$. cball $(a i)(r i)))$
if $r 01: \wedge i . i \in K \Longrightarrow 0<r i \wedge r i \leq 1$
and $S d: \wedge x d . \llbracket x \in S ; 0<d \rrbracket \Longrightarrow \exists i . i \in K \wedge x \in \operatorname{cball}(a i)(r i) \wedge r i$
$<d$
for $K r$ and $a::{ }^{\prime} a \Rightarrow{ }^{\prime} n$
proof -
obtain C where C : countable $C C \subseteq K$
and $p w C$: pairwise $(\lambda i j$. disjnt $(\operatorname{cball}(a i)(r i))(c b a l l(a j)(r j))) C$

```
    and cov: \bigwedgei. i\inK\Longrightarrow\existsj.j\inC^\neg\operatorname{disjnt (cball (a i) (ri)) (cball (aj)}
(rj))^
                    cball (a i) (ri)\subseteqball (aj) (5*rj)
    by (rule Vitali_covering_lemma_cballs_balls [of K r 1 a]) (auto simp: r01)
    have ar_injective: \x y. \llbracketx\inC;y\inC;ax=a y;rx=ry\rrbracket\Longrightarrowx=y
    using 〈C\subseteqK` pwC cov
    by (force simp: pairwise_def disjnt_def)
    show ?thesis
    proof (intro exI conjI)
    show negligible (S - (\bigcup i\inC. cball (a i) (r i)))
    proof (clarsimp simp: negligible_on_intervals [of S-T for T])
        fix lu
        show negligible ((S - (\bigcupi\inC.cball (a i) (ri))) \cap cbox l u)
            unfolding negligible_outer_le
            proof (intro allI impI)
            fix e::real
            assume e>0
            define D where D\equiv{i\inC.\neg disjnt (ball(a i)(5*ri))(cbox l u)}
            then have D\subseteqC
                by auto
            have countable D
                    unfolding D_def using <countable C> by simp
            have UD: (\bigcupi\inD. cball (a i) (ri)) \in lmeasurable
            proof (rule fmeasurableI2)
                    show cbox (l-6** One) (u+6** One)\inlmeasurable
                    by blast
                    have y f cbox (l-6**ROne) (u+6**R One)
                            if i\inC and x:x\incboxl u and ai:dist (a i) y\leqri dist (a i) x<
5*ri
                for ixy
            proof -
                have d6: dist y x<6*ri
                    using dist_triangle3 [of y x a i] that by linarith
                    show ?thesis
                    proof (clarsimp simp: mem_box algebra_simps)
                        fix j::'n
                        assume j:j\in Basis
                        then have xyj: }|x\cdotj-y\cdotj|\leq\operatorname{dist y }
                            by (metis Basis_le_norm dist_commute dist_norm inner_diff_left)
                    have l \cdot j\leq x | j
                        using <j \in Basis`mem_box <x c cbox l u> by blast
                        also have ... \leqy.j+6*ri
                        using d6 xyj by (auto simp: algebra_simps)
                also have .. \leqy . j+6
                            using r01 [of i] \langleC\subseteqK\rangle\langlei\inC\rangle by auto
                finally have l:l | j\leqy \cdotj+6.
                have }y\cdotj\leqx\cdotj+6*r
                        using d6 xyj by (auto simp: algebra_simps)
                also have ... \lequ .j+6*ri
```

```
                    using \(j x\) by (auto simp: mem_box)
                also have \(\ldots \leq u \cdot j+6\)
                    using \(r 01\) [of \(i]\langle C \subseteq K\rangle\langle i \in C\rangle\) by auto
            finally have \(u: y \cdot j \leq u \cdot j+6\).
                show \(l \cdot j \leq y \cdot j+6 \wedge y \cdot j \leq u \cdot j+6\)
                    using \(l u\) by blast
        qed
        qed
        then show \((\bigcup i \in D . \operatorname{cball}(a i)(r i)) \subseteq \operatorname{cbox}\left(l-6 *_{R}\right.\) One \()\left(u+6 *_{R}\right.\)
        by (force simp: D_def disjnt_def)
        show \((\bigcup i \in D\). cball \((a i)(r i)) \in\) sets lebesgue
        using <countable \(D\) 〉 by auto
    qed
```

One)
obtain $D 1$ where $D 1 \subseteq D$ finite $D 1$
and measD1: ? $\mu\left(\bigcup i \in D\right.$. cball $\left.\binom{a}{i}(r i)\right)-e / 5^{\wedge} \operatorname{DIM}(' n)<? \mu$
$(\bigcup i \in D 1 . c b a l l(a i)(r i))$
proof (rule measure_countable_Union_approachable [where $e=e / 5^{\text {^ }}$
(DIM (' $n)$)] $)$
show countable ((λ i. cball (ai) (ri))' D)
using <countable D 〉 by auto
show $\bigwedge d . d \in(\lambda i$. cball $(a i)(r i)) ' D \Longrightarrow d \in$ lmeasurable
by auto
show $\bigwedge D^{\prime} . \llbracket D^{\prime} \subseteq(\lambda i \text {. cball }(\text { a } i)(r i))^{\prime} D ;$ finite $D^{\prime} \rrbracket \Longrightarrow ? \mu\left(\bigcup D^{\prime}\right) \leq$
? $\mu(\bigcup i \in D . c b a l l(a i)(r i))$
by (fastforce simp add: intro!: measure_mono_fmeasurable UD)
qed (use $\langle e>0\rangle$ in \langle auto dest: finite_subset_image〉)
show $\exists T$. $(S-(\bigcup i \in C$. cball $(a i)(r i))) \cap$
cbox $l u \subseteq T \wedge T \in$ lmeasurable $\wedge ? \mu T \leq e$
proof (intro exI conjI)
show $(S-(\bigcup i \in C$. cball $(a i)(r i))) \cap$ cbox $l u \subseteq(\bigcup i \in D-D 1 . b a l l$
(ai) $(5 * r i))$
proof clarify
fix x
assume x : $x \in$ cbox $l u x \in S x \notin\left(\bigcup i \in C\right.$. cball (ai) $\left(\begin{array}{rl}r & i))\end{array}\right.$
have closed $(\bigcup i \in D 1$. cball ($a i$ i) ($r i$))
using 〈finite D1〉 by blast
moreover have $x \notin(\bigcup j \in D 1$. cball $(a j)(r j))$
using $x\langle D 1 \subseteq D\rangle$ unfolding $D_{-} d e f$ by blast
ultimately obtain q where $q>0$ and q : ball $x q \subseteq-(\bigcup i \in D 1$.
cball (a i) (ri))
by (metis (no_types, lifting) ComplI open_contains_ball closed_def)
obtain i where $i \in K$ and $x i: x \in \operatorname{cball}(a i)(r i)$ and ri: $r i<q / \mathscr{2}$
using $S d[O F\langle x \in S\rangle]\langle q>0\rangle$ half_gt_zero by blast
then obtain j where $j \in C$
and nondisj: \neg disjnt $($ cball $(a i)(r i))($ cball $(a j)(r j))$
and sub5j: cball $(a i)(r i) \subseteq b a l l(a j)(5 * r j)$
using $\operatorname{cov}[O F\langle i \in K\rangle]$ by metis
show $x \in(\bigcup i \in D-D 1$. ball (a i) $(5 * r i))$

proof

show $j \in D-D 1$
proof show $j \in D$ using $\langle j \in C\rangle$ sub5j $\langle x \in$ cbox $l u\rangle$ xi by (auto simp: D_def
disjnt_def)
obtain y where $y i$: dist $(a i) y \leq r i$ and $y j: \operatorname{dist}(a j) y \leq r j$ using disjnt_def nondisj by fastforce
have dist $x y \leq r i+r i$
by (metis add_mono dist_commute dist_triangle_le mem_cball xi yi)
also have $\ldots<q$
using ri by linarith
finally have $y \in$ ball $x q$ by simp
with $y j q$ show $j \notin D 1$
by (auto simp: disjoint_UN_iff)
qed
show $x \in$ ball (aj) ($5 * r j$)
using xi sub5j by blast
qed
qed
have 3: ? $\mu(\bigcup i \in D$ 2. ball $(a i)(5 * r i)) \leq e$
if $D 2: D 2 \subseteq D-D 1$ and finite $D 2$ for $D 2$
proof -
have rgt0: $0<r i$ if $i \in D 2$ for i
using $\langle C \subseteq K\rangle D_{-} d e f\langle i \in D 2\rangle D 2$ r01
by (simp add: subset_iff)
then have inj: inj_on (λ i. ball (a i $)(5 * r i)$) D2
using $\langle C \subseteq K\rangle$ D2 by (fastforce simp: inj_on_def $D_{-} d e f$ ball_eq_ball_iff intro: ar_injective)
have ? $\mu(\bigcup i \in D 2$. ball $(a i)(5 * r i)) \leq \operatorname{sum}(? \mu)((\lambda i$. ball (a i) $)(5$ * $r i$)) ${ }^{(D 2)}$
using that by (force intro: measure_Union_le)
also have $\ldots=\left(\sum i \in D 2\right.$. ? $\mu($ ball $\left.(a i)(5 * r i))\right)$
by (simp add: comm_monoid_add_class.sum.reindex [OF inj])
also have $\ldots=\left(\sum i \in D 2.5^{\wedge} \operatorname{DIM}\left({ }^{\prime} n\right) * ? \mu(b a l l(a i)(r i))\right)$
proof (rule sum.cong [OF refl])
fix i assume $i \in D 2$
thus ? $\mu(b a l l(a i)(5 * r i))=5^{\wedge} D I M(' n) * ? \mu(b a l l(a i)(r i))$
using content_ball_conv_unit_ball[of $5 * r i a i]$
content_ball_conv_unit_ball[of r i a i $]$ rgt0[of i] by auto
qed
also have $\ldots=\left(\sum i \in D 2\right.$. ? $\mu($ ball $($ a $\left.i)(r i))\right) * 5^{\wedge} \operatorname{DIM}\left({ }^{\prime} n\right)$
by (simp add: sum_distrib_left mult.commute)
finally have ? $\mu(\bigcup i \in D$ 2. ball $(a i)(5 * r i)) \leq\left(\sum i \in D 2\right.$. ? $\mu($ ball $(a$
i) $(r i))) * 5^{\wedge} \operatorname{DIM}\left({ }^{\prime} n\right)$.
moreover have $\left(\sum i \in D 2\right.$. ? $\mu($ ball $\left.(a i)(r i))\right) \leq e / 5^{\wedge} D I M\left({ }^{\prime} n\right)$
proof -
have D12_dis: $((\bigcup x \in D 1$. cball $(a x)(r x)) \cap(\bigcup x \in D 2$. cball (a $x)$

$$
(r x))) \leq\{ \}
$$

proof clarify
fix $w d 1 d 2$
assume d1 $\in D 1 w d 1 d 2 \in \operatorname{cball}(a d 1)(r d 1) d 2 \in D 2 w d 1 d 2$
$\in \operatorname{cball}(a d 2)(r d 2)$
then show $w d 1 d 2 \in\}$
by（metis Diffe disjnt＿iff subsetCE D2 $\langle D 1 \subseteq D\rangle\langle D \subseteq C\rangle$ pairwiseD ［OF pwC，of d1 d2］）
qed
have inj：inj＿on（ λi ．cball（a i）（ri））D2
using rgt0 D2 $\langle D \subseteq C\rangle$ by（force simp：inj＿on＿def cball＿eq＿cball＿iff intro！：ar＿injective）
have ds：disjoint（（ λi ．cball $(a i)(r i))$＇D2）
using $D 2\langle D \subseteq C\rangle$ by（auto intro：pairwiseI pairwiseD［OF pwC］）
have $\left(\sum i \in D 2\right.$ ．？$\mu($ ball $\left.(a i)(r i))\right)=\left(\sum i \in D 2\right.$ ．？$\mu($ cball $(a i)(r$
i）））
by（simp add：content＿cball＿conv＿ball）
also have $\ldots=\operatorname{sum}$ ？$\mu((\lambda i$ ．cball $(a i)(r i))$＇D2 $)$
by（simp add：comm＿monoid＿add＿class．sum．reindex［OF inj］）
also have $\ldots=? \mu(\bigcup i \in D 2$ ．cball $(a i)(r i))$
by（auto intro：measure＿Union＇［symmetric］ds simp add：〈finite D2〉）
finally have ？$\mu(\bigcup i \in D 1$ ．cball $(a i)(r i))+\left(\sum i \in D 2\right.$ ．？μ（ball（ a
i）$(r i)))=$

$$
? \mu(\bigcup i \in D 1 . \text { cball }(a i)(r i))+? \mu(\bigcup i \in D 2 . \text { cball }(a i)
$$

$(r i))$
by simp
also have $\ldots=? \mu(\bigcup i \in D 1 \cup D 2$. cball $(a i)(r i))$
using D12＿dis by（simp add：measure＿Un3〈finite D1〉〈finite D2〉
fmeasurable．finite＿UN）
also have $\ldots \leq ? \mu(\bigcup i \in D$ ．cball $(a i)(r i))$
using $D 2\langle D 1 \subseteq D\rangle$ by（fastforce intro！：measure＿mono＿fmeasurable
［OF＿＿UD］〈finite D1〉〈finite D2〉）
finally have ？$\mu(\bigcup i \in D 1$ ．cball（ $a i)(r i))+\left(\sum i \in D 2\right.$ ．？μ（ball（ a
i）$(r i))) \leq ? \mu(\bigcup i \in D$. cball $(a i)(r i))$ ．
with measD1 show ？thesis
by simp
qed
ultimately show ？thesis
by（simp add：field＿split＿simps）
qed
have co：countable（ $D-D 1$ ）
by（simp add：〈countable D ））
show $(\bigcup i \in D-D 1$ ．ball $(a i)(5 * r i)) \in$ lmeasurable
using $\langle e>0\rangle$ by（auto simp：fmeasurable＿UN＿bound［OF co－3］）
show ？$\mu(\bigcup i \in D-D 1$ ．ball $(a i)(5 * r i)) \leq e$
using $\langle e>0\rangle$ by（auto simp：measure＿UN＿bound［OF co＿3］）
qed
qed
qed

```
    qed (use C pwC in auto)
qed
define }\mp@subsup{K}{}{\prime}\mathrm{ where }\mp@subsup{K}{}{\prime}\equiv{i\inK.ri\leq1
have 1: \i. i G K', \Longrightarrow0<ri^ri\leq1
    using K'_def r by auto
have 2: \existsi. i\in K'^x\incball (ai) (ri)^ri<d
    if }x\inS\wedge0<d\mathrm{ for }x
    using that by (auto simp: K'_def dest!: S [where d = min d 1])
have K'\subseteqK
    using K'_def by auto
then show thesis
    using * [OF 1 2] that by fastforce
qed
```

```
theorem Vitali_covering_theorem_balls:
    fixes a :: 'a = 'b::euclidean_space
    assumes S:\bigwedgexd.\llbracketx\inS;0<d\rrbracket\Longrightarrow\existsi.i\inK\wedgex\inball (ai) (ri)^ri<
d
    obtains C where countable C C\subseteqK
        pairwise (\lambdai j. disjnt (ball (a i) (r i)) (ball (a j) (r j))) C
        negligible(S - (\bigcupi C C.ball (a i) (ri)))
proof -
    have 1: \existsi. i f {i\inK. 0<ri}^x\in cball (ai) (ri)^ri<d
        if xd: x \inSd>0 for xd
    by (metis (mono_tags, lifting) assms ball_eq_empty less_eq_real_def mem_Collect_eq
mem_ball mem_cball not_le xd(1) xd(2))
    obtain C where C: countable C C\subseteqK
                and pw: pairwise (\lambdaij. disjnt (cball (a i) (ri)) (cball (a j) (r j))) C
                and neg: negligible(S - (\bigcupi C C.cball (a i) (ri)))
        by (rule Vitali_covering_theorem_cballs [of {i\inK.0<ri} rSa,OF_1])
auto
    show thesis
    proof
        show pairwise (\lambdaij. disjnt (ball (a i) (ri)) (ball (a j) (rj)))C
        apply (rule pairwise_mono [OF pw])
        apply (auto simp: disjnt_def)
        by (meson disjoint_iff_not_equal less_imp_le mem_cball)
    have negligible (\i\inC. sphere (a i) (ri))
            by (auto intro: negligible_sphere <countable C`)
        then have negligible (S - (\bigcupi\inC.cball(a i)(ri)) \cup(\bigcupi ( C C.sphere (a i)
(ri)))
            by (rule negligible_Un [OF neg])
            then show negligible (S - (\bigcupi\inC. ball (a i) (ri)))
            by (rule negligible_subset) force
    qed (use C in auto)
qed
```

```
lemma negligible_eq_zero_density_alt:
    negligible S \longleftrightarrow
    (}\forallx\inS.\foralle>
    \existsdU.0<d\wedged\leqe^S\cap ball x d\subseteqU^
                            U\in lmeasurable ^ measure lebesgue }U<e*\mathrm{ measure lebesgue (ball x
d))
    (is _ = (\forallx\inS.\foralle>0.?Q x e))
proof (intro iffI ballI allI impI)
    fix }x\mathrm{ and e :: real
    assume negligible S and x}\inS\mathrm{ and e>0
    then
    show \existsd U. 0<d\wedged\leqe^S\cap ball x d\subseteqU\wedgeU\inlmeasurable }
                    measure lebesgue U<e* measure lebesgue (ball x d)
        apply (rule_tac x=e in exI)
        apply (rule_tac x=S \cap ball x e in exI)
    apply (auto simp: negligible_imp_measurable negligible_Int negligible_imp_measure0
zero_less_measure_iff
                                    intro: mult_pos_pos content_ball_pos)
        done
next
    assume R [rule_format]: }\forallx\inS.\foralle>0.?Q x 
    let ? }\mu=\mathrm{ measure lebesgue
    have \existsU. openin (top_of_set S)}U\wedgez\inU\wedge negligible U
        if z\inS for z
    proof (intro exI conjI)
        show openin (top_of_set S) (S \cap ball z 1)
        by (simp add: openin_open_Int)
        show z}\inS\cap\mathrm{ ball z 1
            using }\langlez\inS\rangle\mathrm{ by auto
        show negligible (S \cap ball z 1)
        proof (clarsimp simp: negligible_outer_le)
            fix e :: real
            assume e>0
            let ?K}={(x,d). x\inS\wedge0<d\wedge ball x d\subseteqball z 1 ^
                    (\existsU.S\cap\mathrm{ ball x d }\subseteqU\wedgeU\in\mathrm{ lmeasurable }\wedge
                            ?\mu U<e / ? }\mu(\mathrm{ ball z 1) * ? }\mu(\mathrm{ ball x d))}
            obtain C where countable C and Csub:C\subseteq?K
                and pwC: pairwise (\lambdai j. disjnt (ball (fst i) (snd i)) (ball (fst j) (snd j))) C
                and negC: negligible((S\cap ball z 1) - (\bigcupi\inC.ball (fst i) (snd i)))
            proof (rule Vitali_covering_theorem_balls [of S \cap ball z 1 ?K fst snd])
                fix }x\mathrm{ and }d:: rea
                assume x:x\inS\cap ball z 1 and d>0
                obtain k}\mathrm{ where k>0 and k: ball x k}\subseteq\mathrm{ ball z 1
                    by (meson Int_iff open_ball openE x)
                let ?\varepsilon = min (e/? ! (ball z 1) / 2) (min (d/2) k)
            obtain r U where r:r>0r\leq?\varepsilon and U:S\cap ball x r\subseteqUU\inlmeasurable
                    and mU:? }\muU<?\varepsilon* * ! (ball x r )
                using R[of x ? ह] \langled> 0 \ <e> 0\rangle\langlek> 0\rangle x by (auto simp: content_ball_pos)
                show \existsi.i\in?K ^x\in ball (fst i) (snd i)^ snd i<d
```

```
    proof (rule exI [of _ (x,r)], simp, intro conjI exI)
    have ball x r\subseteq ball x k
        using r by (simp add: ball_subset_ball_iff)
    also have ...\subseteq ball z 1
        using ball_subset_ball_iff k by auto
    finally show ball x r \subseteq ball z 1 .
    have ?\varepsilon*? }\mu(ball x r)\leqe* content (ball x r) / content (ball z 1)
        using r <e > 0\rangle by (simp add: ord_class.min_def field_split_simps
content_ball_pos)
    with mU show ? }\muU<e*\mathrm{ content (ball x r) / content (ball z 1)
        by auto
    qed (use r U x in auto)
    qed
    have }\existsU\mathrm{ . case p of (x,d) # S @ ball x d }\subseteqU
                U lmeasurable ^ ? }\muU<e/ ? \mu (ball z 1)* ? \mu (ball x d)
    if p\inC for p
    using that Csub unfolding case_prod_unfold by blast
    then obtain U where U
                \p.p\inC\Longrightarrow
                            case p of (x,d)=>S\cap ball x d\subseteqUp^
                            U p\inlmeasurable }\wedge??\mu(Up)<e/ ? \mu (ball z 1)*? | (ball x d)
    by (rule that [OF someI_ex])
    let ?T = ((S\cap ball z 1) - (\bigcup (x,d) \inC. ball x d )) \cup \bigcup(U'}C
    show }\existsT.S\cap\mathrm{ ball z 1}\subseteqT\wedgeT\inlmeasurable ^? % T\leq
    proof (intro exI conjI)
    show S\cap ball z 1\subseteq?T
        using U by fastforce
    { have Um:U i\inlmeasurable if i\inC for i
            using that U by blast
        have lee: ? }\mu(\bigcupi\inI.Ui)\leqe if I\subseteqC finite I for I
        proof -
            have ? }\mu(\bigcup(x,d)\inI.ball x d ) \leq? ( ball z 1)
                apply (rule measure_mono_fmeasurable)
                            using \I\subseteqC\rangle\langlefinite I\rangleCsub by (force simp: prod.case_eq_if
sets.finite_UN)+
            then have le1: (?\mu(\bigcup(x,d)\inI. ball x d ) / ? \mu (ball z 1))\leq1
            by (simp add: content_ball_pos)
            have ?\mu(\bigcupi\inI.U i)\leq(\sumi\inI.?\mu(U i))
            using that U by (blast intro: measure_UNION_le)
            also have ... \leq (\sum(x,r)\inI.e / ? \mu (ball z 1)*? }\mu(\mathrm{ ball x r))
                by (rule sum_mono) (use \langleI\subseteqC`U in force)
            also have ... = (e/ ? \mu (ball z 1))*(\sum(x,r)\inI.? }\mu(\mathrm{ ball x r))
            by (simp add: case_prod_app prod.case_distrib sum_distrib_left)
            also have ... =e*(? }\mu(\bigcup(x,r)\inI.ball x r) / ? \mu (ball z 1))
                apply (subst measure_UNION')
            using that pwC by (auto simp: case_prod_unfold elim: pairwise_mono)
            also have ... \leqe
            by (metis mult.commute mult.left_neutral mult_le_cancel_iff1 \langlee> 0\rangle
le1)
```

```
            finally show ?thesis .
            qed
            have }\bigcup(U'C)\in lmeasurable ? \mu (U(U'C))\leq
                using <e> 0\rangle Um lee
            by(auto intro!: fmeasurable_UN_bound [OF <countable C`] measure_UN_bound
[OF <countable C`])
            }
            moreover have ? }\mu\mathrm{ ? T = ? }\mu(U(U'C)
            proof (rule measure_negligible_symdiff [OF \bigcup (U'C) \in lmeasurable>])
            show negligible((U(U'C) - ?T) \cup(?T - U(U'C)))
                    by (force intro!: negligible_subset [OF negC])
            qed
            ultimately show ?T }\in\mathrm{ lmeasurable ? }\mu\mathrm{ ?T 
            by (simp_all add: fmeasurable.Un negC negligible_imp_measurable split_def)
        qed
    qed
    qed
    with locally_negligible_alt show negligible S
        by metis
qed
proposition negligible_eq_zero_density:
    negligible S \longleftrightarrow
        ( }\forallx\inS.\forallr>0.\foralle>0.\existsd.0<d\wedged\leqr^
                            (\existsU.S\cap ball x d\subseteqU\wedgeU\in lmeasurable }\wedge\mathrm{ measure lebesgue }
<e* measure lebesgue (ball xd)))
proof -
    let ?Q = \lambdax d e. \existsU.S\cap ball x d\subseteqU\wedgeU\inlmeasurable ^ measure lebesgue
U<e* content (ball x d)
    have (\foralle>0.\existsd>0.d \leqe^?Q x de) = (\forallr>0.\foralle>0.\existsd>0.d\leqr^??Q
xde)
        if x\inS for }
    proof (intro iffI allI impI)
        fix r :: real and e :: real
        assume L [rule_format]: \foralle>0.\existsd>0.d\leqe^?Q xde and r>0e>0
        show }\existsd>0.d\leqr^\mp@code{?Q x d e
            using}L[of min re] apply (rule ex_forward)
            using }\langler>0\rangle\langlee>0\rangle by (auto intro: less_le_trans elim!: ex_forward simp
content_ball_pos)
    qed auto
    then show ?thesis
        by (force simp: negligible_eq_zero_density_alt)
qed
end
```


6.46 Change of Variables Theorems

theory Change_Of_Vars
imports Vitali_Covering_Theorem Determinants

begin

6.46.1 Measurable Shear and Stretch

proposition

fixes $a::$ real $^{\wedge} n$
assumes $m \neq n$ and ab_ne: cbox $a b \neq\{ \}$ and $a n: 0 \leq a \$ n$
shows measurable_shear_interval: $(\lambda x . \chi$ i. if $i=m$ then $x \$ m+x \$ n$ else $x \$ i)$ ' (cbox a b) \in lmeasurable
(is ? f^{\prime} _ \in _)
and measure_shear_interval: measure lebesgue $((\lambda x . \chi$ i. if $i=m$ then $x \$ m+$ $x \$ n$ else $x \$ i$) ' cbox a b)

```
                = measure lebesgue (cbox a b) (is ?Q)
```

proof -
have lin: linear?f
by (rule linearI) (auto simp: plus_vec_def scaleR_vec_def algebra_simps)
show fab: ?f ' cbox a $b \in$ lmeasurable
by (simp add: lin measurable_linear_image_interval)
let ? $c=\chi$ i. if $i=m$ then $b \$ m+b \$ n$ else $b \$ i$
let ? $m n=$ axis $m 1-$ axis $n(1:$:real $)$
have eq1: measure lebesgue (cbox a ?c)
$=$ measure lebesgue (?f ‘cbox a b)
+ measure lebesgue (cbox a ?c $\cap\{x$. ? $m n \cdot x \leq a \$ m\}$)
+ measure lebesgue (cbox a ? $c \cap\{x$. ? $m n \cdot x \geq b \$ m\}$)
proof (rule measure_Un3_negligible)
show cbox a ? $c \cap\{x$. ? $m n \cdot x \leq a \$ m\} \in$ lmeasurable cbox a ? $c \cap\{x$. ? $m n \cdot x$
$\geq b \$ m\} \in$ lmeasurable
by (auto simp: convex_Int convex_halfspace_le convex_halfspace_ge bounded_Int
measurable_convex)
have negligible $\{x$. ? $m n \cdot x=a \$ m\}$
by (metis $\langle m \neq n\rangle$ axis_index_axis eq_iff_diff_eq_0 negligible_hyperplane)
moreover have ?f 'cbox a $b \cap($ cbox a ? $c \cap\{x$. ? $m n \cdot x \leq a \$ m\}) \subseteq\{x$.
? $m n \cdot x=a \$ m\}$
using $\langle m \neq n\rangle$ antisym_conv by (fastforce simp: algebra_simps mem_box_cart
inner_axis')
ultimately show negligible $((? f$ ' cbox a b) $\cap($ cbox $a ? c \cap\{x$. ? $m n \cdot x \leq a \$$
$m\})$)
by (rule negligible_subset)
have negligible $\{x$. ? $m n \cdot x=b \$ m\}$
by (metis $\langle m \neq n\rangle$ axis_index_axis eq_iff_diff_eq_0 negligible_hyperplane)
moreover have (?f'cbox ab) $\cap($ cbox a ? $c \cap\{x$. ?mn $\cdot x \geq b \$ m\}) \subseteq\{x$.
? $m n \cdot x=b \$ m\}$
using $\langle m \neq n\rangle$ antisym_conv by (fastforce simp: algebra_simps mem_box_cart
inner_axis')
ultimately show negligible (?f'cbox ab $\cap($ cbox a ? $c \cap\{x$. ? $m n \cdot x \geq b \$ m\})$)
by (rule negligible_subset)
have negligible $\{x$. ? $m n \cdot x=b \$ m\}$

```
    by (metis }\langlem\not=n) axis_index_axis eq_iff_diff_eq_0 negligible_hyperplane) (
    moreover have (cbox a ?c \cap {x. ?mn • x\leqa$ m} \cap (cbox a ?c \cap{x.?mn
- x\geqb$m}))\subseteq{x.?mn • x = b$m}
    using \m\not=n` ab_ne
    apply (auto simp: algebra_simps mem_box_cart inner_axis')
    apply (drule_tac }x=m\mathrm{ in spec)+
    apply simp
    done
    ultimately show negligible (cbox a ?c \cap{x. ?mn • x \leqa$m} \cap (cbox a ?c
\cap{x.?mn\cdotx\geqb$m}))
            by (rule negligible_subset)
    show ?f 'cbox a b \cup cbox a ?c \cap {x. ?mn • x \leqa$ m}\cup cbox a?c \cap {x.
?mn}\cdotx\geqb$m}=cbox a ?c (is ?lhs = _)
    proof
    show ?lhs \subseteqcbox a ?c
        by (auto simp: mem_box_cart add_mono) (meson add_increasing2 an or-
der_trans)
    show cbox a ?c\subseteq?lhs
        apply (auto simp: algebra_simps image_iff inner_axis' lambda_add_Galois
[OF <m\not= n\])
            apply (auto simp: mem_box_cart split: if_split_asm)
            done
        qed
    qed (fact fab)
    let ?d = \chi i. if i=m then a $ m-b$m else 0
    have eq2: measure lebesgue (cbox a?c \cap{x.?mn | x \leqa$m})+ measure
lebesgue (cbox a?c \cap {x. ?mn • x \geqb$m})
        = measure lebesgue (cbox a ( \chi i. if i=m then a$m+b$n nelse b$ i))
    proof (rule measure_translate_add[of cbox a ?c \cap {x. ?mn | x \leqa§m} cbox a ?c
\cap{x. ?mn • x \geqb$m}
        (\chi i. if i=m then a$m - b$m else 0) cbox a ( }\chi\mathrm{ i. if i=m then a$m+b$n
else b$i)])
    show (cbox a?c \cap{x. ?mn | x \leqa$m}) \in lmeasurable
            cbox a ?c \cap {x.?mn | x \geqb$m} \lmeasurable
            by (auto simp: convex_Int convex_halfspace_le convex_halfspace_ge bounded_Int
measurable_convex)
    have \x.\llbracketx$ n+a$m\leqx$m\rrbracket
            \Longrightarrowx\in(+)(\chi i. if i=m then a $ m-b$ m else 0)'{x. x$ n+b$
m\leqx$m}
            using (m\not=n)
            by (rule_tac }x=x-(\chi\mathrm{ i. if i = m then a$m - b$m else 0) in image_eqI)
                (simp_all add: mem_box_cart)
```



```
            using }\langlem\not=n\rangle\mathrm{ by (auto simp: mem_box_cart inner_axis' algebra_simps)
    have }\x.\llbracket0\leqa$n;x$\n+a$m\leqx$m
                    \foralli.i\not=m\longrightarrowa$i\leqx$i\wedgex$i\leqb$ \\rrbracket
            \Longrightarrow$m\leqx$m
            using {m\not=n\rangle by force
    then have (+) ?d '(cbox a ?c \cap{x.b$m\leq?mn | x})
```

```
    = cbox a (\chi i. if i=m then a $ m + b$ n else b $ i) \cap{x.a$ m\leq
?mn}\cdotx
        using an ab_ne
    apply (simp add: cbox_translation [symmetric] translation_Int interval_ne_empty_cart
imeq)
    apply (auto simp: mem_box_cart inner_axis' algebra_simps if_distrib all_if_distrib)
    by (metis (full_types) add_mono mult_2_right)
    then show cbox a ?c \cap {x. ?mn • x \leqa@ m}\cup
                (+) ?d'(cbox a ?c \cap {x.b$m\leq?mn - x}) =
                cbox a (\chi i. if i=m then a $m+b$n else b $ i) (is ?lhs = ?rhs)
            using an \langlem\not= n\rangle
    apply (auto simp: mem_box_cart inner_axis' algebra_simps if_distrib all_if_distrib,
force)
            apply (drule_tac x=n in spec)+
            by (meson ab_ne add_mono_thms_linordered_semiring(3) dual_order.trans in-
terval_ne_empty_cart(1))
    have negligible{x. ?mn • x = a$m}
        by (metis }\langlem\not=n\rangle\mathrm{ axis_index_axis eq_iff_diff_eq_0 negligible_hyperplane)
    moreover have (cbox a ?c \cap{x. ?mn • x \leqa$m m \cap
                                    (+) ?d'(cbox a ?c \cap {x.b$ m \leq ?mn • x})) \subseteq{x.
?mn}\cdotx=a$m
            using <m\not= n` antisym_conv by (fastforce simp: algebra_simps mem_box_cart
inner_axis')
    ultimately show negligible (cbox a ?c \cap{x. ?mn • x \leqa$m}\cap
                    (+) ?d'(cbox a ?c \cap {x.b$ m \leq ?mn • x}))
            by (rule negligible_subset)
    qed
    have ac_ne: cbox a ?c \not={}
        using ab_ne an
    by (clarsimp simp: interval_eq_empty_cart) (meson add_less_same_cancel1 le_less_linear
less_le_trans)
    have ax_ne: cbox a ( }\chi\mathrm{ i. if i=m then a $ m+b$ n else b $ i)}\not={
        using ab_ne an
    by (clarsimp simp: interval_eq_empty_cart) (meson add_less_same_cancel1 le_less_linear
less_le_trans)
    have eq3: measure lebesgue (cbox a ?c) = measure lebesgue (cbox a (\chi i. if i=
m}\mathrm{ then a$m +b$n else b$i)) + measure lebesgue (cbox a b)
    by (simp add: content_cbox_if_cart ab_ne ac_ne ax_ne algebra_simps prod.delta_remove
                if_distrib [of \lambdau.u-z for z] prod.remove)
    show ?Q
        using eq1 eq2 eq3
        by (simp add: algebra_simps)
qed
```


proposition

fixes $S::\left(\right.$ real $\left.^{\wedge} n\right)$ set
assumes $S \in$ lmeasurable
shows measurable_stretch: $((\lambda x . \chi k . m k * x \$ k)$ ' $S) \in$ lmeasurable (is ?f ' S

\in－）

and measure＿stretch：measure lebesgue $((\lambda x . \chi k . m k * x \$ k) \cdot S)=\mid \operatorname{prod} m$ $U N I V \mid *$ measure lebesgue S
（is ？$M E Q$ ）
proof－
have（？f＇S ）\in lmeasurable \wedge ？MEQ
proof（cases $\forall k . m k \neq 0$ ）
case True
have m0： $0<\mid$ prod m UNIV \mid
using True by simp
have（indicat＿real（？f ‘ S）has＿integral \mid prod m UNIV \mid＊measure lebesgue S ）
UNIV
proof（clarsimp simp add：has＿integral＿alt［where $i=U N I V]$ ）
fix e ：：real
assume $e>0$
have（indicat＿real S has＿integral（measure lebesgue S））UNIV
using assms lmeasurable＿iff＿has＿integral by blast
then obtain B where $B>0$
and $B: \bigwedge a b$ ．ball $0 B \subseteq$ cbox a $b \Longrightarrow$
$\exists z .($ indicat＿real S has＿integral z）$($ cbox a b）\wedge
$\mid z$－measure lebesgue $S|<e /|$ prod m UNIV \mid
by（simp add：has＿integral＿alt［where $i=U N I V])$（metis（full＿types）di－ vide＿pos＿pos m0 m0 〈e＞0〉）
show $\exists B>0 . \forall a b$ ．ball $0 B \subseteq$ cbox a $b \longrightarrow$
$(\exists z$. （indicat＿real（？f＇S）has＿integral z）$($ cbox ab）\wedge
$|z-|$ prod m UNIV $\mid *$ measure lebesgue $S \mid<e$ ）
proof（intro exI conjI allI）
let ？$C=\operatorname{Max}(\operatorname{range}(\lambda k .|m k|)) * B$
show？$C>0$
using True $\langle B>0\rangle$ by（simp add：Max＿gr＿iff）
show ball 0？$C \subseteq$ cbox $u v \longrightarrow$
$(\exists z$ ．（indicat＿real（？f‘S）has＿integral z）$($ cbox u v）\wedge
$|z-|$ prod m UNIV $\mid *$ measure lebesgue $S \mid<e)$ for $u v$
proof
assume uv：ball 0 ？$C \subseteq$ cbox $u v$
with $\langle ? C>0$ 〉 have cbox＿ne：cbox $u v \neq\{ \}$
using centre＿in＿ball by blast
let ？$\alpha=\lambda k . u \$ k / m k$
let $? \beta=\lambda k . v \$ k / m k$
have invm0：$\bigwedge k$ ．inverse $(m k) \neq 0$
using True by auto
have ball $0 B \subseteq(\lambda x . \chi k . x \$ k / m k)$＇ball 0 ？$C$
proof clarsimp
fix x ：：real＾＇n
assume x ：norm $x<B$
have $[$ simp $]:|\operatorname{Max}(\operatorname{range}(\lambda k .|m k|))|=\operatorname{Max}(\operatorname{range}(\lambda k .|m k|))$
by（meson Max＿ge abs＿ge＿zero abs＿of＿nonneg finite finite＿imageI
order＿trans rangeI）
have $\operatorname{norm}(\chi k . m k * x \$ k) \leq \operatorname{norm}\left(\operatorname{Max}(\operatorname{range}(\lambda k .|m k|)) *_{R} x\right)$
by (rule norm_le_componentwise_cart) (auto simp: abs_mult intro: mult_right_mono)
also have ... $<$? C
using $x<0<($ MAX $k .|m k|) * B\rangle\langle 0<B\rangle z e r o _l e s s _m u l t _p o s 2$ by fastforce
finally have norm ($\chi k . m k * x \$ k$) $<$? C.
then show $x \in(\lambda x . \chi k . x \$ k / m k)$ 'ball 0 ? C
using stretch_Galois [of inverse $\circ m$] True by (auto simp: image_iff field_simps)
qed
then have Bsub: ball $0 B \subseteq \operatorname{cbox}(\chi k . \min (? \alpha k)(? \beta k))(\chi k . \max (? \alpha$ k) $(? \beta k))$
using cbox_ne uv image_stretch_interval_cart [of inverse o muv, symmetric] by (force simp: field_simps)
obtain z where zint: (indicat_real S has_integral z) (cbox (χ k. min $(? \alpha$ $k)(? \beta k))(\chi k \cdot \max (? \alpha k)(? \beta k)))$
and zless: $\mid z$ - measure lebesgue $S|<e /|$ prod m UNIV \mid
using $B[O F$ Bsub] by blast
have ind: indicat_real (?f' $S)=(\lambda x$. indicator $S(\chi k . x \$ k / m k))$ using True stretch_Galois [of m] by (force simp: indicator_def)
show $\exists z$. (indicat_real (?f'S) has_integral z) (cbox u v) \wedge
$|z-| \operatorname{prod} m$ UNIV $\mid *$ measure lebesgue $S \mid<e$
proof (simp add: ind, intro conjI exI)
have $\left((\lambda x\right.$. indicat_real $S(\chi k . x \$ k / m k))$ has_integral $z *_{R} \mid$ prod m UNIV|)
$((\lambda x \cdot \chi k \cdot x \$ k * m k) \cdot \operatorname{cbox}(\chi k \cdot \min (? \alpha k)(? \beta k))(\chi k \cdot \max$ $(? \alpha k)(? \beta k)))$
using True has_integral_stretch_cart [OF zint, of inverse o m] by (simp add: field_simps prod_dividef)
moreover have $((\lambda x . \chi k . x \$ k * m k) \cdot \operatorname{cbox}(\chi k \cdot \min (? \alpha k)(? \beta$ $k))(\chi k \cdot \max (? \alpha k)(? \beta k)))=c b o x u v$ using True image_stretch_interval_cart [of inverse o m u v, symmetric] image_stretch_interval_cart [of λk. $1 u v$, symmetric] 〈cbox u $v \neq\{ \}\rangle$ by (simp add: field_simps image_comp o_def)
ultimately show $((\lambda x$. indicat_real $S(\chi k . x \$ k / m k))$ has_integral z $\left.*_{R}|\operatorname{prod} m \mathrm{UNIV}|\right)($ cbox u v)
by simp
have $\left|z *_{R}\right|$ prod m UNIV $|-|$ prod m UNIV $\mid *$ measure lebesgue $S \mid$
$=\mid$ prod m UNIV $|*| z-$ measure lebesgue $S \mid$
by (metis (no_types, hide_lams) abs_abs abs_scaleR mult.commute real_scaleR_def right_diff_distrib')
also have ... <e
using zless True by (simp add: field_simps)
finally show $\left|z *_{R}\right|$ prod m UNIV $|-|$ prod m UNIV $\mid *$ measure lebesgue $S \mid<e$.

qed

qed
qed
qed

```
    then show ?thesis
            by (auto simp: has_integral_integrable integral_unique lmeasure_integral_UNIV
measurable_integrable)
    next
        case False
        then obtain k where mk=0 and prm: prod m UNIV =0
            by auto
        have nfS: negligible (?f 'S)
            by (rule negligible_subset [OF negligible_standard_hyperplane_cart]) (use <m k
=0> in auto)
    then have (?f 'S) \in lmeasurable
            by (simp add: negligible_iff_measure)
        with nfS show ?thesis
            by (simp add: prm negligible_iff_measure0)
    qed
    then show (?f 'S)\in lmeasurable ?MEQ
        by metis+
qed
```


proposition

```
fixes \(f::\) real \(^{\wedge} n::\{\) finite，wellorder \(\} \Rightarrow\) real \(^{\wedge} n::_{-}\)
assumes linear f \(S \in\) lmeasurable
shows measurable＿linear＿image：\(\left(f^{\prime} S\right) \in\) lmeasurable
and measure＿linear＿image：measure lebesgue \(\left(f^{\prime} S\right)=\mid \operatorname{det}(\) matrix \(f) \mid *\) measure
lebesgue \(S\)（is ？QfS）
proof－
have \(\forall S \in\) lmeasurable．\(\left(f^{\prime} S\right) \in\) lmeasurable \(\wedge\) ？\(Q f S\)
proof（rule induct＿linear＿elementary［OF 〈linear f〉］；intro ballI）
fix \(f g\) and \(S::(r e a l, ' n)\) vec set
assume linear \(f\) and linear \(g\)
and \(f[\) rule＿format \(]: \forall S \in\) lmeasurable．\(f\)＇\(S \in\) lmeasurable \(\wedge\) ？Q f \(S\)
and \(g\)［rule＿format］：\(\forall S \in\) lmeasurable．\(g\)＇\(S \in\) lmeasurable \(\wedge\) ？Q g \(S\)
and \(S: S \in\) lmeasurable
then have \(g S: g ' S \in\) lmeasurable
by blast
show \((f \circ g) ' S \in\) lmeasurable \(\wedge ? Q(f \circ g) S\)
using \(f[O F g S] g[O F S]\) matrix＿compose［OF 〈linear \(g\rangle\langle\) linear \(f\rangle]\)
by（simp add：o＿def image＿comp abs＿mult det＿mul）
next
fix \(f::\) real \(^{\wedge} n::_{-} \Rightarrow\) real \(^{\wedge} n::_{-}\)and \(i\) and \(S::\left(\right.\) real \(\left.^{\wedge \prime} n::_{-}\right)\)set
assume linear \(f\) and \(0: \bigwedge x . f x \$ i=0\) and \(S \in\) lmeasurable
then have \(\neg i n j f\)
by（metis（full＿types）linear＿injective＿imp＿surjective one＿neq＿zero surjE vec＿component）
have \(\operatorname{detf}: \operatorname{det}(\operatorname{matrix} f)=0\)
using \(\langle\neg\) inj \(f\rangle\) det＿nz＿iff＿inj［OF 〈linear \(f\rangle\) ］by blast
show \(f\)＇\(S \in\) lmeasurable \(\wedge\) ？\(Q f S\)
proof
show \(f\)＇\(S \in\) lmeasurable
```

using lmeasurable_iff_indicator_has_integral «linear $f\rangle\langle\neg i n j f\rangle$ negligible_UNIV
negligible_linear_singular_image by blast
have measure lebesgue $\left(f^{\prime} S\right)=0$
by (meson $\langle\neg i n j f\rangle\langle l i n e a r f\rangle$ negligible_imp_measure0 negligible_linear_singular_image)
also have $\ldots=\mid \operatorname{det}($ matrix $f) \mid *$ measure lebesgue S
by (simp add: detf)
finally show ? $Q f S$.
qed
next
fix c and $S::\left(\right.$ real $\left.^{\wedge} n::-\right)$ set
assume $S \in$ lmeasurable
show $(\lambda a . \chi$ i. ci*a $\$$ i)' $S \in$ lmeasurable $\wedge ? Q(\lambda a . \chi$ i. $c i * a \$$ i) S
proof
show ($\lambda a . \chi$ i. c $i * a \$ i$)' $S \in$ lmeasurable
by (simp add: $\langle S \in$ lmeasurable〉 measurable_stretch)
show ? $Q(\lambda a . \chi$ i. c $i * a \$ i) S$
by (simp add: measure_stretch $[O F\langle S \in$ lmeasurable \rangle, of $c]$ axis_def matrix_def
det_diagonal)
qed
next
fix $m::{ }^{\prime} n$ and $n::$ ' n and $S::($ real, ' n) vec set
assume $m \neq n$ and $S \in$ lmeasurable
let $? h=\lambda v::($ real, $' n)$ vec. χ i. $v \$$ Fun.swap $m n i d i$
have lin: linear? h
by (rule linearI) (simp_all add: plus_vec_def scaleR_vec_def)
have meq: measure lebesgue ($(\lambda v::($ real, ' n) vec. χ i. v \$ Fun.swap m id $i)$ '
cbox a b)
$=$ measure lebesgue (cbox ab) for $a b$
proof (cases cbox ab=\{\})
case True then show ?thesis
by simp
next
case False
then have him: $? h$ ' $($ cbox a $b) \neq\{ \}$
by blast
have eq: ?h' $($ cbox a b) $=$ cbox $(? h a)(? h b)$
by (auto simp: image_iff lambda_swap_Galois mem_box_cart) (metis swap_id_eq)+
show ?thesis
using him prod.permute [OF permutes_swap_id, where $S=U N I V$ and $g=\lambda i$.
$(b-a) \$ i$, symmetric]
by (simp add: eq content_cbox_cart False)
qed
have $(\chi$ ij. if Fun.swap $m n$ id $i=j$ then 1 else 0$)=(\chi i j$. if $j=$ Fun.swap
$m n$ id i then 1 else ($0::$ real $)$)
by (auto intro!: Cart_lambda_cong)
then have matrix ? $h=$ transpose $(\chi i j$. mat $1 \$ i \$$ Fun.swap $m n i d j$)
by (auto simp: matrix_eq transpose_def axis_def mat_def matrix_def)
then have 1: $\mid \operatorname{det}($ matrix ? h) $\mid=1$
by (simp add: det_permute_columns permutes_swap_id sign_swap_id abs_mult)
show ?h' $S \in$ lmeasurable $\wedge ? Q$? $h S$ proof
show ?h' $S \in$ lmeasurable ? Q ?h S
using measure_linear_sufficient [OF lin $\langle S \in$ lmeasurable \rangle meq 1 by force+ qed
next
fix $m n:: ' n$ and $S::(r e a l, ' n)$ vec set
assume $m \neq n$ and $S \in$ lmeasurable
let ? $h=\lambda v::\left(\right.$ real, ${ }^{\prime} n$) vec. χ. if $i=m$ then $v \$ m+v \$ n$ else $v \$ i$
have lin: linear ? h
by (rule linearI) (auto simp: algebra_simps plus_vec_def scaleR_vec_def vec_eq_iff)
consider $m<n \mid n<m$
using $\langle m \neq n\rangle$ less_linear by blast
then have 1: $\operatorname{det}($ matrix $? h)=1$
proof cases
assume $m<n$
have $*$: matrix $? h \$ i \$ j=(0::$ real $)$ if $j<i$ for $i j:: ' n$
proof -
have axis $j 1=(\chi$ n. if $n=j$ then 1 else $(0::$ real $))$
using axis_def by blast
then have $(\chi p q$. if $p=m$ then axis $q 1 \$ m+$ axis $q 1 \$ n$ else axis $q 1$
$\$ p) \$ i \$ j=(0::$ real $)$
using $\langle j<i\rangle$ axis_def $\langle m<n\rangle$ by auto
with $\langle m<n\rangle$ show ?thesis
by (auto simp: matrix_def axis_def cong: if_cong)
qed
show ?thesis
using $\langle m \neq n\rangle$ by (subst det_upperdiagonal $[O F *]$) (auto simp: matrix_def axis_def cong: if_cong)
next
assume $n<m$
have $*$: matrix ? $h \$ i \$ j=(0::$ real $)$ if $j>i$ for $i j:: ' n$

proof -

have axis $j 1=(\chi n$. if $n=j$ then 1 else $(0::$ real $))$
using axis_def by blast
then have $(\chi p q$. if $p=m$ then axis $q 1 \$ m+$ axis $q 1 \$ n$ else axis $q 1$
$\$ p) \$ i \$ j=(0::$ real $)$
using $\langle j>i\rangle$ axis_def $\langle m>n\rangle$ by auto
with $\langle m>n\rangle$ show ?thesis
by (auto simp: matrix_def axis_def cong: if_cong)
qed
show ?thesis
using $\langle m \neq n\rangle$
by (subst det_lowerdiagonal [OF *]) (auto simp: matrix_def axis_def cong: if_cong)
qed
have meq: measure lebesgue $(? h '(c b o x a b))=$ measure lebesgue ($c b o x a b$) for $a b$
proof (cases cbox a $b=\{ \}$)

```
    case True then show ?thesis by simp
next
    case False
    then have \(n e:(+)(\chi\) i. if \(i=n\) then \(-a \$ n\) else 0\()\) ' cbox \(a b \neq\{ \}\)
        by auto
    let \(? v=\chi\) i. if \(i=n\) then \(-a \$ n\) else 0
    have ? \(h\) ' cbox a b
        \(=(+)(\chi\) i. if \(i=m \vee i=n\) then \(a \$ n\) else 0\()\) '? \(h '(+) ? v\) ' \((c b o x a b)\)
        using \(\langle m \neq n\rangle\) unfolding image_comp o_def by (force simp: vec_eq_iff)
    then have measure lebesgue (? \(h\) ' \((c b o x a b)\) )
                \(=\) measure lebesgue \(((\lambda v . \chi\) i. if \(i=m\) then \(v \$ m+v \$ n\) else \(v \$ i)\) '
                            \((+)\) ?v' cbox a b)
        by (rule ssubst) (rule measure_translation)
    also have \(\ldots=\) measure lebesgue \(((\lambda v . \chi\). if \(i=m\) then \(v \$ m+v \$ n\)
else \(v \$ i)\) 'cbox \((? v+a)(? v+b))\)
        by (metis (no_types, lifting) cbox_translation)
    also have \(\ldots=\) measure lebesgue \(((+)(\chi\) i. if \(i=n\) then \(-a \$ n\) else 0\()\) '
cbox a b)
            apply (subst measure_shear_interval)
            using \(\langle m \neq n\rangle\) ne apply auto
            apply (simp add: cbox_translation)
            by (metis cbox_borel cbox_translation measure_completion sets_lborel)
            also have \(\ldots=\) measure lebesgue (cbox a b)
            by (rule measure_translation)
            finally show ?thesis.
            qed
            show ?h' \(S \in\) lmeasurable \(\wedge\) ? \(Q\) ?h \(S\)
            using measure_linear_sufficient [OF lin \(\langle S \in\) lmeasurable \(]\) meq 1 by force
    qed
    with assms show \((f\) ' \(S) \in\) lmeasurable ?Q \(f S\)
        by metis+
qed
lemma
    fixes \(f::\) real \(^{\wedge} n::\{\) finite,wellorder \(\} \Rightarrow\) real \(^{\wedge} n::-\)
    assumes \(f\) : orthogonal_transformation \(f\) and \(S: S \in\) lmeasurable
    shows measurable_orthogonal_image: \(f\) ' \(S \in\) lmeasurable
        and measure_orthogonal_image: measure lebesgue \((f\) ' \(S\) ) \(=\) measure lebesgue \(S\)
proof -
    have linear \(f\)
        by (simp add: \(f\) orthogonal_transformation_linear)
    then show \(f\) ' \(S \in\) lmeasurable
        by (metis \(S\) measurable_linear_image)
    show measure lebesgue ( \(f\) ' \(S\) ) = measure lebesgue \(S\)
        by (simp add: measure_linear_image 〈linear \(f\) 〉 \(S f\) )
qed
proposition measure_semicontinuous_with_hausdist_explicit:
```

assumes bounded S and neg：negligible（frontier S ）and $e>0$
obtains d where $d>0$

$$
\wedge T . \llbracket T \in \text { lmeasurable } ; \bigwedge y . y \in T \Longrightarrow \exists x . x \in S \wedge \text { dist } x y<d \rrbracket
$$

\Longrightarrow measure lebesgue $T<$ measure lebesgue $S+e$
proof（cases $S=\{ \}$ ）
case True
with that $\langle e>0\rangle$ show ？thesis by force
next
case False
then have frS：frontier $S \neq\{ \}$
using 〈bounded S 〉 frontier＿eq＿empty not＿bounded＿UNIV by blast
have $S \in$ lmeasurable
by（simp add：〈bounded $S\rangle$ measurable＿Jordan neg）
have null：$($ frontier $S) \in$ null＿sets lebesgue
by（metis neg negligible＿iff＿null＿sets）
have frontier $S \in l$ lmeasurable and mS0：measure lebesgue $($ frontier S ）$=0$
using neg negligible＿imp＿measurable negligible＿iff＿measure by blast＋
with $\langle e>0\rangle$ sets＿lebesgue＿outer＿open
obtain U where open U
and U ：frontier $S \subseteq U U-$ frontier $S \in$ lmeasurable emeasure lebesgue（ $U-$
frontier S ）$<e$
by（metis fmeasurableD）
with null have $U \in$ lmeasurable
by（metis borel＿open measurable＿Diff＿null＿set sets＿completionI＿sets sets＿lborel）
have measure lebesgue $(U-$ frontier $S)=$ measure lebesgue U
using $m S 0$ by（simp add：$\langle U \in$ lmeasurable〉 fmeasurableD measure＿Diff＿null＿set
null）
with U have $m U$ ：measure lebesgue $U<e$
by（simp add：emeasure＿eq＿measure2 ennreal＿less＿iff）
show ？thesis
proof
have $U \neq U N I V$
using $\langle U \in$ lmeasurable \rangle by auto
then have $-U \neq\{ \}$
by blast
with \langle open $U\rangle\langle$ frontier $S \subseteq U\rangle$ show setdist（frontier $S)(-U)>0$
by（auto simp：〈bounded $S\rangle$ open＿closed compact＿frontier＿bounded setdist＿gt＿0＿compact＿closed frS）
fix T
assume $T \in$ lmeasurable
and $T: \wedge t . t \in T \Longrightarrow \exists y . y \in S \wedge$ dist $y t<\operatorname{setdist}($ frontier $S)(-U)$
then have measure lebesgue T－measure lebesgue $S \leq$ measure lebesgue（ T
$-S$ ）
by（simp add：$\langle S \in$ lmeasurable〉 measure＿diff＿le＿measure＿setdiff）
also have $\ldots \leq$ measure lebesgue U
proof－
have $T-S \subseteq U$
proof clarify
fix x

```
    assume }x\inT\mathrm{ and }x\not\in
    then obtain y where y\inS and y: dist y x < setdist (frontier S) (-U)
        using T by blast
    have closed_segment x y \cap frontier S}\not={
        using connected_Int_frontier }\langlex\not\inS\rangle\langley\inS\rangle\mathrm{ by blast
    then obtain z where z:z\in closed_segment x y z\infrontier S
        by auto
    with y have dist zx< setdist(frontier S) (-U)
        by (auto simp: dist_commute dest!: dist_in_closed_segment)
    with z have False if }x\in-
        using setdist_le_dist [OF <z \in frontier S` that] by auto
    then show }x\in
        by blast
qed
then show ?thesis
    by (simp add: <S \in lmeasurable\rangle\langleT \in lmeasurable }\langleU\in lmeasurable
fmeasurableD measure_mono_fmeasurable sets.Diff)
    qed
    finally have measure lebesgue T - measure lebesgue S measure lebesgue U
    with mU show measure lebesgue T< measure lebesgue S +e
        by linarith
    qed
qed
proposition
    fixes f :: real^^}n::{\mathrm{ finite,wellorder } }=>\mp@subsup{\mathrm{ real }}{}{\wedge}n::
    assumes S:S\in lmeasurable
    and deriv: }\bigwedgex.x\inS\Longrightarrow(f has_derivative f'x)(at x within S
    and int: ( }\lambdax.|\mathrm{ det (matrix (f' x))|) integrable_on S
    and bounded: \x. x \inS\Longrightarrow |et (matrix (f'x))| \leqB
    shows measurable_bounded_differentiable_image:
        f'S}\inlmeasurable
        and measure_bounded_differentiable_image:
            measure lebesgue (f'S)\leqB* measure lebesgue S (is ?M)
proof -
```



```
    proof (cases B<0)
        case True
        then have S={}
        by (meson abs_ge_zero bounded empty_iff equalityI less_le_trans linorder_not_less
subsetI)
    then show ?thesis
            by auto
    next
        case False
        then have B\geq0
            by arith
        let ? }\mu=\mathrm{ measure lebesgue
```

have f_{-}diff: f differentiable_on S
using deriv by (auto simp: differentiable_on_def differentiable_def)
have eps: f ' $S \in$ lmeasurable ? $\mu\left(f^{\prime} S\right) \leq(B+e) *$? μS (is ?ME)
if $e>0$ for e
proof -
have eps_d: f ' $S \in$ lmeasurable $? \mu\left(f^{\prime} S\right) \leq(B+e) *(? \mu S+d)($ is ?MD)
if $d>0$ for d
proof -
obtain T where T : open $T S \subseteq T$ and $T S:(T-S) \in$ lmeasurable and emeasure lebesgue $(T-S)<$ ennreal d
using $S\langle d>0\rangle$ sets_lebesgue_outer_open by blast
then have ? $\mu(T-S)<d$
by (metis emeasure_eq_measure2 ennreal_leI not_less)
with $S T T S$ have $T \in$ lmeasurable and Tless: ? $\mu T<? \mu S+d$
by (auto simp: measurable_measure_Diff dest!: fmeasurable_Diff_D)
have $\exists r .0<r \wedge r<d \wedge$ ball $x r \subseteq T \wedge f^{\prime}(S \cap$ ball $x r) \in$ lmeasurable \wedge
$? \mu(f$ ' $(S \cap$ ball $x r)) \leq(B+e) * ? \mu($ ball $x r)$
if $x \in S d>0$ for $x d$
proof -
have lin: linear $\left(f^{\prime} x\right)$
and $\lim 0:\left(\left(\lambda y \cdot\left(f y-\left(f x+f^{\prime} x(y-x)\right)\right) / R \operatorname{norm}(y-x)\right) \longrightarrow 0\right)$
(at x within S)
using deriv $\langle x \in S\rangle$ by (auto simp: has_derivative_within bounded_linear.linear field_simps)
have bo: bounded ($f^{\prime} x$ ‘ ball 0 1)
by (simp add: bounded_linear_image linear_linear lin)
have neg: negligible (frontier ($f^{\prime} x$ ' ball 01))
using deriv has_derivative_linear $\langle x \in S\rangle$
by (auto intro!: negligible_convex_frontier [OF convex_linear_image])
let ?unit_vol $=$ content $\left(\right.$ ball ($0::$ real ${ }^{\prime} ' n::\{$ finite, wellorder $\left.\left.\}\right) 1\right)$
have $0: 0<e *$? unit_vol
using $\langle e>0\rangle$ by (simp add: content_ball_pos)
obtain k where $k>0$ and k :

$$
\bigwedge U . \llbracket U \in \text { lmeasurable } ; \bigwedge y . y \in U \Longrightarrow \exists z . z \in f^{\prime} x \text { ‘ball } 01 \wedge
$$

dist $z y<k \rrbracket$

$$
\Longrightarrow ? \mu U<? \mu\left(f^{\prime} x \text { b ball } 01\right)+e * \text { ?unit_vol }
$$

using measure_semicontinuous_with_hausdist_explicit [OF bo neg 0] by
blast
obtain l where $l>0$ and $l:$ ball $x l \subseteq T$
using $\langle x \in S\rangle\langle$ open $T\rangle\langle S \subseteq T\rangle$ openE by blast
obtain ζ where $0<\zeta$
and $\zeta: \bigwedge y . \llbracket y \in S ; y \neq x ;$ dist $y x<\zeta \rrbracket$
$\Longrightarrow \operatorname{norm}\left(f y-\left(f x+f^{\prime} x(y-x)\right)\right) / \operatorname{norm}(y-x)<k$
using lim0 $\langle k>0\rangle$ by (simp add: Lim_within) (auto simp add: field_simps)
define r where $r \equiv \min (\min l(\zeta / 2))(\min 1(d / 2))$
show ?thesis
proof (intro exI conjI)
show $r>0 r<d$
using $\langle l>0\rangle\langle\zeta>0\rangle\langle d>0\rangle$ by (auto simp: r_def)

```
    have }r\leq
    by (auto simp: r_def)
    with l show ball x r\subseteqT
    by auto
    have ex_lessK: \exists x'f ball 0 1. dist (f'x x') ((fy-fx)/Rr)<k
    if y\inS and dist x y<r for y
proof (cases }y=x\mathrm{ )
    case True
    with lin linear_0 <k> 0\rangle that show ?thesis
        by (rule_tac x=0 in bexI) (auto simp:linear_0)
    next
        case False
        then show ?thesis
    proof (rule_tac x=(y-x)/R r in bexI)
        have f'x ((y-x)/Rr) = f'x (y-x)/Rr
            by (simp add: lin linear_scale)
        then have dist (f'x ((y-x)/Rr)) ((fy-fx)/Rr)=norm (f'
x (y-x)/Rr-(fy-fx)/Rr)
            by (simp add: dist_norm)
            also have ... = norm (f'x (y-x)-(fy-fx))/r
                    using \langler > 0\rangle by (simp add: divide_simps scale_right_diff_distrib
[symmetric])
        also have ... \leqnorm (fy-(fx+\mp@subsup{f}{}{\prime}x(y-x)))/\operatorname{norm}(y-x)
            using that \langler> 0\rangle False by (simp add: field_split_simps dist_norm
norm_minus_commute mult_right_mono)
        also have ... < k
            using that <0<\zeta\rangle by (simp add: dist_commute r_def \zeta [OF<y 
S`False])
            finally show dist (f'x ((y-x)/Rr)) ((fy-fx)/Rr)<k.
            show (y-x)/Rr\in ball 0 1
                    using that \langler > 0\rangle by (simp add: dist_norm divide_simps
norm_minus_commute)
            qed
            qed
            let ?rfs = (\lambdax.x/R r)'(+) (-fx)'f'(S\cap ball x r)
            have rfs_mble: ?rfs \in lmeasurable
            proof (rule bounded_set_imp_lmeasurable)
            have f differentiable_on S \cap ball x r
            using f_diff by (auto simp: fmeasurableD differentiable_on_subset)
            with S show ?rfs \in sets lebesgue
                by (auto simp: sets.Int intro!: lebesgue_sets_translation differen-
tiable_image_in_sets_lebesgue)
            let ?B = (\lambda(x,y). x + y)'(f' x'ball 0 1 < ball 0 k)
            have bounded ?B
            by (simp add: bounded_plus [OF bo])
            moreover have ?rfs \subseteq? ?B
            apply (auto simp:dist_norm image_iff dest!: ex_lessK)
by (metis (no_types, hide_lams) add.commute diff_add_cancel dist_0_norm
dist_commute dist_norm mem_ball)
```

```
    ultimately show bounded (?rfs)
        by (rule bounded_subset)
    qed
    then have \(\left(\lambda x . r *_{R} x\right)^{\prime}\) ? \(r f s \in\) lmeasurable
    by (simp add: measurable_linear_image)
    with \(\langle r>0\rangle\) have \((+)(-f x)\) ' \(f\) ' \((S \cap\) ball \(x r) \in\) lmeasurable
    by (simp add: image_comp o_def)
    then have \((+)(f x)^{\prime}(+)(-f x)\) ' \(f\) ' \((S \cap\) ball \(x r) \in\) lmeasurable
    using measurable_translation by blast
    then show fsb: \(f\) ' \((S \cap\) ball \(x r) \in\) lmeasurable
        by (simp add: image_comp o_def)
    have ? \(\mu\left(f^{\prime}(S \cap\right.\) ball \(\left.x r)\right)=? \mu(? r f s) * r{ }^{\wedge} C A R D\left({ }^{\prime} n\right)\)
    using \(\langle r>0\rangle f s b\)
            by (simp add: measure_linear_image measure_translation_subtract
measurable_translation_subtract field_simps cong: image_cong_simp)
            also have \(\ldots \leq\left(\mid \operatorname{det}\left(\right.\right.\) matrix \(\left.\left(f^{\prime} x\right)\right) \mid *\) ? unit_vol \(+e *\) ?unit_vol \() * r\)
^ \(C A R D(' n)\)
            proof -
                            have ? \(\mu(? r f s)<? \mu\left(f^{\prime} x\right.\) ' ball 0 1) \(+e *\) ? unit_vol
                using rfs_mble by (force intro: \(k\) dest!: ex_lessK)
    then have ? \(\mu(? r f s)<\mid \operatorname{det}\left(\right.\) matrix \(\left.\left(f^{\prime} x\right)\right) \mid *\) ?unit_vol \(+e *\) ?unit_vol
                by (simp add: lin measure_linear_image \(\left[\right.\) of \(\left.f^{\prime} x\right]\) )
            with \(\langle r>0\rangle\) show ?thesis
                by auto
                    qed
                            also have \(\ldots \leq(B+e) *\) ? \(\mu(\) ball \(x r)\)
                            using bounded \([O F\langle x \in S\rangle]\langle r>0\rangle\)
                    by (simp add: algebra_simps content_ball_conv_unit_ball \([o f r]\) con-
tent_ball_pos)
            finally show ? \(\mu(f\) ' \((S \cap\) ball \(x r)) \leq(B+e) * ? \mu(\) ball \(x r)\).
        qed
    qed
    then obtain \(r\) where
        \(r 0 d: \bigwedge x d . \llbracket x \in S ; d>0 \rrbracket \Longrightarrow 0<r x d \wedge r x d<d\)
        and \(r T: \bigwedge x d . \llbracket x \in S ; d>0 \rrbracket \Longrightarrow\) ball \(x(r x d) \subseteq T\)
        and \(r: \bigwedge x d . \llbracket x \in S ; d>0 \rrbracket \Longrightarrow\)
            \((f\) ' \((S \cap\) ball \(x(r x d))) \in\) lmeasurable \(\wedge\)
            \(? \mu(f\) ' \((S \cap\) ball \(x(r x d))) \leq(B+e) * ? \mu(\) ball \(x(r x d))\)
        by metis
    obtain \(C\) where countable \(C\) and Csub: \(C \subseteq\{(x, r x t) \mid x t . x \in S \wedge 0<\)
\(t\}\)
    and pwC: pairwise \((\lambda i j\). disjnt \((b a l l(f s t i)(s n d i))(b a l l(f s t j)(s n d j)))\)
C
    and \(\operatorname{neg} C\) : \(\operatorname{negligible}(S-(\bigcup i \in C\). ball \((\) fst \()(\) snd \(i)))\)
    apply (rule Vitali_covering_theorem_balls \([\) of \(S\{(x, r x t) \mid x t . x \in S \wedge 0\)
\(<t\}\) fst snd])
    apply auto
    by (metis dist_eq_0_iff r0d)
let \(? U B=(\bigcup(x, s) \in C\). ball \(x s)\)
```

```
    have eq: \(f^{\prime}(S \cap\) ? UB \()=\left(\bigcup(x, s) \in C . f^{\prime}(S \cap\right.\) ball \(\left.x s)\right)\)
```

 by auto
 have \(m l e: ? \mu(\bigcup(x, s) \in K . f\) ' \((S \cap\) ball \(x s)) \leq(B+e) *(? \mu S+d)\) (is
 $? l \leq ? r)$
if $K \subseteq C$ and finite K for K
proof -
have gt $0: b>0$ if $(a, b) \in K$ for $a b$
using Csub that $\langle K \subseteq C\rangle$ r0d by auto
have inj: inj_on $(\lambda(x, y)$. ball $x y) K$
by (force simp: inj_on_def ball_eq_ball_iff dest: gt0)
have disjnt: disjoint $((\lambda(x, y)$. ball $x y)$ ' $K)$
using $p w C$ that
apply (clarsimp simp: pairwise_def case_prod_unfold ball_eq_ball_iff)
by (metis subsetD fst_conv snd_conv)
have ?l $\leq\left(\sum i \in K\right.$.? $\mu($ case i of $(x, s) \Rightarrow f$ ' $(S \cap$ ball $\left.x s))\right)$
proof (rule measure_UNION_le [OF 〈finite K〉], clarify)
fix $x r$
assume $(x, r) \in K$
then have $x \in S$
using $C s u b\langle K \subseteq C\rangle$ by auto
show f ' $(S \cap$ ball $x r) \in$ sets lebesgue
by (meson Int_lower1 S differentiable_on_subset f_diff fmeasurableD
lmeasurable_ball order_refl sets.Int differentiable_image_in_sets_lebesgue)
qed
also have $\ldots \leq\left(\sum(x, s) \in K .(B+e) * ? \mu(\right.$ ball $\left.x s)\right)$
apply (rule sum_mono)
using Csub $r\langle K \subseteq C\rangle$ by auto
also have $\ldots=(B+e) *\left(\sum(x, s) \in K\right.$. ? $\mu($ ball $\left.x s)\right)$
by (simp add: prod.case_distrib sum_distrib_left)
also have $\ldots=(B+e) *$ sum ? $\mu((\lambda(x, y)$. ball $x y)$ ' $K)$
using $\langle B \geq 0\rangle\langle e>0\rangle$ by (simp add: inj sum.reindex prod.case_distrib)
also have $\ldots=(B+e) * ? \mu(\bigcup(x, s) \in K$. ball $x s)$
using $\langle B \geq 0\rangle\langle e>0\rangle$ that
by (subst measure_Union') (auto simp: disjnt measure_Union')
also have $\ldots \leq(B+e) *$? μT
using $\langle B \geq 0\rangle\langle e>0\rangle$ that apply simp
apply (rule measure_mono_fmeasurable $\left.\left[O F __\langle T \in l m e a s u r a b l e\rangle\right]\right)$
using Csub $r T$ by force +
also have $\ldots \leq(B+e) *(? \mu S+d)$
using $\langle B \geq 0\rangle\langle e>0\rangle$ Tless by simp
finally show ?thesis.
qed
have fSUB_mble: $(f$ ' $(S \cap$?UB $)) \in$ lmeasurable
unfolding eq using Csub r False $\langle e>0\rangle$ that
by (auto simp: intro!: fmeasurable_UN_bound $[O F$ (countable C 〉_ mle])
have $f S U B$ _meas: ? $\mu\left(f^{\prime}(S \cap\right.$? $\left.U B)\right) \leq(B+e) *(? \mu S+d) \quad($ is ?MUB)
unfolding eq using Csub r False $\langle e>0\rangle$ that
by (auto simp: intro!: measure_UN_bound [OF〈countable C〉_mle])
have neg: negligible $\left(\left(f\right.\right.$ ' $(S \cap$? $\left.U B)-f^{\prime} S\right) \cup\left(f^{\prime} S-f^{\prime}(S \cap\right.$?UB $\left.\left.)\right)\right)$
proof (rule negligible_subset [OF negligible_differentiable_image_negligible [OF order_refl neg C, where $f=f]$])
show f differentiable_on $S-(\bigcup i \in C$. ball (fst $i)($ snd $i))$
by (meson Diffe differentiable_on_subset subsetI f_diff)
qed force
show f ' $S \in$ lmeasurable
by (rule lmeasurable_negligible_symdiff [OF fSUB_mble neg])
show ?MD
using fSUB_meas measure_negligible_symdiff [OF fSUB_mble neg] by simp
qed
show f ' $S \in$ lmeasurable
using eps_d [of 1] by simp
show ?ME
proof (rule field_le_epsilon)
fix δ :: real
assume $0<\delta$
then show ? $\mu(f$ ' $S) \leq(B+e) * ? \mu S+\delta$
using eps_d [of $\delta /(B+e)]\langle e\rangle 0\rangle\langle B \geq 0\rangle$ by (auto simp: divide_simps
mult_ac)
qed
qed
show ?thesis
proof (cases ? $\mu S=0$)
case True
with eps have ? $\mu\left(f^{\prime} S\right)=0$
by (metis mult_zero_right not_le zero_less_measure_iff)
then show ?thesis
using eps [of 1] by (simp add: True)
next
case False
have ? $\mu(f$ ' $S) \leq B * ? \mu S$
proof (rule field_le_epsilon)
fix e :: real
assume $e>0$
then show ? $\mu\left(f^{\prime} S\right) \leq B * ? \mu S+e$
using eps [of e / ? $\mu \mathrm{S}$] False by (auto simp: algebra_simps zero_less_measure_iff)
qed
with eps [of 1] show ?thesis by auto
qed
qed
then show f ' $S \in$ lmeasurable ? M by blast +
qed
lemma m_diff_image_weak:
fixes $f::$ real $^{\wedge} n::\{$ finite, wellorder $\} \Rightarrow$ real $^{\wedge} n::_{-}$
assumes $S: S \in$ lmeasurable
and deriv: $\bigwedge x . x \in S \Longrightarrow\left(f\right.$ has_derivative $\left.f^{\prime} x\right)($ at x within $S)$
and int: $\left(\lambda x\right.$. \mid det (matrix $\left.\left.\left(f^{\prime} x\right)\right) \mid\right)$ integrable_on S
shows f ' $S \in$ lmeasurable \wedge measure lebesgue $(f$ ' $S) \leq$ integral $S(\lambda x$. \mid det

```
\(\left(\right.\) matrix \(\left.\left.\left(f^{\prime} x\right)\right) \mid\right)\)
proof -
    let ? \(\mu=\) measure lebesgue
    have aint_S: \(\left(\lambda x\right.\). \(\mid\) det \(\left(\right.\) matrix \(\left.\left.\left(f^{\prime} x\right)\right) \mid\right)\) absolutely_integrable_on \(S\)
        using int unfolding absolutely_integrable_on_def by auto
    define \(m\) where \(m \equiv\) integral \(S\left(\lambda x\right.\). \(\left.\left|\operatorname{det}\left(\operatorname{matrix}\left(f^{\prime} x\right)\right)\right|\right)\)
    have \(*: f\) ' \(S \in\) lmeasurable ? \(\mu\left(f^{\prime} S\right) \leq m+e *\) ? \(\mu S\)
        if \(e>0\) for \(e\)
    proof -
        define \(T\) where \(T \equiv \lambda n .\left\{x \in S . n * e \leq \mid \operatorname{det}\left(\right.\right.\) matrix \(\left.\left(f^{\prime} x\right)\right) \mid \wedge\)
                        \(\mid \operatorname{det}\left(\right.\) matrix \(\left.\left(f^{\prime} x\right)\right) \mid<(\) Suc \(\left.n) * e\right\}\)
        have meas_t: \(T n \in\) lmeasurable for \(n\)
    proof -
        have \(*:\left(\lambda x .\left|\operatorname{det}\left(\operatorname{matrix}\left(f^{\prime} x\right)\right)\right|\right) \in\) borel_measurable (lebesgue_on \(\left.S\right)\)
        using aint_S by (simp add: S borel_measurable_restrict_space_iff fmeasurableD
set_integrable_def)
            have [intro]: \(x \in\) sets (lebesgue_on \(S) \Longrightarrow x \in\) sets lebesgue for \(x\)
            using \(S\) sets_restrict_space_subset by blast
            have \(\left\{x \in S\right.\). real \(n * e \leq \mid\) det (matrix \(\left.\left.\left(f^{\prime} x\right)\right) \mid\right\} \in\) sets lebesgue
            using * by (auto simp: borel_measurable_iff_halfspace_ge space_restrict_space)
            then have 1: \(\left\{x \in S\right.\). real \(n * e \leq \mid \operatorname{det}\left(\right.\) matrix \(\left.\left.\left(f^{\prime} x\right)\right) \mid\right\} \in\) lmeasurable
            using \(S\) by (simp add: fmeasurableI2)
            have \(\left\{x \in S . \mid\right.\) det \(\left(\right.\) matrix \(\left.\left(f^{\prime} x\right)\right) \mid<(1+\) real \(\left.n) * e\right\} \in\) sets lebesgue
            using \(*\) by (auto simp: borel_measurable_iff_halfspace_less space_restrict_space)
            then have 2: \(\left\{x \in S\right.\). \(\mid\) det (matrix \(\left.\left(f^{\prime} x\right)\right) \mid<(1+\) real \(\left.n) * e\right\} \in\) lmeasurable
            using \(S\) by (simp add: fmeasurableI2)
            show ?thesis
            using fmeasurable.Int [OF 1 2] by (simp add: T_def Int_def cong: conj_cong)
    qed
    have aint_T: \(\wedge k .\left(\lambda x . \mid \operatorname{det}\left(\right.\right.\) matrix \(\left.\left.\left(f^{\prime} x\right)\right) \mid\right)\) absolutely_integrable_on \(T k\)
            using set_integrable_subset [OF aint_S] meas_t T_def by blast
    have \(S e q: S=(\bigcup n . T n)\)
            apply (auto simp: T_def)
            apply \(\left(\right.\) rule_tac \(x=\operatorname{nat}\left(\operatorname{floor}\left(\operatorname{abs}\left(\operatorname{det}\left(\operatorname{matrix}\left(f^{\prime} x\right)\right)\right) / e\right)\right)\) in exI)
            using that apply auto
            using of_int_floor_le pos_le_divide_eq apply blast
            by (metis add.commute pos_divide_less_eq real_of_int_floor_add_one_gt)
    have meas_ft: \(f^{\text {‘ }} T n \in\) lmeasurable for \(n\)
    proof (rule measurable_bounded_differentiable_image)
            show \(T n \in\) lmeasurable
            by (simp add: meas_t)
    next
            fix \(x::(r e a l, ' n)\) vec
            assume \(x \in T n\)
            show ( \(f\) has_derivative \(f^{\prime} x\) ) (at \(x\) within \(T n\) )
            by (metis (no_types, lifting) \(\langle x \in T n\rangle\) deriv has_derivative_subset mem_Collect_eq
subsetI T_def)
            show \(\mid \operatorname{det}\left(\right.\) matrix \(\left.\left(f^{\prime} x\right)\right) \mid \leq(\) Suc \(n) * e\)
            using \(\langle x \in T n\rangle T_{-} d e f\) by auto
```

```
    next
        show ( }\lambdax\mathrm{ . | det (matrix (f'x))|) integrable_on T n
        using aint_T absolutely_integrable_on_def by blast
    qed
    have disT: disjoint (range T)
        unfolding disjoint_def
    proof clarsimp
        show Tm\capTn={} if Tm\not=T n for mn
        using that
        proof (induction m n rule: linorder_less_wlog)
            case (less m n)
            with }\langlee>0\rangle\mathrm{ show ?case
            unfolding T_def
            proof (clarsimp simp add:Collect_conj_eq [symmetric])
                    fix }
                    assume e>0m<n n*e\leq|\operatorname{det (matrix (f'x))| |\operatorname{det (matrix (f'}}\mp@subsup{f}{}{\prime}
x))|< (1+real m)*e
            then have n<1+ real m
                by (metis (no_types, hide_lams) less_le_trans mult.commute not_le
mult_le_cancel_iff2)
            then show False
                    using less.hyps by linarith
            qed
        qed auto
    qed
    have injT: inj_on T ({n.T n = {}})
        unfolding inj_on_def
    proof clarsimp
        show }m=n\mathrm{ if Tm=TnTn}={}\mathrm{ for m n
            using that
        proof (induction m n rule: linorder_less_wlog)
            case (less m n)
            have False if Tn\subseteqTmx\inTn for x
                using \langlee>0\rangle\langlem}<n\mp@code{n\rangle that
            apply (auto simp: T_def mult.commute intro: less_le_trans dest!: subsetD)
            by (metis add.commute less_le_trans nat_less_real_le not_le mult_le_cancel_iff2)
            then show ?case
                using less.prems by blast
        qed auto
    qed
    have sum_eq_Tim: (\sumk\leqn.f(T k))= sum f(T`{..n}) if f{}=0 for f ::
- }=>\mathrm{ real and n
    proof (subst sum.reindex_nontrivial)
        fix ij assume i\in{..n} j\in{..n} i\not=jTi=Tj
        with that injT [unfolded inj_on_def] show f(Ti)=0
            by simp metis
    qed (use atMost_atLeast0 in auto)
    let ?B = m+e*? }\mu
    have (\sumk\leqn.? }\mu(f'Tk))\leq?B\mathrm{ for n
```

```
    proof -
    have \(\left(\sum k \leq n\right.\). ? \(\left.\mu\left(f^{\prime} T k\right)\right) \leq\left(\sum k \leq n .((k+1) * e) * ? \mu(T k)\right)\)
    proof (rule sum_mono [OF measure_bounded_differentiable_image])
    show ( \(f\) has_derivative \(f^{\prime} x\) ) (at \(x\) within \(T k\) ) if \(x \in T k\) for \(k x\)
        using that unfolding T_def by (blast intro: deriv has_derivative_subset)
    show \(\left(\lambda x\right.\). \(\mid \operatorname{det}\left(\right.\) matrix \(\left.\left.\left(f^{\prime} x\right)\right) \mid\right)\) integrable_on \(T k\) for \(k\)
        using absolutely_integrable_on_def aint_T by blast
        show \(\left|\operatorname{det}\left(\operatorname{matrix}\left(f^{\prime} x\right)\right)\right| \leq \operatorname{real}(k+1) * e\) if \(x \in T k\) for \(k x\)
        using T_def that by auto
    qed (use meas_t in auto)
    also have \(\ldots \leq\left(\sum k \leq n .(k * e) * ? \mu(T k)\right)+\left(\sum k \leq n . e * ? \mu(T k)\right)\)
        by (simp add: algebra_simps sum.distrib)
    also have \(\ldots \leq\) ? \(B\)
    proof (rule add_mono)
    have \(\left(\sum k \leq n\right.\). real \(k * e *\) ? \(\left.\mu(T k)\right)=\left(\sum k \leq n\right.\). integral \(\left.(T k)(\lambda x . k * e)\right)\)
        by (simp add: lmeasure_integral [OF meas_t]
            flip: integral_mult_right integral_mult_left)
    also have \(\ldots \leq\left(\sum k \leq n\right.\). integral \(\left.(T k)\left(\lambda x . \quad\left(\operatorname{abs}\left(\operatorname{det}\left(\operatorname{matrix}\left(f^{\prime} x\right)\right)\right)\right)\right)\right)\)
    proof (rule sum_mono)
        fix \(k\)
        assume \(k \in\{. . n\}\)
            show integral \((T k)(\lambda x . k * e) \leq \operatorname{integral}(T k)\left(\lambda x . \mid \operatorname{det}\left(m a t r i x\left(f^{\prime}\right.\right.\right.\)
x) |)
            proof (rule integral_le [OF integrable_on_const [OF meas_t]])
                show \(\left(\lambda x\right.\). \(\mid \operatorname{det}\left(\right.\) matrix \(\left.\left.\left(f^{\prime} x\right)\right) \mid\right)\) integrable_on \(T k\)
                    using absolutely_integrable_on_def aint_T by blast
            next
                fix \(x\) assume \(x \in T k\)
                show \(k * e \leq\left|\operatorname{det}\left(\operatorname{matrix}\left(f^{\prime} x\right)\right)\right|\)
                    using \(\langle x \in T k\rangle T_{-} d e f\) by blast
            qed
        qed
    also have \(\ldots=\operatorname{sum}\left(\lambda T\right.\). integral \(T\left(\lambda x . \mid \operatorname{det}\left(\right.\right.\) matrix \(\left.\left.\left.\left(f^{\prime} x\right)\right) \mid\right)\right)\left(T^{\prime}\{. . n\}\right)\)
        by (auto intro: sum_eq_Tim)
    also have \(\ldots=\) integral \((\bigcup k \leq n . T k)\left(\lambda x .\left|\operatorname{det}\left(\operatorname{matrix}\left(f^{\prime} x\right)\right)\right|\right)\)
    proof (rule integral_unique [OF has_integral_Union, symmetric])
            fix \(S\) assume \(S \in T\) ' \(\{. . n\}\)
            then show \(\left(\left(\lambda x\right.\right.\). \(\mid\) det (matrix \(\left.\left.\left(f^{\prime} x\right)\right) \mid\right)\) has_integral integral \(S(\lambda x\). \(\mid\) det
\(\left(\right.\) matrix \(\left.\left.\left.\left(f^{\prime} x\right)\right) \mid\right)\right) S\)
            using absolutely_integrable_on_def aint_T by blast
        next
            show pairwise \(\left(\lambda S S^{\prime}\right.\). negligible \(\left.\left(S \cap S^{\prime}\right)\right)(T\) ‘ \(\{. . n\})\)
                    using disT unfolding disjnt_iff by (auto simp: pairwise_def intro!:
empty_imp_negligible)
    qed auto
    also have ... \(\leq m\)
        unfolding \(m \_d e f\)
    proof (rule integral_subset_le)
        have \(\left(\lambda x\right.\). \(\mid\) det \(\left.\left(\operatorname{matrix}\left(f^{\prime} x\right)\right) \mid\right)\) absolutely_integrable_on \((\bigcup k \leq n . T k)\)
```

```
            apply (rule set_integrable_subset [OF aint_S])
            apply (intro measurable meas_t fmeasurableD)
            apply (force simp: Seq)
            done
            then show ( }\lambdax.|\operatorname{det}(\mathrm{ matrix ( }\mp@subsup{f}{}{\prime}x))|) integrable_on ( \bigcupk\leqn.T k
                    using absolutely_integrable_on_def by blast
        qed (use Seq int in auto)
        finally show (\sumk\leqn. real k*e*?\mu (T k))\leqm.
    next
        have (\sumk\leqn.?\mu(T k))=sum ? }\mu(T'{..n}
            by (auto intro: sum_eq_Tim)
            also have ... = ? \mu (Uk\leqn.T k)
            using}S\mathrm{ disT by (auto simp: pairwise_def meas_t intro: measure_Union'
[symmetric])
            also have ... \leq? }\mu
            using S by (auto simp: Seq intro: meas_t fmeasurableD measure_mono_fmeasurable)
            finally have (\sumk\leqn.? }\mu(Tk))\leq? ! S 
            then show (\sumk\leqn.e*? }\mu(Tk))\leqe*?\mu
            by (metis less_eq_real_def ordered_comm_semiring_class.comm_mult_left_mono
sum_distrib_left that)
            qed
            finally show (\sumk\leqn.?\mu (f'T k))\leq?B.
    qed
    moreover have measure lebesgue (\k\leqn.f`Tk)\leq(\sumk\leqn.?.\mu(f'Tk))
for n
    by (simp add: fmeasurableD meas_ft measure_UNION_le)
    ultimately have B_ge_m:? }\mu(\bigcupk\leqn.(f'Tk))\leq?B for 
        by (meson order_trans)
    have (Un.f`T n)\inlmeasurable
            by (rule fmeasurable_countable_Union [OF meas_ft B_ge_m])
    moreover have ? }\mu(\n.f\mp@subsup{}{}{\prime}Tn)\leqm+e*?\mu
        by (rule measure_countable_Union_le [OF meas_ft B_ge_m])
    ultimately show f'S\in lmeasurable ? }\mu(f`S)\leqm+e*?\mu
        by (auto simp: Seq image_Union)
qed
show ?thesis
proof
    show f' }S\inlmeasurable
    using * linordered_field_no_ub by blast
    let ? }x=m-?\mu(f'S
    have False if ? }\mu(f'S)>\operatorname{integral S}(\lambdax.|\operatorname{det}(\mathrm{ matrix }(\mp@subsup{f}{}{\prime}x))|
    proof -
        have ml: m < ? \mu (f'S)
            using m_def that by blast
            then have ? }\muS\not=
            using *(2) bgauge_existence_lemma by fastforce
            with ml have 0:0<-(m-? }\mu(\mp@subsup{f}{}{\prime}S))/2 / ? \mu S
                using that zero_less_measure_iff by force
            then show ?thesis
```

```
        using * [OF 0] that by (auto simp: field_split_simps m_def split: if_split_asm)
    qed
    then show ? }\mu(\mp@subsup{f}{}{\prime}S)\leqintegral S ( \lambdax. | det (matrix (f'x))|
    by fastforce
    qed
qed
```


theorem

fixes $f::$ real $^{\wedge} n::\{$ finite,wellorder $\} \Rightarrow$ real $^{\wedge} n::$
assumes $S: S \in$ sets lebesgue
and deriv: $\bigwedge x . x \in S \Longrightarrow\left(f\right.$ has_derivative $\left.f^{\prime} x\right)($ at x within $S)$
and int: $\left(\lambda x .\left|\operatorname{det}\left(\operatorname{matrix}\left(f^{\prime} x\right)\right)\right|\right)$ integrable_on S
shows measurable_differentiable_image: f ' $S \in$ lmeasurable
and measure_differentiable_image:
measure lebesgue $\left(f^{\prime} S\right) \leq \operatorname{integral} S\left(\lambda x\right.$. $\left.\left|\operatorname{det}\left(\operatorname{matrix}\left(f^{\prime} x\right)\right)\right|\right)($ is ?M)
proof -
let ? $I=\lambda n:$:nat. cbox $(\operatorname{vec}(-n))($ vec $n) \cap S$
let $? \mu=$ measure lebesgue
have $x \in \operatorname{cbox}(\operatorname{vec}(-\operatorname{real}($ nat \lceil norm $x\rceil)))(\operatorname{vec}($ real $($ nat \lceil norm $x\rceil))$) for x
:: real^' $n::_{-}$
apply (auto simp: mem_box_cart)
apply (metis abs_le_iff component_le_norm_cart minus_le_iff of_nat_ceiling order.trans)
by (meson abs_le_D1 norm_bound_component_le_cart real_nat_ceiling_ge)
then have Seq: $S=(\bigcup n$. ?I $n)$
by auto
have fIn: f '?I $n \in$ lmeasurable
and mfIn: ? $\mu(f$ ' ? $I n) \leq$ integral $S\left(\lambda x\right.$. $\left.\left|\operatorname{det}\left(\operatorname{matrix}\left(f^{\prime} x\right)\right)\right|\right)($ is ?MN $)$
for n
proof -
have In: ?I $n \in$ lmeasurable
by (simp add: S bounded_Int bounded_set_imp_lmeasurable sets.Int)
moreover have $\bigwedge x . x \in$? $I n \Longrightarrow\left(f\right.$ has_derivative $\left.f^{\prime} x\right)($ at x within ?I $n)$
by (meson Int_iff deriv has_derivative_subset subsetI)
moreover have int_In: $\left(\lambda x . \mid \operatorname{det}\left(\right.\right.$ matrix $\left.\left.\left(f^{\prime} x\right)\right) \mid\right)$ integrable_on ?I n
proof -
have $\left(\lambda x\right.$. \mid det $\left(\right.$ matrix $\left.\left.\left(f^{\prime} x\right)\right) \mid\right)$ absolutely_integrable_on S
using int absolutely_integrable_integrable_bound by force
then have $\left(\lambda x\right.$. $\mid \operatorname{det}\left(\right.$ matrix $\left.\left.\left(f^{\prime} x\right)\right) \mid\right)$ absolutely_integrable_on ?I n
by (metis (no_types) Int_lower1 In fmeasurableD inf_commute set_integrable_subset)
then show ?thesis
using absolutely_integrable_on_def by blast
qed
ultimately have f '?I $n \in$ lmeasurable ? $\mu(f$ '?I $n) \leq$ integral (?I $n)(\lambda x$.
\mid det $\left(\right.$ matrix $\left.\left.\left(f^{\prime} x\right)\right) \mid\right)$ using m_diff_image_weak by metis+
moreover have integral (?I $n)\left(\lambda x\right.$. $\mid \operatorname{det}\left(\right.$ matrix $\left.\left.\left(f^{\prime} x\right)\right) \mid\right) \leq i n t e g r a l ~ S(\lambda x$. $\mid \operatorname{det}\left(\right.$ matrix $\left.\left.\left(f^{\prime} x\right)\right) \mid\right)$

```
            by (simp add: int_In int integral_subset_le)
            ultimately show f'?I n lmeasurable ?MN
            by auto
    qed
    have ?I k\subseteq ?I n if k\leqn for kn
    by (rule Int_mono) (use that in <auto simp: subset_interval_imp_cart>)
    then have ( }\cupk\leqn.f'?I k)=f'?I n for 
        by (fastforce simp add:)
    with mfIn have ? }\mu(\bigcupk\leqn.f'?I k)\leqintegral S ( \lambdax. | det (matrix (f' x) )|
for }
        by simp
    then have (\bigcupn.f'?I n)\inlmeasurable ? }\mu(\bigcupn.f'?In)\leqintegral S (\lambdax.|\operatorname{det
(matrix (f' f)
    by (rule fmeasurable_countable_Union [OF fIn] measure_countable_Union_le [OF
fIn])+
    then show f'S\in lmeasurable ?M
        by (metis Seq image_UN)+
qed
lemma borel_measurable_simple_function_limit_increasing:
    fixes f :: 'a::euclidean_space => real
    shows (f\inborel_measurable lebesgue }\wedge(\forallx.0\leqfx))
            (\existsg. }\forall\mp@code{|x.0\leqgnx\wedgegnx\leqfx)^(\forallnx.gnx\leq(g(Suc n) x))}
                (\foralln.g n \in borel_measurable lebesgue) ^(\foralln.finite(range (g n) )) ^
                (\forallx.(\lambdan.gn x)\longrightarrowfx))
            (is?lhs = ?rhs)
proof
    assume f:?lhs
    have leb_f: {x.a\leqfx^fx<b}\in sets lebesgue for ab
    proof -
        have {x.a\leqfx\wedgefx<b}={x.fx<b}-{x.fx<a}
            by auto
        also have ... \in sets lebesgue
            using borel_measurable_vimage_halfspace_component_lt [of f UNIV] f by auto
        finally show ?thesis.
    qed
    have g n x \leqfx
            if inc_g: \bigwedgenx. 0 \leqgnx ^gnx\leqg(Suc n) x
                    and meas_g: \bigwedgen.g n b borel_measurable lebesgue
                and fin: \bigwedgen.finite(range (gn)) and lim: }\x.(\lambdan.gnx)\longrightarrowfx\mathrm{ for
g n x
    proof -
        have \existsr>0.\forallN.\existsn\geqN. dist (gnx) (fx)\geqr if gnx>fx
        proof -
            have g: gn x \leqg(N+n)x for N
                by (rule transitive_stepwise_le) (use inc_g in auto)
            have \existsna\geqN.gnx-fx\leq\operatorname{dist}(gnax) (fx) for N
                apply (rule_tac }x=N+n\mathrm{ in exI)
```

```
        using \(g[\) of \(N]\) by (auto simp: dist_norm)
    with that show ?thesis
    using diff_gt_0_iff_gt by blast
    qed
    with lim show ?thesis
    apply (auto simp: lim_sequentially)
    by (meson less_le_not_le not_le_imp_less)
qed
moreover
let \(? \Omega=\lambda n k\). indicator \(\left\{y . k / \mathcal{D}^{\wedge} n \leq f y \wedge f y<(k+1) /{ }^{2}{ }^{\wedge} n\right\}\)
let ? \(g=\lambda n x .\left(\sum k:\right.\) real \(|k \in \mathbb{Z} \wedge| k \mid \leq 2^{\wedge}(2 * n) . k /\) 2 \(\left.^{\wedge} n * ? \Omega n k x\right)\)
have \(\exists g\). \((\forall n x .0 \leq g n x \wedge g n x \leq(g(\) Suc \(n) x)) \wedge\)
                            \((\forall n . g n \in\) borel_measurable lebesgue \() \wedge(\forall n\).finite \((\) range \((g n))) \wedge(\forall x\).
\((\lambda n . g n x) \longrightarrow f x)\)
    proof (intro exI allI conjI)
    show \(0 \leq ? g n x\) for \(n x\)
    proof (clarify intro!: ordered_comm_monoid_add_class.sum_nonneg)
        fix \(k\) : real
        assume \(k \in \mathbb{Z}\) and \(k:|k| \leq 2^{\wedge}(2 * n)\)
        show \(0 \leq k / \mathscr{D}^{\wedge} n * ? \Omega n k x\)
            using \(f\langle k \in \mathbb{Z}\rangle\) apply (auto simp: indicator_def field_split_simps Ints_def)
            apply (drule spec [where \(x=x]\) )
            using zero_le_power [of 2::real n] mult_nonneg_nonneg \(\left[\right.\) of \(f x\) 2 \(\left.^{\wedge} n\right]\)
            by linarith
    qed
    show ? \(g n x \leq ? g(\) Suc \(n) x\) for \(n x\)
    proof -
        have ? \(g n x=\)
            \(\left(\sum k|k \in \mathbb{Z} \wedge| k \mid \leq 2^{\wedge}(2 * n)\right.\).
                \(k / \mathscr{D}^{\wedge} n *\left(\right.\) indicator \(\left\{y . k / \mathbb{Z}^{\wedge} n \leq f y \wedge f y<(k+1 / \mathcal{Z}) / \mathscr{D}^{\wedge} n\right\} x+\)
                indicator \(\left\{y .\left(k+1 /\right.\right.\) 2) \(/\) D' \(\left.\left.\left.^{\wedge} n \leq f y \wedge f y<(k+1) / \mathscr{D}^{\wedge} n\right\} x\right)\right)\)
            by (rule sum.cong [OF refl]) (simp add: indicator_def field_split_simps)
            also have \(\ldots=\left(\sum k|k \in \mathbb{Z} \wedge| k \mid \leq \mathscr{2}^{\wedge}(2 * n) . k / \mathscr{L}^{\wedge} n *\right.\) indicator \(\{y\).
\(k /\) 2^n \(^{\wedge} \leq f y \wedge f y<(k+1 / 2) /\) 2^ \(\left.\left.^{\wedge} n\right\} x\right)+\)
                    ( \(\sum k|k \in \mathbb{Z} \wedge| k \mid \leq \mathbb{Z}^{\wedge}(2 * n) . k / \mathscr{Z}^{\wedge} n *\) indicator \(\{y\).
\(\left(k+1 /\right.\) 2) \(/\) 2^ \(\left.\left.^{\wedge} \leq f y \wedge f y<(k+1) / \mathscr{L}^{\wedge} n\right\} x\right)\)
            by (simp add: comm_monoid_add_class.sum.distrib algebra_simps)
            also have \(\ldots=\left(\sum k|k \in \mathbb{Z} \wedge| k \mid \leq \mathcal{Z}^{\wedge}(2 * n)\right.\). (2* \(\left.k\right) / \mathcal{Z}^{\wedge}\) Suc \(n *\)
indicator \(\left\{y .(2 * k) / \mathcal{Z}^{\wedge}\right.\) Suc \(n \leq f y \wedge f y<(2 * k+1) / 2^{\wedge}\) Suc \(\left.\left.n\right\} x\right)+\)
                                    ( \(\sum k|k \in \mathbb{Z} \wedge| k \mid \leq 2^{\wedge}(2 * n)\). (2*k)/2 ^Suc \(n *\) indicator
\(\left\{y .(2 * k+1) / \mathscr{Z}^{\wedge}\right.\) Suc \(n \leq f y \wedge f y<((2 * k+1)+1) / 2^{\wedge}\) Suc \(\left.\left.n\right\} x\right)\)
    by (force simp: field_simps indicator_def intro: sum.cong)
    also have \(\ldots \leq\left(\sum k|k \in \mathbb{Z} \wedge| k \mid \leq \mathcal{Z}^{\wedge}(2 * S u c n)\right.\). \(k /\) 2 \(^{\wedge}\) Suc \(n *\)
(indicator \(\left\{y . k / \mathscr{Z}^{\wedge}\right.\) Suc \(n \leq f y \wedge f y<(k+1) / \mathbb{2}^{\wedge}\) Suc \(\left.\left.n\right\} x\right)\) )
                    (is ? \(a++_{-} \leq b\) )
    proof -
        have \(*: \llbracket \operatorname{sum} f I \leq \operatorname{sum} h I ; a+\operatorname{sum} h I \leq b \rrbracket \Longrightarrow a+\operatorname{sum} f I \leq b\) for \(I\)
\(a b f\) and \(h::\) real \(\Rightarrow\) real
            by linarith
```

let $? h=\lambda k .(2 * k+1) /{ }^{2}{ }^{\wedge}$ Suc $n *$
(indicator $\left\{y .(2 * k+1) / 2^{\wedge}\right.$ Suc $n \leq f y \wedge f y<((2 * k+1)+$
1)/2 ^ Suc n\} x)
show ?thesis
proof (rule *)
show $\left(\sum k|k \in \mathbb{Z} \wedge| k \mid \leq 2^{\wedge}(2 * n)\right.$.
$2 * k / \mathcal{D}^{\wedge}$ Suc $n *$ indicator $\left\{y .(2 * k+1) / \mathscr{2}^{\wedge}\right.$ Suc $n \leq f y \wedge f y$ $<(2 * k+1+1) /$ 2 $^{\wedge}$ Suc $\left.\left.n\right\} x\right)$

$$
\leq \operatorname{sum} ? h\left\{k \in \mathbb{Z} .|k| \leq 2^{\wedge}(2 * n)\right\}
$$

by (rule sum_mono) (simp add: indicator_def field_split_simps)
next
have $\alpha:$? $a=\left(\sum k \in(*) 2\right.$ ' $\left\{k \in \mathbb{Z} .|k| \leq 2^{\wedge}(2 * n)\right\}$.
k / \mathcal{Z}^{\wedge} Suc $n *$ indicator $\left\{y . k / \mathcal{Z}^{\wedge}\right.$ Suc $n \leq f y \wedge f y<(k+1) / 2$
^Suc n\} x)
by (auto simp: inj_on_def field_simps comm_monoid_add_class.sum.reindex)
have β : sum ? $h\left\{k \in \mathbb{Z} .|k| \leq 2^{\wedge}(2 * n)\right\}$

$$
\begin{aligned}
= & \left(\sum_{2} k \in(\lambda x .2 * x+1) ‘\left\{k \in \mathbb{Z} .|k| \leq 2^{\wedge}(2 * n)\right\} .\right. \\
& k / \mathcal{N}^{\wedge} \text { Suc } n * \text { indicator }\left\{y . k / \mathbb{N}^{\wedge} \text { Suc } n \leq f y \wedge f y<(k+1) / \mathbb{D}\right.
\end{aligned}
$$

-Suc n\} x)
by (auto simp: inj_on_def field_simps comm_monoid_add_class.sum.reindex)
have 0: (*) 2' $\{k \in \mathbb{Z} . P k\} \cap(\lambda x .2 * x+1) '\{k \in \mathbb{Z} . P k\}=\{ \}$ for P :: real \Rightarrow bool
proof -
have $2 * i \neq 2 * j+1$ for $i j::$ int by arith
thus? ?thesis
unfolding Ints_def by auto (use of_int_eq_iff in fastforce)
qed
have ? $a+$ sum ? $h\left\{k \in \mathbb{Z} .|k| \leq 2^{\wedge}(2 * n)\right\}$

$$
=\left(\sum k \in(*) \mathcal{2}^{\prime}\left\{k \in \mathbb{Z} .|\bar{k}| \leq 2^{\wedge}(2 * n)\right\} \cup(\lambda x .2 * x+1) '\{k \in\right.
$$

Z. $\left.|k| \leq 2^{\wedge}(2 * n)\right\}$.
$k /$ 2 $^{\wedge}$ Suc $n *$ indicator $\left\{y . k / 2^{\wedge}\right.$ Suc $n \leq f y \wedge f y<(k+1) / \mathcal{D}^{\wedge}$
Suc n\} x)
unfolding $\alpha \beta$
using finite_abs_int_segment [of 2 ^ $(2 * n)$]
by (subst sum_Un) (auto simp: 0)
also have $\ldots \leq$? b
proof (rule sum_mono2)
show finite $\left\{k::\right.$ real. $\left.k \in \mathbb{Z} \wedge|k| \leq 2^{\wedge}(2 * S u c n)\right\}$
by (rule finite_abs_int_segment)
show $(*) \mathcal{Z}^{\prime}\left\{k::\right.$ real. $k \in \mathbb{Z} \wedge|k| \leq$ 2^ $\left.^{\wedge}(2 * n)\right\} \cup(\lambda x$. $2 * x+1)$ ' $\{k \in$ $\mathbb{Z} .|k| \leq$ 2^ $\left.^{\wedge}(2 * n)\right\} \subseteq\left\{k \in \mathbb{Z} .|k| \leq 2^{\wedge}(2 * S u c n)\right\}$
apply auto
using one_le_power [of 2::real $2 * n$] by linarith
have $*: \llbracket x \in(S \cup T)-U ; \bigwedge x . x \in S \Longrightarrow x \in U ; \bigwedge x . x \in T \Longrightarrow x \in$
$U \rrbracket \Longrightarrow P x$ for $S T U P$
by blast
have $0 \leq b$ if $b \in \mathbb{Z} f x *\left(2 * \mathcal{Z}^{\wedge} n\right)<b+1$ for b
proof -
have $0 \leq f x *(2 * 2 \wedge n)$

```
            by (simp add: f)
            also have ... < b+1
            by (simp add: that)
            finally show 0}\leq
                            using }\langleb\in\mathbb{Z}\rangle\mathrm{ by (auto simp: elim!: Ints_cases)
qed
                            then show 0\leqb/2 ` Suc n* indicator {y.b/2 ` Suc n\leqfy^fy<
(b+1)/2 ` Suc n} x
                            if b \in {k\in\mathbb{Z. |k| { 2 ` (2* Suc n) }-}
```



```
|k| <2 ^(2*n)}) for b
            using that by (simp add: indicator_def divide_simps)
        qed
        finally show ?a + sum ?h {k\in\mathbb{Z. |k| < 2 ^ (2*n) } \leq?b .}
        qed
    qed
    finally show ?thesis.
qed
show ?g n \in borel_measurable lebesgue for n
apply (intro borel_measurable_indicator borel_measurable_times borel_measurable_sum)
    using leb_f sets_restrict_UNIV by auto
    show finite (range (?g n)) for n
    proof -
    have (\sumk|k\in\mathbb{Z}^|k|\leq\mp@subsup{2}{}{`}(2*n). k/2^n*?\Omega nkx)
                \in(\lambdak.k/\mathscr{2`}n)`{k\in\mathbb{Z}.|k|\leq2 ` (2*n)} for x
```



```
    case True
    then show ?thesis
            by (blast intro: indicator_sum_eq)
    next
        case False
        then have (\sumk|k\in\mathbb{Z}\wedge |k|\leq2 ^ (2*n).k/\mathscr{2}n n ? \Omega nkx)=0
            by auto
        then show ?thesis by force
    qed
```



```
        by auto
```



```
        by (intro finite_imageI finite_abs_int_segment)
    ultimately show ?thesis
        by (rule finite_subset)
    qed
show (\lambdan.?g n x) \longrightarrow 
proof (clarsimp simp add: lim_sequentially)
    fix e::real
    assume e>0
    obtain N1 where N1: 2 ` N1 > abs(f x)
        using real_arch_pow by fastforce
    obtain N2 where N2: (1/2) ^ N2 < e
```

using real_arch_pow_inv $\langle e>0\rangle$ by fastforce
have dist $\left(\sum k|k \in \mathbb{Z} \wedge| k \mid \leq 2^{\wedge}(2 * n) . k / 2^{\wedge} n * ? \Omega n k x\right)(f x)<e$ if $N 1+N 2 \leq n$ for n
proof -
let $? m=$ real_of_int $\left\lfloor 2{ }^{\wedge} n * f x\right\rfloor$
have $|? m| \leq 2^{\wedge} n * 2^{\wedge} N 1$
using $N 1$ apply (simp add: f)
by (meson floor_mono le_floor_iff less_le_not_le mult_le_cancel_left_pos zero_less_numeral zero_less_power)
also have $\ldots \leq 2^{\wedge}(2 * n)$
by (metis that add_leD1 add_le_cancel_left mult.commute mult_2_right one_less_numeral_iff
power_add power_increasing_iff semiring_norm(76))
finally have $m_{-} l e:|? m| \leq 2^{\wedge}(2 * n)$.
have ? $m /$ 2^n $^{\wedge} \leq f x f x<(? m+1) /$ Q $^{\wedge} n$
by (auto simp: mult.commute pos_divide_le_eq mult_imp_less_div_pos)
then have eq: $\operatorname{dist}\left(\sum k|k \in \mathbb{Z} \wedge| k \mid \leq 2^{\wedge}(2 * n) . k / \mathcal{Z}^{\wedge} n * ? \Omega n k x\right)(f$
x)

$$
=\operatorname{dist}\left(? m / \mathscr{Q}^{\wedge} n\right)(f x)
$$

by (subst indicator_sum_eq [of ?m]) (auto simp: m_le)
have $\left|\mathfrak{Z}^{\wedge} n\right| *\left|? m / \mathscr{Z}^{\wedge} n-f x\right|=\left|\mathfrak{Z}^{\wedge} n *\left(? m / \mathscr{L}^{\wedge} n-f x\right)\right|$
by (simp add: abs_mult)
also have ... < 2 ${ }^{\wedge}$ N2 $* e$
using N2 by (simp add: divide_simps mult.commute) linarith
also have $\ldots \leq\left|\mathcal{Z}^{\wedge} n\right| * e$
using that $\langle e>0\rangle$ by auto
finally have $\operatorname{dist}\left(? m /\right.$ $\left.^{\wedge} n\right)(f x)<e$
by (simp add: dist_norm)
then show ?thesis
using eq by linarith
qed
then show \exists no. $\forall n \geq$ no. $\operatorname{dist}\left(\sum k|k \in \mathbb{Z} \wedge| k \mid \leq 2^{\wedge}(2 * n) . k * ? \Omega n k\right.$ $x /$ 2 ^ $\left.^{\wedge} n\right)(f x)<e$
by force
qed
qed
ultimately show ?rhs
by metis
next
assume RHS: ?rhs
with borel_measurable_simple_function_limit [of f UNIV, unfolded lebesgue_on_UNIV_eq]
show ?lhs
by (blast intro: order_trans)
qed

6.46.2 Borel measurable Jacobian determinant

lemma lemma_partial_derivatives 0 :
fixes f :: 'a::euclidean_space \Rightarrow ' $b::$ euclidean_space

```
    assumes linear \(f\) and \(\lim 0:((\lambda x . f x / R\) norm \(x) \longrightarrow 0)(\) at 0 within \(S)\)
    and \(l b: \bigwedge v . v \neq 0 \Longrightarrow(\exists k>0 . \forall e>0 . \exists x . x \in S-\{0\} \wedge\) norm \(x<e \wedge k *\)
norm \(x \leq|v \cdot x|)\)
    shows \(f x=0\)
proof -
    interpret linear \(f\) by fact
    have \(\operatorname{dim}\{x . f x=0\} \leq \operatorname{DIM}\left({ }^{\prime} a\right)\)
        by (rule dim_subset_UNIV)
    moreover have False if less: \(\operatorname{dim}\{x . f x=0\}<\operatorname{DIM}\left({ }^{\prime} a\right)\)
    proof -
        obtain \(d\) where \(d \neq 0\) and \(d: \bigwedge y . f y=0 \Longrightarrow d \cdot y=0\)
        using orthogonal_to_subspace_exists [OF less] orthogonal_def
        by (metis (mono_tags, lifting) mem_Collect_eq span_base)
    then obtain \(k\) where \(k>0\)
        and \(k: \bigwedge e . e>0 \Longrightarrow \exists y . y \in S-\{0\} \wedge\) norm \(y<e \wedge k *\) norm \(y \leq \mid d \cdot\)
\(y \mid\)
            using \(l b\) by blast
    have \(\exists h . \forall n .((h n \in S \wedge h n \neq 0 \wedge k * \operatorname{norm}(h n) \leq|d \cdot h n|) \wedge\) norm \((h\)
\(n)<1 / \operatorname{real}(S u c n)) \wedge\)
                norm (h (Suc n)) <norm (hn)
    proof (rule dependent_nat_choice)
            show \(\exists y .(y \in S \wedge y \neq 0 \wedge k *\) norm \(y \leq|d \cdot y|) \wedge\) norm \(y<1 /\) real
(Suc 0)
            by simp (metis Diffe insertCI \(k\) not_less not_one_le_zero)
    qed (use \(k\) [of \(\min (\) norm \(x)(1 /(S u c n+1))\) for \(x n]\) in auto)
    then obtain \(\alpha\) where \(\alpha: \bigwedge n . \alpha n \in S-\{0\}\) and \(k d: \bigwedge n . k * \operatorname{norm}(\alpha n) \leq\)
\(|d \cdot \alpha n|\)
            and norm_lt: \(\bigwedge n\). norm \((\alpha n)<1 /(\) Suc \(n)\)
        by force
    let ? \(\beta=\lambda n\). \(\alpha n / R\) norm ( \(\alpha n\) )
    have com: \(\bigwedge g .\left(\forall n . g n \in \operatorname{sphere}\left(0::^{\prime} a\right) 1\right)\)
                \(\Longrightarrow \exists l \in\) sphere \(01 . \exists \varrho::\) nat \(\Rightarrow\) nat. strict_mono \(\varrho \wedge(g \circ \varrho) \longrightarrow l\)
        using compact_sphere compact_def by metis
    moreover have \(\forall n\). ? \(\beta n \in\) sphere 01
        using \(\alpha\) by auto
    ultimately obtain \(l::{ }^{\prime} a\) and \(\varrho:: n a t \Rightarrow n a t\)
        where \(l: l \in\) sphere 01 and strict_mono \(\varrho\) and to_l: \((? \beta \circ \varrho) \longrightarrow l\)
        by meson
    moreover have continuous (at \(l)(\lambda x .(|d \cdot x|-k))\)
        by (intro continuous_intros)
    ultimately have lim_dl: \(((\lambda x .(|d \cdot x|-k)) \circ(? \beta \circ \varrho)) \longrightarrow(|d \cdot l|-k)\)
        by (meson continuous_imp_tendsto)
    have \(\forall_{F} i\) in sequentially. \(0 \leq((\lambda x .|d \cdot x|-k) \circ((\lambda n . \alpha n / R \operatorname{norm}(\alpha n))\)
- @)) \(i\)
        using \(\alpha k d\) by (auto simp: field_split_simps)
    then have \(k \leq|d \cdot l|\)
        using tendsto_lowerbound [OF lim_dl, of 0] by auto
    moreover have \(d \cdot l=0\)
    proof (rule d)
```

```
        show \(f l=0\)
        proof (rule LIMSEQ_unique \([\) of \(f \circ ? \beta \circ \varrho]\) )
            have isCont \(f l\)
                using 〈linear \(f\) 〉linear_continuous_at linear_conv_bounded_linear by blast
            then show \((f \circ(\lambda n . \alpha n / R \operatorname{norm}(\alpha n)) \circ \varrho) \longrightarrow f l\)
            unfolding comp_assoc
            using to_l continuous_imp_tendsto by blast
            have \(\alpha \longrightarrow 0\)
                using norm_lt LIMSEQ_norm_0 by metis
            with «strict_mono \(\varrho\) 〉 have \((\alpha \circ \varrho) \longrightarrow 0\)
                by (metis LIMSEQ_subseq_LIMSEQ)
            with \(\lim 0 \alpha\) have \(((\lambda x . f x / R\) norm \(x) \circ(\alpha \circ \varrho)) \longrightarrow 0\)
                by (force simp: tendsto_at_iff_sequentially)
            then show \((f \circ(\lambda n . \alpha n / R \operatorname{norm}(\alpha n)) \circ \varrho) \longrightarrow 0\)
                by (simp add: o_def scale)
        qed
    qed
    ultimately show False
        using \(\langle k>0\rangle\) by auto
    qed
    ultimately have \(\operatorname{dim}: \operatorname{dim}\{x . f x=0\}=D I M\left({ }^{\prime} a\right)\)
    by force
    then show ?thesis
    using dim_eq_full
    by (metis (mono_tags, lifting) eq_0_on_span eucl.span_Basis linear_axioms lin-
ear_eq_stdbasis
        mem_Collect_eq module_hom_zero span_base span_raw_def)
qed
lemma lemma_partial_derivatives:
    fixes \(f::\) 'a::euclidean_space \(\Rightarrow\) 'b::euclidean_space
    assumes linear \(f\) and lim: \(((\lambda x . f(x-a) / R \operatorname{norm}(x-a)) \longrightarrow 0)(\) at \(a\)
within \(S\) )
    and \(l b: \bigwedge v . v \neq 0 \Longrightarrow(\exists k>0 . \forall e>0 . \exists x \in S-\{a\} . \operatorname{norm}(a-x)<e \wedge k\)
* \(\operatorname{norm}(a-x) \leq|v \cdot(x-a)|)\)
    shows \(f x=0\)
proof -
    have \(((\lambda x . f x / R\) norm \(x) \longrightarrow 0)\) (at 0 within \((\lambda x . x-a)\) ' \(S\) )
        using lim by (simp add: Lim_within dist_norm)
    then show? thesis
    proof (rule lemma_partial_derivatives0 [OF〈linear f \(\rangle\) ])
        fix \(v::\) ' \(a\)
        assume \(v: v \neq 0\)
        show \(\exists k>0 . \forall e>0 . \exists x . x \in(\lambda x . x-a) ' S-\{0\} \wedge\) norm \(x<e \wedge k *\) norm
\(x \leq|v \cdot x|\)
            using \(l b[O F v]\) by (force simp: norm_minus_commute)
    qed
qed
```

proposition borel_measurable_partial_derivatives:
fixes $f::$ real ${ }^{\wedge \prime} m::\{$ finite,wellorder $\} \Rightarrow$ real $^{\wedge} n$
assumes $S: S \in$ sets lebesgue
and $f: \bigwedge x . x \in S \Longrightarrow\left(f\right.$ has_derivative $\left.f^{\prime} x\right)($ at x within $S)$
shows $\left(\lambda x\right.$. $\left.\left(\operatorname{matrix}\left(f^{\prime} x\right) \$ m \$ n\right)\right) \in$ borel_measurable (lebesgue_on S)
proof -
have contf: continuous_on $S f$
using continuous_on_eq_continuous_within f has_derivative_continuous by blast
have $\left\{x \in S .\left(\right.\right.$ matrix $\left.\left.\left(f^{\prime} x\right) \$ m \$ n\right) \leq b\right\} \in$ sets lebesgue for b
proof (rule sets_negligible_symdiff)
let ? $T=\{x \in S . \forall e>0 . \exists d>0 . \exists A . A \$ m \$ n<b \wedge(\forall i j . A \$ i \$ j \in \mathbb{Q}) \wedge$
$(\forall y \in S . \operatorname{norm}(y-x)<d \longrightarrow \operatorname{norm}(f y-f x-A * v(y-$
$x)) \leq e * \operatorname{norm}(y-x))\}$
let ? $U=S \cap$
$(\bigcap e \in\{e \in \mathbb{Q} . e>0\}$.
$\bigcup A \in\{A . A \$ m \$ n<b \wedge(\forall i j . A \$ i \$ j \in \mathbb{Q})\}$.
$\bigcup d \in\{d \in \mathbb{Q} .0<d\}$.
$S \cap(\bigcap y \in S .\{x \in S . \operatorname{norm}(y-x)<d \longrightarrow \operatorname{norm}(f y-f x-$
$A * v(y-x)) \leq e * \operatorname{norm}(y-x)\}))$
have ? $T=$? U
proof (intro set_eqI iffI)
fix x
assume $x T: x \in ? T$
then show $x \in$? U
proof (clarsimp simp add:)
fix $q::$ real
assume $q \in \mathbb{Q} q>0$
then obtain $d A$ where $d>0$ and $A: A \$ m \$ n<b \bigwedge i j . A \$ i \$ j \in \mathbb{Q}$
$\bigwedge y . \llbracket y \in S ; \operatorname{norm}(y-x)<d \rrbracket \Longrightarrow \operatorname{norm}(f y-f x-A * v(y-x)) \leq$ $q * \operatorname{norm}(y-x)$
using $x T$ by auto
then obtain δ where $d>\delta \delta>0 \delta \in \mathbb{Q}$
using Rats_dense_in_real by blast
with A show $\exists A . A \$ m \$ n<b \wedge(\forall i j . A \$ i \$ j \in \mathbb{Q}) \wedge$
$(\exists s . s \in \mathbb{Q} \wedge 0<s \wedge(\forall y \in S . n o r m(y-x)<s \longrightarrow$ norm
$(f y-f x-A * v(y-x)) \leq q * \operatorname{norm}(y-x)))$
by force
qed
next
fix x
assume $x U: x \in$? U
then show $x \in$? T
proof clarsimp
fix e :: real
assume $e>0$
then obtain ε where $\varepsilon: e>\varepsilon \varepsilon>0 \varepsilon \in \mathbb{Q}$
using Rats_dense_in_real by blast
with $x U$ obtain $A r$ where $x \in S$ and $A r: A \$ m \$ n<b \forall i j$. $A \$ i \$$
$j \in \mathbb{Q} r \in \mathbb{Q} r>0$
and $\forall y \in S$. norm $(y-x)<r \longrightarrow \operatorname{norm}(f y-f x-A * v(y-x)) \leq \varepsilon$

* norm ($y-x$)
by (auto simp: split: if_split_asm)
then have $\forall y \in S$. norm $(y-x)<r \longrightarrow \operatorname{norm}(f y-f x-A * v(y-$
$x)) \leq e * \operatorname{norm}(y-x)$
by (meson $\langle e>\varepsilon\rangle$ less_eq_real_def mult_right_mono norm_ge_zero order_trans)
then show $\exists d>0 . \exists A . A \$ m \$ n<b \wedge(\forall i j . A \$ i \$ j \in \mathbb{Q}) \wedge(\forall y \in S$.
$\operatorname{norm}(y-x)<d \longrightarrow \operatorname{norm}(f y-f x-A * v(y-x)) \leq e * \operatorname{norm}(y-x))$
using $\langle x \in S\rangle A r$ by blast
qed
qed
moreover have ? $U \in$ sets lebesgue
proof -
have coQ: countable $\{e \in \mathbb{Q} .0<e\}$
using countable_Collect countable_rat by blast
have $n e:\{e \in \mathbb{Q} .(0::$ real $)<e\} \neq\{ \}$
using zero_less_one Rats_1 by blast
have coA: countable $\{A . A \$ m \$ n<b \wedge(\forall i j . A \$ i \$ j \in \mathbb{Q})\}$
proof (rule countable_subset)
show countable $\{A . \forall i j . A \$ i \$ j \in \mathbb{Q}\}$
using countable_vector $[O F$ countable_vector, of $\lambda i j . \mathbb{Q}]$ by (simp add:
countable_rat)
qed blast
have $*: \llbracket U \neq\{ \} \Longrightarrow$ closedin $($ top_of_set $S)(S \cap \bigcap U) \rrbracket$
\Longrightarrow closedin (top_of_set S) $(S \cap \bigcap U)$ for U
by fastforce
have eq: $\left\{x::\left(\right.\right.$ real, $\left.{ }^{\prime} m\right)$ vec. $\left.P x \wedge(Q x \longrightarrow R x)\right\}=\{x . P x \wedge \neg Q x\} \cup\{x$.
$P x \wedge R x\}$ for $P Q R$
by auto
have sets: $S \cap(\bigcap y \in S .\{x \in S . \operatorname{norm}(y-x)<d \longrightarrow \operatorname{norm}(f y-f x-$
$A * v(y-x)) \leq e * \operatorname{norm}(y-x)\})$
\in sets lebesgue for $e A d$
proof -
have clo: closedin (top_of_set S)
$\{x \in S . \operatorname{norm}(y-x)<d \longrightarrow \operatorname{norm}(f y-f x-A * v(y-$
$x)) \leq e * \operatorname{norm}(y-x)\}$
for y
proof -
have cont1: continuous_on $S(\lambda x$. norm $(y-x))$
and cont2: continuous_on $S(\lambda x . e * \operatorname{norm}(y-x)-\operatorname{norm}(f y-f x$
$-(A * v y-A * v x)))$
by (force intro: contf continuous_intros) +
have clo1: closedin (top_of_set S) $\{x \in S . d \leq \operatorname{norm}(y-x)\}$
using continuous_closedin_preimage $[$ OF cont1, of $\{d .\}$.$] by (simp add:$
vimage_def Int_def)
have clo2: closedin (top_of_set S)
$\{x \in S . \operatorname{norm}(f y-f x-(A * v y-A * v x)) \leq e * \operatorname{norm}(y$
$-x)\}$
using continuous_closedin_preimage [OF cont2, of \{0..\}] by (simp add: vimage_def Int_def)
show ?thesis
by (auto simp: eq not_less matrix_vector_mult_diff_distrib intro: clo1 clo2)
qed
show ?thesis
by (rule lebesgue_closedin $[$ of $S]$) (force intro: $* S$ clo) +
qed
show ?thesis
by (intro sets sets.Int S sets.countable_UN" sets.countable_INT" coQ coA)
auto
qed
ultimately show ? $T \in$ sets lebesgue
by simp
let $? M=\left(? T-\left\{x \in S\right.\right.$. matrix $\left.\left(f^{\prime} x\right) \$ m \$ n \leq b\right\} \cup\left(\left\{x \in S\right.\right.$. matrix $\left(f^{\prime}\right.$
x) $\$ m \$ n \leq b\}-? T)$)
let $? \Theta=\lambda x v . \forall \xi>0 . \exists e>0 . \forall y \in S-\{x\} . \operatorname{norm}(x-y)<e \longrightarrow \mid v \cdot(y-$ $x) \mid<\xi * \operatorname{norm}(x-y)$
have $n N$: negligible $\{x \in S . \exists v \neq 0$. ? $\Theta x v\}$
unfolding negligible_eq_zero_density
proof clarsimp
fix $x v$ and $r e$:: real
assume $x \in S v \neq 0 r>0 e>0$
and Theta [rule_format]: ? $\Theta \times v$
moreover have (norm $v * e /$ 2) / CARD('m) ^ CARD('m) > 0
by (simp add: $\langle v \neq 0\rangle\langle e>0\rangle$)
ultimately obtain d where $d>0$
and dless: $\bigwedge y . \llbracket y \in S-\{x\} ; \operatorname{norm}(x-y)<d \rrbracket \Longrightarrow$

$$
|v \cdot(y-x)|<\left((\text { norm } v * e / 2) / C A R D\left(^{\prime} m\right)^{\wedge} C A R D\left({ }^{\prime} m\right)\right)
$$

* norm $(x-y)$
by metis
let ? $W=$ ball $x(\min d r) \cap\{y .|v \cdot(y-x)|<($ norm $v * e / \mathscr{D} * \min d r)$ / CARD ('m) ^CARD ('m) \}
have open $\{x .|v \cdot(x-a)|<b\}$ for $a b$
by (intro open_Collect_less continuous_intros)
show $\exists d>0 . d \leq r \wedge$
$\left(\exists U .\left\{x^{\prime} \in S . \exists v \neq 0 . ? \Theta x^{\prime} v\right\} \cap\right.$ ball $x d \subseteq U \wedge$
$U \in$ lmeasurable \wedge measure lebesgue $U<e *$ content (ball $x d$))
proof (intro exI conjI)
show $0<\min d r \min d r \leq r$
using $\langle r>0\rangle\langle d>0\rangle$ by auto
show $\left\{x^{\prime} \in S . \exists v . v \neq 0 \wedge\left(\forall \xi>0 . \exists e>0 . \forall z \in S-\left\{x^{\prime}\right\} . \operatorname{norm}\left(x^{\prime}-z\right)\right.\right.$
$\left.\left.<e \longrightarrow\left|v \cdot\left(z-x^{\prime}\right)\right|<\xi * \operatorname{norm}\left(x^{\prime}-z\right)\right)\right\} \cap$ ball $x(\min d r) \subseteq ? W$
proof (clarsimp simp: dist_norm norm_minus_commute)
fix $y w$
assume $y \in S w \neq 0$
and less [rule_format]:

$$
\forall \xi>0 . \exists e>0 . \forall z \in S-\{y\} . \operatorname{norm}(y-z)<e \longrightarrow|w \cdot(z-y)|
$$

$<\xi * \operatorname{norm}(y-z)$

```
            and d:norm ( }y-x)<d\mathrm{ and r:norm ( }y-x)<
            show }|v\cdot(y-x)|<norm v*e*\operatorname{min}dr/(2*\operatorname{real CARD('m) ^
CARD('m))
            proof (cases y=x)
            case True
            with \langler>0\rangle\langled>0\rangle\langlee>0\rangle\langlev\not=0\rangle\mathrm{ show ?thesis}
            by simp
        next
            case False
            have |v•(y-x)|<norm v *e/2 / real (CARD('m) ^CARD('m))
* norm (x - y)
            apply (rule dless)
            using False }\langley\inS\rangled\mathrm{ by (auto simp: norm_minus_commute)
                        also have ... \leqnorm v*e* min dr / (2 * real CARD('m) ^
CARD('m))
                using d r \langlee> 0\rangle by (simp add: field_simps norm_minus_commute
mult_left_mono)
            finally show ?thesis .
        qed
            qed
            show ?W \in lmeasurable
            by (simp add: fmeasurable_Int_fmeasurable borel_open)
            obtain k::'m where True
                by metis
            obtain T where T: orthogonal_transformation T and v:v=T(norm v
*R axis k (1::real))
            using rotation_rightward_line by metis
            define b where b\equiv norm v
            have b>0
                using \langlev\not=0\rangle by (auto simp: b_def)
            obtain eqb: inv Tv=b*R axis k (1::real) and inj T bij T and invT:
orthogonal_transformation (inv T)
                            by (metis UNIV_I b_def T v bij_betw_inv_into_left orthogonal_transformation_inj
orthogonal_transformation_bij orthogonal_transformation_inv)
            let ?v = \chi i. mindr/CARD('m)
            let ? v' = \chi i. if i=k then (e/2* min d r)/CARD('m) ^CARD('m)
else min d r
            let ? }\mp@subsup{x}{}{\prime}=\operatorname{inv}T
            let ?. W'=(ball ? }\mp@subsup{|}{}{\prime}(\operatorname{min}dr)\cap{y.|(y-?x)$k|<e*\operatorname{mind}d/(2*
CARD('m) ^CARD('m))})
            have abs: }x-e\leqy\wedgey\leqx+e\longleftrightarrowabs(y-x)\leqe for x y e::rea
                by auto
            have ? W = T'? 'W'
            proof -
            have 1: T'(ball (inv T x) (min dr)) = ball x (min dr)
                    by (simp add: T image_orthogonal_transformation_ball orthogo-
nal_transformation_surj surj_f_inv_f)
            have 2: {y. |v • (y-x)|<b*e* mindr / (2* real CARD('m)^
CARD('m))} =
```

```
    \(T{ }^{\prime}\left\{y .\left|y \$ k-? x^{\prime} \$ k\right|<e * \min d r /\left(2 *\right.\right.\) real \(\operatorname{CARD}\left({ }^{\prime} m\right)\)
\(\left.\left.{ }^{\wedge} C A R D(' m)\right)\right\}\)
    proof -
        have \(*: \mid T\left(b *_{R}\right.\) axis \(\left.k 1\right) \cdot(y-x)|=b *| i n v T y \$ k-? x^{\prime} \$ k \mid\)
```

for y
proof -
have $\mid T\left(b *_{R}\right.$ axis $\left.k 1\right) \cdot(y-x)|=|\left(b *_{R}\right.$ axis $\left.k 1\right) \cdot \operatorname{inv} T(y-x) \mid$
by (metis (no_types, hide_lams) b_def eqb invT orthogonal_transformation_def
$v)$
also have $\ldots=b * \mid($ axis $k 1) \cdot \operatorname{inv} T(y-x) \mid$
using $\langle b>0\rangle$ by (simp add: abs_mult)
also have $\ldots=b *\left|\operatorname{inv} T y \$ k-? x^{\prime} \$ k\right|$
using orthogonal_transformation_linear [OF invT]
by (simp add: inner_axis' linear_diff)
finally show?thesis
by simp
qed
show ?thesis
using $v b_{-}$def [symmetric]
using $\langle b>0\rangle$ by (simp add: * bij_image_Collect_eq [OF 〈bij T〉]
mult_less_cancel_left_pos times_divide_eq_right [symmetric] del: times_divide_eq_right)
qed
show ?thesis
using $\langle b\rangle 0\rangle$ by (simp add: image_Int \langle inj $T\rangle 12 b_{-}$def [symmetric])
qed
moreover have ? $W^{\prime} \in l$ lmeasurable
by (auto intro: fmeasurable_Int_fmeasurable)
ultimately have measure lebesgue ? $W=$ measure lebesgue ? W^{\prime}
by (metis measure_orthogonal_image T)
also have $\ldots \leq$ measure lebesgue (cbox $\left.\left(? x^{\prime}-? v^{\prime}\right)\left(? x^{\prime}+? v^{\prime}\right)\right)$
proof (rule measure_mono_fmeasurable)
show $? W^{\prime} \subseteq \operatorname{cbox}\left(? x^{\prime}-? v^{\prime}\right)\left(? x^{\prime}+? v^{\prime}\right)$
apply (clarsimp simp add: mem_box_cart abs dist_norm norm_minus_commute
simp del: min_less_iff_conj min.bounded_iff)
by (metis component_le_norm_cart less_eq_real_def le_less_trans vec-
tor_minus_component)
qed auto
also have $\ldots \leq e / 2 *$ measure lebesgue $\left(\operatorname{cbox}\left(? x^{\prime}-? v\right)\left(? x^{\prime}+? v\right)\right)$
proof -
have cbox $\left(? x^{\prime}-? v\right)\left(? x^{\prime}+? v\right) \neq\{ \}$
using $\langle r>0\rangle\langle d>0\rangle$ by (auto simp: interval_eq_empty_cart di-
vide_less_0_iff)
with $\langle r>0\rangle\langle d>0\rangle\langle e>0\rangle$ show ?thesis
apply (simp add: content_cbox_if_cart mem_box_cart)
apply (auto simp: prod_nonneg)
apply (simp add: abs if_distrib prod.delta_remove field_simps power_diff
split: if_split_asm)
done
qed

```
also have \(\ldots \leq e / 2 *\) measure lebesgue \(\left(\right.\) cball \(\left.? x^{\prime}(\min d r)\right)\)
proof (rule mult_left_mono [OF measure_mono_fmeasurable])
    have *: \(\operatorname{norm}\left(? x^{\prime}-y\right) \leq \min d r\)
        if \(y: \bigwedge i .\left|? x^{\prime} \$ i-y \$ i\right| \leq \min d r / \operatorname{real} \operatorname{CARD}\left({ }^{\prime} m\right)\) for \(y\)
    proof -
        have norm \(\left(? x^{\prime}-y\right) \leq\left(\sum i \in U N I V .\left|\left(? x^{\prime}-y\right) \$ i\right|\right)\)
                by (rule norm_le_l1_cart)
                        also have \(\ldots \leq \operatorname{real} \operatorname{CARD}\left({ }^{\prime} m\right) *\left(\min d r / \operatorname{real} \operatorname{CARD}\left({ }^{\prime} m\right)\right)\)
                by (rule sum_bounded_above) (use \(y\) in auto)
            finally show?thesis
                by \(\operatorname{simp}\)
            qed
            show cbox \(\left(? x^{\prime}-? v\right)\left(? x^{\prime}+? v\right) \subseteq\) cball \(? x^{\prime}(\min d r)\)
                apply (clarsimp simp only: mem_box_cart dist_norm mem_cball intro!:
*)
                            by (simp add: abs_diff_le_iff abs_minus_commute)
            qed (use \(\langle e>0\rangle\) in auto)
            also have \(\ldots<e *\) content \(\left(\right.\) cball ? \(\left.x^{\prime}(\min d r)\right)\)
                            using \(\langle r>0\rangle\langle d>0\rangle\langle e>0\rangle\) by (auto intro: content_cball_pos)
                also have \(\ldots=e *\) content (ball \(x(\min d r)\) )
                    using \(\langle r>0\rangle\langle d>0\rangle\) content_ball_conv_unit_ball[of min drinv T \(x\) ]
                    content_ball_conv_unit_ball[of min d r \(x\) ]
                    by (simp add: content_cball_conv_ball)
            finally show measure lebesgue ? \(W<e *\) content \((b a l l x(\min d r)\) ).
        qed
    qed
    have \(*:(\bigwedge x .(x \notin S) \Longrightarrow(x \in T \longleftrightarrow x \in U)) \Longrightarrow(T-U) \cup(U-T) \subseteq\)
\(S\) for \(S T U::\left(\right.\) real, \({ }^{\prime} m\) ) vec set
        by blast
    have \(M N: ? M \subseteq\{x \in S . \exists v \neq 0\). ? \(\Theta x v\}\)
    proof (rule *)
        fix \(x\)
        assume \(x: x \notin\{x \in S . \exists v \neq 0\). ? \(\Theta x v\}\)
        show \((x \in ? T) \longleftrightarrow\left(x \in\left\{x \in S\right.\right.\). matrix \(\left.\left.\left(f^{\prime} x\right) \$ m \$ n \leq b\right\}\right)\)
        proof (cases \(x \in S\) )
            case True
            then have \(x\) : \(\neg ? \Theta x v\) if \(v \neq 0\) for \(v\)
            using \(x\) that by force
            show ?thesis
            proof (rule iffI; clarsimp)
                assume \(b: \forall e>0 . \exists d>0 . \exists A . A \$ m \$ n<b \wedge(\forall i j . A \$ i \$ j \in \mathbb{Q}) \wedge\)
                    \((\forall y \in S . \operatorname{norm}(y-x)<d \longrightarrow \operatorname{norm}(f y-f x-A\)
*v \((y-x)) \leq e * \operatorname{norm}(y-x))\)
                            (is \(\forall e>0 . \exists d>0 . \exists A\). ? \(\Phi\) e \(d A\) )
            then have \(\forall k . \exists d>0 . \exists A\). ? \(\Phi(1 /\) Suc \(k) d A\)
                            by (metis (no_types, hide_lams) less_Suc_eq_0_disj of_nat_0_less_iff
zero_less_divide_1_iff)
            then obtain \(\delta A\) where \(\delta: \wedge k . \delta k>0\)
                        and \(A b: \wedge k . A k \$ m \$ n<b\)
```

and $A: \bigwedge k y . \llbracket y \in S ; \operatorname{norm}(y-x)<\delta k \rrbracket \Longrightarrow$ $\operatorname{norm}(f y-f x-A k * v(y-x)) \leq 1 /($ Suc $k)$

* norm $(y-x)$
by metis
have $\forall i j . \exists a .(\lambda n . A n \$ i \$ j) \longrightarrow a$
proof (intro allI)
fix $i j$
have vax: $(A n * v$ axis $j 1) \$ i=A n \$ i \$ j$ for n
by (metis cart_eq_inner_axis matrix_vector_mul_component)
let ? $C A=\{x$. Cauchy $(\lambda n .(A n) * v x)\}$
have subspace? CA
unfolding subspace_def convergent_eq_Cauchy [symmetric]
by (force simp: algebra_simps intro: tendsto_intros)
then have $C A_{-}$eq: ? $C A=$ span ? $C A$
by (metis span_eq_iff)
also have $\ldots=U N I V$
proof -
have $\operatorname{dim} ? C A \leq C A R D\left({ }^{\prime} m\right)$
using dim_subset_UNIV[of?CA]
by auto
moreover have False if less: dim? $C A<C A R D\left({ }^{\prime} m\right)$
proof -
obtain d where $d \neq 0$ and $d: \bigwedge y . y \in$ span ? $C A \Longrightarrow$ orthogonal $d y$ using less by (force intro: orthogonal_to_subspace_exists [of ?CA])
with $x[O F\langle d \neq 0\rangle]$ obtain ξ where $\xi>0$
and $\xi: \wedge e . e>0 \Longrightarrow \exists y \in S-\{x\}$. norm $(x-y)<e \wedge \xi *$ norm $(x-y) \leq|d \cdot(y-x)|$
by (fastforce simp: not_le Bex_def)
obtain γz where $\gamma S x: \bigwedge i . \gamma i \in S-\{x\}$
and $\gamma l e: \quad \bigwedge i . \xi * \operatorname{norm}(\gamma i-x) \leq|d \cdot(\gamma i-x)|$
and $\gamma x: \quad \gamma \longrightarrow x$
and $z: \quad(\lambda n \cdot(\gamma n-x) / R \operatorname{norm}(\gamma n-x)) \longrightarrow z$
proof -
have $\exists \gamma .(\forall i .(\gamma i \in S-\{x\} \wedge$
$\xi * \operatorname{norm}(\gamma i-x) \leq|d \cdot(\gamma i-x)| \wedge \operatorname{norm}(\gamma i-x)$
$<1 /$ Suc i) \wedge
$\operatorname{norm}(\gamma($ Suc $i)-x)<\operatorname{norm}(\gamma i-x))$
proof (rule dependent_nat_choice)
show $\exists y . y \in S-\{x\} \wedge \xi * \operatorname{norm}(y-x) \leq|d \cdot(y-x)| \wedge$ norm $(y-x)<1 /$ Suc 0
using ξ [of 1] by (auto simp: dist_norm norm_minus_commute)
next
fix $y i$
assume $y \in S-\{x\} \wedge \xi * \operatorname{norm}(y-x) \leq|d \cdot(y-x)| \wedge$ norm $(y-x)<1 /$ Suc i
then have $\min (\operatorname{norm}(y-x))(1 /(($ Suc $i)+1))>0$
by auto
then obtain y^{\prime} where $y^{\prime} \in S-\{x\}$ and $y^{\prime}: \operatorname{norm}\left(x-y^{\prime}\right)<$ $\min (\operatorname{norm}(y-x))(1 /(($ Suc $i)+1))$

```
                    \xi* norm (x- y')\leq|d}\cdot(\mp@subsup{y}{}{\prime}-x)
            using }\xi\mathrm{ by metis
            with }\xi\mathrm{ show }\exists\mp@subsup{y}{}{\prime}.(\mp@subsup{y}{}{\prime}\inS-{x}\wedge\xi*\operatorname{norm}(\mp@subsup{y}{}{\prime}-x)\leq|d\cdot(\mp@subsup{y}{}{\prime
-x)|^
norm (y-x)
                                    norm}(\mp@subsup{y}{}{\prime}-x)<1/(\mathrm{ Suc (Suc i)))}\wedge\operatorname{norm}(\mp@subsup{y}{}{\prime}-x)
            by (auto simp: dist_norm norm_minus_commute)
                qed
                then obtain \gamma where
                \gammaSx: \bigwedgei.\gamma i\inS-{x}
                and \gammale:\bigwedgei. }\*\operatorname{norm}(\gammai-x)\leq|d\cdot(\gammai-x)
                    and \gammaconv: \bigwedgei. norm(\gamma i-x)<1/(Suc i)
                    by blast
                    let ?f = \lambdai. (\gamma i-x)/R norm (\gamma i-x)
                    have ?f i\in sphere 0 1 for i
                            using }\gammaSx\mathrm{ by auto
                            then obtain l\varrho where l\in sphere 0 1 strict_mono \varrho and l:(?f ○
\varrho)\longrightarrowl
                    using compact_sphere [of 0::(real,'m) vec 1] unfolding compact_def
by meson
            show thesis
    proof
                            show }(\gamma\circ\varrho)i\inS-{x}\xi*\operatorname{norm}((\gamma\circ\varrho)i-x)\leq|d\cdot((\gamma
\varrho) i-x)| for }
            using \gammaSx \gammale by auto
    have }\gamma\longrightarrow
    proof (clarsimp simp add: LIMSEQ_def dist_norm)
            fix r :: real
            assume r>0
            with real_arch_invD obtain no where no }\not=0\mathrm{ real no > 1/r
                        by (metis divide_less_0_1_iff not_less_iff_gr_or_eq of_nat_0_eq_iff
reals_Archimedean2)
                            with \gammaconv show \exists no. }\foralln\geqno.norm (\gamma n-x)<
                            by (metis }\langler>0\rangle\mathrm{ add.commute divide_inverse inverse_inverse_eq
inverse_less_imp_less less_trans mult.left_neutral nat_le_real_less of_nat_Suc)
    qed
    with <strict_mono \varrho` show ( }\gamma\circ\varrho)\longrightarrow
                            by (metis LIMSEQ_subseq_LIMSEQ)
    show (\lambdan. ((\gamma\circ\varrho) n-x)/R norm ((\gamma\circ\varrho) n-x))\longrightarrowl
            using l by (auto simp: o_def)
        qed
    qed
    have isCont ( }\lambdax.(|d\cdotx|-\xi))
    by (intro continuous_intros)
    from isCont_tendsto_compose [OF this z]
    have lim: (\lambday. |d\cdot((\gamma y-x)/R norm (\gammay-x))|-\xi)\longrightarrow|d
\cdot z| - \xi
by auto
moreover have \(\forall_{F} i\) in sequentially. \(0 \leq \mid d \cdot((\gamma i-x) / R\) norm
```

```
\((\gamma i-x)) \mid-\xi\)
    proof (rule eventuallyI)
        fix \(n\)
        show \(0 \leq|d \cdot((\gamma n-x) / R \operatorname{norm}(\gamma n-x))|-\xi\)
        using \(\gamma l e[\) of \(n] \gamma S x\) by (auto simp: abs_mult divide_simps)
    qed
    ultimately have \(\xi \leq|d \cdot z|\)
        using tendsto_lowerbound [where \(a=0\) ] by fastforce
    have Cauchy \((\lambda n\). (A \(n\) ) *v \(z\) )
    proof (clarsimp simp add: Cauchy_def)
        fix \(\varepsilon\) :: real
        assume \(0<\varepsilon\)
        then obtain \(N::\) nat where \(N>0\) and \(N: \varepsilon / 2>1 / N\)
        by (metis half_gt_zero inverse_eq_divide neq0_conv real_arch_inverse)
        show \(\exists M . \forall m \geq M . \forall n \geq M\). dist \((A m * v z)(A n * v z)<\varepsilon\)
        proof (intro exI allI impI)
            fix \(i j\)
            assume \(i j: N \leq i N \leq j\)
            let ? \(V=\lambda i k\). \(A i * v((\gamma k-x) / R\) norm \((\gamma k-x))\)
            have \(\forall_{F} k\) in sequentially. dist \((\gamma k) x<\min (\delta i)(\delta j)\)
                using \(\gamma x\) [unfolded tendsto_iff] by (meson min_less_iff_conj \(\delta\) )
            then have even: \(\forall_{F} k\) in sequentially. norm (?Vik-?Vjk)-
\(2 / N \leq 0\)
            proof (rule eventually_mono, clarsimp)
                fix \(p\)
                            assume \(p\) : dist \((\gamma p) x<\delta i \operatorname{dist}(\gamma p) x<\delta j\)
                            let \(? C=\lambda k . f(\gamma p)-f x-A k * v(\gamma p-x)\)
                            have norm \(((A i-A j) * v(\gamma p-x))=\operatorname{norm}(? C j-? C i)\)
                            by (simp add: algebra_simps)
                            also have \(\ldots \leq \operatorname{norm}(? C j)+\) norm (?C i)
                            using norm_triangle_ineq4 by blast
                            also have \(\ldots \leq 1 /(\) Suc \(j) * \operatorname{norm}(\gamma p-x)+1 /(\) Suc \(i) *\)
norm \((\gamma p-x)\)
                            by (metis A Diff_iff \(\gamma\) Sx dist_norm p add_mono)
                            also have \(\ldots \leq 1 / N * \operatorname{norm}(\gamma p-x)+1 / N * \operatorname{norm}(\gamma p-\)
x)
                            apply (intro add_mono mult_right_mono)
                            using \(i j\langle N\rangle 0\rangle\) by (auto simp: field_simps)
                            also have \(\ldots=2 / N * \operatorname{norm}(\gamma p-x)\)
                            by simp
                            finally have no_le: norm \(((A i-A j) * v(\gamma p-x)) \leq 2 / N\)
* \(\operatorname{norm}(\gamma p-x)\).
            have norm (?Vip-?Vjp)=
                    norm \(((A i-A j) * v((\gamma p-x) / R \operatorname{norm}(\gamma p-x)))\)
                            by (simp add: algebra_simps)
                            also have \(\ldots=\operatorname{norm}((A i-A j) * v(\gamma p-x)) / \operatorname{norm}(\gamma p\)
\(-x)\)
```

by (simp add: divide_inverse matrix_vector_mult_scale R)
also have $\ldots \leq 2 / N$

```
                    using no_le by (auto simp: field_split_simps)
                        finally show norm (?Vip-?Vjp) \(2 / 2 / N\).
                qed
                have isCont \((\lambda w .(\operatorname{norm}(A i * v w-A j * v w)-2 / N)) z\)
                        by (intro continuous_intros)
            from isCont_tendsto_compose [OF this z]
            have lim: \((\lambda w . \operatorname{norm}(A i * v((\gamma w-x) / R \operatorname{norm}(\gamma w-x))-\)
                                    \(A j * v((\gamma w-x) / R \operatorname{norm}(\gamma w-x)))-2 / N)\)
                    \(\longrightarrow \operatorname{norm}(A i * v z-A j * v z)-2 / N\)
                        by auto
            have \(\operatorname{dist}(A i * v z)(A j * v z) \leq 2 / N\)
            using tendsto_upperbound [OF lim even] by (auto simp: dist_norm)
                        with \(N\) show dist \((A i * v z)(A j * v z)<\varepsilon\)
                        by linarith
            qed
        qed
        then have \(d \cdot z=0\)
            using \(C A_{-} e q\) d orthogonal_def by auto
            then show False
                using \(\langle 0<\xi\rangle\langle\xi \leq| d \cdot z\rangle\) by auto
            qed
            ultimately show ?thesis
                using dim_eq_full by fastforce
            qed
            finally have ? \(C A=U N I V\).
            then have Cauchy \((\lambda n .(A n) * v\) axis \(j 1)\)
            by auto
            then obtain \(L\) where \((\lambda n . A n * v\) axis \(j 1) \longrightarrow L\)
            by (auto simp: Cauchy_convergent_iff convergent_def)
            then have \((\lambda x .(A x * v\) axis \(j 1) \$ i) \longrightarrow L \$ i\)
            by (rule tendsto_vec_nth)
            then show \(\exists a .(\lambda n . A n \$ i \$ j) \longrightarrow a\)
            by (force simp: vax)
qed
then obtain \(B\) where \(B: \bigwedge i j .(\lambda n . A n \$ i \$ j) \longrightarrow B \$ i \$ j\)
by (auto simp: lambda_skolem)
have lin_df: linear ( \(\left.f^{\prime} x\right)\)
                            and lim_df: \(\left(\left(\lambda y .(1 / \operatorname{norm}(y-x)) *_{R}\left(f y-\left(f x+f^{\prime} x(y-\right.\right.\right.\right.\)
\(x)))(\longrightarrow 0)(\) at \(x\) within \(S)\)
            using \(\langle x \in S\rangle\) assms by (auto simp: has_derivative_within linear_linear)
    moreover
    interpret linear \(f^{\prime} x\) by fact
    have (matrix \(\left.\left(f^{\prime} x\right)-B\right) * v w=0\) for \(w\)
    proof (rule lemma_partial_derivatives \(\left.\left[o f(* v)\left(\operatorname{matrix}\left(f^{\prime} x\right)-B\right)\right]\right)\)
            show linear \(\left((* v)\left(\right.\right.\) matrix \(\left.\left.\left(f^{\prime} x\right)-B\right)\right)\)
            by (rule matrix_vector_mul_linear)
    have \(\left(\left(\lambda y .\left(\left(f x+f^{\prime} x(y-x)\right)-f y\right) / R \operatorname{norm}(y-x)\right) \longrightarrow 0\right)(\) at
            using tendsto_minus \([O F\) lim_df] by (simp add: field_split_simps)
```

x within S)

```
    then show \(\left(\left(\lambda y .\left(\right.\right.\right.\) matrix \(\left.\left.\left(f^{\prime} x\right)-B\right) * v(y-x) / R \operatorname{norm}(y-x)\right)\)
\(\longrightarrow 0)(\) at \(x\) within \(S)\)
            proof (rule Lim_transform)
            have \(((\lambda y .((f y+B * v x-(f x+B * v y)) / R \operatorname{norm}(y-x))) \longrightarrow\)
0) (at \(x\) within \(S\) )
    proof (clarsimp simp add: Lim_within dist_norm)
            fix \(e\) :: real
            assume \(e>0\)
            then obtain \(q::\) nat where \(q \neq 0\) and \(q e 2: 1 / q<e / 2\)
                    by (metis divide_pos_pos inverse_eq_divide real_arch_inverse
zero_less_numeral)
    let ? \(g=\lambda p\). sum \((\lambda i . \operatorname{sum}(\lambda j\). abs \(((A p-B) \$ i \$ j))\) UNIV \()\) UNIV
    have \((\lambda k\). onorm \((\lambda y .(A k-B) * v y)) \longrightarrow 0\)
    proof (rule Lim_null_comparison)
            show \(\forall_{F} k\) in sequentially. norm (onorm \(\left.(\lambda y .(A k-B) * v y)\right) \leq\)
? \(g k\)
            proof (rule eventually_sequentiallyI)
            fix \(k\) :: nat
            assume \(0 \leq k\)
            have \(0 \leq\) onorm \(((* v)(A k-B))\)
                using matrix_vector_mul_bounded_linear
                by (rule onorm_pos_le)
                    then show norm \((\) onorm \(((* v)(A k-B))) \leq\left(\sum i \in U N I V\right.\).
\(\left.\sum j \in U N I V .|(A k-B) \$ i \$ j|\right)\)
                                    by (simp add: onorm_le_matrix_component_sum del: vec-
tor_minus_component)
            qed
    next
                            show ? \(g \longrightarrow 0\)
                                    using B Lim_null tendsto_rabs_zero_iff by (fastforce intro!:
tendsto_null_sum)
                            qed
                            with \(\langle e>0\rangle\) obtain \(p\) where \(\wedge n . n \geq p \Longrightarrow \mid \operatorname{onorm}((* v)(A n-\)
B) \() \mid<e / 2\)
                    unfolding lim_sequentially by (metis diff_zero dist_real_def di-
vide_pos_pos zero_less_numeral)
    then have pqe2: \(\mid\) onorm \(((* v)(A(p+q)-B)) \mid<e / 2\)
            using le_add1 by blast
    show \(\exists d>0 . \forall y \in S . y \neq x \wedge \operatorname{norm}(y-x)<d \longrightarrow\)
                inverse \((\operatorname{norm}(y-x)) * \operatorname{norm}(f y+B * v x-(f x+B\)
*v \(y))<e\)
    proof (intro exI, safe)
                        show \(0<\delta(p+q)\)
                            by (simp add: \(\delta\) )
    next
            fix \(y\)
            assume \(y: y \in S \operatorname{norm}(y-x)<\delta(p+q)\) and \(y \neq x\)
            have \(*: \llbracket \operatorname{norm}(b-c)<e-d ; \operatorname{norm}(y-x-b) \leq d \rrbracket \Longrightarrow \operatorname{norm}(y\)
\(-x-c)<e\)
```

```
                    for b c d e x and y:: real^^n
            using norm_triangle_ineq2 [of y-x - cy-x-b] by simp
            have norm (fy-fx-B*v(y-x))<e* norm (y-x)
            proof (rule *)
            show norm (fy-fx-A(p+q)*v(y-x)) \leqnorm (y-x)
                / (Suc (p+q))
            using A[OF y] by simp
                            have norm (A(p+q)*v (y-x)-B*v (y-x))\leqonorm(\lambdax.
(A(p+q)-B)*vx)* norm(y-x)
            by (metis linear_linear matrix_vector_mul_linear matrix_vector_mult_diff_rdistrib
onorm)
            also have ...< (e/2) * norm ( }y-x\mathrm{ )
                        using }\langley\not=x\rangle pqe2 by aut
                            also have ... \leq(e-1/(Suc (p+q)))*\operatorname{norm}(y-x)
                    proof (rule mult_right_mono)
                        have 1/Suc (p+q)\leq1/q
                                using }\langleq\not=0\rangle\mathrm{ by (auto simp: field_split_simps)
                            also have ... <e/2
                            using qe2 by auto
                            finally show e / 2 <e-1 / real (Suc (p+q))
                                by linarith
                            qed auto
                            finally show norm (A (p+q)*v (y-x)-B*v (y-x))<e
* norm (y-x) - norm (y-x)/real (Suc (p+q))
            by (simp add: algebra_simps)
            qed
                    then show inverse (norm (y-x))* norm (fy+B*vx-(fx
+B*vy))}<
                    using }\langley\not=x\rangle\mathrm{ by (simp add: field_split_simps algebra_simps)
                    qed
            qed
            then show ((\lambday.(matrix ( }\mp@subsup{f}{}{\prime}x)-B)*v(y-x)/
                                    norm (y-x)-(fx+\mp@subsup{f}{}{\prime}x(y-x)-fy)/R norm (y-
x) \longrightarrow0)
                                    (at x within S)
                            by (simp add: algebra_simps diff lin_df scalar_mult_eq_scaleR)
        qed
        qed (use x in \simp; auto simp: not_less`)
        ultimately have f'}x=(*v)
            by (force simp: algebra_simps scalar_mult_eq_scaleR)
        show matrix ( }\mp@subsup{f}{}{\prime}x)$m$n\leq
        proof (rule tendsto_upperbound [of \lambdai.(Ai$m$n) _ sequentially])
            show (\lambdai.A i $m $n)\longrightarrow matrix ( }\mp@subsup{f}{}{\prime}x)$m$
            by (simp add: B\langlef' x = (*v) B〉)
            show }\mp@subsup{\forall}{F}{}i\mathrm{ in sequentially.A i$m $ n sb
            by (simp add: Ab less_eq_real_def)
        qed auto
    next
        fix e :: real
```

```
    assume }x\inS\mathrm{ and b:matrix (f'x)$m$nsb and e>0
    then obtain d}\mathrm{ where d>0
    and d: \bigwedgey. y\inS\Longrightarrow0<dist y x ^ dist y x < d \longrightarrow norm (fy-fx
- f'x (y-x))/(norm (y-x))
            <e/2
    using f[OF <x \inS\rangle]
    by (simp add: Deriv.has_derivative_at_within Lim_within)
            (auto simp add: field_simps dest: spec [of _ e/2])
    let ?A = matrix (f'x) - (\chi ij. if i=m^j=n then e / & else 0)
    obtain B where BRats: \ij. B$i$j\in\mathbb{Q}\mathrm{ and Bo_e6:onorm((*v) (?A}
- B))<e/6
            using matrix_rational_approximation \langlee > 0\rangle
            by (metis zero_less_divide_iff zero_less_numeral)
    show }\existsd>0.\existsA.A$m$n<b\wedge(\forallij.A$i$j\in\mathbb{Q})
            (\forally\inS.norm (y-x)<d\longrightarrow\operatorname{norm}(fy-fx-A*v(y-x))\leq
e*norm (y-x))
    proof (intro exI conjI ballI allI impI)
    show d>0
            by (rule \d>0`)
            show B$m $ n<b
            proof -
            have |matrix ((*v) (?A - B)) $m $ n| \leq onorm ((*v) (?A - B))
                using component_le_onorm [OF matrix_vector_mul_linear, of _ m n]
by metis
            then show ?thesis
                using b Bo_e6 by simp
    qed
    show B$i$j\in\mathbb{Q for ij}
            using BRats by auto
    show norm (fy-fx-B*v(y-x))\leqe*\operatorname{norm}(y-x)
            if }y\inS\mathrm{ and y:norm ( }y-x)<d\mathrm{ for }
    proof (cases y =x)
            case True then show ?thesis
                by simp
    next
            case False
                have *: norm( (d' - d) \leqe/2 \Longrightarrownorm(y- (x+d'))<e/2 \Longrightarrow
norm(y-x-d)\leqe for d d' }e\mathrm{ a and }xy::real^\primen 
            using norm_triangle_le [of d}\mp@subsup{d}{}{\prime}-dy-(x+\mp@subsup{d}{}{\prime})]\mathrm{ by simp
            show ?thesis
            proof (rule *)
            have split246:\llbracketnorm y \leqe/6;norm (x-y)\leqe/4\rrbracket\Longrightarrow norm x
\leqe/2 if e>0 for e and x y :: real^/n
            using norm_triangle_le [of y x-y e/2] <e> 0〉 by simp
            have linear ( }\mp@subsup{f}{}{\prime}x
                using True f has_derivative_linear by blast
                then have norm (f'x (y-x)-B*v (y-x)) = norm ((matrix
(f'x)-B)*v(y-x))
                        by (simp add: matrix_vector_mult_diff_rdistrib)
```

```
    also have ... \leq(e* norm (y-x))/2
    proof (rule split246)
    have norm ((?A - B)*v (y-x)) / norm (y-x)\leqonorm(\lambdax.
(?A - B)*v x)
            by (rule le_onorm) auto
            also have ... <e/6
                by (rule Bo_e6)
                            finally have norm ((?A - B)*v (y-x)) / norm (y-x)<e /
6.
                            then show norm ((?A - B)*v (y-x))\leqe* norm (y-x)/6
                        by (simp add: field_split_simps False)
                            have norm ((matrix (f'x)-B)*v (y-x)-((?A - B)*v (y-
x))) = norm ((\chi i j. if i=m^j=n then e / 4 else 0) *v (y-x))
            by (simp add: algebra_simps)
            also have ... = norm((e/4)*R}(y-x)$n\mp@subsup{*}{R}{}\mathrm{ axis m (1::real))
    proof -
        have (\sumj\inUNIV. (if i=m\wedge j=n then e / 4 else 0)* (y$j
-x$j))*4=e*(y$n-x$n)*axis m1$ i for i
    proof (cases i=m)
                        case True then show ?thesis
                        by (auto simp: if_distrib [of \lambdaz. z* ] cong: if_cong)
    next
                        case False then show ?thesis
                        by (simp add: axis_def)
    qed
    then have ( }\chi\mathrm{ i j. if i=m^j=n then e / 4 else 0)*v (y-x)
=(e/4)*R
                            by (auto simp: vec_eq_iff matrix_vector_mult_def)
                            then show ?thesis
                by metis
    qed
    also have ... \leqe * norm (y-x) / 4
    using <e> 0\rangle apply (simp add: norm_mult abs_mult)
    by (metis component_le_norm_cart vector_minus_component)
    finally show norm ((matrix (f'x) - B)*v (y-x)-((?A - B)
*v(y-x)))\leqe*\operatorname{norm}(y-x)/4.
    show 0<e*norm (y-x)
    by (simp add: False 〈e>0〉)
    qed
    finally show norm (f'x (y-x)-B*v(y-x))\leq(e*norm (y
-x)) / 2.
            show norm (fy-(fx+\mp@subsup{f}{}{\prime}x(y-x)))<(e*\operatorname{norm}(y-x))/2
                        using False d [OF <y \inS`] y by (simp add: dist_norm field_simps)
            qed
            qed
            qed
        qed
    qed auto
    qed
```

```
    show negligible ?M
    using negligible_subset [OF nN MN].
qed
then show ?thesis
    by (simp add: borel_measurable_vimage_halfspace_component_le sets_restrict_space_iff
assms)
qed
```

theorem borel_measurable_det_Jacobian:
fixes $f::$ real $^{\wedge} n::\{$ finite,wellorder $\} \Rightarrow$ real $^{\wedge} n::$,
assumes $S: S \in$ sets lebesgue and $f: \bigwedge x . x \in S \Longrightarrow\left(f\right.$ has_derivative $\left.f^{\prime} x\right)($ at
x within S)
shows $\left(\lambda x\right.$. det $\left.\left(\operatorname{matrix}\left(f^{\prime} x\right)\right)\right) \in$ borel_measurable (lebesgue_on $\left.S\right)$
unfolding det_def
by (intro measurable) (auto intro: f borel_measurable_partial_derivatives [OF S])

The localisation wrt S uses the same argument for many similar results.

```
theorem borel_measurable_lebesgue_on_preimage_borel:
    fixes f ::'a::euclidean_space = 'b::euclidean_space
    assumes }S\in\mathrm{ sets lebesgue
    shows f}\in\mathrm{ borel_measurable (lebesgue_on S) }
        (\forallT.T\in sets borel \longrightarrow{x\inS.fx\inT}\in sets lebesgue)
proof -
    have {x. (if x GS then f x else 0) }\inT}\in\mathrm{ sets lebesgue }\longleftrightarrow{x\inS.fx\inT
\epsilon sets lebesgue
        if T\in sets borel for T
    proof (cases 0 GT)
        case True
        then have {x\inS.fx\inT}={x.(if x\inS then fx else 0) }\inT}\cap
                            {x.(if x\inS then f x else 0) }\inT}={x\inS.fx\inT}\cup-
            by auto
        then show ?thesis
            by (metis (no_types, lifting) Compl_in_sets_lebesgue assms sets.Int sets.Un)
    next
        case False
        then have {x.(if x\inS then f x else 0) }\inT}={x\inS.fx\inT
            by auto
        then show ?thesis
            by auto
    qed
    then show ?thesis
        unfolding borel_measurable_lebesgue_preimage_borel borel_measurable_if [OF
assms, symmetric]
        by blast
qed
lemma sets_lebesgue_almost_borel:
    assumes S\in sets lebesgue
```

obtains $B N$ where $B \in$ sets borel negligible $N B \cup N=S$ proof -
obtain $T N N^{\prime}$ where $S=T \cup N N \subseteq N^{\prime} N^{\prime} \in$ null_sets lborel $T \in$ sets borel using sets_completionE [OF assms] by auto
then show thesis
by (metis negligible_iff_null_sets negligible_subset null_sets_completionI that)
qed
lemma double_lebesgue_sets:
assumes $S: S \in$ sets lebesgue and $T: T \in$ sets lebesgue and fim: f ' $S \subseteq T$
shows $(\forall U . U \in$ sets lebesgue $\wedge U \subseteq T \longrightarrow\{x \in S . f x \in U\} \in$ sets lebesgue)
\longleftrightarrow
$f \in$ borel_measurable (lebesgue_on $S) \wedge$
$(\forall U$. negligible $U \wedge U \subseteq T \longrightarrow\{x \in S . f x \in U\} \in$ sets lebesgue)
(is ?lhs $\longleftrightarrow ~_{-} \wedge$?rhs)
unfolding borel_measurable_lebesgue_on_preimage_borel [OF S]
proof (intro iffI allI conjI impI, safe)
fix V :: ' b set
assume $*: \forall U . U \in$ sets lebesgue $\wedge U \subseteq T \longrightarrow\{x \in S . f x \in U\} \in$ sets lebesgue and $V \in$ sets borel
then have $V: V \in$ sets lebesgue by simp
have $\{x \in S . f x \in V\}=\{x \in S . f x \in T \cap V\}$ using fim by blast
also have $\{x \in S . f x \in T \cap V\} \in$ sets lebesgue using $T V *$ le_inf_iff by blast
finally show $\{x \in S . f x \in V\} \in$ sets lebesgue.

next

fix U :: ' b set
assume $\forall U . U \in$ sets lebesgue $\wedge U \subseteq T \longrightarrow\{x \in S . f x \in U\} \in$ sets lebesgue negligible $U U \subseteq T$
then show $\{x \in S . f x \in U\} \in$ sets lebesgue
using negligible_imp_sets by blast
next
fix U :: 'b set
assume 1 [rule_format]: $(\forall T . T \in$ sets borel $\longrightarrow\{x \in S . f x \in T\} \in$ sets lebesgue)
and 2 [rule_format]: $\forall U$. negligible $U \wedge U \subseteq T \longrightarrow\{x \in S . f x \in U\} \in$ sets
lebesgue
and $U \in$ sets lebesgue $U \subseteq T$
then obtain $C N$ where $C: C \in$ sets borel \wedge negligible $N \wedge C \cup N=U$ using sets_lebesgue_almost_borel by metis
then have $\{x \in S . f x \in C\} \in$ sets lebesgue by (blast intro: 1)
moreover have $\{x \in S . f x \in N\} \in$ sets lebesgue using $C\langle U \subseteq T\rangle$ by (blast intro: 2)
moreover have $\{x \in S . f x \in C \cup N\}=\{x \in S . f x \in C\} \cup\{x \in S . f x \in N\}$ by auto

```
    ultimately show \(\{x \in S . f x \in U\} \in\) sets lebesgue
    using \(C\) by auto
qed
```


6.46.3 Simplest case of Sard's theorem (we don't need continuity of derivative)

lemma Sard_lemma00:
fixes P :: ' $b::$ euclidean_space set
assumes $a \geq 0$ and $a: a *_{R} i \neq 0$ and $i: i \in$ Basis
and $P: P \subseteq\left\{x . a *_{R} i \cdot x=0\right\}$
and $0 \leq m 0 \leq e$
obtains S where $S \in$ lmeasurable
and $\{z$. norm $z \leq m \wedge(\exists t \in P . \operatorname{norm}(z-t) \leq e)\} \subseteq S$
and measure lebesgue $S \leq(2 * e) *(2 * m) \wedge\left(\operatorname{DIM}\left({ }^{\prime} b\right)-1\right)$
proof -
have $a>0$ using assms by simp
let ? $v=\left(\sum j \in\right.$ Basis. (if $j=i$ then e else $\left.\left.m\right) *_{R} j\right)$
show thesis
proof
have $-e \leq x \cdot i x \cdot i \leq e$
if $t \in P$ norm $(x-t) \leq e$ for $x t$
using $\langle a\rangle 0\rangle$ that Basis_le_norm $[$ of $i x-t] P i$
by (auto simp: inner_commute algebra_simps)
moreover have $-m \leq x \cdot j x \cdot j \leq m$
if norm $x \leq m t \in P$ norm $(x-t) \leq e j \in$ Basis and $j \neq i$
for $x t j$
using that Basis_le_norm [of j x] by auto
ultimately
show $\{z$. norm $z \leq m \wedge(\exists t \in P . \operatorname{norm}(z-t) \leq e)\} \subseteq \operatorname{cbox}(-? v)$?v by (auto simp: mem_box)
have $*: \forall k \in$ Basis. $-? v \cdot k \leq ? v \cdot k$
using $\langle 0 \leq m\rangle\langle 0 \leq e\rangle$ by (auto simp: inner_Basis)
have 2: 2 ^ $D I M\left({ }^{\prime} b\right)=2 * 2{ }^{\wedge}(D I M(' b)-S u c 0)$
by (metis DIM_positive Suc_pred power_Suc)
show measure lebesgue $(\operatorname{cbox}(-? v) ? v) \leq 2 * e *(2 * m) \wedge(D I M(' b)-1)$ using $\langle i \in$ Basis \rangle
by (simp add: content_cbox [OF *] prod.distrib prod.If_cases Diff_eq [symmetric]
2)
qed blast
qed
As above, but reorienting the vector (HOL Light's @textGEOM_BASIS_MULTIPLE_TAC)
lemma Sard_lemma0:
fixes $P::\left(\right.$ real ${ }^{\wedge} n::\{$ finite, wellorder $\left.\}\right)$ set
assumes $a \neq 0$
and $P: P \subseteq\{x . a \cdot x=0\}$ and $0 \leq m 0 \leq e$
obtains S where $S \in$ lmeasurable
and $\{z . \operatorname{norm} z \leq m \wedge(\exists t \in P . \operatorname{norm}(z-t) \leq e)\} \subseteq S$
and measure lebesgue $S \leq(2 * e) *(2 * m) \wedge{ }^{\wedge}\left(C A R D\left({ }^{\prime} n\right)-1\right)$
proof -
obtain T and $k::{ }^{\prime} n$ where T : orthogonal_transformation T and $a: a=T$ (norm
$a *_{R}$ axis $k(1::$ real $)$)
using rotation_rightward_line by metis
have Tinv [simp]: $T(\operatorname{inv} T x)=x$ for x
by (simp add: T orthogonal_transformation_surj surj_f_inv_f)
obtain S where $S: S \in$ lmeasurable
and subS: $\left\{z\right.$. norm $\left.z \leq m \wedge\left(\exists t \in T-{ }^{\prime} P . \operatorname{norm}(z-t) \leq e\right)\right\} \subseteq S$
and $m S$: measure lebesgue $S \leq(2 * e) *(2 * m){ }^{\wedge}\left(C A R D\left({ }^{\prime} n\right)-1\right)$
proof (rule Sard_lemma00 [of norm a axis k ($1:$:real) $T-{ }^{\prime} P$ me])
have norm $a *_{R}$ axis $k 1 \cdot x=0$ if $T x \in P$ for x
proof -
have $a \cdot T x=0$
using P that by blast
then show ?thesis
by (metis (no_types, lifting) T a orthogonal_orthogonal_transformation
orthogonal_def)
qed
then show $T-{ }^{\prime} P \subseteq\left\{x\right.$. norm $a *_{R}$ axis $\left.k 1 \cdot x=0\right\}$
by auto
qed (use assms T in auto)
show thesis
proof
show T ' $S \in$ lmeasurable
using S measurable_orthogonal_image T by blast
have $\{z$. norm $z \leq m \wedge(\exists t \in P$. norm $(z-t) \leq e)\} \subseteq T$ ' $\{z$. norm $z \leq m$
$\wedge\left(\exists t \in T-{ }^{\prime} P\right.$. norm $\left.\left.(z-t) \leq e\right)\right\}$
proof clarsimp
fix $x t$
assume norm $x \leq m t \in P \operatorname{norm}(x-t) \leq e$
then have norm (inv $T x$) $\leq m$
using orthogonal_transformation_inv $\left[\begin{array}{ll}O F & T\end{array}\right]$ by (simp add: orthogonal_transformation_norm)
moreover have $\exists t \in T-{ }^{\prime} P$. norm (inv $\left.T x-t\right) \leq e$
proof
have $T(\operatorname{inv} T x-i n v T t)=x-t$
using T linear_diff orthogonal_transformation_def
by (metis (no_types, hide_lams) Tinv)
then have norm (inv $T x-\operatorname{inv} T t$) $=$ norm $(x-t)$
by (metis T orthogonal_transformation_norm)
then show norm (inv $T x-i n v T t) \leq e$
using norm $(x-t) \leq e$ 〉 by linarith
next
show inv $T t \in T-{ }^{\prime} P$
using $\langle t \in P\rangle$ by force
qed
ultimately show $x \in T$ ' $\left\{z\right.$. norm $z \leq m \wedge\left(\exists t \in T-{ }^{\prime} P\right.$.norm $(z-t) \leq$

```
e)}
            by force
    qed
    then show {z.norm z\leqm^(\existst\inP.norm (z-t)\leqe)}\subseteqT'S
            using image_mono [OF subS] by (rule order_trans)
    show measure lebesgue (T'S)\leq2*e*(2*m)^(CARD('n) - 1)
            using mS T by (simp add: S measure_orthogonal_image)
qed
qed
```

As above, but translating the sets (HOL Light's @textGEN_GEOM_ORIGIN_TAC)

```
lemma Sard_lemma1:
    fixes P :: (real^^}n::{\mathrm{ finite,wellorder}) set
    assumes P: dim P < CARD(' n) and 0\leqm 0 \leqe
    obtains S where S\inlmeasurable
            and {z.norm(z-w)\leqm^(\existst\inP. norm(z-w-t)\leqe)}\subseteqS
            and measure lebesgue S \leq (2*e)* (2*m)^(CARD('n)-1)
proof -
    obtain a where a\not=0 P\subseteq{x.a\cdotx=0}
        using lowdim_subset_hyperplane [of P] P span_base by auto
    then obtain S where S:S\inlmeasurable
        and subS: {z.norm z\leqm^(\existst\inP.norm (z-t)\leqe)}\subseteqS
        and mS: measure lebesgue S \leq (2*e)* (2*m)^ (CARD('n) - 1)
        by (rule Sard_lemma0 [OF _ <0 \leqm><0 \leqe\rangle])
    show thesis
    proof
        show (+)w'}S\inlmeasurable
            by (metis measurable_translation S)
        show {z. norm (z-w)\leqm^(\existst\inP.norm (z-w-t)\leqe)}\subseteq(+)w'S
            using subS by force
        show measure lebesgue ((+)w'S)\leq2*e*(2*m)^(CARD('n)-1)
            by (metis measure_translation mS)
    qed
qed
lemma Sard_lemma2:
```



```
    assumes mlen: CARD('m)\leqCARD(' }n)(\mathrm{ is ? m }\leq\mathrm{ ? n)
        and B>0 bounded S
        and derS: \bigwedgex. x 
        and rank: \bigwedgex. x \inS \Longrightarrow rank(matrix (f'x))<CARD('n)
        and B: \bigwedgex. x 
    shows negligible(f'S)
proof -
    have lin_f': \x. x 位 \Longrightarrowlinear (f'x)
        using derS has_derivative_linear by blast
    show ?thesis
    proof (clarsimp simp add: negligible_outer_le)
        fix e :: real
```

```
    assume \(e>0\)
    obtain \(c\) where csub: \(S \subseteq \operatorname{cbox}(-(\) vec \(c))(\) vec \(c)\) and \(c>0\)
    proof -
    obtain \(b\) where \(b: \wedge x . x \in S \Longrightarrow\) norm \(x \leq b\)
            using 〈bounded \(S\) 〉 by (auto simp: bounded_iff)
    show thesis
    proof
        have \(-|b|-1 \leq x \$ i \wedge x \$ i \leq|b|+1\) if \(x \in S\) for \(x i\)
            using component_le_norm_cart [of \(x i] b[\) OF that \(]\) by auto
        then show \(S \subseteq \operatorname{cbox}(-\operatorname{vec}(|b|+1))(\operatorname{vec}(|b|+1))\)
            by (auto simp: mem_box_cart)
        qed auto
    qed
    then have box_cc: box \((-(\) vec \(c))(\) vec \(c) \neq\{ \}\) and cbox_cc: cbox \((-(\) vec \(c))\)
\((\) vec \(c) \neq\{ \}\)
    by (auto simp: interval_eq_empty_cart)
    obtain \(d\) where \(d>0 d \leq B\)
            and \(d:(d * 2) *(4 * B)^{\wedge}(? n-1) \leq e /(2 * c)^{\wedge} ? m / ? m{ }^{\wedge} ? m\)
    apply (rule that \(\left[\right.\) of \(\min B\left(e /(2 * c)^{\wedge} ? m / ? m^{\wedge} ? m /(4 * B)^{\wedge}(? n-\right.\)
1) / 2)])
    using \(\langle B>0\rangle\langle c>0\rangle\langle e>0\rangle\)
    by (simp_all add: divide_simps min_mult_distrib_right)
    have \(\exists r .0<r \wedge r \leq 1 / 2 \wedge\)
            \((x \in S\)
            \(\longrightarrow(\forall y . y \in S \wedge \operatorname{norm}(y-x)<r\)
                \(\left.\left.\longrightarrow \operatorname{norm}\left(f y-f x-f^{\prime} x(y-x)\right) \leq d * \operatorname{norm}(y-x)\right)\right)\) for \(x\)
proof (cases \(x \in S\) )
    case True
    then obtain \(r\) where \(r>0\)
                and \(\bigwedge y . \llbracket y \in S ; \operatorname{norm}(y-x)<r \rrbracket\)
                        \(\Longrightarrow \operatorname{norm}\left(f y-f x-f^{\prime} x(y-x)\right) \leq d * \operatorname{norm}(y-x)\)
        using \(\operatorname{der} S\langle d>0\rangle\) by (force simp: has_derivative_within_alt)
    then show ?thesis
        by (rule_tac \(x=\min r(1 / 2)\) in \(e x I) \operatorname{simp}\)
next
    case False
    then show ?thesis
        by (rule_tac \(x=1 / 2\) in exI) simp
qed
then obtain \(r\) where \(r 12: \bigwedge x .0<r x \wedge r x \leq 1 / 2\)
    and \(r: \bigwedge x y . \llbracket x \in S ; y \in S ; \operatorname{norm}(y-x)<r x \rrbracket\)
                        \(\Longrightarrow \operatorname{norm}\left(f y-f x-f^{\prime} x(y-x)\right) \leq d * \operatorname{norm}(y-x)\)
    by metis
then have ga: gauge \((\lambda x\). ball \(x(r x))\)
    by (auto simp: gauge_def)
obtain \(\mathcal{D}\) where \(\mathcal{D}\) : countable \(\mathcal{D}\) and sub_cc: \(\bigcup \mathcal{D} \subseteq\) cbox ( - vec c) (vec c)
    and cbox: \(\bigwedge K . K \in \mathcal{D} \Longrightarrow\) interior \(K \neq\{ \} \wedge(\exists u v . K=\) cbox \(u v)\)
    and djointish: pairwise ( \(\lambda A\) B. interior \(A \cap\) interior \(B=\{ \}\) ) \(\mathcal{D}\)
    and covered: \(\bigwedge K . K \in \mathcal{D} \Longrightarrow \exists x \in S \cap K . K \subseteq\) ball \(x(r x)\)
```

and close: $\bigwedge u v$. cbox $u v \in \mathcal{D} \Longrightarrow \exists n . \forall i:: ' m . v \$ i-u \$ i=2 * c /{ }^{2}{ }^{\wedge} n$
and covers: $S \subseteq \bigcup \mathcal{D}$
apply (rule covering_lemma [OF csub box_cc ga])
apply (auto simp: Basis_vec_def cart_eq_inner_axis [symmetric])
done
let $? \mu=$ measure lebesgue
have $\exists T . T \in$ lmeasurable $\wedge f{ }^{\prime}(K \cap S) \subseteq T \wedge ? \mu T \leq e /(2 * c)^{\wedge} ? m *$? $\mu \mathrm{K}$
if $K \in \mathcal{D}$ for K
proof -
obtain $u v$ where $u v: K=$ cbox $u v$ using cbox $\langle K \in \mathcal{D}\rangle$ by blast
then have uv_ne: cbox $u v \neq\{ \}$
using cbox that by fastforce
obtain x where $x: x \in S \cap$ cbox u v cbox $u v \subseteq$ ball $x(r x)$
using $\langle K \in \mathcal{D}\rangle$ covered $u v$ by blast
then have dim $\left(\right.$ range $\left.\left(f^{\prime} x\right)\right)<$?n
using rank_dim_range [of matrix $\left.\left(f^{\prime} x\right)\right] x \operatorname{rank}[$ of $x]$
by (auto simp: matrix_works scalar_mult_eq_scaleR lin_f ')
then obtain T where $T: T \in$ lmeasurable
and subT: $\{z . \operatorname{norm}(z-f x) \leq(2 * B) * \operatorname{norm}(v-u) \wedge(\exists t \in$ range $\left.\left.\left(f^{\prime} x\right) . \operatorname{norm}(z-f x-t) \leq d * \operatorname{norm}(v-u)\right)\right\} \subseteq T$
and measT: ? $\mu T \leq(2 *(d * \operatorname{norm}(v-u))) *(2 *((2 * B) * \operatorname{norm}(v$ $-u))^{\wedge}(? n-1)$ (is - $\leq ? D V U)$
apply (rule Sard_lemma1 $\left[\right.$ of range $\left(f^{\prime} x\right)(2 * B) * \operatorname{norm}(v-u) d *$ $\operatorname{norm}(v-u) f x])$
using $\langle B>0\rangle\langle d>0\rangle$ by simp_all
show ?thesis
proof (intro exI conjI)
have f ' $(K \cap S) \subseteq\{z . \operatorname{norm}(z-f x) \leq(2 * B) * \operatorname{norm}(v-u) \wedge(\exists t \in$ range $\left.\left.\left(f^{\prime} x\right) \operatorname{norm}(z-f x-t) \leq d * \operatorname{norm}(v-u)\right)\right\}$
unfolding $u v$
proof (clarsimp simp: mult.assoc, intro conjI)
fix y
assume $y: y \in c b o x u v$ and $y \in S$
then have norm $(y-x)<r x$
by (metis dist_norm mem_ball norm_minus_commute subsetCE x (2))
then have le_dyx: norm $\left(f y-f x-f^{\prime} x(y-x)\right) \leq d * \operatorname{norm}(y-x)$
using r [of $x y] x\langle y \in S\rangle$ by blast
have yx_le: norm $(y-x) \leq \operatorname{norm}(v-u)$
proof (rule norm_le_componentwise_cart)
show norm $((y-x) \$ i) \leq \operatorname{norm}((v-u) \$ i)$ for i
using $x y$ by (force simp: mem_box_cart dest!: spec [where $x=i]$)
qed
have $*: \llbracket \operatorname{norm}(y-x-z) \leq d ; \operatorname{norm} z \leq B ; d \leq B \rrbracket \Longrightarrow \operatorname{norm}(y-x)$
$\leq 2 * B$
for $x y z$:: real ${ }^{\wedge} n::_{-}$and $d B$
using norm_triangle_ineq2 [of $y-x z$] by auto

```
    show norm \((f y-f x) \leq 2 *(B * \operatorname{norm}(v-u))\)
    proof (rule * [OF le_dyx])
    have \(\operatorname{norm}\left(f^{\prime} x(y-x)\right) \leq \operatorname{onorm}\left(f^{\prime} x\right) * \operatorname{norm}(y-x)\)
        using onorm \(\left[o f f^{\prime} x y-x\right]\) by (meson IntE lin_f \(f^{\prime}\) linear_linear \(x(1)\) )
    also have \(\ldots \leq B * \operatorname{norm}(v-u)\)
    proof (rule mult_mono)
        show onorm \(\left(f^{\prime} x\right) \leq B\)
        using \(B x\) by blast
    qed (use \(\langle B>0\rangle\) yx_le in auto)
    finally show norm \(\left(f^{\prime} x(y-x)\right) \leq B * \operatorname{norm}(v-u)\).
    show \(d * \operatorname{norm}(y-x) \leq B * \operatorname{norm}(v-u)\)
        using \(\langle B>0\rangle\) by (auto intro: mult_mono \(\left[O F\langle d \leq B\rangle y x_{-} l e\right]\) )
qed
show \(\exists t\). norm \(\left(f y-f x-f^{\prime} x t\right) \leq d * \operatorname{norm}(v-u)\)
    apply (rule_tac \(x=y-x\) in \(e x I\) )
    using \(\langle d>0\rangle\) yx_le le_dyx mult_left_mono [where \(c=d\) ]
    by (meson order_trans mult_le_cancel_iff2)
qed
with subT show \(f\) ' \((K \cap S) \subseteq T\) by blast
show ? \(\mu T \leq e /(2 * c)^{\wedge}\) ? \(m * ? \mu K\)
proof (rule order_trans [OF measT])
    have ? \(D V U=\left(d * 2 *(4 * B)^{\wedge}(? n-1)\right) * \operatorname{norm}(v-u)^{\wedge} ? n\)
    using \(\langle c>0\) 〉
    apply (simp add: algebra_simps)
    by (metis Suc_pred power_Suc zero_less_card_finite)
    also have \(\ldots \leq\left(e /(2 * c)^{\wedge} ? m /\left(? m^{\wedge} ? m\right)\right) * \operatorname{norm}(v-u)^{\wedge} ? n\)
    by (rule mult_right_mono [OF d]) auto
also have \(\ldots \leq e /(2 * c)^{\wedge}\) ? \(m *\) ? \(\mu K\)
proof -
    have \(u \in\) ball \((x)(r x) v \in\) ball \(x(r x)\)
        using box_ne_empty(1) contra_subsetD [OF x(2)] mem_box(2) uv_ne
    moreover have \(r x \leq 1 / 2\)
        using r12 by auto
    ultimately have norm \((v-u) \leq 1\)
            using norm_triangle_half_r [of \(x\) u 1 v]
            by (metis (no_types, hide_lams) dist_commute dist_norm less_eq_real_def
less_le_trans mem_ball)
    then have norm \((v-u)^{\wedge}\) ? \(n \leq \operatorname{norm}(v-u)^{\wedge} ? m\)
            by (simp add: power_decreasing [OF mlen])
            also have \(\ldots \leq\) ? \(\mu K * \operatorname{real}\left(? m^{\wedge}\right.\) ? \(m\) )
            proof -
            obtain \(n\) where \(n: ~ \bigwedge i . v \$ i-u \$ i=2 * c / 2{ }^{\wedge} n\)
                using close \([o f u v]\langle K \in \mathcal{D}\rangle u v\) by blast
            have norm \((v-u)^{\wedge}\) ? \(m \leq\left(\sum i \in U N I V .|(v-u) \$ i|\right){ }^{\wedge} ? m\)
            by (intro norm_le_l1_cart power_mono) auto
            also have \(\ldots \leq\left(\prod i \in U N I V . v \$ i-u \$ i\right) * \operatorname{real} \operatorname{CARD}\left({ }^{\prime} m\right)^{\wedge}\)
            by (simp add: \(n\) field_simps \(\langle c>0\rangle\) less_eq_real_def)
```

by fastforce+
$C A R D(' m)$

```
                    also have ... = ? }\muK*\mathrm{ real (?m ^ ?m)
                    by (simp add: uv uv_ne content_cbox_cart)
                    finally show ?thesis .
                    qed
finally have *: 1 / real (?m ^ ?m)* norm (v-u) ^ ?n m ? }\mu
                    by (simp add: field_split_simps)
show ?thesis
                            using mult_left_mono [OF *, of e / (2*c) ^ ?m] \langlec> > \\langlee > 0\rangle by
auto
            qed
            finally show ?DVU\leqe/(2*c)^ ?m * ? }\mu\textrm{K}
        qed
    qed (use T in auto)
    qed
    then obtain g where meas_g: }\K.K\in\mathcal{D}\LongrightarrowgK\inlmeasurable
                    and sub_g: \K.K G\mathcal{D \Longrightarrowf'}(K\capS)\subseteqgK
                    and le_g:\bigwedgeK.K\in\mathcal{D \Longrightarrow? }\mu(gK)\leqe/(2*c)^?m*? }\mu\textrm{L
    by metis
    have le_e:?\mu(\bigcupi\in\mathcal{F}.gi)\leqe
    if \mathcal{F}\subseteq\mathcal{D}\mathrm{ finite }\mathcal{F}\mathrm{ for }\mathcal{F}
    proof -
    have ? }\mu(\bigcupi\in\mathcal{F}.gi)\leq(\sumi\in\mathcal{F}. ? \mu (g i))
        using meas_g \langle\mathcal{F}\subseteq\mathcal{D}\rangle}\mathrm{ by (auto intro: measure_UNION_le [OF <finite }\mathcal{F}\rangle]
    also have ... \leq (\sumK\in\mathcal{F}.e / (2*c) ^ ?m * ? }\muK
        using <\mathcal{F}\subseteq\mathcal{D}\rangle sum_mono [OF le_g] by (meson le_g subsetCE sum_mono)
    also have ... =e / (2*c)^ ? m * (\sumK\in\mathcal{F}.? }\mu\textrm{K}
        by (simp add: sum_distrib_left)
    also have ... \leqe
    proof -
        have \mathcal{F division_of }\bigcup\mathcal{F}
        proof (rule division_ofI)
            show K\subseteq\bigcup\mathcal{F}K\not={}\existsab.K=cbox ab if K\in\mathcal{F}\mathrm{ for K}
                    using }\langleK\in\mathcal{F}\rangle\mathrm{ covered cbox }\langle\mathcal{F}\subseteq\mathcal{D}\rangle\mathrm{ by (auto simp:Union_upper)
        show interior }K\cap\mathrm{ interior }L={}\mathrm{ if }K\in\mathcal{F}\mathrm{ and L}\in\mathcal{F}\mathrm{ and }K\not=L\mathrm{ for
K L
        by (metis (mono_tags,lifting)<\mathcal{F}\subseteq\mathcal{D}\rangle\mathrm{ pairwiseD djointish pairwise_subset}
that)
        qed (use that in auto)
    then have sum? }\mu\mathcal{F}\leq?\mu(\bigcup\mathcal{F}
        by (simp add: content_division)
    also have ... \leq? ( cbox (- vec c) (vec c) :: (real,'m) vec set)
    proof (rule measure_mono_fmeasurable)
                show \\mathcal{F}\subseteqcbox (-vec c) (vec c)
            by (meson Sup_subset_mono sub_cc order_trans <\mathcal{F}\subseteq\mathcal{D}\rangle)
    qed (use <\mathcal{F division_of }\bigcup\mathcal{F}\ranglelmeasurable_division in auto)
    also have ...= content (cbox (-vec c) (vec c) :: (real, 'm) vec set)
        by simp
    also have ... \leq(2^ ? m * c^ ?m)
                using <c > 0\rangle by (simp add: content_cbox_if_cart)
```

```
            finally have sum ? }\mu\mathcal{F}\leq(\mp@subsup{\mathcal{Z}}{}{\wedge}?m*c^ ?m)
            then show ?thesis
            using }\langlee>0\rangle\langlec>0\rangle\mathrm{ by (auto simp: field_split_simps)
        qed
        finally show ?thesis.
        qed
        show \existsT.f'S\subseteqT^T\inlmeasurable ^? }\muT\leq
        proof (intro exI conjI)
        show f'S\subseteqU(g'\mathcal{D})
            using covers sub_g by force
        show U(g'\mathcal{D})\inlmeasurable
            by (rule fmeasurable_UN_bound [OF <countable \mathcal{D}>meas_g le_e])
        show ? }\mu(\bigcup(g'\mathcal{D}))\leq
            by (rule measure_UN_bound [OF〈countable D` meas_g le_e])
        qed
    qed
qed
```

theorem baby_Sard:
fixes $f::$ real ${ }^{\wedge} m::\{$ finite,wellorder $\} \Rightarrow$ real $^{\wedge} n::\{$ finite,wellorder $\}$
assumes mlen: $C A R D\left({ }^{\prime} m\right) \leq C A R D(' n)$
and der $: \wedge x . x \in S \Longrightarrow\left(f\right.$ has_derivative $\left.f^{\prime} x\right)($ at x within $S)$
and rank: $\bigwedge x . x \in S \Longrightarrow \operatorname{rank}\left(\right.$ matrix $\left.\left(f^{\prime} x\right)\right)<\operatorname{CARD}\left({ }^{\prime} n\right)$
shows negligible(f ' S)
proof -
let ? $U=\lambda n .\left\{x \in S . \operatorname{norm}(x) \leq n \wedge \operatorname{onorm}\left(f^{\prime} x\right) \leq\right.$ real $\left.n\right\}$
have $\bigwedge x . x \in S \Longrightarrow \exists n$. norm $\bar{x} \leq$ real $n \wedge$ onorm $\left(f^{\prime} x\right) \leq$ real n
by (meson linear order_trans real_arch_simple)
then have $e q: S=(\bigcup n$. ? $U n)$
by auto
have negligible (f ' ? $U n$) for n
proof (rule Sard_lemma2 [OF mlen])
show $0<$ real $n+1$
by auto
show bounded (?U n)
using bounded_iff by blast
show (f has_derivative $\left.f^{\prime} x\right)($ at x within ? $U n$) if $x \in$? $U n$ for x
using der that by (force intro: has_derivative_subset)
qed (use rank in auto)
then show ?thesis
by (subst eq) (simp add: image_Union negligible_Union_nat)
qed

6.46.4 A one-way version of change-of-variables not assuming injectivity.

lemma integral_on_image_ubound_weak:
fixes $f::$ real $^{\wedge} n::\{$ finite, wellorder $\} \Rightarrow$ real

```
assumes \(S: S \in\) sets lebesgue
    and \(f: f \in\) borel_measurable (lebesgue_on \(\left(g^{\prime} S\right)\) )
    and nonneg_fg: \(\bigwedge x . x \in S \Longrightarrow 0 \leq f(g x)\)
    and der_g: \(\bigwedge x . x \in S \Longrightarrow\left(g\right.\) has_derivative \(\left.g^{\prime} x\right)\) (at \(x\) within \(S\) )
    and det_int_fg: \(\left(\lambda x\right.\). \(\mid\) det (matrix \(\left.\left.\left(g^{\prime} x\right)\right) \mid * f(g x)\right)\) integrable_on \(S\)
    and meas_gim: \(\bigwedge T . \llbracket T \subseteq g^{\prime} S ; T \in\) sets lebesgue \(\Longrightarrow\{x \in S . g x \in T\} \in\)
sets lebesgue
    shows \(f\) integrable_on \((g ' S) \wedge\)
        integral \(\left(g^{\prime} S\right) f \leq \operatorname{integral} S\left(\lambda x . \mid \operatorname{det}\left(\right.\right.\) matrix \(\left.\left.\left(g^{\prime} x\right)\right) \mid * f(g x)\right)\)
            (is \(\left.{ }_{-} \wedge_{-} \leq ? b\right)\)
proof -
    let \(? D=\lambda x\). \(\mid \operatorname{det}\left(\right.\) matrix \(\left.\left(g^{\prime} x\right)\right) \mid\)
    have cont_g: continuous_on \(S g\)
        using der_g has_derivative_continuous_on by blast
    have [simp]: space (lebesgue_on \(S\) ) \(=S\)
        by (simp add: \(S\) )
    have gS_in_sets_leb: g' \(S \in\) sets lebesgue
        apply (rule differentiable_image_in_sets_lebesgue)
        using der_g by (auto simp: \(S\) differentiable_def differentiable_on_def)
    obtain \(h\) where nonneg_ \(h\) : \(\bigwedge n x .0 \leq h n x\)
        and \(h_{\text {_l }} e_{-} f: \bigwedge n x . x \in S \Longrightarrow h n(g x) \leq f(g x)\)
        and \(h\) _inc: \(\bigwedge n x\). \(h n x \leq h(\) Suc \(n) x\)
        and h_meas: \(\bigwedge n . h n \in\) borel_measurable lebesgue
        and fin_R: \(\bigwedge n\). finite(range ( \(h n\) ))
        and \(\lim : \bigwedge x . x \in g^{\prime} S \Longrightarrow(\lambda n . h n x) \longrightarrow f x\)
    proof -
    let \(? f=\lambda x\). if \(x \in g\) ' \(S\) then \(f x\) else 0
    have ?f \(\in\) borel_measurable lebesgue \(\wedge(\forall x .0 \leq\) ?f \(x)\)
    by (auto simp: gS_in_sets_leb f nonneg_fg measurable_restrict_space_iff [symmetric])
    then show? ?hesis
        apply (clarsimp simp add: borel_measurable_simple_function_limit_increasing)
        apply (rename_tac h)
        by (rule_tac \(h=h\) in that) (auto split: if_split_asm)
    qed
    have h_lmeas: \(\{t . h n(g t)=y\} \cap S \in\) sets lebesgue for \(y n\)
    proof -
    have space (lebesgue_on (UNIV::(real,'n) vec set)) \(=\) UNIV
        by \(\operatorname{simp}\)
    then have \(\left((h n)-‘\{y\} \cap g^{\prime} S\right) \in\) sets (lebesgue_on \((g\) ' \(S)\) )
    by (metis Int_commute borel_measurable_vimage h_meas image_eqI inf_top.right_neutral
sets_restrict_space space_borel space_completion space_lborel)
    then have \((\{u . h n u=y\} \cap g ' S) \in\) sets lebesgue
        using \(g S\) _in_sets_leb
            by (simp add: integral_indicator fmeasurableI2 sets_restrict_space_iff vim-
age_def)
    then have \(\{x \in S . g x \in(\{u . h n u=y\} \cap g ' S)\} \in\) sets lebesgue
            using meas_gim \([\) of ( \(\{u . h n u=y\} \cap g\) ' \(S\) )] by force
    moreover have \(\{t . h n(g t)=y\} \cap S=\{x \in S . g x \in(\{u . h n u=y\} \cap g\)
' \(S\) ) \}
```

```
        by blast
        ultimately show ?thesis
            by auto
    qed
    have hint: h n integrable_on g'S ^ integral (g'S) (hn) \leq integral S (\lambdax.?D
x*hn(gx))
            (is ?INT ^?lhs \leq?rhs) for n
    proof -
        let ?R = range ( }hn\mathrm{ )
        have hn_eq: hn=(\lambdax.\sumy\in?R. y* indicat_real {x.hn x=y} x)
            by (simp add: indicator_def if_distrib fin_R cong: if_cong)
    have yind: (\lambdat. y* indicator{x.hnx=y}t) integrable_on (g'S)^
                    (integral (g'S)(\lambdat.y* indicator {x.hnx=y}t))
                        \leq integral S ( \lambdat. |det (matrix ( g't))|*y* indicator {x.hn x =
y}(gt))
        if y: y\in?R for }y::\mathrm{ real
    proof (cases y=0)
        case True
        then show ?thesis using gS_in_sets_leb integrable_0 by force
    next
        case False
        with that have y>0
            using less_eq_real_def nonneg_h by fastforce
            have (\lambdax. if }x\in{t.hn(gt)=y} then ?D x else 0) integrable_on S
            proof (rule measurable_bounded_by_integrable_imp_integrable)
                have (\lambdax.?D x) \in borel_measurable (lebesgue_on ({t.hn (gt)=y} \capS))
                    apply (intro borel_measurable_abs borel_measurable_det_Jacobian [OF
h_lmeas, where f=g])
            by (meson der_g IntD2 has_derivative_subset inf_le2)
            then have ( }\lambdax\mathrm{ . if }x\in{t.hn(gt)=y}\capS\mathrm{ then ?D x else 0) }
borel_measurable lebesgue
            by (rule borel_measurable_if_I [OF _ h_lmeas])
            then show ( }\lambdax\mathrm{ . if }x\in{t.hn(gt)=y} then?D x else 0) \inborel_measurable
(lebesgue_on S)
            by (simp add: if_if_eq_conj Int_commute borel_measurable_if [OF S, sym-
                metric])
            show ( }\lambdax.?,Dx\mp@subsup{*}{R}{}f(gx)/R y) integrable_on S
            by (rule integrable_cmul) (use det_int_fg in auto)
            show norm (if }x\in{t.hn(gt)=y} then ?D x else 0)\leq?D x * *R f(gx
/R y
            if x\inS for }
            using nonneg_h [of n x] \langley> 0\rangle nonneg_fg [of x] h_le_f [of x n] that
            by (auto simp: divide_simps mult_left_mono)
    qed (use S in auto)
    then have int_det: (\lambdat. | det (matrix (g't))|) integrable_on ({t.hn (gt)=
y}\capS)
            using integrable_restrict_Int by force
            have (g'({t.hn (gt)=y}\capS)) \in lmeasurable
            apply (rule measurable_differentiable_image [OF h_lmeas])
```

```
        apply (blast intro: has_derivative_subset [OF der_g])
        apply (rule int_det)
        done
    moreover have \(g\) ' \((\{t . h n(g t)=y\} \cap S)=\{x . h n x=y\} \cap g ' S\)
    by blast
    moreover have measure lebesgue \((g '(\{t . h n(g t)=y\} \cap S))\)
                \(\leq\) integral \((\{t . h n(g t)=y\} \cap S)\left(\lambda t . \mid \operatorname{det}\left(\right.\right.\) matrix \(\left.\left.\left(g^{\prime} t\right)\right) \mid\right)\)
    apply (rule measure_differentiable_image [OF h_lmeas _ int_det])
    apply (blast intro: has_derivative_subset [OF der_g])
    done
    ultimately show ?thesis
    using \(\langle y>0\rangle\) integral_restrict_Int \([o f S\{t . h n(g t)=y\} \lambda t\). \(\mid \operatorname{det}\) (matrix
\(\left.\left.\left(g^{\prime} t\right)\right) \mid * y\right]\)
    apply (simp add: integrable_on_indicator integral_indicator)
    apply (simp add: indicator_def if_distrib cong: if_cong)
    done
    qed
    have \(h n_{-} i n t\) : \(h\) n integrable_on \(g\) ' \(S\)
    apply (subst hn_eq)
    using yind by (force intro: integrable_sum [OF fin_R])
    then show?thesis
    proof
    have ?lhs \(=\) integral \((g ' S)\left(\lambda x . \sum y \in\right.\) range \((h n) . y *\) indicat_real \(\{x . h n\)
\(x=y\} x\) )
        by (metis hn_eq)
    also have \(\ldots=\left(\sum y \in\right.\) range \((h n)\). integral \((g ' S)(\lambda x . y *\) indicat_real \(\{x\).
\(h n x=y\} x)\) )
    by (rule integral_sum [OF fin_R]) (use yind in blast)
    also have \(\ldots \leq\left(\sum y \in \operatorname{range}(h n)\right.\). integral \(S\left(\lambda u\right.\). \(\left|\operatorname{det}\left(\operatorname{matrix}\left(g^{\prime} u\right)\right)\right| * y\)
* indicat_real \(\{x . h n x=y\}(g u))\) )
    using yind by (force intro: sum_mono)
    also have \(\ldots=\) integral \(S\left(\lambda u\right.\). \(\sum y \in\) range \((h n)\). \(\left|\operatorname{det}\left(\operatorname{matrix}\left(g^{\prime} u\right)\right)\right| * y\)
* indicat_real \(\{x . h n x=y\}(g u))\)
    proof (rule integral_sum [OF fin_R, symmetric])
    fix \(y\) assume \(y: y \in ? R\)
    with nonneg_ \(h\) have \(y \geq 0\)
        by auto
        show \(\left(\lambda u\right.\). \(\mid\) det \(\left(\right.\) matrix \(\left.\left(g^{\prime} u\right)\right) \mid * y *\) indicat_real \(\left.\{x . h n x=y\}(g u)\right)\)
integrable_on \(S\)
    proof (rule measurable_bounded_by_integrable_imp_integrable)
    have \((\lambda x\). indicat_real \(\{x . h n x=y\}(g x)) \in\) borel_measurable (lebesgue_on
S)
        using h_lmeas \(S\)
        by (auto simp: indicator_vimage [symmetric] borel_measurable_indicator_iff
sets_restrict_space_iff)
            then show \(\left(\lambda u . \mid \operatorname{det}\left(\right.\right.\) matrix \(\left.\left(g^{\prime} u\right)\right) \mid * y *\) indicat_real \(\{x . h n x=y\}(g\)
\(u)) \in\) borel_measurable (lebesgue_on \(S\) )
    by (intro borel_measurable_times borel_measurable_abs borel_measurable_const
borel_measurable_det_Jacobian [OF S der_g])
```

next
fix x
assume $x \in S$
have $y *$ indicat_real $\{x . h n x=y\}(g x) \leq f(g x)$ by (metis (full_types) $\langle x \in S\rangle h_{-} l e_{-} f$ indicator_def mem_Collect_eq mult.right_neutral mult_zero_right nonneg_fg)
with $\langle y \geq 0\rangle$ show norm $(? D x * y *$ indicat_real $\{x . h n x=y\}(g x))$ \leq ? $D x * f(g x)$
by (simp add: abs_mult mult.assoc mult_left_mono)
qed (use S det_int_fg in auto)
qed
also have $\ldots=$ integral $S\left(\lambda T\right.$. $\left|\operatorname{det}\left(\operatorname{matrix}\left(g^{\prime} T\right)\right)\right| *$

$$
\left(\sum y \in \text { range }(h n) . y * \text { indicat_real }\{x . h n x=y\}\right.
$$

($g T)$)
by (simp add: sum_distrib_left mult.assoc)
also have $\ldots=$? r rhs
by (metis hn_eq)
finally show integral $(g$ ' $S)(h n) \leq$? rhs . qed
qed
have le: integral $S\left(\lambda T\right.$. \mid det (matrix $\left.\left.\left(g^{\prime} T\right)\right) \mid * h n(g T)\right) \leq ? b$ for n
proof (rule integral_le)
show $\left(\lambda T\right.$. \mid det $\left(\right.$ matrix $\left.\left.\left(g^{\prime} T\right)\right) \mid * h n(g T)\right)$ integrable_on S
proof (rule measurable_bounded_by_integrable_imp_integrable)
have $\left(\lambda T\right.$. \mid det (matrix $\left.\left.\left(g^{\prime} T\right)\right) \mid *_{R} h n(g T)\right) \in$ borel_measurable (lebesgue_on
S)
proof (intro borel_measurable_scaleR borel_measurable_abs borel_measurable_det_Jacobian
$\langle S \in$ sets lebesgue〉)
have eq: $\{x \in S . f x \leq a\}=(\bigcup b \in(f ' S) \cap$ atMost $a .\{x . f x=b\} \cap S)$
for f and a ::real
by auto
have finite $((\lambda x . h n(g x))$ ' $S \cap\{. . a\})$ for a
by (force intro: finite_subset $\left[O F_{-}\right.$fin_R])
with h_lmeas [of $n]$ show $(\lambda x . h n(g x)) \in$ borel_measurable (lebesgue_on
S)
apply (simp add: borel_measurable_vimage_halfspace_component_le $\langle S \in$ sets lebesgue> sets_restrict_space_iff eq)
by (metis (mono_tags) SUP_inf sets.finite_UN)
qed (use der_g in blast)
then show $\left(\lambda T\right.$. $\mid \operatorname{det}\left(\right.$ matrix $\left.\left.\left(g^{\prime} T\right)\right) \mid * h n(g T)\right) \in$ borel_measurable
(lebesgue_on S)
by simp
show norm $(? D x * h n(g x)) \leq ? D x *_{R} f(g x)$
if $x \in S$ for x
by (simp add: h_le_f mult_left_mono nonneg_h that)
qed (use S det_int_fg in auto)
show ? $D x * h n(g x) \leq ? D x * f(g x)$ if $x \in S$ for x
by (simp add: $\langle x \in S\rangle$ h_le_f mult_left_mono)
show (λx. ?D $x * f(g x)$) integrable_on S

```
    using det_int_fg by blast
    qed
    have \(f\) integrable_on \(g\) ' \(S \wedge(\lambda k\). integral \((g\) ' \(S)(h k)) \longrightarrow\) integral \((g ' S) f\)
    proof (rule monotone_convergence_increasing)
    have \(\mid\) integral \((g\) 'S) \((h n) \mid \leq\) integral \(S(\lambda x\). ? \(D x * f(g x))\) for \(n\)
    proof -
        have \(\mid\) integral \((g \prime S)(h n) \mid=\operatorname{integral}(g \prime S)(h n)\)
            using hint by (simp add: integral_nonneg nonneg_ \(h\) )
        also have \(\ldots \leq\) integral \(S(\lambda x\). ? \(D x * f(g x))\)
            using hint le by (meson order_trans)
        finally show?thesis.
    qed
    then show bounded (range ( \(\lambda k\). integral \(\left.\left(g^{\prime} S\right)(h k)\right)\) )
        by (force simp: bounded_iff)
    qed (use h_inc lim hint in auto)
    moreover have integral \((g ' S)(h n) \leq\) integral \(S(\lambda x\). ? \(D x * f(g x))\) for \(n\)
    using hint by (blast intro: le order_trans)
ultimately show ?thesis
    by (auto intro: Lim_bounded)
qed
lemma integral_on_image_ubound_nonneg:
    fixes \(f::\) real \(^{\wedge} n::\{\) finite,wellorder \(\} \Rightarrow\) real
    assumes nonneg_fg: \(\bigwedge x . x \in S \Longrightarrow 0 \leq f(g x)\)
        and der_g: \(\bigwedge x . x \in S \Longrightarrow\left(g\right.\) has_derivative \(\left.g^{\prime} x\right)(\) at \(x\) within \(S)\)
        and intS: \(\left(\lambda x\right.\). \(\mid\) det \(\left(\right.\) matrix \(\left.\left.\left(g^{\prime} x\right)\right) \mid * f(g x)\right)\) integrable_on \(S\)
    shows \(f\) integrable_on \((g ' S) \wedge\) integral \((g ' S) f \leq\) integral \(S(\lambda x\). \(\mid \operatorname{det}\) (matrix
\(\left.\left.\left(g^{\prime} x\right)\right) \mid * f(g x)\right)\)
            (is \(\left.{ }_{-} \wedge_{-} \leq ? b\right)\)
proof -
    let ? \(D=\lambda x\). det \(\left(\right.\) matrix \(\left.\left(g^{\prime} x\right)\right)\)
    define \(S^{\prime}\) where \(S^{\prime} \equiv\{x \in S\). ? \(D x * f(g x) \neq 0\}\)
    then have \(\operatorname{der}-g S^{\prime}: \bigwedge x . x \in S^{\prime} \Longrightarrow\left(g\right.\) has_derivative \(\left.g^{\prime} x\right)\) (at \(x\) within \(S^{\prime}\) )
        by (metis (mono_tags, lifting) der_g has_derivative_subset mem_Collect_eq sub-
set_iff)
    have \((\lambda x\). if \(x \in S\) then \(\mid\) ? \(D x \mid * f(g x)\) else 0) integrable_on UNIV
        by (simp add: integrable_restrict_UNIV intS)
    then have Df_borel: \((\lambda x\). if \(x \in S\) then \(|? D x| * f(g x)\) else 0\() \in\) borel_measurable
lebesgue
    using integrable_imp_measurable lebesgue_on_UNIV_eq by force
    have \(S^{\prime}: S^{\prime} \in\) sets lebesgue
    proof -
    from Df_borel borel_measurable_vimage_open [of _ UNIV]
    have \(\{x\). (if \(x \in S\) then \(\mid\) ? \(D x \mid * f(g x)\) else 0\() \in T\} \in\) sets lebesgue
        if open \(T\) for \(T\)
        using that unfolding lebesgue_on_UNIV_eq
        by (fastforce simp add: dest!: spec)
    then have \(\{x\). (if \(x \in S\) then \(|? D x| * f(g x)\) else 0\() \in-\{0\}\} \in\) sets lebesgue
```

```
            using open_Compl by blast
    then show ?thesis
    by (simp add: S'_def conj_ac split: if_split_asm cong: conj_cong)
    qed
    then have g\mp@subsup{S}{}{\prime}:g}\mp@subsup{g}{}{\prime}\mp@subsup{S}{}{\prime}\in\mathrm{ sets lebesgue
    proof (rule differentiable_image_in_sets_lebesgue)
    show g differentiable_on S'
            using der_g unfolding S'_def differentiable_def differentiable_on_def
            by (blast intro: has_derivative_subset)
    qed auto
    have f:f\in borel_measurable (lebesgue_on ( g' S'))
    proof (clarsimp simp add: borel_measurable_vimage_open)
    fix T :: real set
    assume open T
    have {x\ing' S'.fx\inT} = g'{x\in S'.f(gx)\inT}
            by blast
    moreover have g' }{x\in\mp@subsup{S}{}{\prime}.f(gx)\inT}\in\mathrm{ sets lebesgue
    proof (rule differentiable_image_in_sets_lebesgue)
            let ?h = \lambdax. |?D x * *f(gx)/R|?D x 
            have (\lambdax. if }x\in\mp@subsup{S}{}{\prime}\mathrm{ then |?D x|*f(gx) else 0) = ( }\lambdax\mathrm{ . if }x\inS\mathrm{ then |?D }x
* f(g x) else 0)
                by (auto simp: S'_def)
            also have ... \in borel_measurable lebesgue
                by (rule Df_borel)
            finally have *: (\lambdax. |?D x | * f(gx)) \in borel_measurable (lebesgue_on S')
                by (simp add: borel_measurable_if_D)
            have ?h \in borel_measurable (lebesgue_on S')
            by (intro * S' der_gS' borel_measurable_det_Jacobian measurable) (blast intro:
der_gS')
            moreover have ?h x = f(gx) if x \in S' for x
                using that by (auto simp: S'_def)
            ultimately have ( }\lambdax.f(gx))\in\mathrm{ borel_measurable (lebesgue_on S')
            by (metis (no_types, lifting) measurable_lebesgue_cong)
            then show {x\in S'.f(gx)\inT}\in sets lebesgue
```



```
sets_restrict_space_iff)
            show g differentiable_on {x\in S'.f(gx)\inT}
            using der_g unfolding }\mp@subsup{S}{}{\prime}_def differentiable_def differentiable_on_def
            by (blast intro: has_derivative_subset)
    qed auto
    ultimately have {x\ing'S'.fx\inT}\in sets lebesgue
            by metis
    then show {x\ing'S'.fx\inT}\in sets (lebesgue_on (g'S'))
            by (simp add: <g' S'\in sets lebesgue〉 sets_restrict_space_iff)
qed
have intS':(\lambdax. |?D x | *f(gx)) integrable_on S'
    using intS
    by (rule integrable_spike_set) (auto simp: S'_def intro: empty_imp_negligible)
```



```
for T
    proof -
        have g}\in\mathrm{ borel_measurable (lebesgue_on S')
            using der_g\mp@subsup{S}{}{\prime} has_derivative_continuous_on S'
            by (blast intro: continuous_imp_measurable_on_sets_lebesgue)
        moreover have {x\in S'.g x\inU}\in sets lebesgue if negligible U U\subseteqg'S'
for }
    proof (intro negligible_imp_sets negligible_differentiable_vimage that)
        fix }
        assume x: x\in S'
        then have linear ( }\mp@subsup{g}{}{\prime}x
            using der_gS' has_derivative_linear by blast
        with x show inj ( }\mp@subsup{g}{}{\prime}x
            by (auto simp: S'_def det_nz_iff_inj)
    qed (use der_gS' in auto)
    ultimately show ?thesis
        using double_lebesgue_sets [OF S' gS' order_refl] that by blast
    qed
    have int_gS': f integrable_on g' S'^ integral (g' S')f\leqintegral S' ( }\lambdax.|?D x
* f(g x))
        using integral_on_image_ubound_weak [OF S' f nonneg_fg der_gS' intS' lebS']
S'_def by blast
    have negligible ( g'{x\inS.det (matrix ( }\mp@subsup{g}{}{\prime}x))=0}
    proof (rule baby_Sard, simp_all)
        fix }
        assume x:x\inS^det (matrix ( }\mp@subsup{g}{}{\prime}x))=
        then show (g has_derivative g'x) (at x within {x\inS.det (matrix ( }\mp@subsup{g}{}{\prime}x)\mathrm{ ) =
0})
            by (metis (no_types, lifting) der_g has_derivative_subset mem_Collect_eq sub-
setI)
    then show rank (matrix ( }\mp@subsup{g}{}{\prime}x))<CARD('n
            using det_nz_iff_inj matrix_vector_mul_linear x
            by (fastforce simp add: less_rank_noninjective)
    qed
    then have negg: negligible ( g'S - g'{x\inS.?D }x\not=0}
        by (rule negligible_subset) (auto simp: S'_def)
    have null: g' }{x\inS.?D x\not=0}-g'S={
        by (auto simp: S'_def)
    let ?F = {x\inS.f(gx)\not=0}
    have eq: g' }\mp@subsup{S}{}{\prime}=g'?F\cap g'`{x\inS.?D x\not=0
        by (auto simp: S'_def image_iff)
    show ?thesis
    proof
```



```
        using int_g\mp@subsup{S}{}{\prime}}\mathrm{ eq integrable_restrict_Int [where f=f]
        by simp
    then have f integrable_on g' {x\inS.?D x\not=0}
        by (auto simp: image_iff elim!: integrable_eq)
        then show f integrable_on g'S
```

```
        apply (rule integrable_spike_set [OF _ empty_imp_negligible negligible_subset])
        using negg null by auto
    have integral (g'S) f= integral ( g'{x\inS.?D x\not=0})f
        using negg by (auto intro: negligible_subset integral_spike_set)
    also have ... = integral (g'{x\inS.?D x\not=0}) ( }\lambdax\mathrm{ . if }x\ing'?F then f x
else 0)
            by (auto simp: image_iff intro!: integral_cong)
    also have ... = integral (g' }\mp@subsup{S}{}{\prime}\mathrm{ ) f
            using eq integral_restrict_Int by simp
    also have ... \leqintegral S'( }\lambdax.|?Dx|*f(gx)
            by (metis int_gS')
    also have ... \leq?b
            by (rule integral_subset_le [OF _ intS' intS]) (use nonneg_fg S'_def in auto)
    finally show integral (g'S) f\leq?b .
    qed
qed
lemma absolutely_integrable_on_image_real:
```



```
    assumes der_g: \bigwedgex. x 位 \Longrightarrow(g has_derivative g' x) (at x within S)
        and intS: (\lambdax. |det (matrix ( }\mp@subsup{g}{}{\prime}x))|*f(gx)) absolutely_integrable_on S
    shows f absolutely_integrable_on (g'S)
proof -
    let ?D = \lambdax. |det (matrix (g' x))|*f(g x)
    let ?N = {x\inS.f(gx)<0} and ?P = {x\inS.f(gx)>0}
    have eq: {x. (if }x\inS\mathrm{ then ?D x else 0)>0} ={x:S.?D x>0}
                {x.(if }x\inS\mathrm{ then ?D x else 0)<0}={x
        by auto
    have ?D integrable_on S
        using intS absolutely_integrable_on_def by blast
    then have ( }\lambdax\mathrm{ . if }x\inS\mathrm{ then ?D x else 0) integrable_on UNIV
        by (simp add: integrable_restrict_UNIV)
    then have D_borel: ( }\lambdax\mathrm{ . if }x\inS\mathrm{ then ?D x else 0) }\in\mathrm{ borel_measurable (lebesgue_on
UNIV)
    using integrable_imp_measurable lebesgue_on_UNIV_eq by blast
    then have Dlt: {x\inS.?D x<0}\in sets lebesgue
        unfolding borel_measurable_vimage_halfspace_component_lt
        by (drule_tac x=0 in spec) (auto simp: eq)
    from D_borel have Dgt: {x\inS.?D x>0}\in sets lebesgue
        unfolding borel_measurable_vimage_halfspace_component_gt
        by (drule_tac x=0 in spec) (auto simp: eq)
    have dfgbm: ?D \in borel_measurable (lebesgue_on S)
    using intS absolutely_integrable_on_def integrable_imp_measurable by blast
    have der_gN:(g has_derivative g' x) (at x within ?N) if }x\in?N\mathrm{ for }
        using der_g has_derivative_subset that by force
    have ( }\lambdax.-fx) integrable_on g'?N ^
        integral (g`?N)}(\lambdax.-fx)\leqintegral ?N (\lambdax. |det (matrix (g'x))|*-
```

```
\(f(g x))\)
    proof (rule integral_on_image_ubound_nonneg [OF _ der_gN])
        have 1: ?D integrable_on \(\{x \in S . ? D x<0\}\)
                using \(D l t\)
        by (auto intro: set_lebesgue_integral_eq_integral [OF set_integrable_subset] intS)
        have uminus \(\circ\left(\lambda x\right.\). \(\mid\) det (matrix \(\left.\left.\left(g^{\prime} x\right)\right) \mid *-f(g x)\right)\) integrable_on? \(N\)
            by (simp add: o_def mult_less_0_iff empty_imp_negligible integrable_spike_set
[ \(\left.\begin{array}{ll}O F & 1\end{array}\right]\)
        then show \(\left(\lambda x\right.\). \(\mid \operatorname{det}\left(\right.\) matrix \(\left.\left.\left(g^{\prime} x\right)\right) \mid *-f(g x)\right)\) integrable_on ? \(N\)
            by (simp add: integrable_neg_iff o_def)
    qed auto
    then have \(f\) integrable_on \(g\) '? \(N\)
        by (simp add: integrable_neg_iff)
    moreover have \(g ' ? N=\left\{y \in g^{\prime} S . f y<0\right\}\)
        by auto
    ultimately have \(f\) integrable_on \(\{y \in g ' S . f y<0\}\)
        by \(\operatorname{simp}\)
    then have \(N: f\) absolutely_integrable_on \(\{y \in g ' S . f y<0\}\)
        by (rule absolutely_integrable_absolutely_integrable_ubound) auto
    have der_gP: (g has_derivative \(\left.g^{\prime} x\right)(\) at \(x\) within ? \(P)\) if \(x \in ? P\) for \(x\)
        using der_g has_derivative_subset that by force
    have \(f\) integrable_on \(g ' ? P \wedge\) integral \((g ' ? P) f \leq\) integral ?P ?D
    proof (rule integral_on_image_ubound_nonneg \([O F\) _ der_g \(]\) )
        have ?D integrable_on \(\{x \in S .0<? D x\}\)
        using \(D g t\)
        by (auto intro: set_lebesgue_integral_eq_integral [OF set_integrable_subset] intS)
        then show ?D integrable_on ?P
            apply (rule integrable_spike_set)
        by (auto simp: zero_less_mult_iff empty_imp_negligible)
    qed auto
    then have \(f\) integrable_on \(g\) '?P
        by metis
    moreover have \(g ' ? P=\{y \in g ' S . f y>0\}\)
        by auto
    ultimately have \(f\) integrable_on \(\{y \in g ' S . f y>0\}\)
        by simp
    then have \(P: f\) absolutely_integrable_on \(\{y \in g ' S . f y>0\}\)
        by (rule absolutely_integrable_absolutely_integrable_lbound) auto
    have \(\left(\lambda x\right.\). if \(x \in g^{\prime} S \wedge f x<0 \vee x \in g ' S \wedge 0<f x\) then \(f x\) else 0\()=(\lambda x\).
if \(x \in g\) ' \(S\) then \(f x\) else 0 )
        by auto
    then show ?thesis
        using absolutely_integrable_Un [OF N P] absolutely_integrable_restrict_UNIV
[symmetric, where \(f=f\) ]
        by \(\operatorname{simp}\)
qed
```

proposition absolutely_integrable_on_image:
fixes $f::$ real ${ }^{\wedge} m::\{$ finite, wellorder $\} \Rightarrow$ real $^{\wedge \prime} n$ and $g::$ real $^{\wedge \prime} m::-\quad \Rightarrow$ real ${ }^{\wedge \prime} m::-$
assumes der_g: $\bigwedge x . x \in S \Longrightarrow\left(g\right.$ has_derivative $\left.g^{\prime} x\right)($ at x within $S)$ and intS: $\left(\lambda x\right.$. \mid det (matrix $\left.\left.\left(g^{\prime} x\right)\right) \mid *_{R} f(g x)\right)$ absolutely_integrable_on S
shows f absolutely_integrable_on $(g ' S)$
apply (rule absolutely_integrable_componentwise [OF absolutely_integrable_on_image_real [OF der_g]])
using absolutely_integrable_component $[O F$ intS $]$ by auto
proposition integral_on_image_ubound:
fixes $f::$ real $^{\wedge \prime} n::\{$ finite,wellorder $\} \Rightarrow$ real and $g::$ real $^{\wedge \prime} n::-r_{-} \Rightarrow$ real $^{\wedge} n::-$
assumes $\backslash x . x \in S \Longrightarrow 0 \leq f(g x)$
and $\bigwedge x . x \in S \Longrightarrow\left(g\right.$ has_derivative $\left.g^{\prime} x\right)$ (at x within S)
and $\left(\lambda x\right.$. \mid det (matrix $\left.\left.\left(g^{\prime} x\right)\right) \mid * f(g x)\right)$ integrable_on S
shows integral $\left(g^{\prime} S\right) f \leq$ integral $S\left(\lambda x . \mid \operatorname{det}\left(\right.\right.$ matrix $\left.\left.\left(g^{\prime} x\right)\right) \mid * f(g x)\right)$
using integral_on_image_ubound_nonneg [OF assms] by simp

6.46.5 Change-of-variables theorem

The classic change-of-variables theorem. We have two versions with quite general hypotheses, the first that the transforming function has a continuous inverse, the second that the base set is Lebesgue measurable.

```
lemma cov_invertible_nonneg_le:
    fixes \(f::\) real \(^{\wedge \prime} n::\{\) finite,wellorder \(\} \Rightarrow\) real and \(g::\) real \({ }^{\wedge} n:::_{-} \Rightarrow\) real \(^{\wedge} n::_{-}\)
    assumes der_g: \(\bigwedge x . x \in S \Longrightarrow\left(g\right.\) has_derivative \(\left.g^{\prime} x\right)(\) at \(x\) within \(S)\)
        and der_h: \(\bigwedge y . y \in T \Longrightarrow\left(h\right.\) has_derivative \(\left.h^{\prime} y\right)(\) at \(y\) within \(T)\)
        and f0: \(\bigwedge y . y \in T \Longrightarrow 0 \leq f y\)
        and \(h g: \wedge x . x \in S \Longrightarrow g x \in T \wedge h(g x)=x\)
        and \(g h: \bigwedge y . y \in T \Longrightarrow h y \in S \wedge g(h y)=y\)
        and \(i d: \bigwedge y . y \in T \Longrightarrow h^{\prime} y \circ g^{\prime}(h y)=i d\)
    shows \(f\) integrable_on \(T \wedge(\) integral \(T f) \leq b \longleftrightarrow\)
            \(\left(\lambda x\right.\). \(\mid \operatorname{det}\left(\right.\) matrix \(\left.\left.\left(g^{\prime} x\right)\right) \mid * f(g x)\right)\) integrable_on \(S \wedge\)
                    integral \(S\left(\lambda x\right.\). \(\mid \operatorname{det}\left(\right.\) matrix \(\left.\left.\left(g^{\prime} x\right)\right) \mid * f(g x)\right) \leq b\)
            (is?lhs =? rhs )
proof -
    have Teq: \(T=g^{\prime} S\) and \(S e q: S=h^{\prime} T\)
            using \(h g\) gh image_iff by fastforce+
    have \(g S: g\) differentiable_on \(S\)
        by (meson der_g differentiable_def differentiable_on_def)
    let ? \(D=\lambda x\). \(\mid \operatorname{det}\left(\right.\) matrix \(\left.\left(g^{\prime} x\right)\right) \mid * f(g x)\)
    show ?thesis
    proof
        assume ?lhs
        then have \(f T\) : \(f\) integrable_on \(T\) and intf: integral \(T f \leq b\)
            by blast+
        show ?rhs
        proof
            let ?fgh \(=\lambda x\). \(\mid \operatorname{det}\left(\right.\) matrix \(\left.\left(h^{\prime} x\right)\right) \mid *\left(\mid \operatorname{det}\left(\right.\right.\) matrix \(\left.\left.\left(g^{\prime}(h x)\right)\right) \mid * f(g(h x))\right)\)
            have \(d d f\) : ?fgh \(x=f x\)
```

```
    if \(x \in T\) for \(x\)
```

proof -
have matrix $\left(h^{\prime} x\right)$ ** matrix $\left(g^{\prime}(h x)\right)=$ mat 1
using that id[OF that $]$ der_g[of $h x]$ gh[OF that $]$ left_inverse_linear
has_derivative_linear
by (subst matrix_compose[symmetric]) (force simp: matrix_id_mat_1
has_derivative_linear)+
then have $\left|\operatorname{det}\left(\operatorname{matrix}\left(h^{\prime} x\right)\right)\right| *\left|\operatorname{det}\left(\operatorname{matrix}\left(g^{\prime}(h x)\right)\right)\right|=1$
by (metis abs_1 abs_mult det_I det_mul)
then show? ?thesis
by (simp add: gh that)
qed
have ? D integrable_on ($h^{\text {' }} T$)
proof (intro set_lebesgue_integral_eq_integral absolutely_integrable_on_image_real)
show (λx. ?fgh x) absolutely_integrable_on T
proof (subst absolutely_integrable_on_iff_nonneg)
show (λx. ?fgh x) integrable_on T
using ddf fT integrable_eq by force
qed (simp add: zero_le_mult_iff fo gh)
qed (use der_h in auto)
with $S e q$ show (λx. ?D x) integrable_on S
by simp
have integral $S(\lambda x$. ? $D x) \leq$ integral $T(\lambda x$. ?fgh $x)$
unfolding $S e q$
proof (rule integral_on_image_ubound)
show (λx. ?fgh x) integrable_on T
using $d d f f T$ integrable_eq by force
qed (use f0 gh der_h in auto)
also have $\ldots=$ integral $T f$
by (force simp: ddf intro: integral_cong)
also have $\ldots \leq b$
by (rule intf)
finally show integral $S(\lambda x$. ? $D x) \leq b$.
qed
next
assume R : ? rhs
then have f integrable_on g ' S
using der_g f0 hg integral_on_image_ubound_nonneg by blast
moreover have integral $(g ' S) f \leq$ integral $S(\lambda x$. ? $D x)$
by (rule integral_on_image_ubound $[O F$ f0 der_g]) (use R Teq in auto)
ultimately show? ?hs
using R by (simp add: Teq)
qed
qed
lemma cov_invertible_nonneg_eq:
fixes $f::$ real $^{\wedge} n::\{$ finite, wellorder $\} \Rightarrow$ real and $g::$ real^$\left.{ }^{\wedge} n::\right]_{-} \Rightarrow$ real $^{\wedge} n::-$
assumes $\bigwedge x . x \in S \Longrightarrow\left(g\right.$ has_derivative $\left.g^{\prime} x\right)($ at x within $S)$
and $\bigwedge y . y \in T \Longrightarrow\left(h\right.$ has_derivative $\left.h^{\prime} y\right)($ at y within $T)$
and $\bigwedge y . y \in T \Longrightarrow 0 \leq f y$
and $\bigwedge x . x \in S \Longrightarrow g x \in T \wedge h(g x)=x$
and $\wedge y . y \in T \Longrightarrow h y \in S \wedge g(h y)=y$
and $\bigwedge y . y \in T \Longrightarrow h^{\prime} y \circ g^{\prime}(h y)=i d$
shows $\left(\left(\lambda x\right.\right.$. \mid det (matrix $\left.\left.\left(g^{\prime} x\right)\right) \mid * f(g x)\right)$ has_integral $\left.b\right) S \longleftrightarrow(f$ has_integral b) T
using cov_invertible_nonneg_le [OF assms]
by (simp add: has_integral_iff) (meson eq_iff)
lemma cov_invertible_real:
fixes $f::$ real $^{\wedge \prime} n::\{$ finite,wellorder $\} \Rightarrow$ real and $g::$ real $^{\wedge \prime} n::-\quad \Rightarrow$ real $^{\wedge} n::-$
assumes der_g: $\bigwedge x . x \in S \Longrightarrow\left(g\right.$ has_derivative $\left.g^{\prime} x\right)($ at x within $S)$
and der_h: $\bigwedge y . y \in T \Longrightarrow\left(h\right.$ has_derivative $\left.h^{\prime} y\right)($ at y within $T)$
and $h g: \bigwedge x . x \in S \Longrightarrow g x \in T \wedge h(g x)=x$
and $g h: \bigwedge y . y \in T \Longrightarrow h y \in S \wedge g(h y)=y$
and $i d: \bigwedge y . y \in T \Longrightarrow h^{\prime} y \circ g^{\prime}(h y)=i d$
shows $\left(\lambda x\right.$. $\mid \operatorname{det}\left(\right.$ matrix $\left.\left.\left(g^{\prime} x\right)\right) \mid * f(g x)\right)$ absolutely_integrable_on $S \wedge$ integral $S\left(\lambda x . \mid \operatorname{det}\left(\right.\right.$ matrix $\left.\left.\left(g^{\prime} x\right)\right) \mid * f(g x)\right)=b \longleftrightarrow$
fabsolutely_integrable_on $T \wedge$ integral $T f=b$
(is ?lhs =? $r h s$)
proof -
have Teq: $T=g^{\prime} S$ and $S e q: S=h^{\prime} T$
using $h g$ gh image_iff by fastforce+
let ? $D P=\lambda x$. $\mid \operatorname{det}\left(\right.$ matrix $\left.\left(g^{\prime} x\right)\right) \mid * f(g x)$ and ? $D N=\lambda x$. $\mid \operatorname{det}\left(\right.$ matrix $\left(g^{\prime}\right.$ $x)) \mid *-f(g x)$
have +: (?DP has_integral $b)\{x \in S . f(g x)>0\} \longleftrightarrow(f$ has_integral $b)\{y \in$ T. $f y>0\}$ for b
proof (rule cov_invertible_nonneg_eq)
have $*:(\lambda x . f(g x))-{ }^{\prime} Y \cap\{x \in S . f(g x)>0\}$

$$
=((\lambda x . f(g x))-‘ Y \cap S) \cap\{x \in S . f(g x)>0\} \text { for } Y
$$

by auto
show (g has_derivative $g^{\prime} x$) (at x within $\{x \in S . f(g x)>0\}$) if $x \in\{x \in S$. $f(g x)>0\}$ for x
using that der_g has_derivative_subset by fastforce
show (h has_derivative $h^{\prime} y$) (at y within $\{y \in T . f y>0\}$) if $y \in\{y \in T . f$ $y>0\}$ for y
using that der_h has_derivative_subset by fastforce
qed (use gh hg id in auto)
have -: $(? D N$ has_integral $b)\{x \in S . f(g x)<0\} \longleftrightarrow((\lambda x .-f x)$ has_integral
b) $\{y \in T . f y<0\}$ for b
proof (rule cov_invertible_nonneg_eq)
have $*:(\lambda x .-f(g x))-^{\prime} y \cap\{x \in S . f(g x)<0\}$
$=\left((\lambda x . f(g x))-{ }^{\prime}\right.$ uminus' $\left.y \cap S\right) \cap\{x \in S . f(g x)<0\}$ for y
using image_iff by fastforce
show (g has_derivative $g^{\prime} x$) (at x within $\{x \in S . f(g x)<0\}$) if $x \in\{x \in S$. $f(g x)<0\}$ for x
using that der_g has_derivative_subset by fastforce
show (h has_derivative $\left.h^{\prime} y\right)($ at y within $\{y \in T . f y<0\})$ if $y \in\{y \in T . f$ $y<0\}$ for y
using that der_h has_derivative_subset by fastforce
qed (use gh hg id in auto)
show ?thesis
proof
assume LHS: ?lhs
have eq: $\{x$. (if $x \in S$ then ? $D P$ x else 0$)>0\}=\{x \in S$.?DP $x>0\}$
$\{x$. (if $x \in S$ then ? $D P x$ else 0$)<0\}=\{x \in S$.? $D P x<0\}$
by auto
have ?DP integrable_on S
using LHS absolutely_integrable_on_def by blast
then have $(\lambda x$. if $x \in S$ then ?DP x else 0) integrable_on UNIV
by (simp add: integrable_restrict_UNIV)
then have D_{-}borel: $(\lambda x$. if $x \in S$ then ?DP x else 0$) \in$ borel_measurable
(lebesgue_on UNIV)
using integrable_imp_measurable lebesgue_on_UNIV_eq by blast
then have $S N:\{x \in S$. ? $D P x<0\} \in$ sets lebesgue
unfolding borel_measurable_vimage_halfspace_component_lt
by (drule_tac $x=0$ in spec) (auto simp: eq)
from $D_{\text {_borel }}$ have $S P:\{x \in S$.?DP $x>0\} \in$ sets lebesgue
unfolding borel_measurable_vimage_halfspace_component_gt
by (drule_tac $x=0$ in spec) (auto simp: eq)
have ? DP absolutely_integrable_on $\{x \in S . ? D P x>0\}$
using LHS by (fast intro!: set_integrable_subset [OF _, of _ S] SP)
then have $a P:$?DP absolutely_integrable_on $\{x \in S . f(g x)>0\}$
by (rule absolutely_integrable_spike_set) (auto simp: zero_less_mult_iff empty_imp_negligible)
have ?DP absolutely_integrable_on $\{x \in S$. ?DP $x<0\}$
using LHS by (fast intro!: set_integrable_subset [OF _, of _ S] SN)
then have $a N:$? DP absolutely_integrable_on $\{x \in S . f(g x)<0\}$
by (rule absolutely_integrable_spike_set) (auto simp: mult_less_0_iff empty_imp_negligible)
have $f N$: f integrable_on $\{y \in T$. $f y<0\}$
integral $\{y \in T . f y<0\} f=$ integral $\{x \in S . f(g x)<0\} ? D P$
using - [of integral $\{x \in S . f(g x)<0\} ? D N] a N$
by (auto simp: set_lebesgue_integral_eq_integral has_integral_iff integrable_neg_iff)
have faN: f absolutely_integrable_on $\{y \in T . f y<0\}$
apply (rule absolutely_integrable_integrable_bound [where $g=\lambda x .-f x]$)
using $f N$ by (auto simp: integrable_neg_iff)
have $f P:$ f integrable_on $\{y \in T . f y>0\}$
integral $\{y \in T . f y>0\} f=$ integral $\{x \in S . f(g x)>0\} ? D P$
using $+[$ of integral $\{x \in S . f(g x)>0\} ? D P] a P$
by (auto simp: set_lebesgue_integral_eq_integral has_integral_iff integrable_neg_iff)
have $f a P: f$ absolutely_integrable_on $\{y \in T . f y>0\}$
apply (rule absolutely_integrable_integrable_bound [where $g=f]$)
using $f P$ by auto
have fa: f absolutely_integrable_on $(\{y \in T . f y<0\} \cup\{y \in T . f y>0\})$
by (rule absolutely_integrable_Un [OF faN faP])
show ?rhs
proof

```
    have eq:((if x\inT^fx<0\vee x\inT^0<fx then 1 else 0)*fx)
            =(if }x\inT\mathrm{ then 1 else 0)*fx for }
        by auto
    show f absolutely_integrable_on T
        using fa by (simp add: indicator_def set_integrable_def eq)
    have [simp]:{y\inT.fy<0}\cap{y\inT.0<fy}={} for T and f::
(real^^}n::_) => rea
    by auto
    have integral T f= integral ({y\inT.fy<0}\cup{y\inT.fy>0})f
    by (intro empty_imp_negligible integral_spike_set) (auto simp: eq)
    also have ... = integral {y\inT.fy<0}f+ integral {y\inT.fy>0}f
        using fN fP by simp
    also have ... = integral {x\inS.f(gx)<0}?DP + integral {x\inS.0<
f(g x)} ?DP
    by (simp add: fN fP)
    also have ... = integral ({x\inS.f(gx)<0}\cup{x\inS.0<f(gx)})?DP
        using aP aN by (simp add: set_lebesgue_integral_eq_integral)
    also have ... = integral S ?DP
        by (intro empty_imp_negligible integral_spike_set) auto
    also have ... = b
        using LHS by simp
    finally show integral Tf=b.
    qed
next
    assume RHS: ?rhs
    have eq: {x. (if x\inT then fx else 0)>0} ={x\inT.fx>0}
            {x.(if }x\inT\mathrm{ then f x else 0)<0} ={x, 盾.fx<0}
        by auto
    have f integrable_on T
    using RHS absolutely_integrable_on_def by blast
    then have ( }\lambdax\mathrm{ . if }x\inT\mathrm{ then f x else 0) integrable_on UNIV
    by (simp add: integrable_restrict_UNIV)
    then have D_borel: ( }\lambdax\mathrm{ . if }x\inT\mathrm{ then fx else 0) }\in\mathrm{ borel_measurable (lebesgue_on
UNIV)
    using integrable_imp_measurable lebesgue_on_UNIV_eq by blast
    then have TN: {x\inT.fx<0}\in sets lebesgue
    unfolding borel_measurable_vimage_halfspace_component_lt
    by (drule_tac x=0 in spec) (auto simp: eq)
    from D_borel have TP:{x\inT.fx>0}\in sets lebesgue
    unfolding borel_measurable_vimage_halfspace_component_gt
    by (drule_tac x=0 in spec) (auto simp: eq)
    have aint: f absolutely_integrable_on {y. y \inT^0<(fy)}
                f absolutely_integrable_on {y. y \inT ^(fy)<0}
            and intT: integral Tf=b
    using set_integrable_subset [of _ T] TP TN RHS
    by blast+
show ?lhs
proof
    have fN: f integrable_on {v\inT.fv<0}
```

using absolutely_integrable_on_def aint by blast
then have $D N:(? D N$ has_integral integral $\{y \in T . f y<0\}(\lambda x .-f x))\{x$ $\in S . f(g x)<0\}$
using - [of integral $\{y \in T . f y<0\}(\lambda x .-f x)]$
by (simp add: has_integral_neg_iff integrable_integral)
have $a D N$: ? $D P$ absolutely_integrable_on $\{x \in S . f(g x)<0\}$
apply (rule absolutely_integrable_integrable_bound $[$ where $g=? D N]$)
using $D N$ hg by (fastforce simp: abs_mult integrable_neg_iff)+
have $f P$: f integrable_on $\{v \in T . f v>0\}$
using absolutely_integrable_on_def aint by blast
then have $D P:(? D P$ has_integral integral $\{y \in T . f y>0\} f)\{x \in S . f(g$ $x)>0\}$
using $+[$ of integral $\{y \in T . f y>0\} f]$
by (simp add: has_integral_neg_iff integrable_integral)
have $a D P:$? $D P$ absolutely_integrable_on $\{x \in S . f(g x)>0\}$
apply (rule absolutely_integrable_integrable_bound [where $g=? D P]$)
using $D P h g$ by (fastforce simp: integrable_neg_iff) +
have eq: (if $x \in S$ then 1 else 0$) * ? D P x=($ if $x \in S \wedge f(g x)<0 \vee x \in$ $S \wedge f(g x)>0$ then 1 else 0$) * ? D P x$ for x
by force
have ? $D P$ absolutely_integrable_on $(\{x \in S . f(g x)<0\} \cup\{x \in S . f(g x)$ $>0\}$)
by (rule absolutely_integrable_Un [OF aDN aDP])
then show I : ?DP absolutely_integrable_on S
by (simp add: indicator_def eq set_integrable_def)
have [simp]: $\{y \in S . f y<0\} \cap\{y \in S .0<f y\}=\{ \}$ for S and $f::$ (real $\left.{ }^{\wedge} n::_{-}\right) \Rightarrow$ real
by auto
have integral $S ? D P=$ integral $(\{x \in S . f(g x)<0\} \cup\{x \in S . f(g x)>$ 0\}) ? $D P$
by (intro empty_imp_negligible integral_spike_set) auto
also have $\ldots=$ integral $\{x \in S . f(g x)<0\} ? D P+$ integral $\{x \in S .0<$ $f(g x)\}$? $D P$
using $a D N a D P$ by (simp add: set_lebesgue_integral_eq_integral)
also have $\ldots=-$ integral $\{y \in T . f y<0\}(\lambda x .-f x)+$ integral $\{y \in T$. $f y>0\} f$
using $D N$ DP by (auto simp: has_integral_iff)
also have $\ldots=$ integral $(\{x \in T . f x<0\} \cup\{x \in T .0<f x\}) f$
by (simp add: $f N f P$)
also have $\ldots=$ integral $T f$
by (intro empty_imp_negligible integral_spike_set) auto
also have $\ldots=b$
using intT by simp
finally show integral S ? $D P=b$.
qed
qed
qed
lemma cv_inv_version3:
fixes $f::$ real $^{\wedge \prime} m::\{$ finite,wellorder $\} \Rightarrow$ real $^{\wedge} n$ and $g::$ real $^{\wedge \prime} m::-\quad$ real ${ }^{\wedge} m::$
assumes der_g: $\bigwedge x . x \in S \Longrightarrow\left(g\right.$ has_derivative $\left.g^{\prime} x\right)($ at x within $S)$
and der_h: $\bigwedge y . y \in T \Longrightarrow\left(h\right.$ has_derivative $\left.h^{\prime} y\right)($ at y within $T)$
and $h g: \bigwedge x . x \in S \Longrightarrow g x \in T \wedge h(g x)=x$
and $g h: \wedge y . y \in T \Longrightarrow h y \in S \wedge g(h y)=y$
and $i d: \bigwedge y . y \in T \Longrightarrow h^{\prime} y \circ g^{\prime}(h y)=i d$
shows $\left(\lambda x\right.$. \mid det (matrix $\left.\left.\left(g^{\prime} x\right)\right) \mid *_{R} f(g x)\right)$ absolutely_integrable_on $S \wedge$ integral $S\left(\lambda x\right.$. \mid det $\left(\right.$ matrix $\left.\left.\left(g^{\prime} x\right)\right) \mid *_{R} f(g x)\right)=b$
$\longleftrightarrow f$ absolutely_integrable_on $T \wedge$ integral $T f=b$
proof -
let $? D=\lambda x$. $\mid \operatorname{det}\left(\right.$ matrix $\left.\left(g^{\prime} x\right)\right) \mid *_{R} f(g x)$
have $\left(\left(\lambda x\right.\right.$. \mid det (matrix $\left.\left(g^{\prime} x\right)\right) \mid * f(g x) \$$ i) absolutely_integrable_on $S \wedge$ integral
$S\left(\lambda x . \mid \operatorname{det}\left(\right.\right.$ matrix $\left.\left.\left.\left(g^{\prime} x\right)\right) \mid *(f(g x) \$ i)\right)=b \$ i\right) \longleftrightarrow$
$((\lambda x . f x \$ i)$ absolutely_integrable_on $T \wedge$ integral $T(\lambda x . f x \$ i)=b \$ i)$
for i
by (rule cov_invertible_real [OF der_g der_h hg gh id])
then have ?D absolutely_integrable_on $S \wedge$ (?D has_integral b) $S \longleftrightarrow$
fabsolutely_integrable_on $T \wedge(f$ has_integral b) T
unfolding absolutely_integrable_componentwise_iff [where $f=f$] has_integral_componentwise_iff [of f]
absolutely_integrable_componentwise_iff [where $f=$? D] has_integral_componentwise_iff
[of ?D]
by (auto simp: all_conj_distrib Basis_vec_def cart_eq_inner_axis [symmetric]
has_integral_iff set_lebesgue_integral_eq_integral)
then show ?thesis
using absolutely_integrable_on_def by blast
qed
lemma cv_inv_version4:
fixes $f::$ real $^{\wedge \prime} m::\{$ finite,wellorder $\} \Rightarrow$ real $^{\wedge} n$ and $g::$ real $^{\wedge \prime} m::-\quad$ real ${ }^{\wedge} m::_{-}$
assumes der_ $g: \bigwedge x . x \in S \Longrightarrow\left(g\right.$ has_derivative $\left.g^{\prime} x\right)($ at x within $S) \wedge$ invert-
ible (matrix ($\left.g^{\prime} x\right)$)
and $h g: \bigwedge x . x \in S \Longrightarrow$ continuous_on $(g ' S) h \wedge h(g x)=x$
shows $\left(\lambda x\right.$. \mid det (matrix $\left.\left.\left(g^{\prime} x\right)\right) \mid *_{R} f(g x)\right)$ absolutely_integrable_on $S \wedge$
integral $S\left(\lambda x\right.$. $\mid \operatorname{det}\left(\right.$ matrix $\left.\left.\left(g^{\prime} x\right)\right) \mid *_{R} f(g x)\right)=b$
$\longleftrightarrow f$ absolutely_integrable_on $\left(g^{\prime} S\right) \wedge$ integral $\left(g{ }^{\prime} S\right) f=b$
proof -
have $\forall x . \exists h^{\prime} . x \in S$
$\longrightarrow\left(g\right.$ has_derivative $\left.g^{\prime} x\right)($ at x within $S) \wedge$ linear $h^{\prime} \wedge g^{\prime} x \circ h^{\prime}=i d \wedge$
$h^{\prime} \circ g^{\prime} x=i d$
using der_g matrix_invertible has_derivative_linear by blast
then obtain h^{\prime} where h^{\prime} :
$\bigwedge x . x \in S$
$\Longrightarrow\left(g\right.$ has_derivative $\left.g^{\prime} x\right)($ at x within $S) \wedge$
linear $\left(h^{\prime} x\right) \wedge g^{\prime} x \circ\left(h^{\prime} x\right)=i d \wedge\left(h^{\prime} x\right) \circ g^{\prime} x=i d$
by metis
show ?thesis

```
proof (rule cv_inv_version3)
    show \}\y.y\ing'S\Longrightarrow(h has_derivative h'(hy)) (at y within g'S
        using h' hg
    by (force simp: continuous_on_eq_continuous_within intro!: has_derivative_inverse_within)
    qed (use h' hg in auto)
qed
```

theorem has_absolute_integral_change_of_variables_invertible:
fixes $f::$ real $^{\wedge \prime} m::\{$ finite,wellorder $\} \Rightarrow$ real $^{\wedge \prime} n$ and $g::$ real $^{\wedge \prime} m::-\quad \Rightarrow$ real $^{\wedge \prime} m::-$
assumes der_g: $\bigwedge x . x \in S \Longrightarrow\left(g\right.$ has_derivative $\left.g^{\prime} x\right)$ (at x within S)
and $h g: \bigwedge x . x \in S \Longrightarrow h(g x)=x$
and conth: continuous_on $(g$ ' S) h
shows $\left(\lambda x\right.$. \mid det (matrix $\left.\left.\left(g^{\prime} x\right)\right) \mid *_{R} f(g x)\right)$ absolutely_integrable_on $S \wedge$ integral
$S\left(\lambda x . \mid \operatorname{det}\left(\right.\right.$ matrix $\left.\left.\left(g^{\prime} x\right)\right) \mid *_{R} f(g x)\right)=b \longleftrightarrow$
f absolutely_integrable_on $(g$ 'S $) \wedge$ integral $(g ' S) f=b$
(is ?lhs = ? rhs)
proof -
let ? $S=\left\{x \in S\right.$. invertible $\left(\right.$ matrix $\left.\left.\left(g^{\prime} x\right)\right)\right\}$ and $? D=\lambda x$. $\left|\operatorname{det}\left(\operatorname{matrix}\left(g^{\prime} x\right)\right)\right|$
* $_{R} f(g x)$
have *: ?D absolutely_integrable_on ? $S \wedge$ integral ? S ? $D=b$
$\longleftrightarrow f$ absolutely_integrable_on $(g$ '? $S) \wedge$ integral $(g$ '? $S) f=b$
proof (rule cv_inv_version4)
show (g has_derivative $\left.g^{\prime} x\right)($ at x within ? $S) \wedge$ invertible $\left(\right.$ matrix $\left.\left(g^{\prime} x\right)\right)$
if $x \in$? S for x
using der_g that has_derivative_subset that by fastforce
show continuous_on (g '? S) $h \wedge h(g x)=x$
if $x \in$? S for x
using that continuous_on_subset [OF conth] by (simp add: hg image_mono)
qed
have (g has_derivative $\left.g^{\prime} x\right)\left(\right.$ at x within $\left\{x \in S\right.$. rank (matrix $\left.\left(g^{\prime} x\right)\right)<$
$\left.\left.C A R D\left({ }^{\prime} m\right)\right\}\right)$ if $x \in S$ for x
by (metis (no_types, lifting) der_g has_derivative_subset mem_Collect_eq subsetI
that)
then have negligible $\left(g\right.$ ' $\left\{x \in S\right.$. \neg invertible (matrix $\left.\left.\left.\left(g^{\prime} x\right)\right)\right\}\right)$
by (auto simp: invertible_det_nz det_eq_0_rank intro: baby_Sard)
then have neg: negligible $\{x \in g ' S . x \notin g ' ? S \wedge f x \neq 0\}$
by (auto intro: negligible_subset)
have $[$ simp $]:\left\{x \in g^{\prime}\right.$? $\left.S . x \notin g ' S \wedge f x \neq 0\right\}=\{ \}$
by auto
have ?D absolutely_integrable_on ? $S \wedge$ integral ? S ? $D=b$
\longleftrightarrow ?D absolutely_integrable_on $S \wedge$ integral $S ? D=b$
apply (intro conj_cong absolutely_integrable_spike_set_eq)
apply(auto simp: integral_spike_set invertible_det_nz empty_imp_negligible neg)
done
moreover
have f absolutely_integrable_on $(g$ '?S) $) \wedge$ integral $(g$ '?S) $f=b$
$\longleftrightarrow f$ absolutely_integrable_on $\left(g^{\prime} S\right) \wedge$ integral $\left(g^{\prime} S\right) f=b$
by (auto intro!: conj_cong absolutely_integrable_spike_set_eq integral_spike_set

```
neg)
    ultimately
    show ?thesis
        using * by blast
qed
```

theorem has_absolute_integral_change_of_variables_compact:
fixes $f::$ real $^{\wedge} m::\{$ finite,wellorder $\} \Rightarrow$ real $^{\wedge} n$ and $g::$ real $^{\wedge \prime} m::_{-} \Rightarrow$ real $^{\wedge \prime} m::-$
assumes compact S
and der_g: $\bigwedge x . x \in S \Longrightarrow\left(g\right.$ has_derivative $\left.g^{\prime} x\right)($ at x within $S)$
and inj: inj_on $g S$
shows $\left(\left(\lambda x\right.\right.$. \mid det (matrix $\left.\left.\left(g^{\prime} x\right)\right) \mid *_{R} f(g x)\right)$ absolutely_integrable_on $S \wedge$
integral $S\left(\lambda x\right.$. $\mid \operatorname{det}\left(\right.$ matrix $\left.\left.\left(g^{\prime} x\right)\right) \mid *_{R} f(g x)\right)=b$
$\longleftrightarrow f$ absolutely_integrable_on $\left(g^{\prime} S\right) \wedge$ integral $\left.\left(g^{\prime} S\right) f=b\right)$
proof -
obtain h where $h g: \bigwedge x . x \in S \Longrightarrow h(g x)=x$
using inj by (metis the_inv_into_f_f)
have conth: continuous_on $(g$ ' S) h
by (metis 〈compact S 〉 continuous_on_inv der_g has_derivative_continuous_on hg)
show ?thesis
by (rule has_absolute_integral_change_of_variables_invertible [OF der_g hg conth])
qed
lemma has_absolute_integral_change_of_variables_compact_family:
fixes $f::$ real $^{\wedge} m::\{$ finite, wellorder $\} \Rightarrow$ real $^{\wedge \prime} n$ and $g::$ real $\left.^{\wedge \prime} m::\right]_{-} \Rightarrow$ real $^{\wedge \prime} m::-$
assumes compact: $\bigwedge n::$ nat. compact ($F n$)
and der_g: $\bigwedge x . x \in(\bigcup n . F n) \Longrightarrow\left(g\right.$ has_derivative $\left.g^{\prime} x\right)$ (at x within $(\bigcup n$.
$F n)$)
and inj: inj_on g $(\bigcup n . F n)$
shows $\left(\left(\lambda x . \mid \operatorname{det}\left(\right.\right.\right.$ matrix $\left.\left.\left(g^{\prime} x\right)\right) \mid *_{R} f(g x)\right)$ absolutely_integrable_on $(\bigcup n . F n)$
\wedge
integral $(\bigcup n . F n)\left(\lambda x\right.$. $\mid \operatorname{det}\left(\right.$ matrix $\left.\left.\left(g^{\prime} x\right)\right) \mid *_{R} f(g x)\right)=b$
$\longleftrightarrow f$ absolutely_integrable_on $\left(g^{\prime}(\bigcup n . F n)\right) \wedge$ integral $\left(g^{\prime}(\bigcup n . F n)\right) f$
$=b$)
proof -
let ? $D=\lambda x$. $\mid \operatorname{det}\left(\right.$ matrix $\left.\left(g^{\prime} x\right)\right) \mid *_{R} f(g x)$
let ? $U=\lambda n . \bigcup m \leq n . F m$
let ?lift $=$ vec::real \Rightarrow real ${ }^{\wedge} 1$
have $F_{-} l e b: F m \in$ sets lebesgue for m
by (simp add: compact borel_compact)
have iff: $\left(\lambda x\right.$. $\left.\left|\operatorname{det}\left(\operatorname{matrix}\left(g^{\prime} x\right)\right)\right| *_{R} f(g x)\right)$ absolutely_integrable_on (?U n)
\wedge
integral $(? U n)\left(\lambda x . \mid \operatorname{det}\left(\right.\right.$ matrix $\left.\left.\left(g^{\prime} x\right)\right) \mid *_{R} f(g x)\right)=b$
$\longleftrightarrow f$ absolutely_integrable_on $(g '(? U n)) \wedge$ integral $(g$ ' $(? U n)) f=b$
for $n b$ and $f::$ real $^{\wedge} m::_{-} \Rightarrow$ real $^{\wedge} k$
proof (rule has_absolute_integral_change_of_variables_compact)

```
    show compact (?U n)
    by (simp add: compact compact_UN)
    show (g has_derivative g' x) (at x within (?U n))
    if }x\in\mathrm{ ?U }n\mathrm{ for }
    using that by (blast intro!: has_derivative_subset [OF der_g])
    show inj_on g (?U n)
    using inj by (auto simp: inj_on_def)
qed
show ?thesis
    unfolding image_UN
proof safe
    assume DS: ?D absolutely_integrable_on ( Un.F n)
        and b:b= integral (Un.Fn) ?D
    have DU: \n. ?D absolutely_integrable_on (?U n)
            (\lambdan. integral (?U n) ?D) \longrightarrow integral (Un.F n) ?D
        using integral_countable_UN [OF DS F_leb] by auto
    with iff have fag: f absolutely_integrable_on g '(?U n)
        and fg_int: integral (Um\leqn.g'Fm)f=integral (?U n) ?D for n
        by (auto simp: image_UN)
    let ?h = \lambdax. if }x\in(\bigcupm.g'Fm) then norm(fx) else 0
    have ( }\lambdax\mathrm{ . if }x\in(\bigcupm.g'Fm) then f x else 0) absolutely_integrable_on UNIV
    proof (rule dominated_convergence_absolutely_integrable)
        show ( }\lambdax\mathrm{ . if }x\in(\bigcupm\leqk.g'Fm) then f x else 0) absolutely_integrable_o
UNIV for }
            unfolding absolutely_integrable_restrict_UNIV
            using fag by (simp add: image_UN)
        let ?nf = \lambdan x. if }x\in(\bigcupm\leqn.g'Fm) then norm (fx) else 0
    show ?h integrable_on UNIV
    proof (rule monotone_convergence_increasing [THEN conjunct1])
            show ?nf k integrable_on UNIV for k
                    using fag
            unfolding integrable_restrict_UNIV absolutely_integrable_on_def by (simp
add: image_UN)
            {fix n
            have (norm ○ ?D) absolutely_integrable_on ?U n
                by (intro absolutely_integrable_norm DU)
            then have integral (g'?U n) (norm ○f) = integral (?U n) (norm ○?D)
                    using iff [of n vec \circ norm ○f integral (?U n) ( \lambdax. |det (matrix ( g' x))|
*R
            unfolding absolutely_integrable_on_1_iff integral_on_1_eq by (auto simp:
o_def)
    }
    moreover have bounded (range ( }\lambdak\mathrm{ . integral (?U k) (norm ○?D)))
            unfolding bounded_iff
    proof (rule exI, clarify)
            fix }
            show norm (integral (?U k) (norm ○ ?D)) \leq integral (Un.F n) (norm
\circ ?D)
            unfolding integral_restrict_UNIV [of _ norm ○ ?D, symmetric]
```

```
    proof (rule integral_norm_bound_integral)
                            show ( }\lambdax\mathrm{ . if }x\in\bigcup(F'{..k}) then (norm ○ ?D) x else 0) integrable_on
UNIV
            (\lambdax. if x ( Un.F n) then (norm ○ ?D) x else 0) integrable_on UNIV
            using DU(1) DS
                    unfolding absolutely_integrable_on_def o_def integrable_restrict_UNIV
by auto
            qed auto
            qed
            ultimately show bounded (range ( }\lambdak\mathrm{ . integral UNIV (?nf k)))
            by (simp add: integral_restrict_UNIV image_UN [symmetric] o_def)
        next
            show ( }\lambdak.\mathrm{ if }x\in(\bigcupm\leqk.g'Fm) then norm (fx) else 0
                \longrightarrow ( \text { if } x \in ( \bigcup m . g ' F m ) ~ t h e n ~ n o r m ~ ( f x ) ~ e l s e ~ 0 ) ~ f o r ~ x ~
            by (force intro: tendsto_eventually eventually_sequentiallyI)
        qed auto
    next
        show ( }\lambdak\mathrm{ . if }x\in(\bigcupm\leqk.g'Fm) then f x else 0)
                \longrightarrow(if }x\in(\bigcupm.g``m) then f x else 0) for x
    proof clarsimp
            fix m}
            assume y \inFm
            show ( }\lambdak\mathrm{ . if }\existsx\in{..k}.gy\ing'Fx then f(gy) else 0)\longrightarrowf(gy
            using }\langley\inFm> by (force intro: tendsto_eventually eventually_sequentiallyI
[of m])
            qed
    qed auto
    then show fai: f absolutely_integrable_on ( Um.g'Fm)
        using absolutely_integrable_restrict_UNIV by blast
    show integral ((Ux.g'Fx))f= integral (Un.F n) ?D
    proof (rule LIMSEQ_unique)
        show (\lambdan. integral (?U n) ?D) \longrightarrow integral (Ux.g'Fx)f
            unfolding fg_int [symmetric]
        proof (rule integral_countable_UN [OF fai])
            show g' Fm 新s lebesgue for m
            proof (rule differentiable_image_in_sets_lebesgue [OF F_leb])
                show g differentiable_on F m
                    by (meson der_g differentiableI UnionI differentiable_on_def differen-
tiable_on_subset rangeI subsetI)
            qed auto
        qed
    next
        show (\lambdan. integral (?U n) ?D) \longrightarrow integral (Un.F n) ?D
            by (rule DU)
    qed
next
    assume fs: f absolutely_integrable_on (Ux.g'F x)
```



```
    have gF_leb: g' Fm}\in\mathrm{ sets lebesgue for m
```

```
    proof (rule differentiable_image_in_sets_lebesgue [OF F_leb])
    show \(g\) differentiable_on \(F m\)
        using der_g unfolding differentiable_def differentiable_on_def
        by (meson Sup_upper UNIV_I UnionI has_derivative_subset image_eqI)
    qed auto
    have \(f g U\) : \(\bigwedge n\). f absolutely_integrable_on \((\bigcup m \leq n . g\) ' \(F m\) )
        \(\left(\lambda n\right.\). integral \(\left.\left(\bigcup m \leq n . g^{\prime} F m\right) f\right) \longrightarrow\) integral \(\left(\bigcup m . g^{\prime} F m\right) f\)
    using integral_countable_UN [OF fs gF_leb] by auto
with iff have DUn: ?D absolutely_integrable_on ?U \(n\)
    and \(D\) _int: integral \((? U n) ? D=\) integral \((\bigcup m \leq n . g\) ' \(F m\) ) \(f\) for \(n\)
    by (auto simp: image_UN)
let \(? h=\lambda x\). if \(x \in(\bigcup n\). \(F n\) ) then norm \((? D x)\) else 0
have \((\lambda x\). if \(x \in(\bigcup n . F n)\) then ? \(D\) x else 0) absolutely_integrable_on UNIV
proof (rule dominated_convergence_absolutely_integrable)
    show ( \(\lambda x\). if \(x \in\) ? \(U k\) then ? \(D\) x else 0) absolutely_integrable_on UNIV for \(k\)
        unfolding absolutely_integrable_restrict_UNIV using DUn by simp
    let ? \(n D=\lambda n x\). if \(x \in\) ? \(U n\) then norm \((? D x)\) else 0
    show ? \(h\) integrable_on UNIV
    proof (rule monotone_convergence_increasing [THEN conjunct1])
        show ?nD \(k\) integrable_on UNIV for \(k\)
            using \(D U n\)
            unfolding integrable_restrict_UNIV absolutely_integrable_on_def by (simp
```

add: image_UN)
\{ fix n ::nat
have ($n o r m \circ f$) absolutely_integrable_on $(\bigcup m \leq n . g$ ' $(\bigcup m)$
apply (rule absolutely_integrable_norm)
using $f g U$ by blast
then have integral $(? U n)($ norm $\circ ? D)=\operatorname{integral~}(g \cdot ? U n)($ norm $\circ f)$
using iff $[$ of n ?lift \circ norm $\circ f$ integral $(g ' ? U n)($?lift \circ norm $\circ f)$]
unfolding absolutely_integrable_on_1_iff integral_on_1_eq image_UN by
(auto simp: o_def)
\}
moreover have bounded (range (λk. integral (g '? U k) (norm $\circ f)$))
unfolding bounded_iff
proof (rule exI, clarify)
fix k
show norm $($ integral $(g$ '?U $k)($ norm $\circ f)) \leq \operatorname{integral~}(g ‘(\bigcup n . F n))$
$(n o r m \circ f)$
unfolding integral_restrict_UNIV [of _ norm $\circ f$, symmetric]
proof (rule integral_norm_bound_integral)
show $\left(\lambda x\right.$. if $x \in g^{\prime} ? U k$ then $($ norm $\circ f) x$ else 0$)$ integrable_on UNIV
$(\lambda x$. if $x \in g '(\bigcup n . F n)$ then $($ norm $\circ f) x$ else 0$)$ integrable_on
UNIV
using $f g U f s$
unfolding absolutely_integrable_on_def o_def integrable_restrict_UNIV
by (auto simp: image_UN)
qed auto
qed
ultimately show bounded (range (λk. integral UNIV $(? n D k))$)

```
            unfolding integral_restrict_UNIV image_UN [symmetric] o_def by simp
        next
            show ( }\lambdak.\mathrm{ if }x\in?|Uk\mathrm{ then norm (?D x) else 0) }\longrightarrow(\mathrm{ if }x\in(\bigcupn.F n
then norm (?D x) else 0) for x
            by (force intro: tendsto_eventually eventually_sequentiallyI)
        qed auto
    next
    show ( }\lambdak\mathrm{ . if }x\in\mathrm{ ?U k then ?D x else 0) }\longrightarrow(\mathrm{ if }x\in(\bigcupn.F n) then ?D
x else 0) for }
            proof clarsimp
            fix n
            assume x f F n
            show (\lambdam. if \existsj\in{..m}. }x\inFj\mathrm{ then ?D x else 0) }\longrightarrow\mathrm{ ? D }
            using \langlex \inF n\rangle by (auto intro!: tendsto_eventually eventually_sequentiallyI
[of n])
            qed
    qed auto
    then show Dai: ?D absolutely_integrable_on ( Un.F n)
            unfolding absolutely_integrable_restrict_UNIV by simp
    show integral (Un.Fn) ?D = integral ((Ux.g'Fx))f
    proof (rule LIMSEQ_unique)
        show (\lambdan. integral (Um\leqn.g'Fm)f)\longrightarrow < integral (Ux.g'Fx)f
            by (rule fgU)
            show (\lambdan. integral (Um\leqn.g'Fm)f)\longrightarrowintegral (Un.Fn) ?D
            unfolding D_int [symmetric] by (rule integral_countable_UN [OF Dai F_leb])
    qed
    qed
qed
theorem has_absolute_integral_change_of_variables:
```



```
    assumes S:S sets lebesgue
```



```
        and inj: inj_on g S
    shows (\lambdax. |et (matrix ( }\mp@subsup{g}{}{\prime}x))|\mp@subsup{*}{R}{}f(gx))\mathrm{ absolutely_integrable_on S ^
                integral S ( }\lambdax.|\operatorname{det}(matrix ( g' ( x) )| * R f (gx)) = b
        \longleftrightarrow absolutely_integrable_on (g'S)^ integral (g'S)f=b
proof -
    obtain CN where fsigma C and N:N\in null_sets lebesgue and CNS:C\cupN
= S and disjnt C N
    using lebesgue_set_almost_fsigma [OF S] .
    then obtain F :: nat => (real ^}1m::-) set
        where F: range F\subseteq Collect compact and Ceq: C=Union(range F)
        using fsigma_Union_compact by metis
    have negligible N
        using N by (simp add: negligible_iff_null_sets)
    let ?D = \lambdax. | det (matrix ( g' x))| *R f (gx)
    have ?D absolutely_integrable_on C ^ integral C ?D = b
```

```
    \(\longleftrightarrow f\) absolutely_integrable_on \(\left(g^{\prime} C\right) \wedge\) integral \(\left(g^{\prime} C\right) f=b\)
    unfolding Ceq
proof (rule has_absolute_integral_change_of_variables_compact_family)
    fix \(n x\)
    assume \(x \in \bigcup\left(F^{\prime} U N I V\right)\)
    then show ( \(g\) has_derivative \(\left.g^{\prime} x\right)\) (at \(x\) within \(\bigcup\left(F^{\prime}\right.\) UNIV))
        using \(C e q\langle C \cup N=S\rangle\) der_g has_derivative_subset by blast
    next
        have \(\bigcup\left(F^{\prime}\right.\) UNIV \() \subseteq S\)
        using \(C e q\langle C \cup N=S\rangle\) by blast
    then show inj_on \(g\left(U\left(F^{\prime}\right.\right.\) UNIV \(\left.)\right)\)
        using inj by (meson inj_on_subset)
    qed (use \(F\) in auto)
    moreover
    have ? \(D\) absolutely_integrable_on \(C \wedge\) integral \(C ? D=b\)
    \(\longleftrightarrow\) ?D absolutely_integrable_on \(S \wedge\) integral \(S ? D=b\)
    proof (rule conj_cong)
        have neg: negligible \(\{x \in C-S . ? D x \neq 0\}\) negligible \(\{x \in S-C . ? D x \neq\)
0\}
        using CNS by (blast intro: negligible_subset [OF 〈negligible \(N\rangle]\) )+
    then show (?D absolutely_integrable_on \(C\) ) \(=(? D\) absolutely_integrable_on \(S)\)
        by (rule absolutely_integrable_spike_set_eq)
    show (integral \(C ? D=b) \longleftrightarrow(\) integral \(S ? D=b)\)
        using integral_spike_set [OF neg] by simp
    qed
    moreover
    have \(f\) absolutely_integrable_on \(\left(g^{\prime} C\right) \wedge\) integral \(\left(g^{\prime} C\right) f=b\)
        \(\longleftrightarrow f\) absolutely_integrable_on \((g ' S) \wedge\) integral \((g ' S) f=b\)
    proof (rule conj_cong)
        have \(g\) differentiable_on \(N\)
        by (metis CNS der_g differentiable_def differentiable_on_def differentiable_on_subset
sup.cobounded2)
    with \(\langle\) negligible \(N\rangle\)
    have neg_gN: negligible \((g\) ' \(N\) )
        by (blast intro: negligible_differentiable_image_negligible)
    have neg: negligible \(\left\{x \in g^{\prime} C-g ' S . f x \neq 0\right\}\)
                negligible \(\left\{x \in g^{\prime} S-g^{\prime} C . f x \neq 0\right\}\)
        using CNS by (blast intro: negligible_subset [OF neg_gN])+
        then show \(\left(f\right.\) absolutely_integrable_on \(\left.g{ }^{\prime} C\right)=(f\) absolutely_integrable_on \(g\)
S)
        by (rule absolutely_integrable_spike_set_eq)
    show (integral \(\left.\left(g^{\prime} C\right) f=b\right) \longleftrightarrow\) (integral \((g\) 'S) \(f=b)\)
        using integral_spike_set [OF neg] by simp
    qed
    ultimately show?thesis
        by \(\operatorname{simp}\)
qed
```

corollary absolutely_integrable_change_of_variables:
fixes $f::$ real $^{\wedge \prime} m::\{$ finite,wellorder $\} \Rightarrow$ real $^{\wedge \prime} n$ and $g::$ real $^{\wedge \prime} m::-\quad$ real ${ }^{\wedge \prime} m::$
assumes $S \in$ sets lebesgue
and $\bigwedge x . x \in S \Longrightarrow\left(g\right.$ has_derivative $\left.g^{\prime} x\right)$ (at x within S)
and inj_on $g S$
shows f absolutely_integrable_on $(g$ ' S)
$\longleftrightarrow\left(\lambda x . \mid \operatorname{det}\left(\right.\right.$ matrix $\left.\left.\left(g^{\prime} x\right)\right) \mid *_{R} f(g x)\right)$ absolutely_integrable_on S
using assms has_absolute_integral_change_of_variables by blast
corollary integral_change_of_variables:
fixes $f::$ real $^{\wedge \prime} m::\{$ finite,wellorder $\} \Rightarrow$ real $^{\wedge \prime} n$ and $g::$ real $^{\wedge \prime} m::-\quad \Rightarrow$ real $^{\wedge \prime} m::-$
assumes $S: S \in$ sets lebesgue
and der_g: $\bigwedge x . x \in S \Longrightarrow\left(g\right.$ has_derivative $\left.g^{\prime} x\right)($ at x within $S)$
and inj: inj_on g S
and disj: (f absolutely_integrable_on $(g$ ' $S) \vee$
$\left(\lambda x . \mid \operatorname{det}\left(\right.\right.$ matrix $\left.\left.\left(g^{\prime} x\right)\right) \mid *_{R} f(g x)\right)$ absolutely_integrable_on $\left.S\right)$
shows integral $\left(g\right.$ 'S) $f=$ integral $S\left(\lambda x\right.$. $\mid \operatorname{det}\left(\right.$ matrix $\left.\left.\left(g^{\prime} x\right)\right) \mid *_{R} f(g x)\right)$
using has_absolute_integral_change_of_variables [OF S der_g inj] disj
by blast
lemma has_absolute_integral_change_of_variables_1:
fixes $f::$ real \Rightarrow real^${ }^{\wedge} n::\{$ finite, wellorder $\}$ and $g::$ real \Rightarrow real
assumes $S: S \in$ sets lebesgue
and der_g: $\bigwedge x . x \in S \Longrightarrow\left(g\right.$ has_vector_derivative $\left.g^{\prime} x\right)($ at x within $S)$
and inj: inj_on g S
shows $\left(\lambda x .\left|g^{\prime} x\right| *_{R} f(g x)\right)$ absolutely_integrable_on $S \wedge$ integral $S\left(\lambda x .\left|g^{\prime} x\right| *_{R} f(g x)\right)=b$
$\longleftrightarrow f$ absolutely_integrable_on $(g ' S) \wedge$ integral $(g ' S) f=b$
proof -
let ?lift $=$ vec $::$ real \Rightarrow real ${ }^{\wedge} 1$
let ? drop $=(\lambda x:$ real^ $1 . x \$ 1)$
have S^{\prime} : ?lift ' $S \in$ sets lebesgue
by (auto intro: differentiable_image_in_sets_lebesgue [OF S] differentiable_vec)
have $\left((\lambda x\right.$. vec $(g(x \$ 1)))$ has_derivative $\left.\left(*_{R}\right)\left(g^{\prime} z\right)\right)($ at (vec $z)$ within ?lift‘
S)
if $z \in S$ for z
using der_g [OF that]
by (simp add: has_vector_derivative_def has_derivative_vector_1)
then have $\mathrm{der}^{\prime}: \bigwedge x . x \in$? lift ' $S \Longrightarrow$
(?lift $\circ g \circ$?drop has_derivative $\left(*_{R}\right)\left(g^{\prime}(\right.$?drop $\left.\left.x)\right)\right)($ at x within ?lift' $S)$
by (auto simp: o_def)
have inj': inj_on (vec $\circ g \circ$?drop) (vec ' S)
using inj by (simp add: inj_on_def)
let ? $f g=\lambda x .\left|g^{\prime} x\right| *_{R} f(g x)$
have $((\lambda x$. ?fg $x \$ i)$ absolutely_integrable_on $S \wedge((\lambda x$. ?fg $x \$$ i) has_integral b \$ i) S
$\longleftrightarrow(\lambda x . f x \$ i)$ absolutely_integrable_on g ' $S \wedge((\lambda x . f x \$ i)$ has_integral b
\$i) $(g ‘ S)$) for i
using has_absolute_integral_change_of_variables $\left[O F S^{\prime}\right.$ der $^{\prime} \mathrm{inj}^{\prime}$, of λx. ?lift $(f$

```
(?drop \(x) \$\) i) ?lift ( \(b \$ i\) ]
    unfolding integrable_on_1_iff integral_on_1_eq absolutely_integrable_on_1_iff ab-
solutely_integrable_drop absolutely_integrable_on_def
    by (auto simp: image_comp o_def integral_vec1_eq has_integral_iff)
    then have ?fg absolutely_integrable_on \(S \wedge(? f g\) has_integral b) \(S\)
            \(\longleftrightarrow f\) absolutely_integrable_on \((g ' S) \wedge(f\) has_integral b) \((g ' S)\)
    unfolding has_integral_componentwise_iff [where \(y=b\) ]
                absolutely_integrable_componentwise_iff [where \(f=f\) ]
                absolutely_integrable_componentwise_iff [where \(f=? f g\) ]
    by (force simp: Basis_vec_def cart_eq_inner_axis)
    then show ?thesis
    using absolutely_integrable_on_def by blast
qed
```

corollary absolutely_integrable_change_of_variables_1:
fixes $f::$ real \Rightarrow real^' $n::\{$ finite,wellorder $\}$ and $g::$ real \Rightarrow real
assumes $S: S \in$ sets lebesgue
and der_g: $\bigwedge x . x \in S \Longrightarrow\left(g\right.$ has_vector_derivative $\left.g^{\prime} x\right)($ at x within $S)$
and inj: inj_on g S
shows $(f$ absolutely_integrable_on g ' $S \longleftrightarrow$
($\left.\lambda x .\left|g^{\prime} x\right| *_{R} f(g x)\right)$ absolutely_integrable_on S)
using has_absolute_integral_change_of_variables_1 [OF assms] by auto

6.46.6 Change of variables for integrals: special case of linear function

lemma has_absolute_integral_change_of_variables_linear:
fixes $f::$ real $^{\wedge \prime} m::\{$ finite,wellorder $\} \Rightarrow$ real $^{\wedge \prime} n$ and $g::$ real ${ }^{\wedge \prime} m::-\quad$ real ${ }^{\wedge \prime} m::-$
assumes linear g
shows $(\lambda x$. \mid det (matrix $\left.g) \mid *_{R} f(g x)\right)$ absolutely_integrable_on $S \wedge$ integral $S\left(\lambda x\right.$. $\mid \operatorname{det}($ matrix $\left.g) \mid *_{R} f(g x)\right)=b$
$\longleftrightarrow f$ absolutely_integrable_on $(g$ ' S) \wedge integral $(g$ ' $S) f=b$
proof $($ cases $\operatorname{det}($ matrix $g)=0)$
case True
then have negligible $(g$ ‘ S)
using assms det_nz_iff_inj negligible_linear_singular_image by blast
with True show ?thesis
by (auto simp: absolutely_integrable_on_def integrable_negligible integral_negligible)
next
case False
then obtain h where $h: \bigwedge x . x \in S \Longrightarrow h(g x)=x$ linear h
using assms det_nz_iff_inj linear_injective_isomorphism by metis
show ?thesis
proof (rule has_absolute_integral_change_of_variables_invertible)
show (g has_derivative g) (at x within S) for x
by (simp add: assms linear_imp_has_derivative)
show continuous_on $(g$ ‘ S) h
using continuous_on_eq_continuous_within has_derivative_continuous linear_imp_has_derivative
h by blast
qed（use h in auto）
qed
lemma absolutely＿integrable＿change＿of＿variables＿linear：
fixes $f::$ real $^{\wedge} m::\{$ finite，wellorder $\} \Rightarrow$ real $^{\wedge \prime} n$ and $g::$ real $^{\wedge \prime} m::-\quad \Rightarrow$ real $^{\wedge \prime} m::-$
assumes linear g
shows $(\lambda x$ ． \mid det（matrix $\left.g) \mid *_{R} f(g x)\right)$ absolutely＿integrable＿on S
$\longleftrightarrow f$ absolutely＿integrable＿on（ g＇S ）
using assms has＿absolute＿integral＿change＿of＿variables＿linear by blast
lemma absolutely＿integrable＿on＿linear＿image：
fixes $f::$ real $^{\wedge} m::\{$ finite，wellorder $\} \Rightarrow$ real $^{\wedge} n$ and $g::$ real $^{\wedge \prime} m::$＿$^{\Rightarrow}$ real $^{\wedge} m::$＿
assumes linear g
shows f absolutely＿integrable＿on（ g＇S ）
$\longleftrightarrow(f \circ g)$ absolutely＿integrable＿on $S \vee \operatorname{det}($ matrix $g)=0$
unfolding assms absolutely＿integrable＿change＿of＿variables＿linear［OF assms，sym－ metric］absolutely＿integrable＿on＿scaleR＿iff
by（auto simp：set＿integrable＿def）
lemma integral＿change＿of＿variables＿linear：
fixes $f::$ real $^{\wedge \prime} m::\{$ finite，wellorder $\} \Rightarrow$ real $^{\wedge \prime} n$ and $g::$ real $^{\wedge \prime} m::-r^{\prime} \Rightarrow$ real $^{\wedge \prime} m::-$
assumes linear g
and f absolutely＿integrable＿on $(g ' S) \vee(f \circ g)$ absolutely＿integrable＿on S
shows integral $\left(g{ }^{\prime} S\right) f=\mid \operatorname{det}($ matrix $g) \mid *_{R}$ integral $S(f \circ g)$
proof－
have $\left(\left(\lambda x\right.\right.$ ．$\left.|\operatorname{det}(\operatorname{matrix} g)| *_{R} f(g x)\right)$ absolutely＿integrable＿on $\left.S\right) \vee(f$ abso－ lutely＿integrable＿on g＇S ）
using absolutely＿integrable＿on＿linear＿image assms by blast
moreover
have ？thesis if $\left(\left(\lambda x . \mid \operatorname{det}(\right.\right.$ matrix $\left.g) \mid *_{R} f(g x)\right)$ absolutely＿integrable＿on $\left.S\right)(f$ absolutely＿integrable＿on g＇S）
using has＿absolute＿integral＿change＿of＿variables＿linear［OF 〈linear g〉］that
by（auto simp：o＿def）
ultimately show ？thesis
using absolutely＿integrable＿change＿of＿variables＿linear［OF 〈linear g〉］ by blast
qed

6．46．7 Change of variable for measure

lemma has＿measure＿differentiable＿image：
fixes $f::$ real ${ }^{\wedge \prime} n::\{$ finite，wellorder $\} \Rightarrow$ real $^{\wedge \prime} n::-$
assumes $S \in$ sets lebesgue and $\bigwedge x . x \in S \Longrightarrow\left(f\right.$ has＿derivative $\left.f^{\prime} x\right)($ at x within $S)$ and inj＿on $f S$
shows f＇$S \in$ lmeasurable \wedge measure lebesgue $\left(f^{\prime} S\right)=m$
$\longleftrightarrow\left(\left(\lambda x . \mid \operatorname{det}\left(\right.\right.\right.$ matrix $\left.\left.\left(f^{\prime} x\right)\right) \mid\right)$ has＿integral m）S
using has＿absolute＿integral＿change＿of＿variables［OF assms，of λx ．（1：：real＾1）vec

```
m]
    unfolding absolutely_integrable_on_1_iff integral_on_1_eq integrable_on_1_iff abso-
lutely_integrable_on_def
    by (auto simp: has_integral_iff lmeasurable_iff_integrable_on lmeasure_integral)
lemma measurable_differentiable_image_eq:
    fixes f :: real^' }n::{\mathrm{ finite,wellorder } # real^' }n::
    assumes S\in sets lebesgue
        and }\bigwedgex.x\inS\Longrightarrow(f has_derivative f' x)(at x within S
        and inj_on f S
    shows f'S lmeasurable \longleftrightarrow(\lambdax.|\operatorname{det (matrix (f'x))|) integrable_on S}
    using has_measure_differentiable_image [OF assms]
    by blast
lemma measurable_differentiable_image_alt:
```



```
    assumes S\in sets lebesgue
        and }\bigwedgex.x\inS\Longrightarrow(f has_derivative \mp@subsup{f}{}{\prime}x)(\mathrm{ at }x\mathrm{ within S)
        and inj_on f S
```



```
S
    using measurable_differentiable_image_eq [OF assms]
    by (simp only: absolutely_integrable_on_iff_nonneg)
lemma measure_differentiable_image_eq:
    fixes }f::\mathrm{ real^^}n::{\mathrm{ finite,wellorder} # real^^}n::
    assumes S:S\in sets lebesgue
        and der_f: \x. x 
        and inj: inj_on f S
        and intS: ( }\lambdax.|\operatorname{det}(\mathrm{ matrix ( }\mp@subsup{f}{}{\prime}x))|) integrable_on S
    shows measure lebesgue (f'S) = integral S ( }\lambdax.|\operatorname{det}(\mathrm{ matrix ( }\mp@subsup{f}{}{\prime}x))|
    using measurable_differentiable_image_eq [OF S der_f inj]
        assms has_measure_differentiable_image by blast
end
```


6.47 Lipschitz Continuity

```
theory Lipschitz
    imports
        Derivative
begin
definition lipschitz_on
    where lipschitz_on C U f \longleftrightarrow (0\leqC^(\forallx\inU.\forally\inU. dist (fx) (fy)\leqC
* dist x y))
```

bundle lipschitz_syntax begin
notation lipschitz_on (_-lipschitz'_on [1000])
end
bundle no_lipschitz_syntax begin
no_notation lipschitz_on (_-lipschitz'_on [1000])
end
unbundle lipschitz_syntax

```
lemma lipschitz_onI: L-lipschitz_on \(X f\)
    if \(\bigwedge x y . x \in X \Longrightarrow y \in X \Longrightarrow \operatorname{dist}(f x)(f y) \leq L *\) dist \(x\) y \(0 \leq L\)
    using that by (auto simp: lipschitz_on_def)
lemma lipschitz_onD:
    dist \((f x)(f y) \leq L *\) dist \(x y\)
    if \(L\)-lipschitz_on \(X f x \in X y \in X\)
    using that by (auto simp: lipschitz_on_def)
lemma lipschitz_on_nonneg:
    \(0 \leq L\) if \(L\)-lipschitz_on \(X f\)
    using that by (auto simp: lipschitz_on_def)
lemma lipschitz_on_normD:
    norm \((f x-f y) \leq L * \operatorname{norm}(x-y)\)
    if lipschitz_on \(L X f x \in X y \in X\)
    using lipschitz_onD[OF that]
    by (simp add: dist_norm)
```

lemma lipschitz_on_mono: L-lipschitz_on $D f$ if M-lipschitz_on $E f D \subseteq E M \leq$
L
using that
by (force simp: lipschitz_on_def intro: order_trans[OF _ mult_right_mono])
lemmas lipschitz_on_subset $=$ lipschitz_on_mono[OF _ _order_refl $]$
and lipschitz_on_le $=$ lipschitz_on_mono $[O F$ _ order_refl $]$
lemma lipschitz_on_leI:
L-lipschitz_on $X f$
if $\bigwedge x y . x \in X \Longrightarrow y \in X \Longrightarrow x \leq y \Longrightarrow \operatorname{dist}(f x)(f y) \leq L * \operatorname{dist} x y$
$0 \leq L$
for $f:: ' a::\{$ linorder_topology, ordered_real_vector, metric_space $\} \Rightarrow{ }^{\prime} b:: m e t r i c _s p a c e$
proof (rule lipschitz_onI)
fix $x y$ assume $x y: x \in X y \in X$
consider $y \leq x \mid x \leq y$
by (rule le_cases)
then show dist $(f x)(f y) \leq L *$ dist $x y$
proof cases
case 1
then have dist $(f y)(f x) \leq L *$ dist $y x$
by (auto intro!: that $x y$)
then show ?thesis

```
    by (simp add: dist_commute)
    qed (auto intro!: that xy)
qed fact
lemma lipschitz_on_concat:
    fixes a b c::real
    assumes f:L-lipschitz_on {a .. b} f
    assumes g:L-lipschitz_on {b .. c} g
    assumes fg: fb=gb
    shows lipschitz_on L {a..c} ( }\lambdax\mathrm{ . if }x\leqb\mathrm{ then f x else g x)
        (is lipschitz_on _ _ ?f)
proof (rule lipschitz_on_leI)
    fix }x
    assume x: }x\in{a..c}\mathrm{ and }y:y\in{a..c} and xy:x\leq
    consider }x\leqb\wedgeb<y|x\geqb\veey\leqb by arith
    then show dist (?f x) (?f y) \leqL* dist x y
    proof cases
        case 1
        have dist (f x) (gy) \leq dist (fx)(fb) + dist (gb)(gy)
        unfolding fg by (rule dist_triangle)
    also have dist (fx) (fb)\leqL* dist x b
        using 1 }
        by (auto intro!: lipschitz_onD[OF f])
    also have dist (gb) (gy)\leqL* dist b y
        using 1 x y
        by (auto intro!: lipschitz_onD[OF g] lipschitz_onD[OF f])
    finally have dist (fx)(gy)\leqL* dist x b +L* dist b y
        by simp
    also have \ldots. . L L* (dist x b + dist b y)
        by (simp add: algebra_simps)
    also have dist x b + dist b y = dist x y
        using 1 x y
        by (auto simp: dist_real_def abs_real_def)
    finally show ?thesis
        using 1 by simp
    next
    case 2
    with lipschitz_onD[OF f, of x y] lipschitz_onD[OF g, of x y] x y xy
    show ?thesis
        by (auto simp: fg)
    qed
qed (rule lipschitz_on_nonneg[OF f])
lemma lipschitz_on_concat_max:
    fixes a b c::real
    assumes f:L-lipschitz_on {a.. b} f
    assumes g:M-lipschitz_on {b .. c} g
    assumes fg: fb=gb
    shows (max L M)-lipschitz_on {a .. c} ( }\lambdax\mathrm{ . if }x\leqb\mathrm{ then f x else g x)
```

```
proof -
    have lipschitz_on (max L M) {a.. b} flipschitz_on (max L M) {b .. c} g
        by (auto intro!: lipschitz_on_mono[OF f order_refl] lipschitz_on_mono[OF g or-
der_refl])
    from lipschitz_on_concat[OF this fg] show ?thesis .
qed
```


Continuity

proposition lipschitz_on_uniformly_continuous:
assumes L-lipschitz_on $X f$
shows uniformly_continuous_on $X f$
unfolding uniformly_continuous_on_def
proof safe
fix e ::real
assume $0<e$
from assms have $l:(L+1)$-lipschitz_on $X f$
by (rule lipschitz_on_mono) auto
show $\exists d>0 . \forall x \in X . \forall x^{\prime} \in X$. dist $x^{\prime} x<d \longrightarrow \operatorname{dist}\left(f x^{\prime}\right)(f x)<e$
using lipschitz_onD[OF l] lipschitz_on_nonneg[OF assms] $\langle 0<e\rangle$
by (force intro!: exI[where $x=e /(L+1)]$ simp: field_simps)
qed
proposition lipschitz_on_continuous_on:
continuous_on $X f$ if L-lipschitz_on $X f$
by (rule uniformly_continuous_imp_continuous[OF lipschitz_on_uniformly_continuous [OF
that]])
lemma lipschitz_on_continuous_within:
continuous (at x within X) f if L-lipschitz_on $X f x \in X$
using lipschitz_on_continuous_on[OF that(1)] that(2)
by (auto simp: continuous_on_eq_continuous_within)

Differentiable functions

proposition bounded_derivative_imp_lipschitz:
assumes $\bigwedge x . x \in X \Longrightarrow\left(f\right.$ has_derivative $\left.f^{\prime} x\right)($ at x within $X)$
assumes convex: convex X
assumes $\bigwedge x . x \in X \Longrightarrow \operatorname{onorm}\left(f^{\prime} x\right) \leq C 0 \leq C$
shows C-lipschitz_on $X f$
proof (rule lipschitz_onI)
show $\bigwedge x y . x \in X \Longrightarrow y \in X \Longrightarrow \operatorname{dist}(f x)(f y) \leq C * \operatorname{dist} x y$
by (auto intro!: assms differentiable_bound[unfolded dist_norm[symmetric], OF
convex])
qed fact

Structural introduction rules

named_theorems lipschitz_intros structural introduction rules for Lipschitz controls

lemma lipschitz_on_compose [lipschitz_intros]:

$(D * C)$-lipschitz_on $U(g \circ f)$
if $f: C$-lipschitz_on $U f$ and $g: D$-lipschitz_on $\left(f^{\prime} U\right) g$
proof (rule lipschitz_onI)
show $D * C \geq 0$ using lipschitz_on_nonneg[OF f] lipschitz_on_nonneg $[O F g]$ by auto
fix $x y$ assume $H: x \in U y \in U$
have $\operatorname{dist}(g(f x))(g(f y)) \leq D * \operatorname{dist}(f x)(f y)$ apply (rule lipschitz_onD[OF g]) using H by auto
also have $\ldots \leq D * C *$ dist $x y$
using mult_left_mono[OF lipschitz_onD (1)[OF f H] lipschitz_on_nonneg[OF g]]
by auto
finally show dist $((g \circ f) x)((g \circ f) y) \leq D * C *$ dist $x y$ unfolding comp_def by (auto simp add: mult.commute)
qed
lemma lipschitz_on_compose2:
$(D * C)$-lipschitz_on $U(\lambda x . g(f x))$
if C-lipschitz_on $U f D$-lipschitz_on $\left(f^{‘} U\right) g$
using lipschitz_on_compose[OF that] by (simp add: o_def)
lemma lipschitz_on_cong[cong]:
C-lipschitz_on $U g \longleftrightarrow D$-lipschitz_on $V f$
if $C=D U=V \bigwedge x . x \in V \Longrightarrow g x=f x$
using that by (auto simp: lipschitz_on_def)
lemma lipschitz_on_transform:
C-lipschitz_on $U g$ if C-lipschitz_on $U f$
$\bigwedge x . x \in U \Longrightarrow g x=f x$
using that
by simp
lemma lipschitz_on_empty_iff [simp]: C-lipschitz_on $\} f \longleftrightarrow C \geq 0$
by (auto simp: lipschitz_on_def)
lemma lipschitz_on_insert_iff[simp]:
C-lipschitz_on (insert y X) $f \longleftrightarrow$
C-lipschitz_on $X f \wedge(\forall x \in X$. dist $(f x)(f y) \leq C * \operatorname{dist} x y)$
by (auto simp: lipschitz_on_def dist_commute)
lemma lipschitz_on_singleton [lipschitz_intros]: $C \geq 0 \Longrightarrow C$-lipschitz_on $\{x\} f$ and lipschitz_on_empty [lipschitz_intros]: $C \geq 0 \Longrightarrow C$-lipschitz_on $\} f$
by simp_all
lemma lipschitz_on_id [lipschitz_intros]: 1-lipschitz_on $U(\lambda x . x)$
by (auto simp: lipschitz_on_def)
lemma lipschitz_on_constant [lipschitz_intros]: 0 -lipschitz_on $U(\lambda x . c)$

```
    by (auto simp: lipschitz_on_def)
lemma lipschitz_on_add [lipschitz_intros]:
    fixes \(f:{ }^{\prime}\) a::metric_space \(\Rightarrow^{\prime} b::\) real_normed_vector
    assumes \(C\)-lipschitz_on \(U f\)
        D-lipschitz_on U g
    shows \((C+D)\)-lipschitz_on \(U(\lambda x . f x+g x)\)
proof (rule lipschitz_onI)
    show \(C+D \geq 0\)
        using lipschitz_on_nonneg[OF assms(1)] lipschitz_on_nonneg[OF assms(2)] by
auto
    fix \(x y\) assume \(H: x \in U y \in U\)
    have \(\operatorname{dist}(f x+g x)(f y+g y) \leq \operatorname{dist}(f x)(f y)+\operatorname{dist}(g x)(g y)\)
        by (simp add: dist_triangle_add)
    also have \(\ldots \leq C *\) dist \(x y+D *\) dist \(x y\)
        using lipschitz_onD(1)[OF assms(1) H] lipschitz_onD(1)[OF assms(2) H] by
auto
    finally show dist \((f x+g x)(f y+g y) \leq(C+D) *\) dist \(x y\) by (auto simp
add: algebra_simps)
qed
lemma lipschitz_on_cmult [lipschitz_intros]:
    fixes \(f:::^{\prime} a:\) metric_space \(\Rightarrow\) ' \(b::\) :real_normed_vector
    assumes \(C\)-lipschitz_on \(U f\)
    shows \((a b s(a) * C)\)-lipschitz_on \(U\left(\lambda x . a *_{R} f x\right)\)
proof (rule lipschitz_onI)
    show \(\operatorname{abs}(a) * C \geq 0\) using lipschitz_on_nonneg[OF assms(1)] by auto
    fix \(x y\) assume \(H: x \in U y \in U\)
    have dist \(\left(a *_{R} f x\right)\left(a *_{R} f y\right)=\operatorname{abs}(a) * \operatorname{dist}(f x)(f y)\)
        by (metis dist_norm norm_scaleR real_vector.scale_right_diff_distrib)
    also have \(\ldots \leq \operatorname{abs}(a) * C *\) dist \(x y\)
        using lipschitz_onD(1)[OF assms(1) H] by (simp add: Groups.mult_ac(1)
mult_left_mono)
    finally show \(\operatorname{dist}\left(a *_{R} f x\right)\left(a *_{R} f y\right) \leq|a| * C * d i s t x y\) by auto
qed
lemma lipschitz_on_cmult_real [lipschitz_intros]:
    fixes \(f:: ' a::\) metric_space \(\Rightarrow\) real
    assumes \(C\)-lipschitz_on \(U f\)
    shows \((a b s(a) * C)\)-lipschitz_on \(U(\lambda x . a * f x)\)
    using lipschitz_on_cmult[OF assms] by auto
lemma lipschitz_on_cmult_nonneg [lipschitz_intros]:
    fixes \(f::\) 'a::metric_space \(\Rightarrow\) ' \(b::\) real_normed_vector
    assumes \(C\)-lipschitz_on \(U f\)
        \(a \geq 0\)
    shows \((a * C)\)-lipschitz_on \(U\left(\lambda x . a *_{R} f x\right)\)
    using lipschitz_on_cmult[OF assms(1), of a] assms(2) by auto
```

```
lemma lipschitz_on_cmult_real_nonneg [lipschitz_intros]:
    fixes f::'a::metric_space }=>\mathrm{ real
    assumes C-lipschitz_on U f
        a\geq0
    shows (a*C)-lipschitz_on U (\lambdax. a*fx)
    using lipschitz_on_cmult_nonneg[OF assms] by auto
lemma lipschitz_on_cmult_upper [lipschitz_intros]:
    fixes f::'a::metric_space # 'b::real_normed_vector
    assumes C-lipschitz_on Uf
        abs(a) \leq D
    shows (D*C)-lipschitz_on U (\lambdax.a** f x)
    apply (rule lipschitz_on_mono[OF lipschitz_on_cmult[OF assms(1), of a], of _ D
* C])
    using assms(2) lipschitz_on_nonneg[OF assms(1)] mult_right_mono by auto
lemma lipschitz_on_cmult_real_upper [lipschitz_intros]:
    fixes f::'a::metric_space => real
    assumes C-lipschitz_on U f
        abs(a)\leqD
    shows (D*C)-lipschitz_on U (\lambdax. a*f x)
    using lipschitz_on_cmult_upper[OF assms] by auto
lemma lipschitz_on_minus[lipschitz_intros]:
    fixes f::'a::metric_space =' 'b::real_normed_vector
    assumes C-lipschitz_on Uf
    shows C-lipschitz_on U ( }\lambdax.-fx
    by (metis (mono_tags, lifting) assms dist_minus lipschitz_on_def)
lemma lipschitz_on_minus_iff[simp]:
    L-lipschitz_on X (\lambdax. - fx) \longleftrightarrow L-lipschitz_on Xf
    L-lipschitz_on X (- f) \longleftrightarrowL-lipschitz_on Xf
    for f::'a::metric_space =>'b::real_normed_vector
    using lipschitz_on_minus[of L X f] lipschitz_on_minus[of L X -f]
    by auto
lemma lipschitz_on_diff[lipschitz_intros]:
    fixes f::'a::metric_space =>'b::real_normed_vector
    assumes C-lipschitz_on U f D-lipschitz_on Ug
    shows }(C+D)\mathrm{ -lipschitz_on U ( }\lambdax.fx-gx
    using lipschitz_on_add[OF assms(1) lipschitz_on_minus[OF assms(2)]] by auto
lemma lipschitz_on_closure [lipschitz_intros]:
    assumes C-lipschitz_on U f continuous_on (closure U)f
    shows C-lipschitz_on (closure U) f
proof (rule lipschitz_onI)
    show C \geq0 using lipschitz_on_nonneg[OF assms(1)] by simp
    fix x y assume x\in closure U y \in closure U
    obtain uv::nat => ' }a\mathrm{ where *: \n.un 
```

$\bigwedge n . v n \in U v \longrightarrow y$
using $\langle x \in$ closure $U\rangle\langle y \in$ closure $U\rangle$ unfolding closure_sequential by blast
have $a:(\lambda n . f(u n)) \longrightarrow f x$ using $*(1) *(2)\langle x \in$ closure $U\rangle\langle$ continuous_on (closure U) $f\rangle$ unfolding comp_def continuous_on_closure_sequentially $[o f ~ U f]$ by auto
have $b:(\lambda n . f(v n)) \longrightarrow f y$ using $*(3) *(4)\langle y \in$ closure $U\rangle\langle$ continuous_on (closure U) $f\rangle$ unfolding comp_def continuous_on_closure_sequentially $[o f ~ U f]$ by auto
have $l:(\lambda n . C * \operatorname{dist}(u n)(v n)-\operatorname{dist}(f(u n))(f(v n))) \longrightarrow C * \operatorname{dist} x$ $y-\operatorname{dist}(f x)(f y)$ by (intro tendsto_intros $* a b$)
have $C * \operatorname{dist}(u n)(v n)-\operatorname{dist}(f(u n))(f(v n)) \geq 0$ for n using lipschitz_onD $(1)[$ OF assms $(1)\langle u n \in U\rangle\langle v n \in U\rangle]$ by simp
then have $C * \operatorname{dist} x y-\operatorname{dist}(f x)(f y) \geq 0$ using LIMSEQ_le_const[OF l, of
0] by auto
then show dist $(f x)(f y) \leq C *$ dist $x y$ by auto
qed
lemma lipschitz_on_Pair[lipschitz_intros]:
assumes f : L-lipschitz_on Af
assumes g : M-lipschitz_on $A g$
shows $\left(\right.$ sqrt $\left.\left(L^{2}+M^{2}\right)\right)$-lipschitz_on $A(\lambda a .(f a, g a))$
proof (rule lipschitz_onI, goal_cases)
case (1 $x y$)
have $\operatorname{dist}(f x, g x)(f y, g y)=\operatorname{sqrt}\left((\operatorname{dist}(f x)(f y))^{2}+(\operatorname{dist}(g x)(g y))^{2}\right)$ by (auto simp add: dist_Pair_Pair real_le_lsqrt)
also have $\ldots \leq \operatorname{sqrt}\left((L * \text { dist } x y)^{2}+(M * \text { dist } x y)^{2}\right)$
by (auto intro!: real_sqrt_le_mono add_mono power_mono 1 lipschitz_onD fg)
also have $\ldots \leq \operatorname{sqrt}\left(L^{2}+M^{2}\right) *$ dist $x y$
by (auto simp: power_mult_distrib ring_distribs[symmetric] real_sqrt_mult)
finally show ?case .
qed simp
lemma lipschitz_extend_closure:
fixes $f::\left({ }^{\prime} a::\right.$ metric_space $) \Rightarrow(' b::$ complete_space $)$
assumes C-lipschitz_on $U f$
shows $\exists g . C$-lipschitz_on (closure $U) g \wedge(\forall x \in U . g x=f x)$
proof -
obtain g where $g: \bigwedge x . x \in U \Longrightarrow g x=f x$ uniformly_continuous_on (closure
U) g
using uniformly_continuous_on_extension_on_closure[OF lipschitz_on_uniformly_continuous[OF
assms]] by metis
have C-lipschitz_on (closure U) g
apply (rule lipschitz_on_closure, rule lipschitz_on_transform [OF assms])
using g uniformly_continuous_imp_continuous $[O F g(2)]$ by auto
then show ?thesis using $g(1)$ by auto
qed
lemma (in bounded_linear) lipschitz_boundE:
obtains B where B-lipschitz_on $A f$
proof -
from nonneg_bounded
obtain B where $B: B \geq 0 \bigwedge x$.norm $(f x) \leq B *$ norm x by (auto simp: ac_simps)
have B-lipschitz_on A f
by (auto intro!: lipschitz_onI B simp: dist_norm diff[symmetric])
thus ?thesis ..
qed

6.47.1 Local Lipschitz continuity

Given a function defined on a real interval, it is Lipschitz-continuous if and only if it is locally so, as proved in the following lemmas. It is useful especially for piecewise-defined functions: if each piece is Lipschitz, then so is the whole function. The same goes for functions defined on geodesic spaces, or more generally on geodesic subsets in a metric space (for instance convex subsets in a real vector space), and this follows readily from the real case, but we will not prove it explicitly.
We give several variations around this statement. This is essentially a connectedness argument.
lemma locally_lipschitz_imp_lipschitz_aux:
fixes $f::$ real \Rightarrow ('a::metric_space)
assumes $a \leq b$ continuous_on $\{a . . b\} f$ $\bigwedge x . x \in\{a . .<b\} \Longrightarrow \exists y \in\{x<. . b\}$. dist $(f y)(f x) \leq M *(y-x)$
shows dist $(f b)(f a) \leq M *(b-a)$
proof -
define A where $A=\{x \in\{a . . b\}$. dist $(f x)(f a) \leq M *(x-a)\}$
have $*: A=(\lambda x . M *(x-a)-\operatorname{dist}(f x)(f a))-‘\{0 ..\} \cap\{a . . b\}$
unfolding A_{-}def by auto
have $a \in A$ unfolding A_{-}def using $\langle a \leq b\rangle$ by auto
then have $A \neq\{ \}$ by auto
moreover have bdd_above A unfolding $A_{-} d e f$ by auto
moreover have closed A unfolding * by (rule closed_vimage_Int, auto intro!:
continuous_intros assms)
ultimately have Sup $A \in A$ by (rule closed_contains_Sup)
have Sup $A=b$
proof (rule ccontr)
assume Sup $A \neq b$
define x where $x=\operatorname{Sup} A$
have I : dist $(f x)(f a) \leq M *(x-a)$ using $\langle S u p A \in A\rangle x_{-} d e f A_{-} d e f$ by auto
have $x \in\{a . .<b\}$ unfolding x_{-}def using $\langle S u p A \in A\rangle\langle S u p A \neq b\rangle A_{-}$def by auto
then obtain y where $J: y \in\{x<. . b\}$ dist $(f y)(f x) \leq M *(y-x)$ using assms(3) by blast
have dist $(f y)(f a) \leq \operatorname{dist}(f y)(f x)+\operatorname{dist}(f x)(f a)$ by (rule dist_triangle)
also have $\ldots \leq M *(y-x)+M *(x-a)$ using $I J(2)$ by auto
finally have dist $(f y)(f a) \leq M *(y-a)$ by (auto simp add: algebra_simps)
then have $y \in A$ unfolding \bar{A}_{-}def using $\langle y \in\{x<. . b\}\rangle\langle x \in\{a . .<b\}\rangle$ by auto
then have $y \leq \operatorname{Sup} A$ by (rule cSup_upper, auto simp: A_def)
then show False using $\langle y \in\{x<. . b\}\rangle x_{-} d e f$ by auto
qed
then show ?thesis using \langle Sup $A \in A\rangle A_{-}$def by auto
qed
lemma locally_lipschitz_imp_lipschitz:
fixes $f::$ real \Rightarrow ('a::metric_space)
assumes continuous_on $\{a . . b\} f$

$$
\bigwedge x y . x \in\{a . .<b\} \Longrightarrow y>x \Longrightarrow \exists z \in\{x<. . y\} . \operatorname{dist}(f z)(f x) \leq M *
$$

$(z-x)$

$$
M \geq 0
$$

shows lipschitz_on M \{a..b\} f
proof (rule lipschitz_onI[OF $\left.{ }_{-}\langle M \geq 0\rangle\right]$)
have $*$: $\operatorname{dist}(f t)(f s) \leq M *(t-s)$ if $s \leq t s \in\{a . . b\} t \in\{a . . b\}$ for $s t$
proof (rule locally_lipschitz_imp_lipschitz_aux, simp add: $\langle s \leq t\rangle)$
show continuous_on $\{s . . t\} f$ using continuous_on_subset $[O F \operatorname{assms}(1)]$ that
by auto
fix x assume $x \in\{s . .<t\}$
then have $x \in\{a . .<b\}$ using that by auto
show $\exists z \in\{x<. . t\}$. dist $(f z)(f x) \leq M *(z-x)$
using assms(2)[OF〈x $\langle\{a . .<b\}\rangle$, of $t]\langle x \in\{s . .<t\}\rangle$ by auto
qed
fix $x y$ assume $x \in\{a . . b\} y \in\{a . . b\}$
consider $x \leq y \mid y \leq x$ by linarith
then show dist $(f x)(f y) \leq M *$ dist $x y$ apply (cases)
using $*\left[O F_{-}\langle x \in\{a . . b\}\rangle\langle y \in\{a . . b\}\rangle\right] *\left[O F_{-}\langle y \in\{a . . b\}\rangle\langle x \in\{a . . b\}\rangle\right]$
by (auto simp add: dist_commute dist_real_def)
qed
We deduce that if a function is Lipschitz on finitely many closed sets on the real line, then it is Lipschitz on any interval contained in their union. The difficulty in the proof is to show that any point z in this interval (except the maximum) has a point arbitrarily close to it on its right which is contained in a common initial closed set. Otherwise, we show that there is a small interval (z, T) which does not intersect any of the initial closed sets, a contradiction.

```
proposition lipschitz_on_closed_Union:
    assumes \(\wedge i . i \in I \Longrightarrow\) lipschitz_on \(M(U i) f\)
        \(\wedge i . i \in I \Longrightarrow \operatorname{closed}(U i)\)
        finite I
        \(M \geq 0\)
        \(\{u . .(v::\) real \()\} \subseteq(\bigcup i \in I . U i)\)
    shows lipschitz_on \(M\{u . . v\} f\)
proof (rule locally_lipschitz_imp_lipschitz \(\left.\left[O F{ }_{-}\langle M \geq 0\rangle\right]\right)\)
```

have $*$ ：continuous＿on $(U i) f$ if $i \in I$ for i
by（rule lipschitz＿on＿continuous＿on［OF assms（1）［OF $\langle i \in I\rangle]]$ ）
have continuous＿on $(\bigcup i \in I . U i) f$
apply（rule continuous＿on＿closed＿Union）using 〈finite $I\rangle * \operatorname{assms}(2)$ by auto
then show continuous＿on $\{u . . v\} f$
using $\backslash\{u . .(v::$ real $)\} \subseteq(\bigcup i \in I . U i)\rangle$ continuous＿on＿subset by auto
fix $z Z$ assume $z: z \in\{u . .<v\} z<Z$
then have $u \leq v$ by auto
define T where $T=\min Z v$
then have $T: T>z T \leq v T \geq u T \leq Z$ using z by auto
define A where $A=(\bigcup i \in I \cap\{i . U i \cap\{z<. . T\} \neq\{ \}\} . U i \cap\{z . . T\})$
have a ：closed A
unfolding A_{-}def apply（rule closed＿UN）using 〈finite $\left.I\right\rangle\langle\bigwedge i . i \in I \Longrightarrow$ closed （ U i）$)$ by auto
have b ：bdd＿below A unfolding A_{-}def using 〈finite $\left.I\right\rangle$ by auto
have $\exists i \in I . T \in U i$ using $\langle\{u . . v\} \subseteq(\bigcup i \in I . U i)\rangle T$ by auto
then have $c: T \in A$ unfolding $A_{\text {＿def }}$ using T by（auto，fastforce）
have $\operatorname{Inf} A \geq z$
apply（rule cInf＿greatest，auto）using c unfolding A_{-}def by auto
moreover have Inf $A \leq z$
proof（rule ccontr）
assume $\neg(\operatorname{Inf} A \leq z)$
then obtain w where $w: w>z w<$ Inf A by（meson dense not＿le＿imp＿less）
have Inf $A \leq T$ using $a b c$ by（simp add：cInf＿lower）
then have $w \leq T$ using w by auto
then have $w \in\{u . . v\}$ using $w\langle z \in\{u . .<v\}\rangle T$ by auto
then obtain j where $j: j \in I w \in U j$ using $\langle\{u . . v\} \subseteq(\bigcup i \in I . U i)\rangle$ by fastforce
then have $w \in U j \cap\{z . . T\} U j \cap\{z<. . T\} \neq\{ \}$ using $j T w\langle w \leq T\rangle$ by auto
then have $w \in A$ unfolding A_{-}def using $\langle j \in I\rangle$ by auto
then have $\operatorname{Inf} A \leq w$ using $a b$ by（simp add：cInf＿lower）
then show False using w by auto
qed
ultimately have $\operatorname{Inf} A=z$ by simp
moreover have $\operatorname{Inf} A \in A$
apply（rule closed＿contains＿Inf）using $a b c$ by auto
ultimately have $z \in A$ by simp
then obtain i where $i: i \in I U i \cap\{z<. . T\} \neq\{ \} z \in U i$ unfolding $A_{-} d e f$ by auto
then obtain t where $t \in U i \cap\{z<. . T\}$ by blast
then have $\operatorname{dist}(f t)(f z) \leq M *(t-z)$
using lipschitz＿onD（1）［OF assms（1）［of i］，of $t z] i$ dist＿real＿def by auto
then show $\exists t \in\{z<. . Z\}$ ．dist $(f t)(f z) \leq M *(t-z)$ using $\langle T \leq Z\rangle\langle t \in U i$
$\cap\{z<. . T\}$ by auto
qed

6.47.2 Local Lipschitz continuity (uniform for a family of functions)

```
definition local_lipschitz::
    'a::metric_space set \(\Rightarrow{ }^{\prime} b::\) metric_space set \(\Rightarrow\left({ }^{\prime} a \Rightarrow{ }^{\prime} b \Rightarrow{ }^{\prime} c::\right.\) metric_space \() \Rightarrow\)
bool
    where
    local_lipschitz \(T X f \equiv \forall x \in X . \forall t \in T\).
        \(\exists u>0 . \exists L . \forall t \in\) cball \(t u \cap T . L\)-lipschitz_on (cball \(x u \cap X)(f t)\)
```

lemma local_lipschitzI:
assumes $\bigwedge t x . t \in T \Longrightarrow x \in X \Longrightarrow \exists u>0 . \exists L . \forall t \in$ cball $t u \cap T$.
L-lipschitz_on (cball $x u \cap X)(f t)$
shows local_lipschitz $T X f$
using assms
unfolding local_lipschitz_def
by auto
lemma local_lipschitzE:
assumes local_lipschitz: local_lipschitz $T X f$
assumes $t \in T x \in X$
obtains $u L$ where $u>0 \bigwedge s . s \in$ cball $t u \cap T \Longrightarrow L$-lipschitz_on (cball $x u$
$\cap X)(f s)$
using assms local_lipschitz_def
by metis
lemma local_lipschitz_continuous_on:
assumes local_lipschitz: local_lipschitz $T X f$
assumes $t \in T$
shows continuous_on $X(f t)$
unfolding continuous_on_def
proof safe
fix x assume $x \in X$
from local_lipschitzE[OF local_lipschitz $\langle t \in T\rangle\langle x \in X\rangle$ obtain $u L$
where $0<u$
and $L: \bigwedge s . s \in$ cball $t u \cap T \Longrightarrow L$-lipschitz_on $($ cball $x u \cap X)(f s)$
by metis
have $x \in$ ball $x u$ using $\langle 0<u\rangle$ by simp
from lipschitz_on_continuous_on [OF L]
have tendsto: $(f t \longrightarrow f t x)$ (at x within cball $x u \cap X)$
using $\langle 0<u\rangle\langle x \in X\rangle\langle t \in T\rangle$
by (auto simp: continuous_on_def)
moreover have \forall_{F} xa in at $x .(x a \in \operatorname{cball} x u \cap X)=(x a \in X)$
using eventually_at_ball[OF $\langle 0<u\rangle$, of x UNIV]
by eventually_elim auto
ultimately show $(f t \longrightarrow f t x)$ (at x within X)
by (rule Lim_transform_within_set)
qed
lemma

```
    local_lipschitz_compose1:
    assumes \(l l\) : local_lipschitz \((g ' T) X(\lambda t . f t)\)
    assumes \(g\) : continuous_on \(T g\)
    shows local_lipschitz \(T X(\lambda t . f(g t))\)
proof (rule local_lipschitzI)
    fix \(t x\)
    assume \(t \in T x \in X\)
    then have \(g t \in g^{\prime} T\) by simp
    from local_lipschitzE[OF assms(1) this \(\langle x \in X\rangle]\)
    obtain \(u L\) where \(0<u\) and \(l:(\bigwedge s . s \in \operatorname{cball}(g t) u \cap g ‘ T \Longrightarrow\) L-lipschitz_on
\((\) cball \(x u \cap X)(f s))\)
    by auto
    from \(g[\) unfolded continuous_on_eq_continuous_within, rule_format, \(O F\langle t \in T\rangle\),
        unfolded continuous_within_eps_delta, rule_format, OF \(\langle 0<u\rangle\) ]
    obtain \(d\) where \(d: d>0 \bigwedge x^{\prime} . x^{\prime} \in T \Longrightarrow \operatorname{dist} x^{\prime} t<d \Longrightarrow \operatorname{dist}\left(g x^{\prime}\right)(g t)<u\)
        by (auto)
    show \(\exists u>0 . \exists L . \forall t \in\) cball \(t u \cap T\). L-lipschitz_on \((\) cball \(x u \cap X)(f(g t))\)
    using \(d\langle 0<u\rangle\)
    by (fastforce intro: exI[where \(x=(\min d u) / 2] \operatorname{exI}[\) where \(x=L]\)
        intro!: less_imp_le[OF d(2)] lipschitz_on_subset[OF l] simp: dist_commute)
qed
context
    fixes \(T:: ' a::\) metric_space set and \(X f\)
    assumes local_lipschitz: local_lipschitz \(T X f\)
begin
lemma continuous_on_TimesI:
    assumes \(y: \Lambda x . x \in X \Longrightarrow\) continuous_on \(T(\lambda t . f t x)\)
    shows continuous_on \((T \times X)(\lambda(t, x)\). \(f t x)\)
    unfolding continuous_on_iff
proof (safe, simp)
    fix \(a b\) and \(e::\) real
    assume \(H: a \in T b \in X 0<e\)
    hence \(0<e / 2\) by simp
    from \(y\) [unfolded continuous_on_iff, \(O F\langle b \in X\rangle\), rule_format, \(O F\langle a \in T\rangle\langle 0<\)
e/2)]
    obtain \(d\) where \(d: d>0 \bigwedge t . t \in T \Longrightarrow\) dist \(t a<d \Longrightarrow \operatorname{dist}(f t b)(f a b)<\)
e/2
    by auto
    from \(\langle a: T\rangle\langle b \in X\rangle\)
    obtain \(u L\) where \(u: 0<u\)
        and \(L: \bigwedge t . t \in\) cball \(a u \cap T \Longrightarrow L\)-lipschitz_on (cball b \(u \cap X)(f t)\)
        by (erule local_lipschitzE[OF local_lipschitz])
    have \(a \in\) cball \(a u \cap T\) by (auto simp: \(\langle 0<u\rangle\langle a \in T\rangle\) less_imp_le)
    from lipschitz_on_nonneg[OF \(L\left[O F\left\langle a \in\right.\right.\) cball \(\left.\left._{\ldots} \cap \cap_{\_}\right\rangle\right]\)have \(0 \leq L\).
```

```
let ? \(d=\operatorname{Min}\{d, u,(e / 2 /(L+1))\}\)
show \(\exists d>0 . \forall x \in T . \forall y \in X\). dist \((x, y)(a, b)<d \longrightarrow \operatorname{dist}(f x y)(f a b)<e\)
proof (rule exI \([\) where \(x=\) ? \(d]\), safe)
    show \(0<\) ? d
        using \(\langle 0 \leq L\rangle\langle 0<u\rangle\langle 0<e\rangle\langle 0<d\rangle\)
        by (auto intro!: divide_pos_pos )
    fix \(x y\)
    assume \(x \in T y \in X\)
    assume dist_less: dist \((x, y)(a, b)<? d\)
    have dist \(y b \leq \operatorname{dist}(x, y)(a, b)\)
        using dist_snd_le[of \((x, y)(a, b)]\)
        by auto
    also
    note dist_less
    also
    \{
        note calculation
        also have ? \(d \leq u\) by \(\operatorname{simp}\)
        finally have dist \(y b<u\).
    \}
    have ? \(d \leq e / 2 /(L+1)\) by \(\operatorname{simp}\)
    also have \((L+1) * \ldots \leq e / 2\)
        using \(\langle 0<e\rangle\langle L \geq 0\rangle\)
    by (auto simp: field_split_simps)
    finally have le1: \((L+1) *\) dist \(y b<e / 2\) using \(\langle L \geq 0\rangle\) by simp
    have dist \(x a \leq \operatorname{dist}(x, y)(a, b)\)
        using dist_fst_le \([o f(x, y)(a, b)]\)
        by auto
    also note dist_less
    finally have dist \(x\) a ? d .
    also have ? \(d \leq d\) by \(\operatorname{simp}\)
    finally have dist \(x a<d\).
    note \(\langle\) dist \(x a<\) ? d \(\rangle\)
    also have ? \(d \leq u\) by \(\operatorname{simp}\)
    finally have dist \(x a<u\).
    then have \(x \in\) cball a \(u \cap T\)
        using \(\langle x \in T\rangle\)
    by (auto simp: dist_commute)
    have \(\operatorname{dist}(f x y)(f a b) \leq \operatorname{dist}(f x y)(f x b)+\operatorname{dist}(f x b)(f a b)\)
    by (rule dist_triangle)
    also have \((L+1)\)-lipschitz_on (cball b \(u \cap X)(f x)\)
    using \(L[O F\langle x \in\) cball a \(u \cap T\rangle]\)
    by (rule lipschitz_on_le) simp
    then have dist \((f x y)(f x b) \leq(L+1) *\) dist \(y b\)
    apply (rule lipschitz_onD)
    subgoal
        using \(\langle y \in X\rangle\langle\) dist \(y b<u\rangle\)
        by (simp add: dist_commute)
```

```
        subgoal
            using <0<u\rangle\langleb\inX\rangle
            by (simp add:)
        done
    also have (L+1) * dist yb\leqe / 2
        using le1<0 \leqL\rangle by simp
    also have dist (fxb) (fab)<e/2
        by (rule d; fact)
    also have e/2 +e / 2 =e by simp
    finally show dist (fxy) (f a b)<e by simp
    qed
qed
lemma local_lipschitz_compact_implies_lipschitz:
    assumes compact X compact T
    assumes cont: \x. x 位 continuous_on T (\lambdat.ft x)
    obtains L where }\wedget.t\inT\LongrightarrowL\mathrm{ -lipschitz_on X (ft)
proof -
    {
        assume *: \bigwedgen::nat. }\neg(\forallt\inT.n-lipschitz_on X (ft)
        {
            fix n::nat
            from *[of n] have \existsxyt.t\inT\wedgex\inX\wedge y\inX\wedge dist (fty) (ftx)>n
* dist y x
            by (force simp: lipschitz_on_def)
    } then obtain t and x y::nat }\mp@subsup{=>}{}{\prime}b\mathrm{ where xy: \n.x n }\inX\n.y n \in
        and t:\bigwedgen.t n \inT
        and d:\n. dist (f (t n) (y n)) (f(tn) (xn))>n*\operatorname{dist}(yn)(xn)
        by metis
    from xy assms obtain lx rx where lx}\{l:lx\inX strict_mono (rx :: nat => nat
(xor r x)\longrightarrowlx
        by (metis compact_def)
    with }xy\mathrm{ have }\n.(y\mathrm{ o rx) n }\inX=X\mathrm{ by auto
    with assms obtain ly ry where ly':ly \in X strict_mono (ry :: nat => nat) ((y
orx) ory)\longrightarrowly
        by (metis compact_def)
    with t have \n. ((t o rx) o ry) n \in T by simp
    with assms obtain lt rt where lt':lt \inT strict_mono (rt :: nat => nat) (((t
orx) ory) ort)\longrightarrowlt
            by (metis compact_def)
    from lx'ly'
    have lx:(x o (rx o ry ort)) \longrightarrowlx (is ? x \longrightarrow -)
        and ly:(yo (rx o ry ort))\longrightarrow \longrightarrowly (is ?y \longrightarrow )
        and lt:(to (rx o ry ort))\longrightarrowlt (is ?t \longrightarrow -)
        subgoal by (simp add: LIMSEQ_subseq_LIMSEQ o_assoc lt'(2))
        subgoal by (simp add: LIMSEQ_subseq_LIMSEQ ly'(3) o_assoc lt'(2))
        subgoal by (simp add: o_assoc lt'(3))
        done
    hence (\lambdan.dist (?y n) (?x n)) \longrightarrow dist ly lx
```

```
    by (metis tendsto_dist)
    moreover
    let ?S = (\lambda(t,x).ftx)'(T\timesX)
    have eventually ( }\lambdan::nat. n>0) sequentially
    by (metis eventually_at_top_dense)
    hence eventually (\lambdan. norm (dist (?y n) (?x n)) \leq norm (|diameter ?S | / n)
* 1) sequentially
    proof eventually_elim
        case (elim n)
        have 0<rx (ry (rt n)) using <0<n>
            by (metis dual_order.strict_trans1 lt'(2) lx'(2) ly'(2) seq_suble)
    have compact: compact ?S
            by (auto intro!: compact_continuous_image continuous_on_subset[OF contin-
uous_on_TimesI]
            compact_Times \compact X> <compact T\rangle cont)
            have norm (dist (?y n) (?x n)) = dist (?y n) (?x n) by simp
            also
            from this elim d[of rx (ry (rt n))]
            have .. < dist (f (?t n) (?y n)) (f (?t n) (?x n)) / rx (ry (rt (n)))
            using lx'(2) ly'(2) lt'(2)<0<rx >
            by (auto simp add: field_split_simps strict_mono_def)
                            also have ... \leq diameter ?S / n
                    proof (rule frac_le)
            show diameter ?S }\geq
                using compact compact_imp_bounded diameter_ge_0 by blast
            show dist (f (?t n) (?y n)) (f (?t n) (?x n)) \leq diameter ((\lambda(t,x).ft x)'
(T\timesX))
            by (metis (no_types) compact compact_imp_bounded diameter_bounded_bound
image_eqI mem_Sigma_iff o_apply split_conv t xy(1) xy(2))
            show real n \leq real (rx (ry (rt n)))
            by (meson le_trans lt'(2) lx'(2) ly'(2) of_nat_mono strict_mono_imp_increasing)
            qed (use \n>0\rangle in auto)
            also have ... \leqabs (diameter ?S) / n
            by (auto intro!: divide_right_mono)
            finally show ?case by simp
    qed
    with _ have (\lambdan.dist (?y n) (?x n)) \longrightarrow0
            by (rule tendsto_0_le)
            (metis tendsto_divide_0[OF tendsto_const] filterlim_at_top_imp_at_infinity
                filterlim_real_sequentially)
    ultimately have lx = ly
            using LIMSEQ_unique by fastforce
    with assms lx' have lx\inX by auto
    from }\langlelt\inT\rangle\mathrm{ this obtain }uL\mathrm{ where }L:u>0\wedget.t\in\mathrm{ cball lt }u\capT
L-lipschitz_on (cball lx u\capX)(ft)
            by (erule local_lipschitzE[OF local_lipschitz])
    hence L \geq 0 by (force intro!: lipschitz_on_nonneg <lt \inT>)
    from L lt ly lx <lx = ly`
```

```
    have
        eventually ( }\lambdan\mathrm{ . ?t }n\in\mathrm{ ball lt u) sequentially
        eventually ( }\lambdan\mathrm{ . ?y }n\in\mathrm{ ball lx u) sequentially
        eventually ( }\lambdan\mathrm{ . ?x n < ball lx u) sequentially
        by (auto simp: dist_commute Lim)
    moreover have eventually ( }\lambdan.n>L) sequentiall
        by (metis filterlim_at_top_dense filterlim_real_sequentially)
    ultimately
    have eventually (}\mp@subsup{\lambda}{_}{}.\mathrm{ False) sequentially
    proof eventually_elim
        case (elim n)
        hence dist (f(?t n)(?y n)) (f(?t n)(?x n))\leqL*\operatorname{dist (?y n)(?x n)}
        using assms xy t
        unfolding dist_norm[symmetric]
        by (intro lipschitz_onD[OF L(2)]) (auto)
    also have ... \leqn* dist (?y n) (?x n)
        using elim by (intro mult_right_mono) auto
    also have ... \leqrx (ry (rt n))*\operatorname{dist (?y n) (?x n)}
        by (intro mult_right_mono[OF _ zero_le_dist])
            (meson lt'(2) lx'(2) ly'(2) of_nat_le_iff order_trans seq_suble)
        also have ... < dist (f (?t n) (?y n)) (f (?t n) (?x n))
        by (auto intro!: d)
        finally show ?case by simp
    qed
    hence False
        by simp
    } then obtain L where \t.t\inT\LongrightarrowL-lipschitz_on X (ft)
    by metis
    thus ?thesis ..
qed
lemma local_lipschitz_subset:
    assumes S\subseteqTY\subseteqX
    shows local_lipschitz S Yf
proof (rule local_lipschitzI)
    fix tx assume t\inSx\inY
    then have t\inTx\inX using assms by auto
    from local_lipschitzE[OF local_lipschitz,OF this]
    obtain uL where }u:0<u\mathrm{ and L: \s.s cball tuคT>L-lipschitz_on
(cball x u\capX)(fs)
    by blast
    show \existsu>0.\existsL.\forallt\incball t u\capS.L-lipschitz_on(cball xu\capY)(ft)
        using assms
    by (auto intro: exI[where }x=u]\operatorname{exI}[\mathrm{ where }x=L
        intro!: u lipschitz_on_subset[OF _ Int_mono[OF order_refl <Y\subseteqX\]] L)
qed
end
```

lemma local_lipschitz_minus:
fixes $f::$ 'a::metric_space \Rightarrow ' $b::$ metric_space $\Rightarrow^{\prime} c::$ real_normed_vector
shows local_lipschitz $T X(\lambda t x .-f t x)=$ local_lipschitz $T X f$
by (auto simp: local_lipschitz_def lipschitz_on_minus)
lemma local_lipschitz_PairI:
assumes f : local_lipschitz $A B(\lambda a b . f a b)$
assumes g : local_lipschitz $A B(\lambda a b . g a b)$
shows local_lipschitz $A B(\lambda a b .(f a b, g a b))$
proof (rule local_lipschitzI)
fix $t x$ assume $t \in A x \in B$
from local_lipschitzE[OF f this] local_lipschitzE[OF g this]
obtain $u L v M$ where $0<u(\bigwedge s . s \in$ cball $t u \cap A \Longrightarrow L$-lipschitz_on (cball $x u \cap B)(f s))$
$0<v(\bigwedge s . s \in$ cball $t v \cap A \Longrightarrow M$-lipschitz_on $($ cball $x v \cap B)(g s))$
by metis
then show $\exists u>0 . \exists L . \forall t \in$ cball $t u \cap A . L$-lipschitz_on $(c b a l l x u \cap B)(\lambda b .(f$ $t b, g t b)$)
by (intro exI [where $x=\min u v]$)
(force intro: lipschitz_on_subset intro!: lipschitz_on_Pair)
qed
lemma local_lipschitz_constI: local_lipschitz $S T(\lambda t x . f t)$
by (auto simp: intro!: local_lipschitzI lipschitz_on_constant intro: exI [where $x=1]$)
lemma (in bounded_linear) local_lipschitzI:
shows local_lipschitz A B ($\lambda_{\text {_. }} f$)
proof (rule local_lipschitzI, goal_cases)
case ($1 t x$)
from lipschitz_bound $E[$ of (cball $x 1 \cap B$)] obtain C where C-lipschitz_on (cball $x 1 \cap B) f$ by auto
then show? case
by (auto intro: exI [where $x=1]$)
qed
proposition c1_implies_local_lipschitz:
fixes $T::$ real set and $X::{ }^{\prime} a::\left\{b a n a c h, h e i n e _b o r e l\right\}$ set
and $f::$ real $\Rightarrow ' a \Rightarrow{ }^{\prime} a$
assumes $f^{\prime}: \Lambda t x . t \in T \Longrightarrow x \in X \Longrightarrow\left(f t\right.$ has_derivative blinfun_apply $\left(f^{\prime}(t\right.$, x))) (at x)
assumes cont_f f^{\prime} : continuous_on $(T \times X) f^{\prime}$
assumes open T
assumes open X
shows local_lipschitz $T X f$
proof (rule local_lipschitzI)
fix $t x$
assume $t \in T x \in X$
from open_contains_cball[THEN iffD1, OF sopen X〉, rule_format, OF $\langle x \in X\rangle]$
obtain u where $u: u>0$ cball $x u \subseteq X$ by auto

```
moreover
    from open_contains_cball[THEN iffD1, OF sopen T\rangle, rule_format,OF <t \in T\rangle]
    obtain v where v:v>0 cball tv\subseteqT by auto
    ultimately
    have compact (cball t v }\times\mathrm{ cball x u) cball t v }\times\mathrm{ cball }xu\subseteqT\times
    by (auto intro!: compact_Times)
    then have compact (f'`(cball tv }\times\mathrm{ cball x u))
    by (auto intro!: compact_continuous_image continuous_on_subset[OF cont_f '])
    then obtain B where B:B>0 \sy.s\incball tv\Longrightarrowy\incball x }u\Longrightarrow\mathrm{ norm
(f'(s,y)) \leqB
    by (auto dest!: compact_imp_bounded simp: bounded_pos)
    have lipschitz: B-lipschitz_on (cball x (min u v) \capX) (fs) if s:s\incball t v
for }
    proof -
        note s
    also note <cball tv\subseteqT>
    finally
    have deriv: \y. y cball x u \Longrightarrow(fs has_derivative blinfun_apply (f'}(s,y))
(at y within cball x u)
        using <- \subseteq X >
        by (auto intro!: has_derivative_at_withinI[OF f ])
    have norm (fsy-fsz)\leqB*\operatorname{norm}(y-z)
        if y\incball xuz\in cball xu
        for }y
        using s that
        by (intro differentiable_bound[OF convex_cball deriv])
            (auto intro!: B simp: norm_blinfun.rep_eq[symmetric])
    then show ?thesis
        using <0<B>
        by (auto intro!: lipschitz_onI simp: dist_norm)
    qed
    show \existsu>0.\existsL.\forallt\incball tu\capT.L-lipschitz_on (cball xu\capX)(ft)
    by (force intro: exI[where x=min u v] exI[where x=B] intro!: lipschitz simp:
uv)
qed
end
theory
    Multivariate_Analysis
imports
    Ordered_Euclidean_Space
    Determinants
    Cross3
    Lipschitz
    Starlike
begin
```

Entry point excluding integration and complex analysis.
end

6.48 Volume of a Simplex

```
theory Simplex_Content
imports Change_Of_Vars
begin
lemma fact_neq_top_ennreal [simp]: fact n = (top :: ennreal)
```

 by (induction \(n\)) (auto simp: ennreal_mult_eq_top_iff)
 lemma ennreal_fact: ennreal $($ fact $n)=$ fact n
by (induction n) (auto simp: ennreal_mult algebra_simps ennreal_of_nat_eq_real_of_nat)
context
fixes $S::$ 'a set \Rightarrow real $\Rightarrow\left({ }^{\prime} a \Rightarrow\right.$ real $)$ set
defines $S \equiv(\lambda A t .\{x .(\forall i \in A .0 \leq x i) \wedge \operatorname{sum} x A \leq t\})$
begin
lemma emeasure_std_simplex_aux_step:
assumes $b \notin A$ finite A
shows $x(b:=y) \in S($ insert $b A) t \longleftrightarrow y \in\{0 . . t\} \wedge x \in S A(t-y)$
using assms sum_nonneg[of $A x$] unfolding $S_{\text {_def }}$
by (force simp: sum_delta_notmem algebra_simps)
lemma emeasure_std_simplex_aux:
fixes t :: real
assumes finite ($A::$ 'a set) $t \geq 0$
shows emeasure ($P i_{M} A\left(\lambda_{-}\right.$. lborel) $)$
$\left(S A t \cap \operatorname{space}\left(P i_{M} A\left(\lambda_{-} . l b o r e l\right)\right)\right)=t^{\wedge} \operatorname{card} A / \operatorname{fact}(\operatorname{card} A)$
using $\operatorname{assms}(1,2)$
proof (induction arbitrary: t rule: finite_induct)
case (empty t)
thus ?case by (simp add: PiM_empty S_def)
next
case (insert b At)
define n where $n=\operatorname{Suc}(\operatorname{card} A)$
have $n_{-} p o s: n>0$ by (simp add: n_def)
let $? M=\lambda A .\left(P i_{M} A\left(\lambda_{-}\right.\right.$. lborel $\left.)\right)$
\{
fix A :: ' a set and $t::$ real assume finite A
have $S A t \cap$ space $\left(P i_{M} A\left(\lambda_{-}\right.\right.$l lborel $\left.)\right)=$
$P i_{E} A\left(\lambda_{-}\{0 .\}.\right) \cap(\lambda x . \operatorname{sum} x A)-‘\{. . t\} \cap \operatorname{space}\left(P i_{M} A\left(\lambda_{-}\right.\right.$lborel $\left.)\right)$
by (auto simp: S_def space_PiM)
also have $\ldots \in \operatorname{sets}\left(P i_{M} A\left(\lambda_{-}\right.\right.$. lborel $\left.)\right)$
using 〈finite A 〉 by measurable
finally have $S A t \cap \operatorname{space}\left(P i_{M} A\left(\lambda_{-}\right.\right.$l lborel $\left.)\right) \in \operatorname{sets}\left(P i_{M} A\left(\lambda_{-}\right.\right.$lborel $\left.)\right)$.
$\}$ note meas $[$ measurable $]=$ this
interpret product_sigma_finite λ_{-}. lborel
by standard
have emeasure $(? M($ insert $b A))(S($ insert $b A) t \cap$ space $(? M($ insert $b A)))$ $=$
nn_integral (?M (insert b A))
$(\lambda x$. indicator $(S($ insert $b A) t \cap$ space $(? M($ insert $b A))) x)$
using insert.hyps by (subst nn_integral_indicator) auto
also have $\ldots=\left(\int^{+} y \cdot \int^{+} x\right.$. indicator $(S$ (insert b $A) t \cap$ space $(? M$ (insert b A)))

$$
(x(b:=y)) \partial ? M \text { A } \partial l b o r e l)
$$

using insert.prems insert.hyps by (intro product_nn_integral_insert_rev) auto also have $\ldots=\left(\int^{+} y . \int^{+} x\right.$. indicator $\{0 . . t\} y *$ indicator $(S A(t-y) \cap$ space $(? M A)) x$

ว?M A dlborel)

using insert.hyps insert.prems emeasure_std_simplex_aux_step[of b A]
by (intro nn_integral_cong)
(auto simp: fun_eq_iff indicator_def space_PiM PiE_def extensional_def)
also have $\ldots=\left(\int^{+} y\right.$. indicator $\{0 . . t\} y *\left(\int^{+} x\right.$. indicator $(S A(t-y) \cap$ space (?M A)) x
$\partial ? M$ A) $\partial l b o r e l)$ using \langle finite $A\rangle$
by (subst nn_integral_cmult) auto
also have $\ldots=\left(\int^{+} y\right.$. indicator $\{0 . . t\} y *$ emeasure (?M A) $(S A(t-y) \cap$ space (?M A)) Dlborel)
using 〈finite A by (subst nn_integral_indicator) auto
also have $\ldots=\left(\int^{+} y\right.$. indicator $\{0 . . t\} y *(t-y){ }^{\wedge}$ card A / ennreal (fact ($\operatorname{card} A)$) Dlborel)
using insert.IH by (intro nn_integral_cong) (auto simp: indicator_def divide_ennreal)
also have $\ldots=\left(\int^{+} y\right.$. indicator $\{0 . . t\} y *(t-y)^{\wedge}$ card A dlborel $) /$ ennreal $($ fact $(\operatorname{card} A))$
using \langle finite $A\rangle$ by (subst nn_integral_divide) auto
also have $\left(\int^{+} y\right.$. indicator $\{0 . . t\} y *(t-y) \wedge$ card A dlborel $)=$ $\left(\int^{+} y \in\{0 . . t\}\right.$. ennreal $\left((t-y)^{\wedge}(n-1)\right)$ dlborel $)$
by (intro nn_integral_cong) (auto simp: indicator_def n_def)
also have $\left(\left(\lambda x .-\left((t-x)^{\wedge} n / n\right)\right)\right.$ has_real_derivative $\left.(t-x)^{\wedge}(n-1)\right)($ at x)
if $x \in\{0 . . t\}$ for x by (rule derivative_eq_intros refl | simp add: n_pos)+
hence $\left(\int^{+} y \in\{0 . . t\}\right.$. ennreal $\left((t-y)^{\wedge}(n-1)\right)$ dlborel $)=$
ennreal $\left(-\left((t-t)^{\wedge} n / n\right)-(-((t-0) \wedge n / n))\right)$
using insert.prems insert.hyps by (intro nn_integral_FTC_Icc) auto
also have $\ldots=$ ennreal $\left(t^{\wedge} n / n\right)$ using n_pos by (simp add: zero_power)
also have \ldots / ennreal $($ fact $(\operatorname{card} A))=\operatorname{ennreal}\left(t^{\wedge} n / n / \operatorname{fact}(\operatorname{card} A)\right)$
using n _pos $\langle t \geq 0\rangle$ by (subst divide_ennreal) auto
also have $t^{\wedge} n / n /$ fact $($ card $A)=t^{\wedge} n /$ fact n
by (simp add: n_def)
also have $n=\operatorname{card}$ (insert b A)
using insert.hyps by (subst card.insert_remove) (auto simp: n_def)
finally show ?case.
qed
end
lemma emeasure_std_simplex:
emeasure lborel (convex hull (insert 0 Basis :: 'a :: euclidean_space set)) = ennreal (1 / fact DIM ('a))
proof -
have emeasure lborel $\left\{x::^{\prime} a .(\forall i \in\right.$ Basis. $0 \leq x \cdot i) \wedge \operatorname{sum}((\cdot) x)$ Basis $\left.\leq 1\right\}=$ emeasure (distr ($P i_{M}$ Basis (λ b. lborel)) borel $\left(\lambda f . \sum b \in\right.$ Basis. $f b *_{R}$
b))

$$
\left\{x::^{\prime} a .(\forall i \in \text { Basis. } 0 \leq x \cdot i) \wedge \operatorname{sum}((\cdot) x) \text { Basis } \leq 1\right\}
$$

by (subst lborel_eq) simp
also have $\ldots=$ emeasure $\left(P i_{M}\right.$ Basis (λ b. lborel $)$)

$$
\begin{aligned}
& \left(\left\{y::^{\prime} a \Rightarrow \text { real. }(\forall i \in \text { Basis. } 0 \leq y i) \wedge \text { sum } y \text { Basis } \leq 1\right\} \cap\right. \\
& \text { space } \left.\left(P i_{M} \text { Basis }(\lambda b . \text { lborel })\right)\right)
\end{aligned}
$$

by (subst emeasure_distr) auto
also have $\ldots=\operatorname{ennreal}\left(1 /\right.$ fact $\left.\operatorname{DIM}\left({ }^{\prime} a\right)\right)$
by (subst emeasure_std_simplex_aux) auto
finally show ?thesis by (simp only: std_simplex)
qed
theorem content_std_simplex:
measure lborel (convex hull (insert 0 Basis :: 'a :: euclidean_space set)) = 1 / fact DIM ('a)
by (simp add: measure_def emeasure_std_simplex)
proposition measure_lebesgue_linear_transformation:
fixes $A::\left(\right.$ real ${ }^{\wedge} ' n::\{$ finite, wellorder $\left.\}\right)$ set
fixes $f::{ }_{-} \Rightarrow$ real ${ }^{\wedge} ' n::\{$ finite, wellorder $\}$
assumes bounded $A A \in$ sets lebesgue linear f
shows measure lebesgue $(f$ ' $A)=|\operatorname{det}(\operatorname{matrix} f)| *$ measure lebesgue A
proof -
from assms have [intro]: $A \in$ lmeasurable
by (intro bounded_set_imp_lmeasurable) auto
hence [intro]: f ' $A \in$ lmeasurable
by (intro lmeasure_integral measurable_linear_image assms)
have measure lebesgue $\left(f^{\prime} A\right)=\operatorname{integral}\left(f^{\prime} A\right)\left(\lambda_{-} .1\right)$
by (intro lmeasure_integral measurable_linear_image assms) auto
also have $\ldots=\operatorname{integral}\left(f^{\wedge} A\right)\left(\lambda_{-} 1::\right.$ real $\left.{ }^{\wedge} 1\right) \$ 0$
by (subst integral_component_eq_cart [symmetric]) (auto intro: integrable_on_const)
also have $\ldots=|\operatorname{det}(\operatorname{matrix} f)| * \operatorname{integral} A\left(\lambda x .1::\right.$ real $\left.{ }^{\wedge} 1\right) \$ 0$

using assms

by (subst integral_change_of_variables_linear)
(auto simp: o_def absolutely_integrable_on_def intro: integrable_on_const)
also have integral $A(\lambda x .1::$ real $\wedge 1) \$ 0=$ integral $A(\lambda x .1)$
by (subst integral_component_eq_cart [symmetric]) (auto intro: integrable_on_const)
also have $\ldots=$ measure lebesgue A
by (intro lmeasure_integral [symmetric]) auto
finally show ?thesis .
qed
theorem content_simplex:

assumes finite X card $X=\operatorname{Suc} C A R D(' n)$ and $x 0: x 0 \in X$ and bij: bij_betw f
UNIV ($X-\{x 0\}$)
defines $M \equiv(\chi i . \chi j . f j \$ i-x 0 \$ i)$
shows content (convex hull X) $=|\operatorname{det} M| / \operatorname{fact}\left(\operatorname{CARD}\left({ }^{\prime} n\right)\right)$
proof -
define g where $g=(\lambda x . M * v x)$
have $[$ simp $]: M * v$ axis $i 1=f i-x 0$ for $i::$ ' n
by (simp add: M_def matrix_vector_mult_basis column_def vec_eq_iff)
define std where std $=($ convex hull insert 0 Basis :: (real ^ ' $n::$ _) set)
have compact: compact std unfolding std_def
by (intro finite_imp_compact_convex_hull) auto
have measure lebesgue (convex hull $X)=$ measure lebesgue $(((+)(-x 0))$ ' (convex hull X))
by (rule measure_translation [symmetric])
also have $((+)(-x 0))$ ' (convex hull $X)=$ convex hull $(((+)(-x 0))$ ' $X)$
by (rule convex_hull_translation [symmetric])
also have $((+)(-x 0))^{\prime} X=\operatorname{insert} 0((\lambda x . x-x 0)$ ' $(X-\{x 0\}))$
using $x 0$ by (auto simp: image_iff)
finally have eq: measure lebesgue (convex hull X) $=$ measure lebesgue (convex hull ...) .
from compact have measure lebesgue $(g ' s t d)=|\operatorname{det} M| *$ measure lebesgue std
by (subst measure_lebesgue_linear_transformation)
(auto intro: finite_imp_bounded_convex_hull dest: compact_imp_closed simp:
g_def std_def)
also have measure lebesgue std $=$ content std using compact
by (intro measure_completion) (auto dest: compact_imp_closed)
also have content std $=1 /$ fact $C A R D(' n)$ unfolding std_def
by (simp add: content_std_simplex)
also have g 'std $=$ convex hull (g 'insert 0 Basis) unfolding std_def
by (rule convex_hull_linear_image) (auto simp: g_def)
also have g^{\prime} insert 0 Basis $=$ insert $0\left(g^{\prime}\right.$ Basis $)$
by (auto simp: $g_{-} d e f$)
also have g 'Basis $=(\lambda x . x-x 0)$ ' range f
by (auto simp: g_def Basis_vec_def image_iff)
also have range $f=X-\{x 0\}$ using bij
using bij_betw_imp_surj_on by blast
also note eq [symmetric]
finally show ?thesis
using finite_imp_compact_convex_hull $[$ OF 〈finite $X\rangle]$ by (auto dest: compact_imp_closed)
qed
theorem content_triangle:
fixes $A B C$:: real ^ 2
shows content (convex hull $\{A, B, C\})=$

$$
\mid(C \$ 1-A \$ 1) *(B \$ 2-A \$ 2)-(B \$ 1-A \$ 1) *(C \$ 2-A
$$

\$ 2)| / 2
proof -
define M :: real ^2 ^2 where $M \equiv(\chi i . \chi j$. (if $j=1$ then B else $C) \$ i-$ A \$ i)
define g where $g=(\lambda x . M * v x)$
define std where std $=$ (convex hull insert 0 Basis :: (real ^ 2) set)
have [simp]: $M * v$ axis i $1=($ if $i=1$ then $B-A$ else $C-A)$ for i by (auto simp: M_def matrix_vector_mult_basis column_def vec_eq_iff)
have compact: compact std unfolding std_def
by (intro finite_imp_compact_convex_hull) auto
have measure lebesgue (convex hull $\{A, B, C\}$) $=$ measure lebesgue $(((+)(-A))$ ' (convex hull $\{A, B, C\}))$ by (rule measure_translation [symmetric])
also have $((+)(-A))$ ' (convex hull $\{A, B, C\})=$ convex hull $(((+)(-A))$ '
$\{A, B, C\})$
by (rule convex_hull_translation [symmetric])
also have $((+)(-A)) \cdot\{A, B, C\}=\{0, B-A, C-A\}$ by (auto simp: image_iff)
finally have eq: measure lebesgue (convex hull $\{A, B, C\})=$ measure lebesgue (convex hull $\{0, B-A, C-A\})$.
from compact have measure lebesgue (g 'std) $=\mid$ det $M \mid *$ measure lebesgue std by (subst measure_lebesgue_linear_transformation)
(auto intro: finite_imp_bounded_convex_hull dest: compact_imp_closed simp:
g_def std_def)
also have measure lebesgue std $=$ content std using compact by (intro measure_completion) (auto dest: compact_imp_closed)
also have content std = 1/2 unfolding std_def by (simp add: content_std_simplex)
also have g 'std $=$ convex hull (g 'insert 0 Basis) unfolding std_def by (rule convex_hull_linear_image) (auto simp: g_def)
also have g 'insert 0 Basis $=$ insert $0(g$ 'Basis) by (auto simp: g_{-}def)
also have (2 :: 2) $\neq 1$ by auto
hence $\neg(\forall y:: 2 . y=1)$ by blast
hence g 'Basis $=\{B-A, C-A\}$
by (auto simp: g_def Basis_vec_def image_iff)
also note eq [symmetric]
finally show ?thesis
using finite_imp_compact_convex_hull[of $\{A, B, C\}]$
by (auto dest!: compact_imp_closed simp: det_2 M_def)
qed
theorem heron:
fixes $A B C$:: real ^ ${ }^{2}$
defines $a \equiv \operatorname{dist} B C$ and $b \equiv \operatorname{dist} A C$ and $c \equiv \operatorname{dist} A B$

```
    defines \(s \equiv(a+b+c) / 2\)
    shows content (convex hull \(\{A, B, C\})=\operatorname{sqrt}(s *(s-a) *(s-b) *(s-\)
c))
proof -
    have \([\) simp \(]:(\) UNIV :: 2 set \()=\{1,2\}\)
        using exhaust_2 by auto
    have dist_eq: \(\operatorname{dist}\left(A:\right.\) real \(\left.^{\wedge} 2\right) B^{\wedge} \mathcal{2}=(A \$ 1-B \$ 1)^{\wedge} \mathcal{2}+(A \$ 2-B\)
\$ 2) ^2
    for \(A B\) by (simp add: dist_vec_def dist_real_def)
    have nonneg: \(s *(s-a) *(s-b) *(s-c) \geq 0\)
    using dist_triangle \([\) of \(A B C]\) dist_triangle \([\) of \(A C B]\) dist_triangle \([o f ~ B C A]\)
    by (intro mult_nonneg_nonneg) (auto simp: s_def a_def b_def c_def dist_commute)
    have 16 * content (convex hull \(\{A, B, C\})^{\wedge} \mathcal{2}=\)
        \(4 *((C \$ 1-A \$ 1) *(B \$ 2-A \$ 2)-(B \$ 1-A \$ 1) *(C \$ 2\)
- A\$ 2)) ^2
    by (subst content_triangle) (simp add: power_divide)
    also have \(\ldots=\left(2 *\left(\right.\right.\) dist \(A B{ }^{\wedge} 2 * \operatorname{dist} A C{ }^{\wedge} 2+\operatorname{dist} A B^{\wedge} 2 *\) dist \(B C^{\wedge}\)
\(2+\)
    dist \(A C^{\wedge}\) 2 * dist \(B C\) ^2) - (dist \(A B\) ^2) ^2 - (dist \(\left.A C \wedge 2\right) \wedge 2-\)
(dist BC^2) ^ 2)
    unfolding dist_eq unfolding power2_eq_square by algebra
    also have \(\ldots=(a+b+c) *((a+b+c)-2 * a) *((a+b+c)-2 * b)\)
*
                    \(((a+b+c)-2 * c)\)
    unfolding power2_eq_square by (simp add: s_def a_def b_def c_def algebra_simps)
    also have \(\ldots=16 * s *(s-a) *(s-b) *(s-c)\)
    by (simp add: s_def field_split_simps)
    finally have content (convex hull \(\{A, B, C\})^{\wedge} \mathcal{Z}=s *(s-a) *(s-b) *(s\)
\(-c\) )
    by \(\operatorname{simp}\)
    also have \(\ldots=\operatorname{sqrt}(s *(s-a) *(s-b) *(s-c)){ }^{\wedge} 2\)
    by (intro real_sqrt_pow2 [symmetric] nonneg)
    finally show ?thesis using nonneg
    by (subst (asm) power2_eq_iff_nonneg) auto
qed
end
```


6.49 Convergence of Formal Power Series

```
theory FPS_Convergence
imports
    Generalised_Binomial_Theorem
    HOL-Computational_Algebra.Formal_Power_Series
begin
```

In this theory, we will connect formal power series (which are algebraic objects) with analytic functions. This will become more important in complex
analysis, and indeed some of the less trivial results will only be proven there.

6.49.1 Balls with extended real radius

The following is a variant of ball that also allows an infinite radius.

```
definition eball \(::\) ' \(a\) :: metric_space \(\Rightarrow\) ereal \(\Rightarrow\) ' \(a\) set where
    eball \(z r=\left\{z^{\prime}\right.\). ereal \(\left(\right.\) dist \(\left.\left.z z^{\prime}\right)<r\right\}\)
lemma in_eball_iff [simp]: \(z \in\) eball z0 \(r \longleftrightarrow\) ereal (dist z0 \(z\) ) \(<r\)
    by (simp add: eball_def)
lemma eball_ereal [simp]: eball \(z(\) ereal \(r)=b a l l ~ z r\)
    by auto
lemma eball_inf [simp]: eball \(z \infty=\) UNIV
    by auto
lemma eball_empty \([\) simp \(]: r \leq 0 \Longrightarrow\) eball \(z r=\{ \}\)
proof safe
    fix \(x\) assume \(r \leq 0 x \in\) eball \(z r\)
    hence dist \(z x<r\) by simp
    also have \(\ldots \leq\) ereal 0 using \(\langle r \leq 0\rangle\) by (simp add: zero_ereal_def)
    finally show \(x \in\}\) by simp
qed
lemma eball_conv_UNION_balls:
    eball \(z r=\left(\bigcup r^{\prime} \in\left\{r^{\prime}\right.\right.\). ereal \(\left.r^{\prime}<r\right\}\). ball \(\left.z r^{\prime}\right)\)
    by (cases \(r\) ) (use dense gt_ex in force) +
lemma eball_mono: \(r \leq r^{\prime} \Longrightarrow\) eball \(z r \leq\) eball \(z r^{\prime}\)
    by auto
lemma ball_eball_mono: ereal \(r \leq r^{\prime} \Longrightarrow\) ball \(z r \leq e b a l l ~ z r^{\prime}\)
    using eball_mono[of ereal r r \(]\) by simp
lemma open_eball [simp, intro]: open (eball zr)
    by (cases \(r\) ) auto
```


6.49.2 Basic properties of convergent power series

definition fps_conv_radius :: 'a :: \{banach, real_normed_div_algebra\} fps \Rightarrow ereal where
fps_conv_radius $f=$ conv_radius $($ fps_nth $f)$
definition eval_fps :: ' a :: \{banach, real_normed_div_algebra\} fps $\Rightarrow^{\prime} a \Rightarrow^{\prime} a$ where eval_fps $f z=\left(\sum n\right.$. fps_nth $\left.f n * z^{\wedge} n\right)$
lemma norm_summable_fps:
fixes $f::$ ' a :: \{banach, real_normed_div_algebra\} fps
shows norm $z<$ fps_conv_radius $f \Longrightarrow$ summable (λ n. norm (fps_nth $f n * z^{\wedge}$ n))
by (rule abs_summable_in_conv_radius) (simp_all add: fps_conv_radius_def)

lemma summable_fps:

fixes $f::$ ' a :: \{banach, real_normed_div_algebra $\}$ fps
shows norm $z<$ fps_conv_radius $f \Longrightarrow$ summable (λ n. fps_nth $f n * z^{\wedge} n$)
by (rule summable_in_conv_radius) (simp_all add: fps_conv_radius_def)

theorem sums_eval_fps:

fixes $f::$ ' a :: \{banach, real_normed_div_algebra\} fps
assumes norm $z<f$ fs_conv_radius f
shows (λn. fps_nth $f n * z^{\wedge} n$) sums eval_fps $f z$
using assms unfolding eval_fps_def fps_conv_radius_def
by (intro summable_sums summable_in_conv_radius) simp_all
lemma continuous_on_eval_fps:
fixes $f::$ ' a :: \{banach, real_normed_div_algebra $\}$ fps
shows continuous_on (eball 0 (fps_conv_radius f)) (eval_fps f)
proof (subst continuous_on_eq_continuous_at [OF open_eball], safe)
fix $x::{ }^{\prime} a$ assume $x: x \in$ eball 0 (fps_conv_radius f)
define r where $r=$ (iffps_conv_radius $f=\infty$ then norm $x+1$ else
(norm $x+$ real_of_ereal (fps_conv_radius f)) / 2)
have r : norm $x<r \wedge$ ereal $r<f$ fs_conv_radius f using x by (cases fps_conv_radius f)
(auto simp: r_def eball_def split: if_splits)
have continuous_on (cball $0 r)\left(\lambda x . \sum i . f p s _n t h f i *(x-0){ }^{\wedge} i\right)$
by (rule powser_continuous_suminf) (insert r, auto simp: fps_conv_radius_def)
hence continuous_on (cball 0 r) (eval_fps f)
by (simp add: eval_fps_def)
thus isCont (eval_fps f) x
by (rule continuous_on_interior) (use r in auto)
qed
lemma continuous_on_eval_fps ${ }^{\prime}$ [continuous_intros]:
assumes continuous_on $A g$
assumes g ' $A \subseteq$ eball 0 (fps_conv_radius f)
shows continuous_on $A(\lambda x$. eval_fps $f(g x))$
using continuous_on_compose2[OF continuous_on_eval_fps assms].
lemma has_field_derivative_powser:
fixes $z::$ ' $a::\{$ banach, real_normed_field $\}$
assumes ereal (norm z) <conv_radius f
shows $\left(\left(\lambda z . \sum n . f n * z^{\wedge} n\right)\right.$ has_field_derivative $\left(\sum n\right.$. diffs $\left.\left.f n * z^{\wedge} n\right)\right)($ at z within A)
proof -
define K where $K=$ (if conv_radius $f=\infty$ then norm $z+1$

```
                    else (norm z + real_of_ereal (conv_radius f)) / 2)
    have K: norm z<K^ ereal K<conv_radius f
    using assms by (cases conv_radius f) (auto simp: K_def)
    have 0\leq norm z by simp
    also from K have .. < < by simp
    finally have K_pos: K>0 by simp
    have summable ( }\lambdan.fn* of_real K ^ n
        using K and K_pos by (intro summable_in_conv_radius) auto
    moreover from K and K_pos have norm z< norm (of_real K :: 'a) by auto
    ultimately show ?thesis
        by (rule has_field_derivative_at_within [OF termdiffs_strong])
qed
lemma has_field_derivative_eval_fps:
    fixes z :: 'a :: {banach,real_normed_field}
    assumes norm z< fps_conv_radius f
    shows (eval_fps f has_field_derivative eval_fps (fps_deriv f) z) (at z within A)
proof -
    have (eval_fps f has_field_derivative eval_fps (Abs_fps (diffs (fps_nth f))) z) (at z
within A)
        using assms unfolding eval_fps_def fps_nth_Abs_fps fps_conv_radius_def
        by (intro has_field_derivative_powser) auto
    also have Abs_fps (diffs (fps_nth f)) = fps_deriv f
        by (simp add: fps_eq_iff diffs_def)
    finally show ?thesis.
qed
lemma holomorphic_on_eval_fps [holomorphic_intros]:
    fixes z :: 'a :: {banach, real_normed_field}
    assumes }A\subseteq\mathrm{ eball 0 (fps_conv_radius f)
    shows eval_fps f holomorphic_on A
proof (rule holomorphic_on_subset [OF _ assms])
    show eval_fps f holomorphic_on eball 0 (fps_conv_radius f)
    proof (subst holomorphic_on_open [OF open_eball], safe, goal_cases)
        case (1 x)
        thus ?case
        by (intro exI[of_eval_fps (fps_deriv f) x]) (auto intro: has_field_derivative_eval_fps)
    qed
qed
lemma analytic_on_eval_fps:
    fixes z :: 'a :: {banach, real_normed_field}
    assumes A\subseteqeball 0 (fps_conv_radius f)
    shows eval_fps f analytic_on A
proof (rule analytic_on_subset [OF _ assms])
    show eval_fps f analytic_on eball 0 (fps_conv_radius f)
        using holomorphic_on_eval_fps[of eball 0 (fps_conv_radius f)]
        by (subst analytic_on_open) auto
```

qed
lemma continuous_eval_fps [continuous_intros]:
fixes $z::$ ' $a::\{$ real_normed_field,banach $\}$
assumes norm $z<f p s _c o n v _r a d i u s ~ F$
shows continuous (at z within A) (eval_fps F)
proof -
from ereal_dense2[OF assms] obtain K :: real where K : norm $z<K K<$ fps_conv_radius F
by auto
have $0 \leq$ norm z by simp
also have norm $z<K$ by fact
finally have $K>0$.
from K and $\langle K>0\rangle$ have summable (λn. fps_nth $F n *$ of_real $K^{\wedge} n$)
by (intro summable_fps) auto
from this have isCont (eval_fps F) z unfolding eval_fps_def
by (rule isCont_powser) (use K in auto)
thus continuous (at z within A) (eval_fps F)
by (simp add: continuous_at_imp_continuous_within)
qed

6.49.3 Lower bounds on radius of convergence

```
lemma fps_conv_radius_deriv:
    fixes f :: ' }a\mathrm{ :: {banach, real_normed_field} fps
    shows fps_conv_radius (fps_deriv f) \geqfps_conv_radius f
    unfolding fps_conv_radius_def
proof (rule conv_radius_geI_ex)
    fix r :: real assume r: r>0 ereal r < conv_radius (fps_nth f)
    define K where K=(if conv_radius (fps_nth f)=\infty then r + 1
                            else (real_of_ereal (conv_radius (fps_nth f)) + r) / 2)
    have K:r<K^ ereal K<conv_radius (fps_nth f)
        usingr by (cases conv_radius (fps_nth f)) (auto simp: K_def)
    have summable ( }\lambdan\mathrm{ . diffs (fps_nth f) n* of_real r ` n)
    proof (rule termdiff_converges)
        fix x :: 'a assume norm x<K
        hence ereal (norm x) < ereal K by simp
        also have ... < conv_radius (fps_nth f) using K by simp
        finally show summable ( }\lambdan\mathrm{ . fps_nth f n * x ^ n)
        by (intro summable_in_conv_radius) auto
    qed (insert Kr, auto)
    also have ... = (\lambdan. fps_nth (fps_deriv f) n * of_real r ` n)
        by (simp add: fps_deriv_def diffs_def)
    finally show \existsz::'a. norm z =r^ summable (\lambdan.fps_nth (fps_deriv f) n* z
n)
    using r by (intro exI[of _ of_real r]) auto
qed
```

lemma eval_fps_at_0: eval_fps f $0=$ fps_nth f 0

```
    by (simp add: eval_fps_def)
lemma fps_conv_radius_norm [simp]:
    fps_conv_radius (Abs_fps (\lambdan.norm (fps_nth f n) )) = fps_conv_radius f
    by (simp add: fps_conv_radius_def)
lemma fps_conv_radius_const [simp]: fps_conv_radius (fps_const c) = \infty
proof -
    have fps_conv_radius (fps_const c) = conv_radius ( }\mp@subsup{\lambda}{_}{}.0\mathrm{ .: 'a)
        unfolding fps_conv_radius_def
        by (intro conv_radius_cong eventually_mono[OF eventually_gt_at_top[of 0]]) auto
    thus ?thesis by simp
qed
lemma fps_conv_radius_0 [simp]: fps_conv_radius 0 = \infty
    by (simp only: fps_const_0_eq_0 [symmetric] fps_conv_radius_const)
lemma fps_conv_radius_1 [simp]: fps_conv_radius 1 = \infty
    by (simp only: fps_const_1_eq_1 [symmetric] fps_conv_radius_const)
lemma fps_conv_radius_numeral [simp]: fps_conv_radius (numeral n) =\infty
    by (simp add: numeral_fps_const)
lemma fps_conv_radius_fps_X_power [simp]: fps_conv_radius (fps_X ^ n)=\infty
proof -
    have fps_conv_radius (fps_X ^ n :: 'a fps) = conv_radius ( }\mp@subsup{\lambda}{_}{\prime}.0\mathrm{ :: 'a)
        unfolding fps_conv_radius_def
        by (intro conv_radius_cong eventually_mono[OF eventually_gt_at_top[of n]])
            (auto simp: fps_X_power_iff)
    thus ?thesis by simp
qed
lemma fps_conv_radius_fps_X [simp]: fps_conv_radius fps_X = \infty
    using fps_conv_radius_fps_X_power[of 1] by (simp only: power_one_right)
lemma fps_conv_radius_shift [simp]:
    fps_conv_radius (fps_shift n f) = fps_conv_radius f
    by (simp add: fps_conv_radius_def fps_shift_def conv_radius_shift)
lemma fps_conv_radius_cmult_left:
    c\not=0\Longrightarrow fps_conv_radius (fps_const c * f) = fps_conv_radius f
    unfolding fps_conv_radius_def by (simp add: conv_radius_cmult_left)
    lemma fps_conv_radius_cmult_right:
    c\not=0\Longrightarrowfps_conv_radius }(f*fps_const c)=fps_conv_radius f
    unfolding fps_conv_radius_def by (simp add: conv_radius_cmult_right)
    lemma fps_conv_radius_uminus [simp]:
    fps_conv_radius (-f) = fps_conv_radius f
```

using fps_conv_radius_cmult_left $[o f-1 f]$
by (simp flip: fps_const_neg)
lemma fps_conv_radius_add: fps_conv_radius $(f+g) \geq \min \left(f p s _c o n v _r a d i u s ~ f\right)$
(fps_conv_radius g)
unfolding fps_conv_radius_def using conv_radius_add_ge[of fps_nth ffps_nth g] by simp
lemma fps_conv_radius_diff: fps_conv_radius $(f-g) \geq \min \left(f p s s_{-} c o n v_{-} r a d i u s f\right)$ (fps_conv_radius g)
using fps_conv_radius_add[of $f-g]$ by simp
lemma fps_conv_radius_mult: fps_conv_radius $(f * g) \geq \min \left(f p s_{-} c o n v_{-} r a d i u s f\right)$ (fps_conv_radius g)
using conv_radius_mult_ge[of fps_nth f fps_nth g]
by (simp add: fps_mult_nth fps_conv_radius_def atLeastOAtMost)
lemma fps_conv_radius_power: fps_conv_radius $\left(f^{\wedge} n\right) \geq f p s_{-} c o n v_{-} r a d i u s ~ f$
proof (induction n)
case (Suc n)
hence fps_conv_radius $f \leq \min \left(f p s _c o n v _r a d i u s f\right)\left(f p s _c o n v _r a d i u s ~(f ~ ` ~ n) ~\right) ~$ by simp
also have $\ldots \leq f p s_{-}$conv_radius $\left(f * f^{\wedge} n\right)$
by (rule fps_conv_radius_mult)
finally show ? case by simp
qed simp_all
context
begin
lemma natfun_inverse_bound:
fixes f :: ' a :: \{real_normed_field $\}$ fps
assumes fps_nth f $0=1$ and $\delta>0$
and summable: summable (λ n. norm (fps_nth $f(S u c n)) * \delta{ }^{\wedge}$ Suc n)
and le: $\left(\sum n\right.$. norm (fps_nth $f($ Suc $\left.n)\right) * \delta{ }^{\wedge}$ Suc n) ≤ 1
shows norm (natfun_inverse f n) \leq inverse ($\delta{ }^{\wedge} n$)
proof (induction n rule: less_induct)
case (less m)
show ? case
proof (cases m)
case 0
thus ?thesis using assms by (simp add: field_split_simps norm_inverse norm_divide)
next
case $[$ simp]: (Suc n)
have norm (natfun_inverse $f($ Suc n)) $=$
norm ($\sum i=$ Suc 0..Suc n. fps_nth fi* natfun_inverse $f(S u c n-i)$)
(is _ $=$ norm ? S) using assms
by (simp add: field_simps norm_mult norm_divide del: sum.cl_ivl_Suc)
also have norm $? S \leq\left(\sum i=S u c 0 . . S u c\right.$ n. norm (fps_nth $f i *$ natfun_inverse

```
f(Suc n-i)))
            by (rule norm_sum)
    also have ... \leq (\sumi=Suc 0..Suc n. norm (fps_nth fi)/ \delta ^ (Suc n - i))
    proof (intro sum_mono, goal_cases)
        case (1 i)
        have norm (fps_nth fi* natfun_inverse f (Suc n - i))=
                norm (fps_nth fi)* norm (natfun_inverse f (Suc n - i))
            by (simp add: norm_mult)
            also have ... \leqnorm (fps_nth fi)* inverse ( \delta ` (Suc n - i))
            using 1 by (intro mult_left_mono less.IH) auto
            also have ... = norm (fps_nth fi)/ \delta ` (Suc n - i)
            by (simp add: field_split_simps)
            finally show ?case .
    qed
    also have ... = (\sumi=Suc 0..Suc n. norm (fps_nth fi)*\delta ` i)/ \delta ` Suc n
    by (subst sum_divide_distrib, rule sum.cong)
            (insert }\langle\delta>0\rangle\mathrm{ , auto simp: field_simps power_diff)
```



```
                    (\sumi=0..n. norm (fps_nth f(Suc i))*\delta ^ (Suc i))
            by (subst sum.atLeast_Suc_atMost_Suc_shift) simp_all
    also have {0..n} ={..<Suc n} by auto
    also have (\sumi< Suc n. norm (fps_nth f (Suc i))* \delta ^(Suc i))\leq
                    (\sumn.norm (fps_nth f(Suc n))*\delta^^(Suc n))
        using {\delta>0\rangle by (intro sum_le_suminf ballI mult_nonneg_nonneg zero_le_power
summable) auto
    also have ... \leq1 by fact
    finally show ?thesis using }\langle\delta>0
        by (simp add: divide_right_mono field_split_simps)
    qed
qed
private lemma fps_conv_radius_inverse_pos_aux:
    fixes f :: 'a :: {banach,real_normed_field} fps
    assumes fps_nth f 0 = 1 fps_conv_radius f >0
    shows fps_conv_radius (inverse f) >0
proof -
    let ?R = fps_conv_radius f
    define h where h=Abs_fps (\lambdan.norm (fps_nth f n))
    have [simp]: fps_conv_radius }h=?R\mathrm{ by (simp add: h_def)
    have continuous_on (eball 0 (fps_conv_radius h)) (eval_fps h)
        by (intro continuous_on_eval_fps)
    hence *: open (eval_fps h-' }A\cap\mathrm{ eball O ?R) if open A for }
        using that by (subst (asm) continuous_on_open_vimage) auto
    have open (eval_fps h -'{..<2} \cap eball 0?R)
        by (rule *) auto
    moreover have 0 eval_fps h-'{..<2} \cap eball 0?R
        using assms by (auto simp: eball_def zero_ereal_def eval_fps_at_0 h_def)
    ultimately obtain }\varepsilon\mathrm{ where }\varepsilon:\varepsilon>0\mathrm{ ball 0 }\varepsilon\subseteq\mathrm{ eval_fps h -' {..<2} }\cap\mathrm{ eball 0
?R
```

```
    by (subst (asm) open_contains_ball_eq) blast+
    define \delta where \delta= real_of_ereal (min (ereal \varepsilon / 2) (?R / 2))
    have }\delta:0<\delta\wedge\delta<\varepsilon\wedge ereal \delta<?
    using \langle\varepsilon> 0\rangle and assms by (cases ?R) (auto simp: \delta_def min_def)
    have summable: summable ( }\lambdan.\mathrm{ norm (fps_nth f n)* 䧟 n)
    using \delta by (intro summable_in_conv_radius) (simp_all add: fps_conv_radius_def)
    hence ( }\lambdan\mathrm{ . norm (fps_nth f n) * 缸 n) sums eval_fps h }
    by (simp add: eval_fps_def summable_sums h_def)
    hence (\lambdan. norm (fps_nth f (Suc n))*\delta ^Suc n) sums (eval_fps h \delta - 1)
    by (subst sums_Suc_iff) (auto simp: assms)
    moreover {
    from }\delta\mathrm{ have }\delta\in\mathrm{ ball 0 }\varepsilon\mathrm{ by auto
    also have ...\subseteq eval_fps h -'{..<2} \cap eball 0 ?R by fact
    finally have eval_fps h \delta < 2 by simp
    }
```



```
        by (simp add: sums_iff)
    from summable have summable: summable (\lambdan. norm (fps_nth f (Suc n)) * \delta ^
Suc n)
    by (subst summable_Suc_iff)
    have 0<\delta using \delta by blast
    also have }\delta=\mathrm{ inverse (limsup ( }\lambdan\mathrm{ . ereal (inverse }\delta)\mathrm{ ))
        using \delta by (subst Limsup_const) auto
    also have ... \leq conv_radius (natfun_inverse f)
    unfolding conv_radius_def
    proof (intro ereal_inverse_antimono Limsup_mono
            eventually_mono[OF eventually_gt_at_top[of 0]])
    fix n :: nat assume n: n>0
    have root n (norm (natfun_inverse f n)) \leq root n (inverse ( }\delta\mathrm{ ^ n))
        using n assms \delta le summable
        by (intro real_root_le_mono natfun_inverse_bound) auto
    also have ... = inverse \delta
        using n \delta by (simp add: power_inverse [symmetric] real_root_pos2)
    finally show ereal (inverse \delta) \geqereal (root n (norm (natfun_inverse f n))
        by (subst ereal_less_eq)
    next
    have 0 = limsup ( }\lambda\mathrm{ n. 0::ereal)
        by (rule Limsup_const [symmetric]) auto
    also have ... \leqlimsup (\lambdan. ereal (root n (norm (natfun_inverse f n))))
        by (intro Limsup_mono) (auto simp: real_root_ge_zero)
    finally show 0\leq\ldots by simp
qed
    also have ... = fps_conv_radius (inverse f)
    using assms by (simp add: fps_conv_radius_def fps_inverse_def)
    finally show ?thesis by (simp add:zero_ereal_def)
qed
```

lemma fps_conv_radius_inverse_pos:
fixes $f::{ }^{\prime} a$:: \{banach, real_normed_field $\}$ fps
assumes fps_nth f $0 \neq 0$ and fps_conv_radius $f>0$
shows fps_conv_radius (inverse f) >0
proof -
let $? c=$ fps_nth $f 0$
have fps_conv_radius (inverse f) $=$ fps_conv_radius $($ fps_const $? c *$ inverse $f)$
using assms by (subst fps_conv_radius_cmult_left) auto
also have fps_const ? $c *$ inverse $f=$ inverse (fps_const (inverse ?c) $* f$)
using assms by (simp add: fps_inverse_mult fps_const_inverse)
also have fps_conv_radius ... > 0 using assms
by (intro fps_conv_radius_inverse_pos_aux)
(auto simp: fps_conv_radius_cmult_left)
finally show ?thesis.
qed
end
lemma fps_conv_radius_exp [simp]:
fixes $c::$ ' a :: \{banach, real_normed_field $\}$
shows fps_conv_radius (fps_exp c) $=\infty$
unfolding fps_conv_radius_def
proof (rule conv_radius_inftyI $I^{\prime \prime}$)
fix $z::{ }^{\prime} a$
have $\left(\lambda n\right.$. norm $(c * z)^{\wedge} n / R$ fact $\left.n\right)$ sums $\exp ($ norm $(c * z))$
by (rule exp_converges)
also have $\left(\lambda n\right.$. norm $(c * z)^{\wedge} n / R$ fact $\left.n\right)=\left(\lambda n\right.$. norm $\left(f p s _n t h\left(f p s _e x p ~ c\right) n\right.$ * $z^{\wedge} n$)
by (rule ext) (simp add: norm_divide norm_mult norm_power field_split_simps)
finally have summable ... by (simp add: sums_iff)
thus summable (λn. fps_nth (f ps_exp c) $n * z^{\wedge} n$)
by (rule summable_norm_cancel)
qed

6.49.4 Evaluating power series

theorem eval_fps_deriv:
assumes norm $z<$ fps_conv_radius f
shows eval_fps $\left(f p s_{-} d e r i v f\right) z=\operatorname{deriv}\left(e v a l_{-} f p s f\right) z$
by (intro DERIV_imp_deriv [symmetric] has_field_derivative_eval_fps assms)
theorem fps_nth_conv_deriv:
fixes $f::$ complex fps
assumes fps_conv_radius $f>0$
shows fps_nth $f n=\left(\right.$ deriv $\left.{ }^{\wedge} n\right)($ eval_fps $f) 0 /$ fact n
using assms
proof (induction n arbitrary: f)
case 0

```
    thus ?case by (simp add: eval_fps_def)
next
    case (Suc \(n f\) )
    have (deriv ^^ Suc n) (eval_fps f) \(0=\left(\operatorname{deriv}^{\wedge}\right.\) ^ \(\left.n\right)(\operatorname{deriv}(\) eval_fps f)) 0
        unfolding funpow_Suc_right o_def ..
    also have eventually ( \(\lambda z::\) complex. \(z \in\) eball 0 (fps_conv_radius f)) (nhds 0)
        using Suc.prems by (intro eventually_nhds_in_open) (auto simp: zero_ereal_def)
    hence eventually ( \(\lambda z\). deriv (eval_fpsf) \(z=\) eval_fps (fps_deriv f) \(z)(n h d s 0)\)
        by eventually_elim (simp add: eval_fps_deriv)
    hence \(\left(\right.\) deriv \(\left.{ }^{\wedge} n\right)(\operatorname{deriv}(\) eval_fps \(f)) 0=\left(\operatorname{deriv}{ }^{\wedge} n\right)(\) eval_fps \((\) fps_deriv \(f))\)
0
        by (intro higher_deriv_cong_ev refl)
    also have \(\ldots\) / fact \(n=\) fps_nth (fps_deriv \(f\) ) \(n\)
        using Suc.prems fps_conv_radius_deriv[of f]
        by (intro Suc.IH [symmetric]) auto
    also have ... / of_nat (Suc n) \(=\) fps_nth \(f\) (Suc n)
        by (simp add: fps_deriv_def del: of_nat_Suc)
    finally show? case by (simp add: field_split_simps)
qed
theorem eval_fps_eqD:
    fixes \(f g\) :: complex fps
    assumes fps_conv_radius \(f>0\) fps_conv_radius \(g>0\)
    assumes eventually ( \(\lambda z\). eval_fps \(f z=\) eval_fps \(g z)(n h d s 0)\)
    shows \(f=g\)
proof (rule fps_ext)
    fix \(n\) :: nat
    have fps_nth \(f n=\left(\right.\) deriv \(\left.{ }^{\wedge} n\right)(\) eval_fps f) \(0 /\) fact \(n\)
        using assms by (intro fps_nth_conv_deriv)
    also have (deriv ^^n) (eval_fpsf) \(0=\left(\right.\) deriv \(\left.{ }^{\wedge} n\right)(\) eval_fps \(g) 0\)
        by (intro higher_deriv_cong_ev refl assms)
    also have ... / fact \(n=\) fps_nth \(g n\)
        using assms by (intro fps_nth_conv_deriv [symmetric])
    finally show fps_nth \(f n=f p s \_n t h g n\).
qed
lemma eval_fps_const [simp]:
    fixes \(c::{ }^{\prime} a\) :: \{banach, real_normed_div_algebra \(\}\)
    shows eval_fps (fps_const c) \(z=c\)
proof -
    have ( \(\lambda n:: n a t\). if \(n \in\{0\}\) then \(c\) else 0\()\) sums ( \(\sum n \in\{0:: n a t\}\). \(c\) )
        by (rule sums_If_finite_set) auto
    also have ? this \(\longleftrightarrow\left(\lambda n:: n a t . f p s \_n t h\left(f p s \_c o n s t c\right) n * z^{\wedge} n\right)\) sums \(\left(\sum n \in\{0:: n a t\}\right.\).
c)
    by (intro sums_cong) auto
    also have \(\left(\sum n \in\{0::\right.\) nat \(\}\). \(\left.c\right)=c\)
        by simp
    finally show ?thesis
        by (simp add: eval_fps_def sums_iff)
```


qed

lemma eval_fps_0 [simp]:
eval_fps (0 :: 'a :: \{banach, real_normed_div_algebra\} fps) $z=0$
by (simp only: fps_const_0_eq_0 [symmetric] eval_fps_const)
lemma eval_fps_1 [simp]:
eval_fps (1 :: 'a :: \{banach, real_normed_div_algebra\} fps) $z=1$
by (simp only: fps_const_1_eq_1 [symmetric] eval_fps_const)
lemma eval_fps_numeral [simp]:
eval_fps (numeral n :: ' a :: \{banach, real_normed_div_algebra $\}$ fps) $z=$ numeral n
by (simp only: numeral_fps_const eval_fps_const)
lemma eval_fps_X_power [simp]:
eval_fps (fps_X ^ m :: ' a :: \{banach, real_normed_div_algebra\} fps) $z=z^{\wedge} m$
proof -
have ($\lambda n::$ nat. if $n \in\{m\}$ then $z^{\wedge} n$ else $\left.0::{ }^{\prime} a\right)$ sums ($\sum n \in\{m:: n a t\} . z^{\wedge} n$) by (rule sums_If_finite_set) auto
also have ?this $\longleftrightarrow\left(\lambda n:: n a t . f p s _n t h\left(f p s _X^{\wedge} m\right) n * z^{\wedge} n\right)$ sums $\left(\sum n \in\{m:: n a t\}\right.$. $z^{\wedge} n$)
by (intro sums_cong) (auto simp: fps_X_power_iff)
also have $\left(\sum n \in\{m:: n a t\} . z^{\wedge} n\right)=z^{\wedge} m$ by simp
finally show ?thesis by (simp add: eval_fps_def sums_iff)
qed
lemma eval_fps_X [simp]:
eval_fps (fps_X :: 'a :: \{banach, real_normed_div_algebra\} fps) $z=z$
using eval_fps_X_power[of 1 z] by (simp only: power_one_right)
lemma eval_fps_minus:
fixes f :: ' a :: \{banach, real_normed_div_algebra $\}$ fps
assumes norm $z<$ fps_conv_radius f
shows eval_fps $(-f) z=-$ eval_fps $f z$
using assms unfolding eval_fps_def
by (subst suminf_minus [symmetric]) (auto intro!: summable_fps)
lemma eval_fps_add:
fixes $f g$:: 'a :: \{banach, real_normed_div_algebra\} fps
assumes norm $z<f p s_{-}$conv_radius f norm $z<f p s-c o n v _r a d i u s ~ g ~$
shows eval_fps $(f+g) z=$ eval_fps $f z+e v a l _f p s ~ g z$
using assms unfolding eval_fps_def
by (subst suminf_add) (auto simp: ring_distribs intro!: summable_fps)
lemma eval_fps_diff:
fixes $f g::{ }^{\prime} a::\{$ banach, real_normed_div_algebra\} fps

```
assumes norm z < fps_conv_radius f norm z < fps_conv_radius g
shows eval_fps (f-g)z=eval_fps fz-eval_fps g z
using assms unfolding eval_fps_def
by (subst suminf_diff) (auto simp: ring_distribs intro!: summable_fps)
lemma eval_fps_mult:
    fixes fg ::'a :: {banach, real_normed_div_algebra,comm_ring_1} fps
    assumes norm z<fps_conv_radius f norm z<fps_conv_radius g
    shows eval_fps (f*g)z=eval_fps f z*eval_fps g z
proof -
    have eval_fps fz* eval_fps g z =
                (\sumk. \sumi\leqk.fps_nth fi* fps_nth g (k-i)*(z^^i* *``}(k-i))
        unfolding eval_fps_def
    proof (subst Cauchy_product)
    show summable ( }\lambdak\mathrm{ . norm (fps_nth f k* z` k)) summable ( }\lambdak\mathrm{ . norm (fps_nth
gk* z^^k))
            by (rule norm_summable_fps assms)+
    qed (simp_all add: algebra_simps)
    also have ( }\lambdak.\sumi\leqk.fps_nth fi* fps_nth g (k-i)*(z^i i* z^` (k-i)))
                (\lambdak.\sumi\leqk.fps_nth fi* fps_nth g (k-i)* * ^ k)
        by (intro ext sum.cong refl) (simp add: power_add [symmetric])
    also have suminf \ldots. = eval_fps (f*g)z
        by (simp add: eval_fps_def fps_mult_nth atLeast0AtMost sum_distrib_right)
    finally show ?thesis ..
qed
lemma eval_fps_shift:
    fixes f :: ' a :: {banach, real_normed_div_algebra, comm_ring_1} fps
    assumes n\leq subdegree f norm z<fps_conv_radius f
    shows eval_fps(fps_shift nf) z=(if z=0 then fps_nth f n else eval_fps f z /
z^n)
proof (cases z=0)
    case False
    have eval_fps (fps_shift nf*fps_X ^}n)z=eval_fps (fps_shift nf) z* z^`
        using assms by (subst eval_fps_mult) simp_all
    also from assms have fps_shift nf*fps_X ` n n =f
        by (simp add: fps_shift_times_fps_X_power)
    finally show ?thesis using False by (simp add: field_simps)
qed (simp_all add: eval_fps_at_0)
lemma eval_fps_exp [simp]:
    fixes c :: 'a :: {banach, real_normed_field}
    shows eval_fps (fps_exp c) z = exp (c*z) unfolding eval_fps_def exp_def
    by (simp add: eval_fps_def exp_def scaleR_conv_of_real field_split_simps)
```

The case of division is more complicated and will therefore not be handled here. Handling division becomes much more easy using complex analysis, and we will do so once that is available.

6.49.5 Power series expansions of analytic functions

This predicate contains the notion that the given formal power series converges in some disc of positive radius around the origin and is equal to the given complex function there.
This relationship is unique in the sense that no complex function can have more than one formal power series to which it expands, and if two holomorphic functions that are holomorphic on a connected open set around the origin and have the same power series expansion, they must be equal on that set.
More concrete statements about the radius of convergence can usually be made, but for many purposes, the statment that the series converges to the function in some neighbourhood of the origin is enough, and that can be shown almost fully automatically in most cases, as there are straightforward introduction rules to show this.

In particular, when one wants to relate the coefficients of the power series to the values of the derivatives of the function at the origin, or if one wants to approximate the coefficients of the series with the singularities of the function, this predicate is enough.

```
definition
    has_fps_expansion :: ('a :: \{banach,real_normed_div_algebra\} \(\left.\Rightarrow^{\prime} a\right) \Rightarrow{ }^{\prime} a\) fps \(\Rightarrow\)
bool
    (infixl has \({ }^{\prime}\) _fps \({ }^{\prime}\) _expansion 60)
    where ( \(f\) has_fps_expansion \(F) \longleftrightarrow\)
                fps_conv_radius \(F>0 \wedge\) eventually \((\lambda z\). eval_fps \(F z=f z)(n h d s 0)\)
named_theorems fps_expansion_intros
lemma fps_nth_fps_expansion:
    fixes \(f\) :: complex \(\Rightarrow\) complex
    assumes \(f\) has_fps_expansion \(F\)
    shows fps_nth \(F n=\left(\operatorname{deriv}^{\wedge} n\right) f 0 /\) fact \(n\)
proof -
    have fps_nth \(F n=\left(\right.\) deriv \(\left.^{\wedge}{ }^{\wedge} n\right)(\) eval_fps \(F) 0 /\) fact \(n\)
        using assms by (intro fps_nth_conv_deriv) (auto simp: has_fps_expansion_def)
    also have (deriv ^^n) (eval_fps \(F\) ) \(0=\left(\right.\) deriv \(^{\wedge}\) ^n) \(f 0\)
        using assms by (intro higher_deriv_cong_ev) (auto simp: has_fps_expansion_def)
    finally show ?thesis .
qed
lemma has_fps_expansion_imp_continuous:
    fixes \(F\) :: 'a::\{real_normed_field,banach\} fps
    assumes \(f\) has_fps_expansion \(F\)
    shows continuous (at 0 within A) \(f\)
proof -
    from assms have isCont (eval_fps F) 0
```

```
    by (intro continuous_eval_fps) (auto simp: has_fps_expansion_def zero_ereal_def)
    also have ?this \longleftrightarrow isCont f 0 using assms
    by (intro isCont_cong) (auto simp: has_fps_expansion_def)
    finally have isCont f0.
    thus continuous (at 0 within A) f
    by (simp add: continuous_at_imp_continuous_within)
qed
lemma has_fps_expansion_const [simp, intro, fps_expansion_intros]:
    ( }\mp@subsup{\lambda}{_}{\prime}\mathrm{ c) has_fps_expansion fps_const c
    by (auto simp: has_fps_expansion_def)
lemma has_fps_expansion_0 [simp, intro, fps_expansion_intros]:
    (\lambda_. 0) has_fps_expansion 0
    by (auto simp: has_fps_expansion_def)
lemma has_fps_expansion_1 [simp, intro, fps_expansion_intros]:
    (\lambda_. 1) has_fps_expansion 1
    by (auto simp: has_fps_expansion_def)
    lemma has_fps_expansion_numeral [simp, intro, fps_expansion_intros]:
    ( }\mp@subsup{\lambda}{-}{\prime}\mathrm{ numeral n) has_fps_expansion numeral n
    by (auto simp: has_fps_expansion_def)
lemma has_fps_expansion_fps_X_power [fps_expansion_intros]:
    (\lambdax. x ^ n) has_fps_expansion (fps_X ^ n)
    by (auto simp: has_fps_expansion_def)
lemma has_fps_expansion_fps_X [fps_expansion_intros]:
    ( }\lambdax.x) has_fps_expansion fps_X
    by (auto simp: has_fps_expansion_def)
    lemma has_fps_expansion_cmult_left [fps_expansion_intros]:
    fixes c :: 'a :: {banach, real_normed_div_algebra, comm_ring_1}
    assumes f has_fps_expansion F
    shows ( }\lambdax.c*fx) has_fps_expansion fps_const c * F
proof (cases c=0)
    case False
    from assms have eventually ( }\lambdaz.z\in\mathrm{ eball 0 (fps_conv_radius F)) (nhds 0)
    by (intro eventually_nhds_in_open) (auto simp: has_fps_expansion_def zero_ereal_def)
    moreover from assms have eventually ( }\lambdaz.\mathrm{ eval_fps F z=fz) (nhds 0)
        by (auto simp: has_fps_expansion_def)
    ultimately have eventually ( }\lambdaz.\mathrm{ eval_fps (fps_const c*F) z = c*fz)(nhds
0)
    by eventually_elim (simp_all add: eval_fps_mult)
    with assms and False show ?thesis
        by (auto simp: has_fps_expansion_def fps_conv_radius_cmult_left)
qed auto
```

```
lemma has_fps_expansion_cmult_right [fps_expansion_intros]:
    fixes c :: 'a :: {banach, real_normed_div_algebra, comm_ring_1}
    assumes f has_fps_expansion F
    shows (\lambdax.fx* c) has_fps_expansion F * fps_const c
proof -
    have F* fps_const c = fps_const c*F
        by (intro fps_ext) (auto simp: mult.commute)
    with has_fps_expansion_cmult_left [OF assms] show ?thesis
        by (simp add: mult.commute)
qed
lemma has_fps_expansion_minus [fps_expansion_intros]:
    assumes f has_fps_expansion F
    shows (\lambdax.-fx) has_fps_expansion -F
proof -
    from assms have eventually ( }\lambdax.x\in\mathrm{ eball 0 (fps_conv_radius F)) (nhds 0)
    by (intro eventually_nhds_in_open) (auto simp: has_fps_expansion_def zero_ereal_def)
    moreover from assms have eventually ( }\lambda\mathrm{ x. eval_fps F x = fx) (nhds 0)
        by (auto simp: has_fps_expansion_def)
    ultimately have eventually ( }\lambdax.\mathrm{ eval_fps ( }-F)x=-fx)(nhds 0
        by eventually_elim (auto simp: eval_fps_minus)
    thus ?thesis using assms by (auto simp: has_fps_expansion_def)
qed
lemma has_fps_expansion_add [fps_expansion_intros]:
    assumes f has_fps_expansion F g has_fps_expansion G
    shows (\lambdax.fx+gx) has_fps_expansion F +G
proof -
    from assms have 0<min (fps_conv_radius F) (fps_conv_radius G)
        by (auto simp: has_fps_expansion_def)
    also have ... \leqfps_conv_radius (F+G)
        by (rule fps_conv_radius_add)
    finally have radius:...>0 .
    from assms have eventually ( }\lambdax.x\in\mathrm{ eball 0 (fps_conv_radius F)) (nhds 0)
                eventually ( }\lambdax.x\in\mathrm{ eball 0 (fps_conv_radius G)) (nhds 0)
    by (intro eventually_nhds_in_open; force simp: has_fps_expansion_def zero_ereal_def)+
    moreover have eventually ( }\lambdax\mathrm{ . eval_fps F x = fx) (nhds 0)
                and eventually ( }\lambdax\mathrm{ . eval_fps Gx=gx) (nhds 0)
        using assms by (auto simp: has_fps_expansion_def)
    ultimately have eventually ( }\lambdax\mathrm{ . eval_fps (F+G) x = fx+gx) (nhds 0)
        by eventually_elim (auto simp: eval_fps_add)
    with radius show ?thesis by (auto simp: has_fps_expansion_def)
qed
lemma has_fps_expansion_diff [fps_expansion_intros]:
    assumes f has_fps_expansion F g has_fps_expansion G
    shows (\lambdax.fx-gx) has_fps_expansion F-G
    using has_fps_expansion_add[off F \lambdax. - gx -G] assms
```

by (simp add: has_fps_expansion_minus)

```
lemma has_fps_expansion_mult [fps_expansion_intros]:
    fixes F G :: 'a :: {banach,real_normed_div_algebra,comm_ring_1} fps
    assumes f has_fps_expansion F g has_fps_expansion G
    shows ( }\lambdax.fx*gx) has_fps_expansion F*
proof -
    from assms have 0 < min (fps_conv_radius F) (fps_conv_radius G)
        by (auto simp: has_fps_expansion_def)
    also have ... \leqfps_conv_radius (F*G)
        by (rule fps_conv_radius_mult)
    finally have radius:...>0 .
    from assms have eventually ( }\lambdax.x\in\mathrm{ eball 0 (fps_conv_radius F)) (nhds 0)
                eventually ( }\lambdax.x\in\mathrm{ eball 0 (fps_conv_radius G)) (nhds 0)
    by (intro eventually_nhds_in_open; force simp: has_fps_expansion_def zero_ereal_def)+
    moreover have eventually ( }\lambdax\mathrm{ . eval_fps F x = fx) (nhds 0)
            and eventually ( }\lambdax.eval_fps Gx=g x) (nhds 0)
        using assms by (auto simp: has_fps_expansion_def)
    ultimately have eventually ( }\lambdax\mathrm{ . eval_fps (F*G)x=fx*gx)(nhds 0)
        by eventually_elim (auto simp: eval_fps_mult)
    with radius show ?thesis by (auto simp: has_fps_expansion_def)
qed
lemma has_fps_expansion_inverse [fps_expansion_intros]:
    fixes F :: 'a :: {banach, real_normed_field} fps
    assumes f has_fps_expansion F
    assumes fps_nth F 0}=
    shows ( }\lambdax\mathrm{ . inverse (fx)) has_fps_expansion inverse F
proof -
    have radius: fps_conv_radius (inverse F) > 0
        using assms unfolding has_fps_expansion_def
        by (intro fps_conv_radius_inverse_pos) auto
    let ?R = min (fps_conv_radius F) (fps_conv_radius (inverse F))
    from assms radius
        have eventually ( }\lambdax.x\in\mathrm{ eball 0 (fps_conv_radius F)) (nhds 0)
            eventually ( }\lambdax.x\in\mathrm{ eball 0 (fps_conv_radius (inverse F))) (nhds 0)
    by (intro eventually_nhds_in_open; force simp: has_fps_expansion_def zero_ereal_def)+
    moreover have eventually ( }\lambdaz.\mathrm{ eval_fps F z=fz) (nhds 0)
        using assms by (auto simp: has_fps_expansion_def)
    ultimately have eventually ( }\lambdaz.\mathrm{ eval_fps (inverse F) z = inverse (fz)) (nhds
0)
    proof eventually_elim
    case (elim z)
    hence eval_fps(inverse F*F)z=eval_fps (inverse F)z*fz
        by (subst eval_fps_mult) auto
    also have eval_fps (inverse F*F)z=1
        using assms by (simp add: inverse_mult_eq_1)
    finally show ?case by (auto simp: field_split_simps)
```

```
    qed
    with radius show ?thesis by (auto simp: has_fps_expansion_def)
qed
lemma has_fps_expansion_exp [fps_expansion_intros]:
    fixes c :: 'a :: {banach, real_normed_field}
    shows (\lambdax. exp (c*x)) has_fps_expansion fps_exp c
    by (auto simp: has_fps_expansion_def)
lemma has_fps_expansion_exp1 [fps_expansion_intros]:
    (\lambdax::'a :: {banach, real_normed_field}. exp x) has_fps_expansion fps_exp 1
    using has_fps_expansion_exp[of 1] by simp
lemma has_fps_expansion_exp_neg1 [fps_expansion_intros]:
    (\lambdax::'a :: {banach, real_normed_field}. exp (-x)) has_fps_expansion fps_exp (-1)
    using has_fps_expansion_exp[of - 1] by simp
lemma has_fps_expansion_deriv [fps_expansion_intros]:
    assumes f has_fps_expansion F
    shows deriv f has_fps_expansion fps_deriv F
proof -
    have eventually ( }\lambdaz.z\in\mathrm{ eball 0 (fps_conv_radius F)) (nhds 0)
        using assms by (intro eventually_nhds_in_open)
                            (auto simp: has_fps_expansion_def zero_ereal_def)
    moreover from assms have eventually (\lambdaz. eval_fps Fz=fz)(nhds 0)
        by (auto simp: has_fps_expansion_def)
    then obtain s where open s 0 f and s:\w.w\ins\Longrightarroweval_fps Fw=fw
        by (auto simp: eventually_nhds)
    hence eventually (\lambdaw.w\ins) (nhds 0)
        by (intro eventually_nhds_in_open) auto
    ultimately have eventually (\lambdaz. eval_fps (fps_deriv F) z=\operatorname{deriv fz)(nhds 0)}
    proof eventually_elim
        case (elim z)
        hence eval_fps (fps_deriv F) z=deriv (eval_fps F) z
            by (simp add: eval_fps_deriv)
        also have eventually ( }\lambdaw.w\ins)(nhdsz
        using elim and <open s` by (intro eventually_nhds_in_open) auto
        hence eventually ( }\lambdaw\mathrm{ . eval_fps Fw=fw)(nhds z)
            by eventually_elim (simp add: s)
            hence deriv (eval_fps F) z=\operatorname{deriv}fz
                by (intro deriv_cong_ev refl)
            finally show ?case.
    qed
    with assms and fps_conv_radius_deriv[of F] show ?thesis
        by (auto simp: has_fps_expansion_def)
qed
lemma fps_conv_radius_binomial:
fixes \(c::\) ' \(a::\) \{real_normed_field,banach \(\}\)
```

```
    shows fps_conv_radius (fps_binomial c) =(if c \in N then \infty else 1)
    unfolding fps_conv_radius_def by (simp add: conv_radius_gchoose)
lemma fps_conv_radius_ln:
    fixes c:: 'a :: {banach,real_normed_field, field_char_0}
    shows fps_conv_radius (fps_ln c)=(if c=0 then }\infty\mathrm{ else 1)
proof (cases c=0)
    case False
    have conv_radius (\lambdan. 1 / of_nat n :: 'a) = 1
    proof (rule conv_radius_ratio_limit_nonzero)
        show (\lambdan. norm (1 / of_nat n :: 'a) / norm (1 / of_nat (Suc n) :: 'a)) \longrightarrow
1
            using LIMSEQ_Suc_n_over_n by (simp add: norm_divide del: of_nat_Suc)
    qed auto
    also have conv_radius (\lambdan. 1 / of_nat n :: 'a)=
                conv_radius ( }\lambdan\mathrm{ . if n =0 then 0 else ( - 1) ^ ( n - 1) / of_nat n :: ' a)
        by (intro conv_radius_cong eventually_mono[OF eventually_gt_at_top[of 0]])
        (simp add: norm_mult norm_divide norm_power)
    finally show ?thesis using False unfolding fps_ln_def
    by (subst fps_conv_radius_cmult_left) (simp_all add: fps_conv_radius_def)
qed (auto simp: fps_ln_def)
lemma fps_conv_radius_ln_nonzero [simp]:
    assumes c\not=(0 :: 'a :: {banach,real_normed_field,field_char_0})
    shows fps_conv_radius (fps_ln c) = 1
    using assms by (simp add: fps_conv_radius_ln)
lemma fps_conv_radius_sin [simp]:
    fixes c:: 'a :: {banach, real_normed_field, field_char_0}
    shows fps_conv_radius (fps_sin c) = \infty
proof (cases c = 0)
    case False
    have }\infty=\mathrm{ conv_radius ( }\lambdan\mathrm{ . of_real (sin_coeff n) :: 'a)
    proof (rule sym, rule conv_radius_inftyI'',rule summable_norm_cancel, goal_cases)
        case (1 z)
        show ?case using summable_norm_sin[of z] by (simp add: norm_mult)
    qed
    also have ... / norm c = conv_radius (\lambdan.c ^ n * of_real (sin_coeff n) :: 'a)
        using False by (subst conv_radius_mult_power) auto
    also have ... = fps_conv_radius (fps_sin c) unfolding fps_conv_radius_def
        by (rule conv_radius_cong_weak) (auto simp add: fps_sin_def sin_coeff_def)
    finally show ?thesis by simp
qed simp_all
lemma fps_conv_radius_cos [simp]:
    fixes c:: 'a :: {banach, real_normed_field, field_char_0}
    shows fps_conv_radius (fps_cos c) = \infty
proof (cases c=0)
    case False
```

```
    have \(\infty=\) conv_radius ( \(\lambda n\). of_real (cos_coeff \(n\) ) :: 'a)
    proof (rule sym, rule conv_radius_infty \(I^{\prime \prime}\), rule summable_norm_cancel, goal_cases)
        case (1 z)
        show ?case using summable_norm_cos \([\) of \(z]\) by (simp add: norm_mult)
    qed
    also have \(\ldots\). / norm \(c=\) conv_radius ( \(\lambda n . c^{\wedge} n *\) of_real (cos_coeff \(n\) ) :: 'a)
        using False by (subst conv_radius_mult_power) auto
    also have ... = fps_conv_radius (fps_cos c) unfolding fps_conv_radius_def
        by (rule conv_radius_cong_weak) (auto simp add: fps_cos_def cos_coeff_def)
    finally show? ?thesis by simp
qed simp_all
lemma eval_fps_sin [simp]:
    fixes \(z::\) ' \(a\) :: \{banach, real_normed_field, field_char_0\}
    shows eval_fps \(\left(f p s \_s i n c\right) z=\sin (c * z)\)
proof -
    have \(\left(\lambda n\right.\). sin_coeff \(\left.n *_{R}(c * z)^{\wedge} n\right)\) sums \(\sin (c * z)\) by (rule sin_converges)
    also have \(\left(\lambda n\right.\). sin_coeff \(\left.n *_{R}(c * z)^{\wedge} n\right)=\left(\lambda n\right.\).fps_nth (fps_sin c) \(\left.n * z^{\wedge} n\right)\)
    by (rule ext) (auto simp: sin_coeff_def fps_sin_def power_mult_distrib scaleR_conv_of_real)
    finally show ?thesis by (simp add: sums_iff eval_fps_def)
qed
lemma eval_fps_cos [simp]:
    fixes \(z::\) ' \(a\) :: \{banach, real_normed_field, field_char_0 \(\}\)
    shows eval_fps \(\left(f p s \_\cos c\right) z=\cos (c * z)\)
proof -
    have \(\left(\lambda n\right.\). cos_coeff \(\left.n *_{R}(c * z){ }^{\wedge} n\right)\) sums \(\cos (c * z)\) by (rule cos_converges)
    also have \(\left(\lambda n\right.\). cos_coeff \(\left.n *_{R}(c * z){ }^{\wedge} n\right)=\left(\lambda n\right.\). fps_nth (fps_cosc) \(\left.n * z^{\wedge} n\right)\)
    by (rule ext) (auto simp: cos_coeff_def fps_cos_def power_mult_distrib scaleR_conv_of_real)
    finally show ?thesis by (simp add: sums_iff eval_fps_def)
qed
lemma cos_eq_zero_imp_norm_ge:
    assumes \(\cos (z::\) complex \()=0\)
    shows norm \(z \geq p i / 2\)
proof -
    from assms obtain \(n\) where \(z=\) complex_of_real \(\left(\left(o f \_i n t ~ n+1 / 2\right) * p i\right)\)
        by (auto simp: cos_eq_0 algebra_simps)
    also have norm \(\ldots=\mid\) real_of_int \(n+1 / 2 \mid * p i\)
        by (subst norm_of_real) (simp_all add: abs_mult)
    also have real_of_int \(n+1 / 2=\) of_int \((2 * n+1) / 2\) by simp
    also have \(|\ldots|=o f \_i n t|2 * n+1| / 2\) by (subst abs_divide) simp_all
    also have \(\ldots * p i=o f_{-} i n t|2 * n+1| *(p i / 2)\) by simp
    also have \(\ldots \geq\) of_int \(1 *(p i / 2)\)
        by (intro mult_right_mono, subst of_int_le_iff) (auto simp: abs_if)
    finally show? ?thesis by simp
qed
```

```
lemma eval_fps_binomial:
    fixes c :: complex
    assumes norm z<1
    shows eval_fps (fps_binomial c) z=(1+z) powr c
    using gen_binomial_complex[OF assms] by (simp add: sums_iff eval_fps_def)
lemma has_fps_expansion_binomial_complex [fps_expansion_intros]:
    fixes c :: complex
    shows ( }\lambdax.(1+x) powr c) has_fps_expansion fps_binomial 
proof -
    have *: eventually (\lambdaz::complex. z \in eball 0 1) (nhds 0)
        by (intro eventually_nhds_in_open) auto
    thus ?thesis
        by (auto simp: has_fps_expansion_def eval_fps_binomial fps_conv_radius_binomial
            intro!: eventually_mono [OF *])
qed
lemma has_fps_expansion_sin [fps_expansion_intros]:
    fixes c :: 'a :: {banach, real_normed_field, field_char_0}
    shows ( }\lambdax.\operatorname{sin}(c*x)) has_fps_expansion fps_sin 
    by (auto simp: has_fps_expansion_def)
lemma has_fps_expansion_sin' [fps_expansion_intros]:
    (\lambdax::'a :: {banach, real_normed_field}. sin x) has_fps_expansion fps_sin 1
    using has_fps_expansion_sin[of 1] by simp
lemma has_fps_expansion_cos[fps_expansion_intros]:
    fixes c:: 'a :: {banach, real_normed_field, field_char_0}
    shows ( }\lambdax.\operatorname{cos}(c*x)) has_fps_expansion fps_cos 
    by (auto simp: has_fps_expansion_def)
lemma has_fps_expansion_cos' [fps_expansion_intros]:
    (\lambdax::'a :: {banach, real_normed_field}. cos x) has_fps_expansion fps_cos 1
    using has_fps_expansion_cos[of 1] by simp
lemma has_fps_expansion_shift [fps_expansion_intros]:
    fixes F :: 'a :: {banach, real_normed_field} fps
    assumes f has_fps_expansion F and n}\leq\mathrm{ subdegree F
    assumes c=fps_nth Fn
    shows ( }\lambdax\mathrm{ . if }x=0\mathrm{ then c else f x / x ^ n) has_fps_expansion (fps_shift n F)
proof -
    have eventually ( }\lambdax.x\ineball 0 (fps_conv_radius F)) (nhds 0)
    using assms by (intro eventually_nhds_in_open) (auto simp: has_fps_expansion_def
zero_ereal_def)
    moreover have eventually ( }\lambdax.\mathrm{ eval_fps F x = fx) (nhds 0)
        using assms by (auto simp: has_fps_expansion_def)
    ultimately have eventually ( }\lambdax.\mathrm{ eval_fps (fps_shift n F) x=
                        (if x = 0 then c else f x / x^^ n)) (nhds 0)
```

by eventually_elim (auto simp: eval_fps_shift assms)
with assms show ?thesis by (auto simp: has_fps_expansion_def)
qed
lemma has_fps_expansion_divide [fps_expansion_intros]:
fixes $F G$:: ' a :: \{banach, real_normed_field $\}$ fps
assumes f has_fps_expansion F and g has_fps_expansion G and subdegree $G \leq$ subdegree $F G \neq 0$ $c=$ fps_nth $F($ subdegree $G) /$ fps_nth $G($ subdegree $G)$
shows (λx. if $x=0$ then c else $f x / g x)$ has_fps_expansion (F / G)
proof -
define n where $n=$ subdegree G
define F^{\prime} and G^{\prime} where $F^{\prime}=$ fps_shift $n F$ and $G^{\prime}=$ fps_shift $n G$
have $F=F^{\prime} * f p s_{-} X^{\wedge} n G=G^{\prime} * f p s_{-} X{ }^{\wedge} n$ unfolding $F^{\prime}{ }_{-} d e f G^{\prime}$-def n_{-}def
by (rule fps_shift_times_fps_X_power [symmetric] le_refl|fact)+
moreover from assms have fps_nth $G^{\prime} 0 \neq 0$
by (simp add: G^{\prime} _def $n_{-} d e f$)
ultimately have $F G: F / G=F^{\prime} *$ inverse G^{\prime}
by (simp add: fps_divide_unit)
have $\left(\lambda x\right.$. (if $x=0$ then fps_nth $F n$ else $\left.f x / x^{\wedge} n\right) *$ inverse (if $x=0$ then fps_nth $G n$ else $g x / x^{\wedge} n$)) has_fps_expansion F / G
(is ?h has_fps_expansion _) unfolding $F G F^{\prime}{ }_{-}$def $G^{\prime}{ }_{-}$def n_{-}def using $\langle G \neq 0\rangle$
by (intro has_fps_expansion_mult has_fps_expansion_inverse
has_fps_expansion_shift assms) auto
also have $? h=(\lambda x$. if $x=0$ then c else $f x / g x)$
using assms(5) unfolding n_def
by (intro ext) (auto split: if_splits simp: field_simps)
finally show ?thesis.
qed
lemma has_fps_expansion_divide' [fps_expansion_intros]:
fixes $F G$:: ' a :: \{banach, real_normed_field $\}$ fps
assumes f has_fps_expansion F and g has_fps_expansion G and fps_nth $G 0 \neq 0$
shows $(\lambda x . f x / g x)$ has_fps_expansion (F / G)
proof -
have (λx. if $x=0$ then fps_nth F $0 /$ fps_nth G 0 else $f x / g x$) has_fps_expansion (F / G)
(is ?h has_fps_expansion _) using assms(3) by (intro has_fps_expansion_divide assms) auto
also from assms have fps_nth F $0=f 0$ fps_nth $G 0=g 0$
by (auto simp: has_fps_expansion_def eval_fps_at_0 dest: eventually_nhds_x_imp_x)
hence ? $h=(\lambda x . f x / g x)$ by auto
finally show ?thesis .
qed
lemma has_fps_expansion_tan [fps_expansion_intros]:
fixes $c::$ ' a :: $\{$ banach, real_normed_field, field_char_0 $\}$

```
    shows \((\lambda x\). tan \((c * x))\) has_fps_expansion fps_tan \(c\)
proof -
    have \((\lambda x . \sin (c * x) / \cos (c * x))\) has_fps_expansion fps_sin \(c / f p s \_\cos c\)
        by (intro fps_expansion_intros) auto
    thus ?thesis by (simp add: tan_def fps_tan_def)
qed
lemma has_fps_expansion_tan' [fps_expansion_intros]:
    tan has_fps_expansion fps_tan (1 :: 'a :: \{banach, real_normed_field, field_char_0 \})
    using has_fps_expansion_tan[of 1] by simp
lemma has_fps_expansion_imp_holomorphic:
    assumes \(f\) has_fps_expansion \(F\)
    obtains \(s\) where open s \(0 \in s f\) holomorphic_ons \(\bigwedge z . z \in s \Longrightarrow f z=\) eval_fps
F z
proof -
    from assms obtain \(s\) where \(s:\) open \(s 0 \in s \bigwedge z . z \in s \Longrightarrow\) eval_fps \(F z=f z\)
        unfolding has_fps_expansion_def eventually_nhds by blast
    let \(? s^{\prime}=\) eball \(0(\) fps_conv_radius \(F) \cap s\)
    have eval_fps F holomorphic_on?s'
        by (intro holomorphic_intros) auto
    also have ?this \(\longleftrightarrow f\) holomorphic_on ? s'
        using \(s\) by (intro holomorphic_cong) auto
    finally show ?thesis using \(s\) assms
        by (intro that[of ?s \(]\) ) (auto simp: has_fps_expansion_def zero_ereal_def)
qed
end
```


6.50 Smooth paths

theory Smooth_Paths
imports
Retracts
begin

6.50.1 Homeomorphisms of arc images

lemma path_connected_arc_complement:
fixes $\gamma::$ real $\Rightarrow{ }^{\prime} a::$ euclidean_space
assumes arc $\gamma 2 \leq \operatorname{DIM}\left({ }^{\prime} a\right)$
shows path_connected (- path_image γ)
proof -
have path_image γ homeomorphic $\{0 . .1::$ real $\}$
by (simp add: assms homeomorphic_arc_image_interval)
then
show ?thesis
apply (rule path_connected_complement_homeomorphic_convex_compact) apply (auto simp: assms)

```
    done
qed
lemma connected_arc_complement:
    fixes \gamma :: real => 'a::euclidean_space
    assumes arc \gamma 2 \leq DIM('a)
    shows connected(- path_image }\gamma\mathrm{ )
    by (simp add: assms path_connected_arc_complement path_connected_imp_connected)
lemma inside_arc_empty:
    fixes }\gamma\mathrm{ :: real #> 'a::euclidean_space
    assumes arc \gamma
        shows inside(path_image \gamma)={}
proof (cases DIM('a)=1)
    case True
    then show ?thesis
    using assms connected_arc_image connected_convex_1_gen inside_convex by blast
next
    case False
    show ?thesis
    proof (rule inside_bounded_complement_connected_empty)
        show connected (- path_image }\gamma\mathrm{ )
            apply (rule connected_arc_complement [OF assms])
            using False
        by (metis DIM_ge_Suc0 One_nat_def Suc_1 not_less_eq_eq order_class.order.antisym)
        show bounded (path_image \gamma)
            by (simp add: assms bounded_arc_image)
    qed
qed
lemma inside_simple_curve_imp_closed:
    fixes \gamma :: real # 'a::euclidean_space
        shows \llbracketsimple_path \gamma;x \in inside(path_image \gamma)\rrbracket\Longrightarrow pathfinish \gamma = pathstart
\gamma
    using arc_simple_path inside_arc_empty by blast
```


6.50.2 Piecewise differentiability of paths

lemma continuous_on_joinpaths_D1:
continuous_on $\{0 . .1\}(g 1+++g 2) \Longrightarrow$ continuous_on $\{0 . .1\} g 1$ apply (rule continuous_on_eq $[$ of $-(g 1+++g 2) \circ((*)($ inverse 2) $)])$ apply (rule continuous_intros | simp)+ apply (auto elim!: continuous_on_subset simp: joinpaths_def) done
lemma continuous_on_joinpaths_D2:
\llbracket continuous_on $\{0 . .1\}(g 1+++$ g2 $)$; pathfinish g1 $=$ pathstart $g 2 \rrbracket \Longrightarrow$ continuous_on $\{0 . .1\}$ g2
apply (rule continuous_on_eq $\left[o f_{-}(g 1+++g 2) \circ(\lambda x\right.$.inverse $\left.\left.2 * x+1 / 2)\right]\right)$
apply（rule continuous＿intros \mid simp）+
apply（auto elim！：continuous＿on＿subset simp add：joinpaths＿def pathfinish＿def pathstart＿def Ball＿def）
done
lemma piecewise＿differentiable＿D1：
assumes $(g 1+++g 2)$ piecewise＿differentiable＿on $\{0 . .1\}$
shows g1 piecewise＿differentiable＿on $\{0 . .1\}$
proof－
obtain S where cont：continuous＿on $\{0 . .1\} g 1$ and finite S
and $S: \bigwedge x . x \in\{0 . .1\}-S \Longrightarrow g 1+++g 2$ differentiable at x within $\{0 . .1\}$
using assms unfolding piecewise＿differentiable＿on＿def
by（blast dest！：continuous＿on＿joinpaths＿D1）
show ？thesis
unfolding piecewise＿differentiable＿on＿def
proof（intro exI conjI ballI cont）
show finite（insert $1(((*) 2)$＇$S)$ ）
by（simp add：〈finite S ）
show g1 differentiable at x within $\{0 . .1\}$ if $x \in\{0 . .1\}-\operatorname{insert} 1((*) 2$＇$S)$
for x
proof（rule＿tac $d=\operatorname{dist}(x / 2)(1 / 2)$ in differentiable＿transform＿within）
have $g 1+++g 2$ differentiable at $(x / 2)$ within $\{0 . .1 / 2\}$
by（rule differentiable＿subset［OF $S[$ of $x / 2]] \mid$ use that in force）＋
then show $g 1+++g 2 \circ(*)$（inverse 2）differentiable at x within $\{0 . .1\}$
using image＿affinity＿atLeastAtMost＿div［of 20 0：：real 1］
by（auto intro：differentiable＿chain＿within）
qed（use that in 〈auto simp：joinpaths＿def〉）
qed
qed
lemma piecewise＿differentiable＿D2：
assumes $(g 1+++g 2)$ piecewise＿differentiable＿on $\{0 . .1\}$ and eq：pathfinish g1
$=$ pathstart g2
shows g2 piecewise＿differentiable＿on $\{0 . .1\}$
proof－
have $[$ simp $]: g 11=g 20$
using eq by（simp add：pathfinish＿def pathstart＿def）
obtain S where cont：continuous＿on $\{0 . .1\} g 2$ and finite S
and $S: \bigwedge x . x \in\{0 . .1\}-S \Longrightarrow g 1+++g 2$ differentiable at x within $\{0 . .1\}$
using assms unfolding piecewise＿differentiable＿on＿def
by（blast dest！：continuous＿on＿joinpaths＿D2）
show ？thesis
unfolding piecewise＿differentiable＿on＿def
proof（intro exI conjI ballI cont）
show finite（insert $0((\lambda x .2 * x-1) ' S))$
by（simp add：〈finite S ）
show g2 differentiable at x within $\{0 . .1\}$ if $x \in\{0 . .1\}-$ insert $0((\lambda x$ ．
$2 * x-1$ ）S ）for x
proof（rule＿tac d＝dist $((x+1) /$ 2）（1／2）in differentiable＿transform＿within）

```
    have x2:}(x+1)/2\not\in
            using that
            apply (clarsimp simp: image_iff)
            by (metis add.commute add_diff_cancel_left' mult_2 field_sum_of_halves)
            have g1 +++ g2 ○ ( }\lambdax.(x+1)/ 2) differentiable at x within {0..1
            by (rule differentiable_chain_within differentiable_subset [OF S [of (x+1)/2]]
| use x2 that in force)+
            then show g1 +++ g2 ○ ( }\lambdax.(x+1)/2) differentiable at x within {0..1
            by (auto intro: differentiable_chain_within)
            show (g1 +++ g2 ○ (\lambdax. (x+1) / 2)) ( 
< dist ((x+1) / 2) (1/2) for }\mp@subsup{x}{}{\prime
            proof -
            have [simp]: (2*x'+2)/2 = 㐌+1
                    by (simp add: field_split_simps)
            show ?thesis
                    using that by (auto simp: joinpaths_def)
        qed
        qed (use that in <auto simp: joinpaths_def`)
    qed
qed
lemma piecewise_C1_differentiable_D1:
    fixes g1 :: real => 'a::real_normed_field
    assumes (g1 +++ g2) piecewise_C1_differentiable_on {0..1}
        shows g1 piecewise_C1_differentiable_on {0..1}
proof -
    obtain S where finite S
                and co12: continuous_on ({0..1} - S) (\lambdax.vector_derivative (g1 +++
g2) (at x))
            and g12D:}\forallx\in{0..1} - S.g1+++ g2 differentiable at x
    using assms by (auto simp: piecewise_C1_differentiable_on_def C1_differentiable_on_eq)
    have g1D:g1 differentiable at x if }x\in{0..1} - insert 1 ((*) 2'S) for x
    proof (rule differentiable_transform_within)
            show g1 +++g2 ○ (*) (inverse 2) differentiable at x
            using that g12D
            apply (simp only: joinpaths_def)
            by (rule differentiable_chain_at derivative_intros \ force)+
            show \\x'. \llbracketdist x' x < dist (x/2) (1/2)\rrbracket
                \Longrightarrow ( g 1 + + + g 2 \circ ( * ) ( i n v e r s e ~ 2 ) ) ~ x ' = g 1 ~ x ' ~
            using that by (auto simp:dist_real_def joinpaths_def)
    qed (use that in <auto simp:dist_real_def`)
    have [simp]: vector_derivative (g1 ○ (*) 2) (at (x/2)) = 2 *R vector_derivative
g1 (at x)
                    if }x\in{0..1}-insert 1 ((*) 2'S) for x
        apply (subst vector_derivative_chain_at)
        using that
        apply (rule derivative_eq_intros g1D | simp)+
        done
    have continuous_on ({0..1/2} - insert (1/2)S) (\lambdax.vector_derivative (g1 +++
```

```
g2) (at x))
    using co12 by (rule continuous_on_subset) force
then have coDhalf:continuous_on ({0..1/2} - insert (1/2)S) ( \lambdax.vector_derivative
(g1\circ(*)2) (at x))
    proof (rule continuous_on_eq [OF _ vector_derivative_at])
        show (g1 +++ g2 has_vector_derivative vector_derivative (g1 ○ (*) 2) (at x))
(at x)
            if }x\in{0..1/2} - insert (1/2)S for x
        proof (rule has_vector_derivative_transform_within)
            show (g1\circ(*) 2 has_vector_derivative vector_derivative (g1 ○ (*) 2) (at x))
(at x)
            using that
                by (force intro: g1D differentiable_chain_at simp: vector_derivative_works
[symmetric])
            show \{\mp@subsup{x}{}{\prime}.\llbracketdist }\mp@subsup{x}{}{\prime}x<\operatorname{dist}x(1/2)\rrbracket\Longrightarrow(g1\circ(*) 2) 和=(g1+++g2) x'
            using that by (auto simp: dist_norm joinpaths_def)
        qed (use that in <auto simp:dist_norm`)
    qed
    have continuous_on ({0..1} - insert 1 ((*) 2'S))
                    ((\lambdax. 1/2 * vector_derivative (g1 ○(*)2) (at x)) ○(*)(1/2))
        apply (rule continuous_intros)+
        using coDhalf
        apply (simp add: scaleR_conv_of_real image_set_diff image_image)
        done
    then have con_g1: continuous_on ({0..1} - insert 1 ((*) 2'S)) ( }\lambda\mathrm{ x. vec-
tor_derivative g1 (at x))
        by (rule continuous_on_eq) (simp add: scaleR_conv_of_real)
    have continuous_on {0..1} g1
        using continuous_on_joinpaths_D1 assms piecewise_C1_differentiable_on_def by
blast
    with 〈finite S\rangle show ?thesis
    apply (clarsimp simp add: piecewise_C1_differentiable_on_def C1_differentiable_on_eq)
        apply (rule_tac x=insert 1 (((*)2)'S) in exI)
        apply (simp add: g1D con_g1)
    done
qed
lemma piecewise_C1_differentiable_D2:
    fixes g2 :: real # 'a::real_normed_field
    assumes (g1 +++ g2) piecewise_C1_differentiable_on {0..1} pathfinish g1=
pathstart g2
        shows g2 piecewise_C1_differentiable_on {0..1}
    proof -
    obtain S where finite S
                            and co12: continuous_on ({0..1} - S) ( }\lambdax.vector_derivative (g1 +++
g2) (at x))
            and g12D: }\forallx\in{0..1}-S.g1+++ g2 differentiable at 
    using assms by (auto simp: piecewise_C1_differentiable_on_def C1_differentiable_on_eq)
    have g2D: g2 differentiable at }x\mathrm{ if }x\in{0..1} - insert 0 (( \lambdax.2*x-1)'S) for
```

 proof (rule differentiable_transform_within)
 show \(g 1+++g_{2} \circ(\lambda x .(x+1) / 2)\) differentiable at \(x\)
 using g12D that
 apply (simp only: joinpaths_def)
 apply (drule_tac \(x=(x+1) / 2\) in bspec, force simp: field_split_simps)
 apply (rule differentiable_chain_at derivative_intros | force)+
 done
 show \(\bigwedge x^{\prime}\). dist \(x^{\prime} x<\operatorname{dist}((x+1) / 2)(1 / 2) \Longrightarrow(g 1+++g 2 \circ(\lambda x .(x+\)
 1) / 2)) $x^{\prime}=g 2 x^{\prime}$
using that by (auto simp: dist_real_def joinpaths_def field_simps)
qed (use that in (auto simp: dist_norm))
have $[$ simp $]$: vector_derivative $(g 2 \circ(\lambda x .2 * x-1))($ at $((x+1) / 2))=2 *_{R}$ vec-
tor_derivative g2 (at x)
if $x \in\{0 . .1\}-$ insert $0((\lambda x .2 * x-1)$ ' $S)$ for x
using that by (auto simp: vector_derivative_chain_at field_split_simps g2D)
have continuous_on (\{1/2..1\}-insert (1/2) S) (λ x. vector_derivative $(g 1+++$
g2) (at $x)$)
using co12 by (rule continuous_on_subset) force
then have coDhalf: continuous_on (\{1/2..1\}-insert (1/2) $S)(\lambda x$. vector_derivative
$(g 2 \circ(\lambda x .2 * x-1))($ at $x))$
proof (rule continuous_on_eq [OF _ vector_derivative_at])
show $(g 1+++g 2$ has_vector_derivative vector_derivative $(g 2 \circ(\lambda x$. $2 * x-$
1)) (at $x)$)
(at x)
if $x \in\{1 / 2 . .1\}-\operatorname{insert}(1 / 2) S$ for x
proof $($ rule_tac $f=g 2 \circ(\lambda x .2 * x-1)$ and $d=\operatorname{dist}(3 / 4)((x+1) / 2)$ in has_vector_derivative_transform.
show $(g 2 \circ(\lambda x .2 * x-1)$ has_vector_derivative vector_derivative $(g 2 \circ(\lambda x$.
$2 * x-1)$) (at $x)$)
(at x)
using that by (force intro: g2D differentiable_chain_at simp: vector_derivative_works
[symmetric])
show $\bigwedge x^{\prime} . \llbracket$ dist $x^{\prime} x<\operatorname{dist}(3 / 4)((x+1) / 2) \rrbracket \Longrightarrow(g 2 \circ(\lambda x .2 * x-$
1)) $x^{\prime}=(g 1+++g 2) x^{\prime}$
using that by (auto simp: dist_norm joinpaths_def add_divide_distrib)
qed (use that in (auto simp: dist_norm))
qed
have $[\operatorname{simp}]:((\lambda x .(x+1) / 2) ‘(\{0 . .1\}-\operatorname{insert} 0((\lambda x .2 * x-1) ‘ S)))=$
(\{1/2..1 $\}-\operatorname{insert}(1 / 2) S)$
apply (simp add: image_set_diff inj_on_def image_image)
apply (auto simp: image_affinity_atLeastAtMost_div add_divide_distrib)
done
have continuous_on (\{0..1\}-insert $0((\lambda x .2 * x-1)$ ' $S)$)
$((\lambda x .1 / 2 *$ vector_derivative $(g 2 \circ(\lambda x .2 * x-1))($ at $x)) \circ(\lambda x$.
$(x+1) / 2))$
by (rule continuous_intros \mid simp add: coDhalf)+
then have con_g2: continuous_on (\{0..1\}-insert $0((\lambda x .2 * x-1)$ ' $S))(\lambda x$.
vector_derivative g2 (at $x)$)
by (rule continuous_on_eq) (simp add: scaleR_conv_of_real)
```
have continuous_on {0..1} g2
    using continuous_on_joinpaths_D2 assms piecewise_C1_differentiable_on_def by
blast
    with\finite S〉 show ?thesis
    apply (clarsimp simp add: piecewise_C1_differentiable_on_def C1_differentiable_on_eq)
        apply (rule_tac x=insert 0 ((\lambdax.2*x - 1)'S) in exI)
        apply (simp add: g2D con_g2)
    done
qed
```


6．50．3 Valid paths，and their start and finish

definition valid＿path ：：（real $\Rightarrow{ }^{\prime} a$ ：：real＿normed＿vector $) \Rightarrow$ bool where valid＿path $f \equiv f$ piecewise＿C1＿differentiable＿on $\{0 . .1:: r e a l\}$
definition closed＿path ：：（real \Rightarrow＇a ：：real＿normed＿vector $) \Rightarrow$ bool where closed＿path $g \equiv g 0=g 1$

In particular，all results for paths apply
lemma valid＿path＿imp＿path：valid＿path $g \Longrightarrow$ path g by（simp add：path＿def piecewise＿C1＿differentiable＿on＿def valid＿path＿def）
lemma connected＿valid＿path＿image：valid＿path $g \Longrightarrow$ connected（path＿image g ）
by（metis connected＿path＿image valid＿path＿imp＿path）
lemma compact＿valid＿path＿image：valid＿path $g \Longrightarrow$ compact（path＿image $g)$
by（metis compact＿path＿image valid＿path＿imp＿path）
lemma bounded＿valid＿path＿image：valid＿path $g \Longrightarrow$ bounded（path＿image g） by（metis bounded＿path＿image valid＿path＿imp＿path）
lemma closed＿valid＿path＿image：valid＿path $g \Longrightarrow$ closed（path＿image g ）
by（metis closed＿path＿image valid＿path＿imp＿path）
lemma valid＿path＿compose：
assumes valid＿path g
and der：$\bigwedge x . x \in$ path＿image $g \Longrightarrow f$ field＿differentiable（at x ）
and con：continuous＿on（path＿image g）（deriv f）
shows valid＿path $(f \circ g)$
proof－
obtain S where finite S and g_{-}diff：g C1＿differentiable＿on $\{0 . .1\}-S$
using 〈valid＿path g 〉 unfolding valid＿path＿def piecewise＿C1＿differentiable＿on＿def
by auto
have $f \circ g$ differentiable at t when $t \in\{0 . .1\}-S$ for t
proof（rule differentiable＿chain＿at）
show g differentiable at t using＜valid＿path g 〉
by（meson C1＿differentiable＿on＿eq〈g C1＿differentiable＿on $\{0 . .1\}-S\rangle$ that） next
have g tepath＿image g using that DiffD1 image＿eqI path＿image＿def by metis

```
            then show f differentiable at (gt)
            using der[THEN field_differentiable_imp_differentiable] by auto
        qed
    moreover have continuous_on ({0..1} - S) (\lambdax.vector_derivative (f\circg)(at
x))
    proof (rule continuous_on_eq [where f}=\lambdax\mathrm{ . vector_derivative g(at x)*deriv
f(gx)],
            rule continuous_intros)
        show continuous_on ({0..1} - S) ( }\lambdax\mathrm{ . vector_derivative g (at x))
            using g_diff C1_differentiable_on_eq by auto
    next
            have continuous_on {0..1} ( }\lambdax\mathrm{ . deriv f ( g x ))
            using continuous_on_compose[OF _ con[unfolded path_image_def],unfolded
comp_def]
                    <valid_path g> piecewise_C1_differentiable_on_def valid_path_def
            by blast
            then show continuous_on ({0..1} - S) ( }\lambdax.\operatorname{deriv}f(gx)
            using continuous_on_subset by blast
        next
            show vector_derivative g(at t)* deriv f (gt)=vector_derivative (f\circg)(at
```

t)
when $t \in\{0 . .1\}-S$ for t
proof (rule vector_derivative_chain_at_general[symmetric])
show g differentiable at t by (meson C1_differentiable_on_eq g_diff that)
next
have g tepath_image g using that DiffD1 image_eqI path_image_def by
metis
then show f field_differentiable at ($g t$) using der by auto
qed
qed
ultimately have $f \circ g$ C1_differentiable_on $\{0 . .1\}-S$
using C1_differentiable_on_eq by blast
moreover have path ($f \circ g$)
apply (rule path_continuous_image[OF valid_path_imp_path[OF 〈valid_path g〉]])
using der
by (simp add: continuous_at_imp_continuous_on field_differentiable_imp_continuous_at)
ultimately show ?thesis unfolding valid_path_def piecewise_C1_differentiable_on_def
path_def
using 〈finite S 〉 by auto
qed
lemma valid_path_uminus_comp[simp]:
fixes $g:: r e a l \Rightarrow$ ' a ::real_normed_field
shows valid_path (uminus $\circ g) \longleftrightarrow$ valid_path g
proof
show valid_path $g \Longrightarrow$ valid_path (uminus $\circ g$) for $g::$ real $\Rightarrow{ }^{\prime} a$
by (auto intro!: valid_path_compose derivative_intros)
then show valid_path g when valid_path (uminus $\circ g$)
by (metis fun.map_comp group_add_class.minus_comp_minus id_comp that)

qed

lemma valid_path_offset[simp]:
shows valid_path $(\lambda t . g t-z) \longleftrightarrow$ valid_path g
proof
show $*$: valid_path $\left(g::\right.$ real $\left.\Rightarrow^{\prime} a\right) \Longrightarrow$ valid_path $(\lambda t . g t-z)$ for $g z$
unfolding valid_path_def
by (fastforce intro:derivative_intros C1_differentiable_imp_piecewise piecewise_C1_differentiable_diff)
show valid_path $(\lambda t . g t-z) \Longrightarrow$ valid_path g using $*[$ of $\lambda t . g t-z-z$, simplified $]$.
qed
lemma valid_path_imp_reverse:
assumes valid_path g
shows valid_path(reversepath g)
proof -
obtain S where finite S and $S: g$ C1_differentiable_on $(\{0 . .1\}-S)$
using assms by (auto simp: valid_path_def piecewise_C1_differentiable_on_def)
then have finite $((-) 1$ ' S)
by auto
moreover have (reversepath g C1_differentiable_on (\{0..1\}-(-) 1'S))
unfolding reversepath_def
apply (rule C1_differentiable_compose [of $\lambda x::$ real. $1-x{ }_{-} g$, unfolded o_def]) using S
by (force simp: finite_vimageI inj_on_def C1_differentiable_on_eq elim!: continu-
ous_on_subset)+
ultimately show ?thesis using assms
by (auto simp: valid_path_def piecewise_C1_differentiable_on_def path_def [symmetric])
qed
lemma valid_path_reversepath [simp]: valid_path(reversepath $g) \longleftrightarrow$ valid_path g using valid_path_imp_reverse by force
lemma valid_path_join:
assumes valid_path g1 valid_path g2 pathfinish g1 = pathstart g2
shows valid_path (g1 +++ g2)
proof -
have g1 $1=g 20$
using assms by (auto simp: pathfinish_def pathstart_def)
moreover have $(g 1 \circ(\lambda x .2 * x))$ piecewise_C1_differentiable_on $\{0 . .1 / 2\}$
apply (rule piecewise_C1_differentiable_compose)
using assms
apply (auto simp: valid_path_def piecewise_C1_differentiable_on_def continu-
ous_on_joinpaths)
apply (force intro: finite_vimageI [where $h=(*)$ D] inj_onI)
done
moreover have ($g 2 \circ(\lambda x .2 * x-1)$) piecewise_C1_differentiable_on $\{1 / 2 . .1\}$
apply (rule piecewise_C1_differentiable_compose)
using assms unfolding valid_path_def piecewise_C1_differentiable_on_def
by (auto intro!: continuous_intros finite_vimageI [where $h=(\lambda x .2 * x-1)]$ inj_onI
simp: image_affinity_atLeastAtMost_diff continuous_on_joinpaths)
ultimately show ?thesis
apply (simp only: valid_path_def continuous_on_joinpaths joinpaths_def)
apply (rule piecewise_C1_differentiable_cases)
apply (auto simp: o_def)
done
qed
lemma valid_path_join_D1:
fixes $g 1$:: real $\Rightarrow{ }^{\prime} a:$:real_normed_field
shows valid_path $(g 1+++g 2) \Longrightarrow$ valid_path $g 1$
unfolding valid_path_def
by (rule piecewise_C1_differentiable_D1)
lemma valid_path_join_D2:
fixes $g 2$:: real $\Rightarrow{ }^{\prime} a$:: real_normed_field
shows $\llbracket v a l i d _p a t h ~(g 1+++g 2) ;$ pathfinish $g 1=$ pathstart $g 2 \rrbracket \Longrightarrow$ valid_path $g 2$
unfolding valid_path_def
by (rule piecewise_C1_differentiable_D2)
lemma valid_path_join_eq [simp]:
fixes $g 2$:: real $\Rightarrow{ }^{\prime} a::$ real_normed_field
shows pathfinish $g 1=$ pathstart $g 2 \Longrightarrow$ (valid_path $(g 1+++g 2) \longleftrightarrow$ valid_path
g1 \wedge valid_path g2)
using valid_path_join_D1 valid_path_join_D2 valid_path_join by blast
lemma valid_path_shiftpath [intro]:
assumes valid_path g pathfinish $g=$ pathstart $g a \in\{0 . .1\}$
shows valid_path(shiftpath a g)
using assms
apply (auto simp: valid_path_def shiftpath_alt_def)
apply (rule piecewise_C1_differentiable_cases)
apply (auto simp: algebra_simps)
apply (rule piecewise_C1_differentiable_affine [of g 1 a, simplified o_def scaleR_one])
apply (auto simp: pathfinish_def pathstart_def elim: piecewise_C1_differentiable_on_subset)
apply (rule piecewise_C1_differentiable_affine [of g 1 a-1, simplified o_def scale R_{-}one algebra_simps])
apply (auto simp: pathfinish_def pathstart_def elim: piecewise_C1_differentiable_on_subset)
done
lemma vector_derivative_linepath_within:
$x \in\{0 . .1\} \Longrightarrow$ vector_derivative (linepath $a b)($ at x within $\{0 . .1\})=b-a$
apply (rule vector_derivative_within_cbox [of 01 ::real, simplified])
apply (auto simp: has_vector_derivative_linepath_within)
done
lemma vector_derivative_linepath_at [simp]: vector_derivative (linepath ab) (at x)

```
= b-a
    by (simp add: has_vector_derivative_linepath_within vector_derivative_at)
lemma valid_path_linepath [iff]: valid_path (linepath a b)
    apply (simp add: valid_path_def piecewise_C1_differentiable_on_def C1_differentiable_on_eq
continuous_on_linepath)
    apply (rule_tac x={} in exI)
    apply (simp add: differentiable_on_def differentiable_def)
    using has_vector_derivative_def has_vector_derivative_linepath_within
    apply (fastforce simp add: continuous_on_eq_continuous_within)
    done
lemma valid_path_subpath:
    fixes g :: real # ' }a\mathrm{ :: real_normed_vector
    assumes valid_path g u \in{0..1} v\in{0..1}
        shows valid_path(subpath uvg)
proof (cases v=u)
    case True
    then show ?thesis
        unfolding valid_path_def subpath_def
        by (force intro:C1_differentiable_on_const C1_differentiable_imp_piecewise)
next
    case False
    have (g\circ (\lambdax. ((v-u)*x+u))) piecewise_C1_differentiable_on {0..1}
        apply (rule piecewise_C1_differentiable_compose)
        apply (simp add: C1_differentiable_imp_piecewise)
        apply (simp add: image_affinity_atLeastAtMost)
        using assms False
    apply (auto simp: algebra_simps valid_path_def piecewise_C1_differentiable_on_subset)
        apply (subst Int_commute)
        apply (auto simp: inj_on_def algebra_simps crossproduct_eq finite_vimage_IntI)
        done
    then show ?thesis
        by (auto simp: o_def valid_path_def subpath_def)
qed
lemma valid_path_rectpath [simp, intro]: valid_path (rectpath a b)
    by (simp add: Let_def rectpath_def)
end
```


6.51 Neighbourhood bases and Locally path-connected spaces

theory Locally
imports
Path_Connected Function_Topology
begin

6.51.1 Neighbourhood Bases

Useful for "local" properties of various kinds
definition neighbourhood_base_at where
neighbourhood_base_at $x P X \equiv$
$\forall W$. openin $X W \wedge x \in W$

$$
\longrightarrow(\exists U V . \text { openin } X U \wedge P V \wedge x \in U \wedge U \subseteq V \wedge V \subseteq W)
$$

definition neighbourhood_base_of where
neighbourhood_base_of P X \equiv $\forall x \in$ topspace X. neighbourhood_base_at $x P X$
lemma neighbourhood_base_of:
neighbourhood_base_of $P X \longleftrightarrow$
$(\forall W x$. openin $X W \wedge x \in W$
$\longrightarrow(\exists U V$. openin $X U \wedge P V \wedge x \in U \wedge U \subseteq V \wedge V \subseteq W))$
unfolding neighbourhood_base_at_def neighbourhood_base_of_def
using openin_subset by blast
lemma neighbourhood_base_at_mono:
$\llbracket n e i g h b o u r h o o d _b a s e _a t x P \quad X ; \bigwedge S . \llbracket P S ; x \in S \rrbracket \Longrightarrow Q S \rrbracket \Longrightarrow$ neighbour-
hood_base_at x Q X
unfolding neighbourhood_base_at_def
by (meson subset_eq)
lemma neighbourhood_base_of_mono:
$\llbracket n e i g h b o u r h o o d _b a s e _o f ~ P X ; ~ \bigwedge S . P S \Longrightarrow Q S \rrbracket \Longrightarrow$ neighbourhood_base_of $Q X$ unfolding neighbourhood_base_of_def
using neighbourhood_base_at_mono by force
lemma open_neighbourhood_base_at:
$(\bigwedge S . \llbracket P S ; x \in S \rrbracket \Longrightarrow$ openin $X S)$
\Longrightarrow neighbourhood_base_at $x P X \longleftrightarrow(\forall W$. openin $X W \wedge x \in W \longrightarrow$
$(\exists U . P U \wedge x \in U \wedge U \subseteq W))$
unfolding neighbourhood_base_at_def
by (meson subsetD)
lemma open_neighbourhood_base_of:
$(\forall S . P S \longrightarrow$ openin $X S$)
\Longrightarrow neighbourhood_base_of $P X \longleftrightarrow(\forall W$ x. openin $X W \wedge x \in W \longrightarrow$
$(\exists U . P U \wedge x \in U \wedge U \subseteq W))$
apply (simp add: neighbourhood_base_of, safe, blast)
by meson
lemma neighbourhood_base_of_open_subset:
$\llbracket n e i g h b o u r h o o d _b a s e _o f ~ P ~ X ; ~ o p e n i n ~ X ~ S \rrbracket ~$
\Longrightarrow neighbourhood_base_of P (subtopology X S)
apply (clarsimp simp add: neighbourhood_base_of openin_subtopology_alt image_def)
apply (rename_tac x V)

```
apply (drule_tac \(x=S \cap V\) in spec)
apply (simp add: Int_ac)
by (metis IntI le_infI1 openin_Int)
lemma neighbourhood_base_of_topology_base:
openin \(X=\) arbitrary union_of \((\lambda W . W \in \mathcal{B})\)
\(\Longrightarrow\) neighbourhood_base_of \(P X \longleftrightarrow\)
\((\forall W x . W \in \mathcal{B} \wedge x \in W \longrightarrow(\exists U V\). openin \(X U \wedge P V \wedge x \in U \wedge\)
\(U \subseteq V \wedge V \subseteq W))\)
apply (auto simp: openin_topology_base_unique neighbourhood_base_of)
by (meson subset_trans)
```

lemma neighbourhood_base_at_unlocalized:
assumes $\bigwedge S T . \llbracket P S ;$ openin $X T ; x \in T ; T \subseteq S \rrbracket \Longrightarrow P T$
shows neighbourhood_base_at x P X
$\longleftrightarrow(x \in$ topspace $X \longrightarrow(\exists U V$. openin $X U \wedge P V \wedge x \in U \wedge U \subseteq V \wedge$
$V \subseteq$ topspace $X)$)
(is ? lhs =? $r h s$)
proof
assume R : ?rhs show ?lhs unfolding neighbourhood_base_at_def
proof clarify
fix W
assume openin $X W x \in W$
then have $x \in$ topspace X
using openin_subset by blast
with R obtain $U V$ where openin $X U P V x \in U U \subseteq V V \subseteq$ topspace X by blast
then show $\exists U V$. openin $X U \wedge P V \wedge x \in U \wedge U \subseteq V \wedge V \subseteq W$
by (metis IntI 〈openin $X W\rangle\langle x \in W\rangle$ assms inf_le1 inf_le2 openin_Int)
qed
qed (simp add: neighbourhood_base_at_def)
lemma neighbourhood_base_at_with_subset:
\llbracket openin $X U ; x \in U \rrbracket$
\Longrightarrow (neighbourhood_base_at $x P X \longleftrightarrow$ neighbourhood_base_at $x(\lambda T . T \subseteq$
$U \wedge P T) X)$
apply (simp add: neighbourhood_base_at_def)
apply (metis IntI Int_subset_iff openin_Int)
done
lemma neighbourhood_base_of_with_subset:
neighbourhood_base_of $P X \longleftrightarrow$ neighbourhood_base_of $(\lambda t . t \subseteq$ topspace $X \wedge P$
t) X
using neighbourhood_base_at_with_subset
by (fastforce simp add: neighbourhood_base_of_def)

6.51.2 Locally path-connected spaces

definition weakly_locally_path_connected_at
where weakly_locally_path_connected_at $x X \equiv$ neighbourhood_base_at x (path_connectedin X) X
definition locally_path_connected_at where locally_path_connected_at x X neighbourhood_base_at $x(\lambda U$. openin $X U \wedge$ path_connectedin $X U) X$
definition locally_path_connected_space
where locally_path_connected_space $X \equiv$ neighbourhood_base_of (path_connectedin X) X
lemma locally_path_connected_space_alt:
locally_path_connected_space $X \longleftrightarrow$ neighbourhood_base_of $(\lambda U$. openin $X U \wedge$ path_connectedin $X U) X$
(is ? $P=? Q$)
and locally_path_connected_space_eq_open_path_component_of:
locally_path_connected_space $X \longleftrightarrow$
($\forall U$ x. openin $X U \wedge x \in U \longrightarrow$ openin X (Collect (path_component_of
(subtopology $X U) x)$))
(is ? $P=? R$)
proof -
have ?P if ? Q
using locally_path_connected_space_def neighbourhood_base_of_mono that by auto
moreover have ? R if P : ? P
proof -
show ?thesis
proof clarify
fix $U y$
assume openin $X U y \in U$
have $\exists T$. openin $X T \wedge x \in T \wedge T \subseteq$ Collect (path_component_of (subtopology $X U) y$)
if path_component_of (subtopology $X U$) y x for x
proof -
have $x \in U$
using path_component_of_equiv that topspace_subtopology by fastforce
then have \exists Ua. openin $X U a \wedge(\exists V$. path_connectedin $X V \wedge x \in U a \wedge$ $U a \subseteq V \wedge V \subseteq U)$
using P
by (simp add: <openin X U 〉 locally_path_connected_space_def neighbourhood_base_of)
then show ?thesis
by (metis dual_order.trans path_component_of_equiv path_component_of_maximal path_connectedin_subtopology subset_iff that)
qed
then show openin X (Collect (path_component_of (subtopology X U) y))
using openin_subopen by force
qed
qed
moreover have ?Q if ?R
using that
apply (simp add: open_neighbourhood_base_of)
by (metis mem_Collect_eq openin_subset path_component_of_refl path_connectedin_path_component_of path_connectedin_subtopology that topspace_subtopology_subset)
ultimately show ? $P=? Q ? P=? R$
by blast+
qed
lemma locally_path_connected_space:
locally_path_connected_space X
$\longleftrightarrow(\forall V x$. openin $X V \wedge x \in V \longrightarrow(\exists U$. openin $X U \wedge$ path_connectedin X
$U \wedge x \in U \wedge U \subseteq V))$
by (simp add: locally_path_connected_space_alt open_neighbourhood_base_of)
lemma locally_path_connected_space_open_path_components:
locally_path_connected_space $X \longleftrightarrow$
$(\forall U$ c. openin $X U \wedge c \in$ path_components_of(subtopology $X U) \longrightarrow$ openin
X c)
apply (auto simp: locally_path_connected_space_eq_open_path_component_of path_components_of_def)
by (metis imageI inf.absorb_iff2 openin_closedin_eq)
lemma openin_path_component_of_locally_path_connected_space:
locally_path_connected_space $X \Longrightarrow$ openin X (Collect (path_component_of X x))
apply (auto simp: locally_path_connected_space_eq_open_path_component_of)
by (metis openin_empty openin_topspace path_component_of_eq_empty subtopol-
ogy_topspace)
lemma openin_path_components_of_locally_path_connected_space:
【locally_path_connected_space $X ; c \in$ path_components_of $X \rrbracket \Longrightarrow$ openin $X c$
apply (auto simp: locally_path_connected_space_eq_open_path_component_of)
by (metis (no_types, lifting) imageE openin_topspace path_components_of_def subtopol-
ogy_topspace)
lemma closedin_path_components_of_locally_path_connected_space:
$\llbracket l o c a l l y _p a t h _c o n n e c t e d _s p a c e ~ X ; c \in$ path_components_of $X \rrbracket \Longrightarrow$ closedin $X c$
by (simp add: closedin_def complement_path_components_of_Union openin_path_components_of_locally_path_connecte openin_clauses(3) path_components_of_subset)
lemma closedin_path_component_of_locally_path_connected_space:
assumes locally_path_connected_space X
shows closedin X (Collect (path_component_of $X x)$)
proof (cases $x \in$ topspace X)
case True
then show ?thesis
by (simp add: assms closedin_path_components_of_locally_path_connected_space
path_component_in_path_components_of)

```
next
    case False
    then show ?thesis
        by (metis closedin_empty path_component_of_eq_empty)
qed
lemma weakly_locally_path_connected_at:
    weakly_locally_path_connected_at x X \longleftrightarrow
        ( }\forallV\mathrm{ . openin }XV\wedgex\in
                \longrightarrow ( \exists U . ~ o p e n i n ~ X ~ U \wedge x \in U \wedge U \subseteq V \wedge
                        (\forally\inU.\existsC. path_connectedin }XC\wedgeC\subseteqV\wedgex\inC\wedgey\inC))
            (is ?lhs = ?rhs)
proof
    assume ?lhs then show ?rhs
    apply (simp add: weakly_locally_path_connected_at_def neighbourhood_base_at_def)
        by (meson order_trans subsetD)
next
    have *: \existsV. path_connectedin X V ^U\subseteqV^V\subseteqW
        if (\forally\inU.\existsC. path_connectedin }XC\wedgeC\subseteqW\wedgex\inC\wedgey\inC
        for }W
    proof (intro exI conjI)
        let ?V = (Collect (path_component_of (subtopology X W) x))
            show path_connectedin X (Collect (path_component_of (subtopology X W) x))
            by (meson path_connectedin_path_component_of path_connectedin_subtopology)
            show U\subseteq??V
                    by (auto simp: path_component_of path_connectedin_subtopology that)
            show ?V \subseteq W
            by (meson path_connectedin_path_component_of path_connectedin_subtopology)
        qed
    assume ?rhs
    then show ?lhs
        unfolding weakly_locally_path_connected_at_def neighbourhood_base_at_def by
(metis *)
qed
lemma locally_path_connected_space_im_kleinen:
    locally_path_connected_space X \longleftrightarrow
        (}\forallVx.openin X V ^x\inV
                    \longrightarrow(\existsU. openin X U ^
                        x\inU\wedgeU\subseteqV^
                        (\forally\inU.\existsc. path_connectedin X c ^
                        c\subseteqV\wedgex\inc^y\inc)))
        apply (simp add: locally_path_connected_space_def neighbourhood_base_of_def)
        apply (simp add: weakly_locally_path_connected_at flip: weakly_locally_path_connected_at_def)
        using openin_subset apply force
        done
```

lemma locally_path_connected_space_open_subset:
【locally_path_connected_space X; openin X s】
\Longrightarrow locally_path_connected_space (subtopology X s)
apply (simp add: locally_path_connected_space_def neighbourhood_base_of openin_open_subtopology path_connectedin_subtopology)
by (meson order_trans)
lemma locally_path_connected_space_quotient_map_image:
assumes f : quotient_map $X Y f$ and X : locally_path_connected_space X
shows locally_path_connected_space Y
unfolding locally_path_connected_space_open_path_components
proof clarify
fix $V C$
assume V : openin $Y V$ and $c: C \in$ path_components_of (subtopology $Y V$)
then have sub: $C \subseteq$ topspace Y
using path_connectedin_path_components_of path_connectedin_subset_topspace
path_connectedin_subtopology by blast
have openin $X\{x \in$ topspace $X . f x \in C\}$
proof (subst openin_subopen, clarify)
fix x
assume $x: x \in$ topspace X and $f x \in C$
let ? $T=$ Collect (path_component_of (subtopology $X\{z \in$ topspace $X . f z \in$
V\}) x)
show $\exists T$. openin $X T \wedge x \in T \wedge T \subseteq\{x \in$ topspace $X . f x \in C\}$
proof (intro exI conjI)
have $\exists U$. openin $X U \wedge$? $T \in$ path_components_of (subtopology $X U$)
proof (intro exI conjI)
show openin $X(\{z \in$ topspace $X . f z \in V\})$
using V f openin_subset quotient_map_def by fastforce
show Collect (path_component_of (subtopology $X\{z \in$ topspace X. $f z \in$
V\}) x)
\in path_components_of (subtopology $X\{z \in$ topspace $X . f z \in V\})$
by (metis (no_types, lifting) Int_iff $\langle f x \in C\rangle c$ mem_Collect_eq path_component_in_path_components_of
path_components_of_subset topspace_subtopology topspace_subtopology_subset x)
qed
with X show openin X ?T
using locally_path_connected_space_open_path_components by blast
show $x: x \in$? T
using $V\langle f x \in C\rangle$ c openin_subset path_component_of_equiv path_components_of_subset
topspace_subtopology topspace_subtopology_subset x
by fastforce
have f '? $T \subseteq C$
proof (rule path_components_of_maximal)
show $C \in$ path_components_of (subtopology Y V)
by (simp add: c)
show path_connectedin (subtopology $Y V)(f$ '?T)
proof -
have quotient_map (subtopology $X\{a \in$ topspace $X . f a \in V\}$) (subtopology
$Y V) f$
by (simp add: V f quotient_map_restriction)
then show?thesis
by (meson path_connectedin_continuous_map_image path_connectedin_path_component_of quotient_imp_continuous_map)
qed
show \neg disjnt C (f ‘? $T)$
by (metis (no_types, lifting) $\langle f x \in C\rangle x$ disjnt_iff image_eqI)

qed

then show ? $T \subseteq\{x \in$ topspace $X . f x \in C\}$
by (force simp: path_component_of_equiv)
qed
qed
then show openin $Y C$
using f sub by (simp add: quotient_map_def)
qed
lemma homeomorphic_locally_path_connected_space:
assumes X homeomorphic_space Y
shows locally_path_connected_space $X \longleftrightarrow$ locally_path_connected_space Y
proof -
obtain $f g$ where homeomorphic_maps $X Y f g$
using assms homeomorphic_space_def by fastforce
then show ?thesis
by (metis (no_types) homeomorphic_map_def homeomorphic_maps_map locally_path_connected_space_qu qed
lemma locally_path_connected_space_retraction_map_image:
【retraction_map X Y r; locally_path_connected_space X】
\Longrightarrow locally_path_connected_space Y
using Abstract_Topology.retraction_imp_quotient_map locally_path_connected_space_quotient_map_image by blast
lemma locally_path_connected_space_euclideanreal: locally_path_connected_space euclideanreal
unfolding locally_path_connected_space_def neighbourhood_base_of
proof clarsimp
fix W and x :: real
assume open $W x \in W$
then obtain e where $e>0$ and $e: \bigwedge x^{\prime} .\left|x^{\prime}-x\right|<e \longrightarrow x^{\prime} \in W$
by (auto simp: open_real)
then show $\exists U$. open $U \wedge(\exists V$. path_connected $V \wedge x \in U \wedge U \subseteq V \wedge V \subseteq$ W)
by (force intro!: convex_imp_path_connected exI [where $x=\{x-e<. .<x+e\}]$)
qed
lemma locally_path_connected_space_discrete_topology:
locally_path_connected_space (discrete_topology U)
using locally_path_connected_space_open_path_components by fastforce
lemma path_component_eq_connected_component_of:
assumes locally_path_connected_space X
shows (path_component_of_set $X x=$ connected_component_of_set $X x$)

```
proof (cases x topspace X)
    case True
    then show ?thesis
        using connectedin_connected_component_of [of X x]
    apply (clarsimp simp add: connectedin_def connected_space_clopen_in topspace_subtopology_subset
cong: conj_cong)
            apply (drule_tac x=path_component_of_set X x in spec)
            by (metis assms closedin_closed_subtopology closedin_connected_component_of
closedin_path_component_of_locally_path_connected_space inf.absorb_iff2 inf.orderE
openin_path_component_of_locally_path_connected_space openin_subtopology path_component_of_eq_empty
path_component_subset_connected_component_of)
next
    case False
    then show ?thesis
    using connected_component_of_eq_empty path_component_of_eq_empty by fastforce
qed
```

lemma path_components_eq_connected_components_of:
locally_path_connected_space $X \Longrightarrow$ (path_components_of $X=$ connected_components_of
X)
by (simp add: path_components_of_def connected_components_of_def image_def
path_component_eq_connected_component_of)
lemma path_connected_eq_connected_space:
locally_path_connected_space X
\Longrightarrow path_connected_space $X \longleftrightarrow$ connected_space X
by (metis connected_components_of_subset_sing path_components_eq_connected_components_of
path_components_of_subset_singleton)
lemma locally_path_connected_space_product_topology:
locally_path_connected_space $($ product_topology X I) \longleftrightarrow
topspace $($ product_topology $X I)=\{ \} \vee$
finite $\{i . i \in I \wedge \sim$ path_connected_space $(X i)\} \wedge$
($\forall i \in I$. locally_path_connected_space $(X i))$
(is ?lhs \longleftrightarrow ? empty \vee ? $r h s$)
proof (cases ?empty)
case True
then show? thesis
by (simp add: locally_path_connected_space_def neighbourhood_base_of openin_closedin_eq)
next
case False
then obtain z where $z: z \in\left(\Pi_{E} i \in I\right.$. topspace $\binom{X}{i}$
by auto
have ?rhs if L : ?lhs
proof -
obtain $U C$ where U : openin (product_topology X I) U
and V: path_connectedin (product_topology X I) C
and $z \in U U \subseteq C$ and Csub: $C \subseteq\left(\Pi_{E} i \in I\right.$. topspace $\left.(X i)\right)$
using L apply (clarsimp simp add: locally_path_connected_space_def neigh-
bourhood_base_of)
by (metis openin_topspace topspace_product_topology z)
then obtain V where fin V : finite $\{i \in I . V i \neq$ topspace $(X i)\}$
and $X V: \wedge i . i \in I \Longrightarrow$ openin $(X i)(V i)$ and $z \in P i_{E} I V$ and subU: $P i_{E}$
$I V \subseteq U$
by (force simp: openin_product_topology_alt)
show ? thesis
proof (intro conjI ballI)
have path_connected_space ($X i$) if $i \in I V i=$ topspace $(X i)$ for i
proof -
have pc: path_connectedin $\binom{X}{i}((\lambda x . x i)$ ' $C)$
apply (rule path_connectedin_continuous_map_image [OF _ V])
by (simp add: continuous_map_product_projection $\langle i \in I\rangle$)
moreover have $((\lambda x . x i) \cdot C)=$ topspace $(X i)$
proof
show $(\lambda x . x i)$ ' $C \subseteq$ topspace $(X i)$
by (simp add: pc path_connectedin_subset_topspace)
have $V i \subseteq(\lambda x . x i)$ ' $\left(\Pi_{E} i \in I . V i\right)$
by (metis ${ }^{\prime} z \in P i_{E} I V$ empty_iff image_projection_PiE order_refl that(1))
also have $\ldots \subseteq(\lambda x . x i)$ ' U
using subU by blast
finally show topspace $(X i) \subseteq(\lambda x . x i)$ ' C
using $\langle U \subseteq C\rangle$ that by blast
qed
ultimately show ?thesis
by (simp add: path_connectedin_topspace)
qed
then have $\{i \in I . \neg$ path_connected_space $(X i)\} \subseteq\{i \in I . V i \neq$ topspace (X i) $\}$
by blast
with fin V show finite $\left\{i \in I\right.$. \neg path_connected_space ($\begin{array}{l}\text { i } i)\}\end{array}$
using finite_subset by blast
next
show locally_path_connected_space ($X i$) if $i \in I$ for i
apply (rule locally_path_connected_space_quotient_map_image [OF _ L, where $f=\lambda x . x i])$
by (metis False Abstract_Topology.retraction_imp_quotient_map retrac-
tion_map_product_projection that)
qed
qed
moreover have ?lhs if R : ? rhs
proof (clarsimp simp add: locally_path_connected_space_def neighbourhood_base_of) fix $F z$
assume openin (product_topology $X I$) F and $z \in F$
then obtain W where finW: finite $\{i \in I . W i \neq$ topspace $(X i)\}$
and ope $W: \wedge i . i \in I \Longrightarrow$ openin $(X i)(W i)$ and $z \in P i_{E} I W P i_{E} I$
$W \subseteq F$
by (auto simp: openin_product_topology_alt)
have $\forall i \in I$. ヨUC. openin (X i) $U \wedge$ path_connectedin $(X i) C \wedge z i \in U \wedge$

```
U\subseteqC^C\subseteqWi^
                                    (Wi= topspace (X i)^
                                    path_connected_space (X i) \longrightarrowU= topspace (Xi)^C=
topspace (X i))
            (is }\foralli\inI.?\Phi i
    proof
        fix i assume i\inI
        have locally_path_connected_space (X i)
        by (simp add: R <i \inI`)
    moreover have openin (Xi) (Wi) zi\inWi
        using <z \inPi\mp@subsup{i}{E}{}IW\rangle\mathrm{ ope W <i }\\I`\mathrm{ by auto}
    ultimately obtain UC where UC: openin (X i) U path_connectedin ( }\begin{array}{l}{X}
Czi\inUU\subseteqCC\subseteqWi
            using <i \inI\rangle by (force simp:locally_path_connected_space_def neighbour-
hood_base_of)
    show ?\Phi i
    proof (cases Wi=topspace (X i)^ path_connected_space (X i))
        case True
        then show ?thesis
            using <z i G W i` path_connectedin_topspace by blast
    next
        case False
        then show ?thesis
            by (meson UC)
        qed
    qed
    then obtain UC where
        *: \bigwedgei.i\inI\Longrightarrowopenin (X i) (U i)^ path_connectedin (X i) (Ci)^zi\in
(Ui)\wedge(Ui)\subseteq(Ci)\wedge(Ci)\subseteqWi^
                                    (Wi = topspace (X i)^ path_connected_space (X i)
                                    \longrightarrow ( U ~ ) ~ = ~ t o p s p a c e ~ ( X ~ i ) \wedge ( C i ) = ~ t o p s p a c e ~ ( X ~ i ) )
        by metis
    let ?A={i\inI.\neg path_connected_space (Xi)}\cup{i\inI.W i\not= topspace (X
i)}
    have {i\inI.U i\not= topspace (Xi)}\subseteq?A
        by (clarsimp simp add:*)
    moreover have finite ?A
        by (simp add: that finW)
    ultimately have finite {i\inI.Ui\not= topspace (Xi)}
        using finite_subset by auto
    then have openin (product_topology XI) (P\mp@subsup{i}{E}{}IU)
        using * by (simp add: openin_PiE_gen)
    then show }\existsU\mathrm{ . openin (product_topology X I) U^
        (\existsV. path_connectedin (product_topology XI) V}\wedgez\inU\wedgeU\subseteqV
V\subseteqF)
    apply (rule_tac x=PiE I U in exI, simp)
    apply (rule_tac x=PiE I C in exI)
    using <z \inPi\mp@subsup{i}{E}{}IW\rangle\langleP\mp@subsup{i}{E}{}IW\subseteqF\rangle*
    apply (simp add: path_connectedin_PiE subset_PiE PiE_iff PiE_mono dual_order.trans)
```

```
        done
    qed
    ultimately show ?thesis
        using False by blast
qed
end
```


6.52 Euclidean space and n-spheres, as subtopologies of \mathbf{n}-dimensional space

theory Abstract_Euclidean_Space
imports Homotopy Locally
begin

6.52.1 Euclidean spaces as abstract topologies

```
definition Euclidean_space :: nat \(\Rightarrow\) (nat \(\Rightarrow\) real \()\) topology
    where Euclidean_space \(n \equiv\) subtopology (powertop_real UNIV) \(\{x . \forall i \geq n . x i=\)
\(0\}\)
lemma topspace_Euclidean_space:
    topspace \((\) Euclidean_space \(n)=\{x . \forall i \geq n . x i=0\}\)
    by (simp add: Euclidean_space_def)
lemma nonempty_Euclidean_space: topspace(Euclidean_space \(n\) ) \(\neq\{ \}\)
    by (force simp: topspace_Euclidean_space)
lemma subset_Euclidean_space [simp]:
    topspace \((\) Euclidean_space \(m) \subseteq\) topspace \((\) Euclidean_space \(n) \longleftrightarrow m \leq n\)
    apply (simp add: topspace_Euclidean_space subset_iff, safe)
    apply (drule_tac \(x=(\lambda i\). if \(i<m\) then 1 else 0\()\) in spec)
    apply auto
    using not_less by fastforce
lemma topspace_Euclidean_space_alt:
    topspace \((\) Euclidean_space \(n)=(\bigcap i \in\{n .\} ..\{x . x \in\) topspace(powertop_real
UNIV) \(\wedge x i \in\{0\}\})\)
    by (auto simp: topspace_Euclidean_space)
lemma closedin_Euclidean_space:
    closedin (powertop_real UNIV) (topspace(Euclidean_space n))
proof -
    have closedin (powertop_real UNIV) \(\{x . x i=0\}\) if \(n \leq i\) for \(i\)
    proof -
        have closedin (powertop_real UNIV) \(\{x \in\) topspace (powertop_real UNIV). \(x i\)
\(\in\{0\}\}\)
    proof (rule closedin_continuous_map_preimage)
```

```
        show continuous_map (powertop_real UNIV) euclideanreal ( }\lambdax.x i
            by (metis UNIV_I continuous_map_product_coordinates)
        show closedin euclideanreal {0}
        by simp
    qed
    then show ?thesis
        by auto
    qed
    then show ?thesis
    unfolding topspace_Euclidean_space_alt
    by force
qed
lemma closedin_Euclidean_imp_closed: closedin (Euclidean_space m)S\Longrightarrowclosed
S
    by (metis Euclidean_space_def closed_closedin closedin_Euclidean_space closedin_closed_subtopology
euclidean_product_topology topspace_Euclidean_space)
lemma closedin_Euclidean_space_iff:
    closedin (Euclidean_space m)S\longleftrightarrow closed S\wedgeS\subseteq topspace (Euclidean_space
m)
    (is ?lhs \longleftrightarrow ?rhs)
proof
    show ?lhs \Longrightarrow? ?rhs
        using closedin_closed_subtopology topspace_Euclidean_space
        by (fastforce simp: topspace_Euclidean_space_alt closedin_Euclidean_imp_closed)
    show ?rhs \Longrightarrow ?lhs
    apply (simp add: closedin_subtopology Euclidean_space_def)
        by (metis (no_types) closed_closedin euclidean_product_topology inf.orderE)
qed
lemma continuous_map_componentwise_Euclidean_space:
    continuous_map X (Euclidean_space n)}(\lambdaxi.\mathrm{ if }i<n\mathrm{ then fx i else 0) }
    (\foralli<n.continuous_map X euclideanreal ( }\lambdax.fxi)
proof -
    have *: continuous_map X euclideanreal ( }\lambdax\mathrm{ . if }k<n\mathrm{ then f x k else 0)
        if \i. i<n \Longrightarrow continuous_map X euclideanreal ( }\lambdax.fxi)\mathrm{ for k
        by (intro continuous_intros that)
    show ?thesis
        unfolding Euclidean_space_def continuous_map_in_subtopology
            by (fastforce simp: continuous_map_componentwise_UNIV * elim: continu-
ous_map_eq)
qed
lemma continuous_map_Euclidean_space_add [continuous_intros]:
\(\llbracket\) continuous_map \(X\) (Euclidean_space \(n) f\); continuous_map \(X\) (Euclidean_space
n) \(g \rrbracket\)
\(\Longrightarrow\) continuous_map \(X(\) Euclidean_space \(n)(\lambda x i . f x i+g x i)\)
unfolding Euclidean_space_def continuous_map_in_subtopology
```

by (fastforce simp add: continuous_map_componentwise_UNIV continuous_map_add)
lemma continuous_map_Euclidean_space_diff [continuous_intros]:
\llbracket continuous_map X (Euclidean_space n) f; continuous_map X (Euclidean_space
n) g 】
\Longrightarrow continuous_map $X($ Euclidean_space $n)(\lambda x i . f x i-g x i)$
unfolding Euclidean_space_def continuous_map_in_subtopology
by (fastforce simp add: continuous_map_componentwise_UNIV continuous_map_diff)
lemma continuous_map_Euclidean_space_iff:
continuous_map (Euclidean_space m) euclidean g
$=$ continuous_on (topspace (Euclidean_space m)) g
proof
assume continuous_map (Euclidean_space m) euclidean g
then have continuous_map (top_of_set $\{f . \forall n \geq m . f n=0\}$) euclidean g by (simp add: Euclidean_space_def euclidean_product_topology)
then show continuous_on (topspace (Euclidean_space m)) g
by (metis continuous_map_subtopology_eu subtopology_topspace topspace_Euclidean_space)
next
assume continuous_on (topspace (Euclidean_space m)) g
then have continuous_map (top_of_set $\{f . \forall n \geq m . f n=0\}$) euclidean g
by (metis (lifting) continuous_map_into_fulltopology continuous_map_subtopology_eu order_refl topspace_Euclidean_space)
then show continuous_map (Euclidean_space m) euclidean g
by (simp add: Euclidean_space_def euclidean_product_topology)
qed
lemma cm_Euclidean_space_iff_continuous_on:
continuous_map (subtopology (Euclidean_space m) S) (Euclidean_space n) f \longleftrightarrow continuous_on (topspace (subtopology (Euclidean_space m) S)) $f \wedge$
$f^{\prime}($ topspace $($ subtopology $($ Euclidean_space m) $S)) \subseteq$ topspace (Euclidean_space
n)
(is ? $P \longleftrightarrow ? Q \wedge ? R$)
proof -
have ? Q if ?P
proof -
have $\bigwedge n$. Euclidean_space $n=t o p_{-} o f_{-}$set $\{f . \forall m \geq n$. f $m=0\}$
by (simp add: Euclidean_space_def euclidean_product_topology)
with that show ?thesis
by (simp add: subtopology_subtopology)
qed
moreover
have ? R if ? P
using that by (simp add: image_subset_iff continuous_map_def)
moreover
have ? P if ? Q ? R
proof -
have continuous_map (top_of_set (topspace (subtopology (subtopology (powertop_real UNIV) $\{f . \forall n \geq m . f n=0\}) S$)) (top_of_set (topspace (subtopology (powertop_real

```
UNIV) \(\{f . \forall n a \geq n . f n a=0\}))) f\)
            using Euclidean_space_def that by auto
        then show?thesis
        by (simp add: Euclidean_space_def euclidean_product_topology subtopology_subtopology)
    qed
    ultimately show ?thesis
    by auto
qed
lemma homeomorphic_Euclidean_space_product_topology:
    Euclidean_space \(n\) homeomorphic_space product_topology ( \(\lambda\) i. euclideanreal) \(\{. .<n\}\)
proof -
    have cm: continuous_map (product_topology ( \(\lambda\) i. euclideanreal) \(\{. .<n\}\) )
                euclideanreal ( \(\lambda x\). if \(k<n\) then \(x\) kelse 0 ) for \(k\)
        by (auto intro: continuous_map_if continuous_map_product_projection)
    show ?thesis
        unfolding homeomorphic_space_def homeomorphic_maps_def
        apply (rule_tac \(x=\lambda f\). restrict \(f\{. .<n\}\) in exI)
        apply (rule_tac \(x=\lambda f i\). if \(i<n\) then \(f i\) else 0 in exI)
        apply (simp add: Euclidean_space_def continuous_map_in_subtopology)
        apply (intro conjI continuous_map_from_subtopology)
        apply (force simp: continuous_map_componentwise cm intro: continuous_map_product_projection)+
        done
qed
lemma contractible_Euclidean_space [simp]: contractible_space (Euclidean_space n)
    using homeomorphic_Euclidean_space_product_topology contractible_space_euclideanreal
        contractible_space_product_topology homeomorphic_space_contractibility by blast
lemma path_connected_Euclidean_space: path_connected_space (Euclidean_space n)
    by (simp add: contractible_imp_path_connected_space)
lemma connected_Euclidean_space: connected_space (Euclidean_space n)
    by (simp add: contractible_imp_connected_space)
lemma locally_path_connected_Euclidean_space:
    locally_path_connected_space (Euclidean_space n)
    apply (simp add: homeomorphic_locally_path_connected_space [OF homeomor-
phic_Euclidean_space_product_topology [of n]]
                            locally_path_connected_space_product_topology)
    using locally_path_connected_space_euclideanreal by auto
lemma compact_Euclidean_space:
    compact_space (Euclidean_space \(n\) ) \(\longleftrightarrow n=0\)
    by (auto simp: homeomorphic_compact_space [OF homeomorphic_Euclidean_space_product_topology]
compact_space_product_topology)
```


6.52.2 n-dimensional spheres

definition nsphere where
nsphere $n \equiv$ subtopology $($ Euclidean_space $($ Suc $n))\left\{x .\left(\sum i \leq n . x{ }^{\text {^ }}\right.\right.$ 2) $\left.)=1\right\}$
lemma nsphere:
nsphere $n=$ subtopology (powertop_real UNIV)
$\left\{x .\left(\sum i \leq n . x i^{\wedge} \mathcal{Z}\right)=1 \wedge(\forall i>n . x i=0)\right\}$
by (simp add: nsphere_def Euclidean_space_def subtopology_subtopology Suc_le_eq Collect_conj_eq Int_commute)
lemma continuous_map_nsphere_projection: continuous_map (nsphere n) euclideanreal $(\lambda x . x k)$
unfolding nsphere
by (blast intro: continuous_map_from_subtopology [OF continuous_map_product_projection])
lemma in_topspace_nsphere: $(\lambda n$. if $n=0$ then 1 else 0$) \in$ topspace (nsphere n)
by (simp add: nsphere_def topspace_Euclidean_space power2_eq_square if_distrib [where $f=\lambda x . x *$ _] cong: if_cong)
lemma nonempty_nsphere $[$ simp $]: \sim($ topspace $($ nsphere $n)=\{ \})$
using in_topspace_nsphere by auto
lemma subtopology_nsphere_equator:
subtopology (nsphere $($ Suc $n))\{x . x($ Suc $n)=0\}=$ nsphere n
proof -
have $\left(\left\{x .\left(\sum i \leq n .(x i)^{2}\right)+(x(\text { Suc } n))^{2}=1 \wedge(\forall i>\right.\right.$ Suc n. x $\left.i=0)\right\} \cap\{x . x$
(Suc n) $=0\}$) $=\left\{x .\left(\sum i \leq n .(x i)^{2}\right)=1 \wedge(\forall i>n . x i=(0::\right.$ real $\left.))\right\}$
using Suc_lessI [of n] by (fastforce simp: set_eq_iff)
then show ?thesis
by (simp add: nsphere subtopology_subtopology)
qed
lemma topspace_nsphere_minus1:
assumes $x: x \in$ topspace (nsphere n) and $x n=0$
shows $x \in$ topspace (nsphere $(n-$ Suc 0$)$)
proof (cases $n=0$)
case True
then show ?thesis
using x by auto
next
case False
have subt_eq: nsphere $(n-$ Suc 0$)=$ subtopology $($ nsphere $n)\{x . x n=0\}$
by (metis False Suc_pred le_zero_eq not_le subtopology_nsphere_equator)
with x show ?thesis
by (simp add: assms)
qed
lemma continuous_map_nsphere_reflection:

```
    continuous_map (nsphere \(n)(n s p h e r e ~ n)(\lambda x i\). if \(i=k\) then \(-x\) i else \(x i)\)
proof -
    have cm: continuous_map (powertop_real UNIV) euclideanreal ( \(\lambda x\). if \(j=k\) then
- \(x j\) else \(x j\) ) for \(j\)
    proof (cases \(j=k\) )
    case True
    then show ?thesis
        by simp (metis UNIV_I continuous_map_product_projection)
    next
    case False
    then show ?thesis
        by (auto intro: continuous_map_product_projection)
    qed
    have eq: (if \(i=k\) then \(x k * x\) k else \(x i * x i)=x i * x i\) for \(i\) and \(x::\) nat \(\Rightarrow\)
real
    by \(\operatorname{simp}\)
    show ?thesis
    apply (simp add: nsphere continuous_map_in_subtopology continuous_map_componentwise_UNIV
                    continuous_map_from_subtopology cm)
    apply (intro conjI allI impI continuous_intros continuous_map_from_subtopology
continuous_map_product_projection)
            apply (auto simp: power2_eq_square if_distrib [where \(f=\lambda x . x *\) ] eq cong:
\(i f\) _cong)
    done
qed
```

proposition contractible_space_upper_hemisphere:
assumes $k \leq n$
shows contractible_space(subtopology (nsphere n) $\{x . x k \geq 0\}$)
proof -
define $p:$ nat \Rightarrow real where $p \equiv \lambda i$. if $i=k$ then 1 else 0
have $p \in$ topspace (n sphere n)
using assms
by (simp add: nsphere $p_{\text {_ }}$ def power2_eq_square if_distrib [where $f=\lambda x . x *$ _]
cong: if_cong)
let ? $g=\lambda x i . x i / \operatorname{sqrt}\left(\sum j \leq n . x j^{\wedge}\right.$ 2)
let $? h=\lambda(t, q) i .(1-t) * q i+t * p i$
let ? $Y=$ subtopology $($ Euclidean_space $($ Suc $n))\{x .0 \leq x k \wedge(\exists i \leq n . x i \neq 0)\}$
have continuous_map (prod_topology (top_of_set \{0..1\}) (subtopology (nsphere n)
$\{x .0 \leq x k\})$)
(subtopology (nsphere $n)\{x .0 \leq x k\})(? g \circ ? h)$
proof (rule continuous_map_compose)
have $*: \llbracket 0 \leq b k ;\left(\sum i \leq n .(b i)^{2}\right)=1 ; \forall i>n . b i=0 ; 0 \leq a ; a \leq 1 \rrbracket$
$\Longrightarrow \exists \bar{i} .(i=k \longrightarrow(1-a) * b k+a \neq 0) \wedge$
$(i \neq k \longrightarrow i \leq n \wedge a \neq 1 \wedge b i \neq 0)$ for $a::$ real and b
apply (cases $a \neq 1 \wedge b k=0$; simp)
apply (metis (no_types, lifting) atMost_iff sum.neutral zero_power2)
by (metis add.commute add_le_same_cancel2 diff_ge_0_iff_ge diff_zero less_eq_real_def
mult_eq_0_iff mult_nonneg_nonneg not_le numeral_One zero_neq_numeral)
show continuous_map (prod_topology (top_of_set \{0..1\}) (subtopology (nsphere
n) $\{x .0 \leq x k\})$)? Y ? h using assms
apply (auto simp: * nsphere continuous_map_componentwise_UNIV
prod_topology_subtopology subtopology_subtopology case_prod_unfold continuous_map_in_subtopology Euclidean_space_def p_def if_distrib
[where $\left.f=\lambda x ._{-} * x\right]$ cong: if_cong)
apply (intro continuous_map_prod_snd continuous_intros continuous_map_from_subtopology)
apply auto
done
next
have $1: \bigwedge x i . \llbracket i \leq n ; x i \neq 0 \rrbracket \Longrightarrow\left(\sum i \leq n .\left(x i / \operatorname{sqrt}\left(\sum j \leq n .(x j)^{2}\right)\right)^{2}\right)=$
1
by (force simp: sum_nonneg sum_nonneg_eq_0_iff field_split_simps simp flip:
sum_divide_distrib)
have cm: continuous_map ? Y (nsphere n) $\left(\lambda x i . x i / \operatorname{sqrt}\left(\sum j \leq n .(x j)^{2}\right)\right)$
unfolding Euclidean_space_def nsphere subtopology_subtopology continuous_map_in_subtopology
proof (intro continuous_intros conjI)
show continuous_map
(subtopology (powertop_real UNIV) $(\{x . \forall i \geq$ Suc $n . x i=0\} \cap\{x .0$
$\leq x k \wedge(\exists i \leq n . x i \neq 0)\}))$
(powertop_real UNIV) (λ x i. x i / sqrt $\left.\left(\sum j \leq n .(x j)^{2}\right)\right)$
unfolding continuous_map_componentwise
by (intro continuous_intros conjI ballI) (auto simp: sum_nonneg_eq_0_iff)
qed (auto simp: 1)
show continuous_map ?Y (subtopology (nsphere $n)\{x .0 \leq x k\})(\lambda x i . x i /$ $\left.\operatorname{sqrt}\left(\sum j \leq n .(x j)^{2}\right)\right)$
by (force simp: cm sum_nonneg continuous_map_in_subtopology if_distrib
[where $\left.f=\lambda x ._{-} * x\right]$ cong: if_cong)
qed
moreover have $(? g \circ ? h)(0, x)=x$
if $x \in$ topspace (subtopology (nsphere n) $\{x .0 \leq x k\}$) for x
using that
by (simp add: assms nsphere)
moreover
have $(? g \circ ? h)(1, x)=p$
if $x \in$ topspace (subtopology (nsphere n) $\{x .0 \leq x k\}$) for x
by (force simp: assms p_def power2_eq_square if_distrib [where $f=\lambda x . x *$ _]
cong: if_cong)
ultimately
show ?thesis
apply (simp add: contractible_space_def homotopic_with)
apply (rule_tac $x=p$ in $e x I$)
apply (rule_tac $x=? g \circ ? h$ in exI, force)
done
qed

```
corollary contractible_space_lower_hemisphere:
    assumes k\leqn
    shows contractible_space(subtopology (nsphere n) {x.x k\leq0})
proof -
    have contractible_space (subtopology (nsphere n) {x.0\leqxk})=?thesis
    proof (rule homeomorphic_space_contractibility)
        show subtopology (nsphere n) {x.0\leqx k} homeomorphic_space subtopology
(nsphere n) {x. x k\leq0}
        unfolding homeomorphic_space_def homeomorphic_maps_def
        apply (rule_tac x=\lambdax i. if i=k then -(x i) else x i in exI)+
        apply (auto simp: continuous_map_in_subtopology continuous_map_from_subtopology
                                    continuous_map_nsphere_reflection)
        done
    qed
    then show ?thesis
        using contractible_space_upper_hemisphere [OF assms] by metis
qed
proposition nullhomotopic_nonsurjective_sphere_map:
    assumes f:continuous_map (nsphere p) (nsphere p) f
        and fim: f'(topspace(nsphere p)) = topspace(nsphere p)
    obtains a where homotopic_with ( }\lambdax\mathrm{ . True) (nsphere p) (nsphere p) f( }\lambdax.a
proof -
    obtain a where a: a \in topspace(nsphere p) a\not\inf`(topspace(nsphere p))
        using fim continuous_map_image_subset_topspace f by blast
```



```
        by (simp_all add: nsphere)
    have f1:(\sumj\leqp.(fxj)}\mp@subsup{)}{}{2})=1\mathrm{ if }x\in\mathrm{ topspace (nsphere p) for }
    proof -
        have fx\in topspace (nsphere p)
            using continuous_map_image_subset_topspace f that by blast
        then show ?thesis
            by (simp add: nsphere)
    qed
    show thesis
    proof
        let ?g = \lambdax i. x i / sqrt(\sumj\leqp.xj ^ 2)
        let ?h = \lambda(t,x) i. (1-t)*fxi-t*ai
        let ?Y = subtopology (Euclidean_space(Suc p)) (-{\lambdai.0})
        let ?T01 = top_of_set {0..1::real}
        have 1: continuous_map (prod_topology ?T01 (nsphere p)) (nsphere p) (?g o
?h)
    proof (rule continuous_map_compose)
        have continuous_map (prod_topology ?T01 (nsphere p)) euclideanreal (( }\lambdax.
xk)\circ snd) for }
            unfolding nsphere
            apply (simp add: continuous_map_of_snd)
            apply (rule continuous_map_compose [of _ nsphere p f, unfolded o_def])
```

using f apply (simp add: nsphere)
by (simp add: continuous_map_nsphere_projection)
then have continuous_map (prod_topology ?T01 (nsphere p)) euclideanreal (λr. ? $h r k$)
for k
unfolding case_prod_unfold o_def
by (intro continuous_map_into_fulltopology [OF continuous_map_fst] continuous_intros) auto
moreover have $? h^{\prime}(\{0 . .1\} \times$ topspace $($ nsphere $p)) \subseteq\{x . \forall i \geq$ Suc $p . x i$ $=0\}$
using continuous_map_image_subset_topspace [OF f]
by (auto simp: nsphere image_subset_iff a0)
moreover have $(\lambda i .0) \notin ? h '(\{0 . .1\} \times$ topspace $($ nsphere $p))$
proof clarify
fix $t b$
assume eq: $(\lambda i .0)=(\lambda i .(1-t) * f b i-t * a i)$ and $t \in\{0 . .1\}$ and $b: b \in$ topspace (nsphere p)
have $(1-t)^{2}=\left(\sum i \leq p .((1-t) * f b i)^{\wedge} 2\right)$
using $f 1$ [OF b] by (simp add: power_mult_distrib flip: sum_distrib_left)
also have $\ldots=\left(\sum i \leq p .(t * a i)^{\wedge} \mathcal{Z}\right)$
using eq by (simp add: fun_eq_iff)
also have $\ldots=t^{2}$
using a1 by (simp add: power_mult_distrib flip: sum_distrib_left)
finally have $1-t=t$
by (simp add: power2_eq_iff)
then have $*: t=1 / 2$
by simp
have $f b a$: $f b \neq a$
using a (2) b by blast
then show False
using eq unfolding * by (simp add: fun_eq_iff)
qed
ultimately show continuous_map (prod_topology ?T01 (nsphere p)) ?Y ?h
by (simp add: Euclidean_space_def continuous_map_in_subtopology continuous_map_componentwise_UNIV)

next

have $*: \llbracket \forall i \geq$ Suc $p . x i=0 ; x \neq(\lambda i .0) \rrbracket \Longrightarrow\left(\sum j \leq p .(x j)^{2}\right) \neq 0$ for $x::$ nat \Rightarrow real
by (force simp: fun_eq_iff not_less_eq_eq sum_nonneg_eq_0_iff)
show continuous_map?Y (nsphere p) ?g
apply (simp add: Euclidean_space_def continuous_map_in_subtopology continuous_map_componentwise_UNIV
nsphere continuous_map_componentwise subtopology_subtopology)
apply (intro conjI allI continuous_intros continuous_map_from_subtopology [OF continuous_map_product_projection])
apply (simp_all add: *)
apply (force simp: sum_nonneg fun_eq_iff not_less_eq_eq sum_nonneg_eq_0_iff power_divide simp flip: sum_divide_distrib)

done

```
    qed
    have 2:(?g\circ?h) (0,x)=fx if x topspace (nsphere p) for x
        using that f1 by simp
    have 3:(?g\circ?h) (1,x)=(\lambdai. - a i) for x
        using a by (force simp: field_split_simps nsphere)
    then show homotopic_with ( }\lambdax\mathrm{ . True) (nsphere p) (nsphere p) f ( }\lambdax.(\lambdai.
a i))
    by (force simp: homotopic_with intro: 1 2 3)
    qed
qed
lemma Hausdorff_Euclidean_space:
    Hausdorff_space (Euclidean_space n)
    unfolding Euclidean_space_def
    by (rule Hausdorff_space_subtopology) (metis Hausdorff_space_euclidean Haus-
dorff_space_product_topology)
end
```


6.53 Metrics on product spaces

```
theory Function_Metric
    imports
        Function_Topology
        Elementary_Metric_Spaces
begin
```

In general, the product topology is not metrizable, unless the index set is countable. When the index set is countable, essentially any (convergent) combination of the metrics on the factors will do. We use below the simplest one, based on L^{1}, but L^{2} would also work, for instance.

What is not completely trivial is that the distance thus defined induces the same topology as the product topology. This is what we have to prove to show that we have an instance of metric_space.
The proofs below would work verbatim for general countable products of metric spaces. However, since distances are only implemented in terms of type classes, we only develop the theory for countable products of the same space.
instantiation fun :: (countable, metric_space) metric_space
begin
definition dist_fun_def:

```
dist x y = (\sumn.(1/2)^ n* min (dist (x (from_nat n)) (y(from_nat n))) 1)
```

definition uniformity_fun_def:
(uniformity: :(('a $\left.\left.\boldsymbol{\prime}^{\prime} b\right) \times\left({ }^{\prime} a \Rightarrow{ }^{\prime} b\right)\right)$ filter $)=($ INF $e \in\{0<.$.$\} . principal \{(x, y)$. $\left.\left.\operatorname{dist}\left(x::\left({ }^{\prime} a \Rightarrow{ }^{\prime} b\right)\right) y<e\right\}\right)$

Except for the first one, the auxiliary lemmas below are only useful when proving the instance: once it is proved, they become trivial consequences of the general theory of metric spaces. It would thus be desirable to hide them once the instance is proved, but I do not know how to do this.

```
lemma dist_fun_le_dist_first_terms:
    dist \(x y \leq 2 * \operatorname{Max}\{\operatorname{dist}(x(\) from_nat \(n))(y(\) from_nat \(n)) \mid n . n \leq N\}+(1 / 2)^{\wedge} N\)
proof -
    have \(\left(\sum n .(1 / 2) \wedge(n+S u c N) * \min (\operatorname{dist}(x(\right.\) from_nat \((n+S u c N)))(y\)
(from_nat \((n+S u c N)))\) ) 1)
        \(=\left(\sum n .(1 / 2){ }^{\wedge}(S u c N) *((1 / 2) \wedge n * \min (\right.\) dist \((x\) (from_nat \((n+S u c\)
\(N))(y(\) from_nat \((n+\) Suc \(N)))) 1))\)
        by (rule suminf_cong, simp add: power_add)
    also have \(\ldots=(1 / 2)^{\wedge}(\) Suc \(N) *\left(\sum n .(1 / 2)\right)^{\wedge} n * \min\) (dist ( \(x\) (from_nat
\((n+\) Suc \(N)))(y(\) from_nat \((n+S u c N)))) 1)\)
        apply (rule suminf_mult)
    by (rule summable_comparison_test' \(\left[\right.\) of \(\left.\lambda n .(1 / 2)^{\wedge} n\right]\), auto simp add: summable_geometric_iff)
    also have \(\ldots \leq(1 / 2)^{\wedge}(\) Suc \(N) *\left(\sum n .(1 / 2){ }^{\wedge} n\right)\)
        apply (simp, rule suminf_le, simp)
    by (rule summable_comparison_test' \([\) of \(\lambda n\). (1/2) \(n]\), auto simp add: summable_geometric_iff)
    also have \(\ldots=(1 / 2)^{\wedge}(\) Suc \(N) * 2\)
        using suminf_geometric[of 1/2] by auto
    also have \(\ldots=(1 / 2)^{\wedge} N\)
        by auto
    finally have *: \(\left(\sum n .(1 / 2){ }^{\wedge}(n+S u c N) * \min\right.\) (dist (x (from_nat ( \(n+\) Suc
\(N))(y(\) from_nat \((n+\) Suc \(N)))) 1) \leq(1 / 2)^{\wedge} N\)
        by \(\operatorname{simp}\)
    define \(M\) where \(M=\operatorname{Max}\left\{\operatorname{dist}(x(\right.\) from_nat \(\left.n))\left(y\left(f r o m \_n a t ~ n\right)\right) \mid n . n \leq N\right\}\)
    have dist \((x\) (from_nat 0)) \((y(\) from_nat 0) \() \leq M\)
        unfolding \(M_{-}\)def by (rule Max_ge, auto)
    then have \([\) simp \(]: M \geq 0\) by (meson dual_order.trans zero_le_dist)
    have dist \((x(\) from_nat \(n))(y(\) from_nat \(n)) \leq M\) if \(n \leq N\) for \(n\)
        unfolding M_def apply (rule Max_ge) using that by auto
    then have \(i: \min (\operatorname{dist}(x(\) from_nat \(n))(y(\) from_nat \(n))) 1 \leq M\) if \(n \leq N\) for
\(n\)
        using that by force
    have \(\left(\sum n<\operatorname{Suc} N .(1 / 2)^{\wedge} n * \min \left(\operatorname{dist}(x(\right.\right.\) from_nat \(\left.n))\left(y\left(f r o m \_n a t n\right)\right)\right)\)
1) \(\leq\)
        ( \(\sum n<\) Suc N. M \(\left.~(1 / 2)^{\wedge} n\right)\)
        by (rule sum_mono, simp add: i)
    also have \(\ldots=M *\left(\sum n<\right.\) Suc \(\left.N .(1 / 2){ }^{\wedge} n\right)\)
        by (rule sum_distrib_left[symmetric])
    also have \(\ldots \leq M *\left(\sum n .(1 / 2)^{\wedge} n\right)\)
    by (rule mult_left_mono, rule sum_le_suminf, auto simp add: summable_geometric_iff)
    also have \(\ldots=M * 2\)
        using suminf_geometric[of 1/2] by auto
    finally have \(* *:\left(\sum n<\operatorname{Suc} N .(1 / 2) \wedge n * \min (\right.\) dist \((x\) (from_nat \(n))(y\)
\((\) from_nat \(n))) 1) \leq 2 * M\)
        by \(\operatorname{simp}\)
```

have dist $x y=\left(\sum n .(1 / 2){ }^{\wedge} n * \min (\operatorname{dist}(x(\right.$ from＿nat $n))(y$（from＿nat n）））1）
unfolding dist＿fun＿def by simp
also have $\ldots=\left(\sum n .(1 / 2){ }^{\wedge}(n+S u c N) * \min\right.$（dist（ x（from＿nat（ $n+$ Suc
$N))(y($ from＿nat $(n+S u c N)))) 1)$

$$
+\left(\sum n<\operatorname{Suc} N .(1 / 2)^{\wedge} n * \min (\text { dist }(x(\text { from_nat } n))(y\right.
$$

（from＿nat n）））1）
apply（rule suminf＿split＿initial＿segment）
by（rule summable＿comparison＿test＇［of λn ．（1／2）n n］，auto simp add：summable＿geometric＿iff）
also have $\ldots \leq 2 * M+(1 / 2)^{\wedge} N$
using $* * *$ by auto
finally show ？thesis unfolding M_{-}def by simp
qed
lemma open＿fun＿contains＿ball＿aux：
assumes open $\left(U::\left(\left({ }^{\prime} a \Rightarrow\right.\right.\right.$＇$\left.b\right)$ set $\left.)\right)$

$$
x \in U
$$

shows $\exists e>0 .\{y$ ．dist $x y<e\} \subseteq U$
proof－
have＊：openin（product＿topology（ λi ．euclidean）UNIV）U
using open＿fun＿def assms by auto
obtain X where $H: P i_{E}$ UNIV $X \subseteq U$
\i．openin euclidean（ $X i$ ）
finite $\{i . X i \neq$ topspace euclidean $\}$
$x \in P i_{E}$ UNIV X
using product＿topology＿open＿contains＿basis $[O F *\langle x \in U\rangle]$ by auto
define I where $I=\{i . X i \neq$ topspace euclidean $\}$
have finite I unfolding I_{-}def using $H(3)$ by auto
\｛
fix i
have $x i \in X i$ using $\langle x \in U\rangle H$ by auto
then have $\exists e . e>0 \wedge$ ball $(x i) e \subseteq X i$
using «openin euclidean（ X i）〉open＿openin open＿contains＿ball by blast
then obtain e where $e>0$ ball（ $x i$ ）$e \subseteq X i$ by blast
define f where $f=\min e(1 / 2)$
have $f>0 f<1$ unfolding f_{-}def using $\langle e>0\rangle$ by auto
moreover have ball（ $x i$ ）$f \subseteq X i$ unfolding f_{-}def using 〈ball（ $x i$ ）$e \subseteq X$ i〉
by auto
ultimately have $\exists f . f>0 \wedge f<1 \wedge$ ball $(x i) f \subseteq X i$ by auto
\} note $*=$ this
have $\exists e . \forall i . e i>0 \wedge e i<1 \wedge \operatorname{ball}(x i)(e i) \subseteq X i$
by（rule choice，auto simp add：＊）
then obtain e where $\bigwedge i . e i>0 \bigwedge i . e i<1 \bigwedge i . b a l l(x i)(e i) \subseteq X i$
by blast
define m where $m=\operatorname{Min}\left\{(1 / 2)^{\wedge}(\right.$ to＿nat $\left.i) * e i \mid i . i \in I\right\}$
have $m>0$ if $I \neq\{ \}$
unfolding $m_{_}$def Min＿gr＿iff using \langlefinite $I\rangle\langle I \neq\{ \}\rangle\langle\bigwedge i$ ．e $i>0\rangle$ by auto
moreover have $\{y$ ．dist $x y<m\} \subseteq U$
proof (auto)
fix y assume dist $x y<m$
have $y i \in X i$ if $i \in I$ for i
proof -
have $*$: summable $\left(\lambda n .(1 / 2) \wedge n * \min \left(\operatorname{dist}\left(x\left(f r o m _n a t ~ n\right)\right)(y\right.\right.$ (from_nat
n))) 1)
by (rule summable_comparison_test' $\left[\right.$ of λn. (1/2) $\left.{ }^{\wedge} n\right]$, auto simp add:
summable_geometric_iff)
define n where $n=$ to_nat i
have $(1 / 2) \wedge n * \min \left(\operatorname{dist}(x(\right.$ from_nat $\left.n))\left(y\left(f r o m _n a t ~ n\right)\right)\right) 1<m$
using \langle dist x y $<m\rangle$ unfolding dist_fun_def using sum_le_suminf[OF *,
of $\{n\}]$ by auto
then have $(1 / 2)^{\wedge}($ to_nat $i) * \min (\operatorname{dist}(x i)(y i)) 1<m$
using $\langle n=$ to_nat $i\rangle$ by auto
also have $\ldots \leq(1 / 2)^{\wedge}($ to_nat $i) * e i$
unfolding m_def apply (rule Min_le) using $\langle f i n i t e ~ I\rangle\langle i \in I\rangle$ by auto
ultimately have $\min (\operatorname{dist}(x i)(y i)) 1<e i$
by (auto simp add: field_split_simps)
then have dist $(x i)(y i)<e i$
using (e $i<1$ 〉 by auto
then show $y i \in X i$ using $\langle b a l l(x i)(e i) \subseteq X i\rangle$ by auto
qed
then have $y \in P i_{E}$ UNIV X using $H(1)$ unfolding $I_{-} d e f$ topspace_euclidean
by (auto simp add: PiE_iff)
then show $y \in U$ using $\left\langle P i_{E} U N I V X \subseteq U\right\rangle$ by auto
qed
ultimately have $*: \exists m>0 .\{y$. dist $x y<m\} \subseteq U$ if $I \neq\{ \}$ using that by
auto
have $U=U N I V$ if $I=\{ \}$
using that $H(1)$ unfolding $I_{-} d e f$ topspace_euclidean by (auto simp add:
PiE_iff)
then have $\exists m>0 .\{y$. dist $x y<m\} \subseteq U$ if $I=\{ \}$ using that zero_less_one
by blast
then show $\exists m>0 .\{y$. dist $x y<m\} \subseteq U$ using $*$ by blast
qed
lemma ball_fun_contains_open_aux:
fixes $x::\left({ }^{\prime} a \Rightarrow{ }^{\prime} b\right)$ and $e::$ real
assumes $e>0$
shows $\exists U$. open $U \wedge x \in U \wedge U \subseteq\{y$. dist $x y<e\}$
proof -
have $\exists N::$ nat. $2^{\wedge} N>8 / e$
by (simp add: real_arch_pow)
then obtain N :: nat where $2^{\wedge} N>8 / e$ by auto
define f where $f=e / 4$
have [simp]: e>0f>0 unfolding f_{-}def using assms by auto
define $X::\left({ }^{\prime} a \Rightarrow\right.$ ' b set $)$ where $X=(\lambda i$. if $(\exists n \leq N . i=$ from_nat $n)$ then $\{z$.
dist $(x i) z<f\}$ else UNIV)

```
have \(\{i . X i \neq U N I V\} \subseteq\) from_nat \(\{0 . . N\}\)
    unfolding \(X_{-} d e f\) by auto
then have finite \(\{i . X i \neq\) topspace euclidean \(\}\)
    unfolding topspace_euclidean using finite_surj by blast
have \(\bigwedge i\). open \((X i)\)
    unfolding \(X_{\text {_def }}\) using metric_space_class.open_ball open_UNIV by auto
then have \(\bigwedge i\). openin euclidean \((X i)\)
    using open_openin by auto
define \(U\) where \(U=P i_{E}\) UNIV \(X\)
have open \(U\)
    unfolding open_fun_def product_topology_def apply (rule topology_generated_by_Basis)
    unfolding \(U \_\)def using 〈 \(\backslash i\). openin euclidean \(\left.(X i)\right\rangle\langle f i n i t e\{i . X i \neq t o p s p a c e\)
euclidean\})
    by auto
    moreover have \(x \in U\)
        unfolding \(U \_d e f X_{-} d e f\) by (auto simp add: PiE_iff)
    moreover have dist \(x y<e\) if \(y \in U\) for \(y\)
    proof -
        have \(*\) : dist \((x(\) from_nat \(n))(y(\) from_nat \(n)) \leq f\) if \(n \leq N\) for \(n\)
        using \(\langle y \in U\rangle\) unfolding \(U_{-}\)def apply (auto simp add: PiE_iff)
        unfolding \(X_{-}\)def using that by (metis less_imp_le mem_Collect_eq)
    have **: Max \(\{\) dist \((x\) (from_nat \(\left.n))\left(y\left(f r o m \_n a t ~ n\right)\right) \mid n . n \leq N\right\} \leq f\)
        apply (rule Max.boundedI) using * by auto
    have dist \(x y \leq 2 * \operatorname{Max}\left\{\operatorname{dist}(x(\right.\) from_nat \(\left.n))\left(y\left(f r o m \_n a t ~ n\right)\right) \mid n . n \leq N\right\}\)
\(+(1 / 2)^{\wedge} N\)
        by (rule dist_fun_le_dist_first_terms)
    also have \(\ldots \leq 2 * f+e / 8\)
    apply (rule add_mono) using \(* *\left\langle 2^{\wedge} N>8 / e\right\rangle \mathbf{b y}(\) auto simp add: field_split_simps)
    also have \(\ldots \leq e / 2+e / 8\)
        unfolding \(f_{-}\)def by auto
    also have ... \(<e\)
        by auto
    finally show dist \(x y<e\) by simp
    qed
    ultimately show ?thesis by auto
qed
lemma fun_open_ball_aux:
    fixes \(U::\left({ }^{\prime} a \Rightarrow\right.\) ' \(b\) ) set
    shows open \(U \longleftrightarrow(\forall x \in U . \exists e>0 . \forall y\). dist \(x y<e \longrightarrow y \in U)\)
proof (auto)
    assume open \(U\)
    fix \(x\) assume \(x \in U\)
    then show \(\exists e>0 . \forall y\). dist \(x y<e \longrightarrow y \in U\)
        using open_fun_contains_ball_aux[OF \(\langle\) open \(U\rangle\langle x \in U\rangle\) ] by auto
next
    assume \(H: \forall x \in U . \exists e>0 . \forall y\). dist \(x y<e \longrightarrow y \in U\)
    define \(K\) where \(K=\{V\). open \(V \wedge V \subseteq U\}\)
```

```
    {
        fix }x\mathrm{ assume }x\in
        then obtain e where e: e>0{y. dist x y<e}\subseteqU using H by blast
        then obtain V where V: open V }\\inVV\subseteq{y.dist x y<e
            using ball_fun_contains_open_aux[OF \langlee>0\rangle, of x] by auto
        have V}\in
            unfolding K_def using e(2) V(1) V(3) by auto
        then have }x\in(\bigcupK)\mathrm{ using }\langlex\inV\rangle\mathrm{ by auto
    }
    then have }(\cupK)=
        unfolding K_def by auto
    moreover have open ( UK)
        unfolding K_def by auto
    ultimately show open U by simp
qed
instance proof
    fix x y::'a m 'b show (dist x y = 0) = (x=y)
    proof
        assume }x=
        then show dist x y = 0 unfolding dist_fun_def using \langlex = y> by auto
    next
        assume dist x y = 0
        have *: summable (\lambdan.(1/2)^ n * min (dist (x (from_nat n)) (y (from_nat n)))
1)
    by (rule summable_comparison_test'[of \lambdan.(1/2) ^n], auto simp add: summable_geometric_iff)
    have (1/2) ^ n * min (dist (x (from_nat n)) (y (from_nat n))) 1 = 0 for n
        using 〈dist x y = 0` unfolding dist_fun_def by (simp add:* suminf_eq_zero_iff)
        then have dist (x (from_nat n)) (y(from_nat n))=0 for }
            by (metis div_0 min_def nonzero_mult_div_cancel_left power_eq_0_iff
                zero_eq_1_divide_iff zero_neq_numeral)
        then have }x(\mathrm{ from_nat n) = y(from_nat n) for }
            by auto
        then have xi=yi for i
            by (metis from_nat_to_nat)
        then show }x=
        by auto
    qed
next
```

The proof of the triangular inequality is trivial, modulo the fact that we are dealing with infinite series, hence we should justify the convergence at each step. In this respect, the following simplification rule is extremely handy.
have $[$ simp $]$: summable $\left(\lambda n .(1 / \mathcal{Z}) \wedge n * \min \left(\operatorname{dist}\left(u\left(f r o m _n a t ~ n\right)\right)\left(v\left(f r o m _n a t\right.\right.\right.\right.$ n))) 1) for $u v::^{\prime} a \Rightarrow$ ' b
by (rule summable_comparison_test ${ }^{\prime}\left[\right.$ of $\left.\lambda n .(1 / 2)^{\wedge} n\right]$, auto simp add: summable_geometric_iff)
fix x y $z::^{\prime} a \Rightarrow$ ' b
\{
fix n
have $*$: dist $(x($ from_nat $n))(y($ from_nat $n)) \leq$
$\operatorname{dist}(x($ from_nat $\left.n))\left(z\left(f r o m _n a t h\right)\right)+\operatorname{dist}\left(y\left(f r o m _n a t\right)\right)\right)\left(z\left(f r o m _n a t\right.\right.$
n))
by (simp add: dist_triangle2)
have $0 \leq$ dist $(y($ from_nat $n))(z($ from_nat $n))$
using zero_le_dist by blast
moreover
\{
assume $\min \left(\operatorname{dist}\left(y\left(f r o m _n a t ~ n\right)\right)\left(z\left(f r o m _n a t ~ n\right)\right)\right) 1 \neq \operatorname{dist}(y$ (from_nat
n)) (z (from_nat n))
then have $1 \leq \min (\operatorname{dist}(x($ from_nat $n))(z($ from_nat $n))) 1+\min ($ dist
$(y($ from_nat $n))(z($ from_nat $n))) 1$
by (metis (no_types) diff_le_eq diff_self min_def zero_le_dist zero_le_one)
\}
ultimately have $\min (\operatorname{dist}(x($ from_nat $n))(y($ from_nat $n))) 1 \leq$
$\min (\operatorname{dist}(x($ from_nat $n))(z($ from_nat $n))) 1+\min (d i s t(y$ from_nat
$n))(z($ from_nat $n))) 1$
using $*$ by linarith
\} note ineq $=$ this
have dist $x y=\left(\sum n .(1 / 2)^{\wedge} n * \min \left(\operatorname{dist}\left(x\left(f r o m _n a t h\right)\right)\left(y\left(f r o m _n a t ~ n\right)\right)\right)\right.$
1)
unfolding dist_fun_def by simp
also have $\ldots \leq\left(\sum n .(1 / \mathcal{2}){ }^{\wedge} n * \min \left(\right.\right.$ dist $(x($ from_nat $\left.n))\left(z\left(f r o m _n a t n\right)\right)\right) 1$

$$
\left.+(1 / 2)^{\wedge} n * \min (\text { dist }(y(\text { from_nat } n))(z(\text { from_nat } n))) 1\right)
$$

apply (rule suminf_le)
using ineq apply (metis (no_types, hide_lams) add.right_neutral distrib_left
le_divide_eq_numeral1 (1) mult_2_right mult_left_mono zero_le_one zero_le_power)
by (auto simp add: summable_add)
also have $\ldots=\left(\sum n \cdot(1 / 2)^{\wedge} n * \min \left(\operatorname{dist}\left(x\left(f r o m _n a t h\right)\right)\left(z\left(f r o m _n a t \quad n\right)\right)\right)\right.$
1)

$$
+\left(\sum n \cdot(1 / 2) \wedge n * \min (\text { dist }(y(\text { from_nat } n))(z(\text { from_nat } n))) 1\right)
$$

by (rule suminf_add[symmetric], auto)
also have $\ldots=\operatorname{dist} x z+\operatorname{dist} y z$
unfolding dist_fun_def by simp
finally show dist $x y \leq \operatorname{dist} x z+\operatorname{dist} y z$
by simp
next
Finally, we show that the topology generated by the distance and the product topology coincide. This is essentially contained in Lemma fun_open_ball_aux, except that the condition to prove is expressed with filters. To deal with this, we copy some mumbo jumbo from Lemma eventually_uniformity_metric in
~~/src/HOL/Real_Vector_Spaces.thy
fix $U::\left({ }^{\prime} a \Rightarrow\right.$ ' $\left.b\right)$ set
have eventually P uniformity $\longleftrightarrow\left(\exists e>0 . \forall x\left(y::\left({ }^{\prime} a \Rightarrow{ }^{\prime} b\right)\right)\right.$. dist $x y<e \longrightarrow$ $P(x, y)$) for P
unfolding uniformity_fun_def apply (subst eventually_INF_base)
by (auto simp: eventually_principal subset_eq intro: bexI[of _ min _ _])
then show open $U=\left(\forall x \in U . \forall_{F}\left(x^{\prime}, y\right)\right.$ in uniformity. $\left.x^{\prime}=x \longrightarrow y \in U\right)$
unfolding fun_open_ball_aux by simp
qed (simp add: uniformity_fun_def)
end
Nice properties of spaces are preserved under countable products. In addition to first countability, second countability and metrizability, as we have seen above, completeness is also preserved, and therefore being Polish.

```
instance fun :: (countable, complete_space) complete_space
proof
    fix \(u::\) nat \(\Rightarrow\left({ }^{\prime} a \Rightarrow{ }^{\prime} b\right)\) assume Cauchy \(u\)
    have Cauchy \((\lambda n . u n i)\) for \(i\)
    unfolding cauchy_def proof (intro impI allI)
        fix \(e\) assume \(e>(0::\) real \()\)
        obtain \(k\) where \(i=\) from_nat \(k\)
            using from_nat_to_nat [of i] by metis
        have \((1 / 2)^{\wedge} k * \min\) e \(1>0\) using \(\langle e>0\rangle\) by auto
        then have \(\exists N . \forall m n . N \leq m \wedge N \leq n \longrightarrow \operatorname{dist}(u m)(u n)<(1 / 2)^{\wedge} k *\)
\(\min\) e 1
                using 〈Cauchy \(u\rangle\) unfolding cauchy_def by blast
    then obtain \(N::\) nat where \(C: \forall m n . N \leq m \wedge N \leq n \longrightarrow \operatorname{dist}(u m)(u n)\)
\(<(1 / 2)^{\wedge} k * \min\) e 1
        by blast
    have \(\forall m n . N \leq m \wedge N \leq n \longrightarrow \operatorname{dist}(u m i)(u n i)<e\)
    proof (auto)
        fix \(m n:: n a t\) assume \(m \geq N n \geq N\)
        have (1/2)^k* min (dist (u mi) (u n i)) 1
                        \(=\operatorname{sum}\left(\lambda p .(1 / 2){ }^{\wedge} p * \min \left(\operatorname{dist}\left(u m\left(f r o m \_n a t p\right)\right)\left(u n\left(f r o m \_n a t\right.\right.\right.\right.\)
p))) 1) \(\{k\}\)
            using \(\langle i=\) from_nat \(k\rangle\) by auto
        also have \(\ldots \leq\left(\sum p .(1 / 2)\right)^{\wedge} p * \min \left(\operatorname{dist}\left(u m\left(f r o m \_n a t p\right)\right)\left(u n\left(f r o m \_n a t\right.\right.\right.\)
p))) 1)
            apply (rule sum_le_suminf)
                    by (rule summable_comparison_test' \(\left[\right.\) of \(\lambda n\). (1/2) \(\left.{ }^{\wedge} n\right]\), auto simp add:
summable_geometric_iff)
                also have \(\ldots=\operatorname{dist}(u m)(u n)\)
                unfolding dist_fun_def by auto
        also have \(\ldots<(1 / 2)^{\wedge} k * \min e 1\)
                using \(C\langle m \geq N\rangle\langle n \geq N\rangle\) by auto
            finally have \(\min (\operatorname{dist}(u m i)(u n i)) 1<\min\) e 1
                by (auto simp add: field_split_simps)
            then show dist ( \(u m i\) ) ( \(u n i\) ) \(<e\) by auto
    qed
    then show \(\exists N . \forall m n . N \leq m \wedge N \leq n \longrightarrow \operatorname{dist}(u m i)(u n i)<e\)
        by blast
    qed
    then have \(\exists x .(\lambda n . u n i) \longrightarrow x\) for \(i\)
        using Cauchy_convergent convergent_def by auto
    then have \(\exists x . \forall i .(\lambda n . u n i) \longrightarrow x i\)
```

using choice by force
then obtain x where $*: \bigwedge i .(\lambda n . u n i) \longrightarrow x i$ by blast
have $u \longrightarrow x$
proof (rule metric_LIMSEQ_I)
fix e assume $[$ simp $]: ~ e>(0::$ real $)$
have i : $\exists K . \forall n \geq K$. dist $\left(\begin{array}{l}u n i)(x i)<e / 4 \text { for } i\end{array}\right.$
by (rule metric_LIMSEQ_D, auto simp add: *)
have $\exists K$. $\forall i . \forall n \geq K i$. dist $(u n i)(x i)<e / 4$
apply (rule choice) using i by auto
then obtain K where $K: \bigwedge i n . n \geq K i \Longrightarrow \operatorname{dist}(u n i)(x i)<e / 4$ by blast
have $\exists N$::nat. $2^{\wedge} N>4 / e$
by (simp add: real_arch_pow)
then obtain $N::$ nat where $2^{\wedge} N>4 / e$ by auto
define L where $L=\operatorname{Max}\{K($ from_nat $n) \mid n . n \leq N\}$
have dist $(u k) x<e$ if $k \geq L$ for k
proof -
have $*$: dist $(u k($ from_nat $n))(x($ from_nat $n)) \leq e / 4$ if $n \leq N$ for n
proof -
have K (from_nat $n) \leq L$
unfolding L_def apply (rule Max_ge) using $\langle n \leq N\rangle$ by auto
then have $k \geq K$ (from_nat n) using $\langle k \geq L\rangle$ by auto then show ?thesis using K less_imp_le by auto
qed
have $* *$: $\operatorname{Max}\{\operatorname{dist}(u k($ from_nat $n))(x($ from_nat $n)) \mid n . n \leq N\} \leq e / 4$ apply (rule Max.boundedI) using * by auto
have dist $(u k) x \leq 2 * \operatorname{Max}\left\{\operatorname{dist}\left(u k\left(f r o m _n a t h\right)\right)\left(x\left(f r o m _n a t n\right)\right) \mid n\right.$. $n \leq N\}+(1 / 2)^{\wedge} N$
using dist_fun_le_dist_first_terms by auto
also have $\ldots \leq 2 * e / 4+e / 4$
apply (rule add_mono)
using $* *\left\langle 2^{\wedge} N>4 / e\right\rangle$ less_imp_le by (auto simp add: field_split_simps)
also have $\ldots<e$ by auto
finally show ?thesis by simp
qed
then show $\exists L . \forall k \geq L$. dist $(u k) x<e$ by blast
qed
then show convergent u using convergent_def by blast
qed
instance fun :: (countable, polish_space) polish_space
by standard
end
theory Analysis
imports
Convex

Determinants

Connected
Abstract_Limits

Elementary_Normed_Spaces
Norm_Arith

Convex_Euclidean_Space
Operator_Norm
Line_Segment
Derivative
Cartesian_Euclidean_Space
Weierstrass_Theorems

Ball_Volume
Integral_Test
Improper_Integral
Equivalence_Measurable_On_Borel
Lebesgue_Integral_Substitution
Embed_Measure
Complete_Measure
Radon_Nikodym
Fashoda_Theorem
Cross3
Homeomorphism
Bounded_Continuous_Function
Abstract_Topology
Product_Topology
Lindelof_Spaces
Infinite_Products
Infinite_Set_Sum
Polytope
Jordan_Curve
Poly_Roots
Generalised_Binomial_Theorem
Gamma_Function
Change_Of_Vars
Multivariate_Analysis
Simplex_Content
FPS_Convergence
Smooth_Paths
Abstract_Euclidean_Space
Function_Metric
begin
end

Bibliography

[1]
[2] J. Dugundji. An extension of Tietze's theorem. Pacific J. Math., 1(3):353-367, 1951.
[3] M. Maggesi. A formalization of metric spaces in HOL light. J. Autom. Reasoning, 60(2):237-254, 2018.

