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Chapter 1

Linear Algebra

theory L2 Norm
imports Complex Main
begin

1.1 L2 Norm

definition L2 set :: ( ′a ⇒ real) ⇒ ′a set ⇒ real where
L2 set f A = sqrt (

∑
i∈A. (f i)2)

lemma L2 set cong :
[[A = B ;

∧
x . x ∈ B =⇒ f x = g x ]] =⇒ L2 set f A = L2 set g B

unfolding L2 set def by simp

lemma L2 set cong simp:
[[A = B ;

∧
x . x ∈ B =simp=> f x = g x ]] =⇒ L2 set f A = L2 set g B

unfolding L2 set def simp implies def by simp

lemma L2 set infinite [simp]: ¬ finite A =⇒ L2 set f A = 0
unfolding L2 set def by simp

lemma L2 set empty [simp]: L2 set f {} = 0
unfolding L2 set def by simp

lemma L2 set insert [simp]:
[[finite F ; a /∈ F ]] =⇒
L2 set f (insert a F ) = sqrt ((f a)2 + (L2 set f F )2)

unfolding L2 set def by (simp add : sum nonneg)

lemma L2 set nonneg [simp]: 0 ≤ L2 set f A
unfolding L2 set def by (simp add : sum nonneg)

lemma L2 set 0 ′: ∀ a∈A. f a = 0 =⇒ L2 set f A = 0
unfolding L2 set def by simp
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lemma L2 set constant : L2 set (λx . y) A = sqrt (of nat (card A)) ∗ |y |
unfolding L2 set def by (simp add : real sqrt mult)

lemma L2 set mono:
assumes

∧
i . i ∈ K =⇒ f i ≤ g i

assumes
∧
i . i ∈ K =⇒ 0 ≤ f i

shows L2 set f K ≤ L2 set g K
unfolding L2 set def
by (simp add : sum nonneg sum mono power mono assms)

lemma L2 set strict mono:
assumes finite K and K 6= {}
assumes

∧
i . i ∈ K =⇒ f i < g i

assumes
∧
i . i ∈ K =⇒ 0 ≤ f i

shows L2 set f K < L2 set g K
unfolding L2 set def
by (simp add : sum strict mono power strict mono assms)

lemma L2 set right distrib:
0 ≤ r =⇒ r ∗ L2 set f A = L2 set (λx . r ∗ f x ) A
unfolding L2 set def
apply (simp add : power mult distrib)
apply (simp add : sum distrib left [symmetric])
apply (simp add : real sqrt mult sum nonneg)
done

lemma L2 set left distrib:
0 ≤ r =⇒ L2 set f A ∗ r = L2 set (λx . f x ∗ r) A
unfolding L2 set def
apply (simp add : power mult distrib)
apply (simp add : sum distrib right [symmetric])
apply (simp add : real sqrt mult sum nonneg)
done

lemma L2 set eq 0 iff : finite A =⇒ L2 set f A = 0 ←→ (∀ x∈A. f x = 0 )
unfolding L2 set def
by (simp add : sum nonneg sum nonneg eq 0 iff )

proposition L2 set triangle ineq :
L2 set (λi . f i + g i) A ≤ L2 set f A + L2 set g A

proof (cases finite A)
case False
thus ?thesis by simp

next
case True
thus ?thesis
proof (induct set : finite)
case empty
show ?case by simp
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next
case (insert x F )
hence sqrt ((f x + g x )2 + (L2 set (λi . f i + g i) F )2) ≤

sqrt ((f x + g x )2 + (L2 set f F + L2 set g F )2)
by (intro real sqrt le mono add left mono power mono insert

L2 set nonneg add increasing zero le power2 )
also have
. . . ≤ sqrt ((f x )2 + (L2 set f F )2) + sqrt ((g x )2 + (L2 set g F )2)
by (rule real sqrt sum squares triangle ineq)

finally show ?case
using insert by simp

qed
qed

lemma L2 set le sum [rule format ]:
(∀ i∈A. 0 ≤ f i) −→ L2 set f A ≤ sum f A
apply (cases finite A)
apply (induct set : finite)
apply simp
apply clarsimp
apply (erule order trans [OF sqrt sum squares le sum])
apply simp
apply simp
apply simp
done

lemma L2 set le sum abs: L2 set f A ≤ (
∑

i∈A. |f i |)
apply (cases finite A)
apply (induct set : finite)
apply simp
apply simp
apply (rule order trans [OF sqrt sum squares le sum abs])
apply simp
apply simp
done

lemma L2 set mult ineq : (
∑

i∈A. |f i | ∗ |g i |) ≤ L2 set f A ∗ L2 set g A
apply (cases finite A)
apply (induct set : finite)
apply simp
apply (rule power2 le imp le, simp)
apply (rule order trans)
apply (rule power mono)
apply (erule add left mono)
apply (simp add : sum nonneg)
apply (simp add : power2 sum)
apply (simp add : power mult distrib)
apply (simp add : distrib left distrib right)
apply (rule ord le eq trans)
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apply (rule L2 set mult ineq lemma)
apply simp all
done

lemma member le L2 set : [[finite A; i ∈ A]] =⇒ f i ≤ L2 set f A
unfolding L2 set def
by (auto intro!: member le sum real le rsqrt)

end

1.2 Inner Product Spaces and Gradient Derivative

theory Inner Product
imports Complex Main
begin

1.2.1 Real inner product spaces

Temporarily relax type constraints for open, uniformity, dist, and norm.

setup 〈Sign.add const constraint
(const name 〈open〉, SOME typ 〈 ′a::open set ⇒ bool 〉)〉

setup 〈Sign.add const constraint
(const name 〈dist 〉, SOME typ 〈 ′a::dist ⇒ ′a ⇒ real 〉)〉

setup 〈Sign.add const constraint
(const name 〈uniformity〉, SOME typ 〈( ′a::uniformity × ′a) filter 〉)〉

setup 〈Sign.add const constraint
(const name 〈norm〉, SOME typ 〈 ′a::norm ⇒ real 〉)〉

class real inner = real vector + sgn div norm + dist norm + uniformity dist +
open uniformity +
fixes inner :: ′a ⇒ ′a ⇒ real
assumes inner commute: inner x y = inner y x
and inner add left : inner (x + y) z = inner x z + inner y z
and inner scaleR left [simp]: inner (scaleR r x ) y = r ∗ (inner x y)
and inner ge zero [simp]: 0 ≤ inner x x
and inner eq zero iff [simp]: inner x x = 0 ←→ x = 0
and norm eq sqrt inner : norm x = sqrt (inner x x )

begin

lemma inner zero left [simp]: inner 0 x = 0
using inner add left [of 0 0 x ] by simp

lemma inner minus left [simp]: inner (− x ) y = − inner x y
using inner add left [of x − x y ] by simp
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lemma inner diff left : inner (x − y) z = inner x z − inner y z
using inner add left [of x − y z ] by simp

lemma inner sum left : inner (
∑

x∈A. f x ) y = (
∑

x∈A. inner (f x ) y)
by (cases finite A, induct set : finite, simp all add : inner add left)

lemma all zero iff [simp]: (∀ u. inner x u = 0 ) ←→ (x = 0 )
by auto (use inner eq zero iff in blast)

Transfer distributivity rules to right argument.

lemma inner add right : inner x (y + z ) = inner x y + inner x z
using inner add left [of y z x ] by (simp only : inner commute)

lemma inner scaleR right [simp]: inner x (scaleR r y) = r ∗ (inner x y)
using inner scaleR left [of r y x ] by (simp only : inner commute)

lemma inner zero right [simp]: inner x 0 = 0
using inner zero left [of x ] by (simp only : inner commute)

lemma inner minus right [simp]: inner x (− y) = − inner x y
using inner minus left [of y x ] by (simp only : inner commute)

lemma inner diff right : inner x (y − z ) = inner x y − inner x z
using inner diff left [of y z x ] by (simp only : inner commute)

lemma inner sum right : inner x (
∑

y∈A. f y) = (
∑

y∈A. inner x (f y))
using inner sum left [of f A x ] by (simp only : inner commute)

lemmas inner add [algebra simps] = inner add left inner add right
lemmas inner diff [algebra simps] = inner diff left inner diff right
lemmas inner scaleR = inner scaleR left inner scaleR right

Legacy theorem names

lemmas inner left distrib = inner add left
lemmas inner right distrib = inner add right
lemmas inner distrib = inner left distrib inner right distrib

lemma inner gt zero iff [simp]: 0 < inner x x ←→ x 6= 0
by (simp add : order less le)

lemma power2 norm eq inner : (norm x )2 = inner x x
by (simp add : norm eq sqrt inner)

Identities involving real multiplication and division.

lemma inner mult left : inner (of real m ∗ a) b = m ∗ (inner a b)
by (metis real inner class.inner scaleR left scaleR conv of real)

lemma inner mult right : inner a (of real m ∗ b) = m ∗ (inner a b)
by (metis real inner class.inner scaleR right scaleR conv of real)
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lemma inner mult left ′: inner (a ∗ of real m) b = m ∗ (inner a b)
by (simp add : of real def )

lemma inner mult right ′: inner a (b ∗ of real m) = (inner a b) ∗ m
by (simp add : of real def real inner class.inner scaleR right)

lemma Cauchy Schwarz ineq :
(inner x y)2 ≤ inner x x ∗ inner y y

proof (cases)
assume y = 0
thus ?thesis by simp

next
assume y : y 6= 0
let ?r = inner x y / inner y y
have 0 ≤ inner (x − scaleR ?r y) (x − scaleR ?r y)
by (rule inner ge zero)

also have . . . = inner x x − inner y x ∗ ?r
by (simp add : inner diff )

also have . . . = inner x x − (inner x y)2 / inner y y
by (simp add : power2 eq square inner commute)

finally have 0 ≤ inner x x − (inner x y)2 / inner y y .
hence (inner x y)2 / inner y y ≤ inner x x
by (simp add : le diff eq)

thus (inner x y)2 ≤ inner x x ∗ inner y y
by (simp add : pos divide le eq y)

qed

lemma Cauchy Schwarz ineq2 :
|inner x y | ≤ norm x ∗ norm y

proof (rule power2 le imp le)
have (inner x y)2 ≤ inner x x ∗ inner y y
using Cauchy Schwarz ineq .

thus |inner x y |2 ≤ (norm x ∗ norm y)2

by (simp add : power mult distrib power2 norm eq inner)
show 0 ≤ norm x ∗ norm y
unfolding norm eq sqrt inner
by (intro mult nonneg nonneg real sqrt ge zero inner ge zero)

qed

lemma norm cauchy schwarz : inner x y ≤ norm x ∗ norm y
using Cauchy Schwarz ineq2 [of x y ] by auto

subclass real normed vector
proof
fix a :: real and x y :: ′a
show norm x = 0 ←→ x = 0
unfolding norm eq sqrt inner by simp

show norm (x + y) ≤ norm x + norm y
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proof (rule power2 le imp le)
have inner x y ≤ norm x ∗ norm y
by (rule norm cauchy schwarz )

thus (norm (x + y))2 ≤ (norm x + norm y)2

unfolding power2 sum power2 norm eq inner
by (simp add : inner add inner commute)

show 0 ≤ norm x + norm y
unfolding norm eq sqrt inner by simp

qed
have sqrt (a2 ∗ inner x x ) = |a| ∗ sqrt (inner x x )
by (simp add : real sqrt mult)

then show norm (a ∗R x ) = |a| ∗ norm x
unfolding norm eq sqrt inner
by (simp add : power2 eq square mult .assoc)

qed

end

lemma square bound lemma:
fixes x :: real
shows x < (1 + x ) ∗ (1 + x )

proof −
have (x + 1/2 )2 + 3/4 > 0
using zero le power2 [of x+1/2 ] by arith

then show ?thesis
by (simp add : field simps power2 eq square)

qed

lemma square continuous:
fixes e :: real
shows e > 0 =⇒ ∃ d . 0 < d ∧ (∀ y . |y − x | < d −→ |y ∗ y − x ∗ x | < e)
using isCont power [OF continuous ident , of x , unfolded isCont def LIM eq , rule format ,

of e 2 ]
by (force simp add : power2 eq square)

lemma norm le: norm x ≤ norm y ←→ inner x x ≤ inner y y
by (simp add : norm eq sqrt inner)

lemma norm lt : norm x < norm y ←→ inner x x < inner y y
by (simp add : norm eq sqrt inner)

lemma norm eq : norm x = norm y ←→ inner x x = inner y y
apply (subst order eq iff )
apply (auto simp: norm le)
done

lemma norm eq 1 : norm x = 1 ←→ inner x x = 1
by (simp add : norm eq sqrt inner)
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lemma inner divide left :
fixes a :: ′a :: {real inner ,real div algebra}
shows inner (a / of real m) b = (inner a b) / m
by (metis (no types) divide inverse inner commute inner scaleR right mult .left neutral

mult .right neutral mult scaleR right of real inverse scaleR conv of real times divide eq left)

lemma inner divide right :
fixes a :: ′a :: {real inner ,real div algebra}
shows inner a (b / of real m) = (inner a b) / m
by (metis inner commute inner divide left)

Re-enable constraints for open, uniformity, dist, and norm.

setup 〈Sign.add const constraint
(const name 〈open〉, SOME typ 〈 ′a::topological space set ⇒ bool 〉)〉

setup 〈Sign.add const constraint
(const name 〈uniformity〉, SOME typ 〈( ′a::uniform space × ′a) filter 〉)〉

setup 〈Sign.add const constraint
(const name 〈dist 〉, SOME typ 〈 ′a::metric space ⇒ ′a ⇒ real 〉)〉

setup 〈Sign.add const constraint
(const name 〈norm〉, SOME typ 〈 ′a::real normed vector ⇒ real 〉)〉

lemma bounded bilinear inner :
bounded bilinear (inner :: ′a::real inner ⇒ ′a ⇒ real)

proof
fix x y z :: ′a and r :: real
show inner (x + y) z = inner x z + inner y z
by (rule inner add left)

show inner x (y + z ) = inner x y + inner x z
by (rule inner add right)

show inner (scaleR r x ) y = scaleR r (inner x y)
unfolding real scaleR def by (rule inner scaleR left)

show inner x (scaleR r y) = scaleR r (inner x y)
unfolding real scaleR def by (rule inner scaleR right)

show ∃K . ∀ x y :: ′a. norm (inner x y) ≤ norm x ∗ norm y ∗ K
proof
show ∀ x y :: ′a. norm (inner x y) ≤ norm x ∗ norm y ∗ 1
by (simp add : Cauchy Schwarz ineq2 )

qed
qed

lemmas tendsto inner [tendsto intros] =
bounded bilinear .tendsto [OF bounded bilinear inner ]

lemmas isCont inner [simp] =
bounded bilinear .isCont [OF bounded bilinear inner ]
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lemmas has derivative inner [derivative intros] =
bounded bilinear .FDERIV [OF bounded bilinear inner ]

lemmas bounded linear inner left =
bounded bilinear .bounded linear left [OF bounded bilinear inner ]

lemmas bounded linear inner right =
bounded bilinear .bounded linear right [OF bounded bilinear inner ]

lemmas bounded linear inner left comp = bounded linear inner left [THEN bounded linear compose]

lemmas bounded linear inner right comp = bounded linear inner right [THEN bounded linear compose]

lemmas has derivative inner right [derivative intros] =
bounded linear .has derivative [OF bounded linear inner right ]

lemmas has derivative inner left [derivative intros] =
bounded linear .has derivative [OF bounded linear inner left ]

lemma differentiable inner [simp]:
f differentiable (at x within s) =⇒ g differentiable at x within s =⇒ (λx . inner (f

x ) (g x )) differentiable at x within s
unfolding differentiable def by (blast intro: has derivative inner)

1.2.2 Class instances

instantiation real :: real inner
begin

definition inner real def [simp]: inner = (∗)

instance
proof
fix x y z r :: real
show inner x y = inner y x
unfolding inner real def by (rule mult .commute)

show inner (x + y) z = inner x z + inner y z
unfolding inner real def by (rule distrib right)

show inner (scaleR r x ) y = r ∗ inner x y
unfolding inner real def real scaleR def by (rule mult .assoc)

show 0 ≤ inner x x
unfolding inner real def by simp

show inner x x = 0 ←→ x = 0
unfolding inner real def by simp

show norm x = sqrt (inner x x )
unfolding inner real def by simp

qed

end
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lemma
shows real inner 1 left [simp]: inner 1 x = x
and real inner 1 right [simp]: inner x 1 = x

by simp all

instantiation complex :: real inner
begin

definition inner complex def :
inner x y = Re x ∗ Re y + Im x ∗ Im y

instance
proof
fix x y z :: complex and r :: real
show inner x y = inner y x
unfolding inner complex def by (simp add : mult .commute)

show inner (x + y) z = inner x z + inner y z
unfolding inner complex def by (simp add : distrib right)

show inner (scaleR r x ) y = r ∗ inner x y
unfolding inner complex def by (simp add : distrib left)

show 0 ≤ inner x x
unfolding inner complex def by simp

show inner x x = 0 ←→ x = 0
unfolding inner complex def
by (simp add : add nonneg eq 0 iff complex eq iff )

show norm x = sqrt (inner x x )
unfolding inner complex def norm complex def
by (simp add : power2 eq square)

qed

end

lemma complex inner 1 [simp]: inner 1 x = Re x
unfolding inner complex def by simp

lemma complex inner 1 right [simp]: inner x 1 = Re x
unfolding inner complex def by simp

lemma complex inner i left [simp]: inner i x = Im x
unfolding inner complex def by simp

lemma complex inner i right [simp]: inner x i = Im x
unfolding inner complex def by simp

lemma dot square norm: inner x x = (norm x )2

by (simp only : power2 norm eq inner)
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lemma norm eq square: norm x = a ←→ 0 ≤ a ∧ inner x x = a2

by (auto simp add : norm eq sqrt inner)

lemma norm le square: norm x ≤ a ←→ 0 ≤ a ∧ inner x x ≤ a2

apply (simp add : dot square norm abs le square iff [symmetric])
using norm ge zero[of x ]
apply arith
done

lemma norm ge square: norm x ≥ a ←→ a ≤ 0 ∨ inner x x ≥ a2

apply (simp add : dot square norm abs le square iff [symmetric])
using norm ge zero[of x ]
apply arith
done

lemma norm lt square: norm x < a ←→ 0 < a ∧ inner x x < a2

by (metis not le norm ge square)

lemma norm gt square: norm x > a ←→ a < 0 ∨ inner x x > a2

by (metis norm le square not less)

Dot product in terms of the norm rather than conversely.

lemmas inner simps = inner add left inner add right inner diff right inner diff left
inner scaleR left inner scaleR right

lemma dot norm: inner x y = ((norm (x + y))2 − (norm x )2 − (norm y)2) / 2
by (simp only : power2 norm eq inner inner simps inner commute) auto

lemma dot norm neg : inner x y = (((norm x )2 + (norm y)2) − (norm (x − y))2)
/ 2
by (simp only : power2 norm eq inner inner simps inner commute)
(auto simp add : algebra simps)

lemma of real inner 1 [simp]:
inner (of real x ) (1 :: ′a :: {real inner , real normed algebra 1}) = x
by (simp add : of real def dot square norm)

lemma summable of real iff :
summable (λx . of real (f x ) :: ′a :: {real normed algebra 1 ,real inner}) ←→

summable f
proof
assume ∗: summable (λx . of real (f x ) :: ′a)
interpret bounded linear λx :: ′a. inner x 1
by (rule bounded linear inner left)

from summable [OF ∗] show summable f by simp
qed (auto intro: summable of real)
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1.2.3 Gradient derivative

definition
gderiv ::
[ ′a::real inner ⇒ real , ′a, ′a] ⇒ bool

((GDERIV ( )/ ( )/ :> ( )) [1000 , 1000 , 60 ] 60 )
where
GDERIV f x :> D ←→ FDERIV f x :> (λh. inner h D)

lemma gderiv deriv [simp]: GDERIV f x :> D ←→ DERIV f x :> D
by (simp only : gderiv def has field derivative def inner real def mult commute abs)

lemma GDERIV DERIV compose:
[[GDERIV f x :> df ; DERIV g (f x ) :> dg ]]
=⇒ GDERIV (λx . g (f x )) x :> scaleR dg df

unfolding gderiv def has field derivative def
apply (drule (1 ) has derivative compose)
apply (simp add : ac simps)
done

lemma has derivative subst : [[FDERIV f x :> df ; df = d ]] =⇒ FDERIV f x :> d
by simp

lemma GDERIV subst : [[GDERIV f x :> df ; df = d ]] =⇒ GDERIV f x :> d
by simp

lemma GDERIV const : GDERIV (λx . k) x :> 0
unfolding gderiv def inner zero right by (rule has derivative const)

lemma GDERIV add :
[[GDERIV f x :> df ; GDERIV g x :> dg ]]
=⇒ GDERIV (λx . f x + g x ) x :> df + dg

unfolding gderiv def inner add right by (rule has derivative add)

lemma GDERIV minus:
GDERIV f x :> df =⇒ GDERIV (λx . − f x ) x :> − df

unfolding gderiv def inner minus right by (rule has derivative minus)

lemma GDERIV diff :
[[GDERIV f x :> df ; GDERIV g x :> dg ]]
=⇒ GDERIV (λx . f x − g x ) x :> df − dg

unfolding gderiv def inner diff right by (rule has derivative diff )

lemma GDERIV scaleR:
[[DERIV f x :> df ; GDERIV g x :> dg ]]
=⇒ GDERIV (λx . scaleR (f x ) (g x )) x
:> (scaleR (f x ) dg + scaleR df (g x ))

unfolding gderiv def has field derivative def inner add right inner scaleR right
apply (rule has derivative subst)
apply (erule (1 ) has derivative scaleR)
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apply (simp add : ac simps)
done

lemma GDERIV mult :
[[GDERIV f x :> df ; GDERIV g x :> dg ]]
=⇒ GDERIV (λx . f x ∗ g x ) x :> scaleR (f x ) dg + scaleR (g x ) df

unfolding gderiv def
apply (rule has derivative subst)
apply (erule (1 ) has derivative mult)
apply (simp add : inner add ac simps)
done

lemma GDERIV inverse:
[[GDERIV f x :> df ; f x 6= 0 ]]
=⇒ GDERIV (λx . inverse (f x )) x :> − (inverse (f x ))2 ∗R df

by (metis DERIV inverse GDERIV DERIV compose numerals(2 ))

lemma GDERIV norm:
assumes x 6= 0 shows GDERIV (λx . norm x ) x :> sgn x
unfolding gderiv def norm eq sqrt inner
by (rule derivative eq intros | force simp add : inner commute sgn div norm

norm eq sqrt inner assms)+

lemmas has derivative norm = GDERIV norm [unfolded gderiv def ]

bundle inner syntax begin
notation inner (infix · 70 )
end

bundle no inner syntax begin
no notation inner (infix · 70 )
end

end

1.3 Cartesian Products as Vector Spaces

theory Product Vector
imports
Complex Main
HOL−Library .Product Plus

begin

lemma Times eq image sum:
fixes S :: ′a :: comm monoid add set and T :: ′b :: comm monoid add set
shows S × T = {u + v |u v . u ∈ (λx . (x , 0 )) ‘ S ∧ v ∈ Pair 0 ‘ T}
by force
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1.3.1 Product is a Module

locale module prod = module pair begin

definition scale :: ′a ⇒ ′b × ′c ⇒ ′b × ′c
where scale a v = (s1 a (fst v), s2 a (snd v))

lemma scale prod : scale x (a, b) = (s1 x a, s2 x b)
by (auto simp: scale def )

sublocale p: module scale
proof qed (simp all add : scale def
m1 .scale left distrib m1 .scale right distrib m2 .scale left distrib m2 .scale right distrib)

lemma subspace Times: m1 .subspace A =⇒ m2 .subspace B =⇒ p.subspace (A ×
B)
unfolding m1 .subspace def m2 .subspace def p.subspace def
by (auto simp: zero prod def scale def )

lemma module hom fst : module hom scale s1 fst
by unfold locales (auto simp: scale def )

lemma module hom snd : module hom scale s2 snd
by unfold locales (auto simp: scale def )

end

locale vector space prod = vector space pair begin

sublocale module prod s1 s2
rewrites module hom = Vector Spaces.linear
by unfold locales (fact module hom eq linear)

sublocale p: vector space scale by unfold locales (auto simp: algebra simps)

lemmas linear fst = module hom fst
and linear snd = module hom snd

end

1.3.2 Product is a Real Vector Space

instantiation prod :: (real vector , real vector) real vector
begin

definition scaleR prod def :
scaleR r A = (scaleR r (fst A), scaleR r (snd A))

lemma fst scaleR [simp]: fst (scaleR r A) = scaleR r (fst A)
unfolding scaleR prod def by simp
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lemma snd scaleR [simp]: snd (scaleR r A) = scaleR r (snd A)
unfolding scaleR prod def by simp

proposition scaleR Pair [simp]: scaleR r (a, b) = (scaleR r a, scaleR r b)
unfolding scaleR prod def by simp

instance
proof
fix a b :: real and x y :: ′a × ′b
show scaleR a (x + y) = scaleR a x + scaleR a y
by (simp add : prod eq iff scaleR right distrib)

show scaleR (a + b) x = scaleR a x + scaleR b x
by (simp add : prod eq iff scaleR left distrib)

show scaleR a (scaleR b x ) = scaleR (a ∗ b) x
by (simp add : prod eq iff )

show scaleR 1 x = x
by (simp add : prod eq iff )

qed

end

lemma module prod scale eq scaleR: module prod .scale (∗R) (∗R) = scaleR
apply (rule ext) apply (rule ext)
apply (subst module prod .scale def )
subgoal by unfold locales
by (simp add : scaleR prod def )

interpretation real vector?: vector space prod scaleR:: ⇒ ⇒ ′a::real vector scaleR:: ⇒ ⇒ ′b::real vector
rewrites scale = ((∗R):: ⇒ ⇒( ′a × ′b))
and module.dependent (∗R) = dependent
and module.representation (∗R) = representation
and module.subspace (∗R) = subspace
and module.span (∗R) = span
and vector space.extend basis (∗R) = extend basis
and vector space.dim (∗R) = dim
and Vector Spaces.linear (∗R) (∗R) = linear

subgoal by unfold locales
subgoal by (fact module prod scale eq scaleR)
unfolding dependent raw def representation raw def subspace raw def span raw def
extend basis raw def dim raw def linear def

by (rule refl)+

1.3.3 Product is a Metric Space

instantiation prod :: (metric space, metric space) dist
begin

definition dist prod def [code del ]:
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dist x y = sqrt ((dist (fst x ) (fst y))2 + (dist (snd x ) (snd y))2)

instance ..
end

instantiation prod :: (metric space, metric space) uniformity dist
begin

definition [code del ]:
(uniformity :: (( ′a × ′b) × ( ′a × ′b)) filter) =
(INF e∈{0 <..}. principal {(x , y). dist x y < e})

instance
by standard (rule uniformity prod def )

end

declare uniformity Abort [where ′a= ′a :: metric space × ′b :: metric space, code]

instantiation prod :: (metric space, metric space) metric space
begin

proposition dist Pair Pair : dist (a, b) (c, d) = sqrt ((dist a c)2 + (dist b d)2)
unfolding dist prod def by simp

lemma dist fst le: dist (fst x ) (fst y) ≤ dist x y
unfolding dist prod def by (rule real sqrt sum squares ge1 )

lemma dist snd le: dist (snd x ) (snd y) ≤ dist x y
unfolding dist prod def by (rule real sqrt sum squares ge2 )

instance
proof
fix x y :: ′a × ′b
show dist x y = 0 ←→ x = y
unfolding dist prod def prod eq iff by simp

next
fix x y z :: ′a × ′b
show dist x y ≤ dist x z + dist y z
unfolding dist prod def
by (intro order trans [OF real sqrt sum squares triangle ineq ]

real sqrt le mono add mono power mono dist triangle2 zero le dist)
next
fix S :: ( ′a × ′b) set
have ∗: open S ←→ (∀ x∈S . ∃ e>0 . ∀ y . dist y x < e −→ y ∈ S )
proof
assume open S show ∀ x∈S . ∃ e>0 . ∀ y . dist y x < e −→ y ∈ S
proof
fix x assume x ∈ S
obtain A B where open A open B x ∈ A × B A × B ⊆ S
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using 〈open S 〉 and 〈x ∈ S 〉 by (rule open prod elim)
obtain r where r : 0 < r ∀ y . dist y (fst x ) < r −→ y ∈ A
using 〈open A〉 and 〈x ∈ A × B 〉 unfolding open dist by auto

obtain s where s: 0 < s ∀ y . dist y (snd x ) < s −→ y ∈ B
using 〈open B 〉 and 〈x ∈ A × B 〉 unfolding open dist by auto

let ?e = min r s
have 0 < ?e ∧ (∀ y . dist y x < ?e −→ y ∈ S )
proof (intro allI impI conjI )
show 0 < min r s by (simp add : r(1 ) s(1 ))

next
fix y assume dist y x < min r s
hence dist y x < r and dist y x < s
by simp all

hence dist (fst y) (fst x ) < r and dist (snd y) (snd x ) < s
by (auto intro: le less trans dist fst le dist snd le)

hence fst y ∈ A and snd y ∈ B
by (simp all add : r(2 ) s(2 ))

hence y ∈ A × B by (induct y , simp)
with 〈A × B ⊆ S 〉 show y ∈ S ..

qed
thus ∃ e>0 . ∀ y . dist y x < e −→ y ∈ S ..

qed
next
assume ∗: ∀ x∈S . ∃ e>0 . ∀ y . dist y x < e −→ y ∈ S show open S
proof (rule open prod intro)
fix x assume x ∈ S
then obtain e where 0 < e and S : ∀ y . dist y x < e −→ y ∈ S
using ∗ by fast

define r where r = e / sqrt 2
define s where s = e / sqrt 2
from 〈0 < e〉 have 0 < r and 0 < s
unfolding r def s def by simp all

from 〈0 < e〉 have e = sqrt (r2 + s2)
unfolding r def s def by (simp add : power divide)

define A where A = {y . dist (fst x ) y < r}
define B where B = {y . dist (snd x ) y < s}
have open A and open B
unfolding A def B def by (simp all add : open ball)

moreover have x ∈ A × B
unfolding A def B def mem Times iff
using 〈0 < r 〉 and 〈0 < s〉 by simp

moreover have A × B ⊆ S
proof (clarify)
fix a b assume a ∈ A and b ∈ B
hence dist a (fst x ) < r and dist b (snd x ) < s
unfolding A def B def by (simp all add : dist commute)

hence dist (a, b) x < e
unfolding dist prod def 〈e = sqrt (r2 + s2)〉

by (simp add : add strict mono power strict mono)
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thus (a, b) ∈ S
by (simp add : S )

qed
ultimately show ∃A B . open A ∧ open B ∧ x ∈ A × B ∧ A × B ⊆ S by

fast
qed

qed
show open S = (∀ x∈S . ∀ F (x ′, y) in uniformity . x ′ = x −→ y ∈ S )
unfolding ∗ eventually uniformity metric
by (simp del : split paired All add : dist prod def dist commute)

qed

end

declare [[code abort : dist ::( ′a::metric space∗ ′b::metric space)⇒( ′a∗ ′b) ⇒ real ]]

lemma Cauchy fst : Cauchy X =⇒ Cauchy (λn. fst (X n))
unfolding Cauchy def by (fast elim: le less trans [OF dist fst le])

lemma Cauchy snd : Cauchy X =⇒ Cauchy (λn. snd (X n))
unfolding Cauchy def by (fast elim: le less trans [OF dist snd le])

lemma Cauchy Pair :
assumes Cauchy X and Cauchy Y
shows Cauchy (λn. (X n, Y n))

proof (rule metric CauchyI )
fix r :: real assume 0 < r
hence 0 < r / sqrt 2 (is 0 < ?s) by simp
obtain M where M : ∀m≥M . ∀n≥M . dist (X m) (X n) < ?s
using metric CauchyD [OF 〈Cauchy X 〉 〈0 < ?s〉] ..

obtain N where N : ∀m≥N . ∀n≥N . dist (Y m) (Y n) < ?s
using metric CauchyD [OF 〈Cauchy Y 〉 〈0 < ?s〉] ..

have ∀m≥max M N . ∀n≥max M N . dist (X m, Y m) (X n, Y n) < r
using M N by (simp add : real sqrt sum squares less dist Pair Pair)

then show ∃n0 . ∀m≥n0 . ∀n≥n0 . dist (X m, Y m) (X n, Y n) < r ..
qed

1.3.4 Product is a Complete Metric Space

instance prod :: (complete space, complete space) complete space
proof
fix X :: nat ⇒ ′a × ′b assume Cauchy X
have 1 : (λn. fst (X n)) −−−−→ lim (λn. fst (X n))
using Cauchy fst [OF 〈Cauchy X 〉]
by (simp add : Cauchy convergent iff convergent LIMSEQ iff )

have 2 : (λn. snd (X n)) −−−−→ lim (λn. snd (X n))
using Cauchy snd [OF 〈Cauchy X 〉]
by (simp add : Cauchy convergent iff convergent LIMSEQ iff )

have X −−−−→ (lim (λn. fst (X n)), lim (λn. snd (X n)))
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using tendsto Pair [OF 1 2 ] by simp
then show convergent X
by (rule convergentI )

qed

1.3.5 Product is a Normed Vector Space

instantiation prod :: (real normed vector , real normed vector) real normed vector
begin

definition norm prod def [code del ]:
norm x = sqrt ((norm (fst x ))2 + (norm (snd x ))2)

definition sgn prod def :
sgn (x :: ′a × ′b) = scaleR (inverse (norm x )) x

proposition norm Pair : norm (a, b) = sqrt ((norm a)2 + (norm b)2)
unfolding norm prod def by simp

instance
proof
fix r :: real and x y :: ′a × ′b
show norm x = 0 ←→ x = 0
unfolding norm prod def
by (simp add : prod eq iff )

show norm (x + y) ≤ norm x + norm y
unfolding norm prod def
apply (rule order trans [OF real sqrt sum squares triangle ineq ])
apply (simp add : add mono power mono norm triangle ineq)
done

show norm (scaleR r x ) = |r | ∗ norm x
unfolding norm prod def
apply (simp add : power mult distrib)
apply (simp add : distrib left [symmetric])
apply (simp add : real sqrt mult)
done

show sgn x = scaleR (inverse (norm x )) x
by (rule sgn prod def )

show dist x y = norm (x − y)
unfolding dist prod def norm prod def
by (simp add : dist norm)

qed

end

declare [[code abort : norm::( ′a::real normed vector∗ ′b::real normed vector)⇒ real ]]

instance prod :: (banach, banach) banach ..
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Pair operations are linear

lemma bounded linear fst : bounded linear fst
using fst add fst scaleR
by (rule bounded linear intro [where K=1 ], simp add : norm prod def )

lemma bounded linear snd : bounded linear snd
using snd add snd scaleR
by (rule bounded linear intro [where K=1 ], simp add : norm prod def )

lemmas bounded linear fst comp = bounded linear fst [THEN bounded linear compose]

lemmas bounded linear snd comp = bounded linear snd [THEN bounded linear compose]

lemma bounded linear Pair :
assumes f : bounded linear f
assumes g : bounded linear g
shows bounded linear (λx . (f x , g x ))

proof
interpret f : bounded linear f by fact
interpret g : bounded linear g by fact
fix x y and r :: real
show (f (x + y), g (x + y)) = (f x , g x ) + (f y , g y)
by (simp add : f .add g .add)

show (f (r ∗R x ), g (r ∗R x )) = r ∗R (f x , g x )
by (simp add : f .scale g .scale)

obtain Kf where 0 < Kf and norm f :
∧
x . norm (f x ) ≤ norm x ∗ Kf

using f .pos bounded by fast
obtain Kg where 0 < Kg and norm g :

∧
x . norm (g x ) ≤ norm x ∗ Kg

using g .pos bounded by fast
have ∀ x . norm (f x , g x ) ≤ norm x ∗ (Kf + Kg)
apply (rule allI )
apply (simp add : norm Pair)
apply (rule order trans [OF sqrt add le add sqrt ], simp, simp)
apply (simp add : distrib left)
apply (rule add mono [OF norm f norm g ])
done

then show ∃K . ∀ x . norm (f x , g x ) ≤ norm x ∗ K ..
qed

Frechet derivatives involving pairs

proposition has derivative Pair [derivative intros]:
assumes f : (f has derivative f ′) (at x within s)
and g : (g has derivative g ′) (at x within s)

shows ((λx . (f x , g x )) has derivative (λh. (f ′ h, g ′ h))) (at x within s)
proof (rule has derivativeI sandwich[of 1 ])
show bounded linear (λh. (f ′ h, g ′ h))
using f g by (intro bounded linear Pair has derivative bounded linear)

let ?Rf = λy . f y − f x − f ′ (y − x )
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let ?Rg = λy . g y − g x − g ′ (y − x )
let ?R = λy . ((f y , g y) − (f x , g x ) − (f ′ (y − x ), g ′ (y − x )))

show ((λy . norm (?Rf y) / norm (y − x ) + norm (?Rg y) / norm (y − x ))
−−−→ 0 ) (at x within s)

using f g by (intro tendsto add zero) (auto simp: has derivative iff norm)

fix y :: ′a assume y 6= x
show norm (?R y) / norm (y − x ) ≤ norm (?Rf y) / norm (y − x ) + norm

(?Rg y) / norm (y − x )
unfolding add divide distrib [symmetric]
by (simp add : norm Pair divide right mono order trans [OF sqrt add le add sqrt ])

qed simp

lemma differentiable Pair [simp, derivative intros]:
f differentiable at x within s =⇒ g differentiable at x within s =⇒
(λx . (f x , g x )) differentiable at x within s

unfolding differentiable def by (blast intro: has derivative Pair)

lemmas has derivative fst [derivative intros] = bounded linear .has derivative [OF
bounded linear fst ]
lemmas has derivative snd [derivative intros] = bounded linear .has derivative [OF
bounded linear snd ]

lemma has derivative split [derivative intros]:
((λp. f (fst p) (snd p)) has derivative f ′) F =⇒ ((λ(a, b). f a b) has derivative

f ′) F
unfolding split beta ′ .

Vector derivatives involving pairs

lemma has vector derivative Pair [derivative intros]:
assumes (f has vector derivative f ′) (at x within s)
(g has vector derivative g ′) (at x within s)

shows ((λx . (f x , g x )) has vector derivative (f ′, g ′)) (at x within s)
using assms
by (auto simp: has vector derivative def intro!: derivative eq intros)

lemma
fixes x :: ′a::real normed vector
shows norm Pair1 [simp]: norm (0 ,x ) = norm x
and norm Pair2 [simp]: norm (x ,0 ) = norm x

by (auto simp: norm Pair)

lemma norm commute: norm (x ,y) = norm (y ,x )
by (simp add : norm Pair)

lemma norm fst le: norm x ≤ norm (x ,y)
by (metis dist fst le fst conv fst zero norm conv dist)
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lemma norm snd le: norm y ≤ norm (x ,y)
by (metis dist snd le snd conv snd zero norm conv dist)

lemma norm Pair le:
shows norm (x , y) ≤ norm x + norm y
unfolding norm Pair
by (metis norm ge zero sqrt sum squares le sum)

lemma (in vector space prod) span Times sing1 : p.span ({0} × B) = {0} ×
vs2 .span B
apply (rule p.span unique)
subgoal by (auto intro!: vs1 .span base vs2 .span base)
subgoal using vs1 .subspace single 0 vs2 .subspace span by (rule subspace Times)
subgoal for T
proof safe
fix b
assume subset T : {0} × B ⊆ T and subspace: p.subspace T and b span: b ∈

vs2 .span B
then obtain t r where b: b = (

∑
a∈t . r a ∗b a) and t : finite t t ⊆ B

by (auto simp: vs2 .span explicit)
have (0 , b) = (

∑
b∈t . scale (r b) (0 , b))

unfolding b scale prod sum prod
by simp

also have . . . ∈ T
using 〈t ⊆ B 〉 subset T
by (auto intro!: p.subspace sum p.subspace scale subspace)

finally show (0 , b) ∈ T .
qed
done

lemma (in vector space prod) span Times sing2 : p.span (A × {0}) = vs1 .span A
× {0}
apply (rule p.span unique)
subgoal by (auto intro!: vs1 .span base vs2 .span base)
subgoal using vs1 .subspace span vs2 .subspace single 0 by (rule subspace Times)
subgoal for T
proof safe
fix a
assume subset T : A × {0} ⊆ T and subspace: p.subspace T and a span: a ∈

vs1 .span A
then obtain t r where a: a = (

∑
a∈t . r a ∗a a) and t : finite t t ⊆ A

by (auto simp: vs1 .span explicit)
have (a, 0 ) = (

∑
a∈t . scale (r a) (a, 0 ))

unfolding a scale prod sum prod
by simp

also have . . . ∈ T
using 〈t ⊆ A〉 subset T
by (auto intro!: p.subspace sum p.subspace scale subspace)
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finally show (a, 0 ) ∈ T .
qed
done

1.3.6 Product is Finite Dimensional

lemma (in finite dimensional vector space) zero not in Basis[simp]: 0 /∈ Basis
using dependent zero local .independent Basis by blast

locale finite dimensional vector space prod = vector space prod + finite dimensional vector space pair
begin

definition Basis pair = B1 × {0} ∪ {0} × B2

sublocale p: finite dimensional vector space scale Basis pair
proof unfold locales
show finite Basis pair
by (auto intro!: finite cartesian product vs1 .finite Basis vs2 .finite Basis simp:

Basis pair def )
show p.independent Basis pair
unfolding p.dependent def Basis pair def

proof safe
fix a
assume a: a ∈ B1
assume (a, 0 ) ∈ p.span (B1 × {0} ∪ {0} × B2 − {(a, 0 )})
also have B1 × {0} ∪ {0} × B2 − {(a, 0 )} = (B1 − {a}) × {0} ∪ {0} ×

B2
by auto

finally show False
using a vs1 .dependent def vs1 .independent Basis
by (auto simp: p.span Un span Times sing1 span Times sing2 )

next
fix b
assume b: b ∈ B2
assume (0 , b) ∈ p.span (B1 × {0} ∪ {0} × B2 − {(0 , b)})
also have (B1 × {0} ∪ {0} × B2 − {(0 , b)}) = B1 × {0} ∪ {0} × (B2 −

{b})
by auto

finally show False
using b vs2 .dependent def vs2 .independent Basis
by (auto simp: p.span Un span Times sing1 span Times sing2 )

qed
show p.span Basis pair = UNIV
by (auto simp: p.span Un span Times sing2 span Times sing1 vs1 .span Basis

vs2 .span Basis
Basis pair def )

qed

proposition dim Times:
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assumes vs1 .subspace S vs2 .subspace T
shows p.dim(S × T ) = vs1 .dim S + vs2 .dim T

proof −
interpret p1 : Vector Spaces.linear s1 scale (λx . (x , 0 ))
by unfold locales (auto simp: scale def )

interpret pair1 : finite dimensional vector space pair (∗a) B1 scale Basis pair
by unfold locales

interpret p2 : Vector Spaces.linear s2 scale (λx . (0 , x ))
by unfold locales (auto simp: scale def )

interpret pair2 : finite dimensional vector space pair (∗b) B2 scale Basis pair
by unfold locales

have ss: p.subspace ((λx . (x , 0 )) ‘ S ) p.subspace (Pair 0 ‘ T )
by (rule p1 .subspace image p2 .subspace image assms)+

have p.dim(S × T ) = p.dim({u + v |u v . u ∈ (λx . (x , 0 )) ‘ S ∧ v ∈ Pair 0 ‘
T})

by (simp add : Times eq image sum)
moreover have p.dim ((λx . (x , 0 :: ′c)) ‘ S ) = vs1 .dim S p.dim (Pair (0 :: ′b) ‘

T ) = vs2 .dim T
by (simp all add : inj on def p1 .linear axioms pair1 .dim image eq p2 .linear axioms

pair2 .dim image eq)
moreover have p.dim ((λx . (x , 0 )) ‘ S ∩ Pair 0 ‘ T ) = 0
by (subst p.dim eq 0 ) auto

ultimately show ?thesis
using p.dim sums Int [OF ss] by linarith

qed

lemma dimension pair : p.dimension = vs1 .dimension + vs2 .dimension
using dim Times[OF vs1 .subspace UNIV vs2 .subspace UNIV ]
by (auto simp: p.dimension def vs1 .dimension def vs2 .dimension def )

end

end

1.4 Finite-Dimensional Inner Product Spaces

theory Euclidean Space
imports
L2 Norm
Inner Product
Product Vector

begin

1.4.1 Interlude: Some properties of real sets

lemma seq mono lemma:
assumes ∀ (n::nat) ≥ m. (d n :: real) < e n
and ∀n ≥ m. e n ≤ e m

shows ∀n ≥ m. d n < e m
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using assms by force

1.4.2 Type class of Euclidean spaces

class euclidean space = real inner +
fixes Basis :: ′a set
assumes nonempty Basis [simp]: Basis 6= {}
assumes finite Basis [simp]: finite Basis
assumes inner Basis:
[[u ∈ Basis; v ∈ Basis]] =⇒ inner u v = (if u = v then 1 else 0 )

assumes euclidean all zero iff :
(∀ u∈Basis. inner x u = 0 ) ←→ (x = 0 )

syntax type dimension :: type ⇒ nat ((1DIM /(1 ′( ′))))
translations DIM ( ′a) ⇀ CONST card (CONST Basis :: ′a set)
typed print translation 〈

[(const syntax 〈card 〉,
fn ctxt => fn => fn [Const (const syntax 〈Basis〉, Type (type name 〈set 〉,

[T ]))] =>
Syntax .const syntax const 〈 type dimension〉 $ Syntax Phases.term of typ

ctxt T )]
〉

lemma (in euclidean space) norm Basis[simp]: u ∈ Basis =⇒ norm u = 1
unfolding norm eq sqrt inner by (simp add : inner Basis)

lemma (in euclidean space) inner same Basis[simp]: u ∈ Basis =⇒ inner u u =
1
by (simp add : inner Basis)

lemma (in euclidean space) inner not same Basis: u ∈ Basis =⇒ v ∈ Basis =⇒
u 6= v =⇒ inner u v = 0
by (simp add : inner Basis)

lemma (in euclidean space) sgn Basis: u ∈ Basis =⇒ sgn u = u
unfolding sgn div norm by (simp add : scaleR one)

lemma (in euclidean space) Basis zero [simp]: 0 /∈ Basis
proof
assume 0 ∈ Basis thus False
using inner Basis [of 0 0 ] by simp

qed

lemma (in euclidean space) nonzero Basis: u ∈ Basis =⇒ u 6= 0
by clarsimp

lemma (in euclidean space) SOME Basis: (SOME i . i ∈ Basis) ∈ Basis
by (metis ex in conv nonempty Basis someI ex )
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lemma norm some Basis [simp]: norm (SOME i . i ∈ Basis) = 1
by (simp add : SOME Basis)

lemma (in euclidean space) inner sum left Basis[simp]:
b ∈ Basis =⇒ inner (

∑
i∈Basis. f i ∗R i) b = f b

by (simp add : inner sum left inner Basis if distrib comm monoid add class.sum.If cases)

lemma (in euclidean space) euclidean eqI :
assumes b:

∧
b. b ∈ Basis =⇒ inner x b = inner y b shows x = y

proof −
from b have ∀ b∈Basis. inner (x − y) b = 0
by (simp add : inner diff left)

then show x = y
by (simp add : euclidean all zero iff )

qed

lemma (in euclidean space) euclidean eq iff :
x = y ←→ (∀ b∈Basis. inner x b = inner y b)
by (auto intro: euclidean eqI )

lemma (in euclidean space) euclidean representation sum:
(
∑

i∈Basis. f i ∗R i) = b ←→ (∀ i∈Basis. f i = inner b i)
by (subst euclidean eq iff ) simp

lemma (in euclidean space) euclidean representation sum ′:
b = (

∑
i∈Basis. f i ∗R i) ←→ (∀ i∈Basis. f i = inner b i)

by (auto simp add : euclidean representation sum[symmetric])

lemma (in euclidean space) euclidean representation: (
∑

b∈Basis. inner x b ∗R
b) = x
unfolding euclidean representation sum by simp

lemma (in euclidean space) euclidean inner : inner x y = (
∑

b∈Basis. (inner x b)
∗ (inner y b))
by (subst (1 2 ) euclidean representation [symmetric])
(simp add : inner sum right inner Basis ac simps)

lemma (in euclidean space) choice Basis iff :
fixes P :: ′a ⇒ real ⇒ bool
shows (∀ i∈Basis. ∃ x . P i x ) ←→ (∃ x . ∀ i∈Basis. P i (inner x i))
unfolding bchoice iff

proof safe
fix f assume ∀ i∈Basis. P i (f i)
then show ∃ x . ∀ i∈Basis. P i (inner x i)
by (auto intro!: exI [of

∑
i∈Basis. f i ∗R i ])

qed auto

lemma (in euclidean space) bchoice Basis iff :
fixes P :: ′a ⇒ real ⇒ bool
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shows (∀ i∈Basis. ∃ x∈A. P i x ) ←→ (∃ x . ∀ i∈Basis. inner x i ∈ A ∧ P i (inner
x i))
by (simp add : choice Basis iff Bex def )

lemma (in euclidean space) euclidean representation sum fun:
(λx .

∑
b∈Basis. inner (f x ) b ∗R b) = f

by (rule ext) (simp add : euclidean representation sum)

lemma euclidean isCont :
assumes

∧
b. b ∈ Basis =⇒ isCont (λx . (inner (f x ) b) ∗R b) x

shows isCont f x
apply (subst euclidean representation sum fun [symmetric])
apply (rule isCont sum)
apply (blast intro: assms)
done

lemma DIM positive [simp]: 0 < DIM ( ′a::euclidean space)
by (simp add : card gt 0 iff )

lemma DIM ge Suc0 [simp]: Suc 0 ≤ card Basis
by (meson DIM positive Suc leI )

lemma sum inner Basis scaleR [simp]:
fixes f :: ′a::euclidean space ⇒ ′b::real vector
assumes b ∈ Basis shows (

∑
i∈Basis. (inner i b) ∗R f i) = f b

by (simp add : comm monoid add class.sum.remove [OF finite Basis assms]
assms inner not same Basis comm monoid add class.sum.neutral)

lemma sum inner Basis eq [simp]:
assumes b ∈ Basis shows (

∑
i∈Basis. (inner i b) ∗ f i) = f b

by (simp add : comm monoid add class.sum.remove [OF finite Basis assms]
assms inner not same Basis comm monoid add class.sum.neutral)

lemma sum if inner [simp]:
assumes i ∈ Basis j ∈ Basis
shows inner (

∑
k∈Basis. if k = i then f i ∗R i else g k ∗R k) j = (if j=i then

f j else g j )
proof (cases i=j )
case True
with assms show ?thesis

by (auto simp: inner sum left if distrib [of λx . inner x j ] inner Basis cong :
if cong)
next
case False
have (

∑
k∈Basis. inner (if k = i then f i ∗R i else g k ∗R k) j ) =

(
∑

k∈Basis. if k = j then g k else 0 )
apply (rule sum.cong)
using False assms by (auto simp: inner Basis)
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also have ... = g j
using assms by auto

finally show ?thesis
using False by (auto simp: inner sum left)

qed

lemma norm le componentwise:
(
∧
b. b ∈ Basis =⇒ abs(inner x b) ≤ abs(inner y b)) =⇒ norm x ≤ norm y

by (auto simp: norm le euclidean inner [of x x ] euclidean inner [of y y ] abs le square iff
power2 eq square intro!: sum mono)

lemma Basis le norm: b ∈ Basis =⇒ |inner x b| ≤ norm x
by (rule order trans [OF Cauchy Schwarz ineq2 ]) simp

lemma norm bound Basis le: b ∈ Basis =⇒ norm x ≤ e =⇒ |inner x b| ≤ e
by (metis Basis le norm order trans)

lemma norm bound Basis lt : b ∈ Basis =⇒ norm x < e =⇒ |inner x b| < e
by (metis Basis le norm le less trans)

lemma norm le l1 : norm x ≤ (
∑

b∈Basis. |inner x b|)
apply (subst euclidean representation[of x , symmetric])
apply (rule order trans[OF norm sum])
apply (auto intro!: sum mono)
done

lemma sum norm allsubsets bound :
fixes f :: ′a ⇒ ′n::euclidean space
assumes fP : finite P
and fPs:

∧
Q . Q ⊆ P =⇒ norm (sum f Q) ≤ e

shows (
∑

x∈P . norm (f x )) ≤ 2 ∗ real DIM ( ′n) ∗ e
proof −
have (

∑
x∈P . norm (f x )) ≤ (

∑
x∈P .

∑
b∈Basis. |inner (f x ) b|)

by (rule sum mono) (rule norm le l1 )
also have (

∑
x∈P .

∑
b∈Basis. |inner (f x ) b|) = (

∑
b∈Basis.

∑
x∈P . |inner

(f x ) b|)
by (rule sum.swap)

also have . . . ≤ of nat (card (Basis :: ′n set)) ∗ (2 ∗ e)
proof (rule sum bounded above)
fix i :: ′n
assume i : i ∈ Basis
have norm (

∑
x∈P . |inner (f x ) i |) ≤

norm (inner (
∑

x∈P ∩ − {x . inner (f x ) i < 0}. f x ) i) + norm (inner
(
∑

x∈P ∩ {x . inner (f x ) i < 0}. f x ) i)
by (simp add : abs real def sum.If cases[OF fP ] sum negf norm triangle ineq4

inner sum left
del : real norm def )

also have . . . ≤ e + e
unfolding real norm def



Euclidean Space.thy 53

by (intro add mono norm bound Basis le i fPs) auto
finally show (

∑
x∈P . |inner (f x ) i |) ≤ 2∗e by simp

qed
also have . . . = 2 ∗ real DIM ( ′n) ∗ e by simp
finally show ?thesis .

qed

1.4.3 Subclass relationships

instance euclidean space ⊆ perfect space
proof
fix x :: ′a show ¬ open {x}
proof
assume open {x}
then obtain e where 0 < e and e: ∀ y . dist y x < e −→ y = x
unfolding open dist by fast

define y where y = x + scaleR (e/2 ) (SOME b. b ∈ Basis)
have [simp]: (SOME b. b ∈ Basis) ∈ Basis
by (rule someI ex ) (auto simp: ex in conv)

from 〈0 < e〉 have y 6= x
unfolding y def by (auto intro!: nonzero Basis)

from 〈0 < e〉 have dist y x < e
unfolding y def by (simp add : dist norm)

from 〈y 6= x 〉 and 〈dist y x < e〉 show False
using e by simp

qed
qed

1.4.4 Class instances

Type real

instantiation real :: euclidean space
begin

definition
[simp]: Basis = {1 ::real}

instance
by standard auto

end

lemma DIM real [simp]: DIM (real) = 1
by simp

Type complex

instantiation complex :: euclidean space
begin
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definition Basis complex def : Basis = {1 , i}

instance
by standard (auto simp add : Basis complex def intro: complex eqI split : if split asm)

end

lemma DIM complex [simp]: DIM (complex ) = 2
unfolding Basis complex def by simp

lemma complex Basis 1 [iff ]: (1 ::complex ) ∈ Basis
by (simp add : Basis complex def )

lemma complex Basis i [iff ]: i ∈ Basis
by (simp add : Basis complex def )

Type ′a × ′b

instantiation prod :: (real inner , real inner) real inner
begin

definition inner prod def :
inner x y = inner (fst x ) (fst y) + inner (snd x ) (snd y)

lemma inner Pair [simp]: inner (a, b) (c, d) = inner a c + inner b d
unfolding inner prod def by simp

instance
proof
fix r :: real
fix x y z :: ′a::real inner × ′b::real inner
show inner x y = inner y x
unfolding inner prod def
by (simp add : inner commute)

show inner (x + y) z = inner x z + inner y z
unfolding inner prod def
by (simp add : inner add left)

show inner (scaleR r x ) y = r ∗ inner x y
unfolding inner prod def
by (simp add : distrib left)

show 0 ≤ inner x x
unfolding inner prod def
by (intro add nonneg nonneg inner ge zero)

show inner x x = 0 ←→ x = 0
unfolding inner prod def prod eq iff
by (simp add : add nonneg eq 0 iff )

show norm x = sqrt (inner x x )
unfolding norm prod def inner prod def
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by (simp add : power2 norm eq inner)
qed

end

lemma inner Pair 0 : inner x (0 , b) = inner (snd x ) b inner x (a, 0 ) = inner (fst
x ) a

by (cases x , simp)+

instantiation prod :: (euclidean space, euclidean space) euclidean space
begin

definition
Basis = (λu. (u, 0 )) ‘ Basis ∪ (λv . (0 , v)) ‘ Basis

lemma sum Basis prod eq :
fixes f ::( ′a∗ ′b)⇒( ′a∗ ′b)
shows sum f Basis = sum (λi . f (i , 0 )) Basis + sum (λi . f (0 , i)) Basis

proof −
have inj on (λu. (u:: ′a, 0 :: ′b)) Basis inj on (λu. (0 :: ′a, u:: ′b)) Basis
by (auto intro!: inj onI Pair inject)

thus ?thesis
unfolding Basis prod def
by (subst sum.union disjoint) (auto simp: Basis prod def sum.reindex )

qed

instance proof
show (Basis :: ( ′a × ′b) set) 6= {}
unfolding Basis prod def by simp

next
show finite (Basis :: ( ′a × ′b) set)
unfolding Basis prod def by simp

next
fix u v :: ′a × ′b
assume u ∈ Basis and v ∈ Basis
thus inner u v = (if u = v then 1 else 0 )
unfolding Basis prod def inner prod def
by (auto simp add : inner Basis split : if split asm)

next
fix x :: ′a × ′b
show (∀ u∈Basis. inner x u = 0 ) ←→ x = 0
unfolding Basis prod def ball Un ball simps
by (simp add : inner prod def prod eq iff euclidean all zero iff )

qed

lemma DIM prod [simp]: DIM ( ′a × ′b) = DIM ( ′a) + DIM ( ′b)
unfolding Basis prod def
by (subst card Un disjoint) (auto intro!: card image arg cong2 [where f=(+)]

inj onI )
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end

1.4.5 Locale instances

lemma finite dimensional vector space euclidean:
finite dimensional vector space (∗R) Basis

proof unfold locales
show finite (Basis:: ′a set) by (metis finite Basis)
show real vector .independent (Basis:: ′a set)
unfolding dependent def dependent raw def [symmetric]
apply (subst span finite)
apply simp
apply clarify
apply (drule tac f=inner a in arg cong)
apply (simp add : inner Basis inner sum right eq commute)
done

show module.span (∗R) Basis = UNIV
unfolding span finite [OF finite Basis] span raw def [symmetric]
by (auto intro!: euclidean representation[symmetric])

qed

interpretation eucl?: finite dimensional vector space scaleR :: real => ′a =>
′a::euclidean space Basis
rewrites module.dependent (∗R) = dependent
and module.representation (∗R) = representation
and module.subspace (∗R) = subspace
and module.span (∗R) = span
and vector space.extend basis (∗R) = extend basis
and vector space.dim (∗R) = dim
and Vector Spaces.linear (∗R) (∗R) = linear
and Vector Spaces.linear (∗) (∗R) = linear
and finite dimensional vector space.dimension Basis = DIM ( ′a)
and dimension = DIM ( ′a)

by (auto simp add : dependent raw def representation raw def
subspace raw def span raw def extend basis raw def dim raw def linear def
real scaleR def [abs def ]
finite dimensional vector space.dimension def
intro!: finite dimensional vector space.dimension def
finite dimensional vector space euclidean)

interpretation eucl?: finite dimensional vector space pair 1
scaleR::real⇒ ′a::euclidean space⇒ ′a Basis
scaleR::real⇒ ′b::real vector ⇒ ′b
by unfold locales

interpretation eucl?: finite dimensional vector space prod scaleR scaleR Basis Basis
rewrites Basis pair = Basis
and module prod .scale (∗R) (∗R) = (scaleR:: ⇒ ⇒( ′a × ′b))
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proof −
show finite dimensional vector space prod (∗R) (∗R) Basis Basis
by unfold locales

interpret finite dimensional vector space prod (∗R) (∗R) Basis:: ′a set Basis:: ′b
set

by fact
show Basis pair = Basis
unfolding Basis pair def Basis prod def by auto

show module prod .scale (∗R) (∗R) = scaleR
by (fact module prod scale eq scaleR)

qed

end

1.5 Elementary Linear Algebra on Euclidean Spaces

theory Linear Algebra
imports
Euclidean Space
HOL−Library .Infinite Set

begin

lemma linear simps:
assumes bounded linear f
shows
f (a + b) = f a + f b
f (a − b) = f a − f b
f 0 = 0
f (− a) = − f a
f (s ∗R v) = s ∗R (f v)

proof −
interpret f : bounded linear f by fact
show f (a + b) = f a + f b by (rule f .add)
show f (a − b) = f a − f b by (rule f .diff )
show f 0 = 0 by (rule f .zero)
show f (− a) = − f a by (rule f .neg)
show f (s ∗R v) = s ∗R (f v) by (rule f .scale)

qed

lemma finite Atleast Atmost nat [simp]: finite {f x |x . x ∈ (UNIV :: ′a::finite set)}
using finite finite image set by blast

lemma substdbasis expansion unique:
includes inner syntax
assumes d : d ⊆ Basis
shows (

∑
i∈d . f i ∗R i) = (x :: ′a::euclidean space) ←→

(∀ i∈Basis. (i ∈ d −→ f i = x · i) ∧ (i /∈ d −→ x · i = 0 ))
proof −
have ∗:

∧
x a b P . x ∗ (if P then a else b) = (if P then x ∗ a else x ∗ b)

Linear{_}{\kern 0pt}Algebra.html


58

by auto
have ∗∗: finite d
by (auto intro: finite subset [OF assms])

have ∗∗∗:
∧
i . i ∈ Basis =⇒ (

∑
i∈d . f i ∗R i) · i = (

∑
x∈d . if x = i then f x

else 0 )
using d
by (auto intro!: sum.cong simp: inner Basis inner sum left)

show ?thesis
unfolding euclidean eq iff [where ′a= ′a] by (auto simp: sum.delta[OF ∗∗]

∗∗∗)
qed

lemma independent substdbasis: d ⊆ Basis =⇒ independent d
by (rule independent mono[OF independent Basis])

lemma subset translation eq [simp]:
fixes a :: ′a::real vector shows (+) a ‘ s ⊆ (+) a ‘ t ←→ s ⊆ t

by auto

lemma translate inj on:
fixes A :: ′a::ab group add set
shows inj on (λx . a + x ) A
unfolding inj on def by auto

lemma translation assoc:
fixes a b :: ′a::ab group add
shows (λx . b + x ) ‘ ((λx . a + x ) ‘ S ) = (λx . (a + b) + x ) ‘ S
by auto

lemma translation invert :
fixes a :: ′a::ab group add
assumes (λx . a + x ) ‘ A = (λx . a + x ) ‘ B
shows A = B

proof −
have (λx . −a + x ) ‘ ((λx . a + x ) ‘ A) = (λx . − a + x ) ‘ ((λx . a + x ) ‘ B)
using assms by auto

then show ?thesis
using translation assoc[of −a a A] translation assoc[of −a a B ] by auto

qed

lemma translation galois:
fixes a :: ′a::ab group add
shows T = ((λx . a + x ) ‘ S ) ←→ S = ((λx . (− a) + x ) ‘ T )
using translation assoc[of −a a S ]
apply auto
using translation assoc[of a −a T ]
apply auto
done
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lemma translation inverse subset :
assumes ((λx . − a + x ) ‘ V ) ≤ (S :: ′n::ab group add set)
shows V ≤ ((λx . a + x ) ‘ S )

proof −
{
fix x
assume x ∈ V
then have x−a ∈ S using assms by auto
then have x ∈ {a + v |v . v ∈ S}
apply auto
apply (rule exI [of x−a], simp)
done

then have x ∈ ((λx . a+x ) ‘ S ) by auto
}
then show ?thesis by auto

qed

1.5.1 More interesting properties of the norm

unbundle inner syntax

Equality of vectors in terms of (·) products.
lemma linear componentwise:
fixes f :: ′a::euclidean space ⇒ ′b::real inner
assumes lf : linear f
shows (f x ) · j = (

∑
i∈Basis. (x ·i) ∗ (f i ·j )) (is ?lhs = ?rhs)

proof −
interpret linear f by fact
have ?rhs = (

∑
i∈Basis. (x ·i) ∗R (f i))·j

by (simp add : inner sum left)
then show ?thesis
by (simp add : euclidean representation sum[symmetric] scale[symmetric])

qed

lemma vector eq : x = y ←→ x · x = x · y ∧ y · y = x · x
(is ?lhs ←→ ?rhs)

proof
assume ?lhs
then show ?rhs by simp

next
assume ?rhs
then have x · x − x · y = 0 ∧ x · y − y · y = 0
by simp

then have x · (x − y) = 0 ∧ y · (x − y) = 0
by (simp add : inner diff inner commute)

then have (x − y) · (x − y) = 0
by (simp add : field simps inner diff inner commute)

then show x = y by simp
qed
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lemma norm triangle half r :
norm (y − x1 ) < e / 2 =⇒ norm (y − x2 ) < e / 2 =⇒ norm (x1 − x2 ) < e
using dist triangle half r unfolding dist norm[symmetric] by auto

lemma norm triangle half l :
assumes norm (x − y) < e / 2
and norm (x ′ − y) < e / 2

shows norm (x − x ′) < e
using dist triangle half l [OF assms[unfolded dist norm[symmetric]]]
unfolding dist norm[symmetric] .

lemma abs triangle half r :
fixes y :: ′a::linordered field
shows abs (y − x1 ) < e / 2 =⇒ abs (y − x2 ) < e / 2 =⇒ abs (x1 − x2 ) < e
by linarith

lemma abs triangle half l :
fixes y :: ′a::linordered field
assumes abs (x − y) < e / 2
and abs (x ′ − y) < e / 2

shows abs (x − x ′) < e
using assms by linarith

lemma sum clauses:
shows sum f {} = 0
and finite S =⇒ sum f (insert x S ) = (if x ∈ S then sum f S else f x + sum f

S )
by (auto simp add : insert absorb)

lemma vector eq ldot : (∀ x . x · y = x · z ) ←→ y = z
proof
assume ∀ x . x · y = x · z
then have ∀ x . x · (y − z ) = 0
by (simp add : inner diff )

then have (y − z ) · (y − z ) = 0 ..
then show y = z by simp

qed simp

lemma vector eq rdot : (∀ z . x · z = y · z ) ←→ x = y
proof
assume ∀ z . x · z = y · z
then have ∀ z . (x − y) · z = 0
by (simp add : inner diff )

then have (x − y) · (x − y) = 0 ..
then show x = y by simp

qed simp
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1.5.2 Substandard Basis

lemma ex card :
assumes n ≤ card A
shows ∃S⊆A. card S = n

proof (cases finite A)
case True
from ex bij betw nat finite[OF this] obtain f where f : bij betw f {0 ..<card A}

A ..
moreover from f 〈n ≤ card A〉 have {..< n} ⊆ {..< card A} inj on f {..< n}
by (auto simp: bij betw def intro: subset inj on)

ultimately have f ‘ {..< n} ⊆ A card (f ‘ {..< n}) = n
by (auto simp: bij betw def card image)

then show ?thesis by blast
next
case False
with 〈n ≤ card A〉 show ?thesis by force

qed

lemma subspace substandard : subspace {x :: ′a::euclidean space. (∀ i∈Basis. P i −→
x ·i = 0 )}
by (auto simp: subspace def inner add left)

lemma dim substandard :
assumes d : d ⊆ Basis
shows dim {x :: ′a::euclidean space. ∀ i∈Basis. i /∈ d −→ x ·i = 0} = card d (is

dim ?A = )
proof (rule dim unique)
from d show d ⊆ ?A
by (auto simp: inner Basis)

from d show independent d
by (rule independent mono [OF independent Basis])

have x ∈ span d if ∀ i∈Basis. i /∈ d −→ x · i = 0 for x
proof −
have finite d
by (rule finite subset [OF d finite Basis])

then have (
∑

i∈d . (x · i) ∗R i) ∈ span d
by (simp add : span sum span clauses)

also have (
∑

i∈d . (x · i) ∗R i) = (
∑

i∈Basis. (x · i) ∗R i)
by (rule sum.mono neutral cong left [OF finite Basis d ]) (auto simp: that)

finally show x ∈ span d
by (simp only : euclidean representation)

qed
then show ?A ⊆ span d by auto

qed simp

1.5.3 Orthogonality

definition (in real inner) orthogonal x y ←→ x · y = 0
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context real inner
begin

lemma orthogonal self : orthogonal x x ←→ x = 0
by (simp add : orthogonal def )

lemma orthogonal clauses:
orthogonal a 0
orthogonal a x =⇒ orthogonal a (c ∗R x )
orthogonal a x =⇒ orthogonal a (− x )
orthogonal a x =⇒ orthogonal a y =⇒ orthogonal a (x + y)
orthogonal a x =⇒ orthogonal a y =⇒ orthogonal a (x − y)
orthogonal 0 a
orthogonal x a =⇒ orthogonal (c ∗R x ) a
orthogonal x a =⇒ orthogonal (− x ) a
orthogonal x a =⇒ orthogonal y a =⇒ orthogonal (x + y) a
orthogonal x a =⇒ orthogonal y a =⇒ orthogonal (x − y) a
unfolding orthogonal def inner add inner diff by auto

end

lemma orthogonal commute: orthogonal x y ←→ orthogonal y x
by (simp add : orthogonal def inner commute)

lemma orthogonal scaleR [simp]: c 6= 0 =⇒ orthogonal (c ∗R x ) = orthogonal x
by (rule ext) (simp add : orthogonal def )

lemma pairwise ortho scaleR:
pairwise (λi j . orthogonal (f i) (g j )) B
=⇒ pairwise (λi j . orthogonal (a i ∗R f i) (a j ∗R g j )) B

by (auto simp: pairwise def orthogonal clauses)

lemma orthogonal rvsum:
[[finite s;

∧
y . y ∈ s =⇒ orthogonal x (f y)]] =⇒ orthogonal x (sum f s)

by (induction s rule: finite induct) (auto simp: orthogonal clauses)

lemma orthogonal lvsum:
[[finite s;

∧
x . x ∈ s =⇒ orthogonal (f x ) y ]] =⇒ orthogonal (sum f s) y

by (induction s rule: finite induct) (auto simp: orthogonal clauses)

lemma norm add Pythagorean:
assumes orthogonal a b
shows norm(a + b) ˆ 2 = norm a ˆ 2 + norm b ˆ 2

proof −
from assms have (a − (0 − b)) · (a − (0 − b)) = a · a − (0 − b · b)
by (simp add : algebra simps orthogonal def inner commute)

then show ?thesis
by (simp add : power2 norm eq inner)

qed
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lemma norm sum Pythagorean:
assumes finite I pairwise (λi j . orthogonal (f i) (f j )) I
shows (norm (sum f I ))2 = (

∑
i∈I . (norm (f i))2)

using assms
proof (induction I rule: finite induct)
case empty then show ?case by simp

next
case (insert x I )
then have orthogonal (f x ) (sum f I )
by (metis pairwise insert orthogonal rvsum)

with insert show ?case
by (simp add : pairwise insert norm add Pythagorean)

qed

1.5.4 Orthogonality of a transformation

definition orthogonal transformation f ←→ linear f ∧ (∀ v w . f v · f w = v · w)

lemma orthogonal transformation:
orthogonal transformation f ←→ linear f ∧ (∀ v . norm (f v) = norm v)
unfolding orthogonal transformation def
apply auto
apply (erule tac x=v in allE )+
apply (simp add : norm eq sqrt inner)
apply (simp add : dot norm linear add [symmetric])
done

lemma orthogonal transformation id [simp]: orthogonal transformation (λx . x )
by (simp add : linear iff orthogonal transformation def )

lemma orthogonal orthogonal transformation:
orthogonal transformation f =⇒ orthogonal (f x ) (f y) ←→ orthogonal x y

by (simp add : orthogonal def orthogonal transformation def )

lemma orthogonal transformation compose:
[[orthogonal transformation f ; orthogonal transformation g ]] =⇒ orthogonal transformation(f
◦ g)
by (auto simp: orthogonal transformation def linear compose)

lemma orthogonal transformation neg :
orthogonal transformation(λx . −(f x )) ←→ orthogonal transformation f
by (auto simp: orthogonal transformation def dest : linear compose neg)

lemma orthogonal transformation scaleR: orthogonal transformation f =⇒ f (c
∗R v) = c ∗R f v
by (simp add : linear iff orthogonal transformation def )

lemma orthogonal transformation linear :
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orthogonal transformation f =⇒ linear f
by (simp add : orthogonal transformation def )

lemma orthogonal transformation inj :
orthogonal transformation f =⇒ inj f
unfolding orthogonal transformation def inj on def
by (metis vector eq)

lemma orthogonal transformation surj :
orthogonal transformation f =⇒ surj f
for f :: ′a::euclidean space ⇒ ′a::euclidean space
by (simp add : linear injective imp surjective orthogonal transformation inj or-

thogonal transformation linear)

lemma orthogonal transformation bij :
orthogonal transformation f =⇒ bij f
for f :: ′a::euclidean space ⇒ ′a::euclidean space
by (simp add : bij def orthogonal transformation inj orthogonal transformation surj )

lemma orthogonal transformation inv :
orthogonal transformation f =⇒ orthogonal transformation (inv f )
for f :: ′a::euclidean space ⇒ ′a::euclidean space
by (metis (no types, hide lams) bijection.inv right bijection def inj linear imp inv linear

orthogonal transformation orthogonal transformation bij orthogonal transformation inj )

lemma orthogonal transformation norm:
orthogonal transformation f =⇒ norm (f x ) = norm x
by (metis orthogonal transformation)

1.5.5 Bilinear functions

definition
bilinear :: ( ′a::real vector ⇒ ′b::real vector ⇒ ′c::real vector) ⇒ bool where
bilinear f ←→ (∀ x . linear (λy . f x y)) ∧ (∀ y . linear (λx . f x y))

lemma bilinear ladd : bilinear h =⇒ h (x + y) z = h x z + h y z
by (simp add : bilinear def linear iff )

lemma bilinear radd : bilinear h =⇒ h x (y + z ) = h x y + h x z
by (simp add : bilinear def linear iff )

lemma bilinear times:
fixes c:: ′a::real algebra shows bilinear (λx y :: ′a. x∗y)
by (auto simp: bilinear def distrib left distrib right intro!: linearI )

lemma bilinear lmul : bilinear h =⇒ h (c ∗R x ) y = c ∗R h x y
by (simp add : bilinear def linear iff )

lemma bilinear rmul : bilinear h =⇒ h x (c ∗R y) = c ∗R h x y
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by (simp add : bilinear def linear iff )

lemma bilinear lneg : bilinear h =⇒ h (− x ) y = − h x y
by (drule bilinear lmul [of − 1 ]) simp

lemma bilinear rneg : bilinear h =⇒ h x (− y) = − h x y
by (drule bilinear rmul [of − 1 ]) simp

lemma (in ab group add) eq add iff : x = x + y ←→ y = 0
using add left imp eq [of x y 0 ] by auto

lemma bilinear lzero:
assumes bilinear h
shows h 0 x = 0
using bilinear ladd [OF assms, of 0 0 x ] by (simp add : eq add iff field simps)

lemma bilinear rzero:
assumes bilinear h
shows h x 0 = 0
using bilinear radd [OF assms, of x 0 0 ] by (simp add : eq add iff field simps)

lemma bilinear lsub: bilinear h =⇒ h (x − y) z = h x z − h y z
using bilinear ladd [of h x − y ] by (simp add : bilinear lneg)

lemma bilinear rsub: bilinear h =⇒ h z (x − y) = h z x − h z y
using bilinear radd [of h x − y ] by (simp add : bilinear rneg)

lemma bilinear sum:
assumes bilinear h
shows h (sum f S ) (sum g T ) = sum (λ(i ,j ). h (f i) (g j )) (S × T )

proof −
interpret l : linear λx . h x y for y using assms by (simp add : bilinear def )
interpret r : linear λy . h x y for x using assms by (simp add : bilinear def )
have h (sum f S ) (sum g T ) = sum (λx . h (f x ) (sum g T )) S
by (simp add : l .sum)

also have . . . = sum (λx . sum (λy . h (f x ) (g y)) T ) S
by (rule sum.cong) (simp all add : r .sum)

finally show ?thesis
unfolding sum.cartesian product .

qed

1.5.6 Adjoints

definition adjoint :: (( ′a::real inner) ⇒ ( ′b::real inner)) ⇒ ′b ⇒ ′a where
adjoint f = (SOME f ′. ∀ x y . f x · y = x · f ′ y)

lemma adjoint unique:
assumes ∀ x y . inner (f x ) y = inner x (g y)
shows adjoint f = g
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unfolding adjoint def
proof (rule some equality)
show ∀ x y . inner (f x ) y = inner x (g y)
by (rule assms)

next
fix h
assume ∀ x y . inner (f x ) y = inner x (h y)
then have ∀ x y . inner x (g y) = inner x (h y)
using assms by simp

then have ∀ x y . inner x (g y − h y) = 0
by (simp add : inner diff right)

then have ∀ y . inner (g y − h y) (g y − h y) = 0
by simp

then have ∀ y . h y = g y
by simp

then show h = g by (simp add : ext)
qed

TODO: The following lemmas about adjoints should hold for any Hilbert
space (i.e. complete inner product space). (see https://en.wikipedia.org/
wiki/Hermitian adjoint)

lemma adjoint works:
fixes f :: ′n::euclidean space ⇒ ′m::euclidean space
assumes lf : linear f
shows x · adjoint f y = f x · y

proof −
interpret linear f by fact
have ∀ y . ∃w . ∀ x . f x · y = x · w
proof (intro allI exI )
fix y :: ′m and x
let ?w = (

∑
i∈Basis. (f i · y) ∗R i) :: ′n

have f x · y = f (
∑

i∈Basis. (x · i) ∗R i) · y
by (simp add : euclidean representation)

also have . . . = (
∑

i∈Basis. (x · i) ∗R f i) · y
by (simp add : sum scale)

finally show f x · y = x · ?w
by (simp add : inner sum left inner sum right mult .commute)

qed
then show ?thesis
unfolding adjoint def choice iff
by (intro someI2 ex [where Q=λf ′. x · f ′ y = f x · y ]) auto

qed

lemma adjoint clauses:
fixes f :: ′n::euclidean space ⇒ ′m::euclidean space
assumes lf : linear f
shows x · adjoint f y = f x · y
and adjoint f y · x = y · f x

by (simp all add : adjoint works[OF lf ] inner commute)

https://en.wikipedia.org/wiki/Hermitian_adjoint
https://en.wikipedia.org/wiki/Hermitian_adjoint
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lemma adjoint linear :
fixes f :: ′n::euclidean space ⇒ ′m::euclidean space
assumes lf : linear f
shows linear (adjoint f )
by (simp add : lf linear iff euclidean eq iff [where ′a= ′n] euclidean eq iff [where

′a= ′m]
adjoint clauses[OF lf ] inner distrib)

lemma adjoint adjoint :
fixes f :: ′n::euclidean space ⇒ ′m::euclidean space
assumes lf : linear f
shows adjoint (adjoint f ) = f
by (rule adjoint unique, simp add : adjoint clauses [OF lf ])

1.5.7 Euclidean Spaces as Typeclass

lemma independent Basis: independent Basis
by (rule independent Basis)

lemma span Basis [simp]: span Basis = UNIV
by (rule span Basis)

lemma in span Basis: x ∈ span Basis
unfolding span Basis ..

1.5.8 Linearity and Bilinearity continued

lemma linear bounded :
fixes f :: ′a::euclidean space ⇒ ′b::real normed vector
assumes lf : linear f
shows ∃B . ∀ x . norm (f x ) ≤ B ∗ norm x

proof
interpret linear f by fact
let ?B =

∑
b∈Basis. norm (f b)

show ∀ x . norm (f x ) ≤ ?B ∗ norm x
proof
fix x :: ′a
let ?g = λb. (x · b) ∗R f b
have norm (f x ) = norm (f (

∑
b∈Basis. (x · b) ∗R b))

unfolding euclidean representation ..
also have . . . = norm (sum ?g Basis)
by (simp add : sum scale)

finally have th0 : norm (f x ) = norm (sum ?g Basis) .
have th: norm (?g i) ≤ norm (f i) ∗ norm x if i ∈ Basis for i
proof −
from Basis le norm[OF that , of x ]
show norm (?g i) ≤ norm (f i) ∗ norm x
unfolding norm scaleR by (metis mult .commute mult left mono norm ge zero)

qed
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from sum norm le[of ?g , OF th]
show norm (f x ) ≤ ?B ∗ norm x
unfolding th0 sum distrib right by metis

qed
qed

lemma linear conv bounded linear :
fixes f :: ′a::euclidean space ⇒ ′b::real normed vector
shows linear f ←→ bounded linear f

proof
assume linear f
then interpret f : linear f .
show bounded linear f
proof
have ∃B . ∀ x . norm (f x ) ≤ B ∗ norm x
using 〈linear f 〉 by (rule linear bounded)

then show ∃K . ∀ x . norm (f x ) ≤ norm x ∗ K
by (simp add : mult .commute)

qed
next
assume bounded linear f
then interpret f : bounded linear f .
show linear f ..

qed

lemmas linear linear = linear conv bounded linear [symmetric]

lemma inj linear imp inv bounded linear :
fixes f :: ′a::euclidean space ⇒ ′a
shows [[bounded linear f ; inj f ]] =⇒ bounded linear (inv f )
by (simp add : inj linear imp inv linear linear linear)

lemma linear bounded pos:
fixes f :: ′a::euclidean space ⇒ ′b::real normed vector
assumes lf : linear f
obtains B where B > 0

∧
x . norm (f x ) ≤ B ∗ norm x

proof −
have ∃B > 0 . ∀ x . norm (f x ) ≤ norm x ∗ B
using lf unfolding linear conv bounded linear
by (rule bounded linear .pos bounded)

with that show ?thesis
by (auto simp: mult .commute)

qed

lemma linear invertible bounded below pos:
fixes f :: ′a::real normed vector ⇒ ′b::euclidean space
assumes linear f linear g g ◦ f = id
obtains B where B > 0

∧
x . B ∗ norm x ≤ norm(f x )

proof −
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obtain B where B > 0 and B :
∧
x . norm (g x ) ≤ B ∗ norm x

using linear bounded pos [OF 〈linear g〉] by blast
show thesis
proof
show 0 < 1/B
by (simp add : 〈B > 0 〉)

show 1/B ∗ norm x ≤ norm (f x ) for x
proof −
have 1/B ∗ norm x = 1/B ∗ norm (g (f x ))
using assms by (simp add : pointfree idE )

also have . . . ≤ norm (f x )
using B [of f x ] by (simp add : 〈B > 0 〉 mult .commute pos divide le eq)

finally show ?thesis .
qed

qed
qed

lemma linear inj bounded below pos:
fixes f :: ′a::real normed vector ⇒ ′b::euclidean space
assumes linear f inj f
obtains B where B > 0

∧
x . B ∗ norm x ≤ norm(f x )

using linear injective left inverse [OF assms]
linear invertible bounded below pos assms by blast

lemma bounded linearI ′:
fixes f :: ′a::euclidean space ⇒ ′b::real normed vector
assumes

∧
x y . f (x + y) = f x + f y

and
∧
c x . f (c ∗R x ) = c ∗R f x

shows bounded linear f
using assms linearI linear conv bounded linear by blast

lemma bilinear bounded :
fixes h :: ′m::euclidean space ⇒ ′n::euclidean space ⇒ ′k ::real normed vector
assumes bh: bilinear h
shows ∃B . ∀ x y . norm (h x y) ≤ B ∗ norm x ∗ norm y

proof (clarify intro!: exI [of
∑

i∈Basis.
∑

j∈Basis. norm (h i j )])
fix x :: ′m
fix y :: ′n
have norm (h x y) = norm (h (sum (λi . (x · i) ∗R i) Basis) (sum (λi . (y · i)
∗R i) Basis))

by (simp add : euclidean representation)
also have . . . = norm (sum (λ (i ,j ). h ((x · i) ∗R i) ((y · j ) ∗R j )) (Basis ×

Basis))
unfolding bilinear sum[OF bh] ..

finally have th: norm (h x y) = . . . .
have

∧
i j . [[i ∈ Basis; j ∈ Basis]]
=⇒ |x · i | ∗ (|y · j | ∗ norm (h i j )) ≤ norm x ∗ (norm y ∗ norm (h i j ))

by (auto simp add : zero le mult iff Basis le norm mult mono)
then show norm (h x y) ≤ (

∑
i∈Basis.

∑
j∈Basis. norm (h i j )) ∗ norm x ∗
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norm y
unfolding sum distrib right th sum.cartesian product
by (clarsimp simp add : bilinear rmul [OF bh] bilinear lmul [OF bh]
field simps simp del : scaleR scaleR intro!: sum norm le)

qed

lemma bilinear conv bounded bilinear :
fixes h :: ′a::euclidean space ⇒ ′b::euclidean space ⇒ ′c::real normed vector
shows bilinear h ←→ bounded bilinear h

proof
assume bilinear h
show bounded bilinear h
proof
fix x y z
show h (x + y) z = h x z + h y z
using 〈bilinear h〉 unfolding bilinear def linear iff by simp

next
fix x y z
show h x (y + z ) = h x y + h x z
using 〈bilinear h〉 unfolding bilinear def linear iff by simp

next
show h (scaleR r x ) y = scaleR r (h x y) h x (scaleR r y) = scaleR r (h x y)

for r x y
using 〈bilinear h〉 unfolding bilinear def linear iff
by simp all

next
have ∃B . ∀ x y . norm (h x y) ≤ B ∗ norm x ∗ norm y
using 〈bilinear h〉 by (rule bilinear bounded)

then show ∃K . ∀ x y . norm (h x y) ≤ norm x ∗ norm y ∗ K
by (simp add : ac simps)

qed
next
assume bounded bilinear h
then interpret h: bounded bilinear h .
show bilinear h
unfolding bilinear def linear conv bounded linear
using h.bounded linear left h.bounded linear right by simp

qed

lemma bilinear bounded pos:
fixes h :: ′a::euclidean space ⇒ ′b::euclidean space ⇒ ′c::real normed vector
assumes bh: bilinear h
shows ∃B > 0 . ∀ x y . norm (h x y) ≤ B ∗ norm x ∗ norm y

proof −
have ∃B > 0 . ∀ x y . norm (h x y) ≤ norm x ∗ norm y ∗ B
using bh [unfolded bilinear conv bounded bilinear ]
by (rule bounded bilinear .pos bounded)

then show ?thesis
by (simp only : ac simps)
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qed

lemma bounded linear imp has derivative: bounded linear f =⇒ (f has derivative
f ) net
by (auto simp add : has derivative def linear diff linear linear linear def

dest : bounded linear .linear)

lemma linear imp has derivative:
fixes f :: ′a::euclidean space ⇒ ′b::real normed vector
shows linear f =⇒ (f has derivative f ) net
by (simp add : bounded linear imp has derivative linear conv bounded linear)

lemma bounded linear imp differentiable: bounded linear f =⇒ f differentiable net
using bounded linear imp has derivative differentiable def by blast

lemma linear imp differentiable:
fixes f :: ′a::euclidean space ⇒ ′b::real normed vector
shows linear f =⇒ f differentiable net
by (metis linear imp has derivative differentiable def )

1.5.9 We continue

lemma independent bound :
fixes S :: ′a::euclidean space set
shows independent S =⇒ finite S ∧ card S ≤ DIM ( ′a)
by (metis dim subset UNIV finiteI independent dim span eq card independent)

lemmas independent imp finite = finiteI independent

corollary independent card le:
fixes S :: ′a::euclidean space set
assumes independent S
shows card S ≤ DIM ( ′a)
using assms independent bound by auto

lemma dependent biggerset :
fixes S :: ′a::euclidean space set
shows (finite S =⇒ card S > DIM ( ′a)) =⇒ dependent S
by (metis independent bound not less)

Picking an orthogonal replacement for a spanning set.

lemma vector sub project orthogonal :
fixes b x :: ′a::euclidean space
shows b · (x − ((b · x ) / (b · b)) ∗R b) = 0
unfolding inner simps by auto

lemma pairwise orthogonal insert :
assumes pairwise orthogonal S
and

∧
y . y ∈ S =⇒ orthogonal x y
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shows pairwise orthogonal (insert x S )
using assms unfolding pairwise def
by (auto simp add : orthogonal commute)

lemma basis orthogonal :
fixes B :: ′a::real inner set
assumes fB : finite B
shows ∃C . finite C ∧ card C ≤ card B ∧ span C = span B ∧ pairwise orthogonal

C
(is ∃C . ?P B C )
using fB

proof (induct rule: finite induct)
case empty
then show ?case
apply (rule exI [where x={}])
apply (auto simp add : pairwise def )
done

next
case (insert a B)
note fB = 〈finite B 〉 and aB = 〈a /∈ B 〉

from 〈∃C . finite C ∧ card C ≤ card B ∧ span C = span B ∧ pairwise orthogonal
C 〉

obtain C where C : finite C card C ≤ card B
span C = span B pairwise orthogonal C by blast

let ?a = a − sum (λx . (x · a / (x · x )) ∗R x ) C
let ?C = insert ?a C
from C (1 ) have fC : finite ?C
by simp

from fB aB C (1 ,2 ) have cC : card ?C ≤ card (insert a B)
by (simp add : card insert if )

{
fix x k
have th0 :

∧
(a:: ′a) b c. a − (b − c) = c + (a − b)

by (simp add : field simps)
have x − k ∗R (a − (

∑
x∈C . (x · a / (x · x )) ∗R x )) ∈ span C ←→ x − k

∗R a ∈ span C
apply (simp only : scaleR right diff distrib th0 )
apply (rule span add eq)
apply (rule span scale)
apply (rule span sum)
apply (rule span scale)
apply (rule span base)
apply assumption
done

}
then have SC : span ?C = span (insert a B)
unfolding set eq iff span breakdown eq C (3 )[symmetric] by auto

{
fix y
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assume yC : y ∈ C
then have Cy : C = insert y (C − {y})
by blast

have fth: finite (C − {y})
using C by simp

have orthogonal ?a y
unfolding orthogonal def
unfolding inner diff inner sum left right minus eq
unfolding sum.remove [OF 〈finite C 〉 〈y ∈ C 〉]
apply (clarsimp simp add : inner commute[of y a])
apply (rule sum.neutral)
apply clarsimp
apply (rule C (4 )[unfolded pairwise def orthogonal def , rule format ])
using 〈y ∈ C 〉 by auto

}
with 〈pairwise orthogonal C 〉 have CPO : pairwise orthogonal ?C
by (rule pairwise orthogonal insert)

from fC cC SC CPO have ?P (insert a B) ?C
by blast

then show ?case by blast
qed

lemma orthogonal basis exists:
fixes V :: ( ′a::euclidean space) set
shows ∃B . independent B ∧ B ⊆ span V ∧ V ⊆ span B ∧
(card B = dim V ) ∧ pairwise orthogonal B

proof −
from basis exists[of V ] obtain B where
B : B ⊆ V independent B V ⊆ span B card B = dim V
by force

from B have fB : finite B card B = dim V
using independent bound by auto

from basis orthogonal [OF fB(1 )] obtain C where
C : finite C card C ≤ card B span C = span B pairwise orthogonal C
by blast

from C B have CSV : C ⊆ span V
by (metis span superset span mono subset trans)

from span mono[OF B(3 )] C have SVC : span V ⊆ span C
by (simp add : span span)

from card le dim spanning [OF CSV SVC C (1 )] C (2 ,3 ) fB
have iC : independent C
by (simp)

from C fB have card C ≤ dim V
by simp

moreover have dim V ≤ card C
using span card ge dim[OF CSV SVC C (1 )]
by simp

ultimately have CdV : card C = dim V
using C (1 ) by simp
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from C B CSV CdV iC show ?thesis
by auto

qed

Low-dimensional subset is in a hyperplane (weak orthogonal complement).

lemma span not univ orthogonal :
fixes S :: ′a::euclidean space set
assumes sU : span S 6= UNIV
shows ∃ a:: ′a. a 6= 0 ∧ (∀ x ∈ span S . a · x = 0 )

proof −
from sU obtain a where a: a /∈ span S
by blast

from orthogonal basis exists obtain B where
B : independent B B ⊆ span S S ⊆ span B
card B = dim S pairwise orthogonal B
by blast

from B have fB : finite B card B = dim S
using independent bound by auto

from span mono[OF B(2 )] span mono[OF B(3 )]
have sSB : span S = span B
by (simp add : span span)

let ?a = a − sum (λb. (a · b / (b · b)) ∗R b) B
have sum (λb. (a · b / (b · b)) ∗R b) B ∈ span S
unfolding sSB
apply (rule span sum)
apply (rule span scale)
apply (rule span base)
apply assumption
done

with a have a0 :?a 6= 0
by auto

have ?a · x = 0 if x∈span B for x
proof (rule span induct [OF that ])
show subspace {x . ?a · x = 0}
by (auto simp add : subspace def inner add)

next
{
fix x
assume x : x ∈ B
from x have B ′: B = insert x (B − {x})
by blast

have fth: finite (B − {x})
using fB by simp

have ?a · x = 0
apply (subst B ′)
using fB fth
unfolding sum clauses(2 )[OF fth]
apply simp unfolding inner simps
apply (clarsimp simp add : inner add inner sum left)
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apply (rule sum.neutral , rule ballI )
apply (simp only : inner commute)
apply (auto simp add : x field simps
intro: B(5 )[unfolded pairwise def orthogonal def , rule format ])

done
}
then show ?a · x = 0 if x ∈ B for x
using that by blast

qed
with a0 show ?thesis
unfolding sSB by (auto intro: exI [where x=?a])

qed

lemma span not univ subset hyperplane:
fixes S :: ′a::euclidean space set
assumes SU : span S 6= UNIV
shows ∃ a. a 6=0 ∧ span S ⊆ {x . a · x = 0}
using span not univ orthogonal [OF SU ] by auto

lemma lowdim subset hyperplane:
fixes S :: ′a::euclidean space set
assumes d : dim S < DIM ( ′a)
shows ∃ a:: ′a. a 6= 0 ∧ span S ⊆ {x . a · x = 0}

proof −
{
assume span S = UNIV
then have dim (span S ) = dim (UNIV :: ( ′a) set)
by simp

then have dim S = DIM ( ′a)
by (metis Euclidean Space.dim UNIV dim span)

with d have False by arith
}
then have th: span S 6= UNIV
by blast

from span not univ subset hyperplane[OF th] show ?thesis .
qed

lemma linear eq stdbasis:
fixes f :: ′a::euclidean space ⇒
assumes lf : linear f
and lg : linear g
and fg :

∧
b. b ∈ Basis =⇒ f b = g b

shows f = g
using linear eq on span[OF lf lg , of Basis] fg
by auto

Similar results for bilinear functions.

lemma bilinear eq :
assumes bf : bilinear f
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and bg : bilinear g
and SB : S ⊆ span B
and TC : T ⊆ span C
and x∈S y∈T
and fg :

∧
x y . [[x ∈ B ; y∈ C ]] =⇒ f x y = g x y

shows f x y = g x y
proof −
let ?P = {x . ∀ y∈ span C . f x y = g x y}
from bf bg have sp: subspace ?P
unfolding bilinear def linear iff subspace def bf bg
by (auto simp add : span zero bilinear lzero[OF bf ] bilinear lzero[OF bg ]

span add Ball def
intro: bilinear ladd [OF bf ])

have sfg :
∧
x . x ∈ B =⇒ subspace {a. f x a = g x a}

apply (auto simp add : subspace def )
using bf bg unfolding bilinear def linear iff
apply (auto simp add : span zero bilinear rzero[OF bf ] bilinear rzero[OF bg ]
span add Ball def

intro: bilinear ladd [OF bf ])
done

have ∀ y∈ span C . f x y = g x y if x ∈ span B for x
apply (rule span induct [OF that sp])
using fg sfg span induct by blast

then show ?thesis
using SB TC assms by auto

qed

lemma bilinear eq stdbasis:
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space ⇒
assumes bf : bilinear f
and bg : bilinear g
and fg :

∧
i j . i ∈ Basis =⇒ j ∈ Basis =⇒ f i j = g i j

shows f = g
using bilinear eq [OF bf bg equalityD2 [OF span Basis] equalityD2 [OF span Basis]]

fg by blast

1.5.10 Infinity norm

definition infnorm (x :: ′a::euclidean space) = Sup {|x · b| |b. b ∈ Basis}

lemma infnorm set image:
fixes x :: ′a::euclidean space
shows {|x · i | |i . i ∈ Basis} = (λi . |x · i |) ‘ Basis
by blast

lemma infnorm Max :
fixes x :: ′a::euclidean space
shows infnorm x = Max ((λi . |x · i |) ‘ Basis)
by (simp add : infnorm def infnorm set image cSup eq Max )
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lemma infnorm set lemma:
fixes x :: ′a::euclidean space
shows finite {|x · i | |i . i ∈ Basis}
and {|x · i | |i . i ∈ Basis} 6= {}

unfolding infnorm set image
by auto

lemma infnorm pos le:
fixes x :: ′a::euclidean space
shows 0 ≤ infnorm x
by (simp add : infnorm Max Max ge iff ex in conv)

lemma infnorm triangle:
fixes x :: ′a::euclidean space
shows infnorm (x + y) ≤ infnorm x + infnorm y

proof −
have ∗:

∧
a b c d :: real . |a| ≤ c =⇒ |b| ≤ d =⇒ |a + b| ≤ c + d

by simp
show ?thesis
by (auto simp: infnorm Max inner add left intro!: ∗)

qed

lemma infnorm eq 0 :
fixes x :: ′a::euclidean space
shows infnorm x = 0 ←→ x = 0

proof −
have infnorm x ≤ 0 ←→ x = 0
unfolding infnorm Max by (simp add : euclidean all zero iff )

then show ?thesis
using infnorm pos le[of x ] by simp

qed

lemma infnorm 0 : infnorm 0 = 0
by (simp add : infnorm eq 0 )

lemma infnorm neg : infnorm (− x ) = infnorm x
unfolding infnorm def by simp

lemma infnorm sub: infnorm (x − y) = infnorm (y − x )
by (metis infnorm neg minus diff eq)

lemma absdiff infnorm: |infnorm x − infnorm y | ≤ infnorm (x − y)
proof −
have ∗:

∧
(nx ::real) n ny . nx ≤ n + ny =⇒ ny ≤ n + nx =⇒ |nx − ny | ≤ n

by arith
show ?thesis
proof (rule ∗)
from infnorm triangle[of x − y y ] infnorm triangle[of x − y −x ]
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show infnorm x ≤ infnorm (x − y) + infnorm y infnorm y ≤ infnorm (x −
y) + infnorm x

by (simp all add : field simps infnorm neg)
qed

qed

lemma real abs infnorm: |infnorm x | = infnorm x
using infnorm pos le[of x ] by arith

lemma Basis le infnorm:
fixes x :: ′a::euclidean space
shows b ∈ Basis =⇒ |x · b| ≤ infnorm x
by (simp add : infnorm Max )

lemma infnorm mul : infnorm (a ∗R x ) = |a| ∗ infnorm x
unfolding infnorm Max

proof (safe intro!: Max eqI )
let ?B = (λi . |x · i |) ‘ Basis
{ fix b :: ′a
assume b ∈ Basis
then show |a ∗R x · b| ≤ |a| ∗ Max ?B
by (simp add : abs mult mult left mono)

next
from Max in[of ?B ] obtain b where b ∈ Basis Max ?B = |x · b|
by (auto simp del : Max in)

then show |a| ∗ Max ((λi . |x · i |) ‘ Basis) ∈ (λi . |a ∗R x · i |) ‘ Basis
by (intro image eqI [where x=b]) (auto simp: abs mult)

}
qed simp

lemma infnorm mul lemma: infnorm (a ∗R x ) ≤ |a| ∗ infnorm x
unfolding infnorm mul ..

lemma infnorm pos lt : infnorm x > 0 ←→ x 6= 0
using infnorm pos le[of x ] infnorm eq 0 [of x ] by arith

Prove that it differs only up to a bound from Euclidean norm.

lemma infnorm le norm: infnorm x ≤ norm x
by (simp add : Basis le norm infnorm Max )

lemma norm le infnorm:
fixes x :: ′a::euclidean space
shows norm x ≤ sqrt DIM ( ′a) ∗ infnorm x
unfolding norm eq sqrt inner id def

proof (rule real le lsqrt [OF inner ge zero])
show sqrt DIM ( ′a) ∗ infnorm x ≥ 0
by (simp add : zero le mult iff infnorm pos le)

have x · x ≤ (
∑

b∈Basis. x · b ∗ (x · b))
by (metis euclidean inner order refl)
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also have ... ≤ DIM ( ′a) ∗ |infnorm x |2
by (rule sum bounded above) (metis Basis le infnorm abs le square iff power2 eq square

real abs infnorm)
also have ... ≤ (sqrt DIM ( ′a) ∗ infnorm x )2

by (simp add : power mult distrib)
finally show x · x ≤ (sqrt DIM ( ′a) ∗ infnorm x )2 .

qed

lemma tendsto infnorm [tendsto intros]:
assumes (f −−−→ a) F
shows ((λx . infnorm (f x )) −−−→ infnorm a) F

proof (rule tendsto compose [OF LIM I assms])
fix r :: real
assume r > 0
then show ∃ s>0 . ∀ x . x 6= a ∧ norm (x − a) < s −→ norm (infnorm x −

infnorm a) < r
by (metis real norm def le less trans absdiff infnorm infnorm le norm)

qed

Equality in Cauchy-Schwarz and triangle inequalities.

lemma norm cauchy schwarz eq : x · y = norm x ∗ norm y ←→ norm x ∗R y =
norm y ∗R x
(is ?lhs ←→ ?rhs)

proof (cases x=0 )
case True
then show ?thesis
by auto

next
case False
from inner eq zero iff [of norm y ∗R x − norm x ∗R y ]
have ?rhs ←→

(norm y ∗ (norm y ∗ norm x ∗ norm x − norm x ∗ (x · y)) −
norm x ∗ (norm y ∗ (y · x ) − norm x ∗ norm y ∗ norm y) = 0 )

using False unfolding inner simps
by (auto simp add : power2 norm eq inner [symmetric] power2 eq square in-

ner commute field simps)
also have . . . ←→ (2 ∗ norm x ∗ norm y ∗ (norm x ∗ norm y − x · y) = 0 )
using False by (simp add : field simps inner commute)

also have . . . ←→ ?lhs
using False by auto

finally show ?thesis by metis
qed

lemma norm cauchy schwarz abs eq :
|x · y | = norm x ∗ norm y ←→
norm x ∗R y = norm y ∗R x ∨ norm x ∗R y = − norm y ∗R x

(is ?lhs ←→ ?rhs)
proof −
have th:

∧
(x ::real) a. a ≥ 0 =⇒ |x | = a ←→ x = a ∨ x = − a
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by arith
have ?rhs ←→ norm x ∗R y = norm y ∗R x ∨ norm (− x ) ∗R y = norm y ∗R

(− x )
by simp

also have . . . ←→ (x · y = norm x ∗ norm y ∨ (− x ) · y = norm x ∗ norm y)
unfolding norm cauchy schwarz eq [symmetric]
unfolding norm minus cancel norm scaleR ..

also have . . . ←→ ?lhs
unfolding th[OF mult nonneg nonneg , OF norm ge zero[of x ] norm ge zero[of

y ]] inner simps
by auto

finally show ?thesis ..
qed

lemma norm triangle eq :
fixes x y :: ′a::real inner
shows norm (x + y) = norm x + norm y ←→ norm x ∗R y = norm y ∗R x

proof (cases x = 0 ∨ y = 0 )
case True
then show ?thesis
by force

next
case False
then have n: norm x > 0 norm y > 0
by auto

have norm (x + y) = norm x + norm y ←→ (norm (x + y))2 = (norm x +
norm y)2

by simp
also have . . . ←→ norm x ∗R y = norm y ∗R x
unfolding norm cauchy schwarz eq [symmetric]
unfolding power2 norm eq inner inner simps
by (simp add : power2 norm eq inner [symmetric] power2 eq square inner commute

field simps)
finally show ?thesis .

qed

1.5.11 Collinearity

definition collinear :: ′a::real vector set ⇒ bool
where collinear S ←→ (∃ u. ∀ x ∈ S . ∀ y ∈ S . ∃ c. x − y = c ∗R u)

lemma collinear alt :
collinear S ←→ (∃ u v . ∀ x ∈ S . ∃ c. x = u + c ∗R v) (is ?lhs = ?rhs)

proof
assume ?lhs
then show ?rhs
unfolding collinear def by (metis Groups.add ac(2 ) diff add cancel)

next
assume ?rhs
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then obtain u v where ∗:
∧
x . x ∈ S =⇒ ∃ c. x = u + c ∗R v

by (auto simp: )
have ∃ c. x − y = c ∗R v if x ∈ S y ∈ S for x y

by (metis ∗[OF 〈x ∈ S 〉] ∗[OF 〈y ∈ S 〉] scaleR left .diff add diff cancel left)
then show ?lhs
using collinear def by blast

qed

lemma collinear :
fixes S :: ′a::{perfect space,real vector} set
shows collinear S ←→ (∃ u. u 6= 0 ∧ (∀ x ∈ S . ∀ y ∈ S . ∃ c. x − y = c ∗R u))

proof −
have ∃ v . v 6= 0 ∧ (∀ x∈S . ∀ y∈S . ∃ c. x − y = c ∗R v)
if ∀ x∈S . ∀ y∈S . ∃ c. x − y = c ∗R u u=0 for u

proof −
have ∀ x∈S . ∀ y∈S . x = y
using that by auto

moreover
obtain v :: ′a where v 6= 0
using UNIV not singleton [of 0 ] by auto

ultimately have ∀ x∈S . ∀ y∈S . ∃ c. x − y = c ∗R v
by auto

then show ?thesis
using 〈v 6= 0 〉 by blast

qed
then show ?thesis
apply (clarsimp simp: collinear def )
by (metis scaleR zero right vector fraction eq iff )

qed

lemma collinear subset : [[collinear T ; S ⊆ T ]] =⇒ collinear S
by (meson collinear def subsetCE )

lemma collinear empty [iff ]: collinear {}
by (simp add : collinear def )

lemma collinear sing [iff ]: collinear {x}
by (simp add : collinear def )

lemma collinear 2 [iff ]: collinear {x , y}
apply (simp add : collinear def )
apply (rule exI [where x=x − y ])
by (metis minus diff eq scaleR left .minus scaleR one)

lemma collinear lemma: collinear {0 , x , y} ←→ x = 0 ∨ y = 0 ∨ (∃ c. y = c
∗R x )
(is ?lhs ←→ ?rhs)

proof (cases x = 0 ∨ y = 0 )
case True
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then show ?thesis
by (auto simp: insert commute)

next
case False
show ?thesis
proof
assume h: ?lhs
then obtain u where u: ∀ x∈ {0 ,x ,y}. ∀ y∈ {0 ,x ,y}. ∃ c. x − y = c ∗R u
unfolding collinear def by blast

from u[rule format , of x 0 ] u[rule format , of y 0 ]
obtain cx and cy where
cx : x = cx ∗R u and cy : y = cy ∗R u
by auto

from cx cy False have cx0 : cx 6= 0 and cy0 : cy 6= 0 by auto
let ?d = cy / cx
from cx cy cx0 have y = ?d ∗R x
by simp

then show ?rhs using False by blast
next
assume h: ?rhs
then obtain c where c: y = c ∗R x
using False by blast

show ?lhs
unfolding collinear def c
apply (rule exI [where x=x ])
apply auto

apply (rule exI [where x=− 1 ], simp)
apply (rule exI [where x= −c], simp)
apply (rule exI [where x=1 ], simp)
apply (rule exI [where x=1 − c], simp add : scaleR left diff distrib)
apply (rule exI [where x=c − 1 ], simp add : scaleR left diff distrib)
done

qed
qed

lemma norm cauchy schwarz equal : |x · y | = norm x ∗ norm y ←→ collinear {0 ,
x , y}
proof (cases x=0 )
case True
then show ?thesis
by (auto simp: insert commute)

next
case False
then have nnz : norm x 6= 0
by auto

show ?thesis
proof
assume |x · y | = norm x ∗ norm y
then show collinear {0 , x , y}
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unfolding norm cauchy schwarz abs eq collinear lemma
by (meson eq vector fraction iff nnz )

next
assume collinear {0 , x , y}
with False show |x · y | = norm x ∗ norm y

unfolding norm cauchy schwarz abs eq collinear lemma by (auto simp:
abs if )
qed

qed

1.5.12 Properties of special hyperplanes

lemma subspace hyperplane: subspace {x . a · x = 0}
by (simp add : subspace def inner right distrib)

lemma subspace hyperplane2 : subspace {x . x · a = 0}
by (simp add : inner commute inner right distrib subspace def )

lemma special hyperplane span:
fixes S :: ′n::euclidean space set
assumes k ∈ Basis
shows {x . k · x = 0} = span (Basis − {k})

proof −
have ∗: x ∈ span (Basis − {k}) if k · x = 0 for x
proof −
have x = (

∑
b∈Basis. (x · b) ∗R b)

by (simp add : euclidean representation)
also have ... = (

∑
b ∈ Basis − {k}. (x · b) ∗R b)

by (auto simp: sum.remove [of k ] inner commute assms that)
finally have x = (

∑
b∈Basis − {k}. (x · b) ∗R b) .

then show ?thesis
by (simp add : span finite)

qed
show ?thesis
apply (rule span subspace [symmetric])
using assms
apply (auto simp: inner not same Basis intro: ∗ subspace hyperplane)
done

qed

lemma dim special hyperplane:
fixes k :: ′n::euclidean space
shows k ∈ Basis =⇒ dim {x . k · x = 0} = DIM ( ′n) − 1

apply (simp add : special hyperplane span)
apply (rule dim unique [OF subset refl ])
apply (auto simp: independent substdbasis)
apply (metis member remove remove def span base)
done
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proposition dim hyperplane:
fixes a :: ′a::euclidean space
assumes a 6= 0
shows dim {x . a · x = 0} = DIM ( ′a) − 1

proof −
have span0 : span {x . a · x = 0} = {x . a · x = 0}
by (rule span unique) (auto simp: subspace hyperplane)

then obtain B where independent B
and Bsub: B ⊆ {x . a · x = 0}
and subspB : {x . a · x = 0} ⊆ span B
and card0 : (card B = dim {x . a · x = 0})
and ortho: pairwise orthogonal B

using orthogonal basis exists by metis
with assms have a /∈ span B
by (metis (mono tags, lifting) span eq inner eq zero iff mem Collect eq span0 )

then have ind : independent (insert a B)
by (simp add : 〈independent B 〉 independent insert)

have finite B
using 〈independent B 〉 independent bound by blast

have UNIV ⊆ span (insert a B)
proof fix y :: ′a
obtain r z where z : y = r ∗R a + z a · z = 0
apply (rule tac r=(a · y) / (a · a) and z = y − ((a · y) / (a · a)) ∗R a in

that)
using assms
by (auto simp: algebra simps)

show y ∈ span (insert a B)
by (metis (mono tags, lifting) z Bsub span eq iff
add diff cancel left ′ mem Collect eq span0 span breakdown eq span subspace

subspB)
qed
then have dima: DIM ( ′a) = dim(insert a B)
by (metis independent Basis span Basis dim eq card top.extremum uniqueI )

then show ?thesis
by (metis (mono tags, lifting) Bsub Diff insert absorb 〈a /∈ span B 〉 ind card0

card Diff singleton dim span indep card eq dim span insertI1 subsetCE
subspB)

qed

lemma lowdim eq hyperplane:
fixes S :: ′a::euclidean space set
assumes dim S = DIM ( ′a) − 1
obtains a where a 6= 0 and span S = {x . a · x = 0}

proof −
have dimS : dim S < DIM ( ′a)
by (simp add : assms)

then obtain b where b: b 6= 0 span S ⊆ {a. b · a = 0}
using lowdim subset hyperplane [of S ] by fastforce

show ?thesis
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apply (rule that [OF b(1 )])
apply (rule subspace dim equal)
by (auto simp: assms b dim hyperplane subspace hyperplane)

qed

lemma dim eq hyperplane:
fixes S :: ′n::euclidean space set
shows dim S = DIM ( ′n) − 1 ←→ (∃ a. a 6= 0 ∧ span S = {x . a · x = 0})

by (metis One nat def dim hyperplane dim span lowdim eq hyperplane)

1.5.13 Orthogonal bases and Gram-Schmidt process

lemma pairwise orthogonal independent :
assumes pairwise orthogonal S and 0 /∈ S
shows independent S

proof −
have 0 :

∧
x y . [[x 6= y ; x ∈ S ; y ∈ S ]] =⇒ x · y = 0

using assms by (simp add : pairwise def orthogonal def )
have False if a ∈ S and a: a ∈ span (S − {a}) for a
proof −
obtain T U where T ⊆ S − {a} a = (

∑
v∈T . U v ∗R v)

using a by (force simp: span explicit)
then have a · a = a · (

∑
v∈T . U v ∗R v)

by simp
also have ... = 0
apply (simp add : inner sum right)
apply (rule comm monoid add class.sum.neutral)
by (metis 0 DiffE 〈T ⊆ S − {a}〉 mult not zero singletonI subsetCE 〈a ∈ S 〉)

finally show ?thesis
using 〈0 /∈ S 〉 〈a ∈ S 〉 by auto

qed
then show ?thesis
by (force simp: dependent def )

qed

lemma pairwise orthogonal imp finite:
fixes S :: ′a::euclidean space set
assumes pairwise orthogonal S
shows finite S

proof −
have independent (S − {0})
apply (rule pairwise orthogonal independent)
apply (metis Diff iff assms pairwise def )
by blast

then show ?thesis
by (meson independent imp finite infinite remove)

qed

lemma subspace orthogonal to vector : subspace {y . orthogonal x y}
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by (simp add : subspace def orthogonal clauses)

lemma subspace orthogonal to vectors: subspace {y . ∀ x ∈ S . orthogonal x y}
by (simp add : subspace def orthogonal clauses)

lemma orthogonal to span:
assumes a: a ∈ span S and x :

∧
y . y ∈ S =⇒ orthogonal x y

shows orthogonal x a
by (metis a orthogonal clauses(1 ,2 ,4 )

span induct alt x )

proposition Gram Schmidt step:
fixes S :: ′a::euclidean space set
assumes S : pairwise orthogonal S and x : x ∈ span S
shows orthogonal x (a − (

∑
b∈S . (b · a / (b · b)) ∗R b))

proof −
have finite S
by (simp add : S pairwise orthogonal imp finite)

have orthogonal (a − (
∑

b∈S . (b · a / (b · b)) ∗R b)) x
if x ∈ S for x

proof −
have a · x = (

∑
y∈S . if y = x then y · a else 0 )

by (simp add : 〈finite S 〉 inner commute that)
also have ... = (

∑
b∈S . b · a ∗ (b · x ) / (b · b))

apply (rule sum.cong [OF refl ], simp)
by (meson S orthogonal def pairwise def that)

finally show ?thesis
by (simp add : orthogonal def algebra simps inner sum left)

qed
then show ?thesis
using orthogonal to span orthogonal commute x by blast

qed

lemma orthogonal extension aux :
fixes S :: ′a::euclidean space set
assumes finite T finite S pairwise orthogonal S
shows ∃U . pairwise orthogonal (S ∪ U ) ∧ span (S ∪ U ) = span (S ∪ T )

using assms
proof (induction arbitrary : S )
case empty then show ?case
by simp (metis sup bot right)

next
case (insert a T )
have 0 :

∧
x y . [[x 6= y ; x ∈ S ; y ∈ S ]] =⇒ x · y = 0

using insert by (simp add : pairwise def orthogonal def )
define a ′ where a ′ = a − (

∑
b∈S . (b · a / (b · b)) ∗R b)

obtain U where orthU : pairwise orthogonal (S ∪ insert a ′ U )
and spanU : span (insert a ′ S ∪ U ) = span (insert a ′ S ∪ T )
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by (rule exE [OF insert .IH [of insert a ′ S ]])
(auto simp: Gram Schmidt step a ′ def insert .prems orthogonal commute
pairwise orthogonal insert span clauses)

have orthS :
∧
x . x ∈ S =⇒ a ′ · x = 0

apply (simp add : a ′ def )
using Gram Schmidt step [OF 〈pairwise orthogonal S 〉]
apply (force simp: orthogonal def inner commute span superset [THEN sub-

setD ])
done

have span (S ∪ insert a ′ U ) = span (insert a ′ (S ∪ T ))
using spanU by simp

also have ... = span (insert a (S ∪ T ))
apply (rule eq span insert eq)
apply (simp add : a ′ def span neg span sum span base span mul)
done

also have ... = span (S ∪ insert a T )
by simp

finally show ?case
by (rule tac x=insert a ′ U in exI ) (use orthU in auto)

qed

proposition orthogonal extension:
fixes S :: ′a::euclidean space set
assumes S : pairwise orthogonal S
obtains U where pairwise orthogonal (S ∪ U ) span (S ∪ U ) = span (S ∪ T )

proof −
obtain B where finite B span B = span T
using basis subspace exists [of span T ] subspace span by metis

with orthogonal extension aux [of B S ]
obtain U where pairwise orthogonal (S ∪ U ) span (S ∪ U ) = span (S ∪ B)
using assms pairwise orthogonal imp finite by auto

with 〈span B = span T 〉 show ?thesis
by (rule tac U=U in that) (auto simp: span Un)

qed

corollary orthogonal extension strong :
fixes S :: ′a::euclidean space set
assumes S : pairwise orthogonal S
obtains U where U ∩ (insert 0 S ) = {} pairwise orthogonal (S ∪ U )

span (S ∪ U ) = span (S ∪ T )
proof −
obtain U where pairwise orthogonal (S ∪ U ) span (S ∪ U ) = span (S ∪ T )
using orthogonal extension assms by blast

then show ?thesis
apply (rule tac U = U − (insert 0 S ) in that)
apply blast
apply (force simp: pairwise def )
apply (metis Un Diff cancel Un insert left span redundant span zero)
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done
qed

1.5.14 Decomposing a vector into parts in orthogonal sub-
spaces

existence of orthonormal basis for a subspace.

lemma orthogonal spanningset subspace:
fixes S :: ′a :: euclidean space set
assumes subspace S
obtains B where B ⊆ S pairwise orthogonal B span B = S

proof −
obtain B where B ⊆ S independent B S ⊆ span B card B = dim S
using basis exists by blast

with orthogonal extension [of {} B ]
show ?thesis
by (metis Un empty left assms pairwise empty span superset span subspace that)

qed

lemma orthogonal basis subspace:
fixes S :: ′a :: euclidean space set
assumes subspace S
obtains B where 0 /∈ B B ⊆ S pairwise orthogonal B independent B

card B = dim S span B = S
proof −
obtain B where B ⊆ S pairwise orthogonal B span B = S
using assms orthogonal spanningset subspace by blast

then show ?thesis
apply (rule tac B = B − {0} in that)
apply (auto simp: indep card eq dim span pairwise subset pairwise orthogonal independent

elim: pairwise subset)
done

qed

proposition orthonormal basis subspace:
fixes S :: ′a :: euclidean space set
assumes subspace S
obtains B where B ⊆ S pairwise orthogonal B

and
∧
x . x ∈ B =⇒ norm x = 1

and independent B card B = dim S span B = S
proof −
obtain B where 0 /∈ B B ⊆ S

and orth: pairwise orthogonal B
and independent B card B = dim S span B = S

by (blast intro: orthogonal basis subspace [OF assms])
have 1 : (λx . x /R norm x ) ‘ B ⊆ S
using 〈span B = S 〉 span superset span mul by fastforce

have 2 : pairwise orthogonal ((λx . x /R norm x ) ‘ B)
using orth by (force simp: pairwise def orthogonal clauses)
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have 3 :
∧
x . x ∈ (λx . x /R norm x ) ‘ B =⇒ norm x = 1

by (metis (no types, lifting) 〈0 /∈ B 〉 image iff norm sgn sgn div norm)
have 4 : independent ((λx . x /R norm x ) ‘ B)
by (metis 2 3 norm zero pairwise orthogonal independent zero neq one)

have inj on (λx . x /R norm x ) B
proof
fix x y
assume x ∈ B y ∈ B x /R norm x = y /R norm y
moreover have

∧
i . i ∈ B =⇒ norm (i /R norm i) = 1

using 3 by blast
ultimately show x = y
by (metis norm eq 1 orth orthogonal clauses(7 ) orthogonal commute orthog-

onal def pairwise def zero neq one)
qed
then have 5 : card ((λx . x /R norm x ) ‘ B) = dim S
by (metis 〈card B = dim S 〉 card image)

have 6 : span ((λx . x /R norm x ) ‘ B) = S
by (metis 1 4 5 assms card eq dim independent imp finite span subspace)

show ?thesis
by (rule that [OF 1 2 3 4 5 6 ])

qed

proposition orthogonal to subspace exists gen:
fixes S :: ′a :: euclidean space set
assumes span S ⊂ span T
obtains x where x 6= 0 x ∈ span T

∧
y . y ∈ span S =⇒ orthogonal x y

proof −
obtain B where B ⊆ span S and orthB : pairwise orthogonal B

and
∧
x . x ∈ B =⇒ norm x = 1

and independent B card B = dim S span B = span S
by (rule orthonormal basis subspace [of span S , OF subspace span]) (auto)

with assms obtain u where spanBT : span B ⊆ span T and u /∈ span B u ∈
span T

by auto
obtain C where orthBC : pairwise orthogonal (B ∪ C ) and spanBC : span (B
∪ C ) = span (B ∪ {u})

by (blast intro: orthogonal extension [OF orthB ])
show thesis
proof (cases C ⊆ insert 0 B)
case True
then have C ⊆ span B
using span eq
by (metis span insert 0 subset trans)

moreover have u ∈ span (B ∪ C )
using 〈span (B ∪ C ) = span (B ∪ {u})〉 span superset by force

ultimately show ?thesis
using True 〈u /∈ span B 〉

by (metis Un insert left span insert 0 sup.orderE )
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next
case False
then obtain x where x ∈ C x 6= 0 x /∈ B
by blast

then have x ∈ span T
by (metis (no types, lifting) Un insert right Un upper2 〈u ∈ span T 〉 spanBT

spanBC
〈u ∈ span T 〉 insert subset span superset span mono
span span subsetCE subset trans sup bot .comm neutral)

moreover have orthogonal x y if y ∈ span B for y
using that

proof (rule span induct)
show subspace {a. orthogonal x a}
by (simp add : subspace orthogonal to vector)

show
∧
b. b ∈ B =⇒ orthogonal x b

by (metis Un iff 〈x ∈ C 〉 〈x /∈ B 〉 orthBC pairwise def )
qed
ultimately show ?thesis
using 〈x 6= 0 〉 that 〈span B = span S 〉 by auto

qed
qed

corollary orthogonal to subspace exists:
fixes S :: ′a :: euclidean space set
assumes dim S < DIM ( ′a)
obtains x where x 6= 0

∧
y . y ∈ span S =⇒ orthogonal x y

proof −
have span S ⊂ UNIV
by (metis (mono tags) UNIV I assms inner eq zero iff less le lowdim subset hyperplane

mem Collect eq top.extremum strict top.not eq extremum)
with orthogonal to subspace exists gen [of S UNIV ] that show ?thesis
by (auto)

qed

corollary orthogonal to vector exists:
fixes x :: ′a :: euclidean space
assumes 2 ≤ DIM ( ′a)
obtains y where y 6= 0 orthogonal x y

proof −
have dim {x} < DIM ( ′a)
using assms by auto

then show thesis
by (rule orthogonal to subspace exists) (simp add : orthogonal commute span base

that)
qed

proposition orthogonal subspace decomp exists:
fixes S :: ′a :: euclidean space set
obtains y z
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where y ∈ span S
and

∧
w . w ∈ span S =⇒ orthogonal z w

and x = y + z
proof −
obtain T where 0 /∈ T T ⊆ span S pairwise orthogonal T independent T
card T = dim (span S ) span T = span S
using orthogonal basis subspace subspace span by blast

let ?a =
∑

b∈T . (b · x / (b · b)) ∗R b
have orth: orthogonal (x − ?a) w if w ∈ span S for w
by (simp add : Gram Schmidt step 〈pairwise orthogonal T 〉 〈span T = span S 〉

orthogonal commute that)
show ?thesis
apply (rule tac y = ?a and z = x − ?a in that)
apply (meson 〈T ⊆ span S 〉 span scale span sum subsetCE )
apply (fact orth, simp)
done

qed

lemma orthogonal subspace decomp unique:
fixes S :: ′a :: euclidean space set
assumes x + y = x ′ + y ′

and ST : x ∈ span S x ′ ∈ span S y ∈ span T y ′ ∈ span T
and orth:

∧
a b. [[a ∈ S ; b ∈ T ]] =⇒ orthogonal a b

shows x = x ′ ∧ y = y ′

proof −
have x + y − y ′ = x ′

by (simp add : assms)
moreover have

∧
a b. [[a ∈ span S ; b ∈ span T ]] =⇒ orthogonal a b

by (meson orth orthogonal commute orthogonal to span)
ultimately have 0 = x ′ − x
by (metis (full types) add diff cancel left ′ ST diff right commute orthogonal clauses(10 )

orthogonal clauses(5 ) orthogonal self )
with assms show ?thesis by auto

qed

lemma vector in orthogonal spanningset :
fixes a :: ′a::euclidean space
obtains S where a ∈ S pairwise orthogonal S span S = UNIV
by (metis UNIV I Un iff empty iff insert subset orthogonal extension pairwise def

pairwise orthogonal insert span UNIV subsetI subset antisym)

lemma vector in orthogonal basis:
fixes a :: ′a::euclidean space
assumes a 6= 0
obtains S where a ∈ S 0 /∈ S pairwise orthogonal S independent S finite S

span S = UNIV card S = DIM ( ′a)
proof −
obtain S where S : a ∈ S pairwise orthogonal S span S = UNIV
using vector in orthogonal spanningset .
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show thesis
proof
show pairwise orthogonal (S − {0})
using pairwise mono S (2 ) by blast

show independent (S − {0})
by (simp add : 〈pairwise orthogonal (S − {0})〉 pairwise orthogonal independent)
show finite (S − {0})
using 〈independent (S − {0})〉 independent imp finite by blast

show card (S − {0}) = DIM ( ′a)
using span delete 0 [of S ] S
by (simp add : 〈independent (S − {0})〉 indep card eq dim span)

qed (use S 〈a 6= 0 〉 in auto)
qed

lemma vector in orthonormal basis:
fixes a :: ′a::euclidean space
assumes norm a = 1
obtains S where a ∈ S pairwise orthogonal S

∧
x . x ∈ S =⇒ norm x = 1

independent S card S = DIM ( ′a) span S = UNIV
proof −
have a 6= 0
using assms by auto

then obtain S where a ∈ S 0 /∈ S finite S
and S : pairwise orthogonal S independent S span S = UNIV card S =

DIM ( ′a)
by (metis vector in orthogonal basis)

let ?S = (λx . x /R norm x ) ‘ S
show thesis
proof
show a ∈ ?S
using 〈a ∈ S 〉 assms image iff by fastforce

next
show pairwise orthogonal ?S
using 〈pairwise orthogonal S 〉 by (auto simp: pairwise def orthogonal def )

show
∧
x . x ∈ (λx . x /R norm x ) ‘ S =⇒ norm x = 1

using 〈0 /∈ S 〉 by (auto simp: field split simps)
then show independent ?S

by (metis 〈pairwise orthogonal ((λx . x /R norm x ) ‘ S )〉 norm zero pair-
wise orthogonal independent zero neq one)

have inj on (λx . x /R norm x ) S
unfolding inj on def
by (metis (full types) S (1 ) 〈0 /∈ S 〉 inverse nonzero iff nonzero norm eq zero

orthogonal scaleR orthogonal self pairwise def )
then show card ?S = DIM ( ′a)
by (simp add : card image S )

show span ?S = UNIV
by (metis (no types) 〈0 /∈ S 〉 〈finite S 〉 〈span S = UNIV 〉

field class.field inverse zero inverse inverse eq less irrefl span image scale
zero less norm iff )
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qed
qed

proposition dim orthogonal sum:
fixes A :: ′a::euclidean space set
assumes

∧
x y . [[x ∈ A; y ∈ B ]] =⇒ x · y = 0

shows dim(A ∪ B) = dim A + dim B
proof −
have 1 :

∧
x y . [[x ∈ span A; y ∈ B ]] =⇒ x · y = 0

by (erule span induct [OF subspace hyperplane2 ]; simp add : assms)
have

∧
x y . [[x ∈ span A; y ∈ span B ]] =⇒ x · y = 0

using 1 by (simp add : span induct [OF subspace hyperplane])
then have 0 :

∧
x y . [[x ∈ span A; y ∈ span B ]] =⇒ x · y = 0

by simp
have dim(A ∪ B) = dim (span (A ∪ B))
by (simp)

also have span (A ∪ B) = ((λ(a, b). a + b) ‘ (span A × span B))
by (auto simp add : span Un image def )

also have dim . . . = dim {x + y |x y . x ∈ span A ∧ y ∈ span B}
by (auto intro!: arg cong [where f=dim])

also have ... = dim {x + y |x y . x ∈ span A ∧ y ∈ span B} + dim(span A ∩
span B)

by (auto simp: dest : 0 )
also have ... = dim (span A) + dim (span B)
by (rule dim sums Int) (auto)

also have ... = dim A + dim B
by (simp)

finally show ?thesis .
qed

lemma dim subspace orthogonal to vectors:
fixes A :: ′a::euclidean space set
assumes subspace A subspace B A ⊆ B
shows dim {y ∈ B . ∀ x ∈ A. orthogonal x y} + dim A = dim B

proof −
have dim (span ({y ∈ B . ∀ x∈A. orthogonal x y} ∪ A)) = dim (span B)
proof (rule arg cong [where f=dim, OF subset antisym])
show span ({y ∈ B . ∀ x∈A. orthogonal x y} ∪ A) ⊆ span B
by (simp add : 〈A ⊆ B 〉 Collect restrict span mono)

next
have ∗: x ∈ span ({y ∈ B . ∀ x∈A. orthogonal x y} ∪ A)

if x ∈ B for x
proof −
obtain y z where x = y + z y ∈ span A and orth:

∧
w . w ∈ span A =⇒

orthogonal z w
using orthogonal subspace decomp exists [of A x ] that by auto

have y ∈ span B
using 〈y ∈ span A〉 assms(3 ) span mono by blast

then have z ∈ {a ∈ B . ∀ x . x ∈ A −→ orthogonal x a}
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apply simp
using 〈x = y + z 〉 assms(1 ) assms(2 ) orth orthogonal commute span add eq

span eq iff that by blast
then have z : z ∈ span {y ∈ B . ∀ x∈A. orthogonal x y}
by (meson span superset subset iff )

then show ?thesis
apply (auto simp: span Un image def 〈x = y + z 〉 〈y ∈ span A〉)
using 〈y ∈ span A〉 add .commute by blast

qed
show span B ⊆ span ({y ∈ B . ∀ x∈A. orthogonal x y} ∪ A)
by (rule span minimal) (auto intro: ∗ span minimal)

qed
then show ?thesis
by (metis (no types, lifting) dim orthogonal sum dim span mem Collect eq

orthogonal commute orthogonal def )
qed

1.5.15 Linear functions are (uniformly) continuous on any
set

1.5.16 Topological properties of linear functions

lemma linear lim 0 :
assumes bounded linear f
shows (f −−−→ 0 ) (at (0 ))

proof −
interpret f : bounded linear f by fact
have (f −−−→ f 0 ) (at 0 )
using tendsto ident at by (rule f .tendsto)

then show ?thesis unfolding f .zero .
qed

lemma linear continuous at :
assumes bounded linear f
shows continuous (at a) f
unfolding continuous at using assms
apply (rule bounded linear .tendsto)
apply (rule tendsto ident at)
done

lemma linear continuous within:
bounded linear f =⇒ continuous (at x within s) f
using continuous at imp continuous at within linear continuous at by blast

lemma linear continuous on:
bounded linear f =⇒ continuous on s f
using continuous at imp continuous on[of s f ] using linear continuous at [of f ]

by auto

lemma Lim linear :
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fixes f :: ′a::euclidean space ⇒ ′b::euclidean space and h :: ′b ⇒ ′c::real normed vector
assumes (f −−−→ l) F linear h
shows ((λx . h(f x )) −−−→ h l) F

proof −
obtain B where B : B > 0

∧
x . norm (h x ) ≤ B ∗ norm x

using linear bounded pos [OF 〈linear h〉] by blast
show ?thesis
unfolding tendsto iff

proof (intro allI impI )
show ∀ F x in F . dist (h (f x )) (h l) < e if e > 0 for e
proof −
have ∀ F x in F . dist (f x ) l < e/B
by (simp add : 〈0 < B 〉 assms(1 ) tendstoD that)

then show ?thesis
unfolding dist norm

proof (rule eventually mono)
show norm (h (f x ) − h l) < e if norm (f x − l) < e / B for x
using that B
apply (simp add : field split simps)
by (metis 〈linear h〉 le less trans linear diff )

qed
qed

qed
qed

lemma linear continuous compose:
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space and g :: ′b ⇒ ′c::real normed vector
assumes continuous F f linear g
shows continuous F (λx . g(f x ))
using assms unfolding continuous def by (rule Lim linear)

lemma linear continuous on compose:
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space and g :: ′b ⇒ ′c::real normed vector
assumes continuous on S f linear g
shows continuous on S (λx . g(f x ))
using assms by (simp add : continuous on eq continuous within linear continuous compose)

Also bilinear functions, in composition form

lemma bilinear continuous compose:
fixes h :: ′a::euclidean space ⇒ ′b::euclidean space ⇒ ′c::real normed vector
assumes continuous F f continuous F g bilinear h
shows continuous F (λx . h (f x ) (g x ))
using assms bilinear conv bounded bilinear bounded bilinear .continuous by blast

lemma bilinear continuous on compose:
fixes h :: ′a::euclidean space ⇒ ′b::euclidean space ⇒ ′c::real normed vector
and f :: ′d ::t2 space ⇒ ′a

assumes continuous on S f continuous on S g bilinear h
shows continuous on S (λx . h (f x ) (g x ))
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using assms by (simp add : continuous on eq continuous within bilinear continuous compose)

end

1.6 Affine Sets

theory Affine
imports Linear Algebra
begin

lemma if smult : (if P then x else (y ::real)) ∗R v = (if P then x ∗R v else y ∗R v)
by (fact if distrib)

lemma sum delta notmem:
assumes x /∈ s
shows sum (λy . if (y = x ) then P x else Q y) s = sum Q s
and sum (λy . if (x = y) then P x else Q y) s = sum Q s
and sum (λy . if (y = x ) then P y else Q y) s = sum Q s
and sum (λy . if (x = y) then P y else Q y) s = sum Q s

apply (rule tac [!] sum.cong)
using assms
apply auto
done

lemmas independent finite = independent imp finite

lemma span substd basis:
assumes d : d ⊆ Basis
shows span d = {x . ∀ i∈Basis. i /∈ d −→ x ·i = 0}
(is = ?B)

proof −
have d ⊆ ?B
using d by (auto simp: inner Basis)

moreover have s: subspace ?B
using subspace substandard [of λi . i /∈ d ] .

ultimately have span d ⊆ ?B
using span mono[of d ?B ] span eq iff [of ?B ] by blast

moreover have ∗: card d ≤ dim (span d)
using independent card le dim[of d span d ] independent substdbasis[OF assms]
span superset [of d ]

by auto
moreover from ∗ have dim ?B ≤ dim (span d)
using dim substandard [OF assms] by auto

ultimately show ?thesis
using s subspace dim equal [of span d ?B ] subspace span[of d ] by auto

qed

lemma basis to substdbasis subspace isomorphism:
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fixes B :: ′a::euclidean space set
assumes independent B
shows ∃ f d :: ′a set . card d = card B ∧ linear f ∧ f ‘ B = d ∧
f ‘ span B = {x . ∀ i∈Basis. i /∈ d −→ x · i = 0} ∧ inj on f (span B) ∧ d ⊆

Basis
proof −
have B : card B = dim B
using dim unique[of B B card B ] assms span superset [of B ] by auto

have dim B ≤ card (Basis :: ′a set)
using dim subset UNIV [of B ] by simp

from ex card [OF this] obtain d :: ′a set where d : d ⊆ Basis and t : card d =
dim B

by auto
let ?t = {x :: ′a::euclidean space. ∀ i∈Basis. i /∈ d −→ x ·i = 0}
have ∃ f . linear f ∧ f ‘ B = d ∧ f ‘ span B = ?t ∧ inj on f (span B)
proof (intro basis to basis subspace isomorphism subspace span subspace substandard

span superset)
show d ⊆ {x . ∀ i∈Basis. i /∈ d −→ x · i = 0}
using d inner not same Basis by blast

qed (auto simp: span substd basis independent substdbasis dim substandard d t B
assms)
with t 〈card B = dim B 〉 d show ?thesis by auto

qed

1.6.1 Affine set and affine hull

definition affine :: ′a::real vector set ⇒ bool
where affine s ←→ (∀ x∈s. ∀ y∈s. ∀ u v . u + v = 1 −→ u ∗R x + v ∗R y ∈ s)

lemma affine alt : affine s ←→ (∀ x∈s. ∀ y∈s. ∀ u::real . (1 − u) ∗R x + u ∗R y ∈
s)
unfolding affine def by (metis eq diff eq ′)

lemma affine empty [iff ]: affine {}
unfolding affine def by auto

lemma affine sing [iff ]: affine {x}
unfolding affine alt by (auto simp: scaleR left distrib [symmetric])

lemma affine UNIV [iff ]: affine UNIV
unfolding affine def by auto

lemma affine Inter [intro]: (
∧
s. s∈f =⇒ affine s) =⇒ affine (

⋂
f )

unfolding affine def by auto

lemma affine Int [intro]: affine s =⇒ affine t =⇒ affine (s ∩ t)
unfolding affine def by auto

lemma affine scaling : affine s =⇒ affine (image (λx . c ∗R x ) s)
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apply (clarsimp simp add : affine def )
apply (rule tac x=u ∗R x + v ∗R y in image eqI )
apply (auto simp: algebra simps)
done

lemma affine affine hull [simp]: affine(affine hull s)
unfolding hull def
using affine Inter [of {t . affine t ∧ s ⊆ t}] by auto

lemma affine hull eq [simp]: (affine hull s = s) ←→ affine s
by (metis affine affine hull hull same)

lemma affine hyperplane: affine {x . a · x = b}
by (simp add : affine def algebra simps) (metis distrib right mult .left neutral)

Some explicit formulations

Formalized by Lars Schewe.

lemma affine:
fixes V :: ′a::real vector set
shows affine V ←→

(∀S u. finite S ∧ S 6= {} ∧ S ⊆ V ∧ sum u S = 1 −→ (
∑

x∈S . u x ∗R
x ) ∈ V )
proof −
have u ∗R x + v ∗R y ∈ V if x ∈ V y ∈ V u + v = (1 ::real)
and ∗:

∧
S u. [[finite S ; S 6= {}; S ⊆ V ; sum u S = 1 ]] =⇒ (

∑
x∈S . u x ∗R x )

∈ V for x y u v
proof (cases x = y)
case True
then show ?thesis
using that by (metis scaleR add left scaleR one)

next
case False
then show ?thesis
using that ∗[of {x ,y} λw . if w = x then u else v ] by auto

qed
moreover have (

∑
x∈S . u x ∗R x ) ∈ V

if ∗:
∧
x y u v . [[x∈V ; y∈V ; u + v = 1 ]] =⇒ u ∗R x + v ∗R y ∈ V

and finite S S 6= {} S ⊆ V sum u S = 1 for S u
proof −
define n where n = card S
consider card S = 0 | card S = 1 | card S = 2 | card S > 2 by linarith
then show (

∑
x∈S . u x ∗R x ) ∈ V

proof cases
assume card S = 1
then obtain a where S={a}
by (auto simp: card Suc eq)

then show ?thesis
using that by simp
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next
assume card S = 2
then obtain a b where S = {a, b}
by (metis Suc 1 card 1 singletonE card Suc eq)

then show ?thesis
using ∗[of a b] that
by (auto simp: sum clauses(2 ))

next
assume card S > 2
then show ?thesis using that n def
proof (induct n arbitrary : u S )
case 0
then show ?case by auto

next
case (Suc n u S )
have sum u S = card S if ¬ (∃ x∈S . u x 6= 1 )
using that unfolding card eq sum by auto

with Suc.prems obtain x where x ∈ S and x : u x 6= 1 by force
have c: card (S − {x}) = card S − 1
by (simp add : Suc.prems(3 ) 〈x ∈ S 〉)

have sum u (S − {x}) = 1 − u x
by (simp add : Suc.prems sum diff1 〈x ∈ S 〉)

with x have eq1 : inverse (1 − u x ) ∗ sum u (S − {x}) = 1
by auto

have inV : (
∑

y∈S − {x}. (inverse (1 − u x ) ∗ u y) ∗R y) ∈ V
proof (cases card (S − {x}) > 2 )
case True
then have S : S − {x} 6= {} card (S − {x}) = n
using Suc.prems c by force+

show ?thesis
proof (rule Suc.hyps)
show (

∑
a∈S − {x}. inverse (1 − u x ) ∗ u a) = 1

by (auto simp: eq1 sum distrib left [symmetric])
qed (use S Suc.prems True in auto)

next
case False
then have card (S − {x}) = Suc (Suc 0 )
using Suc.prems c by auto

then obtain a b where ab: (S − {x}) = {a, b} a 6=b
unfolding card Suc eq by auto

then show ?thesis
using eq1 〈S ⊆ V 〉

by (auto simp: sum distrib left distrib left intro!: Suc.prems(2 )[of a b])
qed
have u x + (1 − u x ) = 1 =⇒
u x ∗R x + (1 − u x ) ∗R ((

∑
y∈S − {x}. u y ∗R y) /R (1 − u x )) ∈ V

by (rule Suc.prems) (use 〈x ∈ S 〉 Suc.prems inV in 〈auto simp: scaleR right .sum〉)
moreover have (

∑
a∈S . u a ∗R a) = u x ∗R x + (

∑
a∈S − {x}. u a ∗R

a)
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by (meson Suc.prems(3 ) sum.remove 〈x ∈ S 〉)
ultimately show (

∑
x∈S . u x ∗R x ) ∈ V

by (simp add : x )
qed

qed (use 〈S 6={}〉 〈finite S 〉 in auto)
qed
ultimately show ?thesis
unfolding affine def by meson

qed

lemma affine hull explicit :
affine hull p = {y . ∃S u. finite S ∧ S 6= {} ∧ S ⊆ p ∧ sum u S = 1 ∧ sum (λv .

u v ∗R v) S = y}
(is = ?rhs)

proof (rule hull unique)
show p ⊆ ?rhs
proof (intro subsetI CollectI exI conjI )
show

∧
x . sum (λz . 1 ) {x} = 1

by auto
qed auto
show ?rhs ⊆ T if p ⊆ T affine T for T
using that unfolding affine by blast

show affine ?rhs
unfolding affine def

proof clarify
fix u v :: real and sx ux sy uy
assume uv : u + v = 1
and x : finite sx sx 6= {} sx ⊆ p sum ux sx = (1 ::real)
and y : finite sy sy 6= {} sy ⊆ p sum uy sy = (1 ::real)

have ∗∗: (sx ∪ sy) ∩ sx = sx (sx ∪ sy) ∩ sy = sy
by auto

show ∃S w . finite S ∧ S 6= {} ∧ S ⊆ p ∧
sum w S = 1 ∧ (

∑
v∈S . w v ∗R v) = u ∗R (

∑
v∈sx . ux v ∗R v) + v ∗R

(
∑

v∈sy . uy v ∗R v)
proof (intro exI conjI )
show finite (sx ∪ sy)
using x y by auto

show sum (λi . (if i∈sx then u ∗ ux i else 0 ) + (if i∈sy then v ∗ uy i else 0 ))
(sx ∪ sy) = 1

using x y uv
by (simp add : sum Un sum.distrib sum.inter restrict [symmetric] sum distrib left

[symmetric] ∗∗)
have (

∑
i∈sx ∪ sy . ((if i ∈ sx then u ∗ ux i else 0 ) + (if i ∈ sy then v ∗ uy

i else 0 )) ∗R i)
= (

∑
i∈sx . (u ∗ ux i) ∗R i) + (

∑
i∈sy . (v ∗ uy i) ∗R i)

using x y
unfolding scaleR left distrib scaleR zero left if smult
by (simp add : sum Un sum.distrib sum.inter restrict [symmetric] ∗∗)
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also have . . . = u ∗R (
∑

v∈sx . ux v ∗R v) + v ∗R (
∑

v∈sy . uy v ∗R v)
unfolding scaleR scaleR[symmetric] scaleR right .sum [symmetric] by blast

finally show (
∑

i∈sx ∪ sy . ((if i ∈ sx then u ∗ ux i else 0 ) + (if i ∈ sy then
v ∗ uy i else 0 )) ∗R i)

= u ∗R (
∑

v∈sx . ux v ∗R v) + v ∗R (
∑

v∈sy . uy v ∗R v) .
qed (use x y in auto)

qed
qed

lemma affine hull finite:
assumes finite S
shows affine hull S = {y . ∃ u. sum u S = 1 ∧ sum (λv . u v ∗R v) S = y}

proof −
have ∗: ∃ h. sum h S = 1 ∧ (

∑
v∈S . h v ∗R v) = x

if F ⊆ S finite F F 6= {} and sum: sum u F = 1 and x : (
∑

v∈F . u v ∗R v)
= x for x F u
proof −
have S ∩ F = F
using that by auto

show ?thesis
proof (intro exI conjI )
show (

∑
x∈S . if x ∈ F then u x else 0 ) = 1

by (metis (mono tags, lifting) 〈S ∩ F = F 〉 assms sum.inter restrict sum)
show (

∑
v∈S . (if v ∈ F then u v else 0 ) ∗R v) = x

by (simp add : if smult cong : if cong) (metis (no types) 〈S ∩ F = F 〉 assms
sum.inter restrict x )

qed
qed
show ?thesis
unfolding affine hull explicit using assms
by (fastforce dest : ∗)

qed

Stepping theorems and hence small special cases

lemma affine hull empty [simp]: affine hull {} = {}
by simp

lemma affine hull finite step:
fixes y :: ′a::real vector
shows finite S =⇒

(∃ u. sum u (insert a S ) = w ∧ sum (λx . u x ∗R x ) (insert a S ) = y) ←→
(∃ v u. sum u S = w − v ∧ sum (λx . u x ∗R x ) S = y − v ∗R a) (is =⇒

?lhs = ?rhs)
proof −
assume fin: finite S
show ?lhs = ?rhs
proof
assume ?lhs
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then obtain u where u: sum u (insert a S ) = w ∧ (
∑

x∈insert a S . u x ∗R
x ) = y

by auto
show ?rhs
proof (cases a ∈ S )
case True
then show ?thesis
using u by (simp add : insert absorb) (metis diff zero real vector .scale zero left)

next
case False
show ?thesis
by (rule exI [where x=u a]) (use u fin False in auto)

qed
next
assume ?rhs
then obtain v u where vu: sum u S = w − v (

∑
x∈S . u x ∗R x ) = y − v

∗R a
by auto

have ∗:
∧
x M . (if x = a then v else M ) ∗R x = (if x = a then v ∗R x else M

∗R x )
by auto

show ?lhs
proof (cases a ∈ S )
case True
show ?thesis
by (rule exI [where x=λx . (if x=a then v else 0 ) + u x ])
(simp add : True scaleR left distrib sum.distrib sum clauses fin vu ∗ cong :

if cong)
next
case False
then show ?thesis
apply (rule tac x=λx . if x=a then v else u x in exI )
apply (simp add : vu sum clauses(2 )[OF fin] ∗)
by (simp add : sum delta notmem(3 ) vu)

qed
qed

qed

lemma affine hull 2 :
fixes a b :: ′a::real vector
shows affine hull {a,b} = {u ∗R a + v ∗R b| u v . (u + v = 1 )}
(is ?lhs = ?rhs)

proof −
have ∗:∧

x y z . z = x − y ←→ y + z = (x ::real)∧
x y z . z = x − y ←→ y + z = (x :: ′a) by auto

have ?lhs = {y . ∃ u. sum u {a, b} = 1 ∧ (
∑

v∈{a, b}. u v ∗R v) = y}
using affine hull finite[of {a,b}] by auto

also have . . . = {y . ∃ v u. u b = 1 − v ∧ u b ∗R b = y − v ∗R a}
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by (simp add : affine hull finite step[of {b} a])
also have . . . = ?rhs unfolding ∗ by auto
finally show ?thesis by auto

qed

lemma affine hull 3 :
fixes a b c :: ′a::real vector
shows affine hull {a,b,c} = { u ∗R a + v ∗R b + w ∗R c| u v w . u + v + w =

1}
proof −
have ∗:∧

x y z . z = x − y ←→ y + z = (x ::real)∧
x y z . z = x − y ←→ y + z = (x :: ′a) by auto

show ?thesis
apply (simp add : affine hull finite affine hull finite step)
unfolding ∗
apply safe
apply (metis add .assoc)
apply (rule tac x=u in exI , force)
done

qed

lemma mem affine:
assumes affine S x ∈ S y ∈ S u + v = 1
shows u ∗R x + v ∗R y ∈ S
using assms affine def [of S ] by auto

lemma mem affine 3 :
assumes affine S x ∈ S y ∈ S z ∈ S u + v + w = 1
shows u ∗R x + v ∗R y + w ∗R z ∈ S

proof −
have u ∗R x + v ∗R y + w ∗R z ∈ affine hull {x , y , z}
using affine hull 3 [of x y z ] assms by auto

moreover
have affine hull {x , y , z} ⊆ affine hull S
using hull mono[of {x , y , z} S ] assms by auto

moreover
have affine hull S = S
using assms affine hull eq [of S ] by auto

ultimately show ?thesis by auto
qed

lemma mem affine 3 minus:
assumes affine S x ∈ S y ∈ S z ∈ S
shows x + v ∗R (y−z ) ∈ S
using mem affine 3 [of S x y z 1 v −v ] assms
by (simp add : algebra simps)

corollary mem affine 3 minus2 :
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[[affine S ; x ∈ S ; y ∈ S ; z ∈ S ]] =⇒ x − v ∗R (y−z ) ∈ S
by (metis add uminus conv diff mem affine 3 minus real vector .scale minus left)

Some relations between affine hull and subspaces

lemma affine hull insert subset span:
affine hull (insert a S ) ⊆ {a + v | v . v ∈ span {x − a | x . x ∈ S}}

proof −
have ∃ v T u. x = a + v ∧ (finite T ∧ T ⊆ {x − a |x . x ∈ S} ∧ (

∑
v∈T . u v

∗R v) = v)
if finite F F 6= {} F ⊆ insert a S sum u F = 1 (

∑
v∈F . u v ∗R v) = x

for x F u
proof −
have ∗: (λx . x − a) ‘ (F − {a}) ⊆ {x − a |x . x ∈ S}
using that by auto

show ?thesis
proof (intro exI conjI )
show finite ((λx . x − a) ‘ (F − {a}))
by (simp add : that(1 ))

show (
∑

v∈(λx . x − a) ‘ (F − {a}). u(v+a) ∗R v) = x−a
by (simp add : sum.reindex [unfolded inj on def ] algebra simps

sum subtractf scaleR left .sum[symmetric] sum diff1 that)
qed (use 〈F ⊆ insert a S 〉 in auto)

qed
then show ?thesis
unfolding affine hull explicit span explicit by fast

qed

lemma affine hull insert span:
assumes a /∈ S
shows affine hull (insert a S ) = {a + v | v . v ∈ span {x − a | x . x ∈ S}}

proof −
have ∗: ∃G u. finite G ∧ G 6= {} ∧ G ⊆ insert a S ∧ sum u G = 1 ∧ (

∑
v∈G .

u v ∗R v) = y
if v ∈ span {x − a |x . x ∈ S} y = a + v for y v

proof −
from that
obtain T u where u: finite T T ⊆ {x − a |x . x ∈ S} a + (

∑
v∈T . u v ∗R

v) = y
unfolding span explicit by auto

define F where F = (λx . x + a) ‘ T
have F : finite F F ⊆ S (

∑
v∈F . u (v − a) ∗R (v − a)) = y − a

unfolding F def using u by (auto simp: sum.reindex [unfolded inj on def ])
have ∗: F ∩ {a} = {} F ∩ − {a} = F
using F assms by auto

show ∃G u. finite G ∧ G 6= {} ∧ G ⊆ insert a S ∧ sum u G = 1 ∧ (
∑

v∈G .
u v ∗R v) = y

apply (rule tac x = insert a F in exI )
apply (rule tac x = λx . if x=a then 1 − sum (λx . u (x − a)) F else u (x −
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a) in exI )
using assms F

apply (auto simp: sum clauses sum.If cases if smult sum subtractf scaleR left .sum
algebra simps ∗)

done
qed
show ?thesis
by (intro subset antisym affine hull insert subset span) (auto simp: affine hull explicit

dest !: ∗)
qed

lemma affine hull span:
assumes a ∈ S
shows affine hull S = {a + v | v . v ∈ span {x − a | x . x ∈ S − {a}}}
using affine hull insert span[of a S − {a}, unfolded insert Diff [OF assms]] by

auto

Parallel affine sets

definition affine parallel :: ′a::real vector set ⇒ ′a::real vector set ⇒ bool
where affine parallel S T ←→ (∃ a. T = (λx . a + x ) ‘ S )

lemma affine parallel expl aux :
fixes S T :: ′a::real vector set
assumes

∧
x . x ∈ S ←→ a + x ∈ T

shows T = (λx . a + x ) ‘ S
proof −
have x ∈ ((λx . a + x ) ‘ S ) if x ∈ T for x
using that
by (simp add : image iff ) (metis add .commute diff add cancel assms)

moreover have T ≥ (λx . a + x ) ‘ S
using assms by auto

ultimately show ?thesis by auto
qed

lemma affine parallel expl : affine parallel S T ←→ (∃ a. ∀ x . x ∈ S ←→ a + x ∈
T )
by (auto simp add : affine parallel def )
(use affine parallel expl aux [of S T ] in blast)

lemma affine parallel reflex : affine parallel S S
unfolding affine parallel def
using image add 0 by blast

lemma affine parallel commut :
assumes affine parallel A B
shows affine parallel B A

proof −
from assms obtain a where B : B = (λx . a + x ) ‘ A
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unfolding affine parallel def by auto
have [simp]: (λx . x − a) = plus (− a) by (simp add : fun eq iff )
from B show ?thesis
using translation galois [of B a A]
unfolding affine parallel def by blast

qed

lemma affine parallel assoc:
assumes affine parallel A B
and affine parallel B C

shows affine parallel A C
proof −
from assms obtain ab where B = (λx . ab + x ) ‘ A
unfolding affine parallel def by auto

moreover
from assms obtain bc where C = (λx . bc + x ) ‘ B
unfolding affine parallel def by auto

ultimately show ?thesis
using translation assoc[of bc ab A] unfolding affine parallel def by auto

qed

lemma affine translation aux :
fixes a :: ′a::real vector
assumes affine ((λx . a + x ) ‘ S )
shows affine S

proof −
{
fix x y u v
assume xy : x ∈ S y ∈ S (u :: real) + v = 1
then have (a + x ) ∈ ((λx . a + x ) ‘ S ) (a + y) ∈ ((λx . a + x ) ‘ S )
by auto

then have h1 : u ∗R (a + x ) + v ∗R (a + y) ∈ (λx . a + x ) ‘ S
using xy assms unfolding affine def by auto

have u ∗R (a + x ) + v ∗R (a + y) = (u + v) ∗R a + (u ∗R x + v ∗R y)
by (simp add : algebra simps)

also have . . . = a + (u ∗R x + v ∗R y)
using 〈u + v = 1 〉 by auto

ultimately have a + (u ∗R x + v ∗R y) ∈ (λx . a + x ) ‘ S
using h1 by auto

then have u ∗R x + v ∗R y ∈ S by auto
}
then show ?thesis unfolding affine def by auto

qed

lemma affine translation:
affine S ←→ affine ((+) a ‘ S ) for a :: ′a::real vector

proof
show affine ((+) a ‘ S ) if affine S
using that translation assoc [of − a a S ]
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by (auto intro: affine translation aux [of − a ((+) a ‘ S )])
show affine S if affine ((+) a ‘ S )
using that by (rule affine translation aux )

qed

lemma parallel is affine:
fixes S T :: ′a::real vector set
assumes affine S affine parallel S T
shows affine T

proof −
from assms obtain a where T = (λx . a + x ) ‘ S
unfolding affine parallel def by auto

then show ?thesis
using affine translation assms by auto

qed

lemma subspace imp affine: subspace s =⇒ affine s
unfolding subspace def affine def by auto

lemma affine hull subset span: (affine hull s) ⊆ (span s)
by (metis hull minimal span superset subspace imp affine subspace span)

Subspace parallel to an affine set

lemma subspace affine: subspace S ←→ affine S ∧ 0 ∈ S
proof −
have h0 : subspace S =⇒ affine S ∧ 0 ∈ S
using subspace imp affine[of S ] subspace 0 by auto

{
assume assm: affine S ∧ 0 ∈ S
{
fix c :: real
fix x
assume x : x ∈ S
have c ∗R x = (1−c) ∗R 0 + c ∗R x by auto
moreover
have (1 − c) ∗R 0 + c ∗R x ∈ S
using affine alt [of S ] assm x by auto

ultimately have c ∗R x ∈ S by auto
}
then have h1 : ∀ c. ∀ x ∈ S . c ∗R x ∈ S by auto

{
fix x y
assume xy : x ∈ S y ∈ S
define u where u = (1 :: real)/2
have (1/2 ) ∗R (x+y) = (1/2 ) ∗R (x+y)
by auto

moreover
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have (1/2 ) ∗R (x+y)=(1/2 ) ∗R x + (1−(1/2 )) ∗R y
by (simp add : algebra simps)

moreover
have (1 − u) ∗R x + u ∗R y ∈ S
using affine alt [of S ] assm xy by auto

ultimately
have (1/2 ) ∗R (x+y) ∈ S
using u def by auto

moreover
have x + y = 2 ∗R ((1/2 ) ∗R (x+y))
by auto

ultimately
have x + y ∈ S
using h1 [rule format , of (1/2 ) ∗R (x+y) 2 ] by auto

}
then have ∀ x ∈ S . ∀ y ∈ S . x + y ∈ S
by auto

then have subspace S
using h1 assm unfolding subspace def by auto

}
then show ?thesis using h0 by metis

qed

lemma affine diffs subspace:
assumes affine S a ∈ S
shows subspace ((λx . (−a)+x ) ‘ S )

proof −
have [simp]: (λx . x − a) = plus (− a) by (simp add : fun eq iff )
have affine ((λx . (−a)+x ) ‘ S )
using affine translation assms by blast

moreover have 0 ∈ ((λx . (−a)+x ) ‘ S )
using assms exI [of (λx . x∈S ∧ −a+x = 0 ) a] by auto

ultimately show ?thesis using subspace affine by auto
qed

lemma affine diffs subspace subtract :
subspace ((λx . x − a) ‘ S ) if affine S a ∈ S
using that affine diffs subspace [of a] by simp

lemma parallel subspace explicit :
assumes affine S
and a ∈ S

assumes L ≡ {y . ∃ x ∈ S . (−a) + x = y}
shows subspace L ∧ affine parallel S L

proof −
from assms have L = plus (− a) ‘ S by auto
then have par : affine parallel S L
unfolding affine parallel def ..

then have affine L using assms parallel is affine by auto



Affine.thy 109

moreover have 0 ∈ L
using assms by auto

ultimately show ?thesis
using subspace affine par by auto

qed

lemma parallel subspace aux :
assumes subspace A
and subspace B
and affine parallel A B

shows A ⊇ B
proof −
from assms obtain a where a: ∀ x . x ∈ A ←→ a + x ∈ B
using affine parallel expl [of A B ] by auto

then have −a ∈ A
using assms subspace 0 [of B ] by auto

then have a ∈ A
using assms subspace neg [of A −a] by auto

then show ?thesis
using assms a unfolding subspace def by auto

qed

lemma parallel subspace:
assumes subspace A
and subspace B
and affine parallel A B

shows A = B
proof
show A ⊇ B
using assms parallel subspace aux by auto

show A ⊆ B
using assms parallel subspace aux [of B A] affine parallel commut by auto

qed

lemma affine parallel subspace:
assumes affine S S 6= {}
shows ∃ !L. subspace L ∧ affine parallel S L

proof −
have ex : ∃L. subspace L ∧ affine parallel S L
using assms parallel subspace explicit by auto

{
fix L1 L2
assume ass: subspace L1 ∧ affine parallel S L1 subspace L2 ∧ affine parallel S

L2
then have affine parallel L1 L2

using affine parallel commut [of S L1 ] affine parallel assoc[of L1 S L2 ] by
auto

then have L1 = L2
using ass parallel subspace by auto
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}
then show ?thesis using ex by auto

qed

1.6.2 Affine Dependence

Formalized by Lars Schewe.

definition affine dependent :: ′a::real vector set ⇒ bool
where affine dependent s ←→ (∃ x∈s. x ∈ affine hull (s − {x}))

lemma affine dependent imp dependent : affine dependent s =⇒ dependent s
unfolding affine dependent def dependent def
using affine hull subset span by auto

lemma affine dependent subset :
[[affine dependent s; s ⊆ t ]] =⇒ affine dependent t

apply (simp add : affine dependent def Bex def )
apply (blast dest : hull mono [OF Diff mono [OF subset refl ]])
done

lemma affine independent subset :
shows [[¬ affine dependent t ; s ⊆ t ]] =⇒ ¬ affine dependent s

by (metis affine dependent subset)

lemma affine independent Diff :
¬ affine dependent s =⇒ ¬ affine dependent(s − t)

by (meson Diff subset affine dependent subset)

proposition affine dependent explicit :
affine dependent p ←→
(∃S u. finite S ∧ S ⊆ p ∧ sum u S = 0 ∧ (∃ v∈S . u v 6= 0 ) ∧ sum (λv . u v

∗R v) S = 0 )
proof −
have ∃S u. finite S ∧ S ⊆ p ∧ sum u S = 0 ∧ (∃ v∈S . u v 6= 0 ) ∧ (

∑
w∈S . u

w ∗R w) = 0
if (

∑
w∈S . u w ∗R w) = x x ∈ p finite S S 6= {} S ⊆ p − {x} sum u S = 1

for x S u
proof (intro exI conjI )
have x /∈ S
using that by auto

then show (
∑

v ∈ insert x S . if v = x then − 1 else u v) = 0
using that by (simp add : sum delta notmem)

show (
∑

w ∈ insert x S . (if w = x then − 1 else u w) ∗R w) = 0
using that 〈x /∈ S 〉 by (simp add : if smult sum delta notmem cong : if cong)

qed (use that in auto)
moreover have ∃ x∈p. ∃S u. finite S ∧ S 6= {} ∧ S ⊆ p − {x} ∧ sum u S =

1 ∧ (
∑

v∈S . u v ∗R v) = x
if (

∑
v∈S . u v ∗R v) = 0 finite S S ⊆ p sum u S = 0 v ∈ S u v 6= 0 for S u v

proof (intro bexI exI conjI )
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have S 6= {v}
using that by auto

then show S − {v} 6= {}
using that by auto

show (
∑

x ∈ S − {v}. − (1 / u v) ∗ u x ) = 1
unfolding sum distrib left [symmetric] sum diff1 [OF 〈finite S 〉] by (simp add :

that)
show (

∑
x∈S − {v}. (− (1 / u v) ∗ u x ) ∗R x ) = v

unfolding sum distrib left [symmetric] scaleR scaleR[symmetric]
scaleR right .sum [symmetric] sum diff1 [OF 〈finite S 〉]

using that by auto
show S − {v} ⊆ p − {v}
using that by auto

qed (use that in auto)
ultimately show ?thesis
unfolding affine dependent def affine hull explicit by auto

qed

lemma affine dependent explicit finite:
fixes S :: ′a::real vector set
assumes finite S
shows affine dependent S ←→
(∃ u. sum u S = 0 ∧ (∃ v∈S . u v 6= 0 ) ∧ sum (λv . u v ∗R v) S = 0 )

(is ?lhs = ?rhs)
proof
have ∗:

∧
vt u v . (if vt then u v else 0 ) ∗R v = (if vt then (u v) ∗R v else 0 :: ′a)

by auto
assume ?lhs
then obtain t u v where
finite t t ⊆ S sum u t = 0 v∈t u v 6= 0 (

∑
v∈t . u v ∗R v) = 0

unfolding affine dependent explicit by auto
then show ?rhs
apply (rule tac x=λx . if x∈t then u x else 0 in exI )
apply (auto simp: ∗ sum.inter restrict [OF assms, symmetric] Int absorb1 [OF

〈t⊆S 〉])
done

next
assume ?rhs
then obtain u v where sum u S = 0 v∈S u v 6= 0 (

∑
v∈S . u v ∗R v) = 0

by auto
then show ?lhs unfolding affine dependent explicit
using assms by auto

qed

lemma dependent imp affine dependent :
assumes dependent {x − a| x . x ∈ s}
and a /∈ s

shows affine dependent (insert a s)
proof −
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from assms(1 )[unfolded dependent explicit ] obtain S u v
where obt : finite S S ⊆ {x − a |x . x ∈ s} v∈S u v 6= 0 (

∑
v∈S . u v ∗R v)

= 0
by auto

define t where t = (λx . x + a) ‘ S

have inj : inj on (λx . x + a) S
unfolding inj on def by auto

have 0 /∈ S
using obt(2 ) assms(2 ) unfolding subset eq by auto

have fin: finite t and t ⊆ s
unfolding t def using obt(1 ,2 ) by auto

then have finite (insert a t) and insert a t ⊆ insert a s
by auto

moreover have ∗:
∧
P Q . (

∑
x∈t . (if x = a then P x else Q x )) = (

∑
x∈t . Q

x )
apply (rule sum.cong)
using 〈a /∈s〉 〈t⊆s〉

apply auto
done

have (
∑

x∈insert a t . if x = a then − (
∑

x∈t . u (x − a)) else u (x − a)) = 0
unfolding sum clauses(2 )[OF fin] ∗ using 〈a /∈s〉 〈t⊆s〉 by auto

moreover have ∃ v∈insert a t . (if v = a then − (
∑

x∈t . u (x − a)) else u (v
− a)) 6= 0

using obt(3 ,4 ) 〈0 /∈S 〉

by (rule tac x=v + a in bexI ) (auto simp: t def )
moreover have ∗:

∧
P Q . (

∑
x∈t . (if x = a then P x else Q x ) ∗R x ) = (

∑
x∈t .

Q x ∗R x )
using 〈a /∈s〉 〈t⊆s〉 by (auto intro!: sum.cong)

have (
∑

x∈t . u (x − a)) ∗R a = (
∑

v∈t . u (v − a) ∗R v)
unfolding scaleR left .sum
unfolding t def and sum.reindex [OF inj ] and o def
using obt(5 )
by (auto simp: sum.distrib scaleR right distrib)

then have (
∑

v∈insert a t . (if v = a then − (
∑

x∈t . u (x − a)) else u (v −
a)) ∗R v) = 0

unfolding sum clauses(2 )[OF fin]
using 〈a /∈s〉 〈t⊆s〉

by (auto simp: ∗)
ultimately show ?thesis
unfolding affine dependent explicit
apply (rule tac x=insert a t in exI , auto)
done

qed

lemma affine dependent biggerset :
fixes s :: ′a::euclidean space set
assumes finite s card s ≥ DIM ( ′a) + 2
shows affine dependent s
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proof −
have s 6= {} using assms by auto
then obtain a where a∈s by auto
have ∗: {x − a |x . x ∈ s − {a}} = (λx . x − a) ‘ (s − {a})
by auto

have card {x − a |x . x ∈ s − {a}} = card (s − {a})
unfolding ∗ by (simp add : card image inj on def )

also have . . . > DIM ( ′a) using assms(2 )
unfolding card Diff singleton[OF assms(1 ) 〈a∈s〉] by auto

finally show ?thesis
apply (subst insert Diff [OF 〈a∈s〉, symmetric])
apply (rule dependent imp affine dependent)
apply (rule dependent biggerset , auto)
done

qed

lemma affine dependent biggerset general :
assumes finite (S :: ′a::euclidean space set)
and card S ≥ dim S + 2

shows affine dependent S
proof −
from assms(2 ) have S 6= {} by auto
then obtain a where a∈S by auto
have ∗: {x − a |x . x ∈ S − {a}} = (λx . x − a) ‘ (S − {a})
by auto

have ∗∗: card {x − a |x . x ∈ S − {a}} = card (S − {a})
by (metis (no types, lifting) ∗ card image diff add cancel inj on def )

have dim {x − a |x . x ∈ S − {a}} ≤ dim S
using 〈a∈S 〉 by (auto simp: span base span diff intro: subset le dim)

also have . . . < dim S + 1 by auto
also have . . . ≤ card (S − {a})
using assms
using card Diff singleton[OF assms(1 ) 〈a∈S 〉]
by auto

finally show ?thesis
apply (subst insert Diff [OF 〈a∈S 〉, symmetric])
apply (rule dependent imp affine dependent)
apply (rule dependent biggerset general)
unfolding ∗∗
apply auto
done

qed

1.6.3 Some Properties of Affine Dependent Sets

lemma affine independent 0 [simp]: ¬ affine dependent {}
by (simp add : affine dependent def )

lemma affine independent 1 [simp]: ¬ affine dependent {a}
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by (simp add : affine dependent def )

lemma affine independent 2 [simp]: ¬ affine dependent {a,b}
by (simp add : affine dependent def insert Diff if hull same)

lemma affine hull translation: affine hull ((λx . a + x ) ‘ S ) = (λx . a + x ) ‘
(affine hull S )
proof −
have affine ((λx . a + x ) ‘ (affine hull S ))
using affine translation affine affine hull by blast

moreover have (λx . a + x ) ‘ S ⊆ (λx . a + x ) ‘ (affine hull S )
using hull subset [of S ] by auto

ultimately have h1 : affine hull ((λx . a + x ) ‘ S ) ⊆ (λx . a + x ) ‘ (affine hull
S )

by (metis hull minimal)
have affine((λx . −a + x ) ‘ (affine hull ((λx . a + x ) ‘ S )))
using affine translation affine affine hull by blast

moreover have (λx . −a + x ) ‘ (λx . a + x ) ‘ S ⊆ (λx . −a + x ) ‘ (affine hull
((λx . a + x ) ‘ S ))

using hull subset [of (λx . a + x ) ‘ S ] by auto
moreover have S = (λx . −a + x ) ‘ (λx . a + x ) ‘ S
using translation assoc[of −a a] by auto

ultimately have (λx . −a + x ) ‘ (affine hull ((λx . a + x ) ‘ S )) >= (affine hull
S )

by (metis hull minimal)
then have affine hull ((λx . a + x ) ‘ S ) >= (λx . a + x ) ‘ (affine hull S )
by auto

then show ?thesis using h1 by auto
qed

lemma affine dependent translation:
assumes affine dependent S
shows affine dependent ((λx . a + x ) ‘ S )

proof −
obtain x where x : x ∈ S ∧ x ∈ affine hull (S − {x})
using assms affine dependent def by auto

have (+) a ‘ (S − {x}) = (+) a ‘ S − {a + x}
by auto

then have a + x ∈ affine hull ((λx . a + x ) ‘ S − {a + x})
using affine hull translation[of a S − {x}] x by auto

moreover have a + x ∈ (λx . a + x ) ‘ S
using x by auto

ultimately show ?thesis
unfolding affine dependent def by auto

qed

lemma affine dependent translation eq :
affine dependent S ←→ affine dependent ((λx . a + x ) ‘ S )

proof −
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{
assume affine dependent ((λx . a + x ) ‘ S )
then have affine dependent S
using affine dependent translation[of ((λx . a + x ) ‘ S ) −a] translation assoc[of

−a a]
by auto

}
then show ?thesis
using affine dependent translation by auto

qed

lemma affine hull 0 dependent :
assumes 0 ∈ affine hull S
shows dependent S

proof −
obtain s u where s u: finite s ∧ s 6= {} ∧ s ⊆ S ∧ sum u s = 1 ∧ (

∑
v∈s. u

v ∗R v) = 0
using assms affine hull explicit [of S ] by auto

then have ∃ v∈s. u v 6= 0 by auto
then have finite s ∧ s ⊆ S ∧ (∃ v∈s. u v 6= 0 ∧ (

∑
v∈s. u v ∗R v) = 0 )

using s u by auto
then show ?thesis
unfolding dependent explicit [of S ] by auto

qed

lemma affine dependent imp dependent2 :
assumes affine dependent (insert 0 S )
shows dependent S

proof −
obtain x where x : x ∈ insert 0 S ∧ x ∈ affine hull (insert 0 S − {x})
using affine dependent def [of (insert 0 S )] assms by blast

then have x ∈ span (insert 0 S − {x})
using affine hull subset span by auto

moreover have span (insert 0 S − {x}) = span (S − {x})
using insert Diff if [of 0 S {x}] span insert 0 [of S−{x}] by auto

ultimately have x ∈ span (S − {x}) by auto
then have x 6= 0 =⇒ dependent S
using x dependent def by auto

moreover
{
assume x = 0
then have 0 ∈ affine hull S
using x hull mono[of S − {0} S ] by auto

then have dependent S
using affine hull 0 dependent by auto

}
ultimately show ?thesis by auto

qed
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lemma affine dependent iff dependent :
assumes a /∈ S
shows affine dependent (insert a S ) ←→ dependent ((λx . −a + x ) ‘ S )

proof −
have ((+) (− a) ‘ S ) = {x − a| x . x ∈ S} by auto
then show ?thesis
using affine dependent translation eq [of (insert a S ) −a]
affine dependent imp dependent2 assms
dependent imp affine dependent [of a S ]

by (auto simp del : uminus add conv diff )
qed

lemma affine dependent iff dependent2 :
assumes a ∈ S
shows affine dependent S ←→ dependent ((λx . −a + x ) ‘ (S−{a}))

proof −
have insert a (S − {a}) = S
using assms by auto

then show ?thesis
using assms affine dependent iff dependent [of a S−{a}] by auto

qed

lemma affine hull insert span gen:
affine hull (insert a s) = (λx . a + x ) ‘ span ((λx . − a + x ) ‘ s)

proof −
have h1 : {x − a |x . x ∈ s} = ((λx . −a+x ) ‘ s)
by auto

{
assume a /∈ s
then have ?thesis
using affine hull insert span[of a s] h1 by auto

}
moreover
{
assume a1 : a ∈ s
have ∃ x . x ∈ s ∧ −a+x=0
apply (rule exI [of a])
using a1
apply auto
done

then have insert 0 ((λx . −a+x ) ‘ (s − {a})) = (λx . −a+x ) ‘ s
by auto

then have span ((λx . −a+x ) ‘ (s − {a}))=span ((λx . −a+x ) ‘ s)
using span insert 0 [of (+) (− a) ‘ (s − {a})] by (auto simp del : umi-

nus add conv diff )
moreover have {x − a |x . x ∈ (s − {a})} = ((λx . −a+x ) ‘ (s − {a}))
by auto

moreover have insert a (s − {a}) = insert a s
by auto
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ultimately have ?thesis
using affine hull insert span[of a s−{a}] by auto

}
ultimately show ?thesis by auto

qed

lemma affine hull span2 :
assumes a ∈ s
shows affine hull s = (λx . a+x ) ‘ span ((λx . −a+x ) ‘ (s−{a}))
using affine hull insert span gen[of a s − {a}, unfolded insert Diff [OF assms]]
by auto

lemma affine hull span gen:
assumes a ∈ affine hull s
shows affine hull s = (λx . a+x ) ‘ span ((λx . −a+x ) ‘ s)

proof −
have affine hull (insert a s) = affine hull s
using hull redundant [of a affine s] assms by auto

then show ?thesis
using affine hull insert span gen[of a s] by auto

qed

lemma affine hull span 0 :
assumes 0 ∈ affine hull S
shows affine hull S = span S
using affine hull span gen[of 0 S ] assms by auto

lemma extend to affine basis nonempty :
fixes S V :: ′n::real vector set
assumes ¬ affine dependent S S ⊆ V S 6= {}
shows ∃T . ¬ affine dependent T ∧ S ⊆ T ∧ T ⊆ V ∧ affine hull T = affine

hull V
proof −
obtain a where a: a ∈ S
using assms by auto

then have h0 : independent ((λx . −a + x ) ‘ (S−{a}))
using affine dependent iff dependent2 assms by auto

obtain B where B :
(λx . −a+x ) ‘ (S − {a}) ⊆ B ∧ B ⊆ (λx . −a+x ) ‘ V ∧ independent B ∧ (λx .

−a+x ) ‘ V ⊆ span B
using assms
by (blast intro: maximal independent subset extend [OF h0 , of (λx . −a + x )

‘ V ])
define T where T = (λx . a+x ) ‘ insert 0 B
then have T = insert a ((λx . a+x ) ‘ B)
by auto

then have affine hull T = (λx . a+x ) ‘ span B
using affine hull insert span gen[of a ((λx . a+x ) ‘ B)] translation assoc[of −a

a B ]
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by auto
then have V ⊆ affine hull T
using B assms translation inverse subset [of a V span B ]
by auto

moreover have T ⊆ V
using T def B a assms by auto

ultimately have affine hull T = affine hull V
by (metis Int absorb1 Int absorb2 hull hull hull mono)

moreover have S ⊆ T
using T def B translation inverse subset [of a S−{a} B ]
by auto

moreover have ¬ affine dependent T
using T def affine dependent translation eq [of insert 0 B ]
affine dependent imp dependent2 B

by auto
ultimately show ?thesis using 〈T ⊆ V 〉 by auto

qed

lemma affine basis exists:
fixes V :: ′n::real vector set
shows ∃B . B ⊆ V ∧ ¬ affine dependent B ∧ affine hull V = affine hull B

proof (cases V = {})
case True
then show ?thesis
using affine independent 0 by auto

next
case False
then obtain x where x ∈ V by auto
then show ?thesis
using affine dependent def [of {x}] extend to affine basis nonempty [of {x} V ]
by auto

qed

proposition extend to affine basis:
fixes S V :: ′n::real vector set
assumes ¬ affine dependent S S ⊆ V
obtains T where ¬ affine dependent T S ⊆ T T ⊆ V affine hull T = affine

hull V
proof (cases S = {})
case True then show ?thesis
using affine basis exists by (metis empty subsetI that)

next
case False
then show ?thesis by (metis assms extend to affine basis nonempty that)

qed

1.6.4 Affine Dimension of a Set

definition aff dim :: ( ′a::euclidean space) set ⇒ int
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where aff dim V =
(SOME d :: int .
∃B . affine hull B = affine hull V ∧ ¬ affine dependent B ∧ of nat (card B) =

d + 1 )

lemma aff dim basis exists:
fixes V :: ( ′n::euclidean space) set
shows ∃B . affine hull B = affine hull V ∧ ¬ affine dependent B ∧ of nat (card

B) = aff dim V + 1
proof −
obtain B where ¬ affine dependent B ∧ affine hull B = affine hull V
using affine basis exists[of V ] by auto

then show ?thesis
unfolding aff dim def
some eq ex [of λd . ∃B . affine hull B = affine hull V ∧ ¬ affine dependent B

∧ of nat (card B) = d + 1 ]
apply auto
apply (rule exI [of int (card B) − (1 :: int)])
apply (rule exI [of B ], auto)
done

qed

lemma affine hull eq empty [simp]: affine hull S = {} ←→ S = {}
by (metis affine empty subset empty subset hull)

lemma empty eq affine hull [simp]: {} = affine hull S ←→ S = {}
by (metis affine hull eq empty)

lemma aff dim parallel subspace aux :
fixes B :: ′n::euclidean space set
assumes ¬ affine dependent B a ∈ B
shows finite B ∧ ((card B) − 1 = dim (span ((λx . −a+x ) ‘ (B−{a}))))

proof −
have independent ((λx . −a + x ) ‘ (B−{a}))
using affine dependent iff dependent2 assms by auto

then have fin: dim (span ((λx . −a+x ) ‘ (B−{a}))) = card ((λx . −a + x ) ‘
(B−{a}))

finite ((λx . −a + x ) ‘ (B − {a}))
using indep card eq dim span[of (λx . −a+x ) ‘ (B−{a})] by auto

show ?thesis
proof (cases (λx . −a + x ) ‘ (B − {a}) = {})
case True
have B = insert a ((λx . a + x ) ‘ (λx . −a + x ) ‘ (B − {a}))
using translation assoc[of a −a (B − {a})] assms by auto

then have B = {a} using True by auto
then show ?thesis using assms fin by auto

next
case False
then have card ((λx . −a + x ) ‘ (B − {a})) > 0
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using fin by auto
moreover have h1 : card ((λx . −a + x ) ‘ (B−{a})) = card (B−{a})
by (rule card image) (use translate inj on in blast)

ultimately have card (B−{a}) > 0 by auto
then have ∗: finite (B − {a})
using card gt 0 iff [of (B − {a})] by auto

then have card (B − {a}) = card B − 1
using card Diff singleton assms by auto

with ∗ show ?thesis using fin h1 by auto
qed

qed

lemma aff dim parallel subspace:
fixes V L :: ′n::euclidean space set
assumes V 6= {}
and subspace L
and affine parallel (affine hull V ) L

shows aff dim V = int (dim L)
proof −
obtain B where

B : affine hull B = affine hull V ∧ ¬ affine dependent B ∧ int (card B) =
aff dim V + 1

using aff dim basis exists by auto
then have B 6= {}
using assms B
by auto

then obtain a where a: a ∈ B by auto
define Lb where Lb = span ((λx . −a+x ) ‘ (B−{a}))
moreover have affine parallel (affine hull B) Lb
using Lb def B assms affine hull span2 [of a B ] a
affine parallel commut [of Lb (affine hull B)]

unfolding affine parallel def
by auto

moreover have subspace Lb
using Lb def subspace span by auto

moreover have affine hull B 6= {}
using assms B by auto

ultimately have L = Lb
using assms affine parallel subspace[of affine hull B ] affine affine hull [of B ] B
by auto

then have dim L = dim Lb
by auto

moreover have card B − 1 = dim Lb and finite B
using Lb def aff dim parallel subspace aux a B by auto

ultimately show ?thesis
using B 〈B 6= {}〉 card gt 0 iff [of B ] by auto

qed

lemma aff independent finite:
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fixes B :: ′n::euclidean space set
assumes ¬ affine dependent B
shows finite B

proof −
{
assume B 6= {}
then obtain a where a ∈ B by auto
then have ?thesis
using aff dim parallel subspace aux assms by auto

}
then show ?thesis by auto

qed

lemma aff dim empty :
fixes S :: ′n::euclidean space set
shows S = {} ←→ aff dim S = −1

proof −
obtain B where ∗: affine hull B = affine hull S
and ¬ affine dependent B
and int (card B) = aff dim S + 1
using aff dim basis exists by auto

moreover
from ∗ have S = {} ←→ B = {}
by auto

ultimately show ?thesis
using aff independent finite[of B ] card gt 0 iff [of B ] by auto

qed

lemma aff dim empty eq [simp]: aff dim ({}:: ′a::euclidean space set) = −1
by (simp add : aff dim empty [symmetric])

lemma aff dim affine hull [simp]: aff dim (affine hull S ) = aff dim S
unfolding aff dim def using hull hull [of S ] by auto

lemma aff dim affine hull2 :
assumes affine hull S = affine hull T
shows aff dim S = aff dim T
unfolding aff dim def using assms by auto

lemma aff dim unique:
fixes B V :: ′n::euclidean space set
assumes affine hull B = affine hull V ∧ ¬ affine dependent B
shows of nat (card B) = aff dim V + 1

proof (cases B = {})
case True
then have V = {}
using assms
by auto
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then have aff dim V = (−1 ::int)
using aff dim empty by auto

then show ?thesis
using 〈B = {}〉 by auto

next
case False
then obtain a where a: a ∈ B by auto
define Lb where Lb = span ((λx . −a+x ) ‘ (B−{a}))
have affine parallel (affine hull B) Lb
using Lb def affine hull span2 [of a B ] a
affine parallel commut [of Lb (affine hull B)]

unfolding affine parallel def by auto
moreover have subspace Lb
using Lb def subspace span by auto

ultimately have aff dim B = int(dim Lb)
using aff dim parallel subspace[of B Lb] 〈B 6= {}〉 by auto

moreover have (card B) − 1 = dim Lb finite B
using Lb def aff dim parallel subspace aux a assms by auto

ultimately have of nat (card B) = aff dim B + 1
using 〈B 6= {}〉 card gt 0 iff [of B ] by auto

then show ?thesis
using aff dim affine hull2 assms by auto

qed

lemma aff dim affine independent :
fixes B :: ′n::euclidean space set
assumes ¬ affine dependent B
shows of nat (card B) = aff dim B + 1
using aff dim unique[of B B ] assms by auto

lemma affine independent iff card :
fixes s :: ′a::euclidean space set
shows ¬ affine dependent s ←→ finite s ∧ aff dim s = int(card s) − 1

apply (rule iffI )
apply (simp add : aff dim affine independent aff independent finite)
by (metis affine basis exists [of s] aff dim unique card subset eq diff add cancel

of nat eq iff )

lemma aff dim sing [simp]:
fixes a :: ′n::euclidean space
shows aff dim {a} = 0
using aff dim affine independent [of {a}] affine independent 1 by auto

lemma aff dim 2 [simp]:
fixes a :: ′n::euclidean space
shows aff dim {a,b} = (if a = b then 0 else 1 )

proof (clarsimp)
assume a 6= b
then have aff dim{a,b} = card{a,b} − 1
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using affine independent 2 [of a b] aff dim affine independent by fastforce
also have . . . = 1
using 〈a 6= b〉 by simp

finally show aff dim {a, b} = 1 .
qed

lemma aff dim inner basis exists:
fixes V :: ( ′n::euclidean space) set
shows ∃B . B ⊆ V ∧ affine hull B = affine hull V ∧
¬ affine dependent B ∧ of nat (card B) = aff dim V + 1

proof −
obtain B where B : ¬ affine dependent B B ⊆ V affine hull B = affine hull V
using affine basis exists[of V ] by auto

then have of nat(card B) = aff dim V+1 using aff dim unique by auto
with B show ?thesis by auto

qed

lemma aff dim le card :
fixes V :: ′n::euclidean space set
assumes finite V
shows aff dim V ≤ of nat (card V ) − 1

proof −
obtain B where B : B ⊆ V of nat (card B) = aff dim V + 1
using aff dim inner basis exists[of V ] by auto

then have card B ≤ card V
using assms card mono by auto

with B show ?thesis by auto
qed

lemma aff dim parallel eq :
fixes S T :: ′n::euclidean space set
assumes affine parallel (affine hull S ) (affine hull T )
shows aff dim S = aff dim T

proof −
{
assume T 6= {} S 6= {}
then obtain L where L: subspace L ∧ affine parallel (affine hull T ) L
using affine parallel subspace[of affine hull T ]
affine affine hull [of T ]

by auto
then have aff dim T = int (dim L)
using aff dim parallel subspace 〈T 6= {}〉 by auto

moreover have ∗: subspace L ∧ affine parallel (affine hull S ) L
using L affine parallel assoc[of affine hull S affine hull T L] assms by auto

moreover from ∗ have aff dim S = int (dim L)
using aff dim parallel subspace 〈S 6= {}〉 by auto

ultimately have ?thesis by auto
}
moreover
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{
assume S = {}
then have S = {} and T = {}
using assms
unfolding affine parallel def
by auto

then have ?thesis using aff dim empty by auto
}
moreover
{
assume T = {}
then have S = {} and T = {}
using assms
unfolding affine parallel def
by auto

then have ?thesis
using aff dim empty by auto

}
ultimately show ?thesis by blast

qed

lemma aff dim translation eq :
aff dim ((+) a ‘ S ) = aff dim S for a :: ′n::euclidean space

proof −
have affine parallel (affine hull S ) (affine hull ((λx . a + x ) ‘ S ))
unfolding affine parallel def
apply (rule exI [of a])
using affine hull translation[of a S ]
apply auto
done

then show ?thesis
using aff dim parallel eq [of S (λx . a + x ) ‘ S ] by auto

qed

lemma aff dim translation eq subtract :
aff dim ((λx . x − a) ‘ S ) = aff dim S for a :: ′n::euclidean space
using aff dim translation eq [of − a] by (simp cong : image cong simp)

lemma aff dim affine:
fixes S L :: ′n::euclidean space set
assumes S 6= {}
and affine S
and subspace L
and affine parallel S L

shows aff dim S = int (dim L)
proof −
have ∗: affine hull S = S
using assms affine hull eq [of S ] by auto

then have affine parallel (affine hull S ) L
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using assms by (simp add : ∗)
then show ?thesis
using assms aff dim parallel subspace[of S L] by blast

qed

lemma dim affine hull :
fixes S :: ′n::euclidean space set
shows dim (affine hull S ) = dim S

proof −
have dim (affine hull S ) ≥ dim S
using dim subset by auto

moreover have dim (span S ) ≥ dim (affine hull S )
using dim subset affine hull subset span by blast

moreover have dim (span S ) = dim S
using dim span by auto

ultimately show ?thesis by auto
qed

lemma aff dim subspace:
fixes S :: ′n::euclidean space set
assumes subspace S
shows aff dim S = int (dim S )

proof (cases S={})
case True with assms show ?thesis
by (simp add : subspace affine)

next
case False
with aff dim affine[of S S ] assms subspace imp affine[of S ] affine parallel reflex [of

S ] subspace affine
show ?thesis by auto

qed

lemma aff dim zero:
fixes S :: ′n::euclidean space set
assumes 0 ∈ affine hull S
shows aff dim S = int (dim S )

proof −
have subspace (affine hull S )
using subspace affine[of affine hull S ] affine affine hull assms
by auto

then have aff dim (affine hull S ) = int (dim (affine hull S ))
using assms aff dim subspace[of affine hull S ] by auto

then show ?thesis
using aff dim affine hull [of S ] dim affine hull [of S ]
by auto

qed

lemma aff dim eq dim:
aff dim S = int (dim ((+) (− a) ‘ S )) if a ∈ affine hull S
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for S :: ′n::euclidean space set
proof −
have 0 ∈ affine hull (+) (− a) ‘ S
unfolding affine hull translation
using that by (simp add : ac simps)

with aff dim zero show ?thesis
by (metis aff dim translation eq)

qed

lemma aff dim eq dim subtract :
aff dim S = int (dim ((λx . x − a) ‘ S )) if a ∈ affine hull S
for S :: ′n::euclidean space set

using aff dim eq dim [of a] that by (simp cong : image cong simp)

lemma aff dim UNIV [simp]: aff dim (UNIV :: ′n::euclidean space set) = int(DIM ( ′n))
using aff dim subspace[of (UNIV :: ′n::euclidean space set)]
dim UNIV [where ′a= ′n::euclidean space]

by auto

lemma aff dim geq :
fixes V :: ′n::euclidean space set
shows aff dim V ≥ −1

proof −
obtain B where affine hull B = affine hull V
and ¬ affine dependent B
and int (card B) = aff dim V + 1
using aff dim basis exists by auto

then show ?thesis by auto
qed

lemma aff dim negative iff [simp]:
fixes S :: ′n::euclidean space set
shows aff dim S < 0 ←→S = {}

by (metis aff dim empty aff dim geq diff 0 eq iff zle diff1 eq)

lemma aff lowdim subset hyperplane:
fixes S :: ′a::euclidean space set
assumes aff dim S < DIM ( ′a)
obtains a b where a 6= 0 S ⊆ {x . a · x = b}

proof (cases S={})
case True
moreover
have (SOME b. b ∈ Basis) 6= 0
by (metis norm some Basis norm zero zero neq one)

ultimately show ?thesis
using that by blast

next
case False
then obtain c S ′ where c /∈ S ′ S = insert c S ′



Affine.thy 127

by (meson equals0I mk disjoint insert)
have dim ((+) (−c) ‘ S ) < DIM ( ′a)
by (metis 〈S = insert c S ′〉 aff dim eq dim assms hull inc insertI1 of nat less imp less)
then obtain a where a 6= 0 span ((+) (−c) ‘ S ) ⊆ {x . a · x = 0}
using lowdim subset hyperplane by blast

moreover
have a · w = a · c if span ((+) (− c) ‘ S ) ⊆ {x . a · x = 0} w ∈ S for w
proof −
have w−c ∈ span ((+) (− c) ‘ S )
by (simp add : span base 〈w ∈ S 〉)

with that have w−c ∈ {x . a · x = 0}
by blast

then show ?thesis
by (auto simp: algebra simps)

qed
ultimately have S ⊆ {x . a · x = a · c}
by blast

then show ?thesis
by (rule that [OF 〈a 6= 0 〉])

qed

lemma affine independent card dim diffs:
fixes S :: ′a :: euclidean space set
assumes ¬ affine dependent S a ∈ S
shows card S = dim ((λx . x − a) ‘ S ) + 1

proof −
have non: ¬ affine dependent (insert a S )
by (simp add : assms insert absorb)

have finite S
by (meson assms aff independent finite)

with 〈a ∈ S 〉 have card S 6= 0 by auto
moreover have dim ((λx . x − a) ‘ S ) = card S − 1
using aff dim eq dim subtract aff dim unique 〈a ∈ S 〉 hull inc insert absorb non

by fastforce
ultimately show ?thesis
by auto

qed

lemma independent card le aff dim:
fixes B :: ′n::euclidean space set
assumes B ⊆ V
assumes ¬ affine dependent B
shows int (card B) ≤ aff dim V + 1

proof −
obtain T where T : ¬ affine dependent T ∧ B ⊆ T ∧ T ⊆ V ∧ affine hull T

= affine hull V
by (metis assms extend to affine basis[of B V ])

then have of nat (card T ) = aff dim V + 1
using aff dim unique by auto

Affine.html


128

then show ?thesis
using T card mono[of T B ] aff independent finite[of T ] by auto

qed

lemma aff dim subset :
fixes S T :: ′n::euclidean space set
assumes S ⊆ T
shows aff dim S ≤ aff dim T

proof −
obtain B where B : ¬ affine dependent B B ⊆ S affine hull B = affine hull S
of nat (card B) = aff dim S + 1
using aff dim inner basis exists[of S ] by auto

then have int (card B) ≤ aff dim T + 1
using assms independent card le aff dim[of B T ] by auto

with B show ?thesis by auto
qed

lemma aff dim le DIM :
fixes S :: ′n::euclidean space set
shows aff dim S ≤ int (DIM ( ′n))

proof −
have aff dim (UNIV :: ′n::euclidean space set) = int(DIM ( ′n))
using aff dim UNIV by auto

then show aff dim (S :: ′n::euclidean space set) ≤ int(DIM ( ′n))
using aff dim subset [of S (UNIV :: ( ′n::euclidean space) set)] subset UNIV by

auto
qed

lemma affine dim equal :
fixes S :: ′n::euclidean space set
assumes affine S affine T S 6= {} S ⊆ T aff dim S = aff dim T
shows S = T

proof −
obtain a where a ∈ S using assms by auto
then have a ∈ T using assms by auto
define LS where LS = {y . ∃ x ∈ S . (−a) + x = y}
then have ls: subspace LS affine parallel S LS
using assms parallel subspace explicit [of S a LS ] 〈a ∈ S 〉 by auto

then have h1 : int(dim LS ) = aff dim S
using assms aff dim affine[of S LS ] by auto

have T 6= {} using assms by auto
define LT where LT = {y . ∃ x ∈ T . (−a) + x = y}
then have lt : subspace LT ∧ affine parallel T LT
using assms parallel subspace explicit [of T a LT ] 〈a ∈ T 〉 by auto

then have int(dim LT ) = aff dim T
using assms aff dim affine[of T LT ] 〈T 6= {}〉 by auto

then have dim LS = dim LT
using h1 assms by auto

moreover have LS ≤ LT



Affine.thy 129

using LS def LT def assms by auto
ultimately have LS = LT
using subspace dim equal [of LS LT ] ls lt by auto

moreover have S = {x . ∃ y ∈ LS . a+y=x}
using LS def by auto

moreover have T = {x . ∃ y ∈ LT . a+y=x}
using LT def by auto

ultimately show ?thesis by auto
qed

lemma aff dim eq 0 :
fixes S :: ′a::euclidean space set
shows aff dim S = 0 ←→ (∃ a. S = {a})

proof (cases S = {})
case True
then show ?thesis
by auto

next
case False
then obtain a where a ∈ S by auto
show ?thesis
proof safe
assume 0 : aff dim S = 0
have ¬ {a,b} ⊆ S if b 6= a for b
by (metis 0 aff dim 2 aff dim subset not one le zero that)

then show ∃ a. S = {a}
using 〈a ∈ S 〉 by blast

qed auto
qed

lemma affine hull UNIV :
fixes S :: ′n::euclidean space set
assumes aff dim S = int(DIM ( ′n))
shows affine hull S = (UNIV :: ( ′n::euclidean space) set)

proof −
have S 6= {}
using assms aff dim empty [of S ] by auto

have h0 : S ⊆ affine hull S
using hull subset [of S ] by auto

have h1 : aff dim (UNIV :: ( ′n::euclidean space) set) = aff dim S
using aff dim UNIV assms by auto

then have h2 : aff dim (affine hull S ) ≤ aff dim (UNIV :: ( ′n::euclidean space)
set)

using aff dim le DIM [of affine hull S ] assms h0 by auto
have h3 : aff dim S ≤ aff dim (affine hull S )
using h0 aff dim subset [of S affine hull S ] assms by auto

then have h4 : aff dim (affine hull S ) = aff dim (UNIV :: ( ′n::euclidean space)
set)

using h0 h1 h2 by auto
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then show ?thesis
using affine dim equal [of affine hull S (UNIV :: ( ′n::euclidean space) set)]
affine affine hull [of S ] affine UNIV assms h4 h0 〈S 6= {}〉

by auto
qed

lemma disjoint affine hull :
fixes s :: ′n::euclidean space set
assumes ¬ affine dependent s t ⊆ s u ⊆ s t ∩ u = {}
shows (affine hull t) ∩ (affine hull u) = {}

proof −
have finite s using assms by (simp add : aff independent finite)
then have finite t finite u using assms finite subset by blast+
{ fix y
assume yt : y ∈ affine hull t and yu: y ∈ affine hull u
then obtain a b

where a1 [simp]: sum a t = 1 and [simp]: sum (λv . a v ∗R v) t = y
and [simp]: sum b u = 1 sum (λv . b v ∗R v) u = y

by (auto simp: affine hull finite 〈finite t 〉 〈finite u〉)
define c where c x = (if x ∈ t then a x else if x ∈ u then −(b x ) else 0 ) for x
have [simp]: s ∩ t = t s ∩ − t ∩ u = u using assms by auto
have sum c s = 0
by (simp add : c def comm monoid add class.sum.If cases 〈finite s〉 sum negf )

moreover have ¬ (∀ v∈s. c v = 0 )
by (metis (no types) IntD1 〈s ∩ t = t 〉 a1 c def sum.neutral zero neq one)

moreover have (
∑

v∈s. c v ∗R v) = 0
by (simp add : c def if smult sum negf

comm monoid add class.sum.If cases 〈finite s〉)
ultimately have False
using assms 〈finite s〉 by (auto simp: affine dependent explicit)

}
then show ?thesis by blast

qed

end

1.7 Convex Sets and Functions

theory Convex
imports
Affine
HOL−Library .Set Algebras

begin

1.7.1 Convex Sets

definition convex :: ′a::real vector set ⇒ bool
where convex s ←→ (∀ x∈s. ∀ y∈s. ∀ u≥0 . ∀ v≥0 . u + v = 1 −→ u ∗R x + v
∗R y ∈ s)
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lemma convexI :
assumes

∧
x y u v . x ∈ s =⇒ y ∈ s =⇒ 0 ≤ u =⇒ 0 ≤ v =⇒ u + v = 1 =⇒

u ∗R x + v ∗R y ∈ s
shows convex s
using assms unfolding convex def by fast

lemma convexD :
assumes convex s and x ∈ s and y ∈ s and 0 ≤ u and 0 ≤ v and u + v = 1
shows u ∗R x + v ∗R y ∈ s
using assms unfolding convex def by fast

lemma convex alt : convex s ←→ (∀ x∈s. ∀ y∈s. ∀ u. 0 ≤ u ∧ u ≤ 1 −→ ((1 −
u) ∗R x + u ∗R y) ∈ s)
(is ←→ ?alt)

proof
show convex s if alt : ?alt
proof −
{
fix x y and u v :: real
assume mem: x ∈ s y ∈ s
assume 0 ≤ u 0 ≤ v
moreover
assume u + v = 1
then have u = 1 − v by auto
ultimately have u ∗R x + v ∗R y ∈ s
using alt [rule format , OF mem] by auto

}
then show ?thesis
unfolding convex def by auto

qed
show ?alt if convex s
using that by (auto simp: convex def )

qed

lemma convexD alt :
assumes convex s a ∈ s b ∈ s 0 ≤ u u ≤ 1
shows ((1 − u) ∗R a + u ∗R b) ∈ s
using assms unfolding convex alt by auto

lemma mem convex alt :
assumes convex S x ∈ S y ∈ S u ≥ 0 v ≥ 0 u + v > 0
shows ((u/(u+v)) ∗R x + (v/(u+v)) ∗R y) ∈ S
using assms
by (simp add : convex def zero le divide iff add divide distrib [symmetric])

lemma convex empty [intro,simp]: convex {}
unfolding convex def by simp
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lemma convex singleton[intro,simp]: convex {a}
unfolding convex def by (auto simp: scaleR left distrib[symmetric])

lemma convex UNIV [intro,simp]: convex UNIV
unfolding convex def by auto

lemma convex Inter : (
∧
s. s∈f =⇒ convex s) =⇒ convex (

⋂
f )

unfolding convex def by auto

lemma convex Int : convex s =⇒ convex t =⇒ convex (s ∩ t)
unfolding convex def by auto

lemma convex INT : (
∧
i . i ∈ A =⇒ convex (B i)) =⇒ convex (

⋂
i∈A. B i)

unfolding convex def by auto

lemma convex Times: convex s =⇒ convex t =⇒ convex (s × t)
unfolding convex def by auto

lemma convex halfspace le: convex {x . inner a x ≤ b}
unfolding convex def
by (auto simp: inner add intro!: convex bound le)

lemma convex halfspace ge: convex {x . inner a x ≥ b}
proof −
have ∗: {x . inner a x ≥ b} = {x . inner (−a) x ≤ −b}
by auto

show ?thesis
unfolding ∗ using convex halfspace le[of −a −b] by auto

qed

lemma convex halfspace abs le: convex {x . |inner a x | ≤ b}
proof −
have ∗: {x . |inner a x | ≤ b} = {x . inner a x ≤ b} ∩ {x . −b ≤ inner a x}
by auto

show ?thesis
unfolding ∗ by (simp add : convex Int convex halfspace ge convex halfspace le)

qed

lemma convex hyperplane: convex {x . inner a x = b}
proof −
have ∗: {x . inner a x = b} = {x . inner a x ≤ b} ∩ {x . inner a x ≥ b}
by auto

show ?thesis using convex halfspace le convex halfspace ge
by (auto intro!: convex Int simp: ∗)

qed

lemma convex halfspace lt : convex {x . inner a x < b}
unfolding convex def
by (auto simp: convex bound lt inner add)
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lemma convex halfspace gt : convex {x . inner a x > b}
using convex halfspace lt [of −a −b] by auto

lemma convex halfspace Re ge: convex {x . Re x ≥ b}
using convex halfspace ge[of b 1 ::complex ] by simp

lemma convex halfspace Re le: convex {x . Re x ≤ b}
using convex halfspace le[of 1 ::complex b] by simp

lemma convex halfspace Im ge: convex {x . Im x ≥ b}
using convex halfspace ge[of b i] by simp

lemma convex halfspace Im le: convex {x . Im x ≤ b}
using convex halfspace le[of i b] by simp

lemma convex halfspace Re gt : convex {x . Re x > b}
using convex halfspace gt [of b 1 ::complex ] by simp

lemma convex halfspace Re lt : convex {x . Re x < b}
using convex halfspace lt [of 1 ::complex b] by simp

lemma convex halfspace Im gt : convex {x . Im x > b}
using convex halfspace gt [of b i] by simp

lemma convex halfspace Im lt : convex {x . Im x < b}
using convex halfspace lt [of i b] by simp

lemma convex real interval [iff ]:
fixes a b :: real
shows convex {a..} and convex {..b}
and convex {a<..} and convex {..<b}
and convex {a..b} and convex {a<..b}
and convex {a..<b} and convex {a<..<b}

proof −
have {a..} = {x . a ≤ inner 1 x}
by auto

then show 1 : convex {a..}
by (simp only : convex halfspace ge)

have {..b} = {x . inner 1 x ≤ b}
by auto

then show 2 : convex {..b}
by (simp only : convex halfspace le)

have {a<..} = {x . a < inner 1 x}
by auto

then show 3 : convex {a<..}
by (simp only : convex halfspace gt)

have {..<b} = {x . inner 1 x < b}
by auto
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then show 4 : convex {..<b}
by (simp only : convex halfspace lt)

have {a..b} = {a..} ∩ {..b}
by auto

then show convex {a..b}
by (simp only : convex Int 1 2 )

have {a<..b} = {a<..} ∩ {..b}
by auto

then show convex {a<..b}
by (simp only : convex Int 3 2 )

have {a..<b} = {a..} ∩ {..<b}
by auto

then show convex {a..<b}
by (simp only : convex Int 1 4 )

have {a<..<b} = {a<..} ∩ {..<b}
by auto

then show convex {a<..<b}
by (simp only : convex Int 3 4 )

qed

lemma convex Reals: convex IR
by (simp add : convex def scaleR conv of real)

1.7.2 Explicit expressions for convexity in terms of arbitrary
sums

lemma convex sum:
fixes C :: ′a::real vector set
assumes finite S
and convex C
and (

∑
i ∈ S . a i) = 1

assumes
∧
i . i ∈ S =⇒ a i ≥ 0

and
∧
i . i ∈ S =⇒ y i ∈ C

shows (
∑

j ∈ S . a j ∗R y j ) ∈ C
using assms(1 ,3 ,4 ,5 )

proof (induct arbitrary : a set : finite)
case empty
then show ?case by simp

next
case (insert i S ) note IH = this(3 )
have a i + sum a S = 1
and 0 ≤ a i
and ∀ j∈S . 0 ≤ a j
and y i ∈ C
and ∀ j∈S . y j ∈ C
using insert .hyps(1 ,2 ) insert .prems by simp all

then have 0 ≤ sum a S
by (simp add : sum nonneg)

have a i ∗R y i + (
∑

j∈S . a j ∗R y j ) ∈ C
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proof (cases sum a S = 0 )
case True
with 〈a i + sum a S = 1 〉 have a i = 1
by simp

from sum nonneg 0 [OF 〈finite S 〉 True] 〈∀ j∈S . 0 ≤ a j 〉 have ∀ j∈S . a j =
0

by simp
show ?thesis using 〈a i = 1 〉 and 〈∀ j∈S . a j = 0 〉 and 〈y i ∈ C 〉

by simp
next
case False
with 〈0 ≤ sum a S 〉 have 0 < sum a S
by simp

then have (
∑

j∈S . (a j / sum a S ) ∗R y j ) ∈ C
using 〈∀ j∈S . 0 ≤ a j 〉 and 〈∀ j∈S . y j ∈ C 〉

by (simp add : IH sum divide distrib [symmetric])
from 〈convex C 〉 and 〈y i ∈ C 〉 and this and 〈0 ≤ a i 〉

and 〈0 ≤ sum a S 〉 and 〈a i + sum a S = 1 〉

have a i ∗R y i + sum a S ∗R (
∑

j∈S . (a j / sum a S ) ∗R y j ) ∈ C
by (rule convexD)

then show ?thesis
by (simp add : scaleR sum right False)

qed
then show ?case using 〈finite S 〉 and 〈i /∈ S 〉

by simp
qed

lemma convex :
convex S ←→ (∀ (k ::nat) u x . (∀ i . 1≤i ∧ i≤k −→ 0 ≤ u i ∧ x i ∈S ) ∧ (sum u
{1 ..k} = 1 )

−→ sum (λi . u i ∗R x i) {1 ..k} ∈ S )
proof safe
fix k :: nat
fix u :: nat ⇒ real
fix x
assume convex S
∀ i . 1 ≤ i ∧ i ≤ k −→ 0 ≤ u i ∧ x i ∈ S
sum u {1 ..k} = 1

with convex sum[of {1 .. k} S ] show (
∑

j∈{1 .. k}. u j ∗R x j ) ∈ S
by auto

next
assume ∗: ∀ k u x . (∀ i :: nat . 1 ≤ i ∧ i ≤ k −→ 0 ≤ u i ∧ x i ∈ S ) ∧ sum u
{1 ..k} = 1
−→ (

∑
i = 1 ..k . u i ∗R (x i :: ′a)) ∈ S

{
fix µ :: real
fix x y :: ′a
assume xy : x ∈ S y ∈ S
assume mu: µ ≥ 0 µ ≤ 1
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let ?u = λi . if (i :: nat) = 1 then µ else 1 − µ
let ?x = λi . if (i :: nat) = 1 then x else y
have {1 :: nat .. 2} ∩ − {x . x = 1} = {2}
by auto

then have card : card ({1 :: nat .. 2} ∩ − {x . x = 1}) = 1
by simp

then have sum ?u {1 .. 2} = 1
using sum.If cases[of {(1 :: nat) .. 2} λ x . x = 1 λ x . µ λ x . 1 − µ]
by auto

with ∗[rule format , of 2 ?u ?x ] have S : (
∑

j ∈ {1 ..2}. ?u j ∗R ?x j ) ∈ S
using mu xy by auto

have grarr : (
∑

j ∈ {Suc (Suc 0 )..2}. ?u j ∗R ?x j ) = (1 − µ) ∗R y
using sum.atLeast Suc atMost [of Suc (Suc 0 ) 2 λ j . (1 − µ) ∗R y ] by auto

from sum.atLeast Suc atMost [of Suc 0 2 λ j . ?u j ∗R ?x j , simplified this]
have (

∑
j ∈ {1 ..2}. ?u j ∗R ?x j ) = µ ∗R x + (1 − µ) ∗R y

by auto
then have (1 − µ) ∗R y + µ ∗R x ∈ S
using S by (auto simp: add .commute)

}
then show convex S
unfolding convex alt by auto

qed

lemma convex explicit :
fixes S :: ′a::real vector set
shows convex S ←→
(∀ t u. finite t ∧ t ⊆ S ∧ (∀ x∈t . 0 ≤ u x ) ∧ sum u t = 1 −→ sum (λx . u x

∗R x ) t ∈ S )
proof safe
fix t
fix u :: ′a ⇒ real
assume convex S
and finite t
and t ⊆ S ∀ x∈t . 0 ≤ u x sum u t = 1

then show (
∑

x∈t . u x ∗R x ) ∈ S
using convex sum[of t S u λ x . x ] by auto

next
assume ∗: ∀ t . ∀ u. finite t ∧ t ⊆ S ∧ (∀ x∈t . 0 ≤ u x ) ∧
sum u t = 1 −→ (

∑
x∈t . u x ∗R x ) ∈ S

show convex S
unfolding convex alt

proof safe
fix x y
fix µ :: real
assume ∗∗: x ∈ S y ∈ S 0 ≤ µ µ ≤ 1
show (1 − µ) ∗R x + µ ∗R y ∈ S
proof (cases x = y)
case False
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then show ?thesis
using ∗[rule format , of {x , y} λ z . if z = x then 1 − µ else µ] ∗∗
by auto

next
case True
then show ?thesis
using ∗[rule format , of {x , y} λ z . 1 ] ∗∗
by (auto simp: field simps real vector .scale left diff distrib)

qed
qed

qed

lemma convex finite:
assumes finite S
shows convex S ←→ (∀ u. (∀ x∈S . 0 ≤ u x ) ∧ sum u S = 1 −→ sum (λx . u x
∗R x ) S ∈ S )

(is ?lhs = ?rhs)
proof
{ have if distrib arg :

∧
P f g x . (if P then f else g) x = (if P then f x else g x )

by simp
fix T :: ′a set and u :: ′a ⇒ real
assume sum: ∀ u. (∀ x∈S . 0 ≤ u x ) ∧ sum u S = 1 −→ (

∑
x∈S . u x ∗R x )

∈ S
assume ∗: ∀ x∈T . 0 ≤ u x sum u T = 1
assume T ⊆ S
then have S ∩ T = T by auto
with sum[THEN spec[where x=λx . if x∈T then u x else 0 ]] ∗ have (

∑
x∈T .

u x ∗R x ) ∈ S
by (auto simp: assms sum.If cases if distrib if distrib arg) }

moreover assume ?rhs
ultimately show ?lhs
unfolding convex explicit by auto

qed (auto simp: convex explicit assms)

1.7.3 Convex Functions on a Set

definition convex on :: ′a::real vector set ⇒ ( ′a ⇒ real) ⇒ bool
where convex on S f ←→
(∀ x∈S . ∀ y∈S . ∀ u≥0 . ∀ v≥0 . u + v = 1 −→ f (u ∗R x + v ∗R y) ≤ u ∗ f x

+ v ∗ f y)

lemma convex onI [intro?]:
assumes

∧
t x y . t > 0 =⇒ t < 1 =⇒ x ∈ A =⇒ y ∈ A =⇒

f ((1 − t) ∗R x + t ∗R y) ≤ (1 − t) ∗ f x + t ∗ f y
shows convex on A f
unfolding convex on def

proof clarify
fix x y
fix u v :: real
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assume A: x ∈ A y ∈ A u ≥ 0 v ≥ 0 u + v = 1
from A(5 ) have [simp]: v = 1 − u
by (simp add : algebra simps)

from A(1−4 ) show f (u ∗R x + v ∗R y) ≤ u ∗ f x + v ∗ f y
using assms[of u y x ]
by (cases u = 0 ∨ u = 1 ) (auto simp: algebra simps)

qed

lemma convex on linorderI [intro?]:
fixes A :: ( ′a::{linorder ,real vector}) set
assumes

∧
t x y . t > 0 =⇒ t < 1 =⇒ x ∈ A =⇒ y ∈ A =⇒ x < y =⇒

f ((1 − t) ∗R x + t ∗R y) ≤ (1 − t) ∗ f x + t ∗ f y
shows convex on A f

proof
fix x y
fix t :: real
assume A: x ∈ A y ∈ A t > 0 t < 1
with assms [of t x y ] assms [of 1 − t y x ]
show f ((1 − t) ∗R x + t ∗R y) ≤ (1 − t) ∗ f x + t ∗ f y
by (cases x y rule: linorder cases) (auto simp: algebra simps)

qed

lemma convex onD :
assumes convex on A f
shows

∧
t x y . t ≥ 0 =⇒ t ≤ 1 =⇒ x ∈ A =⇒ y ∈ A =⇒

f ((1 − t) ∗R x + t ∗R y) ≤ (1 − t) ∗ f x + t ∗ f y
using assms by (auto simp: convex on def )

lemma convex onD Icc:
assumes convex on {x ..y} f x ≤ (y :: :: {real vector ,preorder})
shows

∧
t . t ≥ 0 =⇒ t ≤ 1 =⇒

f ((1 − t) ∗R x + t ∗R y) ≤ (1 − t) ∗ f x + t ∗ f y
using assms(2 ) by (intro convex onD [OF assms(1 )]) simp all

lemma convex on subset : convex on t f =⇒ S ⊆ t =⇒ convex on S f
unfolding convex on def by auto

lemma convex on add [intro]:
assumes convex on S f
and convex on S g

shows convex on S (λx . f x + g x )
proof −
{
fix x y
assume x ∈ S y ∈ S
moreover
fix u v :: real
assume 0 ≤ u 0 ≤ v u + v = 1
ultimately
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have f (u ∗R x + v ∗R y) + g (u ∗R x + v ∗R y) ≤ (u ∗ f x + v ∗ f y) + (u
∗ g x + v ∗ g y)

using assms unfolding convex on def by (auto simp: add mono)
then have f (u ∗R x + v ∗R y) + g (u ∗R x + v ∗R y) ≤ u ∗ (f x + g x ) +

v ∗ (f y + g y)
by (simp add : field simps)

}
then show ?thesis
unfolding convex on def by auto

qed

lemma convex on cmul [intro]:
fixes c :: real
assumes 0 ≤ c
and convex on S f

shows convex on S (λx . c ∗ f x )
proof −
have ∗: u ∗ (c ∗ fx ) + v ∗ (c ∗ fy) = c ∗ (u ∗ fx + v ∗ fy)
for u c fx v fy :: real
by (simp add : field simps)

show ?thesis using assms(2 ) and mult left mono [OF assms(1 )]
unfolding convex on def and ∗ by auto

qed

lemma convex lower :
assumes convex on S f
and x ∈ S
and y ∈ S
and 0 ≤ u
and 0 ≤ v
and u + v = 1

shows f (u ∗R x + v ∗R y) ≤ max (f x ) (f y)
proof −
let ?m = max (f x ) (f y)
have u ∗ f x + v ∗ f y ≤ u ∗ max (f x ) (f y) + v ∗ max (f x ) (f y)
using assms(4 ,5 ) by (auto simp: mult left mono add mono)

also have . . . = max (f x ) (f y)
using assms(6 ) by (simp add : distrib right [symmetric])

finally show ?thesis
using assms unfolding convex on def by fastforce

qed

lemma convex on dist [intro]:
fixes S :: ′a::real normed vector set
shows convex on S (λx . dist a x )

proof (auto simp: convex on def dist norm)
fix x y
assume x ∈ S y ∈ S
fix u v :: real
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assume 0 ≤ u
assume 0 ≤ v
assume u + v = 1
have a = u ∗R a + v ∗R a
unfolding scaleR left distrib[symmetric] and 〈u + v = 1 〉 by simp

then have ∗: a − (u ∗R x + v ∗R y) = (u ∗R (a − x )) + (v ∗R (a − y))
by (auto simp: algebra simps)

show norm (a − (u ∗R x + v ∗R y)) ≤ u ∗ norm (a − x ) + v ∗ norm (a − y)
unfolding ∗ using norm triangle ineq [of u ∗R (a − x ) v ∗R (a − y)]
using 〈0 ≤ u〉 〈0 ≤ v 〉 by auto

qed

1.7.4 Arithmetic operations on sets preserve convexity

lemma convex linear image:
assumes linear f
and convex S

shows convex (f ‘ S )
proof −
interpret f : linear f by fact
from 〈convex S 〉 show convex (f ‘ S )
by (simp add : convex def f .scaleR [symmetric] f .add [symmetric])

qed

lemma convex linear vimage:
assumes linear f
and convex S

shows convex (f −‘ S )
proof −
interpret f : linear f by fact
from 〈convex S 〉 show convex (f −‘ S )
by (simp add : convex def f .add f .scaleR)

qed

lemma convex scaling :
assumes convex S
shows convex ((λx . c ∗R x ) ‘ S )

proof −
have linear (λx . c ∗R x )
by (simp add : linearI scaleR add right)

then show ?thesis
using 〈convex S 〉 by (rule convex linear image)

qed

lemma convex scaled :
assumes convex S
shows convex ((λx . x ∗R c) ‘ S )

proof −
have linear (λx . x ∗R c)
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by (simp add : linearI scaleR add left)
then show ?thesis
using 〈convex S 〉 by (rule convex linear image)

qed

lemma convex negations:
assumes convex S
shows convex ((λx . − x ) ‘ S )

proof −
have linear (λx . − x )
by (simp add : linearI )

then show ?thesis
using 〈convex S 〉 by (rule convex linear image)

qed

lemma convex sums:
assumes convex S
and convex T

shows convex (
⋃
x∈ S .

⋃
y ∈ T . {x + y})

proof −
have linear (λ(x , y). x + y)
by (auto intro: linearI simp: scaleR add right)

with assms have convex ((λ(x , y). x + y) ‘ (S × T ))
by (intro convex linear image convex Times)

also have ((λ(x , y). x + y) ‘ (S × T )) = (
⋃
x∈ S .

⋃
y ∈ T . {x + y})

by auto
finally show ?thesis .

qed

lemma convex differences:
assumes convex S convex T
shows convex (

⋃
x∈ S .

⋃
y ∈ T . {x − y})

proof −
have {x − y | x y . x ∈ S ∧ y ∈ T} = {x + y |x y . x ∈ S ∧ y ∈ uminus ‘ T}
by (auto simp: diff conv add uminus simp del : add uminus conv diff )

then show ?thesis
using convex sums[OF assms(1 ) convex negations[OF assms(2 )]] by auto

qed

lemma convex translation:
convex ((+) a ‘ S ) if convex S

proof −
have (

⋃
x∈ {a}.

⋃
y ∈ S . {x + y}) = (+) a ‘ S

by auto
then show ?thesis
using convex sums [OF convex singleton [of a] that ] by auto

qed

lemma convex translation subtract :
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convex ((λb. b − a) ‘ S ) if convex S
using convex translation [of S − a] that by (simp cong : image cong simp)

lemma convex affinity :
assumes convex S
shows convex ((λx . a + c ∗R x ) ‘ S )

proof −
have (λx . a + c ∗R x ) ‘ S = (+) a ‘ (∗R) c ‘ S
by auto

then show ?thesis
using convex translation[OF convex scaling [OF assms], of a c] by auto

qed

lemma convex on sum:
fixes a :: ′a ⇒ real
and y :: ′a ⇒ ′b::real vector
and f :: ′b ⇒ real

assumes finite s s 6= {}
and convex on C f
and convex C
and (

∑
i ∈ s. a i) = 1

and
∧
i . i ∈ s =⇒ a i ≥ 0

and
∧
i . i ∈ s =⇒ y i ∈ C

shows f (
∑

i ∈ s. a i ∗R y i) ≤ (
∑

i ∈ s. a i ∗ f (y i))
using assms

proof (induct s arbitrary : a rule: finite ne induct)
case (singleton i)
then have ai : a i = 1
by auto

then show ?case
by auto

next
case (insert i s)
then have convex on C f
by simp

from this[unfolded convex on def , rule format ]
have conv :

∧
x y µ. x ∈ C =⇒ y ∈ C =⇒ 0 ≤ µ =⇒ µ ≤ 1 =⇒

f (µ ∗R x + (1 − µ) ∗R y) ≤ µ ∗ f x + (1 − µ) ∗ f y
by simp

show ?case
proof (cases a i = 1 )
case True
then have (

∑
j ∈ s. a j ) = 0

using insert by auto
then have

∧
j . j ∈ s =⇒ a j = 0

using insert by (fastforce simp: sum nonneg eq 0 iff )
then show ?thesis
using insert by auto

next



Convex.thy 143

case False
from insert have yai : y i ∈ C a i ≥ 0
by auto

have fis: finite (insert i s)
using insert by auto

then have ai1 : a i ≤ 1
using sum nonneg leq bound [of insert i s a] insert by simp

then have a i < 1
using False by auto

then have i0 : 1 − a i > 0
by auto

let ?a = λj . a j / (1 − a i)
have a nonneg : ?a j ≥ 0 if j ∈ s for j
using i0 insert that by fastforce

have (
∑

j ∈ insert i s. a j ) = 1
using insert by auto

then have (
∑

j ∈ s. a j ) = 1 − a i
using sum.insert insert by fastforce

then have (
∑

j ∈ s. a j ) / (1 − a i) = 1
using i0 by auto

then have a1 : (
∑

j ∈ s. ?a j ) = 1
unfolding sum divide distrib by simp

have convex C using insert by auto
then have asum: (

∑
j ∈ s. ?a j ∗R y j ) ∈ C

using insert convex sum [OF 〈finite s〉 〈convex C 〉 a1 a nonneg ] by auto
have asum le: f (

∑
j ∈ s. ?a j ∗R y j ) ≤ (

∑
j ∈ s. ?a j ∗ f (y j ))

using a nonneg a1 insert by blast
have f (

∑
j ∈ insert i s. a j ∗R y j ) = f ((

∑
j ∈ s. a j ∗R y j ) + a i ∗R y i)

using sum.insert [of s i λ j . a j ∗R y j , OF 〈finite s〉 〈i /∈ s〉] insert
by (auto simp only : add .commute)

also have . . . = f (((1 − a i) ∗ inverse (1 − a i)) ∗R (
∑

j ∈ s. a j ∗R y j )
+ a i ∗R y i)

using i0 by auto
also have . . . = f ((1 − a i) ∗R (

∑
j ∈ s. (a j ∗ inverse (1 − a i)) ∗R y j )

+ a i ∗R y i)
using scaleR right .sum[of inverse (1 − a i) λ j . a j ∗R y j s, symmetric]
by (auto simp: algebra simps)

also have . . . = f ((1 − a i) ∗R (
∑

j ∈ s. ?a j ∗R y j ) + a i ∗R y i)
by (auto simp: divide inverse)

also have . . . ≤ (1 − a i) ∗R f ((
∑

j ∈ s. ?a j ∗R y j )) + a i ∗ f (y i)
using conv [of y i (

∑
j ∈ s. ?a j ∗R y j ) a i , OF yai(1 ) asum yai(2 ) ai1 ]

by (auto simp: add .commute)
also have . . . ≤ (1 − a i) ∗ (

∑
j ∈ s. ?a j ∗ f (y j )) + a i ∗ f (y i)

using add right mono [OF mult left mono [of 1 − a i ,
OF asum le less imp le[OF i0 ]], of a i ∗ f (y i)]

by simp
also have . . . = (

∑
j ∈ s. (1 − a i) ∗ ?a j ∗ f (y j )) + a i ∗ f (y i)

unfolding sum distrib left [of 1 − a i λ j . ?a j ∗ f (y j )]
using i0 by auto
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also have . . . = (
∑

j ∈ s. a j ∗ f (y j )) + a i ∗ f (y i)
using i0 by auto

also have . . . = (
∑

j ∈ insert i s. a j ∗ f (y j ))
using insert by auto

finally show ?thesis
by simp

qed
qed

lemma convex on alt :
fixes C :: ′a::real vector set
shows convex on C f ←→
(∀ x ∈ C . ∀ y ∈ C . ∀ µ :: real . µ ≥ 0 ∧ µ ≤ 1 −→
f (µ ∗R x + (1 − µ) ∗R y) ≤ µ ∗ f x + (1 − µ) ∗ f y)

proof safe
fix x y
fix µ :: real
assume ∗: convex on C f x ∈ C y ∈ C 0 ≤ µ µ ≤ 1
from this[unfolded convex on def , rule format ]
have 0 ≤ u =⇒ 0 ≤ v =⇒ u + v = 1 =⇒ f (u ∗R x + v ∗R y) ≤ u ∗ f x + v
∗ f y for u v

by auto
from this [of µ 1 − µ, simplified ] ∗
show f (µ ∗R x + (1 − µ) ∗R y) ≤ µ ∗ f x + (1 − µ) ∗ f y
by auto

next
assume ∗: ∀ x∈C . ∀ y∈C . ∀µ. 0 ≤ µ ∧ µ ≤ 1 −→
f (µ ∗R x + (1 − µ) ∗R y) ≤ µ ∗ f x + (1 − µ) ∗ f y

{
fix x y
fix u v :: real
assume ∗∗: x ∈ C y ∈ C u ≥ 0 v ≥ 0 u + v = 1
then have[simp]: 1 − u = v by auto
from ∗[rule format , of x y u]
have f (u ∗R x + v ∗R y) ≤ u ∗ f x + v ∗ f y
using ∗∗ by auto

}
then show convex on C f
unfolding convex on def by auto

qed

lemma convex on diff :
fixes f :: real ⇒ real
assumes f : convex on I f
and I : x ∈ I y ∈ I
and t : x < t t < y

shows (f x − f t) / (x − t) ≤ (f x − f y) / (x − y)
and (f x − f y) / (x − y) ≤ (f t − f y) / (t − y)

proof −
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define a where a ≡ (t − y) / (x − y)
with t have 0 ≤ a 0 ≤ 1 − a
by (auto simp: field simps)

with f 〈x ∈ I 〉 〈y ∈ I 〉 have cvx : f (a ∗ x + (1 − a) ∗ y) ≤ a ∗ f x + (1 − a)
∗ f y

by (auto simp: convex on def )
have a ∗ x + (1 − a) ∗ y = a ∗ (x − y) + y
by (simp add : field simps)

also have . . . = t
unfolding a def using 〈x < t 〉 〈t < y〉 by simp

finally have f t ≤ a ∗ f x + (1 − a) ∗ f y
using cvx by simp

also have . . . = a ∗ (f x − f y) + f y
by (simp add : field simps)

finally have f t − f y ≤ a ∗ (f x − f y)
by simp

with t show (f x − f t) / (x − t) ≤ (f x − f y) / (x − y)
by (simp add : le divide eq divide le eq field simps a def )

with t show (f x − f y) / (x − y) ≤ (f t − f y) / (t − y)
by (simp add : le divide eq divide le eq field simps)

qed

lemma pos convex function:
fixes f :: real ⇒ real
assumes convex C
and leq :

∧
x y . x ∈ C =⇒ y ∈ C =⇒ f ′ x ∗ (y − x ) ≤ f y − f x

shows convex on C f
unfolding convex on alt
using assms

proof safe
fix x y µ :: real
let ?x = µ ∗R x + (1 − µ) ∗R y
assume ∗: convex C x ∈ C y ∈ C µ ≥ 0 µ ≤ 1
then have 1 − µ ≥ 0 by auto
then have xpos: ?x ∈ C
using ∗ unfolding convex alt by fastforce

have geq : µ ∗ (f x − f ?x ) + (1 − µ) ∗ (f y − f ?x ) ≥
µ ∗ f ′ ?x ∗ (x − ?x ) + (1 − µ) ∗ f ′ ?x ∗ (y − ?x )

using add mono [OF mult left mono [OF leq [OF xpos ∗(2 )] 〈µ ≥ 0 〉]
mult left mono [OF leq [OF xpos ∗(3 )] 〈1 − µ ≥ 0 〉]]

by auto
then have µ ∗ f x + (1 − µ) ∗ f y − f ?x ≥ 0
by (auto simp: field simps)

then show f (µ ∗R x + (1 − µ) ∗R y) ≤ µ ∗ f x + (1 − µ) ∗ f y
by auto

qed

lemma atMostAtLeast subset convex :
fixes C :: real set
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assumes convex C
and x ∈ C y ∈ C x < y

shows {x .. y} ⊆ C
proof safe
fix z assume z : z ∈ {x .. y}
have less: z ∈ C if ∗: x < z z < y
proof −
let ?µ = (y − z ) / (y − x )
have 0 ≤ ?µ ?µ ≤ 1
using assms ∗ by (auto simp: field simps)

then have comb: ?µ ∗ x + (1 − ?µ) ∗ y ∈ C
using assms iffD1 [OF convex alt , rule format , of C y x ?µ]
by (simp add : algebra simps)

have ?µ ∗ x + (1 − ?µ) ∗ y = (y − z ) ∗ x / (y − x ) + (1 − (y − z ) / (y −
x )) ∗ y

by (auto simp: field simps)
also have . . . = ((y − z ) ∗ x + (y − x − (y − z )) ∗ y) / (y − x )
using assms by (simp only : add divide distrib) (auto simp: field simps)

also have . . . = z
using assms by (auto simp: field simps)

finally show ?thesis
using comb by auto

qed
show z ∈ C
using z less assms by (auto simp: le less)

qed

lemma f ′′ imp f ′:
fixes f :: real ⇒ real
assumes convex C
and f ′:

∧
x . x ∈ C =⇒ DERIV f x :> (f ′ x )

and f ′′:
∧
x . x ∈ C =⇒ DERIV f ′ x :> (f ′′ x )

and pos:
∧
x . x ∈ C =⇒ f ′′ x ≥ 0

and x : x ∈ C
and y : y ∈ C

shows f ′ x ∗ (y − x ) ≤ f y − f x
using assms

proof −
have less imp: f y − f x ≥ f ′ x ∗ (y − x ) f ′ y ∗ (x − y) ≤ f x − f y
if ∗: x ∈ C y ∈ C y > x for x y :: real

proof −
from ∗ have ge: y − x > 0 y − x ≥ 0
by auto

from ∗ have le: x − y < 0 x − y ≤ 0
by auto

then obtain z1 where z1 : z1 > x z1 < y f y − f x = (y − x ) ∗ f ′ z1
using subsetD [OF atMostAtLeast subset convex [OF 〈convex C 〉 〈x ∈ C 〉 〈y ∈

C 〉 〈x < y〉],
THEN f ′, THEN MVT2 [OF 〈x < y〉, rule format , unfolded atLeastAt-
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Most iff [symmetric]]]
by auto

then have z1 ∈ C
using atMostAtLeast subset convex 〈convex C 〉 〈x ∈ C 〉 〈y ∈ C 〉 〈x < y〉

by fastforce
from z1 have z1 ′: f x − f y = (x − y) ∗ f ′ z1
by (simp add : field simps)

obtain z2 where z2 : z2 > x z2 < z1 f ′ z1 − f ′ x = (z1 − x ) ∗ f ′′ z2
using subsetD [OF atMostAtLeast subset convex [OF 〈convex C 〉 〈x ∈ C 〉 〈z1

∈ C 〉 〈x < z1 〉],
THEN f ′′, THEN MVT2 [OF 〈x < z1 〉, rule format , unfolded atLeastAt-

Most iff [symmetric]]] z1
by auto

obtain z3 where z3 : z3 > z1 z3 < y f ′ y − f ′ z1 = (y − z1 ) ∗ f ′′ z3
using subsetD [OF atMostAtLeast subset convex [OF 〈convex C 〉 〈z1 ∈ C 〉 〈y

∈ C 〉 〈z1 < y〉],
THEN f ′′, THEN MVT2 [OF 〈z1 < y〉, rule format , unfolded atLeastAt-

Most iff [symmetric]]] z1
by auto

have f ′ y − (f x − f y) / (x − y) = f ′ y − f ′ z1
using ∗ z1 ′ by auto

also have . . . = (y − z1 ) ∗ f ′′ z3
using z3 by auto

finally have cool ′: f ′ y − (f x − f y) / (x − y) = (y − z1 ) ∗ f ′′ z3
by simp

have A ′: y − z1 ≥ 0
using z1 by auto

have z3 ∈ C
using z3 ∗ atMostAtLeast subset convex 〈convex C 〉 〈x ∈ C 〉 〈z1 ∈ C 〉 〈x <

z1 〉

by fastforce
then have B ′: f ′′ z3 ≥ 0
using assms by auto

from A ′ B ′ have (y − z1 ) ∗ f ′′ z3 ≥ 0
by auto

from cool ′ this have f ′ y − (f x − f y) / (x − y) ≥ 0
by auto

from mult right mono neg [OF this le(2 )]
have f ′ y ∗ (x − y) − (f x − f y) / (x − y) ∗ (x − y) ≤ 0 ∗ (x − y)
by (simp add : algebra simps)

then have f ′ y ∗ (x − y) − (f x − f y) ≤ 0
using le by auto

then have res: f ′ y ∗ (x − y) ≤ f x − f y
by auto

have (f y − f x ) / (y − x ) − f ′ x = f ′ z1 − f ′ x
using ∗ z1 by auto

also have . . . = (z1 − x ) ∗ f ′′ z2
using z2 by auto

finally have cool : (f y − f x ) / (y − x ) − f ′ x = (z1 − x ) ∗ f ′′ z2

Convex.html


148

by simp
have A: z1 − x ≥ 0
using z1 by auto

have z2 ∈ C
using z2 z1 ∗ atMostAtLeast subset convex 〈convex C 〉 〈z1 ∈ C 〉 〈y ∈ C 〉 〈z1

< y〉

by fastforce
then have B : f ′′ z2 ≥ 0
using assms by auto

from A B have (z1 − x ) ∗ f ′′ z2 ≥ 0
by auto

with cool have (f y − f x ) / (y − x ) − f ′ x ≥ 0
by auto

from mult right mono[OF this ge(2 )]
have (f y − f x ) / (y − x ) ∗ (y − x ) − f ′ x ∗ (y − x ) ≥ 0 ∗ (y − x )
by (simp add : algebra simps)

then have f y − f x − f ′ x ∗ (y − x ) ≥ 0
using ge by auto

then show f y − f x ≥ f ′ x ∗ (y − x ) f ′ y ∗ (x − y) ≤ f x − f y
using res by auto

qed
show ?thesis
proof (cases x = y)
case True
with x y show ?thesis by auto

next
case False
with less imp x y show ?thesis
by (auto simp: neq iff )

qed
qed

lemma f ′′ ge0 imp convex :
fixes f :: real ⇒ real
assumes conv : convex C
and f ′:

∧
x . x ∈ C =⇒ DERIV f x :> (f ′ x )

and f ′′:
∧
x . x ∈ C =⇒ DERIV f ′ x :> (f ′′ x )

and pos:
∧
x . x ∈ C =⇒ f ′′ x ≥ 0

shows convex on C f
using f ′′ imp f ′[OF conv f ′ f ′′ pos] assms pos convex function
by fastforce

lemma minus log convex :
fixes b :: real
assumes b > 1
shows convex on {0 <..} (λ x . − log b x )

proof −
have

∧
z . z > 0 =⇒ DERIV (log b) z :> 1 / (ln b ∗ z )

using DERIV log by auto
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then have f ′:
∧
z . z > 0 =⇒ DERIV (λ z . − log b z ) z :> − 1 / (ln b ∗ z )

by (auto simp: DERIV minus)
have

∧
z ::real . z > 0 =⇒ DERIV inverse z :> − (inverse z ˆ Suc (Suc 0 ))

using less imp neq [THEN not sym, THEN DERIV inverse] by auto
from this[THEN DERIV cmult , of − 1 / ln b]
have

∧
z ::real . z > 0 =⇒

DERIV (λ z . (− 1 / ln b) ∗ inverse z ) z :> (− 1 / ln b) ∗ (− (inverse z ˆ Suc
(Suc 0 )))

by auto
then have f ′′0 :

∧
z ::real . z > 0 =⇒

DERIV (λ z . − 1 / (ln b ∗ z )) z :> 1 / (ln b ∗ z ∗ z )
unfolding inverse eq divide by (auto simp: mult .assoc)

have f ′′ ge0 :
∧
z ::real . z > 0 =⇒ 1 / (ln b ∗ z ∗ z ) ≥ 0

using 〈b > 1 〉 by (auto intro!: less imp le)
from f ′′ ge0 imp convex [OF convex real interval(3 ), unfolded greaterThan iff ,

OF f ′ f ′′0 f ′′ ge0 ]
show ?thesis
by auto

qed

1.7.5 Convexity of real functions

lemma convex on realI :
assumes connected A
and

∧
x . x ∈ A =⇒ (f has real derivative f ′ x ) (at x )

and
∧
x y . x ∈ A =⇒ y ∈ A =⇒ x ≤ y =⇒ f ′ x ≤ f ′ y

shows convex on A f
proof (rule convex on linorderI )
fix t x y :: real
assume t : t > 0 t < 1
assume xy : x ∈ A y ∈ A x < y
define z where z = (1 − t) ∗ x + t ∗ y
with 〈connected A〉 and xy have ivl : {x ..y} ⊆ A
using connected contains Icc by blast

from xy t have xz : z > x
by (simp add : z def algebra simps)

have y − z = (1 − t) ∗ (y − x )
by (simp add : z def algebra simps)

also from xy t have . . . > 0
by (intro mult pos pos) simp all

finally have yz : z < y
by simp

from assms xz yz ivl t have ∃ ξ. ξ > x ∧ ξ < z ∧ f z − f x = (z − x ) ∗ f ′ ξ
by (intro MVT2 ) (auto intro!: assms(2 ))

then obtain ξ where ξ: ξ > x ξ < z f ′ ξ = (f z − f x ) / (z − x )
by auto

from assms xz yz ivl t have ∃ η. η > z ∧ η < y ∧ f y − f z = (y − z ) ∗ f ′ η
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by (intro MVT2 ) (auto intro!: assms(2 ))
then obtain η where η: η > z η < y f ′ η = (f y − f z ) / (y − z )
by auto

from η(3 ) have (f y − f z ) / (y − z ) = f ′ η ..
also from ξ η ivl have ξ ∈ A η ∈ A
by auto

with ξ η have f ′ η ≥ f ′ ξ
by (intro assms(3 )) auto

also from ξ(3 ) have f ′ ξ = (f z − f x ) / (z − x ) .
finally have (f y − f z ) ∗ (z − x ) ≥ (f z − f x ) ∗ (y − z )
using xz yz by (simp add : field simps)

also have z − x = t ∗ (y − x )
by (simp add : z def algebra simps)

also have y − z = (1 − t) ∗ (y − x )
by (simp add : z def algebra simps)

finally have (f y − f z ) ∗ t ≥ (f z − f x ) ∗ (1 − t)
using xy by simp

then show (1 − t) ∗ f x + t ∗ f y ≥ f ((1 − t) ∗R x + t ∗R y)
by (simp add : z def algebra simps)

qed

lemma convex on inverse:
assumes A ⊆ {0<..}
shows convex on A (inverse :: real ⇒ real)

proof (rule convex on subset [OF assms], intro convex on realI [of λx . −inverse
(xˆ2 )])
fix u v :: real
assume u ∈ {0<..} v ∈ {0<..} u ≤ v
with assms show −inverse (uˆ2 ) ≤ −inverse (vˆ2 )
by (intro le imp neg le le imp inverse le power mono) (simp all)

qed (insert assms, auto intro!: derivative eq intros simp: field split simps power2 eq square)

lemma convex onD Icc ′:
assumes convex on {x ..y} f c ∈ {x ..y}
defines d ≡ y − x
shows f c ≤ (f y − f x ) / d ∗ (c − x ) + f x

proof (cases x y rule: linorder cases)
case less
then have d : d > 0
by (simp add : d def )

from assms(2 ) less have A: 0 ≤ (c − x ) / d (c − x ) / d ≤ 1
by (simp all add : d def field split simps)

have f c = f (x + (c − x ) ∗ 1 )
by simp

also from less have 1 = ((y − x ) / d)
by (simp add : d def )

also from d have x + (c − x ) ∗ . . . = (1 − (c − x ) / d) ∗R x + ((c − x ) /
d) ∗R y
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by (simp add : field simps)
also have f . . . ≤ (1 − (c − x ) / d) ∗ f x + (c − x ) / d ∗ f y
using assms less by (intro convex onD Icc) simp all

also from d have . . . = (f y − f x ) / d ∗ (c − x ) + f x
by (simp add : field simps)

finally show ?thesis .
qed (insert assms(2 ), simp all)

lemma convex onD Icc ′′:
assumes convex on {x ..y} f c ∈ {x ..y}
defines d ≡ y − x
shows f c ≤ (f x − f y) / d ∗ (y − c) + f y

proof (cases x y rule: linorder cases)
case less
then have d : d > 0
by (simp add : d def )

from assms(2 ) less have A: 0 ≤ (y − c) / d (y − c) / d ≤ 1
by (simp all add : d def field split simps)

have f c = f (y − (y − c) ∗ 1 )
by simp

also from less have 1 = ((y − x ) / d)
by (simp add : d def )

also from d have y − (y − c) ∗ . . . = (1 − (1 − (y − c) / d)) ∗R x + (1 −
(y − c) / d) ∗R y

by (simp add : field simps)
also have f . . . ≤ (1 − (1 − (y − c) / d)) ∗ f x + (1 − (y − c) / d) ∗ f y
using assms less by (intro convex onD Icc) (simp all add : field simps)

also from d have . . . = (f x − f y) / d ∗ (y − c) + f y
by (simp add : field simps)

finally show ?thesis .
qed (insert assms(2 ), simp all)

lemma convex translation eq [simp]:
convex ((+) a ‘ s) ←→ convex s
by (metis convex translation translation galois)

lemma convex translation subtract eq [simp]:
convex ((λb. b − a) ‘ s) ←→ convex s
using convex translation eq [of − a] by (simp cong : image cong simp)

lemma convex linear image eq [simp]:
fixes f :: ′a::real vector ⇒ ′b::real vector
shows [[linear f ; inj f ]] =⇒ convex (f ‘ s) ←→ convex s
by (metis (no types) convex linear image convex linear vimage inj vimage image eq)

lemma fst snd linear : linear (λ(x ,y). x + y)
unfolding linear iff by (simp add : algebra simps)

lemma vector choose size:
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assumes 0 ≤ c
obtains x :: ′a::{real normed vector , perfect space} where norm x = c

proof −
obtain a:: ′a where a 6= 0
using UNIV not singleton UNIV eq I set zero singletonI by fastforce

then show ?thesis
by (rule tac x=scaleR (c / norm a) a in that) (simp add : assms)

qed

lemma vector choose dist :
assumes 0 ≤ c
obtains y :: ′a::{real normed vector , perfect space} where dist x y = c

by (metis add diff cancel left ′ assms dist commute dist norm vector choose size)

lemma sum delta ′′:
fixes s:: ′a::real vector set
assumes finite s
shows (

∑
x∈s. (if y = x then f x else 0 ) ∗R x ) = (if y∈s then (f y) ∗R y else 0 )

proof −
have ∗:

∧
x y . (if y = x then f x else (0 ::real)) ∗R x = (if x=y then (f x ) ∗R x

else 0 )
by auto

show ?thesis
unfolding ∗ using sum.delta[OF assms, of y λx . f x ∗R x ] by auto

qed

lemma dist triangle eq :
fixes x y z :: ′a::real inner
shows dist x z = dist x y + dist y z ←→
norm (x − y) ∗R (y − z ) = norm (y − z ) ∗R (x − y)

proof −
have ∗: x − y + (y − z ) = x − z by auto
show ?thesis unfolding dist norm norm triangle eq [of x − y y − z , unfolded ∗]
by (auto simp:norm minus commute)

qed

1.7.6 Cones

definition cone :: ′a::real vector set ⇒ bool
where cone s ←→ (∀ x∈s. ∀ c≥0 . c ∗R x ∈ s)

lemma cone empty [intro, simp]: cone {}
unfolding cone def by auto

lemma cone univ [intro, simp]: cone UNIV
unfolding cone def by auto

lemma cone Inter [intro]: ∀ s∈f . cone s =⇒ cone (
⋂
f )

unfolding cone def by auto
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lemma subspace imp cone: subspace S =⇒ cone S
by (simp add : cone def subspace scale)

Conic hull

lemma cone cone hull : cone (cone hull S )
unfolding hull def by auto

lemma cone hull eq : cone hull S = S ←→ cone S
by (metis cone cone hull hull same)

lemma mem cone:
assumes cone S x ∈ S c ≥ 0
shows c ∗R x ∈ S
using assms cone def [of S ] by auto

lemma cone contains 0 :
assumes cone S
shows S 6= {} ←→ 0 ∈ S
using assms mem cone by fastforce

lemma cone 0 : cone {0}
unfolding cone def by auto

lemma cone Union[intro]: (∀ s∈f . cone s) −→ cone (
⋃
f )

unfolding cone def by blast

lemma cone iff :
assumes S 6= {}
shows cone S ←→ 0 ∈ S ∧ (∀ c. c > 0 −→ ((∗R) c) ‘ S = S )

proof −
{
assume cone S
{
fix c :: real
assume c > 0
{
fix x
assume x ∈ S
then have x ∈ ((∗R) c) ‘ S
unfolding image def
using 〈cone S 〉 〈c>0 〉 mem cone[of S x 1/c]
exI [of (λt . t ∈ S ∧ x = c ∗R t) (1 / c) ∗R x ]

by auto
}
moreover
{
fix x
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assume x ∈ ((∗R) c) ‘ S
then have x ∈ S
using 〈0 < c〉 〈cone S 〉 mem cone by fastforce

}
ultimately have ((∗R) c) ‘ S = S by blast

}
then have 0 ∈ S ∧ (∀ c. c > 0 −→ ((∗R) c) ‘ S = S )
using 〈cone S 〉 cone contains 0 [of S ] assms by auto

}
moreover
{
assume a: 0 ∈ S ∧ (∀ c. c > 0 −→ ((∗R) c) ‘ S = S )
{
fix x
assume x ∈ S
fix c1 :: real
assume c1 ≥ 0
then have c1 = 0 ∨ c1 > 0 by auto
then have c1 ∗R x ∈ S using a 〈x ∈ S 〉 by auto

}
then have cone S unfolding cone def by auto

}
ultimately show ?thesis by blast

qed

lemma cone hull empty : cone hull {} = {}
by (metis cone empty cone hull eq)

lemma cone hull empty iff : S = {} ←→ cone hull S = {}
by (metis bot least cone hull empty hull subset xtrans(5 ))

lemma cone hull contains 0 : S 6= {} ←→ 0 ∈ cone hull S
using cone cone hull [of S ] cone contains 0 [of cone hull S ] cone hull empty iff [of

S ]
by auto

lemma mem cone hull :
assumes x ∈ S c ≥ 0
shows c ∗R x ∈ cone hull S
by (metis assms cone cone hull hull inc mem cone)

proposition cone hull expl : cone hull S = {c ∗R x | c x . c ≥ 0 ∧ x ∈ S}
(is ?lhs = ?rhs)

proof −
{
fix x
assume x ∈ ?rhs
then obtain cx :: real and xx where x : x = cx ∗R xx cx ≥ 0 xx ∈ S
by auto
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fix c :: real
assume c: c ≥ 0
then have c ∗R x = (c ∗ cx ) ∗R xx
using x by (simp add : algebra simps)

moreover
have c ∗ cx ≥ 0 using c x by auto
ultimately
have c ∗R x ∈ ?rhs using x by auto

}
then have cone ?rhs
unfolding cone def by auto

then have ?rhs ∈ Collect cone
unfolding mem Collect eq by auto

{
fix x
assume x ∈ S
then have 1 ∗R x ∈ ?rhs
using zero le one by blast

then have x ∈ ?rhs by auto
}
then have S ⊆ ?rhs by auto
then have ?lhs ⊆ ?rhs
using 〈?rhs ∈ Collect cone〉 hull minimal [of S ?rhs cone] by auto

moreover
{
fix x
assume x ∈ ?rhs
then obtain cx :: real and xx where x : x = cx ∗R xx cx ≥ 0 xx ∈ S
by auto

then have xx ∈ cone hull S
using hull subset [of S ] by auto

then have x ∈ ?lhs
using x cone cone hull [of S ] cone def [of cone hull S ] by auto

}
ultimately show ?thesis by auto

qed

lemma convex cone:
convex s ∧ cone s ←→ (∀ x∈s. ∀ y∈s. (x + y) ∈ s) ∧ (∀ x∈s. ∀ c≥0 . (c ∗R x ) ∈

s)
(is ?lhs = ?rhs)

proof −
{
fix x y
assume x∈s y∈s and ?lhs
then have 2 ∗R x ∈s 2 ∗R y ∈ s
unfolding cone def by auto

then have x + y ∈ s
using 〈?lhs〉[unfolded convex def , THEN conjunct1 ]
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apply (erule tac x=2∗R x in ballE )
apply (erule tac x=2∗R y in ballE )
apply (erule tac x=1/2 in allE , simp)
apply (erule tac x=1/2 in allE , auto)
done

}
then show ?thesis
unfolding convex def cone def by blast

qed

1.7.7 Connectedness of convex sets

lemma convex connected :
fixes S :: ′a::real normed vector set
assumes convex S
shows connected S

proof (rule connectedI )
fix A B
assume open A open B A ∩ B ∩ S = {} S ⊆ A ∪ B
moreover
assume A ∩ S 6= {} B ∩ S 6= {}
then obtain a b where a: a ∈ A a ∈ S and b: b ∈ B b ∈ S by auto
define f where [abs def ]: f u = u ∗R a + (1 − u) ∗R b for u
then have continuous on {0 .. 1} f
by (auto intro!: continuous intros)

then have connected (f ‘ {0 .. 1})
by (auto intro!: connected continuous image)

note connectedD [OF this, of A B ]
moreover have a ∈ A ∩ f ‘ {0 .. 1}
using a by (auto intro!: image eqI [of 1 ] simp: f def )

moreover have b ∈ B ∩ f ‘ {0 .. 1}
using b by (auto intro!: image eqI [of 0 ] simp: f def )

moreover have f ‘ {0 .. 1} ⊆ S
using 〈convex S 〉 a b unfolding convex def f def by auto

ultimately show False by auto
qed

corollary connected UNIV [intro]: connected (UNIV :: ′a::real normed vector set)
by (simp add : convex connected)

lemma convex prod :
assumes

∧
i . i ∈ Basis =⇒ convex {x . P i x}

shows convex {x . ∀ i∈Basis. P i (x ·i)}
using assms unfolding convex def
by (auto simp: inner add left)

lemma convex positive orthant : convex {x :: ′a::euclidean space. (∀ i∈Basis. 0 ≤
x ·i)}
by (rule convex prod) (simp flip: atLeast def )
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1.7.8 Convex hull

lemma convex convex hull [iff ]: convex (convex hull s)
unfolding hull def
using convex Inter [of {t . convex t ∧ s ⊆ t}]
by auto

lemma convex hull subset :
s ⊆ convex hull t =⇒ convex hull s ⊆ convex hull t

by (simp add : subset hull)

lemma convex hull eq : convex hull s = s ←→ convex s
by (metis convex convex hull hull same)

Convex hull is ”preserved” by a linear function

lemma convex hull linear image:
assumes f : linear f
shows f ‘ (convex hull s) = convex hull (f ‘ s)

proof
show convex hull (f ‘ s) ⊆ f ‘ (convex hull s)
by (intro hull minimal image mono hull subset convex linear image assms con-

vex convex hull)
show f ‘ (convex hull s) ⊆ convex hull (f ‘ s)
proof (unfold image subset iff subset vimage, rule hull minimal)
show s ⊆ f −‘ (convex hull (f ‘ s))
by (fast intro: hull inc)

show convex (f −‘ (convex hull (f ‘ s)))
by (intro convex linear vimage [OF f ] convex convex hull)

qed
qed

lemma in convex hull linear image:
assumes linear f
and x ∈ convex hull s

shows f x ∈ convex hull (f ‘ s)
using convex hull linear image[OF assms(1 )] assms(2 ) by auto

lemma convex hull Times:
convex hull (s × t) = (convex hull s) × (convex hull t)

proof
show convex hull (s × t) ⊆ (convex hull s) × (convex hull t)
by (intro hull minimal Sigma mono hull subset convex Times convex convex hull)
have (x , y) ∈ convex hull (s × t) if x : x ∈ convex hull s and y : y ∈ convex hull

t for x y
proof (rule hull induct [OF x ], rule hull induct [OF y ])
fix x y assume x ∈ s and y ∈ t
then show (x , y) ∈ convex hull (s × t)
by (simp add : hull inc)

next
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fix x let ?S = ((λy . (0 , y)) −‘ (λp. (− x , 0 ) + p) ‘ (convex hull s × t))
have convex ?S
by (intro convex linear vimage convex translation convex convex hull ,
simp add : linear iff )

also have ?S = {y . (x , y) ∈ convex hull (s × t)}
by (auto simp: image def Bex def )

finally show convex {y . (x , y) ∈ convex hull (s × t)} .
next
show convex {x . (x , y) ∈ convex hull s × t}
proof −
fix y let ?S = ((λx . (x , 0 )) −‘ (λp. (0 , − y) + p) ‘ (convex hull s × t))
have convex ?S
by (intro convex linear vimage convex translation convex convex hull ,
simp add : linear iff )

also have ?S = {x . (x , y) ∈ convex hull (s × t)}
by (auto simp: image def Bex def )

finally show convex {x . (x , y) ∈ convex hull (s × t)} .
qed

qed
then show (convex hull s) × (convex hull t) ⊆ convex hull (s × t)
unfolding subset eq split paired Ball Sigma by blast

qed

Stepping theorems for convex hulls of finite sets

lemma convex hull empty [simp]: convex hull {} = {}
by (rule hull unique) auto

lemma convex hull singleton[simp]: convex hull {a} = {a}
by (rule hull unique) auto

lemma convex hull insert :
fixes S :: ′a::real vector set
assumes S 6= {}
shows convex hull (insert a S ) =

{x . ∃ u≥0 . ∃ v≥0 . ∃ b. (u + v = 1 ) ∧ b ∈ (convex hull S ) ∧ (x = u ∗R a
+ v ∗R b)}
(is = ?hull)

proof (intro equalityI hull minimal subsetI )
fix x
assume x ∈ insert a S
then have ∃ u≥0 . ∃ v≥0 . u + v = 1 ∧ (∃ b. b ∈ convex hull S ∧ x = u ∗R a

+ v ∗R b)
unfolding insert iff
proof
assume x = a
then show ?thesis
by (rule tac x=1 in exI ) (use assms hull subset in fastforce)

next
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assume x ∈ S
with hull subset [of S convex ] show ?thesis
by force

qed
then show x ∈ ?hull
by simp

next
fix x
assume x ∈ ?hull
then obtain u v b where obt : u≥0 v≥0 u + v = 1 b ∈ convex hull S x = u ∗R

a + v ∗R b
by auto

have a ∈ convex hull insert a S b ∈ convex hull insert a S
using hull mono[of S insert a S convex ] hull mono[of {a} insert a S convex ]

and obt(4 )
by auto

then show x ∈ convex hull insert a S
unfolding obt(5 ) using obt(1−3 )
by (rule convexD [OF convex convex hull ])

next
show convex ?hull
proof (rule convexI )
fix x y u v
assume as: (0 ::real) ≤ u 0 ≤ v u + v = 1 and x : x ∈ ?hull and y : y ∈ ?hull
from x obtain u1 v1 b1 where
obt1 : u1≥0 v1≥0 u1 + v1 = 1 b1 ∈ convex hull S and xeq : x = u1 ∗R a +

v1 ∗R b1
by auto

from y obtain u2 v2 b2 where
obt2 : u2≥0 v2≥0 u2 + v2 = 1 b2 ∈ convex hull S and yeq : y = u2 ∗R a +

v2 ∗R b2
by auto

have ∗:
∧
(x :: ′a) s1 s2 . x − s1 ∗R x − s2 ∗R x = ((1 ::real) − (s1 + s2 )) ∗R x

by (auto simp: algebra simps)
have ∃ b ∈ convex hull S . u ∗R x + v ∗R y =
(u ∗ u1 ) ∗R a + (v ∗ u2 ) ∗R a + (b − (u ∗ u1 ) ∗R b − (v ∗ u2 ) ∗R b)

proof (cases u ∗ v1 + v ∗ v2 = 0 )
case True
have ∗:

∧
(x :: ′a) s1 s2 . x − s1 ∗R x − s2 ∗R x = ((1 ::real) − (s1 + s2 ))

∗R x
by (auto simp: algebra simps)

have eq0 : u ∗ v1 = 0 v ∗ v2 = 0
using True mult nonneg nonneg [OF 〈u≥0 〉 〈v1≥0 〉] mult nonneg nonneg [OF

〈v≥0 〉 〈v2≥0 〉]
by arith+

then have u ∗ u1 + v ∗ u2 = 1
using as(3 ) obt1 (3 ) obt2 (3 ) by auto

then show ?thesis
using ∗ eq0 as obt1 (4 ) xeq yeq by auto
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next
case False
have 1 − (u ∗ u1 + v ∗ u2 ) = (u + v) − (u ∗ u1 + v ∗ u2 )
using as(3 ) obt1 (3 ) obt2 (3 ) by (auto simp: field simps)

also have . . . = u ∗ (v1 + u1 − u1 ) + v ∗ (v2 + u2 − u2 )
using as(3 ) obt1 (3 ) obt2 (3 ) by (auto simp: field simps)

also have . . . = u ∗ v1 + v ∗ v2
by simp

finally have ∗∗:1 − (u ∗ u1 + v ∗ u2 ) = u ∗ v1 + v ∗ v2 by auto
let ?b = ((u ∗ v1 ) / (u ∗ v1 + v ∗ v2 )) ∗R b1 + ((v ∗ v2 ) / (u ∗ v1 + v ∗

v2 )) ∗R b2
have zeroes: 0 ≤ u ∗ v1 + v ∗ v2 0 ≤ u ∗ v1 0 ≤ u ∗ v1 + v ∗ v2 0 ≤ v ∗

v2
using as(1 ,2 ) obt1 (1 ,2 ) obt2 (1 ,2 ) by auto

show ?thesis
proof
show u ∗R x + v ∗R y = (u ∗ u1 ) ∗R a + (v ∗ u2 ) ∗R a + (?b − (u ∗

u1 ) ∗R ?b − (v ∗ u2 ) ∗R ?b)
unfolding xeq yeq ∗ ∗∗
using False by (auto simp: scaleR left distrib scaleR right distrib)

show ?b ∈ convex hull S
using False zeroes obt1 (4 ) obt2 (4 )

by (auto simp: convexD [OF convex convex hull ] scaleR left distrib
scaleR right distrib add divide distrib[symmetric] zero le divide iff )

qed
qed
then obtain b where b: b ∈ convex hull S

u ∗R x + v ∗R y = (u ∗ u1 ) ∗R a + (v ∗ u2 ) ∗R a + (b − (u ∗ u1 ) ∗R b
− (v ∗ u2 ) ∗R b) ..

have u1 : u1 ≤ 1
unfolding obt1 (3 )[symmetric] and not le using obt1 (2 ) by auto

have u2 : u2 ≤ 1
unfolding obt2 (3 )[symmetric] and not le using obt2 (2 ) by auto

have u1 ∗ u + u2 ∗ v ≤ max u1 u2 ∗ u + max u1 u2 ∗ v
proof (rule add mono)
show u1 ∗ u ≤ max u1 u2 ∗ u u2 ∗ v ≤ max u1 u2 ∗ v
by (simp all add : as mult right mono)

qed
also have . . . ≤ 1
unfolding distrib left [symmetric] and as(3 ) using u1 u2 by auto

finally have le1 : u1 ∗ u + u2 ∗ v ≤ 1 .
show u ∗R x + v ∗R y ∈ ?hull
proof (intro CollectI exI conjI )
show 0 ≤ u ∗ u1 + v ∗ u2
by (simp add : as(1 ) as(2 ) obt1 (1 ) obt2 (1 ))

show 0 ≤ 1 − u ∗ u1 − v ∗ u2
by (simp add : le1 diff diff add mult .commute)

qed (use b in 〈auto simp: algebra simps〉)
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qed
qed

lemma convex hull insert alt :
convex hull (insert a S ) =
(if S = {} then {a}
else {(1 − u) ∗R a + u ∗R x |x u. 0 ≤ u ∧ u ≤ 1 ∧ x ∈ convex hull S})

apply (auto simp: convex hull insert)
using diff eq eq apply fastforce
using diff add cancel diff ge 0 iff ge by blast

Explicit expression for convex hull

proposition convex hull indexed :
fixes S :: ′a::real vector set
shows convex hull S =
{y . ∃ k u x . (∀ i∈{1 ::nat .. k}. 0 ≤ u i ∧ x i ∈ S ) ∧

(sum u {1 ..k} = 1 ) ∧ (
∑

i = 1 ..k . u i ∗R x i) = y}
(is ?xyz = ?hull)

proof (rule hull unique [OF convexI ])
show S ⊆ ?hull
by (clarsimp, rule tac x=1 in exI , rule tac x=λx . 1 in exI , auto)

next
fix T
assume S ⊆ T convex T
then show ?hull ⊆ T
by (blast intro: convex sum)

next
fix x y u v
assume uv : 0 ≤ u 0 ≤ v u + v = (1 ::real)
assume xy : x ∈ ?hull y ∈ ?hull
from xy obtain k1 u1 x1 where
x [rule format ]: ∀ i∈{1 ::nat ..k1}. 0≤u1 i ∧ x1 i ∈ S

sum u1 {Suc 0 ..k1} = 1 (
∑

i = Suc 0 ..k1 . u1 i ∗R x1 i) = x
by auto

from xy obtain k2 u2 x2 where
y [rule format ]: ∀ i∈{1 ::nat ..k2}. 0≤u2 i ∧ x2 i ∈ S

sum u2 {Suc 0 ..k2} = 1 (
∑

i = Suc 0 ..k2 . u2 i ∗R x2 i) = y
by auto

have ∗:
∧
P (x :: ′a) y s t i . (if P i then s else t) ∗R (if P i then x else y) = (if P

i then s ∗R x else t ∗R y)
{1 ..k1 + k2} ∩ {1 ..k1} = {1 ..k1} {1 ..k1 + k2} ∩ − {1 ..k1} = (λi . i +

k1 ) ‘ {1 ..k2}
by auto

have inj : inj on (λi . i + k1 ) {1 ..k2}
unfolding inj on def by auto

let ?uu = λi . if i ∈ {1 ..k1} then u ∗ u1 i else v ∗ u2 (i − k1 )
let ?xx = λi . if i ∈ {1 ..k1} then x1 i else x2 (i − k1 )
show u ∗R x + v ∗R y ∈ ?hull
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proof (intro CollectI exI conjI ballI )
show 0 ≤ ?uu i ?xx i ∈ S if i ∈ {1 ..k1+k2} for i
using that by (auto simp add : le diff conv uv(1 ) x (1 ) uv(2 ) y(1 ))

show (
∑

i = 1 ..k1 + k2 . ?uu i) = 1 (
∑

i = 1 ..k1 + k2 . ?uu i ∗R ?xx i) =
u ∗R x + v ∗R y

unfolding ∗ sum.If cases[OF finite atLeastAtMost [of 1 k1 + k2 ]]
sum.reindex [OF inj ] Collect mem eq o def

unfolding scaleR scaleR[symmetric] scaleR right .sum [symmetric] sum distrib left [symmetric]
by (simp all add : sum distrib left [symmetric] x (2 ,3 ) y(2 ,3 ) uv(3 ))

qed
qed

lemma convex hull finite:
fixes S :: ′a::real vector set
assumes finite S
shows convex hull S = {y . ∃ u. (∀ x∈S . 0 ≤ u x ) ∧ sum u S = 1 ∧ sum (λx . u

x ∗R x ) S = y}
(is ?HULL = )

proof (rule hull unique [OF convexI ]; clarify)
fix x
assume x ∈ S
then show ∃ u. (∀ x∈S . 0 ≤ u x ) ∧ sum u S = 1 ∧ (

∑
x∈S . u x ∗R x ) = x

by (rule tac x=λy . if x=y then 1 else 0 in exI ) (auto simp: sum.delta ′[OF
assms] sum delta ′′[OF assms])
next
fix u v :: real
assume uv : 0 ≤ u 0 ≤ v u + v = 1
fix ux assume ux [rule format ]: ∀ x∈S . 0 ≤ ux x sum ux S = (1 ::real)
fix uy assume uy [rule format ]: ∀ x∈S . 0 ≤ uy x sum uy S = (1 ::real)
have 0 ≤ u ∗ ux x + v ∗ uy x if x∈S for x
by (simp add : that uv ux (1 ) uy(1 ))

moreover
have (

∑
x∈S . u ∗ ux x + v ∗ uy x ) = 1

unfolding sum.distrib and sum distrib left [symmetric] ux (2 ) uy(2 )
using uv(3 ) by auto

moreover
have (

∑
x∈S . (u ∗ ux x + v ∗ uy x ) ∗R x ) = u ∗R (

∑
x∈S . ux x ∗R x ) + v ∗R

(
∑

x∈S . uy x ∗R x )
unfolding scaleR left distrib sum.distrib scaleR scaleR[symmetric] scaleR right .sum

[symmetric]
by auto

ultimately
show ∃ uc. (∀ x∈S . 0 ≤ uc x ) ∧ sum uc S = 1 ∧

(
∑

x∈S . uc x ∗R x ) = u ∗R (
∑

x∈S . ux x ∗R x ) + v ∗R (
∑

x∈S . uy x
∗R x )

by (rule tac x=λx . u ∗ ux x + v ∗ uy x in exI , auto)
qed (use assms in 〈auto simp: convex explicit 〉)
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Another formulation

Formalized by Lars Schewe.

lemma convex hull explicit :
fixes p :: ′a::real vector set
shows convex hull p =
{y . ∃S u. finite S ∧ S ⊆ p ∧ (∀ x∈S . 0 ≤ u x ) ∧ sum u S = 1 ∧ sum (λv . u

v ∗R v) S = y}
(is ?lhs = ?rhs)

proof −
{
fix x
assume x∈?lhs
then obtain k u y where

obt : ∀ i∈{1 ::nat ..k}. 0 ≤ u i ∧ y i ∈ p sum u {1 ..k} = 1 (
∑

i = 1 ..k . u i
∗R y i) = x

unfolding convex hull indexed by auto

have fin: finite {1 ..k} by auto
have fin ′:

∧
v . finite {i ∈ {1 ..k}. y i = v} by auto

{
fix j
assume j∈{1 ..k}
then have y j ∈ p ∧ 0 ≤ sum u {i . Suc 0 ≤ i ∧ i ≤ k ∧ y i = y j}
using obt(1 )[THEN bspec[where x=j ]] and obt(2 )
by (metis (no types, lifting) One nat def atLeastAtMost iff mem Collect eq

obt(1 ) sum nonneg)
}
moreover
have (

∑
v∈y ‘ {1 ..k}. sum u {i ∈ {1 ..k}. y i = v}) = 1

unfolding sum.image gen[OF fin, symmetric] using obt(2 ) by auto
moreover have (

∑
v∈y ‘ {1 ..k}. sum u {i ∈ {1 ..k}. y i = v} ∗R v) = x

using sum.image gen[OF fin, of λi . u i ∗R y i y , symmetric]
unfolding scaleR left .sum using obt(3 ) by auto

ultimately
have ∃S u. finite S ∧ S ⊆ p ∧ (∀ x∈S . 0 ≤ u x ) ∧ sum u S = 1 ∧ (

∑
v∈S .

u v ∗R v) = x
apply (rule tac x=y ‘ {1 ..k} in exI )
apply (rule tac x=λv . sum u {i∈{1 ..k}. y i = v} in exI , auto)
done

then have x∈?rhs by auto
}
moreover
{
fix y
assume y∈?rhs
then obtain S u where
obt : finite S S ⊆ p ∀ x∈S . 0 ≤ u x sum u S = 1 (

∑
v∈S . u v ∗R v) = y

by auto
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obtain f where f : inj on f {1 ..card S} f ‘ {1 ..card S} = S
using ex bij betw nat finite 1 [OF obt(1 )] unfolding bij betw def by auto

{
fix i :: nat
assume i∈{1 ..card S}
then have f i ∈ S
using f (2 ) by blast

then have 0 ≤ u (f i) f i ∈ p using obt(2 ,3 ) by auto
}
moreover have ∗: finite {1 ..card S} by auto
{
fix y
assume y∈S
then obtain i where i∈{1 ..card S} f i = y
using f using image iff [of y f {1 ..card S}]
by auto

then have {x . Suc 0 ≤ x ∧ x ≤ card S ∧ f x = y} = {i}
using f (1 ) inj onD by fastforce

then have card {x . Suc 0 ≤ x ∧ x ≤ card S ∧ f x = y} = 1 by auto
then have (

∑
x∈{x ∈ {1 ..card S}. f x = y}. u (f x )) = u y

(
∑

x∈{x ∈ {1 ..card S}. f x = y}. u (f x ) ∗R f x ) = u y ∗R y
by (auto simp: sum constant scaleR)

}
then have (

∑
x = 1 ..card S . u (f x )) = 1 (

∑
i = 1 ..card S . u (f i) ∗R f i) =

y
unfolding sum.image gen[OF ∗(1 ), of λx . u (f x ) ∗R f x f ]
and sum.image gen[OF ∗(1 ), of λx . u (f x ) f ]

unfolding f
using sum.cong [of S S λy . (

∑
x∈{x ∈ {1 ..card S}. f x = y}. u (f x ) ∗R f

x ) λv . u v ∗R v ]
using sum.cong [of S S λy . (

∑
x∈{x ∈ {1 ..card S}. f x = y}. u (f x )) u]

unfolding obt(4 ,5 )
by auto

ultimately
have ∃ k u x . (∀ i∈{1 ..k}. 0 ≤ u i ∧ x i ∈ p) ∧ sum u {1 ..k} = 1 ∧

(
∑

i ::nat = 1 ..k . u i ∗R x i) = y
apply (rule tac x=card S in exI )
apply (rule tac x=u ◦ f in exI )
apply (rule tac x=f in exI , fastforce)
done

then have y ∈ ?lhs
unfolding convex hull indexed by auto

}
ultimately show ?thesis
unfolding set eq iff by blast

qed
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A stepping theorem for that expansion

lemma convex hull finite step:
fixes S :: ′a::real vector set
assumes finite S
shows
(∃ u. (∀ x∈insert a S . 0 ≤ u x ) ∧ sum u (insert a S ) = w ∧ sum (λx . u x ∗R

x ) (insert a S ) = y)
←→ (∃ v≥0 . ∃ u. (∀ x∈S . 0 ≤ u x ) ∧ sum u S = w − v ∧ sum (λx . u x ∗R

x ) S = y − v ∗R a)
(is ?lhs = ?rhs)

proof (cases a ∈ S )
case True
then have ∗: insert a S = S by auto
show ?thesis
proof
assume ?lhs
then show ?rhs
unfolding ∗ by force

next
have fin: finite (insert a S ) using assms by auto
assume ?rhs
then obtain v u where uv : v≥0 ∀ x∈S . 0 ≤ u x sum u S = w − v (

∑
x∈S .

u x ∗R x ) = y − v ∗R a
by auto

then show ?lhs
using uv True assms
apply (rule tac x = λx . (if a = x then v else 0 ) + u x in exI )
apply (auto simp: sum clauses scaleR left distrib sum.distrib sum delta ′′[OF

fin])
done

qed
next
case False
show ?thesis
proof
assume ?lhs
then obtain u where u: ∀ x∈insert a S . 0 ≤ u x sum u (insert a S ) = w

(
∑

x∈insert a S . u x ∗R x ) = y
by auto

then show ?rhs
using u 〈a /∈S 〉 by (rule tac x=u a in exI ) (auto simp: sum clauses assms)

next
assume ?rhs
then obtain v u where uv : v≥0 ∀ x∈S . 0 ≤ u x sum u S = w − v (

∑
x∈S .

u x ∗R x ) = y − v ∗R a
by auto

moreover
have (

∑
x∈S . if a = x then v else u x ) = sum u S (

∑
x∈S . (if a = x then v

else u x ) ∗R x ) = (
∑

x∈S . u x ∗R x )
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using False by (auto intro!: sum.cong)
ultimately show ?lhs
using False by (rule tac x=λx . if a = x then v else u x in exI ) (auto simp:

sum clauses(2 )[OF assms])
qed

qed

Hence some special cases

lemma convex hull 2 : convex hull {a,b} = {u ∗R a + v ∗R b | u v . 0 ≤ u ∧ 0 ≤
v ∧ u + v = 1}

(is ?lhs = ?rhs)
proof −
have ∗∗: finite {b} by auto
have

∧
x v u. [[0 ≤ v ; v ≤ 1 ; (1 − v) ∗R b = x − v ∗R a]]

=⇒ ∃ u v . x = u ∗R a + v ∗R b ∧ 0 ≤ u ∧ 0 ≤ v ∧ u + v = 1
by (metis add .commute diff add cancel diff ge 0 iff ge)

moreover
have

∧
u v . [[0 ≤ u; 0 ≤ v ; u + v = 1 ]]

=⇒ ∃ p≥0 . ∃ q . 0 ≤ q b ∧ q b = 1 − p ∧ q b ∗R b = u ∗R a + v ∗R
b − p ∗R a

apply (rule tac x=u in exI , simp)
apply (rule tac x=λx . v in exI , simp)
done

ultimately show ?thesis
using convex hull finite step[OF ∗∗, of a 1 ]
by (auto simp add : convex hull finite)

qed

lemma convex hull 2 alt : convex hull {a,b} = {a + u ∗R (b − a) | u. 0 ≤ u ∧
u ≤ 1}
unfolding convex hull 2

proof (rule Collect cong)
have ∗:

∧
x y ::real . x + y = 1 ←→ x = 1 − y

by auto
fix x
show (∃ v u. x = v ∗R a + u ∗R b ∧ 0 ≤ v ∧ 0 ≤ u ∧ v + u = 1 ) ←→
(∃ u. x = a + u ∗R (b − a) ∧ 0 ≤ u ∧ u ≤ 1 )
apply (simp add : ∗)
by (rule ex cong1 ) (auto simp: algebra simps)

qed

lemma convex hull 3 :
convex hull {a,b,c} = { u ∗R a + v ∗R b + w ∗R c | u v w . 0 ≤ u ∧ 0 ≤ v ∧

0 ≤ w ∧ u + v + w = 1}
proof −
have fin: finite {a,b,c} finite {b,c} finite {c}
by auto

have ∗:
∧
x y z ::real . x + y + z = 1 ←→ x = 1 − y − z
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by (auto simp: field simps)
show ?thesis
unfolding convex hull finite[OF fin(1 )] and convex hull finite step[OF fin(2 )]

and ∗
unfolding convex hull finite step[OF fin(3 )]
apply (rule Collect cong , simp)
apply auto
apply (rule tac x=va in exI )
apply (rule tac x=u c in exI , simp)
apply (rule tac x=1 − v − w in exI , simp)
apply (rule tac x=v in exI , simp)
apply (rule tac x=λx . w in exI , simp)
done

qed

lemma convex hull 3 alt :
convex hull {a,b,c} = {a + u ∗R (b − a) + v ∗R (c − a) | u v . 0 ≤ u ∧ 0 ≤

v ∧ u + v ≤ 1}
proof −
have ∗:

∧
x y z ::real . x + y + z = 1 ←→ x = 1 − y − z

by auto
show ?thesis
unfolding convex hull 3
apply (auto simp: ∗)
apply (rule tac x=v in exI )
apply (rule tac x=w in exI )
apply (simp add : algebra simps)
apply (rule tac x=u in exI )
apply (rule tac x=v in exI )
apply (simp add : algebra simps)
done

qed

1.7.9 Relations among closure notions and corresponding
hulls

lemma affine imp convex : affine s =⇒ convex s
unfolding affine def convex def by auto

lemma convex affine hull [simp]: convex (affine hull S )
by (simp add : affine imp convex )

lemma subspace imp convex : subspace s =⇒ convex s
using subspace imp affine affine imp convex by auto

lemma convex hull subset span: (convex hull s) ⊆ (span s)
by (metis hull minimal span superset subspace imp convex subspace span)

lemma convex hull subset affine hull : (convex hull s) ⊆ (affine hull s)
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by (metis affine affine hull affine imp convex hull minimal hull subset)

lemma aff dim convex hull :
fixes S :: ′n::euclidean space set
shows aff dim (convex hull S ) = aff dim S
using aff dim affine hull [of S ] convex hull subset affine hull [of S ]
hull subset [of S convex ] aff dim subset [of S convex hull S ]
aff dim subset [of convex hull S affine hull S ]

by auto

1.7.10 Caratheodory’s theorem

lemma convex hull caratheodory aff dim:
fixes p :: ( ′a::euclidean space) set
shows convex hull p =
{y . ∃S u. finite S ∧ S ⊆ p ∧ card S ≤ aff dim p + 1 ∧

(∀ x∈S . 0 ≤ u x ) ∧ sum u S = 1 ∧ sum (λv . u v ∗R v) S = y}
unfolding convex hull explicit set eq iff mem Collect eq

proof (intro allI iffI )
fix y
let ?P = λn. ∃S u. finite S ∧ card S = n ∧ S ⊆ p ∧ (∀ x∈S . 0 ≤ u x ) ∧
sum u S = 1 ∧ (

∑
v∈S . u v ∗R v) = y

assume ∃S u. finite S ∧ S ⊆ p ∧ (∀ x∈S . 0 ≤ u x ) ∧ sum u S = 1 ∧ (
∑

v∈S .
u v ∗R v) = y
then obtain N where ?P N by auto
then have ∃n≤N . (∀ k<n. ¬ ?P k) ∧ ?P n
by (rule tac ex least nat le, auto)

then obtain n where ?P n and smallest : ∀ k<n. ¬ ?P k
by blast

then obtain S u where obt : finite S card S = n S⊆p ∀ x∈S . 0 ≤ u x
sum u S = 1 (

∑
v∈S . u v ∗R v) = y by auto

have card S ≤ aff dim p + 1
proof (rule ccontr , simp only : not le)
assume aff dim p + 1 < card S
then have affine dependent S
using affine dependent biggerset [OF obt(1 )] independent card le aff dim not less

obt(3 )
by blast

then obtain w v where wv : sum w S = 0 v∈S w v 6= 0 (
∑

v∈S . w v ∗R v)
= 0

using affine dependent explicit finite[OF obt(1 )] by auto
define i where i = (λv . (u v) / (− w v)) ‘ {v∈S . w v < 0}
define t where t = Min i
have ∃ x∈S . w x < 0
proof (rule ccontr , simp add : not less)
assume as:∀ x∈S . 0 ≤ w x
then have sum w (S − {v}) ≥ 0
by (meson Diff iff sum nonneg)
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then have sum w S > 0
using as obt(1 ) sum nonneg eq 0 iff wv by blast

then show False using wv(1 ) by auto
qed
then have i 6= {} unfolding i def by auto
then have t ≥ 0
using Min ge iff [of i 0 ] and obt(1 )
unfolding t def i def
using obt(4 )[unfolded le less]
by (auto simp: divide le 0 iff )

have t : ∀ v∈S . u v + t ∗ w v ≥ 0
proof
fix v
assume v ∈ S
then have v : 0 ≤ u v
using obt(4 )[THEN bspec[where x=v ]] by auto

show 0 ≤ u v + t ∗ w v
proof (cases w v < 0 )
case False
thus ?thesis using v 〈t≥0 〉 by auto

next
case True
then have t ≤ u v / (− w v)
using 〈v∈S 〉 obt unfolding t def i def by (auto intro: Min le)

then show ?thesis
unfolding real 0 le add iff
using True neg le minus divide eq by auto

qed
qed
obtain a where a ∈ S and t = (λv . (u v) / (− w v)) a and w a < 0
using Min in[OF 〈i 6={}〉] and obt(1 ) unfolding i def t def by auto

then have a: a ∈ S u a + t ∗ w a = 0 by auto
have ∗:

∧
f . sum f (S − {a}) = sum f S − ((f a):: ′b::ab group add)

unfolding sum.remove[OF obt(1 ) 〈a∈S 〉] by auto
have (

∑
v∈S . u v + t ∗ w v) = 1

unfolding sum.distrib wv(1 ) sum distrib left [symmetric] obt(5 ) by auto
moreover have (

∑
v∈S . u v ∗R v + (t ∗ w v) ∗R v) − (u a ∗R a + (t ∗ w

a) ∗R a) = y
unfolding sum.distrib obt(6 ) scaleR scaleR[symmetric] scaleR right .sum

[symmetric] wv(4 )
using a(2 ) [THEN eq neg iff add eq 0 [THEN iffD2 ]] by simp

ultimately have ?P (n − 1 )
apply (rule tac x=(S − {a}) in exI )
apply (rule tac x=λv . u v + t ∗ w v in exI )
using obt(1−3 ) and t and a
apply (auto simp: ∗ scaleR left distrib)
done

then show False
using smallest [THEN spec[where x=n − 1 ]] by auto
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qed
then show ∃S u. finite S ∧ S ⊆ p ∧ card S ≤ aff dim p + 1 ∧

(∀ x∈S . 0 ≤ u x ) ∧ sum u S = 1 ∧ (
∑

v∈S . u v ∗R v) = y
using obt by auto

qed auto

lemma caratheodory aff dim:
fixes p :: ( ′a::euclidean space) set
shows convex hull p = {x . ∃S . finite S ∧ S ⊆ p ∧ card S ≤ aff dim p + 1 ∧ x
∈ convex hull S}

(is ?lhs = ?rhs)
proof
have

∧
x S u. [[finite S ; S ⊆ p; int (card S ) ≤ aff dim p + 1 ; ∀ x∈S . 0 ≤ u x ;

sum u S = 1 ]]
=⇒ (

∑
v∈S . u v ∗R v) ∈ convex hull S

by (simp add : hull subset convex explicit [THEN iffD1 , OF convex convex hull ])
then show ?lhs ⊆ ?rhs
by (subst convex hull caratheodory aff dim, auto)

qed (use hull mono in auto)

lemma convex hull caratheodory :
fixes p :: ( ′a::euclidean space) set
shows convex hull p =

{y . ∃S u. finite S ∧ S ⊆ p ∧ card S ≤ DIM ( ′a) + 1 ∧
(∀ x∈S . 0 ≤ u x ) ∧ sum u S = 1 ∧ sum (λv . u v ∗R v) S = y}

(is ?lhs = ?rhs)
proof (intro set eqI iffI )
fix x
assume x ∈ ?lhs then show x ∈ ?rhs
unfolding convex hull caratheodory aff dim
using aff dim le DIM [of p] by fastforce

qed (auto simp: convex hull explicit)

theorem caratheodory :
convex hull p =
{x :: ′a::euclidean space. ∃S . finite S ∧ S ⊆ p ∧ card S ≤ DIM ( ′a) + 1 ∧ x ∈

convex hull S}
proof safe
fix x
assume x ∈ convex hull p
then obtain S u where finite S S ⊆ p card S ≤ DIM ( ′a) + 1
∀ x∈S . 0 ≤ u x sum u S = 1 (

∑
v∈S . u v ∗R v) = x

unfolding convex hull caratheodory by auto
then show ∃S . finite S ∧ S ⊆ p ∧ card S ≤ DIM ( ′a) + 1 ∧ x ∈ convex hull S
using convex hull finite by fastforce

qed (use hull mono in force)
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1.7.11 Some Properties of subset of standard basis

lemma affine hull substd basis:
assumes d ⊆ Basis
shows affine hull (insert 0 d) = {x :: ′a::euclidean space. ∀ i∈Basis. i /∈ d −→ x ·i

= 0}
(is affine hull (insert 0 ?A) = ?B)

proof −
have ∗:

∧
A. (+) (0 :: ′a) ‘ A = A

∧
A. (+) (− (0 :: ′a)) ‘ A = A

by auto
show ?thesis
unfolding affine hull insert span gen span substd basis[OF assms,symmetric]

∗ ..
qed

lemma affine hull convex hull [simp]: affine hull (convex hull S ) = affine hull S
by (metis Int absorb1 Int absorb2 convex hull subset affine hull hull hull hull mono

hull subset)

1.7.12 Moving and scaling convex hulls

lemma convex hull set plus:
convex hull (S + T ) = convex hull S + convex hull T
unfolding set plus image
apply (subst convex hull linear image [symmetric])
apply (simp add : linear iff scaleR right distrib)
apply (simp add : convex hull Times)
done

lemma translation eq singleton plus: (λx . a + x ) ‘ T = {a} + T
unfolding set plus def by auto

lemma convex hull translation:
convex hull ((λx . a + x ) ‘ S ) = (λx . a + x ) ‘ (convex hull S )
unfolding translation eq singleton plus
by (simp only : convex hull set plus convex hull singleton)

lemma convex hull scaling :
convex hull ((λx . c ∗R x ) ‘ S ) = (λx . c ∗R x ) ‘ (convex hull S )
using linear scaleR by (rule convex hull linear image [symmetric])

lemma convex hull affinity :
convex hull ((λx . a + c ∗R x ) ‘ S ) = (λx . a + c ∗R x ) ‘ (convex hull S )
by (metis convex hull scaling convex hull translation image image)

1.7.13 Convexity of cone hulls

lemma convex cone hull :
assumes convex S
shows convex (cone hull S )
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proof (rule convexI )
fix x y
assume xy : x ∈ cone hull S y ∈ cone hull S
then have S 6= {}
using cone hull empty iff [of S ] by auto

fix u v :: real
assume uv : u ≥ 0 v ≥ 0 u + v = 1
then have ∗: u ∗R x ∈ cone hull S v ∗R y ∈ cone hull S
using cone cone hull [of S ] xy cone def [of cone hull S ] by auto

from ∗ obtain cx :: real and xx where x : u ∗R x = cx ∗R xx cx ≥ 0 xx ∈ S
using cone hull expl [of S ] by auto

from ∗ obtain cy :: real and yy where y : v ∗R y = cy ∗R yy cy ≥ 0 yy ∈ S
using cone hull expl [of S ] by auto

{
assume cx + cy ≤ 0
then have u ∗R x = 0 and v ∗R y = 0
using x y by auto

then have u ∗R x + v ∗R y = 0
by auto

then have u ∗R x + v ∗R y ∈ cone hull S
using cone hull contains 0 [of S ] 〈S 6= {}〉 by auto

}
moreover
{
assume cx + cy > 0
then have (cx / (cx + cy)) ∗R xx + (cy / (cx + cy)) ∗R yy ∈ S
using assms mem convex alt [of S xx yy cx cy ] x y by auto

then have cx ∗R xx + cy ∗R yy ∈ cone hull S
using mem cone hull [of (cx/(cx+cy)) ∗R xx + (cy/(cx+cy)) ∗R yy S cx+cy ]

〈cx+cy>0 〉

by (auto simp: scaleR right distrib)
then have u ∗R x + v ∗R y ∈ cone hull S
using x y by auto

}
moreover have cx + cy ≤ 0 ∨ cx + cy > 0 by auto
ultimately show u ∗R x + v ∗R y ∈ cone hull S by blast

qed

lemma cone convex hull :
assumes cone S
shows cone (convex hull S )

proof (cases S = {})
case True
then show ?thesis by auto

next
case False
then have ∗: 0 ∈ S ∧ (∀ c. c > 0 −→ (∗R) c ‘ S = S )
using cone iff [of S ] assms by auto

{
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fix c :: real
assume c > 0
then have (∗R) c ‘ (convex hull S ) = convex hull ((∗R) c ‘ S )
using convex hull scaling [of S ] by auto

also have . . . = convex hull S
using ∗ 〈c > 0 〉 by auto

finally have (∗R) c ‘ (convex hull S ) = convex hull S
by auto

}
then have 0 ∈ convex hull S

∧
c. c > 0 =⇒ ((∗R) c ‘ (convex hull S )) = (convex

hull S )
using ∗ hull subset [of S convex ] by auto

then show ?thesis
using 〈S 6= {}〉 cone iff [of convex hull S ] by auto

qed

1.7.14 Radon’s theorem

Formalized by Lars Schewe.

lemma Radon ex lemma:
assumes finite c affine dependent c
shows ∃ u. sum u c = 0 ∧ (∃ v∈c. u v 6= 0 ) ∧ sum (λv . u v ∗R v) c = 0

proof −
from assms(2 )[unfolded affine dependent explicit ]
obtain S u where

finite S S ⊆ c sum u S = 0 ∃ v∈S . u v 6= 0 (
∑

v∈S . u v ∗R v) = 0
by blast

then show ?thesis
apply (rule tac x=λv . if v∈S then u v else 0 in exI )
unfolding if smult scaleR zero left
by (auto simp: Int absorb1 sum.inter restrict [OF 〈finite c〉, symmetric])

qed

lemma Radon s lemma:
assumes finite S
and sum f S = (0 ::real)

shows sum f {x∈S . 0 < f x} = − sum f {x∈S . f x < 0}
proof −
have ∗:

∧
x . (if f x < 0 then f x else 0 ) + (if 0 < f x then f x else 0 ) = f x

by auto
show ?thesis
unfolding add eq 0 iff [symmetric] and sum.inter filter [OF assms(1 )]
and sum.distrib[symmetric] and ∗

using assms(2 )
by assumption

qed

lemma Radon v lemma:
assumes finite S
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and sum f S = 0
and ∀ x . g x = (0 ::real) −→ f x = (0 :: ′a::euclidean space)

shows (sum f {x∈S . 0 < g x}) = − sum f {x∈S . g x < 0}
proof −
have ∗:

∧
x . (if 0 < g x then f x else 0 ) + (if g x < 0 then f x else 0 ) = f x

using assms(3 ) by auto
show ?thesis
unfolding eq neg iff add eq 0 and sum.inter filter [OF assms(1 )]
and sum.distrib[symmetric] and ∗

using assms(2 )
apply assumption
done

qed

lemma Radon partition:
assumes finite C affine dependent C
shows ∃m p. m ∩ p = {} ∧ m ∪ p = C ∧ (convex hull m) ∩ (convex hull p) 6=
{}
proof −
obtain u v where uv : sum u C = 0 v∈C u v 6= 0 (

∑
v∈C . u v ∗R v) = 0

using Radon ex lemma[OF assms] by auto
have fin: finite {x ∈ C . 0 < u x} finite {x ∈ C . 0 > u x}
using assms(1 ) by auto

define z where z = inverse (sum u {x∈C . u x > 0}) ∗R sum (λx . u x ∗R x )
{x∈C . u x > 0}
have sum u {x ∈ C . 0 < u x} 6= 0
proof (cases u v ≥ 0 )
case False
then have u v < 0 by auto
then show ?thesis
proof (cases ∃w∈{x ∈ C . 0 < u x}. u w > 0 )
case True
then show ?thesis
using sum nonneg eq 0 iff [of u, OF fin(1 )] by auto

next
case False
then have sum u C ≤ sum (λx . if x=v then u v else 0 ) C
by (rule tac sum mono, auto)

then show ?thesis
unfolding sum.delta[OF assms(1 )] using uv(2 ) and 〈u v < 0 〉 and uv(1 )

by auto
qed

qed (insert sum nonneg eq 0 iff [of u, OF fin(1 )] uv(2−3 ), auto)

then have ∗: sum u {x∈C . u x > 0} > 0
unfolding less le by (metis (no types, lifting) mem Collect eq sum nonneg)

moreover have sum u ({x ∈ C . 0 < u x} ∪ {x ∈ C . u x < 0}) = sum u C
(
∑

x∈{x ∈ C . 0 < u x} ∪ {x ∈ C . u x < 0}. u x ∗R x ) = (
∑

x∈C . u x ∗R x )
using assms(1 )
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by (rule tac[!] sum.mono neutral left , auto)
then have sum u {x ∈ C . 0 < u x} = − sum u {x ∈ C . 0 > u x}
(
∑

x∈{x ∈ C . 0 < u x}. u x ∗R x ) = − (
∑

x∈{x ∈ C . 0 > u x}. u x ∗R x )
unfolding eq neg iff add eq 0
using uv(1 ,4 )
by (auto simp: sum.union inter neutral [OF fin, symmetric])

moreover have ∀ x∈{v ∈ C . u v < 0}. 0 ≤ inverse (sum u {x ∈ C . 0 < u x})
∗ − u x

using ∗ by (fastforce intro: mult nonneg nonneg)
ultimately have z ∈ convex hull {v ∈ C . u v ≤ 0}
unfolding convex hull explicit mem Collect eq
apply (rule tac x={v ∈ C . u v < 0} in exI )
apply (rule tac x=λy . inverse (sum u {x∈C . u x > 0}) ∗ − u y in exI )
using assms(1 ) unfolding scaleR scaleR[symmetric] scaleR right .sum [symmetric]

by (auto simp: z def sum negf sum distrib left [symmetric])
moreover have ∀ x∈{v ∈ C . 0 < u v}. 0 ≤ inverse (sum u {x ∈ C . 0 < u x})
∗ u x

using ∗ by (fastforce intro: mult nonneg nonneg)
then have z ∈ convex hull {v ∈ C . u v > 0}
unfolding convex hull explicit mem Collect eq
apply (rule tac x={v ∈ C . 0 < u v} in exI )
apply (rule tac x=λy . inverse (sum u {x∈C . u x > 0}) ∗ u y in exI )
using assms(1 )
unfolding scaleR scaleR[symmetric] scaleR right .sum [symmetric]
using ∗ by (auto simp: z def sum negf sum distrib left [symmetric])

ultimately show ?thesis
apply (rule tac x={v∈C . u v ≤ 0} in exI )
apply (rule tac x={v∈C . u v > 0} in exI , auto)
done

qed

theorem Radon:
assumes affine dependent c
obtains m p where m ⊆ c p ⊆ c m ∩ p = {} (convex hull m) ∩ (convex hull

p) 6= {}
proof −
from assms[unfolded affine dependent explicit ]
obtain S u where

finite S S ⊆ c sum u S = 0 ∃ v∈S . u v 6= 0 (
∑

v∈S . u v ∗R v) = 0
by blast

then have ∗: finite S affine dependent S and S : S ⊆ c
unfolding affine dependent explicit by auto

from Radon partition[OF ∗]
obtain m p where m ∩ p = {} m ∪ p = S convex hull m ∩ convex hull p 6= {}
by blast

with S show ?thesis
by (force intro: that [of p m])

qed
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1.7.15 Helly’s theorem

lemma Helly induct :
fixes f :: ′a::euclidean space set set
assumes card f = n
and n ≥ DIM ( ′a) + 1
and ∀ s∈f . convex s ∀ t⊆f . card t = DIM ( ′a) + 1 −→

⋂
t 6= {}

shows
⋂
f 6= {}

using assms
proof (induction n arbitrary : f )
case 0
then show ?case by auto

next
case (Suc n)
have finite f
using 〈card f = Suc n〉 by (auto intro: card ge 0 finite)

show
⋂
f 6= {}

proof (cases n = DIM ( ′a))
case True
then show ?thesis
by (simp add : Suc.prems(1 ) Suc.prems(4 ))

next
case False
have

⋂
(f − {s}) 6= {} if s ∈ f for s

proof (rule Suc.IH [rule format ])
show card (f − {s}) = n
by (simp add : Suc.prems(1 ) 〈finite f 〉 that)

show DIM ( ′a) + 1 ≤ n
using False Suc.prems(2 ) by linarith

show
∧
t . [[t ⊆ f − {s}; card t = DIM ( ′a) + 1 ]] =⇒

⋂
t 6= {}

by (simp add : Suc.prems(4 ) subset Diff insert)
qed (use Suc in auto)
then have ∀ s∈f . ∃ x . x ∈

⋂
(f − {s})

by blast
then obtain X where X :

∧
s. s∈f =⇒ X s ∈

⋂
(f − {s})

by metis
show ?thesis
proof (cases inj on X f )
case False
then obtain s t where s 6=t and st : s∈f t∈f X s = X t
unfolding inj on def by auto

then have ∗:
⋂
f =

⋂
(f − {s}) ∩

⋂
(f − {t}) by auto

show ?thesis
by (metis ∗ X disjoint iff not equal st)

next
case True
then obtain m p where mp: m ∩ p = {} m ∪ p = X ‘ f convex hull m ∩

convex hull p 6= {}
using Radon partition[of X ‘ f ] and affine dependent biggerset [of X ‘ f ]
unfolding card image[OF True] and 〈card f = Suc n〉
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using Suc(3 ) 〈finite f 〉 and False
by auto

have m ⊆ X ‘ f p ⊆ X ‘ f
using mp(2 ) by auto

then obtain g h where gh:m = X ‘ g p = X ‘ h g ⊆ f h ⊆ f
unfolding subset image iff by auto

then have f ∪ (g ∪ h) = f by auto
then have f : f = g ∪ h
using inj on Un image eq iff [of X f g ∪ h] and True
unfolding mp(2 )[unfolded image Un[symmetric] gh]
by auto

have ∗: g ∩ h = {}
using gh(1 ) gh(2 ) local .mp(1 ) by blast

have convex hull (X ‘ h) ⊆
⋂

g convex hull (X ‘ g) ⊆
⋂
h

by (rule hull minimal ; use X ∗ f in 〈auto simp: Suc.prems(3 ) convex Inter 〉)+
then show ?thesis
unfolding f using mp(3 )[unfolded gh] by blast

qed
qed

qed

theorem Helly :
fixes f :: ′a::euclidean space set set
assumes card f ≥ DIM ( ′a) + 1 ∀ s∈f . convex s
and

∧
t . [[t⊆f ; card t = DIM ( ′a) + 1 ]] =⇒

⋂
t 6= {}

shows
⋂
f 6= {}

using Helly induct assms by blast

1.7.16 Epigraphs of convex functions

definition epigraph S (f :: ⇒ real) = {xy . fst xy ∈ S ∧ f (fst xy) ≤ snd xy}

lemma mem epigraph: (x , y) ∈ epigraph S f ←→ x ∈ S ∧ f x ≤ y
unfolding epigraph def by auto

lemma convex epigraph: convex (epigraph S f ) ←→ convex on S f ∧ convex S
proof safe
assume L: convex (epigraph S f )
then show convex on S f
by (auto simp: convex def convex on def epigraph def )

show convex S
using L by (fastforce simp: convex def convex on def epigraph def )

next
assume convex on S f convex S
then show convex (epigraph S f )
unfolding convex def convex on def epigraph def
apply safe
apply (rule tac [2 ] y=u ∗ f a + v ∗ f aa in order trans)
apply (auto intro!:mult left mono add mono)
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done
qed

lemma convex epigraphI : convex on S f =⇒ convex S =⇒ convex (epigraph S f )
unfolding convex epigraph by auto

lemma convex epigraph convex : convex S =⇒ convex on S f ←→ convex (epigraph
S f )
by (simp add : convex epigraph)

Use this to derive general bound property of convex function

lemma convex on:
assumes convex S
shows convex on S f ←→
(∀ k u x . (∀ i∈{1 ..k ::nat}. 0 ≤ u i ∧ x i ∈ S ) ∧ sum u {1 ..k} = 1 −→
f (sum (λi . u i ∗R x i) {1 ..k}) ≤ sum (λi . u i ∗ f (x i)) {1 ..k})

(is ?lhs = (∀ k u x . ?rhs k u x ))
proof
assume ?lhs
then have §: convex {xy . fst xy ∈ S ∧ f (fst xy) ≤ snd xy}
by (metis assms convex epigraph epigraph def )

show ∀ k u x . ?rhs k u x
proof (intro allI )
fix k u x
show ?rhs k u x
using §
unfolding convex mem Collect eq fst sum snd sum
apply safe
apply (drule tac x=k in spec)
apply (drule tac x=u in spec)
apply (drule tac x=λi . (x i , f (x i)) in spec)
apply simp
done

qed
next
assume ∀ k u x . ?rhs k u x
then show ?lhs
unfolding convex epigraph convex [OF assms] convex epigraph def Ball def mem Collect eq

fst sum snd sum
using assms[unfolded convex ] apply clarsimp
apply (rule tac y=

∑
i = 1 ..k . u i ∗ f (fst (x i)) in order trans)

by (auto simp add : mult left mono intro: sum mono)
qed

1.7.17 A bound within a convex hull

lemma convex on convex hull bound :
assumes convex on (convex hull S ) f
and ∀ x∈S . f x ≤ b
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shows ∀ x∈ convex hull S . f x ≤ b
proof
fix x
assume x ∈ convex hull S
then obtain k u v where
u: ∀ i∈{1 ..k ::nat}. 0 ≤ u i ∧ v i ∈ S sum u {1 ..k} = 1 (

∑
i = 1 ..k . u i ∗R v

i) = x
unfolding convex hull indexed mem Collect eq by auto

have (
∑

i = 1 ..k . u i ∗ f (v i)) ≤ b
using sum mono[of {1 ..k} λi . u i ∗ f (v i) λi . u i ∗ b]
unfolding sum distrib right [symmetric] u(2 ) mult 1
using assms(2 ) mult left mono u(1 ) by blast

then show f x ≤ b
using assms(1 )[unfolded convex on[OF convex convex hull ], rule format , of k

u v ]
using hull inc u by fastforce

qed

lemma inner sum Basis[simp]: i ∈ Basis =⇒ (
∑

Basis) · i = 1
by (simp add : inner sum left sum.If cases inner Basis)

lemma convex set plus:
assumes convex S and convex T shows convex (S + T )

proof −
have convex (

⋃
x∈ S .

⋃
y ∈ T . {x + y})

using assms by (rule convex sums)
moreover have (

⋃
x∈ S .

⋃
y ∈ T . {x + y}) = S + T

unfolding set plus def by auto
finally show convex (S + T ) .

qed

lemma convex set sum:
assumes

∧
i . i ∈ A =⇒ convex (B i)

shows convex (
∑

i∈A. B i)
proof (cases finite A)
case True then show ?thesis using assms
by induct (auto simp: convex set plus)

qed auto

lemma finite set sum:
assumes finite A and ∀ i∈A. finite (B i) shows finite (

∑
i∈A. B i)

using assms by (induct set : finite, simp, simp add : finite set plus)

lemma box eq set sum Basis:
{x . ∀ i∈Basis. x ·i ∈ B i} = (

∑
i∈Basis. (λx . x ∗R i) ‘ (B i)) (is ?lhs = ?rhs)

proof −
have

∧
x . ∀ i∈Basis. x · i ∈ B i =⇒
∃ s. x = sum s Basis ∧ (∀ i∈Basis. s i ∈ (λx . x ∗R i) ‘ B i)

by (metis (mono tags, lifting) euclidean representation image iff )
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moreover
have sum f Basis · i ∈ B i if i ∈ Basis and f : ∀ i∈Basis. f i ∈ (λx . x ∗R i) ‘

B i for i f
proof −
have (

∑
x∈Basis − {i}. f x · i) = 0

proof (rule sum.neutral , intro strip)
show f x · i = 0 if x ∈ Basis − {i} for x
using that f 〈i ∈ Basis〉 inner Basis that by fastforce

qed
then have (

∑
x∈Basis. f x · i) = f i · i

by (metis (no types) 〈i ∈ Basis〉 add .right neutral sum.remove [OF fi-
nite Basis])

then have (
∑

x∈Basis. f x · i) ∈ B i
using f that(1 ) by auto

then show ?thesis
by (simp add : inner sum left)

qed
ultimately show ?thesis
by (subst set sum alt [OF finite Basis]) auto

qed

lemma convex hull set sum:
convex hull (

∑
i∈A. B i) = (

∑
i∈A. convex hull (B i))

proof (cases finite A)
assume finite A then show ?thesis
by (induct set : finite, simp, simp add : convex hull set plus)

qed simp

end

1.8 Definition of Finite Cartesian Product Type

theory Finite Cartesian Product
imports
Euclidean Space
L2 Norm
HOL−Library .Numeral Type
HOL−Library .Countable Set
HOL−Library .FuncSet

begin

1.8.1 Finite Cartesian products, with indexing and lambdas

typedef ( ′a, ′b) vec = UNIV :: ( ′b::finite ⇒ ′a) set
morphisms vec nth vec lambda ..

declare vec lambda inject [simplified , simp]



Finite Cartesian Product.thy 181

bundle vec syntax begin
notation
vec nth (infixl $ 90 ) and
vec lambda (binder χ 10 )

end

bundle no vec syntax begin
no notation
vec nth (infixl $ 90 ) and
vec lambda (binder χ 10 )

end

unbundle vec syntax

Concrete syntax for ( ′a, ′b) vec:

• ′aˆ ′b becomes ( ′a, ′b::finite) vec

• ′aˆ ′b:: becomes ( ′a, ′b) vec without extra sort-constraint

syntax vec type :: type ⇒ type ⇒ type (infixl ˆ 15 )
parse translation 〈

let
fun vec t u = Syntax .const type syntax 〈vec〉 $ t $ u;
fun finite vec tr [t , u] =
(case Term Position.strip positions u of
v as Free (x , ) =>
if Lexicon.is tid x then
vec t (Syntax .const syntax const 〈 ofsort 〉 $ v $
Syntax .const class syntax 〈finite〉)

else vec t u
| => vec t u)

in
[(syntax const 〈 vec type〉, K finite vec tr)]

end
〉

lemma vec eq iff : (x = y) ←→ (∀ i . x$i = y$i)
by (simp add : vec nth inject [symmetric] fun eq iff )

lemma vec lambda beta [simp]: vec lambda g $ i = g i
by (simp add : vec lambda inverse)

lemma vec lambda unique: (∀ i . f $i = g i) ←→ vec lambda g = f
by (auto simp add : vec eq iff )

lemma vec lambda eta [simp]: (χ i . (g$i)) = g
by (simp add : vec eq iff )
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1.8.2 Cardinality of vectors

instance vec :: (finite, finite) finite
proof
show finite (UNIV :: ( ′a, ′b) vec set)
proof (subst bij betw finite)
show bij betw vec nth UNIV (Pi (UNIV :: ′b set) (λ . UNIV :: ′a set))
by (intro bij betwI [of vec lambda]) (auto simp: vec eq iff )

have finite (PiE (UNIV :: ′b set) (λ . UNIV :: ′a set))
by (intro finite PiE ) auto

also have (PiE (UNIV :: ′b set) (λ . UNIV :: ′a set)) = Pi UNIV (λ . UNIV )
by auto

finally show finite . . . .
qed

qed

lemma countable PiE :
finite I =⇒ (

∧
i . i ∈ I =⇒ countable (F i)) =⇒ countable (PiE I F )

by (induct I arbitrary : F rule: finite induct) (auto simp: PiE insert eq)

instance vec :: (countable, finite) countable
proof
have countable (UNIV :: ( ′a, ′b) vec set)
proof (rule countableI bij2 )
show bij betw vec nth UNIV (Pi (UNIV :: ′b set) (λ . UNIV :: ′a set))
by (intro bij betwI [of vec lambda]) (auto simp: vec eq iff )

have countable (PiE (UNIV :: ′b set) (λ . UNIV :: ′a set))
by (intro countable PiE ) auto

also have (PiE (UNIV :: ′b set) (λ . UNIV :: ′a set)) = Pi UNIV (λ . UNIV )
by auto

finally show countable . . . .
qed
thus ∃ t ::( ′a, ′b) vec ⇒ nat . inj t
by (auto elim!: countableE )

qed

lemma infinite UNIV vec:
assumes infinite (UNIV :: ′a set)
shows infinite (UNIV :: ( ′aˆ ′b) set)

proof (subst bij betw finite)
show bij betw vec nth UNIV (Pi (UNIV :: ′b set) (λ . UNIV :: ′a set))
by (intro bij betwI [of vec lambda]) (auto simp: vec eq iff )

have infinite (PiE (UNIV :: ′b set) (λ . UNIV :: ′a set)) (is infinite ?A)
proof
assume finite ?A
hence finite ((λf . f undefined) ‘ ?A)
by (rule finite imageI )

also have (λf . f undefined) ‘ ?A = UNIV
by auto

finally show False
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using 〈infinite (UNIV :: ′a set)〉 by contradiction
qed
also have ?A = Pi UNIV (λ . UNIV )
by auto

finally show infinite (Pi (UNIV :: ′b set) (λ . UNIV :: ′a set)) .
qed

proposition CARD vec [simp]:
CARD( ′aˆ ′b) = CARD( ′a) ˆ CARD( ′b)

proof (cases finite (UNIV :: ′a set))
case True
show ?thesis
proof (subst bij betw same card)
show bij betw vec nth UNIV (Pi (UNIV :: ′b set) (λ . UNIV :: ′a set))
by (intro bij betwI [of vec lambda]) (auto simp: vec eq iff )

have CARD( ′a) ˆ CARD( ′b) = card (PiE (UNIV :: ′b set) (λ . UNIV :: ′a
set))

(is = card ?A)
by (subst card PiE ) (auto)

also have ?A = Pi UNIV (λ . UNIV )
by auto

finally show card . . . = CARD( ′a) ˆ CARD( ′b) ..
qed

qed (simp all add : infinite UNIV vec)

lemma countable vector :
fixes B :: ′n::finite ⇒ ′a set
assumes

∧
i . countable (B i)

shows countable {V . ∀ i :: ′n::finite. V $ i ∈ B i}
proof −
have f ∈ ($) ‘ {V . ∀ i . V $ i ∈ B i} if f ∈ PiE UNIV B for f
proof −
have ∃W . (∀ i . W $ i ∈ B i) ∧ ($) W = f
by (metis that PiE iff UNIV I vec lambda inverse)

then show f ∈ ($) ‘ {v . ∀ i . v $ i ∈ B i}
by blast

qed
then have PiE UNIV B = vec nth ‘ {V . ∀ i :: ′n. V $ i ∈ B i}
by blast

then have countable (vec nth ‘ {V . ∀ i . V $ i ∈ B i})
by (metis finite class.finite UNIV countable PiE assms)

then have countable (vec lambda ‘ vec nth ‘ {V . ∀ i . V $ i ∈ B i})
by auto

then show ?thesis
by (simp add : image comp o def vec nth inverse)

qed
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1.8.3 Group operations and class instances

instantiation vec :: (zero, finite) zero
begin
definition 0 ≡ (χ i . 0 )
instance ..

end

instantiation vec :: (plus, finite) plus
begin
definition (+) ≡ (λ x y . (χ i . x$i + y$i))
instance ..

end

instantiation vec :: (minus, finite) minus
begin
definition (−) ≡ (λ x y . (χ i . x$i − y$i))
instance ..

end

instantiation vec :: (uminus, finite) uminus
begin
definition uminus ≡ (λ x . (χ i . − (x$i)))
instance ..

end

lemma zero index [simp]: 0 $ i = 0
unfolding zero vec def by simp

lemma vector add component [simp]: (x + y)$i = x$i + y$i
unfolding plus vec def by simp

lemma vector minus component [simp]: (x − y)$i = x$i − y$i
unfolding minus vec def by simp

lemma vector uminus component [simp]: (− x )$i = − (x$i)
unfolding uminus vec def by simp

instance vec :: (semigroup add , finite) semigroup add
by standard (simp add : vec eq iff add .assoc)

instance vec :: (ab semigroup add , finite) ab semigroup add
by standard (simp add : vec eq iff add .commute)

instance vec :: (monoid add , finite) monoid add
by standard (simp all add : vec eq iff )

instance vec :: (comm monoid add , finite) comm monoid add
by standard (simp add : vec eq iff )
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instance vec :: (cancel semigroup add , finite) cancel semigroup add
by standard (simp all add : vec eq iff )

instance vec :: (cancel ab semigroup add , finite) cancel ab semigroup add
by standard (simp all add : vec eq iff diff diff eq)

instance vec :: (cancel comm monoid add , finite) cancel comm monoid add ..

instance vec :: (group add , finite) group add
by standard (simp all add : vec eq iff )

instance vec :: (ab group add , finite) ab group add
by standard (simp all add : vec eq iff )

1.8.4 Basic componentwise operations on vectors

instantiation vec :: (times, finite) times
begin

definition (∗) ≡ (λ x y . (χ i . (x$i) ∗ (y$i)))
instance ..

end

instantiation vec :: (one, finite) one
begin

definition 1 ≡ (χ i . 1 )
instance ..

end

instantiation vec :: (ord , finite) ord
begin

definition x ≤ y ←→ (∀ i . x$i ≤ y$i)
definition x < (y :: ′aˆ ′b) ←→ x ≤ y ∧ ¬ y ≤ x
instance ..

end

The ordering on one-dimensional vectors is linear.

instance vec:: (order , finite) order
by standard (auto simp: less eq vec def less vec def vec eq iff

intro: order .trans order .antisym order .strict implies order)

instance vec :: (linorder , CARD 1 ) linorder
proof
obtain a :: ′b where all :

∧
P . (∀ i . P i) ←→ P a
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proof −
have CARD ( ′b) = 1 by (rule CARD 1 )
then obtain b :: ′b where UNIV = {b} by (auto iff : card Suc eq)
then have

∧
P . (∀ i∈UNIV . P i) ←→ P b by auto

then show thesis by (auto intro: that)
qed
fix x y :: ′aˆ ′b::CARD 1
note [simp] = less eq vec def less vec def all vec eq iff field simps
show x ≤ y ∨ y ≤ x by auto

qed

Constant Vectors

definition vec x = (χ i . x )

Also the scalar-vector multiplication.

definition vector scalar mult :: ′a::times ⇒ ′a ˆ ′n ⇒ ′a ˆ ′n (infixl ∗s 70 )
where c ∗s x = (χ i . c ∗ (x$i))

scalar product

definition scalar product :: ′a :: semiring 1 ˆ ′n ⇒ ′a ˆ ′n ⇒ ′a where
scalar product v w = (

∑
i ∈ UNIV . v $ i ∗ w $ i)

1.8.5 Real vector space

instantiation vec :: (real vector , finite) real vector
begin

definition scaleR ≡ (λ r x . (χ i . scaleR r (x$i)))

lemma vector scaleR component [simp]: (scaleR r x )$i = scaleR r (x$i)
unfolding scaleR vec def by simp

instance
by standard (simp all add : vec eq iff scaleR left distrib scaleR right distrib)

end

1.8.6 Topological space

instantiation vec :: (topological space, finite) topological space
begin

definition [code del ]:
open (S :: ( ′a ˆ ′b) set) ←→
(∀ x∈S . ∃A. (∀ i . open (A i) ∧ x$i ∈ A i) ∧
(∀ y . (∀ i . y$i ∈ A i) −→ y ∈ S ))

instance proof
show open (UNIV :: ( ′a ˆ ′b) set)



Finite Cartesian Product.thy 187

unfolding open vec def by auto
next
fix S T :: ( ′a ˆ ′b) set
assume open S open T thus open (S ∩ T )
unfolding open vec def
apply clarify
apply (drule (1 ) bspec)+
apply (clarify , rename tac Sa Ta)
apply (rule tac x=λi . Sa i ∩ Ta i in exI )
apply (simp add : open Int)
done

next
fix K :: ( ′a ˆ ′b) set set
assume ∀S∈K . open S thus open (

⋃
K )

unfolding open vec def
apply clarify
apply (drule (1 ) bspec)
apply (drule (1 ) bspec)
apply clarify
apply (rule tac x=A in exI )
apply fast
done

qed

end

lemma open vector box : ∀ i . open (S i) =⇒ open {x . ∀ i . x $ i ∈ S i}
unfolding open vec def by auto

lemma open vimage vec nth: open S =⇒ open ((λx . x $ i) −‘ S )
unfolding open vec def
apply clarify
apply (rule tac x=λk . if k = i then S else UNIV in exI , simp)
done

lemma closed vimage vec nth: closed S =⇒ closed ((λx . x $ i) −‘ S )
unfolding closed open vimage Compl [symmetric]
by (rule open vimage vec nth)

lemma closed vector box : ∀ i . closed (S i) =⇒ closed {x . ∀ i . x $ i ∈ S i}
proof −
have {x . ∀ i . x $ i ∈ S i} = (

⋂
i . (λx . x $ i) −‘ S i) by auto

thus ∀ i . closed (S i) =⇒ closed {x . ∀ i . x $ i ∈ S i}
by (simp add : closed INT closed vimage vec nth)

qed

lemma tendsto vec nth [tendsto intros]:
assumes ((λx . f x ) −−−→ a) net
shows ((λx . f x $ i) −−−→ a $ i) net
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proof (rule topological tendstoI )
fix S assume open S a $ i ∈ S
then have open ((λy . y $ i) −‘ S ) a ∈ ((λy . y $ i) −‘ S )
by (simp all add : open vimage vec nth)

with assms have eventually (λx . f x ∈ (λy . y $ i) −‘ S ) net
by (rule topological tendstoD)

then show eventually (λx . f x $ i ∈ S ) net
by simp

qed

lemma isCont vec nth [simp]: isCont f a =⇒ isCont (λx . f x $ i) a
unfolding isCont def by (rule tendsto vec nth)

lemma vec tendstoI :
assumes

∧
i . ((λx . f x $ i) −−−→ a $ i) net

shows ((λx . f x ) −−−→ a) net
proof (rule topological tendstoI )
fix S assume open S and a ∈ S
then obtain A where A:

∧
i . open (A i)

∧
i . a $ i ∈ A i

and S :
∧
y . ∀ i . y $ i ∈ A i =⇒ y ∈ S

unfolding open vec def by metis
have

∧
i . eventually (λx . f x $ i ∈ A i) net

using assms A by (rule topological tendstoD)
hence eventually (λx . ∀ i . f x $ i ∈ A i) net
by (rule eventually all finite)

thus eventually (λx . f x ∈ S ) net
by (rule eventually mono, simp add : S )

qed

lemma tendsto vec lambda [tendsto intros]:
assumes

∧
i . ((λx . f x i) −−−→ a i) net

shows ((λx . χ i . f x i) −−−→ (χ i . a i)) net
using assms by (simp add : vec tendstoI )

lemma open image vec nth: assumes open S shows open ((λx . x $ i) ‘ S )
proof (rule openI )
fix a assume a ∈ (λx . x $ i) ‘ S
then obtain z where a = z $ i and z ∈ S ..
then obtain A where A: ∀ i . open (A i) ∧ z $ i ∈ A i
and S : ∀ y . (∀ i . y $ i ∈ A i) −→ y ∈ S
using 〈open S 〉 unfolding open vec def by auto

hence A i ⊆ (λx . x $ i) ‘ S
by (clarsimp, rule tac x=χ j . if j = i then x else z $ j in image eqI ,
simp all)

hence open (A i) ∧ a ∈ A i ∧ A i ⊆ (λx . x $ i) ‘ S
using A 〈a = z $ i 〉 by simp

then show ∃T . open T ∧ a ∈ T ∧ T ⊆ (λx . x $ i) ‘ S by − (rule exI )
qed
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instance vec :: (perfect space, finite) perfect space
proof
fix x :: ′a ˆ ′b show ¬ open {x}
proof
assume open {x}
hence ∀ i . open ((λx . x $ i) ‘ {x}) by (fast intro: open image vec nth)
hence ∀ i . open {x $ i} by simp
thus False by (simp add : not open singleton)

qed
qed

1.8.7 Metric space

instantiation vec :: (metric space, finite) dist
begin

definition
dist x y = L2 set (λi . dist (x$i) (y$i)) UNIV

instance ..
end

instantiation vec :: (metric space, finite) uniformity dist
begin

definition [code del ]:
(uniformity :: (( ′aˆ ′b:: ) × ( ′aˆ ′b:: )) filter) =
(INF e∈{0 <..}. principal {(x , y). dist x y < e})

instance
by standard (rule uniformity vec def )

end

declare uniformity Abort [where ′a= ′a :: metric space ˆ ′b :: finite, code]

instantiation vec :: (metric space, finite) metric space
begin

proposition dist vec nth le: dist (x $ i) (y $ i) ≤ dist x y
unfolding dist vec def by (rule member le L2 set) simp all

instance proof
fix x y :: ′a ˆ ′b
show dist x y = 0 ←→ x = y
unfolding dist vec def
by (simp add : L2 set eq 0 iff vec eq iff )

next
fix x y z :: ′a ˆ ′b
show dist x y ≤ dist x z + dist y z
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unfolding dist vec def
apply (rule order trans [OF L2 set triangle ineq ])
apply (simp add : L2 set mono dist triangle2 )
done

next
fix S :: ( ′a ˆ ′b) set
have ∗: open S ←→ (∀ x∈S . ∃ e>0 . ∀ y . dist y x < e −→ y ∈ S )
proof
assume open S show ∀ x∈S . ∃ e>0 . ∀ y . dist y x < e −→ y ∈ S
proof
fix x assume x ∈ S
obtain A where A: ∀ i . open (A i) ∀ i . x $ i ∈ A i
and S : ∀ y . (∀ i . y $ i ∈ A i) −→ y ∈ S
using 〈open S 〉 and 〈x ∈ S 〉 unfolding open vec def by metis

have ∀ i∈UNIV . ∃ r>0 . ∀ y . dist y (x $ i) < r −→ y ∈ A i
using A unfolding open dist by simp

hence ∃ r . ∀ i∈UNIV . 0 < r i ∧ (∀ y . dist y (x $ i) < r i −→ y ∈ A i)
by (rule finite set choice [OF finite])

then obtain r where r1 : ∀ i . 0 < r i
and r2 : ∀ i y . dist y (x $ i) < r i −→ y ∈ A i by fast

have 0 < Min (range r) ∧ (∀ y . dist y x < Min (range r) −→ y ∈ S )
by (simp add : r1 r2 S le less trans [OF dist vec nth le])

thus ∃ e>0 . ∀ y . dist y x < e −→ y ∈ S ..
qed

next
assume ∗: ∀ x∈S . ∃ e>0 . ∀ y . dist y x < e −→ y ∈ S show open S
proof (unfold open vec def , rule)
fix x assume x ∈ S
then obtain e where 0 < e and S : ∀ y . dist y x < e −→ y ∈ S
using ∗ by fast

define r where [abs def ]: r i = e / sqrt (of nat CARD( ′b)) for i :: ′b
from 〈0 < e〉 have r : ∀ i . 0 < r i
unfolding r def by simp all

from 〈0 < e〉 have e: e = L2 set r UNIV
unfolding r def by (simp add : L2 set constant)

define A where A i = {y . dist (x $ i) y < r i} for i
have ∀ i . open (A i) ∧ x $ i ∈ A i
unfolding A def by (simp add : open ball r)

moreover have ∀ y . (∀ i . y $ i ∈ A i) −→ y ∈ S
by (simp add : A def S dist vec def e L2 set strict mono dist commute)

ultimately show ∃A. (∀ i . open (A i) ∧ x $ i ∈ A i) ∧
(∀ y . (∀ i . y $ i ∈ A i) −→ y ∈ S ) by metis

qed
qed
show open S = (∀ x∈S . ∀ F (x ′, y) in uniformity . x ′ = x −→ y ∈ S )
unfolding ∗ eventually uniformity metric
by (simp del : split paired All add : dist vec def dist commute)

qed
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end

lemma Cauchy vec nth:
Cauchy (λn. X n) =⇒ Cauchy (λn. X n $ i)
unfolding Cauchy def by (fast intro: le less trans [OF dist vec nth le])

lemma vec CauchyI :
fixes X :: nat ⇒ ′a::metric space ˆ ′n
assumes X :

∧
i . Cauchy (λn. X n $ i)

shows Cauchy (λn. X n)
proof (rule metric CauchyI )
fix r :: real assume 0 < r
hence 0 < r / of nat CARD( ′n) (is 0 < ?s) by simp
define N where N i = (LEAST N . ∀m≥N . ∀n≥N . dist (X m $ i) (X n $ i)

< ?s) for i
define M where M = Max (range N )
have

∧
i . ∃N . ∀m≥N . ∀n≥N . dist (X m $ i) (X n $ i) < ?s

using X 〈0 < ?s〉 by (rule metric CauchyD)
hence

∧
i . ∀m≥N i . ∀n≥N i . dist (X m $ i) (X n $ i) < ?s

unfolding N def by (rule LeastI ex )
hence M :

∧
i . ∀m≥M . ∀n≥M . dist (X m $ i) (X n $ i) < ?s

unfolding M def by simp
{
fix m n :: nat
assume M ≤ m M ≤ n
have dist (X m) (X n) = L2 set (λi . dist (X m $ i) (X n $ i)) UNIV
unfolding dist vec def ..

also have . . . ≤ sum (λi . dist (X m $ i) (X n $ i)) UNIV
by (rule L2 set le sum [OF zero le dist ])

also have . . . < sum (λi :: ′n. ?s) UNIV
by (rule sum strict mono, simp all add : M 〈M ≤ m〉 〈M ≤ n〉)

also have . . . = r
by simp

finally have dist (X m) (X n) < r .
}
hence ∀m≥M . ∀n≥M . dist (X m) (X n) < r
by simp

then show ∃M . ∀m≥M . ∀n≥M . dist (X m) (X n) < r ..
qed

instance vec :: (complete space, finite) complete space
proof
fix X :: nat ⇒ ′a ˆ ′b assume Cauchy X
have

∧
i . (λn. X n $ i) −−−−→ lim (λn. X n $ i)

using Cauchy vec nth [OF 〈Cauchy X 〉]
by (simp add : Cauchy convergent iff convergent LIMSEQ iff )

hence X −−−−→ vec lambda (λi . lim (λn. X n $ i))
by (simp add : vec tendstoI )

then show convergent X
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by (rule convergentI )
qed

1.8.8 Normed vector space

instantiation vec :: (real normed vector , finite) real normed vector
begin

definition norm x = L2 set (λi . norm (x$i)) UNIV

definition sgn (x :: ′aˆ ′b) = scaleR (inverse (norm x )) x

instance proof
fix a :: real and x y :: ′a ˆ ′b
show norm x = 0 ←→ x = 0
unfolding norm vec def
by (simp add : L2 set eq 0 iff vec eq iff )

show norm (x + y) ≤ norm x + norm y
unfolding norm vec def
apply (rule order trans [OF L2 set triangle ineq ])
apply (simp add : L2 set mono norm triangle ineq)
done

show norm (scaleR a x ) = |a| ∗ norm x
unfolding norm vec def
by (simp add : L2 set right distrib)

show sgn x = scaleR (inverse (norm x )) x
by (rule sgn vec def )

show dist x y = norm (x − y)
unfolding dist vec def norm vec def
by (simp add : dist norm)

qed

end

lemma norm nth le: norm (x $ i) ≤ norm x
unfolding norm vec def
by (rule member le L2 set) simp all

lemma norm le componentwise cart :
fixes x :: ′a::real normed vectorˆ ′n
assumes

∧
i . norm(x$i) ≤ norm(y$i)

shows norm x ≤ norm y
unfolding norm vec def
by (rule L2 set mono) (auto simp: assms)

lemma component le norm cart : |x$i | ≤ norm x
apply (simp add : norm vec def )
apply (rule member le L2 set , simp all)
done
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lemma norm bound component le cart : norm x ≤ e ==> |x$i | ≤ e
by (metis component le norm cart order trans)

lemma norm bound component lt cart : norm x < e ==> |x$i | < e
by (metis component le norm cart le less trans)

lemma norm le l1 cart : norm x ≤ sum(λi . |x$i |) UNIV
by (simp add : norm vec def L2 set le sum)

lemma bounded linear vec nth[intro]: bounded linear (λx . x $ i)
apply standard
apply (rule vector add component)
apply (rule vector scaleR component)
apply (rule tac x=1 in exI , simp add : norm nth le)
done

instance vec :: (banach, finite) banach ..

1.8.9 Inner product space

instantiation vec :: (real inner , finite) real inner
begin

definition inner x y = sum (λi . inner (x$i) (y$i)) UNIV

instance proof
fix r :: real and x y z :: ′a ˆ ′b
show inner x y = inner y x
unfolding inner vec def
by (simp add : inner commute)

show inner (x + y) z = inner x z + inner y z
unfolding inner vec def
by (simp add : inner add left sum.distrib)

show inner (scaleR r x ) y = r ∗ inner x y
unfolding inner vec def
by (simp add : sum distrib left)

show 0 ≤ inner x x
unfolding inner vec def
by (simp add : sum nonneg)

show inner x x = 0 ←→ x = 0
unfolding inner vec def
by (simp add : vec eq iff sum nonneg eq 0 iff )

show norm x = sqrt (inner x x )
unfolding inner vec def norm vec def L2 set def
by (simp add : power2 norm eq inner)

qed

end
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1.8.10 Euclidean space

Vectors pointing along a single axis.

definition axis k x = (χ i . if i = k then x else 0 )

lemma axis nth [simp]: axis i x $ i = x
unfolding axis def by simp

lemma axis eq axis: axis i x = axis j y ←→ x = y ∧ i = j ∨ x = 0 ∧ y = 0
unfolding axis def vec eq iff by auto

lemma inner axis axis:
inner (axis i x ) (axis j y) = (if i = j then inner x y else 0 )
unfolding inner vec def
apply (cases i = j )
apply clarsimp
apply (subst sum.remove [of j ], simp all)
apply (rule sum.neutral , simp add : axis def )
apply (rule sum.neutral , simp add : axis def )
done

lemma inner axis: inner x (axis i y) = inner (x $ i) y
by (simp add : inner vec def axis def sum.remove [where x=i ])

lemma inner axis ′: inner(axis i y) x = inner y (x $ i)
by (simp add : inner axis inner commute)

instantiation vec :: (euclidean space, finite) euclidean space
begin

definition Basis = (
⋃
i .

⋃
u∈Basis. {axis i u})

instance proof
show (Basis :: ( ′a ˆ ′b) set) 6= {}
unfolding Basis vec def by simp

next
show finite (Basis :: ( ′a ˆ ′b) set)
unfolding Basis vec def by simp

next
fix u v :: ′a ˆ ′b
assume u ∈ Basis and v ∈ Basis
thus inner u v = (if u = v then 1 else 0 )
unfolding Basis vec def
by (auto simp add : inner axis axis axis eq axis inner Basis)

next
fix x :: ′a ˆ ′b
show (∀ u∈Basis. inner x u = 0 ) ←→ x = 0
unfolding Basis vec def
by (simp add : inner axis euclidean all zero iff vec eq iff )
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qed

proposition DIM cart [simp]: DIM ( ′aˆ ′b) = CARD( ′b) ∗ DIM ( ′a)
proof −
have card (

⋃
i :: ′b.

⋃
u:: ′a∈Basis. {axis i u}) = (

∑
i :: ′b∈UNIV . card (

⋃
u:: ′a∈Basis.

{axis i u}))
by (rule card UN disjoint) (auto simp: axis eq axis)

also have ... = CARD( ′b) ∗ DIM ( ′a)
by (subst card UN disjoint) (auto simp: axis eq axis)

finally show ?thesis
by (simp add : Basis vec def )

qed

end

lemma norm axis 1 [simp]: norm (axis m (1 ::real)) = 1
by (simp add : inner axis ′ norm eq 1 )

lemma sum norm allsubsets bound cart :
fixes f :: ′a ⇒ real ˆ ′n
assumes fP : finite P and fPs:

∧
Q . Q ⊆ P =⇒ norm (sum f Q) ≤ e

shows sum (λx . norm (f x )) P ≤ 2 ∗ real CARD( ′n) ∗ e
using sum norm allsubsets bound [OF assms]
by simp

lemma cart eq inner axis: a $ i = inner a (axis i 1 )
by (simp add : inner axis)

lemma axis eq 0 iff [simp]:
shows axis m x = 0 ←→ x = 0
by (simp add : axis def vec eq iff )

lemma axis in Basis iff [simp]: axis i a ∈ Basis ←→ a ∈ Basis
by (auto simp: Basis vec def axis eq axis)

Mapping each basis element to the corresponding finite index

definition axis index :: ( ′a::comm ring 1 )ˆ ′n ⇒ ′n where axis index v ≡ SOME
i . v = axis i 1

lemma axis inverse:
fixes v :: realˆ ′n
assumes v ∈ Basis
shows ∃ i . v = axis i 1

proof −
have v ∈ (

⋃
n.

⋃
r∈Basis. {axis n r})

using assms Basis vec def by blast
then show ?thesis
by (force simp add : vec eq iff )

qed
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lemma axis index :
fixes v :: realˆ ′n
assumes v ∈ Basis
shows v = axis (axis index v) 1
by (metis (mono tags) assms axis inverse axis index def someI ex )

lemma axis index axis [simp]:
fixes UU :: realˆ ′n
shows (axis index (axis u 1 :: realˆ ′n)) = (u:: ′n)
by (simp add : axis eq axis axis index def )

1.8.11 A naive proof procedure to lift really trivial arith-
metic stuff from the basis of the vector space

lemma sum cong aux :
(
∧
x . x ∈ A =⇒ f x = g x ) =⇒ sum f A = sum g A

by (auto intro: sum.cong)

hide fact (open) sum cong aux

method setup vector = 〈

let
val ss1 =
simpset of (put simpset HOL basic ss context
addsimps [@{thm sum.distrib} RS sym,
@{thm sum subtractf } RS sym, @{thm sum distrib left},
@{thm sum distrib right}, @{thm sum negf } RS sym])

val ss2 =
simpset of (context addsimps

[@{thm plus vec def }, @{thm times vec def },
@{thm minus vec def }, @{thm uminus vec def },
@{thm one vec def }, @{thm zero vec def }, @{thm vec def },
@{thm scaleR vec def }, @{thm vector scalar mult def }])

fun vector arith tac ctxt ths =
simp tac (put simpset ss1 ctxt)
THEN ′ (fn i => resolve tac ctxt @{thms Finite Cartesian Product .sum cong aux}

i
ORELSE resolve tac ctxt @{thms sum.neutral} i

ORELSE simp tac (put simpset HOL basic ss ctxt addsimps [@{thm
vec eq iff }]) i)

(∗ THEN ′ TRY o clarify tac HOL cs THEN ′ (TRY o rtac @{thm iffI }) ∗)
THEN ′ asm full simp tac (put simpset ss2 ctxt addsimps ths)

in
Attrib.thms >> (fn ths => fn ctxt => SIMPLE METHOD ′ (vector arith tac

ctxt ths))
end
〉 lift trivial vector statements to real arith statements
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lemma vec 0 [simp]: vec 0 = 0 by vector
lemma vec 1 [simp]: vec 1 = 1 by vector

lemma vec inj [simp]: vec x = vec y ←→ x = y by vector

lemma vec in image vec: vec x ∈ (vec ‘ S ) ←→ x ∈ S by auto

lemma vec add : vec(x + y) = vec x + vec y by vector
lemma vec sub: vec(x − y) = vec x − vec y by vector
lemma vec cmul : vec(c ∗ x ) = c ∗s vec x by vector
lemma vec neg : vec(− x ) = − vec x by vector

lemma vec scaleR: vec(c ∗ x ) = c ∗R vec x
by vector

lemma vec sum:
assumes finite S
shows vec(sum f S ) = sum (vec ◦ f ) S
using assms

proof induct
case empty
then show ?case by simp

next
case insert
then show ?case by (auto simp add : vec add)

qed

Obvious ”component-pushing”.

lemma vec component [simp]: vec x $ i = x
by vector

lemma vector mult component [simp]: (x ∗ y)$i = x$i ∗ y$i
by vector

lemma vector smult component [simp]: (c ∗s y)$i = c ∗ (y$i)
by vector

lemma cond component : (if b then x else y)$i = (if b then x$i else y$i) by vector

lemmas vector component =
vec component vector add component vector mult component
vector smult component vector minus component vector uminus component
vector scaleR component cond component

1.8.12 Some frequently useful arithmetic lemmas over vec-
tors

instance vec :: (semigroup mult , finite) semigroup mult
by standard (vector mult .assoc)
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instance vec :: (monoid mult , finite) monoid mult
by standard vector+

instance vec :: (ab semigroup mult , finite) ab semigroup mult
by standard (vector mult .commute)

instance vec :: (comm monoid mult , finite) comm monoid mult
by standard vector

instance vec :: (semiring , finite) semiring
by standard (vector field simps)+

instance vec :: (semiring 0 , finite) semiring 0
by standard (vector field simps)+

instance vec :: (semiring 1 , finite) semiring 1
by standard vector

instance vec :: (comm semiring , finite) comm semiring
by standard (vector field simps)+

instance vec :: (comm semiring 0 , finite) comm semiring 0 ..
instance vec :: (semiring 0 cancel , finite) semiring 0 cancel ..
instance vec :: (comm semiring 0 cancel , finite) comm semiring 0 cancel ..
instance vec :: (ring , finite) ring ..
instance vec :: (semiring 1 cancel , finite) semiring 1 cancel ..
instance vec :: (comm semiring 1 , finite) comm semiring 1 ..

instance vec :: (ring 1 , finite) ring 1 ..

instance vec :: (real algebra, finite) real algebra
by standard (simp all add : vec eq iff )

instance vec :: (real algebra 1 , finite) real algebra 1 ..

lemma of nat index : (of nat n :: ′a::semiring 1 ˆ ′n)$i = of nat n
proof (induct n)
case 0
then show ?case by vector

next
case Suc
then show ?case by vector

qed

lemma one index [simp]: (1 :: ′a :: one ˆ ′n) $ i = 1
by vector

lemma neg one index [simp]: (− 1 :: ′a :: {one, uminus} ˆ ′n) $ i = − 1
by vector
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instance vec :: (semiring char 0 , finite) semiring char 0
proof
fix m n :: nat
show inj (of nat :: nat ⇒ ′a ˆ ′b)
by (auto intro!: injI simp add : vec eq iff of nat index )

qed

instance vec :: (numeral , finite) numeral ..
instance vec :: (semiring numeral , finite) semiring numeral ..

lemma numeral index [simp]: numeral w $ i = numeral w
by (induct w) (simp all only : numeral .simps vector add component one index )

lemma neg numeral index [simp]: − numeral w $ i = − numeral w
by (simp only : vector uminus component numeral index )

instance vec :: (comm ring 1 , finite) comm ring 1 ..
instance vec :: (ring char 0 , finite) ring char 0 ..

lemma vector smult assoc: a ∗s (b ∗s x ) = ((a:: ′a::semigroup mult) ∗ b) ∗s x
by (vector mult .assoc)

lemma vector sadd rdistrib: ((a:: ′a::semiring) + b) ∗s x = a ∗s x + b ∗s x
by (vector field simps)

lemma vector add ldistrib: (c:: ′a::semiring) ∗s (x + y) = c ∗s x + c ∗s y
by (vector field simps)

lemma vector smult lzero[simp]: (0 :: ′a::mult zero) ∗s x = 0 by vector
lemma vector smult lid [simp]: (1 :: ′a::monoid mult) ∗s x = x by vector
lemma vector ssub ldistrib: (c:: ′a::ring) ∗s (x − y) = c ∗s x − c ∗s y
by (vector field simps)

lemma vector smult rneg : (c:: ′a::ring) ∗s −x = −(c ∗s x ) by vector
lemma vector smult lneg : − (c:: ′a::ring) ∗s x = −(c ∗s x ) by vector
lemma vector sneg minus1 : −x = (−1 :: ′a::ring 1 ) ∗s x by vector
lemma vector smult rzero[simp]: c ∗s 0 = (0 :: ′a::mult zero ˆ ′n) by vector
lemma vector sub rdistrib: ((a:: ′a::ring) − b) ∗s x = a ∗s x − b ∗s x
by (vector field simps)

lemma vec eq [simp]: (vec m = vec n) ←→ (m = n)
by (simp add : vec eq iff )

lemma Vector Spaces linear vec [simp]: Vector Spaces.linear (∗) vector scalar mult
vec
by unfold locales (vector algebra simps)+

lemma vector mul eq 0 [simp]: (a ∗s x = 0 ) ←→ a = (0 :: ′a::idom) ∨ x = 0
by vector

lemma vector mul lcancel [simp]: a ∗s x = a ∗s y ←→ a = (0 :: ′a::field) ∨ x = y
by (metis eq iff diff eq 0 vector mul eq 0 vector ssub ldistrib)
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lemma vector mul rcancel [simp]: a ∗s x = b ∗s x ←→ (a:: ′a::field) = b ∨ x = 0
by (subst eq iff diff eq 0 , subst vector sub rdistrib [symmetric]) simp

lemma scalar mult eq scaleR [abs def ]: c ∗s x = c ∗R x
unfolding scaleR vec def vector scalar mult def by simp

lemma dist mul [simp]: dist (c ∗s x ) (c ∗s y) = |c| ∗ dist x y
unfolding dist norm scalar mult eq scaleR
unfolding scaleR right diff distrib[symmetric] by simp

lemma sum component [simp]:
fixes f :: ′a ⇒ ( ′b::comm monoid add) ˆ ′n
shows (sum f S )$i = sum (λx . (f x )$i) S

proof (cases finite S )
case True
then show ?thesis by induct simp all

next
case False
then show ?thesis by simp

qed

lemma sum eq : sum f S = (χ i . sum (λx . (f x )$i ) S )
by (simp add : vec eq iff )

lemma sum cmul :
fixes f :: ′c ⇒ ( ′a::semiring 1 )ˆ ′n
shows sum (λx . c ∗s f x ) S = c ∗s sum f S
by (simp add : vec eq iff sum distrib left)

lemma linear vec [simp]: linear vec
using Vector Spaces linear vec
apply (auto )
by unfold locales (vector algebra simps)+

1.8.13 Matrix operations

Matrix notation. NB: an MxN matrix is of type (( ′a, ′n) vec, ′m) vec, not
(( ′a, ′m) vec, ′n) vec

definition map matrix ::( ′a ⇒ ′b) ⇒ (( ′a, ′i ::finite)vec, ′j ::finite) vec ⇒ (( ′b,
′i)vec, ′j ) vec where
map matrix f x = (χ i j . f (x $ i $ j ))

lemma nth map matrix [simp]: map matrix f x $ i $ j = f (x $ i $ j )
by (simp add : map matrix def )

definition matrix matrix mult :: ( ′a::semiring 1 ) ˆ ′nˆ ′m ⇒ ′a ˆ ′pˆ ′n ⇒ ′a ˆ ′p
ˆ ′m

(infixl ∗∗ 70 )
where m ∗∗ m ′ == (χ i j . sum (λk . ((m$i)$k) ∗ ((m ′$k)$j )) (UNIV :: ′n set))
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:: ′a ˆ ′p ˆ ′m

definition matrix vector mult :: ( ′a::semiring 1 ) ˆ ′nˆ ′m ⇒ ′a ˆ ′n ⇒ ′a ˆ ′m
(infixl ∗v 70 )

where m ∗v x ≡ (χ i . sum (λj . ((m$i)$j ) ∗ (x$j )) (UNIV :: ′n set)) :: ′aˆ ′m

definition vector matrix mult :: ′a ˆ ′m ⇒ ( ′a::semiring 1 ) ˆ ′nˆ ′m ⇒ ′a ˆ ′n
(infixl v∗ 70 )

where v v∗ m == (χ j . sum (λi . ((m$i)$j ) ∗ (v$i)) (UNIV :: ′m set)) :: ′aˆ ′n

definition (mat :: ′a::zero => ′a ˆ ′nˆ ′n) k = (χ i j . if i = j then k else 0 )
definition transpose where
(transpose:: ′aˆ ′nˆ ′m ⇒ ′aˆ ′mˆ ′n) A = (χ i j . ((A$j )$i))

definition (row :: ′m => ′a ˆ ′nˆ ′m ⇒ ′a ˆ ′n) i A = (χ j . ((A$i)$j ))
definition (column:: ′n => ′aˆ ′nˆ ′m => ′aˆ ′m) j A = (χ i . ((A$i)$j ))
definition rows(A:: ′aˆ ′nˆ ′m) = { row i A | i . i ∈ (UNIV :: ′m set)}
definition columns(A:: ′aˆ ′nˆ ′m) = { column i A | i . i ∈ (UNIV :: ′n set)}

lemma times0 left [simp]: (0 :: ′a::semiring 1ˆ ′nˆ ′m) ∗∗ (A:: ′a ˆ ′pˆ ′n) = 0
by (simp add : matrix matrix mult def zero vec def )

lemma times0 right [simp]: (A:: ′a::semiring 1ˆ ′nˆ ′m) ∗∗ (0 :: ′a ˆ ′pˆ ′n) = 0
by (simp add : matrix matrix mult def zero vec def )

lemma mat 0 [simp]: mat 0 = 0 by (vector mat def )
lemma matrix add ldistrib: (A ∗∗ (B + C )) = (A ∗∗ B) + (A ∗∗ C )
by (vector matrix matrix mult def sum.distrib[symmetric] field simps)

lemma matrix mul lid [simp]:
fixes A :: ′a::semiring 1 ˆ ′m ˆ ′n
shows mat 1 ∗∗ A = A
apply (simp add : matrix matrix mult def mat def )
apply vector
apply (auto simp only : if distrib if distribR sum.delta ′[OF finite]
mult 1 left mult zero left if True UNIV I )

done

lemma matrix mul rid [simp]:
fixes A :: ′a::semiring 1 ˆ ′m ˆ ′n
shows A ∗∗ mat 1 = A
apply (simp add : matrix matrix mult def mat def )
apply vector
apply (auto simp only : if distrib if distribR sum.delta[OF finite]
mult 1 right mult zero right if True UNIV I cong : if cong)

done

proposition matrix mul assoc: A ∗∗ (B ∗∗ C ) = (A ∗∗ B) ∗∗ C
apply (vector matrix matrix mult def sum distrib left sum distrib right mult .assoc)
apply (subst sum.swap)

Finite{_}{\kern 0pt}Cartesian{_}{\kern 0pt}Product.html


202

apply simp
done

proposition matrix vector mul assoc: A ∗v (B ∗v x ) = (A ∗∗ B) ∗v x
apply (vector matrix matrix mult def matrix vector mult def
sum distrib left sum distrib right mult .assoc)

apply (subst sum.swap)
apply simp
done

proposition scalar matrix assoc:
fixes A :: ( ′a::real algebra 1 )ˆ ′mˆ ′n
shows k ∗R (A ∗∗ B) = (k ∗R A) ∗∗ B
by (simp add : matrix matrix mult def sum distrib left mult ac vec eq iff scaleR sum right)

proposition matrix scalar ac:
fixes A :: ( ′a::real algebra 1 )ˆ ′mˆ ′n
shows A ∗∗ (k ∗R B) = k ∗R A ∗∗ B
by (simp add : matrix matrix mult def sum distrib left mult ac vec eq iff )

lemma matrix vector mul lid [simp]: mat 1 ∗v x = (x :: ′a::semiring 1 ˆ ′n)
apply (vector matrix vector mult def mat def )
apply (simp add : if distrib if distribR cong del : if weak cong)
done

lemma matrix transpose mul :
transpose(A ∗∗ B) = transpose B ∗∗ transpose (A:: ′a::comm semiring 1ˆ ˆ )

by (simp add : matrix matrix mult def transpose def vec eq iff mult .commute)

lemma matrix mult transpose dot column:
shows transpose A ∗∗ A = (χ i j . inner (column i A) (column j A))
by (simp add : matrix matrix mult def vec eq iff transpose def column def in-

ner vec def )

lemma matrix mult transpose dot row :
shows A ∗∗ transpose A = (χ i j . inner (row i A) (row j A))
by (simp add : matrix matrix mult def vec eq iff transpose def row def inner vec def )

lemma matrix eq :
fixes A B :: ′a::semiring 1 ˆ ′n ˆ ′m
shows A = B ←→ (∀ x . A ∗v x = B ∗v x ) (is ?lhs ←→ ?rhs)
apply auto
apply (subst vec eq iff )
apply clarify
apply (clarsimp simp add : matrix vector mult def if distrib if distribR vec eq iff

cong del : if weak cong)
apply (erule tac x=axis ia 1 in allE )
apply (erule tac x=i in allE )
apply (auto simp add : if distrib if distribR axis def
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sum.delta[OF finite] cong del : if weak cong)
done

lemma matrix vector mul component : (A ∗v x )$k = inner (A$k) x
by (simp add : matrix vector mult def inner vec def )

lemma dot lmul matrix : inner ((x ::real ˆ ) v∗ A) y = inner x (A ∗v y)
apply (simp add : inner vec def matrix vector mult def vector matrix mult def

sum distrib right sum distrib left ac simps)
apply (subst sum.swap)
apply simp
done

lemma transpose mat [simp]: transpose (mat n) = mat n
by (vector transpose def mat def )

lemma transpose transpose [simp]: transpose(transpose A) = A
by (vector transpose def )

lemma row transpose [simp]: row i (transpose A) = column i A
by (simp add : row def column def transpose def vec eq iff )

lemma column transpose [simp]: column i (transpose A) = row i A
by (simp add : row def column def transpose def vec eq iff )

lemma rows transpose [simp]: rows(transpose A) = columns A
by (auto simp add : rows def columns def intro: set eqI )

lemma columns transpose [simp]: columns(transpose A) = rows A
by (metis transpose transpose rows transpose)

lemma transpose scalar : transpose (k ∗R A) = k ∗R transpose A
unfolding transpose def
by (simp add : vec eq iff )

lemma transpose iff [iff ]: transpose A = transpose B ←→ A = B
by (metis transpose transpose)

lemma matrix mult sum:
(A:: ′a::comm semiring 1ˆ ′nˆ ′m) ∗v x = sum (λi . (x$i) ∗s column i A) (UNIV ::

′n set)
by (simp add : matrix vector mult def vec eq iff column def mult .commute)

lemma vector componentwise:
(x :: ′a::ring 1ˆ ′n) = (χ j .

∑
i∈UNIV . (x$i) ∗ (axis i 1 :: ′aˆ ′n) $ j )

by (simp add : axis def if distrib sum.If cases vec eq iff )

lemma basis expansion: sum (λi . (x$i) ∗s axis i 1 ) UNIV = (x ::( ′a::ring 1 ) ˆ ′n)
by (auto simp add : axis def vec eq iff if distrib sum.If cases cong del : if weak cong)
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Correspondence between matrices and linear operators.

definition matrix :: ( ′a::{plus,times, one, zero}ˆ ′m ⇒ ′a ˆ ′n) ⇒ ′aˆ ′mˆ ′n
where matrix f = (χ i j . (f (axis j 1 ))$i)

lemma matrix id mat 1 : matrix id = mat 1
by (simp add : mat def matrix def axis def )

lemma matrix scaleR: (matrix ((∗R) r)) = mat r
by (simp add : mat def matrix def axis def if distrib cong : if cong)

lemma matrix vector mul linear [intro, simp]: linear (λx . A ∗v (x :: ′a::real algebra 1
ˆ ))
by (simp add : linear iff matrix vector mult def vec eq iff field simps sum distrib left

sum.distrib scaleR right .sum)

lemma vector matrix left distrib [algebra simps]:
shows (x + y) v∗ A = x v∗ A + y v∗ A
unfolding vector matrix mult def
by (simp add : algebra simps sum.distrib vec eq iff )

lemma matrix vector right distrib [algebra simps]:
A ∗v (x + y) = A ∗v x + A ∗v y
by (vector matrix vector mult def sum.distrib distrib left)

lemma matrix vector mult diff distrib [algebra simps]:
fixes A :: ′a::ring 1ˆ ′nˆ ′m
shows A ∗v (x − y) = A ∗v x − A ∗v y
by (vector matrix vector mult def sum subtractf right diff distrib)

lemma matrix vector mult scaleR[algebra simps]:
fixes A :: realˆ ′nˆ ′m
shows A ∗v (c ∗R x ) = c ∗R (A ∗v x )
using linear iff matrix vector mul linear by blast

lemma matrix vector mult 0 right [simp]: A ∗v 0 = 0
by (simp add : matrix vector mult def vec eq iff )

lemma matrix vector mult 0 [simp]: 0 ∗v w = 0
by (simp add : matrix vector mult def vec eq iff )

lemma matrix vector mult add rdistrib [algebra simps]:
(A + B) ∗v x = (A ∗v x ) + (B ∗v x )
by (vector matrix vector mult def sum.distrib distrib right)

lemma matrix vector mult diff rdistrib [algebra simps]:
fixes A :: ′a :: ring 1ˆ ′nˆ ′m
shows (A − B) ∗v x = (A ∗v x ) − (B ∗v x )
by (vector matrix vector mult def sum subtractf left diff distrib)
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lemma matrix vector column:
(A:: ′a::comm semiring 1ˆ ′nˆ ) ∗v x = sum (λi . (x$i) ∗s ((transpose A)$i))

(UNIV :: ′n set)
by (simp add : matrix vector mult def transpose def vec eq iff mult .commute)

1.8.14 Inverse matrices (not necessarily square)

definition
invertible(A:: ′a::semiring 1ˆ ′nˆ ′m) ←→ (∃A ′:: ′aˆ ′mˆ ′n. A ∗∗ A ′ = mat 1 ∧ A ′

∗∗ A = mat 1 )

definition
matrix inv(A:: ′a::semiring 1ˆ ′nˆ ′m) =
(SOME A ′:: ′aˆ ′mˆ ′n. A ∗∗ A ′ = mat 1 ∧ A ′ ∗∗ A = mat 1 )

lemma inj matrix vector mult :
fixes A:: ′a::fieldˆ ′nˆ ′m
assumes invertible A
shows inj ((∗v) A)
by (metis assms inj on inverseI invertible def matrix vector mul assoc matrix vector mul lid)

lemma scalar invertible:
fixes A :: ( ′a::real algebra 1 )ˆ ′mˆ ′n
assumes k 6= 0 and invertible A
shows invertible (k ∗R A)

proof −
obtain A ′ where A ∗∗ A ′ = mat 1 and A ′ ∗∗ A = mat 1
using assms unfolding invertible def by auto

with 〈k 6= 0 〉

have (k ∗R A) ∗∗ ((1/k) ∗R A ′) = mat 1 ((1/k) ∗R A ′) ∗∗ (k ∗R A) = mat 1
by (simp all add : assms matrix scalar ac)

thus invertible (k ∗R A)
unfolding invertible def by auto

qed

proposition scalar invertible iff :
fixes A :: ( ′a::real algebra 1 )ˆ ′mˆ ′n
assumes k 6= 0 and invertible A
shows invertible (k ∗R A) ←→ k 6= 0 ∧ invertible A
by (simp add : assms scalar invertible)

lemma vector transpose matrix [simp]: x v∗ transpose A = A ∗v x
unfolding transpose def vector matrix mult def matrix vector mult def
by simp

lemma transpose matrix vector [simp]: transpose A ∗v x = x v∗ A
unfolding transpose def vector matrix mult def matrix vector mult def
by simp
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lemma vector scalar commute:
fixes A :: ′a::{field}ˆ ′mˆ ′n
shows A ∗v (c ∗s x ) = c ∗s (A ∗v x )
by (simp add : vector scalar mult def matrix vector mult def mult ac sum distrib left)

lemma scalar vector matrix assoc:
fixes k :: ′a::{field} and x :: ′a::{field}ˆ ′n and A :: ′aˆ ′mˆ ′n
shows (k ∗s x ) v∗ A = k ∗s (x v∗ A)
by (metis transpose matrix vector vector scalar commute)

lemma vector matrix mult 0 [simp]: 0 v∗ A = 0
unfolding vector matrix mult def by (simp add : zero vec def )

lemma vector matrix mult 0 right [simp]: x v∗ 0 = 0
unfolding vector matrix mult def by (simp add : zero vec def )

lemma vector matrix mul rid [simp]:
fixes v :: ( ′a::semiring 1 )ˆ ′n
shows v v∗ mat 1 = v
by (metis matrix vector mul lid transpose mat vector transpose matrix )

lemma scaleR vector matrix assoc:
fixes k :: real and x :: realˆ ′n and A :: realˆ ′mˆ ′n
shows (k ∗R x ) v∗ A = k ∗R (x v∗ A)
by (metis matrix vector mult scaleR transpose matrix vector)

proposition vector scaleR matrix ac:
fixes k :: real and x :: realˆ ′n and A :: realˆ ′mˆ ′n
shows x v∗ (k ∗R A) = k ∗R (x v∗ A)

proof −
have x v∗ (k ∗R A) = (k ∗R x ) v∗ A
unfolding vector matrix mult def
by (simp add : algebra simps)

with scaleR vector matrix assoc
show x v∗ (k ∗R A) = k ∗R (x v∗ A)
by auto

qed

end

1.9 Linear Algebra on Finite Cartesian Products

theory Cartesian Space
imports
Finite Cartesian Product Linear Algebra

begin
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1.9.1 Type ( ′a, ′n) vec and fields as vector spaces

definition cart basis = {axis i 1 | i . i∈UNIV }

lemma finite cart basis: finite (cart basis) unfolding cart basis def
using finite Atleast Atmost nat by fastforce

lemma card cart basis: card (cart basis::( ′a::zero neq oneˆ ′i) set) = CARD( ′i)
unfolding cart basis def Setcompr eq image
by (rule card image) (auto simp: inj on def axis eq axis)

interpretation vec: vector space (∗s)
by unfold locales (vector algebra simps)+

lemma independent cart basis:
vec.independent (cart basis)

proof (rule vec.independent if scalars zero)
show finite (cart basis) using finite cart basis .
fix f ::( ′a, ′b) vec ⇒ ′a and x ::( ′a, ′b) vec
assume eq 0 : (

∑
x∈cart basis. f x ∗s x ) = 0 and x in: x ∈ cart basis

obtain i where x : x = axis i 1 using x in unfolding cart basis def by auto
have sum eq 0 : (

∑
x∈(cart basis) − {x}. f x ∗ (x $ i)) = 0

proof (rule sum.neutral , rule ballI )
fix xa assume xa: xa ∈ cart basis − {x}
obtain a where a: xa = axis a 1 and a not i : a 6= i
using xa x unfolding cart basis def by auto

have xa $ i = 0 unfolding a axis def using a not i by auto
thus f xa ∗ xa $ i = 0 by simp

qed
have 0 = (

∑
x∈cart basis. f x ∗s x ) $ i using eq 0 by simp

also have ... = (
∑

x∈cart basis. (f x ∗s x ) $ i) unfolding sum component ..
also have ... = (

∑
x∈cart basis. f x ∗ (x $ i)) unfolding vector smult component

..
also have ... = f x ∗ (x $ i) + (

∑
x∈(cart basis) − {x}. f x ∗ (x $ i))

by (rule sum.remove[OF finite cart basis x in])
also have ... = f x ∗ (x $ i) unfolding sum eq 0 by simp
also have ... = f x unfolding x axis def by auto
finally show f x = 0 ..

qed

lemma span cart basis:
vec.span (cart basis) = UNIV

proof (auto)
fix x ::( ′a, ′b) vec
let ?f=λv . x $ (THE i . v = axis i 1 )
show x ∈ vec.span (cart basis)
apply (unfold vec.span finite[OF finite cart basis])
apply (rule image eqI [of ?f ])
apply (subst vec eq iff )
apply clarify
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proof −
fix i :: ′b
let ?w = axis i (1 :: ′a)
have the eq i : (THE a. ?w = axis a 1 ) = i
by (rule the equality , auto simp: axis eq axis)

have sum eq 0 : (
∑

v∈(cart basis) − {?w}. x $ (THE i . v = axis i 1 ) ∗ v $ i)
= 0

proof (rule sum.neutral , rule ballI )
fix xa::( ′a, ′b) vec
assume xa: xa ∈ cart basis − {?w}
obtain j where j : xa = axis j 1 and i not j : i 6= j using xa unfolding

cart basis def by auto
have the eq j : (THE i . xa = axis i 1 ) = j
proof (rule the equality)
show xa = axis j 1 using j .
show

∧
i . xa = axis i 1 =⇒ i = j by (metis axis eq axis j zero neq one)

qed
show x $ (THE i . xa = axis i 1 ) ∗ xa $ i = 0
apply (subst (2 ) j )
unfolding the eq j unfolding axis def using i not j by simp

qed
have (

∑
v∈cart basis. x $ (THE i . v = axis i 1 ) ∗s v) $ i =

(
∑

v∈cart basis. (x $ (THE i . v = axis i 1 ) ∗s v) $ i) unfolding sum component
..

also have ... = (
∑

v∈cart basis. x $ (THE i . v = axis i 1 ) ∗ v $ i)
unfolding vector smult component ..

also have ... = x $ (THE a. ?w = axis a 1 ) ∗ ?w $ i + (
∑

v∈(cart basis) −
{?w}. x $ (THE i . v = axis i 1 ) ∗ v $ i)

by (rule sum.remove[OF finite cart basis], auto simp add : cart basis def )
also have ... = x $ (THE a. ?w = axis a 1 ) ∗ ?w $ i unfolding sum eq 0 by

simp
also have ... = x $ i unfolding the eq i unfolding axis def by auto
finally show x $ i = (

∑
v∈cart basis. x $ (THE i . v = axis i 1 ) ∗s v) $ i by

simp
qed simp

qed

interpretation vec: finite dimensional vector space (∗s) cart basis
by (unfold locales, auto simp add : finite cart basis independent cart basis span cart basis)

lemma matrix vector mul linear gen[intro, simp]:
Vector Spaces.linear (∗s) (∗s) ((∗v) A)
by unfold locales
(vector matrix vector mult def sum.distrib algebra simps)+

lemma span vec eq : vec.span X = span X
and dim vec eq : vec.dim X = dim X
and dependent vec eq : vec.dependent X = dependent X
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and subspace vec eq : vec.subspace X = subspace X
for X ::(realˆ ′n) set
unfolding span raw def dim raw def dependent raw def subspace raw def
by (auto simp: scalar mult eq scaleR)

lemma linear componentwise:
fixes f :: ′a::field ˆ ′m ⇒ ′a ˆ ′n
assumes lf : Vector Spaces.linear (∗s) (∗s) f
shows (f x )$j = sum (λi . (x$i) ∗ (f (axis i 1 )$j )) (UNIV :: ′m set) (is ?lhs =

?rhs)
proof −
interpret lf : Vector Spaces.linear (∗s) (∗s) f
using lf .

let ?M = (UNIV :: ′m set)
let ?N = (UNIV :: ′n set)
have fM : finite ?M by simp
have ?rhs = (sum (λi . (x$i) ∗s (f (axis i 1 ))) ?M )$j
unfolding sum component by simp

then show ?thesis
unfolding lf .sum[symmetric] lf .scale[symmetric]
unfolding basis expansion by auto

qed

interpretation vec: Vector Spaces.linear (∗s) (∗s) (∗v) A
using matrix vector mul linear gen.

interpretation vec: finite dimensional vector space pair (∗s) cart basis (∗s) cart basis
..

lemma matrix works:
assumes lf : Vector Spaces.linear (∗s) (∗s) f
shows matrix f ∗v x = f (x :: ′a::field ˆ ′n)
apply (simp add : matrix def matrix vector mult def vec eq iff mult .commute)
apply clarify
apply (rule linear componentwise[OF lf , symmetric])
done

lemma matrix of matrix vector mul [simp]: matrix (λx . A ∗v (x :: ′a::field ˆ ′n))
= A
by (simp add : matrix eq matrix works)

lemma matrix compose gen:
assumes lf : Vector Spaces.linear (∗s) (∗s) (f :: ′a::{field}ˆ ′n ⇒ ′aˆ ′m)
and lg : Vector Spaces.linear (∗s) (∗s) (g :: ′aˆ ′m ⇒ ′aˆ )

shows matrix (g o f ) = matrix g ∗∗ matrix f
using lf lg Vector Spaces.linear compose[OF lf lg ] matrix works[OF Vector Spaces.linear compose[OF

lf lg ]]
by (simp add : matrix eq matrix works matrix vector mul assoc[symmetric] o def )
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lemma matrix compose:
assumes linear (f ::realˆ ′n ⇒ realˆ ′m) linear (g ::realˆ ′m ⇒ realˆ )
shows matrix (g o f ) = matrix g ∗∗ matrix f
using matrix compose gen[of f g ] assms
by (simp add : linear def scalar mult eq scaleR)

lemma left invertible transpose:
(∃ (B). B ∗∗ transpose (A) = mat (1 :: ′a::comm semiring 1 )) ←→ (∃ (B). A ∗∗

B = mat 1 )
by (metis matrix transpose mul transpose mat transpose transpose)

lemma right invertible transpose:
(∃ (B). transpose (A) ∗∗ B = mat (1 :: ′a::comm semiring 1 )) ←→ (∃ (B). B ∗∗

A = mat 1 )
by (metis matrix transpose mul transpose mat transpose transpose)

lemma linear matrix vector mul eq :
Vector Spaces.linear (∗s) (∗s) f ←→ linear (f :: realˆ ′n ⇒ real ˆ ′m)
by (simp add : scalar mult eq scaleR linear def )

lemma matrix vector mul [simp]:
Vector Spaces.linear (∗s) (∗s) g =⇒ (λy . matrix g ∗v y) = g
linear f =⇒ (λx . matrix f ∗v x ) = f
bounded linear f =⇒ (λx . matrix f ∗v x ) = f
for f :: realˆ ′n ⇒ real ˆ ′m
by (simp all add : ext matrix works linear matrix vector mul eq linear linear)

lemma matrix left invertible injective:
fixes A :: ′a::fieldˆ ′nˆ ′m
shows (∃B . B ∗∗ A = mat 1 ) ←→ inj ((∗v) A)

proof safe
fix B
assume B : B ∗∗ A = mat 1
show inj ((∗v) A)
unfolding inj on def
by (metis B matrix vector mul assoc matrix vector mul lid)

next
assume inj ((∗v) A)
from vec.linear injective left inverse[OF matrix vector mul linear gen this]
obtain g where Vector Spaces.linear (∗s) (∗s) g and g : g ◦ (∗v) A = id
by blast

have matrix g ∗∗ A = mat 1
by (metis matrix vector mul linear gen 〈Vector Spaces.linear (∗s) (∗s) g〉 g

matrix compose gen
matrix eq matrix id mat 1 matrix vector mul(1 ))

then show ∃B . B ∗∗ A = mat 1
by metis

qed



Cartesian Space.thy 211

lemma matrix left invertible ker :
(∃B . (B :: ′a::{field} ˆ ′mˆ ′n) ∗∗ (A:: ′a::{field}ˆ ′nˆ ′m) = mat 1 ) ←→ (∀ x . A ∗v

x = 0 −→ x = 0 )
unfolding matrix left invertible injective
using vec.inj on iff eq 0 [OF vec.subspace UNIV , of A]
by (simp add : inj on def )

lemma matrix right invertible surjective:
(∃B . (A:: ′a::fieldˆ ′nˆ ′m) ∗∗ (B :: ′a::fieldˆ ′mˆ ′n) = mat 1 ) ←→ surj (λx . A ∗v x )

proof −
{ fix B :: ′a ˆ ′mˆ ′n
assume AB : A ∗∗ B = mat 1
{ fix x :: ′a ˆ ′m
have A ∗v (B ∗v x ) = x
by (simp add : matrix vector mul assoc AB) }

hence surj ((∗v) A) unfolding surj def by metis }
moreover
{ assume sf : surj ((∗v) A)
from vec.linear surjective right inverse[OF this]
obtain g :: ′a ˆ ′m ⇒ ′a ˆ ′n where g : Vector Spaces.linear (∗s) (∗s) g (∗v) A

◦ g = id
by blast

have A ∗∗ (matrix g) = mat 1
unfolding matrix eq matrix vector mul lid
matrix vector mul assoc[symmetric] matrix works[OF g(1 )]

using g(2 ) unfolding o def fun eq iff id def
.

hence ∃B . A ∗∗ (B :: ′aˆ ′mˆ ′n) = mat 1 by blast
}
ultimately show ?thesis unfolding surj def by blast

qed

lemma matrix left invertible independent columns:
fixes A :: ′a::{field}ˆ ′nˆ ′m
shows (∃ (B :: ′a ˆ ′mˆ ′n). B ∗∗ A = mat 1 ) ←→

(∀ c. sum (λi . c i ∗s column i A) (UNIV :: ′n set) = 0 −→ (∀ i . c i = 0 ))
(is ?lhs ←→ ?rhs)

proof −
let ?U = UNIV :: ′n set
{ assume k : ∀ x . A ∗v x = 0 −→ x = 0
{ fix c i
assume c: sum (λi . c i ∗s column i A) ?U = 0 and i : i ∈ ?U
let ?x = χ i . c i
have th0 :A ∗v ?x = 0
using c
by (vector matrix mult sum)

from k [rule format , OF th0 ] i
have c i = 0 by (vector vec eq iff )}
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hence ?rhs by blast }
moreover
{ assume H : ?rhs
{ fix x assume x : A ∗v x = 0
let ?c = λi . ((x$i ):: ′a)
from H [rule format , of ?c, unfolded matrix mult sum[symmetric], OF x ]
have x = 0 by vector }

}
ultimately show ?thesis unfolding matrix left invertible ker by auto

qed

lemma matrix right invertible independent rows:
fixes A :: ′a::{field}ˆ ′nˆ ′m
shows (∃ (B :: ′aˆ ′mˆ ′n). A ∗∗ B = mat 1 ) ←→
(∀ c. sum (λi . c i ∗s row i A) (UNIV :: ′m set) = 0 −→ (∀ i . c i = 0 ))

unfolding left invertible transpose[symmetric]
matrix left invertible independent columns

by (simp add :)

lemma matrix right invertible span columns:
(∃ (B :: ′a::field ˆ ′nˆ ′m). (A:: ′a ˆ ′mˆ ′n) ∗∗ B = mat 1 ) ←→
vec.span (columns A) = UNIV (is ?lhs = ?rhs)

proof −
let ?U = UNIV :: ′m set
have fU : finite ?U by simp
have lhseq : ?lhs ←→ (∀ y . ∃ (x :: ′aˆ ′m). sum (λi . (x$i) ∗s column i A) ?U = y)
unfolding matrix right invertible surjective matrix mult sum surj def
by (simp add : eq commute)

have rhseq : ?rhs ←→ (∀ x . x ∈ vec.span (columns A)) by blast
{ assume h: ?lhs
{ fix x :: ′a ˆ ′n
from h[unfolded lhseq , rule format , of x ] obtain y :: ′a ˆ ′m
where y : sum (λi . (y$i) ∗s column i A) ?U = x by blast

have x ∈ vec.span (columns A)
unfolding y [symmetric] scalar mult eq scaleR

proof (rule vec.span sum [OF vec.span scale])
show column i A ∈ vec.span (columns A) for i
using columns def vec.span superset by auto

qed
}
then have ?rhs unfolding rhseq by blast }

moreover
{ assume h:?rhs
let ?P = λ(y :: ′a ˆ ′n). ∃ (x :: ′aˆ ′m). sum (λi . (x$i) ∗s column i A) ?U = y
{ fix y
have y ∈ vec.span (columns A)
unfolding h by blast

then have ?P y
proof (induction rule: vec.span induct alt)
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case base
then show ?case
by (metis (full types) matrix mult sum matrix vector mult 0 right)

next
case (step c y1 y2 )
from step obtain i where i : i ∈ ?U y1 = column i A
unfolding columns def by blast

obtain x :: ′a ˆ ′m where x : sum (λi . (x$i) ∗s column i A) ?U = y2
using step by blast

let ?x = (χ j . if j = i then c + (x$i) else (x$j )):: ′aˆ ′m
show ?case
proof (rule exI [where x= ?x ], vector , auto simp add : i x [symmetric]

if distrib distrib left if distribR cong del : if weak cong)
fix j
have th: ∀ xa ∈ ?U . (if xa = i then (c + (x$i)) ∗ ((column xa A)$j )
else (x$xa) ∗ ((column xa A$j ))) = (if xa = i then c ∗ ((column i A)$j )

else 0 ) + ((x$xa) ∗ ((column xa A)$j ))
using i(1 ) by (simp add : field simps)

have sum (λxa. if xa = i then (c + (x$i)) ∗ ((column xa A)$j )
else (x$xa) ∗ ((column xa A$j ))) ?U = sum (λxa. (if xa = i then c ∗

((column i A)$j ) else 0 ) + ((x$xa) ∗ ((column xa A)$j ))) ?U
by (rule sum.cong [OF refl ]) (use th in blast)

also have . . . = sum (λxa. if xa = i then c ∗ ((column i A)$j ) else 0 ) ?U
+ sum (λxa. ((x$xa) ∗ ((column xa A)$j ))) ?U

by (simp add : sum.distrib)
also have . . . = c ∗ ((column i A)$j ) + sum (λxa. ((x$xa) ∗ ((column xa

A)$j ))) ?U
unfolding sum.delta[OF fU ]
using i(1 ) by simp

finally show sum (λxa. if xa = i then (c + (x$i)) ∗ ((column xa A)$j )
else (x$xa) ∗ ((column xa A$j ))) ?U = c ∗ ((column i A)$j ) + sum

(λxa. ((x$xa) ∗ ((column xa A)$j ))) ?U .
qed

qed
}
then have ?lhs unfolding lhseq ..

}
ultimately show ?thesis by blast

qed

lemma matrix left invertible span rows gen:
(∃ (B :: ′aˆ ′mˆ ′n). B ∗∗ (A:: ′a::fieldˆ ′nˆ ′m) = mat 1 ) ←→ vec.span (rows A) =

UNIV
unfolding right invertible transpose[symmetric]
unfolding columns transpose[symmetric]
unfolding matrix right invertible span columns
..

lemma matrix left invertible span rows:
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(∃ (B ::realˆ ′mˆ ′n). B ∗∗ (A::realˆ ′nˆ ′m) = mat 1 ) ←→ span (rows A) = UNIV
using matrix left invertible span rows gen[of A] by (simp add : span vec eq)

lemma matrix left right inverse:
fixes A A ′ :: ′a::{field}ˆ ′nˆ ′n
shows A ∗∗ A ′ = mat 1 ←→ A ′ ∗∗ A = mat 1

proof −
{ fix A A ′ :: ′a ˆ ′nˆ ′n
assume AA ′: A ∗∗ A ′ = mat 1
have sA: surj ((∗v) A)
using AA ′ matrix right invertible surjective by auto

from vec.linear surjective isomorphism[OF matrix vector mul linear gen sA]
obtain f ′ :: ′a ˆ ′n ⇒ ′a ˆ ′n
where f ′: Vector Spaces.linear (∗s) (∗s) f ′ ∀ x . f ′ (A ∗v x ) = x ∀ x . A ∗v f ′

x = x by blast
have th: matrix f ′ ∗∗ A = mat 1
by (simp add : matrix eq matrix works[OF f ′(1 )]

matrix vector mul assoc[symmetric] f ′(2 )[rule format ])
hence (matrix f ′ ∗∗ A) ∗∗ A ′ = mat 1 ∗∗ A ′ by simp
hence matrix f ′ = A ′

by (simp add : matrix mul assoc[symmetric] AA ′)
hence matrix f ′ ∗∗ A = A ′ ∗∗ A by simp
hence A ′ ∗∗ A = mat 1 by (simp add : th)

}
then show ?thesis by blast

qed

lemma invertible left inverse:
fixes A :: ′a::{field}ˆ ′nˆ ′n
shows invertible A ←→ (∃ (B :: ′aˆ ′nˆ ′n). B ∗∗ A = mat 1 )
by (metis invertible def matrix left right inverse)

lemma invertible right inverse:
fixes A :: ′a::{field}ˆ ′nˆ ′n
shows invertible A ←→ (∃ (B :: ′aˆ ′nˆ ′n). A∗∗ B = mat 1 )
by (metis invertible def matrix left right inverse)

lemma invertible mult :
assumes inv A: invertible A
and inv B : invertible B
shows invertible (A∗∗B)

proof −
obtain A ′ where AA ′: A ∗∗ A ′ = mat 1 and A ′A: A ′ ∗∗ A = mat 1
using inv A unfolding invertible def by blast

obtain B ′ where BB ′: B ∗∗ B ′ = mat 1 and B ′B : B ′ ∗∗ B = mat 1
using inv B unfolding invertible def by blast

show ?thesis
proof (unfold invertible def , rule exI [of B ′∗∗A ′], rule conjI )
have A ∗∗ B ∗∗ (B ′ ∗∗ A ′) = A ∗∗ (B ∗∗ (B ′ ∗∗ A ′))
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using matrix mul assoc[of A B (B ′ ∗∗ A ′), symmetric] .
also have ... = A ∗∗ (B ∗∗ B ′ ∗∗ A ′) unfolding matrix mul assoc[of B B ′ A ′]

..
also have ... = A ∗∗ (mat 1 ∗∗ A ′) unfolding BB ′ ..
also have ... = A ∗∗ A ′ unfolding matrix mul lid ..
also have ... = mat 1 unfolding AA ′ ..
finally show A ∗∗ B ∗∗ (B ′ ∗∗ A ′) = mat (1 :: ′a) .
have B ′ ∗∗ A ′ ∗∗ (A ∗∗ B) = B ′ ∗∗ (A ′ ∗∗ (A ∗∗ B)) using matrix mul assoc[of

B ′ A ′ (A ∗∗ B), symmetric] .
also have ... = B ′ ∗∗ (A ′ ∗∗ A ∗∗ B) unfolding matrix mul assoc[of A ′ A B ]

..
also have ... = B ′ ∗∗ (mat 1 ∗∗ B) unfolding A ′A ..
also have ... = B ′ ∗∗ B unfolding matrix mul lid ..
also have ... = mat 1 unfolding B ′B ..
finally show B ′ ∗∗ A ′ ∗∗ (A ∗∗ B) = mat 1 .

qed
qed

lemma transpose invertible:
fixes A :: realˆ ′nˆ ′n
assumes invertible A
shows invertible (transpose A)
by (meson assms invertible def matrix left right inverse right invertible transpose)

lemma vector matrix mul assoc:
fixes v :: ( ′a::comm semiring 1 )ˆ ′n
shows (v v∗ M ) v∗ N = v v∗ (M ∗∗ N )

proof −
from matrix vector mul assoc
have transpose N ∗v (transpose M ∗v v) = (transpose N ∗∗ transpose M ) ∗v v

by fast
thus (v v∗ M ) v∗ N = v v∗ (M ∗∗ N )
by (simp add : matrix transpose mul [symmetric])

qed

lemma matrix scaleR vector ac:
fixes A :: realˆ( ′m::finite)ˆ ′n
shows A ∗v (k ∗R v) = k ∗R A ∗v v
by (metis matrix vector mult scaleR transpose scalar vector scaleR matrix ac vec-

tor transpose matrix )

lemma scaleR matrix vector assoc:
fixes A :: realˆ( ′m::finite)ˆ ′n
shows k ∗R (A ∗v v) = k ∗R A ∗v v
by (metis matrix scaleR vector ac matrix vector mult scaleR)

locale linear first finite dimensional vector space =
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l?: Vector Spaces.linear scaleB scaleC f +
B?: finite dimensional vector space scaleB BasisB
for scaleB :: ( ′a::field => ′b::ab group add => ′b) (infixr ∗b 75 )
and scaleC :: ( ′a => ′c::ab group add => ′c) (infixr ∗c 75 )
and BasisB :: ( ′b set)
and f :: ( ′b=> ′c)

lemma vec dim card : vec.dim (UNIV ::( ′a::{field}ˆ ′n) set) = CARD ( ′n)
proof −
let ?f=λi :: ′n. axis i (1 :: ′a)
have vec.dim (UNIV ::( ′a::{field}ˆ ′n) set) = card (cart basis::( ′aˆ ′n) set)
unfolding vec.dim UNIV ..

also have ... = card ({i . i∈ UNIV }::( ′n) set)
proof (rule bij betw same card [of ?f , symmetric], unfold bij betw def , auto)
show inj (λi :: ′n. axis i (1 :: ′a)) by (simp add : inj on def axis eq axis)
fix i :: ′n
show axis i 1 ∈ cart basis unfolding cart basis def by auto
fix x :: ′aˆ ′n
assume x ∈ cart basis
thus x ∈ range (λi . axis i 1 ) unfolding cart basis def by auto

qed
also have ... = CARD( ′n) by auto
finally show ?thesis .

qed

interpretation vector space over itself : vector space (∗) :: ′a::field ⇒ ′a ⇒ ′a
by unfold locales (simp all add : algebra simps)

lemmas [simp del ] = vector space over itself .scale scale

interpretation vector space over itself : finite dimensional vector space
(∗) :: ′a::field => ′a => ′a {1}
by unfold locales (auto simp: vector space over itself .span singleton)

lemma dimension eq 1 [code unfold ]: vector space over itself .dimension TYPE ( ′a::field)=
1
unfolding vector space over itself .dimension def by simp

lemma dim subset UNIV cart gen:
fixes S :: ( ′a::fieldˆ ′n) set
shows vec.dim S ≤ CARD( ′n)
by (metis vec.dim eq full vec.dim subset UNIV vec.span UNIV vec dim card)

lemma dim subset UNIV cart :
fixes S :: (realˆ ′n) set
shows dim S ≤ CARD( ′n)
using dim subset UNIV cart gen[of S ] by (simp add : dim vec eq)

Two sometimes fruitful ways of looking at matrix-vector multiplication.
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lemma matrix mult dot : A ∗v x = (χ i . inner (A$i) x )
by (simp add : matrix vector mult def inner vec def )

lemma adjoint matrix : adjoint(λx . (A::realˆ ′nˆ ′m) ∗v x ) = (λx . transpose A ∗v
x )
apply (rule adjoint unique)
apply (simp add : transpose def inner vec def matrix vector mult def
sum distrib right sum distrib left)

apply (subst sum.swap)
apply (simp add : ac simps)
done

lemma matrix adjoint : assumes lf : linear (f :: realˆ ′n ⇒ real ˆ ′m)
shows matrix (adjoint f ) = transpose(matrix f )

proof −
have matrix (adjoint f ) = matrix (adjoint ((∗v) (matrix f )))
by (simp add : lf )

also have . . . = transpose(matrix f )
unfolding adjoint matrix matrix of matrix vector mul
apply rule
done

finally show ?thesis .
qed

1.9.2 Rank of a matrix

Equivalence of row and column rank is taken from George Mackiw’s paper,
Mathematics Magazine 1995, p. 285.

lemma matrix vector mult in columnspace gen:
fixes A :: ′a::fieldˆ ′nˆ ′m
shows (A ∗v x ) ∈ vec.span(columns A)
apply (simp add : matrix vector column columns def transpose def column def )
apply (intro vec.span sum vec.span scale)
apply (force intro: vec.span base)
done

lemma matrix vector mult in columnspace:
fixes A :: realˆ ′nˆ ′m
shows (A ∗v x ) ∈ span(columns A)
using matrix vector mult in columnspace gen[of A x ] by (simp add : span vec eq)

lemma subspace orthogonal to vector : subspace {y . orthogonal x y}
by (simp add : subspace def orthogonal clauses)

lemma orthogonal nullspace rowspace:
fixes A :: realˆ ′nˆ ′m
assumes 0 : A ∗v x = 0 and y : y ∈ span(rows A)
shows orthogonal x y
using y
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proof (induction rule: span induct)
case base
then show ?case
by (simp add : subspace orthogonal to vector)

next
case (step v)
then obtain i where v = row i A
by (auto simp: rows def )

with 0 show ?case
unfolding orthogonal def inner vec def matrix vector mult def row def
by (simp add : mult .commute) (metis (no types) vec lambda beta zero index )

qed

lemma nullspace inter rowspace:
fixes A :: realˆ ′nˆ ′m
shows A ∗v x = 0 ∧ x ∈ span(rows A) ←→ x = 0
using orthogonal nullspace rowspace orthogonal self span zero matrix vector mult 0 right
by blast

lemma matrix vector mul injective on rowspace:
fixes A :: realˆ ′nˆ ′m
shows [[A ∗v x = A ∗v y ; x ∈ span(rows A); y ∈ span(rows A)]] =⇒ x = y
using nullspace inter rowspace [of A x−y ]
by (metis diff eq diff eq diff self matrix vector mult diff distrib span diff )

definition rank :: ′a::fieldˆ ′nˆ ′m=>nat
where row rank def gen: rank A ≡ vec.dim(rows A)

lemma row rank def : rank A = dim (rows A) for A::realˆ ′nˆ ′m
by (auto simp: row rank def gen dim vec eq)

lemma dim rows le dim columns:
fixes A :: realˆ ′nˆ ′m
shows dim(rows A) ≤ dim(columns A)

proof −
have dim (span (rows A)) ≤ dim (span (columns A))
proof −
obtain B where independent B span(rows A) ⊆ span B

and B : B ⊆ span(rows A)card B = dim (span(rows A))
using basis exists [of span(rows A)] by metis

with span subspace have eq : span B = span(rows A)
by auto

then have inj : inj on ((∗v) A) (span B)
by (simp add : inj on def matrix vector mul injective on rowspace)

then have ind : independent ((∗v) A ‘ B)
by (rule linear independent injective image [OF Finite Cartesian Product .matrix vector mul linear

〈independent B 〉])
have dim (span (rows A)) ≤ card ((∗v) A ‘ B)
unfolding B(2 )[symmetric]
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using inj
by (auto simp: card image inj on subset span superset)

also have . . . ≤ dim (span (columns A))
using ind

by (rule independent card le dim) (auto intro!: matrix vector mult in columnspace)
finally show ?thesis .

qed
then show ?thesis
by (simp)

qed

lemma column rank def :
fixes A :: realˆ ′nˆ ′m
shows rank A = dim(columns A)
unfolding row rank def
by (metis columns transpose dim rows le dim columns le antisym rows transpose)

lemma rank transpose:
fixes A :: realˆ ′nˆ ′m
shows rank(transpose A) = rank A
by (metis column rank def row rank def rows transpose)

lemma matrix vector mult basis:
fixes A :: realˆ ′nˆ ′m
shows A ∗v (axis k 1 ) = column k A
by (simp add : cart eq inner axis column def matrix mult dot)

lemma columns image basis:
fixes A :: realˆ ′nˆ ′m
shows columns A = (∗v) A ‘ (range (λi . axis i 1 ))
by (force simp: columns def matrix vector mult basis [symmetric])

lemma rank dim range:
fixes A :: realˆ ′nˆ ′m
shows rank A = dim(range (λx . A ∗v x ))
unfolding column rank def

proof (rule span eq dim)
have span (columns A) ⊆ span (range ((∗v) A)) (is ?l ⊆ ?r)
by (simp add : columns image basis image subsetI span mono)

then show ?l = ?r
by (metis (no types, lifting) image subset iff matrix vector mult in columnspace

span eq span span)
qed

lemma rank bound :
fixes A :: realˆ ′nˆ ′m
shows rank A ≤ min CARD( ′m) (CARD( ′n))
by (metis (mono tags, lifting) dim subset UNIV cart min.bounded iff

column rank def row rank def )
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lemma full rank injective:
fixes A :: realˆ ′nˆ ′m
shows rank A = CARD( ′n) ←→ inj ((∗v) A)
by (simp add : matrix left invertible injective [symmetric] matrix left invertible span rows

row rank def
dim eq full [symmetric] card cart basis vec.dimension def )

lemma full rank surjective:
fixes A :: realˆ ′nˆ ′m
shows rank A = CARD( ′m) ←→ surj ((∗v) A)
by (simp add : matrix right invertible surjective [symmetric] left invertible transpose

[symmetric]
matrix left invertible injective full rank injective [symmetric] rank transpose)

lemma rank I : rank(mat 1 ::realˆ ′nˆ ′n) = CARD( ′n)
by (simp add : full rank injective inj on def )

lemma less rank noninjective:
fixes A :: realˆ ′nˆ ′m
shows rank A < CARD( ′n) ←→ ¬ inj ((∗v) A)

using less le rank bound by (auto simp: full rank injective [symmetric])

lemma matrix nonfull linear equations eq :
fixes A :: realˆ ′nˆ ′m
shows (∃ x . (x 6= 0 ) ∧ A ∗v x = 0 ) ←→ rank A 6= CARD( ′n)
by (meson matrix left invertible injective full rank injective matrix left invertible ker)

lemma rank eq 0 : rank A = 0 ←→ A = 0 and rank 0 [simp]: rank (0 ::realˆ ′nˆ ′m)
= 0
for A :: realˆ ′nˆ ′m
by (auto simp: rank dim range matrix eq)

lemma rank mul le right :
fixes A :: realˆ ′nˆ ′m and B :: realˆ ′pˆ ′n
shows rank(A ∗∗ B) ≤ rank B

proof −
have rank(A ∗∗ B) ≤ dim ((∗v) A ‘ range ((∗v) B))
by (auto simp: rank dim range image comp o def matrix vector mul assoc)

also have . . . ≤ rank B
by (simp add : rank dim range dim image le)

finally show ?thesis .
qed

lemma rank mul le left :
fixes A :: realˆ ′nˆ ′m and B :: realˆ ′pˆ ′n
shows rank(A ∗∗ B) ≤ rank A
by (metis matrix transpose mul rank mul le right rank transpose)
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1.9.3 Lemmas for working on realˆ1/2/3/4

lemma exhaust 2 :
fixes x :: 2
shows x = 1 ∨ x = 2

proof (induct x )
case (of int z )
then have 0 ≤ z and z < 2 by simp all
then have z = 0 | z = 1 by arith
then show ?case by auto

qed

lemma forall 2 : (∀ i ::2 . P i) ←→ P 1 ∧ P 2
by (metis exhaust 2 )

lemma exhaust 3 :
fixes x :: 3
shows x = 1 ∨ x = 2 ∨ x = 3

proof (induct x )
case (of int z )
then have 0 ≤ z and z < 3 by simp all
then have z = 0 ∨ z = 1 ∨ z = 2 by arith
then show ?case by auto

qed

lemma forall 3 : (∀ i ::3 . P i) ←→ P 1 ∧ P 2 ∧ P 3
by (metis exhaust 3 )

lemma exhaust 4 :
fixes x :: 4
shows x = 1 ∨ x = 2 ∨ x = 3 ∨ x = 4

proof (induct x )
case (of int z )
then have 0 ≤ z and z < 4 by simp all
then have z = 0 ∨ z = 1 ∨ z = 2 ∨ z = 3 by arith
then show ?case by auto

qed

lemma forall 4 : (∀ i ::4 . P i) ←→ P 1 ∧ P 2 ∧ P 3 ∧ P 4
by (metis exhaust 4 )

lemma UNIV 1 [simp]: UNIV = {1 ::1}
by (auto simp add : num1 eq iff )

lemma UNIV 2 : UNIV = {1 ::2 , 2 ::2}
using exhaust 2 by auto

lemma UNIV 3 : UNIV = {1 ::3 , 2 ::3 , 3 ::3}
using exhaust 3 by auto
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lemma UNIV 4 : UNIV = {1 ::4 , 2 ::4 , 3 ::4 , 4 ::4}
using exhaust 4 by auto

lemma sum 1 : sum f (UNIV ::1 set) = f 1
unfolding UNIV 1 by simp

lemma sum 2 : sum f (UNIV ::2 set) = f 1 + f 2
unfolding UNIV 2 by simp

lemma sum 3 : sum f (UNIV ::3 set) = f 1 + f 2 + f 3
unfolding UNIV 3 by (simp add : ac simps)

lemma sum 4 : sum f (UNIV ::4 set) = f 1 + f 2 + f 3 + f 4
unfolding UNIV 4 by (simp add : ac simps)

1.9.4 The collapse of the general concepts to dimension one

lemma vector one: (x :: ′a ˆ1 ) = (χ i . (x$1 ))
by (simp add : vec eq iff )

lemma forall one: (∀ (x :: ′a ˆ1 ). P x ) ←→ (∀ x . P(χ i . x ))
apply auto
apply (erule tac x= x$1 in allE )
apply (simp only : vector one[symmetric])
done

lemma norm vector 1 : norm (x :: ˆ1 ) = norm (x$1 )
by (simp add : norm vec def )

lemma dist vector 1 :
fixes x :: ′a::real normed vectorˆ1
shows dist x y = dist (x$1 ) (y$1 )
by (simp add : dist norm norm vector 1 )

lemma norm real : norm(x ::real ˆ 1 ) = |x$1 |
by (simp add : norm vector 1 )

lemma dist real : dist(x ::real ˆ 1 ) y = |(x$1 ) − (y$1 )|
by (auto simp add : norm real dist norm)

1.9.5 Routine results connecting the types (real , 1 ) vec and
real

lemma vector one nth [simp]:
fixes x :: ′aˆ1 shows vec (x $ 1 ) = x
by (metis vec def vector one)

lemma tendsto at within vector 1 :
fixes S :: ′a :: metric space set
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assumes (f −−−→ fx ) (at x within S )
shows ((λy :: ′aˆ1 . χ i . f (y $ 1 )) −−−→ (vec fx :: ′aˆ1 )) (at (vec x ) within vec ‘

S )
proof (rule topological tendstoI )
fix T :: ( ′aˆ1 ) set
assume open T vec fx ∈ T
have ∀ F x in at x within S . f x ∈ (λx . x $ 1 ) ‘ T
using 〈open T 〉 〈vec fx ∈ T 〉 assms open image vec nth tendsto def by fastforce

then show ∀ F x :: ′aˆ1 in at (vec x ) within vec ‘ S . (χ i . f (x $ 1 )) ∈ T
unfolding eventually at dist norm [symmetric]
by (rule ex forward)

(use 〈open T 〉 in
〈fastforce simp: dist norm dist vec def L2 set def image iff vector one

open vec def 〉)
qed

lemma has derivative vector 1 :
assumes der g : (g has derivative (λx . x ∗ g ′ a)) (at a within S )
shows ((λx . vec (g (x $ 1 ))) has derivative (∗R) (g ′ a))

(at ((vec a)::realˆ1 ) within vec ‘ S )
using der g
apply (auto simp: Deriv .has derivative within bounded linear scaleR right norm vector 1 )
apply (drule tendsto at within vector 1 , vector)
apply (auto simp: algebra simps eventually at tendsto def )
done

1.9.6 Explicit vector construction from lists

definition vector l = (χ i . foldr (λx f n. fun upd (f (n+1 )) n x ) l (λn x . 0 ) 1 i)

lemma vector 1 [simp]: (vector [x ]) $1 = x
unfolding vector def by simp

lemma vector 2 [simp]: (vector [x ,y ]) $1 = x (vector [x ,y ] :: ′aˆ2 )$2 = (y :: ′a::zero)
unfolding vector def by simp all

lemma vector 3 [simp]:
(vector [x ,y ,z ] ::( ′a::zero)ˆ3 )$1 = x
(vector [x ,y ,z ] ::( ′a::zero)ˆ3 )$2 = y
(vector [x ,y ,z ] ::( ′a::zero)ˆ3 )$3 = z
unfolding vector def by simp all

lemma forall vector 1 : (∀ v :: ′a::zeroˆ1 . P v) ←→ (∀ x . P(vector [x ]))
by (metis vector 1 vector one)

lemma forall vector 2 : (∀ v :: ′a::zeroˆ2 . P v) ←→ (∀ x y . P(vector [x , y ]))
apply auto
apply (erule tac x=v$1 in allE )
apply (erule tac x=v$2 in allE )
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apply (subgoal tac vector [v$1 , v$2 ] = v)
apply simp
apply (vector vector def )
apply (simp add : forall 2 )
done

lemma forall vector 3 : (∀ v :: ′a::zeroˆ3 . P v) ←→ (∀ x y z . P(vector [x , y , z ]))
apply auto
apply (erule tac x=v$1 in allE )
apply (erule tac x=v$2 in allE )
apply (erule tac x=v$3 in allE )
apply (subgoal tac vector [v$1 , v$2 , v$3 ] = v)
apply simp
apply (vector vector def )
apply (simp add : forall 3 )
done

1.9.7 lambda skolemization on cartesian products

lemma lambda skolem: (∀ i . ∃ x . P i x ) ←→
(∃ x :: ′a ˆ ′n. ∀ i . P i (x $ i)) (is ?lhs ←→ ?rhs)

proof −
let ?S = (UNIV :: ′n set)
{ assume H : ?rhs
then have ?lhs by auto }

moreover
{ assume H : ?lhs
then obtain f where f :∀ i . P i (f i) unfolding choice iff by metis
let ?x = (χ i . (f i)) :: ′a ˆ ′n
{ fix i
from f have P i (f i) by metis
then have P i (?x $ i) by auto

}
hence ∀ i . P i (?x$i) by metis
hence ?rhs by metis }

ultimately show ?thesis by metis
qed

The same result in terms of square matrices.

Considering an n-element vector as an n-by-1 or 1-by-n matrix.

definition rowvector v = (χ i j . (v$j ))

definition columnvector v = (χ i j . (v$i))

lemma transpose columnvector : transpose(columnvector v) = rowvector v
by (simp add : transpose def rowvector def columnvector def vec eq iff )

lemma transpose rowvector : transpose(rowvector v) = columnvector v
by (simp add : transpose def columnvector def rowvector def vec eq iff )
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lemma dot rowvector columnvector : columnvector (A ∗v v) = A ∗∗ columnvector
v
by (vector columnvector def matrix matrix mult def matrix vector mult def )

lemma dot matrix product :
(x ::realˆ ′n) · y = (((rowvector x ::realˆ ′nˆ1 ) ∗∗ (columnvector y :: realˆ1ˆ ′n))$1 )$1
by (vector matrix matrix mult def rowvector def columnvector def inner vec def )

lemma dot matrix vector mul :
fixes A B :: real ˆ ′n ˆ ′n and x y :: real ˆ ′n
shows (A ∗v x ) · (B ∗v y) =

(((rowvector x :: realˆ ′nˆ1 ) ∗∗ ((transpose A ∗∗ B) ∗∗ (columnvector y :: real
ˆ1ˆ ′n)))$1 )$1
unfolding dot matrix product transpose columnvector [symmetric]
dot rowvector columnvector matrix transpose mul matrix mul assoc ..

lemma dim substandard cart : vec.dim {x :: ′a::fieldˆ ′n. ∀ i . i /∈ d −→ x$i = 0} =
card d
(is vec.dim ?A = )

proof (rule vec.dim unique)
let ?B = ((λx . axis x 1 ) ‘ d)
have subset basis: ?B ⊆ cart basis
by (auto simp: cart basis def )

show ?B ⊆ ?A
by (auto simp: axis def )

show vec.independent ((λx . axis x 1 ) ‘ d)
using subset basis
by (rule vec.independent mono[OF vec.independent Basis])

have x ∈ vec.span ?B if ∀ i . i /∈ d −→ x $ i = 0 for x :: ′aˆ ′n
proof −
have finite ?B
using subset basis finite cart basis
by (rule finite subset)

have x = (
∑

i∈UNIV . x $ i ∗s axis i 1 )
by (rule basis expansion[symmetric])

also have . . . = (
∑

i∈d . (x $ i) ∗s axis i 1 )
by (rule sum.mono neutral cong right) (auto simp: that)

also have . . . ∈ vec.span ?B
by (simp add : vec.span sum vec.span clauses)

finally show x ∈ vec.span ?B .
qed
then show ?A ⊆ vec.span ?B by auto

qed (simp add : card image inj on def axis eq axis)

lemma affinity inverses:
assumes m0 : m 6= (0 :: ′a::field)
shows (λx . m ∗s x + c) ◦ (λx . inverse(m) ∗s x + (−(inverse(m) ∗s c))) = id
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(λx . inverse(m) ∗s x + (−(inverse(m) ∗s c))) ◦ (λx . m ∗s x + c) = id
using m0
by (auto simp add : fun eq iff vector add ldistrib diff conv add uminus simp del :

add uminus conv diff )

lemma vector affinity eq :
assumes m0 : (m:: ′a::field) 6= 0
shows m ∗s x + c = y ←→ x = inverse m ∗s y + −(inverse m ∗s c)

proof
assume h: m ∗s x + c = y
hence m ∗s x = y − c by (simp add : field simps)
hence inverse m ∗s (m ∗s x ) = inverse m ∗s (y − c) by simp
then show x = inverse m ∗s y + − (inverse m ∗s c)
using m0 by (simp add : vector smult assoc vector ssub ldistrib)

next
assume h: x = inverse m ∗s y + − (inverse m ∗s c)
show m ∗s x + c = y unfolding h
using m0 by (simp add : vector smult assoc vector ssub ldistrib)

qed

lemma vector eq affinity :
(m:: ′a::field) 6= 0 ==> (y = m ∗s x + c ←→ inverse(m) ∗s y + −(inverse(m)

∗s c) = x )
using vector affinity eq [where m=m and x=x and y=y and c=c]
by metis

lemma vector cart :
fixes f :: realˆ ′n ⇒ real
shows (χ i . f (axis i 1 )) = (

∑
i∈Basis. f i ∗R i)

unfolding euclidean eq iff [where ′a=realˆ ′n]
by simp (simp add : Basis vec def inner axis)

lemma const vector cart :((χ i . d)::realˆ ′n) = (
∑

i∈Basis. d ∗R i)
by (rule vector cart)

1.9.8 Explicit formulas for low dimensions

lemma prod neutral const : prod f {(1 ::nat)..1} = f 1
by simp

lemma prod 2 : prod f {(1 ::nat)..2} = f 1 ∗ f 2
by (simp add : eval nat numeral atLeastAtMostSuc conv mult .commute)

lemma prod 3 : prod f {(1 ::nat)..3} = f 1 ∗ f 2 ∗ f 3
by (simp add : eval nat numeral atLeastAtMostSuc conv mult .commute)

1.9.9 Orthogonality of a matrix

definition orthogonal matrix (Q :: ′a::semiring 1ˆ ′nˆ ′n) ←→
transpose Q ∗∗ Q = mat 1 ∧ Q ∗∗ transpose Q = mat 1
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lemma orthogonal matrix : orthogonal matrix (Q :: real ˆ ′nˆ ′n) ←→ transpose Q
∗∗ Q = mat 1
by (metis matrix left right inverse orthogonal matrix def )

lemma orthogonal matrix id : orthogonal matrix (mat 1 :: ˆ ′nˆ ′n)
by (simp add : orthogonal matrix def )

proposition orthogonal matrix mul :
fixes A :: real ˆ ′nˆ ′n
assumes orthogonal matrix A orthogonal matrix B
shows orthogonal matrix (A ∗∗ B)
using assms
by (simp add : orthogonal matrix matrix transpose mul matrix left right inverse

matrix mul assoc)

proposition orthogonal transformation matrix :
fixes f :: realˆ ′n ⇒ realˆ ′n
shows orthogonal transformation f ←→ linear f ∧ orthogonal matrix (matrix f )
(is ?lhs ←→ ?rhs)

proof −
let ?mf = matrix f
let ?ot = orthogonal transformation f
let ?U = UNIV :: ′n set
have fU : finite ?U by simp
let ?m1 = mat 1 :: real ˆ ′nˆ ′n
{
assume ot : ?ot
from ot have lf : Vector Spaces.linear (∗s) (∗s) f and fd :

∧
v w . f v · f w = v

· w
unfolding orthogonal transformation def orthogonal matrix linear def scalar mult eq scaleR
by blast+

{
fix i j
let ?A = transpose ?mf ∗∗ ?mf
have th0 :

∧
b (x :: ′a::comm ring 1 ). (if b then 1 else 0 )∗x = (if b then x else

0 ) ∧
b (x :: ′a::comm ring 1 ). x∗(if b then 1 else 0 ) = (if b then x else 0 )

by simp all
from fd [of axis i 1 axis j 1 ,
simplified matrix works[OF lf , symmetric] dot matrix vector mul ]

have ?A$i$j = ?m1 $ i $ j
by (simp add : inner vec def matrix matrix mult def columnvector def rowvec-

tor def
th0 sum.delta[OF fU ] mat def axis def )

}
then have orthogonal matrix ?mf
unfolding orthogonal matrix
by vector
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with lf have ?rhs
unfolding linear def scalar mult eq scaleR
by blast

}
moreover
{
assume lf : Vector Spaces.linear (∗s) (∗s) f and om: orthogonal matrix ?mf
from lf om have ?lhs
unfolding orthogonal matrix def norm eq orthogonal transformation
apply (simp only : matrix works[OF lf , symmetric] dot matrix vector mul)
apply (simp add : dot matrix product linear def scalar mult eq scaleR)
done

}
ultimately show ?thesis
by (auto simp: linear def scalar mult eq scaleR)

qed

1.9.10 Finding an Orthogonal Matrix

We can find an orthogonal matrix taking any unit vector to any other.

lemma orthogonal matrix transpose [simp]:
orthogonal matrix (transpose A) ←→ orthogonal matrix A

by (auto simp: orthogonal matrix def )

lemma orthogonal matrix orthonormal columns:
fixes A :: realˆ ′nˆ ′n
shows orthogonal matrix A ←→

(∀ i . norm(column i A) = 1 ) ∧
(∀ i j . i 6= j −→ orthogonal (column i A) (column j A))

by (auto simp: orthogonal matrix matrix mult transpose dot column vec eq iff
mat def norm eq 1 orthogonal def )

lemma orthogonal matrix orthonormal rows:
fixes A :: realˆ ′nˆ ′n
shows orthogonal matrix A ←→

(∀ i . norm(row i A) = 1 ) ∧
(∀ i j . i 6= j −→ orthogonal (row i A) (row j A))

using orthogonal matrix orthonormal columns [of transpose A] by simp

proposition orthogonal matrix exists basis:
fixes a :: realˆ ′n
assumes norm a = 1
obtains A where orthogonal matrix A A ∗v (axis k 1 ) = a

proof −
obtain S where a ∈ S pairwise orthogonal S and noS :

∧
x . x ∈ S =⇒ norm x

= 1
and independent S card S = CARD( ′n) span S = UNIV
using vector in orthonormal basis assms by force

then obtain f0 where bij betw f0 (UNIV :: ′n set) S
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by (metis finite class.finite UNIV finite same card bij finiteI independent)
then obtain f where f : bij betw f (UNIV :: ′n set) S and a: a = f k
using bij swap iff [of k inv f0 a f0 ]
by (metis UNIV I 〈a ∈ S 〉 bij betw inv into right bij betw swap iff swap apply(1 ))
show thesis
proof
have [simp]:

∧
i . norm (f i) = 1

using bij betwE [OF 〈bij betw f UNIV S 〉] by (blast intro: noS )
have [simp]:

∧
i j . i 6= j =⇒ orthogonal (f i) (f j )

using 〈pairwise orthogonal S 〉 〈bij betw f UNIV S 〉

by (auto simp: pairwise def bij betw def inj on def )
show orthogonal matrix (χ i j . f j $ i)
by (simp add : orthogonal matrix orthonormal columns column def )

show (χ i j . f j $ i) ∗v axis k 1 = a
by (simp add : matrix vector mult def axis def a if distrib cong : if cong)

qed
qed

lemma orthogonal transformation exists 1 :
fixes a b :: realˆ ′n
assumes norm a = 1 norm b = 1
obtains f where orthogonal transformation f f a = b

proof −
obtain k :: ′n where True
by simp

obtain A B where AB : orthogonal matrix A orthogonal matrix B and eq : A ∗v
(axis k 1 ) = a B ∗v (axis k 1 ) = b

using orthogonal matrix exists basis assms by metis
let ?f = λx . (B ∗∗ transpose A) ∗v x
show thesis
proof
show orthogonal transformation ?f
by (subst orthogonal transformation matrix )
(auto simp: AB orthogonal matrix mul)

next
show ?f a = b
using 〈orthogonal matrix A〉 unfolding orthogonal matrix def
by (metis eq matrix mul rid matrix vector mul assoc)

qed
qed

proposition orthogonal transformation exists:
fixes a b :: realˆ ′n
assumes norm a = norm b
obtains f where orthogonal transformation f f a = b

proof (cases a = 0 ∨ b = 0 )
case True
with assms show ?thesis
using that by force
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next
case False
then obtain f where f : orthogonal transformation f and eq : f (a /R norm a)

= (b /R norm b)
by (auto intro: orthogonal transformation exists 1 [of a /R norm a b /R norm

b])
show ?thesis
proof
interpret linear f
using f by (simp add : orthogonal transformation linear)

have f a /R norm a = f (a /R norm a)
by (simp add : scale)

also have . . . = b /R norm a
by (simp add : eq assms [symmetric])

finally show f a = b
using False by auto

qed (use f in auto)
qed

1.9.11 Scaling and isometry

proposition scaling linear :
fixes f :: ′a::real inner ⇒ ′a::real inner
assumes f0 : f 0 = 0
and fd : ∀ x y . dist (f x ) (f y) = c ∗ dist x y

shows linear f
proof −
{
fix v w
have norm (f x ) = c ∗ norm x for x
by (metis dist 0 norm f0 fd)

then have f v · f w = c2 ∗ (v · w)
unfolding dot norm neg dist norm[symmetric]
by (simp add : fd power2 eq square field simps)

}
then show ?thesis
unfolding linear iff vector eq [where ′a= ′a] scalar mult eq scaleR
by (simp add : inner add field simps)

qed

lemma isometry linear :
f (0 :: ′a::real inner) = (0 :: ′a) =⇒ ∀ x y . dist(f x ) (f y) = dist x y =⇒ linear f
by (rule scaling linear [where c=1 ]) simp all

Hence another formulation of orthogonal transformation

proposition orthogonal transformation isometry :
orthogonal transformation f ←→ f (0 :: ′a::real inner) = (0 :: ′a) ∧ (∀ x y . dist(f x )

(f y) = dist x y)
unfolding orthogonal transformation
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apply (auto simp: linear 0 isometry linear)
apply (metis (no types, hide lams) dist norm linear diff )
by (metis dist 0 norm)

Can extend an isometry from unit sphere:

lemma isometry sphere extend :
fixes f :: ′a::real inner ⇒ ′a
assumes f1 :

∧
x . norm x = 1 =⇒ norm (f x ) = 1

and fd1 :
∧
x y . [[norm x = 1 ; norm y = 1 ]] =⇒ dist (f x ) (f y) = dist x y

shows ∃ g . orthogonal transformation g ∧ (∀ x . norm x = 1 −→ g x = f x )
proof −
{
fix x y x ′ y ′ u v u ′ v ′ :: ′a
assume H : x = norm x ∗R u y = norm y ∗R v

x ′ = norm x ∗R u ′ y ′ = norm y ∗R v ′

and J : norm u = 1 norm u ′ = 1 norm v = 1 norm v ′ = 1 norm(u ′ − v ′) =
norm(u − v)

then have ∗: u · v = u ′ · v ′ + v ′ · u ′ − v · u
by (simp add : norm eq norm eq 1 inner add inner diff )

have norm (norm x ∗R u ′ − norm y ∗R v ′) = norm (norm x ∗R u − norm y
∗R v)

using J by (simp add : norm eq norm eq 1 inner diff ∗ field simps)
then have norm(x ′ − y ′) = norm(x − y)
using H by metis

}
note norm eq = this
let ?g = λx . if x = 0 then 0 else norm x ∗R f (x /R norm x )
have thfg : ?g x = f x if norm x = 1 for x
using that by auto

have thd : dist (?g x ) (?g y) = dist x y for x y
proof (cases x=0 ∨ y=0 )
case False
show dist (?g x ) (?g y) = dist x y
unfolding dist norm

proof (rule norm eq)
show x = norm x ∗R (x /R norm x ) y = norm y ∗R (y /R norm y)

norm (f (x /R norm x )) = 1 norm (f (y /R norm y)) = 1
using False f1 by auto

qed (use False in 〈auto simp: field simps intro: f1 fd1 [unfolded dist norm]〉)
qed (auto simp: f1 )
show ?thesis
unfolding orthogonal transformation isometry
by (rule exI [where x= ?g ]) (metis thfg thd)

qed

1.9.12 Induction on matrix row operations

lemma induct matrix row operations:
fixes P :: realˆ ′nˆ ′n ⇒ bool

Cartesian{_}{\kern 0pt}Space.html


232

assumes zero row :
∧
A i . row i A = 0 =⇒ P A

and diagonal :
∧
A. (

∧
i j . i 6= j =⇒ A$i$j = 0 ) =⇒ P A

and swap cols:
∧
A m n. [[P A; m 6= n]] =⇒ P(χ i j . A $ i $ Fun.swap m n id

j )
and row op:

∧
A m n c. [[P A; m 6= n]]

=⇒ P(χ i . if i = m then row m A + c ∗R row n A else row i A)
shows P A

proof −
have P A if (

∧
i j . [[j ∈ −K ; i 6= j ]] =⇒ A$i$j = 0 ) for A K

proof −
have finite K
by simp

then show ?thesis using that
proof (induction arbitrary : A rule: finite induct)
case empty
with diagonal show ?case
by simp

next
case (insert k K )
note insertK = insert
have P A if kk : A$k$k 6= 0
and 0 :

∧
i j . [[j ∈ − insert k K ; i 6= j ]] =⇒ A$i$j = 0∧

i . [[i ∈ −L; i 6= k ]] =⇒ A$i$k = 0 for A L
proof −
have finite L
by simp

then show ?thesis using 0 kk
proof (induction arbitrary : A rule: finite induct)
case (empty B)
show ?case
proof (rule insertK )
fix i j
assume i ∈ − K j 6= i
show B $ j $ i = 0
using 〈j 6= i 〉 〈i ∈ − K 〉 empty
by (metis ComplD ComplI Compl eq Diff UNIV Diff empty UNIV I

insert iff )
qed

next
case (insert l L B)
show ?case
proof (cases k = l)
case True
with insert show ?thesis
by auto

next
case False
let ?C = χ i . if i = l then row l B − (B $ l $ k / B $ k $ k) ∗R row k

B else row i B
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have 1 : [[j ∈ − insert k K ; i 6= j ]] =⇒ ?C $ i $ j = 0 for j i
by (auto simp: insert .prems(1 ) row def )

have 2 : ?C $ i $ k = 0
if i ∈ − L i 6= k for i

proof (cases i=l)
case True
with that insert .prems show ?thesis
by (simp add : row def )

next
case False
with that show ?thesis
by (simp add : insert .prems(2 ) row def )

qed
have 3 : ?C $ k $ k 6= 0
by (auto simp: insert .prems row def 〈k 6= l 〉)

have PC : P ?C
using insert .IH [OF 1 2 3 ] by auto

have eqB : (χ i . if i = l then row l ?C + (B $ l $ k / B $ k $ k) ∗R row
k ?C else row i ?C ) = B

using 〈k 6= l 〉 by (simp add : vec eq iff row def )
show ?thesis
using row op [OF PC , of l k , where c = B$l$k / B$k$k ] eqB 〈k 6= l 〉

by (simp add : cong : if cong)
qed

qed
qed
then have nonzero hyp: P A
if kk : A$k$k 6= 0 and zeroes:

∧
i j . j ∈ − insert k K ∧ i 6=j =⇒ A$i$j =

0 for A
by (auto simp: intro!: kk zeroes)

show ?case
proof (cases row k A = 0 )
case True
with zero row show ?thesis by auto

next
case False
then obtain l where l : A$k$l 6= 0
by (auto simp: row def zero vec def vec eq iff )

show ?thesis
proof (cases k = l)
case True
with l nonzero hyp insert .prems show ?thesis
by blast

next
case False
have ∗: A $ i $ Fun.swap k l id j = 0 if j 6= k j /∈ K i 6= j for i j
using False l insert .prems that
by (auto simp: swap def insert split : if split asm)

have P (χ i j . (χ i j . A $ i $ Fun.swap k l id j ) $ i $ Fun.swap k l id j )
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by (rule swap cols [OF nonzero hyp False]) (auto simp: l ∗)
moreover
have (χ i j . (χ i j . A $ i $ Fun.swap k l id j ) $ i $ Fun.swap k l id j ) = A
by (vector Fun.swap def )

ultimately show ?thesis
by simp

qed
qed

qed
qed
then show ?thesis
by blast

qed

lemma induct matrix elementary :
fixes P :: realˆ ′nˆ ′n ⇒ bool
assumes mult :

∧
A B . [[P A; P B ]] =⇒ P(A ∗∗ B)

and zero row :
∧
A i . row i A = 0 =⇒ P A

and diagonal :
∧
A. (

∧
i j . i 6= j =⇒ A$i$j = 0 ) =⇒ P A

and swap1 :
∧
m n. m 6= n =⇒ P(χ i j . mat 1 $ i $ Fun.swap m n id j )

and idplus:
∧
m n c. m 6= n =⇒ P(χ i j . if i = m ∧ j = n then c else of bool

(i = j ))
shows P A

proof −
have swap: P (χ i j . A $ i $ Fun.swap m n id j ) (is P ?C )
if P A m 6= n for A m n

proof −
have A ∗∗ (χ i j . mat 1 $ i $ Fun.swap m n id j ) = ?C
by (simp add : matrix matrix mult def mat def vec eq iff if distrib sum.delta remove)
then show ?thesis
using mult swap1 that by metis

qed
have row : P (χ i . if i = m then row m A + c ∗R row n A else row i A) (is P

?C )
if P A m 6= n for A m n c

proof −
let ?B = χ i j . if i = m ∧ j = n then c else of bool (i = j )
have ?B ∗∗ A = ?C
using 〈m 6= n〉 unfolding matrix matrix mult def row def of bool def
by (auto simp: vec eq iff if distrib [of λx . x ∗ y for y ] sum.remove cong :

if cong)
then show ?thesis
by (rule subst) (auto simp: that mult idplus)

qed
show ?thesis
by (rule induct matrix row operations [OF zero row diagonal swap row ])

qed

lemma induct matrix elementary alt :
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fixes P :: realˆ ′nˆ ′n ⇒ bool
assumes mult :

∧
A B . [[P A; P B ]] =⇒ P(A ∗∗ B)

and zero row :
∧
A i . row i A = 0 =⇒ P A

and diagonal :
∧
A. (

∧
i j . i 6= j =⇒ A$i$j = 0 ) =⇒ P A

and swap1 :
∧
m n. m 6= n =⇒ P(χ i j . mat 1 $ i $ Fun.swap m n id j )

and idplus:
∧
m n. m 6= n =⇒ P(χ i j . of bool (i = m ∧ j = n ∨ i = j ))

shows P A
proof −
have ∗: P (χ i j . if i = m ∧ j = n then c else of bool (i = j ))
if m 6= n for m n c

proof (cases c = 0 )
case True
with diagonal show ?thesis by auto

next
case False
then have eq : (χ i j . if i = m ∧ j = n then c else of bool (i = j )) =

(χ i j . if i = j then (if j = n then inverse c else 1 ) else 0 ) ∗∗
(χ i j . of bool (i = m ∧ j = n ∨ i = j )) ∗∗
(χ i j . if i = j then if j = n then c else 1 else 0 )

using 〈m 6= n〉

apply (simp add : matrix matrix mult def vec eq iff of bool def if distrib [of
λx . y ∗ x for y ] cong : if cong)

apply (simp add : if if eq conj sum.neutral conj commute cong : conj cong)
done

show ?thesis
apply (subst eq)
apply (intro mult idplus that)
apply (auto intro: diagonal)
done

qed
show ?thesis
by (rule induct matrix elementary) (auto intro: assms ∗)

qed

lemma matrix vector mult matrix matrix mult compose:
(∗v) (A ∗∗ B) = (∗v) A ◦ (∗v) B
by (auto simp: matrix vector mul assoc)

lemma induct linear elementary :
fixes f :: realˆ ′n ⇒ realˆ ′n
assumes linear f
and comp:

∧
f g . [[linear f ; linear g ; P f ; P g ]] =⇒ P(f ◦ g)

and zeroes:
∧
f i . [[linear f ;

∧
x . (f x ) $ i = 0 ]] =⇒ P f

and const :
∧
c. P(λx . χ i . c i ∗ x$i)

and swap:
∧
m n:: ′n. m 6= n =⇒ P(λx . χ i . x $ Fun.swap m n id i)

and idplus:
∧
m n:: ′n. m 6= n =⇒ P(λx . χ i . if i = m then x$m + x$n else

x$i)
shows P f

proof −
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have P ((∗v) A) for A
proof (rule induct matrix elementary alt)
fix A B
assume P ((∗v) A) and P ((∗v) B)
then show P ((∗v) (A ∗∗ B))

by (auto simp add : matrix vector mult matrix matrix mult compose intro!:
comp)
next
fix A :: realˆ ′nˆ ′n and i
assume row i A = 0
show P ((∗v) A)
using matrix vector mul linear
by (rule zeroes[where i=i ])

(metis 〈row i A = 0 〉 inner zero left matrix vector mul component row def
vec lambda eta)
next
fix A :: realˆ ′nˆ ′n
assume 0 :

∧
i j . i 6= j =⇒ A $ i $ j = 0

have A $ i $ i ∗ x $ i = (
∑

j∈UNIV . A $ i $ j ∗ x $ j ) for x and i :: ′n
by (simp add : 0 comm monoid add class.sum.remove [where x=i ])

then have (λx . χ i . A $ i $ i ∗ x $ i) = ((∗v) A)
by (auto simp: 0 matrix vector mult def )

then show P ((∗v) A)
using const [of λi . A $ i $ i ] by simp

next
fix m n :: ′n
assume m 6= n
have eq : (

∑
j∈UNIV . if i = Fun.swap m n id j then x $ j else 0 ) =

(
∑

j∈UNIV . if j = Fun.swap m n id i then x $ j else 0 )
for i and x :: realˆ ′n
unfolding swap def by (rule sum.cong) auto

have (λx ::realˆ ′n. χ i . x $ Fun.swap m n id i) = ((∗v) (χ i j . if i = Fun.swap
m n id j then 1 else 0 ))

by (auto simp: mat def matrix vector mult def eq if distrib [of λx . x ∗ y for
y ] cong : if cong)

with swap [OF 〈m 6= n〉] show P ((∗v) (χ i j . mat 1 $ i $ Fun.swap m n id
j ))

by (simp add : mat def matrix vector mult def )
next
fix m n :: ′n
assume m 6= n
then have x $ m + x $ n = (

∑
j∈UNIV . of bool (j = n ∨ m = j ) ∗ x $ j )

for x :: realˆ ′n
by (auto simp: of bool def if distrib [of λx . x ∗ y for y ] sum.remove cong :

if cong)
then have (λx ::realˆ ′n. χ i . if i = m then x $ m + x $ n else x $ i) =

((∗v) (χ i j . of bool (i = m ∧ j = n ∨ i = j )))
unfolding matrix vector mult def of bool def
by (auto simp: vec eq iff if distrib [of λx . x ∗ y for y ] cong : if cong)
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then show P ((∗v) (χ i j . of bool (i = m ∧ j = n ∨ i = j )))
using idplus [OF 〈m 6= n〉] by simp

qed
then show ?thesis
by (metis 〈linear f 〉 matrix vector mul(2 ))

qed

end

1.10 Traces and Determinants of Square Matrices

theory Determinants
imports
Cartesian Space
HOL−Library .Permutations

begin

1.10.1 Trace

definition trace :: ′a::semiring 1ˆ ′nˆ ′n ⇒ ′a
where trace A = sum (λi . ((A$i)$i)) (UNIV :: ′n set)

lemma trace 0 : trace (mat 0 ) = 0
by (simp add : trace def mat def )

lemma trace I : trace (mat 1 :: ′a::semiring 1ˆ ′nˆ ′n) = of nat(CARD( ′n))
by (simp add : trace def mat def )

lemma trace add : trace ((A:: ′a::comm semiring 1ˆ ′nˆ ′n) + B) = trace A + trace
B
by (simp add : trace def sum.distrib)

lemma trace sub: trace ((A:: ′a::comm ring 1ˆ ′nˆ ′n) − B) = trace A − trace B
by (simp add : trace def sum subtractf )

lemma trace mul sym: trace ((A:: ′a::comm semiring 1ˆ ′nˆ ′m) ∗∗ B) = trace (B∗∗A)
apply (simp add : trace def matrix matrix mult def )
apply (subst sum.swap)
apply (simp add : mult .commute)
done

Definition of determinant

definition det :: ′a::comm ring 1ˆ ′nˆ ′n ⇒ ′a where
det A =
sum (λp. of int (sign p) ∗ prod (λi . A$i$p i) (UNIV :: ′n set))
{p. p permutes (UNIV :: ′n set)}

Basic determinant properties
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lemma det transpose [simp]: det (transpose A) = det (A:: ′a::comm ring 1 ˆ ′nˆ ′n)
proof −
let ?di = λA i j . A$i$j
let ?U = (UNIV :: ′n set)
have fU : finite ?U by simp
{
fix p
assume p: p ∈ {p. p permutes ?U }
from p have pU : p permutes ?U
by blast

have sth: sign (inv p) = sign p
by (metis sign inverse fU p mem Collect eq permutation permutes)

from permutes inj [OF pU ]
have pi : inj on p ?U
by (blast intro: subset inj on)

from permutes image[OF pU ]
have prod (λi . ?di (transpose A) i (inv p i)) ?U =
prod (λi . ?di (transpose A) i (inv p i)) (p ‘ ?U )
by simp

also have . . . = prod ((λi . ?di (transpose A) i (inv p i)) ◦ p) ?U
unfolding prod .reindex [OF pi ] ..

also have . . . = prod (λi . ?di A i (p i)) ?U
proof −
have ((λi . ?di (transpose A) i (inv p i)) ◦ p) i = ?di A i (p i) if i ∈ ?U for

i
using that permutes inv o[OF pU ] permutes in image[OF pU ]
unfolding transpose def by (simp add : fun eq iff )

then show prod ((λi . ?di (transpose A) i (inv p i)) ◦ p) ?U = prod (λi . ?di
A i (p i)) ?U

by (auto intro: prod .cong)
qed
finally have of int (sign (inv p)) ∗ (prod (λi . ?di (transpose A) i (inv p i))

?U ) =
of int (sign p) ∗ (prod (λi . ?di A i (p i)) ?U )
using sth by simp

}
then show ?thesis
unfolding det def
by (subst sum permutations inverse) (blast intro: sum.cong)

qed

lemma det lowerdiagonal :
fixes A :: ′a::comm ring 1ˆ( ′n::{finite,wellorder})ˆ( ′n::{finite,wellorder})
assumes ld :

∧
i j . i < j =⇒ A$i$j = 0

shows det A = prod (λi . A$i$i) (UNIV :: ′n set)
proof −
let ?U = UNIV :: ′n set
let ?PU = {p. p permutes ?U }
let ?pp = λp. of int (sign p) ∗ prod (λi . A$i$p i) (UNIV :: ′n set)
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have fU : finite ?U
by simp

have id0 : {id} ⊆ ?PU
by (auto simp: permutes id)

have p0 : ∀ p ∈ ?PU − {id}. ?pp p = 0
proof
fix p
assume p ∈ ?PU − {id}
then obtain i where i : p i > i
by clarify (meson leI permutes natset le)

from ld [OF i ] have ∃ i ∈ ?U . A$i$p i = 0
by blast

with prod zero[OF fU ] show ?pp p = 0
by force

qed
from sum.mono neutral cong left [OF finite permutations[OF fU ] id0 p0 ] show

?thesis
unfolding det def by (simp add : sign id)

qed

lemma det upperdiagonal :
fixes A :: ′a::comm ring 1ˆ ′n::{finite,wellorder}ˆ ′n::{finite,wellorder}
assumes ld :

∧
i j . i > j =⇒ A$i$j = 0

shows det A = prod (λi . A$i$i) (UNIV :: ′n set)
proof −
let ?U = UNIV :: ′n set
let ?PU = {p. p permutes ?U }
let ?pp = (λp. of int (sign p) ∗ prod (λi . A$i$p i) (UNIV :: ′n set))
have fU : finite ?U
by simp

have id0 : {id} ⊆ ?PU
by (auto simp: permutes id)

have p0 : ∀ p ∈ ?PU −{id}. ?pp p = 0
proof
fix p
assume p: p ∈ ?PU − {id}
then obtain i where i : p i < i
by clarify (meson leI permutes natset ge)

from ld [OF i ] have ∃ i ∈ ?U . A$i$p i = 0
by blast

with prod zero[OF fU ] show ?pp p = 0
by force

qed
from sum.mono neutral cong left [OF finite permutations[OF fU ] id0 p0 ] show

?thesis
unfolding det def by (simp add : sign id)

qed

proposition det diagonal :
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fixes A :: ′a::comm ring 1ˆ ′nˆ ′n
assumes ld :

∧
i j . i 6= j =⇒ A$i$j = 0

shows det A = prod (λi . A$i$i) (UNIV :: ′n set)
proof −
let ?U = UNIV :: ′n set
let ?PU = {p. p permutes ?U }
let ?pp = λp. of int (sign p) ∗ prod (λi . A$i$p i) (UNIV :: ′n set)
have fU : finite ?U by simp
from finite permutations[OF fU ] have fPU : finite ?PU .
have id0 : {id} ⊆ ?PU
by (auto simp: permutes id)

have p0 : ∀ p ∈ ?PU − {id}. ?pp p = 0
proof
fix p
assume p: p ∈ ?PU − {id}
then obtain i where i : p i 6= i
by fastforce

with ld have ∃ i ∈ ?U . A$i$p i = 0
by (metis UNIV I )

with prod zero [OF fU ] show ?pp p = 0
by force

qed
from sum.mono neutral cong left [OF fPU id0 p0 ] show ?thesis
unfolding det def by (simp add : sign id)

qed

lemma det I [simp]: det (mat 1 :: ′a::comm ring 1ˆ ′nˆ ′n) = 1
by (simp add : det diagonal mat def )

lemma det 0 [simp]: det (mat 0 :: ′a::comm ring 1ˆ ′nˆ ′n) = 0
by (simp add : det def prod zero power 0 left)

lemma det permute rows:
fixes A :: ′a::comm ring 1ˆ ′nˆ ′n
assumes p: p permutes (UNIV :: ′n::finite set)
shows det (χ i . A$p i :: ′aˆ ′nˆ ′n) = of int (sign p) ∗ det A

proof −
let ?U = UNIV :: ′n set
let ?PU = {p. p permutes ?U }
have ∗: (

∑
q∈?PU . of int (sign (q ◦ p)) ∗ (

∏
i∈?U . A $ p i $ (q ◦ p) i)) =

(
∑

n∈?PU . of int (sign p) ∗ of int (sign n) ∗ (
∏

i∈?U . A $ i $ n i))
proof (rule sum.cong)
fix q
assume qPU : q ∈ ?PU
have fU : finite ?U
by simp

from qPU have q : q permutes ?U
by blast

have prod (λi . A$p i$ (q ◦ p) i) ?U = prod ((λi . A$p i$(q ◦ p) i) ◦ inv p) ?U
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by (simp only : prod .permute[OF permutes inv [OF p], symmetric])
also have . . . = prod (λi . A $ (p ◦ inv p) i $ (q ◦ (p ◦ inv p)) i) ?U
by (simp only : o def )

also have . . . = prod (λi . A$i$q i) ?U
by (simp only : o def permutes inverses[OF p])

finally have thp: prod (λi . A$p i$ (q ◦ p) i) ?U = prod (λi . A$i$q i) ?U
by blast

from p q have pp: permutation p and qp: permutation q
by (metis fU permutation permutes)+

show of int (sign (q ◦ p)) ∗ prod (λi . A$ p i$ (q ◦ p) i) ?U =
of int (sign p) ∗ of int (sign q) ∗ prod (λi . A$i$q i) ?U

by (simp only : thp sign compose[OF qp pp] mult .commute of int mult)
qed auto
show ?thesis
apply (simp add : det def sum distrib left mult .assoc[symmetric])
apply (subst sum permutations compose right [OF p])
apply (rule ∗)
done

qed

lemma det permute columns:
fixes A :: ′a::comm ring 1ˆ ′nˆ ′n
assumes p: p permutes (UNIV :: ′n set)
shows det(χ i j . A$i$ p j :: ′aˆ ′nˆ ′n) = of int (sign p) ∗ det A

proof −
let ?Ap = χ i j . A$i$ p j :: ′aˆ ′nˆ ′n
let ?At = transpose A
have of int (sign p) ∗ det A = det (transpose (χ i . transpose A $ p i))
unfolding det permute rows[OF p, of ?At ] det transpose ..

moreover
have ?Ap = transpose (χ i . transpose A $ p i)
by (simp add : transpose def vec eq iff )

ultimately show ?thesis
by simp

qed

lemma det identical columns:
fixes A :: ′a::comm ring 1ˆ ′nˆ ′n
assumes jk : j 6= k
and r : column j A = column k A

shows det A = 0
proof −
let ?U=UNIV :: ′n set
let ?t jk=Fun.swap j k id
let ?PU={p. p permutes ?U }
let ?S1={p. p∈?PU ∧ evenperm p}
let ?S2={(?t jk ◦ p) |p. p ∈?S1}
let ?f=λp. of int (sign p) ∗ (

∏
i∈UNIV . A $ i $ p i)

let ?g=λp. ?t jk ◦ p
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have g S1 : ?S2 = ?g‘ ?S1 by auto
have inj g : inj on ?g ?S1
proof (unfold inj on def , auto)
fix x y assume x : x permutes ?U and even x : evenperm x
and y : y permutes ?U and even y : evenperm y and eq : ?t jk ◦ x = ?t jk ◦ y

show x = y by (metis (hide lams, no types) comp assoc eq id comp swap id idempotent)
qed
have tjk permutes: ?t jk permutes ?U unfolding permutes def swap id eq by

(auto,metis)
have tjk eq : ∀ i l . A $ i $ ?t jk l = A $ i $ l
using r jk
unfolding column def vec eq iff swap id eq by fastforce

have sign tjk : sign ?t jk = −1 using sign swap id [of j k ] jk by auto
{fix x
assume x : x∈ ?S1
have sign (?t jk ◦ x ) = sign (?t jk) ∗ sign x
by (metis (lifting) finite class.finite UNIV mem Collect eq

permutation permutes permutation swap id sign compose x )
also have . . . = − sign x using sign tjk by simp
also have . . . 6= sign x unfolding sign def by simp
finally have sign (?t jk ◦ x ) 6= sign x and (?t jk ◦ x ) ∈ ?S2
using x by force+

}
hence disjoint : ?S1 ∩ ?S2 = {}
by (force simp: sign def )

have PU decomposition: ?PU = ?S1 ∪ ?S2
proof (auto)
fix x
assume x : x permutes ?U and ∀ p. p permutes ?U −→ x = Fun.swap j k id ◦

p −→ ¬ evenperm p
then obtain p where p: p permutes UNIV and x eq : x = Fun.swap j k id ◦ p
and odd p: ¬ evenperm p
by (metis (mono tags) id o o assoc permutes compose swap id idempotent

tjk permutes)
thus evenperm x
by (meson evenperm comp evenperm swap finite class.finite UNIV

jk permutation permutes permutation swap id)
next
fix p assume p: p permutes ?U
show Fun.swap j k id ◦ p permutes UNIV by (metis p permutes compose

tjk permutes)
qed
have sum ?f ?S2 = sum ((λp. of int (sign p) ∗ (

∏
i∈UNIV . A $ i $ p i))

◦ (◦) (Fun.swap j k id)) {p ∈ {p. p permutes UNIV }. evenperm p}
unfolding g S1 by (rule sum.reindex [OF inj g ])

also have . . . = sum (λp. of int (sign (?t jk ◦ p)) ∗ (
∏

i∈UNIV . A $ i $ p i))
?S1

unfolding o def by (rule sum.cong , auto simp: tjk eq)
also have . . . = sum (λp. − ?f p) ?S1
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proof (rule sum.cong , auto)
fix x assume x : x permutes ?U
and even x : evenperm x

hence perm x : permutation x and perm tjk : permutation ?t jk
using permutation permutes[of x ] permutation permutes[of ?t jk ] permuta-

tion swap id
by (metis finite code)+

have (sign (?t jk ◦ x )) = − (sign x )
unfolding sign compose[OF perm tjk perm x ] sign tjk by auto

thus of int (sign (?t jk ◦ x )) ∗ (
∏

i∈UNIV . A $ i $ x i)
= − (of int (sign x ) ∗ (

∏
i∈UNIV . A $ i $ x i))

by auto
qed
also have . . .= − sum ?f ?S1 unfolding sum negf ..
finally have ∗: sum ?f ?S2 = − sum ?f ?S1 .
have det A = (

∑
p | p permutes UNIV . of int (sign p) ∗ (

∏
i∈UNIV . A $ i $

p i))
unfolding det def ..

also have . . .= sum ?f ?S1 + sum ?f ?S2
by (subst PU decomposition, rule sum.union disjoint [OF disjoint ], auto)

also have . . .= sum ?f ?S1 − sum ?f ?S1 unfolding ∗ by auto
also have . . .= 0 by simp
finally show det A = 0 by simp

qed

lemma det identical rows:
fixes A :: ′a::comm ring 1ˆ ′nˆ ′n
assumes ij : i 6= j and r : row i A = row j A
shows det A = 0
by (metis column transpose det identical columns det transpose ij r)

lemma det zero row :
fixes A :: ′a::{idom, ring char 0}ˆ ′nˆ ′n and F :: ′b::{field}ˆ ′mˆ ′m
shows row i A = 0 =⇒ det A = 0 and row j F = 0 =⇒ det F = 0
by (force simp: row def det def vec eq iff sign nz intro!: sum.neutral)+

lemma det zero column:
fixes A :: ′a::{idom, ring char 0}ˆ ′nˆ ′n and F :: ′b::{field}ˆ ′mˆ ′m
shows column i A = 0 =⇒ det A = 0 and column j F = 0 =⇒ det F = 0
unfolding atomize conj atomize imp
by (metis det transpose det zero row row transpose)

lemma det row add :
fixes a b c :: ′n::finite ⇒ ˆ ′n
shows det((χ i . if i = k then a i + b i else c i):: ′a::comm ring 1ˆ ′nˆ ′n) =
det((χ i . if i = k then a i else c i):: ′a::comm ring 1ˆ ′nˆ ′n) +
det((χ i . if i = k then b i else c i):: ′a::comm ring 1ˆ ′nˆ ′n)

unfolding det def vec lambda beta sum.distrib[symmetric]
proof (rule sum.cong)
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let ?U = UNIV :: ′n set
let ?pU = {p. p permutes ?U }
let ?f = (λi . if i = k then a i + b i else c i):: ′n ⇒ ′a::comm ring 1ˆ ′n
let ?g = (λ i . if i = k then a i else c i):: ′n ⇒ ′a::comm ring 1ˆ ′n
let ?h = (λ i . if i = k then b i else c i):: ′n ⇒ ′a::comm ring 1ˆ ′n
fix p
assume p: p ∈ ?pU
let ?Uk = ?U − {k}
from p have pU : p permutes ?U
by blast

have kU : ?U = insert k ?Uk
by blast

have eq : prod (λi . ?f i $ p i) ?Uk = prod (λi . ?g i $ p i) ?Uk
prod (λi . ?f i $ p i) ?Uk = prod (λi . ?h i $ p i) ?Uk

by auto
have Uk : finite ?Uk k /∈ ?Uk
by auto

have prod (λi . ?f i $ p i) ?U = prod (λi . ?f i $ p i) (insert k ?Uk)
unfolding kU [symmetric] ..

also have . . . = ?f k $ p k ∗ prod (λi . ?f i $ p i) ?Uk
by (rule prod .insert) auto

also have . . . = (a k $ p k ∗ prod (λi . ?f i $ p i) ?Uk) + (b k$ p k ∗ prod (λi .
?f i $ p i) ?Uk)

by (simp add : field simps)
also have . . . = (a k $ p k ∗ prod (λi . ?g i $ p i) ?Uk) + (b k$ p k ∗ prod (λi .

?h i $ p i) ?Uk)
by (metis eq)

also have . . . = prod (λi . ?g i $ p i) (insert k ?Uk) + prod (λi . ?h i $ p i)
(insert k ?Uk)

unfolding prod .insert [OF Uk ] by simp
finally have prod (λi . ?f i $ p i) ?U = prod (λi . ?g i $ p i) ?U + prod (λi . ?h

i $ p i) ?U
unfolding kU [symmetric] .

then show of int (sign p) ∗ prod (λi . ?f i $ p i) ?U =
of int (sign p) ∗ prod (λi . ?g i $ p i) ?U + of int (sign p) ∗ prod (λi . ?h i $

p i) ?U
by (simp add : field simps)

qed auto

lemma det row mul :
fixes a b :: ′n::finite ⇒ ˆ ′n
shows det((χ i . if i = k then c ∗s a i else b i):: ′a::comm ring 1ˆ ′nˆ ′n) =
c ∗ det((χ i . if i = k then a i else b i):: ′a::comm ring 1ˆ ′nˆ ′n)

unfolding det def vec lambda beta sum distrib left
proof (rule sum.cong)
let ?U = UNIV :: ′n set
let ?pU = {p. p permutes ?U }
let ?f = (λi . if i = k then c∗s a i else b i):: ′n ⇒ ′a::comm ring 1ˆ ′n
let ?g = (λ i . if i = k then a i else b i):: ′n ⇒ ′a::comm ring 1ˆ ′n
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fix p
assume p: p ∈ ?pU
let ?Uk = ?U − {k}
from p have pU : p permutes ?U
by blast

have kU : ?U = insert k ?Uk
by blast

have eq : prod (λi . ?f i $ p i) ?Uk = prod (λi . ?g i $ p i) ?Uk
by auto

have Uk : finite ?Uk k /∈ ?Uk
by auto

have prod (λi . ?f i $ p i) ?U = prod (λi . ?f i $ p i) (insert k ?Uk)
unfolding kU [symmetric] ..

also have . . . = ?f k $ p k ∗ prod (λi . ?f i $ p i) ?Uk
by (rule prod .insert) auto

also have . . . = (c∗s a k) $ p k ∗ prod (λi . ?f i $ p i) ?Uk
by (simp add : field simps)

also have . . . = c∗ (a k $ p k ∗ prod (λi . ?g i $ p i) ?Uk)
unfolding eq by (simp add : ac simps)

also have . . . = c∗ (prod (λi . ?g i $ p i) (insert k ?Uk))
unfolding prod .insert [OF Uk ] by simp

finally have prod (λi . ?f i $ p i) ?U = c∗ (prod (λi . ?g i $ p i) ?U )
unfolding kU [symmetric] .

then show of int (sign p) ∗ prod (λi . ?f i $ p i) ?U = c ∗ (of int (sign p) ∗
prod (λi . ?g i $ p i) ?U )

by (simp add : field simps)
qed auto

lemma det row 0 :
fixes b :: ′n::finite ⇒ ˆ ′n
shows det((χ i . if i = k then 0 else b i):: ′a::comm ring 1ˆ ′nˆ ′n) = 0
using det row mul [of k 0 λi . 1 b]
apply simp
apply (simp only : vector smult lzero)
done

lemma det row operation:
fixes A :: ′a::{comm ring 1}ˆ ′nˆ ′n
assumes ij : i 6= j
shows det (χ k . if k = i then row i A + c ∗s row j A else row k A) = det A

proof −
let ?Z = (χ k . if k = i then row j A else row k A) :: ′a ˆ ′nˆ ′n
have th: row i ?Z = row j ?Z by (vector row def )
have th2 : ((χ k . if k = i then row i A else row k A) :: ′aˆ ′nˆ ′n) = A
by (vector row def )

show ?thesis
unfolding det row add [of i ] det row mul [of i ] det identical rows[OF ij th] th2
by simp

qed
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lemma det row span:
fixes A :: ′a::{field}ˆ ′nˆ ′n
assumes x : x ∈ vec.span {row j A |j . j 6= i}
shows det (χ k . if k = i then row i A + x else row k A) = det A
using x

proof (induction rule: vec.span induct alt)
case base
have (if k = i then row i A + 0 else row k A) = row k A for k
by simp

then show ?case
by (simp add : row def )

next
case (step c z y)
then obtain j where j : z = row j A i 6= j
by blast

let ?w = row i A + y
have th0 : row i A + (c∗s z + y) = ?w + c∗s z
by vector

let ?d = λx . det (χ k . if k = i then x else row k A)
have thz : ?d z = 0
apply (rule det identical rows[OF j (2 )])
using j
apply (vector row def )
done

have ?d (row i A + (c∗s z + y)) = ?d (?w + c∗s z )
unfolding th0 ..

then have ?d (row i A + (c∗s z + y)) = det A
unfolding thz step.IH det row mul [of i ] det row add [of i ] by simp

then show ?case
unfolding scalar mult eq scaleR .

qed

lemma matrix id [simp]: det (matrix id) = 1
by (simp add : matrix id mat 1 )

proposition det matrix scaleR [simp]: det (matrix (((∗R) r)) :: realˆ ′nˆ ′n) = r
ˆ CARD( ′n::finite)
apply (subst det diagonal)
apply (auto simp: matrix def mat def )
apply (simp add : cart eq inner axis inner axis axis)
done

May as well do this, though it’s a bit unsatisfactory since it ignores exact
duplicates by considering the rows/columns as a set.

lemma det dependent rows:
fixes A:: ′a::{field}ˆ ′nˆ ′n
assumes d : vec.dependent (rows A)
shows det A = 0
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proof −
let ?U = UNIV :: ′n set
from d obtain i where i : row i A ∈ vec.span (rows A − {row i A})
unfolding vec.dependent def rows def by blast

show ?thesis
proof (cases ∀ i j . i 6= j −→ row i A 6= row j A)
case True
with i have vec.span (rows A − {row i A}) ⊆ vec.span {row j A |j . j 6= i}
by (auto simp: rows def intro!: vec.span mono)

then have − row i A ∈ vec.span {row j A|j . j 6= i}
by (meson i subsetCE vec.span neg)

from det row span[OF this]
have det A = det (χ k . if k = i then 0 ∗s 1 else row k A)
unfolding right minus vector smult lzero ..

with det row mul [of i 0 λi . 1 ]
show ?thesis by simp

next
case False
then obtain j k where jk : j 6= k row j A = row k A
by auto

from det identical rows[OF jk ] show ?thesis .
qed

qed

lemma det dependent columns:
assumes d : vec.dependent (columns (A::realˆ ′nˆ ′n))
shows det A = 0
by (metis d det dependent rows rows transpose det transpose)

Multilinearity and the multiplication formula

lemma Cart lambda cong : (
∧
x . f x = g x ) =⇒ (vec lambda f :: ′aˆ ′n) = (vec lambda

g :: ′aˆ ′n)
by auto

lemma det linear row sum:
assumes fS : finite S
shows det ((χ i . if i = k then sum (a i) S else c i):: ′a::comm ring 1ˆ ′nˆ ′n) =
sum (λj . det ((χ i . if i = k then a i j else c i):: ′aˆ ′nˆ ′n)) S

using fS by (induct rule: finite induct ; simp add : det row 0 det row add cong :
if cong)

lemma finite bounded functions:
assumes fS : finite S
shows finite {f . (∀ i ∈ {1 .. (k ::nat)}. f i ∈ S ) ∧ (∀ i . i /∈ {1 .. k} −→ f i = i)}

proof (induct k)
case 0
have ∗: {f . ∀ i . f i = i} = {id}
by auto

show ?case
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by (auto simp: ∗)
next
case (Suc k)
let ?f = λ(y ::nat ,g) i . if i = Suc k then y else g i
let ?S = ?f ‘ (S × {f . (∀ i∈{1 ..k}. f i ∈ S ) ∧ (∀ i . i /∈ {1 ..k} −→ f i = i)})
have ?S = {f . (∀ i∈{1 .. Suc k}. f i ∈ S ) ∧ (∀ i . i /∈ {1 .. Suc k} −→ f i = i)}
apply (auto simp: image iff )
apply (rename tac f )
apply (rule tac x=f (Suc k) in bexI )
apply (rule tac x = λi . if i = Suc k then i else f i in exI , auto)
done

with finite imageI [OF finite cartesian product [OF fS Suc.hyps(1 )], of ?f ]
show ?case
by metis

qed

lemma det linear rows sum lemma:
assumes fS : finite S
and fT : finite T

shows det ((χ i . if i ∈ T then sum (a i) S else c i):: ′a::comm ring 1ˆ ′nˆ ′n) =
sum (λf . det((χ i . if i ∈ T then a i (f i) else c i):: ′aˆ ′nˆ ′n))
{f . (∀ i ∈ T . f i ∈ S ) ∧ (∀ i . i /∈ T −→ f i = i)}

using fT
proof (induct T arbitrary : a c set : finite)
case empty
have th0 :

∧
x y . (χ i . if i ∈ {} then x i else y i) = (χ i . y i)

by vector
from empty .prems show ?case
unfolding th0 by (simp add : eq id iff )

next
case (insert z T a c)
let ?F = λT . {f . (∀ i ∈ T . f i ∈ S ) ∧ (∀ i . i /∈ T −→ f i = i)}
let ?h = λ(y ,g) i . if i = z then y else g i
let ?k = λh. (h(z ),(λi . if i = z then i else h i))
let ?s = λ k a c f . det((χ i . if i ∈ T then a i (f i) else c i):: ′aˆ ′nˆ ′n)
let ?c = λj i . if i = z then a i j else c i
have thif :

∧
a b c d . (if a ∨ b then c else d) = (if a then c else if b then c else d)

by simp
have thif2 :

∧
a b c d e. (if a then b else if c then d else e) =

(if c then (if a then b else d) else (if a then b else e))
by simp

from 〈z /∈ T 〉 have nz :
∧
i . i ∈ T =⇒ i 6= z

by auto
have det (χ i . if i ∈ insert z T then sum (a i) S else c i) =
det (χ i . if i = z then sum (a i) S else if i ∈ T then sum (a i) S else c i)
unfolding insert iff thif ..

also have . . . = (
∑

j∈S . det (χ i . if i ∈ T then sum (a i) S else if i = z then
a i j else c i))
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unfolding det linear row sum[OF fS ]
by (subst thif2 ) (simp add : nz cong : if cong)

finally have tha:
det (χ i . if i ∈ insert z T then sum (a i) S else c i) =
(
∑

(j , f )∈S × ?F T . det (χ i . if i ∈ T then a i (f i)
else if i = z then a i j
else c i))

unfolding insert .hyps unfolding sum.cartesian product by blast
show ?case unfolding tha
using 〈z /∈ T 〉

by (intro sum.reindex bij witness[where i=?k and j=?h])
(auto intro!: cong [OF refl [of det ]] simp: vec eq iff )

qed

lemma det linear rows sum:
fixes S :: ′n::finite set
assumes fS : finite S
shows det (χ i . sum (a i) S ) =
sum (λf . det (χ i . a i (f i) :: ′a::comm ring 1 ˆ ′nˆ ′n)) {f . ∀ i . f i ∈ S}

proof −
have th0 :

∧
x y . ((χ i . if i ∈ (UNIV :: ′n set) then x i else y i) :: ′aˆ ′nˆ ′n) = (χ

i . x i)
by vector

from det linear rows sum lemma[OF fS , of UNIV :: ′n set a, unfolded th0 , OF
finite]
show ?thesis by simp

qed

lemma matrix mul sum alt :
fixes A B :: ′a::comm ring 1ˆ ′nˆ ′n
shows A ∗∗ B = (χ i . sum (λk . A$i$k ∗s B $ k) (UNIV :: ′n set))
by (vector matrix matrix mult def sum component)

lemma det rows mul :
det((χ i . c i ∗s a i):: ′a::comm ring 1ˆ ′nˆ ′n) =
prod (λi . c i) (UNIV :: ′n set) ∗ det((χ i . a i):: ′aˆ ′nˆ ′n)

proof (simp add : det def sum distrib left cong add : prod .cong , rule sum.cong)
let ?U = UNIV :: ′n set
let ?PU = {p. p permutes ?U }
fix p
assume pU : p ∈ ?PU
let ?s = of int (sign p)
from pU have p: p permutes ?U
by blast

have prod (λi . c i ∗ a i $ p i) ?U = prod c ?U ∗ prod (λi . a i $ p i) ?U
unfolding prod .distrib ..

then show ?s ∗ (
∏

xa∈?U . c xa ∗ a xa $ p xa) =
prod c ?U ∗ (?s∗ (

∏
xa∈?U . a xa $ p xa))

by (simp add : field simps)
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qed rule

proposition det mul :
fixes A B :: ′a::comm ring 1ˆ ′nˆ ′n
shows det (A ∗∗ B) = det A ∗ det B

proof −
let ?U = UNIV :: ′n set
let ?F = {f . (∀ i ∈ ?U . f i ∈ ?U ) ∧ (∀ i . i /∈ ?U −→ f i = i)}
let ?PU = {p. p permutes ?U }
have p ∈ ?F if p permutes ?U for p
by simp

then have PUF : ?PU ⊆ ?F by blast
{
fix f
assume fPU : f ∈ ?F − ?PU
have fUU : f ‘ ?U ⊆ ?U
using fPU by auto

from fPU have f : ∀ i ∈ ?U . f i ∈ ?U ∀ i . i /∈ ?U −→ f i = i ¬(∀ y . ∃ !x . f x
= y)

unfolding permutes def by auto

let ?A = (χ i . A$i$f i ∗s B$f i) :: ′aˆ ′nˆ ′n
let ?B = (χ i . B$f i) :: ′aˆ ′nˆ ′n
{
assume fni : ¬ inj on f ?U
then obtain i j where ij : f i = f j i 6= j
unfolding inj on def by blast

then have row i ?B = row j ?B
by (vector row def )

with det identical rows[OF ij (2 )]
have det (χ i . A$i$f i ∗s B$f i) = 0
unfolding det rows mul by force

}
moreover
{
assume fi : inj on f ?U
from f fi have fith:

∧
i j . f i = f j =⇒ i = j

unfolding inj on def by metis
note fs = fi [unfolded surjective iff injective gen[OF finite finite refl fUU ,

symmetric]]
have ∃ !x . f x = y for y
using fith fs by blast

with f (3 ) have det (χ i . A$i$f i ∗s B$f i) = 0
by blast

}
ultimately have det (χ i . A$i$f i ∗s B$f i) = 0
by blast

}
then have zth: ∀ f ∈ ?F − ?PU . det (χ i . A$i$f i ∗s B$f i) = 0
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by simp
{
fix p
assume pU : p ∈ ?PU
from pU have p: p permutes ?U
by blast

let ?s = λp. of int (sign p)
let ?f = λq . ?s p ∗ (

∏
i∈ ?U . A $ i $ p i) ∗ (?s q ∗ (

∏
i∈ ?U . B $ i $ q i))

have (sum (λq . ?s q ∗
(
∏

i∈ ?U . (χ i . A $ i $ p i ∗s B $ p i :: ′aˆ ′nˆ ′n) $ i $ q i)) ?PU ) =
(sum (λq . ?s p ∗ (

∏
i∈ ?U . A $ i $ p i) ∗ (?s q ∗ (

∏
i∈ ?U . B $ i $ q i)))

?PU )
unfolding sum permutations compose right [OF permutes inv [OF p], of ?f ]

proof (rule sum.cong)
fix q
assume qU : q ∈ ?PU
then have q : q permutes ?U
by blast

from p q have pp: permutation p and pq : permutation q
unfolding permutation permutes by auto

have th00 : of int (sign p) ∗ of int (sign p) = (1 :: ′a)∧
a. of int (sign p) ∗ (of int (sign p) ∗ a) = a

unfolding mult .assoc[symmetric]
unfolding of int mult [symmetric]
by (simp all add : sign idempotent)

have ths: ?s q = ?s p ∗ ?s (q ◦ inv p)
using pp pq permutation inverse[OF pp] sign inverse[OF pp]
by (simp add : th00 ac simps sign idempotent sign compose)

have th001 : prod (λi . B$i$ q (inv p i)) ?U = prod ((λi . B$i$ q (inv p i)) ◦
p) ?U

by (rule prod .permute[OF p])
have thp: prod (λi . (χ i . A$i$p i ∗s B$p i :: ′aˆ ′nˆ ′n) $i $ q i) ?U =
prod (λi . A$i$p i) ?U ∗ prod (λi . B$i$ q (inv p i)) ?U
unfolding th001 prod .distrib[symmetric] o def permutes inverses[OF p]
apply (rule prod .cong [OF refl ])
using permutes in image[OF q ]
apply vector
done

show ?s q ∗ prod (λi . (((χ i . A$i$p i ∗s B$p i) :: ′aˆ ′nˆ ′n)$i$q i)) ?U =
?s p ∗ (prod (λi . A$i$p i) ?U ) ∗ (?s (q ◦ inv p) ∗ prod (λi . B$i$(q ◦ inv

p) i) ?U )
using ths thp pp pq permutation inverse[OF pp] sign inverse[OF pp]
by (simp add : sign nz th00 field simps sign idempotent sign compose)

qed rule
}
then have th2 : sum (λf . det (χ i . A$i$f i ∗s B$f i)) ?PU = det A ∗ det B
unfolding det def sum product
by (rule sum.cong [OF refl ])

have det (A∗∗B) = sum (λf . det (χ i . A $ i $ f i ∗s B $ f i)) ?F
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unfolding matrix mul sum alt det linear rows sum[OF finite]
by simp

also have . . . = sum (λf . det (χ i . A$i$f i ∗s B$f i)) ?PU
using sum.mono neutral cong left [OF finite PUF zth, symmetric]
unfolding det rows mul by auto

finally show ?thesis unfolding th2 .
qed

1.10.2 Relation to invertibility

proposition invertible det nz :
fixes A:: ′a::{field}ˆ ′nˆ ′n
shows invertible A ←→ det A 6= 0

proof (cases invertible A)
case True
then obtain B :: ′aˆ ′nˆ ′n where B : A ∗∗ B = mat 1
unfolding invertible right inverse by blast

then have det (A ∗∗ B) = det (mat 1 :: ′aˆ ′nˆ ′n)
by simp

then show ?thesis
by (metis True det I det mul mult zero left one neq zero)

next
case False
let ?U = UNIV :: ′n set
have fU : finite ?U
by simp

from False obtain c i where c: sum (λi . c i ∗s row i A) ?U = 0 and iU : i ∈
?U and ci : c i 6= 0

unfolding invertible right inverse matrix right invertible independent rows
by blast

have thr0 : − row i A = sum (λj . (1/ c i) ∗s (c j ∗s row j A)) (?U − {i})
unfolding sum cmul using c ci
by (auto simp: sum.remove[OF fU iU ] eq vector fraction iff add eq 0 iff )

have thr : − row i A ∈ vec.span {row j A| j . j 6= i}
unfolding thr0 by (auto intro: vec.span base vec.span scale vec.span sum)

let ?B = (χ k . if k = i then 0 else row k A) :: ′aˆ ′nˆ ′n
have thrb: row i ?B = 0 using iU by (vector row def )
have det A = 0
unfolding det row span[OF thr , symmetric] right minus
unfolding det zero row(2 )[OF thrb] ..

then show ?thesis
by (simp add : False)

qed

lemma det nz iff inj gen:
fixes f :: ′a::fieldˆ ′n ⇒ ′a::fieldˆ ′n
assumes Vector Spaces.linear (∗s) (∗s) f
shows det (matrix f ) 6= 0 ←→ inj f
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proof
assume det (matrix f ) 6= 0
then show inj f
using assms invertible det nz inj matrix vector mult by force

next
assume inj f
show det (matrix f ) 6= 0
using vec.linear injective left inverse [OF assms 〈inj f 〉]
by (metis assms invertible det nz invertible left inverse matrix compose gen ma-

trix id mat 1 )
qed

lemma det nz iff inj :
fixes f :: realˆ ′n ⇒ realˆ ′n
assumes linear f
shows det (matrix f ) 6= 0 ←→ inj f
using det nz iff inj gen[of f ] assms
unfolding linear matrix vector mul eq .

lemma det eq 0 rank :
fixes A :: realˆ ′nˆ ′n
shows det A = 0 ←→ rank A < CARD( ′n)
using invertible det nz [of A]
by (auto simp: matrix left invertible injective invertible left inverse less rank noninjective)

Invertibility of matrices and corresponding linear functions

lemma matrix left invertible gen:
fixes f :: ′a::fieldˆ ′m ⇒ ′a::fieldˆ ′n
assumes Vector Spaces.linear (∗s) (∗s) f
shows ((∃B . B ∗∗ matrix f = mat 1 ) ←→ (∃ g . Vector Spaces.linear (∗s) (∗s)

g ∧ g ◦ f = id))
proof safe
fix B
assume 1 : B ∗∗ matrix f = mat 1
show ∃ g . Vector Spaces.linear (∗s) (∗s) g ∧ g ◦ f = id
proof (intro exI conjI )
show Vector Spaces.linear (∗s) (∗s) (λy . B ∗v y)
by simp

show ((∗v) B) ◦ f = id
unfolding o def
by (metis assms 1 eq id iff matrix vector mul(1 ) matrix vector mul assoc

matrix vector mul lid)
qed

next
fix g
assume Vector Spaces.linear (∗s) (∗s) g g ◦ f = id
then have matrix g ∗∗ matrix f = mat 1
by (metis assms matrix compose gen matrix id mat 1 )
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then show ∃B . B ∗∗ matrix f = mat 1 ..
qed

lemma matrix left invertible:
linear f =⇒ ((∃B . B ∗∗ matrix f = mat 1 ) ←→ (∃ g . linear g ∧ g ◦ f = id))

for f ::realˆ ′m ⇒ realˆ ′n
using matrix left invertible gen[of f ]
by (auto simp: linear matrix vector mul eq)

lemma matrix right invertible gen:
fixes f :: ′a::fieldˆ ′m ⇒ ′aˆ ′n
assumes Vector Spaces.linear (∗s) (∗s) f
shows ((∃B . matrix f ∗∗ B = mat 1 ) ←→ (∃ g . Vector Spaces.linear (∗s) (∗s)

g ∧ f ◦ g = id))
proof safe
fix B
assume 1 : matrix f ∗∗ B = mat 1
show ∃ g . Vector Spaces.linear (∗s) (∗s) g ∧ f ◦ g = id
proof (intro exI conjI )
show Vector Spaces.linear (∗s) (∗s) ((∗v) B)
by simp

show f ◦ (∗v) B = id
using 1 assms comp apply eq id iff vec.linear id matrix id mat 1 matrix vector mul assoc

matrix works
by (metis (no types, hide lams))

qed
next
fix g
assume Vector Spaces.linear (∗s) (∗s) g and f ◦ g = id
then have matrix f ∗∗ matrix g = mat 1
by (metis assms matrix compose gen matrix id mat 1 )

then show ∃B . matrix f ∗∗ B = mat 1 ..
qed

lemma matrix right invertible:
linear f =⇒ ((∃B . matrix f ∗∗ B = mat 1 ) ←→ (∃ g . linear g ∧ f ◦ g = id))

for f ::realˆ ′m ⇒ realˆ ′n
using matrix right invertible gen[of f ]
by (auto simp: linear matrix vector mul eq)

lemma matrix invertible gen:
fixes f :: ′a::fieldˆ ′m ⇒ ′a::fieldˆ ′n
assumes Vector Spaces.linear (∗s) (∗s) f
shows invertible (matrix f ) ←→ (∃ g . Vector Spaces.linear (∗s) (∗s) g ∧ f ◦ g

= id ∧ g ◦ f = id)
(is ?lhs = ?rhs)

proof
assume ?lhs then show ?rhs

by (metis assms invertible def left right inverse eq matrix left invertible gen
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matrix right invertible gen)
next
assume ?rhs then show ?lhs
by (metis assms invertible def matrix compose gen matrix id mat 1 )

qed

lemma matrix invertible:
linear f =⇒ invertible (matrix f ) ←→ (∃ g . linear g ∧ f ◦ g = id ∧ g ◦ f = id)
for f ::realˆ ′m ⇒ realˆ ′n
using matrix invertible gen[of f ]
by (auto simp: linear matrix vector mul eq)

lemma invertible eq bij :
fixes m :: ′a::fieldˆ ′mˆ ′n
shows invertible m ←→ bij ((∗v) m)
using matrix invertible gen[OF matrix vector mul linear gen, of m, simplified

matrix of matrix vector mul ]
by (metis bij betw def left right inverse eq matrix vector mul linear gen o bij

vec.linear injective left inverse vec.linear surjective right inverse)

1.10.3 Cramer’s rule

lemma cramer lemma transpose:
fixes A:: ′a::{field}ˆ ′nˆ ′n
and x :: ′a::{field}ˆ ′n

shows det ((χ i . if i = k then sum (λi . x$i ∗s row i A) (UNIV :: ′n set)
else row i A):: ′a::{field}ˆ ′nˆ ′n) = x$k ∗ det A

(is ?lhs = ?rhs)
proof −
let ?U = UNIV :: ′n set
let ?Uk = ?U − {k}
have U : ?U = insert k ?Uk
by blast

have kUk : k /∈ ?Uk
by simp

have th00 :
∧
k s. x$k ∗s row k A + s = (x$k − 1 ) ∗s row k A + row k A + s

by (vector field simps)
have th001 :

∧
f k . (λx . if x = k then f k else f x ) = f

by auto
have (χ i . row i A) = A by (vector row def )
then have thd1 : det (χ i . row i A) = det A
by simp

have thd0 : det (χ i . if i = k then row k A + (
∑

i ∈ ?Uk . x $ i ∗s row i A) else
row i A) = det A

by (force intro: det row span vec.span sum vec.span scale vec.span base)
show ?lhs = x$k ∗ det A
apply (subst U )
unfolding sum.insert [OF finite kUk ]
apply (subst th00 )
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unfolding add .assoc
apply (subst det row add)
unfolding thd0
unfolding det row mul
unfolding th001 [of k λi . row i A]
unfolding thd1
apply (simp add : field simps)
done

qed

proposition cramer lemma:
fixes A :: ′a::{field}ˆ ′nˆ ′n
shows det((χ i j . if j = k then (A ∗v x )$i else A$i$j ):: ′a::{field}ˆ ′nˆ ′n) = x$k
∗ det A
proof −
let ?U = UNIV :: ′n set
have ∗:

∧
c. sum (λi . c i ∗s row i (transpose A)) ?U = sum (λi . c i ∗s column

i A) ?U
by (auto intro: sum.cong)

show ?thesis
unfolding matrix mult sum
unfolding cramer lemma transpose[of k x transpose A, unfolded det transpose,

symmetric]
unfolding ∗[of λi . x$i ]
apply (subst det transpose[symmetric])
apply (rule cong [OF refl [of det ]])
apply (vector transpose def column def row def )
done

qed

proposition cramer :
fixes A :: ′a::{field}ˆ ′nˆ ′n
assumes d0 : det A 6= 0
shows A ∗v x = b ←→ x = (χ k . det(χ i j . if j=k then b$i else A$i$j ) / det A)

proof −
from d0 obtain B where B : A ∗∗ B = mat 1 B ∗∗ A = mat 1
unfolding invertible det nz [symmetric] invertible def
by blast

have (A ∗∗ B) ∗v b = b
by (simp add : B)

then have A ∗v (B ∗v b) = b
by (simp add : matrix vector mul assoc)

then have xe: ∃ x . A ∗v x = b
by blast

{
fix x
assume x : A ∗v x = b
have x = (χ k . det(χ i j . if j=k then b$i else A$i$j ) / det A)
unfolding x [symmetric]
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using d0 by (simp add : vec eq iff cramer lemma field simps)
}
with xe show ?thesis
by auto

qed

lemma det 1 : det (A:: ′a::comm ring 1ˆ1ˆ1 ) = A$1$1
by (simp add : det def sign id)

lemma det 2 : det (A:: ′a::comm ring 1ˆ2ˆ2 ) = A$1$1 ∗ A$2$2 − A$1$2 ∗
A$2$1
proof −
have f12 : finite {2 ::2} 1 /∈ {2 ::2} by auto
show ?thesis
unfolding det def UNIV 2
unfolding sum over permutations insert [OF f12 ]
unfolding permutes sing
by (simp add : sign swap id sign id swap id eq)

qed

lemma det 3 :
det (A:: ′a::comm ring 1ˆ3ˆ3 ) =
A$1$1 ∗ A$2$2 ∗ A$3$3 +
A$1$2 ∗ A$2$3 ∗ A$3$1 +
A$1$3 ∗ A$2$1 ∗ A$3$2 −
A$1$1 ∗ A$2$3 ∗ A$3$2 −
A$1$2 ∗ A$2$1 ∗ A$3$3 −
A$1$3 ∗ A$2$2 ∗ A$3$1

proof −
have f123 : finite {2 ::3 , 3} 1 /∈ {2 ::3 , 3}
by auto

have f23 : finite {3 ::3} 2 /∈ {3 ::3}
by auto

show ?thesis
unfolding det def UNIV 3
unfolding sum over permutations insert [OF f123 ]
unfolding sum over permutations insert [OF f23 ]
unfolding permutes sing
by (simp add : sign swap id permutation swap id sign compose sign id swap id eq)

qed

proposition det orthogonal matrix :
fixes Q :: ′a::linordered idomˆ ′nˆ ′n
assumes oQ : orthogonal matrix Q
shows det Q = 1 ∨ det Q = − 1

proof −
have Q ∗∗ transpose Q = mat 1
by (metis oQ orthogonal matrix def )
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then have det (Q ∗∗ transpose Q) = det (mat 1 :: ′aˆ ′nˆ ′n)
by simp

then have det Q ∗ det Q = 1
by (simp add : det mul)

then show ?thesis
by (simp add : square eq 1 iff )

qed

proposition orthogonal transformation det [simp]:
fixes f :: realˆ ′n ⇒ realˆ ′n
shows orthogonal transformation f =⇒ |det (matrix f )| = 1
using det orthogonal matrix orthogonal transformation matrix by fastforce

1.10.4 Rotation, reflection, rotoinversion

definition rotation matrix Q ←→ orthogonal matrix Q ∧ det Q = 1
definition rotoinversion matrix Q ←→ orthogonal matrix Q ∧ det Q = − 1

lemma orthogonal rotation or rotoinversion:
fixes Q :: ′a::linordered idomˆ ′nˆ ′n
shows orthogonal matrix Q ←→ rotation matrix Q ∨ rotoinversion matrix Q
by (metis rotoinversion matrix def rotation matrix def det orthogonal matrix )

Slightly stronger results giving rotation, but only in two or more dimensions

lemma rotation matrix exists basis:
fixes a :: realˆ ′n
assumes 2 : 2 ≤ CARD( ′n) and norm a = 1
obtains A where rotation matrix A A ∗v (axis k 1 ) = a

proof −
obtain A where orthogonal matrix A and A: A ∗v (axis k 1 ) = a
using orthogonal matrix exists basis assms by metis

with orthogonal rotation or rotoinversion
consider rotation matrix A | rotoinversion matrix A
by metis

then show thesis
proof cases
assume rotation matrix A
then show ?thesis
using 〈A ∗v axis k 1 = a〉 that by auto

next
from ex card [OF 2 ] obtain h i :: ′n where h 6= i
by (auto simp add : eval nat numeral card Suc eq)

then obtain j where j 6= k
by (metis (full types))

let ?TA = transpose A
let ?A = χ i . if i = j then − 1 ∗R (?TA $ i) else ?TA $i
assume rotoinversion matrix A
then have [simp]: det A = −1
by (simp add : rotoinversion matrix def )
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show ?thesis
proof
have [simp]: row i (χ i . if i = j then − 1 ∗R ?TA $ i else ?TA $ i) = (if i

= j then − row i ?TA else row i ?TA) for i
by (auto simp: row def )

have orthogonal matrix ?A
unfolding orthogonal matrix orthonormal rows

using 〈orthogonal matrix A〉 by (auto simp: orthogonal matrix orthonormal columns
orthogonal clauses)

then show rotation matrix (transpose ?A)
unfolding rotation matrix def

by (simp add : det row mul [of j λi . ?TA $ i , unfolded scalar mult eq scaleR])
show transpose ?A ∗v axis k 1 = a
using 〈j 6= k 〉 A by (simp add : matrix vector column axis def scalar mult eq scaleR

if distrib [of λz . z ∗R c for c] cong : if cong)
qed

qed
qed

lemma rotation exists 1 :
fixes a :: realˆ ′n
assumes 2 ≤ CARD( ′n) norm a = 1 norm b = 1
obtains f where orthogonal transformation f det(matrix f ) = 1 f a = b

proof −
obtain k :: ′n where True
by simp

obtain A B where AB : rotation matrix A rotation matrix B
and eq : A ∗v (axis k 1 ) = a B ∗v (axis k 1 ) = b

using rotation matrix exists basis assms by metis
let ?f = λx . (B ∗∗ transpose A) ∗v x
show thesis
proof
show orthogonal transformation ?f
using AB orthogonal matrix mul orthogonal transformation matrix rotation matrix def

matrix vector mul linear by force
show det (matrix ?f ) = 1
using AB by (auto simp: det mul rotation matrix def )

show ?f a = b
using AB unfolding orthogonal matrix def rotation matrix def
by (metis eq matrix mul rid matrix vector mul assoc)

qed
qed

lemma rotation exists:
fixes a :: realˆ ′n
assumes 2 : 2 ≤ CARD( ′n) and eq : norm a = norm b
obtains f where orthogonal transformation f det(matrix f ) = 1 f a = b

proof (cases a = 0 ∨ b = 0 )
case True
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with assms have a = 0 b = 0
by auto

then show ?thesis
by (metis eq id iff matrix id orthogonal transformation id that)

next
case False
then obtain f where f : orthogonal transformation f det (matrix f ) = 1
and f ′: f (a /R norm a) = b /R norm b
using rotation exists 1 [of a /R norm a b /R norm b, OF 2 ] by auto

then interpret linear f by (simp add : orthogonal transformation)
have f a = b
using f ′ False
by (simp add : eq scale)

with f show thesis ..
qed

lemma rotation rightward line:
fixes a :: realˆ ′n
obtains f where orthogonal transformation f 2 ≤ CARD( ′n) =⇒ det(matrix f )

= 1
f (norm a ∗R axis k 1 ) = a

proof (cases CARD( ′n) = 1 )
case True
obtain f where orthogonal transformation f f (norm a ∗R axis k (1 ::real)) = a
proof (rule orthogonal transformation exists)
show norm (norm a ∗R axis k (1 ::real)) = norm a
by simp

qed auto
then show thesis
using True that by auto

next
case False
obtain f where orthogonal transformation f det(matrix f ) = 1 f (norm a ∗R

axis k 1 ) = a
proof (rule rotation exists)
show 2 ≤ CARD( ′n)
using False one le card finite [where ′a= ′n] by linarith

show norm (norm a ∗R axis k (1 ::real)) = norm a
by simp

qed auto
then show thesis
using that by blast

qed

end



Chapter 2

Topology

theory Elementary Topology
imports
HOL−Library .Set Idioms
HOL−Library .Disjoint Sets
Product Vector

begin

2.1 Elementary Topology

Affine transformations of intervals

lemma real affinity le: 0 < m =⇒ m ∗ x + c ≤ y ←→ x ≤ inverse m ∗ y + −
(c / m)
for m :: ′a::linordered field
by (simp add : field simps)

lemma real le affinity : 0 < m =⇒ y ≤ m ∗ x + c ←→ inverse m ∗ y + − (c /
m) ≤ x
for m :: ′a::linordered field
by (simp add : field simps)

lemma real affinity lt : 0 < m =⇒ m ∗ x + c < y ←→ x < inverse m ∗ y + −
(c / m)
for m :: ′a::linordered field
by (simp add : field simps)

lemma real lt affinity : 0 < m =⇒ y < m ∗ x + c ←→ inverse m ∗ y + − (c /
m) < x
for m :: ′a::linordered field
by (simp add : field simps)

lemma real affinity eq : m 6= 0 =⇒ m ∗ x + c = y ←→ x = inverse m ∗ y + −
(c / m)
for m :: ′a::linordered field
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by (simp add : field simps)

lemma real eq affinity : m 6= 0 =⇒ y = m ∗ x + c ←→ inverse m ∗ y + − (c /
m) = x
for m :: ′a::linordered field
by (simp add : field simps)

2.1.1 Topological Basis

context topological space
begin

definition topological basis B ←→
(∀ b∈B . open b) ∧ (∀ x . open x −→ (∃B ′. B ′ ⊆ B ∧

⋃
B ′ = x ))

lemma topological basis:
topological basis B ←→ (∀ x . open x ←→ (∃B ′. B ′ ⊆ B ∧

⋃
B ′ = x ))

unfolding topological basis def
apply safe

apply fastforce
apply fastforce
apply (erule tac x=x in allE , simp)
apply (rule tac x={x} in exI , auto)
done

lemma topological basis iff :
assumes

∧
B ′. B ′ ∈ B =⇒ open B ′

shows topological basis B ←→ (∀O ′. open O ′ −→ (∀ x∈O ′. ∃B ′∈B . x ∈ B ′ ∧
B ′ ⊆ O ′))

(is ←→ ?rhs)
proof safe
fix O ′ and x :: ′a
assume H : topological basis B open O ′ x ∈ O ′

then have (∃B ′⊆B .
⋃
B ′ = O ′) by (simp add : topological basis def )

then obtain B ′ where B ′ ⊆ B O ′ =
⋃

B ′ by auto
then show ∃B ′∈B . x ∈ B ′ ∧ B ′ ⊆ O ′ using H by auto

next
assume H : ?rhs
show topological basis B
using assms unfolding topological basis def

proof safe
fix O ′ :: ′a set
assume open O ′

with H obtain f where ∀ x∈O ′. f x ∈ B ∧ x ∈ f x ∧ f x ⊆ O ′

by (force intro: bchoice simp: Bex def )
then show ∃B ′⊆B .

⋃
B ′ = O ′

by (auto intro: exI [where x={f x |x . x ∈ O ′}])
qed

qed
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lemma topological basisI :
assumes

∧
B ′. B ′ ∈ B =⇒ open B ′

and
∧
O ′ x . open O ′ =⇒ x ∈ O ′ =⇒ ∃B ′∈B . x ∈ B ′ ∧ B ′ ⊆ O ′

shows topological basis B
using assms by (subst topological basis iff ) auto

lemma topological basisE :
fixes O ′

assumes topological basis B
and open O ′

and x ∈ O ′

obtains B ′ where B ′ ∈ B x ∈ B ′ B ′ ⊆ O ′

proof atomize elim
from assms have

∧
B ′. B ′∈B =⇒ open B ′

by (simp add : topological basis def )
with topological basis iff assms
show ∃B ′. B ′ ∈ B ∧ x ∈ B ′ ∧ B ′ ⊆ O ′

using assms by (simp add : Bex def )
qed

lemma topological basis open:
assumes topological basis B
and X ∈ B

shows open X
using assms by (simp add : topological basis def )

lemma topological basis imp subbasis:
assumes B : topological basis B
shows open = generate topology B

proof (intro ext iffI )
fix S :: ′a set
assume open S
with B obtain B ′ where B ′ ⊆ B S =

⋃
B ′

unfolding topological basis def by blast
then show generate topology B S
by (auto intro: generate topology .intros dest : topological basis open)

next
fix S :: ′a set
assume generate topology B S
then show open S
by induct (auto dest : topological basis open[OF B ])

qed

lemma basis dense:
fixes B :: ′a set set
and f :: ′a set ⇒ ′a

assumes topological basis B
and choosefrom basis:

∧
B ′. B ′ 6= {} =⇒ f B ′ ∈ B ′
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shows ∀X . open X −→ X 6= {} −→ (∃B ′ ∈ B . f B ′ ∈ X )
proof (intro allI impI )
fix X :: ′a set
assume open X and X 6= {}
from topological basisE [OF 〈topological basis B 〉 〈open X 〉 choosefrom basis[OF

〈X 6= {}〉]]
obtain B ′ where B ′ ∈ B f X ∈ B ′ B ′ ⊆ X .
then show ∃B ′∈B . f B ′ ∈ X
by (auto intro!: choosefrom basis)

qed

end

lemma topological basis prod :
assumes A: topological basis A
and B : topological basis B

shows topological basis ((λ(a, b). a × b) ‘ (A × B))
unfolding topological basis def

proof (safe, simp all del : ex simps add : subset image iff ex simps(1 )[symmetric])
fix S :: ( ′a × ′b) set
assume open S
then show ∃X⊆A × B . (

⋃
(a,b)∈X . a × b) = S

proof (safe intro!: exI [of {x∈A × B . fst x × snd x ⊆ S}])
fix x y
assume (x , y) ∈ S
from open prod elim[OF 〈open S 〉 this]
obtain a b where a: open ax ∈ a and b: open b y ∈ b and a × b ⊆ S
by (metis mem Sigma iff )

moreover
from A a obtain A0 where A0 ∈ A x ∈ A0 A0 ⊆ a
by (rule topological basisE )

moreover
from B b obtain B0 where B0 ∈ B y ∈ B0 B0 ⊆ b
by (rule topological basisE )

ultimately show (x , y) ∈ (
⋃
(a, b)∈{X ∈ A × B . fst X × snd X ⊆ S}. a ×

b)
by (intro UN I [of (A0 , B0 )]) auto

qed auto
qed (metis A B topological basis open open Times)

2.1.2 Countable Basis

locale countable basis = topological space p for p:: ′a set ⇒ bool +
fixes B :: ′a set set
assumes is basis: topological basis B
and countable basis: countable B

begin

lemma open countable basis ex :
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assumes p X
shows ∃B ′ ⊆ B . X =

⋃
B ′

using assms countable basis is basis
unfolding topological basis def by blast

lemma open countable basisE :
assumes p X
obtains B ′ where B ′ ⊆ B X =

⋃
B ′

using assms open countable basis ex
by atomize elim simp

lemma countable dense exists:
∃D :: ′a set . countable D ∧ (∀X . p X −→ X 6= {} −→ (∃ d ∈ D . d ∈ X ))

proof −
let ?f = (λB ′. SOME x . x ∈ B ′)
have countable (?f ‘ B) using countable basis by simp
with basis dense[OF is basis, of ?f ] show ?thesis

by (intro exI [where x=?f ‘ B ]) (metis (mono tags) all not in conv imageI
someI )
qed

lemma countable dense setE :
obtains D :: ′a set
where countable D

∧
X . p X =⇒ X 6= {} =⇒ ∃ d ∈ D . d ∈ X

using countable dense exists by blast

end

lemma countable basis openI : countable basis open B
if countable B topological basis B
using that
by unfold locales
(simp all add : topological basis topological space.topological basis topological space axioms)

lemma (in first countable topology) first countable basisE :
fixes x :: ′a
obtains A where countable A

∧
A. A ∈ A =⇒ x ∈ A

∧
A. A ∈ A =⇒ open A∧

S . open S =⇒ x ∈ S =⇒ (∃A∈A. A ⊆ S )
proof −
obtain A where A: (∀ i ::nat . x ∈ A i ∧ open (A i)) (∀S . open S ∧ x ∈ S −→

(∃ i . A i ⊆ S ))
using first countable basis[of x ] by metis

show thesis
proof
show countable (range A)
by simp

qed (use A in auto)
qed

Elementary{_}{\kern 0pt}Topology.html


266

lemma (in first countable topology) first countable basis Int stableE :
obtains A where countable A

∧
A. A ∈ A =⇒ x ∈ A

∧
A. A ∈ A =⇒ open A∧

S . open S =⇒ x ∈ S =⇒ (∃A∈A. A ⊆ S )∧
A B . A ∈ A =⇒ B ∈ A =⇒ A ∩ B ∈ A

proof atomize elim
obtain B where B:
countable B∧
B . B ∈ B =⇒ x ∈ B∧
B . B ∈ B =⇒ open B∧
S . open S =⇒ x ∈ S =⇒ ∃B∈B. B ⊆ S

by (rule first countable basisE ) blast
define A where [abs def ]:
A = (λN .

⋂
((λn. from nat into B n) ‘ N )) ‘ (Collect finite::nat set set)

then show ∃A. countable A ∧ (∀A. A ∈ A −→ x ∈ A) ∧ (∀A. A ∈ A −→ open
A) ∧

(∀S . open S −→ x ∈ S −→ (∃A∈A. A ⊆ S )) ∧ (∀A B . A ∈ A −→ B ∈
A −→ A ∩ B ∈ A)
proof (safe intro!: exI [where x=A])
show countable A
unfolding A def by (intro countable image countable Collect finite)

fix A
assume A ∈ A
then show x ∈ A open A
using B(4 )[OF open UNIV ] by (auto simp: A def intro: B from nat into)

next
let ?int = λN .

⋂
(from nat into B ‘ N )

fix A B
assume A ∈ A B ∈ A
then obtain N M where A = ?int N B = ?int M finite (N ∪ M )
by (auto simp: A def )

then show A ∩ B ∈ A
by (auto simp: A def intro!: image eqI [where x=N ∪ M ])

next
fix S
assume open S x ∈ S
then obtain a where a: a∈B a ⊆ S using B by blast
then show ∃ a∈A. a ⊆ S using a B

by (intro bexI [where x=a]) (auto simp: A def intro: image eqI [where
x={to nat on B a}])
qed

qed

lemma (in topological space) first countableI :
assumes countable A
and 1 :

∧
A. A ∈ A =⇒ x ∈ A

∧
A. A ∈ A =⇒ open A

and 2 :
∧
S . open S =⇒ x ∈ S =⇒ ∃A∈A. A ⊆ S

shows ∃A::nat ⇒ ′a set . (∀ i . x ∈ A i ∧ open (A i)) ∧ (∀S . open S ∧ x ∈ S
−→ (∃ i . A i ⊆ S ))
proof (safe intro!: exI [of from nat into A])
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fix i
have A 6= {} using 2 [of UNIV ] by auto
show x ∈ from nat into A i open (from nat into A i)
using range from nat into subset [OF 〈A 6= {}〉] 1 by auto

next
fix S
assume open S x∈S from 2 [OF this]
show ∃ i . from nat into A i ⊆ S
using subset range from nat into[OF 〈countable A〉] by auto

qed

instance prod :: (first countable topology , first countable topology) first countable topology
proof
fix x :: ′a × ′b
obtain A where A:

countable A∧
a. a ∈ A =⇒ fst x ∈ a∧
a. a ∈ A =⇒ open a∧
S . open S =⇒ fst x ∈ S =⇒ ∃ a∈A. a ⊆ S

by (rule first countable basisE [of fst x ]) blast
obtain B where B :

countable B∧
a. a ∈ B =⇒ snd x ∈ a∧
a. a ∈ B =⇒ open a∧
S . open S =⇒ snd x ∈ S =⇒ ∃ a∈B . a ⊆ S

by (rule first countable basisE [of snd x ]) blast
show ∃A::nat ⇒ ( ′a × ′b) set .
(∀ i . x ∈ A i ∧ open (A i)) ∧ (∀S . open S ∧ x ∈ S −→ (∃ i . A i ⊆ S ))

proof (rule first countableI [of (λ(a, b). a × b) ‘ (A × B)], safe)
fix a b
assume x : a ∈ A b ∈ B
show x ∈ a × b
by (simp add : A(2 ) B(2 ) mem Times iff x )

show open (a × b)
by (simp add : A(3 ) B(3 ) open Times x )

next
fix S
assume open S x ∈ S
then obtain a ′ b ′ where a ′b ′: open a ′ open b ′ x ∈ a ′ × b ′ a ′ × b ′ ⊆ S
by (rule open prod elim)

moreover
from a ′b ′ A(4 )[of a ′] B(4 )[of b ′]
obtain a b where a ∈ A a ⊆ a ′ b ∈ B b ⊆ b ′

by auto
ultimately
show ∃ a∈(λ(a, b). a × b) ‘ (A × B). a ⊆ S
by (auto intro!: bexI [of a × b] bexI [of a] bexI [of b])

qed (simp add : A B)
qed
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class second countable topology = topological space +
assumes ex countable subbasis:
∃B :: ′a set set . countable B ∧ open = generate topology B

begin

lemma ex countable basis: ∃B :: ′a set set . countable B ∧ topological basis B
proof −

from ex countable subbasis obtain B where B : countable B open = gener-
ate topology B

by blast
let ?B = Inter ‘ {b. finite b ∧ b ⊆ B }

show ?thesis
proof (intro exI conjI )
show countable ?B
by (intro countable image countable Collect finite subset B)

{
fix S
assume open S
then have ∃B ′⊆{b. finite b ∧ b ⊆ B}. (

⋃
b∈B ′.

⋂
b) = S

unfolding B
proof induct
case UNIV
show ?case by (intro exI [of {{}}]) simp

next
case (Int a b)
then obtain x y where x : a =

⋃
(Inter ‘ x )

∧
i . i ∈ x =⇒ finite i ∧ i ⊆ B

and y : b =
⋃
(Inter ‘ y)

∧
i . i ∈ y =⇒ finite i ∧ i ⊆ B

by blast
show ?case
unfolding x y Int UN distrib2
by (intro exI [of {i ∪ j | i j . i ∈ x ∧ j ∈ y}]) (auto dest : x (2 ) y(2 ))

next
case (UN K )
then have ∀ k∈K . ∃B ′⊆{b. finite b ∧ b ⊆ B}.

⋃
(Inter ‘ B ′) = k by auto

then obtain k where
∀ ka∈K . k ka ⊆ {b. finite b ∧ b ⊆ B} ∧

⋃
(Inter ‘ (k ka)) = ka

unfolding bchoice iff ..
then show ∃B ′⊆{b. finite b ∧ b ⊆ B}.

⋃
(Inter ‘ B ′) =

⋃
K

by (intro exI [of
⋃
(k ‘ K )]) auto

next
case (Basis S )
then show ?case
by (intro exI [of {{S}}]) auto

qed
then have (∃B ′⊆Inter ‘ {b. finite b ∧ b ⊆ B}.

⋃
B ′ = S )

unfolding subset image iff by blast }
then show topological basis ?B
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unfolding topological basis def
by (safe intro!: open Inter)

(simp all add : B generate topology .Basis subset eq)
qed

qed

end

lemma univ second countable:
obtains B :: ′a::second countable topology set set
where countable B

∧
C . C ∈ B =⇒ open C∧

S . open S =⇒ ∃U . U ⊆ B ∧ S =
⋃
U

by (metis ex countable basis topological basis def )

proposition Lindelof :
fixes F :: ′a::second countable topology set set
assumes F :

∧
S . S ∈ F =⇒ open S

obtains F ′ where F ′ ⊆ F countable F ′ ⋃F ′ =
⋃
F

proof −
obtain B :: ′a set set
where countable B

∧
C . C ∈ B =⇒ open C

and B:
∧
S . open S =⇒ ∃U . U ⊆ B ∧ S =

⋃
U

using univ second countable by blast
define D where D ≡ {S . S ∈ B ∧ (∃U . U ∈ F ∧ S ⊆ U )}
have countable D
apply (rule countable subset [OF 〈countable B〉])
apply (force simp: D def )
done

have
∧
S . ∃U . S ∈ D −→ U ∈ F ∧ S ⊆ U

by (simp add : D def )
then obtain G where G :

∧
S . S ∈ D −→ G S ∈ F ∧ S ⊆ G S

by metis
have

⋃
F ⊆

⋃
D

unfolding D def by (blast dest : F B)
moreover have

⋃
D ⊆

⋃
F

using D def by blast
ultimately have eq1 :

⋃
F =

⋃
D ..

have eq2 :
⋃
D =

⋃
(G ‘ D)

using G eq1 by auto
show ?thesis
apply (rule tac F ′ = G ‘ D in that)
using G 〈countable D〉

by (auto simp: eq1 eq2 )
qed

lemma countable disjoint open subsets:
fixes F :: ′a::second countable topology set set
assumes

∧
S . S ∈ F =⇒ open S and pw : pairwise disjnt F
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shows countable F
proof −
obtain F ′ where F ′ ⊆ F countable F ′ ⋃F ′ =

⋃
F

by (meson assms Lindelof )
with pw have F ⊆ insert {} F ′

by (fastforce simp add : pairwise def disjnt iff )
then show ?thesis
by (simp add : 〈countable F ′〉 countable subset)

qed

sublocale second countable topology <
countable basis open SOME B . countable B ∧ topological basis B
using someI ex [OF ex countable basis]
by unfold locales safe

instance prod :: (second countable topology , second countable topology) second countable topology
proof
obtain A :: ′a set set where countable A topological basis A
using ex countable basis by auto

moreover
obtain B :: ′b set set where countable B topological basis B
using ex countable basis by auto

ultimately show ∃B ::( ′a × ′b) set set . countable B ∧ open = generate topology
B

by (auto intro!: exI [of (λ(a, b). a × b) ‘ (A × B)] topological basis prod
topological basis imp subbasis)

qed

instance second countable topology ⊆ first countable topology
proof
fix x :: ′a
define B :: ′a set set where B = (SOME B . countable B ∧ topological basis B)
then have B : countable B topological basis B
using countable basis is basis
by (auto simp: countable basis is basis)

then show ∃A::nat ⇒ ′a set .
(∀ i . x ∈ A i ∧ open (A i)) ∧ (∀S . open S ∧ x ∈ S −→ (∃ i . A i ⊆ S ))
by (intro first countableI [of {b∈B . x ∈ b}])

(fastforce simp: topological space class.topological basis def )+
qed

instance nat :: second countable topology
proof
show ∃B ::nat set set . countable B ∧ open = generate topology B
by (intro exI [of range lessThan ∪ range greaterThan]) (auto simp: open nat def )

qed

lemma countable separating set linorder1 :
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shows ∃B ::( ′a::{linorder topology , second countable topology} set). countable B
∧ (∀ x y . x < y −→ (∃ b ∈ B . x < b ∧ b ≤ y))
proof −
obtain A:: ′a set set where countable A topological basis A using ex countable basis

by auto
define B1 where B1 = {(LEAST x . x ∈ U )| U . U ∈ A}
then have countable B1 using 〈countable A〉 by (simp add : Setcompr eq image)
define B2 where B2 = {(SOME x . x ∈ U )| U . U ∈ A}
then have countable B2 using 〈countable A〉 by (simp add : Setcompr eq image)
have ∃ b ∈ B1 ∪ B2 . x < b ∧ b ≤ y if x < y for x y
proof (cases)
assume ∃ z . x < z ∧ z < y
then obtain z where z : x < z ∧ z < y by auto
define U where U = {x<..<y}
then have open U by simp
moreover have z ∈ U using z U def by simp
ultimately obtain V where V ∈ A z ∈ V V ⊆ U
using topological basisE [OF 〈topological basis A〉] by auto

define w where w = (SOME x . x ∈ V )
then have w ∈ V using 〈z ∈ V 〉 by (metis someI2 )
then have x < w ∧ w ≤ y using 〈w ∈ V 〉 〈V ⊆ U 〉 U def by fastforce
moreover have w ∈ B1 ∪ B2 using w def B2 def 〈V ∈ A〉 by auto
ultimately show ?thesis by auto

next
assume ¬(∃ z . x < z ∧ z < y)
then have ∗:

∧
z . z > x =⇒ z ≥ y by auto

define U where U = {x<..}
then have open U by simp
moreover have y ∈ U using 〈x < y〉 U def by simp
ultimately obtain V where V ∈ A y ∈ V V ⊆ U
using topological basisE [OF 〈topological basis A〉] by auto

have U = {y ..} unfolding U def using ∗ 〈x < y〉 by auto
then have V ⊆ {y ..} using 〈V ⊆ U 〉 by simp
then have (LEAST w . w ∈ V ) = y using 〈y ∈ V 〉 by (meson Least equality

atLeast iff subsetCE )
then have y ∈ B1 ∪ B2 using 〈V ∈ A〉 B1 def by auto
moreover have x < y ∧ y ≤ y using 〈x < y〉 by simp
ultimately show ?thesis by auto

qed
moreover have countable (B1 ∪ B2 ) using 〈countable B1 〉 〈countable B2 〉 by

simp
ultimately show ?thesis by auto

qed

lemma countable separating set linorder2 :
shows ∃B ::( ′a::{linorder topology , second countable topology} set). countable B
∧ (∀ x y . x < y −→ (∃ b ∈ B . x ≤ b ∧ b < y))
proof −
obtain A:: ′a set set where countable A topological basis A using ex countable basis
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by auto
define B1 where B1 = {(GREATEST x . x ∈ U ) | U . U ∈ A}
then have countable B1 using 〈countable A〉 by (simp add : Setcompr eq image)
define B2 where B2 = {(SOME x . x ∈ U )| U . U ∈ A}
then have countable B2 using 〈countable A〉 by (simp add : Setcompr eq image)
have ∃ b ∈ B1 ∪ B2 . x ≤ b ∧ b < y if x < y for x y
proof (cases)
assume ∃ z . x < z ∧ z < y
then obtain z where z : x < z ∧ z < y by auto
define U where U = {x<..<y}
then have open U by simp
moreover have z ∈ U using z U def by simp
ultimately obtain V where V ∈ A z ∈ V V ⊆ U
using topological basisE [OF 〈topological basis A〉] by auto

define w where w = (SOME x . x ∈ V )
then have w ∈ V using 〈z ∈ V 〉 by (metis someI2 )
then have x ≤ w ∧ w < y using 〈w ∈ V 〉 〈V ⊆ U 〉 U def by fastforce
moreover have w ∈ B1 ∪ B2 using w def B2 def 〈V ∈ A〉 by auto
ultimately show ?thesis by auto

next
assume ¬(∃ z . x < z ∧ z < y)
then have ∗:

∧
z . z < y =⇒ z ≤ x using leI by blast

define U where U = {..<y}
then have open U by simp
moreover have x ∈ U using 〈x < y〉 U def by simp
ultimately obtain V where V ∈ A x ∈ V V ⊆ U
using topological basisE [OF 〈topological basis A〉] by auto

have U = {..x} unfolding U def using ∗ 〈x < y〉 by auto
then have V ⊆ {..x} using 〈V ⊆ U 〉 by simp
then have (GREATEST x . x ∈ V ) = x using 〈x ∈ V 〉 by (meson Great-

est equality atMost iff subsetCE )
then have x ∈ B1 ∪ B2 using 〈V ∈ A〉 B1 def by auto
moreover have x ≤ x ∧ x < y using 〈x < y〉 by simp
ultimately show ?thesis by auto

qed
moreover have countable (B1 ∪ B2 ) using 〈countable B1 〉 〈countable B2 〉 by

simp
ultimately show ?thesis by auto

qed

lemma countable separating set dense linorder :
shows ∃B ::( ′a::{linorder topology , dense linorder , second countable topology} set).

countable B ∧ (∀ x y . x < y −→ (∃ b ∈ B . x < b ∧ b < y))
proof −
obtain B :: ′a set where B : countable B

∧
x y . x < y =⇒ (∃ b ∈ B . x < b ∧ b

≤ y)
using countable separating set linorder1 by auto

have ∃ b ∈ B . x < b ∧ b < y if x < y for x y
proof −
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obtain z where x < z z < y using 〈x < y〉 dense by blast
then obtain b where b ∈ B x < b ∧ b ≤ z using B(2 ) by auto
then have x < b ∧ b < y using 〈z < y〉 by auto
then show ?thesis using 〈b ∈ B 〉 by auto

qed
then show ?thesis using B(1 ) by auto

qed

2.1.3 Polish spaces

Textbooks define Polish spaces as completely metrizable. We assume the
topology to be complete for a given metric.

class polish space = complete space + second countable topology

2.1.4 Limit Points

definition (in topological space) islimpt :: ′a ⇒ ′a set ⇒ bool (infixr islimpt 60 )
where x islimpt S ←→ (∀T . x∈T −→ open T −→ (∃ y∈S . y∈T ∧ y 6=x ))

lemma islimptI :
assumes

∧
T . x ∈ T =⇒ open T =⇒ ∃ y∈S . y ∈ T ∧ y 6= x

shows x islimpt S
using assms unfolding islimpt def by auto

lemma islimptE :
assumes x islimpt S and x ∈ T and open T
obtains y where y ∈ S and y ∈ T and y 6= x
using assms unfolding islimpt def by auto

lemma islimpt iff eventually : x islimpt S ←→ ¬ eventually (λy . y /∈ S ) (at x )
unfolding islimpt def eventually at topological by auto

lemma islimpt subset : x islimpt S =⇒ S ⊆ T =⇒ x islimpt T
unfolding islimpt def by fast

lemma islimpt UNIV iff : x islimpt UNIV ←→ ¬ open {x}
unfolding islimpt def by (safe, fast , case tac T = {x}, fast , fast)

lemma islimpt punctured : x islimpt S = x islimpt (S−{x})
unfolding islimpt def by blast

A perfect space has no isolated points.

lemma islimpt UNIV [simp, intro]: x islimpt UNIV
for x :: ′a::perfect space
unfolding islimpt UNIV iff by (rule not open singleton)

lemma closed limpt : closed S ←→ (∀ x . x islimpt S −→ x ∈ S )
unfolding closed def
apply (subst open subopen)
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apply (simp add : islimpt def subset eq)
apply (metis ComplE ComplI )
done

lemma islimpt EMPTY [simp]: ¬ x islimpt {}
by (auto simp: islimpt def )

lemma islimpt Un: x islimpt (S ∪ T ) ←→ x islimpt S ∨ x islimpt T
by (simp add : islimpt iff eventually eventually conj iff )

lemma islimpt insert :
fixes x :: ′a::t1 space
shows x islimpt (insert a s) ←→ x islimpt s

proof
assume ∗: x islimpt (insert a s)
show x islimpt s
proof (rule islimptI )
fix t
assume t : x ∈ t open t
show ∃ y∈s. y ∈ t ∧ y 6= x
proof (cases x = a)
case True
obtain y where y ∈ insert a s y ∈ t y 6= x
using ∗ t by (rule islimptE )

with 〈x = a〉 show ?thesis by auto
next
case False
with t have t ′: x ∈ t − {a} open (t − {a})
by (simp all add : open Diff )

obtain y where y ∈ insert a s y ∈ t − {a} y 6= x
using ∗ t ′ by (rule islimptE )

then show ?thesis by auto
qed

qed
next
assume x islimpt s
then show x islimpt (insert a s)
by (rule islimpt subset) auto

qed

lemma islimpt finite:
fixes x :: ′a::t1 space
shows finite s =⇒ ¬ x islimpt s
by (induct set : finite) (simp all add : islimpt insert)

lemma islimpt Un finite:
fixes x :: ′a::t1 space
shows finite s =⇒ x islimpt (s ∪ t) ←→ x islimpt t
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by (simp add : islimpt Un islimpt finite)

lemma islimpt eq acc point :
fixes l :: ′a :: t1 space
shows l islimpt S ←→ (∀U . l∈U −→ open U −→ infinite (U ∩ S ))

proof (safe intro!: islimptI )
fix U
assume l islimpt S l ∈ U open U finite (U ∩ S )
then have l islimpt S l ∈ (U − (U ∩ S − {l})) open (U − (U ∩ S − {l}))
by (auto intro: finite imp closed)

then show False
by (rule islimptE ) auto

next
fix T
assume ∗: ∀U . l∈U −→ open U −→ infinite (U ∩ S ) l ∈ T open T
then have infinite (T ∩ S − {l})
by auto

then have ∃ x . x ∈ (T ∩ S − {l})
unfolding ex in conv by (intro notI ) simp

then show ∃ y∈S . y ∈ T ∧ y 6= l
by auto

qed

lemma acc point range imp convergent subsequence:
fixes l :: ′a :: first countable topology
assumes l : ∀U . l∈U −→ open U −→ infinite (U ∩ range f )
shows ∃ r ::nat⇒nat . strict mono r ∧ (f ◦ r) −−−−→ l

proof −
from countable basis at decseq [of l ]
obtain A where A:∧

i . open (A i)∧
i . l ∈ A i∧
S . open S =⇒ l ∈ S =⇒ eventually (λi . A i ⊆ S ) sequentially

by blast
define s where s n i = (SOME j . i < j ∧ f j ∈ A (Suc n)) for n i
{
fix n i
have infinite (A (Suc n) ∩ range f − f‘{.. i})
using l A by auto

then have ∃ x . x ∈ A (Suc n) ∩ range f − f‘{.. i}
unfolding ex in conv by (intro notI ) simp

then have ∃ j . f j ∈ A (Suc n) ∧ j /∈ {.. i}
by auto

then have ∃ a. i < a ∧ f a ∈ A (Suc n)
by (auto simp: not le)

then have i < s n i f (s n i) ∈ A (Suc n)
unfolding s def by (auto intro: someI2 ex )

}
note s = this
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define r where r = rec nat (s 0 0 ) s
have strict mono r
by (auto simp: r def s strict mono Suc iff )

moreover
have (λn. f (r n)) −−−−→ l
proof (rule topological tendstoI )
fix S
assume open S l ∈ S
with A(3 ) have eventually (λi . A i ⊆ S ) sequentially
by auto

moreover
{
fix i
assume Suc 0 ≤ i
then have f (r i) ∈ A i
by (cases i) (simp all add : r def s)

}
then have eventually (λi . f (r i) ∈ A i) sequentially
by (auto simp: eventually sequentially)

ultimately show eventually (λi . f (r i) ∈ S ) sequentially
by eventually elim auto

qed
ultimately show ∃ r ::nat⇒nat . strict mono r ∧ (f ◦ r) −−−−→ l
by (auto simp: convergent def comp def )

qed

lemma islimpt range imp convergent subsequence:
fixes l :: ′a :: {t1 space, first countable topology}
assumes l : l islimpt (range f )
shows ∃ r ::nat⇒nat . strict mono r ∧ (f ◦ r) −−−−→ l
using l unfolding islimpt eq acc point
by (rule acc point range imp convergent subsequence)

lemma sequence unique limpt :
fixes f :: nat ⇒ ′a::t2 space
assumes (f −−−→ l) sequentially
and l ′ islimpt (range f )

shows l ′ = l
proof (rule ccontr)
assume l ′ 6= l
obtain s t where open s open t l ′ ∈ s l ∈ t s ∩ t = {}
using hausdorff [OF 〈l ′ 6= l 〉] by auto

have eventually (λn. f n ∈ t) sequentially
using assms(1 ) 〈open t 〉 〈l ∈ t 〉 by (rule topological tendstoD)

then obtain N where ∀n≥N . f n ∈ t
unfolding eventually sequentially by auto

have UNIV = {..<N } ∪ {N ..}
by auto
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then have l ′ islimpt (f ‘ ({..<N } ∪ {N ..}))
using assms(2 ) by simp

then have l ′ islimpt (f ‘ {..<N } ∪ f ‘ {N ..})
by (simp add : image Un)

then have l ′ islimpt (f ‘ {N ..})
by (simp add : islimpt Un finite)

then obtain y where y ∈ f ‘ {N ..} y ∈ s y 6= l ′

using 〈l ′ ∈ s〉 〈open s〉 by (rule islimptE )
then obtain n where N ≤ n f n ∈ s f n 6= l ′

by auto
with 〈∀n≥N . f n ∈ t 〉 have f n ∈ s ∩ t
by simp

with 〈s ∩ t = {}〉 show False
by simp

qed

2.1.5 Interior of a Set

definition interior :: ( ′a::topological space) set ⇒ ′a set where
interior S =

⋃
{T . open T ∧ T ⊆ S}

lemma interiorI [intro?]:
assumes open T and x ∈ T and T ⊆ S
shows x ∈ interior S
using assms unfolding interior def by fast

lemma interiorE [elim?]:
assumes x ∈ interior S
obtains T where open T and x ∈ T and T ⊆ S
using assms unfolding interior def by fast

lemma open interior [simp, intro]: open (interior S )
by (simp add : interior def open Union)

lemma interior subset : interior S ⊆ S
by (auto simp: interior def )

lemma interior maximal : T ⊆ S =⇒ open T =⇒ T ⊆ interior S
by (auto simp: interior def )

lemma interior open: open S =⇒ interior S = S
by (intro equalityI interior subset interior maximal subset refl)

lemma interior eq : interior S = S ←→ open S
by (metis open interior interior open)

lemma open subset interior : open S =⇒ S ⊆ interior T ←→ S ⊆ T
by (metis interior maximal interior subset subset trans)

Elementary{_}{\kern 0pt}Topology.html


278

lemma interior empty [simp]: interior {} = {}
using open empty by (rule interior open)

lemma interior UNIV [simp]: interior UNIV = UNIV
using open UNIV by (rule interior open)

lemma interior interior [simp]: interior (interior S ) = interior S
using open interior by (rule interior open)

lemma interior mono: S ⊆ T =⇒ interior S ⊆ interior T
by (auto simp: interior def )

lemma interior unique:
assumes T ⊆ S and open T
assumes

∧
T ′. T ′ ⊆ S =⇒ open T ′ =⇒ T ′ ⊆ T

shows interior S = T
by (intro equalityI assms interior subset open interior interior maximal)

lemma interior singleton [simp]: interior {a} = {}
for a :: ′a::perfect space
by (meson interior eq interior subset not open singleton subset singletonD)

lemma interior Int [simp]: interior (S ∩ T ) = interior S ∩ interior T
by (meson Int mono Int subset iff antisym conv interior maximal interior subset

open Int open interior)

lemma eventually nhds in nhd : x ∈ interior s =⇒ eventually (λy . y ∈ s) (nhds
x )
using interior subset [of s] by (subst eventually nhds) blast

lemma interior limit point [intro]:
fixes x :: ′a::perfect space
assumes x : x ∈ interior S
shows x islimpt S
using x islimpt UNIV [of x ]
unfolding interior def islimpt def
apply (clarsimp, rename tac T T ′)
apply (drule tac x=T ∩ T ′ in spec)
apply (auto simp: open Int)
done

lemma interior closed Un empty interior :
assumes cS : closed S
and iT : interior T = {}

shows interior (S ∪ T ) = interior S
proof
show interior S ⊆ interior (S ∪ T )
by (rule interior mono) (rule Un upper1 )

show interior (S ∪ T ) ⊆ interior S
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proof
fix x
assume x ∈ interior (S ∪ T )
then obtain R where open R x ∈ R R ⊆ S ∪ T ..
show x ∈ interior S
proof (rule ccontr)
assume x /∈ interior S
with 〈x ∈ R〉 〈open R〉 obtain y where y ∈ R − S
unfolding interior def by fast

from 〈open R〉 〈closed S 〉 have open (R − S )
by (rule open Diff )

from 〈R ⊆ S ∪ T 〉 have R − S ⊆ T
by fast

from 〈y ∈ R − S 〉 〈open (R − S )〉 〈R − S ⊆ T 〉 〈interior T = {}〉 show False
unfolding interior def by fast

qed
qed

qed

lemma interior Times: interior (A × B) = interior A × interior B
proof (rule interior unique)
show interior A × interior B ⊆ A × B
by (intro Sigma mono interior subset)

show open (interior A × interior B)
by (intro open Times open interior)

fix T
assume T ⊆ A × B and open T
then show T ⊆ interior A × interior B
proof safe
fix x y
assume (x , y) ∈ T
then obtain C D where open C open D C × D ⊆ T x ∈ C y ∈ D
using 〈open T 〉 unfolding open prod def by fast

then have open C open D C ⊆ A D ⊆ B x ∈ C y ∈ D
using 〈T ⊆ A × B 〉 by auto

then show x ∈ interior A and y ∈ interior B
by (auto intro: interiorI )

qed
qed

lemma interior Ici :
fixes x :: ′a :: {dense linorder ,linorder topology}
assumes b < x
shows interior {x ..} = {x <..}

proof (rule interior unique)
fix T
assume T ⊆ {x ..} open T
moreover have x /∈ T
proof
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assume x ∈ T
obtain y where y < x {y <.. x} ⊆ T
using open left [OF 〈open T 〉 〈x ∈ T 〉 〈b < x 〉] by auto

with dense[OF 〈y < x 〉] obtain z where z ∈ T z < x
by (auto simp: subset eq Ball def )

with 〈T ⊆ {x ..}〉 show False by auto
qed
ultimately show T ⊆ {x <..}
by (auto simp: subset eq less le)

qed auto

lemma interior Iic:
fixes x :: ′a ::{dense linorder ,linorder topology}
assumes x < b
shows interior {.. x} = {..< x}

proof (rule interior unique)
fix T
assume T ⊆ {.. x} open T
moreover have x /∈ T
proof
assume x ∈ T
obtain y where x < y {x ..< y} ⊆ T
using open right [OF 〈open T 〉 〈x ∈ T 〉 〈x < b〉] by auto

with dense[OF 〈x < y〉] obtain z where z ∈ T x < z
by (auto simp: subset eq Ball def less le)

with 〈T ⊆ {.. x}〉 show False by auto
qed
ultimately show T ⊆ {..< x}
by (auto simp: subset eq less le)

qed auto

lemma countable disjoint nonempty interior subsets:
fixes F :: ′a::second countable topology set set
assumes pw : pairwise disjnt F and int :

∧
S . [[S ∈ F ; interior S = {}]] =⇒ S =

{}
shows countable F

proof (rule countable image inj on)
have disjoint (interior ‘ F)
using pw by (simp add : disjoint image subset interior subset)

then show countable (interior ‘ F)
by (auto intro: countable disjoint open subsets)

show inj on interior F
using pw apply (clarsimp simp: inj on def pairwise def )
apply (metis disjnt def disjnt subset1 inf .orderE int interior subset)
done

qed
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2.1.6 Closure of a Set

definition closure :: ( ′a::topological space) set ⇒ ′a set where
closure S = S ∪ {x . x islimpt S}

lemma interior closure: interior S = − (closure (− S ))
by (auto simp: interior def closure def islimpt def )

lemma closure interior : closure S = − interior (− S )
by (simp add : interior closure)

lemma closed closure[simp, intro]: closed (closure S )
by (simp add : closure interior closed Compl)

lemma closure subset : S ⊆ closure S
by (simp add : closure def )

lemma closure hull : closure S = closed hull S
by (auto simp: hull def closure interior interior def )

lemma closure eq : closure S = S ←→ closed S
unfolding closure hull using closed Inter by (rule hull eq)

lemma closure closed [simp]: closed S =⇒ closure S = S
by (simp only : closure eq)

lemma closure closure [simp]: closure (closure S ) = closure S
unfolding closure hull by (rule hull hull)

lemma closure mono: S ⊆ T =⇒ closure S ⊆ closure T
unfolding closure hull by (rule hull mono)

lemma closure minimal : S ⊆ T =⇒ closed T =⇒ closure S ⊆ T
unfolding closure hull by (rule hull minimal)

lemma closure unique:
assumes S ⊆ T
and closed T
and

∧
T ′. S ⊆ T ′ =⇒ closed T ′ =⇒ T ⊆ T ′

shows closure S = T
using assms unfolding closure hull by (rule hull unique)

lemma closure empty [simp]: closure {} = {}
using closed empty by (rule closure closed)

lemma closure UNIV [simp]: closure UNIV = UNIV
using closed UNIV by (rule closure closed)

lemma closure Un [simp]: closure (S ∪ T ) = closure S ∪ closure T
by (simp add : closure interior)
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lemma closure eq empty [iff ]: closure S = {} ←→ S = {}
using closure empty closure subset [of S ] by blast

lemma closure subset eq : closure S ⊆ S ←→ closed S
using closure eq [of S ] closure subset [of S ] by simp

lemma open Int closure eq empty : open S =⇒ (S ∩ closure T ) = {} ←→ S ∩ T
= {}
using open subset interior [of S − T ]
using interior subset [of − T ]
by (auto simp: closure interior)

lemma open Int closure subset : open S =⇒ S ∩ closure T ⊆ closure (S ∩ T )
proof
fix x
assume ∗: open S x ∈ S ∩ closure T
have x islimpt (S ∩ T ) if ∗∗: x islimpt T
proof (rule islimptI )
fix A
assume x ∈ A open A
with ∗ have x ∈ A ∩ S open (A ∩ S )
by (simp all add : open Int)

with ∗∗ obtain y where y ∈ T y ∈ A ∩ S y 6= x
by (rule islimptE )

then have y ∈ S ∩ T y ∈ A ∧ y 6= x
by simp all

then show ∃ y∈(S ∩ T ). y ∈ A ∧ y 6= x ..
qed
with ∗ show x ∈ closure (S ∩ T )
unfolding closure def by blast

qed

lemma closure complement : closure (− S ) = − interior S
by (simp add : closure interior)

lemma interior complement : interior (− S ) = − closure S
by (simp add : closure interior)

lemma interior diff : interior(S − T ) = interior S − closure T
by (simp add : Diff eq interior complement)

lemma closure Times: closure (A × B) = closure A × closure B
proof (rule closure unique)
show A × B ⊆ closure A × closure B
by (intro Sigma mono closure subset)

show closed (closure A × closure B)
by (intro closed Times closed closure)

fix T
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assume A × B ⊆ T and closed T
then show closure A × closure B ⊆ T
apply (simp add : closed def open prod def , clarify)
apply (rule ccontr)
apply (drule tac x=(a, b) in bspec, simp, clarify , rename tac C D)
apply (simp add : closure interior interior def )
apply (drule tac x=C in spec)
apply (drule tac x=D in spec, auto)
done

qed

lemma closure open Int superset :
assumes open S S ⊆ closure T
shows closure(S ∩ T ) = closure S

proof −
have closure S ⊆ closure(S ∩ T )
by (metis assms closed closure closure minimal inf .orderE open Int closure subset)
then show ?thesis
by (simp add : closure mono dual order .antisym)

qed

lemma closure Int : closure (
⋂
I ) ≤

⋂
{closure S |S . S ∈ I }

proof −
{
fix y
assume y ∈

⋂
I

then have y : ∀S ∈ I . y ∈ S by auto
{
fix S
assume S ∈ I
then have y ∈ closure S
using closure subset y by auto

}
then have y ∈

⋂
{closure S |S . S ∈ I }

by auto
}
then have

⋂
I ⊆

⋂
{closure S |S . S ∈ I }

by auto
moreover have closed (

⋂
{closure S |S . S ∈ I })

unfolding closed Inter closed closure by auto
ultimately show ?thesis using closure hull [of

⋂
I ]

hull minimal [of
⋂
I
⋂
{closure S |S . S ∈ I } closed ] by auto

qed

lemma islimpt in closure: (x islimpt S ) = (x∈closure(S−{x}))
unfolding closure def using islimpt punctured by blast

lemma connected imp connected closure: connected S =⇒ connected (closure S )
by (rule connectedI ) (meson closure subset open Int open Int closure eq empty
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subset trans connectedD)

lemma bdd below closure:
fixes A :: real set
assumes bdd below A
shows bdd below (closure A)

proof −
from assms obtain m where

∧
x . x ∈ A =⇒ m ≤ x

by (auto simp: bdd below def )
then have A ⊆ {m..} by auto
then have closure A ⊆ {m..}
using closed real atLeast by (rule closure minimal)

then show ?thesis
by (auto simp: bdd below def )

qed

2.1.7 Frontier (also known as boundary)

definition frontier :: ( ′a::topological space) set ⇒ ′a set where
frontier S = closure S − interior S

lemma frontier closed [iff ]: closed (frontier S )
by (simp add : frontier def closed Diff )

lemma frontier closures: frontier S = closure S ∩ closure (− S )
by (auto simp: frontier def interior closure)

lemma frontier Int : frontier(S ∩ T ) = closure(S ∩ T ) ∩ (frontier S ∪ frontier
T )
proof −
have closure (S ∩ T ) ⊆ closure S closure (S ∩ T ) ⊆ closure T
by (simp all add : closure mono)

then show ?thesis
by (auto simp: frontier closures)

qed

lemma frontier Int subset : frontier(S ∩ T ) ⊆ frontier S ∪ frontier T
by (auto simp: frontier Int)

lemma frontier Int closed :
assumes closed S closed T
shows frontier(S ∩ T ) = (frontier S ∩ T ) ∪ (S ∩ frontier T )

proof −
have closure (S ∩ T ) = T ∩ S
using assms by (simp add : Int commute closed Int)

moreover have T ∩ (closure S ∩ closure (− S )) = frontier S ∩ T
by (simp add : Int commute frontier closures)

ultimately show ?thesis
by (simp add : Int Un distrib Int assoc Int left commute assms frontier closures)
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qed

lemma frontier subset closed : closed S =⇒ frontier S ⊆ S
by (metis frontier def closure closed Diff subset)

lemma frontier empty [simp]: frontier {} = {}
by (simp add : frontier def )

lemma frontier subset eq : frontier S ⊆ S ←→ closed S
proof −
{
assume frontier S ⊆ S
then have closure S ⊆ S
using interior subset unfolding frontier def by auto

then have closed S
using closure subset eq by auto

}
then show ?thesis using frontier subset closed [of S ] ..

qed

lemma frontier complement [simp]: frontier (− S ) = frontier S
by (auto simp: frontier def closure complement interior complement)

lemma frontier Un subset : frontier(S ∪ T ) ⊆ frontier S ∪ frontier T
by (metis compl sup frontier Int subset frontier complement)

lemma frontier disjoint eq : frontier S ∩ S = {} ←→ open S
using frontier complement frontier subset eq [of − S ]
unfolding open closed by auto

lemma frontier UNIV [simp]: frontier UNIV = {}
using frontier complement frontier empty by fastforce

lemma frontier interiors: frontier s = − interior(s) − interior(−s)
by (simp add : Int commute frontier def interior closure)

lemma frontier interior subset : frontier(interior S ) ⊆ frontier S
by (simp add : Diff mono frontier interiors interior mono interior subset)

lemma closure Un frontier : closure S = S ∪ frontier S
proof −
have S ∪ interior S = S
using interior subset by auto

then show ?thesis
using closure subset by (auto simp: frontier def )

qed
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2.1.8 Filters and the “eventually true” quantifier

Identify Trivial limits, where we can’t approach arbitrarily closely.

lemma trivial limit within: trivial limit (at a within S ) ←→ ¬ a islimpt S
proof
assume trivial limit (at a within S )
then show ¬ a islimpt S
unfolding trivial limit def
unfolding eventually at topological
unfolding islimpt def
apply (clarsimp simp add : set eq iff )
apply (rename tac T , rule tac x=T in exI )
apply (clarsimp, drule tac x=y in bspec, simp all)
done

next
assume ¬ a islimpt S
then show trivial limit (at a within S )
unfolding trivial limit def eventually at topological islimpt def
by metis

qed

lemma trivial limit at iff : trivial limit (at a) ←→ ¬ a islimpt UNIV
using trivial limit within [of a UNIV ] by simp

lemma trivial limit at : ¬ trivial limit (at a)
for a :: ′a::perfect space
by (rule at neq bot)

lemma not trivial limit within: ¬ trivial limit (at x within S ) = (x ∈ closure (S
− {x}))
using islimpt in closure by (metis trivial limit within)

lemma not in closure trivial limitI :
x /∈ closure s =⇒ trivial limit (at x within s)
using not trivial limit within[of x s]
by safe (metis Diff empty Diff insert0 closure subset contra subsetD)

lemma filterlim at within closure implies filterlim: filterlim f l (at x within s)
if x ∈ closure s =⇒ filterlim f l (at x within s)
by (metis bot .extremum filterlim filtercomap filterlim mono not in closure trivial limitI

that)

lemma at within eq bot iff : at c within A = bot ←→ c /∈ closure (A − {c})
using not trivial limit within[of c A] by blast

Some property holds ”sufficiently close” to the limit point.

lemma trivial limit eventually : trivial limit net =⇒ eventually P net
by simp
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lemma trivial limit eq : trivial limit net ←→ (∀P . eventually P net)
by (simp add : filter eq iff )

lemma Lim topological :
(f −−−→ l) net ←→
trivial limit net ∨ (∀S . open S −→ l ∈ S −→ eventually (λx . f x ∈ S ) net)

unfolding tendsto def trivial limit eq by auto

lemma eventually within Un:
eventually P (at x within (s ∪ t)) ←→
eventually P (at x within s) ∧ eventually P (at x within t)

unfolding eventually at filter
by (auto elim!: eventually rev mp)

lemma Lim within union:
(f −−−→ l) (at x within (s ∪ t)) ←→
(f −−−→ l) (at x within s) ∧ (f −−−→ l) (at x within t)
unfolding tendsto def
by (auto simp: eventually within Un)

2.1.9 Limits

The expected monotonicity property.

lemma Lim Un:
assumes (f −−−→ l) (at x within S ) (f −−−→ l) (at x within T )
shows (f −−−→ l) (at x within (S ∪ T ))
using assms unfolding at within union by (rule filterlim sup)

lemma Lim Un univ :
(f −−−→ l) (at x within S ) =⇒ (f −−−→ l) (at x within T ) =⇒
S ∪ T = UNIV =⇒ (f −−−→ l) (at x )

by (metis Lim Un)

Interrelations between restricted and unrestricted limits.

lemma Lim at imp Lim at within: (f −−−→ l) (at x ) =⇒ (f −−−→ l) (at x within
S )
by (metis order refl filterlim mono subset UNIV at le)

lemma eventually within interior :
assumes x ∈ interior S
shows eventually P (at x within S ) ←→ eventually P (at x )
(is ?lhs = ?rhs)

proof
from assms obtain T where T : open T x ∈ T T ⊆ S ..
{
assume ?lhs
then obtain A where open A and x ∈ A and ∀ y∈A. y 6= x −→ y ∈ S −→

P y
by (auto simp: eventually at topological)
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with T have open (A ∩ T ) and x ∈ A ∩ T and ∀ y ∈ A ∩ T . y 6= x −→ P y
by auto

then show ?rhs
by (auto simp: eventually at topological)

next
assume ?rhs
then show ?lhs
by (auto elim: eventually mono simp: eventually at filter)

}
qed

lemma at within interior : x ∈ interior S =⇒ at x within S = at x
unfolding filter eq iff by (intro allI eventually within interior)

lemma Lim within LIMSEQ :
fixes a :: ′a::first countable topology
assumes ∀S . (∀n. S n 6= a ∧ S n ∈ T ) ∧ S −−−−→ a −→ (λn. X (S n)) −−−−→

L
shows (X −−−→ L) (at a within T )
using assms unfolding tendsto def [where l=L]
by (simp add : sequentially imp eventually within)

lemma Lim right bound :
fixes f :: ′a :: {linorder topology , conditionally complete linorder , no top} ⇒

′b::{linorder topology , conditionally complete linorder}
assumes mono:

∧
a b. a ∈ I =⇒ b ∈ I =⇒ x < a =⇒ a ≤ b =⇒ f a ≤ f b

and bnd :
∧
a. a ∈ I =⇒ x < a =⇒ K ≤ f a

shows (f −−−→ Inf (f ‘ ({x<..} ∩ I ))) (at x within ({x<..} ∩ I ))
proof (cases {x<..} ∩ I = {})
case True
then show ?thesis by simp

next
case False
show ?thesis
proof (rule order tendstoI )
fix a
assume a: a < Inf (f ‘ ({x<..} ∩ I ))
{
fix y
assume y ∈ {x<..} ∩ I
with False bnd have Inf (f ‘ ({x<..} ∩ I )) ≤ f y
by (auto intro!: cInf lower bdd belowI2 )

with a have a < f y
by (blast intro: less le trans)

}
then show eventually (λx . a < f x ) (at x within ({x<..} ∩ I ))
by (auto simp: eventually at filter intro: exI [of 1 ] zero less one)

next
fix a
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assume Inf (f ‘ ({x<..} ∩ I )) < a
from cInf lessD [OF this] False obtain y where y : x < y y ∈ I f y < a
by auto

then have eventually (λx . x ∈ I −→ f x < a) (at right x )
unfolding eventually at right [OF 〈x < y〉] by (metis less imp le le less trans

mono)
then show eventually (λx . f x < a) (at x within ({x<..} ∩ I ))
unfolding eventually at filter by eventually elim simp

qed
qed

lemma islimpt sequential :
fixes x :: ′a::first countable topology
shows x islimpt S ←→ (∃ f . (∀n::nat . f n ∈ S − {x}) ∧ (f −−−→ x ) sequentially)
(is ?lhs = ?rhs)

proof
assume ?lhs
from countable basis at decseq [of x ] obtain A where A:∧

i . open (A i)∧
i . x ∈ A i∧
S . open S =⇒ x ∈ S =⇒ eventually (λi . A i ⊆ S ) sequentially

by blast
define f where f n = (SOME y . y ∈ S ∧ y ∈ A n ∧ x 6= y) for n
{
fix n
from 〈?lhs〉 have ∃ y . y ∈ S ∧ y ∈ A n ∧ x 6= y
unfolding islimpt def using A(1 ,2 )[of n] by auto

then have f n ∈ S ∧ f n ∈ A n ∧ x 6= f n
unfolding f def by (rule someI ex )

then have f n ∈ S f n ∈ A n x 6= f n by auto
}
then have ∀n. f n ∈ S − {x} by auto
moreover have (λn. f n) −−−−→ x
proof (rule topological tendstoI )
fix S
assume open S x ∈ S
from A(3 )[OF this] 〈

∧
n. f n ∈ A n〉

show eventually (λx . f x ∈ S ) sequentially
by (auto elim!: eventually mono)

qed
ultimately show ?rhs by fast

next
assume ?rhs
then obtain f :: nat ⇒ ′a where f :

∧
n. f n ∈ S − {x} and lim: f −−−−→ x

by auto
show ?lhs
unfolding islimpt def

proof safe
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fix T
assume open T x ∈ T
from lim[THEN topological tendstoD , OF this] f
show ∃ y∈S . y ∈ T ∧ y 6= x
unfolding eventually sequentially by auto

qed
qed

These are special for limits out of the same topological space.

lemma Lim within id : (id −−−→ a) (at a within s)
unfolding id def by (rule tendsto ident at)

lemma Lim at id : (id −−−→ a) (at a)
unfolding id def by (rule tendsto ident at)

It’s also sometimes useful to extract the limit point from the filter.

abbreviation netlimit :: ′a::t2 space filter ⇒ ′a
where netlimit F ≡ Lim F (λx . x )

lemma netlimit at [simp]:
fixes a :: ′a::{perfect space,t2 space}
shows netlimit (at a) = a
using Lim ident at [of a UNIV ] by simp

lemma lim within interior :
x ∈ interior S =⇒ (f −−−→ l) (at x within S ) ←→ (f −−−→ l) (at x )
by (metis at within interior)

lemma netlimit within interior :
fixes x :: ′a::{t2 space,perfect space}
assumes x ∈ interior S
shows netlimit (at x within S ) = x
using assms by (metis at within interior netlimit at)

Useful lemmas on closure and set of possible sequential limits.

lemma closure sequential :
fixes l :: ′a::first countable topology
shows l ∈ closure S ←→ (∃ x . (∀n. x n ∈ S ) ∧ (x −−−→ l) sequentially)
(is ?lhs = ?rhs)

proof
assume ?lhs
moreover
{
assume l ∈ S
then have ?rhs using tendsto const [of l sequentially ] by auto

}
moreover
{
assume l islimpt S
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then have ?rhs unfolding islimpt sequential by auto
}
ultimately show ?rhs
unfolding closure def by auto

next
assume ?rhs
then show ?lhs unfolding closure def islimpt sequential by auto

qed

lemma closed sequential limits:
fixes S :: ′a::first countable topology set
shows closed S ←→ (∀ x l . (∀n. x n ∈ S ) ∧ (x −−−→ l) sequentially −→ l ∈ S )

by (metis closure sequential closure subset eq subset iff )

lemma tendsto If within closures:
assumes f : x ∈ s ∪ (closure s ∩ closure t) =⇒

(f −−−→ l x ) (at x within s ∪ (closure s ∩ closure t))
assumes g : x ∈ t ∪ (closure s ∩ closure t) =⇒

(g −−−→ l x ) (at x within t ∪ (closure s ∩ closure t))
assumes x ∈ s ∪ t
shows ((λx . if x ∈ s then f x else g x ) −−−→ l x ) (at x within s ∪ t)

proof −
have ∗: (s ∪ t) ∩ {x . x ∈ s} = s (s ∪ t) ∩ {x . x /∈ s} = t − s
by auto

have (f −−−→ l x ) (at x within s)
by (rule filterlim at within closure implies filterlim)
(use 〈x ∈ 〉 in 〈auto simp: inf commute closure def intro: tendsto within subset [OF

f ]〉)
moreover
have (g −−−→ l x ) (at x within t − s)
by (rule filterlim at within closure implies filterlim)
(use 〈x ∈ 〉 in
〈auto intro!: tendsto within subset [OF g ] simp: closure def intro: islimpt subset 〉)

ultimately show ?thesis
by (intro filterlim at within If ) (simp all only : ∗)

qed

2.1.10 Compactness

lemma brouwer compactness lemma:
fixes f :: ′a::topological space ⇒ ′b::real normed vector
assumes compact s
and continuous on s f
and ¬ (∃ x∈s. f x = 0 )

obtains d where 0 < d and ∀ x∈s. d ≤ norm (f x )
proof (cases s = {})
case True
show thesis
by (rule that [of 1 ]) (auto simp: True)
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next
case False
have continuous on s (norm ◦ f )
by (rule continuous intros continuous on norm assms(2 ))+

with False obtain x where x : x ∈ s ∀ y∈s. (norm ◦ f ) x ≤ (norm ◦ f ) y
using continuous attains inf [OF assms(1 ), of norm ◦ f ]
unfolding o def
by auto

have (norm ◦ f ) x > 0
using assms(3 ) and x (1 )
by auto

then show ?thesis
by (rule that) (insert x (2 ), auto simp: o def )

qed

Bolzano-Weierstrass property

proposition Heine Borel imp Bolzano Weierstrass:
assumes compact s
and infinite t
and t ⊆ s

shows ∃ x ∈ s. x islimpt t
proof (rule ccontr)
assume ¬ (∃ x ∈ s. x islimpt t)
then obtain f where f : ∀ x∈s. x ∈ f x ∧ open (f x ) ∧ (∀ y∈t . y ∈ f x −→ y =

x )
unfolding islimpt def
using bchoice[of s λ x T . x ∈ T ∧ open T ∧ (∀ y∈t . y ∈ T −→ y = x )]
by auto

obtain g where g : g ⊆ {t . ∃ x . x ∈ s ∧ t = f x} finite g s ⊆
⋃

g
using assms(1 )[unfolded compact eq Heine Borel , THEN spec[where x={t .

∃ x . x∈s ∧ t = f x}]]
using f by auto

from g(1 ,3 ) have g ′:∀ x∈g . ∃ xa ∈ s. x = f xa
by auto

{
fix x y
assume x ∈ t y ∈ t f x = f y
then have x ∈ f x y ∈ f x −→ y = x
using f [THEN bspec[where x=x ]] and 〈t ⊆ s〉 by auto

then have x = y
using 〈f x = f y〉 and f [THEN bspec[where x=y ]] and 〈y ∈ t 〉 and 〈t ⊆ s〉

by auto
}
then have inj on f t
unfolding inj on def by simp

then have infinite (f ‘ t)
using assms(2 ) using finite imageD by auto

moreover
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{
fix x
assume x ∈ t f x /∈ g
from g(3 ) assms(3 ) 〈x ∈ t 〉 obtain h where h ∈ g and x ∈ h
by auto

then obtain y where y ∈ s h = f y
using g ′[THEN bspec[where x=h]] by auto

then have y = x
using f [THEN bspec[where x=y ]] and 〈x∈t 〉 and 〈x∈h〉[unfolded 〈h = f y〉]
by auto

then have False
using 〈f x /∈ g〉 〈h ∈ g〉 unfolding 〈h = f y〉

by auto
}
then have f ‘ t ⊆ g by auto
ultimately show False
using g(2 ) using finite subset by auto

qed

lemma sequence infinite lemma:
fixes f :: nat ⇒ ′a::t1 space
assumes ∀n. f n 6= l
and (f −−−→ l) sequentially

shows infinite (range f )
proof
assume finite (range f )
then have l /∈ range f ∧ closed (range f )
using 〈finite (range f )〉 assms(1 ) finite imp closed by blast

then have eventually (λn. f n ∈ − range f ) sequentially
by (metis Compl iff assms(2 ) open Compl topological tendstoD)

then show False
unfolding eventually sequentially by auto

qed

lemma Bolzano Weierstrass imp closed :
fixes s :: ′a::{first countable topology ,t2 space} set
assumes ∀ t . infinite t ∧ t ⊆ s −−> (∃ x ∈ s. x islimpt t)
shows closed s

proof −
{
fix x l
assume as: ∀n::nat . x n ∈ s (x −−−→ l) sequentially
then have l ∈ s
proof (cases ∀n. x n 6= l)
case False
then show l∈s using as(1 ) by auto

next
case True note cas = this
with as(2 ) have infinite (range x )
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using sequence infinite lemma[of x l ] by auto
then obtain l ′ where l ′∈s l ′ islimpt (range x )
using assms[THEN spec[where x=range x ]] as(1 ) by auto

then show l∈s using sequence unique limpt [of x l l ′]
using as cas by auto

qed
}
then show ?thesis
unfolding closed sequential limits by fast

qed

lemma closure insert :
fixes x :: ′a::t1 space
shows closure (insert x s) = insert x (closure s)
apply (rule closure unique)
apply (rule insert mono [OF closure subset ])
apply (rule closed insert [OF closed closure])
apply (simp add : closure minimal)
done

In particular, some common special cases.

lemma compact Un [intro]:
assumes compact s
and compact t

shows compact (s ∪ t)
proof (rule compactI )
fix f
assume ∗: Ball f open s ∪ t ⊆

⋃
f

from ∗ 〈compact s〉 obtain s ′ where s ′ ⊆ f ∧ finite s ′ ∧ s ⊆
⋃
s ′

unfolding compact eq Heine Borel by (auto elim!: allE [of f ])
moreover
from ∗ 〈compact t 〉 obtain t ′ where t ′ ⊆ f ∧ finite t ′ ∧ t ⊆

⋃
t ′

unfolding compact eq Heine Borel by (auto elim!: allE [of f ])
ultimately show ∃ f ′⊆f . finite f ′ ∧ s ∪ t ⊆

⋃
f ′

by (auto intro!: exI [of s ′ ∪ t ′])
qed

lemma compact Union [intro]: finite S =⇒ (
∧
T . T ∈ S =⇒ compact T ) =⇒

compact (
⋃
S )

by (induct set : finite) auto

lemma compact UN [intro]:
finite A =⇒ (

∧
x . x ∈ A =⇒ compact (B x )) =⇒ compact (

⋃
x∈A. B x )

by (rule compact Union) auto

lemma closed Int compact [intro]:
assumes closed s
and compact t

shows compact (s ∩ t)
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using compact Int closed [of t s] assms
by (simp add : Int commute)

lemma compact Int [intro]:
fixes s t :: ′a :: t2 space set
assumes compact s
and compact t

shows compact (s ∩ t)
using assms by (intro compact Int closed compact imp closed)

lemma compact sing [simp]: compact {a}
unfolding compact eq Heine Borel by auto

lemma compact insert [simp]:
assumes compact s
shows compact (insert x s)

proof −
have compact ({x} ∪ s)
using compact sing assms by (rule compact Un)

then show ?thesis by simp
qed

lemma finite imp compact : finite s =⇒ compact s
by (induct set : finite) simp all

lemma open delete:
fixes s :: ′a::t1 space set
shows open s =⇒ open (s − {x})
by (simp add : open Diff )

Compactness expressed with filters

lemma closure iff nhds not empty :
x ∈ closure X ←→ (∀A. ∀S⊆A. open S −→ x ∈ S −→ X ∩ A 6= {})

proof safe
assume x : x ∈ closure X
fix S A
assume open S x ∈ S X ∩ A = {} S ⊆ A
then have x /∈ closure (−S )
by (auto simp: closure complement subset eq [symmetric] intro: interiorI )

with x have x ∈ closure X − closure (−S )
by auto

also have . . . ⊆ closure (X ∩ S )
using 〈open S 〉 open Int closure subset [of S X ] by (simp add : closed Compl

ac simps)
finally have X ∩ S 6= {} by auto
then show False using 〈X ∩ A = {}〉 〈S ⊆ A〉 by auto

next
assume ∀A S . S ⊆ A −→ open S −→ x ∈ S −→ X ∩ A 6= {}
from this[THEN spec, of − X , THEN spec, of − closure X ]
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show x ∈ closure X
by (simp add : closure subset open Compl)

qed

lemma compact filter :
compact U ←→ (∀F . F 6= bot −→ eventually (λx . x ∈ U ) F −→ (∃ x∈U . inf

(nhds x ) F 6= bot))
proof (intro allI iffI impI compact fip[THEN iffD2 ] notI )
fix F
assume compact U
assume F : F 6= bot eventually (λx . x ∈ U ) F
then have U 6= {}
by (auto simp: eventually False)

define Z where Z = closure ‘ {A. eventually (λx . x ∈ A) F}
then have ∀ z∈Z . closed z
by auto

moreover
have ev Z :

∧
z . z ∈ Z =⇒ eventually (λx . x ∈ z ) F

unfolding Z def by (auto elim: eventually mono intro: subsetD [OF closure subset ])
have (∀B ⊆ Z . finite B −→ U ∩

⋂
B 6= {})

proof (intro allI impI )
fix B assume finite B B ⊆ Z
with 〈finite B 〉 ev Z F (2 ) have eventually (λx . x ∈ U ∩ (

⋂
B)) F

by (auto simp: eventually ball finite distrib eventually conj iff )
with F show U ∩

⋂
B 6= {}

by (intro notI ) (simp add : eventually False)
qed
ultimately have U ∩

⋂
Z 6= {}

using 〈compact U 〉 unfolding compact fip by blast
then obtain x where x ∈ U and x :

∧
z . z ∈ Z =⇒ x ∈ z

by auto

have
∧
P . eventually P (inf (nhds x ) F ) =⇒ P 6= bot

unfolding eventually inf eventually nhds
proof safe
fix P Q R S
assume eventually R F open S x ∈ S
with open Int closure eq empty [of S {x . R x}] x [of closure {x . R x}]
have S ∩ {x . R x} 6= {} by (auto simp: Z def )
moreover assume Ball S Q ∀ x . Q x ∧ R x −→ bot x
ultimately show False by (auto simp: set eq iff )

qed
with 〈x ∈ U 〉 show ∃ x∈U . inf (nhds x ) F 6= bot
by (metis eventually bot)

next
fix A
assume A: ∀ a∈A. closed a ∀B⊆A. finite B −→ U ∩

⋂
B 6= {} U ∩

⋂
A = {}

define F where F = (INF a∈insert U A. principal a)
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have F 6= bot
unfolding F def

proof (rule INF filter not bot)
fix X
assume X : X ⊆ insert U A finite X
with A(2 )[THEN spec, of X − {U }] have U ∩

⋂
(X − {U }) 6= {}

by auto
with X show (INF a∈X . principal a) 6= bot
by (auto simp: INF principal finite principal eq bot iff )

qed
moreover
have F ≤ principal U
unfolding F def by auto

then have eventually (λx . x ∈ U ) F
by (auto simp: le filter def eventually principal)

moreover
assume ∀F . F 6= bot −→ eventually (λx . x ∈ U ) F −→ (∃ x∈U . inf (nhds x )

F 6= bot)
ultimately obtain x where x ∈ U and x : inf (nhds x ) F 6= bot
by auto

{ fix V assume V ∈ A
then have F ≤ principal V
unfolding F def by (intro INF lower2 [of V ]) auto

then have V : eventually (λx . x ∈ V ) F
by (auto simp: le filter def eventually principal)

have x ∈ closure V
unfolding closure iff nhds not empty

proof (intro impI allI )
fix S A
assume open S x ∈ S S ⊆ A
then have eventually (λx . x ∈ A) (nhds x )
by (auto simp: eventually nhds)

with V have eventually (λx . x ∈ V ∩ A) (inf (nhds x ) F )
by (auto simp: eventually inf )

with x show V ∩ A 6= {}
by (auto simp del : Int iff simp add : trivial limit def )

qed
then have x ∈ V
using 〈V ∈ A〉 A(1 ) by simp

}
with 〈x∈U 〉 have x ∈ U ∩

⋂
A by auto

with 〈U ∩
⋂
A = {}〉 show False by auto

qed

definition countably compact :: ( ′a::topological space) set ⇒ bool where
countably compact U ←→
(∀A. countable A −→ (∀ a∈A. open a) −→ U ⊆

⋃
A

−→ (∃T⊆A. finite T ∧ U ⊆
⋃
T ))
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lemma countably compactE :
assumes countably compact s and ∀ t∈C . open t and s ⊆

⋃
C countable C

obtains C ′ where C ′ ⊆ C and finite C ′ and s ⊆
⋃

C ′

using assms unfolding countably compact def by metis

lemma countably compactI :
assumes

∧
C . ∀ t∈C . open t =⇒ s ⊆

⋃
C =⇒ countable C =⇒ (∃C ′⊆C . finite

C ′ ∧ s ⊆
⋃
C ′)

shows countably compact s
using assms unfolding countably compact def by metis

lemma compact imp countably compact : compact U =⇒ countably compact U
by (auto simp: compact eq Heine Borel countably compact def )

lemma countably compact imp compact :
assumes countably compact U
and ccover : countable B ∀ b∈B . open b
and basis:

∧
T x . open T =⇒ x ∈ T =⇒ x ∈ U =⇒ ∃ b∈B . x ∈ b ∧ b ∩ U ⊆

T
shows compact U
using 〈countably compact U 〉

unfolding compact eq Heine Borel countably compact def
proof safe
fix A
assume A: ∀ a∈A. open a U ⊆

⋃
A

assume ∗: ∀A. countable A −→ (∀ a∈A. open a) −→ U ⊆
⋃
A −→ (∃T⊆A.

finite T ∧ U ⊆
⋃
T )

moreover define C where C = {b∈B . ∃ a∈A. b ∩ U ⊆ a}
ultimately have countable C ∀ a∈C . open a
unfolding C def using ccover by auto

moreover
have

⋃
A ∩ U ⊆

⋃
C

proof safe
fix x a
assume x ∈ U x ∈ a a ∈ A
with basis[of a x ] A obtain b where b ∈ B x ∈ b b ∩ U ⊆ a
by blast

with 〈a ∈ A〉 show x ∈
⋃
C

unfolding C def by auto
qed
then have U ⊆

⋃
C using 〈U ⊆

⋃
A〉 by auto

ultimately obtain T where T : T⊆C finite T U ⊆
⋃

T
using ∗ by metis

then have ∀ t∈T . ∃ a∈A. t ∩ U ⊆ a
by (auto simp: C def )

then obtain f where ∀ t∈T . f t ∈ A ∧ t ∩ U ⊆ f t
unfolding bchoice iff Bex def ..

with T show ∃T⊆A. finite T ∧ U ⊆
⋃
T
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unfolding C def by (intro exI [of f‘T ]) fastforce
qed

proposition countably compact imp compact second countable:
countably compact U =⇒ compact (U :: ′a :: second countable topology set)

proof (rule countably compact imp compact)
fix T and x :: ′a
assume open T x ∈ T
from topological basisE [OF is basis this] obtain b where
b ∈ (SOME B . countable B ∧ topological basis B) x ∈ b b ⊆ T .

then show ∃ b∈SOME B . countable B ∧ topological basis B . x ∈ b ∧ b ∩ U ⊆
T

by blast
qed (insert countable basis topological basis open[OF is basis], auto)

lemma countably compact eq compact :
countably compact U ←→ compact (U :: ′a :: second countable topology set)
using countably compact imp compact second countable compact imp countably compact

by blast

Sequential compactness

definition seq compact :: ′a::topological space set ⇒ bool where
seq compact S ←→
(∀ f . (∀n. f n ∈ S )
−→ (∃ l∈S . ∃ r ::nat⇒nat . strict mono r ∧ ((f ◦ r) −−−→ l) sequentially))

lemma seq compactI :
assumes

∧
f . ∀n. f n ∈ S =⇒ ∃ l∈S . ∃ r ::nat⇒nat . strict mono r ∧ ((f ◦ r)

−−−→ l) sequentially
shows seq compact S
unfolding seq compact def using assms by fast

lemma seq compactE :
assumes seq compact S ∀n. f n ∈ S
obtains l r where l ∈ S strict mono (r :: nat ⇒ nat) ((f ◦ r) −−−→ l)

sequentially
using assms unfolding seq compact def by fast

lemma closed sequentially :
assumes closed s and ∀n. f n ∈ s and f −−−−→ l
shows l ∈ s

proof (rule ccontr)
assume l /∈ s
with 〈closed s〉 and 〈f −−−−→ l 〉 have eventually (λn. f n ∈ − s) sequentially
by (fast intro: topological tendstoD)

with 〈∀n. f n ∈ s〉 show False
by simp

qed
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lemma seq compact Int closed :
assumes seq compact s and closed t
shows seq compact (s ∩ t)

proof (rule seq compactI )
fix f assume ∀n::nat . f n ∈ s ∩ t
hence ∀n. f n ∈ s and ∀n. f n ∈ t
by simp all

from 〈seq compact s〉 and 〈∀n. f n ∈ s〉

obtain l r where l ∈ s and r : strict mono r and l : (f ◦ r) −−−−→ l
by (rule seq compactE )

from 〈∀n. f n ∈ t 〉 have ∀n. (f ◦ r) n ∈ t
by simp

from 〈closed t 〉 and this and l have l ∈ t
by (rule closed sequentially)

with 〈l ∈ s〉 and r and l show ∃ l∈s ∩ t . ∃ r . strict mono r ∧ (f ◦ r) −−−−→ l
by fast

qed

lemma seq compact closed subset :
assumes closed s and s ⊆ t and seq compact t
shows seq compact s
using assms seq compact Int closed [of t s] by (simp add : Int absorb1 )

lemma seq compact imp countably compact :
fixes U :: ′a :: first countable topology set
assumes seq compact U
shows countably compact U

proof (safe intro!: countably compactI )
fix A
assume A: ∀ a∈A. open a U ⊆

⋃
A countable A

have subseq :
∧
X . range X ⊆ U =⇒ ∃ r x . x ∈ U ∧ strict mono (r :: nat ⇒

nat) ∧ (X ◦ r) −−−−→ x
using 〈seq compact U 〉 by (fastforce simp: seq compact def subset eq)

show ∃T⊆A. finite T ∧ U ⊆
⋃

T
proof cases
assume finite A
with A show ?thesis by auto

next
assume infinite A
then have A 6= {} by auto
show ?thesis
proof (rule ccontr)
assume ¬ (∃T⊆A. finite T ∧ U ⊆

⋃
T )

then have ∀T . ∃ x . T ⊆ A ∧ finite T −→ (x ∈ U −
⋃
T )

by auto
then obtain X ′ where T :

∧
T . T ⊆ A =⇒ finite T =⇒ X ′ T ∈ U −

⋃
T

by metis
define X where X n = X ′ (from nat into A ‘ {.. n}) for n
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have X :
∧
n. X n ∈ U − (

⋃
i≤n. from nat into A i)

using 〈A 6= {}〉 unfolding X def by (intro T ) (auto intro: from nat into)
then have range X ⊆ U
by auto

with subseq [of X ] obtain r x where x ∈ U and r : strict mono r (X ◦ r)
−−−−→ x

by auto
from 〈x∈U 〉 〈U ⊆

⋃
A〉 from nat into surj [OF 〈countable A〉]

obtain n where x ∈ from nat into A n by auto
with r(2 ) A(1 ) from nat into[OF 〈A 6= {}〉, of n]
have eventually (λi . X (r i) ∈ from nat into A n) sequentially
unfolding tendsto def by (auto simp: comp def )

then obtain N where
∧
i . N ≤ i =⇒ X (r i) ∈ from nat into A n

by (auto simp: eventually sequentially)
moreover from X have

∧
i . n ≤ r i =⇒ X (r i) /∈ from nat into A n

by auto
moreover from 〈strict mono r 〉[THEN seq suble, of max n N ] have ∃ i . n ≤

r i ∧ N ≤ i
by (auto intro!: exI [of max n N ])

ultimately show False
by auto

qed
qed

qed

lemma compact imp seq compact :
fixes U :: ′a :: first countable topology set
assumes compact U
shows seq compact U
unfolding seq compact def

proof safe
fix X :: nat ⇒ ′a
assume ∀n. X n ∈ U
then have eventually (λx . x ∈ U ) (filtermap X sequentially)
by (auto simp: eventually filtermap)

moreover
have filtermap X sequentially 6= bot
by (simp add : trivial limit def eventually filtermap)

ultimately
obtain x where x ∈ U and x : inf (nhds x ) (filtermap X sequentially) 6= bot (is

?F 6= )
using 〈compact U 〉 by (auto simp: compact filter)

from countable basis at decseq [of x ]
obtain A where A:∧

i . open (A i)∧
i . x ∈ A i∧
S . open S =⇒ x ∈ S =⇒ eventually (λi . A i ⊆ S ) sequentially

by blast
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define s where s n i = (SOME j . i < j ∧ X j ∈ A (Suc n)) for n i
{
fix n i
have ∃ a. i < a ∧ X a ∈ A (Suc n)
proof (rule ccontr)
assume ¬ (∃ a>i . X a ∈ A (Suc n))
then have

∧
a. Suc i ≤ a =⇒ X a /∈ A (Suc n)

by auto
then have eventually (λx . x /∈ A (Suc n)) (filtermap X sequentially)
by (auto simp: eventually filtermap eventually sequentially)

moreover have eventually (λx . x ∈ A (Suc n)) (nhds x )
using A(1 ,2 )[of Suc n] by (auto simp: eventually nhds)

ultimately have eventually (λx . False) ?F
by (auto simp: eventually inf )

with x show False
by (simp add : eventually False)

qed
then have i < s n i X (s n i) ∈ A (Suc n)
unfolding s def by (auto intro: someI2 ex )

}
note s = this
define r where r = rec nat (s 0 0 ) s
have strict mono r
by (auto simp: r def s strict mono Suc iff )

moreover
have (λn. X (r n)) −−−−→ x
proof (rule topological tendstoI )
fix S
assume open S x ∈ S
with A(3 ) have eventually (λi . A i ⊆ S ) sequentially
by auto

moreover
{
fix i
assume Suc 0 ≤ i
then have X (r i) ∈ A i
by (cases i) (simp all add : r def s)

}
then have eventually (λi . X (r i) ∈ A i) sequentially
by (auto simp: eventually sequentially)

ultimately show eventually (λi . X (r i) ∈ S ) sequentially
by eventually elim auto

qed
ultimately show ∃ x ∈ U . ∃ r . strict mono r ∧ (X ◦ r) −−−−→ x
using 〈x ∈ U 〉 by (auto simp: convergent def comp def )

qed

lemma countably compact imp acc point :
assumes countably compact s
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and countable t
and infinite t
and t ⊆ s

shows ∃ x∈s. ∀U . x∈U ∧ open U −→ infinite (U ∩ t)
proof (rule ccontr)
define C where C = (λF . interior (F ∪ (− t))) ‘ {F . finite F ∧ F ⊆ t }
note 〈countably compact s〉

moreover have ∀ t∈C . open t
by (auto simp: C def )

moreover
assume ¬ (∃ x∈s. ∀U . x∈U ∧ open U −→ infinite (U ∩ t))
then have s:

∧
x . x ∈ s =⇒ ∃U . x∈U ∧ open U ∧ finite (U ∩ t) by metis

have s ⊆
⋃
C

using 〈t ⊆ s〉

unfolding C def
apply (safe dest !: s)
apply (rule tac a=U ∩ t in UN I )
apply (auto intro!: interiorI simp add : finite subset)
done

moreover
from 〈countable t 〉 have countable C
unfolding C def by (auto intro: countable Collect finite subset)

ultimately
obtain D where D ⊆ C finite D s ⊆

⋃
D

by (rule countably compactE )
then obtain E where E : E ⊆ {F . finite F ∧ F ⊆ t } finite E
and s: s ⊆ (

⋃
F∈E . interior (F ∪ (− t)))

by (metis (lifting) finite subset image C def )
from s 〈t ⊆ s〉 have t ⊆

⋃
E

using interior subset by blast
moreover have finite (

⋃
E )

using E by auto
ultimately show False using 〈infinite t 〉

by (auto simp: finite subset)
qed

lemma countable acc point imp seq compact :
fixes s :: ′a::first countable topology set
assumes ∀ t . infinite t ∧ countable t ∧ t ⊆ s −→
(∃ x∈s. ∀U . x∈U ∧ open U −→ infinite (U ∩ t))

shows seq compact s
proof −
{
fix f :: nat ⇒ ′a
assume f : ∀n. f n ∈ s
have ∃ l∈s. ∃ r . strict mono r ∧ ((f ◦ r) −−−→ l) sequentially
proof (cases finite (range f ))
case True
obtain l where infinite {n. f n = f l}
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using pigeonhole infinite[OF True] by auto
then obtain r :: nat ⇒ nat where strict mono r and fr : ∀n. f (r n) = f l
using infinite enumerate by blast

then have strict mono r ∧ (f ◦ r) −−−−→ f l
by (simp add : fr o def )

with f show ∃ l∈s. ∃ r . strict mono r ∧ (f ◦ r) −−−−→ l
by auto

next
case False
with f assms have ∃ x∈s. ∀U . x∈U ∧ open U −→ infinite (U ∩ range f )
by auto

then obtain l where l ∈ s ∀U . l∈U ∧ open U −→ infinite (U ∩ range f )
..

from this(2 ) have ∃ r . strict mono r ∧ ((f ◦ r) −−−→ l) sequentially
using acc point range imp convergent subsequence[of l f ] by auto

with 〈l ∈ s〉 show ∃ l∈s. ∃ r . strict mono r ∧ ((f ◦ r) −−−→ l) sequentially ..
qed

}
then show ?thesis
unfolding seq compact def by auto

qed

lemma seq compact eq countably compact :
fixes U :: ′a :: first countable topology set
shows seq compact U ←→ countably compact U
using
countable acc point imp seq compact
countably compact imp acc point
seq compact imp countably compact

by metis

lemma seq compact eq acc point :
fixes s :: ′a :: first countable topology set
shows seq compact s ←→
(∀ t . infinite t ∧ countable t ∧ t ⊆ s −−> (∃ x∈s. ∀U . x∈U ∧ open U −→

infinite (U ∩ t)))
using
countable acc point imp seq compact [of s]
countably compact imp acc point [of s]
seq compact imp countably compact [of s]

by metis

lemma seq compact eq compact :
fixes U :: ′a :: second countable topology set
shows seq compact U ←→ compact U
using seq compact eq countably compact countably compact eq compact by blast

proposition Bolzano Weierstrass imp seq compact :
fixes s :: ′a::{t1 space, first countable topology} set
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shows ∀ t . infinite t ∧ t ⊆ s −→ (∃ x ∈ s. x islimpt t) =⇒ seq compact s
by (rule countable acc point imp seq compact) (metis islimpt eq acc point)

2.1.11 Cartesian products

lemma seq compact Times: seq compact s =⇒ seq compact t =⇒ seq compact (s
× t)
unfolding seq compact def
apply clarify
apply (drule tac x=fst ◦ f in spec)
apply (drule mp, simp add : mem Times iff )
apply (clarify , rename tac l1 r1 )
apply (drule tac x=snd ◦ f ◦ r1 in spec)
apply (drule mp, simp add : mem Times iff )
apply (clarify , rename tac l2 r2 )
apply (rule tac x=(l1 , l2 ) in rev bexI , simp)
apply (rule tac x=r1 ◦ r2 in exI )
apply (rule conjI , simp add : strict mono def )
apply (drule tac f=r2 in LIMSEQ subseq LIMSEQ , assumption)
apply (drule (1 ) tendsto Pair) back
apply (simp add : o def )
done

lemma compact Times:
assumes compact s compact t
shows compact (s × t)

proof (rule compactI )
fix C
assume C : ∀ t∈C . open t s × t ⊆

⋃
C

have ∀ x∈s. ∃ a. open a ∧ x ∈ a ∧ (∃ d⊆C . finite d ∧ a × t ⊆
⋃

d)
proof
fix x
assume x ∈ s
have ∀ y∈t . ∃ a b c. c ∈ C ∧ open a ∧ open b ∧ x ∈ a ∧ y ∈ b ∧ a × b ⊆ c

(is ∀ y∈t . ?P y)
proof
fix y
assume y ∈ t
with 〈x ∈ s〉 C obtain c where c ∈ C (x , y) ∈ c open c by auto
then show ?P y by (auto elim!: open prod elim)

qed
then obtain a b c where b:

∧
y . y ∈ t =⇒ open (b y)

and c:
∧
y . y ∈ t =⇒ c y ∈ C ∧ open (a y) ∧ open (b y) ∧ x ∈ a y ∧ y ∈ b

y ∧ a y × b y ⊆ c y
by metis

then have ∀ y∈t . open (b y) t ⊆ (
⋃

y∈t . b y) by auto
with compactE image[OF 〈compact t 〉] obtain D where D : D ⊆ t finite D t

⊆ (
⋃
y∈D . b y)
by metis
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moreover from D c have (
⋂

y∈D . a y) × t ⊆ (
⋃
y∈D . c y)

by (fastforce simp: subset eq)
ultimately show ∃ a. open a ∧ x ∈ a ∧ (∃ d⊆C . finite d ∧ a × t ⊆

⋃
d)

using c by (intro exI [of c‘D ] exI [of
⋂
(a‘D)] conjI ) (auto intro!: open INT )

qed
then obtain a d where a:

∧
x . x∈s =⇒ open (a x ) s ⊆ (

⋃
x∈s. a x )

and d :
∧
x . x ∈ s =⇒ d x ⊆ C ∧ finite (d x ) ∧ a x × t ⊆

⋃
(d x )

unfolding subset eq UN iff by metis
moreover
from compactE image[OF 〈compact s〉 a]
obtain e where e: e ⊆ s finite e and s: s ⊆ (

⋃
x∈e. a x )

by auto
moreover
{
from s have s × t ⊆ (

⋃
x∈e. a x × t)

by auto
also have . . . ⊆ (

⋃
x∈e.

⋃
(d x ))

using d 〈e ⊆ s〉 by (intro UN mono) auto
finally have s × t ⊆ (

⋃
x∈e.

⋃
(d x )) .

}
ultimately show ∃C ′⊆C . finite C ′ ∧ s × t ⊆

⋃
C ′

by (intro exI [of (
⋃
x∈e. d x )]) (auto simp: subset eq)

qed

lemma tube lemma:
assumes compact K
assumes open W
assumes {x0} × K ⊆ W
shows ∃X0 . x0 ∈ X0 ∧ open X0 ∧ X0 × K ⊆ W

proof −
{
fix y assume y ∈ K
then have (x0 , y) ∈ W using assms by auto
with 〈open W 〉

have ∃X0 Y . open X0 ∧ open Y ∧ x0 ∈ X0 ∧ y ∈ Y ∧ X0 × Y ⊆ W
by (rule open prod elim) blast

}
then obtain X0 Y where
∗: ∀ y ∈ K . open (X0 y) ∧ open (Y y) ∧ x0 ∈ X0 y ∧ y ∈ Y y ∧ X0 y × Y y

⊆ W
by metis

from ∗ have ∀ t∈Y ‘ K . open t K ⊆
⋃
(Y ‘ K ) by auto

with 〈compact K 〉 obtain CC where CC : CC ⊆ Y ‘ K finite CC K ⊆
⋃
CC

by (meson compactE )
then obtain c where c:

∧
C . C ∈ CC =⇒ c C ∈ K ∧ C = Y (c C )

by (force intro!: choice)
with ∗ CC show ?thesis
by (force intro!: exI [where x=

⋂
C∈CC . X0 (c C )])
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qed

lemma continuous on prod compactE :
fixes fx :: ′a::topological space × ′b::topological space ⇒ ′c::metric space
and e::real

assumes cont fx : continuous on (U × C ) fx
assumes compact C
assumes [intro]: x0 ∈ U
notes [continuous intros] = continuous on compose2 [OF cont fx ]
assumes e > 0
obtains X0 where x0 ∈ X0 open X0
∀ x∈X0 ∩ U . ∀ t ∈ C . dist (fx (x , t)) (fx (x0 , t)) ≤ e

proof −
define psi where psi = (λ(x , t). dist (fx (x , t)) (fx (x0 , t)))
define W0 where W0 = {(x , t) ∈ U × C . psi (x , t) < e}
have W0 eq : W0 = psi −‘ {..<e} ∩ U × C
by (auto simp: vimage def W0 def )

have open {..<e} by simp
have continuous on (U × C ) psi
by (auto intro!: continuous intros simp: psi def split beta ′)

from this[unfolded continuous on open invariant , rule format , OF 〈open {..<e}〉]
obtain W where W : open W W ∩ U × C = W0 ∩ U × C
unfolding W0 eq by blast

have {x0} × C ⊆ W ∩ U × C
unfolding W
by (auto simp: W0 def psi def 〈0 < e〉)

then have {x0} × C ⊆ W by blast
from tube lemma[OF 〈compact C 〉 〈open W 〉 this]
obtain X0 where X0 : x0 ∈ X0 open X0 X0 × C ⊆ W
by blast

have ∀ x∈X0 ∩ U . ∀ t ∈ C . dist (fx (x , t)) (fx (x0 , t)) ≤ e
proof safe
fix x assume x : x ∈ X0 x ∈ U
fix t assume t : t ∈ C
have dist (fx (x , t)) (fx (x0 , t)) = psi (x , t)
by (auto simp: psi def )

also
{
have (x , t) ∈ X0 × C
using t x
by auto

also note 〈. . . ⊆ W 〉

finally have (x , t) ∈ W .
with t x have (x , t) ∈ W ∩ U × C
by blast

also note 〈W ∩ U × C = W0 ∩ U × C 〉

finally have psi (x , t) < e
by (auto simp: W0 def )
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}
finally show dist (fx (x , t)) (fx (x0 , t)) ≤ e by simp

qed
from X0 (1 ,2 ) this show ?thesis ..

qed

2.1.12 Continuity

lemma continuous at imp continuous within:
continuous (at x ) f =⇒ continuous (at x within s) f
unfolding continuous within continuous at using Lim at imp Lim at within by

auto

lemma Lim trivial limit : trivial limit net =⇒ (f −−−→ l) net
by simp

lemmas continuous on = continuous on def — legacy theorem name

lemma continuous within subset :
continuous (at x within s) f =⇒ t ⊆ s =⇒ continuous (at x within t) f
unfolding continuous within by(metis tendsto within subset)

lemma continuous on interior :
continuous on s f =⇒ x ∈ interior s =⇒ continuous (at x ) f
by (metis continuous on eq continuous at continuous on subset interiorE )

lemma continuous on eq :
[[continuous on s f ;

∧
x . x ∈ s =⇒ f x = g x ]] =⇒ continuous on s g

unfolding continuous on def tendsto def eventually at topological
by simp

Characterization of various kinds of continuity in terms of sequences.

lemma continuous within sequentiallyI :
fixes f :: ′a::{first countable topology , t2 space} ⇒ ′b::topological space
assumes

∧
u::nat ⇒ ′a. u −−−−→ a =⇒ (∀n. u n ∈ s) =⇒ (λn. f (u n)) −−−−→

f a
shows continuous (at a within s) f
using assms unfolding continuous within tendsto def [where l = f a]
by (auto intro!: sequentially imp eventually within)

lemma continuous within tendsto compose:
fixes f :: ′a::t2 space ⇒ ′b::topological space
assumes continuous (at a within s) f

eventually (λn. x n ∈ s) F
(x −−−→ a) F

shows ((λn. f (x n)) −−−→ f a) F
proof −
have ∗: filterlim x (inf (nhds a) (principal s)) F
using assms(2 ) assms(3 ) unfolding at within def filterlim inf by (auto simp:
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filterlim principal eventually mono)
show ?thesis
by (auto simp: assms(1 ) continuous within[symmetric] tendsto at within iff tendsto nhds[symmetric]

intro!: filterlim compose[OF ∗])
qed

lemma continuous within tendsto compose ′:
fixes f :: ′a::t2 space ⇒ ′b::topological space
assumes continuous (at a within s) f∧

n. x n ∈ s
(x −−−→ a) F

shows ((λn. f (x n)) −−−→ f a) F
by (auto intro!: continuous within tendsto compose[OF assms(1 )] simp add : assms)

lemma continuous within sequentially :
fixes f :: ′a::{first countable topology , t2 space} ⇒ ′b::topological space
shows continuous (at a within s) f ←→
(∀ x . (∀n::nat . x n ∈ s) ∧ (x −−−→ a) sequentially
−→ ((f ◦ x ) −−−→ f a) sequentially)

using continuous within tendsto compose ′[of a s f sequentially ]
continuous within sequentiallyI [of a s f ]

by (auto simp: o def )

lemma continuous at sequentiallyI :
fixes f :: ′a::{first countable topology , t2 space} ⇒ ′b::topological space
assumes

∧
u. u −−−−→ a =⇒ (λn. f (u n)) −−−−→ f a

shows continuous (at a) f
using continuous within sequentiallyI [of a UNIV f ] assms by auto

lemma continuous at sequentially :
fixes f :: ′a::metric space ⇒ ′b::topological space
shows continuous (at a) f ←→
(∀ x . (x −−−→ a) sequentially −−> ((f ◦ x ) −−−→ f a) sequentially)

using continuous within sequentially [of a UNIV f ] by simp

lemma continuous on sequentiallyI :
fixes f :: ′a::{first countable topology , t2 space} ⇒ ′b::topological space
assumes

∧
u a. (∀n. u n ∈ s) =⇒ a ∈ s =⇒ u −−−−→ a =⇒ (λn. f (u n))

−−−−→ f a
shows continuous on s f
using assms unfolding continuous on eq continuous within
using continuous within sequentiallyI [of s f ] by auto

lemma continuous on sequentially :
fixes f :: ′a::{first countable topology , t2 space} ⇒ ′b::topological space
shows continuous on s f ←→
(∀ x . ∀ a ∈ s. (∀n. x (n) ∈ s) ∧ (x −−−→ a) sequentially
−−> ((f ◦ x ) −−−→ f a) sequentially)

(is ?lhs = ?rhs)
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proof
assume ?rhs
then show ?lhs
using continuous within sequentially [of s f ]
unfolding continuous on eq continuous within
by auto

next
assume ?lhs
then show ?rhs
unfolding continuous on eq continuous within
using continuous within sequentially [of s f ]
by auto

qed

Continuity in terms of open preimages.

lemma continuous at open:
continuous (at x ) f ←→ (∀ t . open t ∧ f x ∈ t −−> (∃ s. open s ∧ x ∈ s ∧ (∀ x ′

∈ s. (f x ′) ∈ t)))
unfolding continuous within topological [of x UNIV f ]
unfolding imp conjL
by (intro all cong imp cong ex cong conj cong refl) auto

lemma continuous imp tendsto:
assumes continuous (at x0 ) f
and x −−−−→ x0

shows (f ◦ x ) −−−−→ (f x0 )
proof (rule topological tendstoI )
fix S
assume open S f x0 ∈ S
then obtain T where T def : open T x0 ∈ T ∀ x∈T . f x ∈ S

using assms continuous at open by metis
then have eventually (λn. x n ∈ T ) sequentially
using assms T def by (auto simp: tendsto def )

then show eventually (λn. (f ◦ x ) n ∈ S ) sequentially
using T def by (auto elim!: eventually mono)

qed

2.1.13 Homeomorphisms

definition homeomorphism s t f g ←→
(∀ x∈s. (g(f x ) = x )) ∧ (f ‘ s = t) ∧ continuous on s f ∧
(∀ y∈t . (f (g y) = y)) ∧ (g ‘ t = s) ∧ continuous on t g

lemma homeomorphismI [intro?]:
assumes continuous on S f continuous on T g

f ‘ S ⊆ T g ‘ T ⊆ S
∧
x . x ∈ S =⇒ g(f x ) = x

∧
y . y ∈ T =⇒ f (g y) = y

shows homeomorphism S T f g
using assms by (force simp: homeomorphism def )
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lemma homeomorphism translation:
fixes a :: ′a :: real normed vector
shows homeomorphism ((+) a ‘ S ) S ((+) (− a)) ((+) a)

unfolding homeomorphism def by (auto simp: algebra simps continuous intros)

lemma homeomorphism ident : homeomorphism T T (λa. a) (λa. a)
by (rule homeomorphismI ) auto

lemma homeomorphism compose:
assumes homeomorphism S T f g homeomorphism T U h k
shows homeomorphism S U (h o f ) (g o k)

using assms
unfolding homeomorphism def
by (intro conjI ballI continuous on compose) (auto simp: image iff )

lemma homeomorphism cong :
homeomorphism X ′ Y ′ f ′ g ′

if homeomorphism X Y f g X ′ = X Y ′ = Y
∧
x . x ∈ X =⇒ f ′ x = f x

∧
y . y

∈ Y =⇒ g ′ y = g y
using that by (auto simp add : homeomorphism def )

lemma homeomorphism empty [simp]:
homeomorphism {} {} f g
unfolding homeomorphism def by auto

lemma homeomorphism symD : homeomorphism S t f g =⇒ homeomorphism t S
g f
by (simp add : homeomorphism def )

lemma homeomorphism sym: homeomorphism S t f g = homeomorphism t S g f
by (force simp: homeomorphism def )

definition homeomorphic :: ′a::topological space set ⇒ ′b::topological space set ⇒
bool

(infixr homeomorphic 60 )
where s homeomorphic t ≡ (∃ f g . homeomorphism s t f g)

lemma homeomorphic empty [iff ]:
S homeomorphic {} ←→ S = {} {} homeomorphic S ←→ S = {}

by (auto simp: homeomorphic def homeomorphism def )

lemma homeomorphic refl : s homeomorphic s
unfolding homeomorphic def homeomorphism def
using continuous on id
apply (rule tac x = (λx . x ) in exI )
apply (rule tac x = (λx . x ) in exI )
apply blast
done
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lemma homeomorphic sym: s homeomorphic t ←→ t homeomorphic s
unfolding homeomorphic def homeomorphism def
by blast

lemma homeomorphic trans [trans]:
assumes S homeomorphic T

and T homeomorphic U
shows S homeomorphic U

using assms
unfolding homeomorphic def

by (metis homeomorphism compose)

lemma homeomorphic minimal :
s homeomorphic t ←→
(∃ f g . (∀ x∈s. f (x ) ∈ t ∧ (g(f (x )) = x )) ∧

(∀ y∈t . g(y) ∈ s ∧ (f (g(y)) = y)) ∧
continuous on s f ∧ continuous on t g)

(is ?lhs = ?rhs)
proof
assume ?lhs
then show ?rhs
by (fastforce simp: homeomorphic def homeomorphism def )

next
assume ?rhs
then show ?lhs
apply clarify
unfolding homeomorphic def homeomorphism def
by (metis equalityI image subset iff subsetI )

qed

lemma homeomorphicI [intro?]:
[[f ‘ S = T ; g ‘ T = S ;
continuous on S f ; continuous on T g ;∧
x . x ∈ S =⇒ g(f (x )) = x ;∧
y . y ∈ T =⇒ f (g(y)) = y ]] =⇒ S homeomorphic T

unfolding homeomorphic def homeomorphism def by metis

lemma homeomorphism of subsets:
[[homeomorphism S T f g ; S ′ ⊆ S ; T ′′ ⊆ T ; f ‘ S ′ = T ′]]
=⇒ homeomorphism S ′ T ′ f g

apply (auto simp: homeomorphism def elim!: continuous on subset)
by (metis subsetD imageI )

lemma homeomorphism apply1 : [[homeomorphism S T f g ; x ∈ S ]] =⇒ g(f x ) = x
by (simp add : homeomorphism def )

lemma homeomorphism apply2 : [[homeomorphism S T f g ; x ∈ T ]] =⇒ f (g x ) =
x
by (simp add : homeomorphism def )
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lemma homeomorphism image1 : homeomorphism S T f g =⇒ f ‘ S = T
by (simp add : homeomorphism def )

lemma homeomorphism image2 : homeomorphism S T f g =⇒ g ‘ T = S
by (simp add : homeomorphism def )

lemma homeomorphism cont1 : homeomorphism S T f g =⇒ continuous on S f
by (simp add : homeomorphism def )

lemma homeomorphism cont2 : homeomorphism S T f g =⇒ continuous on T g
by (simp add : homeomorphism def )

lemma continuous on no limpt :
(
∧
x . ¬ x islimpt S ) =⇒ continuous on S f

unfolding continuous on def
by (metis UNIV I empty iff eventually at topological islimptE open UNIV tend-

sto def trivial limit within)

lemma continuous on finite:
fixes S :: ′a::t1 space set
shows finite S =⇒ continuous on S f

by (metis continuous on no limpt islimpt finite)

lemma homeomorphic finite:
fixes S :: ′a::t1 space set and T :: ′b::t1 space set
assumes finite T
shows S homeomorphic T ←→ finite S ∧ finite T ∧ card S = card T (is ?lhs

= ?rhs)
proof
assume S homeomorphic T
with assms show ?rhs
apply (auto simp: homeomorphic def homeomorphism def )
apply (metis finite imageI )
by (metis card image le finite imageI le antisym)

next
assume R: ?rhs
with finite same card bij obtain h where bij betw h S T
by auto

with R show ?lhs
apply (auto simp: homeomorphic def homeomorphism def continuous on finite)
apply (rule tac x=h in exI )
apply (rule tac x=inv into S h in exI )
apply (auto simp: bij betw inv into left bij betw inv into right bij betw imp surj on

inv into into bij betwE )
apply (metis bij betw def bij betw inv into)
done

qed

Relatively weak hypotheses if a set is compact.
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lemma homeomorphism compact :
fixes f :: ′a::topological space ⇒ ′b::t2 space
assumes compact s continuous on s f f ‘ s = t inj on f s
shows ∃ g . homeomorphism s t f g

proof −
define g where g x = (SOME y . y∈s ∧ f y = x ) for x
have g : ∀ x∈s. g (f x ) = x
using assms(3 ) assms(4 )[unfolded inj on def ] unfolding g def by auto

{
fix y
assume y ∈ t
then obtain x where x :f x = y x∈s
using assms(3 ) by auto

then have g (f x ) = x using g by auto
then have f (g y) = y unfolding x (1 )[symmetric] by auto

}
then have g ′:∀ x∈t . f (g x ) = x by auto
moreover
{
fix x
have x∈s =⇒ x ∈ g ‘ t
using g [THEN bspec[where x=x ]]
unfolding image iff
using assms(3 )
by (auto intro!: bexI [where x=f x ])

moreover
{
assume x∈g ‘ t
then obtain y where y :y∈t g y = x by auto
then obtain x ′ where x ′:x ′∈s f x ′ = y
using assms(3 ) by auto

then have x ∈ s
unfolding g def
using someI2 [of λb. b∈s ∧ f b = y x ′ λx . x∈s]
unfolding y(2 )[symmetric] and g def
by auto

}
ultimately have x∈s ←→ x ∈ g ‘ t ..

}
then have g ‘ t = s by auto
ultimately show ?thesis
unfolding homeomorphism def homeomorphic def
using assms continuous on inv by fastforce

qed

lemma homeomorphic compact :
fixes f :: ′a::topological space ⇒ ′b::t2 space
shows compact s =⇒ continuous on s f =⇒ (f ‘ s = t) =⇒ inj on f s =⇒ s

homeomorphic t
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unfolding homeomorphic def by (metis homeomorphism compact)

Preservation of topological properties.

lemma homeomorphic compactness: s homeomorphic t =⇒ (compact s ←→ com-
pact t)
unfolding homeomorphic def homeomorphism def
by (metis compact continuous image)

2.1.14 On Linorder Topologies

lemma islimpt greaterThanLessThan1 :
fixes a b:: ′a::{linorder topology , dense order}
assumes a < b
shows a islimpt {a<..<b}

proof (rule islimptI )
fix T
assume open T a ∈ T
from open right [OF this 〈a < b〉]
obtain c where c: a < c {a..<c} ⊆ T by auto
with assms dense[of a min c b]
show ∃ y∈{a<..<b}. y ∈ T ∧ y 6= a
by (metis atLeastLessThan iff greaterThanLessThan iff min less iff conj
not le order .strict implies order subset eq)

qed

lemma islimpt greaterThanLessThan2 :
fixes a b:: ′a::{linorder topology , dense order}
assumes a < b
shows b islimpt {a<..<b}

proof (rule islimptI )
fix T
assume open T b ∈ T
from open left [OF this 〈a < b〉]
obtain c where c: c < b {c<..b} ⊆ T by auto
with assms dense[of max a c b]
show ∃ y∈{a<..<b}. y ∈ T ∧ y 6= b
by (metis greaterThanAtMost iff greaterThanLessThan iff max less iff conj
not le order .strict implies order subset eq)

qed

lemma closure greaterThanLessThan[simp]:
fixes a b:: ′a::{linorder topology , dense order}
shows a < b =⇒ closure {a <..< b} = {a .. b} (is =⇒ ?l = ?r)

proof
have ?l ⊆ closure ?r
by (rule closure mono) auto

thus closure {a<..<b} ⊆ {a..b} by simp
qed (auto simp: closure def order .order iff strict islimpt greaterThanLessThan1
islimpt greaterThanLessThan2 )
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lemma closure greaterThan[simp]:
fixes a b:: ′a::{no top, linorder topology , dense order}
shows closure {a<..} = {a..}

proof −
from gt ex obtain b where a < b by auto
hence {a<..} = {a<..<b} ∪ {b..} by auto
also have closure . . . = {a..} using 〈a < b〉 unfolding closure Un
by auto

finally show ?thesis .
qed

lemma closure lessThan[simp]:
fixes b:: ′a::{no bot , linorder topology , dense order}
shows closure {..<b} = {..b}

proof −
from lt ex obtain a where a < b by auto
hence {..<b} = {a<..<b} ∪ {..a} by auto
also have closure . . . = {..b} using 〈a < b〉 unfolding closure Un
by auto

finally show ?thesis .
qed

lemma closure atLeastLessThan[simp]:
fixes a b:: ′a::{linorder topology , dense order}
assumes a < b
shows closure {a ..< b} = {a .. b}

proof −
from assms have {a ..< b} = {a} ∪ {a <..< b} by auto
also have closure . . . = {a .. b} unfolding closure Un
by (auto simp: assms less imp le)

finally show ?thesis .
qed

lemma closure greaterThanAtMost [simp]:
fixes a b:: ′a::{linorder topology , dense order}
assumes a < b
shows closure {a <.. b} = {a .. b}

proof −
from assms have {a <.. b} = {b} ∪ {a <..< b} by auto
also have closure . . . = {a .. b} unfolding closure Un
by (auto simp: assms less imp le)

finally show ?thesis .
qed

end
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2.2 Operators involving abstract topology

theory Abstract Topology
imports
Complex Main
HOL−Library .Set Idioms
HOL−Library .FuncSet

begin

2.2.1 General notion of a topology as a value

definition istopology :: ( ′a set ⇒ bool) ⇒ bool where
istopology L ≡ (∀S T . L S −→ L T −→ L (S ∩ T )) ∧ (∀K. (∀K∈K. L K ) −→

L (
⋃
K))

typedef ′a topology = {L::( ′a set) ⇒ bool . istopology L}
morphisms openin topology
unfolding istopology def by blast

lemma istopology openin[intro]: istopology(openin U )
using openin[of U ] by blast

lemma istopology open: istopology open
by (auto simp: istopology def )

lemma topology inverse ′: istopology U =⇒ openin (topology U ) = U
using topology inverse[unfolded mem Collect eq ] .

lemma topology inverse iff : istopology U ←→ openin (topology U ) = U
using topology inverse[of U ] istopology openin[of topology U ] by auto

lemma topology eq : T1 = T2 ←→ (∀S . openin T1 S ←→ openin T2 S )
proof
assume T1 = T2
then show ∀S . openin T1 S ←→ openin T2 S by simp

next
assume H : ∀S . openin T1 S ←→ openin T2 S
then have openin T1 = openin T2 by (simp add : fun eq iff )
then have topology (openin T1 ) = topology (openin T2 ) by simp
then show T1 = T2 unfolding openin inverse .

qed

The ”universe”: the union of all sets in the topology.

definition topspace T =
⋃
{S . openin T S}

Main properties of open sets

proposition openin clauses:
fixes U :: ′a topology
shows

Abstract{_}{\kern 0pt}Topology.html


318

openin U {}∧
S T . openin U S =⇒ openin U T =⇒ openin U (S∩T )∧
K . (∀S ∈ K . openin U S ) =⇒ openin U (

⋃
K )

using openin[of U ] unfolding istopology def by auto

lemma openin subset : openin U S =⇒ S ⊆ topspace U
unfolding topspace def by blast

lemma openin empty [simp]: openin U {}
by (rule openin clauses)

lemma openin Int [intro]: openin U S =⇒ openin U T =⇒ openin U (S ∩ T )
by (rule openin clauses)

lemma openin Union[intro]: (
∧
S . S ∈ K =⇒ openin U S ) =⇒ openin U (

⋃
K )

using openin clauses by blast

lemma openin Un[intro]: openin U S =⇒ openin U T =⇒ openin U (S ∪ T )
using openin Union[of {S ,T} U ] by auto

lemma openin topspace[intro, simp]: openin U (topspace U )
by (force simp: openin Union topspace def )

lemma openin subopen: openin U S ←→ (∀ x ∈ S . ∃T . openin U T ∧ x ∈ T ∧
T ⊆ S )
(is ?lhs ←→ ?rhs)

proof
assume ?lhs
then show ?rhs by auto

next
assume H : ?rhs
let ?t =

⋃
{T . openin U T ∧ T ⊆ S}

have openin U ?t by (force simp: openin Union)
also have ?t = S using H by auto
finally show openin U S .

qed

lemma openin INT [intro]:
assumes finite I∧

i . i ∈ I =⇒ openin T (U i)
shows openin T ((

⋂
i ∈ I . U i) ∩ topspace T )

using assms by (induct , auto simp: inf sup aci(2 ) openin Int)

lemma openin INT2 [intro]:
assumes finite I I 6= {}∧

i . i ∈ I =⇒ openin T (U i)
shows openin T (

⋂
i ∈ I . U i)

proof −
have (

⋂
i ∈ I . U i) ⊆ topspace T
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using 〈I 6= {}〉 openin subset [OF assms(3 )] by auto
then show ?thesis
using openin INT [of U , OF assms(1 ) assms(3 )] by (simp add : inf .absorb2

inf commute)
qed

lemma openin Inter [intro]:
assumes finite F F 6= {}

∧
X . X ∈ F =⇒ openin T X shows openin T (

⋂
F)

by (metis (full types) assms openin INT2 image ident)

lemma openin Int Inter :
assumes finite F openin T U

∧
X . X ∈ F =⇒ openin T X shows openin T

(U ∩
⋂
F)

using openin Inter [of insert U F ] assms by auto

Closed sets

definition closedin :: ′a topology ⇒ ′a set ⇒ bool where
closedin U S ←→ S ⊆ topspace U ∧ openin U (topspace U − S )

lemma closedin subset : closedin U S =⇒ S ⊆ topspace U
by (metis closedin def )

lemma closedin empty [simp]: closedin U {}
by (simp add : closedin def )

lemma closedin topspace[intro, simp]: closedin U (topspace U )
by (simp add : closedin def )

lemma closedin Un[intro]: closedin U S =⇒ closedin U T =⇒ closedin U (S ∪
T )
by (auto simp: Diff Un closedin def )

lemma Diff Inter [intro]: A −
⋂
S =

⋃
{A − s|s. s∈S}

by auto

lemma closedin Union:
assumes finite S

∧
T . T ∈ S =⇒ closedin U T

shows closedin U (
⋃
S )

using assms by induction auto

lemma closedin Inter [intro]:
assumes Ke: K 6= {}
and Kc:

∧
S . S ∈K =⇒ closedin U S

shows closedin U (
⋂
K )

using Ke Kc unfolding closedin def Diff Inter by auto

lemma closedin INT [intro]:
assumes A 6= {}

∧
x . x ∈ A =⇒ closedin U (B x )
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shows closedin U (
⋂
x∈A. B x )

using assms by blast

lemma closedin Int [intro]: closedin U S =⇒ closedin U T =⇒ closedin U (S ∩
T )
using closedin Inter [of {S ,T} U ] by auto

lemma openin closedin eq : openin U S ←→ S ⊆ topspace U ∧ closedin U (topspace
U − S )
by (metis Diff subset closedin def double diff equalityD1 openin subset)

lemma topology finer closedin:
topspace X = topspace Y =⇒ (∀S . openin Y S −→ openin X S ) ←→ (∀S .

closedin Y S −→ closedin X S )
by (metis closedin def openin closedin eq)

lemma openin closedin: S ⊆ topspace U =⇒ (openin U S ←→ closedin U (topspace
U − S ))
by (simp add : openin closedin eq)

lemma openin diff [intro]:
assumes oS : openin U S
and cT : closedin U T

shows openin U (S − T )
proof −
have S − T = S ∩ (topspace U − T ) using openin subset [of U S ] oS cT
by (auto simp: topspace def openin subset)

then show ?thesis using oS cT
by (auto simp: closedin def )

qed

lemma closedin diff [intro]:
assumes oS : closedin U S
and cT : openin U T

shows closedin U (S − T )
proof −
have S − T = S ∩ (topspace U − T )
using closedin subset [of U S ] oS cT by (auto simp: topspace def )

then show ?thesis
using oS cT by (auto simp: openin closedin eq)

qed

2.2.2 The discrete topology

definition discrete topology where discrete topology U ≡ topology (λS . S ⊆ U )

lemma openin discrete topology [simp]: openin (discrete topology U ) S ←→ S ⊆
U
proof −
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have istopology (λS . S ⊆ U )
by (auto simp: istopology def )

then show ?thesis
by (simp add : discrete topology def topology inverse ′)

qed

lemma topspace discrete topology [simp]: topspace(discrete topology U ) = U
by (meson openin discrete topology openin subset openin topspace order refl sub-

set antisym)

lemma closedin discrete topology [simp]: closedin (discrete topology U ) S ←→ S
⊆ U
by (simp add : closedin def )

lemma discrete topology unique:
discrete topology U = X ←→ topspace X = U ∧ (∀ x ∈ U . openin X {x}) (is

?lhs = ?rhs)
proof
assume R: ?rhs
then have openin X S if S ⊆ U for S
using openin subopen subsetD that by fastforce

moreover have x ∈ topspace X if openin X S and x ∈ S for x S
using openin subset that by blast

ultimately
show ?lhs
using R by (auto simp: topology eq)

qed auto

lemma discrete topology unique alt :
discrete topology U = X ←→ topspace X ⊆ U ∧ (∀ x ∈ U . openin X {x})
using openin subset
by (auto simp: discrete topology unique)

lemma subtopology eq discrete topology empty :
X = discrete topology {} ←→ topspace X = {}
using discrete topology unique [of {} X ] by auto

lemma subtopology eq discrete topology sing :
X = discrete topology {a} ←→ topspace X = {a}
by (metis discrete topology unique openin topspace singletonD)

2.2.3 Subspace topology

definition subtopology :: ′a topology ⇒ ′a set ⇒ ′a topology where
subtopology U V = topology (λT . ∃S . T = S ∩ V ∧ openin U S )

lemma istopology subtopology : istopology (λT . ∃S . T = S ∩ V ∧ openin U S )
(is istopology ?L)

proof −
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have ?L {} by blast
{
fix A B
assume A: ?L A and B : ?L B
from A B obtain Sa and Sb where Sa: openin U Sa A = Sa ∩ V and Sb:

openin U Sb B = Sb ∩ V
by blast

have A ∩ B = (Sa ∩ Sb) ∩ V openin U (Sa ∩ Sb)
using Sa Sb by blast+

then have ?L (A ∩ B) by blast
}
moreover
{
fix K
assume K : K ⊆ Collect ?L
have th0 : Collect ?L = (λS . S ∩ V ) ‘ Collect (openin U )
by blast

from K [unfolded th0 subset image iff ]
obtain Sk where Sk : Sk ⊆ Collect (openin U ) K = (λS . S ∩ V ) ‘ Sk
by blast

have
⋃
K = (

⋃
Sk) ∩ V

using Sk by auto
moreover have openin U (

⋃
Sk)

using Sk by (auto simp: subset eq)
ultimately have ?L (

⋃
K ) by blast

}
ultimately show ?thesis
unfolding subset eq mem Collect eq istopology def by auto

qed

lemma openin subtopology : openin (subtopology U V ) S ←→ (∃T . openin U T ∧
S = T ∩ V )
unfolding subtopology def topology inverse ′[OF istopology subtopology ]
by auto

lemma openin subtopology Int :
openin X S =⇒ openin (subtopology X T ) (S ∩ T )
using openin subtopology by auto

lemma openin subtopology Int2 :
openin X T =⇒ openin (subtopology X S ) (S ∩ T )
using openin subtopology by auto

lemma openin subtopology diff closed :
[[S ⊆ topspace X ; closedin X T ]] =⇒ openin (subtopology X S ) (S − T )
unfolding closedin def openin subtopology
by (rule tac x=topspace X − T in exI ) auto

lemma openin relative to: (openin X relative to S ) = openin (subtopology X S )
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by (force simp: relative to def openin subtopology)

lemma topspace subtopology [simp]: topspace (subtopology U V ) = topspace U ∩
V
by (auto simp: topspace def openin subtopology)

lemma topspace subtopology subset :
S ⊆ topspace X =⇒ topspace(subtopology X S ) = S
by (simp add : inf .absorb iff2 )

lemma closedin subtopology : closedin (subtopology U V ) S ←→ (∃T . closedin U
T ∧ S = T ∩ V )
unfolding closedin def topspace subtopology
by (auto simp: openin subtopology)

lemma openin subtopology refl : openin (subtopology U V ) V ←→ V ⊆ topspace
U
unfolding openin subtopology
by auto (metis IntD1 in mono openin subset)

lemma subtopology subtopology :
subtopology (subtopology X S ) T = subtopology X (S ∩ T )

proof −
have eq :

∧
T ′. (∃S ′. T ′ = S ′ ∩ T ∧ (∃T . openin X T ∧ S ′ = T ∩ S )) = (∃Sa.

T ′ = Sa ∩ (S ∩ T ) ∧ openin X Sa)
by (metis inf assoc)

have subtopology (subtopology X S ) T = topology (λTa. ∃Sa. Ta = Sa ∩ T ∧
openin (subtopology X S ) Sa)

by (simp add : subtopology def )
also have . . . = subtopology X (S ∩ T )
by (simp add : openin subtopology eq) (simp add : subtopology def )

finally show ?thesis .
qed

lemma openin subtopology alt :
openin (subtopology X U ) S ←→ S ∈ (λT . U ∩ T ) ‘ Collect (openin X )

by (simp add : image iff inf commute openin subtopology)

lemma closedin subtopology alt :
closedin (subtopology X U ) S ←→ S ∈ (λT . U ∩ T ) ‘ Collect (closedin X )

by (simp add : image iff inf commute closedin subtopology)

lemma subtopology superset :
assumes UV : topspace U ⊆ V
shows subtopology U V = U

proof −
{
fix S
{
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fix T
assume T : openin U T S = T ∩ V
from T openin subset [OF T (1 )] UV have eq : S = T
by blast

have openin U S
unfolding eq using T by blast

}
moreover
{
assume S : openin U S
then have ∃T . openin U T ∧ S = T ∩ V
using openin subset [OF S ] UV by auto

}
ultimately have (∃T . openin U T ∧ S = T ∩ V ) ←→ openin U S
by blast

}
then show ?thesis
unfolding topology eq openin subtopology by blast

qed

lemma subtopology topspace[simp]: subtopology U (topspace U ) = U
by (simp add : subtopology superset)

lemma subtopology UNIV [simp]: subtopology U UNIV = U
by (simp add : subtopology superset)

lemma subtopology restrict :
subtopology X (topspace X ∩ S ) = subtopology X S
by (metis subtopology subtopology subtopology topspace)

lemma openin subtopology empty :
openin (subtopology U {}) S ←→ S = {}

by (metis Int empty right openin empty openin subtopology)

lemma closedin subtopology empty :
closedin (subtopology U {}) S ←→ S = {}

by (metis Int empty right closedin empty closedin subtopology)

lemma closedin subtopology refl [simp]:
closedin (subtopology U X ) X ←→ X ⊆ topspace U

by (metis closedin def closedin topspace inf .absorb iff2 le inf iff topspace subtopology)

lemma closedin topspace empty : topspace T = {} =⇒ (closedin T S ←→ S = {})
by (simp add : closedin def )

lemma open in topspace empty :
topspace X = {} =⇒ openin X S ←→ S = {}
by (simp add : openin closedin eq)
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lemma openin imp subset :
openin (subtopology U S ) T =⇒ T ⊆ S

by (metis Int iff openin subtopology subsetI )

lemma closedin imp subset :
closedin (subtopology U S ) T =⇒ T ⊆ S

by (simp add : closedin def )

lemma openin open subtopology :
openin X S =⇒ openin (subtopology X S ) T ←→ openin X T ∧ T ⊆ S

by (metis inf .orderE openin Int openin imp subset openin subtopology)

lemma closedin closed subtopology :
closedin X S =⇒ (closedin (subtopology X S ) T ←→ closedin X T ∧ T ⊆ S )

by (metis closedin Int closedin imp subset closedin subtopology inf .orderE )

lemma openin subtopology Un:
[[openin (subtopology X T ) S ; openin (subtopology X U ) S ]]
=⇒ openin (subtopology X (T ∪ U )) S

by (simp add : openin subtopology) blast

lemma closedin subtopology Un:
[[closedin (subtopology X T ) S ; closedin (subtopology X U ) S ]]
=⇒ closedin (subtopology X (T ∪ U )) S

by (simp add : closedin subtopology) blast

lemma openin trans full :
[[openin (subtopology X U ) S ; openin X U ]] =⇒ openin X S
by (simp add : openin open subtopology)

2.2.4 The canonical topology from the underlying type class

abbreviation euclidean :: ′a::topological space topology
where euclidean ≡ topology open

abbreviation top of set :: ′a::topological space set ⇒ ′a topology
where top of set ≡ subtopology (topology open)

lemma open openin: open S ←→ openin euclidean S
by (simp add : istopology open topology inverse ′)

declare open openin [symmetric, simp]

lemma topspace euclidean [simp]: topspace euclidean = UNIV
by (force simp: topspace def )

lemma topspace euclidean subtopology [simp]: topspace (top of set S ) = S
by (simp)
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lemma closed closedin: closed S ←→ closedin euclidean S
by (simp add : closed def closedin def Compl eq Diff UNIV )

declare closed closedin [symmetric, simp]

lemma openin subtopology self [simp]: openin (top of set S ) S
by (metis openin topspace topspace euclidean subtopology)

The most basic facts about the usual topology and metric on R

abbreviation euclideanreal :: real topology
where euclideanreal ≡ topology open

2.2.5 Basic ”localization” results are handy for connected-
ness.

lemma openin open: openin (top of set U ) S ←→ (∃T . open T ∧ (S = U ∩ T ))
by (auto simp: openin subtopology)

lemma openin Int open:
[[openin (top of set U ) S ; open T ]]

=⇒ openin (top of set U ) (S ∩ T )
by (metis open Int Int assoc openin open)

lemma openin open Int [intro]: open S =⇒ openin (top of set U ) (U ∩ S )
by (auto simp: openin open)

lemma open openin trans[trans]:
open S =⇒ open T =⇒ T ⊆ S =⇒ openin (top of set S ) T
by (metis Int absorb1 openin open Int)

lemma open subset : S ⊆ T =⇒ open S =⇒ openin (top of set T ) S
by (auto simp: openin open)

lemma closedin closed : closedin (top of set U ) S ←→ (∃T . closed T ∧ S = U ∩
T )
by (simp add : closedin subtopology Int ac)

lemma closedin closed Int : closed S =⇒ closedin (top of set U ) (U ∩ S )
by (metis closedin closed)

lemma closed subset : S ⊆ T =⇒ closed S =⇒ closedin (top of set T ) S
by (auto simp: closedin closed)

lemma closedin closed subset :
[[closedin (top of set U ) V ; T ⊆ U ; S = V ∩ T ]]

=⇒ closedin (top of set T ) S
by (metis (no types, lifting) Int assoc Int commute closedin closed inf .orderE )

lemma finite imp closedin:
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fixes S :: ′a::t1 space set
shows [[finite S ; S ⊆ T ]] =⇒ closedin (top of set T ) S
by (simp add : finite imp closed closed subset)

lemma closedin singleton [simp]:
fixes a :: ′a::t1 space
shows closedin (top of set U ) {a} ←→ a ∈ U

using closedin subset by (force intro: closed subset)

lemma openin euclidean subtopology iff :
fixes S U :: ′a::metric space set
shows openin (top of set U ) S ←→
S ⊆ U ∧ (∀ x∈S . ∃ e>0 . ∀ x ′∈U . dist x ′ x < e −→ x ′∈ S )

(is ?lhs ←→ ?rhs)
proof
assume ?lhs
then show ?rhs
unfolding openin open open dist by blast

next
define T where T = {x . ∃ a∈S . ∃ d>0 . (∀ y∈U . dist y a < d −→ y ∈ S ) ∧

dist x a < d}
have 1 : ∀ x∈T . ∃ e>0 . ∀ y . dist y x < e −→ y ∈ T
unfolding T def
apply clarsimp
apply (rule tac x=d − dist x a in exI )
by (metis add 0 left dist commute dist triangle lt less diff eq)

assume ?rhs then have 2 : S = U ∩ T
unfolding T def
by auto (metis dist self )

from 1 2 show ?lhs
unfolding openin open open dist by fast

qed

lemma connected openin:
connected S ←→
¬(∃E1 E2 . openin (top of set S ) E1 ∧

openin (top of set S ) E2 ∧
S ⊆ E1 ∪ E2 ∧ E1 ∩ E2 = {} ∧ E1 6= {} ∧ E2 6= {})

unfolding connected def openin open disjoint iff not equal by blast

lemma connected openin eq :
connected S ←→
¬(∃E1 E2 . openin (top of set S ) E1 ∧

openin (top of set S ) E2 ∧
E1 ∪ E2 = S ∧ E1 ∩ E2 = {} ∧
E1 6= {} ∧ E2 6= {})

unfolding connected openin
by (metis (no types, lifting) Un subset iff openin imp subset subset antisym)
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lemma connected closedin:
connected S ←→
(@E1 E2 .
closedin (top of set S ) E1 ∧
closedin (top of set S ) E2 ∧
S ⊆ E1 ∪ E2 ∧ E1 ∩ E2 = {} ∧ E1 6= {} ∧ E2 6= {})
(is ?lhs = ?rhs)

proof
assume ?lhs
then show ?rhs
by (auto simp add : connected closed closedin closed)

next
assume R: ?rhs
then show ?lhs
proof (clarsimp simp add : connected closed closedin closed)
fix A B
assume s sub: S ⊆ A ∪ B B ∩ S 6= {}
and disj : A ∩ B ∩ S = {}
and cl : closed A closed B

have S ∩ (A ∪ B) = S
using s sub(1 ) by auto

have S − A = B ∩ S
using Diff subset conv Un Diff Int disj s sub(1 ) by auto

then have S ∩ A = {}
by (metis Diff Diff Int Diff disjoint Un Diff Int R cl closedin closed Int

inf commute order refl s sub(2 ))
then show A ∩ S = {}
by blast

qed
qed

lemma connected closedin eq :
connected S ←→
¬(∃E1 E2 .

closedin (top of set S ) E1 ∧
closedin (top of set S ) E2 ∧
E1 ∪ E2 = S ∧ E1 ∩ E2 = {} ∧
E1 6= {} ∧ E2 6= {})

unfolding connected closedin
by (metis Un subset iff closedin imp subset subset antisym)

These ”transitivity” results are handy too

lemma openin trans[trans]:
openin (top of set T ) S =⇒ openin (top of set U ) T =⇒
openin (top of set U ) S

by (metis openin Int open openin open)

lemma openin open trans: openin (top of set T ) S =⇒ open T =⇒ open S
by (auto simp: openin open intro: openin trans)



Abstract Topology.thy 329

lemma closedin trans[trans]:
closedin (top of set T ) S =⇒ closedin (top of set U ) T =⇒
closedin (top of set U ) S

by (auto simp: closedin closed closed Inter Int assoc)

lemma closedin closed trans: closedin (top of set T ) S =⇒ closed T =⇒ closed S
by (auto simp: closedin closed intro: closedin trans)

lemma openin subtopology Int subset :
[[openin (top of set u) (u ∩ S ); v ⊆ u]] =⇒ openin (top of set v) (v ∩ S )
by (auto simp: openin subtopology)

lemma openin open eq : open s =⇒ (openin (top of set s) t ←→ open t ∧ t ⊆ s)
using open subset openin open trans openin subset by fastforce

2.2.6 Derived set (set of limit points)

definition derived set of :: ′a topology ⇒ ′a set ⇒ ′a set (infixl derived ′ set ′ of
80 )
where X derived set of S ≡

{x ∈ topspace X .
(∀T . x ∈ T ∧ openin X T −→ (∃ y 6=x . y ∈ S ∧ y ∈ T ))}

lemma derived set of restrict [simp]:
X derived set of (topspace X ∩ S ) = X derived set of S
by (simp add : derived set of def ) (metis openin subset subset iff )

lemma in derived set of :
x ∈ X derived set of S ←→ x ∈ topspace X ∧ (∀T . x ∈ T ∧ openin X T −→

(∃ y 6=x . y ∈ S ∧ y ∈ T ))
by (simp add : derived set of def )

lemma derived set of subset topspace:
X derived set of S ⊆ topspace X
by (auto simp add : derived set of def )

lemma derived set of subtopology :
(subtopology X U ) derived set of S = U ∩ (X derived set of (U ∩ S ))
by (simp add : derived set of def openin subtopology) blast

lemma derived set of subset subtopology :
(subtopology X S ) derived set of T ⊆ S
by (simp add : derived set of subtopology)

lemma derived set of empty [simp]: X derived set of {} = {}
by (auto simp: derived set of def )

lemma derived set of mono:
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S ⊆ T =⇒ X derived set of S ⊆ X derived set of T
unfolding derived set of def by blast

lemma derived set of Un:
X derived set of (S ∪ T ) = X derived set of S ∪ X derived set of T (is ?lhs =

?rhs)
proof
show ?lhs ⊆ ?rhs
by (clarsimp simp: in derived set of ) (metis IntE IntI openin Int)

show ?rhs ⊆ ?lhs
by (simp add : derived set of mono)

qed

lemma derived set of Union:
finite F =⇒ X derived set of (

⋃
F) = (

⋃
S ∈ F . X derived set of S )

proof (induction F rule: finite induct)
case (insert S F)
then show ?case
by (simp add : derived set of Un)

qed auto

lemma derived set of topspace:
X derived set of (topspace X ) = {x ∈ topspace X . ¬ openin X {x}} (is ?lhs =

?rhs)
proof
show ?lhs ⊆ ?rhs
by (auto simp: in derived set of )

show ?rhs ⊆ ?lhs
by (clarsimp simp: in derived set of ) (metis openin closedin eq openin subopen

singletonD subset eq)
qed

lemma discrete topology unique derived set :
discrete topology U = X ←→ topspace X = U ∧ X derived set of U = {}

by (auto simp: discrete topology unique derived set of topspace)

lemma subtopology eq discrete topology eq :
subtopology X U = discrete topology U ←→ U ⊆ topspace X ∧ U ∩ X de-

rived set of U = {}
using discrete topology unique derived set [of U subtopology X U ]
by (auto simp: eq commute derived set of subtopology)

lemma subtopology eq discrete topology :
S ⊆ topspace X ∧ S ∩ X derived set of S = {}

=⇒ subtopology X S = discrete topology S
by (simp add : subtopology eq discrete topology eq)

lemma subtopology eq discrete topology gen:
S ∩ X derived set of S = {} =⇒ subtopology X S = discrete topology(topspace
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X ∩ S )
by (metis Int lower1 derived set of restrict inf assoc inf bot right subtopology eq discrete topology eq

subtopology subtopology subtopology topspace)

lemma subtopology discrete topology [simp]:
subtopology (discrete topology U ) S = discrete topology(U ∩ S )

proof −
have (λT . ∃Sa. T = Sa ∩ S ∧ Sa ⊆ U ) = (λSa. Sa ⊆ U ∧ Sa ⊆ S )
by force

then show ?thesis
by (simp add : subtopology def ) (simp add : discrete topology def )

qed
lemma openin Int derived set of subset :

openin X S =⇒ S ∩ X derived set of T ⊆ X derived set of (S ∩ T )
by (auto simp: derived set of def )

lemma openin Int derived set of eq :
assumes openin X S
shows S ∩ X derived set of T = S ∩ X derived set of (S ∩ T ) (is ?lhs = ?rhs)

proof
show ?lhs ⊆ ?rhs
by (simp add : assms openin Int derived set of subset)

show ?rhs ⊆ ?lhs
by (metis derived set of mono inf commute inf le1 inf mono order refl)

qed

2.2.7 Closure with respect to a topological space

definition closure of :: ′a topology ⇒ ′a set ⇒ ′a set (infixr closure ′ of 80 )
where X closure of S ≡ {x ∈ topspace X . ∀T . x ∈ T ∧ openin X T −→ (∃ y ∈

S . y ∈ T )}

lemma closure of restrict : X closure of S = X closure of (topspace X ∩ S )
unfolding closure of def
using openin subset by blast

lemma in closure of :
x ∈ X closure of S ←→
x ∈ topspace X ∧ (∀T . x ∈ T ∧ openin X T −→ (∃ y . y ∈ S ∧ y ∈ T ))

by (auto simp: closure of def )

lemma closure of : X closure of S = topspace X ∩ (S ∪ X derived set of S )
by (fastforce simp: in closure of in derived set of )

lemma closure of alt : X closure of S = topspace X ∩ S ∪ X derived set of S
using derived set of subset topspace [of X S ]
unfolding closure of def in derived set of
by safe (auto simp: in derived set of )
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lemma derived set of subset closure of :
X derived set of S ⊆ X closure of S
by (fastforce simp: closure of def in derived set of )

lemma closure of subtopology :
(subtopology X U ) closure of S = U ∩ (X closure of (U ∩ S ))
unfolding closure of def topspace subtopology openin subtopology
by safe (metis (full types) IntI Int iff inf .commute)+

lemma closure of empty [simp]: X closure of {} = {}
by (simp add : closure of alt)

lemma closure of topspace [simp]: X closure of topspace X = topspace X
by (simp add : closure of )

lemma closure of UNIV [simp]: X closure of UNIV = topspace X
by (simp add : closure of )

lemma closure of subset topspace: X closure of S ⊆ topspace X
by (simp add : closure of )

lemma closure of subset subtopology : (subtopology X S ) closure of T ⊆ S
by (simp add : closure of subtopology)

lemma closure of mono: S ⊆ T =⇒ X closure of S ⊆ X closure of T
by (fastforce simp add : closure of def )

lemma closure of subtopology subset :
(subtopology X U ) closure of S ⊆ (X closure of S )
unfolding closure of subtopology
by clarsimp (meson closure of mono contra subsetD inf .cobounded2 )

lemma closure of subtopology mono:
T ⊆ U =⇒ (subtopology X T ) closure of S ⊆ (subtopology X U ) closure of S
unfolding closure of subtopology
by auto (meson closure of mono inf mono subset iff )

lemma closure of Un [simp]: X closure of (S ∪ T ) = X closure of S ∪ X closure of
T
by (simp add : Un assoc Un left commute closure of alt derived set of Un inf sup distrib1 )

lemma closure of Union:
finite F =⇒ X closure of (

⋃
F) = (

⋃
S ∈ F . X closure of S )

by (induction F rule: finite induct) auto

lemma closure of subset : S ⊆ topspace X =⇒ S ⊆ X closure of S
by (auto simp: closure of def )

lemma closure of subset Int : topspace X ∩ S ⊆ X closure of S
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by (auto simp: closure of def )

lemma closure of subset eq : S ⊆ topspace X ∧ X closure of S ⊆ S ←→ closedin
X S
proof −
have openin X (topspace X − S )
if

∧
x . [[x ∈ topspace X ; ∀T . x ∈ T ∧ openin X T −→ S ∩ T 6= {}]] =⇒ x ∈

S
apply (subst openin subopen)
by (metis Diff iff Diff mono Diff triv inf .commute openin subset order refl that)
then show ?thesis
by (auto simp: closedin def closure of def disjoint iff not equal)

qed

lemma closure of eq : X closure of S = S ←→ closedin X S
proof (cases S ⊆ topspace X )
case True
then show ?thesis
by (metis closure of subset closure of subset eq set eq subset)

next
case False
then show ?thesis
using closure of closure of subset eq by fastforce

qed

lemma closedin contains derived set :
closedin X S ←→ X derived set of S ⊆ S ∧ S ⊆ topspace X

proof (intro iffI conjI )
show closedin X S =⇒ X derived set of S ⊆ S
using closure of eq derived set of subset closure of by fastforce

show closedin X S =⇒ S ⊆ topspace X
using closedin subset by blast

show X derived set of S ⊆ S ∧ S ⊆ topspace X =⇒ closedin X S
by (metis closure of closure of eq inf .absorb iff2 sup.orderE )

qed

lemma derived set subset gen:
X derived set of S ⊆ S ←→ closedin X (topspace X ∩ S )

by (simp add : closedin contains derived set derived set of restrict derived set of subset topspace)

lemma derived set subset : S ⊆ topspace X =⇒ (X derived set of S ⊆ S ←→
closedin X S )
by (simp add : closedin contains derived set)

lemma closedin derived set :
closedin (subtopology X T ) S ←→
S ⊆ topspace X ∧ S ⊆ T ∧ (∀ x . x ∈ X derived set of S ∧ x ∈ T −→ x ∈ S )

by (auto simp: closedin contains derived set derived set of subtopology Int absorb1 )
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lemma closedin Int closure of :
closedin (subtopology X S ) T ←→ S ∩ X closure of T = T

by (metis Int left absorb closure of eq closure of subtopology)

lemma closure of closedin: closedin X S =⇒ X closure of S = S
by (simp add : closure of eq)

lemma closure of eq diff : X closure of S = topspace X −
⋃
{T . openin X T ∧

disjnt S T}
by (auto simp: closure of def disjnt iff )

lemma closedin closure of [simp]: closedin X (X closure of S )
unfolding closure of eq diff by blast

lemma closure of closure of [simp]: X closure of (X closure of S ) = X closure of
S
by (simp add : closure of eq)

lemma closure of hull :
assumes S ⊆ topspace X shows X closure of S = (closedin X ) hull S

proof (rule hull unique [THEN sym])
show S ⊆ X closure of S
by (simp add : closure of subset assms)

next
show closedin X (X closure of S )
by simp

show
∧
T . [[S ⊆ T ; closedin X T ]] =⇒ X closure of S ⊆ T

by (metis closure of eq closure of mono)
qed

lemma closure of minimal :
[[S ⊆ T ; closedin X T ]] =⇒ (X closure of S ) ⊆ T
by (metis closure of eq closure of mono)

lemma closure of minimal eq :
[[S ⊆ topspace X ; closedin X T ]] =⇒ (X closure of S ) ⊆ T ←→ S ⊆ T
by (meson closure of minimal closure of subset subset trans)

lemma closure of unique:
[[S ⊆ T ; closedin X T ;∧

T ′. [[S ⊆ T ′; closedin X T ′]] =⇒ T ⊆ T ′]]
=⇒ X closure of S = T

by (meson closedin closure of closedin subset closure of minimal closure of subset
eq iff order .trans)

lemma closure of eq empty gen: X closure of S = {} ←→ disjnt (topspace X ) S
unfolding disjnt def closure of restrict [where S=S ]
using closure of by fastforce
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lemma closure of eq empty : S ⊆ topspace X =⇒ X closure of S = {} ←→ S =
{}
using closure of subset by fastforce

lemma openin Int closure of subset :
assumes openin X S
shows S ∩ X closure of T ⊆ X closure of (S ∩ T )

proof −
have S ∩ X derived set of T = S ∩ X derived set of (S ∩ T )
by (meson assms openin Int derived set of eq)

moreover have S ∩ (S ∩ T ) = S ∩ T
by fastforce

ultimately show ?thesis
by (metis closure of alt inf .cobounded2 inf left commute inf sup distrib1 )

qed

lemma closure of openin Int closure of :
assumes openin X S
shows X closure of (S ∩ X closure of T ) = X closure of (S ∩ T )

proof
show X closure of (S ∩ X closure of T ) ⊆ X closure of (S ∩ T )
by (simp add : assms closure of minimal openin Int closure of subset)

next
show X closure of (S ∩ T ) ⊆ X closure of (S ∩ X closure of T )
by (metis Int lower1 Int subset iff assms closedin closure of closure of minimal eq

closure of mono inf le2 le infI1 openin subset)
qed

lemma openin Int closure of eq :
assumes openin X S shows S ∩ X closure of T = S ∩ X closure of (S ∩ T )

(is ?lhs = ?rhs)
proof
show ?lhs ⊆ ?rhs
by (simp add : assms openin Int closure of subset)

show ?rhs ⊆ ?lhs
by (metis closure of mono inf commute inf le1 inf mono order refl)

qed

lemma openin Int closure of eq empty :
assumes openin X S shows S ∩ X closure of T = {} ←→ S ∩ T = {} (is ?lhs

= ?rhs)
proof
show ?lhs =⇒ ?rhs
unfolding disjoint iff
by (meson assms in closure of in mono openin subset)

show ?rhs =⇒ ?lhs
by (simp add : assms openin Int closure of eq)

qed
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lemma closure of openin Int superset :
openin X S ∧ S ⊆ X closure of T

=⇒ X closure of (S ∩ T ) = X closure of S
by (metis closure of openin Int closure of inf .orderE )

lemma closure of openin subtopology Int closure of :
assumes S : openin (subtopology X U ) S and T ⊆ U
shows X closure of (S ∩ X closure of T ) = X closure of (S ∩ T ) (is ?lhs =

?rhs)
proof
obtain S0 where S0 : openin X S0 S = S0 ∩ U
using assms by (auto simp: openin subtopology)

show ?lhs ⊆ ?rhs
proof −
have S0 ∩ X closure of T = S0 ∩ X closure of (S0 ∩ T )
by (meson S0 (1 ) openin Int closure of eq)

moreover have S0 ∩ T = S0 ∩ U ∩ T
using 〈T ⊆ U 〉 by fastforce

ultimately have S ∩ X closure of T ⊆ X closure of (S ∩ T )
using S0 (2 ) by auto

then show ?thesis
by (meson closedin closure of closure of minimal)

qed
next
show ?rhs ⊆ ?lhs
proof −
have T ∩ S ⊆ T ∪ X derived set of T
by force

then show ?thesis
by (metis Int subset iff S closure of closure of mono inf .cobounded2 inf .coboundedI2

inf commute openin closedin eq topspace subtopology)
qed

qed

lemma closure of subtopology open:
openin X U ∨ S ⊆ U =⇒ (subtopology X U ) closure of S = U ∩ X closure of

S
by (metis closure of subtopology inf absorb2 openin Int closure of eq)

lemma discrete topology closure of :
(discrete topology U ) closure of S = U ∩ S

by (metis closedin discrete topology closure of restrict closure of unique discrete topology unique
inf sup ord(1 ) order refl)

Interior with respect to a topological space.

definition interior of :: ′a topology ⇒ ′a set ⇒ ′a set (infixr interior ′ of 80 )
where X interior of S ≡ {x . ∃T . openin X T ∧ x ∈ T ∧ T ⊆ S}

lemma interior of restrict :
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X interior of S = X interior of (topspace X ∩ S )
using openin subset by (auto simp: interior of def )

lemma interior of eq : (X interior of S = S ) ←→ openin X S
unfolding interior of def using openin subopen by blast

lemma interior of openin: openin X S =⇒ X interior of S = S
by (simp add : interior of eq)

lemma interior of empty [simp]: X interior of {} = {}
by (simp add : interior of eq)

lemma interior of topspace [simp]: X interior of (topspace X ) = topspace X
by (simp add : interior of eq)

lemma openin interior of [simp]: openin X (X interior of S )
unfolding interior of def
using openin subopen by fastforce

lemma interior of interior of [simp]:
X interior of X interior of S = X interior of S
by (simp add : interior of eq)

lemma interior of subset : X interior of S ⊆ S
by (auto simp: interior of def )

lemma interior of subset closure of : X interior of S ⊆ X closure of S
by (metis closure of subset Int dual order .trans interior of restrict interior of subset)

lemma subset interior of eq : S ⊆ X interior of S ←→ openin X S
by (metis interior of eq interior of subset subset antisym)

lemma interior of mono: S ⊆ T =⇒ X interior of S ⊆ X interior of T
by (auto simp: interior of def )

lemma interior of maximal : [[T ⊆ S ; openin X T ]] =⇒ T ⊆ X interior of S
by (auto simp: interior of def )

lemma interior of maximal eq : openin X T =⇒ T ⊆ X interior of S ←→ T ⊆ S
by (meson interior of maximal interior of subset order trans)

lemma interior of unique:
[[T ⊆ S ; openin X T ;

∧
T ′. [[T ′⊆ S ; openin X T ′]] =⇒ T ′⊆ T ]] =⇒ X interior of

S = T
by (simp add : interior of maximal eq interior of subset subset antisym)

lemma interior of subset topspace: X interior of S ⊆ topspace X
by (simp add : openin subset)
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lemma interior of subset subtopology : (subtopology X S ) interior of T ⊆ S
by (meson openin imp subset openin interior of )

lemma interior of Int : X interior of (S ∩ T ) = X interior of S ∩ X interior of
T (is ?lhs = ?rhs)
proof
show ?lhs ⊆ ?rhs
by (simp add : interior of mono)

show ?rhs ⊆ ?lhs
by (meson inf mono interior of maximal interior of subset openin Int openin interior of )

qed

lemma interior of Inter subset : X interior of (
⋂
F) ⊆ (

⋂
S ∈ F . X interior of

S )
by (simp add : INT greatest Inf lower interior of mono)

lemma union interior of subset :
X interior of S ∪ X interior of T ⊆ X interior of (S ∪ T )
by (simp add : interior of mono)

lemma interior of eq empty :
X interior of S = {} ←→ (∀T . openin X T ∧ T ⊆ S −→ T = {})

by (metis bot .extremum uniqueI interior of maximal interior of subset openin interior of )

lemma interior of eq empty alt :
X interior of S = {} ←→ (∀T . openin X T ∧ T 6= {} −→ T − S 6= {})
by (auto simp: interior of eq empty)

lemma interior of Union openin subsets:⋃
{T . openin X T ∧ T ⊆ S} = X interior of S

by (rule interior of unique [symmetric]) auto

lemma interior of complement :
X interior of (topspace X − S ) = topspace X − X closure of S
by (auto simp: interior of def closure of def )

lemma interior of closure of :
X interior of S = topspace X − X closure of (topspace X − S )
unfolding interior of complement [symmetric]
by (metis Diff Diff Int interior of restrict)

lemma closure of interior of :
X closure of S = topspace X − X interior of (topspace X − S )
by (simp add : interior of complement Diff Diff Int closure of )

lemma closure of complement : X closure of (topspace X − S ) = topspace X − X
interior of S
unfolding interior of def closure of def
by (blast dest : openin subset)
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lemma interior of eq empty complement :
X interior of S = {} ←→ X closure of (topspace X − S ) = topspace X
using interior of subset topspace [of X S ] closure of complement by fastforce

lemma closure of eq topspace:
X closure of S = topspace X ←→ X interior of (topspace X − S ) = {}
using closure of subset topspace [of X S ] interior of complement by fastforce

lemma interior of subtopology subset :
U ∩ X interior of S ⊆ (subtopology X U ) interior of S

by (auto simp: interior of def openin subtopology)

lemma interior of subtopology subsets:
T ⊆ U =⇒ T ∩ (subtopology X U ) interior of S ⊆ (subtopology X T ) interior of

S
by (metis inf .absorb iff2 interior of subtopology subset subtopology subtopology)

lemma interior of subtopology mono:
[[S ⊆ T ; T ⊆ U ]] =⇒ (subtopology X U ) interior of S ⊆ (subtopology X T )

interior of S
by (metis dual order .trans inf .orderE inf commute interior of subset interior of subtopology subsets)

lemma interior of subtopology open:
assumes openin X U
shows (subtopology X U ) interior of S = U ∩ X interior of S

proof −
have ∀A. U ∩ X closure of (U ∩ A) = U ∩ X closure of A
using assms openin Int closure of eq by blast

then have topspace X ∩ U − U ∩ X closure of (topspace X ∩ U − S ) = U ∩
(topspace X − X closure of (topspace X − S ))

by (metis (no types) Diff Int distrib Int Diff inf commute)
then show ?thesis
unfolding interior of closure of closure of subtopology open topspace subtopology
using openin Int closure of eq [OF assms]
by (metis assms closure of subtopology open)

qed

lemma dense intersects open:
X closure of S = topspace X ←→ (∀T . openin X T ∧ T 6= {} −→ S ∩ T 6=

{})
proof −
have X closure of S = topspace X ←→ (topspace X − X interior of (topspace

X − S ) = topspace X )
by (simp add : closure of interior of )

also have . . . ←→ X interior of (topspace X − S ) = {}
by (simp add : closure of complement interior of eq empty complement)

also have . . . ←→ (∀T . openin X T ∧ T 6= {} −→ S ∩ T 6= {})
unfolding interior of eq empty alt
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using openin subset by fastforce
finally show ?thesis .

qed

lemma interior of closedin union empty interior of :
assumes closedin X S and disj : X interior of T = {}
shows X interior of (S ∪ T ) = X interior of S

proof −
have X closure of (topspace X − T ) = topspace X
by (metis Diff Diff Int disj closure of eq topspace closure of restrict interior of closure of )
then show ?thesis
unfolding interior of closure of
by (metis Diff Un Diff subset assms(1 ) closedin def closure of openin Int superset)

qed

lemma interior of union eq empty :
closedin X S

=⇒ (X interior of (S ∪ T ) = {} ←→
X interior of S = {} ∧ X interior of T = {})

by (metis interior of closedin union empty interior of le sup iff subset empty union interior of subset)

lemma discrete topology interior of [simp]:
(discrete topology U ) interior of S = U ∩ S

by (simp add : interior of restrict [of S ] interior of eq)

2.2.8 Frontier with respect to topological space

definition frontier of :: ′a topology ⇒ ′a set ⇒ ′a set (infixr frontier ′ of 80 )
where X frontier of S ≡ X closure of S − X interior of S

lemma frontier of closures:
X frontier of S = X closure of S ∩ X closure of (topspace X − S )

by (metis Diff Diff Int closure of complement closure of subset topspace double diff
frontier of def interior of subset closure of )

lemma interior of union frontier of [simp]:
X interior of S ∪ X frontier of S = X closure of S

by (simp add : frontier of def interior of subset closure of subset antisym)

lemma frontier of restrict : X frontier of S = X frontier of (topspace X ∩ S )
by (metis closure of restrict frontier of def interior of restrict)

lemma closedin frontier of : closedin X (X frontier of S )
by (simp add : closedin Int frontier of closures)

lemma frontier of subset topspace: X frontier of S ⊆ topspace X
by (simp add : closedin frontier of closedin subset)
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lemma frontier of subset subtopology : (subtopology X S ) frontier of T ⊆ S
by (metis (no types) closedin derived set closedin frontier of )

lemma frontier of subtopology subset :
U ∩ (subtopology X U ) frontier of S ⊆ (X frontier of S )

proof −
have U ∩ X interior of S − subtopology X U interior of S = {}
by (simp add : interior of subtopology subset)

moreover have X closure of S ∩ subtopology X U closure of S = subtopology X
U closure of S

by (meson closure of subtopology subset inf .absorb iff2 )
ultimately show ?thesis
unfolding frontier of def
by blast

qed

lemma frontier of subtopology mono:
[[S ⊆ T ; T ⊆ U ]] =⇒ (subtopology X T ) frontier of S ⊆ (subtopology X U )

frontier of S
by (simp add : frontier of def Diff mono closure of subtopology mono interior of subtopology mono)

lemma clopenin eq frontier of :
closedin X S ∧ openin X S ←→ S ⊆ topspace X ∧ X frontier of S = {}

proof (cases S ⊆ topspace X )
case True
then show ?thesis
by (metis Diff eq empty iff closure of eq closure of subset eq frontier of def in-

terior of eq interior of subset interior of union frontier of sup bot right)
next
case False
then show ?thesis
by (simp add : frontier of closures openin closedin eq)

qed

lemma frontier of eq empty :
S ⊆ topspace X =⇒ (X frontier of S = {} ←→ closedin X S ∧ openin X S )

by (simp add : clopenin eq frontier of )

lemma frontier of openin:
openin X S =⇒ X frontier of S = X closure of S − S

by (metis (no types) frontier of def interior of eq)

lemma frontier of openin straddle Int :
assumes openin X U U ∩ X frontier of S 6= {}
shows U ∩ S 6= {} U − S 6= {}

proof −
have U ∩ (X closure of S ∩ X closure of (topspace X − S )) 6= {}
using assms by (simp add : frontier of closures)

then show U ∩ S 6= {}
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using assms openin Int closure of eq empty by fastforce
show U − S 6= {}
proof −
have ∃A. X closure of (A − S ) ∩ U 6= {}
using 〈U ∩ (X closure of S ∩ X closure of (topspace X − S )) 6= {}〉 by blast

then have ¬ U ⊆ S
by (metis Diff disjoint Diff eq empty iff Int Diff assms(1 ) inf commute openin Int closure of eq empty)
then show ?thesis
by blast

qed
qed

lemma frontier of subset closedin: closedin X S =⇒ (X frontier of S ) ⊆ S
using closure of eq frontier of def by fastforce

lemma frontier of empty [simp]: X frontier of {} = {}
by (simp add : frontier of def )

lemma frontier of topspace [simp]: X frontier of topspace X = {}
by (simp add : frontier of def )

lemma frontier of subset eq :
assumes S ⊆ topspace X
shows (X frontier of S ) ⊆ S ←→ closedin X S

proof
show X frontier of S ⊆ S =⇒ closedin X S
by (metis assms closure of subset eq interior of subset interior of union frontier of

le sup iff )
show closedin X S =⇒ X frontier of S ⊆ S
by (simp add : frontier of subset closedin)

qed

lemma frontier of complement : X frontier of (topspace X − S ) = X frontier of S
by (metis Diff Diff Int closure of restrict frontier of closures inf commute)

lemma frontier of disjoint eq :
assumes S ⊆ topspace X
shows ((X frontier of S ) ∩ S = {} ←→ openin X S )

proof
assume X frontier of S ∩ S = {}
then have closedin X (topspace X − S )
using assms closure of subset frontier of def interior of eq interior of subset by

fastforce
then show openin X S
using assms by (simp add : openin closedin)

next
show openin X S =⇒ X frontier of S ∩ S = {}
by (simp add : Diff Diff Int closedin def frontier of openin inf .absorb iff2 inf commute)

qed
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lemma frontier of disjoint eq alt :
S ⊆ (topspace X − X frontier of S ) ←→ openin X S

proof (cases S ⊆ topspace X )
case True
show ?thesis
using True frontier of disjoint eq by auto

next
case False
then show ?thesis
by (meson Diff subset openin subset subset trans)

qed

lemma frontier of Int :
X frontier of (S ∩ T ) =
X closure of (S ∩ T ) ∩ (X frontier of S ∪ X frontier of T )

proof −
have ∗: U ⊆ S ∧ U ⊆ T =⇒ U ∩ (S ∩ A ∪ T ∩ B) = U ∩ (A ∪ B) for U S

T A B :: ′a set
by blast

show ?thesis
by (simp add : frontier of closures closure of mono Diff Int ∗ flip: closure of Un)

qed

lemma frontier of Int subset : X frontier of (S ∩ T ) ⊆ X frontier of S ∪ X fron-
tier of T
by (simp add : frontier of Int)

lemma frontier of Int closedin:
assumes closedin X S closedin X T
shows X frontier of (S ∩ T ) = X frontier of S ∩ T ∪ S ∩ X frontier of T (is

?lhs = ?rhs)
proof
show ?lhs ⊆ ?rhs
using assms by (force simp add : frontier of Int closedin Int closure of closedin)
show ?rhs ⊆ ?lhs
using assms frontier of subset closedin
by (auto simp add : frontier of Int closedin Int closure of closedin)

qed

lemma frontier of Un subset : X frontier of (S ∪ T ) ⊆ X frontier of S ∪ X fron-
tier of T
by (metis Diff Un frontier of Int subset frontier of complement)

lemma frontier of Union subset :
finite F =⇒ X frontier of (

⋃
F) ⊆ (

⋃
T ∈ F . X frontier of T )

proof (induction F rule: finite induct)
case (insert A F)
then show ?case
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using frontier of Un subset by fastforce
qed simp

lemma frontier of frontier of subset :
X frontier of (X frontier of S ) ⊆ X frontier of S

by (simp add : closedin frontier of frontier of subset closedin)

lemma frontier of subtopology open:
openin X U =⇒ (subtopology X U ) frontier of S = U ∩ X frontier of S

by (simp add : Diff Int distrib closure of subtopology open frontier of def inte-
rior of subtopology open)

lemma discrete topology frontier of [simp]:
(discrete topology U ) frontier of S = {}

by (simp add : Diff eq discrete topology closure of frontier of closures)

2.2.9 Locally finite collections

definition locally finite in
where
locally finite in X A ←→

(
⋃
A ⊆ topspace X ) ∧

(∀ x ∈ topspace X . ∃V . openin X V ∧ x ∈ V ∧ finite {U ∈ A. U ∩ V 6=
{}})

lemma finite imp locally finite in:
[[finite A;

⋃
A ⊆ topspace X ]] =⇒ locally finite in X A

by (auto simp: locally finite in def )

lemma locally finite in subset :
assumes locally finite in X A B ⊆ A
shows locally finite in X B

proof −
have finite (A ∩ {U . U ∩ V 6= {}}) =⇒ finite (B ∩ {U . U ∩ V 6= {}}) for V
by (meson 〈B ⊆ A〉 finite subset inf le1 inf le2 le inf iff subset trans)

then show ?thesis
using assms unfolding locally finite in def Int def by fastforce

qed

lemma locally finite in refinement :
assumes A: locally finite in X A and f :

∧
S . S ∈ A =⇒ f S ⊆ S

shows locally finite in X (f ‘ A)
proof −
show ?thesis
unfolding locally finite in def

proof safe
fix x
assume x ∈ topspace X
then obtain V where openin X V x ∈ V finite {U ∈ A. U ∩ V 6= {}}
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using A unfolding locally finite in def by blast
moreover have {U ∈ A. f U ∩ V 6= {}} ⊆ {U ∈ A. U ∩ V 6= {}} for V
using f by blast

ultimately have finite {U ∈ A. f U ∩ V 6= {}}
using finite subset by blast

moreover have f ‘ {U ∈ A. f U ∩ V 6= {}} = {U ∈ f ‘ A. U ∩ V 6= {}}
by blast

ultimately have finite {U ∈ f ‘ A. U ∩ V 6= {}}
by (metis (no types, lifting) finite imageI )

then show ∃V . openin X V ∧ x ∈ V ∧ finite {U ∈ f ‘ A. U ∩ V 6= {}}
using 〈openin X V 〉 〈x ∈ V 〉 by blast

next
show

∧
x xa. [[xa ∈ A; x ∈ f xa]] =⇒ x ∈ topspace X

by (meson Sup upper A f locally finite in def subset iff )
qed

qed

lemma locally finite in subtopology :
assumes A: locally finite in X A

⋃
A ⊆ S

shows locally finite in (subtopology X S ) A
unfolding locally finite in def

proof safe
fix x
assume x : x ∈ topspace (subtopology X S )
then obtain V where openin X V x ∈ V and fin: finite {U ∈ A. U ∩ V 6=
{}}

using A unfolding locally finite in def topspace subtopology by blast
show ∃V . openin (subtopology X S ) V ∧ x ∈ V ∧ finite {U ∈ A. U ∩ V 6=
{}}
proof (intro exI conjI )
show openin (subtopology X S ) (S ∩ V )
by (simp add : 〈openin X V 〉 openin subtopology Int2 )

have {U ∈ A. U ∩ (S ∩ V ) 6= {}} ⊆ {U ∈ A. U ∩ V 6= {}}
by auto

with fin show finite {U ∈ A. U ∩ (S ∩ V ) 6= {}}
using finite subset by auto

show x ∈ S ∩ V
using x 〈x ∈ V 〉 by (simp)

qed
next
show

∧
x A. [[x ∈ A; A ∈ A]] =⇒ x ∈ topspace (subtopology X S )

using assms unfolding locally finite in def topspace subtopology by blast
qed

lemma closedin locally finite Union:
assumes clo:

∧
S . S ∈ A =⇒ closedin X S and A: locally finite in X A

shows closedin X (
⋃
A)

using A unfolding locally finite in def closedin def
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proof clarify
show openin X (topspace X −

⋃
A)

proof (subst openin subopen, clarify)
fix x
assume x ∈ topspace X and x /∈

⋃
A

then obtain V where openin X V x ∈ V and fin: finite {U ∈ A. U ∩ V 6=
{}}

using A unfolding locally finite in def by blast
let ?T = V −

⋃
{S ∈ A. S ∩ V 6= {}}

show ∃T . openin X T ∧ x ∈ T ∧ T ⊆ topspace X −
⋃
A

proof (intro exI conjI )
show openin X ?T
by (metis (no types, lifting) fin 〈openin X V 〉 clo closedin Union mem Collect eq

openin diff )
show x ∈ ?T
using 〈x /∈

⋃
A〉 〈x ∈ V 〉 by auto

show ?T ⊆ topspace X −
⋃
A

using 〈openin X V 〉 openin subset by auto
qed

qed
qed

lemma locally finite in closure:
assumes A: locally finite in X A
shows locally finite in X ((λS . X closure of S ) ‘ A)
using A unfolding locally finite in def

proof (intro conjI ; clarsimp)
fix x A
assume x ∈ X closure of A
then show x ∈ topspace X
by (meson in closure of )

next
fix x
assume x ∈ topspace X and

⋃
A ⊆ topspace X

then obtain V where V : openin X V x ∈ V and fin: finite {U ∈ A. U ∩ V
6= {}}

using A unfolding locally finite in def by blast
have eq : {y ∈ f ‘ A. Q y} = f ‘ {x . x ∈ A ∧ Q(f x )} for f Q
by blast

have eq2 : {A ∈ A. X closure of A ∩ V 6= {}} = {A ∈ A. A ∩ V 6= {}}
using openin Int closure of eq empty V by blast

have finite {U ∈ (closure of ) X ‘ A. U ∩ V 6= {}}
by (simp add : eq eq2 fin)

with V show ∃V . openin X V ∧ x ∈ V ∧ finite {U ∈ (closure of ) X ‘ A. U
∩ V 6= {}}

by blast
qed

lemma closedin Union locally finite closure:
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locally finite in X A =⇒ closedin X (
⋃

((λS . X closure of S ) ‘ A))
by (metis (mono tags) closedin closure of closedin locally finite Union imageE

locally finite in closure)

lemma closure of Union subset :
⋃
((λS . X closure of S ) ‘ A) ⊆ X closure of (

⋃
A)

by clarify (meson Union upper closure of mono subsetD)

lemma closure of locally finite Union:
assumes locally finite in X A
shows X closure of (

⋃
A) =

⋃
((λS . X closure of S ) ‘ A)

proof (rule closure of unique)
show

⋃
A ⊆

⋃
((closure of ) X ‘ A)

using assms by (simp add : SUP upper2 Sup le iff closure of subset locally finite in def )
show closedin X (

⋃
((closure of ) X ‘ A))

using assms by (simp add : closedin Union locally finite closure)
show

∧
T ′. [[

⋃
A ⊆ T ′; closedin X T ′]] =⇒

⋃
((closure of ) X ‘ A) ⊆ T ′

by (simp add : Sup le iff closure of minimal)
qed

2.2.10 Continuous maps

We will need to deal with continuous maps in terms of topologies and not
in terms of type classes, as defined below.

definition continuous map where
continuous map X Y f ≡

(∀ x ∈ topspace X . f x ∈ topspace Y ) ∧
(∀U . openin Y U −→ openin X {x ∈ topspace X . f x ∈ U })

lemma continuous map:
continuous map X Y f ←→

f ‘ (topspace X ) ⊆ topspace Y ∧ (∀U . openin Y U −→ openin X {x ∈
topspace X . f x ∈ U })
by (auto simp: continuous map def )

lemma continuous map image subset topspace:
continuous map X Y f =⇒ f ‘ (topspace X ) ⊆ topspace Y
by (auto simp: continuous map def )

lemma continuous map on empty : topspace X = {} =⇒ continuous map X Y f
by (auto simp: continuous map def )

lemma continuous map closedin:
continuous map X Y f ←→

(∀ x ∈ topspace X . f x ∈ topspace Y ) ∧
(∀C . closedin Y C −→ closedin X {x ∈ topspace X . f x ∈ C})

proof −
have (∀U . openin Y U −→ openin X {x ∈ topspace X . f x ∈ U }) =

(∀C . closedin Y C −→ closedin X {x ∈ topspace X . f x ∈ C})
if

∧
x . x ∈ topspace X =⇒ f x ∈ topspace Y
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proof −
have eq : {x ∈ topspace X . f x ∈ topspace Y ∧ f x /∈ C} = (topspace X − {x

∈ topspace X . f x ∈ C}) for C
using that by blast

show ?thesis
proof (intro iffI allI impI )
fix C
assume ∀U . openin Y U −→ openin X {x ∈ topspace X . f x ∈ U } and

closedin Y C
then have openin X {x ∈ topspace X . f x ∈ topspace Y − C} by blast
then show closedin X {x ∈ topspace X . f x ∈ C}
by (auto simp add : closedin def eq)

next
fix U
assume ∀C . closedin Y C −→ closedin X {x ∈ topspace X . f x ∈ C} and

openin Y U
then have closedin X {x ∈ topspace X . f x ∈ topspace Y − U } by blast
then show openin X {x ∈ topspace X . f x ∈ U }
by (auto simp add : openin closedin eq eq)

qed
qed
then show ?thesis
by (auto simp: continuous map def )

qed

lemma openin continuous map preimage:
[[continuous map X Y f ; openin Y U ]] =⇒ openin X {x ∈ topspace X . f x ∈ U }
by (simp add : continuous map def )

lemma closedin continuous map preimage:
[[continuous map X Y f ; closedin Y C ]] =⇒ closedin X {x ∈ topspace X . f x ∈

C}
by (simp add : continuous map closedin)

lemma openin continuous map preimage gen:
assumes continuous map X Y f openin X U openin Y V
shows openin X {x ∈ U . f x ∈ V }

proof −
have eq : {x ∈ U . f x ∈ V } = U ∩ {x ∈ topspace X . f x ∈ V }
using assms(2 ) openin closedin eq by fastforce

show ?thesis
unfolding eq
using assms openin continuous map preimage by fastforce

qed

lemma closedin continuous map preimage gen:
assumes continuous map X Y f closedin X U closedin Y V
shows closedin X {x ∈ U . f x ∈ V }

proof −
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have eq : {x ∈ U . f x ∈ V } = U ∩ {x ∈ topspace X . f x ∈ V }
using assms(2 ) closedin def by fastforce

show ?thesis
unfolding eq
using assms closedin continuous map preimage by fastforce

qed

lemma continuous map image closure subset :
assumes continuous map X Y f
shows f ‘ (X closure of S ) ⊆ Y closure of f ‘ S

proof −
have ∗: f ‘ (topspace X ) ⊆ topspace Y
by (meson assms continuous map)

have X closure of T ⊆ {x ∈ X closure of T . f x ∈ Y closure of (f ‘ T )} if T ⊆
topspace X for T
proof (rule closure of minimal)
show T ⊆ {x ∈ X closure of T . f x ∈ Y closure of f ‘ T}
using closure of subset ∗ that by (fastforce simp: in closure of )

next
show closedin X {x ∈ X closure of T . f x ∈ Y closure of f ‘ T}
using assms closedin continuous map preimage gen by fastforce

qed
then have f ‘ (X closure of (topspace X ∩ S )) ⊆ Y closure of (f ‘ (topspace X
∩ S ))

by blast
also have . . . ⊆ Y closure of (topspace Y ∩ f ‘ S )
using ∗ by (blast intro!: closure of mono)

finally have f ‘ (X closure of (topspace X ∩ S )) ⊆ Y closure of (topspace Y ∩
f ‘ S ) .
then show ?thesis
by (metis closure of restrict)

qed

lemma continuous map subset aux1 : continuous map X Y f =⇒
(∀S . f ‘ (X closure of S ) ⊆ Y closure of f ‘ S )

using continuous map image closure subset by blast

lemma continuous map subset aux2 :
assumes ∀S . S ⊆ topspace X −→ f ‘ (X closure of S ) ⊆ Y closure of f ‘ S
shows continuous map X Y f
unfolding continuous map closedin

proof (intro conjI ballI allI impI )
fix x
assume x ∈ topspace X
then show f x ∈ topspace Y
using assms closure of subset topspace by fastforce

next
fix C
assume closedin Y C
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then show closedin X {x ∈ topspace X . f x ∈ C}
proof (clarsimp simp flip: closure of subset eq , intro conjI )
fix x
assume x : x ∈ X closure of {x ∈ topspace X . f x ∈ C}
and C ⊆ topspace Y and Y closure of C ⊆ C

show x ∈ topspace X
by (meson x in closure of )

have {a ∈ topspace X . f a ∈ C} ⊆ topspace X
by simp

moreover have Y closure of f ‘ {a ∈ topspace X . f a ∈ C} ⊆ C
by (simp add : 〈closedin Y C 〉 closure of minimal image subset iff )

ultimately have f ‘ (X closure of {a ∈ topspace X . f a ∈ C}) ⊆ C
using assms by blast

then show f x ∈ C
using x by auto

qed
qed

lemma continuous map eq image closure subset :
continuous map X Y f ←→ (∀S . f ‘ (X closure of S ) ⊆ Y closure of f ‘ S )

using continuous map subset aux1 continuous map subset aux2 by metis

lemma continuous map eq image closure subset alt :
continuous map X Y f ←→ (∀S . S ⊆ topspace X −→ f ‘ (X closure of S ) ⊆

Y closure of f ‘ S )
using continuous map subset aux1 continuous map subset aux2 by metis

lemma continuous map eq image closure subset gen:
continuous map X Y f ←→

f ‘ (topspace X ) ⊆ topspace Y ∧
(∀S . f ‘ (X closure of S ) ⊆ Y closure of f ‘ S )

using continuous map subset aux1 continuous map subset aux2 continuous map image subset topspace
by metis

lemma continuous map closure preimage subset :
continuous map X Y f

=⇒ X closure of {x ∈ topspace X . f x ∈ T}
⊆ {x ∈ topspace X . f x ∈ Y closure of T}

unfolding continuous map closedin
by (rule closure of minimal) (use in closure of in 〈fastforce+〉)

lemma continuous map frontier frontier preimage subset :
assumes continuous map X Y f
shows X frontier of {x ∈ topspace X . f x ∈ T} ⊆ {x ∈ topspace X . f x ∈ Y

frontier of T}
proof −
have eq : topspace X − {x ∈ topspace X . f x ∈ T} = {x ∈ topspace X . f x ∈

topspace Y − T}
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using assms unfolding continuous map def by blast
have X closure of {x ∈ topspace X . f x ∈ T} ⊆ {x ∈ topspace X . f x ∈ Y

closure of T}
by (simp add : assms continuous map closure preimage subset)

moreover
have X closure of (topspace X − {x ∈ topspace X . f x ∈ T}) ⊆ {x ∈ topspace

X . f x ∈ Y closure of (topspace Y − T )}
using continuous map closure preimage subset [OF assms] eq by presburger

ultimately show ?thesis
by (auto simp: frontier of closures)

qed

lemma topology finer continuous id :
assumes topspace X = topspace Y
shows (∀S . openin X S −→ openin Y S ) ←→ continuous map Y X id (is ?lhs

= ?rhs)
proof
show ?lhs =⇒ ?rhs
unfolding continuous map def
using assms openin subopen openin subset by fastforce

show ?rhs =⇒ ?lhs
unfolding continuous map def
using assms openin subopen topspace def by fastforce

qed

lemma continuous map const [simp]:
continuous map X Y (λx . C ) ←→ topspace X = {} ∨ C ∈ topspace Y

proof (cases topspace X = {})
case False
show ?thesis
proof (cases C ∈ topspace Y )
case True
with openin subopen show ?thesis
by (auto simp: continuous map def )

next
case False
then show ?thesis
unfolding continuous map def by fastforce

qed
qed (auto simp: continuous map on empty)

declare continuous map const [THEN iffD2 , continuous intros]

lemma continuous map compose [continuous intros]:
assumes f : continuous map X X ′ f and g : continuous map X ′ X ′′ g
shows continuous map X X ′′ (g ◦ f )
unfolding continuous map def

proof (intro conjI ballI allI impI )
fix x
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assume x ∈ topspace X
then show (g ◦ f ) x ∈ topspace X ′′

using assms unfolding continuous map def by force
next
fix U
assume openin X ′′ U
have eq : {x ∈ topspace X . (g ◦ f ) x ∈ U } = {x ∈ topspace X . f x ∈ {y . y ∈

topspace X ′ ∧ g y ∈ U }}
by auto (meson f continuous map def )

show openin X {x ∈ topspace X . (g ◦ f ) x ∈ U }
unfolding eq
using assms unfolding continuous map def
using 〈openin X ′′ U 〉 by blast

qed

lemma continuous map eq :
assumes continuous map X X ′ f and

∧
x . x ∈ topspace X =⇒ f x = g x shows

continuous map X X ′ g
proof −
have eq : {x ∈ topspace X . f x ∈ U } = {x ∈ topspace X . g x ∈ U } for U
using assms by auto

show ?thesis
using assms by (simp add : continuous map def eq)

qed

lemma restrict continuous map [simp]:
topspace X ⊆ S =⇒ continuous map X X ′ (restrict f S ) ←→ continuous map

X X ′ f
by (auto simp: elim!: continuous map eq)

lemma continuous map in subtopology :
continuous map X (subtopology X ′ S ) f ←→ continuous map X X ′ f ∧ f ‘

(topspace X ) ⊆ S
(is ?lhs = ?rhs)

proof
assume L: ?lhs
show ?rhs
proof −
have

∧
A. f ‘ (X closure of A) ⊆ subtopology X ′ S closure of f ‘ A

by (meson L continuous map image closure subset)
then show ?thesis
by (metis (no types) closure of subset subtopology closure of subtopology subset

closure of topspace continuous map eq image closure subset dual order .trans)
qed

next
assume R: ?rhs
then have eq : {x ∈ topspace X . f x ∈ U } = {x ∈ topspace X . f x ∈ U ∧ f x ∈

S} for U
by auto
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show ?lhs
using R
unfolding continuous map
by (auto simp: openin subtopology eq)

qed

lemma continuous map from subtopology :
continuous map X X ′ f =⇒ continuous map (subtopology X S ) X ′ f

by (auto simp: continuous map openin subtopology)

lemma continuous map into fulltopology :
continuous map X (subtopology X ′ T ) f =⇒ continuous map X X ′ f
by (auto simp: continuous map in subtopology)

lemma continuous map into subtopology :
[[continuous map X X ′ f ; f ‘ topspace X ⊆ T ]] =⇒ continuous map X (subtopology

X ′ T ) f
by (auto simp: continuous map in subtopology)

lemma continuous map from subtopology mono:
[[continuous map (subtopology X T ) X ′ f ; S ⊆ T ]]
=⇒ continuous map (subtopology X S ) X ′ f

by (metis inf .absorb iff2 continuous map from subtopology subtopology subtopology)

lemma continuous map from discrete topology [simp]:
continuous map (discrete topology U ) X f ←→ f ‘ U ⊆ topspace X
by (auto simp: continuous map def )

lemma continuous map iff continuous [simp]: continuous map (top of set S ) eu-
clidean g = continuous on S g
by (fastforce simp add : continuous map openin subtopology continuous on open invariant)

lemma continuous map iff continuous2 [simp]: continuous map euclidean euclidean
g = continuous on UNIV g
by (metis continuous map iff continuous subtopology UNIV )

lemma continuous map openin preimage eq :
continuous map X Y f ←→

f ‘ (topspace X ) ⊆ topspace Y ∧ (∀U . openin Y U −→ openin X (topspace
X ∩ f −‘ U ))
by (auto simp: continuous map def vimage def Int def )

lemma continuous map closedin preimage eq :
continuous map X Y f ←→

f ‘ (topspace X ) ⊆ topspace Y ∧ (∀U . closedin Y U −→ closedin X (topspace
X ∩ f −‘ U ))
by (auto simp: continuous map closedin vimage def Int def )
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lemma continuous map square root : continuous map euclideanreal euclideanreal sqrt
by (simp add : continuous at imp continuous on isCont real sqrt)

lemma continuous map sqrt [continuous intros]:
continuous map X euclideanreal f =⇒ continuous map X euclideanreal (λx . sqrt(f

x ))
by (meson continuous map compose continuous map eq continuous map square root

o apply)

lemma continuous map id [simp, continuous intros]: continuous map X X id
unfolding continuous map def using openin subopen topspace def by fastforce

declare continuous map id [unfolded id def , simp, continuous intros]

lemma continuous map id subt [simp]: continuous map (subtopology X S ) X id
by (simp add : continuous map from subtopology)

declare continuous map id subt [unfolded id def , simp]

lemma continuous map alt :
continuous map T1 T2 f
= ((∀U . openin T2 U −→ openin T1 (f −‘ U ∩ topspace T1 )) ∧ f ‘ topspace

T1 ⊆ topspace T2 )
by (auto simp: continuous map def vimage def image def Collect conj eq inf commute)

lemma continuous map open [intro]:
continuous map T1 T2 f =⇒ openin T2 U =⇒ openin T1 (f−‘U ∩ topspace(T1 ))
unfolding continuous map alt by auto

lemma continuous map preimage topspace [intro]:
assumes continuous map T1 T2 f
shows f−‘(topspace T2 ) ∩ topspace T1 = topspace T1

using assms unfolding continuous map def by auto

2.2.11 Open and closed maps (not a priori assumed contin-
uous)

definition open map :: ′a topology ⇒ ′b topology ⇒ ( ′a ⇒ ′b) ⇒ bool
where open map X1 X2 f ≡ ∀U . openin X1 U −→ openin X2 (f ‘ U )

definition closed map :: ′a topology ⇒ ′b topology ⇒ ( ′a ⇒ ′b) ⇒ bool
where closed map X1 X2 f ≡ ∀U . closedin X1 U −→ closedin X2 (f ‘ U )

lemma open map imp subset topspace:
open map X1 X2 f =⇒ f ‘ (topspace X1 ) ⊆ topspace X2

unfolding open map def by (simp add : openin subset)

lemma open map on empty :
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topspace X = {} =⇒ open map X Y f
by (metis empty iff imageE in mono open map def openin subopen openin subset)

lemma closed map on empty :
topspace X = {} =⇒ closed map X Y f
by (simp add : closed map def closedin topspace empty)

lemma closed map const :
closed map X Y (λx . c) ←→ topspace X = {} ∨ closedin Y {c}

proof (cases topspace X = {})
case True
then show ?thesis
by (simp add : closed map on empty)

next
case False
then show ?thesis
by (auto simp: closed map def image constant conv)

qed

lemma open map imp subset :
[[open map X1 X2 f ; S ⊆ topspace X1 ]] =⇒ f ‘ S ⊆ topspace X2

by (meson order trans open map imp subset topspace subset image iff )

lemma topology finer open id :
(∀S . openin X S −→ openin X ′ S ) ←→ open map X X ′ id

unfolding open map def by auto

lemma open map id : open map X X id
unfolding open map def by auto

lemma open map eq :
[[open map X X ′ f ;

∧
x . x ∈ topspace X =⇒ f x = g x ]] =⇒ open map X X ′ g

unfolding open map def
by (metis image cong openin subset subset iff )

lemma open map inclusion eq :
open map (subtopology X S ) X id ←→ openin X (topspace X ∩ S )

proof −
have ∗: openin X (T ∩ S ) if openin X (S ∩ topspace X ) openin X T for T
proof −
have T ⊆ topspace X
using that by (simp add : openin subset)

with that show openin X (T ∩ S )
by (metis inf .absorb1 inf .left commute inf commute openin Int)

qed
show ?thesis
by (fastforce simp add : open map def Int commute openin subtopology alt intro:

∗)
qed
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lemma open map inclusion:
openin X S =⇒ open map (subtopology X S ) X id

by (simp add : open map inclusion eq openin Int)

lemma open map compose:
[[open map X X ′ f ; open map X ′ X ′′ g ]] =⇒ open map X X ′′ (g ◦ f )

by (metis (no types, lifting) image comp open map def )

lemma closed map imp subset topspace:
closed map X1 X2 f =⇒ f ‘ (topspace X1 ) ⊆ topspace X2

by (simp add : closed map def closedin subset)

lemma closed map imp subset :
[[closed map X1 X2 f ; S ⊆ topspace X1 ]] =⇒ f ‘ S ⊆ topspace X2

using closed map imp subset topspace by blast

lemma topology finer closed id :
(∀S . closedin X S −→ closedin X ′ S ) ←→ closed map X X ′ id

by (simp add : closed map def )

lemma closed map id : closed map X X id
by (simp add : closed map def )

lemma closed map eq :
[[closed map X X ′ f ;

∧
x . x ∈ topspace X =⇒ f x = g x ]] =⇒ closed map X X ′ g

unfolding closed map def
by (metis image cong closedin subset subset iff )

lemma closed map compose:
[[closed map X X ′ f ; closed map X ′ X ′′ g ]] =⇒ closed map X X ′′ (g ◦ f )

by (metis (no types, lifting) closed map def image comp)

lemma closed map inclusion eq :
closed map (subtopology X S ) X id ←→

closedin X (topspace X ∩ S )
proof −
have ∗: closedin X (T ∩ S ) if closedin X (S ∩ topspace X ) closedin X T for T
proof −
have T ⊆ topspace X
using that by (simp add : closedin subset)

with that show closedin X (T ∩ S )
by (metis inf .absorb1 inf .left commute inf commute closedin Int)

qed
show ?thesis

by (fastforce simp add : closed map def Int commute closedin subtopology alt
intro: ∗)
qed
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lemma closed map inclusion: closedin X S =⇒ closed map (subtopology X S ) X
id
by (simp add : closed map inclusion eq closedin Int)

lemma open map into subtopology :
[[open map X X ′ f ; f ‘ topspace X ⊆ S ]] =⇒ open map X (subtopology X ′ S ) f

unfolding open map def openin subtopology
using openin subset by fastforce

lemma closed map into subtopology :
[[closed map X X ′ f ; f ‘ topspace X ⊆ S ]] =⇒ closed map X (subtopology X ′ S )

f
unfolding closed map def closedin subtopology
using closedin subset by fastforce

lemma open map into discrete topology :
open map X (discrete topology U ) f ←→ f ‘ (topspace X ) ⊆ U

unfolding open map def openin discrete topology using openin subset by blast

lemma closed map into discrete topology :
closed map X (discrete topology U ) f ←→ f ‘ (topspace X ) ⊆ U
unfolding closed map def closedin discrete topology using closedin subset by

blast

lemma bijective open imp closed map:
[[open map X X ′ f ; f ‘ (topspace X ) = topspace X ′; inj on f (topspace X )]] =⇒

closed map X X ′ f
unfolding open map def closed map def closedin def
by auto (metis Diff subset inj on image set diff )

lemma bijective closed imp open map:
[[closed map X X ′ f ; f ‘ (topspace X ) = topspace X ′; inj on f (topspace X )]]

=⇒ open map X X ′ f
unfolding closed map def open map def openin closedin eq
by auto (metis Diff subset inj on image set diff )

lemma open map from subtopology :
[[open map X X ′ f ; openin X U ]] =⇒ open map (subtopology X U ) X ′ f

unfolding open map def openin subtopology alt by blast

lemma closed map from subtopology :
[[closed map X X ′ f ; closedin X U ]] =⇒ closed map (subtopology X U ) X ′ f

unfolding closed map def closedin subtopology alt by blast

lemma open map restriction:
assumes f : open map X X ′ f and U : {x ∈ topspace X . f x ∈ V } = U
shows open map (subtopology X U ) (subtopology X ′ V ) f
unfolding open map def

proof clarsimp
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fix W
assume openin (subtopology X U ) W
then obtain T where openin X T W = T ∩ U
by (meson openin subtopology)

with f U have f ‘ W = (f ‘ T ) ∩ V
unfolding open map def openin closedin eq by auto

then show openin (subtopology X ′ V ) (f ‘ W )
by (metis 〈openin X T 〉 f open map def openin subtopology Int)

qed

lemma closed map restriction:
assumes f : closed map X X ′ f and U : {x ∈ topspace X . f x ∈ V } = U
shows closed map (subtopology X U ) (subtopology X ′ V ) f
unfolding closed map def

proof clarsimp
fix W
assume closedin (subtopology X U ) W
then obtain T where closedin X T W = T ∩ U
by (meson closedin subtopology)

with f U have f ‘ W = (f ‘ T ) ∩ V
unfolding closed map def closedin def by auto

then show closedin (subtopology X ′ V ) (f ‘ W )
by (metis 〈closedin X T 〉 closed map def closedin subtopology f )

qed

2.2.12 Quotient maps

definition quotient map where
quotient map X X ′ f ←→

f ‘ (topspace X ) = topspace X ′ ∧
(∀U . U ⊆ topspace X ′ −→ (openin X {x . x ∈ topspace X ∧ f x ∈ U } ←→

openin X ′ U ))

lemma quotient map eq :
assumes quotient map X X ′ f

∧
x . x ∈ topspace X =⇒ f x = g x

shows quotient map X X ′ g
proof −
have eq : {x ∈ topspace X . f x ∈ U } = {x ∈ topspace X . g x ∈ U } for U
using assms by auto

show ?thesis
using assms
unfolding quotient map def
by (metis (mono tags, lifting) eq image cong)

qed

lemma quotient map compose:
assumes f : quotient map X X ′ f and g : quotient map X ′ X ′′ g
shows quotient map X X ′′ (g ◦ f )
unfolding quotient map def
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proof (intro conjI allI impI )
show (g ◦ f ) ‘ topspace X = topspace X ′′

using assms by (simp only : image comp [symmetric]) (simp add : quotient map def )
next
fix U ′′

assume U ′′ ⊆ topspace X ′′

define U ′ where U ′ ≡ {y ∈ topspace X ′. g y ∈ U ′′}
have U ′ ⊆ topspace X ′

by (auto simp add : U ′ def )
then have U ′: openin X {x ∈ topspace X . f x ∈ U ′} = openin X ′ U ′

using assms unfolding quotient map def by simp
have eq : {x ∈ topspace X . f x ∈ topspace X ′ ∧ g (f x ) ∈ U ′′} = {x ∈ topspace

X . (g ◦ f ) x ∈ U ′′}
using f quotient map def by fastforce

have openin X {x ∈ topspace X . (g ◦ f ) x ∈ U ′′} = openin X {x ∈ topspace
X . f x ∈ U ′}

using assms by (simp add : quotient map def U ′ def eq)
also have . . . = openin X ′′ U ′′

using U ′ def 〈U ′′ ⊆ topspace X ′′〉 U ′ g quotient map def by fastforce
finally show openin X {x ∈ topspace X . (g ◦ f ) x ∈ U ′′} = openin X ′′ U ′′ .

qed

lemma quotient map from composition:
assumes f : continuous map X X ′ f and g : continuous map X ′ X ′′ g and gf :

quotient map X X ′′ (g ◦ f )
shows quotient map X ′ X ′′ g
unfolding quotient map def

proof (intro conjI allI impI )
show g ‘ topspace X ′ = topspace X ′′

using assms unfolding continuous map def quotient map def by fastforce
next
fix U ′′ :: ′c set
assume U ′′: U ′′ ⊆ topspace X ′′

have eq : {x ∈ topspace X . g (f x ) ∈ U ′′} = {x ∈ topspace X . f x ∈ {y . y ∈
topspace X ′ ∧ g y ∈ U ′′}}

using continuous map def f by fastforce
show openin X ′ {x ∈ topspace X ′. g x ∈ U ′′} = openin X ′′ U ′′

using assms unfolding continuous map def quotient map def
by (metis (mono tags, lifting) Collect cong U ′′ comp apply eq)

qed

lemma quotient imp continuous map:
quotient map X X ′ f =⇒ continuous map X X ′ f

by (simp add : continuous map openin subset quotient map def )

lemma quotient imp surjective map:
quotient map X X ′ f =⇒ f ‘ (topspace X ) = topspace X ′

by (simp add : quotient map def )

Abstract{_}{\kern 0pt}Topology.html


360

lemma quotient map closedin:
quotient map X X ′ f ←→

f ‘ (topspace X ) = topspace X ′ ∧
(∀U . U ⊆ topspace X ′ −→ (closedin X {x . x ∈ topspace X ∧ f x ∈ U }

←→ closedin X ′ U ))
proof −
have eq : (topspace X − {x ∈ topspace X . f x ∈ U ′}) = {x ∈ topspace X . f x ∈

topspace X ′ ∧ f x /∈ U ′}
if f ‘ topspace X = topspace X ′ U ′ ⊆ topspace X ′ for U ′

using that by auto
have (∀U⊆topspace X ′. openin X {x ∈ topspace X . f x ∈ U } = openin X ′ U )

=
(∀U⊆topspace X ′. closedin X {x ∈ topspace X . f x ∈ U } = closedin X ′

U )
if f ‘ topspace X = topspace X ′

proof (rule iffI ; intro allI impI subsetI )
fix U ′

assume ∗[rule format ]: ∀U⊆topspace X ′. openin X {x ∈ topspace X . f x ∈
U } = openin X ′ U

and U ′: U ′ ⊆ topspace X ′

show closedin X {x ∈ topspace X . f x ∈ U ′} = closedin X ′ U ′

using U ′ by (auto simp add : closedin def simp flip: ∗ [of topspace X ′ − U ′]
eq [OF that ])
next
fix U ′ :: ′b set
assume ∗[rule format ]: ∀U⊆topspace X ′. closedin X {x ∈ topspace X . f x ∈

U } = closedin X ′ U
and U ′: U ′ ⊆ topspace X ′

show openin X {x ∈ topspace X . f x ∈ U ′} = openin X ′ U ′

using U ′ by (auto simp add : openin closedin eq simp flip: ∗ [of topspace X ′

− U ′] eq [OF that ])
qed
then show ?thesis
unfolding quotient map def by force

qed

lemma continuous open imp quotient map:
assumes continuous map X X ′ f and om: open map X X ′ f and feq : f ‘ (topspace

X ) = topspace X ′

shows quotient map X X ′ f
proof −
{ fix U
assume U : U ⊆ topspace X ′ and openin X {x ∈ topspace X . f x ∈ U }
then have ope: openin X ′ (f ‘ {x ∈ topspace X . f x ∈ U })
using om unfolding open map def by blast

then have openin X ′ U
using U feq by (subst openin subopen) force

}
moreover have openin X {x ∈ topspace X . f x ∈ U } if U ⊆ topspace X ′ and
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openin X ′ U for U
using that assms unfolding continuous map def by blast

ultimately show ?thesis
unfolding quotient map def using assms by blast

qed

lemma continuous closed imp quotient map:
assumes continuous map X X ′ f and om: closed map X X ′ f and feq : f ‘

(topspace X ) = topspace X ′

shows quotient map X X ′ f
proof −
have f ‘ {x ∈ topspace X . f x ∈ U } = U if U ⊆ topspace X ′ for U
using that feq by auto

with assms show ?thesis
unfolding quotient map closedin closed map def continuous map closedin by

auto
qed

lemma continuous open quotient map:
[[continuous map X X ′ f ; open map X X ′ f ]] =⇒ quotient map X X ′ f ←→ f ‘

(topspace X ) = topspace X ′

by (meson continuous open imp quotient map quotient map def )

lemma continuous closed quotient map:
[[continuous map X X ′ f ; closed map X X ′ f ]] =⇒ quotient map X X ′ f ←→ f

‘ (topspace X ) = topspace X ′

by (meson continuous closed imp quotient map quotient map def )

lemma injective quotient map:
assumes inj on f (topspace X )
shows quotient map X X ′ f ←→

continuous map X X ′ f ∧ open map X X ′ f ∧ closed map X X ′ f ∧ f ‘
(topspace X ) = topspace X ′

(is ?lhs = ?rhs)
proof
assume L: ?lhs
have open map X X ′ f
proof (clarsimp simp add : open map def )
fix U
assume openin X U
then have U ⊆ topspace X
by (simp add : openin subset)

moreover have {x ∈ topspace X . f x ∈ f ‘ U } = U
using 〈U ⊆ topspace X 〉 assms inj onD by fastforce

ultimately show openin X ′ (f ‘ U )
using L unfolding quotient map def
by (metis (no types, lifting) Collect cong 〈openin X U 〉 image mono)

qed
moreover have closed map X X ′ f
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proof (clarsimp simp add : closed map def )
fix U
assume closedin X U
then have U ⊆ topspace X
by (simp add : closedin subset)

moreover have {x ∈ topspace X . f x ∈ f ‘ U } = U
using 〈U ⊆ topspace X 〉 assms inj onD by fastforce

ultimately show closedin X ′ (f ‘ U )
using L unfolding quotient map closedin
by (metis (no types, lifting) Collect cong 〈closedin X U 〉 image mono)

qed
ultimately show ?rhs
using L by (simp add : quotient imp continuous map quotient imp surjective map)

next
assume ?rhs
then show ?lhs
by (simp add : continuous closed imp quotient map)

qed

lemma continuous compose quotient map:
assumes f : quotient map X X ′ f and g : continuous map X X ′′ (g ◦ f )
shows continuous map X ′ X ′′ g
unfolding quotient map def continuous map def

proof (intro conjI ballI allI impI )
show

∧
x ′. x ′ ∈ topspace X ′ =⇒ g x ′ ∈ topspace X ′′

using assms unfolding quotient map def
by (metis (no types, hide lams) continuous map image subset topspace im-

age comp image subset iff )
next
fix U ′′ :: ′c set
assume U ′′: openin X ′′ U ′′

have f ‘ topspace X = topspace X ′

by (simp add : f quotient imp surjective map)
then have eq : {x ∈ topspace X . f x ∈ topspace X ′ ∧ g (f x ) ∈ U } = {x ∈

topspace X . g (f x ) ∈ U } for U
by auto

have openin X {x ∈ topspace X . f x ∈ topspace X ′ ∧ g (f x ) ∈ U ′′}
unfolding eq using U ′′ g openin continuous map preimage by fastforce

then have ∗: openin X {x ∈ topspace X . f x ∈ {x ∈ topspace X ′. g x ∈ U ′′}}
by auto

show openin X ′ {x ∈ topspace X ′. g x ∈ U ′′}
using f unfolding quotient map def
by (metis (no types) Collect subset ∗)

qed

lemma continuous compose quotient map eq :
quotient map X X ′ f =⇒ continuous map X X ′′ (g ◦ f ) ←→ continuous map

X ′ X ′′ g
using continuous compose quotient map continuous map compose quotient imp continuous map
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by blast

lemma quotient map compose eq :
quotient map X X ′ f =⇒ quotient map X X ′′ (g ◦ f ) ←→ quotient map X ′ X ′′

g
by (meson continuous compose quotient map eq quotient imp continuous map quo-

tient map compose quotient map from composition)

lemma quotient map restriction:
assumes quo: quotient map X Y f and U : {x ∈ topspace X . f x ∈ V } = U and

disj : openin Y V ∨ closedin Y V
shows quotient map (subtopology X U ) (subtopology Y V ) f
using disj

proof
assume V : openin Y V
with U have sub: U ⊆ topspace X V ⊆ topspace Y
by (auto simp: openin subset)

have fim: f ‘ topspace X = topspace Y
and Y :

∧
U . U ⊆ topspace Y =⇒ openin X {x ∈ topspace X . f x ∈ U } =

openin Y U
using quo unfolding quotient map def by auto

have openin X U
using U V Y sub(2 ) by blast

show ?thesis
unfolding quotient map def

proof (intro conjI allI impI )
show f ‘ topspace (subtopology X U ) = topspace (subtopology Y V )
using sub U fim by (auto)

next
fix Y ′ :: ′b set
assume Y ′ ⊆ topspace (subtopology Y V )
then have Y ′ ⊆ topspace Y Y ′ ⊆ V
by (simp all)

then have eq : {x ∈ topspace X . x ∈ U ∧ f x ∈ Y ′} = {x ∈ topspace X . f x
∈ Y ′}

using U by blast
then show openin (subtopology X U ) {x ∈ topspace (subtopology X U ). f x ∈

Y ′} = openin (subtopology Y V ) Y ′

using U V Y 〈openin X U 〉 〈Y ′ ⊆ topspace Y 〉 〈Y ′ ⊆ V 〉

by (simp add : openin open subtopology eq) (auto simp: openin closedin eq)
qed

next
assume V : closedin Y V
with U have sub: U ⊆ topspace X V ⊆ topspace Y
by (auto simp: closedin subset)

have fim: f ‘ topspace X = topspace Y
and Y :

∧
U . U ⊆ topspace Y =⇒ closedin X {x ∈ topspace X . f x ∈ U } =

closedin Y U
using quo unfolding quotient map closedin by auto
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have closedin X U
using U V Y sub(2 ) by blast

show ?thesis
unfolding quotient map closedin

proof (intro conjI allI impI )
show f ‘ topspace (subtopology X U ) = topspace (subtopology Y V )
using sub U fim by (auto)

next
fix Y ′ :: ′b set
assume Y ′ ⊆ topspace (subtopology Y V )
then have Y ′ ⊆ topspace Y Y ′ ⊆ V
by (simp all)

then have eq : {x ∈ topspace X . x ∈ U ∧ f x ∈ Y ′} = {x ∈ topspace X . f x
∈ Y ′}

using U by blast
then show closedin (subtopology X U ) {x ∈ topspace (subtopology X U ). f x

∈ Y ′} = closedin (subtopology Y V ) Y ′

using U V Y 〈closedin X U 〉 〈Y ′ ⊆ topspace Y 〉 〈Y ′ ⊆ V 〉

by (simp add : closedin closed subtopology eq) (auto simp: closedin def )
qed

qed

lemma quotient map saturated open:
quotient map X Y f ←→

continuous map X Y f ∧ f ‘ (topspace X ) = topspace Y ∧
(∀U . openin X U ∧ {x ∈ topspace X . f x ∈ f ‘ U } ⊆ U −→ openin Y (f ‘

U ))
(is ?lhs = ?rhs)

proof
assume L: ?lhs
then have fim: f ‘ topspace X = topspace Y
and Y :

∧
U . U ⊆ topspace Y =⇒ openin Y U = openin X {x ∈ topspace X .

f x ∈ U }
unfolding quotient map def by auto

show ?rhs
proof (intro conjI allI impI )
show continuous map X Y f
by (simp add : L quotient imp continuous map)

show f ‘ topspace X = topspace Y
by (simp add : fim)

next
fix U :: ′a set
assume U : openin X U ∧ {x ∈ topspace X . f x ∈ f ‘ U } ⊆ U
then have sub: f ‘ U ⊆ topspace Y and eq : {x ∈ topspace X . f x ∈ f ‘ U } =

U
using fim openin subset by fastforce+

show openin Y (f ‘ U )
by (simp add : sub Y eq U )

qed
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next
assume ?rhs
then have YX :

∧
U . openin Y U =⇒ openin X {x ∈ topspace X . f x ∈ U }

and fim: f ‘ topspace X = topspace Y
and XY :

∧
U . [[openin X U ; {x ∈ topspace X . f x ∈ f ‘ U } ⊆ U ]] =⇒ openin

Y (f ‘ U )
by (auto simp: quotient map def continuous map def )

show ?lhs
proof (simp add : quotient map def fim, intro allI impI iffI )
fix U :: ′b set
assume U ⊆ topspace Y and X : openin X {x ∈ topspace X . f x ∈ U }
have feq : f ‘ {x ∈ topspace X . f x ∈ U } = U
using 〈U ⊆ topspace Y 〉 fim by auto

show openin Y U
using XY [OF X ] by (simp add : feq)

next
fix U :: ′b set
assume U ⊆ topspace Y and Y : openin Y U
show openin X {x ∈ topspace X . f x ∈ U }
by (metis YX [OF Y ])

qed
qed

2.2.13 Separated Sets

definition separatedin :: ′a topology ⇒ ′a set ⇒ ′a set ⇒ bool
where separatedin X S T ≡

S ⊆ topspace X ∧ T ⊆ topspace X ∧
S ∩ X closure of T = {} ∧ T ∩ X closure of S = {}

lemma separatedin empty [simp]:
separatedin X S {} ←→ S ⊆ topspace X
separatedin X {} S ←→ S ⊆ topspace X

by (simp all add : separatedin def )

lemma separatedin refl [simp]:
separatedin X S S ←→ S = {}

proof −
have

∧
x . [[separatedin X S S ; x ∈ S ]] =⇒ False

by (metis all not in conv closure of subset inf .orderE separatedin def )
then show ?thesis
by auto

qed

lemma separatedin sym:
separatedin X S T ←→ separatedin X T S

by (auto simp: separatedin def )

lemma separatedin imp disjoint :
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separatedin X S T =⇒ disjnt S T
by (meson closure of subset disjnt def disjnt subset2 separatedin def )

lemma separatedin mono:
[[separatedin X S T ; S ′ ⊆ S ; T ′ ⊆ T ]] =⇒ separatedin X S ′ T ′

unfolding separatedin def
using closure of mono by blast

lemma separatedin open sets:
[[openin X S ; openin X T ]] =⇒ separatedin X S T ←→ disjnt S T

unfolding disjnt def separatedin def
by (auto simp: openin Int closure of eq empty openin subset)

lemma separatedin closed sets:
[[closedin X S ; closedin X T ]] =⇒ separatedin X S T ←→ disjnt S T

unfolding closure of eq disjnt def separatedin def
by (metis closedin def closure of eq inf commute)

lemma separatedin subtopology :
separatedin (subtopology X U ) S T ←→ S ⊆ U ∧ T ⊆ U ∧ separatedin X S

T (is ?lhs = ?rhs)
by (auto simp: separatedin def closure of subtopology Int ac disjoint iff elim!:

inf .orderE )

lemma separatedin discrete topology :
separatedin (discrete topology U ) S T ←→ S ⊆ U ∧ T ⊆ U ∧ disjnt S T

by (metis openin discrete topology separatedin def separatedin open sets topspace discrete topology)

lemma separated eq distinguishable:
separatedin X {x} {y} ←→

x ∈ topspace X ∧ y ∈ topspace X ∧
(∃U . openin X U ∧ x ∈ U ∧ (y /∈ U )) ∧
(∃ v . openin X v ∧ y ∈ v ∧ (x /∈ v))

by (force simp: separatedin def closure of def )

lemma separatedin Un [simp]:
separatedin X S (T ∪ U ) ←→ separatedin X S T ∧ separatedin X S U
separatedin X (S ∪ T ) U ←→ separatedin X S U ∧ separatedin X T U
by (auto simp: separatedin def )

lemma separatedin Union:
finite F =⇒ separatedin X S (

⋃
F)←→ S ⊆ topspace X ∧ (∀T ∈ F . separatedin

X S T )
finite F =⇒ separatedin X (

⋃
F) S ←→ (∀T ∈ F . separatedin X S T ) ∧ S ⊆

topspace X
by (auto simp: separatedin def closure of Union)

lemma separatedin openin diff :
[[openin X S ; openin X T ]] =⇒ separatedin X (S − T ) (T − S )
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unfolding separatedin def
by (metis Diff Int distrib2 Diff disjoint Diff empty Diff mono empty Diff empty subsetI

openin Int closure of eq empty openin subset)

lemma separatedin closedin diff :
assumes closedin X S closedin X T
shows separatedin X (S − T ) (T − S )

proof −
have S − T ⊆ topspace X T − S ⊆ topspace X
using assms closedin subset by auto

with assms show ?thesis
by (simp add : separatedin def Diff Int distrib2 closure of minimal inf absorb2 )

qed

lemma separation closedin Un gen:
separatedin X S T ←→

S ⊆ topspace X ∧ T ⊆ topspace X ∧ disjnt S T ∧
closedin (subtopology X (S ∪ T )) S ∧
closedin (subtopology X (S ∪ T )) T

by (auto simp add : separatedin def closedin Int closure of disjnt iff dest : clo-
sure of subset)

lemma separation openin Un gen:
separatedin X S T ←→

S ⊆ topspace X ∧ T ⊆ topspace X ∧ disjnt S T ∧
openin (subtopology X (S ∪ T )) S ∧
openin (subtopology X (S ∪ T )) T

unfolding openin closedin eq topspace subtopology separation closedin Un gen dis-
jnt def
by (auto simp: Diff triv Int commute Un Diff inf absorb1 topspace def )

2.2.14 Homeomorphisms

(1-way and 2-way versions may be useful in places)

definition homeomorphic map :: ′a topology ⇒ ′b topology ⇒ ( ′a ⇒ ′b) ⇒ bool
where
homeomorphic map X Y f ≡ quotient map X Y f ∧ inj on f (topspace X )

definition homeomorphic maps :: ′a topology ⇒ ′b topology ⇒ ( ′a ⇒ ′b) ⇒ ( ′b
⇒ ′a) ⇒ bool
where
homeomorphic maps X Y f g ≡

continuous map X Y f ∧ continuous map Y X g ∧
(∀ x ∈ topspace X . g(f x ) = x ) ∧ (∀ y ∈ topspace Y . f (g y) = y)

lemma homeomorphic map eq :
[[homeomorphic map X Y f ;

∧
x . x ∈ topspace X =⇒ f x = g x ]] =⇒ homeomor-

phic map X Y g
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by (meson homeomorphic map def inj on cong quotient map eq)

lemma homeomorphic maps eq :
[[homeomorphic maps X Y f g ;∧

x . x ∈ topspace X =⇒ f x = f ′ x ;
∧
y . y ∈ topspace Y =⇒ g y = g ′ y ]]

=⇒ homeomorphic maps X Y f ′ g ′

unfolding homeomorphic maps def
by (metis continuous map eq continuous map eq image closure subset gen im-

age subset iff )

lemma homeomorphic maps sym:
homeomorphic maps X Y f g ←→ homeomorphic maps Y X g f

by (auto simp: homeomorphic maps def )

lemma homeomorphic maps id :
homeomorphic maps X Y id id ←→ Y = X (is ?lhs = ?rhs)

proof
assume L: ?lhs
then have topspace X = topspace Y
by (auto simp: homeomorphic maps def continuous map def )

with L show ?rhs
unfolding homeomorphic maps def
by (metis topology finer continuous id topology eq)

next
assume ?rhs
then show ?lhs
unfolding homeomorphic maps def by auto

qed

lemma homeomorphic map id [simp]: homeomorphic map X Y id ←→ Y = X
(is ?lhs = ?rhs)

proof
assume L: ?lhs
then have eq : topspace X = topspace Y
by (auto simp: homeomorphic map def continuous map def quotient map def )

then have
∧
S . openin X S −→ openin Y S

by (meson L homeomorphic map def injective quotient map topology finer open id)
then show ?rhs
using L unfolding homeomorphic map def
by (metis eq quotient imp continuous map topology eq topology finer continuous id)

next
assume ?rhs
then show ?lhs
unfolding homeomorphic map def
by (simp add : closed map id continuous closed imp quotient map)

qed

lemma homeomorphic map compose:
assumes homeomorphic map X Y f homeomorphic map Y X ′′ g
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shows homeomorphic map X X ′′ (g ◦ f )
proof −
have inj on g (f ‘ topspace X )
by (metis (no types) assms homeomorphic map def quotient imp surjective map)
then show ?thesis
using assms by (meson comp inj on homeomorphic map def quotient map compose eq)

qed

lemma homeomorphic maps compose:
homeomorphic maps X Y f h ∧

homeomorphic maps Y X ′′ g k
=⇒ homeomorphic maps X X ′′ (g ◦ f ) (h ◦ k)

unfolding homeomorphic maps def
by (auto simp: continuous map compose; simp add : continuous map def )

lemma homeomorphic eq everything map:
homeomorphic map X Y f ←→

continuous map X Y f ∧ open map X Y f ∧ closed map X Y f ∧
f ‘ (topspace X ) = topspace Y ∧ inj on f (topspace X )

unfolding homeomorphic map def
by (force simp: injective quotient map intro: injective quotient map)

lemma homeomorphic imp continuous map:
homeomorphic map X Y f =⇒ continuous map X Y f

by (simp add : homeomorphic eq everything map)

lemma homeomorphic imp open map:
homeomorphic map X Y f =⇒ open map X Y f
by (simp add : homeomorphic eq everything map)

lemma homeomorphic imp closed map:
homeomorphic map X Y f =⇒ closed map X Y f
by (simp add : homeomorphic eq everything map)

lemma homeomorphic imp surjective map:
homeomorphic map X Y f =⇒ f ‘ (topspace X ) = topspace Y
by (simp add : homeomorphic eq everything map)

lemma homeomorphic imp injective map:
homeomorphic map X Y f =⇒ inj on f (topspace X )

by (simp add : homeomorphic eq everything map)

lemma bijective open imp homeomorphic map:
[[continuous map X Y f ; open map X Y f ; f ‘ (topspace X ) = topspace Y ; inj on

f (topspace X )]]
=⇒ homeomorphic map X Y f

by (simp add : homeomorphic map def continuous open imp quotient map)

lemma bijective closed imp homeomorphic map:
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[[continuous map X Y f ; closed map X Y f ; f ‘ (topspace X ) = topspace Y ; inj on
f (topspace X )]]

=⇒ homeomorphic map X Y f
by (simp add : continuous closed quotient map homeomorphic map def )

lemma open eq continuous inverse map:
assumes X :

∧
x . x ∈ topspace X =⇒ f x ∈ topspace Y ∧ g(f x ) = x

and Y :
∧
y . y ∈ topspace Y =⇒ g y ∈ topspace X ∧ f (g y) = y

shows open map X Y f ←→ continuous map Y X g
proof −
have eq : {x ∈ topspace Y . g x ∈ U } = f ‘ U if openin X U for U
using openin subset [OF that ] by (force simp: X Y image iff )

show ?thesis
by (auto simp: Y open map def continuous map def eq)

qed

lemma closed eq continuous inverse map:
assumes X :

∧
x . x ∈ topspace X =⇒ f x ∈ topspace Y ∧ g(f x ) = x

and Y :
∧
y . y ∈ topspace Y =⇒ g y ∈ topspace X ∧ f (g y) = y

shows closed map X Y f ←→ continuous map Y X g
proof −
have eq : {x ∈ topspace Y . g x ∈ U } = f ‘ U if closedin X U for U
using closedin subset [OF that ] by (force simp: X Y image iff )

show ?thesis
by (auto simp: Y closed map def continuous map closedin eq)

qed

lemma homeomorphic maps map:
homeomorphic maps X Y f g ←→

homeomorphic map X Y f ∧ homeomorphic map Y X g ∧
(∀ x ∈ topspace X . g(f x ) = x ) ∧ (∀ y ∈ topspace Y . f (g y) = y)

(is ?lhs = ?rhs)
proof
assume ?lhs
then have L: continuous map X Y f continuous map Y X g ∀ x∈topspace X . g

(f x ) = x ∀ x ′∈topspace Y . f (g x ′) = x ′

by (auto simp: homeomorphic maps def )
show ?rhs
proof (intro conjI bijective open imp homeomorphic map L)
show open map X Y f
using L using open eq continuous inverse map [of concl : X Y f g ] by (simp

add : continuous map def )
show open map Y X g
using L using open eq continuous inverse map [of concl : Y X g f ] by (simp

add : continuous map def )
show f ‘ topspace X = topspace Y g ‘ topspace Y = topspace X
using L by (force simp: continuous map closedin)+

show inj on f (topspace X ) inj on g (topspace Y )
using L unfolding inj on def by metis+
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qed
next
assume ?rhs
then show ?lhs
by (auto simp: homeomorphic maps def homeomorphic imp continuous map)

qed

lemma homeomorphic maps imp map:
homeomorphic maps X Y f g =⇒ homeomorphic map X Y f

using homeomorphic maps map by blast

lemma homeomorphic map maps:
homeomorphic map X Y f ←→ (∃ g . homeomorphic maps X Y f g)

(is ?lhs = ?rhs)
proof
assume ?lhs
then have L: continuous map X Y f open map X Y f closed map X Y f
f ‘ (topspace X ) = topspace Y inj on f (topspace X )
by (auto simp: homeomorphic eq everything map)

have X :
∧
x . x ∈ topspace X =⇒ f x ∈ topspace Y ∧ inv into (topspace X ) f (f

x ) = x
using L by auto

have Y :
∧
y . y ∈ topspace Y =⇒ inv into (topspace X ) f y ∈ topspace X ∧ f

(inv into (topspace X ) f y) = y
by (simp add : L f inv into f inv into into)

have homeomorphic maps X Y f (inv into (topspace X ) f )
unfolding homeomorphic maps def

proof (intro conjI L)
show continuous map Y X (inv into (topspace X ) f )
by (simp add : L X Y flip: open eq continuous inverse map [where f=f ])

next
show ∀ x∈topspace X . inv into (topspace X ) f (f x ) = x
∀ y∈topspace Y . f (inv into (topspace X ) f y) = y

using X Y by auto
qed
then show ?rhs
by metis

next
assume ?rhs
then show ?lhs
using homeomorphic maps map by blast

qed

lemma homeomorphic maps involution:
[[continuous map X X f ;

∧
x . x ∈ topspace X =⇒ f (f x ) = x ]] =⇒ homeomor-

phic maps X X f f
by (auto simp: homeomorphic maps def )

lemma homeomorphic map involution:
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[[continuous map X X f ;
∧
x . x ∈ topspace X =⇒ f (f x ) = x ]] =⇒ homeomor-

phic map X X f
using homeomorphic maps involution homeomorphic maps map by blast

lemma homeomorphic map openness:
assumes hom: homeomorphic map X Y f and U : U ⊆ topspace X
shows openin Y (f ‘ U ) ←→ openin X U

proof −
obtain g where homeomorphic maps X Y f g
using assms by (auto simp: homeomorphic map maps)

then have g : homeomorphic map Y X g and gf :
∧
x . x ∈ topspace X =⇒ g(f

x ) = x
by (auto simp: homeomorphic maps map)

then have openin X U =⇒ openin Y (f ‘ U )
using hom homeomorphic imp open map open map def by blast

show openin Y (f ‘ U ) = openin X U
proof
assume L: openin Y (f ‘ U )
have U = g ‘ (f ‘ U )
using U gf by force

then show openin X U
by (metis L homeomorphic imp open map open map def g)

next
assume openin X U
then show openin Y (f ‘ U )
using hom homeomorphic imp open map open map def by blast

qed
qed

lemma homeomorphic map closedness:
assumes hom: homeomorphic map X Y f and U : U ⊆ topspace X
shows closedin Y (f ‘ U ) ←→ closedin X U

proof −
obtain g where homeomorphic maps X Y f g
using assms by (auto simp: homeomorphic map maps)

then have g : homeomorphic map Y X g and gf :
∧
x . x ∈ topspace X =⇒ g(f

x ) = x
by (auto simp: homeomorphic maps map)

then have closedin X U =⇒ closedin Y (f ‘ U )
using hom homeomorphic imp closed map closed map def by blast

show closedin Y (f ‘ U ) = closedin X U
proof
assume L: closedin Y (f ‘ U )
have U = g ‘ (f ‘ U )
using U gf by force

then show closedin X U
by (metis L homeomorphic imp closed map closed map def g)

next
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assume closedin X U
then show closedin Y (f ‘ U )
using hom homeomorphic imp closed map closed map def by blast

qed
qed

lemma homeomorphic map openness eq :
homeomorphic map X Y f =⇒ openin X U ←→ U ⊆ topspace X ∧ openin Y

(f ‘ U )
by (meson homeomorphic map openness openin closedin eq)

lemma homeomorphic map closedness eq :
homeomorphic map X Y f =⇒ closedin X U ←→ U ⊆ topspace X ∧ closedin

Y (f ‘ U )
by (meson closedin subset homeomorphic map closedness)

lemma all openin homeomorphic image:
assumes homeomorphic map X Y f
shows (∀V . openin Y V −→ P V ) ←→ (∀U . openin X U −→ P(f ‘ U )) (is

?lhs = ?rhs)
proof
assume ?lhs
then show ?rhs
by (meson assms homeomorphic map openness eq)

next
assume ?rhs
then show ?lhs
by (metis (no types, lifting) assms homeomorphic imp surjective map homeo-

morphic map openness openin subset subset image iff )
qed

lemma all closedin homeomorphic image:
assumes homeomorphic map X Y f
shows (∀V . closedin Y V −→ P V ) ←→ (∀U . closedin X U −→ P(f ‘ U )) (is

?lhs = ?rhs)
proof
assume ?lhs
then show ?rhs
by (meson assms homeomorphic map closedness eq)

next
assume ?rhs
then show ?lhs
by (metis (no types, lifting) assms homeomorphic imp surjective map homeo-

morphic map closedness closedin subset subset image iff )
qed

lemma homeomorphic map derived set of :
assumes hom: homeomorphic map X Y f and S : S ⊆ topspace X
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shows Y derived set of (f ‘ S ) = f ‘ (X derived set of S )
proof −
have fim: f ‘ (topspace X ) = topspace Y and inj : inj on f (topspace X )
using hom by (auto simp: homeomorphic eq everything map)

have iff : (∀T . x ∈ T ∧ openin X T −→ (∃ y . y 6= x ∧ y ∈ S ∧ y ∈ T )) =
(∀T . T ⊆ topspace Y −→ f x ∈ T −→ openin Y T −→ (∃ y . y 6= f x ∧

y ∈ f ‘ S ∧ y ∈ T ))
if x ∈ topspace X for x

proof −
have §: (x ∈ T ∧ openin X T ) = (T ⊆ topspace X ∧ f x ∈ f ‘ T ∧ openin Y

(f ‘ T )) for T
by (meson hom homeomorphic map openness eq inj inj on image mem iff

that)
moreover have (∃ y . y 6= x ∧ y ∈ S ∧ y ∈ T ) = (∃ y . y 6= f x ∧ y ∈ f ‘ S ∧

y ∈ f ‘ T ) (is ?lhs = ?rhs)
if T ⊆ topspace X ∧ f x ∈ f ‘ T ∧ openin Y (f ‘ T ) for T

proof
show ?lhs =⇒ ?rhs
by (meson § imageI inj inj on eq iff inj on subset that)

show ?rhs =⇒ ?lhs
using S inj inj onD that by fastforce

qed
ultimately show ?thesis
by (auto simp flip: fim simp: all subset image)

qed
have ∗: [[T = f ‘ S ;

∧
x . x ∈ S =⇒ P x ←→ Q(f x )]] =⇒ {y . y ∈ T ∧ Q y} =

f ‘ {x ∈ S . P x} for T S P Q
by auto

show ?thesis
unfolding derived set of def
by (rule ∗) (use fim iff openin subset in force)+

qed

lemma homeomorphic map closure of :
assumes hom: homeomorphic map X Y f and S : S ⊆ topspace X
shows Y closure of (f ‘ S ) = f ‘ (X closure of S )
unfolding closure of
using homeomorphic imp surjective map [OF hom] S
by (auto simp: in derived set of homeomorphic map derived set of [OF assms])

lemma homeomorphic map interior of :
assumes hom: homeomorphic map X Y f and S : S ⊆ topspace X
shows Y interior of (f ‘ S ) = f ‘ (X interior of S )

proof −
{ fix y
assume y ∈ topspace Y and y /∈ Y closure of (topspace Y − f ‘ S )
then have y ∈ f ‘ (topspace X − X closure of (topspace X − S ))
using homeomorphic eq everything map [THEN iffD1 , OF hom] homeomor-
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phic map closure of [OF hom]
by (metis DiffI Diff subset S closure of subset topspace inj on image set diff )

}
moreover
{ fix x
assume x ∈ topspace X
then have f x ∈ topspace Y
using hom homeomorphic imp surjective map by blast }

moreover
{ fix x
assume x ∈ topspace X and x /∈ X closure of (topspace X − S ) and f x ∈ Y

closure of (topspace Y − f ‘ S )
then have False
using homeomorphic map closure of [OF hom] hom
unfolding homeomorphic eq everything map

by (metis Diff subset S closure of subset topspace inj on image mem iff inj on image set diff )
}
ultimately show ?thesis
by (auto simp: interior of closure of )

qed

lemma homeomorphic map frontier of :
assumes hom: homeomorphic map X Y f and S : S ⊆ topspace X
shows Y frontier of (f ‘ S ) = f ‘ (X frontier of S )
unfolding frontier of def

proof (intro equalityI subsetI DiffI )
fix y
assume y ∈ Y closure of f ‘ S − Y interior of f ‘ S
then show y ∈ f ‘ (X closure of S − X interior of S )
using S hom homeomorphic map closure of homeomorphic map interior of by

fastforce
next
fix y
assume y ∈ f ‘ (X closure of S − X interior of S )
then show y ∈ Y closure of f ‘ S
using S hom homeomorphic map closure of by fastforce

next
fix x
assume x ∈ f ‘ (X closure of S − X interior of S )
then obtain y where y : x = f y y ∈ X closure of S y /∈ X interior of S
by blast

then have y ∈ topspace X
by (simp add : in closure of )

then have f y /∈ f ‘ (X interior of S )
by (meson hom homeomorphic map def inj on image mem iff interior of subset topspace

y(3 ))
then show x /∈ Y interior of f ‘ S
using S hom homeomorphic map interior of y(1 ) by blast

qed
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lemma homeomorphic maps subtopologies:
[[homeomorphic maps X Y f g ; f ‘ (topspace X ∩ S ) = topspace Y ∩ T ]]

=⇒ homeomorphic maps (subtopology X S ) (subtopology Y T ) f g
unfolding homeomorphic maps def
by (force simp: continuous map from subtopology continuous map in subtopology)

lemma homeomorphic maps subtopologies alt :
[[homeomorphic maps X Y f g ; f ‘ (topspace X ∩ S ) ⊆ T ; g ‘ (topspace Y ∩

T ) ⊆ S ]]
=⇒ homeomorphic maps (subtopology X S ) (subtopology Y T ) f g

unfolding homeomorphic maps def
by (force simp: continuous map from subtopology continuous map in subtopology)

lemma homeomorphic map subtopologies:
[[homeomorphic map X Y f ; f ‘ (topspace X ∩ S ) = topspace Y ∩ T ]]

=⇒ homeomorphic map (subtopology X S ) (subtopology Y T ) f
by (meson homeomorphic map maps homeomorphic maps subtopologies)

lemma homeomorphic map subtopologies alt :
assumes hom: homeomorphic map X Y f

and S :
∧
x . [[x ∈ topspace X ; f x ∈ topspace Y ]] =⇒ f x ∈ T ←→ x ∈ S

shows homeomorphic map (subtopology X S ) (subtopology Y T ) f
proof −
have homeomorphic maps (subtopology X S ) (subtopology Y T ) f g

if homeomorphic maps X Y f g for g
proof (rule homeomorphic maps subtopologies [OF that ])
show f ‘ (topspace X ∩ S ) = topspace Y ∩ T
using that S
apply (auto simp: homeomorphic maps def continuous map def )
by (metis IntI image iff )

qed
then show ?thesis
using hom by (meson homeomorphic map maps)

qed

2.2.15 Relation of homeomorphism between topological spaces

definition homeomorphic space (infixr homeomorphic ′ space 50 )
where X homeomorphic space Y ≡ ∃ f g . homeomorphic maps X Y f g

lemma homeomorphic space refl : X homeomorphic space X
by (meson homeomorphic maps id homeomorphic space def )

lemma homeomorphic space sym:
X homeomorphic space Y ←→ Y homeomorphic space X
unfolding homeomorphic space def by (metis homeomorphic maps sym)

lemma homeomorphic space trans [trans]:
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[[X1 homeomorphic space X2 ; X2 homeomorphic space X3 ]] =⇒ X1 homeomor-
phic space X3
unfolding homeomorphic space def by (metis homeomorphic maps compose)

lemma homeomorphic space:
X homeomorphic space Y ←→ (∃ f . homeomorphic map X Y f )

by (simp add : homeomorphic map maps homeomorphic space def )

lemma homeomorphic maps imp homeomorphic space:
homeomorphic maps X Y f g =⇒ X homeomorphic space Y

unfolding homeomorphic space def by metis

lemma homeomorphic map imp homeomorphic space:
homeomorphic map X Y f =⇒ X homeomorphic space Y

unfolding homeomorphic map maps
using homeomorphic space def by blast

lemma homeomorphic empty space:
X homeomorphic space Y =⇒ topspace X = {} ←→ topspace Y = {}

by (metis homeomorphic imp surjective map homeomorphic space image is empty)

lemma homeomorphic empty space eq :
assumes topspace X = {}
shows X homeomorphic space Y ←→ topspace Y = {}

proof −
have ∀ f t . continuous map X (t :: ′b topology) f
using assms continuous map on empty by blast

then show ?thesis
by (metis (no types) assms continuous map on empty empty iff homeomor-

phic empty space homeomorphic maps def homeomorphic space def )
qed

2.2.16 Connected topological spaces

definition connected space :: ′a topology ⇒ bool where
connected space X ≡

¬(∃E1 E2 . openin X E1 ∧ openin X E2 ∧
topspace X ⊆ E1 ∪ E2 ∧ E1 ∩ E2 = {} ∧ E1 6= {} ∧ E2 6= {})

definition connectedin :: ′a topology ⇒ ′a set ⇒ bool where
connectedin X S ≡ S ⊆ topspace X ∧ connected space (subtopology X S )

lemma connected spaceD :
[[connected space X ;
openin X U ; openin X V ; topspace X ⊆ U ∪ V ; U ∩ V = {}; U 6= {}; V 6=

{}]] =⇒ False
by (auto simp: connected space def )

lemma connectedin subset topspace: connectedin X S =⇒ S ⊆ topspace X
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by (simp add : connectedin def )

lemma connectedin topspace:
connectedin X (topspace X ) ←→ connected space X

by (simp add : connectedin def )

lemma connected space subtopology :
connectedin X S =⇒ connected space (subtopology X S )

by (simp add : connectedin def )

lemma connectedin subtopology :
connectedin (subtopology X S ) T ←→ connectedin X T ∧ T ⊆ S

by (force simp: connectedin def subtopology subtopology inf absorb2 )

lemma connected space eq :
connected space X ←→
(@E1 E2 . openin X E1 ∧ openin X E2 ∧ E1 ∪ E2 = topspace X ∧ E1 ∩ E2

= {} ∧ E1 6= {} ∧ E2 6= {})
unfolding connected space def
by (metis openin Un openin subset subset antisym)

lemma connected space closedin:
connected space X ←→
(@E1 E2 . closedin X E1 ∧ closedin X E2 ∧ topspace X ⊆ E1 ∪ E2 ∧

E1 ∩ E2 = {} ∧ E1 6= {} ∧ E2 6= {}) (is ?lhs = ?rhs)
proof
assume ?lhs
then have L:

∧
E1 E2 . [[openin X E1 ; E1 ∩ E2 = {}; topspace X ⊆ E1 ∪ E2 ;

openin X E2 ]] =⇒ E1 = {} ∨ E2 = {}
by (simp add : connected space def )

show ?rhs
unfolding connected space def

proof clarify
fix E1 E2
assume closedin X E1 and closedin X E2 and topspace X ⊆ E1 ∪ E2 and

E1 ∩ E2 = {}
and E1 6= {} and E2 6= {}

have E1 ∪ E2 = topspace X
by (meson Un subset iff 〈closedin X E1 〉 〈closedin X E2 〉 〈topspace X ⊆ E1

∪ E2 〉 closedin def subset antisym)
then have topspace X − E2 = E1
using 〈E1 ∩ E2 = {}〉 by fastforce

then have topspace X = E1
using 〈E1 6= {}〉 L 〈closedin X E1 〉 〈closedin X E2 〉 by blast

then show False
using 〈E1 ∩ E2 = {}〉 〈E1 ∪ E2 = topspace X 〉 〈E2 6= {}〉 by blast

qed
next
assume R: ?rhs
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show ?lhs
unfolding connected space def

proof clarify
fix E1 E2
assume openin X E1 and openin X E2 and topspace X ⊆ E1 ∪ E2 and E1

∩ E2 = {}
and E1 6= {} and E2 6= {}

have E1 ∪ E2 = topspace X
by (meson Un subset iff 〈openin X E1 〉 〈openin X E2 〉 〈topspace X ⊆ E1 ∪

E2 〉 openin closedin eq subset antisym)
then have topspace X − E2 = E1
using 〈E1 ∩ E2 = {}〉 by fastforce

then have topspace X = E1
using 〈E1 6= {}〉 R 〈openin X E1 〉 〈openin X E2 〉 by blast

then show False
using 〈E1 ∩ E2 = {}〉 〈E1 ∪ E2 = topspace X 〉 〈E2 6= {}〉 by blast

qed
qed

lemma connected space closedin eq :
connected space X ←→
(@E1 E2 . closedin X E1 ∧ closedin X E2 ∧

E1 ∪ E2 = topspace X ∧ E1 ∩ E2 = {} ∧ E1 6= {} ∧ E2 6= {})
by (metis closedin Un closedin def connected space closedin subset antisym)

lemma connected space clopen in:
connected space X ←→

(∀T . openin X T ∧ closedin X T −→ T = {} ∨ T = topspace X )
proof −
have eq : openin X E1 ∧ openin X E2 ∧ E1 ∪ E2 = topspace X ∧ E1 ∩ E2 =
{} ∧ P

←→ E2 = topspace X − E1 ∧ openin X E1 ∧ openin X E2 ∧ P for E1 E2
P

using openin subset by blast
show ?thesis
unfolding connected space eq eq closedin def
by (auto simp: openin closedin eq)

qed

lemma connectedin:
connectedin X S ←→

S ⊆ topspace X ∧
(@E1 E2 .

openin X E1 ∧ openin X E2 ∧
S ⊆ E1 ∪ E2 ∧ E1 ∩ E2 ∩ S = {} ∧ E1 ∩ S 6= {} ∧ E2 ∩ S 6= {})

(is ?lhs = ?rhs)
proof −
have ∗: (∃E1 :: ′a set . ∃E2 :: ′a set . (∃T1 :: ′a set . P1 T1 ∧ E1 = f1 T1 ) ∧

(∃T2 :: ′a set . P2 T2 ∧ E2 = f2 T2 ) ∧
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R E1 E2 ) ←→ (∃T1 T2 . P1 T1 ∧ P2 T2 ∧ R(f1 T1 ) (f2 T2 )) for P1
f1 P2 f2 R

by auto
show ?thesis
unfolding connectedin def connected space def openin subtopology topspace subtopology

∗
by (intro conj cong arg cong [where f=Not ] ex cong1 ; blast dest !: openin subset)

qed

lemma connectedin iff connected [simp]: connectedin euclidean S ←→ connected S
by (simp add : connected def connectedin)

lemma connectedin closedin:
connectedin X S ←→

S ⊆ topspace X ∧
¬(∃E1 E2 . closedin X E1 ∧ closedin X E2 ∧

S ⊆ (E1 ∪ E2 ) ∧
(E1 ∩ E2 ∩ S = {}) ∧
¬(E1 ∩ S = {}) ∧ ¬(E2 ∩ S = {}))

proof −
have ∗: (∃E1 :: ′a set . ∃E2 :: ′a set . (∃T1 :: ′a set . P1 T1 ∧ E1 = f1 T1 ) ∧

(∃T2 :: ′a set . P2 T2 ∧ E2 = f2 T2 ) ∧
R E1 E2 ) ←→ (∃T1 T2 . P1 T1 ∧ P2 T2 ∧ R(f1 T1 ) (f2 T2 )) for P1

f1 P2 f2 R
by auto

show ?thesis
unfolding connectedin def connected space closedin closedin subtopology topspace subtopology

∗
by (intro conj cong arg cong [where f=Not ] ex cong1 ; blast dest !: openin subset)

qed

lemma connectedin empty [simp]: connectedin X {}
by (simp add : connectedin)

lemma connected space topspace empty :
topspace X = {} =⇒ connected space X

using connectedin topspace by fastforce

lemma connectedin sing [simp]: connectedin X {a} ←→ a ∈ topspace X
by (simp add : connectedin)

lemma connectedin absolute [simp]:
connectedin (subtopology X S ) S ←→ connectedin X S
by (simp add : connectedin subtopology)

lemma connectedin Union:
assumes U :

∧
S . S ∈ U =⇒ connectedin X S and ne:

⋂
U 6= {}

shows connectedin X (
⋃
U)

proof −
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have
⋃
U ⊆ topspace X

using U by (simp add : Union least connectedin def )
moreover have False
if openin X E1 openin X E2 and cover :

⋃
U ⊆ E1 ∪ E2 and disj : E1 ∩ E2

∩
⋃
U = {}
and overlap1 : E1 ∩

⋃
U 6= {} and overlap2 : E2 ∩

⋃
U 6= {}

for E1 E2
proof −
have disjS : E1 ∩ E2 ∩ S = {} if S ∈ U for S
using Diff triv that disj by auto

have coverS : S ⊆ E1 ∪ E2 if S ∈ U for S
using that cover by blast

have U 6= {}
using overlap1 by blast

obtain a where a:
∧
U . U ∈ U =⇒ a ∈ U

using ne by force
with 〈U 6= {}〉 have a ∈

⋃
U

by blast
then consider a ∈ E1 | a ∈ E2
using 〈

⋃
U ⊆ E1 ∪ E2 〉 by auto

then show False
proof cases
case 1
then obtain b S where b ∈ E2 b ∈ S S ∈ U
using overlap2 by blast

then show ?thesis
using 1 〈openin X E1 〉 〈openin X E2 〉 disjS coverS a [OF 〈S ∈ U 〉] U [OF

〈S ∈ U 〉]
unfolding connectedin
by (meson disjoint iff not equal)

next
case 2
then obtain b S where b ∈ E1 b ∈ S S ∈ U
using overlap1 by blast

then show ?thesis
using 2 〈openin X E1 〉 〈openin X E2 〉 disjS coverS a [OF 〈S ∈ U 〉] U [OF

〈S ∈ U 〉]
unfolding connectedin
by (meson disjoint iff not equal)

qed
qed
ultimately show ?thesis
unfolding connectedin by blast

qed

lemma connectedin Un:
[[connectedin X S ; connectedin X T ; S ∩ T 6= {}]] =⇒ connectedin X (S ∪ T )

using connectedin Union [of {S ,T}] by auto
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lemma connected space subconnected :
connected space X ←→ (∀ x ∈ topspace X . ∀ y ∈ topspace X . ∃S . connectedin X

S ∧ x ∈ S ∧ y ∈ S ) (is ?lhs = ?rhs)
proof
assume ?lhs
then show ?rhs
using connectedin topspace by blast

next
assume R [rule format ]: ?rhs
have False if openin X U openin X V and disj : U ∩ V = {} and cover : topspace

X ⊆ U ∪ V
and U 6= {} V 6= {} for U V

proof −
obtain u v where u ∈ U v ∈ V
using 〈U 6= {}〉 〈V 6= {}〉 by auto

then obtain T where u ∈ T v ∈ T and T : connectedin X T
using R [of u v ] that
by (meson 〈openin X U 〉 〈openin X V 〉 subsetD openin subset)

then show False
using that unfolding connectedin
by (metis IntI 〈u ∈ U 〉 〈v ∈ V 〉 empty iff inf bot left subset trans)

qed
then show ?lhs
by (auto simp: connected space def )

qed

lemma connectedin intermediate closure of :
assumes connectedin X S S ⊆ T T ⊆ X closure of S
shows connectedin X T

proof −
have S : S ⊆ topspace X and T : T ⊆ topspace X
using assms by (meson closure of subset topspace dual order .trans)+

have §:
∧
E1 E2 . [[openin X E1 ; openin X E2 ; E1 ∩ S = {} ∨ E2 ∩ S = {}]]

=⇒ E1 ∩ T = {} ∨ E2 ∩ T = {}
using assms unfolding disjoint iff by (meson in closure of subsetD)

then show ?thesis
using assms
unfolding connectedin closure of subset topspace S T
by (metis Int empty right T dual order .trans inf .orderE inf left commute)

qed

lemma connectedin closure of :
connectedin X S =⇒ connectedin X (X closure of S )

by (meson closure of subset connectedin def connectedin intermediate closure of
subset refl)

lemma connectedin separation:
connectedin X S ←→

S ⊆ topspace X ∧
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(@C1 C2 . C1 ∪ C2 = S ∧ C1 6= {} ∧ C2 6= {} ∧ C1 ∩ X closure of C2
= {} ∧ C2 ∩ X closure of C1 = {}) (is ?lhs = ?rhs)
unfolding connectedin def connected space closedin eq closedin Int closure of topspace subtopology
apply (intro conj cong refl arg cong [where f=Not ])
apply (intro ex cong1 iffI , blast)
using closure of subset Int by force

lemma connectedin eq not separated :
connectedin X S ←→

S ⊆ topspace X ∧
(@C1 C2 . C1 ∪ C2 = S ∧ C1 6= {} ∧ C2 6= {} ∧ separatedin X C1 C2 )

unfolding separatedin def by (metis connectedin separation sup.boundedE )

lemma connectedin eq not separated subset :
connectedin X S ←→

S ⊆ topspace X ∧ (@C1 C2 . S ⊆ C1 ∪ C2 ∧ S ∩ C1 6= {} ∧ S ∩ C2 6= {}
∧ separatedin X C1 C2 )
proof −
have ∀C1 C2 . S ⊆ C1 ∪ C2 −→ S ∩ C1 = {} ∨ S ∩ C2 = {} ∨ ¬ separatedin

X C1 C2
if

∧
C1 C2 . C1 ∪ C2 = S −→ C1 = {} ∨ C2 = {} ∨ ¬ separatedin X C1 C2

proof (intro allI )
fix C1 C2
show S ⊆ C1 ∪ C2 −→ S ∩ C1 = {} ∨ S ∩ C2 = {} ∨ ¬ separatedin X C1

C2
using that [of S ∩ C1 S ∩ C2 ]
by (auto simp: separatedin mono)

qed
then show ?thesis
by (metis Un Int eq(1 ) Un Int eq(2 ) connectedin eq not separated order refl)

qed

lemma connected space eq not separated :
connected space X ←→
(@C1 C2 . C1 ∪ C2 = topspace X ∧ C1 6= {} ∧ C2 6= {} ∧ separatedin X

C1 C2 )
by (simp add : connectedin eq not separated flip: connectedin topspace)

lemma connected space eq not separated subset :
connected space X ←→
(@C1 C2 . topspace X ⊆ C1 ∪ C2 ∧ C1 6= {} ∧ C2 6= {} ∧ separatedin X C1

C2 )
by (metis connected space eq not separated le sup iff separatedin def subset antisym)

lemma connectedin subset separated union:
[[connectedin X C ; separatedin X S T ; C ⊆ S ∪ T ]] =⇒ C ⊆ S ∨ C ⊆ T

unfolding connectedin eq not separated subset by blast

lemma connectedin nonseparated union:
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assumes connectedin X S connectedin X T ¬separatedin X S T
shows connectedin X (S ∪ T )

proof −
have

∧
C1 C2 . [[T ⊆ C1 ∪ C2 ; S ⊆ C1 ∪ C2 ]] =⇒
S ∩ C1 = {} ∧ T ∩ C1 = {} ∨ S ∩ C2 = {} ∧ T ∩ C2 = {} ∨ ¬

separatedin X C1 C2
using assms
unfolding connectedin eq not separated subset
by (metis (no types, lifting) assms connectedin subset separated union inf .orderE

separatedin empty(1 ) separatedin mono separatedin sym)
then show ?thesis
unfolding connectedin eq not separated subset
by (simp add : assms(1 ) assms(2 ) connectedin subset topspace Int Un distrib2 )

qed

lemma connected space closures:
connected space X ←→

(@ e1 e2 . e1 ∪ e2 = topspace X ∧ X closure of e1 ∩ X closure of e2 = {}
∧ e1 6= {} ∧ e2 6= {})

(is ?lhs = ?rhs)
proof
assume ?lhs
then show ?rhs
unfolding connected space closedin eq
by (metis Un upper1 Un upper2 closedin closure of closure of Un closure of eq empty

closure of topspace)
next
assume ?rhs
then show ?lhs
unfolding connected space closedin eq
by (metis closure of eq)

qed

lemma connectedin inter frontier of :
assumes connectedin X S S ∩ T 6= {} S − T 6= {}
shows S ∩ X frontier of T 6= {}

proof −
have S ⊆ topspace X and ∗:∧

E1 E2 . openin X E1 −→ openin X E2 −→ E1 ∩ E2 ∩ S = {} −→ S ⊆ E1
∪ E2 −→ E1 ∩ S = {} ∨ E2 ∩ S = {}

using 〈connectedin X S 〉 by (auto simp: connectedin)
moreover
have S − (topspace X ∩ T ) 6= {}
using assms(3 ) by blast

moreover
have S ∩ topspace X ∩ T 6= {}
using assms(1 ) assms(2 ) connectedin by fastforce

moreover
have False if S ∩ T 6= {} S − T 6= {} T ⊆ topspace X S ∩ X frontier of T =
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{} for T
proof −
have null : S ∩ (X closure of T − X interior of T ) = {}
using that unfolding frontier of def by blast

have X interior of T ∩ (topspace X − X closure of T ) ∩ S = {}
by (metis Diff disjoint inf bot left interior of Int interior of complement inte-

rior of empty)
moreover have S ⊆ X interior of T ∪ (topspace X − X closure of T )
using that 〈S ⊆ topspace X 〉 null by auto

moreover have S ∩ X interior of T 6= {}
using closure of subset that(1 ) that(3 ) null by fastforce

ultimately have S ∩ X interior of (topspace X − T ) = {}
by (metis ∗ inf commute interior of complement openin interior of )

then have topspace (subtopology X S ) ∩ X interior of T = S
using 〈S ⊆ topspace X 〉 interior of complement null by fastforce

then show ?thesis
using that by (metis Diff eq empty iff inf le2 interior of subset subset trans)

qed
ultimately show ?thesis
by (metis Int lower1 frontier of restrict inf assoc)

qed

lemma connectedin continuous map image:
assumes f : continuous map X Y f and connectedin X S
shows connectedin Y (f ‘ S )

proof −
have S ⊆ topspace X and ∗:∧

E1 E2 . openin X E1 −→ openin X E2 −→ E1 ∩ E2 ∩ S = {} −→ S ⊆ E1
∪ E2 −→ E1 ∩ S = {} ∨ E2 ∩ S = {}

using 〈connectedin X S 〉 by (auto simp: connectedin)
show ?thesis
unfolding connectedin connected space def

proof (intro conjI notI ; clarify)
show f x ∈ topspace Y if x ∈ S for x
using 〈S ⊆ topspace X 〉 continuous map image subset topspace f that by blast

next
fix U V
let ?U = {x ∈ topspace X . f x ∈ U }
let ?V = {x ∈ topspace X . f x ∈ V }
assume UV : openin Y U openin Y V f ‘ S ⊆ U ∪ V U ∩ V ∩ f ‘ S = {} U

∩ f ‘ S 6= {} V ∩ f ‘ S 6= {}
then have 1 : ?U ∩ ?V ∩ S = {}
by auto

have 2 : openin X ?U openin X ?V
using 〈openin Y U 〉 〈openin Y V 〉 continuous map f by fastforce+

show False
using ∗ [of ?U ?V ] UV 〈S ⊆ topspace X 〉

by (auto simp: 1 2 )
qed
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qed

lemma homeomorphic connected space:
X homeomorphic space Y =⇒ connected space X ←→ connected space Y

unfolding homeomorphic space def homeomorphic maps def
by (metis connected space subconnected connectedin continuous map image con-

nectedin topspace continuous map image subset topspace image eqI image subset iff )

lemma homeomorphic map connectedness:
assumes f : homeomorphic map X Y f and U : U ⊆ topspace X
shows connectedin Y (f ‘ U ) ←→ connectedin X U

proof −
have 1 : f ‘ U ⊆ topspace Y ←→ U ⊆ topspace X
using U f homeomorphic imp surjective map by blast

moreover have connected space (subtopology Y (f ‘ U )) ←→ connected space
(subtopology X U )
proof (rule homeomorphic connected space)
have f ‘ U ⊆ topspace Y
by (simp add : U 1 )

then have topspace Y ∩ f ‘ U = f ‘ U
by (simp add : subset antisym)

then show subtopology Y (f ‘ U ) homeomorphic space subtopology X U
by (metis (no types) Int subset iff U f homeomorphic map imp homeomorphic space

homeomorphic map subtopologies homeomorphic space sym subset antisym subset refl)
qed
ultimately show ?thesis
by (auto simp: connectedin def )

qed

lemma homeomorphic map connectedness eq :
homeomorphic map X Y f

=⇒ connectedin X U ←→
U ⊆ topspace X ∧ connectedin Y (f ‘ U )

using homeomorphic map connectedness connectedin subset topspace by metis

lemma connectedin discrete topology :
connectedin (discrete topology U ) S ←→ S ⊆ U ∧ (∃ a. S ⊆ {a})

proof (cases S ⊆ U )
case True
show ?thesis
proof (cases S = {})
case False
moreover have connectedin (discrete topology U ) S ←→ (∃ a. S = {a})
proof
show connectedin (discrete topology U ) S =⇒ ∃ a. S = {a}
using False connectedin inter frontier of insert Diff by fastforce

qed (use True in auto)
ultimately show ?thesis
by auto
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qed simp
next
case False
then show ?thesis
by (simp add : connectedin def )

qed

lemma connected space discrete topology :
connected space (discrete topology U ) ←→ (∃ a. U ⊆ {a})

by (metis connectedin discrete topology connectedin topspace order refl topspace discrete topology)

2.2.17 Compact sets

definition compactin where
compactin X S ←→

S ⊆ topspace X ∧
(∀U . (∀U ∈ U . openin X U ) ∧ S ⊆

⋃
U

−→ (∃F . finite F ∧ F ⊆ U ∧ S ⊆
⋃
F))

definition compact space where
compact space X ≡ compactin X (topspace X )

lemma compact space alt :
compact space X ←→

(∀U . (∀U ∈ U . openin X U ) ∧ topspace X ⊆
⋃
U

−→ (∃F . finite F ∧ F ⊆ U ∧ topspace X ⊆
⋃
F))

by (simp add : compact space def compactin def )

lemma compact space:
compact space X ←→

(∀U . (∀U ∈ U . openin X U ) ∧
⋃
U = topspace X

−→ (∃F . finite F ∧ F ⊆ U ∧
⋃
F = topspace X ))

unfolding compact space alt
using openin subset by fastforce

lemma compactinD :
[[compactin X S ;

∧
U . U ∈ U =⇒ openin X U ; S ⊆

⋃
U ]] =⇒ ∃F . finite F ∧ F

⊆ U ∧ S ⊆
⋃
F

by (auto simp: compactin def )

lemma compactin euclidean iff [simp]: compactin euclidean S ←→ compact S
by (simp add : compact eq Heine Borel compactin def ) meson

lemma compactin absolute [simp]:
compactin (subtopology X S ) S ←→ compactin X S

proof −
have eq : (∀U ∈ U . ∃Y . openin X Y ∧ U = Y ∩ S ) ←→ U ⊆ (λY . Y ∩ S ) ‘
{y . openin X y} for U

by auto
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show ?thesis
by (auto simp: compactin def openin subtopology eq imp conjL all subset image

ex finite subset image)
qed

lemma compactin subspace: compactin X S ←→ S ⊆ topspace X ∧ compact space
(subtopology X S )
unfolding compact space def topspace subtopology
by (metis compactin absolute compactin def inf .absorb2 )

lemma compact space subtopology : compactin X S =⇒ compact space (subtopology
X S )
by (simp add : compactin subspace)

lemma compactin subtopology : compactin (subtopology X S ) T ←→ compactin X
T ∧ T ⊆ S

by (metis compactin subspace inf .absorb iff2 le inf iff subtopology subtopology
topspace subtopology)

lemma compactin subset topspace: compactin X S =⇒ S ⊆ topspace X
by (simp add : compactin subspace)

lemma compactin contractive:
[[compactin X ′ S ; topspace X ′ = topspace X ;∧

U . openin X U =⇒ openin X ′ U ]] =⇒ compactin X S
by (simp add : compactin def )

lemma finite imp compactin:
[[S ⊆ topspace X ; finite S ]] =⇒ compactin X S
by (metis compactin subspace compact space finite UnionD inf .absorb iff2 or-

der refl topspace subtopology)

lemma compactin empty [iff ]: compactin X {}
by (simp add : finite imp compactin)

lemma compact space topspace empty :
topspace X = {} =⇒ compact space X
by (simp add : compact space def )

lemma finite imp compactin eq :
finite S =⇒ (compactin X S ←→ S ⊆ topspace X )
using compactin subset topspace finite imp compactin by blast

lemma compactin sing [simp]: compactin X {a} ←→ a ∈ topspace X
by (simp add : finite imp compactin eq)

lemma closed compactin:
assumes XK : compactin X K and C ⊆ K and XC : closedin X C
shows compactin X C
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unfolding compactin def
proof (intro conjI allI impI )
show C ⊆ topspace X
by (simp add : XC closedin subset)

next
fix U :: ′a set set
assume U : Ball U (openin X ) ∧ C ⊆

⋃
U

have (∀U∈insert (topspace X − C ) U . openin X U )
using XC U by blast

moreover have K ⊆
⋃
(insert (topspace X − C ) U)

using U XK compactin subset topspace by fastforce
ultimately obtain F where finite F F ⊆ insert (topspace X − C ) U K ⊆⋃
F
using assms unfolding compactin def by metis

moreover have openin X (topspace X − C )
using XC by auto

ultimately show ∃F . finite F ∧ F ⊆ U ∧ C ⊆
⋃
F

using 〈C ⊆ K 〉

by (rule tac x=F − {topspace X − C} in exI ) auto
qed

lemma closedin compact space:
[[compact space X ; closedin X S ]] =⇒ compactin X S
by (simp add : closed compactin closedin subset compact space def )

lemma compact Int closedin:
assumes compactin X S closedin X T shows compactin X (S ∩ T )

proof −
have compactin (subtopology X S ) (S ∩ T )
by (metis assms closedin compact space closedin subtopology compactin subspace

inf commute)
then show ?thesis
by (simp add : compactin subtopology)

qed

lemma closed Int compactin: [[closedin X S ; compactin X T ]] =⇒ compactin X (S
∩ T )
by (metis compact Int closedin inf commute)

lemma compactin Un:
assumes S : compactin X S and T : compactin X T shows compactin X (S ∪

T )
unfolding compactin def

proof (intro conjI allI impI )
show S ∪ T ⊆ topspace X
using assms by (auto simp: compactin def )

next
fix U :: ′a set set
assume U : Ball U (openin X ) ∧ S ∪ T ⊆

⋃
U
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with S obtain F where V: finite F F ⊆ U S ⊆
⋃
F

unfolding compactin def by (meson sup.bounded iff )
obtain W where finite W W ⊆ U T ⊆

⋃
W

using U T
unfolding compactin def by (meson sup.bounded iff )

with V show ∃V. finite V ∧ V ⊆ U ∧ S ∪ T ⊆
⋃
V

by (rule tac x=F ∪ W in exI ) auto
qed

lemma compactin Union:
[[finite F ;

∧
S . S ∈ F =⇒ compactin X S ]] =⇒ compactin X (

⋃
F)

by (induction rule: finite induct) (simp all add : compactin Un)

lemma compactin subtopology imp compact :
assumes compactin (subtopology X S ) K shows compactin X K
using assms

proof (clarsimp simp add : compactin def )
fix U
define V where V ≡ (λU . U ∩ S ) ‘ U
assume K ⊆ topspace X and K ⊆ S and ∀ x∈U . openin X x and K ⊆

⋃
U

then have ∀V ∈ V. openin (subtopology X S ) V K ⊆
⋃
V

unfolding V def by (auto simp: openin subtopology)
moreover
assume ∀U . (∀ x∈U . openin (subtopology X S ) x ) ∧ K ⊆

⋃
U −→ (∃F . finite

F ∧ F ⊆ U ∧ K ⊆
⋃
F)

ultimately obtain F where finite F F ⊆ V K ⊆
⋃
F

by meson
then have F : ∃U . U ∈ U ∧ V = U ∩ S if V ∈ F for V
unfolding V def using that by blast

let ?F = (λF . @U . U ∈ U ∧ F = U ∩ S ) ‘ F
show ∃F . finite F ∧ F ⊆ U ∧ K ⊆

⋃
F

proof (intro exI conjI )
show finite ?F
using 〈finite F 〉 by blast

show ?F ⊆ U
using someI ex [OF F ] by blast

show K ⊆
⋃
?F

proof clarsimp
fix x
assume x ∈ K
then show ∃V ∈ F . x ∈ (SOME U . U ∈ U ∧ V = U ∩ S )
using 〈K ⊆

⋃
F 〉 someI ex [OF F ]

by (metis (no types, lifting) IntD1 Union iff subsetCE )
qed

qed
qed

lemma compact imp compactin subtopology :
assumes compactin X K K ⊆ S shows compactin (subtopology X S ) K
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using assms
proof (clarsimp simp add : compactin def )
fix U :: ′a set set
define V where V ≡ {V . openin X V ∧ (∃U ∈ U . U = V ∩ S )}
assume K ⊆ S and K ⊆ topspace X and ∀U∈U . openin (subtopology X S ) U

and K ⊆
⋃
U

then have ∀V ∈ V. openin X V K ⊆
⋃
V

unfolding V def by (fastforce simp: subset eq openin subtopology)+
moreover
assume ∀U . (∀U∈U . openin X U ) ∧ K ⊆

⋃
U −→ (∃F . finite F ∧ F ⊆ U ∧

K ⊆
⋃
F)

ultimately obtain F where finite F F ⊆ V K ⊆
⋃
F

by meson
let ?F = (λF . F ∩ S ) ‘ F
show ∃F . finite F ∧ F ⊆ U ∧ K ⊆

⋃
F

proof (intro exI conjI )
show finite ?F
using 〈finite F 〉 by blast

show ?F ⊆ U
using V def 〈F ⊆ V〉 by blast

show K ⊆
⋃
?F

using 〈K ⊆
⋃
F 〉 assms(2 ) by auto

qed
qed

proposition compact space fip:
compact space X ←→
(∀U . (∀C∈U . closedin X C ) ∧ (∀F . finite F ∧ F ⊆ U −→

⋂
F 6= {}) −→⋂

U 6= {})
(is = ?rhs)

proof (cases topspace X = {})
case True
then show ?thesis

unfolding compact space def
by (metis Sup bot conv(1 ) closedin topspace empty compactin empty finite.emptyI

finite UnionD order refl)
next
case False
show ?thesis
proof safe
fix U :: ′a set set
assume ∗ [rule format ]: ∀F . finite F ∧ F ⊆ U −→

⋂
F 6= {}

define V where V ≡ (λS . topspace X − S ) ‘ U
assume clo: ∀C∈U . closedin X C and [simp]:

⋂
U = {}

then have ∀V ∈ V. openin X V topspace X ⊆
⋃
V

by (auto simp: V def )
moreover assume [unfolded compact space alt , rule format , of V]: compact space

X
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ultimately obtain F where F : finite F F ⊆ U topspace X ⊆ topspace X −⋂
F

by (auto simp: ex finite subset image V def )
moreover have F 6= {}
using F 〈topspace X 6= {}〉 by blast

ultimately show False
using ∗ [of F ]
by auto (metis Diff iff Inter iff clo closedin def subsetD)

next
assume R [rule format ]: ?rhs
show compact space X
unfolding compact space alt

proof clarify
fix U :: ′a set set
define V where V ≡ (λS . topspace X − S ) ‘ U
assume ∀C∈U . openin X C and topspace X ⊆

⋃
U

with 〈topspace X 6= {}〉 have ∗: ∀V ∈ V. closedin X V U 6= {}
by (auto simp: V def )

show ∃F . finite F ∧ F ⊆ U ∧ topspace X ⊆
⋃
F

proof (rule ccontr ; simp)
assume ∀F⊆U . finite F −→ ¬ topspace X ⊆

⋃
F

then have ∀F . finite F ∧ F ⊆ V −→
⋂
F 6= {}

by (simp add : V def all finite subset image)
with 〈topspace X ⊆

⋃
U 〉 show False

using R [of V] ∗ by (simp add : V def )
qed

qed
qed

qed

corollary compactin fip:
compactin X S ←→
S ⊆ topspace X ∧
(∀U . (∀C∈U . closedin X C ) ∧ (∀F . finite F ∧ F ⊆ U −→ S ∩

⋂
F 6= {})

−→ S ∩
⋂
U 6= {})

proof (cases S = {})
case False
show ?thesis
proof (cases S ⊆ topspace X )
case True
then have compactin X S ←→

(∀U . U ⊆ (λT . S ∩ T ) ‘ {T . closedin X T} −→
(∀F . finite F −→ F ⊆ U −→

⋂
F 6= {}) −→

⋂
U 6= {})

by (simp add : compact space fip compactin subspace closedin subtopology im-
age def subset eq Int commute imp conjL)

also have . . . = (∀U⊆Collect (closedin X ). (∀F . finite F −→ F ⊆ (∩) S ‘ U
−→

⋂
F 6= {}) −→

⋂
((∩) S ‘ U) 6= {})

by (simp add : all subset image)
also have . . . = (∀U . (∀C∈U . closedin X C ) ∧ (∀F . finite F ∧ F ⊆ U −→
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S ∩
⋂
F 6= {}) −→ S ∩

⋂
U 6= {})

proof −
have eq : ((∀F . finite F ∧ F ⊆ U −→

⋂
((∩) S ‘ F) 6= {}) −→

⋂
((∩) S ‘

U) 6= {}) ←→
((∀F . finite F ∧ F ⊆ U −→ S ∩

⋂
F 6= {}) −→ S ∩

⋂
U 6= {}) for

U
by simp (use 〈S 6= {}〉 in blast)

show ?thesis
unfolding imp conjL [symmetric] all finite subset image eq by blast

qed
finally show ?thesis
using True by simp

qed (simp add : compactin subspace)
qed force

corollary compact space imp nest :
fixes C :: nat ⇒ ′a set
assumes compact space X and clo:

∧
n. closedin X (C n)

and ne:
∧
n. C n 6= {} and inc:

∧
m n. m ≤ n =⇒ C n ⊆ C m

shows (
⋂
n. C n) 6= {}

proof −
let ?U = range (λn.

⋂
m ≤ n. C m)

have closedin X A if A ∈ ?U for A
using that clo by auto

moreover have (
⋂

n∈K .
⋂
m ≤ n. C m) 6= {} if finite K for K

proof −
obtain n where

∧
k . k ∈ K =⇒ k ≤ n

using Max .coboundedI 〈finite K 〉 by blast
with inc have C n ⊆ (

⋂
n∈K .

⋂
m ≤ n. C m)

by blast
with ne [of n] show ?thesis
by blast

qed
ultimately show ?thesis
using 〈compact space X 〉 [unfolded compact space fip, rule format , of ?U ]
by (simp add : all finite subset image INT extend simps UN atMost UNIV del :

INT simps)
qed

lemma compactin discrete topology :
compactin (discrete topology X ) S ←→ S ⊆ X ∧ finite S (is ?lhs = ?rhs)

proof (intro iffI conjI )
assume L: ?lhs
then show S ⊆ X
by (auto simp: compactin def )

have ∗:
∧
U . Ball U (openin (discrete topology X )) ∧ S ⊆

⋃
U =⇒

(∃F . finite F ∧ F ⊆ U ∧ S ⊆
⋃
F)

using L by (auto simp: compactin def )
show finite S

Abstract{_}{\kern 0pt}Topology.html


394

using ∗ [of (λx . {x}) ‘ X ] 〈S ⊆ X 〉

by clarsimp (metis UN singleton finite subset image infinite super)
next
assume ?rhs
then show ?lhs
by (simp add : finite imp compactin)

qed

lemma compact space discrete topology : compact space(discrete topology X ) ←→
finite X
by (simp add : compactin discrete topology compact space def )

lemma compact space imp Bolzano Weierstrass:
assumes compact space X infinite S S ⊆ topspace X
shows X derived set of S 6= {}

proof
assume X : X derived set of S = {}
then have closedin X S
by (simp add : closedin contains derived set assms)

then have compactin X S
by (rule closedin compact space [OF 〈compact space X 〉])

with X show False
by (metis 〈infinite S 〉 compactin subspace compact space discrete topology inf bot right

subtopology eq discrete topology eq)
qed

lemma compactin imp Bolzano Weierstrass:
[[compactin X S ; infinite T ∧ T ⊆ S ]] =⇒ S ∩ X derived set of T 6= {}
using compact space imp Bolzano Weierstrass [of subtopology X S ]
by (simp add : compactin subspace derived set of subtopology inf absorb2 )

lemma compact closure of imp Bolzano Weierstrass:
[[compactin X (X closure of S ); infinite T ; T ⊆ S ; T ⊆ topspace X ]] =⇒ X

derived set of T 6= {}
using closure of mono closure of subset compactin imp Bolzano Weierstrass by

fastforce

lemma discrete compactin eq finite:
S ∩ X derived set of S = {} =⇒ compactin X S ←→ S ⊆ topspace X ∧ finite S
by (meson compactin imp Bolzano Weierstrass finite imp compactin eq order refl)

lemma discrete compact space eq finite:
X derived set of (topspace X ) = {} =⇒ (compact space X ←→ finite(topspace

X ))
by (metis compact space discrete topology discrete topology unique derived set)

lemma image compactin:
assumes cpt : compactin X S and cont : continuous map X Y f
shows compactin Y (f ‘ S )
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unfolding compactin def
proof (intro conjI allI impI )
show f ‘ S ⊆ topspace Y
using compactin subset topspace cont continuous map image subset topspace cpt

by blast
next
fix U :: ′b set set
assume U : Ball U (openin Y ) ∧ f ‘ S ⊆

⋃
U

define V where V ≡ (λU . {x ∈ topspace X . f x ∈ U }) ‘ U
have S ⊆ topspace X
and ∗:

∧
U . [[∀U∈U . openin X U ; S ⊆

⋃
U ]] =⇒ ∃F . finite F ∧ F ⊆ U ∧ S

⊆
⋃
F

using cpt by (auto simp: compactin def )
obtain F where F : finite F F ⊆ V S ⊆

⋃
F

proof −
have 1 : ∀U∈V. openin X U
unfolding V def using U cont [unfolded continuous map] by blast

have 2 : S ⊆
⋃
V

unfolding V def using compactin subset topspace cpt U by fastforce
show thesis
using ∗ [OF 1 2 ] that by metis

qed
have ∀ v ∈ V. ∃U . U ∈ U ∧ v = {x ∈ topspace X . f x ∈ U }
using V def by blast

then obtain U where U : ∀ v ∈ V. U v ∈ U ∧ v = {x ∈ topspace X . f x ∈ U
v}

by metis
show ∃F . finite F ∧ F ⊆ U ∧ f ‘ S ⊆

⋃
F

proof (intro conjI exI )
show finite (U ‘ F)
by (simp add : 〈finite F 〉)

next
show U ‘ F ⊆ U
using 〈F ⊆ V〉 U by auto

next
show f ‘ S ⊆

⋃
(U ‘ F)

using F(2−3 ) U UnionE subset eq U by fastforce
qed

qed

lemma homeomorphic compact space:
assumes X homeomorphic space Y
shows compact space X ←→ compact space Y
using homeomorphic space sym
by (metis assms compact space def homeomorphic eq everything map homeo-

morphic space image compactin)

lemma homeomorphic map compactness:
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assumes hom: homeomorphic map X Y f and U : U ⊆ topspace X
shows compactin Y (f ‘ U ) ←→ compactin X U

proof −
have f ‘ U ⊆ topspace Y
using hom U homeomorphic imp surjective map by blast

moreover have homeomorphic map (subtopology X U ) (subtopology Y (f ‘ U ))
f

using U hom homeomorphic imp surjective map by (blast intro: homeomor-
phic map subtopologies)
then have compact space (subtopology Y (f ‘ U )) = compact space (subtopology

X U )
using homeomorphic compact space homeomorphic map imp homeomorphic space

by blast
ultimately show ?thesis
by (simp add : compactin subspace U )

qed

lemma homeomorphic map compactness eq :
homeomorphic map X Y f

=⇒ compactin X U ←→ U ⊆ topspace X ∧ compactin Y (f ‘ U )
by (meson compactin subset topspace homeomorphic map compactness)

2.2.18 Embedding maps

definition embedding map
where embedding map X Y f ≡ homeomorphic map X (subtopology Y (f ‘

(topspace X ))) f

lemma embedding map eq :
[[embedding map X Y f ;

∧
x . x ∈ topspace X =⇒ f x = g x ]] =⇒ embedding map

X Y g
unfolding embedding map def
by (metis homeomorphic map eq image cong)

lemma embedding map compose:
assumes embedding map X X ′ f embedding map X ′ X ′′ g
shows embedding map X X ′′ (g ◦ f )

proof −
have hm: homeomorphic map X (subtopology X ′ (f ‘ topspace X )) f homeomor-

phic map X ′ (subtopology X ′′ (g ‘ topspace X ′)) g
using assms by (auto simp: embedding map def )

then obtain C where g ‘ topspace X ′ ∩ C = (g ◦ f ) ‘ topspace X
by (metis (no types) Int absorb1 continuous map image subset topspace contin-

uous map in subtopology homeomorphic eq everything map image comp image mono)
then have homeomorphic map (subtopology X ′ (f ‘ topspace X )) (subtopology

X ′′ ((g ◦ f ) ‘ topspace X )) g
by (metis hm homeomorphic imp surjective map homeomorphic map subtopologies

image comp subtopology subtopology topspace subtopology)
then show ?thesis
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unfolding embedding map def
using hm(1 ) homeomorphic map compose by blast

qed

lemma surjective embedding map:
embedding map X Y f ∧ f ‘ (topspace X ) = topspace Y ←→ homeomorphic map

X Y f
by (force simp: embedding map def homeomorphic eq everything map)

lemma embedding map in subtopology :
embedding map X (subtopology Y S ) f ←→ embedding map X Y f ∧ f ‘ (topspace

X ) ⊆ S (is ?lhs = ?rhs)
proof
show ?lhs =⇒ ?rhs
unfolding embedding map def
by (metis continuous map in subtopology homeomorphic imp continuous map

inf absorb2 subtopology subtopology)
qed (simp add : embedding map def inf .absorb iff2 subtopology subtopology)

lemma injective open imp embedding map:
[[continuous map X Y f ; open map X Y f ; inj on f (topspace X )]] =⇒ embed-

ding map X Y f
unfolding embedding map def
by (simp add : continuous map in subtopology continuous open quotient map eq iff

homeomorphic map def open map imp subset open map into subtopology)

lemma injective closed imp embedding map:
[[continuous map X Y f ; closed map X Y f ; inj on f (topspace X )]] =⇒ embed-

ding map X Y f
unfolding embedding map def
by (simp add : closed map imp subset closed map into subtopology continuous closed quotient map

continuous map in subtopology dual order .eq iff homeomorphic map def )

lemma embedding map imp homeomorphic space:
embedding map X Y f =⇒ X homeomorphic space (subtopology Y (f ‘ (topspace

X )))
unfolding embedding map def
using homeomorphic space by blast

lemma embedding imp closed map:
[[embedding map X Y f ; closedin Y (f ‘ topspace X )]] =⇒ closed map X Y f
unfolding closed map def
by (auto simp: closedin closed subtopology embedding map def homeomorphic map closedness eq)

2.2.19 Retraction and section maps

definition retraction maps :: ′a topology ⇒ ′b topology ⇒ ( ′a ⇒ ′b) ⇒ ( ′b ⇒ ′a)
⇒ bool
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where retraction maps X Y f g ≡
continuous map X Y f ∧ continuous map Y X g ∧ (∀ x ∈ topspace Y . f (g

x ) = x )

definition section map :: ′a topology ⇒ ′b topology ⇒ ( ′a ⇒ ′b) ⇒ bool
where section map X Y f ≡ ∃ g . retraction maps Y X g f

definition retraction map :: ′a topology ⇒ ′b topology ⇒ ( ′a ⇒ ′b) ⇒ bool
where retraction map X Y f ≡ ∃ g . retraction maps X Y f g

lemma retraction maps eq :
[[retraction maps X Y f g ;

∧
x . x ∈ topspace X =⇒ f x = f ′ x ;

∧
x . x ∈ topspace

Y =⇒ g x = g ′ x ]]
=⇒ retraction maps X Y f ′ g ′

unfolding retraction maps def by (metis (no types, lifting) continuous map def
continuous map eq)

lemma section map eq :
[[section map X Y f ;

∧
x . x ∈ topspace X =⇒ f x = g x ]] =⇒ section map X Y g

unfolding section map def using retraction maps eq by blast

lemma retraction map eq :
[[retraction map X Y f ;

∧
x . x ∈ topspace X =⇒ f x = g x ]] =⇒ retraction map

X Y g
unfolding retraction map def using retraction maps eq by blast

lemma homeomorphic imp retraction maps:
homeomorphic maps X Y f g =⇒ retraction maps X Y f g
by (simp add : homeomorphic maps def retraction maps def )

lemma section and retraction eq homeomorphic map:
section map X Y f ∧ retraction map X Y f ←→ homeomorphic map X Y f (is

?lhs = ?rhs)
proof
assume ?lhs
then obtain g g ′ where f : continuous map X Y f
and g : continuous map Y X g ∀ x∈topspace X . g (f x ) = x
and g ′: continuous map Y X g ′ ∀ x∈topspace Y . f (g ′ x ) = x
by (auto simp: retraction map def retraction maps def section map def )

then have homeomorphic maps X Y f g
by (force simp add : homeomorphic maps def continuous map def )

then show ?rhs
using homeomorphic map maps by blast

next
assume ?rhs
then show ?lhs
unfolding retraction map def section map def
by (meson homeomorphic imp retraction maps homeomorphic map maps home-

omorphic maps sym)
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qed

lemma section imp embedding map:
section map X Y f =⇒ embedding map X Y f
unfolding section map def embedding map def homeomorphic map maps retrac-

tion maps def homeomorphic maps def
by (force simp: continuous map in subtopology continuous map from subtopology)

lemma retraction imp quotient map:
assumes retraction map X Y f
shows quotient map X Y f
unfolding quotient map def

proof (intro conjI subsetI allI impI )
show f ‘ topspace X = topspace Y
using assms by (force simp: retraction map def retraction maps def continu-

ous map def )
next
fix U
assume U : U ⊆ topspace Y
have openin Y U
if ∀ x∈topspace Y . g x ∈ topspace X ∀ x∈topspace Y . f (g x ) = x

openin Y {x ∈ topspace Y . g x ∈ {x ∈ topspace X . f x ∈ U }} for g
using openin subopen U that by fastforce

then show openin X {x ∈ topspace X . f x ∈ U } = openin Y U
using assms by (auto simp: retraction map def retraction maps def continu-

ous map def )
qed

lemma retraction maps compose:
[[retraction maps X Y f f ′; retraction maps Y Z g g ′]] =⇒ retraction maps X Z

(g ◦ f ) (f ′ ◦ g ′)
by (clarsimp simp: retraction maps def continuous map compose) (simp add : con-

tinuous map def )

lemma retraction map compose:
[[retraction map X Y f ; retraction map Y Z g ]] =⇒ retraction map X Z (g ◦ f )
by (meson retraction map def retraction maps compose)

lemma section map compose:
[[section map X Y f ; section map Y Z g ]] =⇒ section map X Z (g ◦ f )
by (meson retraction maps compose section map def )

lemma surjective section eq homeomorphic map:
section map X Y f ∧ f ‘ (topspace X ) = topspace Y ←→ homeomorphic map X

Y f
by (meson section and retraction eq homeomorphic map section imp embedding map

surjective embedding map)

lemma surjective retraction or section map:
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f ‘ (topspace X ) = topspace Y =⇒ retraction map X Y f ∨ section map X Y f
←→ retraction map X Y f
using section and retraction eq homeomorphic map surjective section eq homeomorphic map

by fastforce

lemma retraction imp surjective map:
retraction map X Y f =⇒ f ‘ (topspace X ) = topspace Y
by (simp add : retraction imp quotient map quotient imp surjective map)

lemma section imp injective map:
[[section map X Y f ; x ∈ topspace X ; y ∈ topspace X ]] =⇒ f x = f y ←→ x = y
by (metis (mono tags, hide lams) retraction maps def section map def )

lemma retraction maps to retract maps:
retraction maps X Y r s

=⇒ retraction maps X (subtopology X (s ‘ (topspace Y ))) (s ◦ r) id
unfolding retraction maps def
by (auto simp: continuous map compose continuous map into subtopology con-

tinuous map from subtopology)

2.2.20 Continuity

lemma continuous on open:
continuous on S f ←→
(∀T . openin (top of set (f ‘ S )) T −→
openin (top of set S ) (S ∩ f −‘ T ))

unfolding continuous on open invariant openin open Int def vimage def Int commute
by (simp add : imp ex imageI conj commute eq commute cong : conj cong)

lemma continuous on closed :
continuous on S f ←→
(∀T . closedin (top of set (f ‘ S )) T −→
closedin (top of set S ) (S ∩ f −‘ T ))

unfolding continuous on closed invariant closedin closed Int def vimage def Int commute
by (simp add : imp ex imageI conj commute eq commute cong : conj cong)

lemma continuous on imp closedin:
assumes continuous on S f closedin (top of set (f ‘ S )) T
shows closedin (top of set S ) (S ∩ f −‘ T )
using assms continuous on closed by blast

lemma continuous map subtopology eu [simp]:
continuous map (top of set S ) (subtopology euclidean T ) h ←→ continuous on S

h ∧ h ‘ S ⊆ T
by (simp add : continuous map in subtopology)

lemma continuous map euclidean top of set :
assumes eq : f −‘ S = UNIV and cont : continuous on UNIV f
shows continuous map euclidean (top of set S ) f
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by (simp add : cont continuous map into subtopology eq image subset iff subset vimage)

2.2.21 Half-global and completely global cases

lemma continuous openin preimage gen:
assumes continuous on S f open T
shows openin (top of set S ) (S ∩ f −‘ T )

proof −
have ∗: (S ∩ f −‘ T ) = (S ∩ f −‘ (T ∩ f ‘ S ))
by auto

have openin (top of set (f ‘ S )) (T ∩ f ‘ S )
using openin open Int [of T f ‘ S , OF assms(2 )] unfolding openin open by

auto
then show ?thesis

using assms(1 )[unfolded continuous on open, THEN spec[where x=T ∩ f ‘
S ]]

using ∗ by auto
qed

lemma continuous closedin preimage:
assumes continuous on S f and closed T
shows closedin (top of set S ) (S ∩ f −‘ T )

proof −
have ∗: (S ∩ f −‘ T ) = (S ∩ f −‘ (T ∩ f ‘ S ))
by auto

have closedin (top of set (f ‘ S )) (T ∩ f ‘ S )
using closedin closed Int [of T f ‘ S , OF assms(2 )]
by (simp add : Int commute)

then show ?thesis
using assms(1 )[unfolded continuous on closed , THEN spec[where x=T ∩ f ‘

S ]]
using ∗ by auto

qed

lemma continuous openin preimage eq :
continuous on S f ←→ (∀T . open T −→ openin (top of set S ) (S ∩ f −‘ T ))

by (metis Int commute continuous on open invariant open openin openin subtopology)

lemma continuous closedin preimage eq :
continuous on S f ←→
(∀T . closed T −→ closedin (top of set S ) (S ∩ f −‘ T ))

by (metis Int commute closedin closed continuous on closed invariant)

lemma continuous open preimage:
assumes contf : continuous on S f and open S open T
shows open (S ∩ f −‘ T )

proof−
obtain U where open U (S ∩ f −‘ T ) = S ∩ U
using continuous openin preimage gen[OF contf 〈open T 〉]
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unfolding openin open by auto
then show ?thesis
using open Int [of S U , OF 〈open S 〉] by auto

qed

lemma continuous closed preimage:
assumes contf : continuous on S f and closed S closed T
shows closed (S ∩ f −‘ T )

proof−
obtain U where closed U (S ∩ f −‘ T ) = S ∩ U
using continuous closedin preimage[OF contf 〈closed T 〉]
unfolding closedin closed by auto

then show ?thesis using closed Int [of S U , OF 〈closed S 〉] by auto
qed

lemma continuous open vimage: open S =⇒ (
∧
x . continuous (at x ) f ) =⇒ open

(f −‘ S )
by (metis continuous on eq continuous within open vimage)

lemma continuous closed vimage: closed S =⇒ (
∧
x . continuous (at x ) f ) =⇒

closed (f −‘ S )
by (simp add : closed vimage continuous on eq continuous within)

lemma Times in interior subtopology :
assumes (x , y) ∈ U openin (top of set (S × T )) U
obtains V W where openin (top of set S ) V x ∈ V

openin (top of set T ) W y ∈ W (V × W ) ⊆ U
proof −
from assms obtain E where open E U = S × T ∩ E (x , y) ∈ E x ∈ S y ∈ T
by (auto simp: openin open)

from open prod elim[OF 〈open E 〉 〈(x , y) ∈ E 〉]
obtain E1 E2 where open E1 open E2 (x , y) ∈ E1 × E2 E1 × E2 ⊆ E
by blast

show ?thesis
proof
show openin (top of set S ) (E1 ∩ S )
openin (top of set T ) (E2 ∩ T )
using 〈open E1 〉 〈open E2 〉

by (auto simp: openin open)
show x ∈ E1 ∩ S y ∈ E2 ∩ T
using 〈(x , y) ∈ E1 × E2 〉 〈x ∈ S 〉 〈y ∈ T 〉 by auto

show (E1 ∩ S ) × (E2 ∩ T ) ⊆ U
using 〈E1 × E2 ⊆ E 〉 〈U = 〉

by (auto simp: )
qed

qed

lemma closedin Times:
closedin (top of set S ) S ′ =⇒ closedin (top of set T ) T ′ =⇒
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closedin (top of set (S × T )) (S ′ × T ′)
unfolding closedin closed using closed Times by blast

lemma openin Times:
openin (top of set S ) S ′ =⇒ openin (top of set T ) T ′ =⇒
openin (top of set (S × T )) (S ′ × T ′)

unfolding openin open using open Times by blast

lemma openin Times eq :
fixes S :: ′a::topological space set and T :: ′b::topological space set
shows
openin (top of set (S × T )) (S ′ × T ′) ←→
S ′ = {} ∨ T ′ = {} ∨ openin (top of set S ) S ′ ∧ openin (top of set T ) T ′

(is ?lhs = ?rhs)
proof (cases S ′ = {} ∨ T ′ = {})
case True
then show ?thesis by auto

next
case False
then obtain x y where x ∈ S ′ y ∈ T ′

by blast
show ?thesis
proof
assume ?lhs
have openin (top of set S ) S ′

proof (subst openin subopen, clarify)
show ∃U . openin (top of set S ) U ∧ x ∈ U ∧ U ⊆ S ′ if x ∈ S ′ for x
using that 〈y ∈ T ′〉 Times in interior subtopology [OF 〈?lhs〉, of x y ]
by simp (metis mem Sigma iff subsetD subsetI )

qed
moreover have openin (top of set T ) T ′

proof (subst openin subopen, clarify)
show ∃U . openin (top of set T ) U ∧ y ∈ U ∧ U ⊆ T ′ if y ∈ T ′ for y
using that 〈x ∈ S ′〉 Times in interior subtopology [OF 〈?lhs〉, of x y ]
by simp (metis mem Sigma iff subsetD subsetI )

qed
ultimately show ?rhs
by simp

next
assume ?rhs
with False show ?lhs
by (simp add : openin Times)

qed
qed

lemma Lim transform within openin:
assumes f : (f −−−→ l) (at a within T )
and openin (top of set T ) S a ∈ S
and eq :

∧
x . [[x ∈ S ; x 6= a]] =⇒ f x = g x
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shows (g −−−→ l) (at a within T )
proof −
have ∀ F x in at a within T . x ∈ T ∧ x 6= a
by (simp add : eventually at filter)

moreover
from 〈openin 〉 obtain U where open U S = T ∩ U
by (auto simp: openin open)

then have a ∈ U using 〈a ∈ S 〉 by auto
from topological tendstoD [OF tendsto ident at 〈open U 〉 〈a ∈ U 〉]
have ∀ F x in at a within T . x ∈ U by auto
ultimately
have ∀ F x in at a within T . f x = g x
by eventually elim (auto simp: 〈S = 〉 eq)

with f show ?thesis
by (rule Lim transform eventually)

qed

lemma continuous on open gen:
assumes f ‘ S ⊆ T
shows continuous on S f ←→

(∀U . openin (top of set T ) U
−→ openin (top of set S ) (S ∩ f −‘ U ))

(is ?lhs = ?rhs)
proof
assume ?lhs
then show ?rhs
by (clarsimp simp add : continuous openin preimage eq openin open)
(metis Int assoc assms image subset iff subset vimage inf .absorb iff1 )

next
assume R [rule format ]: ?rhs
show ?lhs
proof (clarsimp simp add : continuous openin preimage eq)
fix U :: ′a set
assume open U
then have openin (top of set S ) (S ∩ f −‘ (U ∩ T ))
by (metis R inf commute openin open)

then show openin (top of set S ) (S ∩ f −‘ U )
by (metis Int assoc Int commute assms image subset iff subset vimage inf .absorb iff2

vimage Int)
qed

qed

lemma continuous openin preimage:
[[continuous on S f ; f ‘ S ⊆ T ; openin (top of set T ) U ]]

=⇒ openin (top of set S ) (S ∩ f −‘ U )
by (simp add : continuous on open gen)

lemma continuous on closed gen:
assumes f ‘ S ⊆ T
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shows continuous on S f ←→
(∀U . closedin (top of set T ) U
−→ closedin (top of set S ) (S ∩ f −‘ U ))

(is ?lhs = ?rhs)
proof −
have ∗: U ⊆ T =⇒ S ∩ f −‘ (T − U ) = S − (S ∩ f −‘ U ) for U
using assms by blast

show ?thesis
proof
assume L: ?lhs
show ?rhs
proof clarify
fix U
assume closedin (top of set T ) U
then show closedin (top of set S ) (S ∩ f −‘ U )
using L unfolding continuous on open gen [OF assms]
by (metis ∗ closedin def inf le1 topspace euclidean subtopology)

qed
next
assume R [rule format ]: ?rhs
show ?lhs
unfolding continuous on open gen [OF assms]
by (metis ∗ R inf le1 openin closedin eq topspace euclidean subtopology)

qed
qed

lemma continuous closedin preimage gen:
assumes continuous on S f f ‘ S ⊆ T closedin (top of set T ) U
shows closedin (top of set S ) (S ∩ f −‘ U )

using assms continuous on closed gen by blast

lemma continuous transform within openin:
assumes continuous (at a within T ) f
and openin (top of set T ) S a ∈ S
and eq :

∧
x . x ∈ S =⇒ f x = g x

shows continuous (at a within T ) g
using assms by (simp add : Lim transform within openin continuous within)

2.2.22 The topology generated by some (open) subsets

In the definition below of a generated topology, the Empty case is not nec-
essary, as it follows from UN taking for K the empty set. However, it is
convenient to have, and is never a problem in proofs, so I prefer to write it
down explicitly.

We do not require UNIV to be an open set, as this will not be the case
in applications. (We are thinking of a topology on a subset of UNIV, the
remaining part of UNIV being irrelevant.)

inductive generate topology on for S where
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Empty : generate topology on S {}
| Int : generate topology on S a =⇒ generate topology on S b =⇒ generate topology on
S (a ∩ b)
| UN : (

∧
k . k ∈ K =⇒ generate topology on S k) =⇒ generate topology on S (

⋃
K )

| Basis: s ∈ S =⇒ generate topology on S s

lemma istopology generate topology on:
istopology (generate topology on S )

unfolding istopology def by (auto intro: generate topology on.intros)

The basic property of the topology generated by a set S is that it is the
smallest topology containing all the elements of S :

lemma generate topology on coarsest :
assumes T : istopology T

∧
s. s ∈ S =⇒ T s

and gen: generate topology on S s0
shows T s0
using gen

by (induct rule: generate topology on.induct) (use T in 〈auto simp: istopology def 〉)

abbreviation topology generated by ::( ′a set set) ⇒ ( ′a topology)
where topology generated by S ≡ topology (generate topology on S )

lemma openin topology generated by iff :
openin (topology generated by S ) s ←→ generate topology on S s
using topology inverse ′[OF istopology generate topology on[of S ]] by simp

lemma openin topology generated by :
openin (topology generated by S ) s =⇒ generate topology on S s

using openin topology generated by iff by auto

lemma topology generated by topspace [simp]:
topspace (topology generated by S ) = (

⋃
S )

proof
{
fix s assume openin (topology generated by S ) s
then have generate topology on S s by (rule openin topology generated by)
then have s ⊆ (

⋃
S ) by (induct , auto)

}
then show topspace (topology generated by S ) ⊆ (

⋃
S )

unfolding topspace def by auto
next
have generate topology on S (

⋃
S )

using generate topology on.UN [OF generate topology on.Basis, of S S ] by simp
then show (

⋃
S ) ⊆ topspace (topology generated by S )

unfolding topspace def using openin topology generated by iff by auto
qed

lemma topology generated by Basis:
s ∈ S =⇒ openin (topology generated by S ) s
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by (simp only : openin topology generated by iff , auto simp: generate topology on.Basis)

lemma generate topology on Inter :
[[finite F ;

∧
K . K ∈ F =⇒ generate topology on S K ; F 6= {}]] =⇒ gener-

ate topology on S (
⋂
F)

by (induction F rule: finite induct ; force intro: generate topology on.intros)

2.2.23 Topology bases and sub-bases

lemma istopology base alt :
istopology (arbitrary union of P) ←→
(∀S T . (arbitrary union of P) S ∧ (arbitrary union of P) T

−→ (arbitrary union of P) (S ∩ T ))
by (simp add : istopology def ) (blast intro: arbitrary union of Union)

lemma istopology base eq :
istopology (arbitrary union of P) ←→
(∀S T . P S ∧ P T −→ (arbitrary union of P) (S ∩ T ))

by (simp add : istopology base alt arbitrary union of Int eq)

lemma istopology base:
(
∧
S T . [[P S ; P T ]] =⇒ P(S ∩ T )) =⇒ istopology (arbitrary union of P)

by (simp add : arbitrary def istopology base eq union of inc)

lemma openin topology base unique:
openin X = arbitrary union of P ←→

(∀V . P V −→ openin X V ) ∧ (∀U x . openin X U ∧ x ∈ U −→ (∃V . P
V ∧ x ∈ V ∧ V ⊆ U ))

(is ?lhs = ?rhs)
proof
assume ?lhs
then show ?rhs
by (auto simp: union of def arbitrary def )

next
assume R: ?rhs
then have ∗: ∃U⊆Collect P .

⋃
U = S if openin X S for S

using that by (rule tac x={V . P V ∧ V ⊆ S} in exI ) fastforce
from R show ?lhs
by (fastforce simp add : union of def arbitrary def intro: ∗)

qed

lemma topology base unique:
assumes

∧
S . P S =⇒ openin X S∧

U x . [[openin X U ; x ∈ U ]] =⇒ ∃B . P B ∧ x ∈ B ∧ B ⊆ U
shows topology (arbitrary union of P) = X

proof −
have X = topology (openin X )
by (simp add : openin inverse)

also from assms have openin X = arbitrary union of P
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by (subst openin topology base unique) auto
finally show ?thesis ..

qed

lemma topology bases eq aux :
[[(arbitrary union of P) S ;∧

U x . [[P U ; x ∈ U ]] =⇒ ∃V . Q V ∧ x ∈ V ∧ V ⊆ U ]]
=⇒ (arbitrary union of Q) S

by (metis arbitrary union of alt arbitrary union of idempot)

lemma topology bases eq :
[[
∧
U x . [[P U ; x ∈ U ]] =⇒ ∃V . Q V ∧ x ∈ V ∧ V ⊆ U ;∧
V x . [[Q V ; x ∈ V ]] =⇒ ∃U . P U ∧ x ∈ U ∧ U ⊆ V ]]
=⇒ topology (arbitrary union of P) =

topology (arbitrary union of Q)
by (fastforce intro: arg cong [where f=topology ] elim: topology bases eq aux )

lemma istopology subbase:
istopology (arbitrary union of (finite intersection of P relative to S ))
by (simp add : finite intersection of Int istopology base relative to Int)

lemma openin subbase:
openin (topology (arbitrary union of (finite intersection of B relative to U ))) S
←→ (arbitrary union of (finite intersection of B relative to U )) S
by (simp add : istopology subbase topology inverse ′)

lemma topspace subbase [simp]:
topspace(topology (arbitrary union of (finite intersection of B relative to U ))) =

U (is ?lhs = )
proof
show ?lhs ⊆ U

by (metis arbitrary union of relative to openin subbase openin topspace rela-
tive to imp subset)
show U ⊆ ?lhs
by (metis arbitrary union of inc finite intersection of empty inf .orderE istopol-

ogy subbase
openin subset relative to inc subset UNIV topology inverse ′)

qed

lemma minimal topology subbase:
assumes X :

∧
S . P S =⇒ openin X S and openin X U

and S : openin(topology(arbitrary union of (finite intersection of P relative to
U ))) S
shows openin X S
proof −
have (arbitrary union of (finite intersection of P relative to U )) S
using S openin subbase by blast

with X 〈openin X U 〉 show ?thesis
by (force simp add : union of def intersection of def relative to def intro: openin Int Inter)
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qed

lemma istopology subbase UNIV :
istopology (arbitrary union of (finite intersection of P))
by (simp add : istopology base finite intersection of Int)

lemma generate topology on eq :
generate topology on S = arbitrary union of finite ′ intersection of (λx . x ∈ S )

(is ?lhs = ?rhs)
proof (intro ext iffI )
fix A
assume ?lhs A
then show ?rhs A
proof induction
case (Int a b)
then show ?case

by (metis (mono tags, lifting) istopology base alt finite ′ intersection of Int
istopology base)
next
case (UN K )
then show ?case
by (simp add : arbitrary union of Union)

next
case (Basis s)
then show ?case

by (simp add : Sup upper arbitrary union of inc finite ′ intersection of inc
relative to subset)
qed auto

next
fix A
assume ?rhs A
then obtain U where U :

∧
T . T ∈ U =⇒ ∃F . finite ′ F ∧ F ⊆ S ∧

⋂
F = T

and eq : A =
⋃
U

unfolding union of def intersection of def by auto
show ?lhs A
unfolding eq

proof (rule generate topology on.UN )
fix T
assume T ∈ U
with U obtain F where finite ′ F F ⊆ S

⋂
F = T

by blast
have generate topology on S (

⋂
F)

proof (rule generate topology on Inter)
show finite F F 6= {}
by (auto simp: 〈finite ′ F 〉)

show
∧
K . K ∈ F =⇒ generate topology on S K

by (metis 〈F ⊆ S 〉 generate topology on.simps subset iff )
qed

Abstract{_}{\kern 0pt}Topology.html


410

then show generate topology on S T
using 〈

⋂
F = T 〉 by blast

qed
qed

lemma continuous on generated topo iff :
continuous map T1 (topology generated by S ) f ←→

((∀U . U ∈ S −→ openin T1 (f−‘U ∩ topspace(T1 ))) ∧ (f‘(topspace T1 ) ⊆
(
⋃

S )))
unfolding continuous map alt topology generated by topspace
proof (auto simp add : topology generated by Basis)
assume H : ∀U . U ∈ S −→ openin T1 (f −‘ U ∩ topspace T1 )
fix U assume openin (topology generated by S ) U
then have generate topology on S U by (rule openin topology generated by)
then show openin T1 (f −‘ U ∩ topspace T1 )
proof (induct)
fix a b
assume H : openin T1 (f −‘ a ∩ topspace T1 ) openin T1 (f −‘ b ∩ topspace

T1 )
have f −‘ (a ∩ b) ∩ topspace T1 = (f−‘a ∩ topspace T1 ) ∩ (f−‘b ∩ topspace

T1 )
by auto

then show openin T1 (f −‘ (a ∩ b) ∩ topspace T1 ) using H by auto
next
fix K
assume H : openin T1 (f −‘ k ∩ topspace T1 ) if k∈ K for k
define L where L = {f −‘ k ∩ topspace T1 |k . k ∈ K}
have ∗: openin T1 l if l ∈L for l using that H unfolding L def by auto
have openin T1 (

⋃
L) using openin Union[OF ∗] by simp

moreover have (
⋃
L) = (f −‘

⋃
K ∩ topspace T1 ) unfolding L def by auto

ultimately show openin T1 (f −‘
⋃
K ∩ topspace T1 ) by simp

qed (auto simp add : H )
qed

lemma continuous on generated topo:
assumes

∧
U . U ∈S =⇒ openin T1 (f−‘U ∩ topspace(T1 ))

f‘(topspace T1 ) ⊆ (
⋃

S )
shows continuous map T1 (topology generated by S ) f
using assms continuous on generated topo iff by blast

2.2.24 Pullback topology

Pulling back a topology by map gives again a topology. subtopology is a
special case of this notion, pulling back by the identity. We introduce the
general notion as we will need it to define the strong operator topology
on the space of continuous linear operators, by pulling back the product
topology on the space of all functions.

pullback topology A f T is the pullback of the topology T by the map f on
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the set A.

definition pullback topology ::( ′a set) ⇒ ( ′a ⇒ ′b) ⇒ ( ′b topology) ⇒ ( ′a topology)
where pullback topology A f T = topology (λS . ∃U . openin T U ∧ S = f−‘U
∩ A)

lemma istopology pullback topology :
istopology (λS . ∃U . openin T U ∧ S = f−‘U ∩ A)
unfolding istopology def proof (auto)
fix K assume ∀S∈K . ∃U . openin T U ∧ S = f −‘ U ∩ A
then have ∃U . ∀S∈K . openin T (U S ) ∧ S = f−‘(U S ) ∩ A
by (rule bchoice)

then obtain U where U : ∀S∈K . openin T (U S ) ∧ S = f−‘(U S ) ∩ A
by blast

define V where V = (
⋃
S∈K . U S )

have openin T V
⋃
K = f −‘ V ∩ A unfolding V def using U by auto

then show ∃V . openin T V ∧
⋃
K = f −‘ V ∩ A by auto

qed

lemma openin pullback topology :
openin (pullback topology A f T ) S ←→ (∃U . openin T U ∧ S = f−‘U ∩ A)

unfolding pullback topology def topology inverse ′[OF istopology pullback topology ]
by auto

lemma topspace pullback topology :
topspace (pullback topology A f T ) = f−‘(topspace T ) ∩ A

by (auto simp add : topspace def openin pullback topology)

proposition continuous map pullback [intro]:
assumes continuous map T1 T2 g
shows continuous map (pullback topology A f T1 ) T2 (g o f )

unfolding continuous map alt
proof (auto)
fix U :: ′b set assume openin T2 U
then have openin T1 (g−‘U ∩ topspace T1 )
using assms unfolding continuous map alt by auto

have (g o f )−‘U ∩ topspace (pullback topology A f T1 ) = (g o f )−‘U ∩ A ∩
f−‘(topspace T1 )

unfolding topspace pullback topology by auto
also have ... = f−‘(g−‘U ∩ topspace T1 ) ∩ A
by auto

also have openin (pullback topology A f T1 ) (...)
unfolding openin pullback topology using 〈openin T1 (g−‘U ∩ topspace T1 )〉

by auto
finally show openin (pullback topology A f T1 ) ((g ◦ f ) −‘ U ∩ topspace

(pullback topology A f T1 ))
by auto

next
fix x assume x ∈ topspace (pullback topology A f T1 )
then have f x ∈ topspace T1
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unfolding topspace pullback topology by auto
then show g (f x ) ∈ topspace T2
using assms unfolding continuous map def by auto

qed

proposition continuous map pullback ′ [intro]:
assumes continuous map T1 T2 (f o g) topspace T1 ⊆ g−‘A
shows continuous map T1 (pullback topology A f T2 ) g

unfolding continuous map alt
proof (auto)
fix U assume openin (pullback topology A f T2 ) U
then have ∃V . openin T2 V ∧ U = f−‘V ∩ A
unfolding openin pullback topology by auto

then obtain V where openin T2 V U = f−‘V ∩ A
by blast

then have g −‘ U ∩ topspace T1 = g−‘(f−‘V ∩ A) ∩ topspace T1
by blast

also have ... = (f o g)−‘V ∩ (g−‘A ∩ topspace T1 )
by auto

also have ... = (f o g)−‘V ∩ topspace T1
using assms(2 ) by auto

also have openin T1 (...)
using assms(1 ) 〈openin T2 V 〉 by auto

finally show openin T1 (g −‘ U ∩ topspace T1 ) by simp
next
fix x assume x ∈ topspace T1
have (f o g) x ∈ topspace T2
using assms(1 ) 〈x ∈ topspace T1 〉 unfolding continuous map def by auto

then have g x ∈ f−‘(topspace T2 )
unfolding comp def by blast

moreover have g x ∈ A using assms(2 ) 〈x ∈ topspace T1 〉 by blast
ultimately show g x ∈ topspace (pullback topology A f T2 )
unfolding topspace pullback topology by blast

qed

2.2.25 Proper maps (not a priori assumed continuous)

definition proper map
where
proper map X Y f ≡

closed map X Y f ∧ (∀ y ∈ topspace Y . compactin X {x ∈ topspace X . f x
= y})

lemma proper imp closed map:
proper map X Y f =⇒ closed map X Y f
by (simp add : proper map def )

lemma proper map imp subset topspace:
proper map X Y f =⇒ f ‘ (topspace X ) ⊆ topspace Y
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by (simp add : closed map imp subset topspace proper map def )

lemma closed injective imp proper map:
assumes f : closed map X Y f and inj : inj on f (topspace X )
shows proper map X Y f
unfolding proper map def

proof (clarsimp simp: f )
show compactin X {x ∈ topspace X . f x = y}
if y ∈ topspace Y for y

proof −
have {x ∈ topspace X . f x = y} = {} ∨ (∃ a ∈ topspace X . {x ∈ topspace X .

f x = y} = {a})
using inj on eq iff [OF inj ] by auto

then show ?thesis
using that by (metis (no types, lifting) compactin empty compactin sing)

qed
qed

lemma injective imp proper eq closed map:
inj on f (topspace X ) =⇒ (proper map X Y f ←→ closed map X Y f )
using closed injective imp proper map proper imp closed map by blast

lemma homeomorphic imp proper map:
homeomorphic map X Y f =⇒ proper map X Y f

by (simp add : closed injective imp proper map homeomorphic eq everything map)

lemma compactin proper map preimage:
assumes f : proper map X Y f and compactin Y K
shows compactin X {x . x ∈ topspace X ∧ f x ∈ K}

proof −
have f ‘ (topspace X ) ⊆ topspace Y
by (simp add : f proper map imp subset topspace)

have ∗:
∧
y . y ∈ topspace Y =⇒ compactin X {x ∈ topspace X . f x = y}

using f by (auto simp: proper map def )
show ?thesis
unfolding compactin def

proof clarsimp
show ∃F . finite F ∧ F ⊆ U ∧ {x ∈ topspace X . f x ∈ K} ⊆

⋃
F

if U : ∀U∈U . openin X U and sub: {x ∈ topspace X . f x ∈ K} ⊆
⋃
U

for U
proof −
have ∀ y ∈ K . ∃V. finite V ∧ V ⊆ U ∧ {x ∈ topspace X . f x = y} ⊆

⋃
V

proof
fix y
assume y ∈ K
then have compactin X {x ∈ topspace X . f x = y}
by (metis ∗ 〈compactin Y K 〉 compactin subspace subsetD)

with 〈y ∈ K 〉 show ∃V. finite V ∧ V ⊆ U ∧ {x ∈ topspace X . f x = y} ⊆⋃
V

Abstract{_}{\kern 0pt}Topology.html


414

unfolding compactin def using U sub by fastforce
qed
then obtain V where V:

∧
y . y ∈ K =⇒ finite (V y) ∧ V y ⊆ U ∧ {x ∈

topspace X . f x = y} ⊆
⋃

(V y)
by (metis (full types))

define F where F ≡ λy . topspace Y − f ‘ (topspace X −
⋃
(V y))

have ∃F . finite F ∧ F ⊆ F ‘ K ∧ K ⊆
⋃
F

proof (rule compactinD [OF 〈compactin Y K 〉])
have

∧
x . x ∈ K =⇒ closedin Y (f ‘ (topspace X −

⋃
(V x )))

using f unfolding proper map def closed map def
by (meson U V openin Union openin closedin eq subsetD)

then show openin Y U if U ∈ F ‘ K for U
using that by (auto simp: F def )

show K ⊆
⋃
(F ‘ K )

using V 〈compactin Y K 〉 unfolding F def compactin def by fastforce
qed
then obtain J where finite J J ⊆ K and J : K ⊆

⋃
(F ‘ J )

by (auto simp: ex finite subset image)
show ?thesis
unfolding F def

proof (intro exI conjI )
show finite (

⋃
(V ‘ J ))

using V 〈J ⊆ K 〉 〈finite J 〉 by blast
show

⋃
(V ‘ J ) ⊆ U

using V 〈J ⊆ K 〉 by blast
show {x ∈ topspace X . f x ∈ K} ⊆

⋃
(
⋃

(V ‘ J ))
using J 〈J ⊆ K 〉 unfolding F def by auto

qed
qed

qed
qed

lemma compact space proper map preimage:
assumes f : proper map X Y f and fim: f ‘ (topspace X ) = topspace Y and

compact space Y
shows compact space X

proof −
have eq : topspace X = {x ∈ topspace X . f x ∈ topspace Y }
using fim by blast

moreover have compactin Y (topspace Y )
using 〈compact space Y 〉 compact space def by auto

ultimately show ?thesis
unfolding compact space def
using eq f compactin proper map preimage by fastforce

qed

lemma proper map alt :
proper map X Y f ←→
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closed map X Y f ∧ (∀K . compactin Y K −→ compactin X {x . x ∈ topspace
X ∧ f x ∈ K})
proof (intro iffI conjI allI impI )
show compactin X {x ∈ topspace X . f x ∈ K}
if proper map X Y f and compactin Y K for K
using that by (simp add : compactin proper map preimage)

show proper map X Y f
if f : closed map X Y f ∧ (∀K . compactin Y K −→ compactin X {x ∈ topspace

X . f x ∈ K})
proof −
have compactin X {x ∈ topspace X . f x = y} if y ∈ topspace Y for y
proof −
have compactin X {x ∈ topspace X . f x ∈ {y}}
using f compactin sing that by fastforce

then show ?thesis
by auto

qed
with f show ?thesis
by (auto simp: proper map def )

qed
qed (simp add : proper imp closed map)

lemma proper map on empty :
topspace X = {} =⇒ proper map X Y f
by (auto simp: proper map def closed map on empty)

lemma proper map id [simp]:
proper map X X id

proof (clarsimp simp: proper map alt closed map id)
fix K
assume K : compactin X K
then have {a ∈ topspace X . a ∈ K} = K
by (simp add : compactin subspace subset antisym subset iff )

then show compactin X {a ∈ topspace X . a ∈ K}
using K by auto

qed

lemma proper map compose:
assumes proper map X Y f proper map Y Z g
shows proper map X Z (g ◦ f )

proof −
have closed map X Y f and f :

∧
K . compactin Y K =⇒ compactin X {x ∈

topspace X . f x ∈ K}
and closed map Y Z g and g :

∧
K . compactin Z K =⇒ compactin Y {x ∈

topspace Y . g x ∈ K}
using assms by (auto simp: proper map alt)

show ?thesis
unfolding proper map alt

proof (intro conjI allI impI )
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show closed map X Z (g ◦ f )
using 〈closed map X Y f 〉 〈closed map Y Z g〉 closed map compose by blast

have {x ∈ topspace X . g (f x ) ∈ K} = {x ∈ topspace X . f x ∈ {b ∈ topspace
Y . g b ∈ K}} for K

using 〈closed map X Y f 〉 closed map imp subset topspace by blast
then show compactin X {x ∈ topspace X . (g ◦ f ) x ∈ K}
if compactin Z K for K
using f [OF g [OF that ]] by auto

qed
qed

lemma proper map const :
proper map X Y (λx . c) ←→ compact space X ∧ (topspace X = {} ∨ closedin

Y {c})
proof (cases topspace X = {})
case True
then show ?thesis
by (simp add : compact space topspace empty proper map on empty)

next
case False
have ∗: compactin X {x ∈ topspace X . c = y} if compact space X for y
proof (cases c = y)
case True
then show ?thesis
using compact space def 〈compact space X 〉 by auto

qed auto
then show ?thesis
using closed compactin closedin subset
by (force simp: False proper map def closed map const compact space def )

qed

lemma proper map inclusion:
s ⊆ topspace X

=⇒ proper map (subtopology X s) X id ←→ closedin X s ∧ (∀ k . compactin
X k −→ compactin X (s ∩ k))
by (auto simp: proper map alt closed map inclusion eq inf .absorb iff2 Collect conj eq

compactin subtopology intro: closed Int compactin)

2.2.26 Perfect maps (proper, continuous and surjective)

definition perfect map
where perfect map X Y f ≡ continuous map X Y f ∧ proper map X Y f ∧ f ‘

(topspace X ) = topspace Y

lemma homeomorphic imp perfect map:
homeomorphic map X Y f =⇒ perfect map X Y f
by (simp add : homeomorphic eq everything map homeomorphic imp proper map

perfect map def )
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lemma perfect imp quotient map:
perfect map X Y f =⇒ quotient map X Y f

by (simp add : continuous closed imp quotient map perfect map def proper map def )

lemma homeomorphic eq injective perfect map:
homeomorphic map X Y f ←→ perfect map X Y f ∧ inj on f (topspace X )

using homeomorphic imp perfect map homeomorphic map def perfect imp quotient map
by blast

lemma perfect injective eq homeomorphic map:
perfect map X Y f ∧ inj on f (topspace X ) ←→ homeomorphic map X Y f
by (simp add : homeomorphic eq injective perfect map)

lemma perfect map id [simp]: perfect map X X id
by (simp add : homeomorphic imp perfect map)

lemma perfect map compose:
[[perfect map X Y f ; perfect map Y Z g ]] =⇒ perfect map X Z (g ◦ f )
by (meson continuous map compose perfect imp quotient map perfect map def

proper map compose quotient map compose eq quotient map def )

lemma perfect imp continuous map:
perfect map X Y f =⇒ continuous map X Y f
using perfect map def by blast

lemma perfect imp closed map:
perfect map X Y f =⇒ closed map X Y f
by (simp add : perfect map def proper map def )

lemma perfect imp proper map:
perfect map X Y f =⇒ proper map X Y f
by (simp add : perfect map def )

lemma perfect imp surjective map:
perfect map X Y f =⇒ f ‘ (topspace X ) = topspace Y
by (simp add : perfect map def )

end

2.3 Abstract Topology 2

theory Abstract Topology 2
imports
Elementary Topology
Abstract Topology
HOL−Library .Indicator Function

begin

Combination of Elementary and Abstract Topology
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lemma approachable lt le2 :
(∃ (d ::real) > 0 . ∀ x . Q x −→ f x < d −→ P x ) ←→ (∃ d>0 . ∀ x . f x ≤ d −→

Q x −→ P x )
apply auto
apply (rule tac x=d/2 in exI , auto)
done

lemma triangle lemma:
fixes x y z :: real
assumes x : 0 ≤ x
and y : 0 ≤ y
and z : 0 ≤ z
and xy : x 2 ≤ y2 + z 2

shows x ≤ y + z
proof −
have y2 + z 2 ≤ y2 + 2 ∗ y ∗ z + z 2

using z y by simp
with xy have th: x 2 ≤ (y + z )2

by (simp add : power2 eq square field simps)
from y z have yz : y + z ≥ 0
by arith

from power2 le imp le[OF th yz ] show ?thesis .
qed

lemma isCont indicator :
fixes x :: ′a::t2 space
shows isCont (indicator A :: ′a ⇒ real) x = (x /∈ frontier A)

proof auto
fix x
assume cts at : isCont (indicator A :: ′a ⇒ real) x and fr : x ∈ frontier A
with continuous at open have 1 : ∀V ::real set . open V ∧ indicator A x ∈ V −→
(∃U :: ′a set . open U ∧ x ∈ U ∧ (∀ y∈U . indicator A y ∈ V )) by auto

show False
proof (cases x ∈ A)
assume x : x ∈ A
hence indicator A x ∈ ({0<..<2} :: real set) by simp
hence ∃U . open U ∧ x ∈ U ∧ (∀ y∈U . indicator A y ∈ ({0<..<2} :: real set))
using 1 open greaterThanLessThan by blast

then guess U .. note U = this
hence ∀ y∈U . indicator A y > (0 ::real)
unfolding greaterThanLessThan def by auto

hence U ⊆ A using indicator eq 0 iff by force
hence x ∈ interior A using U interiorI by auto
thus ?thesis using fr unfolding frontier def by simp

next
assume x : x /∈ A
hence indicator A x ∈ ({−1<..<1} :: real set) by simp
hence ∃U . open U ∧ x ∈ U ∧ (∀ y∈U . indicator A y ∈ ({−1<..<1} :: real

set))
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using 1 open greaterThanLessThan by blast
then guess U .. note U = this
hence ∀ y∈U . indicator A y < (1 ::real)
unfolding greaterThanLessThan def by auto

hence U ⊆ −A by auto
hence x ∈ interior (−A) using U interiorI by auto
thus ?thesis using fr interior complement unfolding frontier def by auto

qed
next
assume nfr : x /∈ frontier A
hence x ∈ interior A ∨ x ∈ interior (−A)
by (auto simp: frontier def closure interior)

thus isCont ((indicator A):: ′a ⇒ real) x
proof
assume int : x ∈ interior A
then obtain U where U : open U x ∈ U U ⊆ A unfolding interior def by

auto
hence ∀ y∈U . indicator A y = (1 ::real) unfolding indicator def by auto
hence continuous on U (indicator A) by (simp add : indicator eq 1 iff )
thus ?thesis using U continuous on eq continuous at by auto

next
assume ext : x ∈ interior (−A)
then obtain U where U : open U x ∈ U U ⊆ −A unfolding interior def by

auto
then have continuous on U (indicator A)
using continuous on topological by (auto simp: subset iff )

thus ?thesis using U continuous on eq continuous at by auto
qed

qed

lemma closedin limpt :
closedin (top of set T ) S ←→ S ⊆ T ∧ (∀ x . x islimpt S ∧ x ∈ T −→ x ∈ S )
apply (simp add : closedin closed , safe)
apply (simp add : closed limpt islimpt subset)
apply (rule tac x=closure S in exI , simp)
apply (force simp: closure def )
done

lemma closedin closed eq : closed S =⇒ closedin (top of set S ) T ←→ closed T ∧
T ⊆ S
by (meson closedin limpt closed subset closedin closed trans)

lemma connected closed set :
closed S
=⇒ connected S ←→ (@A B . closed A ∧ closed B ∧ A 6= {} ∧ B 6= {} ∧ A ∪

B = S ∧ A ∩ B = {})
unfolding connected closedin eq closedin closed eq connected closedin eq by blast

If a connnected set is written as the union of two nonempty closed sets, then
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these sets have to intersect.

lemma connected as closed union:
assumes connected C C = A ∪ B closed A closed B A 6= {} B 6= {}
shows A ∩ B 6= {}

by (metis assms closed Un connected closed set)

lemma closedin subset trans:
closedin (top of set U ) S =⇒ S ⊆ T =⇒ T ⊆ U =⇒
closedin (top of set T ) S

by (meson closedin limpt subset iff )

lemma openin subset trans:
openin (top of set U ) S =⇒ S ⊆ T =⇒ T ⊆ U =⇒
openin (top of set T ) S

by (auto simp: openin open)

lemma closedin compact :
[[compact S ; closedin (top of set S ) T ]] =⇒ compact T

by (metis closedin closed compact Int closed)

lemma closedin compact eq :
fixes S :: ′a::t2 space set
shows
compact S

=⇒ (closedin (top of set S ) T ←→
compact T ∧ T ⊆ S )

by (metis closedin imp subset closedin compact closed subset compact imp closed)

2.3.1 Closure

lemma euclidean closure of [simp]: euclidean closure of S = closure S
by (auto simp: closure of def closure def islimpt def )

lemma closure openin Int closure:
assumes ope: openin (top of set U ) S and T ⊆ U
shows closure(S ∩ closure T ) = closure(S ∩ T )

proof
obtain V where open V and S : S = U ∩ V
using ope using openin open by metis

show closure (S ∩ closure T ) ⊆ closure (S ∩ T )
proof (clarsimp simp: S )
fix x
assume x ∈ closure (U ∩ V ∩ closure T )
then have V ∩ closure T ⊆ A =⇒ x ∈ closure A for A

by (metis closure mono subsetD inf .coboundedI2 inf assoc)
then have x ∈ closure (T ∩ V )

by (metis 〈open V 〉 closure closure inf commute open Int closure subset)
then show x ∈ closure (U ∩ V ∩ T )
by (metis 〈T ⊆ U 〉 inf .absorb iff2 inf assoc inf commute)
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qed
next
show closure (S ∩ T ) ⊆ closure (S ∩ closure T )
by (meson Int mono closure mono closure subset order refl)

qed

corollary infinite openin:
fixes S :: ′a :: t1 space set
shows [[openin (top of set U ) S ; x ∈ S ; x islimpt U ]] =⇒ infinite S
by (clarsimp simp add : openin open islimpt eq acc point inf commute)

lemma closure Int ballI :
assumes

∧
U . [[openin (top of set S ) U ; U 6= {}]] =⇒ T ∩ U 6= {}

shows S ⊆ closure T
proof (clarsimp simp: closure iff nhds not empty)
fix x and A and V
assume x ∈ S V ⊆ A open V x ∈ V T ∩ A = {}
then have openin (top of set S ) (A ∩ V ∩ S )
by (auto simp: openin open intro!: exI [where x=V ])

moreover have A ∩ V ∩ S 6= {} using 〈x ∈ V 〉 〈V ⊆ A〉 〈x ∈ S 〉

by auto
ultimately have T ∩ (A ∩ V ∩ S ) 6= {}
by (rule assms)

with 〈T ∩ A = {}〉 show False by auto
qed

2.3.2 Frontier

lemma euclidean interior of [simp]: euclidean interior of S = interior S
by (auto simp: interior of def interior def )

lemma euclidean frontier of [simp]: euclidean frontier of S = frontier S
by (auto simp: frontier of def frontier def )

lemma connected Int frontier :
[[connected s; s ∩ t 6= {}; s − t 6= {}]] =⇒ (s ∩ frontier t 6= {})

apply (simp add : frontier interiors connected openin, safe)
apply (drule tac x=s ∩ interior t in spec, safe)
apply (drule tac [2 ] x=s ∩ interior (−t) in spec)
apply (auto simp: disjoint eq subset Compl dest : interior subset [THEN sub-

setD ])
done

2.3.3 Compactness

lemma openin delete:
fixes a :: ′a :: t1 space
shows openin (top of set u) s

=⇒ openin (top of set u) (s − {a})
by (metis Int Diff open delete openin open)
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lemma compact eq openin cover :
compact S ←→
(∀C . (∀ c∈C . openin (top of set S ) c) ∧ S ⊆

⋃
C −→

(∃D⊆C . finite D ∧ S ⊆
⋃
D))

proof safe
fix C
assume compact S and ∀ c∈C . openin (top of set S ) c and S ⊆

⋃
C

then have ∀ c∈{T . open T ∧ S ∩ T ∈ C}. open c and S ⊆
⋃
{T . open T ∧

S ∩ T ∈ C}
unfolding openin open by force+

with 〈compact S 〉 obtain D where D ⊆ {T . open T ∧ S ∩ T ∈ C} and finite
D and S ⊆

⋃
D

by (meson compactE )
then have image (λT . S ∩ T ) D ⊆ C ∧ finite (image (λT . S ∩ T ) D) ∧ S ⊆⋃
(image (λT . S ∩ T ) D)
by auto

then show ∃D⊆C . finite D ∧ S ⊆
⋃
D ..

next
assume 1 : ∀C . (∀ c∈C . openin (top of set S ) c) ∧ S ⊆

⋃
C −→

(∃D⊆C . finite D ∧ S ⊆
⋃
D)

show compact S
proof (rule compactI )
fix C
let ?C = image (λT . S ∩ T ) C
assume ∀ t∈C . open t and S ⊆

⋃
C

then have (∀ c∈?C . openin (top of set S ) c) ∧ S ⊆
⋃

?C
unfolding openin open by auto

with 1 obtain D where D ⊆ ?C and finite D and S ⊆
⋃
D

by metis
let ?D = inv into C (λT . S ∩ T ) ‘ D
have ?D ⊆ C ∧ finite ?D ∧ S ⊆

⋃
?D

proof (intro conjI )
from 〈D ⊆ ?C 〉 show ?D ⊆ C
by (fast intro: inv into into)

from 〈finite D 〉 show finite ?D
by (rule finite imageI )

from 〈S ⊆
⋃
D 〉 show S ⊆

⋃
?D

apply (rule subset trans)
by (metis Int Union Int lower2 〈D ⊆ (∩) S ‘ C 〉 image inv into cancel)

qed
then show ∃D⊆C . finite D ∧ S ⊆

⋃
D ..

qed
qed

2.3.4 Continuity

lemma interior image subset :
assumes inj f

∧
x . continuous (at x ) f
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shows interior (f ‘ S ) ⊆ f ‘ (interior S )
proof
fix x assume x ∈ interior (f ‘ S )
then obtain T where as: open T x ∈ T T ⊆ f ‘ S ..
then have x ∈ f ‘ S by auto
then obtain y where y : y ∈ S x = f y by auto
have open (f −‘ T )
using assms 〈open T 〉 by (simp add : continuous at imp continuous on open vimage)
moreover have y ∈ vimage f T
using 〈x = f y〉 〈x ∈ T 〉 by simp

moreover have vimage f T ⊆ S
using 〈T ⊆ image f S 〉 〈inj f 〉 unfolding inj on def subset eq by auto

ultimately have y ∈ interior S ..
with 〈x = f y〉 show x ∈ f ‘ interior S ..

qed

2.3.5 Equality of continuous functions on closure and related
results

lemma continuous closedin preimage constant :
fixes f :: ⇒ ′b::t1 space
shows continuous on S f =⇒ closedin (top of set S ) {x ∈ S . f x = a}
using continuous closedin preimage[of S f {a}] by (simp add : vimage def Col-

lect conj eq)

lemma continuous closed preimage constant :
fixes f :: ⇒ ′b::t1 space
shows continuous on S f =⇒ closed S =⇒ closed {x ∈ S . f x = a}
using continuous closed preimage[of S f {a}] by (simp add : vimage def Col-

lect conj eq)

lemma continuous constant on closure:
fixes f :: ⇒ ′b::t1 space
assumes continuous on (closure S ) f

and
∧
x . x ∈ S =⇒ f x = a

and x ∈ closure S
shows f x = a
using continuous closed preimage constant [of closure S f a]
assms closure minimal [of S {x ∈ closure S . f x = a}] closure subset

unfolding subset eq
by auto

lemma image closure subset :
assumes contf : continuous on (closure S ) f
and closed T
and (f ‘ S ) ⊆ T

shows f ‘ (closure S ) ⊆ T
proof −
have S ⊆ {x ∈ closure S . f x ∈ T}
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using assms(3 ) closure subset by auto
moreover have closed (closure S ∩ f −‘ T )
using continuous closed preimage[OF contf ] 〈closed T 〉 by auto

ultimately have closure S = (closure S ∩ f −‘ T )
using closure minimal [of S (closure S ∩ f −‘ T )] by auto

then show ?thesis by auto
qed

2.3.6 A function constant on a set

definition constant on (infixl (constant ′ on) 50 )
where f constant on A ≡ ∃ y . ∀ x∈A. f x = y

lemma constant on subset : [[f constant on A; B ⊆ A]] =⇒ f constant on B
unfolding constant on def by blast

lemma injective not constant :
fixes S :: ′a::{perfect space} set
shows [[open S ; inj on f S ; f constant on S ]] =⇒ S = {}

unfolding constant on def
by (metis equals0I inj on contraD islimpt UNIV islimpt def )

lemma constant on closureI :
fixes f :: ⇒ ′b::t1 space
assumes cof : f constant on S and contf : continuous on (closure S ) f
shows f constant on (closure S )

using continuous constant on closure [OF contf ] cof unfolding constant on def
by metis

2.3.7 Continuity relative to a union.

lemma continuous on Un local :
[[closedin (top of set (s ∪ t)) s; closedin (top of set (s ∪ t)) t ;
continuous on s f ; continuous on t f ]]
=⇒ continuous on (s ∪ t) f

unfolding continuous on closedin limpt
by (metis Lim trivial limit Lim within union Un iff trivial limit within)

lemma continuous on cases local :
[[closedin (top of set (s ∪ t)) s; closedin (top of set (s ∪ t)) t ;
continuous on s f ; continuous on t g ;∧
x . [[x ∈ s ∧ ¬P x ∨ x ∈ t ∧ P x ]] =⇒ f x = g x ]]

=⇒ continuous on (s ∪ t) (λx . if P x then f x else g x )
by (rule continuous on Un local) (auto intro: continuous on eq)

lemma continuous on cases le:
fixes h :: ′a :: topological space ⇒ real
assumes continuous on {t ∈ s. h t ≤ a} f

and continuous on {t ∈ s. a ≤ h t} g
and h: continuous on s h
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and
∧
t . [[t ∈ s; h t = a]] =⇒ f t = g t

shows continuous on s (λt . if h t ≤ a then f (t) else g(t))
proof −
have s: s = (s ∩ h −‘ atMost a) ∪ (s ∩ h −‘ atLeast a)
by force

have 1 : closedin (top of set s) (s ∩ h −‘ atMost a)
by (rule continuous closedin preimage [OF h closed atMost ])

have 2 : closedin (top of set s) (s ∩ h −‘ atLeast a)
by (rule continuous closedin preimage [OF h closed atLeast ])

have eq : s ∩ h −‘ {..a} = {t ∈ s. h t ≤ a} s ∩ h −‘ {a..} = {t ∈ s. a ≤ h t}
by auto

show ?thesis
apply (rule continuous on subset [of s, OF order refl ])
apply (subst s)
apply (rule continuous on cases local)
using 1 2 s assms apply (auto simp: eq)
done

qed

lemma continuous on cases 1 :
fixes s :: real set
assumes continuous on {t ∈ s. t ≤ a} f

and continuous on {t ∈ s. a ≤ t} g
and a ∈ s =⇒ f a = g a

shows continuous on s (λt . if t ≤ a then f (t) else g(t))
using assms
by (auto intro: continuous on cases le [where h = id , simplified ])

2.3.8 Inverse function property for open/closed maps

lemma continuous on inverse open map:
assumes contf : continuous on S f
and imf : f ‘ S = T
and injf :

∧
x . x ∈ S =⇒ g (f x ) = x

and oo:
∧
U . openin (top of set S ) U =⇒ openin (top of set T ) (f ‘ U )

shows continuous on T g
proof −
from imf injf have gTS : g ‘ T = S
by force

from imf injf have fU : U ⊆ S =⇒ (f ‘ U ) = T ∩ g −‘ U for U
by force

show ?thesis
by (simp add : continuous on open [of T g ] gTS ) (metis openin imp subset fU

oo)
qed

lemma continuous on inverse closed map:
assumes contf : continuous on S f
and imf : f ‘ S = T
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and injf :
∧
x . x ∈ S =⇒ g(f x ) = x

and oo:
∧
U . closedin (top of set S ) U =⇒ closedin (top of set T ) (f ‘ U )

shows continuous on T g
proof −
from imf injf have gTS : g ‘ T = S
by force

from imf injf have fU : U ⊆ S =⇒ (f ‘ U ) = T ∩ g −‘ U for U
by force

show ?thesis
by (simp add : continuous on closed [of T g ] gTS ) (metis closedin imp subset

fU oo)
qed

lemma homeomorphism injective open map:
assumes contf : continuous on S f
and imf : f ‘ S = T
and injf : inj on f S
and oo:

∧
U . openin (top of set S ) U =⇒ openin (top of set T ) (f ‘ U )

obtains g where homeomorphism S T f g
proof
have continuous on T (inv into S f )
by (metis contf continuous on inverse open map imf injf inv into f f oo)

with imf injf contf show homeomorphism S T f (inv into S f )
by (auto simp: homeomorphism def )

qed

lemma homeomorphism injective closed map:
assumes contf : continuous on S f
and imf : f ‘ S = T
and injf : inj on f S
and oo:

∧
U . closedin (top of set S ) U =⇒ closedin (top of set T ) (f ‘ U )

obtains g where homeomorphism S T f g
proof
have continuous on T (inv into S f )
by (metis contf continuous on inverse closed map imf injf inv into f f oo)

with imf injf contf show homeomorphism S T f (inv into S f )
by (auto simp: homeomorphism def )

qed

lemma homeomorphism imp open map:
assumes hom: homeomorphism S T f g
and oo: openin (top of set S ) U

shows openin (top of set T ) (f ‘ U )
proof −
from hom oo have [simp]: f ‘ U = T ∩ g −‘ U
using openin subset by (fastforce simp: homeomorphism def rev image eqI )

from hom have continuous on T g
unfolding homeomorphism def by blast

moreover have g ‘ T = S
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by (metis hom homeomorphism def )
ultimately show ?thesis
by (simp add : continuous on open oo)

qed

lemma homeomorphism imp closed map:
assumes hom: homeomorphism S T f g
and oo: closedin (top of set S ) U

shows closedin (top of set T ) (f ‘ U )
proof −
from hom oo have [simp]: f ‘ U = T ∩ g −‘ U
using closedin subset by (fastforce simp: homeomorphism def rev image eqI )

from hom have continuous on T g
unfolding homeomorphism def by blast

moreover have g ‘ T = S
by (metis hom homeomorphism def )

ultimately show ?thesis
by (simp add : continuous on closed oo)

qed

2.3.9 Seperability

lemma subset second countable:
obtains B :: ′a:: second countable topology set set
where countable B

{} /∈ B∧
C . C ∈ B =⇒ openin(top of set S ) C∧
T . openin(top of set S ) T =⇒ ∃U . U ⊆ B ∧ T =

⋃
U

proof −
obtain B :: ′a set set
where countable B
and opeB :

∧
C . C ∈ B =⇒ openin(top of set S ) C

and B:
∧
T . openin(top of set S ) T =⇒ ∃U . U ⊆ B ∧ T =

⋃
U

proof −
obtain C :: ′a set set
where countable C and ope:

∧
C . C ∈ C =⇒ open C

and C:
∧
S . open S =⇒ ∃U . U ⊆ C ∧ S =

⋃
U

by (metis univ second countable that)
show ?thesis
proof
show countable ((λC . S ∩ C ) ‘ C)
by (simp add : 〈countable C〉)

show
∧
C . C ∈ (∩) S ‘ C =⇒ openin (top of set S ) C

using ope by auto
show

∧
T . openin (top of set S ) T =⇒ ∃U⊆(∩) S ‘ C. T =

⋃
U

by (metis C image mono inf Sup openin open)
qed

qed
show ?thesis
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proof
show countable (B − {{}})
using 〈countable B〉 by blast

show
∧
C . [[C ∈ B − {{}}]] =⇒ openin (top of set S ) C

by (simp add : 〈
∧
C . C ∈ B =⇒ openin (top of set S ) C 〉)

show ∃U⊆B − {{}}. T =
⋃
U if openin (top of set S ) T for T

using B [OF that ]
apply clarify
apply (rule tac x=U − {{}} in exI , auto)
done

qed auto
qed

lemma Lindelof openin:
fixes F :: ′a::second countable topology set set
assumes

∧
S . S ∈ F =⇒ openin (top of set U ) S

obtains F ′ where F ′ ⊆ F countable F ′ ⋃F ′ =
⋃
F

proof −
have

∧
S . S ∈ F =⇒ ∃T . open T ∧ S = U ∩ T

using assms by (simp add : openin open)
then obtain tf where tf :

∧
S . S ∈ F =⇒ open (tf S ) ∧ (S = U ∩ tf S )

by metis
have [simp]:

∧
F ′. F ′ ⊆ F =⇒

⋃
F ′ = U ∩

⋃
(tf ‘ F ′)

using tf by fastforce
obtain G where countable G ∧ G ⊆ tf ‘ F

⋃
G =

⋃
(tf ‘ F)

using tf by (force intro: Lindelof [of tf ‘ F ])
then obtain F ′ where F ′: F ′ ⊆ F countable F ′ ⋃F ′ =

⋃
F

by (clarsimp simp add : countable subset image)
then show ?thesis ..

qed

2.3.10 Closed Maps

lemma continuous imp closed map:
fixes f :: ′a::t2 space ⇒ ′b::t2 space
assumes closedin (top of set S ) U

continuous on S f f ‘ S = T compact S
shows closedin (top of set T ) (f ‘ U )

by (metis assms closedin compact eq compact continuous image continuous on subset
subset image iff )

lemma closed map restrict :
assumes cloU : closedin (top of set (S ∩ f −‘ T ′)) U
and cc:

∧
U . closedin (top of set S ) U =⇒ closedin (top of set T ) (f ‘ U )

and T ′ ⊆ T
shows closedin (top of set T ′) (f ‘ U )

proof −
obtain V where closed V U = S ∩ f −‘ T ′ ∩ V
using cloU by (auto simp: closedin closed)
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with cc [of S ∩ V ] 〈T ′ ⊆ T 〉 show ?thesis
by (fastforce simp add : closedin closed)

qed

2.3.11 Open Maps

lemma open map restrict :
assumes opeU : openin (top of set (S ∩ f −‘ T ′)) U
and oo:

∧
U . openin (top of set S ) U =⇒ openin (top of set T ) (f ‘ U )

and T ′ ⊆ T
shows openin (top of set T ′) (f ‘ U )

proof −
obtain V where open V U = S ∩ f −‘ T ′ ∩ V
using opeU by (auto simp: openin open)

with oo [of S ∩ V ] 〈T ′ ⊆ T 〉 show ?thesis
by (fastforce simp add : openin open)

qed

2.3.12 Quotient maps

lemma quotient map imp continuous open:
assumes T : f ‘ S ⊆ T

and ope:
∧
U . U ⊆ T

=⇒ (openin (top of set S ) (S ∩ f −‘ U ) ←→
openin (top of set T ) U )

shows continuous on S f
proof −
have [simp]: S ∩ f −‘ f ‘ S = S by auto
show ?thesis
by (meson T continuous on open gen ope openin imp subset)

qed

lemma quotient map imp continuous closed :
assumes T : f ‘ S ⊆ T

and ope:
∧
U . U ⊆ T

=⇒ (closedin (top of set S ) (S ∩ f −‘ U ) ←→
closedin (top of set T ) U )

shows continuous on S f
proof −
have [simp]: S ∩ f −‘ f ‘ S = S by auto
show ?thesis
by (meson T closedin imp subset continuous on closed gen ope)

qed

lemma open map imp quotient map:
assumes contf : continuous on S f

and T : T ⊆ f ‘ S
and ope:

∧
T . openin (top of set S ) T

=⇒ openin (top of set (f ‘ S )) (f ‘ T )
shows openin (top of set S ) (S ∩ f −‘ T ) =
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openin (top of set (f ‘ S )) T
proof −
have T = f ‘ (S ∩ f −‘ T )
using T by blast

then show ?thesis
using ope contf continuous on open by metis

qed

lemma closed map imp quotient map:
assumes contf : continuous on S f

and T : T ⊆ f ‘ S
and ope:

∧
T . closedin (top of set S ) T

=⇒ closedin (top of set (f ‘ S )) (f ‘ T )
shows openin (top of set S ) (S ∩ f −‘ T ) ←→

openin (top of set (f ‘ S )) T
(is ?lhs = ?rhs)

proof
assume ?lhs
then have ∗: closedin (top of set S ) (S − (S ∩ f −‘ T ))
using closedin diff by fastforce

have [simp]: (f ‘ S − f ‘ (S − (S ∩ f −‘ T ))) = T
using T by blast

show ?rhs
using ope [OF ∗, unfolded closedin def ] by auto

next
assume ?rhs
with contf show ?lhs
by (auto simp: continuous on open)

qed

lemma continuous right inverse imp quotient map:
assumes contf : continuous on S f and imf : f ‘ S ⊆ T

and contg : continuous on T g and img : g ‘ T ⊆ S
and fg [simp]:

∧
y . y ∈ T =⇒ f (g y) = y

and U : U ⊆ T
shows openin (top of set S ) (S ∩ f −‘ U ) ←→

openin (top of set T ) U
(is ?lhs = ?rhs)

proof −
have f :

∧
Z . openin (top of set (f ‘ S )) Z =⇒
openin (top of set S ) (S ∩ f −‘ Z )

and g :
∧
Z . openin (top of set (g ‘ T )) Z =⇒
openin (top of set T ) (T ∩ g −‘ Z )

using contf contg by (auto simp: continuous on open)
show ?thesis
proof
have T ∩ g −‘ (g ‘ T ∩ (S ∩ f −‘ U )) = {x ∈ T . f (g x ) ∈ U }
using imf img by blast

also have ... = U
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using U by auto
finally have eq : T ∩ g −‘ (g ‘ T ∩ (S ∩ f −‘ U )) = U .
assume ?lhs
then have ∗: openin (top of set (g ‘ T )) (g ‘ T ∩ (S ∩ f −‘ U ))
by (meson img openin Int openin subtopology Int subset openin subtopology self )
show ?rhs
using g [OF ∗] eq by auto

next
assume rhs: ?rhs
show ?lhs
by (metis f fg image eqI image subset iff imf img openin subopen openin subtopology self

openin trans rhs)
qed

qed

lemma continuous left inverse imp quotient map:
assumes continuous on S f

and continuous on (f ‘ S ) g
and

∧
x . x ∈ S =⇒ g(f x ) = x

and U ⊆ f ‘ S
shows openin (top of set S ) (S ∩ f −‘ U ) ←→

openin (top of set (f ‘ S )) U
apply (rule continuous right inverse imp quotient map)
using assms apply force+
done

lemma continuous imp quotient map:
fixes f :: ′a::t2 space ⇒ ′b::t2 space
assumes continuous on S f f ‘ S = T compact S U ⊆ T
shows openin (top of set S ) (S ∩ f −‘ U ) ←→

openin (top of set T ) U
by (metis (no types, lifting) assms closed map imp quotient map continuous imp closed map)

2.3.13 Pasting lemmas for functions, for of casewise defini-
tions

on open sets

lemma pasting lemma:
assumes ope:

∧
i . i ∈ I =⇒ openin X (T i)

and cont :
∧
i . i ∈ I =⇒ continuous map(subtopology X (T i)) Y (f i)

and f :
∧
i j x . [[i ∈ I ; j ∈ I ; x ∈ topspace X ∩ T i ∩ T j ]] =⇒ f i x = f j x

and g :
∧
x . x ∈ topspace X =⇒ ∃ j . j ∈ I ∧ x ∈ T j ∧ g x = f j x

shows continuous map X Y g
unfolding continuous map openin preimage eq

proof (intro conjI allI impI )
show g ‘ topspace X ⊆ topspace Y
using g cont continuous map image subset topspace by fastforce

next
fix U
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assume Y : openin Y U
have T : T i ⊆ topspace X if i ∈ I for i
using ope by (simp add : openin subset that)

have ∗: topspace X ∩ g −‘ U = (
⋃

i ∈ I . T i ∩ f i −‘ U )
using f g T by fastforce

have
∧
i . i ∈ I =⇒ openin X (T i ∩ f i −‘ U )

using cont unfolding continuous map openin preimage eq
by (metis Y T inf .commute inf absorb1 ope topspace subtopology openin trans full)
then show openin X (topspace X ∩ g −‘ U )
by (auto simp: ∗)

qed

lemma pasting lemma exists:
assumes X : topspace X ⊆ (

⋃
i ∈ I . T i)

and ope:
∧
i . i ∈ I =⇒ openin X (T i)

and cont :
∧
i . i ∈ I =⇒ continuous map (subtopology X (T i)) Y (f i)

and f :
∧
i j x . [[i ∈ I ; j ∈ I ; x ∈ topspace X ∩ T i ∩ T j ]] =⇒ f i x = f j x

obtains g where continuous map X Y g
∧
x i . [[i ∈ I ; x ∈ topspace X ∩ T i ]]

=⇒ g x = f i x
proof
let ?h = λx . f (SOME i . i ∈ I ∧ x ∈ T i) x
show continuous map X Y ?h
apply (rule pasting lemma [OF ope cont ])
apply (blast intro: f )+
by (metis (no types, lifting) UN E X subsetD someI ex )

show f (SOME i . i ∈ I ∧ x ∈ T i) x = f i x if i ∈ I x ∈ topspace X ∩ T i for
i x

by (metis (no types, lifting) IntD2 IntI f someI ex that)
qed

lemma pasting lemma locally finite:
assumes fin:

∧
x . x ∈ topspace X =⇒ ∃V . openin X V ∧ x ∈ V ∧ finite {i ∈

I . T i ∩ V 6= {}}
and clo:

∧
i . i ∈ I =⇒ closedin X (T i)

and cont :
∧
i . i ∈ I =⇒ continuous map(subtopology X (T i)) Y (f i)

and f :
∧
i j x . [[i ∈ I ; j ∈ I ; x ∈ topspace X ∩ T i ∩ T j ]] =⇒ f i x = f j x

and g :
∧
x . x ∈ topspace X =⇒ ∃ j . j ∈ I ∧ x ∈ T j ∧ g x = f j x

shows continuous map X Y g
unfolding continuous map closedin preimage eq

proof (intro conjI allI impI )
show g ‘ topspace X ⊆ topspace Y
using g cont continuous map image subset topspace by fastforce

next
fix U
assume Y : closedin Y U
have T : T i ⊆ topspace X if i ∈ I for i
using clo by (simp add : closedin subset that)

have ∗: topspace X ∩ g −‘ U = (
⋃

i ∈ I . T i ∩ f i −‘ U )
using f g T by fastforce
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have cTf :
∧
i . i ∈ I =⇒ closedin X (T i ∩ f i −‘ U )

using cont unfolding continuous map closedin preimage eq topspace subtopology
by (simp add : Int absorb1 T Y clo closedin closed subtopology)

have sub: {Z ∈ (λi . T i ∩ f i −‘ U ) ‘ I . Z ∩ V 6= {}}
⊆ (λi . T i ∩ f i −‘ U ) ‘ {i ∈ I . T i ∩ V 6= {}} for V

by auto
have 1 : (

⋃
i∈I . T i ∩ f i −‘ U ) ⊆ topspace X

using T by blast
then have lf : locally finite in X ((λi . T i ∩ f i −‘ U ) ‘ I )
unfolding locally finite in def
using finite subset [OF sub] fin by force

show closedin X (topspace X ∩ g −‘ U )
apply (subst ∗)
apply (rule closedin locally finite Union)
apply (auto intro: cTf lf )
done

qed

Likewise on closed sets, with a finiteness assumption

lemma pasting lemma closed :
assumes fin: finite I
and clo:

∧
i . i ∈ I =⇒ closedin X (T i)

and cont :
∧
i . i ∈ I =⇒ continuous map(subtopology X (T i)) Y (f i)

and f :
∧
i j x . [[i ∈ I ; j ∈ I ; x ∈ topspace X ∩ T i ∩ T j ]] =⇒ f i x = f j x

and g :
∧
x . x ∈ topspace X =⇒ ∃ j . j ∈ I ∧ x ∈ T j ∧ g x = f j x

shows continuous map X Y g
using pasting lemma locally finite [OF clo cont f g ] fin by auto

lemma pasting lemma exists locally finite:
assumes fin:

∧
x . x ∈ topspace X =⇒ ∃V . openin X V ∧ x ∈ V ∧ finite {i ∈

I . T i ∩ V 6= {}}
and X : topspace X ⊆

⋃
(T ‘ I )

and clo:
∧
i . i ∈ I =⇒ closedin X (T i)

and cont :
∧
i . i ∈ I =⇒ continuous map(subtopology X (T i)) Y (f i)

and f :
∧
i j x . [[i ∈ I ; j ∈ I ; x ∈ topspace X ∩ T i ∩ T j ]] =⇒ f i x = f j x

and g :
∧
x . x ∈ topspace X =⇒ ∃ j . j ∈ I ∧ x ∈ T j ∧ g x = f j x

obtains g where continuous map X Y g
∧
x i . [[i ∈ I ; x ∈ topspace X ∩ T i ]]

=⇒ g x = f i x
proof
show continuous map X Y (λx . f (@i . i ∈ I ∧ x ∈ T i) x )
apply (rule pasting lemma locally finite [OF fin])

apply (blast intro: assms)+
by (metis (no types, lifting) UN E X set rev mp someI ex )

next
fix x i
assume i ∈ I and x ∈ topspace X ∩ T i
show f (SOME i . i ∈ I ∧ x ∈ T i) x = f i x
apply (rule someI2 ex )
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using 〈i ∈ I 〉 〈x ∈ topspace X ∩ T i 〉 apply blast
by (meson Int iff 〈i ∈ I 〉 〈x ∈ topspace X ∩ T i 〉 f )

qed

lemma pasting lemma exists closed :
assumes fin: finite I
and X : topspace X ⊆

⋃
(T ‘ I )

and clo:
∧
i . i ∈ I =⇒ closedin X (T i)

and cont :
∧
i . i ∈ I =⇒ continuous map(subtopology X (T i)) Y (f i)

and f :
∧
i j x . [[i ∈ I ; j ∈ I ; x ∈ topspace X ∩ T i ∩ T j ]] =⇒ f i x = f j x

obtains g where continuous map X Y g
∧
x i . [[i ∈ I ; x ∈ topspace X ∩ T i ]]

=⇒ g x = f i x
proof
show continuous map X Y (λx . f (SOME i . i ∈ I ∧ x ∈ T i) x )
apply (rule pasting lemma closed [OF 〈finite I 〉 clo cont ])
apply (blast intro: f )+
by (metis (mono tags, lifting) UN iff X someI ex subset iff )

next
fix x i
assume i ∈ I x ∈ topspace X ∩ T i
then show f (SOME i . i ∈ I ∧ x ∈ T i) x = f i x
by (metis (no types, lifting) IntD2 IntI f someI ex )

qed

lemma continuous map cases:
assumes f : continuous map (subtopology X (X closure of {x . P x})) Y f

and g : continuous map (subtopology X (X closure of {x . ¬ P x})) Y g
and fg :

∧
x . x ∈ X frontier of {x . P x} =⇒ f x = g x

shows continuous map X Y (λx . if P x then f x else g x )
proof (rule pasting lemma closed)
let ?f = λb. if b then f else g
let ?g = λx . if P x then f x else g x
let ?T = λb. if b then X closure of {x . P x} else X closure of {x . ∼P x}
show finite {True,False} by auto
have eq : topspace X − Collect P = topspace X ∩ {x . ¬ P x}
by blast

show ?f i x = ?f j x
if i ∈ {True,False} j ∈ {True,False} and x : x ∈ topspace X ∩ ?T i ∩ ?T j

for i j x
proof −
have f x = g x
if i ¬ j
apply (rule fg)
unfolding frontier of closures eq
using x that closure of restrict by fastforce

moreover
have g x = f x
if x ∈ X closure of {x . ¬ P x} x ∈ X closure of Collect P ¬ i j for x
apply (rule fg [symmetric])
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unfolding frontier of closures eq
using x that closure of restrict by fastforce

ultimately show ?thesis
using that by (auto simp flip: closure of restrict)

qed
show ∃ j . j ∈ {True,False} ∧ x ∈ ?T j ∧ (if P x then f x else g x ) = ?f j x
if x ∈ topspace X for x
apply simp
apply safe
apply (metis Int iff closure of inf sup absorb mem Collect eq that)
by (metis DiffI eq closure of subset Int contra subsetD mem Collect eq that)

qed (auto simp: f g)

lemma continuous map cases alt :
assumes f : continuous map (subtopology X (X closure of {x ∈ topspace X . P

x})) Y f
and g : continuous map (subtopology X (X closure of {x ∈ topspace X . ∼P

x})) Y g
and fg :

∧
x . x ∈ X frontier of {x ∈ topspace X . P x} =⇒ f x = g x

shows continuous map X Y (λx . if P x then f x else g x )
apply (rule continuous map cases)
using assms
apply (simp all add : Collect conj eq closure of restrict [symmetric] frontier of restrict

[symmetric])
done

lemma continuous map cases function:
assumes contp: continuous map X Z p
and contf : continuous map (subtopology X {x ∈ topspace X . p x ∈ Z closure of

U }) Y f
and contg : continuous map (subtopology X {x ∈ topspace X . p x ∈ Z closure of

(topspace Z − U )}) Y g
and fg :

∧
x . [[x ∈ topspace X ; p x ∈ Z frontier of U ]] =⇒ f x = g x

shows continuous map X Y (λx . if p x ∈ U then f x else g x )
proof (rule continuous map cases alt)
show continuous map (subtopology X (X closure of {x ∈ topspace X . p x ∈ U }))

Y f
proof (rule continuous map from subtopology mono)
let ?T = {x ∈ topspace X . p x ∈ Z closure of U }
show continuous map (subtopology X ?T ) Y f
by (simp add : contf )

show X closure of {x ∈ topspace X . p x ∈ U } ⊆ ?T
by (rule continuous map closure preimage subset [OF contp])

qed
show continuous map (subtopology X (X closure of {x ∈ topspace X . p x /∈ U }))

Y g
proof (rule continuous map from subtopology mono)
let ?T = {x ∈ topspace X . p x ∈ Z closure of (topspace Z − U )}
show continuous map (subtopology X ?T ) Y g
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by (simp add : contg)
have X closure of {x ∈ topspace X . p x /∈ U } ⊆ X closure of {x ∈ topspace

X . p x ∈ topspace Z − U }
apply (rule closure of mono)
using continuous map closedin contp by fastforce

then show X closure of {x ∈ topspace X . p x /∈ U } ⊆ ?T
by (rule order trans [OF continuous map closure preimage subset [OF

contp]])
qed

next
show f x = g x if x ∈ X frontier of {x ∈ topspace X . p x ∈ U } for x
using that continuous map frontier frontier preimage subset [OF contp, of U ]

fg by blast
qed

2.3.14 Retractions

definition retraction :: ( ′a::topological space) set ⇒ ′a set ⇒ ( ′a ⇒ ′a) ⇒ bool
where retraction S T r ←→
T ⊆ S ∧ continuous on S r ∧ r ‘ S ⊆ T ∧ (∀ x∈T . r x = x )

definition retract of (infixl retract ′ of 50 ) where
T retract of S ←→ (∃ r . retraction S T r)

lemma retraction idempotent : retraction S T r =⇒ x ∈ S =⇒ r (r x ) = r x
unfolding retraction def by auto

Preservation of fixpoints under (more general notion of) retraction

lemma invertible fixpoint property :
fixes S :: ′a::topological space set
and T :: ′b::topological space set

assumes contt : continuous on T i
and i ‘ T ⊆ S
and contr : continuous on S r
and r ‘ S ⊆ T
and ri :

∧
y . y ∈ T =⇒ r (i y) = y

and FP :
∧
f . [[continuous on S f ; f ‘ S ⊆ S ]] =⇒ ∃ x∈S . f x = x

and contg : continuous on T g
and g ‘ T ⊆ T

obtains y where y ∈ T and g y = y
proof −
have ∃ x∈S . (i ◦ g ◦ r) x = x
proof (rule FP)
show continuous on S (i ◦ g ◦ r)
by (meson contt contr assms(4 ) contg assms(8 ) continuous on compose con-

tinuous on subset)
show (i ◦ g ◦ r) ‘ S ⊆ S
using assms(2 ,4 ,8 ) by force

qed
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then obtain x where x : x ∈ S (i ◦ g ◦ r) x = x ..
then have ∗: g (r x ) ∈ T
using assms(4 ,8 ) by auto

have r ((i ◦ g ◦ r) x ) = r x
using x by auto

then show ?thesis
using ∗ ri that by auto

qed

lemma homeomorphic fixpoint property :
fixes S :: ′a::topological space set
and T :: ′b::topological space set

assumes S homeomorphic T
shows (∀ f . continuous on S f ∧ f ‘ S ⊆ S −→ (∃ x∈S . f x = x )) ←→

(∀ g . continuous on T g ∧ g ‘ T ⊆ T −→ (∃ y∈T . g y = y))
(is ?lhs = ?rhs)

proof −
obtain r i where r :
∀ x∈S . i (r x ) = x r ‘ S = T continuous on S r
∀ y∈T . r (i y) = y i ‘ T = S continuous on T i

using assms unfolding homeomorphic def homeomorphism def by blast
show ?thesis
proof
assume ?lhs
with r show ?rhs
by (metis invertible fixpoint property [of T i S r ] order refl)

next
assume ?rhs
with r show ?lhs
by (metis invertible fixpoint property [of S r T i ] order refl)

qed
qed

lemma retract fixpoint property :
fixes f :: ′a::topological space ⇒ ′b::topological space
and S :: ′a set

assumes T retract of S
and FP :

∧
f . [[continuous on S f ; f ‘ S ⊆ S ]] =⇒ ∃ x∈S . f x = x

and contg : continuous on T g
and g ‘ T ⊆ T

obtains y where y ∈ T and g y = y
proof −
obtain h where retraction S T h
using assms(1 ) unfolding retract of def ..

then show ?thesis
unfolding retraction def
using invertible fixpoint property [OF continuous on id FP ]
by (metis assms(4 ) contg image ident that)

qed
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lemma retraction:
retraction S T r ←→
T ⊆ S ∧ continuous on S r ∧ r ‘ S = T ∧ (∀ x ∈ T . r x = x )

by (force simp: retraction def )

lemma retractionE : — yields properties normalized wrt. simp – less likely to loop
assumes retraction S T r
obtains T = r ‘ S r ‘ S ⊆ S continuous on S r

∧
x . x ∈ S =⇒ r (r x ) = r x

proof (rule that)
from retraction [of S T r ] assms
have T ⊆ S continuous on S r r ‘ S = T and ∀ x ∈ T . r x = x
by simp all

then show T = r ‘ S r ‘ S ⊆ S continuous on S r
by simp all

from 〈∀ x ∈ T . r x = x 〉 have r x = x if x ∈ T for x
using that by simp

with 〈r ‘ S = T 〉 show r (r x ) = r x if x ∈ S for x
using that by auto

qed

lemma retract ofE : — yields properties normalized wrt. simp – less likely to loop
assumes T retract of S
obtains r where T = r ‘ S r ‘ S ⊆ S continuous on S r

∧
x . x ∈ S =⇒ r (r x )

= r x
proof −
from assms obtain r where retraction S T r
by (auto simp add : retract of def )

with that show thesis
by (auto elim: retractionE )

qed

lemma retract of imp extensible:
assumes S retract of T and continuous on S f and f ‘ S ⊆ U
obtains g where continuous on T g g ‘ T ⊆ U

∧
x . x ∈ S =⇒ g x = f x

proof −
from 〈S retract of T 〉 obtain r where retraction T S r
by (auto simp add : retract of def )

show thesis
by (rule that [of f ◦ r ])

(use 〈continuous on S f 〉 〈f ‘ S ⊆ U 〉 〈retraction T S r 〉 in 〈auto simp:
continuous on compose2 retraction〉)
qed

lemma idempotent imp retraction:
assumes continuous on S f and f ‘ S ⊆ S and

∧
x . x ∈ S =⇒ f (f x ) = f x

shows retraction S (f ‘ S ) f
by (simp add : assms retraction)
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lemma retraction subset :
assumes retraction S T r and T ⊆ s ′ and s ′ ⊆ S
shows retraction s ′ T r
unfolding retraction def
by (metis assms continuous on subset image mono retraction)

lemma retract of subset :
assumes T retract of S and T ⊆ s ′ and s ′ ⊆ S
shows T retract of s ′

by (meson assms retract of def retraction subset)

lemma retraction refl [simp]: retraction S S (λx . x )
by (simp add : retraction)

lemma retract of refl [iff ]: S retract of S
unfolding retract of def retraction def
using continuous on id by blast

lemma retract of imp subset :
S retract of T =⇒ S ⊆ T

by (simp add : retract of def retraction def )

lemma retract of empty [simp]:
({} retract of S ) ←→ S = {} (S retract of {}) ←→ S = {}

by (auto simp: retract of def retraction def )

lemma retract of singleton [iff ]: ({x} retract of S ) ←→ x ∈ S
unfolding retract of def retraction def by force

lemma retraction comp:
[[retraction S T f ; retraction T U g ]]

=⇒ retraction S U (g ◦ f )
apply (auto simp: retraction def intro: continuous on compose2 )
by blast

lemma retract of trans [trans]:
assumes S retract of T and T retract of U
shows S retract of U

using assms by (auto simp: retract of def intro: retraction comp)

lemma closedin retract :
fixes S :: ′a :: t2 space set
assumes S retract of T
shows closedin (top of set T ) S

proof −
obtain r where r : S ⊆ T continuous on T r r ‘ T ⊆ S

∧
x . x ∈ S =⇒ r x = x

using assms by (auto simp: retract of def retraction def )
have S = {x∈T . x = r x}
using r by auto
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also have . . . = T ∩ ((λx . (x , r x )) −‘ ({y . ∃ x . y = (x , x )}))
unfolding vimage def mem Times iff fst conv snd conv
using r
by auto

also have closedin (top of set T ) . . .
by (rule continuous closedin preimage) (auto intro!: closed diagonal continu-

ous on Pair r)
finally show ?thesis .

qed

lemma closedin self [simp]: closedin (top of set S ) S
by simp

lemma retract of closed :
fixes S :: ′a :: t2 space set
shows [[closed T ; S retract of T ]] =⇒ closed S

by (metis closedin retract closedin closed eq)

lemma retract of compact :
[[compact T ; S retract of T ]] =⇒ compact S

by (metis compact continuous image retract of def retraction)

lemma retract of connected :
[[connected T ; S retract of T ]] =⇒ connected S
by (metis Topological Spaces.connected continuous image retract of def retrac-

tion)

lemma retraction openin vimage iff :
openin (top of set S ) (S ∩ r −‘ U ) ←→ openin (top of set T ) U
if retraction: retraction S T r and U ⊆ T
using retraction apply (rule retractionE )
apply (rule continuous right inverse imp quotient map [where g=r ])
using 〈U ⊆ T 〉 apply (auto elim: continuous on subset)
done

lemma retract of Times:
[[S retract of s ′; T retract of t ′]] =⇒ (S × T ) retract of (s ′ × t ′)

apply (simp add : retract of def retraction def Sigma mono, clarify)
apply (rename tac f g)
apply (rule tac x=λz . ((f ◦ fst) z , (g ◦ snd) z ) in exI )
apply (rule conjI continuous intros | erule continuous on subset | force)+
done

2.3.15 Retractions on a topological space

definition retract of space :: ′a set ⇒ ′a topology ⇒ bool (infix retract ′ of ′ space
50 )
where S retract of space X

≡ S ⊆ topspace X ∧ (∃ r . continuous map X (subtopology X S ) r ∧ (∀ x ∈
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S . r x = x ))

lemma retract of space retraction maps:
S retract of space X ←→ S ⊆ topspace X ∧ (∃ r . retraction maps X (subtopology

X S ) r id)
by (auto simp: retract of space def retraction maps def )

lemma retract of space section map:
S retract of space X ←→ S ⊆ topspace X ∧ section map (subtopology X S ) X id
unfolding retract of space def retraction maps def section map def
by (auto simp: continuous map from subtopology)

lemma retract of space imp subset :
S retract of space X =⇒ S ⊆ topspace X
by (simp add : retract of space def )

lemma retract of space topspace:
topspace X retract of space X
using retract of space def by force

lemma retract of space empty [simp]:
{} retract of space X ←→ topspace X = {}
by (auto simp: continuous map def retract of space def )

lemma retract of space singleton [simp]:
{a} retract of space X ←→ a ∈ topspace X

proof −
have continuous map X (subtopology X {a}) (λx . a) ∧ (λx . a) a = a if a ∈

topspace X
using that by simp

then show ?thesis
by (force simp: retract of space def )

qed

lemma retract of space clopen:
assumes openin X S closedin X S S = {} =⇒ topspace X = {}
shows S retract of space X

proof (cases S = {})
case False
then obtain a where a ∈ S
by blast

show ?thesis
unfolding retract of space def

proof (intro exI conjI )
show S ⊆ topspace X
by (simp add : assms closedin subset)

have continuous map X X (λx . if x ∈ S then x else a)
proof (rule continuous map cases)
show continuous map (subtopology X (X closure of {x . x ∈ S})) X (λx . x )
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by (simp add : continuous map from subtopology)
show continuous map (subtopology X (X closure of {x . x /∈ S})) X (λx . a)
using 〈S ⊆ topspace X 〉 〈a ∈ S 〉 by force

show x = a if x ∈ X frontier of {x . x ∈ S} for x
using assms that clopenin eq frontier of by fastforce

qed
then show continuous map X (subtopology X S ) (λx . if x ∈ S then x else a)
using 〈S ⊆ topspace X 〉 〈a ∈ S 〉 by (auto simp: continuous map in subtopology)

qed auto
qed (use assms in auto)

lemma retract of space disjoint union:
assumes openin X S openin X T and ST : disjnt S T S ∪ T = topspace X and

S = {} =⇒ topspace X = {}
shows S retract of space X

proof (rule retract of space clopen)
have S ∩ T = {}
by (meson ST disjnt def )

then have S = topspace X − T
using ST by auto

then show closedin X S
using 〈openin X T 〉 by blast

qed (auto simp: assms)

lemma retraction maps section image1 :
assumes retraction maps X Y r s
shows s ‘ (topspace Y ) retract of space X
unfolding retract of space section map

proof
show s ‘ topspace Y ⊆ topspace X

using assms continuous map image subset topspace retraction maps def by
blast
show section map (subtopology X (s ‘ topspace Y )) X id
unfolding section map def
using assms retraction maps to retract maps by blast

qed

lemma retraction maps section image2 :
retraction maps X Y r s

=⇒ subtopology X (s ‘ (topspace Y )) homeomorphic space Y
using embedding map imp homeomorphic space homeomorphic space sym section imp embedding map

section map def by blast

2.3.16 Paths and path-connectedness

definition pathin :: ′a topology ⇒ (real ⇒ ′a) ⇒ bool where
pathin X g ≡ continuous map (subtopology euclideanreal {0 ..1}) X g

lemma pathin compose:
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[[pathin X g ; continuous map X Y f ]] =⇒ pathin Y (f ◦ g)
by (simp add : continuous map compose pathin def )

lemma pathin subtopology :
pathin (subtopology X S ) g ←→ pathin X g ∧ (∀ x ∈ {0 ..1}. g x ∈ S )

by (auto simp: pathin def continuous map in subtopology)

lemma pathin const :
pathin X (λx . a) ←→ a ∈ topspace X
by (simp add : pathin def )

lemma path start in topspace: pathin X g =⇒ g 0 ∈ topspace X
by (force simp: pathin def continuous map)

lemma path finish in topspace: pathin X g =⇒ g 1 ∈ topspace X
by (force simp: pathin def continuous map)

lemma path image subset topspace: pathin X g =⇒ g ‘ ({0 ..1}) ⊆ topspace X
by (force simp: pathin def continuous map)

definition path connected space :: ′a topology ⇒ bool
where path connected space X ≡ ∀ x ∈ topspace X . ∀ y ∈ topspace X . ∃ g . pathin

X g ∧ g 0 = x ∧ g 1 = y

definition path connectedin :: ′a topology ⇒ ′a set ⇒ bool
where path connectedin X S ≡ S ⊆ topspace X ∧ path connected space(subtopology

X S )

lemma path connectedin absolute [simp]:
path connectedin (subtopology X S ) S ←→ path connectedin X S

by (simp add : path connectedin def subtopology subtopology)

lemma path connectedin subset topspace:
path connectedin X S =⇒ S ⊆ topspace X

by (simp add : path connectedin def )

lemma path connectedin subtopology :
path connectedin (subtopology X S ) T ←→ path connectedin X T ∧ T ⊆ S

by (auto simp: path connectedin def subtopology subtopology inf .absorb2 )

lemma path connectedin:
path connectedin X S ←→

S ⊆ topspace X ∧
(∀ x ∈ S . ∀ y ∈ S . ∃ g . pathin X g ∧ g ‘ {0 ..1} ⊆ S ∧ g 0 = x ∧ g 1 = y)

unfolding path connectedin def path connected space def pathin def continuous map in subtopology
by (intro conj cong refl ball cong) (simp all add : inf .absorb iff2 )

lemma path connectedin topspace:
path connectedin X (topspace X ) ←→ path connected space X
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by (simp add : path connectedin def )

lemma path connected imp connected space:
assumes path connected space X
shows connected space X

proof −
have ∗: ∃S . connectedin X S ∧ g 0 ∈ S ∧ g 1 ∈ S if pathin X g for g
proof (intro exI conjI )
have continuous map (subtopology euclideanreal {0 ..1}) X g
using connectedin absolute that by (simp add : pathin def )

then show connectedin X (g ‘ {0 ..1})
by (rule connectedin continuous map image) auto

qed auto
show ?thesis
using assms
by (auto intro: ∗ simp add : path connected space def connected space subconnected

Ball def )
qed

lemma path connectedin imp connectedin:
path connectedin X S =⇒ connectedin X S

by (simp add : connectedin def path connected imp connected space path connectedin def )

lemma path connected space topspace empty :
topspace X = {} =⇒ path connected space X

by (simp add : path connected space def )

lemma path connectedin empty [simp]: path connectedin X {}
by (simp add : path connectedin)

lemma path connectedin singleton [simp]: path connectedin X {a} ←→ a ∈ topspace
X
proof
show path connectedin X {a} =⇒ a ∈ topspace X
by (simp add : path connectedin)

show a ∈ topspace X =⇒ path connectedin X {a}
unfolding path connectedin
using pathin const by fastforce

qed

lemma path connectedin continuous map image:
assumes f : continuous map X Y f and S : path connectedin X S
shows path connectedin Y (f ‘ S )

proof −
have fX : f ‘ (topspace X ) ⊆ topspace Y
by (metis f continuous map image subset topspace)

show ?thesis
unfolding path connectedin

proof (intro conjI ballI ; clarify?)
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fix x
assume x ∈ S
show f x ∈ topspace Y

by (meson S fX 〈x ∈ S 〉 image subset iff path connectedin subset topspace
set mp)
next
fix x y
assume x ∈ S and y ∈ S
then obtain g where g : pathin X g g ‘ {0 ..1} ⊆ S g 0 = x g 1 = y
using S by (force simp: path connectedin)

show ∃ g . pathin Y g ∧ g ‘ {0 ..1} ⊆ f ‘ S ∧ g 0 = f x ∧ g 1 = f y
proof (intro exI conjI )
show pathin Y (f ◦ g)
using 〈pathin X g〉 f pathin compose by auto

qed (use g in auto)
qed

qed

lemma path connectedin discrete topology :
path connectedin (discrete topology U ) S ←→ S ⊆ U ∧ (∃ a. S ⊆ {a})
apply safe
using path connectedin subset topspace apply fastforce
apply (meson connectedin discrete topology path connectedin imp connectedin)
using subset singletonD by fastforce

lemma path connected space discrete topology :
path connected space (discrete topology U ) ←→ (∃ a. U ⊆ {a})

by (metis path connectedin discrete topology path connectedin topspace path connected space topspace empty
subset singletonD topspace discrete topology)

lemma homeomorphic path connected space imp:
[[path connected space X ; X homeomorphic space Y ]] =⇒ path connected space

Y
unfolding homeomorphic space def homeomorphic maps def
by (metis (no types, hide lams) continuous map closedin continuous map image subset topspace

imageI order class.order .antisym path connectedin continuous map image path connectedin topspace
subsetI )

lemma homeomorphic path connected space:
X homeomorphic space Y =⇒ path connected space X ←→ path connected space

Y
by (meson homeomorphic path connected space imp homeomorphic space sym)

lemma homeomorphic map path connectedness:
assumes homeomorphic map X Y f U ⊆ topspace X
shows path connectedin Y (f ‘ U ) ←→ path connectedin X U
unfolding path connectedin def

proof (intro conj cong homeomorphic path connected space)

Abstract{_}{\kern 0pt}Topology{_}{\kern 0pt}{2}.html


446

show (f ‘ U ⊆ topspace Y ) = (U ⊆ topspace X )
using assms homeomorphic imp surjective map by blast

next
assume U ⊆ topspace X
show subtopology Y (f ‘ U ) homeomorphic space subtopology X U
using assms unfolding homeomorphic eq everything map
by (metis (no types, hide lams) assms homeomorphic map subtopologies home-

omorphic space homeomorphic space sym image mono inf .absorb iff2 )
qed

lemma homeomorphic map path connectedness eq :
homeomorphic map X Y f =⇒ path connectedin X U ←→ U ⊆ topspace X ∧

path connectedin Y (f ‘ U )
by (meson homeomorphic map path connectedness path connectedin def )

2.3.17 Connected components

definition connected component of :: ′a topology ⇒ ′a ⇒ ′a ⇒ bool
where connected component of X x y ≡

∃T . connectedin X T ∧ x ∈ T ∧ y ∈ T

abbreviation connected component of set
where connected component of set X x ≡ Collect (connected component of X x )

definition connected components of :: ′a topology ⇒ ( ′a set) set
where connected components of X ≡ connected component of set X ‘ topspace X

lemma connected component in topspace:
connected component of X x y =⇒ x ∈ topspace X ∧ y ∈ topspace X
by (meson connected component of def connectedin subset topspace in mono)

lemma connected component of refl :
connected component of X x x ←→ x ∈ topspace X

by (meson connected component in topspace connected component of def connecte-
din sing insertI1 )

lemma connected component of sym:
connected component of X x y ←→ connected component of X y x
by (meson connected component of def )

lemma connected component of trans:
[[connected component of X x y ; connected component of X y z ]]

=⇒ connected component of X x z
unfolding connected component of def
using connectedin Un by blast

lemma connected component of mono:
[[connected component of (subtopology X S ) x y ; S ⊆ T ]]

=⇒ connected component of (subtopology X T ) x y



Abstract Topology 2.thy 447

by (metis connected component of def connectedin subtopology inf .absorb iff2 subtopol-
ogy subtopology)

lemma connected component of set :
connected component of set X x = {y . ∃T . connectedin X T ∧ x ∈ T ∧ y ∈ T}
by (meson connected component of def )

lemma connected component of subset topspace:
connected component of set X x ⊆ topspace X
using connected component in topspace by force

lemma connected component of eq empty :
connected component of set X x = {} ←→ (x /∈ topspace X )
using connected component in topspace connected component of refl by fastforce

lemma connected space iff connected component :
connected space X ←→ (∀ x ∈ topspace X . ∀ y ∈ topspace X . connected component of

X x y)
by (simp add : connected component of def connected space subconnected)

lemma connected space imp connected component of :
[[connected space X ; a ∈ topspace X ; b ∈ topspace X ]]
=⇒ connected component of X a b

by (simp add : connected space iff connected component)

lemma connected space connected component set :
connected space X ←→ (∀ x ∈ topspace X . connected component of set X x =

topspace X )
using connected component of subset topspace connected space iff connected component

by fastforce

lemma connected component of maximal :
[[connectedin X S ; x ∈ S ]] =⇒ S ⊆ connected component of set X x
by (meson Ball Collect connected component of def )

lemma connected component of equiv :
connected component of X x y ←→
x ∈ topspace X ∧ y ∈ topspace X ∧ connected component of X x = con-

nected component of X y
apply (simp add : connected component in topspace fun eq iff )
by (meson connected component of refl connected component of sym connected component of trans)

lemma connected component of disjoint :
disjnt (connected component of set X x ) (connected component of set X y)
←→ ∼(connected component of X x y)

using connected component of equiv unfolding disjnt iff by force

lemma connected component of eq :
connected component of X x = connected component of X y ←→
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(x /∈ topspace X ) ∧ (y /∈ topspace X ) ∨
x ∈ topspace X ∧ y ∈ topspace X ∧
connected component of X x y

by (metis Collect empty eq bot connected component of eq empty connected component of equiv)

lemma connectedin connected component of :
connectedin X (connected component of set X x )

proof −
have connected component of set X x =

⋃
{T . connectedin X T ∧ x ∈ T}

by (auto simp: connected component of def )
then show ?thesis
apply (rule ssubst)
by (blast intro: connectedin Union)

qed

lemma Union connected components of :⋃
(connected components of X ) = topspace X

unfolding connected components of def
apply (rule equalityI )
apply (simp add : SUP least connected component of subset topspace)
using connected component of refl by fastforce

lemma connected components of maximal :
[[C ∈ connected components of X ; connectedin X S ; ∼disjnt C S ]] =⇒ S ⊆ C
unfolding connected components of def disjnt def
apply clarify
by (metis Int emptyI connected component of def connected component of trans

mem Collect eq)

lemma pairwise disjoint connected components of :
pairwise disjnt (connected components of X )
unfolding connected components of def pairwise def
apply clarify
by (metis connected component of disjoint connected component of equiv)

lemma complement connected components of Union:
C ∈ connected components of X

=⇒ topspace X − C =
⋃

(connected components of X − {C})
apply (rule equalityI )
using Union connected components of apply fastforce
by (metis Diff cancel Diff subset Union connected components of cSup singleton

diff Union pairwise disjoint equalityE insert subsetI pairwise disjoint connected components of )

lemma nonempty connected components of :
C ∈ connected components of X =⇒ C 6= {}
unfolding connected components of def
by (metis (no types, lifting) connected component of eq empty imageE )
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lemma connected components of subset :
C ∈ connected components of X =⇒ C ⊆ topspace X
using Union connected components of by fastforce

lemma connectedin connected components of :
assumes C ∈ connected components of X
shows connectedin X C

proof −
have C ∈ connected component of set X ‘ topspace X
using assms connected components of def by blast

then show ?thesis
using connectedin connected component of by fastforce

qed

lemma connected component in connected components of :
connected component of set X a ∈ connected components of X ←→ a ∈ topspace

X
apply (rule iffI )
using connected component of eq empty nonempty connected components of ap-

ply fastforce
by (simp add : connected components of def )

lemma connected space iff components eq :
connected space X ←→ (∀C ∈ connected components of X . ∀C ′∈ connected components of

X . C = C ′)
apply (rule iffI )
apply (force simp: connected components of def connected space connected component set

image iff )
by (metis connected component in connected components of connected component of refl

connected space iff connected component mem Collect eq)

lemma connected components of eq empty :
connected components of X = {} ←→ topspace X = {}
by (simp add : connected components of def )

lemma connected components of empty space:
topspace X = {} =⇒ connected components of X = {}
by (simp add : connected components of eq empty)

lemma connected components of subset sing :
connected components of X ⊆ {S} ←→ connected space X ∧ (topspace X = {}

∨ topspace X = S )
proof (cases topspace X = {})
case True
then show ?thesis
by (simp add : connected components of empty space connected space topspace empty)

next
case False
then show ?thesis
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by (metis (no types, hide lams) Union connected components of ccpo Sup singleton
connected components of eq empty connected space iff components eq insertI1

singletonD
subsetI subset singleton iff )

qed

lemma connected space iff components subset singleton:
connected space X ←→ (∃ a. connected components of X ⊆ {a})
by (simp add : connected components of subset sing)

lemma connected components of eq singleton:
connected components of X = {S}

←→ connected space X ∧ topspace X 6= {} ∧ S = topspace X
by (metis ccpo Sup singleton connected components of subset sing insert not empty

subset singleton iff )

lemma connected components of connected space:
connected space X =⇒ connected components of X = (if topspace X = {} then

{} else {topspace X })
by (simp add : connected components of eq empty connected components of eq singleton)

lemma exists connected component of superset :
assumes connectedin X S and ne: topspace X 6= {}
shows ∃C . C ∈ connected components of X ∧ S ⊆ C

proof (cases S = {})
case True
then show ?thesis
using ne connected components of def by blast

next
case False
then show ?thesis
by (meson all not in conv assms(1 ) connected component in connected components of

connected component of maximal connectedin subset topspace in mono)
qed

lemma closedin connected components of :
assumes C ∈ connected components of X
shows closedin X C

proof −
obtain x where x ∈ topspace X and x : C = connected component of set X x
using assms by (auto simp: connected components of def )

have connected component of set X x ⊆ topspace X
by (simp add : connected component of subset topspace)

moreover have X closure of connected component of set X x ⊆ connected component of set
X x
proof (rule connected component of maximal)
show connectedin X (X closure of connected component of set X x )
by (simp add : connectedin closure of connectedin connected component of )

show x ∈ X closure of connected component of set X x
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by (simp add : 〈x ∈ topspace X 〉 closure of connected component of refl)
qed
ultimately
show ?thesis
using closure of subset eq x by auto

qed

lemma closedin connected component of :
closedin X (connected component of set X x )

by (metis closedin connected components of closedin empty connected component in connected components of
connected component of eq empty)

lemma connected component of eq overlap:
connected component of set X x = connected component of set X y ←→

(x /∈ topspace X ) ∧ (y /∈ topspace X ) ∨
∼(connected component of set X x ∩ connected component of set X y = {})

using connected component of equiv by fastforce

lemma connected component of nonoverlap:
connected component of set X x ∩ connected component of set X y = {} ←→
(x /∈ topspace X ) ∨ (y /∈ topspace X ) ∨
∼(connected component of set X x = connected component of set X y)

by (metis connected component of eq empty connected component of eq overlap
inf .idem)

lemma connected component of overlap:
∼(connected component of set X x ∩ connected component of set X y = {}) ←→
x ∈ topspace X ∧ y ∈ topspace X ∧
connected component of set X x = connected component of set X y

by (meson connected component of nonoverlap)

end

2.4 Connected Components

theory Connected
imports
Abstract Topology 2

begin

2.4.1 Connectedness

lemma connected local :
connected S ←→
¬ (∃ e1 e2 .

openin (top of set S ) e1 ∧
openin (top of set S ) e2 ∧
S ⊆ e1 ∪ e2 ∧
e1 ∩ e2 = {} ∧
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e1 6= {} ∧
e2 6= {})

unfolding connected def openin open
by safe blast+

lemma exists diff :
fixes P :: ′a set ⇒ bool
shows (∃S . P (− S )) ←→ (∃S . P S )
(is ?lhs ←→ ?rhs)

proof −
have ?rhs if ?lhs
using that by blast

moreover have P (− (− S )) if P S for S
proof −
have S = − (− S ) by simp
with that show ?thesis by metis

qed
ultimately show ?thesis by metis

qed

lemma connected clopen: connected S ←→
(∀T . openin (top of set S ) T ∧

closedin (top of set S ) T −→ T = {} ∨ T = S ) (is ?lhs ←→ ?rhs)
proof −
have ¬ connected S ←→
(∃ e1 e2 . open e1 ∧ open (− e2 ) ∧ S ⊆ e1 ∪ (− e2 ) ∧ e1 ∩ (− e2 ) ∩ S = {}

∧ e1 ∩ S 6= {} ∧ (− e2 ) ∩ S 6= {})
unfolding connected def openin open closedin closed
by (metis double complement)

then have th0 : connected S ←→
¬ (∃ e2 e1 . closed e2 ∧ open e1 ∧ S ⊆ e1 ∪ (− e2 ) ∧ e1 ∩ (− e2 ) ∩ S = {}

∧ e1 ∩ S 6= {} ∧ (− e2 ) ∩ S 6= {})
(is ←→ ¬ (∃ e2 e1 . ?P e2 e1 ))
by (simp add : closed def ) metis

have th1 : ?rhs ←→ ¬ (∃ t ′ t . closed t ′∧t = S∩t ′ ∧ t 6={} ∧ t 6=S ∧ (∃ t ′. open t ′

∧ t = S ∩ t ′))
(is ←→ ¬ (∃ t ′ t . ?Q t ′ t))
unfolding connected def openin open closedin closed by auto

have (∃ e1 . ?P e2 e1 ) ←→ (∃ t . ?Q e2 t) for e2
proof −
have ?P e2 e1 ←→ (∃ t . closed e2 ∧ t = S∩e2 ∧ open e1 ∧ t = S∩e1 ∧ t 6={}

∧ t 6= S ) for e1
by auto

then show ?thesis
by metis

qed
then have ∀ e2 . (∃ e1 . ?P e2 e1 ) ←→ (∃ t . ?Q e2 t)
by blast

then show ?thesis
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by (simp add : th0 th1 )
qed

2.4.2 Connected components, considered as a connectedness
relation or a set

definition connected component S x y ≡ ∃T . connected T ∧ T ⊆ S ∧ x ∈ T ∧
y ∈ T

abbreviation connected component set S x ≡ Collect (connected component S x )

lemma connected componentI :
connected T =⇒ T ⊆ S =⇒ x ∈ T =⇒ y ∈ T =⇒ connected component S x y
by (auto simp: connected component def )

lemma connected component in: connected component S x y =⇒ x ∈ S ∧ y ∈ S
by (auto simp: connected component def )

lemma connected component refl : x ∈ S =⇒ connected component S x x
by (auto simp: connected component def ) (use connected sing in blast)

lemma connected component refl eq [simp]: connected component S x x ←→ x ∈
S
by (auto simp: connected component refl) (auto simp: connected component def )

lemma connected component sym: connected component S x y =⇒ connected component
S y x
by (auto simp: connected component def )

lemma connected component trans:
connected component S x y =⇒ connected component S y z =⇒ connected component

S x z
unfolding connected component def
by (metis Int iff Un iff Un subset iff equals0D connected Un)

lemma connected component of subset :
connected component S x y =⇒ S ⊆ T =⇒ connected component T x y
by (auto simp: connected component def )

lemma connected component Union: connected component set S x =
⋃
{T . con-

nected T ∧ x ∈ T ∧ T ⊆ S}
by (auto simp: connected component def )

lemma connected connected component [iff ]: connected (connected component set
S x )
by (auto simp: connected component Union intro: connected Union)

lemma connected iff eq connected component set :
connected S ←→ (∀ x ∈ S . connected component set S x = S )
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proof (cases S = {})
case True
then show ?thesis by simp

next
case False
then obtain x where x ∈ S by auto
show ?thesis
proof
assume connected S
then show ∀ x ∈ S . connected component set S x = S
by (force simp: connected component def )

next
assume ∀ x ∈ S . connected component set S x = S
then show connected S
by (metis 〈x ∈ S 〉 connected connected component)

qed
qed

lemma connected component subset : connected component set S x ⊆ S
using connected component in by blast

lemma connected component eq self : connected S =⇒ x ∈ S =⇒ connected component set
S x = S
by (simp add : connected iff eq connected component set)

lemma connected iff connected component :
connected S ←→ (∀ x ∈ S . ∀ y ∈ S . connected component S x y)
using connected component in by (auto simp: connected iff eq connected component set)

lemma connected component maximal :
x ∈ T =⇒ connected T =⇒ T ⊆ S =⇒ T ⊆ (connected component set S x )
using connected component eq self connected component of subset by blast

lemma connected component mono:
S ⊆ T =⇒ connected component set S x ⊆ connected component set T x
by (simp add : Collect mono connected component of subset)

lemma connected component eq empty [simp]: connected component set S x = {}
←→ x /∈ S
using connected component refl by (fastforce simp: connected component in)

lemma connected component set empty [simp]: connected component set {} x =
{}
using connected component eq empty by blast

lemma connected component eq :
y ∈ connected component set S x =⇒ (connected component set S y = con-

nected component set S x )
by (metis (no types, lifting)
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Collect cong connected component sym connected component trans mem Collect eq)

lemma closed connected component :
assumes S : closed S
shows closed (connected component set S x )

proof (cases x ∈ S )
case False
then show ?thesis
by (metis connected component eq empty closed empty)

next
case True
show ?thesis
unfolding closure eq [symmetric]

proof
show closure (connected component set S x ) ⊆ connected component set S x
apply (rule connected component maximal)
apply (simp add : closure def True)
apply (simp add : connected imp connected closure)
apply (simp add : S closure minimal connected component subset)
done

next
show connected component set S x ⊆ closure (connected component set S x )
by (simp add : closure subset)

qed
qed

lemma connected component disjoint :
connected component set S a ∩ connected component set S b = {} ←→
a /∈ connected component set S b

apply (auto simp: connected component eq)
using connected component eq connected component sym
apply blast
done

lemma connected component nonoverlap:
connected component set S a ∩ connected component set S b = {} ←→
a /∈ S ∨ b /∈ S ∨ connected component set S a 6= connected component set S b

apply (auto simp: connected component in)
using connected component refl eq
apply blast
apply (metis connected component eq mem Collect eq)
apply (metis connected component eq mem Collect eq)
done

lemma connected component overlap:
connected component set S a ∩ connected component set S b 6= {} ←→
a ∈ S ∧ b ∈ S ∧ connected component set S a = connected component set S b

by (auto simp: connected component nonoverlap)
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lemma connected component sym eq : connected component S x y ←→ connected component
S y x
using connected component sym by blast

lemma connected component eq eq :
connected component set S x = connected component set S y ←→
x /∈ S ∧ y /∈ S ∨ x ∈ S ∧ y ∈ S ∧ connected component S x y

apply (cases y ∈ S , simp)
apply (metis connected component eq connected component eq empty connected component refl eq

mem Collect eq)
apply (cases x ∈ S , simp)
apply (metis connected component eq empty)
using connected component eq empty
apply blast
done

lemma connected iff connected component eq :
connected S ←→ (∀ x ∈ S . ∀ y ∈ S . connected component set S x = connected component set

S y)
by (simp add : connected component eq eq connected iff connected component)

lemma connected component idemp:
connected component set (connected component set S x ) x = connected component set

S x
apply (rule subset antisym)
apply (simp add : connected component subset)
apply (metis connected component eq empty connected component maximal

connected component refl eq connected connected component mem Collect eq
set eq subset)
done

lemma connected component unique:
[[x ∈ c; c ⊆ S ; connected c;∧

c ′. [[x ∈ c ′; c ′ ⊆ S ; connected c ′]] =⇒ c ′ ⊆ c]]
=⇒ connected component set S x = c

apply (rule subset antisym)
apply (meson connected component maximal connected component subset con-

nected connected component contra subsetD)
by (simp add : connected component maximal)

lemma joinable connected component eq :
[[connected T ; T ⊆ S ;
connected component set S x ∩ T 6= {};
connected component set S y ∩ T 6= {}]]
=⇒ connected component set S x = connected component set S y

apply (simp add : ex in conv [symmetric])
apply (rule connected component eq)
by (metis (no types, hide lams) connected component eq eq connected component in
connected component maximal subsetD mem Collect eq)
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lemma Union connected component :
⋃

(connected component set S ‘ S ) = S
apply (rule subset antisym)
apply (simp add : SUP least connected component subset)
using connected component refl eq
by force

lemma complement connected component unions:
S − connected component set S x =⋃

(connected component set S ‘ S − {connected component set S x})
apply (subst Union connected component [symmetric], auto)
apply (metis connected component eq eq connected component in)
by (metis connected component eq mem Collect eq)

lemma connected component intermediate subset :
[[connected component set U a ⊆ T ; T ⊆ U ]]
=⇒ connected component set T a = connected component set U a

apply (case tac a ∈ U )
apply (simp add : connected component maximal connected component mono sub-

set antisym)
using connected component eq empty by blast

2.4.3 The set of connected components of a set

definition components:: ′a::topological space set ⇒ ′a set set
where components S ≡ connected component set S ‘ S

lemma components iff : S ∈ components U ←→ (∃ x . x ∈ U ∧ S = connected component set
U x )
by (auto simp: components def )

lemma componentsI : x ∈ U =⇒ connected component set U x ∈ components U
by (auto simp: components def )

lemma componentsE :
assumes S ∈ components U
obtains x where x ∈ U S = connected component set U x
using assms by (auto simp: components def )

lemma Union components [simp]:
⋃
(components u) = u

apply (rule subset antisym)
using Union connected component components def apply fastforce
apply (metis Union connected component components def set eq subset)
done

lemma pairwise disjoint components: pairwise (λX Y . X ∩ Y = {}) (components
u)
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apply (simp add : pairwise def )
apply (auto simp: components iff )
apply (metis connected component eq eq connected component in)+
done

lemma in components nonempty : c ∈ components s =⇒ c 6= {}
by (metis components iff connected component eq empty)

lemma in components subset : c ∈ components s =⇒ c ⊆ s
using Union components by blast

lemma in components connected : c ∈ components s =⇒ connected c
by (metis components iff connected connected component)

lemma in components maximal :
c ∈ components s ←→
c 6= {} ∧ c ⊆ s ∧ connected c ∧ (∀ d . d 6= {} ∧ c ⊆ d ∧ d ⊆ s ∧ connected d

−→ d = c)
apply (rule iffI )
apply (simp add : in components nonempty in components connected)
apply (metis (full types) components iff connected component eq self connected component intermediate subset

connected component refl in components subset mem Collect eq rev subsetD)
apply (metis bot .extremum uniqueI components iff connected component eq empty

connected component maximal connected component subset connected connected component
subset emptyI )
done

lemma joinable components eq :
connected t ∧ t ⊆ s ∧ c1 ∈ components s ∧ c2 ∈ components s ∧ c1 ∩ t 6= {}
∧ c2 ∩ t 6= {} =⇒ c1 = c2
by (metis (full types) components iff joinable connected component eq)

lemma closed components: [[closed s; c ∈ components s]] =⇒ closed c
by (metis closed connected component components iff )

lemma components nonoverlap:
[[c ∈ components s; c ′ ∈ components s]] =⇒ (c ∩ c ′ = {}) ←→ (c 6= c ′)

apply (auto simp: in components nonempty components iff )
using connected component refl apply blast
apply (metis connected component eq eq connected component in)
by (metis connected component eq mem Collect eq)

lemma components eq : [[c ∈ components s; c ′ ∈ components s]] =⇒ (c = c ′ ←→
c ∩ c ′ 6= {})
by (metis components nonoverlap)

lemma components eq empty [simp]: components s = {} ←→ s = {}
by (simp add : components def )
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lemma components empty [simp]: components {} = {}
by simp

lemma connected eq connected components eq : connected s ←→ (∀ c ∈ components
s. ∀ c ′ ∈ components s. c = c ′)
by (metis (no types, hide lams) components iff connected component eq eq con-

nected iff connected component)

lemma components eq sing iff : components s = {s} ←→ connected s ∧ s 6= {}
apply (rule iffI )
using in components connected apply fastforce
apply safe
using Union components apply fastforce
apply (metis components iff connected component eq self )
using in components maximal
apply auto
done

lemma components eq sing exists: (∃ a. components s = {a}) ←→ connected s ∧
s 6= {}
apply (rule iffI )
using connected eq connected components eq apply fastforce
apply (metis components eq sing iff )
done

lemma connected eq components subset sing : connected s ←→ components s ⊆ {s}
by (metis Union components components empty components eq sing iff connected empty

insert subset order refl subset singletonD)

lemma connected eq components subset sing exists: connected s ←→ (∃ a. compo-
nents s ⊆ {a})
by (metis components eq sing exists connected eq components subset sing empty iff

subset iff subset singletonD)

lemma in components self : s ∈ components s ←→ connected s ∧ s 6= {}
by (metis components empty components eq sing iff empty iff in components connected

insertI1 )

lemma components maximal : [[c ∈ components s; connected t ; t ⊆ s; c ∩ t 6= {}]]
=⇒ t ⊆ c
apply (simp add : components def ex in conv [symmetric], clarify)
by (meson connected component def connected component trans)

lemma exists component superset : [[t ⊆ s; s 6= {}; connected t ]] =⇒ ∃ c. c ∈ com-
ponents s ∧ t ⊆ c
apply (cases t = {}, force)
apply (metis components def ex in conv connected component maximal contra subsetD

image eqI )
done
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lemma components intermediate subset : [[s ∈ components u; s ⊆ t ; t ⊆ u]] =⇒ s
∈ components t
apply (auto simp: components iff )
apply (metis connected component eq empty connected component intermediate subset)
done

lemma in components unions complement : c ∈ components s =⇒ s − c =
⋃

(components
s − {c})
by (metis complement connected component unions components def components iff )

lemma connected intermediate closure:
assumes cs: connected s and st : s ⊆ t and ts: t ⊆ closure s
shows connected t

proof (rule connectedI )
fix A B
assume A: open A and B : open B and Alap: A ∩ t 6= {} and Blap: B ∩ t 6=
{}

and disj : A ∩ B ∩ t = {} and cover : t ⊆ A ∪ B
have disjs: A ∩ B ∩ s = {}
using disj st by auto

have A ∩ closure s 6= {}
using Alap Int absorb1 ts by blast

then have Alaps: A ∩ s 6= {}
by (simp add : A open Int closure eq empty)

have B ∩ closure s 6= {}
using Blap Int absorb1 ts by blast

then have Blaps: B ∩ s 6= {}
by (simp add : B open Int closure eq empty)

then show False
using cs [unfolded connected def ] A B disjs Alaps Blaps cover st
by blast

qed

lemma closedin connected component : closedin (top of set s) (connected component set
s x )
proof (cases connected component set s x = {})
case True
then show ?thesis
by (metis closedin empty)

next
case False
then obtain y where y : connected component s x y
by blast

have ∗: connected component set s x ⊆ s ∩ closure (connected component set s
x )

by (auto simp: closure def connected component in)
have connected component s x y =⇒ s ∩ closure (connected component set s x )
⊆ connected component set s x
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apply (rule connected component maximal , simp)
using closure subset connected component in apply fastforce
using ∗ connected intermediate closure apply blast+
done

with y ∗ show ?thesis
by (auto simp: closedin closed)

qed

lemma closedin component :
C ∈ components s =⇒ closedin (top of set s) C
using closedin connected component componentsE by blast

2.4.4 Proving a function is constant on a connected set by
proving that a level set is open

lemma continuous levelset openin cases:
fixes f :: ⇒ ′b::t1 space
shows connected s =⇒ continuous on s f =⇒

openin (top of set s) {x ∈ s. f x = a}
=⇒ (∀ x ∈ s. f x 6= a) ∨ (∀ x ∈ s. f x = a)

unfolding connected clopen
using continuous closedin preimage constant by auto

lemma continuous levelset openin:
fixes f :: ⇒ ′b::t1 space
shows connected s =⇒ continuous on s f =⇒

openin (top of set s) {x ∈ s. f x = a} =⇒
(∃ x ∈ s. f x = a) =⇒ (∀ x ∈ s. f x = a)

using continuous levelset openin cases[of s f ]
by meson

lemma continuous levelset open:
fixes f :: ⇒ ′b::t1 space
assumes connected s
and continuous on s f
and open {x ∈ s. f x = a}
and ∃ x ∈ s. f x = a

shows ∀ x ∈ s. f x = a
using continuous levelset openin[OF assms(1 ,2 ), of a, unfolded openin open]
using assms (3 ,4 )
by fast

2.4.5 Preservation of Connectedness

lemma homeomorphic connectedness:
assumes s homeomorphic t
shows connected s ←→ connected t

using assms unfolding homeomorphic def homeomorphism def by (metis con-
nected continuous image)
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lemma connected monotone quotient preimage:
assumes connected T

and contf : continuous on S f and fim: f ‘ S = T
and opT :

∧
U . U ⊆ T

=⇒ openin (top of set S ) (S ∩ f −‘ U ) ←→
openin (top of set T ) U

and connT :
∧
y . y ∈ T =⇒ connected (S ∩ f −‘ {y})

shows connected S
proof (rule connectedI )
fix U V
assume open U and open V and U ∩ S 6= {} and V ∩ S 6= {}
and U ∩ V ∩ S = {} and S ⊆ U ∪ V

moreover
have disjoint : f ‘ (S ∩ U ) ∩ f ‘ (S ∩ V ) = {}
proof −
have False if y ∈ f ‘ (S ∩ U ) ∩ f ‘ (S ∩ V ) for y
proof −
have y ∈ T
using fim that by blast

show ?thesis
using connectedD [OF connT [OF 〈y ∈ T 〉] 〈open U 〉 〈open V 〉]

〈S ⊆ U ∪ V 〉 〈U ∩ V ∩ S = {}〉 that by fastforce
qed
then show ?thesis by blast

qed
ultimately have UU : (S ∩ f −‘ f ‘ (S ∩ U )) = S ∩ U and VV : (S ∩ f −‘ f

‘ (S ∩ V )) = S ∩ V
by auto

have opeU : openin (top of set T ) (f ‘ (S ∩ U ))
by (metis UU 〈open U 〉 fim image Int subset le inf iff opT openin open Int)

have opeV : openin (top of set T ) (f ‘ (S ∩ V ))
by (metis opT fim VV 〈open V 〉 openin open Int image Int subset inf .bounded iff )
have T ⊆ f ‘ (S ∩ U ) ∪ f ‘ (S ∩ V )
using 〈S ⊆ U ∪ V 〉 fim by auto

then show False
using 〈connected T 〉 disjoint opeU opeV 〈U ∩ S 6= {}〉 〈V ∩ S 6= {}〉
by (auto simp: connected openin)

qed

lemma connected open monotone preimage:
assumes contf : continuous on S f and fim: f ‘ S = T
and ST :

∧
C . openin (top of set S ) C =⇒ openin (top of set T ) (f ‘ C )

and connT :
∧
y . y ∈ T =⇒ connected (S ∩ f −‘ {y})

and connected C C ⊆ T
shows connected (S ∩ f −‘ C )

proof −
have contf ′: continuous on (S ∩ f −‘ C ) f
by (meson contf continuous on subset inf le1 )
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have eqC : f ‘ (S ∩ f −‘ C ) = C
using 〈C ⊆ T 〉 fim by blast

show ?thesis
proof (rule connected monotone quotient preimage [OF 〈connected C 〉 contf ′

eqC ])
show connected (S ∩ f −‘ C ∩ f −‘ {y}) if y ∈ C for y
proof −
have S ∩ f −‘ C ∩ f −‘ {y} = S ∩ f −‘ {y}
using that by blast

moreover have connected (S ∩ f −‘ {y})
using 〈C ⊆ T 〉 connT that by blast

ultimately show ?thesis
by metis

qed
have

∧
U . openin (top of set (S ∩ f −‘ C )) U
=⇒ openin (top of set C ) (f ‘ U )

using open map restrict [OF ST 〈C ⊆ T 〉] by metis
then show

∧
D . D ⊆ C

=⇒ openin (top of set (S ∩ f −‘ C )) (S ∩ f −‘ C ∩ f −‘ D) =
openin (top of set C ) D

using open map imp quotient map [of (S ∩ f −‘ C ) f ] contf ′ by (simp add :
eqC )
qed

qed

lemma connected closed monotone preimage:
assumes contf : continuous on S f and fim: f ‘ S = T
and ST :

∧
C . closedin (top of set S ) C =⇒ closedin (top of set T ) (f ‘ C )

and connT :
∧
y . y ∈ T =⇒ connected (S ∩ f −‘ {y})

and connected C C ⊆ T
shows connected (S ∩ f −‘ C )

proof −
have contf ′: continuous on (S ∩ f −‘ C ) f
by (meson contf continuous on subset inf le1 )

have eqC : f ‘ (S ∩ f −‘ C ) = C
using 〈C ⊆ T 〉 fim by blast

show ?thesis
proof (rule connected monotone quotient preimage [OF 〈connected C 〉 contf ′

eqC ])
show connected (S ∩ f −‘ C ∩ f −‘ {y}) if y ∈ C for y
proof −
have S ∩ f −‘ C ∩ f −‘ {y} = S ∩ f −‘ {y}
using that by blast

moreover have connected (S ∩ f −‘ {y})
using 〈C ⊆ T 〉 connT that by blast

ultimately show ?thesis
by metis

qed
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have
∧
U . closedin (top of set (S ∩ f −‘ C )) U
=⇒ closedin (top of set C ) (f ‘ U )

using closed map restrict [OF ST 〈C ⊆ T 〉] by metis
then show

∧
D . D ⊆ C

=⇒ openin (top of set (S ∩ f −‘ C )) (S ∩ f −‘ C ∩ f −‘ D) =
openin (top of set C ) D

using closed map imp quotient map [of (S ∩ f −‘ C ) f ] contf ′ by (simp add :
eqC )
qed

qed

2.4.6 Lemmas about components

See Newman IV, 3.3 and 3.4.

lemma connected Un clopen in complement :
fixes S U :: ′a::metric space set
assumes connected S connected U S ⊆ U

and opeT : openin (top of set (U − S )) T
and cloT : closedin (top of set (U − S )) T

shows connected (S ∪ T )
proof −
have ∗: [[

∧
x y . P x y ←→ P y x ;

∧
x y . P x y =⇒ S ⊆ x ∨ S ⊆ y ;∧

x y . [[P x y ; S ⊆ x ]] =⇒ False]] =⇒ ¬(∃ x y . (P x y)) for P
by metis

show ?thesis
unfolding connected closedin eq

proof (rule ∗)
fix H1 H2
assume H : closedin (top of set (S ∪ T )) H1 ∧

closedin (top of set (S ∪ T )) H2 ∧
H1 ∪ H2 = S ∪ T ∧ H1 ∩ H2 = {} ∧ H1 6= {} ∧ H2 6= {}

then have clo: closedin (top of set S ) (S ∩ H1 )
closedin (top of set S ) (S ∩ H2 )

by (metis Un upper1 closedin closed subset inf commute)+
have Seq : S ∩ (H1 ∪ H2 ) = S
by (simp add : H )

have S ∩ ((S ∪ T ) ∩ H1 ) ∪ S ∩ ((S ∪ T ) ∩ H2 ) = S
using Seq by auto

moreover have H1 ∩ (S ∩ ((S ∪ T ) ∩ H2 )) = {}
using H by blast

ultimately have S ∩ H1 = {} ∨ S ∩ H2 = {}
by (metis (no types) H Int assoc 〈S ∩ (H1 ∪ H2 ) = S 〉 〈connected S 〉

clo Seq connected closedin inf bot right inf le1 )
then show S ⊆ H1 ∨ S ⊆ H2
using H 〈connected S 〉 unfolding connected closedin by blast

next
fix H1 H2
assume H : closedin (top of set (S ∪ T )) H1 ∧

closedin (top of set (S ∪ T )) H2 ∧
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H1 ∪ H2 = S ∪ T ∧ H1 ∩ H2 = {} ∧ H1 6= {} ∧ H2 6= {}
and S ⊆ H1

then have H2T : H2 ⊆ T
by auto

have T ⊆ U
using Diff iff opeT openin imp subset by auto

with 〈S ⊆ U 〉 have Ueq : U = (U − S ) ∪ (S ∪ T )
by auto

have openin (top of set ((U − S ) ∪ (S ∪ T ))) H2
proof (rule openin subtopology Un)
show openin (top of set (S ∪ T )) H2
using 〈H2 ⊆ T 〉 apply (auto simp: openin closedin eq)
by (metis Diff Diff Int Diff disjoint Diff partition Diff subset H Int absorb1

Un Diff )
then show openin (top of set (U − S )) H2
by (meson H2T Un upper2 opeT openin subset trans openin trans)

qed
moreover have closedin (top of set ((U − S ) ∪ (S ∪ T ))) H2
proof (rule closedin subtopology Un)
show closedin (top of set (U − S )) H2
using H H2T cloT closedin subset trans
by (blast intro: closedin subtopology Un closedin trans)

qed (simp add : H )
ultimately
have H2 : H2 = {} ∨ H2 = U
using Ueq 〈connected U 〉 unfolding connected clopen by metis

then have H2 ⊆ S
by (metis Diff partition H Un Diff cancel Un subset iff 〈H2 ⊆ T 〉 assms(3 )

inf .orderE opeT openin imp subset)
moreover have T ⊆ H2 − S
by (metis (no types) H2 H opeT openin closedin eq topspace euclidean subtopology)
ultimately show False
using H 〈S ⊆ H1 〉 by blast

qed blast
qed

proposition component diff connected :
fixes S :: ′a::metric space set
assumes connected S connected U S ⊆ U and C : C ∈ components (U − S )
shows connected(U − C )
using 〈connected S 〉 unfolding connected closedin eq not ex de Morgan conj

proof clarify
fix H3 H4
assume clo3 : closedin (top of set (U − C )) H3
and clo4 : closedin (top of set (U − C )) H4
and H3 ∪ H4 = U − C and H3 ∩ H4 = {} and H3 6= {} and H4 6= {}
and ∗ [rule format ]:
∀H1 H2 . ¬ closedin (top of set S ) H1 ∨
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¬ closedin (top of set S ) H2 ∨
H1 ∪ H2 6= S ∨ H1 ∩ H2 6= {} ∨ ¬ H1 6= {} ∨ ¬ H2 6= {}

then have H3 ⊆ U−C and ope3 : openin (top of set (U − C )) (U − C − H3 )
and H4 ⊆ U−C and ope4 : openin (top of set (U − C )) (U − C − H4 )
by (auto simp: closedin def )

have C 6= {} C ⊆ U−S connected C
using C in components nonempty in components subset in components maximal

by blast+
have cCH3 : connected (C ∪ H3 )
proof (rule connected Un clopen in complement [OF 〈connected C 〉 〈connected

U 〉 clo3 ])
show openin (top of set (U − C )) H3
apply (simp add : openin closedin eq 〈H3 ⊆ U − C 〉)
apply (simp add : closedin subtopology)
by (metis Diff cancel Diff triv Un Diff clo4 〈H3 ∩ H4 = {}〉 〈H3 ∪ H4 = U

− C 〉 closedin closed inf commute sup bot .left neutral)
qed (use clo3 〈C ⊆ U − S 〉 in auto)
have cCH4 : connected (C ∪ H4 )
proof (rule connected Un clopen in complement [OF 〈connected C 〉 〈connected

U 〉 clo4 ])
show openin (top of set (U − C )) H4
apply (simp add : openin closedin eq 〈H4 ⊆ U − C 〉)
apply (simp add : closedin subtopology)
by (metis Diff cancel Int commute Un Diff Un Diff Int 〈H3 ∩ H4 = {}〉 〈H3

∪ H4 = U − C 〉 clo3 closedin closed)
qed (use clo4 〈C ⊆ U − S 〉 in auto)
have closedin (top of set S ) (S ∩ H3 ) closedin (top of set S ) (S ∩ H4 )
using clo3 clo4 〈S ⊆ U 〉 〈C ⊆ U − S 〉 by (auto simp: closedin closed)

moreover have S ∩ H3 6= {}
using components maximal [OF C cCH3 ] 〈C 6= {}〉 〈C ⊆ U − S 〉 〈H3 6= {}〉

〈H3 ⊆ U − C 〉 by auto
moreover have S ∩ H4 6= {}
using components maximal [OF C cCH4 ] 〈C 6= {}〉 〈C ⊆ U − S 〉 〈H4 6= {}〉

〈H4 ⊆ U − C 〉 by auto
ultimately show False
using ∗ [of S ∩ H3 S ∩ H4 ] 〈H3 ∩ H4 = {}〉 〈C ⊆ U − S 〉 〈H3 ∪ H4 = U −

C 〉 〈S ⊆ U 〉

by auto
qed

2.4.7 Constancy of a function from a connected set into a
finite, disconnected or discrete set

Still missing: versions for a set that is smaller than R, or countable.

lemma continuous disconnected range constant :
assumes S : connected S

and conf : continuous on S f
and fim: f ‘ S ⊆ t
and cct :

∧
y . y ∈ t =⇒ connected component set t y = {y}



Abstract Limits.thy 467

shows f constant on S
proof (cases S = {})
case True then show ?thesis
by (simp add : constant on def )

next
case False
{ fix x assume x ∈ S
then have f ‘ S ⊆ {f x}
by (metis connected continuous image conf connected component maximal fim

image subset iff rev image eqI S cct)
}
with False show ?thesis
unfolding constant on def by blast

qed

This proof requires the existence of two separate values of the range type.

lemma finite range constant imp connected :
assumes

∧
f :: ′a::topological space ⇒ ′b::real normed algebra 1 .

[[continuous on S f ; finite(f ‘ S )]] =⇒ f constant on S
shows connected S

proof −
{ fix t u
assume clt : closedin (top of set S ) t

and clu: closedin (top of set S ) u
and tue: t ∩ u = {} and tus: t ∪ u = S

have conif : continuous on S (λx . if x ∈ t then 0 else 1 )
apply (subst tus [symmetric])
apply (rule continuous on cases local)
using clt clu tue
apply (auto simp: tus)
done

have fi : finite ((λx . if x ∈ t then 0 else 1 ) ‘ S )
by (rule finite subset [of {0 ,1}]) auto

have t = {} ∨ u = {}
using assms [OF conif fi ] tus [symmetric]
by (auto simp: Ball def constant on def ) (metis IntI empty iff one neq zero

tue)
}
then show ?thesis
by (simp add : connected closedin eq)

qed

end
theory Abstract Limits
imports
Abstract Topology

begin
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2.4.8 nhdsin and atin

definition nhdsin :: ′a topology ⇒ ′a ⇒ ′a filter
where nhdsin X a =

(if a ∈ topspace X then (INF S∈{S . openin X S ∧ a ∈ S}. principal S )
else bot)

definition atin :: ′a topology ⇒ ′a ⇒ ′a filter
where atin X a ≡ inf (nhdsin X a) (principal (topspace X − {a}))

lemma nhdsin degenerate [simp]: a /∈ topspace X =⇒ nhdsin X a = bot
and atin degenerate [simp]: a /∈ topspace X =⇒ atin X a = bot
by (simp all add : nhdsin def atin def )

lemma eventually nhdsin:
eventually P (nhdsin X a) ←→ a /∈ topspace X ∨ (∃S . openin X S ∧ a ∈ S ∧

(∀ x∈S . P x ))
proof (cases a ∈ topspace X )
case True
hence nhdsin X a = (INF S∈{S . openin X S ∧ a ∈ S}. principal S )
by (simp add : nhdsin def )

also have eventually P . . . ←→ (∃S . openin X S ∧ a ∈ S ∧ (∀ x∈S . P x ))
using True by (subst eventually INF base) (auto simp: eventually principal)

finally show ?thesis using True by simp
qed auto

lemma eventually atin:
eventually P (atin X a) ←→ a /∈ topspace X ∨

(∃U . openin X U ∧ a ∈ U ∧ (∀ x ∈ U − {a}. P x ))
proof (cases a ∈ topspace X )
case True
hence eventually P (atin X a) ←→ (∃S . openin X S ∧

a ∈ S ∧ (∀ x∈S . x ∈ topspace X ∧ x 6= a −→ P x ))
by (simp add : atin def eventually inf principal eventually nhdsin)

also have . . . ←→ (∃U . openin X U ∧ a ∈ U ∧ (∀ x ∈ U − {a}. P x ))
using openin subset by (intro ex cong) auto

finally show ?thesis by (simp add : True)
qed auto

2.4.9 Limits in a topological space

definition limitin :: ′a topology ⇒ ( ′b ⇒ ′a) ⇒ ′a ⇒ ′b filter ⇒ bool where
limitin X f l F ≡ l ∈ topspace X ∧ (∀U . openin X U ∧ l ∈ U −→ eventually

(λx . f x ∈ U ) F )

lemma limitin canonical iff [simp]: limitin euclidean f l F ←→ (f −−−→ l) F
by (auto simp: limitin def tendsto def )

lemma limitin topspace: limitin X f l F =⇒ l ∈ topspace X
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by (simp add : limitin def )

lemma limitin const iff [simp]: limitin X (λa. l) l F ←→ l ∈ topspace X
by (simp add : limitin def )

lemma limitin const : limitin euclidean (λa. l) l F
by simp

lemma limitin eventually :
[[l ∈ topspace X ; eventually (λx . f x = l) F ]] =⇒ limitin X f l F
by (auto simp: limitin def eventually mono)

lemma limitin subsequence:
[[strict mono r ; limitin X f l sequentially ]] =⇒ limitin X (f ◦ r) l sequentially
unfolding limitin def using eventually subseq by fastforce

lemma limitin subtopology :
limitin (subtopology X S ) f l F
←→ l ∈ S ∧ eventually (λa. f a ∈ S ) F ∧ limitin X f l F (is ?lhs = ?rhs)

proof (cases l ∈ S ∩ topspace X )
case True
show ?thesis
proof
assume L: ?lhs
with True
have ∀ F b in F . f b ∈ topspace X ∩ S
by (metis (no types) limitin def openin topspace topspace subtopology)

with L show ?rhs
apply (clarsimp simp add : limitin def eventually mono openin subtopology alt)
apply (drule tac x=S ∩ U in spec, force simp: elim: eventually mono)
done

next
assume ?rhs
then show ?lhs
using eventually elim2
by (fastforce simp add : limitin def openin subtopology alt)

qed
qed (auto simp: limitin def )

lemma limitin canonical iff gen [simp]:
assumes open S
shows limitin (top of set S ) f l F ←→ (f −−−→ l) F ∧ l ∈ S
using assms by (auto simp: limitin subtopology tendsto def )

lemma limitin sequentially :
limitin X S l sequentially ←→
l ∈ topspace X ∧ (∀U . openin X U ∧ l ∈ U −→ (∃N . ∀n. N ≤ n −→ S n

∈ U ))
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by (simp add : limitin def eventually sequentially)

lemma limitin sequentially offset :
limitin X f l sequentially =⇒ limitin X (λi . f (i + k)) l sequentially
unfolding limitin sequentially
by (metis add .commute le add2 order trans)

lemma limitin sequentially offset rev :
assumes limitin X (λi . f (i + k)) l sequentially
shows limitin X f l sequentially

proof −
have ∃N . ∀n≥N . f n ∈ U if U : openin X U l ∈ U for U
proof −
obtain N where

∧
n. n≥N =⇒ f (n + k) ∈ U

using assms U unfolding limitin sequentially by blast
then have ∀n≥N+k . f n ∈ U
by (metis add leD2 le add diff inverse ordered cancel comm monoid diff class.le diff conv2

add .commute)
then show ?thesis ..

qed
with assms show ?thesis
unfolding limitin sequentially
by simp

qed

lemma limitin atin:
limitin Y f y (atin X x ) ←→

y ∈ topspace Y ∧
(x ∈ topspace X
−→ (∀V . openin Y V ∧ y ∈ V

−→ (∃U . openin X U ∧ x ∈ U ∧ f ‘ (U − {x}) ⊆ V )))
by (auto simp: limitin def eventually atin image subset iff )

lemma limitin atin self :
limitin Y f (f a) (atin X a) ←→

f a ∈ topspace Y ∧
(a ∈ topspace X
−→ (∀V . openin Y V ∧ f a ∈ V

−→ (∃U . openin X U ∧ a ∈ U ∧ f ‘ U ⊆ V )))
unfolding limitin atin by fastforce

lemma limitin trivial :
[[trivial limit F ; y ∈ topspace X ]] =⇒ limitin X f y F
by (simp add : limitin def )

lemma limitin transform eventually :
[[eventually (λx . f x = g x ) F ; limitin X f l F ]] =⇒ limitin X g l F
unfolding limitin def using eventually elim2 by fastforce
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lemma continuous map limit :
assumes continuous map X Y g and f : limitin X f l F
shows limitin Y (g ◦ f ) (g l) F

proof −
have g l ∈ topspace Y
by (meson assms continuous map def limitin topspace)

moreover
have

∧
U . [[∀V . openin X V ∧ l ∈ V −→ (∀ F x in F . f x ∈ V ); openin Y U ;

g l ∈ U ]]
=⇒ ∀ F x in F . g (f x ) ∈ U

using assms eventually mono
by (fastforce simp: limitin def dest !: openin continuous map preimage)

ultimately show ?thesis
using f by (fastforce simp add : limitin def )

qed

2.4.10 Pointwise continuity in topological spaces

definition topcontinuous at where
topcontinuous at X Y f x ←→

x ∈ topspace X ∧
(∀ x ∈ topspace X . f x ∈ topspace Y ) ∧
(∀V . openin Y V ∧ f x ∈ V
−→ (∃U . openin X U ∧ x ∈ U ∧ (∀ y ∈ U . f y ∈ V )))

lemma topcontinuous at atin:
topcontinuous at X Y f x ←→

x ∈ topspace X ∧
(∀ x ∈ topspace X . f x ∈ topspace Y ) ∧
limitin Y f (f x ) (atin X x )

unfolding topcontinuous at def
by (fastforce simp add : limitin atin)+

lemma continuous map eq topcontinuous at :
continuous map X Y f ←→ (∀ x ∈ topspace X . topcontinuous at X Y f x )
(is ?lhs = ?rhs)

proof
assume ?lhs
then show ?rhs
by (auto simp: continuous map def topcontinuous at def )

next
assume R: ?rhs
then show ?lhs
apply (auto simp: continuous map def topcontinuous at def )
apply (subst openin subopen, safe)
apply (drule bspec, assumption)
using openin subset [of X ] apply (auto simp: subset iff dest !: spec)
done

qed
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lemma continuous map atin:
continuous map X Y f ←→ (∀ x ∈ topspace X . limitin Y f (f x ) (atin X x ))

by (auto simp: limitin def topcontinuous at atin continuous map eq topcontinuous at)

lemma limitin continuous map:
[[continuous map X Y f ; a ∈ topspace X ; f a = b]] =⇒ limitin Y f b (atin X a)
by (auto simp: continuous map atin)

2.4.11 Combining theorems for continuous functions into the
reals

lemma continuous map canonical const [continuous intros]:
continuous map X euclidean (λx . c)
by simp

lemma continuous map real mult [continuous intros]:
[[continuous map X euclideanreal f ; continuous map X euclideanreal g ]]
=⇒ continuous map X euclideanreal (λx . f x ∗ g x )
by (simp add : continuous map atin tendsto mult)

lemma continuous map real pow [continuous intros]:
continuous map X euclideanreal f =⇒ continuous map X euclideanreal (λx . f x

ˆ n)
by (induction n) (auto simp: continuous map real mult)

lemma continuous map real mult left :
continuous map X euclideanreal f =⇒ continuous map X euclideanreal (λx . c ∗

f x )
by (simp add : continuous map atin tendsto mult)

lemma continuous map real mult left eq :
continuous map X euclideanreal (λx . c ∗ f x ) ←→ c = 0 ∨ continuous map X

euclideanreal f
proof (cases c = 0 )
case False
have continuous map X euclideanreal (λx . c ∗ f x ) =⇒ continuous map X eu-

clideanreal f
apply (frule continuous map real mult left [where c=inverse c])
apply (simp add : field simps False)
done

with False show ?thesis
using continuous map real mult left by blast

qed simp

lemma continuous map real mult right :
continuous map X euclideanreal f =⇒ continuous map X euclideanreal (λx . f x

∗ c)
by (simp add : continuous map atin tendsto mult)
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lemma continuous map real mult right eq :
continuous map X euclideanreal (λx . f x ∗ c) ←→ c = 0 ∨ continuous map X

euclideanreal f
by (simp add : mult .commute flip: continuous map real mult left eq)

lemma continuous map minus [continuous intros]:
fixes f :: ′a⇒ ′b::real normed vector
shows continuous map X euclidean f =⇒ continuous map X euclidean (λx . − f

x )
by (simp add : continuous map atin tendsto minus)

lemma continuous map minus eq [simp]:
fixes f :: ′a⇒ ′b::real normed vector
shows continuous map X euclidean (λx . − f x ) ←→ continuous map X euclidean

f
using continuous map minus add .inverse inverse continuous map eq by fastforce

lemma continuous map add [continuous intros]:
fixes f :: ′a⇒ ′b::real normed vector
shows [[continuous map X euclidean f ; continuous map X euclidean g ]] =⇒ con-

tinuous map X euclidean (λx . f x + g x )
by (simp add : continuous map atin tendsto add)

lemma continuous map diff [continuous intros]:
fixes f :: ′a⇒ ′b::real normed vector
shows [[continuous map X euclidean f ; continuous map X euclidean g ]] =⇒ con-

tinuous map X euclidean (λx . f x − g x )
by (simp add : continuous map atin tendsto diff )

lemma continuous map norm [continuous intros]:
fixes f :: ′a⇒ ′b::real normed vector
shows continuous map X euclidean f =⇒ continuous map X euclidean (λx .

norm(f x ))
by (simp add : continuous map atin tendsto norm)

lemma continuous map real abs [continuous intros]:
continuous map X euclideanreal f =⇒ continuous map X euclideanreal (λx . abs(f

x ))
by (simp add : continuous map atin tendsto rabs)

lemma continuous map real max [continuous intros]:
[[continuous map X euclideanreal f ; continuous map X euclideanreal g ]]
=⇒ continuous map X euclideanreal (λx . max (f x ) (g x ))
by (simp add : continuous map atin tendsto max )

lemma continuous map real min [continuous intros]:
[[continuous map X euclideanreal f ; continuous map X euclideanreal g ]]
=⇒ continuous map X euclideanreal (λx . min (f x ) (g x ))
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by (simp add : continuous map atin tendsto min)

lemma continuous map sum [continuous intros]:
fixes f :: ′a⇒ ′b⇒ ′c::real normed vector
shows [[finite I ;

∧
i . i ∈ I =⇒ continuous map X euclidean (λx . f x i)]]

=⇒ continuous map X euclidean (λx . sum (f x ) I )
by (simp add : continuous map atin tendsto sum)

lemma continuous map prod [continuous intros]:
[[finite I ;∧

i . i ∈ I =⇒ continuous map X euclideanreal (λx . f x i)]]
=⇒ continuous map X euclideanreal (λx . prod (f x ) I )

by (simp add : continuous map atin tendsto prod)

lemma continuous map real inverse [continuous intros]:
[[continuous map X euclideanreal f ;

∧
x . x ∈ topspace X =⇒ f x 6= 0 ]]

=⇒ continuous map X euclideanreal (λx . inverse(f x ))
by (simp add : continuous map atin tendsto inverse)

lemma continuous map real divide [continuous intros]:
[[continuous map X euclideanreal f ; continuous map X euclideanreal g ;

∧
x . x ∈

topspace X =⇒ g x 6= 0 ]]
=⇒ continuous map X euclideanreal (λx . f x / g x )
by (simp add : continuous map atin tendsto divide)

end



Chapter 3

Functional Analysis

3.1 A decision procedure for metric spaces

theory Metric Arith
imports HOL.Real Vector Spaces

begin

A port of the decision procedure “Formalization of metric spaces in HOL
Light” [3] for the type class metric space, with the Argo solver as backend.

named theorems metric prenex
named theorems metric nnf
named theorems metric unfold
named theorems metric pre arith

lemmas pre arith simps =
max .bounded iff max less iff conj
le max iff disj less max iff disj
simp thms HOL.eq commute

declare pre arith simps [metric pre arith]

lemmas unfold simps =
Un iff subset iff disjoint iff not equal
Ball def Bex def

declare unfold simps [metric unfold ]

declare HOL.nnf simps(4 ) [metric prenex ]

lemma imp prenex [metric prenex ]:∧
P Q . (∃ x . P x ) −→ Q ≡ ∀ x . (P x −→ Q)∧
P Q . P −→ (∃ x . Q x ) ≡ ∃ x . (P −→ Q x )∧
P Q . (∀ x . P x ) −→ Q ≡ ∃ x . (P x −→ Q)∧
P Q . P −→ (∀ x . Q x ) ≡ ∀ x . (P −→ Q x )

by simp all

lemma ex prenex [metric prenex ]:
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∧
P Q . (∃ x . P x ) ∧ Q ≡ ∃ x . (P x ∧ Q)∧
P Q . P ∧ (∃ x . Q x ) ≡ ∃ x . (P ∧ Q x )∧
P Q . (∃ x . P x ) ∨ Q ≡ ∃ x . (P x ∨ Q)∧
P Q . P ∨ (∃ x . Q x ) ≡ ∃ x . (P ∨ Q x )∧
P . ¬(∃ x . P x ) ≡ ∀ x . ¬P x

by simp all

lemma all prenex [metric prenex ]:∧
P Q . (∀ x . P x ) ∧ Q ≡ ∀ x . (P x ∧ Q)∧
P Q . P ∧ (∀ x . Q x ) ≡ ∀ x . (P ∧ Q x )∧
P Q . (∀ x . P x ) ∨ Q ≡ ∀ x . (P x ∨ Q)∧
P Q . P ∨ (∀ x . Q x ) ≡ ∀ x . (P ∨ Q x )∧
P . ¬(∀ x . P x ) ≡ ∃ x . ¬P x

by simp all

lemma nnf thms [metric nnf ]:
(¬ (P ∧ Q)) = (¬ P ∨ ¬ Q)
(¬ (P ∨ Q)) = (¬ P ∧ ¬ Q)
(P −→ Q) = (¬ P ∨ Q)
(P = Q) ←→ (P ∨ ¬ Q) ∧ (¬ P ∨ Q)
(¬ (P = Q)) ←→ (¬ P ∨ ¬ Q) ∧ (P ∨ Q)
(¬ ¬ P) = P
by blast+

lemmas nnf simps = nnf thms linorder not less linorder not le
declare nnf simps[metric nnf ]

lemma ball insert : (∀ x∈insert a B . P x ) = (P a ∧ (∀ x∈B . P x ))
by blast

lemma Sup insert insert :
fixes a::real
shows Sup (insert a (insert b s)) = Sup (insert (max a b) s)
by (simp add : Sup real def )

lemma real abs dist : |dist x y | = dist x y
by simp

lemma maxdist thm [THEN HOL.eq reflection]:
assumes finite s x ∈ s y ∈ s
defines

∧
a. f a ≡ |dist x a − dist a y |

shows dist x y = Sup (f ‘ s)
proof −
have dist x y ≤ Sup (f ‘ s)
proof −
have finite (f ‘ s)
by (simp add : 〈finite s〉)

moreover have |dist x y − dist y y | ∈ f ‘ s
by (metis 〈y ∈ s〉 f def imageI )
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ultimately show ?thesis
using le cSup finite by simp

qed
also have Sup (f ‘ s) ≤ dist x y
using 〈x ∈ s〉 cSUP least [of s f ] abs dist diff le
unfolding f def
by blast

finally show ?thesis .
qed

theorem metric eq thm [THEN HOL.eq reflection]:
x ∈ s =⇒ y ∈ s =⇒ x = y ←→ (∀ a∈s. dist x a = dist y a)
by auto

ML file metric arith.ML

method setup metric = 〈

Scan.succeed (SIMPLE METHOD ′ o MetricArith.metric arith tac)
〉 prove simple linear statements in metric spaces (∀∃ p fragment)

end

3.2 Elementary Metric Spaces

theory Elementary Metric Spaces
imports
Abstract Topology 2
Metric Arith

begin

3.2.1 Open and closed balls

definition ball :: ′a::metric space ⇒ real ⇒ ′a set
where ball x e = {y . dist x y < e}

definition cball :: ′a::metric space ⇒ real ⇒ ′a set
where cball x e = {y . dist x y ≤ e}

definition sphere :: ′a::metric space ⇒ real ⇒ ′a set
where sphere x e = {y . dist x y = e}

lemma mem ball [simp, metric unfold ]: y ∈ ball x e ←→ dist x y < e
by (simp add : ball def )

lemma mem cball [simp, metric unfold ]: y ∈ cball x e ←→ dist x y ≤ e
by (simp add : cball def )

lemma mem sphere [simp]: y ∈ sphere x e ←→ dist x y = e
by (simp add : sphere def )
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lemma ball trivial [simp]: ball x 0 = {}
by (simp add : ball def )

lemma cball trivial [simp]: cball x 0 = {x}
by (simp add : cball def )

lemma sphere trivial [simp]: sphere x 0 = {x}
by (simp add : sphere def )

lemma disjoint ballI : dist x y ≥ r+s =⇒ ball x r ∩ ball y s = {}
using dist triangle less add not le by fastforce

lemma disjoint cballI : dist x y > r + s =⇒ cball x r ∩ cball y s = {}
by (metis add mono disjoint iff not equal dist triangle2 dual order .trans leD mem cball)

lemma sphere empty [simp]: r < 0 =⇒ sphere a r = {}
for a :: ′a::metric space
by auto

lemma centre in ball [simp]: x ∈ ball x e ←→ 0 < e
by simp

lemma centre in cball [simp]: x ∈ cball x e ←→ 0 ≤ e
by simp

lemma ball subset cball [simp, intro]: ball x e ⊆ cball x e
by (simp add : subset eq)

lemma mem ball imp mem cball : x ∈ ball y e =⇒ x ∈ cball y e
by auto

lemma sphere cball [simp,intro]: sphere z r ⊆ cball z r
by force

lemma cball diff sphere: cball a r − sphere a r = ball a r
by auto

lemma subset ball [intro]: d ≤ e =⇒ ball x d ⊆ ball x e
by auto

lemma subset cball [intro]: d ≤ e =⇒ cball x d ⊆ cball x e
by auto

lemma mem ball leI : x ∈ ball y e =⇒ e ≤ f =⇒ x ∈ ball y f
by auto

lemma mem cball leI : x ∈ cball y e =⇒ e ≤ f =⇒ x ∈ cball y f
by auto
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lemma cball trans: y ∈ cball z b =⇒ x ∈ cball y a =⇒ x ∈ cball z (b + a)
by metric

lemma ball max Un: ball a (max r s) = ball a r ∪ ball a s
by auto

lemma ball min Int : ball a (min r s) = ball a r ∩ ball a s
by auto

lemma cball max Un: cball a (max r s) = cball a r ∪ cball a s
by auto

lemma cball min Int : cball a (min r s) = cball a r ∩ cball a s
by auto

lemma cball diff eq sphere: cball a r − ball a r = sphere a r
by auto

lemma open ball [intro, simp]: open (ball x e)
proof −
have open (dist x −‘ {..<e})
by (intro open vimage open lessThan continuous intros)

also have dist x −‘ {..<e} = ball x e
by auto

finally show ?thesis .
qed

lemma open contains ball : open S ←→ (∀ x∈S . ∃ e>0 . ball x e ⊆ S )
by (simp add : open dist subset eq Ball def dist commute)

lemma openI [intro?]: (
∧
x . x∈S =⇒ ∃ e>0 . ball x e ⊆ S ) =⇒ open S

by (auto simp: open contains ball)

lemma openE [elim?]:
assumes open S x∈S
obtains e where e>0 ball x e ⊆ S
using assms unfolding open contains ball by auto

lemma open contains ball eq : open S =⇒ x∈S ←→ (∃ e>0 . ball x e ⊆ S )
by (metis open contains ball subset eq centre in ball)

lemma ball eq empty [simp]: ball x e = {} ←→ e ≤ 0
unfolding mem ball set eq iff
by (simp add : not less) metric

lemma ball empty : e ≤ 0 =⇒ ball x e = {}
by simp
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lemma closed cball [iff ]: closed (cball x e)
proof −
have closed (dist x −‘ {..e})
by (intro closed vimage closed atMost continuous intros)

also have dist x −‘ {..e} = cball x e
by auto

finally show ?thesis .
qed

lemma open contains cball : open S ←→ (∀ x∈S . ∃ e>0 . cball x e ⊆ S )
proof −
{
fix x and e::real
assume x∈S e>0 ball x e ⊆ S
then have ∃ d>0 . cball x d ⊆ S
unfolding subset eq by (rule tac x=e/2 in exI , auto)

}
moreover
{
fix x and e::real
assume x∈S e>0 cball x e ⊆ S
then have ∃ d>0 . ball x d ⊆ S
using mem ball imp mem cball by blast

}
ultimately show ?thesis
unfolding open contains ball by auto

qed

lemma open contains cball eq : open S =⇒ (∀ x . x ∈ S ←→ (∃ e>0 . cball x e ⊆
S ))
by (metis open contains cball subset eq order less imp le centre in cball)

lemma eventually nhds ball : d > 0 =⇒ eventually (λx . x ∈ ball z d) (nhds z )
by (rule eventually nhds in open) simp all

lemma eventually at ball : d > 0 =⇒ eventually (λt . t ∈ ball z d ∧ t ∈ A) (at z
within A)
unfolding eventually at by (intro exI [of d ]) (simp all add : dist commute)

lemma eventually at ball ′: d > 0 =⇒ eventually (λt . t ∈ ball z d ∧ t 6= z ∧ t ∈
A) (at z within A)
unfolding eventually at by (intro exI [of d ]) (simp all add : dist commute)

lemma at within ball : e > 0 =⇒ dist x y < e =⇒ at y within ball x e = at y
by (subst at within open) auto

lemma atLeastAtMost eq cball :
fixes a b::real
shows {a .. b} = cball ((a + b)/2 ) ((b − a)/2 )
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by (auto simp: dist real def field simps)

lemma cball eq atLeastAtMost :
fixes a b::real
shows cball a b = {a − b .. a + b}
by (auto simp: dist real def )

lemma greaterThanLessThan eq ball :
fixes a b::real
shows {a <..< b} = ball ((a + b)/2 ) ((b − a)/2 )
by (auto simp: dist real def field simps)

lemma ball eq greaterThanLessThan:
fixes a b::real
shows ball a b = {a − b <..< a + b}
by (auto simp: dist real def )

lemma interior ball [simp]: interior (ball x e) = ball x e
by (simp add : interior open)

lemma cball eq empty [simp]: cball x e = {} ←→ e < 0
apply (simp add : set eq iff not le)
apply (metis zero le dist dist self order less le trans)
done

lemma cball empty [simp]: e < 0 =⇒ cball x e = {}
by simp

lemma cball sing :
fixes x :: ′a::metric space
shows e = 0 =⇒ cball x e = {x}
by simp

lemma ball divide subset : d ≥ 1 =⇒ ball x (e/d) ⊆ ball x e
by (metis ball eq empty div by 1 frac le linear subset ball zero less one)

lemma ball divide subset numeral : ball x (e / numeral w) ⊆ ball x e
using ball divide subset one le numeral by blast

lemma cball divide subset : d ≥ 1 =⇒ cball x (e/d) ⊆ cball x e
apply (cases e < 0 , simp add : field split simps)
by (metis div by 1 frac le less numeral extra(1 ) not le order refl subset cball)

lemma cball divide subset numeral : cball x (e / numeral w) ⊆ cball x e
using cball divide subset one le numeral by blast

lemma cball scale:
assumes a 6= 0
shows (λx . a ∗R x ) ‘ cball c r = cball (a ∗R c :: ′a :: real normed vector) (|a|
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∗ r)
proof −
have 1 : (λx . a ∗R x ) ‘ cball c r ⊆ cball (a ∗R c) (|a| ∗ r) if a 6= 0 for a r and

c :: ′a
proof safe
fix x
assume x : x ∈ cball c r
have dist (a ∗R c) (a ∗R x ) = norm (a ∗R c − a ∗R x )
by (auto simp: dist norm)

also have a ∗R c − a ∗R x = a ∗R (c − x )
by (simp add : algebra simps)

finally show a ∗R x ∈ cball (a ∗R c) (|a| ∗ r)
using that x by (auto simp: dist norm)

qed

have cball (a ∗R c) (|a| ∗ r) = (λx . a ∗R x ) ‘ (λx . inverse a ∗R x ) ‘ cball (a ∗R
c) (|a| ∗ r)

unfolding image image using assms by simp
also have . . . ⊆ (λx . a ∗R x ) ‘ cball (inverse a ∗R (a ∗R c)) (|inverse a| ∗ (|a|
∗ r))

using assms by (intro image mono 1 ) auto
also have . . . = (λx . a ∗R x ) ‘ cball c r
using assms by (simp add : algebra simps)

finally have cball (a ∗R c) (|a| ∗ r) ⊆ (λx . a ∗R x ) ‘ cball c r .
moreover from assms have (λx . a ∗R x ) ‘ cball c r ⊆ cball (a ∗R c) (|a| ∗ r)
by (intro 1 ) auto

ultimately show ?thesis by blast
qed

lemma ball scale:
assumes a 6= 0
shows (λx . a ∗R x ) ‘ ball c r = ball (a ∗R c :: ′a :: real normed vector) (|a| ∗

r)
proof −
have 1 : (λx . a ∗R x ) ‘ ball c r ⊆ ball (a ∗R c) (|a| ∗ r) if a 6= 0 for a r and c

:: ′a
proof safe
fix x
assume x : x ∈ ball c r
have dist (a ∗R c) (a ∗R x ) = norm (a ∗R c − a ∗R x )
by (auto simp: dist norm)

also have a ∗R c − a ∗R x = a ∗R (c − x )
by (simp add : algebra simps)

finally show a ∗R x ∈ ball (a ∗R c) (|a| ∗ r)
using that x by (auto simp: dist norm)

qed

have ball (a ∗R c) (|a| ∗ r) = (λx . a ∗R x ) ‘ (λx . inverse a ∗R x ) ‘ ball (a ∗R
c) (|a| ∗ r)
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unfolding image image using assms by simp
also have . . . ⊆ (λx . a ∗R x ) ‘ ball (inverse a ∗R (a ∗R c)) (|inverse a| ∗ (|a| ∗

r))
using assms by (intro image mono 1 ) auto

also have . . . = (λx . a ∗R x ) ‘ ball c r
using assms by (simp add : algebra simps)

finally have ball (a ∗R c) (|a| ∗ r) ⊆ (λx . a ∗R x ) ‘ ball c r .
moreover from assms have (λx . a ∗R x ) ‘ ball c r ⊆ ball (a ∗R c) (|a| ∗ r)
by (intro 1 ) auto

ultimately show ?thesis by blast
qed

3.2.2 Limit Points

lemma islimpt approachable:
fixes x :: ′a::metric space
shows x islimpt S ←→ (∀ e>0 . ∃ x ′∈S . x ′ 6= x ∧ dist x ′ x < e)
unfolding islimpt iff eventually eventually at by fast

lemma islimpt approachable le: x islimpt S ←→ (∀ e>0 . ∃ x ′∈ S . x ′ 6= x ∧ dist x ′

x ≤ e)
for x :: ′a::metric space
unfolding islimpt approachable
using approachable lt le2 [where f=λy . dist y x and P=λy . y /∈ S ∨ y = x

and Q=λx . True]
by auto

lemma limpt of limpts: x islimpt {y . y islimpt S} =⇒ x islimpt S
for x :: ′a::metric space
apply (clarsimp simp add : islimpt approachable)
apply (drule tac x=e/2 in spec)
apply (auto simp: simp del : less divide eq numeral1 )
apply (drule tac x=dist x ′ x in spec)
apply (auto simp del : less divide eq numeral1 )
apply metric
done

lemma closed limpts: closed {x :: ′a::metric space. x islimpt S}
using closed limpt limpt of limpts by blast

lemma limpt of closure: x islimpt closure S ←→ x islimpt S
for x :: ′a::metric space
by (auto simp: closure def islimpt Un dest : limpt of limpts)

lemma islimpt eq infinite ball : x islimpt S ←→ (∀ e>0 . infinite(S ∩ ball x e))
apply (simp add : islimpt eq acc point , safe)
apply (metis Int commute open ball centre in ball)
by (metis open contains ball Int mono finite subset inf commute subset refl)
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lemma islimpt eq infinite cball : x islimpt S ←→ (∀ e>0 . infinite(S ∩ cball x e))
apply (simp add : islimpt eq infinite ball , safe)
apply (meson Int mono ball subset cball finite subset order refl)

by (metis open ball centre in ball finite Int inf .absorb iff2 inf assoc open contains cball eq)

3.2.3 Perfect Metric Spaces

lemma perfect choose dist : 0 < r =⇒ ∃ a. a 6= x ∧ dist a x < r
for x :: ′a::{perfect space,metric space}
using islimpt UNIV [of x ] by (simp add : islimpt approachable)

lemma cball eq sing :
fixes x :: ′a::{metric space,perfect space}
shows cball x e = {x} ←→ e = 0

proof (rule linorder cases)
assume e: 0 < e
obtain a where a 6= x dist a x < e
using perfect choose dist [OF e] by auto

then have a 6= x dist x a ≤ e
by (auto simp: dist commute)

with e show ?thesis by (auto simp: set eq iff )
qed auto

3.2.4 ?

lemma finite ball include:
fixes a :: ′a::metric space
assumes finite S
shows ∃ e>0 . S ⊆ ball a e
using assms

proof induction
case (insert x S )
then obtain e0 where e0>0 and e0 :S ⊆ ball a e0 by auto
define e where e = max e0 (2 ∗ dist a x )
have e>0 unfolding e def using 〈e0>0 〉 by auto
moreover have insert x S ⊆ ball a e
using e0 〈e>0 〉 unfolding e def by auto

ultimately show ?case by auto
qed (auto intro: zero less one)

lemma finite set avoid :
fixes a :: ′a::metric space
assumes finite S
shows ∃ d>0 . ∀ x∈S . x 6= a −→ d ≤ dist a x
using assms

proof induction
case (insert x S )
then obtain d where d > 0 and d : ∀ x∈S . x 6= a −→ d ≤ dist a x
by blast

show ?case
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proof (cases x = a)
case True
with 〈d > 0 〉d show ?thesis by auto

next
case False
let ?d = min d (dist a x )
from False 〈d > 0 〉 have dp: ?d > 0
by auto

from d have d ′: ∀ x∈S . x 6= a −→ ?d ≤ dist a x
by auto

with dp False show ?thesis
by (metis insert iff le less min less iff conj not less)

qed
qed (auto intro: zero less one)

lemma discrete imp closed :
fixes S :: ′a::metric space set
assumes e: 0 < e
and d : ∀ x ∈ S . ∀ y ∈ S . dist y x < e −→ y = x

shows closed S
proof −
have False if C :

∧
e. e>0 =⇒ ∃ x ′∈S . x ′ 6= x ∧ dist x ′ x < e for x

proof −
from e have e2 : e/2 > 0 by arith
from C [rule format , OF e2 ] obtain y where y : y ∈ S y 6= x dist y x < e/2
by blast

from e2 y(2 ) have mp: min (e/2 ) (dist x y) > 0
by simp

from d y C [OF mp] show ?thesis
by metric

qed
then show ?thesis
by (metis islimpt approachable closed limpt [where ′a= ′a])

qed

3.2.5 Interior

lemma mem interior : x ∈ interior S ←→ (∃ e>0 . ball x e ⊆ S )
using open contains ball eq [where S=interior S ]
by (simp add : open subset interior)

lemma mem interior cball : x ∈ interior S ←→ (∃ e>0 . cball x e ⊆ S )
by (meson ball subset cball interior subset mem interior open contains cball open interior

subset trans)

3.2.6 Frontier

lemma frontier straddle:
fixes a :: ′a::metric space
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shows a ∈ frontier S ←→ (∀ e>0 . (∃ x∈S . dist a x < e) ∧ (∃ x . x /∈ S ∧ dist a
x < e))
unfolding frontier def closure interior
by (auto simp: mem interior subset eq ball def )

3.2.7 Limits

proposition Lim: (f −−−→ l) net ←→ trivial limit net ∨ (∀ e>0 . eventually (λx .
dist (f x ) l < e) net)
by (auto simp: tendsto iff trivial limit eq)

Show that they yield usual definitions in the various cases.

proposition Lim within le: (f −−−→ l)(at a within S ) ←→
(∀ e>0 . ∃ d>0 . ∀ x∈S . 0 < dist x a ∧ dist x a ≤ d −→ dist (f x ) l < e)

by (auto simp: tendsto iff eventually at le)

proposition Lim within: (f −−−→ l) (at a within S ) ←→
(∀ e >0 . ∃ d>0 . ∀ x ∈ S . 0 < dist x a ∧ dist x a < d −→ dist (f x ) l < e)

by (auto simp: tendsto iff eventually at)

corollary Lim withinI [intro?]:
assumes

∧
e. e > 0 =⇒ ∃ d>0 . ∀ x ∈ S . 0 < dist x a ∧ dist x a < d −→ dist

(f x ) l ≤ e
shows (f −−−→ l) (at a within S )
apply (simp add : Lim within, clarify)
apply (rule ex forward [OF assms [OF half gt zero]], auto)
done

proposition Lim at : (f −−−→ l) (at a) ←→
(∀ e >0 . ∃ d>0 . ∀ x . 0 < dist x a ∧ dist x a < d −→ dist (f x ) l < e)

by (auto simp: tendsto iff eventually at)

lemma Lim transform within set :
fixes a :: ′a::metric space and l :: ′b::metric space
shows [[(f −−−→ l) (at a within S ); eventually (λx . x ∈ S ←→ x ∈ T ) (at a)]]

=⇒ (f −−−→ l) (at a within T )
apply (clarsimp simp: eventually at Lim within)
apply (drule tac x=e in spec, clarify)
apply (rename tac k)
apply (rule tac x=min d k in exI , simp)
done

Another limit point characterization.

lemma limpt sequential inj :
fixes x :: ′a::metric space
shows x islimpt S ←→

(∃ f . (∀n::nat . f n ∈ S − {x}) ∧ inj f ∧ (f −−−→ x ) sequentially)
(is ?lhs = ?rhs)

proof
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assume ?lhs
then have ∀ e>0 . ∃ x ′∈S . x ′ 6= x ∧ dist x ′ x < e
by (force simp: islimpt approachable)

then obtain y where y :
∧
e. e>0 =⇒ y e ∈ S ∧ y e 6= x ∧ dist (y e) x < e

by metis
define f where f ≡ rec nat (y 1 ) (λn fn. y (min (inverse(2 ˆ (Suc n))) (dist

fn x )))
have [simp]: f 0 = y 1

f (Suc n) = y (min (inverse(2 ˆ (Suc n))) (dist (f n) x )) for n
by (simp all add : f def )

have f : f n ∈ S ∧ (f n 6= x ) ∧ dist (f n) x < inverse(2 ˆ n) for n
proof (induction n)
case 0 show ?case
by (simp add : y)

next
case (Suc n) then show ?case
apply (auto simp: y)

by (metis half gt zero iff inverse positive iff positive less divide eq numeral1 (1 )
min less iff conj y zero less dist iff zero less numeral zero less power)
qed
show ?rhs
proof (rule tac x=f in exI , intro conjI allI )
show

∧
n. f n ∈ S − {x}

using f by blast
have dist (f n) x < dist (f m) x if m < n for m n
using that
proof (induction n)
case 0 then show ?case by simp

next
case (Suc n)
then consider m < n | m = n using less Suc eq by blast
then show ?case
proof cases
assume m < n
have dist (f (Suc n)) x = dist (y (min (inverse(2 ˆ (Suc n))) (dist (f n)

x ))) x
by simp

also have . . . < dist (f n) x
by (metis dist pos lt f min.strict order iff min less iff conj y)

also have . . . < dist (f m) x
using Suc.IH 〈m < n〉 by blast

finally show ?thesis .
next
assume m = n then show ?case

by simp (metis dist pos lt f half gt zero iff inverse positive iff positive
min less iff conj y zero less numeral zero less power)

qed
qed
then show inj f
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by (metis less irrefl linorder injI )
show f −−−−→ x
apply (rule tendstoI )
apply (rule tac c=nat (ceiling(1/e)) in eventually sequentiallyI )
apply (rule less trans [OF f [THEN conjunct2 , THEN conjunct2 ]])
apply (simp add : field simps)
by (meson le less trans mult less cancel left not le of nat less two power)

qed
next
assume ?rhs
then show ?lhs
by (fastforce simp add : islimpt approachable lim sequentially)

qed

lemma Lim dist ubound :
assumes ¬(trivial limit net)
and (f −−−→ l) net
and eventually (λx . dist a (f x ) ≤ e) net

shows dist a l ≤ e
using assms by (fast intro: tendsto le tendsto intros)

3.2.8 Continuity

Derive the epsilon-delta forms, which we often use as ”definitions”

proposition continuous within eps delta:
continuous (at x within s) f ←→ (∀ e>0 . ∃ d>0 . ∀ x ′∈ s. dist x ′ x < d −−>

dist (f x ′) (f x ) < e)
unfolding continuous within and Lim within by fastforce

corollary continuous at eps delta:
continuous (at x ) f ←→ (∀ e > 0 . ∃ d > 0 . ∀ x ′. dist x ′ x < d −→ dist (f x ′) (f

x ) < e)
using continuous within eps delta [of x UNIV f ] by simp

lemma continuous at right real increasing :
fixes f :: real ⇒ real
assumes nondecF :

∧
x y . x ≤ y =⇒ f x ≤ f y

shows continuous (at right a) f ←→ (∀ e>0 . ∃ d>0 . f (a + d) − f a < e)
apply (simp add : greaterThan def dist real def continuous within Lim within le)
apply (intro all cong ex cong , safe)
apply (erule tac x=a + d in allE , simp)
apply (simp add : nondecF field simps)
apply (drule nondecF , simp)
done

lemma continuous at left real increasing :
assumes nondecF :

∧
x y . x ≤ y =⇒ f x ≤ ((f y) :: real)

shows (continuous (at left (a :: real)) f ) = (∀ e > 0 . ∃ delta > 0 . f a − f (a −
delta) < e)
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apply (simp add : lessThan def dist real def continuous within Lim within le)
apply (intro all cong ex cong , safe)
apply (erule tac x=a − d in allE , simp)
apply (simp add : nondecF field simps)
apply (cut tac x=a − d and y=x in nondecF , simp all)
done

Versions in terms of open balls.

lemma continuous within ball :
continuous (at x within s) f ←→
(∀ e > 0 . ∃ d > 0 . f ‘ (ball x d ∩ s) ⊆ ball (f x ) e)

(is ?lhs = ?rhs)
proof
assume ?lhs
{
fix e :: real
assume e > 0
then obtain d where d : d>0 ∀ xa∈s. 0 < dist xa x ∧ dist xa x < d −→ dist

(f xa) (f x ) < e
using 〈?lhs〉[unfolded continuous within Lim within] by auto

{
fix y
assume y ∈ f ‘ (ball x d ∩ s)
then have y ∈ ball (f x ) e
using d(2 )
using 〈e > 0 〉

by (auto simp: dist commute)
}
then have ∃ d>0 . f ‘ (ball x d ∩ s) ⊆ ball (f x ) e
using 〈d > 0 〉

unfolding subset eq ball def by (auto simp: dist commute)
}
then show ?rhs by auto

next
assume ?rhs
then show ?lhs
unfolding continuous within Lim within ball def subset eq
apply (auto simp: dist commute)
apply (erule tac x=e in allE , auto)
done

qed

lemma continuous at ball :
continuous (at x ) f ←→ (∀ e>0 . ∃ d>0 . f ‘ (ball x d) ⊆ ball (f x ) e) (is ?lhs =

?rhs)
proof
assume ?lhs
then show ?rhs
unfolding continuous at Lim at subset eq Ball def Bex def image iff mem ball
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by (metis dist commute dist pos lt dist self )
next
assume ?rhs
then show ?lhs
unfolding continuous at Lim at subset eq Ball def Bex def image iff mem ball
by (metis dist commute)

qed

Define setwise continuity in terms of limits within the set.

lemma continuous on iff :
continuous on s f ←→
(∀ x∈s. ∀ e>0 . ∃ d>0 . ∀ x ′∈s. dist x ′ x < d −→ dist (f x ′) (f x ) < e)

unfolding continuous on def Lim within
by (metis dist pos lt dist self )

lemma continuous within E :
assumes continuous (at x within s) f e>0
obtains d where d>0

∧
x ′. [[x ′∈ s; dist x ′ x ≤ d ]] =⇒ dist (f x ′) (f x ) < e

using assms apply (simp add : continuous within eps delta)
apply (drule spec [of e], clarify)
apply (rule tac d=d/2 in that , auto)
done

lemma continuous onI [intro?]:
assumes

∧
x e. [[e > 0 ; x ∈ s]] =⇒ ∃ d>0 . ∀ x ′∈s. dist x ′ x < d −→ dist (f x ′)

(f x ) ≤ e
shows continuous on s f

apply (simp add : continuous on iff , clarify)
apply (rule ex forward [OF assms [OF half gt zero]], auto)
done

Some simple consequential lemmas.

lemma continuous onE :
assumes continuous on s f x∈s e>0
obtains d where d>0

∧
x ′. [[x ′ ∈ s; dist x ′ x ≤ d ]] =⇒ dist (f x ′) (f x ) < e

using assms
apply (simp add : continuous on iff )
apply (elim ballE allE )
apply (auto intro: that [where d=d/2 for d ])
done

The usual transformation theorems.

lemma continuous transform within:
fixes f g :: ′a::metric space ⇒ ′b::topological space
assumes continuous (at x within s) f
and 0 < d
and x ∈ s
and

∧
x ′. [[x ′ ∈ s; dist x ′ x < d ]] =⇒ f x ′ = g x ′

shows continuous (at x within s) g
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using assms
unfolding continuous within
by (force intro: Lim transform within)

3.2.9 Closure and Limit Characterization

lemma closure approachable:
fixes S :: ′a::metric space set
shows x ∈ closure S ←→ (∀ e>0 . ∃ y∈S . dist y x < e)
apply (auto simp: closure def islimpt approachable)
apply (metis dist self )
done

lemma closure approachable le:
fixes S :: ′a::metric space set
shows x ∈ closure S ←→ (∀ e>0 . ∃ y∈S . dist y x ≤ e)
unfolding closure approachable
using dense by force

lemma closure approachableD :
assumes x ∈ closure S e>0
shows ∃ y∈S . dist x y < e
using assms unfolding closure approachable by (auto simp: dist commute)

lemma closed approachable:
fixes S :: ′a::metric space set
shows closed S =⇒ (∀ e>0 . ∃ y∈S . dist y x < e) ←→ x ∈ S
by (metis closure closed closure approachable)

lemma closure contains Inf :
fixes S :: real set
assumes S 6= {} bdd below S
shows Inf S ∈ closure S

proof −
have ∗: ∀ x∈S . Inf S ≤ x
using cInf lower [of S ] assms by metis

{
fix e :: real
assume e > 0
then have Inf S < Inf S + e by simp
with assms obtain x where x ∈ S x < Inf S + e
by (subst (asm) cInf less iff ) auto

with ∗ have ∃ x∈S . dist x (Inf S ) < e
by (intro bexI [of x ]) (auto simp: dist real def )

}
then show ?thesis unfolding closure approachable by auto

qed

lemma closure contains Sup:
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fixes S :: real set
assumes S 6= {} bdd above S
shows Sup S ∈ closure S

proof −
have ∗: ∀ x∈S . x ≤ Sup S
using cSup upper [of S ] assms by metis

{
fix e :: real
assume e > 0
then have Sup S − e < Sup S by simp
with assms obtain x where x ∈ S Sup S − e < x
by (subst (asm) less cSup iff ) auto

with ∗ have ∃ x∈S . dist x (Sup S ) < e
by (intro bexI [of x ]) (auto simp: dist real def )

}
then show ?thesis unfolding closure approachable by auto

qed

lemma not trivial limit within ball :
¬ trivial limit (at x within S ) ←→ (∀ e>0 . S ∩ ball x e − {x} 6= {})
(is ?lhs ←→ ?rhs)

proof
show ?rhs if ?lhs
proof −
{
fix e :: real
assume e > 0
then obtain y where y ∈ S − {x} and dist y x < e

using 〈?lhs〉 not trivial limit within[of x S ] closure approachable[of x S −
{x}]

by auto
then have y ∈ S ∩ ball x e − {x}
unfolding ball def by (simp add : dist commute)

then have S ∩ ball x e − {x} 6= {} by blast
}
then show ?thesis by auto

qed
show ?lhs if ?rhs
proof −
{
fix e :: real
assume e > 0
then obtain y where y ∈ S ∩ ball x e − {x}
using 〈?rhs〉 by blast

then have y ∈ S − {x} and dist y x < e
unfolding ball def by (simp all add : dist commute)

then have ∃ y ∈ S − {x}. dist y x < e
by auto

}
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then show ?thesis
using not trivial limit within[of x S ] closure approachable[of x S − {x}]
by auto

qed
qed

3.2.10 Boundedness

definition (in metric space) bounded :: ′a set ⇒ bool
where bounded S ←→ (∃ x e. ∀ y∈S . dist x y ≤ e)

lemma bounded subset cball : bounded S ←→ (∃ e x . S ⊆ cball x e ∧ 0 ≤ e)
unfolding bounded def subset eq by auto (meson order trans zero le dist)

lemma bounded any center : bounded S ←→ (∃ e. ∀ y∈S . dist a y ≤ e)
unfolding bounded def
by auto (metis add .commute add le cancel right dist commute dist triangle le)

lemma bounded iff : bounded S ←→ (∃ a. ∀ x∈S . norm x ≤ a)
unfolding bounded any center [where a=0 ]
by (simp add : dist norm)

lemma bdd above norm: bdd above (norm ‘ X ) ←→ bounded X
by (simp add : bounded iff bdd above def )

lemma bounded norm comp: bounded ((λx . norm (f x )) ‘ S ) = bounded (f ‘ S )
by (simp add : bounded iff )

lemma boundedI :
assumes

∧
x . x ∈ S =⇒ norm x ≤ B

shows bounded S
using assms bounded iff by blast

lemma bounded empty [simp]: bounded {}
by (simp add : bounded def )

lemma bounded subset : bounded T =⇒ S ⊆ T =⇒ bounded S
by (metis bounded def subset eq)

lemma bounded interior [intro]: bounded S =⇒ bounded(interior S )
by (metis bounded subset interior subset)

lemma bounded closure[intro]:
assumes bounded S
shows bounded (closure S )

proof −
from assms obtain x and a where a: ∀ y∈S . dist x y ≤ a
unfolding bounded def by auto

{
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fix y
assume y ∈ closure S
then obtain f where f : ∀n. f n ∈ S (f −−−→ y) sequentially
unfolding closure sequential by auto

have ∀n. f n ∈ S −→ dist x (f n) ≤ a using a by simp
then have eventually (λn. dist x (f n) ≤ a) sequentially
by (simp add : f (1 ))

then have dist x y ≤ a
using Lim dist ubound f (2 ) trivial limit sequentially by blast

}
then show ?thesis
unfolding bounded def by auto

qed

lemma bounded closure image: bounded (f ‘ closure S ) =⇒ bounded (f ‘ S )
by (simp add : bounded subset closure subset image mono)

lemma bounded cball [simp,intro]: bounded (cball x e)
unfolding bounded def using mem cball by blast

lemma bounded ball [simp,intro]: bounded (ball x e)
by (metis ball subset cball bounded cball bounded subset)

lemma bounded Un[simp]: bounded (S ∪ T ) ←→ bounded S ∧ bounded T
by (auto simp: bounded def ) (metis Un iff bounded any center le max iff disj )

lemma bounded Union[intro]: finite F =⇒ ∀S∈F . bounded S =⇒ bounded (
⋃
F )

by (induct rule: finite induct [of F ]) auto

lemma bounded UN [intro]: finite A =⇒ ∀ x∈A. bounded (B x ) =⇒ bounded
(
⋃
x∈A. B x )

by auto

lemma bounded insert [simp]: bounded (insert x S ) ←→ bounded S
proof −
have ∀ y∈{x}. dist x y ≤ 0
by simp

then have bounded {x}
unfolding bounded def by fast

then show ?thesis
by (metis insert is Un bounded Un)

qed

lemma bounded subset ballI : S ⊆ ball x r =⇒ bounded S
by (meson bounded ball bounded subset)

lemma bounded subset ballD :
assumes bounded S shows ∃ r . 0 < r ∧ S ⊆ ball x r

proof −
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obtain e::real and y where S ⊆ cball y e 0 ≤ e
using assms by (auto simp: bounded subset cball)

then show ?thesis
by (intro exI [where x=dist x y + e + 1 ]) metric

qed

lemma finite imp bounded [intro]: finite S =⇒ bounded S
by (induct set : finite) simp all

lemma bounded Int [intro]: bounded S ∨ bounded T =⇒ bounded (S ∩ T )
by (metis Int lower1 Int lower2 bounded subset)

lemma bounded diff [intro]: bounded S =⇒ bounded (S − T )
by (metis Diff subset bounded subset)

lemma bounded dist comp:
assumes bounded (f ‘ S ) bounded (g ‘ S )
shows bounded ((λx . dist (f x ) (g x )) ‘ S )

proof −
from assms obtain M1 M2 where ∗: dist (f x ) undefined ≤ M1 dist undefined

(g x ) ≤ M2 if x ∈ S for x
by (auto simp: bounded any center [of undefined ] dist commute)

have dist (f x ) (g x ) ≤ M1 + M2 if x ∈ S for x
using ∗[OF that ]
by metric

then show ?thesis
by (auto intro!: boundedI )

qed

lemma bounded Times:
assumes bounded s bounded t
shows bounded (s × t)

proof −
obtain x y a b where ∀ z∈s. dist x z ≤ a ∀ z∈t . dist y z ≤ b
using assms [unfolded bounded def ] by auto

then have ∀ z∈s × t . dist (x , y) z ≤ sqrt (a2 + b2)
by (auto simp: dist Pair Pair real sqrt le mono add mono power mono)

then show ?thesis unfolding bounded any center [where a=(x , y)] by auto
qed

3.2.11 Compactness

lemma compact imp bounded :
assumes compact U
shows bounded U

proof −
have compact U ∀ x∈U . open (ball x 1 ) U ⊆ (

⋃
x∈U . ball x 1 )

using assms by auto
then obtain D where D : D ⊆ U finite D U ⊆ (

⋃
x∈D . ball x 1 )
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by (metis compactE image)
from 〈finite D 〉 have bounded (

⋃
x∈D . ball x 1 )

by (simp add : bounded UN )
then show bounded U using 〈U ⊆ (

⋃
x∈D . ball x 1 )〉

by (rule bounded subset)
qed

lemma closure Int ball not empty :
assumes S ⊆ closure T x ∈ S r > 0
shows T ∩ ball x r 6= {}
using assms centre in ball closure iff nhds not empty by blast

lemma compact sup maxdistance:
fixes S :: ′a::metric space set
assumes compact S
and S 6= {}

shows ∃ x∈S . ∃ y∈S . ∀ u∈S . ∀ v∈S . dist u v ≤ dist x y
proof −
have compact (S × S )
using 〈compact S 〉 by (intro compact Times)

moreover have S × S 6= {}
using 〈S 6= {}〉 by auto

moreover have continuous on (S × S ) (λx . dist (fst x ) (snd x ))
by (intro continuous at imp continuous on ballI continuous intros)

ultimately show ?thesis
using continuous attains sup[of S × S λx . dist (fst x ) (snd x )] by auto

qed

Totally bounded

lemma cauchy def : Cauchy S ←→ (∀ e>0 . ∃N . ∀m n. m ≥ N ∧ n ≥ N −→ dist
(S m) (S n) < e)
unfolding Cauchy def by metis

proposition seq compact imp totally bounded :
assumes seq compact S
shows ∀ e>0 . ∃ k . finite k ∧ k ⊆ S ∧ S ⊆ (

⋃
x∈k . ball x e)

proof −
{ fix e::real assume e > 0 assume ∗:

∧
k . finite k =⇒ k ⊆ S =⇒ ¬ S ⊆

(
⋃
x∈k . ball x e)
let ?Q = λx n r . r ∈ S ∧ (∀m < (n::nat). ¬ (dist (x m) r < e))
have ∃ x . ∀n::nat . ?Q x n (x n)
proof (rule dependent wellorder choice)
fix n x assume

∧
y . y < n =⇒ ?Q x y (x y)

then have ¬ S ⊆ (
⋃
x∈x ‘ {0 ..<n}. ball x e)

using ∗[of x ‘ {0 ..< n}] by (auto simp: subset eq)
then obtain z where z :z∈S z /∈ (

⋃
x∈x ‘ {0 ..<n}. ball x e)

unfolding subset eq by auto
show ∃ r . ?Q x n r
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using z by auto
qed simp
then obtain x where ∀n::nat . x n ∈ S and x :

∧
n m. m < n =⇒ ¬ (dist (x

m) (x n) < e)
by blast
then obtain l r where l ∈ S and r :strict mono r and ((x ◦ r) −−−→ l)

sequentially
using assms by (metis seq compact def )

then have Cauchy (x ◦ r)
using LIMSEQ imp Cauchy by auto

then obtain N ::nat where
∧
m n. N ≤ m =⇒ N ≤ n =⇒ dist ((x ◦ r) m)

((x ◦ r) n) < e
unfolding cauchy def using 〈e > 0 〉 by blast

then have False
using x [of r N r (N+1 )] r by (auto simp: strict mono def ) }

then show ?thesis
by metis

qed

Heine-Borel theorem

proposition seq compact imp Heine Borel :
fixes S :: ′a :: metric space set
assumes seq compact S
shows compact S

proof −
from seq compact imp totally bounded [OF 〈seq compact S 〉]
obtain f where f : ∀ e>0 . finite (f e) ∧ f e ⊆ S ∧ S ⊆ (

⋃
x∈f e. ball x e)

unfolding choice iff ′ ..
define K where K = (λ(x , r). ball x r) ‘ ((

⋃
e ∈ Q ∩ {0 <..}. f e) × Q)

have countably compact S
using 〈seq compact S 〉 by (rule seq compact imp countably compact)

then show compact S
proof (rule countably compact imp compact)
show countable K
unfolding K def using f
by (auto intro: countable finite countable subset countable rat

intro!: countable image countable SIGMA countable UN )
show ∀ b∈K . open b by (auto simp: K def )

next
fix T x
assume T : open T x ∈ T and x : x ∈ S
from openE [OF T ] obtain e where 0 < e ball x e ⊆ T
by auto

then have 0 < e/2 ball x (e/2 ) ⊆ T
by auto

from Rats dense in real [OF 〈0 < e/2 〉] obtain r where r ∈ Q 0 < r r < e/2
by auto

from f [rule format , of r ] 〈0 < r 〉 〈x ∈ S 〉 obtain k where k ∈ f r x ∈ ball k r
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by auto
from 〈r ∈ Q 〉 〈0 < r 〉 〈k ∈ f r 〉 have ball k r ∈ K
by (auto simp: K def )

then show ∃ b∈K . x ∈ b ∧ b ∩ S ⊆ T
proof (rule bexI [rotated ], safe)
fix y
assume y ∈ ball k r
with 〈r < e/2 〉 〈x ∈ ball k r 〉 have dist x y < e
by (intro dist triangle half r [of k e]) (auto simp: dist commute)

with 〈ball x e ⊆ T 〉 show y ∈ T
by auto

next
show x ∈ ball k r by fact

qed
qed

qed

proposition compact eq seq compact metric:
compact (S :: ′a::metric space set) ←→ seq compact S
using compact imp seq compact seq compact imp Heine Borel by blast

proposition compact def : — this is the definition of compactness in HOL Light
compact (S :: ′a::metric space set) ←→
(∀ f . (∀n. f n ∈ S ) −→ (∃ l∈S . ∃ r ::nat⇒nat . strict mono r ∧ (f ◦ r) −−−−→

l))
unfolding compact eq seq compact metric seq compact def by auto

Complete the chain of compactness variants

proposition compact eq Bolzano Weierstrass:
fixes S :: ′a::metric space set
shows compact S ←→ (∀T . infinite T ∧ T ⊆ S −→ (∃ x ∈ S . x islimpt T ))
using Bolzano Weierstrass imp seq compact Heine Borel imp Bolzano Weierstrass

compact eq seq compact metric
by blast

proposition Bolzano Weierstrass imp bounded :
(
∧
T . [[infinite T ; T ⊆ S ]] =⇒ (∃ x ∈ S . x islimpt T )) =⇒ bounded S

using compact imp bounded unfolding compact eq Bolzano Weierstrass by metis

3.2.12 Banach fixed point theorem

theorem banach fix :— TODO: rename to Banach fix
assumes s: complete s s 6= {}
and c: 0 ≤ c c < 1
and f : f ‘ s ⊆ s
and lipschitz : ∀ x∈s. ∀ y∈s. dist (f x ) (f y) ≤ c ∗ dist x y

shows ∃ !x∈s. f x = x
proof −
from c have 1 − c > 0 by simp
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from s(2 ) obtain z0 where z0 : z0 ∈ s by blast
define z where z n = (f ˆˆ n) z0 for n
with f z0 have z in s: z n ∈ s for n :: nat
by (induct n) auto

define d where d = dist (z 0 ) (z 1 )

have fzn: f (z n) = z (Suc n) for n
by (simp add : z def )

have cf z : dist (z n) (z (Suc n)) ≤ (c ˆ n) ∗ d for n :: nat
proof (induct n)
case 0
then show ?case
by (simp add : d def )

next
case (Suc m)
with 〈0 ≤ c〉 have c ∗ dist (z m) (z (Suc m)) ≤ c ˆ Suc m ∗ d
using mult left mono[of dist (z m) (z (Suc m)) c ˆ m ∗ d c] by simp

then show ?case
using lipschitz [THEN bspec[where x=z m], OF z in s, THEN bspec[where

x=z (Suc m)], OF z in s]
by (simp add : fzn mult le cancel left)

qed

have cf z2 : (1 − c) ∗ dist (z m) (z (m + n)) ≤ (c ˆ m) ∗ d ∗ (1 − c ˆ n) for
n m :: nat
proof (induct n)
case 0
show ?case by simp

next
case (Suc k)
from c have (1 − c) ∗ dist (z m) (z (m + Suc k)) ≤

(1 − c) ∗ (dist (z m) (z (m + k)) + dist (z (m + k)) (z (Suc (m + k))))
by (simp add : dist triangle)

also from c cf z [of m + k ] have . . . ≤ (1 − c) ∗ (dist (z m) (z (m + k)) +
c ˆ (m + k) ∗ d)

by simp
also from Suc have . . . ≤ c ˆ m ∗ d ∗ (1 − c ˆ k) + (1 − c) ∗ c ˆ (m + k)

∗ d
by (simp add : field simps)

also have . . . = (c ˆ m) ∗ (d ∗ (1 − c ˆ k) + (1 − c) ∗ c ˆ k ∗ d)
by (simp add : power add field simps)

also from c have . . . ≤ (c ˆ m) ∗ d ∗ (1 − c ˆ Suc k)
by (simp add : field simps)

finally show ?case by simp
qed

have ∃N . ∀m n. N ≤ m ∧ N ≤ n −→ dist (z m) (z n) < e if e > 0 for e
proof (cases d = 0 )
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case True
from 〈1 − c > 0 〉 have (1 − c) ∗ x ≤ 0 ←→ x ≤ 0 for x
by (simp add : mult le 0 iff )

with c cf z2 [of 0 ] True have z n = z0 for n
by (simp add : z def )

with 〈e > 0 〉 show ?thesis by simp
next
case False
with zero le dist [of z 0 z 1 ] have d > 0
by (metis d def less le)

with 〈1 − c > 0 〉 〈e > 0 〉 have 0 < e ∗ (1 − c) / d
by simp

with c obtain N where N : c ˆ N < e ∗ (1 − c) / d
using real arch pow inv [of e ∗ (1 − c) / d c] by auto

have ∗: dist (z m) (z n) < e if m > n and as: m ≥ N n ≥ N for m n :: nat
proof −
from c 〈n ≥ N 〉 have ∗: c ˆ n ≤ c ˆ N
using power decreasing [OF 〈n≥N 〉, of c] by simp

from c 〈m > n〉 have 1 − c ˆ (m − n) > 0
using power strict mono[of c 1 m − n] by simp

with 〈d > 0 〉 〈0 < 1 − c〉 have ∗∗: d ∗ (1 − c ˆ (m − n)) / (1 − c) > 0
by simp

from cf z2 [of n m − n] 〈m > n〉

have dist (z m) (z n) ≤ c ˆ n ∗ d ∗ (1 − c ˆ (m − n)) / (1 − c)
by (simp add : pos le divide eq [OF 〈1 − c > 0 〉] mult .commute dist commute)
also have . . . ≤ c ˆ N ∗ d ∗ (1 − c ˆ (m − n)) / (1 − c)
using mult right mono[OF ∗ order less imp le[OF ∗∗]]
by (simp add : mult .assoc)

also have . . . < (e ∗ (1 − c) / d) ∗ d ∗ (1 − c ˆ (m − n)) / (1 − c)
using mult strict right mono[OF N ∗∗] by (auto simp: mult .assoc)

also from c 〈d > 0 〉 〈1 − c > 0 〉 have . . . = e ∗ (1 − c ˆ (m − n))
by simp

also from c 〈1 − c ˆ (m − n) > 0 〉 〈e > 0 〉 have . . . ≤ e
using mult right le one le[of e 1 − c ˆ (m − n)] by auto

finally show ?thesis by simp
qed
have dist (z n) (z m) < e if N ≤ m N ≤ n for m n :: nat
proof (cases n = m)
case True
with 〈e > 0 〉 show ?thesis by simp

next
case False
with ∗[of n m] ∗[of m n] and that show ?thesis
by (auto simp: dist commute nat neq iff )

qed
then show ?thesis by auto

qed
then have Cauchy z
by (simp add : cauchy def )
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then obtain x where x∈s and x :(z −−−→ x ) sequentially
using s(1 )[unfolded compact def complete def , THEN spec[where x=z ]] and

z in s by auto

define e where e = dist (f x ) x
have e = 0
proof (rule ccontr)
assume e 6= 0
then have e > 0
unfolding e def using zero le dist [of f x x ]
by (metis dist eq 0 iff dist nz e def )

then obtain N where N :∀n≥N . dist (z n) x < e/2
using x [unfolded lim sequentially , THEN spec[where x=e/2 ]] by auto

then have N ′:dist (z N ) x < e/2 by auto
have ∗: c ∗ dist (z N ) x ≤ dist (z N ) x
unfolding mult le cancel right2
using zero le dist [of z N x ] and c
by (metis dist eq 0 iff dist nz order less asym less le)

have dist (f (z N )) (f x ) ≤ c ∗ dist (z N ) x
using lipschitz [THEN bspec[where x=z N ], THEN bspec[where x=x ]]
using z in s[of N ] 〈x∈s〉

using c
by auto

also have . . . < e/2
using N ′ and c using ∗ by auto

finally show False
unfolding fzn
using N [THEN spec[where x=Suc N ]] and dist triangle half r [of z (Suc N )

f x e x ]
unfolding e def
by auto

qed
then have f x = x by (auto simp: e def )
moreover have y = x if f y = y y ∈ s for y
proof −
from 〈x ∈ s〉 〈f x = x 〉 that have dist x y ≤ c ∗ dist x y
using lipschitz [THEN bspec[where x=x ], THEN bspec[where x=y ]] by simp
with c and zero le dist [of x y ] have dist x y = 0
by (simp add : mult le cancel right1 )

then show ?thesis by simp
qed
ultimately show ?thesis
using 〈x∈s〉 by blast

qed

3.2.13 Edelstein fixed point theorem

theorem Edelstein fix :
fixes S :: ′a::metric space set
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assumes S : compact S S 6= {}
and gs: (g ‘ S ) ⊆ S
and dist : ∀ x∈S . ∀ y∈S . x 6= y −→ dist (g x ) (g y) < dist x y

shows ∃ !x∈S . g x = x
proof −
let ?D = (λx . (x , x )) ‘ S
have D : compact ?D ?D 6= {}
by (rule compact continuous image)
(auto intro!: S continuous Pair continuous ident simp: continuous on eq continuous within)

have
∧
x y e. x ∈ S =⇒ y ∈ S =⇒ 0 < e =⇒ dist y x < e =⇒ dist (g y) (g x )

< e
using dist by fastforce

then have continuous on S g
by (auto simp: continuous on iff )

then have cont : continuous on ?D (λx . dist ((g ◦ fst) x ) (snd x ))
unfolding continuous on eq continuous within
by (intro continuous dist ballI continuous within compose)
(auto intro!: continuous fst continuous snd continuous ident simp: image image)

obtain a where a ∈ S and le:
∧
x . x ∈ S =⇒ dist (g a) a ≤ dist (g x ) x

using continuous attains inf [OF D cont ] by auto

have g a = a
proof (rule ccontr)
assume g a 6= a
with 〈a ∈ S 〉 gs have dist (g (g a)) (g a) < dist (g a) a
by (intro dist [rule format ]) auto

moreover have dist (g a) a ≤ dist (g (g a)) (g a)
using 〈a ∈ S 〉 gs by (intro le) auto

ultimately show False by auto
qed
moreover have

∧
x . x ∈ S =⇒ g x = x =⇒ x = a

using dist [THEN bspec[where x=a]] 〈g a = a〉 and 〈a∈S 〉 by auto
ultimately show ∃ !x∈S . g x = x
using 〈a ∈ S 〉 by blast

qed

3.2.14 The diameter of a set

definition diameter :: ′a::metric space set ⇒ real where
diameter S = (if S = {} then 0 else SUP (x ,y)∈S×S . dist x y)

lemma diameter empty [simp]: diameter{} = 0
by (auto simp: diameter def )

lemma diameter singleton [simp]: diameter{x} = 0
by (auto simp: diameter def )
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lemma diameter le:
assumes S 6= {} ∨ 0 ≤ d
and no:

∧
x y . [[x ∈ S ; y ∈ S ]] =⇒ norm(x − y) ≤ d

shows diameter S ≤ d
using assms
by (auto simp: dist norm diameter def intro: cSUP least)

lemma diameter bounded bound :
fixes S :: ′a :: metric space set
assumes S : bounded S x ∈ S y ∈ S
shows dist x y ≤ diameter S

proof −
from S obtain z d where z :

∧
x . x ∈ S =⇒ dist z x ≤ d

unfolding bounded def by auto
have bdd above (case prod dist ‘ (S×S ))
proof (intro bdd aboveI , safe)
fix a b
assume a ∈ S b ∈ S
with z [of a] z [of b] dist triangle[of a b z ]
show dist a b ≤ 2 ∗ d
by (simp add : dist commute)

qed
moreover have (x ,y) ∈ S×S using S by auto
ultimately have dist x y ≤ (SUP (x ,y)∈S×S . dist x y)
by (rule cSUP upper2 ) simp

with 〈x ∈ S 〉 show ?thesis
by (auto simp: diameter def )

qed

lemma diameter lower bounded :
fixes S :: ′a :: metric space set
assumes S : bounded S
and d : 0 < d d < diameter S

shows ∃ x∈S . ∃ y∈S . d < dist x y
proof (rule ccontr)
assume contr : ¬ ?thesis
moreover have S 6= {}
using d by (auto simp: diameter def )

ultimately have diameter S ≤ d
by (auto simp: not less diameter def intro!: cSUP least)

with 〈d < diameter S 〉 show False by auto
qed

lemma diameter bounded :
assumes bounded S
shows ∀ x∈S . ∀ y∈S . dist x y ≤ diameter S
and ∀ d>0 . d < diameter S −→ (∃ x∈S . ∃ y∈S . dist x y > d)

using diameter bounded bound [of S ] diameter lower bounded [of S ] assms
by auto
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lemma bounded two points: bounded S ←→ (∃ e. ∀ x∈S . ∀ y∈S . dist x y ≤ e)
by (meson bounded def diameter bounded(1 ))

lemma diameter compact attained :
assumes compact S
and S 6= {}

shows ∃ x∈S . ∃ y∈S . dist x y = diameter S
proof −
have b: bounded S using assms(1 )
by (rule compact imp bounded)

then obtain x y where xys: x∈S y∈S
and xy : ∀ u∈S . ∀ v∈S . dist u v ≤ dist x y
using compact sup maxdistance[OF assms] by auto

then have diameter S ≤ dist x y
unfolding diameter def
apply clarsimp
apply (rule cSUP least , fast+)
done

then show ?thesis
by (metis b diameter bounded bound order antisym xys)

qed

lemma diameter ge 0 :
assumes bounded S shows 0 ≤ diameter S
by (metis all not in conv assms diameter bounded bound diameter empty dist self

order refl)

lemma diameter subset :
assumes S ⊆ T bounded T
shows diameter S ≤ diameter T

proof (cases S = {} ∨ T = {})
case True
with assms show ?thesis
by (force simp: diameter ge 0 )

next
case False
then have bdd above ((λx . case x of (x , xa) ⇒ dist x xa) ‘ (T × T ))
using 〈bounded T 〉 diameter bounded bound by (force simp: bdd above def )

with False 〈S ⊆ T 〉 show ?thesis
apply (simp add : diameter def )
apply (rule cSUP subset mono, auto)
done

qed

lemma diameter closure:
assumes bounded S
shows diameter(closure S ) = diameter S

proof (rule order antisym)
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have False if diameter S < diameter (closure S )
proof −
define d where d = diameter(closure S ) − diameter(S )
have d > 0
using that by (simp add : d def )

then have diameter(closure(S )) − d / 2 < diameter(closure(S ))
by simp

have dd : diameter (closure S ) − d / 2 = (diameter(closure(S )) + diameter(S ))
/ 2

by (simp add : d def field split simps)
have bocl : bounded (closure S )
using assms by blast

moreover have 0 ≤ diameter S
using assms diameter ge 0 by blast

ultimately obtain x y where x ∈ closure S y ∈ closure S and xy : diame-
ter(closure(S )) − d / 2 < dist x y

using diameter bounded(2 ) [OF bocl , rule format , of diameter(closure(S )) −
d / 2 ] 〈d > 0 〉 d def by auto

then obtain x ′ y ′ where x ′y ′: x ′ ∈ S dist x ′ x < d/4 y ′ ∈ S dist y ′ y < d/4
using closure approachable
by (metis 〈0 < d 〉 zero less divide iff zero less numeral)

then have dist x ′ y ′ ≤ diameter S
using assms diameter bounded bound by blast

with x ′y ′ have dist x y ≤ d / 4 + diameter S + d / 4
by (meson add mono thms linordered semiring(1 ) dist triangle dist triangle3

less eq real def order trans)
then show ?thesis
using xy d def by linarith

qed
then show diameter (closure S ) ≤ diameter S
by fastforce

next
show diameter S ≤ diameter (closure S )
by (simp add : assms bounded closure closure subset diameter subset)

qed

proposition Lebesgue number lemma:
assumes compact S C 6= {} S ⊆

⋃
C and ope:

∧
B . B ∈ C =⇒ open B

obtains δ where 0 < δ
∧
T . [[T ⊆ S ; diameter T < δ]] =⇒ ∃B ∈ C. T ⊆ B

proof (cases S = {})
case True
then show ?thesis
by (metis 〈C 6= {}〉 zero less one empty subsetI equals0I subset trans that)

next
case False
{ fix x assume x ∈ S
then obtain C where C : x ∈ C C ∈ C
using 〈S ⊆

⋃
C〉 by blast

then obtain r where r : r>0 ball x (2∗r) ⊆ C
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by (metis mult .commute mult 2 right not le ope openE field sum of halves
zero le numeral zero less mult iff )

then have ∃ r C . r > 0 ∧ ball x (2∗r) ⊆ C ∧ C ∈ C
using C by blast

}
then obtain r where r :

∧
x . x ∈ S =⇒ r x > 0 ∧ (∃C ∈ C. ball x (2∗r x ) ⊆

C )
by metis

then have S ⊆ (
⋃
x ∈ S . ball x (r x ))

by auto
then obtain T where finite T S ⊆

⋃
T and T : T ⊆ (λx . ball x (r x )) ‘ S

by (rule compactE [OF 〈compact S 〉]) auto
then obtain S0 where S0 ⊆ S finite S0 and S0 : T = (λx . ball x (r x )) ‘ S0
by (meson finite subset image)

then have S0 6= {}
using False 〈S ⊆

⋃
T 〉 by auto

define δ where δ = Inf (r ‘ S0 )
have δ > 0
using 〈finite S0 〉 〈S0 ⊆ S 〉 〈S0 6= {}〉 r by (auto simp: δ def finite less Inf iff )

show ?thesis
proof
show 0 < δ
by (simp add : 〈0 < δ〉)

show ∃B ∈ C. T ⊆ B if T ⊆ S and dia: diameter T < δ for T
proof (cases T = {})
case True
then show ?thesis
using 〈C 6= {}〉 by blast

next
case False
then obtain y where y ∈ T by blast
then have y ∈ S
using 〈T ⊆ S 〉 by auto

then obtain x where x ∈ S0 and x : y ∈ ball x (r x )
using 〈S ⊆

⋃
T 〉 S0 that by blast

have ball y δ ⊆ ball y (r x )
by (metis δ def 〈S0 6= {}〉 〈finite S0 〉 〈x ∈ S0 〉 empty is image finite imageI

finite less Inf iff imageI less irrefl not le subset ball)
also have ... ⊆ ball x (2∗r x )
using x by metric

finally obtain C where C ∈ C ball y δ ⊆ C
by (meson r 〈S0 ⊆ S 〉 〈x ∈ S0 〉 dual order .trans subsetCE )

have bounded T
using 〈compact S 〉 bounded subset compact imp bounded 〈T ⊆ S 〉 by blast

then have T ⊆ ball y δ
using 〈y ∈ T 〉 dia diameter bounded bound by fastforce

then show ?thesis
apply (rule tac x=C in bexI )
using 〈ball y δ ⊆ C 〉 〈C ∈ C〉 by auto
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qed
qed

qed

3.2.15 Metric spaces with the Heine-Borel property

A metric space (or topological vector space) is said to have the Heine-Borel
property if every closed and bounded subset is compact.

class heine borel = metric space +
assumes bounded imp convergent subsequence:

bounded (range f ) =⇒ ∃ l r . strict mono (r ::nat⇒nat) ∧ ((f ◦ r) −−−→ l)
sequentially

proposition bounded closed imp seq compact :
fixes S :: ′a::heine borel set
assumes bounded S
and closed S

shows seq compact S
proof (unfold seq compact def , clarify)
fix f :: nat ⇒ ′a
assume f : ∀n. f n ∈ S
with 〈bounded S 〉 have bounded (range f )
by (auto intro: bounded subset)
obtain l r where r : strict mono (r :: nat ⇒ nat) and l : ((f ◦ r) −−−→ l)

sequentially
using bounded imp convergent subsequence [OF 〈bounded (range f )〉] by auto

from f have fr : ∀n. (f ◦ r) n ∈ S
by simp

have l ∈ S using 〈closed S 〉 fr l
by (rule closed sequentially)

show ∃ l∈S . ∃ r . strict mono r ∧ ((f ◦ r) −−−→ l) sequentially
using 〈l ∈ S 〉 r l by blast

qed

lemma compact eq bounded closed :
fixes S :: ′a::heine borel set
shows compact S ←→ bounded S ∧ closed S
using bounded closed imp seq compact compact eq seq compact metric compact imp bounded

compact imp closed
by auto

lemma compact Inter :
fixes F :: ′a :: heine borel set set
assumes com:

∧
S . S ∈ F =⇒ compact S and F 6= {}

shows compact(
⋂
F)

using assms
by (meson Inf lower all not in conv bounded subset closed Inter compact eq bounded closed)

lemma compact closure [simp]:
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fixes S :: ′a::heine borel set
shows compact(closure S ) ←→ bounded S

by (meson bounded closure bounded subset closed closure closure subset compact eq bounded closed)

instance real :: heine borel
proof
fix f :: nat ⇒ real
assume f : bounded (range f )
obtain r :: nat ⇒ nat where r : strict mono r monoseq (f ◦ r)
unfolding comp def by (metis seq monosub)

then have Bseq (f ◦ r)
unfolding Bseq eq bounded using f
by (metis BseqI ′ bounded iff comp apply rangeI )

with r show ∃ l r . strict mono r ∧ (f ◦ r) −−−−→ l
using Bseq monoseq convergent [of f ◦ r ] by (auto simp: convergent def )

qed

lemma compact lemma general :
fixes f :: nat ⇒ ′a
fixes proj :: ′a ⇒ ′b ⇒ ′c::heine borel (infixl proj 60 )
fixes unproj :: ( ′b ⇒ ′c) ⇒ ′a
assumes finite basis: finite basis
assumes bounded proj :

∧
k . k ∈ basis =⇒ bounded ((λx . x proj k) ‘ range f )

assumes proj unproj :
∧
e k . k ∈ basis =⇒ (unproj e) proj k = e k

assumes unproj proj :
∧
x . unproj (λk . x proj k) = x

shows ∀ d⊆basis. ∃ l :: ′a. ∃ r ::nat⇒nat .
strict mono r ∧ (∀ e>0 . eventually (λn. ∀ i∈d . dist (f (r n) proj i) (l proj i)

< e) sequentially)
proof safe
fix d :: ′b set
assume d : d ⊆ basis
with finite basis have finite d
by (blast intro: finite subset)

from this d show ∃ l :: ′a. ∃ r ::nat⇒nat . strict mono r ∧
(∀ e>0 . eventually (λn. ∀ i∈d . dist (f (r n) proj i) (l proj i) < e) sequentially)

proof (induct d)
case empty
then show ?case
unfolding strict mono def by auto

next
case (insert k d)
have k [intro]: k ∈ basis
using insert by auto

have s ′: bounded ((λx . x proj k) ‘ range f )
using k
by (rule bounded proj )

obtain l1 :: ′a and r1 where r1 : strict mono r1
and lr1 : ∀ e > 0 . eventually (λn. ∀ i∈d . dist (f (r1 n) proj i) (l1 proj i) <

e) sequentially
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using insert(3 ) using insert(4 ) by auto
have f ′: ∀n. f (r1 n) proj k ∈ (λx . x proj k) ‘ range f
by simp

have bounded (range (λi . f (r1 i) proj k))
by (metis (lifting) bounded subset f ′ image subsetI s ′)

then obtain l2 r2 where r2 :strict mono r2 and lr2 :((λi . f (r1 (r2 i)) proj
k) −−−→ l2 ) sequentially

using bounded imp convergent subsequence[of λi . f (r1 i) proj k ]
by (auto simp: o def )

define r where r = r1 ◦ r2
have r :strict mono r
using r1 and r2 unfolding r def o def strict mono def by auto

moreover
define l where l = unproj (λi . if i = k then l2 else l1 proj i)
{
fix e::real
assume e > 0
from lr1 〈e > 0 〉 have N1 : eventually (λn. ∀ i∈d . dist (f (r1 n) proj i) (l1

proj i) < e) sequentially
by blast

from lr2 〈e > 0 〉 have N2 :eventually (λn. dist (f (r1 (r2 n)) proj k) l2 <
e) sequentially

by (rule tendstoD)
from r2 N1 have N1 ′: eventually (λn. ∀ i∈d . dist (f (r1 (r2 n)) proj i) (l1

proj i) < e) sequentially
by (rule eventually subseq)
have eventually (λn. ∀ i∈(insert k d). dist (f (r n) proj i) (l proj i) < e)

sequentially
using N1 ′ N2

by eventually elim (insert insert .prems, auto simp: l def r def o def proj unproj )
}
ultimately show ?case by auto

qed
qed

lemma bounded fst : bounded s =⇒ bounded (fst ‘ s)
unfolding bounded def
by (metis (erased , hide lams) dist fst le image iff order trans)

lemma bounded snd : bounded s =⇒ bounded (snd ‘ s)
unfolding bounded def
by (metis (no types, hide lams) dist snd le image iff order .trans)

instance prod :: (heine borel , heine borel) heine borel
proof
fix f :: nat ⇒ ′a × ′b
assume f : bounded (range f )
then have bounded (fst ‘ range f )
by (rule bounded fst)
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then have s1 : bounded (range (fst ◦ f ))
by (simp add : image comp)

obtain l1 r1 where r1 : strict mono r1 and l1 : (λn. fst (f (r1 n))) −−−−→ l1
using bounded imp convergent subsequence [OF s1 ] unfolding o def by fast

from f have s2 : bounded (range (snd ◦ f ◦ r1 ))
by (auto simp: image comp intro: bounded snd bounded subset)

obtain l2 r2 where r2 : strict mono r2 and l2 : ((λn. snd (f (r1 (r2 n)))) −−−→
l2 ) sequentially

using bounded imp convergent subsequence [OF s2 ]
unfolding o def by fast

have l1 ′: ((λn. fst (f (r1 (r2 n)))) −−−→ l1 ) sequentially
using LIMSEQ subseq LIMSEQ [OF l1 r2 ] unfolding o def .

have l : ((f ◦ (r1 ◦ r2 )) −−−→ (l1 , l2 )) sequentially
using tendsto Pair [OF l1 ′ l2 ] unfolding o def by simp

have r : strict mono (r1 ◦ r2 )
using r1 r2 unfolding strict mono def by simp

show ∃ l r . strict mono r ∧ ((f ◦ r) −−−→ l) sequentially
using l r by fast

qed

3.2.16 Completeness

proposition (in metric space) completeI :
assumes

∧
f . ∀n. f n ∈ s =⇒ Cauchy f =⇒ ∃ l∈s. f −−−−→ l

shows complete s
using assms unfolding complete def by fast

proposition (in metric space) completeE :
assumes complete s and ∀n. f n ∈ s and Cauchy f
obtains l where l ∈ s and f −−−−→ l
using assms unfolding complete def by fast

lemma compact imp complete:
fixes s :: ′a::metric space set
assumes compact s
shows complete s

proof −
{
fix f
assume as: (∀n::nat . f n ∈ s) Cauchy f
from as(1 ) obtain l r where lr : l∈s strict mono r (f ◦ r) −−−−→ l
using assms unfolding compact def by blast

note lr ′ = seq suble [OF lr(2 )]
{
fix e :: real
assume e > 0
from as(2 ) obtain N where N :∀m n. N ≤ m ∧ N ≤ n −→ dist (f m) (f
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n) < e/2
unfolding cauchy def
using 〈e > 0 〉

apply (erule tac x=e/2 in allE , auto)
done

from lr(3 )[unfolded lim sequentially , THEN spec[where x=e/2 ]]
obtain M where M :∀n≥M . dist ((f ◦ r) n) l < e/2
using 〈e > 0 〉 by auto

{
fix n :: nat
assume n: n ≥ max N M
have dist ((f ◦ r) n) l < e/2
using n M by auto

moreover have r n ≥ N
using lr ′[of n] n by auto

then have dist (f n) ((f ◦ r) n) < e/2
using N and n by auto

ultimately have dist (f n) l < e using n M
by metric

}
then have ∃N . ∀n≥N . dist (f n) l < e by blast

}
then have ∃ l∈s. (f −−−→ l) sequentially using 〈l∈s〉

unfolding lim sequentially by auto
}
then show ?thesis unfolding complete def by auto

qed

proposition compact eq totally bounded :
compact s ←→ complete s ∧ (∀ e>0 . ∃ k . finite k ∧ s ⊆ (

⋃
x∈k . ball x e))

(is ←→ ?rhs)
proof
assume assms: ?rhs
then obtain k where k :

∧
e. 0 < e =⇒ finite (k e)

∧
e. 0 < e =⇒ s ⊆ (

⋃
x∈k

e. ball x e)
by (auto simp: choice iff ′)

show compact s
proof cases
assume s = {}
then show compact s by (simp add : compact def )

next
assume s 6= {}
show ?thesis
unfolding compact def

proof safe
fix f :: nat ⇒ ′a
assume f : ∀n. f n ∈ s
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define e where e n = 1 / (2 ∗ Suc n) for n
then have [simp]:

∧
n. 0 < e n by auto

define B where B n U = (SOME b. infinite {n. f n ∈ b} ∧ (∃ x . b ⊆ ball x
(e n) ∩ U )) for n U

{
fix n U
assume infinite {n. f n ∈ U }
then have ∃ b∈k (e n). infinite {i∈{n. f n ∈ U }. f i ∈ ball b (e n)}
using k f by (intro pigeonhole infinite rel) (auto simp: subset eq)

then obtain a where
a ∈ k (e n)
infinite {i ∈ {n. f n ∈ U }. f i ∈ ball a (e n)} ..

then have ∃ b. infinite {i . f i ∈ b} ∧ (∃ x . b ⊆ ball x (e n) ∩ U )
by (intro exI [of ball a (e n) ∩ U ] exI [of a]) (auto simp: ac simps)

from someI ex [OF this]
have infinite {i . f i ∈ B n U } ∃ x . B n U ⊆ ball x (e n) ∩ U
unfolding B def by auto

}
note B = this

define F where F = rec nat (B 0 UNIV ) B
{
fix n
have infinite {i . f i ∈ F n}
by (induct n) (auto simp: F def B)

}
then have F :

∧
n. ∃ x . F (Suc n) ⊆ ball x (e n) ∩ F n

using B by (simp add : F def )
then have F dec:

∧
m n. m ≤ n =⇒ F n ⊆ F m

using decseq SucI [of F ] by (auto simp: decseq def )

obtain sel where sel :
∧
k i . i < sel k i

∧
k i . f (sel k i) ∈ F k

proof (atomize elim, unfold all conj distrib[symmetric], intro choice allI )
fix k i
have infinite ({n. f n ∈ F k} − {.. i})
using 〈infinite {n. f n ∈ F k}〉 by auto

from infinite imp nonempty [OF this]
show ∃ x>i . f x ∈ F k
by (simp add : set eq iff not le conj commute)

qed

define t where t = rec nat (sel 0 0 ) (λn i . sel (Suc n) i)
have strict mono t
unfolding strict mono Suc iff by (simp add : t def sel)

moreover have ∀ i . (f ◦ t) i ∈ s
using f by auto

moreover
have t : (f ◦ t) n ∈ F n for n
by (cases n) (simp all add : t def sel)
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have Cauchy (f ◦ t)
proof (safe intro!: metric CauchyI exI elim!: nat approx posE )
fix r :: real and N n m
assume 1 / Suc N < r Suc N ≤ n Suc N ≤ m
then have (f ◦ t) n ∈ F (Suc N ) (f ◦ t) m ∈ F (Suc N ) 2 ∗ e N < r
using F dec t by (auto simp: e def field simps)

with F [of N ] obtain x where dist x ((f ◦ t) n) < e N dist x ((f ◦ t) m)
< e N

by (auto simp: subset eq)
with 〈2 ∗ e N < r 〉 show dist ((f ◦ t) m) ((f ◦ t) n) < r
by metric

qed

ultimately show ∃ l∈s. ∃ r . strict mono r ∧ (f ◦ r) −−−−→ l
using assms unfolding complete def by blast

qed
qed

qed (metis compact imp complete compact imp seq compact seq compact imp totally bounded)

lemma cauchy imp bounded :
assumes Cauchy s
shows bounded (range s)

proof −
from assms obtain N :: nat where ∀m n. N ≤ m ∧ N ≤ n −→ dist (s m) (s

n) < 1
unfolding cauchy def by force

then have N :∀n. N ≤ n −→ dist (s N ) (s n) < 1 by auto
moreover
have bounded (s ‘ {0 ..N })
using finite imp bounded [of s ‘ {1 ..N }] by auto

then obtain a where a:∀ x∈s ‘ {0 ..N }. dist (s N ) x ≤ a
unfolding bounded any center [where a=s N ] by auto

ultimately show ?thesis
unfolding bounded any center [where a=s N ]
apply (rule tac x=max a 1 in exI , auto)
apply (erule tac x=y in allE )
apply (erule tac x=y in ballE , auto)
done

qed

instance heine borel < complete space
proof
fix f :: nat ⇒ ′a assume Cauchy f
then have bounded (range f )
by (rule cauchy imp bounded)

then have compact (closure (range f ))
unfolding compact eq bounded closed by auto

then have complete (closure (range f ))
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by (rule compact imp complete)
moreover have ∀n. f n ∈ closure (range f )
using closure subset [of range f ] by auto

ultimately have ∃ l∈closure (range f ). (f −−−→ l) sequentially
using 〈Cauchy f 〉 unfolding complete def by auto

then show convergent f
unfolding convergent def by auto

qed

lemma complete UNIV : complete (UNIV :: ( ′a::complete space) set)
proof (rule completeI )
fix f :: nat ⇒ ′a assume Cauchy f
then have convergent f by (rule Cauchy convergent)
then show ∃ l∈UNIV . f −−−−→ l unfolding convergent def by simp

qed

lemma complete imp closed :
fixes S :: ′a::metric space set
assumes complete S
shows closed S

proof (unfold closed sequential limits, clarify)
fix f x assume ∀n. f n ∈ S and f −−−−→ x
from 〈f −−−−→ x 〉 have Cauchy f
by (rule LIMSEQ imp Cauchy)

with 〈complete S 〉 and 〈∀n. f n ∈ S 〉 obtain l where l ∈ S and f −−−−→ l
by (rule completeE )

from 〈f −−−−→ x 〉 and 〈f −−−−→ l 〉 have x = l
by (rule LIMSEQ unique)

with 〈l ∈ S 〉 show x ∈ S
by simp

qed

lemma complete Int closed :
fixes S :: ′a::metric space set
assumes complete S and closed t
shows complete (S ∩ t)

proof (rule completeI )
fix f assume ∀n. f n ∈ S ∩ t and Cauchy f
then have ∀n. f n ∈ S and ∀n. f n ∈ t
by simp all

from 〈complete S 〉 obtain l where l ∈ S and f −−−−→ l
using 〈∀n. f n ∈ S 〉 and 〈Cauchy f 〉 by (rule completeE )

from 〈closed t 〉 and 〈∀n. f n ∈ t 〉 and 〈f −−−−→ l 〉 have l ∈ t
by (rule closed sequentially)

with 〈l ∈ S 〉 and 〈f −−−−→ l 〉 show ∃ l∈S ∩ t . f −−−−→ l
by fast

qed

lemma complete closed subset :
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fixes S :: ′a::metric space set
assumes closed S and S ⊆ t and complete t
shows complete S
using assms complete Int closed [of t S ] by (simp add : Int absorb1 )

lemma complete eq closed :
fixes S :: ( ′a::complete space) set
shows complete S ←→ closed S

proof
assume closed S then show complete S
using subset UNIV complete UNIV by (rule complete closed subset)

next
assume complete S then show closed S
by (rule complete imp closed)

qed

lemma convergent eq Cauchy :
fixes S :: nat ⇒ ′a::complete space
shows (∃ l . (S −−−→ l) sequentially) ←→ Cauchy S
unfolding Cauchy convergent iff convergent def ..

lemma convergent imp bounded :
fixes S :: nat ⇒ ′a::metric space
shows (S −−−→ l) sequentially =⇒ bounded (range S )
by (intro cauchy imp bounded LIMSEQ imp Cauchy)

lemma frontier subset compact :
fixes S :: ′a::heine borel set
shows compact S =⇒ frontier S ⊆ S
using frontier subset closed compact eq bounded closed
by blast

lemma continuous closed imp Cauchy continuous:
fixes S :: ( ′a::complete space) set
shows [[continuous on S f ; closed S ; Cauchy σ;

∧
n. (σ n) ∈ S ]] =⇒ Cauchy(f ◦

σ)
apply (simp add : complete eq closed [symmetric] continuous on sequentially)
by (meson LIMSEQ imp Cauchy complete def )

lemma banach fix type:
fixes f :: ′a::complete space⇒ ′a
assumes c:0 ≤ c c < 1

and lipschitz :∀ x . ∀ y . dist (f x ) (f y) ≤ c ∗ dist x y
shows ∃ !x . (f x = x )
using assms banach fix [OF complete UNIV UNIV not empty assms(1 ,2 ) sub-

set UNIV , of f ]
by auto
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3.2.17 Finite intersection property

Also developed in HOL’s toplogical spaces theory, but the Heine-Borel type
class isn’t available there.

lemma closed imp fip:
fixes S :: ′a::heine borel set
assumes closed S

and T : T ∈ F bounded T
and clof :

∧
T . T ∈ F =⇒ closed T

and none:
∧
F ′. [[finite F ′; F ′ ⊆ F ]] =⇒ S ∩

⋂
F ′ 6= {}

shows S ∩
⋂
F 6= {}

proof −
have compact (S ∩ T )
using 〈closed S 〉 clof compact eq bounded closed T by blast

then have (S ∩ T ) ∩
⋂
F 6= {}

apply (rule compact imp fip)
apply (simp add : clof )
by (metis Int assoc complete lattice class.Inf insert finite insert insert subset

none 〈T ∈ F 〉)
then show ?thesis by blast

qed

lemma closed imp fip compact :
fixes S :: ′a::heine borel set
shows
[[closed S ;

∧
T . T ∈ F =⇒ compact T ;∧

F ′. [[finite F ′; F ′ ⊆ F ]] =⇒ S ∩
⋂
F ′ 6= {}]]

=⇒ S ∩
⋂
F 6= {}

by (metis Inf greatest closed imp fip compact eq bounded closed empty subsetI fi-
nite.emptyI inf .orderE )

lemma closed fip Heine Borel :
fixes F :: ′a::heine borel set set
assumes closed S T ∈ F bounded T

and
∧
T . T ∈ F =⇒ closed T

and
∧
F ′. [[finite F ′; F ′ ⊆ F ]] =⇒

⋂
F ′ 6= {}

shows
⋂
F 6= {}

proof −
have UNIV ∩

⋂
F 6= {}

using assms closed imp fip [OF closed UNIV ] by auto
then show ?thesis by simp

qed

lemma compact fip Heine Borel :
fixes F :: ′a::heine borel set set
assumes clof :

∧
T . T ∈ F =⇒ compact T

and none:
∧
F ′. [[finite F ′; F ′ ⊆ F ]] =⇒

⋂
F ′ 6= {}

shows
⋂
F 6= {}

by (metis InterI all not in conv clof closed fip Heine Borel compact eq bounded closed
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none)

lemma compact sequence with limit :
fixes f :: nat ⇒ ′a::heine borel
shows (f −−−→ l) sequentially =⇒ compact (insert l (range f ))

apply (simp add : compact eq bounded closed , auto)
apply (simp add : convergent imp bounded)
by (simp add : closed limpt islimpt insert sequence unique limpt)

3.2.18 Properties of Balls and Spheres

lemma compact cball [simp]:
fixes x :: ′a::heine borel
shows compact (cball x e)
using compact eq bounded closed bounded cball closed cball
by blast

lemma compact frontier bounded [intro]:
fixes S :: ′a::heine borel set
shows bounded S =⇒ compact (frontier S )
unfolding frontier def
using compact eq bounded closed
by blast

lemma compact frontier [intro]:
fixes S :: ′a::heine borel set
shows compact S =⇒ compact (frontier S )
using compact eq bounded closed compact frontier bounded
by blast

3.2.19 Distance from a Set

lemma distance attains sup:
assumes compact s s 6= {}
shows ∃ x∈s. ∀ y∈s. dist a y ≤ dist a x

proof (rule continuous attains sup [OF assms])
{
fix x
assume x∈s
have (dist a −−−→ dist a x ) (at x within s)
by (intro tendsto dist tendsto const tendsto ident at)

}
then show continuous on s (dist a)
unfolding continuous on ..

qed

For minimal distance, we only need closure, not compactness.

lemma distance attains inf :
fixes a :: ′a::heine borel
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assumes closed s and s 6= {}
obtains x where x∈s

∧
y . y ∈ s =⇒ dist a x ≤ dist a y

proof −
from assms obtain b where b ∈ s by auto
let ?B = s ∩ cball a (dist b a)
have ?B 6= {} using 〈b ∈ s〉

by (auto simp: dist commute)
moreover have continuous on ?B (dist a)
by (auto intro!: continuous at imp continuous on continuous dist continuous ident

continuous const)
moreover have compact ?B
by (intro closed Int compact 〈closed s〉 compact cball)

ultimately obtain x where x ∈ ?B ∀ y∈?B . dist a x ≤ dist a y
by (metis continuous attains inf )

with that show ?thesis by fastforce
qed

3.2.20 Infimum Distance

definition infdist x A = (if A = {} then 0 else INF a∈A. dist x a)

lemma bdd below image dist [intro, simp]: bdd below (dist x ‘ A)
by (auto intro!: zero le dist)

lemma infdist notempty : A 6= {} =⇒ infdist x A = (INF a∈A. dist x a)
by (simp add : infdist def )

lemma infdist nonneg : 0 ≤ infdist x A
by (auto simp: infdist def intro: cINF greatest)

lemma infdist le: a ∈ A =⇒ infdist x A ≤ dist x a
by (auto intro: cINF lower simp add : infdist def )

lemma infdist le2 : a ∈ A =⇒ dist x a ≤ d =⇒ infdist x A ≤ d
by (auto intro!: cINF lower2 simp add : infdist def )

lemma infdist zero[simp]: a ∈ A =⇒ infdist a A = 0
by (auto intro!: antisym infdist nonneg infdist le2 )

lemma infdist Un min:
assumes A 6= {} B 6= {}
shows infdist x (A ∪ B) = min (infdist x A) (infdist x B)

using assms by (simp add : infdist def cINF union inf real def )

lemma infdist triangle: infdist x A ≤ infdist y A + dist x y
proof (cases A = {})
case True
then show ?thesis by (simp add : infdist def )

next
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case False
then obtain a where a ∈ A by auto
have infdist x A ≤ Inf {dist x y + dist y a |a. a ∈ A}
proof (rule cInf greatest)
from 〈A 6= {}〉 show {dist x y + dist y a |a. a ∈ A} 6= {}
by simp

fix d
assume d ∈ {dist x y + dist y a |a. a ∈ A}
then obtain a where d : d = dist x y + dist y a a ∈ A
by auto

show infdist x A ≤ d
unfolding infdist notempty [OF 〈A 6= {}〉]

proof (rule cINF lower2 )
show a ∈ A by fact
show dist x a ≤ d
unfolding d by (rule dist triangle)

qed simp
qed
also have . . . = dist x y + infdist y A
proof (rule cInf eq , safe)
fix a
assume a ∈ A
then show dist x y + infdist y A ≤ dist x y + dist y a
by (auto intro: infdist le)

next
fix i
assume inf :

∧
d . d ∈ {dist x y + dist y a |a. a ∈ A} =⇒ i ≤ d

then have i − dist x y ≤ infdist y A
unfolding infdist notempty [OF 〈A 6= {}〉] using 〈a ∈ A〉

by (intro cINF greatest) (auto simp: field simps)
then show i ≤ dist x y + infdist y A
by simp

qed
finally show ?thesis by simp

qed

lemma infdist triangle abs: |infdist x A − infdist y A| ≤ dist x y
by (metis (full types) abs diff le iff diff le eq dist commute infdist triangle)

lemma in closure iff infdist zero:
assumes A 6= {}
shows x ∈ closure A ←→ infdist x A = 0

proof
assume x ∈ closure A
show infdist x A = 0
proof (rule ccontr)
assume infdist x A 6= 0
with infdist nonneg [of x A] have infdist x A > 0
by auto
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then have ball x (infdist x A) ∩ closure A = {}
apply auto
apply (metis 〈x ∈ closure A〉 closure approachable dist commute infdist le

not less)
done

then have x /∈ closure A
by (metis 〈0 < infdist x A〉 centre in ball disjoint iff not equal)

then show False using 〈x ∈ closure A〉 by simp
qed

next
assume x : infdist x A = 0
then obtain a where a ∈ A
by atomize elim (metis all not in conv assms)

show x ∈ closure A
unfolding closure approachable
apply safe

proof (rule ccontr)
fix e :: real
assume e > 0
assume ¬ (∃ y∈A. dist y x < e)
then have infdist x A ≥ e using 〈a ∈ A〉

unfolding infdist def
by (force simp: dist commute intro: cINF greatest)

with x 〈e > 0 〉 show False by auto
qed

qed

lemma in closed iff infdist zero:
assumes closed A A 6= {}
shows x ∈ A ←→ infdist x A = 0

proof −
have x ∈ closure A ←→ infdist x A = 0
by (rule in closure iff infdist zero) fact

with assms show ?thesis by simp
qed

lemma infdist pos not in closed :
assumes closed S S 6= {} x /∈ S
shows infdist x S > 0

using in closed iff infdist zero[OF assms(1 ) assms(2 ), of x ] assms(3 ) infdist nonneg
le less by fastforce

lemma
infdist attains inf :
fixes X :: ′a::heine borel set
assumes closed X
assumes X 6= {}
obtains x where x ∈ X infdist y X = dist y x

proof −
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have bdd below (dist y ‘ X )
by auto

from distance attains inf [OF assms, of y ]
obtain x where INF : x ∈ X

∧
z . z ∈ X =⇒ dist y x ≤ dist y z by auto

have infdist y X = dist y x
by (auto simp: infdist def assms
intro!: antisym cINF lower [OF 〈x ∈ X 〉] cINF greatest [OF assms(2 ) INF (2 )])

with 〈x ∈ X 〉 show ?thesis ..
qed

Every metric space is a T4 space:

instance metric space ⊆ t4 space
proof
fix S T :: ′a set assume H : closed S closed T S ∩ T = {}
consider S = {} | T = {} | S 6= {} ∧ T 6= {} by auto
then show ∃U V . open U ∧ open V ∧ S ⊆ U ∧ T ⊆ V ∧ U ∩ V = {}
proof (cases)
case 1
show ?thesis
apply (rule exI [of {}], rule exI [of UNIV ]) using 1 by auto

next
case 2
show ?thesis
apply (rule exI [of UNIV ], rule exI [of {}]) using 2 by auto

next
case 3
define U where U = (

⋃
x∈S . ball x ((infdist x T )/2 ))

have A: open U unfolding U def by auto
have infdist x T > 0 if x ∈ S for x
using H that 3 by (auto intro!: infdist pos not in closed)

then have B : S ⊆ U unfolding U def by auto
define V where V = (

⋃
x∈T . ball x ((infdist x S )/2 ))

have C : open V unfolding V def by auto
have infdist x S > 0 if x ∈ T for x
using H that 3 by (auto intro!: infdist pos not in closed)

then have D : T ⊆ V unfolding V def by auto

have (ball x ((infdist x T )/2 )) ∩ (ball y ((infdist y S )/2 )) = {} if x ∈ S y ∈
T for x y

proof auto
fix z assume H : dist x z ∗ 2 < infdist x T dist y z ∗ 2 < infdist y S
have 2 ∗ dist x y ≤ 2 ∗ dist x z + 2 ∗ dist y z
by metric

also have ... < infdist x T + infdist y S
using H by auto

finally have dist x y < infdist x T ∨ dist x y < infdist y S
by auto

then show False
using infdist le[OF 〈x ∈ S 〉, of y ] infdist le[OF 〈y ∈ T 〉, of x ] by (auto simp
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add : dist commute)
qed
then have E : U ∩ V = {}
unfolding U def V def by auto

show ?thesis
apply (rule exI [of U ], rule exI [of V ]) using A B C D E by auto

qed
qed

lemma tendsto infdist [tendsto intros]:
assumes f : (f −−−→ l) F
shows ((λx . infdist (f x ) A) −−−→ infdist l A) F

proof (rule tendstoI )
fix e ::real
assume e > 0
from tendstoD [OF f this]
show eventually (λx . dist (infdist (f x ) A) (infdist l A) < e) F
proof (eventually elim)
fix x
from infdist triangle[of l A f x ] infdist triangle[of f x A l ]
have dist (infdist (f x ) A) (infdist l A) ≤ dist (f x ) l
by (simp add : dist commute dist real def )

also assume dist (f x ) l < e
finally show dist (infdist (f x ) A) (infdist l A) < e .

qed
qed

lemma continuous infdist [continuous intros]:
assumes continuous F f
shows continuous F (λx . infdist (f x ) A)
using assms unfolding continuous def by (rule tendsto infdist)

lemma continuous on infdist [continuous intros]:
assumes continuous on S f
shows continuous on S (λx . infdist (f x ) A)

using assms unfolding continuous on by (auto intro: tendsto infdist)

lemma compact infdist le:
fixes A:: ′a::heine borel set
assumes A 6= {}
assumes compact A
assumes e > 0
shows compact {x . infdist x A ≤ e}

proof −
from continuous closed vimage[of {0 ..e} λx . infdist x A]
continuous infdist [OF continuous ident , of UNIV A]

have closed {x . infdist x A ≤ e} by (auto simp: vimage def infdist nonneg)
moreover
from assms obtain x0 b where b:

∧
x . x ∈ A =⇒ dist x0 x ≤ b closed A
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by (auto simp: compact eq bounded closed bounded def )
{
fix y
assume infdist y A ≤ e
moreover
from infdist attains inf [OF 〈closed A〉 〈A 6= {}〉, of y ]
obtain z where z ∈ A infdist y A = dist y z by blast
ultimately
have dist x0 y ≤ b + e using b by metric

} then
have bounded {x . infdist x A ≤ e}
by (auto simp: bounded any center [where a=x0 ] intro!: exI [where x=b + e])

ultimately show compact {x . infdist x A ≤ e}
by (simp add : compact eq bounded closed)

qed

3.2.21 Separation between Points and Sets

proposition separate point closed :
fixes s :: ′a::heine borel set
assumes closed s and a /∈ s
shows ∃ d>0 . ∀ x∈s. d ≤ dist a x

proof (cases s = {})
case True
then show ?thesis by(auto intro!: exI [where x=1 ])

next
case False
from assms obtain x where x∈s ∀ y∈s. dist a x ≤ dist a y
using 〈s 6= {}〉 by (blast intro: distance attains inf [of s a])

with 〈x∈s〉 show ?thesis using dist pos lt [of a x ] and〈a /∈ s〉

by blast
qed

proposition separate compact closed :
fixes s t :: ′a::heine borel set
assumes compact s
and t : closed t s ∩ t = {}

shows ∃ d>0 . ∀ x∈s. ∀ y∈t . d ≤ dist x y
proof cases
assume s 6= {} ∧ t 6= {}
then have s 6= {} t 6= {} by auto
let ?inf = λx . infdist x t
have continuous on s ?inf

by (auto intro!: continuous at imp continuous on continuous infdist continu-
ous ident)
then obtain x where x : x ∈ s ∀ y∈s. ?inf x ≤ ?inf y
using continuous attains inf [OF 〈compact s〉 〈s 6= {}〉] by auto

then have 0 < ?inf x
using t 〈t 6= {}〉 in closed iff infdist zero by (auto simp: less le infdist nonneg)
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moreover have ∀ x ′∈s. ∀ y∈t . ?inf x ≤ dist x ′ y
using x by (auto intro: order trans infdist le)

ultimately show ?thesis by auto
qed (auto intro!: exI [of 1 ])

proposition separate closed compact :
fixes s t :: ′a::heine borel set
assumes closed s
and compact t
and s ∩ t = {}

shows ∃ d>0 . ∀ x∈s. ∀ y∈t . d ≤ dist x y
proof −
have ∗: t ∩ s = {}
using assms(3 ) by auto

show ?thesis
using separate compact closed [OF assms(2 ,1 ) ∗] by (force simp: dist commute)

qed

proposition compact in open separated :
fixes A:: ′a::heine borel set
assumes A 6= {}
assumes compact A
assumes open B
assumes A ⊆ B
obtains e where e > 0 {x . infdist x A ≤ e} ⊆ B

proof atomize elim
have closed (− B) compact A − B ∩ A = {}
using assms by (auto simp: open Diff compact eq bounded closed)

from separate closed compact [OF this]
obtain d ′::real where d ′: d ′>0

∧
x y . x /∈ B =⇒ y ∈ A =⇒ d ′ ≤ dist x y

by auto
define d where d = d ′ / 2
hence d>0 d < d ′ using d ′ by auto
with d ′ have d :

∧
x y . x /∈ B =⇒ y ∈ A =⇒ d < dist x y

by force
show ∃ e>0 . {x . infdist x A ≤ e} ⊆ B
proof (rule ccontr)
assume @ e. 0 < e ∧ {x . infdist x A ≤ e} ⊆ B
with 〈d > 0 〉 obtain x where x : infdist x A ≤ d x /∈ B
by auto

from assms have closed A A 6= {} by (auto simp: compact eq bounded closed)
from infdist attains inf [OF this]
obtain y where y : y ∈ A infdist x A = dist x y
by auto

have dist x y ≤ d using x y by simp
also have . . . < dist x y using y d x by auto
finally show False by simp

qed
qed
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3.2.22 Uniform Continuity

lemma uniformly continuous onE :
assumes uniformly continuous on s f 0 < e
obtains d where d>0

∧
x x ′. [[x∈s; x ′∈s; dist x ′ x < d ]] =⇒ dist (f x ′) (f x ) <

e
using assms
by (auto simp: uniformly continuous on def )

lemma uniformly continuous on sequentially :
uniformly continuous on s f ←→ (∀ x y . (∀n. x n ∈ s) ∧ (∀n. y n ∈ s) ∧
(λn. dist (x n) (y n)) −−−−→ 0 −→ (λn. dist (f (x n)) (f (y n))) −−−−→ 0 ) (is

?lhs = ?rhs)
proof
assume ?lhs
{
fix x y
assume x : ∀n. x n ∈ s
and y : ∀n. y n ∈ s
and xy : ((λn. dist (x n) (y n)) −−−→ 0 ) sequentially

{
fix e :: real
assume e > 0
then obtain d where d > 0 and d : ∀ x∈s. ∀ x ′∈s. dist x ′ x < d −→ dist (f

x ′) (f x ) < e
using 〈?lhs〉[unfolded uniformly continuous on def , THEN spec[where x=e]]

by auto
obtain N where N : ∀n≥N . dist (x n) (y n) < d
using xy [unfolded lim sequentially dist norm] and 〈d>0 〉 by auto

{
fix n
assume n≥N
then have dist (f (x n)) (f (y n)) < e
using N [THEN spec[where x=n]]
using d [THEN bspec[where x=x n], THEN bspec[where x=y n]]
using x and y
by (simp add : dist commute)

}
then have ∃N . ∀n≥N . dist (f (x n)) (f (y n)) < e
by auto

}
then have ((λn. dist (f (x n)) (f (y n))) −−−→ 0 ) sequentially
unfolding lim sequentially and dist real def by auto

}
then show ?rhs by auto

next
assume ?rhs
{
assume ¬ ?lhs
then obtain e where e > 0 ∀ d>0 . ∃ x∈s. ∃ x ′∈s. dist x ′ x < d ∧ ¬ dist (f
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x ′) (f x ) < e
unfolding uniformly continuous on def by auto

then obtain fa where fa:
∀ x . 0 < x −→ fst (fa x ) ∈ s ∧ snd (fa x ) ∈ s ∧ dist (fst (fa x )) (snd (fa x ))

< x ∧ ¬ dist (f (fst (fa x ))) (f (snd (fa x ))) < e
using choice[of λd x . d>0 −→ fst x ∈ s ∧ snd x ∈ s ∧ dist (snd x ) (fst x )

< d ∧ ¬ dist (f (snd x )) (f (fst x )) < e]
unfolding Bex def
by (auto simp: dist commute)

define x where x n = fst (fa (inverse (real n + 1 ))) for n
define y where y n = snd (fa (inverse (real n + 1 ))) for n
have xyn: ∀n. x n ∈ s ∧ y n ∈ s
and xy0 : ∀n. dist (x n) (y n) < inverse (real n + 1 )
and fxy :∀n. ¬ dist (f (x n)) (f (y n)) < e
unfolding x def and y def using fa
by auto

{
fix e :: real
assume e > 0
then obtain N :: nat where N 6= 0 and N : 0 < inverse (real N ) ∧ inverse

(real N ) < e
unfolding real arch inverse[of e] by auto

{
fix n :: nat
assume n ≥ N
then have inverse (real n + 1 ) < inverse (real N )
using of nat 0 le iff and 〈N 6=0 〉 by auto

also have . . . < e using N by auto
finally have inverse (real n + 1 ) < e by auto
then have dist (x n) (y n) < e
using xy0 [THEN spec[where x=n]] by auto

}
then have ∃N . ∀n≥N . dist (x n) (y n) < e by auto

}
then have ∀ e>0 . ∃N . ∀n≥N . dist (f (x n)) (f (y n)) < e
using 〈?rhs〉[THEN spec[where x=x ], THEN spec[where x=y ]] and xyn
unfolding lim sequentially dist real def by auto

then have False using fxy and 〈e>0 〉 by auto
}
then show ?lhs
unfolding uniformly continuous on def by blast

qed

3.2.23 Continuity on a Compact Domain Implies Uniform
Continuity

From the proof of the Heine-Borel theorem: Lemma 2 in section 3.7, page 69
of J. C. Burkill and H. Burkill. A Second Course in Mathematical Analysis
(CUP, 2002)
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lemma Heine Borel lemma:
assumes compact S and Ssub: S ⊆

⋃
G and opn:

∧
G . G ∈ G =⇒ open G

obtains e where 0 < e
∧
x . x ∈ S =⇒ ∃G ∈ G. ball x e ⊆ G

proof −
have False if neg :

∧
e. 0 < e =⇒ ∃ x ∈ S . ∀G ∈ G. ¬ ball x e ⊆ G

proof −
have ∃ x ∈ S . ∀G ∈ G. ¬ ball x (1 / Suc n) ⊆ G for n
using neg by simp

then obtain f where
∧
n. f n ∈ S and fG :

∧
G n. G ∈ G =⇒ ¬ ball (f n) (1

/ Suc n) ⊆ G
by metis

then obtain l r where l ∈ S strict mono r and to l : (f ◦ r) −−−−→ l
using 〈compact S 〉 compact def that by metis

then obtain G where l ∈ G G ∈ G
using Ssub by auto

then obtain e where 0 < e and e:
∧
z . dist z l < e =⇒ z ∈ G

using opn open dist by blast
obtain N1 where N1 :

∧
n. n ≥ N1 =⇒ dist (f (r n)) l < e/2

using to l apply (simp add : lim sequentially)
using 〈0 < e〉 half gt zero that by blast

obtain N2 where N2 : of nat N2 > 2/e
using reals Archimedean2 by blast
obtain x where x ∈ ball (f (r (max N1 N2 ))) (1 / real (Suc (r (max N1

N2 )))) and x /∈ G
using fG [OF 〈G ∈ G〉, of r (max N1 N2 )] by blast

then have dist (f (r (max N1 N2 ))) x < 1 / real (Suc (r (max N1 N2 )))
by simp

also have ... ≤ 1 / real (Suc (max N1 N2 ))
apply (simp add : field split simps del : max .bounded iff )
using 〈strict mono r 〉 seq suble by blast

also have ... ≤ 1 / real (Suc N2 )
by (simp add : field simps)

also have ... < e/2
using N2 〈0 < e〉 by (simp add : field simps)

finally have dist (f (r (max N1 N2 ))) x < e/2 .
moreover have dist (f (r (max N1 N2 ))) l < e/2
using N1 max .cobounded1 by blast

ultimately have dist x l < e
by metric

then show ?thesis
using e 〈x /∈ G〉 by blast

qed
then show ?thesis
by (meson that)

qed

lemma compact uniformly equicontinuous:
assumes compact S

and cont :
∧
x e. [[x ∈ S ; 0 < e]]
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=⇒ ∃ d . 0 < d ∧
(∀ f ∈ F . ∀ x ′ ∈ S . dist x ′ x < d −→ dist (f x ′) (f x ) < e)

and 0 < e
obtains d where 0 < d∧

f x x ′. [[f ∈ F ; x ∈ S ; x ′ ∈ S ; dist x ′ x < d ]] =⇒ dist (f x ′) (f x )
< e
proof −
obtain d where d pos:

∧
x e. [[x ∈ S ; 0 < e]] =⇒ 0 < d x e

and d dist :
∧
x x ′ e f . [[dist x ′ x < d x e; x ∈ S ; x ′ ∈ S ; 0 < e; f ∈ F ]] =⇒

dist (f x ′) (f x ) < e
using cont by metis

let ?G = ((λx . ball x (d x (e/2 ))) ‘ S )
have Ssub: S ⊆

⋃
?G

by clarsimp (metis d pos 〈0 < e〉 dist self half gt zero iff )
then obtain k where 0 < k and k :

∧
x . x ∈ S =⇒ ∃G ∈ ?G. ball x k ⊆ G

by (rule Heine Borel lemma [OF 〈compact S 〉]) auto
moreover have dist (f v) (f u) < e if f ∈ F u ∈ S v ∈ S dist v u < k for f u v
proof −
obtain G where G ∈ ?G u ∈ G v ∈ G
using k that
by (metis 〈dist v u < k 〉 〈u ∈ S 〉 〈0 < k 〉 centre in ball subsetD dist commute

mem ball)
then obtain w where w : dist w u < d w (e/2 ) dist w v < d w (e/2 ) w ∈ S
by auto

with that d dist have dist (f w) (f v) < e/2
by (metis 〈0 < e〉 dist commute half gt zero)

moreover
have dist (f w) (f u) < e/2
using that d dist w by (metis 〈0 < e〉 dist commute divide pos pos zero less numeral)
ultimately show ?thesis
using dist triangle half r by blast

qed
ultimately show ?thesis using that by blast

qed

corollary compact uniformly continuous:
fixes f :: ′a :: metric space ⇒ ′b :: metric space
assumes f : continuous on S f and S : compact S
shows uniformly continuous on S f
using f
unfolding continuous on iff uniformly continuous on def
by (force intro: compact uniformly equicontinuous [OF S , of {f }])

3.2.24 Theorems relating continuity and uniform continuity
to closures

lemma continuous on closure:
continuous on (closure S ) f ←→
(∀ x e. x ∈ closure S ∧ 0 < e
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−→ (∃ d . 0 < d ∧ (∀ y . y ∈ S ∧ dist y x < d −→ dist (f y) (f x ) < e)))
(is ?lhs = ?rhs)

proof
assume ?lhs then show ?rhs
unfolding continuous on iff by (metis Un iff closure def )

next
assume R [rule format ]: ?rhs
show ?lhs
proof
fix x and e::real
assume 0 < e and x : x ∈ closure S
obtain δ::real where δ > 0

and δ:
∧
y . [[y ∈ S ; dist y x < δ]] =⇒ dist (f y) (f x ) < e/2

using R [of x e/2 ] 〈0 < e〉 x by auto
have dist (f y) (f x ) ≤ e if y : y ∈ closure S and dyx : dist y x < δ/2 for y
proof −
obtain δ ′::real where δ ′ > 0

and δ ′:
∧
z . [[z ∈ S ; dist z y < δ ′]] =⇒ dist (f z ) (f y) < e/2

using R [of y e/2 ] 〈0 < e〉 y by auto
obtain z where z ∈ S and z : dist z y < min δ ′ δ / 2
using closure approachable y
by (metis 〈0 < δ ′〉 〈0 < δ〉 divide pos pos min less iff conj zero less numeral)
have dist (f z ) (f y) < e/2
using δ ′ [OF 〈z ∈ S 〉] z 〈0 < δ ′〉 by metric

moreover have dist (f z ) (f x ) < e/2
using δ[OF 〈z ∈ S 〉] z dyx by metric

ultimately show ?thesis
by metric

qed
then show ∃ d>0 . ∀ x ′∈closure S . dist x ′ x < d −→ dist (f x ′) (f x ) ≤ e
by (rule tac x=δ/2 in exI ) (simp add : 〈δ > 0 〉)

qed
qed

lemma continuous on closure sequentially :
fixes f :: ′a::metric space ⇒ ′b :: metric space
shows
continuous on (closure S ) f ←→
(∀ x a. a ∈ closure S ∧ (∀n. x n ∈ S ) ∧ x −−−−→ a −→ (f ◦ x ) −−−−→ f a)
(is ?lhs = ?rhs)

proof −
have continuous on (closure S ) f ←→

(∀ x ∈ closure S . continuous (at x within S ) f )
by (force simp: continuous on closure continuous within eps delta)

also have ... = ?rhs
by (force simp: continuous within sequentially)

finally show ?thesis .
qed
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lemma uniformly continuous on closure:
fixes f :: ′a::metric space ⇒ ′b::metric space
assumes ucont : uniformly continuous on S f

and cont : continuous on (closure S ) f
shows uniformly continuous on (closure S ) f

unfolding uniformly continuous on def
proof (intro allI impI )
fix e::real
assume 0 < e
then obtain d ::real
where d>0
and d :

∧
x x ′. [[x∈S ; x ′∈S ; dist x ′ x < d ]] =⇒ dist (f x ′) (f x ) < e/3

using ucont [unfolded uniformly continuous on def , rule format , of e/3 ] by
auto
show ∃ d>0 . ∀ x∈closure S . ∀ x ′∈closure S . dist x ′ x < d −→ dist (f x ′) (f x )

< e
proof (rule exI [where x=d/3 ], clarsimp simp: 〈d > 0 〉)
fix x y
assume x : x ∈ closure S and y : y ∈ closure S and dyx : dist y x ∗ 3 < d
obtain d1 ::real where d1 > 0

and d1 :
∧
w . [[w ∈ closure S ; dist w x < d1 ]] =⇒ dist (f w) (f x ) < e/3

using cont [unfolded continuous on iff , rule format , of x e/3 ] 〈0 < e〉 x by
auto

obtain x ′ where x ′ ∈ S and x ′: dist x ′ x < min d1 (d / 3 )
using closure approachable [of x S ]

by (metis 〈0 < d1 〉 〈0 < d 〉 divide pos pos min less iff conj x zero less numeral)
obtain d2 ::real where d2 > 0

and d2 : ∀w ∈ closure S . dist w y < d2 −→ dist (f w) (f y) < e/3
using cont [unfolded continuous on iff , rule format , of y e/3 ] 〈0 < e〉 y by

auto
obtain y ′ where y ′ ∈ S and y ′: dist y ′ y < min d2 (d / 3 )
using closure approachable [of y S ]

by (metis 〈0 < d2 〉 〈0 < d 〉 divide pos pos min less iff conj y zero less numeral)
have dist x ′ x < d/3 using x ′ by auto
then have dist x ′ y ′ < d
using dyx y ′ by metric

then have dist (f x ′) (f y ′) < e/3
by (rule d [OF 〈y ′ ∈ S 〉 〈x ′ ∈ S 〉])

moreover have dist (f x ′) (f x ) < e/3 using 〈x ′ ∈ S 〉 closure subset x ′ d1
by (simp add : closure def )

moreover have dist (f y ′) (f y) < e/3 using 〈y ′ ∈ S 〉 closure subset y ′ d2
by (simp add : closure def )

ultimately show dist (f y) (f x ) < e by metric
qed

qed

lemma uniformly continuous on extension at closure:
fixes f :: ′a::metric space ⇒ ′b::complete space
assumes uc: uniformly continuous on X f
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assumes x ∈ closure X
obtains l where (f −−−→ l) (at x within X )

proof −
from assms obtain xs where xs: xs −−−−→ x

∧
n. xs n ∈ X

by (auto simp: closure sequential)

from uniformly continuous on Cauchy [OF uc LIMSEQ imp Cauchy , OF xs]
obtain l where l : (λn. f (xs n)) −−−−→ l
by atomize elim (simp only : convergent eq Cauchy)

have (f −−−→ l) (at x within X )
proof (safe intro!: Lim within LIMSEQ)
fix xs ′

assume ∀n. xs ′ n 6= x ∧ xs ′ n ∈ X
and xs ′: xs ′ −−−−→ x

then have xs ′ n 6= x xs ′ n ∈ X for n by auto

from uniformly continuous on Cauchy [OF uc LIMSEQ imp Cauchy , OF 〈xs ′

−−−−→ x 〉 〈xs ′ ∈ X 〉]
obtain l ′ where l ′: (λn. f (xs ′ n)) −−−−→ l ′

by atomize elim (simp only : convergent eq Cauchy)

show (λn. f (xs ′ n)) −−−−→ l
proof (rule tendstoI )
fix e::real assume e > 0
define e ′ where e ′ ≡ e/2
have e ′ > 0 using 〈e > 0 〉 by (simp add : e ′ def )

have ∀ F n in sequentially . dist (f (xs n)) l < e ′

by (simp add : 〈0 < e ′〉 l tendstoD)
moreover
from uc[unfolded uniformly continuous on def , rule format , OF 〈e ′ > 0 〉]
obtain d where d : d > 0

∧
x x ′. x ∈ X =⇒ x ′ ∈ X =⇒ dist x x ′ < d =⇒

dist (f x ) (f x ′) < e ′

by auto
have ∀ F n in sequentially . dist (xs n) (xs ′ n) < d
by (auto intro!: 〈0 < d 〉 order tendstoD tendsto eq intros xs xs ′)

ultimately
show ∀ F n in sequentially . dist (f (xs ′ n)) l < e
proof eventually elim
case (elim n)
have dist (f (xs ′ n)) l ≤ dist (f (xs n)) (f (xs ′ n)) + dist (f (xs n)) l
by metric

also have dist (f (xs n)) (f (xs ′ n)) < e ′

by (auto intro!: d xs 〈xs ′ ∈ 〉 elim)
also note 〈dist (f (xs n)) l < e ′〉

also have e ′ + e ′ = e by (simp add : e ′ def )
finally show ?case by simp

qed
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qed
qed
thus ?thesis ..

qed

lemma uniformly continuous on extension on closure:
fixes f :: ′a::metric space ⇒ ′b::complete space
assumes uc: uniformly continuous on X f
obtains g where uniformly continuous on (closure X ) g

∧
x . x ∈ X =⇒ f x =

g x∧
Y h x . X ⊆ Y =⇒ Y ⊆ closure X =⇒ continuous on Y h =⇒ (

∧
x . x ∈ X

=⇒ f x = h x ) =⇒ x ∈ Y =⇒ h x = g x
proof −
from uc have cont f : continuous on X f
by (simp add : uniformly continuous imp continuous)

obtain y where y : (f −−−→ y x ) (at x within X ) if x ∈ closure X for x
apply atomize elim
apply (rule choice)
using uniformly continuous on extension at closure[OF assms]
by metis

let ?g = λx . if x ∈ X then f x else y x

have uniformly continuous on (closure X ) ?g
unfolding uniformly continuous on def

proof safe
fix e::real assume e > 0
define e ′ where e ′ ≡ e / 3
have e ′ > 0 using 〈e > 0 〉 by (simp add : e ′ def )
from uc[unfolded uniformly continuous on def , rule format , OF 〈0 < e ′〉]
obtain d where d > 0 and d :

∧
x x ′. x ∈ X =⇒ x ′ ∈ X =⇒ dist x ′ x < d

=⇒ dist (f x ′) (f x ) < e ′

by auto
define d ′ where d ′ = d / 3
have d ′ > 0 using 〈d > 0 〉 by (simp add : d ′ def )
show ∃ d>0 . ∀ x∈closure X . ∀ x ′∈closure X . dist x ′ x < d −→ dist (?g x ′) (?g

x ) < e
proof (safe intro!: exI [where x=d ′] 〈d ′ > 0 〉)
fix x x ′ assume x : x ∈ closure X and x ′: x ′ ∈ closure X and dist : dist x ′ x

< d ′

then obtain xs xs ′ where xs: xs −−−−→ x
∧
n. xs n ∈ X

and xs ′: xs ′ −−−−→ x ′ ∧n. xs ′ n ∈ X
by (auto simp: closure sequential)

have ∀ F n in sequentially . dist (xs ′ n) x ′ < d ′

and ∀ F n in sequentially . dist (xs n) x < d ′

by (auto intro!: 〈0 < d ′〉 order tendstoD tendsto eq intros xs xs ′)
moreover
have (λx . f (xs x )) −−−−→ y x if x ∈ closure X x /∈ X xs −−−−→ x

∧
n. xs n

∈ X for xs x
using that not eventuallyD
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by (force intro!: filterlim compose[OF y [OF 〈x ∈ closure X 〉]] simp: filter-
lim at)

then have (λx . f (xs ′ x )) −−−−→ ?g x ′ (λx . f (xs x )) −−−−→ ?g x
using x x ′

by (auto intro!: continuous on tendsto compose[OF cont f ] simp: xs ′ xs)
then have ∀ F n in sequentially . dist (f (xs ′ n)) (?g x ′) < e ′

∀ F n in sequentially . dist (f (xs n)) (?g x ) < e ′

by (auto intro!: 〈0 < e ′〉 order tendstoD tendsto eq intros)
ultimately
have ∀ F n in sequentially . dist (?g x ′) (?g x ) < e
proof eventually elim
case (elim n)
have dist (?g x ′) (?g x ) ≤
dist (f (xs ′ n)) (?g x ′) + dist (f (xs ′ n)) (f (xs n)) + dist (f (xs n)) (?g

x )
by (metis add .commute add le cancel left dist commute dist triangle

dist triangle le)
also
from 〈dist (xs ′ n) x ′ < d ′〉 〈dist x ′ x < d ′〉 〈dist (xs n) x < d ′〉

have dist (xs ′ n) (xs n) < d unfolding d ′ def by metric
with 〈xs ∈ X 〉 〈xs ′ ∈ X 〉 have dist (f (xs ′ n)) (f (xs n)) < e ′

by (rule d)
also note 〈dist (f (xs ′ n)) (?g x ′) < e ′〉

also note 〈dist (f (xs n)) (?g x ) < e ′〉

finally show ?case by (simp add : e ′ def )
qed
then show dist (?g x ′) (?g x ) < e by simp

qed
qed
moreover have f x = ?g x if x ∈ X for x using that by simp
moreover
{
fix Y h x
assume Y : x ∈ Y X ⊆ Y Y ⊆ closure X and cont h: continuous on Y h
and extension: (

∧
x . x ∈ X =⇒ f x = h x )

{
assume x /∈ X
have x ∈ closure X using Y by auto
then obtain xs where xs: xs −−−−→ x

∧
n. xs n ∈ X

by (auto simp: closure sequential)
from continuous on tendsto compose[OF cont h xs(1 )] xs(2 ) Y
have hx : (λx . f (xs x )) −−−−→ h x
by (auto simp: subsetD extension)

then have (λx . f (xs x )) −−−−→ y x
using 〈x /∈ X 〉 not eventuallyD xs(2 )

by (force intro!: filterlim compose[OF y [OF 〈x ∈ closure X 〉]] simp: filterlim at
xs)

with hx have h x = y x by (rule LIMSEQ unique)
} then
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have h x = ?g x
using extension by auto

}
ultimately show ?thesis ..

qed

lemma bounded uniformly continuous image:
fixes f :: ′a :: heine borel ⇒ ′b :: heine borel
assumes uniformly continuous on S f bounded S
shows bounded(f ‘ S )
by (metis (no types, lifting) assms bounded closure image compact closure com-

pact continuous image compact eq bounded closed image cong uniformly continuous imp continuous
uniformly continuous on extension on closure)

3.2.25 With Abstract Topology (TODO: move and remove
dependency?)

lemma openin contains ball :
openin (top of set T ) S ←→
S ⊆ T ∧ (∀ x ∈ S . ∃ e. 0 < e ∧ ball x e ∩ T ⊆ S )
(is ?lhs = ?rhs)

proof
assume ?lhs
then show ?rhs
apply (simp add : openin open)
apply (metis Int commute Int mono inf .cobounded2 open contains ball or-

der refl subsetCE )
done

next
assume ?rhs
then show ?lhs
apply (simp add : openin euclidean subtopology iff )
by (metis (no types) Int iff dist commute inf .absorb iff2 mem ball)

qed

lemma openin contains cball :
openin (top of set T ) S ←→

S ⊆ T ∧ (∀ x ∈ S . ∃ e. 0 < e ∧ cball x e ∩ T ⊆ S )
(is ?lhs = ?rhs)

proof
assume ?lhs
then show ?rhs
by (force simp add : openin contains ball intro: exI [where x= /2 ])

next
assume ?rhs
then show ?lhs
by (force simp add : openin contains ball)

qed
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3.2.26 Closed Nest

Bounded closed nest property (proof does not use Heine-Borel)

lemma bounded closed nest :
fixes S :: nat ⇒ ( ′a::heine borel) set
assumes

∧
n. closed (S n)

and
∧
n. S n 6= {}

and
∧
m n. m ≤ n =⇒ S n ⊆ S m

and bounded (S 0 )
obtains a where

∧
n. a ∈ S n

proof −
from assms(2 ) obtain x where x : ∀n. x n ∈ S n
using choice[of λn x . x ∈ S n] by auto

from assms(4 ,1 ) have seq compact (S 0 )
by (simp add : bounded closed imp seq compact)

then obtain l r where lr : l ∈ S 0 strict mono r (x ◦ r) −−−−→ l
using x and assms(3 ) unfolding seq compact def by blast

have ∀n. l ∈ S n
proof
fix n :: nat
have closed (S n)
using assms(1 ) by simp

moreover have ∀ i . (x ◦ r) i ∈ S i
using x and assms(3 ) and lr(2 ) [THEN seq suble] by auto

then have ∀ i . (x ◦ r) (i + n) ∈ S n
using assms(3 ) by (fast intro!: le add2 )

moreover have (λi . (x ◦ r) (i + n)) −−−−→ l
using lr(3 ) by (rule LIMSEQ ignore initial segment)

ultimately show l ∈ S n
by (rule closed sequentially)

qed
then show ?thesis
using that by blast

qed

Decreasing case does not even need compactness, just completeness.

lemma decreasing closed nest :
fixes S :: nat ⇒ ( ′a::complete space) set
assumes

∧
n. closed (S n)∧

n. S n 6= {}∧
m n. m ≤ n =⇒ S n ⊆ S m∧
e. e>0 =⇒ ∃n. ∀ x∈S n. ∀ y∈S n. dist x y < e

obtains a where
∧
n. a ∈ S n

proof −
have ∀n. ∃ x . x ∈ S n
using assms(2 ) by auto

then have ∃ t . ∀n. t n ∈ S n
using choice[of λn x . x ∈ S n] by auto

then obtain t where t : ∀n. t n ∈ S n by auto
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{
fix e :: real
assume e > 0
then obtain N where N : ∀ x∈S N . ∀ y∈S N . dist x y < e
using assms(4 ) by blast

{
fix m n :: nat
assume N ≤ m ∧ N ≤ n
then have t m ∈ S N t n ∈ S N
using assms(3 ) t unfolding subset eq t by blast+

then have dist (t m) (t n) < e
using N by auto

}
then have ∃N . ∀m n. N ≤ m ∧ N ≤ n −→ dist (t m) (t n) < e
by auto

}
then have Cauchy t
unfolding cauchy def by auto

then obtain l where l :(t −−−→ l) sequentially
using complete UNIV unfolding complete def by auto

{ fix n :: nat
{ fix e :: real
assume e > 0
then obtain N :: nat where N : ∀n≥N . dist (t n) l < e
using l [unfolded lim sequentially ] by auto

have t (max n N ) ∈ S n
by (meson assms(3 ) contra subsetD max .cobounded1 t)

then have ∃ y∈S n. dist y l < e
using N max .cobounded2 by blast

}
then have l ∈ S n
using closed approachable[of S n l ] assms(1 ) by auto

}
then show ?thesis
using that by blast

qed

Strengthen it to the intersection actually being a singleton.

lemma decreasing closed nest sing :
fixes S :: nat ⇒ ′a::complete space set
assumes

∧
n. closed(S n)∧

n. S n 6= {}∧
m n. m ≤ n =⇒ S n ⊆ S m∧
e. e>0 =⇒ ∃n. ∀ x ∈ (S n). ∀ y∈(S n). dist x y < e

shows ∃ a.
⋂
(range S ) = {a}

proof −
obtain a where a: ∀n. a ∈ S n
using decreasing closed nest [of S ] using assms by auto

{ fix b



Elementary Metric Spaces.thy 537

assume b: b ∈
⋂
(range S )

{ fix e :: real
assume e > 0
then have dist a b < e
using assms(4 ) and b and a by blast

}
then have dist a b = 0
by (metis dist eq 0 iff dist nz less le)

}
with a have

⋂
(range S ) = {a}

unfolding image def by auto
then show ?thesis ..

qed

3.2.27 Making a continuous function avoid some value in a
neighbourhood

lemma continuous within avoid :
fixes f :: ′a::metric space ⇒ ′b::t1 space
assumes continuous (at x within s) f
and f x 6= a

shows ∃ e>0 . ∀ y ∈ s. dist x y < e −−> f y 6= a
proof −
obtain U where open U and f x ∈ U and a /∈ U
using t1 space [OF 〈f x 6= a〉] by fast

have (f −−−→ f x ) (at x within s)
using assms(1 ) by (simp add : continuous within)

then have eventually (λy . f y ∈ U ) (at x within s)
using 〈open U 〉 and 〈f x ∈ U 〉

unfolding tendsto def by fast
then have eventually (λy . f y 6= a) (at x within s)
using 〈a /∈ U 〉 by (fast elim: eventually mono)

then show ?thesis
using 〈f x 6= a〉 by (auto simp: dist commute eventually at)

qed

lemma continuous at avoid :
fixes f :: ′a::metric space ⇒ ′b::t1 space
assumes continuous (at x ) f
and f x 6= a

shows ∃ e>0 . ∀ y . dist x y < e −→ f y 6= a
using assms continuous within avoid [of x UNIV f a] by simp

lemma continuous on avoid :
fixes f :: ′a::metric space ⇒ ′b::t1 space
assumes continuous on s f
and x ∈ s
and f x 6= a

shows ∃ e>0 . ∀ y ∈ s. dist x y < e −→ f y 6= a
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using assms(1 )[unfolded continuous on eq continuous within, THEN bspec[where
x=x ],

OF assms(2 )] continuous within avoid [of x s f a]
using assms(3 )
by auto

lemma continuous on open avoid :
fixes f :: ′a::metric space ⇒ ′b::t1 space
assumes continuous on s f
and open s
and x ∈ s
and f x 6= a

shows ∃ e>0 . ∀ y . dist x y < e −→ f y 6= a
using assms(1 )[unfolded continuous on eq continuous at [OF assms(2 )], THEN

bspec[where x=x ], OF assms(3 )]
using continuous at avoid [of x f a] assms(4 )
by auto

3.2.28 Consequences for Real Numbers

lemma closed contains Inf :
fixes S :: real set
shows S 6= {} =⇒ bdd below S =⇒ closed S =⇒ Inf S ∈ S
by (metis closure contains Inf closure closed)

lemma closed subset contains Inf :
fixes A C :: real set
shows closed C =⇒ A ⊆ C =⇒ A 6= {} =⇒ bdd below A =⇒ Inf A ∈ C
by (metis closure contains Inf closure minimal subset eq)

lemma closed contains Sup:
fixes S :: real set
shows S 6= {} =⇒ bdd above S =⇒ closed S =⇒ Sup S ∈ S
by (subst closure closed [symmetric], assumption, rule closure contains Sup)

lemma closed subset contains Sup:
fixes A C :: real set
shows closed C =⇒ A ⊆ C =⇒ A 6= {} =⇒ bdd above A =⇒ Sup A ∈ C
by (metis closure contains Sup closure minimal subset eq)

lemma atLeastAtMost subset contains Inf :
fixes A :: real set and a b :: real
shows A 6= {} =⇒ a ≤ b =⇒ A ⊆ {a..b} =⇒ Inf A ∈ {a..b}
by (rule closed subset contains Inf )

(auto intro: closed real atLeastAtMost intro!: bdd belowI [of A a])

lemma bounded real : bounded (S ::real set) ←→ (∃ a. ∀ x∈S . |x | ≤ a)
by (simp add : bounded iff )
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lemma bounded imp bdd above: bounded S =⇒ bdd above (S :: real set)
by (auto simp: bounded def bdd above def dist real def )

(metis abs le D1 abs minus commute diff le eq)

lemma bounded imp bdd below : bounded S =⇒ bdd below (S :: real set)
by (auto simp: bounded def bdd below def dist real def )

(metis abs le D1 add .commute diff le eq)

lemma bounded has Sup:
fixes S :: real set
assumes bounded S
and S 6= {}

shows ∀ x∈S . x ≤ Sup S
and ∀ b. (∀ x∈S . x ≤ b) −→ Sup S ≤ b

proof
show ∀ b. (∀ x∈S . x ≤ b) −→ Sup S ≤ b
using assms by (metis cSup least)

qed (metis cSup upper assms(1 ) bounded imp bdd above)

lemma Sup insert :
fixes S :: real set
shows bounded S =⇒ Sup (insert x S ) = (if S = {} then x else max x (Sup S ))
by (auto simp: bounded imp bdd above sup max cSup insert If )

lemma bounded has Inf :
fixes S :: real set
assumes bounded S
and S 6= {}

shows ∀ x∈S . x ≥ Inf S
and ∀ b. (∀ x∈S . x ≥ b) −→ Inf S ≥ b

proof
show ∀ b. (∀ x∈S . x ≥ b) −→ Inf S ≥ b
using assms by (metis cInf greatest)

qed (metis cInf lower assms(1 ) bounded imp bdd below)

lemma Inf insert :
fixes S :: real set
shows bounded S =⇒ Inf (insert x S ) = (if S = {} then x else min x (Inf S ))
by (auto simp: bounded imp bdd below inf min cInf insert If )

lemma open real :
fixes s :: real set
shows open s ←→ (∀ x ∈ s. ∃ e>0 . ∀ x ′. |x ′ − x | < e −−> x ′ ∈ s)
unfolding open dist dist norm by simp

lemma islimpt approachable real :
fixes s :: real set
shows x islimpt s ←→ (∀ e>0 . ∃ x ′∈ s. x ′ 6= x ∧ |x ′ − x | < e)
unfolding islimpt approachable dist norm by simp
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lemma closed real :
fixes s :: real set
shows closed s ←→ (∀ x . (∀ e>0 . ∃ x ′ ∈ s. x ′ 6= x ∧ |x ′ − x | < e) −→ x ∈ s)
unfolding closed limpt islimpt approachable dist norm by simp

lemma continuous at real range:
fixes f :: ′a::real normed vector ⇒ real
shows continuous (at x ) f ←→ (∀ e>0 . ∃ d>0 . ∀ x ′. norm(x ′ − x ) < d −−> |f

x ′ − f x | < e)
unfolding continuous at
unfolding Lim at
unfolding dist norm
apply auto
apply (erule tac x=e in allE , auto)
apply (rule tac x=d in exI , auto)
apply (erule tac x=x ′ in allE , auto)
apply (erule tac x=e in allE , auto)
done

lemma continuous on real range:
fixes f :: ′a::real normed vector ⇒ real
shows continuous on s f ←→
(∀ x ∈ s. ∀ e>0 . ∃ d>0 . (∀ x ′ ∈ s. norm(x ′ − x ) < d −→ |f x ′ − f x | < e))

unfolding continuous on iff dist norm by simp

lemma continuous on closed Collect le:
fixes f g :: ′a::topological space ⇒ real
assumes f : continuous on s f and g : continuous on s g and s: closed s
shows closed {x ∈ s. f x ≤ g x}

proof −
have closed ((λx . g x − f x ) −‘ {0 ..} ∩ s)
using closed real atLeast continuous on diff [OF g f ]
by (simp add : continuous on closed vimage [OF s])

also have ((λx . g x − f x ) −‘ {0 ..} ∩ s) = {x∈s. f x ≤ g x}
by auto

finally show ?thesis .
qed

lemma continuous le on closure:
fixes a::real
assumes f : continuous on (closure s) f

and x : x ∈ closure(s)
and xlo:

∧
x . x ∈ s ==> f (x ) ≤ a

shows f (x ) ≤ a
using image closure subset [OF f , where T= {x . x ≤ a} ] assms
continuous on closed Collect le[of UNIV λx . x λx . a]

by auto
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lemma continuous ge on closure:
fixes a::real
assumes f : continuous on (closure s) f

and x : x ∈ closure(s)
and xlo:

∧
x . x ∈ s ==> f (x ) ≥ a

shows f (x ) ≥ a
using image closure subset [OF f , where T= {x . a ≤ x}] assms
continuous on closed Collect le[of UNIV λx . a λx . x ]

by auto

3.2.29 The infimum of the distance between two sets

definition setdist :: ′a::metric space set ⇒ ′a set ⇒ real where
setdist s t ≡

(if s = {} ∨ t = {} then 0
else Inf {dist x y | x y . x ∈ s ∧ y ∈ t})

lemma setdist empty1 [simp]: setdist {} t = 0
by (simp add : setdist def )

lemma setdist empty2 [simp]: setdist t {} = 0
by (simp add : setdist def )

lemma setdist pos le [simp]: 0 ≤ setdist s t
by (auto simp: setdist def ex in conv [symmetric] intro: cInf greatest)

lemma le setdistI :
assumes s 6= {} t 6= {}

∧
x y . [[x ∈ s; y ∈ t ]] =⇒ d ≤ dist x y

shows d ≤ setdist s t
using assms
by (auto simp: setdist def Set .ex in conv [symmetric] intro: cInf greatest)

lemma setdist le dist : [[x ∈ s; y ∈ t ]] =⇒ setdist s t ≤ dist x y
unfolding setdist def
by (auto intro!: bdd belowI [where m=0 ] cInf lower)

lemma le setdist iff :
d ≤ setdist S T ←→
(∀ x ∈ S . ∀ y ∈ T . d ≤ dist x y) ∧ (S = {} ∨ T = {} −→ d ≤ 0 )

apply (cases S = {} ∨ T = {})
apply (force simp add : setdist def )
apply (intro iffI conjI )
using setdist le dist apply fastforce
apply (auto simp: intro: le setdistI )
done

lemma setdist ltE :
assumes setdist S T < b S 6= {} T 6= {}
obtains x y where x ∈ S y ∈ T dist x y < b
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using assms
by (auto simp: not le [symmetric] le setdist iff )

lemma setdist refl : setdist S S = 0
apply (cases S = {})
apply (force simp add : setdist def )
apply (rule antisym [OF setdist pos le])
apply (metis all not in conv dist self setdist le dist)
done

lemma setdist sym: setdist S T = setdist T S
by (force simp: setdist def dist commute intro!: arg cong [where f=Inf ])

lemma setdist triangle: setdist S T ≤ setdist S {a} + setdist {a} T
proof (cases S = {} ∨ T = {})
case True then show ?thesis
using setdist pos le by fastforce

next
case False
then have

∧
x . x ∈ S =⇒ setdist S T − dist x a ≤ setdist {a} T

apply (intro le setdistI )
apply (simp all add : algebra simps)
apply (metis dist commute dist triangle3 order trans [OF setdist le dist ])
done

then have setdist S T − setdist {a} T ≤ setdist S {a}
using False by (fastforce intro: le setdistI )

then show ?thesis
by (simp add : algebra simps)

qed

lemma setdist singletons [simp]: setdist {x} {y} = dist x y
by (simp add : setdist def )

lemma setdist Lipschitz : |setdist {x} S − setdist {y} S | ≤ dist x y
apply (subst setdist singletons [symmetric])
by (metis abs diff le iff diff le eq setdist triangle setdist sym)

lemma continuous at setdist [continuous intros]: continuous (at x ) (λy . (setdist
{y} S ))
by (force simp: continuous at eps delta dist real def intro: le less trans [OF set-

dist Lipschitz ])

lemma continuous on setdist [continuous intros]: continuous on T (λy . (setdist
{y} S ))
by (metis continuous at setdist continuous at imp continuous on)

lemma uniformly continuous on setdist : uniformly continuous on T (λy . (setdist
{y} S ))
by (force simp: uniformly continuous on def dist real def intro: le less trans [OF
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setdist Lipschitz ])

lemma setdist subset right : [[T 6= {}; T ⊆ u]] =⇒ setdist S u ≤ setdist S T
apply (cases S = {} ∨ u = {}, force)
apply (auto simp: setdist def intro!: bdd belowI [where m=0 ] cInf superset mono)
done

lemma setdist subset left : [[S 6= {}; S ⊆ T ]] =⇒ setdist T u ≤ setdist S u
by (metis setdist subset right setdist sym)

lemma setdist closure 1 [simp]: setdist (closure S ) T = setdist S T
proof (cases S = {} ∨ T = {})
case True then show ?thesis by force

next
case False
{ fix y
assume y ∈ T
have continuous on (closure S ) (λa. dist a y)
by (auto simp: continuous intros dist norm)

then have ∗:
∧
x . x ∈ closure S =⇒ setdist S T ≤ dist x y

by (fast intro: setdist le dist 〈y ∈ T 〉 continuous ge on closure)
} note ∗ = this
show ?thesis
apply (rule antisym)
using False closure subset apply (blast intro: setdist subset left)
using False ∗ apply (force intro!: le setdistI )
done

qed

lemma setdist closure 2 [simp]: setdist T (closure S ) = setdist T S
by (metis setdist closure 1 setdist sym)

lemma setdist eq 0I : [[x ∈ S ; x ∈ T ]] =⇒ setdist S T = 0
by (metis antisym dist self setdist le dist setdist pos le)

lemma setdist unique:
[[a ∈ S ; b ∈ T ;

∧
x y . x ∈ S ∧ y ∈ T ==> dist a b ≤ dist x y ]]

=⇒ setdist S T = dist a b
by (force simp add : setdist le dist le setdist iff intro: antisym)

lemma setdist le sing : x ∈ S ==> setdist S T ≤ setdist {x} T
using setdist subset left by auto

lemma infdist eq setdist : infdist x A = setdist {x} A
by (simp add : infdist def setdist def Setcompr eq image)

lemma setdist eq infdist : setdist A B = (if A = {} then 0 else INF a∈A. infdist a
B)
proof −

Elementary{_}{\kern 0pt}Metric{_}{\kern 0pt}Spaces.html


544

have Inf {dist x y |x y . x ∈ A ∧ y ∈ B} = (INF x∈A. Inf (dist x ‘ B))
if b ∈ B a ∈ A for a b

proof (rule order antisym)
have Inf {dist x y |x y . x ∈ A ∧ y ∈ B} ≤ Inf (dist x ‘ B)
if b ∈ B a ∈ A x ∈ A for x

proof −
have ∗:

∧
b ′. b ′ ∈ B =⇒ Inf {dist x y |x y . x ∈ A ∧ y ∈ B} ≤ dist x b ′

by (metis (mono tags, lifting) ex in conv setdist def setdist le dist that(3 ))
show ?thesis

using that by (subst conditionally complete lattice class.le cInf iff ) (auto
simp: ∗)+

qed
then show Inf {dist x y |x y . x ∈ A ∧ y ∈ B} ≤ (INF x∈A. Inf (dist x ‘ B))
using that

by (subst conditionally complete lattice class.le cInf iff ) (auto simp: bdd below def )
next
have ∗:

∧
x y . [[b ∈ B ; a ∈ A; x ∈ A; y ∈ B ]] =⇒ ∃ a∈A. Inf (dist a ‘ B) ≤

dist x y
by (meson bdd below image dist cINF lower)

show (INF x∈A. Inf (dist x ‘ B)) ≤ Inf {dist x y |x y . x ∈ A ∧ y ∈ B}
proof (rule conditionally complete lattice class.cInf mono)
show bdd below ((λx . Inf (dist x ‘ B)) ‘ A)
by (metis (no types, lifting) bdd belowI2 ex in conv infdist def infdist nonneg

that(1 ))
qed (use that in 〈auto simp: ∗〉)

qed
then show ?thesis
by (auto simp: setdist def infdist def )

qed

lemma infdist mono:
assumes A ⊆ B A 6= {}
shows infdist x B ≤ infdist x A
by (simp add : assms infdist eq setdist setdist subset right)

lemma infdist singleton [simp]:
infdist x {y} = dist x y
by (simp add : infdist eq setdist)

proposition setdist attains inf :
assumes compact B B 6= {}
obtains y where y ∈ B setdist A B = infdist y A

proof (cases A = {})
case True
then show thesis
by (metis assms diameter compact attained infdist def setdist def that)

next
case False
obtain y where y ∈ B and min:

∧
y ′. y ′ ∈ B =⇒ infdist y A ≤ infdist y ′ A
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by (metis continuous attains inf [OF assms continuous on infdist ] continu-
ous on id)
show thesis
proof
have setdist A B = (INF y∈B . infdist y A)
by (metis 〈B 6= {}〉 setdist eq infdist setdist sym)

also have . . . = infdist y A
proof (rule order antisym)
show (INF y∈B . infdist y A) ≤ infdist y A
proof (rule cInf lower)
show infdist y A ∈ (λy . infdist y A) ‘ B
using 〈y ∈ B 〉 by blast

show bdd below ((λy . infdist y A) ‘ B)
by (meson bdd belowI2 infdist nonneg)

qed
next
show infdist y A ≤ (INF y∈B . infdist y A)
by (simp add : 〈B 6= {}〉 cINF greatest min)

qed
finally show setdist A B = infdist y A .

qed (fact 〈y ∈ B 〉)
qed

end

3.3 Elementary Normed Vector Spaces

theory Elementary Normed Spaces
imports
HOL−Library .FuncSet
Elementary Metric Spaces Cartesian Space
Connected

begin

3.3.1 Orthogonal Transformation of Balls

3.3.2 Various Lemmas Combining Imports

lemma open sums:
fixes T :: ( ′b::real normed vector) set
assumes open S ∨ open T
shows open (

⋃
x∈ S .

⋃
y ∈ T . {x + y})

using assms
proof
assume S : open S
show ?thesis
proof (clarsimp simp: open dist)
fix x y
assume x ∈ S y ∈ T
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with S obtain e where e > 0 and e:
∧
x ′. dist x ′ x < e =⇒ x ′ ∈ S

by (auto simp: open dist)
then have

∧
z . dist z (x + y) < e =⇒ ∃ x∈S . ∃ y∈T . z = x + y

by (metis 〈y ∈ T 〉 diff add cancel dist add cancel2 )
then show ∃ e>0 . ∀ z . dist z (x + y) < e −→ (∃ x∈S . ∃ y∈T . z = x + y)
using 〈0 < e〉 〈x ∈ S 〉 by blast

qed
next
assume T : open T
show ?thesis
proof (clarsimp simp: open dist)
fix x y
assume x ∈ S y ∈ T
with T obtain e where e > 0 and e:

∧
x ′. dist x ′ y < e =⇒ x ′ ∈ T

by (auto simp: open dist)
then have

∧
z . dist z (x + y) < e =⇒ ∃ x∈S . ∃ y∈T . z = x + y

by (metis 〈x ∈ S 〉 add diff cancel left ′ add diff eq diff diff add dist norm)
then show ∃ e>0 . ∀ z . dist z (x + y) < e −→ (∃ x∈S . ∃ y∈T . z = x + y)
using 〈0 < e〉 〈y ∈ T 〉 by blast

qed
qed

lemma image orthogonal transformation ball :
fixes f :: ′a::euclidean space ⇒ ′a
assumes orthogonal transformation f
shows f ‘ ball x r = ball (f x ) r

proof (intro equalityI subsetI )
fix y assume y ∈ f ‘ ball x r
with assms show y ∈ ball (f x ) r
by (auto simp: orthogonal transformation isometry)

next
fix y assume y : y ∈ ball (f x ) r
then obtain z where z : y = f z
using assms orthogonal transformation surj by blast

with y assms show y ∈ f ‘ ball x r
by (auto simp: orthogonal transformation isometry)

qed

lemma image orthogonal transformation cball :
fixes f :: ′a::euclidean space ⇒ ′a
assumes orthogonal transformation f
shows f ‘ cball x r = cball (f x ) r

proof (intro equalityI subsetI )
fix y assume y ∈ f ‘ cball x r
with assms show y ∈ cball (f x ) r
by (auto simp: orthogonal transformation isometry)

next
fix y assume y : y ∈ cball (f x ) r
then obtain z where z : y = f z
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using assms orthogonal transformation surj by blast
with y assms show y ∈ f ‘ cball x r
by (auto simp: orthogonal transformation isometry)

qed

3.3.3 Support

definition (in monoid add) support on :: ′b set ⇒ ( ′b ⇒ ′a) ⇒ ′b set
where support on S f = {x∈S . f x 6= 0}

lemma in support on: x ∈ support on S f ←→ x ∈ S ∧ f x 6= 0
by (simp add : support on def )

lemma support on simps[simp]:
support on {} f = {}
support on (insert x S ) f =
(if f x = 0 then support on S f else insert x (support on S f ))

support on (S ∪ T ) f = support on S f ∪ support on T f
support on (S ∩ T ) f = support on S f ∩ support on T f
support on (S − T ) f = support on S f − support on T f
support on (f ‘ S ) g = f ‘ (support on S (g ◦ f ))
unfolding support on def by auto

lemma support on cong :
(
∧
x . x ∈ S =⇒ f x = 0 ←→ g x = 0 ) =⇒ support on S f = support on S g

by (auto simp: support on def )

lemma support on if : a 6= 0 =⇒ support on A (λx . if P x then a else 0 ) = {x∈A.
P x}
by (auto simp: support on def )

lemma support on if subset : support on A (λx . if P x then a else 0 ) ⊆ {x ∈ A. P
x}
by (auto simp: support on def )

lemma finite support [intro]: finite S =⇒ finite (support on S f )
unfolding support on def by auto

definition (in comm monoid add) supp sum :: ( ′b ⇒ ′a) ⇒ ′b set ⇒ ′a
where supp sum f S = (

∑
x∈support on S f . f x )

lemma supp sum empty [simp]: supp sum f {} = 0
unfolding supp sum def by auto

lemma supp sum insert [simp]:
finite (support on S f ) =⇒
supp sum f (insert x S ) = (if x ∈ S then supp sum f S else f x + supp sum f S )

by (simp add : supp sum def in support on insert absorb)
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lemma supp sum divide distrib: supp sum f A / (r :: ′a::field) = supp sum (λn. f n
/ r) A
by (cases r = 0 )
(auto simp: supp sum def sum divide distrib intro!: sum.cong support on cong)

3.3.4 Intervals

lemma image affinity interval :
fixes c :: ′a::ordered real vector
shows ((λx . m ∗R x + c) ‘ {a..b}) =

(if {a..b}={} then {}
else if 0 ≤ m then {m ∗R a + c .. m ∗R b + c}
else {m ∗R b + c .. m ∗R a + c})

(is ?lhs = ?rhs)
proof (cases m=0 )
case True
then show ?thesis
by force

next
case False
show ?thesis
proof
show ?lhs ⊆ ?rhs
by (auto simp: scaleR left mono scaleR left mono neg)

show ?rhs ⊆ ?lhs
proof (clarsimp, intro conjI impI subsetI )
show [[0 ≤ m; a ≤ b; x ∈ {m ∗R a + c..m ∗R b + c}]]

=⇒ x ∈ (λx . m ∗R x + c) ‘ {a..b} for x
using False
by (rule tac x=inverse m ∗R (x−c) in image eqI )

(auto simp: pos le divideR eq pos divideR le eq le diff eq diff le eq)
show [[¬ 0 ≤ m; a ≤ b; x ∈ {m ∗R b + c..m ∗R a + c}]]

=⇒ x ∈ (λx . m ∗R x + c) ‘ {a..b} for x
by (rule tac x=inverse m ∗R (x−c) in image eqI )

(auto simp add : neg le divideR eq neg divideR le eq le diff eq diff le eq)
qed

qed
qed

3.3.5 Limit Points

lemma islimpt ball :
fixes x y :: ′a::{real normed vector ,perfect space}
shows y islimpt ball x e ←→ 0 < e ∧ y ∈ cball x e
(is ?lhs ←→ ?rhs)

proof
show ?rhs if ?lhs
proof
{
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assume e ≤ 0
then have ∗: ball x e = {}
using ball eq empty [of x e] by auto

have False using 〈?lhs〉

unfolding ∗ using islimpt EMPTY [of y ] by auto
}
then show e > 0 by (metis not less)
show y ∈ cball x e
using closed cball [of x e] islimpt subset [of y ball x e cball x e]
ball subset cball [of x e] 〈?lhs〉

unfolding closed limpt by auto
qed
show ?lhs if ?rhs
proof −
from that have e > 0 by auto
{
fix d :: real
assume d > 0
have ∃ x ′∈ball x e. x ′ 6= y ∧ dist x ′ y < d
proof (cases d ≤ dist x y)
case True
then show ?thesis
proof (cases x = y)
case True
then have False
using 〈d ≤ dist x y〉 〈d>0 〉 by auto

then show ?thesis
by auto

next
case False
have dist x (y − (d / (2 ∗ dist y x )) ∗R (y − x )) =
norm (x − y + (d / (2 ∗ norm (y − x ))) ∗R (y − x ))

unfolding mem cball mem ball dist norm diff diff eq2 diff add eq [symmetric]
by auto

also have . . . = |− 1 + d / (2 ∗ norm (x − y))| ∗ norm (x − y)
using scaleR left distrib[of − 1 d / (2 ∗ norm (y − x )), symmetric, of

y − x ]
unfolding scaleR minus left scaleR one
by (auto simp: norm minus commute)

also have . . . = |− norm (x − y) + d / 2 |
unfolding abs mult pos[of norm (x − y), OF norm ge zero[of x − y ]]
unfolding distrib right using 〈x 6=y〉 by auto

also have . . . ≤ e − d/2 using 〈d ≤ dist x y〉 and 〈d>0 〉 and 〈?rhs〉

by (auto simp: dist norm)
finally have y − (d / (2 ∗ dist y x )) ∗R (y − x ) ∈ ball x e using 〈d>0 〉

by auto
moreover
have (d / (2∗dist y x )) ∗R (y − x ) 6= 0
using 〈x 6=y〉[unfolded dist nz ] 〈d>0 〉 unfolding scaleR eq 0 iff
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by (auto simp: dist commute)
moreover
have dist (y − (d / (2 ∗ dist y x )) ∗R (y − x )) y < d
using 〈0 < d 〉 by (fastforce simp: dist norm)

ultimately show ?thesis
by (rule tac x = y − (d / (2∗dist y x )) ∗R (y − x ) in bexI ) auto

qed
next
case False
then have d > dist x y by auto
show ∃ x ′ ∈ ball x e. x ′ 6= y ∧ dist x ′ y < d
proof (cases x = y)
case True
obtain z where z : z 6= y dist z y < min e d
using perfect choose dist [of min e d y ]
using 〈d > 0 〉 〈e>0 〉 by auto

show ?thesis
by (metis True z dist commute mem ball min less iff conj )

next
case False
then show ?thesis
using 〈d>0 〉 〈d > dist x y〉 〈?rhs〉 by force

qed
qed

}
then show ?thesis
unfolding mem cball islimpt approachable mem ball by auto

qed
qed

lemma closure ball lemma:
fixes x y :: ′a::real normed vector
assumes x 6= y
shows y islimpt ball x (dist x y)

proof (rule islimptI )
fix T
assume y ∈ T open T
then obtain r where 0 < r ∀ z . dist z y < r −→ z ∈ T
unfolding open dist by fast

— choose point between x and y, within distance r of y.
define k where k = min 1 (r / (2 ∗ dist x y))
define z where z = y + scaleR k (x − y)
have z def2 : z = x + scaleR (1 − k) (y − x )
unfolding z def by (simp add : algebra simps)

have dist z y < r
unfolding z def k def using 〈0 < r 〉

by (simp add : dist norm min def )
then have z ∈ T
using 〈∀ z . dist z y < r −→ z ∈ T 〉 by simp
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have dist x z < dist x y
using 〈0 < r 〉 assms by (simp add : z def2 k def dist norm norm minus commute)

then have z ∈ ball x (dist x y)
by simp

have z 6= y
unfolding z def k def using 〈x 6= y〉 〈0 < r 〉

by (simp add : min def )
show ∃ z∈ball x (dist x y). z ∈ T ∧ z 6= y
using 〈z ∈ ball x (dist x y)〉 〈z ∈ T 〉 〈z 6= y〉

by fast
qed

3.3.6 Balls and Spheres in Normed Spaces

lemma mem ball 0 [simp]: x ∈ ball 0 e ←→ norm x < e
for x :: ′a::real normed vector
by simp

lemma mem cball 0 [simp]: x ∈ cball 0 e ←→ norm x ≤ e
for x :: ′a::real normed vector
by simp

lemma closure ball [simp]:
fixes x :: ′a::real normed vector
assumes 0 < e
shows closure (ball x e) = cball x e

proof
show closure (ball x e) ⊆ cball x e
using closed cball closure minimal by blast

have
∧
y . dist x y < e ∨ dist x y = e =⇒ y ∈ closure (ball x e)

by (metis Un iff assms closure ball lemma closure def dist eq 0 iff mem Collect eq
mem ball)
then show cball x e ⊆ closure (ball x e)
by force

qed

lemma mem sphere 0 [simp]: x ∈ sphere 0 e ←→ norm x = e
for x :: ′a::real normed vector
by simp

lemma interior cball [simp]:
fixes x :: ′a::{real normed vector , perfect space}
shows interior (cball x e) = ball x e

proof (cases e ≥ 0 )
case False note cs = this
from cs have null : ball x e = {}
using ball empty [of e x ] by auto
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moreover
have cball x e = {}
proof (rule equals0I )
fix y
assume y ∈ cball x e
then show False

by (metis ball eq empty null cs dist eq 0 iff dist le zero iff empty subsetI
mem cball

subset antisym subset ball)
qed
then have interior (cball x e) = {}
using interior empty by auto

ultimately show ?thesis by blast
next
case True note cs = this
have ball x e ⊆ cball x e
using ball subset cball by auto

moreover
{
fix S y
assume as: S ⊆ cball x e open S y∈S
then obtain d where d>0 and d : ∀ x ′. dist x ′ y < d −→ x ′ ∈ S
unfolding open dist by blast

then obtain xa where xa y : xa 6= y and xa: dist xa y < d
using perfect choose dist [of d ] by auto

have xa ∈ S
using d [THEN spec[where x = xa]]
using xa by (auto simp: dist commute)

then have xa cball : xa ∈ cball x e
using as(1 ) by auto

then have y ∈ ball x e
proof (cases x = y)
case True
then have e > 0 using cs order .order iff strict xa cball xa y by fastforce
then show y ∈ ball x e
using 〈x = y 〉 by simp

next
case False
have dist (y + (d / 2 / dist y x ) ∗R (y − x )) y < d
unfolding dist norm
using 〈d>0 〉 norm ge zero[of y − x ] 〈x 6= y〉 by auto

then have ∗: y + (d / 2 / dist y x ) ∗R (y − x ) ∈ cball x e
using d as(1 )[unfolded subset eq ] by blast

have y − x 6= 0 using 〈x 6= y〉 by auto
hence ∗∗:d / (2 ∗ norm (y − x )) > 0
unfolding zero less norm iff [symmetric] using 〈d>0 〉 by auto

have dist (y + (d / 2 / dist y x ) ∗R (y − x )) x =
norm (y + (d / (2 ∗ norm (y − x ))) ∗R y − (d / (2 ∗ norm (y − x ))) ∗R

x − x )
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by (auto simp: dist norm algebra simps)
also have . . . = norm ((1 + d / (2 ∗ norm (y − x ))) ∗R (y − x ))
by (auto simp: algebra simps)

also have . . . = |1 + d / (2 ∗ norm (y − x ))| ∗ norm (y − x )
using ∗∗ by auto

also have . . . = (dist y x ) + d/2
using ∗∗ by (auto simp: distrib right dist norm)

finally have e ≥ dist x y +d/2
using ∗[unfolded mem cball ] by (auto simp: dist commute)

then show y ∈ ball x e
unfolding mem ball using 〈d>0 〉 by auto

qed
}
then have ∀S ⊆ cball x e. open S −→ S ⊆ ball x e
by auto

ultimately show ?thesis
using interior unique[of ball x e cball x e]
using open ball [of x e]
by auto

qed

lemma frontier ball [simp]:
fixes a :: ′a::real normed vector
shows 0 < e =⇒ frontier (ball a e) = sphere a e
by (force simp: frontier def )

lemma frontier cball [simp]:
fixes a :: ′a::{real normed vector , perfect space}
shows frontier (cball a e) = sphere a e
by (force simp: frontier def )

corollary compact sphere [simp]:
fixes a :: ′a::{real normed vector ,perfect space,heine borel}
shows compact (sphere a r)

using compact frontier [of cball a r ] by simp

corollary bounded sphere [simp]:
fixes a :: ′a::{real normed vector ,perfect space,heine borel}
shows bounded (sphere a r)

by (simp add : compact imp bounded)

corollary closed sphere [simp]:
fixes a :: ′a::{real normed vector ,perfect space,heine borel}
shows closed (sphere a r)

by (simp add : compact imp closed)

lemma image add ball [simp]:
fixes a :: ′a::real normed vector
shows (+) b ‘ ball a r = ball (a+b) r

Elementary{_}{\kern 0pt}Normed{_}{\kern 0pt}Spaces.html


554

proof −
{ fix x :: ′a
assume dist (a + b) x < r
moreover
have b + (x − b) = x
by simp

ultimately have x ∈ (+) b ‘ ball a r
by (metis add .commute dist add cancel image eqI mem ball) }

then show ?thesis
by (auto simp: add .commute)

qed

lemma image add cball [simp]:
fixes a :: ′a::real normed vector
shows (+) b ‘ cball a r = cball (a+b) r

proof −
have

∧
x . dist (a + b) x ≤ r =⇒ ∃ y∈cball a r . x = b + y

by (metis (no types) add .commute diff add cancel dist add cancel2 mem cball)
then show ?thesis
by (force simp: add .commute)

qed

3.3.7 Various Lemmas on Normed Algebras

lemma closed of nat image: closed (of nat ‘ A :: ′a::real normed algebra 1 set)
by (rule discrete imp closed [of 1 ]) (auto simp: dist of nat)

lemma closed of int image: closed (of int ‘ A :: ′a::real normed algebra 1 set)
by (rule discrete imp closed [of 1 ]) (auto simp: dist of int)

lemma closed Nats [simp]: closed (IN :: ′a :: real normed algebra 1 set)
unfolding Nats def by (rule closed of nat image)

lemma closed Ints [simp]: closed (ZZ :: ′a :: real normed algebra 1 set)
unfolding Ints def by (rule closed of int image)

lemma closed subset Ints:
fixes A :: ′a :: real normed algebra 1 set
assumes A ⊆ ZZ
shows closed A

proof (intro discrete imp closed [OF zero less one] ballI impI , goal cases)
case (1 x y)
with assms have x ∈ ZZ and y ∈ ZZ by auto
with 〈dist y x < 1 〉 show y = x
by (auto elim!: Ints cases simp: dist of int)

qed
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3.3.8 Filters

definition indirection :: ′a::real normed vector ⇒ ′a ⇒ ′a filter (infixr indirection
70 )
where a indirection v = at a within {b. ∃ c≥0 . b − a = scaleR c v}

3.3.9 Trivial Limits

lemma trivial limit at infinity :
¬ trivial limit (at infinity :: ( ′a::{real normed vector ,perfect space}) filter)

proof −
obtain x :: ′a where x 6= 0
by (meson perfect choose dist zero less one)

then have b ≤ norm ((b / norm x ) ∗R x ) for b
by simp

then show ?thesis
unfolding trivial limit def eventually at infinity
by blast

qed

lemma at within ball bot iff :
fixes x y :: ′a::{real normed vector ,perfect space}
shows at x within ball y r = bot ←→ (r=0 ∨ x /∈ cball y r)
unfolding trivial limit within
by (metis (no types) cball empty equals0D islimpt ball less linear)

3.3.10 Limits

proposition Lim at infinity : (f −−−→ l) at infinity ←→ (∀ e>0 . ∃ b. ∀ x . norm x
≥ b −→ dist (f x ) l < e)
by (auto simp: tendsto iff eventually at infinity)

corollary Lim at infinityI [intro?]:
assumes

∧
e. e > 0 =⇒ ∃B . ∀ x . norm x ≥ B −→ dist (f x ) l ≤ e

shows (f −−−→ l) at infinity
proof −
have

∧
e. e > 0 =⇒ ∃B . ∀ x . norm x ≥ B −→ dist (f x ) l < e

by (meson assms dense le less trans)
then show ?thesis
using Lim at infinity by blast

qed

lemma Lim transform within set eq :
fixes a :: ′a::metric space and l :: ′b::metric space
shows eventually (λx . x ∈ S ←→ x ∈ T ) (at a)

=⇒ ((f −−−→ l) (at a within S ) ←→ (f −−−→ l) (at a within T ))
by (force intro: Lim transform within set elim: eventually mono)

lemma Lim null :
fixes f :: ′a ⇒ ′b::real normed vector
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shows (f −−−→ l) net ←→ ((λx . f (x ) − l) −−−→ 0 ) net
by (simp add : Lim dist norm)

lemma Lim null comparison:
fixes f :: ′a ⇒ ′b::real normed vector
assumes eventually (λx . norm (f x ) ≤ g x ) net (g −−−→ 0 ) net
shows (f −−−→ 0 ) net
using assms(2 )

proof (rule metric tendsto imp tendsto)
show eventually (λx . dist (f x ) 0 ≤ dist (g x ) 0 ) net
using assms(1 ) by (rule eventually mono) (simp add : dist norm)

qed

lemma Lim transform bound :
fixes f :: ′a ⇒ ′b::real normed vector
and g :: ′a ⇒ ′c::real normed vector

assumes eventually (λn. norm (f n) ≤ norm (g n)) net
and (g −−−→ 0 ) net

shows (f −−−→ 0 ) net
using assms(1 ) tendsto norm zero [OF assms(2 )]
by (rule Lim null comparison)

lemma lim null mult right bounded :
fixes f :: ′a ⇒ ′b::real normed div algebra
assumes f : (f −−−→ 0 ) F and g : eventually (λx . norm(g x ) ≤ B) F
shows ((λz . f z ∗ g z ) −−−→ 0 ) F

proof −
have ((λx . norm (f x ) ∗ norm (g x )) −−−→ 0 ) F
proof (rule Lim null comparison)
show ∀ F x in F . norm (norm (f x ) ∗ norm (g x )) ≤ norm (f x ) ∗ B
by (simp add : eventually mono [OF g ] mult left mono)

show ((λx . norm (f x ) ∗ B) −−−→ 0 ) F
by (simp add : f tendsto mult left zero tendsto norm zero)

qed
then show ?thesis
by (subst tendsto norm zero iff [symmetric]) (simp add : norm mult)

qed

lemma lim null mult left bounded :
fixes f :: ′a ⇒ ′b::real normed div algebra
assumes g : eventually (λx . norm(g x ) ≤ B) F and f : (f −−−→ 0 ) F
shows ((λz . g z ∗ f z ) −−−→ 0 ) F

proof −
have ((λx . norm (g x ) ∗ norm (f x )) −−−→ 0 ) F
proof (rule Lim null comparison)
show ∀ F x in F . norm (norm (g x ) ∗ norm (f x )) ≤ B ∗ norm (f x )
by (simp add : eventually mono [OF g ] mult right mono)

show ((λx . B ∗ norm (f x )) −−−→ 0 ) F
by (simp add : f tendsto mult right zero tendsto norm zero)
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qed
then show ?thesis
by (subst tendsto norm zero iff [symmetric]) (simp add : norm mult)

qed

lemma lim null scaleR bounded :
assumes f : (f −−−→ 0 ) net and gB : eventually (λa. f a = 0 ∨ norm(g a) ≤

B) net
shows ((λn. f n ∗R g n) −−−→ 0 ) net

proof
fix ε::real
assume 0 < ε
then have B : 0 < ε / (abs B + 1 ) by simp
have ∗: |f x | ∗ norm (g x ) < ε if f : |f x | ∗ (|B | + 1 ) < ε and g : norm (g x ) ≤

B for x
proof −
have |f x | ∗ norm (g x ) ≤ |f x | ∗ B
by (simp add : mult left mono g)

also have . . . ≤ |f x | ∗ (|B | + 1 )
by (simp add : mult left mono)

also have . . . < ε
by (rule f )

finally show ?thesis .
qed
have

∧
x . [[|f x | < ε / (|B | + 1 ); norm (g x ) ≤ B ]] =⇒ |f x | ∗ norm (g x ) < ε

by (simp add : ∗ pos less divide eq)
then show ∀ F x in net . dist (f x ∗R g x ) 0 < ε
using 〈0 < ε〉 by (auto intro: eventually mono [OF eventually conj [OF tend-

stoD [OF f B ] gB ]])
qed

lemma Lim norm ubound :
fixes f :: ′a ⇒ ′b::real normed vector
assumes ¬(trivial limit net) (f −−−→ l) net eventually (λx . norm(f x ) ≤ e) net
shows norm(l) ≤ e
using assms by (fast intro: tendsto le tendsto intros)

lemma Lim norm lbound :
fixes f :: ′a ⇒ ′b::real normed vector
assumes ¬ trivial limit net
and (f −−−→ l) net
and eventually (λx . e ≤ norm (f x )) net

shows e ≤ norm l
using assms by (fast intro: tendsto le tendsto intros)

Limit under bilinear function

lemma Lim bilinear :
assumes (f −−−→ l) net
and (g −−−→ m) net
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and bounded bilinear h
shows ((λx . h (f x ) (g x )) −−−→ (h l m)) net
using 〈bounded bilinear h〉 〈(f −−−→ l) net 〉 〈(g −−−→ m) net 〉

by (rule bounded bilinear .tendsto)

lemma Lim at zero:
fixes a :: ′a::real normed vector
and l :: ′b::topological space

shows (f −−−→ l) (at a) ←→ ((λx . f (a + x )) −−−→ l) (at 0 )
using LIM offset zero LIM offset zero cancel ..

3.3.11 Limit Point of Filter

lemma netlimit at vector :
fixes a :: ′a::real normed vector
shows netlimit (at a) = a

proof (cases ∃ x . x 6= a)
case True then obtain x where x : x 6= a ..
have

∧
d . 0 < d =⇒ ∃ x . x 6= a ∧ norm (x − a) < d

by (rule tac x=a + scaleR (d / 2 ) (sgn (x − a)) in exI ) (simp add : norm sgn
sgn zero iff x )
then have ¬ trivial limit (at a)
by (auto simp: trivial limit def eventually at dist norm)

then show ?thesis
by (rule Lim ident at [of a UNIV ])

qed simp

3.3.12 Boundedness

lemma continuous on closure norm le:
fixes f :: ′a::metric space ⇒ ′b::real normed vector
assumes continuous on (closure s) f
and ∀ y ∈ s. norm(f y) ≤ b
and x ∈ (closure s)

shows norm (f x ) ≤ b
proof −
have ∗: f ‘ s ⊆ cball 0 b
using assms(2 )[unfolded mem cball 0 [symmetric]] by auto

show ?thesis
by (meson ∗ assms(1 ) assms(3 ) closed cball image closure subset image subset iff

mem cball 0 )
qed

lemma bounded pos: bounded S ←→ (∃ b>0 . ∀ x∈ S . norm x ≤ b)
unfolding bounded iff
by (meson less imp le not le order trans zero less one)

lemma bounded pos less: bounded S ←→ (∃ b>0 . ∀ x∈ S . norm x < b)
by (metis bounded pos le less trans less imp le linordered field no ub)
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lemma Bseq eq bounded :
fixes f :: nat ⇒ ′a::real normed vector
shows Bseq f ←→ bounded (range f )
unfolding Bseq def bounded pos by auto

lemma bounded linear image:
assumes bounded S
and bounded linear f

shows bounded (f ‘ S )
proof −
from assms(1 ) obtain b where b > 0 and b: ∀ x∈S . norm x ≤ b
unfolding bounded pos by auto

from assms(2 ) obtain B where B : B > 0 ∀ x . norm (f x ) ≤ B ∗ norm x
using bounded linear .pos bounded by (auto simp: ac simps)

show ?thesis
unfolding bounded pos

proof (intro exI , safe)
show norm (f x ) ≤ B ∗ b if x ∈ S for x
by (meson B b less imp le mult left mono order trans that)

qed (use 〈b > 0 〉 〈B > 0 〉 in auto)
qed

lemma bounded scaling :
fixes S :: ′a::real normed vector set
shows bounded S =⇒ bounded ((λx . c ∗R x ) ‘ S )
by (simp add : bounded linear image bounded linear scaleR right)

lemma bounded scaleR comp:
fixes f :: ′a ⇒ ′b::real normed vector
assumes bounded (f ‘ S )
shows bounded ((λx . r ∗R f x ) ‘ S )
using bounded scaling [of f ‘ S r ] assms
by (auto simp: image image)

lemma bounded translation:
fixes S :: ′a::real normed vector set
assumes bounded S
shows bounded ((λx . a + x ) ‘ S )

proof −
from assms obtain b where b: b > 0 ∀ x∈S . norm x ≤ b
unfolding bounded pos by auto

{
fix x
assume x ∈ S
then have norm (a + x ) ≤ b + norm a
using norm triangle ineq [of a x ] b by auto

}
then show ?thesis
unfolding bounded pos

Elementary{_}{\kern 0pt}Normed{_}{\kern 0pt}Spaces.html


560

using norm ge zero[of a] b(1 ) and add strict increasing [of b 0 norm a]
by (auto intro!: exI [of b + norm a])

qed

lemma bounded translation minus:
fixes S :: ′a::real normed vector set
shows bounded S =⇒ bounded ((λx . x − a) ‘ S )

using bounded translation [of S −a] by simp

lemma bounded uminus [simp]:
fixes X :: ′a::real normed vector set
shows bounded (uminus ‘ X ) ←→ bounded X

by (auto simp: bounded def dist norm; rule tac x=−x in exI ; force simp: add .commute
norm minus commute)

lemma uminus bounded comp [simp]:
fixes f :: ′a ⇒ ′b::real normed vector
shows bounded ((λx . − f x ) ‘ S ) ←→ bounded (f ‘ S )
using bounded uminus[of f ‘ S ]
by (auto simp: image image)

lemma bounded plus comp:
fixes f g :: ′a ⇒ ′b::real normed vector
assumes bounded (f ‘ S )
assumes bounded (g ‘ S )
shows bounded ((λx . f x + g x ) ‘ S )

proof −
{
fix B C
assume

∧
x . x∈S =⇒ norm (f x ) ≤ B

∧
x . x∈S =⇒ norm (g x ) ≤ C

then have
∧
x . x ∈ S =⇒ norm (f x + g x ) ≤ B + C

by (auto intro!: norm triangle le add mono)
} then show ?thesis
using assms by (fastforce simp: bounded iff )

qed

lemma bounded plus:
fixes S :: ′a::real normed vector set
assumes bounded S bounded T
shows bounded ((λ(x ,y). x + y) ‘ (S × T ))
using bounded plus comp [of fst S × T snd ] assms
by (auto simp: split def split : if split asm)

lemma bounded minus comp:
bounded (f ‘ S ) =⇒ bounded (g ‘ S ) =⇒ bounded ((λx . f x − g x ) ‘ S )
for f g :: ′a ⇒ ′b::real normed vector
using bounded plus comp[of f S λx . − g x ]
by auto
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lemma bounded minus:
fixes S :: ′a::real normed vector set
assumes bounded S bounded T
shows bounded ((λ(x ,y). x − y) ‘ (S × T ))
using bounded minus comp [of fst S × T snd ] assms
by (auto simp: split def split : if split asm)

lemma not bounded UNIV [simp]:
¬ bounded (UNIV :: ′a::{real normed vector , perfect space} set)

proof (auto simp: bounded pos not le)
obtain x :: ′a where x 6= 0
using perfect choose dist [OF zero less one] by fast

fix b :: real
assume b: b >0
have b1 : b +1 ≥ 0
using b by simp

with 〈x 6= 0 〉 have b < norm (scaleR (b + 1 ) (sgn x ))
by (simp add : norm sgn)

then show ∃ x :: ′a. b < norm x ..
qed

corollary cobounded imp unbounded :
fixes S :: ′a::{real normed vector , perfect space} set
shows bounded (− S ) =⇒ ¬ bounded S

using bounded Un [of S −S ] by (simp)

3.3.13 Relations among convergence and absolute conver-
gence for power series

lemma summable imp bounded :
fixes f :: nat ⇒ ′a::real normed vector
shows summable f =⇒ bounded (range f )

by (frule summable LIMSEQ zero) (simp add : convergent imp bounded)

lemma summable imp sums bounded :
summable f =⇒ bounded (range (λn. sum f {..<n}))

by (auto simp: summable def sums def dest : convergent imp bounded)

lemma power series conv imp absconv weak :
fixes a:: nat ⇒ ′a::{real normed div algebra,banach} and w :: ′a
assumes sum: summable (λn. a n ∗ z ˆ n) and no: norm w < norm z
shows summable (λn. of real(norm(a n)) ∗ w ˆ n)

proof −
obtain M where M :

∧
x . norm (a x ∗ z ˆ x ) ≤ M

using summable imp bounded [OF sum] by (force simp: bounded iff )
show ?thesis
proof (rule series comparison complex )
have

∧
n. norm (a n) ∗ norm z ˆ n ≤ M

by (metis (no types) M norm mult norm power)
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then show summable (λn. complex of real (norm (a n) ∗ norm w ˆ n))
using Abel lemma no norm ge zero summable of real by blast

qed (auto simp: norm mult norm power)
qed

3.3.14 Normed spaces with the Heine-Borel property

lemma not compact UNIV [simp]:
fixes s :: ′a::{real normed vector ,perfect space,heine borel} set
shows ¬ compact (UNIV :: ′a set)
by (simp add : compact eq bounded closed)

lemma not compact space euclideanreal [simp]: ¬ compact space euclideanreal
by (simp add : compact space def )

Representing sets as the union of a chain of compact sets.

lemma closed Union compact subsets:
fixes S :: ′a::{heine borel ,real normed vector} set
assumes closed S
obtains F where

∧
n. compact(F n)

∧
n. F n ⊆ S

∧
n. F n ⊆ F (Suc n)

(
⋃
n. F n) = S

∧
K . [[compact K ; K ⊆ S ]] =⇒ ∃N . ∀n ≥ N . K ⊆

F n
proof
show compact (S ∩ cball 0 (of nat n)) for n
using assms compact eq bounded closed by auto

next
show (

⋃
n. S ∩ cball 0 (real n)) = S

by (auto simp: real arch simple)
next
fix K :: ′a set
assume compact K K ⊆ S
then obtain N where K ⊆ cball 0 N
by (meson bounded pos mem cball 0 compact imp bounded subsetI )

then show ∃N . ∀n≥N . K ⊆ S ∩ cball 0 (real n)
by (metis of nat le iff Int subset iff 〈K ⊆ S 〉 real arch simple subset cball sub-

set trans)
qed auto

3.3.15 Intersecting chains of compact sets and the Baire prop-
erty

proposition bounded closed chain:
fixes F :: ′a::heine borel set set
assumes B ∈ F bounded B and F :

∧
S . S ∈ F =⇒ closed S and {} /∈ F

and chain:
∧
S T . S ∈ F ∧ T ∈ F =⇒ S ⊆ T ∨ T ⊆ S

shows
⋂
F 6= {}

proof −
have B ∩

⋂
F 6= {}

proof (rule compact imp fip)
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show compact B
∧
T . T ∈ F =⇒ closed T

by (simp all add : assms compact eq bounded closed)
show [[finite G; G ⊆ F ]] =⇒ B ∩

⋂
G 6= {} for G

proof (induction G rule: finite induct)
case empty
with assms show ?case by force

next
case (insert U G)
then have U ∈ F and ne: B ∩

⋂
G 6= {} by auto

then consider B ⊆ U | U ⊆ B
using 〈B ∈ F 〉 chain by blast

then show ?case
proof cases
case 1
then show ?thesis
using Int left commute ne by auto

next
case 2
have U 6= {}
using 〈U ∈ F 〉 〈{} /∈ F 〉 by blast

moreover
have False if

∧
x . x ∈ U =⇒ ∃Y∈G. x /∈ Y

proof −
have

∧
x . x ∈ U =⇒ ∃Y∈G. Y ⊆ U

by (metis chain contra subsetD insert .prems insert subset that)
then obtain Y where Y ∈ G Y ⊆ U
by (metis all not in conv 〈U 6= {}〉)

moreover obtain x where x ∈
⋂
G

by (metis Int emptyI ne)
ultimately show ?thesis
by (metis Inf lower subset eq that)

qed
with 2 show ?thesis
by blast

qed
qed

qed
then show ?thesis by blast

qed

corollary compact chain:
fixes F :: ′a::heine borel set set
assumes

∧
S . S ∈ F =⇒ compact S {} /∈ F∧

S T . S ∈ F ∧ T ∈ F =⇒ S ⊆ T ∨ T ⊆ S
shows

⋂
F 6= {}

proof (cases F = {})
case True
then show ?thesis by auto

next
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case False
show ?thesis
by (metis False all not in conv assms compact imp bounded compact imp closed

bounded closed chain)
qed

lemma compact nest :
fixes F :: ′a::linorder ⇒ ′b::heine borel set
assumes F :

∧
n. compact(F n)

∧
n. F n 6= {} and mono:

∧
m n. m ≤ n =⇒ F

n ⊆ F m
shows

⋂
(range F ) 6= {}

proof −
have ∗:

∧
S T . S ∈ range F ∧ T ∈ range F =⇒ S ⊆ T ∨ T ⊆ S

by (metis mono image iff le cases)
show ?thesis
using F by (intro compact chain [OF ∗]; blast dest : ∗)

qed

The Baire property of dense sets

theorem Baire:
fixes S :: ′a::{real normed vector ,heine borel} set
assumes closed S countable G

and ope:
∧
T . T ∈ G =⇒ openin (top of set S ) T ∧ S ⊆ closure T

shows S ⊆ closure(
⋂
G)

proof (cases G = {})
case True
then show ?thesis
using closure subset by auto

next
let ?g = from nat into G
case False
then have gin: ?g n ∈ G for n
by (simp add : from nat into)

show ?thesis
proof (clarsimp simp: closure approachable)
fix x and e::real
assume x ∈ S 0 < e
obtain TF where opeF :

∧
n. openin (top of set S ) (TF n)

and ne:
∧
n. TF n 6= {}

and subg :
∧
n. S ∩ closure(TF n) ⊆ ?g n

and subball :
∧
n. closure(TF n) ⊆ ball x e

and decr :
∧
n. TF (Suc n) ⊆ TF n

proof −
have ∗: ∃Y . (openin (top of set S ) Y ∧ Y 6= {} ∧

S ∩ closure Y ⊆ ?g n ∧ closure Y ⊆ ball x e) ∧ Y ⊆ U
if opeU : openin (top of set S ) U and U 6= {} and cloU : closure U ⊆ ball

x e for U n
proof −
obtain T where T : open T U = T ∩ S



Elementary Normed Spaces.thy 565

using 〈openin (top of set S ) U 〉 by (auto simp: openin subtopology)
with 〈U 6= {}〉 have T ∩ closure (?g n) 6= {}
using gin ope by fastforce

then have T ∩ ?g n 6= {}
using 〈open T 〉 open Int closure eq empty by blast

then obtain y where y ∈ U y ∈ ?g n
using T ope [of ?g n, OF gin] by (blast dest : openin imp subset)

moreover have openin (top of set S ) (U ∩ ?g n)
using gin ope opeU by blast

ultimately obtain d where U : U ∩ ?g n ⊆ S and d > 0 and d : ball y
d ∩ S ⊆ U ∩ ?g n

by (force simp: openin contains ball)
show ?thesis
proof (intro exI conjI )
show openin (top of set S ) (S ∩ ball y (d/2 ))
by (simp add : openin open Int)

show S ∩ ball y (d/2 ) 6= {}
using 〈0 < d 〉 〈y ∈ U 〉 opeU openin imp subset by fastforce

have S ∩ closure (S ∩ ball y (d/2 )) ⊆ S ∩ closure (ball y (d/2 ))
using closure mono by blast

also have ... ⊆ ?g n
using 〈d > 0 〉 d by force

finally show S ∩ closure (S ∩ ball y (d/2 )) ⊆ ?g n .
have closure (S ∩ ball y (d/2 )) ⊆ S ∩ ball y d
proof −
have closure (ball y (d/2 )) ⊆ ball y d
using 〈d > 0 〉 by auto

then have closure (S ∩ ball y (d/2 )) ⊆ ball y d
by (meson closure mono inf .cobounded2 subset trans)

then show ?thesis
by (simp add : 〈closed S 〉 closure minimal)

qed
also have ... ⊆ ball x e
using cloU closure subset d by blast

finally show closure (S ∩ ball y (d/2 )) ⊆ ball x e .
show S ∩ ball y (d/2 ) ⊆ U
using ball divide subset numeral d by blast

qed
qed
let ?Φ = λn X . openin (top of set S ) X ∧ X 6= {} ∧

S ∩ closure X ⊆ ?g n ∧ closure X ⊆ ball x e
have closure (S ∩ ball x (e/2 )) ⊆ closure(ball x (e/2 ))
by (simp add : closure mono)

also have ... ⊆ ball x e
using 〈e > 0 〉 by auto

finally have closure (S ∩ ball x (e/2 )) ⊆ ball x e .
moreover haveopenin (top of set S ) (S ∩ ball x (e/2 )) S ∩ ball x (e/2 ) 6=

{}
using 〈0 < e〉 〈x ∈ S 〉 by auto
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ultimately obtain Y where Y : ?Φ 0 Y ∧ Y ⊆ S ∩ ball x (e/2 )
using ∗ [of S ∩ ball x (e/2 ) 0 ] by metis

show thesis
proof (rule exE [OF dependent nat choice])
show ∃ x . ?Φ 0 x
using Y by auto

show ∃Y . ?Φ (Suc n) Y ∧ Y ⊆ X if ?Φ n X for X n
using that by (blast intro: ∗)

qed (use that in metis)
qed
have (

⋂
n. S ∩ closure (TF n)) 6= {}

proof (rule compact nest)
show

∧
n. compact (S ∩ closure (TF n))

by (metis closed closure subball bounded subset ballI compact eq bounded closed
closed Int compact [OF 〈closed S 〉])

show
∧
n. S ∩ closure (TF n) 6= {}

by (metis Int absorb1 opeF 〈closed S 〉 closure eq empty closure minimal ne
openin imp subset)

show
∧
m n. m ≤ n =⇒ S ∩ closure (TF n) ⊆ S ∩ closure (TF m)

by (meson closure mono decr dual order .refl inf mono lift Suc antimono le)
qed
moreover have (

⋂
n. S ∩ closure (TF n)) ⊆ {y ∈

⋂
G. dist y x < e}

proof (clarsimp, intro conjI )
fix y
assume y ∈ S and y : ∀n. y ∈ closure (TF n)
then show ∀T∈G. y ∈ T
by (metis Int iff from nat into surj [OF 〈countable G〉] subsetD subg)

show dist y x < e
by (metis y dist commute mem ball subball subsetCE )

qed
ultimately show ∃ y ∈

⋂
G. dist y x < e

by auto
qed

qed

3.3.16 Continuity

Structural rules for uniform continuity

lemma (in bounded linear) uniformly continuous on[continuous intros]:
fixes g :: ::metric space ⇒
assumes uniformly continuous on s g
shows uniformly continuous on s (λx . f (g x ))
using assms unfolding uniformly continuous on sequentially
unfolding dist norm tendsto norm zero iff diff [symmetric]
by (auto intro: tendsto zero)

lemma uniformly continuous on dist [continuous intros]:
fixes f g :: ′a::metric space ⇒ ′b::metric space
assumes uniformly continuous on s f
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and uniformly continuous on s g
shows uniformly continuous on s (λx . dist (f x ) (g x ))

proof −
{
fix a b c d :: ′b
have |dist a b − dist c d | ≤ dist a c + dist b d
using dist triangle2 [of a b c] dist triangle2 [of b c d ]
using dist triangle3 [of c d a] dist triangle [of a d b]
by arith

} note le = this
{
fix x y
assume f : (λn. dist (f (x n)) (f (y n))) −−−−→ 0
assume g : (λn. dist (g (x n)) (g (y n))) −−−−→ 0
have (λn. |dist (f (x n)) (g (x n)) − dist (f (y n)) (g (y n))|) −−−−→ 0
by (rule Lim transform bound [OF tendsto add zero [OF f g ]],
simp add : le)

}
then show ?thesis
using assms unfolding uniformly continuous on sequentially
unfolding dist real def by simp

qed

lemma uniformly continuous on cmul right [continuous intros]:
fixes f :: ′a::real normed vector ⇒ ′b::real normed algebra
shows uniformly continuous on s f =⇒ uniformly continuous on s (λx . f x ∗ c)
using bounded linear .uniformly continuous on[OF bounded linear mult left ] .

lemma uniformly continuous on cmul left [continuous intros]:
fixes f :: ′a::real normed vector ⇒ ′b::real normed algebra
assumes uniformly continuous on s f
shows uniformly continuous on s (λx . c ∗ f x )

by (metis assms bounded linear .uniformly continuous on bounded linear mult right)

lemma uniformly continuous on norm[continuous intros]:
fixes f :: ′a :: metric space ⇒ ′b :: real normed vector
assumes uniformly continuous on s f
shows uniformly continuous on s (λx . norm (f x ))
unfolding norm conv dist using assms
by (intro uniformly continuous on dist uniformly continuous on const)

lemma uniformly continuous on cmul [continuous intros]:
fixes f :: ′a::metric space ⇒ ′b::real normed vector
assumes uniformly continuous on s f
shows uniformly continuous on s (λx . c ∗R f (x ))
using bounded linear scaleR right assms
by (rule bounded linear .uniformly continuous on)

lemma dist minus:
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fixes x y :: ′a::real normed vector
shows dist (− x ) (− y) = dist x y
unfolding dist norm minus diff minus norm minus cancel ..

lemma uniformly continuous on minus[continuous intros]:
fixes f :: ′a::metric space ⇒ ′b::real normed vector
shows uniformly continuous on s f =⇒ uniformly continuous on s (λx . − f x )
unfolding uniformly continuous on def dist minus .

lemma uniformly continuous on add [continuous intros]:
fixes f g :: ′a::metric space ⇒ ′b::real normed vector
assumes uniformly continuous on s f
and uniformly continuous on s g

shows uniformly continuous on s (λx . f x + g x )
using assms
unfolding uniformly continuous on sequentially
unfolding dist norm tendsto norm zero iff add diff add
by (auto intro: tendsto add zero)

lemma uniformly continuous on diff [continuous intros]:
fixes f :: ′a::metric space ⇒ ′b::real normed vector
assumes uniformly continuous on s f
and uniformly continuous on s g

shows uniformly continuous on s (λx . f x − g x )
using assms uniformly continuous on add [of s f − g ]
by (simp add : fun Compl def uniformly continuous on minus)

3.3.17 Arithmetic Preserves Topological Properties

lemma open scaling [intro]:
fixes s :: ′a::real normed vector set
assumes c 6= 0
and open s

shows open((λx . c ∗R x ) ‘ s)
proof −
{
fix x
assume x ∈ s
then obtain e where e>0

and e:∀ x ′. dist x ′ x < e −→ x ′ ∈ s using assms(2 )[unfolded open dist ,
THEN bspec[where x=x ]]

by auto
have e ∗ |c| > 0
using assms(1 )[unfolded zero less abs iff [symmetric]] 〈e>0 〉 by auto

moreover
{
fix y
assume dist y (c ∗R x ) < e ∗ |c|
then have norm (c ∗R ((1 / c) ∗R y − x )) < e ∗ norm c
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by (simp add : 〈c 6= 0 〉 dist norm scale right diff distrib)
then have norm ((1 / c) ∗R y − x ) < e
by (simp add : 〈c 6= 0 〉)

then have y ∈ (∗R) c ‘ s
using rev image eqI [of (1 / c) ∗R y s y (∗R) c]
by (simp add : 〈c 6= 0 〉 dist norm e)

}
ultimately have ∃ e>0 . ∀ x ′. dist x ′ (c ∗R x ) < e −→ x ′ ∈ (∗R) c ‘ s
by (rule tac x=e ∗ |c| in exI , auto)

}
then show ?thesis unfolding open dist by auto

qed

lemma minus image eq vimage:
fixes A :: ′a::ab group add set
shows (λx . − x ) ‘ A = (λx . − x ) −‘ A
by (auto intro!: image eqI [where f=λx . − x ])

lemma open negations:
fixes S :: ′a::real normed vector set
shows open S =⇒ open ((λx . − x ) ‘ S )
using open scaling [of − 1 S ] by simp

lemma open translation:
fixes S :: ′a::real normed vector set
assumes open S
shows open((λx . a + x ) ‘ S )

proof −
{
fix x
have continuous (at x ) (λx . x − a)
by (intro continuous diff continuous ident continuous const)

}
moreover have {x . x − a ∈ S} = (+) a ‘ S
by force

ultimately show ?thesis
by (metis assms continuous open vimage vimage def )

qed

lemma open translation subtract :
fixes S :: ′a::real normed vector set
assumes open S
shows open ((λx . x − a) ‘ S )
using assms open translation [of S − a] by (simp cong : image cong simp)

lemma open neg translation:
fixes S :: ′a::real normed vector set
assumes open S
shows open((λx . a − x ) ‘ S )
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using open translation[OF open negations[OF assms], of a]
by (auto simp: image image)

lemma open affinity :
fixes S :: ′a::real normed vector set
assumes open S c 6= 0
shows open ((λx . a + c ∗R x ) ‘ S )

proof −
have ∗: (λx . a + c ∗R x ) = (λx . a + x ) ◦ (λx . c ∗R x )
unfolding o def ..

have (+) a ‘ (∗R) c ‘ S = ((+) a ◦ (∗R) c) ‘ S
by auto

then show ?thesis
using assms open translation[of (∗R) c ‘ S a]
unfolding ∗
by auto

qed

lemma interior translation:
interior ((+) a ‘ S ) = (+) a ‘ (interior S ) for S :: ′a::real normed vector set

proof (rule set eqI , rule)
fix x
assume x ∈ interior ((+) a ‘ S )
then obtain e where e > 0 and e: ball x e ⊆ (+) a ‘ S
unfolding mem interior by auto

then have ball (x − a) e ⊆ S
unfolding subset eq Ball def mem ball dist norm
by (auto simp: diff diff eq)

then show x ∈ (+) a ‘ interior S
unfolding image iff
by (metis 〈0 < e〉 add .commute diff add cancel mem interior)

next
fix x
assume x ∈ (+) a ‘ interior S
then obtain y e where e > 0 and e: ball y e ⊆ S and y : x = a + y
unfolding image iff Bex def mem interior by auto

{
fix z
have ∗: a + y − z = y + a − z by auto
assume z ∈ ball x e
then have z − a ∈ S
using e[unfolded subset eq , THEN bspec[where x=z − a]]
unfolding mem ball dist norm y group add class.diff diff eq2 ∗
by auto

then have z ∈ (+) a ‘ S
unfolding image iff by (auto intro!: bexI [where x=z − a])

}
then have ball x e ⊆ (+) a ‘ S
unfolding subset eq by auto
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then show x ∈ interior ((+) a ‘ S )
unfolding mem interior using 〈e > 0 〉 by auto

qed

lemma interior translation subtract :
interior ((λx . x − a) ‘ S ) = (λx . x − a) ‘ interior S for S :: ′a::real normed vector

set
using interior translation [of − a] by (simp cong : image cong simp)

lemma compact scaling :
fixes s :: ′a::real normed vector set
assumes compact s
shows compact ((λx . c ∗R x ) ‘ s)

proof −
let ?f = λx . scaleR c x
have ∗: bounded linear ?f by (rule bounded linear scaleR right)
show ?thesis
using compact continuous image[of s ?f ] continuous at imp continuous on[of s

?f ]
using linear continuous at [OF ∗] assms
by auto

qed

lemma compact negations:
fixes s :: ′a::real normed vector set
assumes compact s
shows compact ((λx . − x ) ‘ s)
using compact scaling [OF assms, of − 1 ] by auto

lemma compact sums:
fixes s t :: ′a::real normed vector set
assumes compact s
and compact t

shows compact {x + y | x y . x ∈ s ∧ y ∈ t}
proof −
have ∗: {x + y | x y . x ∈ s ∧ y ∈ t} = (λz . fst z + snd z ) ‘ (s × t)
by (fastforce simp: image iff )

have continuous on (s × t) (λz . fst z + snd z )
unfolding continuous on by (rule ballI ) (intro tendsto intros)

then show ?thesis
unfolding ∗ using compact continuous image compact Times [OF assms] by

auto
qed

lemma compact differences:
fixes s t :: ′a::real normed vector set
assumes compact s
and compact t
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shows compact {x − y | x y . x ∈ s ∧ y ∈ t}
proof−
have {x − y | x y . x∈s ∧ y ∈ t} = {x + y | x y . x ∈ s ∧ y ∈ (uminus ‘ t)}
using diff conv add uminus by force

then show ?thesis
using compact sums[OF assms(1 ) compact negations[OF assms(2 )]] by auto

qed

lemma compact translation:
compact ((+) a ‘ s) if compact s for s :: ′a::real normed vector set

proof −
have {x + y |x y . x ∈ s ∧ y ∈ {a}} = (λx . a + x ) ‘ s
by auto

then show ?thesis
using compact sums [OF that compact sing [of a]] by auto

qed

lemma compact translation subtract :
compact ((λx . x − a) ‘ s) if compact s for s :: ′a::real normed vector set
using that compact translation [of s − a] by (simp cong : image cong simp)

lemma compact affinity :
fixes s :: ′a::real normed vector set
assumes compact s
shows compact ((λx . a + c ∗R x ) ‘ s)

proof −
have (+) a ‘ (∗R) c ‘ s = (λx . a + c ∗R x ) ‘ s
by auto

then show ?thesis
using compact translation[OF compact scaling [OF assms], of a c] by auto

qed

lemma closed scaling :
fixes S :: ′a::real normed vector set
assumes closed S
shows closed ((λx . c ∗R x ) ‘ S )

proof (cases c = 0 )
case True then show ?thesis
by (auto simp: image constant conv)

next
case False
from assms have closed ((λx . inverse c ∗R x ) −‘ S )
by (simp add : continuous closed vimage)

also have (λx . inverse c ∗R x ) −‘ S = (λx . c ∗R x ) ‘ S
using 〈c 6= 0 〉 by (auto elim: image eqI [rotated ])

finally show ?thesis .
qed

lemma closed negations:



Elementary Normed Spaces.thy 573

fixes S :: ′a::real normed vector set
assumes closed S
shows closed ((λx . −x ) ‘ S )
using closed scaling [OF assms, of − 1 ] by simp

lemma compact closed sums:
fixes S :: ′a::real normed vector set
assumes compact S and closed T
shows closed (

⋃
x∈ S .

⋃
y ∈ T . {x + y})

proof −
let ?S = {x + y |x y . x ∈ S ∧ y ∈ T}
{
fix x l
assume as: ∀n. x n ∈ ?S (x −−−→ l) sequentially
from as(1 ) obtain f where f : ∀n. x n = fst (f n) + snd (f n) ∀n. fst (f n)

∈ S ∀n. snd (f n) ∈ T
using choice[of λn y . x n = (fst y) + (snd y) ∧ fst y ∈ S ∧ snd y ∈ T ] by

auto
obtain l ′ r where l ′∈S and r : strict mono r and lr : (((λn. fst (f n)) ◦ r)

−−−→ l ′) sequentially
using assms(1 )[unfolded compact def , THEN spec[where x=λ n. fst (f n)]]

using f (2 ) by auto
have ((λn. snd (f (r n))) −−−→ l − l ′) sequentially
using tendsto diff [OF LIMSEQ subseq LIMSEQ [OF as(2 ) r ] lr ] and f (1 )
unfolding o def
by auto

then have l − l ′ ∈ T
using assms(2 )[unfolded closed sequential limits,
THEN spec[where x=λ n. snd (f (r n))],
THEN spec[where x=l − l ′]]

using f (3 )
by auto

then have l ∈ ?S
using 〈l ′ ∈ S 〉 by force

}
moreover have ?S = (

⋃
x∈ S .

⋃
y ∈ T . {x + y})

by force
ultimately show ?thesis
unfolding closed sequential limits
by (metis (no types, lifting))

qed

lemma closed compact sums:
fixes S T :: ′a::real normed vector set
assumes closed S compact T
shows closed (

⋃
x∈ S .

⋃
y ∈ T . {x + y})

proof −
have (

⋃
x∈ T .

⋃
y ∈ S . {x + y}) = (

⋃
x∈ S .

⋃
y ∈ T . {x + y})

by auto
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then show ?thesis
using compact closed sums[OF assms(2 ,1 )] by simp

qed

lemma compact closed differences:
fixes S T :: ′a::real normed vector set
assumes compact S closed T
shows closed (

⋃
x∈ S .

⋃
y ∈ T . {x − y})

proof −
have (

⋃
x∈ S .

⋃
y ∈ uminus ‘ T . {x + y}) = (

⋃
x∈ S .

⋃
y ∈ T . {x − y})

by force
then show ?thesis
by (metis assms closed negations compact closed sums)

qed

lemma closed compact differences:
fixes S T :: ′a::real normed vector set
assumes closed S compact T
shows closed (

⋃
x∈ S .

⋃
y ∈ T . {x − y})

proof −
have (

⋃
x∈ S .

⋃
y ∈ uminus ‘ T . {x + y}) = {x − y |x y . x ∈ S ∧ y ∈ T}

by auto
then show ?thesis
using closed compact sums[OF assms(1 ) compact negations[OF assms(2 )]] by

simp
qed

lemma closed translation:
closed ((+) a ‘ S ) if closed S for a :: ′a::real normed vector

proof −
have (

⋃
x∈ {a}.

⋃
y ∈ S . {x + y}) = ((+) a ‘ S ) by auto

then show ?thesis
using compact closed sums [OF compact sing [of a] that ] by auto

qed

lemma closed translation subtract :
closed ((λx . x − a) ‘ S ) if closed S for a :: ′a::real normed vector
using that closed translation [of S − a] by (simp cong : image cong simp)

lemma closure translation:
closure ((+) a ‘ s) = (+) a ‘ closure s for a :: ′a::real normed vector

proof −
have ∗: (+) a ‘ (− s) = − (+) a ‘ s
by (auto intro!: image eqI [where x = x − a for x ])

show ?thesis
using interior translation [of a − s, symmetric]
by (simp add : closure interior translation Compl ∗)

qed
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lemma closure translation subtract :
closure ((λx . x − a) ‘ s) = (λx . x − a) ‘ closure s for a :: ′a::real normed vector
using closure translation [of − a s] by (simp cong : image cong simp)

lemma frontier translation:
frontier ((+) a ‘ s) = (+) a ‘ frontier s for a :: ′a::real normed vector
by (auto simp add : frontier def translation diff interior translation closure translation)

lemma frontier translation subtract :
frontier ((+) a ‘ s) = (+) a ‘ frontier s for a :: ′a::real normed vector
by (auto simp add : frontier def translation diff interior translation closure translation)

lemma sphere translation:
sphere (a + c) r = (+) a ‘ sphere c r for a :: ′n::real normed vector
by (auto simp: dist norm algebra simps intro!: image eqI [where x = x − a for

x ])

lemma sphere translation subtract :
sphere (c − a) r = (λx . x − a) ‘ sphere c r for a :: ′n::real normed vector
using sphere translation [of − a c] by (simp cong : image cong simp)

lemma cball translation:
cball (a + c) r = (+) a ‘ cball c r for a :: ′n::real normed vector
by (auto simp: dist norm algebra simps intro!: image eqI [where x = x − a for

x ])

lemma cball translation subtract :
cball (c − a) r = (λx . x − a) ‘ cball c r for a :: ′n::real normed vector
using cball translation [of − a c] by (simp cong : image cong simp)

lemma ball translation:
ball (a + c) r = (+) a ‘ ball c r for a :: ′n::real normed vector
by (auto simp: dist norm algebra simps intro!: image eqI [where x = x − a for

x ])

lemma ball translation subtract :
ball (c − a) r = (λx . x − a) ‘ ball c r for a :: ′n::real normed vector
using ball translation [of − a c] by (simp cong : image cong simp)

3.3.18 Homeomorphisms

lemma homeomorphic scaling :
fixes S :: ′a::real normed vector set
assumes c 6= 0
shows S homeomorphic ((λx . c ∗R x ) ‘ S )
unfolding homeomorphic minimal
apply (rule tac x=λx . c ∗R x in exI )
apply (rule tac x=λx . (1 / c) ∗R x in exI )
using assms by (auto simp: continuous intros)
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lemma homeomorphic translation:
fixes S :: ′a::real normed vector set
shows S homeomorphic ((λx . a + x ) ‘ S )
unfolding homeomorphic minimal
apply (rule tac x=λx . a + x in exI )
apply (rule tac x=λx . −a + x in exI )
by (auto simp: continuous intros)

lemma homeomorphic affinity :
fixes S :: ′a::real normed vector set
assumes c 6= 0
shows S homeomorphic ((λx . a + c ∗R x ) ‘ S )

proof −
have ∗: (+) a ‘ (∗R) c ‘ S = (λx . a + c ∗R x ) ‘ S by auto
show ?thesis
by (metis ∗ assms homeomorphic scaling homeomorphic trans homeomorphic translation)

qed

lemma homeomorphic balls:
fixes a b :: ′a::real normed vector
assumes 0 < d 0 < e
shows (ball a d) homeomorphic (ball b e) (is ?th)
and (cball a d) homeomorphic (cball b e) (is ?cth)

proof −
show ?th unfolding homeomorphic minimal
apply(rule tac x=λx . b + (e/d) ∗R (x − a) in exI )
apply(rule tac x=λx . a + (d/e) ∗R (x − b) in exI )
using assms
by (auto intro!: continuous intros simp: dist commute dist norm pos divide less eq)
show ?cth unfolding homeomorphic minimal
apply(rule tac x=λx . b + (e/d) ∗R (x − a) in exI )
apply(rule tac x=λx . a + (d/e) ∗R (x − b) in exI )
using assms
by (auto intro!: continuous intros simp: dist commute dist norm pos divide le eq)

qed

lemma homeomorphic spheres:
fixes a b :: ′a::real normed vector
assumes 0 < d 0 < e
shows (sphere a d) homeomorphic (sphere b e)

unfolding homeomorphic minimal
apply(rule tac x=λx . b + (e/d) ∗R (x − a) in exI )
apply(rule tac x=λx . a + (d/e) ∗R (x − b) in exI )
using assms
by (auto intro!: continuous intros simp: dist commute dist norm pos divide less eq)

lemma homeomorphic ball01 UNIV :
ball (0 :: ′a::real normed vector) 1 homeomorphic (UNIV :: ′a set)
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(is ?B homeomorphic ?U )
proof
have x ∈ (λz . z /R (1 − norm z )) ‘ ball 0 1 for x :: ′a
apply (rule tac x=x /R (1 + norm x ) in image eqI )
apply (auto simp: field split simps)
using norm ge zero [of x ] apply linarith+
done

then show (λz :: ′a. z /R (1 − norm z )) ‘ ?B = ?U
by blast

have x ∈ range (λz . (1 / (1 + norm z )) ∗R z ) if norm x < 1 for x :: ′a
using that
by (rule tac x=x /R (1 − norm x ) in image eqI ) (auto simp: field split simps)

then show (λz :: ′a. z /R (1 + norm z )) ‘ ?U = ?B
by (force simp: field split simps dest : add less zeroD)

show continuous on (ball 0 1 ) (λz . z /R (1 − norm z ))
by (rule continuous intros | force)+

have 0 :
∧
z . 1 + norm z 6= 0

by (metis (no types) le add same cancel1 norm ge zero not one le zero)
then show continuous on UNIV (λz . z /R (1 + norm z ))
by (auto intro!: continuous intros)

show
∧
x . x ∈ ball 0 1 =⇒

x /R (1 − norm x ) /R (1 + norm (x /R (1 − norm x ))) = x
by (auto simp: field split simps)

show
∧
y . y /R (1 + norm y) /R (1 − norm (y /R (1 + norm y))) = y

using 0 by (auto simp: field split simps)
qed

proposition homeomorphic ball UNIV :
fixes a :: ′a::real normed vector
assumes 0 < r shows ball a r homeomorphic (UNIV :: ′a set)
using assms homeomorphic ball01 UNIV homeomorphic balls(1 ) homeomorphic trans

zero less one by blast

3.3.19 Discrete

lemma finite implies discrete:
fixes S :: ′a::topological space set
assumes finite (f ‘ S )
shows (∀ x ∈ S . ∃ e>0 . ∀ y . y ∈ S ∧ f y 6= f x −→ e ≤ norm (f y − f x ))

proof −
have ∃ e>0 . ∀ y . y ∈ S ∧ f y 6= f x −→ e ≤ norm (f y − f x ) if x ∈ S for x
proof (cases f ‘ S − {f x} = {})
case True
with zero less numeral show ?thesis
by (fastforce simp add : Set .image subset iff cong : conj cong)

next
case False
then obtain z where z ∈ S f z 6= f x
by blast
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moreover have finn: finite {norm (z − f x ) |z . z ∈ f ‘ S − {f x}}
using assms by simp

ultimately have ∗: 0 < Inf {norm(z − f x ) | z . z ∈ f ‘ S − {f x}}
by (force intro: finite imp less Inf )

show ?thesis
by (force intro!: ∗ cInf le finite [OF finn])

qed
with assms show ?thesis
by blast

qed

3.3.20 Completeness of ”Isometry” (up to constant bounds)

lemma cauchy isometric:— TODO: rename lemma to Cauchy isometric
assumes e: e > 0
and s: subspace s
and f : bounded linear f
and normf : ∀ x∈s. norm (f x ) ≥ e ∗ norm x
and xs: ∀n. x n ∈ s
and cf : Cauchy (f ◦ x )

shows Cauchy x
proof −
interpret f : bounded linear f by fact
have ∃N . ∀n≥N . norm (x n − x N ) < d if d > 0 for d :: real
proof −
from that obtain N where N : ∀n≥N . norm (f (x n) − f (x N )) < e ∗ d
using cf [unfolded Cauchy def o def dist norm, THEN spec[where x=e∗d ]] e
by auto

have norm (x n − x N ) < d if n ≥ N for n
proof −
have e ∗ norm (x n − x N ) ≤ norm (f (x n − x N ))
using subspace diff [OF s, of x n x N ]
using xs[THEN spec[where x=N ]] and xs[THEN spec[where x=n]]
using normf [THEN bspec[where x=x n − x N ]]
by auto

also have norm (f (x n − x N )) < e ∗ d
using 〈N ≤ n〉 N unfolding f .diff [symmetric] by auto

finally show ?thesis
using 〈e>0 〉 by simp

qed
then show ?thesis by auto

qed
then show ?thesis
by (simp add : Cauchy altdef2 dist norm)

qed

lemma complete isometric image:
assumes 0 < e
and s: subspace s
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and f : bounded linear f
and normf : ∀ x∈s. norm(f x ) ≥ e ∗ norm(x )
and cs: complete s

shows complete (f ‘ s)
proof −
have ∃ l∈f ‘ s. (g −−−→ l) sequentially
if as:∀n::nat . g n ∈ f ‘ s and cfg :Cauchy g for g

proof −
from that obtain x where ∀n. x n ∈ s ∧ g n = f (x n)
using choice[of λ n xa. xa ∈ s ∧ g n = f xa] by auto

then have x : ∀n. x n ∈ s ∀n. g n = f (x n) by auto
then have f ◦ x = g by (simp add : fun eq iff )
then obtain l where l∈s and l :(x −−−→ l) sequentially
using cs[unfolded complete def , THEN spec[where x=x ]]
using cauchy isometric[OF 〈0 < e〉 s f normf ] and cfg and x (1 )
by auto

then show ?thesis
using linear continuous at [OF f , unfolded continuous at sequentially , THEN

spec[where x=x ], of l ]
by (auto simp: 〈f ◦ x = g〉)

qed
then show ?thesis
unfolding complete def by auto

qed

3.3.21 Connected Normed Spaces

lemma compact components:
fixes s :: ′a::heine borel set
shows [[compact s; c ∈ components s]] =⇒ compact c

by (meson bounded subset closed components in components subset compact eq bounded closed)

lemma discrete subset disconnected :
fixes S :: ′a::topological space set
fixes t :: ′b::real normed vector set
assumes conf : continuous on S f

and no:
∧
x . x ∈ S =⇒ ∃ e>0 . ∀ y . y ∈ S ∧ f y 6= f x −→ e ≤ norm (f y −

f x )
shows f ‘ S ⊆ {y . connected component set (f ‘ S ) y = {y}}

proof −
{ fix x assume x : x ∈ S
then obtain e where e>0 and ele:

∧
y . [[y ∈ S ; f y 6= f x ]] =⇒ e ≤ norm (f

y − f x )
using conf no [OF x ] by auto

then have e2 : 0 ≤ e/2
by simp

define F where F ≡ connected component set (f ‘ S ) (f x )
have False if y ∈ S and ccs: f y ∈ F and not : f y 6= f x for y
proof −
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define C where C ≡ cball (f x ) (e/2 )
define D where D ≡ − ball (f x ) e
have disj : C ∩ D = {}
unfolding C def D def using 〈0 < e〉 by fastforce

moreover have FCD : F ⊆ C ∪ D
proof −
have t ∈ C ∨ t ∈ D if t ∈ F for t
proof −
obtain y where y ∈ S t = f y
using F def 〈t ∈ F 〉 connected component in by blast

then show ?thesis
by (metis C def ComplI D def centre in cball dist norm e2 ele mem ball

norm minus commute not le)
qed
then show ?thesis
by auto

qed
ultimately have C ∩ F = {} ∨ D ∩ F = {}
using connected closed [of F ] 〈e>0 〉 not
unfolding C def D def

by (metis Elementary Metric Spaces.open ball F def closed cball connected connected component
inf bot left open closed)

moreover have C ∩ F 6= {}
unfolding disjoint iff
by (metis FCD ComplD image eqI mem Collect eq subsetD x D def F def

Un iff 〈0 < e〉 centre in ball connected component refl eq)
moreover have D ∩ F 6= {}
unfolding disjoint iff
by (metis ComplI D def ccs dist norm ele mem ball norm minus commute

not not le that(1 ))
ultimately show ?thesis by metis

qed
moreover have connected component set (f ‘ S ) (f x ) ⊆ f ‘ S
by (auto simp: connected component in)

ultimately have connected component set (f ‘ S ) (f x ) = {f x}
by (auto simp: x F def )

}
with assms show ?thesis
by blast

qed

lemma continuous disconnected range constant eq :
(connected S ←→

(∀ f :: ′a::topological space ⇒ ′b::real normed algebra 1 .
∀ t . continuous on S f ∧ f ‘ S ⊆ t ∧ (∀ y ∈ t . connected component set t

y = {y})
−→ f constant on S )) (is ?thesis1 )

and continuous discrete range constant eq :
(connected S ←→
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(∀ f :: ′a::topological space ⇒ ′b::real normed algebra 1 .
continuous on S f ∧
(∀ x ∈ S . ∃ e. 0 < e ∧ (∀ y . y ∈ S ∧ (f y 6= f x ) −→ e ≤ norm(f y − f

x )))
−→ f constant on S )) (is ?thesis2 )

and continuous finite range constant eq :
(connected S ←→

(∀ f :: ′a::topological space ⇒ ′b::real normed algebra 1 .
continuous on S f ∧ finite (f ‘ S )
−→ f constant on S )) (is ?thesis3 )

proof −
have ∗:

∧
s t u v . [[s =⇒ t ; t =⇒ u; u =⇒ v ; v =⇒ s]]

=⇒ (s ←→ t) ∧ (s ←→ u) ∧ (s ←→ v)
by blast

have ?thesis1 ∧ ?thesis2 ∧ ?thesis3
apply (rule ∗)
using continuous disconnected range constant apply metis
apply clarify
apply (frule discrete subset disconnected ; blast)
apply (blast dest : finite implies discrete)
apply (blast intro!: finite range constant imp connected)
done

then show ?thesis1 ?thesis2 ?thesis3
by blast+

qed

lemma continuous discrete range constant :
fixes f :: ′a::topological space ⇒ ′b::real normed algebra 1
assumes S : connected S

and continuous on S f
and

∧
x . x ∈ S =⇒ ∃ e>0 . ∀ y . y ∈ S ∧ f y 6= f x −→ e ≤ norm (f y − f x )

shows f constant on S
using continuous discrete range constant eq [THEN iffD1 , OF S ] assms by blast

lemma continuous finite range constant :
fixes f :: ′a::topological space ⇒ ′b::real normed algebra 1
assumes connected S

and continuous on S f
and finite (f ‘ S )

shows f constant on S
using assms continuous finite range constant eq by blast

end

3.4 Linear Decision Procedure for Normed Spaces

theory Norm Arith
imports HOL−Library .Sum of Squares
begin
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lemma sum sqs eq :
fixes x :: ′a::idom shows x ∗ x + y ∗ y = x ∗ (y ∗ 2 ) =⇒ y = x
by algebra

lemma norm cmul rule thm:
fixes x :: ′a::real normed vector
shows b ≥ norm x =⇒ |c| ∗ b ≥ norm (scaleR c x )
unfolding norm scaleR
apply (erule mult left mono)
apply simp
done

lemma norm add rule thm:
fixes x1 x2 :: ′a::real normed vector
shows norm x1 ≤ b1 =⇒ norm x2 ≤ b2 =⇒ norm (x1 + x2 ) ≤ b1 + b2
by (rule order trans [OF norm triangle ineq add mono])

lemma ge iff diff ge 0 :
fixes a :: ′a::linordered ring
shows a ≥ b ≡ a − b ≥ 0
by (simp add : field simps)

lemma pth 1 :
fixes x :: ′a::real normed vector
shows x ≡ scaleR 1 x by simp

lemma pth 2 :
fixes x :: ′a::real normed vector
shows x − y ≡ x + −y
by (atomize (full)) simp

lemma pth 3 :
fixes x :: ′a::real normed vector
shows − x ≡ scaleR (−1 ) x
by simp

lemma pth 4 :
fixes x :: ′a::real normed vector
shows scaleR 0 x ≡ 0
and scaleR c 0 = (0 :: ′a)

by simp all

lemma pth 5 :
fixes x :: ′a::real normed vector
shows scaleR c (scaleR d x ) ≡ scaleR (c ∗ d) x
by simp
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lemma pth 6 :
fixes x :: ′a::real normed vector
shows scaleR c (x + y) ≡ scaleR c x + scaleR c y
by (simp add : scaleR right distrib)

lemma pth 7 :
fixes x :: ′a::real normed vector
shows 0 + x ≡ x
and x + 0 ≡ x

by simp all

lemma pth 8 :
fixes x :: ′a::real normed vector
shows scaleR c x + scaleR d x ≡ scaleR (c + d) x
by (simp add : scaleR left distrib)

lemma pth 9 :
fixes x :: ′a::real normed vector
shows (scaleR c x + z ) + scaleR d x ≡ scaleR (c + d) x + z
and scaleR c x + (scaleR d x + z ) ≡ scaleR (c + d) x + z
and (scaleR c x + w) + (scaleR d x + z ) ≡ scaleR (c + d) x + (w + z )

by (simp all add : algebra simps)

lemma pth a:
fixes x :: ′a::real normed vector
shows scaleR 0 x + y ≡ y
by simp

lemma pth b:
fixes x :: ′a::real normed vector
shows scaleR c x + scaleR d y ≡ scaleR c x + scaleR d y
and (scaleR c x + z ) + scaleR d y ≡ scaleR c x + (z + scaleR d y)
and scaleR c x + (scaleR d y + z ) ≡ scaleR c x + (scaleR d y + z )
and (scaleR c x + w) + (scaleR d y + z ) ≡ scaleR c x + (w + (scaleR d y +

z ))
by (simp all add : algebra simps)

lemma pth c:
fixes x :: ′a::real normed vector
shows scaleR c x + scaleR d y ≡ scaleR d y + scaleR c x
and (scaleR c x + z ) + scaleR d y ≡ scaleR d y + (scaleR c x + z )
and scaleR c x + (scaleR d y + z ) ≡ scaleR d y + (scaleR c x + z )
and (scaleR c x + w) + (scaleR d y + z ) ≡ scaleR d y + ((scaleR c x + w)

+ z )
by (simp all add : algebra simps)

lemma pth d :
fixes x :: ′a::real normed vector
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shows x + 0 ≡ x
by simp

lemma norm imp pos and ge:
fixes x :: ′a::real normed vector
shows norm x ≡ n =⇒ norm x ≥ 0 ∧ n ≥ norm x
by atomize auto

lemma real eq 0 iff le ge 0 :
fixes x :: real
shows x = 0 ≡ x ≥ 0 ∧ − x ≥ 0
by arith

lemma norm pths:
fixes x :: ′a::real normed vector
shows x = y ←→ norm (x − y) ≤ 0
and x 6= y ←→ ¬ (norm (x − y) ≤ 0 )

using norm ge zero[of x − y ] by auto

lemmas arithmetic simps =
arith simps
add numeral special
add neg numeral special
mult 1 left
mult 1 right

ML file 〈normarith.ML〉

method setup norm = 〈

Scan.succeed (SIMPLE METHOD ′ o NormArith.norm arith tac)
〉 prove simple linear statements about vector norms

Hence more metric properties.

proposition dist triangle add :
fixes x y x ′ y ′ :: ′a::real normed vector
shows dist (x + y) (x ′ + y ′) ≤ dist x x ′ + dist y y ′

by norm

lemma dist triangle add half :
fixes x x ′ y y ′ :: ′a::real normed vector
shows dist x x ′ < e / 2 =⇒ dist y y ′ < e / 2 =⇒ dist(x + y) (x ′ + y ′) < e
by norm

end



Chapter 4

Vector Analysis

theory Topology Euclidean Space
imports
Elementary Normed Spaces
Linear Algebra
Norm Arith

begin

4.1 Elementary Topology in Euclidean Space

lemma euclidean dist l2 :
fixes x y :: ′a :: euclidean space
shows dist x y = L2 set (λi . dist (x · i) (y · i)) Basis
unfolding dist norm norm eq sqrt inner L2 set def
by (subst euclidean inner) (simp add : power2 eq square inner diff left)

lemma norm nth le: norm (x · i) ≤ norm x if i ∈ Basis
proof −
have (x · i)2 = (

∑
i∈{i}. (x · i)2)

by simp
also have . . . ≤ (

∑
i∈Basis. (x · i)2)

by (intro sum mono2 ) (auto simp: that)
finally show ?thesis
unfolding norm conv dist euclidean dist l2 [of x ] L2 set def
by (auto intro!: real le rsqrt)

qed

4.1.1 Continuity of the representation WRT an orthogonal
basis

lemma orthogonal Basis: pairwise orthogonal Basis
by (simp add : inner not same Basis orthogonal def pairwise def )

lemma representation bound :
fixes B :: ′N ::real inner set
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assumes finite B independent B b ∈ B and orth: pairwise orthogonal B
obtains m where m > 0

∧
x . x ∈ span B =⇒ |representation B x b| ≤ m ∗

norm x
proof
fix x
assume x : x ∈ span B
have b 6= 0
using 〈independent B 〉 〈b ∈ B 〉 dependent zero by blast

have [simp]: b · b ′ = (if b ′ = b then (norm b)2 else 0 )
if b ∈ B b ′ ∈ B for b b ′

using orth by (simp add : orthogonal def pairwise def norm eq sqrt inner that)
have norm x = norm (

∑
b∈B . representation B x b ∗R b)

using real vector .sum representation eq [OF 〈independent B 〉 x 〈finite B 〉 or-
der refl ]

by simp
also have . . . = sqrt ((

∑
b∈B . representation B x b ∗R b) · (

∑
b∈B . represen-

tation B x b ∗R b))
by (simp add : norm eq sqrt inner)

also have . . . = sqrt (
∑

b∈B . (representation B x b ∗R b) · (representation B x
b ∗R b))

using 〈finite B 〉

by (simp add : inner sum left inner sum right if distrib [of λx . ∗ x ] cong :
if cong sum.cong simp)
also have . . . = sqrt (

∑
b∈B . (norm (representation B x b ∗R b))2)

by (simp add : mult .commute mult .left commute power2 eq square)
also have . . . = sqrt (

∑
b∈B . (representation B x b)2 ∗ (norm b)2)

by (simp add : norm mult power mult distrib)
finally have norm x = sqrt (

∑
b∈B . (representation B x b)2 ∗ (norm b)2) .

moreover
have sqrt ((representation B x b)2 ∗ (norm b)2) ≤ sqrt (

∑
b∈B . (representation

B x b)2 ∗ (norm b)2)
using 〈b ∈ B 〉 〈finite B 〉 by (auto intro: member le sum)

then have |representation B x b| ≤ (1 / norm b) ∗ sqrt (
∑

b∈B . (representation
B x b)2 ∗ (norm b)2)

using 〈b 6= 0 〉 by (simp add : field split simps real sqrt mult del : real sqrt le iff )
ultimately show |representation B x b| ≤ (1 / norm b) ∗ norm x
by simp

next
show 0 < 1 / norm b
using 〈independent B 〉 〈b ∈ B 〉 dependent zero by auto

qed

lemma continuous on representation:
fixes B :: ′N ::euclidean space set
assumes finite B independent B b ∈ B pairwise orthogonal B
shows continuous on (span B) (λx . representation B x b)

proof
show ∃ d>0 . ∀ x ′∈span B . dist x ′ x < d −→ dist (representation B x ′ b)

(representation B x b) ≤ e
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if e > 0 x ∈ span B for x e
proof −
obtain m where m > 0 and m:

∧
x . x ∈ span B =⇒ |representation B x b|

≤ m ∗ norm x
using assms representation bound by blast

show ?thesis
unfolding dist norm

proof (intro exI conjI ballI impI )
show e/m > 0
by (simp add : 〈e > 0 〉 〈m > 0 〉)

show norm (representation B x ′ b − representation B x b) ≤ e
if x ′: x ′ ∈ span B and less: norm (x ′−x ) < e/m for x ′

proof −
have |representation B (x ′−x ) b| ≤ m ∗ norm (x ′−x )
using m [of x ′−x ] 〈x ∈ span B 〉 span diff x ′ by blast

also have . . . < e
by (metis 〈m > 0 〉 less mult .commute pos less divide eq)

finally have |representation B (x ′−x ) b| ≤ e by simp
then show ?thesis
by (simp add : 〈x ∈ span B 〉 〈independent B 〉 representation diff x ′)

qed
qed

qed
qed

4.1.2 Balls in Euclidean Space

lemma cball subset cball iff :
fixes a :: ′a :: euclidean space
shows cball a r ⊆ cball a ′ r ′←→ dist a a ′ + r ≤ r ′ ∨ r < 0
(is ?lhs ←→ ?rhs)

proof
assume ?lhs
then show ?rhs
proof (cases r < 0 )
case True
then show ?rhs by simp

next
case False
then have [simp]: r ≥ 0 by simp
have norm (a − a ′) + r ≤ r ′

proof (cases a = a ′)
case True
then show ?thesis

using subsetD [where c = a + r ∗R (SOME i . i ∈ Basis), OF 〈?lhs〉]
subsetD [where c = a, OF 〈?lhs〉]

by (force simp: SOME Basis dist norm)
next
case False
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have norm (a ′ − (a + (r / norm (a − a ′)) ∗R (a − a ′))) = norm (a ′ − a
− (r / norm (a − a ′)) ∗R (a − a ′))

by (simp add : algebra simps)
also have ... = norm ((−1 − (r / norm (a − a ′))) ∗R (a − a ′))
by (simp add : algebra simps)

also from 〈a 6= a ′〉 have ... = |− norm (a − a ′) − r |
by simp (simp add : field simps)

finally have [simp]: norm (a ′ − (a + (r / norm (a − a ′)) ∗R (a − a ′))) =
|norm (a − a ′) + r |

by linarith
from 〈a 6= a ′〉 show ?thesis
using subsetD [where c = a ′ + (1 + r / norm(a − a ′)) ∗R (a − a ′), OF

〈?lhs〉]
by (simp add : dist norm scaleR add left)

qed
then show ?rhs
by (simp add : dist norm)

qed
qed metric

lemma cball subset ball iff : cball a r ⊆ ball a ′ r ′←→ dist a a ′ + r < r ′ ∨ r < 0
(is ?lhs ←→ ?rhs)
for a :: ′a::euclidean space

proof
assume ?lhs
then show ?rhs
proof (cases r < 0 )
case True then
show ?rhs by simp

next
case False
then have [simp]: r ≥ 0 by simp
have norm (a − a ′) + r < r ′

proof (cases a = a ′)
case True
then show ?thesis

using subsetD [where c = a + r ∗R (SOME i . i ∈ Basis), OF 〈?lhs〉]
subsetD [where c = a, OF 〈?lhs〉]

by (force simp: SOME Basis dist norm)
next
case False
have False if norm (a − a ′) + r ≥ r ′

proof −
from that have |r ′ − norm (a − a ′)| ≤ r
by (simp split : abs split)

(metis 〈0 ≤ r 〉 〈?lhs〉 centre in cball dist commute dist norm less asym
mem ball subset eq)

then show ?thesis
using subsetD [where c = a + (r ′ / norm(a − a ′) − 1 ) ∗R (a − a ′),
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OF 〈?lhs〉] 〈a 6= a ′〉

apply (simp add : dist norm)
apply (simp add : scaleR left diff distrib)
apply (simp add : field simps)
done

qed
then show ?thesis by force

qed
then show ?rhs by (simp add : dist norm)

qed
next
assume ?rhs
then show ?lhs
by metric

qed

lemma ball subset cball iff : ball a r ⊆ cball a ′ r ′←→ dist a a ′ + r ≤ r ′ ∨ r ≤ 0
(is ?lhs = ?rhs)
for a :: ′a::euclidean space

proof (cases r ≤ 0 )
case True
then show ?thesis
by metric

next
case False
show ?thesis
proof
assume ?lhs
then have (cball a r ⊆ cball a ′ r ′)
by (metis False closed cball closure ball closure closed closure mono not less)

with False show ?rhs
by (fastforce iff : cball subset cball iff )

next
assume ?rhs
with False show ?lhs
by metric

qed
qed

lemma ball subset ball iff :
fixes a :: ′a :: euclidean space
shows ball a r ⊆ ball a ′ r ′←→ dist a a ′ + r ≤ r ′ ∨ r ≤ 0

(is ?lhs = ?rhs)
proof (cases r ≤ 0 )
case True then show ?thesis
by metric

next
case False show ?thesis
proof
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assume ?lhs
then have 0 < r ′

using False by metric
then have (cball a r ⊆ cball a ′ r ′)
by (metis False〈?lhs〉 closure ball closure mono not less)

then show ?rhs
using False cball subset cball iff by fastforce

qed metric
qed

lemma ball eq ball iff :
fixes x :: ′a :: euclidean space
shows ball x d = ball y e ←→ d ≤ 0 ∧ e ≤ 0 ∨ x=y ∧ d=e

(is ?lhs = ?rhs)
proof
assume ?lhs
then show ?rhs
proof (cases d ≤ 0 ∨ e ≤ 0 )
case True
with 〈?lhs〉 show ?rhs
by safe (simp all only : ball eq empty [of y e, symmetric] ball eq empty [of x

d , symmetric])
next
case False
with 〈?lhs〉 show ?rhs
apply (auto simp: set eq subset ball subset ball iff dist norm norm minus commute

algebra simps)
apply (metis add le same cancel1 le add same cancel1 norm ge zero norm pths(2 )

order trans)
apply (metis add increasing2 add le imp le right eq iff norm ge zero)
done

qed
next
assume ?rhs then show ?lhs
by (auto simp: set eq subset ball subset ball iff )

qed

lemma cball eq cball iff :
fixes x :: ′a :: euclidean space
shows cball x d = cball y e ←→ d < 0 ∧ e < 0 ∨ x=y ∧ d=e

(is ?lhs = ?rhs)
proof
assume ?lhs
then show ?rhs
proof (cases d < 0 ∨ e < 0 )
case True
with 〈?lhs〉 show ?rhs
by safe (simp all only : cball eq empty [of y e, symmetric] cball eq empty [of
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x d , symmetric])
next
case False
with 〈?lhs〉 show ?rhs
apply (auto simp: set eq subset cball subset cball iff dist norm norm minus commute

algebra simps)
apply (metis add le same cancel1 le add same cancel1 norm ge zero norm pths(2 )

order trans)
apply (metis add increasing2 add le imp le right eq iff norm ge zero)
done

qed
next
assume ?rhs then show ?lhs
by (auto simp: set eq subset cball subset cball iff )

qed

lemma ball eq cball iff :
fixes x :: ′a :: euclidean space
shows ball x d = cball y e ←→ d ≤ 0 ∧ e < 0 (is ?lhs = ?rhs)

proof
assume ?lhs
then show ?rhs

apply (auto simp: set eq subset ball subset cball iff cball subset ball iff alge-
bra simps)

apply (metis add increasing2 add le cancel right add less same cancel1 dist not less zero
less le trans zero le dist)

apply (metis add less same cancel1 dist not less zero less le trans not le)
using 〈?lhs〉 ball eq empty cball eq empty apply blast+
done

next
assume ?rhs then show ?lhs by auto

qed

lemma cball eq ball iff :
fixes x :: ′a :: euclidean space
shows cball x d = ball y e ←→ d < 0 ∧ e ≤ 0
using ball eq cball iff by blast

lemma finite ball avoid :
fixes S :: ′a :: euclidean space set
assumes open S finite X p ∈ S
shows ∃ e>0 . ∀w∈ball p e. w∈S ∧ (w 6=p −→ w /∈X )

proof −
obtain e1 where 0 < e1 and e1 b:ball p e1 ⊆ S
using open contains ball eq [OF 〈open S 〉] assms by auto

obtain e2 where 0 < e2 and ∀ x∈X . x 6= p −→ e2 ≤ dist p x
using finite set avoid [OF 〈finite X 〉,of p] by auto

hence ∀w∈ball p (min e1 e2 ). w∈S ∧ (w 6=p −→ w /∈X ) using e1 b by auto
thus ∃ e>0 . ∀w∈ball p e. w ∈ S ∧ (w 6= p −→ w /∈ X ) using 〈e2>0 〉 〈e1>0 〉
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apply (rule tac x=min e1 e2 in exI )
by auto

qed

lemma finite cball avoid :
fixes S :: ′a :: euclidean space set
assumes open S finite X p ∈ S
shows ∃ e>0 . ∀w∈cball p e. w∈S ∧ (w 6=p −→ w /∈X )

proof −
obtain e1 where e1>0 and e1 : ∀w∈ball p e1 . w∈S ∧ (w 6=p −→ w /∈X )
using finite ball avoid [OF assms] by auto

define e2 where e2 ≡ e1/2
have e2>0 and e2 < e1 unfolding e2 def using 〈e1>0 〉 by auto
then have cball p e2 ⊆ ball p e1 by (subst cball subset ball iff ,auto)
then show ∃ e>0 . ∀w∈cball p e. w ∈ S ∧ (w 6= p −→ w /∈ X ) using 〈e2>0 〉

e1 by auto
qed

lemma dim cball :
assumes e > 0
shows dim (cball (0 :: ′n::euclidean space) e) = DIM ( ′n)

proof −
{
fix x :: ′n::euclidean space
define y where y = (e / norm x ) ∗R x
then have y ∈ cball 0 e
using assms by auto

moreover have ∗: x = (norm x / e) ∗R y
using y def assms by simp

moreover from ∗ have x = (norm x/e) ∗R y
by auto

ultimately have x ∈ span (cball 0 e)
using span scale[of y cball 0 e norm x/e]
span superset [of cball 0 e]

by (simp add : span base)
}
then have span (cball 0 e) = (UNIV :: ′n::euclidean space set)
by auto

then show ?thesis
using dim span[of cball (0 :: ′n::euclidean space) e] by (auto)

qed

4.1.3 Boxes

abbreviation One :: ′a::euclidean space where
One ≡

∑
Basis

lemma One non 0 : assumes One = (0 :: ′a::euclidean space) shows False
proof −
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have dependent (Basis :: ′a set)
apply (simp add : dependent finite)
apply (rule tac x=λi . 1 in exI )
using SOME Basis apply (auto simp: assms)
done

with independent Basis show False by force
qed

corollary One neq 0 [iff ]: One 6= 0
by (metis One non 0 )

corollary Zero neq One[iff ]: 0 6= One
by (metis One non 0 )

definition (in euclidean space) eucl less (infix <e 50 ) where
eucl less a b ←→ (∀ i∈Basis. a · i < b · i)

definition box eucl less: box a b = {x . a <e x ∧ x <e b}
definition cbox a b = {x . ∀ i∈Basis. a · i ≤ x · i ∧ x · i ≤ b · i}

lemma box def : box a b = {x . ∀ i∈Basis. a · i < x · i ∧ x · i < b · i}
and in box eucl less: x ∈ box a b ←→ a <e x ∧ x <e b
and mem box : x ∈ box a b ←→ (∀ i∈Basis. a · i < x · i ∧ x · i < b · i)
x ∈ cbox a b ←→ (∀ i∈Basis. a · i ≤ x · i ∧ x · i ≤ b · i)

by (auto simp: box eucl less eucl less def cbox def )

lemma cbox Pair eq : cbox (a, c) (b, d) = cbox a b × cbox c d
by (force simp: cbox def Basis prod def )

lemma cbox Pair iff [iff ]: (x , y) ∈ cbox (a, c) (b, d) ←→ x ∈ cbox a b ∧ y ∈
cbox c d
by (force simp: cbox Pair eq)

lemma cbox Complex eq : cbox (Complex a c) (Complex b d) = (λ(x ,y). Complex
x y) ‘ (cbox a b × cbox c d)
apply (auto simp: cbox def Basis complex def )
apply (rule tac x = (Re x , Im x ) in image eqI )
using complex eq by auto

lemma cbox Pair eq 0 : cbox (a, c) (b, d) = {} ←→ cbox a b = {} ∨ cbox c d =
{}
by (force simp: cbox Pair eq)

lemma swap cbox Pair [simp]: prod .swap ‘ cbox (c, a) (d , b) = cbox (a,c) (b,d)
by auto

lemma mem box real [simp]:
(x ::real) ∈ box a b ←→ a < x ∧ x < b
(x ::real) ∈ cbox a b ←→ a ≤ x ∧ x ≤ b
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by (auto simp: mem box )

lemma box real [simp]:
fixes a b:: real
shows box a b = {a <..< b} cbox a b = {a .. b}
by auto

lemma box Int box :
fixes a :: ′a::euclidean space
shows box a b ∩ box c d =
box (

∑
i∈Basis. max (a·i) (c·i) ∗R i) (

∑
i∈Basis. min (b·i) (d ·i) ∗R i)

unfolding set eq iff and Int iff and mem box by auto

lemma rational boxes:
fixes x :: ′a::euclidean space
assumes e > 0
shows ∃ a b. (∀ i∈Basis. a · i ∈ Q ∧ b · i ∈ Q) ∧ x ∈ box a b ∧ box a b ⊆ ball

x e
proof −
define e ′ where e ′ = e / (2 ∗ sqrt (real (DIM ( ′a))))
then have e: e ′ > 0
using assms by (auto)

have ∀ i . ∃ y . y ∈ Q ∧ y < x · i ∧ x · i − y < e ′ (is ∀ i . ?th i)
proof
fix i
from Rats dense in real [of x · i − e ′ x · i ] e
show ?th i by auto

qed
from choice[OF this] obtain a where
a: ∀ xa. a xa ∈ Q ∧ a xa < x · xa ∧ x · xa − a xa < e ′ ..

have ∀ i . ∃ y . y ∈ Q ∧ x · i < y ∧ y − x · i < e ′ (is ∀ i . ?th i)
proof
fix i
from Rats dense in real [of x · i x · i + e ′] e
show ?th i by auto

qed
from choice[OF this] obtain b where
b: ∀ xa. b xa ∈ Q ∧ x · xa < b xa ∧ b xa − x · xa < e ′ ..

let ?a =
∑

i∈Basis. a i ∗R i and ?b =
∑

i∈Basis. b i ∗R i
show ?thesis
proof (rule exI [of ?a], rule exI [of ?b], safe)
fix y :: ′a
assume ∗: y ∈ box ?a ?b
have dist x y = sqrt (

∑
i∈Basis. (dist (x · i) (y · i))2)

unfolding L2 set def [symmetric] by (rule euclidean dist l2 )
also have . . . < sqrt (

∑
(i :: ′a)∈Basis. eˆ2 / real (DIM ( ′a)))

proof (rule real sqrt less mono, rule sum strict mono)
fix i :: ′a
assume i : i ∈ Basis
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have a i < y·i ∧ y·i < b i
using ∗ i by (auto simp: box def )

moreover have a i < x ·i x ·i − a i < e ′

using a by auto
moreover have x ·i < b i b i − x ·i < e ′

using b by auto
ultimately have |x ·i − y·i | < 2 ∗ e ′

by auto
then have dist (x · i) (y · i) < e/sqrt (real (DIM ( ′a)))
unfolding e ′ def by (auto simp: dist real def )

then have (dist (x · i) (y · i))2 < (e/sqrt (real (DIM ( ′a))))2

by (rule power strict mono) auto
then show (dist (x · i) (y · i))2 < e2 / real DIM ( ′a)
by (simp add : power divide)

qed auto
also have . . . = e
using 〈0 < e〉 by simp

finally show y ∈ ball x e
by (auto simp: ball def )

qed (insert a b, auto simp: box def )
qed

lemma open UNION box :
fixes M :: ′a::euclidean space set
assumes open M
defines a ′ ≡ λf :: ′a ⇒ real × real . (

∑
(i :: ′a)∈Basis. fst (f i) ∗R i)

defines b ′ ≡ λf :: ′a ⇒ real × real . (
∑

(i :: ′a)∈Basis. snd (f i) ∗R i)
defines I ≡ {f ∈Basis →E Q × Q . box (a ′ f ) (b ′ f ) ⊆ M }
shows M = (

⋃
f ∈I . box (a ′ f ) (b ′ f ))

proof −
have x ∈ (

⋃
f ∈I . box (a ′ f ) (b ′ f )) if x ∈ M for x

proof −
obtain e where e: e > 0 ball x e ⊆ M
using openE [OF 〈open M 〉 〈x ∈ M 〉] by auto

moreover obtain a b where ab:
x ∈ box a b
∀ i ∈ Basis. a · i ∈ Q
∀ i∈Basis. b · i ∈ Q
box a b ⊆ ball x e
using rational boxes[OF e(1 )] by metis

ultimately show ?thesis
by (intro UN I [of λi∈Basis. (a · i , b · i)])

(auto simp: euclidean representation I def a ′ def b ′ def )
qed
then show ?thesis by (auto simp: I def )

qed

corollary open countable Union open box :
fixes S :: ′a :: euclidean space set

Topology{_}{\kern 0pt}Euclidean{_}{\kern 0pt}Space.html


596

assumes open S
obtains D where countable D D ⊆ Pow S

∧
X . X ∈ D =⇒ ∃ a b. X = box a b⋃

D = S
proof −
let ?a = λf . (

∑
(i :: ′a)∈Basis. fst (f i) ∗R i)

let ?b = λf . (
∑

(i :: ′a)∈Basis. snd (f i) ∗R i)
let ?I = {f ∈Basis →E Q × Q . box (?a f ) (?b f ) ⊆ S}
let ?D = (λf . box (?a f ) (?b f )) ‘ ?I
show ?thesis
proof
have countable ?I
by (simp add : countable PiE countable rat)

then show countable ?D
by blast

show
⋃

?D = S
using open UNION box [OF assms] by metis

qed auto
qed

lemma rational cboxes:
fixes x :: ′a::euclidean space
assumes e > 0
shows ∃ a b. (∀ i∈Basis. a · i ∈ Q ∧ b · i ∈ Q) ∧ x ∈ cbox a b ∧ cbox a b ⊆

ball x e
proof −
define e ′ where e ′ = e / (2 ∗ sqrt (real (DIM ( ′a))))
then have e: e ′ > 0
using assms by auto

have ∀ i . ∃ y . y ∈ Q ∧ y < x · i ∧ x · i − y < e ′ (is ∀ i . ?th i)
proof
fix i
from Rats dense in real [of x · i − e ′ x · i ] e
show ?th i by auto

qed
from choice[OF this] obtain a where
a: ∀ u. a u ∈ Q ∧ a u < x · u ∧ x · u − a u < e ′ ..

have ∀ i . ∃ y . y ∈ Q ∧ x · i < y ∧ y − x · i < e ′ (is ∀ i . ?th i)
proof
fix i
from Rats dense in real [of x · i x · i + e ′] e
show ?th i by auto

qed
from choice[OF this] obtain b where
b: ∀ u. b u ∈ Q ∧ x · u < b u ∧ b u − x · u < e ′ ..

let ?a =
∑

i∈Basis. a i ∗R i and ?b =
∑

i∈Basis. b i ∗R i
show ?thesis
proof (rule exI [of ?a], rule exI [of ?b], safe)
fix y :: ′a
assume ∗: y ∈ cbox ?a ?b
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have dist x y = sqrt (
∑

i∈Basis. (dist (x · i) (y · i))2)
unfolding L2 set def [symmetric] by (rule euclidean dist l2 )

also have . . . < sqrt (
∑

(i :: ′a)∈Basis. eˆ2 / real (DIM ( ′a)))
proof (rule real sqrt less mono, rule sum strict mono)
fix i :: ′a
assume i : i ∈ Basis
have a i ≤ y·i ∧ y·i ≤ b i
using ∗ i by (auto simp: cbox def )

moreover have a i < x ·i x ·i − a i < e ′

using a by auto
moreover have x ·i < b i b i − x ·i < e ′

using b by auto
ultimately have |x ·i − y·i | < 2 ∗ e ′

by auto
then have dist (x · i) (y · i) < e/sqrt (real (DIM ( ′a)))
unfolding e ′ def by (auto simp: dist real def )

then have (dist (x · i) (y · i))2 < (e/sqrt (real (DIM ( ′a))))2

by (rule power strict mono) auto
then show (dist (x · i) (y · i))2 < e2 / real DIM ( ′a)
by (simp add : power divide)

qed auto
also have . . . = e
using 〈0 < e〉 by simp

finally show y ∈ ball x e
by (auto simp: ball def )

next
show x ∈ cbox (

∑
i∈Basis. a i ∗R i) (

∑
i∈Basis. b i ∗R i)

using a b less imp le by (auto simp: cbox def )
qed (use a b cbox def in auto)

qed

lemma open UNION cbox :
fixes M :: ′a::euclidean space set
assumes open M
defines a ′ ≡ λf . (

∑
(i :: ′a)∈Basis. fst (f i) ∗R i)

defines b ′ ≡ λf . (
∑

(i :: ′a)∈Basis. snd (f i) ∗R i)
defines I ≡ {f ∈Basis →E Q × Q . cbox (a ′ f ) (b ′ f ) ⊆ M }
shows M = (

⋃
f ∈I . cbox (a ′ f ) (b ′ f ))

proof −
have x ∈ (

⋃
f ∈I . cbox (a ′ f ) (b ′ f )) if x ∈ M for x

proof −
obtain e where e: e > 0 ball x e ⊆ M
using openE [OF 〈open M 〉 〈x ∈ M 〉] by auto

moreover obtain a b where ab: x ∈ cbox a b ∀ i ∈ Basis. a · i ∈ Q
∀ i ∈ Basis. b · i ∈ Q cbox a b ⊆ ball x e

using rational cboxes[OF e(1 )] by metis
ultimately show ?thesis

by (intro UN I [of λi∈Basis. (a · i , b · i)])
(auto simp: euclidean representation I def a ′ def b ′ def )
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qed
then show ?thesis by (auto simp: I def )

qed

corollary open countable Union open cbox :
fixes S :: ′a :: euclidean space set
assumes open S
obtains D where countable D D ⊆ Pow S

∧
X . X ∈ D =⇒ ∃ a b. X = cbox a

b
⋃
D = S

proof −
let ?a = λf . (

∑
(i :: ′a)∈Basis. fst (f i) ∗R i)

let ?b = λf . (
∑

(i :: ′a)∈Basis. snd (f i) ∗R i)
let ?I = {f ∈Basis →E Q × Q . cbox (?a f ) (?b f ) ⊆ S}
let ?D = (λf . cbox (?a f ) (?b f )) ‘ ?I
show ?thesis
proof
have countable ?I
by (simp add : countable PiE countable rat)

then show countable ?D
by blast

show
⋃

?D = S
using open UNION cbox [OF assms] by metis

qed auto
qed

lemma box eq empty :
fixes a :: ′a::euclidean space
shows (box a b = {} ←→ (∃ i∈Basis. b·i ≤ a·i)) (is ?th1 )
and (cbox a b = {} ←→ (∃ i∈Basis. b·i < a·i)) (is ?th2 )

proof −
{
fix i x
assume i : i∈Basis and as:b·i ≤ a·i and x :x∈box a b
then have a · i < x · i ∧ x · i < b · i
unfolding mem box by (auto simp: box def )

then have a·i < b·i by auto
then have False using as by auto

}
moreover
{
assume as: ∀ i∈Basis. ¬ (b·i ≤ a·i)
let ?x = (1/2 ) ∗R (a + b)
{
fix i :: ′a
assume i : i ∈ Basis
have a·i < b·i
using as[THEN bspec[where x=i ]] i by auto

then have a·i < ((1/2 ) ∗R (a+b)) · i ((1/2 ) ∗R (a+b)) · i < b·i
by (auto simp: inner add left)
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}
then have box a b 6= {}
using mem box (1 )[of ?x a b] by auto

}
ultimately show ?th1 by blast

{
fix i x
assume i : i ∈ Basis and as:b·i < a·i and x :x∈cbox a b
then have a · i ≤ x · i ∧ x · i ≤ b · i
unfolding mem box by auto

then have a·i ≤ b·i by auto
then have False using as by auto

}
moreover
{
assume as:∀ i∈Basis. ¬ (b·i < a·i)
let ?x = (1/2 ) ∗R (a + b)
{
fix i :: ′a
assume i :i ∈ Basis
have a·i ≤ b·i
using as[THEN bspec[where x=i ]] i by auto

then have a·i ≤ ((1/2 ) ∗R (a+b)) · i ((1/2 ) ∗R (a+b)) · i ≤ b·i
by (auto simp: inner add left)

}
then have cbox a b 6= {}
using mem box (2 )[of ?x a b] by auto

}
ultimately show ?th2 by blast

qed

lemma box ne empty :
fixes a :: ′a::euclidean space
shows cbox a b 6= {} ←→ (∀ i∈Basis. a·i ≤ b·i)
and box a b 6= {} ←→ (∀ i∈Basis. a·i < b·i)
unfolding box eq empty [of a b] by fastforce+

lemma
fixes a :: ′a::euclidean space
shows cbox sing [simp]: cbox a a = {a}
and box sing [simp]: box a a = {}

unfolding set eq iff mem box eq iff [symmetric]
by (auto intro!: euclidean eqI [where ′a= ′a])

(metis all not in conv nonempty Basis)

lemma subset box imp:
fixes a :: ′a::euclidean space
shows (∀ i∈Basis. a·i ≤ c·i ∧ d ·i ≤ b·i) =⇒ cbox c d ⊆ cbox a b
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and (∀ i∈Basis. a·i < c·i ∧ d ·i < b·i) =⇒ cbox c d ⊆ box a b
and (∀ i∈Basis. a·i ≤ c·i ∧ d ·i ≤ b·i) =⇒ box c d ⊆ cbox a b
and (∀ i∈Basis. a·i ≤ c·i ∧ d ·i ≤ b·i) =⇒ box c d ⊆ box a b

unfolding subset eq [unfolded Ball def ] unfolding mem box
by (best intro: order trans less le trans le less trans less imp le)+

lemma box subset cbox :
fixes a :: ′a::euclidean space
shows box a b ⊆ cbox a b
unfolding subset eq [unfolded Ball def ] mem box
by (fast intro: less imp le)

lemma subset box :
fixes a :: ′a::euclidean space
shows cbox c d ⊆ cbox a b ←→ (∀ i∈Basis. c·i ≤ d ·i) −→ (∀ i∈Basis. a·i ≤ c·i
∧ d ·i ≤ b·i) (is ?th1 )

and cbox c d ⊆ box a b ←→ (∀ i∈Basis. c·i ≤ d ·i) −→ (∀ i∈Basis. a·i < c·i
∧ d ·i < b·i) (is ?th2 )

and box c d ⊆ cbox a b ←→ (∀ i∈Basis. c·i < d ·i) −→ (∀ i∈Basis. a·i ≤ c·i
∧ d ·i ≤ b·i) (is ?th3 )

and box c d ⊆ box a b ←→ (∀ i∈Basis. c·i < d ·i) −→ (∀ i∈Basis. a·i ≤ c·i ∧
d ·i ≤ b·i) (is ?th4 )
proof −
let ?lesscd = ∀ i∈Basis. c·i < d ·i
let ?lerhs = ∀ i∈Basis. a·i ≤ c·i ∧ d ·i ≤ b·i
show ?th1 ?th2
by (fastforce simp: mem box )+

have acdb: a·i ≤ c·i ∧ d ·i ≤ b·i
if i : i ∈ Basis and box : box c d ⊆ cbox a b and cd :

∧
i . i ∈ Basis =⇒ c·i <

d ·i for i
proof −
have box c d 6= {}
using that
unfolding box eq empty by force

{ let ?x = (
∑

j∈Basis. (if j=i then ((min (a·j ) (d ·j ))+c·j )/2 else (c·j+d ·j )/2 )
∗R j ):: ′a

assume ∗: a·i > c·i
then have c · j < ?x · j ∧ ?x · j < d · j if j ∈ Basis for j
using cd that by (fastforce simp add : i ∗)

then have ?x ∈ box c d
unfolding mem box by auto

moreover have ?x /∈ cbox a b
using i cd ∗ by (force simp: mem box )

ultimately have False using box by auto
}
then have a·i ≤ c·i by force
moreover
{ let ?x = (

∑
j∈Basis. (if j=i then ((max (b·j ) (c·j ))+d ·j )/2 else (c·j+d ·j )/2 )

∗R j ):: ′a
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assume ∗: b·i < d ·i
then have d · j > ?x · j ∧ ?x · j > c · j if j ∈ Basis for j
using cd that by (fastforce simp add : i ∗)

then have ?x ∈ box c d
unfolding mem box by auto

moreover have ?x /∈ cbox a b
using i cd ∗ by (force simp: mem box )

ultimately have False using box by auto
}
then have b·i ≥ d ·i by (rule ccontr) auto
ultimately show ?thesis by auto

qed
show ?th3
using acdb by (fastforce simp add : mem box )

have acdb ′: a·i ≤ c·i ∧ d ·i ≤ b·i
if i ∈ Basis box c d ⊆ box a b

∧
i . i ∈ Basis =⇒ c·i < d ·i for i

using box subset cbox [of a b] that acdb by auto
show ?th4
using acdb ′ by (fastforce simp add : mem box )

qed

lemma eq cbox : cbox a b = cbox c d ←→ cbox a b = {} ∧ cbox c d = {} ∨ a = c
∧ b = d

(is ?lhs = ?rhs)
proof
assume ?lhs
then have cbox a b ⊆ cbox c d cbox c d ⊆ cbox a b
by auto

then show ?rhs
by (force simp: subset box box eq empty intro: antisym euclidean eqI )

next
assume ?rhs
then show ?lhs
by force

qed

lemma eq cbox box [simp]: cbox a b = box c d ←→ cbox a b = {} ∧ box c d = {}
(is ?lhs ←→ ?rhs)

proof
assume L: ?lhs
then have cbox a b ⊆ box c d box c d ⊆ cbox a b
by auto

then show ?rhs
apply (simp add : subset box )
using L box ne empty box sing apply (fastforce simp add :)
done

qed force

lemma eq box cbox [simp]: box a b = cbox c d ←→ box a b = {} ∧ cbox c d = {}
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by (metis eq cbox box )

lemma eq box : box a b = box c d ←→ box a b = {} ∧ box c d = {} ∨ a = c ∧ b
= d
(is ?lhs ←→ ?rhs)

proof
assume L: ?lhs
then have box a b ⊆ box c d box c d ⊆ box a b
by auto

then show ?rhs
apply (simp add : subset box )
using box ne empty(2 ) L
apply auto
apply (meson euclidean eqI less eq real def not less)+
done

qed force

lemma subset box complex :
cbox a b ⊆ cbox c d ←→

(Re a ≤ Re b ∧ Im a ≤ Im b) −→ Re a ≥ Re c ∧ Im a ≥ Im c ∧ Re b ≤
Re d ∧ Im b ≤ Im d

cbox a b ⊆ box c d ←→
(Re a ≤ Re b ∧ Im a ≤ Im b) −→ Re a > Re c ∧ Im a > Im c ∧ Re b <

Re d ∧ Im b < Im d
box a b ⊆ cbox c d ←→

(Re a < Re b ∧ Im a < Im b) −→ Re a ≥ Re c ∧ Im a ≥ Im c ∧ Re b ≤
Re d ∧ Im b ≤ Im d

box a b ⊆ box c d ←→
(Re a < Re b ∧ Im a < Im b) −→ Re a ≥ Re c ∧ Im a ≥ Im c ∧ Re b ≤

Re d ∧ Im b ≤ Im d
by (subst subset box ; force simp: Basis complex def )+

lemma in cbox complex iff :
x ∈ cbox a b ←→ Re x ∈ {Re a..Re b} ∧ Im x ∈ {Im a..Im b}
by (cases x ; cases a; cases b) (auto simp: cbox Complex eq)

lemma box Complex eq :
box (Complex a c) (Complex b d) = (λ(x ,y). Complex x y) ‘ (box a b × box c d)
by (auto simp: box def Basis complex def image iff complex eq iff )

lemma in box complex iff :
x ∈ box a b ←→ Re x ∈ {Re a<..<Re b} ∧ Im x ∈ {Im a<..<Im b}
by (cases x ; cases a; cases b) (auto simp: box Complex eq)

lemma Int interval :
fixes a :: ′a::euclidean space
shows cbox a b ∩ cbox c d =
cbox (

∑
i∈Basis. max (a·i) (c·i) ∗R i) (

∑
i∈Basis. min (b·i) (d ·i) ∗R i)

unfolding set eq iff and Int iff and mem box
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by auto

lemma disjoint interval :
fixes a:: ′a::euclidean space
shows cbox a b ∩ cbox c d = {} ←→ (∃ i∈Basis. (b·i < a·i ∨ d ·i < c·i ∨ b·i <

c·i ∨ d ·i < a·i)) (is ?th1 )
and cbox a b ∩ box c d = {} ←→ (∃ i∈Basis. (b·i < a·i ∨ d ·i ≤ c·i ∨ b·i ≤

c·i ∨ d ·i ≤ a·i)) (is ?th2 )
and box a b ∩ cbox c d = {} ←→ (∃ i∈Basis. (b·i ≤ a·i ∨ d ·i < c·i ∨ b·i ≤

c·i ∨ d ·i ≤ a·i)) (is ?th3 )
and box a b ∩ box c d = {} ←→ (∃ i∈Basis. (b·i ≤ a·i ∨ d ·i ≤ c·i ∨ b·i ≤

c·i ∨ d ·i ≤ a·i)) (is ?th4 )
proof −
let ?z = (

∑
i∈Basis. (((max (a·i) (c·i)) + (min (b·i) (d ·i))) / 2 ) ∗R i):: ′a

have ∗∗:
∧
P Q . (

∧
i :: ′a. i ∈ Basis =⇒ Q ?z i =⇒ P i) =⇒

(
∧
i x :: ′a. i ∈ Basis =⇒ P i =⇒ Q x i) =⇒ (∀ x . ∃ i∈Basis. Q x i) ←→

(∃ i∈Basis. P i)
by blast

note ∗ = set eq iff Int iff empty iff mem box ball conj distrib[symmetric] eq False
ball simps(10 )
show ?th1 unfolding ∗ by (intro ∗∗) auto
show ?th2 unfolding ∗ by (intro ∗∗) auto
show ?th3 unfolding ∗ by (intro ∗∗) auto
show ?th4 unfolding ∗ by (intro ∗∗) auto

qed

lemma UN box eq UNIV : (
⋃
i ::nat . box (− (real i ∗R One)) (real i ∗R One)) =

UNIV
proof −
have |x · b| < real of int (dMax ((λb. |x · b|)‘Basis)e + 1 )
if [simp]: b ∈ Basis for x b :: ′a

proof −
have |x · b| ≤ real of int d|x · b|e
by (rule le of int ceiling)

also have . . . ≤ real of int dMax ((λb. |x · b|)‘Basis)e
by (auto intro!: ceiling mono)

also have . . . < real of int (dMax ((λb. |x · b|)‘Basis)e + 1 )
by simp

finally show ?thesis .
qed
then have ∃n::nat . ∀ b∈Basis. |x · b| < real n for x :: ′a
by (metis order .strict trans reals Archimedean2 )

moreover have
∧
x b:: ′a.

∧
n::nat . |x · b| < real n ←→ − real n < x · b ∧ x ·

b < real n
by auto

ultimately show ?thesis
by (auto simp: box def inner sum left inner Basis sum.If cases)

qed
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lemma image affinity cbox : fixes m::real
fixes a b c :: ′a::euclidean space
shows (λx . m ∗R x + c) ‘ cbox a b =
(if cbox a b = {} then {}
else (if 0 ≤ m then cbox (m ∗R a + c) (m ∗R b + c)
else cbox (m ∗R b + c) (m ∗R a + c)))

proof (cases m = 0 )
case True
{
fix x
assume ∀ i∈Basis. x · i ≤ c · i ∀ i∈Basis. c · i ≤ x · i
then have x = c
by (simp add : dual order .antisym euclidean eqI )

}
moreover have c ∈ cbox (m ∗R a + c) (m ∗R b + c)
unfolding True by (auto)

ultimately show ?thesis using True by (auto simp: cbox def )
next
case False
{
fix y
assume ∀ i∈Basis. a · i ≤ y · i ∀ i∈Basis. y · i ≤ b · i m > 0
then have ∀ i∈Basis. (m ∗R a + c) · i ≤ (m ∗R y + c) · i and ∀ i∈Basis.

(m ∗R y + c) · i ≤ (m ∗R b + c) · i
by (auto simp: inner distrib)

}
moreover
{
fix y
assume ∀ i∈Basis. a · i ≤ y · i ∀ i∈Basis. y · i ≤ b · i m < 0
then have ∀ i∈Basis. (m ∗R b + c) · i ≤ (m ∗R y + c) · i and ∀ i∈Basis.

(m ∗R y + c) · i ≤ (m ∗R a + c) · i
by (auto simp: mult left mono neg inner distrib)

}
moreover
{
fix y
assume m > 0 and ∀ i∈Basis. (m ∗R a + c) · i ≤ y · i and ∀ i∈Basis. y · i

≤ (m ∗R b + c) · i
then have y ∈ (λx . m ∗R x + c) ‘ cbox a b
unfolding image iff Bex def mem box
apply (intro exI [where x=(1 / m) ∗R (y − c)])
apply (auto simp: pos le divide eq pos divide le eq mult .commute inner distrib

inner diff left)
done

}
moreover
{
fix y
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assume ∀ i∈Basis. (m ∗R b + c) · i ≤ y · i ∀ i∈Basis. y · i ≤ (m ∗R a + c)
· i m < 0

then have y ∈ (λx . m ∗R x + c) ‘ cbox a b
unfolding image iff Bex def mem box
apply (intro exI [where x=(1 / m) ∗R (y − c)])
apply (auto simp: neg le divide eq neg divide le eq mult .commute inner distrib

inner diff left)
done

}
ultimately show ?thesis using False by (auto simp: cbox def )

qed

lemma image smult cbox :(λx . m ∗R (x :: ::euclidean space)) ‘ cbox a b =
(if cbox a b = {} then {} else if 0 ≤ m then cbox (m ∗R a) (m ∗R b) else cbox

(m ∗R b) (m ∗R a))
using image affinity cbox [of m 0 a b] by auto

lemma swap continuous:
assumes continuous on (cbox (a,c) (b,d)) (λ(x ,y). f x y)
shows continuous on (cbox (c,a) (d ,b)) (λ(x , y). f y x )

proof −
have (λ(x , y). f y x ) = (λ(x , y). f x y) ◦ prod .swap
by auto

then show ?thesis
apply (rule ssubst)
apply (rule continuous on compose)
apply (simp add : split def )
apply (rule continuous intros | simp add : assms)+
done

qed

4.1.4 General Intervals

definition is interval (s::( ′a::euclidean space) set) ←→
(∀ a∈s. ∀ b∈s. ∀ x . (∀ i∈Basis. ((a·i ≤ x ·i ∧ x ·i ≤ b·i) ∨ (b·i ≤ x ·i ∧ x ·i ≤

a·i))) −→ x ∈ s)

lemma is interval 1 :
is interval (s::real set) ←→ (∀ a∈s. ∀ b∈s. ∀ x . a ≤ x ∧ x ≤ b −→ x ∈ s)
unfolding is interval def by auto

lemma is interval Int : is interval X =⇒ is interval Y =⇒ is interval (X ∩ Y )
unfolding is interval def
by blast

lemma is interval cbox [simp]: is interval (cbox a (b:: ′a::euclidean space)) (is ?th1 )
and is interval box [simp]: is interval (box a b) (is ?th2 )
unfolding is interval def mem box Ball def atLeastAtMost iff
by (meson order trans le less trans less le trans less trans)+
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lemma is interval empty [iff ]: is interval {}
unfolding is interval def by simp

lemma is interval univ [iff ]: is interval UNIV
unfolding is interval def by simp

lemma mem is intervalI :
assumes is interval s
and a ∈ s b ∈ s
and

∧
i . i ∈ Basis =⇒ a · i ≤ x · i ∧ x · i ≤ b · i ∨ b · i ≤ x · i ∧ x · i ≤

a · i
shows x ∈ s
by (rule assms(1 )[simplified is interval def , rule format , OF assms(2 ,3 ,4 )])

lemma interval subst :
fixes S :: ′a::euclidean space set
assumes is interval S
and x ∈ S y j ∈ S
and j ∈ Basis

shows (
∑

i∈Basis. (if i = j then y i · i else x · i) ∗R i) ∈ S
by (rule mem is intervalI [OF assms(1 ,2 )]) (auto simp: assms)

lemma mem box componentwiseI :
fixes S :: ′a::euclidean space set
assumes is interval S
assumes

∧
i . i ∈ Basis =⇒ x · i ∈ ((λx . x · i) ‘ S )

shows x ∈ S
proof −
from assms have ∀ i ∈ Basis. ∃ s ∈ S . x · i = s · i
by auto

with finite Basis obtain s and bs:: ′a list
where s:

∧
i . i ∈ Basis =⇒ x · i = s i · i

∧
i . i ∈ Basis =⇒ s i ∈ S

and bs: set bs = Basis distinct bs
by (metis finite distinct list)

from nonempty Basis s obtain j where j : j ∈ Basis s j ∈ S
by blast

define y where
y = rec list (s j ) (λj Y . (

∑
i∈Basis. (if i = j then s i · i else Y · i) ∗R i))

have x = (
∑

i∈Basis. (if i ∈ set bs then s i · i else s j · i) ∗R i)
using bs by (auto simp: s(1 )[symmetric] euclidean representation)

also have [symmetric]: y bs = . . .
using bs(2 ) bs(1 )[THEN equalityD1 ]
by (induct bs) (auto simp: y def euclidean representation intro!: euclidean eqI [where

′a= ′a])
also have y bs ∈ S
using bs(1 )[THEN equalityD1 ]
apply (induct bs)
apply (auto simp: y def j )
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apply (rule interval subst [OF assms(1 )])
apply (auto simp: s)

done
finally show ?thesis .

qed

lemma cbox01 nonempty [simp]: cbox 0 One 6= {}
by (simp add : box ne empty inner Basis inner sum left sum nonneg)

lemma box01 nonempty [simp]: box 0 One 6= {}
by (simp add : box ne empty inner Basis inner sum left)

lemma empty as interval : {} = cbox One (0 :: ′a::euclidean space)
using nonempty Basis box01 nonempty box eq empty(1 ) box ne empty(1 ) by

blast

lemma interval subset is interval :
assumes is interval S
shows cbox a b ⊆ S ←→ cbox a b = {} ∨ a ∈ S ∧ b ∈ S (is ?lhs = ?rhs)

proof
assume ?lhs
then show ?rhs using box ne empty(1 ) mem box (2 ) by fastforce

next
assume ?rhs
have cbox a b ⊆ S if a ∈ S b ∈ S
using assms unfolding is interval def
apply (clarsimp simp add : mem box )
using that by blast

with 〈?rhs〉 show ?lhs
by blast

qed

lemma is real interval union:
is interval (X ∪ Y )
if X : is interval X and Y : is interval Y and I : (X 6= {} =⇒ Y 6= {} =⇒ X ∩

Y 6= {})
for X Y ::real set

proof −
consider X 6= {} Y 6= {} | X = {} | Y = {} by blast
then show ?thesis
proof cases
case 1
then obtain r where r ∈ X ∨ X ∩ Y = {} r ∈ Y ∨ X ∩ Y = {}
by blast

then show ?thesis
using I 1 X Y unfolding is interval 1
by (metis (full types) Un iff le cases)

qed (use that in auto)
qed
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lemma is interval translationI :
assumes is interval X
shows is interval ((+) x ‘ X )
unfolding is interval def

proof safe
fix b d e
assume b ∈ X d ∈ X
∀ i∈Basis. (x + b) · i ≤ e · i ∧ e · i ≤ (x + d) · i ∨

(x + d) · i ≤ e · i ∧ e · i ≤ (x + b) · i
hence e − x ∈ X
by (intro mem is intervalI [OF assms 〈b ∈ X 〉 〈d ∈ X 〉, of e − x ])
(auto simp: algebra simps)

thus e ∈ (+) x ‘ X by force
qed

lemma is interval uminusI :
assumes is interval X
shows is interval (uminus ‘ X )
unfolding is interval def

proof safe
fix b d e
assume b ∈ X d ∈ X
∀ i∈Basis. (− b) · i ≤ e · i ∧ e · i ≤ (− d) · i ∨

(− d) · i ≤ e · i ∧ e · i ≤ (− b) · i
hence − e ∈ X
by (intro mem is intervalI [OF assms 〈b ∈ X 〉 〈d ∈ X 〉, of − e])
(auto simp: algebra simps)

thus e ∈ uminus ‘ X by force
qed

lemma is interval uminus[simp]: is interval (uminus ‘ x ) = is interval x
using is interval uminusI [of x ] is interval uminusI [of uminus ‘ x ]
by (auto simp: image image)

lemma is interval neg translationI :
assumes is interval X
shows is interval ((−) x ‘ X )

proof −
have (−) x ‘ X = (+) x ‘ uminus ‘ X
by (force simp: algebra simps)

also have is interval . . .
by (metis is interval uminusI is interval translationI assms)

finally show ?thesis .
qed

lemma is interval translation[simp]:
is interval ((+) x ‘ X ) = is interval X
using is interval neg translationI [of (+) x ‘ X x ]
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by (auto intro!: is interval translationI simp: image image)

lemma is interval minus translation[simp]:
shows is interval ((−) x ‘ X ) = is interval X

proof −
have (−) x ‘ X = (+) x ‘ uminus ‘ X
by (force simp: algebra simps)

also have is interval . . . = is interval X
by simp

finally show ?thesis .
qed

lemma is interval minus translation ′[simp]:
shows is interval ((λx . x − c) ‘ X ) = is interval X
using is interval translation[of −c X ]
by (metis image cong uminus add conv diff )

lemma is interval cball 1 [intro, simp]: is interval (cball a b) for a b::real
by (simp add : cball eq atLeastAtMost is interval def )

lemma is interval ball real : is interval (ball a b) for a b::real
by (simp add : ball eq greaterThanLessThan is interval def )

4.1.5 Bounded Projections

lemma bounded inner imp bdd above:
assumes bounded s
shows bdd above ((λx . x · a) ‘ s)

by (simp add : assms bounded imp bdd above bounded linear image bounded linear inner left)

lemma bounded inner imp bdd below :
assumes bounded s
shows bdd below ((λx . x · a) ‘ s)

by (simp add : assms bounded imp bdd below bounded linear image bounded linear inner left)

4.1.6 Structural rules for pointwise continuity

lemma continuous infnorm[continuous intros]:
continuous F f =⇒ continuous F (λx . infnorm (f x ))
unfolding continuous def by (rule tendsto infnorm)

lemma continuous inner [continuous intros]:
assumes continuous F f
and continuous F g

shows continuous F (λx . inner (f x ) (g x ))
using assms unfolding continuous def by (rule tendsto inner)

4.1.7 Structural rules for setwise continuity

lemma continuous on infnorm[continuous intros]:
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continuous on s f =⇒ continuous on s (λx . infnorm (f x ))
unfolding continuous on by (fast intro: tendsto infnorm)

lemma continuous on inner [continuous intros]:
fixes g :: ′a::topological space ⇒ ′b::real inner
assumes continuous on s f
and continuous on s g

shows continuous on s (λx . inner (f x ) (g x ))
using bounded bilinear inner assms
by (rule bounded bilinear .continuous on)

4.1.8 Openness of halfspaces.

lemma open halfspace lt : open {x . inner a x < b}
by (simp add : open Collect less continuous on inner)

lemma open halfspace gt : open {x . inner a x > b}
by (simp add : open Collect less continuous on inner)

lemma open halfspace component lt : open {x :: ′a::euclidean space. x ·i < a}
by (simp add : open Collect less continuous on inner)

lemma open halfspace component gt : open {x :: ′a::euclidean space. x ·i > a}
by (simp add : open Collect less continuous on inner)

lemma eucl less eq halfspaces:
fixes a :: ′a::euclidean space
shows {x . x <e a} = (

⋂
i∈Basis. {x . x · i < a · i})

{x . a <e x} = (
⋂
i∈Basis. {x . a · i < x · i})

by (auto simp: eucl less def )

lemma open Collect eucl less[simp, intro]:
fixes a :: ′a::euclidean space
shows open {x . x <e a} open {x . a <e x}
by (auto simp: eucl less eq halfspaces open halfspace component lt open halfspace component gt)

4.1.9 Closure and Interior of halfspaces and hyperplanes

lemma continuous at inner : continuous (at x ) (inner a)
unfolding continuous at by (intro tendsto intros)

lemma closed halfspace le: closed {x . inner a x ≤ b}
by (simp add : closed Collect le continuous on inner)

lemma closed halfspace ge: closed {x . inner a x ≥ b}
by (simp add : closed Collect le continuous on inner)

lemma closed hyperplane: closed {x . inner a x = b}
by (simp add : closed Collect eq continuous on inner)
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lemma closed halfspace component le: closed {x :: ′a::euclidean space. x ·i ≤ a}
by (simp add : closed Collect le continuous on inner)

lemma closed halfspace component ge: closed {x :: ′a::euclidean space. x ·i ≥ a}
by (simp add : closed Collect le continuous on inner)

lemma closed interval left :
fixes b :: ′a::euclidean space
shows closed {x :: ′a. ∀ i∈Basis. x ·i ≤ b·i}
by (simp add : Collect ball eq closed INT closed Collect le continuous on inner)

lemma closed interval right :
fixes a :: ′a::euclidean space
shows closed {x :: ′a. ∀ i∈Basis. a·i ≤ x ·i}
by (simp add : Collect ball eq closed INT closed Collect le continuous on inner)

lemma interior halfspace le [simp]:
assumes a 6= 0
shows interior {x . a · x ≤ b} = {x . a · x < b}

proof −
have ∗: a · x < b if x : x ∈ S and S : S ⊆ {x . a · x ≤ b} and open S for S x
proof −
obtain e where e>0 and e: cball x e ⊆ S
using 〈open S 〉 open contains cball x by blast

then have x + (e / norm a) ∗R a ∈ cball x e
by (simp add : dist norm)

then have x + (e / norm a) ∗R a ∈ S
using e by blast

then have x + (e / norm a) ∗R a ∈ {x . a · x ≤ b}
using S by blast

moreover have e ∗ (a · a) / norm a > 0
by (simp add : 〈0 < e〉 assms)

ultimately show ?thesis
by (simp add : algebra simps)

qed
show ?thesis
by (rule interior unique) (auto simp: open halfspace lt ∗)

qed

lemma interior halfspace ge [simp]:
a 6= 0 =⇒ interior {x . a · x ≥ b} = {x . a · x > b}

using interior halfspace le [of −a −b] by simp

lemma closure halfspace lt [simp]:
assumes a 6= 0
shows closure {x . a · x < b} = {x . a · x ≤ b}

proof −
have [simp]: −{x . a · x < b} = {x . a · x ≥ b}
by (force simp:)
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then show ?thesis
using interior halfspace ge [of a b] assms
by (force simp: closure interior)

qed

lemma closure halfspace gt [simp]:
a 6= 0 =⇒ closure {x . a · x > b} = {x . a · x ≥ b}

using closure halfspace lt [of −a −b] by simp

lemma interior hyperplane [simp]:
assumes a 6= 0
shows interior {x . a · x = b} = {}

proof −
have [simp]: {x . a · x = b} = {x . a · x ≤ b} ∩ {x . a · x ≥ b}
by (force simp:)

then show ?thesis
by (auto simp: assms)

qed

lemma frontier halfspace le:
assumes a 6= 0 ∨ b 6= 0
shows frontier {x . a · x ≤ b} = {x . a · x = b}

proof (cases a = 0 )
case True with assms show ?thesis by simp

next
case False then show ?thesis
by (force simp: frontier def closed halfspace le)

qed

lemma frontier halfspace ge:
assumes a 6= 0 ∨ b 6= 0
shows frontier {x . a · x ≥ b} = {x . a · x = b}

proof (cases a = 0 )
case True with assms show ?thesis by simp

next
case False then show ?thesis
by (force simp: frontier def closed halfspace ge)

qed

lemma frontier halfspace lt :
assumes a 6= 0 ∨ b 6= 0
shows frontier {x . a · x < b} = {x . a · x = b}

proof (cases a = 0 )
case True with assms show ?thesis by simp

next
case False then show ?thesis
by (force simp: frontier def interior open open halfspace lt)

qed
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lemma frontier halfspace gt :
assumes a 6= 0 ∨ b 6= 0
shows frontier {x . a · x > b} = {x . a · x = b}

proof (cases a = 0 )
case True with assms show ?thesis by simp

next
case False then show ?thesis
by (force simp: frontier def interior open open halfspace gt)

qed

4.1.10 Some more convenient intermediate-value theorem for-
mulations

lemma connected ivt hyperplane:
assumes connected S and xy : x ∈ S y ∈ S and b: inner a x ≤ b b ≤ inner a y
shows ∃ z ∈ S . inner a z = b

proof (rule ccontr)
assume as:¬ (∃ z∈S . inner a z = b)
let ?A = {x . inner a x < b}
let ?B = {x . inner a x > b}
have open ?A open ?B
using open halfspace lt and open halfspace gt by auto

moreover have ?A ∩ ?B = {} by auto
moreover have S ⊆ ?A ∪ ?B using as by auto
ultimately show False
using 〈connected S 〉[unfolded connected def not ex ,
THEN spec[where x=?A], THEN spec[where x=?B ]]

using xy b by auto
qed

lemma connected ivt component :
fixes x :: ′a::euclidean space
shows connected S =⇒ x ∈ S =⇒ y ∈ S =⇒ x ·k ≤ a =⇒ a ≤ y·k =⇒ (∃ z∈S .

z ·k = a)
using connected ivt hyperplane[of S x y k :: ′a a]
by (auto simp: inner commute)

4.1.11 Limit Component Bounds

lemma Lim component le:
fixes f :: ′a ⇒ ′b::euclidean space
assumes (f −−−→ l) net
and ¬ (trivial limit net)
and eventually (λx . f (x )·i ≤ b) net

shows l ·i ≤ b
by (rule tendsto le[OF assms(2 ) tendsto const tendsto inner [OF assms(1 ) tend-

sto const ] assms(3 )])

lemma Lim component ge:
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fixes f :: ′a ⇒ ′b::euclidean space
assumes (f −−−→ l) net
and ¬ (trivial limit net)
and eventually (λx . b ≤ (f x )·i) net

shows b ≤ l ·i
by (rule tendsto le[OF assms(2 ) tendsto inner [OF assms(1 ) tendsto const ] tend-

sto const assms(3 )])

lemma Lim component eq :
fixes f :: ′a ⇒ ′b::euclidean space
assumes net : (f −−−→ l) net ¬ trivial limit net
and ev :eventually (λx . f (x )·i = b) net

shows l ·i = b
using ev [unfolded order eq iff eventually conj iff ]
using Lim component ge[OF net , of b i ]
using Lim component le[OF net , of i b]
by auto

lemma open box [intro]: open (box a b)
proof −
have open (

⋂
i∈Basis. ((·) i) −‘ {a · i <..< b · i})

by (auto intro!: continuous open vimage continuous inner continuous ident con-
tinuous const)
also have (

⋂
i∈Basis. ((·) i) −‘ {a · i <..< b · i}) = box a b

by (auto simp: box def inner commute)
finally show ?thesis .

qed

lemma closed cbox [intro]:
fixes a b :: ′a::euclidean space
shows closed (cbox a b)

proof −
have closed (

⋂
i∈Basis. (λx . x ·i) −‘ {a·i .. b·i})

by (intro closed INT ballI continuous closed vimage allI
linear continuous at closed real atLeastAtMost finite Basis bounded linear inner left)

also have (
⋂
i∈Basis. (λx . x ·i) −‘ {a·i .. b·i}) = cbox a b

by (auto simp: cbox def )
finally show closed (cbox a b) .

qed

lemma interior cbox [simp]:
fixes a b :: ′a::euclidean space
shows interior (cbox a b) = box a b (is ?L = ?R)

proof(rule subset antisym)
show ?R ⊆ ?L
using box subset cbox open box
by (rule interior maximal)

{
fix x
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assume x ∈ interior (cbox a b)
then obtain s where s: open s x ∈ s s ⊆ cbox a b ..
then obtain e where e>0 and e:∀ x ′. dist x ′ x < e −→ x ′ ∈ cbox a b
unfolding open dist and subset eq by auto

{
fix i :: ′a
assume i : i ∈ Basis
have dist (x − (e / 2 ) ∗R i) x < e
and dist (x + (e / 2 ) ∗R i) x < e
unfolding dist norm
apply auto
unfolding norm minus cancel
using norm Basis[OF i ] 〈e>0 〉

apply auto
done

then have a · i ≤ (x − (e / 2 ) ∗R i) · i and (x + (e / 2 ) ∗R i) · i ≤ b · i
using e[THEN spec[where x=x − (e/2 ) ∗R i ]]
and e[THEN spec[where x=x + (e/2 ) ∗R i ]]

unfolding mem box
using i
by blast+

then have a · i < x · i and x · i < b · i
using 〈e>0 〉 i
by (auto simp: inner diff left inner Basis inner add left)

}
then have x ∈ box a b
unfolding mem box by auto

}
then show ?L ⊆ ?R ..

qed

lemma bounded cbox [simp]:
fixes a :: ′a::euclidean space
shows bounded (cbox a b)

proof −
let ?b =

∑
i∈Basis. |a·i | + |b·i |

{
fix x :: ′a
assume

∧
i . i∈Basis =⇒ a · i ≤ x · i ∧ x · i ≤ b · i

then have (
∑

i∈Basis. |x · i |) ≤ ?b
by (force simp: intro!: sum mono)

then have norm x ≤ ?b
using norm le l1 [of x ] by auto

}
then show ?thesis
unfolding cbox def bounded iff by force

qed

lemma bounded box [simp]:
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fixes a :: ′a::euclidean space
shows bounded (box a b)
using bounded cbox [of a b] box subset cbox [of a b] bounded subset [of cbox a b box

a b]
by simp

lemma not interval UNIV [simp]:
fixes a :: ′a::euclidean space
shows cbox a b 6= UNIV box a b 6= UNIV
using bounded box [of a b] bounded cbox [of a b] by force+

lemma not interval UNIV2 [simp]:
fixes a :: ′a::euclidean space
shows UNIV 6= cbox a b UNIV 6= box a b
using bounded box [of a b] bounded cbox [of a b] by force+

lemma box midpoint :
fixes a :: ′a::euclidean space
assumes box a b 6= {}
shows ((1/2 ) ∗R (a + b)) ∈ box a b

proof −
have a · i < ((1 / 2 ) ∗R (a + b)) · i ∧ ((1 / 2 ) ∗R (a + b)) · i < b · i if i ∈

Basis for i
using assms that by (auto simp: inner add left box ne empty)

then show ?thesis unfolding mem box by auto
qed

lemma open cbox convex :
fixes x :: ′a::euclidean space
assumes x : x ∈ box a b
and y : y ∈ cbox a b
and e: 0 < e e ≤ 1

shows (e ∗R x + (1 − e) ∗R y) ∈ box a b
proof −
{
fix i :: ′a
assume i : i ∈ Basis
have a · i = e ∗ (a · i) + (1 − e) ∗ (a · i)
unfolding left diff distrib by simp

also have . . . < e ∗ (x · i) + (1 − e) ∗ (y · i)
proof (rule add less le mono)
show e ∗ (a · i) < e ∗ (x · i)
using 〈0 < e〉 i mem box (1 ) x by auto

show (1 − e) ∗ (a · i) ≤ (1 − e) ∗ (y · i)
by (meson diff ge 0 iff ge 〈e ≤ 1 〉 i mem box (2 ) mult left mono y)

qed
finally have a · i < (e ∗R x + (1 − e) ∗R y) · i
unfolding inner simps by auto

moreover
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{
have b · i = e ∗ (b·i) + (1 − e) ∗ (b·i)
unfolding left diff distrib by simp

also have . . . > e ∗ (x · i) + (1 − e) ∗ (y · i)
proof (rule add less le mono)
show e ∗ (x · i) < e ∗ (b · i)
using 〈0 < e〉 i mem box (1 ) x by auto

show (1 − e) ∗ (y · i) ≤ (1 − e) ∗ (b · i)
by (meson diff ge 0 iff ge 〈e ≤ 1 〉 i mem box (2 ) mult left mono y)

qed
finally have (e ∗R x + (1 − e) ∗R y) · i < b · i
unfolding inner simps by auto

}
ultimately have a · i < (e ∗R x + (1 − e) ∗R y) · i ∧ (e ∗R x + (1 − e)

∗R y) · i < b · i
by auto

}
then show ?thesis
unfolding mem box by auto

qed

lemma closure cbox [simp]: closure (cbox a b) = cbox a b
by (simp add : closed cbox )

lemma closure box [simp]:
fixes a :: ′a::euclidean space
assumes box a b 6= {}
shows closure (box a b) = cbox a b

proof −
have ab: a <e b
using assms by (simp add : eucl less def box ne empty)

let ?c = (1 / 2 ) ∗R (a + b)
{
fix x
assume as:x ∈ cbox a b
define f where [abs def ]: f n = x + (inverse (real n + 1 )) ∗R (?c − x ) for n
{
fix n
assume fn: f n <e b −→ a <e f n −→ f n = x and xc: x 6= ?c
have ∗: 0 < inverse (real n + 1 ) inverse (real n + 1 ) ≤ 1
unfolding inverse le 1 iff by auto

have (inverse (real n + 1 )) ∗R ((1 / 2 ) ∗R (a + b)) + (1 − inverse (real n
+ 1 )) ∗R x =

x + (inverse (real n + 1 )) ∗R (((1 / 2 ) ∗R (a + b)) − x )
by (auto simp: algebra simps)

then have f n <e b and a <e f n
using open cbox convex [OF box midpoint [OF assms] as ∗]
unfolding f def by (auto simp: box def eucl less def )

then have False
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using fn unfolding f def using xc by auto
}
moreover
{
assume ¬ (f −−−→ x ) sequentially
{
fix e :: real
assume e > 0
then obtain N :: nat where N : inverse (real (N + 1 )) < e
using reals Archimedean by auto

have inverse (real n + 1 ) < e if N ≤ n for n
by (auto intro!: that le less trans [OF N ])

then have ∃N ::nat . ∀n≥N . inverse (real n + 1 ) < e by auto
}
then have ((λn. inverse (real n + 1 )) −−−→ 0 ) sequentially
unfolding lim sequentially by(auto simp: dist norm)

then have (f −−−→ x ) sequentially
unfolding f def
using tendsto add [OF tendsto const , of λn::nat . (inverse (real n + 1 )) ∗R

((1 / 2 ) ∗R (a + b) − x ) 0 sequentially x ]
using tendsto scaleR [OF tendsto const , of λn::nat . inverse (real n + 1 )

0 sequentially ((1 / 2 ) ∗R (a + b) − x )]
by auto

}
ultimately have x ∈ closure (box a b)
using as box midpoint [OF assms]
unfolding closure def islimpt sequential
by (cases x=?c) (auto simp: in box eucl less)

}
then show ?thesis
using closure minimal [OF box subset cbox , of a b] by blast

qed

lemma bounded subset box symmetric:
fixes S :: ( ′a::euclidean space) set
assumes bounded S
obtains a where S ⊆ box (−a) a

proof −
obtain b where b>0 and b: ∀ x∈S . norm x ≤ b
using assms[unfolded bounded pos] by auto

define a :: ′a where a = (
∑

i∈Basis. (b + 1 ) ∗R i)
have (−a)·i < x ·i and x ·i < a·i if x ∈ S and i : i ∈ Basis for x i
using b Basis le norm[OF i , of x ] that by (auto simp: a def )

then have S ⊆ box (−a) a
by (auto simp: simp add : box def )

then show ?thesis ..
qed

lemma bounded subset cbox symmetric:
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fixes S :: ( ′a::euclidean space) set
assumes bounded S
obtains a where S ⊆ cbox (−a) a

proof −
obtain a where S ⊆ box (−a) a
using bounded subset box symmetric[OF assms] by auto

then show ?thesis
by (meson box subset cbox dual order .trans that)

qed

lemma frontier cbox :
fixes a b :: ′a::euclidean space
shows frontier (cbox a b) = cbox a b − box a b
unfolding frontier def unfolding interior cbox and closure closed [OF closed cbox ]

..

lemma frontier box :
fixes a b :: ′a::euclidean space
shows frontier (box a b) = (if box a b = {} then {} else cbox a b − box a b)

proof (cases box a b = {})
case True
then show ?thesis
using frontier empty by auto

next
case False
then show ?thesis
unfolding frontier def and closure box [OF False] and interior open[OF open box ]
by auto

qed

lemma Int interval mixed eq empty :
fixes a :: ′a::euclidean space
assumes box c d 6= {}
shows box a b ∩ cbox c d = {} ←→ box a b ∩ box c d = {}
unfolding closure box [OF assms, symmetric]
unfolding open Int closure eq empty [OF open box ] ..

4.1.12 Class Instances

lemma compact lemma:
fixes f :: nat ⇒ ′a::euclidean space
assumes bounded (range f )
shows ∀ d⊆Basis. ∃ l :: ′a. ∃ r .
strict mono r ∧ (∀ e>0 . eventually (λn. ∀ i∈d . dist (f (r n) · i) (l · i) < e)

sequentially)
by (rule compact lemma general [where unproj=λe.

∑
i∈Basis. e i ∗R i ])

(auto intro!: assms bounded linear inner left bounded linear image
simp: euclidean representation)
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instance euclidean space ⊆ heine borel
proof
fix f :: nat ⇒ ′a
assume f : bounded (range f )
then obtain l :: ′a and r where r : strict mono r
and l : ∀ e>0 . eventually (λn. ∀ i∈Basis. dist (f (r n) · i) (l · i) < e) sequentially
using compact lemma [OF f ] by blast

{
fix e::real
assume e > 0
hence e / real of nat DIM ( ′a) > 0 by (simp)
with l have eventually (λn. ∀ i∈Basis. dist (f (r n) · i) (l · i) < e / (real of nat

DIM ( ′a))) sequentially
by simp

moreover
{
fix n
assume n: ∀ i∈Basis. dist (f (r n) · i) (l · i) < e / (real of nat DIM ( ′a))
have dist (f (r n)) l ≤ (

∑
i∈Basis. dist (f (r n) · i) (l · i))

apply (subst euclidean dist l2 )
using zero le dist
apply (rule L2 set le sum)
done

also have . . . < (
∑

i∈(Basis:: ′a set). e / (real of nat DIM ( ′a)))
apply (rule sum strict mono)
using n
apply auto
done

finally have dist (f (r n)) l < e
by auto

}
ultimately have eventually (λn. dist (f (r n)) l < e) sequentially
by (rule eventually mono)

}
then have ∗: ((f ◦ r) −−−→ l) sequentially
unfolding o def tendsto iff by simp

with r show ∃ l r . strict mono r ∧ ((f ◦ r) −−−→ l) sequentially
by auto

qed

instance euclidean space ⊆ banach ..

instance euclidean space ⊆ second countable topology
proof
define a where a f = (

∑
i∈Basis. fst (f i) ∗R i) for f :: ′a ⇒ real × real

then have a:
∧
f . (

∑
i∈Basis. fst (f i) ∗R i) = a f

by simp
define b where b f = (

∑
i∈Basis. snd (f i) ∗R i) for f :: ′a ⇒ real × real

then have b:
∧
f . (

∑
i∈Basis. snd (f i) ∗R i) = b f
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by simp
define B where B = (λf . box (a f ) (b f )) ‘ (Basis →E (Q × Q))

have Ball B open by (simp add : B def open box )
moreover have (∀A. open A −→ (∃B ′⊆B .

⋃
B ′ = A))

proof safe
fix A:: ′a set
assume open A
show ∃B ′⊆B .

⋃
B ′ = A

apply (rule exI [of {b∈B . b ⊆ A}])
apply (subst (3 ) open UNION box [OF 〈open A〉])
apply (auto simp: a b B def )
done

qed
ultimately
have topological basis B
unfolding topological basis def by blast

moreover
have countable B
unfolding B def
by (intro countable image countable PiE finite Basis countable SIGMA count-

able rat)
ultimately show ∃B :: ′a set set . countable B ∧ open = generate topology B
by (blast intro: topological basis imp subbasis)

qed

instance euclidean space ⊆ polish space ..

4.1.13 Compact Boxes

lemma compact cbox [simp]:
fixes a :: ′a::euclidean space
shows compact (cbox a b)
using bounded closed imp seq compact [of cbox a b] using bounded cbox [of a b]
by (auto simp: compact eq seq compact metric)

proposition is interval compact :
is interval S ∧ compact S ←→ (∃ a b. S = cbox a b) (is ?lhs = ?rhs)

proof (cases S = {})
case True
with empty as interval show ?thesis by auto

next
case False
show ?thesis
proof
assume L: ?lhs
then have is interval S compact S by auto
define a where a ≡

∑
i∈Basis. (INF x∈S . x · i) ∗R i

define b where b ≡
∑

i∈Basis. (SUP x∈S . x · i) ∗R i
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have 1 :
∧
x i . [[x ∈ S ; i ∈ Basis]] =⇒ (INF x∈S . x · i) ≤ x · i

by (simp add : cInf lower bounded inner imp bdd below compact imp bounded
L)

have 2 :
∧
x i . [[x ∈ S ; i ∈ Basis]] =⇒ x · i ≤ (SUP x∈S . x · i)

by (simp add : cSup upper bounded inner imp bdd above compact imp bounded
L)

have 3 : x ∈ S if inf :
∧
i . i ∈ Basis =⇒ (INF x∈S . x · i) ≤ x · i

and sup:
∧
i . i ∈ Basis =⇒ x · i ≤ (SUP x∈S . x · i) for x

proof (rule mem box componentwiseI [OF 〈is interval S 〉])
fix i :: ′a
assume i : i ∈ Basis
have cont : continuous on S (λx . x · i)
by (intro continuous intros)

obtain a where a ∈ S and a:
∧
y . y∈S =⇒ a · i ≤ y · i

using continuous attains inf [OF 〈compact S 〉 False cont ] by blast
obtain b where b ∈ S and b:

∧
y . y∈S =⇒ y · i ≤ b · i

using continuous attains sup [OF 〈compact S 〉 False cont ] by blast
have a · i ≤ (INF x∈S . x · i)
by (simp add : False a cINF greatest)

also have . . . ≤ x · i
by (simp add : i inf )

finally have ai : a · i ≤ x · i .
have x · i ≤ (SUP x∈S . x · i)
by (simp add : i sup)

also have (SUP x∈S . x · i) ≤ b · i
by (simp add : False b cSUP least)

finally have bi : x · i ≤ b · i .
show x · i ∈ (λx . x · i) ‘ S

apply (rule tac x=
∑

j∈Basis. (if j = i then x · i else a · j ) ∗R j in
image eqI )

apply (simp add : i)
apply (rule mem is intervalI [OF 〈is interval S 〉 〈a ∈ S 〉 〈b ∈ S 〉])
using i ai bi apply force
done

qed
have S = cbox a b
by (auto simp: a def b def mem box intro: 1 2 3 )

then show ?rhs
by blast

next
assume R: ?rhs
then show ?lhs
using compact cbox is interval cbox by blast

qed
qed
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4.1.14 Componentwise limits and continuity

But is the premise really necessary? Need to generalise dist ?x ?y = L2 set
(λi . dist (?x · i) (?y · i)) Basis
lemma Euclidean dist upper : i ∈ Basis =⇒ dist (x · i) (y · i) ≤ dist x y
by (metis (no types) member le L2 set euclidean dist l2 finite Basis)

But is the premise i ∈ Basis really necessary?

lemma open preimage inner :
assumes open S i ∈ Basis
shows open {x . x · i ∈ S}

proof (rule openI , simp)
fix x
assume x : x · i ∈ S
with assms obtain e where 0 < e and e: ball (x · i) e ⊆ S
by (auto simp: open contains ball eq)

have ∃ e>0 . ball (y · i) e ⊆ S if dxy : dist x y < e / 2 for y
proof (intro exI conjI )
have dist (x · i) (y · i) < e / 2
by (meson 〈i ∈ Basis〉 dual order .trans Euclidean dist upper not le that)

then have dist (x · i) z < e if dist (y · i) z < e / 2 for z
by (metis dist commute dist triangle half l that)

then have ball (y · i) (e / 2 ) ⊆ ball (x · i) e
using mem ball by blast
with e show ball (y · i) (e / 2 ) ⊆ S
by (metis order trans)

qed (simp add : 〈0 < e〉)
then show ∃ e>0 . ball x e ⊆ {s. s · i ∈ S}
by (metis (no types, lifting) 〈0 < e〉 〈open S 〉 half gt zero iff mem Collect eq

mem ball open contains ball eq subsetI )
qed

proposition tendsto componentwise iff :
fixes f :: ⇒ ′b::euclidean space
shows (f −−−→ l) F ←→ (∀ i ∈ Basis. ((λx . (f x · i)) −−−→ (l · i)) F )

(is ?lhs = ?rhs)
proof
assume ?lhs
then show ?rhs
unfolding tendsto def
apply clarify
apply (drule tac x={s. s · i ∈ S} in spec)
apply (auto simp: open preimage inner)
done

next
assume R: ?rhs
then have

∧
e. e > 0 =⇒ ∀ i∈Basis. ∀ F x in F . dist (f x · i) (l · i) < e

unfolding tendsto iff by blast
then have R ′:

∧
e. e > 0 =⇒ ∀ F x in F . ∀ i∈Basis. dist (f x · i) (l · i) < e
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by (simp add : eventually ball finite distrib [symmetric])
show ?lhs
unfolding tendsto iff
proof clarify
fix e::real
assume 0 < e
have ∗: L2 set (λi . dist (f x · i) (l · i)) Basis < e

if ∀ i∈Basis. dist (f x · i) (l · i) < e / real DIM ( ′b) for x
proof −
have L2 set (λi . dist (f x · i) (l · i)) Basis ≤ sum (λi . dist (f x · i) (l · i))

Basis
by (simp add : L2 set le sum)

also have ... < DIM ( ′b) ∗ (e / real DIM ( ′b))
apply (rule sum bounded above strict)
using that by auto

also have ... = e
by (simp add : field simps)

finally show L2 set (λi . dist (f x · i) (l · i)) Basis < e .
qed
have ∀ F x in F . ∀ i∈Basis. dist (f x · i) (l · i) < e / DIM ( ′b)
apply (rule R ′)
using 〈0 < e〉 by simp

then show ∀ F x in F . dist (f x ) l < e
apply (rule eventually mono)
apply (subst euclidean dist l2 )
using ∗ by blast

qed
qed

corollary continuous componentwise:
continuous F f ←→ (∀ i ∈ Basis. continuous F (λx . (f x · i)))

by (simp add : continuous def tendsto componentwise iff [symmetric])

corollary continuous on componentwise:
fixes S :: ′a :: t2 space set
shows continuous on S f ←→ (∀ i ∈ Basis. continuous on S (λx . (f x · i)))
apply (simp add : continuous on eq continuous within)
using continuous componentwise by blast

lemma linear componentwise iff :
(linear f ′) ←→ (∀ i∈Basis. linear (λx . f ′ x · i))

apply (auto simp: linear iff inner left distrib)
apply (metis inner left distrib euclidean eq iff )
by (metis euclidean eqI inner scaleR left)

lemma bounded linear componentwise iff :
(bounded linear f ′) ←→ (∀ i∈Basis. bounded linear (λx . f ′ x · i))
(is ?lhs = ?rhs)
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proof
assume ?lhs then show ?rhs
by (simp add : bounded linear inner left comp)

next
assume ?rhs
then have (∀ i∈Basis. ∃K . ∀ x . |f ′ x · i | ≤ norm x ∗ K ) linear f ′

by (auto simp: bounded linear def bounded linear axioms def linear componentwise iff
[symmetric] ball conj distrib)
then obtain F where F :

∧
i x . i ∈ Basis =⇒ |f ′ x · i | ≤ norm x ∗ F i

by metis
have norm (f ′ x ) ≤ norm x ∗ sum F Basis for x
proof −
have norm (f ′ x ) ≤ (

∑
i∈Basis. |f ′ x · i |)

by (rule norm le l1 )
also have ... ≤ (

∑
i∈Basis. norm x ∗ F i)

by (metis F sum mono)
also have ... = norm x ∗ sum F Basis
by (simp add : sum distrib left)

finally show ?thesis .
qed
then show ?lhs
by (force simp: bounded linear def bounded linear axioms def 〈linear f ′〉)

qed

4.1.15 Continuous Extension

definition clamp :: ′a::euclidean space ⇒ ′a ⇒ ′a ⇒ ′a where
clamp a b x = (if (∀ i∈Basis. a · i ≤ b · i)
then (

∑
i∈Basis. (if x ·i < a·i then a·i else if x ·i ≤ b·i then x ·i else b·i) ∗R i)

else a)

lemma clamp in interval [simp]:
assumes

∧
i . i ∈ Basis =⇒ a · i ≤ b · i

shows clamp a b x ∈ cbox a b
unfolding clamp def
using box ne empty(1 )[of a b] assms by (auto simp: cbox def )

lemma clamp cancel cbox [simp]:
fixes x a b :: ′a::euclidean space
assumes x : x ∈ cbox a b
shows clamp a b x = x
using assms
by (auto simp: clamp def mem box intro!: euclidean eqI [where ′a= ′a])

lemma clamp empty interval :
assumes i ∈ Basis a · i > b · i
shows clamp a b = (λ . a)
using assms
by (force simp: clamp def [abs def ] split : if splits intro!: ext)
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lemma dist clamps le dist args:
fixes x :: ′a::euclidean space
shows dist (clamp a b y) (clamp a b x ) ≤ dist y x

proof cases
assume le: (∀ i∈Basis. a · i ≤ b · i)
then have (

∑
i∈Basis. (dist (clamp a b y · i) (clamp a b x · i))2) ≤

(
∑

i∈Basis. (dist (y · i) (x · i))2)
by (auto intro!: sum mono simp: clamp def dist real def abs le square iff [symmetric])
then show ?thesis
by (auto intro: real sqrt le mono
simp: euclidean dist l2 [where y=x ] euclidean dist l2 [where y=clamp a b x ]

L2 set def )
qed (auto simp: clamp def )

lemma clamp continuous at :
fixes f :: ′a::euclidean space ⇒ ′b::metric space
and x :: ′a

assumes f cont : continuous on (cbox a b) f
shows continuous (at x ) (λx . f (clamp a b x ))

proof cases
assume le: (∀ i∈Basis. a · i ≤ b · i)
show ?thesis
unfolding continuous at eps delta

proof safe
fix x :: ′a
fix e :: real
assume e > 0
moreover have clamp a b x ∈ cbox a b
by (simp add : le)

moreover note f cont [simplified continuous on iff ]
ultimately
obtain d where d : 0 < d∧

x ′. x ′ ∈ cbox a b =⇒ dist x ′ (clamp a b x ) < d =⇒ dist (f x ′) (f (clamp a
b x )) < e

by force
show ∃ d>0 . ∀ x ′. dist x ′ x < d −→
dist (f (clamp a b x ′)) (f (clamp a b x )) < e
using le

by (auto intro!: d clamp in interval dist clamps le dist args[THEN le less trans])
qed

qed (auto simp: clamp empty interval)

lemma clamp continuous on:
fixes f :: ′a::euclidean space ⇒ ′b::metric space
assumes f cont : continuous on (cbox a b) f
shows continuous on S (λx . f (clamp a b x ))
using assms
by (auto intro: continuous at imp continuous on clamp continuous at)
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lemma clamp bounded :
fixes f :: ′a::euclidean space ⇒ ′b::metric space
assumes bounded : bounded (f ‘ (cbox a b))
shows bounded (range (λx . f (clamp a b x )))

proof cases
assume le: (∀ i∈Basis. a · i ≤ b · i)
from bounded obtain c where f bound : ∀ x∈f ‘ cbox a b. dist undefined x ≤ c
by (auto simp: bounded any center [where a=undefined ])

then show ?thesis
by (auto intro!: exI [where x=c] clamp in interval [OF le[rule format ]]

simp: bounded any center [where a=undefined ])
qed (auto simp: clamp empty interval image def )

definition ext cont :: ( ′a::euclidean space ⇒ ′b::metric space) ⇒ ′a ⇒ ′a ⇒ ′a ⇒
′b
where ext cont f a b = (λx . f (clamp a b x ))

lemma ext cont cancel cbox [simp]:
fixes x a b :: ′a::euclidean space
assumes x : x ∈ cbox a b
shows ext cont f a b x = f x
using assms
unfolding ext cont def
by (auto simp: clamp def mem box intro!: euclidean eqI [where ′a= ′a] arg cong [where

f=f ])

lemma continuous on ext cont [continuous intros]:
continuous on (cbox a b) f =⇒ continuous on S (ext cont f a b)
by (auto intro!: clamp continuous on simp: ext cont def )

4.1.16 Separability

lemma univ second countable sequence:
obtains B :: nat ⇒ ′a::euclidean space set
where inj B

∧
n. open(B n)

∧
S . open S =⇒ ∃ k . S =

⋃
{B n |n. n ∈ k}

proof −
obtain B :: ′a set set
where countable B
and opn:

∧
C . C ∈ B =⇒ open C

and Un:
∧
S . open S =⇒ ∃U . U ⊆ B ∧ S =

⋃
U

using univ second countable by blast
have ∗: infinite (range (λn. ball (0 :: ′a) (inverse(Suc n))))
apply (rule Infinite Set .range inj infinite)
apply (simp add : inj on def ball eq ball iff )
done

have infinite B
proof
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assume finite B
then have finite (Union ‘ (Pow B))
by simp

then have finite (range (λn. ball (0 :: ′a) (inverse(Suc n))))
apply (rule rev finite subset)

by (metis (no types, lifting) PowI image eqI image subset iff Un [OF open ball ])
with ∗ show False by simp

qed
obtain f :: nat ⇒ ′a set where B = range f inj f
by (blast intro: countable as injective image [OF 〈countable B〉 〈infinite B〉])

have ∗: ∃ k . S =
⋃
{f n |n. n ∈ k} if open S for S

using Un [OF that ]
apply clarify
apply (rule tac x=f−‘U in exI )
using 〈inj f 〉 〈B = range f 〉 apply force
done

show ?thesis
apply (rule that [OF 〈inj f 〉 ∗])
apply (auto simp: 〈B = range f 〉 opn)
done

qed

proposition separable:
fixes S :: ′a::{metric space, second countable topology} set
obtains T where countable T T ⊆ S S ⊆ closure T

proof −
obtain B :: ′a set set
where countable B
and {} /∈ B
and ope:

∧
C . C ∈ B =⇒ openin(top of set S ) C

and if ope:
∧
T . openin(top of set S ) T =⇒ ∃U . U ⊆ B ∧ T =

⋃
U

by (meson subset second countable)
then obtain f where f :

∧
C . C ∈ B =⇒ f C ∈ C

by (metis equals0I )
show ?thesis
proof
show countable (f ‘ B)
by (simp add : 〈countable B〉)

show f ‘ B ⊆ S
using ope f openin imp subset by blast

show S ⊆ closure (f ‘ B)
proof (clarsimp simp: closure approachable)
fix x and e::real
assume x ∈ S 0 < e
have openin (top of set S ) (S ∩ ball x e)
by (simp add : openin Int open)

with if ope obtain U where U : U ⊆ B S ∩ ball x e =
⋃
U

by meson
show ∃C ∈ B. dist (f C ) x < e
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proof (cases U = {})
case True
then show ?thesis
using 〈0 < e〉 U 〈x ∈ S 〉 by auto

next
case False
then obtain C where C ∈ U by blast
show ?thesis
proof
show dist (f C ) x < e
by (metis Int iff Union iff U 〈C ∈ U 〉 dist commute f mem ball subsetCE )
show C ∈ B
using 〈U ⊆ B〉 〈C ∈ U 〉 by blast

qed
qed

qed
qed

qed

4.1.17 Diameter

lemma diameter cball [simp]:
fixes a :: ′a::euclidean space
shows diameter(cball a r) = (if r < 0 then 0 else 2∗r)

proof −
have diameter(cball a r) = 2∗r if r ≥ 0
proof (rule order antisym)
show diameter (cball a r) ≤ 2∗r
proof (rule diameter le)
fix x y assume x ∈ cball a r y ∈ cball a r
then have norm (x − a) ≤ r norm (a − y) ≤ r
by (auto simp: dist norm norm minus commute)

then have norm (x − y) ≤ r+r
using norm diff triangle le by blast

then show norm (x − y) ≤ 2∗r by simp
qed (simp add : that)
have 2∗r = dist (a + r ∗R (SOME i . i ∈ Basis)) (a − r ∗R (SOME i . i ∈

Basis))
apply (simp add : dist norm)

by (metis abs of nonneg mult .right neutral norm numeral norm scaleR norm some Basis
real norm def scaleR 2 that)

also have ... ≤ diameter (cball a r)
apply (rule diameter bounded bound)
using that by (auto simp: dist norm)

finally show 2∗r ≤ diameter (cball a r) .
qed
then show ?thesis by simp

qed
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lemma diameter ball [simp]:
fixes a :: ′a::euclidean space
shows diameter(ball a r) = (if r < 0 then 0 else 2∗r)

proof −
have diameter(ball a r) = 2∗r if r > 0
by (metis bounded ball diameter closure closure ball diameter cball less eq real def

linorder not less that)
then show ?thesis
by (simp add : diameter def )

qed

lemma diameter closed interval [simp]: diameter {a..b} = (if b < a then 0 else
b−a)
proof −
have {a .. b} = cball ((a+b)/2 ) ((b−a)/2 )
by (auto simp: dist norm abs if field split simps split : if split asm)

then show ?thesis
by simp

qed

lemma diameter open interval [simp]: diameter {a<..<b} = (if b < a then 0 else
b−a)
proof −
have {a <..< b} = ball ((a+b)/2 ) ((b−a)/2 )
by (auto simp: dist norm abs if field split simps split : if split asm)

then show ?thesis
by simp

qed

lemma diameter cbox :
fixes a b:: ′a::euclidean space
shows (∀ i ∈ Basis. a · i ≤ b · i) =⇒ diameter (cbox a b) = dist a b
by (force simp: diameter def intro!: cSup eq maximum L2 set mono

simp: euclidean dist l2 [where ′a= ′a] cbox def dist norm)

4.1.18 Relating linear images to open/closed/interior/clo-
sure/connected

proposition open surjective linear image:
fixes f :: ′a::real normed vector ⇒ ′b::euclidean space
assumes open A linear f surj f
shows open(f ‘ A)

unfolding open dist
proof clarify
fix x
assume x ∈ A
have bounded (inv f ‘ Basis)
by (simp add : finite imp bounded)

with bounded pos obtain B where B > 0 and B :
∧
x . x ∈ inv f ‘ Basis =⇒
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norm x ≤ B
by metis

obtain e where e > 0 and e:
∧
z . dist z x < e =⇒ z ∈ A

by (metis open dist 〈x ∈ A〉 〈open A〉)
define δ where δ ≡ e / B / DIM ( ′b)
show ∃ e>0 . ∀ y . dist y (f x ) < e −→ y ∈ f ‘ A
proof (intro exI conjI )
show δ > 0
using 〈e > 0 〉 〈B > 0 〉 by (simp add : δ def field split simps)

have y ∈ f ‘ A if dist y (f x ) ∗ (B ∗ real DIM ( ′b)) < e for y
proof −
define u where u ≡ y − f x
show ?thesis
proof (rule image eqI )
show y = f (x + (

∑
i∈Basis. (u · i) ∗R inv f i))

apply (simp add : linear add linear sum linear .scaleR 〈linear f 〉 surj f inv f
〈surj f 〉)

apply (simp add : euclidean representation u def )
done

have dist (x + (
∑

i∈Basis. (u · i) ∗R inv f i)) x ≤ (
∑

i∈Basis. norm ((u
· i) ∗R inv f i))

by (simp add : dist norm sum norm le)
also have ... = (

∑
i∈Basis. |u · i | ∗ norm (inv f i))

by simp
also have ... ≤ (

∑
i∈Basis. |u · i |) ∗ B

by (simp add : B sum distrib right sum mono mult left mono)
also have ... ≤ DIM ( ′b) ∗ dist y (f x ) ∗ B
apply (rule mult right mono [OF sum bounded above])
using 〈0 < B 〉 by (auto simp: Basis le norm dist norm u def )

also have ... < e
by (metis mult .commute mult .left commute that)

finally show x + (
∑

i∈Basis. (u · i) ∗R inv f i) ∈ A
by (rule e)

qed
qed
then show ∀ y . dist y (f x ) < δ −→ y ∈ f ‘ A
using 〈e > 0 〉 〈B > 0 〉

by (auto simp: δ def field split simps)
qed

qed

corollary open bijective linear image eq :
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes linear f bij f
shows open(f ‘ A) ←→ open A

proof
assume open(f ‘ A)
then have open(f −‘ (f ‘ A))

using assms by (force simp: linear continuous at linear conv bounded linear
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continuous open vimage)
then show open A
by (simp add : assms bij is inj inj vimage image eq)

next
assume open A
then show open(f ‘ A)
by (simp add : assms bij is surj open surjective linear image)

qed

corollary interior bijective linear image:
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes linear f bij f
shows interior (f ‘ S ) = f ‘ interior S (is ?lhs = ?rhs)

proof safe
fix x
assume x : x ∈ ?lhs
then obtain T where open T and x ∈ T and T ⊆ f ‘ S
by (metis interiorE )

then show x ∈ ?rhs
by (metis (no types, hide lams) assms subsetD interior maximal open bijective linear image eq

subset image iff )
next
fix x
assume x : x ∈ interior S
then show f x ∈ interior (f ‘ S )
by (meson assms imageI image mono interiorI interior subset open bijective linear image eq

open interior)
qed

lemma interior injective linear image:
fixes f :: ′a::euclidean space ⇒ ′a::euclidean space
assumes linear f inj f
shows interior(f ‘ S ) = f ‘ (interior S )

by (simp add : linear injective imp surjective assms bijI interior bijective linear image)

lemma interior surjective linear image:
fixes f :: ′a::euclidean space ⇒ ′a::euclidean space
assumes linear f surj f
shows interior(f ‘ S ) = f ‘ (interior S )

by (simp add : assms interior injective linear image linear surjective imp injective)

lemma interior negations:
fixes S :: ′a::euclidean space set
shows interior(uminus ‘ S ) = image uminus (interior S )
by (simp add : bij uminus interior bijective linear image linear uminus)

lemma connected linear image:
fixes f :: ′a::euclidean space ⇒ ′b::real normed vector
assumes linear f and connected s
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shows connected (f ‘ s)
using connected continuous image assms linear continuous on linear conv bounded linear
by blast

4.1.19 ”Isometry” (up to constant bounds) of Injective Lin-
ear Map

proposition injective imp isometric:
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes s: closed s subspace s
and f : bounded linear f ∀ x∈s. f x = 0 −→ x = 0

shows ∃ e>0 . ∀ x∈s. norm (f x ) ≥ e ∗ norm x
proof (cases s ⊆ {0 :: ′a})
case True
have norm x ≤ norm (f x ) if x ∈ s for x
proof −
from True that have x = 0 by auto
then show ?thesis by simp

qed
then show ?thesis
by (auto intro!: exI [where x=1 ])

next
case False
interpret f : bounded linear f by fact
from False obtain a where a: a 6= 0 a ∈ s
by auto

from False have s 6= {}
by auto

let ?S = {f x | x . x ∈ s ∧ norm x = norm a}
let ?S ′ = {x :: ′a. x∈s ∧ norm x = norm a}
let ?S ′′ = {x :: ′a. norm x = norm a}

have ?S ′′ = frontier (cball 0 (norm a))
by (simp add : sphere def dist norm)

then have compact ?S ′′ by (metis compact cball compact frontier)
moreover have ?S ′ = s ∩ ?S ′′ by auto
ultimately have compact ?S ′

using closed Int compact [of s ?S ′′] using s(1 ) by auto
moreover have ∗:f ‘ ?S ′ = ?S by auto
ultimately have compact ?S
using compact continuous image[OF linear continuous on[OF f (1 )], of ?S ′] by

auto
then have closed ?S
using compact imp closed by auto

moreover from a have ?S 6= {} by auto
ultimately obtain b ′ where b ′∈?S ∀ y∈?S . norm b ′ ≤ norm y
using distance attains inf [of ?S 0 ] unfolding dist 0 norm by auto

then obtain b where b∈s
and ba: norm b = norm a
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and b: ∀ x∈{x ∈ s. norm x = norm a}. norm (f b) ≤ norm (f x )
unfolding ∗[symmetric] unfolding image iff by auto

let ?e = norm (f b) / norm b
have norm b > 0
using ba and a and norm ge zero by auto

moreover have norm (f b) > 0
using f (2 )[THEN bspec[where x=b], OF 〈b∈s〉]
using 〈norm b >0 〉 by simp

ultimately have 0 < norm (f b) / norm b by simp
moreover
have norm (f b) / norm b ∗ norm x ≤ norm (f x ) if x∈s for x
proof (cases x = 0 )
case True
then show norm (f b) / norm b ∗ norm x ≤ norm (f x )
by auto

next
case False
with 〈a 6= 0 〉 have ∗: 0 < norm a / norm x
unfolding zero less norm iff [symmetric] by simp

have ∀ x∈s. c ∗R x ∈ s for c
using s[unfolded subspace def ] by simp

with 〈x ∈ s〉 〈x 6= 0 〉 have (norm a / norm x ) ∗R x ∈ {x ∈ s. norm x = norm
a}

by simp
with 〈x 6= 0 〉 〈a 6= 0 〉 show norm (f b) / norm b ∗ norm x ≤ norm (f x )
using b[THEN bspec[where x=(norm a / norm x ) ∗R x ]]
unfolding f .scaleR and ba
by (auto simp: mult .commute pos le divide eq pos divide le eq)

qed
ultimately show ?thesis by auto

qed

proposition closed injective image subspace:
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes subspace s bounded linear f ∀ x∈s. f x = 0 −→ x = 0 closed s
shows closed(f ‘ s)

proof −
obtain e where e > 0 and e: ∀ x∈s. e ∗ norm x ≤ norm (f x )
using injective imp isometric[OF assms(4 ,1 ,2 ,3 )] by auto

show ?thesis
using complete isometric image[OF 〈e>0 〉 assms(1 ,2 ) e] and assms(4 )
unfolding complete eq closed [symmetric] by auto

qed

lemma closure bounded linear image subset :
assumes f : bounded linear f
shows f ‘ closure S ⊆ closure (f ‘ S )
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using linear continuous on [OF f ] closed closure closure subset
by (rule image closure subset)

lemma closure linear image subset :
fixes f :: ′m::euclidean space ⇒ ′n::real normed vector
assumes linear f
shows f ‘ (closure S ) ⊆ closure (f ‘ S )
using assms unfolding linear conv bounded linear
by (rule closure bounded linear image subset)

lemma closed injective linear image:
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes S : closed S and f : linear f inj f
shows closed (f ‘ S )

proof −
obtain g where g : linear g g ◦ f = id
using linear injective left inverse [OF f ] by blast

then have confg : continuous on (range f ) g
using linear continuous on linear conv bounded linear by blast

have [simp]: g ‘ f ‘ S = S
using g by (simp add : image comp)

have cgf : closed (g ‘ f ‘ S )
by (simp add : 〈g ◦ f = id 〉 S image comp)

have [simp]: (range f ∩ g −‘ S ) = f ‘ S
using g unfolding o def id def image def by auto metis+

show ?thesis
proof (rule closedin closed trans [of range f ])
show closedin (top of set (range f )) (f ‘ S )
using continuous closedin preimage [OF confg cgf ] by simp

show closed (range f )
apply (rule closed injective image subspace)
using f apply (auto simp: linear linear linear injective 0 )
done

qed
qed

lemma closed injective linear image eq :
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes f : linear f inj f
shows (closed(image f s) ←→ closed s)

by (metis closed injective linear image closure eq closure linear image subset clo-
sure subset eq f (1 ) f (2 ) inj image subset iff )

lemma closure injective linear image:
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
shows [[linear f ; inj f ]] =⇒ f ‘ (closure S ) = closure (f ‘ S )

apply (rule subset antisym)
apply (simp add : closure linear image subset)
by (simp add : closure minimal closed injective linear image closure subset im-
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age mono)

lemma closure bounded linear image:
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
shows [[linear f ; bounded S ]] =⇒ f ‘ (closure S ) = closure (f ‘ S )

apply (rule subset antisym, simp add : closure linear image subset)
apply (rule closure minimal , simp add : closure subset image mono)
by (meson bounded closure closed closure compact continuous image compact eq bounded closed

linear continuous on linear conv bounded linear)

lemma closure scaleR:
fixes S :: ′a::real normed vector set
shows ((∗R) c) ‘ (closure S ) = closure (((∗R) c) ‘ S )

proof
show ((∗R) c) ‘ (closure S ) ⊆ closure (((∗R) c) ‘ S )
using bounded linear scaleR right
by (rule closure bounded linear image subset)

show closure (((∗R) c) ‘ S ) ⊆ ((∗R) c) ‘ (closure S )
by (intro closure minimal image mono closure subset closed scaling closed closure)

qed

4.1.20 Some properties of a canonical subspace

lemma closed substandard : closed {x :: ′a::euclidean space. ∀ i∈Basis. P i −→ x ·i
= 0}
(is closed ?A)

proof −
let ?D = {i∈Basis. P i}
have closed (

⋂
i∈?D . {x :: ′a. x ·i = 0})

by (simp add : closed INT closed Collect eq continuous on inner)
also have (

⋂
i∈?D . {x :: ′a. x ·i = 0}) = ?A

by auto
finally show closed ?A .

qed

lemma closed subspace:
fixes s :: ′a::euclidean space set
assumes subspace s
shows closed s

proof −
have dim s ≤ card (Basis :: ′a set)
using dim subset UNIV by auto

with ex card [OF this] obtain d :: ′a set where t : card d = dim s and d : d ⊆
Basis

by auto
let ?t = {x :: ′a. ∀ i∈Basis. i /∈ d −→ x ·i = 0}
have ∃ f . linear f ∧ f ‘ {x :: ′a. ∀ i∈Basis. i /∈ d −→ x · i = 0} = s ∧

inj on f {x :: ′a. ∀ i∈Basis. i /∈ d −→ x · i = 0}
using dim substandard [of d ] t d assms
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by (intro subspace isomorphism[OF subspace substandard [of λi . i /∈ d ]]) (auto
simp: inner Basis)
then obtain f where f :

linear f
f ‘ {x . ∀ i∈Basis. i /∈ d −→ x · i = 0} = s
inj on f {x . ∀ i∈Basis. i /∈ d −→ x · i = 0}

by blast
interpret f : bounded linear f
using f by (simp add : linear conv bounded linear)

have x ∈ ?t =⇒ f x = 0 =⇒ x = 0 for x
using f .zero d f (3 )[THEN inj onD , of x 0 ] by auto

moreover have closed ?t by (rule closed substandard)
moreover have subspace ?t by (rule subspace substandard)
ultimately show ?thesis
using closed injective image subspace[of ?t f ]
unfolding f (2 ) using f (1 ) unfolding linear conv bounded linear by auto

qed

lemma complete subspace: subspace s =⇒ complete s
for s :: ′a::euclidean space set
using complete eq closed closed subspace by auto

lemma closed span [iff ]: closed (span s)
for s :: ′a::euclidean space set
by (simp add : closed subspace)

lemma dim closure [simp]: dim (closure s) = dim s (is ?dc = ?d)
for s :: ′a::euclidean space set

proof −
have ?dc ≤ ?d
using closure minimal [OF span superset , of s]
using closed subspace[OF subspace span, of s]
using dim subset [of closure s span s]
by simp

then show ?thesis
using dim subset [OF closure subset , of s]
by simp

qed

4.1.21 Set Distance

lemma setdist compact closed :
fixes A :: ′a::heine borel set
assumes A: compact A and B : closed B
and A 6= {} B 6= {}

shows ∃ x ∈ A. ∃ y ∈ B . dist x y = setdist A B
proof −
obtain x where x ∈ A setdist A B = infdist x B
by (metis A assms(3 ) setdist attains inf setdist sym)
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moreover
obtain y wherey ∈ B infdist x B = dist x y
using B 〈B 6= {}〉 infdist attains inf by blast

ultimately show ?thesis
using 〈x ∈ A〉 〈y ∈ B 〉 by auto

qed

lemma setdist closed compact :
fixes S :: ′a::heine borel set
assumes S : closed S and T : compact T

and S 6= {} T 6= {}
shows ∃ x ∈ S . ∃ y ∈ T . dist x y = setdist S T

using setdist compact closed [OF T S 〈T 6= {}〉 〈S 6= {}〉]
by (metis dist commute setdist sym)

lemma setdist eq 0 compact closed :
assumes S : compact S and T : closed T
shows setdist S T = 0 ←→ S = {} ∨ T = {} ∨ S ∩ T 6= {}

proof (cases S = {} ∨ T = {})
case True
then show ?thesis
by force

next
case False
then show ?thesis
by (metis S T disjoint iff not equal in closed iff infdist zero setdist attains inf

setdist eq 0I setdist sym)
qed

corollary setdist gt 0 compact closed :
assumes S : compact S and T : closed T
shows setdist S T > 0 ←→ (S 6= {} ∧ T 6= {} ∧ S ∩ T = {})

using setdist pos le [of S T ] setdist eq 0 compact closed [OF assms] by linarith

lemma setdist eq 0 closed compact :
assumes S : closed S and T : compact T
shows setdist S T = 0 ←→ S = {} ∨ T = {} ∨ S ∩ T 6= {}

using setdist eq 0 compact closed [OF T S ]
by (metis Int commute setdist sym)

lemma setdist eq 0 bounded :
fixes S :: ′a::heine borel set
assumes bounded S ∨ bounded T
shows setdist S T = 0 ←→ S = {} ∨ T = {} ∨ closure S ∩ closure T 6= {}

proof (cases S = {} ∨ T = {})
case False
then show ?thesis
using setdist eq 0 compact closed [of closure S closure T ]

setdist eq 0 closed compact [of closure S closure T ] assms
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by (force simp: bounded closure compact eq bounded closed)
qed force

lemma setdist eq 0 sing 1 :
setdist {x} S = 0 ←→ S = {} ∨ x ∈ closure S
by (metis in closure iff infdist zero infdist def infdist eq setdist)

lemma setdist eq 0 sing 2 :
setdist S {x} = 0 ←→ S = {} ∨ x ∈ closure S
by (metis setdist eq 0 sing 1 setdist sym)

lemma setdist neq 0 sing 1 :
[[setdist {x} S = a; a 6= 0 ]] =⇒ S 6= {} ∧ x /∈ closure S
by (metis setdist closure 2 setdist empty2 setdist eq 0I singletonI )

lemma setdist neq 0 sing 2 :
[[setdist S {x} = a; a 6= 0 ]] =⇒ S 6= {} ∧ x /∈ closure S
by (simp add : setdist neq 0 sing 1 setdist sym)

lemma setdist sing in set :
x ∈ S =⇒ setdist {x} S = 0
by (simp add : setdist eq 0I )

lemma setdist eq 0 closed :
closed S =⇒ (setdist {x} S = 0 ←→ S = {} ∨ x ∈ S )

by (simp add : setdist eq 0 sing 1 )

lemma setdist eq 0 closedin:
shows [[closedin (top of set U ) S ; x ∈ U ]]

=⇒ (setdist {x} S = 0 ←→ S = {} ∨ x ∈ S )
by (auto simp: closedin limpt setdist eq 0 sing 1 closure def )

lemma setdist gt 0 closedin:
shows [[closedin (top of set U ) S ; x ∈ U ; S 6= {}; x /∈ S ]]

=⇒ setdist {x} S > 0
using less eq real def setdist eq 0 closedin by fastforce

no notation
eucl less (infix <e 50 )

end

4.2 Convex Sets and Functions on (Normed) Eu-
clidean Spaces

theory Convex Euclidean Space
imports
Convex
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Topology Euclidean Space
begin

4.2.1 Topological Properties of Convex Sets and Functions

lemma aff dim cball :
fixes a :: ′n::euclidean space
assumes e > 0
shows aff dim (cball a e) = int (DIM ( ′n))

proof −
have (λx . a + x ) ‘ (cball 0 e) ⊆ cball a e
unfolding cball def dist norm by auto

then have aff dim (cball (0 :: ′n::euclidean space) e) ≤ aff dim (cball a e)
using aff dim translation eq [of a cball 0 e]

aff dim subset [of (+) a ‘ cball 0 e cball a e]
by auto

moreover have aff dim (cball (0 :: ′n::euclidean space) e) = int (DIM ( ′n))
using hull inc[of (0 :: ′n::euclidean space) cball 0 e]
centre in cball [of (0 :: ′n::euclidean space)] assms

by (simp add : dim cball [of e] aff dim zero[of cball 0 e])
ultimately show ?thesis
using aff dim le DIM [of cball a e] by auto

qed

lemma aff dim open:
fixes S :: ′n::euclidean space set
assumes open S
and S 6= {}

shows aff dim S = int (DIM ( ′n))
proof −
obtain x where x ∈ S
using assms by auto

then obtain e where e: e > 0 cball x e ⊆ S
using open contains cball [of S ] assms by auto

then have aff dim (cball x e) ≤ aff dim S
using aff dim subset by auto

with e show ?thesis
using aff dim cball [of e x ] aff dim le DIM [of S ] by auto

qed

lemma low dim interior :
fixes S :: ′n::euclidean space set
assumes ¬ aff dim S = int (DIM ( ′n))
shows interior S = {}

proof −
have aff dim(interior S ) ≤ aff dim S
using interior subset aff dim subset [of interior S S ] by auto

then show ?thesis
using aff dim open[of interior S ] aff dim le DIM [of S ] assms by auto
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qed

corollary empty interior lowdim:
fixes S :: ′n::euclidean space set
shows dim S < DIM ( ′n) =⇒ interior S = {}

by (metis low dim interior affine hull UNIV dim affine hull less not refl dim UNIV )

corollary aff dim nonempty interior :
fixes S :: ′a::euclidean space set
shows interior S 6= {} =⇒ aff dim S = DIM ( ′a)

by (metis low dim interior)

4.2.2 Relative interior of a set

definition rel interior S =
{x . ∃T . openin (top of set (affine hull S )) T ∧ x ∈ T ∧ T ⊆ S}

lemma rel interior mono:
[[S ⊆ T ; affine hull S = affine hull T ]]
=⇒ (rel interior S ) ⊆ (rel interior T )
by (auto simp: rel interior def )

lemma rel interior maximal :
[[T ⊆ S ; openin(top of set (affine hull S )) T ]] =⇒ T ⊆ (rel interior S )
by (auto simp: rel interior def )

lemma rel interior : rel interior S = {x ∈ S . ∃T . open T ∧ x ∈ T ∧ T ∩ affine
hull S ⊆ S}

(is ?lhs = ?rhs)
proof
show ?lhs ⊆ ?rhs
by (force simp add : rel interior def openin open)

{ fix x T
assume ∗: x ∈ S open T x ∈ T T ∩ affine hull S ⊆ S
then have ∗∗: x ∈ T ∩ affine hull S
using hull inc by auto

with ∗ have ∃Tb. (∃Ta. open Ta ∧ Tb = affine hull S ∩ Ta) ∧ x ∈ Tb ∧ Tb
⊆ S

by (rule tac x = T ∩ (affine hull S ) in exI ) auto
}
then show ?rhs ⊆ ?lhs
by (force simp add : rel interior def openin open)

qed

lemma mem rel interior : x ∈ rel interior S ←→ (∃T . open T ∧ x ∈ T ∩ S ∧ T
∩ affine hull S ⊆ S )
by (auto simp: rel interior)

lemma mem rel interior ball :
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x ∈ rel interior S ←→ x ∈ S ∧ (∃ e. e > 0 ∧ ball x e ∩ affine hull S ⊆ S )
(is ?lhs = ?rhs)

proof
assume ?rhs then show ?lhs
by (simp add : rel interior) (meson Elementary Metric Spaces.open ball centre in ball)

qed (force simp: rel interior open contains ball)

lemma rel interior ball :
rel interior S = {x ∈ S . ∃ e. e > 0 ∧ ball x e ∩ affine hull S ⊆ S}
using mem rel interior ball [of S ] by auto

lemma mem rel interior cball :
x ∈ rel interior S ←→ x ∈ S ∧ (∃ e. e > 0 ∧ cball x e ∩ affine hull S ⊆ S )
(is ?lhs = ?rhs)

proof
assume ?rhs then obtain e where x ∈ S e > 0 cball x e ∩ affine hull S ⊆ S
by (auto simp: rel interior)

then have ball x e ∩ affine hull S ⊆ S
by auto

then show ?lhs
using 〈0 < e〉 〈x ∈ S 〉 rel interior ball by auto

qed (force simp: rel interior open contains cball)

lemma rel interior cball :
rel interior S = {x ∈ S . ∃ e. e > 0 ∧ cball x e ∩ affine hull S ⊆ S}
using mem rel interior cball [of S ] by auto

lemma rel interior empty [simp]: rel interior {} = {}
by (auto simp: rel interior def )

lemma affine hull sing [simp]: affine hull {a :: ′n::euclidean space} = {a}
by (metis affine hull eq affine sing)

lemma rel interior sing [simp]:
fixes a :: ′n::euclidean space shows rel interior {a} = {a}

proof −
have ∃ x ::real . 0 < x
using zero less one by blast

then show ?thesis
by (auto simp: rel interior ball)

qed

lemma subset rel interior :
fixes S T :: ′n::euclidean space set
assumes S ⊆ T
and affine hull S = affine hull T

shows rel interior S ⊆ rel interior T
using assms by (auto simp: rel interior def )
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lemma rel interior subset : rel interior S ⊆ S
by (auto simp: rel interior def )

lemma rel interior subset closure: rel interior S ⊆ closure S
using rel interior subset by (auto simp: closure def )

lemma interior subset rel interior : interior S ⊆ rel interior S
by (auto simp: rel interior interior def )

lemma interior rel interior :
fixes S :: ′n::euclidean space set
assumes aff dim S = int(DIM ( ′n))
shows rel interior S = interior S

proof −
have affine hull S = UNIV
using assms affine hull UNIV [of S ] by auto

then show ?thesis
unfolding rel interior interior def by auto

qed

lemma rel interior interior :
fixes S :: ′n::euclidean space set
assumes affine hull S = UNIV
shows rel interior S = interior S
using assms unfolding rel interior interior def by auto

lemma rel interior open:
fixes S :: ′n::euclidean space set
assumes open S
shows rel interior S = S
by (metis assms interior eq interior subset rel interior rel interior subset set eq subset)

lemma interior rel interior gen:
fixes S :: ′n::euclidean space set
shows interior S = (if aff dim S = int(DIM ( ′n)) then rel interior S else {})
by (metis interior rel interior low dim interior)

lemma rel interior nonempty interior :
fixes S :: ′n::euclidean space set
shows interior S 6= {} =⇒ rel interior S = interior S

by (metis interior rel interior gen)

lemma affine hull nonempty interior :
fixes S :: ′n::euclidean space set
shows interior S 6= {} =⇒ affine hull S = UNIV

by (metis affine hull UNIV interior rel interior gen)

lemma rel interior affine hull [simp]:
fixes S :: ′n::euclidean space set
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shows rel interior (affine hull S ) = affine hull S
proof −
have ∗: rel interior (affine hull S ) ⊆ affine hull S
using rel interior subset by auto

{
fix x
assume x : x ∈ affine hull S
define e :: real where e = 1
then have e > 0 ball x e ∩ affine hull (affine hull S ) ⊆ affine hull S
using hull hull [of S ] by auto

then have x ∈ rel interior (affine hull S )
using x rel interior ball [of affine hull S ] by auto

}
then show ?thesis using ∗ by auto

qed

lemma rel interior UNIV [simp]: rel interior (UNIV :: ( ′n::euclidean space) set)
= UNIV
by (metis open UNIV rel interior open)

lemma rel interior convex shrink :
fixes S :: ′a::euclidean space set
assumes convex S
and c ∈ rel interior S
and x ∈ S
and 0 < e
and e ≤ 1

shows x − e ∗R (x − c) ∈ rel interior S
proof −
obtain d where d > 0 and d : ball c d ∩ affine hull S ⊆ S
using assms(2 ) unfolding mem rel interior ball by auto

{
fix y
assume as: dist (x − e ∗R (x − c)) y < e ∗ d y ∈ affine hull S
have ∗: y = (1 − (1 − e)) ∗R ((1 / e) ∗R y − ((1 − e) / e) ∗R x ) + (1 −

e) ∗R x
using 〈e > 0 〉 by (auto simp: scaleR left diff distrib scaleR right diff distrib)

have x ∈ affine hull S
using assms hull subset [of S ] by auto

moreover have 1 / e + − ((1 − e) / e) = 1
using 〈e > 0 〉 left diff distrib[of 1 (1−e) 1/e] by auto

ultimately have ∗∗: (1 / e) ∗R y − ((1 − e) / e) ∗R x ∈ affine hull S
using as affine affine hull [of S ] mem affine[of affine hull S y x (1 / e) −((1

− e) / e)]
by (simp add : algebra simps)

have c − ((1 / e) ∗R y − ((1 − e) / e) ∗R x ) = (1 / e) ∗R (e ∗R c − y +
(1 − e) ∗R x )

using 〈e > 0 〉

by (auto simp: euclidean eq iff [where ′a= ′a] field simps inner simps)
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then have dist c ((1 / e) ∗R y − ((1 − e) / e) ∗R x ) = |1/e| ∗ norm (e ∗R
c − y + (1 − e) ∗R x )

unfolding dist norm norm scaleR[symmetric] by auto
also have . . . = |1/e| ∗ norm (x − e ∗R (x − c) − y)
by (auto intro!:arg cong [where f=norm] simp add : algebra simps)

also have . . . < d
using as[unfolded dist norm] and 〈e > 0 〉

by (auto simp:pos divide less eq [OF 〈e > 0 〉] mult .commute)
finally have (1 / e) ∗R y − ((1 − e) / e) ∗R x ∈ S
using ∗∗ d by auto

then have y ∈ S
using ∗ convexD [OF 〈convex S 〉] assms(3−5 )
by (metis diff add cancel diff ge 0 iff ge le add same cancel1 less eq real def )

}
then have ball (x − e ∗R (x − c)) (e∗d) ∩ affine hull S ⊆ S
by auto

moreover have e ∗ d > 0
using 〈e > 0 〉 〈d > 0 〉 by simp

moreover have c: c ∈ S
using assms rel interior subset by auto

moreover from c have x − e ∗R (x − c) ∈ S
using convexD alt [of S x c e] assms
by (metis diff add eq diff diff eq2 less eq real def scaleR diff left scaleR one

scale right diff distrib)
ultimately show ?thesis
using mem rel interior ball [of x − e ∗R (x − c) S ] 〈e > 0 〉 by auto

qed

lemma interior real atLeast [simp]:
fixes a :: real
shows interior {a..} = {a<..}

proof −
{
fix y
have ball y (y − a) ⊆ {a..}
by (auto simp: dist norm)

moreover assume a < y
ultimately have y ∈ interior {a..}
by (force simp add : mem interior)

}
moreover
{
fix y
assume y ∈ interior {a..}
then obtain e where e: e > 0 cball y e ⊆ {a..}
using mem interior cball [of y {a..}] by auto

moreover from e have y − e ∈ cball y e
by (auto simp: cball def dist norm)

ultimately have a ≤ y − e by blast
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then have a < y using e by auto
}
ultimately show ?thesis by auto

qed

lemma continuous ge on Ioo:
assumes continuous on {c..d} g

∧
x . x ∈ {c<..<d} =⇒ g x ≥ a c < d x ∈

{c..d}
shows g (x ::real) ≥ (a::real)

proof−
from assms(3 ) have {c..d} = closure {c<..<d} by (rule closure greaterThanLessThan[symmetric])
also from assms(2 ) have {c<..<d} ⊆ (g −‘ {a..} ∩ {c..d}) by auto
hence closure {c<..<d} ⊆ closure (g −‘ {a..} ∩ {c..d}) by (rule closure mono)
also from assms(1 ) have closed (g −‘ {a..} ∩ {c..d})
by (auto simp: continuous on closed vimage)

hence closure (g −‘ {a..} ∩ {c..d}) = g −‘ {a..} ∩ {c..d} by simp
finally show ?thesis using 〈x ∈ {c..d}〉 by auto

qed

lemma interior real atMost [simp]:
fixes a :: real
shows interior {..a} = {..<a}

proof −
{
fix y
have ball y (a − y) ⊆ {..a}
by (auto simp: dist norm)

moreover assume a > y
ultimately have y ∈ interior {..a}
by (force simp add : mem interior)

}
moreover
{
fix y
assume y ∈ interior {..a}
then obtain e where e: e > 0 cball y e ⊆ {..a}
using mem interior cball [of y {..a}] by auto

moreover from e have y + e ∈ cball y e
by (auto simp: cball def dist norm)

ultimately have a ≥ y + e by auto
then have a > y using e by auto

}
ultimately show ?thesis by auto

qed

lemma interior atLeastAtMost real [simp]: interior {a..b} = {a<..<b :: real}
proof−
have {a..b} = {a..} ∩ {..b} by auto
also have interior . . . = {a<..} ∩ {..<b}
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by (simp)
also have . . . = {a<..<b} by auto
finally show ?thesis .

qed

lemma interior atLeastLessThan [simp]:
fixes a::real shows interior {a..<b} = {a<..<b}
by (metis atLeastLessThan def greaterThanLessThan def interior atLeastAtMost real

interior Int interior interior interior real atLeast)

lemma interior lessThanAtMost [simp]:
fixes a::real shows interior {a<..b} = {a<..<b}
by (metis atLeastAtMost def greaterThanAtMost def interior atLeastAtMost real

interior Int
interior interior interior real atLeast)

lemma interior greaterThanLessThan real [simp]: interior {a<..<b} = {a<..<b
:: real}
by (metis interior atLeastAtMost real interior interior)

lemma frontier real atMost [simp]:
fixes a :: real
shows frontier {..a} = {a}
unfolding frontier def by auto

lemma frontier real atLeast [simp]: frontier {a..} = {a::real}
by (auto simp: frontier def )

lemma frontier real greaterThan [simp]: frontier {a<..} = {a::real}
by (auto simp: interior open frontier def )

lemma frontier real lessThan [simp]: frontier {..<a} = {a::real}
by (auto simp: interior open frontier def )

lemma rel interior real box [simp]:
fixes a b :: real
assumes a < b
shows rel interior {a .. b} = {a <..< b}

proof −
have box a b 6= {}
using assms
unfolding set eq iff
by (auto intro!: exI [of (a + b) / 2 ] simp: box def )

then show ?thesis
using interior rel interior gen[of cbox a b, symmetric]
by (simp split : if split asm del : box real add : box real [symmetric])

qed

lemma rel interior real semiline [simp]:
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fixes a :: real
shows rel interior {a..} = {a<..}

proof −
have ∗: {a<..} 6= {}
unfolding set eq iff by (auto intro!: exI [of a + 1 ])

then show ?thesis using interior real atLeast interior rel interior gen[of {a..}]
by (auto split : if split asm)

qed

Relative open sets

definition rel open S ←→ rel interior S = S

lemma rel open: rel open S ←→ openin (top of set (affine hull S )) S (is ?lhs =
?rhs)
proof
assume ?lhs
then show ?rhs
unfolding rel open def rel interior def
using openin subopen[of top of set (affine hull S ) S ] by auto

qed (auto simp: rel open def rel interior def )

lemma openin rel interior : openin (top of set (affine hull S )) (rel interior S )
using openin subopen by (fastforce simp add : rel interior def )

lemma openin set rel interior :
openin (top of set S ) (rel interior S )

by (rule openin subset trans [OF openin rel interior rel interior subset hull subset ])

lemma affine rel open:
fixes S :: ′n::euclidean space set
assumes affine S
shows rel open S
unfolding rel open def
using assms rel interior affine hull [of S ] affine hull eq [of S ]
by metis

lemma affine closed :
fixes S :: ′n::euclidean space set
assumes affine S
shows closed S

proof −
{
assume S 6= {}
then obtain L where L: subspace L affine parallel S L
using assms affine parallel subspace[of S ] by auto

then obtain a where a: S = ((+) a ‘ L)
using affine parallel def [of L S ] affine parallel commut by auto

from L have closed L using closed subspace by auto
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then have closed S
using closed translation a by auto

}
then show ?thesis by auto

qed

lemma closure affine hull :
fixes S :: ′n::euclidean space set
shows closure S ⊆ affine hull S
by (intro closure minimal hull subset affine closed affine affine hull)

lemma closed affine hull [iff ]:
fixes S :: ′n::euclidean space set
shows closed (affine hull S )
by (metis affine affine hull affine closed)

lemma closure same affine hull [simp]:
fixes S :: ′n::euclidean space set
shows affine hull (closure S ) = affine hull S

proof −
have affine hull (closure S ) ⊆ affine hull S
using hull mono[of closure S affine hull S affine]
closure affine hull [of S ] hull hull [of affine S ]

by auto
moreover have affine hull (closure S ) ⊇ affine hull S
using hull mono[of S closure S affine] closure subset by auto

ultimately show ?thesis by auto
qed

lemma closure aff dim [simp]:
fixes S :: ′n::euclidean space set
shows aff dim (closure S ) = aff dim S

proof −
have aff dim S ≤ aff dim (closure S )
using aff dim subset closure subset by auto

moreover have aff dim (closure S ) ≤ aff dim (affine hull S )
using aff dim subset closure affine hull by blast

moreover have aff dim (affine hull S ) = aff dim S
using aff dim affine hull by auto

ultimately show ?thesis by auto
qed

lemma rel interior closure convex shrink :
fixes S :: ::euclidean space set
assumes convex S
and c ∈ rel interior S
and x ∈ closure S
and e > 0
and e ≤ 1
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shows x − e ∗R (x − c) ∈ rel interior S
proof −
obtain d where d > 0 and d : ball c d ∩ affine hull S ⊆ S
using assms(2 ) unfolding mem rel interior ball by auto

have ∃ y ∈ S . norm (y − x ) ∗ (1 − e) < e ∗ d
proof (cases x ∈ S )
case True
then show ?thesis using 〈e > 0 〉 〈d > 0 〉 by force

next
case False
then have x : x islimpt S
using assms(3 )[unfolded closure def ] by auto

show ?thesis
proof (cases e = 1 )
case True
obtain y where y ∈ S y 6= x dist y x < 1
using x [unfolded islimpt approachable,THEN spec[where x=1 ]] by auto

then show ?thesis
unfolding True using 〈d > 0 〉 by (force simp add : )

next
case False
then have 0 < e ∗ d / (1 − e) and ∗: 1 − e > 0
using 〈e ≤ 1 〉 〈e > 0 〉 〈d > 0 〉 by auto

then obtain y where y ∈ S y 6= x dist y x < e ∗ d / (1 − e)
using x [unfolded islimpt approachable,THEN spec[where x=e∗d / (1 − e)]]

by auto
then show ?thesis
unfolding dist norm using pos less divide eq [OF ∗] by force

qed
qed
then obtain y where y ∈ S and y : norm (y − x ) ∗ (1 − e) < e ∗ d
by auto

define z where z = c + ((1 − e) / e) ∗R (x − y)
have ∗: x − e ∗R (x − c) = y − e ∗R (y − z )
unfolding z def using 〈e > 0 〉

by (auto simp: scaleR right diff distrib scaleR right distrib scaleR left diff distrib)
have zball : z ∈ ball c d
using mem ball z def dist norm[of c]
using y and assms(4 ,5 )
by (simp add : norm minus commute) (simp add : field simps)

have x ∈ affine hull S
using closure affine hull assms by auto

moreover have y ∈ affine hull S
using 〈y ∈ S 〉 hull subset [of S ] by auto

moreover have c ∈ affine hull S
using assms rel interior subset hull subset [of S ] by auto

ultimately have z ∈ affine hull S
using z def affine affine hull [of S ]
mem affine 3 minus [of affine hull S c x y (1 − e) / e]
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assms
by simp

then have z ∈ S using d zball by auto
obtain d1 where d1 > 0 and d1 : ball z d1 ≤ ball c d
using zball open ball [of c d ] openE [of ball c d z ] by auto

then have ball z d1 ∩ affine hull S ⊆ ball c d ∩ affine hull S
by auto

then have ball z d1 ∩ affine hull S ⊆ S
using d by auto

then have z ∈ rel interior S
using mem rel interior ball using 〈d1 > 0 〉 〈z ∈ S 〉 by auto

then have y − e ∗R (y − z ) ∈ rel interior S
using rel interior convex shrink [of S z y e] assms 〈y ∈ S 〉 by auto

then show ?thesis using ∗ by auto
qed

lemma rel interior eq :
rel interior s = s ←→ openin(top of set (affine hull s)) s

using rel open rel open def by blast

lemma rel interior openin:
openin(top of set (affine hull s)) s =⇒ rel interior s = s

by (simp add : rel interior eq)

lemma rel interior affine:
fixes S :: ′n::euclidean space set
shows affine S =⇒ rel interior S = S

using affine rel open rel open def by auto

lemma rel interior eq closure:
fixes S :: ′n::euclidean space set
shows rel interior S = closure S ←→ affine S

proof (cases S = {})
case True
then show ?thesis

by auto
next
case False show ?thesis
proof
assume eq : rel interior S = closure S
have openin (top of set (affine hull S )) S
by (metis eq closure subset openin rel interior rel interior subset subset antisym)
moreover have closedin (top of set (affine hull S )) S
by (metis closed subset closure subset eq eq hull subset rel interior subset)

ultimately have S = {} ∨ S = affine hull S
using convex connected connected clopen convex affine hull by metis

with False have affine hull S = S
by auto

then show affine S
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by (metis affine hull eq)
next
assume affine S
then show rel interior S = closure S
by (simp add : rel interior affine affine closed)

qed
qed

Relative interior preserves under linear transformations

lemma rel interior translation aux :
fixes a :: ′n::euclidean space
shows ((λx . a + x ) ‘ rel interior S ) ⊆ rel interior ((λx . a + x ) ‘ S )

proof −
{
fix x
assume x : x ∈ rel interior S
then obtain T where open T x ∈ T ∩ S T ∩ affine hull S ⊆ S
using mem rel interior [of x S ] by auto

then have open ((λx . a + x ) ‘ T )
and a + x ∈ ((λx . a + x ) ‘ T ) ∩ ((λx . a + x ) ‘ S )
and ((λx . a + x ) ‘ T ) ∩ affine hull ((λx . a + x ) ‘ S ) ⊆ (λx . a + x ) ‘ S
using affine hull translation[of a S ] open translation[of T a] x by auto

then have a + x ∈ rel interior ((λx . a + x ) ‘ S )
using mem rel interior [of a+x ((λx . a + x ) ‘ S )] by auto

}
then show ?thesis by auto

qed

lemma rel interior translation:
fixes a :: ′n::euclidean space
shows rel interior ((λx . a + x ) ‘ S ) = (λx . a + x ) ‘ rel interior S

proof −
have (λx . (−a) + x ) ‘ rel interior ((λx . a + x ) ‘ S ) ⊆ rel interior S
using rel interior translation aux [of −a (λx . a + x ) ‘ S ]
translation assoc[of −a a]

by auto
then have ((λx . a + x ) ‘ rel interior S ) ⊇ rel interior ((λx . a + x ) ‘ S )
using translation inverse subset [of a rel interior ((+) a ‘ S ) rel interior S ]
by auto

then show ?thesis
using rel interior translation aux [of a S ] by auto

qed

lemma affine hull linear image:
assumes bounded linear f
shows f ‘ (affine hull s) = affine hull f ‘ s

proof −
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interpret f : bounded linear f by fact
have affine {x . f x ∈ affine hull f ‘ s}
unfolding affine def
by (auto simp: f .scaleR f .add affine affine hull [unfolded affine def , rule format ])
moreover have affine {x . x ∈ f ‘ (affine hull s)}
using affine affine hull [unfolded affine def , of s]
unfolding affine def by (auto simp: f .scaleR [symmetric] f .add [symmetric])

ultimately show ?thesis
by (auto simp: hull inc elim!: hull induct)

qed

lemma rel interior injective on span linear image:
fixes f :: ′m::euclidean space ⇒ ′n::euclidean space
and S :: ′m::euclidean space set

assumes bounded linear f
and inj on f (span S )

shows rel interior (f ‘ S ) = f ‘ (rel interior S )
proof −
{
fix z
assume z : z ∈ rel interior (f ‘ S )
then have z ∈ f ‘ S
using rel interior subset [of f ‘ S ] by auto

then obtain x where x : x ∈ S f x = z by auto
obtain e2 where e2 : e2 > 0 cball z e2 ∩ affine hull (f ‘ S ) ⊆ (f ‘ S )
using z rel interior cball [of f ‘ S ] by auto

obtain K where K : K > 0
∧
x . norm (f x ) ≤ norm x ∗ K

using assms Real Vector Spaces.bounded linear .pos bounded [of f ] by auto
define e1 where e1 = 1 / K
then have e1 : e1 > 0

∧
x . e1 ∗ norm (f x ) ≤ norm x

using K pos le divide eq [of e1 ] by auto
define e where e = e1 ∗ e2
then have e > 0 using e1 e2 by auto
{
fix y
assume y : y ∈ cball x e ∩ affine hull S
then have h1 : f y ∈ affine hull (f ‘ S )
using affine hull linear image[of f S ] assms by auto

from y have norm (x−y) ≤ e1 ∗ e2
using cball def [of x e] dist norm[of x y ] e def by auto

moreover have f x − f y = f (x − y)
using assms linear diff [of f x y ] linear conv bounded linear [of f ] by auto

moreover have e1 ∗ norm (f (x−y)) ≤ norm (x − y)
using e1 by auto

ultimately have e1 ∗ norm ((f x )−(f y)) ≤ e1 ∗ e2
by auto

then have f y ∈ cball z e2
using cball def [of f x e2 ] dist norm[of f x f y ] e1 x by auto
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then have f y ∈ f ‘ S
using y e2 h1 by auto

then have y ∈ S
using assms y hull subset [of S ] affine hull subset span
inj on image mem iff [OF 〈inj on f (span S )〉]

by (metis Int iff span superset subsetCE )
}
then have z ∈ f ‘ (rel interior S )
using mem rel interior cball [of x S ] 〈e > 0 〉 x by auto

}
moreover
{
fix x
assume x : x ∈ rel interior S
then obtain e2 where e2 : e2 > 0 cball x e2 ∩ affine hull S ⊆ S
using rel interior cball [of S ] by auto

have x ∈ S using x rel interior subset by auto
then have ∗: f x ∈ f ‘ S by auto
have ∀ x∈span S . f x = 0 −→ x = 0
using assms subspace span linear conv bounded linear [of f ]
linear injective on subspace 0 [of f span S ]

by auto
then obtain e1 where e1 : e1 > 0 ∀ x ∈ span S . e1 ∗ norm x ≤ norm (f x )
using assms injective imp isometric[of span S f ]
subspace span[of S ] closed subspace[of span S ]

by auto
define e where e = e1 ∗ e2
hence e > 0 using e1 e2 by auto
{
fix y
assume y : y ∈ cball (f x ) e ∩ affine hull (f ‘ S )
then have y ∈ f ‘ (affine hull S )
using affine hull linear image[of f S ] assms by auto

then obtain xy where xy : xy ∈ affine hull S f xy = y by auto
with y have norm (f x − f xy) ≤ e1 ∗ e2
using cball def [of f x e] dist norm[of f x y ] e def by auto

moreover have f x − f xy = f (x − xy)
using assms linear diff [of f x xy ] linear conv bounded linear [of f ] by auto

moreover have ∗: x − xy ∈ span S
using subspace diff [of span S x xy ] subspace span 〈x ∈ S 〉 xy
affine hull subset span[of S ] span superset

by auto
moreover from ∗ have e1 ∗ norm (x − xy) ≤ norm (f (x − xy))
using e1 by auto

ultimately have e1 ∗ norm (x − xy) ≤ e1 ∗ e2
by auto

then have xy ∈ cball x e2
using cball def [of x e2 ] dist norm[of x xy ] e1 by auto

then have y ∈ f ‘ S
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using xy e2 by auto
}
then have f x ∈ rel interior (f ‘ S )
using mem rel interior cball [of (f x ) (f ‘ S )] ∗ 〈e > 0 〉 by auto

}
ultimately show ?thesis by auto

qed

lemma rel interior injective linear image:
fixes f :: ′m::euclidean space ⇒ ′n::euclidean space
assumes bounded linear f
and inj f

shows rel interior (f ‘ S ) = f ‘ (rel interior S )
using assms rel interior injective on span linear image[of f S ]
subset inj on[of f UNIV span S ]

by auto

4.2.3 Openness and compactness are preserved by convex
hull operation

lemma open convex hull [intro]:
fixes S :: ′a::real normed vector set
assumes open S
shows open (convex hull S )

proof (clarsimp simp: open contains cball convex hull explicit)
fix T and u :: ′a⇒real
assume obt : finite T T⊆S ∀ x∈T . 0 ≤ u x sum u T = 1

from assms[unfolded open contains cball ] obtain b
where b:

∧
x . x∈S =⇒ 0 < b x ∧ cball x (b x ) ⊆ S by metis

have b ‘ T 6= {}
using obt by auto

define i where i = b ‘ T
let ?Φ = λy . ∃F . finite F ∧ F ⊆ S ∧ (∃ u. (∀ x∈F . 0 ≤ u x ) ∧ sum u F = 1
∧ (

∑
v∈F . u v ∗R v) = y)

let ?a =
∑

v∈T . u v ∗R v
show ∃ e > 0 . cball ?a e ⊆ {y . ?Φ y}
proof (intro exI subsetI conjI )
show 0 < Min i
unfolding i def and Min gr iff [OF finite imageI [OF obt(1 )] 〈b ‘ T 6={}〉]
using b 〈T⊆S 〉 by auto

next
fix y
assume y ∈ cball ?a (Min i)
then have y : norm (?a − y) ≤ Min i
unfolding dist norm[symmetric] by auto

{ fix x
assume x ∈ T
then have Min i ≤ b x
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by (simp add : i def obt(1 ))
then have x + (y − ?a) ∈ cball x (b x )
using y unfolding mem cball dist norm by auto

moreover have x ∈ S
using 〈x∈T 〉 〈T⊆S 〉 by auto

ultimately have x + (y − ?a) ∈ S
using y b by blast

}
moreover
have ∗: inj on (λv . v + (y − ?a)) T
unfolding inj on def by auto

have (
∑

v∈(λv . v + (y − ?a)) ‘ T . u (v − (y − ?a)) ∗R v) = y
unfolding sum.reindex [OF ∗] o def using obt(4 )

by (simp add : sum.distrib sum subtractf scaleR left .sum[symmetric] scaleR right distrib)
ultimately show y ∈ {y . ?Φ y}
proof (intro CollectI exI conjI )
show finite ((λv . v + (y − ?a)) ‘ T )
by (simp add : obt(1 ))

show sum (λv . u (v − (y − ?a))) ((λv . v + (y − ?a)) ‘ T ) = 1
unfolding sum.reindex [OF ∗] o def using obt(4 ) by auto

qed (use obt(1 , 3 ) in auto)
qed

qed

lemma compact convex combinations:
fixes S T :: ′a::real normed vector set
assumes compact S compact T
shows compact { (1 − u) ∗R x + u ∗R y | x y u. 0 ≤ u ∧ u ≤ 1 ∧ x ∈ S ∧ y
∈ T}
proof −
let ?X = {0 ..1} × S × T
let ?h = (λz . (1 − fst z ) ∗R fst (snd z ) + fst z ∗R snd (snd z ))
have ∗: { (1 − u) ∗R x + u ∗R y | x y u. 0 ≤ u ∧ u ≤ 1 ∧ x ∈ S ∧ y ∈ T} =

?h ‘ ?X
by force

have continuous on ?X (λz . (1 − fst z ) ∗R fst (snd z ) + fst z ∗R snd (snd z ))
unfolding continuous on by (rule ballI ) (intro tendsto intros)

with assms show ?thesis
by (simp add : ∗ compact Times compact continuous image)

qed

lemma finite imp compact convex hull :
fixes S :: ′a::real normed vector set
assumes finite S
shows compact (convex hull S )

proof (cases S = {})
case True
then show ?thesis by simp

next
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case False
with assms show ?thesis
proof (induct rule: finite ne induct)
case (singleton x )
show ?case by simp

next
case (insert x A)
let ?f = λ(u, y :: ′a). u ∗R x + (1 − u) ∗R y
let ?T = {0 ..1 ::real} × (convex hull A)
have continuous on ?T ?f
unfolding split def continuous on by (intro ballI tendsto intros)

moreover have compact ?T
by (intro compact Times compact Icc insert)

ultimately have compact (?f ‘ ?T )
by (rule compact continuous image)

also have ?f ‘ ?T = convex hull (insert x A)
unfolding convex hull insert [OF 〈A 6= {}〉]
apply safe
apply (rule tac x=a in exI , simp)
apply (rule tac x=1 − a in exI , simp, fast)
apply (rule tac x=(u, b) in image eqI , simp all)
done

finally show compact (convex hull (insert x A)) .
qed

qed

lemma compact convex hull :
fixes S :: ′a::euclidean space set
assumes compact S
shows compact (convex hull S )

proof (cases S = {})
case True
then show ?thesis using compact empty by simp

next
case False
then obtain w where w ∈ S by auto
show ?thesis
unfolding caratheodory [of S ]

proof (induct (DIM ( ′a) + 1 ))
case 0
have ∗: {x .∃ sa. finite sa ∧ sa ⊆ S ∧ card sa ≤ 0 ∧ x ∈ convex hull sa} = {}
using compact empty by auto

from 0 show ?case unfolding ∗ by simp
next
case (Suc n)
show ?case
proof (cases n = 0 )
case True
have {x . ∃T . finite T ∧ T ⊆ S ∧ card T ≤ Suc n ∧ x ∈ convex hull T} = S
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unfolding set eq iff and mem Collect eq
proof (rule, rule)
fix x
assume ∃T . finite T ∧ T ⊆ S ∧ card T ≤ Suc n ∧ x ∈ convex hull T
then obtain T where T : finite T T ⊆ S card T ≤ Suc n x ∈ convex hull

T
by auto

show x ∈ S
proof (cases card T = 0 )
case True
then show ?thesis
using T (4 ) unfolding card 0 eq [OF T (1 )] by simp

next
case False
then have card T = Suc 0 using T (3 ) 〈n=0 〉 by auto
then obtain a where T = {a} unfolding card Suc eq by auto
then show ?thesis using T (2 ,4 ) by simp

qed
next
fix x assume x∈S
then show ∃T . finite T ∧ T ⊆ S ∧ card T ≤ Suc n ∧ x ∈ convex hull T
by (rule tac x={x} in exI ) (use convex hull singleton in auto)

qed
then show ?thesis using assms by simp

next
case False
have {x . ∃T . finite T ∧ T ⊆ S ∧ card T ≤ Suc n ∧ x ∈ convex hull T} =
{(1 − u) ∗R x + u ∗R y | x y u.
0 ≤ u ∧ u ≤ 1 ∧ x ∈ S ∧ y ∈ {x . ∃T . finite T ∧ T ⊆ S ∧ card T ≤ n

∧ x ∈ convex hull T}}
unfolding set eq iff and mem Collect eq

proof (rule, rule)
fix x
assume ∃ u v c. x = (1 − c) ∗R u + c ∗R v ∧
0 ≤ c ∧ c ≤ 1 ∧ u ∈ S ∧ (∃T . finite T ∧ T ⊆ S ∧ card T ≤ n ∧ v ∈

convex hull T )
then obtain u v c T where obt : x = (1 − c) ∗R u + c ∗R v
0 ≤ c ∧ c ≤ 1 u ∈ S finite T T ⊆ S card T ≤ n v ∈ convex hull T
by auto

moreover have (1 − c) ∗R u + c ∗R v ∈ convex hull insert u T
by (meson convexD alt convex convex hull hull inc hull mono in mono

insertCI obt(2 ) obt(7 ) subset insertI )
ultimately show ∃T . finite T ∧ T ⊆ S ∧ card T ≤ Suc n ∧ x ∈ convex

hull T
by (rule tac x=insert u T in exI ) (auto simp: card insert if )

next
fix x
assume ∃T . finite T ∧ T ⊆ S ∧ card T ≤ Suc n ∧ x ∈ convex hull T
then obtain T where T : finite T T ⊆ S card T ≤ Suc n x ∈ convex hull
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T
by auto

show ∃ u v c. x = (1 − c) ∗R u + c ∗R v ∧
0 ≤ c ∧ c ≤ 1 ∧ u ∈ S ∧ (∃T . finite T ∧ T ⊆ S ∧ card T ≤ n ∧ v ∈

convex hull T )
proof (cases card T = Suc n)
case False
then have card T ≤ n using T (3 ) by auto
then show ?thesis
using 〈w∈S 〉 and T
by (rule tac x=w in exI , rule tac x=x in exI , rule tac x=1 in exI ) auto

next
case True
then obtain a u where au: T = insert a u a /∈u
by (metis card le Suc iff order refl)

show ?thesis
proof (cases u = {})
case True
then have x = a using T (4 )[unfolded au] by auto
show ?thesis unfolding 〈x = a〉

using T 〈n 6= 0 〉 unfolding au
by (rule tac x=a in exI , rule tac x=a in exI , rule tac x=1 in exI )

force
next
case False
obtain ux vx b where obt : ux≥0 vx≥0 ux + vx = 1
b ∈ convex hull u x = ux ∗R a + vx ∗R b
using T (4 )[unfolded au convex hull insert [OF False]]
by auto

have ∗: 1 − vx = ux using obt(3 ) by auto
show ?thesis
using obt T (1−3 ) card insert disjoint [OF au(2 )] unfolding au ∗
by (rule tac x=a in exI , rule tac x=b in exI , rule tac x=vx in exI )

force
qed

qed
qed
then show ?thesis
using compact convex combinations[OF assms Suc] by simp

qed
qed

qed

4.2.4 Extremal points of a simplex are some vertices

lemma dist increases online:
fixes a b d :: ′a::real inner
assumes d 6= 0
shows dist a (b + d) > dist a b ∨ dist a (b − d) > dist a b
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proof (cases inner a d − inner b d > 0 )
case True
then have 0 < inner d d + (inner a d ∗ 2 − inner b d ∗ 2 )
using assms
by (intro add pos pos) auto

then show ?thesis
unfolding dist norm and norm eq sqrt inner and real sqrt less iff
by (simp add : algebra simps inner commute)

next
case False
then have 0 < inner d d + (inner b d ∗ 2 − inner a d ∗ 2 )
using assms
by (intro add pos nonneg) auto

then show ?thesis
unfolding dist norm and norm eq sqrt inner and real sqrt less iff
by (simp add : algebra simps inner commute)

qed

lemma norm increases online:
fixes d :: ′a::real inner
shows d 6= 0 =⇒ norm (a + d) > norm a ∨ norm(a − d) > norm a
using dist increases online[of d a 0 ] unfolding dist norm by auto

lemma simplex furthest lt :
fixes S :: ′a::real inner set
assumes finite S
shows ∀ x ∈ convex hull S . x /∈ S −→ (∃ y ∈ convex hull S . norm (x − a) <

norm(y − a))
using assms

proof induct
fix x S
assume as: finite S x /∈S ∀ x∈convex hull S . x /∈ S −→ (∃ y∈convex hull S . norm

(x − a) < norm (y − a))
show ∀ xa∈convex hull insert x S . xa /∈ insert x S −→
(∃ y∈convex hull insert x S . norm (xa − a) < norm (y − a))

proof (intro impI ballI , cases S = {})
case False
fix y
assume y : y ∈ convex hull insert x S y /∈ insert x S
obtain u v b where obt : u≥0 v≥0 u + v = 1 b ∈ convex hull S y = u ∗R x

+ v ∗R b
using y(1 )[unfolded convex hull insert [OF False]] by auto

show ∃ z∈convex hull insert x S . norm (y − a) < norm (z − a)
proof (cases y ∈ convex hull S )
case True
then obtain z where z ∈ convex hull S norm (y − a) < norm (z − a)
using as(3 )[THEN bspec[where x=y ]] and y(2 ) by auto

then show ?thesis
by (meson hull mono subsetD subset insertI )
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next
case False
show ?thesis
proof (cases u = 0 ∨ v = 0 )
case True
with False show ?thesis
using obt y by auto

next
case False
then obtain w where w : w>0 w<u w<v
using field lbound gt zero[of u v ] and obt(1 ,2 ) by auto

have x 6= b
proof
assume x = b
then have y = b unfolding obt(5 )
using obt(3 ) by (auto simp: scaleR left distrib[symmetric])

then show False using obt(4 ) and False
using 〈x = b〉 y(2 ) by blast

qed
then have ∗: w ∗R (x − b) 6= 0 using w(1 ) by auto
show ?thesis
using dist increases online[OF ∗, of a y ]

proof (elim disjE )
assume dist a y < dist a (y + w ∗R (x − b))
then have norm (y − a) < norm ((u + w) ∗R x + (v − w) ∗R b − a)
unfolding dist commute[of a]
unfolding dist norm obt(5 )
by (simp add : algebra simps)

moreover have (u + w) ∗R x + (v − w) ∗R b ∈ convex hull insert x S
unfolding convex hull insert [OF 〈S 6={}〉]

proof (intro CollectI conjI exI )
show u + w ≥ 0 v − w ≥ 0
using obt(1 ) w by auto

qed (use obt in auto)
ultimately show ?thesis by auto

next
assume dist a y < dist a (y − w ∗R (x − b))
then have norm (y − a) < norm ((u − w) ∗R x + (v + w) ∗R b − a)
unfolding dist commute[of a]
unfolding dist norm obt(5 )
by (simp add : algebra simps)

moreover have (u − w) ∗R x + (v + w) ∗R b ∈ convex hull insert x S
unfolding convex hull insert [OF 〈S 6={}〉]

proof (intro CollectI conjI exI )
show u − w ≥ 0 v + w ≥ 0
using obt(1 ) w by auto

qed (use obt in auto)
ultimately show ?thesis by auto

qed
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qed
qed

qed auto
qed (auto simp: assms)

lemma simplex furthest le:
fixes S :: ′a::real inner set
assumes finite S
and S 6= {}

shows ∃ y∈S . ∀ x∈ convex hull S . norm (x − a) ≤ norm (y − a)
proof −
have convex hull S 6= {}
using hull subset [of S convex ] and assms(2 ) by auto

then obtain x where x : x ∈ convex hull S ∀ y∈convex hull S . norm (y − a) ≤
norm (x − a)

using distance attains sup[OF finite imp compact convex hull [OF 〈finite S 〉], of
a]

unfolding dist commute[of a]
unfolding dist norm
by auto

show ?thesis
proof (cases x ∈ S )
case False
then obtain y where y ∈ convex hull S norm (x − a) < norm (y − a)
using simplex furthest lt [OF assms(1 ), THEN bspec[where x=x ]] and x (1 )
by auto

then show ?thesis
using x (2 )[THEN bspec[where x=y ]] by auto

next
case True
with x show ?thesis by auto

qed
qed

lemma simplex furthest le exists:
fixes S :: ( ′a::real inner) set
shows finite S =⇒ ∀ x∈(convex hull S ). ∃ y∈S . norm (x − a) ≤ norm (y − a)
using simplex furthest le[of S ] by (cases S = {}) auto

lemma simplex extremal le:
fixes S :: ′a::real inner set
assumes finite S
and S 6= {}

shows ∃ u∈S . ∃ v∈S . ∀ x∈convex hull S . ∀ y ∈ convex hull S . norm (x − y) ≤
norm (u − v)
proof −
have convex hull S 6= {}
using hull subset [of S convex ] and assms(2 ) by auto

then obtain u v where obt : u ∈ convex hull S v ∈ convex hull S
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∀ x∈convex hull S . ∀ y∈convex hull S . norm (x − y) ≤ norm (u − v)
using compact sup maxdistance[OF finite imp compact convex hull [OF assms(1 )]]
by (auto simp: dist norm)

then show ?thesis
proof (cases u /∈S ∨ v /∈S , elim disjE )
assume u /∈ S
then obtain y where y ∈ convex hull S norm (u − v) < norm (y − v)
using simplex furthest lt [OF assms(1 ), THEN bspec[where x=u]] and obt(1 )
by auto

then show ?thesis
using obt(3 )[THEN bspec[where x=y ], THEN bspec[where x=v ]] and obt(2 )
by auto

next
assume v /∈ S
then obtain y where y ∈ convex hull S norm (v − u) < norm (y − u)
using simplex furthest lt [OF assms(1 ), THEN bspec[where x=v ]] and obt(2 )
by auto

then show ?thesis
using obt(3 )[THEN bspec[where x=u], THEN bspec[where x=y ]] and obt(1 )
by (auto simp: norm minus commute)

qed auto
qed

lemma simplex extremal le exists:
fixes S :: ′a::real inner set
shows finite S =⇒ x ∈ convex hull S =⇒ y ∈ convex hull S =⇒
∃ u∈S . ∃ v∈S . norm (x − y) ≤ norm (u − v)

using convex hull empty simplex extremal le[of S ]
by(cases S = {}) auto

4.2.5 Closest point of a convex set is unique, with a contin-
uous projection

definition closest point :: ′a::{real inner ,heine borel} set ⇒ ′a ⇒ ′a
where closest point S a = (SOME x . x ∈ S ∧ (∀ y∈S . dist a x ≤ dist a y))

lemma closest point exists:
assumes closed S
and S 6= {}

shows closest point in set : closest point S a ∈ S
and ∀ y∈S . dist a (closest point S a) ≤ dist a y

unfolding closest point def
by (rule tac someI2 ex , auto intro: distance attains inf [OF assms(1 ,2 ), of a])+

lemma closest point le: closed S =⇒ x ∈ S =⇒ dist a (closest point S a) ≤ dist
a x
using closest point exists[of S ] by auto

lemma closest point self :
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assumes x ∈ S
shows closest point S x = x
unfolding closest point def
by (rule some1 equality , rule ex1I [of x ]) (use assms in auto)

lemma closest point refl : closed S =⇒ S 6= {} =⇒ closest point S x = x ←→ x
∈ S
using closest point in set [of S x ] closest point self [of x S ]
by auto

lemma closer points lemma:
assumes inner y z > 0
shows ∃ u>0 . ∀ v>0 . v ≤ u −→ norm(v ∗R z − y) < norm y

proof −
have z : inner z z > 0
unfolding inner gt zero iff using assms by auto

have norm (v ∗R z − y) < norm y
if 0 < v and v ≤ inner y z / inner z z for v
unfolding norm lt using z assms that
by (simp add : field simps inner diff inner commute mult strict left mono[OF

〈0<v 〉])
then show ?thesis
using assms z
by (rule tac x = inner y z / inner z z in exI ) auto

qed

lemma closer point lemma:
assumes inner (y − x ) (z − x ) > 0
shows ∃ u>0 . u ≤ 1 ∧ dist (x + u ∗R (z − x )) y < dist x y

proof −
obtain u where u > 0
and u:

∧
v . [[0<v ; v ≤ u]] =⇒ norm (v ∗R (z − x ) − (y − x )) < norm (y −

x )
using closer points lemma[OF assms] by auto

show ?thesis
using u[of min u 1 ] and 〈u > 0 〉

by (metis diff diff add dist commute dist norm less eq real def not less u zero less one)
qed

lemma any closest point dot :
assumes convex S closed S x ∈ S y ∈ S ∀ z∈S . dist a x ≤ dist a z
shows inner (a − x ) (y − x ) ≤ 0

proof (rule ccontr)
assume ¬ ?thesis
then obtain u where u: u>0 u≤1 dist (x + u ∗R (y − x )) a < dist x a
using closer point lemma[of a x y ] by auto

let ?z = (1 − u) ∗R x + u ∗R y
have ?z ∈ S
using convexD alt [OF assms(1 ,3 ,4 ), of u] using u by auto
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then show False
using assms(5 )[THEN bspec[where x=?z ]] and u(3 )
by (auto simp: dist commute algebra simps)

qed

lemma any closest point unique:
fixes x :: ′a::real inner
assumes convex S closed S x ∈ S y ∈ S
∀ z∈S . dist a x ≤ dist a z ∀ z∈S . dist a y ≤ dist a z

shows x = y
using any closest point dot [OF assms(1−4 ,5 )] and any closest point dot [OF

assms(1−2 ,4 ,3 ,6 )]
unfolding norm pths(1 ) and norm le square
by (auto simp: algebra simps)

lemma closest point unique:
assumes convex S closed S x ∈ S ∀ z∈S . dist a x ≤ dist a z
shows x = closest point S a
using any closest point unique[OF assms(1−3 ) assms(4 ), of closest point S a]
using closest point exists[OF assms(2 )] and assms(3 ) by auto

lemma closest point dot :
assumes convex S closed S x ∈ S
shows inner (a − closest point S a) (x − closest point S a) ≤ 0
using any closest point dot [OF assms(1 ,2 ) assms(3 )]
by (metis assms(2 ) assms(3 ) closest point in set closest point le empty iff )

lemma closest point lt :
assumes convex S closed S x ∈ S x 6= closest point S a
shows dist a (closest point S a) < dist a x
using closest point unique[where a=a] closest point le[where a=a] assms by

fastforce

lemma setdist closest point :
[[closed S ; S 6= {}]] =⇒ setdist {a} S = dist a (closest point S a)

by (metis closest point exists(2 ) closest point in set emptyE insert iff setdist unique)

lemma closest point lipschitz :
assumes convex S
and closed S S 6= {}

shows dist (closest point S x ) (closest point S y) ≤ dist x y
proof −
have inner (x − closest point S x ) (closest point S y − closest point S x ) ≤ 0
and inner (y − closest point S y) (closest point S x − closest point S y) ≤ 0
by (simp all add : assms closest point dot closest point in set)

then show ?thesis unfolding dist norm and norm le
using inner ge zero[of (x − closest point S x ) − (y − closest point S y)]
by (simp add : inner add inner diff inner commute)

qed
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lemma continuous at closest point :
assumes convex S
and closed S
and S 6= {}

shows continuous (at x ) (closest point S )
unfolding continuous at eps delta
using le less trans[OF closest point lipschitz [OF assms]] by auto

lemma continuous on closest point :
assumes convex S
and closed S
and S 6= {}

shows continuous on t (closest point S )
by (metis continuous at imp continuous on continuous at closest point [OF assms])

proposition closest point in rel interior :
assumes closed S S 6= {} and x : x ∈ affine hull S
shows closest point S x ∈ rel interior S ←→ x ∈ rel interior S

proof (cases x ∈ S )
case True
then show ?thesis
by (simp add : closest point self )

next
case False
then have False if asm: closest point S x ∈ rel interior S
proof −
obtain e where e > 0 and clox : closest point S x ∈ S

and e: cball (closest point S x ) e ∩ affine hull S ⊆ S
using asm mem rel interior cball by blast

then have clo notx : closest point S x 6= x
using 〈x /∈ S 〉 by auto

define y where y ≡ closest point S x −
(min 1 (e / norm(closest point S x − x ))) ∗R (closest point S

x − x )
have x − y = (1 − min 1 (e / norm (closest point S x − x ))) ∗R (x −

closest point S x )
by (simp add : y def algebra simps)

then have norm (x − y) = abs ((1 − min 1 (e / norm (closest point S x −
x )))) ∗ norm(x − closest point S x )

by simp
also have . . . < norm(x − closest point S x )
using clo notx 〈e > 0 〉

by (auto simp: mult less cancel right2 field split simps)
finally have no less: norm (x − y) < norm (x − closest point S x ) .
have y ∈ affine hull S
unfolding y def
by (meson affine affine hull clox hull subset mem affine 3 minus2 subsetD x )

moreover have dist (closest point S x ) y ≤ e
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using 〈e > 0 〉 by (auto simp: y def min mult distrib right)
ultimately have y ∈ S
using subsetD [OF e] by simp

then have dist x (closest point S x ) ≤ dist x y
by (simp add : closest point le 〈closed S 〉)

with no less show False
by (simp add : dist norm)

qed
moreover have x /∈ rel interior S
using rel interior subset False by blast

ultimately show ?thesis by blast
qed

Various point-to-set separating/supporting hyperplane theorems

lemma supporting hyperplane closed point :
fixes z :: ′a::{real inner ,heine borel}
assumes convex S
and closed S
and S 6= {}
and z /∈ S

shows ∃ a b. ∃ y∈S . inner a z < b ∧ inner a y = b ∧ (∀ x∈S . inner a x ≥ b)
proof −
obtain y where y ∈ S and y : ∀ x∈S . dist z y ≤ dist z x
by (metis distance attains inf [OF assms(2−3 )])

show ?thesis
proof (intro exI bexI conjI ballI )
show (y − z ) · z < (y − z ) · y

by (metis 〈y ∈ S 〉 assms(4 ) diff gt 0 iff gt inner commute inner diff left
inner gt zero iff right minus eq)

show (y − z ) · y ≤ (y − z ) · x if x ∈ S for x
proof (rule ccontr)
have ∗:

∧
u. 0 ≤ u ∧ u ≤ 1 −→ dist z y ≤ dist z ((1 − u) ∗R y + u ∗R x )

using assms(1 )[unfolded convex alt ] and y and 〈x∈S 〉 and 〈y∈S 〉 by auto
assume ¬ (y − z ) · y ≤ (y − z ) · x
then obtain v where v > 0 v ≤ 1 dist (y + v ∗R (x − y)) z < dist y z
using closer point lemma[of z y x ] by (auto simp: inner diff )

then show False
using ∗[of v ] by (auto simp: dist commute algebra simps)

qed
qed (use 〈y ∈ S 〉 in auto)

qed

lemma separating hyperplane closed point :
fixes z :: ′a::{real inner ,heine borel}
assumes convex S
and closed S
and z /∈ S

shows ∃ a b. inner a z < b ∧ (∀ x∈S . inner a x > b)
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proof (cases S = {})
case True
then show ?thesis
by (simp add : gt ex )

next
case False
obtain y where y ∈ S and y :

∧
x . x ∈ S =⇒ dist z y ≤ dist z x

by (metis distance attains inf [OF assms(2 ) False])
show ?thesis
proof (intro exI conjI ballI )
show (y − z ) · z < inner (y − z ) z + (norm (y − z ))2 / 2
using 〈y∈S 〉 〈z /∈S 〉 by auto

next
fix x
assume x ∈ S
have False if ∗: 0 < inner (z − y) (x − y)
proof −
obtain u where u > 0 u ≤ 1 dist (y + u ∗R (x − y)) z < dist y z
using ∗ closer point lemma by blast

then show False using y [of y + u ∗R (x − y)] convexD alt [OF 〈convex S 〉]
using 〈x∈S 〉 〈y∈S 〉 by (auto simp: dist commute algebra simps)

qed
moreover have 0 < (norm (y − z ))2

using 〈y∈S 〉 〈z /∈S 〉 by auto
then have 0 < inner (y − z ) (y − z )
unfolding power2 norm eq inner by simp

ultimately show (y − z ) · z + (norm (y − z ))2 / 2 < (y − z ) · x
by (force simp: field simps power2 norm eq inner inner commute inner diff )

qed
qed

lemma separating hyperplane closed 0 :
assumes convex (S ::( ′a::euclidean space) set)
and closed S
and 0 /∈ S

shows ∃ a b. a 6= 0 ∧ 0 < b ∧ (∀ x∈S . inner a x > b)
proof (cases S = {})
case True
have (SOME i . i∈Basis) 6= (0 :: ′a)
by (metis Basis zero SOME Basis)

then show ?thesis
using True zero less one by blast

next
case False
then show ?thesis
using False using separating hyperplane closed point [OF assms]
by (metis all not in conv inner zero left inner zero right less eq real def not le)

qed
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Now set-to-set for closed/compact sets

lemma separating hyperplane closed compact :
fixes S :: ′a::euclidean space set
assumes convex S
and closed S
and convex T
and compact T
and T 6= {}
and S ∩ T = {}

shows ∃ a b. (∀ x∈S . inner a x < b) ∧ (∀ x∈T . inner a x > b)
proof (cases S = {})
case True
obtain b where b: b > 0 ∀ x∈T . norm x ≤ b
using compact imp bounded [OF assms(4 )] unfolding bounded pos by auto

obtain z :: ′a where z : norm z = b + 1
using vector choose size[of b + 1 ] and b(1 ) by auto

then have z /∈ T using b(2 )[THEN bspec[where x=z ]] by auto
then obtain a b where ab: inner a z < b ∀ x∈T . b < inner a x
using separating hyperplane closed point [OF assms(3 ) compact imp closed [OF

assms(4 )], of z ]
by auto

then show ?thesis
using True by auto

next
case False
then obtain y where y ∈ S by auto
obtain a b where 0 < b and §:

∧
x . x ∈ (

⋃
x∈ S .

⋃
y ∈ T . {x − y}) =⇒ b <

inner a x
using separating hyperplane closed point [OF convex differences[OF assms(1 ,3 )],

of 0 ]
using closed compact differences assms by fastforce

have ab: b + inner a y < inner a x if x∈S y∈T for x y
using § [of x−y ] that by (auto simp add : inner diff right less diff eq)

define k where k = (SUP x∈T . a · x )
have k + b / 2 < a · x if x ∈ S for x
proof −
have k ≤ inner a x − b
unfolding k def
using 〈T 6= {}〉 ab that by (fastforce intro: cSUP least)

then show ?thesis
using 〈0 < b〉 by auto

qed
moreover
have − (k + b / 2 ) < − a · x if x ∈ T for x
proof −
have inner a x − b / 2 < k
unfolding k def

proof (subst less cSUP iff )
show T 6= {} by fact
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show bdd above ((·) a ‘ T )
using ab[rule format , of y ] 〈y ∈ S 〉

by (intro bdd aboveI2 [where M=inner a y − b]) (auto simp: field simps
intro: less imp le)

show ∃ y∈T . a · x − b / 2 < a · y
using 〈0 < b〉 that by force

qed
then show ?thesis
by auto

qed
ultimately show ?thesis
by (metis inner minus left neg less iff less)

qed

lemma separating hyperplane compact closed :
fixes S :: ′a::euclidean space set
assumes convex S
and compact S
and S 6= {}
and convex T
and closed T
and S ∩ T = {}

shows ∃ a b. (∀ x∈S . inner a x < b) ∧ (∀ x∈T . inner a x > b)
proof −
obtain a b where (∀ x∈T . inner a x < b) ∧ (∀ x∈S . b < inner a x )
by (metis disjoint iff not equal separating hyperplane closed compact assms)

then show ?thesis
by (metis inner minus left neg less iff less)

qed

General case without assuming closure and getting non-strict sep-
aration

lemma separating hyperplane set 0 :
assumes convex S (0 :: ′a::euclidean space) /∈ S
shows ∃ a. a 6= 0 ∧ (∀ x∈S . 0 ≤ inner a x )

proof −
let ?k = λc. {x :: ′a. 0 ≤ inner c x}
have ∗: frontier (cball 0 1 ) ∩

⋂
f 6= {} if as: f ⊆ ?k ‘ S finite f for f

proof −
obtain c where c: f = ?k ‘ c c ⊆ S finite c
using finite subset image[OF as(2 ,1 )] by auto

then obtain a b where ab: a 6= 0 0 < b ∀ x∈convex hull c. b < inner a x
using separating hyperplane closed 0 [OF convex convex hull , of c]
using finite imp compact convex hull [OF c(3 ), THEN compact imp closed ]

and assms(2 )
using subset hull [of convex , OF assms(1 ), symmetric, of c]
by force

have norm (a /R norm a) = 1
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by (simp add : ab(1 ))
moreover have (∀ y∈c. 0 ≤ y · (a /R norm a))
using hull subset [of c convex ] ab by (force simp: inner commute)

ultimately have ∃ x . norm x = 1 ∧ (∀ y∈c. 0 ≤ inner y x )
by blast

then show frontier (cball 0 1 ) ∩
⋂
f 6= {}

unfolding c(1 ) frontier cball sphere def dist norm by auto
qed
have frontier (cball 0 1 ) ∩ (

⋂
(?k ‘ S )) 6= {}

by (rule compact imp fip) (use ∗ closed halfspace ge in auto)
then obtain x where norm x = 1 ∀ y∈S . x∈?k y
unfolding frontier cball dist norm sphere def by auto

then show ?thesis
by (metis inner commute mem Collect eq norm eq zero zero neq one)

qed

lemma separating hyperplane sets:
fixes S T :: ′a::euclidean space set
assumes convex S
and convex T
and S 6= {}
and T 6= {}
and S ∩ T = {}

shows ∃ a b. a 6= 0 ∧ (∀ x∈S . inner a x ≤ b) ∧ (∀ x∈T . inner a x ≥ b)
proof −
from separating hyperplane set 0 [OF convex differences[OF assms(2 ,1 )]]
obtain a where a 6= 0 ∀ x∈{x − y |x y . x ∈ T ∧ y ∈ S}. 0 ≤ inner a x
using assms(3−5 ) by force

then have ∗:
∧
x y . x ∈ T =⇒ y ∈ S =⇒ inner a y ≤ inner a x

by (force simp: inner diff )
then have bdd : bdd above (((·) a)‘S )
using 〈T 6= {}〉 by (auto intro: bdd aboveI2 [OF ∗])

show ?thesis
using 〈a 6=0 〉

by (intro exI [of a] exI [of SUP x∈S . a · x ])
(auto intro!: cSUP upper bdd cSUP least 〈a 6= 0 〉 〈S 6= {}〉 ∗)

qed

4.2.6 More convexity generalities

lemma convex closure [intro,simp]:
fixes S :: ′a::real normed vector set
assumes convex S
shows convex (closure S )
apply (rule convexI )
unfolding closure sequential
apply (elim exE )
subgoal for x y u v f g
by (rule tac x=λn. u ∗R f n + v ∗R g n in exI ) (force intro: tendsto intros
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dest : convexD [OF assms])
done

lemma convex interior [intro,simp]:
fixes S :: ′a::real normed vector set
assumes convex S
shows convex (interior S )
unfolding convex alt Ball def mem interior

proof clarify
fix x y u
assume u: 0 ≤ u u ≤ (1 ::real)
fix e d
assume ed : ball x e ⊆ S ball y d ⊆ S 0<d 0<e
show ∃ e>0 . ball ((1 − u) ∗R x + u ∗R y) e ⊆ S
proof (intro exI conjI subsetI )
fix z
assume z : z ∈ ball ((1 − u) ∗R x + u ∗R y) (min d e)
have (1− u) ∗R (z − u ∗R (y − x )) + u ∗R (z + (1 − u) ∗R (y − x )) ∈ S
proof (rule tac assms[unfolded convex alt , rule format ])

show z − u ∗R (y − x ) ∈ S z + (1 − u) ∗R (y − x ) ∈ S
using ed z u by (auto simp add : algebra simps dist norm)

qed (use u in auto)
then show z ∈ S
using u by (auto simp: algebra simps)

qed(use u ed in auto)
qed

lemma convex hull eq empty [simp]: convex hull S = {} ←→ S = {}
using hull subset [of S convex ] convex hull empty by auto

4.2.7 Convex set as intersection of halfspaces

lemma convex halfspace intersection:
fixes S :: ( ′a::euclidean space) set
assumes closed S convex S
shows S =

⋂
{h. S ⊆ h ∧ (∃ a b. h = {x . inner a x ≤ b})}

proof −
{ fix z
assume ∀T . S ⊆ T ∧ (∃ a b. T = {x . inner a x ≤ b}) −→ z ∈ T z /∈ S
then have §:

∧
a b. S ⊆ {x . inner a x ≤ b} =⇒ z ∈ {x . inner a x ≤ b}

by blast
obtain a b where inner a z < b (∀ x∈S . inner a x > b)
using 〈z /∈ S 〉 assms separating hyperplane closed point by blast

then have False
using § [of −a −b] by fastforce

}
then show ?thesis
by force

qed
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4.2.8 Convexity of general and special intervals

lemma is interval convex :
fixes S :: ′a::euclidean space set
assumes is interval S
shows convex S

proof (rule convexI )
fix x y and u v :: real
assume x ∈ S y ∈ S and uv : 0 ≤ u 0 ≤ v u + v = 1
then have ∗: u = 1 − v 1 − v ≥ 0 and ∗∗: v = 1 − u 1 − u ≥ 0
by auto

{
fix a b
assume ¬ b ≤ u ∗ a + v ∗ b
then have u ∗ a < (1 − v) ∗ b
unfolding not le using 〈0 ≤ v 〉by (auto simp: field simps)

then have a < b
using ∗(1 ) less eq real def uv(1 ) by auto

then have a ≤ u ∗ a + v ∗ b
unfolding ∗ using 〈0 ≤ v 〉

by (auto simp: field simps intro!:mult right mono)
}
moreover
{
fix a b
assume ¬ u ∗ a + v ∗ b ≤ a
then have v ∗ b > (1 − u) ∗ a
unfolding not le using 〈0 ≤ v 〉 by (auto simp: field simps)

then have a < b
unfolding ∗ using 〈0 ≤ v 〉

by (rule tac mult left less imp less) (auto simp: field simps)
then have u ∗ a + v ∗ b ≤ b
unfolding ∗∗
using ∗∗(2 ) 〈0 ≤ u〉 by (auto simp: algebra simps mult right mono)

}
ultimately show u ∗R x + v ∗R y ∈ S
using DIM positive[where ′a= ′a]
by (intro mem is intervalI [OF assms 〈x ∈ S 〉 〈y ∈ S 〉]) (auto simp: inner simps)

qed

lemma is interval connected :
fixes S :: ′a::euclidean space set
shows is interval S =⇒ connected S
using is interval convex convex connected by auto

lemma convex box [simp]: convex (cbox a b) convex (box a (b:: ′a::euclidean space))
by (auto simp add : is interval convex )

A non-singleton connected set is perfect (i.e. has no isolated points).

lemma connected imp perfect :
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fixes a :: ′a::metric space
assumes connected S a ∈ S and S :

∧
x . S 6= {x}

shows a islimpt S
proof −
have False if a ∈ T open T

∧
y . [[y ∈ S ; y ∈ T ]] =⇒ y = a for T

proof −
obtain e where e > 0 and e: cball a e ⊆ T
using 〈open T 〉 〈a ∈ T 〉 by (auto simp: open contains cball)

have openin (top of set S ) {a}
unfolding openin open using that 〈a ∈ S 〉 by blast

moreover have closedin (top of set S ) {a}
by (simp add : assms)

ultimately show False
using 〈connected S 〉 connected clopen S by blast

qed
then show ?thesis
unfolding islimpt def by blast

qed

lemma connected imp perfect aff dim:
[[connected S ; aff dim S 6= 0 ; a ∈ S ]] =⇒ a islimpt S

using aff dim sing connected imp perfect by blast

4.2.9 On real, is interval, convex and connected are all equivalent

lemma mem is interval 1 I :
fixes a b c::real
assumes is interval S
assumes a ∈ S c ∈ S
assumes a ≤ b b ≤ c
shows b ∈ S
using assms is interval 1 by blast

lemma is interval connected 1 :
fixes S :: real set
shows is interval S ←→ connected S
by (meson connected iff interval is interval 1 )

lemma is interval convex 1 :
fixes S :: real set
shows is interval S ←→ convex S
by (metis is interval convex convex connected is interval connected 1 )

lemma connected compact interval 1 :
connected S ∧ compact S ←→ (∃ a b. S = {a..b::real})

by (auto simp: is interval connected 1 [symmetric] is interval compact)

lemma connected convex 1 :
fixes S :: real set
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shows connected S ←→ convex S
by (metis is interval convex convex connected is interval connected 1 )

lemma connected convex 1 gen:
fixes S :: ′a :: euclidean space set
assumes DIM ( ′a) = 1
shows connected S ←→ convex S

proof −
obtain f :: ′a ⇒ real where linf : linear f and inj f
using subspace isomorphism[OF subspace UNIV subspace UNIV ,

where ′a= ′a and ′b=real ]
unfolding Euclidean Space.dim UNIV
by (auto simp: assms)

then have f −‘ (f ‘ S ) = S
by (simp add : inj vimage image eq)

then show ?thesis
by (metis connected convex 1 convex linear vimage linf convex connected con-

nected linear image)
qed

lemma [simp]:
fixes r s::real
shows is interval io: is interval {..<r}
and is interval oi : is interval {r<..}
and is interval oo: is interval {r<..<s}
and is interval oc: is interval {r<..s}
and is interval co: is interval {r ..<s}

by (simp all add : is interval convex 1 )

4.2.10 Another intermediate value theorem formulation

lemma ivt increasing component on 1 :
fixes f :: real ⇒ ′a::euclidean space
assumes a ≤ b
and continuous on {a..b} f
and (f a)·k ≤ y y ≤ (f b)·k

shows ∃ x∈{a..b}. (f x )·k = y
proof −
have f a ∈ f ‘ cbox a b f b ∈ f ‘ cbox a b
using 〈a ≤ b〉 by auto

then show ?thesis
using connected ivt component [of f ‘ cbox a b f a f b k y ]
by (simp add : connected continuous image assms)

qed

lemma ivt increasing component 1 :
fixes f :: real ⇒ ′a::euclidean space
shows a ≤ b =⇒ ∀ x∈{a..b}. continuous (at x ) f =⇒
f a·k ≤ y =⇒ y ≤ f b·k =⇒ ∃ x∈{a..b}. (f x )·k = y
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by (rule ivt increasing component on 1 ) (auto simp: continuous at imp continuous on)

lemma ivt decreasing component on 1 :
fixes f :: real ⇒ ′a::euclidean space
assumes a ≤ b
and continuous on {a..b} f
and (f b)·k ≤ y
and y ≤ (f a)·k

shows ∃ x∈{a..b}. (f x )·k = y
using ivt increasing component on 1 [of a b λx . − f x k − y ] neg equal iff equal
using assms continuous on minus by force

lemma ivt decreasing component 1 :
fixes f :: real ⇒ ′a::euclidean space
shows a ≤ b =⇒ ∀ x∈{a..b}. continuous (at x ) f =⇒
f b·k ≤ y =⇒ y ≤ f a·k =⇒ ∃ x∈{a..b}. (f x )·k = y

by (rule ivt decreasing component on 1 ) (auto simp: continuous at imp continuous on)

4.2.11 A bound within an interval

lemma convex hull eq real cbox :
fixes x y :: real assumes x ≤ y
shows convex hull {x , y} = cbox x y

proof (rule hull unique)
show {x , y} ⊆ cbox x y using 〈x ≤ y〉 by auto
show convex (cbox x y)
by (rule convex box )

next
fix S assume {x , y} ⊆ S and convex S
then show cbox x y ⊆ S
unfolding is interval convex 1 [symmetric] is interval def Basis real def
by − (clarify , simp (no asm use), fast)

qed

lemma unit interval convex hull :
cbox (0 :: ′a::euclidean space) One = convex hull {x . ∀ i∈Basis. (x ·i = 0 ) ∨ (x ·i

= 1 )}
(is ?int = convex hull ?points)

proof −
have One[simp]:

∧
i . i ∈ Basis =⇒ One · i = 1

by (simp add : inner sum left sum.If cases inner Basis)
have ?int = {x . ∀ i∈Basis. x · i ∈ cbox 0 1}
by (auto simp: cbox def )

also have . . . = (
∑

i∈Basis. (λx . x ∗R i) ‘ cbox 0 1 )
by (simp only : box eq set sum Basis)

also have . . . = (
∑

i∈Basis. (λx . x ∗R i) ‘ (convex hull {0 , 1}))
by (simp only : convex hull eq real cbox zero le one)

also have . . . = (
∑

i∈Basis. convex hull ((λx . x ∗R i) ‘ {0 , 1}))
by (simp add : convex hull linear image)
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also have . . . = convex hull (
∑

i∈Basis. (λx . x ∗R i) ‘ {0 , 1})
by (simp only : convex hull set sum)

also have . . . = convex hull {x . ∀ i∈Basis. x ·i ∈ {0 , 1}}
by (simp only : box eq set sum Basis)

also have convex hull {x . ∀ i∈Basis. x ·i ∈ {0 , 1}} = convex hull ?points
by simp

finally show ?thesis .
qed

And this is a finite set of vertices.

lemma unit cube convex hull :
obtains S :: ′a::euclidean space set
where finite S and cbox 0 (

∑
Basis) = convex hull S

proof
show finite {x :: ′a. ∀ i∈Basis. x · i = 0 ∨ x · i = 1}
proof (rule finite subset , clarify)
show finite ((λS .

∑
i∈Basis. (if i ∈ S then 1 else 0 ) ∗R i) ‘ Pow Basis)

using finite Basis by blast
fix x :: ′a
assume x : ∀ i∈Basis. x · i = 0 ∨ x · i = 1
show x ∈ (λS .

∑
i∈Basis. (if i∈S then 1 else 0 ) ∗R i) ‘ Pow Basis

apply (rule image eqI [where x={i . i ∈ Basis ∧ x ·i = 1}])
using x
by (subst euclidean eq iff , auto)

qed
show cbox 0 One = convex hull {x . ∀ i∈Basis. x · i = 0 ∨ x · i = 1}
using unit interval convex hull by blast

qed

Hence any cube (could do any nonempty interval).

lemma cube convex hull :
assumes d > 0
obtains S :: ′a::euclidean space set where
finite S and cbox (x − (

∑
i∈Basis. d∗Ri)) (x + (

∑
i∈Basis. d∗Ri)) = convex

hull S
proof −
let ?d = (

∑
i∈Basis. d ∗R i):: ′a

have ∗: cbox (x − ?d) (x + ?d) = (λy . x − ?d + (2 ∗ d) ∗R y) ‘ cbox 0
(
∑

Basis)
proof (intro set eqI iffI )
fix y
assume y ∈ cbox (x − ?d) (x + ?d)
then have inverse (2 ∗ d) ∗R (y − (x − ?d)) ∈ cbox 0 (

∑
Basis)

using assms by (simp add : mem box inner simps) (simp add : field simps)
with 〈0 < d 〉 show y ∈ (λy . x − sum ((∗R) d) Basis + (2 ∗ d) ∗R y) ‘ cbox

0 One
by (auto intro: image eqI [where x= inverse (2 ∗ d) ∗R (y − (x − ?d))])

next
fix y
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assume y ∈ (λy . x − ?d + (2 ∗ d) ∗R y) ‘ cbox 0 One
then obtain z where z : z ∈ cbox 0 One y = x − ?d + (2∗d) ∗R z
by auto

then show y ∈ cbox (x − ?d) (x + ?d)
using z assms by (auto simp: mem box inner simps)

qed
obtain S where finite S cbox 0 (

∑
Basis:: ′a) = convex hull S

using unit cube convex hull by auto
then show ?thesis

by (rule tac that [of (λy . x − ?d + (2 ∗ d) ∗R y)‘ S ]) (auto simp: con-
vex hull affinity ∗)
qed

4.2.12 Representation of any interval as a finite convex hull

lemma image stretch interval :
(λx .

∑
k∈Basis. (m k ∗ (x ·k)) ∗R k) ‘ cbox a (b:: ′a::euclidean space) =

(if (cbox a b) = {} then {} else
cbox (

∑
k∈Basis. (min (m k ∗ (a·k)) (m k ∗ (b·k))) ∗R k :: ′a)

(
∑

k∈Basis. (max (m k ∗ (a·k)) (m k ∗ (b·k))) ∗R k))
proof cases
assume ∗: cbox a b 6= {}
show ?thesis
unfolding box ne empty if not P [OF ∗]
apply (simp add : cbox def image Collect set eq iff euclidean eq iff [where ′a= ′a]

ball conj distrib[symmetric])
apply (subst choice Basis iff [symmetric])

proof (intro allI ball cong refl)
fix x i :: ′a assume i ∈ Basis
with ∗ have a le b: a · i ≤ b · i
unfolding box ne empty by auto

show (∃ xa. x · i = m i ∗ xa ∧ a · i ≤ xa ∧ xa ≤ b · i) ←→
min (m i ∗ (a · i)) (m i ∗ (b · i)) ≤ x · i ∧ x · i ≤ max (m i ∗ (a · i))

(m i ∗ (b · i))
proof (cases m i = 0 )
case True
with a le b show ?thesis by auto

next
case False
then have ∗:

∧
a b. a = m i ∗ b ←→ b = a / m i

by (auto simp: field simps)
from False have

min (m i ∗ (a · i)) (m i ∗ (b · i)) = (if 0 < m i then m i ∗ (a · i) else m
i ∗ (b · i))

max (m i ∗ (a · i)) (m i ∗ (b · i)) = (if 0 < m i then m i ∗ (b · i) else m
i ∗ (a · i))

using a le b by (auto simp: min def max def mult le cancel left)
with False show ?thesis using a le b ∗
by (simp add : le divide eq divide le eq) (simp add : ac simps)



Convex Euclidean Space.thy 679

qed
qed

qed simp

lemma interval image stretch interval :
∃ u v . (λx .

∑
k∈Basis. (m k ∗ (x ·k))∗R k) ‘ cbox a (b:: ′a::euclidean space) =

cbox u (v :: ′a::euclidean space)
unfolding image stretch interval by auto

lemma cbox translation: cbox (c + a) (c + b) = image (λx . c + x ) (cbox a b)
using image affinity cbox [of 1 c a b]
using box ne empty [of a+c b+c] box ne empty [of a b]
by (auto simp: inner left distrib add .commute)

lemma cbox image unit interval :
fixes a :: ′a::euclidean space
assumes cbox a b 6= {}
shows cbox a b =

(+) a ‘ (λx .
∑

k∈Basis. ((b · k − a · k) ∗ (x · k)) ∗R k) ‘ cbox 0 One
using assms
apply (simp add : box ne empty image stretch interval cbox translation [symmetric])
apply (simp add : min def max def algebra simps sum subtractf euclidean representation)
done

lemma closed interval as convex hull :
fixes a :: ′a::euclidean space
obtains S where finite S cbox a b = convex hull S

proof (cases cbox a b = {})
case True with convex hull empty that show ?thesis
by blast

next
case False
obtain S :: ′a set where finite S and eq : cbox 0 One = convex hull S
by (blast intro: unit cube convex hull)

let ?S = ((+) a ‘ (λx .
∑

k∈Basis. ((b · k − a · k) ∗ (x · k)) ∗R k) ‘ S )
show thesis
proof
show finite ?S
by (simp add : 〈finite S 〉)

have lin: linear (λx .
∑

k∈Basis. ((b · k − a · k) ∗ (x · k)) ∗R k)
by (rule linear compose sum) (auto simp: algebra simps linearI )

show cbox a b = convex hull ?S
using convex hull linear image [OF lin]
by (simp add : convex hull translation eq cbox image unit interval [OF False])

qed
qed

Convex{_}{\kern 0pt}Euclidean{_}{\kern 0pt}Space.html


680

4.2.13 Bounded convex function on open set is continuous

lemma convex on bounded continuous:
fixes S :: ( ′a::real normed vector) set
assumes open S
and convex on S f
and ∀ x∈S . |f x | ≤ b

shows continuous on S f
proof −
have ∃ d>0 . ∀ x ′. norm (x ′ − x ) < d −→ |f x ′ − f x | < e if x ∈ S e > 0 for x

and e :: real
proof −
define B where B = |b| + 1
then have B : 0 < B

∧
x . x∈S =⇒ |f x | ≤ B

using assms(3 ) by auto
obtain k where k > 0 and k : cball x k ⊆ S
using 〈x ∈ S 〉 assms(1 ) open contains cball eq by blast

show ∃ d>0 . ∀ x ′. norm (x ′ − x ) < d −→ |f x ′ − f x | < e
proof (intro exI conjI allI impI )
fix y
assume as: norm (y − x ) < min (k / 2 ) (e / (2 ∗ B) ∗ k)
show |f y − f x | < e
proof (cases y = x )
case False
define t where t = k / norm (y − x )
have 2 < t 0<t
unfolding t def using as False and 〈k>0 〉

by (auto simp:field simps)
have y ∈ S
apply (rule k [THEN subsetD ])
unfolding mem cball dist norm
apply (rule order trans[of 2 ∗ norm (x − y)])
using as
by (auto simp: field simps norm minus commute)

{
define w where w = x + t ∗R (y − x )
have w ∈ S
using 〈k>0 〉 by (auto simp: dist norm t def w def k [THEN subsetD ])

have (1 / t) ∗R x + − x + ((t − 1 ) / t) ∗R x = (1 / t − 1 + (t − 1 )
/ t) ∗R x

by (auto simp: algebra simps)
also have . . . = 0
using 〈t > 0 〉 by (auto simp:field simps)

finally have w : (1 / t) ∗R w + ((t − 1 ) / t) ∗R x = y
unfolding w def using False and 〈t > 0 〉

by (auto simp: algebra simps)
have 2 : 2 ∗ B < e ∗ t
unfolding t def using 〈0 < e〉 〈0 < k 〉 〈B > 0 〉 and as and False
by (auto simp:field simps)

have f y − f x ≤ (f w − f x ) / t
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using assms(2 )[unfolded convex on def ,rule format ,of w x 1/t (t − 1 )/t ,
unfolded w ]

using 〈0 < t 〉 〈2 < t 〉 and 〈x ∈ S 〉 〈w ∈ S 〉

by (auto simp:field simps)
also have ... < e
using B(2 )[OF 〈w∈S 〉] and B(2 )[OF 〈x∈S 〉] 2 〈t > 0 〉 by (auto simp:

field simps)
finally have th1 : f y − f x < e .

}
moreover
{
define w where w = x − t ∗R (y − x )
have w ∈ S
using 〈k > 0 〉 by (auto simp: dist norm t def w def k [THEN subsetD ])

have (1 / (1 + t)) ∗R x + (t / (1 + t)) ∗R x = (1 / (1 + t) + t / (1
+ t)) ∗R x

by (auto simp: algebra simps)
also have . . . = x
using 〈t > 0 〉 by (auto simp:field simps)

finally have w : (1 / (1+t)) ∗R w + (t / (1 + t)) ∗R y = x
unfolding w def using False and 〈t > 0 〉

by (auto simp: algebra simps)
have 2 ∗ B < e ∗ t
unfolding t def
using 〈0 < e〉 〈0 < k 〉 〈B > 0 〉 and as and False
by (auto simp:field simps)

then have ∗: (f w − f y) / t < e
using B(2 )[OF 〈w∈S 〉] and B(2 )[OF 〈y∈S 〉]
using 〈t > 0 〉

by (auto simp:field simps)
have f x ≤ 1 / (1 + t) ∗ f w + (t / (1 + t)) ∗ f y
using assms(2 )[unfolded convex on def ,rule format ,of w y 1/(1+t) t /

(1+t),unfolded w ]
using 〈0 < t 〉 〈2 < t 〉 and 〈y ∈ S 〉 〈w ∈ S 〉

by (auto simp:field simps)
also have . . . = (f w + t ∗ f y) / (1 + t)
using 〈t > 0 〉 by (simp add : add divide distrib)

also have . . . < e + f y
using 〈t > 0 〉 ∗ 〈e > 0 〉 by (auto simp: field simps)

finally have f x − f y < e by auto
}
ultimately show ?thesis by auto

qed (use 〈0<e〉 in auto)
qed (use 〈0<e〉 〈0<k 〉 〈0<B 〉 in 〈auto simp: field simps〉)

qed
then show ?thesis
by (metis continuous on iff dist norm real norm def )

qed
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4.2.14 Upper bound on a ball implies upper and lower bounds

lemma convex bounds lemma:
fixes x :: ′a::real normed vector
assumes convex on (cball x e) f
and ∀ y ∈ cball x e. f y ≤ b and y : y ∈ cball x e

shows |f y | ≤ b + 2 ∗ |f x |
proof (cases 0 ≤ e)
case True
define z where z = 2 ∗R x − y
have ∗: x − (2 ∗R x − y) = y − x
by (simp add : scaleR 2 )

have z : z ∈ cball x e
using y unfolding z def mem cball dist norm ∗ by (auto simp: norm minus commute)
have (1 / 2 ) ∗R y + (1 / 2 ) ∗R z = x
unfolding z def by (auto simp: algebra simps)

then show |f y | ≤ b + 2 ∗ |f x |
using assms(1 )[unfolded convex on def ,rule format , OF y z , of 1/2 1/2 ]
using assms(2 )[rule format ,OF y ] assms(2 )[rule format ,OF z ]
by (auto simp:field simps)

next
case False
have dist x y < 0
using False y unfolding mem cball not le by (auto simp del : dist not less zero)
then show |f y | ≤ b + 2 ∗ |f x |
using zero le dist [of x y ] by auto

qed

Hence a convex function on an open set is continuous

lemma real of nat ge one iff : 1 ≤ real (n::nat) ←→ 1 ≤ n
by auto

lemma convex on continuous:
assumes open (s::( ′a::euclidean space) set) convex on s f
shows continuous on s f
unfolding continuous on eq continuous at [OF assms(1 )]

proof
note dimge1 = DIM positive[where ′a= ′a]
fix x
assume x ∈ s
then obtain e where e: cball x e ⊆ s e > 0
using assms(1 ) unfolding open contains cball by auto

define d where d = e / real DIM ( ′a)
have 0 < d
unfolding d def using 〈e > 0 〉 dimge1 by auto

let ?d = (
∑

i∈Basis. d ∗R i):: ′a
obtain c
where c: finite c
and c1 : convex hull c ⊆ cball x e
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and c2 : cball x d ⊆ convex hull c
proof
define c where c = (

∑
i∈Basis. (λa. a ∗R i) ‘ {x ·i − d , x ·i + d})

show finite c
unfolding c def by (simp add : finite set sum)

have
∧
i . i ∈ Basis =⇒ convex hull {x · i − d , x · i + d} = cbox (x · i − d)

(x · i + d)
using 〈0 < d 〉 convex hull eq real cbox by auto

then have 1 : convex hull c = {a. ∀ i∈Basis. a · i ∈ cbox (x · i − d) (x · i +
d)}

unfolding box eq set sum Basis c def convex hull set sum
apply (subst convex hull linear image [symmetric])
by (force simp add : linear iff scaleR add left)+

then have 2 : convex hull c = {a. ∀ i∈Basis. a · i ∈ cball (x · i) d}
by (simp add : dist norm abs le iff algebra simps)

show cball x d ⊆ convex hull c
unfolding 2

by (clarsimp simp: dist norm) (metis inner commute inner diff right norm bound Basis le)
have e ′: e = (

∑
(i :: ′a)∈Basis. d)

by (simp add : d def )
show convex hull c ⊆ cball x e
unfolding 2

proof clarsimp
show dist x y ≤ e if ∀ i∈Basis. dist (x · i) (y · i) ≤ d for y
proof −
have

∧
i . i ∈ Basis =⇒ 0 ≤ dist (x · i) (y · i)

by simp
have (

∑
i∈Basis. dist (x · i) (y · i)) ≤ e

using e ′ sum mono that by fastforce
then show ?thesis

by (metis (mono tags) euclidean dist l2 order trans [OF L2 set le sum]
zero le dist)

qed
qed

qed
define k where k = Max (f ‘ c)
have convex on (convex hull c) f
using assms(2 ) c1 convex on subset e(1 ) by blast

then have k : ∀ y∈convex hull c. f y ≤ k
using c convex on convex hull bound k def by fastforce

have e ≤ e ∗ real DIM ( ′a)
using e(2 ) real of nat ge one iff by auto

then have d ≤ e
by (simp add : d def field split simps)

then have dsube: cball x d ⊆ cball x e
by (rule subset cball)

have conv : convex on (cball x d) f
using 〈convex on (convex hull c) f 〉 c2 convex on subset by blast

then have
∧
y . y∈cball x d =⇒ |f y | ≤ k + 2 ∗ |f x |
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by (rule convex bounds lemma) (use c2 k in blast)
then have continuous on (ball x d) f
by (meson Elementary Metric Spaces.open ball ball subset cball conv convex on bounded continuous

convex on subset mem ball imp mem cball)
then show continuous (at x ) f
unfolding continuous on eq continuous at [OF open ball ]
using 〈d > 0 〉 by auto

qed

end

4.3 Operator Norm

theory Operator Norm
imports Complex Main
begin

This formulation yields zero if ′a is the trivial vector space.

definition
onorm :: ( ′a::real normed vector ⇒ ′b::real normed vector) ⇒ real where
onorm f = (SUP x . norm (f x ) / norm x )

proposition onorm bound :
assumes 0 ≤ b and

∧
x . norm (f x ) ≤ b ∗ norm x

shows onorm f ≤ b
unfolding onorm def

proof (rule cSUP least)
fix x
show norm (f x ) / norm x ≤ b
using assms by (cases x = 0 ) (simp all add : pos divide le eq)

qed simp

In non-trivial vector spaces, the first assumption is redundant.

lemma onorm le:
fixes f :: ′a::{real normed vector , perfect space} ⇒ ′b::real normed vector
assumes

∧
x . norm (f x ) ≤ b ∗ norm x

shows onorm f ≤ b
proof (rule onorm bound [OF assms])
have {0 :: ′a} 6= UNIV by (metis not open singleton open UNIV )
then obtain a :: ′a where a 6= 0 by fast
have 0 ≤ b ∗ norm a
by (rule order trans [OF norm ge zero assms])

with 〈a 6= 0 〉 show 0 ≤ b
by (simp add : zero le mult iff )

qed

lemma le onorm:
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assumes bounded linear f
shows norm (f x ) / norm x ≤ onorm f

proof −
interpret f : bounded linear f by fact
obtain b where 0 ≤ b and ∀ x . norm (f x ) ≤ norm x ∗ b
using f .nonneg bounded by auto

then have ∀ x . norm (f x ) / norm x ≤ b
by (clarify , case tac x = 0 ,
simp all add : f .zero pos divide le eq mult .commute)

then have bdd above (range (λx . norm (f x ) / norm x ))
unfolding bdd above def by fast

with UNIV I show ?thesis
unfolding onorm def by (rule cSUP upper)

qed

lemma onorm:
assumes bounded linear f
shows norm (f x ) ≤ onorm f ∗ norm x

proof −
interpret f : bounded linear f by fact
show ?thesis
proof (cases)
assume x = 0
then show ?thesis by (simp add : f .zero)

next
assume x 6= 0
have norm (f x ) / norm x ≤ onorm f
by (rule le onorm [OF assms])

then show norm (f x ) ≤ onorm f ∗ norm x
by (simp add : pos divide le eq 〈x 6= 0 〉)

qed
qed

lemma onorm pos le:
assumes f : bounded linear f
shows 0 ≤ onorm f
using le onorm [OF f , where x=0 ] by simp

lemma onorm zero: onorm (λx . 0 ) = 0
proof (rule order antisym)
show onorm (λx . 0 ) ≤ 0
by (simp add : onorm bound)

show 0 ≤ onorm (λx . 0 )
using bounded linear zero by (rule onorm pos le)

qed

lemma onorm eq 0 :
assumes f : bounded linear f
shows onorm f = 0 ←→ (∀ x . f x = 0 )
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using onorm [OF f ] by (auto simp: fun eq iff [symmetric] onorm zero)

lemma onorm pos lt :
assumes f : bounded linear f
shows 0 < onorm f ←→ ¬ (∀ x . f x = 0 )
by (simp add : less le onorm pos le [OF f ] onorm eq 0 [OF f ])

lemma onorm id le: onorm (λx . x ) ≤ 1
by (rule onorm bound) simp all

lemma onorm id : onorm (λx . x :: ′a::{real normed vector , perfect space}) = 1
proof (rule antisym[OF onorm id le])
have {0 :: ′a} 6= UNIV by (metis not open singleton open UNIV )
then obtain x :: ′a where x 6= 0 by fast
hence 1 ≤ norm x / norm x
by simp

also have . . . ≤ onorm (λx :: ′a. x )
by (rule le onorm) (rule bounded linear ident)

finally show 1 ≤ onorm (λx :: ′a. x ) .
qed

lemma onorm compose:
assumes f : bounded linear f
assumes g : bounded linear g
shows onorm (f ◦ g) ≤ onorm f ∗ onorm g

proof (rule onorm bound)
show 0 ≤ onorm f ∗ onorm g
by (intro mult nonneg nonneg onorm pos le f g)

next
fix x
have norm (f (g x )) ≤ onorm f ∗ norm (g x )
by (rule onorm [OF f ])

also have onorm f ∗ norm (g x ) ≤ onorm f ∗ (onorm g ∗ norm x )
by (rule mult left mono [OF onorm [OF g ] onorm pos le [OF f ]])

finally show norm ((f ◦ g) x ) ≤ onorm f ∗ onorm g ∗ norm x
by (simp add : mult .assoc)

qed

lemma onorm scaleR lemma:
assumes f : bounded linear f
shows onorm (λx . r ∗R f x ) ≤ |r | ∗ onorm f

proof (rule onorm bound)
show 0 ≤ |r | ∗ onorm f
by (intro mult nonneg nonneg onorm pos le abs ge zero f )

next
fix x
have |r | ∗ norm (f x ) ≤ |r | ∗ (onorm f ∗ norm x )
by (intro mult left mono onorm abs ge zero f )

then show norm (r ∗R f x ) ≤ |r | ∗ onorm f ∗ norm x
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by (simp only : norm scaleR mult .assoc)
qed

lemma onorm scaleR:
assumes f : bounded linear f
shows onorm (λx . r ∗R f x ) = |r | ∗ onorm f

proof (cases r = 0 )
assume r 6= 0
show ?thesis
proof (rule order antisym)
show onorm (λx . r ∗R f x ) ≤ |r | ∗ onorm f
using f by (rule onorm scaleR lemma)

next
have bounded linear (λx . r ∗R f x )
using bounded linear scaleR right f by (rule bounded linear compose)

then have onorm (λx . inverse r ∗R r ∗R f x ) ≤ |inverse r | ∗ onorm (λx . r
∗R f x )

by (rule onorm scaleR lemma)
with 〈r 6= 0 〉 show |r | ∗ onorm f ≤ onorm (λx . r ∗R f x )
by (simp add : inverse eq divide pos le divide eq mult .commute)

qed
qed (simp add : onorm zero)

lemma onorm scaleR left lemma:
assumes r : bounded linear r
shows onorm (λx . r x ∗R f ) ≤ onorm r ∗ norm f

proof (rule onorm bound)
fix x
have norm (r x ∗R f ) = norm (r x ) ∗ norm f
by simp

also have . . . ≤ onorm r ∗ norm x ∗ norm f
by (intro mult right mono onorm r norm ge zero)

finally show norm (r x ∗R f ) ≤ onorm r ∗ norm f ∗ norm x
by (simp add : ac simps)

qed (intro mult nonneg nonneg norm ge zero onorm pos le r)

lemma onorm scaleR left :
assumes f : bounded linear r
shows onorm (λx . r x ∗R f ) = onorm r ∗ norm f

proof (cases f = 0 )
assume f 6= 0
show ?thesis
proof (rule order antisym)
show onorm (λx . r x ∗R f ) ≤ onorm r ∗ norm f
using f by (rule onorm scaleR left lemma)

next
have bl1 : bounded linear (λx . r x ∗R f )
by (metis bounded linear scaleR const f )

have bounded linear (λx . r x ∗ norm f )
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by (metis bounded linear mult const f )
from onorm scaleR left lemma[OF this, of inverse (norm f )]
have onorm r ≤ onorm (λx . r x ∗ norm f ) ∗ inverse (norm f )
using 〈f 6= 0 〉

by (simp add : inverse eq divide)
also have onorm (λx . r x ∗ norm f ) ≤ onorm (λx . r x ∗R f )
by (rule onorm bound)
(auto simp: abs mult bl1 onorm pos le intro!: order trans[OF onorm])

finally show onorm r ∗ norm f ≤ onorm (λx . r x ∗R f )
using 〈f 6= 0 〉

by (simp add : inverse eq divide pos le divide eq mult .commute)
qed

qed (simp add : onorm zero)

lemma onorm neg :
shows onorm (λx . − f x ) = onorm f
unfolding onorm def by simp

lemma onorm triangle:
assumes f : bounded linear f
assumes g : bounded linear g
shows onorm (λx . f x + g x ) ≤ onorm f + onorm g

proof (rule onorm bound)
show 0 ≤ onorm f + onorm g
by (intro add nonneg nonneg onorm pos le f g)

next
fix x
have norm (f x + g x ) ≤ norm (f x ) + norm (g x )
by (rule norm triangle ineq)

also have norm (f x ) + norm (g x ) ≤ onorm f ∗ norm x + onorm g ∗ norm x
by (intro add mono onorm f g)

finally show norm (f x + g x ) ≤ (onorm f + onorm g) ∗ norm x
by (simp only : distrib right)

qed

lemma onorm triangle le:
assumes bounded linear f
assumes bounded linear g
assumes onorm f + onorm g ≤ e
shows onorm (λx . f x + g x ) ≤ e
using assms by (rule onorm triangle [THEN order trans])

lemma onorm triangle lt :
assumes bounded linear f
assumes bounded linear g
assumes onorm f + onorm g < e
shows onorm (λx . f x + g x ) < e
using assms by (rule onorm triangle [THEN order le less trans])
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lemma onorm sum:
assumes finite S
assumes

∧
s. s ∈ S =⇒ bounded linear (f s)

shows onorm (λx . sum (λs. f s x ) S ) ≤ sum (λs. onorm (f s)) S
using assms
by (induction) (auto simp: onorm zero intro!: onorm triangle le bounded linear sum)

lemmas onorm sum le = onorm sum[THEN order trans]

end

4.4 Line Segment

theory Line Segment
imports
Convex
Topology Euclidean Space

begin

4.4.1 Topological Properties of Convex Sets, Metric Spaces
and Functions

lemma convex supp sum:
assumes convex S and 1 : supp sum u I = 1

and
∧
i . i ∈ I =⇒ 0 ≤ u i ∧ (u i = 0 ∨ f i ∈ S )

shows supp sum (λi . u i ∗R f i) I ∈ S
proof −
have fin: finite {i ∈ I . u i 6= 0}
using 1 sum.infinite by (force simp: supp sum def support on def )

then have supp sum (λi . u i ∗R f i) I = sum (λi . u i ∗R f i) {i ∈ I . u i 6= 0}
by (force intro: sum.mono neutral left simp: supp sum def support on def )

also have ... ∈ S
using 1 assms by (force simp: supp sum def support on def intro: convex sum

[OF fin 〈convex S 〉])
finally show ?thesis .

qed

lemma sphere eq empty [simp]:
fixes a :: ′a::{real normed vector , perfect space}
shows sphere a r = {} ←→ r < 0

by (auto simp: sphere def dist norm) (metis dist norm le less linear vector choose dist)

lemma cone closure:
fixes S :: ′a::real normed vector set
assumes cone S
shows cone (closure S )

proof (cases S = {})
case True
then show ?thesis by auto
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next
case False
then have 0 ∈ S ∧ (∀ c. c > 0 −→ (∗R) c ‘ S = S )
using cone iff [of S ] assms by auto

then have 0 ∈ closure S ∧ (∀ c. c > 0 −→ (∗R) c ‘ closure S = closure S )
using closure subset by (auto simp: closure scaleR)

then show ?thesis
using False cone iff [of closure S ] by auto

qed

corollary component complement connected :
fixes S :: ′a::real normed vector set
assumes connected S C ∈ components (−S )
shows connected(−C )
using component diff connected [of S UNIV ] assms
by (auto simp: Compl eq Diff UNIV )

proposition clopen:
fixes S :: ′a :: real normed vector set
shows closed S ∧ open S ←→ S = {} ∨ S = UNIV
by (force intro!: connected UNIV [unfolded connected clopen, rule format ])

corollary compact open:
fixes S :: ′a :: euclidean space set
shows compact S ∧ open S ←→ S = {}
by (auto simp: compact eq bounded closed clopen)

corollary finite imp not open:
fixes S :: ′a::{real normed vector , perfect space} set
shows [[finite S ; open S ]] =⇒ S={}
using clopen [of S ] finite imp closed not bounded UNIV by blast

corollary empty interior finite:
fixes S :: ′a::{real normed vector , perfect space} set
shows finite S =⇒ interior S = {}

by (metis interior subset finite subset open interior [of S ] finite imp not open)

Balls, being convex, are connected.

lemma convex local global minimum:
fixes s :: ′a::real normed vector set
assumes e > 0
and convex on s f
and ball x e ⊆ s
and ∀ y∈ball x e. f x ≤ f y

shows ∀ y∈s. f x ≤ f y
proof (rule ccontr)
have x ∈ s using assms(1 ,3 ) by auto
assume ¬ ?thesis
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then obtain y where y∈s and y : f x > f y by auto
then have xy : 0 < dist x y by auto
then obtain u where 0 < u u ≤ 1 and u: u < e / dist x y
using field lbound gt zero[of 1 e / dist x y ] xy 〈e>0 〉 by auto

then have f ((1−u) ∗R x + u ∗R y) ≤ (1−u) ∗ f x + u ∗ f y
using 〈x∈s〉 〈y∈s〉

using assms(2 )[unfolded convex on def ,
THEN bspec[where x=x ], THEN bspec[where x=y ], THEN spec[where

x=1−u]]
by auto

moreover
have ∗: x − ((1 − u) ∗R x + u ∗R y) = u ∗R (x − y)
by (simp add : algebra simps)

have (1 − u) ∗R x + u ∗R y ∈ ball x e
unfolding mem ball dist norm
unfolding ∗ and norm scaleR and abs of pos[OF 〈0<u〉]
unfolding dist norm[symmetric]
using u
unfolding pos less divide eq [OF xy ]
by auto

then have f x ≤ f ((1 − u) ∗R x + u ∗R y)
using assms(4 ) by auto

ultimately show False
using mult strict left mono[OF y 〈u>0 〉]
unfolding left diff distrib
by auto

qed

lemma convex ball [iff ]:
fixes x :: ′a::real normed vector
shows convex (ball x e)

proof (auto simp: convex def )
fix y z
assume yz : dist x y < e dist x z < e
fix u v :: real
assume uv : 0 ≤ u 0 ≤ v u + v = 1
have dist x (u ∗R y + v ∗R z ) ≤ u ∗ dist x y + v ∗ dist x z
using uv yz
using convex on dist [of ball x e x , unfolded convex on def ,
THEN bspec[where x=y ], THEN bspec[where x=z ]]

by auto
then show dist x (u ∗R y + v ∗R z ) < e
using convex bound lt [OF yz uv ] by auto

qed

lemma convex cball [iff ]:
fixes x :: ′a::real normed vector
shows convex (cball x e)

proof −
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{
fix y z
assume yz : dist x y ≤ e dist x z ≤ e
fix u v :: real
assume uv : 0 ≤ u 0 ≤ v u + v = 1
have dist x (u ∗R y + v ∗R z ) ≤ u ∗ dist x y + v ∗ dist x z
using uv yz
using convex on dist [of cball x e x , unfolded convex on def ,
THEN bspec[where x=y ], THEN bspec[where x=z ]]

by auto
then have dist x (u ∗R y + v ∗R z ) ≤ e
using convex bound le[OF yz uv ] by auto

}
then show ?thesis by (auto simp: convex def Ball def )

qed

lemma connected ball [iff ]:
fixes x :: ′a::real normed vector
shows connected (ball x e)
using convex connected convex ball by auto

lemma connected cball [iff ]:
fixes x :: ′a::real normed vector
shows connected (cball x e)
using convex connected convex cball by auto

lemma bounded convex hull :
fixes s :: ′a::real normed vector set
assumes bounded s
shows bounded (convex hull s)

proof −
from assms obtain B where B : ∀ x∈s. norm x ≤ B
unfolding bounded iff by auto

show ?thesis
by (simp add : bounded subset [OF bounded cball , of 0 B ] B subsetI subset hull)

qed

lemma finite imp bounded convex hull :
fixes s :: ′a::real normed vector set
shows finite s =⇒ bounded (convex hull s)
using bounded convex hull finite imp bounded
by auto

4.4.2 Midpoint

definition midpoint :: ′a::real vector ⇒ ′a ⇒ ′a
where midpoint a b = (inverse (2 ::real)) ∗R (a + b)

lemma midpoint idem [simp]: midpoint x x = x
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unfolding midpoint def by simp

lemma midpoint sym: midpoint a b = midpoint b a
unfolding midpoint def by (auto simp add : scaleR right distrib)

lemma midpoint eq iff : midpoint a b = c ←→ a + b = c + c
proof −
have midpoint a b = c ←→ scaleR 2 (midpoint a b) = scaleR 2 c
by simp

then show ?thesis
unfolding midpoint def scaleR 2 [symmetric] by simp

qed

lemma
fixes a::real
assumes a ≤ b shows ge midpoint 1 : a ≤ midpoint a b

and le midpoint 1 : midpoint a b ≤ b
by (simp all add : midpoint def assms)

lemma dist midpoint :
fixes a b :: ′a::real normed vector shows
dist a (midpoint a b) = (dist a b) / 2 (is ?t1 )
dist b (midpoint a b) = (dist a b) / 2 (is ?t2 )
dist (midpoint a b) a = (dist a b) / 2 (is ?t3 )
dist (midpoint a b) b = (dist a b) / 2 (is ?t4 )

proof −
have ∗:

∧
x y :: ′a. 2 ∗R x = − y =⇒ norm x = (norm y) / 2

unfolding equation minus iff by auto
have ∗∗:

∧
x y :: ′a. 2 ∗R x = y =⇒ norm x = (norm y) / 2

by auto
note scaleR right distrib [simp]
show ?t1
unfolding midpoint def dist norm
apply (rule ∗∗)
apply (simp add : scaleR right diff distrib)
apply (simp add : scaleR 2 )
done

show ?t2
unfolding midpoint def dist norm
apply (rule ∗)
apply (simp add : scaleR right diff distrib)
apply (simp add : scaleR 2 )
done

show ?t3
unfolding midpoint def dist norm
apply (rule ∗)
apply (simp add : scaleR right diff distrib)
apply (simp add : scaleR 2 )
done
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show ?t4
unfolding midpoint def dist norm
apply (rule ∗∗)
apply (simp add : scaleR right diff distrib)
apply (simp add : scaleR 2 )
done

qed

lemma midpoint eq endpoint [simp]:
midpoint a b = a ←→ a = b
midpoint a b = b ←→ a = b
unfolding midpoint eq iff by auto

lemma midpoint plus self [simp]: midpoint a b + midpoint a b = a + b
using midpoint eq iff by metis

lemma midpoint linear image:
linear f =⇒ midpoint(f a)(f b) = f (midpoint a b)

by (simp add : linear iff midpoint def )

4.4.3 Open and closed segments

definition closed segment :: ′a::real vector ⇒ ′a ⇒ ′a set
where closed segment a b = {(1 − u) ∗R a + u ∗R b | u::real . 0 ≤ u ∧ u ≤ 1}

definition open segment :: ′a::real vector ⇒ ′a ⇒ ′a set where
open segment a b ≡ closed segment a b − {a,b}

lemmas segment = open segment def closed segment def

lemma in segment :
x ∈ closed segment a b ←→ (∃ u. 0 ≤ u ∧ u ≤ 1 ∧ x = (1 − u) ∗R a + u ∗R

b)
x ∈ open segment a b ←→ a 6= b ∧ (∃ u. 0 < u ∧ u < 1 ∧ x = (1 − u) ∗R a

+ u ∗R b)
using less eq real def by (auto simp: segment algebra simps)

lemma closed segment linear image:
closed segment (f a) (f b) = f ‘ (closed segment a b) if linear f

proof −
interpret linear f by fact
show ?thesis
by (force simp add : in segment add scale)

qed

lemma open segment linear image:
[[linear f ; inj f ]] =⇒ open segment (f a) (f b) = f ‘ (open segment a b)

by (force simp: open segment def closed segment linear image inj on def )
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lemma closed segment translation:
closed segment (c + a) (c + b) = image (λx . c + x ) (closed segment a b)

apply safe
apply (rule tac x=x−c in image eqI )
apply (auto simp: in segment algebra simps)
done

lemma open segment translation:
open segment (c + a) (c + b) = image (λx . c + x ) (open segment a b)

by (simp add : open segment def closed segment translation translation diff )

lemma closed segment of real :
closed segment (of real x ) (of real y) = of real ‘ closed segment x y

apply (auto simp: image iff in segment scaleR conv of real)
apply (rule tac x=(1−u)∗x + u∗y in bexI )

apply (auto simp: in segment)
done

lemma open segment of real :
open segment (of real x ) (of real y) = of real ‘ open segment x y

apply (auto simp: image iff in segment scaleR conv of real)
apply (rule tac x=(1−u)∗x + u∗y in bexI )

apply (auto simp: in segment)
done

lemma closed segment Reals:
[[x ∈ Reals; y ∈ Reals]] =⇒ closed segment x y = of real ‘ closed segment (Re

x ) (Re y)
by (metis closed segment of real of real Re)

lemma open segment Reals:
[[x ∈ Reals; y ∈ Reals]] =⇒ open segment x y = of real ‘ open segment (Re x )

(Re y)
by (metis open segment of real of real Re)

lemma open segment PairD :
(x , x ′) ∈ open segment (a, a ′) (b, b ′)
=⇒ (x ∈ open segment a b ∨ a = b) ∧ (x ′ ∈ open segment a ′ b ′ ∨ a ′ = b ′)

by (auto simp: in segment)

lemma closed segment PairD :
(x , x ′) ∈ closed segment (a, a ′) (b, b ′) =⇒ x ∈ closed segment a b ∧ x ′ ∈

closed segment a ′ b ′

by (auto simp: closed segment def )

lemma closed segment translation eq [simp]:
d + x ∈ closed segment (d + a) (d + b) ←→ x ∈ closed segment a b

proof −
have ∗:

∧
d x a b. x ∈ closed segment a b =⇒ d + x ∈ closed segment (d + a)
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(d + b)
apply (simp add : closed segment def )
apply (erule ex forward)
apply (simp add : algebra simps)
done

show ?thesis
using ∗ [where d = −d ] ∗
by (fastforce simp add :)

qed

lemma open segment translation eq [simp]:
d + x ∈ open segment (d + a) (d + b) ←→ x ∈ open segment a b

by (simp add : open segment def )

lemma of real closed segment [simp]:
of real x ∈ closed segment (of real a) (of real b) ←→ x ∈ closed segment a b
apply (auto simp: in segment scaleR conv of real elim!: ex forward)
using of real eq iff by fastforce

lemma of real open segment [simp]:
of real x ∈ open segment (of real a) (of real b) ←→ x ∈ open segment a b
apply (auto simp: in segment scaleR conv of real elim!: ex forward del : exE )
using of real eq iff by fastforce

lemma convex contains segment :
convex S ←→ (∀ a∈S . ∀ b∈S . closed segment a b ⊆ S )
unfolding convex alt closed segment def by auto

lemma closed segment in Reals:
[[x ∈ closed segment a b; a ∈ Reals; b ∈ Reals]] =⇒ x ∈ Reals
by (meson subsetD convex Reals convex contains segment)

lemma open segment in Reals:
[[x ∈ open segment a b; a ∈ Reals; b ∈ Reals]] =⇒ x ∈ Reals
by (metis Diff iff closed segment in Reals open segment def )

lemma closed segment subset : [[x ∈ S ; y ∈ S ; convex S ]] =⇒ closed segment x y
⊆ S
by (simp add : convex contains segment)

lemma closed segment subset convex hull :
[[x ∈ convex hull S ; y ∈ convex hull S ]] =⇒ closed segment x y ⊆ convex hull S

using convex contains segment by blast

lemma segment convex hull :
closed segment a b = convex hull {a,b}

proof −
have ∗:

∧
x . {x} 6= {} by auto

show ?thesis
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unfolding segment convex hull insert [OF ∗] convex hull singleton
by (safe; rule tac x=1 − u in exI ; force)

qed

lemma open closed segment : u ∈ open segment w z =⇒ u ∈ closed segment w z
by (auto simp add : closed segment def open segment def )

lemma segment open subset closed :
open segment a b ⊆ closed segment a b
by (auto simp: closed segment def open segment def )

lemma bounded closed segment :
fixes a :: ′a::real normed vector shows bounded (closed segment a b)
by (rule boundedI [where B=max (norm a) (norm b)])
(auto simp: closed segment def max def convex bound le intro!: norm triangle le)

lemma bounded open segment :
fixes a :: ′a::real normed vector shows bounded (open segment a b)

by (rule bounded subset [OF bounded closed segment segment open subset closed ])

lemmas bounded segment = bounded closed segment open closed segment

lemma ends in segment [iff ]: a ∈ closed segment a b b ∈ closed segment a b
unfolding segment convex hull
by (auto intro!: hull subset [unfolded subset eq , rule format ])

lemma eventually closed segment :
fixes x0 :: ′a::real normed vector
assumes open X0 x0 ∈ X0
shows ∀ F x in at x0 within U . closed segment x0 x ⊆ X0

proof −
from openE [OF assms]
obtain e where e: 0 < e ball x0 e ⊆ X0 .
then have ∀ F x in at x0 within U . x ∈ ball x0 e
by (auto simp: dist commute eventually at)

then show ?thesis
proof eventually elim
case (elim x )
have x0 ∈ ball x0 e using 〈e > 0 〉 by simp
from convex ball [unfolded convex contains segment , rule format , OF this elim]
have closed segment x0 x ⊆ ball x0 e .
also note 〈. . . ⊆ X0 〉

finally show ?case .
qed

qed

lemma closed segment commute: closed segment a b = closed segment b a
proof −
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have {a, b} = {b, a} by auto
thus ?thesis
by (simp add : segment convex hull)

qed

lemma segment bound1 :
assumes x ∈ closed segment a b
shows norm (x − a) ≤ norm (b − a)

proof −
obtain u where x = (1 − u) ∗R a + u ∗R b 0 ≤ u u ≤ 1
using assms by (auto simp add : closed segment def )

then show norm (x − a) ≤ norm (b − a)
apply clarify
apply (auto simp: algebra simps)
apply (simp add : scaleR diff right [symmetric] mult left le one le)
done

qed

lemma segment bound :
assumes x ∈ closed segment a b
shows norm (x − a) ≤ norm (b − a) norm (x − b) ≤ norm (b − a)

by (metis assms closed segment commute dist commute dist norm segment bound1 )+

lemma open segment commute: open segment a b = open segment b a
proof −
have {a, b} = {b, a} by auto
thus ?thesis
by (simp add : closed segment commute open segment def )

qed

lemma closed segment idem [simp]: closed segment a a = {a}
unfolding segment by (auto simp add : algebra simps)

lemma open segment idem [simp]: open segment a a = {}
by (simp add : open segment def )

lemma closed segment eq open: closed segment a b = open segment a b ∪ {a,b}
using open segment def by auto

lemma convex contains open segment :
convex s ←→ (∀ a∈s. ∀ b∈s. open segment a b ⊆ s)
by (simp add : convex contains segment closed segment eq open)

lemma closed segment eq real ivl1 :
fixes a b::real
assumes a ≤ b
shows closed segment a b = {a .. b}

proof safe
fix x
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assume x ∈ closed segment a b
then obtain u where u: 0 ≤ u u ≤ 1 and x def : x = (1 − u) ∗ a + u ∗ b
by (auto simp: closed segment def )

have u ∗ a ≤ u ∗ b (1 − u) ∗ a ≤ (1 − u) ∗ b
by (auto intro!: mult left mono u assms)

then show x ∈ {a .. b}
unfolding x def by (auto simp: algebra simps)

next
show

∧
x . x ∈ {a..b} =⇒ x ∈ closed segment a b

by (force simp: closed segment def divide simps algebra simps
intro: exI [where x=(x − a) / (b − a) for x ])

qed

lemma closed segment eq real ivl :
fixes a b::real
shows closed segment a b = (if a ≤ b then {a .. b} else {b .. a})
using closed segment eq real ivl1 [of a b] closed segment eq real ivl1 [of b a]
by (auto simp: closed segment commute)

lemma open segment eq real ivl :
fixes a b::real
shows open segment a b = (if a ≤ b then {a<..<b} else {b<..<a})

by (auto simp: closed segment eq real ivl open segment def split : if split asm)

lemma closed segment real eq :
fixes u::real shows closed segment u v = (λx . (v − u) ∗ x + u) ‘ {0 ..1}
by (simp add : add .commute [of u] image affinity atLeastAtMost [where c=u]

closed segment eq real ivl)

lemma closed segment same Re:
assumes Re a = Re b
shows closed segment a b = {z . Re z = Re a ∧ Im z ∈ closed segment (Im a)

(Im b)}
proof safe
fix z assume z ∈ closed segment a b
then obtain u where u: u ∈ {0 ..1} z = a + of real u ∗ (b − a)
by (auto simp: closed segment def scaleR conv of real algebra simps)

from assms show Re z = Re a by (auto simp: u)
from u(1 ) show Im z ∈ closed segment (Im a) (Im b)
by (force simp: u closed segment def algebra simps)

next
fix z assume [simp]: Re z = Re a and Im z ∈ closed segment (Im a) (Im b)
then obtain u where u: u ∈ {0 ..1} Im z = Im a + of real u ∗ (Im b − Im a)
by (auto simp: closed segment def scaleR conv of real algebra simps)

from u(1 ) show z ∈ closed segment a b using assms
by (force simp: u closed segment def algebra simps scaleR conv of real com-

plex eq iff )
qed
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lemma closed segment same Im:
assumes Im a = Im b
shows closed segment a b = {z . Im z = Im a ∧ Re z ∈ closed segment (Re a)

(Re b)}
proof safe
fix z assume z ∈ closed segment a b
then obtain u where u: u ∈ {0 ..1} z = a + of real u ∗ (b − a)
by (auto simp: closed segment def scaleR conv of real algebra simps)

from assms show Im z = Im a by (auto simp: u)
from u(1 ) show Re z ∈ closed segment (Re a) (Re b)
by (force simp: u closed segment def algebra simps)

next
fix z assume [simp]: Im z = Im a and Re z ∈ closed segment (Re a) (Re b)
then obtain u where u: u ∈ {0 ..1} Re z = Re a + of real u ∗ (Re b − Re a)
by (auto simp: closed segment def scaleR conv of real algebra simps)

from u(1 ) show z ∈ closed segment a b using assms
by (force simp: u closed segment def algebra simps scaleR conv of real com-

plex eq iff )
qed

lemma dist in closed segment :
fixes a :: ′a :: euclidean space
assumes x ∈ closed segment a b
shows dist x a ≤ dist a b ∧ dist x b ≤ dist a b

proof (intro conjI )
obtain u where u: 0 ≤ u u ≤ 1 and x : x = (1 − u) ∗R a + u ∗R b
using assms by (force simp: in segment algebra simps)

have dist x a = u ∗ dist a b
apply (simp add : dist norm algebra simps x )
by (metis 〈0 ≤ u〉 abs of nonneg norm minus commute norm scaleR real vector .scale right diff distrib)
also have ... ≤ dist a b
by (simp add : mult left le one le u)

finally show dist x a ≤ dist a b .
have dist x b = norm ((1−u) ∗R a − (1−u) ∗R b)
by (simp add : dist norm algebra simps x )

also have ... = (1−u) ∗ dist a b
proof −
have norm ((1 − 1 ∗ u) ∗R (a − b)) = (1 − 1 ∗ u) ∗ norm (a − b)
using 〈u ≤ 1 〉 by force

then show ?thesis
by (simp add : dist norm real vector .scale right diff distrib)

qed
also have ... ≤ dist a b
by (simp add : mult left le one le u)

finally show dist x b ≤ dist a b .
qed

lemma dist in open segment :
fixes a :: ′a :: euclidean space
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assumes x ∈ open segment a b
shows dist x a < dist a b ∧ dist x b < dist a b

proof (intro conjI )
obtain u where u: 0 < u u < 1 and x : x = (1 − u) ∗R a + u ∗R b
using assms by (force simp: in segment algebra simps)

have dist x a = u ∗ dist a b
apply (simp add : dist norm algebra simps x )
by (metis abs of nonneg less eq real def norm minus commute norm scaleR

real vector .scale right diff distrib 〈0 < u〉)
also have ∗: ... < dist a b
using assms mult less cancel right2 u(2 ) by fastforce

finally show dist x a < dist a b .
have ab ne0 : dist a b 6= 0
using ∗ by fastforce

have dist x b = norm ((1−u) ∗R a − (1−u) ∗R b)
by (simp add : dist norm algebra simps x )

also have ... = (1−u) ∗ dist a b
proof −
have norm ((1 − 1 ∗ u) ∗R (a − b)) = (1 − 1 ∗ u) ∗ norm (a − b)
using 〈u < 1 〉 by force

then show ?thesis
by (simp add : dist norm real vector .scale right diff distrib)

qed
also have ... < dist a b
using ab ne0 〈0 < u〉 by simp

finally show dist x b < dist a b .
qed

lemma dist decreases open segment 0 :
fixes x :: ′a :: euclidean space
assumes x ∈ open segment 0 b
shows dist c x < dist c 0 ∨ dist c x < dist c b

proof (rule ccontr , clarsimp simp: not less)
obtain u where u: 0 6= b 0 < u u < 1 and x : x = u ∗R b
using assms by (auto simp: in segment)

have xb: x · b < b · b
using u x by auto

assume norm c ≤ dist c x
then have c · c ≤ (c − x ) · (c − x )
by (simp add : dist norm norm le)

moreover have 0 < x · b
using u x by auto

ultimately have less: c · b < x · b
by (simp add : x algebra simps inner commute u)

assume dist c b ≤ dist c x
then have (c − b) · (c − b) ≤ (c − x ) · (c − x )
by (simp add : dist norm norm le)

then have (b · b) ∗ (1 − u∗u) ≤ 2 ∗ (b · c) ∗ (1−u)
by (simp add : x algebra simps inner commute)
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then have (1+u) ∗ (b · b) ∗ (1−u) ≤ 2 ∗ (b · c) ∗ (1−u)
by (simp add : algebra simps)

then have (1+u) ∗ (b · b) ≤ 2 ∗ (b · c)
using 〈u < 1 〉 by auto

with xb have c · b ≥ x · b
by (auto simp: x algebra simps inner commute)

with less show False by auto
qed

proposition dist decreases open segment :
fixes a :: ′a :: euclidean space
assumes x ∈ open segment a b
shows dist c x < dist c a ∨ dist c x < dist c b

proof −
have ∗: x − a ∈ open segment 0 (b − a) using assms
by (metis diff self open segment translation eq uminus add conv diff )

show ?thesis
using dist decreases open segment 0 [OF ∗, of c−a] assms
by (simp add : dist norm)

qed

corollary open segment furthest le:
fixes a b x y :: ′a::euclidean space
assumes x ∈ open segment a b
shows norm (y − x ) < norm (y − a) ∨ norm (y − x ) < norm (y − b)
by (metis assms dist decreases open segment dist norm)

corollary dist decreases closed segment :
fixes a :: ′a :: euclidean space
assumes x ∈ closed segment a b
shows dist c x ≤ dist c a ∨ dist c x ≤ dist c b

apply (cases x ∈ open segment a b)
using dist decreases open segment less eq real def apply blast
by (metis DiffI assms empty iff insertE open segment def order refl)

corollary segment furthest le:
fixes a b x y :: ′a::euclidean space
assumes x ∈ closed segment a b
shows norm (y − x ) ≤ norm (y − a) ∨ norm (y − x ) ≤ norm (y − b)
by (metis assms dist decreases closed segment dist norm)

lemma convex intermediate ball :
fixes a :: ′a :: euclidean space
shows [[ball a r ⊆ T ; T ⊆ cball a r ]] =⇒ convex T

apply (simp add : convex contains open segment , clarify)
by (metis (no types, hide lams) less le trans mem ball mem cball subsetCE dist decreases open segment)

lemma csegment midpoint subset : closed segment (midpoint a b) b ⊆ closed segment
a b
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apply (clarsimp simp: midpoint def in segment)
apply (rule tac x=(1 + u) / 2 in exI )
apply (auto simp: algebra simps add divide distrib diff divide distrib)
by (metis field sum of halves scaleR left .add)

lemma notin segment midpoint :
fixes a :: ′a :: euclidean space
shows a 6= b =⇒ a /∈ closed segment (midpoint a b) b

by (auto simp: dist midpoint dest !: dist in closed segment)

More lemmas, especially for working with the underlying formula

lemma segment eq compose:
fixes a :: ′a :: real vector
shows (λu. (1 − u) ∗R a + u ∗R b) = (λx . a + x ) o (λu. u ∗R (b − a))
by (simp add : o def algebra simps)

lemma segment degen 1 :
fixes a :: ′a :: real vector
shows (1 − u) ∗R a + u ∗R b = b ←→ a=b ∨ u=1

proof −
{ assume (1 − u) ∗R a + u ∗R b = b
then have (1 − u) ∗R a = (1 − u) ∗R b
by (simp add : algebra simps)

then have a=b ∨ u=1
by simp

} then show ?thesis
by (auto simp: algebra simps)

qed

lemma segment degen 0 :
fixes a :: ′a :: real vector
shows (1 − u) ∗R a + u ∗R b = a ←→ a=b ∨ u=0

using segment degen 1 [of 1−u b a]
by (auto simp: algebra simps)

lemma add scaleR degen:
fixes a b :: ′a::real vector
assumes (u ∗R b + v ∗R a) = (u ∗R a + v ∗R b) u 6= v
shows a=b
by (metis (no types, hide lams) add .commute add diff eq diff add cancel real vector .scale cancel left

real vector .scale left diff distrib assms)

lemma closed segment image interval :
closed segment a b = (λu. (1 − u) ∗R a + u ∗R b) ‘ {0 ..1}

by (auto simp: set eq iff image iff closed segment def )

lemma open segment image interval :
open segment a b = (if a=b then {} else (λu. (1 − u) ∗R a + u ∗R b) ‘
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{0<..<1})
by (auto simp: open segment def closed segment def segment degen 0 segment degen 1 )

lemmas segment image interval = closed segment image interval open segment image interval

lemma closed segment neq empty [simp]: closed segment a b 6= {}
by auto

lemma open segment eq empty [simp]: open segment a b = {} ←→ a = b
proof −
{ assume a1 : open segment a b = {}
have {} 6= {0 ::real<..<1}
by simp

then have a = b
using a1 open segment image interval by fastforce

} then show ?thesis by auto
qed

lemma open segment eq empty ′ [simp]: {} = open segment a b ←→ a = b
using open segment eq empty by blast

lemmas segment eq empty = closed segment neq empty open segment eq empty

lemma inj segment :
fixes a :: ′a :: real vector
assumes a 6= b
shows inj on (λu. (1 − u) ∗R a + u ∗R b) I

proof
fix x y
assume (1 − x ) ∗R a + x ∗R b = (1 − y) ∗R a + y ∗R b
then have x ∗R (b − a) = y ∗R (b − a)
by (simp add : algebra simps)

with assms show x = y
by (simp add : real vector .scale right imp eq)

qed

lemma finite closed segment [simp]: finite(closed segment a b) ←→ a = b
apply auto
apply (rule ccontr)
apply (simp add : segment image interval)
using infinite Icc [OF zero less one] finite imageD [OF inj segment ] apply

blast
done

lemma finite open segment [simp]: finite(open segment a b) ←→ a = b
by (auto simp: open segment def )

lemmas finite segment = finite closed segment finite open segment
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lemma closed segment eq sing : closed segment a b = {c} ←→ a = c ∧ b = c
by auto

lemma open segment eq sing : open segment a b 6= {c}
by (metis finite insert finite open segment insert not empty open segment image interval)

lemmas segment eq sing = closed segment eq sing open segment eq sing

lemma open segment bound1 :
assumes x ∈ open segment a b
shows norm (x − a) < norm (b − a)

proof −
obtain u where x = (1 − u) ∗R a + u ∗R b 0 < u u < 1 a 6= b
using assms by (auto simp add : open segment image interval split : if split asm)
then show norm (x − a) < norm (b − a)
apply clarify
apply (auto simp: algebra simps)
apply (simp add : scaleR diff right [symmetric])
done

qed

lemma compact segment [simp]:
fixes a :: ′a::real normed vector
shows compact (closed segment a b)
by (auto simp: segment image interval intro!: compact continuous image contin-

uous intros)

lemma closed segment [simp]:
fixes a :: ′a::real normed vector
shows closed (closed segment a b)
by (simp add : compact imp closed)

lemma closure closed segment [simp]:
fixes a :: ′a::real normed vector
shows closure(closed segment a b) = closed segment a b
by simp

lemma open segment bound :
assumes x ∈ open segment a b
shows norm (x − a) < norm (b − a) norm (x − b) < norm (b − a)

apply (simp add : assms open segment bound1 )
by (metis assms norm minus commute open segment bound1 open segment commute)

lemma closure open segment [simp]:
closure (open segment a b) = (if a = b then {} else closed segment a b)
for a :: ′a::euclidean space

proof (cases a = b)
case True
then show ?thesis
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by simp
next
case False
have closure ((λu. u ∗R (b − a)) ‘ {0<..<1}) = (λu. u ∗R (b − a)) ‘ closure
{0<..<1}

apply (rule closure injective linear image [symmetric])
apply (use False in 〈auto intro!: injI 〉)
done

then have closure
((λu. (1 − u) ∗R a + u ∗R b) ‘ {0<..<1}) =
(λx . (1 − x ) ∗R a + x ∗R b) ‘ closure {0<..<1}
using closure translation [of a ((λx . x ∗R b − x ∗R a) ‘ {0<..<1})]
by (simp add : segment eq compose field simps scaleR diff left scaleR diff right

image image)
then show ?thesis
by (simp add : segment image interval closure greaterThanLessThan [symmetric]

del : closure greaterThanLessThan)
qed

lemma closed open segment iff [simp]:
fixes a :: ′a::euclidean space shows closed(open segment a b) ←→ a = b

by (metis open segment def DiffE closure eq closure open segment ends in segment(1 )
insert iff segment image interval(2 ))

lemma compact open segment iff [simp]:
fixes a :: ′a::euclidean space shows compact(open segment a b) ←→ a = b

by (simp add : bounded open segment compact eq bounded closed)

lemma convex closed segment [iff ]: convex (closed segment a b)
unfolding segment convex hull by(rule convex convex hull)

lemma convex open segment [iff ]: convex (open segment a b)
proof −
have convex ((λu. u ∗R (b − a)) ‘ {0<..<1})
by (rule convex linear image) auto

then have convex ((+) a ‘ (λu. u ∗R (b − a)) ‘ {0<..<1})
by (rule convex translation)

then show ?thesis
by (simp add : image image open segment image interval segment eq compose

field simps scaleR diff left scaleR diff right)
qed

lemmas convex segment = convex closed segment convex open segment

lemma subset closed segment :
closed segment a b ⊆ closed segment c d ←→
a ∈ closed segment c d ∧ b ∈ closed segment c d

by auto (meson contra subsetD convex closed segment convex contains segment)
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lemma subset co segment :
closed segment a b ⊆ open segment c d ←→
a ∈ open segment c d ∧ b ∈ open segment c d

using closed segment subset by blast

lemma subset open segment :
fixes a :: ′a::euclidean space
shows open segment a b ⊆ open segment c d ←→

a = b ∨ a ∈ closed segment c d ∧ b ∈ closed segment c d
(is ?lhs = ?rhs)

proof (cases a = b)
case True then show ?thesis by simp

next
case False show ?thesis
proof
assume rhs: ?rhs
with 〈a 6= b〉 have c 6= d
using closed segment idem singleton iff by auto

have ∃ uc. (1 − u) ∗R ((1 − ua) ∗R c + ua ∗R d) + u ∗R ((1 − ub) ∗R c +
ub ∗R d) =

(1 − uc) ∗R c + uc ∗R d ∧ 0 < uc ∧ uc < 1
if neq : (1 − ua) ∗R c + ua ∗R d 6= (1 − ub) ∗R c + ub ∗R d c 6= d

and a = (1 − ua) ∗R c + ua ∗R d b = (1 − ub) ∗R c + ub ∗R d
and u: 0 < u u < 1 and uab: 0 ≤ ua ua ≤ 1 0 ≤ ub ub ≤ 1

for u ua ub
proof −
have ua 6= ub
using neq by auto

moreover have (u − 1 ) ∗ ua ≤ 0 using u uab
by (simp add : mult nonpos nonneg)

ultimately have lt : (u − 1 ) ∗ ua < u ∗ ub using u uab
by (metis antisym conv diff ge 0 iff ge le less trans mult eq 0 iff mult le 0 iff

not less)
have p ∗ ua + q ∗ ub < p+q if p: 0 < p and q : 0 < q for p q
proof −
have ¬ p ≤ 0 ¬ q ≤ 0
using p q not less by blast+

then show ?thesis
by (metis 〈ua 6= ub〉 add less cancel left add less cancel right add mono thms linordered field(5 )

less eq real def mult cancel left1 mult less cancel left2 uab(2 ) uab(4 ))
qed
then have (1 − u) ∗ ua + u ∗ ub < 1 using u 〈ua 6= ub〉

by (metis diff add cancel diff gt 0 iff gt)
with lt show ?thesis
by (rule tac x=ua + u∗(ub−ua) in exI ) (simp add : algebra simps)

qed
with rhs 〈a 6= b〉 〈c 6= d 〉 show ?lhs
unfolding open segment image interval closed segment def
by (fastforce simp add :)
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next
assume lhs: ?lhs
with 〈a 6= b〉 have c 6= d
by (meson finite open segment rev finite subset)

have closure (open segment a b) ⊆ closure (open segment c d)
using lhs closure mono by blast

then have closed segment a b ⊆ closed segment c d
by (simp add : 〈a 6= b〉 〈c 6= d 〉)

then show ?rhs
by (force simp: 〈a 6= b〉)

qed
qed

lemma subset oc segment :
fixes a :: ′a::euclidean space
shows open segment a b ⊆ closed segment c d ←→

a = b ∨ a ∈ closed segment c d ∧ b ∈ closed segment c d
apply (simp add : subset open segment [symmetric])
apply (rule iffI )
apply (metis closure closed segment closure mono closure open segment subset closed segment
subset open segment)
apply (meson dual order .trans segment open subset closed)
done

lemmas subset segment = subset closed segment subset co segment subset oc segment
subset open segment

lemma dist half times2 :
fixes a :: ′a :: real normed vector
shows dist ((1 / 2 ) ∗R (a + b)) x ∗ 2 = dist (a+b) (2 ∗R x )

proof −
have norm ((1 / 2 ) ∗R (a + b) − x ) ∗ 2 = norm (2 ∗R ((1 / 2 ) ∗R (a + b)
− x ))

by simp
also have ... = norm ((a + b) − 2 ∗R x )
by (simp add : real vector .scale right diff distrib)

finally show ?thesis
by (simp only : dist norm)

qed

lemma closed segment as ball :
closed segment a b = affine hull {a,b} ∩ cball(inverse 2 ∗R (a + b))(norm(b

− a) / 2 )
proof (cases b = a)
case True then show ?thesis by (auto simp: hull inc)

next
case False
then have ∗: ((∃ u v . x = u ∗R a + v ∗R b ∧ u + v = 1 ) ∧

dist ((1 / 2 ) ∗R (a + b)) x ∗ 2 ≤ norm (b − a)) =
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(∃ u. x = (1 − u) ∗R a + u ∗R b ∧ 0 ≤ u ∧ u ≤ 1 ) for x
proof −
have ((∃ u v . x = u ∗R a + v ∗R b ∧ u + v = 1 ) ∧

dist ((1 / 2 ) ∗R (a + b)) x ∗ 2 ≤ norm (b − a)) =
((∃ u. x = (1 − u) ∗R a + u ∗R b) ∧

dist ((1 / 2 ) ∗R (a + b)) x ∗ 2 ≤ norm (b − a))
unfolding eq diff eq [symmetric] by simp

also have ... = (∃ u. x = (1 − u) ∗R a + u ∗R b ∧
norm ((a+b) − (2 ∗R x )) ≤ norm (b − a))

by (simp add : dist half times2 ) (simp add : dist norm)
also have ... = (∃ u. x = (1 − u) ∗R a + u ∗R b ∧

norm ((a+b) − (2 ∗R ((1 − u) ∗R a + u ∗R b))) ≤ norm (b − a))
by auto

also have ... = (∃ u. x = (1 − u) ∗R a + u ∗R b ∧
norm ((1 − u ∗ 2 ) ∗R (b − a)) ≤ norm (b − a))

by (simp add : algebra simps scaleR 2 )
also have ... = (∃ u. x = (1 − u) ∗R a + u ∗R b ∧

|1 − u ∗ 2 | ∗ norm (b − a) ≤ norm (b − a))
by simp

also have ... = (∃ u. x = (1 − u) ∗R a + u ∗R b ∧ |1 − u ∗ 2 | ≤ 1 )
by (simp add : mult le cancel right2 False)

also have ... = (∃ u. x = (1 − u) ∗R a + u ∗R b ∧ 0 ≤ u ∧ u ≤ 1 )
by auto

finally show ?thesis .
qed
show ?thesis
by (simp add : affine hull 2 Set .set eq iff closed segment def ∗)

qed

lemma open segment as ball :
open segment a b =
affine hull {a,b} ∩ ball(inverse 2 ∗R (a + b))(norm(b − a) / 2 )

proof (cases b = a)
case True then show ?thesis by (auto simp: hull inc)

next
case False
then have ∗: ((∃ u v . x = u ∗R a + v ∗R b ∧ u + v = 1 ) ∧

dist ((1 / 2 ) ∗R (a + b)) x ∗ 2 < norm (b − a)) =
(∃ u. x = (1 − u) ∗R a + u ∗R b ∧ 0 < u ∧ u < 1 ) for x

proof −
have ((∃ u v . x = u ∗R a + v ∗R b ∧ u + v = 1 ) ∧

dist ((1 / 2 ) ∗R (a + b)) x ∗ 2 < norm (b − a)) =
((∃ u. x = (1 − u) ∗R a + u ∗R b) ∧

dist ((1 / 2 ) ∗R (a + b)) x ∗ 2 < norm (b − a))
unfolding eq diff eq [symmetric] by simp

also have ... = (∃ u. x = (1 − u) ∗R a + u ∗R b ∧
norm ((a+b) − (2 ∗R x )) < norm (b − a))

by (simp add : dist half times2 ) (simp add : dist norm)
also have ... = (∃ u. x = (1 − u) ∗R a + u ∗R b ∧
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norm ((a+b) − (2 ∗R ((1 − u) ∗R a + u ∗R b))) < norm (b − a))
by auto

also have ... = (∃ u. x = (1 − u) ∗R a + u ∗R b ∧
norm ((1 − u ∗ 2 ) ∗R (b − a)) < norm (b − a))

by (simp add : algebra simps scaleR 2 )
also have ... = (∃ u. x = (1 − u) ∗R a + u ∗R b ∧

|1 − u ∗ 2 | ∗ norm (b − a) < norm (b − a))
by simp

also have ... = (∃ u. x = (1 − u) ∗R a + u ∗R b ∧ |1 − u ∗ 2 | < 1 )
by (simp add : mult le cancel right2 False)

also have ... = (∃ u. x = (1 − u) ∗R a + u ∗R b ∧ 0 < u ∧ u < 1 )
by auto

finally show ?thesis .
qed
show ?thesis
using False by (force simp: affine hull 2 Set .set eq iff open segment image interval

∗)
qed

lemmas segment as ball = closed segment as ball open segment as ball

lemma connected segment [iff ]:
fixes x :: ′a :: real normed vector
shows connected (closed segment x y)
by (simp add : convex connected)

lemma is interval closed segment 1 [intro, simp]: is interval (closed segment a b)
for a b::real
unfolding closed segment eq real ivl
by (auto simp: is interval def )

lemma IVT ′ closed segment real :
fixes f :: real ⇒ real
assumes y ∈ closed segment (f a) (f b)
assumes continuous on (closed segment a b) f
shows ∃ x ∈ closed segment a b. f x = y
using IVT ′[of f a y b]
IVT ′[of −f a −y b]
IVT ′[of f b y a]
IVT ′[of −f b −y a] assms

by (cases a ≤ b; cases f b ≥ f a) (auto simp: closed segment eq real ivl continu-
ous on minus)

4.4.4 Betweenness

definition between = (λ(a,b) x . x ∈ closed segment a b)

lemma betweenI :
assumes 0 ≤ u u ≤ 1 x = (1 − u) ∗R a + u ∗R b
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shows between (a, b) x
using assms unfolding between def closed segment def by auto

lemma betweenE :
assumes between (a, b) x
obtains u where 0 ≤ u u ≤ 1 x = (1 − u) ∗R a + u ∗R b

using assms unfolding between def closed segment def by auto

lemma between implies scaled diff :
assumes between (S , T ) X between (S , T ) Y S 6= Y
obtains c where (X − Y ) = c ∗R (S − Y )

proof −
from 〈between (S , T ) X 〉 obtain uX where X : X = uX ∗R S + (1 − uX) ∗R

T
by (metis add .commute betweenE eq diff eq)

from 〈between (S , T ) Y 〉 obtain uY where Y : Y = uY ∗R S + (1 − uY ) ∗R
T

by (metis add .commute betweenE eq diff eq)
have X − Y = (uX − uY ) ∗R (S − T )
proof −
from X Y have X − Y = uX ∗R S − uY ∗R S + ((1 − uX) ∗R T − (1 −

uY ) ∗R T ) by simp
also have . . . = (uX − uY ) ∗R S − (uX − uY ) ∗R T by (simp add :

scaleR left .diff )
finally show ?thesis by (simp add : real vector .scale right diff distrib)

qed
moreover from Y have S − Y = (1 − uY ) ∗R (S − T )
by (simp add : real vector .scale left diff distrib real vector .scale right diff distrib)
moreover note 〈S 6= Y 〉

ultimately have (X − Y ) = ((uX − uY ) / (1 − uY )) ∗R (S − Y ) by auto
from this that show thesis by blast

qed

lemma between mem segment : between (a,b) x ←→ x ∈ closed segment a b
unfolding between def by auto

lemma between: between (a, b) (x :: ′a::euclidean space) ←→ dist a b = (dist a x )
+ (dist x b)
proof (cases a = b)
case True
then show ?thesis
by (auto simp add : between def dist commute)

next
case False
then have Fal : norm (a − b) 6= 0 and Fal2 : norm (a − b) > 0
by auto

have ∗:
∧
u. a − ((1 − u) ∗R a + u ∗R b) = u ∗R (a − b)

by (auto simp add : algebra simps)
have norm (a − x ) ∗R (x − b) = norm (x − b) ∗R (a − x ) if x = (1 − u) ∗R
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a + u ∗R b 0 ≤ u u ≤ 1 for u
proof −
have ∗: a − x = u ∗R (a − b) x − b = (1 − u) ∗R (a − b)
unfolding that(1 ) by (auto simp add :algebra simps)

show norm (a − x ) ∗R (x − b) = norm (x − b) ∗R (a − x )
unfolding norm minus commute[of x a] ∗ using 〈0 ≤ u〉 〈u ≤ 1 〉

by simp
qed
moreover have ∃ u. x = (1 − u) ∗R a + u ∗R b ∧ 0 ≤ u ∧ u ≤ 1 if dist a b

= dist a x + dist x b
proof −
let ?β = norm (a − x ) / norm (a − b)
show ∃ u. x = (1 − u) ∗R a + u ∗R b ∧ 0 ≤ u ∧ u ≤ 1
proof (intro exI conjI )
show ?β ≤ 1
using Fal2 unfolding that [unfolded dist norm] norm ge zero by auto

show x = (1 − ?β) ∗R a + (?β) ∗R b
proof (subst euclidean eq iff ; intro ballI )
fix i :: ′a
assume i : i ∈ Basis
have ((1 − ?β) ∗R a + (?β) ∗R b) · i

= ((norm (a − b) − norm (a − x )) ∗ (a · i) + norm (a − x ) ∗ (b ·
i)) / norm (a − b)

using Fal by (auto simp add : field simps inner simps)
also have . . . = x ·i
apply (rule divide eq imp[OF Fal ])
unfolding that [unfolded dist norm]
using that [unfolded dist triangle eq ] i
apply (subst (asm) euclidean eq iff )
apply (auto simp add : field simps inner simps)
done

finally show x · i = ((1 − ?β) ∗R a + (?β) ∗R b) · i
by auto

qed
qed (use Fal2 in auto)

qed
ultimately show ?thesis
by (force simp add : between def closed segment def dist triangle eq)

qed

lemma between midpoint :
fixes a :: ′a::euclidean space
shows between (a,b) (midpoint a b) (is ?t1 )
and between (b,a) (midpoint a b) (is ?t2 )

proof −
have ∗:

∧
x y z . x = (1/2 ::real) ∗R z =⇒ y = (1/2 ) ∗R z =⇒ norm z = norm

x + norm y
by auto

show ?t1 ?t2
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unfolding between midpoint def dist norm
by (auto simp add : field simps inner simps euclidean eq iff [where ′a= ′a] intro!:

∗)
qed

lemma between mem convex hull :
between (a,b) x ←→ x ∈ convex hull {a,b}
unfolding between mem segment segment convex hull ..

lemma between triv iff [simp]: between (a,a) b ←→ a=b
by (auto simp: between def )

lemma between triv1 [simp]: between (a,b) a
by (auto simp: between def )

lemma between triv2 [simp]: between (a,b) b
by (auto simp: between def )

lemma between commute:
between (a,b) = between (b,a)

by (auto simp: between def closed segment commute)

lemma between antisym:
fixes a :: ′a :: euclidean space
shows [[between (b,c) a; between (a,c) b]] =⇒ a = b

by (auto simp: between dist commute)

lemma between trans:
fixes a :: ′a :: euclidean space
shows [[between (b,c) a; between (a,c) d ]] =⇒ between (b,c) d

using dist triangle2 [of b c d ] dist triangle3 [of b d a]
by (auto simp: between dist commute)

lemma between norm:
fixes a :: ′a :: euclidean space
shows between (a,b) x ←→ norm(x − a) ∗R (b − x ) = norm(b − x ) ∗R (x −

a)
by (auto simp: between dist triangle eq norm minus commute algebra simps)

lemma between swap:
fixes A B X Y :: ′a::euclidean space
assumes between (A, B) X
assumes between (A, B) Y
shows between (X , B) Y ←→ between (A, Y ) X

using assms by (auto simp add : between)

lemma between translation [simp]: between (a + y ,a + z ) (a + x ) ←→ between
(y ,z ) x
by (auto simp: between def )

Line{_}{\kern 0pt}Segment.html


714

lemma between trans 2 :
fixes a :: ′a :: euclidean space
shows [[between (b,c) a; between (a,b) d ]] =⇒ between (c,d) a
by (metis between commute between swap between trans)

lemma between scaleR lift [simp]:
fixes v :: ′a::euclidean space
shows between (a ∗R v , b ∗R v) (c ∗R v) ←→ v = 0 ∨ between (a, b) c
by (simp add : between dist norm scaleR left diff distrib [symmetric] distrib right

[symmetric])

lemma between 1 :
fixes x ::real
shows between (a,b) x ←→ (a ≤ x ∧ x ≤ b) ∨ (b ≤ x ∧ x ≤ a)
by (auto simp: between mem segment closed segment eq real ivl)

end

4.5 Limits on the Extended Real Number Line

theory Extended Real Limits
imports
Topology Euclidean Space
HOL−Library .Extended Real
HOL−Library .Extended Nonnegative Real
HOL−Library .Indicator Function

begin

lemma compact UNIV :
compact (UNIV :: ′a::{complete linorder ,linorder topology ,second countable topology}

set)
using compact complete linorder
by (auto simp: seq compact eq compact [symmetric] seq compact def )

lemma compact eq closed :
fixes S :: ′a::{complete linorder ,linorder topology ,second countable topology} set
shows compact S ←→ closed S
using closed Int compact [of S , OF compact UNIV ] compact imp closed
by auto

lemma closed contains Sup cl :
fixes S :: ′a::{complete linorder ,linorder topology ,second countable topology} set
assumes closed S
and S 6= {}

shows Sup S ∈ S
proof −
from compact eq closed [of S ] compact attains sup[of S ] assms
obtain s where S : s ∈ S ∀ t∈S . t ≤ s
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by auto
then have Sup S = s
by (auto intro!: Sup eqI )

with S show ?thesis
by simp

qed

lemma closed contains Inf cl :
fixes S :: ′a::{complete linorder ,linorder topology ,second countable topology} set
assumes closed S
and S 6= {}

shows Inf S ∈ S
proof −
from compact eq closed [of S ] compact attains inf [of S ] assms
obtain s where S : s ∈ S ∀ t∈S . s ≤ t
by auto

then have Inf S = s
by (auto intro!: Inf eqI )

with S show ?thesis
by simp

qed

instance enat :: second countable topology
proof
show ∃B ::enat set set . countable B ∧ open = generate topology B
proof (intro exI conjI )
show countable (range lessThan ∪ range greaterThan::enat set set)
by auto

qed (simp add : open enat def )
qed

instance ereal :: second countable topology
proof (standard , intro exI conjI )
let ?B = (

⋃
r∈Q . {{..< r}, {r <..}} :: ereal set set)

show countable ?B
by (auto intro: countable rat)

show open = generate topology ?B
proof (intro ext iffI )
fix S :: ereal set
assume open S
then show generate topology ?B S
unfolding open generated order

proof induct
case (Basis b)
then obtain e where b = {..<e} ∨ b = {e<..}
by auto

moreover have {..<e} =
⋃
{{..<x}|x . x ∈ Q ∧ x < e} {e<..} =

⋃
{{x<..}|x .

x ∈ Q ∧ e < x}
by (auto dest : ereal dense3
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simp del : ex simps
simp add : ex simps[symmetric] conj commute Rats def image iff )

ultimately show ?case
by (auto intro: generate topology .intros)

qed (auto intro: generate topology .intros)
next
fix S
assume generate topology ?B S
then show open S
by induct auto

qed
qed

This is a copy from ereal :: second countable topology. Maybe find a common
super class of topological spaces where the rational numbers are densely
embedded ?

instance ennreal :: second countable topology
proof (standard , intro exI conjI )
let ?B = (

⋃
r∈Q . {{..< r}, {r <..}} :: ennreal set set)

show countable ?B
by (auto intro: countable rat)

show open = generate topology ?B
proof (intro ext iffI )
fix S :: ennreal set
assume open S
then show generate topology ?B S
unfolding open generated order

proof induct
case (Basis b)
then obtain e where b = {..<e} ∨ b = {e<..}
by auto

moreover have {..<e} =
⋃
{{..<x}|x . x ∈ Q ∧ x < e} {e<..} =

⋃
{{x<..}|x .

x ∈ Q ∧ e < x}
by (auto dest : ennreal rat dense

simp del : ex simps
simp add : ex simps[symmetric] conj commute Rats def image iff )

ultimately show ?case
by (auto intro: generate topology .intros)

qed (auto intro: generate topology .intros)
next
fix S
assume generate topology ?B S
then show open S
by induct auto

qed
qed

lemma ereal open closed aux :
fixes S :: ereal set
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assumes open S
and closed S
and S : (−∞) /∈ S

shows S = {}
proof (rule ccontr)
assume ¬ ?thesis
then have ∗: Inf S ∈ S

by (metis assms(2 ) closed contains Inf cl)
{
assume Inf S = −∞
then have False
using ∗ assms(3 ) by auto

}
moreover
{
assume Inf S = ∞
then have S = {∞}
by (metis Inf eq PInfty 〈S 6= {}〉)

then have False
by (metis assms(1 ) not open singleton)

}
moreover
{
assume fin: |Inf S | 6= ∞
from ereal open cont interval [OF assms(1 ) ∗ fin]
obtain e where e: e > 0 {Inf S − e<..<Inf S + e} ⊆ S .
then obtain b where b: Inf S − e < b b < Inf S
using fin ereal between[of Inf S e] dense[of Inf S − e]
by auto

then have b ∈ {Inf S − e <..< Inf S + e}
using e fin ereal between[of Inf S e]
by auto

then have b ∈ S
using e by auto

then have False
using b by (metis complete lattice class.Inf lower leD)

}
ultimately show False
by auto

qed

lemma ereal open closed :
fixes S :: ereal set
shows open S ∧ closed S ←→ S = {} ∨ S = UNIV

proof −
{
assume lhs: open S ∧ closed S
{
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assume −∞ /∈ S
then have S = {}
using lhs ereal open closed aux by auto

}
moreover
{
assume −∞ ∈ S
then have − S = {}
using lhs ereal open closed aux [of −S ] by auto

}
ultimately have S = {} ∨ S = UNIV
by auto

}
then show ?thesis
by auto

qed

lemma ereal open atLeast :
fixes x :: ereal
shows open {x ..} ←→ x = −∞

proof
assume x = −∞
then have {x ..} = UNIV
by auto

then show open {x ..}
by auto

next
assume open {x ..}
then have open {x ..} ∧ closed {x ..}
by auto

then have {x ..} = UNIV
unfolding ereal open closed by auto

then show x = −∞
by (simp add : bot ereal def atLeast eq UNIV iff )

qed

lemma mono closed real :
fixes S :: real set
assumes mono: ∀ y z . y ∈ S ∧ y ≤ z −→ z ∈ S
and closed S

shows S = {} ∨ S = UNIV ∨ (∃ a. S = {a..})
proof −
{
assume S 6= {}
{ assume ex : ∃B . ∀ x∈S . B ≤ x
then have ∗: ∀ x∈S . Inf S ≤ x
using cInf lower [of S ] ex by (metis bdd below def )

then have Inf S ∈ S
apply (subst closed contains Inf )
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using ex 〈S 6= {}〉 〈closed S 〉

apply auto
done

then have ∀ x . Inf S ≤ x ←→ x ∈ S
using mono[rule format , of Inf S ] ∗
by auto

then have S = {Inf S ..}
by auto

then have ∃ a. S = {a ..}
by auto

}
moreover
{
assume ¬ (∃B . ∀ x∈S . B ≤ x )
then have nex : ∀B . ∃ x∈S . x < B
by (simp add : not le)

{
fix y
obtain x where x∈S and x < y
using nex by auto

then have y ∈ S
using mono[rule format , of x y ] by auto

}
then have S = UNIV
by auto

}
ultimately have S = UNIV ∨ (∃ a. S = {a ..})
by blast

}
then show ?thesis
by blast

qed

lemma mono closed ereal :
fixes S :: real set
assumes mono: ∀ y z . y ∈ S ∧ y ≤ z −→ z ∈ S
and closed S

shows ∃ a. S = {x . a ≤ ereal x}
proof −
{
assume S = {}
then have ?thesis
apply (rule tac x=PInfty in exI )
apply auto
done

}
moreover
{
assume S = UNIV

Extended{_}{\kern 0pt}Real{_}{\kern 0pt}Limits.html


720

then have ?thesis
apply (rule tac x=−∞ in exI )
apply auto
done

}
moreover
{
assume ∃ a. S = {a ..}
then obtain a where S = {a ..}
by auto

then have ?thesis
apply (rule tac x=ereal a in exI )
apply auto
done

}
ultimately show ?thesis
using mono closed real [of S ] assms by auto

qed

lemma Liminf within:
fixes f :: ′a::metric space ⇒ ′b::complete lattice
shows Liminf (at x within S ) f = (SUP e∈{0<..}. INF y∈(S ∩ ball x e − {x}).

f y)
unfolding Liminf def eventually at

proof (rule SUP eq , simp all add : Ball def Bex def , safe)
fix P d
assume 0 < d and ∀ y . y ∈ S −→ y 6= x ∧ dist y x < d −→ P y
then have S ∩ ball x d − {x} ⊆ {x . P x}
by (auto simp: dist commute)

then show ∃ r>0 . Inf (f ‘ (Collect P)) ≤ Inf (f ‘ (S ∩ ball x r − {x}))
by (intro exI [of d ] INF mono conjI 〈0 < d 〉) auto

next
fix d :: real
assume 0 < d
then show ∃P . (∃ d>0 . ∀ xa. xa ∈ S −→ xa 6= x ∧ dist xa x < d −→ P xa) ∧
Inf (f ‘ (S ∩ ball x d − {x})) ≤ Inf (f ‘ (Collect P))
by (intro exI [of λy . y ∈ S ∩ ball x d − {x}])

(auto intro!: INF mono exI [of d ] simp: dist commute)
qed

lemma Limsup within:
fixes f :: ′a::metric space ⇒ ′b::complete lattice
shows Limsup (at x within S ) f = (INF e∈{0<..}. SUP y∈(S ∩ ball x e − {x}).

f y)
unfolding Limsup def eventually at

proof (rule INF eq , simp all add : Ball def Bex def , safe)
fix P d
assume 0 < d and ∀ y . y ∈ S −→ y 6= x ∧ dist y x < d −→ P y
then have S ∩ ball x d − {x} ⊆ {x . P x}
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by (auto simp: dist commute)
then show ∃ r>0 . Sup (f ‘ (S ∩ ball x r − {x})) ≤ Sup (f ‘ (Collect P))
by (intro exI [of d ] SUP mono conjI 〈0 < d 〉) auto

next
fix d :: real
assume 0 < d
then show ∃P . (∃ d>0 . ∀ xa. xa ∈ S −→ xa 6= x ∧ dist xa x < d −→ P xa) ∧
Sup (f ‘ (Collect P)) ≤ Sup (f ‘ (S ∩ ball x d − {x}))
by (intro exI [of λy . y ∈ S ∩ ball x d − {x}])

(auto intro!: SUP mono exI [of d ] simp: dist commute)
qed

lemma Liminf at :
fixes f :: ′a::metric space ⇒ ′b::complete lattice
shows Liminf (at x ) f = (SUP e∈{0<..}. INF y∈(ball x e − {x}). f y)
using Liminf within[of x UNIV f ] by simp

lemma Limsup at :
fixes f :: ′a::metric space ⇒ ′b::complete lattice
shows Limsup (at x ) f = (INF e∈{0<..}. SUP y∈(ball x e − {x}). f y)
using Limsup within[of x UNIV f ] by simp

lemma min Liminf at :
fixes f :: ′a::metric space ⇒ ′b::complete linorder
shows min (f x ) (Liminf (at x ) f ) = (SUP e∈{0<..}. INF y∈ball x e. f y)
apply (simp add : inf min [symmetric] Liminf at)
apply (subst inf commute)
apply (subst SUP inf )
apply auto
apply (metis (no types, lifting) INF insert centre in ball greaterThan iff im-

age cong inf commute insert Diff )
done

4.5.1 Extended-Real.thy

lemma sum constant ereal :
fixes a::ereal
shows (

∑
i∈I . a) = a ∗ card I

apply (cases finite I , induct set : finite, simp all)
apply (cases a, auto, metis (no types, hide lams) add .commute mult .commute
semiring normalization rules(3 ))
done

lemma real lim then eventually real :
assumes (u −−−→ ereal l) F
shows eventually (λn. u n = ereal(real of ereal(u n))) F

proof −
have ereal l ∈ {−∞<..<(∞::ereal)} by simp
moreover have open {−∞<..<(∞::ereal)} by simp
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ultimately have eventually (λn. u n ∈ {−∞<..<(∞::ereal)}) F using assms
tendsto def by blast
moreover have

∧
x . x ∈ {−∞<..<(∞::ereal)} =⇒ x = ereal(real of ereal x )

using ereal real by auto
ultimately show ?thesis by (metis (mono tags, lifting) eventually mono)

qed

lemma ereal Inf cmult :
assumes c>(0 ::real)
shows Inf {ereal c ∗ x |x . P x} = ereal c ∗ Inf {x . P x}

proof −
have (λx ::ereal . c ∗ x ) (Inf {x ::ereal . P x}) = Inf ((λx ::ereal . c ∗ x )‘{x ::ereal .

P x})
apply (rule mono bij Inf )
apply (simp add : assms ereal mult left mono less imp le mono def )
apply (rule bij betw byWitness[of λx . (x ::ereal) / c], auto simp add : assms

ereal mult divide)
using assms ereal divide eq apply auto
done

then show ?thesis by (simp only : setcompr eq image[symmetric])
qed

Continuity of addition

The next few lemmas remove an unnecessary assumption in tendsto add ereal,
culminating in tendsto add ereal general which essentially says that the ad-
dition is continuous on ereal times ereal, except at (−∞, ∞) and (∞, −∞).
It is much more convenient in many situations, see for instance the proof of
tendsto sum ereal below.

lemma tendsto add ereal PInf :
fixes y :: ereal
assumes y : y 6= −∞
assumes f : (f −−−→ ∞) F and g : (g −−−→ y) F
shows ((λx . f x + g x ) −−−→ ∞) F

proof −
have ∃C . eventually (λx . g x > ereal C ) F
proof (cases y)
case (real r)
have y > y−1 using y real by (simp add : ereal between(1 ))
then have eventually (λx . g x > y − 1 ) F using g y order tendsto iff by auto
moreover have y−1 = ereal(real of ereal(y−1 ))
by (metis real ereal eq 1 (1 ) ereal minus(1 ) real of ereal .simps(1 ))

ultimately have eventually (λx . g x > ereal(real of ereal(y − 1 ))) F by simp
then show ?thesis by auto

next
case (PInf )
have eventually (λx . g x > ereal 0 ) F using g PInf by (simp add : tend-

sto PInfty)
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then show ?thesis by auto
qed (simp add : y)
then obtain C ::real where ge: eventually (λx . g x > ereal C ) F by auto

{
fix M ::real
have eventually (λx . f x > ereal(M − C )) F using f by (simp add : tend-

sto PInfty)
then have eventually (λx . (f x > ereal (M−C )) ∧ (g x > ereal C )) F
by (auto simp add : ge eventually conj iff )

moreover have
∧
x . ((f x > ereal (M−C )) ∧ (g x > ereal C )) =⇒ (f x + g x

> ereal M )
using ereal add strict mono2 by fastforce

ultimately have eventually (λx . f x + g x > ereal M ) F using eventually mono
by force
}
then show ?thesis by (simp add : tendsto PInfty)

qed

One would like to deduce the next lemma from the previous one, but the
fact that − (x + y) is in general different from (− x ) + (− y) in ereal
creates difficulties, so it is more efficient to copy the previous proof.

lemma tendsto add ereal MInf :
fixes y :: ereal
assumes y : y 6= ∞
assumes f : (f −−−→ −∞) F and g : (g −−−→ y) F
shows ((λx . f x + g x ) −−−→ −∞) F

proof −
have ∃C . eventually (λx . g x < ereal C ) F
proof (cases y)
case (real r)
have y < y+1 using y real by (simp add : ereal between(1 ))
then have eventually (λx . g x < y + 1 ) F using g y order tendsto iff by

force
moreover have y+1 = ereal(real of ereal (y+1 )) by (simp add : real)
ultimately have eventually (λx . g x < ereal(real of ereal(y + 1 ))) F by simp
then show ?thesis by auto

next
case (MInf )
have eventually (λx . g x < ereal 0 ) F using g MInf by (simp add : tend-

sto MInfty)
then show ?thesis by auto

qed (simp add : y)
then obtain C ::real where ge: eventually (λx . g x < ereal C ) F by auto

{
fix M ::real
have eventually (λx . f x < ereal(M − C )) F using f by (simp add : tend-

sto MInfty)
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then have eventually (λx . (f x < ereal (M− C )) ∧ (g x < ereal C )) F
by (auto simp add : ge eventually conj iff )

moreover have
∧
x . ((f x < ereal (M−C )) ∧ (g x < ereal C )) =⇒ (f x + g x

< ereal M )
using ereal add strict mono2 by fastforce

ultimately have eventually (λx . f x + g x < ereal M ) F using eventually mono
by force
}
then show ?thesis by (simp add : tendsto MInfty)

qed

lemma tendsto add ereal general1 :
fixes x y :: ereal
assumes y : |y | 6= ∞
assumes f : (f −−−→ x ) F and g : (g −−−→ y) F
shows ((λx . f x + g x ) −−−→ x + y) F

proof (cases x )
case (real r)
have a: |x | 6= ∞ by (simp add : real)
show ?thesis by (rule tendsto add ereal [OF a, OF y , OF f , OF g ])

next
case PInf
then show ?thesis using tendsto add ereal PInf assms by force

next
case MInf
then show ?thesis using tendsto add ereal MInf assms
by (metis abs ereal .simps(3 ) ereal MInfty eq plus)

qed

lemma tendsto add ereal general2 :
fixes x y :: ereal
assumes x : |x | 6= ∞

and f : (f −−−→ x ) F and g : (g −−−→ y) F
shows ((λx . f x + g x ) −−−→ x + y) F

proof −
have ((λx . g x + f x ) −−−→ x + y) F
using tendsto add ereal general1 [OF x , OF g , OF f ] add .commute[of y , of x ]

by simp
moreover have

∧
x . g x + f x = f x + g x using add .commute by auto

ultimately show ?thesis by simp
qed

The next lemma says that the addition is continuous on ereal, except at the
pairs (−∞, ∞) and (∞, −∞).

lemma tendsto add ereal general [tendsto intros]:
fixes x y :: ereal
assumes ¬((x=∞ ∧ y=−∞) ∨ (x=−∞ ∧ y=∞))

and f : (f −−−→ x ) F and g : (g −−−→ y) F
shows ((λx . f x + g x ) −−−→ x + y) F
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proof (cases x )
case (real r)
show ?thesis
apply (rule tendsto add ereal general2 ) using real assms by auto

next
case (PInf )
then have y 6= −∞ using assms by simp
then show ?thesis using tendsto add ereal PInf PInf assms by auto

next
case (MInf )
then have y 6= ∞ using assms by simp
then show ?thesis using tendsto add ereal MInf MInf f g by (metis ereal MInfty eq plus)

qed

Continuity of multiplication

In the same way as for addition, we prove that the multiplication is contin-
uous on ereal times ereal, except at (∞, 0 ) and (−∞, 0 ) and (0 , ∞) and
(0 , −∞), starting with specific situations.

lemma tendsto mult real ereal :
assumes (u −−−→ ereal l) F (v −−−→ ereal m) F
shows ((λn. u n ∗ v n) −−−→ ereal l ∗ ereal m) F

proof −
have ureal : eventually (λn. u n = ereal(real of ereal(u n))) F by (rule real lim then eventually real [OF

assms(1 )])
then have ((λn. ereal(real of ereal(u n))) −−−→ ereal l) F using assms by auto
then have limu: ((λn. real of ereal(u n)) −−−→ l) F by auto
have vreal : eventually (λn. v n = ereal(real of ereal(v n))) F by (rule real lim then eventually real [OF

assms(2 )])
then have ((λn. ereal(real of ereal(v n))) −−−→ ereal m) F using assms by

auto
then have limv : ((λn. real of ereal(v n)) −−−→ m) F by auto

{
fix n assume u n = ereal(real of ereal(u n)) v n = ereal(real of ereal(v n))
then have ereal(real of ereal(u n) ∗ real of ereal(v n)) = u n ∗ v n by (metis

times ereal .simps(1 ))
}
then have ∗: eventually (λn. ereal(real of ereal(u n) ∗ real of ereal(v n)) = u n
∗ v n) F

using eventually elim2 [OF ureal vreal ] by auto

have ((λn. real of ereal(u n) ∗ real of ereal(v n)) −−−→ l ∗ m) F using tend-
sto mult [OF limu limv ] by auto
then have ((λn. ereal(real of ereal(u n)) ∗ real of ereal(v n)) −−−→ ereal(l ∗

m)) F by auto
then show ?thesis using ∗ filterlim cong by fastforce

qed
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lemma tendsto mult ereal PInf :
fixes f g :: ⇒ ereal
assumes (f −−−→ l) F l>0 (g −−−→ ∞) F
shows ((λx . f x ∗ g x ) −−−→ ∞) F

proof −
obtain a::real where 0 < ereal a a < l using assms(2 ) using ereal dense2 by

blast
have ∗: eventually (λx . f x > a) F using 〈a < l 〉 assms(1 ) by (simp add :

order tendsto iff )
{
fix K ::real
define M where M = max K 1
then have M > 0 by simp
then have ereal(M /a) > 0 using 〈ereal a > 0 〉 by simp
then have

∧
x . ((f x > a) ∧ (g x > M /a)) =⇒ (f x ∗ g x > ereal a ∗

ereal(M /a))
using ereal mult mono strict ′[where ?c = M /a, OF 〈0 < ereal a〉] by auto

moreover have ereal a ∗ ereal(M /a) = M using 〈ereal a > 0 〉 by simp
ultimately have

∧
x . ((f x > a) ∧ (g x > M /a)) =⇒ (f x ∗ g x > M ) by

simp
moreover have M ≥ K unfolding M def by simp
ultimately have Imp:

∧
x . ((f x > a) ∧ (g x > M /a)) =⇒ (f x ∗ g x > K )

using ereal less eq(3 ) le less trans by blast

have eventually (λx . g x > M /a) F using assms(3 ) by (simp add : tend-
sto PInfty)

then have eventually (λx . (f x > a) ∧ (g x > M /a)) F
using ∗ by (auto simp add : eventually conj iff )

then have eventually (λx . f x ∗ g x > K ) F using eventually mono Imp by
force
}
then show ?thesis by (auto simp add : tendsto PInfty)

qed

lemma tendsto mult ereal pos:
fixes f g :: ⇒ ereal
assumes (f −−−→ l) F (g −−−→ m) F l>0 m>0
shows ((λx . f x ∗ g x ) −−−→ l ∗ m) F

proof (cases)
assume ∗: l = ∞ ∨ m = ∞
then show ?thesis
proof (cases)
assume m = ∞
then show ?thesis using tendsto mult ereal PInf assms by auto

next
assume ¬(m = ∞)
then have l = ∞ using ∗ by simp
then have ((λx . g x ∗ f x ) −−−→ l ∗ m) F using tendsto mult ereal PInf assms

by auto
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moreover have
∧
x . g x ∗ f x = f x ∗ g x using mult .commute by auto

ultimately show ?thesis by simp
qed

next
assume ¬(l = ∞ ∨ m = ∞)
then have l < ∞ m < ∞ by auto
then obtain lr mr where l = ereal lr m = ereal mr
using 〈l>0 〉 〈m>0 〉 by (metis ereal cases ereal less(6 ) not less iff gr or eq)

then show ?thesis using tendsto mult real ereal assms by auto
qed

We reduce the general situation to the positive case by multiplying by suit-
able signs. Unfortunately, as ereal is not a ring, all the neat sign lemmas
are not available there. We give the bare minimum we need.

lemma ereal sgn abs:
fixes l ::ereal
shows sgn(l) ∗ l = abs(l)

apply (cases l) by (auto simp add : sgn if ereal less uminus reorder)

lemma sgn squared ereal :
assumes l 6= (0 ::ereal)
shows sgn(l) ∗ sgn(l) = 1

apply (cases l) using assms by (auto simp add : one ereal def sgn if )

lemma tendsto mult ereal [tendsto intros]:
fixes f g :: ⇒ ereal
assumes (f −−−→ l) F (g −−−→ m) F ¬((l=0 ∧ abs(m) = ∞) ∨ (m=0 ∧ abs(l)

= ∞))
shows ((λx . f x ∗ g x ) −−−→ l ∗ m) F

proof (cases)
assume l=0 ∨ m=0
then have abs(l) 6= ∞ abs(m) 6= ∞ using assms(3 ) by auto
then obtain lr mr where l = ereal lr m = ereal mr by auto
then show ?thesis using tendsto mult real ereal assms by auto

next
have sgn finite:

∧
a::ereal . abs(sgn a) 6= ∞

by (metis MInfty neq ereal(2 ) PInfty neq ereal(2 ) abs eq infinity cases ereal times(1 )
ereal times(3 ) ereal uminus eq reorder sgn ereal .elims)
then have sgn finite2 :

∧
a b::ereal . abs(sgn a ∗ sgn b) 6= ∞

by (metis abs eq infinity cases abs ereal .simps(2 ) abs ereal .simps(3 ) ereal mult eq MInfty
ereal mult eq PInfty)
assume ¬(l=0 ∨ m=0 )
then have l 6= 0 m 6= 0 by auto
then have abs(l) > 0 abs(m) > 0
by (metis abs ereal ge0 abs ereal less0 abs ereal pos ereal uminus uminus ereal uminus zero

less le not less)+
then have sgn(l) ∗ l > 0 sgn(m) ∗ m > 0 using ereal sgn abs by auto
moreover have ((λx . sgn(l) ∗ f x ) −−−→ (sgn(l) ∗ l)) F
by (rule tendsto cmult ereal , auto simp add : sgn finite assms(1 ))
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moreover have ((λx . sgn(m) ∗ g x ) −−−→ (sgn(m) ∗ m)) F
by (rule tendsto cmult ereal , auto simp add : sgn finite assms(2 ))

ultimately have ∗: ((λx . (sgn(l) ∗ f x ) ∗ (sgn(m) ∗ g x )) −−−→ (sgn(l) ∗ l) ∗
(sgn(m) ∗ m)) F

using tendsto mult ereal pos by force
have ((λx . (sgn(l) ∗ sgn(m)) ∗ ((sgn(l) ∗ f x ) ∗ (sgn(m) ∗ g x ))) −−−→ (sgn(l)
∗ sgn(m)) ∗ ((sgn(l) ∗ l) ∗ (sgn(m) ∗ m))) F

by (rule tendsto cmult ereal , auto simp add : sgn finite2 ∗)
moreover have

∧
x . (sgn(l) ∗ sgn(m)) ∗ ((sgn(l) ∗ f x ) ∗ (sgn(m) ∗ g x )) = f

x ∗ g x
by (metis mult .left neutral sgn squared ereal [OF 〈l 6= 0 〉] sgn squared ereal [OF

〈m 6= 0 〉] mult .assoc mult .commute)
moreover have (sgn(l) ∗ sgn(m)) ∗ ((sgn(l) ∗ l) ∗ (sgn(m) ∗ m)) = l ∗ m
by (metis mult .left neutral sgn squared ereal [OF 〈l 6= 0 〉] sgn squared ereal [OF

〈m 6= 0 〉] mult .assoc mult .commute)
ultimately show ?thesis by auto

qed

lemma tendsto cmult ereal general [tendsto intros]:
fixes f :: ⇒ ereal and c::ereal
assumes (f −−−→ l) F ¬ (l=0 ∧ abs(c) = ∞)
shows ((λx . c ∗ f x ) −−−→ c ∗ l) F

by (cases c = 0 , auto simp add : assms tendsto mult ereal)

Continuity of division

lemma tendsto inverse ereal PInf :
fixes u:: ⇒ ereal
assumes (u −−−→ ∞) F
shows ((λx . 1/ u x ) −−−→ 0 ) F

proof −
{
fix e::real assume e>0
have 1/e < ∞ by auto
then have eventually (λn. u n > 1/e) F using assms(1 ) by (simp add :

tendsto PInfty)
moreover
{
fix z ::ereal assume z>1/e
then have z>0 using 〈e>0 〉 using less le trans not le by fastforce
then have 1/z ≥ 0 by auto
moreover have 1/z < e using 〈e>0 〉 〈z>1/e〉

apply (cases z ) apply auto
by (metis (mono tags, hide lams) less ereal .simps(2 ) less ereal .simps(4 )

divide less eq ereal divide less pos ereal less(4 )
ereal less eq(4 ) less le trans mult eq 0 iff not le not one less zero times ereal .simps(1 ))

ultimately have 1/z ≥ 0 1/z < e by auto
}
ultimately have eventually (λn. 1/u n<e) F eventually (λn. 1/u n≥0 ) F by
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(auto simp add : eventually mono)
} note ∗ = this
show ?thesis
proof (subst order tendsto iff , auto)
fix a::ereal assume a<0
then show eventually (λn. 1/u n > a) F using ∗(2 ) eventually mono less le trans

linordered field no ub by fastforce
next
fix a::ereal assume a>0
then obtain e::real where e>0 a>e using ereal dense2 ereal less(2 ) by blast
then have eventually (λn. 1/u n < e) F using ∗(1 ) by auto
then show eventually (λn. 1/u n < a) F using 〈a>e〉 by (metis (mono tags,

lifting) eventually mono less trans)
qed

qed

The next lemma deserves to exist by itself, as it is so common and useful.

lemma tendsto inverse real [tendsto intros]:
fixes u:: ⇒ real
shows (u −−−→ l) F =⇒ l 6= 0 =⇒ ((λx . 1/ u x ) −−−→ 1/l) F
using tendsto inverse unfolding inverse eq divide .

lemma tendsto inverse ereal [tendsto intros]:
fixes u:: ⇒ ereal
assumes (u −−−→ l) F l 6= 0
shows ((λx . 1/ u x ) −−−→ 1/l) F

proof (cases l)
case (real r)
then have r 6= 0 using assms(2 ) by auto
then have 1/l = ereal(1/r) using real by (simp add : one ereal def )
define v where v = (λn. real of ereal(u n))
have ureal : eventually (λn. u n = ereal(v n)) F unfolding v def using real lim then eventually real

assms(1 ) real by auto
then have ((λn. ereal(v n)) −−−→ ereal r) F using assms real v def by auto
then have ∗: ((λn. v n) −−−→ r) F by auto
then have ((λn. 1/v n) −−−→ 1/r) F using 〈r 6= 0 〉 tendsto inverse real by

auto
then have lim: ((λn. ereal(1/v n)) −−−→ 1/l) F using 〈1/l = ereal(1/r)〉 by

auto

have r ∈ −{0} open (−{(0 ::real)}) using 〈r 6= 0 〉 by auto
then have eventually (λn. v n ∈ −{0}) F using ∗ using topological tendstoD

by blast
then have eventually (λn. v n 6= 0 ) F by auto
moreover
{
fix n assume H : v n 6= 0 u n = ereal(v n)
then have ereal(1/v n) = 1/ereal(v n) by (simp add : one ereal def )
then have ereal(1/v n) = 1/u n using H (2 ) by simp
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}
ultimately have eventually (λn. ereal(1/v n) = 1/u n) F using ureal eventu-

ally elim2 by force
with Lim transform eventually [OF lim this] show ?thesis by simp

next
case (PInf )
then have 1/l = 0 by auto
then show ?thesis using tendsto inverse ereal PInf assms PInf by auto

next
case (MInf )
then have 1/l = 0 by auto
have 1/z = −1/ −z if z < 0 for z ::ereal
apply (cases z ) using divide ereal def 〈 z < 0 〉 by auto

moreover have eventually (λn. u n < 0 ) F by (metis (no types) MInf assms(1 )
tendsto MInfty zero ereal def )
ultimately have ∗: eventually (λn. −1/−u n = 1/u n) F by (simp add : even-

tually mono)

define v where v = (λn. − u n)
have (v −−−→∞) F unfolding v def using MInf assms(1 ) tendsto uminus ereal

by fastforce
then have ((λn. 1/v n) −−−→ 0 ) F using tendsto inverse ereal PInf by auto
then have ((λn. −1/v n) −−−→ 0 ) F using tendsto uminus ereal by fastforce
then show ?thesis unfolding v def using Lim transform eventually [OF ∗] 〈

1/l = 0 〉 by auto
qed

lemma tendsto divide ereal [tendsto intros]:
fixes f g :: ⇒ ereal
assumes (f −−−→ l) F (g −−−→ m) F m 6= 0 ¬(abs(l) = ∞ ∧ abs(m) = ∞)
shows ((λx . f x / g x ) −−−→ l / m) F

proof −
define h where h = (λx . 1/ g x )
have ∗: (h −−−→ 1/m) F unfolding h def using assms(2 ) assms(3 ) tend-

sto inverse ereal by auto
have ((λx . f x ∗ h x ) −−−→ l ∗ (1/m)) F
apply (rule tendsto mult ereal [OF assms(1 ) ∗]) using assms(3 ) assms(4 ) by

(auto simp add : divide ereal def )
moreover have f x ∗ h x = f x / g x for x unfolding h def by (simp add :

divide ereal def )
moreover have l ∗ (1/m) = l/m by (simp add : divide ereal def )
ultimately show ?thesis unfolding h def using Lim transform eventually by

auto
qed

Further limits

The assumptions of [[|?x | 6= ∞; |?y | 6= ∞; (?f −−−→ ?x ) ?F ; (?g −−−→ ?y)
?F ]] =⇒ ((λx . ?f x − ?g x ) −−−→ ?x − ?y) ?F are too strong, we weaken
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them here.

lemma tendsto diff ereal general [tendsto intros]:
fixes u v :: ′a ⇒ ereal
assumes (u −−−→ l) F (v −−−→ m) F ¬((l = ∞ ∧ m = ∞) ∨ (l = −∞ ∧ m

= −∞))
shows ((λn. u n − v n) −−−→ l − m) F

proof −
have ((λn. u n + (−v n)) −−−→ l + (−m)) F
apply (intro tendsto intros assms) using assms by (auto simp add : ereal uminus eq reorder)
then show ?thesis by (simp add : minus ereal def )

qed

lemma id nat ereal tendsto PInf [tendsto intros]:
(λ n::nat . real n) −−−−→ ∞

by (simp add : filterlim real sequentially tendsto PInfty eq at top)

lemma tendsto at top pseudo inverse [tendsto intros]:
fixes u::nat ⇒ nat
assumes LIM n sequentially . u n :> at top
shows LIM n sequentially . Inf {N . u N ≥ n} :> at top

proof −
{
fix C ::nat
define M where M = Max {u n| n. n ≤ C}+1
{
fix n assume n ≥ M
have eventually (λN . u N ≥ n) sequentially using assms
by (simp add : filterlim at top)

then have ∗: {N . u N ≥ n} 6= {} by force

have N > C if u N ≥ n for N
proof (rule ccontr)
assume ¬(N > C )
have u N ≤ Max {u n| n. n ≤ C}
apply (rule Max ge) using 〈¬(N > C )〉 by auto

then show False using 〈u N ≥ n〉 〈n ≥ M 〉 unfolding M def by auto
qed
then have ∗∗: {N . u N ≥ n} ⊆ {C ..} by fastforce
have Inf {N . u N ≥ n} ≥ C
by (metis ∗ ∗∗ Inf nat def1 atLeast iff subset eq)

}
then have eventually (λn. Inf {N . u N ≥ n} ≥ C ) sequentially
using eventually sequentially by auto

}
then show ?thesis using filterlim at top by auto

qed

lemma pseudo inverse finite set :
fixes u::nat ⇒ nat
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assumes LIM n sequentially . u n :> at top
shows finite {N . u N ≤ n}

proof −
fix n
have eventually (λN . u N ≥ n+1 ) sequentially using assms
by (simp add : filterlim at top)

then obtain N1 where N1 :
∧
N . N ≥ N1 =⇒ u N ≥ n + 1

using eventually sequentially by auto
have {N . u N ≤ n} ⊆ {..<N1}
apply auto using N1 by (metis Suc eq plus1 not less not less eq eq)

then show finite {N . u N ≤ n} by (simp add : finite subset)
qed

lemma tendsto at top pseudo inverse2 [tendsto intros]:
fixes u::nat ⇒ nat
assumes LIM n sequentially . u n :> at top
shows LIM n sequentially . Max {N . u N ≤ n} :> at top

proof −
{
fix N0 ::nat
have N0 ≤ Max {N . u N ≤ n} if n ≥ u N0 for n
apply (rule Max .coboundedI ) using pseudo inverse finite set [OF assms] that

by auto
then have eventually (λn. N0 ≤ Max {N . u N ≤ n}) sequentially
using eventually sequentially by blast

}
then show ?thesis using filterlim at top by auto

qed

lemma ereal truncation top [tendsto intros]:
fixes x ::ereal
shows (λn::nat . min x n) −−−−→ x

proof (cases x )
case (real r)
then obtain K ::nat where K>0 K > abs(r) using reals Archimedean2 gr0I

by auto
then have min x n = x if n ≥ K for n apply (subst real , subst real , auto)

using that eq iff by fastforce
then have eventually (λn. min x n = x ) sequentially using eventually at top linorder

by blast
then show ?thesis by (simp add : tendsto eventually)

next
case (PInf )
then have min x n = n for n::nat by (auto simp add : min def )
then show ?thesis using id nat ereal tendsto PInf PInf by auto

next
case (MInf )
then have min x n = x for n::nat by (auto simp add : min def )
then show ?thesis by auto
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qed

lemma ereal truncation real top [tendsto intros]:
fixes x ::ereal
assumes x 6= − ∞
shows (λn::nat . real of ereal(min x n)) −−−−→ x

proof (cases x )
case (real r)
then obtain K ::nat where K>0 K > abs(r) using reals Archimedean2 gr0I

by auto
then have min x n = x if n ≥ K for n apply (subst real , subst real , auto)

using that eq iff by fastforce
then have real of ereal(min x n) = r if n ≥ K for n using real that by auto
then have eventually (λn. real of ereal(min x n) = r) sequentially using even-

tually at top linorder by blast
then have (λn. real of ereal(min x n)) −−−−→ r by (simp add : tendsto eventually)
then show ?thesis using real by auto

next
case (PInf )
then have real of ereal(min x n) = n for n::nat by (auto simp add : min def )
then show ?thesis using id nat ereal tendsto PInf PInf by auto

qed (simp add : assms)

lemma ereal truncation bottom [tendsto intros]:
fixes x ::ereal
shows (λn::nat . max x (− real n)) −−−−→ x

proof (cases x )
case (real r)
then obtain K ::nat where K>0 K > abs(r) using reals Archimedean2 gr0I

by auto
then have max x (−real n) = x if n ≥ K for n apply (subst real , subst real ,

auto) using that eq iff by fastforce
then have eventually (λn. max x (−real n) = x ) sequentially using eventu-

ally at top linorder by blast
then show ?thesis by (simp add : tendsto eventually)

next
case (MInf )
then have max x (−real n) = (−1 )∗ ereal(real n) for n::nat by (auto simp add :

max def )
moreover have (λn. (−1 )∗ ereal(real n)) −−−−→ −∞
using tendsto cmult ereal [of −1 , OF id nat ereal tendsto PInf ] by (simp add :

one ereal def )
ultimately show ?thesis using MInf by auto

next
case (PInf )
then have max x (−real n) = x for n::nat by (auto simp add : max def )
then show ?thesis by auto

qed
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lemma ereal truncation real bottom [tendsto intros]:
fixes x ::ereal
assumes x 6= ∞
shows (λn::nat . real of ereal(max x (− real n))) −−−−→ x

proof (cases x )
case (real r)
then obtain K ::nat where K>0 K > abs(r) using reals Archimedean2 gr0I

by auto
then have max x (−real n) = x if n ≥ K for n apply (subst real , subst real ,

auto) using that eq iff by fastforce
then have real of ereal(max x (−real n)) = r if n ≥ K for n using real that

by auto
then have eventually (λn. real of ereal(max x (−real n)) = r) sequentially using

eventually at top linorder by blast
then have (λn. real of ereal(max x (−real n))) −−−−→ r by (simp add : tend-

sto eventually)
then show ?thesis using real by auto

next
case (MInf )
then have real of ereal(max x (−real n)) = (−1 )∗ ereal(real n) for n::nat by

(auto simp add : max def )
moreover have (λn. (−1 )∗ ereal(real n)) −−−−→ −∞
using tendsto cmult ereal [of −1 , OF id nat ereal tendsto PInf ] by (simp add :

one ereal def )
ultimately show ?thesis using MInf by auto

qed (simp add : assms)

the next one is copied from tendsto sum.

lemma tendsto sum ereal [tendsto intros]:
fixes f :: ′a ⇒ ′b ⇒ ereal
assumes

∧
i . i ∈ S =⇒ (f i −−−→ a i) F∧

i . abs(a i) 6= ∞
shows ((λx .

∑
i∈S . f i x ) −−−→ (

∑
i∈S . a i)) F

proof (cases finite S )
assume finite S then show ?thesis using assms
by (induct , simp, simp add : tendsto add ereal general2 assms)

qed(simp)

lemma continuous ereal abs:
continuous on (UNIV ::ereal set) abs

proof −
have continuous on ({..0} ∪ {(0 ::ereal)..}) abs
apply (rule continuous on closed Un, auto)
apply (rule iffD1 [OF continuous on cong , of {..0} λx . −x ])
using less eq ereal def apply (auto simp add : continuous uminus ereal)
apply (rule iffD1 [OF continuous on cong , of {0 ..} λx . x ])
apply (auto)

done
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moreover have (UNIV ::ereal set) = {..0} ∪ {(0 ::ereal)..} by auto
ultimately show ?thesis by auto

qed

lemmas continuous on compose ereal abs[continuous intros] =
continuous on compose2 [OF continuous ereal abs subset UNIV ]

lemma tendsto abs ereal [tendsto intros]:
assumes (u −−−→ (l ::ereal)) F
shows ((λn. abs(u n)) −−−→ abs l) F

using continuous ereal abs assms by (metis UNIV I continuous on tendsto compose)

lemma ereal minus real tendsto MInf [tendsto intros]:
(λx . ereal (− real x )) −−−−→ − ∞

by (subst uminus ereal .simps(1 )[symmetric], intro tendsto intros)

4.5.2 Extended-Nonnegative-Real.thy

lemma tendsto diff ennreal general [tendsto intros]:
fixes u v :: ′a ⇒ ennreal
assumes (u −−−→ l) F (v −−−→ m) F ¬(l = ∞ ∧ m = ∞)
shows ((λn. u n − v n) −−−→ l − m) F

proof −
have ((λn. e2ennreal(enn2ereal(u n) − enn2ereal(v n))) −−−→ e2ennreal(enn2ereal

l − enn2ereal m)) F
apply (intro tendsto intros) using assms by auto

then show ?thesis by auto
qed

lemma tendsto mult ennreal [tendsto intros]:
fixes l m::ennreal
assumes (u −−−→ l) F (v −−−→ m) F ¬((l = 0 ∧ m = ∞) ∨ (l = ∞ ∧ m =

0 ))
shows ((λn. u n ∗ v n) −−−→ l ∗ m) F

proof −
have ((λn. e2ennreal(enn2ereal (u n) ∗ enn2ereal (v n))) −−−→ e2ennreal(enn2ereal

l ∗ enn2ereal m)) F
apply (intro tendsto intros) using assms apply auto
using enn2ereal inject zero ennreal .rep eq by fastforce+

moreover have e2ennreal(enn2ereal (u n) ∗ enn2ereal (v n)) = u n ∗ v n for n
by (subst times ennreal .abs eq [symmetric], auto simp add : eq onp same args)

moreover have e2ennreal(enn2ereal l ∗ enn2ereal m) = l ∗ m
by (subst times ennreal .abs eq [symmetric], auto simp add : eq onp same args)

ultimately show ?thesis
by auto

qed

4.5.3 monoset

definition (in order) mono set :
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mono set S ←→ (∀ x y . x ≤ y −→ x ∈ S −→ y ∈ S )

lemma (in order) mono greaterThan [intro, simp]: mono set {B<..} unfolding
mono set by auto
lemma (in order) mono atLeast [intro, simp]: mono set {B ..} unfolding mono set
by auto
lemma (in order) mono UNIV [intro, simp]: mono set UNIV unfolding mono set
by auto
lemma (in order) mono empty [intro, simp]: mono set {} unfolding mono set
by auto

lemma (in complete linorder) mono set iff :
fixes S :: ′a set
defines a ≡ Inf S
shows mono set S ←→ S = {a <..} ∨ S = {a..} (is = ?c)

proof
assume mono set S
then have mono:

∧
x y . x ≤ y =⇒ x ∈ S =⇒ y ∈ S

by (auto simp: mono set)
show ?c
proof cases
assume a ∈ S
show ?c
using mono[OF 〈a ∈ S 〉]
by (auto intro: Inf lower simp: a def )

next
assume a /∈ S
have S = {a <..}
proof safe
fix x assume x ∈ S
then have a ≤ x
unfolding a def by (rule Inf lower)

then show a < x
using 〈x ∈ S 〉 〈a /∈ S 〉 by (cases a = x ) auto

next
fix x assume a < x
then obtain y where y < x y ∈ S
unfolding a def Inf less iff ..

with mono[of y x ] show x ∈ S
by auto

qed
then show ?c ..

qed
qed auto

lemma ereal open mono set :
fixes S :: ereal set
shows open S ∧ mono set S ←→ S = UNIV ∨ S = {Inf S <..}
by (metis Inf UNIV atLeast eq UNIV iff ereal open atLeast
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ereal open closed mono set iff open ereal greaterThan)

lemma ereal closed mono set :
fixes S :: ereal set
shows closed S ∧ mono set S ←→ S = {} ∨ S = {Inf S ..}
by (metis Inf UNIV atLeast eq UNIV iff closed ereal atLeast
ereal open closed mono empty mono set iff open ereal greaterThan)

lemma ereal Liminf Sup monoset :
fixes f :: ′a ⇒ ereal
shows Liminf net f =
Sup {l . ∀S . open S −→ mono set S −→ l ∈ S −→ eventually (λx . f x ∈ S )

net}
(is = Sup ?A)

proof (safe intro!: Liminf eqI complete lattice class.Sup upper complete lattice class.Sup least)
fix P
assume P : eventually P net
fix S
assume S : mono set S Inf (f ‘ (Collect P)) ∈ S
{
fix x
assume P x
then have Inf (f ‘ (Collect P)) ≤ f x
by (intro complete lattice class.INF lower) simp

with S have f x ∈ S
by (simp add : mono set)

}
with P show eventually (λx . f x ∈ S ) net
by (auto elim: eventually mono)

next
fix y l
assume S : ∀S . open S −→ mono set S −→ l ∈ S −→ eventually (λx . f x ∈ S )

net
assume P : ∀P . eventually P net −→ Inf (f ‘ (Collect P)) ≤ y
show l ≤ y
proof (rule dense le)
fix B
assume B < l
then have eventually (λx . f x ∈ {B <..}) net
by (intro S [rule format ]) auto

then have Inf (f ‘ {x . B < f x}) ≤ y
using P by auto

moreover have B ≤ Inf (f ‘ {x . B < f x})
by (intro INF greatest) auto

ultimately show B ≤ y
by simp

qed
qed
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lemma ereal Limsup Inf monoset :
fixes f :: ′a ⇒ ereal
shows Limsup net f =
Inf {l . ∀S . open S −→ mono set (uminus ‘ S ) −→ l ∈ S −→ eventually (λx .

f x ∈ S ) net}
(is = Inf ?A)

proof (safe intro!: Limsup eqI complete lattice class.Inf lower complete lattice class.Inf greatest)
fix P
assume P : eventually P net
fix S
assume S : mono set (uminus‘S ) Sup (f ‘ (Collect P)) ∈ S
{
fix x
assume P x
then have f x ≤ Sup (f ‘ (Collect P))
by (intro complete lattice class.SUP upper) simp

with S (1 )[unfolded mono set , rule format , of − Sup (f ‘ (Collect P)) − f x ]
S (2 )

have f x ∈ S
by (simp add : inj image mem iff ) }

with P show eventually (λx . f x ∈ S ) net
by (auto elim: eventually mono)

next
fix y l
assume S : ∀S . open S −→ mono set (uminus ‘ S ) −→ l ∈ S −→ eventually

(λx . f x ∈ S ) net
assume P : ∀P . eventually P net −→ y ≤ Sup (f ‘ (Collect P))
show y ≤ l
proof (rule dense ge)
fix B
assume l < B
then have eventually (λx . f x ∈ {..< B}) net
by (intro S [rule format ]) auto

then have y ≤ Sup (f ‘ {x . f x < B})
using P by auto

moreover have Sup (f ‘ {x . f x < B}) ≤ B
by (intro SUP least) auto

ultimately show y ≤ B
by simp

qed
qed

lemma liminf bounded open:
fixes x :: nat ⇒ ereal
shows x0 ≤ liminf x ←→ (∀S . open S −→ mono set S −→ x0 ∈ S −→ (∃N .
∀n≥N . x n ∈ S ))
(is ←→ ?P x0 )

proof
assume ?P x0
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then show x0 ≤ liminf x
unfolding ereal Liminf Sup monoset eventually sequentially
by (intro complete lattice class.Sup upper) auto

next
assume x0 ≤ liminf x
{
fix S :: ereal set
assume om: open S mono set S x0 ∈ S
{
assume S = UNIV
then have ∃N . ∀n≥N . x n ∈ S
by auto

}
moreover
{
assume S 6= UNIV
then obtain B where B : S = {B<..}
using om ereal open mono set by auto

then have B < x0
using om by auto

then have ∃N . ∀n≥N . x n ∈ S
unfolding B
using 〈x0 ≤ liminf x 〉 liminf bounded iff
by auto

}
ultimately have ∃N . ∀n≥N . x n ∈ S
by auto

}
then show ?P x0
by auto

qed

lemma limsup finite then bounded :
fixes u::nat ⇒ real
assumes limsup u < ∞
shows ∃C . ∀n. u n ≤ C

proof −
obtain C where C : limsup u < C C < ∞ using assms ereal dense2 by blast
then have C = ereal(real of ereal C ) using ereal real by force
have eventually (λn. u n < C ) sequentially using C (1 ) unfolding Limsup def
apply (auto simp add : INF less iff )
using SUP lessD eventually mono by fastforce

then obtain N where N :
∧
n. n ≥ N =⇒ u n < C using eventually sequentially

by auto
define D where D = max (real of ereal C ) (Max {u n |n. n ≤ N })
have

∧
n. u n ≤ D

proof −
fix n show u n ≤ D
proof (cases)
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assume ∗: n ≤ N
have u n ≤ Max {u n |n. n ≤ N } by (rule Max ge, auto simp add : ∗)
then show u n ≤ D unfolding D def by linarith

next
assume ¬(n ≤ N )
then have n ≥ N by simp
then have u n < C using N by auto

then have u n < real of ereal C using 〈C = ereal(real of ereal C )〉 less ereal .simps(1 )
by fastforce

then show u n ≤ D unfolding D def by linarith
qed

qed
then show ?thesis by blast

qed

lemma liminf finite then bounded below :
fixes u::nat ⇒ real
assumes liminf u > −∞
shows ∃C . ∀n. u n ≥ C

proof −
obtain C where C : liminf u > C C > −∞ using assms using ereal dense2

by blast
then have C = ereal(real of ereal C ) using ereal real by force
have eventually (λn. u n > C ) sequentially using C (1 ) unfolding Liminf def
apply (auto simp add : less SUP iff )
using eventually elim2 less INF D by fastforce

then obtain N where N :
∧
n. n ≥ N =⇒ u n > C using eventually sequentially

by auto
define D where D = min (real of ereal C ) (Min {u n |n. n ≤ N })
have

∧
n. u n ≥ D

proof −
fix n show u n ≥ D
proof (cases)
assume ∗: n ≤ N
have u n ≥ Min {u n |n. n ≤ N } by (rule Min le, auto simp add : ∗)
then show u n ≥ D unfolding D def by linarith

next
assume ¬(n ≤ N )
then have n ≥ N by simp
then have u n > C using N by auto

then have u n > real of ereal C using 〈C = ereal(real of ereal C )〉 less ereal .simps(1 )
by fastforce

then show u n ≥ D unfolding D def by linarith
qed

qed
then show ?thesis by blast

qed

lemma liminf upper bound :
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fixes u:: nat ⇒ ereal
assumes liminf u < l
shows ∃N>k . u N < l

by (metis assms gt ex less le trans liminf bounded iff not less)

lemma limsup shift :
limsup (λn. u (n+1 )) = limsup u

proof −
have (SUP m∈{n+1 ..}. u m) = (SUP m∈{n..}. u (m + 1 )) for n
apply (rule SUP eq) using Suc le D by auto

then have a: (INF n. SUP m∈{n..}. u (m + 1 )) = (INF n. (SUP m∈{n+1 ..}.
u m)) by auto
have b: (INF n. (SUP m∈{n+1 ..}. u m)) = (INF n∈{1 ..}. (SUP m∈{n..}. u

m))
apply (rule INF eq) using Suc le D by auto

have (INF n∈{1 ..}. v n) = (INF n. v n) if decseq v for v ::nat ⇒ ′a
apply (rule INF eq) using 〈decseq v 〉 decseq Suc iff by auto

moreover have decseq (λn. (SUP m∈{n..}. u m)) by (simp add : SUP subset mono
decseq def )
ultimately have c: (INF n∈{1 ..}. (SUP m∈{n..}. u m)) = (INF n. (SUP

m∈{n..}. u m)) by simp
have (INF n. Sup (u ‘ {n..})) = (INF n. SUP m∈{n..}. u (m + 1 )) using a b

c by simp
then show ?thesis by (auto cong : limsup INF SUP)

qed

lemma limsup shift k :
limsup (λn. u (n+k)) = limsup u

proof (induction k)
case (Suc k)
have limsup (λn. u (n+k+1 )) = limsup (λn. u (n+k)) using limsup shift [where

?u=λn. u(n+k)] by simp
then show ?case using Suc.IH by simp

qed (auto)

lemma liminf shift :
liminf (λn. u (n+1 )) = liminf u

proof −
have (INF m∈{n+1 ..}. u m) = (INF m∈{n..}. u (m + 1 )) for n
apply (rule INF eq) using Suc le D by (auto)

then have a: (SUP n. INF m∈{n..}. u (m + 1 )) = (SUP n. (INF m∈{n+1 ..}.
u m)) by auto
have b: (SUP n. (INF m∈{n+1 ..}. u m)) = (SUP n∈{1 ..}. (INF m∈{n..}. u

m))
apply (rule SUP eq) using Suc le D by (auto)

have (SUP n∈{1 ..}. v n) = (SUP n. v n) if incseq v for v ::nat ⇒ ′a
apply (rule SUP eq) using 〈incseq v 〉 incseq Suc iff by auto

moreover have incseq (λn. (INF m∈{n..}. u m)) by (simp add : INF superset mono
mono def )
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ultimately have c: (SUP n∈{1 ..}. (INF m∈{n..}. u m)) = (SUP n. (INF
m∈{n..}. u m)) by simp
have (SUP n. Inf (u ‘ {n..})) = (SUP n. INF m∈{n..}. u (m + 1 )) using a b

c by simp
then show ?thesis by (auto cong : liminf SUP INF )

qed

lemma liminf shift k :
liminf (λn. u (n+k)) = liminf u

proof (induction k)
case (Suc k)
have liminf (λn. u (n+k+1 )) = liminf (λn. u (n+k)) using liminf shift [where

?u=λn. u(n+k)] by simp
then show ?case using Suc.IH by simp

qed (auto)

lemma Limsup obtain:
fixes u:: ⇒ ′a :: complete linorder
assumes Limsup F u > c
shows ∃ i . u i > c

proof −
have (INF P∈{P . eventually P F}. SUP x∈{x . P x}. u x ) > c using assms by

(simp add : Limsup def )
then show ?thesis by (metis eventually True mem Collect eq less INF D less SUP iff )

qed

The next lemma is extremely useful, as it often makes it possible to reduce
statements about limsups to statements about limits.

lemma limsup subseq lim:
fixes u::nat ⇒ ′a :: {complete linorder , linorder topology}
shows ∃ r ::nat⇒nat . strict mono r ∧ (u o r) −−−−→ limsup u

proof (cases)
assume ∀n. ∃ p>n. ∀m≥p. u m ≤ u p
then have ∃ r . ∀n. (∀m≥r n. u m ≤ u (r n)) ∧ r n < r (Suc n)
by (intro dependent nat choice) (auto simp: conj commute)

then obtain r :: nat ⇒ nat where strict mono r and mono:
∧
n m. r n ≤ m

=⇒ u m ≤ u (r n)
by (auto simp: strict mono Suc iff )

define umax where umax = (λn. (SUP m∈{n..}. u m))
have decseq umax unfolding umax def by (simp add : SUP subset mono anti-

mono def )
then have umax −−−−→ limsup u unfolding umax def by (metis LIMSEQ INF

limsup INF SUP)
then have ∗: (umax o r) −−−−→ limsup u by (simp add : LIMSEQ subseq LIMSEQ

〈strict mono r 〉)
have

∧
n. umax (r n) = u(r n) unfolding umax def using mono

by (metis SUP le iff antisym atLeast def mem Collect eq order refl)
then have umax o r = u o r unfolding o def by simp
then have (u o r) −−−−→ limsup u using ∗ by simp
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then show ?thesis using 〈strict mono r 〉 by blast
next
assume ¬ (∀n. ∃ p>n. (∀m≥p. u m ≤ u p))
then obtain N where N :

∧
p. p > N =⇒ ∃m>p. u p < u m by (force simp:

not le le less)
have ∃ r . ∀n. N < r n ∧ r n < r (Suc n) ∧ (∀ i∈ {N<..r (Suc n)}. u i ≤ u (r

(Suc n)))
proof (rule dependent nat choice)
fix x assume N < x
then have a: finite {N<..x} {N<..x} 6= {} by simp all
have Max {u i |i . i ∈ {N<..x}} ∈ {u i |i . i ∈ {N<..x}} apply (rule Max in)

using a by (auto)
then obtain p where p ∈ {N<..x} and upmax : u p = Max{u i |i . i ∈

{N<..x}} by auto
define U where U = {m. m > p ∧ u p < u m}
have U 6= {} unfolding U def using N [of p] 〈p ∈ {N<..x}〉 by auto
define y where y = Inf U
then have y ∈ U using 〈U 6= {}〉 by (simp add : Inf nat def1 )
have a:

∧
i . i ∈ {N<..x} =⇒ u i ≤ u p

proof −
fix i assume i ∈ {N<..x}
then have u i ∈ {u i |i . i ∈ {N<..x}} by blast
then show u i ≤ u p using upmax by simp

qed
moreover have u p < u y using 〈y ∈ U 〉 U def by auto
ultimately have y /∈ {N<..x} using not le by blast
moreover have y > N using 〈y ∈ U 〉 U def 〈p ∈ {N<..x}〉 by auto
ultimately have y > x by auto

have
∧
i . i ∈ {N<..y} =⇒ u i ≤ u y

proof −
fix i assume i ∈ {N<..y} show u i ≤ u y
proof (cases)
assume i = y
then show ?thesis by simp

next
assume ¬(i=y)
then have i :i ∈ {N<..<y} using 〈i ∈ {N<..y}〉 by simp
have u i ≤ u p
proof (cases)
assume i ≤ x
then have i ∈ {N<..x} using i by simp
then show ?thesis using a by simp

next
assume ¬(i ≤ x )
then have i > x by simp
then have ∗: i > p using 〈p ∈ {N<..x}〉 by simp
have i < Inf U using i y def by simp
then have i /∈ U using Inf nat def not less Least by auto
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then show ?thesis using U def ∗ by auto
qed
then show u i ≤ u y using 〈u p < u y〉 by auto

qed
qed
then have N < y ∧ x < y ∧ (∀ i∈{N<..y}. u i ≤ u y) using 〈y > x 〉 〈y >

N 〉 by auto
then show ∃ y>N . x < y ∧ (∀ i∈{N<..y}. u i ≤ u y) by auto

qed (auto)
then obtain r where r : ∀n. N < r n ∧ r n < r (Suc n) ∧ (∀ i∈ {N<..r (Suc

n)}. u i ≤ u (r (Suc n))) by auto
have strict mono r using r by (auto simp: strict mono Suc iff )
have incseq (u o r) unfolding o def using r by (simp add : incseq SucI or-

der .strict implies order)
then have (u o r) −−−−→ (SUP n. (u o r) n) using LIMSEQ SUP by blast
then have limsup (u o r) = (SUP n. (u o r) n) by (simp add : lim imp Limsup)
moreover have limsup (u o r) ≤ limsup u using 〈strict mono r 〉 by (simp add :

limsup subseq mono)
ultimately have (SUP n. (u o r) n) ≤ limsup u by simp

{
fix i assume i : i ∈ {N<..}
obtain n where i < r (Suc n) using 〈strict mono r 〉 using Suc le eq seq suble

by blast
then have i ∈ {N<..r(Suc n)} using i by simp
then have u i ≤ u (r(Suc n)) using r by simp
then have u i ≤ (SUP n. (u o r) n) unfolding o def by (meson SUP upper2

UNIV I )
}
then have (SUP i∈{N<..}. u i) ≤ (SUP n. (u o r) n) using SUP least by blast
then have limsup u ≤ (SUP n. (u o r) n) unfolding Limsup def
by (metis (mono tags, lifting) INF lower2 atLeast Suc greaterThan atLeast def

eventually ge at top mem Collect eq)
then have limsup u = (SUP n. (u o r) n) using 〈(SUP n. (u o r) n) ≤ limsup

u〉 by simp
then have (u o r) −−−−→ limsup u using 〈(u o r) −−−−→ (SUP n. (u o r) n)〉

by simp
then show ?thesis using 〈strict mono r 〉 by auto

qed

lemma liminf subseq lim:
fixes u::nat ⇒ ′a :: {complete linorder , linorder topology}
shows ∃ r ::nat⇒nat . strict mono r ∧ (u o r) −−−−→ liminf u

proof (cases)
assume ∀n. ∃ p>n. ∀m≥p. u m ≥ u p
then have ∃ r . ∀n. (∀m≥r n. u m ≥ u (r n)) ∧ r n < r (Suc n)
by (intro dependent nat choice) (auto simp: conj commute)

then obtain r :: nat ⇒ nat where strict mono r and mono:
∧
n m. r n ≤ m

=⇒ u m ≥ u (r n)
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by (auto simp: strict mono Suc iff )
define umin where umin = (λn. (INF m∈{n..}. u m))
have incseq umin unfolding umin def by (simp add : INF superset mono inc-

seq def )
then have umin −−−−→ liminf u unfolding umin def by (metis LIMSEQ SUP

liminf SUP INF )
then have ∗: (umin o r) −−−−→ liminf u by (simp add : LIMSEQ subseq LIMSEQ

〈strict mono r 〉)
have

∧
n. umin(r n) = u(r n) unfolding umin def using mono

by (metis le INF iff antisym atLeast def mem Collect eq order refl)
then have umin o r = u o r unfolding o def by simp
then have (u o r) −−−−→ liminf u using ∗ by simp
then show ?thesis using 〈strict mono r 〉 by blast

next
assume ¬ (∀n. ∃ p>n. (∀m≥p. u m ≥ u p))
then obtain N where N :

∧
p. p > N =⇒ ∃m>p. u p > u m by (force simp:

not le le less)
have ∃ r . ∀n. N < r n ∧ r n < r (Suc n) ∧ (∀ i∈ {N<..r (Suc n)}. u i ≥ u (r

(Suc n)))
proof (rule dependent nat choice)
fix x assume N < x
then have a: finite {N<..x} {N<..x} 6= {} by simp all
have Min {u i |i . i ∈ {N<..x}} ∈ {u i |i . i ∈ {N<..x}} apply (rule Min in)

using a by (auto)
then obtain p where p ∈ {N<..x} and upmin: u p = Min{u i |i . i ∈

{N<..x}} by auto
define U where U = {m. m > p ∧ u p > u m}
have U 6= {} unfolding U def using N [of p] 〈p ∈ {N<..x}〉 by auto
define y where y = Inf U
then have y ∈ U using 〈U 6= {}〉 by (simp add : Inf nat def1 )
have a:

∧
i . i ∈ {N<..x} =⇒ u i ≥ u p

proof −
fix i assume i ∈ {N<..x}
then have u i ∈ {u i |i . i ∈ {N<..x}} by blast
then show u i ≥ u p using upmin by simp

qed
moreover have u p > u y using 〈y ∈ U 〉 U def by auto
ultimately have y /∈ {N<..x} using not le by blast
moreover have y > N using 〈y ∈ U 〉 U def 〈p ∈ {N<..x}〉 by auto
ultimately have y > x by auto

have
∧
i . i ∈ {N<..y} =⇒ u i ≥ u y

proof −
fix i assume i ∈ {N<..y} show u i ≥ u y
proof (cases)
assume i = y
then show ?thesis by simp

next
assume ¬(i=y)
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then have i :i ∈ {N<..<y} using 〈i ∈ {N<..y}〉 by simp
have u i ≥ u p
proof (cases)
assume i ≤ x
then have i ∈ {N<..x} using i by simp
then show ?thesis using a by simp

next
assume ¬(i ≤ x )
then have i > x by simp
then have ∗: i > p using 〈p ∈ {N<..x}〉 by simp
have i < Inf U using i y def by simp
then have i /∈ U using Inf nat def not less Least by auto
then show ?thesis using U def ∗ by auto

qed
then show u i ≥ u y using 〈u p > u y〉 by auto

qed
qed
then have N < y ∧ x < y ∧ (∀ i∈{N<..y}. u i ≥ u y) using 〈y > x 〉 〈y >

N 〉 by auto
then show ∃ y>N . x < y ∧ (∀ i∈{N<..y}. u i ≥ u y) by auto

qed (auto)
then obtain r :: nat ⇒ nat
where r : ∀n. N < r n ∧ r n < r (Suc n) ∧ (∀ i∈ {N<..r (Suc n)}. u i ≥ u

(r (Suc n))) by auto
have strict mono r using r by (auto simp: strict mono Suc iff )
have decseq (u o r) unfolding o def using r by (simp add : decseq SucI or-

der .strict implies order)
then have (u o r) −−−−→ (INF n. (u o r) n) using LIMSEQ INF by blast
then have liminf (u o r) = (INF n. (u o r) n) by (simp add : lim imp Liminf )
moreover have liminf (u o r) ≥ liminf u using 〈strict mono r 〉 by (simp add :

liminf subseq mono)
ultimately have (INF n. (u o r) n) ≥ liminf u by simp

{
fix i assume i : i ∈ {N<..}
obtain n where i < r (Suc n) using 〈strict mono r 〉 using Suc le eq seq suble

by blast
then have i ∈ {N<..r(Suc n)} using i by simp
then have u i ≥ u (r(Suc n)) using r by simp
then have u i ≥ (INF n. (u o r) n) unfolding o def by (meson INF lower2

UNIV I )
}
then have (INF i∈{N<..}. u i) ≥ (INF n. (u o r) n) using INF greatest by

blast
then have liminf u ≥ (INF n. (u o r) n) unfolding Liminf def
by (metis (mono tags, lifting) SUP upper2 atLeast Suc greaterThan atLeast def

eventually ge at top mem Collect eq)
then have liminf u = (INF n. (u o r) n) using 〈(INF n. (u o r) n) ≥ liminf u〉

by simp
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then have (u o r) −−−−→ liminf u using 〈(u o r) −−−−→ (INF n. (u o r) n)〉

by simp
then show ?thesis using 〈strict mono r 〉 by auto

qed

The following statement about limsups is reduced to a statement about
limits using subsequences thanks to limsup subseq lim. The statement for
limits follows for instance from tendsto add ereal general.

lemma ereal limsup add mono:
fixes u v ::nat ⇒ ereal
shows limsup (λn. u n + v n) ≤ limsup u + limsup v

proof (cases)
assume (limsup u = ∞) ∨ (limsup v = ∞)
then have limsup u + limsup v = ∞ by simp
then show ?thesis by auto

next
assume ¬((limsup u = ∞) ∨ (limsup v = ∞))
then have limsup u < ∞ limsup v < ∞ by auto

define w where w = (λn. u n + v n)
obtain r where r : strict mono r (w o r) −−−−→ limsup w using limsup subseq lim

by auto
obtain s where s: strict mono s (u o r o s) −−−−→ limsup (u o r) using

limsup subseq lim by auto
obtain t where t : strict mono t (v o r o s o t) −−−−→ limsup (v o r o s) using

limsup subseq lim by auto

define a where a = r o s o t
have strict mono a using r s t by (simp add : a def strict mono o)
have l :(w o a) −−−−→ limsup w

(u o a) −−−−→ limsup (u o r)
(v o a) −−−−→ limsup (v o r o s)

apply (metis (no types, lifting) r(2 ) s(1 ) t(1 ) LIMSEQ subseq LIMSEQ a def
comp assoc)
apply (metis (no types, lifting) s(2 ) t(1 ) LIMSEQ subseq LIMSEQ a def comp assoc)
apply (metis (no types, lifting) t(2 ) a def comp assoc)
done

have limsup (u o r) ≤ limsup u by (simp add : limsup subseq mono r(1 ))
then have a: limsup (u o r) 6= ∞ using 〈limsup u < ∞〉 by auto
have limsup (v o r o s) ≤ limsup v
by (simp add : comp assoc limsup subseq mono r(1 ) s(1 ) strict mono o)

then have b: limsup (v o r o s) 6= ∞ using 〈limsup v < ∞〉 by auto

have (λn. (u o a) n + (v o a) n) −−−−→ limsup (u o r) + limsup (v o r o s)
using l tendsto add ereal general a b by fastforce

moreover have (λn. (u o a) n + (v o a) n) = (w o a) unfolding w def by
auto
ultimately have (w o a) −−−−→ limsup (u o r) + limsup (v o r o s) by simp
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then have limsup w = limsup (u o r) + limsup (v o r o s) using l(1 ) LIM-
SEQ unique by blast
then have limsup w ≤ limsup u + limsup v
using 〈limsup (u o r) ≤ limsup u〉 〈limsup (v o r o s) ≤ limsup v 〉 add mono

by simp
then show ?thesis unfolding w def by simp

qed

There is an asymmetry between liminfs and limsups in ereal, as ∞ + (−∞)
= ∞. This explains why there are more assumptions in the next lemma
dealing with liminfs that in the previous one about limsups.

lemma ereal liminf add mono:
fixes u v ::nat ⇒ ereal
assumes ¬((liminf u = ∞ ∧ liminf v = −∞) ∨ (liminf u = −∞ ∧ liminf v =
∞))
shows liminf (λn. u n + v n) ≥ liminf u + liminf v

proof (cases)
assume (liminf u = −∞) ∨ (liminf v = −∞)
then have ∗: liminf u + liminf v = −∞ using assms by auto
show ?thesis by (simp add : ∗)

next
assume ¬((liminf u = −∞) ∨ (liminf v = −∞))
then have liminf u > −∞ liminf v > −∞ by auto

define w where w = (λn. u n + v n)
obtain r where r : strict mono r (w o r) −−−−→ liminf w using liminf subseq lim

by auto
obtain s where s: strict mono s (u o r o s) −−−−→ liminf (u o r) using

liminf subseq lim by auto
obtain t where t : strict mono t (v o r o s o t) −−−−→ liminf (v o r o s) using

liminf subseq lim by auto

define a where a = r o s o t
have strict mono a using r s t by (simp add : a def strict mono o)
have l :(w o a) −−−−→ liminf w

(u o a) −−−−→ liminf (u o r)
(v o a) −−−−→ liminf (v o r o s)

apply (metis (no types, lifting) r(2 ) s(1 ) t(1 ) LIMSEQ subseq LIMSEQ a def
comp assoc)
apply (metis (no types, lifting) s(2 ) t(1 ) LIMSEQ subseq LIMSEQ a def comp assoc)
apply (metis (no types, lifting) t(2 ) a def comp assoc)
done

have liminf (u o r) ≥ liminf u by (simp add : liminf subseq mono r(1 ))
then have a: liminf (u o r) 6= −∞ using 〈liminf u > −∞〉 by auto
have liminf (v o r o s) ≥ liminf v
by (simp add : comp assoc liminf subseq mono r(1 ) s(1 ) strict mono o)

then have b: liminf (v o r o s) 6= −∞ using 〈liminf v > −∞〉 by auto
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have (λn. (u o a) n + (v o a) n) −−−−→ liminf (u o r) + liminf (v o r o s)
using l tendsto add ereal general a b by fastforce

moreover have (λn. (u o a) n + (v o a) n) = (w o a) unfolding w def by
auto
ultimately have (w o a) −−−−→ liminf (u o r) + liminf (v o r o s) by simp
then have liminf w = liminf (u o r) + liminf (v o r o s) using l(1 ) LIM-

SEQ unique by blast
then have liminf w ≥ liminf u + liminf v
using 〈liminf (u o r) ≥ liminf u〉 〈liminf (v o r o s) ≥ liminf v 〉 add mono by

simp
then show ?thesis unfolding w def by simp

qed

lemma ereal limsup lim add :
fixes u v ::nat ⇒ ereal
assumes u −−−−→ a abs(a) 6= ∞
shows limsup (λn. u n + v n) = a + limsup v

proof −
have limsup u = a using assms(1 ) using tendsto iff Liminf eq Limsup triv-

ial limit at top linorder by blast
have (λn. −u n) −−−−→ −a using assms(1 ) by auto
then have limsup (λn. −u n) = −a using tendsto iff Liminf eq Limsup triv-

ial limit at top linorder by blast

have limsup (λn. u n + v n) ≤ limsup u + limsup v
by (rule ereal limsup add mono)

then have up: limsup (λn. u n + v n) ≤ a + limsup v using 〈limsup u = a〉

by simp

have a: limsup (λn. (u n + v n) + (−u n)) ≤ limsup (λn. u n + v n) + limsup
(λn. −u n)

by (rule ereal limsup add mono)
have eventually (λn. u n = ereal(real of ereal(u n))) sequentially using assms
real lim then eventually real by auto

moreover have
∧
x . x = ereal(real of ereal(x )) =⇒ x + (−x ) = 0

by (metis plus ereal .simps(1 ) right minus uminus ereal .simps(1 ) zero ereal def )
ultimately have eventually (λn. u n + (−u n) = 0 ) sequentially
by (metis (mono tags, lifting) eventually mono)

moreover have
∧
n. u n + (−u n) = 0 =⇒ u n + v n + (−u n) = v n

by (metis add .commute add .left commute add .left neutral)
ultimately have eventually (λn. u n + v n + (−u n) = v n) sequentially
using eventually mono by force

then have limsup v = limsup (λn. u n + v n + (−u n)) using Limsup eq by
force
then have limsup v ≤ limsup (λn. u n + v n) −a using a 〈limsup (λn. −u n)

= −a〉 by (simp add : minus ereal def )
then have limsup (λn. u n + v n) ≥ a + limsup v using assms(2 ) by (metis

add .commute ereal le minus)
then show ?thesis using up by simp
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qed

lemma ereal limsup lim mult :
fixes u v ::nat ⇒ ereal
assumes u −−−−→ a a>0 a 6= ∞
shows limsup (λn. u n ∗ v n) = a ∗ limsup v

proof −
define w where w = (λn. u n ∗ v n)
obtain r where r : strict mono r (v o r) −−−−→ limsup v using limsup subseq lim

by auto
have (u o r) −−−−→ a using assms(1 ) LIMSEQ subseq LIMSEQ r by auto
with tendsto mult ereal [OF this r(2 )] have (λn. (u o r) n ∗ (v o r) n) −−−−→

a ∗ limsup v using assms(2 ) assms(3 ) by auto
moreover have

∧
n. (w o r) n = (u o r) n ∗ (v o r) n unfolding w def by

auto
ultimately have (w o r) −−−−→ a ∗ limsup v unfolding w def by presburger
then have limsup (w o r) = a ∗ limsup v by (simp add : tendsto iff Liminf eq Limsup)
then have I : limsup w ≥ a ∗ limsup v by (metis limsup subseq mono r(1 ))

obtain s where s: strict mono s (w o s) −−−−→ limsup w using limsup subseq lim
by auto
have ∗: (u o s) −−−−→ a using assms(1 ) LIMSEQ subseq LIMSEQ s by auto
have eventually (λn. (u o s) n > 0 ) sequentially using assms(2 ) ∗ order tendsto iff

by blast
moreover have eventually (λn. (u o s) n < ∞) sequentially using assms(3 ) ∗

order tendsto iff by blast
moreover have (w o s) n / (u o s) n = (v o s) n if (u o s) n > 0 (u o s) n <
∞ for n

unfolding w def using that by (auto simp add : ereal divide eq)
ultimately have eventually (λn. (w o s) n / (u o s) n = (v o s) n) sequentially

using eventually elim2 by force
moreover have (λn. (w o s) n / (u o s) n) −−−−→ (limsup w) / a
apply (rule tendsto divide ereal [OF s(2 ) ∗]) using assms(2 ) assms(3 ) by auto

ultimately have (v o s) −−−−→ (limsup w) / a using Lim transform eventually
by fastforce
then have limsup (v o s) = (limsup w) / a by (simp add : tendsto iff Liminf eq Limsup)
then have limsup v ≥ (limsup w) / a by (metis limsup subseq mono s(1 ))
then have a ∗ limsup v ≥ limsup w using assms(2 ) assms(3 ) by (simp add :

ereal divide le pos)
then show ?thesis using I unfolding w def by auto

qed

lemma ereal liminf lim mult :
fixes u v ::nat ⇒ ereal
assumes u −−−−→ a a>0 a 6= ∞
shows liminf (λn. u n ∗ v n) = a ∗ liminf v

proof −
define w where w = (λn. u n ∗ v n)
obtain r where r : strict mono r (v o r) −−−−→ liminf v using liminf subseq lim
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by auto
have (u o r) −−−−→ a using assms(1 ) LIMSEQ subseq LIMSEQ r by auto
with tendsto mult ereal [OF this r(2 )] have (λn. (u o r) n ∗ (v o r) n) −−−−→

a ∗ liminf v using assms(2 ) assms(3 ) by auto
moreover have

∧
n. (w o r) n = (u o r) n ∗ (v o r) n unfolding w def by

auto
ultimately have (w o r) −−−−→ a ∗ liminf v unfolding w def by presburger
then have liminf (w o r) = a ∗ liminf v by (simp add : tendsto iff Liminf eq Limsup)
then have I : liminf w ≤ a ∗ liminf v by (metis liminf subseq mono r(1 ))

obtain s where s: strict mono s (w o s) −−−−→ liminf w using liminf subseq lim
by auto
have ∗: (u o s) −−−−→ a using assms(1 ) LIMSEQ subseq LIMSEQ s by auto
have eventually (λn. (u o s) n > 0 ) sequentially using assms(2 ) ∗ order tendsto iff

by blast
moreover have eventually (λn. (u o s) n < ∞) sequentially using assms(3 ) ∗

order tendsto iff by blast
moreover have (w o s) n / (u o s) n = (v o s) n if (u o s) n > 0 (u o s) n <
∞ for n

unfolding w def using that by (auto simp add : ereal divide eq)
ultimately have eventually (λn. (w o s) n / (u o s) n = (v o s) n) sequentially

using eventually elim2 by force
moreover have (λn. (w o s) n / (u o s) n) −−−−→ (liminf w) / a
apply (rule tendsto divide ereal [OF s(2 ) ∗]) using assms(2 ) assms(3 ) by auto

ultimately have (v o s) −−−−→ (liminf w) / a using Lim transform eventually
by fastforce
then have liminf (v o s) = (liminf w) / a by (simp add : tendsto iff Liminf eq Limsup)
then have liminf v ≤ (liminf w) / a by (metis liminf subseq mono s(1 ))
then have a ∗ liminf v ≤ liminf w using assms(2 ) assms(3 ) by (simp add :

ereal le divide pos)
then show ?thesis using I unfolding w def by auto

qed

lemma ereal liminf lim add :
fixes u v ::nat ⇒ ereal
assumes u −−−−→ a abs(a) 6= ∞
shows liminf (λn. u n + v n) = a + liminf v

proof −
have liminf u = a using assms(1 ) tendsto iff Liminf eq Limsup trivial limit at top linorder

by blast
then have ∗: abs(liminf u) 6= ∞ using assms(2 ) by auto
have (λn. −u n) −−−−→ −a using assms(1 ) by auto
then have liminf (λn. −u n) = −a using tendsto iff Liminf eq Limsup triv-

ial limit at top linorder by blast
then have ∗∗: abs(liminf (λn. −u n)) 6= ∞ using assms(2 ) by auto

have liminf (λn. u n + v n) ≥ liminf u + liminf v
apply (rule ereal liminf add mono) using ∗ by auto

then have up: liminf (λn. u n + v n) ≥ a + liminf v using 〈liminf u = a〉 by
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simp

have a: liminf (λn. (u n + v n) + (−u n)) ≥ liminf (λn. u n + v n) + liminf
(λn. −u n)

apply (rule ereal liminf add mono) using ∗∗ by auto
have eventually (λn. u n = ereal(real of ereal(u n))) sequentially using assms
real lim then eventually real by auto

moreover have
∧
x . x = ereal(real of ereal(x )) =⇒ x + (−x ) = 0

by (metis plus ereal .simps(1 ) right minus uminus ereal .simps(1 ) zero ereal def )
ultimately have eventually (λn. u n + (−u n) = 0 ) sequentially
by (metis (mono tags, lifting) eventually mono)

moreover have
∧
n. u n + (−u n) = 0 =⇒ u n + v n + (−u n) = v n

by (metis add .commute add .left commute add .left neutral)
ultimately have eventually (λn. u n + v n + (−u n) = v n) sequentially
using eventually mono by force

then have liminf v = liminf (λn. u n + v n + (−u n)) using Liminf eq by
force
then have liminf v ≥ liminf (λn. u n + v n) −a using a 〈liminf (λn. −u n)

= −a〉 by (simp add : minus ereal def )
then have liminf (λn. u n + v n) ≤ a + liminf v using assms(2 ) by (metis

add .commute ereal minus le)
then show ?thesis using up by simp

qed

lemma ereal liminf limsup add :
fixes u v ::nat ⇒ ereal
shows liminf (λn. u n + v n) ≤ liminf u + limsup v

proof (cases)
assume limsup v = ∞ ∨ liminf u = ∞
then show ?thesis by auto

next
assume ¬(limsup v = ∞ ∨ liminf u = ∞)
then have limsup v < ∞ liminf u < ∞ by auto

define w where w = (λn. u n + v n)
obtain r where r : strict mono r (u o r) −−−−→ liminf u using liminf subseq lim

by auto
obtain s where s: strict mono s (w o r o s) −−−−→ liminf (w o r) using

liminf subseq lim by auto
obtain t where t : strict mono t (v o r o s o t) −−−−→ limsup (v o r o s) using

limsup subseq lim by auto

define a where a = r o s o t
have strict mono a using r s t by (simp add : a def strict mono o)
have l :(u o a) −−−−→ liminf u

(w o a) −−−−→ liminf (w o r)
(v o a) −−−−→ limsup (v o r o s)

apply (metis (no types, lifting) r(2 ) s(1 ) t(1 ) LIMSEQ subseq LIMSEQ a def
comp assoc)
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apply (metis (no types, lifting) s(2 ) t(1 ) LIMSEQ subseq LIMSEQ a def comp assoc)
apply (metis (no types, lifting) t(2 ) a def comp assoc)
done

have liminf (w o r) ≥ liminf w by (simp add : liminf subseq mono r(1 ))
have limsup (v o r o s) ≤ limsup v
by (simp add : comp assoc limsup subseq mono r(1 ) s(1 ) strict mono o)

then have b: limsup (v o r o s) < ∞ using 〈limsup v < ∞〉 by auto

have (λn. (u o a) n + (v o a) n) −−−−→ liminf u + limsup (v o r o s)
apply (rule tendsto add ereal general) using b 〈liminf u < ∞〉 l(1 ) l(3 ) by

force+
moreover have (λn. (u o a) n + (v o a) n) = (w o a) unfolding w def by

auto
ultimately have (w o a) −−−−→ liminf u + limsup (v o r o s) by simp
then have liminf (w o r) = liminf u + limsup (v o r o s) using l(2 ) using

LIMSEQ unique by blast
then have liminf w ≤ liminf u + limsup v
using 〈liminf (w o r) ≥ liminf w 〉 〈limsup (v o r o s) ≤ limsup v 〉

by (metis add mono thms linordered semiring(2 ) le less trans not less)
then show ?thesis unfolding w def by simp

qed

lemma ereal liminf limsup minus:
fixes u v ::nat ⇒ ereal
shows liminf (λn. u n − v n) ≤ limsup u − limsup v
unfolding minus ereal def
apply (subst add .commute)
apply (rule order trans[OF ereal liminf limsup add ])
using ereal Limsup uminus[of sequentially λn. − v n]
apply (simp add : add .commute)
done

lemma liminf minus ennreal :
fixes u v ::nat ⇒ ennreal
shows (

∧
n. v n ≤ u n) =⇒ liminf (λn. u n − v n) ≤ limsup u − limsup v

unfolding liminf SUP INF limsup INF SUP
including ennreal .lifting

proof (transfer , clarsimp)
fix v u :: nat ⇒ ereal assume ∗: ∀ x . 0 ≤ v x ∀ x . 0 ≤ u x

∧
n. v n ≤ u n

moreover have 0 ≤ limsup u − limsup v
using ∗ by (intro ereal diff positive Limsup mono always eventually) simp

moreover have 0 ≤ Sup (u ‘ {x ..}) for x
using ∗ by (intro SUP upper2 [of x ]) auto

moreover have 0 ≤ Sup (v ‘ {x ..}) for x
using ∗ by (intro SUP upper2 [of x ]) auto

ultimately show (SUP n. INF n∈{n..}. max 0 (u n − v n))
≤ max 0 ((INF x . max 0 (Sup (u ‘ {x ..}))) − (INF x . max 0 (Sup (v ‘
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{x ..}))))
by (auto simp: ∗ ereal diff positive max .absorb2 liminf SUP INF [symmetric]

limsup INF SUP [symmetric] ereal liminf limsup minus)
qed

4.5.4 Relate extended reals and the indicator function

lemma ereal indicator le 0 : (indicator S x ::ereal) ≤ 0 ←→ x /∈ S
by (auto split : split indicator simp: one ereal def )

lemma ereal indicator : ereal (indicator A x ) = indicator A x
by (auto simp: indicator def one ereal def )

lemma ereal mult indicator : ereal (x ∗ indicator A y) = ereal x ∗ indicator A y
by (simp split : split indicator)

lemma ereal indicator mult : ereal (indicator A y ∗ x ) = indicator A y ∗ ereal x
by (simp split : split indicator)

lemma ereal indicator nonneg [simp, intro]: 0 ≤ (indicator A x ::ereal)
unfolding indicator def by auto

lemma indicator inter arith ereal : indicator A x ∗ indicator B x = (indicator (A
∩ B) x :: ereal)
by (simp split : split indicator)

end

4.6 Radius of Convergence and Summation Tests

theory Summation Tests
imports
Complex Main
HOL−Library .Discrete
HOL−Library .Extended Real
HOL−Library .Liminf Limsup
Extended Real Limits

begin

The definition of the radius of convergence of a power series, various summa-
bility tests, lemmas to compute the radius of convergence etc.

4.6.1 Convergence tests for infinite sums

Root test

lemma limsup root powser :
fixes f :: nat ⇒ ′a :: {banach, real normed div algebra}
shows limsup (λn. ereal (root n (norm (f n ∗ z ˆ n)))) =
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limsup (λn. ereal (root n (norm (f n)))) ∗ ereal (norm z )
proof −
have A: (λn. ereal (root n (norm (f n ∗ z ˆ n)))) =

(λn. ereal (root n (norm (f n))) ∗ ereal (norm z )) (is ?g = ?h)
proof
fix n show ?g n = ?h n
by (cases n = 0 ) (simp all add : norm mult real root mult real root pos2 norm power)
qed
show ?thesis by (subst A, subst limsup ereal mult right) simp all

qed

lemma limsup root limit :
assumes (λn. ereal (root n (norm (f n)))) −−−−→ l (is ?g −−−−→ )
shows limsup (λn. ereal (root n (norm (f n)))) = l

proof −
from assms have convergent ?g lim ?g = l
unfolding convergent def by (blast intro: limI )+

with convergent limsup cl show ?thesis by force
qed

lemma limsup root limit ′:
assumes (λn. root n (norm (f n))) −−−−→ l
shows limsup (λn. ereal (root n (norm (f n)))) = ereal l
by (intro limsup root limit tendsto ereal assms)

theorem root test convergence ′:
fixes f :: nat ⇒ ′a :: banach
defines l ≡ limsup (λn. ereal (root n (norm (f n))))
assumes l : l < 1
shows summable f

proof −
have 0 = limsup (λn. 0 ) by (simp add : Limsup const)
also have ... ≤ l unfolding l def by (intro Limsup mono) (simp all add :

real root ge zero)
finally have l ≥ 0 by simp
with l obtain l ′ where l ′: l = ereal l ′ by (cases l) simp all

define c where c = (1 − l ′) / 2
from l and 〈l ≥ 0 〉 have c: l + c > l l ′ + c ≥ 0 l ′ + c < 1 unfolding c def
by (simp all add : field simps l ′)

have ∀C>l . eventually (λn. ereal (root n (norm (f n))) < C ) sequentially
by (subst Limsup le iff [symmetric]) (simp add : l def )

with c have eventually (λn. ereal (root n (norm (f n))) < l + ereal c) sequentially
by simp
with eventually gt at top[of 0 ::nat ]
have eventually (λn. norm (f n) ≤ (l ′ + c) ˆ n) sequentially

proof eventually elim
fix n :: nat assume n: n > 0
assume ereal (root n (norm (f n))) < l + ereal c
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hence root n (norm (f n)) ≤ l ′ + c by (simp add : l ′)
with c n have root n (norm (f n)) ˆ n ≤ (l ′ + c) ˆ n
by (intro power mono) (simp all add : real root ge zero)

also from n have root n (norm (f n)) ˆ n = norm (f n) by simp
finally show norm (f n) ≤ (l ′ + c) ˆ n by simp

qed
thus ?thesis
by (rule summable comparison test ev [OF summable geometric]) (simp add :

c)
qed

theorem root test divergence:
fixes f :: nat ⇒ ′a :: banach
defines l ≡ limsup (λn. ereal (root n (norm (f n))))
assumes l : l > 1
shows ¬summable f

proof
assume summable f
hence bounded : Bseq f by (simp add : summable imp Bseq)

have 0 = limsup (λn. 0 ) by (simp add : Limsup const)
also have ... ≤ l unfolding l def by (intro Limsup mono) (simp all add :

real root ge zero)
finally have l nonneg : l ≥ 0 by simp

define c where c = (if l = ∞ then 2 else 1 + (real of ereal l − 1 ) / 2 )
from l l nonneg consider l = ∞ | ∃ l ′. l = ereal l ′ by (cases l) simp all
hence c: c > 1 ∧ ereal c < l by cases (insert l , auto simp: c def field simps)

have unbounded : ¬bdd above {n. root n (norm (f n)) > c}
proof
assume bdd above {n. root n (norm (f n)) > c}
then obtain N where ∀n. root n (norm (f n)) > c −→ n ≤ N unfolding

bdd above def by blast
hence ∃N . ∀n≥N . root n (norm (f n)) ≤ c
by (intro exI [of N + 1 ]) (force simp: not less eq eq [symmetric])

hence eventually (λn. root n (norm (f n)) ≤ c) sequentially
by (auto simp: eventually at top linorder)

hence l ≤ c unfolding l def by (intro Limsup bounded) simp all
with c show False by auto

qed

from bounded obtain K where K : K > 0
∧
n. norm (f n) ≤ K using BseqE

by blast
define n where n = nat dlog c K e
from unbounded have ∃m>n. c < root m (norm (f m)) unfolding bdd above def
by (auto simp: not le)

then guess m by (elim exE conjE ) note m = this
from c K have K = c powr log c K by (simp add : powr def log def )
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also from c have c powr log c K ≤ c powr real n unfolding n def
by (intro powr mono, linarith, simp)

finally have K ≤ c ˆ n using c by (simp add : powr realpow)
also from c m have c ˆ n < c ˆ m by simp
also from c m have c ˆ m < root m (norm (f m)) ˆ m by (intro power strict mono)

simp all
also from m have ... = norm (f m) by simp
finally show False using K (2 )[of m] by simp

qed

Cauchy’s condensation test

context
fixes f :: nat ⇒ real
begin

private lemma condensation inequality :
assumes mono:

∧
m n. 0 < m =⇒ m ≤ n =⇒ f n ≤ f m

shows (
∑

k=1 ..<n. f k) ≥ (
∑

k=1 ..<n. f (2 ∗ 2 ˆ Discrete.log k)) (is ?thesis1 )
(
∑

k=1 ..<n. f k) ≤ (
∑

k=1 ..<n. f (2 ˆ Discrete.log k)) (is ?thesis2 )
by (intro sum mono mono Discrete.log exp2 ge Discrete.log exp2 le, simp, simp)+

private lemma condensation condense1 : (
∑

k=1 ..<2ˆn. f (2 ˆ Discrete.log k))
= (

∑
k<n. 2ˆk ∗ f (2 ˆ k))

proof (induction n)
case (Suc n)
have {1 ..<2ˆSuc n} = {1 ..<2ˆn} ∪ {2ˆn..<(2ˆSuc n :: nat)} by auto
also have (

∑
k∈. . . . f (2 ˆ Discrete.log k)) =

(
∑

k<n. 2ˆk ∗ f (2ˆk)) + (
∑

k = 2ˆn..<2ˆSuc n. f (2ˆDiscrete.log
k))

by (subst sum.union disjoint) (insert Suc, auto)
also have Discrete.log k = n if k ∈ {2ˆn..<2ˆSuc n} for k using that by (intro

Discrete.log eqI ) simp all
hence (

∑
k = 2ˆn..<2ˆSuc n. f (2ˆDiscrete.log k)) = (

∑
( ::nat) = 2ˆn..<2ˆSuc

n. f (2ˆn))
by (intro sum.cong) simp all

also have . . . = 2ˆn ∗ f (2ˆn) by (simp)
finally show ?case by simp

qed simp

private lemma condensation condense2 : (
∑

k=1 ..<2ˆn. f (2 ∗ 2 ˆ Discrete.log
k)) = (

∑
k<n. 2ˆk ∗ f (2 ˆ Suc k))

proof (induction n)
case (Suc n)
have {1 ..<2ˆSuc n} = {1 ..<2ˆn} ∪ {2ˆn..<(2ˆSuc n :: nat)} by auto
also have (

∑
k∈. . . . f (2 ∗ 2 ˆ Discrete.log k)) =
(
∑

k<n. 2ˆk ∗ f (2ˆSuc k)) + (
∑

k = 2ˆn..<2ˆSuc n. f (2 ∗
2ˆDiscrete.log k))

by (subst sum.union disjoint) (insert Suc, auto)
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also have Discrete.log k = n if k ∈ {2ˆn..<2ˆSuc n} for k using that by (intro
Discrete.log eqI ) simp all
hence (

∑
k = 2ˆn..<2ˆSuc n. f (2∗2ˆDiscrete.log k)) = (

∑
( ::nat) = 2ˆn..<2ˆSuc

n. f (2ˆSuc n))
by (intro sum.cong) simp all

also have . . . = 2ˆn ∗ f (2ˆSuc n) by (simp)
finally show ?case by simp

qed simp

theorem condensation test :
assumes mono:

∧
m. 0 < m =⇒ f (Suc m) ≤ f m

assumes nonneg :
∧
n. f n ≥ 0

shows summable f ←→ summable (λn. 2ˆn ∗ f (2ˆn))
proof −
define f ′ where f ′ n = (if n = 0 then 0 else f n) for n
from mono have mono ′: decseq (λn. f (Suc n)) by (intro decseq SucI ) simp
hence mono ′: f n ≤ f m if m ≤ n m > 0 for m n
using that decseqD [OF mono ′, of m − 1 n − 1 ] by simp

have (λn. f (Suc n)) = (λn. f ′ (Suc n)) by (intro ext) (simp add : f ′ def )
hence summable f ←→ summable f ′

by (subst (1 2 ) summable Suc iff [symmetric]) (simp only :)
also have . . . ←→ convergent (λn.

∑
k<n. f ′ k) unfolding summable iff convergent

..
also have monoseq (λn.

∑
k<n. f ′ k) unfolding f ′ def

by (intro mono SucI1 ) (auto intro!: mult nonneg nonneg nonneg)
hence convergent (λn.

∑
k<n. f ′ k) ←→ Bseq (λn.

∑
k<n. f ′ k)

by (rule monoseq imp convergent iff Bseq)
also have . . . ←→ Bseq (λn.

∑
k=1 ..<n. f ′ k) unfolding One nat def

by (subst sum shift lb Suc0 0 upt) (simp all add : f ′ def atLeast0LessThan)
also have . . . ←→ Bseq (λn.

∑
k=1 ..<n. f k) unfolding f ′ def by simp

also have . . . ←→ Bseq (λn.
∑

k=1 ..<2ˆn. f k)
by (rule nonneg incseq Bseq subseq iff [symmetric])

(auto intro!: sum nonneg incseq SucI nonneg simp: strict mono def )
also have . . . ←→ Bseq (λn.

∑
k<n. 2ˆk ∗ f (2ˆk))

proof (intro iffI )
assume A: Bseq (λn.

∑
k=1 ..<2ˆn. f k)

have eventually (λn. norm (
∑

k<n. 2ˆk ∗ f (2ˆSuc k)) ≤ norm (
∑

k=1 ..<2ˆn.
f k)) sequentially

proof (intro always eventually allI )
fix n :: nat
have norm (

∑
k<n. 2ˆk ∗ f (2ˆSuc k)) = (

∑
k<n. 2ˆk ∗ f (2ˆSuc k))

unfolding real norm def
by (intro abs of nonneg sum nonneg ballI mult nonneg nonneg nonneg)

simp all
also have . . . ≤ (

∑
k=1 ..<2ˆn. f k)

by (subst condensation condense2 [symmetric]) (intro condensation inequality
mono ′)

also have . . . = norm . . . unfolding real norm def



Summation Tests.thy 759

by (intro abs of nonneg [symmetric] sum nonneg ballI mult nonneg nonneg
nonneg)

finally show norm (
∑

k<n. 2 ˆ k ∗ f (2 ˆ Suc k)) ≤ norm (
∑

k=1 ..<2ˆn.
f k) .

qed
from this and A have Bseq (λn.

∑
k<n. 2ˆk ∗ f (2ˆSuc k)) by (rule

Bseq eventually mono)
from Bseq mult [OF Bfun const [of 2 ] this] have Bseq (λn.

∑
k<n. 2ˆSuc k ∗

f (2ˆSuc k))
by (simp add : sum distrib left sum distrib right mult ac)

hence Bseq (λn. (
∑

k=Suc 0 ..<Suc n. 2ˆk ∗ f (2ˆk)) + f 1 )
by (intro Bseq add , subst sum.shift bounds Suc ivl) (simp add : atLeast0LessThan)
hence Bseq (λn. (

∑
k=0 ..<Suc n. 2ˆk ∗ f (2ˆk)))

by (subst sum.atLeast Suc lessThan) (simp all add : add ac)
thus Bseq (λn. (

∑
k<n. 2ˆk ∗ f (2ˆk)))

by (subst (asm) Bseq Suc iff ) (simp add : atLeast0LessThan)
next
assume A: Bseq (λn. (

∑
k<n. 2ˆk ∗ f (2ˆk)))

have eventually (λn. norm (
∑

k=1 ..<2ˆn. f k) ≤ norm (
∑

k<n. 2ˆk ∗ f
(2ˆk))) sequentially

proof (intro always eventually allI )
fix n :: nat

have norm (
∑

k=1 ..<2ˆn. f k) = (
∑

k=1 ..<2ˆn. f k) unfolding real norm def
by (intro abs of nonneg sum nonneg ballI mult nonneg nonneg nonneg)

also have . . . ≤ (
∑

k<n. 2ˆk ∗ f (2ˆk))
by (subst condensation condense1 [symmetric]) (intro condensation inequality

mono ′)
also have . . . = norm . . . unfolding real norm def
by (intro abs of nonneg [symmetric] sum nonneg ballI mult nonneg nonneg

nonneg) simp all
finally show norm (

∑
k=1 ..<2ˆn. f k) ≤ norm (

∑
k<n. 2ˆk ∗ f (2ˆk)) .

qed
from this and A show Bseq (λn.

∑
k=1 ..<2ˆn. f k) by (rule Bseq eventually mono)

qed
also have monoseq (λn. (

∑
k<n. 2ˆk ∗ f (2ˆk)))

by (intro mono SucI1 ) (auto intro!: mult nonneg nonneg nonneg)
hence Bseq (λn. (

∑
k<n. 2ˆk ∗ f (2ˆk))) ←→ convergent (λn. (

∑
k<n. 2ˆk ∗

f (2ˆk)))
by (rule monoseq imp convergent iff Bseq [symmetric])

also have . . . ←→ summable (λk . 2ˆk ∗ f (2ˆk)) by (simp only : summable iff convergent)
finally show ?thesis .

qed

end

Summability of powers

lemma abs summable complex powr iff :
summable (λn. norm (exp (of real (ln (of nat n)) ∗ s))) ←→ Re s < −1
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proof (cases Re s ≤ 0 )
let ?l = λn. complex of real (ln (of nat n))
case False
have eventually (λn. norm (1 :: real) ≤ norm (exp (?l n ∗ s))) sequentially
apply (rule eventually mono [OF eventually gt at top[of 0 ::nat ]])
using False ge one powr ge zero by auto

from summable comparison test ev [OF this] False show ?thesis by (auto simp:
summable const iff )
next
let ?l = λn. complex of real (ln (of nat n))
case True
hence summable (λn. norm (exp (?l n ∗ s))) ←→ summable (λn. 2ˆn ∗ norm

(exp (?l (2ˆn) ∗ s)))
by (intro condensation test) (auto intro!: mult right mono neg)

also have (λn. 2ˆn ∗ norm (exp (?l (2ˆn) ∗ s))) = (λn. (2 powr (Re s + 1 )) ˆ
n)
proof
fix n :: nat
have 2ˆn ∗ norm (exp (?l (2ˆn) ∗ s)) = exp (real n ∗ ln 2 ) ∗ exp (real n ∗ ln

2 ∗ Re s)
using True by (subst exp of nat mult) (simp add : ln realpow algebra simps)

also have . . . = exp (real n ∗ (ln 2 ∗ (Re s + 1 )))
by (simp add : algebra simps exp add)

also have . . . = exp (ln 2 ∗ (Re s + 1 )) ˆ n by (subst exp of nat mult) simp
also have exp (ln 2 ∗ (Re s + 1 )) = 2 powr (Re s + 1 ) by (simp add :

powr def )
finally show 2ˆn ∗ norm (exp (?l (2ˆn) ∗ s)) = (2 powr (Re s + 1 )) ˆ n .

qed
also have summable . . . ←→ 2 powr (Re s + 1 ) < 2 powr 0
by (subst summable geometric iff ) simp

also have . . . ←→ Re s < −1 by (subst powr less cancel iff ) (simp, linarith)
finally show ?thesis .

qed

theorem summable complex powr iff :
assumes Re s < −1
shows summable (λn. exp (of real (ln (of nat n)) ∗ s))
by (rule summable norm cancel , subst abs summable complex powr iff ) fact

lemma summable real powr iff : summable (λn. of nat n powr s :: real) ←→ s <
−1
proof −
from eventually gt at top[of 0 ::nat ]
have summable (λn. of nat n powr s) ←→ summable (λn. exp (ln (of nat n) ∗

s))
by (intro summable cong) (auto elim!: eventually mono simp: powr def )

also have . . . ←→ s < −1 using abs summable complex powr iff [of of real s]
by simp
finally show ?thesis .



Summation Tests.thy 761

qed

lemma inverse power summable:
assumes s: s ≥ 2
shows summable (λn. inverse (of nat n ˆ s :: ′a :: {real normed div algebra,banach}))

proof (rule summable norm cancel , subst summable cong)
from eventually gt at top[of 0 ::nat ]
show eventually (λn. norm (inverse (of nat n ˆ s:: ′a)) = real of nat n powr

(−real s)) at top
by eventually elim (simp add : norm inverse norm power powr minus powr realpow)

qed (insert s summable real powr iff [of −s], simp all)

lemma not summable harmonic: ¬summable (λn. inverse (of nat n) :: ′a :: real normed field)
proof
assume summable (λn. inverse (of nat n) :: ′a)
hence convergent (λn. norm (of real (

∑
k<n. inverse (of nat k)) :: ′a))

by (simp add : summable iff convergent convergent norm)
hence convergent (λn. abs (

∑
k<n. inverse (of nat k)) :: real) by (simp only :

norm of real)
also have (λn. abs (

∑
k<n. inverse (of nat k)) :: real) = (λn.

∑
k<n. inverse

(of nat k))
by (intro ext abs of nonneg sum nonneg) auto

also have convergent . . . ←→ summable (λk . inverse (of nat k) :: real)
by (simp add : summable iff convergent)

finally show False using summable real powr iff [of −1 ] by (simp add : powr minus)
qed

Kummer’s test

theorem kummers test convergence:
fixes f p :: nat ⇒ real
assumes pos f : eventually (λn. f n > 0 ) sequentially
assumes nonneg p: eventually (λn. p n ≥ 0 ) sequentially
defines l ≡ liminf (λn. ereal (p n ∗ f n / f (Suc n) − p (Suc n)))
assumes l : l > 0
shows summable f
unfolding summable iff convergent ′

proof −
define r where r = (if l = ∞ then 1 else real of ereal l / 2 )
from l have r > 0 ∧ of real r < l by (cases l) (simp all add : r def )
hence r : r > 0 of real r < l by simp all
hence eventually (λn. p n ∗ f n / f (Suc n) − p (Suc n) > r) sequentially
unfolding l def by (force dest : less LiminfD)

moreover from pos f have eventually (λn. f (Suc n) > 0 ) sequentially
by (subst eventually sequentially Suc)

ultimately have eventually (λn. p n ∗ f n − p (Suc n) ∗ f (Suc n) > r ∗ f
(Suc n)) sequentially

by eventually elim (simp add : field simps)
from eventually conj [OF pos f eventually conj [OF nonneg p this]]
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obtain m where m:
∧
n. n ≥ m =⇒ f n > 0

∧
n. n ≥ m =⇒ p n ≥ 0∧

n. n ≥ m =⇒ p n ∗ f n − p (Suc n) ∗ f (Suc n) > r ∗ f (Suc n)
unfolding eventually at top linorder by blast

let ?c = (norm (
∑

k≤m. r ∗ f k) + p m ∗ f m) / r
have Bseq (λn. (

∑
k≤n + Suc m. f k))

proof (rule BseqI ′)
fix k :: nat
define n where n = k + Suc m
have n: n > m by (simp add : n def )

from r have r ∗ norm (
∑

k≤n. f k) = norm (
∑

k≤n. r ∗ f k)
by (simp add : sum distrib left [symmetric] abs mult)

also from n have {..n} = {..m} ∪ {Suc m..n} by auto
hence (

∑
k≤n. r ∗ f k) = (

∑
k∈{..m} ∪ {Suc m..n}. r ∗ f k) by (simp only :)

also have . . . = (
∑

k≤m. r ∗ f k) + (
∑

k=Suc m..n. r ∗ f k)
by (subst sum.union disjoint) auto

also have norm . . . ≤ norm (
∑

k≤m. r ∗ f k) + norm (
∑

k=Suc m..n. r ∗
f k)

by (rule norm triangle ineq)
also from r less imp le[OF m(1 )] have (

∑
k=Suc m..n. r ∗ f k) ≥ 0

by (intro sum nonneg) auto
hence norm (

∑
k=Suc m..n. r ∗ f k) = (

∑
k=Suc m..n. r ∗ f k) by simp

also have (
∑

k=Suc m..n. r ∗ f k) = (
∑

k=m..<n. r ∗ f (Suc k))
by (subst sum.shift bounds Suc ivl [symmetric])

(simp only : atLeastLessThanSuc atLeastAtMost)
also from m have . . . ≤ (

∑
k=m..<n. p k ∗ f k − p (Suc k) ∗ f (Suc k))

by (intro sum mono[OF less imp le]) simp all
also have . . . = −(

∑
k=m..<n. p (Suc k) ∗ f (Suc k) − p k ∗ f k)

by (simp add : sum negf [symmetric] algebra simps)
also from n have . . . = p m ∗ f m − p n ∗ f n

by (cases n, simp, simp only : atLeastLessThanSuc atLeastAtMost , subst
sum Suc diff ) simp all

also from less imp le[OF m(1 )] m(2 ) n have . . . ≤ p m ∗ f m by simp
finally show norm (

∑
k≤n. f k) ≤ (norm (

∑
k≤m. r ∗ f k) + p m ∗ f m) /

r using r
by (subst pos le divide eq [OF r(1 )]) (simp only : mult ac)

qed
moreover have (

∑
k≤n. f k) ≤ (

∑
k≤n ′. f k) if Suc m ≤ n n ≤ n ′ for n n ′

using less imp le[OF m(1 )] that by (intro sum mono2 ) auto
ultimately show convergent (λn.

∑
k≤n. f k) by (rule Bseq monoseq convergent ′ inc)

qed

theorem kummers test divergence:
fixes f p :: nat ⇒ real
assumes pos f : eventually (λn. f n > 0 ) sequentially
assumes pos p: eventually (λn. p n > 0 ) sequentially
assumes divergent p: ¬summable (λn. inverse (p n))
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defines l ≡ limsup (λn. ereal (p n ∗ f n / f (Suc n) − p (Suc n)))
assumes l : l < 0
shows ¬summable f

proof
assume summable f
from eventually conj [OF pos f eventually conj [OF pos p Limsup lessD [OF l [unfolded

l def ]]]]
obtain N where N :

∧
n. n ≥ N =⇒ p n > 0

∧
n. n ≥ N =⇒ f n > 0∧

n. n ≥ N =⇒ p n ∗ f n / f (Suc n) − p (Suc n) < 0
by (auto simp: eventually at top linorder)

hence A: p n ∗ f n < p (Suc n) ∗ f (Suc n) if n ≥ N for n using that N [of n]
N [of Suc n]

by (simp add : field simps)
have B : p n ∗ f n ≥ p N ∗ f N if n ≥ N for n using that and A
by (induction n rule: dec induct) (auto intro!: less imp le elim!: order .trans)

have eventually (λn. norm (p N ∗ f N ∗ inverse (p n)) ≤ f n) sequentially
apply (rule eventually mono [OF eventually ge at top[of N ]])
using B N by (auto simp: field simps abs of pos)

from this and 〈summable f 〉 have summable (λn. p N ∗ f N ∗ inverse (p n))
by (rule summable comparison test ev)

from summable mult [OF this, of inverse (p N ∗ f N )] N [OF le refl ]
have summable (λn. inverse (p n)) by (simp add : field split simps)

with divergent p show False by contradiction
qed

Ratio test

theorem ratio test convergence:
fixes f :: nat ⇒ real
assumes pos f : eventually (λn. f n > 0 ) sequentially
defines l ≡ liminf (λn. ereal (f n / f (Suc n)))
assumes l : l > 1
shows summable f

proof (rule kummers test convergence[OF pos f ])
note l
also have l = liminf (λn. ereal (f n / f (Suc n) − 1 )) + 1
by (subst Liminf add ereal right [symmetric]) (simp all add : minus ereal def l def

one ereal def )
finally show liminf (λn. ereal (1 ∗ f n / f (Suc n) − 1 )) > 0
by (cases liminf (λn. ereal (1 ∗ f n / f (Suc n) − 1 ))) simp all

qed simp

theorem ratio test divergence:
fixes f :: nat ⇒ real
assumes pos f : eventually (λn. f n > 0 ) sequentially
defines l ≡ limsup (λn. ereal (f n / f (Suc n)))
assumes l : l < 1
shows ¬summable f

proof (rule kummers test divergence[OF pos f ])

Summation{_}{\kern 0pt}Tests.html


764

have limsup (λn. ereal (f n / f (Suc n) − 1 )) + 1 = l
by (subst Limsup add ereal right [symmetric]) (simp all add : minus ereal def

l def one ereal def )
also note l
finally show limsup (λn. ereal (1 ∗ f n / f (Suc n) − 1 )) < 0
by (cases limsup (λn. ereal (1 ∗ f n / f (Suc n) − 1 ))) simp all

qed (simp all add : summable const iff )

Raabe’s test

theorem raabes test convergence:
fixes f :: nat ⇒ real
assumes pos: eventually (λn. f n > 0 ) sequentially
defines l ≡ liminf (λn. ereal (of nat n ∗ (f n / f (Suc n) − 1 )))
assumes l : l > 1
shows summable f

proof (rule kummers test convergence)
let ?l ′ = liminf (λn. ereal (of nat n ∗ f n / f (Suc n) − of nat (Suc n)))
have 1 < l by fact
also have l = liminf (λn. ereal (of nat n ∗ f n / f (Suc n) − of nat (Suc n))

+ 1 )
by (simp add : l def algebra simps)

also have . . . = ?l ′ + 1 by (subst Liminf add ereal right) simp all
finally show ?l ′ > 0 by (cases ?l ′) (simp all add : algebra simps)

qed (simp all add : pos)

theorem raabes test divergence:
fixes f :: nat ⇒ real
assumes pos: eventually (λn. f n > 0 ) sequentially
defines l ≡ limsup (λn. ereal (of nat n ∗ (f n / f (Suc n) − 1 )))
assumes l : l < 1
shows ¬summable f

proof (rule kummers test divergence)
let ?l ′ = limsup (λn. ereal (of nat n ∗ f n / f (Suc n) − of nat (Suc n)))
note l
also have l = limsup (λn. ereal (of nat n ∗ f n / f (Suc n) − of nat (Suc n))

+ 1 )
by (simp add : l def algebra simps)

also have . . . = ?l ′ + 1 by (subst Limsup add ereal right) simp all
finally show ?l ′ < 0 by (cases ?l ′) (simp all add : algebra simps)

qed (insert pos eventually gt at top[of 0 ::nat ] not summable harmonic, simp all)

4.6.2 Radius of convergence

The radius of convergence of a power series. This value always exists, ranges
from 0 to ∞, and the power series is guaranteed to converge for all inputs
with a norm that is smaller than that radius and to diverge for all inputs
with a norm that is greater.

definition conv radius :: (nat ⇒ ′a :: banach) ⇒ ereal where
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conv radius f = inverse (limsup (λn. ereal (root n (norm (f n)))))

lemma conv radius cong weak [cong ]: (
∧
n. f n = g n) =⇒ conv radius f = conv radius

g
by (drule ext) simp all

lemma conv radius nonneg : conv radius f ≥ 0
proof −
have 0 = limsup (λn. 0 ) by (subst Limsup const) simp all
also have . . . ≤ limsup (λn. ereal (root n (norm (f n))))
by (intro Limsup mono) (simp all add : real root ge zero)

finally show ?thesis
unfolding conv radius def by (auto simp: ereal inverse nonneg iff )

qed

lemma conv radius zero [simp]: conv radius (λ . 0 ) = ∞
by (auto simp: conv radius def zero ereal def [symmetric] Limsup const)

lemma conv radius altdef :
conv radius f = liminf (λn. inverse (ereal (root n (norm (f n)))))
by (subst Liminf inverse ereal) (simp all add : real root ge zero conv radius def )

lemma conv radius cong ′:
assumes eventually (λx . f x = g x ) sequentially
shows conv radius f = conv radius g
unfolding conv radius altdef by (intro Liminf eq eventually mono [OF assms])

auto

lemma conv radius cong :
assumes eventually (λx . norm (f x ) = norm (g x )) sequentially
shows conv radius f = conv radius g
unfolding conv radius altdef by (intro Liminf eq eventually mono [OF assms])

auto

theorem abs summable in conv radius:
fixes f :: nat ⇒ ′a :: {banach, real normed div algebra}
assumes ereal (norm z ) < conv radius f
shows summable (λn. norm (f n ∗ z ˆ n))

proof (rule root test convergence ′)
define l where l = limsup (λn. ereal (root n (norm (f n))))
have 0 = limsup (λn. 0 ) by (simp add : Limsup const)
also have ... ≤ l unfolding l def by (intro Limsup mono) (simp all add :

real root ge zero)
finally have l nonneg : l ≥ 0 .

have limsup (λn. root n (norm (f n ∗ zˆn))) = l ∗ ereal (norm z ) unfolding
l def

by (rule limsup root powser)
also from l nonneg consider l = 0 | l = ∞ | ∃ l ′. l = ereal l ′ ∧ l ′ > 0
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by (cases l) (auto simp: less le)
hence l ∗ ereal (norm z ) < 1
proof cases
assume l = ∞
hence conv radius f = 0 unfolding conv radius def l def by simp
with assms show ?thesis by simp

next
assume ∃ l ′. l = ereal l ′ ∧ l ′ > 0
then guess l ′ by (elim exE conjE ) note l ′ = this
hence l 6= ∞ by auto
have l ∗ ereal (norm z ) < l ∗ conv radius f
by (intro ereal mult strict left mono) (simp all add : l ′ assms)

also have conv radius f = inverse l by (simp add : conv radius def l def )
also from l ′ have l ∗ inverse l = 1 by simp
finally show ?thesis .

qed simp all
finally show limsup (λn. ereal (root n (norm (norm (f n ∗ z ˆ n))))) < 1 by

simp
qed

lemma summable in conv radius:
fixes f :: nat ⇒ ′a :: {banach, real normed div algebra}
assumes ereal (norm z ) < conv radius f
shows summable (λn. f n ∗ z ˆ n)
by (rule summable norm cancel , rule abs summable in conv radius) fact+

theorem not summable outside conv radius:
fixes f :: nat ⇒ ′a :: {banach, real normed div algebra}
assumes ereal (norm z ) > conv radius f
shows ¬summable (λn. f n ∗ z ˆ n)

proof (rule root test divergence)
define l where l = limsup (λn. ereal (root n (norm (f n))))
have 0 = limsup (λn. 0 ) by (simp add : Limsup const)
also have ... ≤ l unfolding l def by (intro Limsup mono) (simp all add :

real root ge zero)
finally have l nonneg : l ≥ 0 .
from assms have l nz : l 6= 0 unfolding conv radius def l def by auto

have limsup (λn. ereal (root n (norm (f n ∗ zˆn)))) = l ∗ ereal (norm z )
unfolding l def by (rule limsup root powser)

also have ... > 1
proof (cases l)
assume l = ∞
with assms conv radius nonneg [of f ] show ?thesis
by (auto simp: zero ereal def [symmetric])

next
fix l ′ assume l ′: l = ereal l ′

from l nonneg l nz have 1 = l ∗ inverse l by (auto simp: l ′ field simps)
also from l nz have inverse l = conv radius f
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unfolding l def conv radius def by auto
also from l ′ l nz l nonneg assms have l ∗ . . . < l ∗ ereal (norm z )
by (intro ereal mult strict left mono) (auto simp: l ′)

finally show ?thesis .
qed (insert l nonneg , simp all)
finally show limsup (λn. ereal (root n (norm (f n ∗ zˆn)))) > 1 .

qed

lemma conv radius geI :
assumes summable (λn. f n ∗ z ˆ n :: ′a :: {banach, real normed div algebra})
shows conv radius f ≥ norm z
using not summable outside conv radius[of f z ] assms by (force simp: not le[symmetric])

lemma conv radius leI :
assumes ¬summable (λn. norm (f n ∗ z ˆ n :: ′a :: {banach, real normed div algebra}))
shows conv radius f ≤ norm z
using abs summable in conv radius[of z f ] assms by (force simp: not le[symmetric])

lemma conv radius leI ′:
assumes ¬summable (λn. f n ∗ z ˆ n :: ′a :: {banach, real normed div algebra})
shows conv radius f ≤ norm z
using summable in conv radius[of z f ] assms by (force simp: not le[symmetric])

lemma conv radius geI ex :
fixes f :: nat ⇒ ′a :: {banach, real normed div algebra}
assumes

∧
r . 0 < r =⇒ ereal r < R =⇒ ∃ z . norm z = r ∧ summable (λn. f n

∗ zˆn)
shows conv radius f ≥ R

proof (rule linorder cases[of conv radius f R])
assume R: conv radius f < R
with conv radius nonneg [of f ] obtain conv radius ′

where [simp]: conv radius f = ereal conv radius ′

by (cases conv radius f ) simp all
define r where r = (if R = ∞ then conv radius ′ + 1 else (real of ereal R +

conv radius ′) / 2 )
from R conv radius nonneg [of f ] have 0 < r ∧ ereal r < R ∧ ereal r >

conv radius f
unfolding r def by (cases R) (auto simp: r def field simps)

with assms(1 )[of r ] obtain z where norm z > conv radius f summable (λn. f
n ∗ zˆn) by auto
with not summable outside conv radius[of f z ] show ?thesis by simp

qed simp all

lemma conv radius geI ex ′:
fixes f :: nat ⇒ ′a :: {banach, real normed div algebra}
assumes

∧
r . 0 < r =⇒ ereal r < R =⇒ summable (λn. f n ∗ of real rˆn)

shows conv radius f ≥ R
proof (rule conv radius geI ex )
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fix r assume 0 < r ereal r < R
with assms[of r ] show ∃ z . norm z = r ∧ summable (λn. f n ∗ z ˆ n)
by (intro exI [of of real r :: ′a]) auto

qed

lemma conv radius leI ex :
fixes f :: nat ⇒ ′a :: {banach, real normed div algebra}
assumes R ≥ 0
assumes

∧
r . 0 < r =⇒ ereal r > R =⇒ ∃ z . norm z = r ∧ ¬summable (λn.

norm (f n ∗ zˆn))
shows conv radius f ≤ R

proof (rule linorder cases[of conv radius f R])
assume R: conv radius f > R
from R assms(1 ) obtain R ′ where R ′: R = ereal R ′ by (cases R) simp all
define r where
r = (if conv radius f = ∞ then R ′ + 1 else (R ′ + real of ereal (conv radius f ))

/ 2 )
from R conv radius nonneg [of f ] have r > R ∧ r < conv radius f unfolding

r def
by (cases conv radius f ) (auto simp: r def field simps R ′)

with assms(1 ) assms(2 )[of r ] R ′

obtain z where norm z < conv radius f ¬summable (λn. norm (f n ∗ zˆn))
by auto
with abs summable in conv radius[of z f ] show ?thesis by auto

qed simp all

lemma conv radius leI ex ′:
fixes f :: nat ⇒ ′a :: {banach, real normed div algebra}
assumes R ≥ 0
assumes

∧
r . 0 < r =⇒ ereal r > R =⇒ ¬summable (λn. f n ∗ of real rˆn)

shows conv radius f ≤ R
proof (rule conv radius leI ex )
fix r assume 0 < r ereal r > R
with assms(2 )[of r ] show ∃ z . norm z = r ∧ ¬summable (λn. norm (f n ∗ z ˆ

n))
by (intro exI [of of real r :: ′a]) (auto dest : summable norm cancel)

qed fact+

lemma conv radius eqI :
fixes f :: nat ⇒ ′a :: {banach, real normed div algebra}
assumes R ≥ 0
assumes

∧
r . 0 < r =⇒ ereal r < R =⇒ ∃ z . norm z = r ∧ summable (λn. f n

∗ zˆn)
assumes

∧
r . 0 < r =⇒ ereal r > R =⇒ ∃ z . norm z = r ∧ ¬summable (λn.

norm (f n ∗ zˆn))
shows conv radius f = R
by (intro antisym conv radius geI ex conv radius leI ex assms)

lemma conv radius eqI ′:
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fixes f :: nat ⇒ ′a :: {banach, real normed div algebra}
assumes R ≥ 0
assumes

∧
r . 0 < r =⇒ ereal r < R =⇒ summable (λn. f n ∗ (of real r)ˆn)

assumes
∧
r . 0 < r =⇒ ereal r > R =⇒ ¬summable (λn. norm (f n ∗ (of real

r)ˆn))
shows conv radius f = R

proof (intro conv radius eqI [OF assms(1 )])
fix r assume 0 < r ereal r < R with assms(2 )[OF this]
show ∃ z . norm z = r ∧ summable (λn. f n ∗ z ˆ n) by force

next
fix r assume 0 < r ereal r > R with assms(3 )[OF this]
show ∃ z . norm z = r ∧ ¬summable (λn. norm (f n ∗ z ˆ n)) by force

qed

lemma conv radius zeroI :
fixes f :: nat ⇒ ′a :: {banach,real normed div algebra}
assumes

∧
z . z 6= 0 =⇒ ¬summable (λn. f n ∗ zˆn)

shows conv radius f = 0
proof (rule ccontr)
assume conv radius f 6= 0
with conv radius nonneg [of f ] have pos: conv radius f > 0 by simp
define r where r = (if conv radius f = ∞ then 1 else real of ereal (conv radius

f ) / 2 )
from pos have r : ereal r > 0 ∧ ereal r < conv radius f
by (cases conv radius f ) (simp all add : r def )

hence summable (λn. f n ∗ of real r ˆ n) by (intro summable in conv radius)
simp
moreover from r and assms[of of real r ] have ¬summable (λn. f n ∗ of real r

ˆ n) by simp
ultimately show False by contradiction

qed

lemma conv radius inftyI ′:
fixes f :: nat ⇒ ′a :: {banach,real normed div algebra}
assumes

∧
r . r > c =⇒ ∃ z . norm z = r ∧ summable (λn. f n ∗ zˆn)

shows conv radius f = ∞
proof −
{
fix r :: real
have max r (c + 1 ) > c by (auto simp: max def )
from assms[OF this] obtain z where norm z = max r (c + 1 ) summable

(λn. f n ∗ zˆn) by blast
from conv radius geI [OF this(2 )] this(1 ) have conv radius f ≥ r by simp

}
from this[of real of ereal (conv radius f + 1 )] show conv radius f = ∞
by (cases conv radius f ) simp all

qed

lemma conv radius inftyI :
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fixes f :: nat ⇒ ′a :: {banach,real normed div algebra}
assumes

∧
r . ∃ z . norm z = r ∧ summable (λn. f n ∗ zˆn)

shows conv radius f = ∞
using assms by (rule conv radius inftyI ′)

lemma conv radius inftyI ′′:
fixes f :: nat ⇒ ′a :: {banach,real normed div algebra}
assumes

∧
z . summable (λn. f n ∗ zˆn)

shows conv radius f = ∞
proof (rule conv radius inftyI ′)
fix r :: real assume r > 0
with assms show ∃ z . norm z = r ∧ summable (λn. f n ∗ zˆn)
by (intro exI [of of real r ]) simp

qed

lemma conv radius conv Sup:
fixes f :: nat ⇒ ′a :: {banach, real normed div algebra}
shows conv radius f = Sup {r . ∀ z . ereal (norm z ) < r −→ summable (λn. f n
∗ z ˆ n)}
proof (rule Sup eqI [symmetric], goal cases)
case (1 r)
thus ?case
by (intro conv radius geI ex ′) auto

next
case (2 r)
from 2 [of 0 ] have r : r ≥ 0 by auto
show ?case
proof (intro conv radius leI ex ′ r)
fix R assume R: R > 0 ereal R > r
with r obtain r ′ where [simp]: r = ereal r ′ by (cases r) auto
show ¬summable (λn. f n ∗ of real R ˆ n)
proof
assume ∗: summable (λn. f n ∗ of real R ˆ n)
define R ′ where R ′ = (R + r ′) / 2
from R have R ′: R ′ > r ′ R ′ < R by (simp all add : R ′ def )
hence ∀ z . norm z < R ′ −→ summable (λn. f n ∗ z ˆ n)
using powser inside[OF ∗] by auto

from 2 [of R ′] and this have R ′ ≤ r ′ by auto
with 〈R ′ > r ′〉 show False by simp

qed
qed

qed

lemma conv radius shift :
fixes f :: nat ⇒ ′a :: {banach, real normed div algebra}
shows conv radius (λn. f (n + m)) = conv radius f
unfolding conv radius conv Sup summable powser ignore initial segment ..

lemma conv radius norm [simp]: conv radius (λx . norm (f x )) = conv radius f
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by (simp add : conv radius def )

lemma conv radius ratio limit ereal :
fixes f :: nat ⇒ ′a :: {banach,real normed div algebra}
assumes nz : eventually (λn. f n 6= 0 ) sequentially
assumes lim: (λn. ereal (norm (f n) / norm (f (Suc n)))) −−−−→ c
shows conv radius f = c

proof (rule conv radius eqI ′)
show c ≥ 0 by (intro Lim bounded2 [OF lim]) simp all

next
fix r assume r : 0 < r ereal r < c
let ?l = liminf (λn. ereal (norm (f n ∗ of real r ˆ n) / norm (f (Suc n) ∗ of real

r ˆ Suc n)))
have ?l = liminf (λn. ereal (norm (f n) / (norm (f (Suc n)))) ∗ ereal (inverse

r))
using r by (simp add : norm mult norm power field split simps)

also from r have . . . = liminf (λn. ereal (norm (f n) / (norm (f (Suc n)))))
∗ ereal (inverse r)

by (intro Liminf ereal mult right) simp all
also have liminf (λn. ereal (norm (f n) / (norm (f (Suc n))))) = c
by (intro lim imp Liminf lim) simp

finally have l : ?l = c ∗ ereal (inverse r) by simp
from r have l ′: c ∗ ereal (inverse r) > 1 by (cases c) (simp all add : field simps)
show summable (λn. f n ∗ of real rˆn)
by (rule summable norm cancel , rule ratio test convergence)

(insert r nz l l ′, auto elim!: eventually mono)
next
fix r assume r : 0 < r ereal r > c
let ?l = limsup (λn. ereal (norm (f n ∗ of real r ˆ n) / norm (f (Suc n) ∗ of real

r ˆ Suc n)))
have ?l = limsup (λn. ereal (norm (f n) / (norm (f (Suc n)))) ∗ ereal (inverse

r))
using r by (simp add : norm mult norm power field split simps)

also from r have . . . = limsup (λn. ereal (norm (f n) / (norm (f (Suc n)))))
∗ ereal (inverse r)

by (intro Limsup ereal mult right) simp all
also have limsup (λn. ereal (norm (f n) / (norm (f (Suc n))))) = c
by (intro lim imp Limsup lim) simp

finally have l : ?l = c ∗ ereal (inverse r) by simp
from r have l ′: c ∗ ereal (inverse r) < 1 by (cases c) (simp all add : field simps)
show ¬summable (λn. norm (f n ∗ of real rˆn))
by (rule ratio test divergence) (insert r nz l l ′, auto elim!: eventually mono)

qed

lemma conv radius ratio limit ereal nonzero:
fixes f :: nat ⇒ ′a :: {banach,real normed div algebra}
assumes nz : c 6= 0
assumes lim: (λn. ereal (norm (f n) / norm (f (Suc n)))) −−−−→ c
shows conv radius f = c
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proof (rule conv radius ratio limit ereal [OF lim], rule ccontr)
assume ¬eventually (λn. f n 6= 0 ) sequentially
hence frequently (λn. f n = 0 ) sequentially by (simp add : frequently def )
hence frequently (λn. ereal (norm (f n) / norm (f (Suc n))) = 0 ) sequentially
by (force elim!: frequently elim1 )

hence c = 0 by (intro limit frequently eq [OF lim]) auto
with nz show False by contradiction

qed

lemma conv radius ratio limit :
fixes f :: nat ⇒ ′a :: {banach,real normed div algebra}
assumes c ′ = ereal c
assumes nz : eventually (λn. f n 6= 0 ) sequentially
assumes lim: (λn. norm (f n) / norm (f (Suc n))) −−−−→ c
shows conv radius f = c ′

using assms by (intro conv radius ratio limit ereal) simp all

lemma conv radius ratio limit nonzero:
fixes f :: nat ⇒ ′a :: {banach,real normed div algebra}
assumes c ′ = ereal c
assumes nz : c 6= 0
assumes lim: (λn. norm (f n) / norm (f (Suc n))) −−−−→ c
shows conv radius f = c ′

using assms by (intro conv radius ratio limit ereal nonzero) simp all

lemma conv radius cmult left :
assumes c 6= (0 :: ′a :: {banach, real normed div algebra})
shows conv radius (λn. c ∗ f n) = conv radius f

proof −
have conv radius (λn. c ∗ f n) =

inverse (limsup (λn. ereal (root n (norm (c ∗ f n)))))
unfolding conv radius def ..

also have (λn. ereal (root n (norm (c ∗ f n)))) =
(λn. ereal (root n (norm c)) ∗ ereal (root n (norm (f n))))

by (rule ext) (auto simp: norm mult real root mult)
also have limsup . . . = ereal 1 ∗ limsup (λn. ereal (root n (norm (f n))))
using assms by (intro ereal limsup lim mult tendsto ereal LIMSEQ root const)

auto
also have inverse . . . = conv radius f by (simp add : conv radius def )
finally show ?thesis .

qed

lemma conv radius cmult right :
assumes c 6= (0 :: ′a :: {banach, real normed div algebra})
shows conv radius (λn. f n ∗ c) = conv radius f

proof −
have conv radius (λn. f n ∗ c) = conv radius (λn. c ∗ f n)
by (simp add : conv radius def norm mult mult .commute)

with conv radius cmult left [OF assms, of f ] show ?thesis by simp
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qed

lemma conv radius mult power :
assumes c 6= (0 :: ′a :: {real normed div algebra,banach})
shows conv radius (λn. c ˆ n ∗ f n) = conv radius f / ereal (norm c)

proof −
have limsup (λn. ereal (root n (norm (c ˆ n ∗ f n)))) =

limsup (λn. ereal (norm c) ∗ ereal (root n (norm (f n))))
by (intro Limsup eq eventually mono [OF eventually gt at top[of 0 ::nat ]])

(auto simp: norm mult norm power real root mult real root power)
also have . . . = ereal (norm c) ∗ limsup (λn. ereal (root n (norm (f n))))
using assms by (subst Limsup ereal mult left [symmetric]) simp all

finally have A: limsup (λn. ereal (root n (norm (c ˆ n ∗ f n)))) =
ereal (norm c) ∗ limsup (λn. ereal (root n (norm (f n)))) .

show ?thesis using assms
apply (cases limsup (λn. ereal (root n (norm (f n)))) = 0 )
apply (simp add : A conv radius def )
apply (unfold conv radius def A divide ereal def , simp add : mult .commute

ereal inverse mult)
done

qed

lemma conv radius mult power right :
assumes c 6= (0 :: ′a :: {real normed div algebra,banach})
shows conv radius (λn. f n ∗ c ˆ n) = conv radius f / ereal (norm c)
using conv radius mult power [OF assms, of f ]
unfolding conv radius def by (simp add : mult .commute norm mult)

lemma conv radius divide power :
assumes c 6= (0 :: ′a :: {real normed div algebra,banach})
shows conv radius (λn. f n / cˆn) = conv radius f ∗ ereal (norm c)

proof −
from assms have inverse c 6= 0 by simp
from conv radius mult power right [OF this, of f ] show ?thesis
by (simp add : divide inverse divide ereal def assms norm inverse power inverse)

qed

lemma conv radius add ge:
min (conv radius f ) (conv radius g) ≤

conv radius (λx . f x + g x :: ′a :: {banach,real normed div algebra})
by (rule conv radius geI ex ′)

(auto simp: algebra simps intro!: summable add summable in conv radius)

lemma conv radius mult ge:
fixes f g :: nat ⇒ ( ′a :: {banach,real normed div algebra})
shows conv radius (λx .

∑
i≤x . f i ∗ g (x − i)) ≥ min (conv radius f ) (conv radius

g)
proof (rule conv radius geI ex ′)
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fix r assume r : r > 0 ereal r < min (conv radius f ) (conv radius g)
from r have summable (λn. (

∑
i≤n. (f i ∗ of real rˆi) ∗ (g (n − i) ∗ of real

rˆ(n − i))))
by (intro summable Cauchy product abs summable in conv radius) simp all

thus summable (λn. (
∑

i≤n. f i ∗ g (n − i)) ∗ of real r ˆ n)
by (simp add : algebra simps of real def power add [symmetric] scaleR sum right)

qed

lemma le conv radius iff :
fixes a :: nat ⇒ ′a::{real normed div algebra,banach}
shows r ≤ conv radius a ←→ (∀ x . norm (x−ξ) < r −→ summable (λi . a i ∗

(x − ξ) ˆ i))
apply (intro iffI allI impI summable in conv radius conv radius geI ex )
apply (meson less ereal .simps(1 ) not le order trans)
apply (rule tac x=of real ra in exI , simp)
apply (metis abs of nonneg add diff cancel left ′ less eq real def norm of real)
done

end

4.7 Uniform Limit and Uniform Convergence

theory Uniform Limit
imports Connected Summation Tests
begin

4.7.1 Definition

definition uniformly on :: ′a set ⇒ ( ′a ⇒ ′b::metric space) ⇒ ( ′a ⇒ ′b) filter
where uniformly on S l = (INF e∈{0 <..}. principal {f . ∀ x∈S . dist (f x ) (l x )

< e})

abbreviation
uniform limit S f l ≡ filterlim f (uniformly on S l)

definition uniformly convergent on where
uniformly convergent on X f ←→ (∃ l . uniform limit X f l sequentially)

definition uniformly Cauchy on where
uniformly Cauchy on X f ←→ (∀ e>0 . ∃M . ∀ x∈X . ∀ (m::nat)≥M . ∀n≥M . dist

(f m x ) (f n x ) < e)

proposition uniform limit iff :
uniform limit S f l F ←→ (∀ e>0 . ∀ F n in F . ∀ x∈S . dist (f n x ) (l x ) < e)
unfolding filterlim iff uniformly on def
by (subst eventually INF base)
(fastforce
simp: eventually principal uniformly on def
intro: bexI [where x=min a b for a b]
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elim: eventually mono)+

lemma uniform limitD :
uniform limit S f l F =⇒ e > 0 =⇒ ∀ F n in F . ∀ x∈S . dist (f n x ) (l x ) < e
by (simp add : uniform limit iff )

lemma uniform limitI :
(
∧
e. e > 0 =⇒ ∀ F n in F . ∀ x∈S . dist (f n x ) (l x ) < e) =⇒ uniform limit S f

l F
by (simp add : uniform limit iff )

lemma uniform limit sequentially iff :
uniform limit S f l sequentially ←→ (∀ e>0 . ∃N . ∀n≥N . ∀ x ∈ S . dist (f n x ) (l

x ) < e)
unfolding uniform limit iff eventually sequentially ..

lemma uniform limit at iff :
uniform limit S f l (at x ) ←→
(∀ e>0 . ∃ d>0 . ∀ z . 0 < dist z x ∧ dist z x < d −→ (∀ x∈S . dist (f z x ) (l x )

< e))
unfolding uniform limit iff eventually at by simp

lemma uniform limit at le iff :
uniform limit S f l (at x ) ←→
(∀ e>0 . ∃ d>0 . ∀ z . 0 < dist z x ∧ dist z x < d −→ (∀ x∈S . dist (f z x ) (l x )

≤ e))
unfolding uniform limit iff eventually at
by (fastforce dest : spec[where x = e / 2 for e])

lemma metric uniform limit imp uniform limit :
assumes f : uniform limit S f a F
assumes le: eventually (λx . ∀ y∈S . dist (g x y) (b y) ≤ dist (f x y) (a y)) F
shows uniform limit S g b F

proof (rule uniform limitI )
fix e :: real assume 0 < e
from uniform limitD [OF f this] le
show ∀ F x in F . ∀ y∈S . dist (g x y) (b y) < e
by eventually elim force

qed

4.7.2 Exchange limits

proposition swap uniform limit :
assumes f : ∀ F n in F . (f n −−−→ g n) (at x within S )
assumes g : (g −−−→ l) F
assumes uc: uniform limit S f h F
assumes ¬trivial limit F
shows (h −−−→ l) (at x within S )

proof (rule tendstoI )
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fix e :: real
define e ′ where e ′ = e/3
assume 0 < e
then have 0 < e ′ by (simp add : e ′ def )
from uniform limitD [OF uc 〈0 < e ′〉]
have ∀ F n in F . ∀ x∈S . dist (h x ) (f n x ) < e ′

by (simp add : dist commute)
moreover
from f
have ∀ F n in F . ∀ F x in at x within S . dist (g n) (f n x ) < e ′

by eventually elim (auto dest !: tendstoD [OF 〈0 < e ′〉] simp: dist commute)
moreover
from tendstoD [OF g 〈0 < e ′〉] have ∀ F x in F . dist l (g x ) < e ′

by (simp add : dist commute)
ultimately
have ∀ F in F . ∀ F x in at x within S . dist (h x ) l < e
proof eventually elim
case (elim n)
note fh = elim(1 )
note gl = elim(3 )
have ∀ F x in at x within S . x ∈ S
by (auto simp: eventually at filter)

with elim(2 )
show ?case
proof eventually elim
case (elim x )
from fh[rule format , OF 〈x ∈ S 〉] elim(1 )
have dist (h x ) (g n) < e ′ + e ′

by (rule dist triangle lt [OF add strict mono])
from dist triangle lt [OF add strict mono, OF this gl ]
show ?case by (simp add : e ′ def )

qed
qed
thus ∀ F x in at x within S . dist (h x ) l < e
using eventually happens by (metis 〈¬trivial limit F 〉)

qed

4.7.3 Uniform limit theorem

lemma tendsto uniform limitI :
assumes uniform limit S f l F
assumes x ∈ S
shows ((λy . f y x ) −−−→ l x ) F
using assms
by (auto intro!: tendstoI simp: eventually mono dest !: uniform limitD)

theorem uniform limit theorem:
assumes c: ∀ F n in F . continuous on A (f n)
assumes ul : uniform limit A f l F
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assumes ¬ trivial limit F
shows continuous on A l
unfolding continuous on def

proof safe
fix x assume x ∈ A
then have ∀ F n in F . (f n −−−→ f n x ) (at x within A) ((λn. f n x ) −−−→ l x )

F
using c ul
by (auto simp: continuous on def eventually mono tendsto uniform limitI )

then show (l −−−→ l x ) (at x within A)
by (rule swap uniform limit) fact+

qed

lemma uniformly Cauchy onI :
assumes

∧
e. e > 0 =⇒ ∃M . ∀ x∈X . ∀m≥M . ∀n≥M . dist (f m x ) (f n x ) < e

shows uniformly Cauchy on X f
using assms unfolding uniformly Cauchy on def by blast

lemma uniformly Cauchy onI ′:
assumes

∧
e. e > 0 =⇒ ∃M . ∀ x∈X . ∀m≥M . ∀n>m. dist (f m x ) (f n x ) < e

shows uniformly Cauchy on X f
proof (rule uniformly Cauchy onI )
fix e :: real assume e: e > 0
from assms[OF this] obtain M
where M :

∧
x m n. x ∈ X =⇒ m ≥ M =⇒ n > m =⇒ dist (f m x ) (f n x )

< e by fast
{
fix x m n assume x : x ∈ X and m: m ≥ M and n: n ≥ M
with M [OF this(1 ,2 ), of n] M [OF this(1 ,3 ), of m] e have dist (f m x ) (f n

x ) < e
by (cases m n rule: linorder cases) (simp all add : dist commute)

}
thus ∃M . ∀ x∈X . ∀m≥M . ∀n≥M . dist (f m x ) (f n x ) < e by fast

qed

lemma uniformly Cauchy imp Cauchy :
uniformly Cauchy on X f =⇒ x ∈ X =⇒ Cauchy (λn. f n x )
unfolding Cauchy def uniformly Cauchy on def by fast

lemma uniform limit cong :
fixes f g :: ′a ⇒ ′b ⇒ ( ′c :: metric space) and h i :: ′b ⇒ ′c
assumes eventually (λy . ∀ x∈X . f y x = g y x ) F
assumes

∧
x . x ∈ X =⇒ h x = i x

shows uniform limit X f h F ←→ uniform limit X g i F
proof −
{
fix f g :: ′a ⇒ ′b ⇒ ′c and h i :: ′b ⇒ ′c
assume C : uniform limit X f h F and A: eventually (λy . ∀ x∈X . f y x = g y

x ) F
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and B :
∧
x . x ∈ X =⇒ h x = i x

{
fix e ::real assume e > 0
with C have eventually (λy . ∀ x∈X . dist (f y x ) (h x ) < e) F
unfolding uniform limit iff by blast

with A have eventually (λy . ∀ x∈X . dist (g y x ) (i x ) < e) F
by eventually elim (insert B , simp all)

}
hence uniform limit X g i F unfolding uniform limit iff by blast

} note A = this
show ?thesis by (rule iffI ) (erule A; insert assms; simp add : eq commute)+

qed

lemma uniform limit cong ′:
fixes f g :: ′a ⇒ ′b ⇒ ( ′c :: metric space) and h i :: ′b ⇒ ′c
assumes

∧
y x . x ∈ X =⇒ f y x = g y x

assumes
∧
x . x ∈ X =⇒ h x = i x

shows uniform limit X f h F ←→ uniform limit X g i F
using assms by (intro uniform limit cong always eventually) blast+

lemma uniformly convergent cong :
assumes eventually (λx . ∀ y∈A. f x y = g x y) sequentially A = B
shows uniformly convergent on A f ←→ uniformly convergent on B g
unfolding uniformly convergent on def assms(2 ) [symmetric]
by (intro iff exI uniform limit cong eventually mono [OF assms(1 )]) auto

lemma uniformly convergent uniform limit iff :
uniformly convergent on X f ←→ uniform limit X f (λx . lim (λn. f n x )) sequentially

proof
assume uniformly convergent on X f
then obtain l where l : uniform limit X f l sequentially
unfolding uniformly convergent on def by blast

from l have uniform limit X f (λx . lim (λn. f n x )) sequentially ←→
uniform limit X f l sequentially

by (intro uniform limit cong ′ limI tendsto uniform limitI [of f X l ]) simp all
also note l
finally show uniform limit X f (λx . lim (λn. f n x )) sequentially .

qed (auto simp: uniformly convergent on def )

lemma uniformly convergentI : uniform limit X f l sequentially =⇒ uniformly convergent on
X f
unfolding uniformly convergent on def by blast

lemma uniformly convergent on empty [iff ]: uniformly convergent on {} f
by (simp add : uniformly convergent on def uniform limit sequentially iff )

lemma uniformly convergent on const [simp,intro]:
uniformly convergent on A (λ . c)
by (auto simp: uniformly convergent on def uniform limit iff intro!: exI [of c])
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Cauchy-type criteria for uniform convergence.

lemma Cauchy uniformly convergent :
fixes f :: nat ⇒ ′a ⇒ ′b :: complete space
assumes uniformly Cauchy on X f
shows uniformly convergent on X f

unfolding uniformly convergent uniform limit iff uniform limit iff
proof safe
let ?f = λx . lim (λn. f n x )
fix e :: real assume e: e > 0
hence e/2 > 0 by simp
with assms obtain N where N :

∧
x m n. x ∈ X =⇒ m ≥ N =⇒ n ≥ N =⇒

dist (f m x ) (f n x ) < e/2
unfolding uniformly Cauchy on def by fast

show eventually (λn. ∀ x∈X . dist (f n x ) (?f x ) < e) sequentially
using eventually ge at top[of N ]

proof eventually elim
fix n assume n: n ≥ N
show ∀ x∈X . dist (f n x ) (?f x ) < e
proof
fix x assume x : x ∈ X
with assms have (λn. f n x ) −−−−→ ?f x

by (auto dest !: Cauchy convergent uniformly Cauchy imp Cauchy simp:
convergent LIMSEQ iff )

with 〈e/2 > 0 〉 have eventually (λm. m ≥ N ∧ dist (f m x ) (?f x ) < e/2 )
sequentially

by (intro tendstoD eventually conj eventually ge at top)
then obtain m where m: m ≥ N dist (f m x ) (?f x ) < e/2
unfolding eventually at top linorder by blast

have dist (f n x ) (?f x ) ≤ dist (f n x ) (f m x ) + dist (f m x ) (?f x )
by (rule dist triangle)

also from x n have ... < e/2 + e/2 by (intro add strict mono N m)
finally show dist (f n x ) (?f x ) < e by simp

qed
qed

qed

lemma uniformly convergent Cauchy :
assumes uniformly convergent on X f
shows uniformly Cauchy on X f

proof (rule uniformly Cauchy onI )
fix e::real assume e > 0
then have 0 < e / 2 by simp
with assms[unfolded uniformly convergent on def uniform limit sequentially iff ]
obtain l N where l :x ∈ X =⇒ n ≥ N =⇒ dist (f n x ) (l x ) < e / 2 for n x
by metis

from l l have x ∈ X =⇒ n ≥ N =⇒ m ≥ N =⇒ dist (f n x ) (f m x ) < e for
n m x

by (rule dist triangle half l)
then show ∃M . ∀ x∈X . ∀m≥M . ∀n≥M . dist (f m x ) (f n x ) < e by blast
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qed

lemma uniformly convergent eq Cauchy :
uniformly convergent on X f = uniformly Cauchy on X f for f ::nat ⇒ ′b ⇒

′a::complete space
using Cauchy uniformly convergent uniformly convergent Cauchy by blast

lemma uniformly convergent eq cauchy :
fixes s::nat ⇒ ′b ⇒ ′a::complete space
shows
(∃ l . ∀ e>0 . ∃N . ∀n x . N ≤ n ∧ P x −→ dist(s n x )(l x ) < e) ←→
(∀ e>0 . ∃N . ∀m n x . N ≤ m ∧ N ≤ n ∧ P x −→ dist (s m x ) (s n x ) < e)

proof −
have ∗: (∀n≥N . ∀ x . Q x −→ R n x ) ←→ (∀n x . N ≤ n ∧ Q x −→ R n x )
(∀ x . Q x −→ (∀m≥N . ∀n≥N . S n m x )) ←→ (∀m n x . N ≤ m ∧ N ≤ n ∧

Q x −→ S n m x )
for N ::nat and Q :: ′b ⇒ bool and R S
by blast+

show ?thesis
using uniformly convergent eq Cauchy [of Collect P s]
unfolding uniformly convergent on def uniformly Cauchy on def uniform limit sequentially iff
by (simp add : ∗)

qed

lemma uniformly cauchy imp uniformly convergent :
fixes s :: nat ⇒ ′a ⇒ ′b::complete space
assumes ∀ e>0 .∃N . ∀m (n::nat) x . N ≤ m ∧ N ≤ n ∧ P x −−> dist(s m x )(s

n x ) < e
and ∀ x . P x −−> (∀ e>0 . ∃N . ∀n. N ≤ n −→ dist(s n x )(l x ) < e)

shows ∀ e>0 . ∃N . ∀n x . N ≤ n ∧ P x −→ dist(s n x )(l x ) < e
proof −
obtain l ′ where l :∀ e>0 . ∃N . ∀n x . N ≤ n ∧ P x −→ dist (s n x ) (l ′ x ) < e
using assms(1 ) unfolding uniformly convergent eq cauchy [symmetric] by auto
moreover
{
fix x
assume P x
then have l x = l ′ x
using tendsto unique[OF trivial limit sequentially , of λn. s n x l x l ′ x ]
using l and assms(2 ) unfolding lim sequentially by blast

}
ultimately show ?thesis by auto

qed

TODO: remove explicit formulations (∃ l . ∀ e>0 . ∃N . ∀n x . N ≤ n ∧ ?P
x −→ dist (?s n x ) (l x ) < e) = (∀ e>0 . ∃N . ∀m n x . N ≤ m ∧ N ≤ n
∧ ?P x −→ dist (?s m x ) (?s n x ) < e)

[[∀ e>0 . ∃N . ∀m n x . N ≤ m ∧ N ≤ n ∧ ?P x −→ dist (?s m x ) (?s n
x ) < e; ∀ x . ?P x −→ (∀ e>0 . ∃N . ∀n≥N . dist (?s n x ) (?l x ) < e)]] =⇒
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∀ e>0 . ∃N . ∀n x . N ≤ n ∧ ?P x −→ dist (?s n x ) (?l x ) < e?!

lemma uniformly convergent imp convergent :
uniformly convergent on X f =⇒ x ∈ X =⇒ convergent (λn. f n x )
unfolding uniformly convergent on def convergent def
by (auto dest : tendsto uniform limitI )

4.7.4 Weierstrass M-Test

proposition Weierstrass m test ev :
fixes f :: ⇒ ⇒ :: banach
assumes eventually (λn. ∀ x∈A. norm (f n x ) ≤ M n) sequentially
assumes summable M
shows uniform limit A (λn x .

∑
i<n. f i x ) (λx . suminf (λi . f i x )) sequentially

proof (rule uniform limitI )
fix e :: real
assume 0 < e
from suminf exist split [OF 〈0 < e〉 〈summable M 〉]
have ∀ F k in sequentially . norm (

∑
i . M (i + k)) < e

by (auto simp: eventually sequentially)
with eventually all ge at top[OF assms(1 )]
show ∀ F n in sequentially . ∀ x∈A. dist (

∑
i<n. f i x ) (

∑
i . f i x ) < e

proof eventually elim
case (elim k)
show ?case
proof safe
fix x assume x ∈ A
have ∃N . ∀n≥N . norm (f n x ) ≤ M n
using assms(1 ) 〈x ∈ A〉 by (force simp: eventually at top linorder)

hence summable norm f : summable (λn. norm (f n x ))
by(rule summable norm comparison test [OF 〈summable M 〉])

have summable f : summable (λn. f n x )
using summable norm cancel [OF summable norm f ] .

have summable norm f plus k : summable (λi . norm (f (i + k) x ))
using summable ignore initial segment [OF summable norm f ]
by auto

have summable M plus k : summable (λi . M (i + k))
using summable ignore initial segment [OF 〈summable M 〉]
by auto

have dist (
∑

i<k . f i x ) (
∑

i . f i x ) = norm ((
∑

i . f i x ) − (
∑

i<k . f i x ))
using dist norm dist commute by (subst dist commute)

also have ... = norm (
∑

i . f (i + k) x )
using suminf minus initial segment [OF summable f , where k=k ] by simp

also have ... ≤ (
∑

i . norm (f (i + k) x ))
using summable norm[OF summable norm f plus k ] .

also have ... ≤ (
∑

i . M (i + k))
by (rule suminf le[OF summable norm f plus k summable M plus k ])

(insert elim(1 ) 〈x ∈ A〉, simp)
finally show dist (

∑
i<k . f i x ) (

∑
i . f i x ) < e
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using elim by auto
qed

qed
qed

Alternative version, formulated as in HOL Light

corollary series comparison uniform:
fixes f :: ⇒ nat ⇒ :: banach
assumes g : summable g and le:

∧
n x . N ≤ n ∧ x ∈ A =⇒ norm(f x n) ≤ g n

shows ∃ l . ∀ e. 0 < e −→ (∃N . ∀n x . N ≤ n ∧ x ∈ A −→ dist(sum (f x )
{..<n}) (l x ) < e)
proof −
have 1 : ∀ F n in sequentially . ∀ x∈A. norm (f x n) ≤ g n
using le eventually sequentially by auto

show ?thesis
apply (rule tac x=(λx .

∑
i . f x i) in exI )

apply (metis (no types, lifting) eventually sequentially uniform limitD [OF
Weierstrass m test ev [OF 1 g ]])

done
qed

corollary Weierstrass m test :
fixes f :: ⇒ ⇒ :: banach
assumes

∧
n x . x ∈ A =⇒ norm (f n x ) ≤ M n

assumes summable M
shows uniform limit A (λn x .

∑
i<n. f i x ) (λx . suminf (λi . f i x )) sequentially

using assms by (intro Weierstrass m test ev always eventually) auto

corollary Weierstrass m test ′ ev :
fixes f :: ⇒ ⇒ :: banach
assumes eventually (λn. ∀ x∈A. norm (f n x ) ≤ M n) sequentially summable M
shows uniformly convergent on A (λn x .

∑
i<n. f i x )

unfolding uniformly convergent on def by (rule exI , rule Weierstrass m test ev [OF
assms])

corollary Weierstrass m test ′:
fixes f :: ⇒ ⇒ :: banach
assumes

∧
n x . x ∈ A =⇒ norm (f n x ) ≤ M n summable M

shows uniformly convergent on A (λn x .
∑

i<n. f i x )
unfolding uniformly convergent on def by (rule exI , rule Weierstrass m test [OF

assms])

lemma uniform limit eq rhs: uniform limit X f l F =⇒ l = m =⇒ uniform limit
X f m F
by simp

4.7.5 Structural introduction rules

named theorems uniform limit intros introduction rules for uniform limit
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setup 〈

Global Theory .add thms dynamic (binding 〈uniform limit eq intros〉,
fn context =>
Named Theorems.get (Context .proof of context) named theorems 〈uniform limit intros〉

|> map filter (try (fn thm => @{thm uniform limit eq rhs} OF [thm])))
〉

lemma (in bounded linear) uniform limit [uniform limit intros]:
assumes uniform limit X g l F
shows uniform limit X (λa b. f (g a b)) (λa. f (l a)) F

proof (rule uniform limitI )
fix e::real
from pos bounded obtain K
where K :

∧
x y . dist (f x ) (f y) ≤ K ∗ dist x y K > 0

by (auto simp: ac simps dist norm diff [symmetric])
assume 0 < e with 〈K > 0 〉 have e / K > 0 by simp
from uniform limitD [OF assms this]
show ∀ F n in F . ∀ x∈X . dist (f (g n x )) (f (l x )) < e
by eventually elim (metis le less trans mult .commute pos less divide eq K )

qed

lemma (in bounded linear) uniformly convergent on:
assumes uniformly convergent on A g
shows uniformly convergent on A (λx y . f (g x y))

proof −
from assms obtain l where uniform limit A g l sequentially
unfolding uniformly convergent on def by blast

hence uniform limit A (λx y . f (g x y)) (λx . f (l x )) sequentially
by (rule uniform limit)

thus ?thesis unfolding uniformly convergent on def by blast
qed

lemmas bounded linear uniform limit intros[uniform limit intros] =
bounded linear .uniform limit [OF bounded linear Im]
bounded linear .uniform limit [OF bounded linear Re]
bounded linear .uniform limit [OF bounded linear cnj ]
bounded linear .uniform limit [OF bounded linear fst ]
bounded linear .uniform limit [OF bounded linear snd ]
bounded linear .uniform limit [OF bounded linear zero]
bounded linear .uniform limit [OF bounded linear of real ]
bounded linear .uniform limit [OF bounded linear inner left ]
bounded linear .uniform limit [OF bounded linear inner right ]
bounded linear .uniform limit [OF bounded linear divide]
bounded linear .uniform limit [OF bounded linear scaleR right ]
bounded linear .uniform limit [OF bounded linear mult left ]
bounded linear .uniform limit [OF bounded linear mult right ]
bounded linear .uniform limit [OF bounded linear scaleR left ]
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lemmas uniform limit uminus[uniform limit intros] =
bounded linear .uniform limit [OF bounded linear minus[OF bounded linear ident ]]

lemma uniform limit const [uniform limit intros]: uniform limit S (λx . c) c f
by (auto intro!: uniform limitI )

lemma uniform limit add [uniform limit intros]:
fixes f g :: ′a ⇒ ′b ⇒ ′c::real normed vector
assumes uniform limit X f l F
assumes uniform limit X g m F
shows uniform limit X (λa b. f a b + g a b) (λa. l a + m a) F

proof (rule uniform limitI )
fix e::real
assume 0 < e
hence 0 < e / 2 by simp
from
uniform limitD [OF assms(1 ) this]
uniform limitD [OF assms(2 ) this]

show ∀ F n in F . ∀ x∈X . dist (f n x + g n x ) (l x + m x ) < e
by eventually elim (simp add : dist triangle add half )

qed

lemma uniform limit minus[uniform limit intros]:
fixes f g :: ′a ⇒ ′b ⇒ ′c::real normed vector
assumes uniform limit X f l F
assumes uniform limit X g m F
shows uniform limit X (λa b. f a b − g a b) (λa. l a − m a) F
unfolding diff conv add uminus
by (rule uniform limit intros assms)+

lemma uniform limit norm[uniform limit intros]:
assumes uniform limit S g l f
shows uniform limit S (λx y . norm (g x y)) (λx . norm (l x )) f
using assms
apply (rule metric uniform limit imp uniform limit)
apply (rule eventuallyI )
by (metis dist norm norm triangle ineq3 real norm def )

lemma (in bounded bilinear) bounded uniform limit [uniform limit intros]:
assumes uniform limit X f l F
assumes uniform limit X g m F
assumes bounded (m ‘ X )
assumes bounded (l ‘ X )
shows uniform limit X (λa b. prod (f a b) (g a b)) (λa. prod (l a) (m a)) F

proof (rule uniform limitI )
fix e::real
from pos bounded obtain K where K :
0 < K

∧
a b. norm (prod a b) ≤ norm a ∗ norm b ∗ K

by auto
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hence sqrt (K∗4 ) > 0 by simp

from assms obtain Km Kl
where Km: Km > 0

∧
x . x ∈ X =⇒ norm (m x ) ≤ Km

and Kl : Kl > 0
∧
x . x ∈ X =⇒ norm (l x ) ≤ Kl

by (auto simp: bounded pos)
hence K ∗ Km ∗ 4 > 0 K ∗ Kl ∗ 4 > 0
using 〈K > 0 〉

by simp all
assume 0 < e

hence sqrt e > 0 by simp
from uniform limitD [OF assms(1 ) divide pos pos[OF this 〈sqrt (K∗4 ) > 0 〉]]
uniform limitD [OF assms(2 ) divide pos pos[OF this 〈sqrt (K∗4 ) > 0 〉]]
uniform limitD [OF assms(1 ) divide pos pos[OF 〈e > 0 〉 〈K ∗ Km ∗ 4 > 0 〉]]
uniform limitD [OF assms(2 ) divide pos pos[OF 〈e > 0 〉 〈K ∗ Kl ∗ 4 > 0 〉]]

show ∀ F n in F . ∀ x∈X . dist (prod (f n x ) (g n x )) (prod (l x ) (m x )) < e
proof eventually elim
case (elim n)
show ?case
proof safe
fix x assume x ∈ X
have dist (prod (f n x ) (g n x )) (prod (l x ) (m x )) ≤
norm (prod (f n x − l x ) (g n x − m x )) +
norm (prod (f n x − l x ) (m x )) +
norm (prod (l x ) (g n x − m x ))
by (auto simp: dist norm prod diff prod intro: order trans norm triangle ineq

add mono)
also note K (2 )[of f n x − l x g n x − m x ]
also from elim(1 )[THEN bspec, OF 〈 ∈ X 〉, unfolded dist norm]
have norm (f n x − l x ) ≤ sqrt e / sqrt (K ∗ 4 )
by simp

also from elim(2 )[THEN bspec, OF 〈 ∈ X 〉, unfolded dist norm]
have norm (g n x − m x ) ≤ sqrt e / sqrt (K ∗ 4 )
by simp

also have sqrt e / sqrt (K ∗ 4 ) ∗ (sqrt e / sqrt (K ∗ 4 )) ∗ K = e / 4
using 〈K > 0 〉 〈e > 0 〉 by auto

also note K (2 )[of f n x − l x m x ]
also note K (2 )[of l x g n x − m x ]
also from elim(3 )[THEN bspec, OF 〈 ∈ X 〉, unfolded dist norm]
have norm (f n x − l x ) ≤ e / (K ∗ Km ∗ 4 )
by simp

also from elim(4 )[THEN bspec, OF 〈 ∈ X 〉, unfolded dist norm]
have norm (g n x − m x ) ≤ e / (K ∗ Kl ∗ 4 )
by simp

also note Kl(2 )[OF 〈 ∈ X 〉]
also note Km(2 )[OF 〈 ∈ X 〉]
also have e / (K ∗ Km ∗ 4 ) ∗ Km ∗ K = e / 4
using 〈K > 0 〉 〈Km > 0 〉 by simp
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also have Kl ∗ (e / (K ∗ Kl ∗ 4 )) ∗ K = e / 4
using 〈K > 0 〉 〈Kl > 0 〉 by simp

also have e / 4 + e / 4 + e / 4 < e using 〈e > 0 〉 by simp
finally show dist (prod (f n x ) (g n x )) (prod (l x ) (m x )) < e
using 〈K > 0 〉 〈Kl > 0 〉 〈Km > 0 〉 〈e > 0 〉

by (simp add : algebra simps mult right mono divide right mono)
qed

qed
qed

lemmas bounded bilinear bounded uniform limit intros[uniform limit intros] =
bounded bilinear .bounded uniform limit [OF Inner Product .bounded bilinear inner ]
bounded bilinear .bounded uniform limit [OF Real Vector Spaces.bounded bilinear mult ]
bounded bilinear .bounded uniform limit [OF Real Vector Spaces.bounded bilinear scaleR]

lemma uniform lim mult :
fixes f :: ′a ⇒ ′b ⇒ ′c::real normed algebra
assumes f : uniform limit S f l F

and g : uniform limit S g m F
and l : bounded (l ‘ S )
and m: bounded (m ‘ S )

shows uniform limit S (λa b. f a b ∗ g a b) (λa. l a ∗ m a) F
by (intro bounded bilinear bounded uniform limit intros assms)

lemma uniform lim inverse:
fixes f :: ′a ⇒ ′b ⇒ ′c::real normed field
assumes f : uniform limit S f l F

and b:
∧
x . x ∈ S =⇒ b ≤ norm(l x )

and b > 0
shows uniform limit S (λx y . inverse (f x y)) (inverse ◦ l) F

proof (rule uniform limitI )
fix e::real
assume e > 0
have lte: dist (inverse (f x y)) ((inverse ◦ l) y) < e

if b/2 ≤ norm (f x y) norm (f x y − l y) < e ∗ b2 / 2 y ∈ S
for x y

proof −
have [simp]: l y 6= 0 f x y 6= 0
using 〈b > 0 〉 that b [OF 〈y ∈ S 〉] by fastforce+

have norm (l y − f x y) < e ∗ b2 / 2
by (metis norm minus commute that(2 ))

also have ... ≤ e ∗ (norm (f x y) ∗ norm (l y))
using 〈e > 0 〉 that b [OF 〈y ∈ S 〉] apply (simp add : power2 eq square)
by (metis 〈b > 0 〉 less eq real def mult .left commute mult mono ′)

finally show ?thesis
by (auto simp: dist norm field split simps norm mult norm divide)

qed
have ∀ F n in F . ∀ x∈S . dist (f n x ) (l x ) < b/2
using uniform limitD [OF f , of b/2 ] by (simp add : 〈b > 0 〉)
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then have ∀ F x in F . ∀ y∈S . b/2 ≤ norm (f x y)
apply (rule eventually mono)
using b apply (simp only : dist norm)
by (metis (no types, hide lams) diff zero dist commute dist norm norm triangle half l

not less)
then have ∀ F x in F . ∀ y∈S . b/2 ≤ norm (f x y) ∧ norm (f x y − l y) < e ∗

b2 / 2
apply (simp only : ball conj distrib dist norm [symmetric])
apply (rule eventually conj , assumption)
apply (rule uniform limitD [OF f , of e ∗ b ˆ 2 / 2 ])

using 〈b > 0 〉 〈e > 0 〉 by auto
then show ∀ F x in F . ∀ y∈S . dist (inverse (f x y)) ((inverse ◦ l) y) < e
using lte by (force intro: eventually mono)

qed

lemma uniform lim divide:
fixes f :: ′a ⇒ ′b ⇒ ′c::real normed field
assumes f : uniform limit S f l F

and g : uniform limit S g m F
and l : bounded (l ‘ S )
and b:

∧
x . x ∈ S =⇒ b ≤ norm(m x )

and b > 0
shows uniform limit S (λa b. f a b / g a b) (λa. l a / m a) F

proof −
have m: bounded ((inverse ◦ m) ‘ S )
using b 〈b > 0 〉

apply (simp add : bounded iff )
by (metis le imp inverse le norm inverse)

have uniform limit S (λa b. f a b ∗ inverse (g a b))
(λa. l a ∗ (inverse ◦ m) a) F

by (rule uniform lim mult [OF f uniform lim inverse [OF g b 〈b > 0 〉] l m])
then show ?thesis
by (simp add : field class.field divide inverse)

qed

lemma uniform limit null comparison:
assumes ∀ F x in F . ∀ a∈S . norm (f x a) ≤ g x a
assumes uniform limit S g (λ . 0 ) F
shows uniform limit S f (λ . 0 ) F
using assms(2 )

proof (rule metric uniform limit imp uniform limit)
show ∀ F x in F . ∀ y∈S . dist (f x y) 0 ≤ dist (g x y) 0
using assms(1 ) by (rule eventually mono) (force simp add : dist norm)

qed

lemma uniform limit on Un:
uniform limit I f g F =⇒ uniform limit J f g F =⇒ uniform limit (I ∪ J ) f g F
by (auto intro!: uniform limitI dest !: uniform limitD elim: eventually elim2 )
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lemma uniform limit on empty [iff ]:
uniform limit {} f g F
by (auto intro!: uniform limitI )

lemma uniform limit on UNION :
assumes finite S
assumes

∧
s. s ∈ S =⇒ uniform limit (h s) f g F

shows uniform limit (
⋃

(h ‘ S )) f g F
using assms
by induct (auto intro: uniform limit on empty uniform limit on Un)

lemma uniform limit on Union:
assumes finite I
assumes

∧
J . J ∈ I =⇒ uniform limit J f g F

shows uniform limit (Union I ) f g F
by (metis SUP identity eq assms uniform limit on UNION )

lemma uniform limit on subset :
uniform limit J f g F =⇒ I ⊆ J =⇒ uniform limit I f g F
by (auto intro!: uniform limitI dest !: uniform limitD intro: eventually mono)

lemma uniform limit bounded :
fixes f :: ′i ⇒ ′a::topological space ⇒ ′b::metric space
assumes l : uniform limit S f l F
assumes bnd : ∀ F i in F . bounded (f i ‘ S )
assumes F 6= bot
shows bounded (l ‘ S )

proof −
from l have ∀ F n in F . ∀ x∈S . dist (l x ) (f n x ) < 1
by (auto simp: uniform limit iff dist commute dest !: spec[where x=1 ])

with bnd
have ∀ F n in F . ∃M . ∀ x∈S . dist undefined (l x ) ≤ M + 1
by eventually elim
(auto intro!: order trans[OF dist triangle2 add mono] intro: less imp le
simp: bounded any center [where a=undefined ])

then show ?thesis using assms
by (auto simp: bounded any center [where a=undefined ] dest !: eventually happens)

qed

lemma uniformly convergent add :
uniformly convergent on A f =⇒ uniformly convergent on A g=⇒

uniformly convergent on A (λk x . f k x + g k x :: ′a :: {real normed algebra})
unfolding uniformly convergent on def by (blast dest : uniform limit add)

lemma uniformly convergent minus:
uniformly convergent on A f =⇒ uniformly convergent on A g=⇒

uniformly convergent on A (λk x . f k x − g k x :: ′a :: {real normed algebra})
unfolding uniformly convergent on def by (blast dest : uniform limit minus)
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lemma uniformly convergent mult :
uniformly convergent on A f =⇒

uniformly convergent on A (λk x . c ∗ f k x :: ′a :: {real normed algebra})
unfolding uniformly convergent on def
by (blast dest : bounded linear uniform limit intros(13 ))

4.7.6 Power series and uniform convergence

proposition powser uniformly convergent :
fixes a :: nat ⇒ ′a::{real normed div algebra,banach}
assumes r < conv radius a
shows uniformly convergent on (cball ξ r) (λn x .

∑
i<n. a i ∗ (x − ξ) ˆ i)

proof (cases 0 ≤ r)
case True
then have ∗: summable (λn. norm (a n) ∗ r ˆ n)
using abs summable in conv radius [of of real r a] assms
by (simp add : norm mult norm power)

show ?thesis
by (simp add : Weierstrass m test ′ ev [OF ∗] norm mult norm power

mult left mono power mono dist norm norm minus commute)
next
case False then show ?thesis by (simp add : not le)

qed

lemma powser uniform limit :
fixes a :: nat ⇒ ′a::{real normed div algebra,banach}
assumes r < conv radius a
shows uniform limit (cball ξ r) (λn x .

∑
i<n. a i ∗ (x − ξ) ˆ i) (λx . suminf

(λi . a i ∗ (x − ξ) ˆ i)) sequentially
using powser uniformly convergent [OF assms]
by (simp add : Uniform Limit .uniformly convergent uniform limit iff Series.suminf eq lim)

lemma powser continuous suminf :
fixes a :: nat ⇒ ′a::{real normed div algebra,banach}
assumes r < conv radius a
shows continuous on (cball ξ r) (λx . suminf (λi . a i ∗ (x − ξ) ˆ i))

apply (rule uniform limit theorem [OF powser uniform limit ])
apply (rule eventuallyI continuous intros assms)+
apply (simp add :)
done

lemma powser continuous sums:
fixes a :: nat ⇒ ′a::{real normed div algebra,banach}
assumes r : r < conv radius a

and sm:
∧
x . x ∈ cball ξ r =⇒ (λn. a n ∗ (x − ξ) ˆ n) sums (f x )

shows continuous on (cball ξ r) f
apply (rule continuous on cong [THEN iffD1 , OF refl powser continuous suminf
[OF r ]])
using sm sums unique by fastforce
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lemmas uniform limit subset union = uniform limit on subset [OF uniform limit on Union]

end

theory Function Topology
imports
Elementary Topology
Abstract Limits
Connected

begin

4.8 Function Topology

We want to define the general product topology.

The product topology on a product of topological spaces is generated by the
sets which are products of open sets along finitely many coordinates, and
the whole space along the other coordinates. This is the coarsest topology
for which the projection to each factor is continuous.

To form a product of objects in Isabelle/HOL, all these objects should be
subsets of a common type ’a. The product is then PiE I X, the set of
elements from ′i to ′a such that the i -th coordinate belongs to X i for all i
∈ I.

Hence, to form a product of topological spaces, all these spaces should be
subsets of a common type. This means that type classes can not be used to
define such a product if one wants to take the product of different topological
spaces (as the type ’a can only be given one structure of topological space
using type classes). On the other hand, one can define different topologies
(as introduced in thy) on one type, and these topologies do not need to share
the same maximal open set. Hence, one can form a product of topologies in
this sense, and this works well. The big caveat is that it does not interact
well with the main body of topology in Isabelle/HOL defined in terms of
type classes... For instance, continuity of maps is not defined in this setting.

As the product of different topological spaces is very important in several
areas of mathematics (for instance adeles), I introduce below the product
topology in terms of topologies, and reformulate afterwards the consequences
in terms of type classes (which are of course very handy for applications).

Given this limitation, it looks to me that it would be very beneficial to
revamp the theory of topological spaces in Isabelle/HOL in terms of topolo-
gies, and keep the statements involving type classes as consequences of more
general statements in terms of topologies (but I am probably too naive here).

Here is an example of a reformulation using topologies. Let
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continuous map T1 T2 f =
((∀ U . openin T2 U −→ openin T1 (f−‘U ∩ topspace(T1 )))

∧ (f‘(topspace T1 ) ⊆ (topspace T2 )))

be the natural continuity definition of a map from the topology T1 to the
topology T2. Then the current continuous on (with type classes) can be
redefined as

continuous on s f =
continuous map (top of set s) (topology euclidean) f

In fact, I need continuous map to express the continuity of the projection on
subfactors for the product topology, in Lemma continuous on restrict product topology,
and I show the above equivalence in Lemma continuous map iff continuous.

I only develop the basics of the product topology in this theory. The most
important missing piece is Tychonov theorem, stating that a product of
compact spaces is always compact for the product topology, even when the
product is not finite (or even countable).

I realized afterwards that this theory has a lot in common with ~~/src/

HOL/Library/Finite_Map.thy.

4.8.1 The product topology

We can now define the product topology, as generated by the sets which are
products of open sets along finitely many coordinates, and the whole space
along the other coordinates. Equivalently, it is generated by sets which are
one open set along one single coordinate, and the whole space along other
coordinates. In fact, this is only equivalent for nonempty products, but for
the empty product the first formulation is better (the second one gives an
empty product space, while an empty product should have exactly one point,
equal to undefined along all coordinates.

So, we use the first formulation, which moreover seems to give rise to more
straightforward proofs.

definition product topology ::( ′i ⇒ ( ′a topology)) ⇒ ( ′i set) ⇒ (( ′i ⇒ ′a) topology)
where product topology T I =
topology generated by {(ΠE i∈I . X i) |X . (∀ i . openin (T i) (X i)) ∧ finite {i .

X i 6= topspace (T i)}}

abbreviation powertop real :: ′a set ⇒ ( ′a ⇒ real) topology
where powertop real ≡ product topology (λi . euclideanreal)

The total set of the product topology is the product of the total sets along
each coordinate.

proposition product topology :
product topology X I =
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topology
(arbitrary union of

((finite intersection of
(λF . ∃ i U . F = {f . f i ∈ U } ∧ i ∈ I ∧ openin (X i) U ))
relative to (ΠE i∈I . topspace (X i))))

(is = topology ( union of (( intersection of ?Ψ) relative to ?TOP)))
proof −
let ?Ω = (λF . ∃Y . F = PiE I Y ∧ (∀ i . openin (X i) (Y i)) ∧ finite {i . Y i 6=

topspace (X i)})
have ∗: (finite ′ intersection of ?Ω) A = (finite intersection of ?Ψ relative to

?TOP) A for A
proof −
have 1 : ∃U . (∃U . finite U ∧ U ⊆ Collect ?Ψ ∧

⋂
U = U ) ∧ ?TOP ∩ U =⋂

U
if U : U ⊆ Collect ?Ω and finite ′ U A =

⋂
U U 6= {} for U

proof −
have ∀U ∈ U . ∃Y . U = PiE I Y ∧ (∀ i . openin (X i) (Y i)) ∧ finite {i . Y

i 6= topspace (X i)}
using U by auto

then obtain Y where Y :
∧
U . U ∈ U =⇒ U = PiE I (Y U ) ∧ (∀ i . openin

(X i) (Y U i)) ∧ finite {i . (Y U ) i 6= topspace (X i)}
by metis

obtain U where U ∈ U
using 〈U 6= {}〉 by blast

let ?F = λU . (λi . {f . f i ∈ Y U i}) ‘ {i ∈ I . Y U i 6= topspace (X i)}
show ?thesis
proof (intro conjI exI )
show finite (

⋃
U∈U . ?F U )

using Y 〈finite ′ U 〉 by auto
show ?TOP ∩

⋂
(
⋃
U∈U . ?F U ) =

⋂
U

proof
have ∗: f ∈ U
if U ∈ U and ∀V∈U . ∀ i . i ∈ I ∧ Y V i 6= topspace (X i) −→ f i ∈ Y

V i
and ∀ i∈I . f i ∈ topspace (X i) and f ∈ extensional I for f U

proof −
have PiE I (Y U ) = U
using Y 〈U ∈ U 〉 by blast

then show f ∈ U
using that unfolding PiE def Pi def by blast

qed
show ?TOP ∩

⋂
(
⋃
U∈U . ?F U ) ⊆

⋂
U

by (auto simp: PiE iff ∗)
show

⋂
U ⊆ ?TOP ∩

⋂
(
⋃

U∈U . ?F U )
using Y openin subset 〈finite ′ U 〉 by fastforce

qed
qed (use Y openin subset in 〈blast+〉)

qed
have 2 : ∃U ′. finite ′ U ′ ∧ U ′ ⊆ Collect ?Ω ∧

⋂
U ′ = ?TOP ∩

⋂
U
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if U : U ⊆ Collect ?Ψ and finite U for U
proof (cases U={})
case True
then show ?thesis
apply (rule tac x={?TOP} in exI , simp)
apply (rule tac x=λi . topspace (X i) in exI )
apply force
done

next
case False
then obtain U where U ∈ U
by blast

have ∀U ∈ U . ∃ i Y . U = {f . f i ∈ Y } ∧ i ∈ I ∧ openin (X i) Y
using U by auto

then obtain J Y where
Y :

∧
U . U ∈ U =⇒ U = {f . f (J U ) ∈ Y U } ∧ J U ∈ I ∧ openin (X (J

U )) (Y U )
by metis

let ?G = λU . ΠE i∈I . if i = J U then Y U else topspace (X i)
show ?thesis
proof (intro conjI exI )
show finite (?G ‘ U) ?G ‘ U 6= {}
using 〈finite U 〉 〈U ∈ U 〉 by blast+

have ∗:
∧
U . U ∈ U =⇒ openin (X (J U )) (Y U )

using Y by force
show ?G ‘ U ⊆ {PiE I Y |Y . (∀ i . openin (X i) (Y i)) ∧ finite {i . Y i 6=

topspace (X i)}}
apply clarsimp
apply (rule tac x= (λi . if i = J U then Y U else topspace (X i)) in exI )
apply (auto simp: ∗)
done

next
show (

⋂
U∈U . ?G U ) = ?TOP ∩

⋂
U

proof
have (ΠE i∈I . if i = J U then Y U else topspace (X i)) ⊆ (ΠE i∈I .

topspace (X i))
apply (clarsimp simp: PiE iff Ball def all conj distrib split : if split asm)
using Y 〈U ∈ U 〉 openin subset by blast+

then have (
⋂
U∈U . ?G U ) ⊆ ?TOP

using 〈U ∈ U 〉

by fastforce
moreover have (

⋂
U∈U . ?G U ) ⊆

⋂
U

using PiE mem Y by fastforce
ultimately show (

⋂
U∈U . ?G U ) ⊆ ?TOP ∩

⋂
U

by auto
qed (use Y in fastforce)

qed
qed
show ?thesis
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unfolding relative to def intersection of def
by (safe; blast dest !: 1 2 )

qed
show ?thesis
unfolding product topology def generate topology on eq
apply (rule arg cong [where f = topology ])
apply (rule arg cong [where f = (union of )arbitrary ])
apply (force simp: ∗)
done

qed

lemma topspace product topology [simp]:
topspace (product topology T I ) = (ΠE i∈I . topspace(T i))

proof
show topspace (product topology T I ) ⊆ (ΠE i∈I . topspace (T i))
unfolding product topology def topology generated by topspace
unfolding topspace def by auto

have (ΠE i∈I . topspace (T i)) ∈ {(ΠE i∈I . X i) |X . (∀ i . openin (T i) (X i))
∧ finite {i . X i 6= topspace (T i)}}

using openin topspace not finite existsD by auto
then show (ΠE i∈I . topspace (T i)) ⊆ topspace (product topology T I )
unfolding product topology def using PiE def by (auto)

qed

lemma product topology basis:
assumes

∧
i . openin (T i) (X i) finite {i . X i 6= topspace (T i)}

shows openin (product topology T I ) (ΠE i∈I . X i)
unfolding product topology def
by (rule topology generated by Basis) (use assms in auto)

proposition product topology open contains basis:
assumes openin (product topology T I ) U x ∈ U
shows ∃X . x ∈ (ΠE i∈I . X i) ∧ (∀ i . openin (T i) (X i)) ∧ finite {i . X i 6=

topspace (T i)} ∧ (ΠE i∈I . X i) ⊆ U
proof −
have generate topology on {(ΠE i∈I . X i) |X . (∀ i . openin (T i) (X i)) ∧ finite
{i . X i 6= topspace (T i)}} U

using assms unfolding product topology def by (intro openin topology generated by)
auto
then have

∧
x . x∈U =⇒ ∃X . x ∈ (ΠE i∈I . X i) ∧ (∀ i . openin (T i) (X i)) ∧

finite {i . X i 6= topspace (T i)} ∧ (ΠE i∈I . X i) ⊆ U
proof induction
case (Int U V x )
then obtain XU XV where H :
x ∈ PiE I XU (∀ i . openin (T i) (XU i)) finite {i . XU i 6= topspace (T i)}

PiE I XU ⊆ U
x ∈ PiE I XV (∀ i . openin (T i) (XV i)) finite {i . XV i 6= topspace (T i)}

PiE I XV ⊆ V
by auto meson
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define X where X = (λi . XU i ∩ XV i)
have PiE I X ⊆ PiE I XU ∩ PiE I XV
unfolding X def by (auto simp add : PiE iff )

then have PiE I X ⊆ U ∩ V using H by auto
moreover have ∀ i . openin (T i) (X i)
unfolding X def using H by auto

moreover have finite {i . X i 6= topspace (T i)}
apply (rule rev finite subset [of {i . XU i 6= topspace (T i)} ∪ {i . XV i 6=

topspace (T i)}])
unfolding X def using H by auto

moreover have x ∈ PiE I X
unfolding X def using H by auto

ultimately show ?case
by auto

next
case (UN K x )
then obtain k where k ∈ K x ∈ k by auto
with UN have ∃X . x ∈ PiE I X ∧ (∀ i . openin (T i) (X i)) ∧ finite {i . X i

6= topspace (T i)} ∧ PiE I X ⊆ k
by simp

then obtain X where x ∈ PiE I X ∧ (∀ i . openin (T i) (X i)) ∧ finite {i . X
i 6= topspace (T i)} ∧ PiE I X ⊆ k

by blast
then have x ∈ PiE I X ∧ (∀ i . openin (T i) (X i)) ∧ finite {i . X i 6= topspace

(T i)} ∧ PiE I X ⊆ (
⋃
K )

using 〈k ∈ K 〉 by auto
then show ?case
by auto

qed auto
then show ?thesis using 〈x ∈ U 〉 by auto

qed

lemma product topology empty discrete:
product topology T {} = discrete topology {(λx . undefined)}
by (simp add : subtopology eq discrete topology sing)

lemma openin product topology :
openin (product topology X I ) =
arbitrary union of

((finite intersection of (λF . (∃ i U . F = {f . f i ∈ U } ∧ i ∈ I ∧ openin
(X i) U )))

relative to topspace (product topology X I ))
apply (subst product topology)
apply (simp add : topology inverse ′ [OF istopology subbase])
done

lemma subtopology PiE :
subtopology (product topology X I ) (ΠE i∈I . (S i)) = product topology (λi .

subtopology (X i) (S i)) I
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proof −
let ?P = λF . ∃ i U . F = {f . f i ∈ U } ∧ i ∈ I ∧ openin (X i) U
let ?X = ΠE i∈I . topspace (X i)
have finite intersection of ?P relative to ?X ∩ PiE I S =

finite intersection of (?P relative to ?X ∩ PiE I S ) relative to ?X ∩ PiE I
S

by (rule finite intersection of relative to)
also have . . . = finite intersection of

((λF . ∃ i U . F = {f . f i ∈ U } ∧ i ∈ I ∧ (openin (X i) relative to
S i) U )

relative to ?X ∩ PiE I S )
relative to ?X ∩ PiE I S

apply (rule arg cong2 [where f = (relative to)])
apply (rule arg cong [where f = (intersection of )finite])
apply (rule ext)
apply (auto simp: relative to def intersection of def )
done

finally
have finite intersection of ?P relative to ?X ∩ PiE I S =

finite intersection of
(λF . ∃ i U . F = {f . f i ∈ U } ∧ i ∈ I ∧ (openin (X i) relative to S i) U )
relative to ?X ∩ PiE I S

by (metis finite intersection of relative to)
then show ?thesis
unfolding topology eq
apply clarify
apply (simp add : openin product topology flip: openin relative to)
apply (simp add : arbitrary union of relative to flip: PiE Int)
done

qed

lemma product topology base alt :
finite intersection of (λF . (∃ i U . F = {f . f i ∈ U } ∧ i ∈ I ∧ openin (X i) U ))
relative to (ΠE i∈I . topspace (X i)) =
(λF . (∃U . F = PiE I U ∧ finite {i ∈ I . U i 6= topspace(X i)} ∧ (∀ i ∈ I .

openin (X i) (U i))))
(is ?lhs = ?rhs)

proof −
have (∀F . ?lhs F −→ ?rhs F )
unfolding all relative to all intersection of topspace product topology

proof clarify
fix F
assume finite F and F ⊆ {{f . f i ∈ U } |i U . i ∈ I ∧ openin (X i) U }
then show ∃U . (ΠE i∈I . topspace (X i)) ∩

⋂
F = PiE I U ∧

finite {i ∈ I . U i 6= topspace (X i)} ∧ (∀ i∈I . openin (X i) (U i))
proof (induction)
case (insert F F)
then obtain U where eq : (ΠE i∈I . topspace (X i)) ∩

⋂
F = PiE I U

and fin: finite {i ∈ I . U i 6= topspace (X i)}
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and ope:
∧
i . i ∈ I =⇒ openin (X i) (U i)

by auto
obtain i V where F = {f . f i ∈ V } i ∈ I openin (X i) V
using insert by auto

let ?U = λj . U j ∩ (if j = i then V else topspace(X j ))
show ?case
proof (intro exI conjI )
show (ΠE i∈I . topspace (X i)) ∩

⋂
(insert F F) = PiE I ?U

using eq PiE mem 〈i ∈ I 〉 by (auto simp: 〈F = {f . f i ∈ V }〉) fastforce
next
show finite {i ∈ I . ?U i 6= topspace (X i)}
by (rule rev finite subset [OF finite.insertI [OF fin]]) auto

next
show ∀ i∈I . openin (X i) (?U i)
by (simp add : 〈openin (X i) V 〉 ope openin Int)

qed
qed (auto intro: dest : not finite existsD)

qed
moreover have (∀F . ?rhs F −→ ?lhs F )
proof clarify
fix U :: ′a ⇒ ′b set
assume fin: finite {i ∈ I . U i 6= topspace (X i)} and ope: ∀ i∈I . openin (X i)

(U i)
let ?U =

⋂
i∈{i ∈ I . U i 6= topspace (X i)}. {x . x i ∈ U i}

show ?lhs (PiE I U )
unfolding relative to def topspace product topology

proof (intro exI conjI )
show (finite intersection of (λF . ∃ i U . F = {f . f i ∈ U } ∧ i ∈ I ∧ openin

(X i) U )) ?U
using fin ope by (intro finite intersection of Inter finite intersection of inc)

auto
show (ΠE i∈I . topspace (X i)) ∩ ?U = PiE I U
using ope openin subset by fastforce

qed
qed
ultimately show ?thesis
by meson

qed

corollary openin product topology alt :
openin (product topology X I ) S ←→
(∀ x ∈ S . ∃U . finite {i ∈ I . U i 6= topspace(X i)} ∧

(∀ i ∈ I . openin (X i) (U i)) ∧ x ∈ PiE I U ∧ PiE I U ⊆ S )
unfolding openin product topology arbitrary union of alt product topology base alt

topspace product topology
apply safe
apply (drule bspec; blast)+
done
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lemma closure of product topology :
(product topology X I ) closure of (PiE I S ) = PiE I (λi . (X i) closure of (S i))

proof −
have ∗: (∀T . f ∈ T ∧ openin (product topology X I ) T −→ (∃ y∈PiE I S . y ∈

T ))
←→ (∀ i ∈ I . ∀T . f i ∈ T ∧ openin (X i) T −→ S i ∩ T 6= {})

(is ?lhs = ?rhs)
if top:

∧
i . i ∈ I =⇒ f i ∈ topspace (X i) and ext : f ∈ extensional I for f

proof
assume L[rule format ]: ?lhs
show ?rhs
proof clarify
fix i T
assume i ∈ I f i ∈ T openin (X i) T S i ∩ T = {}
then have openin (product topology X I ) ((ΠE i∈I . topspace (X i)) ∩ {x . x

i ∈ T})
by (force simp: openin product topology intro: arbitrary union of inc rela-

tive to inc finite intersection of inc)
then show False
using L [of topspace (product topology X I ) ∩ {f . f i ∈ T}] 〈S i ∩ T = {}〉

〈f i ∈ T 〉 〈i ∈ I 〉

by (auto simp: top ext PiE iff )
qed

next
assume R [rule format ]: ?rhs
show ?lhs
proof (clarsimp simp: openin product topology union of def arbitrary def )
fix U U
assume
U : U ⊆ Collect
(finite intersection of (λF . ∃ i U . F = {x . x i ∈ U } ∧ i ∈ I ∧ openin (X

i) U ) relative to
(ΠE i∈I . topspace (X i))) and

f ∈ U U ∈ U
then have (finite intersection of (λF . ∃ i U . F = {x . x i ∈ U } ∧ i ∈ I ∧

openin (X i) U )
relative to (ΠE i∈I . topspace (X i))) U

by blast
with 〈f ∈ U 〉 〈U ∈ U 〉

obtain T where finite T
and T :

∧
C . C ∈ T =⇒ ∃ i ∈ I . ∃V . openin (X i) V ∧ C = {x . x i ∈ V }

and topspace (product topology X I ) ∩
⋂
T ⊆ U f ∈ topspace (product topology

X I ) ∩
⋂
T

apply (clarsimp simp add : relative to def intersection of def )
apply (rule that , auto dest !: subsetD)
done

then have f ∈ PiE I (topspace ◦ X ) f ∈
⋂
T and subU : PiE I (topspace ◦

X ) ∩
⋂
T ⊆ U

by (auto simp: PiE iff )
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have ∗: f i ∈ topspace (X i) ∩
⋂
{U . openin (X i) U ∧ {x . x i ∈ U } ∈ T }

∧ openin (X i) (topspace (X i) ∩
⋂
{U . openin (X i) U ∧ {x . x i ∈ U }

∈ T })
if i ∈ I for i

proof −
have finite ((λU . {x . x i ∈ U }) −‘ T )
proof (rule finite vimageI [OF 〈finite T 〉])
show inj (λU . {x . x i ∈ U })
by (auto simp: inj on def )

qed
then have fin: finite {U . openin (X i) U ∧ {x . x i ∈ U } ∈ T }
by (rule rev finite subset) auto

have openin (X i) (
⋂

(insert (topspace (X i)) {U . openin (X i) U ∧ {x .
x i ∈ U } ∈ T }))

by (rule openin Inter) (auto simp: fin)
then show ?thesis
using 〈f ∈

⋂
T 〉 by (fastforce simp: that top)

qed
define Φ where Φ ≡ λi . topspace (X i) ∩

⋂
{U . openin (X i) U ∧ {f . f i ∈

U } ∈ T }
have ∀ i ∈ I . ∃ x . x ∈ S i ∩ Φ i
using R [OF ∗] unfolding Φ def by blast

then obtain ϑ where ϑ [rule format ]: ∀ i ∈ I . ϑ i ∈ S i ∩ Φ i
by metis

show ∃ y∈PiE I S . ∃ x∈U . y ∈ x
proof
show ∃U ∈ U . (λi ∈ I . ϑ i) ∈ U
proof
have restrict ϑ I ∈ PiE I (topspace ◦ X ) ∩

⋂
T

using T by (fastforce simp: Φ def PiE def dest : ϑ)
then show restrict ϑ I ∈ U
using subU by blast

qed (rule 〈U ∈ U 〉)
next
show (λi ∈ I . ϑ i) ∈ PiE I S
using ϑ by simp

qed
qed

qed
show ?thesis
apply (simp add : ∗ closure of def PiE iff set eq iff cong : conj cong)
by metis

qed

corollary closedin product topology :
closedin (product topology X I ) (PiE I S ) ←→ PiE I S = {} ∨ (∀ i ∈ I . closedin

(X i) (S i))
apply (simp add : PiE eq PiE eq empty iff closure of product topology flip: clo-

sure of eq)
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apply (metis closure of empty)
done

corollary closedin product topology singleton:
f ∈ extensional I =⇒ closedin (product topology X I ) {f } ←→ (∀ i ∈ I . closedin

(X i) {f i})
using PiE singleton closedin product topology [of X I ]
by (metis (no types, lifting) all not in conv insertI1 )

lemma product topology empty :
product topology X {} = topology (λS . S ∈ {{},{λk . undefined}})
unfolding product topology union of def intersection of def arbitrary def rela-

tive to def
by (auto intro: arg cong [where f=topology ])

lemma openin product topology empty : openin (product topology X {}) S ←→ S
∈ {{},{λk . undefined}}
unfolding union of def intersection of def arbitrary def relative to def openin product topology
by auto

The basic property of the product topology is the continuity of
projections:

lemma continuous map product coordinates [simp]:
assumes i ∈ I
shows continuous map (product topology T I ) (T i) (λx . x i)

proof −
{
fix U assume openin (T i) U
define X where X = (λj . if j = i then U else topspace (T j ))
then have ∗: (λx . x i) −‘ U ∩ (ΠE i∈I . topspace (T i)) = (ΠE j∈I . X j )
unfolding X def using assms openin subset [OF 〈openin (T i) U 〉]
by (auto simp add : PiE iff , auto, metis subsetCE )

have ∗∗: (∀ i . openin (T i) (X i)) ∧ finite {i . X i 6= topspace (T i)}
unfolding X def using 〈openin (T i) U 〉 by auto

have openin (product topology T I ) ((λx . x i) −‘ U ∩ (ΠE i∈I . topspace (T
i)))

unfolding product topology def
apply (rule topology generated by Basis)
apply (subst ∗)
using ∗∗ by auto

}
then show ?thesis unfolding continuous map alt
by (auto simp add : assms PiE iff )

qed

lemma continuous map coordinatewise then product [intro]:
assumes

∧
i . i ∈ I =⇒ continuous map T1 (T i) (λx . f x i)∧

i x . i /∈ I =⇒ x ∈ topspace T1 =⇒ f x i = undefined
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shows continuous map T1 (product topology T I ) f
unfolding product topology def
proof (rule continuous on generated topo)
fix U assume U ∈ {PiE I X |X . (∀ i . openin (T i) (X i)) ∧ finite {i . X i 6=

topspace (T i)}}
then obtain X where H : U = PiE I X

∧
i . openin (T i) (X i) finite {i . X i

6= topspace (T i)}
by blast

define J where J = {i ∈ I . X i 6= topspace (T i)}
have finite J J ⊆ I unfolding J def using H (3 ) by auto
have (λx . f x i)−‘(topspace(T i)) ∩ topspace T1 = topspace T1 if i ∈ I for i
using that assms(1 ) by (simp add : continuous map preimage topspace)

then have ∗: (λx . f x i)−‘(X i) ∩ topspace T1 = topspace T1 if i ∈ I−J for i
using that unfolding J def by auto
have f−‘U ∩ topspace T1 = (

⋂
i∈I . (λx . f x i)−‘(X i) ∩ topspace T1 ) ∩

(topspace T1 )
by (subst H (1 ), auto simp add : PiE iff assms)

also have ... = (
⋂
i∈J . (λx . f x i)−‘(X i) ∩ topspace T1 ) ∩ (topspace T1 )

using ∗ 〈J ⊆ I 〉 by auto
also have openin T1 (...)
apply (rule openin INT )
apply (simp add : 〈finite J 〉)
using H (2 ) assms(1 ) 〈J ⊆ I 〉 by auto

ultimately show openin T1 (f−‘U ∩ topspace T1 ) by simp
next
show f ‘topspace T1 ⊆

⋃
{PiE I X |X . (∀ i . openin (T i) (X i)) ∧ finite {i . X

i 6= topspace (T i)}}
apply (subst topology generated by topspace[symmetric])
apply (subst product topology def [symmetric])
apply (simp only : topspace product topology)
apply (auto simp add : PiE iff )
using assms unfolding continuous map def by auto

qed

lemma continuous map product then coordinatewise [intro]:
assumes continuous map T1 (product topology T I ) f
shows

∧
i . i ∈ I =⇒ continuous map T1 (T i) (λx . f x i)∧

i x . i /∈ I =⇒ x ∈ topspace T1 =⇒ f x i = undefined
proof −
fix i assume i ∈ I
have (λx . f x i) = (λy . y i) o f by auto
also have continuous map T1 (T i) (...)
apply (rule continuous map compose[of product topology T I ])
using assms 〈i ∈ I 〉 by auto

ultimately show continuous map T1 (T i) (λx . f x i)
by simp

next
fix i x assume i /∈ I x ∈ topspace T1
have f x ∈ topspace (product topology T I )
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using assms 〈x ∈ topspace T1 〉 unfolding continuous map def by auto
then have f x ∈ (ΠE i∈I . topspace (T i))
using topspace product topology by metis

then show f x i = undefined
using 〈i /∈ I 〉 by (auto simp add : PiE iff extensional def )

qed

lemma continuous on restrict :
assumes J ⊆ I
shows continuous map (product topology T I ) (product topology T J ) (λx . restrict

x J )
proof (rule continuous map coordinatewise then product)
fix i assume i ∈ J
then have (λx . restrict x J i) = (λx . x i) unfolding restrict def by auto
then show continuous map (product topology T I ) (T i) (λx . restrict x J i)
using 〈i ∈ J 〉 〈J ⊆ I 〉 by auto

next
fix i assume i /∈ J
then show restrict x J i = undefined for x :: ′a ⇒ ′b
unfolding restrict def by auto

qed

Powers of a single topological space as a topological space, using
type classes

instantiation fun :: (type, topological space) topological space
begin

definition open fun def :
open U = openin (product topology (λi . euclidean) UNIV ) U

instance proof
have topspace (product topology (λ(i :: ′a). euclidean::( ′b topology)) UNIV ) =

UNIV
unfolding topspace product topology topspace euclidean by auto

then show open (UNIV ::( ′a ⇒ ′b) set)
unfolding open fun def by (metis openin topspace)

qed (auto simp add : open fun def )

end

lemma open PiE [intro?]:
fixes X :: ′i ⇒ ( ′b::topological space) set
assumes

∧
i . open (X i) finite {i . X i 6= UNIV }

shows open (PiE UNIV X )
by (simp add : assms open fun def product topology basis)

lemma euclidean product topology :
product topology (λi . euclidean::( ′b::topological space) topology) UNIV = euclidean
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by (metis open openin topology eq open fun def )

proposition product topology basis ′:
fixes x :: ′i ⇒ ′a and U :: ′i ⇒ ( ′b::topological space) set
assumes finite I

∧
i . i ∈ I =⇒ open (U i)

shows open {f . ∀ i∈I . f (x i) ∈ U i}
proof −
define J where J = x‘I
define V where V = (λy . if y ∈ J then

⋂
{U i |i . i∈I ∧ x i = y} else UNIV )

define X where X = (λy . if y ∈ J then V y else UNIV )
have ∗: open (X i) for i
unfolding X def V def using assms by auto

have ∗∗: finite {i . X i 6= UNIV }
unfolding X def V def J def using assms(1 ) by auto

have open (PiE UNIV X )
by (simp add : ∗ ∗∗ open PiE )

moreover have PiE UNIV X = {f . ∀ i∈I . f (x i) ∈ U i}
apply (auto simp add : PiE iff ) unfolding X def V def J def
proof (auto)
fix f :: ′a ⇒ ′b and i :: ′i
assume a1 : i ∈ I
assume a2 : ∀ i . f i ∈ (if i ∈ x‘I then if i ∈ x‘I then

⋂
{U ia |ia. ia ∈ I ∧ x

ia = i} else UNIV else UNIV )
have f3 : x i ∈ x‘I
using a1 by blast

have U i ∈ {U ia |ia. ia ∈ I ∧ x ia = x i}
using a1 by blast

then show f (x i) ∈ U i
using f3 a2 by (meson Inter iff )

qed
ultimately show ?thesis by simp

qed

The results proved in the general situation of products of possibly different
spaces have their counterparts in this simpler setting.

lemma continuous on product coordinates [simp]:
continuous on UNIV (λx . x i ::( ′b::topological space))
using continuous map product coordinates [of UNIV λi . euclidean]
by (metis (no types) continuous map iff continuous euclidean product topology

iso tuple UNIV I subtopology UNIV )

lemma continuous on coordinatewise then product [continuous intros]:
fixes f :: ′a::topological space ⇒ ′b ⇒ ′c::topological space
assumes

∧
i . continuous on S (λx . f x i)

shows continuous on S f
using continuous map coordinatewise then product [of UNIV , where T = λi .

euclidean]
by (metis UNIV I assms continuous map iff continuous euclidean product topology)
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lemma continuous on product then coordinatewise UNIV :
assumes continuous on UNIV f
shows continuous on UNIV (λx . f x i)
unfolding continuous map iff continuous2 [symmetric]
by (rule continuous map product then coordinatewise [where I=UNIV ]) (use

assms in 〈auto simp: euclidean product topology〉)

lemma continuous on product then coordinatewise:
assumes continuous on S f
shows continuous on S (λx . f x i)

proof −
have continuous on S ((λq . q i) ◦ f )
by (metis assms continuous on compose continuous on id

continuous on product then coordinatewise UNIV continuous on subset sub-
set UNIV )
then show ?thesis
by auto

qed

lemma continuous on coordinatewise iff :
fixes f :: ( ′a ⇒ real) ⇒ ′b ⇒ real
shows continuous on (A ∩ S ) f ←→ (∀ i . continuous on (A ∩ S ) (λx . f x i))
by (auto simp: continuous on product then coordinatewise continuous on coordinatewise then product)

lemma continuous map span sum:
fixes B :: ′a::real normed vector set
assumes biB :

∧
i . i ∈ I =⇒ b i ∈ B

shows continuous map euclidean (top of set (span B)) (λx .
∑

i∈I . x i ∗R b i)
proof (rule continuous map euclidean top of set)
show (λx .

∑
i∈I . x i ∗R b i) −‘ span B = UNIV

by auto (meson biB lessThan iff span base span scale span sum)
show continuous on UNIV (λx .

∑
i∈ I . x i ∗R b i)

by (intro continuous intros) auto
qed

Topological countability for product spaces

The next two lemmas are useful to prove first or second countability of
product spaces, but they have more to do with countability and could be
put in the corresponding theory.

lemma countable nat product event const :
fixes F :: ′a set and a:: ′a
assumes a ∈ F countable F
shows countable {x ::(nat ⇒ ′a). (∀ i . x i ∈ F ) ∧ finite {i . x i 6= a}}

proof −
have ∗: {x ::(nat ⇒ ′a). (∀ i . x i ∈ F ) ∧ finite {i . x i 6= a}}

⊆ (
⋃
N . {x . (∀ i . x i ∈ F ) ∧ (∀ i≥N . x i = a)})

using infinite nat iff unbounded le by fastforce
have countable {x . (∀ i . x i ∈ F ) ∧ (∀ i≥N . x i = a)} for N ::nat
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proof (induction N )
case 0
have {x . (∀ i . x i ∈ F ) ∧ (∀ i≥(0 ::nat). x i = a)} = {(λi . a)}
using 〈a ∈ F 〉 by auto

then show ?case by auto
next
case (Suc N )
define f ::((nat ⇒ ′a) × ′a) ⇒ (nat ⇒ ′a)
where f = (λ(x , b). (λi . if i = N then b else x i))
have {x . (∀ i . x i ∈ F ) ∧ (∀ i≥Suc N . x i = a)} ⊆ f‘({x . (∀ i . x i ∈ F ) ∧

(∀ i≥N . x i = a)} × F )
proof (auto)
fix x assume H : ∀ i ::nat . x i ∈ F ∀ i≥Suc N . x i = a
define y where y = (λi . if i = N then a else x i)
have f (y , x N ) = x
unfolding f def y def by auto

moreover have (y , x N ) ∈ {x . (∀ i . x i ∈ F ) ∧ (∀ i≥N . x i = a)} × F
unfolding y def using H 〈a ∈ F 〉 by auto

ultimately show x ∈ f‘({x . (∀ i . x i ∈ F ) ∧ (∀ i≥N . x i = a)} × F )
by (metis (no types, lifting) image eqI )

qed
moreover have countable ({x . (∀ i . x i ∈ F ) ∧ (∀ i≥N . x i = a)} × F )
using Suc.IH assms(2 ) by auto

ultimately show ?case
by (meson countable image countable subset)

qed
then show ?thesis using countable subset [OF ∗] by auto

qed

lemma countable product event const :
fixes F ::( ′a::countable) ⇒ ′b set and b:: ′b
assumes

∧
i . countable (F i)

shows countable {f ::( ′a ⇒ ′b). (∀ i . f i ∈ F i) ∧ (finite {i . f i 6= b})}
proof −
define G where G = (

⋃
i . F i) ∪ {b}

have countable G unfolding G def using assms by auto
have b ∈ G unfolding G def by auto
define pi where pi = (λ(x ::(nat ⇒ ′b)). (λ i :: ′a. x ((to nat ::( ′a ⇒ nat)) i)))
have {f ::( ′a ⇒ ′b). (∀ i . f i ∈ F i) ∧ (finite {i . f i 6= b})}

⊆ pi‘{g ::(nat ⇒ ′b). (∀ j . g j ∈ G) ∧ (finite {j . g j 6= b})}
proof (auto)
fix f assume H : ∀ i . f i ∈ F i finite {i . f i 6= b}
define I where I = {i . f i 6= b}
define g where g = (λj . if j ∈ to nat‘I then f (from nat j ) else b)
have {j . g j 6= b} ⊆ to nat‘I unfolding g def by auto
then have finite {j . g j 6= b}
unfolding I def using H (2 ) using finite surj by blast

moreover have g j ∈ G for j
unfolding g def G def using H by auto
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ultimately have g ∈ {g ::(nat ⇒ ′b). (∀ j . g j ∈ G) ∧ (finite {j . g j 6= b})}
by auto

moreover have f = pi g
unfolding pi def g def I def using H by fastforce

ultimately show f ∈ pi‘{g . (∀ j . g j ∈ G) ∧ finite {j . g j 6= b}}
by auto

qed
then show ?thesis
using countable nat product event const [OF 〈b ∈ G〉 〈countable G〉]
by (meson countable image countable subset)

qed

instance fun :: (countable, first countable topology) first countable topology
proof
fix x :: ′a ⇒ ′b
have ∃A::( ′b ⇒ nat ⇒ ′b set). ∀ x . (∀ i . x ∈ A x i ∧ open (A x i)) ∧ (∀S . open

S ∧ x ∈ S −→ (∃ i . A x i ⊆ S ))
apply (rule choice) using first countable basis by auto

then obtain A::( ′b ⇒ nat ⇒ ′b set) where A:
∧
x i . x ∈ A x i∧

x i . open (A x i)∧
x S . open S =⇒ x ∈ S =⇒ (∃ i . A x i ⊆ S )

by metis

B i is a countable basis of neighborhoods of x i.

define B where B = (λi . (A (x i))‘UNIV ∪ {UNIV })
have countable (B i) for i unfolding B def by auto
have open B :

∧
X i . X ∈ B i =⇒ open X

by (auto simp: B def A)
define K where K = {PiE UNIV X | X . (∀ i . X i ∈ B i) ∧ finite {i . X i 6=

UNIV }}
have PiE UNIV (λi . UNIV ) ∈ K
unfolding K def B def by auto

then have K 6= {} by auto
have countable {X . (∀ i . X i ∈ B i) ∧ finite {i . X i 6= UNIV }}
apply (rule countable product event const) using 〈

∧
i . countable (B i)〉 by auto

moreover have K = (λX . PiE UNIV X )‘{X . (∀ i . X i ∈ B i) ∧ finite {i . X i
6= UNIV }}

unfolding K def by auto
ultimately have countable K by auto
have x ∈ k if k ∈ K for k
using that unfolding K def B def apply auto using A(1 ) by auto

have open k if k ∈ K for k
using that unfolding K def by (blast intro: open B open PiE elim: )

have Inc: ∃ k∈K . k ⊆ U if open U ∧ x ∈ U for U
proof −
have openin (product topology (λi . euclidean) UNIV ) U x ∈ U
using 〈open U ∧ x ∈ U 〉 unfolding open fun def by auto

with product topology open contains basis[OF this]
have ∃X . x ∈ (ΠE i∈UNIV . X i) ∧ (∀ i . open (X i)) ∧ finite {i . X i 6= UNIV }
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∧ (ΠE i∈UNIV . X i) ⊆ U
by simp

then obtain X where H : x ∈ (ΠE i∈UNIV . X i)∧
i . open (X i)

finite {i . X i 6= UNIV }
(ΠE i∈UNIV . X i) ⊆ U

by auto
define I where I = {i . X i 6= UNIV }
define Y where Y = (λi . if i ∈ I then (SOME y . y ∈ B i ∧ y ⊆ X i) else

UNIV )
have ∗: ∃ y . y ∈ B i ∧ y ⊆ X i for i
unfolding B def using A(3 )[OF H (2 )] H (1 ) by (metis PiE E UNIV I UnCI

image iff )
have ∗∗: Y i ∈ B i ∧ Y i ⊆ X i for i
apply (cases i ∈ I )
unfolding Y def using ∗ that apply (auto)
apply (metis (no types, lifting) someI , metis (no types, lifting) someI ex

subset iff )
unfolding B def apply simp
unfolding I def apply auto
done

have {i . Y i 6= UNIV } ⊆ I
unfolding Y def by auto

then have ∗∗∗: finite {i . Y i 6= UNIV }
unfolding I def using H (3 ) rev finite subset by blast

have (∀ i . Y i ∈ B i) ∧ finite {i . Y i 6= UNIV }
using ∗∗ ∗∗∗ by auto

then have PiE UNIV Y ∈ K
unfolding K def by auto

have Y i ⊆ X i for i
apply (cases i ∈ I ) using ∗∗ apply simp unfolding Y def I def by auto

then have PiE UNIV Y ⊆ PiE UNIV X by auto
then have PiE UNIV Y ⊆ U using H (4 ) by auto
then show ?thesis using 〈PiE UNIV Y ∈ K 〉 by auto

qed

show ∃L. (∀ (i ::nat). x ∈ L i ∧ open (L i)) ∧ (∀U . open U ∧ x ∈ U −→ (∃ i .
L i ⊆ U ))

apply (rule first countableI [of K ])
using 〈countable K 〉 〈

∧
k . k ∈ K =⇒ x ∈ k 〉 〈

∧
k . k ∈ K =⇒ open k 〉 Inc by

auto
qed

proposition product topology countable basis:
shows ∃K ::(( ′a::countable ⇒ ′b::second countable topology) set set).

topological basis K ∧ countable K ∧
(∀ k∈K . ∃X . (k = PiE UNIV X ) ∧ (∀ i . open (X i)) ∧ finite {i . X i 6=

UNIV })
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proof −
obtain B :: ′b set set where B : countable B ∧ topological basis B
using ex countable basis by auto

then have B 6= {} by (meson UNIV I empty iff open UNIV topological basisE )
define B2 where B2 = B ∪ {UNIV }
have countable B2
unfolding B2 def using B by auto

have open U if U ∈ B2 for U
using that unfolding B2 def using B topological basis open by auto

define K where K = {PiE UNIV X | X . (∀ i :: ′a. X i ∈ B2 ) ∧ finite {i . X i 6=
UNIV }}
have i : ∀ k∈K . ∃X . (k = PiE UNIV X ) ∧ (∀ i . open (X i)) ∧ finite {i . X i 6=

UNIV }
unfolding K def using 〈

∧
U . U ∈ B2 =⇒ open U 〉 by auto

have countable {X . (∀ (i :: ′a). X i ∈ B2 ) ∧ finite {i . X i 6= UNIV }}
apply (rule countable product event const) using 〈countable B2 〉 by auto

moreover have K = (λX . PiE UNIV X )‘{X . (∀ i . X i ∈ B2 ) ∧ finite {i . X i
6= UNIV }}

unfolding K def by auto
ultimately have ii : countable K by auto

have iii : topological basis K
proof (rule topological basisI )
fix U and x :: ′a⇒ ′b assume open U x ∈ U
then have openin (product topology (λi . euclidean) UNIV ) U
unfolding open fun def by auto

with product topology open contains basis[OF this 〈x ∈ U 〉]
have ∃X . x ∈ (ΠE i∈UNIV . X i) ∧ (∀ i . open (X i)) ∧ finite {i . X i 6= UNIV }

∧ (ΠE i∈UNIV . X i) ⊆ U
by simp

then obtain X where H : x ∈ (ΠE i∈UNIV . X i)∧
i . open (X i)

finite {i . X i 6= UNIV }
(ΠE i∈UNIV . X i) ⊆ U

by auto
then have x i ∈ X i for i by auto
define I where I = {i . X i 6= UNIV }
define Y where Y = (λi . if i ∈ I then (SOME y . y ∈ B2 ∧ y ⊆ X i ∧ x i ∈

y) else UNIV )
have ∗: ∃ y . y ∈ B2 ∧ y ⊆ X i ∧ x i ∈ y for i

unfolding B2 def using B 〈open (X i)〉 〈x i ∈ X i 〉 by (meson UnCI
topological basisE )

have ∗∗: Y i ∈ B2 ∧ Y i ⊆ X i ∧ x i ∈ Y i for i
using someI ex [OF ∗]
apply (cases i ∈ I )
unfolding Y def using ∗ apply (auto)
unfolding B2 def I def by auto
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have {i . Y i 6= UNIV } ⊆ I
unfolding Y def by auto

then have ∗∗∗: finite {i . Y i 6= UNIV }
unfolding I def using H (3 ) rev finite subset by blast

have (∀ i . Y i ∈ B2 ) ∧ finite {i . Y i 6= UNIV }
using ∗∗ ∗∗∗ by auto

then have PiE UNIV Y ∈ K
unfolding K def by auto

have Y i ⊆ X i for i
apply (cases i ∈ I ) using ∗∗ apply simp unfolding Y def I def by auto

then have PiE UNIV Y ⊆ PiE UNIV X by auto
then have PiE UNIV Y ⊆ U using H (4 ) by auto

have x ∈ PiE UNIV Y
using ∗∗ by auto

show ∃V∈K . x ∈ V ∧ V ⊆ U
using 〈PiE UNIV Y ∈ K 〉 〈PiE UNIV Y ⊆ U 〉 〈x ∈ PiE UNIV Y 〉 by auto

next
fix U assume U ∈ K
show open U
using 〈U ∈ K 〉 unfolding open fun def K def by clarify (metis 〈U ∈ K 〉 i

open PiE open fun def )
qed

show ?thesis using i ii iii by auto
qed

instance fun :: (countable, second countable topology) second countable topology
apply standard
using product topology countable basis topological basis imp subbasis by auto

4.8.2 The Alexander subbase theorem

theorem Alexander subbase:
assumes X : topology (arbitrary union of (finite intersection of (λx . x ∈ B)

relative to
⋃
B)) = X

and fin:
∧
C . [[C ⊆ B;

⋃
C = topspace X ]] =⇒ ∃C ′. finite C ′ ∧ C ′ ⊆ C ∧⋃

C ′ = topspace X
shows compact space X

proof −
have UB:

⋃
B = topspace X

by (simp flip: X )
have False if U : ∀U∈U . openin X U and sub: topspace X ⊆

⋃
U

and neg :
∧
F . [[F ⊆ U ; finite F ]] =⇒ ¬ topspace X ⊆

⋃
F for U

proof −
define A where A ≡ {C. (∀U ∈ C. openin X U ) ∧ topspace X ⊆

⋃
C ∧ (∀F .

finite F −→ F ⊆ C −→ ∼(topspace X ⊆
⋃
F))}
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have 1 : A 6= {}
unfolding A def using sub U neg by force

have 2 :
⋃
C ∈ A if C6={} and C: subset .chain A C for C

unfolding A def
proof (intro CollectI conjI ballI allI impI notI )
show openin X U if U : U ∈

⋃
C for U

using U C unfolding A def subset chain def by force
have C ⊆ A
using subset chain def C by blast

with that A def show UUC : topspace X ⊆
⋃
(
⋃
C)

by blast
show False if finite F and F ⊆

⋃
C and topspace X ⊆

⋃
F for F

proof −
obtain B where B ∈ C F ⊆ B
by (metis Sup empty C 〈F ⊆

⋃
C〉 〈finite F 〉 UUC empty subsetI finite.emptyI

finite subset Union chain neg)
then show False
using A def 〈C ⊆ A〉 〈finite F 〉 〈topspace X ⊆

⋃
F 〉 by blast

qed
qed
obtain K where K ∈ A and

∧
X . [[X∈A; K ⊆ X ]] =⇒ X = K

using subset Zorn nonempty [OF 1 2 ] by metis
then have ∗:

∧
W. [[

∧
W . W∈W =⇒ openin X W ; topspace X ⊆

⋃
W; K ⊆

W; ∧
F . [[finite F ; F ⊆ W; topspace X ⊆

⋃
F ]] =⇒ False]]

=⇒ W = K
and ope: ∀U∈K. openin X U and top: topspace X ⊆

⋃
K

and non:
∧
F . [[finite F ; F ⊆ K; topspace X ⊆

⋃
F ]] =⇒ False

unfolding A def by simp all metis+
then obtain x where x ∈ topspace X x /∈

⋃
(B ∩ K)

proof −
have

⋃
(B ∩ K) 6=

⋃
B

by (metis 〈
⋃
B = topspace X 〉 fin inf .bounded iff non order refl)

then have ∃ a. a /∈
⋃
(B ∩ K) ∧ a ∈

⋃
B

by blast
then show ?thesis
using that by (metis UB)

qed
obtain C where C : openin X C C ∈ K x ∈ C
using 〈x ∈ topspace X 〉 ope top by auto

then have C ⊆ topspace X
by (metis openin subset)
then have (arbitrary union of (finite intersection of (λx . x ∈ B) relative to⋃
B)) C

using openin subbase C unfolding X [symmetric] by blast
moreover have C 6= topspace X
using 〈K ∈ A〉 〈C ∈ K〉 unfolding A def by blast

ultimately obtain V W where W : (finite intersection of (λx . x ∈ B) rela-
tive to topspace X ) W
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and x ∈ W W ∈ V
⋃
V 6= topspace X C =

⋃
V

using C by (auto simp: union of def UB)
then have

⋃
V ⊆ topspace X

by (metis 〈C ⊆ topspace X 〉)
then have topspace X /∈ V
using 〈

⋃
V 6= topspace X 〉 by blast

then obtain B ′ where B ′: finite B ′ B ′ ⊆ B x ∈
⋂
B ′ W = topspace X ∩

⋂
B ′

using W 〈x ∈ W 〉 unfolding relative to def intersection of def by auto
then have

⋂
B ′ ⊆

⋃
B

using 〈W ∈ V〉 〈
⋃
V 6= topspace X 〉 〈

⋃
V ⊆ topspace X 〉 by blast

then have
⋂
B ′ ⊆ C

using UB 〈C =
⋃
V〉 〈W = topspace X ∩

⋂
B ′〉 〈W ∈ V〉 by auto

have ∀ b ∈ B ′. ∃C ′. finite C ′ ∧ C ′ ⊆ K ∧ topspace X ⊆
⋃

(insert b C ′)
proof
fix b
assume b ∈ B ′

have insert b K = K if neg : ¬ (∃C ′. finite C ′ ∧ C ′ ⊆ K ∧ topspace X ⊆⋃
(insert b C ′))

proof (rule ∗)
show openin X W if W ∈ insert b K for W
using that

proof
have b ∈ B
using 〈b ∈ B ′〉 〈B ′ ⊆ B〉 by blast

then have ∃U . finite U ∧ U ⊆ B ∧
⋂
U = b

by (rule tac x={b} in exI ) auto
moreover have

⋃
B ∩ b = b

using B ′(2 ) 〈b ∈ B ′〉 by auto
ultimately show openin X W if W = b
using that 〈b ∈ B ′〉

apply (simp add : openin subbase flip: X )
apply (auto simp: arbitrary def intersection of def relative to def intro!:

union of inc)
done

show openin X W if W ∈ K
by (simp add : 〈W ∈ K〉 ope)

qed
next
show topspace X ⊆

⋃
(insert b K)

using top by auto
next
show False if finite F and F ⊆ insert b K topspace X ⊆

⋃
F for F

proof −
have insert b (F ∩ K) = F
using non that by blast

then show False
by (metis Int lower2 finite insert neg that(1 ) that(3 ))

qed
qed auto

Function{_}{\kern 0pt}Topology.html


812

then show ∃C ′. finite C ′ ∧ C ′ ⊆ K ∧ topspace X ⊆
⋃
(insert b C ′)

using 〈b ∈ B ′〉 〈x /∈
⋃
(B ∩ K)〉 B ′

by (metis IntI InterE Union iff subsetD insertI1 )
qed
then obtain F where F : ∀ b ∈ B ′. finite (F b) ∧ F b ⊆ K ∧ topspace X ⊆⋃

(insert b (F b))
by metis

let ?D = insert C (
⋃
(F ‘ B ′))

show False
proof (rule non)
have topspace X ⊆ (

⋂
b ∈ B ′.

⋃
(insert b (F b)))

using F by (simp add : INT greatest)
also have . . . ⊆

⋃
?D

using 〈
⋂
B ′ ⊆ C 〉 by force

finally show topspace X ⊆
⋃

?D .
show ?D ⊆ K
using 〈C ∈ K〉 F by auto

show finite ?D
using 〈finite B ′〉 F by auto

qed
qed
then show ?thesis
by (force simp: compact space def compactin def )

qed

corollary Alexander subbase alt :
assumes U ⊆

⋃
B

and fin:
∧
C . [[C ⊆ B; U ⊆

⋃
C ]] =⇒ ∃C ′. finite C ′ ∧ C ′ ⊆ C ∧ U ⊆

⋃
C ′

and X : topology
(arbitrary union of

(finite intersection of (λx . x ∈ B) relative to U )) = X
shows compact space X
proof −
have topspace X = U
using X topspace subbase by fastforce

have eq :
⋃

(Collect ((λx . x ∈ B) relative to U )) = U
unfolding relative to def
using 〈U ⊆

⋃
B〉 by blast

have ∗: ∃F . finite F ∧ F ⊆ C ∧
⋃
F = topspace X

if C ⊆ Collect ((λx . x ∈ B) relative to topspace X ) and UC :
⋃
C = topspace

X for C
proof −
have C ⊆ (λU . topspace X ∩ U ) ‘ B
using that by (auto simp: relative to def )

then obtain B ′ where B ′ ⊆ B and B ′: C = (∩) (topspace X ) ‘ B ′

by (auto simp: subset image iff )
moreover have U ⊆

⋃
B ′

using B ′ 〈topspace X = U 〉 UC by auto
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ultimately obtain C ′ where finite C ′ C ′ ⊆ B ′ U ⊆
⋃
C ′

using fin [of B ′] 〈topspace X = U 〉 〈U ⊆
⋃
B〉 by blast

then show ?thesis
unfolding B ′ ex finite subset image 〈topspace X = U 〉 by auto

qed
show ?thesis
apply (rule Alexander subbase [where B = Collect ((λx . x ∈ B) relative to

(topspace X ))])
apply (simp flip: X )
apply (metis finite intersection of relative to eq)
apply (blast intro: ∗)
done

qed

proposition continuous map componentwise:
continuous map X (product topology Y I ) f ←→
f ‘ (topspace X ) ⊆ extensional I ∧ (∀ k ∈ I . continuous map X (Y k) (λx . f x

k))
(is ?lhs ←→ ∧ ?rhs)

proof (cases ∀ x ∈ topspace X . f x ∈ extensional I )
case True
then have f ‘ (topspace X ) ⊆ extensional I
by force

moreover have ?rhs if L: ?lhs
proof −
have openin X {x ∈ topspace X . f x k ∈ U } if k ∈ I and openin (Y k) U for

k U
proof −
have openin (product topology Y I ) ({Y . Y k ∈ U } ∩ (ΠE i∈I . topspace (Y

i)))
apply (simp add : openin product topology flip: arbitrary union of relative to)
apply (simp add : relative to def )

using that apply (blast intro: arbitrary union of inc finite intersection of inc)
done
with that have openin X {x ∈ topspace X . f x ∈ ({Y . Y k ∈ U } ∩ (ΠE

i∈I . topspace (Y i)))}
using L unfolding continuous map def by blast

moreover have {x ∈ topspace X . f x ∈ ({Y . Y k ∈ U } ∩ (ΠE i∈I . topspace
(Y i)))} = {x ∈ topspace X . f x k ∈ U }

using L by (auto simp: continuous map def )
ultimately show ?thesis
by metis

qed
with that
show ?thesis
by (auto simp: continuous map def )

qed
moreover have ?lhs if ?rhs
proof −
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have 1 :
∧
x . x ∈ topspace X =⇒ f x ∈ (ΠE i∈I . topspace (Y i))

using that True by (auto simp: continuous map def PiE iff )
have 2 : {x ∈ S . ∃T∈T . f x ∈ T} = (

⋃
T∈T . {x ∈ S . f x ∈ T}) for S T

by blast
have 3 : {x ∈ S . ∀U∈U . f x ∈ U } = (

⋂
(insert S ((λU . {x ∈ S . f x ∈ U }) ‘

U))) for S U
by blast

show ?thesis
unfolding continuous map def openin product topology arbitrary def

proof (clarsimp simp: all union of 1 2 )
fix T
assume T : T ⊆ Collect (finite intersection of (λF . ∃ i U . F = {f . f i ∈ U }

∧ i ∈ I ∧ openin (Y i) U )
relative to (ΠE i∈I . topspace (Y i)))

show openin X (
⋃
T∈T . {x ∈ topspace X . f x ∈ T})

proof (rule openin Union; clarify)
fix S T
assume T ∈ T
obtain U where T = (ΠE i∈I . topspace (Y i)) ∩

⋂
U and finite U

U ⊆ {{f . f i ∈ U } |i U . i ∈ I ∧ openin (Y i) U }
using subsetD [OF T 〈T ∈ T 〉] by (auto simp: intersection of def rela-

tive to def )
with that show openin X {x ∈ topspace X . f x ∈ T}
apply (simp add : continuous map def 1 cong : conj cong)
unfolding 3
apply (rule openin Inter ; auto)
done

qed
qed

qed
ultimately show ?thesis
by metis

next
case False
then show ?thesis
by (auto simp: continuous map def PiE def )

qed

lemma continuous map componentwise UNIV :
continuous map X (product topology Y UNIV ) f ←→ (∀ k . continuous map X

(Y k) (λx . f x k))
by (simp add : continuous map componentwise)

lemma continuous map product projection [continuous intros]:
k ∈ I =⇒ continuous map (product topology X I ) (X k) (λx . x k)
using continuous map componentwise [of product topology X I X I id ] by simp

declare continuous map from subtopology [OF continuous map product projection,
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continuous intros]

proposition open map product projection:
assumes i ∈ I
shows open map (product topology Y I ) (Y i) (λf . f i)
unfolding openin product topology all union of arbitrary def open map def im-

age Union
proof clarify
fix V
assume V: V ⊆ Collect

(finite intersection of
(λF . ∃ i U . F = {f . f i ∈ U } ∧ i ∈ I ∧ openin (Y i) U ) relative to

topspace (product topology Y I ))
show openin (Y i) (

⋃
x∈V. (λf . f i) ‘ x )

proof (rule openin Union, clarify)
fix S V
assume V ∈ V
obtain F where finite F
and V : V = (ΠE i∈I . topspace (Y i)) ∩

⋂
F

and F : F ⊆ {{f . f i ∈ U } |i U . i ∈ I ∧ openin (Y i) U }
using subsetD [OF V 〈V ∈ V〉]
by (auto simp: intersection of def relative to def )

show openin (Y i) ((λf . f i) ‘ V )
proof (subst openin subopen; clarify)
fix x f
assume f ∈ V
let ?T = {a ∈ topspace(Y i).

(λj . if j = i then a
else if j ∈ I then f j else undefined) ∈ (ΠE i∈I . topspace (Y

i)) ∩
⋂
F}

show ∃T . openin (Y i) T ∧ f i ∈ T ∧ T ⊆ (λf . f i) ‘ V
proof (intro exI conjI )
show openin (Y i) ?T
proof (rule openin continuous map preimage)
have continuous map (Y i) (Y k) (λx . if k = i then x else f k) if k ∈ I

for k
proof (cases k=i)
case True
then show ?thesis
by (metis (mono tags) continuous map id eq id iff )

next
case False
then show ?thesis
by simp (metis IntD1 PiE iff V 〈f ∈ V 〉 that)

qed
then show continuous map (Y i) (product topology Y I )

(λx j . if j = i then x else if j ∈ I then f j else undefined)
by (auto simp: continuous map componentwise assms extensional def )

next

Function{_}{\kern 0pt}Topology.html


816

have openin (product topology Y I ) (ΠE i∈I . topspace (Y i))
by (metis openin topspace topspace product topology)

moreover have openin (product topology Y I ) (
⋂
B∈F . (ΠE i∈I . topspace

(Y i)) ∩ B)
if F 6= {}

proof −
show ?thesis
proof (rule openin Inter)

show
∧
X . X ∈ (∩) (ΠE i∈I . topspace (Y i)) ‘ F =⇒ openin

(product topology Y I ) X
unfolding openin product topology relative to def
apply (clarify intro!: arbitrary union of inc)
apply (rename tac F )
apply (rule tac x=F in exI )
using subsetD [OF F ]
apply (force intro: finite intersection of inc)
done

qed (use 〈finite F 〉 〈F 6= {}〉 in auto)
qed
ultimately show openin (product topology Y I ) ((ΠE i∈I . topspace (Y

i)) ∩
⋂
F)
by (auto simp only : Int Inter eq split : if split)

qed
next
have eqf : (λj . if j = i then f i else if j ∈ I then f j else undefined) = f
using PiE arb V 〈f ∈ V 〉 by force

show f i ∈ ?T
using V assms 〈f ∈ V 〉 by (auto simp: PiE iff eqf )

next
show ?T ⊆ (λf . f i) ‘ V
unfolding V by (auto simp: intro!: rev image eqI )

qed
qed

qed
qed

lemma retraction map product projection:
assumes i ∈ I
shows (retraction map (product topology X I ) (X i) (λx . x i) ←→

(topspace (product topology X I ) = {}) −→ topspace (X i) = {})
(is ?lhs = ?rhs)

proof
assume ?lhs
then show ?rhs
using retraction imp surjective map by force

next
assume R: ?rhs
show ?lhs
proof (cases topspace (product topology X I ) = {})



Function Topology.thy 817

case True
then show ?thesis

using R by (auto simp: retraction map def retraction maps def continu-
ous map on empty)
next
case False
have ∗: ∃ g . continuous map (X i) (product topology X I ) g ∧ (∀ x∈topspace

(X i). g x i = x )
if z : z ∈ (ΠE i∈I . topspace (X i)) for z

proof −
have cm: continuous map (X i) (X j ) (λx . if j = i then x else z j ) if j ∈ I

for j
using 〈j ∈ I 〉 z by (case tac j = i) auto

show ?thesis
using 〈i ∈ I 〉 that
by (rule tac x=λx j . if j = i then x else z j in exI ) (auto simp: continu-

ous map componentwise PiE iff extensional def cm)
qed
show ?thesis
using 〈i ∈ I 〉 False

by (auto simp: retraction map def retraction maps def assms continuous map product projection
∗)
qed

qed

4.8.3 Open Pi-sets in the product topology

proposition openin PiE gen:
openin (product topology X I ) (PiE I S ) ←→

PiE I S = {} ∨
finite {i ∈ I . ∼(S i = topspace(X i))} ∧ (∀ i ∈ I . openin (X i) (S i))

(is ?lhs ←→ ∨ ?rhs)
proof (cases PiE I S = {})
case False
moreover have ?lhs = ?rhs
proof
assume L: ?lhs
moreover
obtain z where z : z ∈ PiE I S
using False by blast

ultimately obtain U where fin: finite {i ∈ I . U i 6= topspace (X i)}
and PiE I U 6= {}
and sub: PiE I U ⊆ PiE I S
by (fastforce simp add : openin product topology alt)

then have ∗:
∧
i . i ∈ I =⇒ U i ⊆ S i

by (simp add : subset PiE )
show ?rhs
proof (intro conjI ballI )
show finite {i ∈ I . S i 6= topspace (X i)}
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apply (rule finite subset [OF fin], clarify)
using ∗
by (metis False L openin subset topspace product topology subset PiE sub-

set antisym)
next
fix i :: ′a
assume i ∈ I
then show openin (X i) (S i)
using open map product projection [of i I X ] L
apply (simp add : open map def )
apply (drule tac x=PiE I S in spec)
apply (simp add : False image projection PiE split : if split asm)
done

qed
next
assume ?rhs
then show ?lhs
apply (simp only : openin product topology)
apply (rule arbitrary union of inc)
apply (auto simp: product topology base alt)
done

qed
ultimately show ?thesis
by simp

qed simp

corollary openin PiE :
finite I =⇒ openin (product topology X I ) (PiE I S ) ←→ PiE I S = {} ∨ (∀ i

∈ I . openin (X i) (S i))
by (simp add : openin PiE gen)

proposition compact space product topology :
compact space(product topology X I ) ←→
topspace(product topology X I ) = {} ∨ (∀ i ∈ I . compact space(X i))
(is ?lhs = ?rhs)

proof (cases topspace(product topology X I ) = {})
case False
then obtain z where z : z ∈ (ΠE i∈I . topspace(X i))
by auto

show ?thesis
proof
assume L: ?lhs
show ?rhs
proof (clarsimp simp add : False compact space def )
fix i
assume i ∈ I
with L have continuous map (product topology X I ) (X i) (λf . f i)
by (simp add : continuous map product projection)
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moreover
have

∧
x . x ∈ topspace (X i) =⇒ x ∈ (λf . f i) ‘ (ΠE i∈I . topspace (X i))

using 〈i ∈ I 〉 z
apply (rule tac x=λj . if j = i then x else if j ∈ I then z j else undefined in

image eqI , auto)
done

then have (λf . f i) ‘ (ΠE i∈I . topspace (X i)) = topspace (X i)
using 〈i ∈ I 〉 z by auto

ultimately show compactin (X i) (topspace (X i))
by (metis L compact space def image compactin topspace product topology)

qed
next
assume R: ?rhs
show ?lhs
proof (cases I = {})
case True
with R show ?thesis
by (simp add : compact space def )

next
case False
then obtain i where i ∈ I
by blast

show ?thesis
using R

proof
assume com [rule format ]: ∀ i∈I . compact space (X i)
let ?C = {{f . f i ∈ U } |i U . i ∈ I ∧ openin (X i) U }
show compact space (product topology X I )
proof (rule Alexander subbase alt)
show topspace (product topology X I ) ⊆

⋃
?C

unfolding topspace product topology using 〈i ∈ I 〉 by blast
next
fix C
assume Csub: C ⊆ ?C and UC : topspace (product topology X I ) ⊆

⋃
C

define D where D ≡ λi . {U . openin (X i) U ∧ {f . f i ∈ U } ∈ C}
show ∃C ′. finite C ′ ∧ C ′ ⊆ C ∧ topspace (product topology X I ) ⊆

⋃
C ′

proof (cases ∃ i . i ∈ I ∧ topspace (X i) ⊆
⋃
(D i))

case True
then obtain i where i ∈ I

and i : topspace (X i) ⊆
⋃
(D i)

unfolding D def by blast
then have ∗:

∧
U . [[Ball U (openin (X i)); topspace (X i) ⊆

⋃
U ]] =⇒

∃F . finite F ∧ F ⊆ U ∧ topspace (X i) ⊆
⋃
F

using com [OF 〈i ∈ I 〉] by (auto simp: compact space def compactin def )
have topspace (X i) ⊆

⋃
(D i)

using i by auto
with ∗ obtain F where finite F ∧ F ⊆ (D i) ∧ topspace (X i) ⊆

⋃
F

unfolding D def by fastforce
with 〈i ∈ I 〉 show ?thesis
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unfolding D def
by (rule tac x=(λU . {x . x i ∈ U }) ‘ F in exI ) auto

next
case False
then have ∀ i ∈ I . ∃ y . y ∈ topspace (X i) ∧ y /∈

⋃
(D i)

by force
then obtain g where g :

∧
i . i ∈ I =⇒ g i ∈ topspace (X i) ∧ g i /∈⋃

(D i)
by metis

then have (λi . if i ∈ I then g i else undefined) ∈ topspace (product topology
X I )

by (simp add : PiE I )
moreover have (λi . if i ∈ I then g i else undefined) /∈

⋃
C

using Csub g unfolding D def by force
ultimately show ?thesis
using UC by blast

qed
qed (simp add : product topology)

qed (simp add : compact space topspace empty)
qed

qed
qed (simp add : compact space topspace empty)

corollary compactin PiE :
compactin (product topology X I ) (PiE I S ) ←→

PiE I S = {} ∨ (∀ i ∈ I . compactin (X i) (S i))
by (auto simp: compactin subspace subtopology PiE subset PiE compact space product topology

PiE eq empty iff )

lemma in product topology closure of :
z ∈ (product topology X I ) closure of S

=⇒ i ∈ I =⇒ z i ∈ ((X i) closure of ((λx . x i) ‘ S ))
using continuous map product projection
by (force simp: continuous map eq image closure subset image subset iff )

lemma homeomorphic space singleton product :
product topology X {k} homeomorphic space (X k)
unfolding homeomorphic space
apply (rule tac x=λx . x k in exI )
apply (rule bijective open imp homeomorphic map)
apply (simp all add : continuous map product projection open map product projection)

unfolding PiE over singleton iff
apply (auto simp: image iff inj on def )
done

4.8.4 Relationship with connected spaces, paths, etc.

proposition connected space product topology :
connected space(product topology X I ) ←→
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(ΠE i∈I . topspace (X i)) = {} ∨ (∀ i ∈ I . connected space(X i))
(is ?lhs ←→ ?eq ∨ ?rhs)

proof (cases ?eq)
case False
moreover have ?lhs = ?rhs
proof
assume ?lhs
moreover
have connectedin(X i) (topspace(X i))
if i ∈ I and ci : connectedin(product topology X I ) (topspace(product topology

X I )) for i
proof −
have cm: continuous map (product topology X I ) (X i) (λf . f i)
by (simp add : 〈i ∈ I 〉 continuous map product projection)

show ?thesis
using connectedin continuous map image [OF cm ci ] 〈i ∈ I 〉

by (simp add : False image projection PiE )
qed
ultimately show ?rhs
by (meson connectedin topspace)

next
assume cs [rule format ]: ?rhs
have False
if disj : U ∩ V = {} and subUV : (ΠE i∈I . topspace (X i)) ⊆ U ∪ V
and U : openin (product topology X I ) U
and V : openin (product topology X I ) V
and U 6= {} V 6= {}

for U V
proof −
obtain f where f ∈ U
using 〈U 6= {}〉 by blast

then have f : f ∈ (ΠE i∈I . topspace (X i))
using U openin subset by fastforce

have U ⊆ topspace(product topology X I ) V ⊆ topspace(product topology X
I )

using U V openin subset by blast+
moreover have (ΠE i∈I . topspace (X i)) ⊆ U
proof −
obtain C where (finite intersection of (λF . ∃ i U . F = {x . x i ∈ U } ∧ i

∈ I ∧ openin (X i) U ) relative to
(ΠE i∈I . topspace (X i))) C C ⊆ U f ∈ C

using U 〈f ∈ U 〉 unfolding openin product topology union of def by auto
then obtain T where finite T
and t :

∧
C . C ∈ T =⇒ ∃ i u. (i ∈ I ∧ openin (X i) u) ∧ C = {x . x i ∈

u}
and subU : topspace (product topology X I ) ∩

⋂
T ⊆ U

and ftop: f ∈ topspace (product topology X I )
and fint : f ∈

⋂
T

by (fastforce simp: relative to def intersection of def subset iff )
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let ?L =
⋃
C∈T . {i . (λx . x i) ‘ C ⊂ topspace (X i)}

obtain L where finite L
and L:

∧
i U . [[i ∈ I ; openin (X i) U ; U ⊂ topspace(X i); {x . x i ∈ U }

∈ T ]] =⇒ i ∈ L
proof
show finite ?L
proof (rule finite Union)
fix M
assume M ∈ (λC . {i . (λx . x i) ‘ C ⊂ topspace (X i)}) ‘ T
then obtain C where C ∈ T and C : M = {i . (λx . x i) ‘ C ⊂ topspace

(X i)}
by blast
then obtain j V where j ∈ I and ope: openin (X j ) V and Ceq : C

= {x . x j ∈ V }
using t by meson

then have f j ∈ V
using 〈C ∈ T 〉 fint by force

then have (λx . x k) ‘ {x . x j ∈ V } = UNIV if k 6= j for k
using that
apply (clarsimp simp add : set eq iff )
apply (rule tac x=λm. if m = k then x else f m in image eqI , auto)
done

then have {i . (λx . x i) ‘ C ⊂ topspace (X i)} ⊆ {j}
using Ceq by auto

then show finite M
using C finite subset by fastforce

qed (use 〈finite T 〉 in blast)
next
fix i U
assume i ∈ I and ope: openin (X i) U and psub: U ⊂ topspace (X i)

and int : {x . x i ∈ U } ∈ T
then show i ∈ ?L
by (rule tac a={x . x i ∈ U } in UN I ) (force+)

qed
show ?thesis
proof
fix h
assume h: h ∈ (ΠE i∈I . topspace (X i))
define g where g ≡ λi . if i ∈ L then f i else h i
have gin: g ∈ (ΠE i∈I . topspace (X i))
unfolding g def using f h by auto

moreover have g ∈ X if X ∈ T for X
using fint openin subset t [OF that ] L g def h that by fastforce

ultimately have g ∈ U
using subU by auto

have h ∈ U if finite M h ∈ PiE I (topspace ◦ X ) {i ∈ I . h i 6= g i} ⊆ M
for M h

using that
proof (induction arbitrary : h)
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case empty
then show ?case
using PiE ext 〈g ∈ U 〉 gin by force

next
case (insert i M )
define f where f ≡ λj . if j = i then g i else h j
have fin: f ∈ PiE I (topspace ◦ X )
unfolding f def using gin insert .prems(1 ) by auto

have subM : {j ∈ I . f j 6= g j} ⊆ M
unfolding f def using insert .prems(2 ) by auto

have f ∈ U
using insert .IH [OF fin subM ] .

show ?case
proof (cases h ∈ V )
case True
show ?thesis
proof (cases i ∈ I )
case True
let ?U = {x ∈ topspace(X i). (λj . if j = i then x else h j ) ∈ U }
let ?V = {x ∈ topspace(X i). (λj . if j = i then x else h j ) ∈ V }
have False
proof (rule connected spaceD [OF cs [OF 〈i ∈ I 〉]])
have

∧
k . k ∈ I =⇒ continuous map (X i) (X k) (λx . if k = i then

x else h k)
using continuous map eq topcontinuous at insert .prems(1 )

topcontinuous at def by fastforce
then have cm: continuous map (X i) (product topology X I ) (λx j .

if j = i then x else h j )
using 〈i ∈ I 〉 insert .prems(1 )
by (auto simp: continuous map componentwise extensional def )

show openin (X i) ?U
by (rule openin continuous map preimage [OF cm U ])

show openin (X i) ?V
by (rule openin continuous map preimage [OF cm V ])

show topspace (X i) ⊆ ?U ∪ ?V
proof clarsimp
fix x
assume x ∈ topspace (X i) and (λj . if j = i then x else h j ) /∈ V
with True subUV 〈h ∈ PiE I (topspace ◦ X )〉

show (λj . if j = i then x else h j ) ∈ U
by (drule tac c=(λj . if j = i then x else h j ) in subsetD) auto

qed
show ?U ∩ ?V = {}
using disj by blast

show ?U 6= {}
using 〈U 6= {}〉 f def

proof −
have (λj . if j = i then g i else h j ) ∈ U
using 〈f ∈ U 〉 f def by blast
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moreover have f i ∈ topspace (X i)
by (metis PiE iff True comp apply fin)
ultimately have ∃ b. b ∈ topspace (X i) ∧ (λa. if a = i then b

else h a) ∈ U
using f def by auto

then show ?thesis
by blast

qed
have (λj . if j = i then h i else h j ) = h
by force

moreover have h i ∈ topspace (X i)
using True insert .prems(1 ) by auto

ultimately show ?V 6= {}
using 〈h ∈ V 〉 by force

qed
then show ?thesis ..

next
case False
show ?thesis
proof (cases h = f )
case True
show ?thesis
by (rule insert .IH [OF insert .prems(1 )]) (simp add : True subM )

next
case False
then show ?thesis
using gin insert .prems(1 ) 〈i /∈ I 〉 unfolding f def by fastforce

qed
qed

next
case False
then show ?thesis
using subUV insert .prems(1 ) by auto

qed
qed
then show h ∈ U
unfolding g def using PiE iff 〈finite L〉 h by fastforce

qed
qed
ultimately show ?thesis
using disj inf absorb2 〈V 6= {}〉 by fastforce

qed
then show ?lhs
unfolding connected space def
by auto

qed
ultimately show ?thesis
by simp

qed (simp add : connected space topspace empty)
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lemma connectedin PiE :
connectedin (product topology X I ) (PiE I S ) ←→

PiE I S = {} ∨ (∀ i ∈ I . connectedin (X i) (S i))
by (fastforce simp add : connectedin def subtopology PiE connected space product topology

subset PiE PiE eq empty iff )

lemma path connected space product topology :
path connected space(product topology X I ) ←→
topspace(product topology X I ) = {} ∨ (∀ i ∈ I . path connected space(X i))

(is ?lhs ←→ ?eq ∨ ?rhs)
proof (cases ?eq)
case False
moreover have ?lhs = ?rhs
proof
assume L: ?lhs
show ?rhs
proof (clarsimp simp flip: path connectedin topspace)
fix i :: ′a
assume i ∈ I
have cm: continuous map (product topology X I ) (X i) (λf . f i)
by (simp add : 〈i ∈ I 〉 continuous map product projection)

show path connectedin (X i) (topspace (X i))
using path connectedin continuous map image [OF cm L [unfolded path connectedin topspace

[symmetric]]]
by (metis 〈i ∈ I 〉 False retraction imp surjective map retraction map product projection)

qed
next
assume R [rule format ]: ?rhs
show ?lhs
unfolding path connected space def topspace product topology

proof clarify
fix x y
assume x : x ∈ (ΠE i∈I . topspace (X i)) and y : y ∈ (ΠE i∈I . topspace (X

i))
have ∀ i . ∃ g . i ∈ I −→ pathin (X i) g ∧ g 0 = x i ∧ g 1 = y i
using PiE mem R path connected space def x y by force

then obtain g where g :
∧
i . i ∈ I =⇒ pathin (X i) (g i) ∧ g i 0 = x i ∧ g

i 1 = y i
by metis

with x y show ∃ g . pathin (product topology X I ) g ∧ g 0 = x ∧ g 1 = y
apply (rule tac x=λa. λi ∈ I . g i a in exI )
apply (force simp: pathin def continuous map componentwise)
done

qed
qed
ultimately show ?thesis
by simp
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qed (simp add : path connected space topspace empty)

lemma path connectedin PiE :
path connectedin (product topology X I ) (PiE I S ) ←→
PiE I S = {} ∨ (∀ i ∈ I . path connectedin (X i) (S i))

by (fastforce simp add : path connectedin def subtopology PiE path connected space product topology
subset PiE PiE eq empty iff topspace subtopology subset)

4.8.5 Projections from a function topology to a component

lemma quotient map product projection:
assumes i ∈ I
shows quotient map(product topology X I ) (X i) (λx . x i) ←→

(topspace(product topology X I ) = {} −→ topspace(X i) = {})
(is ?lhs = ?rhs)

proof
assume ?lhs with assms show ?rhs
by (auto simp: continuous open quotient map open map product projection)

next
assume ?rhs with assms show ?lhs
by (auto simp: Abstract Topology .retraction imp quotient map retraction map product projection)

qed

lemma product topology homeomorphic component :
assumes i ∈ I

∧
j . [[j ∈ I ; j 6= i ]] =⇒ ∃ a. topspace(X j ) = {a}

shows product topology X I homeomorphic space (X i)
proof −
have quotient map (product topology X I ) (X i) (λx . x i)
using assms by (force simp add : quotient map product projection PiE eq empty iff )
moreover
have inj on (λx . x i) (ΠE i∈I . topspace (X i))
using assms by (auto simp: inj on def PiE iff ) (metis extensionalityI single-

tonD)
ultimately show ?thesis
unfolding homeomorphic space def
by (rule tac x=λx . x i in exI ) (simp add : homeomorphic map def flip: homeo-

morphic map maps)
qed

lemma topological property of product component :
assumes major : P (product topology X I )
and minor :

∧
z i . [[z ∈ (ΠE i∈I . topspace(X i)); P(product topology X I ); i ∈

I ]]
=⇒ P(subtopology (product topology X I ) (PiE I (λj . if j = i

then topspace(X i) else {z j})))
(is

∧
z i . [[ ; ; ]] =⇒ P (?SX z i))

and PQ :
∧
X X ′. X homeomorphic space X ′ =⇒ (P X ←→ Q X ′)

shows (ΠE i∈I . topspace(X i)) = {} ∨ (∀ i ∈ I . Q(X i))
proof −
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have Q(X i) if (ΠE i∈I . topspace(X i)) 6= {} i ∈ I for i
proof −
from that obtain f where f : f ∈ (ΠE i∈I . topspace (X i))
by force

have ?SX f i homeomorphic space X i
apply (simp add : subtopology PiE )
using product topology homeomorphic component [OF 〈i ∈ I 〉, of λj . subtopol-

ogy (X j ) (if j = i then topspace (X i) else {f j})]
using f by fastforce

then show ?thesis
using minor [OF f major 〈i ∈ I 〉] PQ by auto

qed
then show ?thesis by metis

qed

end

4.9 Bounded Linear Function

theory Bounded Linear Function
imports
Topology Euclidean Space
Operator Norm
Uniform Limit
Function Topology

begin

lemma onorm componentwise:
assumes bounded linear f
shows onorm f ≤ (

∑
i∈Basis. norm (f i))

proof −
{
fix i :: ′a
assume i ∈ Basis
hence onorm (λx . (x · i) ∗R f i) ≤ onorm (λx . (x · i)) ∗ norm (f i)
by (auto intro!: onorm scaleR left lemma bounded linear inner left)

also have . . . ≤ norm i ∗ norm (f i)
by (rule mult right mono)
(auto simp: ac simps Cauchy Schwarz ineq2 intro!: onorm le)

finally have onorm (λx . (x · i) ∗R f i) ≤ norm (f i) using 〈i ∈ Basis〉

by simp
} hence onorm (λx .

∑
i∈Basis. (x · i) ∗R f i) ≤ (

∑
i∈Basis. norm (f i))

by (auto intro!: order trans[OF onorm sum le] bounded linear scaleR const
sum mono bounded linear inner left)

also have (λx .
∑

i∈Basis. (x · i) ∗R f i) = (λx . f (
∑

i∈Basis. (x · i) ∗R i))
by (simp add : linear sum bounded linear .linear assms linear simps)

also have . . . = f
by (simp add : euclidean representation)
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finally show ?thesis .
qed

lemmas onorm componentwise le = order trans[OF onorm componentwise]

4.9.1 Intro rules for bounded linear

named theorems bounded linear intros

lemma onorm inner left :
assumes bounded linear r
shows onorm (λx . r x · f ) ≤ onorm r ∗ norm f

proof (rule onorm bound)
fix x
have norm (r x · f ) ≤ norm (r x ) ∗ norm f
by (simp add : Cauchy Schwarz ineq2 )

also have . . . ≤ onorm r ∗ norm x ∗ norm f
by (intro mult right mono onorm assms norm ge zero)

finally show norm (r x · f ) ≤ onorm r ∗ norm f ∗ norm x
by (simp add : ac simps)

qed (intro mult nonneg nonneg norm ge zero onorm pos le assms)

lemma onorm inner right :
assumes bounded linear r
shows onorm (λx . f · r x ) ≤ norm f ∗ onorm r
apply (subst inner commute)
apply (rule onorm inner left [OF assms, THEN order trans])
apply simp
done

lemmas [bounded linear intros] =
bounded linear zero
bounded linear add
bounded linear const mult
bounded linear mult const
bounded linear scaleR const
bounded linear const scaleR
bounded linear ident
bounded linear sum
bounded linear Pair
bounded linear sub
bounded linear fst comp
bounded linear snd comp
bounded linear inner left comp
bounded linear inner right comp
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4.9.2 declaration of derivative/continuous/tendsto introduc-
tion rules for bounded linear functions

attribute setup bounded linear =
〈Scan.succeed (Thm.declaration attribute (fn thm =>
fold (fn (r , s) => Named Theorems.add thm s (thm RS r))
[
(@{thm bounded linear .has derivative}, named theorems 〈derivative intros〉),
(@{thm bounded linear .tendsto}, named theorems 〈tendsto intros〉),
(@{thm bounded linear .continuous}, named theorems 〈continuous intros〉),

(@{thm bounded linear .continuous on}, named theorems 〈continuous intros〉),
(@{thm bounded linear .uniformly continuous on}, named theorems 〈continuous intros〉),
(@{thm bounded linear compose}, named theorems 〈bounded linear intros〉)
]))〉

attribute setup bounded bilinear =
〈Scan.succeed (Thm.declaration attribute (fn thm =>
fold (fn (r , s) => Named Theorems.add thm s (thm RS r))
[
(@{thm bounded bilinear .FDERIV }, named theorems 〈derivative intros〉),
(@{thm bounded bilinear .tendsto}, named theorems 〈tendsto intros〉),

(@{thm bounded bilinear .continuous}, named theorems 〈continuous intros〉),
(@{thm bounded bilinear .continuous on}, named theorems 〈continuous intros〉),
(@{thm bounded linear compose[OF bounded bilinear .bounded linear left ]},
named theorems 〈bounded linear intros〉),

(@{thm bounded linear compose[OF bounded bilinear .bounded linear right ]},
named theorems 〈bounded linear intros〉),

(@{thm bounded linear .uniformly continuous on[OF bounded bilinear .bounded linear left ]},
named theorems 〈continuous intros〉),

(@{thm bounded linear .uniformly continuous on[OF bounded bilinear .bounded linear right ]},
named theorems 〈continuous intros〉)

]))〉

4.9.3 Type of bounded linear functions

typedef (overloaded) ( ′a, ′b) blinfun (( ⇒L / ) [22 , 21 ] 21 ) =
{f :: ′a::real normed vector⇒ ′b::real normed vector . bounded linear f }
morphisms blinfun apply Blinfun
by (blast intro: bounded linear intros)

declare [[coercion
blinfun apply :: ( ′a::real normed vector ⇒L

′b::real normed vector) ⇒ ′a ⇒ ′b]]

lemma bounded linear blinfun apply [bounded linear intros]:
bounded linear g =⇒ bounded linear (λx . blinfun apply f (g x ))
by (metis blinfun apply mem Collect eq bounded linear compose)

setup lifting type definition blinfun

lemma blinfun eqI : (
∧
i . blinfun apply x i = blinfun apply y i) =⇒ x = y
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by transfer auto

lemma bounded linear Blinfun apply : bounded linear f =⇒ blinfun apply (Blinfun
f ) = f
by (auto simp: Blinfun inverse)

4.9.4 Type class instantiations

instantiation blinfun :: (real normed vector , real normed vector) real normed vector
begin

lift definition norm blinfun :: ′a ⇒L
′b ⇒ real is onorm .

lift definition minus blinfun :: ′a ⇒L
′b ⇒ ′a ⇒L

′b ⇒ ′a ⇒L
′b

is λf g x . f x − g x
by (rule bounded linear sub)

definition dist blinfun :: ′a ⇒L
′b ⇒ ′a ⇒L

′b ⇒ real
where dist blinfun a b = norm (a − b)

definition [code del ]:
(uniformity :: (( ′a ⇒L

′b) × ( ′a ⇒L
′b)) filter) = (INF e∈{0 <..}. principal

{(x , y). dist x y < e})

definition open blinfun :: ( ′a ⇒L
′b) set ⇒ bool

where [code del ]: open blinfun S = (∀ x∈S . ∀ F (x ′, y) in uniformity . x ′ = x −→
y ∈ S )

lift definition uminus blinfun :: ′a ⇒L
′b ⇒ ′a ⇒L

′b is λf x . − f x
by (rule bounded linear minus)

lift definition zero blinfun :: ′a ⇒L
′b is λx . 0

by (rule bounded linear zero)

lift definition plus blinfun :: ′a ⇒L
′b ⇒ ′a ⇒L

′b ⇒ ′a ⇒L
′b

is λf g x . f x + g x
by (metis bounded linear add)

lift definition scaleR blinfun::real ⇒ ′a ⇒L
′b ⇒ ′a ⇒L

′b is λr f x . r ∗R f x
by (metis bounded linear compose bounded linear scaleR right)

definition sgn blinfun :: ′a ⇒L
′b ⇒ ′a ⇒L

′b
where sgn blinfun x = scaleR (inverse (norm x )) x

instance
apply standard
unfolding dist blinfun def open blinfun def sgn blinfun def uniformity blinfun def
apply (rule refl | (transfer , force simp: onorm triangle onorm scaleR onorm eq 0

algebra simps))+
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done

end

declare uniformity Abort [where ′a=( ′a :: real normed vector)⇒L ( ′b :: real normed vector),
code]

lemma norm blinfun eqI :
assumes n ≤ norm (blinfun apply f x ) / norm x
assumes

∧
x . norm (blinfun apply f x ) ≤ n ∗ norm x

assumes 0 ≤ n
shows norm f = n
by (auto simp: norm blinfun def
intro!: antisym onorm bound assms order trans[OF le onorm]
bounded linear intros)

lemma norm blinfun: norm (blinfun apply f x ) ≤ norm f ∗ norm x
by transfer (rule onorm)

lemma norm blinfun bound : 0 ≤ b =⇒ (
∧
x . norm (blinfun apply f x ) ≤ b ∗ norm

x ) =⇒ norm f ≤ b
by transfer (rule onorm bound)

lemma bounded bilinear blinfun apply [bounded bilinear ]: bounded bilinear blinfun apply
proof
fix f g :: ′a ⇒L

′b and a b:: ′a and r ::real
show (f + g) a = f a + g a (r ∗R f ) a = r ∗R f a
by (transfer , simp)+

interpret bounded linear f for f :: ′a ⇒L
′b

by (auto intro!: bounded linear intros)
show f (a + b) = f a + f b f (r ∗R a) = r ∗R f a
by (simp all add : add scaleR)

show ∃K . ∀ a b. norm (blinfun apply a b) ≤ norm a ∗ norm b ∗ K
by (auto intro!: exI [where x=1 ] norm blinfun)

qed

interpretation blinfun: bounded bilinear blinfun apply
by (rule bounded bilinear blinfun apply)

lemmas bounded linear apply blinfun[intro, simp] = blinfun.bounded linear left

declare blinfun.zero left [simp] blinfun.zero right [simp]

context bounded bilinear
begin

named theorems bilinear simps
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lemmas [bilinear simps] =
add left
add right
diff left
diff right
minus left
minus right
scaleR left
scaleR right
zero left
zero right
sum left
sum right

end

instance blinfun :: (real normed vector , banach) banach
proof
fix X ::nat ⇒ ′a ⇒L

′b
assume Cauchy X
{
fix x :: ′a
{
fix x :: ′a
assume norm x ≤ 1
have Cauchy (λn. X n x )
proof (rule CauchyI )
fix e::real
assume 0 < e
from CauchyD [OF 〈Cauchy X 〉 〈0 < e〉] obtain M
where M :

∧
m n. m ≥ M =⇒ n ≥ M =⇒ norm (X m − X n) < e

by auto
show ∃M . ∀m≥M . ∀n≥M . norm (X m x − X n x ) < e
proof (safe intro!: exI [where x=M ])
fix m n
assume le: M ≤ m M ≤ n
have norm (X m x − X n x ) = norm ((X m − X n) x )
by (simp add : blinfun.bilinear simps)

also have . . . ≤ norm (X m − X n) ∗ norm x
by (rule norm blinfun)

also have . . . ≤ norm (X m − X n) ∗ 1
using 〈norm x ≤ 1 〉 norm ge zero by (rule mult left mono)

also have . . . = norm (X m − X n) by simp
also have . . . < e using le by fact
finally show norm (X m x − X n x ) < e .

qed
qed
hence convergent (λn. X n x )
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by (metis Cauchy convergent iff )
} note convergent norm1 = this
define y where y = x /R norm x
have y : norm y ≤ 1 and xy : x = norm x ∗R y
by (simp all add : y def inverse eq divide)

have convergent (λn. norm x ∗R X n y)
by (intro bounded bilinear .convergent [OF bounded bilinear scaleR] conver-

gent const
convergent norm1 y)

also have (λn. norm x ∗R X n y) = (λn. X n x )
by (subst xy) (simp add : blinfun.bilinear simps)

finally have convergent (λn. X n x ) .
}
then obtain v where v :

∧
x . (λn. X n x ) −−−−→ v x

unfolding convergent def
by metis

have Cauchy (λn. norm (X n))
proof (rule CauchyI )
fix e::real
assume e > 0
from CauchyD [OF 〈Cauchy X 〉 〈0 < e〉] obtain M
where M :

∧
m n. m ≥ M =⇒ n ≥ M =⇒ norm (X m − X n) < e

by auto
show ∃M . ∀m≥M . ∀n≥M . norm (norm (X m) − norm (X n)) < e
proof (safe intro!: exI [where x=M ])
fix m n assume mn: m ≥ M n ≥ M
have norm (norm (X m) − norm (X n)) ≤ norm (X m − X n)
by (metis norm triangle ineq3 real norm def )

also have . . . < e using mn by fact
finally show norm (norm (X m) − norm (X n)) < e .

qed
qed
then obtain K where K : (λn. norm (X n)) −−−−→ K
unfolding Cauchy convergent iff convergent def
by metis

have bounded linear v
proof
fix x y and r ::real
from tendsto add [OF v [of x ] v [of y ]] v [of x + y , unfolded blinfun.bilinear simps]

tendsto scaleR[OF tendsto const [of r ] v [of x ]] v [of r ∗R x , unfolded blin-
fun.bilinear simps]

show v (x + y) = v x + v y v (r ∗R x ) = r ∗R v x
by (metis (poly guards query) LIMSEQ unique)+

show ∃K . ∀ x . norm (v x ) ≤ norm x ∗ K
proof (safe intro!: exI [where x=K ])
fix x
have norm (v x ) ≤ K ∗ norm x
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by (rule tendsto le[OF tendsto mult [OF K tendsto const ] tendsto norm[OF
v ]])

(auto simp: norm blinfun)
thus norm (v x ) ≤ norm x ∗ K
by (simp add : ac simps)

qed
qed
hence Bv :

∧
x . (λn. X n x ) −−−−→ Blinfun v x

by (auto simp: bounded linear Blinfun apply v)

have X −−−−→ Blinfun v
proof (rule LIMSEQ I )
fix r ::real assume r > 0
define r ′ where r ′ = r / 2
have 0 < r ′ r ′ < r using 〈r > 0 〉 by (simp all add : r ′ def )
from CauchyD [OF 〈Cauchy X 〉 〈r ′ > 0 〉]
obtain M where M :

∧
m n. m ≥ M =⇒ n ≥ M =⇒ norm (X m − X n) <

r ′

by metis
show ∃no. ∀n≥no. norm (X n − Blinfun v) < r
proof (safe intro!: exI [where x=M ])
fix n assume n: M ≤ n
have norm (X n − Blinfun v) ≤ r ′

proof (rule norm blinfun bound)
fix x
have eventually (λm. m ≥ M ) sequentially
by (metis eventually ge at top)
hence ev le: eventually (λm. norm (X n x − X m x ) ≤ r ′ ∗ norm x )

sequentially
proof eventually elim
case (elim m)
have norm (X n x − X m x ) = norm ((X n − X m) x )
by (simp add : blinfun.bilinear simps)

also have . . . ≤ norm ((X n − X m)) ∗ norm x
by (rule norm blinfun)

also have . . . ≤ r ′ ∗ norm x
using M [OF n elim] by (simp add : mult right mono)

finally show ?case .
qed
have tendsto v : (λm. norm (X n x − X m x )) −−−−→ norm (X n x −

Blinfun v x )
by (auto intro!: tendsto intros Bv)

show norm ((X n − Blinfun v) x ) ≤ r ′ ∗ norm x
by (auto intro!: tendsto upperbound tendsto v ev le simp: blinfun.bilinear simps)
qed (simp add : 〈0 < r ′〉 less imp le)
thus norm (X n − Blinfun v) < r
by (metis 〈r ′ < r 〉 le less trans)

qed
qed
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thus convergent X
by (rule convergentI )

qed

4.9.5 On Euclidean Space

lemma Zfun sum:
assumes finite s
assumes f :

∧
i . i ∈ s =⇒ Zfun (f i) F

shows Zfun (λx . sum (λi . f i x ) s) F
using assms by induct (auto intro!: Zfun zero Zfun add)

lemma norm blinfun euclidean le:
fixes a:: ′a::euclidean space ⇒L

′b::real normed vector
shows norm a ≤ sum (λx . norm (a x )) Basis
apply (rule norm blinfun bound)
apply (simp add : sum nonneg)
apply (subst euclidean representation[symmetric, where ′a= ′a])
apply (simp only : blinfun.bilinear simps sum distrib right)
apply (rule order .trans[OF norm sum sum mono])
apply (simp add : abs mult mult right mono ac simps Basis le norm)
done

lemma tendsto componentwise1 :
fixes a:: ′a::euclidean space ⇒L

′b::real normed vector
and b:: ′c ⇒ ′a ⇒L

′b
assumes (

∧
j . j ∈ Basis =⇒ ((λn. b n j ) −−−→ a j ) F )

shows (b −−−→ a) F
proof −
have

∧
j . j ∈ Basis =⇒ Zfun (λx . norm (b x j − a j )) F

using assms unfolding tendsto Zfun iff Zfun norm iff .
hence Zfun (λx .

∑
j∈Basis. norm (b x j − a j )) F

by (auto intro!: Zfun sum)
thus ?thesis
unfolding tendsto Zfun iff
by (rule Zfun le)
(auto intro!: order trans[OF norm blinfun euclidean le] simp: blinfun.bilinear simps)

qed

lift definition
blinfun of matrix ::( ′b::euclidean space ⇒ ′a::euclidean space ⇒ real) ⇒ ′a ⇒L

′b
is λa x .

∑
i∈Basis.

∑
j∈Basis. ((x · j ) ∗ a i j ) ∗R i

by (intro bounded linear intros)

lemma blinfun of matrix works:
fixes f :: ′a::euclidean space ⇒L

′b::euclidean space
shows blinfun of matrix (λi j . (f j ) · i) = f

proof (transfer , rule, rule euclidean eqI )
fix f :: ′a ⇒ ′b and x :: ′a and b:: ′b assume bounded linear f and b: b ∈ Basis
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then interpret bounded linear f by simp
have (

∑
j∈Basis.

∑
i∈Basis. (x · i ∗ (f i · j )) ∗R j ) · b

= (
∑

j∈Basis. if j = b then (
∑

i∈Basis. (x · i ∗ (f i · j ))) else 0 )
using b
by (simp add : inner sum left inner Basis if distrib cong : if cong) (simp add :

sum.swap)
also have . . . = (

∑
i∈Basis. (x · i ∗ (f i · b)))

using b by (simp)
also have . . . = f x · b
by (metis (mono tags, lifting) Linear Algebra.linear componentwise linear axioms)
finally show (

∑
j∈Basis.

∑
i∈Basis. (x · i ∗ (f i · j )) ∗R j ) · b = f x · b .

qed

lemma blinfun of matrix apply :
blinfun of matrix a x = (

∑
i∈Basis.

∑
j∈Basis. ((x · j ) ∗ a i j ) ∗R i)

by transfer simp

lemma blinfun of matrix minus: blinfun of matrix x − blinfun of matrix y = blin-
fun of matrix (x − y)
by transfer (auto simp: algebra simps sum subtractf )

lemma norm blinfun of matrix :
norm (blinfun of matrix a) ≤ (

∑
i∈Basis.

∑
j∈Basis. |a i j |)

apply (rule norm blinfun bound)
apply (simp add : sum nonneg)
apply (simp only : blinfun of matrix apply sum distrib right)
apply (rule order trans[OF norm sum sum mono])
apply (rule order trans[OF norm sum sum mono])
apply (simp add : abs mult mult right mono ac simps Basis le norm)
done

lemma tendsto blinfun of matrix :
assumes

∧
i j . i ∈ Basis =⇒ j ∈ Basis =⇒ ((λn. b n i j ) −−−→ a i j ) F

shows ((λn. blinfun of matrix (b n)) −−−→ blinfun of matrix a) F
proof −
have

∧
i j . i ∈ Basis =⇒ j ∈ Basis =⇒ Zfun (λx . norm (b x i j − a i j )) F

using assms unfolding tendsto Zfun iff Zfun norm iff .
hence Zfun (λx . (

∑
i∈Basis.

∑
j∈Basis. |b x i j − a i j |)) F

by (auto intro!: Zfun sum)
thus ?thesis
unfolding tendsto Zfun iff blinfun of matrix minus
by (rule Zfun le) (auto intro!: order trans[OF norm blinfun of matrix ])

qed

lemma tendsto componentwise:
fixes a:: ′a::euclidean space ⇒L

′b::euclidean space
and b:: ′c ⇒ ′a ⇒L

′b
shows (

∧
i j . i ∈ Basis =⇒ j ∈ Basis =⇒ ((λn. b n j · i) −−−→ a j · i) F ) =⇒

(b −−−→ a) F
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apply (subst blinfun of matrix works[of a, symmetric])
apply (subst blinfun of matrix works[of b x for x , symmetric, abs def ])
by (rule tendsto blinfun of matrix )

lemma
continuous blinfun componentwiseI :
fixes f :: ′b::t2 space ⇒ ′a::euclidean space ⇒L

′c::euclidean space
assumes

∧
i j . i ∈ Basis =⇒ j ∈ Basis =⇒ continuous F (λx . (f x ) j · i)

shows continuous F f
using assms by (auto simp: continuous def intro!: tendsto componentwise)

lemma
continuous blinfun componentwiseI1 :
fixes f :: ′b::t2 space ⇒ ′a::euclidean space ⇒L

′c::real normed vector
assumes

∧
i . i ∈ Basis =⇒ continuous F (λx . f x i)

shows continuous F f
using assms by (auto simp: continuous def intro!: tendsto componentwise1 )

lemma
continuous on blinfun componentwise:
fixes f :: ′d ::t2 space ⇒ ′e::euclidean space ⇒L

′f ::real normed vector
assumes

∧
i . i ∈ Basis =⇒ continuous on s (λx . f x i)

shows continuous on s f
using assms
by (auto intro!: continuous at imp continuous on intro!: tendsto componentwise1
simp: continuous on eq continuous within continuous def )

lemma bounded linear blinfun matrix : bounded linear (λx . (x :: ⇒L ) j · i)
by (auto intro!: bounded linearI ′ bounded linear intros)

lemma continuous blinfun matrix :
fixes f :: ′b::t2 space ⇒ ′a::real normed vector ⇒L

′c::real inner
assumes continuous F f
shows continuous F (λx . (f x ) j · i)
by (rule bounded linear .continuous[OF bounded linear blinfun matrix assms])

lemma continuous on blinfun matrix :
fixes f :: ′a::t2 space ⇒ ′b::real normed vector ⇒L

′c::real inner
assumes continuous on S f
shows continuous on S (λx . (f x ) j · i)
using assms
by (auto simp: continuous on eq continuous within continuous blinfun matrix )

lemma continuous on blinfun of matrix [continuous intros]:
assumes

∧
i j . i ∈ Basis =⇒ j ∈ Basis =⇒ continuous on S (λs. g s i j )

shows continuous on S (λs. blinfun of matrix (g s))
using assms
by (auto simp: continuous on intro!: tendsto blinfun of matrix )
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lemma mult if delta:
(if P then (1 :: ′a::comm semiring 1 ) else 0 ) ∗ q = (if P then q else 0 )
by auto

lemma compact blinfun lemma:
fixes f :: nat ⇒ ′a::euclidean space ⇒L

′b::euclidean space
assumes bounded (range f )
shows ∀ d⊆Basis. ∃ l :: ′a ⇒L

′b. ∃ r ::nat⇒nat .
strict mono r ∧ (∀ e>0 . eventually (λn. ∀ i∈d . dist (f (r n) i) (l i) < e)

sequentially)
by (rule compact lemma general [where unproj = λe. blinfun of matrix (λi j . e

j · i)])
(auto intro!: euclidean eqI [where ′a= ′b] bounded linear image assms
simp: blinfun of matrix works blinfun of matrix apply inner Basis mult if delta

sum.delta ′

scaleR sum left [symmetric])

lemma blinfun euclidean eqI : (
∧
i . i ∈ Basis =⇒ blinfun apply x i = blinfun apply

y i) =⇒ x = y
apply (auto intro!: blinfun eqI )
apply (subst (2 ) euclidean representation[symmetric, where ′a= ′a])
apply (subst (1 ) euclidean representation[symmetric, where ′a= ′a])
apply (simp add : blinfun.bilinear simps)
done

lemma Blinfun eq matrix : bounded linear f =⇒ Blinfun f = blinfun of matrix (λi
j . f j · i)
by (intro blinfun euclidean eqI )

(auto simp: blinfun of matrix apply bounded linear Blinfun apply inner Basis
if distrib

if distribR sum.delta ′ euclidean representation
cong : if cong)

TODO: generalize (via compact cball)?

instance blinfun :: (euclidean space, euclidean space) heine borel
proof
fix f :: nat ⇒ ′a ⇒L

′b
assume f : bounded (range f )
then obtain l :: ′a ⇒L

′b and r where r : strict mono r
and l : ∀ e>0 . eventually (λn. ∀ i∈Basis. dist (f (r n) i) (l i) < e) sequentially
using compact blinfun lemma [OF f ] by blast

{
fix e::real
let ?d = real of nat DIM ( ′a) ∗ real of nat DIM ( ′b)
assume e > 0
hence e / ?d > 0 by (simp)
with l have eventually (λn. ∀ i∈Basis. dist (f (r n) i) (l i) < e / ?d)

sequentially
by simp



Bounded Linear Function.thy 839

moreover
{
fix n
assume n: ∀ i∈Basis. dist (f (r n) i) (l i) < e / ?d
have norm (f (r n) − l) = norm (blinfun of matrix (λi j . (f (r n) − l) j ·

i))
unfolding blinfun of matrix works ..

also note norm blinfun of matrix
also have (

∑
i∈Basis.

∑
j∈Basis. |(f (r n) − l) j · i |) <

(
∑

i∈(Basis:: ′b set). e / real of nat DIM ( ′b))
proof (rule sum strict mono)
fix i :: ′b assume i : i ∈ Basis
have (

∑
j :: ′a∈Basis. |(f (r n) − l) j · i |) < (

∑
j :: ′a∈Basis. e / ?d)

proof (rule sum strict mono)
fix j :: ′a assume j : j ∈ Basis
have |(f (r n) − l) j · i | ≤ norm ((f (r n) − l) j )
by (simp add : Basis le norm i)

also have . . . < e / ?d
using n i j by (auto simp: dist norm blinfun.bilinear simps)

finally show |(f (r n) − l) j · i | < e / ?d by simp
qed simp all
also have . . . ≤ e / real of nat DIM ( ′b)
by simp

finally show (
∑

j∈Basis. |(f (r n) − l) j · i |) < e / real of nat DIM ( ′b)
by simp

qed simp all
also have . . . ≤ e by simp
finally have dist (f (r n)) l < e
by (auto simp: dist norm)

}
ultimately have eventually (λn. dist (f (r n)) l < e) sequentially
using eventually elim2 by force

}
then have ∗: ((f ◦ r) −−−→ l) sequentially
unfolding o def tendsto iff by simp

with r show ∃ l r . strict mono r ∧ ((f ◦ r) −−−→ l) sequentially
by auto

qed

4.9.6 concrete bounded linear functions

lemma transfer bounded bilinear bounded linearI :
assumes g = (λi x . (blinfun apply (f i) x ))
shows bounded bilinear g = bounded linear f

proof
assume bounded bilinear g
then interpret bounded bilinear f by (simp add : assms)
show bounded linear f
proof (unfold locales, safe intro!: blinfun eqI )
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fix i
show f (x + y) i = (f x + f y) i f (r ∗R x ) i = (r ∗R f x ) i for r x y
by (auto intro!: blinfun eqI simp: blinfun.bilinear simps)

from nonneg bounded show ∃K . ∀ x . norm (f x ) ≤ norm x ∗ K
by (rule ex reg) (auto intro!: onorm bound simp: norm blinfun.rep eq ac simps)

qed
qed (auto simp: assms intro!: blinfun.comp)

lemma transfer bounded bilinear bounded linear [transfer rule]:
(rel fun (rel fun (=) (pcr blinfun (=) (=))) (=)) bounded bilinear bounded linear
by (auto simp: pcr blinfun def cr blinfun def rel fun def OO def
intro!: transfer bounded bilinear bounded linearI )

context bounded bilinear
begin

lift definition prod left :: ′b ⇒ ′a ⇒L
′c is (λb a. prod a b)

by (rule bounded linear left)
declare prod left .rep eq [simp]

lemma bounded linear prod left [bounded linear ]: bounded linear prod left
by transfer (rule flip)

lift definition prod right :: ′a ⇒ ′b ⇒L
′c is (λa b. prod a b)

by (rule bounded linear right)
declare prod right .rep eq [simp]

lemma bounded linear prod right [bounded linear ]: bounded linear prod right
by transfer (rule bounded bilinear axioms)

end

lift definition id blinfun:: ′a::real normed vector ⇒L
′a is λx . x

by (rule bounded linear ident)

lemmas blinfun apply id blinfun[simp] = id blinfun.rep eq

lemma norm blinfun id [simp]:
norm (id blinfun:: ′a::{real normed vector , perfect space} ⇒L

′a) = 1
by transfer (auto simp: onorm id)

lemma norm blinfun id le:
norm (id blinfun:: ′a::real normed vector ⇒L

′a) ≤ 1
by transfer (auto simp: onorm id le)

lift definition fst blinfun::( ′a::real normed vector × ′b::real normed vector) ⇒L
′a is fst
by (rule bounded linear fst)
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lemma blinfun apply fst blinfun[simp]: blinfun apply fst blinfun = fst
by transfer (rule refl)

lift definition snd blinfun::( ′a::real normed vector × ′b::real normed vector) ⇒L
′b is snd
by (rule bounded linear snd)

lemma blinfun apply snd blinfun[simp]: blinfun apply snd blinfun = snd
by transfer (rule refl)

lift definition blinfun compose::
′a::real normed vector ⇒L

′b::real normed vector ⇒
′c::real normed vector ⇒L

′a ⇒
′c ⇒L

′b (infixl oL 55 ) is (o)
parametric comp transfer
unfolding o def
by (rule bounded linear compose)

lemma blinfun apply blinfun compose[simp]: (a oL b) c = a (b c)
by (simp add : blinfun compose.rep eq)

lemma norm blinfun compose:
norm (f oL g) ≤ norm f ∗ norm g
by transfer (rule onorm compose)

lemma bounded bilinear blinfun compose[bounded bilinear ]: bounded bilinear (oL)
by unfold locales
(auto intro!: blinfun eqI exI [where x=1 ] simp: blinfun.bilinear simps norm blinfun compose)

lemma blinfun compose zero[simp]:
blinfun compose 0 = (λ . 0 )
blinfun compose x 0 = 0
by (auto simp: blinfun.bilinear simps intro!: blinfun eqI )

lemma blinfun bij2 :
fixes f :: ′a ⇒L

′a::euclidean space
assumes f oL g = id blinfun
shows bij (blinfun apply g)

proof (rule bijI )
show inj g
using assms
by (metis blinfun apply id blinfun blinfun compose.rep eq injI inj on imageI2 )

then show surj g
using blinfun.bounded linear right bounded linear def linear inj imp surj by

blast
qed
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lemma blinfun bij1 :
fixes f :: ′a ⇒L

′a::euclidean space
assumes f oL g = id blinfun
shows bij (blinfun apply f )

proof (rule bijI )
show surj (blinfun apply f )
by (metis assms blinfun apply blinfun compose blinfun apply id blinfun surjI )

then show inj (blinfun apply f )
using blinfun.bounded linear right bounded linear def linear surj imp inj by

blast
qed

lift definition blinfun inner right :: ′a::real inner ⇒ ′a ⇒L real is (·)
by (rule bounded linear inner right)

declare blinfun inner right .rep eq [simp]

lemma bounded linear blinfun inner right [bounded linear ]: bounded linear blinfun inner right
by transfer (rule bounded bilinear inner)

lift definition blinfun inner left :: ′a::real inner ⇒ ′a ⇒L real is λx y . y · x
by (rule bounded linear inner left)

declare blinfun inner left .rep eq [simp]

lemma bounded linear blinfun inner left [bounded linear ]: bounded linear blinfun inner left
by transfer (rule bounded bilinear .flip[OF bounded bilinear inner ])

lift definition blinfun scaleR right ::real ⇒ ′a ⇒L
′a::real normed vector is (∗R)

by (rule bounded linear scaleR right)
declare blinfun scaleR right .rep eq [simp]

lemma bounded linear blinfun scaleR right [bounded linear ]: bounded linear blinfun scaleR right
by transfer (rule bounded bilinear scaleR)

lift definition blinfun scaleR left :: ′a::real normed vector ⇒ real ⇒L
′a is λx y . y

∗R x
by (rule bounded linear scaleR left)

lemmas [simp] = blinfun scaleR left .rep eq

lemma bounded linear blinfun scaleR left [bounded linear ]: bounded linear blinfun scaleR left
by transfer (rule bounded bilinear .flip[OF bounded bilinear scaleR])

lift definition blinfun mult right :: ′a ⇒ ′a ⇒L
′a::real normed algebra is (∗)

by (rule bounded linear mult right)
declare blinfun mult right .rep eq [simp]
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lemma bounded linear blinfun mult right [bounded linear ]: bounded linear blinfun mult right
by transfer (rule bounded bilinear mult)

lift definition blinfun mult left :: ′a::real normed algebra ⇒ ′a ⇒L
′a is λx y . y ∗

x
by (rule bounded linear mult left)

lemmas [simp] = blinfun mult left .rep eq

lemma bounded linear blinfun mult left [bounded linear ]: bounded linear blinfun mult left
by transfer (rule bounded bilinear .flip[OF bounded bilinear mult ])

lemmas bounded linear function uniform limit intros[uniform limit intros] =
bounded linear .uniform limit [OF bounded linear apply blinfun]
bounded linear .uniform limit [OF bounded linear blinfun apply ]
bounded linear .uniform limit [OF bounded linear blinfun matrix ]

4.9.7 The strong operator topology on continuous linear op-
erators

Let ′a and ′b be two normed real vector spaces. Then the space of linear
continuous operators from ′a to ′b has a canonical norm, and therefore a
canonical corresponding topology (the type classes instantiation are given
in Bounded_Linear_Function.thy).

However, there is another topology on this space, the strong operator topol-
ogy, where Tn tends to T iff, for all x in ′a, then Tn x tends to T x. This
is precisely the product topology where the target space is endowed with
the norm topology. It is especially useful when ′b is the set of real numbers,
since then this topology is compact.

We can not implement it using type classes as there is already a topology,
but at least we can define it as a topology.

Note that there is yet another (common and useful) topology on operator
spaces, the weak operator topology, defined analogously using the product
topology, but where the target space is given the weak-* topology, i.e., the
pullback of the weak topology on the bidual of the space under the canonical
embedding of a space into its bidual. We do not define it there, although it
could also be defined analogously.

definition strong operator topology ::( ′a::real normed vector ⇒L
′b::real normed vector)

topology
where strong operator topology = pullback topology UNIV blinfun apply euclidean

lemma strong operator topology topspace:
topspace strong operator topology = UNIV

unfolding strong operator topology def topspace pullback topology topspace euclidean
by auto
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lemma strong operator topology basis:
fixes f ::( ′a::real normed vector ⇒L

′b::real normed vector) and U :: ′i ⇒ ′b set
and x :: ′i ⇒ ′a
assumes finite I

∧
i . i ∈ I =⇒ open (U i)

shows openin strong operator topology {f . ∀ i∈I . blinfun apply f (x i) ∈ U i}
proof −
have open {g ::( ′a⇒ ′b). ∀ i∈I . g (x i) ∈ U i}
by (rule product topology basis ′[OF assms])

moreover have {f . ∀ i∈I . blinfun apply f (x i) ∈ U i}
= blinfun apply−‘{g ::( ′a⇒ ′b). ∀ i∈I . g (x i) ∈ U i} ∩ UNIV

by auto
ultimately show ?thesis
unfolding strong operator topology def by (subst openin pullback topology) auto

qed

lemma strong operator topology continuous evaluation:
continuous map strong operator topology euclidean (λf . blinfun apply f x )

proof −
have continuous map strong operator topology euclidean ((λf . f x ) o blinfun apply)
unfolding strong operator topology def apply (rule continuous map pullback)
using continuous on product coordinates by fastforce

then show ?thesis unfolding comp def by simp
qed

lemma continuous on strong operator topo iff coordinatewise:
continuous map T strong operator topology f
←→ (∀ x . continuous map T euclidean (λy . blinfun apply (f y) x ))

proof (auto)
fix x :: ′b
assume continuous map T strong operator topology f
with continuous map compose[OF this strong operator topology continuous evaluation]
have continuous map T euclidean ((λz . blinfun apply z x ) o f )
by simp

then show continuous map T euclidean (λy . blinfun apply (f y) x )
unfolding comp def by auto

next
assume ∗: ∀ x . continuous map T euclidean (λy . blinfun apply (f y) x )
have

∧
i . continuous map T euclidean (λx . blinfun apply (f x ) i)

using ∗ unfolding comp def by auto
then have continuous map T euclidean (blinfun apply o f )
unfolding o def
by (metis (no types) continuous map componentwise UNIV euclidean product topology)
show continuous map T strong operator topology f
unfolding strong operator topology def
apply (rule continuous map pullback ′)
by (auto simp add : 〈continuous map T euclidean (blinfun apply o f )〉)

qed



Derivative.thy 845

lemma strong operator topology weaker than euclidean:
continuous map euclidean strong operator topology (λf . f )
by (subst continuous on strong operator topo iff coordinatewise,
auto simp add : linear continuous on)

end

4.10 Derivative

theory Derivative
imports
Bounded Linear Function
Line Segment
Convex Euclidean Space

begin

declare bounded linear inner left [intro]

declare has derivative bounded linear [dest ]

4.10.1 Derivatives

lemma has derivative add const :
(f has derivative f ′) net =⇒ ((λx . f x + c) has derivative f ′) net
by (intro derivative eq intros) auto

4.10.2 Derivative with composed bilinear function

More explicit epsilon-delta forms.

proposition has derivative within ′:
(f has derivative f ′)(at x within s) ←→
bounded linear f ′ ∧
(∀ e>0 . ∃ d>0 . ∀ x ′∈s. 0 < norm (x ′ − x ) ∧ norm (x ′ − x ) < d −→
norm (f x ′ − f x − f ′(x ′ − x )) / norm (x ′ − x ) < e)

unfolding has derivative within Lim within dist norm
by (simp add : diff diff eq)

lemma has derivative at ′:
(f has derivative f ′) (at x )
←→ bounded linear f ′ ∧

(∀ e>0 . ∃ d>0 . ∀ x ′. 0 < norm (x ′ − x ) ∧ norm (x ′ − x ) < d −→
norm (f x ′ − f x − f ′(x ′ − x )) / norm (x ′ − x ) < e)

using has derivative within ′ [of f f ′ x UNIV ] by simp

lemma has derivative componentwise within:
(f has derivative f ′) (at a within S ) ←→
(∀ i ∈ Basis. ((λx . f x · i) has derivative (λx . f ′ x · i)) (at a within S ))

apply (simp add : has derivative within)
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apply (subst tendsto componentwise iff )
apply (simp add : bounded linear componentwise iff [symmetric] ball conj distrib)
apply (simp add : algebra simps)
done

lemma has derivative at withinI :
(f has derivative f ′) (at x ) =⇒ (f has derivative f ′) (at x within s)
unfolding has derivative within ′ has derivative at ′

by blast

lemma has derivative right :
fixes f :: real ⇒ real
and y :: real

shows (f has derivative ((∗) y)) (at x within ({x <..} ∩ I )) ←→
((λt . (f x − f t) / (x − t)) −−−→ y) (at x within ({x <..} ∩ I ))

proof −
have ((λt . (f t − (f x + y ∗ (t − x ))) / |t − x |) −−−→ 0 ) (at x within ({x<..}
∩ I )) ←→

((λt . (f t − f x ) / (t − x ) − y) −−−→ 0 ) (at x within ({x<..} ∩ I ))
by (intro Lim cong within) (auto simp add : diff divide distrib add divide distrib)
also have . . . ←→ ((λt . (f t − f x ) / (t − x )) −−−→ y) (at x within ({x<..} ∩

I ))
by (simp add : Lim null [symmetric])

also have . . . ←→ ((λt . (f x − f t) / (x − t)) −−−→ y) (at x within ({x<..} ∩
I ))

by (intro Lim cong within) (simp all add : field simps)
finally show ?thesis
by (simp add : bounded linear mult right has derivative within)

qed

Caratheodory characterization

lemma DERIV caratheodory within:
(f has field derivative l) (at x within S ) ←→
(∃ g . (∀ z . f z − f x = g z ∗ (z − x )) ∧ continuous (at x within S ) g ∧ g x = l)

(is ?lhs = ?rhs)
proof
assume ?lhs
show ?rhs
proof (intro exI conjI )
let ?g = (%z . if z = x then l else (f z − f x ) / (z−x ))
show ∀ z . f z − f x = ?g z ∗ (z−x ) by simp
show continuous (at x within S ) ?g using 〈?lhs〉

by (auto simp add : continuous within has field derivative iff cong : Lim cong within)
show ?g x = l by simp

qed
next
assume ?rhs
then obtain g where
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(∀ z . f z − f x = g z ∗ (z−x )) and continuous (at x within S ) g and g x = l
by blast
thus ?lhs
by (auto simp add : continuous within has field derivative iff cong : Lim cong within)

qed

4.10.3 Differentiability

definition
differentiable on :: ( ′a::real normed vector ⇒ ′b::real normed vector) ⇒ ′a set ⇒

bool
(infix differentiable ′ on 50 )

where f differentiable on s ←→ (∀ x∈s. f differentiable (at x within s))

lemma differentiableI : (f has derivative f ′) net =⇒ f differentiable net
unfolding differentiable def
by auto

lemma differentiable onD : [[f differentiable on S ; x ∈ S ]] =⇒ f differentiable (at x
within S )
using differentiable on def by blast

lemma differentiable at withinI : f differentiable (at x ) =⇒ f differentiable (at x
within s)
unfolding differentiable def
using has derivative at withinI
by blast

lemma differentiable at imp differentiable on:
(
∧
x . x ∈ s =⇒ f differentiable at x ) =⇒ f differentiable on s

by (metis differentiable at withinI differentiable on def )

corollary differentiable iff scaleR:
fixes f :: real ⇒ ′a::real normed vector
shows f differentiable F ←→ (∃ d . (f has derivative (λx . x ∗R d)) F )
by (auto simp: differentiable def dest : has derivative linear linear imp scaleR)

lemma differentiable on eq differentiable at :
open s =⇒ f differentiable on s ←→ (∀ x∈s. f differentiable at x )
unfolding differentiable on def
by (metis at within interior interior open)

lemma differentiable transform within:
assumes f differentiable (at x within s)
and 0 < d
and x ∈ s
and

∧
x ′. [[x ′∈s; dist x ′ x < d ]] =⇒ f x ′ = g x ′

shows g differentiable (at x within s)
using assms has derivative transform within unfolding differentiable def
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by blast

lemma differentiable on ident [simp, derivative intros]: (λx . x ) differentiable on S
by (simp add : differentiable at imp differentiable on)

lemma differentiable on id [simp, derivative intros]: id differentiable on S
by (simp add : id def )

lemma differentiable on const [simp, derivative intros]: (λz . c) differentiable on S
by (simp add : differentiable on def )

lemma differentiable on mult [simp, derivative intros]:
fixes f :: ′M ::real normed vector ⇒ ′a::real normed algebra
shows [[f differentiable on S ; g differentiable on S ]] =⇒ (λz . f z ∗ g z ) differen-

tiable on S
unfolding differentiable on def differentiable def
using differentiable def differentiable mult by blast

lemma differentiable on compose:
[[g differentiable on S ; f differentiable on (g ‘ S )]] =⇒ (λx . f (g x )) differen-

tiable on S
by (simp add : differentiable in compose differentiable on def )

lemma bounded linear imp differentiable on: bounded linear f =⇒ f differentiable on
S
by (simp add : differentiable on def bounded linear imp differentiable)

lemma linear imp differentiable on:
fixes f :: ′a::euclidean space ⇒ ′b::real normed vector
shows linear f =⇒ f differentiable on S

by (simp add : differentiable on def linear imp differentiable)

lemma differentiable on minus [simp, derivative intros]:
f differentiable on S =⇒ (λz . −(f z )) differentiable on S

by (simp add : differentiable on def )

lemma differentiable on add [simp, derivative intros]:
[[f differentiable on S ; g differentiable on S ]] =⇒ (λz . f z + g z ) differentiable on

S
by (simp add : differentiable on def )

lemma differentiable on diff [simp, derivative intros]:
[[f differentiable on S ; g differentiable on S ]] =⇒ (λz . f z − g z ) differentiable on

S
by (simp add : differentiable on def )

lemma differentiable on inverse [simp, derivative intros]:
fixes f :: ′a :: real normed vector ⇒ ′b :: real normed field
shows f differentiable on S =⇒ (

∧
x . x ∈ S =⇒ f x 6= 0 ) =⇒ (λx . inverse (f x ))
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differentiable on S
by (simp add : differentiable on def )

lemma differentiable on scaleR [derivative intros, simp]:
[[f differentiable on S ; g differentiable on S ]] =⇒ (λx . f x ∗R g x ) differentiable on

S
unfolding differentiable on def
by (blast intro: differentiable scaleR)

lemma has derivative sqnorm at [derivative intros, simp]:
((λx . (norm x )2) has derivative (λx . 2 ∗R (a · x ))) (at a)
using bounded bilinear .FDERIV [of (·) id id a id id ]
by (auto simp: inner commute dot square norm bounded bilinear inner)

lemma differentiable sqnorm at [derivative intros, simp]:
fixes a :: ′a :: {real normed vector ,real inner}
shows (λx . (norm x )2) differentiable (at a)

by (force simp add : differentiable def intro: has derivative sqnorm at)

lemma differentiable on sqnorm [derivative intros, simp]:
fixes S :: ′a :: {real normed vector ,real inner} set
shows (λx . (norm x )2) differentiable on S

by (simp add : differentiable at imp differentiable on)

lemma differentiable norm at [derivative intros, simp]:
fixes a :: ′a :: {real normed vector ,real inner}
shows a 6= 0 =⇒ norm differentiable (at a)

using differentiableI has derivative norm by blast

lemma differentiable on norm [derivative intros, simp]:
fixes S :: ′a :: {real normed vector ,real inner} set
shows 0 /∈ S =⇒ norm differentiable on S

by (metis differentiable at imp differentiable on differentiable norm at)

4.10.4 Frechet derivative and Jacobian matrix

definition frechet derivative f net = (SOME f ′. (f has derivative f ′) net)

proposition frechet derivative works:
f differentiable net ←→ (f has derivative (frechet derivative f net)) net
unfolding frechet derivative def differentiable def
unfolding some eq ex [of λ f ′ . (f has derivative f ′) net ] ..

lemma linear frechet derivative: f differentiable net =⇒ linear (frechet derivative
f net)
unfolding frechet derivative works has derivative def
by (auto intro: bounded linear .linear)

lemma frechet derivative const [simp]: frechet derivative (λx . c) (at a) = (λx . 0 )
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using differentiable const frechet derivative works has derivative const has derivative unique
by blast

lemma frechet derivative id [simp]: frechet derivative id (at a) = id
using differentiable def frechet derivative works has derivative id has derivative unique

by blast

lemma frechet derivative ident [simp]: frechet derivative (λx . x ) (at a) = (λx . x )
by (metis eq id iff frechet derivative id)

4.10.5 Differentiability implies continuity

proposition differentiable imp continuous within:
f differentiable (at x within s) =⇒ continuous (at x within s) f
by (auto simp: differentiable def intro: has derivative continuous)

lemma differentiable imp continuous on:
f differentiable on s =⇒ continuous on s f
unfolding differentiable on def continuous on eq continuous within
using differentiable imp continuous within by blast

lemma differentiable on subset :
f differentiable on t =⇒ s ⊆ t =⇒ f differentiable on s
unfolding differentiable on def
using differentiable within subset
by blast

lemma differentiable on empty : f differentiable on {}
unfolding differentiable on def
by auto

lemma has derivative continuous on:
(
∧
x . x ∈ s =⇒ (f has derivative f ′ x ) (at x within s)) =⇒ continuous on s f

by (auto intro!: differentiable imp continuous on differentiableI simp: differen-
tiable on def )

Results about neighborhoods filter.

lemma eventually nhds metric le:
eventually P (nhds a) = (∃ d>0 . ∀ x . dist x a ≤ d −→ P x )
unfolding eventually nhds metric by (safe, rule tac x=d / 2 in exI , auto)

lemma le nhds: F ≤ nhds a ←→ (∀S . open S ∧ a ∈ S −→ eventually (λx . x ∈
S ) F )
unfolding le filter def eventually nhds by (fast elim: eventually mono)

lemma le nhds metric: F ≤ nhds a ←→ (∀ e>0 . eventually (λx . dist x a < e) F )
unfolding le filter def eventually nhds metric by (fast elim: eventually mono)

lemma le nhds metric le: F ≤ nhds a ←→ (∀ e>0 . eventually (λx . dist x a ≤ e)
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F )
unfolding le filter def eventually nhds metric le by (fast elim: eventually mono)

Several results are easier using a ”multiplied-out” variant. (I got this idea
from Dieudonne’s proof of the chain rule).

lemma has derivative within alt :
(f has derivative f ′) (at x within s) ←→ bounded linear f ′ ∧
(∀ e>0 . ∃ d>0 . ∀ y∈s. norm(y − x ) < d −→ norm (f y − f x − f ′ (y − x ))

≤ e ∗ norm (y − x ))
unfolding has derivative within filterlim def le nhds metric le eventually filtermap
eventually at dist norm diff diff eq

by (force simp add : linear 0 bounded linear .linear pos divide le eq)

lemma has derivative within alt2 :
(f has derivative f ′) (at x within s) ←→ bounded linear f ′ ∧
(∀ e>0 . eventually (λy . norm (f y − f x − f ′ (y − x )) ≤ e ∗ norm (y − x ))

(at x within s))
unfolding has derivative within filterlim def le nhds metric le eventually filtermap
eventually at dist norm diff diff eq

by (force simp add : linear 0 bounded linear .linear pos divide le eq)

lemma has derivative at alt :
(f has derivative f ′) (at x ) ←→
bounded linear f ′ ∧
(∀ e>0 . ∃ d>0 . ∀ y . norm(y − x ) < d −→ norm (f y − f x − f ′(y − x )) ≤ e

∗ norm (y − x ))
using has derivative within alt [where s=UNIV ]
by simp

4.10.6 The chain rule

proposition diff chain within[derivative intros]:
assumes (f has derivative f ′) (at x within s)
and (g has derivative g ′) (at (f x ) within (f ‘ s))

shows ((g ◦ f ) has derivative (g ′ ◦ f ′))(at x within s)
using has derivative in compose[OF assms]
by (simp add : comp def )

lemma diff chain at [derivative intros]:
(f has derivative f ′) (at x ) =⇒
(g has derivative g ′) (at (f x )) =⇒ ((g ◦ f ) has derivative (g ′ ◦ f ′)) (at x )

using has derivative compose[of f f ′ x UNIV g g ′]
by (simp add : comp def )

lemma has vector derivative within open:
a ∈ S =⇒ open S =⇒
(f has vector derivative f ′) (at a within S ) ←→ (f has vector derivative f ′) (at

a)
by (simp only : at within interior interior open)
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lemma field vector diff chain within:
assumes Df : (f has vector derivative f ′) (at x within S )

and Dg : (g has field derivative g ′) (at (f x ) within f ‘ S )
shows ((g ◦ f ) has vector derivative (f ′ ∗ g ′)) (at x within S )
using diff chain within[OF Df [unfolded has vector derivative def ]

Dg [unfolded has field derivative def ]]
by (auto simp: o def mult .commute has vector derivative def )

lemma vector derivative diff chain within:
assumes Df : (f has vector derivative f ′) (at x within S )

and Dg : (g has derivative g ′) (at (f x ) within f‘S )
shows ((g ◦ f ) has vector derivative (g ′ f ′)) (at x within S )

using diff chain within[OF Df [unfolded has vector derivative def ] Dg ]
linear .scaleR[OF has derivative linear [OF Dg ]]
unfolding has vector derivative def o def
by (auto simp: o def mult .commute has vector derivative def )

4.10.7 Composition rules stated just for differentiability

lemma differentiable chain at :
f differentiable (at x ) =⇒
g differentiable (at (f x )) =⇒ (g ◦ f ) differentiable (at x )

unfolding differentiable def
by (meson diff chain at)

lemma differentiable chain within:
f differentiable (at x within S ) =⇒
g differentiable (at(f x ) within (f ‘ S )) =⇒ (g ◦ f ) differentiable (at x within S )

unfolding differentiable def
by (meson diff chain within)

4.10.8 Uniqueness of derivative

The general result is a bit messy because we need approachability of the
limit point from any direction. But OK for nontrivial intervals etc.

proposition frechet derivative unique within:
fixes f :: ′a::euclidean space ⇒ ′b::real normed vector
assumes 1 : (f has derivative f ′) (at x within S )
and 2 : (f has derivative f ′′) (at x within S )
and S :

∧
i e. [[i∈Basis; e>0 ]] =⇒ ∃ d . 0 < |d | ∧ |d | < e ∧ (x + d ∗R i) ∈ S

shows f ′ = f ′′

proof −
note as = assms(1 ,2 )[unfolded has derivative def ]
then interpret f ′: bounded linear f ′ by auto
from as interpret f ′′: bounded linear f ′′ by auto
have x islimpt S unfolding islimpt approachable
proof (intro allI impI )
fix e :: real
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assume e > 0
obtain d where 0 < |d | and |d | < e and x + d ∗R (SOME i . i ∈ Basis) ∈ S
using assms(3 ) SOME Basis 〈e>0 〉 by blast

then show ∃ x ′∈S . x ′ 6= x ∧ dist x ′ x < e
by (rule tac x=x + d ∗R (SOME i . i ∈ Basis) in bexI ) (auto simp: dist norm

SOME Basis nonzero Basis) qed
then have ∗: netlimit (at x within S ) = x
by (simp add : Lim ident at trivial limit within)

show ?thesis
proof (rule linear eq stdbasis)
show linear f ′ linear f ′′

unfolding linear conv bounded linear using as by auto
next
fix i :: ′a
assume i : i ∈ Basis
define e where e = norm (f ′ i − f ′′ i)
show f ′ i = f ′′ i
proof (rule ccontr)
assume f ′ i 6= f ′′ i
then have e > 0
unfolding e def by auto

obtain d where d :
0 < d
(
∧
y . y∈S −→ 0 < dist y x ∧ dist y x < d −→

dist ((f y − f x − f ′ (y − x )) /R norm (y − x ) −
(f y − f x − f ′′ (y − x )) /R norm (y − x )) (0 − 0 ) < e)

using tendsto diff [OF as(1 ,2 )[THEN conjunct2 ]]
unfolding ∗ Lim within
using 〈e>0 〉 by blast

obtain c where c: 0 < |c| |c| < d ∧ x + c ∗R i ∈ S
using assms(3 ) i d(1 ) by blast

have ∗: norm (− ((1 / |c|) ∗R f ′ (c ∗R i)) + (1 / |c|) ∗R f ′′ (c ∗R i)) =
norm ((1 / |c|) ∗R (− (f ′ (c ∗R i)) + f ′′ (c ∗R i)))
unfolding scaleR right distrib by auto

also have . . . = norm ((1 / |c|) ∗R (c ∗R (− (f ′ i) + f ′′ i)))
unfolding f ′.scaleR f ′′.scaleR
unfolding scaleR right distrib scaleR minus right
by auto

also have . . . = e
unfolding e def
using c(1 )
using norm minus cancel [of f ′ i − f ′′ i ]
by auto

finally show False
using c
using d(2 )[of x + c ∗R i ]
unfolding dist norm
unfolding f ′.scaleR f ′′.scaleR f ′.add f ′′.add f ′.diff f ′′.diff
scaleR scaleR scaleR right diff distrib scaleR right distrib
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using i
by (auto simp: inverse eq divide)

qed
qed

qed

proposition frechet derivative unique within closed interval :
fixes f :: ′a::euclidean space ⇒ ′b::real normed vector
assumes ab:

∧
i . i∈Basis =⇒ a·i < b·i

and x : x ∈ cbox a b
and (f has derivative f ′ ) (at x within cbox a b)
and (f has derivative f ′′) (at x within cbox a b)

shows f ′ = f ′′

proof (rule frechet derivative unique within)
fix e :: real
fix i :: ′a
assume e > 0 and i : i ∈ Basis
then show ∃ d . 0 < |d | ∧ |d | < e ∧ x + d ∗R i ∈ cbox a b
proof (cases x ·i = a·i)
case True
with ab[of i ] 〈e>0 〉 x i show ?thesis
by (rule tac x=(min (b·i − a·i) e) / 2 in exI )

(auto simp add : mem box field simps inner simps inner Basis)
next
case False
moreover have a · i < x · i
using False i mem box (2 ) x by force

moreover {
have a · i ∗ 2 + min (x · i − a · i) e ≤ a·i ∗2 + x ·i − a·i
by auto

also have . . . = a·i + x ·i
by auto

also have . . . ≤ 2 ∗ (x ·i)
using 〈a · i < x · i 〉 by auto

finally have a · i ∗ 2 + min (x · i − a · i) e ≤ x · i ∗ 2
by auto

}
moreover have min (x · i − a · i) e ≥ 0
by (simp add : 〈0 < e〉 〈a · i < x · i 〉 less eq real def )

then have x · i ∗ 2 ≤ b · i ∗ 2 + min (x · i − a · i) e
using i mem box (2 ) x by force

ultimately show ?thesis
using ab[of i ] 〈e>0 〉 x i
by (rule tac x=− (min (x ·i − a·i) e) / 2 in exI )

(auto simp add : mem box field simps inner simps inner Basis)
qed

qed (use assms in auto)

lemma frechet derivative unique within open interval :
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fixes f :: ′a::euclidean space ⇒ ′b::real normed vector
assumes x : x ∈ box a b
and f : (f has derivative f ′ ) (at x within box a b) (f has derivative f ′′) (at x

within box a b)
shows f ′ = f ′′

proof −
have at x within box a b = at x
by (metis x at within interior interior open open box )

with f show f ′ = f ′′

by (simp add : has derivative unique)
qed

lemma frechet derivative at :
(f has derivative f ′) (at x ) =⇒ f ′ = frechet derivative f (at x )
using differentiable def frechet derivative works has derivative unique by blast

lemma frechet derivative compose:
frechet derivative (f o g) (at x ) = frechet derivative (f ) (at (g x )) o frechet derivative

g (at x )
if g differentiable at x f differentiable at (g x )
by (metis diff chain at frechet derivative at frechet derivative works that)

lemma frechet derivative within cbox :
fixes f :: ′a::euclidean space ⇒ ′b::real normed vector
assumes

∧
i . i∈Basis =⇒ a·i < b·i

and x ∈ cbox a b
and (f has derivative f ′) (at x within cbox a b)

shows frechet derivative f (at x within cbox a b) = f ′

using assms
by (metis Derivative.differentiableI frechet derivative unique within closed interval

frechet derivative works)

lemma frechet derivative transform within open:
frechet derivative f (at x ) = frechet derivative g (at x )
if f differentiable at x open X x ∈ X

∧
x . x ∈ X =⇒ f x = g x

by (meson frechet derivative at frechet derivative works has derivative transform within open
that)

4.10.9 Derivatives of local minima and maxima are zero

lemma has derivative local min:
fixes f :: ′a::real normed vector ⇒ real
assumes deriv : (f has derivative f ′) (at x )
assumes min: eventually (λy . f x ≤ f y) (at x )
shows f ′ = (λh. 0 )

proof
fix h :: ′a
interpret f ′: bounded linear f ′

using deriv by (rule has derivative bounded linear)
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show f ′ h = 0
proof (cases h = 0 )
case False
from min obtain d where d1 : 0 < d and d2 : ∀ y∈ball x d . f x ≤ f y
unfolding eventually at by (force simp: dist commute)

have FDERIV (λr . x + r ∗R h) 0 :> (λr . r ∗R h)
by (intro derivative eq intros) auto

then have FDERIV (λr . f (x + r ∗R h)) 0 :> (λk . f ′ (k ∗R h))
by (rule has derivative compose, simp add : deriv)

then have DERIV (λr . f (x + r ∗R h)) 0 :> f ′ h
unfolding has field derivative def by (simp add : f ′.scaleR mult commute abs)
moreover have 0 < d / norm h using d1 and 〈h 6= 0 〉 by simp
moreover have ∀ y . |0 − y | < d / norm h −→ f (x + 0 ∗R h) ≤ f (x + y

∗R h)
using 〈h 6= 0 〉 by (auto simp add : d2 dist norm pos less divide eq)

ultimately show f ′ h = 0
by (rule DERIV local min)

qed simp
qed

lemma has derivative local max :
fixes f :: ′a::real normed vector ⇒ real
assumes (f has derivative f ′) (at x )
assumes eventually (λy . f y ≤ f x ) (at x )
shows f ′ = (λh. 0 )
using has derivative local min [of λx . − f x λh. − f ′ h x ]
using assms unfolding fun eq iff by simp

lemma differential zero maxmin:
fixes f :: ′a::real normed vector ⇒ real
assumes x ∈ S
and open S
and deriv : (f has derivative f ′) (at x )
and mono: (∀ y∈S . f y ≤ f x ) ∨ (∀ y∈S . f x ≤ f y)

shows f ′ = (λv . 0 )
using mono

proof
assume ∀ y∈S . f y ≤ f x
with 〈x ∈ S 〉 and 〈open S 〉 have eventually (λy . f y ≤ f x ) (at x )
unfolding eventually at topological by auto

with deriv show ?thesis
by (rule has derivative local max )

next
assume ∀ y∈S . f x ≤ f y
with 〈x ∈ S 〉 and 〈open S 〉 have eventually (λy . f x ≤ f y) (at x )
unfolding eventually at topological by auto

with deriv show ?thesis
by (rule has derivative local min)

qed
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lemma differential zero maxmin component :
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes k : k ∈ Basis
and ball : 0 < e (∀ y ∈ ball x e. (f y)·k ≤ (f x )·k) ∨ (∀ y∈ball x e. (f x )·k ≤ (f

y)·k)
and diff : f differentiable (at x )

shows (
∑

j∈Basis. (frechet derivative f (at x ) j · k) ∗R j ) = (0 :: ′a) (is ?D k =
0 )
proof −
let ?f ′ = frechet derivative f (at x )
have x ∈ ball x e using 〈0 < e〉 by simp
moreover have open (ball x e) by simp
moreover have ((λx . f x · k) has derivative (λh. ?f ′ h · k)) (at x )
using bounded linear inner left diff [unfolded frechet derivative works]
by (rule bounded linear .has derivative)

ultimately have (λh. frechet derivative f (at x ) h · k) = (λv . 0 )
using ball(2 ) by (rule differential zero maxmin)

then show ?thesis
unfolding fun eq iff by simp

qed

4.10.10 One-dimensional mean value theorem

lemma mvt simple:
fixes f :: real ⇒ real
assumes a < b
and derf :

∧
x . [[a ≤ x ; x ≤ b]] =⇒ (f has derivative f ′ x ) (at x within {a..b})

shows ∃ x∈{a<..<b}. f b − f a = f ′ x (b − a)
proof (rule mvt)
have f differentiable on {a..b}
using derf unfolding differentiable on def differentiable def by force

then show continuous on {a..b} f
by (rule differentiable imp continuous on)

show (f has derivative f ′ x ) (at x ) if a < x x < b for x
by (metis at within Icc at derf leI order .asym that)

qed (use assms in auto)

lemma mvt very simple:
fixes f :: real ⇒ real
assumes a ≤ b
and derf :

∧
x . [[a ≤ x ; x ≤ b]] =⇒ (f has derivative f ′ x ) (at x within {a..b})

shows ∃ x∈{a..b}. f b − f a = f ′ x (b − a)
proof (cases a = b)
interpret bounded linear f ′ b
using assms(2 ) assms(1 ) by auto

case True
then show ?thesis
by force
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next
case False
then show ?thesis
using mvt simple[OF derf ]
by (metis 〈a ≤ b〉 atLeastAtMost iff dual order .order iff strict greaterThanLessThan iff )

qed

A nice generalization (see Havin’s proof of 5.19 from Rudin’s book).

lemma mvt general :
fixes f :: real ⇒ ′a::real inner
assumes a < b
and contf : continuous on {a..b} f
and derf :

∧
x . [[a < x ; x < b]] =⇒ (f has derivative f ′ x ) (at x )

shows ∃ x∈{a<..<b}. norm (f b − f a) ≤ norm (f ′ x (b − a))
proof −
have ∃ x∈{a<..<b}. (f b − f a) · f b − (f b − f a) · f a = (f b − f a) · f ′ x (b
− a)

apply (rule mvt [OF 〈a < b〉, where f = λx . (f b − f a) · f x ])
apply (intro continuous intros contf )
using derf apply (auto intro: has derivative inner right)
done

then obtain x where x : x ∈ {a<..<b}
(f b − f a) · f b − (f b − f a) · f a = (f b − f a) · f ′ x (b − a) ..

show ?thesis
proof (cases f a = f b)
case False
have norm (f b − f a) ∗ norm (f b − f a) = (norm (f b − f a))2

by (simp add : power2 eq square)
also have . . . = (f b − f a) · (f b − f a)
unfolding power2 norm eq inner ..

also have . . . = (f b − f a) · f ′ x (b − a)
using x (2 ) by (simp only : inner diff right)

also have . . . ≤ norm (f b − f a) ∗ norm (f ′ x (b − a))
by (rule norm cauchy schwarz )

finally show ?thesis
using False x (1 )
by (auto simp add : mult left cancel)

next
case True
then show ?thesis
using 〈a < b〉 by (rule tac x=(a + b) /2 in bexI ) auto

qed
qed

4.10.11 More general bound theorems

proposition differentiable bound general :
fixes f :: real ⇒ ′a::real normed vector
assumes a < b
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and f cont : continuous on {a..b} f
and phi cont : continuous on {a..b} ϕ
and f ′:

∧
x . a < x =⇒ x < b =⇒ (f has vector derivative f ′ x ) (at x )

and phi ′:
∧
x . a < x =⇒ x < b =⇒ (ϕ has vector derivative ϕ ′ x ) (at x )

and bnd :
∧
x . a < x =⇒ x < b =⇒ norm (f ′ x ) ≤ ϕ ′ x

shows norm (f b − f a) ≤ ϕ b − ϕ a
proof −
{
fix x assume x : a < x x < b
have 0 ≤ norm (f ′ x ) by simp
also have . . . ≤ ϕ ′ x using x by (auto intro!: bnd)
finally have 0 ≤ ϕ ′ x .

} note phi ′ nonneg = this
note f tendsto = assms(2 )[simplified continuous on def , rule format ]
note phi tendsto = assms(3 )[simplified continuous on def , rule format ]
{
fix e::real assume e > 0
define e2 where e2 = e / 2
with 〈e > 0 〉 have e2 > 0 by simp
let ?le = λx1 . norm (f x1 − f a) ≤ ϕ x1 − ϕ a + e ∗ (x1 − a) + e
define A where A = {x2 . a ≤ x2 ∧ x2 ≤ b ∧ (∀ x1∈{a ..< x2}. ?le x1 )}
have A subset : A ⊆ {a..b} by (auto simp: A def )
{
fix x2
assume a: a ≤ x2 x2 ≤ b and le: ∀ x1∈{a..<x2}. ?le x1
have ?le x2 using 〈e > 0 〉

proof cases
assume x2 6= a with a have a < x2 by simp
have at x2 within {a <..<x2}6= bot
using 〈a < x2 〉

by (auto simp: trivial limit within islimpt in closure)
moreover
have ((λx1 . (ϕ x1 − ϕ a) + e ∗ (x1 − a) + e) −−−→ (ϕ x2 − ϕ a) + e ∗

(x2 − a) + e) (at x2 within {a <..<x2})
((λx1 . norm (f x1 − f a)) −−−→ norm (f x2 − f a)) (at x2 within {a

<..<x2})
using a
by (auto intro!: tendsto eq intros f tendsto phi tendsto
intro: tendsto within subset [where S={a..b}])

moreover
have eventually (λx . x > a) (at x2 within {a <..<x2})
by (auto simp: eventually at filter)

hence eventually ?le (at x2 within {a <..<x2})
unfolding eventually at filter
by eventually elim (insert le, auto)

ultimately
show ?thesis
by (rule tendsto le)

qed simp
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} note le cont = this
have a ∈ A
using assms by (auto simp: A def )

hence [simp]: A 6= {} by auto
have A ivl :

∧
x1 x2 . x2 ∈ A =⇒ x1 ∈ {a ..x2} =⇒ x1 ∈ A

by (simp add : A def )
have [simp]: bdd above A by (auto simp: A def )
define y where y = Sup A
have y ≤ b
unfolding y def
by (simp add : cSup le iff ) (simp add : A def )
have leI :

∧
x x1 . a ≤ x1 =⇒ x ∈ A =⇒ x1 < x =⇒ ?le x1

by (auto simp: A def intro!: le cont)
have y all le: ∀ x1∈{a..<y}. ?le x1
by (auto simp: y def less cSup iff leI )

have a ≤ y
by (metis 〈a ∈ A〉 〈bdd above A〉 cSup upper y def )

have y ∈ A
using y all le 〈a ≤ y〉 〈y ≤ b〉

by (auto simp: A def )
hence A = {a .. y}
using A subset by (auto simp: subset iff y def cSup upper intro: A ivl)

from le cont [OF 〈a ≤ y〉 〈y ≤ b〉 y all le] have le y : ?le y .
have y = b
proof (cases a = y)
case True
with 〈a < b〉 have y < b by simp
with 〈a = y〉 f cont phi cont 〈e2 > 0 〉

have 1 : ∀ F x in at y within {y ..b}. dist (f x ) (f y) < e2
and 2 : ∀ F x in at y within {y ..b}. dist (ϕ x ) (ϕ y) < e2
by (auto simp: continuous on def tendsto iff )

have 3 : eventually (λx . y < x ) (at y within {y ..b})
by (auto simp: eventually at filter)

have 4 : eventually (λx ::real . x < b) (at y within {y ..b})
using 〈y < b〉

by (rule order tendstoD) (auto intro!: tendsto eq intros)
from 1 2 3 4
have eventually le: eventually (λx . ?le x ) (at y within {y .. b})
proof eventually elim
case (elim x1 )
have norm (f x1 − f a) = norm (f x1 − f y)
by (simp add : 〈a = y〉)

also have norm (f x1 − f y) ≤ e2
using elim 〈a = y〉 by (auto simp : dist norm intro!: less imp le)

also have . . . ≤ e2 + (ϕ x1 − ϕ a + e2 + e ∗ (x1 − a))
using 〈0 < e〉 elim
by (intro add increasing2 [OF add nonneg nonneg order .refl ])
(auto simp: 〈a = y〉 dist norm intro!: mult nonneg nonneg)

also have . . . = ϕ x1 − ϕ a + e ∗ (x1 − a) + e
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by (simp add : e2 def )
finally show ?le x1 .

qed
from this[unfolded eventually at topological ] 〈?le y〉

obtain S where S : open S y ∈ S
∧
x . x∈S =⇒ x ∈ {y ..b} =⇒ ?le x

by metis
from 〈open S 〉 obtain d where d :

∧
x . dist x y < d =⇒ x ∈ S d > 0

by (force simp: dist commute open dist ball def dest !: bspec[OF 〈y ∈ S 〉])
define d ′ where d ′ = min b (y + (d/2 ))
have d ′ ∈ A
unfolding A def

proof safe
show a ≤ d ′ using 〈a = y〉 〈0 < d 〉 〈y < b〉 by (simp add : d ′ def )
show d ′ ≤ b by (simp add : d ′ def )
fix x1
assume x1 ∈ {a..<d ′}
hence x1 ∈ S x1 ∈ {y ..b}
by (auto simp: 〈a = y〉 d ′ def dist real def intro!: d )

thus ?le x1
by (rule S )

qed
hence d ′ ≤ y
unfolding y def
by (rule cSup upper) simp

then show y = b using 〈d > 0 〉 〈y < b〉

by (simp add : d ′ def )
next
case False
with 〈a ≤ y〉 have a < y by simp
show y = b
proof (rule ccontr)
assume y 6= b
hence y < b using 〈y ≤ b〉 by simp
let ?F = at y within {y ..<b}
from f ′ phi ′

have (f has vector derivative f ′ y) ?F
and (ϕ has vector derivative ϕ ′ y) ?F
using 〈a < y〉 〈y < b〉

by (auto simp add : at within open[of {a<..<b}] has vector derivative def
intro!: has derivative subset [where s={a<..<b} and t={y ..<b}])

hence ∀ F x1 in ?F . norm (f x1 − f y − (x1 − y) ∗R f ′ y) ≤ e2 ∗ |x1 − y |
∀ F x1 in ?F . norm (ϕ x1 − ϕ y − (x1 − y) ∗R ϕ ′ y) ≤ e2 ∗ |x1 − y |

using 〈e2 > 0 〉

by (auto simp: has derivative within alt2 has vector derivative def )
moreover
have ∀ F x1 in ?F . y ≤ x1 ∀ F x1 in ?F . x1 < b
by (auto simp: eventually at filter)

ultimately
have ∀ F x1 in ?F . norm (f x1 − f y) ≤ (ϕ x1 − ϕ y) + e ∗ |x1 − y |
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(is ∀ F x1 in ?F . ?le ′ x1 )
proof eventually elim
case (elim x1 )
from norm triangle ineq2 [THEN order trans, OF elim(1 )]
have norm (f x1 − f y) ≤ norm (f ′ y) ∗ |x1 − y | + e2 ∗ |x1 − y |
by (simp add : ac simps)

also have norm (f ′ y) ≤ ϕ ′ y using bnd 〈a < y〉 〈y < b〉 by simp
also have ϕ ′ y ∗ |x1 − y | ≤ ϕ x1 − ϕ y + e2 ∗ |x1 − y |
using elim by (simp add : ac simps)

finally
have norm (f x1 − f y) ≤ ϕ x1 − ϕ y + e2 ∗ |x1 − y | + e2 ∗ |x1 − y |
by (auto simp: mult right mono)

thus ?case by (simp add : e2 def )
qed
moreover have ?le ′ y by simp
ultimately obtain S
where S : open S y ∈ S

∧
x . x∈S =⇒ x ∈ {y ..<b} =⇒ ?le ′ x

unfolding eventually at topological
by metis

from 〈open S 〉 obtain d where d :
∧
x . dist x y < d =⇒ x ∈ S d > 0

by (force simp: dist commute open dist ball def dest !: bspec[OF 〈y ∈ S 〉])
define d ′ where d ′ = min ((y + b)/2 ) (y + (d/2 ))
have d ′ ∈ A
unfolding A def

proof safe
show a ≤ d ′ using 〈a < y〉 〈0 < d 〉 〈y < b〉 by (simp add : d ′ def )
show d ′ ≤ b using 〈y < b〉 by (simp add : d ′ def min def )
fix x1
assume x1 : x1 ∈ {a..<d ′}
show ?le x1
proof (cases x1 < y)
case True
then show ?thesis
using 〈y ∈ A〉 local .leI x1 by auto

next
case False
hence x1 ′: x1 ∈ S x1 ∈ {y ..<b} using x1
by (auto simp: d ′ def dist real def intro!: d)

have norm (f x1 − f a) ≤ norm (f x1 − f y) + norm (f y − f a)
by (rule order trans[OF norm triangle ineq ]) simp

also note S (3 )[OF x1 ′]
also note le y
finally show ?le x1
using False by (auto simp: algebra simps)

qed
qed
hence d ′ ≤ y
unfolding y def by (rule cSup upper) simp

thus False using 〈d > 0 〉 〈y < b〉
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by (simp add : d ′ def min def split : if split asm)
qed

qed
with le y have norm (f b − f a) ≤ ϕ b − ϕ a + e ∗ (b − a + 1 )
by (simp add : algebra simps)

} note ∗ = this
show ?thesis
proof (rule field le epsilon)
fix e::real assume e > 0
then show norm (f b − f a) ≤ ϕ b − ϕ a + e
using ∗[of e / (b − a + 1 )] 〈a < b〉 by simp

qed
qed

lemma differentiable bound :
fixes f :: ′a::real normed vector ⇒ ′b::real normed vector
assumes convex S
and derf :

∧
x . x∈S =⇒ (f has derivative f ′ x ) (at x within S )

and B :
∧
x . x ∈ S =⇒ onorm (f ′ x ) ≤ B

and x : x ∈ S
and y : y ∈ S

shows norm (f x − f y) ≤ B ∗ norm (x − y)
proof −
let ?p = λu. x + u ∗R (y − x )
let ?ϕ = λh. h ∗ B ∗ norm (x − y)
have ∗: x + u ∗R (y − x ) ∈ S if u ∈ {0 ..1} for u
proof −
have u ∗R y = u ∗R (y − x ) + u ∗R x
by (simp add : scale right diff distrib)

then show x + u ∗R (y − x ) ∈ S
using that 〈convex S 〉 x y by (simp add : convex alt)
(metis pth b(2 ) pth c(1 ) scaleR collapse)

qed
have

∧
z . z ∈ (λu. x + u ∗R (y − x )) ‘ {0 ..1} =⇒

(f has derivative f ′ z ) (at z within (λu. x + u ∗R (y − x )) ‘ {0 ..1})
by (auto intro: ∗ has derivative subset [OF derf ])

then have continuous on (?p ‘ {0 ..1}) f
unfolding continuous on eq continuous within
by (meson has derivative continuous)

with ∗ have 1 : continuous on {0 .. 1} (f ◦ ?p)
by (intro continuous intros)+

{
fix u::real assume u: u ∈{0 <..< 1}
let ?u = ?p u
interpret linear (f ′ ?u)
using u by (auto intro!: has derivative linear derf ∗)

have (f ◦ ?p has derivative (f ′ ?u) ◦ (λu. 0 + u ∗R (y − x ))) (at u within box
0 1 )

by (intro derivative intros has derivative subset [OF derf ]) (use u ∗ in auto)
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hence ((f ◦ ?p) has vector derivative f ′ ?u (y − x )) (at u)
by (simp add : at within open[OF u open greaterThanLessThan] scaleR has vector derivative def

o def )
} note 2 = this
have 3 : continuous on {0 ..1} ?ϕ
by (rule continuous intros)+

have 4 : (?ϕ has vector derivative B ∗ norm (x − y)) (at u) for u
by (auto simp: has vector derivative def intro!: derivative eq intros)

{
fix u::real assume u: u ∈{0 <..< 1}
let ?u = ?p u
interpret bounded linear (f ′ ?u)
using u by (auto intro!: has derivative bounded linear derf ∗)

have norm (f ′ ?u (y − x )) ≤ onorm (f ′ ?u) ∗ norm (y − x )
by (rule onorm) (rule bounded linear)

also have onorm (f ′ ?u) ≤ B
using u by (auto intro!: assms(3 )[rule format ] ∗)

finally have norm ((f ′ ?u) (y − x )) ≤ B ∗ norm (x − y)
by (simp add : mult right mono norm minus commute)

} note 5 = this
have norm (f x − f y) = norm ((f ◦ (λu. x + u ∗R (y − x ))) 1 − (f ◦ (λu. x

+ u ∗R (y − x ))) 0 )
by (auto simp add : norm minus commute)

also
from differentiable bound general [OF zero less one 1 , OF 3 2 4 5 ]
have norm ((f ◦ ?p) 1 − (f ◦ ?p) 0 ) ≤ B ∗ norm (x − y)
by simp

finally show ?thesis .
qed

lemma field differentiable bound :
fixes S :: ′a::real normed field set
assumes cvs: convex S

and df :
∧
z . z ∈ S =⇒ (f has field derivative f ′ z ) (at z within S )

and dn:
∧
z . z ∈ S =⇒ norm (f ′ z ) ≤ B

and x ∈ S y ∈ S
shows norm(f x − f y) ≤ B ∗ norm(x − y)

apply (rule differentiable bound [OF cvs])
apply (erule df [unfolded has field derivative def ])
apply (rule onorm le, simp all add : norm mult mult right mono assms)
done

lemma
differentiable bound segment :
fixes f :: ′a::real normed vector ⇒ ′b::real normed vector
assumes

∧
t . t ∈ {0 ..1} =⇒ x0 + t ∗R a ∈ G

assumes f ′:
∧
x . x ∈ G =⇒ (f has derivative f ′ x ) (at x within G)

assumes B :
∧
x . x ∈ {0 ..1} =⇒ onorm (f ′ (x0 + x ∗R a)) ≤ B

shows norm (f (x0 + a) − f x0 ) ≤ norm a ∗ B
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proof −
let ?G = (λx . x0 + x ∗R a) ‘ {0 ..1}
have ?G = (+) x0 ‘ (λx . x ∗R a) ‘ {0 ..1} by auto
also have convex . . .
by (intro convex translation convex scaled convex real interval)

finally have convex ?G .
moreover have ?G ⊆ G x0 ∈ ?G x0 + a ∈ ?G using assms by (auto intro:

image eqI [where x=1 ])
ultimately show ?thesis
using has derivative subset [OF f ′ 〈?G ⊆ G〉] B
differentiable bound [of (λx . x0 + x ∗R a) ‘ {0 ..1} f f ′ B x0 + a x0 ]

by (force simp: ac simps)
qed

lemma differentiable bound linearization:
fixes f :: ′a::real normed vector ⇒ ′b::real normed vector
assumes S :

∧
t . t ∈ {0 ..1} =⇒ a + t ∗R (b − a) ∈ S

assumes f ′[derivative intros]:
∧
x . x ∈ S =⇒ (f has derivative f ′ x ) (at x within

S )
assumes B :

∧
x . x ∈ S =⇒ onorm (f ′ x − f ′ x0 ) ≤ B

assumes x0 ∈ S
shows norm (f b − f a − f ′ x0 (b − a)) ≤ norm (b − a) ∗ B

proof −
define g where [abs def ]: g x = f x − f ′ x0 x for x
have g :

∧
x . x ∈ S =⇒ (g has derivative (λi . f ′ x i − f ′ x0 i)) (at x within S )

unfolding g def using assms
by (auto intro!: derivative eq intros
bounded linear .has derivative[OF has derivative bounded linear , OF f ′])

from B have ∀ x∈{0 ..1}. onorm (λi . f ′ (a + x ∗R (b − a)) i − f ′ x0 i) ≤ B
using assms by (auto simp: fun diff def )

with differentiable bound segment [OF S g ] 〈x0 ∈ S 〉

show ?thesis
by (simp add : g def field simps linear diff [OF has derivative linear [OF f ′]])

qed

lemma vector differentiable bound linearization:
fixes f ::real ⇒ ′b::real normed vector
assumes f ′:

∧
x . x ∈ S =⇒ (f has vector derivative f ′ x ) (at x within S )

assumes closed segment a b ⊆ S
assumes B :

∧
x . x ∈ S =⇒ norm (f ′ x − f ′ x0 ) ≤ B

assumes x0 ∈ S
shows norm (f b − f a − (b − a) ∗R f ′ x0 ) ≤ norm (b − a) ∗ B
using assms
by (intro differentiable bound linearization[of a b S f λx h. h ∗R f ′ x x0 B ])
(force simp: closed segment real eq has vector derivative def
scaleR diff right [symmetric] mult .commute[of B ]
intro!: onorm le mult left mono)+

In particular.
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lemma has derivative zero constant :
fixes f :: ′a::real normed vector ⇒ ′b::real normed vector
assumes convex s
and

∧
x . x ∈ s =⇒ (f has derivative (λh. 0 )) (at x within s)

shows ∃ c. ∀ x∈s. f x = c
proof −
{ fix x y assume x ∈ s y ∈ s
then have norm (f x − f y) ≤ 0 ∗ norm (x − y)
using assms by (intro differentiable bound [of s]) (auto simp: onorm zero)

then have f x = f y
by simp }

then show ?thesis
by metis

qed

lemma has field derivative zero constant :
assumes convex s

∧
x . x ∈ s =⇒ (f has field derivative 0 ) (at x within s)

shows ∃ c. ∀ x∈s. f (x ) = (c :: ′a :: real normed field)
proof (rule has derivative zero constant)
have A: (∗) 0 = (λ . 0 :: ′a) by (intro ext) simp
fix x assume x ∈ s thus (f has derivative (λh. 0 )) (at x within s)
using assms(2 )[of x ] by (simp add : has field derivative def A)

qed fact

lemma
has vector derivative zero constant :
assumes convex s
assumes

∧
x . x ∈ s =⇒ (f has vector derivative 0 ) (at x within s)

obtains c where
∧
x . x ∈ s =⇒ f x = c

using has derivative zero constant [of s f ] assms
by (auto simp: has vector derivative def )

lemma has derivative zero unique:
fixes f :: ′a::real normed vector ⇒ ′b::real normed vector
assumes convex s
and

∧
x . x ∈ s =⇒ (f has derivative (λh. 0 )) (at x within s)

and x ∈ s y ∈ s
shows f x = f y
using has derivative zero constant [OF assms(1 ,2 )] assms(3−) by force

lemma has derivative zero unique connected :
fixes f :: ′a::real normed vector ⇒ ′b::real normed vector
assumes open s connected s
assumes f :

∧
x . x ∈ s =⇒ (f has derivative (λx . 0 )) (at x )

assumes x ∈ s y ∈ s
shows f x = f y

proof (rule connected local const [where f=f , OF 〈connected s〉 〈x∈s〉 〈y∈s〉])
show ∀ a∈s. eventually (λb. f a = f b) (at a within s)
proof
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fix a assume a ∈ s
with 〈open s〉 obtain e where 0 < e ball a e ⊆ s
by (rule openE )

then have ∃ c. ∀ x∈ball a e. f x = c
by (intro has derivative zero constant)

(auto simp: at within open[OF open ball ] f )
with 〈0<e〉 have ∀ x∈ball a e. f a = f x
by auto

then show eventually (λb. f a = f b) (at a within s)
using 〈0<e〉 unfolding eventually at topological
by (intro exI [of ball a e]) auto

qed
qed

4.10.12 Differentiability of inverse function (most basic form)

lemma has derivative inverse basic:
fixes f :: ′a::real normed vector ⇒ ′b::real normed vector
assumes derf : (f has derivative f ′) (at (g y))
and ling ′: bounded linear g ′

and g ′ ◦ f ′ = id
and contg : continuous (at y) g
and open T
and y ∈ T
and fg :

∧
z . z ∈ T =⇒ f (g z ) = z

shows (g has derivative g ′) (at y)
proof −
interpret f ′: bounded linear f ′

using assms unfolding has derivative def by auto
interpret g ′: bounded linear g ′

using assms by auto
obtain C where C : 0 < C

∧
x . norm (g ′ x ) ≤ norm x ∗ C

using bounded linear .pos bounded [OF assms(2 )] by blast
have lem1 : ∀ e>0 . ∃ d>0 . ∀ z .
norm (z − y) < d −→ norm (g z − g y − g ′(z − y)) ≤ e ∗ norm (g z − g y)

proof (intro allI impI )
fix e :: real
assume e > 0
with C (1 ) have ∗: e / C > 0 by auto
obtain d0 where 0 < d0 and d0 :∧

u. norm (u − g y) < d0 =⇒ norm (f u − f (g y) − f ′ (u − g y)) ≤ e /
C ∗ norm (u − g y)

using derf ∗ unfolding has derivative at alt by blast
obtain d1 where 0 < d1 and d1 :

∧
x . [[0 < dist x y ; dist x y < d1 ]] =⇒ dist

(g x ) (g y) < d0
using contg 〈0 < d0 〉 unfolding continuous at Lim at by blast

obtain d2 where 0 < d2 and d2 :
∧
u. dist u y < d2 =⇒ u ∈ T

using 〈open T 〉 〈y ∈ T 〉 unfolding open dist by blast
obtain d where d : 0 < d d < d1 d < d2
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using field lbound gt zero[OF 〈0 < d1 〉 〈0 < d2 〉] by blast
show ∃ d>0 . ∀ z . norm (z − y) < d −→ norm (g z − g y − g ′ (z − y)) ≤ e

∗ norm (g z − g y)
proof (intro exI allI impI conjI )
fix z
assume as: norm (z − y) < d
then have z ∈ T
using d2 d unfolding dist norm by auto

have norm (g z − g y − g ′ (z − y)) ≤ norm (g ′ (f (g z ) − y − f ′ (g z − g
y)))

unfolding g ′.diff f ′.diff
unfolding assms(3 )[unfolded o def id def , THEN fun cong ] fg [OF 〈z∈T 〉]
by (simp add : norm minus commute)

also have . . . ≤ norm (f (g z ) − y − f ′ (g z − g y)) ∗ C
by (rule C (2 ))

also have . . . ≤ (e / C ) ∗ norm (g z − g y) ∗ C
proof −
have norm (g z − g y) < d0
by (metis as cancel comm monoid add class.diff cancel d(2 ) 〈0 < d0 〉 d1

diff gt 0 iff gt diff strict mono dist norm dist self zero less dist iff )
then show ?thesis
by (metis C (1 ) 〈y ∈ T 〉 d0 fg mult le cancel iff1 )

qed
also have . . . ≤ e ∗ norm (g z − g y)
using C by (auto simp add : field simps)

finally show norm (g z − g y − g ′ (z − y)) ≤ e ∗ norm (g z − g y)
by simp

qed (use d in auto)
qed
have ∗: (0 ::real) < 1 / 2
by auto

obtain d where 0 < d and d :∧
z . norm (z − y) < d =⇒ norm (g z − g y − g ′ (z − y)) ≤ 1/2 ∗ norm

(g z − g y)
using lem1 ∗ by blast

define B where B = C ∗ 2
have B > 0
unfolding B def using C by auto

have lem2 : norm (g z − g y) ≤ B ∗ norm (z − y) if z : norm(z − y) < d for z
proof −
have norm (g z − g y) ≤ norm(g ′ (z − y)) + norm ((g z − g y) − g ′(z − y))
by (rule norm triangle sub)

also have . . . ≤ norm (g ′ (z − y)) + 1 / 2 ∗ norm (g z − g y)
by (rule add left mono) (use d z in auto)

also have . . . ≤ norm (z − y) ∗ C + 1 / 2 ∗ norm (g z − g y)
by (rule add right mono) (use C in auto)

finally show norm (g z − g y) ≤ B ∗ norm (z − y)
unfolding B def
by (auto simp add : field simps)
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qed
show ?thesis
unfolding has derivative at alt

proof (intro conjI assms allI impI )
fix e :: real
assume e > 0
then have ∗: e / B > 0 by (metis 〈B > 0 〉 divide pos pos)
obtain d ′ where 0 < d ′ and d ′:∧

z . norm (z − y) < d ′ =⇒ norm (g z − g y − g ′ (z − y)) ≤ e / B ∗ norm
(g z − g y)

using lem1 ∗ by blast
obtain k where k : 0 < k k < d k < d ′

using field lbound gt zero[OF 〈0 < d 〉 〈0 < d ′〉] by blast
show ∃ d>0 . ∀ ya. norm (ya − y) < d −→ norm (g ya − g y − g ′ (ya − y))

≤ e ∗ norm (ya − y)
proof (intro exI allI impI conjI )
fix z
assume as: norm (z − y) < k
then have norm (g z − g y − g ′ (z − y)) ≤ e / B ∗ norm(g z − g y)
using d ′ k by auto

also have . . . ≤ e ∗ norm (z − y)
unfolding times divide eq left pos divide le eq [OF 〈B>0 〉]
using lem2 [of z ] k as 〈e > 0 〉

by (auto simp add : field simps)
finally show norm (g z − g y − g ′ (z − y)) ≤ e ∗ norm (z − y)
by simp

qed (use k in auto)
qed

qed

Inverse function theorem for complex derivatives

lemma has field derivative inverse basic:
shows DERIV f (g y) :> f ′ =⇒

f ′ 6= 0 =⇒
continuous (at y) g =⇒
open t =⇒
y ∈ t =⇒
(
∧
z . z ∈ t =⇒ f (g z ) = z )

=⇒ DERIV g y :> inverse (f ′)
unfolding has field derivative def
apply (rule has derivative inverse basic)
apply (auto simp: bounded linear mult right)
done

Simply rewrite that based on the domain point x.

lemma has derivative inverse basic x :
fixes f :: ′a::real normed vector ⇒ ′b::real normed vector
assumes (f has derivative f ′) (at x )
and bounded linear g ′
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and g ′ ◦ f ′ = id
and continuous (at (f x )) g
and g (f x ) = x
and open T
and f x ∈ T
and

∧
y . y ∈ T =⇒ f (g y) = y

shows (g has derivative g ′) (at (f x ))
by (rule has derivative inverse basic) (use assms in auto)

This is the version in Dieudonne’, assuming continuity of f and g.

lemma has derivative inverse dieudonne:
fixes f :: ′a::real normed vector ⇒ ′b::real normed vector
assumes open S
and open (f ‘ S )
and continuous on S f
and continuous on (f ‘ S ) g
and

∧
x . x ∈ S =⇒ g (f x ) = x

and x ∈ S
and (f has derivative f ′) (at x )
and bounded linear g ′

and g ′ ◦ f ′ = id
shows (g has derivative g ′) (at (f x ))
apply (rule has derivative inverse basic x [OF assms(7−9 ) assms(2 )])
using assms(3−6 )
unfolding continuous on eq continuous at [OF assms(1 )] continuous on eq continuous at [OF

assms(2 )]
apply auto
done

Here’s the simplest way of not assuming much about g.

proposition has derivative inverse:
fixes f :: ′a::real normed vector ⇒ ′b::real normed vector
assumes compact S
and x ∈ S
and fx : f x ∈ interior (f ‘ S )
and continuous on S f
and gf :

∧
y . y ∈ S =⇒ g (f y) = y

and (f has derivative f ′) (at x )
and bounded linear g ′

and g ′ ◦ f ′ = id
shows (g has derivative g ′) (at (f x ))

proof −
have ∗:

∧
y . y ∈ interior (f ‘ S ) =⇒ f (g y) = y

by (metis gf image iff interior subset subsetCE )
show ?thesis
apply (rule has derivative inverse basic x [OF assms(6−8 ), where T = interior

(f ‘ S )])
apply (rule continuous on interior [OF fx ])
apply (rule continuous on inv)
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apply (simp all add : assms ∗)
done

qed

Invertible derivative continuous at a point implies local injectivity. It’s only
for this we need continuity of the derivative, except of course if we want the
fact that the inverse derivative is also continuous. So if we know for some
other reason that the inverse function exists, it’s OK.

proposition has derivative locally injective:
fixes f :: ′n::euclidean space ⇒ ′m::euclidean space
assumes a ∈ S

and open S
and bling : bounded linear g ′

and g ′ ◦ f ′ a = id
and derf :

∧
x . x ∈ S =⇒ (f has derivative f ′ x ) (at x )

and
∧
e. e > 0 =⇒ ∃ d>0 . ∀ x . dist a x < d −→ onorm (λv . f ′ x v − f ′ a

v) < e
obtains r where r > 0 ball a r ⊆ S inj on f (ball a r)

proof −
interpret bounded linear g ′

using assms by auto
note f ′g ′ = assms(4 )[unfolded id def o def ,THEN cong ]
have g ′ (f ′ a (

∑
Basis)) = (

∑
Basis) (

∑
Basis) 6= (0 :: ′n)

using f ′g ′ by auto
then have ∗: 0 < onorm g ′

unfolding onorm pos lt [OF assms(3 )]
by fastforce

define k where k = 1 / onorm g ′ / 2
have ∗: k > 0
unfolding k def using ∗ by auto

obtain d1 where d1 :
0 < d1∧
x . dist a x < d1 =⇒ onorm (λv . f ′ x v − f ′ a v) < k

using assms(6 ) ∗ by blast
from 〈open S 〉 obtain d2 where d2 > 0 ball a d2 ⊆ S
using 〈a∈S 〉 ..

obtain d2 where d2 : 0 < d2 ball a d2 ⊆ S
using 〈0 < d2 〉 〈ball a d2 ⊆ S 〉 by blast

obtain d where d : 0 < d d < d1 d < d2
using field lbound gt zero[OF d1 (1 ) d2 (1 )] by blast

show ?thesis
proof
show 0 < d by (fact d)
show ball a d ⊆ S
using 〈d < d2 〉 〈ball a d2 ⊆ S 〉 by auto

show inj on f (ball a d)
unfolding inj on def
proof (intro strip)
fix x y

Derivative.html


872

assume as: x ∈ ball a d y ∈ ball a d f x = f y
define ph where [abs def ]: ph w = w − g ′ (f w − f x ) for w
have ph ′:ph = g ′ ◦ (λw . f ′ a w − (f w − f x ))
unfolding ph def o def by (simp add : diff f ′g ′)

have norm (ph x − ph y) ≤ (1 / 2 ) ∗ norm (x − y)
proof (rule differentiable bound [OF convex ball as(1−2 )])
fix u
assume u: u ∈ ball a d
then have u ∈ S
using d d2 by auto

have ∗: (λv . v − g ′ (f ′ u v)) = g ′ ◦ (λw . f ′ a w − f ′ u w)
unfolding o def and diff
using f ′g ′ by auto

have blin: bounded linear (f ′ a)
using 〈a ∈ S 〉 derf by blast

show (ph has derivative (λv . v − g ′ (f ′ u v))) (at u within ball a d)
unfolding ph ′ ∗ comp def
by (rule 〈u ∈ S 〉 derivative eq intros has derivative at withinI [OF derf ]

bounded linear .has derivative [OF blin] bounded linear .has derivative [OF bling ]
|simp)+

have ∗∗: bounded linear (λx . f ′ u x − f ′ a x ) bounded linear (λx . f ′ a x −
f ′ u x )

using 〈u ∈ S 〉 blin bounded linear sub derf by auto
then have onorm (λv . v − g ′ (f ′ u v)) ≤ onorm g ′ ∗ onorm (λw . f ′ a w

− f ′ u w)
by (simp add : ∗ bounded linear axioms onorm compose)

also have . . . ≤ onorm g ′ ∗ k
apply (rule mult left mono)
using d1 (2 )[of u]
using onorm neg [where f=λx . f ′ u x − f ′ a x ] d u onorm pos le[OF

bling ] apply (auto simp: algebra simps)
done

also have . . . ≤ 1 / 2
unfolding k def by auto

finally show onorm (λv . v − g ′ (f ′ u v)) ≤ 1 / 2 .
qed
moreover have norm (ph y − ph x ) = norm (y − x )
by (simp add : as(3 ) ph def )

ultimately show x = y
unfolding norm minus commute by auto

qed
qed

qed

4.10.13 Uniformly convergent sequence of derivatives

lemma has derivative sequence lipschitz lemma:
fixes f :: nat ⇒ ′a::real normed vector ⇒ ′b::real normed vector
assumes convex S
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and derf :
∧
n x . x ∈ S =⇒ ((f n) has derivative (f ′ n x )) (at x within S )

and nle:
∧
n x h. [[n≥N ; x ∈ S ]] =⇒ norm (f ′ n x h − g ′ x h) ≤ e ∗ norm h

and 0 ≤ e
shows ∀m≥N . ∀n≥N . ∀ x∈S . ∀ y∈S . norm ((f m x − f n x ) − (f m y − f n

y)) ≤ 2 ∗ e ∗ norm (x − y)
proof clarify
fix m n x y
assume as: N ≤ m N ≤ n x ∈ S y ∈ S
show norm ((f m x − f n x ) − (f m y − f n y)) ≤ 2 ∗ e ∗ norm (x − y)
proof (rule differentiable bound [where f ′=λx h. f ′ m x h − f ′ n x h, OF 〈convex

S 〉 as(3−4 )])
fix x
assume x ∈ S
show ((λa. f m a − f n a) has derivative (λh. f ′ m x h − f ′ n x h)) (at x

within S )
by (rule derivative intros derf 〈x∈S 〉)+

show onorm (λh. f ′ m x h − f ′ n x h) ≤ 2 ∗ e
proof (rule onorm bound)
fix h
have norm (f ′ m x h − f ′ n x h) ≤ norm (f ′ m x h − g ′ x h) + norm (f ′ n

x h − g ′ x h)
using norm triangle ineq [of f ′ m x h − g ′ x h − f ′ n x h + g ′ x h]
by (auto simp add : algebra simps norm minus commute)

also have . . . ≤ e ∗ norm h + e ∗ norm h
using nle[OF 〈N ≤ m〉 〈x ∈ S 〉, of h] nle[OF 〈N ≤ n〉 〈x ∈ S 〉, of h]
by (auto simp add : field simps)

finally show norm (f ′ m x h − f ′ n x h) ≤ 2 ∗ e ∗ norm h
by auto

qed (simp add : 〈0 ≤ e〉)
qed

qed

lemma has derivative sequence Lipschitz :
fixes f :: nat ⇒ ′a::real normed vector ⇒ ′b::real normed vector
assumes convex S
and

∧
n x . x ∈ S =⇒ ((f n) has derivative (f ′ n x )) (at x within S )

and nle:
∧
e. e > 0 =⇒ ∀ F n in sequentially . ∀ x∈S . ∀ h. norm (f ′ n x h − g ′

x h) ≤ e ∗ norm h
and e > 0

shows ∃N . ∀m≥N . ∀n≥N . ∀ x∈S . ∀ y∈S .
norm ((f m x − f n x ) − (f m y − f n y)) ≤ e ∗ norm (x − y)

proof −
have ∗: 2 ∗ (e/2 ) = e
using 〈e > 0 〉 by auto

obtain N where ∀n≥N . ∀ x∈S . ∀ h. norm (f ′ n x h − g ′ x h) ≤ (e/2 ) ∗ norm
h

using nle 〈e > 0 〉

unfolding eventually sequentially
by (metis less divide eq numeral1 (1 ) mult zero left)
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then show ∃N . ∀m≥N . ∀n≥N . ∀ x∈S . ∀ y∈S . norm (f m x − f n x − (f m y
− f n y)) ≤ e ∗ norm (x − y)

apply (rule tac x=N in exI )
apply (rule has derivative sequence lipschitz lemma[where e=e/2 , unfolded

∗])
using assms 〈e > 0 〉

apply auto
done

qed

proposition has derivative sequence:
fixes f :: nat ⇒ ′a::real normed vector ⇒ ′b::banach
assumes convex S
and derf :

∧
n x . x ∈ S =⇒ ((f n) has derivative (f ′ n x )) (at x within S )

and nle:
∧
e. e > 0 =⇒ ∀ F n in sequentially . ∀ x∈S . ∀ h. norm (f ′ n x h − g ′

x h) ≤ e ∗ norm h
and x0 ∈ S
and lim: ((λn. f n x0 ) −−−→ l) sequentially

shows ∃ g . ∀ x∈S . (λn. f n x ) −−−−→ g x ∧ (g has derivative g ′(x )) (at x within
S )
proof −
have lem1 :

∧
e. e > 0 =⇒ ∃N . ∀m≥N . ∀n≥N . ∀ x∈S . ∀ y∈S .

norm ((f m x − f n x ) − (f m y − f n y)) ≤ e ∗ norm (x − y)
using assms(1 ,2 ,3 ) by (rule has derivative sequence Lipschitz )

have ∃ g . ∀ x∈S . ((λn. f n x ) −−−→ g x ) sequentially
proof (intro ballI bchoice)
fix x
assume x ∈ S
show ∃ y . (λn. f n x ) −−−−→ y
unfolding convergent eq Cauchy
proof (cases x = x0 )
case True
then show Cauchy (λn. f n x )
using LIMSEQ imp Cauchy [OF lim] by auto

next
case False
show Cauchy (λn. f n x )
unfolding Cauchy def

proof (intro allI impI )
fix e :: real
assume e > 0
hence ∗: e / 2 > 0 e / 2 / norm (x − x0 ) > 0 using False by auto
obtain M where M : ∀m≥M . ∀n≥M . dist (f m x0 ) (f n x0 ) < e / 2
using LIMSEQ imp Cauchy [OF lim] ∗ unfolding Cauchy def by blast

obtain N where N :
∀m≥N . ∀n≥N .
∀ u∈S . ∀ y∈S . norm (f m u − f n u − (f m y − f n y)) ≤
e / 2 / norm (x − x0 ) ∗ norm (u − y)

using lem1 ∗(2 ) by blast
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show ∃M . ∀m≥M . ∀n≥M . dist (f m x ) (f n x ) < e
proof (intro exI allI impI )
fix m n
assume as: max M N ≤m max M N≤n
have dist (f m x ) (f n x ) ≤ norm (f m x0 − f n x0 ) + norm (f m x − f

n x − (f m x0 − f n x0 ))
unfolding dist norm
by (rule norm triangle sub)

also have . . . ≤ norm (f m x0 − f n x0 ) + e / 2
using N 〈x∈S 〉 〈x0∈S 〉 as False by fastforce

also have . . . < e / 2 + e / 2
by (rule add strict right mono) (use as M in 〈auto simp: dist norm〉)

finally show dist (f m x ) (f n x ) < e
by auto

qed
qed

qed
qed
then obtain g where g : ∀ x∈S . (λn. f n x ) −−−−→ g x ..
have lem2 : ∃N . ∀n≥N . ∀ x∈S . ∀ y∈S . norm ((f n x − f n y) − (g x − g y)) ≤

e ∗ norm (x − y) if e > 0 for e
proof −
obtain N where
N : ∀m≥N . ∀n≥N . ∀ x∈S . ∀ y∈S . norm (f m x − f n x − (f m y − f n y))

≤ e ∗ norm (x − y)
using lem1 〈e > 0 〉 by blast

show ∃N . ∀n≥N . ∀ x∈S . ∀ y∈S . norm (f n x − f n y − (g x − g y)) ≤ e ∗
norm (x − y)

proof (intro exI ballI allI impI )
fix n x y
assume as: N ≤ n x ∈ S y ∈ S
have ((λm. norm (f n x − f n y − (f m x − f m y))) −−−→ norm (f n x − f

n y − (g x − g y))) sequentially
by (intro tendsto intros g [rule format ] as)

moreover have eventually (λm. norm (f n x − f n y − (f m x − f m y)) ≤
e ∗ norm (x − y)) sequentially

unfolding eventually sequentially
proof (intro exI allI impI )
fix m
assume N ≤ m
then show norm (f n x − f n y − (f m x − f m y)) ≤ e ∗ norm (x − y)
using N as by (auto simp add : algebra simps)

qed
ultimately show norm (f n x − f n y − (g x − g y)) ≤ e ∗ norm (x − y)
by (simp add : tendsto upperbound)

qed
qed
have ∀ x∈S . ((λn. f n x ) −−−→ g x ) sequentially ∧ (g has derivative g ′ x ) (at x

within S )
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unfolding has derivative within alt2
proof (intro ballI conjI allI impI )
fix x
assume x ∈ S
then show (λn. f n x ) −−−−→ g x
by (simp add : g)

have tog ′: (λn. f ′ n x u) −−−−→ g ′ x u for u
unfolding filterlim def le nhds metric le eventually filtermap dist norm

proof (intro allI impI )
fix e :: real
assume e > 0
show eventually (λn. norm (f ′ n x u − g ′ x u) ≤ e) sequentially
proof (cases u = 0 )
case True
have eventually (λn. norm (f ′ n x u − g ′ x u) ≤ e ∗ norm u) sequentially
using nle 〈0 < e〉 〈x ∈ S 〉 by (fast elim: eventually mono)

then show ?thesis
using 〈u = 0 〉 〈0 < e〉 by (auto elim: eventually mono)

next
case False
with 〈0 < e〉 have 0 < e / norm u by simp
then have eventually (λn. norm (f ′ n x u − g ′ x u) ≤ e / norm u ∗ norm

u) sequentially
using nle 〈x ∈ S 〉 by (fast elim: eventually mono)

then show ?thesis
using 〈u 6= 0 〉 by simp

qed
qed
show bounded linear (g ′ x )
proof
fix x ′ y z :: ′a
fix c :: real

note lin = assms(2 )[rule format ,OF 〈x∈S 〉,THEN has derivative bounded linear ]
show g ′ x (c ∗R x ′) = c ∗R g ′ x x ′

apply (rule tendsto unique[OF trivial limit sequentially tog ′])
unfolding lin[THEN bounded linear .linear , THEN linear cmul ]
apply (intro tendsto intros tog ′)
done

show g ′ x (y + z ) = g ′ x y + g ′ x z
apply (rule tendsto unique[OF trivial limit sequentially tog ′])
unfolding lin[THEN bounded linear .linear , THEN linear add ]
apply (rule tendsto add)
apply (rule tog ′)+
done

obtain N where N : ∀ h. norm (f ′ N x h − g ′ x h) ≤ 1 ∗ norm h
using nle 〈x ∈ S 〉 unfolding eventually sequentially by (fast intro:

zero less one)
have bounded linear (f ′ N x )
using derf 〈x ∈ S 〉 by fast
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from bounded linear .bounded [OF this]
obtain K where K : ∀ h. norm (f ′ N x h) ≤ norm h ∗ K ..
{
fix h
have norm (g ′ x h) = norm (f ′ N x h − (f ′ N x h − g ′ x h))
by simp

also have . . . ≤ norm (f ′ N x h) + norm (f ′ N x h − g ′ x h)
by (rule norm triangle ineq4 )

also have . . . ≤ norm h ∗ K + 1 ∗ norm h
using N K by (fast intro: add mono)

finally have norm (g ′ x h) ≤ norm h ∗ (K + 1 )
by (simp add : ring distribs)

}
then show ∃K . ∀ h. norm (g ′ x h) ≤ norm h ∗ K by fast

qed
show eventually (λy . norm (g y − g x − g ′ x (y − x )) ≤ e ∗ norm (y − x ))

(at x within S )
if e > 0 for e

proof −
have ∗: e / 3 > 0
using that by auto

obtain N1 where N1 : ∀n≥N1 . ∀ x∈S . ∀ h. norm (f ′ n x h − g ′ x h) ≤ e /
3 ∗ norm h

using nle ∗ unfolding eventually sequentially by blast
obtain N2 where

N2 [rule format ]: ∀n≥N2 . ∀ x∈S . ∀ y∈S . norm (f n x − f n y − (g x − g
y)) ≤ e / 3 ∗ norm (x − y)

using lem2 ∗ by blast
let ?N = max N1 N2
have eventually (λy . norm (f ?N y − f ?N x − f ′ ?N x (y − x )) ≤ e / 3 ∗

norm (y − x )) (at x within S )
using derf [unfolded has derivative within alt2 ] and 〈x ∈ S 〉 and ∗ by fast

moreover have eventually (λy . y ∈ S ) (at x within S )
unfolding eventually at by (fast intro: zero less one)

ultimately show ∀ F y in at x within S . norm (g y − g x − g ′ x (y − x ))
≤ e ∗ norm (y − x )

proof (rule eventually elim2 )
fix y
assume y ∈ S
assume norm (f ?N y − f ?N x − f ′ ?N x (y − x )) ≤ e / 3 ∗ norm (y −

x )
moreover have norm (g y − g x − (f ?N y − f ?N x )) ≤ e / 3 ∗ norm (y

− x )
using N2 [OF 〈y ∈ S 〉 〈x ∈ S 〉]
by (simp add : norm minus commute)

ultimately have norm (g y − g x − f ′ ?N x (y − x )) ≤ 2 ∗ e / 3 ∗ norm
(y − x )

using norm triangle le[of g y − g x − (f ?N y − f ?N x ) f ?N y − f ?N x
− f ′ ?N x (y − x ) 2 ∗ e / 3 ∗ norm (y − x )]
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by (auto simp add : algebra simps)
moreover
have norm (f ′ ?N x (y − x ) − g ′ x (y − x )) ≤ e / 3 ∗ norm (y − x )
using N1 〈x ∈ S 〉 by auto

ultimately show norm (g y − g x − g ′ x (y − x )) ≤ e ∗ norm (y − x )
using norm triangle le[of g y − g x − f ′ (max N1 N2 ) x (y − x ) f ′ (max

N1 N2 ) x (y − x ) − g ′ x (y − x )]
by (auto simp add : algebra simps)

qed
qed

qed
then show ?thesis by fast

qed

Can choose to line up antiderivatives if we want.

lemma has antiderivative sequence:
fixes f :: nat ⇒ ′a::real normed vector ⇒ ′b::banach
assumes convex S
and der :

∧
n x . x ∈ S =⇒ ((f n) has derivative (f ′ n x )) (at x within S )

and no:
∧
e. e > 0 =⇒ ∀ F n in sequentially .

∀ x∈S . ∀ h. norm (f ′ n x h − g ′ x h) ≤ e ∗ norm h
shows ∃ g . ∀ x∈S . (g has derivative g ′ x ) (at x within S )

proof (cases S = {})
case False
then obtain a where a ∈ S
by auto

have ∗:
∧
P Q . ∃ g . ∀ x∈S . P g x ∧ Q g x =⇒ ∃ g . ∀ x∈S . Q g x

by auto
show ?thesis
apply (rule ∗)
apply (rule has derivative sequence [OF 〈convex S 〉 no, of λn x . f n x + (f

0 a − f n a)])
apply (metis assms(2 ) has derivative add const)

using 〈a ∈ S 〉

apply auto
done

qed auto

lemma has antiderivative limit :
fixes g ′ :: ′a::real normed vector ⇒ ′a ⇒ ′b::banach
assumes convex S
and

∧
e. e>0 =⇒ ∃ f f ′. ∀ x∈S .

(f has derivative (f ′ x )) (at x within S ) ∧ (∀ h. norm (f ′ x h − g ′ x h) ≤
e ∗ norm h)
shows ∃ g . ∀ x∈S . (g has derivative g ′ x ) (at x within S )

proof −
have ∗: ∀n. ∃ f f ′. ∀ x∈S .
(f has derivative (f ′ x )) (at x within S ) ∧
(∀ h. norm(f ′ x h − g ′ x h) ≤ inverse (real (Suc n)) ∗ norm h)
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by (simp add : assms(2 ))
obtain f where
∗:

∧
x . ∃ f ′. ∀ xa∈S . (f x has derivative f ′ xa) (at xa within S ) ∧

(∀ h. norm (f ′ xa h − g ′ xa h) ≤ inverse (real (Suc x )) ∗ norm h)
using ∗ by metis

obtain f ′ where
f ′:

∧
x . ∀ z∈S . (f x has derivative f ′ x z ) (at z within S ) ∧
(∀ h. norm (f ′ x z h − g ′ z h) ≤ inverse (real (Suc x )) ∗ norm h)

using ∗ by metis
show ?thesis
proof (rule has antiderivative sequence[OF 〈convex S 〉, of f f ′])
fix e :: real
assume e > 0
obtain N where N : inverse (real (Suc N )) < e
using reals Archimedean[OF 〈e>0 〉] ..

show ∀ F n in sequentially . ∀ x∈S . ∀ h. norm (f ′ n x h − g ′ x h) ≤ e ∗ norm
h

unfolding eventually sequentially
proof (intro exI allI ballI impI )
fix n x h
assume n: N ≤ n and x : x ∈ S
have ∗: inverse (real (Suc n)) ≤ e
apply (rule order trans[OF N [THEN less imp le]])
using n apply (auto simp add : field simps)
done

show norm (f ′ n x h − g ′ x h) ≤ e ∗ norm h
by (meson ∗ mult right mono norm ge zero order .trans x f ′)

qed
qed (use f ′ in auto)

qed

4.10.14 Differentiation of a series

proposition has derivative series:
fixes f :: nat ⇒ ′a::real normed vector ⇒ ′b::banach
assumes convex S
and

∧
n x . x ∈ S =⇒ ((f n) has derivative (f ′ n x )) (at x within S )

and
∧
e. e>0 =⇒ ∀ F n in sequentially . ∀ x∈S . ∀ h. norm (sum (λi . f ′ i x h)

{..<n} − g ′ x h) ≤ e ∗ norm h
and x ∈ S
and (λn. f n x ) sums l

shows ∃ g . ∀ x∈S . (λn. f n x ) sums (g x ) ∧ (g has derivative g ′ x ) (at x within
S )
unfolding sums def
apply (rule has derivative sequence[OF assms(1 ) assms(3 )])
apply (metis assms(2 ) has derivative sum)
using assms(4−5 )
unfolding sums def
apply auto

Derivative.html


880

done

lemma has field derivative series:
fixes f :: nat ⇒ ( ′a :: {real normed field ,banach}) ⇒ ′a
assumes convex S
assumes

∧
n x . x ∈ S =⇒ (f n has field derivative f ′ n x ) (at x within S )

assumes uniform limit S (λn x .
∑

i<n. f ′ i x ) g ′ sequentially
assumes x0 ∈ S summable (λn. f n x0 )
shows ∃ g . ∀ x∈S . (λn. f n x ) sums g x ∧ (g has field derivative g ′ x ) (at x

within S )
unfolding has field derivative def
proof (rule has derivative series)
show ∀ F n in sequentially .
∀ x∈S . ∀ h. norm ((

∑
i<n. f ′ i x ∗ h) − g ′ x ∗ h) ≤ e ∗ norm h if e > 0

for e
unfolding eventually sequentially

proof −
from that assms(3 ) obtain N where N :

∧
n x . n ≥ N =⇒ x ∈ S =⇒ norm

((
∑

i<n. f ′ i x ) − g ′ x ) < e
unfolding uniform limit iff eventually at top linorder dist norm by blast

{
fix n :: nat and x h :: ′a assume nx : n ≥ N x ∈ S
have norm ((

∑
i<n. f ′ i x ∗ h) − g ′ x ∗ h) = norm ((

∑
i<n. f ′ i x ) − g ′

x ) ∗ norm h
by (simp add : norm mult [symmetric] ring distribs sum distrib right)

also from N [OF nx ] have norm ((
∑

i<n. f ′ i x ) − g ′ x ) ≤ e by simp
hence norm ((

∑
i<n. f ′ i x ) − g ′ x ) ∗ norm h ≤ e ∗ norm h

by (intro mult right mono) simp all
finally have norm ((

∑
i<n. f ′ i x ∗ h) − g ′ x ∗ h) ≤ e ∗ norm h .

}
thus ∃N . ∀n≥N . ∀ x∈S . ∀ h. norm ((

∑
i<n. f ′ i x ∗ h) − g ′ x ∗ h) ≤ e ∗

norm h by blast
qed

qed (use assms in 〈auto simp: has field derivative def 〉)

lemma has field derivative series ′:
fixes f :: nat ⇒ ( ′a :: {real normed field ,banach}) ⇒ ′a
assumes convex S
assumes

∧
n x . x ∈ S =⇒ (f n has field derivative f ′ n x ) (at x within S )

assumes uniformly convergent on S (λn x .
∑

i<n. f ′ i x )
assumes x0 ∈ S summable (λn. f n x0 ) x ∈ interior S
shows summable (λn. f n x ) ((λx .

∑
n. f n x ) has field derivative (

∑
n. f ′ n

x )) (at x )
proof −
from 〈x ∈ interior S 〉 have x ∈ S using interior subset by blast
define g ′ where [abs def ]: g ′ x = (

∑
i . f ′ i x ) for x

from assms(3 ) have uniform limit S (λn x .
∑

i<n. f ′ i x ) g ′ sequentially
by (simp add : uniformly convergent uniform limit iff suminf eq lim g ′ def )

from has field derivative series[OF assms(1 ,2 ) this assms(4 ,5 )] obtain g where
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g : ∧
x . x ∈ S =⇒ (λn. f n x ) sums g x∧
x . x ∈ S =⇒ (g has field derivative g ′ x ) (at x within S ) by blast

from g(1 )[OF 〈x ∈ S 〉] show summable (λn. f n x ) by (simp add : sums iff )
from g(2 )[OF 〈x ∈ S 〉] 〈x ∈ interior S 〉 have (g has field derivative g ′ x ) (at x )
by (simp add : at within interior [of x S ])

also have (g has field derivative g ′ x ) (at x ) ←→
((λx .

∑
n. f n x ) has field derivative g ′ x ) (at x )

using eventually nhds in nhd [OF 〈x ∈ interior S 〉] interior subset [of S ] g(1 )
by (intro DERIV cong ev) (auto elim!: eventually mono simp: sums iff )

finally show ((λx .
∑

n. f n x ) has field derivative g ′ x ) (at x ) .
qed

lemma differentiable series:
fixes f :: nat ⇒ ( ′a :: {real normed field ,banach}) ⇒ ′a
assumes convex S open S
assumes

∧
n x . x ∈ S =⇒ (f n has field derivative f ′ n x ) (at x )

assumes uniformly convergent on S (λn x .
∑

i<n. f ′ i x )
assumes x0 ∈ S summable (λn. f n x0 ) and x : x ∈ S
shows summable (λn. f n x ) and (λx .

∑
n. f n x ) differentiable (at x )

proof −
from assms(4 ) obtain g ′ where A: uniform limit S (λn x .

∑
i<n. f ′ i x ) g ′

sequentially
unfolding uniformly convergent on def by blast

from x and 〈open S 〉 have S : at x within S = at x by (rule at within open)
have ∃ g . ∀ x∈S . (λn. f n x ) sums g x ∧ (g has field derivative g ′ x ) (at x within

S )
by (intro has field derivative series[of S f f ′ g ′ x0 ] assms A has field derivative at within)
then obtain g where g :

∧
x . x ∈ S =⇒ (λn. f n x ) sums g x∧

x . x ∈ S =⇒ (g has field derivative g ′ x ) (at x within S ) by blast
from g [OF x ] show summable (λn. f n x ) by (auto simp: summable def )
from g(2 )[OF x ] have g ′: (g has derivative (∗) (g ′ x )) (at x )
by (simp add : has field derivative def S )

have ((λx .
∑

n. f n x ) has derivative (∗) (g ′ x )) (at x )
by (rule has derivative transform within open[OF g ′ 〈open S 〉 x ])

(insert g , auto simp: sums iff )
thus (λx .

∑
n. f n x ) differentiable (at x ) unfolding differentiable def

by (auto simp: summable def differentiable def has field derivative def )
qed

lemma differentiable series ′:
fixes f :: nat ⇒ ( ′a :: {real normed field ,banach}) ⇒ ′a
assumes convex S open S
assumes

∧
n x . x ∈ S =⇒ (f n has field derivative f ′ n x ) (at x )

assumes uniformly convergent on S (λn x .
∑

i<n. f ′ i x )
assumes x0 ∈ S summable (λn. f n x0 )
shows (λx .

∑
n. f n x ) differentiable (at x0 )

using differentiable series[OF assms, of x0 ] 〈x0 ∈ S 〉 by blast+
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4.10.15 Derivative as a vector

Considering derivative real ⇒ ′b as a vector.

definition vector derivative f net = (SOME f ′. (f has vector derivative f ′) net)

lemma vector derivative unique within:
assumes not bot : at x within S 6= bot
and f ′: (f has vector derivative f ′) (at x within S )
and f ′′: (f has vector derivative f ′′) (at x within S )

shows f ′ = f ′′

proof −
have (λx . x ∗R f ′) = (λx . x ∗R f ′′)
proof (rule frechet derivative unique within, simp all)
show ∃ d . d 6= 0 ∧ |d | < e ∧ x + d ∈ S if 0 < e for e
proof −
from that
obtain x ′ where x ′ ∈ S x ′ 6= x |x ′ − x | < e
using islimpt approachable real [of x S ] not bot
by (auto simp add : trivial limit within)

then show ?thesis
using eq iff diff eq 0 by fastforce

qed
qed (use f ′ f ′′ in 〈auto simp: has vector derivative def 〉)
then show ?thesis
unfolding fun eq iff by (metis scaleR one)

qed

lemma vector derivative unique at :
(f has vector derivative f ′) (at x ) =⇒ (f has vector derivative f ′′) (at x ) =⇒ f ′

= f ′′

by (rule vector derivative unique within) auto

lemma differentiableI vector : (f has vector derivative y) F =⇒ f differentiable F
by (auto simp: differentiable def has vector derivative def )

proposition vector derivative works:
f differentiable net ←→ (f has vector derivative (vector derivative f net)) net
(is ?l = ?r)

proof
assume ?l
obtain f ′ where f ′: (f has derivative f ′) net
using 〈?l 〉 unfolding differentiable def ..

then interpret bounded linear f ′

by auto
show ?r
unfolding vector derivative def has vector derivative def
by (rule someI [of f ′ 1 ]) (simp add : scaleR[symmetric] f ′)

qed (auto simp: vector derivative def has vector derivative def differentiable def )
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lemma vector derivative within:
assumes not bot : at x within S 6= bot and y : (f has vector derivative y) (at x

within S )
shows vector derivative f (at x within S ) = y
using y
by (intro vector derivative unique within[OF not bot vector derivative works[THEN

iffD1 ] y ])
(auto simp: differentiable def has vector derivative def )

lemma frechet derivative eq vector derivative:
assumes f differentiable (at x )
shows (frechet derivative f (at x )) = (λr . r ∗R vector derivative f (at x ))

using assms
by (auto simp: differentiable iff scaleR vector derivative def has vector derivative def

intro: someI frechet derivative at [symmetric])

lemma has real derivative:
fixes f :: real ⇒ real
assumes (f has derivative f ′) F
obtains c where (f has real derivative c) F

proof −
obtain c where f ′ = (λx . x ∗ c)
by (metis assms has derivative bounded linear real bounded linear)

then show ?thesis
by (metis assms that has field derivative def mult commute abs)

qed

lemma has real derivative iff :
fixes f :: real ⇒ real
shows (∃ c. (f has real derivative c) F ) = (∃D . (f has derivative D) F )
by (metis has field derivative def has real derivative)

lemma has vector derivative cong ev :
assumes ∗: eventually (λx . x ∈ S −→ f x = g x ) (nhds x ) f x = g x
shows (f has vector derivative f ′) (at x within S ) = (g has vector derivative f ′)

(at x within S )
unfolding has vector derivative def has derivative def
using ∗
apply (cases at x within S 6= bot)
apply (intro refl conj cong filterlim cong)
apply (auto simp: Lim ident at eventually at filter elim: eventually mono)
done

lemma islimpt closure open:
fixes s :: ′a::perfect space set
assumes open s and t : t = closure s x ∈ t
shows x islimpt t

proof cases
assume x ∈ s
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{ fix T assume x ∈ T open T
then have open (s ∩ T )
using 〈open s〉 by auto

then have s ∩ T 6= {x}
using not open singleton[of x ] by auto

with 〈x ∈ T 〉 〈x ∈ s〉 have ∃ y∈t . y ∈ T ∧ y 6= x
using closure subset [of s] by (auto simp: t) }

then show ?thesis
by (auto intro!: islimptI )

next
assume x /∈ s with t show ?thesis
unfolding t closure def by (auto intro: islimpt subset)

qed

lemma vector derivative unique within closed interval :
assumes ab: a < b x ∈ cbox a b
assumes D : (f has vector derivative f ′) (at x within cbox a b) (f has vector derivative

f ′′) (at x within cbox a b)
shows f ′ = f ′′

using ab
by (intro vector derivative unique within[OF D ])

(auto simp: trivial limit within intro!: islimpt closure open[where s={a <..<
b}])

lemma vector derivative at :
(f has vector derivative f ′) (at x ) =⇒ vector derivative f (at x ) = f ′

by (intro vector derivative within at neq bot)

lemma has vector derivative id at [simp]: vector derivative (λx . x ) (at a) = 1
by (simp add : vector derivative at)

lemma vector derivative minus at [simp]:
f differentiable at a
=⇒ vector derivative (λx . − f x ) (at a) = − vector derivative f (at a)

by (simp add : vector derivative at has vector derivative minus vector derivative works
[symmetric])

lemma vector derivative add at [simp]:
[[f differentiable at a; g differentiable at a]]
=⇒ vector derivative (λx . f x + g x ) (at a) = vector derivative f (at a) +

vector derivative g (at a)
by (simp add : vector derivative at has vector derivative add vector derivative works

[symmetric])

lemma vector derivative diff at [simp]:
[[f differentiable at a; g differentiable at a]]
=⇒ vector derivative (λx . f x − g x ) (at a) = vector derivative f (at a) −

vector derivative g (at a)
by (simp add : vector derivative at has vector derivative diff vector derivative works
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[symmetric])

lemma vector derivative mult at [simp]:
fixes f g :: real ⇒ ′a :: real normed algebra
shows [[f differentiable at a; g differentiable at a]]
=⇒ vector derivative (λx . f x ∗ g x ) (at a) = f a ∗ vector derivative g (at a) +

vector derivative f (at a) ∗ g a
by (simp add : vector derivative at has vector derivative mult vector derivative works

[symmetric])

lemma vector derivative scaleR at [simp]:
[[f differentiable at a; g differentiable at a]]
=⇒ vector derivative (λx . f x ∗R g x ) (at a) = f a ∗R vector derivative g (at a)

+ vector derivative f (at a) ∗R g a
apply (rule vector derivative at)
apply (rule has vector derivative scaleR)
apply (auto simp: vector derivative works has vector derivative def has field derivative def
mult commute abs)
done

lemma vector derivative within cbox :
assumes ab: a < b x ∈ cbox a b
assumes f : (f has vector derivative f ′) (at x within cbox a b)
shows vector derivative f (at x within cbox a b) = f ′

by (intro vector derivative unique within closed interval [OF ab f ]
vector derivative works[THEN iffD1 ] differentiableI vector)

fact

lemma vector derivative within closed interval :
fixes f ::real ⇒ ′a::euclidean space
assumes a < b and x ∈ {a..b}
assumes (f has vector derivative f ′) (at x within {a..b})
shows vector derivative f (at x within {a..b}) = f ′

using assms vector derivative within cbox
by fastforce

lemma has vector derivative within subset :
(f has vector derivative f ′) (at x within S ) =⇒ T ⊆ S =⇒ (f has vector derivative

f ′) (at x within T )
by (auto simp: has vector derivative def intro: has derivative subset)

lemma has vector derivative at within:
(f has vector derivative f ′) (at x ) =⇒ (f has vector derivative f ′) (at x within S )
unfolding has vector derivative def
by (rule has derivative at withinI )

lemma has vector derivative weaken:
fixes x D and f g S T
assumes f : (f has vector derivative D) (at x within T )
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and x ∈ S S ⊆ T
and

∧
x . x ∈ S =⇒ f x = g x

shows (g has vector derivative D) (at x within S )
proof −
have (f has vector derivative D) (at x within S ) ←→ (g has vector derivative D)

(at x within S )
unfolding has vector derivative def has derivative iff norm
using assms by (intro conj cong Lim cong within refl) auto

then show ?thesis
using has vector derivative within subset [OF f 〈S ⊆ T 〉] by simp

qed

lemma has vector derivative transform within:
assumes (f has vector derivative f ′) (at x within S )
and 0 < d
and x ∈ S
and

∧
x ′. [[x ′∈S ; dist x ′ x < d ]] =⇒ f x ′ = g x ′

shows (g has vector derivative f ′) (at x within S )
using assms
unfolding has vector derivative def
by (rule has derivative transform within)

lemma has vector derivative transform within open:
assumes (f has vector derivative f ′) (at x )
and open S
and x ∈ S
and

∧
y . y∈S =⇒ f y = g y

shows (g has vector derivative f ′) (at x )
using assms
unfolding has vector derivative def
by (rule has derivative transform within open)

lemma has vector derivative transform:
assumes x ∈ S

∧
x . x ∈ S =⇒ g x = f x

assumes f ′: (f has vector derivative f ′) (at x within S )
shows (g has vector derivative f ′) (at x within S )
using assms
unfolding has vector derivative def
by (rule has derivative transform)

lemma vector diff chain at :
assumes (f has vector derivative f ′) (at x )
and (g has vector derivative g ′) (at (f x ))

shows ((g ◦ f ) has vector derivative (f ′ ∗R g ′)) (at x )
using assms has vector derivative at within has vector derivative def vector derivative diff chain within

by blast

lemma vector diff chain within:
assumes (f has vector derivative f ′) (at x within s)
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and (g has vector derivative g ′) (at (f x ) within f ‘ s)
shows ((g ◦ f ) has vector derivative (f ′ ∗R g ′)) (at x within s)
using assms has vector derivative def vector derivative diff chain within by blast

lemma vector derivative const at [simp]: vector derivative (λx . c) (at a) = 0
by (simp add : vector derivative at)

lemma vector derivative at within ivl :
(f has vector derivative f ′) (at x ) =⇒
a ≤ x =⇒ x ≤ b =⇒ a<b =⇒ vector derivative f (at x within {a..b}) = f ′

using has vector derivative at within vector derivative within cbox by fastforce

lemma vector derivative chain at :
assumes f differentiable at x (g differentiable at (f x ))
shows vector derivative (g ◦ f ) (at x ) =

vector derivative f (at x ) ∗R vector derivative g (at (f x ))
by (metis vector diff chain at vector derivative at vector derivative works assms)

lemma field vector diff chain at :
assumes Df : (f has vector derivative f ′) (at x )

and Dg : (g has field derivative g ′) (at (f x ))
shows ((g ◦ f ) has vector derivative (f ′ ∗ g ′)) (at x )
using diff chain at [OF Df [unfolded has vector derivative def ]

Dg [unfolded has field derivative def ]]
by (auto simp: o def mult .commute has vector derivative def )

lemma vector derivative chain within:
assumes at x within S 6= bot f differentiable (at x within S )
(g has derivative g ′) (at (f x ) within f ‘ S )

shows vector derivative (g ◦ f ) (at x within S ) =
g ′ (vector derivative f (at x within S ))

apply (rule vector derivative within [OF 〈at x within S 6= bot 〉])
apply (rule vector derivative diff chain within)
using assms(2−3 ) vector derivative works
by auto

4.10.16 Field differentiability

definition field differentiable :: [ ′a ⇒ ′a::real normed field , ′a filter ] ⇒ bool
(infixr (field ′ differentiable) 50 )

where f field differentiable F ≡ ∃ f ′. (f has field derivative f ′) F

lemma field differentiable imp differentiable:
f field differentiable F =⇒ f differentiable F
unfolding field differentiable def differentiable def
using has field derivative imp has derivative by auto

lemma field differentiable imp continuous at :
f field differentiable (at x within S ) =⇒ continuous (at x within S ) f
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by (metis DERIV continuous field differentiable def )

lemma field differentiable within subset :
[[f field differentiable (at x within S ); T ⊆ S ]] =⇒ f field differentiable (at x

within T )
by (metis DERIV subset field differentiable def )

lemma field differentiable at within:
[[f field differentiable (at x )]]
=⇒ f field differentiable (at x within S )

unfolding field differentiable def
by (metis DERIV subset top greatest)

lemma field differentiable linear [simp,derivative intros]: ((∗) c) field differentiable
F
unfolding field differentiable def has field derivative def mult commute abs
by (force intro: has derivative mult right)

lemma field differentiable const [simp,derivative intros]: (λz . c) field differentiable
F
unfolding field differentiable def has field derivative def
using DERIV const has field derivative imp has derivative by blast

lemma field differentiable ident [simp,derivative intros]: (λz . z ) field differentiable
F
unfolding field differentiable def has field derivative def
using DERIV ident has field derivative def by blast

lemma field differentiable id [simp,derivative intros]: id field differentiable F
unfolding id def by (rule field differentiable ident)

lemma field differentiable minus [derivative intros]:
f field differentiable F =⇒ (λz . − (f z )) field differentiable F
unfolding field differentiable def
by (metis field differentiable minus)

lemma field differentiable add [derivative intros]:
assumes f field differentiable F g field differentiable F
shows (λz . f z + g z ) field differentiable F

using assms unfolding field differentiable def
by (metis field differentiable add)

lemma field differentiable add const [simp,derivative intros]:
(+) c field differentiable F

by (simp add : field differentiable add)

lemma field differentiable sum [derivative intros]:
(
∧
i . i ∈ I =⇒ (f i) field differentiable F ) =⇒ (λz .

∑
i∈I . f i z ) field differentiable

F
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by (induct I rule: infinite finite induct)
(auto intro: field differentiable add field differentiable const)

lemma field differentiable diff [derivative intros]:
assumes f field differentiable F g field differentiable F
shows (λz . f z − g z ) field differentiable F

using assms unfolding field differentiable def
by (metis field differentiable diff )

lemma field differentiable inverse [derivative intros]:
assumes f field differentiable (at a within S ) f a 6= 0
shows (λz . inverse (f z )) field differentiable (at a within S )
using assms unfolding field differentiable def
by (metis DERIV inverse fun)

lemma field differentiable mult [derivative intros]:
assumes f field differentiable (at a within S )

g field differentiable (at a within S )
shows (λz . f z ∗ g z ) field differentiable (at a within S )

using assms unfolding field differentiable def
by (metis DERIV mult [of f a S g ])

lemma field differentiable divide [derivative intros]:
assumes f field differentiable (at a within S )

g field differentiable (at a within S )
g a 6= 0

shows (λz . f z / g z ) field differentiable (at a within S )
using assms unfolding field differentiable def
by (metis DERIV divide [of f a S g ])

lemma field differentiable power [derivative intros]:
assumes f field differentiable (at a within S )
shows (λz . f z ˆ n) field differentiable (at a within S )

using assms unfolding field differentiable def
by (metis DERIV power)

lemma field differentiable transform within:
0 < d =⇒

x ∈ S =⇒
(
∧
x ′. x ′ ∈ S =⇒ dist x ′ x < d =⇒ f x ′ = g x ′) =⇒

f field differentiable (at x within S )
=⇒ g field differentiable (at x within S )

unfolding field differentiable def has field derivative def
by (blast intro: has derivative transform within)

lemma field differentiable compose within:
assumes f field differentiable (at a within S )

g field differentiable (at (f a) within f‘S )
shows (g o f ) field differentiable (at a within S )
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using assms unfolding field differentiable def
by (metis DERIV image chain)

lemma field differentiable compose:
f field differentiable at z =⇒ g field differentiable at (f z )

=⇒ (g o f ) field differentiable at z
by (metis field differentiable at within field differentiable compose within)

lemma field differentiable within open:
[[a ∈ S ; open S ]] =⇒ f field differentiable at a within S ←→

f field differentiable at a
unfolding field differentiable def
by (metis at within open)

lemma exp scaleR has vector derivative right :
((λt . exp (t ∗R A)) has vector derivative exp (t ∗R A) ∗ A) (at t within T )
unfolding has vector derivative def

proof (rule has derivativeI )
let ?F = at t within (T ∩ {t − 1 <..< t + 1})
have ∗: at t within T = ?F
by (rule at within nhd [where S={t − 1 <..< t + 1}]) auto

let ?e = λi x . (inverse (1 + real i) ∗ inverse (fact i) ∗ (x − t) ˆ i) ∗R (A ∗ A
ˆ i)
have ∀ F n in sequentially .
∀ x∈T ∩ {t − 1<..<t + 1}. norm (?e n x ) ≤ norm (A ˆ (n + 1 ) /R fact (n

+ 1 ))
apply (auto simp: algebra split simps intro!: eventuallyI )
apply (rule mult left mono)
apply (auto simp add : field simps power abs intro!: divide right mono power le one)
done

then have uniform limit (T ∩ {t − 1<..<t + 1}) (λn x .
∑

i<n. ?e i x ) (λx .∑
i . ?e i x ) sequentially
by (rule Weierstrass m test ev) (intro summable ignore initial segment summable norm exp)
moreover
have ∀ F x in sequentially . x > 0
by (metis eventually gt at top)

then have
∀ F n in sequentially . ((λx .

∑
i<n. ?e i x ) −−−→ A) ?F

by eventually elim
(auto intro!: tendsto eq intros
simp: power 0 left if distrib if distribR
cong : if cong)

ultimately
have [tendsto intros]: ((λx .

∑
i . ?e i x ) −−−→ A) ?F

by (auto intro!: swap uniform limit [where f=λn x .
∑

i < n. ?e i x and F =
sequentially ])
have [tendsto intros]: ((λx . if x = t then 0 else 1 ) −−−→ 1 ) ?F
by (rule tendsto eventually) (simp add : eventually at filter)

have ((λy . ((y − t) / abs (y − t)) ∗R ((
∑

n. ?e n y) − A)) −−−→ 0 ) (at t within
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T )
unfolding ∗
by (rule tendsto norm zero cancel) (auto intro!: tendsto eq intros)

moreover have ∀ F x in at t within T . x 6= t
by (simp add : eventually at filter)

then have ∀ F x in at t within T . ((x − t) / |x − t |) ∗R ((
∑

n. ?e n x ) − A) =
(exp ((x − t) ∗R A) − 1 − (x − t) ∗R A) /R norm (x − t)

proof eventually elim
case (elim x )
have (exp ((x − t) ∗R A) − 1 − (x − t) ∗R A) /R norm (x − t) =
((
∑

n. (x − t) ∗R ?e n x ) − (x − t) ∗R A) /R norm (x − t)
unfolding exp first term
by (simp add : ac simps)

also
have summable (λn. ?e n x )
proof −
from elim have ?e n x = (((x − t) ∗R A) ˆ (n + 1 )) /R fact (n + 1 ) /R

(x − t) for n
by simp

then show ?thesis
by (auto simp only :
intro!: summable scaleR right summable ignore initial segment summable exp generic)

qed
then have (

∑
n. (x − t) ∗R ?e n x ) = (x − t) ∗R (

∑
n. ?e n x )

by (rule suminf scaleR right [symmetric])
also have (. . . − (x − t) ∗R A) /R norm (x − t) = (x − t) ∗R ((

∑
n. ?e n

x ) − A) /R norm (x − t)
by (simp add : algebra simps)

finally show ?case
by simp (simp add : field simps)

qed

ultimately have ((λy . (exp ((y − t) ∗R A) − 1 − (y − t) ∗R A) /R norm (y
− t)) −−−→ 0 ) (at t within T )

by (rule Lim transform eventually)
from tendsto mult right zero[OF this, where c=exp (t ∗R A)]
show ((λy . (exp (y ∗R A) − exp (t ∗R A) − (y − t) ∗R (exp (t ∗R A) ∗ A)) /R

norm (y − t)) −−−→ 0 )
(at t within T )

by (rule Lim transform eventually)
(auto simp: field split simps exp add commuting [symmetric])

qed (rule bounded linear scaleR left)

lemma exp times scaleR commute: exp (t ∗R A) ∗ A = A ∗ exp (t ∗R A)
using exp times arg commute[symmetric, of t ∗R A]
by (auto simp: algebra simps)

lemma exp scaleR has vector derivative left : ((λt . exp (t ∗R A)) has vector derivative
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A ∗ exp (t ∗R A)) (at t)
using exp scaleR has vector derivative right [of A t ]
by (simp add : exp times scaleR commute)

lemma field differentiable series:
fixes f :: nat ⇒ ′a::{real normed field ,banach} ⇒ ′a
assumes convex S open S
assumes

∧
n x . x ∈ S =⇒ (f n has field derivative f ′ n x ) (at x )

assumes uniformly convergent on S (λn x .
∑

i<n. f ′ i x )
assumes x0 ∈ S summable (λn. f n x0 ) and x : x ∈ S
shows (λx .

∑
n. f n x ) field differentiable (at x )

proof −
from assms(4 ) obtain g ′ where A: uniform limit S (λn x .

∑
i<n. f ′ i x ) g ′

sequentially
unfolding uniformly convergent on def by blast

from x and 〈open S 〉 have S : at x within S = at x by (rule at within open)
have ∃ g . ∀ x∈S . (λn. f n x ) sums g x ∧ (g has field derivative g ′ x ) (at x within

S )
by (intro has field derivative series[of S f f ′ g ′ x0 ] assms A has field derivative at within)
then obtain g where g :

∧
x . x ∈ S =⇒ (λn. f n x ) sums g x∧

x . x ∈ S =⇒ (g has field derivative g ′ x ) (at x within S ) by blast
from g(2 )[OF x ] have g ′: (g has derivative (∗) (g ′ x )) (at x )
by (simp add : has field derivative def S )

have ((λx .
∑

n. f n x ) has derivative (∗) (g ′ x )) (at x )
by (rule has derivative transform within open[OF g ′ 〈open S 〉 x ])

(insert g , auto simp: sums iff )
thus (λx .

∑
n. f n x ) field differentiable (at x ) unfolding differentiable def

by (auto simp: summable def field differentiable def has field derivative def )
qed

Caratheodory characterization

lemma field differentiable caratheodory at :
f field differentiable (at z ) ←→

(∃ g . (∀w . f (w) − f (z ) = g(w) ∗ (w − z )) ∧ continuous (at z ) g)
using CARAT DERIV [of f ]
by (simp add : field differentiable def has field derivative def )

lemma field differentiable caratheodory within:
f field differentiable (at z within s) ←→

(∃ g . (∀w . f (w) − f (z ) = g(w) ∗ (w − z )) ∧ continuous (at z within s) g)
using DERIV caratheodory within [of f ]
by (simp add : field differentiable def has field derivative def )

4.10.17 Field derivative

definition deriv :: ( ′a ⇒ ′a::real normed field) ⇒ ′a ⇒ ′a where
deriv f x ≡ SOME D . DERIV f x :> D

lemma DERIV imp deriv : DERIV f x :> f ′ =⇒ deriv f x = f ′
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unfolding deriv def by (metis some equality DERIV unique)

lemma DERIV deriv iff has field derivative:
DERIV f x :> deriv f x ←→ (∃ f ′. (f has field derivative f ′) (at x ))
by (auto simp: has field derivative def DERIV imp deriv)

lemma DERIV deriv iff real differentiable:
fixes x :: real
shows DERIV f x :> deriv f x ←→ f differentiable at x
unfolding differentiable def by (metis DERIV imp deriv has real derivative iff )

lemma deriv cong ev :
assumes eventually (λx . f x = g x ) (nhds x ) x = y
shows deriv f x = deriv g y

proof −
have (λD . (f has field derivative D) (at x )) = (λD . (g has field derivative D) (at

y))
by (intro ext DERIV cong ev refl assms)

thus ?thesis by (simp add : deriv def assms)
qed

lemma higher deriv cong ev :
assumes eventually (λx . f x = g x ) (nhds x ) x = y
shows (deriv ˆˆ n) f x = (deriv ˆˆ n) g y

proof −
from assms(1 ) have eventually (λx . (deriv ˆˆ n) f x = (deriv ˆˆ n) g x ) (nhds

x )
proof (induction n arbitrary : f g)
case (Suc n)
from Suc.prems have eventually (λy . eventually (λz . f z = g z ) (nhds y))

(nhds x )
by (simp add : eventually eventually)

hence eventually (λx . deriv f x = deriv g x ) (nhds x )
by eventually elim (rule deriv cong ev , simp all)

thus ?case by (auto intro!: deriv cong ev Suc simp: funpow Suc right simp del :
funpow .simps)
qed auto
from eventually nhds x imp x [OF this] assms(2 ) show ?thesis by simp

qed

lemma real derivative chain:
fixes x :: real
shows f differentiable at x =⇒ g differentiable at (f x )
=⇒ deriv (g o f ) x = deriv g (f x ) ∗ deriv f x

by (metis DERIV deriv iff real differentiable DERIV chain DERIV imp deriv)
lemma field derivative eq vector derivative:

(deriv f x ) = vector derivative f (at x )
by (simp add : mult .commute deriv def vector derivative def has vector derivative def
has field derivative def )
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proposition field differentiable derivI :
f field differentiable (at x ) =⇒ (f has field derivative deriv f x ) (at x )

by (simp add : field differentiable def DERIV deriv iff has field derivative)

lemma vector derivative chain at general :
assumes f differentiable at x g field differentiable at (f x )
shows vector derivative (g ◦ f ) (at x ) = vector derivative f (at x ) ∗ deriv g (f

x )
apply (rule vector derivative at [OF field vector diff chain at ])
using assms vector derivative works by (auto simp: field differentiable derivI )

lemma DERIV deriv iff field differentiable:
DERIV f x :> deriv f x ←→ f field differentiable at x
unfolding field differentiable def by (metis DERIV imp deriv)

lemma deriv chain:
f field differentiable at x =⇒ g field differentiable at (f x )
=⇒ deriv (g o f ) x = deriv g (f x ) ∗ deriv f x

by (metis DERIV deriv iff field differentiable DERIV chain DERIV imp deriv)

lemma deriv linear [simp]: deriv (λw . c ∗ w) = (λz . c)
by (metis DERIV imp deriv DERIV cmult Id)

lemma deriv uminus [simp]: deriv (λw . −w) = (λz . −1 )
using deriv linear [of −1 ] by (simp del : deriv linear)

lemma deriv ident [simp]: deriv (λw . w) = (λz . 1 )
by (metis DERIV imp deriv DERIV ident)

lemma deriv id [simp]: deriv id = (λz . 1 )
by (simp add : id def )

lemma deriv const [simp]: deriv (λw . c) = (λz . 0 )
by (metis DERIV imp deriv DERIV const)

lemma deriv add [simp]:
[[f field differentiable at z ; g field differentiable at z ]]
=⇒ deriv (λw . f w + g w) z = deriv f z + deriv g z
unfolding DERIV deriv iff field differentiable[symmetric]
by (auto intro!: DERIV imp deriv derivative intros)

lemma deriv diff [simp]:
[[f field differentiable at z ; g field differentiable at z ]]
=⇒ deriv (λw . f w − g w) z = deriv f z − deriv g z
unfolding DERIV deriv iff field differentiable[symmetric]
by (auto intro!: DERIV imp deriv derivative intros)

lemma deriv mult [simp]:
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[[f field differentiable at z ; g field differentiable at z ]]
=⇒ deriv (λw . f w ∗ g w) z = f z ∗ deriv g z + deriv f z ∗ g z
unfolding DERIV deriv iff field differentiable[symmetric]
by (auto intro!: DERIV imp deriv derivative eq intros)

lemma deriv cmult :
f field differentiable at z =⇒ deriv (λw . c ∗ f w) z = c ∗ deriv f z
by simp

lemma deriv cmult right :
f field differentiable at z =⇒ deriv (λw . f w ∗ c) z = deriv f z ∗ c
by simp

lemma deriv inverse [simp]:
[[f field differentiable at z ; f z 6= 0 ]]
=⇒ deriv (λw . inverse (f w)) z = − deriv f z / f z ˆ 2
unfolding DERIV deriv iff field differentiable[symmetric]
by (safe intro!: DERIV imp deriv derivative eq intros) (auto simp: field split simps

power2 eq square)

lemma deriv divide [simp]:
[[f field differentiable at z ; g field differentiable at z ; g z 6= 0 ]]
=⇒ deriv (λw . f w / g w) z = (deriv f z ∗ g z − f z ∗ deriv g z ) / g z ˆ 2
by (simp add : field class.field divide inverse field differentiable inverse)

(simp add : field split simps power2 eq square)

lemma deriv cdivide right :
f field differentiable at z =⇒ deriv (λw . f w / c) z = deriv f z / c
by (simp add : field class.field divide inverse)

lemma deriv compose linear :
f field differentiable at (c ∗ z ) =⇒ deriv (λw . f (c ∗ w)) z = c ∗ deriv f (c ∗ z )

apply (rule DERIV imp deriv)
unfolding DERIV deriv iff field differentiable [symmetric]
by (metis (full types) DERIV chain2 DERIV cmult Id mult .commute)

lemma nonzero deriv nonconstant :
assumes df : DERIV f ξ :> df and S : open S ξ ∈ S and df 6= 0
shows ¬ f constant on S

unfolding constant on def
by (metis 〈df 6= 0 〉 has field derivative transform within open [OF df S ] DERIV const
DERIV unique)

4.10.18 Relation between convexity and derivative

proposition convex on imp above tangent :
assumes convex : convex on A f and connected : connected A
assumes c: c ∈ interior A and x : x ∈ A
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assumes deriv : (f has field derivative f ′) (at c within A)
shows f x − f c ≥ f ′ ∗ (x − c)

proof (cases x c rule: linorder cases)
assume xc: x > c
let ?A ′ = interior A ∩ {c<..}
from c have c ∈ interior A ∩ closure {c<..} by auto
also have . . . ⊆ closure (interior A ∩ {c<..}) by (intro open Int closure subset)

auto
finally have at c within ?A ′ 6= bot by (subst at within eq bot iff ) auto
moreover from deriv have ((λy . (f y − f c) / (y − c)) −−−→ f ′) (at c within

?A ′)
unfolding has field derivative iff using interior subset [of A] by (blast intro:

tendsto mono at le)
moreover from eventually at right real [OF xc]
have eventually (λy . (f y − f c) / (y − c) ≤ (f x − f c) / (x − c)) (at right c)

proof eventually elim
fix y assume y : y ∈ {c<..<x}
with convex connected x c have f y ≤ (f x − f c) / (x − c) ∗ (y − c) + f c
using interior subset [of A]

by (intro convex onD Icc ′ convex on subset [OF convex ] connected contains Icc)
auto

hence f y − f c ≤ (f x − f c) / (x − c) ∗ (y − c) by simp
thus (f y − f c) / (y − c) ≤ (f x − f c) / (x − c) using y xc by (simp add :

field split simps)
qed
hence eventually (λy . (f y − f c) / (y − c) ≤ (f x − f c) / (x − c)) (at c within

?A ′)
by (blast intro: filter leD at le)

ultimately have f ′ ≤ (f x − f c) / (x − c) by (simp add : tendsto upperbound)
thus ?thesis using xc by (simp add : field simps)

next
assume xc: x < c
let ?A ′ = interior A ∩ {..<c}
from c have c ∈ interior A ∩ closure {..<c} by auto
also have . . . ⊆ closure (interior A ∩ {..<c}) by (intro open Int closure subset)

auto
finally have at c within ?A ′ 6= bot by (subst at within eq bot iff ) auto
moreover from deriv have ((λy . (f y − f c) / (y − c)) −−−→ f ′) (at c within

?A ′)
unfolding has field derivative iff using interior subset [of A] by (blast intro:

tendsto mono at le)
moreover from eventually at left real [OF xc]
have eventually (λy . (f y − f c) / (y − c) ≥ (f x − f c) / (x − c)) (at left c)

proof eventually elim
fix y assume y : y ∈ {x<..<c}
with convex connected x c have f y ≤ (f x − f c) / (c − x ) ∗ (c − y) + f c
using interior subset [of A]

by (intro convex onD Icc ′′ convex on subset [OF convex ] connected contains Icc)
auto
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hence f y − f c ≤ (f x − f c) ∗ ((c − y) / (c − x )) by simp
also have (c − y) / (c − x ) = (y − c) / (x − c) using y xc by (simp add :

field simps)
finally show (f y − f c) / (y − c) ≥ (f x − f c) / (x − c) using y xc
by (simp add : field split simps)

qed
hence eventually (λy . (f y − f c) / (y − c) ≥ (f x − f c) / (x − c)) (at c within

?A ′)
by (blast intro: filter leD at le)

ultimately have f ′ ≥ (f x − f c) / (x − c) by (simp add : tendsto lowerbound)
thus ?thesis using xc by (simp add : field simps)

qed simp all

4.10.19 Partial derivatives

lemma eventually at Pair within TimesI1 :
fixes x :: ′a::metric space
assumes ∀ F x ′ in at x within X . P x ′

assumes P x
shows ∀ F (x ′, y ′) in at (x , y) within X × Y . P x ′

proof −
from assms[unfolded eventually at topological ]
obtain S where S : open S x ∈ S

∧
x ′. x ′ ∈ X =⇒ x ′ ∈ S =⇒ P x ′

by metis
show ∀ F (x ′, y ′) in at (x , y) within X × Y . P x ′

unfolding eventually at topological
by (auto intro!: exI [where x=S × UNIV ] S open Times)

qed

lemma eventually at Pair within TimesI2 :
fixes x :: ′a::metric space
assumes ∀ F y ′ in at y within Y . P y ′ P y
shows ∀ F (x ′, y ′) in at (x , y) within X × Y . P y ′

proof −
from assms[unfolded eventually at topological ]
obtain S where S : open S y ∈ S

∧
y ′. y ′ ∈ Y =⇒ y ′ ∈ S =⇒ P y ′

by metis
show ∀ F (x ′, y ′) in at (x , y) within X × Y . P y ′

unfolding eventually at topological
by (auto intro!: exI [where x=UNIV × S ] S open Times)

qed

proposition has derivative partialsI :
fixes f :: ′a::real normed vector ⇒ ′b::real normed vector ⇒ ′c::real normed vector
assumes fx : ((λx . f x y) has derivative fx ) (at x within X )
assumes fy :

∧
x y . x ∈ X =⇒ y ∈ Y =⇒ ((λy . f x y) has derivative blinfun apply

(fy x y)) (at y within Y )
assumes fy cont [unfolded continuous within]: continuous (at (x , y) within X ×

Y ) (λ(x , y). fy x y)
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assumes y ∈ Y convex Y
shows ((λ(x , y). f x y) has derivative (λ(tx , ty). fx tx + fy x y ty)) (at (x , y)

within X × Y )
proof (safe intro!: has derivativeI tendstoI , goal cases)
case (2 e ′)
interpret fx : bounded linear fx using fx by (rule has derivative bounded linear)
define e where e = e ′ / 9
have e > 0 using 〈e ′ > 0 〉 by (simp add : e def )

from fy cont [THEN tendstoD , OF 〈e > 0 〉]
have ∀ F (x ′, y ′) in at (x , y) within X × Y . dist (fy x ′ y ′) (fy x y) < e
by (auto simp: split beta ′)

from this[unfolded eventually at ] obtain d ′ where
d ′ > 0∧
x ′ y ′. x ′ ∈ X =⇒ y ′ ∈ Y =⇒ (x ′, y ′) 6= (x , y) =⇒ dist (x ′, y ′) (x , y) < d ′

=⇒
dist (fy x ′ y ′) (fy x y) < e

by auto
then
have d ′: x ′ ∈ X =⇒ y ′ ∈ Y =⇒ dist (x ′, y ′) (x , y) < d ′ =⇒ dist (fy x ′ y ′) (fy

x y) < e
for x ′ y ′

using 〈0 < e〉

by (cases (x ′, y ′) = (x , y)) auto
define d where d = d ′ / sqrt 2
have d > 0 using 〈0 < d ′〉 by (simp add : d def )
have d : x ′ ∈ X =⇒ y ′ ∈ Y =⇒ dist x ′ x < d =⇒ dist y ′ y < d =⇒ dist (fy x ′

y ′) (fy x y) < e
for x ′ y ′

by (auto simp: dist prod def d def intro!: d ′ real sqrt sum squares less)

let ?S = ball y d ∩ Y
have convex ?S
by (auto intro!: convex Int 〈convex Y 〉)

{
fix x ′:: ′a and y ′:: ′b
assume x ′: x ′ ∈ X and y ′: y ′ ∈ Y
assume dx ′: dist x ′ x < d and dy ′: dist y ′ y < d
have norm (fy x ′ y ′ − fy x ′ y) ≤ dist (fy x ′ y ′) (fy x y) + dist (fy x ′ y) (fy x

y)
by norm

also have dist (fy x ′ y ′) (fy x y) < e
by (rule d ; fact)

also have dist (fy x ′ y) (fy x y) < e
by (auto intro!: d simp: dist prod def x ′ 〈d > 0 〉 〈y ∈ Y 〉 dx ′)

finally
have norm (fy x ′ y ′ − fy x ′ y) < e + e
by arith

then have onorm (blinfun apply (fy x ′ y ′) − blinfun apply (fy x ′ y)) < e + e
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by (auto simp: norm blinfun.rep eq blinfun.diff left [abs def ] fun diff def )
} note onorm = this

have ev mem: ∀ F (x ′, y ′) in at (x , y) within X × Y . (x ′, y ′) ∈ X × Y
using 〈y ∈ Y 〉

by (auto simp: eventually at intro!: zero less one)
moreover
have ev dist : ∀ F xy in at (x , y) within X × Y . dist xy (x , y) < d if d > 0 for

d
using eventually at ball [OF that ]
by (rule eventually elim2 ) (auto simp: dist commute intro!: eventually True)

note ev dist [OF 〈0 < d 〉]
ultimately
have ∀ F (x ′, y ′) in at (x , y) within X × Y .
norm (f x ′ y ′ − f x ′ y − (fy x ′ y) (y ′ − y)) ≤ norm (y ′ − y) ∗ (e + e)

proof (eventually elim, safe)
fix x ′ y ′

assume x ′ ∈ X and y ′: y ′ ∈ Y
assume dist : dist (x ′, y ′) (x , y) < d
then have dx : dist x ′ x < d and dy : dist y ′ y < d
unfolding dist prod def fst conv snd conv atomize conj
by (metis le less trans real sqrt sum squares ge1 real sqrt sum squares ge2 )

{
fix t ::real
assume t ∈ {0 .. 1}
then have y + t ∗R (y ′ − y) ∈ closed segment y y ′

by (auto simp: closed segment def algebra simps intro!: exI [where x=t ])
also
have . . . ⊆ ball y d ∩ Y
using 〈y ∈ Y 〉 〈0 < d 〉 dy y ′

by (intro 〈convex ?S 〉[unfolded convex contains segment , rule format , of y
y ′])

(auto simp: dist commute)
finally have y + t ∗R (y ′ − y) ∈ ?S .

} note seg = this

have
∧
x . x ∈ ball y d ∩ Y =⇒ onorm (blinfun apply (fy x ′ x ) − blinfun apply

(fy x ′ y)) ≤ e + e
by (safe intro!: onorm less imp le 〈x ′ ∈ X 〉 dx ) (auto simp: dist commute 〈0

< d 〉 〈y ∈ Y 〉)
with seg has derivative subset [OF assms(2 )[OF 〈x ′ ∈ X 〉]]
show norm (f x ′ y ′ − f x ′ y − (fy x ′ y) (y ′ − y)) ≤ norm (y ′ − y) ∗ (e + e)
by (rule differentiable bound linearization[where S=?S ])
(auto intro!: 〈0 < d 〉 〈y ∈ Y 〉)

qed
moreover
let ?le = λx ′. norm (f x ′ y − f x y − (fx ) (x ′ − x )) ≤ norm (x ′ − x ) ∗ e
from fx [unfolded has derivative within, THEN conjunct2 , THEN tendstoD , OF

〈0 < e〉]
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have ∀ F x ′ in at x within X . ?le x ′

by eventually elim (simp,
simp add : dist norm field split simps split : if split asm)

then have ∀ F (x ′, y ′) in at (x , y) within X × Y . ?le x ′

by (rule eventually at Pair within TimesI1 )
(simp add : blinfun.bilinear simps)

moreover have ∀ F (x ′, y ′) in at (x , y) within X × Y . norm ((x ′, y ′) − (x ,
y)) 6= 0

unfolding norm eq zero right minus eq
by (auto simp: eventually at intro!: zero less one)

moreover
from fy cont [THEN tendstoD , OF 〈0 < e〉]
have ∀ F x ′ in at x within X . norm (fy x ′ y − fy x y) < e
unfolding eventually at
using 〈y ∈ Y 〉

by (auto simp: dist prod def dist norm)
then have ∀ F (x ′, y ′) in at (x , y) within X × Y . norm (fy x ′ y − fy x y) < e
by (rule eventually at Pair within TimesI1 )

(simp add : blinfun.bilinear simps 〈0 < e〉)
ultimately
have ∀ F (x ′, y ′) in at (x , y) within X × Y .

norm ((f x ′ y ′ − f x y − (fx (x ′ − x ) + fy x y (y ′ − y))) /R
norm ((x ′, y ′) − (x , y)))

< e ′

apply eventually elim
proof safe
fix x ′ y ′

have norm (f x ′ y ′ − f x y − (fx (x ′ − x ) + fy x y (y ′ − y))) ≤
norm (f x ′ y ′ − f x ′ y − fy x ′ y (y ′ − y)) +
norm (fy x y (y ′ − y) − fy x ′ y (y ′ − y)) +
norm (f x ′ y − f x y − fx (x ′ − x ))

by norm
also
assume nz : norm ((x ′, y ′) − (x , y)) 6= 0
and nfy : norm (fy x ′ y − fy x y) < e

assume norm (f x ′ y ′ − f x ′ y − blinfun apply (fy x ′ y) (y ′ − y)) ≤ norm (y ′

− y) ∗ (e + e)
also assume norm (f x ′ y − f x y − (fx ) (x ′ − x )) ≤ norm (x ′ − x ) ∗ e
also
have norm ((fy x y) (y ′ − y) − (fy x ′ y) (y ′ − y)) ≤ norm ((fy x y) − (fy x ′

y)) ∗ norm (y ′ − y)
by (auto simp: blinfun.bilinear simps[symmetric] intro!: norm blinfun)

also have . . . ≤ (e + e) ∗ norm (y ′ − y)
using 〈e > 0 〉 nfy
by (auto simp: norm minus commute intro!: mult right mono)

also have norm (x ′ − x ) ∗ e ≤ norm (x ′ − x ) ∗ (e + e)
using 〈0 < e〉 by simp

also have norm (y ′ − y) ∗ (e + e) + (e + e) ∗ norm (y ′ − y) + norm (x ′ −
x ) ∗ (e + e) ≤
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(norm (y ′ − y) + norm (x ′ − x )) ∗ (4 ∗ e)
using 〈e > 0 〉

by (simp add : algebra simps)
also have . . . ≤ 2 ∗ norm ((x ′, y ′) − (x , y)) ∗ (4 ∗ e)
using 〈0 < e〉 real sqrt sum squares ge1 [of norm (x ′ − x ) norm (y ′ − y)]
real sqrt sum squares ge2 [of norm (y ′ − y) norm (x ′ − x )]

by (auto intro!: mult right mono simp: norm prod def
simp del : real sqrt sum squares ge1 real sqrt sum squares ge2 )

also have . . . ≤ norm ((x ′, y ′) − (x , y)) ∗ (8 ∗ e)
by simp

also have . . . < norm ((x ′, y ′) − (x , y)) ∗ e ′

using 〈0 < e ′〉 nz
by (auto simp: e def )

finally show norm ((f x ′ y ′ − f x y − (fx (x ′ − x ) + fy x y (y ′ − y))) /R
norm ((x ′, y ′) − (x , y))) < e ′

by (simp add : dist norm) (auto simp add : field split simps)
qed
then show ?case
by eventually elim (auto simp: dist norm field simps)

next
from has derivative bounded linear [OF fx ]
obtain fxb where fx = blinfun apply fxb
by (metis bounded linear Blinfun apply)

then show bounded linear (λ(tx , ty). fx tx + blinfun apply (fy x y) ty)
by (auto intro!: bounded linear intros simp: split beta ′)

qed

4.10.20 Differentiable case distinction

lemma has derivative within If eq :
((λx . if P x then f x else g x ) has derivative f ′) (at x within S ) =
(bounded linear f ′ ∧
((λy .(if P y then (f y − ((if P x then f x else g x ) + f ′ (y − x )))/R norm (y

− x )
else (g y − ((if P x then f x else g x ) + f ′ (y − x )))/R norm (y − x )))

−−−→ 0 ) (at x within S ))
(is = ( ∧ (?if −−−→ 0 ) ))

proof −
have (λy . (1 / norm (y − x )) ∗R

((if P y then f y else g y) −
((if P x then f x else g x ) + f ′ (y − x )))) = ?if

by (auto simp: inverse eq divide)
thus ?thesis by (auto simp: has derivative within)

qed

lemma has derivative If within closures:
assumes f ′: x ∈ S ∪ (closure S ∩ closure T ) =⇒
(f has derivative f ′ x ) (at x within S ∪ (closure S ∩ closure T ))

assumes g ′: x ∈ T ∪ (closure S ∩ closure T ) =⇒
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(g has derivative g ′ x ) (at x within T ∪ (closure S ∩ closure T ))
assumes connect : x ∈ closure S =⇒ x ∈ closure T =⇒ f x = g x
assumes connect ′: x ∈ closure S =⇒ x ∈ closure T =⇒ f ′ x = g ′ x
assumes x in: x ∈ S ∪ T
shows ((λx . if x ∈ S then f x else g x ) has derivative

(if x ∈ S then f ′ x else g ′ x )) (at x within (S ∪ T ))
proof −
from f ′ x in interpret f ′: bounded linear if x ∈ S then f ′ x else (λx . 0 )
by (auto simp add : has derivative within)

from g ′ interpret g ′: bounded linear if x ∈ T then g ′ x else (λx . 0 )
by (auto simp add : has derivative within)

have bl : bounded linear (if x ∈ S then f ′ x else g ′ x )
using f ′.scaleR f ′.bounded f ′.add g ′.scaleR g ′.bounded g ′.add x in
by (unfold locales; force)

show ?thesis
using f ′ g ′ closure subset [of T ] closure subset [of S ]
unfolding has derivative within If eq
by (intro conjI bl tendsto If within closures x in)
(auto simp: has derivative within inverse eq divide connect connect ′ subsetD)

qed

lemma has vector derivative If within closures:
assumes x in: x ∈ S ∪ T
assumes u = S ∪ T
assumes f ′: x ∈ S ∪ (closure S ∩ closure T ) =⇒
(f has vector derivative f ′ x ) (at x within S ∪ (closure S ∩ closure T ))

assumes g ′: x ∈ T ∪ (closure S ∩ closure T ) =⇒
(g has vector derivative g ′ x ) (at x within T ∪ (closure S ∩ closure T ))

assumes connect : x ∈ closure S =⇒ x ∈ closure T =⇒ f x = g x
assumes connect ′: x ∈ closure S =⇒ x ∈ closure T =⇒ f ′ x = g ′ x
shows ((λx . if x ∈ S then f x else g x ) has vector derivative
(if x ∈ S then f ′ x else g ′ x )) (at x within u)

unfolding has vector derivative def assms
using x in
apply (intro has derivative If within closures[where ?f ′ = λx a. a ∗R f ′ x and

?g ′ = λx a. a ∗R g ′ x ,
THEN has derivative eq rhs])

subgoal by (rule f ′[unfolded has vector derivative def ]; assumption)
subgoal by (rule g ′[unfolded has vector derivative def ]; assumption)
by (auto simp: assms)

4.10.21 The Inverse Function Theorem

lemma linear injective contraction:
assumes linear f c < 1 and le:

∧
x . norm (f x − x ) ≤ c ∗ norm x

shows inj f
unfolding linear injective 0 [OF 〈linear f 〉]

proof safe
fix x
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assume f x = 0
with le [of x ] have norm x ≤ c ∗ norm x
by simp

then show x = 0
using 〈c < 1 〉 by (simp add : mult le cancel right1 )

qed

From an online proof by J. Michael Boardman, Department of Mathematics,
Johns Hopkins University

lemma inverse function theorem scaled :
fixes f :: ′a::euclidean space ⇒ ′a
and f ′:: ′a ⇒ ( ′a ⇒L

′a)
assumes open U
and derf :

∧
x . x ∈ U =⇒ (f has derivative blinfun apply (f ′ x )) (at x )

and contf : continuous on U f ′

and 0 ∈ U and [simp]: f 0 = 0
and id : f ′ 0 = id blinfun

obtains U ′ V g g ′ where open U ′ U ′⊆ U 0 ∈ U ′ open V 0 ∈ V homeomorphism
U ′ V f g ∧

y . y ∈ V =⇒ (g has derivative (g ′ y)) (at y)∧
y . y ∈ V =⇒ g ′ y = inv (blinfun apply (f ′(g y)))∧
y . y ∈ V =⇒ bij (blinfun apply (f ′(g y)))

proof −
obtain d1 where cball 0 d1 ⊆ U d1 > 0
using 〈open U 〉 〈0 ∈ U 〉 open contains cball by blast

obtain d2 where d2 :
∧
x . [[x ∈ U ; dist x 0 ≤ d2 ]] =⇒ dist (f ′ x ) (f ′ 0 ) < 1/2

0 < d2
using continuous onE [OF contf , of 0 1/2 ] by (metis 〈0 ∈ U 〉 half gt zero iff

zero less one)
obtain δ where le:

∧
x . norm x ≤ δ =⇒ dist (f ′ x ) id blinfun ≤ 1/2 and 0 <

δ
and subU : cball 0 δ ⊆ U

proof
show min d1 d2 > 0
by (simp add : 〈0 < d1 〉 〈0 < d2 〉)

show cball 0 (min d1 d2 ) ⊆ U
using 〈cball 0 d1 ⊆ U 〉 by auto

show dist (f ′ x ) id blinfun ≤ 1/2 if norm x ≤ min d1 d2 for x
using 〈cball 0 d1 ⊆ U 〉 d2 that id by fastforce

qed
let ?D = cball 0 δ
define V :: ′a set where V ≡ ball 0 (δ/2 )
have 4 : norm (f (x + h) − f x − h) ≤ 1/2 ∗ norm h
if x ∈ ?D x+h ∈ ?D for x h

proof −
let ?w = λx . f x − x
have B :

∧
x . x ∈ ?D =⇒ onorm (blinfun apply (f ′ x − id blinfun)) ≤ 1/2

by (metis dist norm le mem cball 0 norm blinfun.rep eq)
have

∧
x . x ∈ ?D =⇒ (?w has derivative (blinfun apply (f ′ x − id blinfun)))
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(at x )
by (rule derivative eq intros derf subsetD [OF subU ] | force simp: blin-

fun.diff left)+
then have Dw :

∧
x . x ∈ ?D =⇒ (?w has derivative (blinfun apply (f ′ x −

id blinfun))) (at x within ?D)
using has derivative at withinI by blast

have norm (?w (x+h) − ?w x ) ≤ (1/2 ) ∗ norm h
using differentiable bound [OF convex cball Dw B ] that by fastforce

then show ?thesis
by (auto simp: algebra simps)

qed
have for g : ∃ !x . norm x < δ ∧ f x = y if y : norm y < δ/2 for y
proof −
let ?u = λx . x + (y − f x )
have ∗: norm (?u x ) < δ if x ∈ ?D for x
proof −
have fxx : norm (f x − x ) ≤ δ/2
using 4 [of 0 x ] 〈0 < δ〉 〈f 0 = 0 〉 that by auto

have norm (?u x ) ≤ norm y + norm (f x − x )
by (metis add .commute add diff eq norm minus commute norm triangle ineq)
also have . . . < δ/2 + δ/2
using fxx y by auto

finally show ?thesis
by simp

qed
have ∃ !x ∈ ?D . ?u x = x
proof (rule banach fix )
show cball 0 δ 6= {}
using 〈0 < δ〉 by auto

show (λx . x + (y − f x )) ‘ cball 0 δ ⊆ cball 0 δ
using ∗ by force

have dist (x + (y − f x )) (xh + (y − f xh)) ∗ 2 ≤ dist x xh
if norm x ≤ δ and norm xh ≤ δ for x xh
using that 4 [of x xh−x ] by (auto simp: dist norm norm minus commute

algebra simps)
then show ∀ x∈cball 0 δ. ∀ ya∈cball 0 δ. dist (x + (y − f x )) (ya + (y − f

ya)) ≤ (1/2 ) ∗ dist x ya
by auto

qed (auto simp: complete eq closed)
then show ?thesis
by (metis ∗ add cancel right right eq iff diff eq 0 le less mem cball 0 )

qed
define g where g ≡ λy . THE x . norm x < δ ∧ f x = y
have g : norm (g y) < δ ∧ f (g y) = y if norm y < δ/2 for y
unfolding g def using that theI ′ [OF for g ] by meson

then have fg [simp]: f (g y) = y if y ∈ V for y
using that by (auto simp: V def )

have 5 : norm (g y ′ − g y) ≤ 2 ∗ norm (y ′ − y) if y ∈ V y ′ ∈ V for y y ′

proof −
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have no: norm (g y) ≤ δ norm (g y ′) ≤ δ and [simp]: f (g y) = y
using that g unfolding V def by force+

have norm (g y ′ − g y) ≤ norm (g y ′ − g y − (y ′ − y)) + norm (y ′ − y)
by (simp add : add .commute norm triangle sub)

also have . . . ≤ (1/2 ) ∗ norm (g y ′ − g y) + norm (y ′ − y)
using 4 [of g y g y ′ − g y ] that no by (simp add : g norm minus commute

V def )
finally show ?thesis
by auto

qed
have contg : continuous on V g
proof
fix y :: ′a and e::real
assume 0 < e and y : y ∈ V
show ∃ d>0 . ∀ x ′∈V . dist x ′ y < d −→ dist (g x ′) (g y) ≤ e
proof (intro exI conjI ballI impI )
show 0 < e/2
by (simp add : 〈0 < e〉)

qed (use 5 y in 〈force simp: dist norm〉)
qed
show thesis
proof
define U ′ where U ′ ≡ (f −‘ V ) ∩ ball 0 δ
have contf : continuous on U f
using derf has derivative at withinI by (fast intro: has derivative continuous on)
then have continuous on (ball 0 δ) f
by (meson ball subset cball continuous on subset subU )

then show open U ′

by (simp add : U ′ def V def Int commute continuous open preimage)
show 0 ∈ U ′ U ′ ⊆ U open V 0 ∈ V
using 〈0 < δ〉 subU by (auto simp: U ′ def V def )

show hom: homeomorphism U ′ V f g
proof
show continuous on U ′ f
using 〈U ′ ⊆ U 〉 contf continuous on subset by blast

show continuous on V g
using contg by blast

show f ‘ U ′ ⊆ V
using U ′ def by blast

show g ‘ V ⊆ U ′

by (simp add : U ′ def V def g image subset iff )
show g (f x ) = x if x ∈ U ′ for x
by (metis that fg Int iff U ′ def V def for g g mem ball 0 vimage eq)

show f (g y) = y if y ∈ V for y
using that by (simp add : g V def )

qed
show bij : bij (blinfun apply (f ′(g y))) if y ∈ V for y
proof −
have inj : inj (blinfun apply (f ′ (g y)))
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proof (rule linear injective contraction)
show linear (blinfun apply (f ′ (g y)))
using blinfun.bounded linear right bounded linear def by blast

next
fix x
have norm (blinfun apply (f ′ (g y)) x − x ) = norm (blinfun apply (f ′ (g

y) − id blinfun) x )
by (simp add : blinfun.diff left)

also have . . . ≤ norm (f ′ (g y) − id blinfun) ∗ norm x
by (rule norm blinfun)

also have . . . ≤ (1/2 ) ∗ norm x
proof (rule mult right mono)
show norm (f ′ (g y) − id blinfun) ≤ 1/2
using that g [of y ] le by (auto simp: V def dist norm)

qed auto
finally show norm (blinfun apply (f ′ (g y)) x − x ) ≤ (1/2 ) ∗ norm x .

qed auto
moreover
have surj (blinfun apply (f ′ (g y)))
using blinfun.bounded linear right bounded linear def
by (blast intro!: linear inj imp surj [OF inj ])

ultimately show ?thesis
using bijI by blast

qed
define g ′ where g ′ ≡ λy . inv (blinfun apply (f ′(g y)))
show (g has derivative g ′ y) (at y) if y ∈ V for y
proof −
have gy : g y ∈ U
using g subU that unfolding V def by fastforce

obtain e where e:
∧
h. f (g y + h) = y + blinfun apply (f ′ (g y)) h + e h

and e0 : (λh. norm (e h) / norm h) −0→ 0
using iffD1 [OF has derivative iff Ex derf [OF gy ]] 〈y ∈ V 〉 by auto

have [simp]: e 0 = 0
using e [of 0 ] that by simp

let ?INV = inv (blinfun apply (f ′ (g y)))
have inj : inj (blinfun apply (f ′ (g y)))
using bij bij betw def that by blast

have (g has derivative g ′ y) (at y within V )
unfolding has derivative at within iff Ex [OF 〈y ∈ V 〉 〈open V 〉]

proof
show blinv : bounded linear (g ′ y)
unfolding g ′ def using derf gy inj inj linear imp inv bounded linear by

blast
define eg where eg ≡ λk . − ?INV (e (g (y+k) − g y))
have g (y+k) = g y + g ′ y k + eg k if y + k ∈ V for k
proof −
have ?INV k = ?INV (blinfun apply (f ′ (g y)) (g (y+k) − g y) + e (g

(y+k) − g y))
using e [of g(y+k) − g y ] that by simp
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then have g (y+k) = g y + ?INV k − ?INV (e (g (y+k) − g y))
using inj blinv by (simp add : linear simps g ′ def )

then show ?thesis
by (auto simp: eg def g ′ def )

qed
moreover have (λk . norm (eg k) / norm k) −0→ 0
proof (rule Lim null comparison)

let ?g = λk . 2 ∗ onorm ?INV ∗ norm (e (g (y+k) − g y)) / norm (g
(y+k) − g y)

show ∀ F k in at 0 . norm (norm (eg k) / norm k) ≤ ?g k
unfolding eventually at topological

proof (intro exI conjI ballI impI )
show open ((+)(−y) ‘ V )
using 〈open V 〉 open translation by blast

show 0 ∈ (+)(−y) ‘ V
by (simp add : that)
show norm (norm (eg k) / norm k) ≤ 2 ∗ onorm (inv (blinfun apply

(f ′ (g y)))) ∗ norm (e (g (y+k) − g y)) / norm (g (y+k) − g y)
if k ∈ (+)(−y) ‘ V k 6= 0 for k

proof −
have y+k ∈ V
using that by auto
have norm (norm (eg k) / norm k) ≤ onorm ?INV ∗ norm (e (g

(y+k) − g y)) / norm k
using blinv g ′ def onorm by (force simp: eg def divide simps)

also have . . . = (norm (g (y+k) − g y) / norm k) ∗ (onorm ?INV ∗
(norm (e (g (y+k) − g y)) / norm (g (y+k) − g y)))

by (simp add : divide simps)
also have . . . ≤ 2 ∗ (onorm ?INV ∗ (norm (e (g (y+k) − g y)) /

norm (g (y+k) − g y)))
apply (rule mult right mono)
using 5 [of y y+k ] 〈y ∈ V 〉 〈y + k ∈ V 〉 onorm pos le [OF blinv ]

apply (auto simp: divide simps zero le mult iff zero le divide iff
g ′ def )

done
finally show norm (norm (eg k) / norm k) ≤ 2 ∗ onorm ?INV ∗

norm (e (g (y+k) − g y)) / norm (g (y+k) − g y)
by simp

qed
qed
have 1 : (λh. norm (e h) / norm h) −0→ (norm (e 0 ) / norm 0 )
using e0 by auto

have 2 : (λk . g (y+k) − g y) −0→ 0
using contg 〈open V 〉 〈y ∈ V 〉 LIM offset zero iff LIM zero iff at within open

continuous on def by fastforce
from tendsto compose [OF 1 2 , simplified ]
have (λk . norm (e (g (y+k) − g y)) / norm (g (y+k) − g y)) −0→ 0 .
from tendsto mult left [OF this] show ?g −0→ 0 by auto

qed
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ultimately show ∃ e. (∀ k . y + k ∈ V −→ g (y+k) = g y + g ′ y k + e k)
∧ (λk . norm (e k) / norm k) −0→ 0

by blast
qed
then show ?thesis
by (metis 〈open V 〉 at within open that)

qed
show g ′ y = inv (blinfun apply (f ′ (g y)))
if y ∈ V for y
by (simp add : g ′ def )

qed
qed

We need all this to justify the scaling and translations.

theorem inverse function theorem:
fixes f :: ′a::euclidean space ⇒ ′a
and f ′:: ′a ⇒ ( ′a ⇒L

′a)
assumes open U
and derf :

∧
x . x ∈ U =⇒ (f has derivative (blinfun apply (f ′ x ))) (at x )

and contf : continuous on U f ′

and x0 ∈ U
and invf : invf oL f ′ x0 = id blinfun

obtains U ′ V g g ′ where open U ′ U ′ ⊆ U x0 ∈ U ′ open V f x0 ∈ V homeo-
morphism U ′ V f g∧

y . y ∈ V =⇒ (g has derivative (g ′ y)) (at y)∧
y . y ∈ V =⇒ g ′ y = inv (blinfun apply (f ′(g y)))∧
y . y ∈ V =⇒ bij (blinfun apply (f ′(g y)))

proof −
have apply1 [simp]:

∧
i . blinfun apply invf (blinfun apply (f ′ x0 ) i) = i

by (metis blinfun apply blinfun compose blinfun apply id blinfun invf )
have apply2 [simp]:

∧
i . blinfun apply (f ′ x0 ) (blinfun apply invf i) = i

by (metis apply1 bij inv eq iff blinfun bij1 invf )
have [simp]: (range (blinfun apply invf )) = UNIV
using apply1 surjI by blast

let ?f = invf ◦ (λx . (f ◦ (+)x0 )x − f x0 )
let ?f ′ = λx . invf oL (f ′ (x + x0 ))
obtain U ′ V g g ′ where open U ′ and U ′: U ′ ⊆ (+)(−x0 ) ‘ U 0 ∈ U ′

and open V 0 ∈ V and hom: homeomorphism U ′ V ?f g
and derg :

∧
y . y ∈ V =⇒ (g has derivative (g ′ y)) (at y)

and g ′:
∧
y . y ∈ V =⇒ g ′ y = inv (?f ′(g y))

and bij :
∧
y . y ∈ V =⇒ bij (?f ′(g y))

proof (rule inverse function theorem scaled [of (+)(−x0 ) ‘ U ?f ?f ′])
show ope: open ((+) (− x0 ) ‘ U )
using 〈open U 〉 open translation by blast

show (?f has derivative blinfun apply (?f ′ x )) (at x )
if x ∈ (+) (− x0 ) ‘ U for x
using that
apply clarify
apply (rule derf derivative eq intros | simp add : blinfun compose.rep eq)+
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done
have YY : (λx . f ′ (x + x0 )) −u−x0→ f ′ u
if f ′ −u→ f ′ u u ∈ U for u
using that LIM offset [where k = x0 ] by (auto simp: algebra simps)

then have continuous on ((+) (− x0 ) ‘ U ) (λx . f ′ (x + x0 ))
using contf 〈open U 〉 Lim at imp Lim at within
by (fastforce simp: continuous on def at within open NO MATCH ope)

then show continuous on ((+) (− x0 ) ‘ U ) ?f ′

by (intro continuous intros) simp
qed (auto simp: invf 〈x0 ∈ U 〉)
show thesis
proof
let ?U ′ = (+)x0 ‘ U ′

let ?V = ((+)(f x0 ) ◦ f ′ x0 ) ‘ V
let ?g = (+)x0 ◦ g ◦ invf ◦ (+)(− f x0 )
let ?g ′ = λy . inv (blinfun apply (f ′ (?g y)))
show oU ′: open ?U ′

by (simp add : 〈open U ′〉 open translation)
show subU : ?U ′ ⊆ U
using ComplI 〈U ′ ⊆ (+) (− x0 ) ‘ U 〉 by auto

show x0 ∈ ?U ′

by (simp add : 〈0 ∈ U ′〉)
show open ?V
using blinfun bij2 [OF invf ]
by (metis 〈open V 〉 bij is surj blinfun.bounded linear right bounded linear def

image comp open surjective linear image open translation)
show f x0 ∈ ?V
using 〈0 ∈ V 〉 image iff by fastforce

show homeomorphism ?U ′ ?V f ?g
proof
show continuous on ?U ′ f
by (meson subU continuous on eq continuous at derf has derivative continuous

oU ′ subsetD)
have ?f ‘ U ′ ⊆ V
using hom homeomorphism image1 by blast

then show f ‘ ?U ′ ⊆ ?V
unfolding image subset iff
by (clarsimp simp: image def ) (metis apply2 add .commute diff add cancel)

show ?g ‘ ?V ⊆ ?U ′

using hom invf by (auto simp: image def homeomorphism def )
show ?g (f x ) = x
if x ∈ ?U ′ for x
using that hom homeomorphism apply1 by fastforce

have continuous on V g
using hom homeomorphism def by blast

then show continuous on ?V ?g
by (intro continuous intros) (auto elim!: continuous on subset)

have fg : ?f (g x ) = x if x ∈ V for x
using hom homeomorphism apply2 that by blast
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show f (?g y) = y
if y ∈ ?V for y

using that fg by (simp add : image iff ) (metis apply2 add .commute diff add cancel)
qed
show (?g has derivative ?g ′ y) (at y) bij (blinfun apply (f ′ (?g y)))
if y ∈ ?V for y

proof −
have 1 : bij (blinfun apply invf )
using blinfun bij1 invf by blast

then have 2 : bij (blinfun apply (f ′ (x0 + g x ))) if x ∈ V for x
by (metis add .commute bij bij betw comp iff2 blinfun compose.rep eq that

top greatest)
then show bij (blinfun apply (f ′ (?g y)))
using that by auto

have g ′ x ◦ blinfun apply invf = inv (blinfun apply (f ′ (x0 + g x )))
if x ∈ V for x
using that
by (simp add : g ′ o inv distrib blinfun compose.rep eq 1 2 add .commute

bij is inj flip: o assoc)
then show (?g has derivative ?g ′ y) (at y)
using that invf
by clarsimp (rule derg derivative eq intros | simp flip: id def )+

qed
qed auto

qed

4.10.22 Piecewise differentiable functions

definition piecewise differentiable on
(infixr piecewise ′ differentiable ′ on 50 )

where f piecewise differentiable on i ≡
continuous on i f ∧
(∃S . finite S ∧ (∀ x ∈ i − S . f differentiable (at x within i)))

lemma piecewise differentiable on imp continuous on:
f piecewise differentiable on S =⇒ continuous on S f

by (simp add : piecewise differentiable on def )

lemma piecewise differentiable on subset :
f piecewise differentiable on S =⇒ T ≤ S =⇒ f piecewise differentiable on T

using continuous on subset
unfolding piecewise differentiable on def
apply safe
apply (blast elim: continuous on subset)
by (meson Diff iff differentiable within subset subsetCE )

lemma differentiable on imp piecewise differentiable:
fixes a:: ′a::{linorder topology ,real normed vector}
shows f differentiable on {a..b} =⇒ f piecewise differentiable on {a..b}
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apply (simp add : piecewise differentiable on def differentiable imp continuous on)
apply (rule tac x={a,b} in exI , simp add : differentiable on def )
done

lemma differentiable imp piecewise differentiable:
(
∧
x . x ∈ S =⇒ f differentiable (at x within S ))
=⇒ f piecewise differentiable on S

by (auto simp: piecewise differentiable on def differentiable imp continuous on dif-
ferentiable on def

intro: differentiable within subset)

lemma piecewise differentiable const [iff ]: (λx . z ) piecewise differentiable on S
by (simp add : differentiable imp piecewise differentiable)

lemma piecewise differentiable compose:
[[f piecewise differentiable on S ; g piecewise differentiable on (f ‘ S );∧

x . finite (S ∩ f−‘{x})]]
=⇒ (g ◦ f ) piecewise differentiable on S

apply (simp add : piecewise differentiable on def , safe)
apply (blast intro: continuous on compose2 )
apply (rename tac A B)
apply (rule tac x=A ∪ (

⋃
x∈B . S ∩ f−‘{x}) in exI )

apply (blast intro!: differentiable chain within)
done

lemma piecewise differentiable affine:
fixes m::real
assumes f piecewise differentiable on ((λx . m ∗R x + c) ‘ S )
shows (f ◦ (λx . m ∗R x + c)) piecewise differentiable on S

proof (cases m = 0 )
case True
then show ?thesis
unfolding o def
by (force intro: differentiable imp piecewise differentiable differentiable const)

next
case False
show ?thesis
apply (rule piecewise differentiable compose [OF differentiable imp piecewise differentiable])
apply (rule assms derivative intros | simp add : False vimage def real vector affinity eq)+
done

qed

lemma piecewise differentiable cases:
fixes c::real
assumes f piecewise differentiable on {a..c}

g piecewise differentiable on {c..b}
a ≤ c c ≤ b f c = g c

shows (λx . if x ≤ c then f x else g x ) piecewise differentiable on {a..b}
proof −
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obtain S T where st : finite S finite T
and fd :

∧
x . x ∈ {a..c} − S =⇒ f differentiable at x within {a..c}

and gd :
∧
x . x ∈ {c..b} − T =⇒ g differentiable at x within {c..b}

using assms
by (auto simp: piecewise differentiable on def )

have finabc: finite ({a,b,c} ∪ (S ∪ T ))
by (metis 〈finite S 〉 〈finite T 〉 finite Un finite insert finite.emptyI )

have continuous on {a..c} f continuous on {c..b} g
using assms piecewise differentiable on def by auto

then have continuous on {a..b} (λx . if x ≤ c then f x else g x )
using continuous on cases [OF closed real atLeastAtMost [of a c],

OF closed real atLeastAtMost [of c b],
of f g λx . x≤c] assms

by (force simp: ivl disj un two touch)
moreover
{ fix x
assume x : x ∈ {a..b} − ({a,b,c} ∪ (S ∪ T ))
have (λx . if x ≤ c then f x else g x ) differentiable at x within {a..b} (is ?diff fg)
proof (cases x c rule: le cases)
case le show ?diff fg
proof (rule differentiable transform within [where d = dist x c])
have f differentiable at x
using x le fd [of x ] at within interior [of x {a..c}] by simp

then show f differentiable at x within {a..b}
by (simp add : differentiable at withinI )

qed (use x le st dist real def in auto)
next
case ge show ?diff fg
proof (rule differentiable transform within [where d = dist x c])
have g differentiable at x
using x ge gd [of x ] at within interior [of x {c..b}] by simp

then show g differentiable at x within {a..b}
by (simp add : differentiable at withinI )

qed (use x ge st dist real def in auto)
qed

}
then have ∃S . finite S ∧

(∀ x∈{a..b} − S . (λx . if x ≤ c then f x else g x ) differentiable at x
within {a..b})

by (meson finabc)
ultimately show ?thesis
by (simp add : piecewise differentiable on def )

qed

lemma piecewise differentiable neg :
f piecewise differentiable on S =⇒ (λx . −(f x )) piecewise differentiable on S

by (auto simp: piecewise differentiable on def continuous on minus)

lemma piecewise differentiable add :
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assumes f piecewise differentiable on i
g piecewise differentiable on i

shows (λx . f x + g x ) piecewise differentiable on i
proof −
obtain S T where st : finite S finite T

∀ x∈i − S . f differentiable at x within i
∀ x∈i − T . g differentiable at x within i

using assms by (auto simp: piecewise differentiable on def )
then have finite (S ∪ T ) ∧ (∀ x∈i − (S ∪ T ). (λx . f x + g x ) differentiable at

x within i)
by auto

moreover have continuous on i f continuous on i g
using assms piecewise differentiable on def by auto

ultimately show ?thesis
by (auto simp: piecewise differentiable on def continuous on add)

qed

lemma piecewise differentiable diff :
[[f piecewise differentiable on S ; g piecewise differentiable on S ]]
=⇒ (λx . f x − g x ) piecewise differentiable on S

unfolding diff conv add uminus
by (metis piecewise differentiable add piecewise differentiable neg)

4.10.23 The concept of continuously differentiable

John Harrison writes as follows:

“The usual assumption in complex analysis texts is that a path γ should be
piecewise continuously differentiable, which ensures that the path integral
exists at least for any continuous f, since all piecewise continuous functions
are integrable. However, our notion of validity is weaker, just piecewise dif-
ferentiability. . . [namely] continuity plus differentiability except on a finite
set. . . [Our] underlying theory of integration is the Kurzweil-Henstock the-
ory. In contrast to the Riemann or Lebesgue theory (but in common with a
simple notion based on antiderivatives), this can integrate all derivatives.”

”Formalizing basic complex analysis.” From Insight to Proof: Festschrift in
Honour of Andrzej Trybulec. Studies in Logic, Grammar and Rhetoric 10.23
(2007): 151-165.

And indeed he does not assume that his derivatives are continuous, but
the penalty is unreasonably difficult proofs concerning winding numbers.
We need a self-contained and straightforward theorem asserting that all
derivatives can be integrated before we can adopt Harrison’s choice.

definition C1 differentiable on :: (real ⇒ ′a::real normed vector) ⇒ real set ⇒
bool

(infix C1 ′ differentiable ′ on 50 )
where
f C1 differentiable on S ←→
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(∃D . (∀ x ∈ S . (f has vector derivative (D x )) (at x )) ∧ continuous on S D)

lemma C1 differentiable on eq :
f C1 differentiable on S ←→
(∀ x ∈ S . f differentiable at x ) ∧ continuous on S (λx . vector derivative f (at

x ))
(is ?lhs = ?rhs)

proof
assume ?lhs
then show ?rhs
unfolding C1 differentiable on def
by (metis (no types, lifting) continuous on eq differentiableI vector vector derivative at)

next
assume ?rhs
then show ?lhs
using C1 differentiable on def vector derivative works by fastforce

qed

lemma C1 differentiable on subset :
f C1 differentiable on T =⇒ S ⊆ T =⇒ f C1 differentiable on S
unfolding C1 differentiable on def continuous on eq continuous within
by (blast intro: continuous within subset)

lemma C1 differentiable compose:
assumes fg : f C1 differentiable on S g C1 differentiable on (f ‘ S ) and fin:

∧
x .

finite (S ∩ f−‘{x})
shows (g ◦ f ) C1 differentiable on S

proof −
have

∧
x . x ∈ S =⇒ g ◦ f differentiable at x

by (meson C1 differentiable on eq assms differentiable chain at imageI )
moreover have continuous on S (λx . vector derivative (g ◦ f ) (at x ))
proof (rule continuous on eq [of λx . vector derivative f (at x ) ∗R vector derivative

g (at (f x ))])
show continuous on S (λx . vector derivative f (at x ) ∗R vector derivative g (at

(f x )))
using fg
apply (clarsimp simp add : C1 differentiable on eq)
apply (rule Limits.continuous on scaleR, assumption)

by (metis (mono tags, lifting) continuous at imp continuous on continu-
ous on compose continuous on cong differentiable imp continuous within o def )

show
∧
x . x ∈ S =⇒ vector derivative f (at x ) ∗R vector derivative g (at (f x ))

= vector derivative (g ◦ f ) (at x )
by (metis (mono tags, hide lams) C1 differentiable on eq fg imageI vec-

tor derivative chain at)
qed
ultimately show ?thesis
by (simp add : C1 differentiable on eq)

qed
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lemma C1 diff imp diff : f C1 differentiable on S =⇒ f differentiable on S
by (simp add : C1 differentiable on eq differentiable at imp differentiable on)

lemma C1 differentiable on ident [simp, derivative intros]: (λx . x ) C1 differentiable on
S
by (auto simp: C1 differentiable on eq)

lemma C1 differentiable on const [simp, derivative intros]: (λz . a) C1 differentiable on
S
by (auto simp: C1 differentiable on eq)

lemma C1 differentiable on add [simp, derivative intros]:
f C1 differentiable on S =⇒ g C1 differentiable on S =⇒ (λx . f x + g x ) C1 differentiable on

S
unfolding C1 differentiable on eq by (auto intro: continuous intros)

lemma C1 differentiable on minus [simp, derivative intros]:
f C1 differentiable on S =⇒ (λx . − f x ) C1 differentiable on S
unfolding C1 differentiable on eq by (auto intro: continuous intros)

lemma C1 differentiable on diff [simp, derivative intros]:
f C1 differentiable on S =⇒ g C1 differentiable on S =⇒ (λx . f x − g x ) C1 differentiable on

S
unfolding C1 differentiable on eq by (auto intro: continuous intros)

lemma C1 differentiable on mult [simp, derivative intros]:
fixes f g :: real ⇒ ′a :: real normed algebra
shows f C1 differentiable on S =⇒ g C1 differentiable on S =⇒ (λx . f x ∗ g x )

C1 differentiable on S
unfolding C1 differentiable on eq
by (auto simp: continuous on add continuous on mult continuous at imp continuous on

differentiable imp continuous within)

lemma C1 differentiable on scaleR [simp, derivative intros]:
f C1 differentiable on S =⇒ g C1 differentiable on S =⇒ (λx . f x ∗R g x )

C1 differentiable on S
unfolding C1 differentiable on eq
by (rule continuous intros | simp add : continuous at imp continuous on differen-

tiable imp continuous within)+

definition piecewise C1 differentiable on
(infixr piecewise ′ C1 ′ differentiable ′ on 50 )

where f piecewise C1 differentiable on i ≡
continuous on i f ∧
(∃S . finite S ∧ (f C1 differentiable on (i − S )))

lemma C1 differentiable imp piecewise:
f C1 differentiable on S =⇒ f piecewise C1 differentiable on S
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by (auto simp: piecewise C1 differentiable on def C1 differentiable on eq contin-
uous at imp continuous on differentiable imp continuous within)

lemma piecewise C1 imp differentiable:
f piecewise C1 differentiable on i =⇒ f piecewise differentiable on i

by (auto simp: piecewise C1 differentiable on def piecewise differentiable on def
C1 differentiable on def differentiable def has vector derivative def
intro: has derivative at withinI )

lemma piecewise C1 differentiable compose:
assumes fg : f piecewise C1 differentiable on S g piecewise C1 differentiable on (f

‘ S ) and fin:
∧
x . finite (S ∩ f−‘{x})

shows (g ◦ f ) piecewise C1 differentiable on S
proof −
have continuous on S (λx . g (f x ))
by (metis continuous on compose2 fg order refl piecewise C1 differentiable on def )
moreover have ∃T . finite T ∧ g ◦ f C1 differentiable on S − T
proof −

obtain F where finite F and F : f C1 differentiable on S − F and f : f
piecewise C1 differentiable on S

using fg by (auto simp: piecewise C1 differentiable on def )
obtain G where finite G and G : g C1 differentiable on f ‘ S − G and g : g

piecewise C1 differentiable on f ‘ S
using fg by (auto simp: piecewise C1 differentiable on def )

show ?thesis
proof (intro exI conjI )
show finite (F ∪ (

⋃
x∈G . S ∩ f−‘{x}))

using fin by (auto simp only : Int Union 〈finite F 〉 〈finite G〉 finite UN
finite imageI )

show g ◦ f C1 differentiable on S − (F ∪ (
⋃
x∈G . S ∩ f −‘ {x}))

apply (rule C1 differentiable compose)
apply (blast intro: C1 differentiable on subset [OF F ])
apply (blast intro: C1 differentiable on subset [OF G ])

by (simp add : C1 differentiable on subset G Diff Int distrib2 fin)
qed

qed
ultimately show ?thesis
by (simp add : piecewise C1 differentiable on def )

qed

lemma piecewise C1 differentiable on subset :
f piecewise C1 differentiable on S =⇒ T ≤ S =⇒ f piecewise C1 differentiable on

T
by (auto simp: piecewise C1 differentiable on def elim!: continuous on subset C1 differentiable on subset)

lemma C1 differentiable imp continuous on:
f C1 differentiable on S =⇒ continuous on S f
unfolding C1 differentiable on eq continuous on eq continuous within
using differentiable at withinI differentiable imp continuous within by blast
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lemma C1 differentiable on empty [iff ]: f C1 differentiable on {}
unfolding C1 differentiable on def
by auto

lemma piecewise C1 differentiable affine:
fixes m::real
assumes f piecewise C1 differentiable on ((λx . m ∗ x + c) ‘ S )
shows (f ◦ (λx . m ∗R x + c)) piecewise C1 differentiable on S

proof (cases m = 0 )
case True
then show ?thesis
unfolding o def by (auto simp: piecewise C1 differentiable on def )

next
case False
have ∗:

∧
x . finite (S ∩ {y . m ∗ y + c = x})

using False not finite existsD by fastforce
show ?thesis
apply (rule piecewise C1 differentiable compose [OF C1 differentiable imp piecewise])
apply (rule ∗ assms derivative intros | simp add : False vimage def )+
done

qed

lemma piecewise C1 differentiable cases:
fixes c::real
assumes f piecewise C1 differentiable on {a..c}

g piecewise C1 differentiable on {c..b}
a ≤ c c ≤ b f c = g c

shows (λx . if x ≤ c then f x else g x ) piecewise C1 differentiable on {a..b}
proof −
obtain S T where st : f C1 differentiable on ({a..c} − S )

g C1 differentiable on ({c..b} − T )
finite S finite T

using assms
by (force simp: piecewise C1 differentiable on def )

then have f diff : f differentiable on {a..<c} − S
and g diff : g differentiable on {c<..b} − T

by (simp all add : C1 differentiable on eq differentiable at withinI differentiable on def )
have continuous on {a..c} f continuous on {c..b} g
using assms piecewise C1 differentiable on def by auto

then have cab: continuous on {a..b} (λx . if x ≤ c then f x else g x )
using continuous on cases [OF closed real atLeastAtMost [of a c],

OF closed real atLeastAtMost [of c b],
of f g λx . x≤c] assms

by (force simp: ivl disj un two touch)
{ fix x
assume x : x ∈ {a..b} − insert c (S ∪ T )
have (λx . if x ≤ c then f x else g x ) differentiable at x (is ?diff fg)
proof (cases x c rule: le cases)
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case le show ?diff fg
apply (rule differentiable transform within [where f=f and d = dist x c])
using x dist real def le st by (auto simp: C1 differentiable on eq)

next
case ge show ?diff fg
apply (rule differentiable transform within [where f=g and d = dist x c])
using dist nz x dist real def ge st x by (auto simp: C1 differentiable on eq)

qed
}
then have (∀ x ∈ {a..b} − insert c (S ∪ T ). (λx . if x ≤ c then f x else g x )

differentiable at x )
by auto

moreover
{ assume fcon: continuous on ({a<..<c} − S ) (λx . vector derivative f (at x ))

and gcon: continuous on ({c<..<b} − T ) (λx . vector derivative g (at x ))
have open ({a<..<c} − S ) open ({c<..<b} − T )
using st by (simp all add : open Diff finite imp closed)

moreover have continuous on ({a<..<c} − S ) (λx . vector derivative (λx . if
x ≤ c then f x else g x ) (at x ))

proof −
have ((λx . if x ≤ c then f x else g x ) has vector derivative vector derivative f

(at x )) (at x )
if a < x x < c x /∈ S for x

proof −
have f : f differentiable at x
by (meson C1 differentiable on eq Diff iff atLeastAtMost iff less eq real def

st(1 ) that)
show ?thesis
using that

apply (rule tac f=f and d=dist x c in has vector derivative transform within)
apply (auto simp: dist norm vector derivative works [symmetric] f )

done
qed
then show ?thesis
by (metis (no types, lifting) continuous on eq [OF fcon] DiffE greaterThanLessThan iff

vector derivative at)
qed
moreover have continuous on ({c<..<b} − T ) (λx . vector derivative (λx . if

x ≤ c then f x else g x ) (at x ))
proof −
have ((λx . if x ≤ c then f x else g x ) has vector derivative vector derivative

g (at x )) (at x )
if c < x x < b x /∈ T for x

proof −
have g : g differentiable at x

by (metis C1 differentiable on eq DiffD1 DiffI atLeastAtMost diff ends
greaterThanLessThan iff st(2 ) that)

show ?thesis
using that
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apply (rule tac f=g and d=dist x c in has vector derivative transform within)
apply (auto simp: dist norm vector derivative works [symmetric] g)

done
qed
then show ?thesis
by (metis (no types, lifting) continuous on eq [OF gcon] DiffE greaterThanLessThan iff

vector derivative at)
qed
ultimately have continuous on ({a<..<b} − insert c (S ∪ T ))

(λx . vector derivative (λx . if x ≤ c then f x else g x ) (at x ))
by (rule continuous on subset [OF continuous on open Un], auto)

} note ∗ = this
have continuous on ({a<..<b} − insert c (S ∪ T )) (λx . vector derivative (λx .

if x ≤ c then f x else g x ) (at x ))
using st
by (auto simp: C1 differentiable on eq elim!: continuous on subset intro: ∗)

ultimately have ∃S . finite S ∧ ((λx . if x ≤ c then f x else g x ) C1 differentiable on
{a..b} − S )

apply (rule tac x={a,b,c} ∪ S ∪ T in exI )
using st by (auto simp: C1 differentiable on eq elim!: continuous on subset)

with cab show ?thesis
by (simp add : piecewise C1 differentiable on def )

qed

lemma piecewise C1 differentiable neg :
f piecewise C1 differentiable on S =⇒ (λx . −(f x )) piecewise C1 differentiable on

S
unfolding piecewise C1 differentiable on def
by (auto intro!: continuous on minus C1 differentiable on minus)

lemma piecewise C1 differentiable add :
assumes f piecewise C1 differentiable on i

g piecewise C1 differentiable on i
shows (λx . f x + g x ) piecewise C1 differentiable on i

proof −
obtain S t where st : finite S finite t

f C1 differentiable on (i−S )
g C1 differentiable on (i−t)

using assms by (auto simp: piecewise C1 differentiable on def )
then have finite (S ∪ t) ∧ (λx . f x + g x ) C1 differentiable on i − (S ∪ t)
by (auto intro: C1 differentiable on add elim!: C1 differentiable on subset)

moreover have continuous on i f continuous on i g
using assms piecewise C1 differentiable on def by auto

ultimately show ?thesis
by (auto simp: piecewise C1 differentiable on def continuous on add)

qed

lemma piecewise C1 differentiable diff :
[[f piecewise C1 differentiable on S ; g piecewise C1 differentiable on S ]]
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=⇒ (λx . f x − g x ) piecewise C1 differentiable on S
unfolding diff conv add uminus
by (metis piecewise C1 differentiable add piecewise C1 differentiable neg)

end

4.11 Finite Cartesian Products of Euclidean Spaces

theory Cartesian Euclidean Space
imports Derivative
begin

lemma subspace special hyperplane: subspace {x . x $ k = 0}
by (simp add : subspace def )

lemma sum mult product :
sum h {..<A ∗ B :: nat} = (

∑
i∈{..<A}.

∑
j∈{..<B}. h (j + i ∗ B))

unfolding sum.nat group[of h B A, unfolded atLeast0LessThan, symmetric]
proof (rule sum.cong , simp, rule sum.reindex cong)
fix i
show inj on (λj . j + i ∗ B) {..<B} by (auto intro!: inj onI )
show {i ∗ B ..<i ∗ B + B} = (λj . j + i ∗ B) ‘ {..<B}
proof safe
fix j assume j ∈ {i ∗ B ..<i ∗ B + B}
then show j ∈ (λj . j + i ∗ B) ‘ {..<B}
by (auto intro!: image eqI [of j − i ∗ B ])

qed simp
qed simp

lemma interval cbox cart : {a::realˆ ′n..b} = cbox a b
by (auto simp add : less eq vec def mem box Basis vec def inner axis)

lemma differentiable vec:
fixes S :: ′a::euclidean space set
shows vec differentiable on S
by (simp add : linear linear bounded linear imp differentiable on)

lemma continuous vec [continuous intros]:
fixes x :: ′a::euclidean space
shows isCont vec x
apply (clarsimp simp add : continuous def LIM def dist vec def L2 set def )
apply (rule tac x=r / sqrt (real CARD( ′b)) in exI )
by (simp add : mult .commute pos less divide eq real sqrt mult)

lemma box vec eq empty [simp]:
shows cbox (vec a) (vec b) = {} ←→ cbox a b = {}

box (vec a) (vec b) = {} ←→ box a b = {}
by (auto simp: Basis vec def mem box box eq empty inner axis)
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4.11.1 Closures and interiors of halfspaces

lemma interior halfspace component le [simp]:
interior {x . x$k ≤ a} = {x :: (realˆ ′n). x$k < a} (is ?LE )

and interior halfspace component ge [simp]:
interior {x . x$k ≥ a} = {x :: (realˆ ′n). x$k > a} (is ?GE )

proof −
have axis k (1 ::real) 6= 0
by (simp add : axis def vec eq iff )

moreover have axis k (1 ::real) · x = x$k for x
by (simp add : cart eq inner axis inner commute)

ultimately show ?LE ?GE
using interior halfspace le [of axis k (1 ::real) a]

interior halfspace ge [of axis k (1 ::real) a] by auto
qed

lemma closure halfspace component lt [simp]:
closure {x . x$k < a} = {x :: (realˆ ′n). x$k ≤ a} (is ?LE )

and closure halfspace component gt [simp]:
closure {x . x$k > a} = {x :: (realˆ ′n). x$k ≥ a} (is ?GE )

proof −
have axis k (1 ::real) 6= 0
by (simp add : axis def vec eq iff )

moreover have axis k (1 ::real) · x = x$k for x
by (simp add : cart eq inner axis inner commute)

ultimately show ?LE ?GE
using closure halfspace lt [of axis k (1 ::real) a]

closure halfspace gt [of axis k (1 ::real) a] by auto
qed

lemma interior standard hyperplane:
interior {x :: (realˆ ′n). x$k = a} = {}

proof −
have axis k (1 ::real) 6= 0
by (simp add : axis def vec eq iff )

moreover have axis k (1 ::real) · x = x$k for x
by (simp add : cart eq inner axis inner commute)

ultimately show ?thesis
using interior hyperplane [of axis k (1 ::real) a]
by force

qed

lemma matrix vector mul bounded linear [intro, simp]: bounded linear ((∗v) A) for
A :: ′a::{euclidean space,real algebra 1}ˆ ′nˆ ′m
using matrix vector mul linear [of A]
by (simp add : linear conv bounded linear linear matrix vector mul eq)

lemma
fixes A :: ′a::{euclidean space,real algebra 1}ˆ ′nˆ ′m
shows matrix vector mult linear continuous at [continuous intros]: isCont ((∗v)
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A) z
and matrix vector mult linear continuous on [continuous intros]: continuous on

S ((∗v) A)
by (simp all add : linear continuous at linear continuous on)

4.11.2 Bounds on components etc. relative to operator norm

lemma norm column le onorm:
fixes A :: realˆ ′nˆ ′m
shows norm(column i A) ≤ onorm((∗v) A)

proof −
have norm (χ j . A $ j $ i) ≤ norm (A ∗v axis i 1 )
by (simp add : matrix mult dot cart eq inner axis)

also have . . . ≤ onorm ((∗v) A)
using onorm [OF matrix vector mul bounded linear , of A axis i 1 ] by auto

finally have norm (χ j . A $ j $ i) ≤ onorm ((∗v) A) .
then show ?thesis
unfolding column def .

qed

lemma matrix component le onorm:
fixes A :: realˆ ′nˆ ′m
shows |A $ i $ j | ≤ onorm((∗v) A)

proof −
have |A $ i $ j | ≤ norm (χ n. (A $ n $ j ))
by (metis (full types, lifting) component le norm cart vec lambda beta)

also have . . . ≤ onorm ((∗v) A)
by (metis (no types) column def norm column le onorm)

finally show ?thesis .
qed

lemma component le onorm:
fixes f :: realˆ ′m ⇒ realˆ ′n
shows linear f =⇒ |matrix f $ i $ j | ≤ onorm f
by (metis matrix component le onorm matrix vector mul(2 ))

lemma onorm le matrix component sum:
fixes A :: realˆ ′nˆ ′m
shows onorm((∗v) A) ≤ (

∑
i∈UNIV .

∑
j∈UNIV . |A $ i $ j |)

proof (rule onorm le)
fix x
have norm (A ∗v x ) ≤ (

∑
i∈UNIV . |(A ∗v x ) $ i |)

by (rule norm le l1 cart)
also have . . . ≤ (

∑
i∈UNIV .

∑
j∈UNIV . |A $ i $ j | ∗ norm x )

proof (rule sum mono)
fix i
have |(A ∗v x ) $ i | ≤ |

∑
j∈UNIV . A $ i $ j ∗ x $ j |

by (simp add : matrix vector mult def )
also have . . . ≤ (

∑
j∈UNIV . |A $ i $ j ∗ x $ j |)



Cartesian Euclidean Space.thy 923

by (rule sum abs)
also have . . . ≤ (

∑
j∈UNIV . |A $ i $ j | ∗ norm x )

by (rule sum mono) (simp add : abs mult component le norm cart mult left mono)
finally show |(A ∗v x ) $ i | ≤ (

∑
j∈UNIV . |A $ i $ j | ∗ norm x ) .

qed
finally show norm (A ∗v x ) ≤ (

∑
i∈UNIV .

∑
j∈UNIV . |A $ i $ j |) ∗ norm x

by (simp add : sum distrib right)
qed

lemma onorm le matrix component :
fixes A :: realˆ ′nˆ ′m
assumes

∧
i j . abs(A$i$j ) ≤ B

shows onorm((∗v) A) ≤ real (CARD( ′m)) ∗ real (CARD( ′n)) ∗ B
proof (rule onorm le)
fix x :: realˆ ′n::
have norm (A ∗v x ) ≤ (

∑
i∈UNIV . |(A ∗v x ) $ i |)

by (rule norm le l1 cart)
also have . . . ≤ (

∑
i :: ′m ∈UNIV . real (CARD( ′n)) ∗ B ∗ norm x )

proof (rule sum mono)
fix i
have |(A ∗v x ) $ i | ≤ norm(A $ i) ∗ norm x
by (simp add : matrix mult dot Cauchy Schwarz ineq2 )

also have . . . ≤ (
∑

j∈UNIV . |A $ i $ j |) ∗ norm x
by (simp add : mult right mono norm le l1 cart)

also have . . . ≤ real (CARD( ′n)) ∗ B ∗ norm x
by (simp add : assms sum bounded above mult right mono)

finally show |(A ∗v x ) $ i | ≤ real (CARD( ′n)) ∗ B ∗ norm x .
qed
also have . . . ≤ CARD( ′m) ∗ real (CARD( ′n)) ∗ B ∗ norm x
by simp

finally show norm (A ∗v x ) ≤ CARD( ′m) ∗ real (CARD( ′n)) ∗ B ∗ norm x .
qed

lemma rational approximation:
assumes e > 0
obtains r ::real where r ∈ Q |r − x | < e
using Rats dense in real [of x − e/2 x + e/2 ] assms by auto

proposition matrix rational approximation:
fixes A :: realˆ ′nˆ ′m
assumes e > 0
obtains B where

∧
i j . B$i$j ∈ Q onorm(λx . (A − B) ∗v x ) < e

proof −
have ∀ i j . ∃ q ∈ Q . |q − A $ i $ j | < e / (2 ∗ CARD( ′m) ∗ CARD( ′n))
using assms by (force intro: rational approximation [of e / (2 ∗ CARD( ′m) ∗

CARD( ′n))])
then obtain B where B :

∧
i j . B$i$j ∈ Q and Bclo:

∧
i j . |B$i$j − A $ i $

j | < e / (2 ∗ CARD( ′m) ∗ CARD( ′n))
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by (auto simp: lambda skolem Bex def )
show ?thesis
proof
have onorm ((∗v) (A − B)) ≤ real CARD( ′m) ∗ real CARD( ′n) ∗
(e / (2 ∗ real CARD( ′m) ∗ real CARD( ′n)))
apply (rule onorm le matrix component)
using Bclo by (simp add : abs minus commute less imp le)

also have . . . < e
using 〈0 < e〉 by (simp add : field split simps)

finally show onorm ((∗v) (A − B)) < e .
qed (use B in auto)

qed

lemma vector sub project orthogonal cart : (b::realˆ ′n) · (x − ((b · x ) / (b · b)) ∗s
b) = 0
unfolding inner simps scalar mult eq scaleR by auto

lemma infnorm cart :infnorm (x ::realˆ ′n) = Sup {|x$i | |i . i∈UNIV }
by (simp add : infnorm def inner axis Basis vec def ) (metis (lifting) inner axis

real inner 1 right)

lemma component le infnorm cart : |x$i | ≤ infnorm (x ::realˆ ′n)
using Basis le infnorm[of axis i 1 x ]
by (simp add : Basis vec def axis eq axis inner axis)

lemma continuous component [continuous intros]: continuous F f =⇒ continuous
F (λx . f x $ i)
unfolding continuous def by (rule tendsto vec nth)

lemma continuous on component [continuous intros]: continuous on s f =⇒ con-
tinuous on s (λx . f x $ i)
unfolding continuous on def by (fast intro: tendsto vec nth)

lemma continuous on vec lambda[continuous intros]:
(
∧
i . continuous on S (f i)) =⇒ continuous on S (λx . χ i . f i x )

unfolding continuous on def by (auto intro: tendsto vec lambda)

lemma closed positive orthant : closed {x ::realˆ ′n. ∀ i . 0 ≤x$i}
by (simp add : Collect all eq closed INT closed Collect le continuous on component)

lemma bounded component cart : bounded s =⇒ bounded ((λx . x $ i) ‘ s)
unfolding bounded def
apply clarify
apply (rule tac x=x $ i in exI )
apply (rule tac x=e in exI )
apply clarify
apply (rule order trans [OF dist vec nth le], simp)
done
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lemma compact lemma cart :
fixes f :: nat ⇒ ′a::heine borel ˆ ′n
assumes f : bounded (range f )
shows ∃ l r . strict mono r ∧

(∀ e>0 . eventually (λn. ∀ i∈d . dist (f (r n) $ i) (l $ i) < e) sequentially)
(is ?th d)

proof −
have ∀ d ′ ⊆ d . ?th d ′

by (rule compact lemma general [where unproj=vec lambda])
(auto intro!: f bounded component cart)

then show ?th d by simp
qed

instance vec :: (heine borel , finite) heine borel
proof
fix f :: nat ⇒ ′a ˆ ′b
assume f : bounded (range f )
then obtain l r where r : strict mono r

and l : ∀ e>0 . eventually (λn. ∀ i∈UNIV . dist (f (r n) $ i) (l $ i) < e)
sequentially

using compact lemma cart [OF f ] by blast
let ?d = UNIV :: ′b set
{ fix e::real assume e>0
hence 0 < e / (real of nat (card ?d))

using zero less card finite divide pos pos[of e, of real of nat (card ?d)] by
auto

with l have eventually (λn. ∀ i . dist (f (r n) $ i) (l $ i) < e / (real of nat
(card ?d))) sequentially

by simp
moreover
{ fix n
assume n: ∀ i . dist (f (r n) $ i) (l $ i) < e / (real of nat (card ?d))
have dist (f (r n)) l ≤ (

∑
i∈?d . dist (f (r n) $ i) (l $ i))

unfolding dist vec def using zero le dist by (rule L2 set le sum)
also have . . . < (

∑
i∈?d . e / (real of nat (card ?d)))

by (rule sum strict mono) (simp all add : n)
finally have dist (f (r n)) l < e by simp

}
ultimately have eventually (λn. dist (f (r n)) l < e) sequentially
by (rule eventually mono)

}
hence ((f ◦ r) −−−→ l) sequentially unfolding o def tendsto iff by simp
with r show ∃ l r . strict mono r ∧ ((f ◦ r) −−−→ l) sequentially by auto

qed

lemma interval cart :
fixes a :: realˆ ′n
shows box a b = {x ::realˆ ′n. ∀ i . a$i < x$i ∧ x$i < b$i}
and cbox a b = {x ::realˆ ′n. ∀ i . a$i ≤ x$i ∧ x$i ≤ b$i}
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by (auto simp add : set eq iff less vec def less eq vec def mem box Basis vec def
inner axis)

lemma mem box cart :
fixes a :: realˆ ′n
shows x ∈ box a b ←→ (∀ i . a$i < x$i ∧ x$i < b$i)
and x ∈ cbox a b ←→ (∀ i . a$i ≤ x$i ∧ x$i ≤ b$i)

using interval cart [of a b] by (auto simp add : set eq iff less vec def less eq vec def )

lemma interval eq empty cart :
fixes a :: realˆ ′n
shows (box a b = {} ←→ (∃ i . b$i ≤ a$i)) (is ?th1 )
and (cbox a b = {} ←→ (∃ i . b$i < a$i)) (is ?th2 )

proof −
{ fix i x assume as:b$i ≤ a$i and x :x∈box a b
hence a $ i < x $ i ∧ x $ i < b $ i unfolding mem box cart by auto
hence a$i < b$i by auto
hence False using as by auto }

moreover
{ assume as:∀ i . ¬ (b$i ≤ a$i)
let ?x = (1/2 ) ∗R (a + b)
{ fix i
have a$i < b$i using as[THEN spec[where x=i ]] by auto
hence a$i < ((1/2 ) ∗R (a+b)) $ i ((1/2 ) ∗R (a+b)) $ i < b$i
unfolding vector smult component and vector add component
by auto }

hence box a b 6= {} using mem box cart(1 )[of ?x a b] by auto }
ultimately show ?th1 by blast

{ fix i x assume as:b$i < a$i and x :x∈cbox a b
hence a $ i ≤ x $ i ∧ x $ i ≤ b $ i unfolding mem box cart by auto
hence a$i ≤ b$i by auto
hence False using as by auto }

moreover
{ assume as:∀ i . ¬ (b$i < a$i)
let ?x = (1/2 ) ∗R (a + b)
{ fix i
have a$i ≤ b$i using as[THEN spec[where x=i ]] by auto
hence a$i ≤ ((1/2 ) ∗R (a+b)) $ i ((1/2 ) ∗R (a+b)) $ i ≤ b$i
unfolding vector smult component and vector add component
by auto }

hence cbox a b 6= {} using mem box cart(2 )[of ?x a b] by auto }
ultimately show ?th2 by blast

qed

lemma interval ne empty cart :
fixes a :: realˆ ′n
shows cbox a b 6= {} ←→ (∀ i . a$i ≤ b$i)
and box a b 6= {} ←→ (∀ i . a$i < b$i)
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unfolding interval eq empty cart [of a b] by (auto simp add : not less not le)

lemma subset interval imp cart :
fixes a :: realˆ ′n
shows (∀ i . a$i ≤ c$i ∧ d$i ≤ b$i) =⇒ cbox c d ⊆ cbox a b
and (∀ i . a$i < c$i ∧ d$i < b$i) =⇒ cbox c d ⊆ box a b
and (∀ i . a$i ≤ c$i ∧ d$i ≤ b$i) =⇒ box c d ⊆ cbox a b
and (∀ i . a$i ≤ c$i ∧ d$i ≤ b$i) =⇒ box c d ⊆ box a b

unfolding subset eq [unfolded Ball def ] unfolding mem box cart
by (auto intro: order trans less le trans le less trans less imp le)

lemma interval sing :
fixes a :: ′a::linorderˆ ′n
shows {a .. a} = {a} ∧ {a<..<a} = {}
apply (auto simp add : set eq iff less vec def less eq vec def vec eq iff )
done

lemma subset interval cart :
fixes a :: realˆ ′n
shows cbox c d ⊆ cbox a b ←→ (∀ i . c$i ≤ d$i) −−> (∀ i . a$i ≤ c$i ∧ d$i ≤

b$i) (is ?th1 )
and cbox c d ⊆ box a b ←→ (∀ i . c$i ≤ d$i) −−> (∀ i . a$i < c$i ∧ d$i <

b$i) (is ?th2 )
and box c d ⊆ cbox a b ←→ (∀ i . c$i < d$i) −−> (∀ i . a$i ≤ c$i ∧ d$i ≤

b$i) (is ?th3 )
and box c d ⊆ box a b ←→ (∀ i . c$i < d$i) −−> (∀ i . a$i ≤ c$i ∧ d$i ≤ b$i)

(is ?th4 )
using subset box [of c d a b] by (simp all add : Basis vec def inner axis)

lemma disjoint interval cart :
fixes a::realˆ ′n
shows cbox a b ∩ cbox c d = {} ←→ (∃ i . (b$i < a$i ∨ d$i < c$i ∨ b$i < c$i
∨ d$i < a$i)) (is ?th1 )

and cbox a b ∩ box c d = {} ←→ (∃ i . (b$i < a$i ∨ d$i ≤ c$i ∨ b$i ≤ c$i ∨
d$i ≤ a$i)) (is ?th2 )

and box a b ∩ cbox c d = {} ←→ (∃ i . (b$i ≤ a$i ∨ d$i < c$i ∨ b$i ≤ c$i ∨
d$i ≤ a$i)) (is ?th3 )

and box a b ∩ box c d = {} ←→ (∃ i . (b$i ≤ a$i ∨ d$i ≤ c$i ∨ b$i ≤ c$i ∨
d$i ≤ a$i)) (is ?th4 )
using disjoint interval [of a b c d ] by (simp all add : Basis vec def inner axis)

lemma Int interval cart :
fixes a :: realˆ ′n
shows cbox a b ∩ cbox c d = {(χ i . max (a$i) (c$i)) .. (χ i . min (b$i) (d$i))}
unfolding Int interval
by (auto simp: mem box less eq vec def )
(auto simp: Basis vec def inner axis)
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lemma closed interval left cart :
fixes b :: realˆ ′n
shows closed {x ::realˆ ′n. ∀ i . x$i ≤ b$i}
by (simp add : Collect all eq closed INT closed Collect le continuous on component)

lemma closed interval right cart :
fixes a::realˆ ′n
shows closed {x ::realˆ ′n. ∀ i . a$i ≤ x$i}
by (simp add : Collect all eq closed INT closed Collect le continuous on component)

lemma is interval cart :
is interval (s::(realˆ ′n) set) ←→
(∀ a∈s. ∀ b∈s. ∀ x . (∀ i . ((a$i ≤ x$i ∧ x$i ≤ b$i) ∨ (b$i ≤ x$i ∧ x$i ≤ a$i)))

−→ x ∈ s)
by (simp add : is interval def Ball def Basis vec def inner axis imp ex )

lemma closed halfspace component le cart : closed {x ::realˆ ′n. x$i ≤ a}
by (simp add : closed Collect le continuous on component)

lemma closed halfspace component ge cart : closed {x ::realˆ ′n. x$i ≥ a}
by (simp add : closed Collect le continuous on component)

lemma open halfspace component lt cart : open {x ::realˆ ′n. x$i < a}
by (simp add : open Collect less continuous on component)

lemma open halfspace component gt cart : open {x ::realˆ ′n. x$i > a}
by (simp add : open Collect less continuous on component)

lemma Lim component le cart :
fixes f :: ′a ⇒ realˆ ′n
assumes (f −−−→ l) net ¬ (trivial limit net) eventually (λx . f x $i ≤ b) net
shows l$i ≤ b
by (rule tendsto le[OF assms(2 ) tendsto const tendsto vec nth, OF assms(1 , 3 )])

lemma Lim component ge cart :
fixes f :: ′a ⇒ realˆ ′n
assumes (f −−−→ l) net ¬ (trivial limit net) eventually (λx . b ≤ (f x )$i) net
shows b ≤ l$i
by (rule tendsto le[OF assms(2 ) tendsto vec nth tendsto const , OF assms(1 , 3 )])

lemma Lim component eq cart :
fixes f :: ′a ⇒ realˆ ′n
assumes net : (f −−−→ l) net ¬ trivial limit net and ev :eventually (λx . f (x )$i

= b) net
shows l$i = b
using ev [unfolded order eq iff eventually conj iff ] and
Lim component ge cart [OF net , of b i ] and
Lim component le cart [OF net , of i b] by auto
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lemma connected ivt component cart :
fixes x :: realˆ ′n
shows connected s =⇒ x ∈ s =⇒ y ∈ s =⇒ x$k ≤ a =⇒ a ≤ y$k =⇒ (∃ z∈s.

z$k = a)
using connected ivt hyperplane[of s x y axis k 1 a]
by (auto simp add : inner axis inner commute)

lemma subspace substandard cart : vec.subspace {x . (∀ i . P i −→ x$i = 0 )}
unfolding vec.subspace def by auto

lemma closed substandard cart :
closed {x :: ′a::real normed vector ˆ ′n. ∀ i . P i −→ x$i = 0}

proof −
{ fix i :: ′n
have closed {x :: ′a ˆ ′n. P i −→ x$i = 0}
by (cases P i) (simp all add : closed Collect eq continuous on component) }

thus ?thesis
unfolding Collect all eq by (simp add : closed INT )

qed

4.11.3 Convex Euclidean Space

lemma Cart 1 :(1 ::realˆ ′n) =
∑

Basis
using const vector cart [of 1 ] by (simp add : one vec def )

declare vector add ldistrib[simp] vector ssub ldistrib[simp] vector smult assoc[simp]
vector smult rneg [simp]
declare vector sadd rdistrib[simp] vector sub rdistrib[simp]

lemmas vector component simps = vector minus component vector smult component
vector add component less eq vec def vec lambda beta vector uminus component

lemma convex box cart :
assumes

∧
i . convex {x . P i x}

shows convex {x . ∀ i . P i (x$i)}
using assms unfolding convex def by auto

4.11.4 Derivative

definition jacobian f net = matrix (frechet derivative f net)

proposition jacobian works:
(f ::(realˆ ′a) ⇒ (realˆ ′b)) differentiable net ←→
(f has derivative (λh. (jacobian f net) ∗v h)) net (is ?lhs = ?rhs)

proof
assume ?lhs then show ?rhs
by (simp add : frechet derivative works has derivative linear jacobian def )

next
assume ?rhs then show ?lhs
by (rule differentiableI )
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qed

Component of the differential must be zero if it exists at a local maximum
or minimum for that corresponding component

proposition differential zero maxmin cart :
fixes f ::realˆ ′a ⇒ realˆ ′b
assumes 0 < e ((∀ y ∈ ball x e. (f y)$k ≤ (f x )$k) ∨ (∀ y∈ball x e. (f x )$k ≤ (f

y)$k))
f differentiable (at x )

shows jacobian f (at x ) $ k = 0
using differential zero maxmin component [of axis k 1 e x f ] assms
vector cart [of λj . frechet derivative f (at x ) j $ k ]

by (simp add : Basis vec def axis eq axis inner axis jacobian def matrix def )

4.11.5 Routine results connecting the types (real , 1 ) vec and
real

lemma vec cbox 1 eq [simp]:
shows vec ‘ cbox u v = cbox (vec u) (vec v ::realˆ1 )
by (force simp: Basis vec def cart eq inner axis [symmetric] mem box )

lemma vec nth cbox 1 eq [simp]:
fixes u v :: ′a::euclidean spaceˆ1
shows (λx . x $ 1 ) ‘ cbox u v = cbox (u$1 ) (v$1 )
by (auto simp: Basis vec def cart eq inner axis [symmetric] mem box image iff

Bex def inner axis) (metis vec component)

lemma vec nth 1 iff cbox [simp]:
fixes a b :: ′a::euclidean space
shows (λx :: ′aˆ1 . x $ 1 ) ‘ S = cbox a b ←→ S = cbox (vec a) (vec b)
(is ?lhs = ?rhs)

proof
assume L: ?lhs show ?rhs
proof (intro equalityI subsetI )
fix x
assume x ∈ S
then have x $ 1 ∈ (λv . v $ (1 ::1 )) ‘ cbox (vec a) (vec b)
using L by auto

then show x ∈ cbox (vec a) (vec b)
by (metis (no types, lifting) imageE vector one nth)

next
fix x :: ′aˆ1
assume x ∈ cbox (vec a) (vec b)
then show x ∈ S
by (metis (no types, lifting) L imageE imageI vec component vec nth cbox 1 eq

vector one nth)
qed

qed simp
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lemma vec nth real 1 iff cbox [simp]:
fixes a b :: real
shows (λx ::realˆ1 . x $ 1 ) ‘ S = {a..b} ←→ S = cbox (vec a) (vec b)
using vec nth 1 iff cbox [of S a b]
by simp

lemma interval split cart :
{a..b::realˆ ′n} ∩ {x . x$k ≤ c} = {a .. (χ i . if i = k then min (b$k) c else b$i)}
cbox a b ∩ {x . x$k ≥ c} = {(χ i . if i = k then max (a$k) c else a$i) .. b}
apply (rule tac[!] set eqI )
unfolding Int iff mem box cart mem Collect eq interval cbox cart
unfolding vec lambda beta
by auto

lemmas cartesian euclidean space uniform limit intros[uniform limit intros] =
bounded linear .uniform limit [OF blinfun.bounded linear right ]
bounded linear .uniform limit [OF bounded linear vec nth]

end
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Chapter 5

Unsorted

theory Starlike
imports
Convex Euclidean Space
Line Segment

begin

lemma affine hull closed segment [simp]:
affine hull (closed segment a b) = affine hull {a,b}

by (simp add : segment convex hull)

lemma affine hull open segment [simp]:
fixes a :: ′a::euclidean space
shows affine hull (open segment a b) = (if a = b then {} else affine hull {a,b})

by (metis affine hull convex hull affine hull empty closure open segment closure same affine hull
segment convex hull)

lemma rel interior closure convex segment :
fixes S :: ::euclidean space set
assumes convex S a ∈ rel interior S b ∈ closure S
shows open segment a b ⊆ rel interior S

proof
fix x
have [simp]: (1 − u) ∗R a + u ∗R b = b − (1 − u) ∗R (b − a) for u
by (simp add : algebra simps)

assume x ∈ open segment a b
then show x ∈ rel interior S
unfolding closed segment def open segment def using assms
by (auto intro: rel interior closure convex shrink)

qed

lemma convex hull insert segments:
convex hull (insert a S ) =
(if S = {} then {a} else

⋃
x ∈ convex hull S . closed segment a x )

by (force simp add : convex hull insert alt in segment)
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lemma Int convex hull insert rel exterior :
fixes z :: ′a::euclidean space
assumes convex C T ⊆ C and z : z ∈ rel interior C and dis: disjnt S (rel interior

C )
shows S ∩ (convex hull (insert z T )) = S ∩ (convex hull T ) (is ?lhs = ?rhs)

proof
have T = {} =⇒ z /∈ S
using dis z by (auto simp add : disjnt def )

then show ?lhs ⊆ ?rhs
proof (clarsimp simp add : convex hull insert segments)
fix x y
assume x ∈ S and y : y ∈ convex hull T and x ∈ closed segment z y
have y ∈ closure C
by (metis y 〈convex C 〉 〈T ⊆ C 〉 closure subset contra subsetD convex hull eq

hull mono)
moreover have x /∈ rel interior C
by (meson 〈x ∈ S 〉 dis disjnt iff )

moreover have x ∈ open segment z y ∪ {z , y}
using 〈x ∈ closed segment z y〉 closed segment eq open by blast

ultimately show x ∈ convex hull T
using rel interior closure convex segment [OF 〈convex C 〉 z ]
using y z by blast

qed
show ?rhs ⊆ ?lhs
by (meson hull mono inf mono subset insertI subset refl)

qed

5.0.1 Shrinking towards the interior of a convex set

lemma mem interior convex shrink :
fixes S :: ′a::euclidean space set
assumes convex S
and c ∈ interior S
and x ∈ S
and 0 < e
and e ≤ 1

shows x − e ∗R (x − c) ∈ interior S
proof −
obtain d where d > 0 and d : ball c d ⊆ S
using assms(2 ) unfolding mem interior by auto

show ?thesis
unfolding mem interior

proof (intro exI subsetI conjI )
fix y
assume y ∈ ball (x − e ∗R (x − c)) (e∗d)
then have as: dist (x − e ∗R (x − c)) y < e ∗ d
by simp

have ∗: y = (1 − (1 − e)) ∗R ((1 / e) ∗R y − ((1 − e) / e) ∗R x ) + (1 −
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e) ∗R x
using 〈e > 0 〉 by (auto simp add : scaleR left diff distrib scaleR right diff distrib)
have c − ((1 / e) ∗R y − ((1 − e) / e) ∗R x ) = (1 / e) ∗R (e ∗R c − y +

(1 − e) ∗R x )
using 〈e > 0 〉

by (auto simp add : euclidean eq iff [where ′a= ′a] field simps inner simps)
then have dist c ((1 / e) ∗R y − ((1 − e) / e) ∗R x ) = |1/e| ∗ norm (e ∗R

c − y + (1 − e) ∗R x )
by (simp add : dist norm)

also have . . . = |1/e| ∗ norm (x − e ∗R (x − c) − y)
by (auto intro!:arg cong [where f=norm] simp add : algebra simps)

also have . . . < d
using as[unfolded dist norm] and 〈e > 0 〉

by (auto simp add :pos divide less eq [OF 〈e > 0 〉] mult .commute)
finally have (1 − (1 − e)) ∗R ((1 / e) ∗R y − ((1 − e) / e) ∗R x ) + (1 −

e) ∗R x ∈ S
using assms(3−5 ) d
by (intro convexD alt [OF 〈convex S 〉]) (auto intro: convexD alt [OF 〈convex

S 〉])
with 〈e > 0 〉 show y ∈ S
by (auto simp add : scaleR left diff distrib scaleR right diff distrib)

qed (use 〈e>0 〉 〈d>0 〉 in auto)
qed

lemma mem interior closure convex shrink :
fixes S :: ′a::euclidean space set
assumes convex S
and c ∈ interior S
and x ∈ closure S
and 0 < e
and e ≤ 1

shows x − e ∗R (x − c) ∈ interior S
proof −
obtain d where d > 0 and d : ball c d ⊆ S
using assms(2 ) unfolding mem interior by auto

have ∃ y∈S . norm (y − x ) ∗ (1 − e) < e ∗ d
proof (cases x ∈ S )
case True
then show ?thesis
using 〈e > 0 〉 〈d > 0 〉 by force

next
case False
then have x : x islimpt S
using assms(3 )[unfolded closure def ] by auto

show ?thesis
proof (cases e = 1 )
case True
obtain y where y ∈ S y 6= x dist y x < 1
using x [unfolded islimpt approachable,THEN spec[where x=1 ]] by auto
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then show ?thesis
using True 〈0 < d 〉 by auto

next
case False
then have 0 < e ∗ d / (1 − e) and ∗: 1 − e > 0
using 〈e ≤ 1 〉 〈e > 0 〉 〈d > 0 〉 by auto

then obtain y where y ∈ S y 6= x dist y x < e ∗ d / (1 − e)
using islimpt approachable x by blast

then have norm (y − x ) ∗ (1 − e) < e ∗ d
by (metis ∗ dist norm mult imp div pos le not less)

then show ?thesis
using 〈y ∈ S 〉 by blast

qed
qed
then obtain y where y ∈ S and y : norm (y − x ) ∗ (1 − e) < e ∗ d
by auto

define z where z = c + ((1 − e) / e) ∗R (x − y)
have ∗: x − e ∗R (x − c) = y − e ∗R (y − z )
unfolding z def using 〈e > 0 〉

by (auto simp add : scaleR right diff distrib scaleR right distrib scaleR left diff distrib)
have (1 − e) ∗ norm (x − y) / e < d
using y 〈0 < e〉 by (simp add : field simps norm minus commute)

then have z ∈ interior (ball c d)
using 〈0 < e〉 〈e ≤ 1 〉 by (simp add : interior open[OF open ball ] z def dist norm)
then have z ∈ interior S
using d interiorI interior ball by blast

then show ?thesis
unfolding ∗ using mem interior convex shrink 〈y ∈ S 〉 assms by blast

qed

lemma in interior closure convex segment :
fixes S :: ′a::euclidean space set
assumes convex S and a: a ∈ interior S and b: b ∈ closure S
shows open segment a b ⊆ interior S

proof (clarsimp simp: in segment)
fix u::real
assume u: 0 < u u < 1
have (1 − u) ∗R a + u ∗R b = b − (1 − u) ∗R (b − a)
by (simp add : algebra simps)

also have ... ∈ interior S using mem interior closure convex shrink [OF assms]
u

by simp
finally show (1 − u) ∗R a + u ∗R b ∈ interior S .

qed

lemma convex closure interior :
fixes S :: ′a::euclidean space set
assumes convex S and int : interior S 6= {}
shows closure(interior S ) = closure S
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proof −
obtain a where a: a ∈ interior S
using int by auto

have closure S ⊆ closure(interior S )
proof
fix x
assume x : x ∈ closure S
show x ∈ closure (interior S )
proof (cases x=a)
case True
then show ?thesis
using 〈a ∈ interior S 〉 closure subset by blast

next
case False
show ?thesis
proof (clarsimp simp add : closure def islimpt approachable)
fix e::real
assume xnotS : x /∈ interior S and 0 < e
show ∃ x ′∈interior S . x ′ 6= x ∧ dist x ′ x < e
proof (intro bexI conjI )
show x − min (e/2 / norm (x − a)) 1 ∗R (x − a) 6= x
using False 〈0 < e〉 by (auto simp: algebra simps min def )

show dist (x − min (e/2 / norm (x − a)) 1 ∗R (x − a)) x < e
using 〈0 < e〉 by (auto simp: dist norm min def )

show x − min (e/2 / norm (x − a)) 1 ∗R (x − a) ∈ interior S
using 〈0 < e〉 False
by (auto simp add : min def a intro: mem interior closure convex shrink

[OF 〈convex S 〉 a x ])
qed

qed
qed

qed
then show ?thesis
by (simp add : closure mono interior subset subset antisym)

qed

lemma closure convex Int superset :
fixes S :: ′a::euclidean space set
assumes convex S interior S 6= {} interior S ⊆ closure T
shows closure(S ∩ T ) = closure S

proof −
have closure S ⊆ closure(interior S )
by (simp add : convex closure interior assms)

also have ... ⊆ closure (S ∩ T )
using interior subset [of S ] assms
by (metis (no types, lifting) Int assoc Int lower2 closure mono closure open Int superset

inf .orderE open interior)
finally show ?thesis
by (simp add : closure mono dual order .antisym)
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qed

5.0.2 Some obvious but surprisingly hard simplex lemmas

lemma simplex :
assumes finite S
and 0 /∈ S

shows convex hull (insert 0 S ) = {y . ∃ u. (∀ x∈S . 0 ≤ u x ) ∧ sum u S ≤ 1 ∧
sum (λx . u x ∗R x ) S = y}
proof (simp add : convex hull finite set eq iff assms, safe)
fix x and u :: ′a ⇒ real
assume 0 ≤ u 0 ∀ x∈S . 0 ≤ u x u 0 + sum u S = 1
then show ∃ v . (∀ x∈S . 0 ≤ v x ) ∧ sum v S ≤ 1 ∧ (

∑
x∈S . v x ∗R x ) =

(
∑

x∈S . u x ∗R x )
by force

next
fix x and u :: ′a ⇒ real
assume ∀ x∈S . 0 ≤ u x sum u S ≤ 1
then show ∃ v . 0 ≤ v 0 ∧ (∀ x∈S . 0 ≤ v x ) ∧ v 0 + sum v S = 1 ∧ (

∑
x∈S .

v x ∗R x ) = (
∑

x∈S . u x ∗R x )
by (rule tac x=λx . if x = 0 then 1 − sum u S else u x in exI ) (auto simp:

sum delta notmem assms if smult)
qed

lemma substd simplex :
assumes d : d ⊆ Basis
shows convex hull (insert 0 d) =
{x . (∀ i∈Basis. 0 ≤ x ·i) ∧ (

∑
i∈d . x ·i) ≤ 1 ∧ (∀ i∈Basis. i /∈ d −→ x ·i =

0 )}
(is convex hull (insert 0 ?p) = ?s)

proof −
let ?D = d
have 0 /∈ ?p
using assms by (auto simp: image def )

from d have finite d
by (blast intro: finite subset finite Basis)

show ?thesis
unfolding simplex [OF 〈finite d 〉 〈0 /∈ ?p〉]

proof (intro set eqI ; safe)
fix u :: ′a ⇒ real
assume as: ∀ x∈?D . 0 ≤ u x sum u ?D ≤ 1
let ?x = (

∑
x∈?D . u x ∗R x )

have ind : ∀ i∈Basis. i ∈ d −→ u i = ?x · i
and notind : (∀ i∈Basis. i /∈ d −→ ?x · i = 0 )
using substdbasis expansion unique[OF assms] by blast+

then have ∗∗: sum u ?D = sum ((·) ?x ) ?D
using assms by (auto intro!: sum.cong)

show 0 ≤ ?x · i if i ∈ Basis for i
using as(1 ) ind notind that by fastforce
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show sum ((·) ?x ) ?D ≤ 1
using ∗∗ as(2 ) by linarith

show ?x · i = 0 if i ∈ Basis i /∈ d for i
using notind that by blast

next
fix x
assume ∀ i∈Basis. 0 ≤ x · i sum ((·) x ) ?D ≤ 1 (∀ i∈Basis. i /∈ d −→ x · i

= 0 )
with d show ∃ u. (∀ x∈?D . 0 ≤ u x ) ∧ sum u ?D ≤ 1 ∧ (

∑
x∈?D . u x ∗R

x ) = x
unfolding substdbasis expansion unique[OF assms]
by (rule tac x=inner x in exI ) auto

qed
qed

lemma std simplex :
convex hull (insert 0 Basis) =
{x :: ′a::euclidean space. (∀ i∈Basis. 0 ≤ x ·i) ∧ sum (λi . x ·i) Basis ≤ 1}

using substd simplex [of Basis] by auto

lemma interior std simplex :
interior (convex hull (insert 0 Basis)) =
{x :: ′a::euclidean space. (∀ i∈Basis. 0 < x ·i) ∧ sum (λi . x ·i) Basis < 1}

unfolding set eq iff mem interior std simplex
proof (intro allI iffI CollectI ; clarify)
fix x :: ′a
fix e
assume e > 0 and as: ball x e ⊆ {x . (∀ i∈Basis. 0 ≤ x · i) ∧ sum ((·) x ) Basis
≤ 1}
show (∀ i∈Basis. 0 < x · i) ∧ sum ((·) x ) Basis < 1
proof safe
fix i :: ′a
assume i : i ∈ Basis
then show 0 < x · i
using as[THEN subsetD [where c=x − (e/2 ) ∗R i ]] and 〈e > 0 〉

by (force simp add : inner simps)
next
have ∗∗: dist x (x + (e/2 ) ∗R (SOME i . i∈Basis)) < e using 〈e > 0 〉

unfolding dist norm
by (auto intro!: mult strict left mono simp: SOME Basis)

have
∧
i . i ∈ Basis =⇒ (x + (e/2 ) ∗R (SOME i . i∈Basis)) · i =

x ·i + (if i = (SOME i . i∈Basis) then e/2 else 0 )
by (auto simp: SOME Basis inner Basis inner simps)

then have ∗: sum ((·) (x + (e/2 ) ∗R (SOME i . i∈Basis))) Basis =
sum (λi . x ·i + (if (SOME i . i∈Basis) = i then e/2 else 0 )) Basis
by (auto simp: intro!: sum.cong)

have sum ((·) x ) Basis < sum ((·) (x + (e/2 ) ∗R (SOME i . i∈Basis))) Basis
using 〈e > 0 〉 DIM positive by (auto simp: SOME Basis sum.distrib ∗)

also have . . . ≤ 1
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using ∗∗ as by force
finally show sum ((·) x ) Basis < 1 by auto

qed
next
fix x :: ′a
assume as: ∀ i∈Basis. 0 < x · i sum ((·) x ) Basis < 1
obtain a :: ′b where a ∈ UNIV using UNIV witness ..
let ?d = (1 − sum ((·) x ) Basis) / real (DIM ( ′a))
show ∃ e>0 . ball x e ⊆ {x . (∀ i∈Basis. 0 ≤ x · i) ∧ sum ((·) x ) Basis ≤ 1}
proof (rule tac x=min (Min (((·) x ) ‘ Basis)) D for D in exI , intro conjI subsetI

CollectI )
fix y
assume y : y ∈ ball x (min (Min ((·) x ‘ Basis)) ?d)
have sum ((·) y) Basis ≤ sum (λi . x ·i + ?d) Basis
proof (rule sum mono)
fix i :: ′a
assume i : i ∈ Basis
have |y·i − x ·i | ≤ norm (y − x )
by (metis Basis le norm i inner commute inner diff right)

also have ... < ?d
using y by (simp add : dist norm norm minus commute)

finally have |y·i − x ·i | < ?d .
then show y · i ≤ x · i + ?d by auto

qed
also have . . . ≤ 1
unfolding sum.distrib sum constant
by (auto simp add : Suc le eq)

finally show sum ((·) y) Basis ≤ 1 .
show (∀ i∈Basis. 0 ≤ y · i)
proof safe
fix i :: ′a
assume i : i ∈ Basis
have norm (x − y) < Min (((·) x ) ‘ Basis)
using y by (auto simp: dist norm less eq real def )

also have ... ≤ x ·i
using i by auto

finally have norm (x − y) < x ·i .
then show 0 ≤ y·i
using Basis le norm[OF i , of x − y ] and as(1 )[rule format , OF i ]
by (auto simp: inner simps)

qed
next
have Min (((·) x ) ‘ Basis) > 0
using as by simp

moreover have ?d > 0
using as by (auto simp: Suc le eq)

ultimately show 0 < min (Min ((·) x ‘ Basis)) ((1 − sum ((·) x ) Basis) /
real DIM ( ′a))

by linarith
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qed
qed

lemma interior std simplex nonempty :
obtains a :: ′a::euclidean space where
a ∈ interior(convex hull (insert 0 Basis))

proof −
let ?D = Basis :: ′a set
let ?a = sum (λb:: ′a. inverse (2 ∗ real DIM ( ′a)) ∗R b) Basis
{
fix i :: ′a
assume i : i ∈ Basis
have ?a · i = inverse (2 ∗ real DIM ( ′a))
by (rule trans[of sum (λj . if i = j then inverse (2 ∗ real DIM ( ′a)) else 0 )

?D ])
(simp all add : sum.If cases i) }

note ∗∗ = this
show ?thesis
proof
show ?a ∈ interior(convex hull (insert 0 Basis))
unfolding interior std simplex mem Collect eq

proof safe
fix i :: ′a
assume i : i ∈ Basis
show 0 < ?a · i
unfolding ∗∗[OF i ] by (auto simp add : Suc le eq)

next
have sum ((·) ?a) ?D = sum (λi . inverse (2 ∗ real DIM ( ′a))) ?D
by (auto intro: sum.cong)

also have . . . < 1
unfolding sum constant divide inverse[symmetric]
by (auto simp add : field simps)

finally show sum ((·) ?a) ?D < 1 by auto
qed

qed
qed

lemma rel interior substd simplex :
assumes D : D ⊆ Basis
shows rel interior (convex hull (insert 0 D)) =

{x :: ′a::euclidean space. (∀ i∈D . 0 < x ·i) ∧ (
∑

i∈D . x ·i) < 1 ∧ (∀ i∈Basis.
i /∈ D −→ x ·i = 0 )}

(is = ?s)
proof −
have finite D
using D finite Basis finite subset by blast

show ?thesis
proof (cases D = {})
case True
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then show ?thesis
using rel interior sing using euclidean eq iff [of 0 ] by auto

next
case False
have h0 : affine hull (convex hull (insert 0 D)) =

{x :: ′a::euclidean space. (∀ i∈Basis. i /∈ D −→ x ·i = 0 )}
using affine hull convex hull affine hull substd basis assms by auto

have aux :
∧
x :: ′a. ∀ i∈Basis. (∀ i∈D . 0 ≤ x ·i) ∧ (∀ i∈Basis. i /∈ D −→ x ·i =

0 ) −→ 0 ≤ x ·i
by auto

{
fix x :: ′a::euclidean space
assume x : x ∈ rel interior (convex hull (insert 0 D))
then obtain e where e > 0 and
ball x e ∩ {xa. (∀ i∈Basis. i /∈ D −→ xa·i = 0 )} ⊆ convex hull (insert 0 D)
using mem rel interior ball [of x convex hull (insert 0 D)] h0 by auto

then have as:
∧
y . [[dist x y < e ∧ (∀ i∈Basis. i /∈ D −→ y·i = 0 )]] =⇒
(∀ i∈D . 0 ≤ y · i) ∧ sum ((·) y) D ≤ 1

using assms by (force simp: substd simplex )
have x0 : (∀ i∈Basis. i /∈ D −→ x ·i = 0 )
using x rel interior subset substd simplex [OF assms] by auto

have (∀ i∈D . 0 < x · i) ∧ sum ((·) x ) D < 1 ∧ (∀ i∈Basis. i /∈ D −→ x ·i
= 0 )

proof (intro conjI ballI )
fix i :: ′a
assume i ∈ D
then have ∀ j∈D . 0 ≤ (x − (e/2 ) ∗R i) · j
using D 〈e > 0 〉 x0
by (intro as[THEN conjunct1 ]) (force simp: dist norm inner simps in-

ner Basis)
then show 0 < x · i
using 〈e > 0 〉 〈i ∈ D 〉 D by (force simp: inner simps inner Basis)

next
obtain a where a: a ∈ D
using 〈D 6= {}〉 by auto

then have ∗∗: dist x (x + (e/2 ) ∗R a) < e
using 〈e > 0 〉 norm Basis[of a] D by (auto simp: dist norm)

have
∧
i . i ∈ Basis =⇒ (x + (e/2 ) ∗R a) · i = x ·i + (if i = a then e/2

else 0 )
using a D by (auto simp: inner simps inner Basis)
then have ∗: sum ((·) (x + (e/2 ) ∗R a)) D = sum (λi . x ·i + (if a = i

then e/2 else 0 )) D
using D by (intro sum.cong) auto

have a ∈ Basis
using 〈a ∈ D 〉 D by auto

then have h1 : (∀ i∈Basis. i /∈ D −→ (x + (e/2 ) ∗R a) · i = 0 )
using x0 D 〈a∈D 〉 by (auto simp add : inner add left inner Basis)

have sum ((·) x ) D < sum ((·) (x + (e/2 ) ∗R a)) D
using 〈e > 0 〉 〈a ∈ D 〉 〈finite D 〉 by (auto simp add : ∗ sum.distrib)
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also have . . . ≤ 1
using ∗∗ h1 as[rule format , of x + (e/2 ) ∗R a]
by auto

finally show sum ((·) x ) D < 1
∧
i . i∈Basis =⇒ i /∈ D −→ x ·i = 0

using x0 by auto
qed

}
moreover
{
fix x :: ′a::euclidean space
assume as: x ∈ ?s
have ∀ i . 0 < x ·i ∨ 0 = x ·i −→ 0 ≤ x ·i
by auto

moreover have ∀ i . i ∈ D ∨ i /∈ D by auto
ultimately
have ∀ i . (∀ i∈D . 0 < x ·i) ∧ (∀ i . i /∈ D −→ x ·i = 0 ) −→ 0 ≤ x ·i
by metis

then have h2 : x ∈ convex hull (insert 0 D)
using as assms by (force simp add : substd simplex )

obtain a where a: a ∈ D
using 〈D 6= {}〉 by auto

define d where d ≡ (1 − sum ((·) x ) D) / real (card D)
have ∃ e>0 . ball x e ∩ {x . ∀ i∈Basis. i /∈ D −→ x · i = 0} ⊆ convex hull

insert 0 D
unfolding substd simplex [OF assms]

proof (intro exI ; safe)
have 0 < card D using 〈D 6= {}〉 〈finite D 〉

by (simp add : card gt 0 iff )
have Min (((·) x ) ‘ D) > 0
using as 〈D 6= {}〉 〈finite D 〉 by (simp)

moreover have d > 0
using as 〈0 < card D 〉 by (auto simp: d def )

ultimately show min (Min (((·) x ) ‘ D)) d > 0
by auto

fix y :: ′a
assume y2 : ∀ i∈Basis. i /∈ D −→ y·i = 0
assume y ∈ ball x (min (Min ((·) x ‘ D)) d)
then have y : dist x y < min (Min ((·) x ‘ D)) d
by auto

have sum ((·) y) D ≤ sum (λi . x ·i + d) D
proof (rule sum mono)
fix i
assume i ∈ D
with D have i : i ∈ Basis
by auto

have |y·i − x ·i | ≤ norm (y − x )
by (metis i inner commute inner diff right norm bound Basis le order refl)
also have ... < d
by (metis dist norm min less iff conj norm minus commute y)
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finally have |y·i − x ·i | < d .
then show y · i ≤ x · i + d by auto

qed
also have . . . ≤ 1
unfolding sum.distrib sum constant d def using 〈0 < card D 〉

by auto
finally show sum ((·) y) D ≤ 1 .

fix i :: ′a
assume i : i ∈ Basis
then show 0 ≤ y·i
proof (cases i∈D)
case True
have norm (x − y) < x ·i
using y Min gr iff [of (·) x ‘ D norm (x − y)] 〈0 < card D 〉 〈i ∈ D 〉

by (simp add : dist norm card gt 0 iff )
then show 0 ≤ y·i
using Basis le norm[OF i , of x − y ] and as(1 )[rule format ]
by (auto simp: inner simps)

qed (use y2 in auto)
qed
then have x ∈ rel interior (convex hull (insert 0 D))
using h0 h2 rel interior ball by force

}
ultimately have∧

x . x ∈ rel interior (convex hull insert 0 D) ←→
x ∈ {x . (∀ i∈D . 0 < x · i) ∧ sum ((·) x ) D < 1 ∧ (∀ i∈Basis. i /∈ D −→

x · i = 0 )}
by blast

then show ?thesis by (rule set eqI )
qed

qed

lemma rel interior substd simplex nonempty :
assumes D 6= {}
and D ⊆ Basis

obtains a :: ′a::euclidean space
where a ∈ rel interior (convex hull (insert 0 D))

proof −
let ?a = sum (λb:: ′a::euclidean space. inverse (2 ∗ real (card D)) ∗R b) D
have finite D
using assms finite Basis infinite super by blast

then have d1 : 0 < real (card D)
using 〈D 6= {}〉 by auto

{
fix i
assume i ∈ D
have ?a · i = sum (λj . if i = j then inverse (2 ∗ real (card D)) else 0 ) D
unfolding inner sum left
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using 〈i ∈ D 〉 by (auto simp: inner Basis subsetD [OF assms(2 )] intro:
sum.cong)

also have ... = inverse (2 ∗ real (card D))
using 〈i ∈ D 〉 〈finite D 〉 by auto

finally have ?a · i = inverse (2 ∗ real (card D)) .
}
note ∗∗ = this
show ?thesis
proof
show ?a ∈ rel interior (convex hull (insert 0 D))
unfolding rel interior substd simplex [OF assms(2 )]

proof safe
fix i
assume i ∈ D
have 0 < inverse (2 ∗ real (card D))
using d1 by auto

also have . . . = ?a · i using ∗∗[of i ] 〈i ∈ D 〉

by auto
finally show 0 < ?a · i by auto

next
have sum ((·) ?a) D = sum (λi . inverse (2 ∗ real (card D))) D
by (rule sum.cong) (rule refl , rule ∗∗)

also have . . . < 1
unfolding sum constant divide real def [symmetric]
by (auto simp add : field simps)

finally show sum ((·) ?a) D < 1 by auto
next
fix i
assume i ∈ Basis and i /∈ D
have ?a ∈ span D
proof (rule span sum[of D (λb. b /R (2 ∗ real (card D))) D ])
{
fix x :: ′a::euclidean space
assume x ∈ D
then have x ∈ span D
using span base[of D ] by auto

then have x /R (2 ∗ real (card D)) ∈ span D
using span mul [of x D (inverse (real (card D)) / 2 )] by auto

}
then show

∧
x . x∈D =⇒ x /R (2 ∗ real (card D)) ∈ span D

by auto
qed
then show ?a · i = 0
using 〈i /∈ D 〉 unfolding span substd basis[OF assms(2 )] using 〈i ∈ Basis〉

by auto
qed

qed
qed
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5.0.3 Relative interior of convex set

lemma rel interior convex nonempty aux :
fixes S :: ′n::euclidean space set
assumes convex S
and 0 ∈ S

shows rel interior S 6= {}
proof (cases S = {0})
case True
then show ?thesis using rel interior sing by auto

next
case False
obtain B where B : independent B ∧ B ≤ S ∧ S ≤ span B ∧ card B = dim S
using basis exists[of S ] by metis

then have B 6= {}
using B assms 〈S 6= {0}〉 span empty by auto

have insert 0 B ≤ span B
using subspace span[of B ] subspace 0 [of span B ]
span superset by auto

then have span (insert 0 B) ≤ span B
using span span[of B ] span mono[of insert 0 B span B ] by blast

then have convex hull insert 0 B ≤ span B
using convex hull subset span[of insert 0 B ] by auto

then have span (convex hull insert 0 B) ≤ span B
using span span[of B ]
span mono[of convex hull insert 0 B span B ] by blast

then have ∗: span (convex hull insert 0 B) = span B
using span mono[of B convex hull insert 0 B ] hull subset [of insert 0 B ] by auto

then have span (convex hull insert 0 B) = span S
using B span mono[of B S ] span mono[of S span B ]
span span[of B ] by auto

moreover have 0 ∈ affine hull (convex hull insert 0 B)
using hull subset [of convex hull insert 0 B ] hull subset [of insert 0 B ] by auto

ultimately have ∗∗: affine hull (convex hull insert 0 B) = affine hull S
using affine hull span 0 [of convex hull insert 0 B ] affine hull span 0 [of S ]
assms hull subset [of S ]

by auto
obtain d and f :: ′n ⇒ ′n where
fd : card d = card B linear f f ‘ B = d
f ‘ span B = {x . ∀ i∈Basis. i /∈ d −→ x · i = (0 ::real)} ∧ inj on f (span B)

and d : d ⊆ Basis
using basis to substdbasis subspace isomorphism[of B ,OF ] B by auto

then have bounded linear f
using linear conv bounded linear by auto

have d 6= {}
using fd B 〈B 6= {}〉 by auto

have insert 0 d = f ‘ (insert 0 B)
using fd linear 0 by auto

then have (convex hull (insert 0 d)) = f ‘ (convex hull (insert 0 B))
using convex hull linear image[of f (insert 0 d)]



Starlike.thy 947

convex hull linear image[of f (insert 0 B)] 〈linear f 〉

by auto
moreover have rel interior (f ‘ (convex hull insert 0 B)) = f ‘ rel interior (convex

hull insert 0 B)
proof (rule rel interior injective on span linear image[OF 〈bounded linear f 〉])
show inj on f (span (convex hull insert 0 B))
using fd ∗ by auto

qed
ultimately have rel interior (convex hull insert 0 B) 6= {}
using rel interior substd simplex nonempty [OF 〈d 6= {}〉 d ] by fastforce

moreover have convex hull (insert 0 B) ⊆ S
using B assms hull mono[of insert 0 B S convex ] convex hull eq by auto

ultimately show ?thesis
using subset rel interior [of convex hull insert 0 B S ] ∗∗ by auto

qed

lemma rel interior eq empty :
fixes S :: ′n::euclidean space set
assumes convex S
shows rel interior S = {} ←→ S = {}

proof −
{
assume S 6= {}
then obtain a where a ∈ S by auto
then have 0 ∈ (+) (−a) ‘ S
using assms exI [of (λx . x ∈ S ∧ − a + x = 0 ) a] by auto

then have rel interior ((+) (−a) ‘ S ) 6= {}
using rel interior convex nonempty aux [of (+) (−a) ‘ S ]
convex translation[of S −a] assms

by auto
then have rel interior S 6= {}
using rel interior translation [of − a] by simp

}
then show ?thesis by auto

qed

lemma interior simplex nonempty :
fixes S :: ′N :: euclidean space set
assumes independent S finite S card S = DIM ( ′N )
obtains a where a ∈ interior (convex hull (insert 0 S ))

proof −
have affine hull (insert 0 S ) = UNIV
by (simp add : hull inc affine hull span 0 dim eq full [symmetric]

assms(1 ) assms(3 ) dim eq card independent)
moreover have rel interior (convex hull insert 0 S ) 6= {}
using rel interior eq empty [of convex hull (insert 0 S )] by auto

ultimately have interior (convex hull insert 0 S ) 6= {}
by (simp add : rel interior interior)

with that show ?thesis
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by auto
qed

lemma convex rel interior :
fixes S :: ′n::euclidean space set
assumes convex S
shows convex (rel interior S )

proof −
{
fix x y and u :: real
assume assm: x ∈ rel interior S y ∈ rel interior S 0 ≤ u u ≤ 1
then have x ∈ S
using rel interior subset by auto

have x − u ∗R (x−y) ∈ rel interior S
proof (cases 0 = u)
case False
then have 0 < u using assm by auto
then show ?thesis
using assm rel interior convex shrink [of S y x u] assms 〈x ∈ S 〉 by auto

next
case True
then show ?thesis using assm by auto

qed
then have (1 − u) ∗R x + u ∗R y ∈ rel interior S
by (simp add : algebra simps)

}
then show ?thesis
unfolding convex alt by auto

qed

lemma convex closure rel interior :
fixes S :: ′n::euclidean space set
assumes convex S
shows closure (rel interior S ) = closure S

proof −
have h1 : closure (rel interior S ) ≤ closure S
using closure mono[of rel interior S S ] rel interior subset [of S ] by auto

show ?thesis
proof (cases S = {})
case False
then obtain a where a: a ∈ rel interior S
using rel interior eq empty assms by auto

{ fix x
assume x : x ∈ closure S
{
assume x = a
then have x ∈ closure (rel interior S )
using a unfolding closure def by auto

}
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moreover
{
assume x 6= a
{
fix e :: real
assume e > 0
define e1 where e1 = min 1 (e/norm (x − a))
then have e1 : e1 > 0 e1 ≤ 1 e1 ∗ norm (x − a) ≤ e
using 〈x 6= a〉 〈e > 0 〉 le divide eq [of e1 e norm (x − a)]
by simp all

then have ∗: x − e1 ∗R (x − a) ∈ rel interior S
using rel interior closure convex shrink [of S a x e1 ] assms x a e1 def
by auto

have ∃ y . y ∈ rel interior S ∧ y 6= x ∧ dist y x ≤ e
using ∗ 〈x 6= a〉 e1 by force

}
then have x islimpt rel interior S
unfolding islimpt approachable le by auto

then have x ∈ closure(rel interior S )
unfolding closure def by auto

}
ultimately have x ∈ closure(rel interior S ) by auto

}
then show ?thesis using h1 by auto

qed auto
qed

lemma rel interior same affine hull :
fixes S :: ′n::euclidean space set
assumes convex S
shows affine hull (rel interior S ) = affine hull S
by (metis assms closure same affine hull convex closure rel interior)

lemma rel interior aff dim:
fixes S :: ′n::euclidean space set
assumes convex S
shows aff dim (rel interior S ) = aff dim S
by (metis aff dim affine hull2 assms rel interior same affine hull)

lemma rel interior rel interior :
fixes S :: ′n::euclidean space set
assumes convex S
shows rel interior (rel interior S ) = rel interior S

proof −
have openin (top of set (affine hull (rel interior S ))) (rel interior S )
using openin rel interior [of S ] rel interior same affine hull [of S ] assms by auto
then show ?thesis
using rel interior def by auto

qed
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lemma rel interior rel open:
fixes S :: ′n::euclidean space set
assumes convex S
shows rel open (rel interior S )
unfolding rel open def using rel interior rel interior assms by auto

lemma convex rel interior closure aux :
fixes x y z :: ′n::euclidean space
assumes 0 < a 0 < b (a + b) ∗R z = a ∗R x + b ∗R y
obtains e where 0 < e e < 1 z = y − e ∗R (y − x )

proof −
define e where e = a / (a + b)
have z = (1 / (a + b)) ∗R ((a + b) ∗R z )
using assms by (simp add : eq vector fraction iff )

also have . . . = (1 / (a + b)) ∗R (a ∗R x + b ∗R y)
using assms scaleR cancel left [of 1/(a+b) (a + b) ∗R z a ∗R x + b ∗R y ]
by auto

also have . . . = y − e ∗R (y−x )
using e def assms
by (simp add : divide simps vector fraction eq iff ) (simp add : algebra simps)

finally have z = y − e ∗R (y−x )
by auto

moreover have e > 0 e < 1 using e def assms by auto
ultimately show ?thesis using that [of e] by auto

qed

lemma convex rel interior closure:
fixes S :: ′n::euclidean space set
assumes convex S
shows rel interior (closure S ) = rel interior S

proof (cases S = {})
case True
then show ?thesis
using assms rel interior eq empty by auto

next
case False
have rel interior (closure S ) ⊇ rel interior S
using subset rel interior [of S closure S ] closure same affine hull closure subset
by auto

moreover
{
fix z
assume z : z ∈ rel interior (closure S )
obtain x where x : x ∈ rel interior S
using 〈S 6= {}〉 assms rel interior eq empty by auto

have z ∈ rel interior S
proof (cases x = z )
case True
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then show ?thesis using x by auto
next
case False
obtain e where e: e > 0 cball z e ∩ affine hull closure S ≤ closure S
using z rel interior cball [of closure S ] by auto

hence ∗: 0 < e/norm(z−x ) using e False by auto
define y where y = z + (e/norm(z−x )) ∗R (z−x )
have yball : y ∈ cball z e
using y def dist norm[of z y ] e by auto

have x ∈ affine hull closure S
using x rel interior subset closure hull inc[of x closure S ] by blast

moreover have z ∈ affine hull closure S
using z rel interior subset hull subset [of closure S ] by blast

ultimately have y ∈ affine hull closure S
using y def affine affine hull [of closure S ]
mem affine 3 minus [of affine hull closure S z z x e/norm(z−x )] by auto

then have y ∈ closure S using e yball by auto
have (1 + (e/norm(z−x ))) ∗R z = (e/norm(z−x )) ∗R x + y
using y def by (simp add : algebra simps)

then obtain e1 where 0 < e1 e1 < 1 z = y − e1 ∗R (y − x )
using ∗ convex rel interior closure aux [of e / norm (z − x ) 1 z x y ]
by (auto simp add : algebra simps)

then show ?thesis
using rel interior closure convex shrink assms x 〈y ∈ closure S 〉

by fastforce
qed

}
ultimately show ?thesis by auto

qed

lemma convex interior closure:
fixes S :: ′n::euclidean space set
assumes convex S
shows interior (closure S ) = interior S
using closure aff dim[of S ] interior rel interior gen[of S ]
interior rel interior gen[of closure S ]
convex rel interior closure[of S ] assms

by auto

lemma closure eq rel interior eq :
fixes S1 S2 :: ′n::euclidean space set
assumes convex S1
and convex S2

shows closure S1 = closure S2 ←→ rel interior S1 = rel interior S2
by (metis convex rel interior closure convex closure rel interior assms)

lemma closure eq between:
fixes S1 S2 :: ′n::euclidean space set
assumes convex S1
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and convex S2
shows closure S1 = closure S2 ←→ rel interior S1 ≤ S2 ∧ S2 ⊆ closure S1
(is ?A ←→ ?B)

proof
assume ?A
then show ?B
by (metis assms closure subset convex rel interior closure rel interior subset)

next
assume ?B
then have closure S1 ⊆ closure S2
by (metis assms(1 ) convex closure rel interior closure mono)

moreover from 〈?B 〉 have closure S1 ⊇ closure S2
by (metis closed closure closure minimal)

ultimately show ?A ..
qed

lemma open inter closure rel interior :
fixes S A :: ′n::euclidean space set
assumes convex S
and open A

shows A ∩ closure S = {} ←→ A ∩ rel interior S = {}
by (metis assms convex closure rel interior open Int closure eq empty)

lemma rel interior open segment :
fixes a :: ′a :: euclidean space
shows rel interior(open segment a b) = open segment a b

proof (cases a = b)
case True then show ?thesis by auto

next
case False then
have open segment a b = affine hull {a, b} ∩ ball ((a + b) /R 2 ) (norm (b −

a) / 2 )
by (simp add : open segment as ball)

then show ?thesis
unfolding rel interior eq openin open
by (metis Elementary Metric Spaces.open ball False affine hull open segment)

qed

lemma rel interior closed segment :
fixes a :: ′a :: euclidean space
shows rel interior(closed segment a b) =

(if a = b then {a} else open segment a b)
proof (cases a = b)
case True then show ?thesis by auto

next
case False then show ?thesis
by simp

(metis closure open segment convex open segment convex rel interior closure
rel interior open segment)
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qed

lemmas rel interior segment = rel interior closed segment rel interior open segment

5.0.4 The relative frontier of a set

definition rel frontier S = closure S − rel interior S

lemma rel frontier empty [simp]: rel frontier {} = {}
by (simp add : rel frontier def )

lemma rel frontier eq empty :
fixes S :: ′n::euclidean space set
shows rel frontier S = {} ←→ affine S

unfolding rel frontier def
using rel interior subset closure by (auto simp add : rel interior eq closure [symmetric])

lemma rel frontier sing [simp]:
fixes a :: ′n::euclidean space
shows rel frontier {a} = {}

by (simp add : rel frontier def )

lemma rel frontier affine hull :
fixes S :: ′a::euclidean space set
shows rel frontier S ⊆ affine hull S

using closure affine hull rel frontier def by fastforce

lemma rel frontier cball [simp]:
fixes a :: ′n::euclidean space
shows rel frontier(cball a r) = (if r = 0 then {} else sphere a r)

proof (cases rule: linorder cases [of r 0 ])
case less then show ?thesis
by (force simp: sphere def )

next
case equal then show ?thesis by simp

next
case greater then show ?thesis
by simp (metis centre in ball empty iff frontier cball frontier def interior cball

interior rel interior gen rel frontier def )
qed

lemma rel frontier translation:
fixes a :: ′a::euclidean space
shows rel frontier((λx . a + x ) ‘ S ) = (λx . a + x ) ‘ (rel frontier S )
by (simp add : rel frontier def translation diff rel interior translation closure translation)

lemma rel frontier nonempty interior :
fixes S :: ′n::euclidean space set
shows interior S 6= {} =⇒ rel frontier S = frontier S
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by (metis frontier def interior rel interior gen rel frontier def )

lemma rel frontier frontier :
fixes S :: ′n::euclidean space set
shows affine hull S = UNIV =⇒ rel frontier S = frontier S
by (simp add : frontier def rel frontier def rel interior interior)

lemma closest point in rel frontier :
[[closed S ; S 6= {}; x ∈ affine hull S − rel interior S ]]
=⇒ closest point S x ∈ rel frontier S
by (simp add : closest point in rel interior closest point in set rel frontier def )

lemma closed rel frontier [iff ]:
fixes S :: ′n::euclidean space set
shows closed (rel frontier S )

proof −
have ∗: closedin (top of set (affine hull S )) (closure S − rel interior S )
by (simp add : closed subset closedin diff closure affine hull openin rel interior)

show ?thesis
proof (rule closedin closed trans[of affine hull S rel frontier S ])
show closedin (top of set (affine hull S )) (rel frontier S )
by (simp add : ∗ rel frontier def )

qed simp
qed

lemma closed rel boundary :
fixes S :: ′n::euclidean space set
shows closed S =⇒ closed(S − rel interior S )
by (metis closed rel frontier closure closed rel frontier def )

lemma compact rel boundary :
fixes S :: ′n::euclidean space set
shows compact S =⇒ compact(S − rel interior S )
by (metis bounded diff closed rel boundary closure eq compact closure compact imp closed)

lemma bounded rel frontier :
fixes S :: ′n::euclidean space set
shows bounded S =⇒ bounded(rel frontier S )

by (simp add : bounded closure bounded diff rel frontier def )

lemma compact rel frontier bounded :
fixes S :: ′n::euclidean space set
shows bounded S =⇒ compact(rel frontier S )

using bounded rel frontier closed rel frontier compact eq bounded closed by blast

lemma compact rel frontier :
fixes S :: ′n::euclidean space set
shows compact S =⇒ compact(rel frontier S )

by (meson compact eq bounded closed compact rel frontier bounded)
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lemma convex same rel interior closure:
fixes S :: ′n::euclidean space set
shows [[convex S ; convex T ]]

=⇒ rel interior S = rel interior T ←→ closure S = closure T
by (simp add : closure eq rel interior eq)

lemma convex same rel interior closure straddle:
fixes S :: ′n::euclidean space set
shows [[convex S ; convex T ]]

=⇒ rel interior S = rel interior T ←→
rel interior S ⊆ T ∧ T ⊆ closure S

by (simp add : closure eq between convex same rel interior closure)

lemma convex rel frontier aff dim:
fixes S1 S2 :: ′n::euclidean space set
assumes convex S1
and convex S2
and S2 6= {}
and S1 ≤ rel frontier S2

shows aff dim S1 < aff dim S2
proof −
have S1 ⊆ closure S2
using assms unfolding rel frontier def by auto

then have ∗: affine hull S1 ⊆ affine hull S2
using hull mono[of S1 closure S2 ] closure same affine hull [of S2 ] by blast

then have aff dim S1 ≤ aff dim S2
using ∗ aff dim affine hull [of S1 ] aff dim affine hull [of S2 ]
aff dim subset [of affine hull S1 affine hull S2 ]

by auto
moreover
{
assume eq : aff dim S1 = aff dim S2
then have S1 6= {}
using aff dim empty [of S1 ] aff dim empty [of S2 ] 〈S2 6= {}〉 by auto

have ∗∗: affine hull S1 = affine hull S2
by (simp all add : ∗ eq 〈S1 6= {}〉 affine dim equal)

obtain a where a: a ∈ rel interior S1
using 〈S1 6= {}〉 rel interior eq empty assms by auto

obtain T where T : open T a ∈ T ∩ S1 T ∩ affine hull S1 ⊆ S1
using mem rel interior [of a S1 ] a by auto

then have a ∈ T ∩ closure S2
using a assms unfolding rel frontier def by auto

then obtain b where b: b ∈ T ∩ rel interior S2
using open inter closure rel interior [of S2 T ] assms T by auto

then have b ∈ affine hull S1
using rel interior subset hull subset [of S2 ] ∗∗ by auto

then have b ∈ S1
using T b by auto
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then have False
using b assms unfolding rel frontier def by auto

}
ultimately show ?thesis
using less le by auto

qed

lemma convex rel interior if :
fixes S :: ′n::euclidean space set
assumes convex S
and z ∈ rel interior S

shows ∀ x∈affine hull S . ∃m. m > 1 ∧ (∀ e. e > 1 ∧ e ≤ m −→ (1 − e) ∗R x
+ e ∗R z ∈ S )
proof −
obtain e1 where e1 : e1 > 0 ∧ cball z e1 ∩ affine hull S ⊆ S
using mem rel interior cball [of z S ] assms by auto

{
fix x
assume x : x ∈ affine hull S
{
assume x 6= z
define m where m = 1 + e1/norm(x−z )
hence m > 1 using e1 〈x 6= z 〉 by auto
{
fix e
assume e: e > 1 ∧ e ≤ m
have z ∈ affine hull S
using assms rel interior subset hull subset [of S ] by auto

then have ∗: (1 − e)∗R x + e ∗R z ∈ affine hull S
using mem affine[of affine hull S x z (1−e) e] affine affine hull [of S ] x
by auto

have norm (z + e ∗R x − (x + e ∗R z )) = norm ((e − 1 ) ∗R (x − z ))
by (simp add : algebra simps)

also have . . . = (e − 1 ) ∗ norm (x−z )
using norm scaleR e by auto

also have . . . ≤ (m − 1 ) ∗ norm (x − z )
using e mult right mono[of norm(x−z )] by auto

also have . . . = (e1 / norm (x − z )) ∗ norm (x − z )
using m def by auto

also have . . . = e1
using 〈x 6= z 〉 e1 by simp

finally have ∗∗: norm (z + e ∗R x − (x + e ∗R z )) ≤ e1
by auto

have (1 − e)∗R x+ e ∗R z ∈ cball z e1
using m def ∗∗
unfolding cball def dist norm
by (auto simp add : algebra simps)

then have (1 − e) ∗R x+ e ∗R z ∈ S
using e ∗ e1 by auto
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}
then have ∃m. m > 1 ∧ (∀ e. e > 1 ∧ e ≤ m −→ (1 − e) ∗R x + e ∗R z

∈ S )
using 〈m> 1 〉 by auto

}
moreover
{
assume x = z
define m where m = 1 + e1
then have m > 1
using e1 by auto

{
fix e
assume e: e > 1 ∧ e ≤ m
then have (1 − e) ∗R x + e ∗R z ∈ S
using e1 x 〈x = z 〉 by (auto simp add : algebra simps)

then have (1 − e) ∗R x + e ∗R z ∈ S
using e by auto

}
then have ∃m. m > 1 ∧ (∀ e. e > 1 ∧ e ≤ m −→ (1 − e) ∗R x + e ∗R z

∈ S )
using 〈m > 1 〉 by auto

}
ultimately have ∃m. m > 1 ∧ (∀ e. e > 1 ∧ e ≤ m −→ (1 − e) ∗R x + e

∗R z ∈ S )
by blast

}
then show ?thesis by auto

qed

lemma convex rel interior if2 :
fixes S :: ′n::euclidean space set
assumes convex S
assumes z ∈ rel interior S
shows ∀ x∈affine hull S . ∃ e. e > 1 ∧ (1 − e)∗R x + e ∗R z ∈ S
using convex rel interior if [of S z ] assms by auto

lemma convex rel interior only if :
fixes S :: ′n::euclidean space set
assumes convex S
and S 6= {}

assumes ∀ x∈S . ∃ e. e > 1 ∧ (1 − e) ∗R x + e ∗R z ∈ S
shows z ∈ rel interior S

proof −
obtain x where x : x ∈ rel interior S
using rel interior eq empty assms by auto

then have x ∈ S
using rel interior subset by auto

then obtain e where e: e > 1 ∧ (1 − e) ∗R x + e ∗R z ∈ S
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using assms by auto
define y where [abs def ]: y = (1 − e) ∗R x + e ∗R z
then have y ∈ S using e by auto
define e1 where e1 = 1/e
then have 0 < e1 ∧ e1 < 1 using e by auto
then have z =y − (1 − e1 ) ∗R (y − x )
using e1 def y def by (auto simp add : algebra simps)

then show ?thesis
using rel interior convex shrink [of S x y 1−e1 ] 〈0 < e1 ∧ e1 < 1 〉 〈y ∈ S 〉 x

assms
by auto

qed

lemma convex rel interior iff :
fixes S :: ′n::euclidean space set
assumes convex S
and S 6= {}

shows z ∈ rel interior S ←→ (∀ x∈S . ∃ e. e > 1 ∧ (1 − e) ∗R x + e ∗R z ∈ S )
using assms hull subset [of S affine]
convex rel interior if [of S z ] convex rel interior only if [of S z ]

by auto

lemma convex rel interior iff2 :
fixes S :: ′n::euclidean space set
assumes convex S
and S 6= {}

shows z ∈ rel interior S ←→ (∀ x∈affine hull S . ∃ e. e > 1 ∧ (1 − e) ∗R x +
e ∗R z ∈ S )
using assms hull subset [of S ] convex rel interior if2 [of S z ] convex rel interior only if [of

S z ]
by auto

lemma convex interior iff :
fixes S :: ′n::euclidean space set
assumes convex S
shows z ∈ interior S ←→ (∀ x . ∃ e. e > 0 ∧ z + e ∗R x ∈ S )

proof (cases aff dim S = int DIM ( ′n))
case False
{ assume z ∈ interior S
then have False
using False interior rel interior gen[of S ] by auto }

moreover
{ assume r : ∀ x . ∃ e. e > 0 ∧ z + e ∗R x ∈ S
{ fix x
obtain e1 where e1 : e1 > 0 ∧ z + e1 ∗R (x − z ) ∈ S
using r by auto

obtain e2 where e2 : e2 > 0 ∧ z + e2 ∗R (z − x ) ∈ S
using r by auto

define x1 where [abs def ]: x1 = z + e1 ∗R (x − z )
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then have x1 : x1 ∈ affine hull S
using e1 hull subset [of S ] by auto

define x2 where [abs def ]: x2 = z + e2 ∗R (z − x )
then have x2 : x2 ∈ affine hull S
using e2 hull subset [of S ] by auto

have ∗: e1/(e1+e2 ) + e2/(e1+e2 ) = 1
using add divide distrib[of e1 e2 e1+e2 ] e1 e2 by simp

then have z = (e2/(e1+e2 )) ∗R x1 + (e1/(e1+e2 )) ∗R x2
by (simp add : x1 def x2 def algebra simps) (simp add : ∗ pth 8 )

then have z : z ∈ affine hull S
using mem affine[of affine hull S x1 x2 e2/(e1+e2 ) e1/(e1+e2 )]
x1 x2 affine affine hull [of S ] ∗

by auto
have x1 − x2 = (e1 + e2 ) ∗R (x − z )
using x1 def x2 def by (auto simp add : algebra simps)

then have x = z+(1/(e1+e2 )) ∗R (x1−x2 )
using e1 e2 by simp

then have x ∈ affine hull S
using mem affine 3 minus[of affine hull S z x1 x2 1/(e1+e2 )]
x1 x2 z affine affine hull [of S ]

by auto
}
then have affine hull S = UNIV
by auto

then have aff dim S = int DIM ( ′n)
using aff dim affine hull [of S ] by (simp)

then have False
using False by auto

}
ultimately show ?thesis by auto

next
case True
then have S 6= {}
using aff dim empty [of S ] by auto

have ∗: affine hull S = UNIV
using True affine hull UNIV by auto

{
assume z ∈ interior S
then have z ∈ rel interior S
using True interior rel interior gen[of S ] by auto

then have ∗∗: ∀ x . ∃ e. e > 1 ∧ (1 − e) ∗R x + e ∗R z ∈ S
using convex rel interior iff2 [of S z ] assms 〈S 6= {}〉 ∗ by auto

fix x
obtain e1 where e1 : e1 > 1 (1 − e1 ) ∗R (z − x ) + e1 ∗R z ∈ S
using ∗∗[rule format , of z−x ] by auto

define e where [abs def ]: e = e1 − 1
then have (1 − e1 ) ∗R (z − x ) + e1 ∗R z = z + e ∗R x
by (simp add : algebra simps)

then have e > 0 z + e ∗R x ∈ S
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using e1 e def by auto
then have ∃ e. e > 0 ∧ z + e ∗R x ∈ S
by auto

}
moreover
{
assume r : ∀ x . ∃ e. e > 0 ∧ z + e ∗R x ∈ S
{
fix x
obtain e1 where e1 : e1 > 0 z + e1 ∗R (z − x ) ∈ S
using r [rule format , of z−x ] by auto

define e where e = e1 + 1
then have z + e1 ∗R (z − x ) = (1 − e) ∗R x + e ∗R z
by (simp add : algebra simps)

then have e > 1 (1 − e)∗R x + e ∗R z ∈ S
using e1 e def by auto

then have ∃ e. e > 1 ∧ (1 − e) ∗R x + e ∗R z ∈ S by auto
}
then have z ∈ rel interior S
using convex rel interior iff2 [of S z ] assms 〈S 6= {}〉 by auto

then have z ∈ interior S
using True interior rel interior gen[of S ] by auto

}
ultimately show ?thesis by auto

qed

Relative interior and closure under common operations

lemma rel interior inter aux :
⋂
{rel interior S |S . S ∈ I } ⊆

⋂
I

proof −
{
fix y
assume y ∈

⋂
{rel interior S |S . S ∈ I }

then have y : ∀S ∈ I . y ∈ rel interior S
by auto

{
fix S
assume S ∈ I
then have y ∈ S
using rel interior subset y by auto

}
then have y ∈

⋂
I by auto

}
then show ?thesis by auto

qed

lemma convex closure rel interior inter :
assumes ∀S∈I . convex (S :: ′n::euclidean space set)
and

⋂
{rel interior S |S . S ∈ I } 6= {}
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shows
⋂
{closure S |S . S ∈ I } ≤ closure (

⋂
{rel interior S |S . S ∈ I })

proof −
obtain x where x : ∀S∈I . x ∈ rel interior S
using assms by auto

{
fix y
assume y ∈

⋂
{closure S |S . S ∈ I }

then have y : ∀S ∈ I . y ∈ closure S
by auto

{
assume y = x
then have y ∈ closure (

⋂
{rel interior S |S . S ∈ I })

using x closure subset [of
⋂
{rel interior S |S . S ∈ I }] by auto

}
moreover
{
assume y 6= x
{ fix e :: real
assume e: e > 0
define e1 where e1 = min 1 (e/norm (y − x ))
then have e1 : e1 > 0 e1 ≤ 1 e1 ∗ norm (y − x ) ≤ e
using 〈y 6= x 〉 〈e > 0 〉 le divide eq [of e1 e norm (y − x )]
by simp all

define z where z = y − e1 ∗R (y − x )
{
fix S
assume S ∈ I
then have z ∈ rel interior S
using rel interior closure convex shrink [of S x y e1 ] assms x y e1 z def
by auto

}
then have ∗: z ∈

⋂
{rel interior S |S . S ∈ I }

by auto
have ∃ z . z ∈

⋂
{rel interior S |S . S ∈ I } ∧ z 6= y ∧ dist z y ≤ e

using 〈y 6= x 〉 z def ∗ e1 e dist norm[of z y ]
by (rule tac x=z in exI ) auto

}
then have y islimpt

⋂
{rel interior S |S . S ∈ I }

unfolding islimpt approachable le by blast
then have y ∈ closure (

⋂
{rel interior S |S . S ∈ I })

unfolding closure def by auto
}
ultimately have y ∈ closure (

⋂
{rel interior S |S . S ∈ I })

by auto
}
then show ?thesis by auto

qed

lemma convex closure inter :
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assumes ∀S∈I . convex (S :: ′n::euclidean space set)
and

⋂
{rel interior S |S . S ∈ I } 6= {}

shows closure (
⋂

I ) =
⋂
{closure S |S . S ∈ I }

proof −
have

⋂
{closure S |S . S ∈ I } ≤ closure (

⋂
{rel interior S |S . S ∈ I })

using convex closure rel interior inter assms by auto
moreover
have closure (

⋂
{rel interior S |S . S ∈ I }) ≤ closure (

⋂
I )

using rel interior inter aux closure mono[of
⋂
{rel interior S |S . S ∈ I }

⋂
I ]

by auto
ultimately show ?thesis
using closure Int [of I ] by auto

qed

lemma convex inter rel interior same closure:
assumes ∀S∈I . convex (S :: ′n::euclidean space set)
and

⋂
{rel interior S |S . S ∈ I } 6= {}

shows closure (
⋂
{rel interior S |S . S ∈ I }) = closure (

⋂
I )

proof −
have

⋂
{closure S |S . S ∈ I } ≤ closure (

⋂
{rel interior S |S . S ∈ I })

using convex closure rel interior inter assms by auto
moreover
have closure (

⋂
{rel interior S |S . S ∈ I }) ≤ closure (

⋂
I )

using rel interior inter aux closure mono[of
⋂
{rel interior S |S . S ∈ I }

⋂
I ]

by auto
ultimately show ?thesis
using closure Int [of I ] by auto

qed

lemma convex rel interior inter :
assumes ∀S∈I . convex (S :: ′n::euclidean space set)
and

⋂
{rel interior S |S . S ∈ I } 6= {}

shows rel interior (
⋂
I ) ⊆

⋂
{rel interior S |S . S ∈ I }

proof −
have convex (

⋂
I )

using assms convex Inter by auto
moreover
have convex (

⋂
{rel interior S |S . S ∈ I })

using assms convex rel interior by (force intro: convex Inter)
ultimately
have rel interior (

⋂
{rel interior S |S . S ∈ I }) = rel interior (

⋂
I )

using convex inter rel interior same closure assms
closure eq rel interior eq [of

⋂
{rel interior S |S . S ∈ I }

⋂
I ]

by blast
then show ?thesis
using rel interior subset [of

⋂
{rel interior S |S . S ∈ I }] by auto

qed

lemma convex rel interior finite inter :
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assumes ∀S∈I . convex (S :: ′n::euclidean space set)
and

⋂
{rel interior S |S . S ∈ I } 6= {}

and finite I
shows rel interior (

⋂
I ) =

⋂
{rel interior S |S . S ∈ I }

proof −
have

⋂
I 6= {}

using assms rel interior inter aux [of I ] by auto
have convex (

⋂
I )

using convex Inter assms by auto
show ?thesis
proof (cases I = {})
case True
then show ?thesis
using Inter empty rel interior UNIV by auto

next
case False
{
fix z
assume z : z ∈

⋂
{rel interior S |S . S ∈ I }

{
fix x
assume x : x ∈

⋂
I

{
fix S
assume S : S ∈ I
then have z ∈ rel interior S x ∈ S
using z x by auto

then have ∃m. m > 1 ∧ (∀ e. e > 1 ∧ e ≤ m −→ (1 − e)∗R x + e ∗R
z ∈ S )

using convex rel interior if [of S z ] S assms hull subset [of S ] by auto
}
then obtain mS where
mS : ∀S∈I . mS S > 1 ∧ (∀ e. e > 1 ∧ e ≤ mS S −→ (1 − e) ∗R x + e

∗R z ∈ S ) by metis
define e where e = Min (mS ‘ I )
then have e ∈ mS ‘ I using assms 〈I 6= {}〉 by simp
then have e > 1 using mS by auto
moreover have ∀S∈I . e ≤ mS S
using e def assms by auto

ultimately have ∃ e > 1 . (1 − e) ∗R x + e ∗R z ∈
⋂
I

using mS by auto
}
then have z ∈ rel interior (

⋂
I )

using convex rel interior iff [of
⋂
I z ] 〈

⋂
I 6= {}〉 〈convex (

⋂
I )〉 by auto

}
then show ?thesis
using convex rel interior inter [of I ] assms by auto

qed
qed
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lemma convex closure inter two:
fixes S T :: ′n::euclidean space set
assumes convex S
and convex T

assumes rel interior S ∩ rel interior T 6= {}
shows closure (S ∩ T ) = closure S ∩ closure T
using convex closure inter [of {S ,T}] assms by auto

lemma convex rel interior inter two:
fixes S T :: ′n::euclidean space set
assumes convex S
and convex T
and rel interior S ∩ rel interior T 6= {}

shows rel interior (S ∩ T ) = rel interior S ∩ rel interior T
using convex rel interior finite inter [of {S ,T}] assms by auto

lemma convex affine closure Int :
fixes S T :: ′n::euclidean space set
assumes convex S
and affine T
and rel interior S ∩ T 6= {}

shows closure (S ∩ T ) = closure S ∩ T
proof −
have affine hull T = T
using assms by auto

then have rel interior T = T
using rel interior affine hull [of T ] by metis

moreover have closure T = T
using assms affine closed [of T ] by auto

ultimately show ?thesis
using convex closure inter two[of S T ] assms affine imp convex by auto

qed

lemma connected component 1 gen:
fixes S :: ′a :: euclidean space set
assumes DIM ( ′a) = 1
shows connected component S a b ←→ closed segment a b ⊆ S

unfolding connected component def
by (metis (no types, lifting) assms subsetD subsetI convex contains segment con-
vex segment(1 )

ends in segment connected convex 1 gen)

lemma connected component 1 :
fixes S :: real set
shows connected component S a b ←→ closed segment a b ⊆ S

by (simp add : connected component 1 gen)

lemma convex affine rel interior Int :
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fixes S T :: ′n::euclidean space set
assumes convex S
and affine T
and rel interior S ∩ T 6= {}

shows rel interior (S ∩ T ) = rel interior S ∩ T
proof −
have affine hull T = T
using assms by auto

then have rel interior T = T
using rel interior affine hull [of T ] by metis

moreover have closure T = T
using assms affine closed [of T ] by auto

ultimately show ?thesis
using convex rel interior inter two[of S T ] assms affine imp convex by auto

qed

lemma convex affine rel frontier Int :
fixes S T :: ′n::euclidean space set
assumes convex S
and affine T
and interior S ∩ T 6= {}

shows rel frontier(S ∩ T ) = frontier S ∩ T
using assms
unfolding rel frontier def frontier def
using convex affine closure Int convex affine rel interior Int rel interior nonempty interior

by fastforce

lemma rel interior convex Int affine:
fixes S :: ′a::euclidean space set
assumes convex S affine T interior S ∩ T 6= {}
shows rel interior(S ∩ T ) = interior S ∩ T

proof −
obtain a where aS : a ∈ interior S and aT :a ∈ T
using assms by force

have rel interior S = interior S
by (metis (no types) aS affine hull nonempty interior equals0D rel interior interior)
then show ?thesis
by (metis (no types) affine imp convex assms convex rel interior inter two hull same

rel interior affine hull)
qed

lemma closure convex Int affine:
fixes S :: ′a::euclidean space set
assumes convex S affine T rel interior S ∩ T 6= {}
shows closure(S ∩ T ) = closure S ∩ T

proof
have closure (S ∩ T ) ⊆ closure T
by (simp add : closure mono)

also have ... ⊆ T
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by (simp add : affine closed assms)
finally show closure(S ∩ T ) ⊆ closure S ∩ T
by (simp add : closure mono)

next
obtain a where a ∈ rel interior S a ∈ T
using assms by auto

then have ssT : subspace ((λx . (−a)+x ) ‘ T ) and a ∈ S
using affine diffs subspace rel interior subset assms by blast+

show closure S ∩ T ⊆ closure (S ∩ T )
proof
fix x assume x ∈ closure S ∩ T
show x ∈ closure (S ∩ T )
proof (cases x = a)
case True
then show ?thesis
using 〈a ∈ S 〉 〈a ∈ T 〉 closure subset by fastforce

next
case False
then have x ∈ closure(open segment a x )
by auto

then show ?thesis
using 〈x ∈ closure S ∩ T 〉 assms convex affine closure Int by blast

qed
qed

qed

lemma subset rel interior convex :
fixes S T :: ′n::euclidean space set
assumes convex S
and convex T
and S ≤ closure T
and ¬ S ⊆ rel frontier T

shows rel interior S ⊆ rel interior T
proof −
have ∗: S ∩ closure T = S
using assms by auto

have ¬ rel interior S ⊆ rel frontier T
using closure mono[of rel interior S rel frontier T ] closed rel frontier [of T ]
closure closed [of S ] convex closure rel interior [of S ] closure subset [of S ] assms
by auto

then have rel interior S ∩ rel interior (closure T ) 6= {}
using assms rel frontier def [of T ] rel interior subset convex rel interior closure[of

T ]
by auto

then have rel interior S ∩ rel interior T = rel interior (S ∩ closure T )
using assms convex closure convex rel interior inter two[of S closure T ]
convex rel interior closure[of T ]

by auto
also have . . . = rel interior S
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using ∗ by auto
finally show ?thesis
by auto

qed

lemma rel interior convex linear image:
fixes f :: ′m::euclidean space ⇒ ′n::euclidean space
assumes linear f
and convex S

shows f ‘ (rel interior S ) = rel interior (f ‘ S )
proof (cases S = {})
case True
then show ?thesis
using assms by auto

next
case False
interpret linear f by fact
have ∗: f ‘ (rel interior S ) ⊆ f ‘ S
unfolding image mono using rel interior subset by auto

have f ‘ S ⊆ f ‘ (closure S )
unfolding image mono using closure subset by auto

also have . . . = f ‘ (closure (rel interior S ))
using convex closure rel interior assms by auto

also have . . . ⊆ closure (f ‘ (rel interior S ))
using closure linear image subset assms by auto

finally have closure (f ‘ S ) = closure (f ‘ rel interior S )
using closure mono[of f ‘ S closure (f ‘ rel interior S )] closure closure
closure mono[of f ‘ rel interior S f ‘ S ] ∗

by auto
then have rel interior (f ‘ S ) = rel interior (f ‘ rel interior S )
using assms convex rel interior
linear conv bounded linear [of f ] convex linear image[of S ]
convex linear image[of rel interior S ]
closure eq rel interior eq [of f ‘ S f ‘ rel interior S ]

by auto
then have rel interior (f ‘ S ) ⊆ f ‘ rel interior S
using rel interior subset by auto

moreover
{
fix z
assume z ∈ f ‘ rel interior S
then obtain z1 where z1 : z1 ∈ rel interior S f z1 = z by auto
{
fix x
assume x ∈ f ‘ S
then obtain x1 where x1 : x1 ∈ S f x1 = x by auto
then obtain e where e: e > 1 (1 − e) ∗R x1 + e ∗R z1 ∈ S
using convex rel interior iff [of S z1 ] 〈convex S 〉 x1 z1 by auto

moreover have f ((1 − e) ∗R x1 + e ∗R z1 ) = (1 − e) ∗R x + e ∗R z
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using x1 z1 by (simp add : linear add linear scale 〈linear f 〉)
ultimately have (1 − e) ∗R x + e ∗R z ∈ f ‘ S
using imageI [of (1 − e) ∗R x1 + e ∗R z1 S f ] by auto

then have ∃ e. e > 1 ∧ (1 − e) ∗R x + e ∗R z ∈ f ‘ S
using e by auto

}
then have z ∈ rel interior (f ‘ S )
using convex rel interior iff [of f ‘ S z ] 〈convex S 〉 〈linear f 〉

〈S 6= {}〉 convex linear image[of f S ] linear conv bounded linear [of f ]
by auto

}
ultimately show ?thesis by auto

qed

lemma rel interior convex linear preimage:
fixes f :: ′m::euclidean space ⇒ ′n::euclidean space
assumes linear f
and convex S
and f −‘ (rel interior S ) 6= {}

shows rel interior (f −‘ S ) = f −‘ (rel interior S )
proof −
interpret linear f by fact
have S 6= {}
using assms by auto

have nonemp: f −‘ S 6= {}
by (metis assms(3 ) rel interior subset subset empty vimage mono)

then have S ∩ (range f ) 6= {}
by auto

have conv : convex (f −‘ S )
using convex linear vimage assms by auto

then have convex (S ∩ range f )
by (simp add : assms(2 ) convex Int convex linear image linear axioms)

{
fix z
assume z ∈ f −‘ (rel interior S )
then have z : f z ∈ rel interior S
by auto

{
fix x
assume x ∈ f −‘ S
then have f x ∈ S by auto
then obtain e where e: e > 1 (1 − e) ∗R f x + e ∗R f z ∈ S
using convex rel interior iff [of S f z ] z assms 〈S 6= {}〉 by auto

moreover have (1 − e) ∗R f x + e ∗R f z = f ((1 − e) ∗R x + e ∗R z )
using 〈linear f 〉 by (simp add : linear iff )

ultimately have ∃ e. e > 1 ∧ (1 − e) ∗R x + e ∗R z ∈ f −‘ S
using e by auto

}
then have z ∈ rel interior (f −‘ S )
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using convex rel interior iff [of f −‘ S z ] conv nonemp by auto
}
moreover
{
fix z
assume z : z ∈ rel interior (f −‘ S )
{
fix x
assume x ∈ S ∩ range f
then obtain y where y : f y = x y ∈ f −‘ S by auto
then obtain e where e: e > 1 (1 − e) ∗R y + e ∗R z ∈ f −‘ S
using convex rel interior iff [of f −‘ S z ] z conv by auto

moreover have (1 − e) ∗R x + e ∗R f z = f ((1 − e) ∗R y + e ∗R z )
using 〈linear f 〉 y by (simp add : linear iff )

ultimately have ∃ e. e > 1 ∧ (1 − e) ∗R x + e ∗R f z ∈ S ∩ range f
using e by auto

}
then have f z ∈ rel interior (S ∩ range f )
using 〈convex (S ∩ (range f ))〉 〈S ∩ range f 6= {}〉
convex rel interior iff [of S ∩ (range f ) f z ]

by auto
moreover have affine (range f )
by (simp add : linear axioms linear subspace image subspace imp affine)

ultimately have f z ∈ rel interior S
using convex affine rel interior Int [of S range f ] assms by auto

then have z ∈ f −‘ (rel interior S )
by auto

}
ultimately show ?thesis by auto

qed

lemma rel interior Times:
fixes S :: ′n::euclidean space set
and T :: ′m::euclidean space set

assumes convex S
and convex T

shows rel interior (S × T ) = rel interior S × rel interior T
proof (cases S = {} ∨ T = {})
case True
then show ?thesis
by auto

next
case False
then have S 6= {} T 6= {}
by auto

then have ri : rel interior S 6= {} rel interior T 6= {}
using rel interior eq empty assms by auto

then have fst −‘ rel interior S 6= {}
using fst vimage eq Times[of rel interior S ] by auto
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then have rel interior ((fst :: ′n ∗ ′m ⇒ ′n) −‘ S ) = fst −‘ rel interior S
using linear fst 〈convex S 〉 rel interior convex linear preimage[of fst S ] by auto

then have s: rel interior (S × (UNIV :: ′m set)) = rel interior S × UNIV
by (simp add : fst vimage eq Times)

from ri have snd −‘ rel interior T 6= {}
using snd vimage eq Times[of rel interior T ] by auto

then have rel interior ((snd :: ′n ∗ ′m ⇒ ′m) −‘ T ) = snd −‘ rel interior T
using linear snd 〈convex T 〉 rel interior convex linear preimage[of snd T ] by

auto
then have t : rel interior ((UNIV :: ′n set) × T ) = UNIV × rel interior T
by (simp add : snd vimage eq Times)

from s t have ∗: rel interior (S × (UNIV :: ′m set)) ∩ rel interior ((UNIV ::
′n set) × T ) =

rel interior S × rel interior T by auto
have S × T = S × (UNIV :: ′m set) ∩ (UNIV :: ′n set) × T
by auto

then have rel interior (S × T ) = rel interior ((S × (UNIV :: ′m set)) ∩ ((UNIV
:: ′n set) × T ))

by auto
also have . . . = rel interior (S × (UNIV :: ′m set)) ∩ rel interior ((UNIV ::

′n set) × T )
using ∗ ri assms convex Times
by (subst convex rel interior inter two) auto

finally show ?thesis using ∗ by auto
qed

lemma rel interior scaleR:
fixes S :: ′n::euclidean space set
assumes c 6= 0
shows ((∗R) c) ‘ (rel interior S ) = rel interior (((∗R) c) ‘ S )
using rel interior injective linear image[of ((∗R) c) S ]
linear conv bounded linear [of (∗R) c] linear scaleR injective scaleR[of c] assms

by auto

lemma rel interior convex scaleR:
fixes S :: ′n::euclidean space set
assumes convex S
shows ((∗R) c) ‘ (rel interior S ) = rel interior (((∗R) c) ‘ S )
by (metis assms linear scaleR rel interior convex linear image)

lemma convex rel open scaleR:
fixes S :: ′n::euclidean space set
assumes convex S
and rel open S

shows convex (((∗R) c) ‘ S ) ∧ rel open (((∗R) c) ‘ S )
by (metis assms convex scaling rel interior convex scaleR rel open def )

lemma convex rel open finite inter :
assumes ∀S∈I . convex (S :: ′n::euclidean space set) ∧ rel open S
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and finite I
shows convex (

⋂
I ) ∧ rel open (

⋂
I )

proof (cases
⋂
{rel interior S |S . S ∈ I } = {})

case True
then have

⋂
I = {}

using assms unfolding rel open def by auto
then show ?thesis
unfolding rel open def by auto

next
case False
then have rel open (

⋂
I )

using assms unfolding rel open def
using convex rel interior finite inter [of I ]
by auto

then show ?thesis
using convex Inter assms by auto

qed

lemma convex rel open linear image:
fixes f :: ′m::euclidean space ⇒ ′n::euclidean space
assumes linear f
and convex S
and rel open S

shows convex (f ‘ S ) ∧ rel open (f ‘ S )
by (metis assms convex linear image rel interior convex linear image rel open def )

lemma convex rel open linear preimage:
fixes f :: ′m::euclidean space ⇒ ′n::euclidean space
assumes linear f
and convex S
and rel open S

shows convex (f −‘ S ) ∧ rel open (f −‘ S )
proof (cases f −‘ (rel interior S ) = {})
case True
then have f −‘ S = {}
using assms unfolding rel open def by auto

then show ?thesis
unfolding rel open def by auto

next
case False
then have rel open (f −‘ S )
using assms unfolding rel open def
using rel interior convex linear preimage[of f S ]
by auto

then show ?thesis
using convex linear vimage assms
by auto

qed
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lemma rel interior projection:
fixes S :: ( ′m::euclidean space × ′n::euclidean space) set
and f :: ′m::euclidean space ⇒ ′n::euclidean space set

assumes convex S
and f = (λy . {z . (y , z ) ∈ S})
shows (y , z ) ∈ rel interior S ←→ (y ∈ rel interior {y . (f y 6= {})} ∧ z ∈

rel interior (f y))
proof −
{
fix y
assume y ∈ {y . f y 6= {}}
then obtain z where (y , z ) ∈ S
using assms by auto

then have ∃ x . x ∈ S ∧ y = fst x
by auto

then obtain x where x ∈ S y = fst x
by blast

then have y ∈ fst ‘ S
unfolding image def by auto

}
then have fst ‘ S = {y . f y 6= {}}
unfolding fst def using assms by auto

then have h1 : fst ‘ rel interior S = rel interior {y . f y 6= {}}
using rel interior convex linear image[of fst S ] assms linear fst by auto

{
fix y
assume y ∈ rel interior {y . f y 6= {}}
then have y ∈ fst ‘ rel interior S
using h1 by auto

then have ∗: rel interior S ∩ fst −‘ {y} 6= {}
by auto

moreover have aff : affine (fst −‘ {y})
unfolding affine alt by (simp add : algebra simps)

ultimately have ∗∗: rel interior (S ∩ fst −‘ {y}) = rel interior S ∩ fst −‘
{y}

using convex affine rel interior Int [of S fst −‘ {y}] assms by auto
have conv : convex (S ∩ fst −‘ {y})
using convex Int assms aff affine imp convex by auto

{
fix x
assume x ∈ f y
then have (y , x ) ∈ S ∩ (fst −‘ {y})
using assms by auto

moreover have x = snd (y , x ) by auto
ultimately have x ∈ snd ‘ (S ∩ fst −‘ {y})
by blast

}
then have snd ‘ (S ∩ fst −‘ {y}) = f y
using assms by auto
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then have ∗∗∗: rel interior (f y) = snd ‘ rel interior (S ∩ fst −‘ {y})
using rel interior convex linear image[of snd S ∩ fst −‘ {y}] linear snd conv
by auto

{
fix z
assume z ∈ rel interior (f y)
then have z ∈ snd ‘ rel interior (S ∩ fst −‘ {y})
using ∗∗∗ by auto

moreover have {y} = fst ‘ rel interior (S ∩ fst −‘ {y})
using ∗ ∗∗ rel interior subset by auto

ultimately have (y , z ) ∈ rel interior (S ∩ fst −‘ {y})
by force

then have (y ,z ) ∈ rel interior S
using ∗∗ by auto

}
moreover
{
fix z
assume (y , z ) ∈ rel interior S
then have (y , z ) ∈ rel interior (S ∩ fst −‘ {y})
using ∗∗ by auto

then have z ∈ snd ‘ rel interior (S ∩ fst −‘ {y})
by (metis Range iff snd eq Range)

then have z ∈ rel interior (f y)
using ∗∗∗ by auto

}
ultimately have

∧
z . (y , z ) ∈ rel interior S ←→ z ∈ rel interior (f y)

by auto
}
then have h2 :

∧
y z . y ∈ rel interior {t . f t 6= {}} =⇒

(y , z ) ∈ rel interior S ←→ z ∈ rel interior (f y)
by auto

{
fix y z
assume asm: (y , z ) ∈ rel interior S
then have y ∈ fst ‘ rel interior S
by (metis Domain iff fst eq Domain)

then have y ∈ rel interior {t . f t 6= {}}
using h1 by auto

then have y ∈ rel interior {t . f t 6= {}} and (z ∈ rel interior (f y))
using h2 asm by auto

}
then show ?thesis using h2 by blast

qed

lemma rel frontier Times:
fixes S :: ′n::euclidean space set
and T :: ′m::euclidean space set

assumes convex S
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and convex T
shows rel frontier S × rel frontier T ⊆ rel frontier (S × T )
by (force simp: rel frontier def rel interior Times assms closure Times)

Relative interior of convex cone

lemma cone rel interior :
fixes S :: ′m::euclidean space set
assumes cone S
shows cone ({0} ∪ rel interior S )

proof (cases S = {})
case True
then show ?thesis
by (simp add : cone 0 )

next
case False
then have ∗: 0 ∈ S ∧ (∀ c. c > 0 −→ (∗R) c ‘ S = S )
using cone iff [of S ] assms by auto

then have ∗: 0 ∈ ({0} ∪ rel interior S )
and ∀ c. c > 0 −→ (∗R) c ‘ ({0} ∪ rel interior S ) = ({0} ∪ rel interior S )
by (auto simp add : rel interior scaleR)

then show ?thesis
using cone iff [of {0} ∪ rel interior S ] by auto

qed

lemma rel interior convex cone aux :
fixes S :: ′m::euclidean space set
assumes convex S
shows (c, x ) ∈ rel interior (cone hull ({(1 :: real)} × S )) ←→
c > 0 ∧ x ∈ (((∗R) c) ‘ (rel interior S ))

proof (cases S = {})
case True
then show ?thesis
by (simp add : cone hull empty)

next
case False
then obtain s where s ∈ S by auto
have conv : convex ({(1 :: real)} × S )
using convex Times[of {(1 :: real)} S ] assms convex singleton[of 1 :: real ]
by auto

define f where f y = {z . (y , z ) ∈ cone hull ({1 :: real} × S )} for y
then have ∗: (c, x ) ∈ rel interior (cone hull ({(1 :: real)} × S )) =
(c ∈ rel interior {y . f y 6= {}} ∧ x ∈ rel interior (f c))
using convex cone hull [of {(1 :: real)} × S ] conv
by (subst rel interior projection) auto

{
fix y :: real
assume y ≥ 0
then have y ∗R (1 ,s) ∈ cone hull ({1 :: real} × S )
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using cone hull expl [of {(1 :: real)} × S ] 〈s ∈ S 〉 by auto
then have f y 6= {}
using f def by auto

}
then have {y . f y 6= {}} = {0 ..}
using f def cone hull expl [of {1 :: real} × S ] by auto

then have ∗∗: rel interior {y . f y 6= {}} = {0<..}
using rel interior real semiline by auto

{
fix c :: real
assume c > 0
then have f c = ((∗R) c ‘ S )
using f def cone hull expl [of {1 :: real} × S ] by auto

then have rel interior (f c) = (∗R) c ‘ rel interior S
using rel interior convex scaleR[of S c] assms by auto

}
then show ?thesis using ∗ ∗∗ by auto

qed

lemma rel interior convex cone:
fixes S :: ′m::euclidean space set
assumes convex S
shows rel interior (cone hull ({1 :: real} × S )) =
{(c, c ∗R x ) | c x . c > 0 ∧ x ∈ rel interior S}

(is ?lhs = ?rhs)
proof −
{
fix z
assume z ∈ ?lhs
have ∗: z = (fst z , snd z )
by auto

then have z ∈ ?rhs
using rel interior convex cone aux [of S fst z snd z ] assms 〈z ∈ ?lhs〉 by

fastforce
}
moreover
{
fix z
assume z ∈ ?rhs
then have z ∈ ?lhs
using rel interior convex cone aux [of S fst z snd z ] assms
by auto

}
ultimately show ?thesis by blast

qed

lemma convex hull finite union:
assumes finite I
assumes ∀ i∈I . convex (S i) ∧ (S i) 6= {}
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shows convex hull (
⋃
(S ‘ I )) =

{sum (λi . c i ∗R s i) I | c s. (∀ i∈I . c i ≥ 0 ) ∧ sum c I = 1 ∧ (∀ i∈I . s i ∈
S i)}
(is ?lhs = ?rhs)

proof −
have ?lhs ⊇ ?rhs
proof
fix x
assume x ∈ ?rhs
then obtain c s where ∗: sum (λi . c i ∗R s i) I = x sum c I = 1
(∀ i∈I . c i ≥ 0 ) ∧ (∀ i∈I . s i ∈ S i) by auto

then have ∀ i∈I . s i ∈ convex hull (
⋃

(S ‘ I ))
using hull subset [of

⋃
(S ‘ I ) convex ] by auto

then show x ∈ ?lhs
unfolding ∗(1 )[symmetric]
using ∗ assms convex convex hull
by (subst convex sum) auto

qed
{
fix i
assume i ∈ I
with assms have ∃ p. p ∈ S i by auto

}
then obtain p where p: ∀ i∈I . p i ∈ S i by metis
{
fix i
assume i ∈ I
{
fix x
assume x ∈ S i
define c where c j = (if j = i then 1 ::real else 0 ) for j
then have ∗: sum c I = 1
using 〈finite I 〉 〈i ∈ I 〉 sum.delta[of I i λj :: ′a. 1 ::real ]
by auto

define s where s j = (if j = i then x else p j ) for j
then have ∀ j . c j ∗R s j = (if j = i then x else 0 )
using c def by (auto simp add : algebra simps)

then have x = sum (λi . c i ∗R s i) I
using s def c def 〈finite I 〉 〈i ∈ I 〉 sum.delta[of I i λj :: ′a. x ]
by auto

moreover have (∀ i∈I . 0 ≤ c i) ∧ sum c I = 1 ∧ (∀ i∈I . s i ∈ S i)
using ∗ c def s def p 〈x ∈ S i 〉 by auto

ultimately have x ∈ ?rhs
by force

}
then have ?rhs ⊇ S i by auto

}
then have ∗: ?rhs ⊇

⋃
(S ‘ I ) by auto
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{
fix u v :: real
assume uv : u ≥ 0 ∧ v ≥ 0 ∧ u + v = 1
fix x y
assume xy : x ∈ ?rhs ∧ y ∈ ?rhs
from xy obtain c s where
xc: x = sum (λi . c i ∗R s i) I ∧ (∀ i∈I . c i ≥ 0 ) ∧ sum c I = 1 ∧ (∀ i∈I . s

i ∈ S i)
by auto

from xy obtain d t where
yc: y = sum (λi . d i ∗R t i) I ∧ (∀ i∈I . d i ≥ 0 ) ∧ sum d I = 1 ∧ (∀ i∈I . t

i ∈ S i)
by auto

define e where e i = u ∗ c i + v ∗ d i for i
have ge0 : ∀ i∈I . e i ≥ 0
using e def xc yc uv by simp

have sum (λi . u ∗ c i) I = u ∗ sum c I
by (simp add : sum distrib left)

moreover have sum (λi . v ∗ d i) I = v ∗ sum d I
by (simp add : sum distrib left)

ultimately have sum1 : sum e I = 1
using e def xc yc uv by (simp add : sum.distrib)

define q where q i = (if e i = 0 then p i else (u ∗ c i / e i) ∗R s i + (v ∗ d
i / e i) ∗R t i)

for i
{
fix i
assume i : i ∈ I
have q i ∈ S i
proof (cases e i = 0 )
case True
then show ?thesis using i p q def by auto

next
case False
then show ?thesis
using mem convex alt [of S i s i t i u ∗ (c i) v ∗ (d i)]
mult nonneg nonneg [of u c i ] mult nonneg nonneg [of v d i ]
assms q def e def i False xc yc uv

by (auto simp del : mult nonneg nonneg)
qed

}
then have qs: ∀ i∈I . q i ∈ S i by auto
{
fix i
assume i : i ∈ I
have (u ∗ c i) ∗R s i + (v ∗ d i) ∗R t i = e i ∗R q i
proof (cases e i = 0 )
case True
have ge: u ∗ (c i) ≥ 0 ∧ v ∗ d i ≥ 0
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using xc yc uv i by simp
moreover from ge have u ∗ c i ≤ 0 ∧ v ∗ d i ≤ 0
using True e def i by simp

ultimately have u ∗ c i = 0 ∧ v ∗ d i = 0 by auto
with True show ?thesis by auto

next
case False
then have (u ∗ (c i)/(e i))∗R (s i)+(v ∗ (d i)/(e i))∗R (t i) = q i
using q def by auto

then have e i ∗R ((u ∗ (c i)/(e i))∗R (s i)+(v ∗ (d i)/(e i))∗R (t i))
= (e i) ∗R (q i) by auto

with False show ?thesis by (simp add : algebra simps)
qed

}
then have ∗: ∀ i∈I . (u ∗ c i) ∗R s i + (v ∗ d i) ∗R t i = e i ∗R q i
by auto

have u ∗R x + v ∗R y = sum (λi . (u ∗ c i) ∗R s i + (v ∗ d i) ∗R t i) I
using xc yc by (simp add : algebra simps scaleR right .sum sum.distrib)

also have . . . = sum (λi . e i ∗R q i) I
using ∗ by auto

finally have u ∗R x + v ∗R y = sum (λi . (e i) ∗R (q i)) I
by auto

then have u ∗R x + v ∗R y ∈ ?rhs
using ge0 sum1 qs by auto

}
then have convex ?rhs unfolding convex def by auto
then show ?thesis
using 〈?lhs ⊇ ?rhs〉 ∗ hull minimal [of

⋃
(S ‘ I ) ?rhs convex ]

by blast
qed

lemma convex hull union two:
fixes S T :: ′m::euclidean space set
assumes convex S
and S 6= {}
and convex T
and T 6= {}

shows convex hull (S ∪ T ) =
{u ∗R s + v ∗R t | u v s t . u ≥ 0 ∧ v ≥ 0 ∧ u + v = 1 ∧ s ∈ S ∧ t ∈ T}

(is ?lhs = ?rhs)
proof
define I :: nat set where I = {1 , 2}
define s where s i = (if i = (1 ::nat) then S else T ) for i
have

⋃
(s ‘ I ) = S ∪ T

using s def I def by auto
then have convex hull (

⋃
(s ‘ I )) = convex hull (S ∪ T )

by auto
moreover have convex hull

⋃
(s ‘ I ) =

{
∑

i∈I . c i ∗R sa i | c sa. (∀ i∈I . 0 ≤ c i) ∧ sum c I = 1 ∧ (∀ i∈I . sa i ∈ s
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i)}
using assms s def I def
by (subst convex hull finite union) auto

moreover have
{
∑

i∈I . c i ∗R sa i | c sa. (∀ i∈I . 0 ≤ c i) ∧ sum c I = 1 ∧ (∀ i∈I . sa i ∈ s
i)} ≤ ?rhs

using s def I def by auto
ultimately show ?lhs ⊆ ?rhs by auto
{
fix x
assume x ∈ ?rhs
then obtain u v s t where ∗: x = u ∗R s + v ∗R t ∧ u ≥ 0 ∧ v ≥ 0 ∧ u +

v = 1 ∧ s ∈ S ∧ t ∈ T
by auto

then have x ∈ convex hull {s, t}
using convex hull 2 [of s t ] by auto

then have x ∈ convex hull (S ∪ T )
using ∗ hull mono[of {s, t} S ∪ T ] by auto

}
then show ?lhs ⊇ ?rhs by blast

qed

proposition ray to rel frontier :
fixes a :: ′a::real inner
assumes bounded S

and a: a ∈ rel interior S
and aff : (a + l) ∈ affine hull S
and l 6= 0

obtains d where 0 < d (a + d ∗R l) ∈ rel frontier S∧
e. [[0 ≤ e; e < d ]] =⇒ (a + e ∗R l) ∈ rel interior S

proof −
have aaff : a ∈ affine hull S
by (meson a hull subset rel interior subset rev subsetD)

let ?D = {d . 0 < d ∧ a + d ∗R l /∈ rel interior S}
obtain B where B > 0 and B : S ⊆ ball a B
using bounded subset ballD [OF 〈bounded S 〉] by blast

have a + (B / norm l) ∗R l /∈ ball a B
by (simp add : dist norm 〈l 6= 0 〉)

with B have a + (B / norm l) ∗R l /∈ rel interior S
using rel interior subset subsetCE by blast

with 〈B > 0 〉 〈l 6= 0 〉 have nonMT : ?D 6= {}
using divide pos pos zero less norm iff by fastforce

have bdd : bdd below ?D
by (metis (no types, lifting) bdd belowI le less mem Collect eq)

have relin Ex :
∧
x . x ∈ rel interior S =⇒

∃ e>0 . ∀ x ′∈affine hull S . dist x ′ x < e −→ x ′ ∈ rel interior S
using openin rel interior [of S ] by (simp add : openin euclidean subtopology iff )
define d where d = Inf ?D
obtain ε where 0 < ε and ε:

∧
η. [[0 ≤ η; η < ε]] =⇒ (a + η ∗R l) ∈ rel interior
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S
proof −
obtain e where e>0

and e:
∧
x ′. x ′ ∈ affine hull S =⇒ dist x ′ a < e =⇒ x ′ ∈ rel interior S

using relin Ex a by blast
show thesis
proof (rule tac ε = e / norm l in that)
show 0 < e / norm l by (simp add : 〈0 < e〉 〈l 6= 0 〉)

next
show a + η ∗R l ∈ rel interior S if 0 ≤ η η < e / norm l for η
proof (rule e)
show a + η ∗R l ∈ affine hull S
by (metis (no types) add diff cancel left ′ aff affine affine hull mem affine 3 minus

aaff )
show dist (a + η ∗R l) a < e
using that by (simp add : 〈l 6= 0 〉 dist norm pos less divide eq)

qed
qed

qed
have inint :

∧
e. [[0 ≤ e; e < d ]] =⇒ a + e ∗R l ∈ rel interior S

unfolding d def using cInf lower [OF bdd ]
by (metis (no types, lifting) a add .right neutral le less mem Collect eq not less

real vector .scale zero left)
have ε ≤ d
unfolding d def
using ε dual order .strict implies order le less linear
by (blast intro: cInf greatest [OF nonMT ])

with 〈0 < ε〉 have 0 < d by simp
have a + d ∗R l /∈ rel interior S
proof
assume adl : a + d ∗R l ∈ rel interior S
obtain e where e > 0

and e:
∧
x ′. x ′ ∈ affine hull S =⇒ dist x ′ (a + d ∗R l) < e =⇒ x ′ ∈

rel interior S
using relin Ex adl by blast

have d + e / norm l ≤ Inf {d . 0 < d ∧ a + d ∗R l /∈ rel interior S}
proof (rule cInf greatest [OF nonMT ], clarsimp)
fix x ::real
assume 0 < x and nonrel : a + x ∗R l /∈ rel interior S
show d + e / norm l ≤ x
proof (cases x < d)
case True with inint nonrel 〈0 < x 〉

show ?thesis by auto
next
case False
then have dle: x < d + e / norm l =⇒ dist (a + x ∗R l) (a + d ∗R l)

< e
by (simp add : field simps 〈l 6= 0 〉)

have ain: a + x ∗R l ∈ affine hull S
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by (metis add diff cancel left ′ aff affine affine hull mem affine 3 minus
aaff )

show ?thesis
using e [OF ain] nonrel dle by force

qed
qed
then show False
using 〈0 < e〉 〈l 6= 0 〉 by (simp add : d def [symmetric] field simps)

qed
moreover have a + d ∗R l ∈ closure S
proof (clarsimp simp: closure approachable)
fix η::real assume 0 < η
have 1 : a + (d − min d (η / 2 / norm l)) ∗R l ∈ S
proof (rule subsetD [OF rel interior subset inint ])
show d − min d (η / 2 / norm l) < d
using 〈l 6= 0 〉 〈0 < d 〉 〈0 < η〉 by auto

qed auto
have norm l ∗ min d (η / (norm l ∗ 2 )) ≤ norm l ∗ (η / (norm l ∗ 2 ))
by (metis min def mult left mono norm ge zero order refl)

also have ... < η
using 〈l 6= 0 〉 〈0 < η〉 by (simp add : field simps)

finally have 2 : norm l ∗ min d (η / (norm l ∗ 2 )) < η .
show ∃ y∈S . dist y (a + d ∗R l) < η
using 1 2 〈0 < d 〉 〈0 < η〉

by (rule tac x=a + (d − min d (η / 2 / norm l)) ∗R l in bexI ) (auto simp:
algebra simps)
qed
ultimately have infront : a + d ∗R l ∈ rel frontier S
by (simp add : rel frontier def )

show ?thesis
by (rule that [OF 〈0 < d 〉 infront inint ])

qed

corollary ray to frontier :
fixes a :: ′a::euclidean space
assumes bounded S

and a: a ∈ interior S
and l 6= 0

obtains d where 0 < d (a + d ∗R l) ∈ frontier S∧
e. [[0 ≤ e; e < d ]] =⇒ (a + e ∗R l) ∈ interior S

proof −
have §: interior S = rel interior S
using a rel interior nonempty interior by auto

then have a ∈ rel interior S
using a by simp

moreover have a + l ∈ affine hull S
using a affine hull nonempty interior by blast

ultimately show thesis
by (metis § 〈bounded S 〉 〈l 6= 0 〉 frontier def ray to rel frontier rel frontier def
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that)
qed

lemma segment to rel frontier aux :
fixes x :: ′a::euclidean space
assumes convex S bounded S and x : x ∈ rel interior S and y : y ∈ S and xy :

x 6= y
obtains z where z ∈ rel frontier S y ∈ closed segment x z

open segment x z ⊆ rel interior S
proof −
have x + (y − x ) ∈ affine hull S
using hull inc [OF y ] by auto

then obtain d where 0 < d and df : (x + d ∗R (y−x )) ∈ rel frontier S
and di :

∧
e. [[0 ≤ e; e < d ]] =⇒ (x + e ∗R (y−x )) ∈ rel interior S

by (rule ray to rel frontier [OF 〈bounded S 〉 x ]) (use xy in auto)
show ?thesis
proof
show x + d ∗R (y − x ) ∈ rel frontier S
by (simp add : df )

next
have open segment x y ⊆ rel interior S
using rel interior closure convex segment [OF 〈convex S 〉 x ] closure subset y

by blast
moreover have x + d ∗R (y − x ) ∈ open segment x y if d < 1
using xy 〈0 < d 〉 that by (force simp: in segment algebra simps)

ultimately have 1 ≤ d
using df rel frontier def by fastforce

moreover have x = (1 / d) ∗R x + ((d − 1 ) / d) ∗R x
by (metis 〈0 < d 〉 add .commute add divide distrib diff add cancel divide self if

less irrefl scaleR add left scaleR one)
ultimately show y ∈ closed segment x (x + d ∗R (y − x ))
unfolding in segment
by (rule tac x=1/d in exI ) (auto simp: algebra simps)

next
show open segment x (x + d ∗R (y − x )) ⊆ rel interior S
proof (rule rel interior closure convex segment [OF 〈convex S 〉 x ])
show x + d ∗R (y − x ) ∈ closure S
using df rel frontier def by auto

qed
qed

qed

lemma segment to rel frontier :
fixes x :: ′a::euclidean space
assumes S : convex S bounded S and x : x ∈ rel interior S

and y : y ∈ S and xy : ¬(x = y ∧ S = {x})
obtains z where z ∈ rel frontier S y ∈ closed segment x z

open segment x z ⊆ rel interior S
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proof (cases x=y)
case True
with xy have S 6= {x}
by blast

with True show ?thesis
by (metis Set .set insert all not in conv ends in segment(1 ) insert iff segment to rel frontier aux [OF

S x ] that y)
next
case False
then show ?thesis
using segment to rel frontier aux [OF S x y ] that by blast

qed

proposition rel frontier not sing :
fixes a :: ′a::euclidean space
assumes bounded S
shows rel frontier S 6= {a}

proof (cases S = {})
case True then show ?thesis by simp

next
case False
then obtain z where z ∈ S
by blast

then show ?thesis
proof (cases S = {z})
case True then show ?thesis by simp

next
case False
then obtain w where w ∈ S w 6= z
using 〈z ∈ S 〉 by blast

show ?thesis
proof
assume rel frontier S = {a}
then consider w /∈ rel frontier S | z /∈ rel frontier S
using 〈w 6= z 〉 by auto

then show False
proof cases
case 1
then have w : w ∈ rel interior S
using 〈w ∈ S 〉 closure subset rel frontier def by fastforce

have w + (w − z ) ∈ affine hull S
by (metis 〈w ∈ S 〉 〈z ∈ S 〉 affine affine hull hull inc mem affine 3 minus

scaleR one)
then obtain e where 0 < e (w + e ∗R (w − z )) ∈ rel frontier S
using 〈w 6= z 〉 〈z ∈ S 〉 by (metis assms ray to rel frontier right minus eq

w)
moreover obtain d where 0 < d (w + d ∗R (z − w)) ∈ rel frontier S
using ray to rel frontier [OF 〈bounded S 〉 w , of 1 ∗R (z − w)] 〈w 6= z 〉

〈z ∈ S 〉
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by (metis add .commute add .right neutral diff add cancel hull inc scaleR one)
ultimately have d ∗R (z − w) = e ∗R (w − z )
using 〈rel frontier S = {a}〉 by force

moreover have e 6= −d
using 〈0 < e〉 〈0 < d 〉 by force

ultimately show False
by (metis (no types, lifting) 〈w 6= z 〉 eq iff diff eq 0 minus diff eq real vector .scale cancel right

real vector .scale minus right scaleR left .minus)
next
case 2
then have z : z ∈ rel interior S
using 〈z ∈ S 〉 closure subset rel frontier def by fastforce

have z + (z − w) ∈ affine hull S
by (metis 〈z ∈ S 〉 〈w ∈ S 〉 affine affine hull hull inc mem affine 3 minus

scaleR one)
then obtain e where 0 < e (z + e ∗R (z − w)) ∈ rel frontier S
using 〈w 6= z 〉 〈w ∈ S 〉 by (metis assms ray to rel frontier right minus eq

z )
moreover obtain d where 0 < d (z + d ∗R (w − z )) ∈ rel frontier S

using ray to rel frontier [OF 〈bounded S 〉 z , of 1 ∗R (w − z )] 〈w 6= z 〉

〈w ∈ S 〉

by (metis add .commute add .right neutral diff add cancel hull inc scaleR one)
ultimately have d ∗R (w − z ) = e ∗R (z − w)
using 〈rel frontier S = {a}〉 by force

moreover have e 6= −d
using 〈0 < e〉 〈0 < d 〉 by force

ultimately show False
by (metis (no types, lifting) 〈w 6= z 〉 eq iff diff eq 0 minus diff eq real vector .scale cancel right

real vector .scale minus right scaleR left .minus)
qed

qed
qed

qed

5.0.5 Convexity on direct sums

lemma closure sum:
fixes S T :: ′a::real normed vector set
shows closure S + closure T ⊆ closure (S + T )
unfolding set plus image closure Times [symmetric] split def
by (intro closure bounded linear image subset bounded linear add
bounded linear fst bounded linear snd)

lemma rel interior sum:
fixes S T :: ′n::euclidean space set
assumes convex S
and convex T

shows rel interior (S + T ) = rel interior S + rel interior T
proof −
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have rel interior S + rel interior T = (λ(x ,y). x + y) ‘ (rel interior S ×
rel interior T )

by (simp add : set plus image)
also have . . . = (λ(x ,y). x + y) ‘ rel interior (S × T )
using rel interior Times assms by auto

also have . . . = rel interior (S + T )
using fst snd linear convex Times assms
rel interior convex linear image[of (λ(x ,y). x + y) S × T ]

by (auto simp add : set plus image)
finally show ?thesis ..

qed

lemma rel interior sum gen:
fixes S :: ′a ⇒ ′n::euclidean space set
assumes

∧
i . i∈I =⇒ convex (S i)

shows rel interior (sum S I ) = sum (λi . rel interior (S i)) I
using rel interior sum rel interior sing [of 0 ] assms
by (subst sum set cond linear [of convex ], auto simp add : convex set plus)

lemma convex rel open direct sum:
fixes S T :: ′n::euclidean space set
assumes convex S
and rel open S
and convex T
and rel open T

shows convex (S × T ) ∧ rel open (S × T )
by (metis assms convex Times rel interior Times rel open def )

lemma convex rel open sum:
fixes S T :: ′n::euclidean space set
assumes convex S
and rel open S
and convex T
and rel open T

shows convex (S + T ) ∧ rel open (S + T )
by (metis assms convex set plus rel interior sum rel open def )

lemma convex hull finite union cones:
assumes finite I
and I 6= {}

assumes
∧
i . i∈I =⇒ convex (S i) ∧ cone (S i) ∧ S i 6= {}

shows convex hull (
⋃
(S ‘ I )) = sum S I

(is ?lhs = ?rhs)
proof −
{
fix x
assume x ∈ ?lhs
then obtain c xs where
x : x = sum (λi . c i ∗R xs i) I ∧ (∀ i∈I . c i ≥ 0 ) ∧ sum c I = 1 ∧ (∀ i∈I .
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xs i ∈ S i)
using convex hull finite union[of I S ] assms by auto

define s where s i = c i ∗R xs i for i
have ∀ i∈I . s i ∈ S i

using s def x assms by (simp add : mem cone)
moreover have x = sum s I using x s def by auto
ultimately have x ∈ ?rhs
using set sum alt [of I S ] assms by auto

}
moreover
{
fix x
assume x ∈ ?rhs
then obtain s where x : x = sum s I ∧ (∀ i∈I . s i ∈ S i)
using set sum alt [of I S ] assms by auto

define xs where xs i = of nat(card I ) ∗R s i for i
then have x = sum (λi . ((1 :: real) / of nat(card I )) ∗R xs i) I
using x assms by auto

moreover have ∀ i∈I . xs i ∈ S i
using x xs def assms by (simp add : cone def )

moreover have ∀ i∈I . (1 :: real) / of nat (card I ) ≥ 0
by auto

moreover have sum (λi . (1 :: real) / of nat (card I )) I = 1
using assms by auto

ultimately have x ∈ ?lhs
using assms
apply (simp add : convex hull finite union[of I S ])
by (rule tac x = (λi . 1 / (card I )) in exI ) auto

}
ultimately show ?thesis by auto

qed

lemma convex hull union cones two:
fixes S T :: ′m::euclidean space set
assumes convex S
and cone S
and S 6= {}

assumes convex T
and cone T
and T 6= {}

shows convex hull (S ∪ T ) = S + T
proof −
define I :: nat set where I = {1 , 2}
define A where A i = (if i = (1 ::nat) then S else T ) for i
have

⋃
(A ‘ I ) = S ∪ T

using A def I def by auto
then have convex hull (

⋃
(A ‘ I )) = convex hull (S ∪ T )

by auto
moreover have convex hull

⋃
(A ‘ I ) = sum A I
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using A def I def
by (metis assms convex hull finite union cones empty iff finite.emptyI finite.insertI

insertI1 )
moreover have sum A I = S + T
using A def I def by (force simp add : set plus def )

ultimately show ?thesis by auto
qed

lemma rel interior convex hull union:
fixes S :: ′a ⇒ ′n::euclidean space set
assumes finite I
and ∀ i∈I . convex (S i) ∧ S i 6= {}

shows rel interior (convex hull (
⋃
(S ‘ I ))) =

{sum (λi . c i ∗R s i) I | c s. (∀ i∈I . c i > 0 ) ∧ sum c I = 1 ∧
(∀ i∈I . s i ∈ rel interior(S i))}

(is ?lhs = ?rhs)
proof (cases I = {})
case True
then show ?thesis
using convex hull empty by auto

next
case False
define C0 where C0 = convex hull (

⋃
(S ‘ I ))

have ∀ i∈I . C0 ≥ S i
unfolding C0 def using hull subset [of

⋃
(S ‘ I )] by auto

define K0 where K0 = cone hull ({1 :: real} × C0 )
define K where K i = cone hull ({1 :: real} × S i) for i
have ∀ i∈I . K i 6= {}
unfolding K def using assms
by (simp add : cone hull empty iff [symmetric])

have convK : ∀ i∈I . convex (K i)
unfolding K def
by (simp add : assms(2 ) convex Times convex cone hull)

have K0 ⊇ K i if i ∈ I for i
unfolding K0 def K def
by (simp add : Sigma mono 〈∀ i∈I . S i ⊆ C0 〉 hull mono that)

then have K0 ⊇
⋃
(K ‘ I ) by auto

moreover have convex K0
unfolding K0 def by (simp add : C0 def convex Times convex cone hull)

ultimately have geq : K0 ⊇ convex hull (
⋃
(K ‘ I ))

using hull minimal [of K0 convex ] by blast
have ∀ i∈I . K i ⊇ {1 :: real} × S i
using K def by (simp add : hull subset)

then have
⋃
(K ‘ I ) ⊇ {1 :: real} ×

⋃
(S ‘ I )

by auto
then have convex hull

⋃
(K ‘ I ) ⊇ convex hull ({1 :: real} ×

⋃
(S ‘ I ))

by (simp add : hull mono)
then have convex hull

⋃
(K ‘ I ) ⊇ {1 :: real} × C0

unfolding C0 def
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using convex hull Times[of {(1 :: real)}
⋃
(S ‘ I )] convex hull singleton

by auto
moreover have cone (convex hull (

⋃
(K ‘ I )))

by (simp add : K def cone Union cone cone hull cone convex hull)
ultimately have convex hull (

⋃
(K ‘ I )) ⊇ K0

unfolding K0 def
using hull minimal [of convex hull (

⋃
(K ‘ I )) cone]

by blast
then have K0 = convex hull (

⋃
(K ‘ I ))

using geq by auto
also have . . . = sum K I
using assms False 〈∀ i∈I . K i 6= {}〉 cone hull eq convK
by (intro convex hull finite union cones; fastforce simp: K def )

finally have K0 = sum K I by auto
then have ∗: rel interior K0 = sum (λi . (rel interior (K i))) I
using rel interior sum gen[of I K ] convK by auto

{
fix x
assume x ∈ ?lhs
then have (1 ::real , x ) ∈ rel interior K0
using K0 def C0 def rel interior convex cone aux [of C0 1 ::real x ] convex convex hull
by auto

then obtain k where k : (1 ::real , x ) = sum k I ∧ (∀ i∈I . k i ∈ rel interior (K
i))

using 〈finite I 〉 ∗ set sum alt [of I λi . rel interior (K i)] by auto
{
fix i
assume i ∈ I
then have convex (S i) ∧ k i ∈ rel interior (cone hull {1} × S i)
using k K def assms by auto

then have ∃ ci si . k i = (ci , ci ∗R si) ∧ 0 < ci ∧ si ∈ rel interior (S i)
using rel interior convex cone[of S i ] by auto

}
then obtain c s where cs: ∀ i∈I . k i = (c i , c i ∗R s i) ∧ 0 < c i ∧ s i ∈

rel interior (S i)
by metis

then have x = (
∑

i∈I . c i ∗R s i) ∧ sum c I = 1
using k by (simp add : sum prod)

then have x ∈ ?rhs
using k cs by auto

}
moreover
{
fix x
assume x ∈ ?rhs
then obtain c s where cs: x = sum (λi . c i ∗R s i) I ∧

(∀ i∈I . c i > 0 ) ∧ sum c I = 1 ∧ (∀ i∈I . s i ∈ rel interior (S i))
by auto

define k where k i = (c i , c i ∗R s i) for i
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{
fix i assume i ∈ I
then have k i ∈ rel interior (K i)
using k def K def assms cs rel interior convex cone[of S i ]
by auto

}
then have (1 , x ) ∈ rel interior K0
using ∗ set sum alt [of I (λi . rel interior (K i))] assms cs
by (simp add : k def ) (metis (mono tags, lifting) sum prod)

then have x ∈ ?lhs
using K0 def C0 def rel interior convex cone aux [of C0 1 x ]
by auto

}
ultimately show ?thesis by blast

qed

lemma convex le Inf differential :
fixes f :: real ⇒ real
assumes convex on I f
and x ∈ interior I
and y ∈ I

shows f y ≥ f x + Inf ((λt . (f x − f t) / (x − t)) ‘ ({x<..} ∩ I )) ∗ (y − x )
(is ≥ + Inf (?F x ) ∗ (y − x ))

proof (cases rule: linorder cases)
assume x < y
moreover
have open (interior I ) by auto
from openE [OF this 〈x ∈ interior I 〉]
obtain e where e: 0 < e ball x e ⊆ interior I .
moreover define t where t = min (x + e / 2 ) ((x + y) / 2 )
ultimately have x < t t < y t ∈ ball x e
by (auto simp: dist real def field simps split : split min)

with 〈x ∈ interior I 〉 e interior subset [of I ] have t ∈ I x ∈ I by auto

define K where K = x − e / 2
with 〈0 < e〉 have K ∈ ball x e K < x
by (auto simp: dist real def )

then have K ∈ I
using 〈interior I ⊆ I 〉 e(2 ) by blast

have Inf (?F x ) ≤ (f x − f y) / (x − y)
proof (intro bdd belowI cInf lower2 )
show (f x − f t) / (x − t) ∈ ?F x
using 〈t ∈ I 〉 〈x < t 〉 by auto

show (f x − f t) / (x − t) ≤ (f x − f y) / (x − y)
using 〈convex on I f 〉 〈x ∈ I 〉 〈y ∈ I 〉 〈x < t 〉 〈t < y〉

by (rule convex on diff )
next
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fix y
assume y ∈ ?F x
with order trans[OF convex on diff [OF 〈convex on I f 〉 〈K ∈ I 〉 〈K < x 〉 ]]
show (f K − f x ) / (K − x ) ≤ y by auto

qed
then show ?thesis
using 〈x < y〉 by (simp add : field simps)

next
assume y < x
moreover
have open (interior I ) by auto
from openE [OF this 〈x ∈ interior I 〉]
obtain e where e: 0 < e ball x e ⊆ interior I .
moreover define t where t = x + e / 2
ultimately have x < t t ∈ ball x e
by (auto simp: dist real def field simps)

with 〈x ∈ interior I 〉 e interior subset [of I ] have t ∈ I x ∈ I by auto

have (f x − f y) / (x − y) ≤ Inf (?F x )
proof (rule cInf greatest)
have (f x − f y) / (x − y) = (f y − f x ) / (y − x )
using 〈y < x 〉 by (auto simp: field simps)

also
fix z
assume z ∈ ?F x
with order trans[OF convex on diff [OF 〈convex on I f 〉 〈y ∈ I 〉 〈y < x 〉]]
have (f y − f x ) / (y − x ) ≤ z
by auto

finally show (f x − f y) / (x − y) ≤ z .
next
have x + e / 2 ∈ ball x e
using e by (auto simp: dist real def )

with e interior subset [of I ] have x + e / 2 ∈ {x<..} ∩ I
by auto

then show ?F x 6= {}
by blast

qed
then show ?thesis
using 〈y < x 〉 by (simp add : field simps)

qed simp

5.0.6 Explicit formulas for interior and relative interior of
convex hull

lemma at within cbox finite:
assumes x ∈ box a b x /∈ S finite S
shows (at x within cbox a b − S ) = at x

proof −
have interior (cbox a b − S ) = box a b − S
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using 〈finite S 〉 by (simp add : interior diff finite imp closed)
then show ?thesis
using at within interior assms by fastforce

qed

lemma affine independent convex affine hull :
fixes S :: ′a::euclidean space set
assumes ¬ affine dependent S T ⊆ S
shows convex hull T = affine hull T ∩ convex hull S

proof −
have fin: finite S finite T using assms aff independent finite finite subset by

auto
have convex hull T ⊆ affine hull T
using convex hull subset affine hull by blast

moreover have convex hull T ⊆ convex hull S
using assms hull mono by blast

moreover have affine hull T ∩ convex hull S ⊆ convex hull T
proof −
have 0 :

∧
u. sum u S = 0 =⇒ (∀ v∈S . u v = 0 ) ∨ (

∑
v∈S . u v ∗R v) 6= 0

using affine dependent explicit finite assms(1 ) fin(1 ) by auto
show ?thesis
proof (clarsimp simp add : affine hull finite fin)
fix u
assume S : (

∑
v∈T . u v ∗R v) ∈ convex hull S

and T1 : sum u T = 1
then obtain v where v : ∀ x∈S . 0 ≤ v x sum v S = 1 (

∑
x∈S . v x ∗R x )

= (
∑

v∈T . u v ∗R v)
by (auto simp add : convex hull finite fin)

{ fix x
assumex ∈ T
then have S : S = (S − T ) ∪ T — split into separate cases
using assms by auto

have [simp]: (
∑

x∈T . v x ∗R x ) + (
∑

x∈S − T . v x ∗R x ) = (
∑

x∈T . u
x ∗R x )

sum v T + sum v (S − T ) = 1
using v fin S
by (auto simp: sum.union disjoint [symmetric] Un commute)

have (
∑

x∈S . if x ∈ T then v x − u x else v x ) = 0
(
∑

x∈S . (if x ∈ T then v x − u x else v x ) ∗R x ) = 0
using v fin T1

by (subst S , subst sum.union disjoint , auto simp: algebra simps sum subtractf )+
} note [simp] = this
have (∀ x∈T . 0 ≤ u x )
using 0 [of λx . if x ∈ T then v x − u x else v x ] 〈T ⊆ S 〉 v(1 ) by fastforce

then show (
∑

v∈T . u v ∗R v) ∈ convex hull T
using 0 [of λx . if x ∈ T then v x − u x else v x ] 〈T ⊆ S 〉 T1
by (fastforce simp add : convex hull finite fin)

qed
qed
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ultimately show ?thesis
by blast

qed

lemma affine independent span eq :
fixes S :: ′a::euclidean space set
assumes ¬ affine dependent S card S = Suc (DIM ( ′a))
shows affine hull S = UNIV

proof (cases S = {})
case True then show ?thesis
using assms by simp

next
case False
then obtain a T where T : a /∈ T S = insert a T
by blast

then have fin: finite T using assms
by (metis finite insert aff independent finite)

have UNIV ⊆ (+) a ‘ span ((λx . x − a) ‘ T )
proof (intro card ge dim independent Fun.vimage subsetD)
show independent ((λx . x − a) ‘ T )
using T affine dependent iff dependent assms(1 ) by auto

show dim ((+) a −‘ UNIV ) ≤ card ((λx . x − a) ‘ T )
using assms T fin by (auto simp: card image inj on def )

qed (use surj plus in auto)
then show ?thesis
using T (2 ) affine hull insert span gen equalityI by fastforce

qed

lemma affine independent span gt :
fixes S :: ′a::euclidean space set
assumes ind : ¬ affine dependent S and dim: DIM ( ′a) < card S
shows affine hull S = UNIV

proof (intro affine independent span eq [OF ind ] antisym)
show card S ≤ Suc DIM ( ′a)
using aff independent finite affine dependent biggerset ind by fastforce

show Suc DIM ( ′a) ≤ card S
using Suc leI dim by blast

qed

lemma empty interior affine hull :
fixes S :: ′a::euclidean space set
assumes finite S and dim: card S ≤ DIM ( ′a)
shows interior(affine hull S ) = {}

using assms
proof (induct S rule: finite induct)
case (insert x S )
then have dim (span ((λy . y − x ) ‘ S )) < DIM ( ′a)
by (auto simp: Suc le lessD card image le dual order .trans intro!: dim le card ′[THEN

le less trans])
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then show ?case
by (simp add : empty interior lowdim affine hull insert span gen interior translation)

qed auto

lemma empty interior convex hull :
fixes S :: ′a::euclidean space set
assumes finite S and dim: card S ≤ DIM ( ′a)
shows interior(convex hull S ) = {}

by (metis Diff empty Diff eq empty iff convex hull subset affine hull
interior mono empty interior affine hull [OF assms])

lemma explicit subset rel interior convex hull :
fixes S :: ′a::euclidean space set
shows finite S

=⇒ {y . ∃ u. (∀ x ∈ S . 0 < u x ∧ u x < 1 ) ∧ sum u S = 1 ∧ sum (λx . u
x ∗R x ) S = y}

⊆ rel interior (convex hull S )
by (force simp add : rel interior convex hull union [where S=λx . {x} and I=S ,

simplified ])

lemma explicit subset rel interior convex hull minimal :
fixes S :: ′a::euclidean space set
shows finite S

=⇒ {y . ∃ u. (∀ x ∈ S . 0 < u x ) ∧ sum u S = 1 ∧ sum (λx . u x ∗R x ) S
= y}

⊆ rel interior (convex hull S )
by (force simp add : rel interior convex hull union [where S=λx . {x} and I=S ,

simplified ])

lemma rel interior convex hull explicit :
fixes S :: ′a::euclidean space set
assumes ¬ affine dependent S
shows rel interior(convex hull S ) =

{y . ∃ u. (∀ x ∈ S . 0 < u x ) ∧ sum u S = 1 ∧ sum (λx . u x ∗R x ) S = y}
(is ?lhs = ?rhs)

proof
show ?rhs ≤ ?lhs
by (simp add : aff independent finite explicit subset rel interior convex hull minimal

assms)
next
show ?lhs ≤ ?rhs
proof (cases ∃ a. S = {a})
case True then show ?lhs ≤ ?rhs
by force

next
case False
have fs: finite S
using assms by (simp add : aff independent finite)

{ fix a b and d ::real
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assume ab: a ∈ S b ∈ S a 6= b
then have S : S = (S − {a,b}) ∪ {a,b} — split into separate cases
by auto

have (
∑

x∈S . if x = a then − d else if x = b then d else 0 ) = 0
(
∑

x∈S . (if x = a then − d else if x = b then d else 0 ) ∗R x ) = d ∗R b
− d ∗R a

using ab fs
by (subst S , subst sum.union disjoint , auto)+

} note [simp] = this
{ fix y
assume y : y ∈ convex hull S y /∈ ?rhs
have ∗: False if
ua: ∀ x∈S . 0 ≤ u x sum u S = 1 ¬ 0 < u a a ∈ S
and yT : y = (

∑
x∈S . u x ∗R x ) y ∈ T open T

and sb: T ∩ affine hull S ⊆ {w . ∃ u. (∀ x∈S . 0 ≤ u x ) ∧ sum u S = 1 ∧
(
∑

x∈S . u x ∗R x ) = w}
for u T a
proof −
have ua0 : u a = 0
using ua by auto

obtain b where b: b∈S a 6= b
using ua False by auto

obtain e where e: 0 < e ball (
∑

x∈S . u x ∗R x ) e ⊆ T
using yT by (auto elim: openE )

with b obtain d where d : 0 < d norm(d ∗R (a−b)) < e
by (auto intro: that [of e / 2 / norm(a−b)])

have (
∑

x∈S . u x ∗R x ) ∈ affine hull S
using yT y by (metis affine hull convex hull hull redundant eq)

then have (
∑

x∈S . u x ∗R x ) − d ∗R (a − b) ∈ affine hull S
using ua b by (auto simp: hull inc intro: mem affine 3 minus2 )

then have y − d ∗R (a − b) ∈ T ∩ affine hull S
using d e yT by auto

then obtain v where v : ∀ x∈S . 0 ≤ v x
sum v S = 1
(
∑

x∈S . v x ∗R x ) = (
∑

x∈S . u x ∗R x ) − d ∗R (a − b)
using subsetD [OF sb] yT
by auto

have aff :
∧
u. sum u S = 0 =⇒ (∀ v∈S . u v = 0 ) ∨ (

∑
v∈S . u v ∗R v) 6=

0
using assms by (simp add : affine dependent explicit finite fs)

show False
using ua b d v aff [of λx . (v x − u x ) − (if x = a then −d else if x = b

then d else 0 )]
by (auto simp: algebra simps sum subtractf sum.distrib)

qed
have y /∈ rel interior (convex hull S )
using y
apply (simp add : mem rel interior)
apply (auto simp: convex hull finite [OF fs])
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apply (drule tac x=u in spec)
apply (auto intro: ∗)
done

} with rel interior subset show ?lhs ≤ ?rhs
by blast

qed
qed

lemma interior convex hull explicit minimal :
fixes S :: ′a::euclidean space set
assumes ¬ affine dependent S
shows
interior(convex hull S ) =

(if card(S ) ≤ DIM ( ′a) then {}
else {y . ∃ u. (∀ x ∈ S . 0 < u x ) ∧ sum u S = 1 ∧ (

∑
x∈S . u x ∗R x )

= y})
(is = (if then else ?rhs))

proof (clarsimp simp: aff independent finite empty interior convex hull assms)
assume S : ¬ card S ≤ DIM ( ′a)
have interior (convex hull S ) = rel interior(convex hull S )
using assms S by (simp add : affine independent span gt rel interior interior)

then show interior(convex hull S ) = ?rhs
by (simp add : assms S rel interior convex hull explicit)

qed

lemma interior convex hull explicit :
fixes S :: ′a::euclidean space set
assumes ¬ affine dependent S
shows
interior(convex hull S ) =

(if card(S ) ≤ DIM ( ′a) then {}
else {y . ∃ u. (∀ x ∈ S . 0 < u x ∧ u x < 1 ) ∧ sum u S = 1 ∧ (

∑
x∈S .

u x ∗R x ) = y})
proof −
{ fix u :: ′a ⇒ real and a
assume card Basis < card S and u:

∧
x . x∈S =⇒ 0 < u x sum u S = 1 and

a: a ∈ S
then have cs: Suc 0 < card S
by (metis DIM positive less trans Suc)

obtain b where b: b ∈ S a 6= b
proof (cases S ≤ {a})
case True
then show thesis
using cs subset singletonD by fastforce

qed blast
have u a + u b ≤ sum u {a,b}
using a b by simp

also have ... ≤ sum u S
using a b u
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by (intro Groups Big .sum mono2 ) (auto simp: less imp le aff independent finite
assms)

finally have u a < 1
using 〈b ∈ S 〉 u by fastforce

} note [simp] = this
show ?thesis
using assms by (force simp add : not le interior convex hull explicit minimal)

qed

lemma interior closed segment ge2 :
fixes a :: ′a::euclidean space
assumes 2 ≤ DIM ( ′a)
shows interior(closed segment a b) = {}

using assms unfolding segment convex hull
proof −
have card {a, b} ≤ DIM ( ′a)
using assms
by (simp add : card insert if linear not less eq eq numeral 2 eq 2 )

then show interior (convex hull {a, b}) = {}
by (metis empty interior convex hull finite.insertI finite.emptyI )

qed

lemma interior open segment :
fixes a :: ′a::euclidean space
shows interior(open segment a b) =

(if 2 ≤ DIM ( ′a) then {} else open segment a b)
proof (simp add : not le, intro conjI impI )
assume 2 ≤ DIM ( ′a)
then show interior (open segment a b) = {}
using interior closed segment ge2 interior mono segment open subset closed by

blast
next
assume le2 : DIM ( ′a) < 2
show interior (open segment a b) = open segment a b
proof (cases a = b)
case True then show ?thesis by auto

next
case False
with le2 have affine hull (open segment a b) = UNIV
by (simp add : False affine independent span gt)

then show interior (open segment a b) = open segment a b
using rel interior interior rel interior open segment by blast

qed
qed

lemma interior closed segment :
fixes a :: ′a::euclidean space
shows interior(closed segment a b) =

(if 2 ≤ DIM ( ′a) then {} else open segment a b)
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proof (cases a = b)
case True then show ?thesis by simp

next
case False
then have closure (open segment a b) = closed segment a b
by simp

then show ?thesis
by (metis (no types) convex interior closure convex open segment interior open segment)

qed

lemmas interior segment = interior closed segment interior open segment

lemma closed segment eq [simp]:
fixes a :: ′a::euclidean space
shows closed segment a b = closed segment c d ←→ {a,b} = {c,d}

proof
assume abcd : closed segment a b = closed segment c d
show {a,b} = {c,d}
proof (cases a=b ∨ c=d)
case True with abcd show ?thesis by force

next
case False
then have neq : a 6= b ∧ c 6= d by force
have ∗: closed segment c d − {a, b} = rel interior (closed segment c d)
using neq abcd by (metis (no types) open segment def rel interior closed segment)
have b ∈ {c, d}
proof −
have insert b (closed segment c d) = closed segment c d
using abcd by blast

then show ?thesis
by (metis DiffD2 Diff insert2 False ∗ insertI1 insert Diff if open segment def

rel interior closed segment)
qed
moreover have a ∈ {c, d}
by (metis Diff iff False ∗ abcd ends in segment(1 ) insertI1 open segment def

rel interior closed segment)
ultimately show {a, b} = {c, d}
using neq by fastforce

qed
next
assume {a,b} = {c,d}
then show closed segment a b = closed segment c d
by (simp add : segment convex hull)

qed

lemma closed open segment eq [simp]:
fixes a :: ′a::euclidean space
shows closed segment a b 6= open segment c d

by (metis DiffE closed segment neq empty closure closed segment closure open segment
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ends in segment(1 ) insertI1 open segment def )

lemma open closed segment eq [simp]:
fixes a :: ′a::euclidean space
shows open segment a b 6= closed segment c d

using closed open segment eq by blast

lemma open segment eq [simp]:
fixes a :: ′a::euclidean space
shows open segment a b = open segment c d ←→ a = b ∧ c = d ∨ {a,b} =
{c,d}

(is ?lhs = ?rhs)
proof
assume abcd : ?lhs
show ?rhs
proof (cases a=b ∨ c=d)
case True with abcd show ?thesis
using finite open segment by fastforce

next
case False
then have a2 : a 6= b ∧ c 6= d by force
with abcd show ?rhs
unfolding open segment def
by (metis (no types) abcd closed segment eq closure open segment)

qed
next
assume ?rhs
then show ?lhs
by (metis Diff cancel convex hull singleton insert absorb2 open segment def seg-

ment convex hull)
qed

5.0.7 Similar results for closure and (relative or absolute)
frontier

lemma closure convex hull [simp]:
fixes S :: ′a::euclidean space set
shows compact S ==> closure(convex hull S ) = convex hull S
by (simp add : compact imp closed compact convex hull)

lemma rel frontier convex hull explicit :
fixes S :: ′a::euclidean space set
assumes ¬ affine dependent S
shows rel frontier(convex hull S ) =

{y . ∃ u. (∀ x ∈ S . 0 ≤ u x ) ∧ (∃ x ∈ S . u x = 0 ) ∧ sum u S = 1 ∧ sum
(λx . u x ∗R x ) S = y}
proof −
have fs: finite S
using assms by (simp add : aff independent finite)
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have
∧
u y v .

[[y ∈ S ; u y = 0 ; sum u S = 1 ; ∀ x∈S . 0 < v x ;
sum v S = 1 ; (

∑
x∈S . v x ∗R x ) = (

∑
x∈S . u x ∗R x )]]

=⇒ ∃ u. sum u S = 0 ∧ (∃ v∈S . u v 6= 0 ) ∧ (
∑

v∈S . u v ∗R v) = 0
apply (rule tac x = λx . u x − v x in exI )
apply (force simp: sum subtractf scaleR diff left)
done

then show ?thesis
using fs assms
apply (simp add : rel frontier def finite imp compact rel interior convex hull explicit)
apply (auto simp: convex hull finite)
apply (metis less eq real def )
by (simp add : affine dependent explicit finite)

qed

lemma frontier convex hull explicit :
fixes S :: ′a::euclidean space set
assumes ¬ affine dependent S
shows frontier(convex hull S ) =

{y . ∃ u. (∀ x ∈ S . 0 ≤ u x ) ∧ (DIM ( ′a) < card S −→ (∃ x ∈ S . u x = 0 ))
∧

sum u S = 1 ∧ sum (λx . u x ∗R x ) S = y}
proof −
have fs: finite S
using assms by (simp add : aff independent finite)

show ?thesis
proof (cases DIM ( ′a) < card S )
case True
with assms fs show ?thesis

by (simp add : rel frontier def frontier def rel frontier convex hull explicit
[symmetric]

interior convex hull explicit minimal rel interior convex hull explicit)
next
case False
then have card S ≤ DIM ( ′a)
by linarith

then show ?thesis
using assms fs
apply (simp add : frontier def interior convex hull explicit finite imp compact)
apply (simp add : convex hull finite)
done

qed
qed

lemma rel frontier convex hull cases:
fixes S :: ′a::euclidean space set
assumes ¬ affine dependent S
shows rel frontier(convex hull S ) =

⋃
{convex hull (S − {x}) |x . x ∈ S}

proof −
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have fs: finite S
using assms by (simp add : aff independent finite)

{ fix u a
have ∀ x∈S . 0 ≤ u x =⇒ a ∈ S =⇒ u a = 0 =⇒ sum u S = 1 =⇒

∃ x v . x ∈ S ∧
(∀ x∈S − {x}. 0 ≤ v x ) ∧

sum v (S − {x}) = 1 ∧ (
∑

x∈S − {x}. v x ∗R x ) = (
∑

x∈S .
u x ∗R x )

apply (rule tac x=a in exI )
apply (rule tac x=u in exI )
apply (simp add : Groups Big .sum diff1 fs)
done }

moreover
{ fix a u
have a ∈ S =⇒ ∀ x∈S − {a}. 0 ≤ u x =⇒ sum u (S − {a}) = 1 =⇒

∃ v . (∀ x∈S . 0 ≤ v x ) ∧
(∃ x∈S . v x = 0 ) ∧ sum v S = 1 ∧ (

∑
x∈S . v x ∗R x ) = (

∑
x∈S

− {a}. u x ∗R x )
apply (rule tac x=λx . if x = a then 0 else u x in exI )
apply (auto simp: sum.If cases Diff eq if smult fs)
done }

ultimately show ?thesis
using assms
apply (simp add : rel frontier convex hull explicit)
apply (auto simp add : convex hull finite fs Union SetCompr eq)
done

qed

lemma frontier convex hull eq rel frontier :
fixes S :: ′a::euclidean space set
assumes ¬ affine dependent S
shows frontier(convex hull S ) =

(if card S ≤ DIM ( ′a) then convex hull S else rel frontier(convex hull S ))
using assms
unfolding rel frontier def frontier def
by (simp add : affine independent span gt rel interior interior

finite imp compact empty interior convex hull aff independent finite)

lemma frontier convex hull cases:
fixes S :: ′a::euclidean space set
assumes ¬ affine dependent S
shows frontier(convex hull S ) =

(if card S ≤ DIM ( ′a) then convex hull S else
⋃
{convex hull (S − {x})

|x . x ∈ S})
by (simp add : assms frontier convex hull eq rel frontier rel frontier convex hull cases)

lemma in frontier convex hull :
fixes S :: ′a::euclidean space set
assumes finite S card S ≤ Suc (DIM ( ′a)) x ∈ S
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shows x ∈ frontier(convex hull S )
proof (cases affine dependent S )
case True
with assms obtain y where y ∈ S and y : y ∈ affine hull (S − {y})
by (auto simp: affine dependent def )

moreover have x ∈ closure (convex hull S )
by (meson closure subset hull inc subset eq 〈x ∈ S 〉)

moreover have x /∈ interior (convex hull S )
using assms
by (metis Suc mono affine hull convex hull affine hull nonempty interior 〈y

∈ S 〉 y card .remove empty iff empty interior affine hull finite Diff hull redundant
insert Diff interior UNIV not less)
ultimately show ?thesis
unfolding frontier def by blast

next
case False
{ assume card S = Suc (card Basis)
then have cs: Suc 0 < card S
by (simp)

with subset singletonD have ∃ y ∈ S . y 6= x
by (cases S ≤ {x}) fastforce+

} note [dest !] = this
show ?thesis using assms
unfolding frontier convex hull cases [OF False] Union SetCompr eq
by (auto simp: le Suc eq hull inc)

qed

lemma not in interior convex hull :
fixes S :: ′a::euclidean space set
assumes finite S card S ≤ Suc (DIM ( ′a)) x ∈ S
shows x /∈ interior(convex hull S )

using in frontier convex hull [OF assms]
by (metis Diff iff frontier def )

lemma interior convex hull eq empty :
fixes S :: ′a::euclidean space set
assumes card S = Suc (DIM ( ′a))
shows interior(convex hull S ) = {} ←→ affine dependent S

proof
show affine dependent S =⇒ interior (convex hull S ) = {}
proof (clarsimp simp: affine dependent def )
fix a b
assume b ∈ S b ∈ affine hull (S − {b})
then have interior(affine hull S ) = {} using assms

by (metis DIM positive One nat def Suc mono card .remove card .infinite
empty interior affine hull eq iff hull redundant insert Diff not less zero le one)

then show interior (convex hull S ) = {}
using affine hull nonempty interior by fastforce

qed
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next
show interior (convex hull S ) = {} =⇒ affine dependent S

by (metis affine hull convex hull affine hull empty affine independent span eq
assms convex convex hull empty not UNIV rel interior eq empty rel interior interior)
qed

5.0.8 Coplanarity, and collinearity in terms of affine hull

definition coplanar where
coplanar S ≡ ∃ u v w . S ⊆ affine hull {u,v ,w}

lemma collinear affine hull :
collinear S ←→ (∃ u v . S ⊆ affine hull {u,v})

proof (cases S={})
case True then show ?thesis
by simp

next
case False
then obtain x where x : x ∈ S by auto
{ fix u
assume ∗:

∧
x y . [[x∈S ; y∈S ]] =⇒ ∃ c. x − y = c ∗R u

have
∧
y c. x − y = c ∗R u =⇒ ∃ a b. y = a ∗R x + b ∗R (x + u) ∧ a + b

= 1
by (rule tac x=1+c in exI , rule tac x=−c in exI , simp add : algebra simps)

then have ∃ u v . S ⊆ {a ∗R u + b ∗R v |a b. a + b = 1}
using ∗ [OF x ] by (rule tac x=x in exI , rule tac x=x+u in exI , force)

} moreover
{ fix u v x y
assume ∗: S ⊆ {a ∗R u + b ∗R v |a b. a + b = 1}
have ∃ c. x − y = c ∗R (v−u) if x∈S y∈S
proof −
obtain a r where a + r = 1 x = a ∗R u + r ∗R v
using ∗ 〈x ∈ S 〉 by blast

moreover
obtain b s where b + s = 1 y = b ∗R u + s ∗R v
using ∗ 〈y ∈ S 〉 by blast

ultimately have x − y = (r−s) ∗R (v−u)
by (simp add : algebra simps) (metis scaleR left .add)

then show ?thesis
by blast

qed
} ultimately
show ?thesis
unfolding collinear def affine hull 2
by blast

qed

lemma collinear closed segment [simp]: collinear (closed segment a b)
by (metis affine hull convex hull collinear affine hull hull subset segment convex hull)
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lemma collinear open segment [simp]: collinear (open segment a b)
unfolding open segment def
by (metis convex hull subset affine hull segment convex hull dual order .trans

convex hull subset affine hull Diff subset collinear affine hull)

lemma collinear between cases:
fixes c :: ′a::euclidean space
shows collinear {a,b,c} ←→ between (b,c) a ∨ between (c,a) b ∨ between (a,b)

c
(is ?lhs = ?rhs)

proof
assume ?lhs
then obtain u v where uv :

∧
x . x ∈ {a, b, c} =⇒ ∃ c. x = u + c ∗R v

by (auto simp: collinear alt)
show ?rhs
using uv [of a] uv [of b] uv [of c] by (auto simp: between 1 )

next
assume ?rhs
then show ?lhs
unfolding between mem convex hull
by (metis (no types, hide lams) collinear closed segment collinear subset hull redundant

hull subset insert commute segment convex hull)
qed

lemma subset continuous image segment 1 :
fixes f :: ′a::euclidean space ⇒ real
assumes continuous on (closed segment a b) f
shows closed segment (f a) (f b) ⊆ image f (closed segment a b)

by (metis connected segment convex contains segment ends in segment imageI
is interval connected 1 is interval convex connected continuous image [OF

assms])

lemma continuous injective image segment 1 :
fixes f :: ′a::euclidean space ⇒ real
assumes contf : continuous on (closed segment a b) f

and injf : inj on f (closed segment a b)
shows f ‘ (closed segment a b) = closed segment (f a) (f b)

proof
show closed segment (f a) (f b) ⊆ f ‘ closed segment a b
by (metis subset continuous image segment 1 contf )

show f ‘ closed segment a b ⊆ closed segment (f a) (f b)
proof (cases a = b)
case True
then show ?thesis by auto

next
case False
then have fnot : f a 6= f b
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using inj onD injf by fastforce
moreover
have f a /∈ open segment (f c) (f b) if c: c ∈ closed segment a b for c
proof (clarsimp simp add : open segment def )
assume fa: f a ∈ closed segment (f c) (f b)
moreover have closed segment (f c) (f b) ⊆ f ‘ closed segment c b
by (meson closed segment subset contf continuous on subset convex closed segment

ends in segment(2 ) subset continuous image segment 1 that)
ultimately have f a ∈ f ‘ closed segment c b
by blast

then have a: a ∈ closed segment c b
by (meson ends in segment inj on image mem iff injf subset closed segment

that)
have cb: closed segment c b ⊆ closed segment a b
by (simp add : closed segment subset that)

show f a = f c
proof (rule between antisym)
show between (f c, f b) (f a)
by (simp add : between mem segment fa)

show between (f a, f b) (f c)
by (metis a cb between antisym between mem segment between triv1 sub-

set iff )
qed

qed
moreover
have f b /∈ open segment (f a) (f c) if c: c ∈ closed segment a b for c
proof (clarsimp simp add : open segment def fnot eq commute)
assume fb: f b ∈ closed segment (f a) (f c)
moreover have closed segment (f a) (f c) ⊆ f ‘ closed segment a c
by (meson contf continuous on subset ends in segment(1 ) subset closed segment

subset continuous image segment 1 that)
ultimately have f b ∈ f ‘ closed segment a c
by blast

then have b: b ∈ closed segment a c
by (meson ends in segment inj on image mem iff injf subset closed segment

that)
have ca: closed segment a c ⊆ closed segment a b
by (simp add : closed segment subset that)

show f b = f c
proof (rule between antisym)
show between (f c, f a) (f b)
by (simp add : between commute between mem segment fb)

show between (f b, f a) (f c)
by (metis b between antisym between commute between mem segment

between triv2 that)
qed

qed
ultimately show ?thesis
by (force simp: closed segment eq real ivl open segment eq real ivl split : if split asm)
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qed
qed

lemma continuous injective image open segment 1 :
fixes f :: ′a::euclidean space ⇒ real
assumes contf : continuous on (closed segment a b) f

and injf : inj on f (closed segment a b)
shows f ‘ (open segment a b) = open segment (f a) (f b)

proof −
have f ‘ (open segment a b) = f ‘ (closed segment a b) − {f a, f b}
by (metis (no types, hide lams) empty subsetI ends in segment image insert im-

age is empty inj on image set diff injf insert subset open segment def segment open subset closed)
also have ... = open segment (f a) (f b)
using continuous injective image segment 1 [OF assms]
by (simp add : open segment def inj on image set diff [OF injf ])

finally show ?thesis .
qed

lemma collinear imp coplanar :
collinear s ==> coplanar s

by (metis collinear affine hull coplanar def insert absorb2 )

lemma collinear small :
assumes finite s card s ≤ 2
shows collinear s

proof −
have card s = 0 ∨ card s = 1 ∨ card s = 2
using assms by linarith

then show ?thesis using assms
using card eq SucD numeral 2 eq 2 by (force simp: card 1 singleton iff )

qed

lemma coplanar small :
assumes finite s card s ≤ 3
shows coplanar s

proof −
consider card s ≤ 2 | card s = Suc (Suc (Suc 0 ))
using assms by linarith

then show ?thesis
proof cases
case 1
then show ?thesis
by (simp add : 〈finite s〉 collinear imp coplanar collinear small)

next
case 2
then show ?thesis
using hull subset [of { , , }]
by (fastforce simp: coplanar def dest !: card eq SucD)

qed
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qed

lemma coplanar empty : coplanar {}
by (simp add : coplanar small)

lemma coplanar sing : coplanar {a}
by (simp add : coplanar small)

lemma coplanar 2 : coplanar {a,b}
by (auto simp: card insert if coplanar small)

lemma coplanar 3 : coplanar {a,b,c}
by (auto simp: card insert if coplanar small)

lemma collinear affine hull collinear : collinear(affine hull s) ←→ collinear s
unfolding collinear affine hull
by (metis affine affine hull subset hull hull hull hull mono)

lemma coplanar affine hull coplanar : coplanar(affine hull s) ←→ coplanar s
unfolding coplanar def
by (metis affine affine hull subset hull hull hull hull mono)

lemma coplanar linear image:
fixes f :: ′a::euclidean space ⇒ ′b::real normed vector
assumes coplanar S linear f shows coplanar(f ‘ S )

proof −
{ fix u v w
assume S ⊆ affine hull {u, v , w}
then have f ‘ S ⊆ f ‘ (affine hull {u, v , w})
by (simp add : image mono)

then have f ‘ S ⊆ affine hull (f ‘ {u, v , w})
by (metis assms(2 ) linear conv bounded linear affine hull linear image)

} then
show ?thesis
by auto (meson assms(1 ) coplanar def )

qed

lemma coplanar translation imp:
assumes coplanar S shows coplanar ((λx . a + x ) ‘ S )

proof −
obtain u v w where S ⊆ affine hull {u,v ,w}
by (meson assms coplanar def )

then have (+) a ‘ S ⊆ affine hull {u + a, v + a, w + a}
using affine hull translation [of a {u,v ,w} for u v w ]
by (force simp: add .commute)

then show ?thesis
unfolding coplanar def by blast

qed
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lemma coplanar translation eq : coplanar((λx . a + x ) ‘ S ) ←→ coplanar S
by (metis (no types) coplanar translation imp translation galois)

lemma coplanar linear image eq :
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes linear f inj f shows coplanar(f ‘ S ) = coplanar S

proof
assume coplanar S
then show coplanar (f ‘ S )
using assms(1 ) coplanar linear image by blast

next
obtain g where g : linear g g ◦ f = id
using linear injective left inverse [OF assms]
by blast

assume coplanar (f ‘ S )
then show coplanar S
by (metis coplanar linear image g(1 ) g(2 ) id apply image comp image id)

qed

lemma coplanar subset : [[coplanar t ; S ⊆ t ]] =⇒ coplanar S
by (meson coplanar def order trans)

lemma affine hull 3 imp collinear : c ∈ affine hull {a,b} =⇒ collinear {a,b,c}
by (metis collinear 2 collinear affine hull collinear hull redundant insert commute)

lemma collinear 3 imp in affine hull :
assumes collinear {a,b,c} a 6= b shows c ∈ affine hull {a,b}

proof −
obtain u x y where b − a = y ∗R u c − a = x ∗R u
using assms unfolding collinear def by auto

with 〈a 6= b〉 have ∃ v . c = (1 − x / y) ∗R a + v ∗R b ∧ 1 − x / y + v = 1
by (simp add : algebra simps)

then show ?thesis
by (simp add : hull inc mem affine)

qed

lemma collinear 3 affine hull :
assumes a 6= b
shows collinear {a,b,c} ←→ c ∈ affine hull {a,b}
using affine hull 3 imp collinear assms collinear 3 imp in affine hull by blast

lemma collinear 3 eq affine dependent :
collinear{a,b,c} ←→ a = b ∨ a = c ∨ b = c ∨ affine dependent {a,b,c}

proof (cases a = b ∨ a = c ∨ b = c)
case True
then show ?thesis
by (auto simp: insert commute)

next
case False
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then have collinear{a,b,c} if affine dependent {a,b,c}
using that unfolding affine dependent def
by (auto simp: insert Diff if ; metis affine hull 3 imp collinear insert commute)

moreover
have affine dependent {a,b,c} if collinear{a,b,c}

using False that by (auto simp: affine dependent def collinear 3 affine hull
insert Diff if )
ultimately
show ?thesis
using False by blast

qed

lemma affine dependent imp collinear 3 :
affine dependent {a,b,c} =⇒ collinear{a,b,c}
by (simp add : collinear 3 eq affine dependent)

lemma collinear 3 : NO MATCH 0 x =⇒ collinear {x ,y ,z} ←→ collinear {0 , x−y ,
z−y}
by (auto simp add : collinear def )

lemma collinear 3 expand :
collinear{a,b,c} ←→ a = c ∨ (∃ u. b = u ∗R a + (1 − u) ∗R c)

proof −
have collinear{a,b,c} = collinear{a,c,b}
by (simp add : insert commute)

also have ... = collinear {0 , a − c, b − c}
by (simp add : collinear 3 )

also have ... ←→ (a = c ∨ b = c ∨ (∃ ca. b − c = ca ∗R (a − c)))
by (simp add : collinear lemma)

also have ... ←→ a = c ∨ (∃ u. b = u ∗R a + (1 − u) ∗R c)
by (cases a = c ∨ b = c) (auto simp: algebra simps)

finally show ?thesis .
qed

lemma collinear aff dim: collinear S ←→ aff dim S ≤ 1
proof
assume collinear S
then obtain u and v :: ′a where aff dim S ≤ aff dim {u,v}
by (metis 〈collinear S 〉 aff dim affine hull aff dim subset collinear affine hull)

then show aff dim S ≤ 1
using order trans by fastforce

next
assume aff dim S ≤ 1
then have le1 : aff dim (affine hull S ) ≤ 1
by simp

obtain B where B ⊆ S and B : ¬ affine dependent B affine hull S = affine hull
B

using affine basis exists [of S ] by auto
then have finite B card B ≤ 2
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using B le1 by (auto simp: affine independent iff card)
then have collinear B
by (rule collinear small)

then show collinear S
by (metis 〈affine hull S = affine hull B 〉 collinear affine hull collinear)

qed

lemma collinear midpoint : collinear{a, midpoint a b, b}
proof −
have §: [[a 6= midpoint a b; b − midpoint a b 6= − 1 ∗R (a − midpoint a b)]] =⇒

b = midpoint a b
by (simp add : algebra simps)

show ?thesis
by (auto simp: collinear 3 collinear lemma intro: §)

qed

lemma midpoint collinear :
fixes a b c :: ′a::real normed vector
assumes a 6= c
shows b = midpoint a c ←→ collinear{a,b,c} ∧ dist a b = dist b c

proof −
have ∗: a − (u ∗R a + (1 − u) ∗R c) = (1 − u) ∗R (a − c)

u ∗R a + (1 − u) ∗R c − c = u ∗R (a − c)
|1 − u| = |u| ←→ u = 1/2 for u::real

by (auto simp: algebra simps)
have b = midpoint a c =⇒ collinear{a,b,c}
using collinear midpoint by blast

moreover have b = midpoint a c ←→ dist a b = dist b c if collinear{a,b,c}
proof −
consider a = c | u where b = u ∗R a + (1 − u) ∗R c
using 〈collinear {a,b,c}〉 unfolding collinear 3 expand by blast

then show ?thesis
proof cases
case 2
with assms have dist a b = dist b c =⇒ b = midpoint a c
by (simp add : dist norm ∗ midpoint def scaleR add right del : divide const simps)
then show ?thesis
by (auto simp: dist midpoint)

qed (use assms in auto)
qed
ultimately show ?thesis by blast

qed

lemma between imp collinear :
fixes x :: ′a :: euclidean space
assumes between (a,b) x
shows collinear {a,x ,b}

proof (cases x = a ∨ x = b ∨ a = b)
case True with assms show ?thesis
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by (auto simp: dist commute)
next
case False
then have False if

∧
c. b − x 6= c ∗R (a − x )

using that [of −(norm(b − x ) / norm(x − a))] assms
by (simp add : between norm vector add divide simps flip: real vector .scale minus right)
then show ?thesis
by (auto simp: collinear 3 collinear lemma)

qed

lemma midpoint between:
fixes a b :: ′a::euclidean space
shows b = midpoint a c ←→ between (a,c) b ∧ dist a b = dist b c

proof (cases a = c)
case False
show ?thesis
using False between imp collinear between midpoint(1 ) midpoint collinear by

blast
qed (auto simp: dist commute)

lemma collinear triples:
assumes a 6= b
shows collinear(insert a (insert b S )) ←→ (∀ x ∈ S . collinear{a,b,x})

(is ?lhs = ?rhs)
proof safe
fix x
assume ?lhs and x ∈ S
then show collinear {a, b, x}
using collinear subset by force

next
assume ?rhs
then have ∀ x ∈ S . collinear{a,x ,b}
by (simp add : insert commute)

then have ∗: ∃ u. x = u ∗R a + (1 − u) ∗R b if x ∈ insert a (insert b S ) for x
using that assms collinear 3 expand by fastforce+

have ∃ c. x − y = c ∗R (b − a)
if x : x ∈ insert a (insert b S ) and y : y ∈ insert a (insert b S ) for x y

proof −
obtain u v where x = u ∗R a + (1 − u) ∗R b y = v ∗R a + (1 − v) ∗R b
using ∗ x y by presburger

then have x − y = (v − u) ∗R (b − a)
by (simp add : scale left diff distrib scale right diff distrib)

then show ?thesis ..
qed
then show ?lhs
unfolding collinear def by metis

qed

lemma collinear 4 3 :
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assumes a 6= b
shows collinear {a,b,c,d} ←→ collinear{a,b,c} ∧ collinear{a,b,d}

using collinear triples [OF assms, of {c,d}] by (force simp:)

lemma collinear 3 trans:
assumes collinear{a,b,c} collinear{b,c,d} b 6= c
shows collinear{a,b,d}

proof −
have collinear{b,c,a,d}
by (metis (full types) assms collinear 4 3 insert commute)

then show ?thesis
by (simp add : collinear subset)

qed

lemma affine hull 2 alt :
fixes a b :: ′a::real vector
shows affine hull {a,b} = range (λu. a + u ∗R (b − a))

proof −
have 1 : u ∗R a + v ∗R b = a + v ∗R (b − a) if u + v = 1 for u v
using that
by (simp add : algebra simps flip: scaleR add left)

have 2 : a + u ∗R (b − a) = (1 − u) ∗R a + u ∗R b for u
by (auto simp: algebra simps)

show ?thesis
by (force simp add : affine hull 2 dest : 1 intro!: 2 )

qed

lemma interior convex hull 3 minimal :
fixes a :: ′a::euclidean space
assumes ¬ collinear{a,b,c} and 2 : DIM ( ′a) = 2
shows interior(convex hull {a,b,c}) =

{v . ∃ x y z . 0 < x ∧ 0 < y ∧ 0 < z ∧ x + y + z = 1 ∧ x ∗R a + y ∗R b
+ z ∗R c = v}

(is ?lhs = ?rhs)
proof
have abc: a 6= b a 6= c b 6= c ¬ affine dependent {a, b, c}
using assms by (auto simp: collinear 3 eq affine dependent)

with 2 show ?lhs ⊆ ?rhs
by (fastforce simp add : interior convex hull explicit minimal)

show ?rhs ⊆ ?lhs
using abc 2
apply (clarsimp simp add : interior convex hull explicit minimal)
subgoal for x y z
by (rule tac x=λr . (if r=a then x else if r=b then y else if r=c then z else

0 ) in exI ) auto
done

qed
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5.0.9 Basic lemmas about hyperplanes and halfspaces

lemma halfspace Int eq :
{x . a · x ≤ b} ∩ {x . b ≤ a · x} = {x . a · x = b}
{x . b ≤ a · x} ∩ {x . a · x ≤ b} = {x . a · x = b}

by auto

lemma hyperplane eq Ex :
assumes a 6= 0 obtains x where a · x = b
by (rule tac x = (b / (a · a)) ∗R a in that) (simp add : assms)

lemma hyperplane eq empty :
{x . a · x = b} = {} ←→ a = 0 ∧ b 6= 0

using hyperplane eq Ex
by (metis (mono tags, lifting) empty Collect eq inner zero left)

lemma hyperplane eq UNIV :
{x . a · x = b} = UNIV ←→ a = 0 ∧ b = 0

proof −
have a = 0 ∧ b = 0 if UNIV ⊆ {x . a · x = b}
using subsetD [OF that , where c = ((b+1 ) / (a · a)) ∗R a]
by (simp add : field split simps split : if split asm)

then show ?thesis by force
qed

lemma halfspace eq empty lt :
{x . a · x < b} = {} ←→ a = 0 ∧ b ≤ 0

proof −
have a = 0 ∧ b ≤ 0 if {x . a · x < b} ⊆ {}
using subsetD [OF that , where c = ((b−1 ) / (a · a)) ∗R a]
by (force simp add : field split simps split : if split asm)

then show ?thesis by force
qed

lemma halfspace eq empty gt :
{x . a · x > b} = {} ←→ a = 0 ∧ b ≥ 0
using halfspace eq empty lt [of −a −b]
by simp

lemma halfspace eq empty le:
{x . a · x ≤ b} = {} ←→ a = 0 ∧ b < 0

proof −
have a = 0 ∧ b < 0 if {x . a · x ≤ b} ⊆ {}
using subsetD [OF that , where c = ((b−1 ) / (a · a)) ∗R a]
by (force simp add : field split simps split : if split asm)

then show ?thesis by force
qed

lemma halfspace eq empty ge:
{x . a · x ≥ b} = {} ←→ a = 0 ∧ b > 0
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using halfspace eq empty le [of −a −b] by simp

5.0.10 Use set distance for an easy proof of separation prop-
erties

proposition separation closures:
fixes S :: ′a::euclidean space set
assumes S ∩ closure T = {} T ∩ closure S = {}
obtains U V where U ∩ V = {} open U open V S ⊆ U T ⊆ V

proof (cases S = {} ∨ T = {})
case True with that show ?thesis by auto

next
case False
define f where f ≡ λx . setdist {x} T − setdist {x} S
have contf : continuous on UNIV f
unfolding f def by (intro continuous intros continuous on setdist)

show ?thesis
proof (rule tac U = {x . f x > 0} and V = {x . f x < 0} in that)
show {x . 0 < f x} ∩ {x . f x < 0} = {}
by auto

show open {x . 0 < f x}
by (simp add : open Collect less contf )

show open {x . f x < 0}
by (simp add : open Collect less contf )

have
∧
x . x ∈ S =⇒ setdist {x} T 6= 0

∧
x . x ∈ T =⇒ setdist {x} S 6= 0

by (meson False assms disjoint iff setdist eq 0 sing 1 )+
then show S ⊆ {x . 0 < f x} T ⊆ {x . f x < 0}
using less eq real def by (fastforce simp add : f def setdist sing in set)+

qed
qed

lemma separation normal :
fixes S :: ′a::euclidean space set
assumes closed S closed T S ∩ T = {}
obtains U V where open U open V S ⊆ U T ⊆ V U ∩ V = {}

using separation closures [of S T ]
by (metis assms closure closed disjnt def inf commute)

lemma separation normal local :
fixes S :: ′a::euclidean space set
assumes US : closedin (top of set U ) S

and UT : closedin (top of set U ) T
and S ∩ T = {}

obtains S ′ T ′ where openin (top of set U ) S ′

openin (top of set U ) T ′

S ⊆ S ′ T ⊆ T ′ S ′ ∩ T ′ = {}
proof (cases S = {} ∨ T = {})
case True with that show ?thesis
using UT US by (blast dest : closedin subset)
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next
case False
define f where f ≡ λx . setdist {x} T − setdist {x} S
have contf : continuous on U f
unfolding f def by (intro continuous intros)

show ?thesis
proof (rule tac S ′ = (U ∩ f −‘ {0<..}) and T ′ = (U ∩ f −‘ {..<0}) in that)
show (U ∩ f −‘ {0<..}) ∩ (U ∩ f −‘ {..<0}) = {}
by auto

show openin (top of set U ) (U ∩ f −‘ {0<..})
by (rule continuous openin preimage [where T=UNIV ]) (simp all add : contf )

next
show openin (top of set U ) (U ∩ f −‘ {..<0})
by (rule continuous openin preimage [where T=UNIV ]) (simp all add : contf )

next
have S ⊆ U T ⊆ U
using closedin imp subset assms by blast+

then show S ⊆ U ∩ f −‘ {0<..} T ⊆ U ∩ f −‘ {..<0}
using assms False by (force simp add : f def setdist sing in set intro!: set-

dist gt 0 closedin)+
qed

qed

lemma separation normal compact :
fixes S :: ′a::euclidean space set
assumes compact S closed T S ∩ T = {}
obtains U V where open U compact(closure U ) open V S ⊆ U T ⊆ V U ∩ V

= {}
proof −
have closed S bounded S
using assms by (auto simp: compact eq bounded closed)

then obtain r where r>0 and r : S ⊆ ball 0 r
by (auto dest !: bounded subset ballD)

have ∗∗: closed (T ∪ − ball 0 r) S ∩ (T ∪ − ball 0 r) = {}
using assms r by blast+

then obtain U V where UV : open U open V S ⊆ U T ∪ − ball 0 r ⊆ V U ∩
V = {}

by (meson 〈closed S 〉 separation normal)
then have compact(closure U )

by (meson bounded ball bounded subset compact closure compl le swap2 dis-
joint eq subset Compl le sup iff )
with UV show thesis
using that by auto

qed

5.0.11 Connectedness of the intersection of a chain

proposition connected chain:
fixes F :: ′a :: euclidean space set set
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assumes cc:
∧
S . S ∈ F =⇒ compact S ∧ connected S

and linear :
∧
S T . S ∈ F ∧ T ∈ F =⇒ S ⊆ T ∨ T ⊆ S

shows connected(
⋂
F)

proof (cases F = {})
case True then show ?thesis
by auto

next
case False
then have cf : compact(

⋂
F)

by (simp add : cc compact Inter)
have False if AB : closed A closed B A ∩ B = {}

and ABeq : A ∪ B =
⋂
F and A 6= {} B 6= {} for A B

proof −
obtain U V where open U open V A ⊆ U B ⊆ V U ∩ V = {}
using separation normal [OF AB ] by metis

obtain K where K ∈ F compact K
using cc False by blast

then obtain N where open N and K ⊆ N
by blast

let ?C = insert (U ∪ V ) ((λS . N − S ) ‘ F)
obtain D where D ⊆ ?C finite D K ⊆

⋃
D

proof (rule compactE [OF 〈compact K 〉])
show K ⊆

⋃
(insert (U ∪ V ) ((−) N ‘ F))

using 〈K ⊆ N 〉 ABeq 〈A ⊆ U 〉 〈B ⊆ V 〉 by auto
show

∧
B . B ∈ insert (U ∪ V ) ((−) N ‘ F) =⇒ open B

by (auto simp: 〈open U 〉 〈open V 〉 open Un 〈open N 〉 cc compact imp closed
open Diff )

qed
then have finite(D − {U ∪ V })
by blast

moreover have D − {U ∪ V } ⊆ (λS . N − S ) ‘ F
using 〈D ⊆ ?C〉 by blast

ultimately obtain G where G ⊆ F finite G and Deq : D − {U ∪ V } = (λS .
N−S ) ‘ G

using finite subset image by metis
obtain J where J ∈ F and J : (

⋃
S∈G. N − S ) ⊆ N − J

proof (cases G = {})
case True
with 〈F 6= {}〉 that show ?thesis
by auto

next
case False
have

∧
S T . [[S ∈ G; T ∈ G]] =⇒ S ⊆ T ∨ T ⊆ S

by (meson 〈G ⊆ F 〉 in mono local .linear)
with 〈finite G〉 〈G 6= {}〉
have ∃ J ∈ G. (

⋃
S∈G. N − S ) ⊆ N − J

proof induction
case (insert X H)
show ?case
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proof (cases H = {})
case True then show ?thesis by auto

next
case False
then have

∧
S T . [[S ∈ H; T ∈ H]] =⇒ S ⊆ T ∨ T ⊆ S

by (simp add : insert .prems)
with insert .IH False obtain J where J ∈ H and J : (

⋃
Y∈H. N − Y )

⊆ N − J
by metis

have N − J ⊆ N − X ∨ N − X ⊆ N − J
by (meson Diff mono 〈J ∈ H〉 insert .prems(2 ) insert iff order refl)

then show ?thesis
proof
assume N − J ⊆ N − X with J show ?thesis
by auto

next
assume N − X ⊆ N − J
with J have N − X ∪

⋃
((−) N ‘ H) ⊆ N − J

by auto
with 〈J ∈ H〉 show ?thesis
by blast

qed
qed

qed simp
with 〈G ⊆ F 〉 show ?thesis by (blast intro: that)

qed
have K ⊆

⋃
(insert (U ∪ V ) (D − {U ∪ V }))

using 〈K ⊆
⋃
D〉 by auto

also have ... ⊆ (U ∪ V ) ∪ (N − J )
by (metis (no types, hide lams) Deq Un subset iff Un upper2 J Union insert

order trans sup ge1 )
finally have J ∩ K ⊆ U ∪ V
by blast

moreover have connected(J ∩ K )
by (metis Int absorb1 〈J ∈ F 〉 〈K ∈ F 〉 cc inf .orderE local .linear)

moreover have U ∩ (J ∩ K ) 6= {}
using ABeq 〈J ∈ F 〉 〈K ∈ F 〉 〈A 6= {}〉 〈A ⊆ U 〉 by blast

moreover have V ∩ (J ∩ K ) 6= {}
using ABeq 〈J ∈ F 〉 〈K ∈ F 〉 〈B 6= {}〉 〈B ⊆ V 〉 by blast

ultimately show False
using connectedD [of J ∩ K U V ] 〈open U 〉 〈open V 〉 〈U ∩ V = {}〉 by

auto
qed
with cf show ?thesis
by (auto simp: connected closed set compact imp closed)

qed

lemma connected chain gen:
fixes F :: ′a :: euclidean space set set
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assumes X : X ∈ F compact X
and cc:

∧
T . T ∈ F =⇒ closed T ∧ connected T

and linear :
∧
S T . S ∈ F ∧ T ∈ F =⇒ S ⊆ T ∨ T ⊆ S

shows connected(
⋂
F)

proof −
have

⋂
F = (

⋂
T∈F . X ∩ T )

using X by blast
moreover have connected (

⋂
T∈F . X ∩ T )

proof (rule connected chain)
show

∧
T . T ∈ (∩) X ‘ F =⇒ compact T ∧ connected T

using cc X by auto (metis inf .absorb2 inf .orderE local .linear)
show

∧
S T . S ∈ (∩) X ‘ F ∧ T ∈ (∩) X ‘ F =⇒ S ⊆ T ∨ T ⊆ S

using local .linear by blast
qed
ultimately show ?thesis
by metis

qed

lemma connected nest :
fixes S :: ′a::linorder ⇒ ′b::euclidean space set
assumes S :

∧
n. compact(S n)

∧
n. connected(S n)

and nest :
∧
m n. m ≤ n =⇒ S n ⊆ S m

shows connected(
⋂

(range S ))
proof (rule connected chain)
show

∧
A T . A ∈ range S ∧ T ∈ range S =⇒ A ⊆ T ∨ T ⊆ A

by (metis image iff le cases nest)
qed (use S in blast)

lemma connected nest gen:
fixes S :: ′a::linorder ⇒ ′b::euclidean space set
assumes S :

∧
n. closed(S n)

∧
n. connected(S n) compact(S k)

and nest :
∧
m n. m ≤ n =⇒ S n ⊆ S m

shows connected(
⋂

(range S ))
proof (rule connected chain gen [of S k ])
show

∧
A T . A ∈ range S ∧ T ∈ range S =⇒ A ⊆ T ∨ T ⊆ A

by (metis imageE le cases nest)
qed (use S in auto)

5.0.12 Proper maps, including projections out of compact
sets

lemma finite indexed bound :
assumes A: finite A

∧
x . x ∈ A =⇒ ∃n:: ′a::linorder . P x n

shows ∃m. ∀ x ∈ A. ∃ k≤m. P x k
using A
proof (induction A)
case empty then show ?case by force

next
case (insert a A)
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then obtain m n where ∀ x ∈ A. ∃ k≤m. P x k P a n
by force

then show ?case
by (metis dual order .trans insert iff le cases)

qed

proposition proper map:
fixes f :: ′a::heine borel ⇒ ′b::heine borel
assumes closedin (top of set S ) K

and com:
∧
U . [[U ⊆ T ; compact U ]] =⇒ compact (S ∩ f −‘ U )

and f ‘ S ⊆ T
shows closedin (top of set T ) (f ‘ K )

proof −
have K ⊆ S
using assms closedin imp subset by metis

obtain C where closed C and Keq : K = S ∩ C
using assms by (auto simp: closedin closed)

have ∗: y ∈ f ‘ K if y ∈ T and y : y islimpt f ‘ K for y
proof −
obtain h where ∀n. (∃ x∈K . h n = f x ) ∧ h n 6= y inj h and hlim: (h −−−→

y) sequentially
using 〈y ∈ T 〉 y by (force simp: limpt sequential inj )

then obtain X where X :
∧
n. X n ∈ K ∧ h n = f (X n) ∧ h n 6= y

by metis
then have fX :

∧
n. f (X n) = h n

by metis
define Ψ where Ψ ≡ λn. {a ∈ K . f a ∈ insert y (range (λi . f (X (n + i))))}
have compact (C ∩ (S ∩ f −‘ insert y (range (λi . f (X (n + i)))))) for n
proof (intro closed Int compact [OF 〈closed C 〉 com] compact sequence with limit)

show insert y (range (λi . f (X (n + i)))) ⊆ T
using X 〈K ⊆ S 〉 〈f ‘ S ⊆ T 〉 〈y ∈ T 〉 by blast

show (λi . f (X (n + i))) −−−−→ y
by (simp add : fX add .commute [of n] LIMSEQ ignore initial segment [OF

hlim])
qed
then have comf : compact (Ψ n) for n
by (simp add : Keq Int def Ψ def conj commute)

have ne:
⋂
F 6= {}

if finite F
and F :

∧
t . t ∈ F =⇒ (∃n. t = Ψ n)

for F
proof −
obtain m where m:

∧
t . t ∈ F =⇒ ∃ k≤m. t = Ψ k

by (rule exE [OF finite indexed bound [OF 〈finite F 〉 F ]], force+)
have X m ∈

⋂
F

using X le Suc ex by (fastforce simp: Ψ def dest : m)
then show ?thesis by blast

qed
have (

⋂
n. Ψ n) 6= {}
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proof (rule compact fip Heine Borel)
show

∧
F ′. [[finite F ′; F ′ ⊆ range Ψ]] =⇒

⋂
F ′ 6= {}

by (meson ne rangeE subset eq)
qed (use comf in blast)
then obtain x where x ∈ K

∧
n. (f x = y ∨ (∃ u. f x = h (n + u)))

by (force simp add : Ψ def fX )
then show ?thesis
unfolding image iff by (metis 〈inj h〉 le add1 not less eq eq rangeI range ex1 eq)

qed
with assms closedin subset show ?thesis
by (force simp: closedin limpt)

qed

lemma compact continuous image eq :
fixes f :: ′a::heine borel ⇒ ′b::heine borel
assumes f : inj on f S
shows continuous on S f ←→ (∀T . compact T ∧ T ⊆ S −→ compact(f ‘ T ))

(is ?lhs = ?rhs)
proof
assume ?lhs then show ?rhs
by (metis continuous on subset compact continuous image)

next
assume RHS : ?rhs
obtain g where gf :

∧
x . x ∈ S =⇒ g (f x ) = x

by (metis inv into f f f )
then have ∗: (S ∩ f −‘ U ) = g ‘ U if U ⊆ f ‘ S for U
using that by fastforce

have gfim: g ‘ f ‘ S ⊆ S using gf by auto
have ∗∗: compact (f ‘ S ∩ g −‘ C ) if C : C ⊆ S compact C for C
proof −
obtain h where h C ∈ C ∧ h C /∈ S ∨ compact (f ‘ C )
by (force simp: C RHS )

moreover have f ‘ C = (f ‘ S ∩ g −‘ C )
using C gf by auto

ultimately show ?thesis
using C by auto

qed
show ?lhs
using proper map [OF gfim] ∗∗
by (simp add : continuous on closed ∗ closedin imp subset)

qed

5.0.13 Trivial fact: convexity equals connectedness for collinear
sets

lemma convex connected collinear :
fixes S :: ′a::euclidean space set
assumes collinear S
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shows convex S ←→ connected S
proof
assume convex S
then show connected S
using convex connected by blast

next
assume S : connected S
show convex S
proof (cases S = {})
case True
then show ?thesis by simp

next
case False
then obtain a where a ∈ S by auto
have collinear (affine hull S )
by (simp add : assms collinear affine hull collinear)

then obtain z where z 6= 0
∧
x . x ∈ affine hull S =⇒ ∃ c. x − a = c ∗R z

by (meson 〈a ∈ S 〉 collinear hull inc)
then obtain f where f :

∧
x . x ∈ affine hull S =⇒ x − a = f x ∗R z

by metis
then have inj f : inj on f (affine hull S )
by (metis diff add cancel inj onI )

have diff : x − y = (f x − f y) ∗R z if x : x ∈ affine hull S and y : y ∈ affine
hull S for x y

proof −
have f x ∗R z = x − a
by (simp add : f hull inc x )

moreover have f y ∗R z = y − a
by (simp add : f hull inc y)

ultimately show ?thesis
by (simp add : scaleR left .diff )

qed
have cont f : continuous on (affine hull S ) f
proof (clarsimp simp: dist norm continuous on iff diff )
show

∧
x e. 0 < e =⇒ ∃ d>0 . ∀ y ∈ affine hull S . |f y − f x | ∗ norm z < d

−→ |f y − f x | < e
by (metis 〈z 6= 0 〉 mult pos pos mult less iff1 zero less norm iff )

qed
then have conn fS : connected (f ‘ S )
by (meson S connected continuous image continuous on subset hull subset)

show ?thesis
proof (clarsimp simp: convex contains segment)
fix x y z
assume x ∈ S y ∈ S z ∈ closed segment x y
have False if z /∈ S
proof −
have f ‘ (closed segment x y) = closed segment (f x ) (f y)
proof (rule continuous injective image segment 1 )
show continuous on (closed segment x y) f
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by (meson 〈x ∈ S 〉 〈y ∈ S 〉 convex affine hull convex contains segment
hull inc continuous on subset [OF cont f ])

show inj on f (closed segment x y)
by (meson 〈x ∈ S 〉 〈y ∈ S 〉 convex affine hull convex contains segment

hull inc inj on subset [OF inj f ])
qed
then have fz : f z ∈ closed segment (f x ) (f y)
using 〈z ∈ closed segment x y〉 by blast

have z ∈ affine hull S
by (meson 〈x ∈ S 〉 〈y ∈ S 〉 〈z ∈ closed segment x y〉 convex affine hull

convex contains segment hull inc subset eq)
then have fz notin: f z /∈ f ‘ S
using hull subset inj f inj onD that by fastforce

moreover have {..<f z} ∩ f ‘ S 6= {} {f z<..} ∩ f ‘ S 6= {}
proof −
consider f x ≤ f z ∧ f z ≤ f y | f y ≤ f z ∧ f z ≤ f x
using fz
by (auto simp add : closed segment eq real ivl split : if split asm)

then have {..<f z} ∩ f ‘ {x ,y} 6= {} ∧ {f z<..} ∩ f ‘ {x ,y} 6= {}
by cases (use fz notin 〈x ∈ S 〉 〈y ∈ S 〉 in 〈auto simp: image iff 〉)

then show {..<f z} ∩ f ‘ S 6= {} {f z<..} ∩ f ‘ S 6= {}
using 〈x ∈ S 〉 〈y ∈ S 〉 by blast+

qed
ultimately show False
using connectedD [OF conn fS , of {..<f z} {f z<..}] by force

qed
then show z ∈ S by meson

qed
qed

qed

lemma compact convex collinear segment alt :
fixes S :: ′a::euclidean space set
assumes S 6= {} compact S connected S collinear S
obtains a b where S = closed segment a b

proof −
obtain ξ where ξ ∈ S using 〈S 6= {}〉 by auto
have collinear (affine hull S )
by (simp add : assms collinear affine hull collinear)

then obtain z where z 6= 0
∧
x . x ∈ affine hull S =⇒ ∃ c. x − ξ = c ∗R z

by (meson 〈ξ ∈ S 〉 collinear hull inc)
then obtain f where f :

∧
x . x ∈ affine hull S =⇒ x − ξ = f x ∗R z

by metis
let ?g = λr . r ∗R z + ξ
have gf : ?g (f x ) = x if x ∈ affine hull S for x
by (metis diff add cancel f that)

then have inj f : inj on f (affine hull S )
by (metis inj onI )

have diff : x − y = (f x − f y) ∗R z if x : x ∈ affine hull S and y : y ∈ affine

Starlike.html


1022

hull S for x y
proof −
have f x ∗R z = x − ξ
by (simp add : f hull inc x )

moreover have f y ∗R z = y − ξ
by (simp add : f hull inc y)

ultimately show ?thesis
by (simp add : scaleR left .diff )

qed
have cont f : continuous on (affine hull S ) f
proof (clarsimp simp: dist norm continuous on iff diff )
show

∧
x e. 0 < e =⇒ ∃ d>0 . ∀ y ∈ affine hull S . |f y − f x | ∗ norm z < d

−→ |f y − f x | < e
by (metis 〈z 6= 0 〉 mult pos pos mult less iff1 zero less norm iff )

qed
then have connected (f ‘ S )

by (meson 〈connected S 〉 connected continuous image continuous on subset
hull subset)
moreover have compact (f ‘ S )
by (meson 〈compact S 〉 compact continuous image eq cont f hull subset inj f )

ultimately obtain x y where f ‘ S = {x ..y}
by (meson connected compact interval 1 )

then have fS eq : f ‘ S = closed segment x y
using 〈S 6= {}〉 closed segment eq real ivl by auto

obtain a b where a ∈ S f a = x b ∈ S f b = y
by (metis (full types) ends in segment fS eq imageE )

have f ‘ (closed segment a b) = closed segment (f a) (f b)
proof (rule continuous injective image segment 1 )
show continuous on (closed segment a b) f
by (meson 〈a ∈ S 〉 〈b ∈ S 〉 convex affine hull convex contains segment hull inc

continuous on subset [OF cont f ])
show inj on f (closed segment a b)
by (meson 〈a ∈ S 〉 〈b ∈ S 〉 convex affine hull convex contains segment hull inc

inj on subset [OF inj f ])
qed
then have f ‘ (closed segment a b) = f ‘ S
by (simp add : 〈f a = x 〉 〈f b = y〉 fS eq)

then have ?g ‘ f ‘ (closed segment a b) = ?g ‘ f ‘ S
by simp

moreover have (λx . f x ∗R z + ξ) ‘ closed segment a b = closed segment a b
unfolding image def using 〈a ∈ S 〉 〈b ∈ S 〉

by (safe; metis (mono tags, lifting) convex affine hull convex contains segment
gf hull subset subsetCE )
ultimately have closed segment a b = S
using gf by (simp add : image comp o def hull inc cong : image cong)

then show ?thesis
using that by blast

qed
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lemma compact convex collinear segment :
fixes S :: ′a::euclidean space set
assumes S 6= {} compact S convex S collinear S
obtains a b where S = closed segment a b
using assms convex connected collinear compact convex collinear segment alt by

blast

lemma proper map from compact :
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes contf : continuous on S f and imf : f ‘ S ⊆ T and compact S

closedin (top of set T ) K
shows compact (S ∩ f −‘ K )

by (rule closedin compact [OF 〈compact S 〉] continuous closedin preimage gen assms)+

lemma proper map fst :
assumes compact T K ⊆ S compact K
shows compact (S × T ∩ fst −‘ K )

proof −
have (S × T ∩ fst −‘ K ) = K × T
using assms by auto

then show ?thesis by (simp add : assms compact Times)
qed

lemma closed map fst :
fixes S :: ′a::euclidean space set and T :: ′b::euclidean space set
assumes compact T closedin (top of set (S × T )) c
shows closedin (top of set S ) (fst ‘ c)

proof −
have ∗: fst ‘ (S × T ) ⊆ S
by auto

show ?thesis
using proper map [OF ∗] by (simp add : proper map fst assms)

qed

lemma proper map snd :
assumes compact S K ⊆ T compact K
shows compact (S × T ∩ snd −‘ K )

proof −
have (S × T ∩ snd −‘ K ) = S × K
using assms by auto

then show ?thesis by (simp add : assms compact Times)
qed

lemma closed map snd :
fixes S :: ′a::euclidean space set and T :: ′b::euclidean space set
assumes compact S closedin (top of set (S × T )) c
shows closedin (top of set T ) (snd ‘ c)

proof −
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have ∗: snd ‘ (S × T ) ⊆ T
by auto

show ?thesis
using proper map [OF ∗] by (simp add : proper map snd assms)

qed

lemma closedin compact projection:
fixes S :: ′a::euclidean space set and T :: ′b::euclidean space set
assumes compact S and clo: closedin (top of set (S × T )) U
shows closedin (top of set T ) {y . ∃ x . x ∈ S ∧ (x , y) ∈ U }

proof −
have U ⊆ S × T
by (metis clo closedin imp subset)

then have {y . ∃ x . x ∈ S ∧ (x , y) ∈ U } = snd ‘ U
by force

moreover have closedin (top of set T ) (snd ‘ U )
by (rule closed map snd [OF assms])

ultimately show ?thesis
by simp

qed

lemma closed compact projection:
fixes S :: ′a::euclidean space set
and T :: ( ′a ∗ ′b::euclidean space) set

assumes compact S and clo: closed T
shows closed {y . ∃ x . x ∈ S ∧ (x , y) ∈ T}

proof −
have ∗: {y . ∃ x . x ∈ S ∧ Pair x y ∈ T} = {y . ∃ x . x ∈ S ∧ Pair x y ∈ ((S ×

UNIV ) ∩ T )}
by auto

show ?thesis
unfolding ∗
by (intro clo closedin closed Int closedin closed trans [OF closed UNIV ]

closedin compact projection [OF 〈compact S 〉])
qed

Representing affine hull as a finite intersection of hyperplanes

proposition affine hull convex Int nonempty interior :
fixes S :: ′a::real normed vector set
assumes convex S S ∩ interior T 6= {}
shows affine hull (S ∩ T ) = affine hull S

proof
show affine hull (S ∩ T ) ⊆ affine hull S
by (simp add : hull mono)

next
obtain a where a ∈ S a ∈ T and at : a ∈ interior T
using assms interior subset by blast
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then obtain e where e > 0 and e: cball a e ⊆ T
using mem interior cball by blast

have ∗: x ∈ (+) a ‘ span ((λx . x − a) ‘ (S ∩ T )) if x ∈ S for x
proof (cases x = a)
case True with that span 0 eq add iff image def mem Collect eq show ?thesis
by blast

next
case False
define k where k = min (1/2 ) (e / norm (x−a))
have k : 0 < k k < 1
using 〈e > 0 〉 False by (auto simp: k def )

then have xa: (x−a) = inverse k ∗R k ∗R (x−a)
by simp

have e / norm (x − a) ≥ k
using k def by linarith

then have a + k ∗R (x − a) ∈ cball a e
using 〈0 < k 〉 False
by (simp add : dist norm) (simp add : field simps)

then have T : a + k ∗R (x − a) ∈ T
using e by blast

have S : a + k ∗R (x − a) ∈ S
using k 〈a ∈ S 〉 convexD [OF 〈convex S 〉 〈a ∈ S 〉 〈x ∈ S 〉, of 1−k k ]
by (simp add : algebra simps)

have inverse k ∗R k ∗R (x−a) ∈ span ((λx . x − a) ‘ (S ∩ T ))
by (intro span mul [OF span base] image eqI [where x = a + k ∗R (x −

a)]) (auto simp: S T )
with xa image iff show ?thesis by fastforce

qed
have S ⊆ affine hull (S ∩ T )
by (force simp: ∗ 〈a ∈ S 〉 〈a ∈ T 〉 hull inc affine hull span gen [of a])

then show affine hull S ⊆ affine hull (S ∩ T )
by (simp add : subset hull)

qed

corollary affine hull convex Int open:
fixes S :: ′a::real normed vector set
assumes convex S open T S ∩ T 6= {}
shows affine hull (S ∩ T ) = affine hull S
using affine hull convex Int nonempty interior assms interior eq by blast

corollary affine hull affine Int nonempty interior :
fixes S :: ′a::real normed vector set
assumes affine S S ∩ interior T 6= {}
shows affine hull (S ∩ T ) = affine hull S
by (simp add : affine hull convex Int nonempty interior affine imp convex assms)

corollary affine hull affine Int open:
fixes S :: ′a::real normed vector set
assumes affine S open T S ∩ T 6= {}
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shows affine hull (S ∩ T ) = affine hull S
by (simp add : affine hull convex Int open affine imp convex assms)

corollary affine hull convex Int openin:
fixes S :: ′a::real normed vector set
assumes convex S openin (top of set (affine hull S )) T S ∩ T 6= {}
shows affine hull (S ∩ T ) = affine hull S
using assms unfolding openin open
by (metis affine hull convex Int open hull subset inf .orderE inf assoc)

corollary affine hull openin:
fixes S :: ′a::real normed vector set
assumes openin (top of set (affine hull T )) S S 6= {}
shows affine hull S = affine hull T
using assms unfolding openin open
by (metis affine affine hull affine hull affine Int open hull hull)

corollary affine hull open:
fixes S :: ′a::real normed vector set
assumes open S S 6= {}
shows affine hull S = UNIV
by (metis affine hull convex Int nonempty interior assms convex UNIV hull UNIV

inf top.left neutral interior open)

lemma aff dim convex Int nonempty interior :
fixes S :: ′a::euclidean space set
shows [[convex S ; S ∩ interior T 6= {}]] =⇒ aff dim(S ∩ T ) = aff dim S
using aff dim affine hull2 affine hull convex Int nonempty interior by blast

lemma aff dim convex Int open:
fixes S :: ′a::euclidean space set
shows [[convex S ; open T ; S ∩ T 6= {}]] =⇒ aff dim(S ∩ T ) = aff dim S
using aff dim convex Int nonempty interior interior eq by blast

lemma affine hull Diff :
fixes S :: ′a::real normed vector set
assumes ope: openin (top of set (affine hull S )) S and finite F F ⊂ S
shows affine hull (S − F ) = affine hull S

proof −
have clo: closedin (top of set S ) F
using assms finite imp closedin by auto

moreover have S − F 6= {}
using assms by auto

ultimately show ?thesis
by (metis ope closedin def topspace euclidean subtopology affine hull openin

openin trans)
qed

lemma affine hull halfspace lt :
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fixes a :: ′a::euclidean space
shows affine hull {x . a · x < r} = (if a = 0 ∧ r ≤ 0 then {} else UNIV )

using halfspace eq empty lt [of a r ]
by (simp add : open halfspace lt affine hull open)

lemma affine hull halfspace le:
fixes a :: ′a::euclidean space
shows affine hull {x . a · x ≤ r} = (if a = 0 ∧ r < 0 then {} else UNIV )

proof (cases a = 0 )
case True then show ?thesis by simp

next
case False
then have affine hull closure {x . a · x < r} = UNIV
using affine hull halfspace lt closure same affine hull by fastforce

moreover have {x . a · x < r} ⊆ {x . a · x ≤ r}
by (simp add : Collect mono)

ultimately show ?thesis using False antisym conv hull mono top greatest
by (metis affine hull halfspace lt)

qed

lemma affine hull halfspace gt :
fixes a :: ′a::euclidean space
shows affine hull {x . a · x > r} = (if a = 0 ∧ r ≥ 0 then {} else UNIV )

using halfspace eq empty gt [of r a]
by (simp add : open halfspace gt affine hull open)

lemma affine hull halfspace ge:
fixes a :: ′a::euclidean space
shows affine hull {x . a · x ≥ r} = (if a = 0 ∧ r > 0 then {} else UNIV )

using affine hull halfspace le [of −a −r ] by simp

lemma aff dim halfspace lt :
fixes a :: ′a::euclidean space
shows aff dim {x . a · x < r} =

(if a = 0 ∧ r ≤ 0 then −1 else DIM ( ′a))
by simp (metis aff dim open halfspace eq empty lt open halfspace lt)

lemma aff dim halfspace le:
fixes a :: ′a::euclidean space
shows aff dim {x . a · x ≤ r} =

(if a = 0 ∧ r < 0 then −1 else DIM ( ′a))
proof −
have int (DIM ( ′a)) = aff dim (UNIV :: ′a set)
by (simp)

then have aff dim (affine hull {x . a · x ≤ r}) = DIM ( ′a) if (a = 0 −→ r ≥
0 )

using that by (simp add : affine hull halfspace le not less)
then show ?thesis
by (force)
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qed

lemma aff dim halfspace gt :
fixes a :: ′a::euclidean space
shows aff dim {x . a · x > r} =

(if a = 0 ∧ r ≥ 0 then −1 else DIM ( ′a))
by simp (metis aff dim open halfspace eq empty gt open halfspace gt)

lemma aff dim halfspace ge:
fixes a :: ′a::euclidean space
shows aff dim {x . a · x ≥ r} =

(if a = 0 ∧ r > 0 then −1 else DIM ( ′a))
using aff dim halfspace le [of −a −r ] by simp

proposition aff dim eq hyperplane:
fixes S :: ′a::euclidean space set
shows aff dim S = DIM ( ′a) − 1 ←→ (∃ a b. a 6= 0 ∧ affine hull S = {x . a · x

= b})
(is ?lhs = ?rhs)

proof (cases S = {})
case True then show ?thesis
by (auto simp: dest : hyperplane eq Ex )

next
case False
then obtain c where c ∈ S by blast
show ?thesis
proof (cases c = 0 )
case True
have ?lhs ←→ (∃ a. a 6= 0 ∧ span ((λx . x − c) ‘ S ) = {x . a · x = 0})
by (simp add : aff dim eq dim [of c] 〈c ∈ S 〉 hull inc dim eq hyperplane del :

One nat def )
also have ... ←→ ?rhs
using span zero [of S ] True 〈c ∈ S 〉 affine hull span 0 hull inc
by (fastforce simp add : affine hull span gen [of c] 〈c = 0 〉)

finally show ?thesis .
next
case False
have xc im: x ∈ (+) c ‘ {y . a · y = 0} if a · x = a · c for a x
proof −
have ∃ y . a · y = 0 ∧ c + y = x

by (metis that add .commute diff add cancel inner commute inner diff left
right minus eq)

then show x ∈ (+) c ‘ {y . a · y = 0}
by blast

qed
have 2 : span ((λx . x − c) ‘ S ) = {x . a · x = 0}

if (+) c ‘ span ((λx . x − c) ‘ S ) = {x . a · x = b} for a b
proof −
have b = a · c
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using span 0 that by fastforce
with that have (+) c ‘ span ((λx . x − c) ‘ S ) = {x . a · x = a · c}
by simp

then have span ((λx . x − c) ‘ S ) = (λx . x − c) ‘ {x . a · x = a · c}
by (metis (no types) image cong translation galois uminus add conv diff )

also have ... = {x . a · x = 0}
by (force simp: inner distrib inner diff right

intro: image eqI [where x=x+c for x ])
finally show ?thesis .

qed
have ?lhs = (∃ a. a 6= 0 ∧ span ((λx . x − c) ‘ S ) = {x . a · x = 0})
by (simp add : aff dim eq dim [of c] 〈c ∈ S 〉 hull inc dim eq hyperplane del :

One nat def )
also have ... = ?rhs
by (fastforce simp add : affine hull span gen [of c] 〈c ∈ S 〉 hull inc inner distrib

intro: xc im intro!: 2 )
finally show ?thesis .

qed
qed

corollary aff dim hyperplane [simp]:
fixes a :: ′a::euclidean space
shows a 6= 0 =⇒ aff dim {x . a · x = r} = DIM ( ′a) − 1

by (metis aff dim eq hyperplane affine hull eq affine hyperplane)

5.0.14 Some stepping theorems

lemma aff dim insert :
fixes a :: ′a::euclidean space
shows aff dim (insert a S ) = (if a ∈ affine hull S then aff dim S else aff dim S

+ 1 )
proof (cases S = {})
case True then show ?thesis
by simp

next
case False
then obtain x s ′ where S : S = insert x s ′ x /∈ s ′

by (meson Set .set insert all not in conv)
show ?thesis using S
by (force simp add : affine hull insert span gen span zero insert commute [of a]

aff dim eq dim [of x ] dim insert)
qed

lemma affine dependent choose:
fixes a :: ′a :: euclidean space
assumes ¬(affine dependent S )
shows affine dependent(insert a S ) ←→ a /∈ S ∧ a ∈ affine hull S

(is ?lhs = ?rhs)
proof safe
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assume affine dependent (insert a S ) and a ∈ S
then show False
using 〈a ∈ S 〉 assms insert absorb by fastforce

next
assume lhs: affine dependent (insert a S )
then have a /∈ S
by (metis (no types) assms insert absorb)

moreover have finite S
using affine independent iff card assms by blast

moreover have aff dim (insert a S ) 6= int (card S )
using 〈finite S 〉 affine independent iff card 〈a /∈ S 〉 lhs by fastforce

ultimately show a ∈ affine hull S
by (metis aff dim affine independent aff dim insert assms)

next
assume a /∈ S and a ∈ affine hull S
show affine dependent (insert a S )
by (simp add : 〈a ∈ affine hull S 〉 〈a /∈ S 〉 affine dependent def )

qed

lemma affine independent insert :
fixes a :: ′a :: euclidean space
shows [[¬ affine dependent S ; a /∈ affine hull S ]] =⇒ ¬ affine dependent(insert a

S )
by (simp add : affine dependent choose)

lemma subspace bounded eq trivial :
fixes S :: ′a::real normed vector set
assumes subspace S
shows bounded S ←→ S = {0}

proof −
have False if bounded S x ∈ S x 6= 0 for x
proof −
obtain B where B :

∧
y . y ∈ S =⇒ norm y < B B > 0

using 〈bounded S 〉 by (force simp: bounded pos less)
have (B / norm x ) ∗R x ∈ S
using assms subspace mul 〈x ∈ S 〉 by auto

moreover have norm ((B / norm x ) ∗R x ) = B
using that B by (simp add : algebra simps)

ultimately show False using B by force
qed
then have bounded S =⇒ S = {0}
using assms subspace 0 by fastforce

then show ?thesis
by blast

qed

lemma affine bounded eq trivial :
fixes S :: ′a::real normed vector set
assumes affine S
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shows bounded S ←→ S = {} ∨ (∃ a. S = {a})
proof (cases S = {})
case True then show ?thesis
by simp

next
case False
then obtain b where b ∈ S by blast
with False assms
have bounded S =⇒ S = {b}
using affine diffs subspace [OF assms 〈b ∈ S 〉]
by (metis (no types, lifting) ab group add class.ab left minus bounded translation

image empty image insert subspace bounded eq trivial translation invert)
then show ?thesis by auto

qed

lemma affine bounded eq lowdim:
fixes S :: ′a::euclidean space set
assumes affine S
shows bounded S ←→ aff dim S ≤ 0

proof
show aff dim S ≤ 0 =⇒ bounded S
by (metis aff dim sing aff dim subset affine dim equal affine sing all not in conv

assms bounded empty bounded insert dual order .antisym empty subsetI insert subset)
qed (use affine bounded eq trivial assms in fastforce)

lemma bounded hyperplane eq trivial 0 :
fixes a :: ′a::euclidean space
assumes a 6= 0
shows bounded {x . a · x = 0} ←→ DIM ( ′a) = 1

proof
assume bounded {x . a · x = 0}
then have aff dim {x . a · x = 0} ≤ 0
by (simp add : affine bounded eq lowdim affine hyperplane)

with assms show DIM ( ′a) = 1
by (simp add : le Suc eq)

next
assume DIM ( ′a) = 1
then show bounded {x . a · x = 0}
by (simp add : affine bounded eq lowdim affine hyperplane assms)

qed

lemma bounded hyperplane eq trivial :
fixes a :: ′a::euclidean space
shows bounded {x . a · x = r} ←→ (if a = 0 then r 6= 0 else DIM ( ′a) = 1 )

proof (simp add : bounded hyperplane eq trivial 0 , clarify)
assume r 6= 0 a 6= 0
have aff dim {x . y · x = 0} = aff dim {x . a · x = r} if y 6= 0 for y :: ′a
by (metis that 〈a 6= 0 〉 aff dim hyperplane)
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then show bounded {x . a · x = r} = (DIM ( ′a) = Suc 0 )
by (metis One nat def 〈a 6= 0 〉 affine bounded eq lowdim affine hyperplane

bounded hyperplane eq trivial 0 )
qed

5.0.15 General case without assuming closure and getting
non-strict separation

proposition separating hyperplane closed point inset :
fixes S :: ′a::euclidean space set
assumes convex S closed S S 6= {} z /∈ S
obtains a b where a ∈ S (a − z ) · z < b

∧
x . x ∈ S =⇒ b < (a − z ) · x

proof −
obtain y where y ∈ S and y :

∧
u. u ∈ S =⇒ dist z y ≤ dist z u

using distance attains inf [of S z ] assms by auto
then have ∗: (y − z ) · z < (y − z ) · z + (norm (y − z ))2 / 2
using 〈y ∈ S 〉 〈z /∈ S 〉 by auto

show ?thesis
proof (rule that [OF 〈y ∈ S 〉 ∗])
fix x
assume x ∈ S
have yz : 0 < (y − z ) · (y − z )
using 〈y ∈ S 〉 〈z /∈ S 〉 by auto

{ assume 0 : 0 < ((z − y) · (x − y))
with any closest point dot [OF 〈convex S 〉 〈closed S 〉]
have False
using y 〈x ∈ S 〉 〈y ∈ S 〉 not less by blast

}
then have 0 ≤ ((y − z ) · (x − y))
by (force simp: not less inner diff left)

with yz have 0 < 2 ∗ ((y − z ) · (x − y)) + (y − z ) · (y − z )
by (simp add : algebra simps)

then show (y − z ) · z + (norm (y − z ))2 / 2 < (y − z ) · x
by (simp add : field simps inner diff left inner diff right dot square norm

[symmetric])
qed

qed

lemma separating hyperplane closed 0 inset :
fixes S :: ′a::euclidean space set
assumes convex S closed S S 6= {} 0 /∈ S
obtains a b where a ∈ S a 6= 0 0 < b

∧
x . x ∈ S =⇒ a · x > b

using separating hyperplane closed point inset [OF assms] by simp (metis 〈0 /∈
S 〉)

proposition separating hyperplane set 0 inspan:
fixes S :: ′a::euclidean space set
assumes convex S S 6= {} 0 /∈ S
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obtains a where a ∈ span S a 6= 0
∧
x . x ∈ S =⇒ 0 ≤ a · x

proof −
define k where [abs def ]: k c = {x . 0 ≤ c · x} for c :: ′a
have span S ∩ frontier (cball 0 1 ) ∩

⋂
f ′ 6= {}

if f ′: finite f ′ f ′ ⊆ k ‘ S for f ′

proof −
obtain C where C ⊆ S finite C and C : f ′ = k ‘ C
using finite subset image [OF f ′] by blast

obtain a where a ∈ S a 6= 0
using 〈S 6= {}〉 〈0 /∈ S 〉 ex in conv by blast

then have norm (a /R (norm a)) = 1
by simp

moreover have a /R (norm a) ∈ span S
by (simp add : 〈a ∈ S 〉 span scale span base)

ultimately have ass: a /R (norm a) ∈ span S ∩ sphere 0 1
by simp

show ?thesis
proof (cases C = {})
case True with C ass show ?thesis
by auto

next
case False
have closed (convex hull C )

using 〈finite C 〉 compact eq bounded closed finite imp compact convex hull
by auto

moreover have convex hull C 6= {}
by (simp add : False)

moreover have 0 /∈ convex hull C
by (metis 〈C ⊆ S 〉 〈convex S 〉 〈0 /∈ S 〉 convex hull subset hull same in-

sert absorb insert subset)
ultimately obtain a b

where a ∈ convex hull C a 6= 0 0 < b
and ab:

∧
x . x ∈ convex hull C =⇒ a · x > b

using separating hyperplane closed 0 inset by blast
then have a ∈ S
by (metis 〈C ⊆ S 〉 assms(1 ) subsetCE subset hull)

moreover have norm (a /R (norm a)) = 1
using 〈a 6= 0 〉 by simp

moreover have a /R (norm a) ∈ span S
by (simp add : 〈a ∈ S 〉 span scale span base)

ultimately have ass: a /R (norm a) ∈ span S ∩ sphere 0 1
by simp

have
∧
x . [[a 6= 0 ; x ∈ C ]] =⇒ 0 ≤ x · a

using ab 〈0 < b〉 by (metis hull inc inner commute less eq real def less trans)
then have aa: a /R (norm a) ∈ (

⋂
c∈C . {x . 0 ≤ c · x})

by (auto simp add : field split simps)
show ?thesis
unfolding C k def
using ass aa Int iff empty iff by force
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qed
qed
moreover have

∧
T . T ∈ k ‘ S =⇒ closed T

using closed halfspace ge k def by blast
ultimately have (span S ∩ frontier(cball 0 1 )) ∩ (

⋂
(k ‘ S )) 6= {}

by (metis compact imp fip closed Int compact closed span compact cball com-
pact frontier)
then show ?thesis
unfolding set eq iff k def
by simp (metis inner commute norm eq zero that zero neq one)

qed

lemma separating hyperplane set point inaff :
fixes S :: ′a::euclidean space set
assumes convex S S 6= {} and zno: z /∈ S
obtains a b where (z + a) ∈ affine hull (insert z S )

and a 6= 0 and a · z ≤ b
and

∧
x . x ∈ S =⇒ a · x ≥ b

proof −
from separating hyperplane set 0 inspan [of image (λx . −z + x ) S ]
have convex ((+) (− z ) ‘ S )
using 〈convex S 〉 by simp

moreover have (+) (− z ) ‘ S 6= {}
by (simp add : 〈S 6= {}〉)

moreover have 0 /∈ (+) (− z ) ‘ S
using zno by auto

ultimately obtain a where a ∈ span ((+) (− z ) ‘ S ) a 6= 0
and a:

∧
x . x ∈ ((+) (− z ) ‘ S ) =⇒ 0 ≤ a · x

using separating hyperplane set 0 inspan [of image (λx . −z + x ) S ]
by blast

then have szx :
∧
x . x ∈ S =⇒ a · z ≤ a · x

by (metis (no types, lifting) imageI inner minus right inner right distrib mi-
nus add neg le 0 iff le neg le iff le real add le 0 iff )
moreover
have z + a ∈ affine hull insert z S
using 〈a ∈ span ((+) (− z ) ‘ S )〉 affine hull insert span gen by blast

ultimately show ?thesis
using 〈a 6= 0 〉 szx that by auto

qed

proposition supporting hyperplane rel boundary :
fixes S :: ′a::euclidean space set
assumes convex S x ∈ S and xno: x /∈ rel interior S
obtains a where a 6= 0

and
∧
y . y ∈ S =⇒ a · x ≤ a · y

and
∧
y . y ∈ rel interior S =⇒ a · x < a · y

proof −
obtain a b where aff : (x + a) ∈ affine hull (insert x (rel interior S ))
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and a 6= 0 and a · x ≤ b
and ageb:

∧
u. u ∈ (rel interior S ) =⇒ a · u ≥ b

using separating hyperplane set point inaff [of rel interior S x ] assms
by (auto simp: rel interior eq empty convex rel interior)

have le ay : a · x ≤ a · y if y ∈ S for y
proof −
have con: continuous on (closure (rel interior S )) ((·) a)
by (rule continuous intros continuous on subset | blast)+

have y : y ∈ closure (rel interior S )
using 〈convex S 〉 closure def convex closure rel interior 〈y ∈ S 〉

by fastforce
show ?thesis
using continuous ge on closure [OF con y ] ageb 〈a · x ≤ b〉

by fastforce
qed
have 3 : a · x < a · y if y ∈ rel interior S for y
proof −
obtain e where 0 < e y ∈ S and e: cball y e ∩ affine hull S ⊆ S
using 〈y ∈ rel interior S 〉 by (force simp: rel interior cball)

define y ′ where y ′ = y − (e / norm a) ∗R ((x + a) − x )
have y ′ ∈ cball y e
unfolding y ′ def using 〈0 < e〉 by force

moreover have y ′ ∈ affine hull S
unfolding y ′ def
by (metis 〈x ∈ S 〉 〈y ∈ S 〉 〈convex S 〉 aff affine affine hull hull redundant

rel interior same affine hull hull inc mem affine 3 minus2 )
ultimately have y ′ ∈ S
using e by auto

have a · x ≤ a · y
using le ay 〈a 6= 0 〉 〈y ∈ S 〉 by blast

moreover have a · x 6= a · y
using le ay [OF 〈y ′ ∈ S 〉] 〈a 6= 0 〉 〈0 < e〉 not le
by (fastforce simp add : y ′ def inner diff dot square norm power2 eq square)

ultimately show ?thesis by force
qed
show ?thesis
by (rule that [OF 〈a 6= 0 〉 le ay 3 ])

qed

lemma supporting hyperplane relative frontier :
fixes S :: ′a::euclidean space set
assumes convex S x ∈ closure S x /∈ rel interior S
obtains a where a 6= 0

and
∧
y . y ∈ closure S =⇒ a · x ≤ a · y

and
∧
y . y ∈ rel interior S =⇒ a · x < a · y

using supporting hyperplane rel boundary [of closure S x ]
by (metis assms convex closure convex rel interior closure)
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5.0.16 Some results on decomposing convex hulls: intersec-
tions, simplicial subdivision

lemma
fixes S :: ′a::euclidean space set
assumes ¬ affine dependent(S ∪ T )
shows convex hull Int subset : convex hull S ∩ convex hull T ⊆ convex hull (S

∩ T ) (is ?C )
and affine hull Int subset : affine hull S ∩ affine hull T ⊆ affine hull (S ∩ T )

(is ?A)
proof −
have [simp]: finite S finite T
using aff independent finite assms by blast+
have sum u (S ∩ T ) = 1 ∧

(
∑

v∈S ∩ T . u v ∗R v) = (
∑

v∈S . u v ∗R v)
if [simp]: sum u S = 1

sum v T = 1
and eq : (

∑
x∈T . v x ∗R x ) = (

∑
x∈S . u x ∗R x ) for u v

proof −
define f where f x = (if x ∈ S then u x else 0 ) − (if x ∈ T then v x else 0 )

for x
have sum f (S ∪ T ) = 0
by (simp add : f def sum Un sum subtractf flip: sum.inter restrict)

moreover have (
∑

x∈(S ∪ T ). f x ∗R x ) = 0
by (simp add : eq f def sum Un scaleR left diff distrib sum subtractf if smult

flip: sum.inter restrict cong : if cong)
ultimately have

∧
v . v ∈ S ∪ T =⇒ f v = 0

using aff independent finite assms unfolding affine dependent explicit
by blast

then have u [simp]:
∧
x . x ∈ S =⇒ u x = (if x ∈ T then v x else 0 )

by (simp add : f def ) presburger
have sum u (S ∩ T ) = sum u S
by (simp add : sum.inter restrict)

then have sum u (S ∩ T ) = 1
using that by linarith

moreover have (
∑

v∈S ∩ T . u v ∗R v) = (
∑

v∈S . u v ∗R v)
by (auto simp: if smult sum.inter restrict intro: sum.cong)

ultimately show ?thesis
by force

qed
then show ?A ?C
by (auto simp: convex hull finite affine hull finite)

qed

proposition affine hull Int :
fixes S :: ′a::euclidean space set
assumes ¬ affine dependent(S ∪ T )
shows affine hull (S ∩ T ) = affine hull S ∩ affine hull T

by (simp add : affine hull Int subset assms hull mono subset antisym)
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proposition convex hull Int :
fixes S :: ′a::euclidean space set
assumes ¬ affine dependent(S ∪ T )
shows convex hull (S ∩ T ) = convex hull S ∩ convex hull T

by (simp add : convex hull Int subset assms hull mono subset antisym)

proposition
fixes S :: ′a::euclidean space set set
assumes ¬ affine dependent (

⋃
S )

shows affine hull Inter : affine hull (
⋂

S ) = (
⋂

T∈S . affine hull T ) (is ?A)
and convex hull Inter : convex hull (

⋂
S ) = (

⋂
T∈S . convex hull T ) (is ?C )

proof −
have finite S
using aff independent finite assms finite UnionD by blast

then have ?A ∧ ?C using assms
proof (induction S rule: finite induct)
case empty then show ?case by auto

next
case (insert T F )
then show ?case
proof (cases F={})
case True then show ?thesis by simp

next
case False
with insert .prems have [simp]: ¬ affine dependent (T ∪

⋂
F )

by (auto intro: affine dependent subset)
have [simp]: ¬ affine dependent (

⋃
F )

using affine independent subset insert .prems by fastforce
show ?thesis
by (simp add : affine hull Int convex hull Int insert .IH )

qed
qed
then show ?A ?C
by auto

qed

proposition in convex hull exchange unique:
fixes S :: ′a::euclidean space set
assumes naff : ¬ affine dependent S and a: a ∈ convex hull S

and S : T ⊆ S T ′ ⊆ S
and x : x ∈ convex hull (insert a T )
and x ′: x ∈ convex hull (insert a T ′)

shows x ∈ convex hull (insert a (T ∩ T ′))
proof (cases a ∈ S )
case True
then have ¬ affine dependent (insert a T ∪ insert a T ′)
using affine dependent subset assms by auto

then have x ∈ convex hull (insert a T ∩ insert a T ′)
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by (metis IntI convex hull Int x x ′)
then show ?thesis
by simp

next
case False
then have anot : a /∈ T a /∈ T ′

using assms by auto
have [simp]: finite S
by (simp add : aff independent finite assms)

then obtain b where b0 :
∧
s. s ∈ S =⇒ 0 ≤ b s

and b1 : sum b S = 1 and aeq : a = (
∑

s∈S . b s ∗R s)
using a by (auto simp: convex hull finite)

have fin [simp]: finite T finite T ′

using assms infinite super 〈finite S 〉 by blast+
then obtain c c ′ where c0 :

∧
t . t ∈ insert a T =⇒ 0 ≤ c t

and c1 : sum c (insert a T ) = 1
and xeq : x = (

∑
t ∈ insert a T . c t ∗R t)

and c ′0 :
∧
t . t ∈ insert a T ′ =⇒ 0 ≤ c ′ t

and c ′1 : sum c ′ (insert a T ′) = 1
and x ′eq : x = (

∑
t ∈ insert a T ′. c ′ t ∗R t)

using x x ′ by (auto simp: convex hull finite)
with fin anot
have sumTT ′: sum c T = 1 − c a sum c ′ T ′ = 1 − c ′ a
and wsumT : (

∑
t ∈ T . c t ∗R t) = x − c a ∗R a

by simp all
have wsumT ′: (

∑
t ∈ T ′. c ′ t ∗R t) = x − c ′ a ∗R a

using x ′eq fin anot by simp
define cc where cc ≡ λx . if x ∈ T then c x else 0
define cc ′ where cc ′ ≡ λx . if x ∈ T ′ then c ′ x else 0
define dd where dd ≡ λx . cc x − cc ′ x + (c a − c ′ a) ∗ b x
have sumSS ′: sum cc S = 1 − c a sum cc ′ S = 1 − c ′ a
unfolding cc def cc ′ def using S
by (simp all add : Int absorb1 Int absorb2 sum subtractf sum.inter restrict [symmetric]

sumTT ′)
have wsumSS : (

∑
t ∈ S . cc t ∗R t) = x − c a ∗R a (

∑
t ∈ S . cc ′ t ∗R t) = x

− c ′ a ∗R a
unfolding cc def cc ′ def using S
by (simp all add : Int absorb1 Int absorb2 if smult sum.inter restrict [symmetric]

wsumT wsumT ′ cong : if cong)
have sum dd0 : sum dd S = 0
unfolding dd def using S
by (simp add : sumSS ′ comm monoid add class.sum.distrib sum subtractf

algebra simps sum distrib right [symmetric] b1 )
have (

∑
v∈S . (b v ∗ x ) ∗R v) = x ∗R (

∑
v∈S . b v ∗R v) for x

by (simp add : pth 5 real vector .scale sum right mult .commute)
then have ∗: (

∑
v∈S . (b v ∗ x ) ∗R v) = x ∗R a for x

using aeq by blast
have (

∑
v ∈ S . dd v ∗R v) = 0

unfolding dd def using S



Starlike.thy 1039

by (simp add : ∗ wsumSS sum.distrib sum subtractf algebra simps)
then have dd0 : dd v = 0 if v ∈ S for v
using naff [unfolded affine dependent explicit not ex , rule format , of S dd ]
using that sum dd0 by force

consider c ′ a ≤ c a | c a ≤ c ′ a by linarith
then show ?thesis
proof cases
case 1
then have sum cc S ≤ sum cc ′ S
by (simp add : sumSS ′)

then have le: cc x ≤ cc ′ x if x ∈ S for x
using dd0 [OF that ] 1 b0 mult left mono that
by (fastforce simp add : dd def algebra simps)

have cc0 : cc x = 0 if x ∈ S x /∈ T ∩ T ′ for x
using le [OF 〈x ∈ S 〉] that c0
by (force simp: cc def cc ′ def split : if split asm)

show ?thesis
proof (simp add : convex hull finite, intro exI conjI )
show ∀ x∈T ∩ T ′. 0 ≤ (cc(a := c a)) x
by (simp add : c0 cc def )

show 0 ≤ (cc(a := c a)) a
by (simp add : c0 )

have sum (cc(a := c a)) (insert a (T ∩ T ′)) = c a + sum (cc(a := c a)) (T
∩ T ′)

by (simp add : anot)
also have ... = c a + sum (cc(a := c a)) S
using 〈T ⊆ S 〉 False cc0 cc def 〈a /∈ S 〉 by (fastforce intro!: sum.mono neutral left

split : if split asm)
also have ... = c a + (1 − c a)
by (metis 〈a /∈ S 〉 fun upd other sum.cong sumSS ′(1 ))

finally show sum (cc(a := c a)) (insert a (T ∩ T ′)) = 1
by simp

have (
∑

x∈insert a (T ∩ T ′). (cc(a := c a)) x ∗R x ) = c a ∗R a + (
∑

x ∈
T ∩ T ′. (cc(a := c a)) x ∗R x )

by (simp add : anot)
also have ... = c a ∗R a + (

∑
x ∈ S . (cc(a := c a)) x ∗R x )

using 〈T ⊆ S 〉 False cc0 by (fastforce intro!: sum.mono neutral left split :
if split asm)

also have ... = c a ∗R a + x − c a ∗R a
by (simp add : wsumSS 〈a /∈ S 〉 if smult sum delta notmem)

finally show (
∑

x∈insert a (T ∩ T ′). (cc(a := c a)) x ∗R x ) = x
by simp

qed
next
case 2
then have sum cc ′ S ≤ sum cc S
by (simp add : sumSS ′)

then have le: cc ′ x ≤ cc x if x ∈ S for x
using dd0 [OF that ] 2 b0 mult left mono that
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by (fastforce simp add : dd def algebra simps)
have cc0 : cc ′ x = 0 if x ∈ S x /∈ T ∩ T ′ for x
using le [OF 〈x ∈ S 〉] that c ′0
by (force simp: cc def cc ′ def split : if split asm)

show ?thesis
proof (simp add : convex hull finite, intro exI conjI )
show ∀ x∈T ∩ T ′. 0 ≤ (cc ′(a := c ′ a)) x
by (simp add : c ′0 cc ′ def )

show 0 ≤ (cc ′(a := c ′ a)) a
by (simp add : c ′0 )

have sum (cc ′(a := c ′ a)) (insert a (T ∩ T ′)) = c ′ a + sum (cc ′(a := c ′ a))
(T ∩ T ′)

by (simp add : anot)
also have ... = c ′ a + sum (cc ′(a := c ′ a)) S
using 〈T ⊆ S 〉 False cc0 by (fastforce intro!: sum.mono neutral left split :

if split asm)
also have ... = c ′ a + (1 − c ′ a)
by (metis 〈a /∈ S 〉 fun upd other sum.cong sumSS ′)

finally show sum (cc ′(a := c ′ a)) (insert a (T ∩ T ′)) = 1
by simp

have (
∑

x∈insert a (T ∩ T ′). (cc ′(a := c ′ a)) x ∗R x ) = c ′ a ∗R a + (
∑

x
∈ T ∩ T ′. (cc ′(a := c ′ a)) x ∗R x )

by (simp add : anot)
also have ... = c ′ a ∗R a + (

∑
x ∈ S . (cc ′(a := c ′ a)) x ∗R x )

using 〈T ⊆ S 〉 False cc0 by (fastforce intro!: sum.mono neutral left split :
if split asm)

also have ... = c a ∗R a + x − c a ∗R a
by (simp add : wsumSS 〈a /∈ S 〉 if smult sum delta notmem)

finally show (
∑

x∈insert a (T ∩ T ′). (cc ′(a := c ′ a)) x ∗R x ) = x
by simp

qed
qed

qed

corollary convex hull exchange Int :
fixes a :: ′a::euclidean space
assumes ¬ affine dependent S a ∈ convex hull S T ⊆ S T ′ ⊆ S
shows (convex hull (insert a T )) ∩ (convex hull (insert a T ′)) =

convex hull (insert a (T ∩ T ′)) (is ?lhs = ?rhs)
proof (rule subset antisym)
show ?lhs ⊆ ?rhs
using in convex hull exchange unique assms by blast

show ?rhs ⊆ ?lhs
by (metis hull mono inf le1 inf le2 insert inter insert le inf iff )

qed

lemma Int closed segment :
fixes b :: ′a::euclidean space
assumes b ∈ closed segment a c ∨ ¬ collinear{a,b,c}
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shows closed segment a b ∩ closed segment b c = {b}
proof (cases c = a)
case True
then show ?thesis
using assms collinear 3 eq affine dependent by fastforce

next
case False
from assms show ?thesis
proof
assume b ∈ closed segment a c
moreover have ¬ affine dependent {a, c}
by (simp)

ultimately show ?thesis
using False convex hull exchange Int [of {a,c} b {a} {c}]
by (simp add : segment convex hull insert commute)

next
assume ncoll : ¬ collinear {a, b, c}
have False if closed segment a b ∩ closed segment b c 6= {b}
proof −
have b ∈ closed segment a b and b ∈ closed segment b c
by auto

with that obtain d where b 6= d d ∈ closed segment a b d ∈ closed segment
b c

by force
then have d : collinear {a, d , b} collinear {b, d , c}
by (auto simp: between mem segment between imp collinear)

have collinear {a, b, c}
by (metis (full types) 〈b 6= d 〉 collinear 3 trans d insert commute)

with ncoll show False ..
qed
then show ?thesis
by blast

qed
qed

lemma affine hull finite intersection hyperplanes:
fixes S :: ′a::euclidean space set
obtains F where

finite F
of nat (card F) + aff dim S = DIM ( ′a)
affine hull S =

⋂
F∧

h. h ∈ F =⇒ ∃ a b. a 6= 0 ∧ h = {x . a · x = b}
proof −
obtain b where b ⊆ S

and indb: ¬ affine dependent b
and eq : affine hull S = affine hull b

using affine basis exists by blast
obtain c where indc: ¬ affine dependent c and b ⊆ c

and affc: affine hull c = UNIV
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by (metis extend to affine basis affine UNIV hull same indb subset UNIV )
then have finite c
by (simp add : aff independent finite)

then have fbc: finite b card b ≤ card c
using 〈b ⊆ c〉 infinite super by (auto simp: card mono)

have imeq : (λx . affine hull x ) ‘ ((λa. c − {a}) ‘ (c − b)) = ((λa. affine hull (c
− {a})) ‘ (c − b))

by blast
have card cb: (card (c − b)) + aff dim S = DIM ( ′a)
proof −
have aff : aff dim (UNIV :: ′a set) = aff dim c
by (metis aff dim affine hull affc)

have aff dim b = aff dim S
by (metis (no types) aff dim affine hull eq)

then have int (card b) = 1 + aff dim S
by (simp add : aff dim affine independent indb)

then show ?thesis
using fbc aff
by (simp add : 〈¬ affine dependent c〉 〈b ⊆ c〉 aff dim affine independent

card Diff subset of nat diff )
qed
show ?thesis
proof (cases c = b)
case True show ?thesis
proof
show int (card {}) + aff dim S = int DIM ( ′a)
using True card cb by auto

show affine hull S =
⋂
{}

using True affc eq by blast
qed auto

next
case False
have ind : ¬ affine dependent (

⋃
a∈c − b. c − {a})

by (rule affine independent subset [OF indc]) auto
have ∗: 1 + aff dim (c − {t}) = int (DIM ( ′a)) if t : t ∈ c for t
proof −
have insert t c = c
using t by blast

then show ?thesis
by (metis (full types) add .commute aff dim affine hull aff dim insert aff dim UNIV

affc affine dependent def indc insert Diff single t)
qed
let ?F = (λx . affine hull x ) ‘ ((λa. c − {a}) ‘ (c − b))
show ?thesis
proof
have card ((λa. affine hull (c − {a})) ‘ (c − b)) = card (c − b)
proof (rule card image)
show inj on (λa. affine hull (c − {a})) (c − b)
unfolding inj on def
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by (metis Diff eq empty iff Diff iff indc affine dependent def hull subset
insert iff )

qed
then show int (card ?F) + aff dim S = int DIM ( ′a)
by (simp add : imeq card cb)

show affine hull S =
⋂

?F
by (metis Diff eq empty iff INT simps(4 ) UN singleton order refl 〈b ⊆ c〉

False eq double diff affine hull Inter [OF ind ])
have

∧
a. [[a ∈ c; a /∈ b]] =⇒ aff dim (c − {a}) = int (DIM ( ′a) − Suc 0 )

by (metis ∗ DIM ge Suc0 One nat def add diff cancel left ′ int ops(2 )
of nat diff )

then show
∧
h. h ∈ ?F =⇒ ∃ a b. a 6= 0 ∧ h = {x . a · x = b}

by (auto simp only : One nat def aff dim eq hyperplane [symmetric])
qed (use 〈finite c〉 in auto)

qed
qed

lemma affine hyperplane sums eq UNIV 0 :
fixes S :: ′a :: euclidean space set
assumes affine S

and 0 ∈ S and w ∈ S
and a · w 6= 0

shows {x + y | x y . x ∈ S ∧ a · y = 0} = UNIV
proof −
have subspace S
by (simp add : assms subspace affine)

have span1 : span {y . a · y = 0} ⊆ span {x + y |x y . x ∈ S ∧ a · y = 0}
using 〈0 ∈ S 〉 add .left neutral by (intro span mono) force

have w /∈ span {y . a · y = 0}
using 〈a · w 6= 0 〉 span induct subspace hyperplane by auto

moreover have w ∈ span {x + y |x y . x ∈ S ∧ a · y = 0}
using 〈w ∈ S 〉

by (metis (mono tags, lifting) inner zero right mem Collect eq pth d span base)
ultimately have span2 : span {y . a · y = 0} 6= span {x + y |x y . x ∈ S ∧ a ·

y = 0}
by blast

have a 6= 0 using assms inner zero left by blast
then have DIM ( ′a) − 1 = dim {y . a · y = 0}
by (simp add : dim hyperplane)

also have ... < dim {x + y |x y . x ∈ S ∧ a · y = 0}
using span1 span2 by (blast intro: dim psubset)

finally have DIM ( ′a) − 1 < dim {x + y |x y . x ∈ S ∧ a · y = 0} .
then have DD : dim {x + y |x y . x ∈ S ∧ a · y = 0} = DIM ( ′a)
using antisym dim subset UNIV lowdim subset hyperplane not le by fastforce

have subs: subspace {x + y | x y . x ∈ S ∧ a · y = 0}
using subspace sums [OF 〈subspace S 〉 subspace hyperplane] by simp

moreover have span {x + y | x y . x ∈ S ∧ a · y = 0} = UNIV
using DD dim eq full by blast

ultimately show ?thesis
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by (simp add : subs) (metis (lifting) span eq iff subs)
qed

proposition affine hyperplane sums eq UNIV :
fixes S :: ′a :: euclidean space set
assumes affine S

and S ∩ {v . a · v = b} 6= {}
and S − {v . a · v = b} 6= {}

shows {x + y | x y . x ∈ S ∧ a · y = b} = UNIV
proof (cases a = 0 )
case True with assms show ?thesis
by (auto simp: if splits)

next
case False
obtain c where c ∈ S and c: a · c = b
using assms by force

with affine diffs subspace [OF 〈affine S 〉]
have subspace ((+) (− c) ‘ S ) by blast
then have aff : affine ((+) (− c) ‘ S )
by (simp add : subspace imp affine)

have 0 : 0 ∈ (+) (− c) ‘ S
by (simp add : 〈c ∈ S 〉)

obtain d where d ∈ S and a · d 6= b and dc: d−c ∈ (+) (− c) ‘ S
using assms by auto

then have adc: a · (d − c) 6= 0
by (simp add : c inner diff right)

define U where U ≡ {x + y |x y . x ∈ (+) (− c) ‘ S ∧ a · y = 0}
have u + v ∈ (+) (c+c) ‘ U
if u ∈ S b = a · v for u v

proof
show u + v = c + c + (u + v − c − c)
by (simp add : algebra simps)

have ∃ x y . u + v − c − c = x + y ∧ (∃ xa∈S . x = xa − c) ∧ a · y = 0
proof (intro exI conjI )
show u + v − c − c = (u−c) + (v−c) a · (v − c) = 0
by (simp all add : algebra simps c that)

qed (use that in auto)
then show u + v − c − c ∈ U
by (auto simp: U def image def )

qed
moreover have [[a · v = 0 ; u ∈ S ]]

=⇒ ∃ x ya. v + (u + c) = x + ya ∧ x ∈ S ∧ a · ya = b for v u
by (metis add .left commute c inner right distrib pth d)

ultimately have {x + y |x y . x ∈ S ∧ a · y = b} = (+) (c+c) ‘ U
by (fastforce simp: algebra simps U def )

also have ... = range ((+) (c + c))
by (simp only : U def affine hyperplane sums eq UNIV 0 [OF aff 0 dc adc])

also have ... = UNIV
by simp
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finally show ?thesis .
qed

lemma aff dim sums Int 0 :
assumes affine S

and affine T
and 0 ∈ S 0 ∈ T

shows aff dim {x + y | x y . x ∈ S ∧ y ∈ T} = (aff dim S + aff dim T ) −
aff dim(S ∩ T )
proof −
have 0 ∈ {x + y |x y . x ∈ S ∧ y ∈ T}
using assms by force

then have 0 : 0 ∈ affine hull {x + y |x y . x ∈ S ∧ y ∈ T}
by (metis (lifting) hull inc)

have sub: subspace S subspace T
using assms by (auto simp: subspace affine)

show ?thesis
using dim sums Int [OF sub] by (simp add : aff dim zero assms 0 hull inc)

qed

proposition aff dim sums Int :
assumes affine S

and affine T
and S ∩ T 6= {}

shows aff dim {x + y | x y . x ∈ S ∧ y ∈ T} = (aff dim S + aff dim T ) −
aff dim(S ∩ T )
proof −
obtain a where a: a ∈ S a ∈ T using assms by force
have aff : affine ((+) (−a) ‘ S ) affine ((+) (−a) ‘ T )

using affine translation [symmetric, of − a] assms by (simp all cong : im-
age cong simp)
have zero: 0 ∈ ((+) (−a) ‘ S ) 0 ∈ ((+) (−a) ‘ T )
using a assms by auto

have {x + y |x y . x ∈ (+) (− a) ‘ S ∧ y ∈ (+) (− a) ‘ T} =
(+) (− 2 ∗R a) ‘ {x + y | x y . x ∈ S ∧ y ∈ T}

by (force simp: algebra simps scaleR 2 )
moreover have (+) (− a) ‘ S ∩ (+) (− a) ‘ T = (+) (− a) ‘ (S ∩ T )
by auto

ultimately show ?thesis
using aff dim sums Int 0 [OF aff zero] aff dim translation eq
by (metis (lifting))

qed

lemma aff dim affine Int hyperplane:
fixes a :: ′a::euclidean space
assumes affine S
shows aff dim(S ∩ {x . a · x = b}) =

(if S ∩ {v . a · v = b} = {} then − 1
else if S ⊆ {v . a · v = b} then aff dim S

Starlike.html


1046

else aff dim S − 1 )
proof (cases a = 0 )
case True with assms show ?thesis
by auto

next
case False
then have aff dim (S ∩ {x . a · x = b}) = aff dim S − 1

if x ∈ S a · x 6= b and non: S ∩ {v . a · v = b} 6= {} for x
proof −
have [simp]: {x + y | x y . x ∈ S ∧ a · y = b} = UNIV
using affine hyperplane sums eq UNIV [OF assms non] that by blast

show ?thesis
using aff dim sums Int [OF assms affine hyperplane non]
by (simp add : of nat diff False)

qed
then show ?thesis

by (metis (mono tags, lifting) inf .orderE aff dim empty eq mem Collect eq
subsetI )
qed

lemma aff dim lt full :
fixes S :: ′a::euclidean space set
shows aff dim S < DIM ( ′a) ←→ (affine hull S 6= UNIV )

by (metis (no types) aff dim affine hull aff dim le DIM aff dim UNIV affine hull UNIV
less le)

lemma aff dim openin:
fixes S :: ′a::euclidean space set
assumes ope: openin (top of set T ) S and affine T S 6= {}
shows aff dim S = aff dim T

proof −
show ?thesis
proof (rule order antisym)
show aff dim S ≤ aff dim T
by (blast intro: aff dim subset [OF openin imp subset ] ope)

next
obtain a where a ∈ S
using 〈S 6= {}〉 by blast

have S ⊆ T
using ope openin imp subset by auto

then have a ∈ T
using 〈a ∈ S 〉 by auto

then have subT ′: subspace ((λx . − a + x ) ‘ T )
using affine diffs subspace 〈affine T 〉 by auto
then obtain B where Bsub: B ⊆ ((λx . − a + x ) ‘ T ) and po: pairwise

orthogonal B
and eq1 :

∧
x . x ∈ B =⇒ norm x = 1 and independent B

and cardB : card B = dim ((λx . − a + x ) ‘ T )
and spanB : span B = ((λx . − a + x ) ‘ T )
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by (rule orthonormal basis subspace) auto
obtain e where 0 < e and e: cball a e ∩ T ⊆ S
by (meson 〈a ∈ S 〉 openin contains cball ope)

have aff dim T = aff dim ((λx . − a + x ) ‘ T )
by (metis aff dim translation eq)

also have ... = dim ((λx . − a + x ) ‘ T )
using aff dim subspace subT ′ by blast

also have ... = card B
by (simp add : cardB)

also have ... = card ((λx . e ∗R x ) ‘ B)
using 〈0 < e〉 by (force simp: inj on def card image)

also have ... ≤ dim ((λx . − a + x ) ‘ S )
proof (simp, rule independent card le dim)
have e ′: cball 0 e ∩ (λx . x − a) ‘ T ⊆ (λx . x − a) ‘ S
using e by (auto simp: dist norm norm minus commute subset eq)

have (λx . e ∗R x ) ‘ B ⊆ cball 0 e ∩ (λx . x − a) ‘ T
using Bsub 〈0 < e〉 eq1 subT ′ 〈a ∈ T 〉 by (auto simp: subspace def )

then show (λx . e ∗R x ) ‘ B ⊆ (λx . x − a) ‘ S
using e ′ by blast

have inj on ((∗R) e) (span B)
using 〈0 < e〉 inj on def by fastforce

then show independent ((λx . e ∗R x ) ‘ B)
using linear scale self 〈independent B 〉 linear dependent inj imageD by blast

qed
also have ... = aff dim S
using 〈a ∈ S 〉 aff dim eq dim hull inc by (force cong : image cong simp)

finally show aff dim T ≤ aff dim S .
qed

qed

lemma dim openin:
fixes S :: ′a::euclidean space set
assumes ope: openin (top of set T ) S and subspace T S 6= {}
shows dim S = dim T

proof (rule order antisym)
show dim S ≤ dim T
by (metis ope dim subset openin subset topspace euclidean subtopology)

next
have dim T = aff dim S
using aff dim openin
by (metis aff dim subspace 〈subspace T 〉 〈S 6= {}〉 ope subspace affine)

also have ... ≤ dim S
by (metis aff dim subset aff dim subspace dim span span superset

subspace span)
finally show dim T ≤ dim S by simp

qed
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5.0.17 Lower-dimensional affine subsets are nowhere dense

proposition dense complement subspace:
fixes S :: ′a :: euclidean space set
assumes dim less: dim T < dim S and subspace S shows closure(S − T ) = S

proof −
have closure(S − U ) = S if dim U < dim S U ⊆ S for U
proof −
have span U ⊂ span S
by (metis neq iff psubsetI span eq dim span mono that)

then obtain a where a 6= 0 a ∈ span S and a:
∧
y . y ∈ span U =⇒ orthogonal

a y
using orthogonal to subspace exists gen by metis

show ?thesis
proof
have closed S
by (simp add : 〈subspace S 〉 closed subspace)

then show closure (S − U ) ⊆ S
by (simp add : closure minimal)

show S ⊆ closure (S − U )
proof (clarsimp simp: closure approachable)
fix x and e::real
assume x ∈ S 0 < e
show ∃ y∈S − U . dist y x < e
proof (cases x ∈ U )
case True
let ?y = x + (e/2 / norm a) ∗R a
show ?thesis
proof
show dist ?y x < e
using 〈0 < e〉 by (simp add : dist norm)

next
have ?y ∈ S

by (metis 〈a ∈ span S 〉 〈x ∈ S 〉 assms(2 ) span eq iff subspace add
subspace scale)

moreover have ?y /∈ U
proof −
have e/2 / norm a 6= 0
using 〈0 < e〉 〈a 6= 0 〉 by auto

then show ?thesis
by (metis True 〈a 6= 0 〉 a orthogonal scaleR orthogonal self

real vector .scale eq 0 iff span add eq span base)
qed
ultimately show ?y ∈ S − U by blast

qed
next
case False
with 〈0 < e〉 〈x ∈ S 〉 show ?thesis by force

qed
qed
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qed
qed
moreover have S − S ∩ T = S−T
by blast

moreover have dim (S ∩ T ) < dim S
by (metis dim less dim subset inf .cobounded2 inf .orderE inf .strict boundedE

not le)
ultimately show ?thesis
by force

qed

corollary dense complement affine:
fixes S :: ′a :: euclidean space set
assumes less: aff dim T < aff dim S and affine S shows closure(S − T ) = S

proof (cases S ∩ T = {})
case True
then show ?thesis
by (metis Diff triv affine hull eq 〈affine S 〉 closure same affine hull closure subset

hull subset subset antisym)
next
case False
then obtain z where z : z ∈ S ∩ T by blast
then have subspace ((+) (− z ) ‘ S )
by (meson IntD1 affine diffs subspace 〈affine S 〉)

moreover have int (dim ((+) (− z ) ‘ T )) < int (dim ((+) (− z ) ‘ S ))
thm aff dim eq dim

using z less by (simp add : aff dim eq dim subtract [of z ] hull inc cong : im-
age cong simp)
ultimately have closure(((+) (− z ) ‘ S ) − ((+) (− z ) ‘ T )) = ((+) (− z ) ‘ S )
by (simp add : dense complement subspace)

then show ?thesis
by (metis closure translation translation diff translation invert)

qed

corollary dense complement openin affine hull :
fixes S :: ′a :: euclidean space set
assumes less: aff dim T < aff dim S

and ope: openin (top of set (affine hull S )) S
shows closure(S − T ) = closure S

proof −
have affine hull S − T ⊆ affine hull S
by blast

then have closure (S ∩ closure (affine hull S − T )) = closure (S ∩ (affine hull
S − T ))

by (rule closure openin Int closure [OF ope])
then show ?thesis
by (metis Int Diff aff dim affine hull affine affine hull dense complement affine

hull subset inf .orderE less)
qed
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corollary dense complement convex :
fixes S :: ′a :: euclidean space set
assumes aff dim T < aff dim S convex S
shows closure(S − T ) = closure S

proof
show closure (S − T ) ⊆ closure S
by (simp add : closure mono)

have closure (rel interior S − T ) = closure (rel interior S )
by (simp add : assms dense complement openin affine hull openin rel interior

rel interior aff dim rel interior same affine hull)
then show closure S ⊆ closure (S − T )

by (metis Diff mono 〈convex S 〉 closure mono convex closure rel interior or-
der refl rel interior subset)
qed

corollary dense complement convex closed :
fixes S :: ′a :: euclidean space set
assumes aff dim T < aff dim S convex S closed S
shows closure(S − T ) = S

by (simp add : assms dense complement convex )

5.0.18 Parallel slices, etc

If we take a slice out of a set, we can do it perpendicularly, with the normal
vector to the slice parallel to the affine hull.

proposition affine parallel slice:
fixes S :: ′a :: euclidean space set
assumes affine S

and S ∩ {x . a · x ≤ b} 6= {}
and ¬ (S ⊆ {x . a · x ≤ b})

obtains a ′ b ′ where a ′ 6= 0
S ∩ {x . a ′ · x ≤ b ′} = S ∩ {x . a · x ≤ b}
S ∩ {x . a ′ · x = b ′} = S ∩ {x . a · x = b}∧
w . w ∈ S =⇒ (w + a ′) ∈ S

proof (cases S ∩ {x . a · x = b} = {})
case True
then obtain u v where u ∈ S v ∈ S a · u ≤ b a · v > b
using assms by (auto simp: not le)

define η where η = u + ((b − a · u) / (a · v − a · u)) ∗R (v − u)
have η ∈ S
by (simp add : η def 〈u ∈ S 〉 〈v ∈ S 〉 〈affine S 〉 mem affine 3 minus)

moreover have a · η = b
using 〈a · u ≤ b〉 〈b < a · v 〉

by (simp add : η def algebra simps) (simp add : field simps)
ultimately have False
using True by force

then show ?thesis ..
next
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case False
then obtain z where z ∈ S and z : a · z = b
using assms by auto

with affine diffs subspace [OF 〈affine S 〉]
have sub: subspace ((+) (− z ) ‘ S ) by blast
then have aff : affine ((+) (− z ) ‘ S ) and span: span ((+) (− z ) ‘ S ) = ((+)

(− z ) ‘ S )
by (auto simp: subspace imp affine)

obtain a ′ a ′′ where a ′: a ′ ∈ span ((+) (− z ) ‘ S ) and a: a = a ′ + a ′′

and
∧
w . w ∈ span ((+) (− z ) ‘ S ) =⇒ orthogonal a ′′ w

using orthogonal subspace decomp exists [of (+) (− z ) ‘ S a] by metis
then have

∧
w . w ∈ S =⇒ a ′′ · (w−z ) = 0

by (simp add : span base orthogonal def )
then have a ′′:

∧
w . w ∈ S =⇒ a ′′ · w = (a − a ′) · z

by (simp add : a inner diff right)
then have ba ′′:

∧
w . w ∈ S =⇒ a ′′ · w = b − a ′ · z

by (simp add : inner diff left z )
show ?thesis
proof (cases a ′ = 0 )
case True
with a assms True a ′′ diff zero less irrefl show ?thesis
by auto

next
case False
show ?thesis
proof
show S ∩ {x . a ′ · x ≤ a ′ · z} = S ∩ {x . a · x ≤ b}
S ∩ {x . a ′ · x = a ′ · z} = S ∩ {x . a · x = b}
by (auto simp: a ba ′′ inner left distrib)

have
∧
w . w ∈ (+) (− z ) ‘ S =⇒ (w + a ′) ∈ (+) (− z ) ‘ S

by (metis subspace add a ′ span eq iff sub)
then show

∧
w . w ∈ S =⇒ (w + a ′) ∈ S

by fastforce
qed (use False in auto)

qed
qed

lemma diffs affine hull span:
assumes a ∈ S
shows (λx . x − a) ‘ (affine hull S ) = span ((λx . x − a) ‘ S )

proof −
have ∗: ((λx . x − a) ‘ (S − {a})) = ((λx . x − a) ‘ S ) − {0}
by (auto simp: algebra simps)

show ?thesis
by (auto simp add : algebra simps affine hull span2 [OF assms] ∗)

qed

lemma aff dim dim affine diffs:
fixes S :: ′a :: euclidean space set
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assumes affine S a ∈ S
shows aff dim S = dim ((λx . x − a) ‘ S )

proof −
obtain B where aff : affine hull B = affine hull S

and ind : ¬ affine dependent B
and card : of nat (card B) = aff dim S + 1

using aff dim basis exists by blast
then have B 6= {} using assms
by (metis affine hull eq empty ex in conv)

then obtain c where c ∈ B by auto
then have c ∈ S
by (metis aff affine hull eq 〈affine S 〉 hull inc)

have xy : x − c = y − a ←→ y = x + 1 ∗R (a − c) for x y c and a:: ′a
by (auto simp: algebra simps)

have ∗: (λx . x − c) ‘ S = (λx . x − a) ‘ S
using assms 〈c ∈ S 〉

by (auto simp: image iff xy ; metis mem affine 3 minus pth 1 )
have affS : affine hull S = S
by (simp add : 〈affine S 〉)

have aff dim S = of nat (card B) − 1
using card by simp

also have ... = dim ((λx . x − c) ‘ B)
using affine independent card dim diffs [OF ind 〈c ∈ B 〉]
by (simp add : affine independent card dim diffs [OF ind 〈c ∈ B 〉])

also have ... = dim ((λx . x − c) ‘ (affine hull B))
by (simp add : diffs affine hull span 〈c ∈ B 〉)

also have ... = dim ((λx . x − a) ‘ S )
by (simp add : affS aff ∗)

finally show ?thesis .
qed

lemma aff dim linear image le:
assumes linear f
shows aff dim(f ‘ S ) ≤ aff dim S

proof −
have aff dim (f ‘ T ) ≤ aff dim T if affine T for T
proof (cases T = {})
case True then show ?thesis by (simp add : aff dim geq)

next
case False
then obtain a where a ∈ T by auto
have 1 : ((λx . x − f a) ‘ f ‘ T ) = {x − f a |x . x ∈ f ‘ T}
by auto

have 2 : {x − f a| x . x ∈ f ‘ T} = f ‘ ((λx . x − a) ‘ T )
by (force simp: linear diff [OF assms])

have aff dim (f ‘ T ) = int (dim {x − f a |x . x ∈ f ‘ T})
by (simp add : 〈a ∈ T 〉 hull inc aff dim eq dim [of f a] 1 cong : image cong simp)
also have ... = int (dim (f ‘ ((λx . x − a) ‘ T )))
by (force simp: linear diff [OF assms] 2 )
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also have ... ≤ int (dim ((λx . x − a) ‘ T ))
by (simp add : dim image le [OF assms])

also have ... ≤ aff dim T
by (simp add : aff dim dim affine diffs [symmetric] 〈a ∈ T 〉 〈affine T 〉)

finally show ?thesis .
qed
then
have aff dim (f ‘ (affine hull S )) ≤ aff dim (affine hull S )
using affine affine hull [of S ] by blast

then show ?thesis
using affine hull linear image assms linear conv bounded linear by fastforce

qed

lemma aff dim injective linear image [simp]:
assumes linear f inj f
shows aff dim (f ‘ S ) = aff dim S

proof (rule antisym)
show aff dim (f ‘ S ) ≤ aff dim S
by (simp add : aff dim linear image le assms(1 ))

next
obtain g where linear g g ◦ f = id
using assms(1 ) assms(2 ) linear injective left inverse by blast

then have aff dim S ≤ aff dim(g ‘ f ‘ S )
by (simp add : image comp)

also have ... ≤ aff dim (f ‘ S )
by (simp add : 〈linear g〉 aff dim linear image le)

finally show aff dim S ≤ aff dim (f ‘ S ) .
qed

lemma choose affine subset :
assumes affine S −1 ≤ d and dle: d ≤ aff dim S
obtains T where affine T T ⊆ S aff dim T = d

proof (cases d = −1 ∨ S={})
case True with assms show ?thesis
by (metis aff dim empty affine empty bot .extremum that eq iff )

next
case False
with assms obtain a where a ∈ S 0 ≤ d by auto
with assms have ss: subspace ((+) (− a) ‘ S )
by (simp add : affine diffs subspace subtract cong : image cong simp)

have nat d ≤ dim ((+) (− a) ‘ S )
by (metis aff dim subspace aff dim translation eq dle nat int nat mono ss)

then obtain T where subspace T and Tsb: T ⊆ span ((+) (− a) ‘ S )
and Tdim: dim T = nat d

using choose subspace of subspace [of nat d (+) (− a) ‘ S ] by blast
then have affine T
using subspace affine by blast

then have affine ((+) a ‘ T )
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by (metis affine hull eq affine hull translation)
moreover have (+) a ‘ T ⊆ S
proof −
have T ⊆ (+) (− a) ‘ S
by (metis (no types) span eq iff Tsb ss)

then show (+) a ‘ T ⊆ S
using add ac by auto

qed
moreover have aff dim ((+) a ‘ T ) = d
by (simp add : aff dim subspace Tdim 〈0 ≤ d 〉 〈subspace T 〉 aff dim translation eq)
ultimately show ?thesis
by (rule that)

qed

5.0.19 Paracompactness

proposition paracompact :
fixes S :: ′a :: {metric space,second countable topology} set
assumes S ⊆

⋃
C and opC :

∧
T . T ∈ C =⇒ open T

obtains C ′ where S ⊆
⋃
C ′

and
∧
U . U ∈ C ′ =⇒ open U ∧ (∃T . T ∈ C ∧ U ⊆ T )

and
∧
x . x ∈ S
=⇒ ∃V . open V ∧ x ∈ V ∧ finite {U . U ∈ C ′ ∧ (U ∩ V 6=

{})}
proof (cases S = {})
case True with that show ?thesis by blast

next
case False
have ∃T U . x ∈ U ∧ open U ∧ closure U ⊆ T ∧ T ∈ C if x ∈ S for x
proof −
obtain T where x ∈ T T ∈ C open T
using assms 〈x ∈ S 〉 by blast

then obtain e where e > 0 cball x e ⊆ T
by (force simp: open contains cball)

then show ?thesis
by (meson open ball 〈T ∈ C〉 ball subset cball centre in ball closed cball clo-

sure minimal dual order .trans)
qed
then obtain F G where Gin: x ∈ G x and oG : open (G x )
and clos: closure (G x ) ⊆ F x and Fin: F x ∈ C

if x ∈ S for x
by metis

then obtain F where F ⊆ G ‘ S countable F
⋃
F =

⋃
(G ‘ S )

using Lindelof [of G ‘ S ] by (metis image iff )
then obtain K where K : K ⊆ S countable K and eq :

⋃
(G ‘ K ) =

⋃
(G ‘ S )

by (metis countable subset image)
with False Gin have K 6= {} by force
then obtain a :: nat ⇒ ′a where range a = K
by (metis range from nat into 〈countable K 〉)
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then have odif :
∧
n. open (F (a n) −

⋃
{closure (G (a m)) |m. m < n})

using 〈K ⊆ S 〉 Fin opC by (fastforce simp add :)
let ?C = range (λn. F (a n) −

⋃
{closure(G(a m)) |m. m < n})

have enum S : ∃n. x ∈ F (a n) ∧ x ∈ G(a n) if x ∈ S for x
proof −
have ∃ y ∈ K . x ∈ G y using eq that Gin by fastforce
then show ?thesis
using clos K 〈range a = K 〉 closure subset by blast

qed
show ?thesis
proof
show S ⊆ Union ?C
proof
fix x assume x ∈ S
define n where n ≡ LEAST n. x ∈ F (a n)
have n: x ∈ F (a n)
using enum S [OF 〈x ∈ S 〉] by (force simp: n def intro: LeastI )

have notn: x /∈ F (a m) if m < n for m
using that not less Least by (force simp: n def )

then have x /∈
⋃
{closure (G (a m)) |m. m < n}

using n 〈K ⊆ S 〉 〈range a = K 〉 clos notn by fastforce
with n show x ∈ Union ?C
by blast

qed
show

∧
U . U ∈ ?C =⇒ open U ∧ (∃T . T ∈ C ∧ U ⊆ T )

using Fin 〈K ⊆ S 〉 〈range a = K 〉 by (auto simp: odif )
show ∃V . open V ∧ x ∈ V ∧ finite {U . U ∈ ?C ∧ (U ∩ V 6= {})} if x ∈ S

for x
proof −
obtain n where n: x ∈ F (a n) x ∈ G(a n)
using 〈x ∈ S 〉 enum S by auto

have {U ∈ ?C . U ∩ G (a n) 6= {}} ⊆ (λn. F (a n) −
⋃
{closure(G(a m))

|m. m < n}) ‘ atMost n
proof clarsimp
fix k assume (F (a k) −

⋃
{closure (G (a m)) |m. m < k}) ∩ G (a n) 6=

{}
then have k ≤ n
by auto (metis closure subset not le subsetCE )

then show F (a k) −
⋃
{closure (G (a m)) |m. m < k}

∈ (λn. F (a n) −
⋃
{closure (G (a m)) |m. m < n}) ‘ {..n}

by force
qed
moreover have finite ((λn. F (a n) −

⋃
{closure(G(a m)) |m. m < n}) ‘

atMost n)
by force

ultimately have ∗: finite {U ∈ ?C . U ∩ G (a n) 6= {}}
using finite subset by blast

have a n ∈ S
using 〈K ⊆ S 〉 〈range a = K 〉 by blast
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then show ?thesis
by (blast intro: oG n ∗)

qed
qed

qed

corollary paracompact closedin:
fixes S :: ′a :: {metric space,second countable topology} set
assumes cin: closedin (top of set U ) S

and oin:
∧
T . T ∈ C =⇒ openin (top of set U ) T

and S ⊆
⋃
C

obtains C ′ where S ⊆
⋃
C ′

and
∧
V . V ∈ C ′ =⇒ openin (top of set U ) V ∧ (∃T . T ∈ C ∧ V ⊆

T )
and

∧
x . x ∈ U
=⇒ ∃V . openin (top of set U ) V ∧ x ∈ V ∧

finite {X . X ∈ C ′ ∧ (X ∩ V 6= {})}
proof −
have ∃Z . open Z ∧ (T = U ∩ Z ) if T ∈ C for T
using oin [OF that ] by (auto simp: openin open)

then obtain F where opF : open (F T ) and intF : U ∩ F T = T if T ∈ C for
T

by metis
obtain K where K : closed K U ∩ K = S
using cin by (auto simp: closedin closed)

have 1 : U ⊆
⋃
(insert (− K ) (F ‘ C))

by clarsimp (metis Int iff Union iff 〈U ∩ K = S 〉 〈S ⊆
⋃
C〉 subsetD intF )

have 2 :
∧
T . T ∈ insert (− K ) (F ‘ C) =⇒ open T

using 〈closed K 〉 by (auto simp: opF )
obtain D where U ⊆

⋃
D

and D1 :
∧
U . U ∈ D =⇒ open U ∧ (∃T . T ∈ insert (− K ) (F ‘ C) ∧

U ⊆ T )
and D2 :

∧
x . x ∈ U =⇒ ∃V . open V ∧ x ∈ V ∧ finite {U ∈ D. U ∩

V 6= {}}
by (blast intro: paracompact [OF 1 2 ])

let ?C = {U ∩ V |V . V ∈ D ∧ (V ∩ K 6= {})}
show ?thesis
proof (rule tac C ′ = {U ∩ V |V . V ∈ D ∧ (V ∩ K 6= {})} in that)
show S ⊆

⋃
?C

using 〈U ∩ K = S 〉 〈U ⊆
⋃
D〉 K by (blast dest !: subsetD)

show
∧
V . V ∈ ?C =⇒ openin (top of set U ) V ∧ (∃T . T ∈ C ∧ V ⊆ T )

using D1 intF by fastforce
have ∗: {X . (∃V . X = U ∩ V ∧ V ∈ D ∧ V ∩ K 6= {}) ∧ X ∩ (U ∩ V ) 6=

{}} ⊆
(λx . U ∩ x ) ‘ {U ∈ D. U ∩ V 6= {}} for V

by blast
show ∃V . openin (top of set U ) V ∧ x ∈ V ∧ finite {X ∈ ?C . X ∩ V 6= {}}
if x ∈ U for x

proof −
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from D2 [OF that ] obtain V where open V x ∈ V finite {U ∈ D. U ∩ V
6= {}}

by auto
with ∗ show ?thesis
by (rule tac x=U ∩ V in exI ) (auto intro: that finite subset [OF ∗])

qed
qed

qed

corollary paracompact closed :
fixes S :: ′a :: {metric space,second countable topology} set
assumes closed S

and opC :
∧
T . T ∈ C =⇒ open T

and S ⊆
⋃
C

obtains C ′ where S ⊆
⋃
C ′

and
∧
U . U ∈ C ′ =⇒ open U ∧ (∃T . T ∈ C ∧ U ⊆ T )

and
∧
x . ∃V . open V ∧ x ∈ V ∧

finite {U . U ∈ C ′ ∧ (U ∩ V 6= {})}
by (rule paracompact closedin [of UNIV S C]) (auto simp: assms)

5.0.20 Closed-graph characterization of continuity

lemma continuous closed graph gen:
fixes T :: ′b::real normed vector set
assumes contf : continuous on S f and fim: f ‘ S ⊆ T
shows closedin (top of set (S × T )) ((λx . Pair x (f x )) ‘ S )

proof −
have eq : ((λx . Pair x (f x )) ‘ S ) = (S × T ∩ (λz . (f ◦ fst)z − snd z ) −‘ {0})
using fim by auto

show ?thesis
unfolding eq
by (intro continuous intros continuous closedin preimage continuous on subset

[OF contf ]) auto
qed

lemma continuous closed graph eq :
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes compact T and fim: f ‘ S ⊆ T
shows continuous on S f ←→

closedin (top of set (S × T )) ((λx . Pair x (f x )) ‘ S )
(is ?lhs = ?rhs)

proof −
have ?lhs if ?rhs
proof (clarsimp simp add : continuous on closed gen [OF fim])
fix U
assume U : closedin (top of set T ) U
have eq : (S ∩ f −‘ U ) = fst ‘ (((λx . Pair x (f x )) ‘ S ) ∩ (S × U ))
by (force simp: image iff )

show closedin (top of set S ) (S ∩ f −‘ U )
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by (simp add : U closedin Int closedin Times closed map fst [OF 〈compact T 〉]
that eq)
qed
with continuous closed graph gen assms show ?thesis by blast

qed

lemma continuous closed graph:
fixes f :: ′a::topological space ⇒ ′b::real normed vector
assumes closed S and contf : continuous on S f
shows closed ((λx . Pair x (f x )) ‘ S )

proof (rule closedin closed trans)
show closedin (top of set (S × UNIV )) ((λx . (x , f x )) ‘ S )
by (rule continuous closed graph gen [OF contf subset UNIV ])

qed (simp add : 〈closed S 〉 closed Times)

lemma continuous from closed graph:
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes compact T and fim: f ‘ S ⊆ T and clo: closed ((λx . Pair x (f x )) ‘ S )
shows continuous on S f
using fim clo
by (auto intro: closed subset simp: continuous closed graph eq [OF 〈compact T 〉

fim])

lemma continuous on Un local open:
assumes opS : openin (top of set (S ∪ T )) S

and opT : openin (top of set (S ∪ T )) T
and contf : continuous on S f and contg : continuous on T f

shows continuous on (S ∪ T ) f
using pasting lemma [of {S ,T} top of set (S ∪ T ) id euclidean λi . f f ] contf

contg opS opT
by (simp add : subtopology subtopology) (metis inf .absorb2 openin imp subset)

lemma continuous on cases local open:
assumes opS : openin (top of set (S ∪ T )) S

and opT : openin (top of set (S ∪ T )) T
and contf : continuous on S f and contg : continuous on T g
and fg :

∧
x . x ∈ S ∧ ¬P x ∨ x ∈ T ∧ P x =⇒ f x = g x

shows continuous on (S ∪ T ) (λx . if P x then f x else g x )
proof −
have

∧
x . x ∈ S =⇒ (if P x then f x else g x ) = f x

∧
x . x ∈ T =⇒ (if P x then

f x else g x ) = g x
by (simp all add : fg)

then have continuous on S (λx . if P x then f x else g x ) continuous on T (λx .
if P x then f x else g x )

by (simp all add : contf contg cong : continuous on cong)
then show ?thesis
by (rule continuous on Un local open [OF opS opT ])

qed
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5.0.21 The union of two collinear segments is another seg-
ment

proposition in convex hull exchange:
fixes a :: ′a::euclidean space
assumes a: a ∈ convex hull S and xS : x ∈ convex hull S
obtains b where b ∈ S x ∈ convex hull (insert a (S − {b}))

proof (cases a ∈ S )
case True
with xS insert Diff that show ?thesis by fastforce

next
case False
show ?thesis
proof (cases finite S ∧ card S ≤ Suc (DIM ( ′a)))
case True
then obtain u where u0 :

∧
i . i ∈ S =⇒ 0 ≤ u i and u1 : sum u S = 1

and ua: (
∑

i∈S . u i ∗R i) = a
using a by (auto simp: convex hull finite)

obtain v where v0 :
∧
i . i ∈ S =⇒ 0 ≤ v i and v1 : sum v S = 1

and vx : (
∑

i∈S . v i ∗R i) = x
using True xS by (auto simp: convex hull finite)

show ?thesis
proof (cases ∃ b. b ∈ S ∧ v b = 0 )
case True
then obtain b where b: b ∈ S v b = 0
by blast

show ?thesis
proof
have fin: finite (insert a (S − {b}))
using sum.infinite v1 by fastforce

show x ∈ convex hull insert a (S − {b})
unfolding convex hull finite [OF fin] mem Collect eq

proof (intro conjI exI ballI )
have (

∑
x ∈ insert a (S − {b}). if x = a then 0 else v x ) =

(
∑

x ∈ S − {b}. if x = a then 0 else v x )
using fin by (force intro: sum.mono neutral right)

also have ... = (
∑

x ∈ S − {b}. v x )
using b False by (auto intro!: sum.cong split : if split asm)

also have ... = (
∑

x∈S . v x )
by (metis 〈v b = 0 〉 diff zero sum.infinite sum diff1 u1 zero neq one)

finally show (
∑

x∈insert a (S − {b}). if x = a then 0 else v x ) = 1
by (simp add : v1 )

show
∧
x . x ∈ insert a (S − {b}) =⇒ 0 ≤ (if x = a then 0 else v x )

by (auto simp: v0 )
have (

∑
x ∈ insert a (S − {b}). (if x = a then 0 else v x ) ∗R x ) =

(
∑

x ∈ S − {b}. (if x = a then 0 else v x ) ∗R x )
using fin by (force intro: sum.mono neutral right)

also have ... = (
∑

x ∈ S − {b}. v x ∗R x )
using b False by (auto intro!: sum.cong split : if split asm)

also have ... = (
∑

x∈S . v x ∗R x )
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by (metis (no types, lifting) b(2 ) diff zero fin finite.emptyI finite Diff2
finite insert scale eq 0 iff sum diff1 )

finally show (
∑

x∈insert a (S − {b}). (if x = a then 0 else v x ) ∗R x )
= x

by (simp add : vx )
qed

qed (rule 〈b ∈ S 〉)
next
case False
have le Max : u i / v i ≤ Max ((λi . u i / v i) ‘ S ) if i ∈ S for i
by (simp add : True that)

have Max ((λi . u i / v i) ‘ S ) ∈ (λi . u i / v i) ‘ S
using True v1 by (auto intro: Max in)

then obtain b where b ∈ S and beq : Max ((λb. u b / v b) ‘ S ) = u b / v b
by blast

then have 0 6= u b / v b
using le Max beq divide le 0 iff le numeral extra(2 ) sum nonpos u1
by (metis False eq iff v0 )

then have 0 < u b 0 < v b
using False 〈b ∈ S 〉 u0 v0 by force+

have fin: finite (insert a (S − {b}))
using sum.infinite v1 by fastforce

show ?thesis
proof
show x ∈ convex hull insert a (S − {b})
unfolding convex hull finite [OF fin] mem Collect eq

proof (intro conjI exI ballI )
have (

∑
x ∈ insert a (S − {b}). if x=a then v b / u b else v x − (v b /

u b) ∗ u x ) =
v b / u b + (

∑
x ∈ S − {b}. v x − (v b / u b) ∗ u x )

using 〈a /∈ S 〉 〈b ∈ S 〉 True
by (auto intro!: sum.cong split : if split asm)

also have ... = v b / u b + (
∑

x ∈ S − {b}. v x ) − (v b / u b) ∗ (
∑

x
∈ S − {b}. u x )

by (simp add : Groups Big .sum subtractf sum distrib left)
also have ... = (

∑
x∈S . v x )

using 〈0 < u b〉 True by (simp add : Groups Big .sum diff1 u1 field simps)
finally show sum (λx . if x=a then v b / u b else v x − (v b / u b) ∗ u

x ) (insert a (S − {b})) = 1
by (simp add : v1 )

show 0 ≤ (if i = a then v b / u b else v i − v b / u b ∗ u i)
if i ∈ insert a (S − {b}) for i
using 〈0 < u b〉 〈0 < v b〉 v0 [of i ] le Max [of i ] beq that False
by (auto simp: field simps split : if split asm)

have (
∑

x∈insert a (S − {b}). (if x=a then v b / u b else v x − v b / u
b ∗ u x ) ∗R x ) =

(v b / u b) ∗R a + (
∑

x∈S − {b}. (v x − v b / u b ∗ u x ) ∗R x )
using 〈a /∈ S 〉 〈b ∈ S 〉 True by (auto intro!: sum.cong split : if split asm)
also have ... = (v b / u b) ∗R a + (

∑
x ∈ S − {b}. v x ∗R x ) − (v b /
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u b) ∗R (
∑

x ∈ S − {b}. u x ∗R x )
by (simp add : Groups Big .sum subtractf scaleR left diff distrib sum distrib left

scale sum right)
also have ... = (

∑
x∈S . v x ∗R x )

using 〈0 < u b〉 True by (simp add : ua vx Groups Big .sum diff1
algebra simps)

finally
show (

∑
x∈insert a (S − {b}). (if x=a then v b / u b else v x − v b / u

b ∗ u x ) ∗R x ) = x
by (simp add : vx )

qed
qed (rule 〈b ∈ S 〉)

qed
next
case False
obtain T where finite T T ⊆ S and caT : card T ≤ Suc (DIM ( ′a)) and xT :

x ∈ convex hull T
using xS by (auto simp: caratheodory [of S ])

with False obtain b where b: b ∈ S b /∈ T
by (metis antisym subsetI )

show ?thesis
proof
show x ∈ convex hull insert a (S − {b})
using 〈T ⊆ S 〉 b by (blast intro: subsetD [OF hull mono xT ])

qed (rule 〈b ∈ S 〉)
qed

qed

lemma convex hull exchange Union:
fixes a :: ′a::euclidean space
assumes a ∈ convex hull S
shows convex hull S = (

⋃
b ∈ S . convex hull (insert a (S − {b}))) (is ?lhs =

?rhs)
proof
show ?lhs ⊆ ?rhs
by (blast intro: in convex hull exchange [OF assms])

show ?rhs ⊆ ?lhs
proof clarify
fix x b
assumeb ∈ S x ∈ convex hull insert a (S − {b})
then show x ∈ convex hull S if b ∈ S

by (metis (no types) that assms order refl hull mono hull redundant in-
sert Diff single insert subset subsetCE )
qed

qed

lemma Un closed segment :
fixes a :: ′a::euclidean space
assumes b ∈ closed segment a c
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shows closed segment a b ∪ closed segment b c = closed segment a c
proof (cases c = a)
case True
with assms show ?thesis by simp

next
case False
with assms have convex hull {a, b} ∪ convex hull {b, c} = (

⋃
ba∈{a, c}. convex

hull insert b ({a, c} − {ba}))
by (auto simp: insert Diff if insert commute)

then show ?thesis
using convex hull exchange Union
by (metis assms segment convex hull)

qed

lemma Un open segment :
fixes a :: ′a::euclidean space
assumes b ∈ open segment a c
shows open segment a b ∪ {b} ∪ open segment b c = open segment a c (is ?lhs

= ?rhs)
proof −
have b: b ∈ closed segment a c
by (simp add : assms open closed segment)

have ∗: ?rhs ⊆ insert b (open segment a b ∪ open segment b c)
if {b,c,a} ∪ open segment a b ∪ open segment b c = {c,a} ∪ ?rhs

proof −
have insert a (insert c (insert b (open segment a b ∪ open segment b c))) =

insert a (insert c (?rhs))
using that by (simp add : insert commute)

then show ?thesis
by (metis (no types) Diff cancel Diff eq empty iff Diff insert2 open segment def )

qed
show ?thesis
proof
show ?lhs ⊆ ?rhs
by (simp add : assms b subset open segment)

show ?rhs ⊆ ?lhs
using Un closed segment [OF b] ∗
by (simp add : closed segment eq open insert commute)

qed
qed

5.0.22 Covering an open set by a countable chain of compact
sets

proposition open Union compact subsets:
fixes S :: ′a::euclidean space set
assumes open S
obtains C where

∧
n. compact(C n)

∧
n. C n ⊆ S∧

n. C n ⊆ interior(C (Suc n))
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⋃
(range C ) = S∧
K . [[compact K ; K ⊆ S ]] =⇒ ∃N . ∀n≥N . K ⊆ (C n)

proof (cases S = {})
case True
then show ?thesis
by (rule tac C = λn. {} in that) auto

next
case False
then obtain a where a ∈ S
by auto

let ?C = λn. cball a (real n) − (
⋃

x ∈ −S .
⋃
e ∈ ball 0 (1 / real(Suc n)). {x

+ e})
have ∃N . ∀n≥N . K ⊆ (f n)

if
∧
n. compact(f n) and sub int :

∧
n. f n ⊆ interior (f (Suc n))

and eq :
⋃
(range f ) = S and compact K K ⊆ S for f K

proof −
have ∗: ∀n. f n ⊆ (

⋃
n. interior (f n))

by (meson Sup upper2 UNIV I 〈
∧
n. f n ⊆ interior (f (Suc n))〉 image iff )

have mono:
∧
m n. m ≤ n =⇒f m ⊆ f n

by (meson dual order .trans interior subset lift Suc mono le sub int)
obtain I where finite I and I : K ⊆ (

⋃
i∈I . interior (f i))

proof (rule compactE image [OF 〈compact K 〉])
show K ⊆ (

⋃
n. interior (f n))

using 〈K ⊆ S 〉 〈
⋃
(f ‘ UNIV ) = S 〉 ∗ by blast

qed auto
{ fix n
assume n: Max I ≤ n
have (

⋃
i∈I . interior (f i)) ⊆ f n

by (rule UN least) (meson dual order .trans interior subset mono I Max ge
[OF 〈finite I 〉] n)

then have K ⊆ f n
using I by auto

}
then show ?thesis
by blast

qed
moreover have ∃ f . (∀n. compact(f n)) ∧ (∀n. (f n) ⊆ S ) ∧ (∀n. (f n) ⊆

interior(f (Suc n))) ∧
((
⋃
(range f ) = S ))

proof (intro exI conjI allI )
show

∧
n. compact (?C n)

by (auto simp: compact diff open sums)
show

∧
n. ?C n ⊆ S

by auto
show ?C n ⊆ interior (?C (Suc n)) for n
proof (simp add : interior diff , rule Diff mono)
show cball a (real n) ⊆ ball a (1 + real n)
by (simp add : cball subset ball iff )

have cl : closed (
⋃
x∈− S .

⋃
e∈cball 0 (1 / (2 + real n)). {x + e})
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using assms by (auto intro: closed compact sums)
have closure (

⋃
x∈− S .

⋃
y∈ball 0 (1 / (2 + real n)). {x + y})

⊆ (
⋃
x ∈ −S .

⋃
e ∈ cball 0 (1 / (2 + real n)). {x + e})

by (intro closure minimal UN mono ball subset cball order refl cl)
also have ... ⊆ (

⋃
x ∈ −S .

⋃
y∈ball 0 (1 / (1 + real n)). {x + y})

by (simp add : cball subset ball iff field split simps UN mono)
finally show closure (

⋃
x∈− S .

⋃
y∈ball 0 (1 / (2 + real n)). {x + y})

⊆ (
⋃
x ∈ −S .

⋃
y∈ball 0 (1 / (1 + real n)). {x + y}) .

qed
have S ⊆

⋃
(range ?C )

proof
fix x
assume x : x ∈ S
then obtain e where e > 0 and e: ball x e ⊆ S
using assms open contains ball by blast

then obtain N1 where N1 > 0 and N1 : real N1 > 1/e
using reals Archimedean2
by (metis divide less 0 iff less eq real def neq0 conv not le of nat 0 of nat 1

of nat less 0 iff )
obtain N2 where N2 : norm(x − a) ≤ real N2
by (meson real arch simple)

have N12 : inverse((N1 + N2 ) + 1 ) ≤ inverse(N1 )
using 〈N1 > 0 〉 by (auto simp: field split simps)

have x 6= y + z if y /∈ S norm z < 1 / (1 + (real N1 + real N2 )) for y z
proof −
have e ∗ real N1 < e ∗ (1 + (real N1 + real N2 ))
by (simp add : 〈0 < e〉)

then have 1 / (1 + (real N1 + real N2 )) < e
using N1 〈e > 0 〉

by (metis divide less eq less trans mult .commute of nat add of nat less 0 iff
of nat Suc)

then have x − z ∈ ball x e
using that by simp

then have x − z ∈ S
using e by blast

with that show ?thesis
by auto

qed
with N2 show x ∈

⋃
(range ?C )

by (rule tac a = N1+N2 in UN I ) (auto simp: dist norm norm minus commute)
qed
then show

⋃
(range ?C ) = S by auto

qed
ultimately show ?thesis
using that by metis

qed
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5.0.23 Orthogonal complement

definition orthogonal comp ( ⊥ [80 ] 80 )
where orthogonal comp W ≡ {x . ∀ y ∈ W . orthogonal y x}

proposition subspace orthogonal comp: subspace (W⊥)
unfolding subspace def orthogonal comp def orthogonal def
by (auto simp: inner right distrib)

lemma orthogonal comp anti mono:
assumes A ⊆ B
shows B⊥ ⊆ A⊥

proof
fix x assume x : x ∈ B⊥

show x ∈ orthogonal comp A using x unfolding orthogonal comp def
by (simp add : orthogonal def , metis assms in mono)

qed

lemma orthogonal comp null [simp]: {0}⊥ = UNIV
by (auto simp: orthogonal comp def orthogonal def )

lemma orthogonal comp UNIV [simp]: UNIV⊥ = {0}
unfolding orthogonal comp def orthogonal def
by auto (use inner eq zero iff in blast)

lemma orthogonal comp subset : U ⊆ U⊥⊥

by (auto simp: orthogonal comp def orthogonal def inner commute)

lemma subspace sum minimal :
assumes S ⊆ U T ⊆ U subspace U
shows S + T ⊆ U

proof
fix x
assume x ∈ S + T
then obtain xs xt where xs ∈ S xt ∈ T x = xs+xt
by (meson set plus elim)

then show x ∈ U
by (meson assms subsetCE subspace add)

qed

proposition subspace sum orthogonal comp:
fixes U :: ′a :: euclidean space set
assumes subspace U
shows U + U⊥ = UNIV

proof −
obtain B where B ⊆ U
and ortho: pairwise orthogonal B

∧
x . x ∈ B =⇒ norm x = 1

and independent B card B = dim U span B = U
using orthonormal basis subspace [OF assms] by metis

then have finite B
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by (simp add : indep card eq dim span)
have ∗: ∀ x∈B . ∀ y∈B . x · y = (if x=y then 1 else 0 )
using ortho norm eq 1 by (auto simp: orthogonal def pairwise def )

{ fix v
let ?u =

∑
b∈B . (v · b) ∗R b

have v = ?u + (v − ?u)
by simp

moreover have ?u ∈ U
by (metis (no types, lifting) 〈span B = U 〉 assms subspace sum span base

span mul)
moreover have (v − ?u) ∈ U⊥

proof (clarsimp simp: orthogonal comp def orthogonal def )
fix y
assume y ∈ U
with 〈span B = U 〉 span finite [OF 〈finite B 〉]
obtain u where u: y = (

∑
b∈B . u b ∗R b)

by auto
have b · (v − ?u) = 0 if b ∈ B for b
using that 〈finite B 〉

by (simp add : ∗ algebra simps inner sum right if distrib [of (∗)v for v ]
inner commute cong : if cong)

then show y · (v − ?u) = 0
by (simp add : u inner sum left)

qed
ultimately have v ∈ U + U⊥

using set plus intro by fastforce
} then show ?thesis
by auto

qed

lemma orthogonal Int 0 :
assumes subspace U
shows U ∩ U⊥ = {0}
using orthogonal comp def orthogonal self
by (force simp: assms subspace 0 subspace orthogonal comp)

lemma orthogonal comp self :
fixes U :: ′a :: euclidean space set
assumes subspace U
shows U⊥⊥ = U

proof
have ssU ′: subspace (U⊥)
by (simp add : subspace orthogonal comp)

have u ∈ U if u ∈ U⊥⊥ for u
proof −
obtain v w where u = v+w v ∈ U w ∈ U⊥

using subspace sum orthogonal comp [OF assms] set plus elim by blast
then have u−v ∈ U⊥

by simp
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moreover have v ∈ U⊥⊥

using 〈v ∈ U 〉 orthogonal comp subset by blast
then have u−v ∈ U⊥⊥

by (simp add : subspace diff subspace orthogonal comp that)
ultimately have u−v = 0
using orthogonal Int 0 ssU ′ by blast

with 〈v ∈ U 〉 show ?thesis
by auto

qed
then show U⊥⊥ ⊆ U
by auto

qed (use orthogonal comp subset in auto)

lemma ker orthogonal comp adjoint :
fixes f :: ′m::euclidean space ⇒ ′n::euclidean space
assumes linear f
shows f −‘ {0} = (range (adjoint f ))⊥

proof −
have

∧
x . [[∀ y . y · f x = 0 ]] =⇒ f x = 0

using assms inner commute all zero iff by metis
then show ?thesis
using assms
by (auto simp: orthogonal comp def orthogonal def adjoint works inner commute)

qed

5.0.24 A non-injective linear function maps into a hyper-
plane.

lemma linear surj adj imp inj :
fixes f :: ′m::euclidean space ⇒ ′n::euclidean space
assumes linear f surj (adjoint f )
shows inj f

proof −
have ∃ x . y = adjoint f x for y
using assms by (simp add : surjD)

then show inj f
using assms unfolding inj on def image def
by (metis (no types) adjoint works euclidean eqI )

qed

—https://mathonline.wikidot.com/injectivity-and-surjectivity-of-the-adjoint-of-a-linear-map
lemma surj adjoint iff inj [simp]:
fixes f :: ′m::euclidean space ⇒ ′n::euclidean space
assumes linear f
shows surj (adjoint f ) ←→ inj f

proof
assume surj (adjoint f )
then show inj f
by (simp add : assms linear surj adj imp inj )
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next
assume inj f
have f −‘ {0} = {0}
using assms 〈inj f 〉 linear 0 linear injective 0 by fastforce

moreover have f −‘ {0} = range (adjoint f )⊥

by (intro ker orthogonal comp adjoint assms)
ultimately have range (adjoint f )⊥⊥ = UNIV
by (metis orthogonal comp null)

then show surj (adjoint f )
using adjoint linear 〈linear f 〉

by (subst (asm) orthogonal comp self )
(simp add : adjoint linear linear subspace image)

qed

lemma inj adjoint iff surj [simp]:
fixes f :: ′m::euclidean space ⇒ ′n::euclidean space
assumes linear f
shows inj (adjoint f ) ←→ surj f

proof
assume inj (adjoint f )
have (adjoint f ) −‘ {0} = {0}
by (metis 〈inj (adjoint f )〉 adjoint linear assms surj adjoint iff inj ker orthogonal comp adjoint

orthogonal comp UNIV )
then have (range(f ))⊥ = {0}
by (metis (no types, hide lams) adjoint adjoint adjoint linear assms ker orthogonal comp adjoint

set zero)
then show surj f
by (metis 〈inj (adjoint f )〉 adjoint adjoint adjoint linear assms surj adjoint iff inj )

next
assume surj f
then have range f = (adjoint f −‘ {0})⊥
by (simp add : adjoint adjoint adjoint linear assms ker orthogonal comp adjoint)
then have {0} = adjoint f −‘ {0}
using 〈surj f 〉 adjoint adjoint adjoint linear assms ker orthogonal comp adjoint

by force
then show inj (adjoint f )
by (simp add : 〈surj f 〉 adjoint adjoint adjoint linear assms linear surj adj imp inj )

qed

lemma linear singular into hyperplane:
fixes f :: ′n::euclidean space ⇒ ′n
assumes linear f
shows ¬ inj f ←→ (∃ a. a 6= 0 ∧ (∀ x . a · f x = 0 )) (is = ?rhs)

proof
assume ¬inj f
then show ?rhs
using all zero iff
by (metis (no types, hide lams) adjoint clauses(2 ) adjoint linear assms

linear injective 0 linear injective imp surjective linear surj adj imp inj )
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next
assume ?rhs
then show ¬inj f
by (metis assms linear injective isomorphism all zero iff )

qed

lemma linear singular image hyperplane:
fixes f :: ′n::euclidean space ⇒ ′n
assumes linear f ¬inj f
obtains a where a 6= 0

∧
S . f ‘ S ⊆ {x . a · x = 0}

using assms by (fastforce simp add : linear singular into hyperplane)

end

5.1 The binary product topology

theory Product Topology
imports Function Topology
begin

5.2 Product Topology

5.2.1 Definition

definition prod topology :: ′a topology ⇒ ′b topology ⇒ ( ′a × ′b) topology where
prod topology X Y ≡ topology (arbitrary union of (λU . U ∈ {S × T |S T . openin
X S ∧ openin Y T}))

lemma open product open:
assumes open A
shows ∃U . U ⊆ {S × T |S T . open S ∧ open T} ∧

⋃
U = A

proof −
obtain f g where ∗:

∧
u. u ∈ A =⇒ open (f u) ∧ open (g u) ∧ u ∈ (f u) × (g

u) ∧ (f u) × (g u) ⊆ A
using open prod def [of A] assms by metis

let ?U = (λu. f u × g u) ‘ A
show ?thesis
by (rule tac x=?U in exI ) (auto simp: dest : ∗)

qed

lemma open product open eq : (arbitrary union of (λU . ∃S T . U = S × T ∧ open
S ∧ open T )) = open
by (force simp: union of def arbitrary def intro: open product open open Times)

lemma openin prod topology :
openin (prod topology X Y ) = arbitrary union of (λU . U ∈ {S × T |S T .

openin X S ∧ openin Y T})
unfolding prod topology def
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proof (rule topology inverse ′)
show istopology (arbitrary union of (λU . U ∈ {S × T |S T . openin X S ∧

openin Y T}))
apply (rule istopology base, simp)
by (metis openin Int Times Int Times)

qed

lemma topspace prod topology [simp]:
topspace (prod topology X Y ) = topspace X × topspace Y

proof −
have topspace(prod topology X Y ) =

⋃
(Collect (openin (prod topology X Y )))

(is = ?Z )
unfolding topspace def ..

also have . . . = topspace X × topspace Y
proof
show ?Z ⊆ topspace X × topspace Y
apply (auto simp: openin prod topology union of def arbitrary def )
using openin subset by force+

next
have ∗: ∃A B . topspace X × topspace Y = A × B ∧ openin X A ∧ openin Y

B
by blast

show topspace X × topspace Y ⊆ ?Z
apply (rule Union upper)
using ∗ by (simp add : openin prod topology arbitrary union of inc)

qed
finally show ?thesis .

qed

lemma subtopology Times:
shows subtopology (prod topology X Y ) (S × T ) = prod topology (subtopology X

S ) (subtopology Y T )
proof −
have ((λU . ∃S T . U = S × T ∧ openin X S ∧ openin Y T ) relative to S × T )

=
(λU . ∃S ′ T ′. U = S ′ × T ′ ∧ (openin X relative to S ) S ′ ∧ (openin Y

relative to T ) T ′)
by (auto simp: relative to def Times Int Times fun eq iff ) metis

then show ?thesis
by (simp add : topology eq openin prod topology arbitrary union of relative to

flip: openin relative to)
qed

lemma prod topology subtopology :
prod topology (subtopology X S ) Y = subtopology (prod topology X Y ) (S ×

topspace Y )
prod topology X (subtopology Y T ) = subtopology (prod topology X Y ) (topspace

X × T )
by (auto simp: subtopology Times)
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lemma prod topology discrete topology :
discrete topology (S × T ) = prod topology (discrete topology S ) (discrete topology

T )
by (auto simp: discrete topology unique openin prod topology intro: arbitrary union of inc)

lemma prod topology euclidean [simp]: prod topology euclidean euclidean = euclidean
by (simp add : prod topology def open product open eq)

lemma prod topology subtopology eu [simp]:
prod topology (subtopology euclidean S ) (subtopology euclidean T ) = subtopology

euclidean (S × T )
by (simp add : prod topology subtopology subtopology subtopology Times Int Times)

lemma openin prod topology alt :
openin (prod topology X Y ) S ←→
(∀ x y . (x ,y) ∈ S −→ (∃U V . openin X U ∧ openin Y V ∧ x ∈ U ∧ y ∈ V

∧ U × V ⊆ S ))
apply (auto simp: openin prod topology arbitrary union of alt , fastforce)
by (metis mem Sigma iff )

lemma open map fst : open map (prod topology X Y ) X fst
unfolding open map def openin prod topology alt
by (force simp: openin subopen [of X fst ‘ ] intro: subset fst imageI )

lemma open map snd : open map (prod topology X Y ) Y snd
unfolding open map def openin prod topology alt
by (force simp: openin subopen [of Y snd ‘ ] intro: subset snd imageI )

lemma openin prod Times iff :
openin (prod topology X Y ) (S × T ) ←→ S = {} ∨ T = {} ∨ openin X S ∧

openin Y T
proof (cases S = {} ∨ T = {})
case False
then show ?thesis
apply (simp add : openin prod topology alt openin subopen [of X S ] openin subopen

[of Y T ] times subset iff , safe)
apply (meson|force)+

done
qed force

lemma closure of Times:
(prod topology X Y ) closure of (S × T ) = (X closure of S ) × (Y closure of T )

(is ?lhs = ?rhs)
proof
show ?lhs ⊆ ?rhs
by (clarsimp simp: closure of def openin prod topology alt) blast

show ?rhs ⊆ ?lhs
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by (clarsimp simp: closure of def openin prod topology alt) (meson SigmaI sub-
setD)
qed

lemma closedin prod Times iff :
closedin (prod topology X Y ) (S × T ) ←→ S = {} ∨ T = {} ∨ closedin X S ∧

closedin Y T
by (auto simp: closure of Times times eq iff simp flip: closure of eq)

lemma interior of Times: (prod topology X Y ) interior of (S × T ) = (X inte-
rior of S ) × (Y interior of T )
proof (rule interior of unique)
show (X interior of S ) × Y interior of T ⊆ S × T
by (simp add : Sigma mono interior of subset)

show openin (prod topology X Y ) ((X interior of S ) × Y interior of T )
by (simp add : openin prod Times iff )

next
show T ′⊆ (X interior of S ) × Y interior of T if T ′⊆ S × T openin (prod topology

X Y ) T ′ for T ′

proof (clarsimp; intro conjI )
fix a :: ′a and b :: ′b
assume (a, b) ∈ T ′

with that obtain U V where UV : openin X U openin Y V a ∈ U b ∈ V U
× V ⊆ T ′

by (metis openin prod topology alt)
then show a ∈ X interior of S
using interior of maximal eq that(1 ) by fastforce

show b ∈ Y interior of T
using UV interior of maximal eq that(1 )
by (metis SigmaI mem Sigma iff subset eq)

qed
qed

5.2.2 Continuity

lemma continuous map pairwise:
continuous map Z (prod topology X Y ) f ←→ continuous map Z X (fst ◦ f ) ∧

continuous map Z Y (snd ◦ f )
(is ?lhs = ?rhs)

proof −
let ?g = fst ◦ f and ?h = snd ◦ f
have f : f x = (?g x , ?h x ) for x
by auto

show ?thesis
proof (cases (∀ x ∈ topspace Z . ?g x ∈ topspace X ) ∧ (∀ x ∈ topspace Z . ?h x
∈ topspace Y ))

case True
show ?thesis
proof safe
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assume continuous map Z (prod topology X Y ) f
then have openin Z {x ∈ topspace Z . fst (f x ) ∈ U } if openin X U for U
unfolding continuous map def using True that
apply clarify
apply (drule tac x=U × topspace Y in spec)
by (simp add : openin prod Times iff mem Times iff cong : conj cong)

with True show continuous map Z X (fst ◦ f )
by (auto simp: continuous map def )

next
assume continuous map Z (prod topology X Y ) f
then have openin Z {x ∈ topspace Z . snd (f x ) ∈ V } if openin Y V for V
unfolding continuous map def using True that
apply clarify
apply (drule tac x=topspace X × V in spec)
by (simp add : openin prod Times iff mem Times iff cong : conj cong)

with True show continuous map Z Y (snd ◦ f )
by (auto simp: continuous map def )

next
assume Z : continuous map Z X (fst ◦ f ) continuous map Z Y (snd ◦ f )
have ∗: openin Z {x ∈ topspace Z . f x ∈ W }
if

∧
w . w ∈ W =⇒ ∃U V . openin X U ∧ openin Y V ∧ w ∈ U × V ∧ U

× V ⊆ W for W
proof (subst openin subopen, clarify)
fix x :: ′a
assume x ∈ topspace Z and f x ∈ W
with that [OF 〈f x ∈ W 〉]
obtain U V where UV : openin X U openin Y V f x ∈ U × V U × V ⊆

W
by auto

with Z UV show ∃T . openin Z T ∧ x ∈ T ∧ T ⊆ {x ∈ topspace Z . f x
∈ W }

apply (rule tac x={x ∈ topspace Z . ?g x ∈ U } ∩ {x ∈ topspace Z . ?h x
∈ V } in exI )

apply (auto simp: 〈x ∈ topspace Z 〉 continuous map def )
done

qed
show continuous map Z (prod topology X Y ) f

using True by (simp add : continuous map def openin prod topology alt
mem Times iff ∗)

qed
qed (auto simp: continuous map def )

qed

lemma continuous map paired :
continuous map Z (prod topology X Y ) (λx . (f x ,g x )) ←→ continuous map Z X

f ∧ continuous map Z Y g
by (simp add : continuous map pairwise o def )

lemma continuous map pairedI [continuous intros]:
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[[continuous map Z X f ; continuous map Z Y g ]] =⇒ continuous map Z (prod topology
X Y ) (λx . (f x ,g x ))
by (simp add : continuous map pairwise o def )

lemma continuous map fst [continuous intros]: continuous map (prod topology X
Y ) X fst
using continuous map pairwise [of prod topology X Y X Y id ]
by (simp add : continuous map pairwise)

lemma continuous map snd [continuous intros]: continuous map (prod topology X
Y ) Y snd
using continuous map pairwise [of prod topology X Y X Y id ]
by (simp add : continuous map pairwise)

lemma continuous map fst of [continuous intros]:
continuous map Z (prod topology X Y ) f =⇒ continuous map Z X (fst ◦ f )
by (simp add : continuous map pairwise)

lemma continuous map snd of [continuous intros]:
continuous map Z (prod topology X Y ) f =⇒ continuous map Z Y (snd ◦ f )
by (simp add : continuous map pairwise)

lemma continuous map prod fst :
i ∈ I =⇒ continuous map (prod topology (product topology (λi . Y ) I ) X ) Y (λx .

fst x i)
using continuous map componentwise UNIV continuous map fst by fastforce

lemma continuous map prod snd :
i ∈ I =⇒ continuous map (prod topology X (product topology (λi . Y ) I )) Y (λx .

snd x i)
using continuous map componentwise UNIV continuous map snd by fastforce

lemma continuous map if iff [simp]: continuous map X Y (λx . if P then f x else
g x ) ←→ continuous map X Y (if P then f else g)
by simp

lemma continuous map if [continuous intros]: [[P =⇒ continuous map X Y f ; ∼P
=⇒ continuous map X Y g ]]

=⇒ continuous map X Y (λx . if P then f x else g x )
by simp

lemma continuous map subtopology fst [continuous intros]: continuous map (subtopology
(prod topology X Y ) Z ) X fst

using continuous map from subtopology continuous map fst by force

lemma continuous map subtopology snd [continuous intros]: continuous map (subtopology
(prod topology X Y ) Z ) Y snd

using continuous map from subtopology continuous map snd by force
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lemma quotient map fst [simp]:
quotient map(prod topology X Y ) X fst ←→ (topspace Y = {} −→ topspace X

= {})
by (auto simp: continuous open quotient map open map fst continuous map fst)

lemma quotient map snd [simp]:
quotient map(prod topology X Y ) Y snd ←→ (topspace X = {} −→ topspace Y

= {})
by (auto simp: continuous open quotient map open map snd continuous map snd)

lemma retraction map fst :
retraction map (prod topology X Y ) X fst ←→ (topspace Y = {} −→ topspace

X = {})
proof (cases topspace Y = {})
case True
then show ?thesis
using continuous map image subset topspace
by (fastforce simp: retraction map def retraction maps def continuous map fst

continuous map on empty)
next
case False
have ∃ g . continuous map X (prod topology X Y ) g ∧ (∀ x∈topspace X . fst (g x )

= x )
if y : y ∈ topspace Y for y
by (rule tac x=λx . (x ,y) in exI ) (auto simp: y continuous map paired)

with False have retraction map (prod topology X Y ) X fst
by (fastforce simp: retraction map def retraction maps def continuous map fst)

with False show ?thesis
by simp

qed

lemma retraction map snd :
retraction map (prod topology X Y ) Y snd ←→ (topspace X = {} −→ topspace

Y = {})
proof (cases topspace X = {})
case True
then show ?thesis
using continuous map image subset topspace
by (fastforce simp: retraction map def retraction maps def continuous map fst

continuous map on empty)
next
case False
have ∃ g . continuous map Y (prod topology X Y ) g ∧ (∀ y∈topspace Y . snd (g

y) = y)
if x : x ∈ topspace X for x
by (rule tac x=λy . (x ,y) in exI ) (auto simp: x continuous map paired)

with False have retraction map (prod topology X Y ) Y snd
by (fastforce simp: retraction map def retraction maps def continuous map snd)
with False show ?thesis
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by simp
qed

lemma continuous map of fst :
continuous map (prod topology X Y ) Z (f ◦ fst) ←→ topspace Y = {} ∨ con-

tinuous map X Z f
proof (cases topspace Y = {})
case True
then show ?thesis
by (simp add : continuous map on empty)

next
case False
then show ?thesis
by (simp add : continuous compose quotient map eq)

qed

lemma continuous map of snd :
continuous map (prod topology X Y ) Z (f ◦ snd) ←→ topspace X = {} ∨

continuous map Y Z f
proof (cases topspace X = {})
case True
then show ?thesis
by (simp add : continuous map on empty)

next
case False
then show ?thesis
by (simp add : continuous compose quotient map eq)

qed

lemma continuous map prod top:
continuous map (prod topology X Y ) (prod topology X ′ Y ′) (λ(x ,y). (f x , g y))

←→
topspace (prod topology X Y ) = {} ∨ continuous map X X ′ f ∧ continuous map

Y Y ′ g
proof (cases topspace (prod topology X Y ) = {})
case True
then show ?thesis
by (simp add : continuous map on empty)

next
case False
then show ?thesis

by (simp add : continuous map paired case prod unfold continuous map of fst
[unfolded o def ] continuous map of snd [unfolded o def ])
qed

lemma in prod topology closure of :
assumes z ∈ (prod topology X Y ) closure of S
shows fst z ∈ X closure of (fst ‘ S ) snd z ∈ Y closure of (snd ‘ S )



Product Topology.thy 1077

using assms continuous map eq image closure subset continuous map fst apply
fastforce
using assms continuous map eq image closure subset continuous map snd apply

fastforce
done

proposition compact space prod topology :
compact space(prod topology X Y ) ←→ topspace(prod topology X Y ) = {} ∨

compact space X ∧ compact space Y
proof (cases topspace(prod topology X Y ) = {})
case True
then show ?thesis
using compact space topspace empty by blast

next
case False
then have non mt : topspace X 6= {} topspace Y 6= {}
by auto

have compact space X compact space Y if compact space(prod topology X Y )
proof −
have compactin X (fst ‘ (topspace X × topspace Y ))
by (metis compact space def continuous map fst image compactin that topspace prod topology)
moreover
have compactin Y (snd ‘ (topspace X × topspace Y ))
by (metis compact space def continuous map snd image compactin that topspace prod topology)
ultimately show compact space X compact space Y
by (simp all add : non mt compact space def )

qed
moreover
define X where X ≡ (λV . topspace X × V ) ‘ Collect (openin Y )
define Y where Y ≡ (λU . U × topspace Y ) ‘ Collect (openin X )
have compact space(prod topology X Y ) if compact space X compact space Y
proof (rule Alexander subbase alt)
show toptop: topspace X × topspace Y ⊆

⋃
(X ∪ Y)

unfolding X def Y def by auto
fix C :: ( ′a × ′b) set set
assume C: C ⊆ X ∪ Y topspace X × topspace Y ⊆

⋃
C

then obtain X ′ Y ′ where XY : X ′ ⊆ X Y ′ ⊆ Y and Ceq : C = X ′ ∪ Y ′

using subset UnE by metis
then have sub: topspace X × topspace Y ⊆

⋃
(X ′ ∪ Y ′)

using C by simp
obtain U V where U :

∧
U . U ∈ U =⇒ openin X U Y ′ = (λU . U × topspace

Y ) ‘ U
and V:

∧
V . V ∈ V =⇒ openin Y V X ′ = (λV . topspace X × V ) ‘ V

using XY by (clarsimp simp add : X def Y def subset image iff ) (force simp
add : subset iff )

have ∃D. finite D ∧ D ⊆ X ′ ∪ Y ′ ∧ topspace X × topspace Y ⊆
⋃
D

proof −
have topspace X ⊆

⋃
U ∨ topspace Y ⊆

⋃
V
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using U V C Ceq by auto
then have ∗: ∃D. finite D ∧

(∀ x ∈ D. x ∈ (λV . topspace X × V ) ‘ V ∨ x ∈ (λU . U × topspace
Y ) ‘ U) ∧

(topspace X × topspace Y ⊆
⋃
D)

proof
assume topspace X ⊆

⋃
U

with 〈compact space X 〉 U obtain F where finite F F ⊆ U topspace X ⊆⋃
F

by (meson compact space alt)
with that show ?thesis
by (rule tac x=(λD . D × topspace Y ) ‘ F in exI ) auto

next
assume topspace Y ⊆

⋃
V

with 〈compact space Y 〉 V obtain F where finite F F ⊆ V topspace Y ⊆⋃
F

by (meson compact space alt)
with that show ?thesis
by (rule tac x=(λC . topspace X × C ) ‘ F in exI ) auto

qed
then show ?thesis
using that U V by blast

qed
then show ∃D. finite D ∧ D ⊆ C ∧ topspace X × topspace Y ⊆

⋃
D

using C Ceq by blast
next

have (finite intersection of (λx . x ∈ X ∨ x ∈ Y) relative to topspace X ×
topspace Y )

= (λU . ∃S T . U = S × T ∧ openin X S ∧ openin Y T )
(is ?lhs = ?rhs)

proof −
have ?rhs U if ?lhs U for U
proof −
have topspace X × topspace Y ∩

⋂
T ∈ {A × B |A B . A ∈ Collect (openin

X ) ∧ B ∈ Collect (openin Y )}
if finite T T ⊆ X ∪ Y for T
using that

proof induction
case (insert B B)
then show ?case
unfolding X def Y def
apply (simp add : Int ac subset eq image def )
apply (metis (no types) openin Int openin topspace Times Int Times)
done

qed auto
then show ?thesis
using that
by (auto simp: subset eq elim!: relative toE intersection ofE )

qed
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moreover
have ?lhs Z if Z : ?rhs Z for Z
proof −
obtain U V where Z = U × V openin X U openin Y V
using Z by blast

then have UV : U × V = (topspace X × topspace Y ) ∩ (U × V )
by (simp add : Sigma mono inf absorb2 openin subset)

moreover
have ?lhs ((topspace X × topspace Y ) ∩ (U × V ))
proof (rule relative to inc)
show (finite intersection of (λx . x ∈ X ∨ x ∈ Y)) (U × V )
apply (simp add : intersection of def X def Y def )
apply (rule tac x={(U × topspace Y ),(topspace X × V )} in exI )
using 〈openin X U 〉 〈openin Y V 〉 openin subset UV apply (fastforce

simp add :)
done

qed
ultimately show ?thesis
using 〈Z = U × V 〉 by auto

qed
ultimately show ?thesis
by meson

qed
then show topology (arbitrary union of (finite intersection of (λx . x ∈ X ∪

Y)
relative to (topspace X × topspace Y ))) =

prod topology X Y
by (simp add : prod topology def )

qed
ultimately show ?thesis
using False by blast

qed

lemma compactin Times:
compactin (prod topology X Y ) (S × T ) ←→ S = {} ∨ T = {} ∨ compactin X

S ∧ compactin Y T
by (auto simp: compactin subspace subtopology Times compact space prod topology)

5.2.3 Homeomorphic maps

lemma homeomorphic maps prod :
homeomorphic maps (prod topology X Y ) (prod topology X ′ Y ′) (λ(x ,y). (f x , g

y)) (λ(x ,y). (f ′ x , g ′ y)) ←→
topspace(prod topology X Y ) = {} ∧
topspace(prod topology X ′ Y ′) = {} ∨
homeomorphic maps X X ′ f f ′ ∧
homeomorphic maps Y Y ′ g g ′

unfolding homeomorphic maps def continuous map prod top
by (auto simp: continuous map def homeomorphic maps def continuous map prod top)
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lemma homeomorphic maps swap:
homeomorphic maps (prod topology X Y ) (prod topology Y X )

(λ(x ,y). (y ,x )) (λ(y ,x ). (x ,y))
by (auto simp: homeomorphic maps def case prod unfold continuous map fst con-

tinuous map pairedI continuous map snd)

lemma homeomorphic map swap:
homeomorphic map (prod topology X Y ) (prod topology Y X ) (λ(x ,y). (y ,x ))
using homeomorphic map maps homeomorphic maps swap by metis

lemma embedding map graph:
embedding map X (prod topology X Y ) (λx . (x , f x )) ←→ continuous map X Y

f
(is ?lhs = ?rhs)

proof
assume L: ?lhs
have snd ◦ (λx . (x , f x )) = f
by force

moreover have continuous map X Y (snd ◦ (λx . (x , f x )))
using L
unfolding embedding map def
by (meson continuous map in subtopology continuous map snd of homeomor-

phic imp continuous map)
ultimately show ?rhs
by simp

next
assume R: ?rhs
then show ?lhs
unfolding homeomorphic map maps embedding map def homeomorphic maps def
by (rule tac x=fst in exI )

(auto simp: continuous map in subtopology continuous map paired continu-
ous map from subtopology

continuous map fst)
qed

lemma homeomorphic space prod topology :
[[X homeomorphic space X ′′; Y homeomorphic space Y ′]]

=⇒ prod topology X Y homeomorphic space prod topology X ′′ Y ′

using homeomorphic maps prod unfolding homeomorphic space def by blast

lemma prod topology homeomorphic space left :
topspace Y = {b} =⇒ prod topology X Y homeomorphic space X
unfolding homeomorphic space def
by (rule tac x=fst in exI ) (simp add : homeomorphic map def inj on def flip:

homeomorphic map maps)

lemma prod topology homeomorphic space right :
topspace X = {a} =⇒ prod topology X Y homeomorphic space Y



Product Topology.thy 1081

unfolding homeomorphic space def
by (rule tac x=snd in exI ) (simp add : homeomorphic map def inj on def flip:

homeomorphic map maps)

lemma homeomorphic space prod topology sing1 :
b ∈ topspace Y =⇒ X homeomorphic space (prod topology X (subtopology Y

{b}))
by (metis empty subsetI homeomorphic space sym inf .absorb iff2 insert subset

prod topology homeomorphic space left topspace subtopology)

lemma homeomorphic space prod topology sing2 :
a ∈ topspace X =⇒ Y homeomorphic space (prod topology (subtopology X {a})

Y )
by (metis empty subsetI homeomorphic space sym inf .absorb iff2 insert subset

prod topology homeomorphic space right topspace subtopology)

lemma topological property of prod component :
assumes major : P(prod topology X Y )

and X :
∧
x . [[x ∈ topspace X ; P(prod topology X Y )]] =⇒ P(subtopology

(prod topology X Y ) ({x} × topspace Y ))
and Y :

∧
y . [[y ∈ topspace Y ; P(prod topology X Y )]] =⇒ P(subtopology

(prod topology X Y ) (topspace X × {y}))
and PQ :

∧
X X ′. X homeomorphic space X ′ =⇒ (P X ←→ Q X ′)

and PR:
∧
X X ′. X homeomorphic space X ′ =⇒ (P X ←→ R X ′)

shows topspace(prod topology X Y ) = {} ∨ Q X ∧ R Y
proof −
have Q X ∧ R Y if topspace(prod topology X Y ) 6= {}
proof −
from that obtain a b where a: a ∈ topspace X and b: b ∈ topspace Y
by force

show ?thesis
using X [OF a major ] and Y [OF b major ] homeomorphic space prod topology sing1

[OF b, of X ] homeomorphic space prod topology sing2 [OF a, of Y ]
by (simp add : subtopology Times) (meson PQ PR homeomorphic space prod topology sing2

homeomorphic space sym)
qed
then show ?thesis by metis

qed

lemma limitin pairwise:
limitin (prod topology X Y ) f l F ←→ limitin X (fst ◦ f ) (fst l) F ∧ limitin Y

(snd ◦ f ) (snd l) F
(is ?lhs = ?rhs)

proof
assume ?lhs
then obtain a b where ev :

∧
U . [[(a,b) ∈ U ; openin (prod topology X Y ) U ]]

=⇒ ∀ F x in F . f x ∈ U
and a: a ∈ topspace X and b: b ∈ topspace Y and l : l = (a,b)
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by (auto simp: limitin def )
moreover have ∀ F x in F . fst (f x ) ∈ U if openin X U a ∈ U for U
proof −
have ∀ F c in F . f c ∈ U × topspace Y
using b that ev [of U × topspace Y ] by (auto simp: openin prod topology alt)

then show ?thesis
by (rule eventually mono) (metis (mono tags, lifting) SigmaE2 prod .collapse)

qed
moreover have ∀ F x in F . snd (f x ) ∈ U if openin Y U b ∈ U for U
proof −
have ∀ F c in F . f c ∈ topspace X × U
using a that ev [of topspace X × U ] by (auto simp: openin prod topology alt)

then show ?thesis
by (rule eventually mono) (metis (mono tags, lifting) SigmaE2 prod .collapse)

qed
ultimately show ?rhs
by (simp add : limitin def )

next
have limitin (prod topology X Y ) f (a,b) F
if limitin X (fst ◦ f ) a F limitin Y (snd ◦ f ) b F for a b
using that

proof (clarsimp simp: limitin def )
fix Z :: ( ′a × ′b) set
assume a: a ∈ topspace X ∀U . openin X U ∧ a ∈ U −→ (∀ F x in F . fst (f

x ) ∈ U )
and b: b ∈ topspace Y ∀U . openin Y U ∧ b ∈ U −→ (∀ F x in F . snd (f x )

∈ U )
and Z : openin (prod topology X Y ) Z (a, b) ∈ Z

then obtain U V where openin X U openin Y V a ∈ U b ∈ V U × V ⊆ Z
using Z by (force simp: openin prod topology alt)

then have ∀ F x in F . fst (f x ) ∈ U ∀ F x in F . snd (f x ) ∈ V
by (simp all add : a b)

then show ∀ F x in F . f x ∈ Z
by (rule eventually elim2 ) (use 〈U × V ⊆ Z 〉 subsetD in auto)

qed
then show ?rhs =⇒ ?lhs
by (metis prod .collapse)

qed

end

5.3 T1 and Hausdorff spaces

theory T1 Spaces
imports Product Topology
begin
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5.4 T1 spaces with equivalences to many naturally
”nice” properties.

definition t1 space where
t1 space X ≡ ∀ x ∈ topspace X . ∀ y ∈ topspace X . x 6=y −→ (∃U . openin X U ∧
x ∈ U ∧ y /∈ U )

lemma t1 space expansive:
[[topspace Y = topspace X ;

∧
U . openin X U =⇒ openin Y U ]] =⇒ t1 space X

=⇒ t1 space Y
by (metis t1 space def )

lemma t1 space alt :
t1 space X ←→ (∀ x ∈ topspace X . ∀ y ∈ topspace X . x 6=y −→ (∃U . closedin

X U ∧ x ∈ U ∧ y /∈ U ))
by (metis DiffE DiffI closedin def openin closedin eq t1 space def )

lemma t1 space empty : topspace X = {} =⇒ t1 space X
by (simp add : t1 space def )

lemma t1 space derived set of singleton:
t1 space X ←→ (∀ x ∈ topspace X . X derived set of {x} = {})
apply (simp add : t1 space def derived set of def , safe)
apply (metis openin topspace)
by force

lemma t1 space derived set of finite:
t1 space X ←→ (∀S . finite S −→ X derived set of S = {})

proof (intro iffI allI impI )
fix S :: ′a set
assume finite S
then have fin: finite ((λx . {x}) ‘ (topspace X ∩ S ))
by blast

assume t1 space X
then have X derived set of (

⋃
x ∈ topspace X ∩ S . {x}) = {}

unfolding derived set of Union [OF fin]
by (auto simp: t1 space derived set of singleton)

then have X derived set of (topspace X ∩ S ) = {}
by simp

then show X derived set of S = {}
by simp

qed (auto simp: t1 space derived set of singleton)

lemma t1 space closedin singleton:
t1 space X ←→ (∀ x ∈ topspace X . closedin X {x})
apply (rule iffI )
apply (simp add : closedin contains derived set t1 space derived set of singleton)
using t1 space alt by auto

T{1}{_}{\kern 0pt}Spaces.html


1084

lemma closedin t1 singleton:
[[t1 space X ; a ∈ topspace X ]] =⇒ closedin X {a}
by (simp add : t1 space closedin singleton)

lemma t1 space closedin finite:
t1 space X ←→ (∀S . finite S ∧ S ⊆ topspace X −→ closedin X S )
apply (rule iffI )
apply (simp add : closedin contains derived set t1 space derived set of finite)
by (simp add : t1 space closedin singleton)

lemma closure of singleton:
t1 space X =⇒ X closure of {a} = (if a ∈ topspace X then {a} else {})
by (simp add : closure of eq t1 space closedin singleton closure of eq empty gen)

lemma separated in singleton:
assumes t1 space X
shows separatedin X {a} S ←→ a ∈ topspace X ∧ S ⊆ topspace X ∧ (a /∈ X

closure of S )
separatedin X S {a} ←→ a ∈ topspace X ∧ S ⊆ topspace X ∧ (a /∈ X

closure of S )
unfolding separatedin def
using assms closure of closure of singleton by fastforce+

lemma t1 space openin delete:
t1 space X ←→ (∀U x . openin X U ∧ x ∈ U −→ openin X (U − {x}))
apply (rule iffI )
apply (meson closedin t1 singleton in mono openin diff openin subset)
by (simp add : closedin def t1 space closedin singleton)

lemma t1 space openin delete alt :
t1 space X ←→ (∀U x . openin X U −→ openin X (U − {x}))
by (metis Diff empty Diff insert0 t1 space openin delete)

lemma t1 space singleton Inter open:
t1 space X ←→ (∀ x ∈ topspace X .

⋂
{U . openin X U ∧ x ∈ U } = {x}) (is

?P=?Q)
and t1 space Inter open supersets:

t1 space X ←→ (∀S . S ⊆ topspace X −→
⋂
{U . openin X U ∧ S ⊆ U } =

S ) (is ?P=?R)
proof −
have ?R =⇒ ?Q
apply clarify
apply (drule tac x={x} in spec, simp)
done

moreover have ?Q =⇒ ?P
apply (clarsimp simp add : t1 space def )
apply (drule tac x=x in bspec)
apply (simp all add : set eq iff )
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by (metis (no types, lifting))
moreover have ?P =⇒ ?R
proof (clarsimp simp add : t1 space closedin singleton, rule subset antisym)
fix S
assume S : ∀ x∈topspace X . closedin X {x} S ⊆ topspace X
then show

⋂
{U . openin X U ∧ S ⊆ U } ⊆ S

apply clarsimp
by (metis Diff insert absorb Set .set insert closedin def openin topspace sub-

set insert)
qed force
ultimately show ?P=?Q ?P=?R
by auto

qed

lemma t1 space derived set of infinite openin:
t1 space X ←→

(∀S . X derived set of S =
{x ∈ topspace X . ∀U . x ∈ U ∧ openin X U −→ infinite(S ∩ U )})

(is = ?rhs)
proof
assume t1 space X
show ?rhs
proof safe
fix S x U
assume x ∈ X derived set of S x ∈ U openin X U finite (S ∩ U )
with 〈t1 space X 〉 show False
apply (simp add : t1 space derived set of finite)

by (metis IntI empty iff empty subsetI inf commute openin Int derived set of subset
subset antisym)
next
fix S x
have eq : (∃ y . (y 6= x ) ∧ y ∈ S ∧ y ∈ T ) ←→ ∼((S ∩ T ) ⊆ {x}) for x S T
by blast

assume x ∈ topspace X ∀U . x ∈ U ∧ openin X U −→ infinite (S ∩ U )
then show x ∈ X derived set of S
apply (clarsimp simp add : derived set of def eq)
by (meson finite.emptyI finite.insertI finite subset)

qed (auto simp: in derived set of )
qed (auto simp: t1 space derived set of singleton)

lemma finite t1 space imp discrete topology :
[[topspace X = U ; finite U ; t1 space X ]] =⇒ X = discrete topology U
by (metis discrete topology unique derived set t1 space derived set of finite)

lemma t1 space subtopology : t1 space X =⇒ t1 space(subtopology X U )
by (simp add : derived set of subtopology t1 space derived set of finite)

lemma closedin derived set of gen:
t1 space X =⇒ closedin X (X derived set of S )
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apply (clarsimp simp add : in derived set of closedin contains derived set de-
rived set of subset topspace)
by (metis DiffD2 insert Diff insert iff t1 space openin delete)

lemma derived set of derived set subset gen:
t1 space X =⇒ X derived set of (X derived set of S ) ⊆ X derived set of S
by (meson closedin contains derived set closedin derived set of gen)

lemma subtopology eq discrete topology gen finite:
[[t1 space X ; finite S ]] =⇒ subtopology X S = discrete topology(topspace X ∩ S )
by (simp add : subtopology eq discrete topology gen t1 space derived set of finite)

lemma subtopology eq discrete topology finite:
[[t1 space X ; S ⊆ topspace X ; finite S ]]

=⇒ subtopology X S = discrete topology S
by (simp add : subtopology eq discrete topology eq t1 space derived set of finite)

lemma t1 space closed map image:
[[closed map X Y f ; f ‘ (topspace X ) = topspace Y ; t1 space X ]] =⇒ t1 space Y
by (metis closed map def finite subset image t1 space closedin finite)

lemma homeomorphic t1 space: X homeomorphic space Y =⇒ (t1 space X ←→
t1 space Y )
apply (clarsimp simp add : homeomorphic space def )
by (meson homeomorphic eq everything map homeomorphic maps map t1 space closed map image)

proposition t1 space product topology :
t1 space (product topology X I )

←→ topspace(product topology X I ) = {} ∨ (∀ i ∈ I . t1 space (X i))
proof (cases topspace(product topology X I ) = {})
case True
then show ?thesis
using True t1 space empty by blast

next
case False
then obtain f where f : f ∈ (ΠE i∈I . topspace(X i))
by fastforce

have t1 space (product topology X I ) ←→ (∀ i∈I . t1 space (X i))
proof (intro iffI ballI )
show t1 space (X i) if t1 space (product topology X I ) and i ∈ I for i
proof −
have clo:

∧
h. h ∈ (ΠE i∈I . topspace (X i)) =⇒ closedin (product topology

X I ) {h}
using that by (simp add : t1 space closedin singleton)

show ?thesis
unfolding t1 space closedin singleton

proof clarify
show closedin (X i) {xi} if xi ∈ topspace (X i) for xi
using clo [of λj ∈ I . if i=j then xi else f j ] f that 〈i ∈ I 〉
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by (fastforce simp add : closedin product topology singleton)
qed

qed
next
next
show t1 space (product topology X I ) if ∀ i∈I . t1 space (X i)
using that

by (simp add : t1 space closedin singleton Ball def PiE iff closedin product topology singleton)
qed
then show ?thesis
using False by blast

qed

lemma t1 space prod topology :
t1 space(prod topology X Y ) ←→ topspace(prod topology X Y ) = {} ∨ t1 space

X ∧ t1 space Y
proof (cases topspace (prod topology X Y ) = {})
case True then show ?thesis
by (auto simp: t1 space empty)

next
case False
have eq : {(x ,y)} = {x} × {y} for x y
by simp

have t1 space (prod topology X Y ) ←→ (t1 space X ∧ t1 space Y )
using False
by (force simp: t1 space closedin singleton closedin prod Times iff eq simp del :

insert Times insert)
with False show ?thesis
by simp

qed

5.4.1 Hausdorff Spaces

definition Hausdorff space
where
Hausdorff space X ≡

∀ x y . x ∈ topspace X ∧ y ∈ topspace X ∧ (x 6= y)
−→ (∃U V . openin X U ∧ openin X V ∧ x ∈ U ∧ y ∈ V ∧ disjnt U

V )

lemma Hausdorff space expansive:
[[Hausdorff space X ; topspace X = topspace Y ;

∧
U . openin X U =⇒ openin Y

U ]] =⇒ Hausdorff space Y
by (metis Hausdorff space def )

lemma Hausdorff space topspace empty :
topspace X = {} =⇒ Hausdorff space X
by (simp add : Hausdorff space def )
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lemma Hausdorff imp t1 space:
Hausdorff space X =⇒ t1 space X
by (metis Hausdorff space def disjnt iff t1 space def )

lemma closedin derived set of :
Hausdorff space X =⇒ closedin X (X derived set of S )
by (simp add : Hausdorff imp t1 space closedin derived set of gen)

lemma t1 or Hausdorff space:
t1 space X ∨ Hausdorff space X ←→ t1 space X
using Hausdorff imp t1 space by blast

lemma Hausdorff space sing Inter opens:
[[Hausdorff space X ; a ∈ topspace X ]] =⇒

⋂
{u. openin X u ∧ a ∈ u} = {a}

using Hausdorff imp t1 space t1 space singleton Inter open by force

lemma Hausdorff space subtopology :
assumes Hausdorff space X shows Hausdorff space(subtopology X S )

proof −
have ∗: disjnt U V =⇒ disjnt (S ∩ U ) (S ∩ V ) for U V
by (simp add : disjnt iff )

from assms show ?thesis
apply (simp add : Hausdorff space def openin subtopology alt)
apply (fast intro: ∗ elim!: all forward)
done

qed

lemma Hausdorff space compact separation:
assumes X : Hausdorff space X and S : compactin X S and T : compactin X T

and disjnt S T
obtains U V where openin X U openin X V S ⊆ U T ⊆ V disjnt U V

proof (cases S = {})
case True
then show thesis
by (metis 〈compactin X T 〉 compactin subset topspace disjnt empty1 empty subsetI

openin empty openin topspace that)
next
case False
have ∀ x ∈ S . ∃U V . openin X U ∧ openin X V ∧ x ∈ U ∧ T ⊆ V ∧ disjnt U

V
proof
fix a
assume a ∈ S
then have a /∈ T
by (meson assms(4 ) disjnt iff )

have a: a ∈ topspace X
using S 〈a ∈ S 〉 compactin subset topspace by blast

show ∃U V . openin X U ∧ openin X V ∧ a ∈ U ∧ T ⊆ V ∧ disjnt U V
proof (cases T = {})
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case True
then show ?thesis
using a disjnt empty2 openin empty by blast

next
case False
have ∀ x ∈ topspace X − {a}. ∃U V . openin X U ∧ openin X V ∧ x ∈ U

∧ a ∈ V ∧ disjnt U V
using X a by (simp add : Hausdorff space def )

then obtain U V where UV : ∀ x ∈ topspace X − {a}. openin X (U x ) ∧
openin X (V x ) ∧ x ∈ U x ∧ a ∈ V x ∧ disjnt (U x ) (V x )

by metis
with 〈a /∈ T 〉 compactin subset topspace [OF T ]
have Topen: ∀W ∈ U ‘ T . openin X W and Tsub: T ⊆

⋃
(U ‘ T )

by (auto simp: )
then obtain F where F : finite F F ⊆ U ‘ T and T ⊆

⋃
F

using T unfolding compactin def by meson
then obtain F where F : finite F F ⊆ T F = U ‘ F and SUF : T ⊆

⋃
(U

‘ F ) and a /∈ F
using finite subset image [OF F ] 〈a /∈ T 〉 by (metis subsetD)

have U :
∧
x . [[x ∈ topspace X ; x 6= a]] =⇒ openin X (U x )

and V :
∧
x . [[x ∈ topspace X ; x 6= a]] =⇒ openin X (V x )

and disj :
∧
x . [[x ∈ topspace X ; x 6= a]] =⇒ disjnt (U x ) (V x )

using UV by blast+
show ?thesis
proof (intro exI conjI )
have F 6= {}
using False SUF by blast

with 〈a /∈ F 〉 show openin X (
⋂
(V ‘ F ))

using F compactin subset topspace [OF T ] by (force intro: V )
show openin X (

⋃
(U ‘ F ))

using F Topen Tsub by (force intro: U )
show disjnt (

⋂
(V ‘ F )) (

⋃
(U ‘ F ))

using disj
apply (auto simp: disjnt def )
using 〈F ⊆ T 〉 〈a /∈ F 〉 compactin subset topspace [OF T ] by blast

show a ∈ (
⋂
(V ‘ F ))

using 〈F ⊆ T 〉 T UV 〈a /∈ T 〉 compactin subset topspace by blast
qed (auto simp: SUF )

qed
qed
then obtain U V where UV : ∀ x ∈ S . openin X (U x ) ∧ openin X (V x ) ∧ x
∈ U x ∧ T ⊆ V x ∧ disjnt (U x ) (V x )

by metis
then have S ⊆

⋃
(U ‘ S )

by auto
moreover have ∀W ∈ U ‘ S . openin X W
using UV by blast

ultimately obtain I where I : S ⊆
⋃

(U ‘ I ) I ⊆ S finite I
by (metis S compactin def finite subset image)
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show thesis
proof
show openin X (

⋃
(U ‘ I ))

using 〈I ⊆ S 〉 UV by blast
show openin X (

⋂
(V ‘ I ))

using False UV 〈I ⊆ S 〉 〈S ⊆
⋃

(U ‘ I )〉 〈finite I 〉 by blast
show disjnt (

⋃
(U ‘ I )) (

⋂
(V ‘ I ))

by simp (meson UV 〈I ⊆ S 〉 disjnt subset2 in mono le INF iff order refl)
qed (use UV I in auto)

qed

lemma Hausdorff space compact sets:
Hausdorff space X ←→
(∀S T . compactin X S ∧ compactin X T ∧ disjnt S T

−→ (∃U V . openin X U ∧ openin X V ∧ S ⊆ U ∧ T ⊆ V ∧ disjnt U
V ))
(is ?lhs = ?rhs)

proof
assume ?lhs
then show ?rhs
by (meson Hausdorff space compact separation)

next
assume R [rule format ]: ?rhs
show ?lhs
proof (clarsimp simp add : Hausdorff space def )
fix x y
assume x ∈ topspace X y ∈ topspace X x 6= y
then show ∃U . openin X U ∧ (∃V . openin X V ∧ x ∈ U ∧ y ∈ V ∧ disjnt

U V )
using R [of {x} {y}] by auto

qed
qed

lemma compactin imp closedin:
assumes X : Hausdorff space X and S : compactin X S shows closedin X S

proof −
have S ⊆ topspace X
by (simp add : assms compactin subset topspace)

moreover
have ∃T . openin X T ∧ x ∈ T ∧ T ⊆ topspace X − S if x ∈ topspace X x /∈

S for x
using Hausdorff space compact separation [OF X S , of {x}] that
apply (simp add : disjnt def )
by (metis Diff mono Diff triv openin subset)

ultimately show ?thesis
using closedin def openin subopen by force

qed
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lemma closedin Hausdorff singleton:
[[Hausdorff space X ; x ∈ topspace X ]] =⇒ closedin X {x}
by (simp add : Hausdorff imp t1 space closedin t1 singleton)

lemma closedin Hausdorff sing eq :
Hausdorff space X =⇒ closedin X {x} ←→ x ∈ topspace X
by (meson closedin Hausdorff singleton closedin subset insert subset)

lemma Hausdorff space discrete topology [simp]:
Hausdorff space (discrete topology U )
unfolding Hausdorff space def
apply safe
by (metis discrete topology unique alt disjnt empty2 disjnt insert2 insert iff mk disjoint insert

topspace discrete topology)

lemma compactin Int :
[[Hausdorff space X ; compactin X S ; compactin X T ]] =⇒ compactin X (S ∩ T )
by (simp add : closed Int compactin compactin imp closedin)

lemma finite topspace imp discrete topology :
[[topspace X = U ; finite U ; Hausdorff space X ]] =⇒ X = discrete topology U
using Hausdorff imp t1 space finite t1 space imp discrete topology by blast

lemma derived set of finite:
[[Hausdorff space X ; finite S ]] =⇒ X derived set of S = {}
using Hausdorff imp t1 space t1 space derived set of finite by auto

lemma derived set of singleton:
Hausdorff space X =⇒ X derived set of {x} = {}
by (simp add : derived set of finite)

lemma closedin Hausdorff finite:
[[Hausdorff space X ; S ⊆ topspace X ; finite S ]] =⇒ closedin X S
by (simp add : compactin imp closedin finite imp compactin eq)

lemma open in Hausdorff delete:
[[Hausdorff space X ; openin X S ]] =⇒ openin X (S − {x})
using Hausdorff imp t1 space t1 space openin delete alt by auto

lemma closedin Hausdorff finite eq :
[[Hausdorff space X ; finite S ]] =⇒ closedin X S ←→ S ⊆ topspace X
by (meson closedin Hausdorff finite closedin def )

lemma derived set of infinite openin:
Hausdorff space X

=⇒ X derived set of S =
{x ∈ topspace X . ∀U . x ∈ U ∧ openin X U −→ infinite(S ∩ U )}

using Hausdorff imp t1 space t1 space derived set of infinite openin by fastforce
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lemma Hausdorff space discrete compactin:
Hausdorff space X

=⇒ S ∩ X derived set of S = {} ∧ compactin X S ←→ S ⊆ topspace X ∧
finite S
using derived set of finite discrete compactin eq finite by fastforce

lemma Hausdorff space finite topspace:
Hausdorff space X =⇒ X derived set of (topspace X ) = {} ∧ compact space X

←→ finite(topspace X )
using derived set of finite discrete compact space eq finite by auto

lemma derived set of derived set subset :
Hausdorff space X =⇒ X derived set of (X derived set of S ) ⊆ X derived set of

S
by (simp add : Hausdorff imp t1 space derived set of derived set subset gen)

lemma Hausdorff space injective preimage:
assumes Hausdorff space Y and cmf : continuous map X Y f and inj on f

(topspace X )
shows Hausdorff space X
unfolding Hausdorff space def

proof clarify
fix x y
assume x : x ∈ topspace X and y : y ∈ topspace X and x 6= y
then obtain U V where openin Y U openin Y V f x ∈ U f y ∈ V disjnt U V

using assms unfolding Hausdorff space def continuous map def by (meson
inj onD)
show ∃U V . openin X U ∧ openin X V ∧ x ∈ U ∧ y ∈ V ∧ disjnt U V
proof (intro exI conjI )
show openin X {x ∈ topspace X . f x ∈ U }
using 〈openin Y U 〉 cmf continuous map by fastforce

show openin X {x ∈ topspace X . f x ∈ V }
using 〈openin Y V 〉 cmf openin continuous map preimage by blast

show disjnt {x ∈ topspace X . f x ∈ U } {x ∈ topspace X . f x ∈ V }
using 〈disjnt U V 〉 by (auto simp add : disjnt def )

qed (use x 〈f x ∈ U 〉 y 〈f y ∈ V 〉 in auto)
qed

lemma homeomorphic Hausdorff space:
X homeomorphic space Y =⇒ Hausdorff space X ←→ Hausdorff space Y
unfolding homeomorphic space def homeomorphic maps map
by (auto simp: homeomorphic eq everything map Hausdorff space injective preimage)

lemma Hausdorff space retraction map image:
[[retraction map X Y r ; Hausdorff space X ]] =⇒ Hausdorff space Y
unfolding retraction map def
using Hausdorff space subtopology homeomorphic Hausdorff space retraction maps section image2

by blast
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lemma compact Hausdorff space optimal :
assumes eq : topspace Y = topspace X and XY :

∧
U . openin X U =⇒ openin

Y U
and Hausdorff space X compact space Y

shows Y = X
proof −
have

∧
U . closedin X U =⇒ closedin Y U

using XY using topology finer closedin [OF eq ]
by metis

have openin Y S = openin X S for S
by (metis XY assms(3 ) assms(4 ) closedin compact space compactin contractive

compactin imp closedin eq openin closedin eq)
then show ?thesis
by (simp add : topology eq)

qed

lemma continuous map imp closed graph:
assumes f : continuous map X Y f and Y : Hausdorff space Y
shows closedin (prod topology X Y ) ((λx . (x ,f x )) ‘ topspace X )
unfolding closedin def

proof
show (λx . (x , f x )) ‘ topspace X ⊆ topspace (prod topology X Y )
using continuous map def f by fastforce

show openin (prod topology X Y ) (topspace (prod topology X Y ) − (λx . (x , f x ))
‘ topspace X )

unfolding openin prod topology alt
proof (intro allI impI )

show ∃U V . openin X U ∧ openin Y V ∧ x ∈ U ∧ y ∈ V ∧ U × V ⊆
topspace (prod topology X Y ) − (λx . (x , f x )) ‘ topspace X

if (x ,y) ∈ topspace (prod topology X Y ) − (λx . (x , f x )) ‘ topspace X
for x y

proof −
have x ∈ topspace X y ∈ topspace Y y 6= f x
using that by auto

moreover have f x ∈ topspace Y
by (meson 〈x ∈ topspace X 〉 continuous map def f )

ultimately obtain U V where UV : openin Y U openin Y V f x ∈ U y ∈
V disjnt U V

using Y Hausdorff space def by metis
show ?thesis
proof (intro exI conjI )
show openin X {x ∈ topspace X . f x ∈ U }
using 〈openin Y U 〉 f openin continuous map preimage by blast

show {x ∈ topspace X . f x ∈ U } × V ⊆ topspace (prod topology X Y ) −
(λx . (x , f x )) ‘ topspace X

using UV by (auto simp: disjnt iff dest : openin subset)
qed (use UV 〈x ∈ topspace X 〉 in auto)

qed
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qed
qed

lemma continuous imp closed map:
[[continuous map X Y f ; compact space X ; Hausdorff space Y ]] =⇒ closed map

X Y f
by (meson closed map def closedin compact space compactin imp closedin im-

age compactin)

lemma continuous imp quotient map:
[[continuous map X Y f ; compact space X ; Hausdorff space Y ; f ‘ (topspace X )

= topspace Y ]]
=⇒ quotient map X Y f

by (simp add : continuous imp closed map continuous closed imp quotient map)

lemma continuous imp homeomorphic map:
[[continuous map X Y f ; compact space X ; Hausdorff space Y ;
f ‘ (topspace X ) = topspace Y ; inj on f (topspace X )]]

=⇒ homeomorphic map X Y f
by (simp add : continuous imp closed map bijective closed imp homeomorphic map)

lemma continuous imp embedding map:
[[continuous map X Y f ; compact space X ; Hausdorff space Y ; inj on f (topspace

X )]]
=⇒ embedding map X Y f

by (simp add : continuous imp closed map injective closed imp embedding map)

lemma continuous inverse map:
assumes compact space X Hausdorff space Y
and cmf : continuous map X Y f and gf :

∧
x . x ∈ topspace X =⇒ g(f x ) = x

and Sf : S ⊆ f ‘ (topspace X )
shows continuous map (subtopology Y S ) X g

proof (rule continuous map from subtopology mono [OF 〈S ⊆ f ‘ (topspace X )〉])
show continuous map (subtopology Y (f ‘ (topspace X ))) X g
unfolding continuous map closedin

proof (intro conjI ballI allI impI )
fix x
assume x ∈ topspace (subtopology Y (f ‘ topspace X ))
then show g x ∈ topspace X
by (auto simp: gf )

next
fix C
assume C : closedin X C
show closedin (subtopology Y (f ‘ topspace X ))

{x ∈ topspace (subtopology Y (f ‘ topspace X )). g x ∈ C}
proof (rule compactin imp closedin)
show Hausdorff space (subtopology Y (f ‘ topspace X ))
using Hausdorff space subtopology [OF 〈Hausdorff space Y 〉] by blast

have compactin Y (f ‘ C )
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using C cmf image compactin closedin compact space [OF 〈compact space
X 〉] by blast

moreover have {x ∈ topspace Y . x ∈ f ‘ topspace X ∧ g x ∈ C} = f ‘ C
using closedin subset [OF C ] cmf by (auto simp: gf continuous map def )

ultimately have compactin Y {x ∈ topspace Y . x ∈ f ‘ topspace X ∧ g x ∈
C}

by simp
then show compactin (subtopology Y (f ‘ topspace X ))

{x ∈ topspace (subtopology Y (f ‘ topspace X )). g x ∈ C}
by (auto simp add : compactin subtopology)

qed
qed

qed

lemma closed map paired continuous map right :
[[continuous map X Y f ; Hausdorff space Y ]] =⇒ closed map X (prod topology

X Y ) (λx . (x ,f x ))
by (simp add : continuous map imp closed graph embedding map graph embed-

ding imp closed map)

lemma closed map paired continuous map left :
assumes f : continuous map X Y f and Y : Hausdorff space Y
shows closed map X (prod topology Y X ) (λx . (f x ,x ))

proof −
have eq : (λx . (f x ,x )) = (λ(a,b). (b,a)) ◦ (λx . (x ,f x ))
by auto

show ?thesis
unfolding eq

proof (rule closed map compose)
show closed map X (prod topology X Y ) (λx . (x , f x ))
using Y closed map paired continuous map right f by blast

show closed map (prod topology X Y ) (prod topology Y X ) (λ(a, b). (b, a))
by (metis homeomorphic map swap homeomorphic imp closed map)

qed
qed

lemma proper map paired continuous map right :
[[continuous map X Y f ; Hausdorff space Y ]]

=⇒ proper map X (prod topology X Y ) (λx . (x ,f x ))
using closed injective imp proper map closed map paired continuous map right
by (metis (mono tags, lifting) Pair inject inj onI )

lemma proper map paired continuous map left :
[[continuous map X Y f ; Hausdorff space Y ]]

=⇒ proper map X (prod topology Y X ) (λx . (f x ,x ))
using closed injective imp proper map closed map paired continuous map left
by (metis (mono tags, lifting) Pair inject inj onI )

lemma Hausdorff space prod topology :
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Hausdorff space(prod topology X Y ) ←→ topspace(prod topology X Y ) = {} ∨
Hausdorff space X ∧ Hausdorff space Y
(is ?lhs = ?rhs)

proof
assume ?lhs
then show ?rhs
by (rule topological property of prod component) (auto simp: Hausdorff space subtopology

homeomorphic Hausdorff space)
next
assume R: ?rhs
show ?lhs
proof (cases (topspace X × topspace Y ) = {})
case False
with R have ne: topspace X 6= {} topspace Y 6= {} and X : Hausdorff space

X and Y : Hausdorff space Y
by auto

show ?thesis
unfolding Hausdorff space def

proof clarify
fix x y x ′ y ′

assume xy : (x , y) ∈ topspace (prod topology X Y )
and xy ′: (x ′,y ′) ∈ topspace (prod topology X Y )
and ∗: @U V . openin (prod topology X Y ) U ∧ openin (prod topology X Y )

V
∧ (x , y) ∈ U ∧ (x ′, y ′) ∈ V ∧ disjnt U V

have False if x 6= x ′ ∨ y 6= y ′

using that
proof
assume x 6= x ′

then obtain U V where openin X U openin X V x ∈ U x ′ ∈ V disjnt U V
by (metis Hausdorff space def X mem Sigma iff topspace prod topology xy

xy ′)
let ?U = U × topspace Y
let ?V = V × topspace Y
have openin (prod topology X Y ) ?U openin (prod topology X Y ) ?V
by (simp all add : openin prod Times iff 〈openin X U 〉 〈openin X V 〉)

moreover have disjnt ?U ?V
by (simp add : 〈disjnt U V 〉)

ultimately show False
using ∗ 〈x ∈ U 〉 〈x ′∈ V 〉 xy xy ′ by (metis SigmaD2 SigmaI topspace prod topology)
next
assume y 6= y ′

then obtain U V where openin Y U openin Y V y ∈ U y ′ ∈ V disjnt U V
by (metis Hausdorff space def Y mem Sigma iff topspace prod topology xy

xy ′)
let ?U = topspace X × U
let ?V = topspace X × V
have openin (prod topology X Y ) ?U openin (prod topology X Y ) ?V
by (simp all add : openin prod Times iff 〈openin Y U 〉 〈openin Y V 〉)



T1 Spaces.thy 1097

moreover have disjnt ?U ?V
by (simp add : 〈disjnt U V 〉)

ultimately show False
using ∗ 〈y ∈ U 〉 〈y ′∈ V 〉 xy xy ′ by (metis SigmaD1 SigmaI topspace prod topology)
qed
then show x = x ′ ∧ y = y ′

by blast
qed

qed (simp add : Hausdorff space topspace empty)
qed

lemma Hausdorff space product topology :
Hausdorff space (product topology X I ) ←→ (ΠE i∈I . topspace(X i)) = {} ∨

(∀ i ∈ I . Hausdorff space (X i))
(is ?lhs = ?rhs)

proof
assume ?lhs
then show ?rhs
apply (rule topological property of product component)
apply (blast dest : Hausdorff space subtopology homeomorphic Hausdorff space)+
done

next
assume R: ?rhs
show ?lhs
proof (cases (ΠE i∈I . topspace(X i)) = {})
case True
then show ?thesis
by (simp add : Hausdorff space topspace empty)

next
case False
have ∃U V . openin (product topology X I ) U ∧ openin (product topology X I )

V ∧ f ∈ U ∧ g ∈ V ∧ disjnt U V
if f : f ∈ (ΠE i∈I . topspace (X i)) and g : g ∈ (ΠE i∈I . topspace (X i)) and

f 6= g
for f g :: ′a ⇒ ′b

proof −
obtain m where f m 6= g m
using 〈f 6= g〉 by blast

then have m ∈ I
using f g by fastforce

then have Hausdorff space (X m)
using False that R by blast

then obtain U V where U : openin (X m) U and V : openin (X m) V and
f m ∈ U g m ∈ V disjnt U V

by (metis Hausdorff space def PiE mem 〈f m 6= g m〉 〈m ∈ I 〉 f g)
show ?thesis
proof (intro exI conjI )
let ?U = (ΠE i∈I . topspace(X i)) ∩ {x . x m ∈ U }
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let ?V = (ΠE i∈I . topspace(X i)) ∩ {x . x m ∈ V }
show openin (product topology X I ) ?U openin (product topology X I ) ?V
using 〈m ∈ I 〉 U V
by (force simp add : openin product topology intro: arbitrary union of inc

relative to inc finite intersection of inc)+
show f ∈ ?U
using 〈f m ∈ U 〉 f by blast

show g ∈ ?V
using 〈g m ∈ V 〉 g by blast

show disjnt ?U ?V
using 〈disjnt U V 〉 by (auto simp: PiE def Pi def disjnt def )

qed
qed
then show ?thesis
by (simp add : Hausdorff space def )

qed
qed

end

5.5 Path-Connectedness

theory Path Connected
imports
Starlike
T1 Spaces

begin

5.5.1 Paths and Arcs

definition path :: (real ⇒ ′a::topological space) ⇒ bool
where path g ←→ continuous on {0 ..1} g

definition pathstart :: (real ⇒ ′a::topological space) ⇒ ′a
where pathstart g = g 0

definition pathfinish :: (real ⇒ ′a::topological space) ⇒ ′a
where pathfinish g = g 1

definition path image :: (real ⇒ ′a::topological space) ⇒ ′a set
where path image g = g ‘ {0 .. 1}

definition reversepath :: (real ⇒ ′a::topological space) ⇒ real ⇒ ′a
where reversepath g = (λx . g(1 − x ))

definition joinpaths :: (real ⇒ ′a::topological space) ⇒ (real ⇒ ′a) ⇒ real ⇒ ′a
(infixr +++ 75 )

where g1 +++ g2 = (λx . if x ≤ 1/2 then g1 (2 ∗ x ) else g2 (2 ∗ x − 1 ))
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definition simple path :: (real ⇒ ′a::topological space) ⇒ bool
where simple path g ←→

path g ∧ (∀ x∈{0 ..1}. ∀ y∈{0 ..1}. g x = g y −→ x = y ∨ x = 0 ∧ y = 1 ∨
x = 1 ∧ y = 0 )

definition arc :: (real ⇒ ′a :: topological space) ⇒ bool
where arc g ←→ path g ∧ inj on g {0 ..1}

5.5.2 Invariance theorems

lemma path eq : path p =⇒ (
∧
t . t ∈ {0 ..1} =⇒ p t = q t) =⇒ path q

using continuous on eq path def by blast

lemma path continuous image: path g =⇒ continuous on (path image g) f =⇒
path(f ◦ g)
unfolding path def path image def
using continuous on compose by blast

lemma continuous on translation eq :
fixes g :: ′a :: real normed vector ⇒ ′b :: real normed vector
shows continuous on A ((+) a ◦ g) = continuous on A g

proof −
have g : g = (λx . −a + x ) ◦ ((λx . a + x ) ◦ g)
by (rule ext) simp

show ?thesis
by (metis (no types, hide lams) g continuous on compose homeomorphism def

homeomorphism translation)
qed

lemma path translation eq :
fixes g :: real ⇒ ′a :: real normed vector
shows path((λx . a + x ) ◦ g) = path g
using continuous on translation eq path def by blast

lemma path linear image eq :
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes linear f inj f
shows path(f ◦ g) = path g

proof −
from linear injective left inverse [OF assms]
obtain h where h: linear h h ◦ f = id
by blast

then have g : g = h ◦ (f ◦ g)
by (metis comp assoc id comp)

show ?thesis
unfolding path def
using h assms
by (metis g continuous on compose linear continuous on linear conv bounded linear)

qed
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lemma pathstart translation: pathstart((λx . a + x ) ◦ g) = a + pathstart g
by (simp add : pathstart def )

lemma pathstart linear image eq : linear f =⇒ pathstart(f ◦ g) = f (pathstart g)
by (simp add : pathstart def )

lemma pathfinish translation: pathfinish((λx . a + x ) ◦ g) = a + pathfinish g
by (simp add : pathfinish def )

lemma pathfinish linear image: linear f =⇒ pathfinish(f ◦ g) = f (pathfinish g)
by (simp add : pathfinish def )

lemma path image translation: path image((λx . a + x ) ◦ g) = (λx . a + x ) ‘
(path image g)
by (simp add : image comp path image def )

lemma path image linear image: linear f =⇒ path image(f ◦ g) = f ‘ (path image
g)
by (simp add : image comp path image def )

lemma reversepath translation: reversepath((λx . a + x ) ◦ g) = (λx . a + x ) ◦
reversepath g
by (rule ext) (simp add : reversepath def )

lemma reversepath linear image: linear f =⇒ reversepath(f ◦ g) = f ◦ reversepath
g
by (rule ext) (simp add : reversepath def )

lemma joinpaths translation:
((λx . a + x ) ◦ g1 ) +++ ((λx . a + x ) ◦ g2 ) = (λx . a + x ) ◦ (g1 +++ g2 )

by (rule ext) (simp add : joinpaths def )

lemma joinpaths linear image: linear f =⇒ (f ◦ g1 ) +++ (f ◦ g2 ) = f ◦ (g1
+++ g2 )
by (rule ext) (simp add : joinpaths def )

lemma simple path translation eq :
fixes g :: real ⇒ ′a::euclidean space
shows simple path((λx . a + x ) ◦ g) = simple path g
by (simp add : simple path def path translation eq)

lemma simple path linear image eq :
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes linear f inj f
shows simple path(f ◦ g) = simple path g

using assms inj on eq iff [of f ]
by (auto simp: path linear image eq simple path def path translation eq)
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lemma arc translation eq :
fixes g :: real ⇒ ′a::euclidean space
shows arc((λx . a + x ) ◦ g) = arc g
by (auto simp: arc def inj on def path translation eq)

lemma arc linear image eq :
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes linear f inj f
shows arc(f ◦ g) = arc g

using assms inj on eq iff [of f ]
by (auto simp: arc def inj on def path linear image eq)

5.5.3 Basic lemmas about paths

lemma pathin iff path real [simp]: pathin euclideanreal g ←→ path g
by (simp add : pathin def path def )

lemma continuous on path: path f =⇒ t ⊆ {0 ..1} =⇒ continuous on t f
using continuous on subset path def by blast

lemma arc imp simple path: arc g =⇒ simple path g
by (simp add : arc def inj on def simple path def )

lemma arc imp path: arc g =⇒ path g
using arc def by blast

lemma arc imp inj on: arc g =⇒ inj on g {0 ..1}
by (auto simp: arc def )

lemma simple path imp path: simple path g =⇒ path g
using simple path def by blast

lemma simple path cases: simple path g =⇒ arc g ∨ pathfinish g = pathstart g
unfolding simple path def arc def inj on def pathfinish def pathstart def
by force

lemma simple path imp arc: simple path g =⇒ pathfinish g 6= pathstart g =⇒ arc
g
using simple path cases by auto

lemma arc distinct ends: arc g =⇒ pathfinish g 6= pathstart g
unfolding arc def inj on def pathfinish def pathstart def
by fastforce

lemma arc simple path: arc g ←→ simple path g ∧ pathfinish g 6= pathstart g
using arc distinct ends arc imp simple path simple path cases by blast

lemma simple path eq arc: pathfinish g 6= pathstart g =⇒ (simple path g = arc g)
by (simp add : arc simple path)
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lemma path image const [simp]: path image (λt . a) = {a}
by (force simp: path image def )

lemma path image nonempty [simp]: path image g 6= {}
unfolding path image def image is empty box eq empty
by auto

lemma pathstart in path image[intro]: pathstart g ∈ path image g
unfolding pathstart def path image def
by auto

lemma pathfinish in path image[intro]: pathfinish g ∈ path image g
unfolding pathfinish def path image def
by auto

lemma connected path image[intro]: path g =⇒ connected (path image g)
unfolding path def path image def
using connected continuous image connected Icc by blast

lemma compact path image[intro]: path g =⇒ compact (path image g)
unfolding path def path image def
using compact continuous image connected Icc by blast

lemma reversepath reversepath[simp]: reversepath (reversepath g) = g
unfolding reversepath def
by auto

lemma pathstart reversepath[simp]: pathstart (reversepath g) = pathfinish g
unfolding pathstart def reversepath def pathfinish def
by auto

lemma pathfinish reversepath[simp]: pathfinish (reversepath g) = pathstart g
unfolding pathstart def reversepath def pathfinish def
by auto

lemma pathstart join[simp]: pathstart (g1 +++ g2 ) = pathstart g1
unfolding pathstart def joinpaths def pathfinish def
by auto

lemma pathfinish join[simp]: pathfinish (g1 +++ g2 ) = pathfinish g2
unfolding pathstart def joinpaths def pathfinish def
by auto

lemma path image reversepath[simp]: path image (reversepath g) = path image g
proof −
have ∗:

∧
g . path image (reversepath g) ⊆ path image g

unfolding path image def subset eq reversepath def Ball def image iff
by force
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show ?thesis
using ∗[of g ] ∗[of reversepath g ]
unfolding reversepath reversepath
by auto

qed

lemma path reversepath [simp]: path (reversepath g) ←→ path g
proof −
have ∗:

∧
g . path g =⇒ path (reversepath g)

unfolding path def reversepath def
apply (rule continuous on compose[unfolded o def , of λx . 1 − x ])
apply (auto intro: continuous intros continuous on subset [of {0 ..1}])
done

show ?thesis
using ∗ by force

qed

lemma arc reversepath:
assumes arc g shows arc(reversepath g)

proof −
have injg : inj on g {0 ..1}
using assms
by (simp add : arc def )

have ∗∗:
∧
x y ::real . 1−x = 1−y =⇒ x = y

by simp
show ?thesis
using assms by (clarsimp simp: arc def intro!: inj onI ) (simp add : inj onD

reversepath def ∗∗)
qed

lemma simple path reversepath: simple path g =⇒ simple path (reversepath g)
apply (simp add : simple path def )
apply (force simp: reversepath def )
done

lemmas reversepath simps =
path reversepath path image reversepath pathstart reversepath pathfinish reversepath

lemma path join[simp]:
assumes pathfinish g1 = pathstart g2
shows path (g1 +++ g2 ) ←→ path g1 ∧ path g2
unfolding path def pathfinish def pathstart def

proof safe
assume cont : continuous on {0 ..1} (g1 +++ g2 )
have g1 : continuous on {0 ..1} g1 ←→ continuous on {0 ..1} ((g1 +++ g2 ) ◦

(λx . x / 2 ))
by (intro continuous on cong refl) (auto simp: joinpaths def )

have g2 : continuous on {0 ..1} g2 ←→ continuous on {0 ..1} ((g1 +++ g2 ) ◦
(λx . x / 2 + 1/2 ))
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using assms
by (intro continuous on cong refl) (auto simp: joinpaths def pathfinish def path-

start def )
show continuous on {0 ..1} g1 and continuous on {0 ..1} g2
unfolding g1 g2
by (auto intro!: continuous intros continuous on subset [OF cont ] simp del :

o apply)
next
assume g1g2 : continuous on {0 ..1} g1 continuous on {0 ..1} g2
have 01 : {0 .. 1} = {0 ..1/2} ∪ {1/2 .. 1 ::real}
by auto

{
fix x :: real
assume 0 ≤ x and x ≤ 1
then have x ∈ (λx . x ∗ 2 ) ‘ {0 ..1 / 2}
by (intro image eqI [where x=x/2 ]) auto

}
note 1 = this
{
fix x :: real
assume 0 ≤ x and x ≤ 1
then have x ∈ (λx . x ∗ 2 − 1 ) ‘ {1 / 2 ..1}
by (intro image eqI [where x=x/2 + 1/2 ]) auto

}
note 2 = this
show continuous on {0 ..1} (g1 +++ g2 )
using assms
unfolding joinpaths def 01
apply (intro continuous on cases closed atLeastAtMost g1g2 [THEN continu-

ous on compose2 ] continuous intros)
apply (auto simp: field simps pathfinish def pathstart def intro!: 1 2 )
done

qed

5.5.4 Path Images

lemma bounded path image: path g =⇒ bounded(path image g)
by (simp add : compact imp bounded compact path image)

lemma closed path image:
fixes g :: real ⇒ ′a::t2 space
shows path g =⇒ closed(path image g)
by (metis compact path image compact imp closed)

lemma connected simple path image: simple path g =⇒ connected(path image g)
by (metis connected path image simple path imp path)

lemma compact simple path image: simple path g =⇒ compact(path image g)
by (metis compact path image simple path imp path)
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lemma bounded simple path image: simple path g =⇒ bounded(path image g)
by (metis bounded path image simple path imp path)

lemma closed simple path image:
fixes g :: real ⇒ ′a::t2 space
shows simple path g =⇒ closed(path image g)
by (metis closed path image simple path imp path)

lemma connected arc image: arc g =⇒ connected(path image g)
by (metis connected path image arc imp path)

lemma compact arc image: arc g =⇒ compact(path image g)
by (metis compact path image arc imp path)

lemma bounded arc image: arc g =⇒ bounded(path image g)
by (metis bounded path image arc imp path)

lemma closed arc image:
fixes g :: real ⇒ ′a::t2 space
shows arc g =⇒ closed(path image g)
by (metis closed path image arc imp path)

lemma path image join subset : path image (g1 +++ g2 ) ⊆ path image g1 ∪ path image
g2
unfolding path image def joinpaths def
by auto

lemma subset path image join:
assumes path image g1 ⊆ s
and path image g2 ⊆ s

shows path image (g1 +++ g2 ) ⊆ s
using path image join subset [of g1 g2 ] and assms
by auto

lemma path image join:
assumes pathfinish g1 = pathstart g2
shows path image(g1 +++ g2 ) = path image g1 ∪ path image g2

proof −
have path image g1 ⊆ path image (g1 +++ g2 )
proof (clarsimp simp: path image def joinpaths def )
fix u::real
assume 0 ≤ u u ≤ 1
then show g1 u ∈ (λx . g1 (2 ∗ x )) ‘ ({0 ..1} ∩ {x . x ∗ 2 ≤ 1})
by (rule tac x=u/2 in image eqI ) auto

qed
moreover
have §: g2 u ∈ (λx . g2 (2 ∗ x − 1 )) ‘ ({0 ..1} ∩ {x . ¬ x ∗ 2 ≤ 1})
if 0 < u u ≤ 1 for u
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using that assms
by (rule tac x=(u+1 )/2 in image eqI ) (auto simp: field simps pathfinish def

pathstart def )
have g2 0 ∈ (λx . g1 (2 ∗ x )) ‘ ({0 ..1} ∩ {x . x ∗ 2 ≤ 1})
using assms
by (rule tac x=1/2 in image eqI ) (auto simp: pathfinish def pathstart def )

then have path image g2 ⊆ path image (g1 +++ g2 )
by (auto simp: path image def joinpaths def intro!: §)

ultimately show ?thesis
using path image join subset by blast

qed

lemma not in path image join:
assumes x /∈ path image g1
and x /∈ path image g2

shows x /∈ path image (g1 +++ g2 )
using assms and path image join subset [of g1 g2 ]
by auto

lemma pathstart compose: pathstart(f ◦ p) = f (pathstart p)
by (simp add : pathstart def )

lemma pathfinish compose: pathfinish(f ◦ p) = f (pathfinish p)
by (simp add : pathfinish def )

lemma path image compose: path image (f ◦ p) = f ‘ (path image p)
by (simp add : image comp path image def )

lemma path compose join: f ◦ (p +++ q) = (f ◦ p) +++ (f ◦ q)
by (rule ext) (simp add : joinpaths def )

lemma path compose reversepath: f ◦ reversepath p = reversepath(f ◦ p)
by (rule ext) (simp add : reversepath def )

lemma joinpaths eq :
(
∧
t . t ∈ {0 ..1} =⇒ p t = p ′ t) =⇒

(
∧
t . t ∈ {0 ..1} =⇒ q t = q ′ t)

=⇒ t ∈ {0 ..1} =⇒ (p +++ q) t = (p ′ +++ q ′) t
by (auto simp: joinpaths def )

lemma simple path inj on: simple path g =⇒ inj on g {0<..<1}
by (auto simp: simple path def path image def inj on def less eq real def Ball def )

5.5.5 Simple paths with the endpoints removed

lemma simple path endless:
assumes simple path c
shows path image c − {pathstart c,pathfinish c} = c ‘ {0<..<1} (is ?lhs = ?rhs)

proof
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show ?lhs ⊆ ?rhs
using less eq real def by (auto simp: path image def pathstart def pathfin-

ish def )
show ?rhs ⊆ ?lhs
using assms
apply (auto simp: simple path def path image def pathstart def pathfinish def

Ball def )
using less eq real def zero le one by blast+

qed

lemma connected simple path endless:
assumes simple path c
shows connected(path image c − {pathstart c,pathfinish c})

proof −
have continuous on {0<..<1} c
using assms by (simp add : simple path def continuous on path path def sub-

set iff )
then have connected (c ‘ {0<..<1})
using connected Ioo connected continuous image by blast

then show ?thesis
using assms by (simp add : simple path endless)

qed

lemma nonempty simple path endless:
simple path c =⇒ path image c − {pathstart c,pathfinish c} 6= {}

by (simp add : simple path endless)

5.5.6 The operations on paths

lemma path image subset reversepath: path image(reversepath g) ≤ path image g
by simp

lemma path imp reversepath: path g =⇒ path(reversepath g)
by simp

lemma half bounded equal : 1 ≤ x ∗ 2 =⇒ x ∗ 2 ≤ 1 ←→ x = (1/2 ::real)
by simp

lemma continuous on joinpaths:
assumes continuous on {0 ..1} g1 continuous on {0 ..1} g2 pathfinish g1 = path-

start g2
shows continuous on {0 ..1} (g1 +++ g2 )

proof −
have {0 ..1 ::real} = {0 ..1/2} ∪ {1/2 ..1}
by auto

then show ?thesis
using assms by (metis path def path join)

qed
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lemma path join imp: [[path g1 ; path g2 ; pathfinish g1 = pathstart g2 ]] =⇒ path(g1
+++ g2 )
by simp

lemma simple path join loop:
assumes arc g1 arc g2

pathfinish g1 = pathstart g2 pathfinish g2 = pathstart g1
path image g1 ∩ path image g2 ⊆ {pathstart g1 , pathstart g2}

shows simple path(g1 +++ g2 )
proof −
have injg1 : inj on g1 {0 ..1}
using assms
by (simp add : arc def )

have injg2 : inj on g2 {0 ..1}
using assms
by (simp add : arc def )

have g12 : g1 1 = g2 0
and g21 : g2 1 = g1 0
and sb: g1 ‘ {0 ..1} ∩ g2 ‘ {0 ..1} ⊆ {g1 0 , g2 0}
using assms
by (simp all add : arc def pathfinish def pathstart def path image def )

{ fix x and y ::real
assume g2 eq : g2 (2 ∗ x − 1 ) = g1 (2 ∗ y)
and xyI : x 6= 1 ∨ y 6= 0
and xy : x ≤ 1 0 ≤ y y ∗ 2 ≤ 1 ¬ x ∗ 2 ≤ 1

then consider g1 (2 ∗ y) = g1 0 | g1 (2 ∗ y) = g2 0
using sb by force

then have False
proof cases
case 1
then have y = 0
using xy g2 eq by (auto dest !: inj onD [OF injg1 ])

then show ?thesis
using xy g2 eq xyI by (auto dest : inj onD [OF injg2 ] simp flip: g21 )

next
case 2
then have 2∗x = 1

using g2 eq g12 inj onD [OF injg2 ] atLeastAtMost iff xy(1 ) xy(4 ) by
fastforce

with xy show False by auto
qed

} note ∗ = this
{ fix x and y ::real
assume xy : g1 (2 ∗ x ) = g2 (2 ∗ y − 1 ) y ≤ 1 0 ≤ x ¬ y ∗ 2 ≤ 1 x ∗ 2 ≤ 1
then have x = 0 ∧ y = 1
using ∗ xy by force

} note ∗∗ = this
show ?thesis
using assms
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apply (simp add : arc def simple path def )
apply (auto simp: joinpaths def split : if split asm

dest !: ∗ ∗∗ dest : inj onD [OF injg1 ] inj onD [OF injg2 ])
done

qed

lemma arc join:
assumes arc g1 arc g2

pathfinish g1 = pathstart g2
path image g1 ∩ path image g2 ⊆ {pathstart g2}

shows arc(g1 +++ g2 )
proof −
have injg1 : inj on g1 {0 ..1}
using assms
by (simp add : arc def )

have injg2 : inj on g2 {0 ..1}
using assms
by (simp add : arc def )

have g11 : g1 1 = g2 0
and sb: g1 ‘ {0 ..1} ∩ g2 ‘ {0 ..1} ⊆ {g2 0}
using assms
by (simp all add : arc def pathfinish def pathstart def path image def )

{ fix x and y ::real
assume xy : g2 (2 ∗ x − 1 ) = g1 (2 ∗ y) x ≤ 1 0 ≤ y y ∗ 2 ≤ 1 ¬ x ∗ 2 ≤ 1
then have g1 (2 ∗ y) = g2 0
using sb by force

then have False
using xy inj onD injg2 by fastforce

} note ∗ = this
show ?thesis
using assms
apply (simp add : arc def inj on def )
apply (auto simp: joinpaths def arc imp path split : if split asm

dest : ∗ ∗[OF sym] inj onD [OF injg1 ] inj onD [OF injg2 ])
done

qed

lemma reversepath joinpaths:
pathfinish g1 = pathstart g2 =⇒ reversepath(g1 +++ g2 ) = reversepath g2

+++ reversepath g1
unfolding reversepath def pathfinish def pathstart def joinpaths def
by (rule ext) (auto simp: mult .commute)

5.5.7 Some reversed and ”if and only if” versions of joining
theorems

lemma path join path ends:
fixes g1 :: real ⇒ ′a::metric space
assumes path(g1 +++ g2 ) path g2
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shows pathfinish g1 = pathstart g2
proof (rule ccontr)
define e where e = dist (g1 1 ) (g2 0 )
assume Neg : pathfinish g1 6= pathstart g2
then have 0 < dist (pathfinish g1 ) (pathstart g2 )
by auto

then have e > 0
by (metis e def pathfinish def pathstart def )

then have ∀ e>0 . ∃ d>0 . ∀ x ′∈{0 ..1}. dist x ′ 0 < d −→ dist (g2 x ′) (g2 0 ) < e
using 〈path g2 〉 atLeastAtMost iff zero le one unfolding path def continu-

ous on iff
by blast

then obtain d1 where d1 > 0
and d1 :

∧
x ′. [[x ′∈{0 ..1}; norm x ′ < d1 ]] =⇒ dist (g2 x ′) (g2 0 ) < e/2

by (metis 〈0 < e〉 half gt zero iff norm conv dist)
obtain d2 where d2 > 0

and d2 :
∧
x ′. [[x ′∈{0 ..1}; dist x ′ (1/2 ) < d2 ]]
=⇒ dist ((g1 +++ g2 ) x ′) (g1 1 ) < e/2

using assms(1 ) 〈e > 0 〉 unfolding path def continuous on iff
apply (drule tac x=1/2 in bspec, simp)
apply (drule tac x=e/2 in spec, force simp: joinpaths def )
done

have int01 1 : min (1/2 ) (min d1 d2 ) / 2 ∈ {0 ..1}
using 〈d1 > 0 〉 〈d2 > 0 〉 by (simp add : min def )

have dist1 : norm (min (1 / 2 ) (min d1 d2 ) / 2 ) < d1
using 〈d1 > 0 〉 〈d2 > 0 〉 by (simp add : min def dist norm)

have int01 2 : 1/2 + min (1/2 ) (min d1 d2 ) / 4 ∈ {0 ..1}
using 〈d1 > 0 〉 〈d2 > 0 〉 by (simp add : min def )

have dist2 : dist (1 / 2 + min (1 / 2 ) (min d1 d2 ) / 4 ) (1 / 2 ) < d2
using 〈d1 > 0 〉 〈d2 > 0 〉 by (simp add : min def dist norm)

have [simp]: ¬ min (1 / 2 ) (min d1 d2 ) ≤ 0
using 〈d1 > 0 〉 〈d2 > 0 〉 by (simp add : min def )

have dist (g2 (min (1 / 2 ) (min d1 d2 ) / 2 )) (g1 1 ) < e/2
dist (g2 (min (1 / 2 ) (min d1 d2 ) / 2 )) (g2 0 ) < e/2

using d1 [OF int01 1 dist1 ] d2 [OF int01 2 dist2 ] by (simp all add : join-
paths def )
then have dist (g1 1 ) (g2 0 ) < e/2 + e/2
using dist triangle half r e def by blast

then show False
by (simp add : e def [symmetric])

qed

lemma path join eq [simp]:
fixes g1 :: real ⇒ ′a::metric space
assumes path g1 path g2
shows path(g1 +++ g2 ) ←→ pathfinish g1 = pathstart g2

using assms by (metis path join path ends path join imp)

lemma simple path joinE :
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assumes simple path(g1 +++ g2 ) and pathfinish g1 = pathstart g2
obtains arc g1 arc g2

path image g1 ∩ path image g2 ⊆ {pathstart g1 , pathstart g2}
proof −
have ∗:

∧
x y . [[0 ≤ x ; x ≤ 1 ; 0 ≤ y ; y ≤ 1 ; (g1 +++ g2 ) x = (g1 +++ g2 )

y ]]
=⇒ x = y ∨ x = 0 ∧ y = 1 ∨ x = 1 ∧ y = 0

using assms by (simp add : simple path def )
have path g1
using assms path join simple path imp path by blast

moreover have inj on g1 {0 ..1}
proof (clarsimp simp: inj on def )
fix x y
assume g1 x = g1 y 0 ≤ x x ≤ 1 0 ≤ y y ≤ 1
then show x = y
using ∗ [of x/2 y/2 ] by (simp add : joinpaths def split ifs)

qed
ultimately have arc g1
using assms by (simp add : arc def )

have [simp]: g2 0 = g1 1
using assms by (metis pathfinish def pathstart def )

have path g2
using assms path join simple path imp path by blast

moreover have inj on g2 {0 ..1}
proof (clarsimp simp: inj on def )
fix x y
assume g2 x = g2 y 0 ≤ x x ≤ 1 0 ≤ y y ≤ 1
then show x = y
using ∗ [of (x + 1 ) / 2 (y + 1 ) / 2 ]
by (force simp: joinpaths def split ifs field split simps)

qed
ultimately have arc g2
using assms by (simp add : arc def )

have g2 y = g1 0 ∨ g2 y = g1 1
if g1 x = g2 y 0 ≤ x x ≤ 1 0 ≤ y y ≤ 1 for x y
using ∗ [of x / 2 (y + 1 ) / 2 ] that
by (auto simp: joinpaths def split ifs field split simps)

then have path image g1 ∩ path image g2 ⊆ {pathstart g1 , pathstart g2}
by (fastforce simp: pathstart def pathfinish def path image def )

with 〈arc g1 〉 〈arc g2 〉 show ?thesis using that by blast
qed

lemma simple path join loop eq :
assumes pathfinish g2 = pathstart g1 pathfinish g1 = pathstart g2
shows simple path(g1 +++ g2 ) ←→

arc g1 ∧ arc g2 ∧ path image g1 ∩ path image g2 ⊆ {pathstart g1 ,
pathstart g2}
by (metis assms simple path joinE simple path join loop)
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lemma arc join eq :
assumes pathfinish g1 = pathstart g2
shows arc(g1 +++ g2 ) ←→

arc g1 ∧ arc g2 ∧ path image g1 ∩ path image g2 ⊆ {pathstart g2}
(is ?lhs = ?rhs)

proof
assume ?lhs
then have simple path(g1 +++ g2 ) by (rule arc imp simple path)
then have ∗:

∧
x y . [[0 ≤ x ; x ≤ 1 ; 0 ≤ y ; y ≤ 1 ; (g1 +++ g2 ) x = (g1 +++

g2 ) y ]]
=⇒ x = y ∨ x = 0 ∧ y = 1 ∨ x = 1 ∧ y = 0

using assms by (simp add : simple path def )
have False if g1 0 = g2 u 0 ≤ u u ≤ 1 for u
using ∗ [of 0 (u + 1 ) / 2 ] that assms arc distinct ends [OF 〈?lhs〉]
by (auto simp: joinpaths def pathstart def pathfinish def split ifs field split simps)
then have n1 : pathstart g1 /∈ path image g2
unfolding pathstart def path image def
using atLeastAtMost iff by blast

show ?rhs using 〈?lhs〉

using 〈simple path (g1 +++ g2 )〉 assms n1 simple path joinE by auto
next
assume ?rhs then show ?lhs
using assms
by (fastforce simp: pathfinish def pathstart def intro!: arc join)

qed

lemma arc join eq alt :
pathfinish g1 = pathstart g2
=⇒ (arc(g1 +++ g2 ) ←→

arc g1 ∧ arc g2 ∧
path image g1 ∩ path image g2 = {pathstart g2})

using pathfinish in path image by (fastforce simp: arc join eq)

5.5.8 The joining of paths is associative

lemma path assoc:
[[pathfinish p = pathstart q ; pathfinish q = pathstart r ]]
=⇒ path(p +++ (q +++ r)) ←→ path((p +++ q) +++ r)

by simp

lemma simple path assoc:
assumes pathfinish p = pathstart q pathfinish q = pathstart r
shows simple path (p +++ (q +++ r)) ←→ simple path ((p +++ q) +++ r)

proof (cases pathstart p = pathfinish r)
case True show ?thesis
proof
assume simple path (p +++ q +++ r)
with assms True show simple path ((p +++ q) +++ r)
by (fastforce simp add : simple path join loop eq arc join eq path image join
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dest : arc distinct ends [of r ])
next
assume 0 : simple path ((p +++ q) +++ r)
with assms True have q : pathfinish r /∈ path image q
using arc distinct ends
by (fastforce simp add : simple path join loop eq arc join eq path image join)

have pathstart r /∈ path image p
using assms
by (metis 0 IntI arc distinct ends arc join eq alt empty iff insert iff

pathfinish in path image pathfinish join simple path joinE )
with assms 0 q True show simple path (p +++ q +++ r)
by (auto simp: simple path join loop eq arc join eq path image join

dest !: subsetD [OF IntI ])
qed

next
case False
{ fix x :: ′a
assume a: path image p ∩ path image q ⊆ {pathstart q}

(path image p ∪ path image q) ∩ path image r ⊆ {pathstart r}
x ∈ path image p x ∈ path image r

have pathstart r ∈ path image q
by (metis assms(2 ) pathfinish in path image)

with a have x = pathstart q
by blast

}
with False assms show ?thesis
by (auto simp: simple path eq arc simple path join loop eq arc join eq path image join)

qed

lemma arc assoc:
[[pathfinish p = pathstart q ; pathfinish q = pathstart r ]]
=⇒ arc(p +++ (q +++ r)) ←→ arc((p +++ q) +++ r)

by (simp add : arc simple path simple path assoc)

Symmetry and loops

lemma path sym:
[[pathfinish p = pathstart q ; pathfinish q = pathstart p]] =⇒ path(p +++ q) ←→

path(q +++ p)
by auto

lemma simple path sym:
[[pathfinish p = pathstart q ; pathfinish q = pathstart p]]
=⇒ simple path(p +++ q) ←→ simple path(q +++ p)

by (metis (full types) inf commute insert commute simple path joinE simple path join loop)

lemma path image sym:
[[pathfinish p = pathstart q ; pathfinish q = pathstart p]]
=⇒ path image(p +++ q) = path image(q +++ p)
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by (simp add : path image join sup commute)

5.5.9 Subpath

definition subpath :: real ⇒ real ⇒ (real ⇒ ′a) ⇒ real ⇒ ′a::real normed vector
where subpath a b g ≡ λx . g((b − a) ∗ x + a)

lemma path image subpath gen:
fixes g :: ⇒ ′a::real normed vector
shows path image(subpath u v g) = g ‘ (closed segment u v)
by (auto simp add : closed segment real eq path image def subpath def )

lemma path image subpath:
fixes g :: real ⇒ ′a::real normed vector
shows path image(subpath u v g) = (if u ≤ v then g ‘ {u..v} else g ‘ {v ..u})
by (simp add : path image subpath gen closed segment eq real ivl)

lemma path image subpath commute:
fixes g :: real ⇒ ′a::real normed vector
shows path image(subpath u v g) = path image(subpath v u g)
by (simp add : path image subpath gen closed segment eq real ivl)

lemma path subpath [simp]:
fixes g :: real ⇒ ′a::real normed vector
assumes path g u ∈ {0 ..1} v ∈ {0 ..1}
shows path(subpath u v g)

proof −
have continuous on {0 ..1} (g ◦ (λx . ((v−u) ∗ x+ u)))
using assms
apply (intro continuous intros; simp add : image affinity atLeastAtMost [where

c=u])
apply (auto simp: path def continuous on subset)
done

then show ?thesis
by (simp add : path def subpath def )

qed

lemma pathstart subpath [simp]: pathstart(subpath u v g) = g(u)
by (simp add : pathstart def subpath def )

lemma pathfinish subpath [simp]: pathfinish(subpath u v g) = g(v)
by (simp add : pathfinish def subpath def )

lemma subpath trivial [simp]: subpath 0 1 g = g
by (simp add : subpath def )

lemma subpath reversepath: subpath 1 0 g = reversepath g
by (simp add : reversepath def subpath def )
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lemma reversepath subpath: reversepath(subpath u v g) = subpath v u g
by (simp add : reversepath def subpath def algebra simps)

lemma subpath translation: subpath u v ((λx . a + x ) ◦ g) = (λx . a + x ) ◦ subpath
u v g
by (rule ext) (simp add : subpath def )

lemma subpath image: subpath u v (f ◦ g) = f ◦ subpath u v g
by (rule ext) (simp add : subpath def )

lemma affine ineq :
fixes x :: ′a::linordered idom
assumes x ≤ 1 v ≤ u
shows v + x ∗ u ≤ u + x ∗ v

proof −
have (1−x )∗(u−v) ≥ 0
using assms by auto

then show ?thesis
by (simp add : algebra simps)

qed

lemma sum le prod1 :
fixes a::real shows [[a ≤ 1 ; b ≤ 1 ]] =⇒ a + b ≤ 1 + a ∗ b

by (metis add .commute affine ineq mult .right neutral)

lemma simple path subpath eq :
simple path(subpath u v g) ←→

path(subpath u v g) ∧ u 6=v ∧
(∀ x y . x ∈ closed segment u v ∧ y ∈ closed segment u v ∧ g x = g y

−→ x = y ∨ x = u ∧ y = v ∨ x = v ∧ y = u)
(is ?lhs = ?rhs)

proof
assume ?lhs
then have p: path (λx . g ((v − u) ∗ x + u))

and sim: (
∧
x y . [[x∈{0 ..1}; y∈{0 ..1}; g ((v − u) ∗ x + u) = g ((v − u)

∗ y + u)]]
=⇒ x = y ∨ x = 0 ∧ y = 1 ∨ x = 1 ∧ y = 0 )

by (auto simp: simple path def subpath def )
{ fix x y
assume x ∈ closed segment u v y ∈ closed segment u v g x = g y
then have x = y ∨ x = u ∧ y = v ∨ x = v ∧ y = u
using sim [of (x−u)/(v−u) (y−u)/(v−u)] p

by (auto split : if split asm simp add : closed segment real eq image affinity atLeastAtMost)
(simp all add : field split simps)

} moreover
have path(subpath u v g) ∧ u 6=v
using sim [of 1/3 2/3 ] p
by (auto simp: subpath def )

ultimately show ?rhs
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by metis
next
assume ?rhs
then
have d1 :

∧
x y . [[g x = g y ; u ≤ x ; x ≤ v ; u ≤ y ; y ≤ v ]] =⇒ x = y ∨ x = u ∧

y = v ∨ x = v ∧ y = u
and d2 :

∧
x y . [[g x = g y ; v ≤ x ; x ≤ u; v ≤ y ; y ≤ u]] =⇒ x = y ∨ x = u ∧

y = v ∨ x = v ∧ y = u
and ne: u < v ∨ v < u
and psp: path (subpath u v g)
by (auto simp: closed segment real eq image affinity atLeastAtMost)

have [simp]:
∧
x . u + x ∗ v = v + x ∗ u ←→ u=v ∨ x=1

by algebra
show ?lhs using psp ne
unfolding simple path def subpath def
by (fastforce simp add : algebra simps affine ineq mult left mono crossproduct eq

dest : d1 d2 )
qed

lemma arc subpath eq :
arc(subpath u v g) ←→ path(subpath u v g) ∧ u 6=v ∧ inj on g (closed segment u

v)
(is ?lhs = ?rhs)

proof
assume ?lhs
then have p: path (λx . g ((v − u) ∗ x + u))

and sim: (
∧
x y . [[x∈{0 ..1}; y∈{0 ..1}; g ((v − u) ∗ x + u) = g ((v − u)

∗ y + u)]]
=⇒ x = y)

by (auto simp: arc def inj on def subpath def )
{ fix x y
assume x ∈ closed segment u v y ∈ closed segment u v g x = g y
then have x = y
using sim [of (x−u)/(v−u) (y−u)/(v−u)] p
by (cases v = u)
(simp all split : if split asm add : inj on def closed segment real eq image affinity atLeastAtMost ,

simp add : field simps)
} moreover
have path(subpath u v g) ∧ u 6=v
using sim [of 1/3 2/3 ] p
by (auto simp: subpath def )

ultimately show ?rhs
unfolding inj on def
by metis

next
assume ?rhs
then
have d1 :

∧
x y . [[g x = g y ; u ≤ x ; x ≤ v ; u ≤ y ; y ≤ v ]] =⇒ x = y

and d2 :
∧
x y . [[g x = g y ; v ≤ x ; x ≤ u; v ≤ y ; y ≤ u]] =⇒ x = y
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and ne: u < v ∨ v < u
and psp: path (subpath u v g)
by (auto simp: inj on def closed segment real eq image affinity atLeastAtMost)

show ?lhs using psp ne
unfolding arc def subpath def inj on def
by (auto simp: algebra simps affine ineq mult left mono crossproduct eq dest :

d1 d2 )
qed

lemma simple path subpath:
assumes simple path g u ∈ {0 ..1} v ∈ {0 ..1} u 6= v
shows simple path(subpath u v g)
using assms
apply (simp add : simple path subpath eq simple path imp path)
apply (simp add : simple path def closed segment real eq image affinity atLeastAtMost ,

fastforce)
done

lemma arc simple path subpath:
[[simple path g ; u ∈ {0 ..1}; v ∈ {0 ..1}; g u 6= g v ]] =⇒ arc(subpath u v g)

by (force intro: simple path subpath simple path imp arc)

lemma arc subpath arc:
[[arc g ; u ∈ {0 ..1}; v ∈ {0 ..1}; u 6= v ]] =⇒ arc(subpath u v g)

by (meson arc def arc imp simple path arc simple path subpath inj onD)

lemma arc simple path subpath interior :
[[simple path g ; u ∈ {0 ..1}; v ∈ {0 ..1}; u 6= v ; |u−v | < 1 ]] =⇒ arc(subpath u

v g)
by (force simp: simple path def intro: arc simple path subpath)

lemma path image subpath subset :
[[u ∈ {0 ..1}; v ∈ {0 ..1}]] =⇒ path image(subpath u v g) ⊆ path image g

by (metis atLeastAtMost iff atLeastatMost subset iff path image def path image subpath
subset image iff )

lemma join subpaths middle: subpath (0 ) ((1 / 2 )) p +++ subpath ((1 / 2 )) 1 p
= p
by (rule ext) (simp add : joinpaths def subpath def field split simps)

5.5.10 There is a subpath to the frontier

lemma subpath to frontier explicit :
fixes S :: ′a::metric space set
assumes g : path g and pathfinish g /∈ S
obtains u where 0 ≤ u u ≤ 1∧

x . 0 ≤ x ∧ x < u =⇒ g x ∈ interior S
(g u /∈ interior S ) (u = 0 ∨ g u ∈ closure S )
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proof −
have gcon: continuous on {0 ..1} g
using g by (simp add : path def )

moreover have bounded ({u. g u ∈ closure (− S )} ∩ {0 ..1})
using compact eq bounded closed by fastforce

ultimately have com: compact ({0 ..1} ∩ {u. g u ∈ closure (− S )})
using closed vimage Int
by (metis (full types) Int commute closed atLeastAtMost closed closure com-

pact eq bounded closed vimage def )
have 1 ∈ {u. g u ∈ closure (− S )}
using assms by (simp add : pathfinish def closure def )

then have dis: {0 ..1} ∩ {u. g u ∈ closure (− S )} 6= {}
using atLeastAtMost iff zero le one by blast

then obtain u where 0 ≤ u u ≤ 1 and gu: g u ∈ closure (− S )
and umin:

∧
t . [[0 ≤ t ; t ≤ 1 ; g t ∈ closure (− S )]] =⇒ u ≤ t

using compact attains inf [OF com dis] by fastforce
then have umin ′:

∧
t . [[0 ≤ t ; t ≤ 1 ; t < u]] =⇒ g t ∈ S

using closure def by fastforce
have §: g u ∈ closure S if u 6= 0
proof −
have u > 0 using that 〈0 ≤ u〉 by auto
{ fix e::real assume e > 0
obtain d where d>0 and d :

∧
x ′. [[x ′ ∈ {0 ..1}; dist x ′ u ≤ d ]] =⇒ dist (g

x ′) (g u) < e
using continuous onE [OF gcon 〈e > 0 〉] 〈0 ≤ 〉 〈 ≤ 1 〉 atLeastAtMost iff

by auto
have ∗: dist (max 0 (u − d / 2 )) u ≤ d
using 〈0 ≤ u〉 〈u ≤ 1 〉 〈d > 0 〉 by (simp add : dist real def )

have ∃ y∈S . dist y (g u) < e
using 〈0 < u〉 〈u ≤ 1 〉 〈d > 0 〉

by (force intro: d [OF ∗] umin ′)
}
then show ?thesis
by (simp add : frontier def closure approachable)

qed
show ?thesis
proof
show

∧
x . 0 ≤ x ∧ x < u =⇒ g x ∈ interior S

using 〈u ≤ 1 〉 interior closure umin by fastforce
show g u /∈ interior S
by (simp add : gu interior closure)

qed (use 〈0 ≤ u〉 〈u ≤ 1 〉 § in auto)
qed

lemma subpath to frontier strong :
assumes g : path g and pathfinish g /∈ S
obtains u where 0 ≤ u u ≤ 1 g u /∈ interior S

u = 0 ∨ (∀ x . 0 ≤ x ∧ x < 1 −→ subpath 0 u g x ∈ interior S )
∧ g u ∈ closure S
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proof −
obtain u where 0 ≤ u u ≤ 1

and gxin:
∧
x . 0 ≤ x ∧ x < u =⇒ g x ∈ interior S

and gunot : (g u /∈ interior S ) and u0 : (u = 0 ∨ g u ∈ closure S )
using subpath to frontier explicit [OF assms] by blast

show ?thesis
proof
show g u /∈ interior S
using gunot by blast

qed (use 〈0 ≤ u〉 〈u ≤ 1 〉 u0 in 〈(force simp: subpath def gxin)+〉)
qed

lemma subpath to frontier :
assumes g : path g and g0 : pathstart g ∈ closure S and g1 : pathfinish g /∈ S
obtains u where 0 ≤ u u ≤ 1 g u ∈ frontier S path image(subpath 0 u g) −

{g u} ⊆ interior S
proof −
obtain u where 0 ≤ u u ≤ 1

and notin: g u /∈ interior S
and disj : u = 0 ∨

(∀ x . 0 ≤ x ∧ x < 1 −→ subpath 0 u g x ∈ interior S ) ∧ g u
∈ closure S

(is ∨ ?P)
using subpath to frontier strong [OF g g1 ] by blast

show ?thesis
proof
show g u ∈ frontier S
by (metis DiffI disj frontier def g0 notin pathstart def )

show path image (subpath 0 u g) − {g u} ⊆ interior S
using disj

proof
assume u = 0
then show ?thesis
by (simp add : path image subpath)

next
assume P : ?P
show ?thesis
proof (clarsimp simp add : path image subpath gen)
fix y
assume y : y ∈ closed segment 0 u g y /∈ interior S
with 〈0 ≤ u〉 have 0 ≤ y y ≤ u
by (auto simp: closed segment eq real ivl split : if split asm)

then have y=u ∨ subpath 0 u g (y/u) ∈ interior S
using P less eq real def by force

then show g y = g u
using y by (auto simp: subpath def split : if split asm)

qed
qed

qed (use 〈0 ≤ u〉 〈u ≤ 1 〉 in auto)
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qed

lemma exists path subpath to frontier :
fixes S :: ′a::real normed vector set
assumes path g pathstart g ∈ closure S pathfinish g /∈ S
obtains h where path h pathstart h = pathstart g path image h ⊆ path image

g
path image h − {pathfinish h} ⊆ interior S
pathfinish h ∈ frontier S

proof −
obtain u where u: 0 ≤ u u ≤ 1 g u ∈ frontier S (path image(subpath 0 u g) −
{g u}) ⊆ interior S

using subpath to frontier [OF assms] by blast
show ?thesis
proof
show path image (subpath 0 u g) ⊆ path image g
by (simp add : path image subpath subset u)

show pathstart (subpath 0 u g) = pathstart g
by (metis pathstart def pathstart subpath)

qed (use assms u in 〈auto simp: path image subpath〉)
qed

lemma exists path subpath to frontier closed :
fixes S :: ′a::real normed vector set
assumes S : closed S and g : path g and g0 : pathstart g ∈ S and g1 : pathfinish

g /∈ S
obtains h where path h pathstart h = pathstart g path image h ⊆ path image

g ∩ S
pathfinish h ∈ frontier S

proof −
obtain h where h: path h pathstart h = pathstart g path image h ⊆ path image

g
path image h − {pathfinish h} ⊆ interior S
pathfinish h ∈ frontier S

using exists path subpath to frontier [OF g g1 ] closure closed [OF S ] g0 by
auto
show ?thesis
proof
show path image h ⊆ path image g ∩ S
using assms h interior subset [of S ] by (auto simp: frontier def )

qed (use h in auto)
qed

5.5.11 Shift Path to Start at Some Given Point

definition shiftpath :: real ⇒ (real ⇒ ′a::topological space) ⇒ real ⇒ ′a
where shiftpath a f = (λx . if (a + x ) ≤ 1 then f (a + x ) else f (a + x − 1 ))

lemma shiftpath alt def : shiftpath a f = (λx . if x ≤ 1−a then f (a + x ) else f (a
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+ x − 1 ))
by (auto simp: shiftpath def )

lemma pathstart shiftpath: a ≤ 1 =⇒ pathstart (shiftpath a g) = g a
unfolding pathstart def shiftpath def by auto

lemma pathfinish shiftpath:
assumes 0 ≤ a
and pathfinish g = pathstart g

shows pathfinish (shiftpath a g) = g a
using assms
unfolding pathstart def pathfinish def shiftpath def
by auto

lemma endpoints shiftpath:
assumes pathfinish g = pathstart g
and a ∈ {0 .. 1}

shows pathfinish (shiftpath a g) = g a
and pathstart (shiftpath a g) = g a

using assms
by (auto intro!: pathfinish shiftpath pathstart shiftpath)

lemma closed shiftpath:
assumes pathfinish g = pathstart g
and a ∈ {0 ..1}

shows pathfinish (shiftpath a g) = pathstart (shiftpath a g)
using endpoints shiftpath[OF assms]
by auto

lemma path shiftpath:
assumes path g
and pathfinish g = pathstart g
and a ∈ {0 ..1}

shows path (shiftpath a g)
proof −
have ∗: {0 .. 1} = {0 .. 1−a} ∪ {1−a .. 1}
using assms(3 ) by auto

have ∗∗:
∧
x . x + a = 1 =⇒ g (x + a − 1 ) = g (x + a)

using assms(2 )[unfolded pathfinish def pathstart def ]
by auto

show ?thesis
unfolding path def shiftpath def ∗

proof (rule continuous on closed Un)
have contg : continuous on {0 ..1} g
using 〈path g〉 path def by blast

show continuous on {0 ..1−a} (λx . if a + x ≤ 1 then g (a + x ) else g (a + x
− 1 ))

proof (rule continuous on eq)
show continuous on {0 ..1−a} (g ◦ (+) a)
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by (intro continuous intros continuous on subset [OF contg ]) (use 〈a ∈
{0 ..1}〉 in auto)

qed auto
show continuous on {1−a..1} (λx . if a + x ≤ 1 then g (a + x ) else g (a + x

− 1 ))
proof (rule continuous on eq)
show continuous on {1−a..1} (g ◦ (+) (a − 1 ))

by (intro continuous intros continuous on subset [OF contg ]) (use 〈a ∈
{0 ..1}〉 in auto)

qed (auto simp: ∗∗ add .commute add diff eq)
qed auto

qed

lemma shiftpath shiftpath:
assumes pathfinish g = pathstart g
and a ∈ {0 ..1}
and x ∈ {0 ..1}

shows shiftpath (1 − a) (shiftpath a g) x = g x
using assms
unfolding pathfinish def pathstart def shiftpath def
by auto

lemma path image shiftpath:
assumes a: a ∈ {0 ..1}
and pathfinish g = pathstart g

shows path image (shiftpath a g) = path image g
proof −
{ fix x
assume g : g 1 = g 0 x ∈ {0 ..1 ::real} and gne:

∧
y . y∈{0 ..1} ∩ {x . ¬ a + x

≤ 1} =⇒ g x 6= g (a + y − 1 )
then have ∃ y∈{0 ..1} ∩ {x . a + x ≤ 1}. g x = g (a + y)
proof (cases a ≤ x )
case False
then show ?thesis
apply (rule tac x=1 + x − a in bexI )
using g gne[of 1 + x − a] a by (force simp: field simps)+

next
case True
then show ?thesis
using g a by (rule tac x=x − a in bexI ) (auto simp: field simps)

qed
}
then show ?thesis
using assms
unfolding shiftpath def path image def pathfinish def pathstart def
by (auto simp: image iff )

qed

lemma simple path shiftpath:
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assumes simple path g pathfinish g = pathstart g and a: 0 ≤ a a ≤ 1
shows simple path (shiftpath a g)

unfolding simple path def
proof (intro conjI impI ballI )
show path (shiftpath a g)
by (simp add : assms path shiftpath simple path imp path)

have ∗:
∧
x y . [[g x = g y ; x ∈ {0 ..1}; y ∈ {0 ..1}]] =⇒ x = y ∨ x = 0 ∧ y = 1

∨ x = 1 ∧ y = 0
using assms by (simp add : simple path def )

show x = y ∨ x = 0 ∧ y = 1 ∨ x = 1 ∧ y = 0
if x ∈ {0 ..1} y ∈ {0 ..1} shiftpath a g x = shiftpath a g y for x y
using that a unfolding shiftpath def
by (force split : if split asm dest !: ∗)

qed

5.5.12 Straight-Line Paths

definition linepath :: ′a::real normed vector ⇒ ′a ⇒ real ⇒ ′a
where linepath a b = (λx . (1 − x ) ∗R a + x ∗R b)

lemma pathstart linepath[simp]: pathstart (linepath a b) = a
unfolding pathstart def linepath def
by auto

lemma pathfinish linepath[simp]: pathfinish (linepath a b) = b
unfolding pathfinish def linepath def
by auto

lemma linepath inner : linepath a b x · v = linepath (a · v) (b · v) x
by (simp add : linepath def algebra simps)

lemma Re linepath ′: Re (linepath a b x ) = linepath (Re a) (Re b) x
by (simp add : linepath def )

lemma Im linepath ′: Im (linepath a b x ) = linepath (Im a) (Im b) x
by (simp add : linepath def )

lemma linepath 0 ′: linepath a b 0 = a
by (simp add : linepath def )

lemma linepath 1 ′: linepath a b 1 = b
by (simp add : linepath def )

lemma continuous linepath at [intro]: continuous (at x ) (linepath a b)
unfolding linepath def
by (intro continuous intros)

lemma continuous on linepath [intro,continuous intros]: continuous on s (linepath
a b)
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using continuous linepath at
by (auto intro!: continuous at imp continuous on)

lemma path linepath[iff ]: path (linepath a b)
unfolding path def
by (rule continuous on linepath)

lemma path image linepath[simp]: path image (linepath a b) = closed segment a b
unfolding path image def segment linepath def
by auto

lemma reversepath linepath[simp]: reversepath (linepath a b) = linepath b a
unfolding reversepath def linepath def
by auto

lemma linepath 0 [simp]: linepath 0 b x = x ∗R b
by (simp add : linepath def )

lemma linepath cnj : cnj (linepath a b x ) = linepath (cnj a) (cnj b) x
by (simp add : linepath def )

lemma arc linepath:
assumes a 6= b shows [simp]: arc (linepath a b)

proof −
{
fix x y :: real
assume x ∗R b + y ∗R a = x ∗R a + y ∗R b
then have (x − y) ∗R a = (x − y) ∗R b
by (simp add : algebra simps)

with assms have x = y
by simp

}
then show ?thesis
unfolding arc def inj on def
by (fastforce simp: algebra simps linepath def )

qed

lemma simple path linepath[intro]: a 6= b =⇒ simple path (linepath a b)
by (simp add : arc imp simple path)

lemma linepath trivial [simp]: linepath a a x = a
by (simp add : linepath def real vector .scale left diff distrib)

lemma linepath refl : linepath a a = (λx . a)
by auto

lemma subpath refl : subpath a a g = linepath (g a) (g a)
by (simp add : subpath def linepath def algebra simps)
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lemma linepath of real : (linepath (of real a) (of real b) x ) = of real ((1 − x )∗a +
x∗b)
by (simp add : scaleR conv of real linepath def )

lemma of real linepath: of real (linepath a b x ) = linepath (of real a) (of real b) x
by (metis linepath of real mult .right neutral of real def real scaleR def )

lemma inj on linepath:
assumes a 6= b shows inj on (linepath a b) {0 ..1}

proof (clarsimp simp: inj on def linepath def )
fix x y
assume (1 − x ) ∗R a + x ∗R b = (1 − y) ∗R a + y ∗R b 0 ≤ x x ≤ 1 0 ≤ y

y ≤ 1
then have x ∗R (a − b) = y ∗R (a − b)
by (auto simp: algebra simps)

then show x=y
using assms by auto

qed

lemma linepath le 1 :
fixes a:: ′a::linordered idom shows [[a ≤ 1 ; b ≤ 1 ; 0 ≤ u; u ≤ 1 ]] =⇒ (1 − u)
∗ a + u ∗ b ≤ 1
using mult left le [of a 1−u] mult left le [of b u] by auto

lemma linepath in path:
shows x ∈ {0 ..1} =⇒ linepath a b x ∈ closed segment a b
by (auto simp: segment linepath def )

lemma linepath image 01 : linepath a b ‘ {0 ..1} = closed segment a b
by (auto simp: segment linepath def )

lemma linepath in convex hull :
fixes x ::real
assumes a: a ∈ convex hull S
and b: b ∈ convex hull S
and x : 0≤x x≤1

shows linepath a b x ∈ convex hull S
proof −
have linepath a b x ∈ closed segment a b
using x by (auto simp flip: linepath image 01 )

then show ?thesis
using a b convex contains segment by blast

qed

lemma Re linepath: Re(linepath (of real a) (of real b) x ) = (1 − x )∗a + x∗b
by (simp add : linepath def )

lemma Im linepath: Im(linepath (of real a) (of real b) x ) = 0
by (simp add : linepath def )
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lemma bounded linear linepath:
assumes bounded linear f
shows f (linepath a b x ) = linepath (f a) (f b) x

proof −
interpret f : bounded linear f by fact
show ?thesis by (simp add : linepath def f .add f .scale)

qed

lemma bounded linear linepath ′:
assumes bounded linear f
shows f ◦ linepath a b = linepath (f a) (f b)
using bounded linear linepath[OF assms] by (simp add : fun eq iff )

lemma linepath cnj ′: cnj ◦ linepath a b = linepath (cnj a) (cnj b)
by (simp add : linepath def fun eq iff )

lemma differentiable linepath [intro]: linepath a b differentiable at x within A
by (auto simp: linepath def )

lemma has vector derivative linepath within:
(linepath a b has vector derivative (b − a)) (at x within S )

by (force intro: derivative eq intros simp add : linepath def has vector derivative def
algebra simps)

5.5.13 Segments via convex hulls

lemma segments subset convex hull :
closed segment a b ⊆ (convex hull {a,b,c})
closed segment a c ⊆ (convex hull {a,b,c})
closed segment b c ⊆ (convex hull {a,b,c})
closed segment b a ⊆ (convex hull {a,b,c})
closed segment c a ⊆ (convex hull {a,b,c})
closed segment c b ⊆ (convex hull {a,b,c})

by (auto simp: segment convex hull linepath of real elim!: rev subsetD [OF hull mono])

lemma midpoints in convex hull :
assumes x ∈ convex hull s y ∈ convex hull s
shows midpoint x y ∈ convex hull s

proof −
have (1 − inverse(2 )) ∗R x + inverse(2 ) ∗R y ∈ convex hull s
by (rule convexD alt) (use assms in auto)

then show ?thesis
by (simp add : midpoint def algebra simps)

qed

lemma not in interior convex hull 3 :
fixes a :: complex
shows a /∈ interior(convex hull {a,b,c})
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b /∈ interior(convex hull {a,b,c})
c /∈ interior(convex hull {a,b,c})

by (auto simp: card insert le m1 not in interior convex hull)

lemma midpoint in closed segment [simp]: midpoint a b ∈ closed segment a b
using midpoints in convex hull segment convex hull by blast

lemma midpoint in open segment [simp]: midpoint a b ∈ open segment a b ←→ a
6= b
by (simp add : open segment def )

lemma continuous IVT local extremum:
fixes f :: ′a::euclidean space ⇒ real
assumes contf : continuous on (closed segment a b) f

and a 6= b f a = f b
obtains z where z ∈ open segment a b

(∀w ∈ closed segment a b. (f w) ≤ (f z )) ∨
(∀w ∈ closed segment a b. (f z ) ≤ (f w))

proof −
obtain c where c ∈ closed segment a b and c:

∧
y . y ∈ closed segment a b =⇒

f y ≤ f c
using continuous attains sup [of closed segment a b f ] contf by auto

obtain d where d ∈ closed segment a b and d :
∧
y . y ∈ closed segment a b =⇒

f d ≤ f y
using continuous attains inf [of closed segment a b f ] contf by auto

show ?thesis
proof (cases c ∈ open segment a b ∨ d ∈ open segment a b)
case True
then show ?thesis
using c d that by blast

next
case False
then have (c = a ∨ c = b) ∧ (d = a ∨ d = b)
by (simp add : 〈c ∈ closed segment a b〉 〈d ∈ closed segment a b〉 open segment def )
with 〈a 6= b〉 〈f a = f b〉 c d show ?thesis
by (rule tac z = midpoint a b in that) (fastforce+)

qed
qed

An injective map into R is also an open map w.r.T. the universe, and con-
versely.

proposition injective eq 1d open map UNIV :
fixes f :: real ⇒ real
assumes contf : continuous on S f and S : is interval S
shows inj on f S ←→ (∀T . open T ∧ T ⊆ S −→ open(f ‘ T ))

(is ?lhs = ?rhs)
proof safe
fix T
assume injf : ?lhs and open T and T ⊆ S
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have ∃U . open U ∧ f x ∈ U ∧ U ⊆ f ‘ T if x ∈ T for x
proof −
obtain δ where δ > 0 and δ: cball x δ ⊆ T
using 〈open T 〉 〈x ∈ T 〉 open contains cball eq by blast

show ?thesis
proof (intro exI conjI )
have closed segment (x−δ) (x+δ) = {x−δ..x+δ}
using 〈0 < δ〉 by (auto simp: closed segment eq real ivl)

also have . . . ⊆ S
using δ 〈T ⊆ S 〉 by (auto simp: dist norm subset eq)
finally have f ‘ (open segment (x−δ) (x+δ)) = open segment (f (x−δ)) (f

(x+δ))
using continuous injective image open segment 1
by (metis continuous on subset [OF contf ] inj on subset [OF injf ])

then show open (f ‘ {x−δ<..<x+δ})
using 〈0 < δ〉 by (simp add : open segment eq real ivl)

show f x ∈ f ‘ {x − δ<..<x + δ}
by (auto simp: 〈δ > 0 〉)

show f ‘ {x − δ<..<x + δ} ⊆ f ‘ T
using δ by (auto simp: dist norm subset iff )

qed
qed
with open subopen show open (f ‘ T )
by blast

next
assume R: ?rhs
have False if xy : x ∈ S y ∈ S and f x = f y x 6= y for x y
proof −
have open (f ‘ open segment x y)
using R

by (metis S convex contains open segment is interval convex open greaterThanLessThan
open segment eq real ivl xy)

moreover
have continuous on (closed segment x y) f
by (meson S closed segment subset contf continuous on subset is interval convex

that)
then obtain ξ where ξ ∈ open segment x y

and ξ: (∀w ∈ closed segment x y . (f w) ≤ (f ξ)) ∨
(∀w ∈ closed segment x y . (f ξ) ≤ (f w))

using continuous IVT local extremum [of x y f ] 〈f x = f y〉 〈x 6= y〉 by blast
ultimately obtain e where e>0 and e:

∧
u. dist u (f ξ) < e =⇒ u ∈ f ‘

open segment x y
using open dist by (metis image eqI )

have fin: f ξ + (e/2 ) ∈ f ‘ open segment x y f ξ − (e/2 ) ∈ f ‘ open segment x
y

using e [of f ξ + (e/2 )] e [of f ξ − (e/2 )] 〈e > 0 〉 by (auto simp: dist norm)
show ?thesis
using ξ 〈0 < e〉 fin open closed segment by fastforce

qed
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then show ?lhs
by (force simp: inj on def )

qed

5.5.14 Bounding a point away from a path

lemma not on path ball :
fixes g :: real ⇒ ′a::heine borel
assumes path g
and z : z /∈ path image g

shows ∃ e > 0 . ball z e ∩ path image g = {}
proof −
have closed (path image g)
by (simp add : 〈path g〉 closed path image)

then obtain a where a ∈ path image g ∀ y ∈ path image g . dist z a ≤ dist z y
by (auto intro: distance attains inf [OF path image nonempty , of g z ])

then show ?thesis
by (rule tac x=dist z a in exI ) (use dist commute z in auto)

qed

lemma not on path cball :
fixes g :: real ⇒ ′a::heine borel
assumes path g
and z /∈ path image g

shows ∃ e>0 . cball z e ∩ (path image g) = {}
proof −
obtain e where ball z e ∩ path image g = {} e > 0
using not on path ball [OF assms] by auto

moreover have cball z (e/2 ) ⊆ ball z e
using 〈e > 0 〉 by auto

ultimately show ?thesis
by (rule tac x=e/2 in exI ) auto

qed

5.5.15 Path component

Original formalization by Tom Hales

definition path component S x y ≡
(∃ g . path g ∧ path image g ⊆ S ∧ pathstart g = x ∧ pathfinish g = y)

abbreviation
path component set S x ≡ Collect (path component S x )

lemmas path defs = path def pathstart def pathfinish def path image def path component def

lemma path component mem:
assumes path component S x y
shows x ∈ S and y ∈ S
using assms
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unfolding path defs
by auto

lemma path component refl :
assumes x ∈ S
shows path component S x x
using assms
unfolding path defs
by (metis (full types) assms continuous on const image subset iff path image def )

lemma path component refl eq : path component S x x ←→ x ∈ S
by (auto intro!: path component mem path component refl)

lemma path component sym: path component S x y =⇒ path component S y x
unfolding path component def
by (metis (no types) path image reversepath path reversepath pathfinish reversepath

pathstart reversepath)

lemma path component trans:
assumes path component S x y and path component S y z
shows path component S x z
using assms
unfolding path component def
by (metis path join pathfinish join pathstart join subset path image join)

lemma path component of subset : S ⊆ T =⇒ path component S x y =⇒ path component
T x y
unfolding path component def by auto

lemma path component linepath:
fixes S :: ′a::real normed vector set
shows closed segment a b ⊆ S =⇒ path component S a b

unfolding path component def
by (rule tac x=linepath a b in exI , auto)

Path components as sets

lemma path component set :
path component set S x =
{y . (∃ g . path g ∧ path image g ⊆ S ∧ pathstart g = x ∧ pathfinish g = y)}

by (auto simp: path component def )

lemma path component subset : path component set S x ⊆ S
by (auto simp: path component mem(2 ))

lemma path component eq empty : path component set S x = {} ←→ x /∈ S
using path component mem path component refl eq
by fastforce
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lemma path component mono:
S ⊆ T =⇒ (path component set S x ) ⊆ (path component set T x )

by (simp add : Collect mono path component of subset)

lemma path component eq :
y ∈ path component set S x =⇒ path component set S y = path component set

S x
by (metis (no types, lifting) Collect cong mem Collect eq path component sym path component trans)

5.5.16 Path connectedness of a space

definition path connected S ←→
(∀ x∈S . ∀ y∈S . ∃ g . path g ∧ path image g ⊆ S ∧ pathstart g = x ∧ pathfinish g

= y)

lemma path connectedin iff path connected real [simp]:
path connectedin euclideanreal S ←→ path connected S

by (simp add : path connectedin path connected def path defs)

lemma path connected component : path connected S ←→ (∀ x∈S . ∀ y∈S . path component
S x y)
unfolding path connected def path component def by auto

lemma path connected component set : path connected S ←→ (∀ x∈S . path component set
S x = S )
unfolding path connected component path component subset
using path component mem by blast

lemma path component maximal :
[[x ∈ T ; path connected T ; T ⊆ S ]] =⇒ T ⊆ (path component set S x )

by (metis path component mono path connected component set)

lemma convex imp path connected :
fixes S :: ′a::real normed vector set
assumes convex S
shows path connected S
unfolding path connected def
using assms convex contains segment by fastforce

lemma path connected UNIV [iff ]: path connected (UNIV :: ′a::real normed vector
set)
by (simp add : convex imp path connected)

lemma path component UNIV : path component set UNIV x = (UNIV :: ′a::real normed vector
set)
using path connected component set by auto

lemma path connected imp connected :
assumes path connected S
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shows connected S
proof (rule connectedI )
fix e1 e2
assume as: open e1 open e2 S ⊆ e1 ∪ e2 e1 ∩ e2 ∩ S = {} e1 ∩ S 6= {} e2 ∩

S 6= {}
then obtain x1 x2 where obt :x1 ∈ e1 ∩ S x2 ∈ e2 ∩ S
by auto

then obtain g where g : path g path image g ⊆ S pathstart g = x1 pathfinish g
= x2

using assms[unfolded path connected def ,rule format ,of x1 x2 ] by auto
have ∗: connected {0 ..1 ::real}
by (auto intro!: convex connected)

have {0 ..1} ⊆ {x ∈ {0 ..1}. g x ∈ e1} ∪ {x ∈ {0 ..1}. g x ∈ e2}
using as(3 ) g(2 )[unfolded path defs] by blast

moreover have {x ∈ {0 ..1}. g x ∈ e1} ∩ {x ∈ {0 ..1}. g x ∈ e2} = {}
using as(4 ) g(2 )[unfolded path defs]
unfolding subset eq
by auto

moreover have {x ∈ {0 ..1}. g x ∈ e1} 6= {} ∧ {x ∈ {0 ..1}. g x ∈ e2} 6= {}
using g(3 ,4 )[unfolded path defs]
using obt
by (simp add : ex in conv [symmetric], metis zero le one order refl)

ultimately show False
using ∗[unfolded connected local not ex , rule format ,
of {0 ..1} ∩ g −‘ e1 {0 ..1} ∩ g −‘ e2 ]

using continuous openin preimage gen[OF g(1 )[unfolded path def ] as(1 )]
using continuous openin preimage gen[OF g(1 )[unfolded path def ] as(2 )]
by auto

qed

lemma open path component :
fixes S :: ′a::real normed vector set
assumes open S
shows open (path component set S x )
unfolding open contains ball

proof
fix y
assume as: y ∈ path component set S x
then have y ∈ S
by (simp add : path component mem(2 ))

then obtain e where e: e > 0 ball y e ⊆ S
using assms openE by blast

have
∧
u. dist y u < e =⇒ path component S x u

by (metis (full types) as centre in ball convex ball convex imp path connected e
mem Collect eq mem ball path component eq path component of subset path connected component)
then show ∃ e > 0 . ball y e ⊆ path component set S x
using 〈e>0 〉 by auto

qed
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lemma open non path component :
fixes S :: ′a::real normed vector set
assumes open S
shows open (S − path component set S x )
unfolding open contains ball

proof
fix y
assume y : y ∈ S − path component set S x
then obtain e where e: e > 0 ball y e ⊆ S
using assms openE by auto

show ∃ e>0 . ball y e ⊆ S − path component set S x
proof (intro exI conjI subsetI DiffI notI )
show

∧
x . x ∈ ball y e =⇒ x ∈ S

using e by blast
show False if z ∈ ball y e z ∈ path component set S x for z
proof −
have y ∈ path component set S z
by (meson assms convex ball convex imp path connected e open contains ball eq

open path component path component maximal that(1 ))
then have y ∈ path component set S x
using path component eq that(2 ) by blast

then show False
using y by blast

qed
qed (use e in auto)

qed

lemma connected open path connected :
fixes S :: ′a::real normed vector set
assumes open S
and connected S

shows path connected S
unfolding path connected component set

proof (rule, rule, rule path component subset , rule)
fix x y
assume x ∈ S and y ∈ S
show y ∈ path component set S x
proof (rule ccontr)
assume ¬ ?thesis
moreover have path component set S x ∩ S 6= {}
using 〈x ∈ S 〉 path component eq empty path component subset [of S x ]
by auto

ultimately
show False
using 〈y ∈ S 〉 open non path component [OF assms(1 )] open path component [OF

assms(1 )]
using assms(2 )[unfolded connected def not ex , rule format ,
of path component set S x S − path component set S x ]

by auto
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qed
qed

lemma path connected continuous image:
assumes contf : continuous on S f
and path connected S

shows path connected (f ‘ S )
unfolding path connected def

proof (rule, rule)
fix x ′ y ′

assume x ′ ∈ f ‘ S y ′ ∈ f ‘ S
then obtain x y where x : x ∈ S and y : y ∈ S and x ′: x ′ = f x and y ′: y ′ =

f y
by auto

from x y obtain g where path g ∧ path image g ⊆ S ∧ pathstart g = x ∧
pathfinish g = y

using assms(2 )[unfolded path connected def ] by fast
then show ∃ g . path g ∧ path image g ⊆ f ‘ S ∧ pathstart g = x ′ ∧ pathfinish g

= y ′

unfolding x ′ y ′ path defs
by (fastforce intro: continuous on compose continuous on subset [OF contf ])

qed

lemma path connected translationI :
fixes a :: ′a :: topological group add
assumes path connected S shows path connected ((λx . a + x ) ‘ S )
by (intro path connected continuous image assms continuous intros)

lemma path connected translation:
fixes a :: ′a :: topological group add
shows path connected ((λx . a + x ) ‘ S ) = path connected S

proof −
have ∀ x y . (+) (x :: ′a) ‘ (+) (0 − x ) ‘ y = y
by (simp add : image image)

then show ?thesis
by (metis (no types) path connected translationI )

qed

lemma path connected segment [simp]:
fixes a :: ′a::real normed vector
shows path connected (closed segment a b)

by (simp add : convex imp path connected)

lemma path connected open segment [simp]:
fixes a :: ′a::real normed vector
shows path connected (open segment a b)

by (simp add : convex imp path connected)

lemma homeomorphic path connectedness:
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S homeomorphic T =⇒ path connected S ←→ path connected T
unfolding homeomorphic def homeomorphism def by (metis path connected continuous image)

lemma path connected empty [simp]: path connected {}
unfolding path connected def by auto

lemma path connected singleton [simp]: path connected {a}
unfolding path connected def pathstart def pathfinish def path image def
using path def by fastforce

lemma path connected Un:
assumes path connected S
and path connected T
and S ∩ T 6= {}

shows path connected (S ∪ T )
unfolding path connected component

proof (intro ballI )
fix x y
assume x : x ∈ S ∪ T and y : y ∈ S ∪ T
from assms obtain z where z : z ∈ S z ∈ T
by auto

show path component (S ∪ T ) x y
using x y

proof safe
assume x ∈ S y ∈ S
then show path component (S ∪ T ) x y
by (meson Un upper1 〈path connected S 〉 path component of subset path connected component)

next
assume x ∈ S y ∈ T
then show path component (S ∪ T ) x y
by (metis z assms(1−2 ) le sup iff order refl path component of subset path component trans

path connected component)
next
assume x ∈ T y ∈ S
then show path component (S ∪ T ) x y
by (metis z assms(1−2 ) le sup iff order refl path component of subset path component trans

path connected component)
next
assume x ∈ T y ∈ T
then show path component (S ∪ T ) x y
by (metis Un upper1 assms(2 ) path component of subset path connected component

sup commute)
qed

qed

lemma path connected UNION :
assumes

∧
i . i ∈ A =⇒ path connected (S i)

and
∧
i . i ∈ A =⇒ z ∈ S i

shows path connected (
⋃
i∈A. S i)
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unfolding path connected component
proof clarify
fix x i y j
assume ∗: i ∈ A x ∈ S i j ∈ A y ∈ S j
then have path component (S i) x z and path component (S j ) z y
using assms by (simp all add : path connected component)

then have path component (
⋃
i∈A. S i) x z and path component (

⋃
i∈A. S i)

z y
using ∗(1 ,3 ) by (auto elim!: path component of subset [rotated ])

then show path component (
⋃

i∈A. S i) x y
by (rule path component trans)

qed

lemma path component path image pathstart :
assumes p: path p and x : x ∈ path image p
shows path component (path image p) (pathstart p) x

proof −
obtain y where x : x = p y and y : 0 ≤ y y ≤ 1
using x by (auto simp: path image def )

show ?thesis
unfolding path component def

proof (intro exI conjI )
have continuous on ((∗) y ‘ {0 ..1}) p
by (simp add : continuous on path image mult atLeastAtMost if p y)

then have continuous on {0 ..1} (p ◦ ((∗) y))
using continuous on compose continuous on mult const by blast

then show path (λu. p (y ∗ u))
by (simp add : path def )

show path image (λu. p (y ∗ u)) ⊆ path image p
using y mult le one by (fastforce simp: path image def image iff )

qed (auto simp: pathstart def pathfinish def x )
qed

lemma path connected path image: path p =⇒ path connected(path image p)
unfolding path connected component
by (meson path component path image pathstart path component sym path component trans)

lemma path connected path component [simp]:
path connected (path component set s x )

proof −
{ fix y z
assume pa: path component s x y path component s x z
then have pae: path component set s x = path component set s y
using path component eq by auto

have yz : path component s y z
using pa path component sym path component trans by blast

then have ∃ g . path g ∧ path image g ⊆ path component set s x ∧ pathstart g
= y ∧ pathfinish g = z

apply (simp add : path component def )
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by (metis pae path component maximal path connected path image pathstart in path image)
}
then show ?thesis
by (simp add : path connected def )

qed

lemma path component : path component S x y ←→ (∃ t . path connected t ∧ t ⊆
S ∧ x ∈ t ∧ y ∈ t)
apply (intro iffI )
apply (metis path connected path image path defs(5 ) pathfinish in path image

pathstart in path image)
using path component of subset path connected component by blast

lemma path component path component [simp]:
path component set (path component set S x ) x = path component set S x

proof (cases x ∈ S )
case True show ?thesis
by (metis True mem Collect eq path component refl path connected component set

path connected path component)
next
case False then show ?thesis
by (metis False empty iff path component eq empty)

qed

lemma path component subset connected component :
(path component set S x ) ⊆ (connected component set S x )

proof (cases x ∈ S )
case True show ?thesis
by (simp add : True connected component maximal path component refl path component subset

path connected imp connected)
next
case False then show ?thesis
using path component eq empty by auto

qed

5.5.17 Lemmas about path-connectedness

lemma path connected linear image:
fixes f :: ′a::real normed vector ⇒ ′b::real normed vector
assumes path connected S bounded linear f
shows path connected(f ‘ S )

by (auto simp: linear continuous on assms path connected continuous image)

lemma is interval path connected : is interval S =⇒ path connected S
by (simp add : convex imp path connected is interval convex )

lemma path connected Ioi [simp]: path connected {a<..} for a :: real
by (simp add : convex imp path connected)
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lemma path connected Ici [simp]: path connected {a..} for a :: real
by (simp add : convex imp path connected)

lemma path connected Iio[simp]: path connected {..<a} for a :: real
by (simp add : convex imp path connected)

lemma path connected Iic[simp]: path connected {..a} for a :: real
by (simp add : convex imp path connected)

lemma path connected Ioo[simp]: path connected {a<..<b} for a b :: real
by (simp add : convex imp path connected)

lemma path connected Ioc[simp]: path connected {a<..b} for a b :: real
by (simp add : convex imp path connected)

lemma path connected Ico[simp]: path connected {a..<b} for a b :: real
by (simp add : convex imp path connected)

lemma path connectedin path image:
assumes pathin X g shows path connectedin X (g ‘ ({0 ..1}))
unfolding pathin def

proof (rule path connectedin continuous map image)
show continuous map (subtopology euclideanreal {0 ..1}) X g
using assms pathin def by blast

qed (auto simp: is interval 1 is interval path connected)

lemma path connected space subconnected :
path connected space X ←→
(∀ x ∈ topspace X . ∀ y ∈ topspace X . ∃S . path connectedin X S ∧ x ∈ S ∧ y

∈ S )
by (metis path connectedin path connectedin topspace path connected space def )

lemma connectedin path image: pathin X g =⇒ connectedin X (g ‘ ({0 ..1}))
by (simp add : path connectedin imp connectedin path connectedin path image)

lemma compactin path image: pathin X g =⇒ compactin X (g ‘ ({0 ..1}))
unfolding pathin def
by (rule image compactin [of top of set {0 ..1}]) auto

lemma linear homeomorphism image:
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes linear f inj f
obtains g where homeomorphism (f ‘ S ) S g f

proof −
obtain g where linear g g ◦ f = id
using assms linear injective left inverse by blast

then have homeomorphism (f ‘ S ) S g f
using assms unfolding homeomorphism def
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by (auto simp: eq id iff [symmetric] image comp linear conv bounded linear
linear continuous on)
then show thesis ..

qed

lemma linear homeomorphic image:
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes linear f inj f
shows S homeomorphic f ‘ S

by (meson homeomorphic def homeomorphic sym linear homeomorphism image [OF
assms])

lemma path connected Times:
assumes path connected s path connected t
shows path connected (s × t)

proof (simp add : path connected def Sigma def , clarify)
fix x1 y1 x2 y2
assume x1 ∈ s y1 ∈ t x2 ∈ s y2 ∈ t
obtain g where path g and g : path image g ⊆ s and gs: pathstart g = x1 and

gf : pathfinish g = x2
using 〈x1 ∈ s〉 〈x2 ∈ s〉 assms by (force simp: path connected def )

obtain h where path h and h: path image h ⊆ t and hs: pathstart h = y1 and
hf : pathfinish h = y2

using 〈y1 ∈ t 〉 〈y2 ∈ t 〉 assms by (force simp: path connected def )
have path (λz . (x1 , h z ))
using 〈path h〉

unfolding path def
by (intro continuous intros continuous on compose2 [where g = Pair ]; force)

moreover have path (λz . (g z , y2 ))
using 〈path g〉

unfolding path def
by (intro continuous intros continuous on compose2 [where g = Pair ]; force)

ultimately have 1 : path ((λz . (x1 , h z )) +++ (λz . (g z , y2 )))
by (metis hf gs path join imp pathstart def pathfinish def )

have path image ((λz . (x1 , h z )) +++ (λz . (g z , y2 ))) ⊆ path image (λz . (x1 ,
h z )) ∪ path image (λz . (g z , y2 ))

by (rule Path Connected .path image join subset)
also have . . . ⊆ (

⋃
x∈s.

⋃
x1∈t . {(x , x1 )})

using g h 〈x1 ∈ s〉 〈y2 ∈ t 〉 by (force simp: path image def )
finally have 2 : path image ((λz . (x1 , h z )) +++ (λz . (g z , y2 ))) ⊆ (

⋃
x∈s.⋃

x1∈t . {(x , x1 )}) .
show ∃ g . path g ∧ path image g ⊆ (

⋃
x∈s.

⋃
x1∈t . {(x , x1 )}) ∧

pathstart g = (x1 , y1 ) ∧ pathfinish g = (x2 , y2 )
using 1 2 gf hs
by (metis (no types, lifting) pathfinish def pathfinish join pathstart def path-

start join)
qed

lemma is interval path connected 1 :
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fixes s :: real set
shows is interval s ←→ path connected s

using is interval connected 1 is interval path connected path connected imp connected
by blast

5.5.18 Path components

lemma Union path component [simp]:
Union {path component set S x |x . x ∈ S} = S

apply (rule subset antisym)
using path component subset apply force
using path component refl by auto

lemma path component disjoint :
disjnt (path component set S a) (path component set S b) ←→
(a /∈ path component set S b)

unfolding disjnt iff
using path component sym path component trans by blast

lemma path component eq eq :
path component S x = path component S y ←→

(x /∈ S ) ∧ (y /∈ S ) ∨ x ∈ S ∧ y ∈ S ∧ path component S x y
(is ?lhs = ?rhs)

proof
assume ?lhs then show ?rhs
by (metis (no types) path component mem(1 ) path component refl)

next
assume ?rhs then show ?lhs
proof
assume x /∈ S ∧ y /∈ S then show ?lhs
by (metis Collect empty eq bot path component eq empty)

next
assume S : x ∈ S ∧ y ∈ S ∧ path component S x y show ?lhs
by (rule ext) (metis S path component trans path component sym)

qed
qed

lemma path component unique:
assumes x ∈ c c ⊆ S path connected c∧

c ′. [[x ∈ c ′; c ′ ⊆ S ; path connected c ′]] =⇒ c ′ ⊆ c
shows path component set S x = c
(is ?lhs = ?rhs)

proof
show ?lhs ⊆ ?rhs
using assms
by (metis mem Collect eq path component refl path component subset path connected path component

subsetD)
qed (simp add : assms path component maximal)
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lemma path component intermediate subset :
path component set u a ⊆ t ∧ t ⊆ u

=⇒ path component set t a = path component set u a
by (metis (no types) path component mono path component path component sub-
set antisym)

lemma complement path component Union:
fixes x :: ′a :: topological space
shows S − path component set S x =⋃

({path component set S y | y . y ∈ S} − {path component set S x})
proof −
have ∗: (

∧
x . x ∈ S − {a} =⇒ disjnt a x ) =⇒

⋃
S − a =

⋃
(S − {a})

for a:: ′a set and S
by (auto simp: disjnt def )

have
∧
y . y ∈ {path component set S x |x . x ∈ S} − {path component set S x}
=⇒ disjnt (path component set S x ) y

using path component disjoint path component eq by fastforce
then have

⋃
{path component set S x |x . x ∈ S} − path component set S x =⋃

({path component set S y |y . y ∈ S} − {path component set S x})
by (meson ∗)

then show ?thesis by simp
qed

5.5.19 Path components

definition path component of
where path component of X x y ≡ ∃ g . pathin X g ∧ g 0 = x ∧ g 1 = y

abbreviation path component of set
where path component of set X x ≡ Collect (path component of X x )

definition path components of :: ′a topology ⇒ ′a set set
where path components of X ≡ path component of set X ‘ topspace X

lemma pathin canon iff : pathin (top of set T ) g ←→ path g ∧ g ‘ {0 ..1} ⊆ T
by (simp add : path def pathin def )

lemma path component of canon iff [simp]:
path component of (top of set T ) a b ←→ path component T a b
by (simp add : path component of def pathin canon iff path defs)

lemma path component in topspace:
path component of X x y =⇒ x ∈ topspace X ∧ y ∈ topspace X
by (auto simp: path component of def pathin def continuous map def )

lemma path component of refl :
path component of X x x ←→ x ∈ topspace X
by (metis path component in topspace path component of def pathin const)
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lemma path component of sym:
assumes path component of X x y
shows path component of X y x
using assms
apply (clarsimp simp: path component of def pathin def )
apply (rule tac x=g ◦ (λt . 1 − t) in exI )
apply (auto intro!: continuous map compose simp: continuous map in subtopology

continuous on op minus)
done

lemma path component of sym iff :
path component of X x y ←→ path component of X y x
by (metis path component of sym)

lemma continuous map cases le:
assumes contp: continuous map X euclideanreal p
and contq : continuous map X euclideanreal q
and contf : continuous map (subtopology X {x . x ∈ topspace X ∧ p x ≤ q x})

Y f
and contg : continuous map (subtopology X {x . x ∈ topspace X ∧ q x ≤ p x})

Y g
and fg :

∧
x . [[x ∈ topspace X ; p x = q x ]] =⇒ f x = g x

shows continuous map X Y (λx . if p x ≤ q x then f x else g x )
proof −
have continuous map X Y (λx . if q x − p x ∈ {0 ..} then f x else g x )
proof (rule continuous map cases function)
show continuous map X euclideanreal (λx . q x − p x )
by (intro contp contq continuous intros)

show continuous map (subtopology X {x ∈ topspace X . q x − p x ∈ euclideanreal
closure of {0 ..}}) Y f

by (simp add : contf )
show continuous map (subtopology X {x ∈ topspace X . q x − p x ∈ euclideanreal

closure of (topspace euclideanreal − {0 ..})}) Y g
by (simp add : contg flip: Compl eq Diff UNIV )

qed (auto simp: fg)
then show ?thesis
by simp

qed

lemma continuous map cases lt :
assumes contp: continuous map X euclideanreal p
and contq : continuous map X euclideanreal q
and contf : continuous map (subtopology X {x . x ∈ topspace X ∧ p x ≤ q x})

Y f
and contg : continuous map (subtopology X {x . x ∈ topspace X ∧ q x ≤ p x})

Y g
and fg :

∧
x . [[x ∈ topspace X ; p x = q x ]] =⇒ f x = g x

shows continuous map X Y (λx . if p x < q x then f x else g x )
proof −
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have continuous map X Y (λx . if q x − p x ∈ {0<..} then f x else g x )
proof (rule continuous map cases function)
show continuous map X euclideanreal (λx . q x − p x )
by (intro contp contq continuous intros)

show continuous map (subtopology X {x ∈ topspace X . q x − p x ∈ euclideanreal
closure of {0<..}}) Y f

by (simp add : contf )
show continuous map (subtopology X {x ∈ topspace X . q x − p x ∈ euclideanreal

closure of (topspace euclideanreal − {0<..})}) Y g
by (simp add : contg flip: Compl eq Diff UNIV )

qed (auto simp: fg)
then show ?thesis
by simp

qed

lemma path component of trans:
assumes path component of X x y and path component of X y z
shows path component of X x z
unfolding path component of def pathin def

proof −
let ?T01 = top of set {0 ..1 ::real}
obtain g1 g2 where g1 : continuous map ?T01 X g1 x = g1 0 y = g1 1
and g2 : continuous map ?T01 X g2 g2 0 = g1 1 z = g2 1
using assms unfolding path component of def pathin def by blast

let ?g = λx . if x ≤ 1/2 then (g1 ◦ (λt . 2 ∗ t)) x else (g2 ◦ (λt . 2 ∗ t −1 )) x
show ∃ g . continuous map ?T01 X g ∧ g 0 = x ∧ g 1 = z
proof (intro exI conjI )
show continuous map (subtopology euclideanreal {0 ..1}) X ?g
proof (intro continuous map cases le continuous map compose, force, force)

show continuous map (subtopology ?T01 {x ∈ topspace ?T01 . x ≤ 1/2})
?T01 ((∗) 2 )

by (auto simp: continuous map in subtopology continuous map from subtopology)
have continuous map

(subtopology (top of set {0 ..1}) {x . 0 ≤ x ∧ x ≤ 1 ∧ 1 ≤ x ∗ 2})
euclideanreal (λt . 2 ∗ t − 1 )

by (intro continuous intros) (force intro: continuous map from subtopology)
then show continuous map (subtopology ?T01 {x ∈ topspace ?T01 . 1/2 ≤

x}) ?T01 (λt . 2 ∗ t − 1 )
by (force simp: continuous map in subtopology)

show (g1 ◦ (∗) 2 ) x = (g2 ◦ (λt . 2 ∗ t − 1 )) x if x ∈ topspace ?T01 x =
1/2 for x

using that by (simp add : g2 (2 ) mult .commute continuous map from subtopology)
qed (auto simp: g1 g2 )

qed (auto simp: g1 g2 )
qed

lemma path component of mono:
[[path component of (subtopology X S ) x y ; S ⊆ T ]] =⇒ path component of

(subtopology X T ) x y
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unfolding path component of def
by (metis subsetD pathin subtopology)

lemma path component of :
path component of X x y ←→ (∃T . path connectedin X T ∧ x ∈ T ∧ y ∈ T )
(is ?lhs = ?rhs)

proof
assume ?lhs then show ?rhs
by (metis atLeastAtMost iff image eqI order refl path component of def path connectedin path image

zero le one)
next
assume ?rhs then show ?lhs
by (metis path component of def path connectedin)

qed

lemma path component of set :
path component of X x y ←→ (∃ g . pathin X g ∧ g 0 = x ∧ g 1 = y)
by (auto simp: path component of def )

lemma path component of subset topspace:
Collect(path component of X x ) ⊆ topspace X
using path component in topspace by fastforce

lemma path component of eq empty :
Collect(path component of X x ) = {} ←→ (x /∈ topspace X )
using path component in topspace path component of refl by fastforce

lemma path connected space iff path component :
path connected space X ←→ (∀ x ∈ topspace X . ∀ y ∈ topspace X . path component of

X x y)
by (simp add : path component of path connected space subconnected)

lemma path connected space imp path component of :
[[path connected space X ; a ∈ topspace X ; b ∈ topspace X ]]

=⇒ path component of X a b
by (simp add : path connected space iff path component)

lemma path connected space path component set :
path connected space X ←→ (∀ x ∈ topspace X . Collect(path component of X x )

= topspace X )
using path component of subset topspace path connected space iff path component

by fastforce

lemma path component of maximal :
[[path connectedin X s; x ∈ s]] =⇒ s ⊆ Collect(path component of X x )
using path component of by fastforce

lemma path component of equiv :
path component of X x y ←→ x ∈ topspace X ∧ y ∈ topspace X ∧ path component of
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X x = path component of X y
(is ?lhs = ?rhs)

proof
assume ?lhs
then show ?rhs
apply (simp add : fun eq iff path component in topspace)
apply (meson path component of sym path component of trans)
done

qed (simp add : path component of refl)

lemma path component of disjoint :
disjnt (Collect (path component of X x )) (Collect (path component of X y))

←→
∼(path component of X x y)

by (force simp: disjnt def path component of eq empty path component of equiv)

lemma path component of eq :
path component of X x = path component of X y ←→

(x /∈ topspace X ) ∧ (y /∈ topspace X ) ∨
x ∈ topspace X ∧ y ∈ topspace X ∧ path component of X x y

by (metis Collect empty eq bot path component of eq empty path component of equiv)

lemma path component of aux :
path component of X x y

=⇒ path component of (subtopology X (Collect (path component of X x )))
x y

by (meson path component of path component of maximal path connectedin subtopology)

lemma path connectedin path component of :
path connectedin X (Collect (path component of X x ))

proof −
have topspace (subtopology X (path component of set X x )) = path component of set

X x
by (meson path component of subset topspace topspace subtopology subset)

then have path connected space (subtopology X (path component of set X x ))
by (metis (full types) path component of aux mem Collect eq path component of equiv

path connected space iff path component)
then show ?thesis
by (simp add : path component of subset topspace path connectedin def )

qed

lemma path connectedin euclidean [simp]:
path connectedin euclidean S ←→ path connected S

by (auto simp: path connectedin def path connected space iff path component path connected component)

lemma path connected space euclidean subtopology [simp]:
path connected space(subtopology euclidean S ) ←→ path connected S
using path connectedin topspace by force
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lemma Union path components of :⋃
(path components of X ) = topspace X

by (auto simp: path components of def path component of equiv)

lemma path components of maximal :
[[C ∈ path components of X ; path connectedin X S ; ∼disjnt C S ]] =⇒ S ⊆ C
apply (auto simp: path components of def path component of equiv)
using path component of maximal path connectedin def apply fastforce
by (meson disjnt subset2 path component of disjoint path component of equiv path component of maximal)

lemma pairwise disjoint path components of :
pairwise disjnt (path components of X )

by (auto simp: path components of def pairwise def path component of disjoint
path component of equiv)

lemma complement path components of Union:
C ∈ path components of X

=⇒ topspace X − C =
⋃
(path components of X − {C})

by (metis Diff cancel Diff subset Union path components of cSup singleton diff Union pairwise disjoint
insert subset pairwise disjoint path components of )

lemma nonempty path components of :
assumes C ∈ path components of X shows C 6= {}

proof −
have C ∈ path component of set X ‘ topspace X
using assms path components of def by blast

then show ?thesis
using path component of refl by fastforce

qed

lemma path components of subset : C ∈ path components of X =⇒ C ⊆ topspace
X
by (auto simp: path components of def path component of equiv)

lemma path connectedin path components of :
C ∈ path components of X =⇒ path connectedin X C
by (auto simp: path components of def path connectedin path component of )

lemma path component in path components of :
Collect (path component of X a) ∈ path components of X ←→ a ∈ topspace X
by (metis imageI nonempty path components of path component of eq empty path components of def )

lemma path connectedin Union:
assumes A:

∧
S . S ∈ A =⇒ path connectedin X S

⋂
A 6= {}

shows path connectedin X (
⋃
A)

proof −
obtain a where

∧
S . S ∈ A =⇒ a ∈ S

using assms by blast
then have

∧
x . x ∈ topspace (subtopology X (

⋃
A)) =⇒ path component of
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(subtopology X (
⋃
A)) a x

by simp (meson Union upper A path component of path connectedin subtopology)
then show ?thesis
using A unfolding path connectedin def
by (metis Sup le iff path component of equiv path connected space iff path component)

qed

lemma path connectedin Un:
[[path connectedin X S ; path connectedin X T ; S ∩ T 6= {}]]
=⇒ path connectedin X (S ∪ T )

by (blast intro: path connectedin Union [of {S ,T}, simplified ])

lemma path connected space iff components eq :
path connected space X ←→
(∀C ∈ path components of X . ∀C ′ ∈ path components of X . C = C ′)

unfolding path components of def
proof (intro iffI ballI )
assume ∀C ∈ path component of set X ‘ topspace X .

∀C ′ ∈ path component of set X ‘ topspace X . C = C ′

then show path connected space X
using path component of refl path connected space iff path component by fastforce

qed (auto simp: path connected space path component set)

lemma path components of eq empty :
path components of X = {} ←→ topspace X = {}
using Union path components of nonempty path components of by fastforce

lemma path components of empty space:
topspace X = {} =⇒ path components of X = {}
by (simp add : path components of eq empty)

lemma path components of subset singleton:
path components of X ⊆ {S} ←→

path connected space X ∧ (topspace X = {} ∨ topspace X = S )
proof (cases topspace X = {})
case True
then show ?thesis
by (auto simp: path components of empty space path connected space topspace empty)

next
case False
have (path components of X = {S}) ←→ (path connected space X ∧ topspace X

= S )
proof (intro iffI conjI )
assume L: path components of X = {S}
then show path connected space X
by (simp add : path connected space iff components eq)

show topspace X = S
by (metis L ccpo Sup singleton [of S ] Union path components of )

next
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assume R: path connected space X ∧ topspace X = S
then show path components of X = {S}
using ccpo Sup singleton [of S ]

by (metis False all not in conv insert iff mk disjoint insert path component in path components of
path connected space iff components eq path connected space path component set)
qed
with False show ?thesis
by (simp add : path components of eq empty subset singleton iff )

qed

lemma path connected space iff components subset singleton:
path connected space X ←→ (∃ a. path components of X ⊆ {a})
by (simp add : path components of subset singleton)

lemma path components of eq singleton:
path components of X = {S} ←→ path connected space X ∧ topspace X 6= {} ∧

S = topspace X
by (metis cSup singleton insert not empty path components of subset singleton

subset singleton iff )

lemma path components of path connected space:
path connected space X =⇒ path components of X = (if topspace X = {} then

{} else {topspace X })
by (simp add : path components of eq empty path components of eq singleton)

lemma path component subset connected component of :
path component of set X x ⊆ connected component of set X x

proof (cases x ∈ topspace X )
case True
then show ?thesis
by (simp add : connected component of maximal path component of refl path connectedin imp connectedin

path connectedin path component of )
next
case False
then show ?thesis
using path component of eq empty by fastforce

qed

lemma exists path component of superset :
assumes S : path connectedin X S and ne: topspace X 6= {}
obtains C where C ∈ path components of X S ⊆ C

proof (cases S = {})
case True
then show ?thesis
using ne path components of eq empty that by fastforce

next
case False
then obtain a where a ∈ S
by blast
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show ?thesis
proof
show Collect (path component of X a) ∈ path components of X
by (meson 〈a ∈ S 〉 S subsetD path component in path components of path connectedin subset topspace)
show S ⊆ Collect (path component of X a)
by (simp add : S 〈a ∈ S 〉 path component of maximal)

qed
qed

lemma path component of eq overlap:
path component of X x = path component of X y ←→

(x /∈ topspace X ) ∧ (y /∈ topspace X ) ∨
Collect (path component of X x ) ∩ Collect (path component of X y) 6= {}

by (metis disjnt def empty iff inf bot right mem Collect eq path component of disjoint
path component of eq path component of eq empty)

lemma path component of nonoverlap:
Collect (path component of X x ) ∩ Collect (path component of X y) = {} ←→
(x /∈ topspace X ) ∨ (y /∈ topspace X ) ∨
path component of X x 6= path component of X y

by (metis inf .idem path component of eq empty path component of eq overlap)

lemma path component of overlap:
Collect (path component of X x ) ∩ Collect (path component of X y) 6= {} ←→
x ∈ topspace X ∧ y ∈ topspace X ∧ path component of X x = path component of

X y
by (meson path component of nonoverlap)

lemma path components of disjoint :
[[C ∈ path components of X ; C ′ ∈ path components of X ]] =⇒ disjnt C C ′←→

C 6= C ′

by (auto simp: path components of def path component of disjoint path component of equiv)

lemma path components of overlap:
[[C ∈ path components of X ; C ′ ∈ path components of X ]] =⇒ C ∩ C ′ 6= {}

←→ C = C ′

by (auto simp: path components of def path component of equiv)

lemma path component of unique:
[[x ∈ C ; path connectedin X C ;

∧
C ′. [[x ∈ C ′; path connectedin X C ′]] =⇒ C ′

⊆ C ]]
=⇒ Collect (path component of X x ) = C

by (meson subsetD eq iff path component of maximal path connectedin path component of )

lemma path component of discrete topology [simp]:
Collect (path component of (discrete topology U ) x ) = (if x ∈ U then {x} else
{})
proof −
have

∧
C ′. [[x ∈ C ′; path connectedin (discrete topology U ) C ′]] =⇒ C ′ ⊆ {x}
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by (metis path connectedin discrete topology subsetD singletonD)
then have x ∈ U =⇒ Collect (path component of (discrete topology U ) x ) =
{x}

by (simp add : path component of unique)
then show ?thesis
using path component in topspace by fastforce

qed

lemma path component of discrete topology iff [simp]:
path component of (discrete topology U ) x y ←→ x ∈ U ∧ y=x
by (metis empty iff insertI1 mem Collect eq path component of discrete topology

singletonD)

lemma path components of discrete topology [simp]:
path components of (discrete topology U ) = (λx . {x}) ‘ U
by (auto simp: path components of def image def fun eq iff )

lemma homeomorphic map path component of :
assumes f : homeomorphic map X Y f and x : x ∈ topspace X
shows Collect (path component of Y (f x )) = f ‘ Collect(path component of X

x )
proof −
obtain g where g : homeomorphic maps X Y f g
using f homeomorphic map maps by blast

show ?thesis
proof
have Collect (path component of Y (f x )) ⊆ topspace Y
by (simp add : path component of subset topspace)

moreover have g ‘ Collect(path component of Y (f x )) ⊆ Collect (path component of
X (g (f x )))

using g x unfolding homeomorphic maps def
by (metis f homeomorphic imp surjective map imageI mem Collect eq path component of maximal

path component of refl path connectedin continuous map image path connectedin path component of )
ultimately show Collect (path component of Y (f x )) ⊆ f ‘ Collect (path component of

X x )
using g x unfolding homeomorphic maps def continuous map def image iff

subset iff
by metis

show f ‘ Collect (path component of X x ) ⊆ Collect (path component of Y (f
x ))

proof (rule path component of maximal)
show path connectedin Y (f ‘ Collect (path component of X x ))
by (meson f homeomorphic map path connectedness eq path connectedin path component of )

qed (simp add : path component of refl x )
qed

qed

lemma homeomorphic map path components of :
assumes homeomorphic map X Y f
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shows path components of Y = (image f ) ‘ (path components of X )
(is ?lhs = ?rhs)

unfolding path components of def homeomorphic imp surjective map [OF assms,
symmetric]
using assms homeomorphic map path component of by fastforce

5.5.20 Sphere is path-connected

lemma path connected punctured universe:
assumes 2 ≤ DIM ( ′a::euclidean space)
shows path connected (− {a:: ′a})

proof −
let ?A = {x :: ′a. ∃ i∈Basis. x · i < a · i}
let ?B = {x :: ′a. ∃ i∈Basis. a · i < x · i}

have A: path connected ?A
unfolding Collect bex eq

proof (rule path connected UNION )
fix i :: ′a
assume i ∈ Basis
then show (

∑
i∈Basis. (a · i − 1 )∗R i) ∈ {x :: ′a. x · i < a · i}

by simp
show path connected {x . x · i < a · i}
using convex imp path connected [OF convex halfspace lt , of i a · i ]
by (simp add : inner commute)

qed
have B : path connected ?B
unfolding Collect bex eq

proof (rule path connected UNION )
fix i :: ′a
assume i ∈ Basis
then show (

∑
i∈Basis. (a · i + 1 ) ∗R i) ∈ {x :: ′a. a · i < x · i}

by simp
show path connected {x . a · i < x · i}
using convex imp path connected [OF convex halfspace gt , of a · i i ]
by (simp add : inner commute)

qed
obtain S :: ′a set where S ⊆ Basis and card S = Suc (Suc 0 )
using ex card [OF assms]
by auto

then obtain b0 b1 :: ′a where b0 ∈ Basis and b1 ∈ Basis and b0 6= b1
unfolding card Suc eq by auto

then have a + b0 − b1 ∈ ?A ∩ ?B
by (auto simp: inner simps inner Basis)

then have ?A ∩ ?B 6= {}
by fast

with A B have path connected (?A ∪ ?B)
by (rule path connected Un)

also have ?A ∪ ?B = {x . ∃ i∈Basis. x · i 6= a · i}
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unfolding neq iff bex disj distrib Collect disj eq ..
also have . . . = {x . x 6= a}
unfolding euclidean eq iff [where ′a= ′a]
by (simp add : Bex def )

also have . . . = − {a}
by auto

finally show ?thesis .
qed

corollary connected punctured universe:
2 ≤ DIM ( ′N ::euclidean space) =⇒ connected(− {a:: ′N })
by (simp add : path connected punctured universe path connected imp connected)

proposition path connected sphere:
fixes a :: ′a :: euclidean space
assumes 2 ≤ DIM ( ′a)
shows path connected(sphere a r)

proof (cases r 0 ::real rule: linorder cases)
case less
then show ?thesis
by (simp)

next
case equal
then show ?thesis
by (simp)

next
case greater
then have eq : (sphere (0 :: ′a) r) = (λx . (r / norm x ) ∗R x ) ‘ (− {0 :: ′a})
by (force simp: image iff split : if split asm)

have continuous on (− {0 :: ′a}) (λx . (r / norm x ) ∗R x )
by (intro continuous intros) auto

then have path connected ((λx . (r / norm x ) ∗R x ) ‘ (− {0 :: ′a}))
by (intro path connected continuous image path connected punctured universe

assms)
with eq have path connected (sphere (0 :: ′a) r)
by auto

then have path connected((+) a ‘ (sphere (0 :: ′a) r))
by (simp add : path connected translation)

then show ?thesis
by (metis add .right neutral sphere translation)

qed

lemma connected sphere:
fixes a :: ′a :: euclidean space
assumes 2 ≤ DIM ( ′a)
shows connected(sphere a r)

using path connected sphere [OF assms]
by (simp add : path connected imp connected)
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corollary path connected complement bounded convex :
fixes S :: ′a :: euclidean space set
assumes bounded S convex S and 2 : 2 ≤ DIM ( ′a)
shows path connected (− S )

proof (cases S = {})
case True then show ?thesis
using convex imp path connected by auto

next
case False
then obtain a where a ∈ S by auto
have § [rule format ]: ∀ y∈S . ∀ u. 0 ≤ u ∧ u ≤ 1 −→ (1 − u) ∗R a + u ∗R y ∈

S
using 〈convex S 〉 〈a ∈ S 〉 by (simp add : convex alt)

{ fix x y assume x /∈ S y /∈ S
then have x 6= a y 6= a using 〈a ∈ S 〉 by auto
then have bxy : bounded(insert x (insert y S ))
by (simp add : 〈bounded S 〉)

then obtain B ::real where B : 0 < B and Bx : norm (a − x ) < B and By :
norm (a − y) < B

and S ⊆ ball a B
using bounded subset ballD [OF bxy , of a] by (auto simp: dist norm)

define C where C = B / norm(x − a)
let ?Cxa = a + C ∗R (x − a)
{ fix u
assume u: (1 − u) ∗R x + u ∗R ?Cxa ∈ S and 0 ≤ u u ≤ 1
have CC : 1 ≤ 1 + (C − 1 ) ∗ u
using 〈x 6= a〉 〈0 ≤ u〉 Bx
by (auto simp add : C def norm minus commute)

have ∗:
∧
v . (1 − u) ∗R x + u ∗R (a + v ∗R (x − a)) = a + (1 + (v − 1 )

∗ u) ∗R (x − a)
by (simp add : algebra simps)

have a + ((1 / (1 + C ∗ u − u)) ∗R x + ((u / (1 + C ∗ u − u)) ∗R a +
(C ∗ u / (1 + C ∗ u − u)) ∗R x )) =

(1 + (u / (1 + C ∗ u − u))) ∗R a + ((1 / (1 + C ∗ u − u)) + (C ∗
u / (1 + C ∗ u − u))) ∗R x

by (simp add : algebra simps)
also have . . . = (1 + (u / (1 + C ∗ u − u))) ∗R a + (1 + (u / (1 + C ∗

u − u))) ∗R x
using CC by (simp add : field simps)

also have . . . = x + (1 + (u / (1 + C ∗ u − u))) ∗R a + (u / (1 + C ∗ u
− u)) ∗R x

by (simp add : algebra simps)
also have . . . = x + ((1 / (1 + C ∗ u − u)) ∗R a +

((u / (1 + C ∗ u − u)) ∗R x + (C ∗ u / (1 + C ∗ u − u)) ∗R a))
using CC by (simp add : field simps) (simp add : add divide distrib scaleR add left)
finally have xeq : (1 − 1 / (1 + (C − 1 ) ∗ u)) ∗R a + (1 / (1 + (C − 1 )

∗ u)) ∗R (a + (1 + (C − 1 ) ∗ u) ∗R (x − a)) = x
by (simp add : algebra simps)
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have False
using § [of a + (1 + (C − 1 ) ∗ u) ∗R (x − a) 1 / (1 + (C − 1 ) ∗ u)]
using u 〈x 6= a〉 〈x /∈ S 〉 〈0 ≤ u〉 CC
by (auto simp: xeq ∗)

}
then have pcx : path component (− S ) x ?Cxa
by (force simp: closed segment def intro!: path component linepath)

define D where D = B / norm(y − a) — massive duplication with the proof
above

let ?Dya = a + D ∗R (y − a)
{ fix u
assume u: (1 − u) ∗R y + u ∗R ?Dya ∈ S and 0 ≤ u u ≤ 1
have DD : 1 ≤ 1 + (D − 1 ) ∗ u
using 〈y 6= a〉 〈0 ≤ u〉 By
by (auto simp add : D def norm minus commute)

have ∗:
∧
v . (1 − u) ∗R y + u ∗R (a + v ∗R (y − a)) = a + (1 + (v − 1 )

∗ u) ∗R (y − a)
by (simp add : algebra simps)

have a + ((1 / (1 + D ∗ u − u)) ∗R y + ((u / (1 + D ∗ u − u)) ∗R a +
(D ∗ u / (1 + D ∗ u − u)) ∗R y)) =

(1 + (u / (1 + D ∗ u − u))) ∗R a + ((1 / (1 + D ∗ u − u)) + (D ∗
u / (1 + D ∗ u − u))) ∗R y

by (simp add : algebra simps)
also have . . . = (1 + (u / (1 + D ∗ u − u))) ∗R a + (1 + (u / (1 + D ∗

u − u))) ∗R y
using DD by (simp add : field simps)

also have . . . = y + (1 + (u / (1 + D ∗ u − u))) ∗R a + (u / (1 + D ∗ u
− u)) ∗R y

by (simp add : algebra simps)
also have . . . = y + ((1 / (1 + D ∗ u − u)) ∗R a +

((u / (1 + D ∗ u − u)) ∗R y + (D ∗ u / (1 + D ∗ u − u)) ∗R a))
using DD by (simp add : field simps) (simp add : add divide distrib scaleR add left)
finally have xeq : (1 − 1 / (1 + (D − 1 ) ∗ u)) ∗R a + (1 / (1 + (D − 1 )

∗ u)) ∗R (a + (1 + (D − 1 ) ∗ u) ∗R (y − a)) = y
by (simp add : algebra simps)

have False
using § [of a + (1 + (D − 1 ) ∗ u) ∗R (y − a) 1 / (1 + (D − 1 ) ∗ u)]
using u 〈y 6= a〉 〈y /∈ S 〉 〈0 ≤ u〉 DD
by (auto simp: xeq ∗)

}
then have pdy : path component (− S ) y ?Dya
by (force simp: closed segment def intro!: path component linepath)

have pyx : path component (− S ) ?Dya ?Cxa
proof (rule path component of subset)
show sphere a B ⊆ − S
using 〈S ⊆ ball a B 〉 by (force simp: ball def dist norm norm minus commute)
have aB : ?Dya ∈ sphere a B ?Cxa ∈ sphere a B
using 〈x 6= a〉 using 〈y 6= a〉 B by (auto simp: dist norm C def D def )

then show path component (sphere a B) ?Dya ?Cxa
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using path connected sphere [OF 2 ] path connected component by blast
qed
have path component (− S ) x y
by (metis path component trans path component sym pcx pdy pyx )

}
then show ?thesis
by (auto simp: path connected component)

qed

lemma connected complement bounded convex :
fixes S :: ′a :: euclidean space set
assumes bounded S convex S 2 ≤ DIM ( ′a)
shows connected (− S )

using path connected complement bounded convex [OF assms] path connected imp connected
by blast

lemma connected diff ball :
fixes S :: ′a :: euclidean space set
assumes connected S cball a r ⊆ S 2 ≤ DIM ( ′a)
shows connected (S − ball a r)

proof (rule connected diff open from closed [OF ball subset cball ])
show connected (cball a r − ball a r)
using assms connected sphere by (auto simp: cball diff eq sphere)

qed (auto simp: assms dist norm)

proposition connected open delete:
assumes open S connected S and 2 : 2 ≤ DIM ( ′N ::euclidean space)
shows connected(S − {a:: ′N })

proof (cases a ∈ S )
case True
with 〈open S 〉 obtain ε where ε > 0 and ε: cball a ε ⊆ S
using open contains cball eq by blast

define b where b ≡ a + ε ∗R (SOME i . i ∈ Basis)
have dist a b = ε
by (simp add : b def dist norm SOME Basis 〈0 < ε〉 less imp le)

with ε have b ∈
⋂
{S − ball a r |r . 0 < r ∧ r < ε}

by auto
then have nonemp: (

⋂
{S − ball a r |r . 0 < r ∧ r < ε}) = {} =⇒ False

by auto
have con:

∧
r . r < ε =⇒ connected (S − ball a r)

using ε by (force intro: connected diff ball [OF 〈connected S 〉 2 ])
have x ∈

⋃
{S − ball a r |r . 0 < r ∧ r < ε} if x ∈ S − {a} for x

using that 〈0 < ε〉

by (intro UnionI [of S − ball a (min ε (dist a x ) / 2 )]) auto
then have S − {a} =

⋃
{S − ball a r | r . 0 < r ∧ r < ε}

by auto
then show ?thesis
by (auto intro: connected Union con dest !: nonemp)

next
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case False then show ?thesis
by (simp add : 〈connected S 〉)

qed

corollary path connected open delete:
assumes open S connected S and 2 : 2 ≤ DIM ( ′N ::euclidean space)
shows path connected(S − {a:: ′N })
by (simp add : assms connected open delete connected open path connected open delete)

corollary path connected punctured ball :
2 ≤ DIM ( ′N ::euclidean space) =⇒ path connected(ball a r − {a:: ′N })
by (simp add : path connected open delete)

corollary connected punctured ball :
2 ≤ DIM ( ′N ::euclidean space) =⇒ connected(ball a r − {a:: ′N })
by (simp add : connected open delete)

corollary connected open delete finite:
fixes S T :: ′a::euclidean space set
assumes S : open S connected S and 2 : 2 ≤ DIM ( ′a) and finite T
shows connected(S − T )
using 〈finite T 〉 S

proof (induct T )
case empty
show ?case using 〈connected S 〉 by simp

next
case (insert x F )
then have connected (S−F ) by auto
moreover have open (S − F ) using finite imp closed [OF 〈finite F 〉] 〈open S 〉

by auto
ultimately have connected (S − F − {x}) using connected open delete[OF

2 ] by auto
thus ?case by (metis Diff insert)

qed

lemma sphere 1D doubleton zero:
assumes 1 : DIM ( ′a) = 1 and r > 0
obtains x y :: ′a::euclidean space
where sphere 0 r = {x ,y} ∧ dist x y = 2∗r

proof −
obtain b:: ′a where b: Basis = {b}
using 1 card 1 singletonE by blast

show ?thesis
proof (intro that conjI )
have x = norm x ∗R b ∨ x = − norm x ∗R b if r = norm x for x
proof −
have xb: (x · b) ∗R b = x
using euclidean representation [of x , unfolded b] by force

then have norm ((x · b) ∗R b) = norm x
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by simp
with b have |x · b| = norm x
using norm Basis by (simp add : b)

with xb show ?thesis
by (metis (mono tags, hide lams) abs eq iff abs norm cancel)

qed
with 〈r > 0 〉 b show sphere 0 r = {r ∗R b, − r ∗R b}
by (force simp: sphere def dist norm)

have dist (r ∗R b) (− r ∗R b) = norm (r ∗R b + r ∗R b)
by (simp add : dist norm)

also have . . . = norm ((2∗r) ∗R b)
by (metis mult 2 scaleR add left)

also have . . . = 2∗r
using 〈r > 0 〉 b norm Basis by fastforce

finally show dist (r ∗R b) (− r ∗R b) = 2∗r .
qed

qed

lemma sphere 1D doubleton:
fixes a :: ′a :: euclidean space
assumes DIM ( ′a) = 1 and r > 0
obtains x y where sphere a r = {x ,y} ∧ dist x y = 2∗r

proof −
have sphere a r = (+) a ‘ sphere 0 r
by (metis add .right neutral sphere translation)

then show ?thesis
using sphere 1D doubleton zero [OF assms]
by (metis (mono tags, lifting) dist add cancel image empty image insert that)

qed

lemma psubset sphere Compl connected :
fixes S :: ′a::euclidean space set
assumes S : S ⊂ sphere a r and 0 < r and 2 : 2 ≤ DIM ( ′a)
shows connected(− S )

proof −
have S ⊆ sphere a r
using S by blast

obtain b where dist a b = r and b /∈ S
using S mem sphere by blast

have CS : − S = {x . dist a x ≤ r ∧ (x /∈ S )} ∪ {x . r ≤ dist a x ∧ (x /∈ S )}
by auto

have {x . dist a x ≤ r ∧ x /∈ S} ∩ {x . r ≤ dist a x ∧ x /∈ S} 6= {}
using 〈b /∈ S 〉 〈dist a b = r 〉 by blast

moreover have connected {x . dist a x ≤ r ∧ x /∈ S}
using assms
by (force intro: connected intermediate closure [of ball a r ])

moreover
have connected {x . r ≤ dist a x ∧ x /∈ S}
proof (rule connected intermediate closure [of − cball a r ])
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show {x . r ≤ dist a x ∧ x /∈ S} ⊆ closure (− cball a r)
using interior closure by (force intro: connected complement bounded convex )

qed (use assms connected complement bounded convex in auto)
ultimately show ?thesis
by (simp add : CS connected Un)

qed

5.5.21 Every annulus is a connected set

lemma path connected 2DIM I :
fixes a :: ′N ::euclidean space
assumes 2 : 2 ≤ DIM ( ′N ) and pc: path connected {r . 0 ≤ r ∧ P r}
shows path connected {x . P(norm(x − a))}

proof −
have {x . P(norm(x − a))} = (+) a ‘ {x . P(norm x )}
by force

moreover have path connected {x :: ′N . P(norm x )}
proof −
let ?D = {x . 0 ≤ x ∧ P x} × sphere (0 :: ′N ) 1
have x ∈ (λz . fst z ∗R snd z ) ‘ ?D
if P (norm x ) for x :: ′N

proof (cases x=0 )
case True
with that show ?thesis
apply (simp add : image iff )
by (metis (no types) mem sphere 0 order refl vector choose size zero le one)

next
case False
with that show ?thesis
by (rule tac x=(norm x , x /R norm x ) in image eqI ) auto

qed
then have ∗: {x :: ′N . P(norm x )} = (λz . fst z ∗R snd z ) ‘ ?D
by auto

have continuous on ?D (λz :: real× ′N . fst z ∗R snd z )
by (intro continuous intros)

moreover have path connected ?D
by (metis path connected Times [OF pc] path connected sphere 2 )

ultimately show ?thesis
by (simp add : ∗ path connected continuous image)

qed
ultimately show ?thesis
using path connected translation by metis

qed

proposition path connected annulus:
fixes a :: ′N ::euclidean space
assumes 2 ≤ DIM ( ′N )
shows path connected {x . r1 < norm(x − a) ∧ norm(x − a) < r2}

path connected {x . r1 < norm(x − a) ∧ norm(x − a) ≤ r2}
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path connected {x . r1 ≤ norm(x − a) ∧ norm(x − a) < r2}
path connected {x . r1 ≤ norm(x − a) ∧ norm(x − a) ≤ r2}

by (auto simp: is interval def intro!: is interval convex convex imp path connected
path connected 2DIM I [OF assms])

proposition connected annulus:
fixes a :: ′N ::euclidean space
assumes 2 ≤ DIM ( ′N ::euclidean space)
shows connected {x . r1 < norm(x − a) ∧ norm(x − a) < r2}

connected {x . r1 < norm(x − a) ∧ norm(x − a) ≤ r2}
connected {x . r1 ≤ norm(x − a) ∧ norm(x − a) < r2}
connected {x . r1 ≤ norm(x − a) ∧ norm(x − a) ≤ r2}

by (auto simp: path connected annulus [OF assms] path connected imp connected)

5.5.22 Relations between components and path components

lemma open connected component :
fixes S :: ′a::real normed vector set
assumes open S
shows open (connected component set S x )

proof (clarsimp simp: open contains ball)
fix y
assume xy : connected component S x y
then obtain e where e>0 ball y e ⊆ S
using assms connected component in openE by blast

then show ∃ e>0 . ball y e ⊆ connected component set S x
by (metis xy centre in ball connected ball connected component eq eq connected component in

connected component maximal)
qed

corollary open components:
fixes S :: ′a::real normed vector set
shows [[open u; S ∈ components u]] =⇒ open S

by (simp add : components iff ) (metis open connected component)

lemma in closure connected component :
fixes S :: ′a::real normed vector set
assumes x : x ∈ S and S : open S
shows x ∈ closure (connected component set S y)←→ x ∈ connected component set

S y
proof −
{ assume x ∈ closure (connected component set S y)
moreover have x ∈ connected component set S x
using x by simp

ultimately have x ∈ connected component set S y
using S by (meson Compl disjoint closure iff nhds not empty connected component disjoint

disjoint eq subset Compl open connected component)
}
then show ?thesis
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by (auto simp: closure def )
qed

lemma connected disjoint Union open pick :
assumes pairwise disjnt B∧

S . S ∈ A =⇒ connected S ∧ S 6= {}∧
S . S ∈ B =⇒ open S⋃
A ⊆

⋃
B

S ∈ A
obtains T where T ∈ B S ⊆ T S ∩

⋃
(B − {T}) = {}

proof −
have S ⊆

⋃
B connected S S 6= {}

using assms 〈S ∈ A〉 by blast+
then obtain T where T ∈ B S ∩ T 6= {}
by (metis Sup inf eq bot iff inf .absorb iff2 inf commute)

have 1 : open T by (simp add : 〈T ∈ B 〉 assms)
have 2 : open (

⋃
(B−{T})) using assms by blast

have 3 : S ⊆ T ∪
⋃
(B − {T}) using 〈S ⊆

⋃
B 〉 by blast

have T ∩
⋃
(B − {T}) = {} using 〈T ∈ B 〉 〈pairwise disjnt B 〉

by (auto simp: pairwise def disjnt def )
then have 4 : T ∩

⋃
(B − {T}) ∩ S = {} by auto

from connectedD [OF 〈connected S 〉 1 2 4 3 ]
have S ∩

⋃
(B−{T}) = {}

by (auto simp: Int commute 〈S ∩ T 6= {}〉)
with 〈T ∈ B 〉 have S ⊆ T
using 3 by auto

show ?thesis
using 〈S ∩

⋃
(B − {T}) = {}〉 〈S ⊆ T 〉 〈T ∈ B 〉 that by auto

qed

lemma connected disjoint Union open subset :
assumes A: pairwise disjnt A and B : pairwise disjnt B

and SA:
∧
S . S ∈ A =⇒ open S ∧ connected S ∧ S 6= {}

and SB :
∧
S . S ∈ B =⇒ open S ∧ connected S ∧ S 6= {}

and eq [simp]:
⋃

A =
⋃
B

shows A ⊆ B
proof
fix S
assume S ∈ A
obtain T where T ∈ B S ⊆ T S ∩

⋃
(B − {T}) = {}

using SA SB 〈S ∈ A〉 connected disjoint Union open pick [OF B , of A] eq
order refl by blast
moreover obtain S ′ where S ′ ∈ A T ⊆ S ′ T ∩

⋃
(A − {S ′}) = {}

using SA SB 〈T ∈ B 〉 connected disjoint Union open pick [OF A, of B ] eq
order refl by blast
ultimately have S ′ = S
by (metis A Int subset iff SA 〈S ∈ A〉 disjnt def inf .orderE pairwise def )

with 〈T ⊆ S ′〉 have T ⊆ S by simp
with 〈S ⊆ T 〉 have S = T by blast
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with 〈T ∈ B 〉 show S ∈ B by simp
qed

lemma connected disjoint Union open unique:
assumes A: pairwise disjnt A and B : pairwise disjnt B

and SA:
∧
S . S ∈ A =⇒ open S ∧ connected S ∧ S 6= {}

and SB :
∧
S . S ∈ B =⇒ open S ∧ connected S ∧ S 6= {}

and eq [simp]:
⋃
A =

⋃
B

shows A = B
by (rule subset antisym; metis connected disjoint Union open subset assms)

proposition components open unique:
fixes S :: ′a::real normed vector set
assumes pairwise disjnt A

⋃
A = S∧

X . X ∈ A =⇒ open X ∧ connected X ∧ X 6= {}
shows components S = A

proof −
have open S using assms by blast
show ?thesis
proof (rule connected disjoint Union open unique)
show disjoint (components S )
by (simp add : components eq disjnt def pairwise def )

qed (use 〈open S 〉 in 〈simp all add : assms open components in components connected
in components nonempty〉)
qed

5.5.23 Existence of unbounded components

lemma cobounded unbounded component :
fixes S :: ′a :: euclidean space set
assumes bounded (−S )
shows ∃ x . x ∈ S ∧ ¬ bounded (connected component set S x )

proof −
obtain i :: ′a where i : i ∈ Basis
using nonempty Basis by blast

obtain B where B : B>0 −S ⊆ ball 0 B
using bounded subset ballD [OF assms, of 0 ] by auto

then have ∗:
∧
x . B ≤ norm x =⇒ x ∈ S

by (force simp: ball def dist norm)
have unbounded inner : ¬ bounded {x . inner i x ≥ B}
proof (clarsimp simp: bounded def dist norm)
fix e x
show ∃ y . B ≤ i · y ∧ ¬ norm (x − y) ≤ e
using i
by (rule tac x=x + (max B e + 1 + |i · x |) ∗R i in exI ) (auto simp:

inner right distrib)
qed
have §:

∧
x . B ≤ i · x =⇒ x ∈ S

using ∗ Basis le norm [OF i ] by (metis abs ge self inner commute order trans)
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have {x . B ≤ i · x} ⊆ connected component set S (B ∗R i)
by (intro connected component maximal) (auto simp: i intro: convex connected

convex halfspace ge [of B ] §)
then have ¬ bounded (connected component set S (B ∗R i))
using bounded subset unbounded inner by blast

moreover have B ∗R i ∈ S
by (rule ∗) (simp add : norm Basis [OF i ])

ultimately show ?thesis
by blast

qed

lemma cobounded unique unbounded component :
fixes S :: ′a :: euclidean space set
assumes bs: bounded (−S ) and 2 ≤ DIM ( ′a)

and bo: ¬ bounded(connected component set S x )
¬ bounded(connected component set S y)

shows connected component set S x = connected component set S y
proof −
obtain i :: ′a where i : i ∈ Basis
using nonempty Basis by blast

obtain B where B : B>0 −S ⊆ ball 0 B
using bounded subset ballD [OF bs, of 0 ] by auto

then have ∗:
∧
x . B ≤ norm x =⇒ x ∈ S

by (force simp: ball def dist norm)
obtain x ′ where x ′: connected component S x x ′ norm x ′ > B
using bo [unfolded bounded def dist norm, simplified , rule format ]
by (metis diff zero norm minus commute not less)

obtain y ′ where y ′: connected component S y y ′ norm y ′ > B
using bo [unfolded bounded def dist norm, simplified , rule format ]
by (metis diff zero norm minus commute not less)

have x ′y ′: connected component S x ′ y ′

unfolding connected component def
proof (intro exI conjI )
show connected (− ball 0 B :: ′a set)
using assms by (auto intro: connected complement bounded convex )

qed (use x ′ y ′ dist norm ∗ in auto)
show ?thesis
proof (rule connected component eq)
show x ∈ connected component set S y
using x ′ y ′ x ′y ′

by (metis (no types) connected component eq eq connected component in
mem Collect eq)
qed

qed

lemma cobounded unbounded components:
fixes S :: ′a :: euclidean space set
shows bounded (−S ) =⇒ ∃ c. c ∈ components S ∧ ¬bounded c

by (metis cobounded unbounded component components def imageI )
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lemma cobounded unique unbounded components:
fixes S :: ′a :: euclidean space set
shows [[bounded (− S ); c ∈ components S ; ¬ bounded c; c ′ ∈ components S ;

¬ bounded c ′; 2 ≤ DIM ( ′a)]] =⇒ c ′ = c
unfolding components iff
by (metis cobounded unique unbounded component)

lemma cobounded has bounded component :
fixes S :: ′a :: euclidean space set
assumes bounded (− S ) ¬ connected S 2 ≤ DIM ( ′a)
obtains C where C ∈ components S bounded C
by (meson cobounded unique unbounded components connected eq connected components eq

assms)

5.5.24 The inside and outside of a Set

The inside comprises the points in a bounded connected component of the
set’s complement. The outside comprises the points in unbounded connected
component of the complement.

definition inside where
inside S ≡ {x . (x /∈ S ) ∧ bounded(connected component set ( − S ) x )}

definition outside where
outside S ≡ −S ∩ {x . ¬ bounded(connected component set (− S ) x )}

lemma outside: outside S = {x . ¬ bounded(connected component set (− S ) x )}
by (auto simp: outside def ) (metis Compl iff bounded empty connected component eq empty)

lemma inside no overlap [simp]: inside S ∩ S = {}
by (auto simp: inside def )

lemma outside no overlap [simp]:
outside S ∩ S = {}
by (auto simp: outside def )

lemma inside Int outside [simp]: inside S ∩ outside S = {}
by (auto simp: inside def outside def )

lemma inside Un outside [simp]: inside S ∪ outside S = (− S )
by (auto simp: inside def outside def )

lemma inside eq outside:
inside S = outside S ←→ S = UNIV
by (auto simp: inside def outside def )

lemma inside outside: inside S = (− (S ∪ outside S ))
by (force simp: inside def outside)
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lemma outside inside: outside S = (− (S ∪ inside S ))
by (auto simp: inside outside) (metis IntI equals0D outside no overlap)

lemma union with inside: S ∪ inside S = − outside S
by (auto simp: inside outside) (simp add : outside inside)

lemma union with outside: S ∪ outside S = − inside S
by (simp add : inside outside)

lemma outside mono: S ⊆ T =⇒ outside T ⊆ outside S
by (auto simp: outside bounded subset connected component mono)

lemma inside mono: S ⊆ T =⇒ inside S − T ⊆ inside T
by (auto simp: inside def bounded subset connected component mono)

lemma segment bound lemma:
fixes u::real
assumes x ≥ B y ≥ B 0 ≤ u u ≤ 1
shows (1 − u) ∗ x + u ∗ y ≥ B

proof −
obtain dx dy where dx ≥ 0 dy ≥ 0 x = B + dx y = B + dy
using assms by auto (metis add .commute diff add cancel)

with 〈0 ≤ u〉 〈u ≤ 1 〉 show ?thesis
by (simp add : add increasing2 mult left le field simps)

qed

lemma cobounded outside:
fixes S :: ′a :: real normed vector set
assumes bounded S shows bounded (− outside S )

proof −
obtain B where B : B>0 S ⊆ ball 0 B
using bounded subset ballD [OF assms, of 0 ] by auto

{ fix x :: ′a and C ::real
assume Bno: B ≤ norm x and C : 0 < C
have ∃ y . connected component (− S ) x y ∧ norm y > C
proof (cases x = 0 )
case True with B Bno show ?thesis by force

next
case False
have closed segment x (((B + C ) / norm x ) ∗R x ) ⊆ − ball 0 B
proof
fix w
assume w ∈ closed segment x (((B + C ) / norm x ) ∗R x )
then obtain u where
w : w = (1 − u + u ∗ (B + C ) / norm x ) ∗R x 0 ≤ u u ≤ 1
by (auto simp add : closed segment def real vector class.scaleR add left

[symmetric])
with False B C have B ≤ (1 − u) ∗ norm x + u ∗ (B + C )
using segment bound lemma [of B norm x B + C u] Bno
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by simp
with False B C show w ∈ − ball 0 B
using distrib right [of norm x ]
by (simp add : ball def w not less)

qed
also have ... ⊆ −S
by (simp add : B)

finally have ∃T . connected T ∧ T ⊆ − S ∧ x ∈ T ∧ ((B + C ) / norm x )
∗R x ∈ T

by (rule tac x=closed segment x (((B+C )/norm x ) ∗R x ) in exI ) simp
with False B
show ?thesis
by (rule tac x=((B+C )/norm x ) ∗R x in exI ) (simp add : connected component def )

qed
}
then show ?thesis
apply (simp add : outside def assms)
apply (rule bounded subset [OF bounded ball [of 0 B ]])
apply (force simp: dist norm not less bounded pos)
done

qed

lemma unbounded outside:
fixes S :: ′a::{real normed vector , perfect space} set
shows bounded S =⇒ ¬ bounded(outside S )

using cobounded imp unbounded cobounded outside by blast

lemma bounded inside:
fixes S :: ′a::{real normed vector , perfect space} set
shows bounded S =⇒ bounded(inside S )

by (simp add : bounded Int cobounded outside inside outside)

lemma connected outside:
fixes S :: ′a::euclidean space set
assumes bounded S 2 ≤ DIM ( ′a)
shows connected(outside S )

apply (clarsimp simp add : connected iff connected component outside)
apply (rule tac S=connected component set (− S ) x in connected component of subset)
apply (metis (no types) assms cobounded unbounded component cobounded unique unbounded component

connected component eq eq connected component idemp double complement mem Collect eq)
by (simp add : Collect mono connected component eq)

lemma outside connected component lt :
outside S = {x . ∀B . ∃ y . B < norm(y) ∧ connected component (− S ) x y}
apply (auto simp: outside bounded def dist norm)
apply (metis diff 0 norm minus cancel not less)

by (metis less diff eq norm minus commute norm triangle ineq2 order .trans pinf (6 ))

lemma outside connected component le:
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outside S = {x . ∀B . ∃ y . B ≤ norm(y) ∧ connected component (− S ) x y}
apply (simp add : outside connected component lt Set .set eq iff )
by (meson gt ex leD le less linear less imp le order .trans)

lemma not outside connected component lt :
fixes S :: ′a::euclidean space set
assumes S : bounded S and 2 ≤ DIM ( ′a)
shows − (outside S ) = {x . ∀B . ∃ y . B < norm(y) ∧ ¬ connected component

(− S ) x y}
proof −
obtain B ::real where B : 0 < B and Bno:

∧
x . x ∈ S =⇒ norm x ≤ B

using S [simplified bounded pos] by auto
{ fix y :: ′a and z :: ′a
assume yz : B < norm z B < norm y
have connected component (− cball 0 B) y z
using assms yz
by (force simp: dist norm intro: connected componentI [OF subset refl ]

connected complement bounded convex )
then have connected component (− S ) y z
by (metis connected component of subset Bno Compl anti mono mem cball 0

subset iff )
} note cyz = this
show ?thesis
apply (auto simp: outside bounded pos)
apply (metis Compl iff bounded iff cobounded imp unbounded mem Collect eq

not le)
by (metis B connected component trans cyz not le)

qed

lemma not outside connected component le:
fixes S :: ′a::euclidean space set
assumes S : bounded S 2 ≤ DIM ( ′a)
shows − (outside S ) = {x . ∀B . ∃ y . B ≤ norm(y) ∧ ¬ connected component (−

S ) x y}
apply (auto intro: less imp le simp: not outside connected component lt [OF

assms])
by (meson gt ex less le trans)

lemma inside connected component lt :
fixes S :: ′a::euclidean space set
assumes S : bounded S 2 ≤ DIM ( ′a)

shows inside S = {x . (x /∈ S ) ∧ (∀B . ∃ y . B < norm(y) ∧ ¬ con-
nected component (− S ) x y)}
by (auto simp: inside outside not outside connected component lt [OF assms])

lemma inside connected component le:
fixes S :: ′a::euclidean space set
assumes S : bounded S 2 ≤ DIM ( ′a)

shows inside S = {x . (x /∈ S ) ∧ (∀B . ∃ y . B ≤ norm(y) ∧ ¬ con-
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nected component (− S ) x y)}
by (auto simp: inside outside not outside connected component le [OF assms])

lemma inside subset :
assumes connected U and ¬ bounded U and T ∪ U = − S
shows inside S ⊆ T
apply (auto simp: inside def )
by (metis bounded subset [of connected component set (− S ) ] connected component maximal

Compl iff Un iff assms subsetI )

lemma frontier not empty :
fixes S :: ′a :: real normed vector set
shows [[S 6= {}; S 6= UNIV ]] =⇒ frontier S 6= {}
using connected Int frontier [of UNIV S ] by auto

lemma frontier eq empty :
fixes S :: ′a :: real normed vector set
shows frontier S = {} ←→ S = {} ∨ S = UNIV

using frontier UNIV frontier empty frontier not empty by blast

lemma frontier of connected component subset :
fixes S :: ′a::real normed vector set
shows frontier(connected component set S x ) ⊆ frontier S

proof −
{ fix y
assume y1 : y ∈ closure (connected component set S x )

and y2 : y /∈ interior (connected component set S x )
have y ∈ closure S
using y1 closure mono connected component subset by blast

moreover have z ∈ interior (connected component set S x )
if 0 < e ball y e ⊆ interior S dist y z < e for e z

proof −
have ball y e ⊆ connected component set S y
using connected component maximal that interior subset
by (metis centre in ball connected ball subset trans)

then show ?thesis
using y1 apply (simp add : closure approachable open contains ball eq [OF

open interior ])
by (metis connected component eq dist commute mem Collect eq mem ball

mem interior subsetD 〈0 < e〉 y2 )
qed
then have y /∈ interior S
using y2 by (force simp: open contains ball eq [OF open interior ])

ultimately have y ∈ frontier S
by (auto simp: frontier def )

}
then show ?thesis by (auto simp: frontier def )

qed
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lemma frontier Union subset closure:
fixes F :: ′a::real normed vector set set
shows frontier(

⋃
F ) ⊆ closure(

⋃
t ∈ F . frontier t)

proof −
have ∃ y∈F . ∃ y∈frontier y . dist y x < e

if T ∈ F y ∈ T dist y x < e
x /∈ interior (

⋃
F ) 0 < e for x y e T

proof (cases x ∈ T )
case True with that show ?thesis
by (metis Diff iff Sup upper closure subset contra subsetD dist self frontier def

interior mono)
next
case False
have 1 : closed segment x y ∩ T 6= {}
using 〈y ∈ T 〉 by blast

have 2 : closed segment x y − T 6= {}
using False by blast

obtain c where c ∈ closed segment x y c ∈ frontier T
using False connected Int frontier [OF connected segment 1 2 ] by auto

then show ?thesis
proof −
have norm (y − x ) < e
by (metis dist norm 〈dist y x < e〉)

moreover have norm (c − x ) ≤ norm (y − x )
by (simp add : 〈c ∈ closed segment x y〉 segment bound(1 ))

ultimately have norm (c − x ) < e
by linarith

then show ?thesis
by (metis (no types) 〈c ∈ frontier T 〉 dist norm that(1 ))

qed
qed
then show ?thesis
by (fastforce simp add : frontier def closure approachable)

qed

lemma frontier Union subset :
fixes F :: ′a::real normed vector set set
shows finite F =⇒ frontier(

⋃
F ) ⊆ (

⋃
t ∈ F . frontier t)

by (rule order trans [OF frontier Union subset closure])
(auto simp: closure subset eq)

lemma frontier of components subset :
fixes S :: ′a::real normed vector set
shows C ∈ components S =⇒ frontier C ⊆ frontier S
by (metis Path Connected .frontier of connected component subset components iff )

lemma frontier of components closed complement :
fixes S :: ′a::real normed vector set
shows [[closed S ; C ∈ components (− S )]] =⇒ frontier C ⊆ S
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using frontier complement frontier of components subset frontier subset eq by
blast

lemma frontier minimal separating closed :
fixes S :: ′a::real normed vector set
assumes closed S

and nconn: ¬ connected(− S )
and C : C ∈ components (− S )
and conn:

∧
T . [[closed T ; T ⊂ S ]] =⇒ connected(− T )

shows frontier C = S
proof (rule ccontr)
assume frontier C 6= S
then have frontier C ⊂ S
using frontier of components closed complement [OF 〈closed S 〉 C ] by blast

then have connected(− (frontier C ))
by (simp add : conn)

have ¬ connected(− (frontier C ))
unfolding connected def not not

proof (intro exI conjI )
show open C
using C 〈closed S 〉 open components by blast

show open (− closure C )
by blast

show C ∩ − closure C ∩ − frontier C = {}
using closure subset by blast

show C ∩ − frontier C 6= {}
using C 〈open C 〉 components eq frontier disjoint eq by fastforce

show − frontier C ⊆ C ∪ − closure C
by (simp add : 〈open C 〉 closed Compl frontier closures)

then show − closure C ∩ − frontier C 6= {}
by (metis (no types, lifting) C Compl subset Compl iff 〈frontier C ⊂ S 〉

compl sup frontier closures in components subset psubsetE sup.absorb iff2 sup.boundedE
sup bot .right neutral sup inf absorb)
qed
then show False
using 〈connected (− frontier C )〉 by blast

qed

lemma connected component UNIV [simp]:
fixes x :: ′a::real normed vector
shows connected component set UNIV x = UNIV

using connected iff eq connected component set [of UNIV :: ′a set ] connected UNIV
by auto

lemma connected component eq UNIV :
fixes x :: ′a::real normed vector
shows connected component set s x = UNIV ←→ s = UNIV

using connected component in connected component UNIV by blast

Path{_}{\kern 0pt}Connected.html


1170

lemma components UNIV [simp]: components UNIV = {UNIV :: ′a::real normed vector
set}
by (auto simp: components eq sing iff )

lemma interior inside frontier :
fixes S :: ′a::real normed vector set
assumes bounded S
shows interior S ⊆ inside (frontier S )

proof −
{ fix x y
assume x : x ∈ interior S and y : y /∈ S

and cc: connected component (− frontier S ) x y
have connected component set (− frontier S ) x ∩ frontier S 6= {}
proof (rule connected Int frontier ; simp add : set eq iff )
show ∃ u. connected component (− frontier S ) x u ∧ u ∈ S

by (meson cc connected component in connected component refl eq inte-
rior subset subsetD x )

show ∃ u. connected component (− frontier S ) x u ∧ u /∈ S
using y cc by blast

qed
then have bounded (connected component set (− frontier S ) x )
using connected component in by auto

}
then show ?thesis
apply (auto simp: inside def frontier def )
apply (rule classical)
apply (rule bounded subset [OF assms], blast)
done

qed

lemma inside empty [simp]: inside {} = ({} :: ′a :: {real normed vector , per-
fect space} set)
by (simp add : inside def )

lemma outside empty [simp]: outside {} = (UNIV :: ′a :: {real normed vector ,
perfect space} set)
using inside empty inside Un outside by blast

lemma inside same component :
[[connected component (− S ) x y ; x ∈ inside S ]] =⇒ y ∈ inside S
using connected component eq connected component in
by (fastforce simp add : inside def )

lemma outside same component :
[[connected component (− S ) x y ; x ∈ outside S ]] =⇒ y ∈ outside S
using connected component eq connected component in
by (fastforce simp add : outside def )

lemma convex in outside:
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fixes S :: ′a :: {real normed vector , perfect space} set
assumes S : convex S and z : z /∈ S
shows z ∈ outside S

proof (cases S={})
case True then show ?thesis by simp

next
case False then obtain a where a ∈ S by blast
with z have zna: z 6= a by auto
{ assume bounded (connected component set (− S ) z )
with bounded pos less obtain B where B>0 and B :

∧
x . connected component

(− S ) z x =⇒ norm x < B
by (metis mem Collect eq)

define C where C = (B + 1 + norm z ) / norm (z−a)
have C > 0
using 〈0 < B 〉 zna by (simp add : C def field split simps add strict increasing)
have |norm (z + C ∗R (z−a)) − norm (C ∗R (z−a))| ≤ norm z
by (metis add diff cancel norm triangle ineq3 )

moreover have norm (C ∗R (z−a)) > norm z + B
using zna 〈B>0 〉 by (simp add : C def le max iff disj )

ultimately have C : norm (z + C ∗R (z−a)) > B by linarith
{ fix u::real
assume u: 0≤u u≤1 and ins: (1 − u) ∗R z + u ∗R (z + C ∗R (z − a)) ∈

S
then have Cpos: 1 + u ∗ C > 0
by (meson 〈0 < C 〉 add pos nonneg less eq real def zero le mult iff zero less one)
then have ∗: (1 / (1 + u ∗ C )) ∗R z + (u ∗ C / (1 + u ∗ C )) ∗R z = z
by (simp add : scaleR add left [symmetric] field split simps)

then have False
using convexD alt [OF S 〈a ∈ S 〉 ins, of 1/(u∗C + 1 )] 〈C>0 〉 〈z /∈ S 〉 Cpos

u
by (simp add : ∗ field split simps)

} note contra = this
have connected component (− S ) z (z + C ∗R (z−a))
proof (rule connected componentI [OF connected segment ])
show closed segment z (z + C ∗R (z − a)) ⊆ − S
using contra by (force simp add : closed segment def )

qed auto
then have False
using zna B [of z + C ∗R (z−a)] C
by (auto simp: field split simps max mult distrib right)

}
then show ?thesis
by (auto simp: outside def z )

qed

lemma outside convex :
fixes S :: ′a :: {real normed vector , perfect space} set
assumes convex S
shows outside S = − S
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by (metis ComplD assms convex in outside equalityI inside Un outside subsetI
sup.cobounded2 )

lemma outside singleton [simp]:
fixes x :: ′a :: {real normed vector , perfect space}
shows outside {x} = −{x}
by (auto simp: outside convex )

lemma inside convex :
fixes S :: ′a :: {real normed vector , perfect space} set
shows convex S =⇒ inside S = {}
by (simp add : inside outside outside convex )

lemma inside singleton [simp]:
fixes x :: ′a :: {real normed vector , perfect space}
shows inside {x} = {}
by (auto simp: inside convex )

lemma outside subset convex :
fixes S :: ′a :: {real normed vector , perfect space} set
shows [[convex T ; S ⊆ T ]] =⇒ − T ⊆ outside S
using outside convex outside mono by blast

lemma outside Un outside Un:
fixes S :: ′a::real normed vector set
assumes S ∩ outside(T ∪ U ) = {}
shows outside(T ∪ U ) ⊆ outside(T ∪ S )

proof
fix x
assume x : x ∈ outside (T ∪ U )
have Y ⊆ − S if connected Y Y ⊆ − T Y ⊆ − U x ∈ Y u ∈ Y for u Y
proof −
have Y ⊆ connected component set (− (T ∪ U )) x
by (simp add : connected component maximal that)

also have . . . ⊆ outside(T ∪ U )
by (metis (mono tags, lifting) Collect mono mem Collect eq outside out-

side same component x )
finally have Y ⊆ outside(T ∪ U ) .
with assms show ?thesis by auto

qed
with x show x ∈ outside (T ∪ S )
by (simp add : outside connected component lt connected component def ) meson

qed

lemma outside frontier misses closure:
fixes S :: ′a::real normed vector set
assumes bounded S
shows outside(frontier S ) ⊆ − closure S

unfolding outside inside Lattices.boolean algebra class.compl le compl iff
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proof −
{ assume interior S ⊆ inside (frontier S )
hence interior S ∪ inside (frontier S ) = inside (frontier S )
by (simp add : subset Un eq)

then have closure S ⊆ frontier S ∪ inside (frontier S )
using frontier def by auto

}
then show closure S ⊆ frontier S ∪ inside (frontier S )
using interior inside frontier [OF assms] by blast

qed

lemma outside frontier eq complement closure:
fixes S :: ′a :: {real normed vector , perfect space} set
assumes bounded S convex S
shows outside(frontier S ) = − closure S

by (metis Diff subset assms convex closure frontier def outside frontier misses closure
outside subset convex subset antisym)

lemma inside frontier eq interior :
fixes S :: ′a :: {real normed vector , perfect space} set
shows [[bounded S ; convex S ]] =⇒ inside(frontier S ) = interior S

apply (simp add : inside outside outside frontier eq complement closure)
using closure subset interior subset
apply (auto simp: frontier def )
done

lemma open inside:
fixes S :: ′a::real normed vector set
assumes closed S
shows open (inside S )

proof −
{ fix x assume x : x ∈ inside S
have open (connected component set (− S ) x )
using assms open connected component by blast

then obtain e where e: e>0 and e:
∧
y . dist y x < e −→ connected component

(− S ) x y
using dist not less zero
apply (simp add : open dist)
by (metis (no types, lifting) Compl iff connected component refl eq inside def

mem Collect eq x )
then have ∃ e>0 . ball x e ⊆ inside S
by (metis e dist commute inside same component mem ball subsetI x )

}
then show ?thesis
by (simp add : open contains ball)

qed

lemma open outside:
fixes S :: ′a::real normed vector set
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assumes closed S
shows open (outside S )

proof −
{ fix x assume x : x ∈ outside S
have open (connected component set (− S ) x )
using assms open connected component by blast

then obtain e where e: e>0 and e:
∧
y . dist y x < e −→ connected component

(− S ) x y
using dist not less zero x
by (auto simp add : open dist outside def intro: connected component refl)

then have ∃ e>0 . ball x e ⊆ outside S
by (metis e dist commute outside same component mem ball subsetI x )

}
then show ?thesis
by (simp add : open contains ball)

qed

lemma closure inside subset :
fixes S :: ′a::real normed vector set
assumes closed S
shows closure(inside S ) ⊆ S ∪ inside S

by (metis assms closure minimal open closed open outside sup.cobounded2 union with inside)

lemma frontier inside subset :
fixes S :: ′a::real normed vector set
assumes closed S
shows frontier(inside S ) ⊆ S

proof −
have closure (inside S ) ∩ − inside S = closure (inside S ) − interior (inside S )
by (metis (no types) Diff Compl assms closure closed interior closure open closed

open inside)
moreover have − inside S ∩ − outside S = S
by (metis (no types) compl sup double compl inside Un outside)

moreover have closure (inside S ) ⊆ − outside S
by (metis (no types) assms closure inside subset union with inside)

ultimately have closure (inside S ) − interior (inside S ) ⊆ S
by blast

then show ?thesis
by (simp add : frontier def open inside interior open)

qed

lemma closure outside subset :
fixes S :: ′a::real normed vector set
assumes closed S
shows closure(outside S ) ⊆ S ∪ outside S

by (metis assms closed open closure minimal inside outside open inside sup ge2 )

lemma frontier outside subset :
fixes S :: ′a::real normed vector set
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assumes closed S
shows frontier(outside S ) ⊆ S
unfolding frontier def
by (metis Diff subset conv assms closure outside subset interior eq open outside

sup aci(1 ))

lemma inside complement unbounded connected empty :
[[connected (− S ); ¬ bounded (− S )]] =⇒ inside S = {}

using inside subset by blast

lemma inside bounded complement connected empty :
fixes S :: ′a::{real normed vector , perfect space} set
shows [[connected (− S ); bounded S ]] =⇒ inside S = {}

by (metis inside complement unbounded connected empty cobounded imp unbounded)

lemma inside inside:
assumes S ⊆ inside T
shows inside S − T ⊆ inside T

unfolding inside def
proof clarify
fix x
assume x : x /∈ T x /∈ S and bo: bounded (connected component set (− S ) x )
show bounded (connected component set (− T ) x )
proof (cases S ∩ connected component set (− T ) x = {})
case True then show ?thesis
by (metis bounded subset [OF bo] compl le compl iff connected component idemp

connected component mono disjoint eq subset Compl double compl)
next
case False
then obtain y where y : y ∈ S y ∈ connected component set (− T ) x
by (meson disjoint iff )

then have bounded (connected component set (− T ) y)
using assms [unfolded inside def ] by blast

with y show ?thesis
by (metis connected component eq)

qed
qed

lemma inside inside subset : inside(inside S ) ⊆ S
using inside inside union with outside by fastforce

lemma inside outside intersect connected :
[[connected T ; inside S ∩ T 6= {}; outside S ∩ T 6= {}]] =⇒ S ∩ T 6= {}

apply (simp add : inside def outside def ex in conv [symmetric] disjoint eq subset Compl ,
clarify)
by (metis (no types, hide lams) Compl anti mono connected component eq con-

nected component maximal contra subsetD double compl)

lemma outside bounded nonempty :
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fixes S :: ′a :: {real normed vector , perfect space} set
assumes bounded S shows outside S 6= {}

by (metis (no types, lifting) Collect empty eq Collect mem eq Compl eq Diff UNIV
Diff cancel

Diff disjoint UNIV I assms ball eq empty bounded diff cobounded outside
convex ball

double complement order refl outside convex outside def )

lemma outside compact in open:
fixes S :: ′a :: {real normed vector ,perfect space} set
assumes S : compact S and T : open T and S ⊆ T T 6= {}
shows outside S ∩ T 6= {}

proof −
have outside S 6= {}
by (simp add : compact imp bounded outside bounded nonempty S )

with assms obtain a b where a: a ∈ outside S and b: b ∈ T by auto
show ?thesis
proof (cases a ∈ T )
case True with a show ?thesis by blast

next
case False
have front : frontier T ⊆ − S
using 〈S ⊆ T 〉 frontier disjoint eq T by auto

{ fix γ
assume path γ and pimg sbs: path image γ − {pathfinish γ} ⊆ interior (−

T )
and pf : pathfinish γ ∈ frontier T and ps: pathstart γ = a

define c where c = pathfinish γ
have c ∈ −S unfolding c def using front pf by blast
moreover have open (−S ) using S compact imp closed by blast
ultimately obtain ε::real where ε > 0 and ε: cball c ε ⊆ −S
using open contains cball [of −S ] S by blast

then obtain d where d ∈ T and d : dist d c < ε
using closure approachable [of c T ] pf unfolding c def
by (metis Diff iff frontier def )

then have d ∈ −S using ε
using dist commute by (metis contra subsetD mem cball not le not less iff gr or eq)
have pimg sbs cos: path image γ ⊆ −S
using 〈c ∈ − S 〉 〈S ⊆ T 〉 c def interior subset pimg sbs by fastforce

have closed segment c d ≤ cball c ε
by (metis 〈0 < ε〉 centre in cball closed segment subset convex cball d

dist commute less eq real def mem cball)
with ε have closed segment c d ⊆ −S by blast
moreover have con gcd : connected (path image γ ∪ closed segment c d)
by (rule connected Un) (auto simp: c def 〈path γ〉 connected path image)

ultimately have connected component (− S ) a d
unfolding connected component def using pimg sbs cos ps by blast

then have outside S ∩ T 6= {}
using outside same component [OF a] by (metis IntI 〈d ∈ T 〉 empty iff )
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} note ∗ = this
have pal : pathstart (linepath a b) ∈ closure (− T )
by (auto simp: False closure def )

show ?thesis
by (rule exists path subpath to frontier [OF path linepath pal ∗]) (auto

simp: b)
qed

qed

lemma inside inside compact connected :
fixes S :: ′a :: euclidean space set
assumes S : closed S and T : compact T and connected T S ⊆ inside T
shows inside S ⊆ inside T

proof (cases inside T = {})
case True with assms show ?thesis by auto

next
case False
consider DIM ( ′a) = 1 | DIM ( ′a) ≥ 2
using antisym not less eq eq by fastforce

then show ?thesis
proof cases
case 1 then show ?thesis

using connected convex 1 gen assms False inside convex by blast
next
case 2
have bounded S
using assms by (meson bounded inside bounded subset compact imp bounded)
then have coms: compact S
by (simp add : S compact eq bounded closed)

then have bst : bounded (S ∪ T )
by (simp add : compact imp bounded T )

then obtain r where 0 < r and r : S ∪ T ⊆ ball 0 r
using bounded subset ballD by blast

have outst : outside S ∩ outside T 6= {}
proof −
have − ball 0 r ⊆ outside S
by (meson convex ball le supE outside subset convex r)

moreover have − ball 0 r ⊆ outside T
by (meson convex ball le supE outside subset convex r)

ultimately show ?thesis
by (metis Compl subset Compl iff Int subset iff bounded ball inf .orderE

outside bounded nonempty outside no overlap)
qed
have S ∩ T = {} using assms
by (metis disjoint iff not equal inside no overlap subsetCE )

moreover have outside S ∩ inside T 6= {}
by (meson False assms(4 ) compact eq bounded closed coms open inside out-

side compact in open T )
ultimately have inside S ∩ T = {}
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using inside outside intersect connected [OF 〈connected T 〉, of S ]
by (metis 2 compact eq bounded closed coms connected outside inf .commute

inside outside intersect connected outst)
then show ?thesis
using inside inside [OF 〈S ⊆ inside T 〉] by blast

qed
qed

lemma connected with inside:
fixes S :: ′a :: real normed vector set
assumes S : closed S and cons: connected S
shows connected(S ∪ inside S )

proof (cases S ∪ inside S = UNIV )
case True with assms show ?thesis by auto

next
case False
then obtain b where b: b /∈ S b /∈ inside S by blast
have ∗: ∃ y T . y ∈ S ∧ connected T ∧ a ∈ T ∧ y ∈ T ∧ T ⊆ (S ∪ inside S )
if a ∈ S ∪ inside S for a
using that

proof
assume a ∈ S then show ?thesis
by (rule tac x=a in exI , rule tac x={a} in exI , simp)

next
assume a: a ∈ inside S
then have ain: a ∈ closure (inside S )
by (simp add : closure def )

show ?thesis
apply (rule exists path subpath to frontier [OF path linepath [of a b], of inside

S ])
apply (simp all add : ain b)

subgoal for h
apply (rule tac x=pathfinish h in exI )
apply (simp add : subsetD [OF frontier inside subset [OF S ]])
apply (rule tac x=path image h in exI )
apply (simp add : pathfinish in path image connected path image, auto)
by (metis Diff single insert S frontier inside subset insert iff interior subset

subsetD)
done

qed
show ?thesis
apply (simp add : connected iff connected component)
apply (clarsimp simp add : connected component def dest !: ∗)
subgoal for x y u u ′ T t ′

by (rule tac x=(S ∪ T ∪ t ′) in exI ) (auto intro!: connected Un cons)
done

qed

The proof is virtually the same as that above.
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lemma connected with outside:
fixes S :: ′a :: real normed vector set
assumes S : closed S and cons: connected S
shows connected(S ∪ outside S )

proof (cases S ∪ outside S = UNIV )
case True with assms show ?thesis by auto

next
case False
then obtain b where b: b /∈ S b /∈ outside S by blast
have ∗: ∃ y T . y ∈ S ∧ connected T ∧ a ∈ T ∧ y ∈ T ∧ T ⊆ (S ∪ outside S )

if a ∈ (S ∪ outside S ) for a
using that proof
assume a ∈ S then show ?thesis
by (rule tac x=a in exI , rule tac x={a} in exI , simp)

next
assume a: a ∈ outside S
then have ain: a ∈ closure (outside S )
by (simp add : closure def )

show ?thesis
apply (rule exists path subpath to frontier [OF path linepath [of a b], of outside

S ])
apply (simp all add : ain b)

subgoal for h
apply (rule tac x=pathfinish h in exI )
apply (simp add : subsetD [OF frontier outside subset [OF S ]])

apply (rule tac x=path image h in exI )
apply (simp add : pathfinish in path image connected path image, auto)
by (metis (no types, lifting) frontier outside subset insertE insert Diff inte-

rior eq open outside pathfinish in path image S subsetCE )
done

qed
show ?thesis
apply (simp add : connected iff connected component)
apply (clarsimp simp add : connected component def dest !: ∗)
subgoal for x y u u ′ T t ′

by (rule tac x=(S ∪ T ∪ t ′) in exI ) (auto intro!: connected Un cons)
done

qed

lemma inside inside eq empty [simp]:
fixes S :: ′a :: {real normed vector , perfect space} set
assumes S : closed S and cons: connected S
shows inside (inside S ) = {}

by (metis (no types) unbounded outside connected with outside [OF assms] bounded Un
inside complement unbounded connected empty unbounded outside union with outside)

lemma inside in components:
inside S ∈ components (− S ) ←→ connected(inside S ) ∧ inside S 6= {} (is

?lhs = ?rhs)
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proof
assume R: ?rhs
then have

∧
x . [[x ∈ S ; x ∈ inside S ]] =⇒ ¬ connected (inside S )

by (simp add : inside outside)
with R show ?lhs
unfolding in components maximal
by (auto intro: inside same component connected componentI )

qed (simp add : in components maximal)

The proof is like that above.

lemma outside in components:
outside S ∈ components (− S ) ←→ connected(outside S ) ∧ outside S 6= {} (is

?lhs = ?rhs)
proof
assume R: ?rhs
then have

∧
x . [[x ∈ S ; x ∈ outside S ]] =⇒ ¬ connected (outside S )

by (meson disjoint iff outside no overlap)
with R show ?lhs
unfolding in components maximal
by (auto intro: outside same component connected componentI )

qed (simp add : in components maximal)

lemma bounded unique outside:
fixes S :: ′a :: euclidean space set
assumes bounded S DIM ( ′a) ≥ 2
shows (c ∈ components (− S ) ∧ ¬ bounded c ←→ c = outside S )
using assms
by (metis cobounded unique unbounded components connected outside double compl

outside bounded nonempty outside in components unbounded outside)

5.5.25 Condition for an open map’s image to contain a ball

proposition ball subset open map image:
fixes f :: ′a::heine borel ⇒ ′b :: {real normed vector ,heine borel}
assumes contf : continuous on (closure S ) f

and oint : open (f ‘ interior S )
and le no:

∧
z . z ∈ frontier S =⇒ r ≤ norm(f z − f a)

and bounded S a ∈ S 0 < r
shows ball (f a) r ⊆ f ‘ S

proof (cases f ‘ S = UNIV )
case True then show ?thesis by simp

next
case False
then have closed (frontier (f ‘ S )) frontier (f ‘ S ) 6= {}
using 〈a ∈ S 〉 by (auto simp: frontier eq empty)

then obtain w where w : w ∈ frontier (f ‘ S )
and dw le:

∧
y . y ∈ frontier (f ‘ S ) =⇒ norm (f a − w) ≤ norm (f a − y)

by (auto simp add : dist norm intro: distance attains inf [of frontier(f ‘ S ) f a])
then obtain ξ where ξ:

∧
n. ξ n ∈ f ‘ S and tendsw : ξ −−−−→ w



Path Connected.thy 1181

by (metis Diff iff frontier def closure sequential)
then have

∧
n. ∃ x ∈ S . ξ n = f x by force

then obtain z where zs:
∧
n. z n ∈ S and fz :

∧
n. ξ n = f (z n)

by metis
then obtain y K where y : y ∈ closure S and strict mono (K :: nat ⇒ nat)

and Klim: (z ◦ K ) −−−−→ y
using 〈bounded S 〉

unfolding compact closure [symmetric] compact def by (meson closure subset
subset iff )

then have ftendsw : ((λn. f (z n)) ◦ K ) −−−−→ w
by (metis LIMSEQ subseq LIMSEQ fun.map cong0 fz tendsw)

have zKs:
∧
n. (z ◦ K ) n ∈ S by (simp add : zs)

have fz : f ◦ z = ξ (λn. f (z n)) = ξ
using fz by auto

then have (ξ ◦ K ) −−−−→ f y
by (metis (no types) Klim zKs y contf comp assoc continuous on closure sequentially)
with fz have wy : w = f y using fz LIMSEQ unique ftendsw by auto
have rle: r ≤ norm (f y − f a)
proof (rule le no)
show y ∈ frontier S
using w wy oint by (force simp: imageI image mono interiorI interior subset

frontier def y)
qed
have ∗∗: (b ∩ (− S ) 6= {} ∧ b − (− S ) 6= {} =⇒ b ∩ f 6= {})

=⇒ (b ∩ S 6= {}) =⇒ b ∩ f = {} =⇒ b ⊆ S
for b f and S :: ′b set

by blast
have §:

∧
y . [[norm (f a − y) < r ; y ∈ frontier (f ‘ S )]] =⇒ False

by (metis dw le norm minus commute not less order trans rle wy)
show ?thesis
apply (rule ∗∗ [OF connected Int frontier [where t = f‘S , OF connected ball ]])

using 〈a ∈ S 〉 〈0 < r 〉 by (auto simp: disjoint iff not equal dist norm dest : §)
qed

Special characterizations of classes of functions into and out of R.

lemma Hausdorff space euclidean [simp]: Hausdorff space (euclidean :: ′a::metric space
topology)
proof −
have ∃U V . open U ∧ open V ∧ x ∈ U ∧ y ∈ V ∧ disjnt U V
if x 6= y
for x y :: ′a

proof (intro exI conjI )
let ?r = dist x y / 2
have [simp]: ?r > 0
by (simp add : that)

show open (ball x ?r) open (ball y ?r) x ∈ (ball x ?r) y ∈ (ball y ?r)
by (auto simp add : that)
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show disjnt (ball x ?r) (ball y ?r)
unfolding disjnt def by (simp add : disjoint ballI )

qed
then show ?thesis
by (simp add : Hausdorff space def )

qed

proposition embedding map into euclideanreal :
assumes path connected space X
shows embedding map X euclideanreal f ←→

continuous map X euclideanreal f ∧ inj on f (topspace X )
proof safe
show continuous map X euclideanreal f
if embedding map X euclideanreal f
using continuous map in subtopology homeomorphic imp continuous map that
unfolding embedding map def by blast

show inj on f (topspace X )
if embedding map X euclideanreal f
using that homeomorphic imp injective map
unfolding embedding map def by blast

show embedding map X euclideanreal f
if cont : continuous map X euclideanreal f and inj : inj on f (topspace X )

proof −
obtain g where gf :

∧
x . x ∈ topspace X =⇒ g (f x ) = x

using inv into f f [OF inj ] by auto
show ?thesis
unfolding embedding map def homeomorphic map maps homeomorphic maps def
proof (intro exI conjI )
show continuous map X (top of set (f ‘ topspace X )) f
by (simp add : cont continuous map in subtopology)

let ?S = f ‘ topspace X
have eq : {x ∈ ?S . g x ∈ U } = f ‘ U if openin X U for U
using openin subset [OF that ] by (auto simp: gf )

have 1 : g ‘ ?S ⊆ topspace X
using eq by blast

have openin (top of set ?S ) {x ∈ ?S . g x ∈ T}
if openin X T for T

proof −
have T ⊆ topspace X
by (simp add : openin subset that)

have RR: ∀ x ∈ ?S ∩ g −‘ T . ∃ d>0 . ∀ x ′ ∈ ?S ∩ ball x d . g x ′ ∈ T
proof (clarsimp simp add : gf )
have pcS : path connectedin euclidean ?S

using assms cont path connectedin continuous map image path connectedin topspace
by blast

show ∃ d>0 . ∀ x ′∈f ‘ topspace X ∩ ball (f x ) d . g x ′ ∈ T
if x ∈ T for x

proof −
have x : x ∈ topspace X
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using 〈T ⊆ topspace X 〉 〈x ∈ T 〉 by blast
obtain u v d where 0 < d u ∈ topspace X v ∈ topspace X

and sub fuv : ?S ∩ {f x − d .. f x + d} ⊆ {f u..f v}
proof (cases ∃ u ∈ topspace X . f u < f x )
case True
then obtain u where u: u ∈ topspace X f u < f x ..
show ?thesis
proof (cases ∃ v ∈ topspace X . f x < f v)
case True
then obtain v where v : v ∈ topspace X f x < f v ..
show ?thesis
proof
let ?d = min (f x − f u) (f v − f x )
show 0 < ?d
by (simp add : 〈f u < f x 〉 〈f x < f v 〉)

show f ‘ topspace X ∩ {f x − ?d ..f x + ?d} ⊆ {f u..f v}
by fastforce

qed (auto simp: u v)
next
case False
show ?thesis
proof
let ?d = f x − f u
show 0 < ?d
by (simp add : u)

show f ‘ topspace X ∩ {f x − ?d ..f x + ?d} ⊆ {f u..f x}
using x u False by auto

qed (auto simp: x u)
qed

next
case False
note no u = False
show ?thesis
proof (cases ∃ v ∈ topspace X . f x < f v)
case True
then obtain v where v : v ∈ topspace X f x < f v ..
show ?thesis
proof
let ?d = f v − f x
show 0 < ?d
by (simp add : v)

show f ‘ topspace X ∩ {f x − ?d ..f x + ?d} ⊆ {f x ..f v}
using False by auto

qed (auto simp: x v)
next
case False
show ?thesis
proof
show f ‘ topspace X ∩ {f x − 1 ..f x + 1} ⊆ {f x ..f x}
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using False no u by fastforce
qed (auto simp: x )

qed
qed
then obtain h where pathin X h h 0 = u h 1 = v
using assms unfolding path connected space def by blast

obtain C where compactin X C connectedin X C u ∈ C v ∈ C
proof
show compactin X (h ‘ {0 ..1})
using that by (simp add : 〈pathin X h〉 compactin path image)

show connectedin X (h ‘ {0 ..1})
using 〈pathin X h〉 connectedin path image by blast

qed (use 〈h 0 = u〉 〈h 1 = v 〉 in auto)
have continuous map (subtopology euclideanreal (?S ∩ {f x − d .. f x +

d})) (subtopology X C ) g
proof (rule continuous inverse map)
show compact space (subtopology X C )
using 〈compactin X C 〉 compactin subspace by blast

show continuous map (subtopology X C ) euclideanreal f
by (simp add : cont continuous map from subtopology)

have {f u .. f v} ⊆ f ‘ topspace (subtopology X C )
proof (rule connected contains Icc)
show connected (f ‘ topspace (subtopology X C ))
using connectedin continuous map image [OF cont ]

by (simp add : 〈compactin X C 〉 〈connectedin X C 〉 com-
pactin subset topspace inf absorb2 )

show f u ∈ f ‘ topspace (subtopology X C )
by (simp add : 〈u ∈ C 〉 〈u ∈ topspace X 〉)

show f v ∈ f ‘ topspace (subtopology X C )
by (simp add : 〈v ∈ C 〉 〈v ∈ topspace X 〉)

qed
then show f ‘ topspace X ∩ {f x − d ..f x + d} ⊆ f ‘ topspace

(subtopology X C )
using sub fuv by blast

qed (auto simp: gf )
then have contg : continuous map (subtopology euclideanreal (?S ∩ {f x

− d .. f x + d})) X g
using continuous map in subtopology by blast

have ∃ e>0 . ∀ x ∈ ?S ∩ {f x − d .. f x + d} ∩ ball (f x ) e. g x ∈ T
using openin continuous map preimage [OF contg 〈openin X T 〉] x 〈x

∈ T 〉 〈0 < d 〉

unfolding openin euclidean subtopology iff
by (force simp: gf dist commute)

then obtain e where e > 0 ∧ (∀ x∈f ‘ topspace X ∩ {f x − d ..f x +
d} ∩ ball (f x ) e. g x ∈ T )

by metis
with 〈0 < d 〉 have min d e > 0 ∀ u. u ∈ topspace X −→ |f x − f u| <

min d e −→ u ∈ T
using dist real def gf by force+
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then show ?thesis
by (metis (full types) Int iff dist real def image iff mem ball gf )

qed
qed
then obtain d where d :

∧
r . r ∈ ?S ∩ g −‘ T =⇒

d r > 0 ∧ (∀ x ∈ ?S ∩ ball r (d r). g x ∈ T )
by metis

show ?thesis
unfolding openin subtopology

proof (intro exI conjI )
show {x ∈ ?S . g x ∈ T} = (

⋃
r ∈ ?S ∩ g −‘ T . ball r (d r)) ∩ f ‘

topspace X
using d by (auto simp: gf )

qed auto
qed
then show continuous map (top of set ?S ) X g
by (simp add : continuous map def gf )

qed (auto simp: gf )
qed

qed

An injective function into R is a homeomorphism and so an open
map.

lemma injective into 1d eq homeomorphism:
fixes f :: ′a::topological space ⇒ real
assumes f : continuous on S f and S : path connected S
shows inj on f S ←→ (∃ g . homeomorphism S (f ‘ S ) f g)

proof
show ∃ g . homeomorphism S (f ‘ S ) f g
if inj on f S

proof −
have embedding map (top of set S ) euclideanreal f
using that embedding map into euclideanreal [of top of set S f ] assms by auto
then show ?thesis
by (simp add : embedding map def ) (metis all closedin homeomorphic image f

homeomorphism injective closed map that)
qed

qed (metis homeomorphism def inj onI )

lemma injective into 1d imp open map:
fixes f :: ′a::topological space ⇒ real
assumes continuous on S f path connected S inj on f S openin (subtopology eu-

clidean S ) T
shows openin (subtopology euclidean (f ‘ S )) (f ‘ T )
using assms homeomorphism imp open map injective into 1d eq homeomorphism

by blast

lemma homeomorphism into 1d :
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fixes f :: ′a::topological space ⇒ real
assumes path connected S continuous on S f f ‘ S = T inj on f S
shows ∃ g . homeomorphism S T f g
using assms injective into 1d eq homeomorphism by blast

5.5.26 Rectangular paths

definition rectpath where
rectpath a1 a3 = (let a2 = Complex (Re a3 ) (Im a1 ); a4 = Complex (Re a1 )

(Im a3 )
in linepath a1 a2 +++ linepath a2 a3 +++ linepath a3 a4 +++

linepath a4 a1 )

lemma path rectpath [simp, intro]: path (rectpath a b)
by (simp add : Let def rectpath def )

lemma pathstart rectpath [simp]: pathstart (rectpath a1 a3 ) = a1
by (simp add : rectpath def Let def )

lemma pathfinish rectpath [simp]: pathfinish (rectpath a1 a3 ) = a1
by (simp add : rectpath def Let def )

lemma simple path rectpath [simp, intro]:
assumes Re a1 6= Re a3 Im a1 6= Im a3
shows simple path (rectpath a1 a3 )
unfolding rectpath def Let def using assms
by (intro simple path join loop arc join arc linepath)
(auto simp: complex eq iff path image join closed segment same Re closed segment same Im)

lemma path image rectpath:
assumes Re a1 ≤ Re a3 Im a1 ≤ Im a3
shows path image (rectpath a1 a3 ) =

{z . Re z ∈ {Re a1 , Re a3} ∧ Im z ∈ {Im a1 ..Im a3}} ∪
{z . Im z ∈ {Im a1 , Im a3} ∧ Re z ∈ {Re a1 ..Re a3}} (is ?lhs = ?rhs)

proof −
define a2 a4 where a2 = Complex (Re a3 ) (Im a1 ) and a4 = Complex (Re

a1 ) (Im a3 )
have ?lhs = closed segment a1 a2 ∪ closed segment a2 a3 ∪

closed segment a4 a3 ∪ closed segment a1 a4
by (simp all add : rectpath def Let def path image join closed segment commute

a2 def a4 def Un assoc)
also have . . . = ?rhs using assms
by (auto simp: rectpath def Let def path image join a2 def a4 def

closed segment same Re closed segment same Im closed segment eq real ivl)
finally show ?thesis .

qed

lemma path image rectpath subset cbox :
assumes Re a ≤ Re b Im a ≤ Im b
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shows path image (rectpath a b) ⊆ cbox a b
using assms by (auto simp: path image rectpath in cbox complex iff )

lemma path image rectpath inter box :
assumes Re a ≤ Re b Im a ≤ Im b
shows path image (rectpath a b) ∩ box a b = {}
using assms by (auto simp: path image rectpath in box complex iff )

lemma path image rectpath cbox minus box :
assumes Re a ≤ Re b Im a ≤ Im b
shows path image (rectpath a b) = cbox a b − box a b
using assms by (auto simp: path image rectpath in cbox complex iff

in box complex iff )

end

5.6 Bernstein-Weierstrass and Stone-Weierstrass

By L C Paulson (2015)

theory Weierstrass Theorems
imports Uniform Limit Path Connected Derivative
begin

5.6.1 Bernstein polynomials

definition Bernstein :: [nat ,nat ,real ] ⇒ real where
Bernstein n k x ≡ of nat (n choose k) ∗ xˆk ∗ (1 − x )ˆ(n − k)

lemma Bernstein nonneg : [[0 ≤ x ; x ≤ 1 ]] =⇒ 0 ≤ Bernstein n k x
by (simp add : Bernstein def )

lemma Bernstein pos: [[0 < x ; x < 1 ; k ≤ n]] =⇒ 0 < Bernstein n k x
by (simp add : Bernstein def )

lemma sum Bernstein [simp]: (
∑

k≤n. Bernstein n k x ) = 1
using binomial ring [of x 1−x n]
by (simp add : Bernstein def )

lemma binomial deriv1 :
(
∑

k≤n. (of nat k ∗ of nat (n choose k)) ∗ aˆ(k−1 ) ∗ bˆ(n−k)) = real of nat
n ∗ (a+b)ˆ(n−1 )
apply (rule DERIV unique [where f = λa. (a+b)ˆn and x=a])
apply (subst binomial ring)
apply (rule derivative eq intros sum.cong | simp add : atMost atLeast0 )+
done

lemma binomial deriv2 :
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(
∑

k≤n. (of nat k ∗ of nat (k−1 ) ∗ of nat (n choose k)) ∗ aˆ(k−2 ) ∗ bˆ(n−k))
=

of nat n ∗ of nat (n−1 ) ∗ (a+b::real)ˆ(n−2 )
apply (rule DERIV unique [where f = λa. of nat n ∗ (a+b::real)ˆ(n−1 ) and

x=a])
apply (subst binomial deriv1 [symmetric])
apply (rule derivative eq intros sum.cong | simp add : Num.numeral 2 eq 2 )+
done

lemma sum k Bernstein [simp]: (
∑

k≤n. real k ∗ Bernstein n k x ) = of nat n ∗
x
apply (subst binomial deriv1 [of n x 1−x , simplified , symmetric])
apply (simp add : sum distrib right)
apply (auto simp: Bernstein def algebra simps power eq if intro!: sum.cong)
done

lemma sum kk Bernstein [simp]: (
∑

k≤n. real k ∗ (real k − 1 ) ∗ Bernstein n k
x ) = real n ∗ (real n − 1 ) ∗ x 2

proof −
have (

∑
k≤n. real k ∗ (real k − 1 ) ∗ Bernstein n k x ) =

(
∑

k≤n. real k ∗ real (k − Suc 0 ) ∗ real (n choose k) ∗ xˆ(k − 2 ) ∗ (1 −
x )ˆ(n − k) ∗ x 2)
proof (rule sum.cong [OF refl ], simp)
fix k
assume k ≤ n
then consider k = 0 | k = 1 | k ′ where k = Suc (Suc k ′)
by (metis One nat def not0 implies Suc)

then show k = 0 ∨
(real k − 1 ) ∗ Bernstein n k x =
real (k − Suc 0 ) ∗
(real (n choose k) ∗ (xˆ(k − 2 ) ∗ ((1 − x )ˆ(n − k) ∗ x 2)))

by cases (auto simp add : Bernstein def power2 eq square algebra simps)
qed
also have ... = real of nat n ∗ real of nat (n − Suc 0 ) ∗ x 2

by (subst binomial deriv2 [of n x 1−x , simplified , symmetric]) (simp add :
sum distrib right)
also have ... = n ∗ (n − 1 ) ∗ x 2

by auto
finally show ?thesis
by auto

qed

5.6.2 Explicit Bernstein version of the 1D Weierstrass ap-
proximation theorem

theorem Bernstein Weierstrass:
fixes f :: real ⇒ real
assumes contf : continuous on {0 ..1} f and e: 0 < e
shows ∃N . ∀n x . N ≤ n ∧ x ∈ {0 ..1}
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−→ |f x − (
∑

k≤n. f (k/n) ∗ Bernstein n k x )| < e
proof −
have bounded (f ‘ {0 ..1})
using compact continuous image compact imp bounded contf by blast

then obtain M where M :
∧
x . 0 ≤ x =⇒ x ≤ 1 =⇒ |f x | ≤ M

by (force simp add : bounded iff )
then have 0 ≤ M by force
have ucontf : uniformly continuous on {0 ..1} f
using compact uniformly continuous contf by blast

then obtain d where d : d>0
∧
x x ′. [[ x ∈ {0 ..1}; x ′ ∈ {0 ..1}; |x ′ − x | < d ]]

=⇒ |f x ′ − f x | < e/2
apply (rule uniformly continuous onE [where e = e/2 ])
using e by (auto simp: dist norm)

{ fix n::nat and x ::real
assume n: Suc (natd4∗M /(e∗d2)e) ≤ n and x : 0 ≤ x x ≤ 1
have 0 < n using n by simp
have ed0 : − (e ∗ d2) < 0
using e 〈0<d 〉 by simp

also have ... ≤ M ∗ 4
using 〈0≤M 〉 by simp

finally have [simp]: real of int (nat d4 ∗ M / (e ∗ d2)e) = real of int d4 ∗ M
/ (e ∗ d2)e

using 〈0≤M 〉 e 〈0<d 〉

by (simp add : field simps)
have 4∗M /(e∗d2) + 1 ≤ real (Suc (natd4∗M /(e∗d2)e))
by (simp add : real nat ceiling ge)

also have ... ≤ real n
using n by (simp add : field simps)

finally have nbig : 4∗M /(e∗d2) + 1 ≤ real n .
have sum bern: (

∑
k≤n. (x − k/n)2 ∗ Bernstein n k x ) = x ∗ (1 − x ) / n

proof −
have ∗:

∧
a b x ::real . (a − b)2 ∗ x = a ∗ (a − 1 ) ∗ x + (1 − 2 ∗ b) ∗ a ∗ x

+ b ∗ b ∗ x
by (simp add : algebra simps power2 eq square)

have (
∑

k≤n. (k − n ∗ x )2 ∗ Bernstein n k x ) = n ∗ x ∗ (1 − x )
apply (simp add : ∗ sum.distrib)
apply (simp flip: sum distrib left add : mult .assoc)
apply (simp add : algebra simps power2 eq square)
done

then have (
∑

k≤n. (k − n ∗ x )2 ∗ Bernstein n k x )/nˆ2 = x ∗ (1 − x ) / n
by (simp add : power2 eq square)

then show ?thesis
using n by (simp add : sum divide distrib field split simps power2 commute)

qed
{ fix k
assume k : k ≤ n
then have kn: 0 ≤ k / n k / n ≤ 1
by (auto simp: field split simps)

consider (lessd) |x − k / n| < d | (ged) d ≤ |x − k / n|

Weierstrass{_}{\kern 0pt}Theorems.html


1190

by linarith
then have |(f x − f (k/n))| ≤ e/2 + 2 ∗ M / d2 ∗ (x − k/n)2

proof cases
case lessd
then have |(f x − f (k/n))| < e/2
using d x kn by (simp add : abs minus commute)

also have ... ≤ (e/2 + 2 ∗ M / d2 ∗ (x − k/n)2)
using 〈M≥0 〉 d by simp

finally show ?thesis by simp
next
case ged
then have dle: d2 ≤ (x − k/n)2

by (metis d(1 ) less eq real def power2 abs power mono)
have §: 1 ≤ (x − real k / real n)2 / d2

using dle 〈d>0 〉 by auto
have |(f x − f (k/n))| ≤ |f x | + |f (k/n)|
by (rule abs triangle ineq4 )

also have ... ≤ M+M
by (meson M add mono thms linordered semiring(1 ) kn x )

also have ... ≤ 2 ∗ M ∗ ((x − k/n)2 / d2)
using § 〈M≥0 〉 mult left mono by fastforce

also have ... ≤ e/2 + 2 ∗ M / d2 ∗ (x − k/n)2

using e by simp
finally show ?thesis .
qed

} note ∗ = this
have |f x − (

∑
k≤n. f (k / n) ∗ Bernstein n k x )| ≤ |

∑
k≤n. (f x − f (k / n))

∗ Bernstein n k x |
by (simp add : sum subtractf sum distrib left [symmetric] algebra simps)

also have ... ≤ (
∑

k≤n. |(f x − f (k / n)) ∗ Bernstein n k x |)
by (rule sum abs)

also have ... ≤ (
∑

k≤n. (e/2 + (2 ∗ M / d2) ∗ (x − k / n)2) ∗ Bernstein n
k x )

using ∗
by (force simp add : abs mult Bernstein nonneg x mult right mono intro:

sum mono)
also have ... ≤ e/2 + (2 ∗ M ) / (d2 ∗ n)
unfolding sum.distrib Rings.semiring class.distrib right sum distrib left [symmetric]

mult .assoc sum bern
using 〈d>0 〉 x by (simp add : divide simps 〈M≥0 〉 mult le one mult left le)

also have ... < e
using 〈d>0 〉 nbig e 〈n>0 〉

apply (simp add : field split simps)
using ed0 by linarith

finally have |f x − (
∑

k≤n. f (real k / real n) ∗ Bernstein n k x )| < e .
}
then show ?thesis
by auto

qed
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5.6.3 General Stone-Weierstrass theorem

Source: Bruno Brosowski and Frank Deutsch. An Elementary Proof of the
Stone-Weierstrass Theorem. Proceedings of the American Mathematical
Society Volume 81, Number 1, January 1981. DOI: 10.2307/2043993 https:
//www.jstor.org/stable/2043993

locale function ring on =
fixes R :: ( ′a::t2 space ⇒ real) set and S :: ′a set
assumes compact : compact S
assumes continuous: f ∈ R =⇒ continuous on S f
assumes add : f ∈ R =⇒ g ∈ R =⇒ (λx . f x + g x ) ∈ R
assumes mult : f ∈ R =⇒ g ∈ R =⇒ (λx . f x ∗ g x ) ∈ R
assumes const : (λ . c) ∈ R
assumes separable: x ∈ S =⇒ y ∈ S =⇒ x 6= y =⇒ ∃ f ∈R. f x 6= f y

begin
lemma minus: f ∈ R =⇒ (λx . − f x ) ∈ R
by (frule mult [OF const [of −1 ]]) simp

lemma diff : f ∈ R =⇒ g ∈ R =⇒ (λx . f x − g x ) ∈ R
unfolding diff conv add uminus by (metis add minus)

lemma power : f ∈ R =⇒ (λx . f xˆn) ∈ R
by (induct n) (auto simp: const mult)

lemma sum: [[finite I ;
∧
i . i ∈ I =⇒ f i ∈ R]] =⇒ (λx .

∑
i ∈ I . f i x ) ∈ R

by (induct I rule: finite induct ; simp add : const add)

lemma prod : [[finite I ;
∧
i . i ∈ I =⇒ f i ∈ R]] =⇒ (λx .

∏
i ∈ I . f i x ) ∈ R

by (induct I rule: finite induct ; simp add : const mult)

definition normf :: ( ′a::t2 space ⇒ real) ⇒ real
where normf f ≡ SUP x∈S . |f x |

lemma normf upper :
assumes continuous on S f x ∈ S shows |f x | ≤ normf f

proof −
have bdd above ((λx . |f x |) ‘ S )
by (simp add : assms(1 ) bounded imp bdd above compact compact continuous image

compact imp bounded continuous on rabs)
then show ?thesis
using assms cSUP upper normf def by fastforce

qed

lemma normf least : S 6= {} =⇒ (
∧
x . x ∈ S =⇒ |f x | ≤ M ) =⇒ normf f ≤ M

by (simp add : normf def cSUP least)

end
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lemma (in function ring on) one:
assumes U : open U and t0 : t0 ∈ S t0 ∈ U and t1 : t1 ∈ S−U
shows ∃V . open V ∧ t0 ∈ V ∧ S ∩ V ⊆ U ∧

(∀ e>0 . ∃ f ∈ R. f ‘ S ⊆ {0 ..1} ∧ (∀ t ∈ S ∩ V . f t < e) ∧ (∀ t ∈ S
− U . f t > 1 − e))
proof −
have ∃ pt ∈ R. pt t0 = 0 ∧ pt t > 0 ∧ pt ‘ S ⊆ {0 ..1} if t : t ∈ S − U for t
proof −
have t 6= t0 using t t0 by auto
then obtain g where g : g ∈ R g t 6= g t0
using separable t0 by (metis Diff subset subset eq t)

define h where [abs def ]: h x = g x − g t0 for x
have h ∈ R
unfolding h def by (fast intro: g const diff )

then have hsq : (λw . (h w)2) ∈ R
by (simp add : power2 eq square mult)

have h t 6= h t0
by (simp add : h def g)

then have h t 6= 0
by (simp add : h def )

then have ht2 : 0 < (h t)ˆ2
by simp

also have ... ≤ normf (λw . (h w)2)
using t normf upper [where x=t ] continuous [OF hsq ] by force

finally have nfp: 0 < normf (λw . (h w)2) .
define p where [abs def ]: p x = (1 / normf (λw . (h w)2)) ∗ (h x )ˆ2 for x
have p ∈ R
unfolding p def by (fast intro: hsq const mult)

moreover have p t0 = 0
by (simp add : p def h def )

moreover have p t > 0
using nfp ht2 by (simp add : p def )

moreover have
∧
x . x ∈ S =⇒ p x ∈ {0 ..1}

using nfp normf upper [OF continuous [OF hsq ] ] by (auto simp: p def )
ultimately show ∃ pt ∈ R. pt t0 = 0 ∧ pt t > 0 ∧ pt ‘ S ⊆ {0 ..1}
by auto

qed
then obtain pf where pf :

∧
t . t ∈ S−U =⇒ pf t ∈ R ∧ pf t t0 = 0 ∧ pf t t

> 0
and pf01 :

∧
t . t ∈ S−U =⇒ pf t ‘ S ⊆ {0 ..1}

by metis
have com sU : compact (S−U )
using compact closed Int compact U by (simp add : Diff eq compact Int closed

open closed)
have

∧
t . t ∈ S−U =⇒ ∃A. open A ∧ A ∩ S = {x∈S . 0 < pf t x}

apply (rule open Collect positive)
by (metis pf continuous)

then obtain Uf where Uf :
∧
t . t ∈ S−U =⇒ open (Uf t) ∧ (Uf t) ∩ S =

{x∈S . 0 < pf t x}
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by metis
then have open Uf :

∧
t . t ∈ S−U =⇒ open (Uf t)

by blast
have tUft :

∧
t . t ∈ S−U =⇒ t ∈ Uf t

using pf Uf by blast
then have ∗: S−U ⊆ (

⋃
x ∈ S−U . Uf x )

by blast
obtain subU where subU : subU ⊆ S − U finite subU S − U ⊆ (

⋃
x ∈ subU .

Uf x )
by (blast intro: that compactE image [OF com sU open Uf ∗])

then have [simp]: subU 6= {}
using t1 by auto

then have cardp: card subU > 0 using subU
by (simp add : card gt 0 iff )

define p where [abs def ]: p x = (1 / card subU ) ∗ (
∑

t ∈ subU . pf t x ) for x
have pR: p ∈ R
unfolding p def using subU pf by (fast intro: pf const mult sum)

have pt0 [simp]: p t0 = 0
using subU pf by (auto simp: p def intro: sum.neutral)

have pt pos: p t > 0 if t : t ∈ S−U for t
proof −
obtain i where i : i ∈ subU t ∈ Uf i using subU t by blast
show ?thesis
using subU i t
apply (clarsimp simp: p def field split simps)
apply (rule sum pos2 [OF 〈finite subU 〉])
using Uf t pf01 apply auto
apply (force elim!: subsetCE )
done

qed
have p01 : p x ∈ {0 ..1} if t : x ∈ S for x
proof −
have 0 ≤ p x
using subU cardp t pf01
by (fastforce simp add : p def field split simps intro: sum nonneg)

moreover have p x ≤ 1
using subU cardp t
apply (simp add : p def field split simps)
apply (rule sum bounded above [where ′a=real and K=1 , simplified ])
using pf01 by force

ultimately show ?thesis
by auto

qed
have compact (p ‘ (S−U ))
by (meson Diff subset com sU compact continuous image continuous continu-

ous on subset pR)
then have open (− (p ‘ (S−U )))
by (simp add : compact imp closed open Compl)

moreover have 0 ∈ − (p ‘ (S−U ))
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by (metis (no types) ComplI image iff not less iff gr or eq pt pos)
ultimately obtain delta0 where delta0 : delta0 > 0 ball 0 delta0 ⊆ − (p ‘

(S−U ))
by (auto simp: elim!: openE )

then have pt delta:
∧
x . x ∈ S−U =⇒ p x ≥ delta0

by (force simp: ball def dist norm dest : p01 )
define δ where δ = delta0/2
have delta0 ≤ 1 using delta0 p01 [of t1 ] t1

by (force simp: ball def dist norm dest : p01 )
with delta0 have δ01 : 0 < δ δ < 1
by (auto simp: δ def )

have pt δ:
∧
x . x ∈ S−U =⇒ p x ≥ δ

using pt delta delta0 by (force simp: δ def )
have ∃A. open A ∧ A ∩ S = {x∈S . p x < δ/2}
by (rule open Collect less Int [OF continuous [OF pR] continuous on const ])

then obtain V where V : open V V ∩ S = {x∈S . p x < δ/2}
by blast

define k where k = natb1/δc + 1
have k>0 by (simp add : k def )
have k−1 ≤ 1/δ
using δ01 by (simp add : k def )

with δ01 have k ≤ (1+δ)/δ
by (auto simp: algebra simps add divide distrib)

also have ... < 2/δ
using δ01 by (auto simp: field split simps)

finally have k2 δ: k < 2/δ .
have 1/δ < k
using δ01 unfolding k def by linarith

with δ01 k2 δ have kδ: 1 < k∗δ k∗δ < 2
by (auto simp: field split simps)

define q where [abs def ]: q n t = (1 − p tˆn)ˆ(kˆn) for n t
have qR: q n ∈ R for n
by (simp add : q def const diff power pR)

have q01 :
∧
n t . t ∈ S =⇒ q n t ∈ {0 ..1}

using p01 by (simp add : q def power le one algebra simps)
have qt0 [simp]:

∧
n. n>0 =⇒ q n t0 = 1

using t0 pf by (simp add : q def power 0 left)
{ fix t and n::nat
assume t : t ∈ S ∩ V
with 〈k>0 〉 V have k ∗ p t < k ∗ δ / 2

by force
then have 1 − (k ∗ δ / 2 )ˆn ≤ 1 − (k ∗ p t)ˆn
using 〈k>0 〉 p01 t by (simp add : power mono)

also have ... ≤ q n t
using Bernoulli inequality [of − ((p t)ˆn) kˆn]
apply (simp add : q def )
by (metis IntE atLeastAtMost iff p01 power le one power mult distrib t)

finally have 1 − (k ∗ δ / 2 )ˆn ≤ q n t .
} note limitV = this
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{ fix t and n::nat
assume t : t ∈ S − U
with 〈k>0 〉 U have k ∗ δ ≤ k ∗ p t
by (simp add : pt δ)

with kδ have kpt : 1 < k ∗ p t
by (blast intro: less le trans)

have ptn pos: 0 < p tˆn
using pt pos [OF t ] by simp

have ptn le: p tˆn ≤ 1
by (meson DiffE atLeastAtMost iff p01 power le one t)

have q n t = (1/(kˆn ∗ (p t)ˆn)) ∗ (1 − p tˆn)ˆ(kˆn) ∗ kˆn ∗ (p t)ˆn
using pt pos [OF t ] 〈k>0 〉 by (simp add : q def )

also have ... ≤ (1/(k ∗ (p t))ˆn) ∗ (1 − p tˆn)ˆ(kˆn) ∗ (1 + kˆn ∗ (p t)ˆn)
using pt pos [OF t ] 〈k>0 〉

by (simp add : divide simps mult left mono ptn le)
also have ... ≤ (1/(k ∗ (p t))ˆn) ∗ (1 − p tˆn)ˆ(kˆn) ∗ (1 + (p t)ˆn)ˆ(kˆn)
proof (rule mult left mono [OF Bernoulli inequality ])
show 0 ≤ 1 / (real k ∗ p t)ˆn ∗ (1 − p tˆn)ˆkˆn
using ptn pos ptn le by (auto simp: power mult distrib)

qed (use ptn pos in auto)
also have ... = (1/(k ∗ (p t))ˆn) ∗ (1 − p tˆ(2∗n))ˆ(kˆn)
using pt pos [OF t ] 〈k>0 〉

by (simp add : algebra simps power mult power2 eq square flip: power mult distrib)
also have ... ≤ (1/(k ∗ (p t))ˆn) ∗ 1
using pt pos 〈k>0 〉 p01 power le one t
by (intro mult left mono [OF power le one]) auto

also have ... ≤ (1 / (k∗δ))ˆn
using 〈k>0 〉 δ01 power mono pt δ t
by (fastforce simp: field simps)

finally have q n t ≤ (1 / (real k ∗ δ))ˆn .
} note limitNonU = this
define NN
where NN e = 1 + nat dmax (ln e / ln (real k ∗ δ / 2 )) (− ln e / ln (real k

∗ δ))e for e
have NN : of nat (NN e) > ln e / ln (real k ∗ δ / 2 ) of nat (NN e) > − ln e /

ln (real k ∗ δ)
if 0<e for e

unfolding NN def by linarith+
have NN1 : (k ∗ δ / 2 )ˆNN e < e if e>0 for e
proof −
have ln ((real k ∗ δ / 2 )ˆNN e) = real (NN e) ∗ ln (real k ∗ δ / 2 )
by (simp add : 〈δ>0 〉 〈0 < k 〉 ln realpow)

also have ... < ln e
using NN kδ that by (force simp add : field simps)

finally show ?thesis
by (simp add : 〈δ>0 〉 〈0 < k 〉 that)

qed
have NN0 : (1/(k∗δ))ˆ(NN e) < e if e>0 for e
proof −
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have 0 < ln (real k) + ln δ
using δ01 (1 ) 〈0 < k 〉 kδ(1 ) ln gt zero ln mult by fastforce

then have real (NN e) ∗ ln (1 / (real k ∗ δ)) < ln e
using kδ(1 ) NN (2 ) [of e] that by (simp add : ln div divide simps)

then have exp (real (NN e) ∗ ln (1 / (real k ∗ δ))) < e
by (metis exp less mono exp ln that)

then show ?thesis
by (simp add : δ01 (1 ) 〈0 < k 〉 exp of nat mult)

qed
{ fix t and e::real
assume e>0
have t ∈ S ∩ V =⇒ 1 − q (NN e) t < e t ∈ S − U =⇒ q (NN e) t < e
proof −
assume t : t ∈ S ∩ V
show 1 − q (NN e) t < e
by (metis add .commute diff le eq not le limitV [OF t ] less le trans [OF NN1

[OF 〈e>0 〉]])
next
assume t : t ∈ S − U
show q (NN e) t < e
using limitNonU [OF t ] less le trans [OF NN0 [OF 〈e>0 〉]] not le by blast

qed
} then have

∧
e. e > 0 =⇒ ∃ f ∈R. f ‘ S ⊆ {0 ..1} ∧ (∀ t ∈ S ∩ V . f t < e) ∧

(∀ t ∈ S − U . 1 − e < f t)
using q01
by (rule tac x=λx . 1 − q (NN e) x in bexI ) (auto simp: algebra simps intro:

diff const qR)
moreover have t0V : t0 ∈ V S ∩ V ⊆ U
using pt δ t0 U V δ01 by fastforce+

ultimately show ?thesis using V t0V
by blast

qed

Non-trivial case, with A and B both non-empty

lemma (in function ring on) two special :
assumes A: closed A A ⊆ S a ∈ A

and B : closed B B ⊆ S b ∈ B
and disj : A ∩ B = {}
and e: 0 < e e < 1

shows ∃ f ∈ R. f ‘ S ⊆ {0 ..1} ∧ (∀ x ∈ A. f x < e) ∧ (∀ x ∈ B . f x > 1 − e)
proof −
{ fix w
assume w ∈ A
then have open ( − B) b ∈ S w /∈ B w ∈ S
using assms by auto

then have ∃V . open V ∧ w ∈ V ∧ S ∩ V ⊆ −B ∧
(∀ e>0 . ∃ f ∈ R. f ‘ S ⊆ {0 ..1} ∧ (∀ x ∈ S ∩ V . f x < e) ∧ (∀ x ∈ S

∩ B . f x > 1 − e))
using one [of −B w b] assms 〈w ∈ A〉 by simp
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}
then obtain Vf where Vf :∧

w . w ∈ A =⇒ open (Vf w) ∧ w ∈ Vf w ∧ S ∩ Vf w ⊆ −B ∧
(∀ e>0 . ∃ f ∈ R. f ‘ S ⊆ {0 ..1} ∧ (∀ x ∈ S ∩ Vf w . f x < e)

∧ (∀ x ∈ S ∩ B . f x > 1 − e))
by metis

then have open Vf :
∧
w . w ∈ A =⇒ open (Vf w)

by blast
have tVft :

∧
w . w ∈ A =⇒ w ∈ Vf w

using Vf by blast
then have sum max 0 : A ⊆ (

⋃
x ∈ A. Vf x )

by blast
have com A: compact A using A
by (metis compact compact Int closed inf .absorb iff2 )

obtain subA where subA: subA ⊆ A finite subA A ⊆ (
⋃
x ∈ subA. Vf x )

by (blast intro: that compactE image [OF com A open Vf sum max 0 ])
then have [simp]: subA 6= {}
using 〈a ∈ A〉 by auto

then have cardp: card subA > 0 using subA
by (simp add : card gt 0 iff )

have
∧
w . w ∈ A =⇒ ∃ f ∈ R. f ‘ S ⊆ {0 ..1} ∧ (∀ x ∈ S ∩ Vf w . f x < e / card

subA) ∧ (∀ x ∈ S ∩ B . f x > 1 − e / card subA)
using Vf e cardp by simp

then obtain ff where ff :∧
w . w ∈ A =⇒ ff w ∈ R ∧ ff w ‘ S ⊆ {0 ..1} ∧

(∀ x ∈ S ∩ Vf w . ff w x < e / card subA) ∧ (∀ x ∈ S ∩ B . ff
w x > 1 − e / card subA)

by metis
define pff where [abs def ]: pff x = (

∏
w ∈ subA. ff w x ) for x

have pffR: pff ∈ R
unfolding pff def using subA ff by (auto simp: intro: prod)

moreover
have pff01 : pff x ∈ {0 ..1} if t : x ∈ S for x
proof −
have 0 ≤ pff x
using subA cardp t ff
by (fastforce simp: pff def field split simps sum nonneg intro: prod nonneg)

moreover have pff x ≤ 1
using subA cardp t ff
by (fastforce simp add : pff def field split simps sum nonneg intro: prod mono

[where g = λx . 1 , simplified ])
ultimately show ?thesis
by auto

qed
moreover
{ fix v x
assume v : v ∈ subA and x : x ∈ Vf v x ∈ S
from subA v have pff x = ff v x ∗ (

∏
w ∈ subA − {v}. ff w x )

unfolding pff def by (metis prod .remove)
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also have ... ≤ ff v x ∗ 1
proof −
have

∧
i . i ∈ subA − {v} =⇒ 0 ≤ ff i x ∧ ff i x ≤ 1

by (metis Diff subset atLeastAtMost iff ff image subset iff subA(1 ) subsetD
x (2 ))

moreover have 0 ≤ ff v x
using ff subA(1 ) v x (2 ) by fastforce

ultimately show ?thesis
by (metis mult left mono prod mono [where g = λx . 1 , simplified ])

qed
also have ... < e / card subA
using ff subA(1 ) v x by auto

also have ... ≤ e
using cardp e by (simp add : field split simps)

finally have pff x < e .
}
then have

∧
x . x ∈ A =⇒ pff x < e

using A Vf subA by (metis UN E contra subsetD)
moreover
{ fix x
assume x : x ∈ B
then have x ∈ S
using B by auto

have 1 − e ≤ (1 − e / card subA)ˆcard subA
using Bernoulli inequality [of −e / card subA card subA] e cardp
by (auto simp: field simps)

also have ... = (
∏

w ∈ subA. 1 − e / card subA)
by (simp add : subA(2 ))

also have ... < pff x
proof −
have

∧
i . i ∈ subA =⇒ e / real (card subA) ≤ 1 ∧ 1 − e / real (card subA)

< ff i x
using e 〈B ⊆ S 〉 ff subA(1 ) x by (force simp: field split simps)

then show ?thesis
using prod mono strict [where f = λx . 1 − e / card subA] subA(2 ) by

(force simp add : pff def )
qed
finally have 1 − e < pff x .

}
ultimately show ?thesis by blast

qed

lemma (in function ring on) two:
assumes A: closed A A ⊆ S

and B : closed B B ⊆ S
and disj : A ∩ B = {}
and e: 0 < e e < 1

shows ∃ f ∈ R. f ‘ S ⊆ {0 ..1} ∧ (∀ x ∈ A. f x < e) ∧ (∀ x ∈ B . f x > 1 − e)
proof (cases A 6= {} ∧ B 6= {})



Weierstrass Theorems.thy 1199

case True then show ?thesis
using assms
by (force simp flip: ex in conv intro!: two special)

next
case False
then consider A={} | B={} by force
then show ?thesis
proof cases
case 1
with e show ?thesis
by (rule tac x=λx . 1 in bexI ) (auto simp: const)

next
case 2
with e show ?thesis
by (rule tac x=λx . 0 in bexI ) (auto simp: const)

qed
qed

The special case where f is non-negative and e < (1 :: ′a) / (3 :: ′a)

lemma (in function ring on) Stone Weierstrass special :
assumes f : continuous on S f and fpos:

∧
x . x ∈ S =⇒ f x ≥ 0

and e: 0 < e e < 1/3
shows ∃ g ∈ R. ∀ x∈S . |f x − g x | < 2∗e

proof −
define n where n = 1 + nat dnormf f / ee
define A where A j = {x ∈ S . f x ≤ (j − 1/3 )∗e} for j :: nat
define B where B j = {x ∈ S . f x ≥ (j + 1/3 )∗e} for j :: nat
have ngt : (n−1 ) ∗ e ≥ normf f
using e pos divide le eq real nat ceiling ge[of normf f / e]
by (fastforce simp add : divide simps n def )

moreover have n≥1
by (simp all add : n def )

ultimately have ge fx : (n−1 ) ∗ e ≥ f x if x ∈ S for x
using f normf upper that by fastforce

have closed S
by (simp add : compact compact imp closed)

{ fix j
have closed (A j ) A j ⊆ S
using 〈closed S 〉 continuous on closed Collect le [OF f continuous on const ]
by (simp all add : A def Collect restrict)

moreover have closed (B j ) B j ⊆ S
using 〈closed S 〉 continuous on closed Collect le [OF continuous on const f ]
by (simp all add : B def Collect restrict)

moreover have (A j ) ∩ (B j ) = {}
using e by (auto simp: A def B def field simps)

ultimately have ∃ f ∈ R. f ‘ S ⊆ {0 ..1} ∧ (∀ x ∈ A j . f x < e/n) ∧ (∀ x ∈
B j . f x > 1 − e/n)

using e 〈1 ≤ n〉 by (auto intro: two)
}
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then obtain xf where xfR:
∧
j . xf j ∈ R and xf01 :

∧
j . xf j ‘ S ⊆ {0 ..1}

and xfA:
∧
x j . x ∈ A j =⇒ xf j x < e/n

and xfB :
∧
x j . x ∈ B j =⇒ xf j x > 1 − e/n

by metis
define g where [abs def ]: g x = e ∗ (

∑
i≤n. xf i x ) for x

have gR: g ∈ R
unfolding g def by (fast intro: mult const sum xfR)

have gge0 :
∧
x . x ∈ S =⇒ g x ≥ 0

using e xf01 by (simp add : g def zero le mult iff image subset iff sum nonneg)
have A0 : A 0 = {}
using fpos e by (fastforce simp: A def )

have An: A n = S
using e ngt 〈n≥1 〉 f normf upper by (fastforce simp: A def field simps of nat diff )
have Asub: A j ⊆ A i if i≥j for i j
using e that by (force simp: A def intro: order trans)

{ fix t
assume t : t ∈ S
define j where j = (LEAST j . t ∈ A j )
have jn: j ≤ n
using t An by (simp add : Least le j def )

have Aj : t ∈ A j
using t An by (fastforce simp add : j def intro: LeastI )

then have Ai : t ∈ A i if i≥j for i
using Asub [OF that ] by blast

then have fj1 : f t ≤ (j − 1/3 )∗e
by (simp add : A def )

then have Anj : t /∈ A i if i<j for i
using Aj 〈i<j 〉 not less Least by (fastforce simp add : j def )

have j1 : 1 ≤ j
using A0 Aj j def not less eq eq by (fastforce simp add : j def )

then have Anj : t /∈ A (j−1 )
using Least le by (fastforce simp add : j def )

then have fj2 : (j − 4/3 )∗e < f t
using j1 t by (simp add : A def of nat diff )

have xf le1 :
∧
i . xf i t ≤ 1

using xf01 t by force
have g t = e ∗ (

∑
i≤n. xf i t)

by (simp add : g def flip: distrib left)
also have ... = e ∗ (

∑
i ∈ {..<j} ∪ {j ..n}. xf i t)

by (simp add : ivl disj un one(4 ) jn)
also have ... = e ∗ (

∑
i<j . xf i t) + e ∗ (

∑
i=j ..n. xf i t)

by (simp add : distrib left ivl disj int sum.union disjoint)
also have ... ≤ e∗j + e ∗ ((Suc n − j )∗e/n)
proof (intro add mono mult left mono)
show (

∑
i<j . xf i t) ≤ j

by (rule sum bounded above [OF xf le1 , where A = lessThan j , simplified ])
have xf i t ≤ e/n if i≥j for i
using xfA [OF Ai ] that by (simp add : less eq real def )

then show (
∑

i = j ..n. xf i t) ≤ real (Suc n − j ) ∗ e / real n
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using sum bounded above [of {j ..n} λi . xf i t ]
by fastforce

qed (use e in auto)
also have ... ≤ j∗e + e∗(n − j + 1 )∗e/n
using 〈1 ≤ n〉 e by (simp add : field simps del : of nat Suc)

also have ... ≤ j∗e + e∗e
using 〈1 ≤ n〉 e j1 by (simp add : field simps del : of nat Suc)

also have ... < (j + 1/3 )∗e
using e by (auto simp: field simps)

finally have gj1 : g t < (j + 1 / 3 ) ∗ e .
have gj2 : (j − 4/3 )∗e < g t
proof (cases 2 ≤ j )
case False
then have j=1 using j1 by simp
with t gge0 e show ?thesis by force

next
case True
then have (j − 4/3 )∗e < (j−1 )∗e − eˆ2
using e by (auto simp: of nat diff algebra simps power2 eq square)

also have ... < (j−1 )∗e − ((j − 1 )/n) ∗ eˆ2
using e True jn by (simp add : power2 eq square field simps)

also have ... = e ∗ (j−1 ) ∗ (1 − e/n)
by (simp add : power2 eq square field simps)

also have ... ≤ e ∗ (
∑

i≤j−2 . xf i t)
proof −
{ fix i
assume i+2 ≤ j
then obtain d where i+2+d = j
using le Suc ex that by blast

then have t ∈ B i
using Anj e ge fx [OF t ] 〈1 ≤ n〉 fpos [OF t ] t
unfolding A def B def
by (auto simp add : field simps of nat diff not le intro: order trans [of

e ∗ 2 + e ∗ d ∗ 3 + e ∗ i ∗ 3 ])
then have xf i t > 1 − e/n
by (rule xfB)

}
moreover have real (j − Suc 0 ) ∗ (1 − e / real n) ≤ real (card {..j −

2}) ∗ (1 − e / real n)
using Suc diff le True by fastforce

ultimately show ?thesis
using e True by (auto intro: order trans [OF sum bounded below [OF

less imp le]])
qed
also have ... ≤ g t
using jn e xf01 t
by (auto intro!: Groups Big .sum mono2 simp add : g def zero le mult iff

image subset iff sum nonneg)
finally show ?thesis .
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qed
have |f t − g t | < 2 ∗ e
using fj1 fj2 gj1 gj2 by (simp add : abs less iff field simps)

}
then show ?thesis
by (rule tac x=g in bexI ) (auto intro: gR)

qed

The “unpretentious” formulation

proposition (in function ring on) Stone Weierstrass basic:
assumes f : continuous on S f and e: e > 0
shows ∃ g ∈ R. ∀ x∈S . |f x − g x | < e

proof −
have ∃ g ∈ R. ∀ x∈S . |(f x + normf f ) − g x | < 2 ∗ min (e/2 ) (1/4 )
proof (rule Stone Weierstrass special)
show continuous on S (λx . f x + normf f )
by (force intro: Limits.continuous on add [OF f Topological Spaces.continuous on const ])
show

∧
x . x ∈ S =⇒ 0 ≤ f x + normf f

using normf upper [OF f ] by force
qed (use e in auto)
then obtain g where g ∈ R ∀ x∈S . |g x − (f x + normf f )| < e
by force

then show ?thesis
by (rule tac x=λx . g x − normf f in bexI ) (auto simp: algebra simps intro:

diff const)
qed

theorem (in function ring on) Stone Weierstrass:
assumes f : continuous on S f
shows ∃F∈UNIV → R. LIM n sequentially . F n :> uniformly on S f

proof −
define h where h ≡ λn::nat . SOME g . g ∈ R ∧ (∀ x∈S . |f x − g x | < 1 / (1

+ n))
show ?thesis
proof
{ fix e::real
assume e: 0 < e
then obtain N ::nat where N : 0 < N 0 < inverse N inverse N < e
by (auto simp: real arch inverse [of e])

{ fix n :: nat and x :: ′a and g :: ′a ⇒ real
assume n: N ≤ n ∀ x∈S . |f x − g x | < 1 / (1 + real n)
assume x : x ∈ S
have ¬ real (Suc n) < inverse e
using 〈N ≤ n〉 N using less imp inverse less by force

then have 1 / (1 + real n) ≤ e
using e by (simp add : field simps)

then have |f x − g x | < e
using n(2 ) x by auto
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}
then have ∀ F n in sequentially . ∀ x∈S . |f x − h n x | < e
unfolding h def
by (force intro: someI2 bex [OF Stone Weierstrass basic [OF f ]] eventu-

ally sequentiallyI [of N ])
}
then show uniform limit S h f sequentially
unfolding uniform limit iff by (auto simp: dist norm abs minus commute)

show h ∈ UNIV → R
unfolding h def by (force intro: someI2 bex [OF Stone Weierstrass basic

[OF f ]])
qed

qed

A HOL Light formulation

corollary Stone Weierstrass HOL:
fixes R :: ( ′a::t2 space ⇒ real) set and S :: ′a set
assumes compact S

∧
c. P(λx . c::real)∧

f . P f =⇒ continuous on S f∧
f g . P(f ) ∧ P(g) =⇒ P(λx . f x + g x )

∧
f g . P(f ) ∧ P(g) =⇒ P(λx . f

x ∗ g x )∧
x y . x ∈ S ∧ y ∈ S ∧ x 6= y =⇒ ∃ f . P(f ) ∧ f x 6= f y

continuous on S f
0 < e

shows ∃ g . P(g) ∧ (∀ x ∈ S . |f x − g x | < e)
proof −
interpret PR: function ring on Collect P
by unfold locales (use assms in auto)

show ?thesis
using PR.Stone Weierstrass basic [OF 〈continuous on S f 〉 〈0 < e〉]
by blast

qed

5.6.4 Polynomial functions

inductive real polynomial function :: ( ′a::real normed vector ⇒ real)⇒ bool where
linear : bounded linear f =⇒ real polynomial function f
| const : real polynomial function (λx . c)
| add : [[real polynomial function f ; real polynomial function g ]] =⇒ real polynomial function

(λx . f x + g x )
| mult : [[real polynomial function f ; real polynomial function g ]] =⇒ real polynomial function

(λx . f x ∗ g x )

declare real polynomial function.intros [intro]

definition polynomial function :: ( ′a::real normed vector ⇒ ′b::real normed vector)
⇒ bool
where
polynomial function p ≡ (∀ f . bounded linear f −→ real polynomial function (f
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o p))

lemma real polynomial function eq : real polynomial function p = polynomial function
p
unfolding polynomial function def
proof
assume real polynomial function p
then show ∀ f . bounded linear f −→ real polynomial function (f ◦ p)
proof (induction p rule: real polynomial function.induct)
case (linear h) then show ?case
by (auto simp: bounded linear compose real polynomial function.linear)

next
case (const h) then show ?case
by (simp add : real polynomial function.const)

next
case (add h) then show ?case
by (force simp add : bounded linear def linear add real polynomial function.add)

next
case (mult h) then show ?case
by (force simp add : real bounded linear const real polynomial function.mult)

qed
next
assume [rule format , OF bounded linear ident ]: ∀ f . bounded linear f −→ real polynomial function

(f ◦ p)
then show real polynomial function p
by (simp add : o def )

qed

lemma polynomial function const [iff ]: polynomial function (λx . c)
by (simp add : polynomial function def o def const)

lemma polynomial function bounded linear :
bounded linear f =⇒ polynomial function f
by (simp add : polynomial function def o def bounded linear compose real polynomial function.linear)

lemma polynomial function id [iff ]: polynomial function(λx . x )
by (simp add : polynomial function bounded linear)

lemma polynomial function add [intro]:
[[polynomial function f ; polynomial function g ]] =⇒ polynomial function (λx . f

x + g x )
by (auto simp: polynomial function def bounded linear def linear add real polynomial function.add

o def )

lemma polynomial function mult [intro]:
assumes f : polynomial function f and g : polynomial function g
shows polynomial function (λx . f x ∗R g x )

proof −
have real polynomial function (λx . h (g x )) if bounded linear h for h
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using g that unfolding polynomial function def o def bounded linear def
by (auto simp: real polynomial function eq)

moreover have real polynomial function f
by (simp add : f real polynomial function eq)

ultimately show ?thesis
unfolding polynomial function def bounded linear def o def
by (auto simp: linear .scaleR)

qed

lemma polynomial function cmul [intro]:
assumes f : polynomial function f
shows polynomial function (λx . c ∗R f x )

by (rule polynomial function mult [OF polynomial function const f ])

lemma polynomial function minus [intro]:
assumes f : polynomial function f
shows polynomial function (λx . − f x )

using polynomial function cmul [OF f , of −1 ] by simp

lemma polynomial function diff [intro]:
[[polynomial function f ; polynomial function g ]] =⇒ polynomial function (λx . f

x − g x )
unfolding add uminus conv diff [symmetric]
by (metis polynomial function add polynomial function minus)

lemma polynomial function sum [intro]:
[[finite I ;

∧
i . i ∈ I =⇒ polynomial function (λx . f x i)]] =⇒ polynomial function

(λx . sum (f x ) I )
by (induct I rule: finite induct) auto

lemma real polynomial function minus [intro]:
real polynomial function f =⇒ real polynomial function (λx . − f x )

using polynomial function minus [of f ]
by (simp add : real polynomial function eq)

lemma real polynomial function diff [intro]:
[[real polynomial function f ; real polynomial function g ]] =⇒ real polynomial function

(λx . f x − g x )
using polynomial function diff [of f ]
by (simp add : real polynomial function eq)

lemma real polynomial function sum [intro]:
[[finite I ;

∧
i . i ∈ I =⇒ real polynomial function (λx . f x i)]] =⇒ real polynomial function

(λx . sum (f x ) I )
using polynomial function sum [of I f ]
by (simp add : real polynomial function eq)

lemma real polynomial function power [intro]:
real polynomial function f =⇒ real polynomial function (λx . f xˆn)
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by (induct n) (simp all add : const mult)

lemma real polynomial function compose [intro]:
assumes f : polynomial function f and g : real polynomial function g
shows real polynomial function (g o f )

using g
proof (induction g rule: real polynomial function.induct)
case (linear f )
then show ?case
using f polynomial function def by blast

next
case (add f g)
then show ?case
using f add by (auto simp: polynomial function def )

next
case (mult f g)
then show ?case
using f mult by (auto simp: polynomial function def )

qed auto

lemma polynomial function compose [intro]:
assumes f : polynomial function f and g : polynomial function g
shows polynomial function (g o f )

using g real polynomial function compose [OF f ]
by (auto simp: polynomial function def o def )

lemma sum max 0 :
fixes x ::real
shows (

∑
i≤max m n. xˆi ∗ (if i ≤ m then a i else 0 )) = (

∑
i≤m. xˆi ∗ a i)

proof −
have (

∑
i≤max m n. xˆi ∗ (if i ≤ m then a i else 0 )) = (

∑
i≤max m n. (if i

≤ m then xˆi ∗ a i else 0 ))
by (auto simp: algebra simps intro: sum.cong)

also have ... = (
∑

i≤m. (if i ≤ m then xˆi ∗ a i else 0 ))
by (rule sum.mono neutral right) auto

also have ... = (
∑

i≤m. xˆi ∗ a i)
by (auto simp: algebra simps intro: sum.cong)

finally show ?thesis .
qed

lemma real polynomial function imp sum:
assumes real polynomial function f
shows ∃ a n::nat . f = (λx .

∑
i≤n. a i ∗ xˆi)

using assms
proof (induct f )
case (linear f )
then obtain c where f : f = (λx . x ∗ c)
by (auto simp add : real bounded linear)

have x ∗ c = (
∑

i≤1 . (if i = 0 then 0 else c) ∗ xˆi) for x
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by (simp add : mult ac)
with f show ?case
by fastforce

next
case (const c)
have c = (

∑
i≤0 . c ∗ xˆi) for x

by auto
then show ?case
by fastforce

case (add f1 f2 )
then obtain a1 n1 a2 n2 where
f1 = (λx .

∑
i≤n1 . a1 i ∗ xˆi) f2 = (λx .

∑
i≤n2 . a2 i ∗ xˆi)

by auto
then have f1 x + f2 x = (

∑
i≤max n1 n2 . ((if i ≤ n1 then a1 i else 0 ) + (if i

≤ n2 then a2 i else 0 )) ∗ xˆi)
for x

using sum max 0 [where m=n1 and n=n2 ] sum max 0 [where m=n2 and
n=n1 ]

by (simp add : sum.distrib algebra simps max .commute)
then show ?case
by force

case (mult f1 f2 )
then obtain a1 n1 a2 n2 where
f1 = (λx .

∑
i≤n1 . a1 i ∗ xˆi) f2 = (λx .

∑
i≤n2 . a2 i ∗ xˆi)

by auto
then obtain b1 b2 where
f1 = (λx .

∑
i≤n1 . b1 i ∗ xˆi) f2 = (λx .

∑
i≤n2 . b2 i ∗ xˆi)

b1 = (λi . if i≤n1 then a1 i else 0 ) b2 = (λi . if i≤n2 then a2 i else 0 )
by auto

then have f1 x ∗ f2 x = (
∑

i≤n1 + n2 . (
∑

k≤i . b1 k ∗ b2 (i − k)) ∗ x ˆ i)
for x

using polynomial product [of n1 b1 n2 b2 ] by (simp add : Set Interval .atLeast0AtMost)
then show ?case
by force

qed

lemma real polynomial function iff sum:
real polynomial function f ←→ (∃ a n. f = (λx .

∑
i≤n. a i ∗ xˆi)) (is ?lhs

= ?rhs)
proof
assume ?lhs then show ?rhs
by (metis real polynomial function imp sum)

next
assume ?rhs then show ?lhs
by (auto simp: linear mult const real polynomial function power real polynomial function sum)

qed

lemma polynomial function iff Basis inner :
fixes f :: ′a::real normed vector ⇒ ′b::euclidean space
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shows polynomial function f ←→ (∀ b∈Basis. real polynomial function (λx . inner
(f x ) b))

(is ?lhs = ?rhs)
unfolding polynomial function def
proof (intro iffI allI impI )
assume ∀ h. bounded linear h −→ real polynomial function (h ◦ f )
then show ?rhs
by (force simp add : bounded linear inner left o def )

next
fix h :: ′b ⇒ real
assume rp: ∀ b∈Basis. real polynomial function (λx . f x · b) and h: bounded linear

h
have real polynomial function (h ◦ (λx .

∑
b∈Basis. (f x · b) ∗R b))

using rp
by (force simp: real polynomial function eq polynomial function mult

intro!: real polynomial function compose [OF linear [OF h]])
then show real polynomial function (h ◦ f )
by (simp add : euclidean representation sum fun)

qed

5.6.5 Stone-Weierstrass theorem for polynomial functions

First, we need to show that they are continuous, differentiable and separable.

lemma continuous real polymonial function:
assumes real polynomial function f
shows continuous (at x ) f

using assms
by (induct f ) (auto simp: linear continuous at)

lemma continuous polymonial function:
fixes f :: ′a::real normed vector ⇒ ′b::euclidean space
assumes polynomial function f
shows continuous (at x ) f

proof (rule euclidean isCont)
show

∧
b. b ∈ Basis =⇒ isCont (λx . (f x · b) ∗R b) x

using assms continuous real polymonial function
by (force simp: polynomial function iff Basis inner intro: isCont scaleR)

qed

lemma continuous on polymonial function:
fixes f :: ′a::real normed vector ⇒ ′b::euclidean space
assumes polynomial function f
shows continuous on S f

using continuous polymonial function [OF assms] continuous at imp continuous on
by blast

lemma has real derivative polynomial function:
assumes real polynomial function p
shows ∃ p ′. real polynomial function p ′ ∧
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(∀ x . (p has real derivative (p ′ x )) (at x ))
using assms
proof (induct p)
case (linear p)
then show ?case
by (force simp: real bounded linear const intro!: derivative eq intros)

next
case (const c)
show ?case
by (rule tac x=λx . 0 in exI ) auto

case (add f1 f2 )
then obtain p1 p2 where
real polynomial function p1

∧
x . (f1 has real derivative p1 x ) (at x )

real polynomial function p2
∧
x . (f2 has real derivative p2 x ) (at x )

by auto
then show ?case
by (rule tac x=λx . p1 x + p2 x in exI ) (auto intro!: derivative eq intros)

case (mult f1 f2 )
then obtain p1 p2 where
real polynomial function p1

∧
x . (f1 has real derivative p1 x ) (at x )

real polynomial function p2
∧
x . (f2 has real derivative p2 x ) (at x )

by auto
then show ?case
using mult
by (rule tac x=λx . f1 x ∗ p2 x + f2 x ∗ p1 x in exI ) (auto intro!: deriva-

tive eq intros)
qed

lemma has vector derivative polynomial function:
fixes p :: real ⇒ ′a::euclidean space
assumes polynomial function p
obtains p ′ where polynomial function p ′ ∧x . (p has vector derivative (p ′ x ))

(at x )
proof −
{ fix b :: ′a
assume b ∈ Basis
then
obtain p ′ where p ′: real polynomial function p ′ and pd :

∧
x . ((λx . p x · b)

has real derivative p ′ x ) (at x )
using assms [unfolded polynomial function iff Basis inner ] has real derivative polynomial function
by blast

have polynomial function (λx . p ′ x ∗R b)
using 〈b ∈ Basis〉 p ′ const [where ′a=real and c=0 ]
by (simp add : polynomial function iff Basis inner inner Basis)

then have ∃ q . polynomial function q ∧ (∀ x . ((λu. (p u · b) ∗R b) has vector derivative
q x ) (at x ))

by (fastforce intro: derivative eq intros pd)
}
then obtain qf where qf :
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∧
b. b ∈ Basis =⇒ polynomial function (qf b)∧
b x . b ∈ Basis =⇒ ((λu. (p u · b) ∗R b) has vector derivative qf b x ) (at x )

by metis
show ?thesis
proof
show

∧
x . (p has vector derivative (

∑
b∈Basis. qf b x )) (at x )

apply (subst euclidean representation sum fun [of p, symmetric])
by (auto intro: has vector derivative sum qf )

qed (force intro: qf )
qed

lemma real polynomial function separable:
fixes x :: ′a::euclidean space
assumes x 6= y shows ∃ f . real polynomial function f ∧ f x 6= f y

proof −
have real polynomial function (λu.

∑
b∈Basis. (inner (x−u) b)ˆ2 )

proof (rule real polynomial function sum)
show

∧
i . i ∈ Basis =⇒ real polynomial function (λu. ((x − u) · i)2)

by (auto simp: algebra simps real polynomial function diff const linear bounded linear inner left)
qed auto
moreover have (

∑
b∈Basis. ((x − y) · b)2) 6= 0

using assms by (force simp add : euclidean eq iff [of x y ] sum nonneg eq 0 iff
algebra simps)
ultimately show ?thesis
by auto

qed

lemma Stone Weierstrass real polynomial function:
fixes f :: ′a::euclidean space ⇒ real
assumes compact S continuous on S f 0 < e
obtains g where real polynomial function g

∧
x . x ∈ S =⇒ |f x − g x | < e

proof −
interpret PR: function ring on Collect real polynomial function
proof unfold locales
qed (use assms continuous on polymonial function real polynomial function eq

in 〈auto intro: real polynomial function separable〉)
show ?thesis
using PR.Stone Weierstrass basic [OF 〈continuous on S f 〉 〈0 < e〉] that by

blast
qed

theorem Stone Weierstrass polynomial function:
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes S : compact S

and f : continuous on S f
and e: 0 < e

shows ∃ g . polynomial function g ∧ (∀ x ∈ S . norm(f x − g x ) < e)
proof −
{ fix b :: ′b
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assume b ∈ Basis
have ∃ p. real polynomial function p ∧ (∀ x ∈ S . |f x · b − p x | < e / DIM ( ′b))
proof (rule Stone Weierstrass real polynomial function [OF S , of λx . f x · b

e / card Basis])
show continuous on S (λx . f x · b)
using f by (auto intro: continuous intros)

qed (use e in auto)
}
then obtain pf where pf :∧

b. b ∈ Basis =⇒ real polynomial function (pf b) ∧ (∀ x ∈ S . |f x · b − pf b
x | < e / DIM ( ′b))

by metis
let ?g = λx .

∑
b∈Basis. pf b x ∗R b

{ fix x
assume x ∈ S
have norm (

∑
b∈Basis. (f x · b) ∗R b − pf b x ∗R b) ≤ (

∑
b∈Basis. norm

((f x · b) ∗R b − pf b x ∗R b))
by (rule norm sum)

also have ... < of nat DIM ( ′b) ∗ (e / DIM ( ′b))
proof (rule sum bounded above strict)

show
∧
i . i ∈ Basis =⇒ norm ((f x · i) ∗R i − pf i x ∗R i) < e / real

DIM ( ′b)
by (simp add : Real Vector Spaces.scaleR diff left [symmetric] pf 〈x ∈ S 〉)

qed (rule DIM positive)
also have ... = e
by (simp add : field simps)

finally have norm (
∑

b∈Basis. (f x · b) ∗R b − pf b x ∗R b) < e .
}
then have ∀ x∈S . norm ((

∑
b∈Basis. (f x · b) ∗R b) − ?g x ) < e

by (auto simp flip: sum subtractf )
moreover
have polynomial function ?g

using pf by (simp add : polynomial function sum polynomial function mult
real polynomial function eq)
ultimately show ?thesis
using euclidean representation sum fun [of f ] by (metis (no types, lifting))

qed

proposition Stone Weierstrass uniform limit :
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes S : compact S
and f : continuous on S f

obtains g where uniform limit S g f sequentially
∧
n. polynomial function (g n)

proof −
have pos: inverse (Suc n) > 0 for n by auto
obtain g where g :

∧
n. polynomial function (g n)

∧
x n. x ∈ S =⇒ norm(f x −

g n x ) < inverse (Suc n)
using Stone Weierstrass polynomial function[OF S f pos]
by metis
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have uniform limit S g f sequentially
proof (rule uniform limitI )
fix e::real assume 0 < e
with LIMSEQ inverse real of nat have ∀ F n in sequentially . inverse (Suc n)

< e
by (rule order tendstoD)

moreover have ∀ F n in sequentially . ∀ x∈S . dist (g n x ) (f x ) < inverse (Suc
n)

using g by (simp add : dist norm norm minus commute)
ultimately show ∀ F n in sequentially . ∀ x∈S . dist (g n x ) (f x ) < e
by (eventually elim) auto

qed
then show ?thesis using g(1 ) ..

qed

5.6.6 Polynomial functions as paths

One application is to pick a smooth approximation to a path, or just pick a
smooth path anyway in an open connected set

lemma path polynomial function:
fixes g :: real ⇒ ′b::euclidean space
shows polynomial function g =⇒ path g

by (simp add : path def continuous on polymonial function)

lemma path approx polynomial function:
fixes g :: real ⇒ ′b::euclidean space
assumes path g 0 < e
obtains p where polynomial function p pathstart p = pathstart g pathfinish p

= pathfinish g ∧
t . t ∈ {0 ..1} =⇒ norm(p t − g t) < e

proof −
obtain q where poq : polynomial function q and noq :

∧
x . x ∈ {0 ..1} =⇒ norm

(g x − q x ) < e/4
using Stone Weierstrass polynomial function [of {0 ..1} g e/4 ] assms
by (auto simp: path def )

define pf where pf ≡ λt . q t + (g 0 − q 0 ) + t ∗R (g 1 − q 1 − (g 0 − q 0 ))
show thesis
proof
show polynomial function pf
by (force simp add : poq pf def )

show norm (pf t − g t) < e
if t ∈ {0 ..1} for t

proof −
have ∗: norm (((q t − g t) + (g 0 − q 0 )) + (t ∗R (g 1 − q 1 ) + t ∗R (q 0

− g 0 ))) < (e/4 + e/4 ) + (e/4+e/4 )
proof (intro Real Vector Spaces.norm add less)
show norm (q t − g t) < e / 4
by (metis noq norm minus commute that)

show norm (t ∗R (g 1 − q 1 )) < e / 4
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using noq that le less trans [OF mult left le one le noq ]
by auto

show norm (t ∗R (q 0 − g 0 )) < e / 4
using noq that le less trans [OF mult left le one le noq ]
by simp (metis norm minus commute order refl zero le one)

qed (use noq norm minus commute that in auto)
then show ?thesis
by (auto simp add : algebra simps pf def )

qed
qed (auto simp add : path defs pf def )

qed

proposition connected open polynomial connected :
fixes S :: ′a::euclidean space set
assumes S : open S connected S

and x ∈ S y ∈ S
shows ∃ g . polynomial function g ∧ path image g ⊆ S ∧ pathstart g = x ∧

pathfinish g = y
proof −
have path connected S using assms
by (simp add : connected open path connected)

with 〈x ∈ S 〉 〈y ∈ S 〉 obtain p where p: path p path image p ⊆ S pathstart p
= x pathfinish p = y

by (force simp: path connected def )
have ∃ e. 0 < e ∧ (∀ x ∈ path image p. ball x e ⊆ S )
proof (cases S = UNIV )
case True then show ?thesis
by (simp add : gt ex )

next
case False
show ?thesis
proof (intro exI conjI ballI )
show

∧
x . x ∈ path image p =⇒ ball x (setdist (path image p) (−S )) ⊆ S

using setdist le dist [of path image p −S ] by fastforce
show 0 < setdist (path image p) (− S )
using S p False

by (fastforce simp add : setdist gt 0 compact closed compact path image
open closed)

qed
qed
then obtain e where 0 < eand eb:

∧
x . x ∈ path image p =⇒ ball x e ⊆ S

by auto
obtain pf where polynomial function pf and pf : pathstart pf = pathstart p

pathfinish pf = pathfinish p
and pf e:

∧
t . t ∈ {0 ..1} =⇒ norm(pf t − p t) < e

using path approx polynomial function [OF 〈path p〉 〈0 < e〉] by blast
show ?thesis
proof (intro exI conjI )
show polynomial function pf
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by fact
show pathstart pf = x pathfinish pf = y
by (simp all add : p pf )

show path image pf ⊆ S
unfolding path image def

proof clarsimp
fix x ′::real
assume 0 ≤ x ′ x ′ ≤ 1
then have dist (p x ′) (pf x ′) < e
by (metis atLeastAtMost iff dist commute dist norm pf e)

then show pf x ′ ∈ S
by (metis 〈0 ≤ x ′〉 〈x ′≤ 1 〉 atLeastAtMost iff eb imageI mem ball path image def

subset iff )
qed

qed
qed

lemma differentiable componentwise within:
f differentiable (at a within S ) ←→
(∀ i ∈ Basis. (λx . f x · i) differentiable at a within S )

proof −
{ assume ∀ i∈Basis. ∃D . ((λx . f x · i) has derivative D) (at a within S )
then obtain f ′ where f ′:∧

i . i ∈ Basis =⇒ ((λx . f x · i) has derivative f ′ i) (at a within S )
by metis

have eq : (λx . (
∑

j∈Basis. f ′ j x ∗R j ) · i) = f ′ i if i ∈ Basis for i
using that by (simp add : inner add left inner add right)

have ∃D . ∀ i∈Basis. ((λx . f x · i) has derivative (λx . D x · i)) (at a within S )
apply (rule tac x=λx :: ′a. (

∑
j∈Basis. f ′ j x ∗R j ) :: ′b in exI )

apply (simp add : eq f ′)
done

}
then show ?thesis
apply (simp add : differentiable def )
using has derivative componentwise within
by blast

qed

lemma polynomial function inner [intro]:
fixes i :: ′a::euclidean space
shows polynomial function g =⇒ polynomial function (λx . g x · i)
apply (subst euclidean representation [where x=i , symmetric])
apply (force simp: inner sum right polynomial function iff Basis inner polyno-

mial function sum)
done

Differentiability of real and vector polynomial functions.

lemma differentiable at real polynomial function:
real polynomial function f =⇒ f differentiable (at a within S )
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by (induction f rule: real polynomial function.induct)
(simp all add : bounded linear imp differentiable)

lemma differentiable on real polynomial function:
real polynomial function p =⇒ p differentiable on S

by (simp add : differentiable at imp differentiable on differentiable at real polynomial function)

lemma differentiable at polynomial function:
fixes f :: ⇒ ′a::euclidean space
shows polynomial function f =⇒ f differentiable (at a within S )
by (metis differentiable at real polynomial function polynomial function iff Basis inner

differentiable componentwise within)

lemma differentiable on polynomial function:
fixes f :: ⇒ ′a::euclidean space
shows polynomial function f =⇒ f differentiable on S

by (simp add : differentiable at polynomial function differentiable on def )

lemma vector eq dot span:
assumes x ∈ span B y ∈ span B and i :

∧
i . i ∈ B =⇒ i · x = i · y

shows x = y
proof −
have

∧
i . i ∈ B =⇒ orthogonal (x − y) i

by (simp add : i inner commute inner diff right orthogonal def )
moreover have x − y ∈ span B
by (simp add : assms span diff )

ultimately have x − y = 0
using orthogonal to span orthogonal self by blast
then show ?thesis by simp

qed

lemma orthonormal basis expand :
assumes B : pairwise orthogonal B

and 1 :
∧
i . i ∈ B =⇒ norm i = 1

and x ∈ span B
and finite B

shows (
∑

i∈B . (x · i) ∗R i) = x
proof (rule vector eq dot span [OF 〈x ∈ span B 〉])
show (

∑
i∈B . (x · i) ∗R i) ∈ span B

by (simp add : span clauses span sum)
show i · (

∑
i∈B . (x · i) ∗R i) = i · x if i ∈ B for i

proof −
have [simp]: i · j = (if j = i then 1 else 0 ) if j ∈ B for j
using B 1 that 〈i ∈ B 〉

by (force simp: norm eq 1 orthogonal def pairwise def )
have i · (

∑
i∈B . (x · i) ∗R i) = (

∑
j∈B . x · j ∗ (i · j ))

by (simp add : inner sum right)
also have ... = (

∑
j∈B . if j = i then x · i else 0 )

by (rule sum.cong ; simp)
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also have ... = i · x
by (simp add : 〈finite B 〉 that inner commute)

finally show ?thesis .
qed

qed

theorem Stone Weierstrass polynomial function subspace:
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes compact S

and contf : continuous on S f
and 0 < e
and subspace T f ‘ S ⊆ T

obtains g where polynomial function g g ‘ S ⊆ T∧
x . x ∈ S =⇒ norm(f x − g x ) < e

proof −
obtain B where B ⊆ T and orthB : pairwise orthogonal B

and B1 :
∧
x . x ∈ B =⇒ norm x = 1

and independent B and cardB : card B = dim T
and spanB : span B = T

using orthonormal basis subspace 〈subspace T 〉 by metis
then have finite B
by (simp add : independent imp finite)

then obtain n::nat and b where B = b ‘ {i . i < n} inj on b {i . i < n}
using finite imp nat seg image inj on by metis

with cardB have n = card B dim T = n
by (auto simp: card image)

have fx : (
∑

i∈B . (f x · i) ∗R i) = f x if x ∈ S for x
by (metis (no types, lifting) B1 〈finite B 〉 assms(5 ) image subset iff orthB

orthonormal basis expand spanB sum.cong that)
have cont : continuous on S (λx .

∑
i∈B . (f x · i) ∗R i)

by (intro continuous intros contf )
obtain g where polynomial function g

and g :
∧
x . x ∈ S =⇒ norm ((

∑
i∈B . (f x · i) ∗R i) − g x ) < e /

(n+2 )
using Stone Weierstrass polynomial function [OF 〈compact S 〉 cont , of e / real

(n + 2 )] 〈0 < e〉

by auto
with fx have g :

∧
x . x ∈ S =⇒ norm (f x − g x ) < e / (n+2 )

by auto
show ?thesis
proof
show polynomial function (λx .

∑
i∈B . (g x · i) ∗R i)

using 〈polynomial function g〉 by (force intro: 〈finite B 〉)
show (λx .

∑
i∈B . (g x · i) ∗R i) ‘ S ⊆ T

using 〈B ⊆ T 〉

by (blast intro: subspace sum subspace mul 〈subspace T 〉)
show norm (f x − (

∑
i∈B . (g x · i) ∗R i)) < e if x ∈ S for x

proof −
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have orth ′: pairwise (λi j . orthogonal ((f x · i) ∗R i − (g x · i) ∗R i)
((f x · j ) ∗R j − (g x · j ) ∗R j )) B

by (auto simp: orthogonal def inner diff right inner diff left intro: pair-
wise mono [OF orthB ])

then have (norm (
∑

i∈B . (f x · i) ∗R i − (g x · i) ∗R i))2 =
(
∑

i∈B . (norm ((f x · i) ∗R i − (g x · i) ∗R i))2)
by (simp add : norm sum Pythagorean [OF 〈finite B 〉 orth ′])

also have ... = (
∑

i∈B . (norm (((f x − g x ) · i) ∗R i))2)
by (simp add : algebra simps)

also have ... ≤ (
∑

i∈B . (norm (f x − g x ))2)
proof −
have

∧
i . i ∈ B =⇒ ((f x − g x ) · i)2 ≤ (norm (f x − g x ))2

by (metis B1 Cauchy Schwarz ineq inner commute mult .left neutral
norm eq 1 power2 norm eq inner)

then show ?thesis
by (intro sum mono) (simp add : sum mono B1 )

qed
also have ... = n ∗ norm (f x − g x )ˆ2
by (simp add : 〈n = card B 〉)

also have ... ≤ n ∗ (e / (n+2 ))ˆ2
proof (rule mult left mono)
show (norm (f x − g x ))2 ≤ (e / real (n + 2 ))2

by (meson dual order .order iff strict g norm ge zero power mono that)
qed auto
also have ... ≤ eˆ2 / (n+2 )
using 〈0 < e〉 by (simp add : divide simps power2 eq square)

also have ... < eˆ2
using 〈0 < e〉 by (simp add : divide simps)

finally have (norm (
∑

i∈B . (f x · i) ∗R i − (g x · i) ∗R i))2 < eˆ2 .
then have (norm (

∑
i∈B . (f x · i) ∗R i − (g x · i) ∗R i)) < e

by (simp add : 〈0 < e〉 norm lt square power2 norm eq inner)
then show ?thesis
using fx that by (simp add : sum subtractf )

qed
qed

qed

hide fact linear add mult const

end
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Chapter 6

Measure and Integration
Theory

theory Sigma Algebra
imports
Complex Main
HOL−Library .Countable Set
HOL−Library .FuncSet
HOL−Library .Indicator Function
HOL−Library .Extended Nonnegative Real
HOL−Library .Disjoint Sets

begin

6.1 Sigma Algebra

Sigma algebras are an elementary concept in measure theory. To measure
— that is to integrate — functions, we first have to measure sets. Un-
fortunately, when dealing with a large universe, it is often not possible to
consistently assign a measure to every subset. Therefore it is necessary to
define the set of measurable subsets of the universe. A sigma algebra is such
a set that has three very natural and desirable properties.

6.1.1 Families of sets

locale subset class =
fixes Ω :: ′a set and M :: ′a set set
assumes space closed : M ⊆ Pow Ω

lemma (in subset class) sets into space: x ∈ M =⇒ x ⊆ Ω
by (metis PowD contra subsetD space closed)

Semiring of sets

locale semiring of sets = subset class +
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assumes empty sets[iff ]: {} ∈ M
assumes Int [intro]:

∧
a b. a ∈ M =⇒ b ∈ M =⇒ a ∩ b ∈ M

assumes Diff cover :∧
a b. a ∈ M =⇒ b ∈ M =⇒ ∃C⊆M . finite C ∧ disjoint C ∧ a − b =

⋃
C

lemma (in semiring of sets) finite INT [intro]:
assumes finite I I 6= {}

∧
i . i ∈ I =⇒ A i ∈ M

shows (
⋂
i∈I . A i) ∈ M

using assms by (induct rule: finite ne induct) auto

lemma (in semiring of sets) Int space eq1 [simp]: x ∈ M =⇒ Ω ∩ x = x
by (metis Int absorb1 sets into space)

lemma (in semiring of sets) Int space eq2 [simp]: x ∈ M =⇒ x ∩ Ω = x
by (metis Int absorb2 sets into space)

lemma (in semiring of sets) sets Collect conj :
assumes {x∈Ω. P x} ∈ M {x∈Ω. Q x} ∈ M
shows {x∈Ω. Q x ∧ P x} ∈ M

proof −
have {x∈Ω. Q x ∧ P x} = {x∈Ω. Q x} ∩ {x∈Ω. P x}
by auto

with assms show ?thesis by auto
qed

lemma (in semiring of sets) sets Collect finite All ′:
assumes

∧
i . i ∈ S =⇒ {x∈Ω. P i x} ∈ M finite S S 6= {}

shows {x∈Ω. ∀ i∈S . P i x} ∈ M
proof −
have {x∈Ω. ∀ i∈S . P i x} = (

⋂
i∈S . {x∈Ω. P i x})

using 〈S 6= {}〉 by auto
with assms show ?thesis by auto

qed

Ring of sets

locale ring of sets = semiring of sets +
assumes Un [intro]:

∧
a b. a ∈ M =⇒ b ∈ M =⇒ a ∪ b ∈ M

lemma (in ring of sets) finite Union [intro]:
finite X =⇒ X ⊆ M =⇒

⋃
X ∈ M

by (induct set : finite) (auto simp add : Un)

lemma (in ring of sets) finite UN [intro]:
assumes finite I and

∧
i . i ∈ I =⇒ A i ∈ M

shows (
⋃
i∈I . A i) ∈ M

using assms by induct auto

lemma (in ring of sets) Diff [intro]:
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assumes a ∈ M b ∈ M shows a − b ∈ M
using Diff cover [OF assms] by auto

lemma ring of setsI :
assumes space closed : M ⊆ Pow Ω
assumes empty sets[iff ]: {} ∈ M
assumes Un[intro]:

∧
a b. a ∈ M =⇒ b ∈ M =⇒ a ∪ b ∈ M

assumes Diff [intro]:
∧
a b. a ∈ M =⇒ b ∈ M =⇒ a − b ∈ M

shows ring of sets Ω M
proof
fix a b assume ab: a ∈ M b ∈ M
from ab show ∃C⊆M . finite C ∧ disjoint C ∧ a − b =

⋃
C

by (intro exI [of {a − b}]) (auto simp: disjoint def )
have a ∩ b = a − (a − b) by auto
also have . . . ∈ M using ab by auto
finally show a ∩ b ∈ M .

qed fact+

lemma ring of sets iff : ring of sets Ω M ←→ M ⊆ Pow Ω ∧ {} ∈ M ∧ (∀ a∈M .
∀ b∈M . a ∪ b ∈ M ) ∧ (∀ a∈M . ∀ b∈M . a − b ∈ M )
proof
assume ring of sets Ω M
then interpret ring of sets Ω M .
show M ⊆ Pow Ω ∧ {} ∈ M ∧ (∀ a∈M . ∀ b∈M . a ∪ b ∈ M ) ∧ (∀ a∈M . ∀ b∈M .

a − b ∈ M )
using space closed by auto

qed (auto intro!: ring of setsI )

lemma (in ring of sets) insert in sets:
assumes {x} ∈ M A ∈ M shows insert x A ∈ M

proof −
have {x} ∪ A ∈ M using assms by (rule Un)
thus ?thesis by auto

qed

lemma (in ring of sets) sets Collect disj :
assumes {x∈Ω. P x} ∈ M {x∈Ω. Q x} ∈ M
shows {x∈Ω. Q x ∨ P x} ∈ M

proof −
have {x∈Ω. Q x ∨ P x} = {x∈Ω. Q x} ∪ {x∈Ω. P x}
by auto

with assms show ?thesis by auto
qed

lemma (in ring of sets) sets Collect finite Ex :
assumes

∧
i . i ∈ S =⇒ {x∈Ω. P i x} ∈ M finite S

shows {x∈Ω. ∃ i∈S . P i x} ∈ M
proof −
have {x∈Ω. ∃ i∈S . P i x} = (

⋃
i∈S . {x∈Ω. P i x})
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by auto
with assms show ?thesis by auto

qed

Algebra of sets

locale algebra = ring of sets +
assumes top [iff ]: Ω ∈ M

lemma (in algebra) compl sets [intro]:
a ∈ M =⇒ Ω − a ∈ M
by auto

proposition algebra iff Un:
algebra Ω M ←→
M ⊆ Pow Ω ∧
{} ∈ M ∧
(∀ a ∈ M . Ω − a ∈ M ) ∧
(∀ a ∈ M . ∀ b ∈ M . a ∪ b ∈ M ) (is ←→ ?Un)

proof
assume algebra Ω M
then interpret algebra Ω M .
show ?Un using sets into space by auto

next
assume ?Un
then have Ω ∈ M by auto
interpret ring of sets Ω M
proof (rule ring of setsI )
show Ω: M ⊆ Pow Ω {} ∈ M
using 〈?Un〉 by auto

fix a b assume a: a ∈ M and b: b ∈ M
then show a ∪ b ∈ M using 〈?Un〉 by auto
have a − b = Ω − ((Ω − a) ∪ b)
using Ω a b by auto

then show a − b ∈ M
using a b 〈?Un〉 by auto

qed
show algebra Ω M proof qed fact

qed

proposition algebra iff Int :
algebra Ω M ←→
M ⊆ Pow Ω & {} ∈ M &
(∀ a ∈ M . Ω − a ∈ M ) &
(∀ a ∈ M . ∀ b ∈ M . a ∩ b ∈ M ) (is ←→ ?Int)

proof
assume algebra Ω M
then interpret algebra Ω M .
show ?Int using sets into space by auto
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next
assume ?Int
show algebra Ω M
proof (unfold algebra iff Un, intro conjI ballI )
show Ω: M ⊆ Pow Ω {} ∈ M
using 〈?Int 〉 by auto

from 〈?Int 〉 show
∧
a. a ∈ M =⇒ Ω − a ∈ M by auto

fix a b assume M : a ∈ M b ∈ M
hence a ∪ b = Ω − ((Ω − a) ∩ (Ω − b))
using Ω by blast

also have ... ∈ M
using M 〈?Int 〉 by auto

finally show a ∪ b ∈ M .
qed

qed

lemma (in algebra) sets Collect neg :
assumes {x∈Ω. P x} ∈ M
shows {x∈Ω. ¬ P x} ∈ M

proof −
have {x∈Ω. ¬ P x} = Ω − {x∈Ω. P x} by auto
with assms show ?thesis by auto

qed

lemma (in algebra) sets Collect imp:
{x∈Ω. P x} ∈ M =⇒ {x∈Ω. Q x} ∈ M =⇒ {x∈Ω. Q x −→ P x} ∈ M
unfolding imp conv disj by (intro sets Collect disj sets Collect neg)

lemma (in algebra) sets Collect const :
{x∈Ω. P} ∈ M
by (cases P) auto

lemma algebra single set :
X ⊆ S =⇒ algebra S { {}, X , S − X , S }
by (auto simp: algebra iff Int)

Restricted algebras

abbreviation (in algebra)
restricted space A ≡ ((∩) A) ‘ M

lemma (in algebra) restricted algebra:
assumes A ∈ M shows algebra A (restricted space A)
using assms by (auto simp: algebra iff Int)

Sigma Algebras

locale sigma algebra = algebra +
assumes countable nat UN [intro]:

∧
A. range A ⊆ M =⇒ (

⋃
i ::nat . A i) ∈ M
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lemma (in algebra) is sigma algebra:
assumes finite M
shows sigma algebra Ω M

proof
fix A :: nat ⇒ ′a set assume range A ⊆ M
then have (

⋃
i . A i) = (

⋃
s∈M ∩ range A. s)

by auto
also have (

⋃
s∈M ∩ range A. s) ∈ M

using 〈finite M 〉 by auto
finally show (

⋃
i . A i) ∈ M .

qed

lemma countable UN eq :
fixes A :: ′i ::countable ⇒ ′a set
shows (range A ⊆ M −→ (

⋃
i . A i) ∈ M ) ←→

(range (A ◦ from nat) ⊆ M −→ (
⋃
i . (A ◦ from nat) i) ∈ M )

proof −
let ?A ′ = A ◦ from nat
have ∗: (

⋃
i . ?A ′ i) = (

⋃
i . A i) (is ?l = ?r)

proof safe
fix x i assume x ∈ A i thus x ∈ ?l
by (auto intro!: exI [of to nat i ])

next
fix x i assume x ∈ ?A ′ i thus x ∈ ?r
by (auto intro!: exI [of from nat i ])

qed
have A ‘ range from nat = range A
using surj from nat by simp

then have ∗∗: range ?A ′ = range A
by (simp only : image comp [symmetric])

show ?thesis unfolding ∗ ∗∗ ..
qed

lemma (in sigma algebra) countable Union [intro]:
assumes countable X X ⊆ M shows

⋃
X ∈ M

proof cases
assume X 6= {}
hence

⋃
X = (

⋃
n. from nat into X n)

using assms by (auto cong del : SUP cong)
also have . . . ∈ M using assms
by (auto intro!: countable nat UN ) (metis 〈X 6= {}〉 from nat into subsetD)

finally show ?thesis .
qed simp

lemma (in sigma algebra) countable UN [intro]:
fixes A :: ′i ::countable ⇒ ′a set
assumes A‘X ⊆ M
shows (

⋃
x∈X . A x ) ∈ M

proof −
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let ?A = λi . if i ∈ X then A i else {}
from assms have range ?A ⊆ M by auto
with countable nat UN [of ?A ◦ from nat ] countable UN eq [of ?A M ]
have (

⋃
x . ?A x ) ∈ M by auto

moreover have (
⋃

x . ?A x ) = (
⋃

x∈X . A x ) by (auto split : if split asm)
ultimately show ?thesis by simp

qed

lemma (in sigma algebra) countable UN ′:
fixes A :: ′i ⇒ ′a set
assumes X : countable X
assumes A: A‘X ⊆ M
shows (

⋃
x∈X . A x ) ∈ M

proof −
have (

⋃
x∈X . A x ) = (

⋃
i∈to nat on X ‘ X . A (from nat into X i))

using X by auto
also have . . . ∈ M
using A X
by (intro countable UN ) auto

finally show ?thesis .
qed

lemma (in sigma algebra) countable UN ′′:
[[ countable X ;

∧
x y . x ∈ X =⇒ A x ∈ M ]] =⇒ (

⋃
x∈X . A x ) ∈ M

by(erule countable UN ′)(auto)

lemma (in sigma algebra) countable INT [intro]:
fixes A :: ′i ::countable ⇒ ′a set
assumes A: A‘X ⊆ M X 6= {}
shows (

⋂
i∈X . A i) ∈ M

proof −
from A have ∀ i∈X . A i ∈ M by fast
hence Ω − (

⋃
i∈X . Ω − A i) ∈ M by blast

moreover
have (

⋂
i∈X . A i) = Ω − (

⋃
i∈X . Ω − A i) using space closed A

by blast
ultimately show ?thesis by metis

qed

lemma (in sigma algebra) countable INT ′:
fixes A :: ′i ⇒ ′a set
assumes X : countable X X 6= {}
assumes A: A‘X ⊆ M
shows (

⋂
x∈X . A x ) ∈ M

proof −
have (

⋂
x∈X . A x ) = (

⋂
i∈to nat on X ‘ X . A (from nat into X i))

using X by auto
also have . . . ∈ M
using A X
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by (intro countable INT ) auto
finally show ?thesis .

qed

lemma (in sigma algebra) countable INT ′′:
UNIV ∈ M =⇒ countable I =⇒ (

∧
i . i ∈ I =⇒ F i ∈ M ) =⇒ (

⋂
i∈I . F i) ∈ M

by (cases I = {}) (auto intro: countable INT ′)

lemma (in sigma algebra) countable:
assumes

∧
a. a ∈ A =⇒ {a} ∈ M countable A

shows A ∈ M
proof −
have (

⋃
a∈A. {a}) ∈ M

using assms by (intro countable UN ′) auto
also have (

⋃
a∈A. {a}) = A by auto

finally show ?thesis by auto
qed

lemma ring of sets Pow : ring of sets sp (Pow sp)
by (auto simp: ring of sets iff )

lemma algebra Pow : algebra sp (Pow sp)
by (auto simp: algebra iff Un)

lemma sigma algebra iff :
sigma algebra Ω M ←→
algebra Ω M ∧ (∀A. range A ⊆ M −→ (

⋃
i ::nat . A i) ∈ M )

by (simp add : sigma algebra def sigma algebra axioms def )

lemma sigma algebra Pow : sigma algebra sp (Pow sp)
by (auto simp: sigma algebra iff algebra iff Int)

lemma (in sigma algebra) sets Collect countable All :
assumes

∧
i . {x∈Ω. P i x} ∈ M

shows {x∈Ω. ∀ i :: ′i ::countable. P i x} ∈ M
proof −
have {x∈Ω. ∀ i :: ′i ::countable. P i x} = (

⋂
i . {x∈Ω. P i x}) by auto

with assms show ?thesis by auto
qed

lemma (in sigma algebra) sets Collect countable Ex :
assumes

∧
i . {x∈Ω. P i x} ∈ M

shows {x∈Ω. ∃ i :: ′i ::countable. P i x} ∈ M
proof −
have {x∈Ω. ∃ i :: ′i ::countable. P i x} = (

⋃
i . {x∈Ω. P i x}) by auto

with assms show ?thesis by auto
qed

lemma (in sigma algebra) sets Collect countable Ex ′:
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assumes
∧
i . i ∈ I =⇒ {x∈Ω. P i x} ∈ M

assumes countable I
shows {x∈Ω. ∃ i∈I . P i x} ∈ M

proof −
have {x∈Ω. ∃ i∈I . P i x} = (

⋃
i∈I . {x∈Ω. P i x}) by auto

with assms show ?thesis
by (auto intro!: countable UN ′)

qed

lemma (in sigma algebra) sets Collect countable All ′:
assumes

∧
i . i ∈ I =⇒ {x∈Ω. P i x} ∈ M

assumes countable I
shows {x∈Ω. ∀ i∈I . P i x} ∈ M

proof −
have {x∈Ω. ∀ i∈I . P i x} = (

⋂
i∈I . {x∈Ω. P i x}) ∩ Ω by auto

with assms show ?thesis
by (cases I = {}) (auto intro!: countable INT ′)

qed

lemma (in sigma algebra) sets Collect countable Ex1 ′:
assumes

∧
i . i ∈ I =⇒ {x∈Ω. P i x} ∈ M

assumes countable I
shows {x∈Ω. ∃ !i∈I . P i x} ∈ M

proof −
have {x∈Ω. ∃ !i∈I . P i x} = {x∈Ω. ∃ i∈I . P i x ∧ (∀ j∈I . P j x −→ i = j )}
by auto

with assms show ?thesis
by (auto intro!: sets Collect countable All ′ sets Collect countable Ex ′ sets Collect conj

sets Collect imp sets Collect const)
qed

lemmas (in sigma algebra) sets Collect =
sets Collect imp sets Collect disj sets Collect conj sets Collect neg sets Collect const
sets Collect countable All sets Collect countable Ex sets Collect countable All

lemma (in sigma algebra) sets Collect countable Ball :
assumes

∧
i . {x∈Ω. P i x} ∈ M

shows {x∈Ω. ∀ i :: ′i ::countable∈X . P i x} ∈ M
unfolding Ball def by (intro sets Collect assms)

lemma (in sigma algebra) sets Collect countable Bex :
assumes

∧
i . {x∈Ω. P i x} ∈ M

shows {x∈Ω. ∃ i :: ′i ::countable∈X . P i x} ∈ M
unfolding Bex def by (intro sets Collect assms)

lemma sigma algebra single set :
assumes X ⊆ S
shows sigma algebra S { {}, X , S − X , S }
using algebra.is sigma algebra[OF algebra single set [OF 〈X ⊆ S 〉]] by simp
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Binary Unions

definition binary :: ′a ⇒ ′a ⇒ nat ⇒ ′a
where binary a b = (λx . b)(0 := a)

lemma range binary eq : range(binary a b) = {a,b}
by (auto simp add : binary def )

lemma Un range binary : a ∪ b = (
⋃
i ::nat . binary a b i)

by (simp add : range binary eq cong del : SUP cong simp)

lemma Int range binary : a ∩ b = (
⋂
i ::nat . binary a b i)

by (simp add : range binary eq cong del : INF cong simp)

lemma sigma algebra iff2 :
sigma algebra Ω M ←→
M ⊆ Pow Ω ∧ {} ∈ M ∧ (∀ s ∈ M . Ω − s ∈ M )
∧ (∀A. range A ⊆ M −→(

⋃
i ::nat . A i) ∈ M ) (is ?P ←→ ?R ∧ ?S ∧ ?V ∧

?W )
proof
assume ?P
then interpret sigma algebra Ω M .
from space closed show ?R ∧ ?S ∧ ?V ∧ ?W
by auto

next
assume ?R ∧ ?S ∧ ?V ∧ ?W
then have ?R ?S ?V ?W
by simp all

show ?P
proof (rule sigma algebra.intro)
show sigma algebra axioms M
by standard (use 〈?W 〉 in simp)

from 〈?W 〉 have ∗: range (binary a b) ⊆ M =⇒
⋃

(range (binary a b)) ∈ M
for a b

by auto
show algebra Ω M
unfolding algebra iff Un using 〈?R〉 〈?S 〉 〈?V 〉 ∗
by (auto simp add : range binary eq)

qed
qed

Initial Sigma Algebra

Sigma algebras can naturally be created as the closure of any set of M with
regard to the properties just postulated.

inductive set sigma sets :: ′a set ⇒ ′a set set ⇒ ′a set set
for sp :: ′a set and A :: ′a set set
where
Basic[intro, simp]: a ∈ A =⇒ a ∈ sigma sets sp A
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| Empty : {} ∈ sigma sets sp A
| Compl : a ∈ sigma sets sp A =⇒ sp − a ∈ sigma sets sp A
| Union: (

∧
i ::nat . a i ∈ sigma sets sp A) =⇒ (

⋃
i . a i) ∈ sigma sets sp A

lemma (in sigma algebra) sigma sets subset :
assumes a: a ⊆ M
shows sigma sets Ω a ⊆ M

proof
fix x
assume x ∈ sigma sets Ω a
from this show x ∈ M
by (induct rule: sigma sets.induct , auto) (metis a subsetD)

qed

lemma sigma sets into sp: A ⊆ Pow sp =⇒ x ∈ sigma sets sp A =⇒ x ⊆ sp
by (erule sigma sets.induct , auto)

lemma sigma algebra sigma sets:
a ⊆ Pow Ω =⇒ sigma algebra Ω (sigma sets Ω a)

by (auto simp add : sigma algebra iff2 dest : sigma sets into sp
intro!: sigma sets.Union sigma sets.Empty sigma sets.Compl)

lemma sigma sets least sigma algebra:
assumes A ⊆ Pow S
shows sigma sets S A =

⋂
{B . A ⊆ B ∧ sigma algebra S B}

proof safe
fix B X assume A ⊆ B and sa: sigma algebra S B
and X : X ∈ sigma sets S A

from sigma algebra.sigma sets subset [OF sa, simplified , OF 〈A ⊆ B 〉] X
show X ∈ B by auto

next
fix X assume X ∈

⋂
{B . A ⊆ B ∧ sigma algebra S B}

then have [intro!]:
∧
B . A ⊆ B =⇒ sigma algebra S B =⇒ X ∈ B

by simp
have A ⊆ sigma sets S A using assms by auto
moreover have sigma algebra S (sigma sets S A)
using assms by (intro sigma algebra sigma sets[of A]) auto

ultimately show X ∈ sigma sets S A by auto
qed

lemma sigma sets top: sp ∈ sigma sets sp A
by (metis Diff empty sigma sets.Compl sigma sets.Empty)

lemma binary in sigma sets:
binary a b i ∈ sigma sets sp A if a ∈ sigma sets sp A and b ∈ sigma sets sp A
using that by (simp add : binary def )

lemma sigma sets Un:
a ∪ b ∈ sigma sets sp A if a ∈ sigma sets sp A and b ∈ sigma sets sp A
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using that by (simp add : Un range binary binary in sigma sets Union)

lemma sigma sets Inter :
assumes Asb: A ⊆ Pow sp
shows (

∧
i ::nat . a i ∈ sigma sets sp A) =⇒ (

⋂
i . a i) ∈ sigma sets sp A

proof −
assume ai :

∧
i ::nat . a i ∈ sigma sets sp A

hence
∧
i ::nat . sp−(a i) ∈ sigma sets sp A

by (rule sigma sets.Compl)
hence (

⋃
i . sp−(a i)) ∈ sigma sets sp A

by (rule sigma sets.Union)
hence sp−(

⋃
i . sp−(a i)) ∈ sigma sets sp A

by (rule sigma sets.Compl)
also have sp−(

⋃
i . sp−(a i)) = sp Int (

⋂
i . a i)

by auto
also have ... = (

⋂
i . a i) using ai

by (blast dest : sigma sets into sp [OF Asb])
finally show ?thesis .

qed

lemma sigma sets INTER:
assumes Asb: A ⊆ Pow sp

and ai :
∧
i ::nat . i ∈ S =⇒ a i ∈ sigma sets sp A and non: S 6= {}

shows (
⋂
i∈S . a i) ∈ sigma sets sp A

proof −
from ai have

∧
i . (if i∈S then a i else sp) ∈ sigma sets sp A

by (simp add : sigma sets.intros(2−) sigma sets top)
hence (

⋂
i . (if i∈S then a i else sp)) ∈ sigma sets sp A

by (rule sigma sets Inter [OF Asb])
also have (

⋂
i . (if i∈S then a i else sp)) = (

⋂
i∈S . a i)

by auto (metis ai non sigma sets into sp subset empty subset iff Asb)+
finally show ?thesis .

qed

lemma sigma sets UNION :
countable B =⇒ (

∧
b. b ∈ B =⇒ b ∈ sigma sets X A) =⇒

⋃
B ∈ sigma sets X

A
using from nat into [of B ] range from nat into [of B ] sigma sets.Union [of from nat into

B X A]
by (cases B = {}) (simp all add : sigma sets.Empty cong del : SUP cong)

lemma (in sigma algebra) sigma sets eq :
sigma sets Ω M = M

proof
show M ⊆ sigma sets Ω M
by (metis Set .subsetI sigma sets.Basic)

next
show sigma sets Ω M ⊆ M
by (metis sigma sets subset subset refl)
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qed

lemma sigma sets eqI :
assumes A:

∧
a. a ∈ A =⇒ a ∈ sigma sets M B

assumes B :
∧
b. b ∈ B =⇒ b ∈ sigma sets M A

shows sigma sets M A = sigma sets M B
proof (intro set eqI iffI )
fix a assume a ∈ sigma sets M A
from this A show a ∈ sigma sets M B
by induct (auto intro!: sigma sets.intros(2−) del : sigma sets.Basic)

next
fix b assume b ∈ sigma sets M B
from this B show b ∈ sigma sets M A
by induct (auto intro!: sigma sets.intros(2−) del : sigma sets.Basic)

qed

lemma sigma sets subseteq : assumes A ⊆ B shows sigma sets X A ⊆ sigma sets
X B
proof
fix x assume x ∈ sigma sets X A then show x ∈ sigma sets X B
by induct (insert 〈A ⊆ B 〉, auto intro: sigma sets.intros(2−))

qed

lemma sigma sets mono: assumes A ⊆ sigma sets X B shows sigma sets X A ⊆
sigma sets X B
proof
fix x assume x ∈ sigma sets X A then show x ∈ sigma sets X B
by induct (insert 〈A ⊆ sigma sets X B 〉, auto intro: sigma sets.intros(2−))

qed

lemma sigma sets mono ′: assumes A ⊆ B shows sigma sets X A ⊆ sigma sets
X B
proof
fix x assume x ∈ sigma sets X A then show x ∈ sigma sets X B
by induct (insert 〈A ⊆ B 〉, auto intro: sigma sets.intros(2−))

qed

lemma sigma sets superset generator : A ⊆ sigma sets X A
by (auto intro: sigma sets.Basic)

lemma (in sigma algebra) restriction in sets:
fixes A :: nat ⇒ ′a set
assumes S ∈ M
and ∗: range A ⊆ (λA. S ∩ A) ‘ M (is ⊆ ?r)
shows range A ⊆ M (

⋃
i . A i) ∈ (λA. S ∩ A) ‘ M

proof −
{ fix i have A i ∈ ?r using ∗ by auto
hence ∃B . A i = B ∩ S ∧ B ∈ M by auto
hence A i ⊆ S A i ∈ M using 〈S ∈ M 〉 by auto }
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thus range A ⊆ M (
⋃
i . A i) ∈ (λA. S ∩ A) ‘ M

by (auto intro!: image eqI [of (
⋃
i . A i)])

qed

lemma (in sigma algebra) restricted sigma algebra:
assumes S ∈ M
shows sigma algebra S (restricted space S )
unfolding sigma algebra def sigma algebra axioms def

proof safe
show algebra S (restricted space S ) using restricted algebra[OF assms] .

next
fix A :: nat ⇒ ′a set assume range A ⊆ restricted space S
from restriction in sets[OF assms this[simplified ]]
show (

⋃
i . A i) ∈ restricted space S by simp

qed

lemma sigma sets Int :
assumes A ∈ sigma sets sp st A ⊆ sp
shows (∩) A ‘ sigma sets sp st = sigma sets A ((∩) A ‘ st)

proof (intro equalityI subsetI )
fix x assume x ∈ (∩) A ‘ sigma sets sp st
then obtain y where y ∈ sigma sets sp st x = y ∩ A by auto
then have x ∈ sigma sets (A ∩ sp) ((∩) A ‘ st)
proof (induct arbitrary : x )
case (Compl a)
then show ?case
by (force intro!: sigma sets.Compl simp: Diff Int distrib ac simps)

next
case (Union a)
then show ?case
by (auto intro!: sigma sets.Union

simp add : UN extend simps simp del : UN simps)
qed (auto intro!: sigma sets.intros(2−))
then show x ∈ sigma sets A ((∩) A ‘ st)
using 〈A ⊆ sp〉 by (simp add : Int absorb2 )

next
fix x assume x ∈ sigma sets A ((∩) A ‘ st)
then show x ∈ (∩) A ‘ sigma sets sp st
proof induct
case (Compl a)
then obtain x where a = A ∩ x x ∈ sigma sets sp st by auto
then show ?case using 〈A ⊆ sp〉

by (force simp add : image iff intro!: bexI [of sp − x ] sigma sets.Compl)
next
case (Union a)
then have ∀ i . ∃ x . x ∈ sigma sets sp st ∧ a i = A ∩ x
by (auto simp: image iff Bex def )

from choice[OF this] guess f ..
then show ?case
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by (auto intro!: bexI [of (
⋃
x . f x )] sigma sets.Union

simp add : image iff )
qed (auto intro!: sigma sets.intros(2−))

qed

lemma sigma sets empty eq : sigma sets A {} = {{}, A}
proof (intro set eqI iffI )
fix a assume a ∈ sigma sets A {} then show a ∈ {{}, A}
by induct blast+

qed (auto intro: sigma sets.Empty sigma sets top)

lemma sigma sets single[simp]: sigma sets A {A} = {{}, A}
proof (intro set eqI iffI )
fix x assume x ∈ sigma sets A {A}
then show x ∈ {{}, A}
by induct blast+

next
fix x assume x ∈ {{}, A}
then show x ∈ sigma sets A {A}
by (auto intro: sigma sets.Empty sigma sets top)

qed

lemma sigma sets sigma sets eq :
M ⊆ Pow S =⇒ sigma sets S (sigma sets S M ) = sigma sets S M
by (rule sigma algebra.sigma sets eq [OF sigma algebra sigma sets, of M S ]) auto

lemma sigma sets singleton:
assumes X ⊆ S
shows sigma sets S { X } = { {}, X , S − X , S }

proof −
interpret sigma algebra S { {}, X , S − X , S }
by (rule sigma algebra single set) fact

have sigma sets S { X } ⊆ sigma sets S { {}, X , S − X , S }
by (rule sigma sets subseteq) simp

moreover have . . . = { {}, X , S − X , S }
using sigma sets eq by simp

moreover
{ fix A assume A ∈ { {}, X , S − X , S }
then have A ∈ sigma sets S { X }
by (auto intro: sigma sets.intros(2−) sigma sets top) }

ultimately have sigma sets S { X } = sigma sets S { {}, X , S − X , S }
by (intro antisym) auto

with sigma sets eq show ?thesis by simp
qed

lemma restricted sigma:
assumes S : S ∈ sigma sets Ω M and M : M ⊆ Pow Ω
shows algebra.restricted space (sigma sets Ω M ) S =
sigma sets S (algebra.restricted space M S )
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proof −
from S sigma sets into sp[OF M ]
have S ∈ sigma sets Ω M S ⊆ Ω by auto
from sigma sets Int [OF this]
show ?thesis by simp

qed

lemma sigma sets vimage commute:
assumes X : X ∈ Ω → Ω ′

shows {X −‘ A ∩ Ω |A. A ∈ sigma sets Ω ′ M ′}
= sigma sets Ω {X −‘ A ∩ Ω |A. A ∈ M ′} (is ?L = ?R)

proof
show ?L ⊆ ?R
proof clarify
fix A assume A ∈ sigma sets Ω ′ M ′

then show X −‘ A ∩ Ω ∈ ?R
proof induct
case Empty then show ?case
by (auto intro!: sigma sets.Empty)

next
case (Compl B)
have [simp]: X −‘ (Ω ′ − B) ∩ Ω = Ω − (X −‘ B ∩ Ω)
by (auto simp add : funcset mem [OF X ])

with Compl show ?case
by (auto intro!: sigma sets.Compl)

next
case (Union F )
then show ?case
by (auto simp add : vimage UN UN extend simps(4 ) simp del : UN simps

intro!: sigma sets.Union)
qed auto

qed
show ?R ⊆ ?L
proof clarify
fix A assume A ∈ ?R
then show ∃B . A = X −‘ B ∩ Ω ∧ B ∈ sigma sets Ω ′ M ′

proof induct
case (Basic B) then show ?case by auto

next
case Empty then show ?case
by (auto intro!: sigma sets.Empty exI [of {}])

next
case (Compl B)
then obtain A where A: B = X −‘ A ∩ Ω A ∈ sigma sets Ω ′ M ′ by auto
then have [simp]: Ω − B = X −‘ (Ω ′ − A) ∩ Ω
by (auto simp add : funcset mem [OF X ])

with A(2 ) show ?case
by (auto intro: sigma sets.Compl)

next
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case (Union F )
then have ∀ i . ∃B . F i = X −‘ B ∩ Ω ∧ B ∈ sigma sets Ω ′ M ′ by auto
from choice[OF this] guess A .. note A = this
with A show ?case
by (auto simp: vimage UN [symmetric] intro: sigma sets.Union)

qed
qed

qed

lemma (in ring of sets) UNION in sets:
fixes A:: nat ⇒ ′a set
assumes A: range A ⊆ M
shows (

⋃
i∈{0 ..<n}. A i) ∈ M

proof (induct n)
case 0 show ?case by simp

next
case (Suc n)
thus ?case
by (simp add : atLeastLessThanSuc) (metis A Un UNIV I image subset iff )

qed

lemma (in ring of sets) range disjointed sets:
assumes A: range A ⊆ M
shows range (disjointed A) ⊆ M

proof (auto simp add : disjointed def )
fix n
show A n − (

⋃
i∈{0 ..<n}. A i) ∈ M using UNION in sets

by (metis A Diff UNIV I image subset iff )
qed

lemma (in algebra) range disjointed sets ′:
range A ⊆ M =⇒ range (disjointed A) ⊆ M
using range disjointed sets .

lemma sigma algebra disjoint iff :
sigma algebra Ω M ←→ algebra Ω M ∧
(∀A. range A ⊆ M −→ disjoint family A −→ (

⋃
i ::nat . A i) ∈ M )

proof (auto simp add : sigma algebra iff )
fix A :: nat ⇒ ′a set
assume M : algebra Ω M

and A: range A ⊆ M
and UnA: ∀A. range A ⊆ M −→ disjoint family A −→ (

⋃
i ::nat . A i) ∈ M

hence range (disjointed A) ⊆ M −→
disjoint family (disjointed A) −→
(
⋃
i . disjointed A i) ∈ M by blast

hence (
⋃
i . disjointed A i) ∈ M

by (simp add : algebra.range disjointed sets ′[of Ω] M A disjoint family disjointed)
thus (

⋃
i ::nat . A i) ∈ M by (simp add : UN disjointed eq)

qed
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Ring generated by a semiring

definition (in semiring of sets) generated ring :: ′a set set where
generated ring = {

⋃
C | C . C ⊆ M ∧ finite C ∧ disjoint C }

lemma (in semiring of sets) generated ringE [elim?]:
assumes a ∈ generated ring
obtains C where finite C disjoint C C ⊆ M a =

⋃
C

using assms unfolding generated ring def by auto

lemma (in semiring of sets) generated ringI [intro?]:
assumes finite C disjoint C C ⊆ M a =

⋃
C

shows a ∈ generated ring
using assms unfolding generated ring def by auto

lemma (in semiring of sets) generated ringI Basic:
A ∈ M =⇒ A ∈ generated ring
by (rule generated ringI [of {A}]) (auto simp: disjoint def )

lemma (in semiring of sets) generated ring disjoint Un[intro]:
assumes a: a ∈ generated ring and b: b ∈ generated ring
and a ∩ b = {}
shows a ∪ b ∈ generated ring

proof −
from a guess Ca .. note Ca = this
from b guess Cb .. note Cb = this
show ?thesis
proof
show disjoint (Ca ∪ Cb)
using 〈a ∩ b = {}〉 Ca Cb by (auto intro!: disjoint union)

qed (insert Ca Cb, auto)
qed

lemma (in semiring of sets) generated ring empty : {} ∈ generated ring
by (auto simp: generated ring def disjoint def )

lemma (in semiring of sets) generated ring disjoint Union:
assumes finite A shows A ⊆ generated ring =⇒ disjoint A =⇒

⋃
A ∈ gener-

ated ring
using assms by (induct A) (auto simp: disjoint def intro!: generated ring disjoint Un

generated ring empty)

lemma (in semiring of sets) generated ring disjoint UNION :
finite I =⇒ disjoint (A ‘ I ) =⇒ (

∧
i . i ∈ I =⇒ A i ∈ generated ring) =⇒

⋃
(A

‘ I ) ∈ generated ring
by (intro generated ring disjoint Union) auto

lemma (in semiring of sets) generated ring Int :
assumes a: a ∈ generated ring and b: b ∈ generated ring
shows a ∩ b ∈ generated ring
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proof −
from a guess Ca .. note Ca = this
from b guess Cb .. note Cb = this
define C where C = (λ(a,b). a ∩ b)‘ (Ca×Cb)
show ?thesis
proof
show disjoint C
proof (simp add : disjoint def C def , intro ballI impI )
fix a1 b1 a2 b2 assume sets: a1 ∈ Ca b1 ∈ Cb a2 ∈ Ca b2 ∈ Cb
assume a1 ∩ b1 6= a2 ∩ b2
then have a1 6= a2 ∨ b1 6= b2 by auto
then show (a1 ∩ b1 ) ∩ (a2 ∩ b2 ) = {}
proof
assume a1 6= a2
with sets Ca have a1 ∩ a2 = {}
by (auto simp: disjoint def )

then show ?thesis by auto
next
assume b1 6= b2
with sets Cb have b1 ∩ b2 = {}
by (auto simp: disjoint def )

then show ?thesis by auto
qed

qed
qed (insert Ca Cb, auto simp: C def )

qed

lemma (in semiring of sets) generated ring Inter :
assumes finite A A 6= {} shows A ⊆ generated ring =⇒

⋂
A ∈ generated ring

using assms by (induct A rule: finite ne induct) (auto intro: generated ring Int)

lemma (in semiring of sets) generated ring INTER:
finite I =⇒ I 6= {} =⇒ (

∧
i . i ∈ I =⇒ A i ∈ generated ring) =⇒

⋂
(A ‘ I ) ∈

generated ring
by (intro generated ring Inter) auto

lemma (in semiring of sets) generating ring :
ring of sets Ω generated ring

proof (rule ring of setsI )
let ?R = generated ring
show ?R ⊆ Pow Ω
using sets into space by (auto simp: generated ring def generated ring empty)

show {} ∈ ?R by (rule generated ring empty)

{ fix a assume a: a ∈ ?R then guess Ca .. note Ca = this
fix b assume b: b ∈ ?R then guess Cb .. note Cb = this

show a − b ∈ ?R
proof cases
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assume Cb = {} with Cb 〈a ∈ ?R〉 show ?thesis
by simp

next
assume Cb 6= {}
with Ca Cb have a − b = (

⋃
a ′∈Ca.

⋂
b ′∈Cb. a ′ − b ′) by auto

also have . . . ∈ ?R
proof (intro generated ring INTER generated ring disjoint UNION )
fix a b assume a ∈ Ca b ∈ Cb
with Ca Cb Diff cover [of a b] show a − b ∈ ?R
by (auto simp add : generated ring def )
(metis DiffI Diff eq empty iff empty iff )

next
show disjoint ((λa ′.

⋂
b ′∈Cb. a ′ − b ′)‘Ca)

using Ca by (auto simp add : disjoint def 〈Cb 6= {}〉)
next
show finite Ca finite Cb Cb 6= {} by fact+

qed
finally show a − b ∈ ?R .

qed }
note Diff = this

fix a b assume sets: a ∈ ?R b ∈ ?R
have a ∪ b = (a − b) ∪ (a ∩ b) ∪ (b − a) by auto
also have . . . ∈ ?R
by (intro sets generated ring disjoint Un generated ring Int Diff ) auto

finally show a ∪ b ∈ ?R .
qed

lemma (in semiring of sets) sigma sets generated ring eq : sigma sets Ω gener-
ated ring = sigma sets Ω M
proof
interpret M : sigma algebra Ω sigma sets Ω M
using space closed by (rule sigma algebra sigma sets)

show sigma sets Ω generated ring ⊆ sigma sets Ω M
by (blast intro!: sigma sets mono elim: generated ringE )

qed (auto intro!: generated ringI Basic sigma sets mono)

A Two-Element Series

definition binaryset :: ′a set ⇒ ′a set ⇒ nat ⇒ ′a set
where binaryset A B = (λx . {})(0 := A, Suc 0 := B)

lemma range binaryset eq : range(binaryset A B) = {A,B ,{}}
apply (simp add : binaryset def )
apply (rule set eqI )
apply (auto simp add : image iff )
done

lemma UN binaryset eq : (
⋃
i . binaryset A B i) = A ∪ B
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by (simp add : range binaryset eq cong del : SUP cong simp)

Closed CDI

definition closed cdi :: ′a set ⇒ ′a set set ⇒ bool where
closed cdi Ω M ←→
M ⊆ Pow Ω &
(∀ s ∈ M . Ω − s ∈ M ) &
(∀A. (range A ⊆ M ) & (A 0 = {}) & (∀n. A n ⊆ A (Suc n)) −→

(
⋃

i . A i) ∈ M ) &
(∀A. (range A ⊆ M ) & disjoint family A −→ (

⋃
i ::nat . A i) ∈ M )

inductive set
smallest ccdi sets :: ′a set ⇒ ′a set set ⇒ ′a set set
for Ω M
where
Basic [intro]:
a ∈ M =⇒ a ∈ smallest ccdi sets Ω M

| Compl [intro]:
a ∈ smallest ccdi sets Ω M =⇒ Ω − a ∈ smallest ccdi sets Ω M

| Inc:
range A ∈ Pow(smallest ccdi sets Ω M ) =⇒ A 0 = {} =⇒ (

∧
n. A n ⊆ A

(Suc n))
=⇒ (

⋃
i . A i) ∈ smallest ccdi sets Ω M

| Disj :
range A ∈ Pow(smallest ccdi sets Ω M ) =⇒ disjoint family A
=⇒ (

⋃
i ::nat . A i) ∈ smallest ccdi sets Ω M

lemma (in subset class) smallest closed cdi1 : M ⊆ smallest ccdi sets Ω M
by auto

lemma (in subset class) smallest ccdi sets: smallest ccdi sets Ω M ⊆ Pow Ω
apply (rule subsetI )
apply (erule smallest ccdi sets.induct)
apply (auto intro: range subsetD dest : sets into space)
done

lemma (in subset class) smallest closed cdi2 : closed cdi Ω (smallest ccdi sets Ω
M )
apply (auto simp add : closed cdi def smallest ccdi sets)
apply (blast intro: smallest ccdi sets.Inc smallest ccdi sets.Disj ) +
done

lemma closed cdi subset : closed cdi Ω M =⇒ M ⊆ Pow Ω
by (simp add : closed cdi def )

lemma closed cdi Compl : closed cdi Ω M =⇒ s ∈ M =⇒ Ω − s ∈ M
by (simp add : closed cdi def )
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lemma closed cdi Inc:
closed cdi Ω M =⇒ range A ⊆ M =⇒ A 0 = {} =⇒ (!!n. A n ⊆ A (Suc n))

=⇒ (
⋃
i . A i) ∈ M

by (simp add : closed cdi def )

lemma closed cdi Disj :
closed cdi Ω M =⇒ range A ⊆ M =⇒ disjoint family A =⇒ (

⋃
i ::nat . A i) ∈ M

by (simp add : closed cdi def )

lemma closed cdi Un:
assumes cdi : closed cdi Ω M and empty : {} ∈ M

and A: A ∈ M and B : B ∈ M
and disj : A ∩ B = {}

shows A ∪ B ∈ M
proof −
have ra: range (binaryset A B) ⊆ M
by (simp add : range binaryset eq empty A B)

have di : disjoint family (binaryset A B) using disj
by (simp add : disjoint family on def binaryset def Int commute)

from closed cdi Disj [OF cdi ra di ]
show ?thesis
by (simp add : UN binaryset eq)

qed

lemma (in algebra) smallest ccdi sets Un:
assumes A: A ∈ smallest ccdi sets Ω M and B : B ∈ smallest ccdi sets Ω M

and disj : A ∩ B = {}
shows A ∪ B ∈ smallest ccdi sets Ω M

proof −
have ra: range (binaryset A B) ∈ Pow (smallest ccdi sets Ω M )
by (simp add : range binaryset eq A B smallest ccdi sets.Basic)

have di : disjoint family (binaryset A B) using disj
by (simp add : disjoint family on def binaryset def Int commute)

from Disj [OF ra di ]
show ?thesis
by (simp add : UN binaryset eq)

qed

lemma (in algebra) smallest ccdi sets Int1 :
assumes a: a ∈ M
shows b ∈ smallest ccdi sets Ω M =⇒ a ∩ b ∈ smallest ccdi sets Ω M

proof (induct rule: smallest ccdi sets.induct)
case (Basic x )
thus ?case
by (metis a Int smallest ccdi sets.Basic)

next
case (Compl x )
have a ∩ (Ω − x ) = Ω − ((Ω − a) ∪ (a ∩ x ))
by blast
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also have ... ∈ smallest ccdi sets Ω M
by (metis smallest ccdi sets.Compl a Compl(2 ) Diff Int2 Diff Int distrib2

Diff disjoint Int Diff Int empty right smallest ccdi sets Un
smallest ccdi sets.Basic smallest ccdi sets.Compl)

finally show ?case .
next
case (Inc A)
have 1 : (

⋃
i . (λi . a ∩ A i) i) = a ∩ (

⋃
i . A i)

by blast
have range (λi . a ∩ A i) ∈ Pow(smallest ccdi sets Ω M ) using Inc
by blast

moreover have (λi . a ∩ A i) 0 = {}
by (simp add : Inc)

moreover have !!n. (λi . a ∩ A i) n ⊆ (λi . a ∩ A i) (Suc n) using Inc
by blast

ultimately have 2 : (
⋃
i . (λi . a ∩ A i) i) ∈ smallest ccdi sets Ω M

by (rule smallest ccdi sets.Inc)
show ?case
by (metis 1 2 )

next
case (Disj A)
have 1 : (

⋃
i . (λi . a ∩ A i) i) = a ∩ (

⋃
i . A i)

by blast
have range (λi . a ∩ A i) ∈ Pow(smallest ccdi sets Ω M ) using Disj
by blast

moreover have disjoint family (λi . a ∩ A i) using Disj
by (auto simp add : disjoint family on def )

ultimately have 2 : (
⋃
i . (λi . a ∩ A i) i) ∈ smallest ccdi sets Ω M

by (rule smallest ccdi sets.Disj )
show ?case
by (metis 1 2 )

qed

lemma (in algebra) smallest ccdi sets Int :
assumes b: b ∈ smallest ccdi sets Ω M
shows a ∈ smallest ccdi sets Ω M =⇒ a ∩ b ∈ smallest ccdi sets Ω M

proof (induct rule: smallest ccdi sets.induct)
case (Basic x )
thus ?case
by (metis b smallest ccdi sets Int1 )

next
case (Compl x )
have (Ω − x ) ∩ b = Ω − (x ∩ b ∪ (Ω − b))
by blast

also have ... ∈ smallest ccdi sets Ω M
by (metis Compl(2 ) Diff disjoint Int Diff Int commute Int empty right b

smallest ccdi sets.Compl smallest ccdi sets Un)
finally show ?case .
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next
case (Inc A)
have 1 : (

⋃
i . (λi . A i ∩ b) i) = (

⋃
i . A i) ∩ b

by blast
have range (λi . A i ∩ b) ∈ Pow(smallest ccdi sets Ω M ) using Inc
by blast

moreover have (λi . A i ∩ b) 0 = {}
by (simp add : Inc)

moreover have !!n. (λi . A i ∩ b) n ⊆ (λi . A i ∩ b) (Suc n) using Inc
by blast

ultimately have 2 : (
⋃
i . (λi . A i ∩ b) i) ∈ smallest ccdi sets Ω M

by (rule smallest ccdi sets.Inc)
show ?case
by (metis 1 2 )

next
case (Disj A)
have 1 : (

⋃
i . (λi . A i ∩ b) i) = (

⋃
i . A i) ∩ b

by blast
have range (λi . A i ∩ b) ∈ Pow(smallest ccdi sets Ω M ) using Disj
by blast

moreover have disjoint family (λi . A i ∩ b) using Disj
by (auto simp add : disjoint family on def )

ultimately have 2 : (
⋃
i . (λi . A i ∩ b) i) ∈ smallest ccdi sets Ω M

by (rule smallest ccdi sets.Disj )
show ?case
by (metis 1 2 )

qed

lemma (in algebra) sigma property disjoint lemma:
assumes sbC : M ⊆ C

and ccdi : closed cdi Ω C
shows sigma sets Ω M ⊆ C

proof −
have smallest ccdi sets Ω M ∈ {B . M ⊆ B ∧ sigma algebra Ω B}
apply (auto simp add : sigma algebra disjoint iff algebra iff Int

smallest ccdi sets Int)
apply (metis Union Pow eq Union upper subsetD smallest ccdi sets)
apply (blast intro: smallest ccdi sets.Disj )
done

hence sigma sets (Ω) (M ) ⊆ smallest ccdi sets Ω M
by clarsimp

(drule sigma algebra.sigma sets subset [where a=M ], auto)
also have ... ⊆ C
proof
fix x
assume x : x ∈ smallest ccdi sets Ω M
thus x ∈ C
proof (induct rule: smallest ccdi sets.induct)
case (Basic x )
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thus ?case
by (metis Basic subsetD sbC )

next
case (Compl x )
thus ?case
by (blast intro: closed cdi Compl [OF ccdi , simplified ])

next
case (Inc A)
thus ?case

by (auto intro: closed cdi Inc [OF ccdi , simplified ])
next
case (Disj A)
thus ?case

by (auto intro: closed cdi Disj [OF ccdi , simplified ])
qed

qed
finally show ?thesis .

qed

lemma (in algebra) sigma property disjoint :
assumes sbC : M ⊆ C

and compl : !!s. s ∈ C ∩ sigma sets (Ω) (M ) =⇒ Ω − s ∈ C
and inc: !!A. range A ⊆ C ∩ sigma sets (Ω) (M )

=⇒ A 0 = {} =⇒ (!!n. A n ⊆ A (Suc n))
=⇒ (

⋃
i . A i) ∈ C

and disj : !!A. range A ⊆ C ∩ sigma sets (Ω) (M )
=⇒ disjoint family A =⇒ (

⋃
i ::nat . A i) ∈ C

shows sigma sets (Ω) (M ) ⊆ C
proof −
have sigma sets (Ω) (M ) ⊆ C ∩ sigma sets (Ω) (M )
proof (rule sigma property disjoint lemma)
show M ⊆ C ∩ sigma sets (Ω) (M )
by (metis Int greatest Set .subsetI sbC sigma sets.Basic)

next
show closed cdi Ω (C ∩ sigma sets (Ω) (M ))
by (simp add : closed cdi def compl inc disj )

(metis PowI Set .subsetI le infI2 sigma sets into sp space closed
IntE sigma sets.Compl range subsetD sigma sets.Union)

qed
thus ?thesis
by blast

qed

Dynkin systems

locale Dynkin system = subset class +
assumes space: Ω ∈ M
and compl [intro!]:

∧
A. A ∈ M =⇒ Ω − A ∈ M

and UN [intro!]:
∧
A. disjoint family A =⇒ range A ⊆ M
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=⇒ (
⋃
i ::nat . A i) ∈ M

lemma (in Dynkin system) empty [intro, simp]: {} ∈ M
using space compl [of Ω] by simp

lemma (in Dynkin system) diff :
assumes sets: D ∈ M E ∈ M and D ⊆ E
shows E − D ∈ M

proof −
let ?f = λx . if x = 0 then D else if x = Suc 0 then Ω − E else {}
have range ?f = {D , Ω − E , {}}
by (auto simp: image iff )

moreover have D ∪ (Ω − E ) = (
⋃
i . ?f i)

by (auto simp: image iff split : if split asm)
moreover
have disjoint family ?f unfolding disjoint family on def
using 〈D ∈ M 〉[THEN sets into space] 〈D ⊆ E 〉 by auto

ultimately have Ω − (D ∪ (Ω − E )) ∈ M
using sets UN by auto fastforce

also have Ω − (D ∪ (Ω − E )) = E − D
using assms sets into space by auto

finally show ?thesis .
qed

lemma Dynkin systemI :
assumes

∧
A. A ∈ M =⇒ A ⊆ Ω Ω ∈ M

assumes
∧

A. A ∈ M =⇒ Ω − A ∈ M
assumes

∧
A. disjoint family A =⇒ range A ⊆ M

=⇒ (
⋃

i ::nat . A i) ∈ M
shows Dynkin system Ω M
using assms by (auto simp: Dynkin system def Dynkin system axioms def sub-

set class def )

lemma Dynkin systemI ′:
assumes 1 :

∧
A. A ∈ M =⇒ A ⊆ Ω

assumes empty : {} ∈ M
assumes Diff :

∧
A. A ∈ M =⇒ Ω − A ∈ M

assumes 2 :
∧

A. disjoint family A =⇒ range A ⊆ M
=⇒ (

⋃
i ::nat . A i) ∈ M

shows Dynkin system Ω M
proof −
from Diff [OF empty ] have Ω ∈ M by auto
from 1 this Diff 2 show ?thesis
by (intro Dynkin systemI ) auto

qed

lemma Dynkin system trivial :
shows Dynkin system A (Pow A)
by (rule Dynkin systemI ) auto
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lemma sigma algebra imp Dynkin system:
assumes sigma algebra Ω M shows Dynkin system Ω M

proof −
interpret sigma algebra Ω M by fact
show ?thesis using sets into space by (fastforce intro!: Dynkin systemI )

qed

Intersection sets systems

definition Int stable :: ′a set set ⇒ bool where
Int stable M ←→ (∀ a ∈ M . ∀ b ∈ M . a ∩ b ∈ M )

lemma (in algebra) Int stable: Int stable M
unfolding Int stable def by auto

lemma Int stableI image:
(
∧
i j . i ∈ I =⇒ j ∈ I =⇒ ∃ k∈I . A i ∩ A j = A k) =⇒ Int stable (A ‘ I )

by (auto simp: Int stable def image def )

lemma Int stableI :
(
∧
a b. a ∈ A =⇒ b ∈ A =⇒ a ∩ b ∈ A) =⇒ Int stable A

unfolding Int stable def by auto

lemma Int stableD :
Int stable M =⇒ a ∈ M =⇒ b ∈ M =⇒ a ∩ b ∈ M
unfolding Int stable def by auto

lemma (in Dynkin system) sigma algebra eq Int stable:
sigma algebra Ω M ←→ Int stable M

proof
assume sigma algebra Ω M then show Int stable M
unfolding sigma algebra def using algebra.Int stable by auto

next
assume Int stable M
show sigma algebra Ω M
unfolding sigma algebra disjoint iff algebra iff Un

proof (intro conjI ballI allI impI )
show M ⊆ Pow (Ω) using sets into space by auto

next
fix A B assume A ∈ M B ∈ M
then have A ∪ B = Ω − ((Ω − A) ∩ (Ω − B))

Ω − A ∈ M Ω − B ∈ M
using sets into space by auto

then show A ∪ B ∈ M
using 〈Int stable M 〉 unfolding Int stable def by auto

qed auto
qed
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Smallest Dynkin systems

definition Dynkin :: ′a set ⇒ ′a set set ⇒ ′a set set where
Dynkin Ω M = (

⋂
{D . Dynkin system Ω D ∧ M ⊆ D})

lemma Dynkin system Dynkin:
assumes M ⊆ Pow (Ω)
shows Dynkin system Ω (Dynkin Ω M )

proof (rule Dynkin systemI )
fix A assume A ∈ Dynkin Ω M
moreover
{ fix D assume A ∈ D and d : Dynkin system Ω D
then have A ⊆ Ω by (auto simp: Dynkin system def subset class def ) }

moreover have {D . Dynkin system Ω D ∧ M ⊆ D} 6= {}
using assms Dynkin system trivial by fastforce

ultimately show A ⊆ Ω
unfolding Dynkin def using assms
by auto

next
show Ω ∈ Dynkin Ω M
unfolding Dynkin def using Dynkin system.space by fastforce

next
fix A assume A ∈ Dynkin Ω M
then show Ω − A ∈ Dynkin Ω M
unfolding Dynkin def using Dynkin system.compl by force

next
fix A :: nat ⇒ ′a set
assume A: disjoint family A range A ⊆ Dynkin Ω M
show (

⋃
i . A i) ∈ Dynkin Ω M unfolding Dynkin def

proof (simp, safe)
fix D assume Dynkin system Ω D M ⊆ D
with A have (

⋃
i . A i) ∈ D

by (intro Dynkin system.UN ) (auto simp: Dynkin def )
then show (

⋃
i . A i) ∈ D by auto

qed
qed

lemma Dynkin Basic[intro]: A ∈ M =⇒ A ∈ Dynkin Ω M
unfolding Dynkin def by auto

lemma (in Dynkin system) restricted Dynkin system:
assumes D ∈ M
shows Dynkin system Ω {Q . Q ⊆ Ω ∧ Q ∩ D ∈ M }

proof (rule Dynkin systemI , simp all)
have Ω ∩ D = D
using 〈D ∈ M 〉 sets into space by auto

then show Ω ∩ D ∈ M
using 〈D ∈ M 〉 by auto

next
fix A assume A ⊆ Ω ∧ A ∩ D ∈ M
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moreover have (Ω − A) ∩ D = (Ω − (A ∩ D)) − (Ω − D)
by auto

ultimately show (Ω − A) ∩ D ∈ M
using 〈D ∈ M 〉 by (auto intro: diff )

next
fix A :: nat ⇒ ′a set
assume disjoint family A range A ⊆ {Q . Q ⊆ Ω ∧ Q ∩ D ∈ M }
then have

∧
i . A i ⊆ Ω disjoint family (λi . A i ∩ D)

range (λi . A i ∩ D) ⊆ M (
⋃

x . A x ) ∩ D = (
⋃

x . A x ∩ D)
by ((fastforce simp: disjoint family on def )+)

then show (
⋃
x . A x ) ⊆ Ω ∧ (

⋃
x . A x ) ∩ D ∈ M

by (auto simp del : UN simps)
qed

lemma (in Dynkin system) Dynkin subset :
assumes N ⊆ M
shows Dynkin Ω N ⊆ M

proof −
have Dynkin system Ω M ..
then have Dynkin system Ω M

using assms unfolding Dynkin system def Dynkin system axioms def sub-
set class def by simp
with 〈N ⊆ M 〉 show ?thesis by (auto simp add : Dynkin def )

qed

lemma sigma eq Dynkin:
assumes sets: M ⊆ Pow Ω
assumes Int stable M
shows sigma sets Ω M = Dynkin Ω M

proof −
have Dynkin Ω M ⊆ sigma sets (Ω) (M )
using sigma algebra imp Dynkin system
unfolding Dynkin def sigma sets least sigma algebra[OF sets] by auto

moreover
interpret Dynkin system Ω Dynkin Ω M
using Dynkin system Dynkin[OF sets] .

have sigma algebra Ω (Dynkin Ω M )
unfolding sigma algebra eq Int stable Int stable def

proof (intro ballI )
fix A B assume A ∈ Dynkin Ω M B ∈ Dynkin Ω M
let ?D = λE . {Q . Q ⊆ Ω ∧ Q ∩ E ∈ Dynkin Ω M }
have M ⊆ ?D B
proof
fix E assume E ∈ M
then have M ⊆ ?D E E ∈ Dynkin Ω M
using sets into space 〈Int stable M 〉 by (auto simp: Int stable def )

then have Dynkin Ω M ⊆ ?D E
using restricted Dynkin system 〈E ∈ Dynkin Ω M 〉

by (intro Dynkin system.Dynkin subset) simp all
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then have B ∈ ?D E
using 〈B ∈ Dynkin Ω M 〉 by auto

then have E ∩ B ∈ Dynkin Ω M
by (subst Int commute) simp

then show E ∈ ?D B
using sets 〈E ∈ M 〉 by auto

qed
then have Dynkin Ω M ⊆ ?D B
using restricted Dynkin system 〈B ∈ Dynkin Ω M 〉

by (intro Dynkin system.Dynkin subset) simp all
then show A ∩ B ∈ Dynkin Ω M
using 〈A ∈ Dynkin Ω M 〉 sets into space by auto

qed
from sigma algebra.sigma sets subset [OF this, of M ]
have sigma sets (Ω) (M ) ⊆ Dynkin Ω M by auto
ultimately have sigma sets (Ω) (M ) = Dynkin Ω M by auto
then show ?thesis
by (auto simp: Dynkin def )

qed

lemma (in Dynkin system) Dynkin idem:
Dynkin Ω M = M

proof −
have Dynkin Ω M = M
proof
show M ⊆ Dynkin Ω M
using Dynkin Basic by auto

show Dynkin Ω M ⊆ M
by (intro Dynkin subset) auto

qed
then show ?thesis
by (auto simp: Dynkin def )

qed

lemma (in Dynkin system) Dynkin lemma:
assumes Int stable E
and E : E ⊆ M M ⊆ sigma sets Ω E
shows sigma sets Ω E = M

proof −
have E ⊆ Pow Ω
using E sets into space by force

then have ∗: sigma sets Ω E = Dynkin Ω E
using 〈Int stable E 〉 by (rule sigma eq Dynkin)

then have Dynkin Ω E = M
using assms Dynkin subset [OF E (1 )] by simp

with ∗ show ?thesis
using assms by (auto simp: Dynkin def )

qed
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Induction rule for intersection-stable generators

The reason to introduce Dynkin-systems is the following induction rules for
σ-algebras generated by a generator closed under intersection.

proposition sigma sets induct disjoint [consumes 3 , case names basic empty compl
union]:
assumes Int stable G
and closed : G ⊆ Pow Ω
and A: A ∈ sigma sets Ω G

assumes basic:
∧
A. A ∈ G =⇒ P A

and empty : P {}
and compl :

∧
A. A ∈ sigma sets Ω G =⇒ P A =⇒ P (Ω − A)

and union:
∧
A. disjoint family A =⇒ range A ⊆ sigma sets Ω G =⇒ (

∧
i . P

(A i)) =⇒ P (
⋃
i ::nat . A i)

shows P A
proof −
let ?D = { A ∈ sigma sets Ω G . P A }
interpret sigma algebra Ω sigma sets Ω G
using closed by (rule sigma algebra sigma sets)

from compl [OF empty ] closed have space: P Ω by simp
interpret Dynkin system Ω ?D
by standard (auto dest : sets into space intro!: space compl union)

have sigma sets Ω G = ?D
by (rule Dynkin lemma) (auto simp: basic 〈Int stable G〉)

with A show ?thesis by auto
qed

6.1.2 Measure type

definition positive :: ′a set set ⇒ ( ′a set ⇒ ennreal) ⇒ bool where
positive M µ ←→ µ {} = 0

definition countably additive :: ′a set set ⇒ ( ′a set ⇒ ennreal) ⇒ bool where
countably additive M f ←→
(∀A. range A ⊆ M −→ disjoint family A −→ (

⋃
i . A i) ∈ M −→

(
∑

i . f (A i)) = f (
⋃
i . A i))

definition measure space :: ′a set ⇒ ′a set set ⇒ ( ′a set ⇒ ennreal) ⇒ bool
where
measure space Ω A µ ←→
sigma algebra Ω A ∧ positive A µ ∧ countably additive A µ

typedef ′a measure =
{(Ω:: ′a set , A, µ). (∀ a∈−A. µ a = 0 ) ∧ measure space Ω A µ }

proof
have sigma algebra UNIV {{}, UNIV }
by (auto simp: sigma algebra iff2 )

then show (UNIV , {{}, UNIV }, λA. 0 ) ∈ {(Ω, A, µ). (∀ a∈−A. µ a = 0 ) ∧
measure space Ω A µ}
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by (auto simp: measure space def positive def countably additive def )
qed

definition space :: ′a measure ⇒ ′a set where
space M = fst (Rep measure M )

definition sets :: ′a measure ⇒ ′a set set where
sets M = fst (snd (Rep measure M ))

definition emeasure :: ′a measure ⇒ ′a set ⇒ ennreal where
emeasure M = snd (snd (Rep measure M ))

definition measure :: ′a measure ⇒ ′a set ⇒ real where
measure M A = enn2real (emeasure M A)

declare [[coercion sets]]

declare [[coercion measure]]

declare [[coercion emeasure]]

lemma measure space: measure space (space M ) (sets M ) (emeasure M )
by (cases M ) (auto simp: space def sets def emeasure def Abs measure inverse)

interpretation sets: sigma algebra space M sets M for M :: ′a measure
using measure space[of M ] by (auto simp: measure space def )

definition measure of :: ′a set ⇒ ′a set set ⇒ ( ′a set ⇒ ennreal) ⇒ ′a measure
where

measure of Ω A µ =
Abs measure (Ω, if A ⊆ Pow Ω then sigma sets Ω A else {{}, Ω},
λa. if a ∈ sigma sets Ω A ∧ measure space Ω (sigma sets Ω A) µ then µ a else

0 )

abbreviation sigma Ω A ≡ measure of Ω A (λx . 0 )

lemma measure space 0 : A ⊆ Pow Ω =⇒ measure space Ω (sigma sets Ω A) (λx .
0 )
unfolding measure space def
by (auto intro!: sigma algebra sigma sets simp: positive def countably additive def )

lemma sigma algebra trivial : sigma algebra Ω {{}, Ω}
by unfold locales(fastforce intro: exI [where x={{}}] exI [where x={Ω}])+

lemma measure space 0 ′: measure space Ω {{}, Ω} (λx . 0 )
by(simp add : measure space def positive def countably additive def sigma algebra trivial)

lemma measure space closed :
assumes measure space Ω M µ
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shows M ⊆ Pow Ω
proof −
interpret sigma algebra Ω M using assms by(simp add : measure space def )
show ?thesis by(rule space closed)

qed

lemma (in ring of sets) positive cong eq :
(
∧
a. a ∈ M =⇒ µ ′ a = µ a) =⇒ positive M µ ′ = positive M µ

by (auto simp add : positive def )

lemma (in sigma algebra) countably additive eq :
(
∧
a. a ∈ M =⇒ µ ′ a = µ a) =⇒ countably additive M µ ′ = countably additive

M µ
unfolding countably additive def
by (intro arg cong [where f=All ] ext) (auto simp add : countably additive def

subset eq)

lemma measure space eq :
assumes closed : A ⊆ Pow Ω and eq :

∧
a. a ∈ sigma sets Ω A =⇒ µ a = µ ′ a

shows measure space Ω (sigma sets Ω A) µ = measure space Ω (sigma sets Ω
A) µ ′

proof −
interpret sigma algebra Ω sigma sets Ω A using closed by (rule sigma algebra sigma sets)
from positive cong eq [OF eq , of λi . i ] countably additive eq [OF eq , of λi . i ]

show ?thesis
by (auto simp: measure space def )

qed

lemma measure of eq :
assumes closed : A ⊆ Pow Ω and eq : (

∧
a. a ∈ sigma sets Ω A =⇒ µ a = µ ′ a)

shows measure of Ω A µ = measure of Ω A µ ′

proof −
have measure space Ω (sigma sets Ω A) µ = measure space Ω (sigma sets Ω A)

µ ′

using assms by (rule measure space eq)
with eq show ?thesis
by (auto simp add : measure of def intro!: arg cong [where f=Abs measure])

qed

lemma
shows space measure of conv : space (measure of Ω A µ) = Ω (is ?space)
and sets measure of conv :
sets (measure of Ω A µ) = (if A ⊆ Pow Ω then sigma sets Ω A else {{}, Ω})

(is ?sets)
and emeasure measure of conv :
emeasure (measure of Ω A µ) =
(λB . if B ∈ sigma sets Ω A ∧ measure space Ω (sigma sets Ω A) µ then µ B else

0 ) (is ?emeasure)
proof −
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have ?space ∧ ?sets ∧ ?emeasure
proof(cases measure space Ω (sigma sets Ω A) µ)
case True
from measure space closed [OF this] sigma sets superset generator [of A Ω]
have A ⊆ Pow Ω by simp
hence measure space Ω (sigma sets Ω A) µ = measure space Ω (sigma sets Ω

A)
(λa. if a ∈ sigma sets Ω A then µ a else 0 )
by(rule measure space eq) auto

with True 〈A ⊆ Pow Ω〉 show ?thesis
by(simp add : measure of def space def sets def emeasure def Abs measure inverse)

next
case False thus ?thesis

by(cases A ⊆ Pow Ω)(simp all add : Abs measure inverse measure of def
sets def space def emeasure def measure space 0 measure space 0 ′)
qed
thus ?space ?sets ?emeasure by simp all

qed

lemma [simp]:
assumes A: A ⊆ Pow Ω
shows sets measure of : sets (measure of Ω A µ) = sigma sets Ω A
and space measure of : space (measure of Ω A µ) = Ω

using assms
by(simp all add : sets measure of conv space measure of conv)

lemma space in measure of [simp]: Ω ∈ sets (measure of Ω M µ)
by (subst sets measure of conv) (auto simp: sigma sets top)

lemma (in sigma algebra) sets measure of eq [simp]: sets (measure of Ω M µ) =
M
using space closed by (auto intro!: sigma sets eq)

lemma (in sigma algebra) space measure of eq [simp]: space (measure of Ω M µ)
= Ω
by (rule space measure of conv)

lemma measure of subset : M ⊆ Pow Ω =⇒ M ′ ⊆ M =⇒ sets (measure of Ω M ′

µ) ⊆ sets (measure of Ω M µ ′)
by (auto intro!: sigma sets subseteq)

lemma emeasure sigma: emeasure (sigma Ω A) = (λx . 0 )
unfolding measure of def emeasure def
by (subst Abs measure inverse)

(auto simp: measure space def positive def countably additive def
intro!: sigma algebra sigma sets sigma algebra trivial)

lemma sigma sets mono ′′:
assumes A ∈ sigma sets C D
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assumes B ⊆ D
assumes D ⊆ Pow C
shows sigma sets A B ⊆ sigma sets C D

proof
fix x assume x ∈ sigma sets A B
thus x ∈ sigma sets C D
proof induct
case (Basic a) with assms have a ∈ D by auto
thus ?case ..

next
case Empty show ?case by (rule sigma sets.Empty)

next
from assms have A ∈ sets (sigma C D) by (subst sets measure of [OF 〈D ⊆

Pow C 〉])
moreover case (Compl a) hence a ∈ sets (sigma C D) by (subst sets measure of [OF

〈D ⊆ Pow C 〉])
ultimately have A − a ∈ sets (sigma C D) ..
thus ?case by (subst (asm) sets measure of [OF 〈D ⊆ Pow C 〉])

next
case (Union a)
thus ?case by (intro sigma sets.Union)

qed
qed

lemma in measure of [intro, simp]: M ⊆ Pow Ω =⇒ A ∈M =⇒ A ∈ sets (measure of
Ω M µ)
by auto

lemma space empty iff : space N = {} ←→ sets N = {{}}
by (metis Pow empty Sup bot conv(1 ) cSup singleton empty iff

sets.sigma sets eq sets.space closed sigma sets top subset singletonD)

Constructing simple ′a measure

proposition emeasure measure of :
assumes M : M = measure of Ω A µ
assumes ms: A ⊆ Pow Ω positive (sets M ) µ countably additive (sets M ) µ
assumes X : X ∈ sets M
shows emeasure M X = µ X

proof −
interpret sigma algebra Ω sigma sets Ω A by (rule sigma algebra sigma sets)

fact
have measure space Ω (sigma sets Ω A) µ
using ms M by (simp add : measure space def sigma algebra sigma sets)

thus ?thesis using X ms
by(simp add : M emeasure measure of conv sets measure of conv)

qed

lemma emeasure measure of sigma:
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assumes ms: sigma algebra Ω M positive M µ countably additive M µ
assumes A: A ∈ M
shows emeasure (measure of Ω M µ) A = µ A

proof −
interpret sigma algebra Ω M by fact
have measure space Ω (sigma sets Ω M ) µ
using ms sigma sets eq by (simp add : measure space def )

thus ?thesis by(simp add : emeasure measure of conv A)
qed

lemma measure cases[cases type: measure]:
obtains (measure) Ω A µ where x = Abs measure (Ω, A, µ) ∀ a∈−A. µ a = 0

measure space Ω A µ
by atomize elim (cases x , auto)

lemma sets le imp space le: sets A ⊆ sets B =⇒ space A ⊆ space B
by (auto dest : sets.sets into space)

lemma sets eq imp space eq : sets M = sets M ′ =⇒ space M = space M ′

by (auto intro!: antisym sets le imp space le)

lemma emeasure notin sets: A /∈ sets M =⇒ emeasure M A = 0
by (cases M ) (auto simp: sets def emeasure def Abs measure inverse measure space def )

lemma emeasure neq 0 sets: emeasure M A 6= 0 =⇒ A ∈ sets M
using emeasure notin sets[of A M ] by blast

lemma measure notin sets: A /∈ sets M =⇒ measure M A = 0
by (simp add : measure def emeasure notin sets zero ennreal .rep eq)

lemma measure eqI :
fixes M N :: ′a measure
assumes sets M = sets N and eq :

∧
A. A ∈ sets M =⇒ emeasure M A =

emeasure N A
shows M = N

proof (cases M N rule: measure cases[case product measure cases])
case (measure measure Ω A µ Ω ′ A ′ µ ′)
interpret M : sigma algebra Ω A using measure measure by (auto simp: mea-

sure space def )
interpret N : sigma algebra Ω ′ A ′ using measure measure by (auto simp: mea-

sure space def )
have A = sets M A ′ = sets N
using measure measure by (simp all add : sets def Abs measure inverse)

with 〈sets M = sets N 〉 have AA ′: A = A ′ by simp
moreover from M .top N .top M .space closed N .space closed AA ′ have Ω = Ω ′

by auto
moreover { fix B have µ B = µ ′ B
proof cases
assume B ∈ A
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with eq 〈A = sets M 〉 have emeasure M B = emeasure N B by simp
with measure measure show µ B = µ ′ B
by (simp add : emeasure def Abs measure inverse)

next
assume B /∈ A
with 〈A = sets M 〉 〈A ′ = sets N 〉 〈A = A ′〉 have B /∈ sets M B /∈ sets N
by auto

then have emeasure M B = 0 emeasure N B = 0
by (simp all add : emeasure notin sets)

with measure measure show µ B = µ ′ B
by (simp add : emeasure def Abs measure inverse)

qed }
then have µ = µ ′ by auto
ultimately show M = N
by (simp add : measure measure)

qed

lemma sigma eqI :
assumes [simp]: M ⊆ Pow Ω N ⊆ Pow Ω sigma sets Ω M = sigma sets Ω N
shows sigma Ω M = sigma Ω N
by (rule measure eqI ) (simp all add : emeasure sigma)

Measurable functions

definition measurable :: ′a measure ⇒ ′b measure ⇒ ( ′a ⇒ ′b) set
(infixr →M 60 ) where

measurable A B = {f ∈ space A → space B . ∀ y ∈ sets B . f −‘ y ∩ space A ∈ sets
A}

lemma measurableI :
(
∧
x . x ∈ space M =⇒ f x ∈ space N ) =⇒ (

∧
A. A ∈ sets N =⇒ f −‘ A ∩ space

M ∈ sets M ) =⇒
f ∈ measurable M N

by (auto simp: measurable def )

lemma measurable space:
f ∈ measurable M A =⇒ x ∈ space M =⇒ f x ∈ space A
unfolding measurable def by auto

lemma measurable sets:
f ∈ measurable M A =⇒ S ∈ sets A =⇒ f −‘ S ∩ space M ∈ sets M
unfolding measurable def by auto

lemma measurable sets Collect :
assumes f : f ∈ measurable M N and P : {x∈space N . P x} ∈ sets N shows
{x∈space M . P (f x )} ∈ sets M
proof −
have f −‘ {x ∈ space N . P x} ∩ space M = {x∈space M . P (f x )}
using measurable space[OF f ] by auto
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with measurable sets[OF f P ] show ?thesis
by simp

qed

lemma measurable sigma sets:
assumes B : sets N = sigma sets Ω A A ⊆ Pow Ω

and f : f ∈ space M → Ω
and ba:

∧
y . y ∈ A =⇒ (f −‘ y) ∩ space M ∈ sets M

shows f ∈ measurable M N
proof −
interpret A: sigma algebra Ω sigma sets Ω A using B(2 ) by (rule sigma algebra sigma sets)
from B sets.top[of N ] A.top sets.space closed [of N ] A.space closed have Ω: Ω =

space N by force

{ fix X assume X ∈ sigma sets Ω A
then have f −‘ X ∩ space M ∈ sets M ∧ X ⊆ Ω
proof induct
case (Basic a) then show ?case
by (auto simp add : ba) (metis B(2 ) subsetD PowD)

next
case (Compl a)
have [simp]: f −‘ Ω ∩ space M = space M
by (auto simp add : funcset mem [OF f ])

then show ?case
by (auto simp add : vimage Diff Diff Int distrib2 sets.compl sets Compl)

next
case (Union a)
then show ?case
by (simp add : vimage UN , simp only : UN extend simps(4 )) blast

qed auto }
with f show ?thesis
by (auto simp add : measurable def B Ω)

qed

lemma measurable measure of :
assumes B : N ⊆ Pow Ω

and f : f ∈ space M → Ω
and ba:

∧
y . y ∈ N =⇒ (f −‘ y) ∩ space M ∈ sets M

shows f ∈ measurable M (measure of Ω N µ)
proof −
have sets (measure of Ω N µ) = sigma sets Ω N
using B by (rule sets measure of )

from this assms show ?thesis by (rule measurable sigma sets)
qed

lemma measurable iff measure of :
assumes N ⊆ Pow Ω f ∈ space M → Ω
shows f ∈ measurable M (measure of Ω N µ) ←→ (∀A∈N . f −‘ A ∩ space M
∈ sets M )
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by (metis assms in measure of measurable measure of assms measurable sets)

lemma measurable cong sets:
assumes sets: sets M = sets M ′ sets N = sets N ′

shows measurable M N = measurable M ′ N ′

using sets[THEN sets eq imp space eq ] sets by (simp add : measurable def )

lemma measurable cong :
assumes

∧
w . w ∈ space M =⇒ f w = g w

shows f ∈ measurable M M ′←→ g ∈ measurable M M ′

unfolding measurable def using assms
by (simp cong : vimage inter cong Pi cong)

lemma measurable cong ′:
assumes

∧
w . w ∈ space M =simp=> f w = g w

shows f ∈ measurable M M ′←→ g ∈ measurable M M ′

unfolding measurable def using assms
by (simp cong : vimage inter cong Pi cong add : simp implies def )

lemma measurable cong simp:
M = N =⇒ M ′ = N ′ =⇒ (

∧
w . w ∈ space M =⇒ f w = g w) =⇒

f ∈ measurable M M ′←→ g ∈ measurable N N ′

by (metis measurable cong)

lemma measurable compose:
assumes f : f ∈ measurable M N and g : g ∈ measurable N L
shows (λx . g (f x )) ∈ measurable M L

proof −
have

∧
A. (λx . g (f x )) −‘ A ∩ space M = f −‘ (g −‘ A ∩ space N ) ∩ space M

using measurable space[OF f ] by auto
with measurable space[OF f ] measurable space[OF g ] show ?thesis
by (auto intro: measurable sets[OF f ] measurable sets[OF g ]

simp del : vimage Int simp add : measurable def )
qed

lemma measurable comp:
f ∈ measurable M N =⇒ g ∈ measurable N L =⇒ g ◦ f ∈ measurable M L
using measurable compose[of f M N g L] by (simp add : comp def )

lemma measurable const :
c ∈ space M ′ =⇒ (λx . c) ∈ measurable M M ′

by (auto simp add : measurable def )

lemma measurable ident : id ∈ measurable M M
by (auto simp add : measurable def )

lemma measurable id : (λx . x ) ∈ measurable M M
by (simp add : measurable def )
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lemma measurable ident sets:
assumes eq : sets M = sets M ′ shows (λx . x ) ∈ measurable M M ′

using measurable ident [of M ]
unfolding id def measurable def eq sets eq imp space eq [OF eq ] .

lemma sets Least :
assumes meas:

∧
i ::nat . {x∈space M . P i x} ∈ M

shows (λx . LEAST j . P j x ) −‘ A ∩ space M ∈ sets M
proof −
{ fix i have (λx . LEAST j . P j x ) −‘ {i} ∩ space M ∈ sets M
proof cases
assume i : (LEAST j . False) = i
have (λx . LEAST j . P j x ) −‘ {i} ∩ space M =
{x∈space M . P i x} ∩ (space M − (

⋃
j<i . {x∈space M . P j x})) ∪ (space

M − (
⋃
i . {x∈space M . P i x}))

by (simp add : set eq iff , safe)
(insert i , auto dest : Least le intro: LeastI intro!: Least equality)

with meas show ?thesis
by (auto intro!: sets.Int)

next
assume i : (LEAST j . False) 6= i
then have (λx . LEAST j . P j x ) −‘ {i} ∩ space M =
{x∈space M . P i x} ∩ (space M − (

⋃
j<i . {x∈space M . P j x}))

proof (simp add : set eq iff , safe)
fix x assume neq : (LEAST j . False) 6= (LEAST j . P j x )
have ∃ j . P j x
by (rule ccontr) (insert neq , auto)

then show P (LEAST j . P j x ) x by (rule LeastI ex )
qed (auto dest : Least le intro!: Least equality)
with meas show ?thesis
by auto

qed }
then have (

⋃
i∈A. (λx . LEAST j . P j x ) −‘ {i} ∩ space M ) ∈ sets M

by (intro sets.countable UN ) auto
moreover have (

⋃
i∈A. (λx . LEAST j . P j x ) −‘ {i} ∩ space M ) =

(λx . LEAST j . P j x ) −‘ A ∩ space M by auto
ultimately show ?thesis by auto

qed

lemma measurable mono1 :
M ′ ⊆ Pow Ω =⇒ M ⊆ M ′ =⇒
measurable (measure of Ω M µ) N ⊆ measurable (measure of Ω M ′ µ ′) N

using measure of subset [of M ′ Ω M ] by (auto simp add : measurable def )

Counting space

definition count space :: ′a set ⇒ ′a measure where
count space Ω = measure of Ω (Pow Ω) (λA. if finite A then of nat (card A) else
∞)
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lemma
shows space count space[simp]: space (count space Ω) = Ω
and sets count space[simp]: sets (count space Ω) = Pow Ω

using sigma sets into sp[of Pow Ω Ω]
by (auto simp: count space def )

lemma measurable count space eq1 [simp]:
f ∈ measurable (count space A) M ←→ f ∈ A → space M
unfolding measurable def by simp

lemma measurable compose countable ′:
assumes f :

∧
i . i ∈ I =⇒ (λx . f i x ) ∈ measurable M N

and g : g ∈ measurable M (count space I ) and I : countable I
shows (λx . f (g x ) x ) ∈ measurable M N
unfolding measurable def

proof safe
fix x assume x ∈ space M then show f (g x ) x ∈ space N
using measurable space[OF f ] g [THEN measurable space] by auto

next
fix A assume A: A ∈ sets N
have (λx . f (g x ) x ) −‘ A ∩ space M = (

⋃
i∈I . (g −‘ {i} ∩ space M ) ∩ (f i −‘

A ∩ space M ))
using measurable space[OF g ] by auto

also have . . . ∈ sets M
using f [THEN measurable sets, OF A] g [THEN measurable sets]
by (auto intro!: sets.countable UN ′ I intro: sets.Int [OF measurable sets mea-

surable sets])
finally show (λx . f (g x ) x ) −‘ A ∩ space M ∈ sets M .

qed

lemma measurable count space eq countable:
assumes countable A
shows f ∈ measurable M (count space A) ←→ (f ∈ space M → A ∧ (∀ a∈A. f
−‘ {a} ∩ space M ∈ sets M ))
proof −
{ fix X assume X ⊆ A f ∈ space M → A
with 〈countable A〉 have f −‘ X ∩ space M = (

⋃
a∈X . f −‘ {a} ∩ space M )

countable X
by (auto dest : countable subset)

moreover assume ∀ a∈A. f −‘ {a} ∩ space M ∈ sets M
ultimately have f −‘ X ∩ space M ∈ sets M
using 〈X ⊆ A〉 by (auto intro!: sets.countable UN ′ simp del : UN simps) }

then show ?thesis
unfolding measurable def by auto

qed

lemma measurable count space eq2 :
finite A =⇒ f ∈ measurable M (count space A)←→ (f ∈ space M → A ∧ (∀ a∈A.
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f −‘ {a} ∩ space M ∈ sets M ))
by (intro measurable count space eq countable countable finite)

lemma measurable count space eq2 countable:
fixes f :: ′a => ′c::countable
shows f ∈ measurable M (count space A) ←→ (f ∈ space M → A ∧ (∀ a∈A. f
−‘ {a} ∩ space M ∈ sets M ))
by (intro measurable count space eq countable countableI type)

lemma measurable compose countable:
assumes f :

∧
i :: ′i ::countable. (λx . f i x ) ∈ measurable M N and g : g ∈ measurable

M (count space UNIV )
shows (λx . f (g x ) x ) ∈ measurable M N
by (rule measurable compose countable ′[OF assms]) auto

lemma measurable count space const :
(λx . c) ∈ measurable M (count space UNIV )
by (simp add : measurable const)

lemma measurable count space:
f ∈ measurable (count space A) (count space UNIV )
by simp

lemma measurable compose rev :
assumes f : f ∈ measurable L N and g : g ∈ measurable M L
shows (λx . f (g x )) ∈ measurable M N
using measurable compose[OF g f ] .

lemma measurable empty iff :
space N = {} =⇒ f ∈ measurable M N ←→ space M = {}
by (auto simp add : measurable def Pi iff )

Extend measure

definition extend measure :: ′a set ⇒ ′b set ⇒ ( ′b ⇒ ′a set) ⇒ ( ′b ⇒ ennreal)
⇒ ′a measure
where

extend measure Ω I G µ =
(if (∃µ ′. (∀ i∈I . µ ′ (G i) = µ i) ∧ measure space Ω (sigma sets Ω (G‘I )) µ ′) ∧
¬ (∀ i∈I . µ i = 0 )

then measure of Ω (G‘I ) (SOME µ ′. (∀ i∈I . µ ′ (G i) = µ i) ∧ measure space
Ω (sigma sets Ω (G‘I )) µ ′)

else measure of Ω (G‘I ) (λ . 0 ))

lemma space extend measure: G ‘ I ⊆ Pow Ω =⇒ space (extend measure Ω I G
µ) = Ω
unfolding extend measure def by simp

lemma sets extend measure: G ‘ I ⊆ Pow Ω =⇒ sets (extend measure Ω I G µ)
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= sigma sets Ω (G‘I )
unfolding extend measure def by simp

lemma emeasure extend measure:
assumes M : M = extend measure Ω I G µ
and eq :

∧
i . i ∈ I =⇒ µ ′ (G i) = µ i

and ms: G ‘ I ⊆ Pow Ω positive (sets M ) µ ′ countably additive (sets M ) µ ′

and i ∈ I
shows emeasure M (G i) = µ i

proof cases
assume ∗: (∀ i∈I . µ i = 0 )
with M have M eq : M = measure of Ω (G‘I ) (λ . 0 )
by (simp add : extend measure def )
from measure space 0 [OF ms(1 )] ms 〈i∈I 〉

have emeasure M (G i) = 0
by (intro emeasure measure of [OF M eq ]) (auto simp add : M measure space def

sets extend measure)
with 〈i∈I 〉 ∗ show ?thesis
by simp

next
define P where P µ ′←→ (∀ i∈I . µ ′ (G i) = µ i) ∧ measure space Ω (sigma sets

Ω (G‘I )) µ ′ for µ ′

assume ¬ (∀ i∈I . µ i = 0 )
moreover
have measure space (space M ) (sets M ) µ ′

using ms unfolding measure space def by auto standard
with ms eq have ∃µ ′. P µ ′

unfolding P def
by (intro exI [of µ ′]) (auto simp add : M space extend measure sets extend measure)
ultimately have M eq : M = measure of Ω (G‘I ) (Eps P)
by (simp add : M extend measure def P def [symmetric])

from 〈∃µ ′. P µ ′〉 have P : P (Eps P) by (rule someI ex )
show emeasure M (G i) = µ i
proof (subst emeasure measure of [OF M eq ])
have sets M : sets M = sigma sets Ω (G‘I )
using M eq ms by (auto simp: sets extend measure)

then show G i ∈ sets M using 〈i ∈ I 〉 by auto
show positive (sets M ) (Eps P) countably additive (sets M ) (Eps P) Eps P (G

i) = µ i
using P 〈i∈I 〉 by (auto simp add : sets M measure space def P def )

qed fact
qed

lemma emeasure extend measure Pair :
assumes M : M = extend measure Ω {(i , j ). I i j} (λ(i , j ). G i j ) (λ(i , j ). µ i

j )
and eq :

∧
i j . I i j =⇒ µ ′ (G i j ) = µ i j

and ms:
∧
i j . I i j =⇒ G i j ∈ Pow Ω positive (sets M ) µ ′ countably additive
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(sets M ) µ ′

and I i j
shows emeasure M (G i j ) = µ i j
using emeasure extend measure[OF M ms(2 ,3 ), of (i ,j )] eq ms(1 ) 〈I i j 〉

by (auto simp: subset eq)

6.1.3 The smallest σ-algebra regarding a function

definition vimage algebra :: ′a set ⇒ ( ′a ⇒ ′b)⇒ ′b measure ⇒ ′a measure where
vimage algebra X f M = sigma X {f −‘ A ∩ X | A. A ∈ sets M }

lemma space vimage algebra[simp]: space (vimage algebra X f M ) = X
unfolding vimage algebra def by (rule space measure of ) auto

lemma sets vimage algebra: sets (vimage algebra X f M ) = sigma sets X {f −‘ A
∩ X | A. A ∈ sets M }
unfolding vimage algebra def by (rule sets measure of ) auto

lemma sets vimage algebra2 :
f ∈ X → space M =⇒ sets (vimage algebra X f M ) = {f −‘ A ∩ X | A. A ∈

sets M }
using sigma sets vimage commute[of f X space M sets M ]
unfolding sets vimage algebra sets.sigma sets eq by simp

lemma sets vimage algebra cong : sets M = sets N =⇒ sets (vimage algebra X f
M ) = sets (vimage algebra X f N )
by (simp add : sets vimage algebra)

lemma vimage algebra cong :
assumes X = Y
assumes

∧
x . x ∈ Y =⇒ f x = g x

assumes sets M = sets N
shows vimage algebra X f M = vimage algebra Y g N
by (auto simp: vimage algebra def assms intro!: arg cong2 [where f=sigma])

lemma in vimage algebra: A ∈ sets M =⇒ f −‘ A ∩ X ∈ sets (vimage algebra X
f M )
by (auto simp: vimage algebra def )

lemma sets image in sets:
assumes N : space N = X
assumes f : f ∈ measurable N M
shows sets (vimage algebra X f M ) ⊆ sets N
unfolding sets vimage algebra N [symmetric]
by (rule sets.sigma sets subset) (auto intro!: measurable sets f )

lemma measurable vimage algebra1 : f ∈ X → space M =⇒ f ∈ measurable (vimage algebra
X f M ) M
unfolding measurable def by (auto intro: in vimage algebra)
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lemma measurable vimage algebra2 :
assumes g : g ∈ space N → X and f : (λx . f (g x )) ∈ measurable N M
shows g ∈ measurable N (vimage algebra X f M )
unfolding vimage algebra def

proof (rule measurable measure of )
fix A assume A ∈ {f −‘ A ∩ X | A. A ∈ sets M }
then obtain Y where Y : Y ∈ sets M and A: A = f −‘ Y ∩ X
by auto

then have g −‘ A ∩ space N = (λx . f (g x )) −‘ Y ∩ space N
using g by auto

also have . . . ∈ sets N
using f Y by (rule measurable sets)

finally show g −‘ A ∩ space N ∈ sets N .
qed (insert g , auto)

lemma vimage algebra sigma:
assumes X : X ⊆ Pow Ω ′ and f : f ∈ Ω → Ω ′

shows vimage algebra Ω f (sigma Ω ′ X ) = sigma Ω {f −‘ A ∩ Ω | A. A ∈ X }
(is ?V = ?S )
proof (rule measure eqI )
have Ω: {f −‘ A ∩ Ω |A. A ∈ X } ⊆ Pow Ω by auto
show sets ?V = sets ?S
using sigma sets vimage commute[OF f , of X ]
by (simp add : space measure of conv f sets vimage algebra2 Ω X )

qed (simp add : vimage algebra def emeasure sigma)

lemma vimage algebra vimage algebra eq :
assumes ∗: f ∈ X → Y g ∈ Y → space M
shows vimage algebra X f (vimage algebra Y g M ) = vimage algebra X (λx . g

(f x )) M
(is ?VV = ?V )

proof (rule measure eqI )
have (λx . g (f x )) ∈ X → space M

∧
A. A ∩ f −‘ Y ∩ X = A ∩ X

using ∗ by auto
with ∗ show sets ?VV = sets ?V
by (simp add : sets vimage algebra2 vimage comp comp def flip: ex simps)

qed (simp add : vimage algebra def emeasure sigma)

Restricted Space Sigma Algebra

definition restrict space :: ′a measure ⇒ ′a set ⇒ ′a measure where
restrict space M Ω = measure of (Ω ∩ space M ) (((∩) Ω) ‘ sets M ) (emeasure

M )

lemma space restrict space: space (restrict space M Ω) = Ω ∩ space M
using sets.sets into space unfolding restrict space def by (subst space measure of )

auto
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lemma space restrict space2 [simp]: Ω ∈ sets M =⇒ space (restrict space M Ω)
= Ω
by (simp add : space restrict space sets.sets into space)

lemma sets restrict space: sets (restrict space M Ω) = ((∩) Ω) ‘ sets M
unfolding restrict space def

proof (subst sets measure of )
show (∩) Ω ‘ sets M ⊆ Pow (Ω ∩ space M )
by (auto dest : sets.sets into space)

have sigma sets (Ω ∩ space M ) {((λx . x ) −‘ X ) ∩ (Ω ∩ space M ) | X . X ∈ sets
M } =

(λX . X ∩ (Ω ∩ space M )) ‘ sets M
by (subst sigma sets vimage commute[symmetric, where Ω ′ = space M ])

(auto simp add : sets.sigma sets eq)
moreover have {((λx . x ) −‘ X ) ∩ (Ω ∩ space M ) | X . X ∈ sets M } = (λX . X
∩ (Ω ∩ space M )) ‘ sets M

by auto
moreover have (λX . X ∩ (Ω ∩ space M )) ‘ sets M = ((∩) Ω) ‘ sets M
by (intro image cong) (auto dest : sets.sets into space)

ultimately show sigma sets (Ω ∩ space M ) ((∩) Ω ‘ sets M ) = (∩) Ω ‘ sets M
by simp

qed

lemma restrict space sets cong :
A = B =⇒ sets M = sets N =⇒ sets (restrict space M A) = sets (restrict space

N B)
by (auto simp: sets restrict space)

lemma sets restrict space count space :
sets (restrict space (count space A) B) = sets (count space (A ∩ B))

by(auto simp add : sets restrict space)

lemma sets restrict UNIV [simp]: sets (restrict space M UNIV ) = sets M
by (auto simp add : sets restrict space)

lemma sets restrict restrict space:
sets (restrict space (restrict space M A) B) = sets (restrict space M (A ∩ B))
unfolding sets restrict space image comp by (intro image cong) auto

lemma sets restrict space iff :
Ω ∩ space M ∈ sets M =⇒ A ∈ sets (restrict space M Ω) ←→ (A ⊆ Ω ∧ A ∈

sets M )
proof (subst sets restrict space, safe)
fix A assume Ω ∩ space M ∈ sets M and A: A ∈ sets M
then have (Ω ∩ space M ) ∩ A ∈ sets M
by rule

also have (Ω ∩ space M ) ∩ A = Ω ∩ A
using sets.sets into space[OF A] by auto

finally show Ω ∩ A ∈ sets M
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by auto
qed auto

lemma sets restrict space cong : sets M = sets N =⇒ sets (restrict space M Ω) =
sets (restrict space N Ω)
by (simp add : sets restrict space)

lemma restrict space eq vimage algebra:
Ω ⊆ space M =⇒ sets (restrict space M Ω) = sets (vimage algebra Ω (λx . x ) M )
unfolding restrict space def
apply (subst sets measure of )
apply (auto simp add : image subset iff dest : sets.sets into space) []
apply (auto simp add : sets vimage algebra intro!: arg cong2 [where f=sigma sets])
done

lemma sets Collect restrict space iff :
assumes S ∈ sets M
shows {x∈space (restrict space M S ). P x} ∈ sets (restrict space M S ) ←→
{x∈space M . x ∈ S ∧ P x} ∈ sets M
proof −
have {x∈S . P x} = {x∈space M . x ∈ S ∧ P x}
using sets.sets into space[OF assms] by auto

then show ?thesis
by (subst sets restrict space iff ) (auto simp add : space restrict space assms)

qed

lemma measurable restrict space1 :
assumes f : f ∈ measurable M N
shows f ∈ measurable (restrict space M Ω) N
unfolding measurable def

proof (intro CollectI conjI ballI )
show sp: f ∈ space (restrict space M Ω) → space N
using measurable space[OF f ] by (auto simp: space restrict space)

fix A assume A ∈ sets N
have f −‘ A ∩ space (restrict space M Ω) = (f −‘ A ∩ space M ) ∩ (Ω ∩ space

M )
by (auto simp: space restrict space)

also have . . . ∈ sets (restrict space M Ω)
unfolding sets restrict space
using measurable sets[OF f 〈A ∈ sets N 〉] by blast

finally show f −‘ A ∩ space (restrict space M Ω) ∈ sets (restrict space M Ω) .
qed

lemma measurable restrict space2 iff :
f ∈ measurable M (restrict space N Ω) ←→ (f ∈ measurable M N ∧ f ∈ space

M → Ω)
proof −
have

∧
A. f ∈ space M → Ω =⇒ f −‘ Ω ∩ f −‘ A ∩ space M = f −‘ A ∩ space
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M
by auto

then show ?thesis
by (auto simp: measurable def space restrict space Pi Int [symmetric] sets restrict space)

qed

lemma measurable restrict space2 :
f ∈ space M → Ω =⇒ f ∈ measurable M N =⇒ f ∈ measurable M (restrict space

N Ω)
by (simp add : measurable restrict space2 iff )

lemma measurable piecewise restrict :
assumes I : countable C
and X :

∧
Ω. Ω ∈ C =⇒ Ω ∩ space M ∈ sets M space M ⊆

⋃
C

and f :
∧
Ω. Ω ∈ C =⇒ f ∈ measurable (restrict space M Ω) N

shows f ∈ measurable M N
proof (rule measurableI )
fix x assume x ∈ space M
with X obtain Ω where Ω ∈ C x ∈ Ω x ∈ space M by auto
then show f x ∈ space N
by (auto simp: space restrict space intro: f measurable space)

next
fix A assume A: A ∈ sets N
have f −‘ A ∩ space M = (

⋃
Ω∈C . (f −‘ A ∩ (Ω ∩ space M )))

using X by (auto simp: subset eq)
also have . . . ∈ sets M
using measurable sets[OF f A] X I
by (intro sets.countable UN ′) (auto simp: sets restrict space iff space restrict space)
finally show f −‘ A ∩ space M ∈ sets M .

qed

lemma measurable piecewise restrict iff :
countable C =⇒ (

∧
Ω. Ω ∈ C =⇒ Ω ∩ space M ∈ sets M ) =⇒ space M ⊆ (

⋃
C )

=⇒
f ∈ measurable M N ←→ (∀Ω∈C . f ∈ measurable (restrict space M Ω) N )

by (auto intro: measurable piecewise restrict measurable restrict space1 )

lemma measurable If restrict space iff :
{x∈space M . P x} ∈ sets M =⇒
(λx . if P x then f x else g x ) ∈ measurable M N ←→
(f ∈ measurable (restrict space M {x . P x}) N ∧ g ∈ measurable (restrict space

M {x . ¬ P x}) N )
by (subst measurable piecewise restrict iff [where C={{x . P x}, {x . ¬ P x}}])
(auto simp: Int def sets.sets Collect neg space restrict space conj commute[of

x ∈ space M for x ]
cong : measurable cong ′)

lemma measurable If :
f ∈ measurable M M ′ =⇒ g ∈ measurable M M ′ =⇒ {x∈space M . P x} ∈ sets
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M =⇒
(λx . if P x then f x else g x ) ∈ measurable M M ′

unfolding measurable If restrict space iff by (auto intro: measurable restrict space1 )

lemma measurable If set :
assumes measure: f ∈ measurable M M ′ g ∈ measurable M M ′

assumes P : A ∩ space M ∈ sets M
shows (λx . if x ∈ A then f x else g x ) ∈ measurable M M ′

proof (rule measurable If [OF measure])
have {x ∈ space M . x ∈ A} = A ∩ space M by auto
thus {x ∈ space M . x ∈ A} ∈ sets M using 〈A ∩ space M ∈ sets M 〉 by auto

qed

lemma measurable restrict space iff :
Ω ∩ space M ∈ sets M =⇒ c ∈ space N =⇒
f ∈ measurable (restrict space M Ω) N ←→ (λx . if x ∈ Ω then f x else c) ∈

measurable M N
by (subst measurable If restrict space iff )

(simp all add : Int def conj commute measurable const)

lemma restrict space singleton: {x} ∈ sets M =⇒ sets (restrict space M {x}) =
sets (count space {x})
using sets restrict space iff [of {x} M ]
by (auto simp add : sets restrict space iff dest !: subset singletonD)

lemma measurable restrict countable:
assumes X [intro]: countable X
assumes sets[simp]:

∧
x . x ∈ X =⇒ {x} ∈ sets M

assumes space[simp]:
∧
x . x ∈ X =⇒ f x ∈ space N

assumes f : f ∈ measurable (restrict space M (− X )) N
shows f ∈ measurable M N
using f sets.countable[OF sets X ]
by (intro measurable piecewise restrict [where M=M and C={− X } ∪ ((λx .
{x}) ‘ X )])

(auto simp: Diff Int distrib2 Compl eq Diff UNIV Int insert left sets.Diff re-
strict space singleton

simp del : sets count space cong : measurable cong sets)

lemma measurable discrete difference:
assumes f : f ∈ measurable M N
assumes X : countable X

∧
x . x ∈ X =⇒ {x} ∈ sets M

∧
x . x ∈ X =⇒ g x ∈

space N
assumes eq :

∧
x . x ∈ space M =⇒ x /∈ X =⇒ f x = g x

shows g ∈ measurable M N
by (rule measurable restrict countable[OF X ])

(auto simp: eq [symmetric] space restrict space cong : measurable cong ′ intro: f
measurable restrict space1 )

lemma measurable count space extend : A ⊆ B =⇒ f ∈ space M → A =⇒ f ∈ M
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→M count space B =⇒ f ∈ M →M count space A
by (auto simp: measurable def )

end

6.2 Measurability Prover

theory Measurable
imports
Sigma Algebra
HOL−Library .Order Continuity

begin

lemma (in algebra) sets Collect finite All :
assumes

∧
i . i ∈ S =⇒ {x∈Ω. P i x} ∈ M finite S

shows {x∈Ω. ∀ i∈S . P i x} ∈ M
proof −
have {x∈Ω. ∀ i∈S . P i x} = (if S = {} then Ω else

⋂
i∈S . {x∈Ω. P i x})

by auto
with assms show ?thesis by (auto intro!: sets Collect finite All ′)

qed

abbreviation pred M P ≡ P ∈ measurable M (count space (UNIV ::bool set))

lemma pred def : pred M P ←→ {x∈space M . P x} ∈ sets M
proof
assume pred M P
then have P −‘ {True} ∩ space M ∈ sets M
by (auto simp: measurable count space eq2 )

also have P −‘ {True} ∩ space M = {x∈space M . P x} by auto
finally show {x∈space M . P x} ∈ sets M .

next
assume P : {x∈space M . P x} ∈ sets M
moreover
{ fix X
have X ∈ Pow (UNIV :: bool set) by simp
then have P −‘ X ∩ space M = {x∈space M . ((X = {True} −→ P x ) ∧ (X

= {False} −→ ¬ P x ) ∧ X 6= {})}
unfolding UNIV bool Pow insert Pow empty by auto

then have P −‘ X ∩ space M ∈ sets M
by (auto intro!: sets.sets Collect neg sets.sets Collect imp sets.sets Collect conj

sets.sets Collect const P) }
then show pred M P
by (auto simp: measurable def )

qed

lemma pred sets1 : {x∈space M . P x} ∈ sets M =⇒ f ∈ measurable N M =⇒
pred N (λx . P (f x ))
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by (rule measurable compose[where f=f and N=M ]) (auto simp: pred def )

lemma pred sets2 : A ∈ sets N =⇒ f ∈ measurable M N =⇒ pred M (λx . f x ∈
A)
by (rule measurable compose[where f=f and N=N ]) (auto simp: pred def Int def [symmetric])

ML file 〈measurable.ML〉

attribute setup measurable = 〈

Scan.lift (
(Args.add >> K true || Args.del >> K false || Scan.succeed true) −−
Scan.optional (Args.parens (
Scan.optional (Args.$$$ raw >> K true) false −−

Scan.optional (Args.$$$ generic >> K Measurable.Generic) Measurable.Concrete))
(false, Measurable.Concrete) >>
Measurable.measurable thm attr)

〉 declaration of measurability theorems

attribute setup measurable dest = Measurable.dest thm attr
add dest rule to measurability prover

attribute setup measurable cong = Measurable.cong thm attr
add congurence rules to measurability prover

method setup measurable = 〈 Scan.lift (Scan.succeed (METHOD o Measurable.measurable tac))
〉

measurability prover

simproc setup measurable (A ∈ sets M | f ∈ measurable M N ) = 〈K Measur-
able.simproc〉

setup 〈

Global Theory .add thms dynamic (binding 〈measurable〉, Measurable.get all)
〉

declare
pred sets1 [measurable dest ]
pred sets2 [measurable dest ]
sets.sets into space[measurable dest ]

declare
sets.top[measurable]
sets.empty sets[measurable (raw)]
sets.Un[measurable (raw)]
sets.Diff [measurable (raw)]

declare
measurable count space[measurable (raw)]
measurable ident [measurable (raw)]
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measurable id [measurable (raw)]
measurable const [measurable (raw)]
measurable If [measurable (raw)]
measurable comp[measurable (raw)]
measurable sets[measurable (raw)]

declare measurable cong sets[measurable cong ]
declare sets restrict space cong [measurable cong ]
declare sets restrict UNIV [measurable cong ]

lemma predE [measurable (raw)]:
pred M P =⇒ {x∈space M . P x} ∈ sets M
unfolding pred def .

lemma pred intros imp ′[measurable (raw)]:
(K =⇒ pred M (λx . P x )) =⇒ pred M (λx . K −→ P x )
by (cases K ) auto

lemma pred intros conj1 ′[measurable (raw)]:
(K =⇒ pred M (λx . P x )) =⇒ pred M (λx . K ∧ P x )
by (cases K ) auto

lemma pred intros conj2 ′[measurable (raw)]:
(K =⇒ pred M (λx . P x )) =⇒ pred M (λx . P x ∧ K )
by (cases K ) auto

lemma pred intros disj1 ′[measurable (raw)]:
(¬ K =⇒ pred M (λx . P x )) =⇒ pred M (λx . K ∨ P x )
by (cases K ) auto

lemma pred intros disj2 ′[measurable (raw)]:
(¬ K =⇒ pred M (λx . P x )) =⇒ pred M (λx . P x ∨ K )
by (cases K ) auto

lemma pred intros logic[measurable (raw)]:
pred M (λx . x ∈ space M )
pred M (λx . P x ) =⇒ pred M (λx . ¬ P x )
pred M (λx . Q x ) =⇒ pred M (λx . P x ) =⇒ pred M (λx . Q x ∧ P x )
pred M (λx . Q x ) =⇒ pred M (λx . P x ) =⇒ pred M (λx . Q x −→ P x )
pred M (λx . Q x ) =⇒ pred M (λx . P x ) =⇒ pred M (λx . Q x ∨ P x )
pred M (λx . Q x ) =⇒ pred M (λx . P x ) =⇒ pred M (λx . Q x = P x )
pred M (λx . f x ∈ UNIV )
pred M (λx . f x ∈ {})
pred M (λx . P ′ (f x ) x ) =⇒ pred M (λx . f x ∈ {y . P ′ y x})
pred M (λx . f x ∈ (B x )) =⇒ pred M (λx . f x ∈ − (B x ))
pred M (λx . f x ∈ (A x )) =⇒ pred M (λx . f x ∈ (B x )) =⇒ pred M (λx . f x ∈

(A x ) − (B x ))
pred M (λx . f x ∈ (A x )) =⇒ pred M (λx . f x ∈ (B x )) =⇒ pred M (λx . f x ∈

(A x ) ∩ (B x ))
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pred M (λx . f x ∈ (A x )) =⇒ pred M (λx . f x ∈ (B x )) =⇒ pred M (λx . f x ∈
(A x ) ∪ (B x ))
pred M (λx . g x (f x ) ∈ (X x )) =⇒ pred M (λx . f x ∈ (g x ) −‘ (X x ))
by (auto simp: iff conv conj imp pred def )

lemma pred intros countable[measurable (raw)]:
fixes P :: ′a ⇒ ′i :: countable ⇒ bool
shows
(
∧
i . pred M (λx . P x i)) =⇒ pred M (λx . ∀ i . P x i)

(
∧
i . pred M (λx . P x i)) =⇒ pred M (λx . ∃ i . P x i)

by (auto intro!: sets.sets Collect countable All sets.sets Collect countable Ex simp:
pred def )

lemma pred intros countable bounded [measurable (raw)]:
fixes X :: ′i :: countable set
shows
(
∧
i . i ∈ X =⇒ pred M (λx . x ∈ N x i)) =⇒ pred M (λx . x ∈ (

⋂
i∈X . N x i))

(
∧
i . i ∈ X =⇒ pred M (λx . x ∈ N x i)) =⇒ pred M (λx . x ∈ (

⋃
i∈X . N x i))

(
∧
i . i ∈ X =⇒ pred M (λx . P x i)) =⇒ pred M (λx . ∀ i∈X . P x i)

(
∧
i . i ∈ X =⇒ pred M (λx . P x i)) =⇒ pred M (λx . ∃ i∈X . P x i)

by simp all (auto simp: Bex def Ball def )

lemma pred intros finite[measurable (raw)]:
finite I =⇒ (

∧
i . i ∈ I =⇒ pred M (λx . x ∈ N x i)) =⇒ pred M (λx . x ∈ (

⋂
i∈I .

N x i))
finite I =⇒ (

∧
i . i ∈ I =⇒ pred M (λx . x ∈ N x i)) =⇒ pred M (λx . x ∈ (

⋃
i∈I .

N x i))
finite I =⇒ (

∧
i . i ∈ I =⇒ pred M (λx . P x i)) =⇒ pred M (λx . ∀ i∈I . P x i)

finite I =⇒ (
∧
i . i ∈ I =⇒ pred M (λx . P x i)) =⇒ pred M (λx . ∃ i∈I . P x i)

by (auto intro!: sets.sets Collect finite Ex sets.sets Collect finite All simp: iff conv conj imp
pred def )

lemma countable Un Int [measurable (raw)]:
(
∧
i :: ′i :: countable. i ∈ I =⇒ N i ∈ sets M ) =⇒ (

⋃
i∈I . N i) ∈ sets M

I 6= {} =⇒ (
∧
i :: ′i :: countable. i ∈ I =⇒ N i ∈ sets M ) =⇒ (

⋂
i∈I . N i) ∈

sets M
by auto

declare
finite UN [measurable (raw)]
finite INT [measurable (raw)]

lemma sets Int pred [measurable (raw)]:
assumes space: A ∩ B ⊆ space M and [measurable]: pred M (λx . x ∈ A) pred

M (λx . x ∈ B)
shows A ∩ B ∈ sets M

proof −
have {x∈space M . x ∈ A ∩ B} ∈ sets M by auto
also have {x∈space M . x ∈ A ∩ B} = A ∩ B
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using space by auto
finally show ?thesis .

qed

lemma [measurable (raw generic)]:
assumes f : f ∈ measurable M N and c: c ∈ space N =⇒ {c} ∈ sets N
shows pred eq const1 : pred M (λx . f x = c)
and pred eq const2 : pred M (λx . c = f x )

proof −
show pred M (λx . f x = c)
proof cases
assume c ∈ space N
with measurable sets[OF f c] show ?thesis
by (auto simp: Int def conj commute pred def )

next
assume c /∈ space N
with f [THEN measurable space] have {x ∈ space M . f x = c} = {} by auto
then show ?thesis by (auto simp: pred def cong : conj cong)

qed
then show pred M (λx . c = f x )
by (simp add : eq commute)

qed

lemma pred count space const1 [measurable (raw)]:
f ∈ measurable M (count space UNIV ) =⇒ Measurable.pred M (λx . f x = c)
by (intro pred eq const1 [where N=count space UNIV ]) (auto )

lemma pred count space const2 [measurable (raw)]:
f ∈ measurable M (count space UNIV ) =⇒ Measurable.pred M (λx . c = f x )
by (intro pred eq const2 [where N=count space UNIV ]) (auto )

lemma pred le const [measurable (raw generic)]:
assumes f : f ∈ measurable M N and c: {.. c} ∈ sets N shows pred M (λx . f x
≤ c)
using measurable sets[OF f c]
by (auto simp: Int def conj commute eq commute pred def )

lemma pred const le[measurable (raw generic)]:
assumes f : f ∈ measurable M N and c: {c ..} ∈ sets N shows pred M (λx . c
≤ f x )
using measurable sets[OF f c]
by (auto simp: Int def conj commute eq commute pred def )

lemma pred less const [measurable (raw generic)]:
assumes f : f ∈ measurable M N and c: {..< c} ∈ sets N shows pred M (λx . f

x < c)
using measurable sets[OF f c]
by (auto simp: Int def conj commute eq commute pred def )
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lemma pred const less[measurable (raw generic)]:
assumes f : f ∈ measurable M N and c: {c <..} ∈ sets N shows pred M (λx .

c < f x )
using measurable sets[OF f c]
by (auto simp: Int def conj commute eq commute pred def )

declare
sets.Int [measurable (raw)]

lemma pred in If [measurable (raw)]:
(P =⇒ pred M (λx . x ∈ A x )) =⇒ (¬ P =⇒ pred M (λx . x ∈ B x )) =⇒
pred M (λx . x ∈ (if P then A x else B x ))

by auto

lemma sets range[measurable dest ]:
A ‘ I ⊆ sets M =⇒ i ∈ I =⇒ A i ∈ sets M
by auto

lemma pred sets range[measurable dest ]:
A ‘ I ⊆ sets N =⇒ i ∈ I =⇒ f ∈ measurable M N =⇒ pred M (λx . f x ∈ A i)
using pred sets2 [OF sets range] by auto

lemma sets All [measurable dest ]:
∀ i . A i ∈ sets (M i) =⇒ A i ∈ sets (M i)
by auto

lemma pred sets All [measurable dest ]:
∀ i . A i ∈ sets (N i) =⇒ f ∈ measurable M (N i) =⇒ pred M (λx . f x ∈ A i)
using pred sets2 [OF sets All , of A N f ] by auto

lemma sets Ball [measurable dest ]:
∀ i∈I . A i ∈ sets (M i) =⇒ i∈I =⇒ A i ∈ sets (M i)
by auto

lemma pred sets Ball [measurable dest ]:
∀ i∈I . A i ∈ sets (N i) =⇒ i∈I =⇒ f ∈ measurable M (N i) =⇒ pred M (λx . f

x ∈ A i)
using pred sets2 [OF sets Ball , of f ] by auto

lemma measurable finite[measurable (raw)]:
fixes S :: ′a ⇒ nat set
assumes [measurable]:

∧
i . {x∈space M . i ∈ S x} ∈ sets M

shows pred M (λx . finite (S x ))
unfolding finite nat set iff bounded by (simp add : Ball def )

lemma measurable Least [measurable]:
assumes [measurable]: (

∧
i ::nat . (λx . P i x ) ∈ measurable M (count space UNIV ))

shows (λx . LEAST i . P i x ) ∈ measurable M (count space UNIV )
unfolding measurable def by (safe intro!: sets Least) simp all
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lemma measurable Max nat [measurable (raw)]:
fixes P :: nat ⇒ ′a ⇒ bool
assumes [measurable]:

∧
i . Measurable.pred M (P i)

shows (λx . Max {i . P i x}) ∈ measurable M (count space UNIV )
unfolding measurable count space eq2 countable

proof safe
fix n

{ fix x assume ∀ i . ∃n≥i . P n x
then have infinite {i . P i x}
unfolding infinite nat iff unbounded le by auto

then have Max {i . P i x} = the None
by (rule Max .infinite) }

note 1 = this

{ fix x i j assume P i x ∀n≥j . ¬ P n x
then have finite {i . P i x}
by (auto simp: subset eq not le[symmetric] finite nat iff bounded)

with 〈P i x 〉 have P (Max {i . P i x}) x i ≤ Max {i . P i x} finite {i . P i x}
using Max in[of {i . P i x}] by auto }

note 2 = this

have (λx . Max {i . P i x}) −‘ {n} ∩ space M = {x∈space M . Max {i . P i x} =
n}

by auto
also have . . . =
{x∈space M . if (∀ i . ∃n≥i . P n x ) then the None = n else
if (∃ i . P i x ) then P n x ∧ (∀ i>n. ¬ P i x )
else Max {} = n}

by (intro arg cong [where f=Collect ] ext conj cong)
(auto simp add : 1 2 not le[symmetric] intro!: Max eqI )

also have . . . ∈ sets M
by measurable

finally show (λx . Max {i . P i x}) −‘ {n} ∩ space M ∈ sets M .
qed simp

lemma measurable Min nat [measurable (raw)]:
fixes P :: nat ⇒ ′a ⇒ bool
assumes [measurable]:

∧
i . Measurable.pred M (P i)

shows (λx . Min {i . P i x}) ∈ measurable M (count space UNIV )
unfolding measurable count space eq2 countable

proof safe
fix n

{ fix x assume ∀ i . ∃n≥i . P n x
then have infinite {i . P i x}
unfolding infinite nat iff unbounded le by auto

then have Min {i . P i x} = the None
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by (rule Min.infinite) }
note 1 = this

{ fix x i j assume P i x ∀n≥j . ¬ P n x
then have finite {i . P i x}
by (auto simp: subset eq not le[symmetric] finite nat iff bounded)

with 〈P i x 〉 have P (Min {i . P i x}) x Min {i . P i x} ≤ i finite {i . P i x}
using Min in[of {i . P i x}] by auto }

note 2 = this

have (λx . Min {i . P i x}) −‘ {n} ∩ space M = {x∈space M . Min {i . P i x} =
n}

by auto
also have . . . =
{x∈space M . if (∀ i . ∃n≥i . P n x ) then the None = n else
if (∃ i . P i x ) then P n x ∧ (∀ i<n. ¬ P i x )
else Min {} = n}

by (intro arg cong [where f=Collect ] ext conj cong)
(auto simp add : 1 2 not le[symmetric] intro!: Min eqI )

also have . . . ∈ sets M
by measurable

finally show (λx . Min {i . P i x}) −‘ {n} ∩ space M ∈ sets M .
qed simp

lemma measurable count space insert [measurable (raw)]:
s ∈ S =⇒ A ∈ sets (count space S ) =⇒ insert s A ∈ sets (count space S )
by simp

lemma sets UNIV [measurable (raw)]: A ∈ sets (count space UNIV )
by simp

lemma measurable card [measurable]:
fixes S :: ′a ⇒ nat set
assumes [measurable]:

∧
i . {x∈space M . i ∈ S x} ∈ sets M

shows (λx . card (S x )) ∈ measurable M (count space UNIV )
unfolding measurable count space eq2 countable

proof safe
fix n show (λx . card (S x )) −‘ {n} ∩ space M ∈ sets M
proof (cases n)
case 0
then have (λx . card (S x )) −‘ {n} ∩ space M = {x∈space M . infinite (S x )

∨ (∀ i . i /∈ S x )}
by auto

also have . . . ∈ sets M
by measurable

finally show ?thesis .
next
case (Suc i)
then have (λx . card (S x )) −‘ {n} ∩ space M =
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(
⋃
F∈{A∈{A. finite A}. card A = n}. {x∈space M . (∀ i . i ∈ S x ←→ i ∈

F )})
unfolding set eq iff [symmetric] Collect bex eq [symmetric] by (auto intro:

card ge 0 finite)
also have . . . ∈ sets M
by (intro sets.countable UN ′ countable Collect countable Collect finite) auto

finally show ?thesis .
qed

qed rule

lemma measurable pred countable[measurable (raw)]:
assumes countable X
shows
(
∧
i . i ∈ X =⇒ Measurable.pred M (λx . P x i)) =⇒ Measurable.pred M (λx .

∀ i∈X . P x i)
(
∧
i . i ∈ X =⇒ Measurable.pred M (λx . P x i)) =⇒ Measurable.pred M (λx .

∃ i∈X . P x i)
unfolding pred def
by (auto intro!: sets.sets Collect countable All ′ sets.sets Collect countable Ex ′

assms)

6.2.1 Measurability for (co)inductive predicates

lemma measurable bot [measurable]: bot ∈ measurable M (count space UNIV )
by (simp add : bot fun def )

lemma measurable top[measurable]: top ∈ measurable M (count space UNIV )
by (simp add : top fun def )

lemma measurable SUP [measurable]:
fixes F :: ′i ⇒ ′a ⇒ ′b::{complete lattice, countable}
assumes [simp]: countable I
assumes [measurable]:

∧
i . i ∈ I =⇒ F i ∈ measurable M (count space UNIV )

shows (λx . SUP i∈I . F i x ) ∈ measurable M (count space UNIV )
unfolding measurable count space eq2 countable

proof (safe intro!: UNIV I )
fix a
have (λx . SUP i∈I . F i x ) −‘ {a} ∩ space M =
{x∈space M . (∀ i∈I . F i x ≤ a) ∧ (∀ b. (∀ i∈I . F i x ≤ b) −→ a ≤ b)}
unfolding SUP le iff [symmetric] by auto

also have . . . ∈ sets M
by measurable

finally show (λx . SUP i∈I . F i x ) −‘ {a} ∩ space M ∈ sets M .
qed

lemma measurable INF [measurable]:
fixes F :: ′i ⇒ ′a ⇒ ′b::{complete lattice, countable}
assumes [simp]: countable I
assumes [measurable]:

∧
i . i ∈ I =⇒ F i ∈ measurable M (count space UNIV )
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shows (λx . INF i∈I . F i x ) ∈ measurable M (count space UNIV )
unfolding measurable count space eq2 countable

proof (safe intro!: UNIV I )
fix a
have (λx . INF i∈I . F i x ) −‘ {a} ∩ space M =
{x∈space M . (∀ i∈I . a ≤ F i x ) ∧ (∀ b. (∀ i∈I . b ≤ F i x ) −→ b ≤ a)}
unfolding le INF iff [symmetric] by auto

also have . . . ∈ sets M
by measurable

finally show (λx . INF i∈I . F i x ) −‘ {a} ∩ space M ∈ sets M .
qed

lemma measurable lfp coinduct [consumes 1 , case names continuity step]:
fixes F :: ( ′a ⇒ ′b) ⇒ ( ′a ⇒ ′b::{complete lattice, countable})
assumes P M
assumes F : sup continuous F
assumes ∗:

∧
M A. P M =⇒ (

∧
N . P N =⇒ A ∈ measurable N (count space

UNIV )) =⇒ F A ∈ measurable M (count space UNIV )
shows lfp F ∈ measurable M (count space UNIV )

proof −
{ fix i from 〈P M 〉 have ((F ˆˆ i) bot) ∈ measurable M (count space UNIV )

by (induct i arbitrary : M ) (auto intro!: ∗) }
then have (λx . SUP i . (F ˆˆ i) bot x ) ∈ measurable M (count space UNIV )
by measurable

also have (λx . SUP i . (F ˆˆ i) bot x ) = lfp F
by (subst sup continuous lfp) (auto intro: F simp: image comp)

finally show ?thesis .
qed

lemma measurable lfp:
fixes F :: ( ′a ⇒ ′b) ⇒ ( ′a ⇒ ′b::{complete lattice, countable})
assumes F : sup continuous F
assumes ∗:

∧
A. A ∈ measurable M (count space UNIV ) =⇒ F A ∈ measurable

M (count space UNIV )
shows lfp F ∈ measurable M (count space UNIV )
by (coinduction rule: measurable lfp coinduct [OF F ]) (blast intro: ∗)

lemma measurable gfp coinduct [consumes 1 , case names continuity step]:
fixes F :: ( ′a ⇒ ′b) ⇒ ( ′a ⇒ ′b::{complete lattice, countable})
assumes P M
assumes F : inf continuous F
assumes ∗:

∧
M A. P M =⇒ (

∧
N . P N =⇒ A ∈ measurable N (count space

UNIV )) =⇒ F A ∈ measurable M (count space UNIV )
shows gfp F ∈ measurable M (count space UNIV )

proof −
{ fix i from 〈P M 〉 have ((F ˆˆ i) top) ∈ measurable M (count space UNIV )

by (induct i arbitrary : M ) (auto intro!: ∗) }
then have (λx . INF i . (F ˆˆ i) top x ) ∈ measurable M (count space UNIV )
by measurable
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also have (λx . INF i . (F ˆˆ i) top x ) = gfp F
by (subst inf continuous gfp) (auto intro: F simp: image comp)

finally show ?thesis .
qed

lemma measurable gfp:
fixes F :: ( ′a ⇒ ′b) ⇒ ( ′a ⇒ ′b::{complete lattice, countable})
assumes F : inf continuous F
assumes ∗:

∧
A. A ∈ measurable M (count space UNIV ) =⇒ F A ∈ measurable

M (count space UNIV )
shows gfp F ∈ measurable M (count space UNIV )
by (coinduction rule: measurable gfp coinduct [OF F ]) (blast intro: ∗)

lemma measurable lfp2 coinduct [consumes 1 , case names continuity step]:
fixes F :: ( ′a ⇒ ′c ⇒ ′b) ⇒ ( ′a ⇒ ′c ⇒ ′b::{complete lattice, countable})
assumes P M s
assumes F : sup continuous F
assumes ∗:

∧
M A s. P M s =⇒ (

∧
N t . P N t =⇒ A t ∈ measurable N

(count space UNIV )) =⇒ F A s ∈ measurable M (count space UNIV )
shows lfp F s ∈ measurable M (count space UNIV )

proof −
{ fix i from 〈P M s〉 have (λx . (F ˆˆ i) bot s x ) ∈ measurable M (count space

UNIV )
by (induct i arbitrary : M s) (auto intro!: ∗) }

then have (λx . SUP i . (F ˆˆ i) bot s x ) ∈ measurable M (count space UNIV )
by measurable

also have (λx . SUP i . (F ˆˆ i) bot s x ) = lfp F s
by (subst sup continuous lfp) (auto simp: F simp: image comp)

finally show ?thesis .
qed

lemma measurable gfp2 coinduct [consumes 1 , case names continuity step]:
fixes F :: ( ′a ⇒ ′c ⇒ ′b) ⇒ ( ′a ⇒ ′c ⇒ ′b::{complete lattice, countable})
assumes P M s
assumes F : inf continuous F
assumes ∗:

∧
M A s. P M s =⇒ (

∧
N t . P N t =⇒ A t ∈ measurable N

(count space UNIV )) =⇒ F A s ∈ measurable M (count space UNIV )
shows gfp F s ∈ measurable M (count space UNIV )

proof −
{ fix i from 〈P M s〉 have (λx . (F ˆˆ i) top s x ) ∈ measurable M (count space

UNIV )
by (induct i arbitrary : M s) (auto intro!: ∗) }

then have (λx . INF i . (F ˆˆ i) top s x ) ∈ measurable M (count space UNIV )
by measurable

also have (λx . INF i . (F ˆˆ i) top s x ) = gfp F s
by (subst inf continuous gfp) (auto simp: F simp: image comp)

finally show ?thesis .
qed
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lemma measurable enat coinduct :
fixes f :: ′a ⇒ enat
assumes R f
assumes ∗:

∧
f . R f =⇒ ∃ g h i P . R g ∧ f = (λx . if P x then h x else eSuc (g

(i x ))) ∧
Measurable.pred M P ∧
i ∈ measurable M M ∧
h ∈ measurable M (count space UNIV )

shows f ∈ measurable M (count space UNIV )
proof (simp add : measurable count space eq2 countable, rule )
fix a :: enat
have f −‘ {a} ∩ space M = {x∈space M . f x = a}
by auto

{ fix i :: nat
from 〈R f 〉 have Measurable.pred M (λx . f x = enat i)
proof (induction i arbitrary : f )
case 0
from ∗[OF this] obtain g h i P
where f : f = (λx . if P x then h x else eSuc (g (i x ))) and

[measurable]: Measurable.pred M P i ∈ measurable M M h ∈ measurable
M (count space UNIV )

by auto
have Measurable.pred M (λx . P x ∧ h x = 0 )
by measurable

also have (λx . P x ∧ h x = 0 ) = (λx . f x = enat 0 )
by (auto simp: f zero enat def [symmetric])

finally show ?case .
next
case (Suc n)
from ∗[OF Suc.prems] obtain g h i P
where f : f = (λx . if P x then h x else eSuc (g (i x ))) and R g and
M [measurable]: Measurable.pred M P i ∈ measurable M M h ∈ measurable

M (count space UNIV )
by auto

have (λx . f x = enat (Suc n)) =
(λx . (P x −→ h x = enat (Suc n)) ∧ (¬ P x −→ g (i x ) = enat n))
by (auto simp: f zero enat def [symmetric] eSuc enat [symmetric])

also have Measurable.pred M . . .
by (intro pred intros logic measurable compose[OF M (2 )] Suc 〈R g〉)

measurable
finally show ?case .

qed
then have f −‘ {enat i} ∩ space M ∈ sets M
by (simp add : pred def Int def conj commute) }

note fin = this
show f −‘ {a} ∩ space M ∈ sets M
proof (cases a)
case infinity
then have f −‘ {a} ∩ space M = space M − (

⋃
n. f −‘ {enat n} ∩ space M )
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by auto
also have . . . ∈ sets M
by (intro sets.Diff sets.top sets.Un sets.countable UN ) (auto intro!: fin)

finally show ?thesis .
qed (simp add : fin)

qed

lemma measurable THE :
fixes P :: ′a ⇒ ′b ⇒ bool
assumes [measurable]:

∧
i . Measurable.pred M (P i)

assumes I [simp]: countable I
∧
i x . x ∈ space M =⇒ P i x =⇒ i ∈ I

assumes unique:
∧
x i j . x ∈ space M =⇒ P i x =⇒ P j x =⇒ i = j

shows (λx . THE i . P i x ) ∈ measurable M (count space UNIV )
unfolding measurable def

proof safe
fix X
define f where f x = (THE i . P i x ) for x
define undef where undef = (THE i :: ′a. False)
{ fix i x assume x ∈ space M P i x then have f x = i

unfolding f def using unique by auto }
note f eq = this
{ fix x assume x ∈ space M ∀ i∈I . ¬ P i x
then have

∧
i . ¬ P i x

using I (2 )[of x ] by auto
then have f x = undef
by (auto simp: undef def f def ) }

then have f −‘ X ∩ space M = (
⋃
i∈I ∩ X . {x∈space M . P i x}) ∪

(if undef ∈ X then space M − (
⋃

i∈I . {x∈space M . P i x}) else {})
by (auto dest : f eq)

also have . . . ∈ sets M
by (auto intro!: sets.Diff sets.countable UN ′)

finally show f −‘ X ∩ space M ∈ sets M .
qed simp

lemma measurable Ex1 [measurable (raw)]:
assumes [simp]: countable I and [measurable]:

∧
i . i ∈ I =⇒ Measurable.pred

M (P i)
shows Measurable.pred M (λx . ∃ !i∈I . P i x )
unfolding bex1 def by measurable

lemma measurable Sup nat [measurable (raw)]:
fixes F :: ′a ⇒ nat set
assumes [measurable]:

∧
i . Measurable.pred M (λx . i ∈ F x )

shows (λx . Sup (F x )) ∈ M →M count space UNIV
proof (clarsimp simp add : measurable count space eq2 countable)
fix a
have F empty iff : F x = {} ←→ (∀ i . i /∈ F x ) for x
by auto

have Measurable.pred M (λx . if finite (F x ) then if F x = {} then a = 0
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else a ∈ F x ∧ (∀ j . j ∈ F x −→ j ≤ a) else a = the None)
unfolding finite nat set iff bounded Ball def F empty iff by measurable

moreover have (λx . Sup (F x )) −‘ {a} ∩ space M =
{x∈space M . if finite (F x ) then if F x = {} then a = 0
else a ∈ F x ∧ (∀ j . j ∈ F x −→ j ≤ a) else a = the None}

by (intro set eqI )
(auto simp: Sup nat def Max .infinite intro!: Max in Max eqI )

ultimately show (λx . Sup (F x )) −‘ {a} ∩ space M ∈ sets M
by auto

qed

lemma measurable if split [measurable (raw)]:
(c =⇒ Measurable.pred M f ) =⇒ (¬ c =⇒ Measurable.pred M g) =⇒
Measurable.pred M (if c then f else g)
by simp

lemma pred restrict space:
assumes S ∈ sets M
shows Measurable.pred (restrict space M S ) P ←→ Measurable.pred M (λx . x ∈

S ∧ P x )
unfolding pred def sets Collect restrict space iff [OF assms] ..

lemma measurable predpow [measurable]:
assumes Measurable.pred M T
assumes

∧
Q . Measurable.pred M Q =⇒ Measurable.pred M (R Q)

shows Measurable.pred M ((R ˆˆ n) T )
by (induct n) (auto intro: assms)

lemma measurable compose countable restrict :
assumes P : countable {i . P i}
and f : f ∈ M →M count space UNIV
and Q :

∧
i . P i =⇒ pred M (Q i)

shows pred M (λx . P (f x ) ∧ Q (f x ) x )
proof −
have P f : {x ∈ space M . P (f x )} ∈ sets M
unfolding pred def [symmetric] by (rule measurable compose[OF f ]) simp

have pred (restrict space M {x∈space M . P (f x )}) (λx . Q (f x ) x )
proof (rule measurable compose countable ′[where g=f , OF P ])
show f ∈ restrict space M {x∈space M . P (f x )} →M count space {i . P i}
by (rule measurable count space extend [OF subset UNIV ])

(auto simp: space restrict space intro!: measurable restrict space1 f )
qed (auto intro!: measurable restrict space1 Q)
then show ?thesis
unfolding pred restrict space[OF P f ] by (simp cong : measurable cong)

qed

lemma measurable limsup [measurable (raw)]:
assumes [measurable]:

∧
n. A n ∈ sets M

shows limsup A ∈ sets M
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by (subst limsup INF SUP , auto)

lemma measurable liminf [measurable (raw)]:
assumes [measurable]:

∧
n. A n ∈ sets M

shows liminf A ∈ sets M
by (subst liminf SUP INF , auto)

lemma measurable case enat [measurable (raw)]:
assumes f : f ∈ M →M count space UNIV and g :

∧
i . g i ∈ M →M N and h:

h ∈ M →M N
shows (λx . case f x of enat i ⇒ g i x | ∞ ⇒ h x ) ∈ M →M N
apply (rule measurable compose countable[OF f ])
subgoal for i
by (cases i) (auto intro: g h)

done

hide const (open) pred

end

6.3 Measure Spaces

theory Measure Space
imports
Measurable HOL−Library .Extended Nonnegative Real

begin

6.3.1 Relate extended reals and the indicator function

lemma suminf cmult indicator :
fixes f :: nat ⇒ ennreal
assumes disjoint family A x ∈ A i
shows (

∑
n. f n ∗ indicator (A n) x ) = f i

proof −
have ∗∗:

∧
n. f n ∗ indicator (A n) x = (if n = i then f n else 0 :: ennreal)

using 〈x ∈ A i 〉 assms unfolding disjoint family on def indicator def by auto
then have

∧
n. (

∑
j<n. f j ∗ indicator (A j ) x ) = (if i < n then f i else 0 ::

ennreal)
by (auto simp: sum.If cases)

moreover have (SUP n. if i < n then f i else 0 ) = (f i :: ennreal)
proof (rule SUP eqI )
fix y :: ennreal assume

∧
n. n ∈ UNIV =⇒ (if i < n then f i else 0 ) ≤ y

from this[of Suc i ] show f i ≤ y by auto
qed (insert assms, simp)
ultimately show ?thesis using assms
by (subst suminf eq SUP) (auto simp: indicator def )

qed

lemma suminf indicator :
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assumes disjoint family A
shows (

∑
n. indicator (A n) x :: ennreal) = indicator (

⋃
i . A i) x

proof cases
assume ∗: x ∈ (

⋃
i . A i)

then obtain i where x ∈ A i by auto
from suminf cmult indicator [OF assms(1 ), OF 〈x ∈ A i 〉, of λk . 1 ]
show ?thesis using ∗ by simp

qed simp

lemma sum indicator disjoint family :
fixes f :: ′d ⇒ ′e::semiring 1
assumes d : disjoint family on A P and x ∈ A j and finite P and j ∈ P
shows (

∑
i∈P . f i ∗ indicator (A i) x ) = f j

proof −
have P ∩ {i . x ∈ A i} = {j}
using d 〈x ∈ A j 〉 〈j ∈ P 〉 unfolding disjoint family on def
by auto

thus ?thesis
unfolding indicator def
by (simp add : if distrib sum.If cases[OF 〈finite P 〉])

qed

The type for emeasure spaces is already defined in HOL−Analysis.Sigma Algebra,
as it is also used to represent sigma algebras (with an arbitrary emeasure).

6.3.2 Extend binary sets

lemma LIMSEQ binaryset :
assumes f : f {} = 0
shows (λn.

∑
i<n. f (binaryset A B i)) −−−−→ f A + f B

proof −
have (λn.

∑
i < Suc (Suc n). f (binaryset A B i)) = (λn. f A + f B)

proof
fix n
show (

∑
i < Suc (Suc n). f (binaryset A B i)) = f A + f B

by (induct n) (auto simp add : binaryset def f )
qed

moreover
have ... −−−−→ f A + f B by (rule tendsto const)
ultimately
have (λn.

∑
i< Suc (Suc n). f (binaryset A B i)) −−−−→ f A + f B

by metis
hence (λn.

∑
i< n+2 . f (binaryset A B i)) −−−−→ f A + f B

by simp
thus ?thesis by (rule LIMSEQ offset [where k=2 ])

qed

lemma binaryset sums:
assumes f : f {} = 0
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shows (λn. f (binaryset A B n)) sums (f A + f B)
by (simp add : sums def LIMSEQ binaryset [where f=f , OF f ] atLeast0LessThan)

lemma suminf binaryset eq :
fixes f :: ′a set ⇒ ′b::{comm monoid add , t2 space}
shows f {} = 0 =⇒ (

∑
n. f (binaryset A B n)) = f A + f B

by (metis binaryset sums sums unique)

6.3.3 Properties of a premeasure µ

The definitions for positive and countably additive should be here, by they
are necessary to define ′a measure in HOL−Analysis.Sigma Algebra.

definition subadditive where
subadditive M f ←→ (∀ x∈M . ∀ y∈M . x ∩ y = {} −→ f (x ∪ y) ≤ f x + f y)

lemma subadditiveD : subadditive M f =⇒ x ∩ y = {} =⇒ x ∈ M =⇒ y ∈ M =⇒
f (x ∪ y) ≤ f x + f y
by (auto simp add : subadditive def )

definition countably subadditive where
countably subadditive M f ←→
(∀A. range A ⊆ M −→ disjoint family A −→ (

⋃
i . A i) ∈ M −→ (f (

⋃
i . A

i) ≤ (
∑

i . f (A i))))

lemma (in ring of sets) countably subadditive subadditive:
fixes f :: ′a set ⇒ ennreal
assumes f : positive M f and cs: countably subadditive M f
shows subadditive M f

proof (auto simp add : subadditive def )
fix x y
assume x : x ∈ M and y : y ∈ M and x ∩ y = {}
hence disjoint family (binaryset x y)
by (auto simp add : disjoint family on def binaryset def )

hence range (binaryset x y) ⊆ M −→
(
⋃
i . binaryset x y i) ∈ M −→

f (
⋃
i . binaryset x y i) ≤ (

∑
n. f (binaryset x y n))

using cs by (auto simp add : countably subadditive def )
hence {x ,y ,{}} ⊆ M −→ x ∪ y ∈ M −→

f (x ∪ y) ≤ (
∑

n. f (binaryset x y n))
by (simp add : range binaryset eq UN binaryset eq)

thus f (x ∪ y) ≤ f x + f y using f x y
by (auto simp add : Un o def suminf binaryset eq positive def )

qed

definition additive where
additive M µ ←→ (∀ x∈M . ∀ y∈M . x ∩ y = {} −→ µ (x ∪ y) = µ x + µ y)

definition increasing where
increasing M µ ←→ (∀ x∈M . ∀ y∈M . x ⊆ y −→ µ x ≤ µ y)
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lemma positiveD1 : positive M f =⇒ f {} = 0 by (auto simp: positive def )

lemma positiveD empty :
positive M f =⇒ f {} = 0
by (auto simp add : positive def )

lemma additiveD :
additive M f =⇒ x ∩ y = {} =⇒ x ∈ M =⇒ y ∈ M =⇒ f (x ∪ y) = f x + f y
by (auto simp add : additive def )

lemma increasingD :
increasing M f =⇒ x ⊆ y =⇒ x∈M =⇒ y∈M =⇒ f x ≤ f y
by (auto simp add : increasing def )

lemma countably additiveI [case names countably ]:
(
∧
A. range A ⊆ M =⇒ disjoint family A =⇒ (

⋃
i . A i) ∈ M =⇒ (

∑
i . f (A

i)) = f (
⋃
i . A i))

=⇒ countably additive M f
by (simp add : countably additive def )

lemma (in ring of sets) disjointed additive:
assumes f : positive M f additive M f and A: range A ⊆ M incseq A
shows (

∑
i≤n. f (disjointed A i)) = f (A n)

proof (induct n)
case (Suc n)
then have (

∑
i≤Suc n. f (disjointed A i)) = f (A n) + f (disjointed A (Suc

n))
by simp

also have . . . = f (A n ∪ disjointed A (Suc n))
using A by (subst f (2 )[THEN additiveD ]) (auto simp: disjointed mono)

also have A n ∪ disjointed A (Suc n) = A (Suc n)
using 〈incseq A〉 by (auto dest : incseq SucD simp: disjointed mono)

finally show ?case .
qed simp

lemma (in ring of sets) additive sum:
fixes A:: ′i ⇒ ′a set
assumes f : positive M f and ad : additive M f and finite S

and A: A‘S ⊆ M
and disj : disjoint family on A S

shows (
∑

i∈S . f (A i)) = f (
⋃
i∈S . A i)

using 〈finite S 〉 disj A
proof induct
case empty show ?case using f by (simp add : positive def )

next
case (insert s S )
then have A s ∩ (

⋃
i∈S . A i) = {}

by (auto simp add : disjoint family on def neq iff )
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moreover
have A s ∈ M using insert by blast
moreover have (

⋃
i∈S . A i) ∈ M

using insert 〈finite S 〉 by auto
ultimately have f (A s ∪ (

⋃
i∈S . A i)) = f (A s) + f (

⋃
i∈S . A i)

using ad UNION in sets A by (auto simp add : additive def )
with insert show ?case using ad disjoint family on mono[of S insert s S A]
by (auto simp add : additive def subset insertI )

qed

lemma (in ring of sets) additive increasing :
fixes f :: ′a set ⇒ ennreal
assumes posf : positive M f and addf : additive M f
shows increasing M f

proof (auto simp add : increasing def )
fix x y
assume xy : x ∈ M y ∈ M x ⊆ y
then have y − x ∈ M by auto
then have f x + 0 ≤ f x + f (y−x ) by (intro add left mono zero le)
also have ... = f (x ∪ (y−x )) using addf
by (auto simp add : additive def ) (metis Diff disjoint Un Diff cancel Diff xy(1 ,2 ))
also have ... = f y
by (metis Un Diff cancel Un absorb1 xy(3 ))

finally show f x ≤ f y by simp
qed

lemma (in ring of sets) subadditive:
fixes f :: ′a set ⇒ ennreal
assumes f : positive M f additive M f and A: A‘S ⊆ M and S : finite S
shows f (

⋃
i∈S . A i) ≤ (

∑
i∈S . f (A i))

using S A
proof (induct S )
case empty thus ?case using f by (auto simp: positive def )

next
case (insert x F )
hence in M : A x ∈ M (

⋃
i∈F . A i) ∈ M (

⋃
i∈F . A i) − A x ∈ M using A

by force+
have subs: (

⋃
i∈F . A i) − A x ⊆ (

⋃
i∈F . A i) by auto

have (
⋃
i∈(insert x F ). A i) = A x ∪ ((

⋃
i∈F . A i) − A x ) by auto

hence f (
⋃

i∈(insert x F ). A i) = f (A x ∪ ((
⋃

i∈F . A i) − A x ))
by simp

also have . . . = f (A x ) + f ((
⋃
i∈F . A i) − A x )

using f (2 ) by (rule additiveD) (insert in M , auto)
also have . . . ≤ f (A x ) + f (

⋃
i∈F . A i)

using additive increasing [OF f ] in M subs by (auto simp: increasing def intro:
add left mono)
also have . . . ≤ f (A x ) + (

∑
i∈F . f (A i)) using insert by (auto intro:

add left mono)
finally show f (

⋃
i∈(insert x F ). A i) ≤ (

∑
i∈(insert x F ). f (A i)) using
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insert by simp
qed

lemma (in ring of sets) countably additive additive:
fixes f :: ′a set ⇒ ennreal
assumes posf : positive M f and ca: countably additive M f
shows additive M f

proof (auto simp add : additive def )
fix x y
assume x : x ∈ M and y : y ∈ M and x ∩ y = {}
hence disjoint family (binaryset x y)
by (auto simp add : disjoint family on def binaryset def )

hence range (binaryset x y) ⊆ M −→
(
⋃
i . binaryset x y i) ∈ M −→

f (
⋃
i . binaryset x y i) = (

∑
n. f (binaryset x y n))

using ca
by (simp add : countably additive def )

hence {x ,y ,{}} ⊆ M −→ x ∪ y ∈ M −→
f (x ∪ y) = (

∑
n. f (binaryset x y n))

by (simp add : range binaryset eq UN binaryset eq)
thus f (x ∪ y) = f x + f y using posf x y
by (auto simp add : Un suminf binaryset eq positive def )

qed

lemma (in algebra) increasing additive bound :
fixes A:: nat ⇒ ′a set and f :: ′a set ⇒ ennreal
assumes f : positive M f and ad : additive M f

and inc: increasing M f
and A: range A ⊆ M
and disj : disjoint family A

shows (
∑

i . f (A i)) ≤ f Ω
proof (safe intro!: suminf le const)
fix N
note disj N = disjoint family on mono[OF disj , of {..<N }]
have (

∑
i<N . f (A i)) = f (

⋃
i∈{..<N }. A i)

using A by (intro additive sum [OF f ad ]) (auto simp: disj N )
also have ... ≤ f Ω using space closed A
by (intro increasingD [OF inc] finite UN ) auto

finally show (
∑

i<N . f (A i)) ≤ f Ω by simp
qed (insert f A, auto simp: positive def )

lemma (in ring of sets) countably additiveI finite:
fixes µ :: ′a set ⇒ ennreal
assumes finite Ω positive M µ additive M µ
shows countably additive M µ

proof (rule countably additiveI )
fix F :: nat ⇒ ′a set assume F : range F ⊆ M (

⋃
i . F i) ∈ M and disj :

disjoint family F

Measure{_}{\kern 0pt}Space.html


1288

have ∀ i∈{i . F i 6= {}}. ∃ x . x ∈ F i by auto
from bchoice[OF this] obtain f where f :

∧
i . F i 6= {} =⇒ f i ∈ F i by auto

have inj f : inj on f {i . F i 6= {}}
proof (rule inj onI , simp)
fix i j a b assume ∗: f i = f j F i 6= {} F j 6= {}
then have f i ∈ F i f j ∈ F j using f by force+
with disj ∗ show i = j by (auto simp: disjoint family on def )

qed
have finite (

⋃
i . F i)

by (metis F (2 ) assms(1 ) infinite super sets into space)

have F subset : {i . µ (F i) 6= 0} ⊆ {i . F i 6= {}}
by (auto simp: positiveD empty [OF 〈positive M µ〉])

moreover have fin not empty : finite {i . F i 6= {}}
proof (rule finite imageD)
from f have f‘{i . F i 6= {}} ⊆ (

⋃
i . F i) by auto

then show finite (f‘{i . F i 6= {}})
by (rule finite subset) fact

qed fact
ultimately have fin not 0 : finite {i . µ (F i) 6= 0}
by (rule finite subset)

have disj not empty : disjoint family on F {i . F i 6= {}}
using disj by (auto simp: disjoint family on def )

from fin not 0 have (
∑

i . µ (F i)) = (
∑

i | µ (F i) 6= 0 . µ (F i))
by (rule suminf finite) auto

also have . . . = (
∑

i | F i 6= {}. µ (F i))
using fin not empty F subset by (rule sum.mono neutral left) auto

also have . . . = µ (
⋃
i∈{i . F i 6= {}}. F i)

using 〈positive M µ〉 〈additive M µ〉 fin not empty disj not empty F by (intro
additive sum) auto
also have . . . = µ (

⋃
i . F i)

by (rule arg cong [where f=µ]) auto
finally show (

∑
i . µ (F i)) = µ (

⋃
i . F i) .

qed

lemma (in ring of sets) countably additive iff continuous from below :
fixes f :: ′a set ⇒ ennreal
assumes f : positive M f additive M f
shows countably additive M f ←→
(∀A. range A ⊆ M −→ incseq A −→ (

⋃
i . A i) ∈ M −→ (λi . f (A i)) −−−−→

f (
⋃

i . A i))
unfolding countably additive def

proof safe
assume count sum: ∀A. range A ⊆ M −→ disjoint family A −→

⋃
(A ‘ UNIV )

∈ M −→ (
∑

i . f (A i)) = f (
⋃
(A ‘ UNIV ))

fix A :: nat ⇒ ′a set assume A: range A ⊆ M incseq A (
⋃
i . A i) ∈ M



Measure Space.thy 1289

then have dA: range (disjointed A) ⊆ M by (auto simp: range disjointed sets)
with count sum[THEN spec, of disjointed A] A(3 )
have f UN : (

∑
i . f (disjointed A i)) = f (

⋃
i . A i)

by (auto simp: UN disjointed eq disjoint family disjointed)
moreover have (λn. (

∑
i<n. f (disjointed A i))) −−−−→ (

∑
i . f (disjointed A

i))
using f (1 )[unfolded positive def ] dA
by (auto intro!: summable LIMSEQ)

from LIMSEQ Suc[OF this]
have (λn. (

∑
i≤n. f (disjointed A i))) −−−−→ (

∑
i . f (disjointed A i))

unfolding lessThan Suc atMost .
moreover have

∧
n. (

∑
i≤n. f (disjointed A i)) = f (A n)

using disjointed additive[OF f A(1 ,2 )] .
ultimately show (λi . f (A i)) −−−−→ f (

⋃
i . A i) by simp

next
assume cont : ∀A. range A ⊆ M −→ incseq A −→ (

⋃
i . A i) ∈ M −→ (λi . f

(A i)) −−−−→ f (
⋃
i . A i)

fix A :: nat ⇒ ′a set assume A: range A ⊆ M disjoint family A (
⋃

i . A i) ∈ M
have ∗: (

⋃
n. (

⋃
i<n. A i)) = (

⋃
i . A i) by auto

have (λn. f (
⋃
i<n. A i)) −−−−→ f (

⋃
i . A i)

proof (unfold ∗[symmetric], intro cont [rule format ])
show range (λi .

⋃
i<i . A i) ⊆ M (

⋃
i .

⋃
i<i . A i) ∈ M

using A ∗ by auto
qed (force intro!: incseq SucI )
moreover have

∧
n. f (

⋃
i<n. A i) = (

∑
i<n. f (A i))

using A
by (intro additive sum[OF f , of A, symmetric])

(auto intro: disjoint family on mono[where B=UNIV ])
ultimately
have (λi . f (A i)) sums f (

⋃
i . A i)

unfolding sums def by simp
from sums unique[OF this]
show (

∑
i . f (A i)) = f (

⋃
i . A i) by simp

qed

lemma (in ring of sets) continuous from above iff empty continuous:
fixes f :: ′a set ⇒ ennreal
assumes f : positive M f additive M f
shows (∀A. range A ⊆ M −→ decseq A −→ (

⋂
i . A i) ∈ M −→ (∀ i . f (A i) 6=

∞) −→ (λi . f (A i)) −−−−→ f (
⋂
i . A i))

←→ (∀A. range A ⊆ M −→ decseq A −→ (
⋂

i . A i) = {} −→ (∀ i . f (A i)
6= ∞) −→ (λi . f (A i)) −−−−→ 0 )
proof safe
assume cont : (∀A. range A ⊆ M −→ decseq A −→ (

⋂
i . A i) ∈ M −→ (∀ i . f

(A i) 6= ∞) −→ (λi . f (A i)) −−−−→ f (
⋂

i . A i))
fix A :: nat ⇒ ′a set assume A: range A ⊆ M decseq A (

⋂
i . A i) = {} ∀ i . f

(A i) 6= ∞
with cont [THEN spec, of A] show (λi . f (A i)) −−−−→ 0
using 〈positive M f 〉[unfolded positive def ] by auto
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next
assume cont : ∀A. range A ⊆ M −→ decseq A −→ (

⋂
i . A i) = {} −→ (∀ i . f

(A i) 6= ∞) −→ (λi . f (A i)) −−−−→ 0
fix A :: nat ⇒ ′a set assume A: range A ⊆ M decseq A (

⋂
i . A i) ∈ M ∀ i . f

(A i) 6= ∞

have f mono:
∧
a b. a ∈ M =⇒ b ∈ M =⇒ a ⊆ b =⇒ f a ≤ f b

using additive increasing [OF f ] unfolding increasing def by simp

have decseq fA: decseq (λi . f (A i))
using A by (auto simp: decseq def intro!: f mono)

have decseq : decseq (λi . A i − (
⋂
i . A i))

using A by (auto simp: decseq def )
then have decseq f : decseq (λi . f (A i − (

⋂
i . A i)))

using A unfolding decseq def by (auto intro!: f mono Diff )
have f (

⋂
x . A x ) ≤ f (A 0 )

using A by (auto intro!: f mono)
then have f Int fin: f (

⋂
x . A x ) 6= ∞

using A by (auto simp: top unique)
{ fix i
have f (A i − (

⋂
i . A i)) ≤ f (A i) using A by (auto intro!: f mono)

then have f (A i − (
⋂
i . A i)) 6= ∞

using A by (auto simp: top unique) }
note f fin = this
have (λi . f (A i − (

⋂
i . A i))) −−−−→ 0

proof (intro cont [rule format , OF decseq f fin])
show range (λi . A i − (

⋂
i . A i)) ⊆ M (

⋂
i . A i − (

⋂
i . A i)) = {}

using A by auto
qed
from INF Lim[OF decseq f this]
have (INF n. f (A n − (

⋂
i . A i))) = 0 .

moreover have (INF n. f (
⋂
i . A i)) = f (

⋂
i . A i)

by auto
ultimately have (INF n. f (A n − (

⋂
i . A i)) + f (

⋂
i . A i)) = 0 + f (

⋂
i .

A i)
using A(4 ) f fin f Int fin
by (subst INF ennreal add const) (auto simp: decseq f )

moreover {
fix n
have f (A n − (

⋂
i . A i)) + f (

⋂
i . A i) = f ((A n − (

⋂
i . A i)) ∪ (

⋂
i . A

i))
using A by (subst f (2 )[THEN additiveD ]) auto

also have (A n − (
⋂
i . A i)) ∪ (

⋂
i . A i) = A n

by auto
finally have f (A n − (

⋂
i . A i)) + f (

⋂
i . A i) = f (A n) . }

ultimately have (INF n. f (A n)) = f (
⋂

i . A i)
by simp

with LIMSEQ INF [OF decseq fA]
show (λi . f (A i)) −−−−→ f (

⋂
i . A i) by simp
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qed

lemma (in ring of sets) empty continuous imp continuous from below :
fixes f :: ′a set ⇒ ennreal
assumes f : positive M f additive M f ∀A∈M . f A 6= ∞
assumes cont : ∀A. range A ⊆ M −→ decseq A −→ (

⋂
i . A i) = {} −→ (λi . f

(A i)) −−−−→ 0
assumes A: range A ⊆ M incseq A (

⋃
i . A i) ∈ M

shows (λi . f (A i)) −−−−→ f (
⋃
i . A i)

proof −
from A have (λi . f ((

⋃
i . A i) − A i)) −−−−→ 0

by (intro cont [rule format ]) (auto simp: decseq def incseq def )
moreover
{ fix i
have f ((

⋃
i . A i) − A i ∪ A i) = f ((

⋃
i . A i) − A i) + f (A i)

using A by (intro f (2 )[THEN additiveD ]) auto
also have ((

⋃
i . A i) − A i) ∪ A i = (

⋃
i . A i)

by auto
finally have f ((

⋃
i . A i) − A i) = f (

⋃
i . A i) − f (A i)

using f (3 )[rule format , of A i ] A by (auto simp: ennreal add diff cancel
subset eq) }
moreover have ∀ F i in sequentially . f (A i) ≤ f (

⋃
i . A i)

using increasingD [OF additive increasing [OF f (1 , 2 )], of A
⋃

i . A i ] A
by (auto intro!: always eventually simp: subset eq)

ultimately show (λi . f (A i)) −−−−→ f (
⋃
i . A i)

by (auto intro: ennreal tendsto const minus)
qed

lemma (in ring of sets) empty continuous imp countably additive:
fixes f :: ′a set ⇒ ennreal
assumes f : positive M f additive M f and fin: ∀A∈M . f A 6= ∞
assumes cont :

∧
A. range A ⊆ M =⇒ decseq A =⇒ (

⋂
i . A i) = {} =⇒ (λi . f

(A i)) −−−−→ 0
shows countably additive M f
using countably additive iff continuous from below [OF f ]
using empty continuous imp continuous from below [OF f fin] cont
by blast

6.3.4 Properties of emeasure

lemma emeasure positive: positive (sets M ) (emeasure M )
by (cases M ) (auto simp: sets def emeasure def Abs measure inverse measure space def )

lemma emeasure empty [simp, intro]: emeasure M {} = 0
using emeasure positive[of M ] by (simp add : positive def )

lemma emeasure single in space: emeasure M {x} 6= 0 =⇒ x ∈ space M
using emeasure notin sets[of {x}M ] by (auto dest : sets.sets into space zero less iff neq zero[THEN

iffD2 ])
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lemma emeasure countably additive: countably additive (sets M ) (emeasure M )
by (cases M ) (auto simp: sets def emeasure def Abs measure inverse measure space def )

lemma suminf emeasure:
range A ⊆ sets M =⇒ disjoint family A =⇒ (

∑
i . emeasure M (A i)) = emeasure

M (
⋃
i . A i)

using sets.countable UN [of A UNIV M ] emeasure countably additive[of M ]
by (simp add : countably additive def )

lemma sums emeasure:
disjoint family F =⇒ (

∧
i . F i ∈ sets M ) =⇒ (λi . emeasure M (F i)) sums

emeasure M (
⋃
i . F i)

unfolding sums iff by (intro conjI suminf emeasure) auto

lemma emeasure additive: additive (sets M ) (emeasure M )
by (metis sets.countably additive additive emeasure positive emeasure countably additive)

lemma plus emeasure:
a ∈ sets M =⇒ b ∈ sets M =⇒ a ∩ b = {} =⇒ emeasure M a + emeasure M b

= emeasure M (a ∪ b)
using additiveD [OF emeasure additive] ..

lemma emeasure Un:
A ∈ sets M =⇒ B ∈ sets M =⇒ emeasure M (A ∪ B) = emeasure M A +

emeasure M (B − A)
using plus emeasure[of A M B − A] by auto

lemma emeasure Un Int :
assumes A ∈ sets M B ∈ sets M
shows emeasure M A + emeasure M B = emeasure M (A ∪ B) + emeasure M

(A ∩ B)
proof −
have A = (A−B) ∪ (A ∩ B) by auto
then have emeasure M A = emeasure M (A−B) + emeasure M (A ∩ B)
by (metis Diff Diff Int Diff disjoint assms plus emeasure sets.Diff )

moreover have A ∪ B = (A−B) ∪ B by auto
then have emeasure M (A ∪ B) = emeasure M (A−B) + emeasure M B
by (metis Diff disjoint Int commute assms plus emeasure sets.Diff )

ultimately show ?thesis by (metis add .assoc add .commute)
qed

lemma sum emeasure:
F‘I ⊆ sets M =⇒ disjoint family on F I =⇒ finite I =⇒
(
∑

i∈I . emeasure M (F i)) = emeasure M (
⋃

i∈I . F i)
by (metis sets.additive sum emeasure positive emeasure additive)

lemma emeasure mono:
a ⊆ b =⇒ b ∈ sets M =⇒ emeasure M a ≤ emeasure M b
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by (metis zero le sets.additive increasing emeasure additive emeasure notin sets
emeasure positive increasingD)

lemma emeasure space:
emeasure M A ≤ emeasure M (space M )
by (metis emeasure mono emeasure notin sets sets.sets into space sets.top zero le)

lemma emeasure Diff :
assumes finite: emeasure M B 6= ∞
and [measurable]: A ∈ sets M B ∈ sets M and B ⊆ A
shows emeasure M (A − B) = emeasure M A − emeasure M B

proof −
have (A − B) ∪ B = A using 〈B ⊆ A〉 by auto
then have emeasure M A = emeasure M ((A − B) ∪ B) by simp
also have . . . = emeasure M (A − B) + emeasure M B
by (subst plus emeasure[symmetric]) auto

finally show emeasure M (A − B) = emeasure M A − emeasure M B
using finite by simp

qed

lemma emeasure compl :
s ∈ sets M =⇒ emeasure M s 6= ∞ =⇒ emeasure M (space M − s) = emeasure

M (space M ) − emeasure M s
by (rule emeasure Diff ) (auto dest : sets.sets into space)

lemma Lim emeasure incseq :
range A ⊆ sets M =⇒ incseq A =⇒ (λi . (emeasure M (A i))) −−−−→ emeasure

M (
⋃

i . A i)
using emeasure countably additive
by (auto simp add : sets.countably additive iff continuous from below emeasure positive
emeasure additive)

lemma incseq emeasure:
assumes range B ⊆ sets M incseq B
shows incseq (λi . emeasure M (B i))
using assms by (auto simp: incseq def intro!: emeasure mono)

lemma SUP emeasure incseq :
assumes A: range A ⊆ sets M incseq A
shows (SUP n. emeasure M (A n)) = emeasure M (

⋃
i . A i)

using LIMSEQ SUP [OF incseq emeasure, OF A] Lim emeasure incseq [OF A]
by (simp add : LIMSEQ unique)

lemma decseq emeasure:
assumes range B ⊆ sets M decseq B
shows decseq (λi . emeasure M (B i))
using assms by (auto simp: decseq def intro!: emeasure mono)

lemma INF emeasure decseq :
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assumes A: range A ⊆ sets M and decseq A
and finite:

∧
i . emeasure M (A i) 6= ∞

shows (INF n. emeasure M (A n)) = emeasure M (
⋂

i . A i)
proof −
have le MI : emeasure M (

⋂
i . A i) ≤ emeasure M (A 0 )

using A by (auto intro!: emeasure mono)
hence ∗: emeasure M (

⋂
i . A i) 6=∞ using finite[of 0 ] by (auto simp: top unique)

have emeasure M (A 0 ) − (INF n. emeasure M (A n)) = (SUP n. emeasure M
(A 0 ) − emeasure M (A n))

by (simp add : ennreal INF const minus)
also have . . . = (SUP n. emeasure M (A 0 − A n))
using A finite 〈decseq A〉[unfolded decseq def ] by (subst emeasure Diff ) auto

also have . . . = emeasure M (
⋃
i . A 0 − A i)

proof (rule SUP emeasure incseq)
show range (λn. A 0 − A n) ⊆ sets M
using A by auto

show incseq (λn. A 0 − A n)
using 〈decseq A〉 by (auto simp add : incseq def decseq def )

qed
also have . . . = emeasure M (A 0 ) − emeasure M (

⋂
i . A i)

using A finite ∗ by (simp, subst emeasure Diff ) auto
finally show ?thesis
by (rule ennreal minus cancel [rotated 3 ])

(insert finite A, auto intro: INF lower emeasure mono)
qed

lemma INF emeasure decseq ′:
assumes A:

∧
i . A i ∈ sets M and decseq A

and finite: ∃ i . emeasure M (A i) 6= ∞
shows (INF n. emeasure M (A n)) = emeasure M (

⋂
i . A i)

proof −
from finite obtain i where i : emeasure M (A i) < ∞
by (auto simp: less top)

have fin: i ≤ j =⇒ emeasure M (A j ) < ∞ for j
by (rule le less trans[OF emeasure mono i ]) (auto intro!: decseqD [OF 〈decseq

A〉] A)

have (INF n. emeasure M (A n)) = (INF n. emeasure M (A (n + i)))
proof (rule INF eq)
show ∃ j∈UNIV . emeasure M (A (j + i)) ≤ emeasure M (A i ′) for i ′

by (intro bexI [of i ′] emeasure mono decseqD [OF 〈decseq A〉] A) auto
qed auto
also have . . . = emeasure M (INF n. (A (n + i)))
using A 〈decseq A〉 fin by (intro INF emeasure decseq) (auto simp: decseq def

less top)
also have (INF n. (A (n + i))) = (INF n. A n)
by (meson INF eq UNIV I assms(2 ) decseqD le add1 )

finally show ?thesis .
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qed

lemma emeasure INT decseq subset :
fixes F :: nat ⇒ ′a set
assumes I : I 6= {} and F :

∧
i j . i ∈ I =⇒ j ∈ I =⇒ i ≤ j =⇒ F j ⊆ F i

assumes F sets[measurable]:
∧
i . i ∈ I =⇒ F i ∈ sets M

and fin:
∧
i . i ∈ I =⇒ emeasure M (F i) 6= ∞

shows emeasure M (
⋂
i∈I . F i) = (INF i∈I . emeasure M (F i))

proof cases
assume finite I
have (

⋂
i∈I . F i) = F (Max I )

using I 〈finite I 〉 by (intro antisym INF lower INF greatest F ) auto
moreover have (INF i∈I . emeasure M (F i)) = emeasure M (F (Max I ))
using I 〈finite I 〉 by (intro antisym INF lower INF greatest F emeasure mono)

auto
ultimately show ?thesis
by simp

next
assume infinite I
define L where L n = (LEAST i . i ∈ I ∧ i ≥ n) for n
have L: L n ∈ I ∧ n ≤ L n for n
unfolding L def

proof (rule LeastI ex )
show ∃ x . x ∈ I ∧ n ≤ x
using 〈infinite I 〉 finite subset [of I {..< n}]
by (rule tac ccontr) (auto simp: not le)

qed
have L eq [simp]: i ∈ I =⇒ L i = i for i
unfolding L def by (intro Least equality) auto

have L mono: i ≤ j =⇒ L i ≤ L j for i j
using L[of j ] unfolding L def by (intro Least le) (auto simp: L def )

have emeasure M (
⋂
i . F (L i)) = (INF i . emeasure M (F (L i)))

proof (intro INF emeasure decseq [symmetric])
show decseq (λi . F (L i))
using L by (intro antimonoI F L mono) auto

qed (insert L fin, auto)
also have . . . = (INF i∈I . emeasure M (F i))
proof (intro antisym INF greatest)
show i ∈ I =⇒ (INF i . emeasure M (F (L i))) ≤ emeasure M (F i) for i
by (intro INF lower2 [of i ]) auto

qed (insert L, auto intro: INF lower)
also have (

⋂
i . F (L i)) = (

⋂
i∈I . F i)

proof (intro antisym INF greatest)
show i ∈ I =⇒ (

⋂
i . F (L i)) ⊆ F i for i

by (intro INF lower2 [of i ]) auto
qed (insert L, auto)
finally show ?thesis .

qed
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lemma Lim emeasure decseq :
assumes A: range A ⊆ sets M decseq A and fin:

∧
i . emeasure M (A i) 6= ∞

shows (λi . emeasure M (A i)) −−−−→ emeasure M (
⋂

i . A i)
using LIMSEQ INF [OF decseq emeasure, OF A]
using INF emeasure decseq [OF A fin] by simp

lemma emeasure lfp ′[consumes 1 , case names cont measurable]:
assumes P M
assumes cont : sup continuous F
assumes ∗:

∧
M A. P M =⇒ (

∧
N . P N =⇒ Measurable.pred N A) =⇒ Mea-

surable.pred M (F A)
shows emeasure M {x∈space M . lfp F x} = (SUP i . emeasure M {x∈space M .

(F ˆˆ i) (λx . False) x})
proof −
have emeasure M {x∈space M . lfp F x} = emeasure M (

⋃
i . {x∈space M . (F

ˆˆ i) (λx . False) x})
using sup continuous lfp[OF cont ] by (auto simp add : bot fun def intro!: arg cong2 [where

f=emeasure])
moreover { fix i from 〈P M 〉 have {x∈space M . (F ˆˆ i) (λx . False) x} ∈ sets

M
by (induct i arbitrary : M ) (auto simp add : pred def [symmetric] intro: ∗) }

moreover have incseq (λi . {x∈space M . (F ˆˆ i) (λx . False) x})
proof (rule incseq SucI )
fix i
have (F ˆˆ i) (λx . False) ≤ (F ˆˆ (Suc i)) (λx . False)
proof (induct i)
case 0 show ?case by (simp add : le fun def )

next
case Suc thus ?case using monoD [OF sup continuous mono[OF cont ] Suc]

by auto
qed
then show {x ∈ space M . (F ˆˆ i) (λx . False) x} ⊆ {x ∈ space M . (F ˆˆ Suc

i) (λx . False) x}
by auto

qed
ultimately show ?thesis
by (subst SUP emeasure incseq) auto

qed

lemma emeasure lfp:
assumes [simp]:

∧
s. sets (M s) = sets N

assumes cont : sup continuous F sup continuous f
assumes meas:

∧
P . Measurable.pred N P =⇒ Measurable.pred N (F P)

assumes iter :
∧
P s. Measurable.pred N P =⇒ P ≤ lfp F =⇒ emeasure (M s)

{x∈space N . F P x} = f (λs. emeasure (M s) {x∈space N . P x}) s
shows emeasure (M s) {x∈space N . lfp F x} = lfp f s

proof (subst lfp transfer bounded [where α=λF s. emeasure (M s) {x∈space N . F
x} and g=f and f=F and P=Measurable.pred N , symmetric])
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fix C assume incseq C
∧
i . Measurable.pred N (C i)

then show (λs. emeasure (M s) {x ∈ space N . (SUP i . C i) x}) = (SUP i . (λs.
emeasure (M s) {x ∈ space N . C i x}))

unfolding SUP apply [abs def ]
by (subst SUP emeasure incseq) (auto simp: mono def fun eq iff intro!: arg cong2 [where

f=emeasure])
qed (auto simp add : iter le fun def SUP apply [abs def ] intro!: meas cont)

lemma emeasure subadditive finite:
finite I =⇒ A ‘ I ⊆ sets M =⇒ emeasure M (

⋃
i∈I . A i) ≤ (

∑
i∈I . emeasure

M (A i))
by (rule sets.subadditive[OF emeasure positive emeasure additive]) auto

lemma emeasure subadditive:
A ∈ sets M =⇒ B ∈ sets M =⇒ emeasure M (A ∪ B) ≤ emeasure M A +

emeasure M B
using emeasure subadditive finite[of {True, False} λTrue ⇒ A | False ⇒ B M ]

by simp

lemma emeasure subadditive countably :
assumes range f ⊆ sets M
shows emeasure M (

⋃
i . f i) ≤ (

∑
i . emeasure M (f i))

proof −
have emeasure M (

⋃
i . f i) = emeasure M (

⋃
i . disjointed f i)

unfolding UN disjointed eq ..
also have . . . = (

∑
i . emeasure M (disjointed f i))

using sets.range disjointed sets[OF assms] suminf emeasure[of disjointed f ]
by (simp add : disjoint family disjointed comp def )

also have . . . ≤ (
∑

i . emeasure M (f i))
using sets.range disjointed sets[OF assms] assms
by (auto intro!: suminf le emeasure mono disjointed subset)

finally show ?thesis .
qed

lemma emeasure insert :
assumes sets: {x} ∈ sets M A ∈ sets M and x /∈ A
shows emeasure M (insert x A) = emeasure M {x} + emeasure M A

proof −
have {x} ∩ A = {} using 〈x /∈ A〉 by auto
from plus emeasure[OF sets this] show ?thesis by simp

qed

lemma emeasure insert ne:
A 6= {} =⇒ {x} ∈ sets M =⇒ A ∈ sets M =⇒ x /∈ A =⇒ emeasure M (insert

x A) = emeasure M {x} + emeasure M A
by (rule emeasure insert)

lemma emeasure eq sum singleton:
assumes finite S

∧
x . x ∈ S =⇒ {x} ∈ sets M
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shows emeasure M S = (
∑

x∈S . emeasure M {x})
using sum emeasure[of λx . {x} S M ] assms
by (auto simp: disjoint family on def subset eq)

lemma sum emeasure cover :
assumes finite S and A ∈ sets M and br in M : B ‘ S ⊆ sets M
assumes A: A ⊆ (

⋃
i∈S . B i)

assumes disj : disjoint family on B S
shows emeasure M A = (

∑
i∈S . emeasure M (A ∩ (B i)))

proof −
have (

∑
i∈S . emeasure M (A ∩ (B i))) = emeasure M (

⋃
i∈S . A ∩ (B i))

proof (rule sum emeasure)
show disjoint family on (λi . A ∩ B i) S
using 〈disjoint family on B S 〉

unfolding disjoint family on def by auto
qed (insert assms, auto)
also have (

⋃
i∈S . A ∩ (B i)) = A

using A by auto
finally show ?thesis by simp

qed

lemma emeasure eq 0 :
N ∈ sets M =⇒ emeasure M N = 0 =⇒ K ⊆ N =⇒ emeasure M K = 0
by (metis emeasure mono order eq iff zero le)

lemma emeasure UN eq 0 :
assumes

∧
i ::nat . emeasure M (N i) = 0 and range N ⊆ sets M

shows emeasure M (
⋃
i . N i) = 0

proof −
have emeasure M (

⋃
i . N i) ≤ 0

using emeasure subadditive countably [OF assms(2 )] assms(1 ) by simp
then show ?thesis
by (auto intro: antisym zero le)

qed

lemma measure eqI finite:
assumes [simp]: sets M = Pow A sets N = Pow A and finite A
assumes eq :

∧
a. a ∈ A =⇒ emeasure M {a} = emeasure N {a}

shows M = N
proof (rule measure eqI )
fix X assume X ∈ sets M
then have X : X ⊆ A by auto
then have emeasure M X = (

∑
a∈X . emeasure M {a})

using 〈finite A〉 by (subst emeasure eq sum singleton) (auto dest : finite subset)
also have . . . = (

∑
a∈X . emeasure N {a})

using X eq by (auto intro!: sum.cong)
also have . . . = emeasure N X
using X 〈finite A〉 by (subst emeasure eq sum singleton) (auto dest : finite subset)
finally show emeasure M X = emeasure N X .
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qed simp

lemma measure eqI generator eq :
fixes M N :: ′a measure and E :: ′a set set and A :: nat ⇒ ′a set
assumes Int stable E E ⊆ Pow Ω
and eq :

∧
X . X ∈ E =⇒ emeasure M X = emeasure N X

and M : sets M = sigma sets Ω E
and N : sets N = sigma sets Ω E
and A: range A ⊆ E (

⋃
i . A i) = Ω

∧
i . emeasure M (A i) 6= ∞

shows M = N
proof −
let ?µ = emeasure M and ?ν = emeasure N
interpret S : sigma algebra Ω sigma sets Ω E by (rule sigma algebra sigma sets)

fact
have space M = Ω

using sets.top[of M ] sets.space closed [of M ] S .top S .space closed 〈sets M =
sigma sets Ω E 〉

by blast

{ fix F D assume F ∈ E and ?µ F 6= ∞
then have [intro]: F ∈ sigma sets Ω E by auto
have ?ν F 6= ∞ using 〈?µ F 6= ∞〉 〈F ∈ E 〉 eq by simp
assume D ∈ sets M
with 〈Int stable E 〉 〈E ⊆ Pow Ω〉 have emeasure M (F ∩ D) = emeasure N

(F ∩ D)
unfolding M

proof (induct rule: sigma sets induct disjoint)
case (basic A)
then have F ∩ A ∈ E using 〈Int stable E 〉 〈F ∈ E 〉 by (auto simp:

Int stable def )
then show ?case using eq by auto

next
case empty then show ?case by simp

next
case (compl A)
then have ∗∗: F ∩ (Ω − A) = F − (F ∩ A)
and [intro]: F ∩ A ∈ sigma sets Ω E
using 〈F ∈ E 〉 S .sets into space by (auto simp: M )

have ?ν (F ∩ A) ≤ ?ν F by (auto intro!: emeasure mono simp: M N )
then have ?ν (F ∩ A) 6= ∞ using 〈?ν F 6= ∞〉 by (auto simp: top unique)
have ?µ (F ∩ A) ≤ ?µ F by (auto intro!: emeasure mono simp: M N )
then have ?µ (F ∩ A) 6= ∞ using 〈?µ F 6= ∞〉 by (auto simp: top unique)
then have ?µ (F ∩ (Ω − A)) = ?µ F − ?µ (F ∩ A) unfolding ∗∗

using 〈F ∩ A ∈ sigma sets Ω E 〉 by (auto intro!: emeasure Diff simp: M
N )

also have . . . = ?ν F − ?ν (F ∩ A) using eq 〈F ∈ E 〉 compl by simp
also have . . . = ?ν (F ∩ (Ω − A)) unfolding ∗∗
using 〈F ∩ A ∈ sigma sets Ω E 〉 〈?ν (F ∩ A) 6= ∞〉

by (auto intro!: emeasure Diff [symmetric] simp: M N )
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finally show ?case
using 〈space M = Ω〉 by auto

next
case (union A)
then have ?µ (

⋃
x . F ∩ A x ) = ?ν (

⋃
x . F ∩ A x )

by (subst (1 2 ) suminf emeasure[symmetric]) (auto simp: disjoint family on def
subset eq M N )

with A show ?case
by auto

qed }
note ∗ = this
show M = N
proof (rule measure eqI )
show sets M = sets N
using M N by simp

have [simp, intro]:
∧
i . A i ∈ sets M

using A(1 ) by (auto simp: subset eq M )
fix F assume F ∈ sets M
let ?D = disjointed (λi . F ∩ A i)
from 〈space M = Ω〉 have F eq : F = (

⋃
i . ?D i)

using 〈F ∈ sets M 〉[THEN sets.sets into space] A(2 )[symmetric] by (auto
simp: UN disjointed eq)

have [simp, intro]:
∧
i . ?D i ∈ sets M

using sets.range disjointed sets[of λi . F ∩ A i M ] 〈F ∈ sets M 〉

by (auto simp: subset eq)
have disjoint family ?D
by (auto simp: disjoint family disjointed)

moreover
have (

∑
i . emeasure M (?D i)) = (

∑
i . emeasure N (?D i))

proof (intro arg cong [where f=suminf ] ext)
fix i
have A i ∩ ?D i = ?D i
by (auto simp: disjointed def )

then show emeasure M (?D i) = emeasure N (?D i)
using ∗[of A i ?D i , OF A(3 )] A(1 ) by auto

qed
ultimately show emeasure M F = emeasure N F
by (simp add : image subset iff 〈sets M = sets N 〉[symmetric] F eq [symmetric]

suminf emeasure)
qed

qed

lemma space empty : space M = {} =⇒ M = count space {}
by (rule measure eqI ) (simp all add : space empty iff )

lemma measure eqI generator eq countable:
fixes M N :: ′a measure and E :: ′a set set and A :: ′a set set
assumes E : Int stable E E ⊆ Pow Ω

∧
X . X ∈ E =⇒ emeasure M X = emeasure

N X
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and sets: sets M = sigma sets Ω E sets N = sigma sets Ω E
and A: A ⊆ E (

⋃
A) = Ω countable A

∧
a. a ∈ A =⇒ emeasure M a 6= ∞

shows M = N
proof cases
assume Ω = {}
have ∗: sigma sets Ω E = sets (sigma Ω E )
using E (2 ) by simp

have space M = Ω space N = Ω
using sets E (2 ) unfolding ∗ by (auto dest : sets eq imp space eq simp del :

sets measure of )
then show M = N
unfolding 〈Ω = {}〉 by (auto dest : space empty)

next
assume Ω 6= {} with 〈

⋃
A = Ω〉 have A 6= {} by auto

from this 〈countable A〉 have rng : range (from nat into A) = A
by (rule range from nat into)

show M = N
proof (rule measure eqI generator eq [OF E sets])
show range (from nat into A) ⊆ E
unfolding rng using 〈A ⊆ E 〉 .

show (
⋃
i . from nat into A i) = Ω

unfolding rng using 〈
⋃
A = Ω〉 .

show emeasure M (from nat into A i) 6= ∞ for i
using rng by (intro A) auto

qed
qed

lemma measure of of measure: measure of (space M ) (sets M ) (emeasure M ) =
M
proof (intro measure eqI emeasure measure of sigma)
show sigma algebra (space M ) (sets M ) ..
show positive (sets M ) (emeasure M )
by (simp add : positive def )

show countably additive (sets M ) (emeasure M )
by (simp add : emeasure countably additive)

qed simp all

6.3.5 µ-null sets

definition null sets :: ′a measure ⇒ ′a set set where
null sets M = {N∈sets M . emeasure M N = 0}

lemma null setsD1 [dest ]: A ∈ null sets M =⇒ emeasure M A = 0
by (simp add : null sets def )

lemma null setsD2 [dest ]: A ∈ null sets M =⇒ A ∈ sets M
unfolding null sets def by simp

lemma null setsI [intro]: emeasure M A = 0 =⇒ A ∈ sets M =⇒ A ∈ null sets M
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unfolding null sets def by simp

interpretation null sets: ring of sets space M null sets M for M
proof (rule ring of setsI )
show null sets M ⊆ Pow (space M )
using sets.sets into space by auto

show {} ∈ null sets M
by auto

fix A B assume null sets: A ∈ null sets M B ∈ null sets M
then have sets: A ∈ sets M B ∈ sets M
by auto

then have ∗: emeasure M (A ∪ B) ≤ emeasure M A + emeasure M B
emeasure M (A − B) ≤ emeasure M A
by (auto intro!: emeasure subadditive emeasure mono)

then have emeasure M B = 0 emeasure M A = 0
using null sets by auto

with sets ∗ show A − B ∈ null sets M A ∪ B ∈ null sets M
by (auto intro!: antisym zero le)

qed

lemma UN from nat into:
assumes I : countable I I 6= {}
shows (

⋃
i∈I . N i) = (

⋃
i . N (from nat into I i))

proof −
have (

⋃
i∈I . N i) =

⋃
(N ‘ range (from nat into I ))

using I by simp
also have . . . = (

⋃
i . (N ◦ from nat into I ) i)

by simp
finally show ?thesis by simp

qed

lemma null sets UN ′:
assumes countable I
assumes

∧
i . i ∈ I =⇒ N i ∈ null sets M

shows (
⋃
i∈I . N i) ∈ null sets M

proof cases
assume I = {} then show ?thesis by simp

next
assume I 6= {}
show ?thesis
proof (intro conjI CollectI null setsI )
show (

⋃
i∈I . N i) ∈ sets M

using assms by (intro sets.countable UN ′) auto
have emeasure M (

⋃
i∈I . N i) ≤ (

∑
n. emeasure M (N (from nat into I n)))

unfolding UN from nat into[OF 〈countable I 〉 〈I 6= {}〉]
using assms 〈I 6= {}〉 by (intro emeasure subadditive countably) (auto intro:

from nat into)
also have (λn. emeasure M (N (from nat into I n))) = (λ . 0 )
using assms 〈I 6= {}〉 by (auto intro: from nat into)
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finally show emeasure M (
⋃

i∈I . N i) = 0
by (intro antisym zero le) simp

qed
qed

lemma null sets UN [intro]:
(
∧
i :: ′i ::countable. N i ∈ null sets M ) =⇒ (

⋃
i . N i) ∈ null sets M

by (rule null sets UN ′) auto

lemma null set Int1 :
assumes B ∈ null sets M A ∈ sets M shows A ∩ B ∈ null sets M

proof (intro CollectI conjI null setsI )
show emeasure M (A ∩ B) = 0 using assms
by (intro emeasure eq 0 [of B A ∩ B ]) auto

qed (insert assms, auto)

lemma null set Int2 :
assumes B ∈ null sets M A ∈ sets M shows B ∩ A ∈ null sets M
using assms by (subst Int commute) (rule null set Int1 )

lemma emeasure Diff null set :
assumes B ∈ null sets M A ∈ sets M
shows emeasure M (A − B) = emeasure M A

proof −
have ∗: A − B = (A − (A ∩ B)) by auto
have A ∩ B ∈ null sets M using assms by (rule null set Int1 )
then show ?thesis
unfolding ∗ using assms
by (subst emeasure Diff ) auto

qed

lemma null set Diff :
assumes B ∈ null sets M A ∈ sets M shows B − A ∈ null sets M

proof (intro CollectI conjI null setsI )
show emeasure M (B − A) = 0 using assms by (intro emeasure eq 0 [of B B
− A]) auto
qed (insert assms, auto)

lemma emeasure Un null set :
assumes A ∈ sets M B ∈ null sets M
shows emeasure M (A ∪ B) = emeasure M A

proof −
have ∗: A ∪ B = A ∪ (B − A) by auto
have B − A ∈ null sets M using assms(2 ,1 ) by (rule null set Diff )
then show ?thesis
unfolding ∗ using assms
by (subst plus emeasure[symmetric]) auto

qed
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lemma emeasure Un ′:
assumes A ∈ sets M B ∈ sets M A ∩ B ∈ null sets M
shows emeasure M (A ∪ B) = emeasure M A + emeasure M B

proof −
have A ∪ B = A ∪ (B − A ∩ B) by blast
also have emeasure M . . . = emeasure M A + emeasure M (B − A ∩ B)
using assms by (subst plus emeasure) auto

also have emeasure M (B − A ∩ B) = emeasure M B
using assms by (intro emeasure Diff null set) auto

finally show ?thesis .
qed

6.3.6 The almost everywhere filter (i.e. quantifier)

definition ae filter :: ′a measure ⇒ ′a filter where
ae filter M = (INF N∈null sets M . principal (space M − N ))

abbreviation almost everywhere :: ′a measure ⇒ ( ′a ⇒ bool) ⇒ bool where
almost everywhere M P ≡ eventually P (ae filter M )

syntax
almost everywhere :: pttrn ⇒ ′a ⇒ bool ⇒ bool (AE in . [0 ,0 ,10 ] 10 )

translations
AE x in M . P 
 CONST almost everywhere M (λx . P)

abbreviation
set almost everywhere A M P ≡ AE x in M . x ∈ A −→ P x

syntax
set almost everywhere :: pttrn ⇒ ′a set ⇒ ′a ⇒ bool ⇒ bool
(AE ∈ in ./ [0 ,0 ,0 ,10 ] 10 )

translations
AE x∈A in M . P 
 CONST set almost everywhere A M (λx . P)

lemma eventually ae filter : eventually P (ae filter M ) ←→ (∃N∈null sets M . {x
∈ space M . ¬ P x} ⊆ N )
unfolding ae filter def by (subst eventually INF base) (auto simp: eventually principal

subset eq)

lemma AE I ′:
N ∈ null sets M =⇒ {x∈space M . ¬ P x} ⊆ N =⇒ (AE x in M . P x )
unfolding eventually ae filter by auto

lemma AE iff null :
assumes {x∈space M . ¬ P x} ∈ sets M (is ?P ∈ sets M )
shows (AE x in M . P x ) ←→ {x∈space M . ¬ P x} ∈ null sets M

proof
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assume AE x in M . P x then obtain N where N : N ∈ sets M ?P ⊆ N
emeasure M N = 0

unfolding eventually ae filter by auto
have emeasure M ?P ≤ emeasure M N
using assms N (1 ,2 ) by (auto intro: emeasure mono)

then have emeasure M ?P = 0
unfolding 〈emeasure M N = 0 〉 by auto

then show ?P ∈ null sets M using assms by auto
next
assume ?P ∈ null sets M with assms show AE x in M . P x by (auto intro:

AE I ′)
qed

lemma AE iff null sets:
N ∈ sets M =⇒ N ∈ null sets M ←→ (AE x in M . x /∈ N )
using Int absorb1 [OF sets.sets into space, of N M ]
by (subst AE iff null) (auto simp: Int def [symmetric])

lemma AE not in:
N ∈ null sets M =⇒ AE x in M . x /∈ N
by (metis AE iff null sets null setsD2 )

lemma AE iff measurable:
N ∈ sets M =⇒ {x∈space M . ¬ P x} = N =⇒ (AE x in M . P x ) ←→ emeasure

M N = 0
using AE iff null [of P ] by auto

lemma AE E [consumes 1 ]:
assumes AE x in M . P x
obtains N where {x ∈ space M . ¬ P x} ⊆ N emeasure M N = 0 N ∈ sets M
using assms unfolding eventually ae filter by auto

lemma AE E2 :
assumes AE x in M . P x {x∈space M . P x} ∈ sets M
shows emeasure M {x∈space M . ¬ P x} = 0 (is emeasure M ?P = 0 )

proof −
have {x∈space M . ¬ P x} = space M − {x∈space M . P x} by auto
with AE iff null [of M P ] assms show ?thesis by auto

qed

lemma AE E3 :
assumes AE x in M . P x
obtains N where

∧
x . x ∈ space M − N =⇒ P x N ∈ null sets M

using assms unfolding eventually ae filter by auto

lemma AE I :
assumes {x ∈ space M . ¬ P x} ⊆ N emeasure M N = 0 N ∈ sets M
shows AE x in M . P x
using assms unfolding eventually ae filter by auto
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lemma AE mp[elim!]:
assumes AE P : AE x in M . P x and AE imp: AE x in M . P x −→ Q x
shows AE x in M . Q x

proof −
from AE P obtain A where P : {x∈space M . ¬ P x} ⊆ A
and A: A ∈ sets M emeasure M A = 0
by (auto elim!: AE E )

from AE imp obtain B where imp: {x∈space M . P x ∧ ¬ Q x} ⊆ B
and B : B ∈ sets M emeasure M B = 0
by (auto elim!: AE E )

show ?thesis
proof (intro AE I )
have emeasure M (A ∪ B) ≤ 0
using emeasure subadditive[of A M B ] A B by auto

then show A ∪ B ∈ sets M emeasure M (A ∪ B) = 0
using A B by auto

show {x∈space M . ¬ Q x} ⊆ A ∪ B
using P imp by auto

qed
qed

The next lemma is convenient to combine with a lemma whose conclusion is
of the form AE x in M . P x = Q x : for such a lemma, there is no [symmetric]
variant, but using AE symmetric[OF ...] will replace it.

lemma
shows AE iffI : AE x in M . P x =⇒ AE x in M . P x ←→ Q x =⇒ AE x in M .

Q x
and AE disjI1 : AE x in M . P x =⇒ AE x in M . P x ∨ Q x
and AE disjI2 : AE x in M . Q x =⇒ AE x in M . P x ∨ Q x
and AE conjI : AE x in M . P x =⇒ AE x in M . Q x =⇒ AE x in M . P x ∧

Q x
and AE conj iff [simp]: (AE x in M . P x ∧ Q x ) ←→ (AE x in M . P x ) ∧ (AE

x in M . Q x )
by auto

lemma AE symmetric:
assumes AE x in M . P x = Q x
shows AE x in M . Q x = P x
using assms by auto

lemma AE impI :
(P =⇒ AE x in M . Q x ) =⇒ AE x in M . P −→ Q x
by fastforce

lemma AE measure:
assumes AE : AE x in M . P x and sets: {x∈space M . P x} ∈ sets M (is ?P ∈
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sets M )
shows emeasure M {x∈space M . P x} = emeasure M (space M )

proof −
from AE E [OF AE ] guess N . note N = this
with sets have emeasure M (space M ) ≤ emeasure M (?P ∪ N )
by (intro emeasure mono) auto

also have . . . ≤ emeasure M ?P + emeasure M N
using sets N by (intro emeasure subadditive) auto

also have . . . = emeasure M ?P using N by simp
finally show emeasure M ?P = emeasure M (space M )
using emeasure space[of M ?P ] by auto

qed

lemma AE space: AE x in M . x ∈ space M
by (rule AE I [where N={}]) auto

lemma AE I2 [simp, intro]:
(
∧
x . x ∈ space M =⇒ P x ) =⇒ AE x in M . P x

using AE space by force

lemma AE Ball mp:
∀ x∈space M . P x =⇒ AE x in M . P x −→ Q x =⇒ AE x in M . Q x
by auto

lemma AE cong [cong ]:
(
∧
x . x ∈ space M =⇒ P x ←→ Q x ) =⇒ (AE x in M . P x ) ←→ (AE x in M .

Q x )
by auto

lemma AE cong simp: M = N =⇒ (
∧
x . x ∈ space N =simp=> P x = Q x ) =⇒

(AE x in M . P x ) ←→ (AE x in N . Q x )
by (auto simp: simp implies def )

lemma AE all countable:
(AE x in M . ∀ i . P i x ) ←→ (∀ i :: ′i ::countable. AE x in M . P i x )

proof
assume ∀ i . AE x in M . P i x
from this[unfolded eventually ae filter Bex def , THEN choice]
obtain N where N :

∧
i . N i ∈ null sets M

∧
i . {x∈space M . ¬ P i x} ⊆ N i

by auto
have {x∈space M . ¬ (∀ i . P i x )} ⊆ (

⋃
i . {x∈space M . ¬ P i x}) by auto

also have . . . ⊆ (
⋃
i . N i) using N by auto

finally have {x∈space M . ¬ (∀ i . P i x )} ⊆ (
⋃
i . N i) .

moreover from N have (
⋃
i . N i) ∈ null sets M

by (intro null sets UN ) auto
ultimately show AE x in M . ∀ i . P i x
unfolding eventually ae filter by auto

qed auto
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lemma AE ball countable:
assumes [intro]: countable X
shows (AE x in M . ∀ y∈X . P x y) ←→ (∀ y∈X . AE x in M . P x y)

proof
assume ∀ y∈X . AE x in M . P x y
from this[unfolded eventually ae filter Bex def , THEN bchoice]
obtain N where N :

∧
y . y ∈ X =⇒ N y ∈ null sets M

∧
y . y ∈ X =⇒ {x∈space

M . ¬ P x y} ⊆ N y
by auto

have {x∈space M . ¬ (∀ y∈X . P x y)} ⊆ (
⋃

y∈X . {x∈space M . ¬ P x y})
by auto

also have . . . ⊆ (
⋃
y∈X . N y)

using N by auto
finally have {x∈space M . ¬ (∀ y∈X . P x y)} ⊆ (

⋃
y∈X . N y) .

moreover from N have (
⋃

y∈X . N y) ∈ null sets M
by (intro null sets UN ′) auto

ultimately show AE x in M . ∀ y∈X . P x y
unfolding eventually ae filter by auto

qed auto

lemma AE ball countable ′:
(
∧
N . N ∈ I =⇒ AE x in M . P N x ) =⇒ countable I =⇒ AE x in M . ∀N ∈ I .

P N x
unfolding AE ball countable by simp

lemma AE pairwise: countable F =⇒ pairwise (λA B . AE x in M . R x A B) F
←→ (AE x in M . pairwise (R x ) F )
unfolding pairwise alt by (simp add : AE ball countable)

lemma AE discrete difference:
assumes X : countable X
assumes null :

∧
x . x ∈ X =⇒ emeasure M {x} = 0

assumes sets:
∧
x . x ∈ X =⇒ {x} ∈ sets M

shows AE x in M . x /∈ X
proof −
have (

⋃
x∈X . {x}) ∈ null sets M

using assms by (intro null sets UN ′) auto
from AE not in[OF this] show AE x in M . x /∈ X
by auto

qed

lemma AE finite all :
assumes f : finite S shows (AE x in M . ∀ i∈S . P i x ) ←→ (∀ i∈S . AE x in M .

P i x )
using f by induct auto

lemma AE finite allI :
assumes finite S
shows (

∧
s. s ∈ S =⇒ AE x in M . Q s x ) =⇒ AE x in M . ∀ s∈S . Q s x
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using AE finite all [OF 〈finite S 〉] by auto

lemma emeasure mono AE :
assumes imp: AE x in M . x ∈ A −→ x ∈ B
and B : B ∈ sets M

shows emeasure M A ≤ emeasure M B
proof cases
assume A: A ∈ sets M
from imp obtain N where N : {x∈space M . ¬ (x ∈ A −→ x ∈ B)} ⊆ N N ∈

null sets M
by (auto simp: eventually ae filter)

have emeasure M A = emeasure M (A − N )
using N A by (subst emeasure Diff null set) auto

also have emeasure M (A − N ) ≤ emeasure M (B − N )
using N A B sets.sets into space by (auto intro!: emeasure mono)

also have emeasure M (B − N ) = emeasure M B
using N B by (subst emeasure Diff null set) auto

finally show ?thesis .
qed (simp add : emeasure notin sets)

lemma emeasure eq AE :
assumes iff : AE x in M . x ∈ A ←→ x ∈ B
assumes A: A ∈ sets M and B : B ∈ sets M
shows emeasure M A = emeasure M B
using assms by (safe intro!: antisym emeasure mono AE ) auto

lemma emeasure Collect eq AE :
AE x in M . P x ←→ Q x =⇒ Measurable.pred M Q =⇒ Measurable.pred M P

=⇒
emeasure M {x∈space M . P x} = emeasure M {x∈space M . Q x}
by (intro emeasure eq AE ) auto

lemma emeasure eq 0 AE : AE x in M . ¬ P x =⇒ emeasure M {x∈space M . P
x} = 0
using AE iff measurable[OF refl , of M λx . ¬ P x ]
by (cases {x∈space M . P x} ∈ sets M ) (simp all add : emeasure notin sets)

lemma emeasure 0 AE :
assumes emeasure M (space M ) = 0
shows AE x in M . P x

using eventually ae filter assms by blast

lemma emeasure add AE :
assumes [measurable]: A ∈ sets M B ∈ sets M C ∈ sets M
assumes 1 : AE x in M . x ∈ C ←→ x ∈ A ∨ x ∈ B
assumes 2 : AE x in M . ¬ (x ∈ A ∧ x ∈ B)
shows emeasure M C = emeasure M A + emeasure M B

proof −
have emeasure M C = emeasure M (A ∪ B)
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by (rule emeasure eq AE ) (insert 1 , auto)
also have . . . = emeasure M A + emeasure M (B − A)
by (subst plus emeasure) auto

also have emeasure M (B − A) = emeasure M B
by (rule emeasure eq AE ) (insert 2 , auto)

finally show ?thesis .
qed

6.3.7 σ-finite Measures

locale sigma finite measure =
fixes M :: ′a measure
assumes sigma finite countable:
∃A:: ′a set set . countable A ∧ A ⊆ sets M ∧ (

⋃
A) = space M ∧ (∀ a∈A.

emeasure M a 6= ∞)

lemma (in sigma finite measure) sigma finite:
obtains A :: nat ⇒ ′a set
where range A ⊆ sets M (

⋃
i . A i) = space M

∧
i . emeasure M (A i) 6= ∞

proof −
obtain A :: ′a set set where
[simp]: countable A and
A: A ⊆ sets M (

⋃
A) = space M

∧
a. a ∈ A =⇒ emeasure M a 6= ∞

using sigma finite countable by metis
show thesis
proof cases
assume A = {} with 〈(

⋃
A) = space M 〉 show thesis

by (intro that [of λ . {}]) auto
next
assume A 6= {}
show thesis
proof
show range (from nat into A) ⊆ sets M
using 〈A 6= {}〉 A by auto

have (
⋃
i . from nat into A i) =

⋃
A

using range from nat into[OF 〈A 6= {}〉 〈countable A〉] by auto
with A show (

⋃
i . from nat into A i) = space M

by auto
qed (intro A from nat into 〈A 6= {}〉)

qed
qed

lemma (in sigma finite measure) sigma finite disjoint :
obtains A :: nat ⇒ ′a set
where range A ⊆ sets M (

⋃
i . A i) = space M

∧
i . emeasure M (A i) 6= ∞

disjoint family A
proof −
obtain A :: nat ⇒ ′a set where
range: range A ⊆ sets M and
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space: (
⋃
i . A i) = space M and

measure:
∧
i . emeasure M (A i) 6= ∞

using sigma finite by blast
show thesis
proof (rule that [of disjointed A])
show range (disjointed A) ⊆ sets M
by (rule sets.range disjointed sets[OF range])

show (
⋃
i . disjointed A i) = space M

and disjoint family (disjointed A)
using disjoint family disjointed UN disjointed eq [of A] space range
by auto

show emeasure M (disjointed A i) 6= ∞ for i
proof −
have emeasure M (disjointed A i) ≤ emeasure M (A i)
using range disjointed subset [of A i ] by (auto intro!: emeasure mono)

then show ?thesis using measure[of i ] by (auto simp: top unique)
qed

qed
qed

lemma (in sigma finite measure) sigma finite incseq :
obtains A :: nat ⇒ ′a set
where range A ⊆ sets M (

⋃
i . A i) = space M

∧
i . emeasure M (A i) 6= ∞

incseq A
proof −
obtain F :: nat ⇒ ′a set where
F : range F ⊆ sets M (

⋃
i . F i) = space M

∧
i . emeasure M (F i) 6= ∞

using sigma finite by blast
show thesis
proof (rule that [of λn.

⋃
i≤n. F i ])

show range (λn.
⋃

i≤n. F i) ⊆ sets M
using F by (force simp: incseq def )

show (
⋃
n.

⋃
i≤n. F i) = space M

proof −
from F have

∧
x . x ∈ space M =⇒ ∃ i . x ∈ F i by auto

with F show ?thesis by fastforce
qed
show emeasure M (

⋃
i≤n. F i) 6= ∞ for n

proof −
have emeasure M (

⋃
i≤n. F i) ≤ (

∑
i≤n. emeasure M (F i))

using F by (auto intro!: emeasure subadditive finite)
also have . . . < ∞
using F by (auto simp: sum Pinfty less top)

finally show ?thesis by simp
qed
show incseq (λn.

⋃
i≤n. F i)

by (force simp: incseq def )
qed

qed
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lemma (in sigma finite measure) approx PInf emeasure with finite:
fixes C ::real
assumes W meas: W ∈ sets M

and W inf : emeasure M W = ∞
obtains Z where Z ∈ sets M Z ⊆ W emeasure M Z < ∞ emeasure M Z > C

proof −
obtain A :: nat ⇒ ′a set
where A: range A ⊆ sets M (

⋃
i . A i) = space M

∧
i . emeasure M (A i) 6=

∞ incseq A
using sigma finite incseq by blast

define B where B = (λi . W ∩ A i)
have B meas:

∧
i . B i ∈ sets M using W meas 〈range A ⊆ sets M 〉 B def by

blast
have b:

∧
i . B i ⊆ W using B def by blast

{ fix i
have emeasure M (B i) ≤ emeasure M (A i)
using A by (intro emeasure mono) (auto simp: B def )

also have emeasure M (A i) < ∞
using 〈

∧
i . emeasure M (A i) 6= ∞〉 by (simp add : less top)

finally have emeasure M (B i) < ∞ . }
note c = this

have W = (
⋃
i . B i) using B def 〈(

⋃
i . A i) = space M 〉 W meas by auto

moreover have incseq B using B def 〈incseq A〉 by (simp add : incseq def sub-
set eq)
ultimately have (λi . emeasure M (B i)) −−−−→ emeasure M W using W meas

B meas
by (simp add : B meas Lim emeasure incseq image subset iff )

then have (λi . emeasure M (B i)) −−−−→ ∞ using W inf by simp
from order tendstoD(1 )[OF this, of C ]
obtain i where d : emeasure M (B i) > C
by (auto simp: eventually sequentially)

have B i ∈ sets M B i ⊆ W emeasure M (B i) < ∞ emeasure M (B i) > C
using B meas b c d by auto

then show ?thesis using that by blast
qed

6.3.8 Measure space induced by distribution of (→M)-functions

definition distr :: ′a measure ⇒ ′b measure ⇒ ( ′a ⇒ ′b) ⇒ ′b measure where
distr M N f =
measure of (space N ) (sets N ) (λA. emeasure M (f −‘ A ∩ space M ))

lemma
shows sets distr [simp, measurable cong ]: sets (distr M N f ) = sets N
and space distr [simp]: space (distr M N f ) = space N

by (auto simp: distr def )
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lemma
shows measurable distr eq1 [simp]: measurable (distr Mf Nf f ) Mf ′ = measurable

Nf Mf ′

and measurable distr eq2 [simp]: measurable Mg ′ (distr Mg Ng g) = measurable
Mg ′ Ng
by (auto simp: measurable def )

lemma distr cong :
M = K =⇒ sets N = sets L =⇒ (

∧
x . x ∈ space M =⇒ f x = g x ) =⇒ distr M

N f = distr K L g
using sets eq imp space eq [of N L] by (simp add : distr def Int def cong : rev conj cong)

lemma emeasure distr :
fixes f :: ′a ⇒ ′b
assumes f : f ∈ measurable M N and A: A ∈ sets N
shows emeasure (distr M N f ) A = emeasure M (f −‘ A ∩ space M ) (is = ?µ

A)
unfolding distr def

proof (rule emeasure measure of sigma)
show positive (sets N ) ?µ
by (auto simp: positive def )

show countably additive (sets N ) ?µ
proof (intro countably additiveI )
fix A :: nat ⇒ ′b set assume range A ⊆ sets N disjoint family A
then have A:

∧
i . A i ∈ sets N (

⋃
i . A i) ∈ sets N by auto

then have ∗: range (λi . f −‘ (A i) ∩ space M ) ⊆ sets M
using f by (auto simp: measurable def )

moreover have (
⋃
i . f −‘ A i ∩ space M ) ∈ sets M

using ∗ by blast
moreover have ∗∗: disjoint family (λi . f −‘ A i ∩ space M )
using 〈disjoint family A〉 by (auto simp: disjoint family on def )

ultimately show (
∑

i . ?µ (A i)) = ?µ (
⋃

i . A i)
using suminf emeasure[OF ∗∗] A f
by (auto simp: comp def vimage UN )

qed
show sigma algebra (space N ) (sets N ) ..

qed fact

lemma emeasure Collect distr :
assumes X [measurable]: X ∈ measurable M N Measurable.pred N P
shows emeasure (distr M N X ) {x∈space N . P x} = emeasure M {x∈space M .

P (X x )}
by (subst emeasure distr)

(auto intro!: arg cong2 [where f=emeasure] X (1 )[THEN measurable space])

lemma emeasure lfp2 [consumes 1 , case names cont f measurable]:
assumes P M
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assumes cont : sup continuous F
assumes f :

∧
M . P M =⇒ f ∈ measurable M ′ M

assumes ∗:
∧
M A. P M =⇒ (

∧
N . P N =⇒ Measurable.pred N A) =⇒ Mea-

surable.pred M (F A)
shows emeasure M ′ {x∈space M ′. lfp F (f x )} = (SUP i . emeasure M ′ {x∈space

M ′. (F ˆˆ i) (λx . False) (f x )})
proof (subst (1 2 ) emeasure Collect distr [symmetric, where X=f ])
show f ∈ measurable M ′ M f ∈ measurable M ′ M
using f [OF 〈P M 〉] by auto

{ fix i show Measurable.pred M ((F ˆˆ i) (λx . False))
using 〈P M 〉 by (induction i arbitrary : M ) (auto intro!: ∗) }

show Measurable.pred M (lfp F )
using 〈P M 〉 cont ∗ by (rule measurable lfp coinduct [of P ])

have emeasure (distr M ′ M f ) {x ∈ space (distr M ′ M f ). lfp F x} =
(SUP i . emeasure (distr M ′ M f ) {x ∈ space (distr M ′ M f ). (F ˆˆ i) (λx .

False) x})
using 〈P M 〉

proof (coinduction arbitrary : M rule: emeasure lfp ′)
case (measurable A N ) then have

∧
N . P N =⇒ Measurable.pred (distr M ′

N f ) A
by metis

then have
∧
N . P N =⇒ Measurable.pred N A

by simp
with 〈P N 〉[THEN ∗] show ?case
by auto

qed fact
then show emeasure (distr M ′ M f ) {x ∈ space M . lfp F x} =
(SUP i . emeasure (distr M ′ M f ) {x ∈ space M . (F ˆˆ i) (λx . False) x})
by simp

qed

lemma distr id [simp]: distr N N (λx . x ) = N
by (rule measure eqI ) (auto simp: emeasure distr)

lemma distr id2 : sets M = sets N =⇒ distr N M (λx . x ) = N
by (rule measure eqI ) (auto simp: emeasure distr)

lemma measure distr :
f ∈ measurable M N =⇒ S ∈ sets N =⇒ measure (distr M N f ) S = measure

M (f −‘ S ∩ space M )
by (simp add : emeasure distr measure def )

lemma distr cong AE :
assumes 1 : M = K sets N = sets L and
2 : (AE x in M . f x = g x ) and f ∈ measurable M N and g ∈ measurable K L

shows distr M N f = distr K L g
proof (rule measure eqI )
fix A assume A ∈ sets (distr M N f )
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with assms show emeasure (distr M N f ) A = emeasure (distr K L g) A
by (auto simp add : emeasure distr intro!: emeasure eq AE measurable sets)

qed (insert 1 , simp)

lemma AE distrD :
assumes f : f ∈ measurable M M ′

and AE : AE x in distr M M ′ f . P x
shows AE x in M . P (f x )

proof −
from AE [THEN AE E ] guess N .
with f show ?thesis
unfolding eventually ae filter
by (intro bexI [of f −‘ N ∩ space M ])

(auto simp: emeasure distr measurable def )
qed

lemma AE distr iff :
assumes f [measurable]: f ∈ measurable M N and P [measurable]: {x ∈ space N .

P x} ∈ sets N
shows (AE x in distr M N f . P x ) ←→ (AE x in M . P (f x ))

proof (subst (1 2 ) AE iff measurable[OF refl ])
have f −‘ {x∈space N . ¬ P x} ∩ space M = {x ∈ space M . ¬ P (f x )}
using f [THEN measurable space] by auto

then show (emeasure (distr M N f ) {x ∈ space (distr M N f ). ¬ P x} = 0 ) =
(emeasure M {x ∈ space M . ¬ P (f x )} = 0 )
by (simp add : emeasure distr)

qed auto

lemma null sets distr iff :
f ∈ measurable M N =⇒ A ∈ null sets (distr M N f ) ←→ f −‘ A ∩ space M ∈

null sets M ∧ A ∈ sets N
by (auto simp add : null sets def emeasure distr)

proposition distr distr :
g ∈ measurable N L =⇒ f ∈ measurable M N =⇒ distr (distr M N f ) L g =

distr M L (g ◦ f )
by (auto simp add : emeasure distr measurable space

intro!: arg cong [where f=emeasure M ] measure eqI )

6.3.9 Real measure values

lemma ring of finite sets: ring of sets (space M ) {A∈sets M . emeasure M A 6=
top}
proof (rule ring of setsI )
show a ∈ {A ∈ sets M . emeasure M A 6= top} =⇒ b ∈ {A ∈ sets M . emeasure

M A 6= top} =⇒
a ∪ b ∈ {A ∈ sets M . emeasure M A 6= top} for a b
using emeasure subadditive[of a M b] by (auto simp: top unique)
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show a ∈ {A ∈ sets M . emeasure M A 6= top} =⇒ b ∈ {A ∈ sets M . emeasure
M A 6= top} =⇒

a − b ∈ {A ∈ sets M . emeasure M A 6= top} for a b
using emeasure mono[of a − b a M ] by (auto simp: top unique)

qed (auto dest : sets.sets into space)

lemma measure nonneg [simp]: 0 ≤ measure M A
unfolding measure def by auto

lemma measure nonneg ′ [simp]: ¬ measure M A < 0
using measure nonneg not le by blast

lemma zero less measure iff : 0 < measure M A ←→ measure M A 6= 0
using measure nonneg [of M A] by (auto simp add : le less)

lemma measure le 0 iff : measure M X ≤ 0 ←→ measure M X = 0
using measure nonneg [of M X ] by linarith

lemma measure empty [simp]: measure M {} = 0
unfolding measure def by (simp add : zero ennreal .rep eq)

lemma emeasure eq ennreal measure:
emeasure M A 6= top =⇒ emeasure M A = ennreal (measure M A)
by (cases emeasure M A rule: ennreal cases) (auto simp: measure def )

lemma measure zero top: emeasure M A = top =⇒ measure M A = 0
by (simp add : measure def )

lemma measure eq emeasure eq ennreal : 0 ≤ x =⇒ emeasure M A = ennreal x
=⇒ measure M A = x
using emeasure eq ennreal measure[of M A]
by (cases A ∈ M ) (auto simp: measure notin sets emeasure notin sets)

lemma enn2real plus:a < top =⇒ b < top =⇒ enn2real (a + b) = enn2real a +
enn2real b
by (simp add : enn2real def plus ennreal .rep eq real of ereal add less top

del : real of ereal enn2ereal)

lemma enn2real sum:(
∧
i . i ∈ I =⇒ f i < top) =⇒ enn2real (sum f I ) = sum

(enn2real ◦ f ) I
by (induction I rule: infinite finite induct) (auto simp: enn2real plus)

lemma measure eq AE :
assumes iff : AE x in M . x ∈ A ←→ x ∈ B
assumes A: A ∈ sets M and B : B ∈ sets M
shows measure M A = measure M B
using assms emeasure eq AE [OF assms] by (simp add : measure def )

lemma measure Union:
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emeasure M A 6= ∞ =⇒ emeasure M B 6= ∞ =⇒ A ∈ sets M =⇒ B ∈ sets M
=⇒ A ∩ B = {} =⇒

measure M (A ∪ B) = measure M A + measure M B
by (simp add : measure def plus emeasure[symmetric] enn2real plus less top)

lemma disjoint family on insert :
i /∈ I =⇒ disjoint family on A (insert i I ) ←→ A i ∩ (

⋃
i∈I . A i) = {} ∧

disjoint family on A I
by (fastforce simp: disjoint family on def )

lemma measure finite Union:
finite S =⇒ A‘S ⊆ sets M =⇒ disjoint family on A S =⇒ (

∧
i . i ∈ S =⇒

emeasure M (A i) 6= ∞) =⇒
measure M (

⋃
i∈S . A i) = (

∑
i∈S . measure M (A i))

by (induction S rule: finite induct)
(auto simp: disjoint family on insert measure Union sum emeasure[symmetric]

sets.countable UN ′[OF countable finite])

lemma measure Diff :
assumes finite: emeasure M A 6= ∞
and measurable: A ∈ sets M B ∈ sets M B ⊆ A
shows measure M (A − B) = measure M A − measure M B

proof −
have emeasure M (A − B) ≤ emeasure M A emeasure M B ≤ emeasure M A
using measurable by (auto intro!: emeasure mono)

hence measure M ((A − B) ∪ B) = measure M (A − B) + measure M B
using measurable finite by (rule tac measure Union) (auto simp: top unique)

thus ?thesis using 〈B ⊆ A〉 by (auto simp: Un absorb2 )
qed

lemma measure UNION :
assumes measurable: range A ⊆ sets M disjoint family A
assumes finite: emeasure M (

⋃
i . A i) 6= ∞

shows (λi . measure M (A i)) sums (measure M (
⋃

i . A i))
proof −
have (λi . emeasure M (A i)) sums (emeasure M (

⋃
i . A i))

unfolding suminf emeasure[OF measurable, symmetric] by (simp add : summable sums)
moreover
{ fix i
have emeasure M (A i) ≤ emeasure M (

⋃
i . A i)

using measurable by (auto intro!: emeasure mono)
then have emeasure M (A i) = ennreal ((measure M (A i)))
using finite by (intro emeasure eq ennreal measure) (auto simp: top unique)

}
ultimately show ?thesis using finite
by (subst (asm) (2 ) emeasure eq ennreal measure) simp all

qed

lemma measure subadditive:
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assumes measurable: A ∈ sets M B ∈ sets M
and fin: emeasure M A 6= ∞ emeasure M B 6= ∞
shows measure M (A ∪ B) ≤ measure M A + measure M B

proof −
have emeasure M (A ∪ B) 6= ∞
using emeasure subadditive[OF measurable] fin by (auto simp: top unique)

then show (measure M (A ∪ B)) ≤ (measure M A) + (measure M B)
using emeasure subadditive[OF measurable] fin
apply simp
apply (subst (asm) (2 3 4 ) emeasure eq ennreal measure)
apply (auto simp flip: ennreal plus)
done

qed

lemma measure subadditive finite:
assumes A: finite I A‘I ⊆ sets M and fin:

∧
i . i ∈ I =⇒ emeasure M (A i) 6=

∞
shows measure M (

⋃
i∈I . A i) ≤ (

∑
i∈I . measure M (A i))

proof −
{ have emeasure M (

⋃
i∈I . A i) ≤ (

∑
i∈I . emeasure M (A i))

using emeasure subadditive finite[OF A] .
also have . . . < ∞
using fin by (simp add : less top A)

finally have emeasure M (
⋃
i∈I . A i) 6= top by simp }

note ∗ = this
show ?thesis
using emeasure subadditive finite[OF A] fin
unfolding emeasure eq ennreal measure[OF ∗]
by (simp all add : sum nonneg emeasure eq ennreal measure)

qed

lemma measure subadditive countably :
assumes A: range A ⊆ sets M and fin: (

∑
i . emeasure M (A i)) 6= ∞

shows measure M (
⋃

i . A i) ≤ (
∑

i . measure M (A i))
proof −
from fin have ∗∗:

∧
i . emeasure M (A i) 6= top

using ennreal suminf lessD [of λi . emeasure M (A i)] by (simp add : less top)
{ have emeasure M (

⋃
i . A i) ≤ (

∑
i . emeasure M (A i))

using emeasure subadditive countably [OF A] .
also have . . . < ∞
using fin by (simp add : less top)

finally have emeasure M (
⋃
i . A i) 6= top by simp }

then have ennreal (measure M (
⋃

i . A i)) = emeasure M (
⋃
i . A i)

by (rule emeasure eq ennreal measure[symmetric])
also have . . . ≤ (

∑
i . emeasure M (A i))

using emeasure subadditive countably [OF A] .
also have . . . = ennreal (

∑
i . measure M (A i))

using fin unfolding emeasure eq ennreal measure[OF ∗∗]
by (subst suminf ennreal) (auto simp: ∗∗)
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finally show ?thesis
apply (rule ennreal le iff [THEN iffD1 , rotated ])
apply (intro suminf nonneg allI measure nonneg summable suminf not top)
using fin
apply (simp add : emeasure eq ennreal measure[OF ∗∗])
done

qed

lemma measure Un null set : A ∈ sets M =⇒ B ∈ null sets M =⇒ measure M (A
∪ B) = measure M A
by (simp add : measure def emeasure Un null set)

lemma measure Diff null set : A ∈ sets M =⇒ B ∈ null sets M =⇒ measure M
(A − B) = measure M A
by (simp add : measure def emeasure Diff null set)

lemma measure eq sum singleton:
finite S =⇒ (

∧
x . x ∈ S =⇒ {x} ∈ sets M ) =⇒ (

∧
x . x ∈ S =⇒ emeasure M

{x} 6= ∞) =⇒
measure M S = (

∑
x∈S . measure M {x})

using emeasure eq sum singleton[of S M ]
by (intro measure eq emeasure eq ennreal) (auto simp: sum nonneg emeasure eq ennreal measure)

lemma Lim measure incseq :
assumes A: range A ⊆ sets M incseq A and fin: emeasure M (

⋃
i . A i) 6= ∞

shows (λi . measure M (A i)) −−−−→ measure M (
⋃
i . A i)

proof (rule tendsto ennrealD)
have ennreal (measure M (

⋃
i . A i)) = emeasure M (

⋃
i . A i)

using fin by (auto simp: emeasure eq ennreal measure)
moreover have ennreal (measure M (A i)) = emeasure M (A i) for i
using assms emeasure mono[of A

⋃
i . A i M ]

by (intro emeasure eq ennreal measure[symmetric]) (auto simp: less top UN upper
intro: le less trans)
ultimately show (λx . ennreal (measure M (A x ))) −−−−→ ennreal (measure M

(
⋃
i . A i))
using A by (auto intro!: Lim emeasure incseq)

qed auto

lemma Lim measure decseq :
assumes A: range A ⊆ sets M decseq A and fin:

∧
i . emeasure M (A i) 6= ∞

shows (λn. measure M (A n)) −−−−→ measure M (
⋂

i . A i)
proof (rule tendsto ennrealD)
have ennreal (measure M (

⋂
i . A i)) = emeasure M (

⋂
i . A i)

using fin[of 0 ] A emeasure mono[of
⋂
i . A i A 0 M ]

by (auto intro!: emeasure eq ennreal measure[symmetric] simp: INT lower less top
intro: le less trans)
moreover have ennreal (measure M (A i)) = emeasure M (A i) for i
using A fin[of i ] by (intro emeasure eq ennreal measure[symmetric]) auto

ultimately show (λx . ennreal (measure M (A x ))) −−−−→ ennreal (measure M
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(
⋂
i . A i))
using fin A by (auto intro!: Lim emeasure decseq)

qed auto

6.3.10 Set of measurable sets with finite measure

definition fmeasurable :: ′a measure ⇒ ′a set set where
fmeasurable M = {A∈sets M . emeasure M A < ∞}

lemma fmeasurableD [dest , measurable dest ]: A ∈ fmeasurable M =⇒ A ∈ sets M
by (auto simp: fmeasurable def )

lemma fmeasurableD2 : A ∈ fmeasurable M =⇒ emeasure M A 6= top
by (auto simp: fmeasurable def )

lemma fmeasurableI : A ∈ sets M =⇒ emeasure M A < ∞ =⇒ A ∈ fmeasurable
M
by (auto simp: fmeasurable def )

lemma fmeasurableI null sets: A ∈ null sets M =⇒ A ∈ fmeasurable M
by (auto simp: fmeasurable def )

lemma fmeasurableI2 : A ∈ fmeasurable M =⇒ B ⊆ A =⇒ B ∈ sets M =⇒ B ∈
fmeasurable M
using emeasure mono[of B A M ] by (auto simp: fmeasurable def )

lemma measure mono fmeasurable:
A ⊆ B =⇒ A ∈ sets M =⇒ B ∈ fmeasurable M =⇒ measure M A ≤ measure

M B
by (auto simp: measure def fmeasurable def intro!: emeasure mono enn2real mono)

lemma emeasure eq measure2 : A ∈ fmeasurable M =⇒ emeasure M A = measure
M A
by (simp add : emeasure eq ennreal measure fmeasurable def less top)

interpretation fmeasurable: ring of sets space M fmeasurable M
proof (rule ring of setsI )
show fmeasurable M ⊆ Pow (space M ) {} ∈ fmeasurable M
by (auto simp: fmeasurable def dest : sets.sets into space)

fix a b assume ∗: a ∈ fmeasurable M b ∈ fmeasurable M
then have emeasure M (a ∪ b) ≤ emeasure M a + emeasure M b
by (intro emeasure subadditive) auto

also have . . . < top
using ∗ by (auto simp: fmeasurable def )

finally show a ∪ b ∈ fmeasurable M
using ∗ by (auto intro: fmeasurableI )

show a − b ∈ fmeasurable M
using emeasure mono[of a − b a M ] ∗ by (auto simp: fmeasurable def )

qed
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6.3.11 Measurable sets formed by unions and intersections

lemma fmeasurable Diff : A ∈ fmeasurable M =⇒ B ∈ sets M =⇒ A − B ∈
fmeasurable M
using fmeasurableI2 [of A M A − B ] by auto

lemma fmeasurable Int fmeasurable:
[[S ∈ fmeasurable M ; T ∈ sets M ]] =⇒ (S ∩ T ) ∈ fmeasurable M
by (meson fmeasurableD fmeasurableI2 inf le1 sets.Int)

lemma fmeasurable UN :
assumes countable I

∧
i . i ∈ I =⇒ F i ⊆ A

∧
i . i ∈ I =⇒ F i ∈ sets M A ∈

fmeasurable M
shows (

⋃
i∈I . F i) ∈ fmeasurable M

proof (rule fmeasurableI2 )
show A ∈ fmeasurable M (

⋃
i∈I . F i) ⊆ A using assms by auto

show (
⋃
i∈I . F i) ∈ sets M

using assms by (intro sets.countable UN ′) auto
qed

lemma fmeasurable INT :
assumes countable I i ∈ I

∧
i . i ∈ I =⇒ F i ∈ sets M F i ∈ fmeasurable M

shows (
⋂
i∈I . F i) ∈ fmeasurable M

proof (rule fmeasurableI2 )
show F i ∈ fmeasurable M (

⋂
i∈I . F i) ⊆ F i

using assms by auto
show (

⋂
i∈I . F i) ∈ sets M

using assms by (intro sets.countable INT ′) auto
qed

lemma measurable measure Diff :
assumes A ∈ fmeasurable M B ∈ sets M B ⊆ A
shows measure M (A − B) = measure M A − measure M B
by (simp add : assms fmeasurableD fmeasurableD2 measure Diff )

lemma measurable Un null set :
assumes B ∈ null sets M
shows (A ∪ B ∈ fmeasurable M ∧ A ∈ sets M ) ←→ A ∈ fmeasurable M
using assms by (fastforce simp add : fmeasurable.Un fmeasurableI null sets intro:

fmeasurableI2 )

lemma measurable Diff null set :
assumes B ∈ null sets M
shows (A − B) ∈ fmeasurable M ∧ A ∈ sets M ←→ A ∈ fmeasurable M
using assms
by (metis Un Diff cancel2 fmeasurable.Diff fmeasurableD fmeasurableI null sets

measurable Un null set)

lemma fmeasurable Diff D :
assumes m: T − S ∈ fmeasurable M S ∈ fmeasurable M and sub: S ⊆ T
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shows T ∈ fmeasurable M
proof −
have T = S ∪ (T − S )
using assms by blast

then show ?thesis
by (metis m fmeasurable.Un)

qed

lemma measure Un2 :
A ∈ fmeasurable M =⇒ B ∈ fmeasurable M =⇒ measure M (A ∪ B) = measure

M A + measure M (B − A)
using measure Union[of M A B − A] by (auto simp: fmeasurableD2 fmeasur-

able.Diff )

lemma measure Un3 :
assumes A ∈ fmeasurable M B ∈ fmeasurable M
shows measure M (A ∪ B) = measure M A + measure M B − measure M (A
∩ B)
proof −
have measure M (A ∪ B) = measure M A + measure M (B − A)
using assms by (rule measure Un2 )

also have B − A = B − (A ∩ B)
by auto

also have measure M (B − (A ∩ B)) = measure M B − measure M (A ∩ B)
using assms by (intro measure Diff ) (auto simp: fmeasurable def )

finally show ?thesis
by simp

qed

lemma measure Un AE :
AE x in M . x /∈ A ∨ x /∈ B =⇒ A ∈ fmeasurable M =⇒ B ∈ fmeasurable M =⇒
measure M (A ∪ B) = measure M A + measure M B
by (subst measure Un2 ) (auto intro!: measure eq AE )

lemma measure UNION AE :
assumes I : finite I
shows (

∧
i . i ∈ I =⇒ F i ∈ fmeasurable M ) =⇒ pairwise (λi j . AE x in M . x

/∈ F i ∨ x /∈ F j ) I =⇒
measure M (

⋃
i∈I . F i) = (

∑
i∈I . measure M (F i))

unfolding AE pairwise[OF countable finite, OF I ]
using I

proof (induction I rule: finite induct)
case (insert x I )
have measure M (F x ∪

⋃
(F ‘ I )) = measure M (F x ) + measure M (

⋃
(F ‘

I ))
by (rule measure Un AE ) (use insert in 〈auto simp: pairwise insert 〉)
with insert show ?case
by (simp add : pairwise insert )

qed simp
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lemma measure UNION ′:
finite I =⇒ (

∧
i . i ∈ I =⇒ F i ∈ fmeasurable M ) =⇒ pairwise (λi j . disjnt (F

i) (F j )) I =⇒
measure M (

⋃
i∈I . F i) = (

∑
i∈I . measure M (F i))

by (intro measure UNION AE ) (auto simp: disjnt def elim!: pairwise mono in-
tro!: always eventually)

lemma measure Union AE :
finite F =⇒ (

∧
S . S ∈ F =⇒ S ∈ fmeasurable M ) =⇒ pairwise (λS T . AE x in

M . x /∈ S ∨ x /∈ T ) F =⇒
measure M (

⋃
F ) = (

∑
S∈F . measure M S )

using measure UNION AE [of F λx . x M ] by simp

lemma measure Union ′:
finite F =⇒ (

∧
S . S ∈ F =⇒ S ∈ fmeasurable M ) =⇒ pairwise disjnt F =⇒

measure M (
⋃
F ) = (

∑
S∈F . measure M S )

using measure UNION ′[of F λx . x M ] by simp

lemma measure Un le:
assumes A ∈ sets M B ∈ sets M shows measure M (A ∪ B) ≤ measure M A

+ measure M B
proof cases
assume A ∈ fmeasurable M ∧ B ∈ fmeasurable M
with measure subadditive[of A M B ] assms show ?thesis
by (auto simp: fmeasurableD2 )

next
assume ¬ (A ∈ fmeasurable M ∧ B ∈ fmeasurable M )
then have A ∪ B /∈ fmeasurable M
using fmeasurableI2 [of A ∪ B M A] fmeasurableI2 [of A ∪ B M B ] assms by

auto
with assms show ?thesis
by (auto simp: fmeasurable def measure def less top[symmetric])

qed

lemma measure UNION le:
finite I =⇒ (

∧
i . i ∈ I =⇒ F i ∈ sets M ) =⇒ measure M (

⋃
i∈I . F i) ≤ (

∑
i∈I .

measure M (F i))
proof (induction I rule: finite induct)
case (insert i I )
then have measure M (

⋃
i∈insert i I . F i) = measure M (F i ∪

⋃
(F ‘ I ))

by simp
also from insert have measure M (F i ∪

⋃
(F ‘ I )) ≤ measure M (F i) +

measure M (
⋃

(F ‘ I ))
by (intro measure Un le sets.finite Union) auto

also have measure M (
⋃
i∈I . F i) ≤ (

∑
i∈I . measure M (F i))

using insert by auto
finally show ?case
using insert by simp
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qed simp

lemma measure Union le:
finite F =⇒ (

∧
S . S ∈ F =⇒ S ∈ sets M ) =⇒ measure M (

⋃
F ) ≤ (

∑
S∈F .

measure M S )
using measure UNION le[of F λx . x M ] by simp

Version for indexed union over a countable set

lemma
assumes countable I and I :

∧
i . i ∈ I =⇒ A i ∈ fmeasurable M

and bound :
∧
I ′. I ′ ⊆ I =⇒ finite I ′ =⇒ measure M (

⋃
i∈I ′. A i) ≤ B

shows fmeasurable UN bound : (
⋃

i∈I . A i) ∈ fmeasurable M (is ?fm)
and measure UN bound : measure M (

⋃
i∈I . A i) ≤ B (is ?m)

proof −
have B ≥ 0
using bound by force

have ?fm ∧ ?m
proof cases
assume I = {}
with 〈B ≥ 0 〉 show ?thesis
by simp

next
assume I 6= {}
have (

⋃
i∈I . A i) = (

⋃
i . (

⋃
n≤i . A (from nat into I n)))

by (subst range from nat into[symmetric, OF 〈I 6= {}〉 〈countable I 〉]) auto
then have emeasure M (

⋃
i∈I . A i) = emeasure M (

⋃
i . (

⋃
n≤i . A (from nat into

I n))) by simp
also have . . . = (SUP i . emeasure M (

⋃
n≤i . A (from nat into I n)))

using I 〈I 6= {}〉[THEN from nat into] by (intro SUP emeasure incseq [symmetric])
(fastforce simp: incseq Suc iff )+

also have . . . ≤ B
proof (intro SUP least)
fix i :: nat
have emeasure M (

⋃
n≤i . A (from nat into I n)) = measure M (

⋃
n≤i . A

(from nat into I n))
using I 〈I 6= {}〉[THEN from nat into] by (intro emeasure eq measure2

fmeasurable.finite UN ) auto
also have . . . = measure M (

⋃
n∈from nat into I ‘ {..i}. A n)

by simp
also have . . . ≤ B
by (intro ennreal leI bound) (auto intro: from nat into[OF 〈I 6= {}〉])

finally show emeasure M (
⋃
n≤i . A (from nat into I n)) ≤ ennreal B .

qed
finally have ∗: emeasure M (

⋃
i∈I . A i) ≤ B .

then have ?fm
using I 〈countable I 〉 by (intro fmeasurableI conjI ) (auto simp: less top[symmetric]

top unique)
with ∗ 〈0≤B 〉 show ?thesis
by (simp add : emeasure eq measure2 )
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qed
then show ?fm ?m by auto

qed

Version for big union of a countable set

lemma
assumes countable D
and meas:

∧
D . D ∈ D =⇒ D ∈ fmeasurable M

and bound :
∧
E . [[E ⊆ D; finite E ]] =⇒ measure M (

⋃
E) ≤ B

shows fmeasurable Union bound :
⋃
D ∈ fmeasurable M (is ?fm)

and measure Union bound : measure M (
⋃
D) ≤ B (is ?m)

proof −
have B ≥ 0
using bound by force

have ?fm ∧ ?m
proof (cases D = {})
case True
with 〈B ≥ 0 〉 show ?thesis
by auto

next
case False
then obtain D :: nat ⇒ ′a set where D : D = range D
using 〈countable D〉 uncountable def by force
have 1 :

∧
i . D i ∈ fmeasurable M

by (simp add : D meas)
have 2 :

∧
I ′. finite I ′ =⇒ measure M (

⋃
x∈I ′. D x ) ≤ B

by (simp add : D bound image subset iff )
show ?thesis
unfolding D
by (intro conjI fmeasurable UN bound [OF 1 2 ] measure UN bound [OF

1 2 ]) auto
qed
then show ?fm ?m by auto

qed

Version for indexed union over the type of naturals

lemma
fixes S :: nat ⇒ ′a set
assumes S :

∧
i . S i ∈ fmeasurable M and B :

∧
n. measure M (

⋃
i≤n. S i) ≤ B

shows fmeasurable countable Union: (
⋃
i . S i) ∈ fmeasurable M

and measure countable Union le: measure M (
⋃
i . S i) ≤ B

proof −
have mB : measure M (

⋃
i∈I . S i) ≤ B if finite I for I

proof −
have (

⋃
i∈I . S i) ⊆ (

⋃
i≤Max I . S i)

using Max ge that by force
then have measure M (

⋃
i∈I . S i) ≤ measure M (

⋃
i ≤ Max I . S i)

by (rule measure mono fmeasurable) (use S in 〈blast+〉)
then show ?thesis
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using B order trans by blast
qed
show (

⋃
i . S i) ∈ fmeasurable M

by (auto intro: fmeasurable UN bound [OF S mB ])
show measure M (

⋃
n. S n) ≤ B

by (auto intro: measure UN bound [OF S mB ])
qed

lemma measure diff le measure setdiff :
assumes S ∈ fmeasurable M T ∈ fmeasurable M
shows measure M S − measure M T ≤ measure M (S − T )

proof −
have measure M S ≤ measure M ((S − T ) ∪ T )
by (simp add : assms fmeasurable.Un fmeasurableD measure mono fmeasurable)

also have . . . ≤ measure M (S − T ) + measure M T
using assms by (blast intro: measure Un le)

finally show ?thesis
by (simp add : algebra simps)

qed

lemma suminf exist split2 :
fixes f :: nat ⇒ ′a::real normed vector
assumes summable f
shows (λn. (

∑
k . f (k+n))) −−−−→ 0

by (subst lim sequentially , auto simp add : dist norm suminf exist split [OF assms])

lemma emeasure union summable:
assumes [measurable]:

∧
n. A n ∈ sets M

and
∧
n. emeasure M (A n) < ∞ summable (λn. measure M (A n))

shows emeasure M (
⋃
n. A n) < ∞ emeasure M (

⋃
n. A n) ≤ (

∑
n. measure

M (A n))
proof −
define B where B = (λN . (

⋃
n∈{..<N }. A n))

have [measurable]: B N ∈ sets M for N unfolding B def by auto
have (λN . emeasure M (B N )) −−−−→ emeasure M (

⋃
N . B N )

apply (rule Lim emeasure incseq) unfolding B def by (auto simp add : SUP subset mono
incseq def )
moreover have emeasure M (B N ) ≤ ennreal (

∑
n. measure M (A n)) for N

proof −
have ∗: (

∑
n∈{..<N }. measure M (A n)) ≤ (

∑
n. measure M (A n))

using assms(3 ) measure nonneg sum le suminf by blast

have emeasure M (B N ) ≤ (
∑

n∈{..<N }. emeasure M (A n))
unfolding B def by (rule emeasure subadditive finite, auto)

also have ... = (
∑

n∈{..<N }. ennreal(measure M (A n)))
using assms(2 ) by (simp add : emeasure eq ennreal measure less top)

also have ... = ennreal (
∑

n∈{..<N }. measure M (A n))
by auto

also have ... ≤ ennreal (
∑

n. measure M (A n))
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using ∗ by (auto simp: ennreal leI )
finally show ?thesis by simp

qed
ultimately have emeasure M (

⋃
N . B N ) ≤ ennreal (

∑
n. measure M (A n))

by (simp add : Lim bounded)
then show emeasure M (

⋃
n. A n) ≤ (

∑
n. measure M (A n))

unfolding B def by (metis UN UN flatten UN lessThan UNIV )
then show emeasure M (

⋃
n. A n) < ∞

by (auto simp: less top[symmetric] top unique)
qed

lemma borel cantelli limsup1 :
assumes [measurable]:

∧
n. A n ∈ sets M

and
∧
n. emeasure M (A n) < ∞ summable (λn. measure M (A n))

shows limsup A ∈ null sets M
proof −
have emeasure M (limsup A) ≤ 0
proof (rule LIMSEQ le const)
have (λn. (

∑
k . measure M (A (k+n)))) −−−−→ 0 by (rule suminf exist split2 [OF

assms(3 )])
then show (λn. ennreal (

∑
k . measure M (A (k+n)))) −−−−→ 0

unfolding ennreal 0 [symmetric] by (intro tendsto ennrealI )
have emeasure M (limsup A) ≤ (

∑
k . measure M (A (k+n))) for n

proof −
have I : (

⋃
k∈{n..}. A k) = (

⋃
k . A (k+n)) by (auto, metis le add diff inverse2 ,

fastforce)
have emeasure M (limsup A) ≤ emeasure M (

⋃
k∈{n..}. A k)

by (rule emeasure mono, auto simp add : limsup INF SUP)
also have ... = emeasure M (

⋃
k . A (k+n))

using I by auto
also have ... ≤ (

∑
k . measure M (A (k+n)))

apply (rule emeasure union summable)
using assms summable ignore initial segment [OF assms(3 ), of n] by auto

finally show ?thesis by simp
qed
then show ∃N . ∀n≥N . emeasure M (limsup A) ≤ (

∑
k . measure M (A

(k+n)))
by auto

qed
then show ?thesis using assms(1 ) measurable limsup by auto

qed

lemma borel cantelli AE1 :
assumes [measurable]:

∧
n. A n ∈ sets M

and
∧
n. emeasure M (A n) < ∞ summable (λn. measure M (A n))

shows AE x in M . eventually (λn. x ∈ space M − A n) sequentially
proof −
have AE x in M . x /∈ limsup A
using borel cantelli limsup1 [OF assms] unfolding eventually ae filter by auto
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moreover
{
fix x assume x /∈ limsup A
then obtain N where x /∈ (

⋃
n∈{N ..}. A n) unfolding limsup INF SUP by

blast
then have eventually (λn. x /∈ A n) sequentially using eventually sequentially

by auto
}
ultimately show ?thesis by auto

qed

6.3.12 Measure spaces with emeasure M (space M ) < ∞
locale finite measure = sigma finite measure M for M +
assumes finite emeasure space: emeasure M (space M ) 6= top

lemma finite measureI [Pure.intro!]:
emeasure M (space M ) 6= ∞ =⇒ finite measure M
proof qed (auto intro!: exI [of {space M }])

lemma (in finite measure) emeasure finite[simp, intro]: emeasure M A 6= top
using finite emeasure space emeasure space[of M A] by (auto simp: top unique)

lemma (in finite measure) fmeasurable eq sets: fmeasurable M = sets M
by (auto simp: fmeasurable def less top[symmetric])

lemma (in finite measure) emeasure eq measure: emeasure M A = ennreal (measure
M A)
by (intro emeasure eq ennreal measure) simp

lemma (in finite measure) emeasure real : ∃ r . 0 ≤ r ∧ emeasure M A = ennreal
r
using emeasure finite[of A] by (cases emeasure M A rule: ennreal cases) auto

lemma (in finite measure) bounded measure: measure M A ≤ measure M (space
M )
using emeasure space[of M A] emeasure real [of A] emeasure real [of space M ] by

(auto simp: measure def )

lemma (in finite measure) finite measure Diff :
assumes sets: A ∈ sets M B ∈ sets M and B ⊆ A
shows measure M (A − B) = measure M A − measure M B
using measure Diff [OF assms] by simp

lemma (in finite measure) finite measure Union:
assumes sets: A ∈ sets M B ∈ sets M and A ∩ B = {}
shows measure M (A ∪ B) = measure M A + measure M B
using measure Union[OF assms] by simp
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lemma (in finite measure) finite measure finite Union:
assumes measurable: finite S A‘S ⊆ sets M disjoint family on A S
shows measure M (

⋃
i∈S . A i) = (

∑
i∈S . measure M (A i))

using measure finite Union[OF assms] by simp

lemma (in finite measure) finite measure UNION :
assumes A: range A ⊆ sets M disjoint family A
shows (λi . measure M (A i)) sums (measure M (

⋃
i . A i))

using measure UNION [OF A] by simp

lemma (in finite measure) finite measure mono:
assumes A ⊆ B B ∈ sets M shows measure M A ≤ measure M B
using emeasure mono[OF assms] emeasure real [of A] emeasure real [of B ] by

(auto simp: measure def )

lemma (in finite measure) finite measure subadditive:
assumes m: A ∈ sets M B ∈ sets M
shows measure M (A ∪ B) ≤ measure M A + measure M B
using measure subadditive[OF m] by simp

lemma (in finite measure) finite measure subadditive finite:
assumes finite I A‘I ⊆ sets M shows measure M (

⋃
i∈I . A i) ≤ (

∑
i∈I .

measure M (A i))
using measure subadditive finite[OF assms] by simp

lemma (in finite measure) finite measure subadditive countably :
range A ⊆ sets M =⇒ summable (λi . measure M (A i)) =⇒ measure M (

⋃
i .

A i) ≤ (
∑

i . measure M (A i))
by (rule measure subadditive countably)

(simp all add : ennreal suminf neq top emeasure eq measure)

lemma (in finite measure) finite measure eq sum singleton:
assumes finite S and ∗:

∧
x . x ∈ S =⇒ {x} ∈ sets M

shows measure M S = (
∑

x∈S . measure M {x})
using measure eq sum singleton[OF assms] by simp

lemma (in finite measure) finite Lim measure incseq :
assumes A: range A ⊆ sets M incseq A
shows (λi . measure M (A i)) −−−−→ measure M (

⋃
i . A i)

using Lim measure incseq [OF A] by simp

lemma (in finite measure) finite Lim measure decseq :
assumes A: range A ⊆ sets M decseq A
shows (λn. measure M (A n)) −−−−→ measure M (

⋂
i . A i)

using Lim measure decseq [OF A] by simp

lemma (in finite measure) finite measure compl :
assumes S : S ∈ sets M
shows measure M (space M − S ) = measure M (space M ) − measure M S
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using measure Diff [OF sets.top S sets.sets into space] S by simp

lemma (in finite measure) finite measure mono AE :
assumes imp: AE x in M . x ∈ A −→ x ∈ B and B : B ∈ sets M
shows measure M A ≤ measure M B
using assms emeasure mono AE [OF imp B ]
by (simp add : emeasure eq measure)

lemma (in finite measure) finite measure eq AE :
assumes iff : AE x in M . x ∈ A ←→ x ∈ B
assumes A: A ∈ sets M and B : B ∈ sets M
shows measure M A = measure M B
using assms emeasure eq AE [OF assms] by (simp add : emeasure eq measure)

lemma (in finite measure) measure increasing : increasing M (measure M )
by (auto intro!: finite measure mono simp: increasing def )

lemma (in finite measure) measure zero union:
assumes s ∈ sets M t ∈ sets M measure M t = 0
shows measure M (s ∪ t) = measure M s

using assms
proof −
have measure M (s ∪ t) ≤ measure M s
using finite measure subadditive[of s t ] assms by auto

moreover have measure M (s ∪ t) ≥ measure M s
using assms by (blast intro: finite measure mono)

ultimately show ?thesis by simp
qed

lemma (in finite measure) measure eq compl :
assumes s ∈ sets M t ∈ sets M
assumes measure M (space M − s) = measure M (space M − t)
shows measure M s = measure M t
using assms finite measure compl by auto

lemma (in finite measure) measure eq bigunion image:
assumes range f ⊆ sets M range g ⊆ sets M
assumes disjoint family f disjoint family g
assumes

∧
n :: nat . measure M (f n) = measure M (g n)

shows measure M (
⋃

i . f i) = measure M (
⋃
i . g i)

using assms
proof −
have a: (λ i . measure M (f i)) sums (measure M (

⋃
i . f i))

by (rule finite measure UNION [OF assms(1 ,3 )])
have b: (λ i . measure M (g i)) sums (measure M (

⋃
i . g i))

by (rule finite measure UNION [OF assms(2 ,4 )])
show ?thesis using sums unique[OF b] sums unique[OF a] assms by simp

qed
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lemma (in finite measure) measure countably zero:
assumes range c ⊆ sets M
assumes

∧
i . measure M (c i) = 0

shows measure M (
⋃

i :: nat . c i) = 0
proof (rule antisym)
show measure M (

⋃
i :: nat . c i) ≤ 0

using finite measure subadditive countably [OF assms(1 )] by (simp add : assms(2 ))
qed simp

lemma (in finite measure) measure space inter :
assumes events:s ∈ sets M t ∈ sets M
assumes measure M t = measure M (space M )
shows measure M (s ∩ t) = measure M s

proof −
have measure M ((space M − s) ∪ (space M − t)) = measure M (space M −

s)
using events assms finite measure compl [of t ] by (auto intro!: measure zero union)
also have (space M − s) ∪ (space M − t) = space M − (s ∩ t)
by blast

finally show measure M (s ∩ t) = measure M s
using events by (auto intro!: measure eq compl [of s ∩ t s])

qed

lemma (in finite measure) measure equiprobable finite unions:
assumes s: finite s

∧
x . x ∈ s =⇒ {x} ∈ sets M

assumes
∧

x y . [[x ∈ s; y ∈ s]] =⇒ measure M {x} = measure M {y}
shows measure M s = real (card s) ∗ measure M {SOME x . x ∈ s}

proof cases
assume s 6= {}
then have ∃ x . x ∈ s by blast
from someI ex [OF this] assms
have prob some:

∧
x . x ∈ s =⇒ measure M {x} = measure M {SOME y . y ∈

s} by blast
have measure M s = (

∑
x ∈ s. measure M {x})

using finite measure eq sum singleton[OF s] by simp
also have . . . = (

∑
x ∈ s. measure M {SOME y . y ∈ s}) using prob some by

auto
also have . . . = real (card s) ∗ measure M {(SOME x . x ∈ s)}
using sum constant assms by simp

finally show ?thesis by simp
qed simp

lemma (in finite measure) measure real sum image fn:
assumes e ∈ sets M
assumes

∧
x . x ∈ s =⇒ e ∩ f x ∈ sets M

assumes finite s
assumes disjoint :

∧
x y . [[x ∈ s ; y ∈ s ; x 6= y ]] =⇒ f x ∩ f y = {}

assumes upper : space M ⊆ (
⋃
i ∈ s. f i)

shows measure M e = (
∑

x ∈ s. measure M (e ∩ f x ))
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proof −
have e ⊆ (

⋃
i∈s. f i)

using 〈e ∈ sets M 〉 sets.sets into space upper by blast
then have e: e = (

⋃
i ∈ s. e ∩ f i)

by auto
hence measure M e = measure M (

⋃
i ∈ s. e ∩ f i) by simp

also have . . . = (
∑

x ∈ s. measure M (e ∩ f x ))
proof (rule finite measure finite Union)
show finite s by fact
show (λi . e ∩ f i)‘s ⊆ sets M using assms(2 ) by auto
show disjoint family on (λi . e ∩ f i) s
using disjoint by (auto simp: disjoint family on def )

qed
finally show ?thesis .

qed

lemma (in finite measure) measure exclude:
assumes A ∈ sets M B ∈ sets M
assumes measure M A = measure M (space M ) A ∩ B = {}
shows measure M B = 0
using measure space inter [of B A] assms by (auto simp: ac simps)

lemma (in finite measure) finite measure distr :
assumes f : f ∈ measurable M M ′

shows finite measure (distr M M ′ f )
proof (rule finite measureI )
have f −‘ space M ′ ∩ space M = space M using f by (auto dest : measur-

able space)
with f show emeasure (distr M M ′ f ) (space (distr M M ′ f )) 6= ∞ by (auto

simp: emeasure distr)
qed

lemma emeasure gfp[consumes 1 , case names cont measurable]:
assumes sets[simp]:

∧
s. sets (M s) = sets N

assumes
∧
s. finite measure (M s)

assumes cont : inf continuous F inf continuous f
assumes meas:

∧
P . Measurable.pred N P =⇒ Measurable.pred N (F P)

assumes iter :
∧
P s. Measurable.pred N P =⇒ emeasure (M s) {x∈space N . F

P x} = f (λs. emeasure (M s) {x∈space N . P x}) s
assumes bound :

∧
P . f P ≤ f (λs. emeasure (M s) (space (M s)))

shows emeasure (M s) {x∈space N . gfp F x} = gfp f s
proof (subst gfp transfer bounded [where α=λF s. emeasure (M s) {x∈space N .
F x} and g=f and f=F and

P=Measurable.pred N , symmetric])
interpret finite measure M s for s by fact
fix C assume decseq C

∧
i . Measurable.pred N (C i)

then show (λs. emeasure (M s) {x ∈ space N . (INF i . C i) x}) = (INF i . (λs.
emeasure (M s) {x ∈ space N . C i x}))

unfolding INF apply [abs def ]
by (subst INF emeasure decseq) (auto simp: antimono def fun eq iff intro!:
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arg cong2 [where f=emeasure])
next
show f x ≤ (λs. emeasure (M s) {x ∈ space N . F top x}) for x
using bound [of x ] sets eq imp space eq [OF sets] by (simp add : iter)

qed (auto simp add : iter le fun def INF apply [abs def ] intro!: meas cont)

6.3.13 Counting space

lemma strict monoI Suc:
assumes ord [simp]: (

∧
n. f n < f (Suc n)) shows strict mono f

unfolding strict mono def
proof safe
fix n m :: nat assume n < m then show f n < f m
by (induct m) (auto simp: less Suc eq intro: less trans ord)

qed

lemma emeasure count space:
assumes X ⊆ A shows emeasure (count space A) X = (if finite X then of nat

(card X ) else ∞)
(is = ?M X )

unfolding count space def
proof (rule emeasure measure of sigma)
show X ∈ Pow A using 〈X ⊆ A〉 by auto
show sigma algebra A (Pow A) by (rule sigma algebra Pow)
show positive: positive (Pow A) ?M
by (auto simp: positive def )

have additive: additive (Pow A) ?M
by (auto simp: card Un disjoint additive def )

interpret ring of sets A Pow A
by (rule ring of setsI ) auto

show countably additive (Pow A) ?M
unfolding countably additive iff continuous from below [OF positive additive]

proof safe
fix F :: nat ⇒ ′a set assume incseq F
show (λi . ?M (F i)) −−−−→ ?M (

⋃
i . F i)

proof cases
assume ∃ i . ∀ j≥i . F i = F j
then guess i .. note i = this
{ fix j from i 〈incseq F 〉 have F j ⊆ F i

by (cases i ≤ j ) (auto simp: incseq def ) }
then have eq : (

⋃
i . F i) = F i

by auto
with i show ?thesis
by (auto intro!: Lim transform eventually [OF tendsto const ] eventually sequentiallyI [where

c=i ])
next
assume ¬ (∃ i . ∀ j≥i . F i = F j )
then obtain f where f :

∧
i . i ≤ f i

∧
i . F i 6= F (f i) by metis
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then have
∧
i . F i ⊆ F (f i) using 〈incseq F 〉 by (auto simp: incseq def )

with f have ∗:
∧
i . F i ⊂ F (f i) by auto

have incseq (λi . ?M (F i))
using 〈incseq F 〉 unfolding incseq def by (auto simp: card mono dest :

finite subset)
then have (λi . ?M (F i)) −−−−→ (SUP n. ?M (F n))
by (rule LIMSEQ SUP)

moreover have (SUP n. ?M (F n)) = top
proof (rule ennreal SUP eq top)
fix n :: nat show ∃ k ::nat∈UNIV . of nat n ≤ ?M (F k)
proof (induct n)
case (Suc n)
then guess k .. note k = this
moreover have finite (F k) =⇒ finite (F (f k)) =⇒ card (F k) < card

(F (f k))
using 〈F k ⊂ F (f k)〉 by (simp add : psubset card mono)

moreover have finite (F (f k)) =⇒ finite (F k)
using 〈k ≤ f k 〉 〈incseq F 〉 by (auto simp: incseq def dest : finite subset)

ultimately show ?case
by (auto intro!: exI [of f k ] simp del : of nat Suc)

qed auto
qed

moreover
have inj (λn. F ((f ˆˆ n) 0 ))
by (intro strict mono imp inj on strict monoI Suc) (simp add : ∗)

then have 1 : infinite (range (λi . F ((f ˆˆ i) 0 )))
by (rule range inj infinite)

have infinite (Pow (
⋃
i . F i))

by (rule infinite super [OF 1 ]) auto
then have infinite (

⋃
i . F i)

by auto
ultimately show ?thesis by (simp only :) simp

qed
qed

qed

lemma distr bij count space:
assumes f : bij betw f A B
shows distr (count space A) (count space B) f = count space B

proof (rule measure eqI )
have f ′: f ∈ measurable (count space A) (count space B)
using f unfolding Pi def bij betw def by auto

fix X assume X ∈ sets (distr (count space A) (count space B) f )
then have X : X ∈ sets (count space B) by auto
moreover from X have f −‘ X ∩ A = the inv into A f ‘ X
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using f by (auto simp: bij betw def subset image iff image iff the inv into f f
intro: the inv into f f [symmetric])
moreover have inj on (the inv into A f ) B
using X f by (auto simp: bij betw def inj on the inv into)

with X have inj on (the inv into A f ) X
by (auto intro: subset inj on)

ultimately show emeasure (distr (count space A) (count space B) f ) X = emea-
sure (count space B) X

using f unfolding emeasure distr [OF f ′ X ]
by (subst (1 2 ) emeasure count space) (auto simp: card image dest : finite imageD)

qed simp

lemma emeasure count space finite[simp]:
X ⊆ A =⇒ finite X =⇒ emeasure (count space A) X = of nat (card X )
using emeasure count space[of X A] by simp

lemma emeasure count space infinite[simp]:
X ⊆ A =⇒ infinite X =⇒ emeasure (count space A) X = ∞
using emeasure count space[of X A] by simp

lemma measure count space: measure (count space A) X = (if X ⊆ A then of nat
(card X ) else 0 )
by (cases finite X ) (auto simp: measure notin sets ennreal of nat eq real of nat

measure zero top measure eq emeasure eq ennreal)

lemma emeasure count space eq 0 :
emeasure (count space A) X = 0 ←→ (X ⊆ A −→ X = {})

proof cases
assume X : X ⊆ A
then show ?thesis
proof (intro iffI impI )
assume emeasure (count space A) X = 0
with X show X = {}
by (subst (asm) emeasure count space) (auto split : if split asm)

qed simp
qed (simp add : emeasure notin sets)

lemma null sets count space: null sets (count space A) = { {} }
unfolding null sets def by (auto simp add : emeasure count space eq 0 )

lemma AE count space: (AE x in count space A. P x ) ←→ (∀ x∈A. P x )
unfolding eventually ae filter by (auto simp add : null sets count space)

lemma sigma finite measure count space countable:
assumes A: countable A
shows sigma finite measure (count space A)
proof qed (insert A, auto intro!: exI [of (λa. {a}) ‘ A])

lemma sigma finite measure count space:
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fixes A :: ′a::countable set shows sigma finite measure (count space A)
by (rule sigma finite measure count space countable) auto

lemma finite measure count space:
assumes [simp]: finite A
shows finite measure (count space A)
by rule simp

lemma sigma finite measure count space finite:
assumes A: finite A shows sigma finite measure (count space A)

proof −
interpret finite measure count space A using A by (rule finite measure count space)
show sigma finite measure (count space A) ..

qed

6.3.14 Measure restricted to space

lemma emeasure restrict space:
assumes Ω ∩ space M ∈ sets M A ⊆ Ω
shows emeasure (restrict space M Ω) A = emeasure M A

proof (cases A ∈ sets M )
case True
show ?thesis
proof (rule emeasure measure of [OF restrict space def ])
show (∩) Ω ‘ sets M ⊆ Pow (Ω ∩ space M ) A ∈ sets (restrict space M Ω)
using 〈A ⊆ Ω〉 〈A ∈ sets M 〉 sets.space closed by (auto simp: sets restrict space)
show positive (sets (restrict space M Ω)) (emeasure M )
by (auto simp: positive def )

show countably additive (sets (restrict space M Ω)) (emeasure M )
proof (rule countably additiveI )
fix A :: nat ⇒ assume range A ⊆ sets (restrict space M Ω) disjoint family

A
with assms have

∧
i . A i ∈ sets M

∧
i . A i ⊆ space M disjoint family A

by (fastforce simp: sets restrict space iff [OF assms(1 )] image subset iff
dest : sets.sets into space)+

then show (
∑

i . emeasure M (A i)) = emeasure M (
⋃
i . A i)

by (subst suminf emeasure) (auto simp: disjoint family subset)
qed

qed
next
case False
with assms have A /∈ sets (restrict space M Ω)
by (simp add : sets restrict space iff )

with False show ?thesis
by (simp add : emeasure notin sets)

qed

lemma measure restrict space:
assumes Ω ∩ space M ∈ sets M A ⊆ Ω
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shows measure (restrict space M Ω) A = measure M A
using emeasure restrict space[OF assms] by (simp add : measure def )

lemma AE restrict space iff :
assumes Ω ∩ space M ∈ sets M
shows (AE x in restrict space M Ω. P x ) ←→ (AE x in M . x ∈ Ω −→ P x )

proof −
have ex cong :

∧
P Q f . (

∧
x . P x =⇒ Q x ) =⇒ (

∧
x . Q x =⇒ P (f x )) =⇒ (∃ x .

P x ) ←→ (∃ x . Q x )
by auto

{ fix X assume X : X ∈ sets M emeasure M X = 0
then have emeasure M (Ω ∩ space M ∩ X ) ≤ emeasure M X
by (intro emeasure mono) auto

then have emeasure M (Ω ∩ space M ∩ X ) = 0
using X by (auto intro!: antisym) }

with assms show ?thesis
unfolding eventually ae filter
by (auto simp add : space restrict space null sets def sets restrict space iff

emeasure restrict space cong : conj cong
intro!: ex cong [where f=λX . (Ω ∩ space M ) ∩ X ])

qed

lemma restrict restrict space:
assumes A ∩ space M ∈ sets M B ∩ space M ∈ sets M
shows restrict space (restrict space M A) B = restrict space M (A ∩ B) (is ?l

= ?r)
proof (rule measure eqI [symmetric])
show sets ?r = sets ?l
unfolding sets restrict space image comp by (intro image cong) auto

next
fix X assume X ∈ sets (restrict space M (A ∩ B))
then obtain Y where Y ∈ sets M X = Y ∩ A ∩ B
by (auto simp: sets restrict space)

with assms sets.Int [OF assms] show emeasure ?r X = emeasure ?l X
by (subst (1 2 ) emeasure restrict space)

(auto simp: space restrict space sets restrict space iff emeasure restrict space
ac simps)
qed

lemma restrict count space: restrict space (count space B) A = count space (A ∩
B)
proof (rule measure eqI )
show sets (restrict space (count space B) A) = sets (count space (A ∩ B))
by (subst sets restrict space) auto

moreover fix X assume X ∈ sets (restrict space (count space B) A)
ultimately have X ⊆ A ∩ B by auto
then show emeasure (restrict space (count space B) A) X = emeasure (count space

(A ∩ B)) X
by (cases finite X ) (auto simp add : emeasure restrict space)
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qed

lemma sigma finite measure restrict space:
assumes sigma finite measure M
and A: A ∈ sets M
shows sigma finite measure (restrict space M A)

proof −
interpret sigma finite measure M by fact
from sigma finite countable obtain C
where C : countable C C ⊆ sets M (

⋃
C ) = space M ∀ a∈C . emeasure M a 6=

∞
by blast

let ?C = (∩) A ‘ C
from C have countable ?C ?C ⊆ sets (restrict space M A) (

⋃
?C ) = space

(restrict space M A)
by(auto simp add : sets restrict space space restrict space)

moreover {
fix a
assume a ∈ ?C
then obtain a ′ where a = A ∩ a ′ a ′ ∈ C ..
then have emeasure (restrict space M A) a ≤ emeasure M a ′

using A C by(auto simp add : emeasure restrict space intro: emeasure mono)
also have . . . < ∞ using C (4 )[rule format , of a ′] 〈a ′ ∈ C 〉 by (simp add :

less top)
finally have emeasure (restrict space M A) a 6= ∞ by simp }

ultimately show ?thesis
by unfold locales (rule exI conjI |assumption|blast)+

qed

lemma finite measure restrict space:
assumes finite measure M
and A: A ∈ sets M
shows finite measure (restrict space M A)

proof −
interpret finite measure M by fact
show ?thesis
by(rule finite measureI )(simp add : emeasure restrict space A space restrict space)

qed

lemma restrict distr :
assumes [measurable]: f ∈ measurable M N
assumes [simp]: Ω ∩ space N ∈ sets N and restrict : f ∈ space M → Ω
shows restrict space (distr M N f ) Ω = distr M (restrict space N Ω) f
(is ?l = ?r)

proof (rule measure eqI )
fix A assume A ∈ sets (restrict space (distr M N f ) Ω)
with restrict show emeasure ?l A = emeasure ?r A
by (subst emeasure distr)

(auto simp: sets restrict space iff emeasure restrict space emeasure distr
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intro!: measurable restrict space2 )
qed (simp add : sets restrict space)

lemma measure eqI restrict generator :
assumes E : Int stable E E ⊆ Pow Ω

∧
X . X ∈ E =⇒ emeasure M X = emeasure

N X
assumes sets eq : sets M = sets N and Ω: Ω ∈ sets M
assumes sets (restrict space M Ω) = sigma sets Ω E
assumes sets (restrict space N Ω) = sigma sets Ω E
assumes ae: AE x in M . x ∈ Ω AE x in N . x ∈ Ω
assumes A: countable A A 6= {} A ⊆ E

⋃
A = Ω

∧
a. a ∈ A =⇒ emeasure M

a 6= ∞
shows M = N

proof (rule measure eqI )
fix X assume X : X ∈ sets M
then have emeasure M X = emeasure (restrict space M Ω) (X ∩ Ω)
using ae Ω by (auto simp add : emeasure restrict space intro!: emeasure eq AE )
also have restrict space M Ω = restrict space N Ω
proof (rule measure eqI generator eq)
fix X assume X ∈ E
then show emeasure (restrict space M Ω) X = emeasure (restrict space N Ω)

X
using E Ω by (subst (1 2 ) emeasure restrict space) (auto simp: sets eq

sets eq [THEN sets eq imp space eq ])
next
show range (from nat into A) ⊆ E (

⋃
i . from nat into A i) = Ω

using A by (auto cong del : SUP cong simp)
next
fix i
have emeasure (restrict space M Ω) (from nat into A i) = emeasure M (from nat into

A i)
using A Ω by (subst emeasure restrict space)

(auto simp: sets eq sets eq [THEN sets eq imp space eq ] intro:
from nat into)

with A show emeasure (restrict space M Ω) (from nat into A i) 6= ∞
by (auto intro: from nat into)

qed fact+
also have emeasure (restrict space N Ω) (X ∩ Ω) = emeasure N X
using X ae Ω by (auto simp add : emeasure restrict space sets eq intro!: emea-

sure eq AE )
finally show emeasure M X = emeasure N X .

qed fact

6.3.15 Null measure

definition null measure :: ′a measure ⇒ ′a measure where
null measure M = sigma (space M ) (sets M )

lemma space null measure[simp]: space (null measure M ) = space M
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by (simp add : null measure def )

lemma sets null measure[simp, measurable cong ]: sets (null measure M ) = sets M
by (simp add : null measure def )

lemma emeasure null measure[simp]: emeasure (null measure M ) X = 0
by (cases X ∈ sets M , rule emeasure measure of )
(auto simp: positive def countably additive def emeasure notin sets null measure def

dest : sets.sets into space)

lemma measure null measure[simp]: measure (null measure M ) X = 0
by (intro measure eq emeasure eq ennreal) auto

lemma null measure idem [simp]: null measure (null measure M ) = null measure
M
by(rule measure eqI ) simp all

6.3.16 Scaling a measure

definition scale measure :: ennreal ⇒ ′a measure ⇒ ′a measure where
scale measure r M = measure of (space M ) (sets M ) (λA. r ∗ emeasure M A)

lemma space scale measure: space (scale measure r M ) = space M
by (simp add : scale measure def )

lemma sets scale measure [simp, measurable cong ]: sets (scale measure r M ) =
sets M
by (simp add : scale measure def )

lemma emeasure scale measure [simp]:
emeasure (scale measure r M ) A = r ∗ emeasure M A
(is = ?µ A)

proof(cases A ∈ sets M )
case True
show ?thesis unfolding scale measure def
proof(rule emeasure measure of sigma)
show sigma algebra (space M ) (sets M ) ..
show positive (sets M ) ?µ by (simp add : positive def )
show countably additive (sets M ) ?µ
proof (rule countably additiveI )
fix A :: nat ⇒ assume ∗: range A ⊆ sets M disjoint family A
have (

∑
i . ?µ (A i)) = r ∗ (

∑
i . emeasure M (A i))

by simp
also have . . . = ?µ (

⋃
i . A i) using ∗ by(simp add : suminf emeasure)

finally show (
∑

i . ?µ (A i)) = ?µ (
⋃
i . A i) .

qed
qed(fact True)

qed(simp add : emeasure notin sets)
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lemma scale measure 1 [simp]: scale measure 1 M = M
by(rule measure eqI ) simp all

lemma scale measure 0 [simp]: scale measure 0 M = null measure M
by(rule measure eqI ) simp all

lemma measure scale measure [simp]: 0 ≤ r =⇒ measure (scale measure r M ) A
= r ∗ measure M A
using emeasure scale measure[of r M A]
emeasure eq ennreal measure[of M A]
measure eq emeasure eq ennreal [of scale measure r M A]

by (cases emeasure (scale measure r M ) A = top)
(auto simp del : emeasure scale measure

simp: ennreal top eq mult iff ennreal mult eq top iff measure zero top
ennreal mult [symmetric])

lemma scale scale measure [simp]:
scale measure r (scale measure r ′ M ) = scale measure (r ∗ r ′) M
by (rule measure eqI ) (simp all add : max def mult .assoc)

lemma scale null measure [simp]: scale measure r (null measure M ) = null measure
M
by (rule measure eqI ) simp all

6.3.17 Complete lattice structure on measures

lemma (in finite measure) finite measure Diff ′:
A ∈ sets M =⇒ B ∈ sets M =⇒ measure M (A − B) = measure M A − measure

M (A ∩ B)
using finite measure Diff [of A A ∩ B ] by (auto simp: Diff Int)

lemma (in finite measure) finite measure Union ′:
A ∈ sets M =⇒ B ∈ sets M =⇒ measure M (A ∪ B) = measure M A + measure

M (B − A)
using finite measure Union[of A B − A] by auto

lemma finite unsigned Hahn decomposition:
assumes finite measure M finite measure N and [simp]: sets N = sets M
shows ∃Y∈sets M . (∀X∈sets M . X ⊆ Y −→ N X ≤ M X ) ∧ (∀X∈sets M .

X ∩ Y = {} −→ M X ≤ N X )
proof −
interpret M : finite measure M by fact
interpret N : finite measure N by fact

define d where d X = measure M X − measure N X for X

have [intro]: bdd above (d‘sets M )
using sets.sets into space[of M ]
by (intro bdd aboveI [where M=measure M (space M )])
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(auto simp: d def field simps subset eq intro!: add increasing M .finite measure mono)

define γ where γ = (SUP X∈sets M . d X )
have le γ[intro]: X ∈ sets M =⇒ d X ≤ γ for X
by (auto simp: γ def intro!: cSUP upper)

have ∃ f . ∀n. f n ∈ sets M ∧ d (f n) > γ − 1 / 2ˆn
proof (intro choice iff [THEN iffD1 ] allI )
fix n
have ∃X∈sets M . γ − 1 / 2ˆn < d X
unfolding γ def by (intro less cSUP iff [THEN iffD1 ]) auto

then show ∃ y . y ∈ sets M ∧ γ − 1 / 2 ˆ n < d y
by auto

qed
then obtain E where [measurable]: E n ∈ sets M and E : d (E n) > γ − 1 /

2ˆn for n
by auto

define F where F m n = (if m ≤ n then
⋂

i∈{m..n}. E i else space M ) for m
n

have [measurable]: m ≤ n =⇒ F m n ∈ sets M for m n
by (auto simp: F def )

have 1 : γ − 2 / 2 ˆ m + 1 / 2 ˆ n ≤ d (F m n) if m ≤ n for m n
using that

proof (induct rule: dec induct)
case base with E [of m] show ?case
by (simp add : F def field simps)

next
case (step i)
have F Suc: F m (Suc i) = F m i ∩ E (Suc i)
using 〈m ≤ i 〉 by (auto simp: F def le Suc eq)

have γ + (γ − 2 / 2ˆm + 1 / 2 ˆ Suc i) ≤ (γ − 1 / 2ˆSuc i) + (γ − 2 /
2ˆm + 1 / 2ˆi)

by (simp add : field simps)
also have . . . ≤ d (E (Suc i)) + d (F m i)
using E [of Suc i ] by (intro add mono step) auto

also have . . . = d (E (Suc i)) + d (F m i − E (Suc i)) + d (F m (Suc i))
using 〈m ≤ i 〉 by (simp add : d def field simps F Suc M .finite measure Diff ′

N .finite measure Diff ′)
also have . . . = d (E (Suc i) ∪ F m i) + d (F m (Suc i))

using 〈m ≤ i 〉 by (simp add : d def field simps M .finite measure Union ′

N .finite measure Union ′)
also have . . . ≤ γ + d (F m (Suc i))
using 〈m ≤ i 〉 by auto

finally show ?case
by auto
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qed

define F ′ where F ′ m = (
⋂
i∈{m..}. E i) for m

have F ′ eq : F ′ m = (
⋂
i . F m (i + m)) for m

by (fastforce simp: le iff add [of m] F ′ def F def )

have [measurable]: F ′ m ∈ sets M for m
by (auto simp: F ′ def )

have γ le: γ − 0 ≤ d (
⋃
m. F ′ m)

proof (rule LIMSEQ le)
show (λn. γ − 2 / 2 ˆ n) −−−−→ γ − 0
by (intro tendsto intros LIMSEQ divide realpow zero) auto

have incseq F ′

by (auto simp: incseq def F ′ def )
then show (λm. d (F ′ m)) −−−−→ d (

⋃
m. F ′ m)

unfolding d def
by (intro tendsto diff M .finite Lim measure incseq N .finite Lim measure incseq)

auto

have γ − 2 / 2 ˆ m + 0 ≤ d (F ′ m) for m
proof (rule LIMSEQ le)
have ∗: decseq (λn. F m (n + m))
by (auto simp: decseq def F def )

show (λn. d (F m n)) −−−−→ d (F ′ m)
unfolding d def F ′ eq
by (rule LIMSEQ offset [where k=m])
(auto intro!: tendsto diff M .finite Lim measure decseq N .finite Lim measure decseq

∗)
show (λn. γ − 2 / 2 ˆ m + 1 / 2 ˆ n) −−−−→ γ − 2 / 2 ˆ m + 0
by (intro tendsto add LIMSEQ divide realpow zero tendsto const) auto

show ∃N . ∀n≥N . γ − 2 / 2 ˆ m + 1 / 2 ˆ n ≤ d (F m n)
using 1 [of m] by (intro exI [of m]) auto

qed
then show ∃N . ∀n≥N . γ − 2 / 2 ˆ n ≤ d (F ′ n)
by auto

qed

show ?thesis
proof (safe intro!: bexI [of

⋃
m. F ′ m])

fix X assume [measurable]: X ∈ sets M and X : X ⊆ (
⋃
m. F ′ m)

have d (
⋃
m. F ′ m) − d X = d ((

⋃
m. F ′ m) − X )

using X by (auto simp: d def M .finite measure Diff N .finite measure Diff )
also have . . . ≤ γ
by auto

finally have 0 ≤ d X
using γ le by auto

then show emeasure N X ≤ emeasure M X
by (auto simp: d def M .emeasure eq measure N .emeasure eq measure)
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next
fix X assume [measurable]: X ∈ sets M and X : X ∩ (

⋃
m. F ′ m) = {}

then have d (
⋃
m. F ′ m) + d X = d (X ∪ (

⋃
m. F ′ m))

by (auto simp: d def M .finite measure Union N .finite measure Union)
also have . . . ≤ γ
by auto

finally have d X ≤ 0
using γ le by auto

then show emeasure M X ≤ emeasure N X
by (auto simp: d def M .emeasure eq measure N .emeasure eq measure)

qed auto
qed

proposition unsigned Hahn decomposition:
assumes [simp]: sets N = sets M and [measurable]: A ∈ sets M
and [simp]: emeasure M A 6= top emeasure N A 6= top
shows ∃Y∈sets M . Y ⊆ A ∧ (∀X∈sets M . X ⊆ Y −→ N X ≤ M X ) ∧

(∀X∈sets M . X ⊆ A −→ X ∩ Y = {} −→ M X ≤ N X )
proof −
have ∃Y∈sets (restrict space M A).
(∀X∈sets (restrict space M A). X ⊆ Y −→ (restrict space N A) X ≤ (restrict space

M A) X ) ∧
(∀X∈sets (restrict space M A). X ∩ Y = {} −→ (restrict space M A) X ≤

(restrict space N A) X )
proof (rule finite unsigned Hahn decomposition)
show finite measure (restrict space M A) finite measure (restrict space N A)

by (auto simp: space restrict space emeasure restrict space less top intro!:
finite measureI )
qed (simp add : sets restrict space)
then guess Y ..
then show ?thesis
apply (intro bexI [of Y ] conjI ballI conjI )
apply (simp all add : sets restrict space emeasure restrict space)
apply safe
subgoal for X Z
by (erule ballE [of X ]) (auto simp add : Int absorb1 )

subgoal for X Z
by (erule ballE [of X ]) (auto simp add : Int absorb1 ac simps)

apply auto
done

qed

Define a lexicographical order on measure, in the order space, sets and mea-
sure. The parts of the lexicographical order are point-wise ordered.

instantiation measure :: (type) order bot
begin

inductive less eq measure :: ′a measure ⇒ ′a measure ⇒ bool where
space M ⊂ space N =⇒ less eq measure M N
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| space M = space N =⇒ sets M ⊂ sets N =⇒ less eq measure M N
| space M = space N =⇒ sets M = sets N =⇒ emeasure M ≤ emeasure N =⇒
less eq measure M N

lemma le measure iff :
M ≤ N ←→ (if space M = space N then
if sets M = sets N then emeasure M ≤ emeasure N else sets M ⊆ sets N else

space M ⊆ space N )
by (auto elim: less eq measure.cases intro: less eq measure.intros)

definition less measure :: ′a measure ⇒ ′a measure ⇒ bool where
less measure M N ←→ (M ≤ N ∧ ¬ N ≤ M )

definition bot measure :: ′a measure where
bot measure = sigma {} {}

lemma
shows space bot [simp]: space bot = {}
and sets bot [simp]: sets bot = {{}}
and emeasure bot [simp]: emeasure bot X = 0

by (auto simp: bot measure def sigma sets empty eq emeasure sigma)

instance
proof standard
show bot ≤ a for a :: ′a measure
by (simp add : le measure iff bot measure def sigma sets empty eq emeasure sigma

le fun def )
qed (auto simp: le measure iff less measure def split : if split asm intro: measure eqI )

end

proposition le measure: sets M = sets N =⇒M ≤ N ←→ (∀A∈sets M . emeasure
M A ≤ emeasure N A)
apply −
apply (auto simp: le measure iff le fun def dest : sets eq imp space eq)
subgoal for X
by (cases X ∈ sets M ) (auto simp: emeasure notin sets)

done

definition sup measure ′ :: ′a measure ⇒ ′a measure ⇒ ′a measure where
sup measure ′ A B =
measure of (space A) (sets A)
(λX . SUP Y∈sets A. emeasure A (X ∩ Y ) + emeasure B (X ∩ − Y ))

lemma assumes [simp]: sets B = sets A
shows space sup measure ′[simp]: space (sup measure ′ A B) = space A
and sets sup measure ′[simp]: sets (sup measure ′ A B) = sets A

using sets eq imp space eq [OF assms] by (simp all add : sup measure ′ def )
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lemma emeasure sup measure ′:
assumes sets eq [simp]: sets B = sets A and [simp, intro]: X ∈ sets A
shows emeasure (sup measure ′ A B) X = (SUP Y∈sets A. emeasure A (X ∩

Y ) + emeasure B (X ∩ − Y ))
(is = ?S X )

proof −
note sets eq imp space eq [OF sets eq , simp]
show ?thesis
using sup measure ′ def

proof (rule emeasure measure of )
let ?d = λX Y . emeasure A (X ∩ Y ) + emeasure B (X ∩ − Y )
show countably additive (sets (sup measure ′ A B)) (λX . SUP Y ∈ sets A.

emeasure A (X ∩ Y ) + emeasure B (X ∩ − Y ))
proof (rule countably additiveI , goal cases)
case (1 X )
then have [measurable]:

∧
i . X i ∈ sets A and disjoint family X

by auto
have disjoint : disjoint family (λi . X i ∩ Y ) disjoint family (λi . X i − Y )

for Y
by (auto intro: disjoint family on bisimulation [OF 〈disjoint family X 〉,

simplified ])
have (

∑
i . ?S (X i)) = (SUP Y∈sets A.

∑
i . ?d (X i) Y )

proof (rule ennreal suminf SUP eq directed)
fix J :: nat set and a b assume finite J and [measurable]: a ∈ sets A b ∈

sets A
have ∃ c∈sets A. c ⊆ X i ∧ (∀ a∈sets A. ?d (X i) a ≤ ?d (X i) c) for i
proof cases
assume emeasure A (X i) = top ∨ emeasure B (X i) = top
then show ?thesis
proof
assume emeasure A (X i) = top then show ?thesis
by (intro bexI [of X i ]) auto

next
assume emeasure B (X i) = top then show ?thesis
by (intro bexI [of {}]) auto

qed
next
assume finite: ¬ (emeasure A (X i) = top ∨ emeasure B (X i) = top)
then have ∃Y∈sets A. Y ⊆ X i ∧ (∀C∈sets A. C ⊆ Y −→ B C ≤ A

C ) ∧ (∀C∈sets A. C ⊆ X i −→ C ∩ Y = {} −→ A C ≤ B C )
using unsigned Hahn decomposition[of B A X i ] by simp

then obtain Y where [measurable]: Y ∈ sets A and [simp]: Y ⊆ X i
and B le A:

∧
C . C ∈ sets A =⇒ C ⊆ Y =⇒ B C ≤ A C

and A le B :
∧
C . C ∈ sets A =⇒ C ⊆ X i =⇒ C ∩ Y = {} =⇒ A C

≤ B C
by auto

show ?thesis
proof (intro bexI [of Y ] ballI conjI )
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fix a assume [measurable]: a ∈ sets A
have ∗: (X i ∩ a ∩ Y ∪ (X i ∩ a − Y )) = X i ∩ a (X i − a) ∩ Y ∪

(X i − a − Y ) = X i ∩ − a
for a Y by auto

then have ?d (X i) a =
(A (X i ∩ a ∩ Y ) + A (X i ∩ a ∩ − Y )) + (B (X i ∩ − a ∩ Y ) +

B (X i ∩ − a ∩ − Y ))
by (subst (1 2 ) plus emeasure) (auto simp: Diff eq [symmetric])

also have . . . ≤ (A (X i ∩ a ∩ Y ) + B (X i ∩ a ∩ − Y )) + (A (X i
∩ − a ∩ Y ) + B (X i ∩ − a ∩ − Y ))

by (intro add mono order refl B le A A le B) (auto simp: Diff eq [symmetric])
also have . . . ≤ (A (X i ∩ Y ∩ a) + A (X i ∩ Y ∩ − a)) + (B (X i

∩ − Y ∩ a) + B (X i ∩ − Y ∩ − a))
by (simp add : ac simps)

also have . . . ≤ A (X i ∩ Y ) + B (X i ∩ − Y )
by (subst (1 2 ) plus emeasure) (auto simp: Diff eq [symmetric] ∗)

finally show ?d (X i) a ≤ ?d (X i) Y .
qed auto

qed
then obtain C where [measurable]: C i ∈ sets A and C i ⊆ X i
and C :

∧
a. a ∈ sets A =⇒ ?d (X i) a ≤ ?d (X i) (C i) for i

by metis
have ∗: X i ∩ (

⋃
i . C i) = X i ∩ C i for i

proof safe
fix x j assume x ∈ X i x ∈ C j
moreover have i = j ∨ X i ∩ X j = {}
using 〈disjoint family X 〉 by (auto simp: disjoint family on def )

ultimately show x ∈ C i
using 〈C i ⊆ X i 〉 〈C j ⊆ X j 〉 by auto

qed auto
have ∗∗: X i ∩ − (

⋃
i . C i) = X i ∩ − C i for i

proof safe
fix x j assume x ∈ X i x /∈ C i x ∈ C j
moreover have i = j ∨ X i ∩ X j = {}
using 〈disjoint family X 〉 by (auto simp: disjoint family on def )

ultimately show False
using 〈C i ⊆ X i 〉 〈C j ⊆ X j 〉 by auto

qed auto
show ∃ c∈sets A. ∀ i∈J . ?d (X i) a ≤ ?d (X i) c ∧ ?d (X i) b ≤ ?d (X i) c
apply (intro bexI [of

⋃
i . C i ])

unfolding ∗ ∗∗
apply (intro C ballI conjI )
apply auto
done

qed
also have . . . = ?S (

⋃
i . X i)

apply (simp only : UN extend simps(4 ))
apply (rule arg cong [of Sup])
apply (rule image cong)
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apply (fact refl)
using disjoint
apply (auto simp add : suminf add [symmetric] Diff eq [symmetric] im-

age subset iff suminf emeasure simp del : UN simps)
done

finally show (
∑

i . ?S (X i)) = ?S (
⋃

i . X i) .
qed

qed (auto dest : sets.sets into space simp: positive def intro!: SUP const)
qed

lemma le emeasure sup measure ′1 :
assumes sets B = sets A X ∈ sets A shows emeasure A X ≤ emeasure

(sup measure ′ A B) X
by (subst emeasure sup measure ′[OF assms]) (auto intro!: SUP upper2 [of X ]

assms)

lemma le emeasure sup measure ′2 :
assumes sets B = sets A X ∈ sets A shows emeasure B X ≤ emeasure

(sup measure ′ A B) X
by (subst emeasure sup measure ′[OF assms]) (auto intro!: SUP upper2 [of {}]

assms)

lemma emeasure sup measure ′ le2 :
assumes [simp]: sets B = sets C sets A = sets C and [measurable]: X ∈ sets C
assumes A:

∧
Y . Y ⊆ X =⇒ Y ∈ sets A =⇒ emeasure A Y ≤ emeasure C Y

assumes B :
∧
Y . Y ⊆ X =⇒ Y ∈ sets A =⇒ emeasure B Y ≤ emeasure C Y

shows emeasure (sup measure ′ A B) X ≤ emeasure C X
proof (subst emeasure sup measure ′)
show (SUP Y∈sets A. emeasure A (X ∩ Y ) + emeasure B (X ∩ − Y )) ≤

emeasure C X
unfolding 〈sets A = sets C 〉

proof (intro SUP least)
fix Y assume [measurable]: Y ∈ sets C
have [simp]: X ∩ Y ∪ (X − Y ) = X
by auto

have emeasure A (X ∩ Y ) + emeasure B (X ∩ − Y ) ≤ emeasure C (X ∩ Y )
+ emeasure C (X ∩ − Y )

by (intro add mono A B) (auto simp: Diff eq [symmetric])
also have . . . = emeasure C X
by (subst plus emeasure) (auto simp: Diff eq [symmetric])

finally show emeasure A (X ∩ Y ) + emeasure B (X ∩ − Y ) ≤ emeasure C
X .
qed

qed simp all

definition sup lexord :: ′a ⇒ ′a ⇒ ( ′a ⇒ ′b::order) ⇒ ′a ⇒ ′a ⇒ ′a where
sup lexord A B k s c =
(if k A = k B then c else
if ¬ k A ≤ k B ∧ ¬ k B ≤ k A then s else



Measure Space.thy 1349

if k B ≤ k A then A else B)

lemma sup lexord :
(k A < k B =⇒ P B) =⇒ (k B < k A =⇒ P A) =⇒ (k A = k B =⇒ P c) =⇒
(¬ k B ≤ k A =⇒ ¬ k A ≤ k B =⇒ P s) =⇒ P (sup lexord A B k s c)

by (auto simp: sup lexord def )

lemmas le sup lexord = sup lexord [where P=λa. c ≤ a for c]

lemma sup lexord1 : k A = k B =⇒ sup lexord A B k s c = c
by (simp add : sup lexord def )

lemma sup lexord commute: sup lexord A B k s c = sup lexord B A k s c
by (auto simp: sup lexord def )

lemma sigma sets le sets iff : (sigma sets (space x ) A ⊆ sets x ) = (A ⊆ sets x )
using sets.sigma sets subset [of A x ] by auto

lemma sigma le iff : A ⊆ Pow Ω =⇒ sigma Ω A ≤ x ←→ (Ω ⊆ space x ∧ (space
x = Ω −→ A ⊆ sets x ))
by (cases Ω = space x )
(simp all add : eq commute[of sets x ] le measure iff emeasure sigma le fun def

sigma sets superset generator sigma sets le sets iff )

instantiation measure :: (type) semilattice sup
begin

definition sup measure :: ′a measure ⇒ ′a measure ⇒ ′a measure where
sup measure A B =
sup lexord A B space (sigma (space A ∪ space B) {})
(sup lexord A B sets (sigma (space A) (sets A ∪ sets B)) (sup measure ′ A B))

instance
proof
fix x y z :: ′a measure
show x ≤ sup x y
unfolding sup measure def

proof (intro le sup lexord)
assume space x = space y
then have ∗: sets x ∪ sets y ⊆ Pow (space x )
using sets.space closed by auto

assume ¬ sets y ⊆ sets x ¬ sets x ⊆ sets y
then have sets x ⊂ sets x ∪ sets y
by auto

also have . . . ≤ sigma (space x ) (sets x ∪ sets y)
by (subst sets measure of [OF ∗]) (rule sigma sets superset generator)

finally show x ≤ sigma (space x ) (sets x ∪ sets y)
by (simp add : space measure of [OF ∗] less eq measure.intros(2 ))

next
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assume ¬ space y ⊆ space x ¬ space x ⊆ space y
then show x ≤ sigma (space x ∪ space y) {}
by (intro less eq measure.intros) auto

next
assume sets x = sets y then show x ≤ sup measure ′ x y
by (simp add : le measure le emeasure sup measure ′1 )

qed (auto intro: less eq measure.intros)
show y ≤ sup x y
unfolding sup measure def

proof (intro le sup lexord)
assume ∗∗: space x = space y
then have ∗: sets x ∪ sets y ⊆ Pow (space y)
using sets.space closed by auto

assume ¬ sets y ⊆ sets x ¬ sets x ⊆ sets y
then have sets y ⊂ sets x ∪ sets y
by auto

also have . . . ≤ sigma (space y) (sets x ∪ sets y)
by (subst sets measure of [OF ∗]) (rule sigma sets superset generator)

finally show y ≤ sigma (space x ) (sets x ∪ sets y)
by (simp add : ∗∗ space measure of [OF ∗] less eq measure.intros(2 ))

next
assume ¬ space y ⊆ space x ¬ space x ⊆ space y
then show y ≤ sigma (space x ∪ space y) {}
by (intro less eq measure.intros) auto

next
assume sets x = sets y then show y ≤ sup measure ′ x y
by (simp add : le measure le emeasure sup measure ′2 )

qed (auto intro: less eq measure.intros)
show x ≤ y =⇒ z ≤ y =⇒ sup x z ≤ y
unfolding sup measure def

proof (intro sup lexord [where P=λx . x ≤ y ])
assume x ≤ y z ≤ y and [simp]: space x = space z sets x = sets z
from 〈x ≤ y〉 show sup measure ′ x z ≤ y
proof cases
case 1 then show ?thesis
by (intro less eq measure.intros(1 )) simp

next
case 2 then show ?thesis
by (intro less eq measure.intros(2 )) simp all

next
case 3 with 〈z ≤ y〉 〈x ≤ y〉 show ?thesis
by (auto simp add : le measure intro!: emeasure sup measure ′ le2 )

qed
next
assume ∗∗: x ≤ y z ≤ y space x = space z ¬ sets z ⊆ sets x ¬ sets x ⊆ sets z
then have ∗: sets x ∪ sets z ⊆ Pow (space x )
using sets.space closed by auto

show sigma (space x ) (sets x ∪ sets z ) ≤ y
unfolding sigma le iff [OF ∗] using ∗∗ by (auto simp: le measure iff split :
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if split asm)
next
assume x ≤ y z ≤ y ¬ space z ⊆ space x ¬ space x ⊆ space z
then have space x ⊆ space y space z ⊆ space y
by (auto simp: le measure iff split : if split asm)

then show sigma (space x ∪ space z ) {} ≤ y
by (simp add : sigma le iff )

qed
qed

end

lemma space empty eq bot : space a = {} ←→ a = bot
using space empty [of a] by (auto intro!: measure eqI )

lemma sets eq iff bounded : A ≤ B =⇒ B ≤ C =⇒ sets A = sets C =⇒ sets B =
sets A
by (auto dest : sets eq imp space eq simp add : le measure iff split : if split asm)

lemma sets sup: sets A = sets M =⇒ sets B = sets M =⇒ sets (sup A B) = sets
M
by (auto simp add : sup measure def sup lexord def dest : sets eq imp space eq)

lemma le measureD1 : A ≤ B =⇒ space A ≤ space B
by (auto simp: le measure iff split : if split asm)

lemma le measureD2 : A ≤ B =⇒ space A = space B =⇒ sets A ≤ sets B
by (auto simp: le measure iff split : if split asm)

lemma le measureD3 : A ≤ B =⇒ sets A = sets B =⇒ emeasure A X ≤ emeasure
B X
by (auto simp: le measure iff le fun def dest : sets eq imp space eq split : if split asm)

lemma UN space closed :
⋃
(sets ‘ S ) ⊆ Pow (

⋃
(space ‘ S ))

using sets.space closed by auto

definition
Sup lexord :: ( ′a ⇒ ′b::complete lattice) ⇒ ( ′a set ⇒ ′a) ⇒ ( ′a set ⇒ ′a) ⇒ ′a

set ⇒ ′a
where
Sup lexord k c s A =
(let U = (SUP a∈A. k a)
in if ∃ a∈A. k a = U then c {a∈A. k a = U } else s A)

lemma Sup lexord :
(
∧
a S . a ∈ A =⇒ k a = (SUP a∈A. k a) =⇒ S = {a ′∈A. k a ′ = k a} =⇒ P (c

S )) =⇒ ((
∧
a. a ∈ A =⇒ k a 6= (SUP a∈A. k a)) =⇒ P (s A)) =⇒

P (Sup lexord k c s A)
by (auto simp: Sup lexord def Let def )
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lemma Sup lexord1 :
assumes A: A 6= {} (

∧
a. a ∈ A =⇒ k a = (

⋃
a∈A. k a)) P (c A)

shows P (Sup lexord k c s A)
unfolding Sup lexord def Let def

proof (clarsimp, safe)
show ∀ a∈A. k a 6= (

⋃
x∈A. k x ) =⇒ P (s A)

by (metis assms(1 ,2 ) ex in conv)
next
fix a assume a ∈ A k a = (

⋃
x∈A. k x )

then have {a ∈ A. k a = (
⋃

x∈A. k x )} = {a ∈ A. k a = k a}
by (metis A(2 )[symmetric])

then show P (c {a ∈ A. k a = (
⋃
x∈A. k x )})

by (simp add : A(3 ))
qed

instantiation measure :: (type) complete lattice
begin

interpretation sup measure: comm monoid set sup bot :: ′a measure
by standard (auto intro!: antisym)

lemma sup measure F mono ′:
finite J =⇒ finite I =⇒ sup measure.F id I ≤ sup measure.F id (I ∪ J )

proof (induction J rule: finite induct)
case empty then show ?case
by simp

next
case (insert i J )
show ?case
proof cases
assume i ∈ I with insert show ?thesis
by (auto simp: insert absorb)

next
assume i /∈ I
have sup measure.F id I ≤ sup measure.F id (I ∪ J )
by (intro insert)

also have . . . ≤ sup measure.F id (insert i (I ∪ J ))
using insert 〈i /∈ I 〉 by (subst sup measure.insert) auto

finally show ?thesis
by auto

qed
qed

lemma sup measure F mono: finite I =⇒ J ⊆ I =⇒ sup measure.F id J ≤ sup measure.F
id I
using sup measure F mono ′[of I J ] by (auto simp: finite subset Un absorb1 )

lemma sets sup measure F :
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finite I =⇒ I 6= {} =⇒ (
∧
i . i ∈ I =⇒ sets i = sets M ) =⇒ sets (sup measure.F

id I ) = sets M
by (induction I rule: finite ne induct) (simp all add : sets sup)

definition Sup measure ′ :: ′a measure set ⇒ ′a measure where
Sup measure ′ M =
measure of (

⋃
a∈M . space a) (

⋃
a∈M . sets a)

(λX . (SUP P∈{P . finite P ∧ P ⊆ M }. sup measure.F id P X ))

lemma space Sup measure ′2 : space (Sup measure ′ M ) = (
⋃
m∈M . space m)

unfolding Sup measure ′ def by (intro space measure of [OF UN space closed ])

lemma sets Sup measure ′2 : sets (Sup measure ′ M ) = sigma sets (
⋃
m∈M . space

m) (
⋃

m∈M . sets m)
unfolding Sup measure ′ def by (intro sets measure of [OF UN space closed ])

lemma sets Sup measure ′:
assumes sets eq [simp]:

∧
m. m ∈ M =⇒ sets m = sets A and M 6= {}

shows sets (Sup measure ′ M ) = sets A
using sets eq [THEN sets eq imp space eq , simp] 〈M 6= {}〉 by (simp add : Sup measure ′ def )

lemma space Sup measure ′:
assumes sets eq [simp]:

∧
m. m ∈ M =⇒ sets m = sets A and M 6= {}

shows space (Sup measure ′ M ) = space A
using sets eq [THEN sets eq imp space eq , simp] 〈M 6= {}〉
by (simp add : Sup measure ′ def )

lemma emeasure Sup measure ′:
assumes sets eq [simp]:

∧
m. m ∈ M =⇒ sets m = sets A and X ∈ sets A M 6=

{}
shows emeasure (Sup measure ′ M ) X = (SUP P∈{P . finite P ∧ P ⊆ M }.

sup measure.F id P X )
(is = ?S X )

using Sup measure ′ def
proof (rule emeasure measure of )
note sets eq [THEN sets eq imp space eq , simp]
have ∗: sets (Sup measure ′ M ) = sets A space (Sup measure ′ M ) = space A
using 〈M 6= {}〉 by (simp all add : Sup measure ′ def )

let ?µ = sup measure.F id
show countably additive (sets (Sup measure ′ M )) ?S
proof (rule countably additiveI , goal cases)
case (1 F )
then have ∗∗: range F ⊆ sets A
by (auto simp: ∗)

show (
∑

i . ?S (F i)) = ?S (
⋃
i . F i)

proof (subst ennreal suminf SUP eq directed)
fix i j and N :: nat set assume ij : i ∈ {P . finite P ∧ P ⊆ M } j ∈ {P . finite

P ∧ P ⊆ M }
have (i 6= {} −→ sets (?µ i) = sets A) ∧ (j 6= {} −→ sets (?µ j ) = sets A)
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∧
(i 6= {} ∨ j 6= {} −→ sets (?µ (i ∪ j )) = sets A)
using ij by (intro impI sets sup measure F conjI ) auto

then have ?µ j (F n) ≤ ?µ (i ∪ j ) (F n) ∧ ?µ i (F n) ≤ ?µ (i ∪ j ) (F n)
for n

using ij
by (cases i = {}; cases j = {})
(auto intro!: le measureD3 sup measure F mono simp: sets sup measure F

simp del : id apply)
with ij show ∃ k∈{P . finite P ∧ P ⊆ M }. ∀n∈N . ?µ i (F n) ≤ ?µ k (F n)

∧ ?µ j (F n) ≤ ?µ k (F n)
by (safe intro!: bexI [of i ∪ j ]) auto

next
show (SUP P ∈ {P . finite P ∧ P ⊆ M }.

∑
n. ?µ P (F n)) = (SUP P ∈

{P . finite P ∧ P ⊆ M }. ?µ P (
⋃
(F ‘ UNIV )))

proof (intro arg cong [of Sup] image cong refl)
fix i assume i : i ∈ {P . finite P ∧ P ⊆ M }
show (

∑
n. ?µ i (F n)) = ?µ i (

⋃
(F ‘ UNIV ))

proof cases
assume i 6= {} with i ∗∗ show ?thesis
apply (intro suminf emeasure 〈disjoint family F 〉)
apply (subst sets sup measure F [OF sets eq ])
apply auto
done

qed simp
qed

qed
qed
show positive (sets (Sup measure ′ M )) ?S
by (auto simp: positive def bot ennreal [symmetric])

show X ∈ sets (Sup measure ′ M )
using assms ∗ by auto

qed (rule UN space closed)

definition Sup measure :: ′a measure set ⇒ ′a measure where
Sup measure =
Sup lexord space
(Sup lexord sets Sup measure ′

(λU . sigma (
⋃
u∈U . space u) (

⋃
u∈U . sets u)))

(λU . sigma (
⋃
u∈U . space u) {})

definition Inf measure :: ′a measure set ⇒ ′a measure where
Inf measure A = Sup {x . ∀ a∈A. x ≤ a}

definition inf measure :: ′a measure ⇒ ′a measure ⇒ ′a measure where
inf measure a b = Inf {a, b}

definition top measure :: ′a measure where
top measure = Inf {}
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instance
proof
note UN space closed [simp]
show upper : x ≤ Sup A if x : x ∈ A for x :: ′a measure and A
unfolding Sup measure def

proof (intro Sup lexord [where P=λy . x ≤ y ])
assume

∧
a. a ∈ A =⇒ space a 6= (

⋃
a∈A. space a)

from this[OF 〈x ∈ A〉] 〈x ∈ A〉 show x ≤ sigma (
⋃

a∈A. space a) {}
by (intro less eq measure.intros) auto

next
fix a S assume a ∈ A and a: space a = (

⋃
a∈A. space a) and S : S = {a ′ ∈

A. space a ′ = space a}
and neq :

∧
aa. aa ∈ S =⇒ sets aa 6= (

⋃
a∈S . sets a)

have sp a: space a = (
⋃
(space ‘ S ))

using 〈a∈A〉 by (auto simp: S )
show x ≤ sigma (

⋃
(space ‘ S )) (

⋃
(sets ‘ S ))

proof cases
assume [simp]: space x = space a
have sets x ⊂ (

⋃
a∈S . sets a)

using 〈x∈A〉 neq [of x ] by (auto simp: S )
also have . . . ⊆ sigma sets (

⋃
x∈S . space x ) (

⋃
x∈S . sets x )

by (rule sigma sets superset generator)
finally show ?thesis
by (intro less eq measure.intros(2 )) (simp all add : sp a)

next
assume space x 6= space a
moreover have space x ≤ space a
unfolding a using 〈x∈A〉 by auto

ultimately show ?thesis
by (intro less eq measure.intros) (simp add : less le sp a)

qed
next
fix a b S S ′ assume a ∈ A and a: space a = (

⋃
a∈A. space a) and S : S =

{a ′ ∈ A. space a ′ = space a}
and b ∈ S and b: sets b = (

⋃
a∈S . sets a) and S ′: S ′ = {a ′ ∈ S . sets a ′ =

sets b}
then have S ′ 6= {} space b = space a
by auto

have sets eq :
∧
x . x ∈ S ′ =⇒ sets x = sets b

by (auto simp: S ′)
note sets eq [THEN sets eq imp space eq , simp]
have ∗: sets (Sup measure ′ S ′) = sets b space (Sup measure ′ S ′) = space b
using 〈S ′ 6= {}〉 by (simp all add : Sup measure ′ def sets eq)

show x ≤ Sup measure ′ S ′

proof cases
assume x ∈ S
with 〈b ∈ S 〉 have space x = space b
by (simp add : S )
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show ?thesis
proof cases
assume x ∈ S ′

show x ≤ Sup measure ′ S ′

proof (intro le measure[THEN iffD2 ] ballI )
show sets x = sets (Sup measure ′ S ′)
using 〈x∈S ′〉 ∗ by (simp add : S ′)

fix X assume X ∈ sets x
show emeasure x X ≤ emeasure (Sup measure ′ S ′) X
proof (subst emeasure Sup measure ′[OF 〈X ∈ sets x 〉])

show emeasure x X ≤ (SUP P ∈ {P . finite P ∧ P ⊆ S ′}. emeasure
(sup measure.F id P) X )

using 〈x∈S ′〉 by (intro SUP upper2 [where i={x}]) auto
qed (insert 〈x∈S ′〉 S ′, auto)

qed
next
assume x /∈ S ′

then have sets x 6= sets b
using 〈x∈S 〉 by (auto simp: S ′)

moreover have sets x ≤ sets b
using 〈x∈S 〉 unfolding b by auto

ultimately show ?thesis
using ∗ 〈x ∈ S 〉

by (intro less eq measure.intros(2 ))
(simp all add : ∗ 〈space x = space b〉 less le)

qed
next
assume x /∈ S
with 〈x∈A〉 〈x /∈ S 〉 〈space b = space a〉 show ?thesis
by (intro less eq measure.intros)

(simp all add : ∗ less le a SUP upper S )
qed

qed
show least : Sup A ≤ x if x :

∧
z . z ∈ A =⇒ z ≤ x for x :: ′a measure and A

unfolding Sup measure def
proof (intro Sup lexord [where P=λy . y ≤ x ])
assume

∧
a. a ∈ A =⇒ space a 6= (

⋃
a∈A. space a)

show sigma (
⋃
(space ‘ A)) {} ≤ x

using x [THEN le measureD1 ] by (subst sigma le iff ) auto
next
fix a S assume a ∈ A space a = (

⋃
a∈A. space a) and S : S = {a ′ ∈ A. space

a ′ = space a}∧
a. a ∈ S =⇒ sets a 6= (

⋃
a∈S . sets a)

have
⋃
(space ‘ S ) ⊆ space x

using S le measureD1 [OF x ] by auto
moreover
have

⋃
(space ‘ S ) = space a

using 〈a∈A〉 S by auto
then have space x =

⋃
(space ‘ S ) =⇒

⋃
(sets ‘ S ) ⊆ sets x
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using 〈a ∈ A〉 le measureD2 [OF x ] by (auto simp: S )
ultimately show sigma (

⋃
(space ‘ S )) (

⋃
(sets ‘ S )) ≤ x

by (subst sigma le iff ) simp all
next
fix a b S S ′ assume a ∈ A and a: space a = (

⋃
a∈A. space a) and S : S =

{a ′ ∈ A. space a ′ = space a}
and b ∈ S and b: sets b = (

⋃
a∈S . sets a) and S ′: S ′ = {a ′ ∈ S . sets a ′ =

sets b}
then have S ′ 6= {} space b = space a
by auto

have sets eq :
∧
x . x ∈ S ′ =⇒ sets x = sets b

by (auto simp: S ′)
note sets eq [THEN sets eq imp space eq , simp]
have ∗: sets (Sup measure ′ S ′) = sets b space (Sup measure ′ S ′) = space b
using 〈S ′ 6= {}〉 by (simp all add : Sup measure ′ def sets eq)

show Sup measure ′ S ′ ≤ x
proof cases
assume space x = space a
show ?thesis
proof cases
assume ∗∗: sets x = sets b
show ?thesis
proof (intro le measure[THEN iffD2 ] ballI )
show ∗∗∗: sets (Sup measure ′ S ′) = sets x
by (simp add : ∗ ∗∗)

fix X assume X ∈ sets (Sup measure ′ S ′)
show emeasure (Sup measure ′ S ′) X ≤ emeasure x X
unfolding ∗∗∗

proof (subst emeasure Sup measure ′[OF 〈X ∈ sets (Sup measure ′ S ′)〉])
show (SUP P ∈ {P . finite P ∧ P ⊆ S ′}. emeasure (sup measure.F id

P) X ) ≤ emeasure x X
proof (safe intro!: SUP least)
fix P assume P : finite P P ⊆ S ′

show emeasure (sup measure.F id P) X ≤ emeasure x X
proof cases
assume P = {} then show ?thesis
by auto

next
assume P 6= {}
from P have finite P P ⊆ A
unfolding S ′ S by (simp all add : subset eq)

then have sup measure.F id P ≤ x
by (induction P) (auto simp: x )

moreover have sets (sup measure.F id P) = sets x
using 〈finite P 〉 〈P 6= {}〉 〈P ⊆ S ′〉 〈sets x = sets b〉

by (intro sets sup measure F ) (auto simp: S ′)
ultimately show emeasure (sup measure.F id P) X ≤ emeasure x X

by (rule le measureD3 )
qed
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qed
show m ∈ S ′ =⇒ sets m = sets (Sup measure ′ S ′) for m
unfolding ∗ by (simp add : S ′)

qed fact
qed

next
assume sets x 6= sets b
moreover have sets b ≤ sets x
unfolding b S using x [THEN le measureD2 ] 〈space x = space a〉 by auto
ultimately show Sup measure ′ S ′ ≤ x
using 〈space x = space a〉 〈b ∈ S 〉

by (intro less eq measure.intros(2 )) (simp all add : ∗ S )
qed

next
assume space x 6= space a
then have space a < space x
using le measureD1 [OF x [OF 〈a∈A〉]] by auto

then show Sup measure ′ S ′ ≤ x
by (intro less eq measure.intros) (simp add : ∗ 〈space b = space a〉)

qed
qed
show Sup {} = (bot :: ′a measure) Inf {} = (top:: ′a measure)
by (auto intro!: antisym least simp: top measure def )

show lower : x ∈ A =⇒ Inf A ≤ x for x :: ′a measure and A
unfolding Inf measure def by (intro least) auto

show greatest : (
∧
z . z ∈ A =⇒ x ≤ z ) =⇒ x ≤ Inf A for x :: ′a measure and A

unfolding Inf measure def by (intro upper) auto
show inf x y ≤ x inf x y ≤ y x ≤ y =⇒ x ≤ z =⇒ x ≤ inf y z for x y z :: ′a

measure
by (auto simp: inf measure def intro!: lower greatest)

qed

end

lemma sets SUP :
assumes

∧
x . x ∈ I =⇒ sets (M x ) = sets N

shows I 6= {} =⇒ sets (SUP i∈I . M i) = sets N
unfolding Sup measure def
using assms assms[THEN sets eq imp space eq ]
sets Sup measure ′[where A=N and M=M‘I ]

by (intro Sup lexord1 [where P=λx . sets x = sets N ]) auto

lemma emeasure SUP :
assumes sets:

∧
i . i ∈ I =⇒ sets (M i) = sets N X ∈ sets N I 6= {}

shows emeasure (SUP i∈I . M i) X = (SUP J∈{J . J 6= {} ∧ finite J ∧ J ⊆ I }.
emeasure (SUP i∈J . M i) X )
proof −
interpret sup measure: comm monoid set sup bot :: ′b measure
by standard (auto intro!: antisym)
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have eq : finite J =⇒ sup measure.F id J = (SUP i∈J . i) for J :: ′b measure set
by (induction J rule: finite induct) auto

have 1 : J 6= {} =⇒ J ⊆ I =⇒ sets (SUP x∈J . M x ) = sets N for J
by (intro sets SUP sets) (auto )

from 〈I 6= {}〉 obtain i where i∈I by auto
have Sup measure ′ (M‘I ) X = (SUP P∈{P . finite P ∧ P ⊆ M‘I }. sup measure.F

id P X )
using sets by (intro emeasure Sup measure ′) auto

also have Sup measure ′ (M‘I ) = (SUP i∈I . M i)
unfolding Sup measure def using 〈I 6= {}〉 sets sets(1 )[THEN sets eq imp space eq ]
by (intro Sup lexord1 [where P=λx . = x ]) auto

also have (SUP P∈{P . finite P ∧ P ⊆ M‘I }. sup measure.F id P X ) =
(SUP J∈{J . J 6= {} ∧ finite J ∧ J ⊆ I }. (SUP i∈J . M i) X )

proof (intro SUP eq)
fix J assume J ∈ {P . finite P ∧ P ⊆ M‘I }
then obtain J ′ where J ′: J ′ ⊆ I finite J ′ and J : J = M‘J ′ and finite J
using finite subset image[of J M I ] by auto

show ∃ j∈{J . J 6= {} ∧ finite J ∧ J ⊆ I }. sup measure.F id J X ≤ (SUP i∈j .
M i) X

proof cases
assume J ′ = {} with 〈i ∈ I 〉 show ?thesis
by (auto simp add : J )

next
assume J ′ 6= {} with J J ′ show ?thesis
by (intro bexI [of J ′]) (auto simp add : eq simp del : id apply)

qed
next
fix J assume J : J ∈ {P . P 6= {} ∧ finite P ∧ P ⊆ I }
show ∃ J ′∈{J . finite J ∧ J ⊆ M‘I }. (SUP i∈J . M i) X ≤ sup measure.F id

J ′ X
using J by (intro bexI [of M‘J ]) (auto simp add : eq simp del : id apply)

qed
finally show ?thesis .

qed

lemma emeasure SUP chain:
assumes sets:

∧
i . i ∈ A =⇒ sets (M i) = sets N X ∈ sets N

assumes ch: Complete Partial Order .chain (≤) (M ‘ A) and A 6= {}
shows emeasure (SUP i∈A. M i) X = (SUP i∈A. emeasure (M i) X )

proof (subst emeasure SUP [OF sets 〈A 6= {}〉])
show (SUP J∈{J . J 6= {} ∧ finite J ∧ J ⊆ A}. emeasure (Sup (M ‘ J )) X ) =

(SUP i∈A. emeasure (M i) X )
proof (rule SUP eq)
fix J assume J ∈ {J . J 6= {} ∧ finite J ∧ J ⊆ A}
then have J : Complete Partial Order .chain (≤) (M ‘ J ) finite J J 6= {} and

J ⊆ A
using ch[THEN chain subset , of M‘J ] by auto

with in chain finite[OF J (1 )] obtain j where j ∈ J (SUP j∈J . M j ) = M j
by auto

Measure{_}{\kern 0pt}Space.html


1360

with 〈J ⊆ A〉 show ∃ j∈A. emeasure (Sup (M ‘ J )) X ≤ emeasure (M j ) X
by auto

next
fix j assume j∈A then show ∃ i∈{J . J 6= {} ∧ finite J ∧ J ⊆ A}. emeasure

(M j ) X ≤ emeasure (Sup (M ‘ i)) X
by (intro bexI [of {j}]) auto

qed
qed

Supremum of a set of σ-algebras

lemma space Sup eq UN : space (Sup M ) = (
⋃

x∈M . space x )
unfolding Sup measure def
apply (intro Sup lexord [where P=λx . space x = ])
apply (subst space Sup measure ′2 )
apply auto []
apply (subst space measure of [OF UN space closed ])
apply auto
done

lemma sets Sup eq :
assumes ∗:

∧
m. m ∈ M =⇒ space m = X and M 6= {}

shows sets (Sup M ) = sigma sets X (
⋃
x∈M . sets x )

unfolding Sup measure def
apply (rule Sup lexord1 )
apply fact
apply (simp add : assms)
apply (rule Sup lexord)
subgoal premises that for a S
unfolding that(3 ) that(2 )[symmetric]
using that(1 )
apply (subst sets Sup measure ′2 )
apply (intro arg cong2 [where f=sigma sets])
apply (auto simp: ∗)
done

apply (subst sets measure of [OF UN space closed ])
apply (simp add : assms)
done

lemma in sets Sup: (
∧
m. m ∈ M =⇒ space m = X ) =⇒ m ∈ M =⇒ A ∈ sets

m =⇒ A ∈ sets (Sup M )
by (subst sets Sup eq [where X=X ]) auto

lemma Sup lexord rel :
assumes

∧
i . i ∈ I =⇒ k (A i) = k (B i)

R (c (A ‘ {a ∈ I . k (B a) = (SUP x∈I . k (B x ))})) (c (B ‘ {a ∈ I . k (B a)
= (SUP x∈I . k (B x ))}))

R (s (A‘I )) (s (B‘I ))
shows R (Sup lexord k c s (A‘I )) (Sup lexord k c s (B‘I ))
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proof −
have A ‘ {a ∈ I . k (B a) = (SUP x∈I . k (B x ))} = {a ∈ A ‘ I . k a = (SUP

x∈I . k (B x ))}
using assms(1 ) by auto

moreover have B ‘ {a ∈ I . k (B a) = (SUP x∈I . k (B x ))} = {a ∈ B ‘ I . k
a = (SUP x∈I . k (B x ))}

by auto
ultimately show ?thesis
using assms by (auto simp: Sup lexord def Let def image comp)

qed

lemma sets SUP cong :
assumes eq :

∧
i . i ∈ I =⇒ sets (M i) = sets (N i) shows sets (SUP i∈I . M i)

= sets (SUP i∈I . N i)
unfolding Sup measure def
using eq eq [THEN sets eq imp space eq ]
apply (intro Sup lexord rel [where R=λx y . sets x = sets y ])
apply simp
apply simp
apply (simp add : sets Sup measure ′2 )
apply (intro arg cong2 [where f=λx y . sets (sigma x y)])
apply auto
done

lemma sets Sup in sets:
assumes M 6= {}
assumes

∧
m. m ∈ M =⇒ space m = space N

assumes
∧
m. m ∈ M =⇒ sets m ⊆ sets N

shows sets (Sup M ) ⊆ sets N
proof −
have ∗:

⋃
(space ‘ M ) = space N

using assms by auto
show ?thesis
unfolding ∗ using assms by (subst sets Sup eq [of M space N ]) (auto intro!:

sets.sigma sets subset)
qed

lemma measurable Sup1 :
assumes m: m ∈ M and f : f ∈ measurable m N
and const space:

∧
m n. m ∈ M =⇒ n ∈ M =⇒ space m = space n

shows f ∈ measurable (Sup M ) N
proof −
have space (Sup M ) = space m
using m by (auto simp add : space Sup eq UN dest : const space)

then show ?thesis
using m f unfolding measurable def by (auto intro: in sets Sup[OF const space])

qed

lemma measurable Sup2 :
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assumes M : M 6= {}
assumes f :

∧
m. m ∈ M =⇒ f ∈ measurable N m

and const space:
∧
m n. m ∈ M =⇒ n ∈ M =⇒ space m = space n

shows f ∈ measurable N (Sup M )
proof −
from M obtain m where m ∈ M by auto
have space eq :

∧
n. n ∈ M =⇒ space n = space m

by (intro const space 〈m ∈ M 〉)
have f ∈ measurable N (sigma (

⋃
m∈M . space m) (

⋃
m∈M . sets m))

proof (rule measurable measure of )
show f ∈ space N →

⋃
(space ‘ M )

using measurable space[OF f ] M by auto
qed (auto intro: measurable sets f dest : sets.sets into space)
also have measurable N (sigma (

⋃
m∈M . space m) (

⋃
m∈M . sets m)) = mea-

surable N (Sup M )
apply (intro measurable cong sets refl)
apply (subst sets Sup eq [OF space eq M ])
apply simp
apply (subst sets measure of [OF UN space closed ])
apply (simp add : space eq M )
done

finally show ?thesis .
qed

lemma measurable SUP2 :
I 6= {} =⇒ (

∧
i . i ∈ I =⇒ f ∈ measurable N (M i)) =⇒

(
∧
i j . i ∈ I =⇒ j ∈ I =⇒ space (M i) = space (M j )) =⇒ f ∈ measurable N

(SUP i∈I . M i)
by (auto intro!: measurable Sup2 )

lemma sets Sup sigma:
assumes [simp]: M 6= {} and M :

∧
m. m ∈ M =⇒ m ⊆ Pow Ω

shows sets (SUP m∈M . sigma Ω m) = sets (sigma Ω (
⋃
M ))

proof −
{ fix a m assume a ∈ sigma sets Ω m m ∈ M
then have a ∈ sigma sets Ω (

⋃
M )

by induction (auto intro: sigma sets.intros(2−)) }
then show sets (SUP m∈M . sigma Ω m) = sets (sigma Ω (

⋃
M ))

apply (subst sets Sup eq [where X=Ω])
apply (auto simp add : M ) []
apply auto []
apply (simp add : space measure of conv M Union least)
apply (rule sigma sets eqI )
apply auto
done

qed

lemma Sup sigma:
assumes [simp]: M 6= {} and M :

∧
m. m ∈ M =⇒ m ⊆ Pow Ω
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shows (SUP m∈M . sigma Ω m) = (sigma Ω (
⋃

M ))
proof (intro antisym SUP least)
have ∗:

⋃
M ⊆ Pow Ω

using M by auto
show sigma Ω (

⋃
M ) ≤ (SUP m∈M . sigma Ω m)

proof (intro less eq measure.intros(3 ))
show space (sigma Ω (

⋃
M )) = space (SUP m∈M . sigma Ω m)

sets (sigma Ω (
⋃
M )) = sets (SUP m∈M . sigma Ω m)

using sets Sup sigma[OF assms] sets Sup sigma[OF assms, THEN sets eq imp space eq ]
by auto

qed (simp add : emeasure sigma le fun def )
fix m assume m ∈ M then show sigma Ω m ≤ sigma Ω (

⋃
M )

by (subst sigma le iff ) (auto simp add : M ∗)
qed

lemma SUP sigma sigma:
M 6= {} =⇒ (

∧
m. m ∈ M =⇒ f m ⊆ Pow Ω) =⇒ (SUP m∈M . sigma Ω (f m))

= sigma Ω (
⋃
m∈M . f m)

using Sup sigma[of f‘M Ω] by (auto simp: image comp)

lemma sets vimage Sup eq :
assumes ∗: M 6= {} f ∈ X → Y

∧
m. m ∈ M =⇒ space m = Y

shows sets (vimage algebra X f (Sup M )) = sets (SUP m ∈ M . vimage algebra
X f m)
(is ?IS = ?SI )

proof
show ?IS ⊆ ?SI
apply (intro sets image in sets measurable Sup2 )
apply (simp add : space Sup eq UN ∗)
apply (simp add : ∗)
apply (intro measurable Sup1 )
apply (rule imageI )
apply assumption
apply (rule measurable vimage algebra1 )
apply (auto simp: ∗)
done

show ?SI ⊆ ?IS
apply (intro sets Sup in sets)
apply (auto simp: ∗) []
apply (auto simp: ∗) []
apply (elim imageE )
apply simp
apply (rule sets image in sets)
apply simp
apply (simp add : measurable def )
apply (simp add : ∗ space Sup eq UN sets vimage algebra2 )
apply (auto intro: in sets Sup[OF ∗(3 )])
done

qed
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lemma restrict space eq vimage algebra ′:
sets (restrict space M Ω) = sets (vimage algebra (Ω ∩ space M ) (λx . x ) M )

proof −
have ∗: {A ∩ (Ω ∩ space M ) |A. A ∈ sets M } = {A ∩ Ω |A. A ∈ sets M }
using sets.sets into space[of M ] by blast

show ?thesis
unfolding restrict space def
by (subst sets measure of )
(auto simp add : image subset iff sets vimage algebra ∗ dest : sets.sets into space

intro!: arg cong2 [where f=sigma sets])
qed

lemma sigma le sets:
assumes [simp]: A ⊆ Pow X shows sets (sigma X A) ⊆ sets N ←→ X ∈ sets

N ∧ A ⊆ sets N
proof
have X ∈ sigma sets X A A ⊆ sigma sets X A
by (auto intro: sigma sets top)

moreover assume sets (sigma X A) ⊆ sets N
ultimately show X ∈ sets N ∧ A ⊆ sets N
by auto

next
assume ∗: X ∈ sets N ∧ A ⊆ sets N
{ fix Y assume Y ∈ sigma sets X A from this ∗ have Y ∈ sets N

by induction auto }
then show sets (sigma X A) ⊆ sets N
by auto

qed

lemma measurable iff sets:
f ∈ measurable M N ←→ (f ∈ space M → space N ∧ sets (vimage algebra (space

M ) f N ) ⊆ sets M )
proof −
have ∗: {f −‘ A ∩ space M |A. A ∈ sets N } ⊆ Pow (space M )
by auto

show ?thesis
unfolding measurable def
by (auto simp add : vimage algebra def sigma le sets[OF ∗])

qed

lemma sets vimage algebra space: X ∈ sets (vimage algebra X f M )
using sets.top[of vimage algebra X f M ] by simp

lemma measurable mono:
assumes N : sets N ′ ≤ sets N space N = space N ′

assumes M : sets M ≤ sets M ′ space M = space M ′

shows measurable M N ⊆ measurable M ′ N ′
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unfolding measurable def
proof safe
fix f A assume f ∈ space M → space N A ∈ sets N ′

moreover assume ∀ y∈sets N . f −‘ y ∩ space M ∈ sets M note this[THEN
bspec, of A]
ultimately show f −‘ A ∩ space M ′ ∈ sets M ′

using assms by auto
qed (insert N M , auto)

lemma measurable Sup measurable:
assumes f : f ∈ space N → A
shows f ∈ measurable N (Sup {M . space M = A ∧ f ∈ measurable N M })

proof (rule measurable Sup2 )
show {M . space M = A ∧ f ∈ measurable N M } 6= {}
using f unfolding ex in conv [symmetric]
by (intro exI [of sigma A {}]) (auto intro!: measurable measure of )

qed auto

lemma (in sigma algebra) sigma sets subset ′:
assumes a: a ⊆ M Ω ′ ∈ M
shows sigma sets Ω ′ a ⊆ M

proof
show x ∈ M if x : x ∈ sigma sets Ω ′ a for x
using x by (induct rule: sigma sets.induct) (insert a, auto)

qed

lemma in sets SUP : i ∈ I =⇒ (
∧
i . i ∈ I =⇒ space (M i) = Y ) =⇒ X ∈ sets

(M i) =⇒ X ∈ sets (SUP i∈I . M i)
by (intro in sets Sup[where X=Y ]) auto

lemma measurable SUP1 :
i ∈ I =⇒ f ∈ measurable (M i) N =⇒ (

∧
m n. m ∈ I =⇒ n ∈ I =⇒ space (M

m) = space (M n)) =⇒
f ∈ measurable (SUP i∈I . M i) N

by (auto intro: measurable Sup1 )

lemma sets image in sets ′:
assumes X : X ∈ sets N
assumes f :

∧
A. A ∈ sets M =⇒ f −‘ A ∩ X ∈ sets N

shows sets (vimage algebra X f M ) ⊆ sets N
unfolding sets vimage algebra
by (rule sets.sigma sets subset ′) (auto intro!: measurable sets X f )

lemma mono vimage algebra:
sets M ≤ sets N =⇒ sets (vimage algebra X f M ) ⊆ sets (vimage algebra X f N )
using sets.top[of sigma X {f −‘ A ∩ X |A. A ∈ sets N }]
unfolding vimage algebra def
apply (subst (asm) space measure of )
apply auto []
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apply (subst sigma le sets)
apply auto
done

lemma mono restrict space: sets M ≤ sets N =⇒ sets (restrict space M X ) ⊆ sets
(restrict space N X )
unfolding sets restrict space by (rule image mono)

lemma sets eq bot : sets M = {{}} ←→ M = bot
apply safe
apply (intro measure eqI )
apply auto
done

lemma sets eq bot2 : {{}} = sets M ←→ M = bot
using sets eq bot [of M ] by blast

lemma (in finite measure) countable support :
countable {x . measure M {x} 6= 0}

proof cases
assume measure M (space M ) = 0
with bounded measure measure le 0 iff have {x . measure M {x} 6= 0} = {}
by auto

then show ?thesis
by simp

next
let ?M = measure M (space M ) and ?m = λx . measure M {x}
assume ?M 6= 0
then have ∗: {x . ?m x 6= 0} = (

⋃
n. {x . ?M / Suc n < ?m x})

using reals Archimedean[of ?m x / ?M for x ]
by (auto simp: field simps not le[symmetric] divide le 0 iff measure le 0 iff )

have ∗∗:
∧
n. finite {x . ?M / Suc n < ?m x}

proof (rule ccontr)
fix n assume infinite {x . ?M / Suc n < ?m x} (is infinite ?X )
then obtain X where finite X card X = Suc (Suc n) X ⊆ ?X
by (metis infinite arbitrarily large)

from this(3 ) have ∗:
∧
x . x ∈ X =⇒ ?M / Suc n ≤ ?m x

by auto
{ fix x assume x ∈ X

from 〈?M 6= 0 〉 ∗[OF this] have ?m x 6= 0 by (auto simp: field simps
measure le 0 iff )

then have {x} ∈ sets M by (auto dest : measure notin sets) }
note singleton sets = this
have ?M < (

∑
x∈X . ?M / Suc n)

using 〈?M 6= 0 〉

by (simp add : 〈card X = Suc (Suc n)〉 field simps less le)
also have . . . ≤ (

∑
x∈X . ?m x )

by (rule sum mono) fact
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also have . . . = measure M (
⋃
x∈X . {x})

using singleton sets 〈finite X 〉

by (intro finite measure finite Union[symmetric]) (auto simp: disjoint family on def )
finally have ?M < measure M (

⋃
x∈X . {x}) .

moreover have measure M (
⋃
x∈X . {x}) ≤ ?M

using singleton sets[THEN sets.sets into space] by (intro finite measure mono)
auto

ultimately show False by simp
qed
show ?thesis
unfolding ∗ by (intro countable UN countableI type countable finite[OF ∗∗])

qed

end

6.4 Ordered Euclidean Space

theory Ordered Euclidean Space
imports
Convex Euclidean Space
HOL−Library .Product Order

begin

An ordering on euclidean spaces that will allow us to talk about intervals

class ordered euclidean space = ord + inf + sup + abs + Inf + Sup + eu-
clidean space +
assumes eucl le: x ≤ y ←→ (∀ i∈Basis. x · i ≤ y · i)
assumes eucl less le not le: x < y ←→ x ≤ y ∧ ¬ y ≤ x
assumes eucl inf : inf x y = (

∑
i∈Basis. inf (x · i) (y · i) ∗R i)

assumes eucl sup: sup x y = (
∑

i∈Basis. sup (x · i) (y · i) ∗R i)
assumes eucl Inf : Inf X = (

∑
i∈Basis. (INF x∈X . x · i) ∗R i)

assumes eucl Sup: Sup X = (
∑

i∈Basis. (SUP x∈X . x · i) ∗R i)
assumes eucl abs: |x | = (

∑
i∈Basis. |x · i | ∗R i)

begin

subclass order
by standard

(auto simp: eucl le eucl less le not le intro!: euclidean eqI antisym intro: or-
der .trans)

subclass ordered ab group add abs
by standard (auto simp: eucl le inner add left eucl abs abs leI )

subclass ordered real vector
by standard (auto simp: eucl le intro!: mult left mono mult right mono)

subclass lattice
by standard (auto simp: eucl inf eucl sup eucl le)

Ordered{_}{\kern 0pt}Euclidean{_}{\kern 0pt}Space.html


1368

subclass distrib lattice
by standard (auto simp: eucl inf eucl sup sup inf distrib1 intro!: euclidean eqI )

subclass conditionally complete lattice
proof
fix z :: ′a and X :: ′a set
assume X 6= {}
hence

∧
i . (λx . x · i) ‘ X 6= {} by simp

thus (
∧
x . x ∈ X =⇒ z ≤ x ) =⇒ z ≤ Inf X (

∧
x . x ∈ X =⇒ x ≤ z ) =⇒ Sup

X ≤ z
by (auto simp: eucl Inf eucl Sup eucl le
intro!: cInf greatest cSup least)

qed (force intro!: cInf lower cSup upper
simp: bdd below def bdd above def preorder class.bdd below def preorder class.bdd above def

eucl Inf eucl Sup eucl le)+

lemma inner Basis inf left : i ∈ Basis =⇒ inf x y · i = inf (x · i) (y · i)
and inner Basis sup left : i ∈ Basis =⇒ sup x y · i = sup (x · i) (y · i)
by (simp all add : eucl inf eucl sup inner sum left inner Basis if distrib

cong : if cong)

lemma inner Basis INF left : i ∈ Basis =⇒ (INF x∈X . f x ) · i = (INF x∈X . f x
· i)
and inner Basis SUP left : i ∈ Basis =⇒ (SUP x∈X . f x ) · i = (SUP x∈X . f x

· i)
using eucl Sup [of f ‘ X ] eucl Inf [of f ‘ X ] by (simp all add : image comp)

lemma abs inner : i ∈ Basis =⇒ |x | · i = |x · i |
by (auto simp: eucl abs)

lemma
abs scaleR: |a ∗R b| = |a| ∗R |b|
by (auto simp: eucl abs abs mult intro!: euclidean eqI )

lemma interval inner leI :
assumes x ∈ {a .. b} 0 ≤ i
shows a·i ≤ x ·i x ·i ≤ b·i
using assms
unfolding euclidean inner [of a i ] euclidean inner [of x i ] euclidean inner [of b i ]
by (auto intro!: ordered comm monoid add class.sum mono mult right mono simp:

eucl le)

lemma inner nonneg nonneg :
shows 0 ≤ a =⇒ 0 ≤ b =⇒ 0 ≤ a · b
using interval inner leI [of a 0 a b]
by auto

lemma inner Basis mono:
shows a ≤ b =⇒ c ∈ Basis =⇒ a · c ≤ b · c
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by (simp add : eucl le)

lemma Basis nonneg [intro, simp]: i ∈ Basis =⇒ 0 ≤ i
by (auto simp: eucl le inner Basis)

lemma Sup eq maximum componentwise:
fixes s:: ′a set
assumes i :

∧
b. b ∈ Basis =⇒ X · b = i b · b

assumes sup:
∧
b x . b ∈ Basis =⇒ x ∈ s =⇒ x · b ≤ X · b

assumes i s:
∧
b. b ∈ Basis =⇒ (i b · b) ∈ (λx . x · b) ‘ s

shows Sup s = X
using assms
unfolding eucl Sup euclidean representation sum
by (auto intro!: conditionally complete lattice class.cSup eq maximum)

lemma Inf eq minimum componentwise:
assumes i :

∧
b. b ∈ Basis =⇒ X · b = i b · b

assumes sup:
∧
b x . b ∈ Basis =⇒ x ∈ s =⇒ X · b ≤ x · b

assumes i s:
∧
b. b ∈ Basis =⇒ (i b · b) ∈ (λx . x · b) ‘ s

shows Inf s = X
using assms
unfolding eucl Inf euclidean representation sum
by (auto intro!: conditionally complete lattice class.cInf eq minimum)

end

proposition compact attains Inf componentwise:
fixes b:: ′a::ordered euclidean space
assumes b ∈ Basis assumes X 6= {} compact X
obtains x where x ∈ X x · b = Inf X · b

∧
y . y ∈ X =⇒ x · b ≤ y · b

proof atomize elim
let ?proj = (λx . x · b) ‘ X
from assms have compact ?proj ?proj 6= {}
by (auto intro!: compact continuous image continuous intros)

from compact attains inf [OF this]
obtain s x
where s: s∈(λx . x · b) ‘ X

∧
t . t∈(λx . x · b) ‘ X =⇒ s ≤ t

and x : x ∈ X s = x · b
∧
y . y ∈ X =⇒ x · b ≤ y · b

by auto
hence Inf ?proj = x · b
by (auto intro!: conditionally complete lattice class.cInf eq minimum)

hence x · b = Inf X · b
by (auto simp: eucl Inf inner sum left inner Basis if distrib 〈b ∈ Basis〉

cong : if cong)
with x show ∃ x . x ∈ X ∧ x · b = Inf X · b ∧ (∀ y . y ∈ X −→ x · b ≤ y · b)

by blast
qed

proposition
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compact attains Sup componentwise:
fixes b:: ′a::ordered euclidean space
assumes b ∈ Basis assumes X 6= {} compact X
obtains x where x ∈ X x · b = Sup X · b

∧
y . y ∈ X =⇒ y · b ≤ x · b

proof atomize elim
let ?proj = (λx . x · b) ‘ X
from assms have compact ?proj ?proj 6= {}
by (auto intro!: compact continuous image continuous intros)

from compact attains sup[OF this]
obtain s x
where s: s∈(λx . x · b) ‘ X

∧
t . t∈(λx . x · b) ‘ X =⇒ t ≤ s

and x : x ∈ X s = x · b
∧
y . y ∈ X =⇒ y · b ≤ x · b

by auto
hence Sup ?proj = x · b
by (auto intro!: cSup eq maximum)

hence x · b = Sup X · b
by (auto simp: eucl Sup[where ′a= ′a] inner sum left inner Basis if distrib 〈b

∈ Basis〉

cong : if cong)
with x show ∃ x . x ∈ X ∧ x · b = Sup X · b ∧ (∀ y . y ∈ X −→ y · b ≤ x · b)

by blast
qed

lemma tendsto sup[tendsto intros]:
fixes X :: ′a ⇒ ′b::ordered euclidean space
assumes (X −−−→ x ) net (Y −−−→ y) net
shows ((λi . sup (X i) (Y i)) −−−→ sup x y) net
unfolding sup max eucl sup by (intro assms tendsto intros)

lemma tendsto inf [tendsto intros]:
fixes X :: ′a ⇒ ′b::ordered euclidean space
assumes (X −−−→ x ) net (Y −−−→ y) net
shows ((λi . inf (X i) (Y i)) −−−→ inf x y) net
unfolding inf min eucl inf by (intro assms tendsto intros)

lemma tendsto componentwise max :
assumes f : (f −−−→ l) F and g : (g −−−→ m) F
shows ((λx . (

∑
i∈Basis. max (f x · i) (g x · i) ∗R i)) −−−→ (

∑
i∈Basis. max

(l · i) (m · i) ∗R i)) F
by (intro tendsto intros assms)

lemma tendsto componentwise min:
assumes f : (f −−−→ l) F and g : (g −−−→ m) F
shows ((λx . (

∑
i∈Basis. min (f x · i) (g x · i) ∗R i)) −−−→ (

∑
i∈Basis. min

(l · i) (m · i) ∗R i)) F
by (intro tendsto intros assms)

lemma (in order) atLeastatMost empty ′[simp]:
(¬ a ≤ b) =⇒ {a..b} = {}
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by (auto)

instance real :: ordered euclidean space
by standard auto

lemma in Basis prod iff :
fixes i :: ′a::euclidean space∗ ′b::euclidean space
shows i ∈ Basis ←→ fst i = 0 ∧ snd i ∈ Basis ∨ snd i = 0 ∧ fst i ∈ Basis
by (cases i) (auto simp: Basis prod def )

instantiation prod :: (abs, abs) abs
begin

definition |x | = (|fst x |, |snd x |)

instance ..

end

instance prod :: (ordered euclidean space, ordered euclidean space) ordered euclidean space
by standard
(auto intro!: add mono simp add : euclidean representation sum ′ Ball def in-

ner prod def
in Basis prod iff inner Basis inf left inner Basis sup left inner Basis INF left

Inf prod def
inner Basis SUP left Sup prod def less prod def less eq prod def eucl le[where

′a= ′a]
eucl le[where ′a= ′b] abs prod def abs inner)

Instantiation for intervals on ordered euclidean space

proposition
fixes a :: ′a::ordered euclidean space
shows cbox interval : cbox a b = {a..b}
and interval cbox : {a..b} = cbox a b
and eucl le atMost : {x . ∀ i∈Basis. x · i <= a · i} = {..a}
and eucl le atLeast : {x . ∀ i∈Basis. a · i <= x · i} = {a..}

by (auto simp: eucl le[where ′a= ′a] eucl less def box def cbox def )

lemma sums vec nth :
assumes f sums a
shows (λx . f x $ i) sums a $ i
using assms unfolding sums def
by (auto dest : tendsto vec nth [where i=i ])

lemma summable vec nth :
assumes summable f
shows summable (λx . f x $ i)
using assms unfolding summable def
by (blast intro: sums vec nth)
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lemma closed eucl atLeastAtMost [simp, intro]:
fixes a :: ′a::ordered euclidean space
shows closed {a..b}
by (simp add : cbox interval [symmetric] closed cbox )

lemma closed eucl atMost [simp, intro]:
fixes a :: ′a::ordered euclidean space
shows closed {..a}
by (simp add : closed interval left eucl le atMost [symmetric])

lemma closed eucl atLeast [simp, intro]:
fixes a :: ′a::ordered euclidean space
shows closed {a..}
by (simp add : closed interval right eucl le atLeast [symmetric])

lemma bounded closed interval [simp]:
fixes a :: ′a::ordered euclidean space
shows bounded {a .. b}
using bounded cbox [of a b]
by (metis interval cbox )

lemma convex closed interval [simp]:
fixes a :: ′a::ordered euclidean space
shows convex {a .. b}
using convex box [of a b]
by (metis interval cbox )

lemma image smult interval :(λx . m ∗R (x :: ::ordered euclidean space)) ‘ {a .. b}
=
(if {a .. b} = {} then {} else if 0 ≤ m then {m ∗R a .. m ∗R b} else {m ∗R b

.. m ∗R a})
using image smult cbox [of m a b]
by (simp add : cbox interval)

lemma [simp]:
fixes a b:: ′a::ordered euclidean space
shows is interval ic: is interval {..a}
and is interval ci : is interval {a..}
and is interval cc: is interval {b..a}

by (force simp: is interval def eucl le[where ′a= ′a])+

lemma connected interval [simp]:
fixes a b:: ′a::ordered euclidean space
shows connected {a..b}
using is interval cc is interval connected by blast

lemma compact interval [simp]:
fixes a b:: ′a::ordered euclidean space
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shows compact {a .. b}
by (metis compact cbox interval cbox )

no notation
eucl less (infix <e 50 )

lemma One nonneg : 0 ≤ (
∑

Basis:: ′a::ordered euclidean space)
by (auto intro: sum nonneg)

lemma
fixes a b:: ′a::ordered euclidean space
shows bdd above cbox [intro, simp]: bdd above (cbox a b)
and bdd below cbox [intro, simp]: bdd below (cbox a b)
and bdd above box [intro, simp]: bdd above (box a b)
and bdd below box [intro, simp]: bdd below (box a b)

unfolding atomize conj
by (metis bdd above Icc bdd above mono bdd below Icc bdd below mono bounded box

bounded subset cbox symmetric interval cbox )

instantiation vec :: (ordered euclidean space, finite) ordered euclidean space
begin

definition inf x y = (χ i . inf (x $ i) (y $ i))
definition sup x y = (χ i . sup (x $ i) (y $ i))
definition Inf X = (χ i . (INF x∈X . x $ i))
definition Sup X = (χ i . (SUP x∈X . x $ i))
definition |x | = (χ i . |x $ i |)

instance
apply standard
unfolding euclidean representation sum ′

apply (auto simp: less eq vec def inf vec def sup vec def Inf vec def Sup vec def
inner axis

Basis vec def inner Basis inf left inner Basis sup left inner Basis INF left
inner Basis SUP left eucl le[where ′a= ′a] less le not le abs vec def abs inner)

done

end

end

6.5 Borel Space

theory Borel Space
imports
Measurable Derivative Ordered Euclidean Space Extended Real Limits

begin

lemma is interval real ereal oo: is interval (real of ereal ‘ {N<..<M ::ereal})
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by (auto simp: real atLeastGreaterThan eq)

lemma sets Collect eventually sequentially [measurable]:
(
∧
i . {x∈space M . P x i} ∈ sets M ) =⇒ {x∈space M . eventually (P x ) sequen-

tially} ∈ sets M
unfolding eventually sequentially by simp

lemma topological basis trivial : topological basis {A. open A}
by (auto simp: topological basis def )

proposition open prod generated : open = generate topology {A × B | A B . open
A ∧ open B}
proof −
have {A × B :: ( ′a × ′b) set | A B . open A ∧ open B} = ((λ(a, b). a × b) ‘

({A. open A} × {A. open A}))
by auto

then show ?thesis
by (auto intro: topological basis prod topological basis trivial topological basis imp subbasis)

qed

proposition mono on imp deriv nonneg :
assumes mono: mono on f A and deriv : (f has real derivative D) (at x )
assumes x ∈ interior A
shows D ≥ 0

proof (rule tendsto lowerbound)
let ?A ′ = (λy . y − x ) ‘ interior A
from deriv show ((λh. (f (x + h) − f x ) / h) −−−→ D) (at 0 )

by (simp add : field has derivative at has field derivative def )
from mono have mono ′: mono on f (interior A) by (rule mono on subset) (rule

interior subset)

show eventually (λh. (f (x + h) − f x ) / h ≥ 0 ) (at 0 )
proof (subst eventually at topological , intro exI conjI ballI impI )
have open (interior A) by simp
hence open ((+) (−x ) ‘ interior A) by (rule open translation)
also have ((+) (−x ) ‘ interior A) = ?A ′ by auto
finally show open ?A ′ .

next
from 〈x ∈ interior A〉 show 0 ∈ ?A ′ by auto

next
fix h assume h ∈ ?A ′

hence x + h ∈ interior A by auto
with mono ′ and 〈x ∈ interior A〉 show (f (x + h) − f x ) / h ≥ 0
by (cases h rule: linorder cases[of 0 ])

(simp all add : divide nonpos neg divide nonneg pos mono onD field simps)
qed

qed simp

proposition mono on ctble discont :
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fixes f :: real ⇒ real
fixes A :: real set
assumes mono on f A
shows countable {a∈A. ¬ continuous (at a within A) f }

proof −
have mono:

∧
x y . x ∈ A =⇒ y ∈ A =⇒ x ≤ y =⇒ f x ≤ f y

using 〈mono on f A〉 by (simp add : mono on def )
have ∀ a ∈ {a∈A. ¬ continuous (at a within A) f }. ∃ q :: nat × rat .

(fst q = 0 ∧ of rat (snd q) < f a ∧ (∀ x ∈ A. x < a −→ f x < of rat (snd
q))) ∨

(fst q = 1 ∧ of rat (snd q) > f a ∧ (∀ x ∈ A. x > a −→ f x > of rat (snd
q)))
proof (clarsimp simp del : One nat def )
fix a assume a ∈ A assume ¬ continuous (at a within A) f
thus ∃ q1 q2 .

q1 = 0 ∧ real of rat q2 < f a ∧ (∀ x∈A. x < a −→ f x < real of rat q2 )
∨

q1 = 1 ∧ f a < real of rat q2 ∧ (∀ x∈A. a < x −→ real of rat q2 < f x )
proof (auto simp add : continuous within order tendsto iff eventually at)
fix l assume l < f a
then obtain q2 where q2 : l < of rat q2 of rat q2 < f a
using of rat dense by blast

assume ∗ [rule format ]: ∀ d>0 . ∃ x∈A. x 6= a ∧ dist x a < d ∧ ¬ l < f x
from q2 have real of rat q2 < f a ∧ (∀ x∈A. x < a −→ f x < real of rat q2 )
proof auto
fix x assume x ∈ A x < a
with q2 ∗[of a − x ] show f x < real of rat q2
apply (auto simp add : dist real def not less)
apply (subgoal tac f x ≤ f xa)
by (auto intro: mono)

qed
thus ?thesis by auto

next
fix u assume u > f a
then obtain q2 where q2 : f a < of rat q2 of rat q2 < u
using of rat dense by blast

assume ∗[rule format ]: ∀ d>0 . ∃ x∈A. x 6= a ∧ dist x a < d ∧ ¬ u > f x
from q2 have real of rat q2 > f a ∧ (∀ x∈A. x > a −→ f x > real of rat q2 )
proof auto
fix x assume x ∈ A x > a
with q2 ∗[of x − a] show f x > real of rat q2
apply (auto simp add : dist real def )
apply (subgoal tac f x ≥ f xa)
by (auto intro: mono)

qed
thus ?thesis by auto

qed
qed
hence ∃ g :: real ⇒ nat × rat . ∀ a ∈ {a∈A. ¬ continuous (at a within A) f }.
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(fst (g a) = 0 ∧ of rat (snd (g a)) < f a ∧ (∀ x ∈ A. x < a −→ f x < of rat
(snd (g a)))) |

(fst (g a) = 1 ∧ of rat (snd (g a)) > f a ∧ (∀ x ∈ A. x > a −→ f x > of rat
(snd (g a))))

by (rule bchoice)
then guess g ..
hence g :

∧
a x . a ∈ A =⇒ ¬ continuous (at a within A) f =⇒ x ∈ A =⇒

(fst (g a) = 0 ∧ of rat (snd (g a)) < f a ∧ (x < a −→ f x < of rat (snd (g
a)))) |

(fst (g a) = 1 ∧ of rat (snd (g a)) > f a ∧ (x > a −→ f x > of rat (snd (g
a))))

by auto
have inj on g {a∈A. ¬ continuous (at a within A) f }
proof (auto simp add : inj on def )
fix w z
assume 1 : w ∈ A and 2 : ¬ continuous (at w within A) f and

3 : z ∈ A and 4 : ¬ continuous (at z within A) f and
5 : g w = g z

from g [OF 1 2 3 ] g [OF 3 4 1 ] 5
show w = z by auto

qed
thus ?thesis
by (rule countableI ′)

qed

lemma mono on ctble discont open:
fixes f :: real ⇒ real
fixes A :: real set
assumes open A mono on f A
shows countable {a∈A. ¬isCont f a}

proof −
have {a∈A. ¬isCont f a} = {a∈A. ¬(continuous (at a within A) f )}
by (auto simp add : continuous within open [OF 〈open A〉])

thus ?thesis
apply (elim ssubst)
by (rule mono on ctble discont , rule assms)

qed

lemma mono ctble discont :
fixes f :: real ⇒ real
assumes mono f
shows countable {a. ¬ isCont f a}
using assms mono on ctble discont [of f UNIV ] unfolding mono on def mono def

by auto

lemma has real derivative imp continuous on:
assumes

∧
x . x ∈ A =⇒ (f has real derivative f ′ x ) (at x )

shows continuous on A f
apply (intro differentiable imp continuous on, unfold differentiable on def )
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using assms differentiable at withinI real differentiable def by blast

lemma continuous interval vimage Int :
assumes continuous on {a::real ..b} g and mono:

∧
x y . a ≤ x =⇒ x ≤ y =⇒

y ≤ b =⇒ g x ≤ g y
assumes a ≤ b (c::real) ≤ d {c..d} ⊆ {g a..g b}
obtains c ′ d ′ where {a..b} ∩ g −‘ {c..d} = {c ′..d ′} c ′ ≤ d ′ g c ′ = c g d ′ = d

proof−
let ?A = {a..b} ∩ g −‘ {c..d}
from IVT ′[of g a c b, OF 〈a ≤ b〉 assms(1 )] assms(4 ,5 )
obtain c ′′ where c ′′: c ′′ ∈ ?A g c ′′ = c by auto
from IVT ′[of g a d b, OF 〈a ≤ b〉 assms(1 )] assms(4 ,5 )
obtain d ′′ where d ′′: d ′′ ∈ ?A g d ′′ = d by auto
hence [simp]: ?A 6= {} by blast

define c ′ where c ′ = Inf ?A
define d ′ where d ′ = Sup ?A
have ?A ⊆ {c ′..d ′} unfolding c ′ def d ′ def
by (intro subsetI ) (auto intro: cInf lower cSup upper)

moreover from assms have closed ?A
using continuous on closed vimage[of {a..b} g ] by (subst Int commute) simp

hence c ′d ′ in set : c ′ ∈ ?A d ′ ∈ ?A unfolding c ′ def d ′ def
by ((intro closed contains Inf closed contains Sup, simp all)[])+

hence {c ′..d ′} ⊆ ?A using assms
by (intro subsetI )

(auto intro!: order trans[of c g c ′ g x for x ] order trans[of g x g d ′ d for x ]
intro!: mono)

moreover have c ′≤ d ′ using c ′d ′ in set(2 ) unfolding c ′ def by (intro cInf lower)
auto
moreover have g c ′ ≤ c g d ′ ≥ d
apply (insert c ′′ d ′′ c ′d ′ in set)
apply (subst c ′′(2 )[symmetric])
apply (auto simp: c ′ def intro!: mono cInf lower c ′′) []
apply (subst d ′′(2 )[symmetric])
apply (auto simp: d ′ def intro!: mono cSup upper d ′′) []
done

with c ′d ′ in set have g c ′ = c g d ′ = d by auto
ultimately show ?thesis using that by blast

qed

6.5.1 Generic Borel spaces

definition (in topological space) borel :: ′a measure where
borel = sigma UNIV {S . open S}

abbreviation borel measurable M ≡ measurable M borel

lemma in borel measurable:
f ∈ borel measurable M ←→
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(∀S ∈ sigma sets UNIV {S . open S}. f −‘ S ∩ space M ∈ sets M )
by (auto simp add : measurable def borel def )

lemma in borel measurable borel :
f ∈ borel measurable M ←→
(∀S ∈ sets borel .
f −‘ S ∩ space M ∈ sets M )

by (auto simp add : measurable def borel def )

lemma space borel [simp]: space borel = UNIV
unfolding borel def by auto

lemma space in borel [measurable]: UNIV ∈ sets borel
unfolding borel def by auto

lemma sets borel : sets borel = sigma sets UNIV {S . open S}
unfolding borel def by (rule sets measure of ) simp

lemma measurable sets borel :
[[f ∈ measurable borel M ; A ∈ sets M ]] =⇒ f −‘ A ∈ sets borel

by (drule (1 ) measurable sets) simp

lemma pred Collect borel [measurable (raw)]: Measurable.pred borel P =⇒ {x . P
x} ∈ sets borel
unfolding borel def pred def by auto

lemma borel open[measurable (raw generic)]:
assumes open A shows A ∈ sets borel

proof −
have A ∈ {S . open S} unfolding mem Collect eq using assms .
thus ?thesis unfolding borel def by auto

qed

lemma borel closed [measurable (raw generic)]:
assumes closed A shows A ∈ sets borel

proof −
have space borel − (− A) ∈ sets borel
using assms unfolding closed def by (blast intro: borel open)

thus ?thesis by simp
qed

lemma borel singleton[measurable]:
A ∈ sets borel =⇒ insert x A ∈ sets (borel :: ′a::t1 space measure)
unfolding insert def by (rule sets.Un) auto

lemma sets borel eq count space: sets (borel :: ′a::{countable, t2 space} measure)
= count space UNIV
proof −
have (

⋃
a∈A. {a}) ∈ sets borel for A :: ′a set
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by (intro sets.countable UN ′) auto
then show ?thesis
by auto

qed

lemma borel comp[measurable]: A ∈ sets borel =⇒ − A ∈ sets borel
unfolding Compl eq Diff UNIV by simp

lemma borel measurable vimage:
fixes f :: ′a ⇒ ′x ::t2 space
assumes borel [measurable]: f ∈ borel measurable M
shows f −‘ {x} ∩ space M ∈ sets M
by simp

lemma borel measurableI :
fixes f :: ′a ⇒ ′x ::topological space
assumes

∧
S . open S =⇒ f −‘ S ∩ space M ∈ sets M

shows f ∈ borel measurable M
unfolding borel def

proof (rule measurable measure of , simp all)
fix S :: ′x set assume open S thus f −‘ S ∩ space M ∈ sets M
using assms[of S ] by simp

qed

lemma borel measurable const :
(λx . c) ∈ borel measurable M
by auto

lemma borel measurable indicator :
assumes A: A ∈ sets M
shows indicator A ∈ borel measurable M
unfolding indicator def [abs def ] using A
by (auto intro!: measurable If set)

lemma borel measurable count space[measurable (raw)]:
f ∈ borel measurable (count space S )
unfolding measurable def by auto

lemma borel measurable indicator ′[measurable (raw)]:
assumes [measurable]: {x∈space M . f x ∈ A x} ∈ sets M
shows (λx . indicator (A x ) (f x )) ∈ borel measurable M
unfolding indicator def [abs def ]
by (auto intro!: measurable If )

lemma borel measurable indicator iff :
(indicator A :: ′a ⇒ ′x ::{t1 space, zero neq one}) ∈ borel measurable M ←→ A
∩ space M ∈ sets M

(is ?I ∈ borel measurable M ←→ )
proof
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assume ?I ∈ borel measurable M
then have ?I −‘ {1} ∩ space M ∈ sets M
unfolding measurable def by auto

also have ?I −‘ {1} ∩ space M = A ∩ space M
unfolding indicator def [abs def ] by auto

finally show A ∩ space M ∈ sets M .
next
assume A ∩ space M ∈ sets M
moreover have ?I ∈ borel measurable M ←→
(indicator (A ∩ space M ) :: ′a ⇒ ′x ) ∈ borel measurable M
by (intro measurable cong) (auto simp: indicator def )

ultimately show ?I ∈ borel measurable M by auto
qed

lemma borel measurable subalgebra:
assumes sets N ⊆ sets M space N = space M f ∈ borel measurable N
shows f ∈ borel measurable M
using assms unfolding measurable def by auto

lemma borel measurable restrict space iff ereal :
fixes f :: ′a ⇒ ereal
assumes Ω[measurable, simp]: Ω ∩ space M ∈ sets M
shows f ∈ borel measurable (restrict space M Ω) ←→
(λx . f x ∗ indicator Ω x ) ∈ borel measurable M

by (subst measurable restrict space iff )
(auto simp: indicator def if distrib[where f=λx . a ∗ x for a] cong del :

if weak cong)

lemma borel measurable restrict space iff ennreal :
fixes f :: ′a ⇒ ennreal
assumes Ω[measurable, simp]: Ω ∩ space M ∈ sets M
shows f ∈ borel measurable (restrict space M Ω) ←→
(λx . f x ∗ indicator Ω x ) ∈ borel measurable M

by (subst measurable restrict space iff )
(auto simp: indicator def if distrib[where f=λx . a ∗ x for a] cong del :

if weak cong)

lemma borel measurable restrict space iff :
fixes f :: ′a ⇒ ′b::real normed vector
assumes Ω[measurable, simp]: Ω ∩ space M ∈ sets M
shows f ∈ borel measurable (restrict space M Ω) ←→
(λx . indicator Ω x ∗R f x ) ∈ borel measurable M

by (subst measurable restrict space iff )
(auto simp: indicator def if distrib[where f=λx . x ∗R a for a] ac simps
cong del : if weak cong)

lemma cbox borel [measurable]: cbox a b ∈ sets borel
by (auto intro: borel closed)
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lemma box borel [measurable]: box a b ∈ sets borel
by (auto intro: borel open)

lemma borel compact : compact (A:: ′a::t2 space set) =⇒ A ∈ sets borel
by (auto intro: borel closed dest !: compact imp closed)

lemma borel sigma sets subset :
A ⊆ sets borel =⇒ sigma sets UNIV A ⊆ sets borel
using sets.sigma sets subset [of A borel ] by simp

lemma borel eq sigmaI1 :
fixes F :: ′i ⇒ ′a::topological space set and X :: ′a::topological space set set
assumes borel eq : borel = sigma UNIV X
assumes X :

∧
x . x ∈ X =⇒ x ∈ sets (sigma UNIV (F ‘ A))

assumes F :
∧
i . i ∈ A =⇒ F i ∈ sets borel

shows borel = sigma UNIV (F ‘ A)
unfolding borel def

proof (intro sigma eqI antisym)
have borel rev eq : sigma sets UNIV {S :: ′a set . open S} = sets borel
unfolding borel def by simp

also have . . . = sigma sets UNIV X
unfolding borel eq by simp

also have . . . ⊆ sigma sets UNIV (F‘A)
using X by (intro sigma algebra.sigma sets subset [OF sigma algebra sigma sets])

auto
finally show sigma sets UNIV {S . open S} ⊆ sigma sets UNIV (F‘A) .
show sigma sets UNIV (F‘A) ⊆ sigma sets UNIV {S . open S}
unfolding borel rev eq using F by (intro borel sigma sets subset) auto

qed auto

lemma borel eq sigmaI2 :
fixes F :: ′i ⇒ ′j ⇒ ′a::topological space set
and G :: ′l ⇒ ′k ⇒ ′a::topological space set

assumes borel eq : borel = sigma UNIV ((λ(i , j ). G i j )‘B)
assumes X :

∧
i j . (i , j ) ∈ B =⇒ G i j ∈ sets (sigma UNIV ((λ(i , j ). F i j ) ‘

A))
assumes F :

∧
i j . (i , j ) ∈ A =⇒ F i j ∈ sets borel

shows borel = sigma UNIV ((λ(i , j ). F i j ) ‘ A)
using assms
by (intro borel eq sigmaI1 [where X=(λ(i , j ). G i j ) ‘ B and F=(λ(i , j ). F i

j )]) auto

lemma borel eq sigmaI3 :
fixes F :: ′i ⇒ ′j ⇒ ′a::topological space set and X :: ′a::topological space set

set
assumes borel eq : borel = sigma UNIV X
assumes X :

∧
x . x ∈ X =⇒ x ∈ sets (sigma UNIV ((λ(i , j ). F i j ) ‘ A))

assumes F :
∧
i j . (i , j ) ∈ A =⇒ F i j ∈ sets borel

shows borel = sigma UNIV ((λ(i , j ). F i j ) ‘ A)
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using assms by (intro borel eq sigmaI1 [where X=X and F=(λ(i , j ). F i j )])
auto

lemma borel eq sigmaI4 :
fixes F :: ′i ⇒ ′a::topological space set
and G :: ′l ⇒ ′k ⇒ ′a::topological space set

assumes borel eq : borel = sigma UNIV ((λ(i , j ). G i j )‘A)
assumes X :

∧
i j . (i , j ) ∈ A =⇒ G i j ∈ sets (sigma UNIV (range F ))

assumes F :
∧
i . F i ∈ sets borel

shows borel = sigma UNIV (range F )
using assms by (intro borel eq sigmaI1 [where X=(λ(i , j ). G i j ) ‘ A and

F=F ]) auto

lemma borel eq sigmaI5 :
fixes F :: ′i ⇒ ′j ⇒ ′a::topological space set and G :: ′l ⇒ ′a::topological space

set
assumes borel eq : borel = sigma UNIV (range G)
assumes X :

∧
i . G i ∈ sets (sigma UNIV (range (λ(i , j ). F i j )))

assumes F :
∧
i j . F i j ∈ sets borel

shows borel = sigma UNIV (range (λ(i , j ). F i j ))
using assms by (intro borel eq sigmaI1 [where X=range G and F=(λ(i , j ). F

i j )]) auto

theorem second countable borel measurable:
fixes X :: ′a::second countable topology set set
assumes eq : open = generate topology X
shows borel = sigma UNIV X
unfolding borel def

proof (intro sigma eqI sigma sets eqI )
interpret X : sigma algebra UNIV sigma sets UNIV X
by (rule sigma algebra sigma sets) simp

fix S :: ′a set assume S ∈ Collect open
then have generate topology X S
by (auto simp: eq)

then show S ∈ sigma sets UNIV X
proof induction
case (UN K )
then have K :

∧
k . k ∈ K =⇒ open k

unfolding eq by auto
from ex countable basis obtain B :: ′a set set where
B :

∧
b. b ∈ B =⇒ open b

∧
X . open X =⇒ ∃ b⊆B . (

⋃
b) = X and countable

B
by (auto simp: topological basis def )

from B(2 )[OF K ] obtain m where m:
∧
k . k ∈ K =⇒ m k ⊆ B

∧
k . k ∈ K

=⇒
⋃
(m k) = k

by metis
define U where U = (

⋃
k∈K . m k)

with m have countable U
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by (intro countable subset [OF 〈countable B 〉]) auto
have

⋃
U = (

⋃
A∈U . A) by simp

also have . . . =
⋃
K

unfolding U def UN simps by (simp add : m)
finally have

⋃
U =

⋃
K .

have ∀ b∈U . ∃ k∈K . b ⊆ k
using m by (auto simp: U def )

then obtain u where u:
∧
b. b ∈ U =⇒ u b ∈ K and

∧
b. b ∈ U =⇒ b ⊆ u

b
by metis

then have (
⋃
b∈U . u b) ⊆

⋃
K

⋃
U ⊆ (

⋃
b∈U . u b)

by auto
then have

⋃
K = (

⋃
b∈U . u b)

unfolding 〈
⋃
U =

⋃
K 〉 by auto

also have . . . ∈ sigma sets UNIV X
using u UN by (intro X .countable UN ′ 〈countable U 〉) auto

finally show
⋃

K ∈ sigma sets UNIV X .
qed auto

qed (auto simp: eq intro: generate topology .Basis)

lemma borel eq closed : borel = sigma UNIV (Collect closed)
unfolding borel def

proof (intro sigma eqI sigma sets eqI , safe)
fix x :: ′a set assume open x
hence x = UNIV − (UNIV − x ) by auto
also have . . . ∈ sigma sets UNIV (Collect closed)
by (force intro: sigma sets.Compl simp: 〈open x 〉)

finally show x ∈ sigma sets UNIV (Collect closed) by simp
next
fix x :: ′a set assume closed x
hence x = UNIV − (UNIV − x ) by auto
also have . . . ∈ sigma sets UNIV (Collect open)
by (force intro: sigma sets.Compl simp: 〈closed x 〉)

finally show x ∈ sigma sets UNIV (Collect open) by simp
qed simp all

proposition borel eq countable basis:
fixes B :: ′a::topological space set set
assumes countable B
assumes topological basis B
shows borel = sigma UNIV B
unfolding borel def

proof (intro sigma eqI sigma sets eqI , safe)
interpret countable basis open B using assms by (rule countable basis openI )
fix X :: ′a set assume open X
from open countable basisE [OF this] obtain B ′ where B ′: B ′ ⊆ B X =

⋃
B ′

.
then show X ∈ sigma sets UNIV B

Borel{_}{\kern 0pt}Space.html


1384

by (blast intro: sigma sets UNION 〈countable B 〉 countable subset)
next
fix b assume b ∈ B
hence open b by (rule topological basis open[OF assms(2 )])
thus b ∈ sigma sets UNIV (Collect open) by auto

qed simp all

lemma borel measurable continuous on restrict :
fixes f :: ′a::topological space ⇒ ′b::topological space
assumes f : continuous on A f
shows f ∈ borel measurable (restrict space borel A)

proof (rule borel measurableI )
fix S :: ′b set assume open S
with f obtain T where f −‘ S ∩ A = T ∩ A open T
by (metis continuous on open invariant)

then show f −‘ S ∩ space (restrict space borel A) ∈ sets (restrict space borel A)
by (force simp add : sets restrict space space restrict space)

qed

lemma borel measurable continuous onI : continuous on UNIV f =⇒ f ∈ borel measurable
borel
by (drule borel measurable continuous on restrict) simp

lemma borel measurable continuous on if :
A ∈ sets borel =⇒ continuous on A f =⇒ continuous on (− A) g =⇒
(λx . if x ∈ A then f x else g x ) ∈ borel measurable borel

by (auto simp add : measurable If restrict space iff Collect neg eq
intro!: borel measurable continuous on restrict)

lemma borel measurable continuous countable exceptions:
fixes f :: ′a::t1 space ⇒ ′b::topological space
assumes X : countable X
assumes continuous on (− X ) f
shows f ∈ borel measurable borel

proof (rule measurable discrete difference[OF X ])
have X ∈ sets borel
by (rule sets.countable[OF X ]) auto

then show (λx . if x ∈ X then undefined else f x ) ∈ borel measurable borel
by (intro borel measurable continuous on if assms continuous intros)

qed auto

lemma borel measurable continuous on:
assumes f : continuous on UNIV f and g : g ∈ borel measurable M
shows (λx . f (g x )) ∈ borel measurable M
using measurable comp[OF g borel measurable continuous onI [OF f ]] by (simp

add : comp def )

lemma borel measurable continuous on indicator :
fixes f g :: ′a::topological space ⇒ ′b::real normed vector
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shows A ∈ sets borel =⇒ continuous on A f =⇒ (λx . indicator A x ∗R f x ) ∈
borel measurable borel
by (subst borel measurable restrict space iff [symmetric])

(auto intro: borel measurable continuous on restrict)

lemma borel measurable Pair [measurable (raw)]:
fixes f :: ′a ⇒ ′b::second countable topology and g :: ′a ⇒ ′c::second countable topology
assumes f [measurable]: f ∈ borel measurable M
assumes g [measurable]: g ∈ borel measurable M
shows (λx . (f x , g x )) ∈ borel measurable M

proof (subst borel eq countable basis)
let ?B = SOME B :: ′b set set . countable B ∧ topological basis B
let ?C = SOME B :: ′c set set . countable B ∧ topological basis B
let ?P = (λ(b, c). b × c) ‘ (?B × ?C )
show countable ?P topological basis ?P
by (auto intro!: countable basis topological basis prod is basis)

show (λx . (f x , g x )) ∈ measurable M (sigma UNIV ?P)
proof (rule measurable measure of )
fix S assume S ∈ ?P
then obtain b c where b ∈ ?B c ∈ ?C and S : S = b × c by auto
then have borel : open b open c
by (auto intro: is basis topological basis open)

have (λx . (f x , g x )) −‘ S ∩ space M = (f −‘ b ∩ space M ) ∩ (g −‘ c ∩ space
M )

unfolding S by auto
also have . . . ∈ sets M
using borel by simp

finally show (λx . (f x , g x )) −‘ S ∩ space M ∈ sets M .
qed auto

qed

lemma borel measurable continuous Pair :
fixes f :: ′a ⇒ ′b::second countable topology and g :: ′a ⇒ ′c::second countable topology
assumes [measurable]: f ∈ borel measurable M
assumes [measurable]: g ∈ borel measurable M
assumes H : continuous on UNIV (λx . H (fst x ) (snd x ))
shows (λx . H (f x ) (g x )) ∈ borel measurable M

proof −
have eq : (λx . H (f x ) (g x )) = (λx . (λx . H (fst x ) (snd x )) (f x , g x )) by auto
show ?thesis
unfolding eq by (rule borel measurable continuous on[OF H ]) auto

qed

6.5.2 Borel spaces on order topologies

lemma [measurable]:
fixes a b :: ′a::linorder topology
shows lessThan borel : {..< a} ∈ sets borel
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and greaterThan borel : {a <..} ∈ sets borel
and greaterThanLessThan borel : {a<..<b} ∈ sets borel
and atMost borel : {..a} ∈ sets borel
and atLeast borel : {a..} ∈ sets borel
and atLeastAtMost borel : {a..b} ∈ sets borel
and greaterThanAtMost borel : {a<..b} ∈ sets borel
and atLeastLessThan borel : {a..<b} ∈ sets borel

unfolding greaterThanAtMost def atLeastLessThan def
by (blast intro: borel open borel closed open lessThan open greaterThan open greaterThanLessThan

closed atMost closed atLeast closed atLeastAtMost)+

lemma borel Iio:
borel = sigma UNIV (range lessThan :: ′a::{linorder topology , second countable topology}

set set)
unfolding second countable borel measurable[OF open generated order ]

proof (intro sigma eqI sigma sets eqI )
from countable dense setE guess D :: ′a set . note D = this

interpret L: sigma algebra UNIV sigma sets UNIV (range lessThan)
by (rule sigma algebra sigma sets) simp

fix A :: ′a set assume A ∈ range lessThan ∪ range greaterThan
then obtain y where A = {y <..} ∨ A = {..< y}
by blast

then show A ∈ sigma sets UNIV (range lessThan)
proof
assume A: A = {y <..}
show ?thesis
proof cases
assume ∀ x>y . ∃ d . y < d ∧ d < x
with D(2 )[of {y <..< x} for x ] have ∀ x>y . ∃ d∈D . y < d ∧ d < x
by (auto simp: set eq iff )

then have A = UNIV − (
⋂
d∈{d∈D . y < d}. {..< d})

by (auto simp: A) (metis less asym)
also have . . . ∈ sigma sets UNIV (range lessThan)
using D(1 ) by (intro L.Diff L.top L.countable INT ′′) auto

finally show ?thesis .
next
assume ¬ (∀ x>y . ∃ d . y < d ∧ d < x )
then obtain x where y < x

∧
d . y < d =⇒ ¬ d < x

by auto
then have A = UNIV − {..< x}
unfolding A by (auto simp: not less[symmetric])

also have . . . ∈ sigma sets UNIV (range lessThan)
by auto

finally show ?thesis .
qed

qed auto
qed auto
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lemma borel Ioi :
borel = sigma UNIV (range greaterThan :: ′a::{linorder topology , second countable topology}

set set)
unfolding second countable borel measurable[OF open generated order ]

proof (intro sigma eqI sigma sets eqI )
from countable dense setE guess D :: ′a set . note D = this

interpret L: sigma algebra UNIV sigma sets UNIV (range greaterThan)
by (rule sigma algebra sigma sets) simp

fix A :: ′a set assume A ∈ range lessThan ∪ range greaterThan
then obtain y where A = {y <..} ∨ A = {..< y}
by blast

then show A ∈ sigma sets UNIV (range greaterThan)
proof
assume A: A = {..< y}
show ?thesis
proof cases
assume ∀ x<y . ∃ d . x < d ∧ d < y
with D(2 )[of {x <..< y} for x ] have ∀ x<y . ∃ d∈D . x < d ∧ d < y
by (auto simp: set eq iff )

then have A = UNIV − (
⋂

d∈{d∈D . d < y}. {d <..})
by (auto simp: A) (metis less asym)

also have . . . ∈ sigma sets UNIV (range greaterThan)
using D(1 ) by (intro L.Diff L.top L.countable INT ′′) auto

finally show ?thesis .
next
assume ¬ (∀ x<y . ∃ d . x < d ∧ d < y)
then obtain x where x < y

∧
d . y > d =⇒ x ≥ d

by (auto simp: not less[symmetric])
then have A = UNIV − {x <..}
unfolding A Compl eq Diff UNIV [symmetric] by auto

also have . . . ∈ sigma sets UNIV (range greaterThan)
by auto

finally show ?thesis .
qed

qed auto
qed auto

lemma borel measurableI less:
fixes f :: ′a ⇒ ′b::{linorder topology , second countable topology}
shows (

∧
y . {x∈space M . f x < y} ∈ sets M ) =⇒ f ∈ borel measurable M

unfolding borel Iio
by (rule measurable measure of ) (auto simp: Int def conj commute)

lemma borel measurableI greater :
fixes f :: ′a ⇒ ′b::{linorder topology , second countable topology}
shows (

∧
y . {x∈space M . y < f x} ∈ sets M ) =⇒ f ∈ borel measurable M
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unfolding borel Ioi
by (rule measurable measure of ) (auto simp: Int def conj commute)

lemma borel measurableI le:
fixes f :: ′a ⇒ ′b::{linorder topology , second countable topology}
shows (

∧
y . {x∈space M . f x ≤ y} ∈ sets M ) =⇒ f ∈ borel measurable M

by (rule borel measurableI greater) (auto simp: not le[symmetric])

lemma borel measurableI ge:
fixes f :: ′a ⇒ ′b::{linorder topology , second countable topology}
shows (

∧
y . {x∈space M . y ≤ f x} ∈ sets M ) =⇒ f ∈ borel measurable M

by (rule borel measurableI less) (auto simp: not le[symmetric])

lemma borel measurable less[measurable]:
fixes f :: ′a ⇒ ′b::{second countable topology , linorder topology}
assumes f ∈ borel measurable M
assumes g ∈ borel measurable M
shows {w ∈ space M . f w < g w} ∈ sets M

proof −
have {w ∈ space M . f w < g w} = (λx . (f x , g x )) −‘ {x . fst x < snd x} ∩ space

M
by auto

also have . . . ∈ sets M
by (intro measurable sets[OF borel measurable Pair borel open, OF assms open Collect less]

continuous intros)
finally show ?thesis .

qed

lemma
fixes f :: ′a ⇒ ′b::{second countable topology , linorder topology}
assumes f [measurable]: f ∈ borel measurable M
assumes g [measurable]: g ∈ borel measurable M
shows borel measurable le[measurable]: {w ∈ space M . f w ≤ g w} ∈ sets M
and borel measurable eq [measurable]: {w ∈ space M . f w = g w} ∈ sets M
and borel measurable neq : {w ∈ space M . f w 6= g w} ∈ sets M

unfolding eq iff not less[symmetric]
by measurable

lemma borel measurable SUP [measurable (raw)]:
fixes F :: ⇒ ⇒ ::{complete linorder , linorder topology , second countable topology}
assumes [simp]: countable I
assumes [measurable]:

∧
i . i ∈ I =⇒ F i ∈ borel measurable M

shows (λx . SUP i∈I . F i x ) ∈ borel measurable M
by (rule borel measurableI greater) (simp add : less SUP iff )

lemma borel measurable INF [measurable (raw)]:
fixes F :: ⇒ ⇒ ::{complete linorder , linorder topology , second countable topology}
assumes [simp]: countable I
assumes [measurable]:

∧
i . i ∈ I =⇒ F i ∈ borel measurable M



Borel Space.thy 1389

shows (λx . INF i∈I . F i x ) ∈ borel measurable M
by (rule borel measurableI less) (simp add : INF less iff )

lemma borel measurable cSUP [measurable (raw)]:
fixes F :: ⇒ ⇒ ′a::{conditionally complete linorder , linorder topology , sec-

ond countable topology}
assumes [simp]: countable I
assumes [measurable]:

∧
i . i ∈ I =⇒ F i ∈ borel measurable M

assumes bdd :
∧
x . x ∈ space M =⇒ bdd above ((λi . F i x ) ‘ I )

shows (λx . SUP i∈I . F i x ) ∈ borel measurable M
proof cases
assume I = {} then show ?thesis
unfolding 〈I = {}〉 image empty by simp

next
assume I 6= {}
show ?thesis
proof (rule borel measurableI le)
fix y
have {x ∈ space M . ∀ i∈I . F i x ≤ y} ∈ sets M
by measurable

also have {x ∈ space M . ∀ i∈I . F i x ≤ y} = {x ∈ space M . (SUP i∈I . F i
x ) ≤ y}

by (simp add : cSUP le iff 〈I 6= {}〉 bdd cong : conj cong)
finally show {x ∈ space M . (SUP i∈I . F i x ) ≤ y} ∈ sets M .

qed
qed

lemma borel measurable cINF [measurable (raw)]:
fixes F :: ⇒ ⇒ ′a::{conditionally complete linorder , linorder topology , sec-

ond countable topology}
assumes [simp]: countable I
assumes [measurable]:

∧
i . i ∈ I =⇒ F i ∈ borel measurable M

assumes bdd :
∧
x . x ∈ space M =⇒ bdd below ((λi . F i x ) ‘ I )

shows (λx . INF i∈I . F i x ) ∈ borel measurable M
proof cases
assume I = {} then show ?thesis
unfolding 〈I = {}〉 image empty by simp

next
assume I 6= {}
show ?thesis
proof (rule borel measurableI ge)
fix y
have {x ∈ space M . ∀ i∈I . y ≤ F i x} ∈ sets M
by measurable

also have {x ∈ space M . ∀ i∈I . y ≤ F i x} = {x ∈ space M . y ≤ (INF i∈I .
F i x )}

by (simp add : le cINF iff 〈I 6= {}〉 bdd cong : conj cong)
finally show {x ∈ space M . y ≤ (INF i∈I . F i x )} ∈ sets M .

qed
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qed

lemma borel measurable lfp[consumes 1 , case names continuity step]:
fixes F :: ( ′a ⇒ ′b) ⇒ ( ′a ⇒ ′b::{complete linorder , linorder topology , sec-

ond countable topology})
assumes sup continuous F
assumes ∗:

∧
f . f ∈ borel measurable M =⇒ F f ∈ borel measurable M

shows lfp F ∈ borel measurable M
proof −
{ fix i have ((F ˆˆ i) bot) ∈ borel measurable M

by (induct i) (auto intro!: ∗) }
then have (λx . SUP i . (F ˆˆ i) bot x ) ∈ borel measurable M
by measurable

also have (λx . SUP i . (F ˆˆ i) bot x ) = (SUP i . (F ˆˆ i) bot)
by (auto simp add : image comp)

also have (SUP i . (F ˆˆ i) bot) = lfp F
by (rule sup continuous lfp[symmetric]) fact

finally show ?thesis .
qed

lemma borel measurable gfp[consumes 1 , case names continuity step]:
fixes F :: ( ′a ⇒ ′b) ⇒ ( ′a ⇒ ′b::{complete linorder , linorder topology , sec-

ond countable topology})
assumes inf continuous F
assumes ∗:

∧
f . f ∈ borel measurable M =⇒ F f ∈ borel measurable M

shows gfp F ∈ borel measurable M
proof −
{ fix i have ((F ˆˆ i) top) ∈ borel measurable M

by (induct i) (auto intro!: ∗ simp: bot fun def ) }
then have (λx . INF i . (F ˆˆ i) top x ) ∈ borel measurable M
by measurable

also have (λx . INF i . (F ˆˆ i) top x ) = (INF i . (F ˆˆ i) top)
by (auto simp add : image comp)

also have . . . = gfp F
by (rule inf continuous gfp[symmetric]) fact

finally show ?thesis .
qed

lemma borel measurable max [measurable (raw)]:
f ∈ borel measurable M =⇒ g ∈ borel measurable M =⇒ (λx . max (g x ) (f x ) ::

′b::{second countable topology , linorder topology}) ∈ borel measurable M
by (rule borel measurableI less) simp

lemma borel measurable min[measurable (raw)]:
f ∈ borel measurable M =⇒ g ∈ borel measurable M =⇒ (λx . min (g x ) (f x ) ::

′b::{second countable topology , linorder topology}) ∈ borel measurable M
by (rule borel measurableI greater) simp

lemma borel measurable Min[measurable (raw)]:
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finite I =⇒ (
∧
i . i ∈ I =⇒ f i ∈ borel measurable M ) =⇒ (λx . Min ((λi . f i

x )‘I ) :: ′b::{second countable topology , linorder topology}) ∈ borel measurable M
proof (induct I rule: finite induct)
case (insert i I ) then show ?case
by (cases I = {}) auto

qed auto

lemma borel measurable Max [measurable (raw)]:
finite I =⇒ (

∧
i . i ∈ I =⇒ f i ∈ borel measurable M ) =⇒ (λx . Max ((λi . f i

x )‘I ) :: ′b::{second countable topology , linorder topology}) ∈ borel measurable M
proof (induct I rule: finite induct)
case (insert i I ) then show ?case
by (cases I = {}) auto

qed auto

lemma borel measurable sup[measurable (raw)]:
f ∈ borel measurable M =⇒ g ∈ borel measurable M =⇒ (λx . sup (g x ) (f x ) ::

′b::{lattice, second countable topology , linorder topology}) ∈ borel measurable M
unfolding sup max by measurable

lemma borel measurable inf [measurable (raw)]:
f ∈ borel measurable M =⇒ g ∈ borel measurable M =⇒ (λx . inf (g x ) (f x ) ::

′b::{lattice, second countable topology , linorder topology}) ∈ borel measurable M
unfolding inf min by measurable

lemma [measurable (raw)]:
fixes f :: nat ⇒ ′a ⇒ ′b::{complete linorder , second countable topology , linorder topology}
assumes

∧
i . f i ∈ borel measurable M

shows borel measurable liminf : (λx . liminf (λi . f i x )) ∈ borel measurable M
and borel measurable limsup: (λx . limsup (λi . f i x )) ∈ borel measurable M

unfolding liminf SUP INF limsup INF SUP using assms by auto

lemma measurable convergent [measurable (raw)]:
fixes f :: nat ⇒ ′a ⇒ ′b::{complete linorder , second countable topology , linorder topology}
assumes [measurable]:

∧
i . f i ∈ borel measurable M

shows Measurable.pred M (λx . convergent (λi . f i x ))
unfolding convergent ereal by measurable

lemma sets Collect convergent [measurable]:
fixes f :: nat ⇒ ′a ⇒ ′b::{complete linorder , second countable topology , linorder topology}
assumes f [measurable]:

∧
i . f i ∈ borel measurable M

shows {x∈space M . convergent (λi . f i x )} ∈ sets M
by measurable

lemma borel measurable lim[measurable (raw)]:
fixes f :: nat ⇒ ′a ⇒ ′b::{complete linorder , second countable topology , linorder topology}
assumes [measurable]:

∧
i . f i ∈ borel measurable M

shows (λx . lim (λi . f i x )) ∈ borel measurable M
proof −
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have
∧
x . lim (λi . f i x ) = (if convergent (λi . f i x ) then limsup (λi . f i x ) else

(THE i . False))
by (simp add : lim def convergent def convergent limsup cl)

then show ?thesis
by simp

qed

lemma borel measurable LIMSEQ order :
fixes u :: nat ⇒ ′a ⇒ ′b::{complete linorder , second countable topology , linorder topology}
assumes u ′:

∧
x . x ∈ space M =⇒ (λi . u i x ) −−−−→ u ′ x

and u:
∧
i . u i ∈ borel measurable M

shows u ′ ∈ borel measurable M
proof −
have

∧
x . x ∈ space M =⇒ u ′ x = liminf (λn. u n x )

using u ′ by (simp add : lim imp Liminf [symmetric])
with u show ?thesis by (simp cong : measurable cong)

qed

6.5.3 Borel spaces on topological monoids

lemma borel measurable add [measurable (raw)]:
fixes f g :: ′a ⇒ ′b::{second countable topology , topological monoid add}
assumes f : f ∈ borel measurable M
assumes g : g ∈ borel measurable M
shows (λx . f x + g x ) ∈ borel measurable M
using f g by (rule borel measurable continuous Pair) (intro continuous intros)

lemma borel measurable sum[measurable (raw)]:
fixes f :: ′c ⇒ ′a ⇒ ′b::{second countable topology , topological comm monoid add}
assumes

∧
i . i ∈ S =⇒ f i ∈ borel measurable M

shows (λx .
∑

i∈S . f i x ) ∈ borel measurable M
proof cases
assume finite S
thus ?thesis using assms by induct auto

qed simp

lemma borel measurable suminf order [measurable (raw)]:
fixes f :: nat ⇒ ′a ⇒ ′b::{complete linorder , second countable topology , linorder topology ,

topological comm monoid add}
assumes f [measurable]:

∧
i . f i ∈ borel measurable M

shows (λx . suminf (λi . f i x )) ∈ borel measurable M
unfolding suminf def sums def [abs def ] lim def [symmetric] by simp

6.5.4 Borel spaces on Euclidean spaces

lemma borel measurable inner [measurable (raw)]:
fixes f g :: ′a ⇒ ′b::{second countable topology , real inner}
assumes f ∈ borel measurable M
assumes g ∈ borel measurable M
shows (λx . f x · g x ) ∈ borel measurable M
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using assms
by (rule borel measurable continuous Pair) (intro continuous intros)

notation
eucl less (infix <e 50 )

lemma box oc: {x . a <e x ∧ x ≤ b} = {x . a <e x} ∩ {..b}
and box co: {x . a ≤ x ∧ x <e b} = {a..} ∩ {x . x <e b}
by auto

lemma eucl ivals[measurable]:
fixes a b :: ′a::ordered euclidean space
shows {x . x <e a} ∈ sets borel
and {x . a <e x} ∈ sets borel
and {..a} ∈ sets borel
and {a..} ∈ sets borel
and {a..b} ∈ sets borel
and {x . a <e x ∧ x ≤ b} ∈ sets borel
and {x . a ≤ x ∧ x <e b} ∈ sets borel

unfolding box oc box co
by (auto intro: borel open borel closed)

lemma
fixes i :: ′a::{second countable topology , real inner}
shows hafspace less borel : {x . a < x · i} ∈ sets borel
and hafspace greater borel : {x . x · i < a} ∈ sets borel
and hafspace less eq borel : {x . a ≤ x · i} ∈ sets borel
and hafspace greater eq borel : {x . x · i ≤ a} ∈ sets borel

by simp all

lemma borel eq box :
borel = sigma UNIV (range (λ (a, b). box a b :: ′a :: euclidean space set))
(is = ?SIGMA)

proof (rule borel eq sigmaI1 [OF borel def ])
fix M :: ′a set assume M ∈ {S . open S}
then have open M by simp
show M ∈ ?SIGMA
apply (subst open UNION box [OF 〈open M 〉])
apply (safe intro!: sets.countable UN ′ countable PiE countable Collect)
apply (auto intro: countable rat)
done

qed (auto simp: box def )

lemma halfspace gt in halfspace:
assumes i : i ∈ A
shows {x :: ′a. a < x · i} ∈
sigma sets UNIV ((λ (a, i). {x :: ′a::euclidean space. x · i < a}) ‘ (UNIV × A))

(is ?set ∈ ?SIGMA)
proof −
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interpret sigma algebra UNIV ?SIGMA
by (intro sigma algebra sigma sets) simp all

have ∗: ?set = (
⋃
n. UNIV − {x :: ′a. x · i < a + 1 / real (Suc n)})

proof (safe, simp all add : not less del : of nat Suc)
fix x :: ′a assume a < x · i
with reals Archimedean[of x · i − a]
obtain n where a + 1 / real (Suc n) < x · i
by (auto simp: field simps)

then show ∃n. a + 1 / real (Suc n) ≤ x · i
by (blast intro: less imp le)

next
fix x n
have a < a + 1 / real (Suc n) by auto
also assume . . . ≤ x
finally show a < x .

qed
show ?set ∈ ?SIGMA unfolding ∗
by (auto intro!: Diff sigma sets Inter i)

qed

lemma borel eq halfspace less:
borel = sigma UNIV ((λ(a, i). {x :: ′a::euclidean space. x · i < a}) ‘ (UNIV ×

Basis))
(is = ?SIGMA)

proof (rule borel eq sigmaI2 [OF borel eq box ])
fix a b :: ′a
have box a b = {x∈space ?SIGMA. ∀ i∈Basis. a · i < x · i ∧ x · i < b · i}
by (auto simp: box def )

also have . . . ∈ sets ?SIGMA
by (intro sets.sets Collect conj sets.sets Collect finite All sets.sets Collect const)

(auto intro!: halfspace gt in halfspace countable PiE countable rat)
finally show box a b ∈ sets ?SIGMA .

qed auto

lemma borel eq halfspace le:
borel = sigma UNIV ((λ (a, i). {x :: ′a::euclidean space. x · i ≤ a}) ‘ (UNIV ×

Basis))
(is = ?SIGMA)

proof (rule borel eq sigmaI2 [OF borel eq halfspace less])
fix a :: real and i :: ′a assume (a, i) ∈ UNIV × Basis
then have i : i ∈ Basis by auto
have ∗: {x :: ′a. x ·i < a} = (

⋃
n. {x . x ·i ≤ a − 1/real (Suc n)})

proof (safe, simp all del : of nat Suc)
fix x :: ′a assume ∗: x ·i < a
with reals Archimedean[of a − x ·i ]
obtain n where x · i < a − 1 / (real (Suc n))
by (auto simp: field simps)

then show ∃n. x · i ≤ a − 1 / (real (Suc n))
by (blast intro: less imp le)
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next
fix x :: ′a and n
assume x ·i ≤ a − 1 / real (Suc n)
also have . . . < a by auto
finally show x ·i < a .

qed
show {x . x ·i < a} ∈ ?SIGMA unfolding ∗
by (intro sets.countable UN ) (auto intro: i)

qed auto

lemma borel eq halfspace ge:
borel = sigma UNIV ((λ (a, i). {x :: ′a::euclidean space. a ≤ x · i}) ‘ (UNIV ×

Basis))
(is = ?SIGMA)

proof (rule borel eq sigmaI2 [OF borel eq halfspace less])
fix a :: real and i :: ′a assume i : (a, i) ∈ UNIV × Basis
have ∗: {x :: ′a. x ·i < a} = space ?SIGMA − {x :: ′a. a ≤ x ·i} by auto
show {x . x ·i < a} ∈ ?SIGMA unfolding ∗
using i by (intro sets.compl sets) auto

qed auto

lemma borel eq halfspace greater :
borel = sigma UNIV ((λ (a, i). {x :: ′a::euclidean space. a < x · i}) ‘ (UNIV ×

Basis))
(is = ?SIGMA)

proof (rule borel eq sigmaI2 [OF borel eq halfspace le])
fix a :: real and i :: ′a assume (a, i) ∈ (UNIV × Basis)
then have i : i ∈ Basis by auto
have ∗: {x :: ′a. x ·i ≤ a} = space ?SIGMA − {x :: ′a. a < x ·i} by auto
show {x . x ·i ≤ a} ∈ ?SIGMA unfolding ∗
by (intro sets.compl sets) (auto intro: i)

qed auto

lemma borel eq atMost :
borel = sigma UNIV (range (λa. {..a:: ′a::ordered euclidean space}))
(is = ?SIGMA)

proof (rule borel eq sigmaI4 [OF borel eq halfspace le])
fix a :: real and i :: ′a assume (a, i) ∈ UNIV × Basis
then have i ∈ Basis by auto
then have ∗: {x :: ′a. x ·i ≤ a} = (

⋃
k ::nat . {.. (

∑
n∈Basis. (if n = i then a else

real k)∗R n)})
proof (safe, simp all add : eucl le[where ′a= ′a] split : if split asm)
fix x :: ′a
from real arch simple[of Max ((λi . x ·i)‘Basis)] guess k ::nat ..
then have

∧
i . i ∈ Basis =⇒ x ·i ≤ real k

by (subst (asm) Max le iff ) auto
then show ∃ k ::nat . ∀ ia∈Basis. ia 6= i −→ x · ia ≤ real k
by (auto intro!: exI [of k ])

qed
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show {x . x ·i ≤ a} ∈ ?SIGMA unfolding ∗
by (intro sets.countable UN ) auto

qed auto

lemma borel eq greaterThan:
borel = sigma UNIV (range (λa:: ′a::ordered euclidean space. {x . a <e x}))
(is = ?SIGMA)

proof (rule borel eq sigmaI4 [OF borel eq halfspace le])
fix a :: real and i :: ′a assume (a, i) ∈ UNIV × Basis
then have i : i ∈ Basis by auto
have {x :: ′a. x ·i ≤ a} = UNIV − {x :: ′a. a < x ·i} by auto
also have ∗: {x :: ′a. a < x ·i} =

(
⋃
k ::nat . {x . (

∑
n∈Basis. (if n = i then a else −real k) ∗R n) <e x}) using

i
proof (safe, simp all add : eucl less def split : if split asm)
fix x :: ′a
from reals Archimedean2 [of Max ((λi . −x ·i)‘Basis)]
guess k ::nat .. note k = this
{ fix i :: ′a assume i ∈ Basis
then have −x ·i < real k
using k by (subst (asm) Max less iff ) auto

then have − real k < x ·i by simp }
then show ∃ k ::nat . ∀ ia∈Basis. ia 6= i −→ −real k < x · ia
by (auto intro!: exI [of k ])

qed
finally show {x . x ·i ≤ a} ∈ ?SIGMA
apply (simp only :)
apply (intro sets.countable UN sets.Diff )
apply (auto intro: sigma sets top)
done

qed auto

lemma borel eq lessThan:
borel = sigma UNIV (range (λa:: ′a::ordered euclidean space. {x . x <e a}))
(is = ?SIGMA)

proof (rule borel eq sigmaI4 [OF borel eq halfspace ge])
fix a :: real and i :: ′a assume (a, i) ∈ UNIV × Basis
then have i : i ∈ Basis by auto
have {x :: ′a. a ≤ x ·i} = UNIV − {x :: ′a. x ·i < a} by auto
also have ∗: {x :: ′a. x ·i < a} = (

⋃
k ::nat . {x . x <e (

∑
n∈Basis. (if n = i then

a else real k) ∗R n)}) using 〈i∈ Basis〉

proof (safe, simp all add : eucl less def split : if split asm)
fix x :: ′a
from reals Archimedean2 [of Max ((λi . x ·i)‘Basis)]
guess k ::nat .. note k = this
{ fix i :: ′a assume i ∈ Basis
then have x ·i < real k
using k by (subst (asm) Max less iff ) auto

then have x ·i < real k by simp }
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then show ∃ k ::nat . ∀ ia∈Basis. ia 6= i −→ x · ia < real k
by (auto intro!: exI [of k ])

qed
finally show {x . a ≤ x ·i} ∈ ?SIGMA
apply (simp only :)
apply (intro sets.countable UN sets.Diff )
apply (auto intro: sigma sets top )
done

qed auto

lemma borel eq atLeastAtMost :
borel = sigma UNIV (range (λ(a,b). {a..b} :: ′a::ordered euclidean space set))
(is = ?SIGMA)

proof (rule borel eq sigmaI5 [OF borel eq atMost ])
fix a:: ′a
have ∗: {..a} = (

⋃
n::nat . {− real n ∗R One .. a})

proof (safe, simp all add : eucl le[where ′a= ′a])
fix x :: ′a
from real arch simple[of Max ((λi . − x ·i)‘Basis)]
guess k ::nat .. note k = this
{ fix i :: ′a assume i ∈ Basis
with k have − x ·i ≤ real k
by (subst (asm) Max le iff ) (auto simp: field simps)

then have − real k ≤ x ·i by simp }
then show ∃n::nat . ∀ i∈Basis. − real n ≤ x · i
by (auto intro!: exI [of k ])

qed
show {..a} ∈ ?SIGMA unfolding ∗
by (intro sets.countable UN )

(auto intro!: sigma sets top)
qed auto

lemma borel set induct [consumes 1 , case names empty interval compl union]:
assumes A ∈ sets borel
assumes empty : P {} and int :

∧
a b. a ≤ b =⇒ P {a..b} and compl :

∧
A. A ∈

sets borel =⇒ P A =⇒ P (−A) and
un:

∧
f . disjoint family f =⇒ (

∧
i . f i ∈ sets borel) =⇒ (

∧
i . P (f i)) =⇒

P (
⋃
i ::nat . f i)

shows P (A::real set)
proof −
let ?G = range (λ(a,b). {a..b::real})
have Int stable ?G ?G ⊆ Pow UNIV A ∈ sigma sets UNIV ?G

using assms(1 ) by (auto simp add : borel eq atLeastAtMost Int stable def )
thus ?thesis
proof (induction rule: sigma sets induct disjoint)
case (union f )
from union.hyps(2 ) have

∧
i . f i ∈ sets borel by (auto simp: borel eq atLeastAtMost)

with union show ?case by (auto intro: un)
next
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case (basic A)
then obtain a b where A = {a .. b} by auto
then show ?case
by (cases a ≤ b) (auto intro: int empty)

qed (auto intro: empty compl simp: Compl eq Diff UNIV [symmetric] borel eq atLeastAtMost)
qed

lemma borel sigma sets Ioc: borel = sigma UNIV (range (λ(a, b). {a <.. b::real}))
proof (rule borel eq sigmaI5 [OF borel eq atMost ])
fix i :: real
have {..i} = (

⋃
j ::nat . {−j <.. i})

by (auto simp: minus less iff reals Archimedean2 )
also have . . . ∈ sets (sigma UNIV (range (λ(i , j ). {i<..j})))
by (intro sets.countable nat UN ) auto

finally show {..i} ∈ sets (sigma UNIV (range (λ(i , j ). {i<..j}))) .
qed simp

lemma eucl lessThan: {x ::real . x <e a} = lessThan a
by (simp add : eucl less def lessThan def )

lemma borel eq atLeastLessThan:
borel = sigma UNIV (range (λ(a, b). {a ..< b :: real})) (is = ?SIGMA)

proof (rule borel eq sigmaI5 [OF borel eq lessThan])
have move uminus:

∧
x y ::real . −x ≤ y ←→ −y ≤ x by auto

fix x :: real
have {..<x} = (

⋃
i ::nat . {−real i ..< x})

by (auto simp: move uminus real arch simple)
then show {y . y <e x} ∈ ?SIGMA
by (auto intro: sigma sets.intros(2−) simp: eucl lessThan)

qed auto

lemma borel measurable halfspacesI :
fixes f :: ′a ⇒ ′c::euclidean space
assumes F : borel = sigma UNIV (F ‘ (UNIV × Basis))
and S eq :

∧
a i . S a i = f −‘ F (a,i) ∩ space M

shows f ∈ borel measurable M = (∀ i∈Basis. ∀ a::real . S a i ∈ sets M )
proof safe
fix a :: real and i :: ′b assume i : i ∈ Basis and f : f ∈ borel measurable M
then show S a i ∈ sets M unfolding assms
by (auto intro!: measurable sets simp: assms(1 ))

next
assume a: ∀ i∈Basis. ∀ a. S a i ∈ sets M
then show f ∈ borel measurable M
by (auto intro!: measurable measure of simp: S eq F )

qed

lemma borel measurable iff halfspace le:
fixes f :: ′a ⇒ ′c::euclidean space
shows f ∈ borel measurable M = (∀ i∈Basis. ∀ a. {w ∈ space M . f w · i ≤ a}
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∈ sets M )
by (rule borel measurable halfspacesI [OF borel eq halfspace le]) auto

lemma borel measurable iff halfspace less:
fixes f :: ′a ⇒ ′c::euclidean space
shows f ∈ borel measurable M ←→ (∀ i∈Basis. ∀ a. {w ∈ space M . f w · i < a}
∈ sets M )
by (rule borel measurable halfspacesI [OF borel eq halfspace less]) auto

lemma borel measurable iff halfspace ge:
fixes f :: ′a ⇒ ′c::euclidean space
shows f ∈ borel measurable M = (∀ i∈Basis. ∀ a. {w ∈ space M . a ≤ f w · i}
∈ sets M )
by (rule borel measurable halfspacesI [OF borel eq halfspace ge]) auto

lemma borel measurable iff halfspace greater :
fixes f :: ′a ⇒ ′c::euclidean space
shows f ∈ borel measurable M ←→ (∀ i∈Basis. ∀ a. {w ∈ space M . a < f w ·

i} ∈ sets M )
by (rule borel measurable halfspacesI [OF borel eq halfspace greater ]) auto

lemma borel measurable iff le:
(f :: ′a ⇒ real) ∈ borel measurable M = (∀ a. {w ∈ space M . f w ≤ a} ∈ sets M )
using borel measurable iff halfspace le[where ′c=real ] by simp

lemma borel measurable iff less:
(f :: ′a ⇒ real) ∈ borel measurable M = (∀ a. {w ∈ space M . f w < a} ∈ sets M )
using borel measurable iff halfspace less[where ′c=real ] by simp

lemma borel measurable iff ge:
(f :: ′a ⇒ real) ∈ borel measurable M = (∀ a. {w ∈ space M . a ≤ f w} ∈ sets M )
using borel measurable iff halfspace ge[where ′c=real ]
by simp

lemma borel measurable iff greater :
(f :: ′a ⇒ real) ∈ borel measurable M = (∀ a. {w ∈ space M . a < f w} ∈ sets M )
using borel measurable iff halfspace greater [where ′c=real ] by simp

lemma borel measurable euclidean space:
fixes f :: ′a ⇒ ′c::euclidean space
shows f ∈ borel measurable M ←→ (∀ i∈Basis. (λx . f x · i) ∈ borel measurable

M )
proof safe
assume f : ∀ i∈Basis. (λx . f x · i) ∈ borel measurable M
then show f ∈ borel measurable M
by (subst borel measurable iff halfspace le) auto

qed auto
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6.5.5 Borel measurable operators

lemma borel measurable norm[measurable]: norm ∈ borel measurable borel
by (intro borel measurable continuous onI continuous intros)

lemma borel measurable sgn [measurable]: (sgn:: ′a::real normed vector ⇒ ′a) ∈
borel measurable borel
by (rule borel measurable continuous countable exceptions[where X={0}])

(auto intro!: continuous on sgn continuous on id)

lemma borel measurable uminus[measurable (raw)]:
fixes g :: ′a ⇒ ′b::{second countable topology , real normed vector}
assumes g : g ∈ borel measurable M
shows (λx . − g x ) ∈ borel measurable M
by (rule borel measurable continuous on[OF g ]) (intro continuous intros)

lemma borel measurable diff [measurable (raw)]:
fixes f :: ′a ⇒ ′b::{second countable topology , real normed vector}
assumes f : f ∈ borel measurable M
assumes g : g ∈ borel measurable M
shows (λx . f x − g x ) ∈ borel measurable M
using borel measurable add [of f M − g ] assms by (simp add : fun Compl def )

lemma borel measurable times[measurable (raw)]:
fixes f :: ′a ⇒ ′b::{second countable topology , real normed algebra}
assumes f : f ∈ borel measurable M
assumes g : g ∈ borel measurable M
shows (λx . f x ∗ g x ) ∈ borel measurable M
using f g by (rule borel measurable continuous Pair) (intro continuous intros)

lemma borel measurable prod [measurable (raw)]:
fixes f :: ′c ⇒ ′a ⇒ ′b::{second countable topology , real normed field}
assumes

∧
i . i ∈ S =⇒ f i ∈ borel measurable M

shows (λx .
∏

i∈S . f i x ) ∈ borel measurable M
proof cases
assume finite S
thus ?thesis using assms by induct auto

qed simp

lemma borel measurable dist [measurable (raw)]:
fixes g f :: ′a ⇒ ′b::{second countable topology , metric space}
assumes f : f ∈ borel measurable M
assumes g : g ∈ borel measurable M
shows (λx . dist (f x ) (g x )) ∈ borel measurable M
using f g by (rule borel measurable continuous Pair) (intro continuous intros)

lemma borel measurable scaleR[measurable (raw)]:
fixes g :: ′a ⇒ ′b::{second countable topology , real normed vector}
assumes f : f ∈ borel measurable M
assumes g : g ∈ borel measurable M
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shows (λx . f x ∗R g x ) ∈ borel measurable M
using f g by (rule borel measurable continuous Pair) (intro continuous intros)

lemma borel measurable uminus eq [simp]:
fixes f :: ′a ⇒ ′b::{second countable topology , real normed vector}
shows (λx . − f x ) ∈ borel measurable M ←→ f ∈ borel measurable M (is ?l =

?r)
proof
assume ?l from borel measurable uminus[OF this] show ?r by simp

qed auto

lemma affine borel measurable vector :
fixes f :: ′a ⇒ ′x ::real normed vector
assumes f ∈ borel measurable M
shows (λx . a + b ∗R f x ) ∈ borel measurable M

proof (rule borel measurableI )
fix S :: ′x set assume open S
show (λx . a + b ∗R f x ) −‘ S ∩ space M ∈ sets M
proof cases
assume b 6= 0
with 〈open S 〉 have open ((λx . (− a + x ) /R b) ‘ S ) (is open ?S )
using open affinity [of S inverse b − a /R b]
by (auto simp: algebra simps)

hence ?S ∈ sets borel by auto
moreover
from 〈b 6= 0 〉 have (λx . a + b ∗R f x ) −‘ S = f −‘ ?S
apply auto by (rule tac x=a + b ∗R f x in image eqI , simp all)

ultimately show ?thesis using assms unfolding in borel measurable borel
by auto

qed simp
qed

lemma borel measurable const scaleR[measurable (raw)]:
f ∈ borel measurable M =⇒ (λx . b ∗R f x :: ′a::real normed vector) ∈ borel measurable

M
using affine borel measurable vector [of f M 0 b] by simp

lemma borel measurable const add [measurable (raw)]:
f ∈ borel measurable M =⇒ (λx . a + f x :: ′a::real normed vector) ∈ borel measurable

M
using affine borel measurable vector [of f M a 1 ] by simp

lemma borel measurable inverse[measurable (raw)]:
fixes f :: ′a ⇒ ′b::real normed div algebra
assumes f : f ∈ borel measurable M
shows (λx . inverse (f x )) ∈ borel measurable M
apply (rule measurable compose[OF f ])
apply (rule borel measurable continuous countable exceptions[of {0}])
apply (auto intro!: continuous on inverse continuous on id)

Borel{_}{\kern 0pt}Space.html


1402

done

lemma borel measurable divide[measurable (raw)]:
f ∈ borel measurable M =⇒ g ∈ borel measurable M =⇒
(λx . f x / g x :: ′b::{second countable topology , real normed div algebra}) ∈ borel measurable

M
by (simp add : divide inverse)

lemma borel measurable abs[measurable (raw)]:
f ∈ borel measurable M =⇒ (λx . |f x :: real |) ∈ borel measurable M
unfolding abs real def by simp

lemma borel measurable nth[measurable (raw)]:
(λx ::realˆ ′n. x $ i) ∈ borel measurable borel
by (simp add : cart eq inner axis)

lemma convex measurable:
fixes A :: ′a :: euclidean space set
shows X ∈ borel measurable M =⇒ X ‘ space M ⊆ A =⇒ open A =⇒ convex on

A q =⇒
(λx . q (X x )) ∈ borel measurable M

by (rule measurable compose[where f=X and N=restrict space borel A])
(auto intro!: borel measurable continuous on restrict convex on continuous mea-

surable restrict space2 )

lemma borel measurable ln[measurable (raw)]:
assumes f : f ∈ borel measurable M
shows (λx . ln (f x :: real)) ∈ borel measurable M
apply (rule measurable compose[OF f ])
apply (rule borel measurable continuous countable exceptions[of {0}])
apply (auto intro!: continuous on ln continuous on id)
done

lemma borel measurable log [measurable (raw)]:
f ∈ borel measurable M =⇒ g ∈ borel measurable M =⇒ (λx . log (g x ) (f x )) ∈

borel measurable M
unfolding log def by auto

lemma borel measurable exp[measurable]:
(exp:: ′a::{real normed field ,banach}⇒ ′a) ∈ borel measurable borel
by (intro borel measurable continuous onI continuous at imp continuous on ballI

isCont exp)

lemma measurable real floor [measurable]:
(floor :: real ⇒ int) ∈ measurable borel (count space UNIV )

proof −
have

∧
a x . bxc = a ←→ (real of int a ≤ x ∧ x < real of int (a + 1 ))

by (auto intro: floor eq2 )
then show ?thesis



Borel Space.thy 1403

by (auto simp: vimage def measurable count space eq2 countable)
qed

lemma measurable real ceiling [measurable]:
(ceiling :: real ⇒ int) ∈ measurable borel (count space UNIV )
unfolding ceiling def [abs def ] by simp

lemma borel measurable real floor : (λx ::real . real of int bxc) ∈ borel measurable
borel
by simp

lemma borel measurable root [measurable]: root n ∈ borel measurable borel
by (intro borel measurable continuous onI continuous intros)

lemma borel measurable sqrt [measurable]: sqrt ∈ borel measurable borel
by (intro borel measurable continuous onI continuous intros)

lemma borel measurable power [measurable (raw)]:
fixes f :: ⇒ ′b::{power ,real normed algebra}
assumes f : f ∈ borel measurable M
shows (λx . (f x ) ˆ n) ∈ borel measurable M
by (intro borel measurable continuous on [OF f ] continuous intros)

lemma borel measurable Re [measurable]: Re ∈ borel measurable borel
by (intro borel measurable continuous onI continuous intros)

lemma borel measurable Im [measurable]: Im ∈ borel measurable borel
by (intro borel measurable continuous onI continuous intros)

lemma borel measurable of real [measurable]: (of real :: ⇒ ( ::real normed algebra))
∈ borel measurable borel
by (intro borel measurable continuous onI continuous intros)

lemma borel measurable sin [measurable]: (sin :: ⇒ ( ::{real normed field ,banach}))
∈ borel measurable borel
by (intro borel measurable continuous onI continuous intros)

lemma borel measurable cos [measurable]: (cos :: ⇒ ( ::{real normed field ,banach}))
∈ borel measurable borel
by (intro borel measurable continuous onI continuous intros)

lemma borel measurable arctan [measurable]: arctan ∈ borel measurable borel
by (intro borel measurable continuous onI continuous intros)

lemma borel measurable complex iff :
f ∈ borel measurable M ←→
(λx . Re (f x )) ∈ borel measurable M ∧ (λx . Im (f x )) ∈ borel measurable M

apply auto
apply (subst fun complex eq)
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apply (intro borel measurable add)
apply auto
done

lemma powr real measurable [measurable]:
assumes f ∈ measurable M borel g ∈ measurable M borel
shows (λx . f x powr g x :: real) ∈ measurable M borel
using assms by (simp all add : powr def )

lemma measurable of bool [measurable]: of bool ∈ count space UNIV →M borel
by simp

6.5.6 Borel space on the extended reals

lemma borel measurable ereal [measurable (raw)]:
assumes f : f ∈ borel measurable M shows (λx . ereal (f x )) ∈ borel measurable

M
using continuous on ereal f by (rule borel measurable continuous on) (rule con-

tinuous on id)

lemma borel measurable real of ereal [measurable (raw)]:
fixes f :: ′a ⇒ ereal
assumes f : f ∈ borel measurable M
shows (λx . real of ereal (f x )) ∈ borel measurable M
apply (rule measurable compose[OF f ])
apply (rule borel measurable continuous countable exceptions[of {∞, −∞ }])
apply (auto intro: continuous on real simp: Compl eq Diff UNIV )
done

lemma borel measurable ereal cases:
fixes f :: ′a ⇒ ereal
assumes f : f ∈ borel measurable M
assumes H : (λx . H (ereal (real of ereal (f x )))) ∈ borel measurable M
shows (λx . H (f x )) ∈ borel measurable M

proof −
let ?F = λx . if f x = ∞ then H ∞ else if f x = − ∞ then H (−∞) else H (ereal

(real of ereal (f x )))
{ fix x have H (f x ) = ?F x by (cases f x ) auto }
with f H show ?thesis by simp

qed

lemma
fixes f :: ′a ⇒ ereal assumes f [measurable]: f ∈ borel measurable M
shows borel measurable ereal abs[measurable(raw)]: (λx . |f x |) ∈ borel measurable

M
and borel measurable ereal inverse[measurable(raw)]: (λx . inverse (f x ) :: ereal)

∈ borel measurable M
and borel measurable uminus ereal [measurable(raw)]: (λx . − f x :: ereal) ∈

borel measurable M
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by (auto simp del : abs real of ereal simp: borel measurable ereal cases[OF f ] mea-
surable If )

lemma borel measurable uminus eq ereal [simp]:
(λx . − f x :: ereal) ∈ borel measurable M ←→ f ∈ borel measurable M (is ?l =

?r)
proof
assume ?l from borel measurable uminus ereal [OF this] show ?r by simp

qed auto

lemma set Collect ereal2 :
fixes f g :: ′a ⇒ ereal
assumes f : f ∈ borel measurable M
assumes g : g ∈ borel measurable M
assumes H : {x ∈ space M . H (ereal (real of ereal (f x ))) (ereal (real of ereal (g

x )))} ∈ sets M
{x ∈ space borel . H (−∞) (ereal x )} ∈ sets borel
{x ∈ space borel . H (∞) (ereal x )} ∈ sets borel
{x ∈ space borel . H (ereal x ) (−∞)} ∈ sets borel
{x ∈ space borel . H (ereal x ) (∞)} ∈ sets borel

shows {x ∈ space M . H (f x ) (g x )} ∈ sets M
proof −
let ?G = λy x . if g x = ∞ then H y ∞ else if g x = −∞ then H y (−∞) else

H y (ereal (real of ereal (g x )))
let ?F = λx . if f x = ∞ then ?G ∞ x else if f x = −∞ then ?G (−∞) x else

?G (ereal (real of ereal (f x ))) x
{ fix x have H (f x ) (g x ) = ?F x by (cases f x g x rule: ereal2 cases) auto }
note ∗ = this
from assms show ?thesis
by (subst ∗) (simp del : space borel split del : if split)

qed

lemma borel measurable ereal iff :
shows (λx . ereal (f x )) ∈ borel measurable M ←→ f ∈ borel measurable M

proof
assume (λx . ereal (f x )) ∈ borel measurable M
from borel measurable real of ereal [OF this]
show f ∈ borel measurable M by auto

qed auto

lemma borel measurable erealD [measurable dest ]:
(λx . ereal (f x )) ∈ borel measurable M =⇒ g ∈ measurable N M =⇒ (λx . f (g

x )) ∈ borel measurable N
unfolding borel measurable ereal iff by simp

theorem borel measurable ereal iff real :
fixes f :: ′a ⇒ ereal
shows f ∈ borel measurable M ←→
((λx . real of ereal (f x )) ∈ borel measurable M ∧ f −‘ {∞} ∩ space M ∈ sets
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M ∧ f −‘ {−∞} ∩ space M ∈ sets M )
proof safe
assume ∗: (λx . real of ereal (f x )) ∈ borel measurable M f −‘ {∞} ∩ space M ∈

sets M f −‘ {−∞} ∩ space M ∈ sets M
have f −‘ {∞} ∩ space M = {x∈space M . f x = ∞} f −‘ {−∞} ∩ space M =
{x∈space M . f x = −∞} by auto
with ∗ have ∗∗: {x∈space M . f x = ∞} ∈ sets M {x∈space M . f x = −∞} ∈

sets M by simp all
let ?f = λx . if f x =∞ then ∞ else if f x = −∞ then −∞ else ereal (real of ereal

(f x ))
have ?f ∈ borel measurable M using ∗ ∗∗ by (intro measurable If ) auto
also have ?f = f by (auto simp: fun eq iff ereal real)
finally show f ∈ borel measurable M .

qed simp all

lemma borel measurable ereal iff Iio:
(f :: ′a ⇒ ereal) ∈ borel measurable M ←→ (∀ a. f −‘ {..< a} ∩ space M ∈ sets

M )
by (auto simp: borel Iio measurable iff measure of )

lemma borel measurable ereal iff Ioi :
(f :: ′a ⇒ ereal) ∈ borel measurable M ←→ (∀ a. f −‘ {a <..} ∩ space M ∈ sets

M )
by (auto simp: borel Ioi measurable iff measure of )

lemma vimage sets compl iff :
f −‘ A ∩ space M ∈ sets M ←→ f −‘ (− A) ∩ space M ∈ sets M

proof −
{ fix A assume f −‘ A ∩ space M ∈ sets M
moreover have f −‘ (− A) ∩ space M = space M − f −‘ A ∩ space M by

auto
ultimately have f −‘ (− A) ∩ space M ∈ sets M by auto }

from this[of A] this[of −A] show ?thesis
by (metis double complement)

qed

lemma borel measurable iff Iic ereal :
(f :: ′a⇒ereal) ∈ borel measurable M ←→ (∀ a. f −‘ {..a} ∩ space M ∈ sets M )
unfolding borel measurable ereal iff Ioi vimage sets compl iff [where A={a <..}

for a] by simp

lemma borel measurable iff Ici ereal :
(f :: ′a ⇒ ereal) ∈ borel measurable M ←→ (∀ a. f −‘ {a..} ∩ space M ∈ sets M )
unfolding borel measurable ereal iff Iio vimage sets compl iff [where A={..< a}

for a] by simp

lemma borel measurable ereal2 :
fixes f g :: ′a ⇒ ereal
assumes f : f ∈ borel measurable M
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assumes g : g ∈ borel measurable M
assumes H : (λx . H (ereal (real of ereal (f x ))) (ereal (real of ereal (g x )))) ∈

borel measurable M
(λx . H (−∞) (ereal (real of ereal (g x )))) ∈ borel measurable M
(λx . H (∞) (ereal (real of ereal (g x )))) ∈ borel measurable M
(λx . H (ereal (real of ereal (f x ))) (−∞)) ∈ borel measurable M
(λx . H (ereal (real of ereal (f x ))) (∞)) ∈ borel measurable M

shows (λx . H (f x ) (g x )) ∈ borel measurable M
proof −
let ?G = λy x . if g x = ∞ then H y ∞ else if g x = − ∞ then H y (−∞) else

H y (ereal (real of ereal (g x )))
let ?F = λx . if f x = ∞ then ?G ∞ x else if f x = − ∞ then ?G (−∞) x else

?G (ereal (real of ereal (f x ))) x
{ fix x have H (f x ) (g x ) = ?F x by (cases f x g x rule: ereal2 cases) auto }
note ∗ = this
from assms show ?thesis unfolding ∗ by simp

qed

lemma [measurable(raw)]:
fixes f :: ′a ⇒ ereal
assumes [measurable]: f ∈ borel measurable M g ∈ borel measurable M
shows borel measurable ereal add : (λx . f x + g x ) ∈ borel measurable M
and borel measurable ereal times: (λx . f x ∗ g x ) ∈ borel measurable M

by (simp all add : borel measurable ereal2 )

lemma [measurable(raw)]:
fixes f g :: ′a ⇒ ereal
assumes f ∈ borel measurable M
assumes g ∈ borel measurable M
shows borel measurable ereal diff : (λx . f x − g x ) ∈ borel measurable M
and borel measurable ereal divide: (λx . f x / g x ) ∈ borel measurable M

using assms by (simp all add : minus ereal def divide ereal def )

lemma borel measurable ereal sum[measurable (raw)]:
fixes f :: ′c ⇒ ′a ⇒ ereal
assumes

∧
i . i ∈ S =⇒ f i ∈ borel measurable M

shows (λx .
∑

i∈S . f i x ) ∈ borel measurable M
using assms by (induction S rule: infinite finite induct) auto

lemma borel measurable ereal prod [measurable (raw)]:
fixes f :: ′c ⇒ ′a ⇒ ereal
assumes

∧
i . i ∈ S =⇒ f i ∈ borel measurable M

shows (λx .
∏

i∈S . f i x ) ∈ borel measurable M
using assms by (induction S rule: infinite finite induct) auto

lemma borel measurable extreal suminf [measurable (raw)]:
fixes f :: nat ⇒ ′a ⇒ ereal
assumes [measurable]:

∧
i . f i ∈ borel measurable M

shows (λx . (
∑

i . f i x )) ∈ borel measurable M
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unfolding suminf def sums def [abs def ] lim def [symmetric] by simp

6.5.7 Borel space on the extended non-negative reals

ennreal is a topological monoid, so no rules for plus are required, also all
order statements are usually done on type classes.

lemma measurable enn2ereal [measurable]: enn2ereal ∈ borel →M borel
by (intro borel measurable continuous onI continuous on enn2ereal)

lemma measurable e2ennreal [measurable]: e2ennreal ∈ borel →M borel
by (intro borel measurable continuous onI continuous on e2ennreal)

lemma borel measurable enn2real [measurable (raw)]:
f ∈ M →M borel =⇒ (λx . enn2real (f x )) ∈ M →M borel
unfolding enn2real def [abs def ] by measurable

definition [simp]: is borel f M ←→ f ∈ borel measurable M

lemma is borel transfer [transfer rule]: rel fun (rel fun (=) pcr ennreal) (=) is borel
is borel
unfolding is borel def [abs def ]

proof (safe intro!: rel funI ext dest !: rel fun eq pcr ennreal [THEN iffD1 ])
fix f and M :: ′a measure
show f ∈ borel measurable M if f : enn2ereal ◦ f ∈ borel measurable M
using measurable compose[OF f measurable e2ennreal ] by simp

qed simp

context
includes ennreal .lifting

begin

lemma measurable ennreal [measurable]: ennreal ∈ borel →M borel
unfolding is borel def [symmetric]
by transfer simp

lemma borel measurable ennreal iff [simp]:
assumes [simp]:

∧
x . x ∈ space M =⇒ 0 ≤ f x

shows (λx . ennreal (f x )) ∈ M →M borel ←→ f ∈ M →M borel
proof safe
assume (λx . ennreal (f x )) ∈ M →M borel
then have (λx . enn2real (ennreal (f x ))) ∈ M →M borel
by measurable

then show f ∈ M →M borel
by (rule measurable cong [THEN iffD1 , rotated ]) auto

qed measurable

lemma borel measurable times ennreal [measurable (raw)]:
fixes f g :: ′a ⇒ ennreal
shows f ∈ M →M borel =⇒ g ∈ M →M borel =⇒ (λx . f x ∗ g x ) ∈ M →M
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borel
unfolding is borel def [symmetric] by transfer simp

lemma borel measurable inverse ennreal [measurable (raw)]:
fixes f :: ′a ⇒ ennreal
shows f ∈ M →M borel =⇒ (λx . inverse (f x )) ∈ M →M borel
unfolding is borel def [symmetric] by transfer simp

lemma borel measurable divide ennreal [measurable (raw)]:
fixes f :: ′a ⇒ ennreal
shows f ∈ M →M borel =⇒ g ∈ M →M borel =⇒ (λx . f x / g x ) ∈ M →M

borel
unfolding divide ennreal def by simp

lemma borel measurable minus ennreal [measurable (raw)]:
fixes f :: ′a ⇒ ennreal
shows f ∈ M →M borel =⇒ g ∈ M →M borel =⇒ (λx . f x − g x ) ∈ M →M

borel
unfolding is borel def [symmetric] by transfer simp

lemma borel measurable prod ennreal [measurable (raw)]:
fixes f :: ′c ⇒ ′a ⇒ ennreal
assumes

∧
i . i ∈ S =⇒ f i ∈ borel measurable M

shows (λx .
∏

i∈S . f i x ) ∈ borel measurable M
using assms by (induction S rule: infinite finite induct) auto

end

hide const (open) is borel

6.5.8 LIMSEQ is borel measurable

lemma borel measurable LIMSEQ real :
fixes u :: nat ⇒ ′a ⇒ real
assumes u ′:

∧
x . x ∈ space M =⇒ (λi . u i x ) −−−−→ u ′ x

and u:
∧
i . u i ∈ borel measurable M

shows u ′ ∈ borel measurable M
proof −
have

∧
x . x ∈ space M =⇒ liminf (λn. ereal (u n x )) = ereal (u ′ x )

using u ′ by (simp add : lim imp Liminf )
moreover from u have (λx . liminf (λn. ereal (u n x ))) ∈ borel measurable M
by auto

ultimately show ?thesis by (simp cong : measurable cong add : borel measurable ereal iff )
qed

lemma borel measurable LIMSEQ metric:
fixes f :: nat ⇒ ′a ⇒ ′b :: metric space
assumes [measurable]:

∧
i . f i ∈ borel measurable M

assumes lim:
∧
x . x ∈ space M =⇒ (λi . f i x ) −−−−→ g x
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shows g ∈ borel measurable M
unfolding borel eq closed

proof (safe intro!: measurable measure of )
fix A :: ′b set assume closed A

have [measurable]: (λx . infdist (g x ) A) ∈ borel measurable M
proof (rule borel measurable LIMSEQ real)
show

∧
x . x ∈ space M =⇒ (λi . infdist (f i x ) A) −−−−→ infdist (g x ) A

by (intro tendsto infdist lim)
show

∧
i . (λx . infdist (f i x ) A) ∈ borel measurable M

by (intro borel measurable continuous on[where f=λx . infdist x A]
continuous at imp continuous on ballI continuous infdist continuous ident)

auto
qed

show g −‘ A ∩ space M ∈ sets M
proof cases
assume A 6= {}
then have

∧
x . infdist x A = 0 ←→ x ∈ A

using 〈closed A〉 by (simp add : in closed iff infdist zero)
then have g −‘ A ∩ space M = {x∈space M . infdist (g x ) A = 0}
by auto

also have . . . ∈ sets M
by measurable

finally show ?thesis .
qed simp

qed auto

lemma sets Collect Cauchy [measurable]:
fixes f :: nat ⇒ ′a => ′b::{metric space, second countable topology}
assumes f [measurable]:

∧
i . f i ∈ borel measurable M

shows {x∈space M . Cauchy (λi . f i x )} ∈ sets M
unfolding metric Cauchy iff2 using f by auto

lemma borel measurable lim metric[measurable (raw)]:
fixes f :: nat ⇒ ′a ⇒ ′b::{banach, second countable topology}
assumes f [measurable]:

∧
i . f i ∈ borel measurable M

shows (λx . lim (λi . f i x )) ∈ borel measurable M
proof −
define u ′ where u ′ x = lim (λi . if Cauchy (λi . f i x ) then f i x else 0 ) for x
then have ∗:

∧
x . lim (λi . f i x ) = (if Cauchy (λi . f i x ) then u ′ x else (THE x .

False))
by (auto simp: lim def convergent eq Cauchy [symmetric])

have u ′ ∈ borel measurable M
proof (rule borel measurable LIMSEQ metric)
fix x
have convergent (λi . if Cauchy (λi . f i x ) then f i x else 0 )
by (cases Cauchy (λi . f i x ))

(auto simp add : convergent eq Cauchy [symmetric] convergent def )
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then show (λi . if Cauchy (λi . f i x ) then f i x else 0 ) −−−−→ u ′ x
unfolding u ′ def
by (rule convergent LIMSEQ iff [THEN iffD1 ])

qed measurable
then show ?thesis
unfolding ∗ by measurable

qed

lemma borel measurable suminf [measurable (raw)]:
fixes f :: nat ⇒ ′a ⇒ ′b::{banach, second countable topology}
assumes f [measurable]:

∧
i . f i ∈ borel measurable M

shows (λx . suminf (λi . f i x )) ∈ borel measurable M
unfolding suminf def sums def [abs def ] lim def [symmetric] by simp

lemma Collect closed imp pred borel : closed {x . P x} =⇒ Measurable.pred borel P
by (simp add : pred def )

lemma isCont borel pred [measurable]:
fixes f :: ′b::metric space ⇒ ′a::metric space
shows Measurable.pred borel (isCont f )

proof (subst measurable cong)
let ?I = λj . inverse(real (Suc j ))
show isCont f x = (∀ i . ∃ j . ∀ y z . dist x y < ?I j ∧ dist x z < ?I j −→ dist (f

y) (f z ) ≤ ?I i) for x
unfolding continuous at eps delta

proof safe
fix i assume ∀ e>0 . ∃ d>0 . ∀ y . dist y x < d −→ dist (f y) (f x ) < e
moreover have 0 < ?I i / 2
by simp

ultimately obtain d where d : 0 < d
∧
y . dist x y < d =⇒ dist (f y) (f x ) <

?I i / 2
by (metis dist commute)

then obtain j where j : ?I j < d
by (metis reals Archimedean)

show ∃ j . ∀ y z . dist x y < ?I j ∧ dist x z < ?I j −→ dist (f y) (f z ) ≤ ?I i
proof (safe intro!: exI [where x=j ])
fix y z assume ∗: dist x y < ?I j dist x z < ?I j
have dist (f y) (f z ) ≤ dist (f y) (f x ) + dist (f z ) (f x )
by (rule dist triangle2 )

also have . . . < ?I i / 2 + ?I i / 2
by (intro add strict mono d less trans[OF j ] ∗)

also have . . . ≤ ?I i
by (simp add : field simps)

finally show dist (f y) (f z ) ≤ ?I i
by simp

qed
next
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fix e::real assume 0 < e
then obtain n where n: ?I n < e
by (metis reals Archimedean)

assume ∀ i . ∃ j . ∀ y z . dist x y < ?I j ∧ dist x z < ?I j −→ dist (f y) (f z ) ≤
?I i

from this[THEN spec, of Suc n]
obtain j where j :

∧
y z . dist x y < ?I j =⇒ dist x z < ?I j =⇒ dist (f y) (f

z ) ≤ ?I (Suc n)
by auto

show ∃ d>0 . ∀ y . dist y x < d −→ dist (f y) (f x ) < e
proof (safe intro!: exI [of ?I j ])
fix y assume dist y x < ?I j
then have dist (f y) (f x ) ≤ ?I (Suc n)
by (intro j ) (auto simp: dist commute)

also have ?I (Suc n) < ?I n
by simp

also note n
finally show dist (f y) (f x ) < e .

qed simp
qed

qed (intro pred intros countable closed Collect all closed Collect le open Collect less
Collect closed imp pred borel closed Collect imp open Collect conj contin-

uous intros)

lemma isCont borel :
fixes f :: ′b::metric space ⇒ ′a::metric space
shows {x . isCont f x} ∈ sets borel
by simp

lemma is real interval :
assumes S : is interval S
shows ∃ a b::real . S = {} ∨ S = UNIV ∨ S = {..<b} ∨ S = {..b} ∨ S = {a<..}
∨ S = {a..} ∨

S = {a<..<b} ∨ S = {a<..b} ∨ S = {a..<b} ∨ S = {a..b}
using S unfolding is interval 1 by (blast intro: interval cases)

lemma real interval borel measurable:
assumes is interval (S ::real set)
shows S ∈ sets borel

proof −
from assms is real interval have ∃ a b::real . S = {} ∨ S = UNIV ∨ S = {..<b}
∨ S = {..b} ∨

S = {a<..} ∨ S = {a..} ∨ S = {a<..<b} ∨ S = {a<..b} ∨ S = {a..<b} ∨ S
= {a..b} by auto
then guess a ..
then guess b ..
thus ?thesis
by auto
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qed

The next lemmas hold in any second countable linorder (including ennreal
or ereal for instance), but in the current state they are restricted to reals.

lemma borel measurable mono on fnc:
fixes f :: real ⇒ real and A :: real set
assumes mono on f A
shows f ∈ borel measurable (restrict space borel A)
apply (rule measurable restrict countable[OF mono on ctble discont [OF assms]])
apply (auto intro!: image eqI [where x={x} for x ] simp: sets restrict space)
apply (auto simp add : sets restrict restrict space continuous on eq continuous within

cong : measurable cong sets
intro!: borel measurable continuous on restrict intro: continuous within subset)

done

lemma borel measurable piecewise mono:
fixes f ::real ⇒ real and C ::real set set
assumes countable C

∧
c. c ∈ C =⇒ c ∈ sets borel

∧
c. c ∈ C =⇒ mono on f

c (
⋃
C ) = UNIV

shows f ∈ borel measurable borel
by (rule measurable piecewise restrict [of C ], auto intro: borel measurable mono on fnc

simp: assms)

lemma borel measurable mono:
fixes f :: real ⇒ real
shows mono f =⇒ f ∈ borel measurable borel
using borel measurable mono on fnc[of f UNIV ] by (simp add : mono def mono on def )

lemma measurable bdd below real [measurable (raw)]:
fixes F :: ′a ⇒ ′i ⇒ real
assumes [simp]: countable I and [measurable]:

∧
i . i ∈ I =⇒ F i ∈ M →M borel

shows Measurable.pred M (λx . bdd below ((λi . F i x )‘I ))
proof (subst measurable cong)
show bdd below ((λi . F i x )‘I ) ←→ (∃ q∈ZZ. ∀ i∈I . q ≤ F i x ) for x
by (auto simp: bdd below def intro!: bexI [of of int (floor )] intro: order trans

of int floor le)
show Measurable.pred M (λw . ∃ q∈ZZ. ∀ i∈I . q ≤ F i w)
using countable int by measurable

qed

lemma borel measurable cINF real [measurable (raw)]:
fixes F :: ⇒ ⇒ real
assumes [simp]: countable I
assumes F [measurable]:

∧
i . i ∈ I =⇒ F i ∈ borel measurable M

shows (λx . INF i∈I . F i x ) ∈ borel measurable M
proof (rule measurable piecewise restrict)
let ?Ω = {x∈space M . bdd below ((λi . F i x )‘I )}
show countable {?Ω, − ?Ω} space M ⊆

⋃
{?Ω, − ?Ω}

∧
X . X ∈ {?Ω, − ?Ω}

=⇒ X ∩ space M ∈ sets M
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by auto
fix X assume X ∈ {?Ω, − ?Ω} then show (λx . INF i∈I . F i x ) ∈ borel measurable

(restrict space M X )
proof safe
show (λx . INF i∈I . F i x ) ∈ borel measurable (restrict space M ?Ω)
by (intro borel measurable cINF measurable restrict space1 F )

(auto simp: space restrict space)
show (λx . INF i∈I . F i x ) ∈ borel measurable (restrict space M (−?Ω))
proof (subst measurable cong)
fix x assume x ∈ space (restrict space M (−?Ω))
then have ¬ (∀ i∈I . − F i x ≤ y) for y
by (auto simp: space restrict space bdd above def bdd above uminus[symmetric])
then show (INF i∈I . F i x ) = − (THE x . False)
by (auto simp: space restrict space Inf real def Sup real def Least def simp

del : Set .ball simps(10 ))
qed simp

qed
qed

lemma borel Ici : borel = sigma UNIV (range (λx ::real . {x ..}))
proof (safe intro!: borel eq sigmaI1 [OF borel Iio])
fix x :: real
have eq : {..<x} = space (sigma UNIV (range atLeast)) − {x ..}
by auto

show {..<x} ∈ sets (sigma UNIV (range atLeast))
unfolding eq by (intro sets.compl sets) auto

qed auto

lemma borel measurable pred less[measurable (raw)]:
fixes f :: ′a ⇒ ′b::{second countable topology , linorder topology}
shows f ∈ borel measurable M =⇒ g ∈ borel measurable M =⇒ Measurable.pred

M (λw . f w < g w)
unfolding Measurable.pred def by (rule borel measurable less)

no notation
eucl less (infix <e 50 )

lemma borel measurable Max2 [measurable (raw)]:
fixes f :: ⇒ ⇒ ′a::{second countable topology , dense linorder , linorder topology}
assumes finite I
and [measurable]:

∧
i . f i ∈ borel measurable M

shows (λx . Max{f i x |i . i ∈ I }) ∈ borel measurable M
by (simp add : borel measurable Max [OF assms(1 ), where ?f=f and ?M=M ]

Setcompr eq image)

lemma measurable compose n [measurable (raw)]:
assumes T ∈ measurable M M
shows (Tˆˆn) ∈ measurable M M

by (induction n, auto simp add : measurable compose[OF assms])
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lemma measurable real imp nat :
fixes f :: ′a ⇒ nat
assumes [measurable]: (λx . real(f x )) ∈ borel measurable M
shows f ∈ measurable M (count space UNIV )

proof −
let ?g = (λx . real(f x ))
have

∧
(n::nat). ?g−‘({real n}) ∩ space M = f−‘{n} ∩ space M by auto

moreover have
∧
(n::nat). ?g−‘({real n}) ∩ space M ∈ sets M using assms

by measurable
ultimately have

∧
(n::nat). f−‘{n} ∩ space M ∈ sets M by simp

then show ?thesis using measurable count space eq2 countable by blast
qed

lemma measurable equality set [measurable]:
fixes f g :: ⇒ ′a::{second countable topology , t2 space}
assumes [measurable]: f ∈ borel measurable M g ∈ borel measurable M
shows {x ∈ space M . f x = g x} ∈ sets M

proof −
define A where A = {x ∈ space M . f x = g x}
define B where B = {y . ∃ x :: ′a. y = (x ,x )}
have A = (λx . (f x , g x ))−‘B ∩ space M unfolding A def B def by auto
moreover have (λx . (f x , g x )) ∈ borel measurable M by simp
moreover have B ∈ sets borel unfolding B def by (simp add : closed diagonal)
ultimately have A ∈ sets M by simp
then show ?thesis unfolding A def by simp

qed

lemma measurable inequality set [measurable]:
fixes f g :: ⇒ ′a::{second countable topology , linorder topology}
assumes [measurable]: f ∈ borel measurable M g ∈ borel measurable M
shows {x ∈ space M . f x ≤ g x} ∈ sets M

{x ∈ space M . f x < g x} ∈ sets M
{x ∈ space M . f x ≥ g x} ∈ sets M
{x ∈ space M . f x > g x} ∈ sets M

proof −
define F where F = (λx . (f x , g x ))
have ∗ [measurable]: F ∈ borel measurable M unfolding F def by simp

have {x ∈ space M . f x ≤ g x} = F−‘{(x , y) | x y . x ≤ y} ∩ space M unfolding
F def by auto
moreover have {(x , y) | x y . x ≤ (y :: ′a)} ∈ sets borel using closed subdiagonal

borel closed by blast
ultimately show {x ∈ space M . f x ≤ g x} ∈ sets M using ∗ by (metis

(mono tags, lifting) measurable sets)

have {x ∈ space M . f x < g x} = F−‘{(x , y) | x y . x < y} ∩ space M unfolding
F def by auto
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moreover have {(x , y) | x y . x < (y :: ′a)} ∈ sets borel using open subdiagonal
borel open by blast
ultimately show {x ∈ space M . f x < g x} ∈ sets M using ∗ by (metis

(mono tags, lifting) measurable sets)

have {x ∈ space M . f x ≥ g x} = F−‘{(x , y) | x y . x ≥ y} ∩ space M unfolding
F def by auto
moreover have {(x , y) | x y . x ≥ (y :: ′a)} ∈ sets borel using closed superdiagonal

borel closed by blast
ultimately show {x ∈ space M . f x ≥ g x} ∈ sets M using ∗ by (metis

(mono tags, lifting) measurable sets)

have {x ∈ space M . f x > g x} = F−‘{(x , y) | x y . x > y} ∩ space M unfolding
F def by auto
moreover have {(x , y) | x y . x > (y :: ′a)} ∈ sets borel using open superdiagonal

borel open by blast
ultimately show {x ∈ space M . f x > g x} ∈ sets M using ∗ by (metis

(mono tags, lifting) measurable sets)
qed

proposition measurable limit [measurable]:
fixes f ::nat ⇒ ′a ⇒ ′b::first countable topology
assumes [measurable]:

∧
n::nat . f n ∈ borel measurable M

shows Measurable.pred M (λx . (λn. f n x ) −−−−→ c)
proof −
obtain A :: nat ⇒ ′b set where A:∧

i . open (A i)∧
i . c ∈ A i∧
S . open S =⇒ c ∈ S =⇒ eventually (λi . A i ⊆ S ) sequentially

by (rule countable basis at decseq) blast

have [measurable]:
∧
N i . (f N )−‘(A i) ∩ space M ∈ sets M using A(1 ) by auto

then have mes: (
⋂
i .

⋃
n.

⋂
N∈{n..}. (f N )−‘(A i) ∩ space M ) ∈ sets M by

blast

have (u −−−−→ c) ←→ (∀ i . eventually (λn. u n ∈ A i) sequentially) for u::nat
⇒ ′b
proof
assume u −−−−→ c
then have eventually (λn. u n ∈ A i) sequentially for i using A(1 )[of i ]

A(2 )[of i ]
by (simp add : topological tendstoD)

then show (∀ i . eventually (λn. u n ∈ A i) sequentially) by auto
next
assume H : (∀ i . eventually (λn. u n ∈ A i) sequentially)
show (u −−−−→ c)
proof (rule topological tendstoI )
fix S assume open S c ∈ S
with A(3 )[OF this] obtain i where A i ⊆ S
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using eventually False sequentially eventually mono by blast
moreover have eventually (λn. u n ∈ A i) sequentially using H by simp
ultimately show ∀ F n in sequentially . u n ∈ S
by (simp add : eventually mono subset eq)

qed
qed
then have {x . (λn. f n x ) −−−−→ c} = (

⋂
i .

⋃
n.

⋂
N∈{n..}. (f N )−‘(A i))

by (auto simp add : atLeast def eventually at top linorder)
then have {x ∈ space M . (λn. f n x ) −−−−→ c} = (

⋂
i .

⋃
n.

⋂
N∈{n..}. (f

N )−‘(A i) ∩ space M )
by auto

then have {x ∈ space M . (λn. f n x ) −−−−→ c} ∈ sets M using mes by simp
then show ?thesis by auto

qed

lemma measurable limit2 [measurable]:
fixes u::nat ⇒ ′a ⇒ real
assumes [measurable]:

∧
n. u n ∈ borel measurable M v ∈ borel measurable M

shows Measurable.pred M (λx . (λn. u n x ) −−−−→ v x )
proof −
define w where w = (λn x . u n x − v x )
have [measurable]: w n ∈ borel measurable M for n unfolding w def by auto
have ((λn. u n x ) −−−−→ v x ) ←→ ((λn. w n x ) −−−−→ 0 ) for x
unfolding w def using Lim null by auto

then show ?thesis using measurable limit by auto
qed

lemma measurable P restriction [measurable (raw)]:
assumes [measurable]: Measurable.pred M P A ∈ sets M
shows {x ∈ A. P x} ∈ sets M

proof −
have A ⊆ space M using sets.sets into space[OF assms(2 )].
then have {x ∈ A. P x} = A ∩ {x ∈ space M . P x} by blast
then show ?thesis by auto

qed

lemma measurable sum nat [measurable (raw)]:
fixes f :: ′c ⇒ ′a ⇒ nat
assumes

∧
i . i ∈ S =⇒ f i ∈ measurable M (count space UNIV )

shows (λx .
∑

i∈S . f i x ) ∈ measurable M (count space UNIV )
proof cases
assume finite S
then show ?thesis using assms by induct auto

qed simp

lemma measurable abs powr [measurable]:
fixes p::real
assumes [measurable]: f ∈ borel measurable M
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shows (λx . |f x | powr p) ∈ borel measurable M
by simp

The next one is a variation around measurable restrict space.

lemma measurable restrict space3 :
assumes f ∈ measurable M N and

f ∈ A → B
shows f ∈ measurable (restrict space M A) (restrict space N B)

proof −
have f ∈ measurable (restrict space M A) N using assms(1 ) measurable restrict space1

by auto
then show ?thesis by (metis Int iff funcsetI funcset mem

measurable restrict space2 [of f , of restrict space M A, of B , of N ] assms(2 )
space restrict space)
qed

lemma measurable restrict mono:
assumes f : f ∈ restrict space M A →M N and B ⊆ A
shows f ∈ restrict space M B →M N

by (rule measurable compose[OF measurable restrict space3 f ])
(insert 〈B ⊆ A〉, auto)

The next one is a variation around measurable piecewise restrict.

lemma measurable piecewise restrict2 :
assumes [measurable]:

∧
n. A n ∈ sets M

and space M = (
⋃

(n::nat). A n)∧
n. ∃ h ∈ measurable M N . (∀ x ∈ A n. f x = h x )

shows f ∈ measurable M N
proof (rule measurableI )
fix B assume [measurable]: B ∈ sets N
{
fix n::nat
obtain h where [measurable]: h ∈ measurable M N and ∀ x ∈ A n. f x = h x

using assms(3 ) by blast
then have ∗: f−‘B ∩ A n = h−‘B ∩ A n by auto
have h−‘B ∩ A n = h−‘B ∩ space M ∩ A n using assms(2 ) sets.sets into space

by auto
then have h−‘B ∩ A n ∈ sets M by simp
then have f−‘B ∩ A n ∈ sets M using ∗ by simp

}
then have (

⋃
n. f−‘B ∩ A n) ∈ sets M by measurable

moreover have f−‘B ∩ space M = (
⋃

n. f−‘B ∩ A n) using assms(2 ) by
blast
ultimately show f−‘B ∩ space M ∈ sets M by simp

next
fix x assume x ∈ space M
then obtain n where x ∈ A n using assms(2 ) by blast
obtain h where [measurable]: h ∈ measurable M N and ∀ x ∈ A n. f x = h x

using assms(3 ) by blast
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then have f x = h x using 〈x ∈ A n〉 by blast
moreover have h x ∈ space N by (metis measurable space 〈x ∈ space M 〉 〈h ∈

measurable M N 〉)
ultimately show f x ∈ space N by simp

qed

end

6.6 Lebesgue Integration for Nonnegative Func-
tions

theory Nonnegative Lebesgue Integration
imports Measure Space Borel Space

begin

6.6.1 Approximating functions

lemma AE upper bound inf ennreal :
fixes F G :: ′a ⇒ ennreal
assumes

∧
e. (e::real) > 0 =⇒ AE x in M . F x ≤ G x + e

shows AE x in M . F x ≤ G x
proof −
have AE x in M . ∀n::nat . F x ≤ G x + ennreal (1 / Suc n)
using assms by (auto simp: AE all countable)

then show ?thesis
proof (eventually elim)
fix x assume x : ∀n::nat . F x ≤ G x + ennreal (1 / Suc n)
show F x ≤ G x
proof (rule ennreal le epsilon)
fix e :: real assume 0 < e
then obtain n where n: 1 / Suc n < e
by (blast elim: nat approx posE )

have F x ≤ G x + 1 / Suc n
using x by simp

also have . . . ≤ G x + e
using n by (intro add mono ennreal leI ) auto

finally show F x ≤ G x + ennreal e .
qed

qed
qed

lemma AE upper bound inf :
fixes F G :: ′a ⇒ real
assumes

∧
e. e > 0 =⇒ AE x in M . F x ≤ G x + e

shows AE x in M . F x ≤ G x
proof −
have AE x in M . F x ≤ G x + 1/real (n+1 ) for n::nat
by (rule assms, auto)

Nonnegative{_}{\kern 0pt}Lebesgue{_}{\kern 0pt}Integration.html


1420

then have AE x in M . ∀n::nat ∈ UNIV . F x ≤ G x + 1/real (n+1 )
by (rule AE ball countable ′, auto)

moreover
{
fix x assume i : ∀n::nat ∈ UNIV . F x ≤ G x + 1/real (n+1 )
have (λn. G x + 1/real (n+1 )) −−−−→ G x + 0
by (rule tendsto add , simp, rule LIMSEQ ignore initial segment [OF lim 1 over n,

of 1 ])
then have F x ≤ G x using i LIMSEQ le const by fastforce

}
ultimately show ?thesis by auto

qed

lemma not AE zero ennreal E :
fixes f :: ′a ⇒ ennreal
assumes ¬ (AE x in M . f x = 0 ) and [measurable]: f ∈ borel measurable M
shows ∃A∈sets M . ∃ e::real>0 . emeasure M A > 0 ∧ (∀ x ∈ A. f x ≥ e)

proof −
{ assume ¬ (∃ e::real>0 . {x ∈ space M . f x ≥ e} /∈ null sets M )
then have 0 < e =⇒ AE x in M . f x ≤ e for e :: real
by (auto simp: not le less imp le dest !: AE not in)

then have AE x in M . f x ≤ 0
by (intro AE upper bound inf ennreal [where G=λ . 0 ]) simp

then have False
using assms by auto }

then obtain e::real where e: e > 0 {x ∈ space M . f x ≥ e} /∈ null sets M by
auto
define A where A = {x ∈ space M . f x ≥ e}
have 1 [measurable]: A ∈ sets M unfolding A def by auto
have 2 : emeasure M A > 0
using e(2 ) A def 〈A ∈ sets M 〉 by auto

have 3 :
∧
x . x ∈ A =⇒ f x ≥ e unfolding A def by auto

show ?thesis using e(1 ) 1 2 3 by blast
qed

lemma not AE zero E :
fixes f :: ′a ⇒ real
assumes AE x in M . f x ≥ 0

¬(AE x in M . f x = 0 )
and [measurable]: f ∈ borel measurable M

shows ∃A e. A ∈ sets M ∧ e>0 ∧ emeasure M A > 0 ∧ (∀ x ∈ A. f x ≥ e)
proof −
have ∃ e. e > 0 ∧ {x ∈ space M . f x ≥ e} /∈ null sets M
proof (rule ccontr)
assume ∗: ¬(∃ e. e > 0 ∧ {x ∈ space M . f x ≥ e} /∈ null sets M )
{
fix e::real assume e > 0
then have {x ∈ space M . f x ≥ e} ∈ null sets M using ∗ by blast
then have AE x in M . x /∈ {x ∈ space M . f x ≥ e} using AE not in by
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blast
then have AE x in M . f x ≤ e by auto

}
then have AE x in M . f x ≤ 0 by (rule AE upper bound inf , auto)
then have AE x in M . f x = 0 using assms(1 ) by auto
then show False using assms(2 ) by auto

qed
then obtain e where e: e>0 {x ∈ space M . f x ≥ e} /∈ null sets M by auto
define A where A = {x ∈ space M . f x ≥ e}
have 1 [measurable]: A ∈ sets M unfolding A def by auto
have 2 : emeasure M A > 0
using e(2 ) A def 〈A ∈ sets M 〉 by auto

have 3 :
∧
x . x ∈ A =⇒ f x ≥ e unfolding A def by auto

show ?thesis
using e(1 ) 1 2 3 by blast

qed

6.6.2 Simple function

Our simple functions are not restricted to nonnegative real numbers. Instead
they are just functions with a finite range and are measurable when singleton
sets are measurable.

definition simple function M g ←→
finite (g ‘ space M ) ∧
(∀ x ∈ g ‘ space M . g −‘ {x} ∩ space M ∈ sets M )

lemma simple functionD :
assumes simple function M g
shows finite (g ‘ space M ) and g −‘ X ∩ space M ∈ sets M

proof −
show finite (g ‘ space M )
using assms unfolding simple function def by auto

have g −‘ X ∩ space M = g −‘ (X ∩ g‘space M ) ∩ space M by auto
also have . . . = (

⋃
x∈X ∩ g‘space M . g−‘{x} ∩ space M ) by auto

finally show g −‘ X ∩ space M ∈ sets M using assms
by (auto simp del : UN simps simp: simple function def )

qed

lemma measurable simple function[measurable dest ]:
simple function M f =⇒ f ∈ measurable M (count space UNIV )
unfolding simple function def measurable def

proof safe
fix A assume finite (f ‘ space M ) ∀ x∈f ‘ space M . f −‘ {x} ∩ space M ∈ sets

M
then have (

⋃
x∈f ‘ space M . if x ∈ A then f −‘ {x} ∩ space M else {}) ∈ sets

M
by (intro sets.finite UN ) auto

also have (
⋃
x∈f ‘ space M . if x ∈ A then f −‘ {x} ∩ space M else {}) = f −‘

A ∩ space M
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by (auto split : if split asm)
finally show f −‘ A ∩ space M ∈ sets M .

qed simp

lemma borel measurable simple function:
simple function M f =⇒ f ∈ borel measurable M
by (auto dest !: measurable simple function simp: measurable def )

lemma simple function measurable2 [intro]:
assumes simple function M f simple function M g
shows f −‘ A ∩ g −‘ B ∩ space M ∈ sets M

proof −
have f −‘ A ∩ g −‘ B ∩ space M = (f −‘ A ∩ space M ) ∩ (g −‘ B ∩ space M )
by auto

then show ?thesis using assms[THEN simple functionD(2 )] by auto
qed

lemma simple function indicator representation:
fixes f :: ′a ⇒ ennreal
assumes f : simple function M f and x : x ∈ space M
shows f x = (

∑
y ∈ f ‘ space M . y ∗ indicator (f −‘ {y} ∩ space M ) x )

(is ?l = ?r)
proof −
have ?r = (

∑
y ∈ f ‘ space M .

(if y = f x then y ∗ indicator (f −‘ {y} ∩ space M ) x else 0 ))
by (auto intro!: sum.cong)

also have ... = f x ∗ indicator (f −‘ {f x} ∩ space M ) x
using assms by (auto dest : simple functionD)

also have ... = f x using x by (auto simp: indicator def )
finally show ?thesis by auto

qed

lemma simple function notspace:
simple function M (λx . h x ∗ indicator (− space M ) x ::ennreal) (is simple function

M ?h)
proof −
have ?h ‘ space M ⊆ {0} unfolding indicator def by auto
hence [simp, intro]: finite (?h ‘ space M ) by (auto intro: finite subset)
have ?h −‘ {0} ∩ space M = space M by auto
thus ?thesis unfolding simple function def by (auto simp add : image constant conv)

qed

lemma simple function cong :
assumes

∧
t . t ∈ space M =⇒ f t = g t

shows simple function M f ←→ simple function M g
proof −
have

∧
x . f −‘ {x} ∩ space M = g −‘ {x} ∩ space M

using assms by auto
with assms show ?thesis
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by (simp add : simple function def cong : image cong)
qed

lemma simple function cong algebra:
assumes sets N = sets M space N = space M
shows simple function M f ←→ simple function N f
unfolding simple function def assms ..

lemma simple function borel measurable:
fixes f :: ′a ⇒ ′x ::{t2 space}
assumes f ∈ borel measurable M and finite (f ‘ space M )
shows simple function M f
using assms unfolding simple function def
by (auto intro: borel measurable vimage)

lemma simple function iff borel measurable:
fixes f :: ′a ⇒ ′x ::{t2 space}
shows simple function M f ←→ finite (f ‘ space M ) ∧ f ∈ borel measurable M
by (metis borel measurable simple function simple functionD(1 ) simple function borel measurable)

lemma simple function eq measurable:
simple function M f ←→ finite (f‘space M ) ∧ f ∈ measurable M (count space

UNIV )
using measurable simple function[of M f ] by (fastforce simp: simple function def )

lemma simple function const [intro, simp]:
simple function M (λx . c)
by (auto intro: finite subset simp: simple function def )

lemma simple function compose[intro, simp]:
assumes simple function M f
shows simple function M (g ◦ f )
unfolding simple function def

proof safe
show finite ((g ◦ f ) ‘ space M )
using assms unfolding simple function def image comp [symmetric] by auto

next
fix x assume x ∈ space M
let ?G = g −‘ {g (f x )} ∩ (f‘space M )
have ∗: (g ◦ f ) −‘ {(g ◦ f ) x} ∩ space M =
(
⋃
x∈?G . f −‘ {x} ∩ space M ) by auto

show (g ◦ f ) −‘ {(g ◦ f ) x} ∩ space M ∈ sets M
using assms unfolding simple function def ∗
by (rule tac sets.finite UN ) auto

qed

lemma simple function indicator [intro, simp]:
assumes A ∈ sets M
shows simple function M (indicator A)

proof −
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have indicator A ‘ space M ⊆ {0 , 1} (is ?S ⊆ )
by (auto simp: indicator def )

hence finite ?S by (rule finite subset) simp
moreover have − A ∩ space M = space M − A by auto
ultimately show ?thesis unfolding simple function def
using assms by (auto simp: indicator def [abs def ])

qed

lemma simple function Pair [intro, simp]:
assumes simple function M f
assumes simple function M g
shows simple function M (λx . (f x , g x )) (is simple function M ?p)
unfolding simple function def

proof safe
show finite (?p ‘ space M )
using assms unfolding simple function def
by (rule tac finite subset [of f‘space M × g‘space M ]) auto

next
fix x assume x ∈ space M
have (λx . (f x , g x )) −‘ {(f x , g x )} ∩ space M =

(f −‘ {f x} ∩ space M ) ∩ (g −‘ {g x} ∩ space M )
by auto

with 〈x ∈ space M 〉 show (λx . (f x , g x )) −‘ {(f x , g x )} ∩ space M ∈ sets M
using assms unfolding simple function def by auto

qed

lemma simple function compose1 :
assumes simple function M f
shows simple function M (λx . g (f x ))
using simple function compose[OF assms, of g ]
by (simp add : comp def )

lemma simple function compose2 :
assumes simple function M f and simple function M g
shows simple function M (λx . h (f x ) (g x ))

proof −
have simple function M ((λ(x , y). h x y) ◦ (λx . (f x , g x )))
using assms by auto

thus ?thesis by (simp all add : comp def )
qed

lemmas simple function add [intro, simp] = simple function compose2 [where h=(+)]
and simple function diff [intro, simp] = simple function compose2 [where h=(−)]
and simple function uminus[intro, simp] = simple function compose[where g=uminus]
and simple function mult [intro, simp] = simple function compose2 [where h=(∗)]
and simple function div [intro, simp] = simple function compose2 [where h=(/)]
and simple function inverse[intro, simp] = simple function compose[where g=inverse]
and simple function max [intro, simp] = simple function compose2 [where h=max ]
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lemma simple function sum[intro, simp]:
assumes

∧
i . i ∈ P =⇒ simple function M (f i)

shows simple function M (λx .
∑

i∈P . f i x )
proof cases
assume finite P from this assms show ?thesis by induct auto

qed auto

lemma simple function ennreal [intro, simp]:
fixes f g :: ′a ⇒ real assumes sf : simple function M f
shows simple function M (λx . ennreal (f x ))
by (rule simple function compose1 [OF sf ])

lemma simple function real of nat [intro, simp]:
fixes f g :: ′a ⇒ nat assumes sf : simple function M f
shows simple function M (λx . real (f x ))
by (rule simple function compose1 [OF sf ])

lemma borel measurable implies simple function sequence:
fixes u :: ′a ⇒ ennreal
assumes u[measurable]: u ∈ borel measurable M
shows ∃ f . incseq f ∧ (∀ i . (∀ x . f i x < top) ∧ simple function M (f i)) ∧ u =

(SUP i . f i)
proof −
define f where [abs def ]:
f i x = real of int (floor (enn2real (min i (u x )) ∗ 2ˆi)) / 2ˆi for i x

have [simp]: 0 ≤ f i x for i x
by (auto simp: f def intro!: divide nonneg nonneg mult nonneg nonneg enn2real nonneg)

have ∗: 2ˆn ∗ real of int x = real of int (2ˆn ∗ x ) for n x
by simp

have real of int breal i ∗ 2 ˆ ic = real of int bi ∗ 2 ˆ ic for i
by (intro arg cong [where f=real of int ]) simp

then have [simp]: real of int breal i ∗ 2 ˆ ic = i ∗ 2 ˆ i for i
unfolding floor of nat by simp

have incseq f
proof (intro monoI le funI )
fix m n :: nat and x assume m ≤ n
moreover
{ fix d :: nat
have b2ˆd ::realc ∗ b2ˆm ∗ enn2real (min (of nat m) (u x ))c ≤
b2ˆd ∗ (2ˆm ∗ enn2real (min (of nat m) (u x )))c
by (rule le mult floor) (auto)

also have . . . ≤ b2ˆd ∗ (2ˆm ∗ enn2real (min (of nat d + of nat m) (u x )))c
by (intro floor mono mult mono enn2real mono min.mono)

(auto simp: min less iff disj of nat less top)
finally have f m x ≤ f (m + d) x
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unfolding f def
by (auto simp: field simps power add ∗ simp del : of int mult) }

ultimately show f m x ≤ f n x
by (auto simp add : le iff add)

qed
then have inc f : incseq (λi . ennreal (f i x )) for x
by (auto simp: incseq def le fun def )

then have incseq (λi x . ennreal (f i x ))
by (auto simp: incseq def le fun def )

moreover
have simple function M (f i) for i
proof (rule simple function borel measurable)
have benn2real (min (of nat i) (u x )) ∗ 2 ˆ ic ≤ bint i ∗ 2 ˆ ic for x
by (cases u x rule: ennreal cases)

(auto split : split min intro!: floor mono)
then have f i ‘ space M ⊆ (λn. real of int n / 2ˆi) ‘ {0 .. of nat i ∗ 2ˆi}
unfolding floor of int by (auto simp: f def intro!: imageI )

then show finite (f i ‘ space M )
by (rule finite subset) auto

show f i ∈ borel measurable M
unfolding f def enn2real def by measurable

qed
moreover
{ fix x
have (SUP i . ennreal (f i x )) = u x
proof (cases u x rule: ennreal cases)
case top then show ?thesis
by (simp add : f def inf min[symmetric] ennreal of nat eq real of nat [symmetric]

ennreal SUP of nat eq top)
next
case (real r)
obtain n where r ≤ of nat n using real arch simple by auto
then have min eq r : ∀ F x in sequentially . min (real x ) r = r
by (auto simp: eventually sequentially intro!: exI [of n] split : split min)

have (λi . real of int bmin (real i) r ∗ 2ˆic / 2ˆi) −−−−→ r
proof (rule tendsto sandwich)
show (λn. r − (1/2 )ˆn) −−−−→ r
by (auto intro!: tendsto eq intros LIMSEQ power zero)

show ∀ F n in sequentially . real of int bmin (real n) r ∗ 2 ˆ nc / 2 ˆ n ≤ r
using min eq r by eventually elim (auto simp: field simps)

have ∗: r ∗ (2 ˆ n ∗ 2 ˆ n) ≤ 2ˆn + 2ˆn ∗ real of int br ∗ 2 ˆ nc for n
using real of int floor ge diff one[of r ∗ 2ˆn, THEN mult left mono, of

2ˆn]
by (auto simp: field simps)

show ∀ F n in sequentially . r − (1/2 )ˆn ≤ real of int bmin (real n) r ∗ 2
ˆ nc / 2 ˆ n

using min eq r by eventually elim (insert ∗, auto simp: field simps)
qed auto
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then have (λi . ennreal (f i x )) −−−−→ ennreal r
by (simp add : real f def ennreal of nat eq real of nat min ennreal)

from LIMSEQ unique[OF LIMSEQ SUP [OF inc f ] this]
show ?thesis
by (simp add : real)

qed }
ultimately show ?thesis
by (intro exI [of λi x . ennreal (f i x )]) (auto simp add : image comp)

qed

lemma borel measurable implies simple function sequence ′:
fixes u :: ′a ⇒ ennreal
assumes u: u ∈ borel measurable M
obtains f where∧

i . simple function M (f i) incseq f
∧
i x . f i x < top

∧
x . (SUP i . f i x ) = u x

using borel measurable implies simple function sequence [OF u]
by (metis SUP apply)

lemma simple function induct
[consumes 1 , case names cong set mult add , induct set : simple function]:

fixes u :: ′a ⇒ ennreal
assumes u: simple function M u
assumes cong :

∧
f g . simple function M f =⇒ simple function M g =⇒ (AE x

in M . f x = g x ) =⇒ P f =⇒ P g
assumes set :

∧
A. A ∈ sets M =⇒ P (indicator A)

assumes mult :
∧
u c. P u =⇒ P (λx . c ∗ u x )

assumes add :
∧
u v . P u =⇒ P v =⇒ P (λx . v x + u x )

shows P u
proof (rule cong)
from AE space show AE x in M . (

∑
y∈u ‘ space M . y ∗ indicator (u −‘ {y}

∩ space M ) x ) = u x
proof eventually elim
fix x assume x : x ∈ space M
from simple function indicator representation[OF u x ]
show (

∑
y∈u ‘ space M . y ∗ indicator (u −‘ {y} ∩ space M ) x ) = u x ..

qed
next
from u have finite (u ‘ space M )
unfolding simple function def by auto

then show P (λx .
∑

y∈u ‘ space M . y ∗ indicator (u −‘ {y} ∩ space M ) x )
proof induct
case empty show ?case
using set [of {}] by (simp add : indicator def [abs def ])

qed (auto intro!: add mult set simple functionD u)
next
show simple function M (λx . (

∑
y∈u ‘ space M . y ∗ indicator (u −‘ {y} ∩ space

M ) x ))
apply (subst simple function cong)
apply (rule simple function indicator representation[symmetric])
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apply (auto intro: u)
done

qed fact

lemma simple function induct nn[consumes 1 , case names cong set mult add ]:
fixes u :: ′a ⇒ ennreal
assumes u: simple function M u
assumes cong :

∧
f g . simple function M f =⇒ simple function M g =⇒ (

∧
x . x

∈ space M =⇒ f x = g x ) =⇒ P f =⇒ P g
assumes set :

∧
A. A ∈ sets M =⇒ P (indicator A)

assumes mult :
∧
u c. simple function M u =⇒ P u =⇒ P (λx . c ∗ u x )

assumes add :
∧
u v . simple function M u =⇒ P u =⇒ simple function M v =⇒

(
∧
x . x ∈ space M =⇒ u x = 0 ∨ v x = 0 ) =⇒ P v =⇒ P (λx . v x + u x )

shows P u
proof −
show ?thesis
proof (rule cong)
fix x assume x : x ∈ space M
from simple function indicator representation[OF u x ]
show (

∑
y∈u ‘ space M . y ∗ indicator (u −‘ {y} ∩ space M ) x ) = u x ..

next
show simple function M (λx . (

∑
y∈u ‘ space M . y ∗ indicator (u −‘ {y} ∩

space M ) x ))
apply (subst simple function cong)
apply (rule simple function indicator representation[symmetric])
apply (auto intro: u)
done

next
from u have finite (u ‘ space M )
unfolding simple function def by auto

then show P (λx .
∑

y∈u ‘ space M . y ∗ indicator (u −‘ {y} ∩ space M ) x )
proof induct
case empty show ?case
using set [of {}] by (simp add : indicator def [abs def ])

next
case (insert x S )
{ fix z have (

∑
y∈S . y ∗ indicator (u −‘ {y} ∩ space M ) z ) = 0 ∨

x ∗ indicator (u −‘ {x} ∩ space M ) z = 0
using insert by (subst sum eq 0 iff ) (auto simp: indicator def ) }

note disj = this
from insert show ?case
by (auto intro!: add mult set simple functionD u simple function sum disj )

qed
qed fact

qed

lemma borel measurable induct
[consumes 1 , case names cong set mult add seq , induct set : borel measurable]:

fixes u :: ′a ⇒ ennreal
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assumes u: u ∈ borel measurable M
assumes cong :

∧
f g . f ∈ borel measurable M =⇒ g ∈ borel measurable M =⇒

(
∧
x . x ∈ space M =⇒ f x = g x ) =⇒ P g =⇒ P f

assumes set :
∧
A. A ∈ sets M =⇒ P (indicator A)

assumes mult ′:
∧
u c. c < top =⇒ u ∈ borel measurable M =⇒ (

∧
x . x ∈ space

M =⇒ u x < top) =⇒ P u =⇒ P (λx . c ∗ u x )
assumes add :

∧
u v . u ∈ borel measurable M=⇒ (

∧
x . x ∈ space M =⇒ u x <

top) =⇒ P u =⇒ v ∈ borel measurable M =⇒ (
∧
x . x ∈ space M =⇒ v x < top)

=⇒ (
∧
x . x ∈ space M =⇒ u x = 0 ∨ v x = 0 ) =⇒ P v =⇒ P (λx . v x + u x )

assumes seq :
∧
U . (

∧
i . U i ∈ borel measurable M ) =⇒ (

∧
i x . x ∈ space M =⇒

U i x < top) =⇒ (
∧
i . P (U i)) =⇒ incseq U =⇒ u = (SUP i . U i) =⇒ P (SUP

i . U i)
shows P u
using u

proof (induct rule: borel measurable implies simple function sequence ′)
fix U assume U :

∧
i . simple function M (U i) incseq U

∧
i x . U i x < top and

sup:
∧
x . (SUP i . U i x ) = u x

have u eq : u = (SUP i . U i)
using u by (auto simp add : image comp sup)

have not inf :
∧
x i . x ∈ space M =⇒ U i x < top

using U by (auto simp: image iff eq commute)

from U have
∧
i . U i ∈ borel measurable M

by (simp add : borel measurable simple function)

show P u
unfolding u eq

proof (rule seq)
fix i show P (U i)
using 〈simple function M (U i)〉 not inf [of i ]

proof (induct rule: simple function induct nn)
case (mult u c)
show ?case
proof cases
assume c = 0 ∨ space M = {} ∨ (∀ x∈space M . u x = 0 )
with mult(1 ) show ?thesis
by (intro cong [of λx . c ∗ u x indicator {}] set)

(auto dest !: borel measurable simple function)
next
assume ¬ (c = 0 ∨ space M = {} ∨ (∀ x∈space M . u x = 0 ))
then obtain x where space M 6= {} and x : x ∈ space M u x 6= 0 c 6= 0
by auto

with mult(3 )[of x ] have c < top
by (auto simp: ennreal mult less top)

then have u fin: x ′ ∈ space M =⇒ u x ′ < top for x ′

using mult(3 )[of x ′] 〈c 6= 0 〉 by (auto simp: ennreal mult less top)
then have P u
by (rule mult)
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with u fin 〈c < top〉 mult(1 ) show ?thesis
by (intro mult ′) (auto dest !: borel measurable simple function)

qed
qed (auto intro: cong intro!: set add dest !: borel measurable simple function)

qed fact+
qed

lemma simple function If set :
assumes sf : simple function M f simple function M g and A: A ∩ space M ∈

sets M
shows simple function M (λx . if x ∈ A then f x else g x ) (is simple function M

?IF )
proof −
define F where F x = f −‘ {x} ∩ space M for x
define G where G x = g −‘ {x} ∩ space M for x
show ?thesis unfolding simple function def
proof safe
have ?IF ‘ space M ⊆ f ‘ space M ∪ g ‘ space M by auto
from finite subset [OF this] assms
show finite (?IF ‘ space M ) unfolding simple function def by auto

next
fix x assume x ∈ space M
then have ∗: ?IF −‘ {?IF x} ∩ space M = (if x ∈ A
then ((F (f x ) ∩ (A ∩ space M )) ∪ (G (f x ) − (G (f x ) ∩ (A ∩ space M ))))
else ((F (g x ) ∩ (A ∩ space M )) ∪ (G (g x ) − (G (g x ) ∩ (A ∩ space M )))))
using sets.sets into space[OF A] by (auto split : if split asm simp: G def

F def )
have [intro]:

∧
x . F x ∈ sets M

∧
x . G x ∈ sets M

unfolding F def G def using sf [THEN simple functionD(2 )] by auto
show ?IF −‘ {?IF x} ∩ space M ∈ sets M unfolding ∗ using A by auto

qed
qed

lemma simple function If :
assumes sf : simple function M f simple function M g and P : {x∈space M . P

x} ∈ sets M
shows simple function M (λx . if P x then f x else g x )

proof −
have {x∈space M . P x} = {x . P x} ∩ space M by auto
with simple function If set [OF sf , of {x . P x}] P show ?thesis by simp

qed

lemma simple function subalgebra:
assumes simple function N f
and N subalgebra: sets N ⊆ sets M space N = space M
shows simple function M f
using assms unfolding simple function def by auto

lemma simple function comp:
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assumes T : T ∈ measurable M M ′

and f : simple function M ′ f
shows simple function M (λx . f (T x ))

proof (intro simple function def [THEN iffD2 ] conjI ballI )
have (λx . f (T x )) ‘ space M ⊆ f ‘ space M ′

using T unfolding measurable def by auto
then show finite ((λx . f (T x )) ‘ space M )
using f unfolding simple function def by (auto intro: finite subset)

fix i assume i : i ∈ (λx . f (T x )) ‘ space M
then have i ∈ f ‘ space M ′

using T unfolding measurable def by auto
then have f −‘ {i} ∩ space M ′ ∈ sets M ′

using f unfolding simple function def by auto
then have T −‘ (f −‘ {i} ∩ space M ′) ∩ space M ∈ sets M
using T unfolding measurable def by auto

also have T −‘ (f −‘ {i} ∩ space M ′) ∩ space M = (λx . f (T x )) −‘ {i} ∩
space M

using T unfolding measurable def by auto
finally show (λx . f (T x )) −‘ {i} ∩ space M ∈ sets M .

qed

6.6.3 Simple integral

definition simple integral :: ′a measure ⇒ ( ′a ⇒ ennreal) ⇒ ennreal (integralS)
where
integralS M f = (

∑
x ∈ f ‘ space M . x ∗ emeasure M (f −‘ {x} ∩ space M ))

syntax
simple integral :: pttrn ⇒ ennreal ⇒ ′a measure ⇒ ennreal (

∫
S . ∂ [60 ,61 ]

110 )

translations∫
S x . f ∂M == CONST simple integral M (%x . f )

lemma simple integral cong :
assumes

∧
t . t ∈ space M =⇒ f t = g t

shows integralS M f = integralS M g
proof −
have f ‘ space M = g ‘ space M∧

x . f −‘ {x} ∩ space M = g −‘ {x} ∩ space M
using assms by (auto intro!: image eqI )

thus ?thesis unfolding simple integral def by simp
qed

lemma simple integral const [simp]:
(
∫

Sx . c ∂M ) = c ∗ (emeasure M ) (space M )
proof (cases space M = {})
case True thus ?thesis unfolding simple integral def by simp

next
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case False hence (λx . c) ‘ space M = {c} by auto
thus ?thesis unfolding simple integral def by simp

qed

lemma simple function partition:
assumes f : simple function M f and g : simple function M g
assumes sub:

∧
x y . x ∈ space M =⇒ y ∈ space M =⇒ g x = g y =⇒ f x = f y

assumes v :
∧
x . x ∈ space M =⇒ f x = v (g x )

shows integralS M f = (
∑

y∈g ‘ space M . v y ∗ emeasure M {x∈space M . g x
= y})

(is = ?r)
proof −
from f g have [simp]: finite (f‘space M ) finite (g‘space M )
by (auto simp: simple function def )

from f g have [measurable]: f ∈ measurable M (count space UNIV ) g ∈ mea-
surable M (count space UNIV )

by (auto intro: measurable simple function)

{ fix y assume y ∈ space M
then have f ‘ space M ∩ {i . ∃ x∈space M . i = f x ∧ g y = g x} = {v (g y)}
by (auto cong : sub simp: v [symmetric]) }

note eq = this

have integralS M f =
(
∑

y∈f‘space M . y ∗ (
∑

z∈g‘space M .
if ∃ x∈space M . y = f x ∧ z = g x then emeasure M {x∈space M . g x = z}

else 0 ))
unfolding simple integral def

proof (safe intro!: sum.cong ennreal mult left cong)
fix y assume y : y ∈ space M f y 6= 0
have [simp]: g ‘ space M ∩ {z . ∃ x∈space M . f y = f x ∧ z = g x} =
{z . ∃ x∈space M . f y = f x ∧ z = g x}

by auto
have eq :(

⋃
i∈{z . ∃ x∈space M . f y = f x ∧ z = g x}. {x ∈ space M . g x = i})

=
f −‘ {f y} ∩ space M

by (auto simp: eq commute cong : sub rev conj cong)
have finite (g‘space M ) by simp
then have finite {z . ∃ x∈space M . f y = f x ∧ z = g x}
by (rule rev finite subset) auto

then show emeasure M (f −‘ {f y} ∩ space M ) =
(
∑

z∈g ‘ space M . if ∃ x∈space M . f y = f x ∧ z = g x then emeasure M {x
∈ space M . g x = z} else 0 )

apply (simp add : sum.If cases)
apply (subst sum emeasure)
apply (auto simp: disjoint family on def eq)
done

qed
also have . . . = (

∑
y∈f‘space M . (

∑
z∈g‘space M .
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if ∃ x∈space M . y = f x ∧ z = g x then y ∗ emeasure M {x∈space M . g x =
z} else 0 ))

by (auto intro!: sum.cong simp: sum distrib left)
also have . . . = ?r
by (subst sum.swap)

(auto intro!: sum.cong simp: sum.If cases scaleR sum right [symmetric] eq)
finally show integralS M f = ?r .

qed

lemma simple integral add [simp]:
assumes f : simple function M f and

∧
x . 0 ≤ f x and g : simple function M g

and
∧
x . 0 ≤ g x

shows (
∫

Sx . f x + g x ∂M ) = integralS M f + integralS M g
proof −
have (

∫
Sx . f x + g x ∂M ) =

(
∑

y∈(λx . (f x , g x ))‘space M . (fst y + snd y) ∗ emeasure M {x∈space M . (f
x , g x ) = y})

by (intro simple function partition) (auto intro: f g)
also have . . . = (

∑
y∈(λx . (f x , g x ))‘space M . fst y ∗ emeasure M {x∈space

M . (f x , g x ) = y}) +
(
∑

y∈(λx . (f x , g x ))‘space M . snd y ∗ emeasure M {x∈space M . (f x , g x ) =
y})

using assms(2 ,4 ) by (auto intro!: sum.cong distrib right simp: sum.distrib[symmetric])
also have (

∑
y∈(λx . (f x , g x ))‘space M . fst y ∗ emeasure M {x∈space M . (f

x , g x ) = y}) = (
∫

Sx . f x ∂M )
by (intro simple function partition[symmetric]) (auto intro: f g)

also have (
∑

y∈(λx . (f x , g x ))‘space M . snd y ∗ emeasure M {x∈space M . (f
x , g x ) = y}) = (

∫
Sx . g x ∂M )

by (intro simple function partition[symmetric]) (auto intro: f g)
finally show ?thesis .

qed

lemma simple integral sum[simp]:
assumes

∧
i x . i ∈ P =⇒ 0 ≤ f i x

assumes
∧
i . i ∈ P =⇒ simple function M (f i)

shows (
∫

Sx . (
∑

i∈P . f i x ) ∂M ) = (
∑

i∈P . integralS M (f i))
proof cases
assume finite P
from this assms show ?thesis
by induct (auto)

qed auto

lemma simple integral mult [simp]:
assumes f : simple function M f
shows (

∫
Sx . c ∗ f x ∂M ) = c ∗ integralS M f

proof −
have (

∫
Sx . c ∗ f x ∂M ) = (

∑
y∈f ‘ space M . (c ∗ y) ∗ emeasure M {x∈space

M . f x = y})
using f by (intro simple function partition) auto
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also have . . . = c ∗ integralS M f
using f unfolding simple integral def
by (subst sum distrib left) (auto simp: mult .assoc Int def conj commute)

finally show ?thesis .
qed

lemma simple integral mono AE :
assumes f [measurable]: simple function M f and g [measurable]: simple function

M g
and mono: AE x in M . f x ≤ g x
shows integralS M f ≤ integralS M g

proof −
let ?µ = λP . emeasure M {x∈space M . P x}
have integralS M f = (

∑
y∈(λx . (f x , g x ))‘space M . fst y ∗ ?µ (λx . (f x , g x )

= y))
using f g by (intro simple function partition) auto

also have . . . ≤ (
∑

y∈(λx . (f x , g x ))‘space M . snd y ∗ ?µ (λx . (f x , g x ) = y))
proof (clarsimp intro!: sum mono)
fix x assume x ∈ space M
let ?M = ?µ (λy . f y = f x ∧ g y = g x )
show f x ∗ ?M ≤ g x ∗ ?M
proof cases
assume ?M 6= 0
then have 0 < ?M
by (simp add : less le)

also have . . . ≤ ?µ (λy . f x ≤ g x )
using mono by (intro emeasure mono AE ) auto

finally have ¬ ¬ f x ≤ g x
by (intro notI ) auto

then show ?thesis
by (intro mult right mono) auto

qed simp
qed
also have . . . = integralS M g
using f g by (intro simple function partition[symmetric]) auto

finally show ?thesis .
qed

lemma simple integral mono:
assumes simple function M f and simple function M g
and mono:

∧
x . x ∈ space M =⇒ f x ≤ g x

shows integralS M f ≤ integralS M g
using assms by (intro simple integral mono AE ) auto

lemma simple integral cong AE :
assumes simple function M f and simple function M g
and AE x in M . f x = g x
shows integralS M f = integralS M g
using assms by (auto simp: eq iff intro!: simple integral mono AE )
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lemma simple integral cong ′:
assumes sf : simple function M f simple function M g
and mea: (emeasure M ) {x∈space M . f x 6= g x} = 0
shows integralS M f = integralS M g

proof (intro simple integral cong AE sf AE I )
show (emeasure M ) {x∈space M . f x 6= g x} = 0 by fact
show {x ∈ space M . f x 6= g x} ∈ sets M
using sf [THEN borel measurable simple function] by auto

qed simp

lemma simple integral indicator :
assumes A: A ∈ sets M
assumes f : simple function M f
shows (

∫
Sx . f x ∗ indicator A x ∂M ) =

(
∑

x ∈ f ‘ space M . x ∗ emeasure M (f −‘ {x} ∩ space M ∩ A))
proof −
have eq : (λx . (f x , indicator A x )) ‘ space M ∩ {x . snd x = 1} = (λx . (f x ,

1 ::ennreal))‘A
using A[THEN sets.sets into space] by (auto simp: indicator def image iff split :

if split asm)
have eq2 :

∧
x . f x /∈ f ‘ A =⇒ f −‘ {f x} ∩ space M ∩ A = {}

by (auto simp: image iff )

have (
∫

Sx . f x ∗ indicator A x ∂M ) =
(
∑

y∈(λx . (f x , indicator A x ))‘space M . (fst y ∗ snd y) ∗ emeasure M {x∈space
M . (f x , indicator A x ) = y})

using assms by (intro simple function partition) auto
also have . . . = (

∑
y∈(λx . (f x , indicator A x ::ennreal))‘space M .

if snd y = 1 then fst y ∗ emeasure M (f −‘ {fst y} ∩ space M ∩ A) else 0 )
by (auto simp: indicator def split : if split asm intro!: arg cong2 [where f=(∗)]

arg cong2 [where f=emeasure] sum.cong)
also have . . . = (

∑
y∈(λx . (f x , 1 ::ennreal))‘A. fst y ∗ emeasure M (f −‘ {fst

y} ∩ space M ∩ A))
using assms by (subst sum.If cases) (auto intro!: simple functionD(1 ) simp:

eq)
also have . . . = (

∑
y∈fst‘(λx . (f x , 1 ::ennreal))‘A. y ∗ emeasure M (f −‘ {y}

∩ space M ∩ A))
by (subst sum.reindex [of fst ]) (auto simp: inj on def )

also have . . . = (
∑

x ∈ f ‘ space M . x ∗ emeasure M (f −‘ {x} ∩ space M ∩
A))

using A[THEN sets.sets into space]
by (intro sum.mono neutral cong left simple functionD f ) (auto simp: im-

age comp comp def eq2 )
finally show ?thesis .

qed

lemma simple integral indicator only [simp]:
assumes A ∈ sets M
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shows integralS M (indicator A) = emeasure M A
using simple integral indicator [OF assms, of λx . 1 ] sets.sets into space[OF assms]
by (simp all add : image constant conv Int absorb1 split : if split asm)

lemma simple integral null set :
assumes simple function M u

∧
x . 0 ≤ u x and N ∈ null sets M

shows (
∫

Sx . u x ∗ indicator N x ∂M ) = 0
proof −
have AE x in M . indicator N x = (0 :: ennreal)
using 〈N ∈ null sets M 〉 by (auto simp: indicator def intro!: AE I [of N ])

then have (
∫

Sx . u x ∗ indicator N x ∂M ) = (
∫

Sx . 0 ∂M )
using assms apply (intro simple integral cong AE ) by auto

then show ?thesis by simp
qed

lemma simple integral cong AE mult indicator :
assumes sf : simple function M f and eq : AE x in M . x ∈ S and S ∈ sets M
shows integralS M f = (

∫
Sx . f x ∗ indicator S x ∂M )

using assms by (intro simple integral cong AE ) auto

lemma simple integral cmult indicator :
assumes A: A ∈ sets M
shows (

∫
Sx . c ∗ indicator A x ∂M ) = c ∗ emeasure M A

using simple integral mult [OF simple function indicator [OF A]]
unfolding simple integral indicator only [OF A] by simp

lemma simple integral nonneg :
assumes f : simple function M f and ae: AE x in M . 0 ≤ f x
shows 0 ≤ integralS M f

proof −
have integralS M (λx . 0 ) ≤ integralS M f
using simple integral mono AE [OF f ae] by auto

then show ?thesis by simp
qed

6.6.4 Integral on nonnegative functions

definition nn integral :: ′a measure ⇒ ( ′a ⇒ ennreal) ⇒ ennreal (integralN )
where
integralN M f = (SUP g ∈ {g . simple function M g ∧ g ≤ f }. integralS M g)

syntax
nn integral :: pttrn ⇒ ennreal ⇒ ′a measure ⇒ ennreal (

∫
+((2 ./ )/ ∂ )

[60 ,61 ] 110 )

translations∫
+x . f ∂M == CONST nn integral M (λx . f )

lemma nn integral def finite:
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integralN M f = (SUP g ∈ {g . simple function M g ∧ g ≤ f ∧ (∀ x . g x < top)}.
integralS M g)

(is = Sup (?A ‘ ?f ))
unfolding nn integral def

proof (safe intro!: antisym SUP least)
fix g assume g [measurable]: simple function M g g ≤ f

show integralS M g ≤ Sup (?A ‘ ?f )
proof cases
assume ae: AE x in M . g x 6= top
let ?G = {x ∈ space M . g x 6= top}
have integralS M g = integralS M (λx . g x ∗ indicator ?G x )
proof (rule simple integral cong AE )
show AE x in M . g x = g x ∗ indicator ?G x
using ae AE space by eventually elim auto

qed (insert g , auto)
also have . . . ≤ Sup (?A ‘ ?f )
using g by (intro SUP upper) (auto simp: le fun def less top split : split indicator)
finally show ?thesis .

next
assume nAE : ¬ (AE x in M . g x 6= top)
then have emeasure M {x∈space M . g x = top} 6= 0 (is emeasure M ?G 6=

0 )
by (subst (asm) AE iff measurable[OF refl ]) auto

then have top = (SUP n. (
∫

Sx . of nat n ∗ indicator ?G x ∂M ))
by (simp add : ennreal SUP of nat eq top ennreal top eq mult iff SUP mult right ennreal [symmetric])
also have . . . ≤ Sup (?A ‘ ?f )
using g
by (safe intro!: SUP least SUP upper)
(auto simp: le fun def of nat less top top unique[symmetric] split : split indicator

intro: order trans[of g x f x for x , OF order trans[of top]])
finally show ?thesis
by (simp add : top unique del : SUP eq top iff Sup eq top iff )

qed
qed (auto intro: SUP upper)

lemma nn integral mono AE :
assumes ae: AE x in M . u x ≤ v x shows integralN M u ≤ integralN M v
unfolding nn integral def

proof (safe intro!: SUP mono)
fix n assume n: simple function M n n ≤ u
from ae[THEN AE E ] guess N . note N = this
then have ae N : AE x in M . x /∈ N by (auto intro: AE not in)
let ?n = λx . n x ∗ indicator (space M − N ) x
have AE x in M . n x ≤ ?n x simple function M ?n
using n N ae N by auto

moreover
{ fix x have ?n x ≤ v x
proof cases
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assume x : x ∈ space M − N
with N have u x ≤ v x by auto
with n(2 )[THEN le funD , of x ] x show ?thesis
by (auto simp: max def split : if split asm)

qed simp }
then have ?n ≤ v by (auto simp: le funI )
moreover have integralS M n ≤ integralS M ?n
using ae N N n by (auto intro!: simple integral mono AE )
ultimately show ∃m∈{g . simple function M g ∧ g ≤ v}. integralS M n ≤

integralS M m
by force

qed

lemma nn integral mono:
(
∧
x . x ∈ space M =⇒ u x ≤ v x ) =⇒ integralN M u ≤ integralN M v

by (auto intro: nn integral mono AE )

lemma mono nn integral : mono F =⇒ mono (λx . integralN M (F x ))
by (auto simp add : mono def le fun def intro!: nn integral mono)

lemma nn integral cong AE :
AE x in M . u x = v x =⇒ integralN M u = integralN M v
by (auto simp: eq iff intro!: nn integral mono AE )

lemma nn integral cong :
(
∧
x . x ∈ space M =⇒ u x = v x ) =⇒ integralN M u = integralN M v

by (auto intro: nn integral cong AE )

lemma nn integral cong simp:
(
∧
x . x ∈ space M =simp=> u x = v x ) =⇒ integralN M u = integralN M v

by (auto intro: nn integral cong simp: simp implies def )

lemma incseq nn integral :
assumes incseq f shows incseq (λi . integralN M (f i))

proof −
have

∧
i x . f i x ≤ f (Suc i) x

using assms by (auto dest !: incseq SucD simp: le fun def )
then show ?thesis
by (auto intro!: incseq SucI nn integral mono)

qed

lemma nn integral eq simple integral :
assumes f : simple function M f shows integralN M f = integralS M f

proof −
let ?f = λx . f x ∗ indicator (space M ) x
have f ′: simple function M ?f using f by auto
have integralN M ?f ≤ integralS M ?f using f ′

by (force intro!: SUP least simple integral mono simp: le fun def nn integral def )
moreover have integralS M ?f ≤ integralN M ?f
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unfolding nn integral def
using f ′ by (auto intro!: SUP upper)

ultimately show ?thesis
by (simp cong : nn integral cong simple integral cong)

qed

Beppo-Levi monotone convergence theorem

lemma nn integral monotone convergence SUP :
assumes f : incseq f and [measurable]:

∧
i . f i ∈ borel measurable M

shows (
∫

+ x . (SUP i . f i x ) ∂M ) = (SUP i . integralN M (f i))
proof (rule antisym)
show (

∫
+ x . (SUP i . f i x ) ∂M ) ≤ (SUP i . (

∫
+ x . f i x ∂M ))

unfolding nn integral def finite[of λx . SUP i . f i x ]
proof (safe intro!: SUP least)
fix u assume sf u[simp]: simple function M u and
u: u ≤ (λx . SUP i . f i x ) and u range: ∀ x . u x < top

note sf u[THEN borel measurable simple function, measurable]
show integralS M u ≤ (SUP j .

∫
+x . f j x ∂M )

proof (rule ennreal approx unit)
fix a :: ennreal assume a < 1
let ?au = λx . a ∗ u x

let ?B = λc i . {x∈space M . ?au x = c ∧ c ≤ f i x}
have integralS M ?au = (

∑
c∈?au‘space M . c ∗ (SUP i . emeasure M (?B c

i)))
unfolding simple integral def

proof (intro sum.cong ennreal mult left cong refl)
fix c assume c ∈ ?au ‘ space M c 6= 0
{ fix x ′ assume x ′: x ′ ∈ space M ?au x ′ = c
with 〈c 6= 0 〉 u range have ?au x ′ < 1 ∗ u x ′

by (intro ennreal mult strict right mono 〈a < 1 〉) (auto simp: less le)
also have . . . ≤ (SUP i . f i x ′)
using u by (auto simp: le fun def )

finally have ∃ i . ?au x ′ ≤ f i x ′

by (auto simp: less SUP iff intro: less imp le) }
then have ∗: ?au −‘ {c} ∩ space M = (

⋃
i . ?B c i)

by auto
show emeasure M (?au −‘ {c} ∩ space M ) = (SUP i . emeasure M (?B c

i))
unfolding ∗ using f
by (intro SUP emeasure incseq [symmetric])

(auto simp: incseq def le fun def intro: order trans)
qed
also have . . . = (SUP i .

∑
c∈?au‘space M . c ∗ emeasure M (?B c i))

unfolding SUP mult left ennreal using f
by (intro ennreal SUP sum[symmetric])

(auto intro!: mult mono emeasure mono simp: incseq def le fun def intro:
order trans)

also have . . . ≤ (SUP i . integralN M (f i))
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proof (intro SUP subset mono order refl)
fix i
have (

∑
c∈?au‘space M . c ∗ emeasure M (?B c i)) =

(
∫

Sx . (a ∗ u x ) ∗ indicator {x∈space M . a ∗ u x ≤ f i x} x ∂M )
by (subst simple integral indicator)
(auto intro!: sum.cong ennreal mult left cong arg cong2 [where f=emeasure])

also have . . . = (
∫

+x . (a ∗ u x ) ∗ indicator {x∈space M . a ∗ u x ≤ f i x}
x ∂M )

by (rule nn integral eq simple integral [symmetric]) simp
also have . . . ≤ (

∫
+x . f i x ∂M )

by (intro nn integral mono) (auto split : split indicator)
finally show (

∑
c∈?au‘space M . c ∗ emeasure M (?B c i)) ≤ (

∫
+x . f i x

∂M ) .
qed
finally show a ∗ integralS M u ≤ (SUP i . integralN M (f i))
by simp

qed
qed

qed (auto intro!: SUP least SUP upper nn integral mono)

lemma sup continuous nn integral [order continuous intros]:
assumes f :

∧
y . sup continuous (f y)

assumes [measurable]:
∧
x . (λy . f y x ) ∈ borel measurable M

shows sup continuous (λx . (
∫

+y . f y x ∂M ))
unfolding sup continuous def

proof safe
fix C :: nat ⇒ ′b assume C : incseq C
with sup continuous mono[OF f ] show (

∫
+ y . f y (Sup (C ‘ UNIV )) ∂M ) =

(SUP i .
∫

+ y . f y (C i) ∂M )
unfolding sup continuousD [OF f C ]
by (subst nn integral monotone convergence SUP) (auto simp: mono def le fun def )

qed

theorem nn integral monotone convergence SUP AE :
assumes f :

∧
i . AE x in M . f i x ≤ f (Suc i) x

∧
i . f i ∈ borel measurable M

shows (
∫

+ x . (SUP i . f i x ) ∂M ) = (SUP i . integralN M (f i))
proof −
from f have AE x in M . ∀ i . f i x ≤ f (Suc i) x
by (simp add : AE all countable)

from this[THEN AE E ] guess N . note N = this
let ?f = λi x . if x ∈ space M − N then f i x else 0
have f eq : AE x in M . ∀ i . ?f i x = f i x using N by (auto intro!: AE I [of

N ])
then have (

∫
+ x . (SUP i . f i x ) ∂M ) = (

∫
+ x . (SUP i . ?f i x ) ∂M )

by (auto intro!: nn integral cong AE )
also have . . . = (SUP i . (

∫
+ x . ?f i x ∂M ))

proof (rule nn integral monotone convergence SUP)
show incseq ?f using N (1 ) by (force intro!: incseq SucI le funI )
{ fix i show (λx . if x ∈ space M − N then f i x else 0 ) ∈ borel measurable M
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using f N (3 ) by (intro measurable If set) auto }
qed
also have . . . = (SUP i . (

∫
+ x . f i x ∂M ))

using f eq by (force intro!: arg cong [where f = λf . Sup (range f )] nn integral cong AE
ext)
finally show ?thesis .

qed

lemma nn integral monotone convergence simple:
incseq f =⇒ (

∧
i . simple function M (f i)) =⇒ (SUP i .

∫
S x . f i x ∂M ) = (

∫
+x .

(SUP i . f i x ) ∂M )
using nn integral monotone convergence SUP [of f M ]
by (simp add : nn integral eq simple integral [symmetric] borel measurable simple function)

lemma SUP simple integral sequences:
assumes f : incseq f

∧
i . simple function M (f i)

and g : incseq g
∧
i . simple function M (g i)

and eq : AE x in M . (SUP i . f i x ) = (SUP i . g i x )
shows (SUP i . integralS M (f i)) = (SUP i . integralS M (g i))
(is Sup (?F ‘ ) = Sup (?G ‘ ))

proof −
have (SUP i . integralS M (f i)) = (

∫
+x . (SUP i . f i x ) ∂M )

using f by (rule nn integral monotone convergence simple)
also have . . . = (

∫
+x . (SUP i . g i x ) ∂M )

unfolding eq [THEN nn integral cong AE ] ..
also have . . . = (SUP i . ?G i)
using g by (rule nn integral monotone convergence simple[symmetric])

finally show ?thesis by simp
qed

lemma nn integral const [simp]: (
∫

+ x . c ∂M ) = c ∗ emeasure M (space M )
by (subst nn integral eq simple integral) auto

lemma nn integral linear :
assumes f : f ∈ borel measurable M and g : g ∈ borel measurable M
shows (

∫
+ x . a ∗ f x + g x ∂M ) = a ∗ integralN M f + integralN M g

(is integralN M ?L = )
proof −
from borel measurable implies simple function sequence ′[OF f (1 )] guess u .
note u = nn integral monotone convergence simple[OF this(2 ,1 )] this
from borel measurable implies simple function sequence ′[OF g(1 )] guess v .
note v = nn integral monotone convergence simple[OF this(2 ,1 )] this
let ?L ′ = λi x . a ∗ u i x + v i x

have ?L ∈ borel measurable M using assms by auto
from borel measurable implies simple function sequence ′[OF this] guess l .
note l = nn integral monotone convergence simple[OF this(2 ,1 )] this

have inc: incseq (λi . a ∗ integralS M (u i)) incseq (λi . integralS M (v i))
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using u v by (auto simp: incseq Suc iff le fun def intro!: add mono mult left mono
simple integral mono)

have l ′: (SUP i . integralS M (l i)) = (SUP i . integralS M (?L ′ i))
proof (rule SUP simple integral sequences[OF l(3 ,2 )])
show incseq ?L ′ ∧i . simple function M (?L ′ i)
using u v unfolding incseq Suc iff le fun def
by (auto intro!: add mono mult left mono)

{ fix x
have (SUP i . a ∗ u i x + v i x ) = a ∗ (SUP i . u i x ) + (SUP i . v i x )
using u(3 ) v(3 ) u(4 )[of x ] v(4 )[of x ] unfolding SUP mult left ennreal
by (auto intro!: ennreal SUP add simp: incseq Suc iff le fun def add mono

mult left mono) }
then show AE x in M . (SUP i . l i x ) = (SUP i . ?L ′ i x )
unfolding l(5 ) using u(5 ) v(5 ) by (intro AE I2 ) auto

qed
also have . . . = (SUP i . a ∗ integralS M (u i) + integralS M (v i))
using u(2 ) v(2 ) by auto

finally show ?thesis
unfolding l(5 )[symmetric] l(1 )[symmetric]
by (simp add : ennreal SUP add [OF inc] v u SUP mult left ennreal [symmetric])

qed

lemma nn integral cmult : f ∈ borel measurable M =⇒ (
∫

+ x . c ∗ f x ∂M ) = c ∗
integralN M f
using nn integral linear [of f M λx . 0 c] by simp

lemma nn integral multc: f ∈ borel measurable M =⇒ (
∫

+ x . f x ∗ c ∂M ) =
integralN M f ∗ c
unfolding mult .commute[of c] nn integral cmult by simp

lemma nn integral divide: f ∈ borel measurable M =⇒ (
∫

+ x . f x / c ∂M ) =
(
∫

+ x . f x ∂M ) / c
unfolding divide ennreal def by (rule nn integral multc)

lemma nn integral indicator [simp]: A ∈ sets M =⇒ (
∫

+ x . indicator A x∂M ) =
(emeasure M ) A
by (subst nn integral eq simple integral) (auto simp: simple integral indicator)

lemma nn integral cmult indicator : A ∈ sets M =⇒ (
∫

+ x . c ∗ indicator A x
∂M ) = c ∗ emeasure M A
by (subst nn integral eq simple integral) (auto)

lemma nn integral indicator ′:
assumes [measurable]: A ∩ space M ∈ sets M
shows (

∫
+ x . indicator A x ∂M ) = emeasure M (A ∩ space M )

proof −
have (

∫
+ x . indicator A x ∂M ) = (

∫
+ x . indicator (A ∩ space M ) x ∂M )

by (intro nn integral cong) (simp split : split indicator)
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also have . . . = emeasure M (A ∩ space M )
by simp

finally show ?thesis .
qed

lemma nn integral indicator singleton[simp]:
assumes [measurable]: {y} ∈ sets M shows (

∫
+x . f x ∗ indicator {y} x ∂M )

= f y ∗ emeasure M {y}
proof −
have (

∫
+x . f x ∗ indicator {y} x ∂M ) = (

∫
+x . f y ∗ indicator {y} x ∂M )

by (auto intro!: nn integral cong split : split indicator)
then show ?thesis
by (simp add : nn integral cmult)

qed

lemma nn integral set ennreal :
(
∫

+x . ennreal (f x ) ∗ indicator A x ∂M ) = (
∫

+x . ennreal (f x ∗ indicator A x )
∂M )
by (rule nn integral cong) (simp split : split indicator)

lemma nn integral indicator singleton ′[simp]:
assumes [measurable]: {y} ∈ sets M
shows (

∫
+x . ennreal (f x ∗ indicator {y} x ) ∂M ) = f y ∗ emeasure M {y}

by (subst nn integral set ennreal [symmetric]) (simp)

lemma nn integral add :
f ∈ borel measurable M =⇒ g ∈ borel measurable M =⇒ (

∫
+ x . f x + g x ∂M )

= integralN M f + integralN M g
using nn integral linear [of f M g 1 ] by simp

lemma nn integral sum:
(
∧
i . i ∈ P =⇒ f i ∈ borel measurable M ) =⇒ (

∫
+ x . (

∑
i∈P . f i x ) ∂M ) =

(
∑

i∈P . integralN M (f i))
by (induction P rule: infinite finite induct) (auto simp: nn integral add)

theorem nn integral suminf :
assumes f :

∧
i . f i ∈ borel measurable M

shows (
∫

+ x . (
∑

i . f i x ) ∂M ) = (
∑

i . integralN M (f i))
proof −
have all pos: AE x in M . ∀ i . 0 ≤ f i x
using assms by (auto simp: AE all countable)

have (
∑

i . integralN M (f i)) = (SUP n.
∑

i<n. integralN M (f i))
by (rule suminf eq SUP)

also have . . . = (SUP n.
∫

+x . (
∑

i<n. f i x ) ∂M )
unfolding nn integral sum[OF f ] ..

also have . . . =
∫

+x . (SUP n.
∑

i<n. f i x ) ∂M using f all pos
by (intro nn integral monotone convergence SUP AE [symmetric])

(elim AE mp, auto simp: sum nonneg simp del : sum.lessThan Suc intro!:
AE I2 sum mono2 )
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also have . . . =
∫

+x . (
∑

i . f i x ) ∂M using all pos
by (intro nn integral cong AE ) (auto simp: suminf eq SUP)

finally show ?thesis by simp
qed

lemma nn integral bound simple function:
assumes bnd :

∧
x . x ∈ space M =⇒ f x < ∞

assumes f [measurable]: simple function M f
assumes supp: emeasure M {x∈space M . f x 6= 0} < ∞
shows nn integral M f < ∞

proof cases
assume space M = {}
then have nn integral M f = (

∫
+x . 0 ∂M )

by (intro nn integral cong) auto
then show ?thesis by simp

next
assume space M 6= {}
with simple functionD(1 )[OF f ] bnd have bnd : 0 ≤ Max (f‘space M ) ∧ Max

(f‘space M ) < ∞
by (subst Max less iff ) (auto simp: Max ge iff )

have nn integral M f ≤ (
∫

+x . Max (f‘space M ) ∗ indicator {x∈space M . f x 6=
0} x ∂M )
proof (rule nn integral mono)
fix x assume x ∈ space M
with f show f x ≤ Max (f ‘ space M ) ∗ indicator {x ∈ space M . f x 6= 0} x
by (auto split : split indicator intro!: Max ge simple functionD)

qed
also have . . . < ∞
using bnd supp by (subst nn integral cmult) (auto simp: ennreal mult less top)

finally show ?thesis .
qed

theorem nn integral Markov inequality :
assumes u: u ∈ borel measurable M and A ∈ sets M
shows (emeasure M ) ({x∈space M . 1 ≤ c ∗ u x} ∩ A) ≤ c ∗ (

∫
+ x . u x ∗

indicator A x ∂M )
(is (emeasure M ) ?A ≤ ∗ ?PI )

proof −
have ?A ∈ sets M
using 〈A ∈ sets M 〉 u by auto

hence (emeasure M ) ?A = (
∫

+ x . indicator ?A x ∂M )
using nn integral indicator by simp

also have . . . ≤ (
∫

+ x . c ∗ (u x ∗ indicator A x ) ∂M )
using u by (auto intro!: nn integral mono AE simp: indicator def )

also have . . . = c ∗ (
∫

+ x . u x ∗ indicator A x ∂M )
using assms by (auto intro!: nn integral cmult)

finally show ?thesis .
qed
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lemma nn integral noteq infinite:
assumes g : g ∈ borel measurable M and integralN M g 6= ∞
shows AE x in M . g x 6= ∞

proof (rule ccontr)
assume c: ¬ (AE x in M . g x 6= ∞)
have (emeasure M ) {x∈space M . g x = ∞} 6= 0
using c g by (auto simp add : AE iff null)

then have 0 < (emeasure M ) {x∈space M . g x = ∞}
by (auto simp: zero less iff neq zero)

then have ∞ = ∞ ∗ (emeasure M ) {x∈space M . g x = ∞}
by (auto simp: ennreal top eq mult iff )

also have . . . ≤ (
∫

+x . ∞ ∗ indicator {x∈space M . g x = ∞} x ∂M )
using g by (subst nn integral cmult indicator) auto

also have . . . ≤ integralN M g
using assms by (auto intro!: nn integral mono AE simp: indicator def )

finally show False
using 〈integralN M g 6= ∞〉 by (auto simp: top unique)

qed

lemma nn integral PInf :
assumes f : f ∈ borel measurable M and not Inf : integralN M f 6= ∞
shows emeasure M (f −‘ {∞} ∩ space M ) = 0

proof −
have ∞ ∗ emeasure M (f −‘ {∞} ∩ space M ) = (

∫
+ x . ∞ ∗ indicator (f −‘

{∞} ∩ space M ) x ∂M )
using f by (subst nn integral cmult indicator) (auto simp: measurable sets)

also have . . . ≤ integralN M f
by (auto intro!: nn integral mono simp: indicator def )

finally have ∞ ∗ (emeasure M ) (f −‘ {∞} ∩ space M ) ≤ integralN M f
by simp

then show ?thesis
using assms by (auto simp: ennreal top mult top unique split : if split asm)

qed

lemma simple integral PInf :
simple function M f =⇒ integralS M f 6= ∞ =⇒ emeasure M (f −‘ {∞} ∩ space

M ) = 0
by (rule nn integral PInf ) (auto simp: nn integral eq simple integral borel measurable simple function)

lemma nn integral PInf AE :
assumes f ∈ borel measurable M integralN M f 6= ∞ shows AE x in M . f x 6=
∞
proof (rule AE I )
show (emeasure M ) (f −‘ {∞} ∩ space M ) = 0
by (rule nn integral PInf [OF assms])

show f −‘ {∞} ∩ space M ∈ sets M
using assms by (auto intro: borel measurable vimage)

qed auto
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lemma nn integral diff :
assumes f : f ∈ borel measurable M
and g : g ∈ borel measurable M
and fin: integralN M g 6= ∞
and mono: AE x in M . g x ≤ f x
shows (

∫
+ x . f x − g x ∂M ) = integralN M f − integralN M g

proof −
have diff : (λx . f x − g x ) ∈ borel measurable M
using assms by auto

have AE x in M . f x = f x − g x + g x
using diff add cancel ennreal mono nn integral noteq infinite[OF g fin] assms

by auto
then have ∗∗: integralN M f = (

∫
+x . f x − g x ∂M ) + integralN M g

unfolding nn integral add [OF diff g , symmetric]
by (rule nn integral cong AE )

show ?thesis unfolding ∗∗
using fin
by (cases rule: ennreal2 cases[of

∫
+ x . f x − g x ∂M integralN M g ]) auto

qed

lemma nn integral mult bounded inf :
assumes f : f ∈ borel measurable M (

∫
+x . f x ∂M ) < ∞ and c: c 6= ∞ and

ae: AE x in M . g x ≤ c ∗ f x
shows (

∫
+x . g x ∂M ) < ∞

proof −
have (

∫
+x . g x ∂M ) ≤ (

∫
+x . c ∗ f x ∂M )

by (intro nn integral mono AE ae)
also have (

∫
+x . c ∗ f x ∂M ) < ∞

using c f by (subst nn integral cmult) (auto simp: ennreal mult less top top unique
not less)
finally show ?thesis .

qed

Fatou’s lemma: convergence theorem on limes inferior

lemma nn integral monotone convergence INF AE ′:
assumes f :

∧
i . AE x in M . f (Suc i) x ≤ f i x and [measurable]:

∧
i . f i ∈

borel measurable M
and ∗: (

∫
+ x . f 0 x ∂M ) < ∞

shows (
∫

+ x . (INF i . f i x ) ∂M ) = (INF i . integralN M (f i))
proof (rule ennreal minus cancel)
have integralN M (f 0 ) − (

∫
+ x . (INF i . f i x ) ∂M ) = (

∫
+x . f 0 x − (INF i .

f i x ) ∂M )
proof (rule nn integral diff [symmetric])
have (

∫
+ x . (INF i . f i x ) ∂M ) ≤ (

∫
+ x . f 0 x ∂M )

by (intro nn integral mono INF lower) simp
with ∗ show (

∫
+ x . (INF i . f i x ) ∂M ) 6= ∞

by simp
qed (auto intro: INF lower)
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also have . . . = (
∫

+x . (SUP i . f 0 x − f i x ) ∂M )
by (simp add : ennreal INF const minus)

also have . . . = (SUP i . (
∫

+x . f 0 x − f i x ∂M ))
proof (intro nn integral monotone convergence SUP AE )
show AE x in M . f 0 x − f i x ≤ f 0 x − f (Suc i) x for i
using f [of i ] by eventually elim (auto simp: ennreal mono minus)

qed simp
also have . . . = (SUP i . nn integral M (f 0 ) − (

∫
+x . f i x ∂M ))

proof (subst nn integral diff [symmetric])
fix i
have dec: AE x in M . ∀ i . f (Suc i) x ≤ f i x
unfolding AE all countable using f by auto

then show AE x in M . f i x ≤ f 0 x
using dec by eventually elim (auto intro: lift Suc antimono le[of λi . f i x 0 i

for x ])
then have (

∫
+ x . f i x ∂M ) ≤ (

∫
+ x . f 0 x ∂M )

by (rule nn integral mono AE )
with ∗ show (

∫
+ x . f i x ∂M ) 6= ∞

by simp
qed (insert f , auto simp: decseq def le fun def )
finally show integralN M (f 0 ) − (

∫
+ x . (INF i . f i x ) ∂M ) =

integralN M (f 0 ) − (INF i .
∫

+ x . f i x ∂M )
by (simp add : ennreal INF const minus)

qed (insert ∗, auto intro!: nn integral mono intro: INF lower)

theorem nn integral monotone convergence INF AE :
fixes f :: nat ⇒ ′a ⇒ ennreal
assumes f :

∧
i . AE x in M . f (Suc i) x ≤ f i x

and [measurable]:
∧
i . f i ∈ borel measurable M

and fin: (
∫

+ x . f i x ∂M ) < ∞
shows (

∫
+ x . (INF i . f i x ) ∂M ) = (INF i . integralN M (f i))

proof −
{ fix f :: nat ⇒ ennreal and j assume decseq f
then have (INF i . f i) = (INF i . f (i + j ))
apply (intro INF eq)
apply (rule tac x=i in bexI )
apply (auto simp: decseq def le fun def )
done }

note INF shift = this
have mono: AE x in M . ∀ i . f (Suc i) x ≤ f i x
using f by (auto simp: AE all countable)

then have AE x in M . (INF i . f i x ) = (INF n. f (n + i) x )
by eventually elim (auto intro!: decseq SucI INF shift)

then have (
∫

+ x . (INF i . f i x ) ∂M ) = (
∫

+ x . (INF n. f (n + i) x ) ∂M )
by (rule nn integral cong AE )

also have . . . = (INF n. (
∫

+ x . f (n + i) x ∂M ))
by (rule nn integral monotone convergence INF AE ′) (insert assms, auto)

also have . . . = (INF n. (
∫

+ x . f n x ∂M ))
by (intro INF shift [symmetric] decseq SucI nn integral mono AE f )
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finally show ?thesis .
qed

lemma nn integral monotone convergence INF decseq :
assumes f : decseq f and ∗:

∧
i . f i ∈ borel measurable M (

∫
+ x . f i x ∂M ) <

∞
shows (

∫
+ x . (INF i . f i x ) ∂M ) = (INF i . integralN M (f i))

using nn integral monotone convergence INF AE [of f M i , OF ∗] f by (auto
simp: decseq Suc iff le fun def )

theorem nn integral liminf :
fixes u :: nat ⇒ ′a ⇒ ennreal
assumes u:

∧
i . u i ∈ borel measurable M

shows (
∫

+ x . liminf (λn. u n x ) ∂M ) ≤ liminf (λn. integralN M (u n))
proof −
have (

∫
+ x . liminf (λn. u n x ) ∂M ) = (SUP n.

∫
+ x . (INF i∈{n..}. u i x )

∂M )
unfolding liminf SUP INF using u
by (intro nn integral monotone convergence SUP AE )

(auto intro!: AE I2 intro: INF greatest INF superset mono)
also have . . . ≤ liminf (λn. integralN M (u n))
by (auto simp: liminf SUP INF intro!: SUP mono INF greatest nn integral mono

INF lower)
finally show ?thesis .

qed

theorem nn integral limsup:
fixes u :: nat ⇒ ′a ⇒ ennreal
assumes [measurable]:

∧
i . u i ∈ borel measurable M w ∈ borel measurable M

assumes bounds:
∧
i . AE x in M . u i x ≤ w x and w : (

∫
+x . w x ∂M ) < ∞

shows limsup (λn. integralN M (u n)) ≤ (
∫

+ x . limsup (λn. u n x ) ∂M )
proof −
have bnd : AE x in M . ∀ i . u i x ≤ w x
using bounds by (auto simp: AE all countable)

then have (
∫

+ x . (SUP n. u n x ) ∂M ) ≤ (
∫

+ x . w x ∂M )
by (auto intro!: nn integral mono AE elim: eventually mono intro: SUP least)

then have (
∫

+ x . limsup (λn. u n x ) ∂M ) = (INF n.
∫

+ x . (SUP i∈{n..}. u i
x ) ∂M )

unfolding limsup INF SUP using bnd w
by (intro nn integral monotone convergence INF AE ′)

(auto intro!: AE I2 intro: SUP least SUP subset mono)
also have . . . ≥ limsup (λn. integralN M (u n))
by (auto simp: limsup INF SUP intro!: INF mono SUP least exI nn integral mono

SUP upper)
finally (xtrans) show ?thesis .

qed

lemma nn integral LIMSEQ :
assumes f : incseq f

∧
i . f i ∈ borel measurable M
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and u:
∧
x . (λi . f i x ) −−−−→ u x

shows (λn. integralN M (f n)) −−−−→ integralN M u
proof −
have (λn. integralN M (f n)) −−−−→ (SUP n. integralN M (f n))
using f by (intro LIMSEQ SUP [of λn. integralN M (f n)] incseq nn integral)

also have (SUP n. integralN M (f n)) = integralN M (λx . SUP n. f n x )
using f by (intro nn integral monotone convergence SUP [symmetric])

also have integralN M (λx . SUP n. f n x ) = integralN M (λx . u x )
using f by (subst LIMSEQ SUP [THEN LIMSEQ unique, OF u]) (auto simp:

incseq def le fun def )
finally show ?thesis .

qed

theorem nn integral dominated convergence:
assumes [measurable]:∧

i . u i ∈ borel measurable M u ′ ∈ borel measurable M w ∈ borel measurable
M

and bound :
∧
j . AE x in M . u j x ≤ w x

and w : (
∫

+x . w x ∂M ) < ∞
and u ′: AE x in M . (λi . u i x ) −−−−→ u ′ x

shows (λi . (
∫

+x . u i x ∂M )) −−−−→ (
∫

+x . u ′ x ∂M )
proof −
have limsup (λn. integralN M (u n)) ≤ (

∫
+ x . limsup (λn. u n x ) ∂M )

by (intro nn integral limsup[OF bound w ]) auto
moreover have (

∫
+ x . limsup (λn. u n x ) ∂M ) = (

∫
+ x . u ′ x ∂M )

using u ′ by (intro nn integral cong AE , eventually elim) (metis tendsto iff Liminf eq Limsup
sequentially bot)
moreover have (

∫
+ x . liminf (λn. u n x ) ∂M ) = (

∫
+ x . u ′ x ∂M )

using u ′ by (intro nn integral cong AE , eventually elim) (metis tendsto iff Liminf eq Limsup
sequentially bot)
moreover have (

∫
+x . liminf (λn. u n x ) ∂M ) ≤ liminf (λn. integralN M (u

n))
by (intro nn integral liminf ) auto

moreover have liminf (λn. integralN M (u n)) ≤ limsup (λn. integralN M (u
n))

by (intro Liminf le Limsup sequentially bot)
ultimately show ?thesis
by (intro Liminf eq Limsup) auto

qed

lemma inf continuous nn integral [order continuous intros]:
assumes f :

∧
y . inf continuous (f y)

assumes [measurable]:
∧
x . (λy . f y x ) ∈ borel measurable M

assumes bnd :
∧
x . (

∫
+ y . f y x ∂M ) 6= ∞

shows inf continuous (λx . (
∫

+y . f y x ∂M ))
unfolding inf continuous def

proof safe
fix C :: nat ⇒ ′b assume C : decseq C
then show (

∫
+ y . f y (Inf (C ‘ UNIV )) ∂M ) = (INF i .

∫
+ y . f y (C i) ∂M )
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using inf continuous mono[OF f ] bnd
by (auto simp add : inf continuousD [OF f C ] fun eq iff antimono def mono def

le fun def less top
intro!: nn integral monotone convergence INF decseq)

qed

lemma nn integral null set :
assumes N ∈ null sets M shows (

∫
+ x . u x ∗ indicator N x ∂M ) = 0

proof −
have (

∫
+ x . u x ∗ indicator N x ∂M ) = (

∫
+ x . 0 ∂M )

proof (intro nn integral cong AE AE I )
show {x ∈ space M . u x ∗ indicator N x 6= 0} ⊆ N
by (auto simp: indicator def )

show (emeasure M ) N = 0 N ∈ sets M
using assms by auto

qed
then show ?thesis by simp

qed

lemma nn integral 0 iff :
assumes u: u ∈ borel measurable M
shows integralN M u = 0 ←→ emeasure M {x∈space M . u x 6= 0} = 0
(is ←→ (emeasure M ) ?A = 0 )

proof −
have u eq : (

∫
+ x . u x ∗ indicator ?A x ∂M ) = integralN M u

by (auto intro!: nn integral cong simp: indicator def )
show ?thesis
proof
assume (emeasure M ) ?A = 0
with nn integral null set [of ?A M u] u
show integralN M u = 0 by (simp add : u eq null sets def )

next
assume ∗: integralN M u = 0
let ?M = λn. {x ∈ space M . 1 ≤ real (n::nat) ∗ u x}
have 0 = (SUP n. (emeasure M ) (?M n ∩ ?A))
proof −
{ fix n :: nat
from nn integral Markov inequality [OF u, of ?A of nat n] u
have (emeasure M ) (?M n ∩ ?A) ≤ 0
by (simp add : ennreal of nat eq real of nat u eq ∗)

moreover have 0 ≤ (emeasure M ) (?M n ∩ ?A) using u by auto
ultimately have (emeasure M ) (?M n ∩ ?A) = 0 by auto }

thus ?thesis by simp
qed
also have . . . = (emeasure M ) (

⋃
n. ?M n ∩ ?A)

proof (safe intro!: SUP emeasure incseq)
fix n show ?M n ∩ ?A ∈ sets M
using u by (auto intro!: sets.Int)

next
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show incseq (λn. {x ∈ space M . 1 ≤ real n ∗ u x} ∩ {x ∈ space M . u x 6=
0})

proof (safe intro!: incseq SucI )
fix n :: nat and x
assume ∗: 1 ≤ real n ∗ u x
also have real n ∗ u x ≤ real (Suc n) ∗ u x
by (auto intro!: mult right mono)

finally show 1 ≤ real (Suc n) ∗ u x by auto
qed

qed
also have . . . = (emeasure M ) {x∈space M . 0 < u x}
proof (safe intro!: arg cong [where f=(emeasure M )])
fix x assume 0 < u x and [simp, intro]: x ∈ space M
show x ∈ (

⋃
n. ?M n ∩ ?A)

proof (cases u x rule: ennreal cases)
case (real r) with 〈0 < u x 〉 have 0 < r by auto
obtain j :: nat where 1 / r ≤ real j using real arch simple ..
hence 1 / r ∗ r ≤ real j ∗ r unfolding mult le cancel right using 〈0 < r 〉

by auto
hence 1 ≤ real j ∗ r using real 〈0 < r 〉 by auto
thus ?thesis using 〈0 < r 〉 real

by (auto simp: ennreal of nat eq real of nat ennreal 1 [symmetric] en-
nreal mult [symmetric]

simp del : ennreal 1 )
qed (insert 〈0 < u x 〉, auto simp: ennreal mult top)

qed (auto simp: zero less iff neq zero)
finally show emeasure M ?A = 0
by (simp add : zero less iff neq zero)

qed
qed

lemma nn integral 0 iff AE :
assumes u: u ∈ borel measurable M
shows integralN M u = 0 ←→ (AE x in M . u x = 0 )

proof −
have sets: {x∈space M . u x 6= 0} ∈ sets M
using u by auto

show integralN M u = 0 ←→ (AE x in M . u x = 0 )
using nn integral 0 iff [of u] AE iff null [OF sets] u by auto

qed

lemma AE iff nn integral :
{x∈space M . P x} ∈ sets M =⇒ (AE x in M . P x ) ←→ integralN M (indicator
{x . ¬ P x}) = 0
by (subst nn integral 0 iff AE ) (auto simp: indicator def [abs def ])

lemma nn integral less:
assumes [measurable]: f ∈ borel measurable M g ∈ borel measurable M
assumes f : (

∫
+x . f x ∂M ) 6= ∞

Nonnegative{_}{\kern 0pt}Lebesgue{_}{\kern 0pt}Integration.html


1452

assumes ord : AE x in M . f x ≤ g x ¬ (AE x in M . g x ≤ f x )
shows (

∫
+x . f x ∂M ) < (

∫
+x . g x ∂M )

proof −
have 0 < (

∫
+x . g x − f x ∂M )

proof (intro order le neq trans notI )
assume 0 = (

∫
+x . g x − f x ∂M )

then have AE x in M . g x − f x = 0
using nn integral 0 iff AE [of λx . g x − f x M ] by simp

with ord(1 ) have AE x in M . g x ≤ f x
by eventually elim (auto simp: ennreal minus eq 0 )

with ord show False
by simp

qed simp
also have . . . = (

∫
+x . g x ∂M ) − (

∫
+x . f x ∂M )

using f by (subst nn integral diff ) (auto simp: ord)
finally show ?thesis
using f by (auto dest !: ennreal minus pos iff [rotated ] simp: less top)

qed

lemma nn integral subalgebra:
assumes f : f ∈ borel measurable N
and N : sets N ⊆ sets M space N = space M

∧
A. A ∈ sets N =⇒ emeasure N

A = emeasure M A
shows integralN N f = integralN M f

proof −
have [simp]:

∧
f :: ′a ⇒ ennreal . f ∈ borel measurable N =⇒ f ∈ borel measurable

M
using N by (auto simp: measurable def )

have [simp]:
∧
P . (AE x in N . P x ) =⇒ (AE x in M . P x )

using N by (auto simp add : eventually ae filter null sets def subset eq)
have [simp]:

∧
A. A ∈ sets N =⇒ A ∈ sets M

using N by auto
from f show ?thesis
apply induct
apply (simp all add : nn integral add nn integral cmult nn integral monotone convergence SUP

N image comp)
apply (auto intro!: nn integral cong cong : nn integral cong simp: N (2 )[symmetric])
done

qed

lemma nn integral nat function:
fixes f :: ′a ⇒ nat
assumes f ∈ measurable M (count space UNIV )
shows (

∫
+x . of nat (f x ) ∂M ) = (

∑
t . emeasure M {x∈space M . t < f x})

proof −
define F where F i = {x∈space M . i < f x} for i
with assms have [measurable]:

∧
i . F i ∈ sets M

by auto
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{ fix x assume x ∈ space M
have (λi . if i < f x then 1 else 0 ) sums (of nat (f x )::real)
using sums If finite[of λi . i < f x λ . 1 ::real ] by simp

then have (λi . ennreal (if i < f x then 1 else 0 )) sums of nat(f x )
unfolding ennreal of nat eq real of nat
by (subst sums ennreal) auto

moreover have
∧
i . ennreal (if i < f x then 1 else 0 ) = indicator (F i) x

using 〈x ∈ space M 〉 by (simp add : one ennreal def F def )
ultimately have of nat (f x ) = (

∑
i . indicator (F i) x :: ennreal)

by (simp add : sums iff ) }
then have (

∫
+x . of nat (f x ) ∂M ) = (

∫
+x . (

∑
i . indicator (F i) x ) ∂M )

by (simp cong : nn integral cong)
also have . . . = (

∑
i . emeasure M (F i))

by (simp add : nn integral suminf )
finally show ?thesis
by (simp add : F def )

qed

theorem nn integral lfp:
assumes sets[simp]:

∧
s. sets (M s) = sets N

assumes f : sup continuous f
assumes g : sup continuous g
assumes meas:

∧
F . F ∈ borel measurable N =⇒ f F ∈ borel measurable N

assumes step:
∧
F s. F ∈ borel measurable N =⇒ integralN (M s) (f F ) = g

(λs. integralN (M s) F ) s
shows (

∫
+ω. lfp f ω ∂M s) = lfp g s

proof (subst lfp transfer bounded [where α=λF s.
∫

+x . F x ∂M s and g=g and
f=f and P=λf . f ∈ borel measurable N , symmetric])
fix C :: nat ⇒ ′b ⇒ ennreal assume incseq C

∧
i . C i ∈ borel measurable N

then show (λs.
∫

+x . (SUP i . C i) x ∂M s) = (SUP i . (λs.
∫

+x . C i x ∂M s))
unfolding SUP apply [abs def ]
by (subst nn integral monotone convergence SUP)

(auto simp: mono def fun eq iff intro!: arg cong2 [where f=emeasure] cong :
measurable cong sets)
qed (auto simp add : step le fun def SUP apply [abs def ] bot fun def bot ennreal in-
tro!: meas f g)

theorem nn integral gfp:
assumes sets[simp]:

∧
s. sets (M s) = sets N

assumes f : inf continuous f and g : inf continuous g
assumes meas:

∧
F . F ∈ borel measurable N =⇒ f F ∈ borel measurable N

assumes bound :
∧
F s. F ∈ borel measurable N =⇒ (

∫
+x . f F x ∂M s) < ∞

assumes non zero:
∧
s. emeasure (M s) (space (M s)) 6= 0

assumes step:
∧
F s. F ∈ borel measurable N =⇒ integralN (M s) (f F ) = g

(λs. integralN (M s) F ) s
shows (

∫
+ω. gfp f ω ∂M s) = gfp g s

proof (subst gfp transfer bounded [where α=λF s.
∫

+x . F x ∂M s and g=g and
f=f

and P=λF . F ∈ borel measurable N ∧ (∀ s. (
∫

+x . F x ∂M s) <∞), symmetric])
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fix C :: nat ⇒ ′b ⇒ ennreal assume decseq C
∧
i . C i ∈ borel measurable N ∧

(∀ s. integralN (M s) (C i) < ∞)
then show (λs.

∫
+x . (INF i . C i) x ∂M s) = (INF i . (λs.

∫
+x . C i x ∂M s))

unfolding INF apply [abs def ]
by (subst nn integral monotone convergence INF decseq)

(auto simp: mono def fun eq iff intro!: arg cong2 [where f=emeasure] cong :
measurable cong sets)
next
show

∧
x . g x ≤ (λs. integralN (M s) (f top))

by (subst step)
(auto simp add : top fun def less le non zero le fun def ennreal top mult

cong del : if weak cong intro!: monoD [OF inf continuous mono[OF g ],
THEN le funD ])
next
fix C assume

∧
i ::nat . C i ∈ borel measurable N ∧ (∀ s. integralN (M s) (C i)

< ∞) decseq C
with bound show Inf (C ‘ UNIV ) ∈ borel measurable N ∧ (∀ s. integralN (M

s) (Inf (C ‘ UNIV )) < ∞)
unfolding INF apply [abs def ]
by (subst nn integral monotone convergence INF decseq)
(auto simp: INF less iff cong : measurable cong sets intro!: borel measurable INF )

next
show

∧
x . x ∈ borel measurable N ∧ (∀ s. integralN (M s) x < ∞) =⇒

(λs. integralN (M s) (f x )) = g (λs. integralN (M s) x )
by (subst step) auto

qed (insert bound , auto simp add : le fun def INF apply [abs def ] top fun def intro!:
meas f g)

6.6.5 Integral under concrete measures

lemma nn integral mono measure:
assumes sets M = sets N M ≤ N shows nn integral M f ≤ nn integral N f
unfolding nn integral def

proof (intro SUP subset mono)
note 〈sets M = sets N 〉[simp] 〈sets M = sets N 〉[THEN sets eq imp space eq ,

simp]
show {g . simple function M g ∧ g ≤ f } ⊆ {g . simple function N g ∧ g ≤ f }
by (simp add : simple function def )

show integralS M x ≤ integralS N x for x
using le measureD3 [OF 〈M ≤ N 〉]
by (auto simp add : simple integral def intro!: sum mono mult mono)

qed

lemma nn integral empty :
assumes space M = {}
shows nn integral M f = 0

proof −
have (

∫
+ x . f x ∂M ) = (

∫
+ x . 0 ∂M )

by(rule nn integral cong)(simp add : assms)
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thus ?thesis by simp
qed

lemma nn integral bot [simp]: nn integral bot f = 0
by (simp add : nn integral empty)

Distributions

lemma nn integral distr :
assumes T : T ∈ measurable M M ′ and f : f ∈ borel measurable (distr M M ′ T )
shows integralN (distr M M ′ T ) f = (

∫
+ x . f (T x ) ∂M )

using f
proof induct
case (cong f g)
with T show ?case
apply (subst nn integral cong [of f g ])
apply simp
apply (subst nn integral cong [of λx . f (T x ) λx . g (T x )])
apply (simp add : measurable def Pi iff )
apply simp
done

next
case (set A)
then have eq :

∧
x . x ∈ space M =⇒ indicator A (T x ) = indicator (T −‘ A ∩

space M ) x
by (auto simp: indicator def )

from set T show ?case
by (subst nn integral cong [OF eq ])
(auto simp add : emeasure distr intro!: nn integral indicator [symmetric] mea-

surable sets)
qed (simp all add : measurable compose[OF T ] T nn integral cmult nn integral add

nn integral monotone convergence SUP le fun def incseq def
image comp)

Counting space

lemma simple function count space[simp]:
simple function (count space A) f ←→ finite (f ‘ A)
unfolding simple function def by simp

lemma nn integral count space:
assumes A: finite {a∈A. 0 < f a}
shows integralN (count space A) f = (

∑
a|a∈A ∧ 0 < f a. f a)

proof −
have ∗: (

∫
+x . max 0 (f x ) ∂count space A) =

(
∫

+ x . (
∑

a|a∈A ∧ 0 < f a. f a ∗ indicator {a} x ) ∂count space A)
by (auto intro!: nn integral cong

simp add : indicator def if distrib sum.If cases[OF A] max def le less)
also have . . . = (

∑
a|a∈A ∧ 0 < f a.

∫
+ x . f a ∗ indicator {a} x ∂count space

A)
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by (subst nn integral sum) (simp all add : AE count space less imp le)
also have . . . = (

∑
a|a∈A ∧ 0 < f a. f a)

by (auto intro!: sum.cong simp: one ennreal def [symmetric] max def )
finally show ?thesis by (simp add : max .absorb2 )

qed

lemma nn integral count space finite:
finite A =⇒ (

∫
+x . f x ∂count space A) = (

∑
a∈A. f a)

by (auto intro!: sum.mono neutral left simp: nn integral count space less le)

lemma nn integral count space ′:
assumes finite A

∧
x . x ∈ B =⇒ x /∈ A =⇒ f x = 0 A ⊆ B

shows (
∫

+x . f x ∂count space B) = (
∑

x∈A. f x )
proof −
have (

∫
+x . f x ∂count space B) = (

∑
a | a ∈ B ∧ 0 < f a. f a)

using assms(2 ,3 )
by (intro nn integral count space finite subset [OF 〈finite A〉]) (auto simp:

less le)
also have . . . = (

∑
a∈A. f a)

using assms by (intro sum.mono neutral cong left) (auto simp: less le)
finally show ?thesis .

qed

lemma nn integral bij count space:
assumes g : bij betw g A B
shows (

∫
+x . f (g x ) ∂count space A) = (

∫
+x . f x ∂count space B)

using g [THEN bij betw imp funcset ]
by (subst distr bij count space[OF g , symmetric])

(auto intro!: nn integral distr [symmetric])

lemma nn integral indicator finite:
fixes f :: ′a ⇒ ennreal
assumes f : finite A and [measurable]:

∧
a. a ∈ A =⇒ {a} ∈ sets M

shows (
∫

+x . f x ∗ indicator A x ∂M ) = (
∑

x∈A. f x ∗ emeasure M {x})
proof −
from f have (

∫
+x . f x ∗ indicator A x ∂M ) = (

∫
+x . (

∑
a∈A. f a ∗ indicator

{a} x ) ∂M )
by (intro nn integral cong) (auto simp: indicator def if distrib[where f=λa. x

∗ a for x ] sum.If cases)
also have . . . = (

∑
a∈A. f a ∗ emeasure M {a})

by (subst nn integral sum) auto
finally show ?thesis .

qed

lemma nn integral count space nat :
fixes f :: nat ⇒ ennreal
shows (

∫
+i . f i ∂count space UNIV ) = (

∑
i . f i)

proof −
have (

∫
+i . f i ∂count space UNIV ) =



Nonnegative Lebesgue Integration.thy 1457

(
∫

+i . (
∑

j . f j ∗ indicator {j} i) ∂count space UNIV )
proof (intro nn integral cong)
fix i
have f i = (

∑
j∈{i}. f j ∗ indicator {j} i)

by simp
also have . . . = (

∑
j . f j ∗ indicator {j} i)

by (rule suminf finite[symmetric]) auto
finally show f i = (

∑
j . f j ∗ indicator {j} i) .

qed
also have . . . = (

∑
j . (

∫
+i . f j ∗ indicator {j} i ∂count space UNIV ))

by (rule nn integral suminf ) auto
finally show ?thesis
by simp

qed

lemma nn integral enat function:
assumes f : f ∈ measurable M (count space UNIV )
shows (

∫
+ x . ennreal of enat (f x ) ∂M ) = (

∑
t . emeasure M {x ∈ space M . t

< f x})
proof −
define F where F i = {x∈space M . i < f x} for i :: nat
with assms have [measurable]:

∧
i . F i ∈ sets M

by auto

{ fix x assume x ∈ space M
have (λi ::nat . if i < f x then 1 else 0 ) sums ennreal of enat (f x )
using sums If finite[of λr . r < f x λ . 1 :: ennreal ]
by (cases f x ) (simp all add : sums def of nat tendsto top ennreal)

also have (λi . (if i < f x then 1 else 0 )) = (λi . indicator (F i) x )
using 〈x ∈ space M 〉 by (simp add : one ennreal def F def fun eq iff )

finally have ennreal of enat (f x ) = (
∑

i . indicator (F i) x )
by (simp add : sums iff ) }

then have (
∫

+x . ennreal of enat (f x ) ∂M ) = (
∫

+x . (
∑

i . indicator (F i) x )
∂M )

by (simp cong : nn integral cong)
also have . . . = (

∑
i . emeasure M (F i))

by (simp add : nn integral suminf )
finally show ?thesis
by (simp add : F def )

qed

lemma nn integral count space nn integral :
fixes f :: ′i ⇒ ′a ⇒ ennreal
assumes countable I and [measurable]:

∧
i . i ∈ I =⇒ f i ∈ borel measurable M

shows (
∫

+x .
∫

+i . f i x ∂count space I ∂M ) = (
∫

+i .
∫

+x . f i x ∂M ∂count space
I )
proof cases
assume finite I then show ?thesis
by (simp add : nn integral count space finite nn integral sum)
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next
assume infinite I
then have [simp]: I 6= {}
by auto

note ∗ = bij betw from nat into[OF 〈countable I 〉 〈infinite I 〉]
have ∗∗:

∧
f . (

∧
i . 0 ≤ f i) =⇒ (

∫
+i . f i ∂count space I ) = (

∑
n. f (from nat into

I n))
by (simp add : nn integral bij count space[symmetric, OF ∗] nn integral count space nat)
show ?thesis
by (simp add : ∗∗ nn integral suminf from nat into)

qed

lemma of bool Bex eq nn integral :
assumes unique:

∧
x y . x ∈ X =⇒ y ∈ X =⇒ P x =⇒ P y =⇒ x = y

shows of bool (∃ y∈X . P y) = (
∫

+y . of bool (P y) ∂count space X )
proof cases
assume ∃ y∈X . P y
then obtain y where P y y ∈ X by auto
then show ?thesis
by (subst nn integral count space ′[where A={y}]) (auto dest : unique)

qed (auto cong : nn integral cong simp)

lemma emeasure UN countable:
assumes sets[measurable]:

∧
i . i ∈ I =⇒ X i ∈ sets M and I [simp]: countable I

assumes disj : disjoint family on X I
shows emeasure M (

⋃
(X ‘ I )) = (

∫
+i . emeasure M (X i) ∂count space I )

proof −
have eq :

∧
x . indicator (

⋃
(X ‘ I )) x =

∫
+ i . indicator (X i) x ∂count space I

proof cases
fix x assume x : x ∈

⋃
(X ‘ I )

then obtain j where j : x ∈ X j j ∈ I
by auto

with disj have
∧
i . i ∈ I =⇒ indicator (X i) x = (indicator {j} i ::ennreal)

by (auto simp: disjoint family on def split : split indicator)
with x j show ?thesis x
by (simp cong : nn integral cong simp)

qed (auto simp: nn integral 0 iff AE )

note sets.countable UN ′[unfolded subset eq , measurable]
have emeasure M (

⋃
(X ‘ I )) = (

∫
+x . indicator (

⋃
(X ‘ I )) x ∂M )

by simp
also have . . . = (

∫
+i .

∫
+x . indicator (X i) x ∂M ∂count space I )

by (simp add : eq nn integral count space nn integral)
finally show ?thesis
by (simp cong : nn integral cong simp)

qed

lemma emeasure countable singleton:
assumes sets:

∧
x . x ∈ X =⇒ {x} ∈ sets M and X : countable X
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shows emeasure M X = (
∫

+x . emeasure M {x} ∂count space X )
proof −
have emeasure M (

⋃
i∈X . {i}) = (

∫
+x . emeasure M {x} ∂count space X )

using assms by (intro emeasure UN countable) (auto simp: disjoint family on def )
also have (

⋃
i∈X . {i}) = X by auto

finally show ?thesis .
qed

lemma measure eqI countable:
assumes [simp]: sets M = Pow A sets N = Pow A and A: countable A
assumes eq :

∧
a. a ∈ A =⇒ emeasure M {a} = emeasure N {a}

shows M = N
proof (rule measure eqI )
fix X assume X ∈ sets M
then have X : X ⊆ A by auto
moreover from A X have countable X by (auto dest : countable subset)
ultimately have
emeasure M X = (

∫
+a. emeasure M {a} ∂count space X )

emeasure N X = (
∫

+a. emeasure N {a} ∂count space X )
by (auto intro!: emeasure countable singleton)

moreover have (
∫

+a. emeasure M {a} ∂count space X ) = (
∫

+a. emeasure N
{a} ∂count space X )

using X by (intro nn integral cong eq) auto
ultimately show emeasure M X = emeasure N X
by simp

qed simp

lemma measure eqI countable AE :
assumes [simp]: sets M = UNIV sets N = UNIV
assumes ae: AE x in M . x ∈ Ω AE x in N . x ∈ Ω and [simp]: countable Ω
assumes eq :

∧
x . x ∈ Ω =⇒ emeasure M {x} = emeasure N {x}

shows M = N
proof (rule measure eqI )
fix A
have emeasure N A = emeasure N {x∈Ω. x ∈ A}
using ae by (intro emeasure eq AE ) auto

also have . . . = (
∫

+x . emeasure N {x} ∂count space {x∈Ω. x ∈ A})
by (intro emeasure countable singleton) auto

also have . . . = (
∫

+x . emeasure M {x} ∂count space {x∈Ω. x ∈ A})
by (intro nn integral cong eq [symmetric]) auto

also have . . . = emeasure M {x∈Ω. x ∈ A}
by (intro emeasure countable singleton[symmetric]) auto

also have . . . = emeasure M A
using ae by (intro emeasure eq AE ) auto

finally show emeasure M A = emeasure N A ..
qed simp

lemma nn integral monotone convergence SUP nat :
fixes f :: ′a ⇒ nat ⇒ ennreal
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assumes chain: Complete Partial Order .chain (≤) (f ‘ Y )
and nonempty : Y 6= {}
shows (

∫
+ x . (SUP i∈Y . f i x ) ∂count space UNIV ) = (SUP i∈Y . (

∫
+ x . f i

x ∂count space UNIV ))
(is ?lhs = ?rhs is integralN ?M = )

proof (rule order class.order .antisym)
show ?rhs ≤ ?lhs
by (auto intro!: SUP least SUP upper nn integral mono)

next
have ∃ g . incseq g ∧ range g ⊆ (λi . f i x ) ‘ Y ∧ (SUP i∈Y . f i x ) = (SUP i . g

i) for x
by (rule ennreal Sup countable SUP) (simp add : nonempty)

then obtain g where incseq :
∧
x . incseq (g x )

and range:
∧
x . range (g x ) ⊆ (λi . f i x ) ‘ Y

and sup:
∧
x . (SUP i∈Y . f i x ) = (SUP i . g x i) by moura

from incseq have incseq ′: incseq (λi x . g x i)
by(blast intro: incseq SucI le funI dest : incseq SucD)

have ?lhs =
∫

+ x . (SUP i . g x i) ∂?M by(simp add : sup)
also have . . . = (SUP i .

∫
+ x . g x i ∂?M ) using incseq ′

by(rule nn integral monotone convergence SUP) simp
also have . . . ≤ (SUP i∈Y .

∫
+ x . f i x ∂?M )

proof(rule SUP least)
fix n
have

∧
x . ∃ i . g x n = f i x ∧ i ∈ Y using range by blast

then obtain I where I :
∧
x . g x n = f (I x ) x

∧
x . I x ∈ Y by moura

have (
∫

+ x . g x n ∂count space UNIV ) = (
∑

x . g x n)
by(rule nn integral count space nat)

also have . . . = (SUP m.
∑

x<m. g x n)
by(rule suminf eq SUP)

also have . . . ≤ (SUP i∈Y .
∫

+ x . f i x ∂?M )
proof(rule SUP mono)
fix m
show ∃m ′∈Y . (

∑
x<m. g x n) ≤ (

∫
+ x . f m ′ x ∂?M )

proof(cases m > 0 )
case False
thus ?thesis using nonempty by auto

next
case True
let ?Y = I ‘ {..<m}
have f ‘ ?Y ⊆ f ‘ Y using I by auto
with chain have chain ′: Complete Partial Order .chain (≤) (f ‘ ?Y ) by(rule

chain subset)
hence Sup (f ‘ ?Y ) ∈ f ‘ ?Y
by(rule ccpo class.in chain finite)(auto simp add : True lessThan empty iff )
then obtain m ′ where m ′ < m and m ′: (SUP i∈?Y . f i) = f (I m ′) by

auto
have I m ′ ∈ Y using I by blast
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have (
∑

x<m. g x n) ≤ (
∑

x<m. f (I m ′) x )
proof(rule sum mono)
fix x
assume x ∈ {..<m}
hence x < m by simp
have g x n = f (I x ) x by(simp add : I )
also have . . . ≤ (SUP i∈?Y . f i) x unfolding Sup fun def image image
using 〈x ∈ {..<m}〉 by (rule Sup upper [OF imageI ])

also have . . . = f (I m ′) x unfolding m ′ by simp
finally show g x n ≤ f (I m ′) x .

qed
also have . . . ≤ (SUP m. (

∑
x<m. f (I m ′) x ))

by(rule SUP upper) simp
also have . . . = (

∑
x . f (I m ′) x )

by(rule suminf eq SUP [symmetric])
also have . . . = (

∫
+ x . f (I m ′) x ∂?M )

by(rule nn integral count space nat [symmetric])
finally show ?thesis using 〈I m ′ ∈ Y 〉 by blast

qed
qed
finally show (

∫
+ x . g x n ∂count space UNIV ) ≤ . . . .

qed
finally show ?lhs ≤ ?rhs .

qed

lemma power series tendsto at left :
assumes nonneg :

∧
i . 0 ≤ f i and summable:

∧
z . 0 ≤ z =⇒ z < 1 =⇒ summable

(λn. f n ∗ zˆn)
shows ((λz . ennreal (

∑
n. f n ∗ zˆn)) −−−→ (

∑
n. ennreal (f n))) (at left

(1 ::real))
proof (intro tendsto at left sequentially)
show 0 < (1 ::real) by simp
fix S :: nat ⇒ real assume S :

∧
n. S n < 1

∧
n. 0 < S n S −−−−→ 1 incseq S

then have S nonneg :
∧
i . 0 ≤ S i by (auto intro: less imp le)

have (λi . (
∫

+n. f n ∗ S iˆn ∂count space UNIV )) −−−−→ (
∫

+n. ennreal (f n)
∂count space UNIV )
proof (rule nn integral LIMSEQ)
show incseq (λi n. ennreal (f n ∗ S iˆn))
using S by (auto intro!: mult mono power mono nonneg ennreal leI

simp: incseq def le fun def less imp le)
fix n have (λi . ennreal (f n ∗ S iˆn)) −−−−→ ennreal (f n ∗ 1ˆn)
by (intro tendsto intros tendsto ennrealI S )

then show (λi . ennreal (f n ∗ S iˆn)) −−−−→ ennreal (f n)
by simp

qed (auto simp: S nonneg intro!: mult nonneg nonneg nonneg)
also have (λi . (

∫
+n. f n ∗ S iˆn ∂count space UNIV )) = (λi .

∑
n. f n ∗ S iˆn)

by (subst nn integral count space nat)
(intro ext suminf ennreal2 mult nonneg nonneg nonneg S nonneg
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zero le power summable S )+
also have (

∫
+n. ennreal (f n) ∂count space UNIV ) = (

∑
n. ennreal (f n))

by (simp add : nn integral count space nat nonneg)
finally show (λn. ennreal (

∑
na. f na ∗ S n ˆ na)) −−−−→ (

∑
n. ennreal (f n))

.
qed

Measures with Restricted Space

lemma simple function restrict space ennreal :
fixes f :: ′a ⇒ ennreal
assumes Ω ∩ space M ∈ sets M
shows simple function (restrict space M Ω) f ←→ simple function M (λx . f x ∗

indicator Ω x )
proof −
{ assume finite (f ‘ space (restrict space M Ω))
then have finite (f ‘ space (restrict space M Ω) ∪ {0}) by simp
then have finite ((λx . f x ∗ indicator Ω x ) ‘ space M )
by (rule rev finite subset) (auto split : split indicator simp: space restrict space)

}
moreover
{ assume finite ((λx . f x ∗ indicator Ω x ) ‘ space M )
then have finite (f ‘ space (restrict space M Ω))
by (rule rev finite subset) (auto split : split indicator simp: space restrict space)

}
ultimately show ?thesis
unfolding
simple function iff borel measurable borel measurable restrict space iff ennreal [OF

assms]
by auto

qed

lemma simple function restrict space:
fixes f :: ′a ⇒ ′b::real normed vector
assumes Ω ∩ space M ∈ sets M
shows simple function (restrict space M Ω) f ←→ simple function M (λx . indi-

cator Ω x ∗R f x )
proof −
{ assume finite (f ‘ space (restrict space M Ω))
then have finite (f ‘ space (restrict space M Ω) ∪ {0}) by simp
then have finite ((λx . indicator Ω x ∗R f x ) ‘ space M )
by (rule rev finite subset) (auto split : split indicator simp: space restrict space)

}
moreover
{ assume finite ((λx . indicator Ω x ∗R f x ) ‘ space M )
then have finite (f ‘ space (restrict space M Ω))
by (rule rev finite subset) (auto split : split indicator simp: space restrict space)

}
ultimately show ?thesis
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unfolding simple function iff borel measurable
borel measurable restrict space iff [OF assms]

by auto
qed

lemma simple integral restrict space:
assumes Ω: Ω ∩ space M ∈ sets M simple function (restrict space M Ω) f
shows simple integral (restrict space M Ω) f = simple integral M (λx . f x ∗

indicator Ω x )
using simple function restrict space ennreal [THEN iffD1 , OF Ω, THEN sim-

ple functionD(1 )]
by (auto simp add : space restrict space emeasure restrict space[OF Ω(1 )] le infI2

simple integral def
split : split indicator split indicator asm

intro!: sum.mono neutral cong left ennreal mult left cong arg cong2 [where
f=emeasure])

lemma nn integral restrict space:
assumes Ω[simp]: Ω ∩ space M ∈ sets M
shows nn integral (restrict space M Ω) f = nn integral M (λx . f x ∗ indicator

Ω x )
proof −
let ?R = restrict space M Ω and ?X = λM f . {s. simple function M s ∧ s ≤ f
∧ (∀ x . s x < top)}
have integralS ?R ‘ ?X ?R f = integralS M ‘ ?X M (λx . f x ∗ indicator Ω x )
proof (safe intro!: image eqI )
fix s assume s: simple function ?R s s ≤ f ∀ x . s x < top
from s show integralS (restrict space M Ω) s = integralS M (λx . s x ∗ indicator

Ω x )
by (intro simple integral restrict space) auto

from s show simple function M (λx . s x ∗ indicator Ω x )
by (simp add : simple function restrict space ennreal)

from s show (λx . s x ∗ indicator Ω x ) ≤ (λx . f x ∗ indicator Ω x )∧
x . s x ∗ indicator Ω x < top

by (auto split : split indicator simp: le fun def image subset iff )
next
fix s assume s: simple function M s s ≤ (λx . f x ∗ indicator Ω x ) ∀ x . s x <

top
then have simple function M (λx . s x ∗ indicator (Ω ∩ space M ) x ) (is ?s ′)
by (intro simple function mult simple function indicator) auto

also have ?s ′←→ simple function M (λx . s x ∗ indicator Ω x )
by (rule simple function cong) (auto split : split indicator)

finally show sf : simple function (restrict space M Ω) s
by (simp add : simple function restrict space ennreal)

from s have s eq : s = (λx . s x ∗ indicator Ω x )
by (auto simp add : fun eq iff le fun def image subset iff

split : split indicator split indicator asm
intro: antisym)
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show integralS M s = integralS (restrict space M Ω) s
by (subst s eq) (rule simple integral restrict space[symmetric, OF Ω sf ])

show
∧
x . s x < top

using s by (auto simp: image subset iff )
from s show s ≤ f

by (subst s eq) (auto simp: image subset iff le fun def split : split indicator
split indicator asm)
qed
then show ?thesis
unfolding nn integral def finite by (simp cong del : SUP cong simp)

qed

lemma nn integral count space indicator :
assumes NO MATCH (UNIV :: ′a set) (X :: ′a set)
shows (

∫
+x . f x ∂count space X ) = (

∫
+x . f x ∗ indicator X x ∂count space

UNIV )
by (simp add : nn integral restrict space[symmetric] restrict count space)

lemma nn integral count space eq :
(
∧
x . x ∈ A − B =⇒ f x = 0 ) =⇒ (

∧
x . x ∈ B − A =⇒ f x = 0 ) =⇒

(
∫

+x . f x ∂count space A) = (
∫

+x . f x ∂count space B)
by (auto simp: nn integral count space indicator intro!: nn integral cong split :

split indicator)

lemma nn integral ge point :
assumes x ∈ A
shows p x ≤

∫
+ x . p x ∂count space A

proof −
from assms have p x ≤

∫
+ x . p x ∂count space {x}

by(auto simp add : nn integral count space finite max def )
also have . . . =

∫
+ x ′. p x ′ ∗ indicator {x} x ′ ∂count space A

using assms by(auto simp add : nn integral count space indicator indicator def
intro!: nn integral cong)
also have . . . ≤

∫
+ x . p x ∂count space A

by(rule nn integral mono)(simp add : indicator def )
finally show ?thesis .

qed

Measure spaces with an associated density

definition density :: ′a measure ⇒ ( ′a ⇒ ennreal) ⇒ ′a measure where
density M f = measure of (space M ) (sets M ) (λA.

∫
+ x . f x ∗ indicator A x

∂M )

lemma
shows sets density [simp, measurable cong ]: sets (density M f ) = sets M
and space density [simp]: space (density M f ) = space M

by (auto simp: density def )
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lemma space density imp[measurable dest ]:∧
x M f . x ∈ space (density M f ) =⇒ x ∈ space M by auto

lemma
shows measurable density eq1 [simp]: g ∈ measurable (density Mg f ) Mg ′←→ g
∈ measurable Mg Mg ′

and measurable density eq2 [simp]: h ∈ measurable Mh (density Mh ′ f ) ←→ h
∈ measurable Mh Mh ′

and simple function density eq [simp]: simple function (density Mu f ) u ←→
simple function Mu u
unfolding measurable def simple function def by simp all

lemma density cong : f ∈ borel measurable M =⇒ f ′ ∈ borel measurable M =⇒
(AE x in M . f x = f ′ x ) =⇒ density M f = density M f ′

unfolding density def by (auto intro!: measure of eq nn integral cong AE sets.space closed)

lemma emeasure density :
assumes f [measurable]: f ∈ borel measurable M and A[measurable]: A ∈ sets M
shows emeasure (density M f ) A = (

∫
+ x . f x ∗ indicator A x ∂M )

(is = ?µ A)
unfolding density def

proof (rule emeasure measure of sigma)
show sigma algebra (space M ) (sets M ) ..
show positive (sets M ) ?µ
using f by (auto simp: positive def )

show countably additive (sets M ) ?µ
proof (intro countably additiveI )
fix A :: nat ⇒ ′a set assume range A ⊆ sets M
then have

∧
i . A i ∈ sets M by auto

then have ∗:
∧
i . (λx . f x ∗ indicator (A i) x ) ∈ borel measurable M

by auto
assume disj : disjoint family A
then have (

∑
n. ?µ (A n)) = (

∫
+ x . (

∑
n. f x ∗ indicator (A n) x ) ∂M )

using f ∗ by (subst nn integral suminf ) auto
also have (

∫
+ x . (

∑
n. f x ∗ indicator (A n) x ) ∂M ) = (

∫
+ x . f x ∗ (

∑
n.

indicator (A n) x ) ∂M )
using f by (auto intro!: ennreal suminf cmult nn integral cong AE )

also have . . . = (
∫

+ x . f x ∗ indicator (
⋃
n. A n) x ∂M )

unfolding suminf indicator [OF disj ] ..
finally show (

∑
i .

∫
+ x . f x ∗ indicator (A i) x ∂M ) =

∫
+ x . f x ∗ indicator

(
⋃
i . A i) x ∂M .

qed
qed fact

lemma null sets density iff :
assumes f : f ∈ borel measurable M
shows A ∈ null sets (density M f ) ←→ A ∈ sets M ∧ (AE x in M . x ∈ A −→

Nonnegative{_}{\kern 0pt}Lebesgue{_}{\kern 0pt}Integration.html


1466

f x = 0 )
proof −
{ assume A ∈ sets M
have (

∫
+x . f x ∗ indicator A x ∂M ) = 0 ←→ emeasure M {x ∈ space M . f x

∗ indicator A x 6= 0} = 0
using f 〈A ∈ sets M 〉 by (intro nn integral 0 iff ) auto

also have . . . ←→ (AE x in M . f x ∗ indicator A x = 0 )
using f 〈A ∈ sets M 〉 by (intro AE iff measurable[OF refl , symmetric]) auto
also have (AE x in M . f x ∗ indicator A x = 0 ) ←→ (AE x in M . x ∈ A −→

f x ≤ 0 )
by (auto simp add : indicator def max def split : if split asm)

finally have (
∫

+x . f x ∗ indicator A x ∂M ) = 0 ←→ (AE x in M . x ∈ A −→
f x ≤ 0 ) . }
with f show ?thesis
by (simp add : null sets def emeasure density cong : conj cong)

qed

lemma AE density :
assumes f : f ∈ borel measurable M
shows (AE x in density M f . P x ) ←→ (AE x in M . 0 < f x −→ P x )

proof
assume AE x in density M f . P x
with f obtain N where {x ∈ space M . ¬ P x} ⊆ N N ∈ sets M and ae: AE

x in M . x ∈ N −→ f x = 0
by (auto simp: eventually ae filter null sets density iff )

then have AE x in M . x /∈ N −→ P x by auto
with ae show AE x in M . 0 < f x −→ P x
by (rule eventually elim2 ) auto

next
fix N assume ae: AE x in M . 0 < f x −→ P x
then obtain N where {x ∈ space M . ¬ (0 < f x −→ P x )} ⊆ N N ∈ null sets

M
by (auto simp: eventually ae filter)

then have ∗: {x ∈ space (density M f ). ¬ P x} ⊆ N ∪ {x∈space M . f x = 0}
N ∪ {x∈space M . f x = 0} ∈ sets M and ae2 : AE x in M . x /∈ N
using f by (auto simp: subset eq zero less iff neq zero intro!: AE not in)

show AE x in density M f . P x
using ae2
unfolding eventually ae filter [of density M f ] Bex def null sets density iff [OF

f ]
by (intro exI [of N ∪ {x∈space M . f x = 0}] conjI ∗) (auto elim: eventu-

ally elim2 )
qed

lemma nn integral density :
assumes f : f ∈ borel measurable M
assumes g : g ∈ borel measurable M
shows integralN (density M f ) g = (

∫
+ x . f x ∗ g x ∂M )

using g proof induct
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case (cong u v)
then show ?case
apply (subst nn integral cong [OF cong(3 )])
apply (simp all cong : nn integral cong)
done

next
case (set A) then show ?case
by (simp add : emeasure density f )

next
case (mult u c)
moreover have

∧
x . f x ∗ (c ∗ u x ) = c ∗ (f x ∗ u x ) by (simp add : field simps)

ultimately show ?case
using f by (simp add : nn integral cmult)

next
case (add u v)
then have

∧
x . f x ∗ (v x + u x ) = f x ∗ v x + f x ∗ u x

by (simp add : distrib left)
with add f show ?case
by (auto simp add : nn integral add intro!: nn integral add [symmetric])

next
case (seq U )
have eq : AE x in M . f x ∗ (SUP i . U i x ) = (SUP i . f x ∗ U i x )
by eventually elim (simp add : SUP mult left ennreal seq)

from seq f show ?case
apply (simp add : nn integral monotone convergence SUP image comp)
apply (subst nn integral cong AE [OF eq ])
apply (subst nn integral monotone convergence SUP AE )
apply (auto simp: incseq def le fun def intro!: mult left mono)
done

qed

lemma density distr :
assumes [measurable]: f ∈ borel measurable N X ∈ measurable M N
shows density (distr M N X ) f = distr (density M (λx . f (X x ))) N X
by (intro measure eqI )

(auto simp add : emeasure density nn integral distr emeasure distr
split : split indicator intro!: nn integral cong)

lemma emeasure restricted :
assumes S : S ∈ sets M and X : X ∈ sets M
shows emeasure (density M (indicator S )) X = emeasure M (S ∩ X )

proof −
have emeasure (density M (indicator S )) X = (

∫
+x . indicator S x ∗ indicator

X x ∂M )
using S X by (simp add : emeasure density)

also have . . . = (
∫

+x . indicator (S ∩ X ) x ∂M )
by (auto intro!: nn integral cong simp: indicator def )

also have . . . = emeasure M (S ∩ X )
using S X by (simp add : sets.Int)
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finally show ?thesis .
qed

lemma measure restricted :
S ∈ sets M =⇒ X ∈ sets M =⇒ measure (density M (indicator S )) X = measure

M (S ∩ X )
by (simp add : emeasure restricted measure def )

lemma (in finite measure) finite measure restricted :
S ∈ sets M =⇒ finite measure (density M (indicator S ))
by standard (simp add : emeasure restricted)

lemma emeasure density const :
A ∈ sets M =⇒ emeasure (density M (λ . c)) A = c ∗ emeasure M A
by (auto simp: nn integral cmult indicator emeasure density)

lemma measure density const :
A ∈ sets M =⇒ c 6= ∞ =⇒ measure (density M (λ . c)) A = enn2real c ∗

measure M A
by (auto simp: emeasure density const measure def enn2real mult)

lemma density density eq :
f ∈ borel measurable M =⇒ g ∈ borel measurable M =⇒
density (density M f ) g = density M (λx . f x ∗ g x )

by (auto intro!: measure eqI simp: emeasure density nn integral density ac simps)

lemma distr density distr :
assumes T : T ∈ measurable M M ′ and T ′: T ′ ∈ measurable M ′ M
and inv : ∀ x∈space M . T ′ (T x ) = x

assumes f : f ∈ borel measurable M ′

shows distr (density (distr M M ′ T ) f ) M T ′ = density M (f ◦ T ) (is ?R =
?L)
proof (rule measure eqI )
fix A assume A: A ∈ sets ?R
{ fix x assume x ∈ space M
with sets.sets into space[OF A]
have indicator (T ′ −‘ A ∩ space M ′) (T x ) = (indicator A x :: ennreal)
using T inv by (auto simp: indicator def measurable space) }

with A T T ′ f show emeasure ?R A = emeasure ?L A
by (simp add : measurable comp emeasure density emeasure distr

nn integral distr measurable sets cong : nn integral cong)
qed simp

lemma density density divide:
fixes f g :: ′a ⇒ real
assumes f : f ∈ borel measurable M AE x in M . 0 ≤ f x
assumes g : g ∈ borel measurable M AE x in M . 0 ≤ g x
assumes ac: AE x in M . f x = 0 −→ g x = 0
shows density (density M f ) (λx . g x / f x ) = density M g
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proof −
have density M g = density M (λx . ennreal (f x ) ∗ ennreal (g x / f x ))
using f g ac by (auto intro!: density cong measurable If simp: ennreal mult [symmetric])
then show ?thesis
using f g by (subst density density eq) auto

qed

lemma density 1 : density M (λ . 1 ) = M
by (intro measure eqI ) (auto simp: emeasure density)

lemma emeasure density add :
assumes X : X ∈ sets M
assumes Mf [measurable]: f ∈ borel measurable M
assumes Mg [measurable]: g ∈ borel measurable M
shows emeasure (density M f ) X + emeasure (density M g) X =

emeasure (density M (λx . f x + g x )) X
using assms
apply (subst (1 2 3 ) emeasure density , simp all) []
apply (subst nn integral add [symmetric], simp all) []
apply (intro nn integral cong , simp split : split indicator)
done

Point measure

definition point measure :: ′a set ⇒ ( ′a ⇒ ennreal) ⇒ ′a measure where
point measure A f = density (count space A) f

lemma
shows space point measure: space (point measure A f ) = A
and sets point measure: sets (point measure A f ) = Pow A

by (auto simp: point measure def )

lemma sets point measure count space[measurable cong ]: sets (point measure A f )
= sets (count space A)
by (simp add : sets point measure)

lemma measurable point measure eq1 [simp]:
g ∈ measurable (point measure A f ) M ←→ g ∈ A → space M
unfolding point measure def by simp

lemma measurable point measure eq2 finite[simp]:
finite A =⇒
g ∈ measurable M (point measure A f ) ←→
(g ∈ space M → A ∧ (∀ a∈A. g −‘ {a} ∩ space M ∈ sets M ))

unfolding point measure def by (simp add : measurable count space eq2 )

lemma simple function point measure[simp]:
simple function (point measure A f ) g ←→ finite (g ‘ A)
by (simp add : point measure def )
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lemma emeasure point measure:
assumes A: finite {a∈X . 0 < f a} X ⊆ A
shows emeasure (point measure A f ) X = (

∑
a|a∈X ∧ 0 < f a. f a)

proof −
have {a. (a ∈ X −→ a ∈ A ∧ 0 < f a) ∧ a ∈ X } = {a∈X . 0 < f a}
using 〈X ⊆ A〉 by auto

with A show ?thesis
by (simp add : emeasure density nn integral count space point measure def in-

dicator def )
qed

lemma emeasure point measure finite:
finite A =⇒ X ⊆ A =⇒ emeasure (point measure A f ) X = (

∑
a∈X . f a)

by (subst emeasure point measure) (auto dest : finite subset intro!: sum.mono neutral left
simp: less le)

lemma emeasure point measure finite2 :
X ⊆ A =⇒ finite X =⇒ emeasure (point measure A f ) X = (

∑
a∈X . f a)

by (subst emeasure point measure)
(auto dest : finite subset intro!: sum.mono neutral left simp: less le)

lemma null sets point measure iff :
X ∈ null sets (point measure A f ) ←→ X ⊆ A ∧ (∀ x∈X . f x = 0 )
by (auto simp: AE count space null sets density iff point measure def )

lemma AE point measure:
(AE x in point measure A f . P x ) ←→ (∀ x∈A. 0 < f x −→ P x )
unfolding point measure def
by (subst AE density) (auto simp: AE density AE count space point measure def )

lemma nn integral point measure:
finite {a∈A. 0 < f a ∧ 0 < g a} =⇒
integralN (point measure A f ) g = (

∑
a|a∈A ∧ 0 < f a ∧ 0 < g a. f a ∗ g a)

unfolding point measure def
by (subst nn integral density)
(simp all add : nn integral density nn integral count space ennreal zero less mult iff )

lemma nn integral point measure finite:
finite A =⇒ integralN (point measure A f ) g = (

∑
a∈A. f a ∗ g a)

by (subst nn integral point measure) (auto intro!: sum.mono neutral left simp:
less le)

Uniform measure

definition uniform measure M A = density M (λx . indicator A x / emeasure M
A)

lemma
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shows sets uniform measure[simp, measurable cong ]: sets (uniform measure M
A) = sets M

and space uniform measure[simp]: space (uniform measure M A) = space M
by (auto simp: uniform measure def )

lemma emeasure uniform measure[simp]:
assumes A: A ∈ sets M and B : B ∈ sets M
shows emeasure (uniform measure M A) B = emeasure M (A ∩ B) / emeasure

M A
proof −
from A B have emeasure (uniform measure M A) B = (

∫
+x . (1 / emeasure M

A) ∗ indicator (A ∩ B) x ∂M )
by (auto simp add : uniform measure def emeasure density divide ennreal def

split : split indicator
intro!: nn integral cong)

also have . . . = emeasure M (A ∩ B) / emeasure M A
using A B
by (subst nn integral cmult indicator) (simp all add : sets.Int divide ennreal def

mult .commute)
finally show ?thesis .

qed

lemma measure uniform measure[simp]:
assumes A: emeasure M A 6= 0 emeasure M A 6= ∞ and B : B ∈ sets M
shows measure (uniform measure M A) B = measure M (A ∩ B) / measure M

A
using emeasure uniform measure[OF emeasure neq 0 sets[OF A(1 )] B ] A
by (cases emeasure M A emeasure M (A ∩ B) rule: ennreal2 cases)

(simp all add : measure def divide ennreal top ennreal .rep eq top ereal def en-
nreal top divide)

lemma AE uniform measureI :
A ∈ sets M =⇒ (AE x in M . x ∈ A −→ P x ) =⇒ (AE x in uniform measure M

A. P x )
unfolding uniform measure def by (auto simp: AE density divide ennreal def )

lemma emeasure uniform measure 1 :
emeasure M S 6= 0 =⇒ emeasure M S 6= ∞ =⇒ emeasure (uniform measure M

S ) S = 1
by (subst emeasure uniform measure)
(simp all add : emeasure neq 0 sets emeasure eq ennreal measure divide ennreal

zero less iff neq zero[symmetric])

lemma nn integral uniform measure:
assumes f [measurable]: f ∈ borel measurable M and S [measurable]: S ∈ sets M
shows (

∫
+x . f x ∂uniform measure M S ) = (

∫
+x . f x ∗ indicator S x ∂M ) /

emeasure M S
proof −
{ assume emeasure M S = ∞
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then have ?thesis
by (simp add : uniform measure def nn integral density f ) }

moreover
{ assume [simp]: emeasure M S = 0
then have ae: AE x in M . x /∈ S
using sets.sets into space[OF S ]

by (subst AE iff measurable[OF refl ]) (simp all add : subset eq cong : rev conj cong)
from ae have (

∫
+ x . indicator S x / 0 ∗ f x ∂M ) = 0

by (subst nn integral 0 iff AE ) auto
moreover from ae have (

∫
+ x . f x ∗ indicator S x ∂M ) = 0

by (subst nn integral 0 iff AE ) auto
ultimately have ?thesis
by (simp add : uniform measure def nn integral density f ) }

moreover have emeasure M S 6= 0 =⇒ emeasure M S 6= ∞ =⇒ ?thesis
unfolding uniform measure def
by (subst nn integral density)
(auto simp: ennreal times divide f nn integral divide[symmetric] mult .commute)

ultimately show ?thesis by blast
qed

lemma AE uniform measure:
assumes emeasure M A 6= 0 emeasure M A < ∞
shows (AE x in uniform measure M A. P x ) ←→ (AE x in M . x ∈ A −→ P x )

proof −
have A ∈ sets M
using 〈emeasure M A 6= 0 〉 by (metis emeasure notin sets)

moreover have
∧
x . 0 < indicator A x / emeasure M A ←→ x ∈ A

using assms
by (cases emeasure M A) (auto split : split indicator simp: ennreal zero less divide)
ultimately show ?thesis
unfolding uniform measure def by (simp add : AE density)

qed

Null measure

lemma null measure eq density : null measure M = density M (λ . 0 )
by (intro measure eqI ) (simp all add : emeasure density)

lemma nn integral null measure[simp]: (
∫

+x . f x ∂null measure M ) = 0
by (auto simp add : nn integral def simple integral def SUP constant bot ennreal def

le fun def
intro!: exI [of λx . 0 ])

lemma density null measure[simp]: density (null measure M ) f = null measure M
proof (intro measure eqI )
fix A show emeasure (density (null measure M ) f ) A = emeasure (null measure

M ) A
by (simp add : density def ) (simp only : null measure def [symmetric] emea-

sure null measure)
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qed simp

Uniform count measure

definition uniform count measure A = point measure A (λx . 1 / card A)

lemma
shows space uniform count measure: space (uniform count measure A) = A
and sets uniform count measure: sets (uniform count measure A) = Pow A
unfolding uniform count measure def by (auto simp: space point measure

sets point measure)

lemma sets uniform count measure count space[measurable cong ]:
sets (uniform count measure A) = sets (count space A)
by (simp add : sets uniform count measure)

lemma emeasure uniform count measure:
finite A =⇒ X ⊆ A =⇒ emeasure (uniform count measure A) X = card X /

card A
by (simp add : emeasure point measure finite uniform count measure def divide inverse

ennreal mult
ennreal of nat eq real of nat)

lemma measure uniform count measure:
finite A =⇒ X ⊆ A =⇒ measure (uniform count measure A) X = card X / card

A
by (simp add : emeasure point measure finite uniform count measure def mea-

sure def enn2real mult)

lemma space uniform count measure empty iff [simp]:
space (uniform count measure X ) = {} ←→ X = {}

by(simp add : space uniform count measure)

lemma sets uniform count measure eq UNIV [simp]:
sets (uniform count measure UNIV ) = UNIV ←→ True
UNIV = sets (uniform count measure UNIV ) ←→ True

by(simp all add : sets uniform count measure)

Scaled measure

lemma nn integral scale measure:
assumes f : f ∈ borel measurable M
shows nn integral (scale measure r M ) f = r ∗ nn integral M f
using f

proof induction
case (cong f g)
thus ?case
by(simp add : cong .hyps space scale measure cong : nn integral cong simp)

next
case (mult f c)
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thus ?case
by(simp add : nn integral cmult max def mult .assoc mult .left commute)

next
case (add f g)
thus ?case
by(simp add : nn integral add distrib left)

next
case (seq U )
thus ?case
by(simp add : nn integral monotone convergence SUP SUP mult left ennreal im-

age comp)
qed simp

end

6.7 Binary Product Measure

theory Binary Product Measure
imports Nonnegative Lebesgue Integration
begin

lemma Pair vimage times[simp]: Pair x −‘ (A × B) = (if x ∈ A then B else {})
by auto

lemma rev Pair vimage times[simp]: (λx . (x , y)) −‘ (A × B) = (if y ∈ B then A
else {})
by auto

6.7.1 Binary products

definition pair measure (infixr
⊗

M 80 ) where
A

⊗
M B = measure of (space A × space B)
{a × b | a b. a ∈ sets A ∧ b ∈ sets B}
(λX .

∫
+x . (

∫
+y . indicator X (x ,y) ∂B) ∂A)

lemma pair measure closed : {a × b | a b. a ∈ sets A ∧ b ∈ sets B} ⊆ Pow (space
A × space B)
using sets.space closed [of A] sets.space closed [of B ] by auto

lemma space pair measure:
space (A

⊗
M B) = space A × space B

unfolding pair measure def using pair measure closed [of A B ]
by (rule space measure of )

lemma SIGMA Collect eq : (SIGMA x :space M . {y∈space N . P x y}) = {x∈space
(M

⊗
M N ). P (fst x ) (snd x )}

by (auto simp: space pair measure)

lemma sets pair measure:



Binary Product Measure.thy 1475

sets (A
⊗

M B) = sigma sets (space A × space B) {a × b | a b. a ∈ sets A ∧
b ∈ sets B}
unfolding pair measure def using pair measure closed [of A B ]
by (rule sets measure of )

lemma sets pair measure cong [measurable cong , cong ]:
sets M1 = sets M1 ′ =⇒ sets M2 = sets M2 ′ =⇒ sets (M1

⊗
M M2 ) = sets

(M1 ′ ⊗
M M2 ′)

unfolding sets pair measure by (simp cong : sets eq imp space eq)

lemma pair measureI [intro, simp, measurable]:
x ∈ sets A =⇒ y ∈ sets B =⇒ x × y ∈ sets (A

⊗
M B)

by (auto simp: sets pair measure)

lemma sets Pair : {x} ∈ sets M1 =⇒ {y} ∈ sets M2 =⇒ {(x , y)} ∈ sets (M1⊗
M M2 )

using pair measureI [of {x} M1 {y} M2 ] by simp

lemma measurable pair measureI :
assumes 1 : f ∈ space M → space M1 × space M2
assumes 2 :

∧
A B . A ∈ sets M1 =⇒ B ∈ sets M2 =⇒ f −‘ (A × B) ∩ space

M ∈ sets M
shows f ∈ measurable M (M1

⊗
M M2 )

unfolding pair measure def using 1 2
by (intro measurable measure of ) (auto dest : sets.sets into space)

lemma measurable split replace[measurable (raw)]:
(λx . f x (fst (g x )) (snd (g x ))) ∈ measurable M N =⇒ (λx . case prod (f x ) (g

x )) ∈ measurable M N
unfolding split beta ′ .

lemma measurable Pair [measurable (raw)]:
assumes f : f ∈ measurable M M1 and g : g ∈ measurable M M2
shows (λx . (f x , g x )) ∈ measurable M (M1

⊗
M M2 )

proof (rule measurable pair measureI )
show (λx . (f x , g x )) ∈ space M → space M1 × space M2
using f g by (auto simp: measurable def )

fix A B assume ∗: A ∈ sets M1 B ∈ sets M2
have (λx . (f x , g x )) −‘ (A × B) ∩ space M = (f −‘ A ∩ space M ) ∩ (g −‘ B
∩ space M )

by auto
also have . . . ∈ sets M
by (rule sets.Int) (auto intro!: measurable sets ∗ f g)

finally show (λx . (f x , g x )) −‘ (A × B) ∩ space M ∈ sets M .
qed

lemma measurable fst [intro!, simp, measurable]: fst ∈ measurable (M1
⊗

M M2 )
M1
by (auto simp: fst vimage eq Times space pair measure sets.sets into space Times Int Times
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measurable def )

lemma measurable snd [intro!, simp, measurable]: snd ∈ measurable (M1
⊗

M

M2 ) M2
by (auto simp: snd vimage eq Times space pair measure sets.sets into space Times Int Times
measurable def )

lemma measurable Pair compose split [measurable dest ]:
assumes f : case prod f ∈ measurable (M1

⊗
M M2 ) N

assumes g : g ∈ measurable M M1 and h: h ∈ measurable M M2
shows (λx . f (g x ) (h x )) ∈ measurable M N
using measurable compose[OF measurable Pair f , OF g h] by simp

lemma measurable Pair1 compose[measurable dest ]:
assumes f : (λx . (f x , g x )) ∈ measurable M (M1

⊗
M M2 )

assumes [measurable]: h ∈ measurable N M
shows (λx . f (h x )) ∈ measurable N M1
using measurable compose[OF f measurable fst ] by simp

lemma measurable Pair2 compose[measurable dest ]:
assumes f : (λx . (f x , g x )) ∈ measurable M (M1

⊗
M M2 )

assumes [measurable]: h ∈ measurable N M
shows (λx . g (h x )) ∈ measurable N M2
using measurable compose[OF f measurable snd ] by simp

lemma measurable pair :
assumes (fst ◦ f ) ∈ measurable M M1 (snd ◦ f ) ∈ measurable M M2
shows f ∈ measurable M (M1

⊗
M M2 )

using measurable Pair [OF assms] by simp

lemma
assumes f [measurable]: f ∈ measurable M (N

⊗
M P)

shows measurable fst ′: (λx . fst (f x )) ∈ measurable M N
and measurable snd ′: (λx . snd (f x )) ∈ measurable M P

by simp all

lemma
assumes f [measurable]: f ∈ measurable M N
shows measurable fst ′′: (λx . f (fst x )) ∈ measurable (M

⊗
M P) N

and measurable snd ′′: (λx . f (snd x )) ∈ measurable (P
⊗

M M ) N
by simp all

lemma sets pair in sets:
assumes

∧
a b. a ∈ sets A =⇒ b ∈ sets B =⇒ a × b ∈ sets N

shows sets (A
⊗

M B) ⊆ sets N
unfolding sets pair measure
by (intro sets.sigma sets subset ′) (auto intro!: assms)

lemma sets pair eq sets fst snd :
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sets (A
⊗

M B) = sets (Sup {vimage algebra (space A × space B) fst A, vim-
age algebra (space A × space B) snd B})

(is ?P = sets (Sup {?fst , ?snd}))
proof −
{ fix a b assume ab: a ∈ sets A b ∈ sets B
then have a × b = (fst −‘ a ∩ (space A × space B)) ∩ (snd −‘ b ∩ (space A

× space B))
by (auto dest : sets.sets into space)

also have . . . ∈ sets (Sup {?fst , ?snd})
apply (rule sets.Int)
apply (rule in sets Sup)
apply auto []
apply (rule insertI1 )
apply (auto intro: ab in vimage algebra) []
apply (rule in sets Sup)
apply auto []
apply (rule insertI2 )
apply (auto intro: ab in vimage algebra)
done

finally have a × b ∈ sets (Sup {?fst , ?snd}) . }
moreover have sets ?fst ⊆ sets (A

⊗
M B)

by (rule sets image in sets) (auto simp: space pair measure[symmetric])
moreover have sets ?snd ⊆ sets (A

⊗
M B)

by (rule sets image in sets) (auto simp: space pair measure)
ultimately show ?thesis
apply (intro antisym[of sets A for A] sets Sup in sets sets pair in sets)
apply simp
apply simp
apply simp
apply (elim disjE )
apply (simp add : space pair measure)
apply (simp add : space pair measure)
apply (auto simp add : space pair measure)
done

qed

lemma measurable pair iff :
f ∈ measurable M (M1

⊗
M M2 ) ←→ (fst ◦ f ) ∈ measurable M M1 ∧ (snd ◦

f ) ∈ measurable M M2
by (auto intro: measurable pair [of f M M1 M2 ])

lemma measurable split conv :
(λ(x , y). f x y) ∈ measurable A B ←→ (λx . f (fst x ) (snd x )) ∈ measurable A B
by (intro arg cong2 [where f=(∈)]) auto

lemma measurable pair swap ′: (λ(x ,y). (y , x )) ∈ measurable (M1
⊗

M M2 ) (M2⊗
M M1 )

by (auto intro!: measurable Pair simp: measurable split conv)
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lemma measurable pair swap:
assumes f : f ∈ measurable (M1

⊗
M M2 ) M shows (λ(x ,y). f (y , x )) ∈

measurable (M2
⊗

M M1 ) M
using measurable comp[OF measurable Pair f ] by (auto simp: measurable split conv

comp def )

lemma measurable pair swap iff :
f ∈ measurable (M2

⊗
M M1 ) M ←→ (λ(x ,y). f (y ,x )) ∈ measurable (M1

⊗
M

M2 ) M
by (auto dest : measurable pair swap)

lemma measurable Pair1 ′: x ∈ space M1 =⇒ Pair x ∈ measurable M2 (M1
⊗

M

M2 )
by simp

lemma sets Pair1 [measurable (raw)]:
assumes A: A ∈ sets (M1

⊗
M M2 ) shows Pair x −‘ A ∈ sets M2

proof −
have Pair x −‘ A = (if x ∈ space M1 then Pair x −‘ A ∩ space M2 else {})
using A[THEN sets.sets into space] by (auto simp: space pair measure)

also have . . . ∈ sets M2
using A by (auto simp add : measurable Pair1 ′ intro!: measurable sets split :

if split asm)
finally show ?thesis .

qed

lemma measurable Pair2 ′: y ∈ space M2 =⇒ (λx . (x , y)) ∈ measurable M1 (M1⊗
M M2 )

by (auto intro!: measurable Pair)

lemma sets Pair2 : assumes A: A ∈ sets (M1
⊗

M M2 ) shows (λx . (x , y)) −‘
A ∈ sets M1
proof −
have (λx . (x , y)) −‘ A = (if y ∈ space M2 then (λx . (x , y)) −‘ A ∩ space M1

else {})
using A[THEN sets.sets into space] by (auto simp: space pair measure)

also have . . . ∈ sets M1
using A by (auto simp add : measurable Pair2 ′ intro!: measurable sets split :

if split asm)
finally show ?thesis .

qed

lemma measurable Pair2 :
assumes f : f ∈ measurable (M1

⊗
M M2 ) M and x : x ∈ space M1

shows (λy . f (x , y)) ∈ measurable M2 M
using measurable comp[OF measurable Pair1 ′ f , OF x ]
by (simp add : comp def )

lemma measurable Pair1 :
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assumes f : f ∈ measurable (M1
⊗

M M2 ) M and y : y ∈ space M2
shows (λx . f (x , y)) ∈ measurable M1 M
using measurable comp[OF measurable Pair2 ′ f , OF y ]
by (simp add : comp def )

lemma Int stable pair measure generator : Int stable {a × b | a b. a ∈ sets A ∧ b
∈ sets B}
unfolding Int stable def
by safe (auto simp add : Times Int Times)

lemma (in finite measure) finite measure cut measurable:
assumes [measurable]: Q ∈ sets (N

⊗
M M )

shows (λx . emeasure M (Pair x −‘ Q)) ∈ borel measurable N
(is ?s Q ∈ )

using Int stable pair measure generator pair measure closed assms
unfolding sets pair measure

proof (induct rule: sigma sets induct disjoint)
case (compl A)
with sets.sets into space have

∧
x . emeasure M (Pair x −‘ ((space N × space

M ) − A)) =
(if x ∈ space N then emeasure M (space M ) − ?s A x else 0 )

unfolding sets pair measure[symmetric]
by (auto intro!: emeasure compl simp: vimage Diff sets Pair1 )

with compl sets.top show ?case
by (auto intro!: measurable If simp: space pair measure)

next
case (union F )
then have

∧
x . emeasure M (Pair x −‘ (

⋃
i . F i)) = (

∑
i . ?s (F i) x )

by (simp add : suminf emeasure disjoint family on vimageI subset eq vimage UN
sets pair measure[symmetric])
with union show ?case
unfolding sets pair measure[symmetric] by simp

qed (auto simp add : if distrib Int def [symmetric] intro!: measurable If )

lemma (in sigma finite measure) measurable emeasure Pair :
assumes Q : Q ∈ sets (N

⊗
M M ) shows (λx . emeasure M (Pair x −‘ Q)) ∈

borel measurable N (is ?s Q ∈ )
proof −
from sigma finite disjoint guess F . note F = this
then have F sets:

∧
i . F i ∈ sets M by auto

let ?C = λx i . F i ∩ Pair x −‘ Q
{ fix i
have [simp]: space N × F i ∩ space N × space M = space N × F i
using F sets.sets into space by auto

let ?R = density M (indicator (F i))
have finite measure ?R
using F by (intro finite measureI ) (auto simp: emeasure restricted subset eq)
then have (λx . emeasure ?R (Pair x −‘ (space N × space ?R ∩ Q))) ∈

borel measurable N
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by (rule finite measure.finite measure cut measurable) (auto intro: Q)
moreover have

∧
x . emeasure ?R (Pair x −‘ (space N × space ?R ∩ Q))

= emeasure M (F i ∩ Pair x −‘ (space N × space ?R ∩ Q))
using Q F sets by (intro emeasure restricted) (auto intro: sets Pair1 )

moreover have
∧
x . F i ∩ Pair x −‘ (space N × space ?R ∩ Q) = ?C x i

using sets.sets into space[OF Q ] by (auto simp: space pair measure)
ultimately have (λx . emeasure M (?C x i)) ∈ borel measurable N
by simp }

moreover
{ fix x
have (

∑
i . emeasure M (?C x i)) = emeasure M (

⋃
i . ?C x i)

proof (intro suminf emeasure)
show range (?C x ) ⊆ sets M
using F 〈Q ∈ sets (N

⊗
M M )〉 by (auto intro!: sets Pair1 )

have disjoint family F using F by auto
show disjoint family (?C x )
by (rule disjoint family on bisimulation[OF 〈disjoint family F 〉]) auto

qed
also have (

⋃
i . ?C x i) = Pair x −‘ Q

using F sets.sets into space[OF 〈Q ∈ sets (N
⊗

M M )〉]
by (auto simp: space pair measure)

finally have emeasure M (Pair x −‘ Q) = (
∑

i . emeasure M (?C x i))
by simp }

ultimately show ?thesis using 〈Q ∈ sets (N
⊗

M M )〉 F sets
by auto

qed

lemma (in sigma finite measure) measurable emeasure[measurable (raw)]:
assumes space:

∧
x . x ∈ space N =⇒ A x ⊆ space M

assumes A: {x∈space (N
⊗

M M ). snd x ∈ A (fst x )} ∈ sets (N
⊗

M M )
shows (λx . emeasure M (A x )) ∈ borel measurable N

proof −
from space have

∧
x . x ∈ space N =⇒ Pair x −‘ {x ∈ space (N

⊗
M M ). snd

x ∈ A (fst x )} = A x
by (auto simp: space pair measure)

with measurable emeasure Pair [OF A] show ?thesis
by (auto cong : measurable cong)

qed

lemma (in sigma finite measure) emeasure pair measure:
assumes X ∈ sets (N

⊗
M M )

shows emeasure (N
⊗

M M ) X = (
∫

+ x .
∫

+ y . indicator X (x , y) ∂M ∂N )
(is = ?µ X )
proof (rule emeasure measure of [OF pair measure def ])
show positive (sets (N

⊗
M M )) ?µ

by (auto simp: positive def )
have eq [simp]:

∧
A x y . indicator A (x , y) = indicator (Pair x −‘ A) y

by (auto simp: indicator def )
show countably additive (sets (N

⊗
M M )) ?µ
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proof (rule countably additiveI )
fix F :: nat ⇒ ( ′b × ′a) set assume F : range F ⊆ sets (N

⊗
M M ) dis-

joint family F
from F have ∗:

∧
i . F i ∈ sets (N

⊗
M M ) by auto

moreover have
∧
x . disjoint family (λi . Pair x −‘ F i)

by (intro disjoint family on bisimulation[OF F (2 )]) auto
moreover have

∧
x . range (λi . Pair x −‘ F i) ⊆ sets M

using F by (auto simp: sets Pair1 )
ultimately show (

∑
n. ?µ (F n)) = ?µ (

⋃
i . F i)

by (auto simp add : nn integral suminf [symmetric] vimage UN suminf emeasure
intro!: nn integral cong nn integral indicator [symmetric])

qed
show {a × b |a b. a ∈ sets N ∧ b ∈ sets M } ⊆ Pow (space N × space M )
using sets.space closed [of N ] sets.space closed [of M ] by auto

qed fact

lemma (in sigma finite measure) emeasure pair measure alt :
assumes X : X ∈ sets (N

⊗
M M )

shows emeasure (N
⊗

M M ) X = (
∫

+x . emeasure M (Pair x −‘ X ) ∂N )
proof −
have [simp]:

∧
x y . indicator X (x , y) = indicator (Pair x −‘ X ) y

by (auto simp: indicator def )
show ?thesis
using X by (auto intro!: nn integral cong simp: emeasure pair measure sets Pair1 )

qed

proposition (in sigma finite measure) emeasure pair measure Times:
assumes A: A ∈ sets N and B : B ∈ sets M
shows emeasure (N

⊗
M M ) (A × B) = emeasure N A ∗ emeasure M B

proof −
have emeasure (N

⊗
M M ) (A × B) = (

∫
+x . emeasure M B ∗ indicator A x

∂N )
using A B by (auto intro!: nn integral cong simp: emeasure pair measure alt)

also have . . . = emeasure M B ∗ emeasure N A
using A by (simp add : nn integral cmult indicator)

finally show ?thesis
by (simp add : ac simps)

qed

6.7.2 Binary products of σ-finite emeasure spaces

locale pair sigma finite = M1?: sigma finite measure M1 + M2?: sigma finite measure
M2
for M1 :: ′a measure and M2 :: ′b measure

lemma (in pair sigma finite) measurable emeasure Pair1 :
Q ∈ sets (M1

⊗
M M2 ) =⇒ (λx . emeasure M2 (Pair x −‘ Q)) ∈ borel measurable

M1
using M2 .measurable emeasure Pair .
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lemma (in pair sigma finite) measurable emeasure Pair2 :
assumes Q : Q ∈ sets (M1

⊗
M M2 ) shows (λy . emeasure M1 ((λx . (x , y))

−‘ Q)) ∈ borel measurable M2
proof −
have (λ(x , y). (y , x )) −‘ Q ∩ space (M2

⊗
M M1 ) ∈ sets (M2

⊗
M M1 )

using Q measurable pair swap ′ by (auto intro: measurable sets)
note M1 .measurable emeasure Pair [OF this]
moreover have

∧
y . Pair y −‘ ((λ(x , y). (y , x )) −‘ Q ∩ space (M2

⊗
M M1 ))

= (λx . (x , y)) −‘ Q
using Q [THEN sets.sets into space] by (auto simp: space pair measure)

ultimately show ?thesis by simp
qed

proposition (in pair sigma finite) sigma finite up in pair measure generator :
defines E ≡ {A × B | A B . A ∈ sets M1 ∧ B ∈ sets M2}
shows ∃F ::nat ⇒ ( ′a × ′b) set . range F ⊆ E ∧ incseq F ∧ (

⋃
i . F i) = space

M1 × space M2 ∧
(∀ i . emeasure (M1

⊗
M M2 ) (F i) 6= ∞)

proof −
from M1 .sigma finite incseq guess F1 . note F1 = this
from M2 .sigma finite incseq guess F2 . note F2 = this
from F1 F2 have space: space M1 = (

⋃
i . F1 i) space M2 = (

⋃
i . F2 i) by

auto
let ?F = λi . F1 i × F2 i
show ?thesis
proof (intro exI [of ?F ] conjI allI )
show range ?F ⊆ E using F1 F2 by (auto simp: E def ) (metis range subsetD)
next
have space M1 × space M2 ⊆ (

⋃
i . ?F i)

proof (intro subsetI )
fix x assume x ∈ space M1 × space M2
then obtain i j where fst x ∈ F1 i snd x ∈ F2 j
by (auto simp: space)

then have fst x ∈ F1 (max i j ) snd x ∈ F2 (max j i)
using 〈incseq F1 〉 〈incseq F2 〉 unfolding incseq def
by (force split : split max )+

then have (fst x , snd x ) ∈ F1 (max i j ) × F2 (max i j )
by (intro SigmaI ) (auto simp add : max .commute)

then show x ∈ (
⋃
i . ?F i) by auto

qed
then show (

⋃
i . ?F i) = space M1 × space M2

using space by (auto simp: space)
next
fix i show incseq (λi . F1 i × F2 i)
using 〈incseq F1 〉 〈incseq F2 〉 unfolding incseq Suc iff by auto

next
fix i
from F1 F2 have F1 i ∈ sets M1 F2 i ∈ sets M2 by auto
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with F1 F2 show emeasure (M1
⊗

M M2 ) (F1 i × F2 i) 6= ∞
by (auto simp add : emeasure pair measure Times ennreal mult eq top iff )

qed
qed

sublocale pair sigma finite ⊆ P?: sigma finite measure M1
⊗

M M2
proof
from M1 .sigma finite countable guess F1 ..
moreover from M2 .sigma finite countable guess F2 ..
ultimately show
∃A. countable A ∧ A ⊆ sets (M1

⊗
M M2 ) ∧

⋃
A = space (M1

⊗
M M2 ) ∧

(∀ a∈A. emeasure (M1
⊗

M M2 ) a 6= ∞)
by (intro exI [of (λ(a, b). a × b) ‘ (F1 × F2 )] conjI )

(auto simp: M2 .emeasure pair measure Times space pair measure set eq iff
subset eq ennreal mult eq top iff )
qed

lemma sigma finite pair measure:
assumes A: sigma finite measure A and B : sigma finite measure B
shows sigma finite measure (A

⊗
M B)

proof −
interpret A: sigma finite measure A by fact
interpret B : sigma finite measure B by fact
interpret AB : pair sigma finite A B ..
show ?thesis ..

qed

lemma sets pair swap:
assumes A ∈ sets (M1

⊗
M M2 )

shows (λ(x , y). (y , x )) −‘ A ∩ space (M2
⊗

M M1 ) ∈ sets (M2
⊗

M M1 )
using measurable pair swap ′ assms by (rule measurable sets)

lemma (in pair sigma finite) distr pair swap:
M1

⊗
M M2 = distr (M2

⊗
M M1 ) (M1

⊗
M M2 ) (λ(x , y). (y , x )) (is ?P =

?D)
proof −
from sigma finite up in pair measure generator guess F :: nat ⇒ ( ′a × ′b) set

.. note F = this
let ?E = {a × b |a b. a ∈ sets M1 ∧ b ∈ sets M2}
show ?thesis
proof (rule measure eqI generator eq [OF Int stable pair measure generator [of M1

M2 ]])
show ?E ⊆ Pow (space ?P)

using sets.space closed [of M1 ] sets.space closed [of M2 ] by (auto simp:
space pair measure)

show sets ?P = sigma sets (space ?P) ?E
by (simp add : sets pair measure space pair measure)

then show sets ?D = sigma sets (space ?P) ?E
by simp

Binary{_}{\kern 0pt}Product{_}{\kern 0pt}Measure.html


1484

next
show range F ⊆ ?E (

⋃
i . F i) = space ?P

∧
i . emeasure ?P (F i) 6= ∞

using F by (auto simp: space pair measure)
next
fix X assume X ∈ ?E
then obtain A B where X [simp]: X = A × B and A: A ∈ sets M1 and B :

B ∈ sets M2 by auto
have (λ(y , x ). (x , y)) −‘ X ∩ space (M2

⊗
M M1 ) = B × A

using sets.sets into space[OF A] sets.sets into space[OF B ] by (auto simp:
space pair measure)

with A B show emeasure (M1
⊗

M M2 ) X = emeasure ?D X
by (simp add : M2 .emeasure pair measure Times M1 .emeasure pair measure Times

emeasure distr
measurable pair swap ′ ac simps)

qed
qed

lemma (in pair sigma finite) emeasure pair measure alt2 :
assumes A: A ∈ sets (M1

⊗
M M2 )

shows emeasure (M1
⊗

M M2 ) A = (
∫

+y . emeasure M1 ((λx . (x , y)) −‘ A)
∂M2 )

(is = ?ν A)
proof −
have [simp]:

∧
y . (Pair y −‘ ((λ(x , y). (y , x )) −‘ A ∩ space (M2

⊗
M M1 )))

= (λx . (x , y)) −‘ A
using sets.sets into space[OF A] by (auto simp: space pair measure)

show ?thesis using A
by (subst distr pair swap)

(simp all del : vimage Int add : measurable sets[OF measurable pair swap ′]
M1 .emeasure pair measure alt emeasure distr [OF measurable pair swap ′

A])
qed

lemma (in pair sigma finite) AE pair :
assumes AE x in (M1

⊗
M M2 ). Q x

shows AE x in M1 . (AE y in M2 . Q (x , y))
proof −
obtain N where N : N ∈ sets (M1

⊗
M M2 ) emeasure (M1

⊗
M M2 ) N = 0

{x∈space (M1
⊗

M M2 ). ¬ Q x} ⊆ N
using assms unfolding eventually ae filter by auto

show ?thesis
proof (rule AE I )
from N measurable emeasure Pair1 [OF 〈N ∈ sets (M1

⊗
M M2 )〉]

show emeasure M1 {x∈space M1 . emeasure M2 (Pair x −‘ N ) 6= 0} = 0
by (auto simp: M2 .emeasure pair measure alt nn integral 0 iff )

show {x ∈ space M1 . emeasure M2 (Pair x −‘ N ) 6= 0} ∈ sets M1
by (intro borel measurable eq measurable emeasure Pair1 N sets.sets Collect neg

N ) simp
{ fix x assume x ∈ space M1 emeasure M2 (Pair x −‘ N ) = 0
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have AE y in M2 . Q (x , y)
proof (rule AE I )
show emeasure M2 (Pair x −‘ N ) = 0 by fact
show Pair x −‘ N ∈ sets M2 using N (1 ) by (rule sets Pair1 )
show {y ∈ space M2 . ¬ Q (x , y)} ⊆ Pair x −‘ N
using N 〈x ∈ space M1 〉 unfolding space pair measure by auto

qed }
then show {x ∈ space M1 . ¬ (AE y in M2 . Q (x , y))} ⊆ {x ∈ space M1 .

emeasure M2 (Pair x −‘ N ) 6= 0}
by auto

qed
qed

lemma (in pair sigma finite) AE pair measure:
assumes {x∈space (M1

⊗
M M2 ). P x} ∈ sets (M1

⊗
M M2 )

assumes ae: AE x in M1 . AE y in M2 . P (x , y)
shows AE x in M1

⊗
M M2 . P x

proof (subst AE iff measurable[OF refl ])
show {x∈space (M1

⊗
M M2 ). ¬ P x} ∈ sets (M1

⊗
M M2 )

by (rule sets.sets Collect) fact
then have emeasure (M1

⊗
M M2 ) {x ∈ space (M1

⊗
M M2 ). ¬ P x} =

(
∫

+ x .
∫

+ y . indicator {x ∈ space (M1
⊗

M M2 ). ¬ P x} (x , y) ∂M2 ∂M1 )
by (simp add : M2 .emeasure pair measure)

also have . . . = (
∫

+ x .
∫

+ y . 0 ∂M2 ∂M1 )
using ae
apply (safe intro!: nn integral cong AE )
apply (intro AE I2 )
apply (safe intro!: nn integral cong AE )
apply auto
done

finally show emeasure (M1
⊗

M M2 ) {x ∈ space (M1
⊗

M M2 ). ¬ P x} = 0
by simp
qed

lemma (in pair sigma finite) AE pair iff :
{x∈space (M1

⊗
M M2 ). P (fst x ) (snd x )} ∈ sets (M1

⊗
M M2 ) =⇒

(AE x in M1 . AE y in M2 . P x y) ←→ (AE x in (M1
⊗

M M2 ). P (fst x )
(snd x ))
using AE pair [of λx . P (fst x ) (snd x )] AE pair measure[of λx . P (fst x ) (snd

x )] by auto

lemma (in pair sigma finite) AE commute:
assumes P : {x∈space (M1

⊗
M M2 ). P (fst x ) (snd x )} ∈ sets (M1

⊗
M M2 )

shows (AE x in M1 . AE y in M2 . P x y) ←→ (AE y in M2 . AE x in M1 . P x
y)
proof −
interpret Q : pair sigma finite M2 M1 ..
have [simp]:

∧
x . (fst (case x of (x , y) ⇒ (y , x ))) = snd x

∧
x . (snd (case x of

(x , y) ⇒ (y , x ))) = fst x
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by auto
have {x ∈ space (M2

⊗
M M1 ). P (snd x ) (fst x )} =

(λ(x , y). (y , x )) −‘ {x ∈ space (M1
⊗

M M2 ). P (fst x ) (snd x )} ∩ space (M2⊗
M M1 )
by (auto simp: space pair measure)

also have . . . ∈ sets (M2
⊗

M M1 )
by (intro sets pair swap P)

finally show ?thesis
apply (subst AE pair iff [OF P ])
apply (subst distr pair swap)
apply (subst AE distr iff [OF measurable pair swap ′ P ])
apply (subst Q .AE pair iff )
apply simp all
done

qed

6.7.3 Fubinis theorem

lemma measurable compose Pair1 :
x ∈ space M1 =⇒ g ∈ measurable (M1

⊗
M M2 ) L =⇒ (λy . g (x , y)) ∈

measurable M2 L
by simp

lemma (in sigma finite measure) borel measurable nn integral fst :
assumes f : f ∈ borel measurable (M1

⊗
M M )

shows (λx .
∫

+ y . f (x , y) ∂M ) ∈ borel measurable M1
using f proof induct
case (cong u v)
then have

∧
w x . w ∈ space M1 =⇒ x ∈ space M =⇒ u (w , x ) = v (w , x )

by (auto simp: space pair measure)
show ?case
apply (subst measurable cong)
apply (rule nn integral cong)
apply fact+
done

next
case (set Q)
have [simp]:

∧
x y . indicator Q (x , y) = indicator (Pair x −‘ Q) y

by (auto simp: indicator def )
have

∧
x . x ∈ space M1 =⇒ emeasure M (Pair x −‘ Q) =

∫
+ y . indicator Q

(x , y) ∂M
by (simp add : sets Pair1 [OF set ])

from this measurable emeasure Pair [OF set ] show ?case
by (rule measurable cong [THEN iffD1 ])

qed (simp all add : nn integral add nn integral cmult measurable compose Pair1
nn integral monotone convergence SUP incseq def le fun def

image comp
cong : measurable cong)
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lemma (in sigma finite measure) nn integral fst :
assumes f : f ∈ borel measurable (M1

⊗
M M )

shows (
∫

+ x .
∫

+ y . f (x , y) ∂M ∂M1 ) = integralN (M1
⊗

M M ) f (is ?I f
= )
using f proof induct
case (cong u v)
then have ?I u = ?I v
by (intro nn integral cong) (auto simp: space pair measure)

with cong show ?case
by (simp cong : nn integral cong)

qed (simp all add : emeasure pair measure nn integral cmult nn integral add
nn integral monotone convergence SUP measurable compose Pair1

borel measurable nn integral fst nn integral mono incseq def le fun def
image comp

cong : nn integral cong)

lemma (in sigma finite measure) borel measurable nn integral [measurable (raw)]:
case prod f ∈ borel measurable (N

⊗
M M ) =⇒ (λx .

∫
+ y . f x y ∂M ) ∈

borel measurable N
using borel measurable nn integral fst [of case prod f N ] by simp

proposition (in pair sigma finite) nn integral snd :
assumes f [measurable]: f ∈ borel measurable (M1

⊗
M M2 )

shows (
∫

+ y . (
∫

+ x . f (x , y) ∂M1 ) ∂M2 ) = integralN (M1
⊗

M M2 ) f
proof −
note measurable pair swap[OF f ]
from M1 .nn integral fst [OF this]
have (

∫
+ y . (

∫
+ x . f (x , y) ∂M1 ) ∂M2 ) = (

∫
+ (x , y). f (y , x ) ∂(M2

⊗
M

M1 ))
by simp

also have (
∫

+ (x , y). f (y , x ) ∂(M2
⊗

M M1 )) = integralN (M1
⊗

M M2 ) f
by (subst distr pair swap) (auto simp add : nn integral distr intro!: nn integral cong)
finally show ?thesis .

qed

theorem (in pair sigma finite) Fubini :
assumes f : f ∈ borel measurable (M1

⊗
M M2 )

shows (
∫

+ y . (
∫

+ x . f (x , y) ∂M1 ) ∂M2 ) = (
∫

+ x . (
∫

+ y . f (x , y) ∂M2 )
∂M1 )
unfolding nn integral snd [OF assms] M2 .nn integral fst [OF assms] ..

theorem (in pair sigma finite) Fubini ′:
assumes f : case prod f ∈ borel measurable (M1

⊗
M M2 )

shows (
∫

+ y . (
∫

+ x . f x y ∂M1 ) ∂M2 ) = (
∫

+ x . (
∫

+ y . f x y ∂M2 ) ∂M1 )
using Fubini [OF f ] by simp
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6.7.4 Products on counting spaces, densities and distribu-
tions

proposition sigma prod :
assumes X cover : ∃E⊆A. countable E ∧ X =

⋃
E and A: A ⊆ Pow X

assumes Y cover : ∃E⊆B . countable E ∧ Y =
⋃

E and B : B ⊆ Pow Y
shows sigma X A

⊗
M sigma Y B = sigma (X × Y ) {a × b | a b. a ∈ A ∧ b

∈ B}
(is ?P = ?S )

proof (rule measure eqI )
have [simp]: snd ∈ X × Y → Y fst ∈ X × Y → X
by auto

let ?XY = {{fst −‘ a ∩ X × Y | a. a ∈ A}, {snd −‘ b ∩ X × Y | b. b ∈ B}}
have sets ?P = sets (SUP xy∈?XY . sigma (X × Y ) xy)
by (simp add : vimage algebra sigma sets pair eq sets fst snd A B)

also have . . . = sets (sigma (X × Y ) (
⋃
?XY ))

by (intro Sup sigma arg cong [where f=sets]) auto
also have . . . = sets ?S
proof (intro arg cong [where f=sets] sigma eqI sigma sets eqI )
show

⋃
?XY ⊆ Pow (X × Y ) {a × b |a b. a ∈ A ∧ b ∈ B} ⊆ Pow (X × Y )

using A B by auto
next
interpret XY : sigma algebra X × Y sigma sets (X × Y ) {a × b |a b. a ∈ A

∧ b ∈ B}
using A B by (intro sigma algebra sigma sets) auto

fix Z assume Z ∈
⋃
?XY

then show Z ∈ sigma sets (X × Y ) {a × b |a b. a ∈ A ∧ b ∈ B}
proof safe
fix a assume a ∈ A
from Y cover obtain E where E : E ⊆ B countable E and Y =

⋃
E

by auto
with 〈a ∈ A〉 A have eq : fst −‘ a ∩ X × Y = (

⋃
e∈E . a × e)

by auto
show fst −‘ a ∩ X × Y ∈ sigma sets (X × Y ) {a × b |a b. a ∈ A ∧ b ∈ B}
using 〈a ∈ A〉 E unfolding eq by (auto intro!: XY .countable UN ′)

next
fix b assume b ∈ B
from X cover obtain E where E : E ⊆ A countable E and X =

⋃
E

by auto
with 〈b ∈ B 〉 B have eq : snd −‘ b ∩ X × Y = (

⋃
e∈E . e × b)

by auto
show snd −‘ b ∩ X × Y ∈ sigma sets (X × Y ) {a × b |a b. a ∈ A ∧ b ∈

B}
using 〈b ∈ B 〉 E unfolding eq by (auto intro!: XY .countable UN ′)

qed
next
fix Z assume Z ∈ {a × b |a b. a ∈ A ∧ b ∈ B}
then obtain a b where Z = a × b and ab: a ∈ A b ∈ B
by auto

then have Z : Z = (fst −‘ a ∩ X × Y ) ∩ (snd −‘ b ∩ X × Y )
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using A B by auto
interpret XY : sigma algebra X × Y sigma sets (X × Y ) (

⋃
?XY )

by (intro sigma algebra sigma sets) auto
show Z ∈ sigma sets (X × Y ) (

⋃
?XY )

unfolding Z by (rule XY .Int) (blast intro: ab)+
qed
finally show sets ?P = sets ?S .

next
interpret finite measure sigma X A for X A
proof qed (simp add : emeasure sigma)

fix A assume A ∈ sets ?P then show emeasure ?P A = emeasure ?S A
by (simp add : emeasure pair measure alt emeasure sigma)

qed

lemma sigma sets pair measure generator finite:
assumes finite A and finite B
shows sigma sets (A × B) { a × b | a b. a ⊆ A ∧ b ⊆ B} = Pow (A × B)
(is sigma sets ?prod ?sets = )

proof safe
have fin: finite (A × B) using assms by (rule finite cartesian product)
fix x assume subset : x ⊆ A × B
hence finite x using fin by (rule finite subset)
from this subset show x ∈ sigma sets ?prod ?sets
proof (induct x )
case empty show ?case by (rule sigma sets.Empty)

next
case (insert a x )
hence {a} ∈ sigma sets ?prod ?sets by auto
moreover have x ∈ sigma sets ?prod ?sets using insert by auto
ultimately show ?case unfolding insert is Un[of a x ] by (rule sigma sets Un)
qed

next
fix x a b
assume x ∈ sigma sets ?prod ?sets and (a, b) ∈ x
from sigma sets into sp[OF this(1 )] this(2 )
show a ∈ A and b ∈ B by auto

qed

proposition sets pair eq :
assumes Ea: Ea ⊆ Pow (space A) sets A = sigma sets (space A) Ea
and Ca: countable Ca Ca ⊆ Ea

⋃
Ca = space A

and Eb: Eb ⊆ Pow (space B) sets B = sigma sets (space B) Eb
and Cb: countable Cb Cb ⊆ Eb

⋃
Cb = space B

shows sets (A
⊗

M B) = sets (sigma (space A × space B) { a × b | a b. a ∈
Ea ∧ b ∈ Eb })

(is = sets (sigma ?Ω ?E ))
proof
show sets (sigma ?Ω ?E ) ⊆ sets (A

⊗
M B)

using Ea(1 ) Eb(1 ) by (subst sigma le sets) (auto simp: Ea(2 ) Eb(2 ))
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have ?E ⊆ Pow ?Ω
using Ea(1 ) Eb(1 ) by auto

then have E : a ∈ Ea =⇒ b ∈ Eb =⇒ a × b ∈ sets (sigma ?Ω ?E ) for a b
by auto

have sets (A
⊗

M B) ⊆ sets (Sup {vimage algebra ?Ω fst A, vimage algebra ?Ω
snd B})

unfolding sets pair eq sets fst snd ..
also have vimage algebra ?Ω fst A = vimage algebra ?Ω fst (sigma (space A)

Ea)
by (intro vimage algebra cong [OF refl refl ]) (simp add : Ea)

also have . . . = sigma ?Ω {fst −‘ A ∩ ?Ω |A. A ∈ Ea}
by (intro Ea vimage algebra sigma) auto

also have vimage algebra ?Ω snd B = vimage algebra ?Ω snd (sigma (space B)
Eb)

by (intro vimage algebra cong [OF refl refl ]) (simp add : Eb)
also have . . . = sigma ?Ω {snd −‘ A ∩ ?Ω |A. A ∈ Eb}
by (intro Eb vimage algebra sigma) auto

also have {sigma ?Ω {fst −‘ Aa ∩ ?Ω |Aa. Aa ∈ Ea}, sigma ?Ω {snd −‘ Aa ∩
?Ω |Aa. Aa ∈ Eb}} =

sigma ?Ω ‘ {{fst −‘ Aa ∩ ?Ω |Aa. Aa ∈ Ea}, {snd −‘ Aa ∩ ?Ω |Aa. Aa ∈
Eb}}

by auto
also have sets (SUP S∈{{fst −‘ Aa ∩ ?Ω |Aa. Aa ∈ Ea}, {snd −‘ Aa ∩ ?Ω
|Aa. Aa ∈ Eb}}. sigma ?Ω S ) =

sets (sigma ?Ω (
⋃
{{fst −‘ Aa ∩ ?Ω |Aa. Aa ∈ Ea}, {snd −‘ Aa ∩ ?Ω |Aa.

Aa ∈ Eb}}))
using Ea(1 ) Eb(1 ) by (intro sets Sup sigma) auto

also have . . . ⊆ sets (sigma ?Ω ?E )
proof (subst sigma le sets, safe intro!: space in measure of )
fix a assume a ∈ Ea
then have fst −‘ a ∩ ?Ω = (

⋃
b∈Cb. a × b)

using Cb(3 )[symmetric] Ea(1 ) by auto
then show fst −‘ a ∩ ?Ω ∈ sets (sigma ?Ω ?E )
using Cb 〈a ∈ Ea〉 by (auto intro!: sets.countable UN ′ E )

next
fix b assume b ∈ Eb
then have snd −‘ b ∩ ?Ω = (

⋃
a∈Ca. a × b)

using Ca(3 )[symmetric] Eb(1 ) by auto
then show snd −‘ b ∩ ?Ω ∈ sets (sigma ?Ω ?E )
using Ca 〈b ∈ Eb〉 by (auto intro!: sets.countable UN ′ E )

qed
finally show sets (A

⊗
M B) ⊆ sets (sigma ?Ω ?E ) .

qed

proposition borel prod :
(borel

⊗
M borel) = (borel :: ( ′a::second countable topology × ′b::second countable topology)

measure)
(is ?P = ?B)

proof −
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have ?B = sigma UNIV {A × B | A B . open A ∧ open B}
by (rule second countable borel measurable[OF open prod generated ])

also have . . . = ?P
unfolding borel def
by (subst sigma prod) (auto intro!: exI [of {UNIV }])

finally show ?thesis ..
qed

proposition pair measure count space:
assumes A: finite A and B : finite B
shows count space A

⊗
M count space B = count space (A × B) (is ?P = ?C )

proof (rule measure eqI )
interpret A: finite measure count space A by (rule finite measure count space)

fact
interpret B : finite measure count space B by (rule finite measure count space)

fact
interpret P : pair sigma finite count space A count space B ..
show eq : sets ?P = sets ?C
by (simp add : sets pair measure sigma sets pair measure generator finite A B)

fix X assume X : X ∈ sets ?P
with eq have X subset : X ⊆ A × B by simp
with A B have fin Pair :

∧
x . finite (Pair x −‘ X )

by (intro finite subset [OF B ]) auto
have fin X : finite X using X subset by (rule finite subset) (auto simp: A B)
have card : 0 < card (Pair a −‘ X ) if (a, b) ∈ X for a b
using card gt 0 iff fin Pair that by auto

then have emeasure ?P X =
∫

+ x . emeasure (count space B) (Pair x −‘ X )
∂count space A

by (simp add : B .emeasure pair measure alt X )
also have ... = emeasure ?C X
apply (subst emeasure count space)
using card X subset A fin Pair fin X
apply (auto simp add : nn integral count space

of nat sum[symmetric] card SigmaI [symmetric]
simp del : card SigmaI
intro!: arg cong [where f=card ])

done
finally show emeasure ?P X = emeasure ?C X .

qed

lemma emeasure prod count space:
assumes A: A ∈ sets (count space UNIV

⊗
M M ) (is A ∈ sets (?A

⊗
M ?B))

shows emeasure (?A
⊗

M ?B) A = (
∫

+ x .
∫

+ y . indicator A (x , y) ∂?B ∂?A)
by (rule emeasure measure of [OF pair measure def ])

(auto simp: countably additive def positive def suminf indicator A
nn integral suminf [symmetric] dest : sets.sets into space)

lemma emeasure prod count space single[simp]: emeasure (count space UNIV
⊗

M
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count space UNIV ) {x} = 1
proof −
have [simp]:

∧
a b x y . indicator {(a, b)} (x , y) = (indicator {a} x ∗ indicator

{b} y ::ennreal)
by (auto split : split indicator)

show ?thesis
by (cases x ) (auto simp: emeasure prod count space nn integral cmult sets Pair)

qed

lemma emeasure count space prod eq :
fixes A :: ( ′a × ′b) set
assumes A: A ∈ sets (count space UNIV

⊗
M count space UNIV ) (is A ∈ sets

(?A
⊗

M ?B))
shows emeasure (?A

⊗
M ?B) A = emeasure (count space UNIV ) A

proof −
{ fix A :: ( ′a × ′b) set assume countable A
then have emeasure (?A

⊗
M ?B) (

⋃
a∈A. {a}) = (

∫
+a. emeasure (?A

⊗
M

?B) {a} ∂count space A)
by (intro emeasure UN countable) (auto simp: sets Pair disjoint family on def )
also have . . . = (

∫
+a. indicator A a ∂count space UNIV )

by (subst nn integral count space indicator) auto
finally have emeasure (?A

⊗
M ?B) A = emeasure (count space UNIV ) A

by simp }
note ∗ = this

show ?thesis
proof cases
assume finite A then show ?thesis
by (intro ∗ countable finite)

next
assume infinite A
then obtain C where countable C and infinite C and C ⊆ A
by (auto dest : infinite countable subset ′)

with A have emeasure (?A
⊗

M ?B) C ≤ emeasure (?A
⊗

M ?B) A
by (intro emeasure mono) auto

also have emeasure (?A
⊗

M ?B) C = emeasure (count space UNIV ) C
using 〈countable C 〉 by (rule ∗)

finally show ?thesis
using 〈infinite C 〉 〈infinite A〉 by (simp add : top unique)

qed
qed

lemma nn integral count space prod eq :
nn integral (count space UNIV

⊗
M count space UNIV ) f = nn integral (count space

UNIV ) f
(is nn integral ?P f = )

proof cases
assume cntbl : countable {x . f x 6= 0}
have [simp]:

∧
x . card ({x} ∩ {x . f x 6= 0}) = (indicator {x . f x 6= 0} x ::ennreal)
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by (auto split : split indicator)
have [measurable]:

∧
y . (λx . indicator {y} x ) ∈ borel measurable ?P

by (rule measurable discrete difference[of λx . 0 borel {y} λx . indicator {y}
x for y ])

(auto intro: sets Pair)

have (
∫

+x . f x ∂?P) = (
∫

+x .
∫

+x ′. f x ∗ indicator {x} x ′ ∂count space {x . f
x 6= 0} ∂?P)

by (auto simp add : nn integral cmult nn integral indicator ′ intro!: nn integral cong
split : split indicator)
also have . . . = (

∫
+x .

∫
+x ′. f x ′ ∗ indicator {x ′} x ∂count space {x . f x 6= 0}

∂?P)
by (auto intro!: nn integral cong split : split indicator)

also have . . . = (
∫

+x ′.
∫

+x . f x ′ ∗ indicator {x ′} x ∂?P ∂count space {x . f x
6= 0})

by (intro nn integral count space nn integral cntbl) auto
also have . . . = (

∫
+x ′. f x ′ ∂count space {x . f x 6= 0})

by (intro nn integral cong) (auto simp: nn integral cmult sets Pair)
finally show ?thesis

by (auto simp add : nn integral count space indicator intro!: nn integral cong
split : split indicator)
next
{ fix x assume f x 6= 0
then have (∃ r≥0 . 0 < r ∧ f x = ennreal r) ∨ f x = ∞
by (cases f x rule: ennreal cases) (auto simp: less le)

then have ∃n. ennreal (1 / real (Suc n)) ≤ f x
by (auto elim!: nat approx posE intro!: less imp le) }

note ∗ = this

assume cntbl : uncountable {x . f x 6= 0}
also have {x . f x 6= 0} = (

⋃
n. {x . 1/Suc n ≤ f x})

using ∗ by auto
finally obtain n where infinite {x . 1/Suc n ≤ f x}
by (meson countableI type countable UN uncountable infinite)

then obtain C where C : C ⊆ {x . 1/Suc n ≤ f x} and countable C infinite C
by (metis infinite countable subset ′)

have [measurable]: C ∈ sets ?P
using sets.countable[OF 〈countable C 〉, of ?P ] by (auto simp: sets Pair)

have (
∫

+x . ennreal (1/Suc n) ∗ indicator C x ∂?P) ≤ nn integral ?P f
using C by (intro nn integral mono) (auto split : split indicator simp: zero ereal def [symmetric])
moreover have (

∫
+x . ennreal (1/Suc n) ∗ indicator C x ∂?P) = ∞

using 〈infinite C 〉 by (simp add : nn integral cmult emeasure count space prod eq
ennreal mult top)
moreover have (

∫
+x . ennreal (1/Suc n) ∗ indicator C x ∂count space UNIV )

≤ nn integral (count space UNIV ) f
using C by (intro nn integral mono) (auto split : split indicator simp: zero ereal def [symmetric])
moreover have (

∫
+x . ennreal (1/Suc n) ∗ indicator C x ∂count space UNIV )
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= ∞
using 〈infinite C 〉 by (simp add : nn integral cmult ennreal mult top)

ultimately show ?thesis
by (simp add : top unique)

qed

theorem pair measure density :
assumes f : f ∈ borel measurable M1
assumes g : g ∈ borel measurable M2
assumes sigma finite measure M2 sigma finite measure (density M2 g)
shows density M1 f

⊗
M density M2 g = density (M1

⊗
M M2 ) (λ(x ,y). f x ∗

g y) (is ?L = ?R)
proof (rule measure eqI )
interpret M2 : sigma finite measure M2 by fact
interpret D2 : sigma finite measure density M2 g by fact

fix A assume A: A ∈ sets ?L
with f g have (

∫
+ x . f x ∗

∫
+ y . g y ∗ indicator A (x , y) ∂M2 ∂M1 ) =

(
∫

+ x .
∫

+ y . f x ∗ g y ∗ indicator A (x , y) ∂M2 ∂M1 )
by (intro nn integral cong AE )

(auto simp add : nn integral cmult [symmetric] ac simps)
with A f g show emeasure ?L A = emeasure ?R A
by (simp add : D2 .emeasure pair measure emeasure density nn integral density

M2 .nn integral fst [symmetric]
cong : nn integral cong)

qed simp

lemma sigma finite measure distr :
assumes sigma finite measure (distr M N f ) and f : f ∈ measurable M N
shows sigma finite measure M

proof −
interpret sigma finite measure distr M N f by fact
from sigma finite countable guess A .. note A = this
show ?thesis
proof
show ∃A. countable A ∧ A ⊆ sets M ∧

⋃
A = space M ∧ (∀ a∈A. emeasure

M a 6= ∞)
using A f
by (intro exI [of (λa. f −‘ a ∩ space M ) ‘ A])

(auto simp: emeasure distr set eq iff subset eq intro: measurable space)
qed

qed

lemma pair measure distr :
assumes f : f ∈ measurable M S and g : g ∈ measurable N T
assumes sigma finite measure (distr N T g)
shows distr M S f

⊗
M distr N T g = distr (M

⊗
M N ) (S

⊗
M T ) (λ(x , y).

(f x , g y)) (is ?P = ?D)
proof (rule measure eqI )
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interpret T : sigma finite measure distr N T g by fact
interpret N : sigma finite measure N by (rule sigma finite measure distr) fact+

fix A assume A: A ∈ sets ?P
with f g show emeasure ?P A = emeasure ?D A

by (auto simp add : N .emeasure pair measure alt space pair measure emea-
sure distr

T .emeasure pair measure alt nn integral distr
intro!: nn integral cong arg cong [where f=emeasure N ])

qed simp

lemma pair measure eqI :
assumes sigma finite measure M1 sigma finite measure M2
assumes sets: sets (M1

⊗
M M2 ) = sets M

assumes emeasure:
∧
A B . A ∈ sets M1 =⇒ B ∈ sets M2 =⇒ emeasure M1 A

∗ emeasure M2 B = emeasure M (A × B)
shows M1

⊗
M M2 = M

proof −
interpret M1 : sigma finite measure M1 by fact
interpret M2 : sigma finite measure M2 by fact
interpret pair sigma finite M1 M2 ..
from sigma finite up in pair measure generator guess F :: nat ⇒ ( ′a × ′b) set

.. note F = this
let ?E = {a × b |a b. a ∈ sets M1 ∧ b ∈ sets M2}
let ?P = M1

⊗
M M2

show ?thesis
proof (rule measure eqI generator eq [OF Int stable pair measure generator [of M1

M2 ]])
show ?E ⊆ Pow (space ?P)

using sets.space closed [of M1 ] sets.space closed [of M2 ] by (auto simp:
space pair measure)

show sets ?P = sigma sets (space ?P) ?E
by (simp add : sets pair measure space pair measure)

then show sets M = sigma sets (space ?P) ?E
using sets[symmetric] by simp

next
show range F ⊆ ?E (

⋃
i . F i) = space ?P

∧
i . emeasure ?P (F i) 6= ∞

using F by (auto simp: space pair measure)
next
fix X assume X ∈ ?E
then obtain A B where X [simp]: X = A × B and A: A ∈ sets M1 and B :

B ∈ sets M2 by auto
then have emeasure ?P X = emeasure M1 A ∗ emeasure M2 B

by (simp add : M2 .emeasure pair measure Times)
also have . . . = emeasure M (A × B)
using A B emeasure by auto

finally show emeasure ?P X = emeasure M X
by simp

qed
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qed

lemma sets pair countable:
assumes countable S1 countable S2
assumes M : sets M = Pow S1 and N : sets N = Pow S2
shows sets (M

⊗
M N ) = Pow (S1 × S2 )

proof auto
fix x a b assume x : x ∈ sets (M

⊗
M N ) (a, b) ∈ x

from sets.sets into space[OF x (1 )] x (2 )
sets eq imp space eq [of N count space S2 ] sets eq imp space eq [of M count space

S1 ] M N
show a ∈ S1 b ∈ S2
by (auto simp: space pair measure)

next
fix X assume X : X ⊆ S1 × S2
then have countable X
by (metis countable subset 〈countable S1 〉 〈countable S2 〉 countable SIGMA)

have X = (
⋃
(a, b)∈X . {a} × {b}) by auto

also have . . . ∈ sets (M
⊗

M N )
using X
by (safe intro!: sets.countable UN ′ 〈countable X 〉 subsetI pair measureI ) (auto

simp: M N )
finally show X ∈ sets (M

⊗
M N ) .

qed

lemma pair measure countable:
assumes countable S1 countable S2
shows count space S1

⊗
M count space S2 = count space (S1 × S2 )

proof (rule pair measure eqI )
show sigma finite measure (count space S1 ) sigma finite measure (count space

S2 )
using assms by (auto intro!: sigma finite measure count space countable)

show sets (count space S1
⊗

M count space S2 ) = sets (count space (S1 × S2 ))
by (subst sets pair countable[OF assms]) auto

next
fix A B assume A ∈ sets (count space S1 ) B ∈ sets (count space S2 )
then show emeasure (count space S1 ) A ∗ emeasure (count space S2 ) B =
emeasure (count space (S1 × S2 )) (A × B)
by (subst (1 2 3 ) emeasure count space) (auto simp: finite cartesian product iff

ennreal mult top ennreal top mult)
qed

proposition nn integral fst count space:
(
∫

+ x .
∫

+ y . f (x , y) ∂count space UNIV ∂count space UNIV ) = integralN

(count space UNIV ) f
(is ?lhs = ?rhs)

proof(cases)
assume ∗: countable {xy . f xy 6= 0}
let ?A = fst ‘ {xy . f xy 6= 0}
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let ?B = snd ‘ {xy . f xy 6= 0}
from ∗ have [simp]: countable ?A countable ?B by(rule countable image)+
have ?lhs = (

∫
+ x .

∫
+ y . f (x , y) ∂count space UNIV ∂count space ?A)

by(rule nn integral count space eq)
(auto simp add : nn integral 0 iff AE AE count space not le intro: rev image eqI )

also have . . . = (
∫

+ x .
∫

+ y . f (x , y) ∂count space ?B ∂count space ?A)
by(intro nn integral count space eq nn integral cong)(auto intro: rev image eqI )

also have . . . = (
∫

+ xy . f xy ∂count space (?A × ?B))
by(subst sigma finite measure.nn integral fst)
(simp all add : sigma finite measure count space countable pair measure countable)

also have . . . = ?rhs
by(rule nn integral count space eq)(auto intro: rev image eqI )

finally show ?thesis .
next
{ fix xy assume f xy 6= 0
then have (∃ r≥0 . 0 < r ∧ f xy = ennreal r) ∨ f xy = ∞
by (cases f xy rule: ennreal cases) (auto simp: less le)

then have ∃n. ennreal (1 / real (Suc n)) ≤ f xy
by (auto elim!: nat approx posE intro!: less imp le) }

note ∗ = this

assume cntbl : uncountable {xy . f xy 6= 0}
also have {xy . f xy 6= 0} = (

⋃
n. {xy . 1/Suc n ≤ f xy})

using ∗ by auto
finally obtain n where infinite {xy . 1/Suc n ≤ f xy}
by (meson countableI type countable UN uncountable infinite)

then obtain C where C : C ⊆ {xy . 1/Suc n ≤ f xy} and countable C infinite
C

by (metis infinite countable subset ′)

have ∞ = (
∫

+ xy . ennreal (1 / Suc n) ∗ indicator C xy ∂count space UNIV )
using 〈infinite C 〉 by(simp add : nn integral cmult ennreal mult top)

also have . . . ≤ ?rhs using C
by(intro nn integral mono)(auto split : split indicator)

finally have ?rhs = ∞ by (simp add : top unique)
moreover have ?lhs = ∞
proof(cases finite (fst ‘ C ))
case True
then obtain x C ′ where x : x ∈ fst ‘ C
and C ′: C ′ = fst −‘ {x} ∩ C
and infinite C ′

using 〈infinite C 〉 by(auto elim!: inf img fin domE ′)
from x C C ′ have ∗∗: C ′ ⊆ {xy . 1 / Suc n ≤ f xy} by auto

from C ′ 〈infinite C ′〉 have infinite (snd ‘ C ′)
by(auto dest !: finite imageD simp add : inj on def )
then have ∞ = (

∫
+ y . ennreal (1 / Suc n) ∗ indicator (snd ‘ C ′) y

∂count space UNIV )
by(simp add : nn integral cmult ennreal mult top)
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also have . . . = (
∫

+ y . ennreal (1 / Suc n) ∗ indicator C ′ (x , y) ∂count space
UNIV )

by(rule nn integral cong)(force split : split indicator intro: rev image eqI simp
add : C ′)

also have . . . = (
∫

+ x ′. (
∫

+ y . ennreal (1 / Suc n) ∗ indicator C ′ (x , y)
∂count space UNIV ) ∗ indicator {x} x ′ ∂count space UNIV )

by(simp add : one ereal def [symmetric])
also have . . . ≤ (

∫
+ x .

∫
+ y . ennreal (1 / Suc n) ∗ indicator C ′ (x , y)

∂count space UNIV ∂count space UNIV )
by(rule nn integral mono)(simp split : split indicator)

also have . . . ≤ ?lhs using ∗∗
by(intro nn integral mono)(auto split : split indicator)

finally show ?thesis by (simp add : top unique)
next
case False
define C ′ where C ′ = fst ‘ C
have ∞ =

∫
+ x . ennreal (1 / Suc n) ∗ indicator C ′ x ∂count space UNIV

using C ′ def False by(simp add : nn integral cmult ennreal mult top)
also have . . . =

∫
+ x .

∫
+ y . ennreal (1 / Suc n) ∗ indicator C ′ x ∗ indicator

{SOME y . (x , y) ∈ C} y ∂count space UNIV ∂count space UNIV
by(auto simp add : one ereal def [symmetric] max def intro: nn integral cong)
also have . . . ≤

∫
+ x .

∫
+ y . ennreal (1 / Suc n) ∗ indicator C (x , y)

∂count space UNIV ∂count space UNIV
by(intro nn integral mono)(auto simp add : C ′ def split : split indicator intro:

someI )
also have . . . ≤ ?lhs using C
by(intro nn integral mono)(auto split : split indicator)

finally show ?thesis by (simp add : top unique)
qed
ultimately show ?thesis by simp

qed

proposition nn integral snd count space:
(
∫

+ y .
∫

+ x . f (x , y) ∂count space UNIV ∂count space UNIV ) = integralN

(count space UNIV ) f
(is ?lhs = ?rhs)

proof −
have ?lhs = (

∫
+ y .

∫
+ x . (λ(y , x ). f (x , y)) (y , x ) ∂count space UNIV

∂count space UNIV )
by(simp)

also have . . . =
∫

+ yx . (λ(y , x ). f (x , y)) yx ∂count space UNIV
by(rule nn integral fst count space)

also have . . . =
∫

+ xy . f xy ∂count space ((λ(x , y). (y , x )) ‘ UNIV )
by(subst nn integral bij count space[OF inj on imp bij betw , symmetric])
(simp all add : inj on def split def )

also have . . . = ?rhs by(rule nn integral count space eq) auto
finally show ?thesis .

qed
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lemma measurable pair measure countable1 :
assumes countable A
and [measurable]:

∧
x . x ∈ A =⇒ (λy . f (x , y)) ∈ measurable N K

shows f ∈ measurable (count space A
⊗

M N ) K
using assms(1 )
by(rule measurable compose countable ′[where f=λa b. f (a, snd b) and g=fst
and I=A, simplified ])simp all

6.7.5 Product of Borel spaces

theorem borel Times:
fixes A :: ′a::topological space set and B :: ′b::topological space set
assumes A: A ∈ sets borel and B : B ∈ sets borel
shows A × B ∈ sets borel

proof −
have A × B = (A×UNIV ) ∩ (UNIV × B)
by auto

moreover
{ have A ∈ sigma sets UNIV {S . open S} using A by (simp add : sets borel)
then have A×UNIV ∈ sets borel
proof (induct A)
case (Basic S ) then show ?case
by (auto intro!: borel open open Times)

next
case (Compl A)
moreover have ∗: (UNIV − A) × UNIV = UNIV − (A × UNIV )
by auto

ultimately show ?case
unfolding ∗ by auto

next
case (Union A)
moreover have ∗: (

⋃
(A ‘ UNIV )) × UNIV =

⋃
((λi . A i × UNIV ) ‘

UNIV )
by auto

ultimately show ?case
unfolding ∗ by auto

qed simp }
moreover
{ have B ∈ sigma sets UNIV {S . open S} using B by (simp add : sets borel)
then have UNIV×B ∈ sets borel
proof (induct B)
case (Basic S ) then show ?case
by (auto intro!: borel open open Times)

next
case (Compl B)
moreover have ∗: UNIV × (UNIV − B) = UNIV − (UNIV × B)
by auto

ultimately show ?case
unfolding ∗ by auto
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next
case (Union B)
moreover have ∗: UNIV × (

⋃
(B ‘ UNIV )) =

⋃
((λi . UNIV × B i) ‘

UNIV )
by auto

ultimately show ?case
unfolding ∗ by auto

qed simp }
ultimately show ?thesis
by auto

qed

lemma finite measure pair measure:
assumes finite measure M finite measure N
shows finite measure (N

⊗
M M )

proof (rule finite measureI )
interpret M : finite measure M by fact
interpret N : finite measure N by fact
show emeasure (N

⊗
M M ) (space (N

⊗
M M )) 6= ∞

by (auto simp: space pair measure M .emeasure pair measure Times ennreal mult eq top iff )
qed

end

6.8 Finite Product Measure

theory Finite Product Measure
imports Binary Product Measure Function Topology
begin

lemma PiE choice: (∃ f ∈PiE I F . ∀ i∈I . P i (f i)) ←→ (∀ i∈I . ∃ x∈F i . P i x )
by (auto simp: Bex def PiE iff Ball def dest !: choice iff ′[THEN iffD1 ])

(force intro: exI [of restrict f I for f ])

lemma case prod const : (λ(i , j ). c) = (λ . c)
by auto

6.8.1 More about Function restricted by extensional

definition
merge I J = (λ(x , y) i . if i ∈ I then x i else if i ∈ J then y i else undefined)

lemma merge apply [simp]:
I ∩ J = {} =⇒ i ∈ I =⇒ merge I J (x , y) i = x i
I ∩ J = {} =⇒ i ∈ J =⇒ merge I J (x , y) i = y i
J ∩ I = {} =⇒ i ∈ I =⇒ merge I J (x , y) i = x i
J ∩ I = {} =⇒ i ∈ J =⇒ merge I J (x , y) i = y i
i /∈ I =⇒ i /∈ J =⇒ merge I J (x , y) i = undefined
unfolding merge def by auto
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lemma merge commute:
I ∩ J = {} =⇒ merge I J (x , y) = merge J I (y , x )
by (force simp: merge def )

lemma Pi cancel merge range[simp]:
I ∩ J = {} =⇒ x ∈ Pi I (merge I J (A, B)) ←→ x ∈ Pi I A
I ∩ J = {} =⇒ x ∈ Pi I (merge J I (B , A)) ←→ x ∈ Pi I A
J ∩ I = {} =⇒ x ∈ Pi I (merge I J (A, B)) ←→ x ∈ Pi I A
J ∩ I = {} =⇒ x ∈ Pi I (merge J I (B , A)) ←→ x ∈ Pi I A
by (auto simp: Pi def )

lemma Pi cancel merge[simp]:
I ∩ J = {} =⇒ merge I J (x , y) ∈ Pi I B ←→ x ∈ Pi I B
J ∩ I = {} =⇒ merge I J (x , y) ∈ Pi I B ←→ x ∈ Pi I B
I ∩ J = {} =⇒ merge I J (x , y) ∈ Pi J B ←→ y ∈ Pi J B
J ∩ I = {} =⇒ merge I J (x , y) ∈ Pi J B ←→ y ∈ Pi J B
by (auto simp: Pi def )

lemma extensional merge[simp]: merge I J (x , y) ∈ extensional (I ∪ J )
by (auto simp: extensional def )

lemma restrict merge[simp]:
I ∩ J = {} =⇒ restrict (merge I J (x , y)) I = restrict x I
I ∩ J = {} =⇒ restrict (merge I J (x , y)) J = restrict y J
J ∩ I = {} =⇒ restrict (merge I J (x , y)) I = restrict x I
J ∩ I = {} =⇒ restrict (merge I J (x , y)) J = restrict y J
by (auto simp: restrict def )

lemma split merge: P (merge I J (x ,y) i) ←→ (i ∈ I −→ P (x i)) ∧ (i ∈ J − I
−→ P (y i)) ∧ (i /∈ I ∪ J −→ P undefined)
unfolding merge def by auto

lemma PiE cancel merge[simp]:
I ∩ J = {} =⇒
merge I J (x , y) ∈ PiE (I ∪ J ) B ←→ x ∈ Pi I B ∧ y ∈ Pi J B

by (auto simp: PiE def restrict Pi cancel)

lemma merge singleton[simp]: i /∈ I =⇒ merge I {i} (x ,y) = restrict (x (i := y
i)) (insert i I )
unfolding merge def by (auto simp: fun eq iff )

lemma extensional merge sub: I ∪ J ⊆ K =⇒ merge I J (x , y) ∈ extensional K
unfolding merge def extensional def by auto

lemma merge restrict [simp]:
merge I J (restrict x I , y) = merge I J (x , y)
merge I J (x , restrict y J ) = merge I J (x , y)
unfolding merge def by auto
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lemma merge x x eq restrict [simp]:
merge I J (x , x ) = restrict x (I ∪ J )
unfolding merge def by auto

lemma injective vimage restrict :
assumes J : J ⊆ I
and sets: A ⊆ (ΠE i∈J . S i) B ⊆ (ΠE i∈J . S i) and ne: (ΠE i∈I . S i) 6= {}
and eq : (λx . restrict x J ) −‘ A ∩ (ΠE i∈I . S i) = (λx . restrict x J ) −‘ B ∩

(ΠE i∈I . S i)
shows A = B

proof (intro set eqI )
fix x
from ne obtain y where y :

∧
i . i ∈ I =⇒ y i ∈ S i by auto

have J ∩ (I − J ) = {} by auto
show x ∈ A ←→ x ∈ B
proof cases
assume x : x ∈ (ΠE i∈J . S i)
have x ∈ A ←→ merge J (I − J ) (x ,y) ∈ (λx . restrict x J ) −‘ A ∩ (ΠE i∈I .

S i)
using y x 〈J ⊆ I 〉 PiE cancel merge[of J I − J x y S ]
by (auto simp del : PiE cancel merge simp add : Un absorb1 )

then show x ∈ A ←→ x ∈ B
using y x 〈J ⊆ I 〉 PiE cancel merge[of J I − J x y S ]
by (auto simp del : PiE cancel merge simp add : Un absorb1 eq)

qed (insert sets, auto)
qed

lemma restrict vimage:
I ∩ J = {} =⇒
(λx . (restrict x I , restrict x J )) −‘ (PiE I E × PiE J F ) = Pi (I ∪ J ) (merge

I J (E , F ))
by (auto simp: restrict Pi cancel PiE def )

lemma merge vimage:
I ∩ J = {} =⇒ merge I J −‘ PiE (I ∪ J ) E = Pi I E × Pi J E
by (auto simp: restrict Pi cancel PiE def )

6.8.2 Finite product spaces

definition prod emb where
prod emb I M K X = (λx . restrict x K ) −‘ X ∩ (ΠE i∈I . space (M i))

lemma prod emb iff :
f ∈ prod emb I M K X ←→ f ∈ extensional I ∧ (restrict f K ∈ X ) ∧ (∀ i∈I . f i
∈ space (M i))
unfolding prod emb def PiE def by auto

lemma
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shows prod emb empty [simp]: prod emb M L K {} = {}
and prod emb Un[simp]: prod emb M L K (A ∪ B) = prod emb M L K A ∪

prod emb M L K B
and prod emb Int : prod emb M L K (A ∩ B) = prod emb M L K A ∩ prod emb

M L K B
and prod emb UN [simp]: prod emb M L K (

⋃
i∈I . F i) = (

⋃
i∈I . prod emb M

L K (F i))
and prod emb INT [simp]: I 6= {} =⇒ prod emb M L K (

⋂
i∈I . F i) = (

⋂
i∈I .

prod emb M L K (F i))
and prod emb Diff [simp]: prod emb M L K (A − B) = prod emb M L K A −

prod emb M L K B
by (auto simp: prod emb def )

lemma prod emb PiE : J ⊆ I =⇒ (
∧
i . i ∈ J =⇒ E i ⊆ space (M i)) =⇒

prod emb I M J (ΠE i∈J . E i) = (ΠE i∈I . if i ∈ J then E i else space (M i))
by (force simp: prod emb def PiE iff if split mem2 )

lemma prod emb PiE same index [simp]:
(
∧
i . i ∈ I =⇒ E i ⊆ space (M i)) =⇒ prod emb I M I (PiE I E ) = PiE I E

by (auto simp: prod emb def PiE iff )

lemma prod emb trans[simp]:
J ⊆ K =⇒ K ⊆ L =⇒ prod emb L M K (prod emb K M J X ) = prod emb L M

J X
by (auto simp add : Int absorb1 prod emb def PiE def )

lemma prod emb Pi :
assumes X ∈ (Π j∈J . sets (M j )) J ⊆ K
shows prod emb K M J (PiE J X ) = (ΠE i∈K . if i ∈ J then X i else space (M

i))
using assms sets.space closed
by (auto simp: prod emb def PiE iff split : if split asm) blast+

lemma prod emb id :
B ⊆ (ΠE i∈L. space (M i)) =⇒ prod emb L M L B = B
by (auto simp: prod emb def subset eq extensional restrict)

lemma prod emb mono:
F ⊆ G =⇒ prod emb A M B F ⊆ prod emb A M B G
by (auto simp: prod emb def )

definition PiM :: ′i set ⇒ ( ′i ⇒ ′a measure) ⇒ ( ′i ⇒ ′a) measure where
PiM I M = extend measure (ΠE i∈I . space (M i))
{(J , X ). (J 6= {} ∨ I = {}) ∧ finite J ∧ J ⊆ I ∧ X ∈ (Π j∈J . sets (M j ))}
(λ(J , X ). prod emb I M J (ΠE j∈J . X j ))
(λ(J , X ).

∏
j∈J ∪ {i∈I . emeasure (M i) (space (M i)) 6= 1}. if j ∈ J then

emeasure (M j ) (X j ) else emeasure (M j ) (space (M j )))

definition prod algebra :: ′i set ⇒ ( ′i ⇒ ′a measure) ⇒ ( ′i ⇒ ′a) set set where
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prod algebra I M = (λ(J , X ). prod emb I M J (ΠE j∈J . X j )) ‘
{(J , X ). (J 6= {} ∨ I = {}) ∧ finite J ∧ J ⊆ I ∧ X ∈ (Π j∈J . sets (M j ))}

abbreviation
PiM I M ≡ PiM I M

syntax
PiM :: pttrn ⇒ ′i set ⇒ ′a measure ⇒ ( ′i => ′a) measure ((3ΠM ∈ ./ ) 10 )

translations
ΠM x∈I . M == CONST PiM I (%x . M )

lemma extend measure cong :
assumes Ω = Ω ′ I = I ′ G = G ′ ∧i . i ∈ I ′ =⇒ µ i = µ ′ i
shows extend measure Ω I G µ = extend measure Ω ′ I ′ G ′ µ ′

unfolding extend measure def by (auto simp add : assms)

lemma Pi cong sets:
[[I = J ;

∧
x . x ∈ I =⇒ M x = N x ]] =⇒ Pi I M = Pi J N

unfolding Pi def by auto

lemma PiM cong :
assumes I = J

∧
x . x ∈ I =⇒ M x = N x

shows PiM I M = PiM J N
unfolding PiM def

proof (rule extend measure cong , goal cases)
case 1
show ?case using assms

by (subst assms(1 ), intro PiE cong [of J λi . space (M i) λi . space (N i)])
simp all
next
case 2
have

∧
K . K ⊆ J =⇒ (Π j∈K . sets (M j )) = (Π j∈K . sets (N j ))

using assms by (intro Pi cong sets) auto
thus ?case by (auto simp: assms)

next
case 3
show ?case using assms
by (intro ext) (auto simp: prod emb def dest : PiE mem)

next
case (4 x )
thus ?case using assms
by (auto intro!: prod .cong split : if split asm)

qed

lemma prod algebra sets into space:
prod algebra I M ⊆ Pow (ΠE i∈I . space (M i))
by (auto simp: prod emb def prod algebra def )
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lemma prod algebra eq finite:
assumes I : finite I
shows prod algebra I M = {(ΠE i∈I . X i) |X . X ∈ (Π j∈I . sets (M j ))} (is ?L

= ?R)
proof (intro iffI set eqI )
fix A assume A ∈ ?L
then obtain J E where J : J 6= {} ∨ I = {} finite J J ⊆ I ∀ i∈J . E i ∈ sets

(M i)
and A: A = prod emb I M J (ΠE j∈J . E j )
by (auto simp: prod algebra def )

let ?A = ΠE i∈I . if i ∈ J then E i else space (M i)
have A: A = ?A
unfolding A using J by (intro prod emb PiE sets.sets into space) auto

show A ∈ ?R unfolding A using J sets.top
by (intro CollectI exI [of λi . if i ∈ J then E i else space (M i)]) simp

next
fix A assume A ∈ ?R
then obtain X where A: A = (ΠE i∈I . X i) and X : X ∈ (Π j∈I . sets (M j ))

by auto
then have A: A = prod emb I M I (ΠE i∈I . X i)
by (simp add : prod emb PiE same index [OF sets.sets into space] Pi iff )

from X I show A ∈ ?L unfolding A
by (auto simp: prod algebra def )

qed

lemma prod algebraI :
finite J =⇒ (J 6= {} ∨ I = {}) =⇒ J ⊆ I =⇒ (

∧
i . i ∈ J =⇒ E i ∈ sets (M i))

=⇒ prod emb I M J (ΠE j∈J . E j ) ∈ prod algebra I M
by (auto simp: prod algebra def )

lemma prod algebraI finite:
finite I =⇒ (∀ i∈I . E i ∈ sets (M i)) =⇒ (PiE I E ) ∈ prod algebra I M
using prod algebraI [of I I E M ] prod emb PiE same index [of I E M , OF sets.sets into space]

by simp

lemma Int stable PiE : Int stable {PiE J E | E . ∀ i∈I . E i ∈ sets (M i)}
proof (safe intro!: Int stableI )
fix E F assume ∀ i∈I . E i ∈ sets (M i) ∀ i∈I . F i ∈ sets (M i)
then show ∃G . PiE J E ∩ PiE J F = PiE J G ∧ (∀ i∈I . G i ∈ sets (M i))
by (auto intro!: exI [of λi . E i ∩ F i ] simp: PiE Int)

qed

lemma prod algebraE :
assumes A: A ∈ prod algebra I M
obtains J E where A = prod emb I M J (ΠE j∈J . E j )
finite J J 6= {} ∨ I = {} J ⊆ I

∧
i . i ∈ J =⇒ E i ∈ sets (M i)

using A by (auto simp: prod algebra def )

lemma prod algebraE all :
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assumes A: A ∈ prod algebra I M
obtains E where A = PiE I E E ∈ (Π i∈I . sets (M i))

proof −
from A obtain E J where A: A = prod emb I M J (PiE J E )
and J : J ⊆ I and E : E ∈ (Π i∈J . sets (M i))
by (auto simp: prod algebra def )

from E have
∧
i . i ∈ J =⇒ E i ⊆ space (M i)

using sets.sets into space by auto
then have A = (ΠE i∈I . if i∈J then E i else space (M i))
using A J by (auto simp: prod emb PiE )

moreover have (λi . if i∈J then E i else space (M i)) ∈ (Π i∈I . sets (M i))
using sets.top E by auto

ultimately show ?thesis using that by auto
qed

lemma Int stable prod algebra: Int stable (prod algebra I M )
proof (unfold Int stable def , safe)
fix A assume A ∈ prod algebra I M
from prod algebraE [OF this] guess J E . note A = this
fix B assume B ∈ prod algebra I M
from prod algebraE [OF this] guess K F . note B = this
have A ∩ B = prod emb I M (J ∪ K ) (ΠE i∈J ∪ K . (if i ∈ J then E i else

space (M i)) ∩
(if i ∈ K then F i else space (M i)))

unfolding A B using A(2 ,3 ,4 ) A(5 )[THEN sets.sets into space] B(2 ,3 ,4 )
B(5 )[THEN sets.sets into space]

apply (subst (1 2 3 ) prod emb PiE )
apply (simp all add : subset eq PiE Int)
apply blast
apply (intro PiE cong)
apply auto
done

also have . . . ∈ prod algebra I M
using A B by (auto intro!: prod algebraI )

finally show A ∩ B ∈ prod algebra I M .
qed

proposition prod algebra mono:
assumes space:

∧
i . i ∈ I =⇒ space (E i) = space (F i)

assumes sets:
∧
i . i ∈ I =⇒ sets (E i) ⊆ sets (F i)

shows prod algebra I E ⊆ prod algebra I F
proof
fix A assume A ∈ prod algebra I E
then obtain J G where J : J 6= {} ∨ I = {} finite J J ⊆ I
and A: A = prod emb I E J (ΠE i∈J . G i)
and G :

∧
i . i ∈ J =⇒ G i ∈ sets (E i)

by (auto simp: prod algebra def )
moreover
from space have (ΠE i∈I . space (E i)) = (ΠE i∈I . space (F i))
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by (rule PiE cong)
with A have A = prod emb I F J (ΠE i∈J . G i)
by (simp add : prod emb def )

moreover
from sets G J have

∧
i . i ∈ J =⇒ G i ∈ sets (F i)

by auto
ultimately show A ∈ prod algebra I F
apply (simp add : prod algebra def image iff )
apply (intro exI [of J ] exI [of G ] conjI )
apply auto
done

qed
proposition prod algebra cong :
assumes I = J and sets: (

∧
i . i ∈ I =⇒ sets (M i) = sets (N i))

shows prod algebra I M = prod algebra J N
proof −
have space:

∧
i . i ∈ I =⇒ space (M i) = space (N i)

using sets eq imp space eq [OF sets] by auto
with sets show ?thesis unfolding 〈I = J 〉

by (intro antisym prod algebra mono) auto
qed

lemma space in prod algebra:
(ΠE i∈I . space (M i)) ∈ prod algebra I M

proof cases
assume I = {} then show ?thesis
by (auto simp add : prod algebra def image iff prod emb def )

next
assume I 6= {}
then obtain i where i ∈ I by auto
then have (ΠE i∈I . space (M i)) = prod emb I M {i} (ΠE i∈{i}. space (M i))
by (auto simp: prod emb def )

also have . . . ∈ prod algebra I M
using 〈i ∈ I 〉 by (intro prod algebraI ) auto

finally show ?thesis .
qed

lemma space PiM : space (ΠM i∈I . M i) = (ΠE i∈I . space (M i))
using prod algebra sets into space unfolding PiM def prod algebra def by (intro

space extend measure) simp

lemma prod emb subset PiM [simp]: prod emb I M K X ⊆ space (PiM I M )
by (auto simp: prod emb def space PiM )

lemma space PiM empty iff [simp]: space (PiM I M ) = {} ←→ (∃ i∈I . space (M
i) = {})
by (auto simp: space PiM PiE eq empty iff )

lemma undefined in PiM empty [simp]: (λx . undefined) ∈ space (PiM {} M )
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by (auto simp: space PiM )

lemma sets PiM : sets (ΠM i∈I .M i) = sigma sets (ΠE i∈I . space (M i)) (prod algebra
I M )
using prod algebra sets into space unfolding PiM def prod algebra def by (intro

sets extend measure) simp

proposition sets PiM single: sets (PiM I M ) =
sigma sets (ΠE i∈I . space (M i)) {{f ∈ΠE i∈I . space (M i). f i ∈ A} | i A. i

∈ I ∧ A ∈ sets (M i)}
(is = sigma sets ?Ω ?R)

unfolding sets PiM
proof (rule sigma sets eqI )
interpret R: sigma algebra ?Ω sigma sets ?Ω ?R by (rule sigma algebra sigma sets)

auto
fix A assume A ∈ prod algebra I M
from prod algebraE [OF this] guess J X . note X = this
show A ∈ sigma sets ?Ω ?R
proof cases
assume I = {}
with X have A = {λx . undefined} by (auto simp: prod emb def )
with 〈I = {}〉 show ?thesis by (auto intro!: sigma sets top)

next
assume I 6= {}
with X have A = (

⋂
j∈J . {f ∈(ΠE i∈I . space (M i)). f j ∈ X j})

by (auto simp: prod emb def )
also have . . . ∈ sigma sets ?Ω ?R
using X 〈I 6= {}〉 by (intro R.finite INT sigma sets.Basic) auto

finally show A ∈ sigma sets ?Ω ?R .
qed

next
fix A assume A ∈ ?R
then obtain i B where A: A = {f ∈ΠE i∈I . space (M i). f i ∈ B} i ∈ I B ∈

sets (M i)
by auto

then have A = prod emb I M {i} (ΠE i∈{i}. B)
by (auto simp: prod emb def )

also have . . . ∈ sigma sets ?Ω (prod algebra I M )
using A by (intro sigma sets.Basic prod algebraI ) auto

finally show A ∈ sigma sets ?Ω (prod algebra I M ) .
qed

lemma sets PiM eq proj :
I 6= {} =⇒ sets (PiM I M ) = sets (SUP i∈I . vimage algebra (ΠE i∈I . space (M

i)) (λx . x i) (M i))
apply (simp add : sets PiM single)
apply (subst sets Sup eq [where X=ΠE i∈I . space (M i)])
apply auto []
apply auto []
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apply simp
apply (subst arg cong [of Sup, OF image cong , OF refl ])
apply (rule sets vimage algebra2 )
apply (auto intro!: arg cong2 [where f=sigma sets])
done

lemma
shows space PiM empty : space (PiM {} M ) = {λk . undefined}
and sets PiM empty : sets (PiM {} M ) = { {}, {λk . undefined} }

by (simp all add : space PiM sets PiM single image constant sigma sets empty eq)

proposition sets PiM sigma:
assumes Ω cover :

∧
i . i ∈ I =⇒ ∃S⊆E i . countable S ∧ Ω i =

⋃
S

assumes E :
∧
i . i ∈ I =⇒ E i ⊆ Pow (Ω i)

assumes J :
∧
j . j ∈ J =⇒ finite j

⋃
J = I

defines P ≡ {{f ∈(ΠE i∈I . Ω i). ∀ i∈j . f i ∈ A i} | A j . j ∈ J ∧ A ∈ Pi j E}
shows sets (ΠM i∈I . sigma (Ω i) (E i)) = sets (sigma (ΠE i∈I . Ω i) P)

proof cases
assume I = {}
with 〈

⋃
J = I 〉 have P = {{λ . undefined}} ∨ P = {}

by (auto simp: P def )
with 〈I = {}〉 show ?thesis
by (auto simp add : sets PiM empty sigma sets empty eq)

next
let ?F = λi . {(λx . x i) −‘ A ∩ PiE I Ω |A. A ∈ E i}
assume I 6= {}
then have sets (PiM I (λi . sigma (Ω i) (E i))) =

sets (SUP i∈I . vimage algebra (ΠE i∈I . Ω i) (λx . x i) (sigma (Ω i) (E i)))
by (subst sets PiM eq proj ) (auto simp: space measure of conv)

also have . . . = sets (SUP i∈I . sigma (PiE I Ω) (?F i))
using E by (intro sets SUP cong arg cong [where f=sets] vimage algebra sigma)

auto
also have . . . = sets (sigma (PiE I Ω) (

⋃
i∈I . ?F i))

using 〈I 6= {}〉 by (intro arg cong [where f=sets] SUP sigma sigma) auto
also have . . . = sets (sigma (PiE I Ω) P)
proof (intro arg cong [where f=sets] sigma eqI sigma sets eqI )
show (

⋃
i∈I . ?F i) ⊆ Pow (PiE I Ω) P ⊆ Pow (PiE I Ω)

by (auto simp: P def )
next
interpret P : sigma algebra ΠE i∈I . Ω i sigma sets (ΠE i∈I . Ω i) P
by (auto intro!: sigma algebra sigma sets simp: P def )

fix Z assume Z ∈ (
⋃
i∈I . ?F i)

then obtain i A where i : i ∈ I A ∈ E i and Z def : Z = (λx . x i) −‘ A ∩
PiE I Ω

by auto
from 〈i ∈ I 〉 J obtain j where j : i ∈ j j ∈ J j ⊆ I finite j
by auto

obtain S where S :
∧
i . i ∈ j =⇒ S i ⊆ E i

∧
i . i ∈ j =⇒ countable (S i)

Finite{_}{\kern 0pt}Product{_}{\kern 0pt}Measure.html


1510

∧
i . i ∈ j =⇒ Ω i =

⋃
(S i)

by (metis subset eq Ω cover 〈j ⊆ I 〉)
define A ′ where A ′ n = n(i := A) for n
then have A ′ i :

∧
n. A ′ n i = A

by simp
{ fix n assume n ∈ PiE (j − {i}) S
then have A ′ n ∈ Pi j E
unfolding PiE def Pi def using S (1 ) by (auto simp: A ′ def 〈A ∈ E i 〉 )

with 〈j ∈ J 〉 have {f ∈ PiE I Ω. ∀ i∈j . f i ∈ A ′ n i} ∈ P
by (auto simp: P def ) }

note A ′ in P = this

{ fix x assume x i ∈ A x ∈ PiE I Ω
with S (3 ) 〈j ⊆ I 〉 have ∀ i∈j . ∃ s∈S i . x i ∈ s
by (auto simp: PiE def Pi def )

then obtain s where s:
∧
i . i ∈ j =⇒ s i ∈ S i

∧
i . i ∈ j =⇒ x i ∈ s i

by metis
with 〈x i ∈ A〉 have ∃n∈PiE (j−{i}) S . ∀ i∈j . x i ∈ A ′ n i

by (intro bexI [of restrict (s(i := A)) (j−{i})]) (auto simp: A ′ def split :
if splits) }

then have Z = (
⋃
n∈PiE (j−{i}) S . {f ∈(ΠE i∈I . Ω i). ∀ i∈j . f i ∈ A ′ n i})

unfolding Z def
by (auto simp add : set eq iff ball conj distrib 〈i∈j 〉 A ′ i dest : bspec[OF 〈i∈j 〉]

cong : conj cong)
also have . . . ∈ sigma sets (ΠE i∈I . Ω i) P
using 〈finite j 〉 S (2 )
by (intro P .countable UN ′ countable PiE ) (simp all add : image subset iff

A ′ in P)
finally show Z ∈ sigma sets (ΠE i∈I . Ω i) P .

next
interpret F : sigma algebra ΠE i∈I . Ω i sigma sets (ΠE i∈I . Ω i) (

⋃
i∈I . ?F

i)
by (auto intro!: sigma algebra sigma sets)

fix b assume b ∈ P
then obtain A j where b: b = {f ∈(ΠE i∈I . Ω i). ∀ i∈j . f i ∈ A i} j ∈ J A

∈ Pi j E
by (auto simp: P def )

show b ∈ sigma sets (PiE I Ω) (
⋃

i∈I . ?F i)
proof cases
assume j = {}
with b have b = (ΠE i∈I . Ω i)
by auto

then show ?thesis
by blast

next
assume j 6= {}
with J b(2 ,3 ) have eq : b = (

⋂
i∈j . ((λx . x i) −‘ A i ∩ PiE I Ω))

unfolding b(1 )
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by (auto simp: PiE def Pi def )
show ?thesis
unfolding eq using 〈A ∈ Pi j E 〉 〈j ∈ J 〉 J (2 )
by (intro F .finite INT J 〈j ∈ J 〉 〈j 6= {}〉 sigma sets.Basic) blast

qed
qed
finally show ?thesis .

qed

lemma sets PiM in sets:
assumes space: space N = (ΠE i∈I . space (M i))
assumes sets:

∧
i A. i ∈ I =⇒ A ∈ sets (M i) =⇒ {x∈space N . x i ∈ A} ∈ sets

N
shows sets (ΠM i ∈ I . M i) ⊆ sets N
unfolding sets PiM single space[symmetric]
by (intro sets.sigma sets subset subsetI ) (auto intro: sets)

lemma sets PiM cong [measurable cong ]:
assumes I = J

∧
i . i ∈ J =⇒ sets (M i) = sets (N i) shows sets (PiM I M )

= sets (PiM J N )
using assms sets eq imp space eq [OF assms(2 )] by (simp add : sets PiM single

cong : PiE cong conj cong)

lemma sets PiM I :
assumes finite J J ⊆ I ∀ i∈J . E i ∈ sets (M i)
shows prod emb I M J (ΠE j∈J . E j ) ∈ sets (ΠM i∈I . M i)

proof cases
assume J = {}
then have prod emb I M J (ΠE j∈J . E j ) = (ΠE j∈I . space (M j ))
by (auto simp: prod emb def )

then show ?thesis
by (auto simp add : sets PiM intro!: sigma sets top)

next
assume J 6= {} with assms show ?thesis
by (force simp add : sets PiM prod algebra def )

qed

proposition measurable PiM :
assumes space: f ∈ space N → (ΠE i∈I . space (M i))
assumes sets:

∧
X J . J 6= {} ∨ I = {} =⇒ finite J =⇒ J ⊆ I =⇒ (

∧
i . i ∈ J

=⇒ X i ∈ sets (M i)) =⇒
f −‘ prod emb I M J (PiE J X ) ∩ space N ∈ sets N

shows f ∈ measurable N (PiM I M )
using sets PiM prod algebra sets into space space

proof (rule measurable sigma sets)
fix A assume A ∈ prod algebra I M
from prod algebraE [OF this] guess J X .
with sets[of J X ] show f −‘ A ∩ space N ∈ sets N by auto

qed
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lemma measurable PiM Collect :
assumes space: f ∈ space N → (ΠE i∈I . space (M i))
assumes sets:

∧
X J . J 6= {} ∨ I = {} =⇒ finite J =⇒ J ⊆ I =⇒ (

∧
i . i ∈ J

=⇒ X i ∈ sets (M i)) =⇒
{ω∈space N . ∀ i∈J . f ω i ∈ X i} ∈ sets N

shows f ∈ measurable N (PiM I M )
using sets PiM prod algebra sets into space space

proof (rule measurable sigma sets)
fix A assume A ∈ prod algebra I M
from prod algebraE [OF this] guess J X . note X = this
then have f −‘ A ∩ space N = {ω ∈ space N . ∀ i∈J . f ω i ∈ X i}
using space by (auto simp: prod emb def del : PiE I )

also have . . . ∈ sets N using X (3 ,2 ,4 ,5 ) by (rule sets)
finally show f −‘ A ∩ space N ∈ sets N .

qed

lemma measurable PiM single:
assumes space: f ∈ space N → (ΠE i∈I . space (M i))
assumes sets:

∧
A i . i ∈ I =⇒ A ∈ sets (M i) =⇒ {ω ∈ space N . f ω i ∈ A}

∈ sets N
shows f ∈ measurable N (PiM I M )
using sets PiM single

proof (rule measurable sigma sets)
fix A assume A ∈ {{f ∈ ΠE i∈I . space (M i). f i ∈ A} |i A. i ∈ I ∧ A ∈ sets

(M i)}
then obtain B i where A = {f ∈ ΠE i∈I . space (M i). f i ∈ B} and B : i ∈ I

B ∈ sets (M i)
by auto

with space have f −‘ A ∩ space N = {ω ∈ space N . f ω i ∈ B} by auto
also have . . . ∈ sets N using B by (rule sets)
finally show f −‘ A ∩ space N ∈ sets N .

qed (auto simp: space)

lemma measurable PiM single ′:
assumes f :

∧
i . i ∈ I =⇒ f i ∈ measurable N (M i)

and (λω i . f i ω) ∈ space N → (ΠE i∈I . space (M i))
shows (λω i . f i ω) ∈ measurable N (PiM I M )

proof (rule measurable PiM single)
fix A i assume A: i ∈ I A ∈ sets (M i)
then have {ω ∈ space N . f i ω ∈ A} = f i −‘ A ∩ space N
by auto

then show {ω ∈ space N . f i ω ∈ A} ∈ sets N
using A f by (auto intro!: measurable sets)

qed fact

lemma sets PiM I finite[measurable]:
assumes finite I and sets: (

∧
i . i ∈ I =⇒ E i ∈ sets (M i))

shows (ΠE j∈I . E j ) ∈ sets (ΠM i∈I . M i)
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using sets PiM I [of I I E M ] sets.sets into space[OF sets] 〈finite I 〉 sets by auto

lemma measurable component singleton[measurable (raw)]:
assumes i ∈ I shows (λx . x i) ∈ measurable (PiM I M ) (M i)

proof (unfold measurable def , intro CollectI conjI ballI )
fix A assume A ∈ sets (M i)
then have (λx . x i) −‘ A ∩ space (PiM I M ) = prod emb I M {i} (ΠE j∈{i}.

A)
using sets.sets into space 〈i ∈ I 〉

by (fastforce dest : Pi mem simp: prod emb def space PiM split : if split asm)
then show (λx . x i) −‘ A ∩ space (PiM I M ) ∈ sets (PiM I M )
using 〈A ∈ sets (M i)〉 〈i ∈ I 〉 by (auto intro!: sets PiM I )

qed (insert 〈i ∈ I 〉, auto simp: space PiM )

lemma measurable component singleton ′[measurable dest ]:
assumes f : f ∈ measurable N (PiM I M )
assumes g : g ∈ measurable L N
assumes i : i ∈ I
shows (λx . (f (g x )) i) ∈ measurable L (M i)
using measurable compose[OF measurable compose[OF g f ] measurable component singleton,

OF i ] .

lemma measurable PiM component rev :
i ∈ I =⇒ f ∈ measurable (M i) N =⇒ (λx . f (x i)) ∈ measurable (PiM I M ) N
by simp

lemma measurable case nat [measurable (raw)]:
assumes [measurable (raw)]: i = 0 =⇒ f ∈ measurable M N∧

j . i = Suc j =⇒ (λx . g x j ) ∈ measurable M N
shows (λx . case nat (f x ) (g x ) i) ∈ measurable M N
by (cases i) simp all

lemma measurable case nat ′[measurable (raw)]:
assumes fg [measurable]: f ∈ measurable N M g ∈ measurable N (ΠM i∈UNIV .

M )
shows (λx . case nat (f x ) (g x )) ∈ measurable N (ΠM i∈UNIV . M )
using fg [THEN measurable space]
by (auto intro!: measurable PiM single ′ simp add : space PiM PiE iff split : nat .split)

lemma measurable add dim[measurable]:
(λ(f , y). f (i := y)) ∈ measurable (PiM I M

⊗
M M i) (PiM (insert i I ) M )

(is ?f ∈ measurable ?P ?I )
proof (rule measurable PiM single)
fix j A assume j : j ∈ insert i I and A: A ∈ sets (M j )
have {ω ∈ space ?P . (λ(f , x ). fun upd f i x ) ω j ∈ A} =
(if j = i then space (PiM I M ) × A else ((λx . x j ) ◦ fst) −‘ A ∩ space ?P)
using sets.sets into space[OF A] by (auto simp add : space pair measure space PiM )
also have . . . ∈ sets ?P
using A j
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by (auto intro!: measurable sets[OF measurable comp, OF measurable component singleton])
finally show {ω ∈ space ?P . case prod (λf . fun upd f i) ω j ∈ A} ∈ sets ?P .

qed (auto simp: space pair measure space PiM PiE def )

proposition measurable fun upd :
assumes I : I = J ∪ {i}
assumes f [measurable]: f ∈ measurable N (PiM J M )
assumes h[measurable]: h ∈ measurable N (M i)
shows (λx . (f x ) (i := h x )) ∈ measurable N (PiM I M )

proof (intro measurable PiM single ′)
fix j assume j ∈ I then show (λω. ((f ω)(i := h ω)) j ) ∈ measurable N (M j )
unfolding I by (cases j = i) auto

next
show (λx . (f x )(i := h x )) ∈ space N → (ΠE i∈I . space (M i))
using I f [THEN measurable space] h[THEN measurable space]
by (auto simp: space PiM PiE iff extensional def )

qed

lemma measurable component update:
x ∈ space (PiM I M ) =⇒ i /∈ I =⇒ (λv . x (i := v)) ∈ measurable (M i) (PiM

(insert i I ) M )
by simp

lemma measurable merge[measurable]:
merge I J ∈ measurable (PiM I M

⊗
M PiM J M ) (PiM (I ∪ J ) M )

(is ?f ∈ measurable ?P ?U )
proof (rule measurable PiM single)
fix i A assume A: A ∈ sets (M i) i ∈ I ∪ J
then have {ω ∈ space ?P . merge I J ω i ∈ A} =
(if i ∈ I then ((λx . x i) ◦ fst) −‘ A ∩ space ?P else ((λx . x i) ◦ snd) −‘ A ∩

space ?P)
by (auto simp: merge def )

also have . . . ∈ sets ?P
using A
by (auto intro!: measurable sets[OF measurable comp, OF measurable component singleton])
finally show {ω ∈ space ?P . merge I J ω i ∈ A} ∈ sets ?P .

qed (auto simp: space pair measure space PiM PiE iff merge def extensional def )

lemma measurable restrict [measurable (raw)]:
assumes X :

∧
i . i ∈ I =⇒ X i ∈ measurable N (M i)

shows (λx . λi∈I . X i x ) ∈ measurable N (PiM I M )
proof (rule measurable PiM single)
fix A i assume A: i ∈ I A ∈ sets (M i)
then have {ω ∈ space N . (λi∈I . X i ω) i ∈ A} = X i −‘ A ∩ space N
by auto

then show {ω ∈ space N . (λi∈I . X i ω) i ∈ A} ∈ sets N
using A X by (auto intro!: measurable sets)

qed (insert X , auto simp add : PiE def dest : measurable space)
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lemma measurable abs UNIV :
(
∧
n. (λω. f n ω) ∈ measurable M (N n)) =⇒ (λω n. f n ω) ∈ measurable M

(PiM UNIV N )
by (intro measurable PiM single) (auto dest : measurable space)

lemma measurable restrict subset : J ⊆ L =⇒ (λf . restrict f J ) ∈ measurable (PiM
L M ) (PiM J M )
by (intro measurable restrict measurable component singleton) auto

lemma measurable restrict subset ′:
assumes J ⊆ L

∧
x . x ∈ J =⇒ sets (M x ) = sets (N x )

shows (λf . restrict f J ) ∈ measurable (PiM L M ) (PiM J N )
proof−
from assms(1 ) have (λf . restrict f J ) ∈ measurable (PiM L M ) (PiM J M )
by (rule measurable restrict subset)

also from assms(2 ) have measurable (PiM L M ) (PiM J M ) = measurable
(PiM L M ) (PiM J N )

by (intro sets PiM cong measurable cong sets) simp all
finally show ?thesis .

qed

lemma measurable prod emb[intro, simp]:
J ⊆ L =⇒ X ∈ sets (PiM J M ) =⇒ prod emb L M J X ∈ sets (PiM L M )
unfolding prod emb def space PiM [symmetric]
by (auto intro!: measurable sets measurable restrict measurable component singleton)

lemma merge in prod emb:
assumes y ∈ space (PiM I M ) x ∈ X and X : X ∈ sets (PiM J M ) and J ⊆ I
shows merge J I (x , y) ∈ prod emb I M J X
using assms sets.sets into space[OF X ]
by (simp add : merge def prod emb def subset eq space PiM PiE def extensional restrict

Pi iff
cong : if cong restrict cong)

(simp add : extensional def )

lemma prod emb eq emptyD :
assumes J : J ⊆ I and ne: space (PiM I M ) 6= {} and X : X ∈ sets (PiM J

M )
and ∗: prod emb I M J X = {}

shows X = {}
proof safe
fix x assume x ∈ X
obtain ω where ω ∈ space (PiM I M )
using ne by blast

from merge in prod emb[OF this 〈x∈X 〉 X J ] ∗ show x ∈ {} by auto
qed

lemma sets in Pi aux :
finite I =⇒ (

∧
j . j ∈ I =⇒ {x∈space (M j ). x ∈ F j} ∈ sets (M j )) =⇒
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{x∈space (PiM I M ). x ∈ Pi I F} ∈ sets (PiM I M )
by (simp add : subset eq Pi iff )

lemma sets in Pi [measurable (raw)]:
finite I =⇒ f ∈ measurable N (PiM I M ) =⇒
(
∧
j . j ∈ I =⇒ {x∈space (M j ). x ∈ F j} ∈ sets (M j )) =⇒

Measurable.pred N (λx . f x ∈ Pi I F )
unfolding pred def
by (rule measurable sets Collect [of f N PiM I M , OF sets in Pi aux ]) auto

lemma sets in extensional aux :
{x∈space (PiM I M ). x ∈ extensional I } ∈ sets (PiM I M )

proof −
have {x∈space (PiM I M ). x ∈ extensional I } = space (PiM I M )
by (auto simp add : extensional def space PiM )

then show ?thesis by simp
qed

lemma sets in extensional [measurable (raw)]:
f ∈ measurable N (PiM I M ) =⇒ Measurable.pred N (λx . f x ∈ extensional I )
unfolding pred def
by (rule measurable sets Collect [of f N PiM I M , OF sets in extensional aux ])

auto

lemma sets PiM I countable:
assumes I : countable I and E :

∧
i . i ∈ I =⇒ E i ∈ sets (M i) shows PiE I E

∈ sets (PiM I M )
proof cases
assume I 6= {}
then have PiE I E = (

⋂
i∈I . prod emb I M {i} (PiE {i} E ))

using E [THEN sets.sets into space] by (auto simp: PiE iff prod emb def fun eq iff )
also have . . . ∈ sets (PiM I M )

using I 〈I 6= {}〉 by (safe intro!: sets.countable INT ′ measurable prod emb
sets PiM I finite E )
finally show ?thesis .

qed (simp add : sets PiM empty)

lemma sets PiM D countable:
assumes A: A ∈ PiM I M
shows ∃ J⊆I . ∃X∈PiM J M . countable J ∧ A = prod emb I M J X
using A[unfolded sets PiM single]

proof induction
case (Basic A)
then obtain i X where ∗: i ∈ I X ∈ sets (M i) and A = {f ∈ ΠE i∈I . space

(M i). f i ∈ X }
by auto

then have A: A = prod emb I M {i} (ΠE ∈{i}. X )
by (auto simp: prod emb def )

then show ?case
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by (intro exI [of {i}] conjI bexI [of ΠE ∈{i}. X ])
(auto intro: countable finite ∗ sets PiM I finite)

next
case Empty then show ?case
by (intro exI [of {}] conjI bexI [of {}]) auto

next
case (Compl A)
then obtain J X where J ⊆ I X ∈ sets (PiM J M ) countable J A = prod emb

I M J X
by auto

then show ?case
by (intro exI [of J ] bexI [of space (PiM J M ) − X ] conjI )

(auto simp add : space PiM prod emb PiE intro!: sets PiM I countable)
next
case (Union K )
obtain J X where J :

∧
i . J i ⊆ I

∧
i . countable (J i) and X :

∧
i . X i ∈ sets

(PiM (J i) M )
and K :

∧
i . K i = prod emb I M (J i) (X i)

by (metis Union.IH )
show ?case
proof (intro exI [of

⋃
i . J i ] bexI [of

⋃
i . prod emb (

⋃
i . J i) M (J i) (X i)]

conjI )
show (

⋃
i . J i) ⊆ I countable (

⋃
i . J i) using J by auto

with J show
⋃
(K ‘ UNIV ) = prod emb I M (

⋃
i . J i) (

⋃
i . prod emb (

⋃
i .

J i) M (J i) (X i))
by (simp add : K [abs def ] SUP upper)

qed(auto intro: X )
qed

proposition measure eqI PiM finite:
assumes [simp]: finite I sets P = PiM I M sets Q = PiM I M
assumes eq :

∧
A. (

∧
i . i ∈ I =⇒ A i ∈ sets (M i)) =⇒ P (PiE I A) = Q (PiE

I A)
assumes A: range A ⊆ prod algebra I M (

⋃
i . A i) = space (PiM I M )

∧
i ::nat .

P (A i) 6= ∞
shows P = Q

proof (rule measure eqI generator eq [OF Int stable prod algebra prod algebra sets into space])
show range A ⊆ prod algebra I M (

⋃
i . A i) = (ΠE i∈I . space (M i))

∧
i . P (A

i) 6= ∞
unfolding space PiM [symmetric] by fact+

fix X assume X ∈ prod algebra I M
then obtain J E where X : X = prod emb I M J (ΠE j∈J . E j )
and J : finite J J ⊆ I

∧
j . j ∈ J =⇒ E j ∈ sets (M j )

by (force elim!: prod algebraE )
then show emeasure P X = emeasure Q X
unfolding X by (subst (1 2 ) prod emb Pi) (auto simp: eq)

qed (simp all add : sets PiM )

proposition measure eqI PiM infinite:
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assumes [simp]: sets P = PiM I M sets Q = PiM I M
assumes eq :

∧
A J . finite J =⇒ J ⊆ I =⇒ (

∧
i . i ∈ J =⇒ A i ∈ sets (M i))

=⇒
P (prod emb I M J (PiE J A)) = Q (prod emb I M J (PiE J A))

assumes A: finite measure P
shows P = Q

proof (rule measure eqI generator eq [OF Int stable prod algebra prod algebra sets into space])
interpret finite measure P by fact
define i where i = (SOME i . i ∈ I )
have i : I 6= {} =⇒ i ∈ I
unfolding i def by (rule someI ex ) auto

define A where A n =
(if I = {} then prod emb I M {} (ΠE i∈{}. {}) else prod emb I M {i} (ΠE

i∈{i}. space (M i)))
for n :: nat

then show range A ⊆ prod algebra I M
using prod algebraI [of {} I λi . space (M i) M ] by (auto intro!: prod algebraI

i)
have

∧
i . A i = space (PiM I M )

by (auto simp: prod emb def space PiM PiE iff A def i ex in conv [symmetric]
exI )
then show (

⋃
i . A i) = (ΠE i∈I . space (M i))

∧
i . emeasure P (A i) 6= ∞

by (auto simp: space PiM )
next
fix X assume X : X ∈ prod algebra I M
then obtain J E where X : X = prod emb I M J (ΠE j∈J . E j )
and J : finite J J ⊆ I

∧
j . j ∈ J =⇒ E j ∈ sets (M j )

by (force elim!: prod algebraE )
then show emeasure P X = emeasure Q X
by (auto intro!: eq)

qed (auto simp: sets PiM )

locale product sigma finite =
fixes M :: ′i ⇒ ′a measure
assumes sigma finite measures:

∧
i . sigma finite measure (M i)

sublocale product sigma finite ⊆ M?: sigma finite measure M i for i
by (rule sigma finite measures)

locale finite product sigma finite = product sigma finite M for M :: ′i ⇒ ′a mea-
sure +
fixes I :: ′i set
assumes finite index : finite I

proposition (in finite product sigma finite) sigma finite pairs:
∃F :: ′i ⇒ nat ⇒ ′a set .
(∀ i∈I . range (F i) ⊆ sets (M i)) ∧
(∀ k . ∀ i∈I . emeasure (M i) (F i k) 6= ∞) ∧ incseq (λk . ΠE i∈I . F i k) ∧
(
⋃
k . ΠE i∈I . F i k) = space (PiM I M )



Finite Product Measure.thy 1519

proof −
have ∀ i :: ′i . ∃F ::nat ⇒ ′a set . range F ⊆ sets (M i) ∧ incseq F ∧ (

⋃
i . F i) =

space (M i) ∧ (∀ k . emeasure (M i) (F k) 6= ∞)
using M .sigma finite incseq by metis

from choice[OF this] guess F :: ′i ⇒ nat ⇒ ′a set ..
then have F :

∧
i . range (F i) ⊆ sets (M i)

∧
i . incseq (F i)

∧
i . (

⋃
j . F i j ) =

space (M i)
∧
i k . emeasure (M i) (F i k) 6= ∞

by auto
let ?F = λk . ΠE i∈I . F i k
note space PiM [simp]
show ?thesis
proof (intro exI [of F ] conjI allI incseq SucI set eqI iffI ballI )
fix i show range (F i) ⊆ sets (M i) by fact

next
fix i k show emeasure (M i) (F i k) 6= ∞ by fact

next
fix x assume x ∈ (

⋃
i . ?F i) with F (1 ) show x ∈ space (PiM I M )

by (auto simp: PiE def dest !: sets.sets into space)
next
fix f assume f ∈ space (PiM I M )
with Pi UN [OF finite index , of λk i . F i k ] F
show f ∈ (

⋃
i . ?F i) by (auto simp: incseq def PiE def )

next
fix i show ?F i ⊆ ?F (Suc i)
using 〈

∧
i . incseq (F i)〉[THEN incseq SucD ] by auto

qed
qed

lemma emeasure PiM empty [simp]: emeasure (PiM {} M ) {λ . undefined} = 1
proof −
let ?µ = λA. if A = {} then 0 else (1 ::ennreal)
have emeasure (PiM {} M ) (prod emb {} M {} (ΠE i∈{}. {})) = 1
proof (subst emeasure extend measure Pair [OF PiM def ])
show positive (PiM {} M ) ?µ
by (auto simp: positive def )

show countably additive (PiM {} M ) ?µ
by (rule sets.countably additiveI finite)
(auto simp: additive def positive def sets PiM empty space PiM empty intro!:

)
qed (auto simp: prod emb def )
also have (prod emb {} M {} (ΠE i∈{}. {})) = {λ . undefined}
by (auto simp: prod emb def )

finally show ?thesis
by simp

qed

lemma PiM empty : PiM {} M = count space {λ . undefined}
by (rule measure eqI ) (auto simp add : sets PiM empty)
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lemma (in product sigma finite) emeasure PiM :
finite I =⇒ (

∧
i . i∈I =⇒ A i ∈ sets (M i)) =⇒ emeasure (PiM I M ) (PiE I A)

= (
∏

i∈I . emeasure (M i) (A i))
proof (induct I arbitrary : A rule: finite induct)
case (insert i I )
interpret finite product sigma finite M I by standard fact
have finite (insert i I ) using 〈finite I 〉 by auto
interpret I ′: finite product sigma finite M insert i I by standard fact
let ?h = (λ(f , y). f (i := y))

let ?P = distr (PiM I M
⊗

M M i) (PiM (insert i I ) M ) ?h
let ?µ = emeasure ?P
let ?I = {j ∈ insert i I . emeasure (M j ) (space (M j )) 6= 1}
let ?f = λJ E j . if j ∈ J then emeasure (M j ) (E j ) else emeasure (M j ) (space

(M j ))

have emeasure (PiM (insert i I ) M ) (prod emb (insert i I ) M (insert i I ) (PiE
(insert i I ) A)) =

(
∏

i∈insert i I . emeasure (M i) (A i))
proof (subst emeasure extend measure Pair [OF PiM def ])
fix J E assume (J 6= {} ∨ insert i I = {}) ∧ finite J ∧ J ⊆ insert i I ∧ E ∈

(Π j∈J . sets (M j ))
then have J : J 6= {} finite J J ⊆ insert i I and E : ∀ j∈J . E j ∈ sets (M j )

by auto
let ?p = prod emb (insert i I ) M J (PiE J E )
let ?p ′ = prod emb I M (J − {i}) (ΠE j∈J−{i}. E j )
have ?µ ?p =
emeasure (PiM I M

⊗
M (M i)) (?h −‘ ?p ∩ space (PiM I M

⊗
M M i))

by (intro emeasure distr measurable add dim sets PiM I ) fact+
also have ?h −‘ ?p ∩ space (PiM I M

⊗
M M i) = ?p ′ × (if i ∈ J then E i

else space (M i))
using J E [rule format , THEN sets.sets into space]
by (force simp: space pair measure space PiM prod emb iff PiE def Pi iff split :

if split asm)
also have emeasure (PiM I M

⊗
M (M i)) (?p ′ × (if i ∈ J then E i else space

(M i))) =
emeasure (PiM I M ) ?p ′ ∗ emeasure (M i) (if i ∈ J then (E i) else space (M

i))
using J E by (intro M .emeasure pair measure Times sets PiM I ) auto

also have ?p ′ = (ΠE j∈I . if j ∈ J−{i} then E j else space (M j ))
using J E [rule format , THEN sets.sets into space]
by (auto simp: prod emb iff PiE def Pi iff split : if split asm) blast+

also have emeasure (PiM I M ) (ΠE j∈I . if j ∈ J−{i} then E j else space (M
j )) =

(
∏

j∈I . if j ∈ J−{i} then emeasure (M j ) (E j ) else emeasure (M j ) (space
(M j )))

using E by (subst insert) (auto intro!: prod .cong)
also have (

∏
j∈I . if j ∈ J − {i} then emeasure (M j ) (E j ) else emeasure (M

j ) (space (M j ))) ∗
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emeasure (M i) (if i ∈ J then E i else space (M i)) = (
∏

j∈insert i I . ?f J
E j )

using insert by (auto simp: mult .commute intro!: arg cong2 [where f=(∗)]
prod .cong)

also have . . . = (
∏

j∈J ∪ ?I . ?f J E j )
using insert(1 ,2 ) J E by (intro prod .mono neutral right) auto

finally show ?µ ?p = . . . .

show prod emb (insert i I ) M J (PiE J E ) ∈ Pow (ΠE i∈insert i I . space (M
i))

using J E [rule format , THEN sets.sets into space] by (auto simp: prod emb iff
PiE def )
next
show positive (sets (PiM (insert i I ) M )) ?µ countably additive (sets (PiM

(insert i I ) M )) ?µ
using emeasure positive[of ?P ] emeasure countably additive[of ?P ] by simp all

next
show (insert i I 6= {} ∨ insert i I = {}) ∧ finite (insert i I ) ∧
insert i I ⊆ insert i I ∧ A ∈ (Π j∈insert i I . sets (M j ))
using insert by auto

qed (auto intro!: prod .cong)
with insert show ?case
by (subst (asm) prod emb PiE same index ) (auto intro!: sets.sets into space)

qed simp

lemma (in product sigma finite) PiM eqI :
assumes I [simp]: finite I and P : sets P = PiM I M
assumes eq :

∧
A. (

∧
i . i ∈ I =⇒ A i ∈ sets (M i)) =⇒ P (PiE I A) = (

∏
i∈I .

emeasure (M i) (A i))
shows P = PiM I M

proof −
interpret finite product sigma finite M I
proof qed fact

from sigma finite pairs guess C .. note C = this
show ?thesis
proof (rule measure eqI PiM finite[OF I refl P , symmetric])
show (

∧
i . i ∈ I =⇒ A i ∈ sets (M i)) =⇒ (PiM I M ) (PiE I A) = P (PiE

I A) for A
by (simp add : eq emeasure PiM )

define A where A n = (ΠE i∈I . C i n) for n
with C show range A ⊆ prod algebra I M

∧
i . emeasure (PiM I M ) (A i) 6=

∞ (
⋃
i . A i) = space (PiM I M )

by (auto intro!: prod algebraI finite simp: emeasure PiM subset eq ennreal prod eq top)
qed

qed

lemma (in product sigma finite) sigma finite:
assumes finite I
shows sigma finite measure (PiM I M )
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proof
interpret finite product sigma finite M I by standard fact

obtain F where F :
∧
j . countable (F j )

∧
j f . f ∈ F j =⇒ f ∈ sets (M j )∧

j f . f ∈ F j =⇒ emeasure (M j ) f 6= ∞ and
in space:

∧
j . space (M j ) =

⋃
(F j )

using sigma finite countable by (metis subset eq)
moreover have (

⋃
(PiE I ‘ PiE I F )) = space (PiM I M )

using in space by (auto simp: space PiM PiE iff intro!: PiE choice[THEN
iffD2 ])
ultimately show ∃A. countable A ∧ A ⊆ sets (PiM I M ) ∧

⋃
A = space (PiM

I M ) ∧ (∀ a∈A. emeasure (PiM I M ) a 6= ∞)
by (intro exI [of PiE I ‘ PiE I F ])

(auto intro!: countable PiE sets PiM I finite
simp: PiE iff emeasure PiM finite index ennreal prod eq top)

qed

sublocale finite product sigma finite ⊆ sigma finite measure PiM I M
using sigma finite[OF finite index ] .

lemma (in finite product sigma finite) measure times:
(
∧
i . i ∈ I =⇒ A i ∈ sets (M i)) =⇒ emeasure (PiM I M ) (PiE I A) = (

∏
i∈I .

emeasure (M i) (A i))
using emeasure PiM [OF finite index ] by auto

lemma (in product sigma finite) nn integral empty :
0 ≤ f (λk . undefined) =⇒ integralN (PiM {} M ) f = f (λk . undefined)
by (simp add : PiM empty nn integral count space finite max .absorb2 )

lemma (in product sigma finite) distr merge:
assumes IJ [simp]: I ∩ J = {} and fin: finite I finite J
shows distr (PiM I M

⊗
M PiM J M ) (PiM (I ∪ J ) M ) (merge I J ) = PiM

(I ∪ J ) M
(is ?D = ?P)

proof (rule PiM eqI )
interpret I : finite product sigma finite M I by standard fact
interpret J : finite product sigma finite M J by standard fact
fix A assume A:

∧
i . i ∈ I ∪ J =⇒ A i ∈ sets (M i)

have ∗: (merge I J −‘ PiE (I ∪ J ) A ∩ space (PiM I M
⊗

M PiM J M )) =
PiE I A × PiE J A

using A[THEN sets.sets into space] by (auto simp: space PiM space pair measure)
from A fin show emeasure (distr (PiM I M

⊗
M PiM J M ) (PiM (I ∪ J ) M )

(merge I J )) (PiE (I ∪ J ) A) =
(
∏

i∈I ∪ J . emeasure (M i) (A i))
by (subst emeasure distr)
(auto simp: ∗ J .emeasure pair measure Times I .measure times J .measure times

prod .union disjoint)
qed (insert fin, simp all)
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proposition (in product sigma finite) product nn integral fold :
assumes IJ : I ∩ J = {} finite I finite J
and f [measurable]: f ∈ borel measurable (PiM (I ∪ J ) M )
shows integralN (PiM (I ∪ J ) M ) f =
(
∫

+ x . (
∫

+ y . f (merge I J (x , y)) ∂(PiM J M )) ∂(PiM I M ))
proof −
interpret I : finite product sigma finite M I by standard fact
interpret J : finite product sigma finite M J by standard fact
interpret P : pair sigma finite PiM I M PiM J M by standard
have P borel : (λx . f (merge I J x )) ∈ borel measurable (PiM I M

⊗
M PiM J

M )
using measurable comp[OF measurable merge f ] by (simp add : comp def )

show ?thesis
apply (subst distr merge[OF IJ , symmetric])
apply (subst nn integral distr [OF measurable merge])
apply measurable []
apply (subst J .nn integral fst [symmetric, OF P borel ])
apply simp
done

qed

lemma (in product sigma finite) distr singleton:
distr (PiM {i} M ) (M i) (λx . x i) = M i (is ?D = )

proof (intro measure eqI [symmetric])
interpret I : finite product sigma finite M {i} by standard simp
fix A assume A: A ∈ sets (M i)
then have (λx . x i) −‘ A ∩ space (PiM {i} M ) = (ΠE i∈{i}. A)
using sets.sets into space by (auto simp: space PiM )

then show emeasure (M i) A = emeasure ?D A
using A I .measure times[of λ . A]
by (simp add : emeasure distr measurable component singleton)

qed simp

lemma (in product sigma finite) product nn integral singleton:
assumes f : f ∈ borel measurable (M i)
shows integralN (PiM {i} M ) (λx . f (x i)) = integralN (M i) f

proof −
interpret I : finite product sigma finite M {i} by standard simp
from f show ?thesis
apply (subst distr singleton[symmetric])
apply (subst nn integral distr [OF measurable component singleton])
apply simp all
done

qed

proposition (in product sigma finite) product nn integral insert :
assumes I [simp]: finite I i /∈ I
and f : f ∈ borel measurable (PiM (insert i I ) M )

shows integralN (PiM (insert i I ) M ) f = (
∫

+ x . (
∫

+ y . f (x (i := y)) ∂(M i))
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∂(PiM I M ))
proof −
interpret I : finite product sigma finite M I by standard auto
interpret i : finite product sigma finite M {i} by standard auto
have IJ : I ∩ {i} = {} and insert : I ∪ {i} = insert i I
using f by auto

show ?thesis
unfolding product nn integral fold [OF IJ , unfolded insert , OF I (1 ) i .finite index

f ]
proof (rule nn integral cong , subst product nn integral singleton[symmetric])
fix x assume x : x ∈ space (PiM I M )
let ?f = λy . f (x (i := y))
show ?f ∈ borel measurable (M i)
using measurable comp[OF measurable component update f , OF x 〈i /∈ I 〉]
unfolding comp def .

show (
∫

+ y . f (merge I {i} (x , y)) ∂PiM {i} M ) = (
∫

+ y . f (x (i := y i))
∂PiM {i} M )

using x
by (auto intro!: nn integral cong arg cong [where f=f ]

simp add : space PiM extensional def PiE def )
qed

qed

lemma (in product sigma finite) product nn integral insert rev :
assumes I [simp]: finite I i /∈ I
and [measurable]: f ∈ borel measurable (PiM (insert i I ) M )

shows integralN (PiM (insert i I ) M ) f = (
∫

+ y . (
∫

+ x . f (x (i := y)) ∂(PiM
I M )) ∂(M i))
apply (subst product nn integral insert [OF assms])
apply (rule pair sigma finite.Fubini ′)
apply intro locales []
apply (rule sigma finite[OF I (1 )])
apply measurable
done

lemma (in product sigma finite) product nn integral prod :
assumes finite I

∧
i . i ∈ I =⇒ f i ∈ borel measurable (M i)

shows (
∫

+ x . (
∏

i∈I . f i (x i)) ∂PiM I M ) = (
∏

i∈I . integralN (M i) (f i))
using assms proof (induction I )
case (insert i I )
note insert .prems[measurable]
note 〈finite I 〉[intro, simp]
interpret I : finite product sigma finite M I by standard auto
have ∗:

∧
x y . (

∏
j∈I . f j (if j = i then y else x j )) = (

∏
j∈I . f j (x j ))

using insert by (auto intro!: prod .cong)
have prod :

∧
J . J ⊆ insert i I =⇒ (λx . (

∏
i∈J . f i (x i))) ∈ borel measurable

(PiM J M )
using sets.sets into space insert
by (intro borel measurable prod ennreal
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measurable comp[OF measurable component singleton, unfolded comp def ])
auto

then show ?case
apply (simp add : product nn integral insert [OF insert(1 ,2 )])
apply (simp add : insert(2−) ∗ nn integral multc)
apply (subst nn integral cmult)
apply (auto simp add : insert(2−))
done

qed (simp add : space PiM )

proposition (in product sigma finite) product nn integral pair :
assumes [measurable]: case prod f ∈ borel measurable (M x

⊗
M M y)

assumes xy : x 6= y
shows (

∫
+σ. f (σ x ) (σ y) ∂PiM {x , y} M ) = (

∫
+z . f (fst z ) (snd z ) ∂(M x⊗

M M y))
proof −
interpret psm: pair sigma finite M x M y
unfolding pair sigma finite def using sigma finite measures by simp all

have {x , y} = {y , x} by auto
also have (

∫
+σ. f (σ x ) (σ y) ∂PiM {y , x} M ) = (

∫
+y .

∫
+σ. f (σ x ) y ∂PiM

{x} M ∂M y)
using xy by (subst product nn integral insert rev) simp all

also have ... = (
∫

+y .
∫

+x . f x y ∂M x ∂M y)
by (intro nn integral cong , subst product nn integral singleton) simp all

also have ... = (
∫

+z . f (fst z ) (snd z ) ∂(M x
⊗

M M y))
by (subst psm.nn integral snd [symmetric]) simp all

finally show ?thesis .
qed

lemma (in product sigma finite) distr component :
distr (M i) (PiM {i} M ) (λx . λi∈{i}. x ) = PiM {i} M (is ?D = ?P)

proof (intro PiM eqI )
fix A assume A:

∧
ia. ia ∈ {i} =⇒ A ia ∈ sets (M ia)

then have (λx . λi∈{i}. x ) −‘ PiE {i} A ∩ space (M i) = A i
by (fastforce dest : sets.sets into space)

with A show emeasure (distr (M i) (PiM {i} M ) (λx . λi∈{i}. x )) (PiE {i} A)
= (

∏
i∈{i}. emeasure (M i) (A i))

by (subst emeasure distr) (auto intro!: sets PiM I finite measurable restrict)
qed simp all

lemma (in product sigma finite)
assumes IJ : I ∩ J = {} finite I finite J and A: A ∈ sets (PiM (I ∪ J ) M )
shows emeasure fold integral :
emeasure (PiM (I ∪ J ) M ) A = (

∫
+x . emeasure (PiM J M ) ((λy . merge I J

(x , y)) −‘ A ∩ space (PiM J M )) ∂PiM I M ) (is ?I )
and emeasure fold measurable:
(λx . emeasure (PiM J M ) ((λy . merge I J (x , y)) −‘ A ∩ space (PiM J M )))

∈ borel measurable (PiM I M ) (is ?B)
proof −
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interpret I : finite product sigma finite M I by standard fact
interpret J : finite product sigma finite M J by standard fact
interpret IJ : pair sigma finite PiM I M PiM J M ..
have merge: merge I J −‘ A ∩ space (PiM I M

⊗
M PiM J M ) ∈ sets (PiM I

M
⊗

M PiM J M )
by (intro measurable sets[OF A] measurable merge assms)

show ?I
apply (subst distr merge[symmetric, OF IJ ])
apply (subst emeasure distr [OF measurable merge A])
apply (subst J .emeasure pair measure alt [OF merge])
apply (auto intro!: nn integral cong arg cong2 [where f=emeasure] simp: space pair measure)
done

show ?B
using IJ .measurable emeasure Pair1 [OF merge]
by (simp add : vimage comp comp def space pair measure cong : measurable cong)

qed

lemma sets Collect single:
i ∈ I =⇒ A ∈ sets (M i) =⇒ { x ∈ space (PiM I M ). x i ∈ A } ∈ sets (PiM I

M )
by simp

lemma pair measure eq distr PiM :
fixes M1 :: ′a measure and M2 :: ′a measure
assumes sigma finite measure M1 sigma finite measure M2
shows (M1

⊗
M M2 ) = distr (PiM UNIV (case bool M1 M2 )) (M1

⊗
M M2 )

(λx . (x True, x False))
(is ?P = ?D)

proof (rule pair measure eqI [OF assms])
interpret B : product sigma finite case bool M1 M2
unfolding product sigma finite def using assms by (auto split : bool .split)

let ?B = PiM UNIV (case bool M1 M2 )

have [simp]: fst ◦ (λx . (x True, x False)) = (λx . x True) snd ◦ (λx . (x True, x
False)) = (λx . x False)

by auto
fix A B assume A: A ∈ sets M1 and B : B ∈ sets M2
have emeasure M1 A ∗ emeasure M2 B = (

∏
i∈UNIV . emeasure (case bool M1

M2 i) (case bool A B i))
by (simp add : UNIV bool ac simps)

also have . . . = emeasure ?B (PiE UNIV (case bool A B))
using A B by (subst B .emeasure PiM ) (auto split : bool .split)

also have PiE UNIV (case bool A B) = (λx . (x True, x False)) −‘ (A × B) ∩
space ?B

using A[THEN sets.sets into space] B [THEN sets.sets into space]
by (auto simp: PiE iff all bool eq space PiM split : bool .split)

finally show emeasure M1 A ∗ emeasure M2 B = emeasure ?D (A × B)
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using A B
measurable component singleton[of True UNIV case bool M1 M2 ]
measurable component singleton[of False UNIV case bool M1 M2 ]

by (subst emeasure distr) (auto simp: measurable pair iff )
qed simp

lemma infprod in sets[intro]:
fixes E :: nat ⇒ ′a set assumes E :

∧
i . E i ∈ sets (M i)

shows Pi UNIV E ∈ sets (ΠM i∈UNIV ::nat set . M i)
proof −
have Pi UNIV E = (

⋂
i . prod emb UNIV M {..i} (ΠE j∈{..i}. E j ))

using E E [THEN sets.sets into space]
by (auto simp: prod emb def Pi iff extensional def )

with E show ?thesis by auto
qed

6.8.3 Measurability

There are two natural sigma-algebras on a product space: the borel sigma al-
gebra, generated by open sets in the product, and the product sigma algebra,
countably generated by products of measurable sets along finitely many coor-
dinates. The second one is defined and studied in Finite_Product_Measure.thy.

These sigma-algebra share a lot of natural properties (measurability of co-
ordinates, for instance), but there is a fundamental difference: open sets are
generated by arbitrary unions, not only countable ones, so typically many
open sets will not be measurable with respect to the product sigma alge-
bra (while all sets in the product sigma algebra are borel). The two sigma
algebras coincide only when everything is countable (i.e., the product is
countable, and the borel sigma algebra in the factor is countably generated).

In this paragraph, we develop basic measurability properties for the borel
sigma algebra, and compare it with the product sigma algebra as explained
above.

lemma measurable product coordinates [measurable (raw)]:
(λx . x i) ∈ measurable borel borel

by (rule borel measurable continuous onI [OF continuous on product coordinates])

lemma measurable product then coordinatewise:
fixes f :: ′a ⇒ ′b ⇒ ( ′c::topological space)
assumes [measurable]: f ∈ borel measurable M
shows (λx . f x i) ∈ borel measurable M

proof −
have (λx . f x i) = (λy . y i) o f
unfolding comp def by auto

then show ?thesis by simp
qed

To compare the Borel sigma algebra with the product sigma algebra, we
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give a presentation of the product sigma algebra that is more similar to the
one we used above for the product topology.

lemma sets PiM finite:
sets (PiM I M ) = sigma sets (ΠE i∈I . space (M i))

{(ΠE i∈I . X i) |X . (∀ i . X i ∈ sets (M i)) ∧ finite {i . X i 6= space (M i)}}
proof
have {(ΠE i∈I . X i) |X . (∀ i . X i ∈ sets (M i)) ∧ finite {i . X i 6= space (M

i)}} ⊆ sets (PiM I M )
proof (auto)
fix X assume H : ∀ i . X i ∈ sets (M i) finite {i . X i 6= space (M i)}
then have ∗: X i ∈ sets (M i) for i by simp
define J where J = {i ∈ I . X i 6= space (M i)}
have finite J J ⊆ I unfolding J def using H by auto
define Y where Y = (ΠE j∈J . X j )
have prod emb I M J Y ∈ sets (PiM I M )
unfolding Y def apply (rule sets PiM I ) using 〈finite J 〉 〈J ⊆ I 〉 ∗ by auto

moreover have prod emb I M J Y = (ΠE i∈I . X i)
unfolding prod emb def Y def J def using H sets.sets into space[OF ∗]
by (auto simp add : PiE iff , blast)

ultimately show PiE I X ∈ sets (PiM I M ) by simp
qed
then show sigma sets (ΠE i∈I . space (M i)) {(ΠE i∈I . X i) |X . (∀ i . X i ∈

sets (M i)) ∧ finite {i . X i 6= space (M i)}}
⊆ sets (PiM I M )

by (metis (mono tags, lifting) sets.sigma sets subset ′ sets.top space PiM )

have ∗: ∃X . {f . (∀ i∈I . f i ∈ space (M i)) ∧ f ∈ extensional I ∧ f i ∈ A} =
PiE I X ∧

(∀ i . X i ∈ sets (M i)) ∧ finite {i . X i 6= space (M i)}
if i ∈ I A ∈ sets (M i) for i A

proof −
define X where X = (λj . if j = i then A else space (M j ))
have {f . (∀ i∈I . f i ∈ space (M i)) ∧ f ∈ extensional I ∧ f i ∈ A} = PiE I X
unfolding X def using sets.sets into space[OF 〈A ∈ sets (M i)〉] 〈i ∈ I 〉

by (auto simp add : PiE iff extensional def , metis subsetCE , metis)
moreover have X j ∈ sets (M j ) for j
unfolding X def using 〈A ∈ sets (M i)〉 by auto

moreover have finite {j . X j 6= space (M j )}
unfolding X def by simp

ultimately show ?thesis by auto
qed
show sets (PiM I M ) ⊆ sigma sets (ΠE i∈I . space (M i)) {(ΠE i∈I . X i) |X .

(∀ i . X i ∈ sets (M i)) ∧ finite {i . X i 6= space (M i)}}
unfolding sets PiM single
apply (rule sigma sets mono ′)
apply (auto simp add : PiE iff ∗)
done

qed
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lemma sets PiM subset borel :
sets (PiM UNIV (λ . borel)) ⊆ sets borel

proof −
have ∗: PiE UNIV X ∈ sets borel if [measurable]:

∧
i . X i ∈ sets borel finite {i .

X i 6= UNIV } for X :: ′a ⇒ ′b set
proof −
define I where I = {i . X i 6= UNIV }
have finite I unfolding I def using that by simp
have PiE UNIV X = (

⋂
i∈I . (λx . x i)−‘(X i) ∩ space borel) ∩ space borel

unfolding I def by auto
also have ... ∈ sets borel
using that 〈finite I 〉 by measurable

finally show ?thesis by simp
qed
then have {(ΠE i∈UNIV . X i) |X ::( ′a ⇒ ′b set). (∀ i . X i ∈ sets borel) ∧ finite
{i . X i 6= space borel}} ⊆ sets borel

by auto
then show ?thesis unfolding sets PiM finite space borel
by (simp add : ∗ sets.sigma sets subset ′)

qed

proposition sets PiM equal borel :
sets (PiM UNIV (λi ::( ′a::countable). borel ::( ′b::second countable topology mea-

sure))) = sets borel
proof
obtain K ::( ′a ⇒ ′b) set set where K : topological basis K countable K∧

k . k ∈ K =⇒ ∃X . (k = PiE UNIV X ) ∧ (∀ i . open (X i)) ∧ finite {i .
X i 6= UNIV }

using product topology countable basis by fast
have ∗: k ∈ sets (PiM UNIV (λ . borel)) if k ∈ K for k
proof −
obtain X where H : k = PiE UNIV X

∧
i . open (X i) finite {i . X i 6= UNIV }

using K (3 )[OF 〈k ∈ K 〉] by blast
show ?thesis unfolding H (1 ) sets PiM finite space borel using borel open[OF

H (2 )] H (3 ) by auto
qed
have ∗∗: U ∈ sets (PiM UNIV (λ . borel)) if open U for U ::( ′a ⇒ ′b) set
proof −
obtain B where B ⊆ K U = (

⋃
B)

using 〈open U 〉 〈topological basis K 〉 by (metis topological basis def )
have countable B using 〈B ⊆ K 〉 〈countable K 〉 countable subset by blast
moreover have k ∈ sets (PiM UNIV (λ . borel)) if k ∈ B for k
using 〈B ⊆ K 〉 ∗ that by auto

ultimately show ?thesis unfolding 〈U = (
⋃

B)〉 by auto
qed
have sigma sets UNIV (Collect open) ⊆ sets (PiM UNIV (λi :: ′a. (borel ::( ′b

measure))))
apply (rule sets.sigma sets subset ′) using ∗∗ by auto

then show sets (borel ::( ′a ⇒ ′b) measure) ⊆ sets (PiM UNIV (λ . borel))

Finite{_}{\kern 0pt}Product{_}{\kern 0pt}Measure.html


1530

unfolding borel def by auto
qed (simp add : sets PiM subset borel)

lemma measurable coordinatewise then product :
fixes f :: ′a ⇒ ( ′b::countable) ⇒ ( ′c::second countable topology)
assumes [measurable]:

∧
i . (λx . f x i) ∈ borel measurable M

shows f ∈ borel measurable M
proof −
have f ∈ measurable M (PiM UNIV (λ . borel))
by (rule measurable PiM single ′, auto simp add : assms)

then show ?thesis using sets PiM equal borel measurable cong sets by blast
qed

end

6.9 Caratheodory Extension Theorem

theory Caratheodory
imports Measure Space
begin

Originally from the Hurd/Coble measure theory development, translated by
Lawrence Paulson.

lemma suminf ennreal 2dimen:
fixes f :: nat × nat ⇒ ennreal
assumes

∧
m. g m = (

∑
n. f (m,n))

shows (
∑

i . f (prod decode i)) = suminf g
proof −
have g def : g = (λm. (

∑
n. f (m,n)))

using assms by (simp add : fun eq iff )
have reindex :

∧
B . (

∑
x∈B . f (prod decode x )) = sum f (prod decode ‘ B)

by (simp add : sum.reindex [OF inj prod decode] comp def )
have (SUP n.

∑
i<n. f (prod decode i)) = (SUP p ∈ UNIV × UNIV .

∑
i<fst

p.
∑

n<snd p. f (i , n))
proof (intro SUP eq ; clarsimp simp: sum.cartesian product reindex )
fix n
let ?M = λf . Suc (Max (f ‘ prod decode ‘ {..<n}))
{ fix a b x assume x < n and [symmetric]: (a, b) = prod decode x
then have a < ?M fst b < ?M snd
by (auto intro!: Max ge le imp less Suc image eqI ) }

then have sum f (prod decode ‘ {..<n}) ≤ sum f ({..<?M fst} × {..<?M snd})
by (auto intro!: sum mono2 )

then show ∃ a b. sum f (prod decode ‘ {..<n}) ≤ sum f ({..<a} × {..<b}) by
auto
next
fix a b
let ?M = prod decode ‘ {..<Suc (Max (prod encode ‘ ({..<a} × {..<b})))}
{ fix a ′ b ′ assume a ′ < a b ′ < b then have (a ′, b ′) ∈ ?M
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by (auto intro!: Max ge le imp less Suc image eqI [where x=prod encode
(a ′, b ′)]) }

then have sum f ({..<a} × {..<b}) ≤ sum f ?M
by (auto intro!: sum mono2 )

then show ∃n. sum f ({..<a} × {..<b}) ≤ sum f (prod decode ‘ {..<n})
by auto

qed
also have . . . = (SUP p.

∑
i<p.

∑
n. f (i , n))

unfolding suminf sum[OF summableI , symmetric]
by (simp add : suminf eq SUP SUP pair sum.swap[of {..< fst }])

finally show ?thesis unfolding g def
by (simp add : suminf eq SUP)

qed

6.9.1 Characterizations of Measures

definition outer measure space where
outer measure space M f ←→ positive M f ∧ increasing M f ∧ countably subadditive

M f

Lambda Systems

definition lambda system :: ′a set ⇒ ′a set set ⇒ ( ′a set ⇒ ennreal) ⇒ ′a set set
where
lambda system Ω M f = {l ∈ M . ∀ x ∈ M . f (l ∩ x ) + f ((Ω − l) ∩ x ) = f x}

lemma (in algebra) lambda system eq :
lambda system Ω M f = {l ∈ M . ∀ x ∈ M . f (x ∩ l) + f (x − l) = f x}

proof −
have [simp]:

∧
l x . l ∈ M =⇒ x ∈ M =⇒ (Ω − l) ∩ x = x − l

by (metis Int Diff Int absorb1 Int commute sets into space)
show ?thesis
by (auto simp add : lambda system def ) (metis Int commute)+

qed

lemma (in algebra) lambda system empty : positive M f =⇒ {} ∈ lambda system
Ω M f
by (auto simp add : positive def lambda system eq)

lemma lambda system sets: x ∈ lambda system Ω M f =⇒ x ∈ M
by (simp add : lambda system def )

lemma (in algebra) lambda system Compl :
fixes f :: ′a set ⇒ ennreal
assumes x : x ∈ lambda system Ω M f
shows Ω − x ∈ lambda system Ω M f

proof −
have x ⊆ Ω
by (metis sets into space lambda system sets x )

hence Ω − (Ω − x ) = x
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by (metis double diff equalityE )
with x show ?thesis
by (force simp add : lambda system def ac simps)

qed

lemma (in algebra) lambda system Int :
fixes f :: ′a set ⇒ ennreal
assumes xl : x ∈ lambda system Ω M f and yl : y ∈ lambda system Ω M f
shows x ∩ y ∈ lambda system Ω M f

proof −
from xl yl show ?thesis
proof (auto simp add : positive def lambda system eq Int)
fix u
assume x : x ∈ M and y : y ∈ M and u: u ∈ M

and fx : ∀ z∈M . f (z ∩ x ) + f (z − x ) = f z
and fy : ∀ z∈M . f (z ∩ y) + f (z − y) = f z

have u − x ∩ y ∈ M
by (metis Diff Diff Int Un u x y)

moreover
have (u − (x ∩ y)) ∩ y = u ∩ y − x by blast
moreover
have u − x ∩ y − y = u − y by blast
ultimately
have ey : f (u − x ∩ y) = f (u ∩ y − x ) + f (u − y) using fy
by force

have f (u ∩ (x ∩ y)) + f (u − x ∩ y)
= (f (u ∩ (x ∩ y)) + f (u ∩ y − x )) + f (u − y)

by (simp add : ey ac simps)
also have ... = (f ((u ∩ y) ∩ x ) + f (u ∩ y − x )) + f (u − y)
by (simp add : Int ac)

also have ... = f (u ∩ y) + f (u − y)
using fx [THEN bspec, of u ∩ y ] Int y u
by force

also have ... = f u
by (metis fy u)

finally show f (u ∩ (x ∩ y)) + f (u − x ∩ y) = f u .
qed

qed

lemma (in algebra) lambda system Un:
fixes f :: ′a set ⇒ ennreal
assumes xl : x ∈ lambda system Ω M f and yl : y ∈ lambda system Ω M f
shows x ∪ y ∈ lambda system Ω M f

proof −
have (Ω − x ) ∩ (Ω − y) ∈ M
by (metis Diff Un Un compl sets lambda system sets xl yl)

moreover
have x ∪ y = Ω − ((Ω − x ) ∩ (Ω − y))
by auto (metis subsetD lambda system sets sets into space xl yl)+
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ultimately show ?thesis
by (metis lambda system Compl lambda system Int xl yl)

qed

lemma (in algebra) lambda system algebra:
positive M f =⇒ algebra Ω (lambda system Ω M f )
apply (auto simp add : algebra iff Un)
apply (metis lambda system sets subsetD sets into space)
apply (metis lambda system empty)
apply (metis lambda system Compl)
apply (metis lambda system Un)
done

lemma (in algebra) lambda system strong additive:
assumes z : z ∈ M and disj : x ∩ y = {}

and xl : x ∈ lambda system Ω M f and yl : y ∈ lambda system Ω M f
shows f (z ∩ (x ∪ y)) = f (z ∩ x ) + f (z ∩ y)

proof −
have z ∩ x = (z ∩ (x ∪ y)) ∩ x using disj by blast
moreover
have z ∩ y = (z ∩ (x ∪ y)) − x using disj by blast
moreover
have (z ∩ (x ∪ y)) ∈ M
by (metis Int Un lambda system sets xl yl z )

ultimately show ?thesis using xl yl
by (simp add : lambda system eq)

qed

lemma (in algebra) lambda system additive: additive (lambda system Ω M f ) f
proof (auto simp add : additive def )
fix x and y
assume disj : x ∩ y = {}

and xl : x ∈ lambda system Ω M f and yl : y ∈ lambda system Ω M f
hence x ∈ M y ∈ M by (blast intro: lambda system sets)+
thus f (x ∪ y) = f x + f y
using lambda system strong additive [OF top disj xl yl ]
by (simp add : Un)

qed

lemma lambda system increasing : increasing M f =⇒ increasing (lambda system
Ω M f ) f
by (simp add : increasing def lambda system def )

lemma lambda system positive: positive M f =⇒ positive (lambda system Ω M f )
f
by (simp add : positive def lambda system def )

lemma (in algebra) lambda system strong sum:
fixes A:: nat ⇒ ′a set and f :: ′a set ⇒ ennreal
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assumes f : positive M f and a: a ∈ M
and A: range A ⊆ lambda system Ω M f
and disj : disjoint family A

shows (
∑

i = 0 ..<n. f (a ∩A i)) = f (a ∩ (
⋃

i∈{0 ..<n}. A i))
proof (induct n)
case 0 show ?case using f by (simp add : positive def )

next
case (Suc n)
have 2 : A n ∩

⋃
(A ‘ {0 ..<n}) = {} using disj

by (force simp add : disjoint family on def neq iff )
have 3 : A n ∈ lambda system Ω M f using A
by blast

interpret l : algebra Ω lambda system Ω M f
using f by (rule lambda system algebra)

have 4 :
⋃

(A ‘ {0 ..<n}) ∈ lambda system Ω M f
using A l .UNION in sets by simp

from Suc.hyps show ?case
by (simp add : atLeastLessThanSuc lambda system strong additive [OF a 2 3

4 ])
qed

proposition (in sigma algebra) lambda system caratheodory :
assumes oms: outer measure space M f

and A: range A ⊆ lambda system Ω M f
and disj : disjoint family A

shows (
⋃

i . A i) ∈ lambda system Ω M f ∧ (
∑

i . f (A i)) = f (
⋃

i . A i)
proof −
have pos: positive M f and inc: increasing M f
and csa: countably subadditive M f
by (metis oms outer measure space def )+

have sa: subadditive M f
by (metis countably subadditive subadditive csa pos)

have A ′:
∧
S . A‘S ⊆ (lambda system Ω M f ) using A

by auto
interpret ls: algebra Ω lambda system Ω M f
using pos by (rule lambda system algebra)

have A ′′: range A ⊆ M
by (metis A image subset iff lambda system sets)

have U in: (
⋃
i . A i) ∈ M

by (metis A ′′ countable UN )
have U eq : f (

⋃
i . A i) = (

∑
i . f (A i))

proof (rule antisym)
show f (

⋃
i . A i) ≤ (

∑
i . f (A i))

using csa[unfolded countably subadditive def ] A ′′ disj U in by auto
have dis:

∧
N . disjoint family on A {..<N } by (intro disjoint family on mono[OF

disj ]) auto
show (

∑
i . f (A i)) ≤ f (

⋃
i . A i)

using ls.additive sum [OF lambda system positive[OF pos] lambda system additive
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A ′ dis] A ′′

by (intro suminf le const [OF summableI ]) (auto intro!: increasingD [OF inc]
countable UN )
qed
have f (a ∩ (

⋃
i . A i)) + f (a − (

⋃
i . A i)) = f a

if a [iff ]: a ∈ M for a
proof (rule antisym)
have range (λi . a ∩ A i) ⊆ M using A ′′

by blast
moreover
have disjoint family (λi . a ∩ A i) using disj
by (auto simp add : disjoint family on def )

moreover
have a ∩ (

⋃
i . A i) ∈ M

by (metis Int U in a)
ultimately
have f (a ∩ (

⋃
i . A i)) ≤ (

∑
i . f (a ∩ A i))

using csa[unfolded countably subadditive def , rule format , of (λi . a ∩ A i)]
by (simp add : o def )

hence f (a ∩ (
⋃
i . A i)) + f (a − (

⋃
i . A i)) ≤ (

∑
i . f (a ∩ A i)) + f (a −

(
⋃
i . A i))
by (rule add right mono)

also have . . . ≤ f a
proof (intro ennreal suminf bound add)
fix n
have UNION in: (

⋃
i∈{0 ..<n}. A i) ∈ M

by (metis A ′′ UNION in sets)
have le fa: f (

⋃
(A ‘ {0 ..<n}) ∩ a) ≤ f a using A ′′

by (blast intro: increasingD [OF inc] A ′′ UNION in sets)
have ls: (

⋃
i∈{0 ..<n}. A i) ∈ lambda system Ω M f

using ls.UNION in sets by (simp add : A)
hence eq fa: f a = f (a ∩ (

⋃
i∈{0 ..<n}. A i)) + f (a − (

⋃
i∈{0 ..<n}. A

i))
by (simp add : lambda system eq UNION in)

have f (a − (
⋃
i . A i)) ≤ f (a − (

⋃
i∈{0 ..<n}. A i))

by (blast intro: increasingD [OF inc] UNION in U in)
thus (

∑
i<n. f (a ∩ A i)) + f (a − (

⋃
i . A i)) ≤ f a

by (simp add : lambda system strong sum pos A disj eq fa add left mono
atLeast0LessThan[symmetric])

qed
finally show f (a ∩ (

⋃
i . A i)) + f (a − (

⋃
i . A i)) ≤ f a

by simp
next
have f a ≤ f (a ∩ (

⋃
i . A i) ∪ (a − (

⋃
i . A i)))

by (blast intro: increasingD [OF inc] U in)
also have ... ≤ f (a ∩ (

⋃
i . A i)) + f (a − (

⋃
i . A i))

by (blast intro: subadditiveD [OF sa] U in)
finally show f a ≤ f (a ∩ (

⋃
i . A i)) + f (a − (

⋃
i . A i)) .

qed
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thus ?thesis
by (simp add : lambda system eq sums iff U eq U in)

qed

proposition (in sigma algebra) caratheodory lemma:
assumes oms: outer measure space M f
defines L ≡ lambda system Ω M f
shows measure space Ω L f

proof −
have pos: positive M f
by (metis oms outer measure space def )

have alg : algebra Ω L
using lambda system algebra [of f , OF pos]
by (simp add : algebra iff Un L def )

then
have sigma algebra Ω L
using lambda system caratheodory [OF oms]
by (simp add : sigma algebra disjoint iff L def )

moreover
have countably additive L f positive L f
using pos lambda system caratheodory [OF oms]
by (auto simp add : lambda system sets L def countably additive def positive def )
ultimately
show ?thesis
using pos by (simp add : measure space def )

qed

definition outer measure :: ′a set set ⇒ ( ′a set ⇒ ennreal) ⇒ ′a set ⇒ ennreal
where

outer measure M f X =
(INF A∈{A. range A ⊆ M ∧ disjoint family A ∧ X ⊆ (

⋃
i . A i)}.

∑
i . f (A

i))

lemma (in ring of sets) outer measure agrees:
assumes posf : positive M f and ca: countably additive M f and s: s ∈ M
shows outer measure M f s = f s
unfolding outer measure def

proof (safe intro!: antisym INF greatest)
fix A :: nat ⇒ ′a set assume A: range A ⊆ M and dA: disjoint family A and

sA: s ⊆ (
⋃
x . A x )

have inc: increasing M f
by (metis additive increasing ca countably additive additive posf )

have f s = f (
⋃
i . A i ∩ s)

using sA by (auto simp: Int absorb1 )
also have . . . = (

∑
i . f (A i ∩ s))

using sA dA A s
by (intro ca[unfolded countably additive def , rule format , symmetric])

(auto simp: Int absorb1 disjoint family on def )
also have ... ≤ (

∑
i . f (A i))
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using A s by (auto intro!: suminf le increasingD [OF inc])
finally show f s ≤ (

∑
i . f (A i)) .

next
have (

∑
i . f (if i = 0 then s else {})) ≤ f s

using positiveD1 [OF posf ] by (subst suminf finite[of {0}]) auto
with s show (INF A∈{A. range A ⊆ M ∧ disjoint family A ∧ s ⊆

⋃
(A ‘

UNIV )}.
∑

i . f (A i)) ≤ f s
by (intro INF lower2 [of λi . if i = 0 then s else {}])

(auto simp: disjoint family on def )
qed

lemma outer measure empty :
positive M f =⇒ {} ∈ M =⇒ outer measure M f {} = 0
unfolding outer measure def
by (intro antisym INF lower2 [of λ . {}]) (auto simp: disjoint family on def pos-

itive def )

lemma (in ring of sets) positive outer measure:
assumes positive M f shows positive (Pow Ω) (outer measure M f )
unfolding positive def by (auto simp: assms outer measure empty)

lemma (in ring of sets) increasing outer measure: increasing (Pow Ω) (outer measure
M f )
by (force simp: increasing def outer measure def intro!: INF greatest intro: INF lower)

lemma (in ring of sets) outer measure le:
assumes pos: positive M f and inc: increasing M f and A: range A ⊆ M and

X : X ⊆ (
⋃
i . A i)

shows outer measure M f X ≤ (
∑

i . f (A i))
unfolding outer measure def

proof (safe intro!: INF lower2 [of disjointed A] del : subsetI )
show dA: range (disjointed A) ⊆ M
by (auto intro!: A range disjointed sets)

have ∀n. f (disjointed A n) ≤ f (A n)
by (metis increasingD [OF inc] UNIV I dA image subset iff disjointed subset

A)
then show (

∑
i . f (disjointed A i)) ≤ (

∑
i . f (A i))

by (blast intro!: suminf le)
qed (auto simp: X UN disjointed eq disjoint family disjointed)

lemma (in ring of sets) outer measure close:
outer measure M f X < e =⇒ ∃A. range A ⊆ M ∧ disjoint family A ∧ X ⊆

(
⋃
i . A i) ∧ (

∑
i . f (A i)) < e

unfolding outer measure def INF less iff by auto

lemma (in ring of sets) countably subadditive outer measure:
assumes posf : positive M f and inc: increasing M f
shows countably subadditive (Pow Ω) (outer measure M f )

proof (simp add : countably subadditive def , safe)
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fix A :: nat ⇒ assume A: range A ⊆ Pow (Ω) and sb: (
⋃
i . A i) ⊆ Ω

let ?O = outer measure M f
show ?O (

⋃
i . A i) ≤ (

∑
n. ?O (A n))

proof (rule ennreal le epsilon)
fix b and e :: real assume 0 < e (

∑
n. outer measure M f (A n)) < top

then have ∗:
∧
n. outer measure M f (A n) < outer measure M f (A n) + e

∗ (1/2 )ˆSuc n
by (auto simp add : less top dest !: ennreal suminf lessD)

obtain B
where B :

∧
n. range (B n) ⊆ M

and sbB :
∧
n. A n ⊆ (

⋃
i . B n i)

and Ble:
∧
n. (

∑
i . f (B n i)) ≤ ?O (A n) + e ∗ (1/2 )ˆ(Suc n)

by (metis less imp le outer measure close[OF ∗])

define C where C = case prod B o prod decode
from B have B in M :

∧
i j . B i j ∈ M

by (rule range subsetD)
then have C : range C ⊆ M
by (auto simp add : C def split def )

have A C : (
⋃

i . A i) ⊆ (
⋃

i . C i)
using sbB by (auto simp add : C def subset eq) (metis prod .case prod encode inverse)

have ?O (
⋃
i . A i) ≤ ?O (

⋃
i . C i)

using A C A C by (intro increasing outer measure[THEN increasingD ]) (auto
dest !: sets into space)

also have . . . ≤ (
∑

i . f (C i))
using C by (intro outer measure le[OF posf inc]) auto

also have . . . = (
∑

n.
∑

i . f (B n i))
using B in M unfolding C def comp def by (intro suminf ennreal 2dimen)

auto
also have . . . ≤ (

∑
n. ?O (A n) + e ∗ (1/2 ) ˆ Suc n)

using B in M by (intro suminf le suminf nonneg allI Ble) auto
also have ... = (

∑
n. ?O (A n)) + (

∑
n. ennreal e ∗ ennreal ((1/2 ) ˆ Suc

n))
using 〈0 < e〉 by (subst suminf add [symmetric])

(auto simp del : ennreal suminf cmult simp add : en-
nreal mult [symmetric])

also have . . . = (
∑

n. ?O (A n)) + e
unfolding ennreal suminf cmult
by (subst suminf ennreal eq [OF zero le power power half series]) auto

finally show ?O (
⋃
i . A i) ≤ (

∑
n. ?O (A n)) + e .

qed
qed

lemma (in ring of sets) outer measure space outer measure:
positive M f =⇒ increasing M f =⇒ outer measure space (Pow Ω) (outer measure

M f )
by (simp add : outer measure space def
positive outer measure increasing outer measure countably subadditive outer measure)
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lemma (in ring of sets) algebra subset lambda system:
assumes posf : positive M f and inc: increasing M f

and add : additive M f
shows M ⊆ lambda system Ω (Pow Ω) (outer measure M f )

proof (auto dest : sets into space
simp add : algebra.lambda system eq [OF algebra Pow ])

fix x s assume x : x ∈ M and s: s ⊆ Ω
have [simp]:

∧
x . x ∈ M =⇒ s ∩ (Ω − x ) = s − x using s

by blast
have outer measure M f (s ∩ x ) + outer measure M f (s − x ) ≤ outer measure

M f s
unfolding outer measure def [of M f s]

proof (safe intro!: INF greatest)
fix A :: nat ⇒ ′a set assume A: disjoint family A range A ⊆ M s ⊆ (

⋃
i . A i)

have outer measure M f (s ∩ x ) ≤ (
∑

i . f (A i ∩ x ))
unfolding outer measure def

proof (safe intro!: INF lower2 [of λi . A i ∩ x ])
from A(1 ) show disjoint family (λi . A i ∩ x )
by (rule disjoint family on bisimulation) auto

qed (insert x A, auto)
moreover
have outer measure M f (s − x ) ≤ (

∑
i . f (A i − x ))

unfolding outer measure def
proof (safe intro!: INF lower2 [of λi . A i − x ])
from A(1 ) show disjoint family (λi . A i − x )
by (rule disjoint family on bisimulation) auto

qed (insert x A, auto)
ultimately have outer measure M f (s ∩ x ) + outer measure M f (s − x ) ≤

(
∑

i . f (A i ∩ x )) + (
∑

i . f (A i − x )) by (rule add mono)
also have . . . = (

∑
i . f (A i ∩ x ) + f (A i − x ))

using A(2 ) x posf by (subst suminf add) (auto simp: positive def )
also have . . . = (

∑
i . f (A i))

using A x
by (subst add [THEN additiveD , symmetric])

(auto intro!: arg cong [where f=suminf ] arg cong [where f=f ])
finally show outer measure M f (s ∩ x ) + outer measure M f (s − x ) ≤ (

∑
i .

f (A i)) .
qed
moreover
have outer measure M f s ≤ outer measure M f (s ∩ x ) + outer measure M f (s
− x )
proof −
have outer measure M f s = outer measure M f ((s ∩ x ) ∪ (s − x ))
by (metis Un Diff Int Un commute)

also have ... ≤ outer measure M f (s ∩ x ) + outer measure M f (s − x )
apply (rule subadditiveD)

apply (rule ring of sets.countably subadditive subadditive [OF ring of sets Pow ])
apply (simp add : positive def outer measure empty [OF posf ])
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apply (rule countably subadditive outer measure)
using s by (auto intro!: posf inc)

finally show ?thesis .
qed
ultimately
show outer measure M f (s ∩ x ) + outer measure M f (s − x ) = outer measure

M f s
by (rule order antisym)

qed

lemma measure down: measure space Ω N µ =⇒ sigma algebra Ω M =⇒ M ⊆ N
=⇒ measure space Ω M µ

by (auto simp add : measure space def positive def countably additive def sub-
set eq)

6.9.2 Caratheodory’s theorem

theorem (in ring of sets) caratheodory ′:
assumes posf : positive M f and ca: countably additive M f
shows ∃µ :: ′a set ⇒ ennreal . (∀ s ∈ M . µ s = f s) ∧ measure space Ω (sigma sets

Ω M ) µ
proof −
have inc: increasing M f
by (metis additive increasing ca countably additive additive posf )

let ?O = outer measure M f
define ls where ls = lambda system Ω (Pow Ω) ?O
have mls: measure space Ω ls ?O
using sigma algebra.caratheodory lemma

[OF sigma algebra Pow outer measure space outer measure [OF posf inc]]
by (simp add : ls def )

hence sls: sigma algebra Ω ls
by (simp add : measure space def )

have M ⊆ ls
by (simp add : ls def )

(metis ca posf inc countably additive additive algebra subset lambda system)
hence sgs sb: sigma sets (Ω) (M ) ⊆ ls
using sigma algebra.sigma sets subset [OF sls, of M ]
by simp

have measure space Ω (sigma sets Ω M ) ?O
by (rule measure down [OF mls], rule sigma algebra sigma sets)

(simp all add : sgs sb space closed)
thus ?thesis using outer measure agrees [OF posf ca]
by (intro exI [of ?O ]) auto

qed

lemma (in ring of sets) caratheodory empty continuous:
assumes f : positive M f additive M f and fin:

∧
A. A ∈ M =⇒ f A 6= ∞

assumes cont :
∧
A. range A ⊆ M =⇒ decseq A =⇒ (

⋂
i . A i) = {} =⇒ (λi . f

(A i)) −−−−→ 0
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shows ∃µ :: ′a set ⇒ ennreal . (∀ s ∈ M . µ s = f s) ∧ measure space Ω (sigma sets
Ω M ) µ
proof (intro caratheodory ′ empty continuous imp countably additive f )
show ∀A∈M . f A 6= ∞ using fin by auto

qed (rule cont)

6.9.3 Volumes

definition volume :: ′a set set ⇒ ( ′a set ⇒ ennreal) ⇒ bool where
volume M f ←→
(f {} = 0 ) ∧ (∀ a∈M . 0 ≤ f a) ∧
(∀C⊆M . disjoint C −→ finite C −→

⋃
C ∈ M −→ f (

⋃
C ) = (

∑
c∈C . f c))

lemma volumeI :
assumes f {} = 0
assumes

∧
a. a ∈ M =⇒ 0 ≤ f a

assumes
∧
C . C ⊆ M =⇒ disjoint C =⇒ finite C =⇒

⋃
C ∈ M =⇒ f (

⋃
C )

= (
∑

c∈C . f c)
shows volume M f
using assms by (auto simp: volume def )

lemma volume positive:
volume M f =⇒ a ∈ M =⇒ 0 ≤ f a
by (auto simp: volume def )

lemma volume empty :
volume M f =⇒ f {} = 0
by (auto simp: volume def )

proposition volume finite additive:
assumes volume M f
assumes A:

∧
i . i ∈ I =⇒ A i ∈ M disjoint family on A I finite I

⋃
(A ‘ I ) ∈

M
shows f (

⋃
(A ‘ I )) = (

∑
i∈I . f (A i))

proof −
have A‘I ⊆ M disjoint (A‘I ) finite (A‘I )

⋃
(A‘I ) ∈ M

using A by (auto simp: disjoint family on disjoint image)
with 〈volume M f 〉 have f (

⋃
(A‘I )) = (

∑
a∈A‘I . f a)

unfolding volume def by blast
also have . . . = (

∑
i∈I . f (A i))

proof (subst sum.reindex nontrivial)
fix i j assume i ∈ I j ∈ I i 6= j A i = A j
with 〈disjoint family on A I 〉 have A i = {}
by (auto simp: disjoint family on def )

then show f (A i) = 0
using volume empty [OF 〈volume M f 〉] by simp

qed (auto intro: 〈finite I 〉)
finally show f (

⋃
(A ‘ I )) = (

∑
i∈I . f (A i))

by simp
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qed

lemma (in ring of sets) volume additiveI :
assumes pos:

∧
a. a ∈ M =⇒ 0 ≤ µ a

assumes [simp]: µ {} = 0
assumes add :

∧
a b. a ∈ M =⇒ b ∈ M =⇒ a ∩ b = {} =⇒ µ (a ∪ b) = µ a

+ µ b
shows volume M µ

proof (unfold volume def , safe)
fix C assume finite C C ⊆ M disjoint C
then show µ (

⋃
C ) = sum µ C

proof (induct C )
case (insert c C )
from insert(1 ,2 ,4 ,5 ) have µ (

⋃
(insert c C )) = µ c + µ (

⋃
C )

by (auto intro!: add simp: disjoint def )
with insert show ?case
by (simp add : disjoint def )

qed simp
qed fact+

proposition (in semiring of sets) extend volume:
assumes volume M µ
shows ∃µ ′. volume generated ring µ ′ ∧ (∀ a∈M . µ ′ a = µ a)

proof −
let ?R = generated ring
have ∀ a∈?R. ∃m. ∃C⊆M . a =

⋃
C ∧ finite C ∧ disjoint C ∧ m = (

∑
c∈C .

µ c)
by (auto simp: generated ring def )

from bchoice[OF this] guess µ ′ .. note µ ′ spec = this

{ fix C assume C : C ⊆ M finite C disjoint C
fix D assume D : D ⊆ M finite D disjoint D
assume

⋃
C =

⋃
D

have (
∑

d∈D . µ d) = (
∑

d∈D .
∑

c∈C . µ (c ∩ d))
proof (intro sum.cong refl)
fix d assume d ∈ D
have Un eq d : (

⋃
c∈C . c ∩ d) = d

using 〈d ∈ D 〉 〈
⋃
C =

⋃
D 〉 by auto

moreover have µ (
⋃
c∈C . c ∩ d) = (

∑
c∈C . µ (c ∩ d))

proof (rule volume finite additive)
{ fix c assume c ∈ C then show c ∩ d ∈ M

using C D 〈d ∈ D 〉 by auto }
show (

⋃
a∈C . a ∩ d) ∈ M

unfolding Un eq d using 〈d ∈ D 〉 D by auto
show disjoint family on (λa. a ∩ d) C
using 〈disjoint C 〉 by (auto simp: disjoint family on def disjoint def )

qed fact+
ultimately show µ d = (

∑
c∈C . µ (c ∩ d)) by simp

qed }
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note split sum = this

{ fix C assume C : C ⊆ M finite C disjoint C
fix D assume D : D ⊆ M finite D disjoint D
assume

⋃
C =

⋃
D

with split sum[OF C D ] split sum[OF D C ]
have (

∑
d∈D . µ d) = (

∑
c∈C . µ c)

by (simp, subst sum.swap, simp add : ac simps) }
note sum eq = this

{ fix C assume C : C ⊆ M finite C disjoint C
then have

⋃
C ∈ ?R by (auto simp: generated ring def )

with µ ′ spec[THEN bspec, of
⋃
C ]

obtain D where
D : D ⊆ M finite D disjoint D

⋃
C =

⋃
D and µ ′ (

⋃
C ) = (

∑
d∈D . µ d)

by auto
with sum eq [OF C D ] have µ ′ (

⋃
C ) = (

∑
c∈C . µ c) by simp }

note µ ′ = this

show ?thesis
proof (intro exI conjI ring of sets.volume additiveI [OF generating ring ] ballI )
fix a assume a ∈ M with µ ′[of {a}] show µ ′ a = µ a
by (simp add : disjoint def )

next
fix a assume a ∈ ?R then guess Ca .. note Ca = this
with µ ′[of Ca] 〈volume M µ〉[THEN volume positive]
show 0 ≤ µ ′ a
by (auto intro!: sum nonneg)

next
show µ ′ {} = 0 using µ ′[of {}] by auto

next
fix a assume a ∈ ?R then guess Ca .. note Ca = this
fix b assume b ∈ ?R then guess Cb .. note Cb = this
assume a ∩ b = {}
with Ca Cb have Ca ∩ Cb ⊆ {{}} by auto
then have C Int cases: Ca ∩ Cb = {{}} ∨ Ca ∩ Cb = {} by auto

from 〈a ∩ b = {}〉 have µ ′ (
⋃
(Ca ∪ Cb)) = (

∑
c∈Ca ∪ Cb. µ c)

using Ca Cb by (intro µ ′) (auto intro!: disjoint union)
also have . . . = (

∑
c∈Ca ∪ Cb. µ c) + (

∑
c∈Ca ∩ Cb. µ c)

using C Int cases volume empty [OF 〈volume M µ〉] by (elim disjE ) simp all
also have . . . = (

∑
c∈Ca. µ c) + (

∑
c∈Cb. µ c)

using Ca Cb by (simp add : sum.union inter)
also have . . . = µ ′ a + µ ′ b
using Ca Cb by (simp add : µ ′)

finally show µ ′ (a ∪ b) = µ ′ a + µ ′ b
using Ca Cb by simp

qed
qed
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Caratheodory on semirings

theorem (in semiring of sets) caratheodory :
assumes pos: positive M µ and ca: countably additive M µ
shows ∃µ ′ :: ′a set ⇒ ennreal . (∀ s ∈ M . µ ′ s = µ s) ∧ measure space Ω

(sigma sets Ω M ) µ ′

proof −
have volume M µ
proof (rule volumeI )
{ fix a assume a ∈ M then show 0 ≤ µ a

using pos unfolding positive def by auto }
note p = this

fix C assume sets C : C ⊆ M
⋃
C ∈ M and disjoint C finite C

have ∃F ′. bij betw F ′ {..<card C} C
by (rule finite same card bij [OF 〈finite C 〉]) auto

then guess F ′ .. note F ′ = this
then have F ′: C = F ′ ‘ {..< card C} inj on F ′ {..< card C}
by (auto simp: bij betw def )

{ fix i j assume ∗: i < card C j < card C i 6= j
with F ′ have F ′ i ∈ C F ′ j ∈ C F ′ i 6= F ′ j
unfolding inj on def by auto

with 〈disjoint C 〉[THEN disjointD ]
have F ′ i ∩ F ′ j = {}
by auto }

note F ′ disj = this
define F where F i = (if i < card C then F ′ i else {}) for i
then have disjoint family F
using F ′ disj by (auto simp: disjoint family on def )

moreover from F ′ have (
⋃
i . F i) =

⋃
C

by (auto simp add : F def split : if split asm cong del : SUP cong)
moreover have sets F :

∧
i . F i ∈ M

using F ′ sets C by (auto simp: F def )
moreover note sets C
ultimately have µ (

⋃
C ) = (

∑
i . µ (F i))

using ca[unfolded countably additive def , THEN spec, of F ] by auto
also have . . . = (

∑
i<card C . µ (F ′ i))

proof −
have (λi . if i ∈ {..< card C} then µ (F ′ i) else 0 ) sums (

∑
i<card C . µ (F ′

i))
by (rule sums If finite set) auto

also have (λi . if i ∈ {..< card C} then µ (F ′ i) else 0 ) = (λi . µ (F i))
using pos by (auto simp: positive def F def )

finally show (
∑

i . µ (F i)) = (
∑

i<card C . µ (F ′ i))
by (simp add : sums iff )

qed
also have . . . = (

∑
c∈C . µ c)

using F ′(2 ) by (subst (2 ) F ′) (simp add : sum.reindex )
finally show µ (

⋃
C ) = (

∑
c∈C . µ c) .

next
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show µ {} = 0
using 〈positive M µ〉 by (rule positiveD1 )

qed
from extend volume[OF this] obtain µ r where
V : volume generated ring µ r

∧
a. a ∈ M =⇒ µ a = µ r a

by auto

interpret G : ring of sets Ω generated ring
by (rule generating ring)

have pos: positive generated ring µ r
using V unfolding positive def by (auto simp: positive def intro!: volume positive

volume empty)

have countably additive generated ring µ r
proof (rule countably additiveI )
fix A ′ :: nat ⇒ ′a set assume A ′: range A ′ ⊆ generated ring disjoint family A ′

and Un A: (
⋃
i . A ′ i) ∈ generated ring

from generated ringE [OF Un A] guess C ′ . note C ′ = this

{ fix c assume c ∈ C ′

moreover define A where [abs def ]: A i = A ′ i ∩ c for i
ultimately have A: range A ⊆ generated ring disjoint family A
and Un A: (

⋃
i . A i) ∈ generated ring

using A ′ C ′

by (auto intro!: G .Int G .finite Union intro: generated ringI Basic simp:
disjoint family on def )

from A C ′ 〈c ∈ C ′〉 have UN eq : (
⋃

i . A i) = c
by (auto simp: A def )

have ∀ i ::nat . ∃ f ::nat ⇒ ′a set . µ r (A i) = (
∑

j . µ r (f j )) ∧ disjoint family
f ∧

⋃
(range f ) = A i ∧ (∀ j . f j ∈ M )
(is ∀ i . ?P i)

proof
fix i
from A have Ai : A i ∈ generated ring by auto
from generated ringE [OF this] guess C . note C = this

have ∃F ′. bij betw F ′ {..<card C} C
by (rule finite same card bij [OF 〈finite C 〉]) auto

then guess F .. note F = this
define f where [abs def ]: f i = (if i < card C then F i else {}) for i
then have f : bij betw f {..< card C} C
by (intro bij betw cong [THEN iffD1 , OF F ]) auto

with C have ∀ j . f j ∈ M
by (auto simp: Pi iff f def dest !: bij betw imp funcset)

moreover
from f C have d f : disjoint family on f {..<card C}
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by (intro disjoint image disjoint family on) (auto simp: bij betw def )
then have disjoint family f
by (auto simp: disjoint family on def f def )

moreover
have Ai eq : A i = (

⋃
x<card C . f x )

using f C Ai unfolding bij betw def by auto
then have

⋃
(range f ) = A i

using f by (auto simp add : f def )
moreover
{ have (

∑
j . µ r (f j )) = (

∑
j . if j ∈ {..< card C} then µ r (f j ) else 0 )

using volume empty [OF V (1 )] by (auto intro!: arg cong [where f=suminf ]
simp: f def )

also have . . . = (
∑

j<card C . µ r (f j ))
by (rule sums If finite set [THEN sums unique, symmetric]) simp

also have . . . = µ r (A i)
using C f [THEN bij betw imp funcset ] unfolding Ai eq
by (intro volume finite additive[OF V (1 ) d f , symmetric])

(auto simp: Pi iff Ai eq intro: generated ringI Basic)
finally have µ r (A i) = (

∑
j . µ r (f j )) .. }

ultimately show ?P i
by blast

qed
from choice[OF this] guess f .. note f = this
then have UN f eq : (

⋃
i . case prod f (prod decode i)) = (

⋃
i . A i)

unfolding UN extend simps surj prod decode by (auto simp: set eq iff )

have d : disjoint family (λi . case prod f (prod decode i))
unfolding disjoint family on def

proof (intro ballI impI )
fix m n :: nat assume m 6= n
then have neq : prod decode m 6= prod decode n
using inj prod decode[of UNIV ] by (auto simp: inj on def )

show case prod f (prod decode m) ∩ case prod f (prod decode n) = {}
proof cases
assume fst (prod decode m) = fst (prod decode n)
then show ?thesis
using neq f by (fastforce simp: disjoint family on def )

next
assume neq : fst (prod decode m) 6= fst (prod decode n)
have case prod f (prod decode m) ⊆ A (fst (prod decode m))
case prod f (prod decode n) ⊆ A (fst (prod decode n))
using f [THEN spec, of fst (prod decode m)]
using f [THEN spec, of fst (prod decode n)]
by (auto simp: set eq iff )

with f A neq show ?thesis
by (fastforce simp: disjoint family on def subset eq set eq iff )

qed
qed
from f have (

∑
n. µ r (A n)) = (

∑
n. µ r (case prod f (prod decode n)))
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by (intro suminf ennreal 2dimen[symmetric] generated ringI Basic)
(auto split : prod .split)

also have . . . = (
∑

n. µ (case prod f (prod decode n)))
using f V (2 ) by (auto intro!: arg cong [where f=suminf ] split : prod .split)

also have . . . = µ (
⋃
i . case prod f (prod decode i))

using f 〈c ∈ C ′〉 C ′

by (intro ca[unfolded countably additive def , rule format ])
(auto split : prod .split simp: UN f eq d UN eq)

finally have (
∑

n. µ r (A ′ n ∩ c)) = µ c
using UN f eq UN eq by (simp add : A def ) }

note eq = this

have (
∑

n. µ r (A ′ n)) = (
∑

n.
∑

c∈C ′. µ r (A ′ n ∩ c))
using C ′ A ′

by (subst volume finite additive[symmetric, OF V (1 )])
(auto simp: disjoint def disjoint family on def

intro!: G .Int G .finite Union arg cong [where f=λX . suminf (λi . µ r
(X i))] ext

intro: generated ringI Basic)
also have . . . = (

∑
c∈C ′.

∑
n. µ r (A ′ n ∩ c))

using C ′ A ′

by (intro suminf sum G .Int G .finite Union) (auto intro: generated ringI Basic)
also have . . . = (

∑
c∈C ′. µ r c)

using eq V C ′ by (auto intro!: sum.cong)
also have . . . = µ r (

⋃
C ′)

using C ′ Un A
by (subst volume finite additive[symmetric, OF V (1 )])

(auto simp: disjoint family on def disjoint def
intro: generated ringI Basic)

finally show (
∑

n. µ r (A ′ n)) = µ r (
⋃
i . A ′ i)

using C ′ by simp
qed
from G .caratheodory ′[OF 〈positive generated ring µ r 〉 〈countably additive gen-

erated ring µ r 〉]
guess µ ′ ..
with V show ?thesis
unfolding sigma sets generated ring eq
by (intro exI [of µ ′]) (auto intro: generated ringI Basic)

qed

lemma extend measure caratheodory :
fixes G :: ′i ⇒ ′a set
assumes M : M = extend measure Ω I G µ
assumes i ∈ I
assumes semiring of sets Ω (G ‘ I )
assumes empty :

∧
i . i ∈ I =⇒ G i = {} =⇒ µ i = 0

assumes inj :
∧
i j . i ∈ I =⇒ j ∈ I =⇒ G i = G j =⇒ µ i = µ j

assumes nonneg :
∧
i . i ∈ I =⇒ 0 ≤ µ i

assumes add :
∧
A::nat ⇒ ′i .

∧
j . A ∈ UNIV → I =⇒ j ∈ I =⇒ disjoint family
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(G ◦ A) =⇒
(
⋃
i . G (A i)) = G j =⇒ (

∑
n. µ (A n)) = µ j

shows emeasure M (G i) = µ i

proof −
interpret semiring of sets Ω G ‘ I
by fact

have ∀ g∈G‘I . ∃ i∈I . g = G i
by auto

then obtain sel where sel :
∧
g . g ∈ G ‘ I =⇒ sel g ∈ I

∧
g . g ∈ G ‘ I =⇒ G

(sel g) = g
by metis

have ∃µ ′. (∀ s∈G ‘ I . µ ′ s = µ (sel s)) ∧ measure space Ω (sigma sets Ω (G ‘
I )) µ ′

proof (rule caratheodory)
show positive (G ‘ I ) (λs. µ (sel s))
by (auto simp: positive def intro!: empty sel nonneg)

show countably additive (G ‘ I ) (λs. µ (sel s))
proof (rule countably additiveI )
fix A :: nat ⇒ ′a set assume range A ⊆ G ‘ I disjoint family A (

⋃
i . A i) ∈

G ‘ I
then show (

∑
i . µ (sel (A i))) = µ (sel (

⋃
i . A i))

by (intro add) (auto simp: sel image subset iff funcset comp def Pi iff intro!:
sel)

qed
qed
then obtain µ ′where µ ′: ∀ s∈G ‘ I . µ ′ s = µ (sel s) measure space Ω (sigma sets

Ω (G ‘ I )) µ ′

by metis

show ?thesis
proof (rule emeasure extend measure[OF M ])
{ fix i assume i ∈ I then show µ ′ (G i) = µ i
using µ ′ by (auto intro!: inj sel) }

show G ‘ I ⊆ Pow Ω
by (rule space closed)

then show positive (sets M ) µ ′ countably additive (sets M ) µ ′

using µ ′ by (simp all add : M sets extend measure measure space def )
qed fact

qed

proposition extend measure caratheodory pair :
fixes G :: ′i ⇒ ′j ⇒ ′a set
assumes M : M = extend measure Ω {(a, b). P a b} (λ(a, b). G a b) (λ(a, b).

µ a b)
assumes P i j
assumes semiring : semiring of sets Ω {G a b | a b. P a b}
assumes empty :

∧
i j . P i j =⇒ G i j = {} =⇒ µ i j = 0
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assumes inj :
∧
i j k l . P i j =⇒ P k l =⇒ G i j = G k l =⇒ µ i j = µ k l

assumes nonneg :
∧
i j . P i j =⇒ 0 ≤ µ i j

assumes add :
∧
A::nat ⇒ ′i .

∧
B ::nat ⇒ ′j .

∧
j k .

(
∧
n. P (A n) (B n)) =⇒ P j k =⇒ disjoint family (λn. G (A n) (B n)) =⇒

(
⋃
i . G (A i) (B i)) = G j k =⇒ (

∑
n. µ (A n) (B n)) = µ j k

shows emeasure M (G i j ) = µ i j
proof −
have emeasure M ((λ(a, b). G a b) (i , j )) = (λ(a, b). µ a b) (i , j )
proof (rule extend measure caratheodory [OF M ])
show semiring of sets Ω ((λ(a, b). G a b) ‘ {(a, b). P a b})
using semiring by (simp add : image def conj commute)

next
fix A :: nat ⇒ ( ′i × ′j ) and j assume A ∈ UNIV → {(a, b). P a b} j ∈ {(a,

b). P a b}
disjoint family ((λ(a, b). G a b) ◦ A)
(
⋃

i . case A i of (a, b) ⇒ G a b) = (case j of (a, b) ⇒ G a b)
then show (

∑
n. case A n of (a, b) ⇒ µ a b) = (case j of (a, b) ⇒ µ a b)

using add [of λi . fst (A i) λi . snd (A i) fst j snd j ]
by (simp add : split beta ′ comp def Pi iff )

qed (auto split : prod .splits intro: assms)
then show ?thesis by simp

qed

end

6.10 Bochner Integration for Vector-Valued Func-
tions

theory Bochner Integration
imports Finite Product Measure

begin

In the following development of the Bochner integral we use second countable
topologies instead of separable spaces. A second countable topology is also
separable.

proposition borel measurable implies sequence metric:
fixes f :: ′a ⇒ ′b :: {metric space, second countable topology}
assumes [measurable]: f ∈ borel measurable M
shows ∃F . (∀ i . simple function M (F i)) ∧ (∀ x∈space M . (λi . F i x ) −−−−→ f

x ) ∧
(∀ i . ∀ x∈space M . dist (F i x ) z ≤ 2 ∗ dist (f x ) z )

proof −
obtain D :: ′b set where countable D and D :

∧
X . open X =⇒ X 6= {} =⇒

∃ d∈D . d ∈ X
by (erule countable dense setE )

define e where e = from nat into D
{ fix n x
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obtain d where d ∈ D and d : d ∈ ball x (1 / Suc n)
using D [of ball x (1 / Suc n)] by auto

from 〈d ∈ D 〉 D [of UNIV ] 〈countable D 〉 obtain i where d = e i
unfolding e def by (auto dest : from nat into surj )

with d have ∃ i . dist x (e i) < 1 / Suc n
by auto }

note e = this

define A where [abs def ]: A m n =
{x∈space M . dist (f x ) (e n) < 1 / (Suc m) ∧ 1 / (Suc m) ≤ dist (f x ) z} for

m n
define B where [abs def ]: B m = disjointed (A m) for m

define m where [abs def ]: m N x = Max {m. m ≤ N ∧ x ∈ (
⋃

n≤N . B m n)}
for N x
define F where [abs def ]: F N x =
(if (∃m≤N . x ∈ (

⋃
n≤N . B m n)) ∧ (∃n≤N . x ∈ B (m N x ) n)

then e (LEAST n. x ∈ B (m N x ) n) else z ) for N x

have B imp A[intro, simp]:
∧
x m n. x ∈ B m n =⇒ x ∈ A m n

using disjointed subset [of A m for m] unfolding B def by auto

{ fix m
have

∧
n. A m n ∈ sets M

by (auto simp: A def )
then have

∧
n. B m n ∈ sets M

using sets.range disjointed sets[of A m M ] by (auto simp: B def ) }
note this[measurable]

{ fix N i x assume ∃m≤N . x ∈ (
⋃

n≤N . B m n)
then have m N x ∈ {m::nat . m ≤ N ∧ x ∈ (

⋃
n≤N . B m n)}

unfolding m def by (intro Max in) auto
then have m N x ≤ N ∃n≤N . x ∈ B (m N x ) n
by auto }

note m = this

{ fix j N i x assume j ≤ N i ≤ N x ∈ B j i
then have j ≤ m N x
unfolding m def by (intro Max ge) auto }

note m upper = this

show ?thesis
unfolding simple function def

proof (safe intro!: exI [of F ])
have [measurable]:

∧
i . F i ∈ borel measurable M

unfolding F def m def by measurable
show

∧
x i . F i −‘ {x} ∩ space M ∈ sets M

by measurable
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{ fix i
{ fix n x assume x ∈ B (m i x ) n
then have (LEAST n. x ∈ B (m i x ) n) ≤ n
by (intro Least le)

also assume n ≤ i
finally have (LEAST n. x ∈ B (m i x ) n) ≤ i . }

then have F i ‘ space M ⊆ {z} ∪ e ‘ {.. i}
by (auto simp: F def )

then show finite (F i ‘ space M )
by (rule finite subset) auto }

{ fix N i n x assume i ≤ N n ≤ N x ∈ B i n
then have 1 : ∃m≤N . x ∈ (

⋃
n≤N . B m n) by auto

from m[OF this] obtain n where n: m N x ≤ N n ≤ N x ∈ B (m N x ) n
by auto

moreover
define L where L = (LEAST n. x ∈ B (m N x ) n)
have dist (f x ) (e L) < 1 / Suc (m N x )
proof −
have x ∈ B (m N x ) L
using n(3 ) unfolding L def by (rule LeastI )

then have x ∈ A (m N x ) L
by auto

then show ?thesis
unfolding A def by simp

qed
ultimately have dist (f x ) (F N x ) < 1 / Suc (m N x )
by (auto simp add : F def L def ) }

note ∗ = this

fix x assume x ∈ space M
show (λi . F i x ) −−−−→ f x
proof cases
assume f x = z
then have

∧
i n. x /∈ A i n

unfolding A def by auto
then have

∧
i . F i x = z

by (auto simp: F def )
then show ?thesis
using 〈f x = z 〉 by auto

next
assume f x 6= z

show ?thesis
proof (rule tendstoI )
fix e :: real assume 0 < e
with 〈f x 6= z 〉 obtain n where 1 / Suc n < e 1 / Suc n < dist (f x ) z
by (metis dist nz order less trans neq iff nat approx posE )

with 〈x∈space M 〉 〈f x 6= z 〉 have x ∈ (
⋃
i . B n i)

Bochner{_}{\kern 0pt}Integration.html


1552

unfolding A def B def UN disjointed eq using e by auto
then obtain i where i : x ∈ B n i by auto

show eventually (λi . dist (F i x ) (f x ) < e) sequentially
using eventually ge at top[of max n i ]

proof eventually elim
fix j assume j : max n i ≤ j
with i have dist (f x ) (F j x ) < 1 / Suc (m j x )
by (intro ∗[OF i ]) auto

also have . . . ≤ 1 / Suc n
using j m upper [OF i ]
by (auto simp: field simps)

also note 〈1 / Suc n < e〉

finally show dist (F j x ) (f x ) < e
by (simp add : less imp le dist commute)

qed
qed

qed
fix i
{ fix n m assume x ∈ A n m
then have dist (e m) (f x ) + dist (f x ) z ≤ 2 ∗ dist (f x ) z
unfolding A def by (auto simp: dist commute)

also have dist (e m) z ≤ dist (e m) (f x ) + dist (f x ) z
by (rule dist triangle)

finally (xtrans) have dist (e m) z ≤ 2 ∗ dist (f x ) z . }
then show dist (F i x ) z ≤ 2 ∗ dist (f x ) z
unfolding F def
apply auto
apply (rule LeastI2 )
apply auto
done

qed
qed

lemma
fixes f :: ′a ⇒ ′b::semiring 1 assumes finite A
shows sum mult indicator [simp]: (

∑
x ∈ A. f x ∗ indicator (B x ) (g x )) =

(
∑

x∈{x∈A. g x ∈ B x}. f x )
and sum indicator mult [simp]: (

∑
x ∈ A. indicator (B x ) (g x ) ∗ f x ) = (

∑
x∈{x∈A.

g x ∈ B x}. f x )
unfolding indicator def
using assms by (auto intro!: sum.mono neutral cong right split : if split asm)

lemma borel measurable induct real [consumes 2 , case names set mult add seq ]:
fixes P :: ( ′a ⇒ real) ⇒ bool
assumes u: u ∈ borel measurable M

∧
x . 0 ≤ u x

assumes set :
∧
A. A ∈ sets M =⇒ P (indicator A)

assumes mult :
∧
u c. 0 ≤ c =⇒ u ∈ borel measurable M =⇒ (

∧
x . 0 ≤ u x )

=⇒ P u =⇒ P (λx . c ∗ u x )
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assumes add :
∧
u v . u ∈ borel measurable M =⇒ (

∧
x . 0 ≤ u x ) =⇒ P u =⇒ v

∈ borel measurable M =⇒ (
∧
x . 0 ≤ v x ) =⇒ (

∧
x . x ∈ space M =⇒ u x = 0 ∨

v x = 0 ) =⇒ P v =⇒ P (λx . v x + u x )
assumes seq :

∧
U . (

∧
i . U i ∈ borel measurable M ) =⇒ (

∧
i x . 0 ≤ U i x ) =⇒

(
∧
i . P (U i)) =⇒ incseq U =⇒ (

∧
x . x ∈ space M =⇒ (λi . U i x ) −−−−→ u x )

=⇒ P u
shows P u

proof −
have (λx . ennreal (u x )) ∈ borel measurable M using u by auto
from borel measurable implies simple function sequence ′[OF this]
obtain U where U :

∧
i . simple function M (U i) incseq U

∧
i x . U i x < top

and
sup:

∧
x . (SUP i . U i x ) = ennreal (u x )

by blast

define U ′ where [abs def ]: U ′ i x = indicator (space M ) x ∗ enn2real (U i x )
for i x
then have U ′ sf [measurable]:

∧
i . simple function M (U ′ i)

using U by (auto intro!: simple function compose1 [where g=enn2real ])

show P u
proof (rule seq)
show U ′: U ′ i ∈ borel measurable M

∧
x . 0 ≤ U ′ i x for i

using U by (auto
intro: borel measurable simple function
intro!: borel measurable enn2real borel measurable times
simp: U ′ def zero le mult iff )

show incseq U ′

using U (2 ,3 )
by (auto simp: incseq def le fun def image iff eq commute U ′ def indicator def

enn2real mono)

fix x assume x : x ∈ space M
have (λi . U i x ) −−−−→ (SUP i . U i x )
using U (2 ) by (intro LIMSEQ SUP) (auto simp: incseq def le fun def )

moreover have (λi . U i x ) = (λi . ennreal (U ′ i x ))
using x U (3 ) by (auto simp: fun eq iff U ′ def image iff eq commute)

moreover have (SUP i . U i x ) = ennreal (u x )
using sup u(2 ) by (simp add : max def )

ultimately show (λi . U ′ i x ) −−−−→ u x
using u U ′ by simp

next
fix i
have U ′ i ‘ space M ⊆ enn2real ‘ (U i ‘ space M ) finite (U i ‘ space M )
unfolding U ′ def using U (1 ) by (auto dest : simple functionD)

then have fin: finite (U ′ i ‘ space M )
by (metis finite subset finite imageI )

moreover have
∧
z . {y . U ′ i z = y ∧ y ∈ U ′ i ‘ space M ∧ z ∈ space M } =

(if z ∈ space M then {U ′ i z} else {})
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by auto
ultimately have U ′: (λz .

∑
y∈U ′ i‘space M . y ∗ indicator {x∈space M . U ′

i x = y} z ) = U ′ i
by (simp add : U ′ def fun eq iff )

have
∧
x . x ∈ U ′ i ‘ space M =⇒ 0 ≤ x

by (auto simp: U ′ def )
with fin have P (λz .

∑
y∈U ′ i‘space M . y ∗ indicator {x∈space M . U ′ i x =

y} z )
proof induct
case empty from set [of {}] show ?case
by (simp add : indicator def [abs def ])

next
case (insert x F )
from insert .prems have nonneg : x ≥ 0

∧
y . y ∈ F =⇒ y ≥ 0

by simp all
hence ∗: P (λxa. x ∗ indicat real {x ′ ∈ space M . U ′ i x ′ = x} xa)
by (intro mult set) auto

have P (λz . x ∗ indicat real {x ′ ∈ space M . U ′ i x ′ = x} z +
(
∑

y∈F . y ∗ indicat real {x ∈ space M . U ′ i x = y} z ))
using insert(1−3 )
by (intro add ∗ sum nonneg mult nonneg nonneg)

(auto simp: nonneg indicator def sum nonneg eq 0 iff )
thus ?case
using insert .hyps by (subst sum.insert) auto

qed
with U ′ show P (U ′ i) by simp

qed
qed

lemma scaleR cong right :
fixes x :: ′a :: real vector
shows (x 6= 0 =⇒ r = p) =⇒ r ∗R x = p ∗R x
by (cases x = 0 ) auto

inductive simple bochner integrable :: ′a measure ⇒ ( ′a ⇒ ′b::real vector) ⇒ bool
for M f where
simple function M f =⇒ emeasure M {y∈space M . f y 6= 0} 6= ∞ =⇒
simple bochner integrable M f

lemma simple bochner integrable compose2 :
assumes p 0 : p 0 0 = 0
shows simple bochner integrable M f =⇒ simple bochner integrable M g =⇒
simple bochner integrable M (λx . p (f x ) (g x ))

proof (safe intro!: simple bochner integrable.intros elim!: simple bochner integrable.cases
del : notI )
assume sf : simple function M f simple function M g
then show simple function M (λx . p (f x ) (g x ))
by (rule simple function compose2 )
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from sf have [measurable]:
f ∈ measurable M (count space UNIV )
g ∈ measurable M (count space UNIV )

by (auto intro: measurable simple function)

assume fin: emeasure M {y ∈ space M . f y 6= 0} 6= ∞ emeasure M {y ∈ space
M . g y 6= 0} 6= ∞

have emeasure M {x∈space M . p (f x ) (g x ) 6= 0} ≤
emeasure M ({x∈space M . f x 6= 0} ∪ {x∈space M . g x 6= 0})

by (intro emeasure mono) (auto simp: p 0 )
also have . . . ≤ emeasure M {x∈space M . f x 6= 0} + emeasure M {x∈space

M . g x 6= 0}
by (intro emeasure subadditive) auto

finally show emeasure M {y ∈ space M . p (f y) (g y) 6= 0} 6= ∞
using fin by (auto simp: top unique)

qed

lemma simple function finite support :
assumes f : simple function M f and fin: (

∫
+x . f x ∂M ) < ∞ and nn:

∧
x . 0

≤ f x
shows emeasure M {x∈space M . f x 6= 0} 6= ∞

proof cases
from f have meas[measurable]: f ∈ borel measurable M
by (rule borel measurable simple function)

assume non empty : ∃ x∈space M . f x 6= 0

define m where m = Min (f‘space M − {0})
have m ∈ f‘space M − {0}

unfolding m def using f non empty by (intro Min in) (auto simp: sim-
ple function def )
then have m: 0 < m
using nn by (auto simp: less le)

from m have m ∗ emeasure M {x∈space M . 0 6= f x} =
(
∫

+x . m ∗ indicator {x∈space M . 0 6= f x} x ∂M )
using f by (intro nn integral cmult indicator [symmetric]) auto

also have . . . ≤ (
∫

+x . f x ∂M )
using AE space

proof (intro nn integral mono AE , eventually elim)
fix x assume x ∈ space M
with nn show m ∗ indicator {x ∈ space M . 0 6= f x} x ≤ f x
using f by (auto split : split indicator simp: simple function def m def )

qed
also note 〈. . . < ∞〉

finally show ?thesis
using m by (auto simp: ennreal mult less top)

next
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assume ¬ (∃ x∈space M . f x 6= 0 )
with nn have ∗: {x∈space M . f x 6= 0} = {}
by auto

show ?thesis unfolding ∗ by simp
qed

lemma simple bochner integrableI bounded :
assumes f : simple function M f and fin: (

∫
+x . norm (f x ) ∂M ) < ∞

shows simple bochner integrable M f
proof
have emeasure M {y ∈ space M . ennreal (norm (f y)) 6= 0} 6= ∞
proof (rule simple function finite support)
show simple function M (λx . ennreal (norm (f x )))
using f by (rule simple function compose1 )

show (
∫

+ y . ennreal (norm (f y)) ∂M ) < ∞ by fact
qed simp
then show emeasure M {y ∈ space M . f y 6= 0} 6= ∞ by simp

qed fact

definition simple bochner integral :: ′a measure ⇒ ( ′a ⇒ ′b::real vector) ⇒ ′b
where
simple bochner integral M f = (

∑
y∈f‘space M . measure M {x∈space M . f x =

y} ∗R y)

proposition simple bochner integral partition:
assumes f : simple bochner integrable M f and g : simple function M g
assumes sub:

∧
x y . x ∈ space M =⇒ y ∈ space M =⇒ g x = g y =⇒ f x = f y

assumes v :
∧
x . x ∈ space M =⇒ f x = v (g x )

shows simple bochner integral M f = (
∑

y∈g ‘ space M . measure M {x∈space
M . g x = y} ∗R v y)

(is = ?r)
proof −
from f g have [simp]: finite (f‘space M ) finite (g‘space M )
by (auto simp: simple function def elim: simple bochner integrable.cases)

from f have [measurable]: f ∈ measurable M (count space UNIV )
by (auto intro: measurable simple function elim: simple bochner integrable.cases)

from g have [measurable]: g ∈ measurable M (count space UNIV )
by (auto intro: measurable simple function elim: simple bochner integrable.cases)

{ fix y assume y ∈ space M
then have f ‘ space M ∩ {i . ∃ x∈space M . i = f x ∧ g y = g x} = {v (g y)}
by (auto cong : sub simp: v [symmetric]) }

note eq = this

have simple bochner integral M f =
(
∑

y∈f‘space M . (
∑

z∈g‘space M .
if ∃ x∈space M . y = f x ∧ z = g x then measure M {x∈space M . g x = z}
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else 0 ) ∗R y)
unfolding simple bochner integral def

proof (safe intro!: sum.cong scaleR cong right)
fix y assume y : y ∈ space M f y 6= 0
have [simp]: g ‘ space M ∩ {z . ∃ x∈space M . f y = f x ∧ z = g x} =
{z . ∃ x∈space M . f y = f x ∧ z = g x}

by auto
have eq :{x ∈ space M . f x = f y} =

(
⋃

i∈{z . ∃ x∈space M . f y = f x ∧ z = g x}. {x ∈ space M . g x = i})
by (auto simp: eq commute cong : sub rev conj cong)

have finite (g‘space M ) by simp
then have finite {z . ∃ x∈space M . f y = f x ∧ z = g x}
by (rule rev finite subset) auto

moreover
{ fix x assume x ∈ space M f x = f y
then have x ∈ space M f x 6= 0
using y by auto

then have emeasure M {y ∈ space M . g y = g x} ≤ emeasure M {y ∈ space
M . f y 6= 0}

by (auto intro!: emeasure mono cong : sub)
then have emeasure M {xa ∈ space M . g xa = g x} < ∞
using f by (auto simp: simple bochner integrable.simps less top) }

ultimately
show measure M {x ∈ space M . f x = f y} =
(
∑

z∈g ‘ space M . if ∃ x∈space M . f y = f x ∧ z = g x then measure M {x
∈ space M . g x = z} else 0 )

apply (simp add : sum.If cases eq)
apply (subst measure finite Union[symmetric])
apply (auto simp: disjoint family on def less top)
done

qed
also have . . . = (

∑
y∈f‘space M . (

∑
z∈g‘space M .

if ∃ x∈space M . y = f x ∧ z = g x then measure M {x∈space M . g x = z}
∗R y else 0 ))

by (auto intro!: sum.cong simp: scaleR sum left)
also have . . . = ?r
by (subst sum.swap)

(auto intro!: sum.cong simp: sum.If cases scaleR sum right [symmetric] eq)
finally show simple bochner integral M f = ?r .

qed

lemma simple bochner integral add :
assumes f : simple bochner integrable M f and g : simple bochner integrable M g
shows simple bochner integral M (λx . f x + g x ) =
simple bochner integral M f + simple bochner integral M g

proof −
from f g have simple bochner integral M (λx . f x + g x ) =
(
∑

y∈(λx . (f x , g x )) ‘ space M . measure M {x ∈ space M . (f x , g x ) = y} ∗R
(fst y + snd y))
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by (intro simple bochner integral partition)
(auto simp: simple bochner integrable compose2 elim: simple bochner integrable.cases)

moreover from f g have simple bochner integral M f =
(
∑

y∈(λx . (f x , g x )) ‘ space M . measure M {x ∈ space M . (f x , g x ) = y} ∗R
fst y)

by (intro simple bochner integral partition)
(auto simp: simple bochner integrable compose2 elim: simple bochner integrable.cases)

moreover from f g have simple bochner integral M g =
(
∑

y∈(λx . (f x , g x )) ‘ space M . measure M {x ∈ space M . (f x , g x ) = y} ∗R
snd y)

by (intro simple bochner integral partition)
(auto simp: simple bochner integrable compose2 elim: simple bochner integrable.cases)

ultimately show ?thesis
by (simp add : sum.distrib[symmetric] scaleR add right)

qed

lemma simple bochner integral linear :
assumes linear f
assumes g : simple bochner integrable M g
shows simple bochner integral M (λx . f (g x )) = f (simple bochner integral M

g)
proof −
interpret linear f by fact
from g have simple bochner integral M (λx . f (g x )) =
(
∑

y∈g ‘ space M . measure M {x ∈ space M . g x = y} ∗R f y)
by (intro simple bochner integral partition)

(auto simp: simple bochner integrable compose2 [where p=λx y . f x ]
elim: simple bochner integrable.cases)

also have . . . = f (simple bochner integral M g)
by (simp add : simple bochner integral def sum scale)

finally show ?thesis .
qed

lemma simple bochner integral minus:
assumes f : simple bochner integrable M f
shows simple bochner integral M (λx . − f x ) = − simple bochner integral M f

proof −
from linear uminus f show ?thesis
by (rule simple bochner integral linear)

qed

lemma simple bochner integral diff :
assumes f : simple bochner integrable M f and g : simple bochner integrable M g
shows simple bochner integral M (λx . f x − g x ) =
simple bochner integral M f − simple bochner integral M g

unfolding diff conv add uminus using f g
by (subst simple bochner integral add)
(auto simp: simple bochner integral minus simple bochner integrable compose2 [where

p=λx y . − y ])
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lemma simple bochner integral norm bound :
assumes f : simple bochner integrable M f
shows norm (simple bochner integral M f ) ≤ simple bochner integral M (λx .

norm (f x ))
proof −
have norm (simple bochner integral M f ) ≤
(
∑

y∈f ‘ space M . norm (measure M {x ∈ space M . f x = y} ∗R y))
unfolding simple bochner integral def by (rule norm sum)

also have . . . = (
∑

y∈f ‘ space M . measure M {x ∈ space M . f x = y} ∗R norm
y)

by simp
also have . . . = simple bochner integral M (λx . norm (f x ))
using f
by (intro simple bochner integral partition[symmetric])
(auto intro: f simple bochner integrable compose2 elim: simple bochner integrable.cases)

finally show ?thesis .
qed

lemma simple bochner integral nonneg [simp]:
fixes f :: ′a ⇒ real
shows (

∧
x . 0 ≤ f x ) =⇒ 0 ≤ simple bochner integral M f

by (force simp add : simple bochner integral def intro: sum nonneg)

lemma simple bochner integral eq nn integral :
assumes f : simple bochner integrable M f

∧
x . 0 ≤ f x

shows simple bochner integral M f = (
∫

+x . f x ∂M )
proof −
{ fix x y z have (x 6= 0 =⇒ y = z ) =⇒ ennreal x ∗ y = ennreal x ∗ z

by (cases x = 0 ) (auto simp: zero ennreal def [symmetric]) }
note ennreal cong mult = this

have [measurable]: f ∈ borel measurable M
using f (1 ) by (auto intro: borel measurable simple function elim: simple bochner integrable.cases)

{ fix y assume y : y ∈ space M f y 6= 0
have ennreal (measure M {x ∈ space M . f x = f y}) = emeasure M {x ∈ space

M . f x = f y}
proof (rule emeasure eq ennreal measure[symmetric])
have emeasure M {x ∈ space M . f x = f y} ≤ emeasure M {x ∈ space M . f

x 6= 0}
using y by (intro emeasure mono) auto

with f show emeasure M {x ∈ space M . f x = f y} 6= top
by (auto simp: simple bochner integrable.simps top unique)

qed
moreover have {x ∈ space M . f x = f y} = (λx . ennreal (f x )) −‘ {ennreal

(f y)} ∩ space M
using f by auto

ultimately have ennreal (measure M {x ∈ space M . f x = f y}) =
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emeasure M ((λx . ennreal (f x )) −‘ {ennreal (f y)} ∩ space M ) by simp }
with f have simple bochner integral M f = (

∫
Sx . f x ∂M )

unfolding simple integral def
by (subst simple bochner integral partition[OF f (1 ), where g=λx . ennreal (f

x ) and v=enn2real ])
(auto intro: f simple function compose1 elim: simple bochner integrable.cases

intro!: sum.cong ennreal cong mult
simp: ac simps ennreal mult
simp flip: sum ennreal)

also have . . . = (
∫

+x . f x ∂M )
using f
by (intro nn integral eq simple integral [symmetric])

(auto simp: simple function compose1 simple bochner integrable.simps)
finally show ?thesis .

qed

lemma simple bochner integral bounded :
fixes f :: ′a ⇒ ′b::{real normed vector , second countable topology}
assumes f [measurable]: f ∈ borel measurable M
assumes s: simple bochner integrable M s and t : simple bochner integrable M t
shows ennreal (norm (simple bochner integral M s − simple bochner integral M

t)) ≤
(
∫

+ x . norm (f x − s x ) ∂M ) + (
∫

+ x . norm (f x − t x ) ∂M )
(is ennreal (norm (?s − ?t)) ≤ ?S + ?T )

proof −
have [measurable]: s ∈ borel measurable M t ∈ borel measurable M
using s t by (auto intro: borel measurable simple function elim: simple bochner integrable.cases)

have ennreal (norm (?s − ?t)) = norm (simple bochner integral M (λx . s x −
t x ))

using s t by (subst simple bochner integral diff ) auto
also have . . . ≤ simple bochner integral M (λx . norm (s x − t x ))
using simple bochner integrable compose2 [of (−) M s t ] s t
by (auto intro!: simple bochner integral norm bound)

also have . . . = (
∫

+x . norm (s x − t x ) ∂M )
using simple bochner integrable compose2 [of λx y . norm (x − y) M s t ] s t
by (auto intro!: simple bochner integral eq nn integral)

also have . . . ≤ (
∫

+x . ennreal (norm (f x − s x )) + ennreal (norm (f x − t
x )) ∂M )

by (auto intro!: nn integral mono simp flip: ennreal plus)
(metis (erased , hide lams) add diff cancel left add diff eq diff add eq or-

der trans
norm minus commute norm triangle ineq4 order refl)

also have . . . = ?S + ?T
by (rule nn integral add) auto
finally show ?thesis .

qed

inductive has bochner integral :: ′a measure ⇒ ( ′a ⇒ ′b)⇒ ′b::{real normed vector ,
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second countable topology} ⇒ bool
for M f x where
f ∈ borel measurable M =⇒
(
∧
i . simple bochner integrable M (s i)) =⇒

(λi .
∫

+x . norm (f x − s i x ) ∂M ) −−−−→ 0 =⇒
(λi . simple bochner integral M (s i)) −−−−→ x =⇒
has bochner integral M f x

lemma has bochner integral cong :
assumes M = N

∧
x . x ∈ space N =⇒ f x = g x x = y

shows has bochner integral M f x ←→ has bochner integral N g y
unfolding has bochner integral .simps assms(1 ,3 )
using assms(2 ) by (simp cong : measurable cong simp nn integral cong simp)

lemma has bochner integral cong AE :
f ∈ borel measurable M =⇒ g ∈ borel measurable M =⇒ (AE x in M . f x = g

x ) =⇒
has bochner integral M f x ←→ has bochner integral M g x

unfolding has bochner integral .simps
by (intro arg cong [where f=Ex ] ext conj cong rev conj cong refl arg cong [where

f=λx . x −−−−→ 0 ]
nn integral cong AE )

auto

lemma borel measurable has bochner integral :
has bochner integral M f x =⇒ f ∈ borel measurable M
by (rule has bochner integral .cases)

lemma borel measurable has bochner integral ′[measurable dest ]:
has bochner integral M f x =⇒ g ∈ measurable N M =⇒ (λx . f (g x )) ∈

borel measurable N
using borel measurable has bochner integral [measurable] by measurable

lemma has bochner integral simple bochner integrable:
simple bochner integrable M f =⇒ has bochner integral M f (simple bochner integral

M f )
by (rule has bochner integral .intros[where s=λ . f ])

(auto intro: borel measurable simple function
elim: simple bochner integrable.cases
simp: zero ennreal def [symmetric])

lemma has bochner integral real indicator :
assumes [measurable]: A ∈ sets M and A: emeasure M A < ∞
shows has bochner integral M (indicator A) (measure M A)

proof −
have sbi : simple bochner integrable M (indicator A:: ′a ⇒ real)
proof
have {y ∈ space M . (indicator A y ::real) 6= 0} = A
using sets.sets into space[OF 〈A∈sets M 〉] by (auto split : split indicator)
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then show emeasure M {y ∈ space M . (indicator A y ::real) 6= 0} 6= ∞
using A by auto

qed (rule simple function indicator assms)+
moreover have simple bochner integral M (indicator A) = measure M A
using simple bochner integral eq nn integral [OF sbi ] A
by (simp add : ennreal indicator emeasure eq ennreal measure)

ultimately show ?thesis
by (metis has bochner integral simple bochner integrable)

qed

lemma has bochner integral add [intro]:
has bochner integral M f x =⇒ has bochner integral M g y =⇒
has bochner integral M (λx . f x + g x ) (x + y)

proof (safe intro!: has bochner integral .intros elim!: has bochner integral .cases)
fix sf sg
assume f sf : (λi .

∫
+ x . norm (f x − sf i x ) ∂M ) −−−−→ 0

assume g sg : (λi .
∫

+ x . norm (g x − sg i x ) ∂M ) −−−−→ 0

assume sf : ∀ i . simple bochner integrable M (sf i)
and sg : ∀ i . simple bochner integrable M (sg i)

then have [measurable]:
∧
i . sf i ∈ borel measurable M

∧
i . sg i ∈ borel measurable

M
by (auto intro: borel measurable simple function elim: simple bochner integrable.cases)
assume [measurable]: f ∈ borel measurable M g ∈ borel measurable M

show
∧
i . simple bochner integrable M (λx . sf i x + sg i x )

using sf sg by (simp add : simple bochner integrable compose2 )

show (λi .
∫

+ x . (norm (f x + g x − (sf i x + sg i x ))) ∂M ) −−−−→ 0
(is ?f −−−−→ 0 )

proof (rule tendsto sandwich)
show eventually (λn. 0 ≤ ?f n) sequentially (λ . 0 ) −−−−→ 0
by auto

show eventually (λi . ?f i ≤ (
∫

+ x . (norm (f x − sf i x )) ∂M ) +
∫

+ x . (norm
(g x − sg i x )) ∂M ) sequentially

(is eventually (λi . ?f i ≤ ?g i) sequentially)
proof (intro always eventually allI )
fix i have ?f i ≤ (

∫
+ x . (norm (f x − sf i x )) + ennreal (norm (g x − sg i

x )) ∂M )
by (auto intro!: nn integral mono norm diff triangle ineq

simp flip: ennreal plus)
also have . . . = ?g i
by (intro nn integral add) auto

finally show ?f i ≤ ?g i .
qed
show ?g −−−−→ 0
using tendsto add [OF f sf g sg ] by simp

qed
qed (auto simp: simple bochner integral add tendsto add)
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lemma has bochner integral bounded linear :
assumes bounded linear T
shows has bochner integral M f x =⇒ has bochner integral M (λx . T (f x )) (T

x )
proof (safe intro!: has bochner integral .intros elim!: has bochner integral .cases)
interpret T : bounded linear T by fact
have [measurable]: T ∈ borel measurable borel
by (intro borel measurable continuous onI T .continuous on continuous on id)

assume [measurable]: f ∈ borel measurable M
then show (λx . T (f x )) ∈ borel measurable M
by auto

fix s assume f s: (λi .
∫

+ x . norm (f x − s i x ) ∂M ) −−−−→ 0
assume s: ∀ i . simple bochner integrable M (s i)
then show

∧
i . simple bochner integrable M (λx . T (s i x ))

by (auto intro: simple bochner integrable compose2 T .zero)

have [measurable]:
∧
i . s i ∈ borel measurable M

using s by (auto intro: borel measurable simple function elim: simple bochner integrable.cases)

obtain K where K : K > 0
∧
x i . norm (T (f x ) − T (s i x )) ≤ norm (f x −

s i x ) ∗ K
using T .pos bounded by (auto simp: T .diff [symmetric])

show (λi .
∫

+ x . norm (T (f x ) − T (s i x )) ∂M ) −−−−→ 0
(is ?f −−−−→ 0 )

proof (rule tendsto sandwich)
show eventually (λn. 0 ≤ ?f n) sequentially (λ . 0 ) −−−−→ 0
by auto

show eventually (λi . ?f i ≤ K ∗ (
∫

+ x . norm (f x − s i x ) ∂M )) sequentially
(is eventually (λi . ?f i ≤ ?g i) sequentially)

proof (intro always eventually allI )
fix i have ?f i ≤ (

∫
+ x . ennreal K ∗ norm (f x − s i x ) ∂M )

using K by (intro nn integral mono) (auto simp: ac simps ennreal mult [symmetric])
also have . . . = ?g i
using K by (intro nn integral cmult) auto

finally show ?f i ≤ ?g i .
qed
show ?g −−−−→ 0
using ennreal tendsto cmult [OF f s] by simp

qed

assume (λi . simple bochner integral M (s i)) −−−−→ x
with s show (λi . simple bochner integral M (λx . T (s i x ))) −−−−→ T x
by (auto intro!: T .tendsto simp: simple bochner integral linear T .linear axioms)

qed
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lemma has bochner integral zero[intro]: has bochner integral M (λx . 0 ) 0
by (auto intro!: has bochner integral .intros[where s=λ . 0 ]

simp: zero ennreal def [symmetric] simple bochner integrable.simps
simple bochner integral def image constant conv)

lemma has bochner integral scaleR left [intro]:
(c 6= 0 =⇒ has bochner integral M f x ) =⇒ has bochner integral M (λx . f x ∗R

c) (x ∗R c)
by (cases c = 0 ) (auto simp add : has bochner integral bounded linear [OF bounded linear scaleR left ])

lemma has bochner integral scaleR right [intro]:
(c 6= 0 =⇒ has bochner integral M f x ) =⇒ has bochner integral M (λx . c ∗R f

x ) (c ∗R x )
by (cases c = 0 ) (auto simp add : has bochner integral bounded linear [OF bounded linear scaleR right ])

lemma has bochner integral mult left [intro]:
fixes c :: ::{real normed algebra,second countable topology}
shows (c 6= 0 =⇒ has bochner integral M f x ) =⇒ has bochner integral M (λx .

f x ∗ c) (x ∗ c)
by (cases c = 0 ) (auto simp add : has bochner integral bounded linear [OF bounded linear mult left ])

lemma has bochner integral mult right [intro]:
fixes c :: ::{real normed algebra,second countable topology}
shows (c 6= 0 =⇒ has bochner integral M f x ) =⇒ has bochner integral M (λx .

c ∗ f x ) (c ∗ x )
by (cases c = 0 ) (auto simp add : has bochner integral bounded linear [OF bounded linear mult right ])

lemmas has bochner integral divide =
has bochner integral bounded linear [OF bounded linear divide]

lemma has bochner integral divide zero[intro]:
fixes c :: ::{real normed field , field , second countable topology}
shows (c 6= 0 =⇒ has bochner integral M f x ) =⇒ has bochner integral M (λx .

f x / c) (x / c)
using has bochner integral divide by (cases c = 0 ) auto

lemma has bochner integral inner left [intro]:
(c 6= 0 =⇒ has bochner integral M f x ) =⇒ has bochner integral M (λx . f x · c)

(x · c)
by (cases c = 0 ) (auto simp add : has bochner integral bounded linear [OF bounded linear inner left ])

lemma has bochner integral inner right [intro]:
(c 6= 0 =⇒ has bochner integral M f x ) =⇒ has bochner integral M (λx . c · f x )

(c · x )
by (cases c = 0 ) (auto simp add : has bochner integral bounded linear [OF bounded linear inner right ])

lemmas has bochner integral minus =
has bochner integral bounded linear [OF bounded linear minus[OF bounded linear ident ]]

lemmas has bochner integral Re =
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has bochner integral bounded linear [OF bounded linear Re]
lemmas has bochner integral Im =
has bochner integral bounded linear [OF bounded linear Im]

lemmas has bochner integral cnj =
has bochner integral bounded linear [OF bounded linear cnj ]

lemmas has bochner integral of real =
has bochner integral bounded linear [OF bounded linear of real ]

lemmas has bochner integral fst =
has bochner integral bounded linear [OF bounded linear fst ]

lemmas has bochner integral snd =
has bochner integral bounded linear [OF bounded linear snd ]

lemma has bochner integral indicator :
A ∈ sets M =⇒ emeasure M A < ∞ =⇒
has bochner integral M (λx . indicator A x ∗R c) (measure M A ∗R c)

by (intro has bochner integral scaleR left has bochner integral real indicator)

lemma has bochner integral diff :
has bochner integral M f x =⇒ has bochner integral M g y =⇒
has bochner integral M (λx . f x − g x ) (x − y)

unfolding diff conv add uminus
by (intro has bochner integral add has bochner integral minus)

lemma has bochner integral sum:
(
∧
i . i ∈ I =⇒ has bochner integral M (f i) (x i)) =⇒

has bochner integral M (λx .
∑

i∈I . f i x ) (
∑

i∈I . x i)
by (induct I rule: infinite finite induct) auto

proposition has bochner integral implies finite norm:
has bochner integral M f x =⇒ (

∫
+x . norm (f x ) ∂M ) < ∞

proof (elim has bochner integral .cases)
fix s v
assume [measurable]: f ∈ borel measurable M and s:

∧
i . simple bochner integrable

M (s i) and
lim 0 : (λi .

∫
+ x . ennreal (norm (f x − s i x )) ∂M ) −−−−→ 0

from order tendstoD [OF lim 0 , of ∞]
obtain i where f s fin: (

∫
+ x . ennreal (norm (f x − s i x )) ∂M ) < ∞

by (auto simp: eventually sequentially)

have [measurable]:
∧
i . s i ∈ borel measurable M

using s by (auto intro: borel measurable simple function elim: simple bochner integrable.cases)

define m where m = (if space M = {} then 0 else Max ((λx . norm (s i x ))‘space
M ))
have finite (s i ‘ space M )
using s by (auto simp: simple function def simple bochner integrable.simps)

then have finite (norm ‘ s i ‘ space M )
by (rule finite imageI )

then have
∧
x . x ∈ space M =⇒ norm (s i x ) ≤ m 0 ≤ m
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by (auto simp: m def image comp comp def Max ge iff )
then have (

∫
+x . norm (s i x ) ∂M ) ≤ (

∫
+x . ennreal m ∗ indicator {x∈space

M . s i x 6= 0} x ∂M )
by (auto split : split indicator intro!: Max ge nn integral mono simp:)

also have . . . < ∞
using s by (subst nn integral cmult indicator) (auto simp: 〈0 ≤ m〉 sim-

ple bochner integrable.simps ennreal mult less top less top)
finally have s fin: (

∫
+x . norm (s i x ) ∂M ) < ∞ .

have (
∫

+ x . norm (f x ) ∂M ) ≤ (
∫

+ x . ennreal (norm (f x − s i x )) + ennreal
(norm (s i x )) ∂M )

by (auto intro!: nn integral mono simp flip: ennreal plus)
(metis add .commute norm triangle sub)

also have . . . = (
∫

+x . norm (f x − s i x ) ∂M ) + (
∫

+x . norm (s i x ) ∂M )
by (rule nn integral add) auto

also have . . . < ∞
using s fin f s fin by auto

finally show (
∫

+ x . ennreal (norm (f x )) ∂M ) < ∞ .
qed

proposition has bochner integral norm bound :
assumes i : has bochner integral M f x
shows norm x ≤ (

∫
+x . norm (f x ) ∂M )

using assms proof
fix s assume
x : (λi . simple bochner integral M (s i)) −−−−→ x (is ?s −−−−→ x ) and
s[simp]:

∧
i . simple bochner integrable M (s i) and

lim: (λi .
∫

+ x . ennreal (norm (f x − s i x )) ∂M ) −−−−→ 0 and
f [measurable]: f ∈ borel measurable M

have [measurable]:
∧
i . s i ∈ borel measurable M

using s by (auto simp: simple bochner integrable.simps intro: borel measurable simple function)

show norm x ≤ (
∫

+x . norm (f x ) ∂M )
proof (rule LIMSEQ le)
show (λi . ennreal (norm (?s i))) −−−−→ norm x
using x by (auto simp: tendsto ennreal iff intro: tendsto intros)

show ∃N . ∀n≥N . norm (?s n) ≤ (
∫

+x . norm (f x − s n x ) ∂M ) + (
∫

+x .
norm (f x ) ∂M )

(is ∃N . ∀n≥N . ≤ ?t n)
proof (intro exI allI impI )
fix n
have ennreal (norm (?s n)) ≤ simple bochner integral M (λx . norm (s n x ))
by (auto intro!: simple bochner integral norm bound)

also have . . . = (
∫

+x . norm (s n x ) ∂M )
by (intro simple bochner integral eq nn integral)

(auto intro: s simple bochner integrable compose2 )
also have . . . ≤ (

∫
+x . ennreal (norm (f x − s n x )) + norm (f x ) ∂M )

by (auto intro!: nn integral mono simp flip: ennreal plus)



Bochner Integration.thy 1567

(metis add .commute norm minus commute norm triangle sub)
also have . . . = ?t n
by (rule nn integral add) auto

finally show norm (?s n) ≤ ?t n .
qed
have ?t −−−−→ 0 + (

∫
+ x . ennreal (norm (f x )) ∂M )

using has bochner integral implies finite norm[OF i ]
by (intro tendsto add tendsto const lim)

then show ?t −−−−→
∫

+ x . ennreal (norm (f x )) ∂M
by simp

qed
qed

lemma has bochner integral eq :
has bochner integral M f x =⇒ has bochner integral M f y =⇒ x = y

proof (elim has bochner integral .cases)
assume f [measurable]: f ∈ borel measurable M

fix s t
assume (λi .

∫
+ x . norm (f x − s i x ) ∂M ) −−−−→ 0 (is ?S −−−−→ 0 )

assume (λi .
∫

+ x . norm (f x − t i x ) ∂M ) −−−−→ 0 (is ?T −−−−→ 0 )
assume s:

∧
i . simple bochner integrable M (s i)

assume t :
∧
i . simple bochner integrable M (t i)

have [measurable]:
∧
i . s i ∈ borel measurable M

∧
i . t i ∈ borel measurable M

using s t by (auto intro: borel measurable simple function elim: simple bochner integrable.cases)

let ?s = λi . simple bochner integral M (s i)
let ?t = λi . simple bochner integral M (t i)
assume ?s −−−−→ x ?t −−−−→ y
then have (λi . norm (?s i − ?t i)) −−−−→ norm (x − y)
by (intro tendsto intros)

moreover
have (λi . ennreal (norm (?s i − ?t i))) −−−−→ ennreal 0
proof (rule tendsto sandwich)
show eventually (λi . 0 ≤ ennreal (norm (?s i − ?t i))) sequentially (λ . 0 )

−−−−→ ennreal 0
by auto

show eventually (λi . norm (?s i − ?t i) ≤ ?S i + ?T i) sequentially
by (intro always eventually allI simple bochner integral bounded s t f )

show (λi . ?S i + ?T i) −−−−→ ennreal 0
using tendsto add [OF 〈?S −−−−→ 0 〉 〈?T −−−−→ 0 〉] by simp

qed
then have (λi . norm (?s i − ?t i)) −−−−→ 0
by (simp flip: ennreal 0 )

ultimately have norm (x − y) = 0
by (rule LIMSEQ unique)

then show x = y by simp
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qed

lemma has bochner integralI AE :
assumes f : has bochner integral M f x
and g : g ∈ borel measurable M
and ae: AE x in M . f x = g x

shows has bochner integral M g x
using f

proof (safe intro!: has bochner integral .intros elim!: has bochner integral .cases)
fix s assume (λi .

∫
+ x . ennreal (norm (f x − s i x )) ∂M ) −−−−→ 0

also have (λi .
∫

+ x . ennreal (norm (f x − s i x )) ∂M ) = (λi .
∫

+ x . ennreal
(norm (g x − s i x )) ∂M )

using ae
by (intro ext nn integral cong AE , eventually elim) simp

finally show (λi .
∫

+ x . ennreal (norm (g x − s i x )) ∂M ) −−−−→ 0 .
qed (auto intro: g)

lemma has bochner integral eq AE :
assumes f : has bochner integral M f x
and g : has bochner integral M g y
and ae: AE x in M . f x = g x

shows x = y
proof −
from assms have has bochner integral M g x
by (auto intro: has bochner integralI AE )

from this g show x = y
by (rule has bochner integral eq)

qed

lemma simple bochner integrable restrict space:
fixes f :: ⇒ ′b::real normed vector
assumes Ω: Ω ∩ space M ∈ sets M
shows simple bochner integrable (restrict space M Ω) f ←→
simple bochner integrable M (λx . indicator Ω x ∗R f x )

by (simp add : simple bochner integrable.simps space restrict space
simple function restrict space[OF Ω] emeasure restrict space[OF Ω] Collect restrict
indicator eq 0 iff conj left commute)

lemma simple bochner integral restrict space:
fixes f :: ⇒ ′b::real normed vector
assumes Ω: Ω ∩ space M ∈ sets M
assumes f : simple bochner integrable (restrict space M Ω) f
shows simple bochner integral (restrict space M Ω) f =
simple bochner integral M (λx . indicator Ω x ∗R f x )

proof −
have finite ((λx . indicator Ω x ∗R f x )‘space M )
using f simple bochner integrable restrict space[OF Ω, of f ]
by (simp add : simple bochner integrable.simps simple function def )

then show ?thesis
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by (auto simp: space restrict space measure restrict space[OF Ω(1 )] le infI2
simple bochner integral def Collect restrict

split : split indicator split indicator asm
intro!: sum.mono neutral cong left arg cong2 [where f=measure])

qed

context
notes [[inductive internals]]

begin

inductive integrable for M f where
has bochner integral M f x =⇒ integrable M f

end

definition lebesgue integral (integralL) where
integralL M f = (if ∃ x . has bochner integral M f x then THE x . has bochner integral

M f x else 0 )

syntax
lebesgue integral :: pttrn ⇒ real ⇒ ′a measure ⇒ real (

∫
((2 ./ )/ ∂ ) [60 ,61 ]

110 )

translations∫
x . f ∂M == CONST lebesgue integral M (λx . f )

syntax
ascii lebesgue integral :: pttrn ⇒ ′a measure ⇒ real ⇒ real ((3LINT (1 )/|( )./

) [0 ,110 ,60 ] 60 )

translations
LINT x |M . f == CONST lebesgue integral M (λx . f )

lemma has bochner integral integral eq : has bochner integral M f x =⇒ integralL

M f = x
by (metis the equality has bochner integral eq lebesgue integral def )

lemma has bochner integral integrable:
integrable M f =⇒ has bochner integral M f (integralL M f )
by (auto simp: has bochner integral integral eq integrable.simps)

lemma has bochner integral iff :
has bochner integral M f x ←→ integrable M f ∧ integralL M f = x
by (metis has bochner integral integrable has bochner integral integral eq integrable.intros)

lemma simple bochner integrable eq integral :
simple bochner integrable M f =⇒ simple bochner integral M f = integralL M f
using has bochner integral simple bochner integrable[of M f ]
by (simp add : has bochner integral integral eq)
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lemma not integrable integral eq : ¬ integrable M f =⇒ integralL M f = 0
unfolding integrable.simps lebesgue integral def by (auto intro!: arg cong [where

f=The])

lemma integral eq cases:
integrable M f ←→ integrable N g =⇒
(integrable M f =⇒ integrable N g =⇒ integralL M f = integralL N g) =⇒
integralL M f = integralL N g

by (metis not integrable integral eq)

lemma borel measurable integrable[measurable dest ]: integrable M f =⇒ f ∈ borel measurable
M
by (auto elim: integrable.cases has bochner integral .cases)

lemma borel measurable integrable ′[measurable dest ]:
integrable M f =⇒ g ∈ measurable N M =⇒ (λx . f (g x )) ∈ borel measurable N
using borel measurable integrable[measurable] by measurable

lemma integrable cong :
M = N =⇒ (

∧
x . x ∈ space N =⇒ f x = g x ) =⇒ integrable M f ←→ integrable

N g
by (simp cong : has bochner integral cong add : integrable.simps)

lemma integrable cong AE :
f ∈ borel measurable M =⇒ g ∈ borel measurable M =⇒ AE x in M . f x = g x

=⇒
integrable M f ←→ integrable M g

unfolding integrable.simps
by (intro has bochner integral cong AE arg cong [where f=Ex ] ext)

lemma integrable cong AE imp:
integrable M g =⇒ f ∈ borel measurable M =⇒ (AE x in M . g x = f x ) =⇒

integrable M f
using integrable cong AE [of f M g ] by (auto simp: eq commute)

lemma integral cong :
M = N =⇒ (

∧
x . x ∈ space N =⇒ f x = g x ) =⇒ integralL M f = integralL N

g
by (simp cong : has bochner integral cong cong del : if weak cong add : lebesgue integral def )

lemma integral cong AE :
f ∈ borel measurable M =⇒ g ∈ borel measurable M =⇒ AE x in M . f x = g x

=⇒
integralL M f = integralL M g

unfolding lebesgue integral def
by (rule arg cong [where x=has bochner integral M f ]) (intro has bochner integral cong AE

ext)
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lemma integrable add [simp, intro]: integrable M f =⇒ integrable M g =⇒ inte-
grable M (λx . f x + g x )
by (auto simp: integrable.simps)

lemma integrable zero[simp, intro]: integrable M (λx . 0 )
by (metis has bochner integral zero integrable.simps)

lemma integrable sum[simp, intro]: (
∧
i . i ∈ I =⇒ integrable M (f i)) =⇒ inte-

grable M (λx .
∑

i∈I . f i x )
by (metis has bochner integral sum integrable.simps)

lemma integrable indicator [simp, intro]: A ∈ sets M =⇒ emeasure M A < ∞ =⇒
integrable M (λx . indicator A x ∗R c)
by (metis has bochner integral indicator integrable.simps)

lemma integrable real indicator [simp, intro]: A ∈ sets M =⇒ emeasure M A < ∞
=⇒
integrable M (indicator A :: ′a ⇒ real)
by (metis has bochner integral real indicator integrable.simps)

lemma integrable diff [simp, intro]: integrable M f =⇒ integrable M g =⇒ inte-
grable M (λx . f x − g x )
by (auto simp: integrable.simps intro: has bochner integral diff )

lemma integrable bounded linear : bounded linear T =⇒ integrable M f =⇒ inte-
grable M (λx . T (f x ))
by (auto simp: integrable.simps intro: has bochner integral bounded linear)

lemma integrable scaleR left [simp, intro]: (c 6= 0 =⇒ integrable M f ) =⇒ inte-
grable M (λx . f x ∗R c)
unfolding integrable.simps by fastforce

lemma integrable scaleR right [simp, intro]: (c 6= 0 =⇒ integrable M f ) =⇒ inte-
grable M (λx . c ∗R f x )
unfolding integrable.simps by fastforce

lemma integrable mult left [simp, intro]:
fixes c :: ::{real normed algebra,second countable topology}
shows (c 6= 0 =⇒ integrable M f ) =⇒ integrable M (λx . f x ∗ c)
unfolding integrable.simps by fastforce

lemma integrable mult right [simp, intro]:
fixes c :: ::{real normed algebra,second countable topology}
shows (c 6= 0 =⇒ integrable M f ) =⇒ integrable M (λx . c ∗ f x )
unfolding integrable.simps by fastforce

lemma integrable divide zero[simp, intro]:
fixes c :: ::{real normed field , field , second countable topology}
shows (c 6= 0 =⇒ integrable M f ) =⇒ integrable M (λx . f x / c)
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unfolding integrable.simps by fastforce

lemma integrable inner left [simp, intro]:
(c 6= 0 =⇒ integrable M f ) =⇒ integrable M (λx . f x · c)
unfolding integrable.simps by fastforce

lemma integrable inner right [simp, intro]:
(c 6= 0 =⇒ integrable M f ) =⇒ integrable M (λx . c · f x )
unfolding integrable.simps by fastforce

lemmas integrable minus[simp, intro] =
integrable bounded linear [OF bounded linear minus[OF bounded linear ident ]]

lemmas integrable divide[simp, intro] =
integrable bounded linear [OF bounded linear divide]

lemmas integrable Re[simp, intro] =
integrable bounded linear [OF bounded linear Re]

lemmas integrable Im[simp, intro] =
integrable bounded linear [OF bounded linear Im]

lemmas integrable cnj [simp, intro] =
integrable bounded linear [OF bounded linear cnj ]

lemmas integrable of real [simp, intro] =
integrable bounded linear [OF bounded linear of real ]

lemmas integrable fst [simp, intro] =
integrable bounded linear [OF bounded linear fst ]

lemmas integrable snd [simp, intro] =
integrable bounded linear [OF bounded linear snd ]

lemma integral zero[simp]: integralL M (λx . 0 ) = 0
by (intro has bochner integral integral eq has bochner integral zero)

lemma integral add [simp]: integrable M f =⇒ integrable M g =⇒
integralL M (λx . f x + g x ) = integralL M f + integralL M g

by (intro has bochner integral integral eq has bochner integral add has bochner integral integrable)

lemma integral diff [simp]: integrable M f =⇒ integrable M g =⇒
integralL M (λx . f x − g x ) = integralL M f − integralL M g

by (intro has bochner integral integral eq has bochner integral diff has bochner integral integrable)

lemma integral sum: (
∧
i . i ∈ I =⇒ integrable M (f i)) =⇒

integralL M (λx .
∑

i∈I . f i x ) = (
∑

i∈I . integralL M (f i))
by (intro has bochner integral integral eq has bochner integral sum has bochner integral integrable)

lemma integral sum ′[simp]: (
∧
i . i ∈ I =simp=> integrable M (f i)) =⇒

integralL M (λx .
∑

i∈I . f i x ) = (
∑

i∈I . integralL M (f i))
unfolding simp implies def by (rule integral sum)

lemma integral bounded linear : bounded linear T =⇒ integrable M f =⇒
integralL M (λx . T (f x )) = T (integralL M f )

by (metis has bochner integral bounded linear has bochner integral integrable has bochner integral integral eq)
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lemma integral bounded linear ′:
assumes T : bounded linear T and T ′: bounded linear T ′

assumes ∗: ¬ (∀ x . T x = 0 ) =⇒ (∀ x . T ′ (T x ) = x )
shows integralL M (λx . T (f x )) = T (integralL M f )

proof cases
assume (∀ x . T x = 0 ) then show ?thesis
by simp

next
assume ∗∗: ¬ (∀ x . T x = 0 )
show ?thesis
proof cases
assume integrable M f with T show ?thesis
by (rule integral bounded linear)

next
assume not : ¬ integrable M f
moreover have ¬ integrable M (λx . T (f x ))
proof
assume integrable M (λx . T (f x ))
from integrable bounded linear [OF T ′ this] not ∗[OF ∗∗]
show False
by auto

qed
ultimately show ?thesis
using T by (simp add : not integrable integral eq linear simps)

qed
qed

lemma integral scaleR left [simp]: (c 6= 0 =⇒ integrable M f ) =⇒ (
∫

x . f x ∗R c
∂M ) = integralL M f ∗R c
by (intro has bochner integral integral eq has bochner integral integrable has bochner integral scaleR left)

lemma integral scaleR right [simp]: (
∫

x . c ∗R f x ∂M ) = c ∗R integralL M f
by (rule integral bounded linear ′[OF bounded linear scaleR right bounded linear scaleR right [of

1 / c]]) simp

lemma integral mult left [simp]:
fixes c :: ::{real normed algebra,second countable topology}
shows (c 6= 0 =⇒ integrable M f ) =⇒ (

∫
x . f x ∗ c ∂M ) = integralL M f ∗ c

by (intro has bochner integral integral eq has bochner integral integrable has bochner integral mult left)

lemma integral mult right [simp]:
fixes c :: ::{real normed algebra,second countable topology}
shows (c 6= 0 =⇒ integrable M f ) =⇒ (

∫
x . c ∗ f x ∂M ) = c ∗ integralL M f

by (intro has bochner integral integral eq has bochner integral integrable has bochner integral mult right)

lemma integral mult left zero[simp]:
fixes c :: ::{real normed field ,second countable topology}
shows (

∫
x . f x ∗ c ∂M ) = integralL M f ∗ c

Bochner{_}{\kern 0pt}Integration.html


1574

by (rule integral bounded linear ′[OF bounded linear mult left bounded linear mult left [of
1 / c]]) simp

lemma integral mult right zero[simp]:
fixes c :: ::{real normed field ,second countable topology}
shows (

∫
x . c ∗ f x ∂M ) = c ∗ integralL M f

by (rule integral bounded linear ′[OF bounded linear mult right bounded linear mult right [of
1 / c]]) simp

lemma integral inner left [simp]: (c 6= 0 =⇒ integrable M f ) =⇒ (
∫

x . f x · c ∂M )
= integralL M f · c
by (intro has bochner integral integral eq has bochner integral integrable has bochner integral inner left)

lemma integral inner right [simp]: (c 6= 0 =⇒ integrable M f ) =⇒ (
∫

x . c · f x
∂M ) = c · integralL M f
by (intro has bochner integral integral eq has bochner integral integrable has bochner integral inner right)

lemma integral divide zero[simp]:
fixes c :: ::{real normed field , field , second countable topology}
shows integralL M (λx . f x / c) = integralL M f / c
by (rule integral bounded linear ′[OF bounded linear divide bounded linear mult left [of

c]]) simp

lemma integral minus[simp]: integralL M (λx . − f x ) = − integralL M f
by (rule integral bounded linear ′[OF bounded linear minus[OF bounded linear ident ]

bounded linear minus[OF bounded linear ident ]]) simp

lemma integral complex of real [simp]: integralL M (λx . complex of real (f x )) =
of real (integralL M f )
by (rule integral bounded linear ′[OF bounded linear of real bounded linear Re])

simp

lemma integral cnj [simp]: integralL M (λx . cnj (f x )) = cnj (integralL M f )
by (rule integral bounded linear ′[OF bounded linear cnj bounded linear cnj ]) simp

lemmas integral divide[simp] =
integral bounded linear [OF bounded linear divide]

lemmas integral Re[simp] =
integral bounded linear [OF bounded linear Re]

lemmas integral Im[simp] =
integral bounded linear [OF bounded linear Im]

lemmas integral of real [simp] =
integral bounded linear [OF bounded linear of real ]

lemmas integral fst [simp] =
integral bounded linear [OF bounded linear fst ]

lemmas integral snd [simp] =
integral bounded linear [OF bounded linear snd ]

lemma integral norm bound ennreal :
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integrable M f =⇒ norm (integralL M f ) ≤ (
∫

+x . norm (f x ) ∂M )
by (metis has bochner integral integrable has bochner integral norm bound)

lemma integrableI sequence:
fixes f :: ′a ⇒ ′b::{banach, second countable topology}
assumes f [measurable]: f ∈ borel measurable M
assumes s:

∧
i . simple bochner integrable M (s i)

assumes lim: (λi .
∫

+x . norm (f x − s i x ) ∂M ) −−−−→ 0 (is ?S −−−−→ 0 )
shows integrable M f

proof −
let ?s = λn. simple bochner integral M (s n)

have ∃ x . ?s −−−−→ x
unfolding convergent eq Cauchy

proof (rule metric CauchyI )
fix e :: real assume 0 < e
then have 0 < ennreal (e / 2 ) by auto
from order tendstoD(2 )[OF lim this]
obtain M where M :

∧
n. M ≤ n =⇒ ?S n < e / 2

by (auto simp: eventually sequentially)
show ∃M . ∀m≥M . ∀n≥M . dist (?s m) (?s n) < e
proof (intro exI allI impI )
fix m n assume m: M ≤ m and n: M ≤ n
have ?S n 6= ∞
using M [OF n] by auto

have norm (?s n − ?s m) ≤ ?S n + ?S m
by (intro simple bochner integral bounded s f )

also have . . . < ennreal (e / 2 ) + e / 2
by (intro add strict mono M n m)

also have . . . = e using 〈0<e〉 by (simp flip: ennreal plus)
finally show dist (?s n) (?s m) < e
using 〈0<e〉 by (simp add : dist norm ennreal less iff )

qed
qed
then obtain x where ?s −−−−→ x ..
show ?thesis
by (rule, rule) fact+

qed

proposition nn integral dominated convergence norm:
fixes u ′ :: ⇒ ::{real normed vector , second countable topology}
assumes [measurable]:∧

i . u i ∈ borel measurable M u ′ ∈ borel measurable M w ∈ borel measurable
M

and bound :
∧
j . AE x in M . norm (u j x ) ≤ w x

and w : (
∫

+x . w x ∂M ) < ∞
and u ′: AE x in M . (λi . u i x ) −−−−→ u ′ x

shows (λi . (
∫

+x . norm (u ′ x − u i x ) ∂M )) −−−−→ 0
proof −
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have AE x in M . ∀ j . norm (u j x ) ≤ w x
unfolding AE all countable by rule fact

with u ′ have bnd : AE x in M . ∀ j . norm (u ′ x − u j x ) ≤ 2 ∗ w x
proof (eventually elim, intro allI )
fix i x assume (λi . u i x ) −−−−→ u ′ x ∀ j . norm (u j x ) ≤ w x ∀ j . norm (u j

x ) ≤ w x
then have norm (u ′ x ) ≤ w x norm (u i x ) ≤ w x
by (auto intro: LIMSEQ le const2 tendsto norm)

then have norm (u ′ x ) + norm (u i x ) ≤ 2 ∗ w x
by simp

also have norm (u ′ x − u i x ) ≤ norm (u ′ x ) + norm (u i x )
by (rule norm triangle ineq4 )

finally (xtrans) show norm (u ′ x − u i x ) ≤ 2 ∗ w x .
qed
have w nonneg : AE x in M . 0 ≤ w x
using bound [of 0 ] by (auto intro: order trans[OF norm ge zero])

have (λi . (
∫

+x . norm (u ′ x − u i x ) ∂M )) −−−−→ (
∫

+x . 0 ∂M )
proof (rule nn integral dominated convergence)
show (

∫
+x . 2 ∗ w x ∂M ) < ∞

by (rule nn integral mult bounded inf [OF w , of 2 ]) (insert w nonneg , auto
simp: ennreal mult )

show AE x in M . (λi . ennreal (norm (u ′ x − u i x ))) −−−−→ 0
using u ′

proof eventually elim
fix x assume (λi . u i x ) −−−−→ u ′ x
from tendsto diff [OF tendsto const [of u ′ x ] this]
show (λi . ennreal (norm (u ′ x − u i x ))) −−−−→ 0
by (simp add : tendsto norm zero iff flip: ennreal 0 )

qed
qed (insert bnd w nonneg , auto)
then show ?thesis by simp

qed

proposition integrableI bounded :
fixes f :: ′a ⇒ ′b::{banach, second countable topology}
assumes f [measurable]: f ∈ borel measurable M and fin: (

∫
+x . norm (f x ) ∂M )

< ∞
shows integrable M f

proof −
from borel measurable implies sequence metric[OF f , of 0 ] obtain s where
s:

∧
i . simple function M (s i) and

pointwise:
∧
x . x ∈ space M =⇒ (λi . s i x ) −−−−→ f x and

bound :
∧
i x . x ∈ space M =⇒ norm (s i x ) ≤ 2 ∗ norm (f x )

by simp metis

show ?thesis
proof (rule integrableI sequence)
{ fix i
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have (
∫

+x . norm (s i x ) ∂M ) ≤ (
∫

+x . ennreal (2 ∗ norm (f x )) ∂M )
by (intro nn integral mono) (simp add : bound)

also have . . . = 2 ∗ (
∫

+x . ennreal (norm (f x )) ∂M )
by (simp add : ennreal mult nn integral cmult)

also have . . . < top
using fin by (simp add : ennreal mult less top)

finally have (
∫

+x . norm (s i x ) ∂M ) < ∞
by simp }

note fin s = this

show
∧
i . simple bochner integrable M (s i)

by (rule simple bochner integrableI bounded) fact+

show (λi .
∫

+ x . ennreal (norm (f x − s i x )) ∂M ) −−−−→ 0
proof (rule nn integral dominated convergence norm)
show

∧
j . AE x in M . norm (s j x ) ≤ 2 ∗ norm (f x )

using bound by auto
show

∧
i . s i ∈ borel measurable M (λx . 2 ∗ norm (f x )) ∈ borel measurable

M
using s by (auto intro: borel measurable simple function)

show (
∫

+ x . ennreal (2 ∗ norm (f x )) ∂M ) < ∞
using fin by (simp add : nn integral cmult ennreal mult ennreal mult less top)
show AE x in M . (λi . s i x ) −−−−→ f x
using pointwise by auto

qed fact
qed fact

qed

lemma integrableI bounded set :
fixes f :: ′a ⇒ ′b::{banach, second countable topology}
assumes [measurable]: A ∈ sets M f ∈ borel measurable M
assumes finite: emeasure M A < ∞
and bnd : AE x in M . x ∈ A −→ norm (f x ) ≤ B
and null : AE x in M . x /∈ A −→ f x = 0

shows integrable M f
proof (rule integrableI bounded)
{ fix x :: ′b have norm x ≤ B =⇒ 0 ≤ B

using norm ge zero[of x ] by arith }
with bnd null have (

∫
+ x . ennreal (norm (f x )) ∂M ) ≤ (

∫
+ x . ennreal (max

0 B) ∗ indicator A x ∂M )
by (intro nn integral mono AE ) (auto split : split indicator split max )

also have . . . < ∞
using finite by (subst nn integral cmult indicator) (auto simp: ennreal mult less top)
finally show (

∫
+ x . ennreal (norm (f x )) ∂M ) < ∞ .

qed simp

lemma integrableI bounded set indicator :
fixes f :: ′a ⇒ ′b::{banach, second countable topology}
shows A ∈ sets M =⇒ f ∈ borel measurable M =⇒
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emeasure M A < ∞ =⇒ (AE x in M . x ∈ A −→ norm (f x ) ≤ B) =⇒
integrable M (λx . indicator A x ∗R f x )

by (rule integrableI bounded set [where A=A]) auto

lemma integrableI nonneg :
fixes f :: ′a ⇒ real
assumes f ∈ borel measurable M AE x in M . 0 ≤ f x (

∫
+x . f x ∂M ) < ∞

shows integrable M f
proof −
have (

∫
+x . norm (f x ) ∂M ) = (

∫
+x . f x ∂M )

using assms by (intro nn integral cong AE ) auto
then show ?thesis
using assms by (intro integrableI bounded) auto

qed

lemma integrable iff bounded :
fixes f :: ′a ⇒ ′b::{banach, second countable topology}
shows integrable M f ←→ f ∈ borel measurable M ∧ (

∫
+x . norm (f x ) ∂M ) <

∞
using integrableI bounded [of f M ] has bochner integral implies finite norm[of M

f ]
unfolding integrable.simps has bochner integral .simps[abs def ] by auto

lemma integrable bound :
fixes f :: ′a ⇒ ′b::{banach, second countable topology}
and g :: ′a ⇒ ′c::{banach, second countable topology}

shows integrable M f =⇒ g ∈ borel measurable M =⇒ (AE x in M . norm (g x )
≤ norm (f x )) =⇒

integrable M g
unfolding integrable iff bounded

proof safe
assume f ∈ borel measurable M g ∈ borel measurable M
assume AE x in M . norm (g x ) ≤ norm (f x )
then have (

∫
+ x . ennreal (norm (g x )) ∂M ) ≤ (

∫
+ x . ennreal (norm (f x ))

∂M )
by (intro nn integral mono AE ) auto

also assume (
∫

+ x . ennreal (norm (f x )) ∂M ) < ∞
finally show (

∫
+ x . ennreal (norm (g x )) ∂M ) < ∞ .

qed

lemma integrable mult indicator :
fixes f :: ′a ⇒ ′b::{banach, second countable topology}
shows A ∈ sets M =⇒ integrable M f =⇒ integrable M (λx . indicator A x ∗R f

x )
by (rule integrable bound [of M f ]) (auto split : split indicator)

lemma integrable real mult indicator :
fixes f :: ′a ⇒ real
shows A ∈ sets M =⇒ integrable M f =⇒ integrable M (λx . f x ∗ indicator A



Bochner Integration.thy 1579

x )
using integrable mult indicator [of A M f ] by (simp add : mult ac)

lemma integrable abs[simp, intro]:
fixes f :: ′a ⇒ real
assumes [measurable]: integrable M f shows integrable M (λx . |f x |)
using assms by (rule integrable bound) auto

lemma integrable norm[simp, intro]:
fixes f :: ′a ⇒ ′b::{banach, second countable topology}
assumes [measurable]: integrable M f shows integrable M (λx . norm (f x ))
using assms by (rule integrable bound) auto

lemma integrable norm cancel :
fixes f :: ′a ⇒ ′b::{banach, second countable topology}
assumes [measurable]: integrable M (λx . norm (f x )) f ∈ borel measurable M

shows integrable M f
using assms by (rule integrable bound) auto

lemma integrable norm iff :
fixes f :: ′a ⇒ ′b::{banach, second countable topology}
shows f ∈ borel measurable M =⇒ integrable M (λx . norm (f x )) ←→ integrable

M f
by (auto intro: integrable norm cancel)

lemma integrable abs cancel :
fixes f :: ′a ⇒ real
assumes [measurable]: integrable M (λx . |f x |) f ∈ borel measurable M shows

integrable M f
using assms by (rule integrable bound) auto

lemma integrable abs iff :
fixes f :: ′a ⇒ real
shows f ∈ borel measurable M =⇒ integrable M (λx . |f x |) ←→ integrable M f
by (auto intro: integrable abs cancel)

lemma integrable max [simp, intro]:
fixes f :: ′a ⇒ real
assumes fg [measurable]: integrable M f integrable M g
shows integrable M (λx . max (f x ) (g x ))
using integrable add [OF integrable norm[OF fg(1 )] integrable norm[OF fg(2 )]]
by (rule integrable bound) auto

lemma integrable min[simp, intro]:
fixes f :: ′a ⇒ real
assumes fg [measurable]: integrable M f integrable M g
shows integrable M (λx . min (f x ) (g x ))
using integrable add [OF integrable norm[OF fg(1 )] integrable norm[OF fg(2 )]]
by (rule integrable bound) auto
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lemma integral minus iff [simp]:
integrable M (λx . − f x :: ′a::{banach, second countable topology}) ←→ integrable

M f
unfolding integrable iff bounded
by (auto)

lemma integrable indicator iff :
integrable M (indicator A:: ⇒ real) ←→ A ∩ space M ∈ sets M ∧ emeasure M

(A ∩ space M ) < ∞
by (simp add : integrable iff bounded borel measurable indicator iff ennreal indicator

nn integral indicator ′

cong : conj cong)

lemma integral indicator [simp]: integralL M (indicator A) = measure M (A ∩
space M )
proof cases
assume ∗: A ∩ space M ∈ sets M ∧ emeasure M (A ∩ space M ) < ∞
have integralL M (indicator A) = integralL M (indicator (A ∩ space M ))
by (intro integral cong) (auto split : split indicator)

also have . . . = measure M (A ∩ space M )
using ∗ by (intro has bochner integral integral eq has bochner integral real indicator)

auto
finally show ?thesis .

next
assume ∗: ¬ (A ∩ space M ∈ sets M ∧ emeasure M (A ∩ space M ) < ∞)
have integralL M (indicator A) = integralL M (indicator (A ∩ space M ) :: ⇒

real)
by (intro integral cong) (auto split : split indicator)

also have . . . = 0
using ∗ by (subst not integrable integral eq) (auto simp: integrable indicator iff )
also have . . . = measure M (A ∩ space M )
using ∗ by (auto simp: measure def emeasure notin sets not less top unique)

finally show ?thesis .
qed

lemma integrable discrete difference:
fixes f :: ′a ⇒ ′b::{banach, second countable topology}
assumes X : countable X
assumes null :

∧
x . x ∈ X =⇒ emeasure M {x} = 0

assumes sets:
∧
x . x ∈ X =⇒ {x} ∈ sets M

assumes eq :
∧
x . x ∈ space M =⇒ x /∈ X =⇒ f x = g x

shows integrable M f ←→ integrable M g
unfolding integrable iff bounded

proof (rule conj cong)
{ assume f ∈ borel measurable M then have g ∈ borel measurable M

by (rule measurable discrete difference[where X=X ]) (auto simp: assms) }
moreover
{ assume g ∈ borel measurable M then have f ∈ borel measurable M
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by (rule measurable discrete difference[where X=X ]) (auto simp: assms) }
ultimately show f ∈ borel measurable M ←→ g ∈ borel measurable M ..

next
have AE x in M . x /∈ X
by (rule AE discrete difference) fact+

then have (
∫

+ x . norm (f x ) ∂M ) = (
∫

+ x . norm (g x ) ∂M )
by (intro nn integral cong AE ) (auto simp: eq)

then show (
∫

+ x . norm (f x ) ∂M ) < ∞ ←→ (
∫

+ x . norm (g x ) ∂M ) < ∞
by simp

qed

lemma integral discrete difference:
fixes f :: ′a ⇒ ′b::{banach, second countable topology}
assumes X : countable X
assumes null :

∧
x . x ∈ X =⇒ emeasure M {x} = 0

assumes sets:
∧
x . x ∈ X =⇒ {x} ∈ sets M

assumes eq :
∧
x . x ∈ space M =⇒ x /∈ X =⇒ f x = g x

shows integralL M f = integralL M g
proof (rule integral eq cases)
show eq : integrable M f ←→ integrable M g
by (rule integrable discrete difference[where X=X ]) fact+

assume f : integrable M f
show integralL M f = integralL M g
proof (rule integral cong AE )
show f ∈ borel measurable M g ∈ borel measurable M
using f eq by (auto intro: borel measurable integrable)

have AE x in M . x /∈ X
by (rule AE discrete difference) fact+

with AE space show AE x in M . f x = g x
by eventually elim fact

qed
qed

lemma has bochner integral discrete difference:
fixes f :: ′a ⇒ ′b::{banach, second countable topology}
assumes X : countable X
assumes null :

∧
x . x ∈ X =⇒ emeasure M {x} = 0

assumes sets:
∧
x . x ∈ X =⇒ {x} ∈ sets M

assumes eq :
∧
x . x ∈ space M =⇒ x /∈ X =⇒ f x = g x

shows has bochner integral M f x ←→ has bochner integral M g x
using integrable discrete difference[of X M f g , OF assms]
using integral discrete difference[of X M f g , OF assms]
by (metis has bochner integral iff )

lemma
fixes f :: ′a ⇒ ′b::{banach, second countable topology} and w :: ′a ⇒ real
assumes f ∈ borel measurable M

∧
i . s i ∈ borel measurable M integrable M w
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assumes lim: AE x in M . (λi . s i x ) −−−−→ f x
assumes bound :

∧
i . AE x in M . norm (s i x ) ≤ w x

shows integrable dominated convergence: integrable M f
and integrable dominated convergence2 :

∧
i . integrable M (s i)

and integral dominated convergence: (λi . integralL M (s i)) −−−−→ integralL

M f
proof −
have w nonneg : AE x in M . 0 ≤ w x
using bound [of 0 ] by eventually elim (auto intro: norm ge zero order trans)

then have (
∫

+x . w x ∂M ) = (
∫

+x . norm (w x ) ∂M )
by (intro nn integral cong AE ) auto

with 〈integrable M w 〉 have w : w ∈ borel measurable M (
∫

+x . w x ∂M ) < ∞
unfolding integrable iff bounded by auto

show int s:
∧
i . integrable M (s i)

unfolding integrable iff bounded
proof
fix i
have (

∫
+ x . ennreal (norm (s i x )) ∂M ) ≤ (

∫
+x . w x ∂M )

using bound [of i ] w nonneg by (intro nn integral mono AE ) auto
with w show (

∫
+ x . ennreal (norm (s i x )) ∂M ) < ∞ by auto

qed fact

have all bound : AE x in M . ∀ i . norm (s i x ) ≤ w x
using bound unfolding AE all countable by auto

show int f : integrable M f
unfolding integrable iff bounded

proof
have (

∫
+ x . ennreal (norm (f x )) ∂M ) ≤ (

∫
+x . w x ∂M )

using all bound lim w nonneg
proof (intro nn integral mono AE , eventually elim)
fix x assume ∀ i . norm (s i x ) ≤ w x (λi . s i x ) −−−−→ f x 0 ≤ w x
then show ennreal (norm (f x )) ≤ ennreal (w x )
by (intro LIMSEQ le const2 [where X=λi . ennreal (norm (s i x ))]) (auto

intro: tendsto intros)
qed
with w show (

∫
+ x . ennreal (norm (f x )) ∂M ) < ∞ by auto

qed fact

have (λn. ennreal (norm (integralL M (s n) − integralL M f ))) −−−−→ ennreal
0 (is ?d −−−−→ ennreal 0 )
proof (rule tendsto sandwich)
show eventually (λn. ennreal 0 ≤ ?d n) sequentially (λ . ennreal 0 ) −−−−→

ennreal 0 by auto
show eventually (λn. ?d n ≤ (

∫
+x . norm (s n x − f x ) ∂M )) sequentially

proof (intro always eventually allI )
fix n
have ?d n = norm (integralL M (λx . s n x − f x ))
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using int f int s by simp
also have . . . ≤ (

∫
+x . norm (s n x − f x ) ∂M )

by (intro int f int s integrable diff integral norm bound ennreal)
finally show ?d n ≤ (

∫
+x . norm (s n x − f x ) ∂M ) .

qed
show (λn.

∫
+x . norm (s n x − f x ) ∂M ) −−−−→ ennreal 0

unfolding ennreal 0
apply (subst norm minus commute)

proof (rule nn integral dominated convergence norm[where w=w ])
show

∧
n. s n ∈ borel measurable M

using int s unfolding integrable iff bounded by auto
qed fact+

qed
then have (λn. integralL M (s n) − integralL M f ) −−−−→ 0
by (simp add : tendsto norm zero iff del : ennreal 0 )

from tendsto add [OF this tendsto const [of integralL M f ]]
show (λi . integralL M (s i)) −−−−→ integralL M f by simp

qed

context
fixes s :: real ⇒ ′a ⇒ ′b::{banach, second countable topology} and w :: ′a ⇒

real
and f :: ′a ⇒ ′b and M

assumes f ∈ borel measurable M
∧
t . s t ∈ borel measurable M integrable M w

assumes lim: AE x in M . ((λi . s i x ) −−−→ f x ) at top
assumes bound : ∀ F i in at top. AE x in M . norm (s i x ) ≤ w x

begin

lemma integral dominated convergence at top: ((λt . integralL M (s t)) −−−→ in-
tegralL M f ) at top
proof (rule tendsto at topI sequentially)
fix X :: nat ⇒ real assume X : filterlim X at top sequentially
from filterlim iff [THEN iffD1 , OF this, rule format , OF bound ]
obtain N where w :

∧
n. N ≤ n =⇒ AE x in M . norm (s (X n) x ) ≤ w x

by (auto simp: eventually sequentially)

show (λn. integralL M (s (X n))) −−−−→ integralL M f
proof (rule LIMSEQ offset , rule integral dominated convergence)
show AE x in M . norm (s (X (n + N )) x ) ≤ w x for n
by (rule w) auto

show AE x in M . (λn. s (X (n + N )) x ) −−−−→ f x
using lim

proof eventually elim
fix x assume ((λi . s i x ) −−−→ f x ) at top
then show (λn. s (X (n + N )) x ) −−−−→ f x
by (intro LIMSEQ ignore initial segment filterlim compose[OF X ])

qed
qed fact+

qed
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lemma integrable dominated convergence at top: integrable M f
proof −
from bound obtain N where w :

∧
n. N ≤ n =⇒ AE x in M . norm (s n x ) ≤

w x
by (auto simp: eventually at top linorder)

show ?thesis
proof (rule integrable dominated convergence)
show AE x in M . norm (s (N + i) x ) ≤ w x for i :: nat
by (intro w) auto

show AE x in M . (λi . s (N + real i) x ) −−−−→ f x
using lim

proof eventually elim
fix x assume ((λi . s i x ) −−−→ f x ) at top
then show (λn. s (N + n) x ) −−−−→ f x
by (rule filterlim compose)

(auto intro!: filterlim tendsto add at top filterlim real sequentially)
qed

qed fact+
qed

end

lemma integrable mult left iff [simp]:
fixes f :: ′a ⇒ real
shows integrable M (λx . c ∗ f x ) ←→ c = 0 ∨ integrable M f
using integrable mult left [of c M f ] integrable mult left [of 1 / c M λx . c ∗ f x ]
by (cases c = 0 ) auto

lemma integrable mult right iff [simp]:
fixes f :: ′a ⇒ real
shows integrable M (λx . f x ∗ c) ←→ c = 0 ∨ integrable M f
using integrable mult left iff [of M c f ] by (simp add : mult .commute)

lemma integrableI nn integral finite:
assumes [measurable]: f ∈ borel measurable M
and nonneg : AE x in M . 0 ≤ f x
and finite: (

∫
+x . f x ∂M ) = ennreal x

shows integrable M f
proof (rule integrableI bounded)
have (

∫
+ x . ennreal (norm (f x )) ∂M ) = (

∫
+ x . ennreal (f x ) ∂M )

using nonneg by (intro nn integral cong AE ) auto
with finite show (

∫
+ x . ennreal (norm (f x )) ∂M ) < ∞

by auto
qed simp

lemma integral nonneg AE :
fixes f :: ′a ⇒ real
assumes nonneg : AE x in M . 0 ≤ f x
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shows 0 ≤ integralL M f
proof cases
assume f : integrable M f
then have [measurable]: f ∈ M →M borel
by auto

have (λx . max 0 (f x )) ∈ M →M borel
∧
x . 0 ≤ max 0 (f x ) integrable M (λx .

max 0 (f x ))
using f by auto

from this have 0 ≤ integralL M (λx . max 0 (f x ))
proof (induction rule: borel measurable induct real)
case (add f g)
then have integrable M f integrable M g
by (auto intro!: integrable bound [OF add .prems])

with add show ?case
by (simp add : nn integral add)

next
case (seq U )
show ?case
proof (rule LIMSEQ le const)
have U le: x ∈ space M =⇒ U i x ≤ max 0 (f x ) for x i
using seq by (intro incseq le) (auto simp: incseq def le fun def )

with seq nonneg show (λi . integralL M (U i)) −−−−→ LINT x |M . max 0 (f
x )

by (intro integral dominated convergence) auto
have integrable M (U i) for i
using seq .prems by (rule integrable bound) (insert U le seq , auto)

with seq show ∃N . ∀n≥N . 0 ≤ integralL M (U n)
by auto

qed
qed (auto)
also have . . . = integralL M f
using nonneg by (auto intro!: integral cong AE )

finally show ?thesis .
qed (simp add : not integrable integral eq)

lemma integral nonneg [simp]:
fixes f :: ′a ⇒ real
shows (

∧
x . x ∈ space M =⇒ 0 ≤ f x ) =⇒ 0 ≤ integralL M f

by (intro integral nonneg AE ) auto

proposition nn integral eq integral :
assumes f : integrable M f
assumes nonneg : AE x in M . 0 ≤ f x
shows (

∫
+ x . f x ∂M ) = integralL M f

proof −
{ fix f :: ′a ⇒ real assume f : f ∈ borel measurable M

∧
x . 0 ≤ f x integrable

M f
then have (

∫
+ x . f x ∂M ) = integralL M f

proof (induct rule: borel measurable induct real)
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case (set A) then show ?case
by (simp add : integrable indicator iff ennreal indicator emeasure eq ennreal measure)

next
case (mult f c) then show ?case
by (auto simp add : nn integral cmult ennreal mult integral nonneg AE )

next
case (add g f )
then have integrable M f integrable M g
by (auto intro!: integrable bound [OF add .prems])

with add show ?case
by (simp add : nn integral add integral nonneg AE )

next
case (seq U )
show ?case
proof (rule LIMSEQ unique)
have U le f : x ∈ space M =⇒ U i x ≤ f x for x i
using seq by (intro incseq le) (auto simp: incseq def le fun def )

have int U :
∧
i . integrable M (U i)

using seq f U le f by (intro integrable bound [OF f (3 )]) auto
from U le f seq have (λi . integralL M (U i)) −−−−→ integralL M f
by (intro integral dominated convergence) auto

then show (λi . ennreal (integralL M (U i))) −−−−→ ennreal (integralL M
f )

using seq f int U by (simp add : f integral nonneg AE )
have (λi .

∫
+ x . U i x ∂M ) −−−−→

∫
+ x . f x ∂M

using seq U le f f
by (intro nn integral dominated convergence[where w=f ]) (auto simp:

integrable iff bounded)
then show (λi .

∫
x . U i x ∂M ) −−−−→

∫
+x . f x ∂M

using seq int U by simp
qed

qed }
from this[of λx . max 0 (f x )] assms have (

∫
+ x . max 0 (f x ) ∂M ) = integralL

M (λx . max 0 (f x ))
by simp

also have . . . = integralL M f
using assms by (auto intro!: integral cong AE simp: integral nonneg AE )

also have (
∫

+ x . max 0 (f x ) ∂M ) = (
∫

+ x . f x ∂M )
using assms by (auto intro!: nn integral cong AE simp: max def )

finally show ?thesis .
qed

lemma nn integral eq integrable:
assumes f : f ∈ M →M borel AE x in M . 0 ≤ f x and 0 ≤ x
shows (

∫
+x . f x ∂M ) = ennreal x ←→ (integrable M f ∧ integralL M f = x )

proof (safe intro!: nn integral eq integral assms)
assume ∗: (

∫
+x . f x ∂M ) = ennreal x

with integrableI nn integral finite[OF f this] nn integral eq integral [of M f , OF
f (2 )]
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show integrable M f integralL M f = x
by (simp all add : ∗ assms integral nonneg AE )

qed

lemma
fixes f :: ⇒ ⇒ ′a :: {banach, second countable topology}
assumes integrable[measurable]:

∧
i . integrable M (f i)

and summable: AE x in M . summable (λi . norm (f i x ))
and sums: summable (λi . (

∫
x . norm (f i x ) ∂M ))

shows integrable suminf : integrable M (λx . (
∑

i . f i x )) (is integrable M ?S )
and sums integral : (λi . integralL M (f i)) sums (

∫
x . (

∑
i . f i x ) ∂M ) (is ?f

sums ?x )
and integral suminf : (

∫
x . (

∑
i . f i x ) ∂M ) = (

∑
i . integralL M (f i))

and summable integral : summable (λi . integralL M (f i))
proof −
have 1 : integrable M (λx .

∑
i . norm (f i x ))

proof (rule integrableI bounded)
have (

∫
+ x . ennreal (norm (

∑
i . norm (f i x ))) ∂M ) = (

∫
+ x . (

∑
i . ennreal

(norm (f i x ))) ∂M )
apply (intro nn integral cong AE )
using summable
apply eventually elim
apply (simp add : suminf nonneg ennreal suminf neq top)
done

also have . . . = (
∑

i .
∫

+ x . norm (f i x ) ∂M )
by (intro nn integral suminf ) auto

also have . . . = (
∑

i . ennreal (
∫
x . norm (f i x ) ∂M ))

by (intro arg cong [where f=suminf ] ext nn integral eq integral integrable norm
integrable) auto

finally show (
∫

+ x . ennreal (norm (
∑

i . norm (f i x ))) ∂M ) < ∞
by (simp add : sums ennreal suminf neq top less top[symmetric] integral nonneg AE )

qed simp

have 2 : AE x in M . (λn.
∑

i<n. f i x ) −−−−→ (
∑

i . f i x )
using summable by eventually elim (auto intro: summable LIMSEQ summable norm cancel)

have 3 :
∧
j . AE x in M . norm (

∑
i<j . f i x ) ≤ (

∑
i . norm (f i x ))

using summable
proof eventually elim
fix j x assume [simp]: summable (λi . norm (f i x ))
have norm (

∑
i<j . f i x ) ≤ (

∑
i<j . norm (f i x )) by (rule norm sum)

also have . . . ≤ (
∑

i . norm (f i x ))
using sum le suminf [of λi . norm (f i x )] unfolding sums iff by auto

finally show norm (
∑

i<j . f i x ) ≤ (
∑

i . norm (f i x )) by simp
qed

note ibl = integrable dominated convergence[OF 1 2 3 ]
note int = integral dominated convergence[OF 1 2 3 ]
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show integrable M ?S
by (rule ibl) measurable

show ?f sums ?x unfolding sums def
using int by (simp add : integrable)

then show ?x = suminf ?f summable ?f
unfolding sums iff by auto

qed

proposition integral norm bound [simp]:
fixes f :: ⇒ ′a :: {banach, second countable topology}
shows norm (integralL M f ) ≤ (

∫
x . norm (f x ) ∂M )

proof (cases integrable M f )
case True then show ?thesis
using nn integral eq integral [of M λx . norm (f x )] integral norm bound ennreal [of

M f ]
by (simp add : integral nonneg AE )

next
case False
then have norm (integralL M f ) = 0 by (simp add : not integrable integral eq)
moreover have (

∫
x . norm (f x ) ∂M ) ≥ 0 by auto

ultimately show ?thesis by simp
qed

proposition integral abs bound [simp]:
fixes f :: ′a ⇒ real shows abs (

∫
x . f x ∂M ) ≤ (

∫
x . |f x | ∂M )

using integral norm bound [of M f ] by auto

lemma integral eq nn integral :
assumes [measurable]: f ∈ borel measurable M
assumes nonneg : AE x in M . 0 ≤ f x
shows integralL M f = enn2real (

∫
+ x . ennreal (f x ) ∂M )

proof cases
assume ∗: (

∫
+ x . ennreal (f x ) ∂M ) = ∞

also have (
∫

+ x . ennreal (f x ) ∂M ) = (
∫

+ x . ennreal (norm (f x )) ∂M )
using nonneg by (intro nn integral cong AE ) auto

finally have ¬ integrable M f
by (auto simp: integrable iff bounded)

then show ?thesis
by (simp add : ∗ not integrable integral eq)

next
assume (

∫
+ x . ennreal (f x ) ∂M ) 6= ∞

then have integrable M f
by (cases

∫
+ x . ennreal (f x ) ∂M rule: ennreal cases)

(auto intro!: integrableI nn integral finite assms)
from nn integral eq integral [OF this] nonneg show ?thesis
by (simp add : integral nonneg AE )

qed
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lemma enn2real nn integral eq integral :
assumes eq : AE x in M . f x = ennreal (g x ) and nn: AE x in M . 0 ≤ g x
and fin: (

∫
+x . f x ∂M ) < top

and [measurable]: g ∈ M →M borel
shows enn2real (

∫
+x . f x ∂M ) = (

∫
x . g x ∂M )

proof −
have ennreal (enn2real (

∫
+x . f x ∂M )) = (

∫
+x . f x ∂M )

using fin by (intro ennreal enn2real) auto
also have . . . = (

∫
+x . g x ∂M )

using eq by (rule nn integral cong AE )
also have . . . = (

∫
x . g x ∂M )

proof (rule nn integral eq integral)
show integrable M g
proof (rule integrableI bounded)
have (

∫
+ x . ennreal (norm (g x )) ∂M ) = (

∫
+ x . f x ∂M )

using eq nn by (auto intro!: nn integral cong AE elim!: eventually elim2 )
also note fin
finally show (

∫
+ x . ennreal (norm (g x )) ∂M ) < ∞

by simp
qed simp

qed fact
finally show ?thesis
using nn by (simp add : integral nonneg AE )

qed

lemma has bochner integral nn integral :
assumes f ∈ borel measurable M AE x in M . 0 ≤ f x 0 ≤ x
assumes (

∫
+x . f x ∂M ) = ennreal x

shows has bochner integral M f x
unfolding has bochner integral iff
using assms by (auto simp: assms integral eq nn integral intro: integrableI nn integral finite)

lemma integrableI simple bochner integrable:
fixes f :: ′a ⇒ ′b::{banach, second countable topology}
shows simple bochner integrable M f =⇒ integrable M f
by (intro integrableI sequence[where s=λ . f ] borel measurable simple function)

(auto simp: zero ennreal def [symmetric] simple bochner integrable.simps)

proposition integrable induct [consumes 1 , case names base add lim, induct pred :
integrable]:
fixes f :: ′a ⇒ ′b::{banach, second countable topology}
assumes integrable M f
assumes base:

∧
A c. A ∈ sets M =⇒ emeasure M A < ∞ =⇒ P (λx . indicator

A x ∗R c)
assumes add :

∧
f g . integrable M f =⇒ P f =⇒ integrable M g =⇒ P g =⇒ P

(λx . f x + g x )
assumes lim:

∧
f s. (

∧
i . integrable M (s i)) =⇒ (

∧
i . P (s i)) =⇒

(
∧
x . x ∈ space M =⇒ (λi . s i x ) −−−−→ f x ) =⇒

(
∧
i x . x ∈ space M =⇒ norm (s i x ) ≤ 2 ∗ norm (f x )) =⇒ integrable M f =⇒
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P f
shows P f

proof −
from 〈integrable M f 〉 have f : f ∈ borel measurable M (

∫
+x . norm (f x ) ∂M )

< ∞
unfolding integrable iff bounded by auto

from borel measurable implies sequence metric[OF f (1 )]
obtain s where s:

∧
i . simple function M (s i)

∧
x . x ∈ space M =⇒ (λi . s i

x ) −−−−→ f x∧
i x . x ∈ space M =⇒ norm (s i x ) ≤ 2 ∗ norm (f x )

unfolding norm conv dist by metis

{ fix f A
have [simp]: P (λx . 0 )
using base[of {} undefined ] by simp

have (
∧
i :: ′b. i ∈ A =⇒ integrable M (f i :: ′a ⇒ ′b)) =⇒

(
∧
i . i ∈ A =⇒ P (f i)) =⇒ P (λx .

∑
i∈A. f i x )

by (induct A rule: infinite finite induct) (auto intro!: add) }
note sum = this

define s ′ where [abs def ]: s ′ i z = indicator (space M ) z ∗R s i z for i z
then have s ′ eq s:

∧
i x . x ∈ space M =⇒ s ′ i x = s i x

by simp

have sf [measurable]:
∧
i . simple function M (s ′ i)

unfolding s ′ def using s(1 )
by (intro simple function compose2 [where h=(∗R)] simple function indicator)

auto

{ fix i
have

∧
z . {y . s ′ i z = y ∧ y ∈ s ′ i ‘ space M ∧ y 6= 0 ∧ z ∈ space M } =

(if z ∈ space M ∧ s ′ i z 6= 0 then {s ′ i z} else {})
by (auto simp add : s ′ def split : split indicator)

then have
∧
z . s ′ i = (λz .

∑
y∈s ′ i‘space M − {0}. indicator {x∈space M .

s ′ i x = y} z ∗R y)
using sf by (auto simp: fun eq iff simple function def s ′ def ) }

note s ′ eq = this

show P f
proof (rule lim)
fix i

have (
∫

+x . norm (s ′ i x ) ∂M ) ≤ (
∫

+x . ennreal (2 ∗ norm (f x )) ∂M )
using s by (intro nn integral mono) (auto simp: s ′ eq s)

also have . . . < ∞
using f by (simp add : nn integral cmult ennreal mult less top ennreal mult)

finally have sbi : simple bochner integrable M (s ′ i)
using sf by (intro simple bochner integrableI bounded) auto

then show integrable M (s ′ i)
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by (rule integrableI simple bochner integrable)

{ fix x assumex ∈ space M s ′ i x 6= 0
then have emeasure M {y ∈ space M . s ′ i y = s ′ i x} ≤ emeasure M {y ∈

space M . s ′ i y 6= 0}
by (intro emeasure mono) auto

also have . . . < ∞
using sbi by (auto elim: simple bochner integrable.cases simp: less top)

finally have emeasure M {y ∈ space M . s ′ i y = s ′ i x} 6= ∞ by simp }
then show P (s ′ i)
by (subst s ′ eq) (auto intro!: sum base simp: less top)

fix x assume x ∈ space M with s show (λi . s ′ i x ) −−−−→ f x
by (simp add : s ′ eq s)

show norm (s ′ i x ) ≤ 2 ∗ norm (f x )
using 〈x ∈ space M 〉 s by (simp add : s ′ eq s)

qed fact
qed

lemma integral eq zero AE :
(AE x in M . f x = 0 ) =⇒ integralL M f = 0
using integral cong AE [of f M λ . 0 ]
by (cases integrable M f ) (simp all add : not integrable integral eq)

lemma integral nonneg eq 0 iff AE :
fixes f :: ⇒ real
assumes f [measurable]: integrable M f and nonneg : AE x in M . 0 ≤ f x
shows integralL M f = 0 ←→ (AE x in M . f x = 0 )

proof
assume integralL M f = 0
then have integralN M f = 0
using nn integral eq integral [OF f nonneg ] by simp

then have AE x in M . ennreal (f x ) ≤ 0
by (simp add : nn integral 0 iff AE )

with nonneg show AE x in M . f x = 0
by auto

qed (auto simp add : integral eq zero AE )

lemma integral mono AE :
fixes f :: ′a ⇒ real
assumes integrable M f integrable M g AE x in M . f x ≤ g x
shows integralL M f ≤ integralL M g

proof −
have 0 ≤ integralL M (λx . g x − f x )
using assms by (intro integral nonneg AE integrable diff assms) auto

also have . . . = integralL M g − integralL M f
by (intro integral diff assms)

finally show ?thesis by simp
qed
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lemma integral mono:
fixes f :: ′a ⇒ real
shows integrable M f =⇒ integrable M g =⇒ (

∧
x . x ∈ space M =⇒ f x ≤ g x )

=⇒
integralL M f ≤ integralL M g

by (intro integral mono AE ) auto

lemma integral norm bound integral :
fixes f :: ′a::euclidean space ⇒ ′b::{banach,second countable topology}
assumes integrable M f integrable M g

∧
x . x ∈ space M =⇒ norm(f x ) ≤ g x

shows norm (
∫
x . f x ∂M ) ≤ (

∫
x . g x ∂M )

proof −
have norm (

∫
x . f x ∂M ) ≤ (

∫
x . norm (f x ) ∂M )

by (rule integral norm bound)
also have ... ≤ (

∫
x . g x ∂M )

using assms integrable norm integral mono by blast
finally show ?thesis .

qed

lemma integral abs bound integral :
fixes f :: ′a::euclidean space ⇒ real
assumes integrable M f integrable M g

∧
x . x ∈ space M =⇒ |f x | ≤ g x

shows |
∫
x . f x ∂M | ≤ (

∫
x . g x ∂M )

by (metis integral norm bound integral assms real norm def )

The next two statements are useful to bound Lebesgue integrals, as they
avoid one integrability assumption. The price to pay is that the upper
function has to be nonnegative, but this is often true and easy to check in
computations.

lemma integral mono AE ′:
fixes f :: ⇒ real
assumes integrable M f AE x in M . g x ≤ f x AE x in M . 0 ≤ f x
shows (

∫
x . g x ∂M ) ≤ (

∫
x . f x ∂M )

proof (cases integrable M g)
case True
show ?thesis by (rule integral mono AE , auto simp add : assms True)

next
case False
then have (

∫
x . g x ∂M ) = 0 by (simp add : not integrable integral eq)

also have ... ≤ (
∫
x . f x ∂M ) by (simp add : integral nonneg AE [OF assms(3 )])

finally show ?thesis by simp
qed

lemma integral mono ′:
fixes f :: ⇒ real
assumes integrable M f

∧
x . x ∈ space M =⇒ g x ≤ f x

∧
x . x ∈ space M =⇒

0 ≤ f x
shows (

∫
x . g x ∂M ) ≤ (

∫
x . f x ∂M )
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by (rule integral mono AE ′, insert assms, auto)

lemma (in finite measure) integrable measure:
assumes I : disjoint family on X I countable I
shows integrable (count space I ) (λi . measure M (X i))

proof −
have (

∫
+i . measure M (X i) ∂count space I ) = (

∫
+i . measure M (if X i ∈ sets

M then X i else {}) ∂count space I )
by (auto intro!: nn integral cong measure notin sets)

also have . . . = measure M (
⋃
i∈I . if X i ∈ sets M then X i else {})

using I unfolding emeasure eq measure[symmetric]
by (subst emeasure UN countable) (auto simp: disjoint family on def )

finally show ?thesis
by (auto intro!: integrableI bounded)

qed

lemma integrableI real bounded :
assumes f : f ∈ borel measurable M and ae: AE x in M . 0 ≤ f x and fin:

integralN M f < ∞
shows integrable M f

proof (rule integrableI bounded)
have (

∫
+ x . ennreal (norm (f x )) ∂M ) =

∫
+ x . ennreal (f x ) ∂M

using ae by (auto intro: nn integral cong AE )
also note fin
finally show (

∫
+ x . ennreal (norm (f x )) ∂M ) < ∞ .

qed fact

lemma nn integral nonneg infinite:
fixes f :: ′a ⇒ real
assumes f ∈ borel measurable M ¬ integrable M f AE x in M . f x ≥ 0
shows (

∫
+x . f x ∂M ) = ∞

using assms integrableI real bounded less top by auto

lemma integral real bounded :
assumes 0 ≤ r integralN M f ≤ ennreal r
shows integralL M f ≤ r

proof cases
assume [simp]: integrable M f

have integralL M (λx . max 0 (f x )) = integralN M (λx . max 0 (f x ))
by (intro nn integral eq integral [symmetric]) auto

also have . . . = integralN M f
by (intro nn integral cong) (simp add : max def ennreal neg)

also have . . . ≤ r
by fact

finally have integralL M (λx . max 0 (f x )) ≤ r
using 〈0 ≤ r 〉 by simp

moreover have integralL M f ≤ integralL M (λx . max 0 (f x ))
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by (rule integral mono AE ) auto
ultimately show ?thesis
by simp

next
assume ¬ integrable M f then show ?thesis
using 〈0 ≤ r 〉 by (simp add : not integrable integral eq)

qed

lemma integrable MIN :
fixes f :: ⇒ ⇒ real
shows [[ finite I ; I 6= {};

∧
i . i ∈ I =⇒ integrable M (f i) ]]

=⇒ integrable M (λx . MIN i∈I . f i x )
by (induct rule: finite ne induct) simp+

lemma integrable MAX :
fixes f :: ⇒ ⇒ real
shows [[ finite I ; I 6= {};

∧
i . i ∈ I =⇒ integrable M (f i) ]]

=⇒ integrable M (λx . MAX i∈I . f i x )
by (induct rule: finite ne induct) simp+

theorem integral Markov inequality :
assumes [measurable]: integrable M u and AE x in M . 0 ≤ u x 0 < (c::real)
shows (emeasure M ) {x∈space M . u x ≥ c} ≤ (1/c) ∗ (

∫
x . u x ∂M )

proof −
have (

∫
+ x . ennreal(u x ) ∗ indicator (space M ) x ∂M ) ≤ (

∫
+ x . u x ∂M )

by (rule nn integral mono AE , auto simp add : 〈c>0 〉 less eq real def )
also have ... = (

∫
x . u x ∂M )

by (rule nn integral eq integral , auto simp add : assms)
finally have ∗: (

∫
+ x . ennreal(u x ) ∗ indicator (space M ) x ∂M ) ≤ (

∫
x . u x

∂M )
by simp

have {x ∈ space M . u x ≥ c} = {x ∈ space M . ennreal(1/c) ∗ u x ≥ 1} ∩
(space M )

using 〈c>0 〉 by (auto simp: ennreal mult ′[symmetric])
then have emeasure M {x ∈ space M . u x ≥ c} = emeasure M ({x ∈ space M .

ennreal(1/c) ∗ u x ≥ 1} ∩ (space M ))
by simp

also have ... ≤ ennreal(1/c) ∗ (
∫

+ x . ennreal(u x ) ∗ indicator (space M ) x
∂M )

by (rule nn integral Markov inequality) (auto simp add : assms)
also have ... ≤ ennreal(1/c) ∗ (

∫
x . u x ∂M )

apply (rule mult left mono) using ∗ 〈c>0 〉 by auto
finally show ?thesis
using 〈0<c〉 by (simp add : ennreal mult ′[symmetric])

qed

lemma integral ineq eq 0 then AE :
fixes f :: ⇒ real
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assumes AE x in M . f x ≤ g x integrable M f integrable M g
(
∫
x . f x ∂M ) = (

∫
x . g x ∂M )

shows AE x in M . f x = g x
proof −
define h where h = (λx . g x − f x )
have AE x in M . h x = 0
apply (subst integral nonneg eq 0 iff AE [symmetric])
unfolding h def using assms by auto

then show ?thesis unfolding h def by auto
qed

lemma not AE zero int E :
fixes f :: ′a ⇒ real
assumes AE x in M . f x ≥ 0 (

∫
x . f x ∂M ) > 0

and [measurable]: f ∈ borel measurable M
shows ∃A e. A ∈ sets M ∧ e>0 ∧ emeasure M A > 0 ∧ (∀ x ∈ A. f x ≥ e)

proof (rule not AE zero E , auto simp add : assms)
assume ∗: AE x in M . f x = 0
have (

∫
x . f x ∂M ) = (

∫
x . 0 ∂M ) by (rule integral cong AE , auto simp add :

∗)
then have (

∫
x . f x ∂M ) = 0 by simp

then show False using assms(2 ) by simp
qed

proposition tendsto L1 int :
fixes u :: ⇒ ⇒ ′b::{banach, second countable topology}
assumes [measurable]:

∧
n. integrable M (u n) integrable M f

and ((λn. (
∫

+x . norm(u n x − f x ) ∂M )) −−−→ 0 ) F
shows ((λn. (

∫
x . u n x ∂M )) −−−→ (

∫
x . f x ∂M )) F

proof −
have ((λn. norm((

∫
x . u n x ∂M ) − (

∫
x . f x ∂M ))) −−−→ (0 ::ennreal)) F

proof (rule tendsto sandwich[of λ . 0 , where ?h = λn. (
∫

+x . norm(u n x − f
x ) ∂M )], auto simp add : assms)

{
fix n
have (

∫
x . u n x ∂M ) − (

∫
x . f x ∂M ) = (

∫
x . u n x − f x ∂M )

apply (rule Bochner Integration.integral diff [symmetric]) using assms by
auto

then have norm((
∫
x . u n x ∂M ) − (

∫
x . f x ∂M )) = norm (

∫
x . u n x − f

x ∂M )
by auto

also have ... ≤ (
∫
x . norm(u n x − f x ) ∂M )

by (rule integral norm bound)
finally have ennreal(norm((

∫
x . u n x ∂M ) − (

∫
x . f x ∂M ))) ≤ (

∫
x . norm(u

n x − f x ) ∂M )
by simp

also have ... = (
∫

+x . norm(u n x − f x ) ∂M )
apply (rule nn integral eq integral [symmetric]) using assms by auto

finally have norm((
∫
x . u n x ∂M ) − (

∫
x . f x ∂M )) ≤ (

∫
+x . norm(u n x
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− f x ) ∂M ) by simp
}
then show eventually (λn. norm((

∫
x . u n x ∂M ) − (

∫
x . f x ∂M )) ≤ (

∫
+x .

norm(u n x − f x ) ∂M )) F
by auto

qed
then have ((λn. norm((

∫
x . u n x ∂M ) − (

∫
x . f x ∂M ))) −−−→ 0 ) F

by (simp flip: ennreal 0 )
then have ((λn. ((

∫
x . u n x ∂M ) − (

∫
x . f x ∂M ))) −−−→ 0 ) F using tend-

sto norm zero iff by blast
then show ?thesis using Lim null by auto

qed

The next lemma asserts that, if a sequence of functions converges in L1, then
it admits a subsequence that converges almost everywhere.

proposition tendsto L1 AE subseq :
fixes u :: nat ⇒ ′a ⇒ ′b::{banach, second countable topology}
assumes [measurable]:

∧
n. integrable M (u n)

and (λn. (
∫
x . norm(u n x ) ∂M )) −−−−→ 0

shows ∃ r ::nat⇒nat . strict mono r ∧ (AE x in M . (λn. u (r n) x ) −−−−→ 0 )
proof −
{
fix k
have eventually (λn. (

∫
x . norm(u n x ) ∂M ) < (1/2 )ˆk) sequentially

using order tendstoD(2 )[OF assms(2 )] by auto
with eventually elim2 [OF eventually gt at top[of k ] this]
have ∃n>k . (

∫
x . norm(u n x ) ∂M ) < (1/2 )ˆk

by (metis eventually False sequentially)
}
then have ∃ r . ∀n. True ∧ (r (Suc n) > r n ∧ (

∫
x . norm(u (r (Suc n)) x )

∂M ) < (1/2 )ˆ(r n))
by (intro dependent nat choice, auto)

then obtain r0 where r0 : strict mono r0
∧
n. (

∫
x . norm(u (r0 (Suc n)) x )

∂M ) < (1/2 )ˆ(r0 n)
by (auto simp: strict mono Suc iff )

define r where r = (λn. r0 (n+1 ))
have strict mono r unfolding r def using r0 (1 ) by (simp add : strict mono Suc iff )
have I : (

∫
+x . norm(u (r n) x ) ∂M ) < ennreal((1/2 )ˆn) for n

proof −
have r0 n ≥ n using 〈strict mono r0 〉 by (simp add : seq suble)
have (1/2 ::real)ˆ(r0 n) ≤ (1/2 )ˆn by (rule power decreasing [OF 〈r0 n ≥ n〉],

auto)
then have (

∫
x . norm(u (r0 (Suc n)) x ) ∂M ) < (1/2 )ˆn

using r0 (2 ) less le trans by blast
then have (

∫
x . norm(u (r n) x ) ∂M ) < (1/2 )ˆn

unfolding r def by auto
moreover have (

∫
+x . norm(u (r n) x ) ∂M ) = (

∫
x . norm(u (r n) x ) ∂M )

by (rule nn integral eq integral , auto simp add : integrable norm[OF assms(1 )[of
r n]])
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ultimately show ?thesis by (auto intro: ennreal lessI )
qed

have AE x in M . limsup (λn. ennreal (norm(u (r n) x ))) ≤ 0
proof (rule AE upper bound inf ennreal)
fix e::real assume e > 0
define A where A = (λn. {x ∈ space M . norm(u (r n) x ) ≥ e})
have A meas [measurable]:

∧
n. A n ∈ sets M unfolding A def by auto

have A bound : emeasure M (A n) < (1/e) ∗ ennreal((1/2 )ˆn) for n
proof −
have ∗: indicator (A n) x ≤ (1/e) ∗ ennreal(norm(u (r n) x )) for x

apply (cases x ∈ A n) unfolding A def using 〈0 < e〉 by (auto simp:
ennreal mult [symmetric])

have emeasure M (A n) = (
∫

+x . indicator (A n) x ∂M ) by auto
also have ... ≤ (

∫
+x . (1/e) ∗ ennreal(norm(u (r n) x )) ∂M )

apply (rule nn integral mono) using ∗ by auto
also have ... = (1/e) ∗ (

∫
+x . norm(u (r n) x ) ∂M )

apply (rule nn integral cmult) using 〈e > 0 〉 by auto
also have ... < (1/e) ∗ ennreal((1/2 )ˆn)
using I [of n] 〈e > 0 〉 by (intro ennreal mult strict left mono) auto

finally show ?thesis by simp
qed
have A fin: emeasure M (A n) < ∞ for n
using 〈e > 0 〉 A bound [of n]
by (auto simp add : ennreal mult less top[symmetric])

have A sum: summable (λn. measure M (A n))
proof (rule summable comparison test ′[of λn. (1/e) ∗ (1/2 )ˆn 0 ])
have summable (λn. (1/(2 ::real))ˆn) by (simp add : summable geometric)
then show summable (λn. (1/e) ∗ (1/2 )ˆn) using summable mult by blast
fix n::nat assume n ≥ 0
have norm(measure M (A n)) = measure M (A n) by simp
also have ... = enn2real(emeasure M (A n)) unfolding measure def by simp
also have ... < enn2real((1/e) ∗ (1/2 )ˆn)
using A bound [of n] 〈emeasure M (A n) < ∞〉 〈0 < e〉

by (auto simp: emeasure eq ennreal measure ennreal mult [symmetric] en-
nreal less iff )

also have ... = (1/e) ∗ (1/2 )ˆn
using 〈0<e〉 by auto

finally show norm(measure M (A n)) ≤ (1/e) ∗ (1/2 )ˆn by simp
qed

have AE x in M . eventually (λn. x ∈ space M − A n) sequentially
by (rule borel cantelli AE1 [OF A meas A fin A sum])

moreover
{
fix x assume eventually (λn. x ∈ space M − A n) sequentially
moreover have norm(u (r n) x ) ≤ ennreal e if x ∈ space M − A n for n
using that unfolding A def by (auto intro: ennreal leI )
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ultimately have eventually (λn. norm(u (r n) x ) ≤ ennreal e) sequentially
by (simp add : eventually mono)

then have limsup (λn. ennreal (norm(u (r n) x ))) ≤ e
by (simp add : Limsup bounded)

}
ultimately show AE x in M . limsup (λn. ennreal (norm(u (r n) x ))) ≤ 0 +

ennreal e by auto
qed
moreover
{
fix x assume limsup (λn. ennreal (norm(u (r n) x ))) ≤ 0
moreover then have liminf (λn. ennreal (norm(u (r n) x ))) ≤ 0
by (rule order trans[rotated ]) (auto intro: Liminf le Limsup)

ultimately have (λn. ennreal (norm(u (r n) x ))) −−−−→ 0
using tendsto Limsup[of sequentially λn. ennreal (norm(u (r n) x ))] by auto

then have (λn. norm(u (r n) x )) −−−−→ 0
by (simp flip: ennreal 0 )

then have (λn. u (r n) x ) −−−−→ 0
by (simp add : tendsto norm zero iff )

}
ultimately have AE x in M . (λn. u (r n) x ) −−−−→ 0 by auto
then show ?thesis using 〈strict mono r 〉 by auto

qed

6.10.1 Restricted measure spaces

lemma integrable restrict space:
fixes f :: ′a ⇒ ′b::{banach, second countable topology}
assumes Ω[simp]: Ω ∩ space M ∈ sets M
shows integrable (restrict space M Ω) f ←→ integrable M (λx . indicator Ω x ∗R

f x )
unfolding integrable iff bounded
borel measurable restrict space iff [OF Ω]
nn integral restrict space[OF Ω]

by (simp add : ac simps ennreal indicator ennreal mult)

lemma integral restrict space:
fixes f :: ′a ⇒ ′b::{banach, second countable topology}
assumes Ω[simp]: Ω ∩ space M ∈ sets M
shows integralL (restrict space M Ω) f = integralL M (λx . indicator Ω x ∗R f

x )
proof (rule integral eq cases)
assume integrable (restrict space M Ω) f
then show ?thesis
proof induct
case (base A c) then show ?case
by (simp add : indicator inter arith[symmetric] sets restrict space iff

emeasure restrict space Int absorb1 measure restrict space)
next
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case (add g f ) then show ?case
by (simp add : scaleR add right integrable restrict space)

next
case (lim f s)
show ?case
proof (rule LIMSEQ unique)
show (λi . integralL (restrict space M Ω) (s i)) −−−−→ integralL (restrict space

M Ω) f
using lim by (intro integral dominated convergence[where w=λx . 2 ∗ norm

(f x )]) simp all

show (λi . integralL (restrict space M Ω) (s i)) −−−−→ (
∫

x . indicator Ω x
∗R f x ∂M )

unfolding lim
using lim
by (intro integral dominated convergence[where w=λx . 2 ∗ norm (indicator

Ω x ∗R f x )])
(auto simp add : space restrict space integrable restrict space simp del :

norm scaleR
split : split indicator)

qed
qed

qed (simp add : integrable restrict space)

lemma integral empty :
assumes space M = {}
shows integralL M f = 0

proof −
have (

∫
x . f x ∂M ) = (

∫
x . 0 ∂M )

by(rule integral cong)(simp all add : assms)
thus ?thesis by simp

qed

6.10.2 Measure spaces with an associated density

lemma integrable density :
fixes f :: ′a ⇒ ′b::{banach, second countable topology} and g :: ′a ⇒ real
assumes [measurable]: f ∈ borel measurable M g ∈ borel measurable M
and nn: AE x in M . 0 ≤ g x

shows integrable (density M g) f ←→ integrable M (λx . g x ∗R f x )
unfolding integrable iff bounded using nn
apply (simp add : nn integral density less top[symmetric])
apply (intro arg cong2 [where f=(=)] refl nn integral cong AE )
apply (auto simp: ennreal mult)
done

lemma integral density :
fixes f :: ′a ⇒ ′b::{banach, second countable topology} and g :: ′a ⇒ real
assumes f : f ∈ borel measurable M
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and g [measurable]: g ∈ borel measurable M AE x in M . 0 ≤ g x
shows integralL (density M g) f = integralL M (λx . g x ∗R f x )

proof (rule integral eq cases)
assume integrable (density M g) f
then show ?thesis
proof induct
case (base A c)
then have [measurable]: A ∈ sets M by auto

have int : integrable M (λx . g x ∗ indicator A x )
using g base integrable density [of indicator A :: ′a ⇒ real M g ] by simp
then have integralL M (λx . g x ∗ indicator A x ) = (

∫
+ x . ennreal (g x ∗

indicator A x ) ∂M )
using g by (subst nn integral eq integral) auto

also have . . . = (
∫

+ x . ennreal (g x ) ∗ indicator A x ∂M )
by (intro nn integral cong) (auto split : split indicator)

also have . . . = emeasure (density M g) A
by (rule emeasure density [symmetric]) auto

also have . . . = ennreal (measure (density M g) A)
using base by (auto intro: emeasure eq ennreal measure)

also have . . . = integralL (density M g) (indicator A)
using base by simp

finally show ?case
using base g
apply (simp add : int integral nonneg AE )
apply (subst (asm) ennreal inj )
apply (auto intro!: integral nonneg AE )
done

next
case (add f h)
then have [measurable]: f ∈ borel measurable M h ∈ borel measurable M
by (auto dest !: borel measurable integrable)

from add g show ?case
by (simp add : scaleR add right integrable density)

next
case (lim f s)
have [measurable]: f ∈ borel measurable M

∧
i . s i ∈ borel measurable M

using lim(1 ,5 )[THEN borel measurable integrable] by auto

show ?case
proof (rule LIMSEQ unique)
show (λi . integralL M (λx . g x ∗R s i x )) −−−−→ integralL M (λx . g x ∗R f

x )
proof (rule integral dominated convergence)
show integrable M (λx . 2 ∗ norm (g x ∗R f x ))

by (intro integrable mult right integrable norm integrable density [THEN
iffD1 ] lim g) auto

show AE x in M . (λi . g x ∗R s i x ) −−−−→ g x ∗R f x
using lim(3 ) by (auto intro!: tendsto scaleR AE I2 [of M ])
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show
∧
i . AE x in M . norm (g x ∗R s i x ) ≤ 2 ∗ norm (g x ∗R f x )

using lim(4 ) g by (auto intro!: AE I2 [of M ] mult left mono simp:
field simps)

qed auto
show (λi . integralL M (λx . g x ∗R s i x )) −−−−→ integralL (density M g) f
unfolding lim(2 )[symmetric]
by (rule integral dominated convergence[where w=λx . 2 ∗ norm (f x )])

(insert lim(3−5 ), auto)
qed

qed
qed (simp add : f g integrable density)

lemma
fixes g :: ′a ⇒ real
assumes f ∈ borel measurable M AE x in M . 0 ≤ f x g ∈ borel measurable M
shows integral real density : integralL (density M f ) g = (

∫
x . f x ∗ g x ∂M )

and integrable real density : integrable (density M f ) g ←→ integrable M (λx . f
x ∗ g x )
using assms integral density [of g M f ] integrable density [of g M f ] by auto

lemma has bochner integral density :
fixes f :: ′a ⇒ ′b::{banach, second countable topology} and g :: ′a ⇒ real
shows f ∈ borel measurable M =⇒ g ∈ borel measurable M =⇒ (AE x in M . 0
≤ g x ) =⇒

has bochner integral M (λx . g x ∗R f x ) x =⇒ has bochner integral (density M
g) f x
by (simp add : has bochner integral iff integrable density integral density)

6.10.3 Distributions

lemma integrable distr eq :
fixes f :: ′a ⇒ ′b::{banach, second countable topology}
assumes [measurable]: g ∈ measurable M N f ∈ borel measurable N
shows integrable (distr M N g) f ←→ integrable M (λx . f (g x ))
unfolding integrable iff bounded by (simp all add : nn integral distr)

lemma integrable distr :
fixes f :: ′a ⇒ ′b::{banach, second countable topology}
shows T ∈ measurable M M ′ =⇒ integrable (distr M M ′ T ) f =⇒ integrable M

(λx . f (T x ))
by (subst integrable distr eq [symmetric, where g=T ])

(auto dest : borel measurable integrable)

lemma integral distr :
fixes f :: ′a ⇒ ′b::{banach, second countable topology}
assumes g [measurable]: g ∈ measurable M N and f : f ∈ borel measurable N
shows integralL (distr M N g) f = integralL M (λx . f (g x ))

proof (rule integral eq cases)
assume integrable (distr M N g) f
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then show ?thesis
proof induct
case (base A c)
then have [measurable]: A ∈ sets N by auto
from base have int : integrable (distr M N g) (λa. indicator A a ∗R c)
by (intro integrable indicator)

have integralL (distr M N g) (λa. indicator A a ∗R c) = measure (distr M N
g) A ∗R c

using base by auto
also have . . . = measure M (g −‘ A ∩ space M ) ∗R c
by (subst measure distr) auto

also have . . . = integralL M (λa. indicator (g −‘ A ∩ space M ) a ∗R c)
using base by (auto simp: emeasure distr)

also have . . . = integralL M (λa. indicator A (g a) ∗R c)
using int base by (intro integral cong AE ) (auto simp: emeasure distr split :

split indicator)
finally show ?case .

next
case (add f h)
then have [measurable]: f ∈ borel measurable N h ∈ borel measurable N
by (auto dest !: borel measurable integrable)

from add g show ?case
by (simp add : scaleR add right integrable distr eq)

next
case (lim f s)
have [measurable]: f ∈ borel measurable N

∧
i . s i ∈ borel measurable N

using lim(1 ,5 )[THEN borel measurable integrable] by auto

show ?case
proof (rule LIMSEQ unique)
show (λi . integralL M (λx . s i (g x ))) −−−−→ integralL M (λx . f (g x ))
proof (rule integral dominated convergence)
show integrable M (λx . 2 ∗ norm (f (g x )))
using lim by (auto simp: integrable distr eq)

show AE x in M . (λi . s i (g x )) −−−−→ f (g x )
using lim(3 ) g [THEN measurable space] by auto

show
∧
i . AE x in M . norm (s i (g x )) ≤ 2 ∗ norm (f (g x ))

using lim(4 ) g [THEN measurable space] by auto
qed auto
show (λi . integralL M (λx . s i (g x ))) −−−−→ integralL (distr M N g) f
unfolding lim(2 )[symmetric]
by (rule integral dominated convergence[where w=λx . 2 ∗ norm (f x )])

(insert lim(3−5 ), auto)
qed

qed
qed (simp add : f g integrable distr eq)

lemma has bochner integral distr :
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fixes f :: ′a ⇒ ′b::{banach, second countable topology}
shows f ∈ borel measurable N =⇒ g ∈ measurable M N =⇒
has bochner integral M (λx . f (g x )) x =⇒ has bochner integral (distr M N g)

f x
by (simp add : has bochner integral iff integrable distr eq integral distr)

6.10.4 Lebesgue integration on count space

lemma integrable count space:
fixes f :: ′a ⇒ ′b::{banach,second countable topology}
shows finite X =⇒ integrable (count space X ) f
by (auto simp: nn integral count space integrable iff bounded)

lemma measure count space[simp]:
B ⊆ A =⇒ finite B =⇒ measure (count space A) B = card B
unfolding measure def by (subst emeasure count space ) auto

lemma lebesgue integral count space finite support :
assumes f : finite {a∈A. f a 6= 0}
shows (

∫
x . f x ∂count space A) = (

∑
a | a ∈ A ∧ f a 6= 0 . f a)

proof −
have eq :

∧
x . x ∈ A =⇒ (

∑
a | x = a ∧ a ∈ A ∧ f a 6= 0 . f a) = (

∑
x∈{x}. f

x )
by (intro sum.mono neutral cong left) auto

have (
∫
x . f x ∂count space A) = (

∫
x . (

∑
a | a ∈ A ∧ f a 6= 0 . indicator {a}

x ∗R f a) ∂count space A)
by (intro integral cong refl) (simp add : f eq)

also have . . . = (
∑

a | a ∈ A ∧ f a 6= 0 . measure (count space A) {a} ∗R f a)
by (subst integral sum) (auto intro!: sum.cong)

finally show ?thesis
by auto

qed

lemma lebesgue integral count space finite: finite A =⇒ (
∫
x . f x ∂count space A)

= (
∑

a∈A. f a)
by (subst lebesgue integral count space finite support)

(auto intro!: sum.mono neutral cong left)

lemma integrable count space nat iff :
fixes f :: nat ⇒ ::{banach,second countable topology}
shows integrable (count space UNIV ) f ←→ summable (λx . norm (f x ))
by (auto simp add : integrable iff bounded nn integral count space nat ennreal suminf neq top

intro: summable suminf not top)

lemma sums integral count space nat :
fixes f :: nat ⇒ ::{banach,second countable topology}
assumes ∗: integrable (count space UNIV ) f
shows f sums (integralL (count space UNIV ) f )
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proof −
let ?f = λn i . indicator {n} i ∗R f i
have f ′:

∧
n i . ?f n i = indicator {n} i ∗R f n

by (auto simp: fun eq iff split : split indicator)

have (λi .
∫
n. ?f i n ∂count space UNIV ) sums

∫
n. (

∑
i . ?f i n) ∂count space

UNIV
proof (rule sums integral)
show

∧
i . integrable (count space UNIV ) (?f i)

using ∗ by (intro integrable mult indicator) auto
show AE n in count space UNIV . summable (λi . norm (?f i n))
using summable finite[of {n} λi . norm (?f i n) for n] by simp

show summable (λi .
∫

n. norm (?f i n) ∂count space UNIV )
using ∗ by (subst f ′) (simp add : integrable count space nat iff )

qed
also have (

∫
n. (

∑
i . ?f i n) ∂count space UNIV ) = (

∫
n. f n ∂count space

UNIV )
using suminf finite[of {n} λi . ?f i n for n] by (auto intro!: integral cong)

also have (λi .
∫
n. ?f i n ∂count space UNIV ) = f

by (subst f ′) simp
finally show ?thesis .

qed

lemma integral count space nat :
fixes f :: nat ⇒ ::{banach,second countable topology}
shows integrable (count space UNIV ) f =⇒ integralL (count space UNIV ) f =

(
∑

x . f x )
using sums integral count space nat by (rule sums unique)

lemma integrable bij count space:
fixes f :: ′a ⇒ ′b::{banach, second countable topology}
assumes g : bij betw g A B
shows integrable (count space A) (λx . f (g x )) ←→ integrable (count space B) f
unfolding integrable iff bounded by (subst nn integral bij count space[OF g ])

auto

lemma integral bij count space:
fixes f :: ′a ⇒ ′b::{banach, second countable topology}
assumes g : bij betw g A B
shows integralL (count space A) (λx . f (g x )) = integralL (count space B) f
using g [THEN bij betw imp funcset ]
apply (subst distr bij count space[OF g , symmetric])
apply (intro integral distr [symmetric])
apply auto
done

lemma has bochner integral count space nat :
fixes f :: nat ⇒ ::{banach,second countable topology}
shows has bochner integral (count space UNIV ) f x =⇒ f sums x



Bochner Integration.thy 1605

unfolding has bochner integral iff by (auto intro!: sums integral count space nat)

6.10.5 Point measure

lemma lebesgue integral point measure finite:
fixes g :: ′a ⇒ ′b::{banach, second countable topology}
shows finite A =⇒ (

∧
a. a ∈ A =⇒ 0 ≤ f a) =⇒

integralL (point measure A f ) g = (
∑

a∈A. f a ∗R g a)
by (simp add : lebesgue integral count space finite AE count space integral density

point measure def )

proposition integrable point measure finite:
fixes g :: ′a ⇒ ′b::{banach, second countable topology} and f :: ′a ⇒ real
shows finite A =⇒ integrable (point measure A f ) g
unfolding point measure def
apply (subst density cong [where f ′=λx . ennreal (max 0 (f x ))])
apply (auto split : split max simp: ennreal neg)
apply (subst integrable density)
apply (auto simp: AE count space integrable count space)
done

6.10.6 Lebesgue integration on null measure

lemma has bochner integral null measure iff [iff ]:
has bochner integral (null measure M ) f 0 ←→ f ∈ borel measurable M
by (auto simp add : has bochner integral .simps simple bochner integral def [abs def ]

intro!: exI [of λn x . 0 ] simple bochner integrable.intros)

lemma integrable null measure iff [iff ]: integrable (null measure M ) f ←→ f ∈
borel measurable M
by (auto simp add : integrable.simps)

lemma integral null measure[simp]: integralL (null measure M ) f = 0
by (cases integrable (null measure M ) f )

(auto simp add : not integrable integral eq has bochner integral integral eq)

6.10.7 Legacy lemmas for the real-valued Lebesgue integral

theorem real lebesgue integral def :
assumes f [measurable]: integrable M f
shows integralL M f = enn2real (

∫
+x . f x ∂M ) − enn2real (

∫
+x . ennreal (−

f x ) ∂M )
proof −
have integralL M f = integralL M (λx . max 0 (f x ) − max 0 (− f x ))
by (auto intro!: arg cong [where f=integralL M ])

also have . . . = integralL M (λx . max 0 (f x )) − integralL M (λx . max 0 (− f
x ))

by (intro integral diff integrable max integrable minus integrable zero f )
also have integralL M (λx . max 0 (f x )) = enn2real (

∫
+x . ennreal (f x ) ∂M )

Bochner{_}{\kern 0pt}Integration.html


1606

by (subst integral eq nn integral) (auto intro!: arg cong [where f=enn2real ]
nn integral cong simp: max def ennreal neg)
also have integralL M (λx . max 0 (− f x )) = enn2real (

∫
+x . ennreal (− f x )

∂M )
by (subst integral eq nn integral) (auto intro!: arg cong [where f=enn2real ]

nn integral cong simp: max def ennreal neg)
finally show ?thesis .

qed

theorem real integrable def :
integrable M f ←→ f ∈ borel measurable M ∧
(
∫

+ x . ennreal (f x ) ∂M ) 6= ∞ ∧ (
∫

+ x . ennreal (− f x ) ∂M ) 6= ∞
unfolding integrable iff bounded

proof (safe del : notI )
assume ∗: (

∫
+ x . ennreal (norm (f x )) ∂M ) < ∞

have (
∫

+ x . ennreal (f x ) ∂M ) ≤ (
∫

+ x . ennreal (norm (f x )) ∂M )
by (intro nn integral mono) auto

also note ∗
finally show (

∫
+ x . ennreal (f x ) ∂M ) 6= ∞

by simp
have (

∫
+ x . ennreal (− f x ) ∂M ) ≤ (

∫
+ x . ennreal (norm (f x )) ∂M )

by (intro nn integral mono) auto
also note ∗
finally show (

∫
+ x . ennreal (− f x ) ∂M ) 6= ∞

by simp
next
assume [measurable]: f ∈ borel measurable M
assume fin: (

∫
+ x . ennreal (f x ) ∂M ) 6= ∞ (

∫
+ x . ennreal (− f x ) ∂M ) 6= ∞

have (
∫

+ x . norm (f x ) ∂M ) = (
∫

+ x . ennreal (f x ) + ennreal (− f x ) ∂M )
by (intro nn integral cong) (auto simp: abs real def ennreal neg)

also have. . . = (
∫

+ x . ennreal (f x ) ∂M ) + (
∫

+ x . ennreal (− f x ) ∂M )
by (intro nn integral add) auto

also have . . . < ∞
using fin by (auto simp: less top)

finally show (
∫

+ x . norm (f x ) ∂M ) < ∞ .
qed

lemma integrableD [dest ]:
assumes integrable M f
shows f ∈ borel measurable M (

∫
+ x . ennreal (f x ) ∂M ) 6= ∞ (

∫
+ x . ennreal

(− f x ) ∂M ) 6= ∞
using assms unfolding real integrable def by auto

lemma integrableE :
assumes integrable M f
obtains r q where 0 ≤ r 0 ≤ q
(
∫

+x . ennreal (f x )∂M ) = ennreal r
(
∫

+x . ennreal (−f x )∂M ) = ennreal q
f ∈ borel measurable M integralL M f = r − q



Bochner Integration.thy 1607

using assms unfolding real integrable def real lebesgue integral def [OF assms]
by (cases rule: ennreal2 cases[of (

∫
+x . ennreal (−f x )∂M ) (

∫
+x . ennreal (f

x )∂M )]) auto

lemma integral monotone convergence nonneg :
fixes f :: nat ⇒ ′a ⇒ real
assumes i :

∧
i . integrable M (f i) and mono: AE x in M . mono (λn. f n x )

and pos:
∧
i . AE x in M . 0 ≤ f i x

and lim: AE x in M . (λi . f i x ) −−−−→ u x
and ilim: (λi . integralL M (f i)) −−−−→ x
and u: u ∈ borel measurable M

shows integrable M u
and integralL M u = x

proof −
have nn: AE x in M . ∀ i . 0 ≤ f i x
using pos unfolding AE all countable by auto

with lim have u nn: AE x in M . 0 ≤ u x
by eventually elim (auto intro: LIMSEQ le const)

have [simp]: 0 ≤ x
by (intro LIMSEQ le const [OF ilim] allI exI impI integral nonneg AE pos)

have (
∫

+ x . ennreal (u x ) ∂M ) = (SUP n. (
∫

+ x . ennreal (f n x ) ∂M ))
proof (subst nn integral monotone convergence SUP AE [symmetric])
fix i
from mono nn show AE x in M . ennreal (f i x ) ≤ ennreal (f (Suc i) x )
by eventually elim (auto simp: mono def )

show (λx . ennreal (f i x )) ∈ borel measurable M
using i by auto

next
show (

∫
+ x . ennreal (u x ) ∂M ) =

∫
+ x . (SUP i . ennreal (f i x )) ∂M

apply (rule nn integral cong AE )
using lim mono nn u nn
apply eventually elim
apply (simp add : LIMSEQ unique[OF LIMSEQ SUP ] incseq def )
done

qed
also have . . . = ennreal x
using mono i nn unfolding nn integral eq integral [OF i pos]
by (subst LIMSEQ unique[OF LIMSEQ SUP ]) (auto simp: mono def inte-

gral nonneg AE pos intro!: integral mono AE ilim)
finally have (

∫
+ x . ennreal (u x ) ∂M ) = ennreal x .

moreover have (
∫

+ x . ennreal (− u x ) ∂M ) = 0
using u u nn by (subst nn integral 0 iff AE ) (auto simp add : ennreal neg)

ultimately show integrable M u integralL M u = x
by (auto simp: real integrable def real lebesgue integral def u)

qed

lemma
fixes f :: nat ⇒ ′a ⇒ real
assumes f :

∧
i . integrable M (f i) and mono: AE x in M . mono (λn. f n x )
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and lim: AE x in M . (λi . f i x ) −−−−→ u x
and ilim: (λi . integralL M (f i)) −−−−→ x
and u: u ∈ borel measurable M
shows integrable monotone convergence: integrable M u
and integral monotone convergence: integralL M u = x
and has bochner integral monotone convergence: has bochner integral M u x

proof −
have 1 :

∧
i . integrable M (λx . f i x − f 0 x )

using f by auto
have 2 : AE x in M . mono (λn. f n x − f 0 x )
using mono by (auto simp: mono def le fun def )

have 3 :
∧
n. AE x in M . 0 ≤ f n x − f 0 x

using mono by (auto simp: field simps mono def le fun def )
have 4 : AE x in M . (λi . f i x − f 0 x ) −−−−→ u x − f 0 x
using lim by (auto intro!: tendsto diff )

have 5 : (λi . (
∫
x . f i x − f 0 x ∂M )) −−−−→ x − integralL M (f 0 )

using f ilim by (auto intro!: tendsto diff )
have 6 : (λx . u x − f 0 x ) ∈ borel measurable M
using f [of 0 ] u by auto

note diff = integral monotone convergence nonneg [OF 1 2 3 4 5 6 ]
have integrable M (λx . (u x − f 0 x ) + f 0 x )
using diff (1 ) f by (rule integrable add)

with diff (2 ) f show integrable M u integralL M u = x
by auto

then show has bochner integral M u x
by (metis has bochner integral integrable)

qed

lemma integral norm eq 0 iff :
fixes f :: ′a ⇒ ′b::{banach, second countable topology}
assumes f [measurable]: integrable M f
shows (

∫
x . norm (f x ) ∂M ) = 0 ←→ emeasure M {x∈space M . f x 6= 0} = 0

proof −
have (

∫
+x . norm (f x ) ∂M ) = (

∫
x . norm (f x ) ∂M )

using f by (intro nn integral eq integral integrable norm) auto
then have (

∫
x . norm (f x ) ∂M ) = 0 ←→ (

∫
+x . norm (f x ) ∂M ) = 0

by simp
also have . . . ←→ emeasure M {x∈space M . ennreal (norm (f x )) 6= 0} = 0
by (intro nn integral 0 iff ) auto

finally show ?thesis
by simp

qed

lemma integral 0 iff :
fixes f :: ′a ⇒ real
shows integrable M f =⇒ (

∫
x . |f x | ∂M ) = 0 ←→ emeasure M {x∈space M . f

x 6= 0} = 0
using integral norm eq 0 iff [of M f ] by simp
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lemma (in finite measure) integrable const [intro!, simp]: integrable M (λx . a)
using integrable indicator [of space M M a] by (simp cong : integrable cong add :

less top[symmetric])

lemma lebesgue integral const [simp]:
fixes a :: ′a :: {banach, second countable topology}
shows (

∫
x . a ∂M ) = measure M (space M ) ∗R a

proof −
{ assume emeasure M (space M ) = ∞ a 6= 0
then have ?thesis
by (auto simp add : not integrable integral eq ennreal mult less top measure def

integrable iff bounded) }
moreover
{ assume a = 0 then have ?thesis by simp }
moreover
{ assume emeasure M (space M ) 6= ∞
interpret finite measure M
proof qed fact

have (
∫
x . a ∂M ) = (

∫
x . indicator (space M ) x ∗R a ∂M )

by (intro integral cong) auto
also have . . . = measure M (space M ) ∗R a
by (simp add : less top[symmetric])

finally have ?thesis . }
ultimately show ?thesis by blast

qed

lemma (in finite measure) integrable const bound :
fixes f :: ′a ⇒ ′b::{banach,second countable topology}
shows AE x in M . norm (f x ) ≤ B =⇒ f ∈ borel measurable M =⇒ integrable

M f
apply (rule integrable bound [OF integrable const [of B ], of f ])
apply assumption
apply (cases 0 ≤ B)
apply auto
done

lemma (in finite measure) integral bounded eq bound then AE :
assumes AE x in M . f x ≤ (c::real)
integrable M f (

∫
x . f x ∂M ) = c ∗ measure M (space M )

shows AE x in M . f x = c
apply (rule integral ineq eq 0 then AE ) using assms by auto

lemma integral indicator finite real :
fixes f :: ′a ⇒ real
assumes [simp]: finite A
assumes [measurable]:

∧
a. a ∈ A =⇒ {a} ∈ sets M

assumes finite:
∧
a. a ∈ A =⇒ emeasure M {a} < ∞

shows (
∫
x . f x ∗ indicator A x ∂M ) = (

∑
a∈A. f a ∗ measure M {a})

proof −
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have (
∫
x . f x ∗ indicator A x ∂M ) = (

∫
x . (

∑
a∈A. f a ∗ indicator {a} x ) ∂M )

proof (intro integral cong refl)
fix x show f x ∗ indicator A x = (

∑
a∈A. f a ∗ indicator {a} x )

by (auto split : split indicator simp: eq commute[of x ] cong : conj cong)
qed
also have . . . = (

∑
a∈A. f a ∗ measure M {a})

using finite by (subst integral sum) (auto)
finally show ?thesis .

qed

lemma (in finite measure) ennreal integral real :
assumes [measurable]: f ∈ borel measurable M
assumes ae: AE x in M . f x ≤ ennreal B 0 ≤ B
shows ennreal (

∫
x . enn2real (f x ) ∂M ) = (

∫
+x . f x ∂M )

proof (subst nn integral eq integral [symmetric])
show integrable M (λx . enn2real (f x ))
using ae by (intro integrable const bound [where B=B ]) (auto simp: enn2real leI )
show (

∫
+ x . ennreal (enn2real (f x )) ∂M ) = integralN M f

using ae by (intro nn integral cong AE ) (auto simp: le less trans[OF en-
nreal less top])
qed auto

lemma (in finite measure) integral less AE :
fixes X Y :: ′a ⇒ real
assumes int : integrable M X integrable M Y
assumes A: (emeasure M ) A 6= 0 A ∈ sets M AE x in M . x ∈ A −→ X x 6= Y x
assumes gt : AE x in M . X x ≤ Y x
shows integralL M X < integralL M Y

proof −
have integralL M X ≤ integralL M Y
using gt int by (intro integral mono AE ) auto

moreover
have integralL M X 6= integralL M Y
proof
assume eq : integralL M X = integralL M Y
have integralL M (λx . |Y x − X x |) = integralL M (λx . Y x − X x )
using gt int by (intro integral cong AE ) auto

also have . . . = 0
using eq int by simp

finally have (emeasure M ) {x ∈ space M . Y x − X x 6= 0} = 0
using int by (simp add : integral 0 iff )

moreover
have (

∫
+x . indicator A x ∂M ) ≤ (

∫
+x . indicator {x ∈ space M . Y x − X x

6= 0} x ∂M )
using A by (intro nn integral mono AE ) auto

then have (emeasure M ) A ≤ (emeasure M ) {x ∈ space M . Y x − X x 6= 0}
using int A by (simp add : integrable def )

ultimately have emeasure M A = 0
by simp
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with 〈(emeasure M ) A 6= 0 〉 show False by auto
qed
ultimately show ?thesis by auto

qed

lemma (in finite measure) integral less AE space:
fixes X Y :: ′a ⇒ real
assumes int : integrable M X integrable M Y
assumes gt : AE x in M . X x < Y x emeasure M (space M ) 6= 0
shows integralL M X < integralL M Y
using gt by (intro integral less AE [OF int , where A=space M ]) auto

lemma tendsto integral at top:
fixes f :: real ⇒ ′a::{banach, second countable topology}
assumes [measurable cong ]: sets M = sets borel and f [measurable]: integrable M

f
shows ((λy .

∫
x . indicator {.. y} x ∗R f x ∂M ) −−−→

∫
x . f x ∂M ) at top

proof (rule tendsto at topI sequentially)
fix X :: nat ⇒ real assume filterlim X at top sequentially
show (λn.

∫
x . indicator {..X n} x ∗R f x ∂M ) −−−−→ integralL M f

proof (rule integral dominated convergence)
show integrable M (λx . norm (f x ))
by (rule integrable norm) fact

show AE x in M . (λn. indicator {..X n} x ∗R f x ) −−−−→ f x
proof
fix x
from 〈filterlim X at top sequentially〉

have eventually (λn. x ≤ X n) sequentially
unfolding filterlim at top ge[where c=x ] by auto

then show (λn. indicator {..X n} x ∗R f x ) −−−−→ f x
by (intro tendsto eventually) (auto split : split indicator elim!: eventu-

ally mono)
qed
fix n show AE x in M . norm (indicator {..X n} x ∗R f x ) ≤ norm (f x )
by (auto split : split indicator)

qed auto
qed

lemma
fixes f :: real ⇒ real
assumes M : sets M = sets borel
assumes nonneg : AE x in M . 0 ≤ f x
assumes borel : f ∈ borel measurable borel
assumes int :

∧
y . integrable M (λx . f x ∗ indicator {.. y} x )

assumes conv : ((λy .
∫

x . f x ∗ indicator {.. y} x ∂M ) −−−→ x ) at top
shows has bochner integral monotone convergence at top: has bochner integral M

f x
and integrable monotone convergence at top: integrable M f
and integral monotone convergence at top:integralL M f = x
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proof −
from nonneg have AE x in M . mono (λn::nat . f x ∗ indicator {..real n} x )
by (auto split : split indicator intro!: monoI )

{ fix x have eventually (λn. f x ∗ indicator {..real n} x = f x ) sequentially
by (rule eventually sequentiallyI [of nat dxe])

(auto split : split indicator simp: nat le iff ceiling le iff ) }
from filterlim cong [OF refl refl this]
have AE x in M . (λi . f x ∗ indicator {..real i} x ) −−−−→ f x
by simp

have (λi .
∫

x . f x ∗ indicator {..real i} x ∂M ) −−−−→ x
using conv filterlim real sequentially by (rule filterlim compose)

have M measure[simp]: borel measurable M = borel measurable borel
using M by (simp add : sets eq imp space eq measurable def )

have f ∈ borel measurable M
using borel by simp

show has bochner integral M f x
by (rule has bochner integral monotone convergence) fact+

then show integrable M f integralL M f = x
by (auto simp: has bochner integral iff )

qed

6.10.8 Product measure

lemma (in sigma finite measure) borel measurable lebesgue integrable[measurable
(raw)]:
fixes f :: ⇒ ⇒ ::{banach, second countable topology}
assumes [measurable]: case prod f ∈ borel measurable (N

⊗
M M )

shows Measurable.pred N (λx . integrable M (f x ))
proof −
have [simp]:

∧
x . x ∈ space N =⇒ integrable M (f x ) ←→ (

∫
+y . norm (f x y)

∂M ) < ∞
unfolding integrable iff bounded by simp

show ?thesis
by (simp cong : measurable cong)

qed

lemma (in sigma finite measure) measurable measure[measurable (raw)]:
(
∧
x . x ∈ space N =⇒ A x ⊆ space M ) =⇒
{x ∈ space (N

⊗
M M ). snd x ∈ A (fst x )} ∈ sets (N

⊗
M M ) =⇒

(λx . measure M (A x )) ∈ borel measurable N
unfolding measure def by (intro measurable emeasure borel measurable enn2real)

auto

proposition (in sigma finite measure) borel measurable lebesgue integral [measurable
(raw)]:
fixes f :: ⇒ ⇒ ::{banach, second countable topology}
assumes f [measurable]: case prod f ∈ borel measurable (N

⊗
M M )

shows (λx .
∫
y . f x y ∂M ) ∈ borel measurable N

proof −
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from borel measurable implies sequence metric[OF f , of 0 ] guess s ..
then have s:

∧
i . simple function (N

⊗
M M ) (s i)∧

x y . x ∈ space N =⇒ y ∈ space M =⇒ (λi . s i (x , y)) −−−−→ f x y∧
i x y . x ∈ space N =⇒ y ∈ space M =⇒ norm (s i (x , y)) ≤ 2 ∗ norm (f x

y)
by (auto simp: space pair measure)

have [measurable]:
∧
i . s i ∈ borel measurable (N

⊗
M M )

by (rule borel measurable simple function) fact

have
∧
i . s i ∈ measurable (N

⊗
M M ) (count space UNIV )

by (rule measurable simple function) fact

define f ′ where [abs def ]: f ′ i x =
(if integrable M (f x ) then simple bochner integral M (λy . s i (x , y)) else 0 )

for i x

{ fix i x assume x ∈ space N
then have simple bochner integral M (λy . s i (x , y)) =
(
∑

z∈s i ‘ (space N × space M ). measure M {y ∈ space M . s i (x , y) = z}
∗R z )

using s(1 )[THEN simple functionD(1 )]
unfolding simple bochner integral def
by (intro sum.mono neutral cong left)

(auto simp: eq commute space pair measure image iff cong : conj cong) }
note eq = this

show ?thesis
proof (rule borel measurable LIMSEQ metric)
fix i show f ′ i ∈ borel measurable N
unfolding f ′ def by (simp all add : eq cong : measurable cong if cong)

next
fix x assume x : x ∈ space N
{ assume int f : integrable M (f x )
have int 2f : integrable M (λy . 2 ∗ norm (f x y))
by (intro integrable norm integrable mult right int f )

have (λi . integralL M (λy . s i (x , y))) −−−−→ integralL M (f x )
proof (rule integral dominated convergence)
from int f show f x ∈ borel measurable M by auto
show

∧
i . (λy . s i (x , y)) ∈ borel measurable M

using x by simp
show AE xa in M . (λi . s i (x , xa)) −−−−→ f x xa
using x s(2 ) by auto

show
∧
i . AE xa in M . norm (s i (x , xa)) ≤ 2 ∗ norm (f x xa)

using x s(3 ) by auto
qed fact
moreover
{ fix i
have simple bochner integrable M (λy . s i (x , y))
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proof (rule simple bochner integrableI bounded)
have (λy . s i (x , y)) ‘ space M ⊆ s i ‘ (space N × space M )
using x by auto

then show simple function M (λy . s i (x , y))
using simple functionD(1 )[OF s(1 ), of i ] x
by (intro simple function borel measurable)

(auto simp: space pair measure dest : finite subset)
have (

∫
+ y . ennreal (norm (s i (x , y))) ∂M ) ≤ (

∫
+ y . 2 ∗ norm (f x y)

∂M )
using x s by (intro nn integral mono) auto

also have (
∫

+ y . 2 ∗ norm (f x y) ∂M ) < ∞
using int 2f unfolding integrable iff bounded by simp

finally show (
∫

+ xa. ennreal (norm (s i (x , xa))) ∂M ) < ∞ .
qed
then have integralL M (λy . s i (x , y)) = simple bochner integral M (λy . s

i (x , y))
by (rule simple bochner integrable eq integral [symmetric]) }

ultimately have (λi . simple bochner integral M (λy . s i (x , y))) −−−−→
integralL M (f x )

by simp }
then
show (λi . f ′ i x ) −−−−→ integralL M (f x )
unfolding f ′ def
by (cases integrable M (f x )) (simp all add : not integrable integral eq)

qed
qed

lemma (in pair sigma finite) integrable product swap:
fixes f :: ⇒ ::{banach, second countable topology}
assumes integrable (M1

⊗
M M2 ) f

shows integrable (M2
⊗

M M1 ) (λ(x ,y). f (y ,x ))
proof −
interpret Q : pair sigma finite M2 M1 ..
have ∗: (λ(x ,y). f (y ,x )) = (λx . f (case x of (x ,y)⇒(y ,x ))) by (auto simp:

fun eq iff )
show ?thesis unfolding ∗
by (rule integrable distr [OF measurable pair swap ′])

(simp add : distr pair swap[symmetric] assms)
qed

lemma (in pair sigma finite) integrable product swap iff :
fixes f :: ⇒ ::{banach, second countable topology}
shows integrable (M2

⊗
M M1 ) (λ(x ,y). f (y ,x ))←→ integrable (M1

⊗
M M2 )

f
proof −
interpret Q : pair sigma finite M2 M1 ..
from Q .integrable product swap[of λ(x ,y). f (y ,x )] integrable product swap[of f ]
show ?thesis by auto

qed
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lemma (in pair sigma finite) integral product swap:
fixes f :: ⇒ ::{banach, second countable topology}
assumes f : f ∈ borel measurable (M1

⊗
M M2 )

shows (
∫
(x ,y). f (y ,x ) ∂(M2

⊗
M M1 )) = integralL (M1

⊗
M M2 ) f

proof −
have ∗: (λ(x ,y). f (y ,x )) = (λx . f (case x of (x ,y)⇒(y ,x ))) by (auto simp:

fun eq iff )
show ?thesis unfolding ∗
by (simp add : integral distr [symmetric, OF measurable pair swap ′ f ] distr pair swap[symmetric])

qed

theorem (in pair sigma finite) Fubini integrable:
fixes f :: ⇒ ::{banach, second countable topology}
assumes f [measurable]: f ∈ borel measurable (M1

⊗
M M2 )

and integ1 : integrable M1 (λx .
∫

y . norm (f (x , y)) ∂M2 )
and integ2 : AE x in M1 . integrable M2 (λy . f (x , y))

shows integrable (M1
⊗

M M2 ) f
proof (rule integrableI bounded)
have (

∫
+ p. norm (f p) ∂(M1

⊗
M M2 )) = (

∫
+ x . (

∫
+ y . norm (f (x , y))

∂M2 ) ∂M1 )
by (simp add : M2 .nn integral fst [symmetric])

also have . . . = (
∫

+ x . |
∫
y . norm (f (x , y)) ∂M2 | ∂M1 )

apply (intro nn integral cong AE )
using integ2

proof eventually elim
fix x assume integrable M2 (λy . f (x , y))
then have f : integrable M2 (λy . norm (f (x , y)))
by simp
then have (

∫
+y . ennreal (norm (f (x , y))) ∂M2 ) = ennreal (LINT y |M2 .

norm (f (x , y)))
by (rule nn integral eq integral) simp

also have . . . = ennreal |LINT y |M2 . norm (f (x , y))|
using f by simp

finally show (
∫

+y . ennreal (norm (f (x , y))) ∂M2 ) = ennreal |LINT y |M2 .
norm (f (x , y))| .
qed
also have . . . < ∞
using integ1 by (simp add : integrable iff bounded integral nonneg AE )

finally show (
∫

+ p. norm (f p) ∂(M1
⊗

M M2 )) < ∞ .
qed fact

lemma (in pair sigma finite) emeasure pair measure finite:
assumes A: A ∈ sets (M1

⊗
M M2 ) and finite: emeasure (M1

⊗
M M2 ) A <

∞
shows AE x in M1 . emeasure M2 {y∈space M2 . (x , y) ∈ A} < ∞

proof −
from M2 .emeasure pair measure alt [OF A] finite
have (

∫
+ x . emeasure M2 (Pair x −‘ A) ∂M1 ) 6= ∞
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by simp
then have AE x in M1 . emeasure M2 (Pair x −‘ A) 6= ∞
by (rule nn integral PInf AE [rotated ]) (intro M2 .measurable emeasure Pair A)

moreover have
∧
x . x ∈ space M1 =⇒ Pair x −‘ A = {y∈space M2 . (x , y) ∈

A}
using sets.sets into space[OF A] by (auto simp: space pair measure)

ultimately show ?thesis by (auto simp: less top)
qed

lemma (in pair sigma finite) AE integrable fst ′:
fixes f :: ⇒ ::{banach, second countable topology}
assumes f [measurable]: integrable (M1

⊗
M M2 ) f

shows AE x in M1 . integrable M2 (λy . f (x , y))
proof −
have (

∫
+x . (

∫
+y . norm (f (x , y)) ∂M2 ) ∂M1 ) = (

∫
+x . norm (f x ) ∂(M1

⊗
M

M2 ))
by (rule M2 .nn integral fst) simp

also have (
∫

+x . norm (f x ) ∂(M1
⊗

M M2 )) 6= ∞
using f unfolding integrable iff bounded by simp

finally have AE x in M1 . (
∫

+y . norm (f (x , y)) ∂M2 ) 6= ∞
by (intro nn integral PInf AE M2 .borel measurable nn integral )

(auto simp: measurable split conv)
with AE space show ?thesis
by eventually elim
(auto simp: integrable iff bounded measurable compose[OF borel measurable integrable[OF

f ]] less top)
qed

lemma (in pair sigma finite) integrable fst ′:
fixes f :: ⇒ ::{banach, second countable topology}
assumes f [measurable]: integrable (M1

⊗
M M2 ) f

shows integrable M1 (λx .
∫
y . f (x , y) ∂M2 )

unfolding integrable iff bounded
proof
show (λx .

∫
y . f (x , y) ∂M2 ) ∈ borel measurable M1

by (rule M2 .borel measurable lebesgue integral) simp
have (

∫
+ x . ennreal (norm (

∫
y . f (x , y) ∂M2 )) ∂M1 ) ≤ (

∫
+x . (

∫
+y . norm

(f (x , y)) ∂M2 ) ∂M1 )
using AE integrable fst ′[OF f ] by (auto intro!: nn integral mono AE inte-

gral norm bound ennreal)
also have (

∫
+x . (

∫
+y . norm (f (x , y)) ∂M2 ) ∂M1 ) = (

∫
+x . norm (f x ) ∂(M1⊗

M M2 ))
by (rule M2 .nn integral fst) simp

also have (
∫

+x . norm (f x ) ∂(M1
⊗

M M2 )) < ∞
using f unfolding integrable iff bounded by simp

finally show (
∫

+ x . ennreal (norm (
∫

y . f (x , y) ∂M2 )) ∂M1 ) < ∞ .
qed

proposition (in pair sigma finite) integral fst ′:
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fixes f :: ⇒ ::{banach, second countable topology}
assumes f : integrable (M1

⊗
M M2 ) f

shows (
∫
x . (

∫
y . f (x , y) ∂M2 ) ∂M1 ) = integralL (M1

⊗
M M2 ) f

using f proof induct
case (base A c)
have A[measurable]: A ∈ sets (M1

⊗
M M2 ) by fact

have eq :
∧
x y . x ∈ space M1 =⇒ indicator A (x , y) = indicator {y∈space M2 .

(x , y) ∈ A} y
using sets.sets into space[OF A] by (auto split : split indicator simp: space pair measure)

have int A: integrable (M1
⊗

M M2 ) (indicator A :: ⇒ real)
using base by (rule integrable real indicator)

have (
∫

x .
∫

y . indicator A (x , y) ∗R c ∂M2 ∂M1 ) = (
∫
x . measure M2

{y∈space M2 . (x , y) ∈ A} ∗R c ∂M1 )
proof (intro integral cong AE , simp, simp)
from AE integrable fst ′[OF int A] AE space
show AE x in M1 . (

∫
y . indicator A (x , y) ∗R c ∂M2 ) = measure M2 {y∈space

M2 . (x , y) ∈ A} ∗R c
by eventually elim (simp add : eq integrable indicator iff )

qed
also have . . . = measure (M1

⊗
M M2 ) A ∗R c

proof (subst integral scaleR left)
have (

∫
+x . ennreal (measure M2 {y ∈ space M2 . (x , y) ∈ A}) ∂M1 ) =

(
∫

+x . emeasure M2 {y ∈ space M2 . (x , y) ∈ A} ∂M1 )
using emeasure pair measure finite[OF base]

by (intro nn integral cong AE , eventually elim) (simp add : emeasure eq ennreal measure)
also have . . . = emeasure (M1

⊗
M M2 ) A

using sets.sets into space[OF A]
by (subst M2 .emeasure pair measure alt)

(auto intro!: nn integral cong arg cong [where f=emeasure M2 ] simp:
space pair measure)

finally have ∗: (
∫

+x . ennreal (measure M2 {y ∈ space M2 . (x , y) ∈ A})
∂M1 ) = emeasure (M1

⊗
M M2 ) A .

from base ∗ show integrable M1 (λx . measure M2 {y ∈ space M2 . (x , y) ∈
A})

by (simp add : integrable iff bounded)
then have (

∫
x . measure M2 {y ∈ space M2 . (x , y) ∈ A} ∂M1 ) =

(
∫

+x . ennreal (measure M2 {y ∈ space M2 . (x , y) ∈ A}) ∂M1 )
by (rule nn integral eq integral [symmetric]) simp

also note ∗
finally show (

∫
x . measure M2 {y ∈ space M2 . (x , y) ∈ A} ∂M1 ) ∗R c =

measure (M1
⊗

M M2 ) A ∗R c
using base by (simp add : emeasure eq ennreal measure)

qed
also have . . . = (

∫
a. indicator A a ∗R c ∂(M1

⊗
M M2 ))

using base by simp
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finally show ?case .
next
case (add f g)
then have [measurable]: f ∈ borel measurable (M1

⊗
M M2 ) g ∈ borel measurable

(M1
⊗

M M2 )
by auto

have (
∫

x .
∫

y . f (x , y) + g (x , y) ∂M2 ∂M1 ) =
(
∫

x . (
∫

y . f (x , y) ∂M2 ) + (
∫

y . g (x , y) ∂M2 ) ∂M1 )
apply (rule integral cong AE )
apply simp all
using AE integrable fst ′[OF add(1 )] AE integrable fst ′[OF add(3 )]
apply eventually elim
apply simp
done

also have . . . = (
∫

x . f x ∂(M1
⊗

M M2 )) + (
∫

x . g x ∂(M1
⊗

M M2 ))
using integrable fst ′[OF add(1 )] integrable fst ′[OF add(3 )] add(2 ,4 ) by simp

finally show ?case
using add by simp

next
case (lim f s)
then have [measurable]: f ∈ borel measurable (M1

⊗
M M2 )

∧
i . s i ∈ borel measurable

(M1
⊗

M M2 )
by auto

show ?case
proof (rule LIMSEQ unique)
show (λi . integralL (M1

⊗
M M2 ) (s i)) −−−−→ integralL (M1

⊗
M M2 ) f

proof (rule integral dominated convergence)
show integrable (M1

⊗
M M2 ) (λx . 2 ∗ norm (f x ))

using lim(5 ) by auto
qed (insert lim, auto)
have (λi .

∫
x .

∫
y . s i (x , y) ∂M2 ∂M1 ) −−−−→

∫
x .

∫
y . f (x , y) ∂M2

∂M1
proof (rule integral dominated convergence)
have AE x in M1 . ∀ i . integrable M2 (λy . s i (x , y))
unfolding AE all countable using AE integrable fst ′[OF lim(1 )] ..

with AE space AE integrable fst ′[OF lim(5 )]
show AE x in M1 . (λi .

∫
y . s i (x , y) ∂M2 ) −−−−→

∫
y . f (x , y) ∂M2

proof eventually elim
fix x assume x : x ∈ space M1 and
s: ∀ i . integrable M2 (λy . s i (x , y)) and f : integrable M2 (λy . f (x , y))

show (λi .
∫

y . s i (x , y) ∂M2 ) −−−−→
∫

y . f (x , y) ∂M2
proof (rule integral dominated convergence)
show integrable M2 (λy . 2 ∗ norm (f (x , y)))

using f by auto
show AE xa in M2 . (λi . s i (x , xa)) −−−−→ f (x , xa)
using x lim(3 ) by (auto simp: space pair measure)

show
∧
i . AE xa in M2 . norm (s i (x , xa)) ≤ 2 ∗ norm (f (x , xa))

using x lim(4 ) by (auto simp: space pair measure)
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qed (insert x , measurable)
qed
show integrable M1 (λx . (

∫
y . 2 ∗ norm (f (x , y)) ∂M2 ))

by (intro integrable mult right integrable norm integrable fst ′ lim)
fix i show AE x in M1 . norm (

∫
y . s i (x , y) ∂M2 ) ≤ (

∫
y . 2 ∗ norm (f

(x , y)) ∂M2 )
using AE space AE integrable fst ′[OF lim(1 ), of i ] AE integrable fst ′[OF

lim(5 )]
proof eventually elim
fix x assume x : x ∈ space M1
and s: integrable M2 (λy . s i (x , y)) and f : integrable M2 (λy . f (x , y))

from s have norm (
∫

y . s i (x , y) ∂M2 ) ≤ (
∫

+y . norm (s i (x , y)) ∂M2 )
by (rule integral norm bound ennreal)

also have . . . ≤ (
∫

+y . 2 ∗ norm (f (x , y)) ∂M2 )
using x lim by (auto intro!: nn integral mono simp: space pair measure)

also have . . . = (
∫
y . 2 ∗ norm (f (x , y)) ∂M2 )

using f by (intro nn integral eq integral) auto
finally show norm (

∫
y . s i (x , y) ∂M2 ) ≤ (

∫
y . 2 ∗ norm (f (x , y))

∂M2 )
by simp

qed
qed simp all
then show (λi . integralL (M1

⊗
M M2 ) (s i)) −−−−→

∫
x .

∫
y . f (x , y) ∂M2

∂M1
using lim by simp

qed
qed

lemma (in pair sigma finite)
fixes f :: ⇒ ⇒ ::{banach, second countable topology}
assumes f : integrable (M1

⊗
M M2 ) (case prod f )

shows AE integrable fst : AE x in M1 . integrable M2 (λy . f x y) (is ?AE )
and integrable fst : integrable M1 (λx .

∫
y . f x y ∂M2 ) (is ?INT )

and integral fst : (
∫
x . (

∫
y . f x y ∂M2 ) ∂M1 ) = integralL (M1

⊗
M M2 ) (λ(x ,

y). f x y) (is ?EQ)
using AE integrable fst ′[OF f ] integrable fst ′[OF f ] integral fst ′[OF f ] by auto

lemma (in pair sigma finite)
fixes f :: ⇒ ⇒ ::{banach, second countable topology}
assumes f [measurable]: integrable (M1

⊗
M M2 ) (case prod f )

shows AE integrable snd : AE y in M2 . integrable M1 (λx . f x y) (is ?AE )
and integrable snd : integrable M2 (λy .

∫
x . f x y ∂M1 ) (is ?INT )

and integral snd : (
∫
y . (

∫
x . f x y ∂M1 ) ∂M2 ) = integralL (M1

⊗
M M2 )

(case prod f ) (is ?EQ)
proof −
interpret Q : pair sigma finite M2 M1 ..
have Q int : integrable (M2

⊗
M M1 ) (λ(x , y). f y x )

using f unfolding integrable product swap iff [symmetric] by simp
show ?AE using Q .AE integrable fst ′[OF Q int ] by simp
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show ?INT using Q .integrable fst ′[OF Q int ] by simp
show ?EQ using Q .integral fst ′[OF Q int ]
using integral product swap[of case prod f ] by simp

qed

proposition (in pair sigma finite) Fubini integral :
fixes f :: ⇒ ⇒ :: {banach, second countable topology}
assumes f : integrable (M1

⊗
M M2 ) (case prod f )

shows (
∫
y . (

∫
x . f x y ∂M1 ) ∂M2 ) = (

∫
x . (

∫
y . f x y ∂M2 ) ∂M1 )

unfolding integral snd [OF assms] integral fst [OF assms] ..

lemma (in product sigma finite) product integral singleton:
fixes f :: ⇒ ::{banach, second countable topology}
shows f ∈ borel measurable (M i) =⇒ (

∫
x . f (x i) ∂PiM {i} M ) = integralL

(M i) f
apply (subst distr singleton[symmetric])
apply (subst integral distr)
apply simp all
done

lemma (in product sigma finite) product integral fold :
fixes f :: ⇒ ::{banach, second countable topology}
assumes IJ [simp]: I ∩ J = {} and fin: finite I finite J
and f : integrable (PiM (I ∪ J ) M ) f
shows integralL (PiM (I ∪ J ) M ) f = (

∫
x . (

∫
y . f (merge I J (x , y)) ∂PiM J

M ) ∂PiM I M )
proof −
interpret I : finite product sigma finite M I by standard fact
interpret J : finite product sigma finite M J by standard fact
have finite (I ∪ J ) using fin by auto
interpret IJ : finite product sigma finite M I ∪ J by standard fact
interpret P : pair sigma finite PiM I M PiM J M ..
let ?M = merge I J
let ?f = λx . f (?M x )
from f have f borel : f ∈ borel measurable (PiM (I ∪ J ) M )
by auto

have P borel : (λx . f (merge I J x )) ∈ borel measurable (PiM I M
⊗

M PiM J
M )

using measurable comp[OF measurable merge f borel ] by (simp add : comp def )
have f int : integrable (PiM I M

⊗
M PiM J M ) ?f

by (rule integrable distr [OF measurable merge]) (simp add : distr merge[OF IJ
fin] f )
show ?thesis
apply (subst distr merge[symmetric, OF IJ fin])
apply (subst integral distr [OF measurable merge f borel ])
apply (subst P .integral fst ′[symmetric, OF f int ])
apply simp
done

qed
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lemma (in product sigma finite) product integral insert :
fixes f :: ⇒ ::{banach, second countable topology}
assumes I : finite I i /∈ I
and f : integrable (PiM (insert i I ) M ) f

shows integralL (PiM (insert i I ) M ) f = (
∫
x . (

∫
y . f (x (i :=y)) ∂M i) ∂PiM

I M )
proof −
have integralL (PiM (insert i I ) M ) f = integralL (PiM (I ∪ {i}) M ) f
by simp

also have . . . = (
∫
x . (

∫
y . f (merge I {i} (x ,y)) ∂PiM {i} M ) ∂PiM I M )

using f I by (intro product integral fold) auto
also have . . . = (

∫
x . (

∫
y . f (x (i := y)) ∂M i) ∂PiM I M )

proof (rule integral cong [OF refl ], subst product integral singleton[symmetric])
fix x assume x : x ∈ space (PiM I M )
have f borel : f ∈ borel measurable (PiM (insert i I ) M )
using f by auto

show (λy . f (x (i := y))) ∈ borel measurable (M i)
using measurable comp[OF measurable component update f borel , OF x 〈i /∈

I 〉]
unfolding comp def .

from x I show (
∫

y . f (merge I {i} (x ,y)) ∂PiM {i} M ) = (
∫

xa. f (x (i :=
xa i)) ∂PiM {i} M )

by (auto intro!: integral cong arg cong [where f=f ] simp: merge def space PiM
extensional def PiE def )
qed
finally show ?thesis .

qed

lemma (in product sigma finite) product integrable prod :
fixes f :: ′i ⇒ ′a ⇒ ::{real normed field ,banach,second countable topology}
assumes [simp]: finite I and integrable:

∧
i . i ∈ I =⇒ integrable (M i) (f i)

shows integrable (PiM I M ) (λx . (
∏

i∈I . f i (x i))) (is integrable ?f )
proof (unfold integrable iff bounded , intro conjI )
interpret finite product sigma finite M I by standard fact

show ?f ∈ borel measurable (PiM I M )
using assms by simp

have (
∫

+ x . ennreal (norm (
∏

i∈I . f i (x i))) ∂PiM I M ) =
(
∫

+ x . (
∏

i∈I . ennreal (norm (f i (x i)))) ∂PiM I M )
by (simp add : prod norm prod ennreal)

also have . . . = (
∏

i∈I .
∫

+ x . ennreal (norm (f i x )) ∂M i)
using assms by (intro product nn integral prod) auto

also have . . . < ∞
using integrable by (simp add : less top[symmetric] ennreal prod eq top inte-

grable iff bounded)
finally show (

∫
+ x . ennreal (norm (

∏
i∈I . f i (x i))) ∂PiM I M ) < ∞ .

qed
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lemma (in product sigma finite) product integral prod :
fixes f :: ′i ⇒ ′a ⇒ ::{real normed field ,banach,second countable topology}
assumes finite I and integrable:

∧
i . i ∈ I =⇒ integrable (M i) (f i)

shows (
∫
x . (

∏
i∈I . f i (x i)) ∂PiM I M ) = (

∏
i∈I . integralL (M i) (f i))

using assms proof induct
case empty
interpret finite measure PiM {} M
by rule (simp add : space PiM )

show ?case by (simp add : space PiM measure def )
next
case (insert i I )
then have iI : finite (insert i I ) by auto
then have prod :

∧
J . J ⊆ insert i I =⇒

integrable (PiM J M ) (λx . (
∏

i∈J . f i (x i)))
by (intro product integrable prod insert(4 )) (auto intro: finite subset)

interpret I : finite product sigma finite M I by standard fact
have ∗:

∧
x y . (

∏
j∈I . f j (if j = i then y else x j )) = (

∏
j∈I . f j (x j ))

using 〈i /∈ I 〉 by (auto intro!: prod .cong)
show ?case
unfolding product integral insert [OF insert(1 ,2 ) prod [OF subset refl ]]
by (simp add : ∗ insert prod subset insertI )

qed

lemma integrable subalgebra:
fixes f :: ′a ⇒ ′b::{banach, second countable topology}
assumes borel : f ∈ borel measurable N
and N : sets N ⊆ sets M space N = space M

∧
A. A ∈ sets N =⇒ emeasure N

A = emeasure M A
shows integrable N f ←→ integrable M f (is ?P)

proof −
have f ∈ borel measurable M
using assms by (auto simp: measurable def )

with assms show ?thesis
using assms by (auto simp: integrable iff bounded nn integral subalgebra)

qed

lemma integral subalgebra:
fixes f :: ′a ⇒ ′b::{banach, second countable topology}
assumes borel : f ∈ borel measurable N
and N : sets N ⊆ sets M space N = space M

∧
A. A ∈ sets N =⇒ emeasure N

A = emeasure M A
shows integralL N f = integralL M f

proof cases
assume integrable N f
then show ?thesis
proof induct
case base with assms show ?case by (auto simp: subset eq measure def )

next
case (add f g)
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then have (
∫

a. f a + g a ∂N ) = integralL M f + integralL M g
by simp

also have . . . = (
∫

a. f a + g a ∂M )
using add integrable subalgebra[OF N , of f ] integrable subalgebra[OF N ,

of g ] by simp
finally show ?case .

next
case (lim f s)
then have M :

∧
i . integrable M (s i) integrable M f

using integrable subalgebra[OF N , of f ] integrable subalgebra[OF N , of s i
for i ] by simp all

show ?case
proof (intro LIMSEQ unique)
show (λi . integralL N (s i)) −−−−→ integralL N f
apply (rule integral dominated convergence[where w=λx . 2 ∗ norm (f x )])
using lim
apply auto
done

show (λi . integralL N (s i)) −−−−→ integralL M f
unfolding lim
apply (rule integral dominated convergence[where w=λx . 2 ∗ norm (f x )])
using lim M N (2 )
apply auto
done

qed
qed

qed (simp add : not integrable integral eq integrable subalgebra[OF assms])

hide const (open) simple bochner integral
hide const (open) simple bochner integrable

end

6.11 Complete Measures

theory Complete Measure
imports Bochner Integration

begin

locale complete measure =
fixes M :: ′a measure
assumes complete:

∧
A B . B ⊆ A =⇒ A ∈ null sets M =⇒ B ∈ sets M

definition
split completion M A p = (if A ∈ sets M then p = (A, {}) else
∃N ′. A = fst p ∪ snd p ∧ fst p ∩ snd p = {} ∧ fst p ∈ sets M ∧ snd p ⊆ N ′

∧ N ′ ∈ null sets M )

definition
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main part M A = fst (Eps (split completion M A))

definition
null part M A = snd (Eps (split completion M A))

definition completion :: ′a measure ⇒ ′a measure where
completion M = measure of (space M ) { S ∪ N |S N N ′. S ∈ sets M ∧ N ′ ∈

null sets M ∧ N ⊆ N ′ }
(emeasure M ◦ main part M )

lemma completion into space:
{ S ∪ N |S N N ′. S ∈ sets M ∧ N ′ ∈ null sets M ∧ N ⊆ N ′ } ⊆ Pow (space

M )
using sets.sets into space by auto

lemma space completion[simp]: space (completion M ) = space M
unfolding completion def using space measure of [OF completion into space] by

simp

lemma completionI :
assumes A = S ∪ N N ⊆ N ′ N ′ ∈ null sets M S ∈ sets M
shows A ∈ { S ∪ N |S N N ′. S ∈ sets M ∧ N ′ ∈ null sets M ∧ N ⊆ N ′ }
using assms by auto

lemma completionE :
assumes A ∈ { S ∪ N |S N N ′. S ∈ sets M ∧ N ′ ∈ null sets M ∧ N ⊆ N ′ }
obtains S N N ′ where A = S ∪ N N ⊆ N ′ N ′ ∈ null sets M S ∈ sets M
using assms by auto

lemma sigma algebra completion:
sigma algebra (space M ) { S ∪ N |S N N ′. S ∈ sets M ∧ N ′ ∈ null sets M ∧ N
⊆ N ′ }

(is sigma algebra ?A)
unfolding sigma algebra iff2

proof (intro conjI ballI allI impI )
show ?A ⊆ Pow (space M )
using sets.sets into space by auto

next
show {} ∈ ?A by auto

next
let ?C = space M
fix A assume A ∈ ?A from completionE [OF this] guess S N N ′ .
then show space M − A ∈ ?A
by (intro completionI [of (?C − S ) ∩ (?C − N ′) (?C − S ) ∩ N ′ ∩ (?C −

N )]) auto
next
fix A :: nat ⇒ ′a set assume A: range A ⊆ ?A
then have ∀n. ∃S N N ′. A n = S ∪ N ∧ S ∈ sets M ∧ N ′ ∈ null sets M ∧ N
⊆ N ′
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by (auto simp: image subset iff )
from choice[OF this] guess S ..
from choice[OF this] guess N ..
from choice[OF this] guess N ′ ..
then show

⋃
(A ‘ UNIV ) ∈ ?A

using null sets UN [of N ′]
by (intro completionI [of

⋃
(S ‘ UNIV )

⋃
(N ‘ UNIV )

⋃
(N ′ ‘ UNIV )]) auto

qed

lemma sets completion:
sets (completion M ) = { S ∪ N |S N N ′. S ∈ sets M ∧ N ′ ∈ null sets M ∧ N
⊆ N ′ }
using sigma algebra.sets measure of eq [OF sigma algebra completion]
by (simp add : completion def )

lemma sets completionE :
assumes A ∈ sets (completion M )
obtains S N N ′ where A = S ∪ N N ⊆ N ′ N ′ ∈ null sets M S ∈ sets M
using assms unfolding sets completion by auto

lemma sets completionI :
assumes A = S ∪ N N ⊆ N ′ N ′ ∈ null sets M S ∈ sets M
shows A ∈ sets (completion M )
using assms unfolding sets completion by auto

lemma sets completionI sets[intro, simp]:
A ∈ sets M =⇒ A ∈ sets (completion M )
unfolding sets completion by force

lemma measurable completion: f ∈ M →M N =⇒ f ∈ completion M →M N
by (auto simp: measurable def )

lemma null sets completion:
assumes N ′ ∈ null sets M N ⊆ N ′ shows N ∈ sets (completion M )
using assms by (intro sets completionI [of N {} N N ′]) auto

lemma split completion:
assumes A ∈ sets (completion M )
shows split completion M A (main part M A, null part M A)

proof cases
assume A ∈ sets M then show ?thesis
by (simp add : split completion def [abs def ] main part def null part def )

next
assume nA: A /∈ sets M
show ?thesis
unfolding main part def null part def if not P [OF nA]

proof (rule someI2 ex )
from assms[THEN sets completionE ] guess S N N ′ . note A = this
let ?P = (S , N − S )
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show ∃ p. split completion M A p
unfolding split completion def if not P [OF nA] using A

proof (intro exI conjI )
show A = fst ?P ∪ snd ?P using A by auto
show snd ?P ⊆ N ′ using A by auto

qed auto
qed auto

qed

lemma sets restrict space subset :
assumes S : S ∈ sets (completion M )
shows sets (restrict space (completion M ) S ) ⊆ sets (completion M )
by (metis assms sets.Int space eq2 sets restrict space iff subsetI )

lemma
assumes S ∈ sets (completion M )
shows main part sets[intro, simp]: main part M S ∈ sets M
and main part null part Un[simp]: main part M S ∪ null part M S = S
and main part null part Int [simp]: main part M S ∩ null part M S = {}

using split completion[OF assms]
by (auto simp: split completion def split : if split asm)

lemma main part [simp]: S ∈ sets M =⇒ main part M S = S
using split completion[of S M ]
by (auto simp: split completion def split : if split asm)

lemma null part :
assumes S ∈ sets (completion M ) shows ∃N . N∈null sets M ∧ null part M S
⊆ N
using split completion[OF assms] by (auto simp: split completion def split : if split asm)

lemma null part sets[intro, simp]:
assumes S ∈ sets M shows null part M S ∈ sets M emeasure M (null part M

S ) = 0
proof −
have S : S ∈ sets (completion M ) using assms by auto
have S − main part M S ∈ sets M using assms by auto
moreover
from main part null part Un[OF S ] main part null part Int [OF S ]
have S − main part M S = null part M S by auto
ultimately show sets: null part M S ∈ sets M by auto
from null part [OF S ] guess N ..
with emeasure eq 0 [of N null part M S ] sets
show emeasure M (null part M S ) = 0 by auto

qed

lemma emeasure main part UN :
fixes S :: nat ⇒ ′a set
assumes range S ⊆ sets (completion M )



Complete Measure.thy 1627

shows emeasure M (main part M (
⋃

i . (S i))) = emeasure M (
⋃

i . main part
M (S i))
proof −
have S :

∧
i . S i ∈ sets (completion M ) using assms by auto

then have UN : (
⋃
i . S i) ∈ sets (completion M ) by auto

have ∀ i . ∃N . N ∈ null sets M ∧ null part M (S i) ⊆ N
using null part [OF S ] by auto

from choice[OF this] guess N .. note N = this
then have UN N : (

⋃
i . N i) ∈ null sets M by (intro null sets UN ) auto

have (
⋃

i . S i) ∈ sets (completion M ) using S by auto
from null part [OF this] guess N ′ .. note N ′ = this
let ?N = (

⋃
i . N i) ∪ N ′

have null set : ?N ∈ null sets M using N ′ UN N by (intro null sets.Un) auto
have main part M (

⋃
i . S i) ∪ ?N = (main part M (

⋃
i . S i) ∪ null part M

(
⋃
i . S i)) ∪ ?N
using N ′ by auto

also have . . . = (
⋃
i . main part M (S i) ∪ null part M (S i)) ∪ ?N

unfolding main part null part Un[OF S ] main part null part Un[OF UN ] by
auto
also have . . . = (

⋃
i . main part M (S i)) ∪ ?N

using N by auto
finally have ∗: main part M (

⋃
i . S i) ∪ ?N = (

⋃
i . main part M (S i)) ∪ ?N

.
have emeasure M (main part M (

⋃
i . S i)) = emeasure M (main part M (

⋃
i .

S i) ∪ ?N )
using null set UN by (intro emeasure Un null set [symmetric]) auto

also have . . . = emeasure M ((
⋃
i . main part M (S i)) ∪ ?N )

unfolding ∗ ..
also have . . . = emeasure M (

⋃
i . main part M (S i))

using null set S by (intro emeasure Un null set) auto
finally show ?thesis .

qed

lemma emeasure completion[simp]:
assumes S : S ∈ sets (completion M )
shows emeasure (completion M ) S = emeasure M (main part M S )

proof (subst emeasure measure of [OF completion def completion into space])
let ?µ = emeasure M ◦ main part M
show S ∈ sets (completion M ) ?µ S = emeasure M (main part M S ) using S

by simp all
show positive (sets (completion M )) ?µ
by (simp add : positive def )

show countably additive (sets (completion M )) ?µ
proof (intro countably additiveI )
fix A :: nat ⇒ ′a set assume A: range A ⊆ sets (completion M ) disjoint family

A
have disjoint family (λi . main part M (A i))
proof (intro disjoint family on bisimulation[OF A(2 )])
fix n m assume A n ∩ A m = {}
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then have (main part M (A n) ∪ null part M (A n)) ∩ (main part M (A
m) ∪ null part M (A m)) = {}

using A by (subst (1 2 ) main part null part Un) auto
then show main part M (A n) ∩ main part M (A m) = {} by auto

qed
then have (

∑
n. emeasure M (main part M (A n))) = emeasure M (

⋃
i .

main part M (A i))
using A by (auto intro!: suminf emeasure)

then show (
∑

n. ?µ (A n)) = ?µ (
⋃
(A ‘ UNIV ))

by (simp add : completion def emeasure main part UN [OF A(1 )])
qed

qed

lemma measure completion[simp]: S ∈ sets M =⇒ measure (completion M ) S =
measure M S
unfolding measure def by auto

lemma emeasure completion UN :
range S ⊆ sets (completion M ) =⇒
emeasure (completion M ) (

⋃
i ::nat . (S i)) = emeasure M (

⋃
i . main part M

(S i))
by (subst emeasure completion) (auto simp add : emeasure main part UN )

lemma emeasure completion Un:
assumes S : S ∈ sets (completion M ) and T : T ∈ sets (completion M )
shows emeasure (completion M ) (S ∪ T ) = emeasure M (main part M S ∪

main part M T )
proof (subst emeasure completion)
have UN : (

⋃
i . binary (main part M S ) (main part M T ) i) = (

⋃
i . main part

M (binary S T i))
unfolding binary def by (auto split : if split asm)

show emeasure M (main part M (S ∪ T )) = emeasure M (main part M S ∪
main part M T )

using emeasure main part UN [of binary S T M ] assms
by (simp add : range binary eq , simp add : Un range binary UN )

qed (auto intro: S T )

lemma sets completionI sub:
assumes N : N ′ ∈ null sets M N ⊆ N ′

shows N ∈ sets (completion M )
using assms by (intro sets completionI [of {} N N ′]) auto

lemma completion ex simple function:
assumes f : simple function (completion M ) f
shows ∃ f ′. simple function M f ′ ∧ (AE x in M . f x = f ′ x )

proof −
let ?F = λx . f −‘ {x} ∩ space M
have F :

∧
x . ?F x ∈ sets (completion M ) and fin: finite (f‘space M )

using simple functionD [OF f ] simple functionD [OF f ] by simp all
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have ∀ x . ∃N . N ∈ null sets M ∧ null part M (?F x ) ⊆ N
using F null part by auto

from choice[OF this] obtain N where
N :

∧
x . null part M (?F x ) ⊆ N x

∧
x . N x ∈ null sets M by auto

let ?N =
⋃
x∈f‘space M . N x

let ?f ′ = λx . if x ∈ ?N then undefined else f x
have sets: ?N ∈ null sets M using N fin by (intro null sets.finite UN ) auto
show ?thesis unfolding simple function def
proof (safe intro!: exI [of ?f ′])
have ?f ′ ‘ space M ⊆ f‘space M ∪ {undefined} by auto
from finite subset [OF this] simple functionD(1 )[OF f ]
show finite (?f ′ ‘ space M ) by auto

next
fix x assume x ∈ space M
have ?f ′ −‘ {?f ′ x} ∩ space M =
(if x ∈ ?N then ?F undefined ∪ ?N
else if f x = undefined then ?F (f x ) ∪ ?N
else ?F (f x ) − ?N )

using N (2 ) sets.sets into space by (auto split : if split asm simp: null sets def )
moreover { fix y have ?F y ∪ ?N ∈ sets M
proof cases
assume y : y ∈ f‘space M
have ?F y ∪ ?N = (main part M (?F y) ∪ null part M (?F y)) ∪ ?N
using main part null part Un[OF F ] by auto

also have . . . = main part M (?F y) ∪ ?N
using y N by auto

finally show ?thesis
using F sets by auto

next
assume y /∈ f‘space M then have ?F y = {} by auto
then show ?thesis using sets by auto

qed }
moreover {
have ?F (f x ) − ?N = main part M (?F (f x )) ∪ null part M (?F (f x )) −

?N
using main part null part Un[OF F ] by auto

also have . . . = main part M (?F (f x )) − ?N
using N 〈x ∈ space M 〉 by auto

finally have ?F (f x ) − ?N ∈ sets M
using F sets by auto }

ultimately show ?f ′ −‘ {?f ′ x} ∩ space M ∈ sets M by auto
next
show AE x in M . f x = ?f ′ x
by (rule AE I ′, rule sets) auto

qed
qed

lemma completion ex borel measurable:
fixes g :: ′a ⇒ ennreal
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assumes g : g ∈ borel measurable (completion M )
shows ∃ g ′∈borel measurable M . (AE x in M . g x = g ′ x )

proof −
from g [THEN borel measurable implies simple function sequence ′] guess f . note

f = this
from this(1 )[THEN completion ex simple function]
have ∀ i . ∃ f ′. simple function M f ′ ∧ (AE x in M . f i x = f ′ x ) ..
from this[THEN choice] obtain f ′ where
sf :

∧
i . simple function M (f ′ i) and

AE : ∀ i . AE x in M . f i x = f ′ i x by auto
show ?thesis
proof (intro bexI )
from AE [unfolded AE all countable[symmetric]]
show AE x in M . g x = (SUP i . f ′ i x ) (is AE x in M . g x = ?f x )
proof (elim AE mp, safe intro!: AE I2 )
fix x assume eq : ∀ i . f i x = f ′ i x
moreover have g x = (SUP i . f i x )
unfolding f by (auto split : split max )

ultimately show g x = ?f x by auto
qed
show ?f ∈ borel measurable M
using sf [THEN borel measurable simple function] by auto

qed
qed

lemma null sets completionI : N ∈ null sets M =⇒ N ∈ null sets (completion M )
by (auto simp: null sets def )

lemma AE completion: (AE x in M . P x ) =⇒ (AE x in completion M . P x )
unfolding eventually ae filter by (auto intro: null sets completionI )

lemma null sets completion iff : N ∈ sets M =⇒ N ∈ null sets (completion M )
←→ N ∈ null sets M
by (auto simp: null sets def )

lemma sets completion AE : (AE x in M . ¬ P x ) =⇒ Measurable.pred (completion
M ) P
unfolding pred def sets completion eventually ae filter
by auto

lemma null sets completion iff2 :
A ∈ null sets (completion M ) ←→ (∃N ′∈null sets M . A ⊆ N ′)

proof safe
assume A ∈ null sets (completion M )
then have A: A ∈ sets (completion M ) and main part M A ∈ null sets M
by (auto simp: null sets def )

moreover obtain N where N ∈ null sets M null part M A ⊆ N
using null part [OF A] by auto

ultimately show ∃N ′∈null sets M . A ⊆ N ′



Complete Measure.thy 1631

proof (intro bexI )
show A ⊆ N ∪ main part M A
using 〈null part M A ⊆ N 〉 by (subst main part null part Un[OF A, symmet-

ric]) auto
qed auto

next
fix N assume N ∈ null sets M A ⊆ N
then have A ∈ sets (completion M ) and N : N ∈ sets M A ⊆ N emeasure M N

= 0
by (auto intro: null sets completion)

moreover have emeasure (completion M ) A = 0
using N by (intro emeasure eq 0 [of N A]) auto

ultimately show A ∈ null sets (completion M )
by auto

qed

lemma null sets completion subset :
B ⊆ A =⇒ A ∈ null sets (completion M ) =⇒ B ∈ null sets (completion M )
unfolding null sets completion iff2 by auto

interpretation completion: complete measure completion M for M
proof
show B ⊆ A =⇒ A ∈ null sets (completion M ) =⇒ B ∈ sets (completion M )

for B A
using null sets completion subset [of B A M ] by (simp add : null sets def )

qed

lemma null sets restrict space:
Ω ∈ sets M =⇒ A ∈ null sets (restrict space M Ω) ←→ A ⊆ Ω ∧ A ∈ null sets

M
by (auto simp: null sets def emeasure restrict space sets restrict space)

lemma completion ex borel measurable real :
fixes g :: ′a ⇒ real
assumes g : g ∈ borel measurable (completion M )
shows ∃ g ′∈borel measurable M . (AE x in M . g x = g ′ x )

proof −
have (λx . ennreal (g x )) ∈ completion M →M borel (λx . ennreal (− g x )) ∈

completion M →M borel
using g by auto

from this[THEN completion ex borel measurable]
obtain pf nf :: ′a ⇒ ennreal
where [measurable]: nf ∈ M →M borel pf ∈ M →M borel
and ae: AE x in M . pf x = ennreal (g x ) AE x in M . nf x = ennreal (− g x )

by (auto simp: eq commute)
then have AE x in M . pf x = ennreal (g x ) ∧ nf x = ennreal (− g x )
by auto

then obtain N where N ∈ null sets M {x∈space M . pf x 6= ennreal (g x ) ∧ nf
x 6= ennreal (− g x )} ⊆ N
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by (auto elim!: AE E )
show ?thesis
proof
let ?F = λx . indicator (space M − N ) x ∗ (enn2real (pf x ) − enn2real (nf x ))
show ?F ∈ M →M borel
using 〈N ∈ null sets M 〉 by auto

show AE x in M . g x = ?F x
using 〈N ∈ null sets M 〉[THEN AE not in] ae AE space
apply eventually elim
subgoal for x
by (cases 0 ::real g x rule: linorder le cases) (auto simp: ennreal neg)

done
qed

qed

lemma simple function completion: simple function M f =⇒ simple function (completion
M ) f
by (simp add : simple function def )

lemma simple integral completion:
simple function M f =⇒ simple integral (completion M ) f = simple integral M f
unfolding simple integral def by simp

lemma nn integral completion: nn integral (completion M ) f = nn integral M f
unfolding nn integral def

proof (safe intro!: SUP eq)
fix s assume s: simple function (completion M ) s and s ≤ f
then obtain s ′ where s ′: simple function M s ′ AE x in M . s x = s ′ x
by (auto dest : completion ex simple function)

then obtain N where N : N ∈ null sets M {x∈space M . s x 6= s ′ x} ⊆ N
by (auto elim!: AE E )

then have ae N : AE x in M . (s x 6= s ′ x −→ x ∈ N ) ∧ x /∈ N
by (auto dest : AE not in)

define s ′′ where s ′′ x = (if x ∈ N then 0 else s x ) for x
then have ae s eq s ′′: AE x in completion M . s x = s ′′ x
using s ′ ae N by (intro AE completion) auto

have s ′′: simple function M s ′′

proof (subst simple function cong)
show t ∈ space M =⇒ s ′′ t = (if t ∈ N then 0 else s ′ t) for t
using N by (auto simp: s ′′ def dest : sets.sets into space)

show simple function M (λt . if t ∈ N then 0 else s ′ t)
unfolding s ′′ def [abs def ] using N by (auto intro!: simple function If s ′)

qed

show ∃ j∈{g . simple function M g ∧ g ≤ f }. integralS (completion M ) s ≤
integralS M j
proof (safe intro!: bexI [of s ′′])
have integralS (completion M ) s = integralS (completion M ) s ′′

by (intro simple integral cong AE s simple function completion s ′′ ae s eq s ′′)
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then show integralS (completion M ) s ≤ integralS M s ′′

using s ′′ by (simp add : simple integral completion)
from 〈s ≤ f 〉 show s ′′ ≤ f
unfolding s ′′ def le fun def by auto

qed fact
next
fix s assume simple function M s s ≤ f
then show ∃ j∈{g . simple function (completion M ) g ∧ g ≤ f }. integralS M s
≤ integralS (completion M ) j

by (intro bexI [of s]) (auto simp: simple integral completion simple function completion)
qed

lemma integrable completion:
fixes f :: ′a ⇒ ′b::{banach, second countable topology}
shows f ∈ M →M borel =⇒ integrable (completion M ) f ←→ integrable M f
by (rule integrable subalgebra[symmetric]) auto

lemma integral completion:
fixes f :: ′a ⇒ ′b::{banach, second countable topology}
assumes f : f ∈ M →M borel shows integralL (completion M ) f = integralL M

f
by (rule integral subalgebra[symmetric]) (auto intro: f )

locale semifinite measure =
fixes M :: ′a measure
assumes semifinite:∧

A. A ∈ sets M =⇒ emeasure M A = ∞ =⇒ ∃B∈sets M . B ⊆ A ∧ emeasure
M B < ∞

locale locally determined measure = semifinite measure +
assumes locally determined :∧

A. A ⊆ space M =⇒ (
∧
B . B ∈ sets M =⇒ emeasure M B < ∞ =⇒ A ∩ B

∈ sets M ) =⇒ A ∈ sets M

locale cld measure =
complete measure M + locally determined measure M for M :: ′a measure

definition outer measure of :: ′a measure ⇒ ′a set ⇒ ennreal
where outer measure of M A = (INF B ∈ {B∈sets M . A ⊆ B}. emeasure M B)

lemma outer measure of eq [simp]: A ∈ sets M =⇒ outer measure of M A = emea-
sure M A
by (auto simp: outer measure of def intro!: INF eqI emeasure mono)

lemma outer measure of mono: A ⊆ B =⇒ outer measure of M A ≤ outer measure of
M B
unfolding outer measure of def by (intro INF superset mono) auto

lemma outer measure of attain:
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assumes A ⊆ space M
shows ∃E∈sets M . A ⊆ E ∧ outer measure of M A = emeasure M E

proof −
have emeasure M ‘ {B ∈ sets M . A ⊆ B} 6= {}
using 〈A ⊆ space M 〉 by auto

from ennreal Inf countable INF [OF this]
obtain f
where f : range f ⊆ emeasure M ‘ {B ∈ sets M . A ⊆ B} decseq f
and outer measure of M A = (INF i . f i)

unfolding outer measure of def by auto
have ∃E . ∀n. (E n ∈ sets M ∧ A ⊆ E n ∧ emeasure M (E n) ≤ f n) ∧ E (Suc

n) ⊆ E n
proof (rule dependent nat choice)
show ∃ x . x ∈ sets M ∧ A ⊆ x ∧ emeasure M x ≤ f 0

using f (1 ) by (fastforce simp: image subset iff image iff intro: eq refl [OF
sym])
next
fix E n assume E ∈ sets M ∧ A ⊆ E ∧ emeasure M E ≤ f n
moreover obtain F where F ∈ sets M A ⊆ F f (Suc n) = emeasure M F
using f (1 ) by (auto simp: image subset iff image iff )

ultimately show ∃ y . (y ∈ sets M ∧ A ⊆ y ∧ emeasure M y ≤ f (Suc n)) ∧
y ⊆ E

by (auto intro!: exI [of F ∩ E ] emeasure mono)
qed
then obtain E
where [simp]:

∧
n. E n ∈ sets M

and
∧
n. A ⊆ E n

and le f :
∧
n. emeasure M (E n) ≤ f n

and decseq E
by (auto simp: decseq Suc iff )

show ?thesis
proof cases
assume fin: ∃ i . emeasure M (E i) < ∞
show ?thesis
proof (intro bexI [of

⋂
i . E i ] conjI )

show A ⊆ (
⋂

i . E i) (
⋂
i . E i) ∈ sets M

using 〈
∧
n. A ⊆ E n〉 by auto

have (INF i . emeasure M (E i)) ≤ outer measure of M A
unfolding 〈outer measure of M A = (INF n. f n)〉

by (intro INF superset mono le f ) auto
moreover have outer measure of M A ≤ (INF i . outer measure of M (E i))
by (intro INF greatest outer measure of mono 〈

∧
n. A ⊆ E n〉)

ultimately have outer measure of M A = (INF i . emeasure M (E i))
by auto

also have . . . = emeasure M (
⋂
i . E i)

using fin by (intro INF emeasure decseq ′ 〈decseq E 〉) (auto simp: less top)
finally show outer measure of M A = emeasure M (

⋂
i . E i) .

qed
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next
assume @ i . emeasure M (E i) < ∞
then have f n = ∞ for n
using le f by (auto simp: not less top unique)

moreover have ∃E∈sets M . A ⊆ E ∧ f 0 = emeasure M E
using f by auto

ultimately show ?thesis
unfolding 〈outer measure of M A = (INF n. f n)〉 by simp

qed
qed

lemma SUP outer measure of incseq :
assumes A:

∧
n. A n ⊆ space M and incseq A

shows (SUP n. outer measure of M (A n)) = outer measure of M (
⋃

i . A i)
proof (rule antisym)
obtain E
where E :

∧
n. E n ∈ sets M

∧
n. A n ⊆ E n

∧
n. outer measure of M (A n)

= emeasure M (E n)
using outer measure of attain[OF A] by metis

define F where F n = (
⋂
i∈{n ..}. E i) for n

with E have F : incseq F
∧
n. F n ∈ sets M

by (auto simp: incseq def )
have A n ⊆ F n for n
using incseqD [OF 〈incseq A〉, of n] 〈

∧
n. A n ⊆ E n〉 by (auto simp: F def )

have eq : outer measure of M (A n) = outer measure of M (F n) for n
proof (intro antisym)
have outer measure of M (F n) ≤ outer measure of M (E n)
by (intro outer measure of mono) (auto simp add : F def )

with E show outer measure of M (F n) ≤ outer measure of M (A n)
by auto

show outer measure of M (A n) ≤ outer measure of M (F n)
by (intro outer measure of mono 〈A n ⊆ F n〉)

qed

have outer measure of M (
⋃
n. A n) ≤ outer measure of M (

⋃
n. F n)

using 〈
∧
n. A n ⊆ F n〉 by (intro outer measure of mono) auto

also have . . . = (SUP n. emeasure M (F n))
using F by (simp add : SUP emeasure incseq subset eq)

finally show outer measure of M (
⋃
n. A n) ≤ (SUP n. outer measure of M (A

n))
by (simp add : eq F )

qed (auto intro: SUP least outer measure of mono)

definition measurable envelope :: ′a measure ⇒ ′a set ⇒ ′a set ⇒ bool
where measurable envelope M A E ←→
(A ⊆ E ∧ E ∈ sets M ∧ (∀F∈sets M . emeasure M (F ∩ E ) = outer measure of

M (F ∩ A)))
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lemma measurable envelopeD :
assumes measurable envelope M A E
shows A ⊆ E
and E ∈ sets M
and

∧
F . F ∈ sets M =⇒ emeasure M (F ∩ E ) = outer measure of M (F ∩

A)
and A ⊆ space M

using assms sets.sets into space[of E ] by (auto simp: measurable envelope def )

lemma measurable envelopeD1 :
assumes E : measurable envelope M A E and F : F ∈ sets M F ⊆ E − A
shows emeasure M F = 0

proof −
have emeasure M F = emeasure M (F ∩ E )
using F by (intro arg cong2 [where f=emeasure]) auto

also have . . . = outer measure of M (F ∩ A)
using measurable envelopeD [OF E ] 〈F ∈ sets M 〉 by (auto simp: measur-

able envelope def )
also have . . . = outer measure of M {}
using 〈F ⊆ E − A〉 by (intro arg cong2 [where f=outer measure of ]) auto

finally show emeasure M F = 0
by simp

qed

lemma measurable envelope eq1 :
assumes A ⊆ E E ∈ sets M
shows measurable envelope M A E ←→ (∀F∈sets M . F ⊆ E − A −→ emeasure

M F = 0 )
proof safe
assume ∗: ∀F∈sets M . F ⊆ E − A −→ emeasure M F = 0
show measurable envelope M A E
unfolding measurable envelope def

proof (rule ccontr , auto simp add : 〈E ∈ sets M 〉 〈A ⊆ E 〉)
fix F assume F ∈ sets M emeasure M (F ∩ E ) 6= outer measure of M (F ∩

A)
then have outer measure of M (F ∩ A) < emeasure M (F ∩ E )
using outer measure of mono[of F ∩ A F ∩ E M ] 〈A ⊆ E 〉 〈E ∈ sets M 〉 by

(auto simp: less le)
then obtain G where G : G ∈ sets M F ∩ A ⊆ G and less: emeasure M G

< emeasure M (E ∩ F )
unfolding outer measure of def INF less iff by (auto simp: ac simps)

have le: emeasure M (G ∩ E ∩ F ) ≤ emeasure M G
using 〈E ∈ sets M 〉 〈G ∈ sets M 〉 〈F ∈ sets M 〉 by (auto intro!: emeasure mono)

from G have E ∩ F − G ∈ sets M E ∩ F − G ⊆ E − A
using 〈F ∈ sets M 〉 〈E ∈ sets M 〉 by auto

with ∗ have 0 = emeasure M (E ∩ F − G)
by auto
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also have E ∩ F − G = E ∩ F − (G ∩ E ∩ F )
by auto

also have emeasure M (E ∩ F − (G ∩ E ∩ F )) = emeasure M (E ∩ F ) −
emeasure M (G ∩ E ∩ F )

using 〈E ∈ sets M 〉 〈F ∈ sets M 〉 le less G by (intro emeasure Diff ) (auto
simp: top unique)

also have . . . > 0
using le less by (intro diff gr0 ennreal) auto

finally show False by auto
qed

qed (rule measurable envelopeD1 )

lemma measurable envelopeD2 :
assumes E : measurable envelope M A E shows emeasure M E = outer measure of

M A
proof −
from 〈measurable envelope M A E 〉 have emeasure M (E ∩ E ) = outer measure of

M (E ∩ A)
by (auto simp: measurable envelope def )

with measurable envelopeD [OF E ] show emeasure M E = outer measure of M
A

by (auto simp: Int absorb1 )
qed

lemma measurable envelope eq2 :
assumes A ⊆ E E ∈ sets M emeasure M E < ∞
shows measurable envelope M A E ←→ (emeasure M E = outer measure of M

A)
proof safe
assume ∗: emeasure M E = outer measure of M A
show measurable envelope M A E
unfolding measurable envelope eq1 [OF 〈A ⊆ E 〉 〈E ∈ sets M 〉]

proof (intro conjI ballI impI assms)
fix F assume F : F ∈ sets M F ⊆ E − A
with 〈E ∈ sets M 〉 have le: emeasure M F ≤ emeasure M E
by (intro emeasure mono) auto

from F 〈A ⊆ E 〉 have outer measure of M A ≤ outer measure of M (E − F )
by (intro outer measure of mono) auto

then have emeasure M E − 0 ≤ emeasure M (E − F )
using ∗ 〈E ∈ sets M 〉 〈F ∈ sets M 〉 by simp

also have . . . = emeasure M E − emeasure M F
using 〈E ∈ sets M 〉 〈emeasure M E < ∞〉 F le by (intro emeasure Diff ) (auto

simp: top unique)
finally show emeasure M F = 0
using ennreal mono minus cancel [of emeasure M E 0 emeasure M F ] le assms

by auto
qed

qed (auto intro: measurable envelopeD2 )
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lemma measurable envelopeI countable:
fixes A :: nat ⇒ ′a set
assumes E :

∧
n. measurable envelope M (A n) (E n)

shows measurable envelope M (
⋃

n. A n) (
⋃

n. E n)
proof (subst measurable envelope eq1 )
show (

⋃
n. A n) ⊆ (

⋃
n. E n) (

⋃
n. E n) ∈ sets M

using measurable envelopeD(1 ,2 )[OF E ] by auto
show ∀F∈sets M . F ⊆ (

⋃
n. E n) − (

⋃
n. A n) −→ emeasure M F = 0

proof safe
fix F assume F : F ∈ sets M F ⊆ (

⋃
n. E n) − (

⋃
n. A n)

then have F ∩ E n ∈ sets M F ∩ E n ⊆ E n − A n F ⊆ (
⋃
n. E n) for n

using measurable envelopeD(1 ,2 )[OF E ] by auto
then have emeasure M (

⋃
n. F ∩ E n) = 0

by (intro emeasure UN eq 0 measurable envelopeD1 [OF E ]) auto
then show emeasure M F = 0
using 〈F ⊆ (

⋃
n. E n)〉 by (auto simp: Int absorb2 )

qed
qed

lemma measurable envelopeI countable cover :
fixes A and C :: nat ⇒ ′a set
assumes C : A ⊆ (

⋃
n. C n)

∧
n. C n ∈ sets M

∧
n. emeasure M (C n) < ∞

shows ∃E⊆(
⋃
n. C n). measurable envelope M A E

proof −
have A ∩ C n ⊆ space M for n
using 〈C n ∈ sets M 〉 by (auto dest : sets.sets into space)

then have ∀n. ∃E∈sets M . A ∩ C n ⊆ E ∧ outer measure of M (A ∩ C n) =
emeasure M E

using outer measure of attain[of A ∩ C n M for n] by auto
then obtain E
where E :

∧
n. E n ∈ sets M

∧
n. A ∩ C n ⊆ E n

and eq :
∧
n. outer measure of M (A ∩ C n) = emeasure M (E n)

by metis

have outer measure of M (A ∩ C n) ≤ outer measure of M (E n ∩ C n) for n
using E by (intro outer measure of mono) auto

moreover have outer measure of M (E n ∩ C n) ≤ outer measure of M (E n)
for n

by (intro outer measure of mono) auto
ultimately have eq : outer measure of M (A ∩ C n) = emeasure M (E n ∩ C

n) for n
using E C by (intro antisym) (auto simp: eq)

{ fix n
have outer measure of M (A ∩ C n) ≤ outer measure of M (C n)
by (intro outer measure of mono) simp

also have . . . < ∞
using assms by auto

finally have emeasure M (E n ∩ C n) < ∞
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using eq by simp }
then have measurable envelope M (

⋃
n. A ∩ C n) (

⋃
n. E n ∩ C n)

using E C by (intro measurable envelopeI countable measurable envelope eq2 [THEN
iffD2 ]) (auto simp: eq)
with 〈A ⊆ (

⋃
n. C n)〉 show ?thesis

by (intro exI [of (
⋃

n. E n ∩ C n)]) (auto simp add : Int absorb2 )
qed

lemma (in complete measure) complete sets sandwich:
assumes [measurable]: A ∈ sets M C ∈ sets M and subset : A ⊆ B B ⊆ C
and measure: emeasure M A = emeasure M C emeasure M A < ∞

shows B ∈ sets M
proof −
have B − A ∈ sets M
proof (rule complete)
show B − A ⊆ C − A
using subset by auto

show C − A ∈ null sets M
using measure subset by(simp add : emeasure Diff null setsI )

qed
then have A ∪ (B − A) ∈ sets M
by measurable

also have A ∪ (B − A) = B
using 〈A ⊆ B 〉 by auto

finally show ?thesis .
qed

lemma (in complete measure) complete sets sandwich fmeasurable:
assumes [measurable]: A ∈ fmeasurable M C ∈ fmeasurable M and subset : A ⊆

B B ⊆ C
and measure: measure M A = measure M C

shows B ∈ fmeasurable M
proof (rule fmeasurableI2 )
show B ⊆ C C ∈ fmeasurable M by fact+
show B ∈ sets M
proof (rule complete sets sandwich)
show A ∈ sets M C ∈ sets M A ⊆ B B ⊆ C
using assms by auto

show emeasure M A < ∞
using 〈A ∈ fmeasurable M 〉 by (auto simp: fmeasurable def )

show emeasure M A = emeasure M C
using assms by (simp add : emeasure eq measure2 )

qed
qed

lemma AE completion iff : (AE x in completion M . P x ) ←→ (AE x in M . P x )
proof
assume AE x in completion M . P x
then obtain N where N ∈ null sets (completion M ) and P : {x∈space M . ¬ P
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x} ⊆ N
unfolding eventually ae filter by auto

then obtain N ′ where N ′: N ′ ∈ null sets M and N ⊆ N ′

unfolding null sets completion iff2 by auto
from P 〈N ⊆ N ′〉 have {x∈space M . ¬ P x} ⊆ N ′

by auto
with N ′ show AE x in M . P x
unfolding eventually ae filter by auto

qed (rule AE completion)

lemma null part null sets: S ∈ completion M =⇒ null part M S ∈ null sets (completion
M )
by (auto dest !: null part intro: null sets completionI null sets completion subset)

lemma AE notin null part : S ∈ completion M =⇒ (AE x in M . x /∈ null part M
S )
by (auto dest !: null part null sets AE not in simp: AE completion iff )

lemma completion upper :
assumes A: A ∈ sets (completion M )
shows ∃A ′∈sets M . A ⊆ A ′ ∧ emeasure (completion M ) A = emeasure M A ′

proof −
from AE notin null part [OF A] obtain N where N : N ∈ null sets M null part

M A ⊆ N
unfolding eventually ae filter using null part null sets[OF A, THEN null setsD2 ,

THEN sets.sets into space] by auto
show ?thesis
proof (intro bexI conjI )
show A ⊆ main part M A ∪ N
using 〈null part M A ⊆ N 〉 by (subst main part null part Un[symmetric, OF

A]) auto
show emeasure (completion M ) A = emeasure M (main part M A ∪ N )
using A 〈N ∈ null sets M 〉 by (simp add : emeasure Un null set)

qed (use A N in auto)
qed

lemma AE in main part :
assumes A: A ∈ completion M shows AE x in M . x ∈ main part M A ←→ x
∈ A
using AE notin null part [OF A]
by (subst (2 ) main part null part Un[symmetric, OF A]) auto

lemma completion density eq :
assumes ae: AE x in M . 0 < f x and [measurable]: f ∈ M →M borel
shows completion (density M f ) = density (completion M ) f

proof (intro measure eqI )
have N ′ ∈ sets M ∧ (AE x∈N ′ in M . f x = 0 ) ←→ N ′ ∈ null sets M for N ′

proof safe
assume N ′: N ′ ∈ sets M and ae N ′: AE x∈N ′ in M . f x = 0
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from ae N ′ ae have AE x in M . x /∈ N ′

by eventually elim auto
then show N ′ ∈ null sets M
using N ′ by (simp add : AE iff null sets)

next
assume N ′: N ′ ∈ null sets M then show N ′ ∈ sets M AE x∈N ′ in M . f x =

0
using ae AE not in[OF N ′] by (auto simp: less le)

qed
then show sets eq : sets (completion (density M f )) = sets (density (completion

M ) f )
by (simp add : sets completion null sets density iff )

fix A assume A: 〈A ∈ completion (density M f )〉

moreover
have A ∈ completion M
using A unfolding sets eq by simp

moreover
have main part (density M f ) A ∈ M
using A main part sets[of A density M f ] unfolding sets density sets eq by

simp
moreover have AE x in M . x ∈ main part (density M f ) A ←→ x ∈ A
using AE in main part [OF 〈A ∈ completion (density M f )〉] ae by (auto simp

add : AE density)
ultimately show emeasure (completion (density M f )) A = emeasure (density

(completion M ) f ) A
by (auto simp add : emeasure density measurable completion nn integral completion

intro!: nn integral cong AE )
qed

lemma null sets subset : B ∈ null sets M =⇒ A ∈ sets M =⇒ A ⊆ B =⇒ A ∈
null sets M
using emeasure mono[of A B M ] by (simp add : null sets def )

lemma (in complete measure) complete2 : A ⊆ B =⇒ B ∈ null sets M =⇒ A ∈
null sets M
using complete[of A B ] null sets subset [of B M A] by simp

lemma (in complete measure) AE iff null sets: (AE x in M . P x ) ←→ {x∈space
M . ¬ P x} ∈ null sets M
unfolding eventually ae filter by (auto intro: complete2 )

lemma (in complete measure) null sets iff AE : A ∈ null sets M ←→ ((AE x in
M . x /∈ A) ∧ A ⊆ space M )
unfolding AE iff null sets by (auto cong : rev conj cong dest : sets.sets into space

simp: subset eq)

lemma (in complete measure) in sets AE :
assumes ae: AE x in M . x ∈ A ←→ x ∈ B and A: A ∈ sets M and B : B ⊆
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space M
shows B ∈ sets M

proof −
have (AE x in M . x /∈ B − A ∧ x /∈ A − B)
using ae by eventually elim auto

then have B − A ∈ null sets M A − B ∈ null sets M
using A B unfolding null sets iff AE by (auto dest : sets.sets into space)

then have A ∪ (B − A) − (A − B) ∈ sets M
using A by blast

also have A ∪ (B − A) − (A − B) = B
by auto

finally show B ∈ sets M .
qed

lemma (in complete measure) vimage null part null sets:
assumes f : f ∈ M →M N and eq : null sets N ⊆ null sets (distr M N f )
and A: A ∈ completion N

shows f −‘ null part N A ∩ space M ∈ null sets M
proof −
obtain N ′ where N ′ ∈ null sets N null part N A ⊆ N ′

using null part [OF A] by auto
then have N ′: N ′ ∈ null sets (distr M N f )
using eq by auto

show ?thesis
proof (rule complete2 )
show f −‘ null part N A ∩ space M ⊆ f −‘ N ′ ∩ space M
using 〈null part N A ⊆ N ′〉 by auto

show f −‘ N ′ ∩ space M ∈ null sets M
using f N ′ by (auto simp: null sets def emeasure distr)

qed
qed

lemma (in complete measure) vimage null part sets:
f ∈ M →M N =⇒ null sets N ⊆ null sets (distr M N f ) =⇒ A ∈ completion N

=⇒
f −‘ null part N A ∩ space M ∈ sets M
using vimage null part null sets[of f N A] by auto

lemma (in complete measure) measurable completion2 :
assumes f : f ∈ M →M N and null sets: null sets N ⊆ null sets (distr M N f )
shows f ∈ M →M completion N

proof (rule measurableI )
show x ∈ space M =⇒ f x ∈ space (completion N ) for x
using f [THEN measurable space] by auto

fix A assume A: A ∈ sets (completion N )
have f −‘ A ∩ space M = (f −‘ main part N A ∩ space M ) ∪ (f −‘ null part N

A ∩ space M )
using main part null part Un[OF A] by auto

then show f −‘ A ∩ space M ∈ sets M
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using f A null sets by (auto intro: vimage null part sets measurable sets)
qed

lemma (in complete measure) completion distr eq :
assumes X : X ∈ M →M N and null sets: null sets (distr M N X ) = null sets

N
shows completion (distr M N X ) = distr M (completion N ) X

proof (rule measure eqI )
show eq : sets (completion (distr M N X )) = sets (distr M (completion N ) X )
by (simp add : sets completion null sets)

fix A assume A: A ∈ completion (distr M N X )
moreover have A ′: A ∈ completion N
using A by (simp add : eq)

moreover have main part (distr M N X ) A ∈ sets N
using main part sets[OF A] by simp

moreover have X −‘ A ∩ space M = (X −‘ main part (distr M N X ) A ∩
space M ) ∪ (X −‘ null part (distr M N X ) A ∩ space M )

using main part null part Un[OF A] by auto
moreover have X −‘ null part (distr M N X ) A ∩ space M ∈ null sets M
using X A by (intro vimage null part null sets) (auto cong : distr cong)

ultimately show emeasure (completion (distr M N X )) A = emeasure (distr M
(completion N ) X ) A

using X by (auto simp: emeasure distr measurable completion null sets mea-
surable completion2

intro!: emeasure Un null set [symmetric])
qed

lemma distr completion: X ∈ M →M N =⇒ distr (completion M ) N X = distr
M N X
by (intro measure eqI ) (auto simp: emeasure distr measurable completion)

proposition (in complete measure) fmeasurable inner outer :
S ∈ fmeasurable M ←→
(∀ e>0 . ∃T∈fmeasurable M . ∃U∈fmeasurable M . T ⊆ S ∧ S ⊆ U ∧ |measure

M T − measure M U | < e)
(is ←→ ?approx )

proof safe
let ?µ = measure M let ?D = λT U . |?µ T − ?µ U |
assume ?approx
have ∃A. ∀n. (fst (A n) ∈ fmeasurable M ∧ snd (A n) ∈ fmeasurable M ∧ fst

(A n) ⊆ S ∧ S ⊆ snd (A n) ∧
?D (fst (A n)) (snd (A n)) < 1/Suc n) ∧ (fst (A n) ⊆ fst (A (Suc n)) ∧ snd

(A (Suc n)) ⊆ snd (A n))
(is ∃A. ∀n. ?P n (A n) ∧ ?Q (A n) (A (Suc n)))

proof (intro dependent nat choice)
show ∃A. ?P 0 A
using 〈?approx 〉[THEN spec, of 1 ] by auto

next
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fix A n assume ?P n A
moreover
from 〈?approx 〉[THEN spec, of 1/Suc (Suc n)]
obtain T U where ∗: T ∈ fmeasurable M U ∈ fmeasurable M T ⊆ S S ⊆ U

?D T U < 1 / Suc (Suc n)
by auto

ultimately have ?µ T ≤ ?µ (T ∪ fst A) ?µ (U ∩ snd A) ≤ ?µ U
?µ T ≤ ?µ U ?µ (T ∪ fst A) ≤ ?µ (U ∩ snd A)
by (auto intro!: measure mono fmeasurable)

then have ?D (T ∪ fst A) (U ∩ snd A) ≤ ?D T U
by auto

also have ?D T U < 1/Suc (Suc n) by fact
finally show ∃B . ?P (Suc n) B ∧ ?Q A B
using 〈?P n A〉 ∗
by (intro exI [of (T ∪ fst A, U ∩ snd A)] conjI ) auto

qed
then obtain A
where lm:

∧
n. fst (A n) ∈ fmeasurable M

∧
n. snd (A n) ∈ fmeasurable M

and set bound :
∧
n. fst (A n) ⊆ S

∧
n. S ⊆ snd (A n)

and mono:
∧
n. fst (A n) ⊆ fst (A (Suc n))

∧
n. snd (A (Suc n)) ⊆ snd (A

n)
and bound :

∧
n. ?D (fst (A n)) (snd (A n)) < 1/Suc n

by metis

have INT sA: (
⋂
n. snd (A n)) ∈ fmeasurable M

using lm by (intro fmeasurable INT [of 0 ]) auto
have UN fA: (

⋃
n. fst (A n)) ∈ fmeasurable M

using lm order trans[OF set bound(1 ) set bound(2 )[of 0 ]] by (intro fmeasur-
able UN [of snd (A 0 )]) auto

have (λn. ?µ (fst (A n)) − ?µ (snd (A n))) −−−−→ 0
using bound
by (subst tendsto rabs zero iff [symmetric])

(intro tendsto sandwich[OF tendsto const LIMSEQ inverse real of nat ];
auto intro!: always eventually less imp le simp: divide inverse)

moreover
have (λn. ?µ (fst (A n)) − ?µ (snd (A n))) −−−−→ ?µ (

⋃
n. fst (A n)) − ?µ

(
⋂
n. snd (A n))

proof (intro tendsto diff Lim measure incseq Lim measure decseq)
show range (λi . fst (A i)) ⊆ sets M range (λi . snd (A i)) ⊆ sets M
incseq (λi . fst (A i)) decseq (λn. snd (A n))
using mono lm by (auto simp: incseq Suc iff decseq Suc iff intro!: mea-

sure mono fmeasurable)
show emeasure M (

⋃
x . fst (A x )) 6= ∞ emeasure M (snd (A n)) 6= ∞ for n

using lm(2 )[of n] UN fA by (auto simp: fmeasurable def )
qed
ultimately have eq : 0 = ?µ (

⋃
n. fst (A n)) − ?µ (

⋂
n. snd (A n))

by (rule LIMSEQ unique)
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show S ∈ fmeasurable M
using UN fA INT sA

proof (rule complete sets sandwich fmeasurable)
show (

⋃
n. fst (A n)) ⊆ S S ⊆ (

⋂
n. snd (A n))

using set bound by auto
show ?µ (

⋃
n. fst (A n)) = ?µ (

⋂
n. snd (A n))

using eq by auto
qed

qed (auto intro!: bexI [of S ])

lemma (in complete measure) fmeasurable measure inner outer :
(S ∈ fmeasurable M ∧ m = measure M S ) ←→

(∀ e>0 . ∃T∈fmeasurable M . T ⊆ S ∧ m − e < measure M T ) ∧
(∀ e>0 . ∃U∈fmeasurable M . S ⊆ U ∧ measure M U < m + e)

(is ?lhs = ?rhs)
proof
assume RHS : ?rhs
then have T :

∧
e. 0 < e −→ (∃T∈fmeasurable M . T ⊆ S ∧ m − e < measure

M T )
and U :

∧
e. 0 < e −→ (∃U∈fmeasurable M . S ⊆ U ∧ measure M U < m

+ e)
by auto

have S ∈ fmeasurable M
proof (subst fmeasurable inner outer , safe)
fix e::real assume 0 < e
with RHS obtain T U where T : T ∈ fmeasurable M T ⊆ S m − e/2 <

measure M T
and U : U ∈ fmeasurable M S ⊆ U measure M U < m + e/2

by (meson half gt zero)+
moreover have measure M U − measure M T < (m + e/2 ) − (m − e/2 )
by (intro diff strict mono) fact+

moreover have measure M T ≤ measure M U
using T U by (intro measure mono fmeasurable) auto

ultimately show ∃T∈fmeasurable M . ∃U∈fmeasurable M . T ⊆ S ∧ S ⊆ U
∧ |measure M T − measure M U | < e

apply (rule tac bexI [OF 〈T ∈ fmeasurable M 〉])
apply (rule tac bexI [OF 〈U ∈ fmeasurable M 〉])
by auto

qed
moreover have m = measure M S
using 〈S ∈ fmeasurable M 〉 U [of measure M S − m] T [of m − measure M S ]
by (cases m measure M S rule: linorder cases)

(auto simp: not le[symmetric] measure mono fmeasurable)
ultimately show ?lhs
by simp

qed (auto intro!: bexI [of S ])

lemma (in complete measure) null sets outer :
S ∈ null sets M ←→ (∀ e>0 . ∃T∈fmeasurable M . S ⊆ T ∧ measure M T < e)
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proof −
have S ∈ null sets M ←→ (S ∈ fmeasurable M ∧ 0 = measure M S )
by (auto simp: null sets def emeasure eq measure2 intro: fmeasurableI ) (simp

add : measure def )
also have . . . = (∀ e>0 . ∃T∈fmeasurable M . S ⊆ T ∧ measure M T < e)
unfolding fmeasurable measure inner outer by auto

finally show ?thesis .
qed

lemma (in complete measure) fmeasurable measure inner outer le:
(S ∈ fmeasurable M ∧ m = measure M S ) ←→

(∀ e>0 . ∃T∈fmeasurable M . T ⊆ S ∧ m − e ≤ measure M T ) ∧
(∀ e>0 . ∃U∈fmeasurable M . S ⊆ U ∧ measure M U ≤ m + e) (is ?T1 )

and null sets outer le:
S ∈ null sets M ←→ (∀ e>0 . ∃T∈fmeasurable M . S ⊆ T ∧ measure M T ≤

e) (is ?T2 )
proof −
have e > 0 ∧ m − e/2 ≤ t =⇒ m − e < t

e > 0 ∧ t ≤ m + e/2 =⇒ t < m + e
e > 0 ←→ e/2 > 0
for e t

by auto
then show ?T1 ?T2
unfolding fmeasurable measure inner outer null sets outer
by (meson dense le less trans less imp le)+

qed

lemma (in cld measure) notin sets outer measure of cover :
assumes E : E ⊆ space M E /∈ sets M
shows ∃B∈sets M . 0 < emeasure M B ∧ emeasure M B < ∞ ∧
outer measure of M (B ∩ E ) = emeasure M B ∧ outer measure of M (B − E )

= emeasure M B
proof −
from locally determined [OF 〈E ⊆ space M 〉] 〈E /∈ sets M 〉

obtain F
where [measurable]: F ∈ sets M and emeasure M F < ∞ E ∩ F /∈ sets M
by blast

then obtain H H ′

where H : measurable envelope M (F ∩ E ) H and H ′: measurable envelope M
(F − E ) H ′

using measurable envelopeI countable cover [of F ∩ E λ . F M ]
measurable envelopeI countable cover [of F − E λ . F M ]

by auto
note measurable envelopeD(2 )[OF H ′, measurable] measurable envelopeD(2 )[OF

H , measurable]

from measurable envelopeD(1 )[OF H ′] measurable envelopeD(1 )[OF H ]
have subset : F − H ′ ⊆ F ∩ E F ∩ E ⊆ F ∩ H
by auto
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moreover define G where G = (F ∩ H ) − (F − H ′)
ultimately have G : G = F ∩ H ∩ H ′

by auto
have emeasure M (F ∩ H ) 6= 0
proof
assume emeasure M (F ∩ H ) = 0
then have F ∩ H ∈ null sets M
by auto

with 〈E ∩ F /∈ sets M 〉 show False
using complete[OF 〈F ∩ E ⊆ F ∩ H 〉] by (auto simp: Int commute)

qed
moreover
have emeasure M (F − H ′) 6= emeasure M (F ∩ H )
proof
assume emeasure M (F − H ′) = emeasure M (F ∩ H )
with 〈E ∩ F /∈ sets M 〉 emeasure mono[of F ∩ H F M ] 〈emeasure M F < ∞〉

have F ∩ E ∈ sets M
by (intro complete sets sandwich[OF subset ]) auto

with 〈E ∩ F /∈ sets M 〉 show False
by (simp add : Int commute)

qed
moreover have emeasure M (F − H ′) ≤ emeasure M (F ∩ H )
using subset by (intro emeasure mono) auto

ultimately have emeasure M G 6= 0
unfolding G def using subset
by (subst emeasure Diff ) (auto simp: top unique diff eq 0 iff ennreal)

show ?thesis
proof (intro bexI conjI )
have emeasure M G ≤ emeasure M F
unfolding G by (auto intro!: emeasure mono)

with 〈emeasure M F < ∞〉 show 0 < emeasure M G emeasure M G < ∞
using 〈emeasure M G 6= 0 〉 by (auto simp: zero less iff neq zero)

show [measurable]: G ∈ sets M
unfolding G by auto

have emeasure M G = outer measure of M (F ∩ H ′ ∩ (F ∩ E ))
using measurable envelopeD(3 )[OF H , of F ∩ H ′] unfolding G by (simp

add : ac simps)
also have . . . ≤ outer measure of M (G ∩ E )

using measurable envelopeD(1 )[OF H ] by (intro outer measure of mono)
(auto simp: G)

finally show outer measure of M (G ∩ E ) = emeasure M G
using outer measure of mono[of G ∩ E G M ] by auto

have emeasure M G = outer measure of M (F ∩ H ∩ (F − E ))
using measurable envelopeD(3 )[OF H ′, of F ∩ H ] unfolding G by (simp

add : ac simps)
also have . . . ≤ outer measure of M (G − E )

using measurable envelopeD(1 )[OF H ′] by (intro outer measure of mono)
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(auto simp: G)
finally show outer measure of M (G − E ) = emeasure M G
using outer measure of mono[of G − E G M ] by auto

qed
qed

The following theorem is a specialization of D.H. Fremlin, Measure Theory
vol 4I (413G). We only show one direction and do not use a inner regular
family K.

lemma (in cld measure) borel measurable cld :
fixes f :: ′a ⇒ real
assumes

∧
A a b. A ∈ sets M =⇒ 0 < emeasure M A =⇒ emeasure M A < ∞

=⇒ a < b =⇒
min (outer measure of M {x∈A. f x ≤ a}) (outer measure of M {x∈A. b ≤

f x}) < emeasure M A
shows f ∈ M →M borel

proof (rule ccontr)
let ?E = λa. {x∈space M . f x ≤ a} and ?F = λa. {x∈space M . a ≤ f x}

assume f /∈ M →M borel
then obtain a where ?E a /∈ sets M
unfolding borel measurable iff le by blast

from notin sets outer measure of cover [OF this]
obtain K
where K : K ∈ sets M 0 < emeasure M K emeasure M K < ∞
and eq1 : outer measure of M (K ∩ ?E a) = emeasure M K
and eq2 : outer measure of M (K − ?E a) = emeasure M K

by auto
then have me K : measurable envelope M (K ∩ ?E a) K
by (subst measurable envelope eq2 ) auto

define b where b n = a + inverse (real (Suc n)) for n
have (SUP n. outer measure of M (K ∩ ?F (b n))) = outer measure of M (

⋃
n.

K ∩ ?F (b n))
proof (intro SUP outer measure of incseq)
have x ≤ y =⇒ b y ≤ b x for x y
by (auto simp: b def field simps)

then show incseq (λn. K ∩ {x ∈ space M . b n ≤ f x})
by (auto simp: incseq def intro: order trans)

qed auto
also have (

⋃
n. K ∩ ?F (b n)) = K − ?E a

proof −
have b −−−−→ a
unfolding b def by (rule LIMSEQ inverse real of nat add)

then have ∀n. ¬ b n ≤ f x =⇒ f x ≤ a for x
by (rule LIMSEQ le const) (auto intro: less imp le simp: not le)

moreover have ¬ b n ≤ a for n
by (auto simp: b def )

ultimately show ?thesis
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using 〈K ∈ sets M 〉[THEN sets.sets into space] by (auto simp: subset eq
intro: order trans)
qed
finally have 0 < (SUP n. outer measure of M (K ∩ ?F (b n)))
using K by (simp add : eq2 )

then obtain n where pos b: 0 < outer measure of M (K ∩ ?F (b n)) and a
< b n

unfolding less SUP iff by (auto simp: b def )
from measurable envelopeI countable cover [of K ∩ ?F (b n) λ . K M ] K
obtain K ′ where K ′ ⊆ K and me K ′: measurable envelope M (K ∩ ?F (b n))

K ′

by auto
then have K ′ le K : emeasure M K ′ ≤ emeasure M K
by (intro emeasure mono K )

have K ′ ∈ sets M
using me K ′ by (rule measurable envelopeD)

have min (outer measure of M {x∈K ′. f x ≤ a}) (outer measure of M {x∈K ′.
b n ≤ f x}) < emeasure M K ′

proof (rule assms)
show 0 < emeasure M K ′ emeasure M K ′ < ∞
using measurable envelopeD2 [OF me K ′] pos b K K ′ le K by auto

qed fact+
also have {x∈K ′. f x ≤ a} = K ′ ∩ (K ∩ ?E a)
using 〈K ′ ∈ sets M 〉[THEN sets.sets into space] 〈K ′ ⊆ K 〉 by auto

also have {x∈K ′. b n ≤ f x} = K ′ ∩ (K ∩ ?F (b n))
using 〈K ′ ∈ sets M 〉[THEN sets.sets into space] 〈K ′ ⊆ K 〉 by auto

finally have min (emeasure M K ) (emeasure M K ′) < emeasure M K ′

unfolding
measurable envelopeD(3 )[OF me K 〈K ′ ∈ sets M 〉, symmetric]
measurable envelopeD(3 )[OF me K ′ 〈K ′ ∈ sets M 〉, symmetric]

using 〈K ′ ⊆ K 〉 by (simp add : Int absorb1 Int absorb2 )
with K ′ le K show False
by (auto simp: min def split : if split asm)

qed

end

6.12 Regularity of Measures

theory Regularity
imports Measure Space Borel Space
begin

theorem
fixes M :: ′a::{second countable topology , complete space} measure
assumes sb: sets M = sets borel
assumes emeasure M (space M ) 6= ∞
assumes B ∈ sets borel
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shows inner regular : emeasure M B =
(SUP K ∈ {K . K ⊆ B ∧ compact K}. emeasure M K ) (is ?inner B)

and outer regular : emeasure M B =
(INF U ∈ {U . B ⊆ U ∧ open U }. emeasure M U ) (is ?outer B)

proof −
have Us: UNIV = space M by (metis assms(1 ) sets eq imp space eq space borel)
hence sU : space M = UNIV by simp
interpret finite measure M by rule fact
have approx inner :

∧
A. A ∈ sets M =⇒

(
∧
e. e > 0 =⇒ ∃K . K ⊆ A ∧ compact K ∧ emeasure M A ≤ emeasure M K

+ ennreal e) =⇒ ?inner A
by (rule ennreal approx SUP)
(force intro!: emeasure mono simp: compact imp closed emeasure eq measure)+

have approx outer :
∧
A. A ∈ sets M =⇒

(
∧
e. e > 0 =⇒ ∃B . A ⊆ B ∧ open B ∧ emeasure M B ≤ emeasure M A +

ennreal e) =⇒ ?outer A
by (rule ennreal approx INF )

(force intro!: emeasure mono simp: emeasure eq measure sb)+
from countable dense setE guess X :: ′a set . note X = this
{
fix r ::real assume r > 0 hence

∧
y . open (ball y r)

∧
y . ball y r 6= {} by auto

with X (2 )[OF this]
have x : space M = (

⋃
x∈X . cball x r)

by (auto simp add : sU ) (metis dist commute order less imp le)
let ?U =

⋃
k . (

⋃
n∈{0 ..k}. cball (from nat into X n) r)

have (λk . emeasure M (
⋃

n∈{0 ..k}. cball (from nat into X n) r)) −−−−→ M
?U

by (rule Lim emeasure incseq) (auto intro!: borel closed bexI simp: incseq def
Us sb)

also have ?U = space M
proof safe
fix x from X (2 )[OF open ball [of x r ]] 〈r > 0 〉 obtain d where d : d∈X d ∈

ball x r by auto
show x ∈ ?U
using X (1 ) d
by simp (auto intro!: exI [where x = to nat on X d ] simp: dist commute

Bex def )
qed (simp add : sU )
finally have (λk . M (

⋃
n∈{0 ..k}. cball (from nat into X n) r)) −−−−→ M

(space M ) .
} note M space = this
{
fix e ::real and n :: nat assume e > 0 n > 0
hence 1/n > 0 e ∗ 2 powr − n > 0 by (auto)
from M space[OF 〈1/n>0 〉]
have (λk . measure M (

⋃
i∈{0 ..k}. cball (from nat into X i) (1/real n))) −−−−→

measure M (space M )
unfolding emeasure eq measure by (auto)

from metric LIMSEQ D [OF this 〈0 < e ∗ 2 powr −n〉]
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obtain k where dist (measure M (
⋃

i∈{0 ..k}. cball (from nat into X i) (1/real
n))) (measure M (space M )) <

e ∗ 2 powr −n
by auto

hence measure M (
⋃
i∈{0 ..k}. cball (from nat into X i) (1/real n)) ≥

measure M (space M ) − e ∗ 2 powr −real n
by (auto simp: dist real def )

hence ∃ k . measure M (
⋃
i∈{0 ..k}. cball (from nat into X i) (1/real n)) ≥

measure M (space M ) − e ∗ 2 powr − real n ..
} note k=this
hence ∀ e∈{0<..}. ∀ (n::nat)∈{0<..}. ∃ k .
measure M (

⋃
i∈{0 ..k}. cball (from nat into X i) (1/real n)) ≥ measure M

(space M ) − e ∗ 2 powr − real n
by blast

then obtain k where k : ∀ e∈{0<..}. ∀n∈{0<..}. measure M (space M ) − e ∗
2 powr − real (n::nat)
≤ measure M (

⋃
i∈{0 ..k e n}. cball (from nat into X i) (1 / n))

by metis
hence k :

∧
e n. e > 0 =⇒ n > 0 =⇒ measure M (space M ) − e ∗ 2 powr − n

≤ measure M (
⋃
i∈{0 ..k e n}. cball (from nat into X i) (1 / n))

unfolding Ball def by blast
have approx space:
∃K ∈ {K . K ⊆ space M ∧ compact K}. emeasure M (space M ) ≤ emeasure

M K + ennreal e
(is ?thesis e) if 0 < e for e :: real

proof −
define B where [abs def ]:
B n = (

⋃
i∈{0 ..k e (Suc n)}. cball (from nat into X i) (1 / Suc n)) for n

have
∧
n. closed (B n) by (auto simp: B def )

hence [simp]:
∧
n. B n ∈ sets M by (simp add : sb)

from k [OF 〈e > 0 〉 zero less Suc]
have

∧
n. measure M (space M ) − measure M (B n) ≤ e ∗ 2 powr − real (Suc

n)
by (simp add : algebra simps B def finite measure compl)

hence B compl le:
∧
n::nat . measure M (space M − B n) ≤ e ∗ 2 powr − real

(Suc n)
by (simp add : finite measure compl)

define K where K = (
⋂
n. B n)

from 〈closed (B )〉 have closed K by (auto simp: K def )
hence [simp]: K ∈ sets M by (simp add : sb)
have measure M (space M ) − measure M K = measure M (space M − K )
by (simp add : finite measure compl)
also have . . . = emeasure M (

⋃
n. space M − B n) by (auto simp: K def

emeasure eq measure)
also have . . . ≤ (

∑
n. emeasure M (space M − B n))

by (rule emeasure subadditive countably) (auto simp: summable def )
also have . . . ≤ (

∑
n. ennreal (e∗2 powr − real (Suc n)))

using B compl le by (intro suminf le) (simp all add : emeasure eq measure
ennreal leI )
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also have . . . ≤ (
∑

n. ennreal (e ∗ (1 / 2 ) ˆ Suc n))
by (simp add : powr minus powr realpow field simps del : of nat Suc)

also have . . . = ennreal e ∗ (
∑

n. ennreal ((1 / 2 ) ˆ Suc n))
unfolding ennreal power [symmetric]
using 〈0 < e〉

by (simp add : ac simps ennreal mult ′ divide ennreal [symmetric] divide ennreal def
ennreal power [symmetric])

also have . . . = e
by (subst suminf ennreal eq [OF zero le power power half series]) auto

finally have measure M (space M ) ≤ measure M K + e
using 〈0 < e〉 by simp

hence emeasure M (space M ) ≤ emeasure M K + e
using 〈0 < e〉 by (simp add : emeasure eq measure flip: ennreal plus)

moreover have compact K
unfolding compact eq totally bounded

proof safe
show complete K using 〈closed K 〉 by (simp add : complete eq closed)
fix e ′::real assume 0 < e ′

from nat approx posE [OF this] guess n . note n = this
let ?k = from nat into X ‘ {0 ..k e (Suc n)}
have finite ?k by simp
moreover have K ⊆ (

⋃
x∈?k . ball x e ′) unfolding K def B def using n

by force
ultimately show ∃ k . finite k ∧ K ⊆ (

⋃
x∈k . ball x e ′) by blast

qed
ultimately
show ?thesis by (auto simp: sU )

qed
{ fix A:: ′a set assume closed A hence A ∈ sets borel by (simp add : com-

pact imp closed)
hence [simp]: A ∈ sets M by (simp add : sb)
have ?inner A
proof (rule approx inner)
fix e::real assume e > 0
from approx space[OF this] obtain K where
K : K ⊆ space M compact K emeasure M (space M ) ≤ emeasure M K + e
by (auto simp: emeasure eq measure)

hence [simp]: K ∈ sets M by (simp add : sb compact imp closed)
have measure M A − measure M (A ∩ K ) = measure M (A − A ∩ K )
by (subst finite measure Diff ) auto

also have A − A ∩ K = A ∪ K − K by auto
also have measure M . . . = measure M (A ∪ K ) − measure M K
by (subst finite measure Diff ) auto

also have . . . ≤ measure M (space M ) − measure M K
by (simp add : emeasure eq measure sU sb finite measure mono)

also have . . . ≤ e
using K 〈0 < e〉 by (simp add : emeasure eq measure flip: ennreal plus)

finally have emeasure M A ≤ emeasure M (A ∩ K ) + ennreal e
using 〈0<e〉 by (simp add : emeasure eq measure algebra simps flip: en-
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nreal plus)
moreover have A ∩ K ⊆ A compact (A ∩ K ) using 〈closed A〉 〈compact K 〉

by auto
ultimately show ∃K ⊆ A. compact K ∧ emeasure M A ≤ emeasure M K

+ ennreal e
by blast

qed simp
have ?outer A
proof cases
assume A 6= {}
let ?G = λd . {x . infdist x A < d}
{
fix d
have ?G d = (λx . infdist x A) −‘ {..<d} by auto
also have open . . .
by (intro continuous open vimage) (auto intro!: continuous infdist contin-

uous ident)
finally have open (?G d) .

} note open G = this
from in closed iff infdist zero[OF 〈closed A〉 〈A 6= {}〉]
have A = {x . infdist x A = 0} by auto
also have . . . = (

⋂
i . ?G (1/real (Suc i)))

proof (auto simp del : of nat Suc, rule ccontr)
fix x
assume infdist x A 6= 0
hence pos: infdist x A > 0 using infdist nonneg [of x A] by simp
from nat approx posE [OF this] guess n .
moreover
assume ∀ i . infdist x A < 1 / real (Suc i)
hence infdist x A < 1 / real (Suc n) by auto
ultimately show False by simp

qed
also have M . . . = (INF n. emeasure M (?G (1 / real (Suc n))))
proof (rule INF emeasure decseq [symmetric], safe)
fix i ::nat
from open G [of 1 / real (Suc i)]
show ?G (1 / real (Suc i)) ∈ sets M by (simp add : sb borel open)

next
show decseq (λi . {x . infdist x A < 1 / real (Suc i)})
by (auto intro: less trans intro!: divide strict left mono
simp: decseq def le eq less or eq)

qed simp
finally
have emeasure M A = (INF n. emeasure M {x . infdist x A < 1 / real (Suc

n)}) .
moreover
have . . . ≥ (INF U∈{U . A ⊆ U ∧ open U }. emeasure M U )
proof (intro INF mono)
fix m
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have ?G (1 / real (Suc m)) ∈ {U . A ⊆ U ∧ open U } using open G by
auto

moreover have M (?G (1 / real (Suc m))) ≤ M (?G (1 / real (Suc m)))
by simp

ultimately show ∃U∈{U . A ⊆ U ∧ open U }.
emeasure M U ≤ emeasure M {x . infdist x A < 1 / real (Suc m)}
by blast

qed
moreover
have emeasure M A ≤ (INF U∈{U . A ⊆ U ∧ open U }. emeasure M U )
by (rule INF greatest) (auto intro!: emeasure mono simp: sb)

ultimately show ?thesis by simp
qed (auto intro!: INF eqI )
note 〈?inner A〉 〈?outer A〉 }

note closed in D = this
from 〈B ∈ sets borel 〉

have Int stable (Collect closed) Collect closed ⊆ Pow UNIV B ∈ sigma sets
UNIV (Collect closed)

by (auto simp: Int stable def borel eq closed)
then show ?inner B ?outer B
proof (induct B rule: sigma sets induct disjoint)
case empty
{ case 1 show ?case by (intro SUP eqI [symmetric]) auto }
{ case 2 show ?case by (intro INF eqI [symmetric]) (auto elim!: meta allE [of
{}]) }
next
case (basic B)
{ case 1 from basic closed in D show ?case by auto }
{ case 2 from basic closed in D show ?case by auto }

next
case (compl B)
note inner = compl(2 ) and outer = compl(3 )
from compl have [simp]: B ∈ sets M by (auto simp: sb borel eq closed)
case 2
have M (space M − B) = M (space M ) − emeasure M B by (auto simp:

emeasure compl)
also have . . . = (INF K∈{K . K ⊆ B ∧ compact K}. M (space M ) − M K )
by (subst ennreal SUP const minus) (auto simp: less top[symmetric] inner)

also have . . . = (INF U∈{U . U ⊆ B ∧ compact U }. M (space M − U ))
by (auto simp add : emeasure compl sb compact imp closed)

also have . . . ≥ (INF U∈{U . U ⊆ B ∧ closed U }. M (space M − U ))
by (rule INF superset mono) (auto simp add : compact imp closed)

also have (INF U∈{U . U ⊆ B ∧ closed U }. M (space M − U )) =
(INF U∈{U . space M − B ⊆ U ∧ open U }. emeasure M U )

apply (rule arg cong [of Inf ])
using sU
apply (auto simp add : image iff )
apply (rule exI [of UNIV − y for y ])
apply safe
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apply (auto simp add : double diff )
done

finally have
(INF U∈{U . space M − B ⊆ U ∧ open U }. emeasure M U ) ≤ emeasure M

(space M − B) .
moreover have
(INF U∈{U . space M − B ⊆ U ∧ open U }. emeasure M U ) ≥ emeasure M

(space M − B)
by (auto simp: sb sU intro!: INF greatest emeasure mono)

ultimately show ?case by (auto intro!: antisym simp: sets eq imp space eq [OF
sb])

case 1
have M (space M − B) = M (space M ) − emeasure M B by (auto simp:

emeasure compl)
also have . . . = (SUP U∈ {U . B ⊆ U ∧ open U }. M (space M ) − M U )
unfolding outer by (subst ennreal INF const minus) auto

also have . . . = (SUP U∈{U . B ⊆ U ∧ open U }. M (space M − U ))
by (auto simp add : emeasure compl sb compact imp closed)

also have . . . = (SUP K∈{K . K ⊆ space M − B ∧ closed K}. emeasure M
K )

unfolding SUP image [of λu. space M − u , symmetric, unfolded comp def ]
apply (rule arg cong [of Sup])
using sU apply (auto intro!: imageI )
done

also have . . . = (SUP K∈{K . K ⊆ space M − B ∧ compact K}. emeasure M
K )

proof (safe intro!: antisym SUP least)
fix K assume closed K K ⊆ space M − B
from closed in D [OF 〈closed K 〉]
have K inner : emeasure M K = (SUP K∈{Ka. Ka ⊆ K ∧ compact Ka}.

emeasure M K ) by simp
show emeasure M K ≤ (SUP K∈{K . K ⊆ space M − B ∧ compact K}.

emeasure M K )
unfolding K inner using 〈K ⊆ space M − B 〉

by (auto intro!: SUP upper SUP least)
qed (fastforce intro!: SUP least SUP upper simp: compact imp closed)
finally show ?case by (auto intro!: antisym simp: sets eq imp space eq [OF sb])
next
case (union D)
then have range D ⊆ sets M by (auto simp: sb borel eq closed)
with union have M [symmetric]: (

∑
i . M (D i)) = M (

⋃
i . D i) by (intro

suminf emeasure)
also have (λn.

∑
i<n. M (D i)) −−−−→ (

∑
i . M (D i))

by (intro summable LIMSEQ) auto
finally have measure LIMSEQ : (λn.

∑
i<n. measure M (D i)) −−−−→ measure

M (
⋃

i . D i)
by (simp add : emeasure eq measure sum nonneg)

have (
⋃
i . D i) ∈ sets M using 〈range D ⊆ sets M 〉 by auto
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case 1
show ?case
proof (rule approx inner)
fix e::real assume e > 0
with measure LIMSEQ
have ∃no. ∀n≥no. |(

∑
i<n. measure M (D i)) −measure M (

⋃
x . D x )| <

e/2
by (auto simp: lim sequentially dist real def simp del : less divide eq numeral1 )
hence ∃n0 . |(

∑
i<n0 . measure M (D i)) − measure M (

⋃
x . D x )| < e/2

by auto
then obtain n0 where n0 : |(

∑
i<n0 . measure M (D i)) − measure M (

⋃
i .

D i)| < e/2
unfolding choice iff by blast

have ennreal (
∑

i<n0 . measure M (D i)) = (
∑

i<n0 . M (D i))
by (auto simp add : emeasure eq measure)

also have . . . ≤ (
∑

i . M (D i)) by (rule sum le suminf ) auto
also have . . . = M (

⋃
i . D i) by (simp add : M )

also have . . . = measure M (
⋃

i . D i) by (simp add : emeasure eq measure)
finally have n0 : measure M (

⋃
i . D i) − (

∑
i<n0 . measure M (D i)) < e/2

using n0 by (auto simp: sum nonneg)
have ∀ i . ∃K . K ⊆ D i ∧ compact K ∧ emeasure M (D i) ≤ emeasure M K

+ e/(2∗Suc n0 )
proof
fix i
from 〈0 < e〉 have 0 < e/(2∗Suc n0 ) by simp
have emeasure M (D i) = (SUP K∈{K . K ⊆ (D i) ∧ compact K}. emeasure

M K )
using union by blast

from SUP approx ennreal [OF 〈0 < e/(2∗Suc n0 )〉 this]
show ∃K . K ⊆ D i ∧ compact K ∧ emeasure M (D i) ≤ emeasure M K +

e/(2∗Suc n0 )
by (auto simp: emeasure eq measure intro: less imp le compact empty)

qed
then obtain K where K :

∧
i . K i ⊆ D i

∧
i . compact (K i)∧

i . emeasure M (D i) ≤ emeasure M (K i) + e/(2∗Suc n0 )
unfolding choice iff by blast

let ?K =
⋃
i∈{..<n0}. K i

have disjoint family on K {..<n0} using K 〈disjoint family D 〉

unfolding disjoint family on def by blast
hence mK : measure M ?K = (

∑
i<n0 . measure M (K i)) using K

by (intro finite measure finite Union) (auto simp: sb compact imp closed)
have measure M (

⋃
i . D i) < (

∑
i<n0 . measure M (D i)) + e/2 using n0

by simp
also have (

∑
i<n0 . measure M (D i)) ≤ (

∑
i<n0 . measure M (K i) +

e/(2∗Suc n0 ))
using K 〈0 < e〉

by (auto intro: sum mono simp: emeasure eq measure simp flip: ennreal plus)
also have . . . = (

∑
i<n0 . measure M (K i)) + (

∑
i<n0 . e/(2∗Suc n0 ))
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by (simp add : sum.distrib)
also have . . . ≤ (

∑
i<n0 . measure M (K i)) + e / 2 using 〈0 < e〉

by (auto simp: field simps intro!: mult left mono)
finally
have measure M (

⋃
i . D i) < (

∑
i<n0 . measure M (K i)) + e / 2 + e / 2

by auto
hence M (

⋃
i . D i) < M ?K + e

using 〈0<e〉 by (auto simp: mK emeasure eq measure sum nonneg en-
nreal less iff simp flip: ennreal plus)

moreover
have ?K ⊆ (

⋃
i . D i) using K by auto

moreover
have compact ?K using K by auto
ultimately
have ?K⊆(

⋃
i . D i) ∧ compact ?K ∧ emeasure M (

⋃
i . D i) ≤ emeasure M

?K + ennreal e by simp
thus ∃K⊆

⋃
i . D i . compact K ∧ emeasure M (

⋃
i . D i) ≤ emeasure M K

+ ennreal e ..
qed fact
case 2
show ?case
proof (rule approx outer [OF 〈(

⋃
i . D i) ∈ sets M 〉])

fix e::real assume e > 0
have ∀ i ::nat . ∃U . D i ⊆ U ∧ open U ∧ e/(2 powr Suc i) > emeasure M U

− emeasure M (D i)
proof
fix i ::nat
from 〈0 < e〉 have 0 < e/(2 powr Suc i) by simp
have emeasure M (D i) = (INF U∈{U . (D i) ⊆ U ∧ open U }. emeasure

M U )
using union by blast

from INF approx ennreal [OF 〈0 < e/(2 powr Suc i)〉 this]
show ∃U . D i ⊆ U ∧ open U ∧ e/(2 powr Suc i) > emeasure M U −

emeasure M (D i)
using 〈0<e〉

by (auto simp: emeasure eq measure sum nonneg ennreal less iff en-
nreal minus

finite measure mono sb
simp flip: ennreal plus)

qed
then obtain U where U :

∧
i . D i ⊆ U i

∧
i . open (U i)∧

i . e/(2 powr Suc i) > emeasure M (U i) − emeasure M (D i)
unfolding choice iff by blast

let ?U =
⋃
i . U i

have ennreal (measure M ?U − measure M (
⋃

i . D i)) = M ?U − M (
⋃
i .

D i)
using U (1 ,2 )
by (subst ennreal minus[symmetric])

(auto intro!: finite measure mono simp: sb emeasure eq measure)
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also have . . . = M (?U − (
⋃

i . D i)) using U 〈(
⋃
i . D i) ∈ sets M 〉

by (subst emeasure Diff ) (auto simp: sb)
also have . . . ≤ M (

⋃
i . U i − D i) using U 〈range D ⊆ sets M 〉

by (intro emeasure mono) (auto simp: sb intro!: sets.countable nat UN
sets.Diff )

also have . . . ≤ (
∑

i . M (U i − D i)) using U 〈range D ⊆ sets M 〉

by (intro emeasure subadditive countably) (auto intro!: sets.Diff simp: sb)
also have . . . ≤ (

∑
i . ennreal e/(2 powr Suc i)) using U 〈range D ⊆ sets

M 〉

using 〈0<e〉

by (intro suminf le, subst emeasure Diff )
(auto simp: emeasure Diff emeasure eq measure sb ennreal minus

finite measure mono divide ennreal ennreal less iff
intro: less imp le)

also have . . . ≤ (
∑

n. ennreal (e ∗ (1 / 2 ) ˆ Suc n))
using 〈0<e〉

by (simp add : powr minus powr realpow field simps divide ennreal del :
of nat Suc)

also have . . . = ennreal e ∗ (
∑

n. ennreal ((1 / 2 ) ˆ Suc n))
unfolding ennreal power [symmetric]
using 〈0 < e〉

by (simp add : ac simps ennreal mult ′ divide ennreal [symmetric] divide ennreal def
ennreal power [symmetric])

also have . . . = ennreal e
by (subst suminf ennreal eq [OF zero le power power half series]) auto

finally have emeasure M ?U ≤ emeasure M (
⋃

i . D i) + ennreal e
using 〈0<e〉 by (simp add : emeasure eq measure flip: ennreal plus)

moreover
have (

⋃
i . D i) ⊆ ?U using U by auto

moreover
have open ?U using U by auto
ultimately
have (

⋃
i . D i) ⊆ ?U ∧ open ?U ∧ emeasure M ?U ≤ emeasure M (

⋃
i . D

i) + ennreal e by simp
thus ∃B . (

⋃
i . D i) ⊆ B ∧ open B ∧ emeasure M B ≤ emeasure M (

⋃
i . D

i) + ennreal e ..
qed

qed
qed

end

6.13 Lebesgue Measure

theory Lebesgue Measure
imports
Finite Product Measure
Caratheodory
Complete Measure
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Summation Tests
Regularity

begin

lemma measure eqI lessThan:
fixes M N :: real measure
assumes sets: sets M = sets borel sets N = sets borel
assumes fin:

∧
x . emeasure M {x <..} < ∞

assumes
∧
x . emeasure M {x <..} = emeasure N {x <..}

shows M = N
proof (rule measure eqI generator eq countable)
let ?LT = λa::real . {a <..} let ?E = range ?LT
show Int stable ?E
by (auto simp: Int stable def lessThan Int lessThan)

show ?E ⊆ Pow UNIV sets M = sigma sets UNIV ?E sets N = sigma sets UNIV
?E

unfolding sets borel Ioi by auto

show ?LT‘Rats ⊆ ?E (
⋃
i∈Rats. ?LT i) = UNIV

∧
a. a ∈ ?LT‘Rats =⇒ emea-

sure M a 6= ∞
using fin by (auto intro: Rats no bot less simp: less top)

qed (auto intro: assms countable rat)

6.13.1 Measures defined by monotonous functions

Every right-continuous and nondecreasing function gives rise to a measure
on the reals:

definition interval measure :: (real ⇒ real) ⇒ real measure where
interval measure F =

extend measure UNIV {(a, b). a ≤ b} (λ(a, b). {a<..b}) (λ(a, b). ennreal (F
b − F a))

lemma emeasure interval measure Ioc:
assumes a ≤ b
assumes mono F :

∧
x y . x ≤ y =⇒ F x ≤ F y

assumes right cont F :
∧
a. continuous (at right a) F

shows emeasure (interval measure F ) {a<..b} = F b − F a
proof (rule extend measure caratheodory pair [OF interval measure def 〈a ≤ b〉])
show semiring of sets UNIV {{a<..b} |a b :: real . a ≤ b}
proof (unfold locales, safe)
fix a b c d :: real assume ∗: a ≤ b c ≤ d
then show ∃C⊆{{a<..b} |a b. a ≤ b}. finite C ∧ disjoint C ∧ {a<..b} −

{c<..d} =
⋃
C

proof cases
let ?C = {{a<..b}}
assume b < c ∨ d ≤ a ∨ d ≤ c
with ∗ have ?C ⊆ {{a<..b} |a b. a ≤ b} ∧ finite ?C ∧ disjoint ?C ∧ {a<..b}

− {c<..d} =
⋃

?C
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by (auto simp add : disjoint def )
thus ?thesis ..

next
let ?C = {{a<..c}, {d<..b}}
assume ¬ (b < c ∨ d ≤ a ∨ d ≤ c)
with ∗ have ?C ⊆ {{a<..b} |a b. a ≤ b} ∧ finite ?C ∧ disjoint ?C ∧ {a<..b}

− {c<..d} =
⋃
?C

by (auto simp add : disjoint def Ioc inj ) (metis linear)+
thus ?thesis ..

qed
qed (auto simp: Ioc inj , metis linear)

next
fix l r :: nat ⇒ real and a b :: real
assume l r [simp]:

∧
n. l n ≤ r n and a ≤ b and disj : disjoint family (λn. {l

n<..r n})
assume lr eq ab: (

⋃
i . {l i<..r i}) = {a<..b}

have [intro, simp]:
∧
a b. a ≤ b =⇒ F a ≤ F b

by (auto intro!: l r mono F )

{ fix S :: nat set assume finite S
moreover note 〈a ≤ b〉

moreover have
∧
i . i ∈ S =⇒ {l i <.. r i} ⊆ {a <.. b}

unfolding lr eq ab[symmetric] by auto
ultimately have (

∑
i∈S . F (r i) − F (l i)) ≤ F b − F a

proof (induction S arbitrary : a rule: finite psubset induct)
case (psubset S )
show ?case
proof cases
assume ∃ i∈S . l i < r i
with 〈finite S 〉 have Min (l ‘ {i∈S . l i < r i}) ∈ l ‘ {i∈S . l i < r i}
by (intro Min in) auto

then obtain m where m: m ∈ S l m < r m l m = Min (l ‘ {i∈S . l i < r
i})

by fastforce

have (
∑

i∈S . F (r i) − F (l i)) = (F (r m) − F (l m)) + (
∑

i∈S − {m}.
F (r i) − F (l i))

using m psubset by (intro sum.remove) auto
also have (

∑
i∈S − {m}. F (r i) − F (l i)) ≤ F b − F (r m)

proof (intro psubset .IH )
show S − {m} ⊂ S
using 〈m∈S 〉 by auto

show r m ≤ b
using psubset .prems(2 )[OF 〈m∈S 〉] 〈l m < r m〉 by auto

next
fix i assume i ∈ S − {m}
then have i : i ∈ S i 6= m by auto
{ assume i ′: l i < r i l i < r m



Lebesgue Measure.thy 1661

with 〈finite S 〉 i m have l m ≤ l i
by auto

with i ′ have {l i <.. r i} ∩ {l m <.. r m} 6= {}
by auto

then have False
using disjoint family onD [OF disj , of i m] i by auto }

then have l i 6= r i =⇒ r m ≤ l i
unfolding not less[symmetric] using l r [of i ] by auto

then show {l i <.. r i} ⊆ {r m <.. b}
using psubset .prems(2 )[OF 〈i∈S 〉] by auto

qed
also have F (r m) − F (l m) ≤ F (r m) − F a
using psubset .prems(2 )[OF 〈m ∈ S 〉] 〈l m < r m〉

by (auto simp add : Ioc subset iff intro!: mono F )
finally show ?case
by (auto intro: add mono)

qed (auto simp add : 〈a ≤ b〉 less le)
qed }

note claim1 = this

{ fix S u v and l r :: nat ⇒ real
assume finite S

∧
i . i∈S =⇒ l i < r i {u..v} ⊆ (

⋃
i∈S . {l i<..< r i})

then have F v − F u ≤ (
∑

i∈S . F (r i) − F (l i))
proof (induction arbitrary : v u rule: finite psubset induct)
case (psubset S )
show ?case
proof cases
assume S = {} then show ?case
using psubset by (simp add : mono F )

next
assume S 6= {}
then obtain j where j ∈ S
by auto

let ?R = r j < u ∨ l j > v ∨ (∃ i∈S−{j}. l i ≤ l j ∧ r j ≤ r i)
show ?case
proof cases
assume ?R
with 〈j ∈ S 〉 psubset .prems have {u..v} ⊆ (

⋃
i∈S−{j}. {l i<..< r i})

apply (auto simp: subset eq Ball def )
apply (metis Diff iff less le trans leD linear singletonD)
apply (metis Diff iff less le trans leD linear singletonD)
apply (metis order trans less le not le linear)
done

with 〈j ∈ S 〉 have F v − F u ≤ (
∑

i∈S − {j}. F (r i) − F (l i))
by (intro psubset) auto

also have . . . ≤ (
∑

i∈S . F (r i) − F (l i))
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using psubset .prems
by (intro sum mono2 psubset) (auto intro: less imp le)

finally show ?thesis .
next
assume ¬ ?R
then have j : u ≤ r j l j ≤ v

∧
i . i ∈ S − {j} =⇒ r i < r j ∨ l i > l j

by (auto simp: not less)
let ?S1 = {i ∈ S . l i < l j}
let ?S2 = {i ∈ S . r i > r j}

have (
∑

i∈S . F (r i) − F (l i)) ≥ (
∑

i∈?S1 ∪ ?S2 ∪ {j}. F (r i) − F
(l i))

using 〈j ∈ S 〉 〈finite S 〉 psubset .prems j
by (intro sum mono2 ) (auto intro: less imp le)

also have (
∑

i∈?S1 ∪ ?S2 ∪ {j}. F (r i) − F (l i)) =
(
∑

i∈?S1 . F (r i) − F (l i)) + (
∑

i∈?S2 . F (r i) − F (l i)) + (F (r
j ) − F (l j ))

using psubset(1 ) psubset .prems(1 ) j
apply (subst sum.union disjoint)
apply simp all
apply (subst sum.union disjoint)
apply auto
apply (metis less le not le)
done

also (xtrans) have (
∑

i∈?S1 . F (r i) − F (l i)) ≥ F (l j ) − F u
using 〈j ∈ S 〉 〈finite S 〉 psubset .prems j
apply (intro psubset .IH psubset)
apply (auto simp: subset eq Ball def )
apply (metis less le trans not le)
done

also (xtrans) have (
∑

i∈?S2 . F (r i) − F (l i)) ≥ F v − F (r j )
using 〈j ∈ S 〉 〈finite S 〉 psubset .prems j
apply (intro psubset .IH psubset)
apply (auto simp: subset eq Ball def )
apply (metis le less trans not le)
done

finally (xtrans) show ?case
by (auto simp: add mono)

qed
qed

qed }
note claim2 = this

have ennreal (F b − F a) ≤ (
∑

i . ennreal (F (r i) − F (l i)))
proof (rule ennreal le epsilon)
fix epsilon :: real assume egt0 : epsilon > 0
have ∀ i . ∃ d>0 . F (r i + d) < F (r i) + epsilon / 2ˆ(i+2 )
proof
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fix i
note right cont F [of r i ]
thus ∃ d>0 . F (r i + d) < F (r i) + epsilon / 2ˆ(i+2 )
apply −
apply (subst (asm) continuous at right real increasing)
apply (rule mono F , assumption)
apply (drule tac x = epsilon / 2 ˆ (i + 2 ) in spec)
apply (erule impE )
using egt0 by (auto simp add : field simps)

qed
then obtain delta where

deltai gt0 :
∧
i . delta i > 0 and

deltai prop:
∧
i . F (r i + delta i) < F (r i) + epsilon / 2ˆ(i+2 )

by metis
have ∃ a ′ > a. F a ′ − F a < epsilon / 2
apply (insert right cont F [of a])
apply (subst (asm) continuous at right real increasing)
using mono F apply force
apply (drule tac x = epsilon / 2 in spec)
using egt0 unfolding mult .commute [of 2 ] by force

then obtain a ′ where a ′lea [arith]: a ′ > a and
a prop: F a ′ − F a < epsilon / 2
by auto

define S ′ where S ′ = {i . l i < r i}
obtain S :: nat set where
S ⊆ S ′ and finS : finite S and
Sprop: {a ′..b} ⊆ (

⋃
i ∈ S . {l i<..<r i + delta i})

proof (rule compactE image)
show compact {a ′..b}
by (rule compact Icc)

show
∧
i . i ∈ S ′ =⇒ open ({l i<..<r i + delta i}) by auto

have {a ′..b} ⊆ {a <.. b}
by auto

also have {a <.. b} = (
⋃
i∈S ′. {l i<..r i})

unfolding lr eq ab[symmetric] by (fastforce simp add : S ′ def intro: less le trans)
also have . . . ⊆ (

⋃
i ∈ S ′. {l i<..<r i + delta i})

apply (intro UN mono)
apply (auto simp: S ′ def )
apply (cut tac i=i in deltai gt0 )
apply simp
done

finally show {a ′..b} ⊆ (
⋃
i ∈ S ′. {l i<..<r i + delta i}) .

qed
with S ′ def have Sprop2 :

∧
i . i ∈ S =⇒ l i < r i by auto

from finS have ∃n. ∀ i ∈ S . i ≤ n
by (subst finite nat set iff bounded le [symmetric])

then obtain n where Sbound [rule format ]: ∀ i ∈ S . i ≤ n ..
have F b − F a ′ ≤ (

∑
i∈S . F (r i + delta i) − F (l i))

apply (rule claim2 [rule format ])
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using finS Sprop apply auto
apply (frule Sprop2 )
apply (subgoal tac delta i > 0 )
apply arith
by (rule deltai gt0 )

also have ... ≤ (
∑

i ∈ S . F (r i) − F (l i) + epsilon / 2ˆ(i+2 ))
apply (rule sum mono)
apply simp
apply (rule order trans)
apply (rule less imp le)
apply (rule deltai prop)
by auto

also have ... = (
∑

i ∈ S . F (r i) − F (l i)) +
(epsilon / 4 ) ∗ (

∑
i ∈ S . (1 / 2 )ˆi) (is = ?t + )

by (subst sum.distrib) (simp add : field simps sum distrib left)
also have ... ≤ ?t + (epsilon / 4 ) ∗ (

∑
i < Suc n. (1 / 2 )ˆi)

apply (rule add left mono)
apply (rule mult left mono)
apply (rule sum mono2 )
using egt0 apply auto
by (frule Sbound , auto)

also have ... ≤ ?t + (epsilon / 2 )
apply (rule add left mono)
apply (subst geometric sum)
apply auto
apply (rule mult left mono)
using egt0 apply auto
done

finally have aux2 : F b − F a ′ ≤ (
∑

i∈S . F (r i) − F (l i)) + epsilon / 2
by simp

have F b − F a = (F b − F a ′) + (F a ′ − F a)
by auto

also have ... ≤ (F b − F a ′) + epsilon / 2
using a prop by (intro add left mono) simp

also have ... ≤ (
∑

i∈S . F (r i) − F (l i)) + epsilon / 2 + epsilon / 2
apply (intro add right mono)
apply (rule aux2 )
done

also have ... = (
∑

i∈S . F (r i) − F (l i)) + epsilon
by auto

also have ... ≤ (
∑

i≤n. F (r i) − F (l i)) + epsilon
using finS Sbound Sprop by (auto intro!: add right mono sum mono2 )

finally have ennreal (F b − F a) ≤ (
∑

i≤n. ennreal (F (r i) − F (l i))) +
epsilon

using egt0 by (simp add : sum nonneg flip: ennreal plus)
then show ennreal (F b − F a) ≤ (

∑
i . ennreal (F (r i) − F (l i))) + (epsilon

:: real)
by (rule order trans) (auto intro!: add mono sum le suminf simp del : sum ennreal)
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qed
moreover have (

∑
i . ennreal (F (r i) − F (l i))) ≤ ennreal (F b − F a)

using 〈a ≤ b〉 by (auto intro!: suminf le const ennreal le iff [THEN iffD2 ]
claim1 )
ultimately show (

∑
n. ennreal (F (r n) − F (l n))) = ennreal (F b − F a)

by (rule antisym[rotated ])
qed (auto simp: Ioc inj mono F )

lemma measure interval measure Ioc:
assumes a ≤ b and

∧
x y . x ≤ y =⇒ F x ≤ F y and

∧
a. continuous (at right

a) F
shows measure (interval measure F ) {a <.. b} = F b − F a
unfolding measure def
by (simp add : assms emeasure interval measure Ioc)

lemma emeasure interval measure Ioc eq :
(
∧
x y . x ≤ y =⇒ F x ≤ F y) =⇒ (

∧
a. continuous (at right a) F ) =⇒

emeasure (interval measure F ) {a <.. b} = (if a ≤ b then F b − F a else 0 )
using emeasure interval measure Ioc[of a b F ] by auto

lemma sets interval measure [simp, measurable cong ]:
sets (interval measure F ) = sets borel

apply (simp add : sets extend measure interval measure def borel sigma sets Ioc)
apply (rule sigma sets eqI )
apply auto
apply (case tac a ≤ ba)
apply (auto intro: sigma sets.Empty)
done

lemma space interval measure [simp]: space (interval measure F ) = UNIV
by (simp add : interval measure def space extend measure)

lemma emeasure interval measure Icc:
assumes a ≤ b
assumes mono F :

∧
x y . x ≤ y =⇒ F x ≤ F y

assumes cont F : continuous on UNIV F
shows emeasure (interval measure F ) {a .. b} = F b − F a

proof (rule tendsto unique)
{ fix a b :: real assume a ≤ b then have emeasure (interval measure F ) {a <..

b} = F b − F a
using cont F
by (subst emeasure interval measure Ioc)
(auto intro: mono F continuous within subset simp: continuous on eq continuous within)

}
note ∗ = this

let ?F = interval measure F
show ((λa. F b − F a) −−−→ emeasure ?F {a..b}) (at left a)
proof (rule tendsto at left sequentially)
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show a − 1 < a by simp
fix X assume

∧
n. X n < a incseq X X −−−−→ a

with 〈a ≤ b〉 have (λn. emeasure ?F {X n<..b}) −−−−→ emeasure ?F (
⋂
n.

{X n <..b})
apply (intro Lim emeasure decseq)
apply (auto simp: decseq def incseq def emeasure interval measure Ioc ∗)
apply force
apply (subst (asm ) ∗)
apply (auto intro: less le trans less imp le)
done

also have (
⋂

n. {X n <..b}) = {a..b}
using 〈

∧
n. X n < a〉

apply auto
apply (rule LIMSEQ le const2 [OF 〈X −−−−→ a〉])
apply (auto intro: less imp le)
apply (auto intro: less le trans)
done

also have (λn. emeasure ?F {X n<..b}) = (λn. F b − F (X n))
using 〈

∧
n. X n < a〉 〈a ≤ b〉 by (subst ∗) (auto intro: less imp le less le trans)

finally show (λn. F b − F (X n)) −−−−→ emeasure ?F {a..b} .
qed
show ((λa. ennreal (F b − F a)) −−−→ F b − F a) (at left a)
by (rule continuous on tendsto compose[where g=λx . x and s=UNIV ])

(auto simp: continuous on ennreal continuous on diff cont F )
qed (rule trivial limit at left real)

lemma sigma finite interval measure:
assumes mono F :

∧
x y . x ≤ y =⇒ F x ≤ F y

assumes right cont F :
∧
a. continuous (at right a) F

shows sigma finite measure (interval measure F )
apply unfold locales
apply (intro exI [of (λ(a, b). {a <.. b}) ‘ (Q × Q)])
apply (auto intro!: Rats no top le Rats no bot less countable rat simp: emea-

sure interval measure Ioc eq [OF assms])
done

6.13.2 Lebesgue-Borel measure

definition lborel :: ( ′a :: euclidean space) measure where
lborel = distr (ΠM b∈Basis. interval measure (λx . x )) borel (λf .

∑
b∈Basis. f

b ∗R b)

abbreviation lebesgue :: ′a::euclidean space measure
where lebesgue ≡ completion lborel

abbreviation lebesgue on :: ′a set ⇒ ′a::euclidean space measure
where lebesgue on Ω ≡ restrict space (completion lborel) Ω

lemma lebesgue on mono:
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assumes major : AE x in lebesgue on S . P x and minor :
∧
x .[[P x ; x ∈ S ]] =⇒

Q x
shows AE x in lebesgue on S . Q x

proof −
have AE a in lebesgue on S . P a −→ Q a
using minor space restrict space by fastforce

then show ?thesis
using major by auto

qed

lemma integral eq zero null sets:
assumes S ∈ null sets lebesgue
shows integralL (lebesgue on S ) f = 0

proof (rule integral eq zero AE )
show AE x in lebesgue on S . f x = 0

by (metis (no types, lifting) assms AE not in lebesgue on mono null setsD2
null sets restrict space order refl)
qed

lemma
shows sets lborel [simp, measurable cong ]: sets lborel = sets borel
and space lborel [simp]: space lborel = space borel
and measurable lborel1 [simp]: measurable M lborel = measurable M borel
and measurable lborel2 [simp]: measurable lborel M = measurable borel M

by (simp all add : lborel def )

lemma space lebesgue on [simp]: space (lebesgue on S ) = S
by (simp add : space restrict space)

lemma sets lebesgue on refl [iff ]: S ∈ sets (lebesgue on S )
by (metis inf top.right neutral sets.top space borel space completion space lborel

space restrict space)

lemma Compl in sets lebesgue: −A ∈ sets lebesgue ←→ A ∈ sets lebesgue
by (metis Compl eq Diff UNIV double compl space borel space completion space lborel

Sigma Algebra.sets.compl sets)

lemma measurable lebesgue cong :
assumes

∧
x . x ∈ S =⇒ f x = g x

shows f ∈ measurable (lebesgue on S ) M ←→ g ∈ measurable (lebesgue on S )
M
by (metis (mono tags, lifting) IntD1 assms measurable cong simp space restrict space)

lemma lebesgue on UNIV eq : lebesgue on UNIV = lebesgue
proof −
have measure of UNIV (sets lebesgue) (emeasure lebesgue) = lebesgue
by (metis measure of of measure space borel space completion space lborel)

then show ?thesis
by (auto simp: restrict space def )
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qed

lemma integral restrict Int :
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes S ∈ sets lebesgue T ∈ sets lebesgue
shows integralL (lebesgue on T ) (λx . if x ∈ S then f x else 0 ) = integralL

(lebesgue on (S ∩ T )) f
proof −
have (λx . indicat real T x ∗R (if x ∈ S then f x else 0 )) = (λx . indicat real (S
∩ T ) x ∗R f x )

by (force simp: indicator def )
then show ?thesis
by (simp add : assms sets.Int Bochner Integration.integral restrict space)

qed

lemma integral restrict :
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes S ⊆ T S ∈ sets lebesgue T ∈ sets lebesgue
shows integralL (lebesgue on T ) (λx . if x ∈ S then f x else 0 ) = integralL

(lebesgue on S ) f
using integral restrict Int [of S T f ] assms
by (simp add : Int absorb2 )

lemma integral restrict UNIV :
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes S ∈ sets lebesgue
shows integralL lebesgue (λx . if x ∈ S then f x else 0 ) = integralL (lebesgue on

S ) f
using integral restrict Int [of S UNIV f ] assms
by (simp add : lebesgue on UNIV eq)

lemma integrable lebesgue on empty [iff ]:
fixes f :: ′a::euclidean space ⇒ ′b::{second countable topology ,banach}
shows integrable (lebesgue on {}) f
by (simp add : integrable restrict space)

lemma integral lebesgue on empty [simp]:
fixes f :: ′a::euclidean space ⇒ ′b::{second countable topology ,banach}
shows integralL (lebesgue on {}) f = 0
by (simp add : Bochner Integration.integral empty)

lemma has bochner integral restrict space:
fixes f :: ′a ⇒ ′b::{banach, second countable topology}
assumes Ω: Ω ∩ space M ∈ sets M
shows has bochner integral (restrict space M Ω) f i
←→ has bochner integral M (λx . indicator Ω x ∗R f x ) i

by (simp add : integrable restrict space [OF assms] integral restrict space [OF
assms] has bochner integral iff )

lemma integrable restrict UNIV :
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fixes f :: ′a::euclidean space ⇒ ′b::{banach, second countable topology}
assumes S : S ∈ sets lebesgue
shows integrable lebesgue (λx . if x ∈ S then f x else 0 )←→ integrable (lebesgue on

S ) f
using has bochner integral restrict space [of S lebesgue f ] assms
by (simp add : integrable.simps indicator scaleR eq if )

lemma integral mono lebesgue on AE :
fixes f :: ⇒ real
assumes f : integrable (lebesgue on T ) f
and gf : AE x in (lebesgue on S ). g x ≤ f x
and f0 : AE x in (lebesgue on T ). 0 ≤ f x
and S ⊆ T and S : S ∈ sets lebesgue and T : T ∈ sets lebesgue

shows (
∫
x . g x ∂(lebesgue on S )) ≤ (

∫
x . f x ∂(lebesgue on T ))

proof −
have (

∫
x . g x ∂(lebesgue on S )) = (

∫
x . (if x ∈ S then g x else 0 ) ∂lebesgue)

by (simp add : Lebesgue Measure.integral restrict UNIV S )
also have . . . ≤ (

∫
x . (if x ∈ T then f x else 0 ) ∂lebesgue)

proof (rule Bochner Integration.integral mono AE ′)
show integrable lebesgue (λx . if x ∈ T then f x else 0 )
by (simp add : integrable restrict UNIV T f )

show AE x in lebesgue. (if x ∈ S then g x else 0 ) ≤ (if x ∈ T then f x else 0 )
using assms by (auto simp: AE restrict space iff )

show AE x in lebesgue. 0 ≤ (if x ∈ T then f x else 0 )
using f0 by (simp add : AE restrict space iff T )

qed
also have . . . = (

∫
x . f x ∂(lebesgue on T ))

using Lebesgue Measure.integral restrict UNIV T by blast
finally show ?thesis .

qed

6.13.3 Borel measurability

lemma borel measurable if I :
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes f : f ∈ borel measurable (lebesgue on S ) and S : S ∈ sets lebesgue
shows (λx . if x ∈ S then f x else 0 ) ∈ borel measurable lebesgue

proof −
have eq : {x . x /∈ S} ∪ {x . f x ∈ Y } = {x . x /∈ S} ∪ {x . f x ∈ Y } ∩ S for Y
by blast

show ?thesis
using f S
apply (simp add : vimage def in borel measurable borel Ball def )
apply (elim all forward imp forward asm rl)
apply (simp only : Collect conj eq Collect disj eq imp conv disj eq)
apply (auto simp: Compl eq [symmetric] Compl in sets lebesgue sets restrict space iff )
done

qed
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lemma borel measurable if D :
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes (λx . if x ∈ S then f x else 0 ) ∈ borel measurable lebesgue
shows f ∈ borel measurable (lebesgue on S )
using assms
apply (simp add : in borel measurable borel Ball def )
apply (elim all forward imp forward asm rl)
apply (force simp: space restrict space sets restrict space image iff intro: rev bexI )
done

lemma borel measurable if :
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes S ∈ sets lebesgue
shows (λx . if x ∈ S then f x else 0 ) ∈ borel measurable lebesgue ←→ f ∈

borel measurable (lebesgue on S )
using assms borel measurable if D borel measurable if I by blast

lemma borel measurable if lebesgue on:
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes S ∈ sets lebesgue T ∈ sets lebesgue S ⊆ T
shows (λx . if x ∈ S then f x else 0 ) ∈ borel measurable (lebesgue on T ) ←→ f
∈ borel measurable (lebesgue on S )

(is ?lhs = ?rhs)
proof
assume ?lhs then show ?rhs
using measurable restrict mono [OF 〈S ⊆ T 〉]
by (subst measurable lebesgue cong [where g = (λx . if x ∈ S then f x else 0 )])

auto
next
assume ?rhs then show ?lhs
by (simp add : 〈S ∈ sets lebesgue〉 borel measurable if I measurable restrict space1 )

qed

lemma borel measurable vimage halfspace component lt :
f ∈ borel measurable (lebesgue on S ) ←→
(∀ a i . i ∈ Basis −→ {x ∈ S . f x · i < a} ∈ sets (lebesgue on S ))

apply (rule trans [OF borel measurable iff halfspace less])
apply (fastforce simp add : space restrict space)
done

lemma borel measurable vimage halfspace component ge:
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
shows f ∈ borel measurable (lebesgue on S ) ←→

(∀ a i . i ∈ Basis −→ {x ∈ S . f x · i ≥ a} ∈ sets (lebesgue on S ))
apply (rule trans [OF borel measurable iff halfspace ge])
apply (fastforce simp add : space restrict space)
done

lemma borel measurable vimage halfspace component gt :
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fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
shows f ∈ borel measurable (lebesgue on S ) ←→

(∀ a i . i ∈ Basis −→ {x ∈ S . f x · i > a} ∈ sets (lebesgue on S ))
apply (rule trans [OF borel measurable iff halfspace greater ])
apply (fastforce simp add : space restrict space)
done

lemma borel measurable vimage halfspace component le:
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
shows f ∈ borel measurable (lebesgue on S ) ←→

(∀ a i . i ∈ Basis −→ {x ∈ S . f x · i ≤ a} ∈ sets (lebesgue on S ))
apply (rule trans [OF borel measurable iff halfspace le])
apply (fastforce simp add : space restrict space)
done

lemma
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
shows borel measurable vimage open interval :

f ∈ borel measurable (lebesgue on S ) ←→
(∀ a b. {x ∈ S . f x ∈ box a b} ∈ sets (lebesgue on S )) (is ?thesis1 )

and borel measurable vimage open:
f ∈ borel measurable (lebesgue on S ) ←→
(∀T . open T −→ {x ∈ S . f x ∈ T} ∈ sets (lebesgue on S )) (is ?thesis2 )

proof −
have {x ∈ S . f x ∈ box a b} ∈ sets (lebesgue on S ) if f ∈ borel measurable

(lebesgue on S ) for a b
proof −
have S = S ∩ space lebesgue
by simp

then have S ∩ (f −‘ box a b) ∈ sets (lebesgue on S )
by (metis (no types) box borel in borel measurable borel inf sup aci(1 ) space restrict space

that)
then show ?thesis
by (simp add : Collect conj eq vimage def )

qed
moreover
have {x ∈ S . f x ∈ T} ∈ sets (lebesgue on S )

if T :
∧
a b. {x ∈ S . f x ∈ box a b} ∈ sets (lebesgue on S ) open T for T

proof −
obtain D where countable D and D:

∧
X . X ∈ D =⇒ ∃ a b. X = box a b⋃

D = T
using open countable Union open box that 〈open T 〉 by metis

then have eq : {x ∈ S . f x ∈ T} = (
⋃
U ∈ D. {x ∈ S . f x ∈ U })

by blast
have {x ∈ S . f x ∈ U } ∈ sets (lebesgue on S ) if U ∈ D for U
using that T D by blast

then show ?thesis
by (auto simp: eq intro: Sigma Algebra.sets.countable UN ′ [OF 〈countable

D〉])
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qed
moreover
have eq : {x ∈ S . f x · i < a} = {x ∈ S . f x ∈ {y . y · i < a}} for i a
by auto

have f ∈ borel measurable (lebesgue on S )
if

∧
T . open T =⇒ {x ∈ S . f x ∈ T} ∈ sets (lebesgue on S )

by (metis (no types) eq borel measurable vimage halfspace component lt open halfspace component lt
that)
ultimately show ?thesis1 ?thesis2
by blast+

qed

lemma borel measurable vimage closed :
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
shows f ∈ borel measurable (lebesgue on S ) ←→

(∀T . closed T −→ {x ∈ S . f x ∈ T} ∈ sets (lebesgue on S ))
(is ?lhs = ?rhs)

proof −
have eq : {x ∈ S . f x ∈ T} = S − {x ∈ S . f x ∈ (− T )} for T
by auto

show ?thesis
apply (simp add : borel measurable vimage open, safe)
apply (simp all (no asm) add : eq)
apply (intro sets.Diff sets lebesgue on refl , force simp: closed open)
apply (intro sets.Diff sets lebesgue on refl , force simp: open closed)
done

qed

lemma borel measurable vimage closed interval :
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
shows f ∈ borel measurable (lebesgue on S ) ←→

(∀ a b. {x ∈ S . f x ∈ cbox a b} ∈ sets (lebesgue on S ))
(is ?lhs = ?rhs)

proof
assume ?lhs then show ?rhs
using borel measurable vimage closed by blast

next
assume RHS : ?rhs
have {x ∈ S . f x ∈ T} ∈ sets (lebesgue on S ) if open T for T
proof −
obtain D where countable D and D: D ⊆ Pow T

∧
X . X ∈ D =⇒ ∃ a b. X

= cbox a b
⋃
D = T

using open countable Union open cbox that 〈open T 〉 by metis
then have eq : {x ∈ S . f x ∈ T} = (

⋃
U ∈ D. {x ∈ S . f x ∈ U })

by blast
have {x ∈ S . f x ∈ U } ∈ sets (lebesgue on S ) if U ∈ D for U
using that D by (metis RHS )

then show ?thesis
by (auto simp: eq intro: Sigma Algebra.sets.countable UN ′ [OF 〈countable



Lebesgue Measure.thy 1673

D〉])
qed
then show ?lhs
by (simp add : borel measurable vimage open)

qed

lemma borel measurable vimage borel :
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
shows f ∈ borel measurable (lebesgue on S ) ←→

(∀T . T ∈ sets borel −→ {x ∈ S . f x ∈ T} ∈ sets (lebesgue on S ))
(is ?lhs = ?rhs)

proof
assume f : ?lhs
then show ?rhs
using measurable sets [OF f ]
by (simp add : Collect conj eq inf sup aci(1 ) space restrict space vimage def )

qed (simp add : borel measurable vimage open interval)

lemma lebesgue measurable vimage borel :
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes f ∈ borel measurable lebesgue T ∈ sets borel
shows {x . f x ∈ T} ∈ sets lebesgue
using assms borel measurable vimage borel [of f UNIV ] by auto

lemma borel measurable lebesgue preimage borel :
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
shows f ∈ borel measurable lebesgue ←→

(∀T . T ∈ sets borel −→ {x . f x ∈ T} ∈ sets lebesgue)
apply (intro iffI allI impI lebesgue measurable vimage borel)
apply (auto simp: in borel measurable borel vimage def )

done

6.13.4 Measurability of continuous functions

lemma continuous imp measurable on sets lebesgue:
assumes f : continuous on S f and S : S ∈ sets lebesgue
shows f ∈ borel measurable (lebesgue on S )

proof −
have sets (restrict space borel S ) ⊆ sets (lebesgue on S )
by (simp add : mono restrict space subsetI )

then show ?thesis
by (simp add : borel measurable continuous on restrict [OF f ] borel measurable subalgebra

space restrict space)
qed

lemma id borel measurable lebesgue [iff ]: id ∈ borel measurable lebesgue
by (simp add : measurable completion)
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lemma id borel measurable lebesgue on [iff ]: id ∈ borel measurable (lebesgue on S )
by (simp add : measurable completion measurable restrict space1 )

context
begin

interpretation sigma finite measure interval measure (λx . x )
by (rule sigma finite interval measure) auto

interpretation finite product sigma finite λ . interval measure (λx . x ) Basis
proof qed simp

lemma lborel eq real : lborel = interval measure (λx . x )
unfolding lborel def Basis real def
using distr id [of interval measure (λx . x )]
by (subst distr component [symmetric])

(simp all add : distr distr comp def del : distr id cong : distr cong)

lemma lborel eq : lborel = distr (ΠM b∈Basis. lborel) borel (λf .
∑

b∈Basis. f b
∗R b)
by (subst lborel def ) (simp add : lborel eq real)

lemma nn integral lborel prod :
assumes [measurable]:

∧
b. b ∈ Basis =⇒ f b ∈ borel measurable borel

assumes nn[simp]:
∧
b x . b ∈ Basis =⇒ 0 ≤ f b x

shows (
∫

+x . (
∏

b∈Basis. f b (x · b)) ∂lborel) = (
∏

b∈Basis. (
∫

+x . f b x
∂lborel))
by (simp add : lborel def nn integral distr product nn integral prod

product nn integral singleton)

lemma emeasure lborel Icc[simp]:
fixes l u :: real
assumes [simp]: l ≤ u
shows emeasure lborel {l .. u} = u − l

proof −
have ((λf . f 1 ) −‘ {l ..u} ∩ space (PiM {1} (λb. interval measure (λx . x )))) =
{1 ::real} →E {l ..u}

by (auto simp: space PiM )
then show ?thesis
by (simp add : lborel def emeasure distr emeasure PiM emeasure interval measure Icc)

qed

lemma emeasure lborel Icc eq : emeasure lborel {l .. u} = ennreal (if l ≤ u then u
− l else 0 )
by simp

lemma emeasure lborel cbox [simp]:
assumes [simp]:

∧
b. b ∈ Basis =⇒ l · b ≤ u · b

shows emeasure lborel (cbox l u) = (
∏

b∈Basis. (u − l) · b)
proof −
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have (λx .
∏

b∈Basis. indicator {l ·b .. u·b} (x · b) :: ennreal) = indicator (cbox
l u)

by (auto simp: fun eq iff cbox def split : split indicator)
then have emeasure lborel (cbox l u) = (

∫
+x . (

∏
b∈Basis. indicator {l ·b .. u·b}

(x · b)) ∂lborel)
by simp

also have . . . = (
∏

b∈Basis. (u − l) · b)
by (subst nn integral lborel prod) (simp all add : prod ennreal inner diff left)

finally show ?thesis .
qed

lemma AE lborel singleton: AE x in lborel :: ′a::euclidean space measure. x 6= c
using SOME Basis AE discrete difference [of {c} lborel ] emeasure lborel cbox [of

c c]
by (auto simp add : power 0 left)

lemma emeasure lborel Ioo[simp]:
assumes [simp]: l ≤ u
shows emeasure lborel {l <..< u} = ennreal (u − l)

proof −
have emeasure lborel {l <..< u} = emeasure lborel {l .. u}
using AE lborel singleton[of u] AE lborel singleton[of l ] by (intro emeasure eq AE )

auto
then show ?thesis
by simp

qed

lemma emeasure lborel Ioc[simp]:
assumes [simp]: l ≤ u
shows emeasure lborel {l <.. u} = ennreal (u − l)

proof −
have emeasure lborel {l <.. u} = emeasure lborel {l .. u}
using AE lborel singleton[of u] AE lborel singleton[of l ] by (intro emeasure eq AE )

auto
then show ?thesis
by simp

qed

lemma emeasure lborel Ico[simp]:
assumes [simp]: l ≤ u
shows emeasure lborel {l ..< u} = ennreal (u − l)

proof −
have emeasure lborel {l ..< u} = emeasure lborel {l .. u}
using AE lborel singleton[of u] AE lborel singleton[of l ] by (intro emeasure eq AE )

auto
then show ?thesis
by simp

qed
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lemma emeasure lborel box [simp]:
assumes [simp]:

∧
b. b ∈ Basis =⇒ l · b ≤ u · b

shows emeasure lborel (box l u) = (
∏

b∈Basis. (u − l) · b)
proof −
have (λx .

∏
b∈Basis. indicator {l ·b <..< u·b} (x · b) :: ennreal) = indicator

(box l u)
by (auto simp: fun eq iff box def split : split indicator)

then have emeasure lborel (box l u) = (
∫

+x . (
∏

b∈Basis. indicator {l ·b <..<
u·b} (x · b)) ∂lborel)

by simp
also have . . . = (

∏
b∈Basis. (u − l) · b)

by (subst nn integral lborel prod) (simp all add : prod ennreal inner diff left)
finally show ?thesis .

qed

lemma emeasure lborel cbox eq :
emeasure lborel (cbox l u) = (if ∀ b∈Basis. l · b ≤ u · b then

∏
b∈Basis. (u −

l) · b else 0 )
using box eq empty(2 )[THEN iffD2 , of u l ] by (auto simp: not le)

lemma emeasure lborel box eq :
emeasure lborel (box l u) = (if ∀ b∈Basis. l · b ≤ u · b then

∏
b∈Basis. (u − l)

· b else 0 )
using box eq empty(1 )[THEN iffD2 , of u l ] by (auto simp: not le dest !: less imp le)

force

lemma emeasure lborel singleton[simp]: emeasure lborel {x} = 0
using emeasure lborel cbox [of x x ] nonempty Basis
by (auto simp del : emeasure lborel cbox nonempty Basis)

lemma emeasure lborel cbox finite: emeasure lborel (cbox a b) < ∞
by (auto simp: emeasure lborel cbox eq)

lemma emeasure lborel box finite: emeasure lborel (box a b) < ∞
by (auto simp: emeasure lborel box eq)

lemma emeasure lborel ball finite: emeasure lborel (ball c r) < ∞
proof −
have bounded (ball c r) by simp
from bounded subset cbox symmetric[OF this] obtain a where a: ball c r ⊆ cbox

(−a) a
by auto

hence emeasure lborel (ball c r) ≤ emeasure lborel (cbox (−a) a)
by (intro emeasure mono) auto

also have . . . < ∞ by (simp add : emeasure lborel cbox eq)
finally show ?thesis .

qed

lemma emeasure lborel cball finite: emeasure lborel (cball c r) < ∞
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proof −
have bounded (cball c r) by simp
from bounded subset cbox symmetric[OF this] obtain a where a: cball c r ⊆

cbox (−a) a
by auto

hence emeasure lborel (cball c r) ≤ emeasure lborel (cbox (−a) a)
by (intro emeasure mono) auto

also have . . . < ∞ by (simp add : emeasure lborel cbox eq)
finally show ?thesis .

qed

lemma fmeasurable cbox [iff ]: cbox a b ∈ fmeasurable lborel
and fmeasurable box [iff ]: box a b ∈ fmeasurable lborel
by (auto simp: fmeasurable def emeasure lborel box eq emeasure lborel cbox eq)

lemma
fixes l u :: real
assumes [simp]: l ≤ u
shows measure lborel Icc[simp]: measure lborel {l .. u} = u − l
and measure lborel Ico[simp]: measure lborel {l ..< u} = u − l
and measure lborel Ioc[simp]: measure lborel {l <.. u} = u − l
and measure lborel Ioo[simp]: measure lborel {l <..< u} = u − l

by (simp all add : measure def )

lemma
assumes [simp]:

∧
b. b ∈ Basis =⇒ l · b ≤ u · b

shows measure lborel box [simp]: measure lborel (box l u) = (
∏

b∈Basis. (u − l)
· b)

and measure lborel cbox [simp]: measure lborel (cbox l u) = (
∏

b∈Basis. (u −
l) · b)
by (simp all add : measure def inner diff left prod nonneg)

lemma measure lborel cbox eq :
measure lborel (cbox l u) = (if ∀ b∈Basis. l · b ≤ u · b then

∏
b∈Basis. (u − l)

· b else 0 )
using box eq empty(2 )[THEN iffD2 , of u l ] by (auto simp: not le)

lemma measure lborel box eq :
measure lborel (box l u) = (if ∀ b∈Basis. l · b ≤ u · b then

∏
b∈Basis. (u − l)

· b else 0 )
using box eq empty(1 )[THEN iffD2 , of u l ] by (auto simp: not le dest !: less imp le)

force

lemma measure lborel singleton[simp]: measure lborel {x} = 0
by (simp add : measure def )

lemma sigma finite lborel : sigma finite measure lborel
proof
show ∃A:: ′a set set . countable A ∧ A ⊆ sets lborel ∧

⋃
A = space lborel ∧
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(∀ a∈A. emeasure lborel a 6= ∞)
by (intro exI [of range (λn::nat . box (− real n ∗R One) (real n ∗R One))])

(auto simp: emeasure lborel cbox eq UN box eq UNIV )
qed

end

lemma emeasure lborel UNIV [simp]: emeasure lborel (UNIV :: ′a::euclidean space
set) = ∞
proof −
{ fix n::nat
let ?Ba = Basis :: ′a set
have real n ≤ (2 ::real) ˆ card ?Ba ∗ real n
by (simp add : mult le cancel right1 )

also
have ... ≤ (2 ::real) ˆ card ?Ba ∗ real (Suc n) ˆ card ?Ba
apply (rule mult left mono)
apply (metis DIM positive One nat def less eq Suc le less imp le of nat le iff

of nat power self le power zero less Suc)
apply (simp)
done

finally have real n ≤ (2 ::real) ˆ card ?Ba ∗ real (Suc n) ˆ card ?Ba .
} note [intro!] = this
show ?thesis
unfolding UN box eq UNIV [symmetric]
apply (subst SUP emeasure incseq [symmetric])
apply (auto simp: incseq def subset box inner add left
simp del : Sup eq top iff SUP eq top iff
intro!: ennreal SUP eq top)

done
qed

lemma emeasure lborel countable:
fixes A :: ′a::euclidean space set
assumes countable A
shows emeasure lborel A = 0

proof −
have A ⊆ (

⋃
i . {from nat into A i}) using from nat into surj assms by force

then have emeasure lborel A ≤ emeasure lborel (
⋃
i . {from nat into A i})

by (intro emeasure mono) auto
also have emeasure lborel (

⋃
i . {from nat into A i}) = 0

by (rule emeasure UN eq 0 ) auto
finally show ?thesis
by (auto simp add : )

qed

lemma countable imp null set lborel : countable A =⇒ A ∈ null sets lborel
by (simp add : null sets def emeasure lborel countable sets.countable)
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lemma finite imp null set lborel : finite A =⇒ A ∈ null sets lborel
by (intro countable imp null set lborel countable finite)

lemma insert null sets iff [simp]: insert a N ∈ null sets lebesgue ←→ N ∈ null sets
lebesgue

(is ?lhs = ?rhs)
proof
assume ?lhs then show ?rhs
by (meson completion.complete2 subset insertI )

next
assume ?rhs then show ?lhs
by (simp add : null sets.insert in sets null setsI )

qed

lemma insert null sets lebesgue on iff [simp]:
assumes a ∈ S S ∈ sets lebesgue
shows insert a N ∈ null sets (lebesgue on S ) ←→ N ∈ null sets (lebesgue on S )

by (simp add : assms null sets restrict space)

lemma lborel neq count space[simp]: lborel 6= count space (A::( ′a::ordered euclidean space)
set)
proof
assume asm: lborel = count space A
have space lborel = UNIV by simp
hence [simp]: A = UNIV by (subst (asm) asm) (simp only : space count space)
have emeasure lborel {undefined :: ′a} = 1

by (subst asm, subst emeasure count space finite) auto
moreover have emeasure lborel {undefined} 6= 1 by simp
ultimately show False by contradiction

qed

lemma mem closed if AE lebesgue open:
assumes open S closed C
assumes AE x ∈ S in lebesgue. x ∈ C
assumes x ∈ S
shows x ∈ C

proof (rule ccontr)
assume xC : x /∈ C
with openE [of S − C ] assms
obtain e where e: 0 < e ball x e ⊆ S − C
by blast

then obtain a b where box : x ∈ box a b box a b ⊆ S − C
by (metis rational boxes order trans)

then have 0 < emeasure lebesgue (box a b)
by (auto simp: emeasure lborel box eq mem box algebra simps intro!: prod pos)

also have . . . ≤ emeasure lebesgue (S − C )
using assms box
by (auto intro!: emeasure mono)
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also have . . . = 0
using assms
by (auto simp: eventually ae filter completion.complete2 set diff eq null setsD1 )
finally show False by simp

qed

lemma mem closed if AE lebesgue: closed C =⇒ (AE x in lebesgue. x ∈ C ) =⇒
x ∈ C
using mem closed if AE lebesgue open[OF open UNIV ] by simp

6.13.5 Affine transformation on the Lebesgue-Borel

lemma lborel eqI :
fixes M :: ′a::euclidean space measure
assumes emeasure eq :

∧
l u. (

∧
b. b ∈ Basis =⇒ l · b ≤ u · b) =⇒ emeasure M

(box l u) = (
∏

b∈Basis. (u − l) · b)
assumes sets eq : sets M = sets borel
shows lborel = M

proof (rule measure eqI generator eq)
let ?E = range (λ(a, b). box a b:: ′a set)
show Int stable ?E
by (auto simp: Int stable def box Int box )

show ?E ⊆ Pow UNIV sets lborel = sigma sets UNIV ?E sets M = sigma sets
UNIV ?E

by (simp all add : borel eq box sets eq)

let ?A = λn::nat . box (− (real n ∗R One)) (real n ∗R One) :: ′a set
show range ?A ⊆ ?E (

⋃
i . ?A i) = UNIV

unfolding UN box eq UNIV by auto

{ fix i show emeasure lborel (?A i) 6= ∞ by auto }
{ fix X assume X ∈ ?E then show emeasure lborel X = emeasure M X

apply (auto simp: emeasure eq emeasure lborel box eq)
apply (subst box eq empty(1 )[THEN iffD2 ])
apply (auto intro: less imp le simp: not le)
done }

qed

lemma lborel affine euclidean:
fixes c :: ′a::euclidean space ⇒ real and t
defines T x ≡ t + (

∑
j∈Basis. (c j ∗ (x · j )) ∗R j )

assumes c:
∧
j . j ∈ Basis =⇒ c j 6= 0

shows lborel = density (distr lborel borel T ) (λ . (
∏

j∈Basis. |c j |)) (is = ?D)
proof (rule lborel eqI )
let ?B = Basis :: ′a set
fix l u assume le:

∧
b. b ∈ ?B =⇒ l · b ≤ u · b

have [measurable]: T ∈ borel →M borel
by (simp add : T def [abs def ])
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have eq : T −‘ box l u = box
(
∑

j∈Basis. (((if 0 < c j then l − t else u − t) · j ) / c j ) ∗R j )
(
∑

j∈Basis. (((if 0 < c j then u − t else l − t) · j ) / c j ) ∗R j )
using c by (auto simp: box def T def field simps inner simps divide less eq)

with le c show emeasure ?D (box l u) = (
∏

b∈?B . (u − l) · b)
by (auto simp: emeasure density emeasure distr nn integral multc emeasure lborel box eq

inner simps
field split simps ennreal mult ′[symmetric] prod nonneg prod .distrib[symmetric]
intro!: prod .cong)

qed simp

lemma lborel affine:
fixes t :: ′a::euclidean space
shows c 6= 0 =⇒ lborel = density (distr lborel borel (λx . t + c ∗R x )) (λ .
|c|ˆDIM ( ′a))
using lborel affine euclidean[where c=λ :: ′a. c and t=t ]
unfolding scaleR scaleR[symmetric] scaleR sum right [symmetric] euclidean representation

prod constant by simp

lemma lborel real affine:
c 6= 0 =⇒ lborel = density (distr lborel borel (λx . t + c ∗ x )) (λ . ennreal (abs

c))
using lborel affine[of c t ] by simp

lemma AE borel affine:
fixes P :: real ⇒ bool
shows c 6= 0 =⇒ Measurable.pred borel P =⇒ AE x in lborel . P x =⇒ AE x in

lborel . P (t + c ∗ x )
by (subst lborel real affine[where t=− t / c and c=1 / c])

(simp all add : AE density AE distr iff field simps)

lemma nn integral real affine:
fixes c :: real assumes [measurable]: f ∈ borel measurable borel and c: c 6= 0
shows (

∫
+x . f x ∂lborel) = |c| ∗ (

∫
+x . f (t + c ∗ x ) ∂lborel)

by (subst lborel real affine[OF c, of t ])
(simp add : nn integral density nn integral distr nn integral cmult)

lemma lborel integrable real affine:
fixes f :: real ⇒ ′a :: {banach, second countable topology}
assumes f : integrable lborel f
shows c 6= 0 =⇒ integrable lborel (λx . f (t + c ∗ x ))
using f f [THEN borel measurable integrable] unfolding integrable iff bounded
by (subst (asm) nn integral real affine[where c=c and t=t ]) (auto simp: en-

nreal mult less top)

lemma lborel integrable real affine iff :
fixes f :: real ⇒ ′a :: {banach, second countable topology}
shows c 6= 0 =⇒ integrable lborel (λx . f (t + c ∗ x )) ←→ integrable lborel f
using
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lborel integrable real affine[of f c t ]
lborel integrable real affine[of λx . f (t + c ∗ x ) 1/c −t/c]

by (auto simp add : field simps)

lemma lborel integral real affine:
fixes f :: real ⇒ ′a :: {banach, second countable topology} and c :: real
assumes c: c 6= 0 shows (

∫
x . f x ∂ lborel) = |c| ∗R (

∫
x . f (t + c ∗ x ) ∂lborel)

proof cases
assume f [measurable]: integrable lborel f then show ?thesis
using c f f [THEN borel measurable integrable] f [THEN lborel integrable real affine,

of c t ]
by (subst lborel real affine[OF c, of t ])

(simp add : integral density integral distr)
next
assume ¬ integrable lborel f with c show ?thesis
by (simp add : lborel integrable real affine iff not integrable integral eq)

qed

lemma
fixes c :: ′a::euclidean space ⇒ real and t
assumes c:

∧
j . j ∈ Basis =⇒ c j 6= 0

defines T == (λx . t + (
∑

j∈Basis. (c j ∗ (x · j )) ∗R j ))
shows lebesgue affine euclidean: lebesgue = density (distr lebesgue lebesgue T )

(λ . (
∏

j∈Basis. |c j |)) (is = ?D)
and lebesgue affine measurable: T ∈ lebesgue →M lebesgue

proof −
have T borel [measurable]: T ∈ borel →M borel
by (auto simp: T def [abs def ])

{ fix A :: ′a set assume A: A ∈ sets borel
then have emeasure lborel A = 0 ←→ emeasure (density (distr lborel borel T )

(λ . (
∏

j∈Basis. |c j |))) A = 0
unfolding T def using c by (subst lborel affine euclidean[symmetric]) auto

also have . . . ←→ emeasure (distr lebesgue lborel T ) A = 0
using A c by (simp add : distr completion emeasure density nn integral cmult

prod nonneg cong : distr cong)
finally have emeasure lborel A = 0 ←→ emeasure (distr lebesgue lborel T ) A

= 0 . }
then have eq : null sets lborel = null sets (distr lebesgue lborel T )
by (auto simp: null sets def )

show T ∈ lebesgue →M lebesgue
by (rule completion.measurable completion2 ) (auto simp: eq measurable completion)

have lebesgue = completion (density (distr lborel borel T ) (λ . (
∏

j∈Basis. |c
j |)))

using c by (subst lborel affine euclidean[of c t ]) (simp all add : T def [abs def ])
also have . . . = density (completion (distr lebesgue lborel T )) (λ . (

∏
j∈Basis.

|c j |))
using c by (auto intro!: always eventually prod pos completion density eq simp:
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distr completion cong : distr cong)
also have . . . = density (distr lebesgue lebesgue T ) (λ . (

∏
j∈Basis. |c j |))

by (subst completion.completion distr eq) (auto simp: eq measurable completion)
finally show lebesgue = density (distr lebesgue lebesgue T ) (λ . (

∏
j∈Basis. |c

j |)) .
qed

corollary lebesgue real affine:
c 6= 0 =⇒ lebesgue = density (distr lebesgue lebesgue (λx . t + c ∗ x )) (λ . ennreal

(abs c))
using lebesgue affine euclidean [where c= λx ::real . c] by simp

lemma nn integral real affine lebesgue:
fixes c :: real assumes f [measurable]: f ∈ borel measurable lebesgue and c: c 6=

0
shows (

∫
+x . f x ∂lebesgue) = ennreal |c| ∗ (

∫
+x . f (t + c ∗ x ) ∂lebesgue)

proof −
have (

∫
+x . f x ∂lebesgue) = (

∫
+x . f x ∂density (distr lebesgue lebesgue (λx . t

+ c ∗ x )) (λx . ennreal |c|))
using lebesgue real affine c by auto

also have . . . =
∫

+ x . ennreal |c| ∗ f x ∂distr lebesgue lebesgue (λx . t + c ∗ x )
by (subst nn integral density) auto

also have . . . = ennreal |c| ∗ integralN (distr lebesgue lebesgue (λx . t + c ∗ x ))
f

using f measurable distr eq1 nn integral cmult by blast
also have . . . = |c| ∗ (

∫
+x . f (t + c ∗ x ) ∂lebesgue)

using lebesgue affine measurable[where c= λx ::real . c]
by (subst nn integral distr) (force+)

finally show ?thesis .
qed

lemma lebesgue measurable scaling [measurable]: (∗R) x ∈ lebesgue →M lebesgue
proof cases
assume x = 0
then have (∗R) x = (λx . 0 :: ′a)
by (auto simp: fun eq iff )

then show ?thesis by auto
next
assume x 6= 0 then show ?thesis
using lebesgue affine measurable[of λ . x 0 ]
unfolding scaleR scaleR[symmetric] scaleR sum right [symmetric] euclidean representation
by (auto simp add : ac simps)

qed

lemma
fixes m :: real and δ :: ′a::euclidean space
defines T r d x ≡ r ∗R x + d
shows emeasure lebesgue affine: emeasure lebesgue (T m δ ‘ S ) = |m| ˆ DIM ( ′a)
∗ emeasure lebesgue S (is ?e)
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and measure lebesgue affine: measure lebesgue (T m δ ‘ S ) = |m| ˆ DIM ( ′a) ∗
measure lebesgue S (is ?m)
proof −
show ?e
proof cases
assume m = 0 then show ?thesis
by (simp add : image constant conv T def [abs def ])

next
let ?T = T m δ and ?T ′ = T (1 / m) (− ((1/m) ∗R δ))
assume m 6= 0
then have s comp s: ?T ′ ◦ ?T = id ?T ◦ ?T ′ = id
by (auto simp: T def [abs def ] fun eq iff scaleR add right scaleR diff right)

then have inv ?T ′ = ?T bij ?T ′

by (auto intro: inv unique comp o bij )
then have eq : T m δ ‘ S = T (1 / m) ((−1/m) ∗R δ) −‘ S ∩ space lebesgue
using bij vimage eq inv image[OF 〈bij ?T ′〉, of S ] by auto

have trans eq T : (λx . δ + (
∑

j∈Basis. (m ∗ (x · j )) ∗R j )) = T m δ for m δ
unfolding T def [abs def ] scaleR scaleR[symmetric] scaleR sum right [symmetric]
by (auto simp add : euclidean representation ac simps)

have T [measurable]: T r d ∈ lebesgue →M lebesgue for r d
using lebesgue affine measurable[of λ . r d ]
by (cases r = 0 ) (auto simp: trans eq T T def [abs def ])

show ?thesis
proof cases
assume S ∈ sets lebesgue with 〈m 6= 0 〉 show ?thesis
unfolding eq
apply (subst lebesgue affine euclidean[of λ . m δ])
apply (simp all add : emeasure density trans eq T nn integral cmult emea-

sure distr
del : space completion emeasure completion)

apply (simp add : vimage comp s comp s)
done

next
assume S /∈ sets lebesgue
moreover have ?T ‘ S /∈ sets lebesgue
proof
assume ?T ‘ S ∈ sets lebesgue
then have ?T −‘ (?T ‘ S ) ∩ space lebesgue ∈ sets lebesgue
by (rule measurable sets[OF T ])

also have ?T −‘ (?T ‘ S ) ∩ space lebesgue = S
by (simp add : vimage comp s comp s eq)

finally show False using 〈S /∈ sets lebesgue〉 by auto
qed
ultimately show ?thesis
by (simp add : emeasure notin sets)

qed



Lebesgue Measure.thy 1685

qed
show ?m
unfolding measure def 〈?e〉 by (simp add : enn2real mult prod nonneg)

qed

lemma lebesgue real scale:
assumes c 6= 0
shows lebesgue = density (distr lebesgue lebesgue (λx . c ∗ x )) (λx . ennreal |c|)
using assms by (subst lebesgue affine euclidean[of λ . c 0 ]) simp all

lemma divideR right :
fixes x y :: ′a::real normed vector
shows r 6= 0 =⇒ y = x /R r ←→ r ∗R y = x
using scaleR cancel left [of r y x /R r ] by simp

lemma lborel has bochner integral real affine iff :
fixes x :: ′a :: {banach, second countable topology}
shows c 6= 0 =⇒
has bochner integral lborel f x ←→
has bochner integral lborel (λx . f (t + c ∗ x )) (x /R |c|)

unfolding has bochner integral iff lborel integrable real affine iff
by (simp all add : lborel integral real affine[symmetric] divideR right cong : conj cong)

lemma lborel distr uminus: distr lborel borel uminus = (lborel :: real measure)
by (subst lborel real affine[of −1 0 ])

(auto simp: density 1 one ennreal def [symmetric])

lemma lborel distr mult :
assumes (c::real) 6= 0
shows distr lborel borel ((∗) c) = density lborel (λ . inverse |c|)

proof−
have distr lborel borel ((∗) c) = distr lborel lborel ((∗) c) by (simp cong : distr cong)
also from assms have ... = density lborel (λ . inverse |c|)
by (subst lborel real affine[of inverse c 0 ]) (auto simp: o def distr density distr)

finally show ?thesis .
qed

lemma lborel distr mult ′:
assumes (c::real) 6= 0
shows lborel = density (distr lborel borel ((∗) c)) (λ . |c|)

proof−
have lborel = density lborel (λ . 1 ) by (rule density 1 [symmetric])
also from assms have (λ . 1 :: ennreal) = (λ . inverse |c| ∗ |c|) by (intro ext)

simp
also have density lborel ... = density (density lborel (λ . inverse |c|)) (λ . |c|)
by (subst density density eq) (auto simp: ennreal mult)

also from assms have density lborel (λ . inverse |c|) = distr lborel borel ((∗) c)
by (rule lborel distr mult [symmetric])

finally show ?thesis .
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qed

lemma lborel distr plus:
fixes c :: ′a::euclidean space
shows distr lborel borel ((+) c) = lborel

by (subst lborel affine[of 1 c], auto simp: density 1 )

interpretation lborel : sigma finite measure lborel
by (rule sigma finite lborel)

interpretation lborel pair : pair sigma finite lborel lborel ..

lemma lborel prod :
lborel

⊗
M lborel = (lborel :: ( ′a::euclidean space × ′b::euclidean space) measure)

proof (rule lborel eqI [symmetric], clarify)
fix la ua :: ′a and lb ub :: ′b
assume lu:

∧
a b. (a, b) ∈ Basis =⇒ (la, lb) · (a, b) ≤ (ua, ub) · (a, b)

have [simp]:∧
b. b ∈ Basis =⇒ la · b ≤ ua · b∧
b. b ∈ Basis =⇒ lb · b ≤ ub · b

inj on (λu. (u, 0 )) Basis inj on (λu. (0 , u)) Basis
(λu. (u, 0 )) ‘ Basis ∩ (λu. (0 , u)) ‘ Basis = {}
box (la, lb) (ua, ub) = box la ua × box lb ub
using lu[of 0 ] lu[of 0 ] by (auto intro!: inj onI simp add : Basis prod def ball Un

box def )
show emeasure (lborel

⊗
M lborel) (box (la, lb) (ua, ub)) =

ennreal (prod ((·) ((ua, ub) − (la, lb))) Basis)
by (simp add : lborel .emeasure pair measure Times Basis prod def prod .union disjoint

prod .reindex ennreal mult inner diff left prod nonneg)
qed (simp add : borel prod [symmetric])

lemma lborelD Collect [measurable (raw)]: {x∈space borel . P x} ∈ sets borel =⇒
{x∈space lborel . P x} ∈ sets lborel
by simp

lemma lborelD [measurable (raw)]: A ∈ sets borel =⇒ A ∈ sets lborel
by simp

lemma emeasure bounded finite:
assumes bounded A shows emeasure lborel A < ∞

proof −
obtain a b where A ⊆ cbox a b
by (meson bounded subset cbox symmetric 〈bounded A〉)

then have emeasure lborel A ≤ emeasure lborel (cbox a b)
by (intro emeasure mono) auto

then show ?thesis
by (auto simp: emeasure lborel cbox eq prod nonneg less top[symmetric] top unique

split : if split asm)
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qed

lemma emeasure compact finite: compact A =⇒ emeasure lborel A < ∞
using emeasure bounded finite[of A] by (auto intro: compact imp bounded)

lemma borel integrable compact :
fixes f :: ′a::euclidean space ⇒ ′b::{banach, second countable topology}
assumes compact S continuous on S f
shows integrable lborel (λx . indicator S x ∗R f x )

proof cases
assume S 6= {}
have continuous on S (λx . norm (f x ))
using assms by (intro continuous intros)

from continuous attains sup[OF 〈compact S 〉 〈S 6= {}〉 this]
obtain M where M :

∧
x . x ∈ S =⇒ norm (f x ) ≤ M

by auto
show ?thesis
proof (rule integrable bound)
show integrable lborel (λx . indicator S x ∗ M )

using assms by (auto intro!: emeasure compact finite borel compact inte-
grable mult left)

show (λx . indicator S x ∗R f x ) ∈ borel measurable lborel
using assms by (auto intro!: borel measurable continuous on indicator borel compact)
show AE x in lborel . norm (indicator S x ∗R f x ) ≤ norm (indicator S x ∗ M )
by (auto split : split indicator simp: abs real def dest !: M )

qed
qed simp

lemma borel integrable atLeastAtMost :
fixes f :: real ⇒ real
assumes f :

∧
x . a ≤ x =⇒ x ≤ b =⇒ isCont f x

shows integrable lborel (λx . f x ∗ indicator {a .. b} x ) (is integrable ?f )
proof −
have integrable lborel (λx . indicator {a .. b} x ∗R f x )
proof (rule borel integrable compact)
from f show continuous on {a..b} f
by (auto intro: continuous at imp continuous on)

qed simp
then show ?thesis
by (auto simp: mult .commute)

qed

6.13.6 Lebesgue measurable sets

abbreviation lmeasurable :: ′a::euclidean space set set
where
lmeasurable ≡ fmeasurable lebesgue

lemma not measurable UNIV [simp]: UNIV /∈ lmeasurable
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by (simp add : fmeasurable def )

lemma lmeasurable iff integrable:
S ∈ lmeasurable ←→ integrable lebesgue (indicator S :: ′a::euclidean space ⇒

real)
by (auto simp: fmeasurable def integrable iff bounded borel measurable indicator iff

ennreal indicator)

lemma lmeasurable cbox [iff ]: cbox a b ∈ lmeasurable
and lmeasurable box [iff ]: box a b ∈ lmeasurable
by (auto simp: fmeasurable def emeasure lborel box eq emeasure lborel cbox eq)

lemma
fixes a::real
shows lmeasurable interval [iff ]: {a..b} ∈ lmeasurable {a<..<b} ∈ lmeasurable
apply (metis box real(2 ) lmeasurable cbox )
by (metis box real(1 ) lmeasurable box )

lemma fmeasurable compact : compact S =⇒ S ∈ fmeasurable lborel
using emeasure compact finite[of S ] by (intro fmeasurableI ) (auto simp: borel compact)

lemma lmeasurable compact : compact S =⇒ S ∈ lmeasurable
using fmeasurable compact by (force simp: fmeasurable def )

lemma measure frontier :
bounded S =⇒ measure lebesgue (frontier S ) = measure lebesgue (closure S ) −

measure lebesgue (interior S )
using closure subset interior subset
by (auto simp: frontier def fmeasurable compact intro!: measurable measure Diff )

lemma lmeasurable closure:
bounded S =⇒ closure S ∈ lmeasurable
by (simp add : lmeasurable compact)

lemma lmeasurable frontier :
bounded S =⇒ frontier S ∈ lmeasurable
by (simp add : compact frontier bounded lmeasurable compact)

lemma lmeasurable open: bounded S =⇒ open S =⇒ S ∈ lmeasurable
using emeasure bounded finite[of S ] by (intro fmeasurableI ) (auto simp: borel open)

lemma lmeasurable ball [simp]: ball a r ∈ lmeasurable
by (simp add : lmeasurable open)

lemma lmeasurable cball [simp]: cball a r ∈ lmeasurable
by (simp add : lmeasurable compact)

lemma lmeasurable interior : bounded S =⇒ interior S ∈ lmeasurable
by (simp add : bounded interior lmeasurable open)
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lemma null sets cbox Diff box : cbox a b − box a b ∈ null sets lborel
proof −
have emeasure lborel (cbox a b − box a b) = 0
by (subst emeasure Diff ) (auto simp: emeasure lborel cbox eq emeasure lborel box eq

box subset cbox )
then have cbox a b − box a b ∈ null sets lborel
by (auto simp: null sets def )

then show ?thesis
by (auto dest !: AE not in)

qed

lemma bounded set imp lmeasurable:
assumes bounded S S ∈ sets lebesgue shows S ∈ lmeasurable
by (metis assms bounded Un emeasure bounded finite emeasure completion fmea-

surableI main part null part Un)

lemma finite measure lebesgue on: S ∈ lmeasurable =⇒ finite measure (lebesgue on
S )
by (auto simp: finite measureI fmeasurable def emeasure restrict space)

lemma integrable const ivl [iff ]:
fixes a:: ′a::ordered euclidean space
shows integrable (lebesgue on {a..b}) (λx . c)
by (metis cbox interval finite measure.integrable const finite measure lebesgue on

lmeasurable cbox )

6.13.7 Translation preserves Lebesgue measure

lemma sigma sets image:
assumes S : S ∈ sigma sets Ω M and M ⊆ Pow Ω f ‘ Ω = Ω inj on f Ω
and M :

∧
y . y ∈ M =⇒ f ‘ y ∈ M

shows (f ‘ S ) ∈ sigma sets Ω M
using S

proof (induct S rule: sigma sets.induct)
case (Basic a) then show ?case
by (simp add : M )

next
case Empty then show ?case
by (simp add : sigma sets.Empty)

next
case (Compl a)
then have Ω − a ⊆ Ω a ⊆ Ω
by (auto simp: sigma sets into sp [OF 〈M ⊆ Pow Ω〉])

then show ?case
by (auto simp: inj on image set diff [OF 〈inj on f Ω〉] assms intro: Compl

sigma sets.Compl)
next
case (Union a) then show ?case
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by (metis image UN sigma sets.simps)
qed

lemma null sets translation:
assumes N ∈ null sets lborel shows {x . x − a ∈ N } ∈ null sets lborel

proof −
have [simp]: (λx . x + a) ‘ N = {x . x − a ∈ N }
by force

show ?thesis
using assms emeasure lebesgue affine [of 1 a N ] by (auto simp: null sets def )

qed

lemma lebesgue sets translation:
fixes f :: ′a ⇒ ′a::euclidean space
assumes S : S ∈ sets lebesgue
shows ((λx . a + x ) ‘ S ) ∈ sets lebesgue

proof −
have im eq : (+) a ‘ A = {x . x − a ∈ A} for A
by force

have ((λx . a + x ) ‘ S ) = ((λx . −a + x ) −‘ S ) ∩ (space lebesgue)
using image iff by fastforce

also have . . . ∈ sets lebesgue
proof (rule measurable sets [OF measurableI assms])
fix A :: ′b set
assume A: A ∈ sets lebesgue
have vim eq : (λx . x − a) −‘ A = (+) a ‘ A for A
by force

have ∃ s n N ′. (+) a ‘ (S ∪ N ) = s ∪ n ∧ s ∈ sets borel ∧ N ′ ∈ null sets lborel
∧ n ⊆ N ′

if S ∈ sets borel and N ′ ∈ null sets lborel and N ⊆ N ′ for S N N ′

proof (intro exI conjI )
show (+) a ‘ (S ∪ N ) = (λx . a + x ) ‘ S ∪ (λx . a + x ) ‘ N
by auto

show (λx . a + x ) ‘ N ′ ∈ null sets lborel
using that by (auto simp: null sets translation im eq)

qed (use that im eq in auto)
with A have (λx . x − a) −‘ A ∈ sets lebesgue
by (force simp: vim eq completion def intro!: sigma sets image)

then show (+) (− a) −‘ A ∩ space lebesgue ∈ sets lebesgue
by (auto simp: vimage def im eq)

qed auto
finally show ?thesis .

qed

lemma measurable translation:
S ∈ lmeasurable =⇒ ((+) a ‘ S ) ∈ lmeasurable
using emeasure lebesgue affine [of 1 a S ]
apply (auto intro: lebesgue sets translation simp add : fmeasurable def cong : im-

age cong simp)
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apply (simp add : ac simps)
done

lemma measurable translation subtract :
S ∈ lmeasurable =⇒ ((λx . x − a) ‘ S ) ∈ lmeasurable
using measurable translation [of S − a] by (simp cong : image cong simp)

lemma measure translation:
measure lebesgue ((+) a ‘ S ) = measure lebesgue S
using measure lebesgue affine [of 1 a S ] by (simp add : ac simps cong : im-

age cong simp)

lemma measure translation subtract :
measure lebesgue ((λx . x − a) ‘ S ) = measure lebesgue S
using measure translation [of − a] by (simp cong : image cong simp)

6.13.8 A nice lemma for negligibility proofs

lemma summable iff suminf neq top: (
∧
n. f n ≥ 0 ) =⇒ ¬ summable f =⇒ (

∑
i .

ennreal (f i)) = top
by (metis summable suminf not top)

proposition starlike negligible bounded gmeasurable:
fixes S :: ′a :: euclidean space set
assumes S : S ∈ sets lebesgue and bounded S

and eq1 :
∧
c x . [[(c ∗R x ) ∈ S ; 0 ≤ c; x ∈ S ]] =⇒ c = 1

shows S ∈ null sets lebesgue
proof −
obtain M where 0 < M S ⊆ ball 0 M
using 〈bounded S 〉 by (auto dest : bounded subset ballD)

let ?f = λn. root DIM ( ′a) (Suc n)

have vimage eq image: (∗R) (?f n) −‘ S = (∗R) (1 / ?f n) ‘ S for n
apply safe
subgoal for x by (rule image eqI [of ?f n ∗R x ]) auto
subgoal by auto
done

have eq : (1 / ?f n) ˆ DIM ( ′a) = 1 / Suc n for n
by (simp add : field simps)

{ fix n x assume x : root DIM ( ′a) (1 + real n) ∗R x ∈ S
have 1 ∗ norm x ≤ root DIM ( ′a) (1 + real n) ∗ norm x
by (rule mult mono) auto

also have . . . < M
using x 〈S ⊆ ball 0 M 〉 by auto

finally have norm x < M by simp }
note less M = this
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have (
∑

n. ennreal (1 / Suc n)) = top
using not summable harmonic[where ′a=real ] summable Suc iff [where f=λn.

1 / (real n)]
by (intro summable iff suminf neq top) (auto simp add : inverse eq divide)

then have top ∗ emeasure lebesgue S = (
∑

n. (1 / ?f n)ˆDIM ( ′a) ∗ emeasure
lebesgue S )

unfolding ennreal suminf multc eq by simp
also have . . . = (

∑
n. emeasure lebesgue ((∗R) (?f n) −‘ S ))

unfolding vimage eq image using emeasure lebesgue affine[of 1 / ?f n 0 S for
n] by simp
also have . . . = emeasure lebesgue (

⋃
n. (∗R) (?f n) −‘ S )

proof (intro suminf emeasure)
show disjoint family (λn. (∗R) (?f n) −‘ S )
unfolding disjoint family on def

proof safe
fix m n :: nat and x assume m 6= n ?f m ∗R x ∈ S ?f n ∗R x ∈ S
with eq1 [of ?f m / ?f n ?f n ∗R x ] show x ∈ {}
by auto

qed
have (∗R) (?f i) −‘ S ∈ sets lebesgue for i
using measurable sets[OF lebesgue measurable scaling [of ?f i ] S ] by auto

then show range (λi . (∗R) (?f i) −‘ S ) ⊆ sets lebesgue
by auto

qed
also have . . . ≤ emeasure lebesgue (ball 0 M :: ′a set)
using less M by (intro emeasure mono) auto

also have . . . < top
using lmeasurable ball by (auto simp: fmeasurable def )

finally have emeasure lebesgue S = 0
by (simp add : ennreal top mult split : if split asm)

then show S ∈ null sets lebesgue
unfolding null sets def using 〈S ∈ sets lebesgue〉 by auto

qed

corollary starlike negligible compact :
compact S =⇒ (

∧
c x . [[(c ∗R x ) ∈ S ; 0 ≤ c; x ∈ S ]] =⇒ c = 1 ) =⇒ S ∈ null sets

lebesgue
using starlike negligible bounded gmeasurable[of S ] by (auto simp: compact eq bounded closed)

proposition outer regular lborel le:
assumes B [measurable]: B ∈ sets borel and 0 < (e::real)
obtains U where open U B ⊆ U and emeasure lborel (U − B) ≤ e

proof −
let ?µ = emeasure lborel
let ?B = λn::nat . ball 0 n :: ′a set
let ?e = λn. e∗((1/2 )ˆSuc n)
have ∀n. ∃U . open U ∧ ?B n ∩ B ⊆ U ∧ ?µ (U − B) < ?e n
proof
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fix n :: nat
let ?A = density lborel (indicator (?B n))
have emeasure A: X ∈ sets borel =⇒ emeasure ?A X = ?µ (?B n ∩ X ) for X
by (auto simp: emeasure density borel measurable indicator indicator inter arith[symmetric])

have finite A: emeasure ?A (space ?A) 6= ∞
using emeasure bounded finite[of ?B n] by (auto simp: emeasure A)

interpret A: finite measure ?A
by rule fact

have emeasure ?A B + ?e n > (INF U∈{U . B ⊆ U ∧ open U }. emeasure ?A
U )

using 〈0<e〉 by (auto simp: outer regular [OF finite A B , symmetric])
then obtain U where U : B ⊆ U open U and muU : ?µ (?B n ∩ B) + ?e n

> ?µ (?B n ∩ U )
unfolding INF less iff by (auto simp: emeasure A)

moreover
{ have ?µ ((?B n ∩ U ) − B) = ?µ ((?B n ∩ U ) − (?B n ∩ B))

using U by (intro arg cong [where f=?µ]) auto
also have . . . = ?µ (?B n ∩ U ) − ?µ (?B n ∩ B)
using U A.emeasure finite[of B ]

by (intro emeasure Diff ) (auto simp del : A.emeasure finite simp: emeasure A)
also have . . . < ?e n
using U muU A.emeasure finite[of B ]
by (subst minus less iff ennreal)
(auto simp del : A.emeasure finite simp: emeasure A less top ac simps intro!:

emeasure mono)
finally have ?µ ((?B n ∩ U ) − B) < ?e n . }

ultimately show ∃U . open U ∧ ?B n ∩ B ⊆ U ∧ ?µ (U − B) < ?e n
by (intro exI [of ?B n ∩ U ]) auto

qed
then obtain U
where U :

∧
n. open (U n)

∧
n. ?B n ∩ B ⊆ U n

∧
n. ?µ (U n − B) < ?e n

by metis
show ?thesis
proof
{ fix x assume x ∈ B
moreover
obtain n where norm x < real n
using reals Archimedean2 by blast

ultimately have x ∈ (
⋃
n. U n)

using U (2 )[of n] by auto }
note ∗ = this
then show open (

⋃
n. U n) B ⊆ (

⋃
n. U n)

using U by auto
have ?µ (

⋃
n. U n − B) ≤ (

∑
n. ?µ (U n − B))

using U (1 ) by (intro emeasure subadditive countably) auto
also have . . . ≤ (

∑
n. ennreal (?e n))

using U (3 ) by (intro suminf le) (auto intro: less imp le)
also have . . . = ennreal (e ∗ 1 )
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using 〈0<e〉 by (intro suminf ennreal eq sums mult power half series) auto
finally show emeasure lborel ((

⋃
n. U n) − B) ≤ ennreal e

by simp
qed

qed

lemma outer regular lborel :
assumes B : B ∈ sets borel and 0 < (e::real)
obtains U where open U B ⊆ U emeasure lborel (U − B) < e

proof −
obtain U where U : open U B ⊆ U and emeasure lborel (U−B) ≤ e/2
using outer regular lborel le [OF B , of e/2 ] 〈e > 0 〉

by force
moreover have ennreal (e/2 ) < ennreal e
using 〈e > 0 〉 by (simp add : ennreal lessI )

ultimately have emeasure lborel (U−B) < e
by auto

with U show ?thesis
using that by auto

qed

lemma completion upper :
assumes A: A ∈ sets (completion M )
obtains A ′ where A ⊆ A ′ A ′ ∈ sets M A ′ − A ∈ null sets (completion M )

emeasure (completion M ) A = emeasure M A ′

proof −
from AE notin null part [OF A] obtain N where N : N ∈ null sets M null part

M A ⊆ N
unfolding eventually ae filter using null part null sets[OF A, THEN null setsD2 ,

THEN sets.sets into space] by auto
let ?A ′ = main part M A ∪ N
show ?thesis
proof
show A ⊆ ?A ′

using 〈null part M A ⊆ N 〉 by (subst main part null part Un[symmetric, OF
A]) auto

have main part M A ⊆ A
using assms main part null part Un by auto

then have ?A ′ − A ⊆ N
by blast

with N show ?A ′ − A ∈ null sets (completion M )
by (blast intro: null sets completionI completion.complete measure axioms

complete measure.complete2 )
show emeasure (completion M ) A = emeasure M (main part M A ∪ N )
using A 〈N ∈ null sets M 〉 by (simp add : emeasure Un null set)

qed (use A N in auto)
qed

lemma sets lebesgue outer open:
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fixes e::real
assumes S : S ∈ sets lebesgue and e > 0
obtains T where open T S ⊆ T (T − S ) ∈ lmeasurable emeasure lebesgue (T
− S ) < ennreal e
proof −
obtain S ′ where S ′: S ⊆ S ′ S ′ ∈ sets borel

and null : S ′ − S ∈ null sets lebesgue
and em: emeasure lebesgue S = emeasure lborel S ′

using completion upper [of S lborel ] S by auto
then have f S ′: S ′ ∈ sets borel
using S by (auto simp: fmeasurable def )

with outer regular lborel [OF 〈0<e〉]
obtain U where U : open U S ′ ⊆ U emeasure lborel (U − S ′) < e
by blast

show thesis
proof
show open U S ⊆ U
using f S ′ U S ′ by auto

have (U − S ) = (U − S ′) ∪ (S ′ − S )
using S ′ U by auto

then have eq : emeasure lebesgue (U − S ) = emeasure lborel (U − S ′)
using null by (simp add : U (1 ) emeasure Un null set f S ′ sets.Diff )

have (U − S ) ∈ sets lebesgue
by (simp add : S U (1 ) sets.Diff )

then show (U − S ) ∈ lmeasurable
unfolding fmeasurable def using U (3 ) eq less le trans by fastforce

with eq U show emeasure lebesgue (U − S ) < e
by (simp add : eq)

qed
qed

lemma sets lebesgue inner closed :
fixes e::real
assumes S ∈ sets lebesgue e > 0
obtains T where closed T T ⊆ S S−T ∈ lmeasurable emeasure lebesgue (S −

T ) < ennreal e
proof −
have −S ∈ sets lebesgue
using assms by (simp add : Compl in sets lebesgue)

then obtain T where open T −S ⊆ T
and T : (T − −S ) ∈ lmeasurable emeasure lebesgue (T − −S ) < e

using sets lebesgue outer open assms by blast
show thesis
proof
show closed (−T )
using 〈open T 〉 by blast

show −T ⊆ S
using 〈− S ⊆ T 〉 by auto

show S − ( −T ) ∈ lmeasurable emeasure lebesgue (S − (− T )) < e
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using T by (auto simp: Int commute)
qed

qed

lemma lebesgue openin:
[[openin (top of set S ) T ; S ∈ sets lebesgue]] =⇒ T ∈ sets lebesgue
by (metis borel open openin open sets.Int sets completionI sets sets lborel)

lemma lebesgue closedin:
[[closedin (top of set S ) T ; S ∈ sets lebesgue]] =⇒ T ∈ sets lebesgue
by (metis borel closed closedin closed sets.Int sets completionI sets sets lborel)

6.13.9 F sigma and G delta sets.

— https://en.wikipedia.org/wiki/F-sigma set
inductive fsigma :: ′a::topological space set ⇒ bool where
(
∧
n::nat . closed (F n)) =⇒ fsigma (

⋃
(F ‘ UNIV ))

inductive gdelta :: ′a::topological space set ⇒ bool where
(
∧
n::nat . open (F n)) =⇒ gdelta (

⋂
(F ‘ UNIV ))

lemma fsigma Union compact :
fixes S :: ′a::{real normed vector ,heine borel} set
shows fsigma S ←→ (∃F ::nat ⇒ ′a set . range F ⊆ Collect compact ∧ S =

⋃
(F

‘ UNIV ))
proof safe
assume fsigma S
then obtain F :: nat ⇒ ′a set where F : range F ⊆ Collect closed S =

⋃
(F ‘

UNIV )
by (meson fsigma.cases image subsetI mem Collect eq)

then have ∃D ::nat ⇒ ′a set . range D ⊆ Collect compact ∧
⋃
(D ‘ UNIV ) = F

i for i
using closed Union compact subsets [of F i ]
by (metis image subsetI mem Collect eq range subsetD)

then obtain D :: nat ⇒ nat ⇒ ′a set
where D :

∧
i . range (D i) ⊆ Collect compact ∧

⋃
((D i) ‘ UNIV ) = F i

by metis
let ?DD = λn. (λ(i ,j ). D i j ) (prod decode n)
show ∃F ::nat ⇒ ′a set . range F ⊆ Collect compact ∧ S =

⋃
(F ‘ UNIV )

proof (intro exI conjI )
show range ?DD ⊆ Collect compact

using D by clarsimp (metis mem Collect eq rangeI split conv subsetCE
surj pair)

show S =
⋃

(range ?DD)
proof
show S ⊆

⋃
(range ?DD)

using D F
by clarsimp (metis UN iff old .prod .case prod decode inverse prod encode eq)

show
⋃

(range ?DD) ⊆ S

https://en.wikipedia.org/wiki/F-sigma_set
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using D F by fastforce
qed

qed
next
fix F :: nat ⇒ ′a set
assume range F ⊆ Collect compact and S =

⋃
(F ‘ UNIV )

then show fsigma (
⋃
(F ‘ UNIV ))

by (simp add : compact imp closed fsigma.intros image subset iff )
qed

lemma gdelta imp fsigma: gdelta S =⇒ fsigma (− S )
proof (induction rule: gdelta.induct)
case (1 F )
have −

⋂
(F ‘ UNIV ) = (

⋃
i . −(F i))

by auto
then show ?case
by (simp add : fsigma.intros closed Compl 1 )

qed

lemma fsigma imp gdelta: fsigma S =⇒ gdelta (− S )
proof (induction rule: fsigma.induct)
case (1 F )
have −

⋃
(F ‘ UNIV ) = (

⋂
i . −(F i))

by auto
then show ?case
by (simp add : 1 gdelta.intros open closed)

qed

lemma gdelta complement : gdelta(− S ) ←→ fsigma S
using fsigma imp gdelta gdelta imp fsigma by force

lemma lebesgue set almost fsigma:
assumes S ∈ sets lebesgue
obtains C T where fsigma C T ∈ null sets lebesgue C ∪ T = S disjnt C T

proof −
{ fix n::nat
obtain T where closed T T ⊆ S S−T ∈ lmeasurable emeasure lebesgue (S −

T ) < ennreal (1 / Suc n)
using sets lebesgue inner closed [OF assms]
by (metis of nat 0 less iff zero less Suc zero less divide 1 iff )

then have ∃T . closed T ∧ T ⊆ S ∧ S − T ∈ lmeasurable ∧ measure lebesgue
(S−T ) < 1 / Suc n

by (metis emeasure eq measure2 ennreal leI not le)
}
then obtain F where F :

∧
n::nat . closed (F n) ∧ F n ⊆ S ∧ S − F n ∈

lmeasurable ∧ measure lebesgue (S − F n) < 1 / Suc n
by metis

let ?C =
⋃
(F ‘ UNIV )

show thesis
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proof
show fsigma ?C
using F by (simp add : fsigma.intros)

show (S − ?C ) ∈ null sets lebesgue
proof (clarsimp simp add : completion.null sets outer le)
fix e :: real
assume 0 < e
then obtain n where n: 1 / Suc n < e
using nat approx posE by metis

show ∃T ∈ lmeasurable. S − (
⋃

x . F x ) ⊆ T ∧ measure lebesgue T ≤ e
proof (intro bexI conjI )
show measure lebesgue (S − F n) ≤ e
by (meson F n less trans not le order .asym)

qed (use F in auto)
qed
show ?C ∪ (S − ?C ) = S
using F by blast

show disjnt ?C (S − ?C )
by (auto simp: disjnt def )

qed
qed

lemma lebesgue set almost gdelta:
assumes S ∈ sets lebesgue
obtains C T where gdelta C T ∈ null sets lebesgue S ∪ T = C disjnt S T

proof −
have −S ∈ sets lebesgue
using assms Compl in sets lebesgue by blast

then obtain C T where C : fsigma C T ∈ null sets lebesgue C ∪ T = −S disjnt
C T

using lebesgue set almost fsigma by metis
show thesis
proof
show gdelta (−C )
by (simp add : 〈fsigma C 〉 fsigma imp gdelta)

show S ∪ T = −C disjnt S T
using C by (auto simp: disjnt def )

qed (use C in auto)
qed

end

6.14 Tagged Divisions for Henstock-Kurzweil In-
tegration

theory Tagged Division
imports Topology Euclidean Space

begin
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lemma sum Sigma product :
assumes finite S
and

∧
i . i ∈ S =⇒ finite (T i)

shows (
∑

i∈S . sum (x i) (T i)) = (
∑

(i , j )∈Sigma S T . x i j )
using assms

proof induct
case empty
then show ?case
by simp

next
case (insert a S )
show ?case
by (simp add : insert .hyps(1 ) insert .prems sum.Sigma)

qed

lemmas scaleR simps = scaleR zero left scaleR minus left scaleR left diff distrib
scaleR zero right scaleR minus right scaleR right diff distrib scaleR eq 0 iff
scaleR cancel left scaleR cancel right scaleR add right scaleR add left real vector class.scaleR one

6.14.1 Sundries

A transitive relation is well-founded if all initial segments are finite.

lemma wf finite segments:
assumes irrefl r and trans r and

∧
x . finite {y . (y , x ) ∈ r}

shows wf (r)
apply (simp add : trans wf iff wf iff acyclic if finite converse def assms)
using acyclic def assms irrefl def trans Restr by fastforce

For creating values between u and v.

lemma scaling mono:
fixes u:: ′a::linordered field
assumes u ≤ v 0 ≤ r r ≤ s
shows u + r ∗ (v − u) / s ≤ v

proof −
have r/s ≤ 1 using assms
using divide le eq 1 by fastforce

then have (r/s) ∗ (v − u) ≤ 1 ∗ (v − u)
by (meson diff ge 0 iff ge mult right mono 〈u ≤ v 〉)

then show ?thesis
by (simp add : field simps)

qed

6.14.2 Some useful lemmas about intervals

lemma interior subset union intervals:
assumes i = cbox a b
and j = cbox c d
and interior j 6= {}
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and i ⊆ j ∪ S
and interior i ∩ interior j = {}

shows interior i ⊆ interior S
proof −
have box a b ∩ cbox c d = {}

using Int interval mixed eq empty [of c d a b] assms
unfolding interior cbox by auto

moreover
have box a b ⊆ cbox c d ∪ S
apply (rule order trans,rule box subset cbox )
using assms by auto

ultimately
show ?thesis
unfolding assms interior cbox
by auto (metis IntI UnE empty iff interior maximal open box subsetCE subsetI )

qed

lemma interior Union subset cbox :
assumes finite f
assumes f :

∧
s. s ∈ f =⇒ ∃ a b. s = cbox a b

∧
s. s ∈ f =⇒ interior s ⊆ t

and t : closed t
shows interior (

⋃
f ) ⊆ t

proof −
have [simp]: s ∈ f =⇒ closed s for s
using f by auto

define E where E = {s∈f . interior s = {}}
then have finite E E ⊆ {s∈f . interior s = {}}
using 〈finite f 〉 by auto

then have interior (
⋃

f ) = interior (
⋃
(f − E ))

proof (induction E rule: finite subset induct ′)
case (insert s f ′)
have interior (

⋃
(f − insert s f ′) ∪ s) = interior (

⋃
(f − insert s f ′))

using insert .hyps 〈finite f 〉 by (intro interior closed Un empty interior) auto
also have

⋃
(f − insert s f ′) ∪ s =

⋃
(f − f ′)

using insert .hyps by auto
finally show ?case
by (simp add : insert .IH )

qed simp
also have . . . ⊆

⋃
(f − E )

by (rule interior subset)
also have . . . ⊆ t
proof (rule Union least)
fix s assume s ∈ f − E
with f [of s] obtain a b where s: s ∈ f s = cbox a b box a b 6= {}
by (fastforce simp: E def )

have closure (interior s) ⊆ closure t
by (intro closure mono f 〈s ∈ f 〉)

with s 〈closed t 〉 show s ⊆ t
by simp
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qed
finally show ?thesis .

qed

lemma Int interior Union intervals:
[[finite F ; open S ;

∧
T . T∈F =⇒ ∃ a b. T = cbox a b;

∧
T . T∈F =⇒ S ∩

(interior T ) = {}]]
=⇒ S ∩ interior (

⋃
F) = {}

using interior Union subset cbox [of F UNIV − S ] by auto

lemma interval split :
fixes a :: ′a::euclidean space
assumes k ∈ Basis
shows
cbox a b ∩ {x . x ·k ≤ c} = cbox a (

∑
i∈Basis. (if i = k then min (b·k) c else

b·i) ∗R i)
cbox a b ∩ {x . x ·k ≥ c} = cbox (

∑
i∈Basis. (if i = k then max (a·k) c else

a·i) ∗R i) b
using assms by (rule tac set eqI ; auto simp: mem box )+

lemma interval not empty : ∀ i∈Basis. a·i ≤ b·i =⇒ cbox a b 6= {}
by (simp add : box ne empty)

6.14.3 Bounds on intervals where they exist

definition interval upperbound :: ( ′a::euclidean space) set ⇒ ′a
where interval upperbound s = (

∑
i∈Basis. (SUP x∈s. x ·i) ∗R i)

definition interval lowerbound :: ( ′a::euclidean space) set ⇒ ′a
where interval lowerbound s = (

∑
i∈Basis. (INF x∈s. x ·i) ∗R i)

lemma interval upperbound [simp]:
∀ i∈Basis. a·i ≤ b·i =⇒
interval upperbound (cbox a b) = (b:: ′a::euclidean space)

unfolding interval upperbound def euclidean representation sum cbox def
by (safe intro!: cSup eq) auto

lemma interval lowerbound [simp]:
∀ i∈Basis. a·i ≤ b·i =⇒
interval lowerbound (cbox a b) = (a:: ′a::euclidean space)

unfolding interval lowerbound def euclidean representation sum cbox def
by (safe intro!: cInf eq) auto

lemmas interval bounds = interval upperbound interval lowerbound

lemma
fixes X ::real set
shows interval upperbound real [simp]: interval upperbound X = Sup X
and interval lowerbound real [simp]: interval lowerbound X = Inf X
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by (auto simp: interval upperbound def interval lowerbound def )

lemma interval bounds ′[simp]:
assumes cbox a b 6= {}
shows interval upperbound (cbox a b) = b
and interval lowerbound (cbox a b) = a

using assms unfolding box ne empty by auto

lemma interval upperbound Times:
assumes A 6= {} and B 6= {}
shows interval upperbound (A × B) = (interval upperbound A, interval upperbound

B)
proof−
from assms have fst image times ′: A = fst ‘ (A × B) by simp
have (

∑
i∈Basis. (SUP x∈A × B . x · (i , 0 )) ∗R i) = (

∑
i∈Basis. (SUP x∈A.

x · i) ∗R i)
by (subst (2 ) fst image times ′) (simp del : fst image times add : image comp

inner Pair 0 )
moreover from assms have snd image times ′: B = snd ‘ (A × B) by simp
have (

∑
i∈Basis. (SUP x∈A × B . x · (0 , i)) ∗R i) = (

∑
i∈Basis. (SUP x∈B .

x · i) ∗R i)
by (subst (2 ) snd image times ′) (simp del : snd image times add : image comp

inner Pair 0 )
ultimately show ?thesis unfolding interval upperbound def

by (subst sum Basis prod eq) (auto simp add : sum prod)
qed

lemma interval lowerbound Times:
assumes A 6= {} and B 6= {}
shows interval lowerbound (A × B) = (interval lowerbound A, interval lowerbound

B)
proof−
from assms have fst image times ′: A = fst ‘ (A × B) by simp
have (

∑
i∈Basis. (INF x∈A × B . x · (i , 0 )) ∗R i) = (

∑
i∈Basis. (INF x∈A.

x · i) ∗R i)
by (subst (2 ) fst image times ′) (simp del : fst image times add : image comp

inner Pair 0 )
moreover from assms have snd image times ′: B = snd ‘ (A × B) by simp
have (

∑
i∈Basis. (INF x∈A × B . x · (0 , i)) ∗R i) = (

∑
i∈Basis. (INF x∈B .

x · i) ∗R i)
by (subst (2 ) snd image times ′) (simp del : snd image times add : image comp

inner Pair 0 )
ultimately show ?thesis unfolding interval lowerbound def

by (subst sum Basis prod eq) (auto simp add : sum prod)
qed
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6.14.4 The notion of a gauge — simply an open set contain-
ing the point

definition gauge γ ←→ (∀ x . x ∈ γ x ∧ open (γ x ))

lemma gaugeI :
assumes

∧
x . x ∈ γ x

and
∧
x . open (γ x )

shows gauge γ
using assms unfolding gauge def by auto

lemma gaugeD [dest ]:
assumes gauge γ
shows x ∈ γ x
and open (γ x )

using assms unfolding gauge def by auto

lemma gauge ball dependent : ∀ x . 0 < e x =⇒ gauge (λx . ball x (e x ))
unfolding gauge def by auto

lemma gauge ball [intro]: 0 < e =⇒ gauge (λx . ball x e)
unfolding gauge def by auto

lemma gauge trivial [intro!]: gauge (λx . ball x 1 )
by (rule gauge ball) auto

lemma gauge Int [intro]: gauge γ1 =⇒ gauge γ2 =⇒ gauge (λx . γ1 x ∩ γ2 x )
unfolding gauge def by auto

lemma gauge reflect :
fixes γ :: ′a::euclidean space ⇒ ′a set
shows gauge γ =⇒ gauge (λx . uminus ‘ γ (− x ))
using equation minus iff
by (auto simp: gauge def surj def intro!: open surjective linear image linear uminus)

lemma gauge Inter :
assumes finite S
and

∧
u. u∈S =⇒ gauge (f u)

shows gauge (λx .
⋂
{f u x | u. u ∈ S})

proof −
have ∗:

∧
x . {f u x |u. u ∈ S} = (λu. f u x ) ‘ S

by auto
show ?thesis
unfolding gauge def unfolding ∗
using assms unfolding Ball def Inter iff mem Collect eq gauge def by auto

qed

lemma gauge existence lemma:
(∀ x . ∃ d :: real . p x −→ 0 < d ∧ q d x ) ←→ (∀ x . ∃ d>0 . p x −→ q d x )
by (metis zero less one)
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6.14.5 Attempt a systematic general set of ”offset” results
for components

lemma gauge modify :
assumes (∀S . open S −→ open {x . f (x ) ∈ S}) gauge d
shows gauge (λx . {y . f y ∈ d (f x )})
using assms unfolding gauge def by force

6.14.6 Divisions

definition division of (infixl division ′ of 40 )
where
s division of i ←→
finite s ∧
(∀K∈s. K ⊆ i ∧ K 6= {} ∧ (∃ a b. K = cbox a b)) ∧
(∀K1∈s. ∀K2∈s. K1 6= K2 −→ interior(K1 ) ∩ interior(K2 ) = {}) ∧
(
⋃
s = i)

lemma division ofD [dest ]:
assumes s division of i
shows finite s
and

∧
K . K ∈ s =⇒ K ⊆ i

and
∧
K . K ∈ s =⇒ K 6= {}

and
∧
K . K ∈ s =⇒ ∃ a b. K = cbox a b

and
∧
K1 K2 . K1 ∈ s =⇒ K2 ∈ s =⇒ K1 6= K2 =⇒ interior(K1 ) ∩ inte-

rior(K2 ) = {}
and

⋃
s = i

using assms unfolding division of def by auto

lemma division ofI :
assumes finite s
and

∧
K . K ∈ s =⇒ K ⊆ i

and
∧
K . K ∈ s =⇒ K 6= {}

and
∧
K . K ∈ s =⇒ ∃ a b. K = cbox a b

and
∧
K1 K2 . K1 ∈ s =⇒ K2 ∈ s =⇒ K1 6= K2 =⇒ interior K1 ∩ interior

K2 = {}
and

⋃
s = i

shows s division of i
using assms unfolding division of def by auto

lemma division of finite: s division of i =⇒ finite s
by auto

lemma division of self [intro]: cbox a b 6= {} =⇒ {cbox a b} division of (cbox a b)
unfolding division of def by auto

lemma division of trivial [simp]: s division of {} ←→ s = {}
unfolding division of def by auto

lemma division of sing [simp]:
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s division of cbox a (a:: ′a::euclidean space) ←→ s = {cbox a a}
(is ?l = ?r)

proof
assume ?r
moreover
{ fix K
assume s = {{a}} K∈s
then have ∃ x y . K = cbox x y
apply (rule tac x=a in exI )+
apply force
done

}
ultimately show ?l
unfolding division of def cbox sing by auto

next
assume ?l
have x = {a} if x ∈ s for x

by (metis 〈s division of cbox a a〉 cbox sing division ofD(2 ) division ofD(3 )
subset singletonD that)
moreover have s 6= {}
using 〈s division of cbox a a〉 by auto

ultimately show ?r
unfolding cbox sing by auto

qed

lemma elementary empty : obtains p where p division of {}
unfolding division of trivial by auto

lemma elementary interval : obtains p where p division of (cbox a b)
by (metis division of trivial division of self )

lemma division contains: s division of i =⇒ ∀ x∈i . ∃ k∈s. x ∈ k
unfolding division of def by auto

lemma forall in division:
d division of i =⇒ (∀ x∈d . P x ) ←→ (∀ a b. cbox a b ∈ d −→ P (cbox a b))
unfolding division of def by fastforce

lemma cbox division memE :
assumes D: K ∈ D D division of S
obtains a b where K = cbox a b K 6= {} K ⊆ S
using assms unfolding division of def by metis

lemma division of subset :
assumes p division of (

⋃
p)

and q ⊆ p
shows q division of (

⋃
q)

proof (rule division ofI )
note ∗ = division ofD [OF assms(1 )]
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show finite q
using ∗(1 ) assms(2 ) infinite super by auto

{
fix k
assume k ∈ q
then have kp: k ∈ p
using assms(2 ) by auto

show k ⊆
⋃
q

using 〈k ∈ q〉 by auto
show ∃ a b. k = cbox a b
using ∗(4 )[OF kp] by auto

show k 6= {}
using ∗(3 )[OF kp] by auto

}
fix k1 k2
assume k1 ∈ q k2 ∈ q k1 6= k2
then have ∗∗: k1 ∈ p k2 ∈ p k1 6= k2
using assms(2 ) by auto

show interior k1 ∩ interior k2 = {}
using ∗(5 )[OF ∗∗] by auto

qed auto

lemma division of union self [intro]: p division of s =⇒ p division of (
⋃
p)

unfolding division of def by auto

lemma division inter :
fixes s1 s2 :: ′a::euclidean space set
assumes p1 division of s1
and p2 division of s2

shows {k1 ∩ k2 | k1 k2 . k1 ∈ p1 ∧ k2 ∈ p2 ∧ k1 ∩ k2 6= {}} division of (s1
∩ s2 )
(is ?A ′ division of )

proof −
let ?A = {s. s ∈ (λ(k1 ,k2 ). k1 ∩ k2 ) ‘ (p1 × p2 ) ∧ s 6= {}}
have ∗: ?A ′ = ?A by auto
show ?thesis
unfolding ∗

proof (rule division ofI )
have ?A ⊆ (λ(x , y). x ∩ y) ‘ (p1 × p2 )
by auto

moreover have finite (p1 × p2 )
using assms unfolding division of def by auto

ultimately show finite ?A by auto
have ∗:

∧
s.

⋃
{x∈s. x 6= {}} =

⋃
s

by auto
show

⋃
?A = s1 ∩ s2

unfolding ∗
using division ofD(6 )[OF assms(1 )] and division ofD(6 )[OF assms(2 )] by

auto
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{
fix k
assume k ∈ ?A
then obtain k1 k2 where k : k = k1 ∩ k2 k1 ∈ p1 k2 ∈ p2 k 6= {}
by auto

then show k 6= {}
by auto

show k ⊆ s1 ∩ s2
using division ofD(2 )[OF assms(1 ) k(2 )] and division ofD(2 )[OF assms(2 )

k(3 )]
unfolding k by auto

obtain a1 b1 where k1 : k1 = cbox a1 b1
using division ofD(4 )[OF assms(1 ) k(2 )] by blast

obtain a2 b2 where k2 : k2 = cbox a2 b2
using division ofD(4 )[OF assms(2 ) k(3 )] by blast

show ∃ a b. k = cbox a b
unfolding k k1 k2 unfolding Int interval by auto

}
fix k1 k2
assume k1 ∈ ?A
then obtain x1 y1 where k1 : k1 = x1 ∩ y1 x1 ∈ p1 y1 ∈ p2 k1 6= {}
by auto

assume k2 ∈ ?A
then obtain x2 y2 where k2 : k2 = x2 ∩ y2 x2 ∈ p1 y2 ∈ p2 k2 6= {}
by auto

assume k1 6= k2
then have th: x1 6= x2 ∨ y1 6= y2
unfolding k1 k2 by auto

have ∗: interior x1 ∩ interior x2 = {} ∨ interior y1 ∩ interior y2 = {} =⇒
interior (x1 ∩ y1 ) ⊆ interior x1 =⇒ interior (x1 ∩ y1 ) ⊆ interior y1 =⇒
interior (x2 ∩ y2 ) ⊆ interior x2 =⇒ interior (x2 ∩ y2 ) ⊆ interior y2 =⇒
interior (x1 ∩ y1 ) ∩ interior (x2 ∩ y2 ) = {} by auto

show interior k1 ∩ interior k2 = {}
unfolding k1 k2
apply (rule ∗)
using assms division ofD(5 ) k1 k2 (2 ) k2 (3 ) th apply auto
done

qed
qed

lemma division inter 1 :
assumes d division of i
and cbox a (b:: ′a::euclidean space) ⊆ i

shows {cbox a b ∩ k | k . k ∈ d ∧ cbox a b ∩ k 6= {}} division of (cbox a b)
proof (cases cbox a b = {})
case True
show ?thesis
unfolding True and division of trivial by auto

next
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case False
have ∗: cbox a b ∩ i = cbox a b using assms(2 ) by auto
show ?thesis
using division inter [OF division of self [OF False] assms(1 )]
unfolding ∗ by auto

qed

lemma elementary Int :
fixes s t :: ′a::euclidean space set
assumes p1 division of s
and p2 division of t

shows ∃ p. p division of (s ∩ t)
using assms division inter by blast

lemma elementary Inter :
assumes finite f
and f 6= {}
and ∀ s∈f . ∃ p. p division of (s::( ′a::euclidean space) set)

shows ∃ p. p division of (
⋂
f )

using assms
proof (induct f rule: finite induct)
case (insert x f )
show ?case
proof (cases f = {})
case True
then show ?thesis
unfolding True using insert by auto

next
case False
obtain p where p division of

⋂
f

using insert(3 )[OF False insert(5 )[unfolded ball simps,THEN conjunct2 ]] ..
moreover obtain px where px division of x
using insert(5 )[rule format ,OF insertI1 ] ..

ultimately show ?thesis
by (simp add : elementary Int Inter insert)

qed
qed auto

lemma division disjoint union:
assumes p1 division of s1
and p2 division of s2
and interior s1 ∩ interior s2 = {}

shows (p1 ∪ p2 ) division of (s1 ∪ s2 )
proof (rule division ofI )
note d1 = division ofD [OF assms(1 )]
note d2 = division ofD [OF assms(2 )]
show finite (p1 ∪ p2 )
using d1 (1 ) d2 (1 ) by auto

show
⋃
(p1 ∪ p2 ) = s1 ∪ s2
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using d1 (6 ) d2 (6 ) by auto
{
fix k1 k2
assume as: k1 ∈ p1 ∪ p2 k2 ∈ p1 ∪ p2 k1 6= k2
moreover
let ?g=interior k1 ∩ interior k2 = {}
{
assume as: k1∈p1 k2∈p2
have ?g

using interior mono[OF d1 (2 )[OF as(1 )]] interior mono[OF d2 (2 )[OF
as(2 )]]

using assms(3 ) by blast
}
moreover
{
assume as: k1∈p2 k2∈p1
have ?g

using interior mono[OF d1 (2 )[OF as(2 )]] interior mono[OF d2 (2 )[OF
as(1 )]]

using assms(3 ) by blast
}
ultimately show ?g
using d1 (5 )[OF as(3 )] and d2 (5 )[OF as(3 )] by auto

}
fix k
assume k : k ∈ p1 ∪ p2
show k ⊆ s1 ∪ s2
using k d1 (2 ) d2 (2 ) by auto

show k 6= {}
using k d1 (3 ) d2 (3 ) by auto

show ∃ a b. k = cbox a b
using k d1 (4 ) d2 (4 ) by auto

qed

lemma partial division extend 1 :
fixes a b c d :: ′a::euclidean space
assumes incl : cbox c d ⊆ cbox a b
and nonempty : cbox c d 6= {}

obtains p where p division of (cbox a b) cbox c d ∈ p
proof
let ?B = λf :: ′a⇒ ′a × ′a.
cbox (

∑
i∈Basis. (fst (f i) · i) ∗R i) (

∑
i∈Basis. (snd (f i) · i) ∗R i)

define p where p = ?B ‘ (Basis →E {(a, c), (c, d), (d , b)})

show cbox c d ∈ p
unfolding p def
by (auto simp add : box eq empty cbox def intro!: image eqI [where x=λ(i :: ′a)∈Basis.

(c, d)])
have ord : a · i ≤ c · i c · i ≤ d · i d · i ≤ b · i if i ∈ Basis for i
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using incl nonempty that
unfolding box eq empty subset box by (auto simp: not le)

show p division of (cbox a b)
proof (rule division ofI )
show finite p
unfolding p def by (auto intro!: finite PiE )

{
fix k
assume k ∈ p
then obtain f where f : f ∈ Basis →E {(a, c), (c, d), (d , b)} and k : k =

?B f
by (auto simp: p def )

then show ∃ a b. k = cbox a b
by auto

have k ⊆ cbox a b ∧ k 6= {}
proof (simp add : k box eq empty subset box not less, safe)
fix i :: ′a
assume i : i ∈ Basis
with f have f i = (a, c) ∨ f i = (c, d) ∨ f i = (d , b)
by (auto simp: PiE iff )

with i ord [of i ]
show a · i ≤ fst (f i) · i snd (f i) · i ≤ b · i fst (f i) · i ≤ snd (f i) · i
by auto

qed
then show k 6= {} k ⊆ cbox a b
by auto

{
fix l
assume l ∈ p
then obtain g where g : g ∈ Basis →E {(a, c), (c, d), (d , b)} and l : l =

?B g
by (auto simp: p def )

assume l 6= k
have ∃ i∈Basis. f i 6= g i
proof (rule ccontr)
assume ¬ ?thesis
with f g have f = g
by (auto simp: PiE iff extensional def fun eq iff )

with 〈l 6= k 〉 show False
by (simp add : l k)

qed
then obtain i where ∗: i ∈ Basis f i 6= g i ..
then have f i = (a, c) ∨ f i = (c, d) ∨ f i = (d , b)

g i = (a, c) ∨ g i = (c, d) ∨ g i = (d , b)
using f g by (auto simp: PiE iff )

with ∗ ord [of i ] show interior l ∩ interior k = {}
by (auto simp add : l k disjoint interval intro!: bexI [of i ])

}
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note 〈k ⊆ cbox a b〉

}
moreover
{
fix x assume x : x ∈ cbox a b
have ∀ i∈Basis. ∃ l . x · i ∈ {fst l · i .. snd l · i} ∧ l ∈ {(a, c), (c, d), (d , b)}
proof
fix i :: ′a
assume i ∈ Basis
with x ord [of i ]
have (a · i ≤ x · i ∧ x · i ≤ c · i) ∨ (c · i ≤ x · i ∧ x · i ≤ d · i) ∨

(d · i ≤ x · i ∧ x · i ≤ b · i)
by (auto simp: cbox def )

then show ∃ l . x · i ∈ {fst l · i .. snd l · i} ∧ l ∈ {(a, c), (c, d), (d , b)}
by auto

qed
then obtain f where
f : ∀ i∈Basis. x · i ∈ {fst (f i) · i ..snd (f i) · i} ∧ f i ∈ {(a, c), (c, d), (d ,

b)}
unfolding bchoice iff ..

moreover from f have restrict f Basis ∈ Basis →E {(a, c), (c, d), (d , b)}
by auto

moreover from f have x ∈ ?B (restrict f Basis)
by (auto simp: mem box )

ultimately have ∃ k∈p. x ∈ k
unfolding p def by blast

}
ultimately show

⋃
p = cbox a b

by auto
qed

qed

proposition partial division extend interval :
assumes p division of (

⋃
p) (

⋃
p) ⊆ cbox a b

obtains q where p ⊆ q q division of cbox a (b:: ′a::euclidean space)
proof (cases p = {})
case True
obtain q where q division of (cbox a b)
by (rule elementary interval)

then show ?thesis
using True that by blast

next
case False
note p = division ofD [OF assms(1 )]
have div cbox : ∀ k∈p. ∃ q . q division of cbox a b ∧ k ∈ q
proof
fix k
assume kp: k ∈ p
obtain c d where k : k = cbox c d
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using p(4 )[OF kp] by blast
have ∗: cbox c d ⊆ cbox a b cbox c d 6= {}
using p(2 ,3 )[OF kp, unfolded k ] using assms(2 )
by (blast intro: order .trans)+

obtain q where q division of cbox a b cbox c d ∈ q
by (rule partial division extend 1 [OF ∗])

then show ∃ q . q division of cbox a b ∧ k ∈ q
unfolding k by auto

qed
obtain q where q :

∧
x . x ∈ p =⇒ q x division of cbox a b

∧
x . x ∈ p =⇒ x ∈

q x
using bchoice[OF div cbox ] by blast

have q x division of
⋃
(q x ) if x : x ∈ p for x

apply (rule division ofI )
using division ofD [OF q(1 )[OF x ]] by auto

then have di :
∧
x . x ∈ p =⇒ ∃ d . d division of

⋃
(q x − {x})

by (meson Diff subset division of subset)
have ∃ d . d division of

⋂
((λi .

⋃
(q i − {i})) ‘ p)

apply (rule elementary Inter [OF finite imageI [OF p(1 )]])
apply (auto dest : di simp: False elementary Inter [OF finite imageI [OF p(1 )]])
done

then obtain d where d : d division of
⋂
((λi .

⋃
(q i − {i})) ‘ p) ..

have d ∪ p division of cbox a b
proof −
have te:

∧
S f T . S 6= {} =⇒ ∀ i∈S . f i ∪ i = T =⇒ T =

⋂
(f ‘ S ) ∪

⋃
S by

auto
have cbox eq : cbox a b =

⋂
((λi .

⋃
(q i − {i})) ‘ p) ∪

⋃
p

proof (rule te[OF False], clarify)
fix i
assume i : i ∈ p
show

⋃
(q i − {i}) ∪ i = cbox a b

using division ofD(6 )[OF q(1 )[OF i ]] using q(2 )[OF i ] by auto
qed
{ fix K
assume K : K ∈ p
note qk=division ofD [OF q(1 )[OF K ]]
have ∗:

∧
u T S . T ∩ S = {} =⇒ u ⊆ S =⇒ u ∩ T = {}

by auto
have interior (

⋂
i∈p.

⋃
(q i − {i})) ∩ interior K = {}

proof (rule ∗[OF Int interior Union intervals])
show

∧
T . T∈q K − {K} =⇒ interior K ∩ interior T = {}

using qk(5 ) using q(2 )[OF K ] by auto
show interior (

⋂
i∈p.

⋃
(q i − {i})) ⊆ interior (

⋃
(q K − {K}))

apply (rule interior mono)+
using K by auto

qed (use qk in auto)} note [simp] = this
show d ∪ p division of (cbox a b)
unfolding cbox eq
apply (rule division disjoint union[OF d assms(1 )])
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apply (rule Int interior Union intervals)
apply (rule p open interior ballI )+
apply simp all
done

qed
then show ?thesis
by (meson Un upper2 that)

qed

lemma elementary bounded [dest ]:
fixes S :: ′a::euclidean space set
shows p division of S =⇒ bounded S
unfolding division of def by (metis bounded Union bounded cbox )

lemma elementary subset cbox :
p division of S =⇒ ∃ a b. S ⊆ cbox a (b:: ′a::euclidean space)
by (meson bounded subset cbox symmetric elementary bounded)

proposition division union intervals exists:
fixes a b :: ′a::euclidean space
assumes cbox a b 6= {}
obtains p where (insert (cbox a b) p) division of (cbox a b ∪ cbox c d)

proof (cases cbox c d = {})
case True
with assms that show ?thesis by force

next
case False
show ?thesis
proof (cases cbox a b ∩ cbox c d = {})
case True
then show ?thesis
by (metis that False assms division disjoint union division of self insert is Un

interior Int interior empty)
next
case False
obtain u v where uv : cbox a b ∩ cbox c d = cbox u v
unfolding Int interval by auto

have uv sub: cbox u v ⊆ cbox c d using uv by auto
obtain p where pd : p division of cbox c d and cbox u v ∈ p
by (rule partial division extend 1 [OF uv sub False[unfolded uv ]])

note p = this division ofD [OF pd ]
have interior (cbox a b ∩

⋃
(p − {cbox u v})) = interior(cbox u v ∩

⋃
(p −

{cbox u v}))
apply (rule arg cong [of interior ])
using p(8 ) uv by auto

also have . . . = {}
unfolding interior Int
apply (rule Int interior Union intervals)
using p(6 ) p(7 )[OF p(2 )] 〈finite p〉
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apply auto
done

finally have [simp]: interior (cbox a b) ∩ interior (
⋃
(p − {cbox u v})) = {}

by simp
have cbe: cbox a b ∪ cbox c d = cbox a b ∪

⋃
(p − {cbox u v})

using p(8 ) unfolding uv [symmetric] by auto
have insert (cbox a b) (p − {cbox u v}) division of cbox a b ∪

⋃
(p − {cbox u

v})
proof −
have {cbox a b} division of cbox a b
by (simp add : assms division of self )

then show insert (cbox a b) (p − {cbox u v}) division of cbox a b ∪
⋃
(p −

{cbox u v})
by (metis (no types) Diff subset 〈interior (cbox a b) ∩ interior (

⋃
(p − {cbox

u v})) = {}〉 division disjoint union division of subset insert is Un p(1 ) p(8 ))
qed
with that [of p − {cbox u v}] show ?thesis by (simp add : cbe)

qed
qed

lemma division of Union:
assumes finite f
and

∧
p. p ∈ f =⇒ p division of (

⋃
p)

and
∧
k1 k2 . k1 ∈

⋃
f =⇒ k2 ∈

⋃
f =⇒ k1 6= k2 =⇒ interior k1 ∩ interior

k2 = {}
shows

⋃
f division of

⋃
(
⋃
f )

using assms by (auto intro!: division ofI )

lemma elementary union interval :
fixes a b :: ′a::euclidean space
assumes p division of

⋃
p

obtains q where q division of (cbox a b ∪
⋃
p)

proof (cases p = {} ∨ cbox a b = {})
case True
obtain p where p division of (cbox a b)
by (rule elementary interval)

then show thesis
using True assms that by auto

next
case False
then have p 6= {} cbox a b 6= {}
by auto

note pdiv = division ofD [OF assms]
show ?thesis
proof (cases interior (cbox a b) = {})
case True
show ?thesis
apply (rule that [of insert (cbox a b) p, OF division ofI ])
using pdiv(1−4 ) True False apply auto



Tagged Division.thy 1715

apply (metis IntI equals0D pdiv(5 ))
by (metis disjoint iff not equal pdiv(5 ))

next
case False
have ∀K∈p. ∃ q . (insert (cbox a b) q) division of (cbox a b ∪ K )
proof
fix K
assume kp: K ∈ p
from pdiv(4 )[OF kp] obtain c d where K = cbox c d by blast
then show ∃ q . (insert (cbox a b) q) division of (cbox a b ∪ K )
by (meson 〈cbox a b 6= {}〉 division union intervals exists)

qed
from bchoice[OF this] obtain q where ∀ x∈p. insert (cbox a b) (q x ) division of

(cbox a b) ∪ x ..
note q = division ofD [OF this[rule format ]]
let ?D =

⋃
{insert (cbox a b) (q K ) | K . K ∈ p}

show thesis
proof (rule that [OF division ofI ])
have ∗: {insert (cbox a b) (q K ) |K . K ∈ p} = (λK . insert (cbox a b) (q K ))

‘ p
by auto

show finite ?D
using ∗ pdiv(1 ) q(1 ) by auto

have
⋃
?D = (

⋃
x∈p.

⋃
(insert (cbox a b) (q x )))

by auto
also have ... =

⋃
{cbox a b ∪ t |t . t ∈ p}

using q(6 ) by auto
also have ... = cbox a b ∪

⋃
p

using 〈p 6= {}〉 by auto
finally show

⋃
?D = cbox a b ∪

⋃
p .

show K ⊆ cbox a b ∪
⋃
p K 6= {} if K ∈ ?D for K

using q that by blast+
show ∃ a b. K = cbox a b if K ∈ ?D for K
using q(4 ) that by auto

next
fix K ′ K
assume K : K ∈ ?D and K ′: K ′ ∈ ?D K 6= K ′

obtain x where x : K ∈ insert (cbox a b) (q x ) x∈p
using K by auto

obtain x ′ where x ′: K ′∈insert (cbox a b) (q x ′) x ′∈p
using K ′ by auto

show interior K ∩ interior K ′ = {}
proof (cases x = x ′ ∨ K = cbox a b ∨ K ′ = cbox a b)
case True
then show ?thesis
using True K ′ q(5 ) x ′ x by auto

next
case False
then have as ′: K 6= cbox a b K ′ 6= cbox a b
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by auto
obtain c d where K : K = cbox c d
using q(4 ) x by blast

have interior K ∩ interior (cbox a b) = {}
using as ′ K ′(2 ) q(5 ) x by blast

then have interior K ⊆ interior x
by (metis 〈interior (cbox a b) 6= {}〉 K q(2 ) x interior subset union intervals)
moreover
obtain c d where c d : K ′ = cbox c d
using q(4 )[OF x ′(2 ,1 )] by blast

have interior K ′ ∩ interior (cbox a b) = {}
using as ′(2 ) q(5 ) x ′ by blast

then have interior K ′ ⊆ interior x ′

by (metis 〈interior (cbox a b) 6= {}〉 c d interior subset union intervals
q(2 ) x ′(1 ) x ′(2 ))

moreover have interior x ∩ interior x ′ = {}
by (meson False assms division ofD(5 ) x ′(2 ) x (2 ))

ultimately show ?thesis
using 〈interior K ⊆ interior x 〉 〈interior K ′ ⊆ interior x ′〉 by auto

qed
qed

qed
qed

lemma elementary unions intervals:
assumes fin: finite f
and

∧
s. s ∈ f =⇒ ∃ a b. s = cbox a (b:: ′a::euclidean space)

obtains p where p division of (
⋃
f )

proof −
have ∃ p. p division of (

⋃
f )

proof (induct tac f rule:finite subset induct)
show ∃ p. p division of

⋃
{} using elementary empty by auto

next
fix x F
assume as: finite F x /∈ F ∃ p. p division of

⋃
F x∈f

from this(3 ) obtain p where p: p division of
⋃
F ..

from assms(2 )[OF as(4 )] obtain a b where x : x = cbox a b by blast
have ∗:

⋃
F =

⋃
p

using division ofD [OF p] by auto
show ∃ p. p division of

⋃
(insert x F )

using elementary union interval [OF p[unfolded ∗], of a b]
unfolding Union insert x ∗ by metis

qed (insert assms, auto)
then show ?thesis
using that by auto

qed
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lemma elementary union:
fixes S T :: ′a::euclidean space set
assumes ps division of S pt division of T
obtains p where p division of (S ∪ T )

proof −
have ∗: S ∪ T =

⋃
ps ∪

⋃
pt

using assms unfolding division of def by auto
show ?thesis
apply (rule elementary unions intervals[of ps ∪ pt ])
using assms apply auto
by (simp add : ∗ that)

qed

lemma partial division extend :
fixes T :: ′a::euclidean space set
assumes p division of S
and q division of T
and S ⊆ T

obtains r where p ⊆ r and r division of T
proof −
note divp = division ofD [OF assms(1 )] and divq = division ofD [OF assms(2 )]
obtain a b where ab: T ⊆ cbox a b
using elementary subset cbox [OF assms(2 )] by auto

obtain r1 where p ⊆ r1 r1 division of (cbox a b)
using assms
by (metis ab dual order .trans partial division extend interval divp(6 ))

note r1 = this division ofD [OF this(2 )]
obtain p ′ where p ′ division of

⋃
(r1 − p)

apply (rule elementary unions intervals[of r1 − p])
using r1 (3 ,6 )
apply auto

done
then obtain r2 where r2 : r2 division of (

⋃
(r1 − p)) ∩ (

⋃
q)

by (metis assms(2 ) divq(6 ) elementary Int)
{
fix x
assume x : x ∈ T x /∈ S
then obtain R where r : R ∈ r1 x ∈ R
unfolding r1 using ab
by (meson division contains r1 (2 ) subsetCE )

moreover have R /∈ p
proof
assume R ∈ p
then have x ∈ S using divp(2 ) r by auto
then show False using x by auto

qed
ultimately have x∈

⋃
(r1 − p) by auto

}
then have Teq : T =

⋃
p ∪ (

⋃
(r1 − p) ∩

⋃
q)
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unfolding divp divq using assms(3 ) by auto
have interior S ∩ interior (

⋃
(r1−p)) = {}

proof (rule Int interior Union intervals)
have ∗:

∧
S . (

∧
x . x ∈ S =⇒ False) =⇒ S = {}

by auto
show interior S ∩ interior m = {} if m ∈ r1 − p for m
proof −
have interior m ∩ interior (

⋃
p) = {}

proof (rule Int interior Union intervals)
show

∧
T . T∈p =⇒ interior m ∩ interior T = {}

by (metis DiffD1 DiffD2 that r1 (1 ) r1 (7 ) rev subsetD)
qed (use divp in auto)
then show interior S ∩ interior m = {}
unfolding divp by auto

qed
qed (use r1 in auto)
then have interior S ∩ interior (

⋃
(r1−p) ∩ (

⋃
q)) = {}

using interior subset by auto
then have div : p ∪ r2 division of

⋃
p ∪

⋃
(r1 − p) ∩

⋃
q

by (simp add : assms(1 ) division disjoint union divp(6 ) r2 )
show ?thesis
apply (rule that [of p ∪ r2 ])
apply (auto simp: div Teq)
done

qed

lemma division split :
fixes a :: ′a::euclidean space
assumes p division of (cbox a b)
and k : k∈Basis

shows {l ∩ {x . x ·k ≤ c} | l . l ∈ p ∧ l ∩ {x . x ·k ≤ c} 6= {}} division of (cbox a
b ∩ {x . x ·k ≤ c})

(is ?p1 division of ?I1 )
and {l ∩ {x . x ·k ≥ c} | l . l ∈ p ∧ l ∩ {x . x ·k ≥ c} 6= {}} division of (cbox a

b ∩ {x . x ·k ≥ c})
(is ?p2 division of ?I2 )

proof (rule tac[!] division ofI )
note p = division ofD [OF assms(1 )]
show finite ?p1 finite ?p2
using p(1 ) by auto

show
⋃
?p1 = ?I1

⋃
?p2 = ?I2

unfolding p(6 )[symmetric] by auto
{
fix K
assume K ∈ ?p1
then obtain l where l : K = l ∩ {x . x · k ≤ c} l ∈ p l ∩ {x . x · k ≤ c} 6= {}
by blast

obtain u v where uv : l = cbox u v
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using assms(1 ) l(2 ) by blast
show K ⊆ ?I1
using l p(2 ) uv by force

show K 6= {}
by (simp add : l)

show ∃ a b. K = cbox a b
apply (simp add : l uv p(2−3 )[OF l(2 )])
apply (subst interval split [OF k ])
apply (auto intro: order .trans)
done

fix K ′

assume K ′ ∈ ?p1
then obtain l ′ where l ′: K ′ = l ′ ∩ {x . x · k ≤ c} l ′ ∈ p l ′ ∩ {x . x · k ≤ c}

6= {}
by blast

assume K 6= K ′

then show interior K ∩ interior K ′ = {}
unfolding l l ′ using p(5 )[OF l(2 ) l ′(2 )] by auto

}
{
fix K
assume K ∈ ?p2
then obtain l where l : K = l ∩ {x . c ≤ x · k} l ∈ p l ∩ {x . c ≤ x · k} 6= {}
by blast

obtain u v where uv : l = cbox u v
using l(2 ) p(4 ) by blast

show K ⊆ ?I2
using l p(2 ) uv by force

show K 6= {}
by (simp add : l)

show ∃ a b. K = cbox a b
apply (simp add : l uv p(2−3 )[OF l(2 )])
apply (subst interval split [OF k ])
apply (auto intro: order .trans)
done

fix K ′

assume K ′ ∈ ?p2
then obtain l ′ where l ′: K ′ = l ′ ∩ {x . c ≤ x · k} l ′ ∈ p l ′ ∩ {x . c ≤ x · k}

6= {}
by blast

assume K 6= K ′

then show interior K ∩ interior K ′ = {}
unfolding l l ′ using p(5 )[OF l(2 ) l ′(2 )] by auto

}
qed

6.14.7 Tagged (partial) divisions

definition tagged partial division of (infixr tagged ′ partial ′ division ′ of 40 )
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where s tagged partial division of i ←→
finite s ∧
(∀ x K . (x , K ) ∈ s −→ x ∈ K ∧ K ⊆ i ∧ (∃ a b. K = cbox a b)) ∧
(∀ x1 K1 x2 K2 . (x1 , K1 ) ∈ s ∧ (x2 , K2 ) ∈ s ∧ (x1 , K1 ) 6= (x2 , K2 ) −→
interior K1 ∩ interior K2 = {})

lemma tagged partial division ofD :
assumes s tagged partial division of i
shows finite s
and

∧
x K . (x ,K ) ∈ s =⇒ x ∈ K

and
∧
x K . (x ,K ) ∈ s =⇒ K ⊆ i

and
∧
x K . (x ,K ) ∈ s =⇒ ∃ a b. K = cbox a b

and
∧
x1 K1 x2 K2 . (x1 ,K1 ) ∈ s =⇒

(x2 , K2 ) ∈ s =⇒ (x1 , K1 ) 6= (x2 , K2 ) =⇒ interior K1 ∩ interior K2 = {}
using assms unfolding tagged partial division of def by blast+

definition tagged division of (infixr tagged ′ division ′ of 40 )
where s tagged division of i ←→ s tagged partial division of i ∧ (

⋃
{K . ∃ x .

(x ,K ) ∈ s} = i)

lemma tagged division of finite: s tagged division of i =⇒ finite s
unfolding tagged division of def tagged partial division of def by auto

lemma tagged division of :
s tagged division of i ←→
finite s ∧
(∀ x K . (x , K ) ∈ s −→ x ∈ K ∧ K ⊆ i ∧ (∃ a b. K = cbox a b)) ∧
(∀ x1 K1 x2 K2 . (x1 , K1 ) ∈ s ∧ (x2 , K2 ) ∈ s ∧ (x1 , K1 ) 6= (x2 , K2 ) −→
interior K1 ∩ interior K2 = {}) ∧

(
⋃
{K . ∃ x . (x ,K ) ∈ s} = i)

unfolding tagged division of def tagged partial division of def by auto

lemma tagged division ofI :
assumes finite s
and

∧
x K . (x ,K ) ∈ s =⇒ x ∈ K

and
∧
x K . (x ,K ) ∈ s =⇒ K ⊆ i

and
∧
x K . (x ,K ) ∈ s =⇒ ∃ a b. K = cbox a b

and
∧
x1 K1 x2 K2 . (x1 ,K1 ) ∈ s =⇒ (x2 , K2 ) ∈ s =⇒ (x1 , K1 ) 6= (x2 , K2 )

=⇒
interior K1 ∩ interior K2 = {}

and (
⋃
{K . ∃ x . (x ,K ) ∈ s} = i)

shows s tagged division of i
unfolding tagged division of
using assms by fastforce

lemma tagged division ofD [dest ]:
assumes s tagged division of i
shows finite s
and

∧
x K . (x ,K ) ∈ s =⇒ x ∈ K



Tagged Division.thy 1721

and
∧
x K . (x ,K ) ∈ s =⇒ K ⊆ i

and
∧
x K . (x ,K ) ∈ s =⇒ ∃ a b. K = cbox a b

and
∧
x1 K1 x2 K2 . (x1 , K1 ) ∈ s =⇒ (x2 , K2 ) ∈ s =⇒ (x1 , K1 ) 6= (x2 , K2 )

=⇒
interior K1 ∩ interior K2 = {}

and (
⋃
{K . ∃ x . (x ,K ) ∈ s} = i)

using assms unfolding tagged division of by blast+

lemma division of tagged division:
assumes s tagged division of i
shows (snd ‘ s) division of i

proof (rule division ofI )
note assm = tagged division ofD [OF assms]
show

⋃
(snd ‘ s) = i finite (snd ‘ s)

using assm by auto
fix k
assume k : k ∈ snd ‘ s
then obtain xk where xk : (xk , k) ∈ s
by auto

then show k ⊆ i k 6= {} ∃ a b. k = cbox a b
using assm by fastforce+

fix k ′

assume k ′: k ′ ∈ snd ‘ s k 6= k ′

from this(1 ) obtain xk ′ where xk ′: (xk ′, k ′) ∈ s
by auto

then show interior k ∩ interior k ′ = {}
using assm(5 ) k ′(2 ) xk by blast

qed

lemma partial division of tagged division:
assumes s tagged partial division of i
shows (snd ‘ s) division of

⋃
(snd ‘ s)

proof (rule division ofI )
note assm = tagged partial division ofD [OF assms]
show finite (snd ‘ s)

⋃
(snd ‘ s) =

⋃
(snd ‘ s)

using assm by auto
fix k
assume k : k ∈ snd ‘ s
then obtain xk where xk : (xk , k) ∈ s
by auto

then show k 6= {} ∃ a b. k = cbox a b k ⊆
⋃

(snd ‘ s)
using assm by auto

fix k ′

assume k ′: k ′ ∈ snd ‘ s k 6= k ′

from this(1 ) obtain xk ′ where xk ′: (xk ′, k ′) ∈ s
by auto

then show interior k ∩ interior k ′ = {}
using assm(5 ) k ′(2 ) xk by auto

qed
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lemma tagged partial division subset :
assumes s tagged partial division of i
and t ⊆ s

shows t tagged partial division of i
using assms finite subset [OF assms(2 )]
unfolding tagged partial division of def
by blast

lemma tag in interval : p tagged division of i =⇒ (x , k) ∈ p =⇒ x ∈ i
by auto

lemma tagged division of empty : {} tagged division of {}
unfolding tagged division of by auto

lemma tagged partial division of trivial [simp]: p tagged partial division of {} ←→
p = {}
unfolding tagged partial division of def by auto

lemma tagged division of trivial [simp]: p tagged division of {} ←→ p = {}
unfolding tagged division of by auto

lemma tagged division of self : x ∈ cbox a b =⇒ {(x ,cbox a b)} tagged division of
(cbox a b)
by (rule tagged division ofI ) auto

lemma tagged division of self real : x ∈ {a .. b::real} =⇒ {(x ,{a .. b})} tagged division of
{a .. b}
unfolding box real [symmetric]
by (rule tagged division of self )

lemma tagged division Un:
assumes p1 tagged division of s1
and p2 tagged division of s2
and interior s1 ∩ interior s2 = {}

shows (p1 ∪ p2 ) tagged division of (s1 ∪ s2 )
proof (rule tagged division ofI )
note p1 = tagged division ofD [OF assms(1 )]
note p2 = tagged division ofD [OF assms(2 )]
show finite (p1 ∪ p2 )
using p1 (1 ) p2 (1 ) by auto

show
⋃
{k . ∃ x . (x , k) ∈ p1 ∪ p2} = s1 ∪ s2

using p1 (6 ) p2 (6 ) by blast
fix x k
assume xk : (x , k) ∈ p1 ∪ p2
show x ∈ k ∃ a b. k = cbox a b
using xk p1 (2 ,4 ) p2 (2 ,4 ) by auto

show k ⊆ s1 ∪ s2
using xk p1 (3 ) p2 (3 ) by blast
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fix x ′ k ′

assume xk ′: (x ′, k ′) ∈ p1 ∪ p2 (x , k) 6= (x ′, k ′)
have ∗:

∧
a b. a ⊆ s1 =⇒ b ⊆ s2 =⇒ interior a ∩ interior b = {}

using assms(3 ) interior mono by blast
show interior k ∩ interior k ′ = {}
apply (cases (x , k) ∈ p1 )
apply (meson ∗ UnE assms(1 ) assms(2 ) p1 (5 ) tagged division ofD(3 ) xk ′(1 )

xk ′(2 ))
by (metis ∗ UnE assms(1 ) assms(2 ) inf sup aci(1 ) p2 (5 ) tagged division ofD(3 )

xk xk ′(1 ) xk ′(2 ))
qed

lemma tagged division Union:
assumes finite I
and tag :

∧
i . i∈I =⇒ pfn i tagged division of i

and disj :
∧
i1 i2 . [[i1 ∈ I ; i2 ∈ I ; i1 6= i2 ]] =⇒ interior(i1 ) ∩ interior(i2 ) =

{}
shows

⋃
(pfn ‘ I ) tagged division of (

⋃
I )

proof (rule tagged division ofI )
note assm = tagged division ofD [OF tag ]
show finite (

⋃
(pfn ‘ I ))

using assms by auto
have

⋃
{k . ∃ x . (x , k) ∈

⋃
(pfn ‘ I )} =

⋃
((λi .

⋃
{k . ∃ x . (x , k) ∈ pfn i}) ‘ I )

by blast
also have . . . =

⋃
I

using assm(6 ) by auto
finally show

⋃
{k . ∃ x . (x , k) ∈

⋃
(pfn ‘ I )} =

⋃
I .

fix x k
assume xk : (x , k) ∈

⋃
(pfn ‘ I )

then obtain i where i : i ∈ I (x , k) ∈ pfn i
by auto

show x ∈ k ∃ a b. k = cbox a b k ⊆
⋃

I
using assm(2−4 )[OF i ] using i(1 ) by auto

fix x ′ k ′

assume xk ′: (x ′, k ′) ∈
⋃
(pfn ‘ I ) (x , k) 6= (x ′, k ′)

then obtain i ′ where i ′: i ′ ∈ I (x ′, k ′) ∈ pfn i ′

by auto
have ∗:

∧
a b. i 6= i ′ =⇒ a ⊆ i =⇒ b ⊆ i ′ =⇒ interior a ∩ interior b = {}

using i(1 ) i ′(1 ) disj interior mono by blast
show interior k ∩ interior k ′ = {}
proof (cases i = i ′)
case True then show ?thesis
using assm(5 ) i ′ i xk ′(2 ) by blast

next
case False then show ?thesis
using ∗ assm(3 ) i ′ i by auto

qed
qed
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lemma tagged partial division of Union self :
assumes p tagged partial division of s
shows p tagged division of (

⋃
(snd ‘ p))

apply (rule tagged division ofI )
using tagged partial division ofD [OF assms]
apply auto
done

lemma tagged division of union self :
assumes p tagged division of s
shows p tagged division of (

⋃
(snd ‘ p))

apply (rule tagged division ofI )
using tagged division ofD [OF assms]
apply auto
done

lemma tagged division Un interval :
fixes a :: ′a::euclidean space
assumes p1 tagged division of (cbox a b ∩ {x . x ·k ≤ (c::real)})
and p2 tagged division of (cbox a b ∩ {x . x ·k ≥ c})
and k : k ∈ Basis

shows (p1 ∪ p2 ) tagged division of (cbox a b)
proof −
have ∗: cbox a b = (cbox a b ∩ {x . x ·k ≤ c}) ∪ (cbox a b ∩ {x . x ·k ≥ c})
by auto

show ?thesis
apply (subst ∗)
apply (rule tagged division Un[OF assms(1−2 )])
unfolding interval split [OF k ] interior cbox
using k
apply (auto simp add : box def elim!: ballE [where x=k ])
done

qed

lemma tagged division Un interval real :
fixes a :: real
assumes p1 tagged division of ({a .. b} ∩ {x . x ·k ≤ (c::real)})
and p2 tagged division of ({a .. b} ∩ {x . x ·k ≥ c})
and k : k ∈ Basis

shows (p1 ∪ p2 ) tagged division of {a .. b}
using assms
unfolding box real [symmetric]
by (rule tagged division Un interval)

lemma tagged division split left inj :
assumes d : d tagged division of i
and tags: (x1 , K1 ) ∈ d (x2 , K2 ) ∈ d
and K1 6= K2
and eq : K1 ∩ {x . x · k ≤ c} = K2 ∩ {x . x · k ≤ c}
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shows interior (K1 ∩ {x . x ·k ≤ c}) = {}
proof −
have interior (K1 ∩ K2 ) = {} ∨ (x2 , K2 ) = (x1 , K1 )
using tags d by (metis (no types) interior Int tagged division ofD(5 ))

then show ?thesis
using eq 〈K1 6= K2 〉 by (metis (no types) inf assoc inf bot left inf left idem

interior Int old .prod .inject)
qed

lemma tagged division split right inj :
assumes d : d tagged division of i
and tags: (x1 , K1 ) ∈ d (x2 , K2 ) ∈ d
and K1 6= K2
and eq : K1 ∩ {x . x ·k ≥ c} = K2 ∩ {x . x ·k ≥ c}
shows interior (K1 ∩ {x . x ·k ≥ c}) = {}

proof −
have interior (K1 ∩ K2 ) = {} ∨ (x2 , K2 ) = (x1 , K1 )
using tags d by (metis (no types) interior Int tagged division ofD(5 ))

then show ?thesis
using eq 〈K1 6= K2 〉 by (metis (no types) inf assoc inf bot left inf left idem

interior Int old .prod .inject)
qed

lemma (in comm monoid set) over tagged division lemma:
assumes p tagged division of i
and

∧
u v . box u v = {} =⇒ d (cbox u v) = 1

shows F (λ( , k). d k) p = F d (snd ‘ p)
proof −
have ∗: (λ( ,k). d k) = d ◦ snd
by (simp add : fun eq iff )

note assm = tagged division ofD [OF assms(1 )]
show ?thesis
unfolding ∗

proof (rule reindex nontrivial [symmetric])
show finite p
using assm by auto

fix x y
assume x∈p y∈p x 6=y snd x = snd y
obtain a b where ab: snd x = cbox a b
using assm(4 )[of fst x snd x ] 〈x∈p〉 by auto

have (fst x , snd y) ∈ p (fst x , snd y) 6= y
using 〈x ∈ p〉 〈x 6= y〉 〈snd x = snd y〉 [symmetric] by auto

with 〈x∈p〉 〈y∈p〉 have interior (snd x ) ∩ interior (snd y) = {}
by (intro assm(5 )[of fst x fst y ]) auto

then have box a b = {}
unfolding 〈snd x = snd y〉[symmetric] ab by auto

then have d (cbox a b) = 1
using assm(2 )[of fst x snd x ] 〈x∈p〉 ab[symmetric] by (intro assms(2 )) auto

then show d (snd x ) = 1
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unfolding ab by auto
qed

qed

6.14.8 Functions closed on boxes: morphisms from boxes to
monoids

This auxiliary structure is used to sum up over the elements of a division.
Main theorem is operative division. Instances for the monoid are ′a option,
real, and bool.

Using additivity of lifted function to encode definedness. defini-
tion lift option :: ( ′a ⇒ ′b ⇒ ′c) ⇒ ′a option ⇒ ′b option ⇒ ′c option
where
lift option f a ′ b ′ = Option.bind a ′ (λa. Option.bind b ′ (λb. Some (f a b)))

lemma lift option simps[simp]:
lift option f (Some a) (Some b) = Some (f a b)
lift option f None b ′ = None
lift option f a ′ None = None
by (auto simp: lift option def )

lemma comm monoid lift option:
assumes comm monoid f z
shows comm monoid (lift option f ) (Some z )

proof −
from assms interpret comm monoid f z .
show ?thesis
by standard (auto simp: lift option def ac simps split : bind split)

qed

lemma comm monoid and : comm monoid HOL.conj True
by standard auto

lemma comm monoid set and : comm monoid set HOL.conj True
by (rule comm monoid set .intro) (fact comm monoid and)

Misc lemma interval real split :
{a .. b::real} ∩ {x . x ≤ c} = {a .. min b c}
{a .. b} ∩ {x . c ≤ x} = {max a c .. b}
apply (metis Int atLeastAtMostL1 atMost def )
apply (metis Int atLeastAtMostL2 atLeast def )
done

lemma bgauge existence lemma: (∀ x∈s. ∃ d ::real . 0 < d ∧ q d x )←→ (∀ x . ∃ d>0 .
x∈s −→ q d x )
by (meson zero less one)
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Division points definition division points (k ::( ′a::euclidean space) set) d =
{(j ,x ). j ∈ Basis ∧ (interval lowerbound k)·j < x ∧ x < (interval upperbound

k)·j ∧
(∃ i∈d . (interval lowerbound i)·j = x ∨ (interval upperbound i)·j = x )}

lemma division points finite:
fixes i :: ′a::euclidean space set
assumes d division of i
shows finite (division points i d)

proof −
note assm = division ofD [OF assms]
let ?M = λj . {(j ,x )|x . (interval lowerbound i)·j < x ∧ x < (interval upperbound

i)·j ∧
(∃ i∈d . (interval lowerbound i)·j = x ∨ (interval upperbound i)·j = x )}

have ∗: division points i d =
⋃
(?M ‘ Basis)

unfolding division points def by auto
show ?thesis
unfolding ∗ using assm by auto

qed

lemma division points subset :
fixes a :: ′a::euclidean space
assumes d division of (cbox a b)
and ∀ i∈Basis. a·i < b·i a·k < c c < b·k
and k : k ∈ Basis

shows division points (cbox a b ∩ {x . x ·k ≤ c}) {l ∩ {x . x ·k ≤ c} | l . l ∈ d ∧
l ∩ {x . x ·k ≤ c} 6= {}} ⊆

division points (cbox a b) d (is ?t1 )
and division points (cbox a b ∩ {x . x ·k ≥ c}) {l ∩ {x . x ·k ≥ c} | l . l ∈ d ∧

¬(l ∩ {x . x ·k ≥ c} = {})} ⊆
division points (cbox a b) d (is ?t2 )

proof −
note assm = division ofD [OF assms(1 )]
have ∗: ∀ i∈Basis. a·i ≤ b·i
∀ i∈Basis. a·i ≤ (

∑
i∈Basis. (if i = k then min (b · k) c else b · i) ∗R i) · i

∀ i∈Basis. (
∑

i∈Basis. (if i = k then max (a · k) c else a · i) ∗R i) · i ≤ b·i
min (b · k) c = c max (a · k) c = c
using assms using less imp le by auto
have ∃ i∈d . interval lowerbound i · x = y ∨ interval upperbound i · x = y
if a · x < y y < (if x = k then c else b · x )

interval lowerbound i · x = y ∨ interval upperbound i · x = y
i = l ∩ {x . x · k ≤ c} l ∈ d l ∩ {x . x · k ≤ c} 6= {}
x ∈ Basis for i l x y

proof −
obtain u v where l : l = cbox u v
using 〈l ∈ d 〉 assms(1 ) by blast

have ∗: ∀ i∈Basis. u · i ≤ (
∑

i∈Basis. (if i = k then min (v · k) c else v · i)
∗R i) · i

using that(6 ) unfolding l interval split [OF k ] box ne empty that .
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have ∗∗: ∀ i∈Basis. u·i ≤ v ·i
using l using that(6 ) unfolding box ne empty [symmetric] by auto

show ?thesis
apply (rule bexI [OF 〈l ∈ d 〉])
using that(1−3 ,5 ) 〈x ∈ Basis〉

unfolding l interval bounds[OF ∗∗] interval bounds[OF ∗] interval split [OF
k ] that

apply (auto split : if split asm)
done

qed
moreover have

∧
x y . [[y < (if x = k then c else b · x )]] =⇒ y < b · x

using 〈c < b·k 〉 by (auto split : if split asm)
ultimately show ?t1
unfolding division points def interval split [OF k , of a b]
unfolding interval bounds[OF ∗(1 )] interval bounds[OF ∗(2 )] interval bounds[OF

∗(3 )]
unfolding ∗ by force

have
∧
x y i l . (if x = k then c else a · x ) < y =⇒ a · x < y

using 〈a·k < c〉 by (auto split : if split asm)
moreover have ∃ i∈d . interval lowerbound i · x = y ∨

interval upperbound i · x = y
if (if x = k then c else a · x ) < y y < b · x
interval lowerbound i · x = y ∨ interval upperbound i · x = y
i = l ∩ {x . c ≤ x · k} l ∈ d l ∩ {x . c ≤ x · k} 6= {}
x ∈ Basis for x y i l

proof −
obtain u v where l : l = cbox u v
using 〈l ∈ d 〉 assm(4 ) by blast

have ∗: ∀ i∈Basis. (
∑

i∈Basis. (if i = k then max (u · k) c else u · i) ∗R i) ·
i ≤ v · i

using that(6 ) unfolding l interval split [OF k ] box ne empty that .
have ∗∗: ∀ i∈Basis. u·i ≤ v ·i
using l using that(6 ) unfolding box ne empty [symmetric] by auto

show ∃ i∈d . interval lowerbound i · x = y ∨ interval upperbound i · x = y
apply (rule bexI [OF 〈l ∈ d 〉])
using that(1−3 ,5 ) 〈x ∈ Basis〉

unfolding l interval bounds[OF ∗∗] interval bounds[OF ∗] interval split [OF
k ] that

apply (auto split : if split asm)
done

qed
ultimately show ?t2
unfolding division points def interval split [OF k , of a b]
unfolding interval bounds[OF ∗(1 )] interval bounds[OF ∗(2 )] interval bounds[OF

∗(3 )]
unfolding ∗
by force

qed
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lemma division points psubset :
fixes a :: ′a::euclidean space
assumes d : d division of (cbox a b)

and altb: ∀ i∈Basis. a·i < b·i a·k < c c < b·k
and l ∈ d
and disj : interval lowerbound l ·k = c ∨ interval upperbound l ·k = c
and k : k ∈ Basis

shows division points (cbox a b ∩ {x . x ·k ≤ c}) {l ∩ {x . x ·k ≤ c} | l . l∈d ∧ l
∩ {x . x ·k ≤ c} 6= {}} ⊂

division points (cbox a b) d (is ?D1 ⊂ ?D)
and division points (cbox a b ∩ {x . x ·k ≥ c}) {l ∩ {x . x ·k ≥ c} | l . l∈d ∧ l

∩ {x . x ·k ≥ c} 6= {}} ⊂
division points (cbox a b) d (is ?D2 ⊂ ?D)

proof −
have ab: ∀ i∈Basis. a·i ≤ b·i
using altb by (auto intro!:less imp le)

obtain u v where l : l = cbox u v
using d 〈l ∈ d 〉 by blast

have uv : ∀ i∈Basis. u·i ≤ v ·i ∀ i∈Basis. a·i ≤ u·i ∧ v ·i ≤ b·i
apply (metis assms(5 ) box ne empty(1 ) cbox division memE d l)
by (metis assms(5 ) box ne empty(1 ) cbox division memE d l subset box (1 ))

have ∗: interval upperbound (cbox a b ∩ {x . x · k ≤ interval upperbound l · k})
· k = interval upperbound l · k

interval upperbound (cbox a b ∩ {x . x · k ≤ interval lowerbound l · k}) ·
k = interval lowerbound l · k

unfolding l interval split [OF k ] interval bounds[OF uv(1 )]
using uv [rule format , of k ] ab k
by auto

have ∃ x . x ∈ ?D − ?D1
using assms(3−)
unfolding division points def interval bounds[OF ab]
by (force simp add : ∗)

moreover have ?D1 ⊆ ?D
by (auto simp add : assms division points subset)

ultimately show ?D1 ⊂ ?D
by blast

have ∗: interval lowerbound (cbox a b ∩ {x . x · k ≥ interval lowerbound l · k})
· k = interval lowerbound l · k

interval lowerbound (cbox a b ∩ {x . x · k ≥ interval upperbound l · k}) · k =
interval upperbound l · k

unfolding l interval split [OF k ] interval bounds[OF uv(1 )]
using uv [rule format , of k ] ab k
by auto

have ∃ x . x ∈ ?D − ?D2
using assms(3−)
unfolding division points def interval bounds[OF ab]
by (force simp add : ∗)

moreover have ?D2 ⊆ ?D
by (auto simp add : assms division points subset)
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ultimately show ?D2 ⊂ ?D
by blast

qed

lemma division split left inj :
fixes S :: ′a::euclidean space set
assumes div : D division of S
and eq : K1 ∩ {x :: ′a. x ·k ≤ c} = K2 ∩ {x . x ·k ≤ c}
and K1 ∈ D K2 ∈ D K1 6= K2

shows interior (K1 ∩ {x . x ·k ≤ c}) = {}
proof −
have interior K2 ∩ interior {a. a · k ≤ c} = interior K1 ∩ interior {a. a · k
≤ c}

by (metis (no types) eq interior Int)
moreover have

∧
A. interior A ∩ interior K2 = {} ∨ A = K2 ∨ A /∈ D

by (meson div 〈K2 ∈ D〉 division of def )
ultimately show ?thesis
using 〈K1 ∈ D〉 〈K1 6= K2 〉 by auto

qed

lemma division split right inj :
fixes S :: ′a::euclidean space set
assumes div : D division of S
and eq : K1 ∩ {x :: ′a. x ·k ≥ c} = K2 ∩ {x . x ·k ≥ c}
and K1 ∈ D K2 ∈ D K1 6= K2

shows interior (K1 ∩ {x . x ·k ≥ c}) = {}
proof −
have interior K2 ∩ interior {a. a · k ≥ c} = interior K1 ∩ interior {a. a · k
≥ c}

by (metis (no types) eq interior Int)
moreover have

∧
A. interior A ∩ interior K2 = {} ∨ A = K2 ∨ A /∈ D

by (meson div 〈K2 ∈ D〉 division of def )
ultimately show ?thesis
using 〈K1 ∈ D〉 〈K1 6= K2 〉 by auto

qed

lemma interval doublesplit :
fixes a :: ′a::euclidean space
assumes k ∈ Basis
shows cbox a b ∩ {x . |x ·k − c| ≤ (e::real)} =
cbox (

∑
i∈Basis. (if i = k then max (a·k) (c − e) else a·i) ∗R i)

(
∑

i∈Basis. (if i = k then min (b·k) (c + e) else b·i) ∗R i)
proof −
have ∗:

∧
x c e::real . |x − c| ≤ e ←→ x ≥ c − e ∧ x ≤ c + e

by auto
have ∗∗:

∧
s P Q . s ∩ {x . P x ∧ Q x} = (s ∩ {x . Q x}) ∩ {x . P x}

by blast
show ?thesis
unfolding ∗ ∗∗ interval split [OF assms] by (rule refl)
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qed

lemma division doublesplit :
fixes a :: ′a::euclidean space
assumes p division of (cbox a b)
and k : k ∈ Basis

shows (λl . l ∩ {x . |x ·k − c| ≤ e}) ‘ {l∈p. l ∩ {x . |x ·k − c| ≤ e} 6= {}}
division of (cbox a b ∩ {x . |x ·k − c| ≤ e})

proof −
have ∗:

∧
x c. |x − c| ≤ e ←→ x ≥ c − e ∧ x ≤ c + e

by auto
have ∗∗:

∧
p q p ′ q ′. p division of q =⇒ p = p ′ =⇒ q = q ′ =⇒ p ′ division of q ′

by auto
note division split(1 )[OF assms, where c=c+e,unfolded interval split [OF k ]]
note division split(2 )[OF this, where c=c−e and k=k ,OF k ]
then show ?thesis
apply (rule ∗∗)
subgoal
apply (simp add : abs diff le iff field simps Collect conj eq setcompr eq image

[symmetric] cong : image cong simp)
apply (rule equalityI )
apply blast
apply clarsimp
apply (rule tac x=xa ∩ {x . c + e ≥ x · k} in exI )
apply auto
done

by (simp add : interval split k interval doublesplit)
qed

Operative locale operative = comm monoid set +
fixes g :: ′b::euclidean space set ⇒ ′a
assumes box empty imp:

∧
a b. box a b = {} =⇒ g (cbox a b) = 1

and Basis imp:
∧
a b c k . k ∈ Basis =⇒ g (cbox a b) = g (cbox a b ∩ {x . x ·k

≤ c}) ∗ g (cbox a b ∩ {x . x ·k ≥ c})
begin

lemma empty [simp]:
g {} = 1

proof −
have ∗: cbox One (−One) = ({}:: ′b set)
by (auto simp: box eq empty inner sum left inner Basis sum.If cases ex in conv)
moreover have box One (−One) = ({}:: ′b set)
using box subset cbox [of One −One] by (auto simp: ∗)

ultimately show ?thesis
using box empty imp [of One −One] by simp

qed

lemma division:
F g d = g (cbox a b) if d division of (cbox a b)
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proof −
define C where [abs def ]: C = card (division points (cbox a b) d)
then show ?thesis
using that proof (induction C arbitrary : a b d rule: less induct)
case (less a b d)
show ?case
proof cases
assume box a b = {}
{ fix k assume k∈d
then obtain a ′ b ′ where k : k = cbox a ′ b ′

using division ofD(4 )[OF less.prems] by blast
with 〈k∈d 〉 division ofD(2 )[OF less.prems] have cbox a ′ b ′ ⊆ cbox a b
by auto

then have box a ′ b ′ ⊆ box a b
unfolding subset box by auto

then have g k = 1
using box empty imp [of a ′ b ′] k by (simp add : 〈box a b = {}〉) }

then show box a b = {} =⇒ F g d = g (cbox a b)
by (auto intro!: neutral simp: box empty imp)

next
assume box a b 6= {}
then have ab: ∀ i∈Basis. a·i < b·i and ab ′: ∀ i∈Basis. a·i ≤ b·i
by (auto simp: box ne empty)

show F g d = g (cbox a b)
proof (cases division points (cbox a b) d = {})
case True
{ fix u v and j :: ′b
assume j : j ∈ Basis and as: cbox u v ∈ d
then have cbox u v 6= {}
using less.prems by blast

then have uv : ∀ i∈Basis. u·i ≤ v ·i u·j ≤ v ·j
using j unfolding box ne empty by auto

have ∗:
∧
p r Q . ¬ j∈Basis ∨ p ∨ r ∨ (∀ x∈d . Q x ) =⇒ p ∨ r ∨ Q (cbox

u v)
using as j by auto

have (j , u·j ) /∈ division points (cbox a b) d
(j , v ·j ) /∈ division points (cbox a b) d using True by auto
note this[unfolded de Morgan conj division points def mem Collect eq

split conv interval bounds[OF ab ′] bex simps]
note ∗[OF this(1 )] ∗[OF this(2 )] note this[unfolded interval bounds[OF

uv(1 )]]
moreover
have a·j ≤ u·j v ·j ≤ b·j
using division ofD(2 ,2 ,3 )[OF 〈d division of cbox a b〉 as]
apply (metis j subset box (1 ) uv(1 ))
by (metis 〈cbox u v ⊆ cbox a b〉 j subset box (1 ) uv(1 ))

ultimately have u·j = a·j ∧ v ·j = a·j ∨ u·j = b·j ∧ v ·j = b·j ∨ u·j =
a·j ∧ v ·j = b·j

unfolding not less de Morgan disj using ab[rule format ,of j ] uv(2 ) j
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by force }
then have d ′: ∀ i∈d . ∃ u v . i = cbox u v ∧
(∀ j∈Basis. u·j = a·j ∧ v ·j = a·j ∨ u·j = b·j ∧ v ·j = b·j ∨ u·j = a·j ∧

v ·j = b·j )
unfolding forall in division[OF less.prems] by blast

have (1/2 ) ∗R (a+b) ∈ cbox a b
unfolding mem box using ab by (auto simp: inner simps)
note this[unfolded division ofD(6 )[OF 〈d division of cbox a b〉,symmetric]

Union iff ]
then obtain i where i : i ∈ d (1 / 2 ) ∗R (a + b) ∈ i ..
obtain u v where uv : i = cbox u v

∀ j∈Basis. u · j = a · j ∧ v · j = a · j ∨
u · j = b · j ∧ v · j = b · j ∨
u · j = a · j ∧ v · j = b · j

using d ′ i(1 ) by auto
have cbox a b ∈ d
proof −
have u = a v = b
unfolding euclidean eq iff [where ′a= ′b]

proof safe
fix j :: ′b
assume j : j ∈ Basis
note i(2 )[unfolded uv mem box ,rule format ,of j ]
then show u · j = a · j and v · j = b · j
using uv(2 )[rule format ,of j ] j by (auto simp: inner simps)

qed
then have i = cbox a b using uv by auto
then show ?thesis using i by auto

qed
then have deq : d = insert (cbox a b) (d − {cbox a b})
by auto

have F g (d − {cbox a b}) = 1
proof (intro neutral ballI )
fix x
assume x : x ∈ d − {cbox a b}
then have x∈d
by auto note d ′[rule format ,OF this]

then obtain u v where uv : x = cbox u v
∀ j∈Basis. u · j = a · j ∧ v · j = a · j ∨

u · j = b · j ∧ v · j = b · j ∨
u · j = a · j ∧ v · j = b · j

by blast
have u 6= a ∨ v 6= b
using x [unfolded uv ] by auto

then obtain j where u·j 6= a·j ∨ v ·j 6= b·j and j : j ∈ Basis
unfolding euclidean eq iff [where ′a= ′b] by auto

then have u·j = v ·j
using uv(2 )[rule format ,OF j ] by auto

then have box u v = {}
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using j unfolding box eq empty by (auto intro!: bexI [of j ])
then show g x = 1
unfolding uv(1 ) by (rule box empty imp)

qed
then show F g d = g (cbox a b)
using division ofD [OF less.prems]
apply (subst deq)
apply (subst insert)
apply auto
done

next
case False
then have ∃ x . x ∈ division points (cbox a b) d
by auto

then obtain k c
where k ∈ Basis interval lowerbound (cbox a b) · k < c

c < interval upperbound (cbox a b) · k
∃ i∈d . interval lowerbound i · k = c ∨ interval upperbound i · k = c

unfolding division points def by auto
then obtain j where a · k < c c < b · k

and j ∈ d and j : interval lowerbound j · k = c ∨ interval upperbound
j · k = c

by (metis division of trivial empty iff interval bounds ′ less.prems)
let ?lec = {x . x ·k ≤ c} let ?gec = {x . x ·k ≥ c}
define d1 where d1 = {l ∩ ?lec | l . l ∈ d ∧ l ∩ ?lec 6= {}}
define d2 where d2 = {l ∩ ?gec | l . l ∈ d ∧ l ∩ ?gec 6= {}}
define cb where cb = (

∑
i∈Basis. (if i = k then c else b·i) ∗R i)

define ca where ca = (
∑

i∈Basis. (if i = k then c else a·i) ∗R i)
have division points (cbox a b ∩ ?lec) {l ∩ ?lec |l . l ∈ d ∧ l ∩ ?lec 6= {}}

⊂ division points (cbox a b) d
by (rule division points psubset [OF 〈d division of cbox a b〉 ab 〈a · k < c〉

〈c < b · k 〉 〈j ∈ d 〉 j 〈k ∈ Basis〉])
with division points finite[OF 〈d division of cbox a b〉]
have card
(division points (cbox a b ∩ ?lec) {l ∩ ?lec |l . l ∈ d ∧ l ∩ ?lec 6= {}})
< card (division points (cbox a b) d)
by (rule psubset card mono)

moreover have division points (cbox a b ∩ {x . c ≤ x · k}) {l ∩ {x . c ≤ x
· k} |l . l ∈ d ∧ l ∩ {x . c ≤ x · k} 6= {}}

⊂ division points (cbox a b) d
by (rule division points psubset [OF 〈d division of cbox a b〉 ab 〈a · k < c〉

〈c < b · k 〉 〈j ∈ d 〉 j 〈k ∈ Basis〉])
with division points finite[OF 〈d division of cbox a b〉]
have card (division points (cbox a b ∩ ?gec) {l ∩ ?gec |l . l ∈ d ∧ l ∩ ?gec

6= {}})
< card (division points (cbox a b) d)

by (rule psubset card mono)
ultimately have ∗: F g d1 = g (cbox a b ∩ ?lec) F g d2 = g (cbox a b ∩

?gec)
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unfolding interval split [OF 〈k ∈ Basis〉]
apply (rule tac[!] less.hyps)
using division split [OF 〈d division of cbox a b〉, where k=k and c=c] 〈k

∈ Basis〉

by (simp all add : interval split d1 def d2 def division points finite[OF 〈d
division of cbox a b〉])

have fxk le: g (l ∩ ?lec) = 1
if l ∈ d y ∈ d l ∩ ?lec = y ∩ ?lec l 6= y for l y

proof −
obtain u v where leq : l = cbox u v
using 〈l ∈ d 〉 less.prems by auto

have interior (cbox u v ∩ ?lec) = {}
using that division split left inj leq less.prems by blast

then show ?thesis
unfolding leq interval split [OF 〈k ∈ Basis〉]
by (auto intro: box empty imp)

qed
have fxk ge: g (l ∩ {x . x · k ≥ c}) = 1
if l ∈ d y ∈ d l ∩ ?gec = y ∩ ?gec l 6= y for l y

proof −
obtain u v where leq : l = cbox u v
using 〈l ∈ d 〉 less.prems by auto

have interior (cbox u v ∩ ?gec) = {}
using that division split right inj leq less.prems by blast

then show ?thesis
unfolding leq interval split [OF 〈k ∈ Basis〉]
by (auto intro: box empty imp)

qed
have d1 alt : d1 = (λl . l ∩ ?lec) ‘ {l ∈ d . l ∩ ?lec 6= {}}
using d1 def by auto

have d2 alt : d2 = (λl . l ∩ ?gec) ‘ {l ∈ d . l ∩ ?gec 6= {}}
using d2 def by auto

have g (cbox a b) = F g d1 ∗ F g d2 (is = ?prev)
unfolding ∗ using 〈k ∈ Basis〉

by (auto dest : Basis imp)
also have F g d1 = F (λl . g (l ∩ ?lec)) d
unfolding d1 alt using division of finite[OF less.prems] fxk le
by (subst reindex nontrivial) (auto intro!: mono neutral cong left)

also have F g d2 = F (λl . g (l ∩ ?gec)) d
unfolding d2 alt using division of finite[OF less.prems] fxk ge
by (subst reindex nontrivial) (auto intro!: mono neutral cong left)

also have ∗: ∀ x∈d . g x = g (x ∩ ?lec) ∗ g (x ∩ ?gec)
unfolding forall in division[OF 〈d division of cbox a b〉]
using 〈k ∈ Basis〉

by (auto dest : Basis imp)
have F (λl . g (l ∩ ?lec)) d ∗ F (λl . g (l ∩ ?gec)) d = F g d
using ∗ by (simp add : distrib)

finally show ?thesis by auto
qed
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qed
qed

qed

proposition tagged division:
assumes d tagged division of (cbox a b)
shows F (λ( , l). g l) d = g (cbox a b)

proof −
have F (λ( , k). g k) d = F g (snd ‘ d)
using assms box empty imp by (rule over tagged division lemma)

then show ?thesis
unfolding assms [THEN division of tagged division, THEN division] .

qed

end

locale operative real = comm monoid set +
fixes g :: real set ⇒ ′a
assumes neutral : b ≤ a =⇒ g {a..b} = 1
assumes coalesce less: a < c =⇒ c < b =⇒ g {a..c} ∗ g {c..b} = g {a..b}

begin

sublocale operative where g = g
rewrites box = (greaterThanLessThan :: real ⇒ )
and cbox = (atLeastAtMost :: real ⇒ )
and

∧
x ::real . x ∈ Basis ←→ x = 1

proof −
show operative f z g
proof
show g (cbox a b) = 1 if box a b = {} for a b
using that by (simp add : neutral)

show g (cbox a b) = g (cbox a b ∩ {x . x · k ≤ c}) ∗ g (cbox a b ∩ {x . c ≤ x
· k})

if k ∈ Basis for a b c k
proof −
from that have [simp]: k = 1
by simp

from neutral [of 0 1 ] neutral [of a a for a] coalesce less
have [simp]: g {} = 1

∧
a. g {a} = 1∧

a b c. a < c =⇒ c < b =⇒ g {a..c} ∗ g {c..b} = g {a..b}
by auto
have g {a..b} = g {a..min b c} ∗ g {max a c..b}

by (auto simp: min def max def le less)
then show g (cbox a b) = g (cbox a b ∩ {x . x · k ≤ c}) ∗ g (cbox a b ∩ {x .

c ≤ x · k})
by (simp add : atMost def [symmetric] atLeast def [symmetric])

qed
qed
show box = (greaterThanLessThan :: real ⇒ )
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and cbox = (atLeastAtMost :: real ⇒ )
and

∧
x ::real . x ∈ Basis ←→ x = 1

by (simp all add : fun eq iff )
qed

lemma coalesce less eq :
g {a..c} ∗ g {c..b} = g {a..b} if a ≤ c c ≤ b
proof (cases c = a ∨ c = b)
case False

with that have a < c c < b
by auto
then show ?thesis
by (rule coalesce less)

next
case True

with that box empty imp [of a a] box empty imp [of b b] show ?thesis
by safe simp all
qed

end

lemma operative realI :
operative real f z g if operative f z g

proof −
interpret operative f z g
using that .

show ?thesis
proof
show g {a..b} = z if b ≤ a for a b
using that box empty imp by simp

show f (g {a..c}) (g {c..b}) = g {a..b} if a < c c < b for a b c
using that

using Basis imp [of 1 a b c]
by (simp all add : atMost def [symmetric] atLeast def [symmetric] max def

min def )
qed
qed

6.14.9 Special case of additivity we need for the FTC

lemma additive tagged division 1 :
fixes f :: real ⇒ ′a::real normed vector
assumes a ≤ b
and p tagged division of {a..b}

shows sum (λ(x ,k). f (Sup k) − f (Inf k)) p = f b − f a
proof −

let ?f = (λk ::(real) set . if k = {} then 0 else f (interval upperbound k) −
f (interval lowerbound k))
interpret operative real plus 0 ?f
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rewrites comm monoid set .F (+) 0 = sum
by standard [1 ] (auto simp add : sum def )

have p td : p tagged division of cbox a b
using assms(2 ) box real(2 ) by presburger

have ∗∗: cbox a b 6= {}
using assms(1 ) by auto

then have f b − f a = (
∑

(x , l)∈p. if l = {} then 0 else f (interval upperbound
l) − f (interval lowerbound l))

proof −
have (if cbox a b = {} then 0 else f (interval upperbound (cbox a b)) − f

(interval lowerbound (cbox a b))) = f b − f a
using assms by auto

then show ?thesis
using p td assms by (simp add : tagged division)

qed
then show ?thesis
using assms by (auto intro!: sum.cong)

qed

6.14.10 Fine-ness of a partition w.r.t. a gauge

definition fine (infixr fine 46 )
where d fine s ←→ (∀ (x ,k) ∈ s. k ⊆ d x )

lemma fineI :
assumes

∧
x k . (x , k) ∈ s =⇒ k ⊆ d x

shows d fine s
using assms unfolding fine def by auto

lemma fineD [dest ]:
assumes d fine s
shows

∧
x k . (x ,k) ∈ s =⇒ k ⊆ d x

using assms unfolding fine def by auto

lemma fine Int : (λx . d1 x ∩ d2 x ) fine p ←→ d1 fine p ∧ d2 fine p
unfolding fine def by auto

lemma fine Inter :
(λx .

⋂
{f d x | d . d ∈ s}) fine p ←→ (∀ d∈s. (f d) fine p)

unfolding fine def by blast

lemma fine Un: d fine p1 =⇒ d fine p2 =⇒ d fine (p1 ∪ p2 )
unfolding fine def by blast

lemma fine Union: (
∧
p. p ∈ ps =⇒ d fine p) =⇒ d fine (

⋃
ps)

unfolding fine def by auto

lemma fine subset : p ⊆ q =⇒ d fine q =⇒ d fine p
unfolding fine def by blast
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6.14.11 Some basic combining lemmas

lemma tagged division Union exists:
assumes finite I
and ∀ i∈I . ∃ p. p tagged division of i ∧ d fine p
and ∀ i1∈I . ∀ i2∈I . i1 6= i2 −→ interior i1 ∩ interior i2 = {}
and

⋃
I = i

obtains p where p tagged division of i and d fine p
proof −
obtain pfn where pfn:∧

x . x ∈ I =⇒ pfn x tagged division of x∧
x . x ∈ I =⇒ d fine pfn x

using bchoice[OF assms(2 )] by auto
show thesis
apply (rule tac p=

⋃
(pfn ‘ I ) in that)

using assms(1 ) assms(3 ) assms(4 ) pfn(1 ) tagged division Union apply force
by (metis (mono tags, lifting) fine Union imageE pfn(2 ))

qed

6.14.12 The set we’re concerned with must be closed

lemma division of closed :
fixes i :: ′n::euclidean space set
shows s division of i =⇒ closed i
unfolding division of def by fastforce

6.14.13 General bisection principle for intervals; might be
useful elsewhere

lemma interval bisection step:
fixes type :: ′a::euclidean space
assumes emp: P {}
and Un:

∧
S T . [[P S ; P T ; interior(S ) ∩ interior(T ) = {}]] =⇒ P (S ∪ T )

and non: ¬ P (cbox a (b:: ′a))
obtains c d where ¬ P (cbox c d)
and

∧
i . i ∈ Basis =⇒ a·i ≤ c·i ∧ c·i ≤ d ·i ∧ d ·i ≤ b·i ∧ 2 ∗ (d ·i − c·i) ≤

b·i − a·i
proof −
have cbox a b 6= {}
using emp non by metis

then have ab:
∧
i . i∈Basis =⇒ a · i ≤ b · i

by (force simp: mem box )
have UN cases: [[finite F ;∧

S . S∈F =⇒ P S ;∧
S . S∈F =⇒ ∃ a b. S = cbox a b;∧
S T . S∈F =⇒ T∈F =⇒ S 6= T =⇒ interior S ∩ interior T = {}]] =⇒

P (
⋃
F) for F

proof (induct F rule: finite induct)
case empty show ?case
using emp by auto
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next
case (insert x f )
then show ?case
unfolding Union insert by (metis Int interior Union intervals Un insert iff

open interior)
qed
let ?ab = λi . (a·i + b·i) / 2
let ?A = {cbox c d | c d :: ′a. ∀ i∈Basis. (c·i = a·i) ∧ (d ·i = ?ab i) ∨
(c·i = ?ab i) ∧ (d ·i = b·i)}

have P (
⋃
?A)

if
∧
c d . ∀ i∈Basis. a·i ≤ c·i ∧ c·i ≤ d ·i ∧ d ·i ≤ b·i ∧ 2 ∗ (d ·i − c·i) ≤ b·i

− a·i =⇒ P (cbox c d)
proof (rule UN cases)
let ?B = (λS . cbox (

∑
i∈Basis. (if i ∈ S then a·i else ?ab i) ∗R i :: ′a)

(
∑

i∈Basis. (if i ∈ S then ?ab i else b·i) ∗R i)) ‘ {s. s ⊆ Basis}
have ?A ⊆ ?B
proof
fix x
assume x ∈ ?A
then obtain c d
where x : x = cbox c d∧

i . i ∈ Basis =⇒
c · i = a · i ∧ d · i = ?ab i ∨ c · i = ?ab i ∧ d · i = b · i

by blast
have c = (

∑
i∈Basis. (if c · i = a · i then a · i else ?ab i) ∗R i)

d = (
∑

i∈Basis. (if c · i = a · i then ?ab i else b · i) ∗R i)
using x (2 ) ab by (fastforce simp add : euclidean eq iff [where ′a= ′a])+

then show x ∈ ?B
unfolding x by (rule tac x={i . i∈Basis ∧ c·i = a·i} in image eqI ) auto

qed
then show finite ?A
by (rule finite subset) auto

next
fix S
assume S ∈ ?A
then obtain c d
where s: S = cbox c d∧

i . i ∈ Basis =⇒ c · i = a · i ∧ d · i = ?ab i ∨ c · i = ?ab i ∧ d ·
i = b · i

by blast
show P S
unfolding s using ab s(2 ) by (fastforce intro!: that)

show ∃ a b. S = cbox a b
unfolding s by auto

fix T
assume T ∈ ?A
then obtain e f where t :
T = cbox e f∧
i . i ∈ Basis =⇒ e · i = a · i ∧ f · i = ?ab i ∨ e · i = ?ab i ∧ f · i = b · i
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by blast
assume S 6= T
then have ¬ (c = e ∧ d = f )
unfolding s t by auto

then obtain i where c·i 6= e·i ∨ d ·i 6= f ·i and i ′: i ∈ Basis
unfolding euclidean eq iff [where ′a= ′a] by auto

then have i : c·i 6= e·i d ·i 6= f ·i
using s(2 ) t(2 ) apply fastforce
using t(2 )[OF i ′] 〈c · i 6= e · i ∨ d · i 6= f · i 〉 i ′ s(2 ) t(2 ) by fastforce

have ∗:
∧
s t . (

∧
a. a ∈ s =⇒ a ∈ t =⇒ False) =⇒ s ∩ t = {}

by auto
show interior S ∩ interior T = {}
unfolding s t interior cbox

proof (rule ∗)
fix x
assume x ∈ box c d x ∈ box e f
then have x : c·i < d ·i e·i < f ·i c·i < f ·i e·i < d ·i
unfolding mem box using i ′ by force+

show False using s(2 )[OF i ′] t(2 )[OF i ′] and i x
by auto

qed
qed
also have

⋃
?A = cbox a b

proof (rule set eqI ,rule)
fix x
assume x ∈

⋃
?A

then obtain c d where x :
x ∈ cbox c d∧
i . i ∈ Basis =⇒ c · i = a · i ∧ d · i = ?ab i ∨ c · i = ?ab i ∧ d · i = b · i

by blast
then show x∈cbox a b
unfolding mem box by force

next
fix x
assume x : x ∈ cbox a b
then have ∀ i∈Basis. ∃ c d . (c = a·i ∧ d = ?ab i ∨ c = ?ab i ∧ d = b·i) ∧

c≤x ·i ∧ x ·i ≤ d
(is ∀ i∈Basis. ∃ c d . ?P i c d)
unfolding mem box by (metis linear)

then obtain α β where ∀ i∈Basis. (α · i = a · i ∧ β · i = ?ab i ∨
α · i = ?ab i ∧ β · i = b · i) ∧ α · i ≤ x · i ∧ x · i ≤ β · i

by (auto simp: choice Basis iff )
then show x∈

⋃
?A

by (force simp add : mem box )
qed
finally show thesis

by (metis (no types, lifting) assms(3 ) that)
qed
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lemma interval bisection:
fixes type :: ′a::euclidean space
assumes P {}
and Un:

∧
S T . [[P S ; P T ; interior(S ) ∩ interior(T ) = {}]] =⇒ P (S ∪ T )

and ¬ P (cbox a (b:: ′a))
obtains x where x ∈ cbox a b
and ∀ e>0 . ∃ c d . x ∈ cbox c d ∧ cbox c d ⊆ ball x e ∧ cbox c d ⊆ cbox a b ∧

¬ P (cbox c d)
proof −
have ∀ x . ∃ y . ¬ P (cbox (fst x ) (snd x )) −→ (¬ P (cbox (fst y) (snd y)) ∧
(∀ i∈Basis. fst x ·i ≤ fst y·i ∧ fst y·i ≤ snd y·i ∧ snd y·i ≤ snd x ·i ∧

2 ∗ (snd y·i − fst y·i) ≤ snd x ·i − fst x ·i)) (is ∀ x . ?P x )
proof
show ?P x for x
proof (cases P (cbox (fst x ) (snd x )))
case True
then show ?thesis by auto

next
case False
obtain c d where ¬ P (cbox c d)∧

i . i ∈ Basis =⇒
fst x · i ≤ c · i ∧
c · i ≤ d · i ∧
d · i ≤ snd x · i ∧
2 ∗ (d · i − c · i) ≤ snd x · i − fst x · i

by (blast intro: interval bisection step[of P , OF assms(1−2 ) False])
then show ?thesis
by (rule tac x=(c,d) in exI ) auto

qed
qed
then obtain f where f :
∀ x .
¬ P (cbox (fst x ) (snd x )) −→
¬ P (cbox (fst (f x )) (snd (f x ))) ∧
(∀ i∈Basis.

fst x · i ≤ fst (f x ) · i ∧
fst (f x ) · i ≤ snd (f x ) · i ∧
snd (f x ) · i ≤ snd x · i ∧
2 ∗ (snd (f x ) · i − fst (f x ) · i) ≤ snd x · i − fst x · i) by metis

define AB A B where ab def : AB n = (f ˆˆ n) (a,b) A n = fst(AB n) B n =
snd(AB n) for n
have [simp]: A 0 = a B 0 = b and ABRAW :

∧
n. ¬ P (cbox (A(Suc n)) (B(Suc

n))) ∧
(∀ i∈Basis. A(n)·i ≤ A(Suc n)·i ∧ A(Suc n)·i ≤ B(Suc n)·i ∧ B(Suc n)·i ≤

B(n)·i ∧
2 ∗ (B(Suc n)·i − A(Suc n)·i) ≤ B(n)·i − A(n)·i) (is

∧
n. ?P n)

proof −
show A 0 = a B 0 = b
unfolding ab def by auto
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note S = ab def funpow .simps o def id apply
show ?P n for n
proof (induct n)
case 0
then show ?case
unfolding S using 〈¬ P (cbox a b)〉 f by auto

next
case (Suc n)
show ?case
unfolding S
apply (rule f [rule format ])
using Suc
unfolding S
apply auto
done

qed
qed
then have AB : A(n)·i ≤ A(Suc n)·i A(Suc n)·i ≤ B(Suc n)·i

B(Suc n)·i ≤ B(n)·i 2 ∗ (B(Suc n)·i − A(Suc n)·i) ≤ B(n)·i −
A(n)·i

if i∈Basis for i n
using that by blast+

have notPAB : ¬ P (cbox (A(Suc n)) (B(Suc n))) for n
using ABRAW by blast

have interv : ∃n. ∀ x∈cbox (A n) (B n). ∀ y∈cbox (A n) (B n). dist x y < e
if e: 0 < e for e

proof −
obtain n where n: (

∑
i∈Basis. b · i − a · i) / e < 2 ˆ n

using real arch pow [of 2 (sum (λi . b·i − a·i) Basis) / e] by auto
show ?thesis
proof (rule exI [where x=n], clarify)
fix x y
assume xy : x∈cbox (A n) (B n) y∈cbox (A n) (B n)
have dist x y ≤ sum (λi . |(x − y)·i |) Basis
unfolding dist norm by(rule norm le l1 )

also have . . . ≤ sum (λi . B n·i − A n·i) Basis
proof (rule sum mono)
fix i :: ′a
assume i : i ∈ Basis
show |(x − y) · i | ≤ B n · i − A n · i
using xy [unfolded mem box ,THEN bspec, OF i ]
by (auto simp: inner diff left)

qed
also have . . . ≤ sum (λi . b·i − a·i) Basis / 2ˆn
unfolding sum divide distrib

proof (rule sum mono)
show B n · i − A n · i ≤ (b · i − a · i) / 2 ˆ n if i : i ∈ Basis for i
proof (induct n)
case 0
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then show ?case
unfolding AB by auto

next
case (Suc n)
have B (Suc n) · i − A (Suc n) · i ≤ (B n · i − A n · i) / 2
using AB(3 ) that AB(4 )[of i n] using i by auto

also have . . . ≤ (b · i − a · i) / 2 ˆ Suc n
using Suc by (auto simp add : field simps)

finally show ?case .
qed

qed
also have . . . < e
using n using e by (auto simp add : field simps)

finally show dist x y < e .
qed

qed
{
fix n m :: nat
assume m ≤ n then have cbox (A n) (B n) ⊆ cbox (A m) (B m)
proof (induction rule: inc induct)
case (step i)
show ?case
using AB by (intro order trans[OF step.IH ] subset box imp) auto

qed simp
} note ABsubset = this
have

∧
n. cbox (A n) (B n) 6= {}

by (meson AB dual order .trans interval not empty)
then obtain x0 where x0 :

∧
n. x0 ∈ cbox (A n) (B n)

using decreasing closed nest [OF closed cbox ] ABsubset interv by blast
show thesis
proof (rule that [rule format , of x0 ])
show x0∈cbox a b
using 〈A 0 = a〉 〈B 0 = b〉 x0 by blast

fix e :: real
assume e > 0
from interv [OF this] obtain n
where n: ∀ x∈cbox (A n) (B n). ∀ y∈cbox (A n) (B n). dist x y < e ..

have ¬ P (cbox (A n) (B n))
proof (cases 0 < n)
case True then show ?thesis
by (metis Suc pred ′ notPAB)

next
case False then show ?thesis
using 〈A 0 = a〉 〈B 0 = b〉 〈¬ P (cbox a b)〉 by blast

qed
moreover have cbox (A n) (B n) ⊆ ball x0 e
using n using x0 [of n] by auto

moreover have cbox (A n) (B n) ⊆ cbox a b
using ABsubset 〈A 0 = a〉 〈B 0 = b〉 by blast
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ultimately show ∃ c d . x0 ∈ cbox c d ∧ cbox c d ⊆ ball x0 e ∧ cbox c d ⊆
cbox a b ∧ ¬ P (cbox c d)

apply (rule tac x=A n in exI )
apply (rule tac x=B n in exI )
apply (auto simp: x0 )
done

qed
qed

6.14.14 Cousin’s lemma

lemma fine division exists:
fixes a b :: ′a::euclidean space
assumes gauge g
obtains p where p tagged division of (cbox a b) g fine p

proof (cases ∃ p. p tagged division of (cbox a b) ∧ g fine p)
case True
then show ?thesis
using that by auto

next
case False
assume ¬ (∃ p. p tagged division of (cbox a b) ∧ g fine p)
obtain x where x :

x ∈ (cbox a b)∧
e. 0 < e =⇒
∃ c d .
x ∈ cbox c d ∧
cbox c d ⊆ ball x e ∧
cbox c d ⊆ (cbox a b) ∧
¬ (∃ p. p tagged division of cbox c d ∧ g fine p)

apply (rule interval bisection[of λs. ∃ p. p tagged division of s ∧ g fine p, OF
False])
apply (simp add : fine def )
apply (metis tagged division Un fine Un)
apply auto
done

obtain e where e: e > 0 ball x e ⊆ g x
using gaugeD [OF assms, of x ] unfolding open contains ball by auto

from x (2 )[OF e(1 )]
obtain c d where c d : x ∈ cbox c d

cbox c d ⊆ ball x e
cbox c d ⊆ cbox a b
¬ (∃ p. p tagged division of cbox c d ∧ g fine p)

by blast
have g fine {(x , cbox c d)}
unfolding fine def using e using c d(2 ) by auto

then show ?thesis
using tagged division of self [OF c d(1 )] using c d by auto

qed
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lemma fine division exists real :
fixes a b :: real
assumes gauge g
obtains p where p tagged division of {a .. b} g fine p
by (metis assms box real(2 ) fine division exists)

6.14.15 A technical lemma about ”refinement” of division

lemma tagged division finer :
fixes p :: ( ′a::euclidean space × ( ′a::euclidean space set)) set
assumes ptag : p tagged division of (cbox a b)
and gauge d

obtains q where q tagged division of (cbox a b)
and d fine q
and ∀ (x ,k) ∈ p. k ⊆ d(x ) −→ (x ,k) ∈ q

proof −
have p: finite p p tagged partial division of (cbox a b)
using ptag tagged division of def by blast+

have (∃ q . q tagged division of (
⋃
{k . ∃ x . (x ,k) ∈ p}) ∧ d fine q ∧ (∀ (x ,k) ∈ p.

k ⊆ d(x ) −→ (x ,k) ∈ q))
if finite p p tagged partial division of (cbox a b) gauge d for p
using that

proof (induct p)
case empty
show ?case
by (force simp add : fine def )

next
case (insert xk p)
obtain x k where xk : xk = (x , k)
using surj pair [of xk ] by metis

obtain q1 where q1 : q1 tagged division of
⋃
{k . ∃ x . (x , k) ∈ p}

and d fine q1
and q1I :

∧
x k . [[(x , k)∈p; k ⊆ d x ]] =⇒ (x , k) ∈ q1

using case prodD tagged partial division subset [OF insert(4 ) subset insertI ]
by (metis (mono tags, lifting) insert .hyps(3 ) insert .prems(2 ))

have ∗:
⋃
{l . ∃ y . (y ,l) ∈ insert xk p} = k ∪

⋃
{l . ∃ y . (y ,l) ∈ p}

unfolding xk by auto
note p = tagged partial division ofD [OF insert(4 )]
obtain u v where uv : k = cbox u v
using p(4 ) xk by blast

have finite {k . ∃ x . (x , k) ∈ p}
apply (rule finite subset [of snd ‘ p])
using image iff apply fastforce
using insert .hyps(1 ) by blast

then have int : interior (cbox u v) ∩ interior (
⋃
{k . ∃ x . (x , k) ∈ p}) = {}

proof (rule Int interior Union intervals)
show open (interior (cbox u v))
by auto
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show
∧
T . T ∈ {k . ∃ x . (x , k) ∈ p} =⇒ ∃ a b. T = cbox a b

using p(4 ) by auto
show

∧
T . T ∈ {k . ∃ x . (x , k) ∈ p} =⇒ interior (cbox u v) ∩ interior T =

{}
by clarify (metis insert .hyps(2 ) insert iff interior cbox p(5 ) uv xk)

qed
show ?case
proof (cases cbox u v ⊆ d x )
case True
have {(x , cbox u v)} tagged division of cbox u v
by (simp add : p(2 ) uv xk tagged division of self )

then have {(x , cbox u v)} ∪ q1 tagged division of
⋃
{k . ∃ x . (x , k) ∈ insert

xk p}
unfolding ∗ uv by (metis (no types, lifting) int q1 tagged division Un)

with True show ?thesis
apply (rule tac x={(x ,cbox u v)} ∪ q1 in exI )
using 〈d fine q1 〉 fine def q1I uv xk apply fastforce
done

next
case False
obtain q2 where q2 : q2 tagged division of cbox u v d fine q2
using fine division exists[OF assms(2 )] by blast

show ?thesis
apply (rule tac x=q2 ∪ q1 in exI )
apply (intro conjI )
unfolding ∗ uv
apply (rule tagged division Un q2 q1 int fine Un)+
apply (auto intro: q1 q2 fine Un 〈d fine q1 〉 simp add : False q1I uv xk)

done
qed

qed
with p obtain q where q : q tagged division of

⋃
{k . ∃ x . (x , k) ∈ p} d fine q

∀ (x , k)∈p. k ⊆ d x −→ (x , k) ∈ q
by (meson 〈gauge d 〉)

with ptag that show ?thesis by auto
qed

Covering lemma

Some technical lemmas used in the approximation results that follow. Proof
of the covering lemma is an obvious multidimensional generalization of
Lemma 3, p65 of Swartz’s ”Introduction to Gauge Integrals”.

proposition covering lemma:
assumes S ⊆ cbox a b box a b 6= {} gauge g
obtains D where
countable D

⋃
D ⊆ cbox a b∧

K . K ∈ D =⇒ interior K 6= {} ∧ (∃ c d . K = cbox c d)
pairwise (λA B . interior A ∩ interior B = {}) D∧
K . K ∈ D =⇒ ∃ x ∈ S ∩ K . K ⊆ g x
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∧
u v . cbox u v ∈ D =⇒ ∃n. ∀ i ∈ Basis. v · i − u · i = (b · i − a · i) / 2ˆn

S ⊆
⋃
D

proof −
have aibi :

∧
i . i ∈ Basis =⇒ a · i ≤ b · i and normab: 0 < norm(b − a)

using 〈box a b 6= {}〉 box eq empty box sing by fastforce+
let ?K0 = λ(n, f :: ′a⇒nat).

cbox (
∑

i ∈ Basis. (a · i + (f i / 2ˆn) ∗ (b · i − a · i)) ∗R i)
(
∑

i ∈ Basis. (a · i + ((f i + 1 ) / 2ˆn) ∗ (b · i − a · i)) ∗R i)
let ?D0 = ?K0 ‘ (SIGMA n:UNIV . PiE Basis (λi :: ′a. lessThan (2ˆn)))
obtain D0 where count : countable D0

and sub:
⋃
D0 ⊆ cbox a b

and int :
∧
K . K ∈ D0 =⇒ (interior K 6= {}) ∧ (∃ c d . K = cbox c d)

and intdj :
∧
A B . [[A ∈ D0 ; B ∈ D0 ]] =⇒ A ⊆ B ∨ B ⊆ A ∨ interior

A ∩ interior B = {}
and SK :

∧
x . x ∈ S =⇒ ∃K ∈ D0 . x ∈ K ∧ K ⊆ g x

and cbox :
∧
u v . cbox u v ∈ D0 =⇒ ∃n. ∀ i ∈ Basis. v · i − u · i =

(b · i − a · i) / 2ˆn
and fin:

∧
K . K ∈ D0 =⇒ finite {L ∈ D0 . K ⊆ L}

proof
show countable ?D0
by (simp add : countable PiE )

next
show

⋃
?D0 ⊆ cbox a b

apply (simp add : UN subset iff )
apply (intro conjI allI ballI subset box imp)
apply (simp add : field simps)
apply (auto intro: mult right mono aibi)
apply (force simp: aibi scaling mono nat less real le dest : PiE mem intro:

mult right mono)
done

next
show

∧
K . K ∈ ?D0 =⇒ interior K 6= {} ∧ (∃ c d . K = cbox c d)

using 〈box a b 6= {}〉
by (clarsimp simp: box eq empty) (fastforce simp add : field split simps dest :

PiE mem)
next
have realff : (real w) ∗ 2ˆm < (real v) ∗ 2ˆn ←→ w ∗ 2ˆm < v ∗ 2ˆn for m

n v w
using of nat less iff less imp of nat less by fastforce
have ∗: ∀ v w . ?K0 (m,v) ⊆ ?K0 (n,w) ∨ ?K0 (n,w) ⊆ ?K0 (m,v) ∨ inte-

rior(?K0 (m,v)) ∩ interior(?K0 (n,w)) = {}
for m n — The symmetry argument requires a single HOL formula

proof (rule linorder wlog [where a=m and b=n], intro allI impI )
fix v w m and n::nat
assume m ≤ n — WLOG we can assume m ≤ n, when the first disjunct

becomes impossible
have ?K0 (n,w) ⊆ ?K0 (m,v) ∨ interior(?K0 (m,v)) ∩ interior(?K0 (n,w)) =

{}
apply (simp add : subset box disjoint interval)
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apply (rule ccontr)
apply (clarsimp simp add : aibi mult le cancel right divide le cancel not less

not le)
apply (drule tac x=i in bspec, assumption)
using 〈m≤n〉 realff [of 1+ ] realff [of 1+ 1+ ]
apply (auto simp: divide simps add .commute not le nat le iff add realff )
apply (simp all add : power add)
apply (metis (no types, hide lams) mult Suc mult less cancel2 not less eq

mult .assoc)
apply (metis (no types, hide lams) mult Suc mult less cancel2 not less eq

mult .assoc)
done
then show ?K0 (m,v) ⊆ ?K0 (n,w) ∨ ?K0 (n,w) ⊆ ?K0 (m,v) ∨ inte-

rior(?K0 (m,v)) ∩ interior(?K0 (n,w)) = {}
by meson

qed auto
show

∧
A B . [[A ∈ ?D0 ; B ∈ ?D0 ]] =⇒ A ⊆ B ∨ B ⊆ A ∨ interior A ∩ interior

B = {}
apply (erule imageE SigmaE )+
using ∗ by simp

next
show ∃K ∈ ?D0 . x ∈ K ∧ K ⊆ g x if x ∈ S for x
proof (simp only : bex simps split paired Bex Sigma)
show ∃n. ∃ f ∈ Basis →E {..<2 ˆ n}. x ∈ ?K0 (n,f ) ∧ ?K0 (n,f ) ⊆ g x
proof −
obtain e where 0 < e

and e:
∧
y . (

∧
i . i ∈ Basis =⇒ |x · i − y · i | ≤ e) =⇒ y ∈ g x

proof −
have x ∈ g x open (g x )
using 〈gauge g〉 by (auto simp: gauge def )

then obtain ε where 0 < ε and ε: ball x ε ⊆ g x
using openE by blast

have norm (x − y) < ε
if (

∧
i . i ∈ Basis =⇒ |x · i − y · i | ≤ ε / (2 ∗ real DIM ( ′a))) for y

proof −
have norm (x − y) ≤ (

∑
i∈Basis. |x · i − y · i |)

by (metis (no types, lifting) inner diff left norm le l1 sum.cong)
also have ... ≤ DIM ( ′a) ∗ (ε / (2 ∗ real DIM ( ′a)))
by (meson sum bounded above that)

also have ... = ε / 2
by (simp add : field split simps)

also have ... < ε
by (simp add : 〈0 < ε〉)

finally show ?thesis .
qed
then show ?thesis

by (rule tac e = ε / 2 / DIM ( ′a) in that) (simp all add : 〈0 < ε〉

dist norm subsetD [OF ε])
qed
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have xab: x ∈ cbox a b
using 〈x ∈ S 〉 〈S ⊆ cbox a b〉 by blast

obtain n where n: norm (b − a) / 2ˆn < e
using real arch pow inv [of e / norm(b − a) 1/2 ] normab 〈0 < e〉

by (auto simp: field split simps)
then have norm (b − a) < e ∗ 2ˆn
by (auto simp: field split simps)

then have bai : b · i − a · i < e ∗ 2 ˆ n if i ∈ Basis for i
proof −
have b · i − a · i ≤ norm (b − a)
by (metis abs of nonneg dual order .trans inner diff left linear norm ge zero

Basis le norm that)
also have ... < e ∗ 2 ˆ n
using 〈norm (b − a) < e ∗ 2 ˆ n〉 by blast

finally show ?thesis .
qed
have D : (a + n ≤ x ∧ x ≤ a + m) =⇒ (a + n ≤ y ∧ y ≤ a + m) =⇒

abs(x − y) ≤ m − n
for a m n x and y ::real

by auto
have ∀ i∈Basis. ∃ k<2 ˆ n. (a · i + real k ∗ (b · i − a · i) / 2 ˆ n ≤ x · i

∧
x · i ≤ a · i + (real k + 1 ) ∗ (b · i − a · i) / 2 ˆ n)

proof
fix i :: ′a assume i ∈ Basis
consider x · i = b · i | x · i < b · i
using 〈i ∈ Basis〉 mem box (2 ) xab by force

then show ∃ k<2 ˆ n. (a · i + real k ∗ (b · i − a · i) / 2 ˆ n ≤ x · i ∧
x · i ≤ a · i + (real k + 1 ) ∗ (b · i − a · i) / 2 ˆ n)

proof cases
case 1 then show ?thesis

by (rule tac x = 2ˆn − 1 in exI ) (auto simp: algebra simps
field split simps of nat diff 〈i ∈ Basis〉 aibi)

next
case 2
then have abi less: a · i < b · i
using 〈i ∈ Basis〉 xab by (auto simp: mem box )

let ?k = nat b2 ˆ n ∗ (x · i − a · i) / (b · i − a · i)c
show ?thesis
proof (intro exI conjI )
show ?k < 2 ˆ n
using aibi xab 〈i ∈ Basis〉

by (force simp: nat less iff floor less iff field split simps 2 mem box )
next
have a · i + real ?k ∗ (b · i − a · i) / 2 ˆ n ≤

a · i + (2 ˆ n ∗ (x · i − a · i) / (b · i − a · i)) ∗ (b · i − a · i)
/ 2 ˆ n

apply (intro add left mono mult right mono divide right mono
of nat floor)
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using aibi [OF 〈i ∈ Basis〉] xab 2
apply (simp all add : 〈i ∈ Basis〉 mem box field split simps)

done
also have ... = x · i
using abi less by (simp add : field split simps)

finally show a · i + real ?k ∗ (b · i − a · i) / 2 ˆ n ≤ x · i .
next
have x · i ≤ a · i + (2 ˆ n ∗ (x · i − a · i) / (b · i − a · i)) ∗ (b · i

− a · i) / 2 ˆ n
using abi less by (simp add : field split simps)

also have ... ≤ a · i + (real ?k + 1 ) ∗ (b · i − a · i) / 2 ˆ n
apply (intro add left mono mult right mono divide right mono

of nat floor)
using aibi [OF 〈i ∈ Basis〉] xab
apply (auto simp: 〈i ∈ Basis〉 mem box divide simps)

done
finally show x · i ≤ a · i + (real ?k + 1 ) ∗ (b · i − a · i) / 2 ˆ n .

qed
qed

qed
then have ∃ f ∈Basis →E {..<2 ˆ n}. x ∈ ?K0 (n,f )
apply (simp add : mem box Bex def )
apply (clarify dest !: bchoice)
apply (rule tac x=restrict f Basis in exI , simp)
done

moreover have
∧
f . x ∈ ?K0 (n,f ) =⇒ ?K0 (n,f ) ⊆ g x

apply (clarsimp simp add : mem box )
apply (rule e)
apply (drule bspec D , assumption)+
apply (erule order trans)
apply (simp add : divide simps)
using bai apply (force simp add : algebra simps)
done

ultimately show ?thesis by auto
qed

qed
next
show

∧
u v . cbox u v ∈ ?D0 =⇒ ∃n. ∀ i ∈ Basis. v · i − u · i = (b · i − a ·

i) / 2ˆn
by (force simp: eq cbox box eq empty field simps dest !: aibi)

next
obtain j :: ′a where j ∈ Basis
using nonempty Basis by blast

have finite {L ∈ ?D0 . ?K0 (n,f ) ⊆ L} if f ∈ Basis →E {..<2 ˆ n} for n f
proof (rule finite subset)
let ?B = (λ(n, f :: ′a⇒nat). cbox (

∑
i∈Basis. (a · i + (f i) / 2ˆn ∗ (b · i −

a · i)) ∗R i)
(
∑

i∈Basis. (a · i + ((f i) + 1 ) / 2ˆn ∗ (b · i −
a · i)) ∗R i))
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‘ (SIGMA m:atMost n. PiE Basis (λi :: ′a. lessThan (2ˆm)))
have ?K0 (m,g) ∈ ?B if g ∈ Basis →E {..<2 ˆ m} ?K0 (n,f ) ⊆ ?K0 (m,g)

for m g
proof −
have dd : w / m ≤ v / n ∧ (v+1 ) / n ≤ (w+1 ) / m

=⇒ inverse n ≤ inverse m for w m v n::real
by (auto simp: field split simps)

have bjaj : b · j − a · j > 0
using 〈j ∈ Basis〉 〈box a b 6= {}〉 box eq empty(1 ) by fastforce

have ((g j ) / 2 ˆ m) ∗ (b · j − a · j ) ≤ ((f j ) / 2 ˆ n) ∗ (b · j − a · j ) ∧
(((f j ) + 1 ) / 2 ˆ n) ∗ (b · j − a · j ) ≤ (((g j ) + 1 ) / 2 ˆ m) ∗ (b · j

− a · j )
using that 〈j ∈ Basis〉 by (simp add : subset box field split simps aibi)

then have ((g j ) / 2 ˆ m) ≤ ((f j ) / 2 ˆ n) ∧
((real(f j ) + 1 ) / 2 ˆ n) ≤ ((real(g j ) + 1 ) / 2 ˆ m)

by (metis bjaj mult .commute of nat 1 of nat add mult le cancel iff2 )
then have inverse (2ˆn) ≤ (inverse (2ˆm) :: real)
by (rule dd)

then have m ≤ n
by auto

show ?thesis
by (rule imageI ) (simp add : 〈m ≤ n〉 that)

qed
then show {L ∈ ?D0 . ?K0 (n,f ) ⊆ L} ⊆ ?B
by auto

show finite ?B
by (intro finite imageI finite SigmaI finite atMost finite lessThan finite PiE

finite Basis)
qed
then show finite {L ∈ ?D0 . K ⊆ L} if K ∈ ?D0 for K
using that by auto

qed
let ?D1 = {K ∈ D0 . ∃ x ∈ S ∩ K . K ⊆ g x}
obtain D where count : countable D

and sub:
⋃
D ⊆ cbox a b S ⊆

⋃
D

and int :
∧
K . K ∈ D =⇒ (interior K 6= {}) ∧ (∃ c d . K = cbox c d)

and intdj :
∧
A B . [[A ∈ D; B ∈ D]] =⇒ A ⊆ B ∨ B ⊆ A ∨ interior A

∩ interior B = {}
and SK :

∧
K . K ∈ D =⇒ ∃ x . x ∈ S ∩ K ∧ K ⊆ g x

and cbox :
∧
u v . cbox u v ∈ D =⇒ ∃n. ∀ i ∈ Basis. v · i − u · i = (b

· i − a · i) / 2ˆn
and fin:

∧
K . K ∈ D =⇒ finite {L. L ∈ D ∧ K ⊆ L}

proof
show countable ?D1 using count countable subset
by (simp add : count countable subset)

show
⋃

?D1 ⊆ cbox a b
using sub by blast

show S ⊆
⋃
?D1

using SK by (force simp:)
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show
∧
K . K ∈ ?D1 =⇒ (interior K 6= {}) ∧ (∃ c d . K = cbox c d)

using int by blast
show

∧
A B . [[A ∈ ?D1 ; B ∈ ?D1 ]] =⇒ A ⊆ B ∨ B ⊆ A ∨ interior A ∩ interior

B = {}
using intdj by blast

show
∧
K . K ∈ ?D1 =⇒ ∃ x . x ∈ S ∩ K ∧ K ⊆ g x

by auto
show

∧
u v . cbox u v ∈ ?D1 =⇒ ∃n. ∀ i ∈ Basis. v · i − u · i = (b · i − a ·

i) / 2ˆn
using cbox by blast

show
∧
K . K ∈ ?D1 =⇒ finite {L. L ∈ ?D1 ∧ K ⊆ L}

using fin by simp (metis (mono tags, lifting) Collect mono rev finite subset)
qed
let ?D = {K ∈ D. ∀K ′. K ′ ∈ D ∧ K 6= K ′ −→ ¬(K ⊆ K ′)}
show ?thesis
proof (rule that)
show countable ?D
by (blast intro: countable subset [OF count ])

show
⋃
?D ⊆ cbox a b

using sub by blast
show S ⊆

⋃
?D

proof clarsimp
fix x
assume x ∈ S
then obtain X where x ∈ X X ∈ D using 〈S ⊆

⋃
D〉 by blast

let ?R = {(K ,L). K ∈ D ∧ L ∈ D ∧ L ⊂ K}
have irrR: irrefl ?R by (force simp: irrefl def )
have traR: trans ?R by (force simp: trans def )
have finR:

∧
x . finite {y . (y , x ) ∈ ?R}

by simp (metis (mono tags, lifting) fin 〈X ∈ D〉 finite subset mem Collect eq
psubset imp subset subsetI )

have {X ∈ D. x ∈ X } 6= {}
using 〈X ∈ D〉 〈x ∈ X 〉 by blast

then obtain Y where Y ∈ {X ∈ D. x ∈ X }
∧
Y ′. (Y ′, Y ) ∈ ?R =⇒ Y ′

/∈ {X ∈ D. x ∈ X }
by (rule wfE min ′ [OF wf finite segments [OF irrR traR finR]]) blast

then show ∃Y . Y ∈ D ∧ (∀K ′. K ′ ∈ D ∧ Y 6= K ′ −→ ¬ Y ⊆ K ′) ∧ x ∈
Y

by blast
qed
show

∧
K . K ∈ ?D =⇒ interior K 6= {} ∧ (∃ c d . K = cbox c d)

by (blast intro: dest : int)
show pairwise (λA B . interior A ∩ interior B = {}) ?D
using intdj by (simp add : pairwise def ) metis

show
∧
K . K ∈ ?D =⇒ ∃ x ∈ S ∩ K . K ⊆ g x

using SK by force
show

∧
u v . cbox u v ∈ ?D =⇒ ∃n. ∀ i∈Basis. v · i − u · i = (b · i − a · i)

/ 2ˆn
using cbox by force
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qed
qed

6.14.16 Division filter

Divisions over all gauges towards finer divisions.

definition division filter :: ′a::euclidean space set ⇒ ( ′a × ′a set) set filter
where division filter s = (INF g∈{g . gauge g}. principal {p. p tagged division of

s ∧ g fine p})

proposition eventually division filter :
(∀ F p in division filter s. P p) ←→
(∃ g . gauge g ∧ (∀ p. p tagged division of s ∧ g fine p −→ P p))

unfolding division filter def
proof (subst eventually INF base; clarsimp)
fix g1 g2 :: ′a ⇒ ′a set show gauge g1 =⇒ gauge g2 =⇒ ∃ x . gauge x ∧
{p. p tagged division of s ∧ x fine p} ⊆ {p. p tagged division of s ∧ g1 fine p}

∧
{p. p tagged division of s ∧ x fine p} ⊆ {p. p tagged division of s ∧ g2 fine p}
by (intro exI [of λx . g1 x ∩ g2 x ]) (auto simp: fine Int)

qed (auto simp: eventually principal)

lemma division filter not empty : division filter (cbox a b) 6= bot
unfolding trivial limit def eventually division filter
by (auto elim: fine division exists)

lemma eventually division filter tagged division:
eventually (λp. p tagged division of s) (division filter s)
unfolding eventually division filter by (intro exI [of λx . ball x 1 ]) auto

end

6.15 Henstock-Kurzweil Gauge Integration in Many
Dimensions

theory Henstock Kurzweil Integration
imports
Lebesgue Measure Tagged Division

begin

lemma norm diff2 : [[y = y1 + y2 ; x = x1 + x2 ; e = e1 + e2 ; norm(y1 − x1 )
≤ e1 ; norm(y2 − x2 ) ≤ e2 ]]
=⇒ norm(y−x ) ≤ e
using norm triangle mono [of y1 − x1 e1 y2 − x2 e2 ]
by (simp add : add diff add)

lemma setcomp dot1 : {z . P (z · (i ,0 ))} = {(x ,y). P(x · i)}
by auto
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lemma setcomp dot2 : {z . P (z · (0 ,i))} = {(x ,y). P(y · i)}
by auto

lemma Sigma Int Paircomp1 : (Sigma A B) ∩ {(x , y). P x} = Sigma (A ∩ {x . P
x}) B
by blast

lemma Sigma Int Paircomp2 : (Sigma A B) ∩ {(x , y). P y} = Sigma A (λz . B z
∩ {y . P y})
by blast

6.15.1 Content (length, area, volume...) of an interval

abbreviation content :: ′a::euclidean space set ⇒ real
where content s ≡ measure lborel s

lemma content cbox cases:
content (cbox a b) = (if ∀ i∈Basis. a·i ≤ b·i then prod (λi . b·i − a·i) Basis else

0 )
by (simp add : measure lborel cbox eq inner diff )

lemma content cbox : ∀ i∈Basis. a·i ≤ b·i =⇒ content (cbox a b) = (
∏

i∈Basis.
b·i − a·i)
unfolding content cbox cases by simp

lemma content cbox ′: cbox a b 6= {} =⇒ content (cbox a b) = (
∏

i∈Basis. b·i −
a·i)
by (simp add : box ne empty inner diff )

lemma content cbox if : content (cbox a b) = (if cbox a b = {} then 0 else
∏

i∈Basis.
b·i − a·i)
by (simp add : content cbox ′)

lemma content cbox cart :
cbox a b 6= {} =⇒ content(cbox a b) = prod (λi . b$i − a$i) UNIV

by (simp add : content cbox if Basis vec def cart eq inner axis axis eq axis prod .UNION disjoint)

lemma content cbox if cart :
content(cbox a b) = (if cbox a b = {} then 0 else prod (λi . b$i − a$i) UNIV )
by (simp add : content cbox cart)

lemma content division of :
assumes K ∈ D D division of S
shows content K = (

∏
i ∈ Basis. interval upperbound K · i − interval lowerbound

K · i)
proof −
obtain a b where K = cbox a b
using cbox division memE assms by metis

Henstock{_}{\kern 0pt}Kurzweil{_}{\kern 0pt}Integration.html


1756

then show ?thesis
using assms by (force simp: division of def content cbox ′)

qed

lemma content real : a ≤ b =⇒ content {a..b} = b − a
by simp

lemma abs eq content : |y − x | = (if x≤y then content {x ..y} else content {y ..x})
by (auto simp: content real)

lemma content singleton: content {a} = 0
by simp

lemma content unit [iff ]: content (cbox 0 (One:: ′a::euclidean space)) = 1
by simp

lemma content pos le [iff ]: 0 ≤ content X
by simp

corollary content nonneg [simp]: ¬ content (cbox a b) < 0
using not le by blast

lemma content pos lt : ∀ i∈Basis. a·i < b·i =⇒ 0 < content (cbox a b)
by (auto simp: less imp le inner diff box eq empty intro!: prod pos)

lemma content eq 0 : content (cbox a b) = 0 ←→ (∃ i∈Basis. b·i ≤ a·i)
by (auto simp: content cbox cases not le intro: less imp le antisym eq refl)

lemma content eq 0 interior : content (cbox a b) = 0 ←→ interior(cbox a b) = {}
unfolding content eq 0 interior cbox box eq empty by auto

lemma content pos lt eq : 0 < content (cbox a (b:: ′a::euclidean space))←→ (∀ i∈Basis.
a·i < b·i)
by (auto simp add : content cbox cases less le prod nonneg)

lemma content empty [simp]: content {} = 0
by simp

lemma content real if [simp]: content {a..b} = (if a ≤ b then b − a else 0 )
by (simp add : content real)

lemma content subset : cbox a b ⊆ cbox c d =⇒ content (cbox a b) ≤ content (cbox
c d)
unfolding measure def
by (intro enn2real mono emeasure mono) (auto simp: emeasure lborel cbox eq)

lemma content lt nz : 0 < content (cbox a b) ←→ content (cbox a b) 6= 0
unfolding content pos lt eq content eq 0 unfolding not ex not le by fastforce
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lemma content Pair : content (cbox (a,c) (b,d)) = content (cbox a b) ∗ content
(cbox c d)
unfolding measure lborel cbox eq Basis prod def
apply (subst prod .union disjoint)
apply (auto simp: bex Un ball Un)
apply (subst (1 2 ) prod .reindex nontrivial)
apply auto
done

lemma content cbox pair eq0 D :
content (cbox (a,c) (b,d)) = 0 =⇒ content (cbox a b) = 0 ∨ content (cbox c d)

= 0
by (simp add : content Pair)

lemma content cbox plus:
fixes x :: ′a::euclidean space
shows content(cbox x (x + h ∗R One)) = (if h ≥ 0 then h ˆ DIM ( ′a) else 0 )
by (simp add : algebra simps content cbox if box eq empty)

lemma content 0 subset : content(cbox a b) = 0 =⇒ s ⊆ cbox a b =⇒ content s
= 0
using emeasure mono[of s cbox a b lborel ]
by (auto simp: measure def enn2real eq 0 iff emeasure lborel cbox eq)

lemma content ball pos:
assumes r > 0
shows content (ball c r) > 0

proof −
from rational boxes[OF assms, of c] obtain a b where ab: c ∈ box a b box a b
⊆ ball c r

by auto
from ab have 0 < content (box a b)

by (subst measure lborel box eq) (auto intro!: prod pos simp: algebra simps
box def )
have emeasure lborel (box a b) ≤ emeasure lborel (ball c r)
using ab by (intro emeasure mono) auto

also have emeasure lborel (box a b) = ennreal (content (box a b))
using emeasure lborel box finite[of a b] by (intro emeasure eq ennreal measure)

auto
also have emeasure lborel (ball c r) = ennreal (content (ball c r))
using emeasure lborel ball finite[of c r ] by (intro emeasure eq ennreal measure)

auto
finally show ?thesis
using 〈content (box a b) > 0 〉 by simp

qed

lemma content cball pos:
assumes r > 0
shows content (cball c r) > 0
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proof −
from rational boxes[OF assms, of c] obtain a b where ab: c ∈ box a b box a b
⊆ ball c r

by auto
from ab have 0 < content (box a b)

by (subst measure lborel box eq) (auto intro!: prod pos simp: algebra simps
box def )
have emeasure lborel (box a b) ≤ emeasure lborel (ball c r)
using ab by (intro emeasure mono) auto

also have . . . ≤ emeasure lborel (cball c r)
by (intro emeasure mono) auto

also have emeasure lborel (box a b) = ennreal (content (box a b))
using emeasure lborel box finite[of a b] by (intro emeasure eq ennreal measure)

auto
also have emeasure lborel (cball c r) = ennreal (content (cball c r))
using emeasure lborel cball finite[of c r ] by (intro emeasure eq ennreal measure)

auto
finally show ?thesis
using 〈content (box a b) > 0 〉 by simp

qed

lemma content split :
fixes a :: ′a::euclidean space
assumes k ∈ Basis
shows content (cbox a b) = content(cbox a b ∩ {x . x ·k ≤ c}) + content(cbox a

b ∩ {x . x ·k ≥ c})
— Prove using measure theory

proof (cases ∀ i∈Basis. a · i ≤ b · i)
case True
have 1 :

∧
X Y Z . (

∏
i∈Basis. Z i (if i = k then X else Y i)) = Z k X ∗

(
∏

i∈Basis−{k}. Z i (Y i))
by (simp add : if distrib prod .delta remove assms)

note simps = interval split [OF assms] content cbox cases
have 2 : (

∏
i∈Basis. b·i − a·i) = (

∏
i∈Basis−{k}. b·i − a·i) ∗ (b·k − a·k)

by (metis (no types, lifting) assms finite Basis mult .commute prod .remove)
have

∧
x . min (b · k) c = max (a · k) c =⇒

x ∗ (b·k − a·k) = x ∗ (max (a · k) c − a · k) + x ∗ (b · k − max (a · k) c)
by (auto simp add : field simps)

moreover
have ∗∗: (

∏
i∈Basis. ((

∑
i∈Basis. (if i = k then min (b · k) c else b · i) ∗R i)

· i − a · i)) =
(
∏

i∈Basis. (if i = k then min (b · k) c else b · i) − a · i)
(
∏

i∈Basis. b · i − ((
∑

i∈Basis. (if i = k then max (a · k) c else a · i) ∗R i)
· i)) =

(
∏

i∈Basis. b · i − (if i = k then max (a · k) c else a · i))
by (auto intro!: prod .cong)

have ¬ a · k ≤ c =⇒ ¬ c ≤ b · k =⇒ False
unfolding not le using True assms by auto

ultimately show ?thesis
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using assms unfolding simps ∗∗ 1 [of λi x . b·i − x ] 1 [of λi x . x − a·i ] 2
by auto

next
case False
then have cbox a b = {}
unfolding box eq empty by (auto simp: not le)

then show ?thesis
by (auto simp: not le)

qed

lemma division of content 0 :
assumes content (cbox a b) = 0 d division of (cbox a b) K ∈ d
shows content K = 0
unfolding forall in division[OF assms(2 )]
by (meson assms content 0 subset division of def )

lemma sum content null :
assumes content (cbox a b) = 0
and p tagged division of (cbox a b)

shows (
∑

(x ,K )∈p. content K ∗R f x ) = (0 :: ′a::real normed vector)
proof (rule sum.neutral , rule)
fix y
assume y : y ∈ p
obtain x K where xk : y = (x , K )
using surj pair [of y ] by blast

then obtain c d where k : K = cbox c d K ⊆ cbox a b
by (metis assms(2 ) tagged division ofD(3 ) tagged division ofD(4 ) y)

have (λ(x ′,K ′). content K ′ ∗R f x ′) y = content K ∗R f x
unfolding xk by auto

also have . . . = 0
using assms(1 ) content 0 subset k(2 ) by auto

finally show (λ(x , k). content k ∗R f x ) y = 0 .
qed

global interpretation sum content : operative plus 0 content
rewrites comm monoid set .F plus 0 = sum

proof −
interpret operative plus 0 content
by standard (auto simp add : content split [symmetric] content eq 0 interior)

show operative plus 0 content
by standard

show comm monoid set .F plus 0 = sum
by (simp add : sum def )

qed

lemma additive content division: d division of (cbox a b) =⇒ sum content d =
content (cbox a b)
by (fact sum content .division)
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lemma additive content tagged division:
d tagged division of (cbox a b) =⇒ sum (λ(x ,l). content l) d = content (cbox a

b)
by (fact sum content .tagged division)

lemma subadditive content division:
assumes D division of S S ⊆ cbox a b
shows sum content D ≤ content(cbox a b)

proof −
have D division of

⋃
D

⋃
D ⊆ cbox a b

using assms by auto
then obtain D ′ where D ⊆ D ′ D ′ division of cbox a b
using partial division extend interval by metis

then have sum content D ≤ sum content D ′

using sum mono2 by blast
also have ... ≤ content(cbox a b)
by (simp add : 〈D ′ division of cbox a b〉 additive content division less eq real def )
finally show ?thesis .

qed

lemma content real eq 0 : content {a..b::real} = 0 ←→ a ≥ b
by (metis atLeastatMost empty iff2 content empty content real diff self eq iff le cases

le iff diff le 0 )

lemma property empty interval : ∀ a b. content (cbox a b) = 0 −→ P (cbox a b)
=⇒ P {}
using content empty unfolding empty as interval by auto

lemma interval bounds nz content [simp]:
assumes content (cbox a b) 6= 0
shows interval upperbound (cbox a b) = b
and interval lowerbound (cbox a b) = a

by (metis assms content empty interval bounds ′)+

6.15.2 Gauge integral

Case distinction to define it first on compact intervals first, then use a limit.
This is only much later unified. In Fremlin: Measure Theory, Volume 4I this
is generalized using residual sets.

definition has integral :: ( ′n::euclidean space ⇒ ′b::real normed vector) ⇒ ′b ⇒
′n set ⇒ bool
(infixr has ′ integral 46 )
where (f has integral I ) s ←→
(if ∃ a b. s = cbox a b
then ((λp.

∑
(x ,k)∈p. content k ∗R f x ) −−−→ I ) (division filter s)

else (∀ e>0 . ∃B>0 . ∀ a b. ball 0 B ⊆ cbox a b −→
(∃ z . ((λp.

∑
(x ,k)∈p. content k ∗R (if x ∈ s then f x else 0 )) −−−→ z )

(division filter (cbox a b)) ∧
norm (z − I ) < e)))
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lemma has integral cbox :
(f has integral I ) (cbox a b) ←→ ((λp.

∑
(x ,k)∈p. content k ∗R f x ) −−−→ I )

(division filter (cbox a b))
by (auto simp add : has integral def )

lemma has integral :
(f has integral y) (cbox a b) ←→
(∀ e>0 . ∃ γ. gauge γ ∧
(∀D. D tagged division of (cbox a b) ∧ γ fine D −→
norm (sum (λ(x ,k). content(k) ∗R f x ) D − y) < e))

by (auto simp: dist norm eventually division filter has integral def tendsto iff )

lemma has integral real :
(f has integral y) {a..b::real} ←→
(∀ e>0 . ∃ γ. gauge γ ∧
(∀D. D tagged division of {a..b} ∧ γ fine D −→
norm (sum (λ(x ,k). content(k) ∗R f x ) D − y) < e))

unfolding box real [symmetric] by (rule has integral)

lemma has integralD [dest ]:
assumes (f has integral y) (cbox a b)
and e > 0

obtains γ
where gauge γ
and

∧
D. D tagged division of (cbox a b) =⇒ γ fine D =⇒

norm ((
∑

(x ,k)∈D. content k ∗R f x ) − y) < e
using assms unfolding has integral by auto

lemma has integral alt :
(f has integral y) i ←→
(if ∃ a b. i = cbox a b
then (f has integral y) i
else (∀ e>0 . ∃B>0 . ∀ a b. ball 0 B ⊆ cbox a b −→
(∃ z . ((λx . if x ∈ i then f x else 0 ) has integral z ) (cbox a b) ∧ norm (z − y)

< e)))
by (subst has integral def ) (auto simp add : has integral cbox )

lemma has integral altD :
assumes (f has integral y) i
and ¬ (∃ a b. i = cbox a b)
and e>0

obtains B where B > 0
and ∀ a b. ball 0 B ⊆ cbox a b −→
(∃ z . ((λx . if x ∈ i then f (x ) else 0 ) has integral z ) (cbox a b) ∧ norm(z − y)

< e)
using assms has integral alt [of f y i ] by auto

definition integrable on (infixr integrable ′ on 46 )
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where f integrable on i ←→ (∃ y . (f has integral y) i)

definition integral i f = (SOME y . (f has integral y) i ∨ ¬ f integrable on i ∧
y=0 )

lemma integrable integral [intro]: f integrable on i =⇒ (f has integral (integral i f ))
i
unfolding integrable on def integral def by (metis (mono tags, lifting) someI ex )

lemma not integrable integral : ¬ f integrable on i =⇒ integral i f = 0
unfolding integrable on def integral def by blast

lemma has integral integrable[dest ]: (f has integral i) s =⇒ f integrable on s
unfolding integrable on def by auto

lemma has integral integral : f integrable on s ←→ (f has integral (integral s f )) s
by auto

6.15.3 Basic theorems about integrals

lemma has integral eq rhs: (f has integral j ) S =⇒ i = j =⇒ (f has integral i) S
by (rule forw subst)

lemma has integral unique cbox :
fixes f :: ′n::euclidean space ⇒ ′a::real normed vector
shows (f has integral k1 ) (cbox a b) =⇒ (f has integral k2 ) (cbox a b) =⇒ k1 =

k2
by (auto simp: has integral cbox intro: tendsto unique[OF division filter not empty ])

lemma has integral unique:
fixes f :: ′n::euclidean space ⇒ ′a::real normed vector
assumes (f has integral k1 ) i (f has integral k2 ) i
shows k1 = k2

proof (rule ccontr)
let ?e = norm (k1 − k2 )/2
let ?F = (λx . if x ∈ i then f x else 0 )
assume k1 6= k2
then have e: ?e > 0
by auto

have nonbox : ¬ (∃ a b. i = cbox a b)
using 〈k1 6= k2 〉 assms has integral unique cbox by blast

obtain B1 where B1 :
0 < B1∧
a b. ball 0 B1 ⊆ cbox a b =⇒
∃ z . (?F has integral z ) (cbox a b) ∧ norm (z − k1 ) < norm (k1 − k2 )/2

by (rule has integral altD [OF assms(1 ) nonbox ,OF e]) blast
obtain B2 where B2 :

0 < B2
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∧
a b. ball 0 B2 ⊆ cbox a b =⇒
∃ z . (?F has integral z ) (cbox a b) ∧ norm (z − k2 ) < norm (k1 − k2 )/2

by (rule has integral altD [OF assms(2 ) nonbox ,OF e]) blast
obtain a b :: ′n where ab: ball 0 B1 ⊆ cbox a b ball 0 B2 ⊆ cbox a b
by (metis Un subset iff bounded Un bounded ball bounded subset cbox symmetric)
obtain w where w : (?F has integral w) (cbox a b) norm (w − k1 ) < norm (k1
− k2 )/2

using B1 (2 )[OF ab(1 )] by blast
obtain z where z : (?F has integral z ) (cbox a b) norm (z − k2 ) < norm (k1 −

k2 )/2
using B2 (2 )[OF ab(2 )] by blast

have z = w
using has integral unique cbox [OF w(1 ) z (1 )] by auto

then have norm (k1 − k2 ) ≤ norm (z − k2 ) + norm (w − k1 )
using norm triangle ineq4 [of k1 − w k2 − z ]
by (auto simp add : norm minus commute)

also have . . . < norm (k1 − k2 )/2 + norm (k1 − k2 )/2
by (metis add strict mono z (2 ) w(2 ))

finally show False by auto
qed

lemma integral unique [intro]: (f has integral y) k =⇒ integral k f = y
unfolding integral def
by (rule some equality) (auto intro: has integral unique)

lemma has integral iff : (f has integral i) S ←→ (f integrable on S ∧ integral S f
= i)
by blast

lemma eq integralD : integral k f = y =⇒ (f has integral y) k ∨ ¬ f integrable on
k ∧ y=0
unfolding integral def integrable on def
apply (erule subst)
apply (rule someI ex )
by blast

lemma has integral const [intro]:
fixes a b :: ′a::euclidean space
shows ((λx . c) has integral (content (cbox a b) ∗R c)) (cbox a b)
using eventually division filter tagged division[of cbox a b]

additive content tagged division[of a b]
by (auto simp: has integral cbox split beta ′ scaleR sum left [symmetric]

elim!: eventually mono intro!: tendsto cong [THEN iffD1 , OF tend-
sto const ])

lemma has integral const real [intro]:
fixes a b :: real
shows ((λx . c) has integral (content {a..b} ∗R c)) {a..b}
by (metis box real(2 ) has integral const)
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lemma has integral integrable integral : (f has integral i) s ←→ f integrable on s ∧
integral s f = i
by blast

lemma integral const [simp]:
fixes a b :: ′a::euclidean space
shows integral (cbox a b) (λx . c) = content (cbox a b) ∗R c
by (rule integral unique) (rule has integral const)

lemma integral const real [simp]:
fixes a b :: real
shows integral {a..b} (λx . c) = content {a..b} ∗R c
by (metis box real(2 ) integral const)

lemma has integral is 0 cbox :
fixes f :: ′n::euclidean space ⇒ ′a::real normed vector
assumes

∧
x . x ∈ cbox a b =⇒ f x = 0

shows (f has integral 0 ) (cbox a b)
unfolding has integral cbox
using eventually division filter tagged division[of cbox a b] assms
by (subst tendsto cong [where g=λ . 0 ])

(auto elim!: eventually mono intro!: sum.neutral simp: tag in interval)

lemma has integral is 0 :
fixes f :: ′n::euclidean space ⇒ ′a::real normed vector
assumes

∧
x . x ∈ S =⇒ f x = 0

shows (f has integral 0 ) S
proof (cases (∃ a b. S = cbox a b))
case True with assms has integral is 0 cbox show ?thesis
by blast

next
case False
have ∗: (λx . if x ∈ S then f x else 0 ) = (λx . 0 )
by (auto simp add : assms)

show ?thesis
using has integral is 0 cbox False
by (subst has integral alt) (force simp add : ∗)

qed

lemma has integral 0 [simp]: ((λx :: ′n::euclidean space. 0 ) has integral 0 ) S
by (rule has integral is 0 ) auto

lemma has integral 0 eq [simp]: ((λx . 0 ) has integral i) S ←→ i = 0
using has integral unique[OF has integral 0 ] by auto

lemma has integral linear cbox :
fixes f :: ′n::euclidean space ⇒ ′a::real normed vector
assumes f : (f has integral y) (cbox a b)
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and h: bounded linear h
shows ((h ◦ f ) has integral (h y)) (cbox a b)

proof −
interpret bounded linear h using h .
show ?thesis
unfolding has integral cbox using tendsto [OF f [unfolded has integral cbox ]]
by (simp add : sum scaleR split beta ′)

qed

lemma has integral linear :
fixes f :: ′n::euclidean space ⇒ ′a::real normed vector
assumes f : (f has integral y) S
and h: bounded linear h

shows ((h ◦ f ) has integral (h y)) S
proof (cases (∃ a b. S = cbox a b))
case True with f h has integral linear cbox show ?thesis
by blast

next
case False
interpret bounded linear h using h .
from pos bounded obtain B where B : 0 < B

∧
x . norm (h x ) ≤ norm x ∗ B

by blast
let ?S = λf x . if x ∈ S then f x else 0
show ?thesis
proof (subst has integral alt , clarsimp simp: False)
fix e :: real
assume e: e > 0
have ∗: 0 < e/B using e B(1 ) by simp
obtain M where M :
M > 0∧
a b. ball 0 M ⊆ cbox a b =⇒
∃ z . (?S f has integral z ) (cbox a b) ∧ norm (z − y) < e/B

using has integral altD [OF f False ∗] by blast
show ∃B>0 . ∀ a b. ball 0 B ⊆ cbox a b −→
(∃ z . (?S (h ◦ f ) has integral z ) (cbox a b) ∧ norm (z − h y) < e)

proof (rule exI , intro allI conjI impI )
show M > 0 using M by metis

next
fix a b:: ′n
assume sb: ball 0 M ⊆ cbox a b
obtain z where z : (?S f has integral z ) (cbox a b) norm (z − y) < e/B
using M (2 )[OF sb] by blast

have ∗: ?S (h ◦ f ) = h ◦ ?S f
using zero by auto

show ∃ z . (?S (h ◦ f ) has integral z ) (cbox a b) ∧ norm (z − h y) < e
proof (intro exI conjI )
show (?S (h ◦ f ) has integral h z ) (cbox a b)
by (simp add : ∗ has integral linear cbox [OF z (1 ) h])

show norm (h z − h y) < e
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by (metis B diff le less trans pos less divide eq z (2 ))
qed

qed
qed

qed

lemma has integral scaleR left :
(f has integral y) S =⇒ ((λx . f x ∗R c) has integral (y ∗R c)) S
using has integral linear [OF bounded linear scaleR left ] by (simp add : comp def )

lemma integrable on scaleR left :
assumes f integrable on A
shows (λx . f x ∗R y) integrable on A
using assms has integral scaleR left unfolding integrable on def by blast

lemma has integral mult left :
fixes c :: :: real normed algebra
shows (f has integral y) S =⇒ ((λx . f x ∗ c) has integral (y ∗ c)) S
using has integral linear [OF bounded linear mult left ] by (simp add : comp def )

lemma has integral divide:
fixes c :: :: real normed div algebra
shows (f has integral y) S =⇒ ((λx . f x / c) has integral (y / c)) S
unfolding divide inverse by (simp add : has integral mult left)

The case analysis eliminates the condition f integrable on S at the cost of
the type class constraint division ring

corollary integral mult left [simp]:
fixes c:: ′a::{real normed algebra,division ring}
shows integral S (λx . f x ∗ c) = integral S f ∗ c

proof (cases f integrable on S ∨ c = 0 )
case True then show ?thesis
by (force intro: has integral mult left)

next
case False then have ¬ (λx . f x ∗ c) integrable on S
using has integral mult left [of (λx . f x ∗ c) S inverse c]
by (auto simp add : mult .assoc)

with False show ?thesis by (simp add : not integrable integral)
qed

corollary integral mult right [simp]:
fixes c:: ′a::{real normed field}
shows integral S (λx . c ∗ f x ) = c ∗ integral S f

by (simp add : mult .commute [of c])

corollary integral divide [simp]:
fixes z :: ′a::real normed field
shows integral S (λx . f x / z ) = integral S (λx . f x ) / z

using integral mult left [of S f inverse z ]
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by (simp add : divide inverse commute)

lemma has integral mult right :
fixes c :: ′a :: real normed algebra
shows (f has integral y) i =⇒ ((λx . c ∗ f x ) has integral (c ∗ y)) i
using has integral linear [OF bounded linear mult right ] by (simp add : comp def )

lemma has integral cmul : (f has integral k) S =⇒ ((λx . c ∗R f x ) has integral (c
∗R k)) S
unfolding o def [symmetric]
by (metis has integral linear bounded linear scaleR right)

lemma has integral cmult real :
fixes c :: real
assumes c 6= 0 =⇒ (f has integral x ) A
shows ((λx . c ∗ f x ) has integral c ∗ x ) A

proof (cases c = 0 )
case True
then show ?thesis by simp

next
case False
from has integral cmul [OF assms[OF this], of c] show ?thesis
unfolding real scaleR def .

qed

lemma has integral neg : (f has integral k) S =⇒ ((λx . −(f x )) has integral −k) S
by (drule tac c=−1 in has integral cmul) auto

lemma has integral neg iff : ((λx . − f x ) has integral k) S ←→ (f has integral −
k) S
using has integral neg [of f − k ] has integral neg [of λx . − f x k ] by auto

lemma has integral add cbox :
fixes f :: ′n::euclidean space ⇒ ′a::real normed vector
assumes (f has integral k) (cbox a b) (g has integral l) (cbox a b)
shows ((λx . f x + g x ) has integral (k + l)) (cbox a b)
using assms
unfolding has integral cbox
by (simp add : split beta ′ scaleR add right sum.distrib[abs def ] tendsto add)

lemma has integral add :
fixes f :: ′n::euclidean space ⇒ ′a::real normed vector
assumes f : (f has integral k) S and g : (g has integral l) S
shows ((λx . f x + g x ) has integral (k + l)) S

proof (cases ∃ a b. S = cbox a b)
case True with has integral add cbox assms show ?thesis
by blast

next
let ?S = λf x . if x ∈ S then f x else 0
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case False
then show ?thesis
proof (subst has integral alt , clarsimp, goal cases)
case (1 e)
then have e2 : e/2 > 0
by auto

obtain Bf where 0 < Bf
and Bf :

∧
a b. ball 0 Bf ⊆ cbox a b =⇒
∃ z . (?S f has integral z ) (cbox a b) ∧ norm (z − k) < e/2

using has integral altD [OF f False e2 ] by blast
obtain Bg where 0 < Bg
and Bg :

∧
a b. ball 0 Bg ⊆ (cbox a b) =⇒
∃ z . (?S g has integral z ) (cbox a b) ∧ norm (z − l) < e/2

using has integral altD [OF g False e2 ] by blast
show ?case
proof (rule tac x=max Bf Bg in exI , clarsimp simp add : max .strict coboundedI1

〈0 < Bf 〉)
fix a b
assume ball 0 (max Bf Bg) ⊆ cbox a (b:: ′n)
then have fs: ball 0 Bf ⊆ cbox a (b:: ′n) and gs: ball 0 Bg ⊆ cbox a (b:: ′n)
by auto

obtain w where w : (?S f has integral w) (cbox a b) norm (w − k) < e/2
using Bf [OF fs] by blast

obtain z where z : (?S g has integral z ) (cbox a b) norm (z − l) < e/2
using Bg [OF gs] by blast

have ∗:
∧
x . (if x ∈ S then f x + g x else 0 ) = (?S f x ) + (?S g x )

by auto
show ∃ z . (?S (λx . f x + g x ) has integral z ) (cbox a b) ∧ norm (z − (k +

l)) < e
proof (intro exI conjI )
show (?S (λx . f x + g x ) has integral (w + z )) (cbox a b)
by (simp add : has integral add cbox [OF w(1 ) z (1 ), unfolded ∗[symmetric]])
show norm (w + z − (k + l)) < e
by (metis dist norm dist triangle add half w(2 ) z (2 ))

qed
qed

qed
qed

lemma has integral diff :
(f has integral k) S =⇒ (g has integral l) S =⇒
((λx . f x − g x ) has integral (k − l)) S

using has integral add [OF has integral neg , of f k S g l ]
by (auto simp: algebra simps)

lemma integral 0 [simp]:
integral S (λx :: ′n::euclidean space. 0 :: ′m::real normed vector) = 0
by (rule integral unique has integral 0 )+
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lemma integral add : f integrable on S =⇒ g integrable on S =⇒
integral S (λx . f x + g x ) = integral S f + integral S g

by (rule integral unique) (metis integrable integral has integral add)

lemma integral cmul [simp]: integral S (λx . c ∗R f x ) = c ∗R integral S f
proof (cases f integrable on S ∨ c = 0 )
case True with has integral cmul integrable integral show ?thesis
by fastforce

next
case False then have ¬ (λx . c ∗R f x ) integrable on S
using has integral cmul [of (λx . c ∗R f x ) S inverse c] by auto

with False show ?thesis by (simp add : not integrable integral)
qed

lemma integral mult :
fixes K ::real
shows f integrable on X =⇒ K ∗ integral X f = integral X (λx . K ∗ f x )
unfolding real scaleR def [symmetric] integral cmul ..

lemma integral neg [simp]: integral S (λx . − f x ) = − integral S f
proof (cases f integrable on S )
case True then show ?thesis
by (simp add : has integral neg integrable integral integral unique)

next
case False then have ¬ (λx . − f x ) integrable on S
using has integral neg [of (λx . − f x ) S ] by auto

with False show ?thesis by (simp add : not integrable integral)
qed

lemma integral diff : f integrable on S =⇒ g integrable on S =⇒
integral S (λx . f x − g x ) = integral S f − integral S g

by (rule integral unique) (metis integrable integral has integral diff )

lemma integrable 0 : (λx . 0 ) integrable on S
unfolding integrable on def using has integral 0 by auto

lemma integrable add : f integrable on S =⇒ g integrable on S =⇒ (λx . f x + g x )
integrable on S
unfolding integrable on def by(auto intro: has integral add)

lemma integrable cmul : f integrable on S =⇒ (λx . c ∗R f (x )) integrable on S
unfolding integrable on def by(auto intro: has integral cmul)

lemma integrable on scaleR iff [simp]:
fixes c :: real
assumes c 6= 0
shows (λx . c ∗R f x ) integrable on S ←→ f integrable on S
using integrable cmul [of λx . c ∗R f x S 1 / c] integrable cmul [of f S c] 〈c 6= 0 〉

by auto

Henstock{_}{\kern 0pt}Kurzweil{_}{\kern 0pt}Integration.html


1770

lemma integrable on cmult iff [simp]:
fixes c :: real
assumes c 6= 0
shows (λx . c ∗ f x ) integrable on S ←→ f integrable on S
using integrable on scaleR iff [of c f ] assms by simp

lemma integrable on cmult left :
assumes f integrable on S
shows (λx . of real c ∗ f x ) integrable on S
using integrable cmul [of f S of real c] assms
by (simp add : scaleR conv of real)

lemma integrable neg : f integrable on S =⇒ (λx . −f (x )) integrable on S
unfolding integrable on def by(auto intro: has integral neg)

lemma integrable neg iff : (λx . −f (x )) integrable on S ←→ f integrable on S
using integrable neg by fastforce

lemma integrable diff :
f integrable on S =⇒ g integrable on S =⇒ (λx . f x − g x ) integrable on S
unfolding integrable on def by(auto intro: has integral diff )

lemma integrable linear :
f integrable on S =⇒ bounded linear h =⇒ (h ◦ f ) integrable on S
unfolding integrable on def by(auto intro: has integral linear)

lemma integral linear :
f integrable on S =⇒ bounded linear h =⇒ integral S (h ◦ f ) = h (integral S f )
by (meson has integral iff has integral linear)

lemma integrable on cnj iff :
(λx . cnj (f x )) integrable on A ←→ f integrable on A
using integrable linear [OF bounded linear cnj , of f A]

integrable linear [OF bounded linear cnj , of cnj ◦ f A]
by (auto simp: o def )

lemma integral cnj : cnj (integral A f ) = integral A (λx . cnj (f x ))
by (cases f integrable on A)

(simp all add : integral linear [OF bounded linear cnj , symmetric]
o def integrable on cnj iff not integrable integral)

lemma integral component eq [simp]:
fixes f :: ′n::euclidean space ⇒ ′m::euclidean space
assumes f integrable on S
shows integral S (λx . f x · k) = integral S f · k
unfolding integral linear [OF assms(1 ) bounded linear inner left ,unfolded o def ]

..
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lemma has integral sum:
assumes finite T
and

∧
a. a ∈ T =⇒ ((f a) has integral (i a)) S

shows ((λx . sum (λa. f a x ) T ) has integral (sum i T )) S
using assms(1 ) subset refl [of T ]

proof (induct rule: finite subset induct)
case empty
then show ?case by auto

next
case (insert x F )
with assms show ?case
by (simp add : has integral add)

qed

lemma integral sum:
[[finite I ;

∧
a. a ∈ I =⇒ f a integrable on S ]] =⇒

integral S (λx .
∑

a∈I . f a x ) = (
∑

a∈I . integral S (f a))
by (simp add : has integral sum integrable integral integral unique)

lemma integrable sum:
[[finite I ;

∧
a. a ∈ I =⇒ f a integrable on S ]] =⇒ (λx .

∑
a∈I . f a x ) integrable on

S
unfolding integrable on def using has integral sum[of I ] by metis

lemma has integral eq :
assumes

∧
x . x ∈ s =⇒ f x = g x

and (f has integral k) s
shows (g has integral k) s
using has integral diff [OF assms(2 ), of λx . f x − g x 0 ]
using has integral is 0 [of s λx . f x − g x ]
using assms(1 )
by auto

lemma integrable eq : [[f integrable on s;
∧
x . x ∈ s =⇒ f x = g x ]] =⇒ g inte-

grable on s
unfolding integrable on def
using has integral eq [of s f g ] has integral eq by blast

lemma has integral cong :
assumes

∧
x . x ∈ s =⇒ f x = g x

shows (f has integral i) s = (g has integral i) s
using has integral eq [of s f g ] has integral eq [of s g f ] assms
by auto

lemma integral cong :
assumes

∧
x . x ∈ s =⇒ f x = g x

shows integral s f = integral s g
unfolding integral def

by (metis (full types, hide lams) assms has integral cong integrable eq)
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lemma integrable on cmult left iff [simp]:
assumes c 6= 0
shows (λx . of real c ∗ f x ) integrable on s ←→ f integrable on s

(is ?lhs = ?rhs)
proof
assume ?lhs
then have (λx . of real (1 / c) ∗ (of real c ∗ f x )) integrable on s
using integrable cmul [of λx . of real c ∗ f x s 1 / of real c]
by (simp add : scaleR conv of real)

then have (λx . (of real (1 / c) ∗ of real c ∗ f x )) integrable on s
by (simp add : algebra simps)

with 〈c 6= 0 〉 show ?rhs
by (metis (no types, lifting) integrable eq mult .left neutral nonzero divide eq eq

of real 1 of real mult)
qed (blast intro: integrable on cmult left)

lemma integrable on cmult right :
fixes f :: ⇒ ′b :: {comm ring ,real algebra 1 ,real normed vector}
assumes f integrable on s
shows (λx . f x ∗ of real c) integrable on s

using integrable on cmult left [OF assms] by (simp add : mult .commute)

lemma integrable on cmult right iff [simp]:
fixes f :: ⇒ ′b :: {comm ring ,real algebra 1 ,real normed vector}
assumes c 6= 0
shows (λx . f x ∗ of real c) integrable on s ←→ f integrable on s

using integrable on cmult left iff [OF assms] by (simp add : mult .commute)

lemma integrable on cdivide:
fixes f :: ⇒ ′b :: real normed field
assumes f integrable on s
shows (λx . f x / of real c) integrable on s

by (simp add : integrable on cmult right divide inverse assms flip: of real inverse)

lemma integrable on cdivide iff [simp]:
fixes f :: ⇒ ′b :: real normed field
assumes c 6= 0
shows (λx . f x / of real c) integrable on s ←→ f integrable on s

by (simp add : divide inverse assms flip: of real inverse)

lemma has integral null [intro]: content(cbox a b) = 0 =⇒ (f has integral 0 ) (cbox
a b)
unfolding has integral cbox
using eventually division filter tagged division[of cbox a b]
by (subst tendsto cong [where g=λ . 0 ]) (auto elim: eventually mono intro: sum content null)

lemma has integral null real [intro]: content {a..b::real} = 0 =⇒ (f has integral
0 ) {a..b}
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by (metis box real(2 ) has integral null)

lemma has integral null eq [simp]: content (cbox a b) = 0 =⇒ (f has integral i)
(cbox a b) ←→ i = 0
by (auto simp add : has integral null dest !: integral unique)

lemma integral null [simp]: content (cbox a b) = 0 =⇒ integral (cbox a b) f = 0
by (metis has integral null integral unique)

lemma integrable on null [intro]: content (cbox a b) = 0 =⇒ f integrable on (cbox
a b)
by (simp add : has integral integrable)

lemma has integral empty [intro]: (f has integral 0 ) {}
by (meson ex in conv has integral is 0 )

lemma has integral empty eq [simp]: (f has integral i) {} ←→ i = 0
by (auto simp add : has integral empty has integral unique)

lemma integrable on empty [intro]: f integrable on {}
unfolding integrable on def by auto

lemma integral empty [simp]: integral {} f = 0
by (rule integral unique) (rule has integral empty)

lemma has integral refl [intro]:
fixes a :: ′a::euclidean space
shows (f has integral 0 ) (cbox a a)
and (f has integral 0 ) {a}

proof −
show (f has integral 0 ) (cbox a a)

by (rule has integral null) simp
then show (f has integral 0 ) {a}
by simp

qed

lemma integrable on refl [intro]: f integrable on cbox a a
unfolding integrable on def by auto

lemma integral refl [simp]: integral (cbox a a) f = 0
by (rule integral unique) auto

lemma integral singleton [simp]: integral {a} f = 0
by auto

lemma integral blinfun apply :
assumes f integrable on s
shows integral s (λx . blinfun apply h (f x )) = blinfun apply h (integral s f )
by (subst integral linear [symmetric, OF assms blinfun.bounded linear right ]) (simp
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add : o def )

lemma blinfun apply integral :
assumes f integrable on s
shows blinfun apply (integral s f ) x = integral s (λy . blinfun apply (f y) x )
by (metis (no types, lifting) assms blinfun.prod left .rep eq integral blinfun apply

integral cong)

lemma has integral componentwise iff :
fixes f :: ′a :: euclidean space ⇒ ′b :: euclidean space
shows (f has integral y) A ←→ (∀ b∈Basis. ((λx . f x · b) has integral (y · b))

A)
proof safe
fix b :: ′b assume (f has integral y) A
from has integral linear [OF this(1 ) bounded linear inner left , of b]
show ((λx . f x · b) has integral (y · b)) A by (simp add : o def )

next
assume (∀ b∈Basis. ((λx . f x · b) has integral (y · b)) A)
hence ∀ b∈Basis. (((λx . x ∗R b) ◦ (λx . f x · b)) has integral ((y · b) ∗R b)) A
by (intro ballI has integral linear) (simp all add : bounded linear scaleR left)

hence ((λx .
∑

b∈Basis. (f x · b) ∗R b) has integral (
∑

b∈Basis. (y · b) ∗R b))
A

by (intro has integral sum) (simp all add : o def )
thus (f has integral y) A by (simp add : euclidean representation)

qed

lemma has integral componentwise:
fixes f :: ′a :: euclidean space ⇒ ′b :: euclidean space
shows (

∧
b. b ∈ Basis =⇒ ((λx . f x · b) has integral (y · b)) A) =⇒ (f has integral

y) A
by (subst has integral componentwise iff ) blast

lemma integrable componentwise iff :
fixes f :: ′a :: euclidean space ⇒ ′b :: euclidean space
shows f integrable on A ←→ (∀ b∈Basis. (λx . f x · b) integrable on A)

proof
assume f integrable on A
then obtain y where (f has integral y) A by (auto simp: integrable on def )
hence (∀ b∈Basis. ((λx . f x · b) has integral (y · b)) A)
by (subst (asm) has integral componentwise iff )

thus (∀ b∈Basis. (λx . f x · b) integrable on A) by (auto simp: integrable on def )
next
assume (∀ b∈Basis. (λx . f x · b) integrable on A)
then obtain y where ∀ b∈Basis. ((λx . f x · b) has integral y b) A
unfolding integrable on def by (subst (asm) bchoice iff ) blast

hence ∀ b∈Basis. (((λx . x ∗R b) ◦ (λx . f x · b)) has integral (y b ∗R b)) A
by (intro ballI has integral linear) (simp all add : bounded linear scaleR left)

hence ((λx .
∑

b∈Basis. (f x · b) ∗R b) has integral (
∑

b∈Basis. y b ∗R b)) A
by (intro has integral sum) (simp all add : o def )
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thus f integrable on A by (auto simp: integrable on def o def euclidean representation)
qed

lemma integrable componentwise:
fixes f :: ′a :: euclidean space ⇒ ′b :: euclidean space
shows (

∧
b. b ∈ Basis =⇒ (λx . f x · b) integrable on A) =⇒ f integrable on A

by (subst integrable componentwise iff ) blast

lemma integral componentwise:
fixes f :: ′a :: euclidean space ⇒ ′b :: euclidean space
assumes f integrable on A
shows integral A f = (

∑
b∈Basis. integral A (λx . (f x · b) ∗R b))

proof −
from assms have integrable: ∀ b∈Basis. (λx . x ∗R b) ◦ (λx . (f x · b)) integrable on

A
by (subst (asm) integrable componentwise iff , intro integrable linear ballI )

(simp all add : bounded linear scaleR left)
have integral A f = integral A (λx .

∑
b∈Basis. (f x · b) ∗R b)

by (simp add : euclidean representation)
also from integrable have . . . = (

∑
a∈Basis. integral A (λx . (f x · a) ∗R a))

by (subst integral sum) (simp all add : o def )
finally show ?thesis .

qed

lemma integrable component :
f integrable on A =⇒ (λx . f x · (y :: ′b :: euclidean space)) integrable on A
by (drule integrable linear [OF bounded linear inner left [of y ]]) (simp add : o def )

6.15.4 Cauchy-type criterion for integrability

proposition integrable Cauchy :
fixes f :: ′n::euclidean space ⇒ ′a::{real normed vector ,complete space}
shows f integrable on cbox a b ←→

(∀ e>0 . ∃ γ. gauge γ ∧
(∀D1 D2 . D1 tagged division of (cbox a b) ∧ γ fine D1 ∧
D2 tagged division of (cbox a b) ∧ γ fine D2 −→
norm ((

∑
(x ,K )∈D1 . content K ∗R f x ) − (

∑
(x ,K )∈D2 . content K ∗R

f x )) < e))
(is ?l = (∀ e>0 . ∃ γ. ?P e γ))

proof (intro iffI allI impI )
assume ?l
then obtain y
where y :

∧
e. e > 0 =⇒

∃ γ. gauge γ ∧
(∀D. D tagged division of cbox a b ∧ γ fine D −→

norm ((
∑

(x ,K ) ∈ D. content K ∗R f x ) − y) < e)
by (auto simp: integrable on def has integral)

show ∃ γ. ?P e γ if e > 0 for e
proof −
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have e/2 > 0 using that by auto
with y obtain γ where gauge γ
and γ:

∧
D. D tagged division of cbox a b ∧ γ fine D =⇒
norm ((

∑
(x ,K )∈D. content K ∗R f x ) − y) < e/2

by meson
show ?thesis
apply (rule tac x=γ in exI , clarsimp simp: 〈gauge γ〉)

by (blast intro!: γ dist triangle half l [where y=y ,unfolded dist norm])
qed

next
assume ∀ e>0 . ∃ γ. ?P e γ
then have ∀n::nat . ∃ γ. ?P (1 / (n + 1 )) γ
by auto

then obtain γ :: nat ⇒ ′n ⇒ ′n set where γ:∧
m. gauge (γ m)∧
m D1 D2 . [[D1 tagged division of cbox a b;

γ m fine D1 ; D2 tagged division of cbox a b; γ m fine D2 ]]
=⇒ norm ((

∑
(x ,K ) ∈ D1 . content K ∗R f x ) − (

∑
(x ,K ) ∈ D2 .

content K ∗R f x ))
< 1 / (m + 1 )

by metis
have gauge (λx .

⋂
{γ i x |i . i ∈ {0 ..n}}) for n

using γ by (intro gauge Inter) auto
then have ∀n. ∃ p. p tagged division of (cbox a b) ∧ (λx .

⋂
{γ i x |i . i ∈

{0 ..n}}) fine p
by (meson fine division exists)

then obtain p where p:
∧
z . p z tagged division of cbox a b∧

z . (λx .
⋂
{γ i x |i . i ∈ {0 ..z}}) fine p z

by meson
have dp:

∧
i n. i≤n =⇒ γ i fine p n

using p unfolding fine Inter
using atLeastAtMost iff by blast

have Cauchy (λn. sum (λ(x ,K ). content K ∗R (f x )) (p n))
proof (rule CauchyI )
fix e::real
assume 0 < e
then obtain N where N 6= 0 and N : inverse (real N ) < e
using real arch inverse[of e] by blast
show ∃M . ∀m≥M . ∀n≥M . norm ((

∑
(x ,K ) ∈ p m. content K ∗R f x ) −

(
∑

(x ,K ) ∈ p n. content K ∗R f x )) < e
proof (intro exI allI impI )
fix m n
assume mn: N ≤ m N ≤ n
have norm ((

∑
(x ,K ) ∈ p m. content K ∗R f x ) − (

∑
(x ,K ) ∈ p n. content

K ∗R f x )) < 1 / (real N + 1 )
by (simp add : p(1 ) dp mn γ)

also have ... < e
using N 〈N 6= 0 〉 〈0 < e〉 by (auto simp: field simps)

finally show norm ((
∑

(x ,K ) ∈ p m. content K ∗R f x ) − (
∑

(x ,K ) ∈ p n.
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content K ∗R f x )) < e .
qed

qed
then obtain y where y : ∃no. ∀n≥no. norm ((

∑
(x ,K ) ∈ p n. content K ∗R f

x ) − y) < r if r > 0 for r
by (auto simp: convergent eq Cauchy [symmetric] dest : LIMSEQ D)

show ?l
unfolding integrable on def has integral

proof (rule tac x=y in exI , clarify)
fix e :: real
assume e>0
then have e2 : e/2 > 0 by auto
then obtain N1 ::nat where N1 : N1 6= 0 inverse (real N1 ) < e/2
using real arch inverse by blast

obtain N2 ::nat where N2 :
∧
n. n ≥ N2 =⇒ norm ((

∑
(x ,K ) ∈ p n. content

K ∗R f x ) − y) < e/2
using y [OF e2 ] by metis

show ∃ γ. gauge γ ∧
(∀D. D tagged division of (cbox a b) ∧ γ fine D −→
norm ((

∑
(x ,K ) ∈ D. content K ∗R f x ) − y) < e)

proof (intro exI conjI allI impI )
show gauge (γ (N1+N2 ))
using γ by auto

show norm ((
∑

(x ,K ) ∈ q . content K ∗R f x ) − y) < e
if q tagged division of cbox a b ∧ γ (N1+N2 ) fine q for q

proof (rule norm triangle half r)
have norm ((

∑
(x ,K ) ∈ p (N1+N2 ). content K ∗R f x ) − (

∑
(x ,K ) ∈ q .

content K ∗R f x ))
< 1 / (real (N1+N2 ) + 1 )

by (rule γ; simp add : dp p that)
also have ... < e/2
using N1 〈0 < e〉 by (auto simp: field simps intro: less le trans)

finally show norm ((
∑

(x ,K ) ∈ p (N1+N2 ). content K ∗R f x ) − (
∑

(x ,K )
∈ q . content K ∗R f x )) < e/2 .

show norm ((
∑

(x ,K ) ∈ p (N1+N2 ). content K ∗R f x ) − y) < e/2
using N2 le add same cancel2 by blast

qed
qed

qed
qed

6.15.5 Additivity of integral on abutting intervals

lemma tagged division split left inj content :
assumes D: D tagged division of S
and (x1 , K1 ) ∈ D (x2 , K2 ) ∈ D K1 6= K2 K1 ∩ {x . x ·k ≤ c} = K2 ∩ {x .

x ·k ≤ c} k ∈ Basis
shows content (K1 ∩ {x . x ·k ≤ c}) = 0

proof −
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from tagged division ofD(4 )[OF D 〈(x1 , K1 ) ∈ D〉] obtain a b where K1 : K1
= cbox a b

by auto
then have interior (K1 ∩ {x . x · k ≤ c}) = {}
by (metis tagged division split left inj assms)

then show ?thesis
unfolding K1 interval split [OF 〈k ∈ Basis〉] by (auto simp: content eq 0 interior)

qed

lemma tagged division split right inj content :
assumes D: D tagged division of S
and (x1 , K1 ) ∈ D (x2 , K2 ) ∈ D K1 6= K2 K1 ∩ {x . x ·k ≥ c} = K2 ∩ {x .

x ·k ≥ c} k ∈ Basis
shows content (K1 ∩ {x . x ·k ≥ c}) = 0

proof −
from tagged division ofD(4 )[OF D 〈(x1 , K1 ) ∈ D〉] obtain a b where K1 : K1

= cbox a b
by auto

then have interior (K1 ∩ {x . c ≤ x · k}) = {}
by (metis tagged division split right inj assms)

then show ?thesis
unfolding K1 interval split [OF 〈k ∈ Basis〉]
by (auto simp: content eq 0 interior)

qed

proposition has integral split :
fixes f :: ′a::euclidean space ⇒ ′b::real normed vector
assumes fi : (f has integral i) (cbox a b ∩ {x . x ·k ≤ c})

and fj : (f has integral j ) (cbox a b ∩ {x . x ·k ≥ c})
and k : k ∈ Basis

shows (f has integral (i + j )) (cbox a b)
unfolding has integral

proof clarify
fix e::real
assume 0 < e
then have e: e/2 > 0
by auto
obtain γ1 where γ1 : gauge γ1
and γ1norm:∧
D. [[D tagged division of cbox a b ∩ {x . x · k ≤ c}; γ1 fine D]]
=⇒ norm ((

∑
(x ,K ) ∈ D. content K ∗R f x ) − i) < e/2

apply (rule has integralD [OF fi [unfolded interval split [OF k ]] e])
apply (simp add : interval split [symmetric] k)
done

obtain γ2 where γ2 : gauge γ2
and γ2norm:∧
D. [[D tagged division of cbox a b ∩ {x . c ≤ x · k}; γ2 fine D]]
=⇒ norm ((

∑
(x , k) ∈ D. content k ∗R f x ) − j ) < e/2
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apply (rule has integralD [OF fj [unfolded interval split [OF k ]] e])
apply (simp add : interval split [symmetric] k)
done

let ?γ = λx . if x ·k = c then (γ1 x ∩ γ2 x ) else ball x |x ·k − c| ∩ γ1 x ∩ γ2 x
have gauge ?γ
using γ1 γ2 unfolding gauge def by auto

then show ∃ γ. gauge γ ∧
(∀D. D tagged division of cbox a b ∧ γ fine D −→

norm ((
∑

(x , k)∈D. content k ∗R f x ) − (i + j )) < e)
proof (rule tac x=?γ in exI , safe)
fix p
assume p: p tagged division of (cbox a b) and ?γ fine p
have ab eqp: cbox a b =

⋃
{K . ∃ x . (x , K ) ∈ p}

using p by blast
have xk le c: x ·k ≤ c if as: (x ,K ) ∈ p and K : K ∩ {x . x ·k ≤ c} 6= {} for x K
proof (rule ccontr)
assume ∗∗: ¬ x · k ≤ c
then have K ⊆ ball x |x · k − c|
using 〈?γ fine p〉 as by (fastforce simp: not le algebra simps)

with K obtain y where y : y ∈ ball x |x · k − c| y·k ≤ c
by blast

then have |x · k − y · k | < |x · k − c|
using Basis le norm[OF k , of x − y ]
by (auto simp add : dist norm inner diff left intro: le less trans)

with y show False
using ∗∗ by (auto simp add : field simps)

qed
have xk ge c: x ·k ≥ c if as: (x ,K ) ∈ p and K : K ∩ {x . x ·k ≥ c} 6= {} for x

K
proof (rule ccontr)
assume ∗∗: ¬ x · k ≥ c
then have K ⊆ ball x |x · k − c|
using 〈?γ fine p〉 as by (fastforce simp: not le algebra simps)

with K obtain y where y : y ∈ ball x |x · k − c| y·k ≥ c
by blast

then have |x · k − y · k | < |x · k − c|
using Basis le norm[OF k , of x − y ]
by (auto simp add : dist norm inner diff left intro: le less trans)

with y show False
using ∗∗ by (auto simp add : field simps)

qed
have fin finite: finite {(x ,f K ) | x K . (x ,K ) ∈ s ∧ P x K}
if finite s for s and f :: ′a set ⇒ ′a set and P :: ′a ⇒ ′a set ⇒ bool

proof −
from that have finite ((λ(x ,K ). (x , f K )) ‘ s)
by auto

then show ?thesis
by (rule rev finite subset) auto

qed
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{ fix G :: ′a set ⇒ ′a set
fix i :: ′a × ′a set
assume i ∈ (λ(x , k). (x , G k)) ‘ p − {(x , G k) |x k . (x , k) ∈ p ∧ G k 6= {}}
then obtain x K where xk : i = (x , G K ) (x ,K ) ∈ p

(x , G K ) /∈ {(x , G K ) |x K . (x ,K ) ∈ p ∧ G K 6= {}}
by auto

have content (G K ) = 0
using xk using content empty by auto

then have (λ(x ,K ). content K ∗R f x ) i = 0
unfolding xk split conv by auto

} note [simp] = this
have finite p
using p by blast

let ?M1 = {(x , K ∩ {x . x ·k ≤ c}) |x K . (x ,K ) ∈ p ∧ K ∩ {x . x ·k ≤ c} 6=
{}}

have γ1 fine: γ1 fine ?M1
using 〈?γ fine p〉 by (fastforce simp: fine def split : if split asm)

have norm ((
∑

(x , k)∈?M1 . content k ∗R f x ) − i) < e/2
proof (rule γ1norm [OF tagged division ofI γ1 fine])
show finite ?M1
by (rule fin finite) (use p in blast)

show
⋃
{k . ∃ x . (x , k) ∈ ?M1} = cbox a b ∩ {x . x ·k ≤ c}

by (auto simp: ab eqp)

fix x L
assume xL: (x , L) ∈ ?M1
then obtain x ′ L ′ where xL ′: x = x ′ L = L ′ ∩ {x . x · k ≤ c}

(x ′, L ′) ∈ p L ′ ∩ {x . x · k ≤ c} 6= {}
by blast

then obtain a ′ b ′ where ab ′: L ′ = cbox a ′ b ′

using p by blast
show x ∈ L L ⊆ cbox a b ∩ {x . x · k ≤ c}
using p xk le c xL ′ by auto

show ∃ a b. L = cbox a b
using p xL ′ ab ′ by (auto simp add : interval split [OF k ,where c=c])

fix y R
assume yR: (y , R) ∈ ?M1
then obtain y ′ R ′ where yR ′: y = y ′ R = R ′ ∩ {x . x · k ≤ c}

(y ′, R ′) ∈ p R ′ ∩ {x . x · k ≤ c} 6= {}
by blast

assume as: (x , L) 6= (y , R)
show interior L ∩ interior R = {}
proof (cases L ′ = R ′ −→ x ′ = y ′)
case False
have interior R ′ = {}
by (metis (no types) False Pair inject inf .idem tagged division ofD(5 ) [OF

p] xL ′(3 ) yR ′(3 ))
then show ?thesis
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using yR ′ by simp
next
case True
then have L ′ 6= R ′

using as unfolding xL ′ yR ′ by auto
have interior L ′ ∩ interior R ′ = {}
by (metis (no types) Pair inject 〈L ′ 6= R ′〉 p tagged division ofD(5 ) xL ′(3 )

yR ′(3 ))
then show ?thesis
using xL ′(2 ) yR ′(2 ) by auto

qed
qed
moreover
let ?M2 = {(x ,K ∩ {x . x ·k ≥ c}) |x K . (x ,K ) ∈ p ∧ K ∩ {x . x ·k ≥ c} 6= {}}
have γ2 fine: γ2 fine ?M2
using 〈?γ fine p〉 by (fastforce simp: fine def split : if split asm)

have norm ((
∑

(x , k)∈?M2 . content k ∗R f x ) − j ) < e/2
proof (rule γ2norm [OF tagged division ofI γ2 fine])
show finite ?M2
by (rule fin finite) (use p in blast)

show
⋃
{k . ∃ x . (x , k) ∈ ?M2} = cbox a b ∩ {x . x ·k ≥ c}

by (auto simp: ab eqp)

fix x L
assume xL: (x , L) ∈ ?M2
then obtain x ′ L ′ where xL ′: x = x ′ L = L ′ ∩ {x . x · k ≥ c}

(x ′, L ′) ∈ p L ′ ∩ {x . x · k ≥ c} 6= {}
by blast

then obtain a ′ b ′ where ab ′: L ′ = cbox a ′ b ′

using p by blast
show x ∈ L L ⊆ cbox a b ∩ {x . x · k ≥ c}
using p xk ge c xL ′ by auto

show ∃ a b. L = cbox a b
using p xL ′ ab ′ by (auto simp add : interval split [OF k ,where c=c])

fix y R
assume yR: (y , R) ∈ ?M2
then obtain y ′ R ′ where yR ′: y = y ′ R = R ′ ∩ {x . x · k ≥ c}

(y ′, R ′) ∈ p R ′ ∩ {x . x · k ≥ c} 6= {}
by blast

assume as: (x , L) 6= (y , R)
show interior L ∩ interior R = {}
proof (cases L ′ = R ′ −→ x ′ = y ′)
case False
have interior R ′ = {}
by (metis (no types) False Pair inject inf .idem tagged division ofD(5 ) [OF

p] xL ′(3 ) yR ′(3 ))
then show ?thesis
using yR ′ by simp
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next
case True
then have L ′ 6= R ′

using as unfolding xL ′ yR ′ by auto
have interior L ′ ∩ interior R ′ = {}
by (metis (no types) Pair inject 〈L ′ 6= R ′〉 p tagged division ofD(5 ) xL ′(3 )

yR ′(3 ))
then show ?thesis
using xL ′(2 ) yR ′(2 ) by auto

qed
qed
ultimately
have norm (((

∑
(x ,K ) ∈ ?M1 . content K ∗R f x ) − i) + ((

∑
(x ,K ) ∈ ?M2 .

content K ∗R f x ) − j )) < e/2 + e/2
using norm add less by blast

moreover have ((
∑

(x ,K ) ∈ ?M1 . content K ∗R f x ) − i) +
((
∑

(x ,K ) ∈ ?M2 . content K ∗R f x ) − j ) =
(
∑

(x , ka)∈p. content ka ∗R f x ) − (i + j )
proof −
have eq0 :

∧
x y . x = (0 ::real) =⇒ x ∗R (y :: ′b) = 0

by auto
have cont eq :

∧
g . (λ(x ,l). content l ∗R f x ) ◦ (λ(x ,l). (x ,g l)) = (λ(x ,l).

content (g l) ∗R f x )
by auto

have ∗:
∧
G :: ′a set ⇒ ′a set .
(
∑

(x ,K )∈{(x , G K ) |x K . (x ,K ) ∈ p ∧ G K 6= {}}. content K ∗R
f x ) =

(
∑

(x ,K )∈(λ(x ,K ). (x , G K )) ‘ p. content K ∗R f x )
by (rule sum.mono neutral left) (auto simp: 〈finite p〉)

have ((
∑

(x , k)∈?M1 . content k ∗R f x ) − i) + ((
∑

(x , k)∈?M2 . content k
∗R f x ) − j ) =

(
∑

(x , k)∈?M1 . content k ∗R f x ) + (
∑

(x , k)∈?M2 . content k ∗R f x ) −
(i + j )

by auto
moreover have . . . = (

∑
(x ,K ) ∈ p. content (K ∩ {x . x · k ≤ c}) ∗R f x )

+
(
∑

(x ,K ) ∈ p. content (K ∩ {x . c ≤ x · k}) ∗R f x ) − (i + j )
unfolding ∗
apply (subst (1 2 ) sum.reindex nontrivial)
apply (auto intro!: k p eq0 tagged division split left inj content tagged division split right inj content

simp: cont eq 〈finite p〉)
done

moreover have
∧
x . x ∈ p =⇒ (λ(a,B). content (B ∩ {a. a · k ≤ c}) ∗R f

a) x +
(λ(a,B). content (B ∩ {a. c ≤ a · k}) ∗R f a) x =
(λ(a,B). content B ∗R f a) x

proof clarify
fix a B
assume (a, B) ∈ p
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with p obtain u v where uv : B = cbox u v by blast
then show content (B ∩ {x . x · k ≤ c}) ∗R f a + content (B ∩ {x . c ≤ x

· k}) ∗R f a = content B ∗R f a
by (auto simp: scaleR left distrib uv content split [OF k ,of u v c])

qed
ultimately show ?thesis
by (auto simp: sum.distrib[symmetric])

qed
ultimately show norm ((

∑
(x , k)∈p. content k ∗R f x ) − (i + j )) < e

by auto
qed

qed

6.15.6 A sort of converse, integrability on subintervals

lemma has integral separate sides:
fixes f :: ′a::euclidean space ⇒ ′b::real normed vector
assumes f : (f has integral i) (cbox a b)
and e > 0
and k : k ∈ Basis

obtains d where gauge d
∀ p1 p2 . p1 tagged division of (cbox a b ∩ {x . x ·k ≤ c}) ∧ d fine p1 ∧

p2 tagged division of (cbox a b ∩ {x . x ·k ≥ c}) ∧ d fine p2 −→
norm ((sum (λ(x ,k). content k ∗R f x ) p1 + sum (λ(x ,k). content k ∗R f

x ) p2 ) − i) < e
proof −
obtain γ where d : gauge γ∧

p. [[p tagged division of cbox a b; γ fine p]]
=⇒ norm ((

∑
(x , k)∈p. content k ∗R f x ) − i) < e

using has integralD [OF f 〈e > 0 〉] by metis
{ fix p1 p2
assume tdiv1 : p1 tagged division of (cbox a b) ∩ {x . x · k ≤ c} and γ fine p1
note p1=tagged division ofD [OF this(1 )]
assume tdiv2 : p2 tagged division of (cbox a b) ∩ {x . c ≤ x · k} and γ fine p2
note p2=tagged division ofD [OF this(1 )]
note tagged division Un interval [OF tdiv1 tdiv2 ]
note p12 = tagged division ofD [OF this] this
{ fix a b
assume ab: (a, b) ∈ p1 ∩ p2
have (a, b) ∈ p1
using ab by auto

obtain u v where uv : b = cbox u v
using 〈(a, b) ∈ p1 〉 p1 (4 ) by moura

have b ⊆ {x . x ·k = c}
using ab p1 (3 )[of a b] p2 (3 )[of a b] by fastforce

moreover
have interior {x :: ′a. x · k = c} = {}
proof (rule ccontr)
assume ¬ ?thesis
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then obtain x where x : x ∈ interior {x :: ′a. x ·k = c}
by auto

then obtain ε where 0 < ε and ε: ball x ε ⊆ {x . x · k = c}
using mem interior by metis

have x : x ·k = c
using x interior subset by fastforce
have ∗:

∧
i . i ∈ Basis =⇒ |(x − (x + (ε/2 ) ∗R k)) · i | = (if i = k then

ε/2 else 0 )
using 〈0 < ε〉 k by (auto simp: inner simps inner not same Basis)

have (
∑

i∈Basis. |(x − (x + (ε/2 ) ∗R k)) · i |) =
(
∑

i∈Basis. (if i = k then ε/2 else 0 ))
using ∗ by (blast intro: sum.cong)

also have . . . < ε
by (subst sum.delta) (use 〈0 < ε〉 in auto)

finally have x + (ε/2 ) ∗R k ∈ ball x ε
unfolding mem ball dist norm by(rule le less trans[OF norm le l1 ])

then have x + (ε/2 ) ∗R k ∈ {x . x ·k = c}
using ε by auto

then show False
using 〈0 < ε〉 x k by (auto simp: inner simps)

qed
ultimately have content b = 0
unfolding uv content eq 0 interior
using interior mono by blast

then have content b ∗R f a = 0
by auto

}
then have norm ((

∑
(x , k)∈p1 . content k ∗R f x ) + (

∑
(x , k)∈p2 . content k

∗R f x ) − i) =
norm ((

∑
(x , k)∈p1 ∪ p2 . content k ∗R f x ) − i)

by (subst sum.union inter neutral) (auto simp: p1 p2 )
also have . . . < e
using d(2 ) p12 by (simp add : fine Un k 〈γ fine p1 〉 〈γ fine p2 〉)

finally have norm ((
∑

(x , k)∈p1 . content k ∗R f x ) + (
∑

(x , k)∈p2 . content
k ∗R f x ) − i) < e .

}
then show ?thesis
using d(1 ) that by auto

qed

lemma integrable split [intro]:
fixes f :: ′a::euclidean space ⇒ ′b::{real normed vector ,complete space}
assumes f : f integrable on cbox a b

and k : k ∈ Basis
shows f integrable on (cbox a b ∩ {x . x ·k ≤ c}) (is ?thesis1 )
and f integrable on (cbox a b ∩ {x . x ·k ≥ c}) (is ?thesis2 )

proof −
obtain y where y : (f has integral y) (cbox a b)
using f by blast
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define a ′ where a ′ = (
∑

i∈Basis. (if i = k then max (a·k) c else a·i)∗R i)
define b ′ where b ′ = (

∑
i∈Basis. (if i = k then min (b·k) c else b·i)∗R i)

have ∃ d . gauge d ∧
(∀ p1 p2 . p1 tagged division of cbox a b ∩ {x . x · k ≤ c} ∧ d fine p1 ∧

p2 tagged division of cbox a b ∩ {x . x · k ≤ c} ∧ d fine p2 −→
norm ((

∑
(x ,K ) ∈ p1 . content K ∗R f x ) − (

∑
(x ,K ) ∈ p2 .

content K ∗R f x )) < e)
if e > 0 for e

proof −
have e/2 > 0 using that by auto

with has integral separate sides[OF y this k , of c]
obtain d
where gauge d

and d :
∧
p1 p2 . [[p1 tagged division of cbox a b ∩ {x . x · k ≤ c}; d fine p1 ;

p2 tagged division of cbox a b ∩ {x . c ≤ x · k}; d fine p2 ]]
=⇒ norm ((

∑
(x ,K )∈p1 . content K ∗R f x ) + (

∑
(x ,K )∈p2 . content

K ∗R f x ) − y) < e/2
by metis

show ?thesis
proof (rule tac x=d in exI , clarsimp simp add : 〈gauge d 〉)
fix p1 p2
assume as: p1 tagged division of (cbox a b) ∩ {x . x · k ≤ c} d fine p1

p2 tagged division of (cbox a b) ∩ {x . x · k ≤ c} d fine p2
show norm ((

∑
(x , k)∈p1 . content k ∗R f x ) − (

∑
(x , k)∈p2 . content k ∗R

f x )) < e
proof (rule fine division exists[OF 〈gauge d 〉, of a ′ b])
fix p
assume p tagged division of cbox a ′ b d fine p
then show ?thesis
using as norm triangle half l [OF d [of p1 p] d [of p2 p]]
unfolding interval split [OF k ] b ′ def [symmetric] a ′ def [symmetric]
by (auto simp add : algebra simps)

qed
qed

qed
with f show ?thesis1
by (simp add : interval split [OF k ] integrable Cauchy)

have ∃ d . gauge d ∧
(∀ p1 p2 . p1 tagged division of cbox a b ∩ {x . x · k ≥ c} ∧ d fine p1 ∧

p2 tagged division of cbox a b ∩ {x . x · k ≥ c} ∧ d fine p2 −→
norm ((

∑
(x ,K ) ∈ p1 . content K ∗R f x ) − (

∑
(x ,K ) ∈ p2 .

content K ∗R f x )) < e)
if e > 0 for e

proof −
have e/2 > 0 using that by auto

with has integral separate sides[OF y this k , of c]
obtain d
where gauge d

and d :
∧
p1 p2 . [[p1 tagged division of cbox a b ∩ {x . x · k ≤ c}; d fine p1 ;
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p2 tagged division of cbox a b ∩ {x . c ≤ x · k}; d fine p2 ]]
=⇒ norm ((

∑
(x ,K )∈p1 . content K ∗R f x ) + (

∑
(x ,K )∈p2 . content

K ∗R f x ) − y) < e/2
by metis

show ?thesis
proof (rule tac x=d in exI , clarsimp simp add : 〈gauge d 〉)
fix p1 p2
assume as: p1 tagged division of (cbox a b) ∩ {x . x · k ≥ c} d fine p1

p2 tagged division of (cbox a b) ∩ {x . x · k ≥ c} d fine p2
show norm ((

∑
(x , k)∈p1 . content k ∗R f x ) − (

∑
(x , k)∈p2 . content k ∗R

f x )) < e
proof (rule fine division exists[OF 〈gauge d 〉, of a b ′])
fix p
assume p tagged division of cbox a b ′ d fine p
then show ?thesis
using as norm triangle half l [OF d [of p p1 ] d [of p p2 ]]
unfolding interval split [OF k ] b ′ def [symmetric] a ′ def [symmetric]
by (auto simp add : algebra simps)

qed
qed

qed
with f show ?thesis2
by (simp add : interval split [OF k ] integrable Cauchy)

qed

lemma operative integralI :
fixes f :: ′a::euclidean space ⇒ ′b::banach
shows operative (lift option (+)) (Some 0 )
(λi . if f integrable on i then Some (integral i f ) else None)

proof −
interpret comm monoid lift option plus Some (0 :: ′b)
by (rule comm monoid lift option)
(rule add .comm monoid axioms)

show ?thesis
proof
fix a b c
fix k :: ′a
assume k : k ∈ Basis
show (if f integrable on cbox a b then Some (integral (cbox a b) f ) else None)

=
lift option (+) (if f integrable on cbox a b ∩ {x . x · k ≤ c} then Some

(integral (cbox a b ∩ {x . x · k ≤ c}) f ) else None)
(if f integrable on cbox a b ∩ {x . c ≤ x · k} then Some (integral (cbox a b

∩ {x . c ≤ x · k}) f ) else None)
proof (cases f integrable on cbox a b)
case True
with k show ?thesis
by (auto simp: integrable split intro: integral unique [OF has integral split [OF

k ]])
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next
case False
have ¬ (f integrable on cbox a b ∩ {x . x · k ≤ c}) ∨ ¬ ( f integrable on cbox

a b ∩ {x . c ≤ x · k})
proof (rule ccontr)
assume ¬ ?thesis
then have f integrable on cbox a b
unfolding integrable on def
apply (rule tac x=integral (cbox a b ∩ {x . x · k ≤ c}) f + integral (cbox

a b ∩ {x . x · k ≥ c}) f in exI )
apply (auto intro: has integral split [OF k ])
done

then show False
using False by auto

qed
then show ?thesis
using False by auto

qed
next
fix a b :: ′a
assume box a b = {}
then show (if f integrable on cbox a b then Some (integral (cbox a b) f ) else

None) = Some 0
using has integral null eq
by (auto simp: integrable on null content eq 0 interior)

qed
qed

6.15.7 Bounds on the norm of Riemann sums and the inte-
gral itself

lemma dsum bound :
assumes p: p division of (cbox a b)
and norm c ≤ e

shows norm (sum (λl . content l ∗R c) p) ≤ e ∗ content(cbox a b)
proof −
have sumeq : (

∑
i∈p. |content i |) = sum content p

by simp
have e: 0 ≤ e
using assms(2 ) norm ge zero order trans by blast

have norm (sum (λl . content l ∗R c) p) ≤ (
∑

i∈p. norm (content i ∗R c))
using norm sum by blast

also have ... ≤ e ∗ (
∑

i∈p. |content i |)
by (simp add : sum distrib left [symmetric] mult .commute assms(2 ) mult right mono

sum nonneg)
also have ... ≤ e ∗ content (cbox a b)
by (metis additive content division p eq iff sumeq)

finally show ?thesis .
qed
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lemma rsum bound :
assumes p: p tagged division of (cbox a b)

and ∀ x∈cbox a b. norm (f x ) ≤ e
shows norm (sum (λ(x ,k). content k ∗R f x ) p) ≤ e ∗ content (cbox a b)

proof (cases cbox a b = {})
case True show ?thesis
using p unfolding True tagged division of trivial by auto

next
case False
then have e: e ≥ 0
by (meson ex in conv assms(2 ) norm ge zero order trans)

have sum le: sum (content ◦ snd) p ≤ content (cbox a b)
unfolding additive content tagged division[OF p, symmetric] split def
by (auto intro: eq refl)

have con:
∧
xk . xk ∈ p =⇒ 0 ≤ content (snd xk)

using tagged division ofD(4 ) [OF p] content pos le
by force

have norm (sum (λ(x ,k). content k ∗R f x ) p) ≤ (
∑

i∈p. norm (case i of (x ,
k) ⇒ content k ∗R f x ))

by (rule norm sum)
also have ... ≤ e ∗ content (cbox a b)
proof −
have

∧
xk . xk ∈ p =⇒ norm (f (fst xk)) ≤ e

using assms(2 ) p tag in interval by force
moreover have (

∑
i∈p. |content (snd i)| ∗ e) ≤ e ∗ content (cbox a b)

unfolding sum distrib right [symmetric]
using con sum le by (auto simp: mult .commute intro: mult left mono [OF

e])
ultimately show ?thesis
unfolding split def norm scaleR
by (metis (no types, lifting) mult left mono[OF abs ge zero] order trans[OF

sum mono])
qed
finally show ?thesis .

qed

lemma rsum diff bound :
assumes p tagged division of (cbox a b)
and ∀ x∈cbox a b. norm (f x − g x ) ≤ e

shows norm (sum (λ(x ,k). content k ∗R f x ) p − sum (λ(x ,k). content k ∗R g
x ) p) ≤

e ∗ content (cbox a b)
using order trans[OF rsum bound [OF assms]]
by (simp add : split def scaleR diff right sum subtractf eq refl)

lemma has integral bound :
fixes f :: ′a::euclidean space ⇒ ′b::real normed vector
assumes 0 ≤ B
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and f : (f has integral i) (cbox a b)
and

∧
x . x∈cbox a b =⇒ norm (f x ) ≤ B

shows norm i ≤ B ∗ content (cbox a b)
proof (rule ccontr)
assume ¬ ?thesis
then have norm i − B ∗ content (cbox a b) > 0
by auto

with f [unfolded has integral ]
obtain γ where gauge γ and γ:∧

p. [[p tagged division of cbox a b; γ fine p]]
=⇒ norm ((

∑
(x , K )∈p. content K ∗R f x ) − i) < norm i − B ∗ content

(cbox a b)
by metis

then obtain p where p: p tagged division of cbox a b and γ fine p
using fine division exists by blast

have
∧
s B . norm s ≤ B =⇒ ¬ norm (s − i) < norm i − B

unfolding not less
by (metis diff left mono dist commute dist norm norm triangle ineq2 order trans)
then show False
using γ [OF p 〈γ fine p〉] rsum bound [OF p] assms by metis

qed

corollary integrable bound :
fixes f :: ′a::euclidean space ⇒ ′b::real normed vector
assumes 0 ≤ B

and f integrable on (cbox a b)
and

∧
x . x∈cbox a b =⇒ norm (f x ) ≤ B

shows norm (integral (cbox a b) f ) ≤ B ∗ content (cbox a b)
by (metis integrable integral has integral bound assms)

6.15.8 Similar theorems about relationship among compo-
nents

lemma rsum component le:
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes p: p tagged division of (cbox a b)

and
∧
x . x ∈ cbox a b =⇒ (f x )·i ≤ (g x )·i

shows (
∑

(x , K )∈p. content K ∗R f x ) · i ≤ (
∑

(x , K )∈p. content K ∗R g x )
· i
unfolding inner sum left
proof (rule sum mono, clarify)
fix x K
assume ab: (x , K ) ∈ p
with p obtain u v where K : K = cbox u v
by blast

then show (content K ∗R f x ) · i ≤ (content K ∗R g x ) · i
by (metis ab assms inner scaleR left measure nonneg mult left mono tag in interval)

qed
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lemma has integral component le:
fixes f g :: ′a::euclidean space ⇒ ′b::euclidean space
assumes k : k ∈ Basis
assumes (f has integral i) S (g has integral j ) S
and f le g :

∧
x . x ∈ S =⇒ (f x )·k ≤ (g x )·k

shows i ·k ≤ j ·k
proof −
have ik le jk : i ·k ≤ j ·k
if f i : (f has integral i) (cbox a b)
and g j : (g has integral j ) (cbox a b)
and le: ∀ x∈cbox a b. (f x )·k ≤ (g x )·k
for a b i and j :: ′b and f g :: ′a ⇒ ′b

proof (rule ccontr)
assume ¬ ?thesis
then have ∗: 0 < (i ·k − j ·k) / 3
by auto

obtain γ1 where gauge γ1
and γ1 :

∧
p. [[p tagged division of cbox a b; γ1 fine p]]

=⇒ norm ((
∑

(x , k)∈p. content k ∗R f x ) − i) < (i · k − j · k) / 3
using f i [unfolded has integral ,rule format ,OF ∗] by fastforce

obtain γ2 where gauge γ2
and γ2 :

∧
p. [[p tagged division of cbox a b; γ2 fine p]]

=⇒ norm ((
∑

(x , k)∈p. content k ∗R g x ) − j ) < (i · k − j · k) / 3
using g j [unfolded has integral ,rule format ,OF ∗] by fastforce

obtain p where p: p tagged division of cbox a b and γ1 fine p γ2 fine p
using fine division exists[OF gauge Int [OF 〈gauge γ1 〉 〈gauge γ2 〉], of a b]

unfolding fine Int
by metis

then have |((
∑

(x , k)∈p. content k ∗R f x ) − i) · k | < (i · k − j · k) / 3
|((

∑
(x , k)∈p. content k ∗R g x ) − j ) · k | < (i · k − j · k) / 3

using le less trans[OF Basis le norm[OF k ]] k γ1 γ2 by metis+
then show False
unfolding inner simps
using rsum component le[OF p] le
by (fastforce simp add : abs real def split : if split asm)

qed
show ?thesis
proof (cases ∃ a b. S = cbox a b)
case True
with ik le jk assms show ?thesis
by auto

next
case False
show ?thesis
proof (rule ccontr)
assume ¬ i ·k ≤ j ·k
then have ij : (i ·k − j ·k) / 3 > 0
by auto

obtain B1 where 0 < B1
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and B1 :
∧
a b. ball 0 B1 ⊆ cbox a b =⇒

∃ z . ((λx . if x ∈ S then f x else 0 ) has integral z ) (cbox a b) ∧
norm (z − i) < (i · k − j · k) / 3

using has integral altD [OF False ij ] assms by blast
obtain B2 where 0 < B2

and B2 :
∧
a b. ball 0 B2 ⊆ cbox a b =⇒

∃ z . ((λx . if x ∈ S then g x else 0 ) has integral z ) (cbox a b) ∧
norm (z − j ) < (i · k − j · k) / 3

using has integral altD [OF False ij ] assms by blast
have bounded (ball 0 B1 ∪ ball (0 :: ′a) B2 )
unfolding bounded Un by(rule conjI bounded ball)+

from bounded subset cbox symmetric[OF this]
obtain a b:: ′a where ab: ball 0 B1 ⊆ cbox a b ball 0 B2 ⊆ cbox a b
by (meson Un subset iff )

then obtain w1 w2 where int w1 : ((λx . if x ∈ S then f x else 0 ) has integral
w1 ) (cbox a b)

and norm w1 : norm (w1 − i) < (i · k − j · k) / 3
and int w2 : ((λx . if x ∈ S then g x else 0 ) has integral w2 )

(cbox a b)
and norm w2 : norm (w2 − j ) < (i · k − j · k) / 3

using B1 B2 by blast
have ∗:

∧
w1 w2 j i ::real .|w1 − i | < (i − j ) / 3 =⇒ |w2 − j | < (i − j ) / 3

=⇒ w1 ≤ w2 =⇒ False
by (simp add : abs real def split : if split asm)

have |(w1 − i) · k | < (i · k − j · k) / 3
|(w2 − j ) · k | < (i · k − j · k) / 3

using Basis le norm k le less trans norm w1 norm w2 by blast+
moreover
have w1 ·k ≤ w2 ·k
using ik le jk int w1 int w2 f le g by auto

ultimately show False
unfolding inner simps by(rule ∗)

qed
qed

qed

lemma integral component le:
fixes g f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes k ∈ Basis
and f integrable on S g integrable on S
and

∧
x . x ∈ S =⇒ (f x )·k ≤ (g x )·k

shows (integral S f )·k ≤ (integral S g)·k
using has integral component le assms by blast

lemma has integral component nonneg :
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes k ∈ Basis
and (f has integral i) S
and

∧
x . x ∈ S =⇒ 0 ≤ (f x )·k
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shows 0 ≤ i ·k
using has integral component le[OF assms(1 ) has integral 0 assms(2 )]
using assms(3−)
by auto

lemma integral component nonneg :
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes k ∈ Basis
and

∧
x . x ∈ S =⇒ 0 ≤ (f x )·k

shows 0 ≤ (integral S f )·k
proof (cases f integrable on S )
case True show ?thesis
using True assms has integral component nonneg by blast

next
case False then show ?thesis by (simp add : not integrable integral)

qed

lemma has integral component neg :
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes k ∈ Basis
and (f has integral i) S
and

∧
x . x ∈ S =⇒ (f x )·k ≤ 0

shows i ·k ≤ 0
using has integral component le[OF assms(1 ,2 ) has integral 0 ] assms(2−)
by auto

lemma has integral component lbound :
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes (f has integral i) (cbox a b)
and ∀ x∈cbox a b. B ≤ f (x )·k
and k ∈ Basis

shows B ∗ content (cbox a b) ≤ i ·k
using has integral component le[OF assms(3 ) has integral const assms(1 ),of (

∑
i∈Basis.

B ∗R i):: ′b] assms(2−)
by (auto simp add : field simps)

lemma has integral component ubound :
fixes f :: ′a::euclidean space => ′b::euclidean space
assumes (f has integral i) (cbox a b)
and ∀ x∈cbox a b. f x ·k ≤ B
and k ∈ Basis

shows i ·k ≤ B ∗ content (cbox a b)
using has integral component le[OF assms(3 ,1 ) has integral const , of

∑
i∈Basis.

B ∗R i ] assms(2−)
by (auto simp add : field simps)

lemma integral component lbound :
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes f integrable on cbox a b
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and ∀ x∈cbox a b. B ≤ f (x )·k
and k ∈ Basis

shows B ∗ content (cbox a b) ≤ (integral(cbox a b) f )·k
using assms has integral component lbound by blast

lemma integral component lbound real :
assumes f integrable on {a ::real ..b}
and ∀ x∈{a..b}. B ≤ f (x )·k
and k ∈ Basis

shows B ∗ content {a..b} ≤ (integral {a..b} f )·k
using assms
by (metis box real(2 ) integral component lbound)

lemma integral component ubound :
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes f integrable on cbox a b
and ∀ x∈cbox a b. f x ·k ≤ B
and k ∈ Basis

shows (integral (cbox a b) f )·k ≤ B ∗ content (cbox a b)
using assms has integral component ubound by blast

lemma integral component ubound real :
fixes f :: real ⇒ ′a::euclidean space
assumes f integrable on {a..b}
and ∀ x∈{a..b}. f x ·k ≤ B
and k ∈ Basis

shows (integral {a..b} f )·k ≤ B ∗ content {a..b}
using assms
by (metis box real(2 ) integral component ubound)

6.15.9 Uniform limit of integrable functions is integrable

lemma real arch invD :
0 < (e::real) =⇒ (∃n::nat . n 6= 0 ∧ 0 < inverse (real n) ∧ inverse (real n) <

e)
by (subst(asm) real arch inverse)

lemma integrable uniform limit :
fixes f :: ′a::euclidean space ⇒ ′b::banach
assumes

∧
e. e > 0 =⇒ ∃ g . (∀ x∈cbox a b. norm (f x − g x ) ≤ e) ∧ g inte-

grable on cbox a b
shows f integrable on cbox a b

proof (cases content (cbox a b) > 0 )
case False then show ?thesis
using has integral null by (simp add : content lt nz integrable on def )

next
case True
have 1 / (real n + 1 ) > 0 for n
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by auto
then have ∃ g . (∀ x∈cbox a b. norm (f x − g x ) ≤ 1 / (real n + 1 )) ∧ g

integrable on cbox a b for n
using assms by blast

then obtain g where g near f :
∧
n x . x ∈ cbox a b =⇒ norm (f x − g n x ) ≤

1 / (real n + 1 )
and int g :

∧
n. g n integrable on cbox a b

by metis
then obtain h where h:

∧
n. (g n has integral h n) (cbox a b)

unfolding integrable on def by metis
have Cauchy h
unfolding Cauchy def

proof clarify
fix e :: real
assume e>0
then have e/4 / content (cbox a b) > 0
using True by (auto simp: field simps)

then obtain M where M 6= 0 and M : 1 / (real M ) < e/4 / content (cbox
a b)

by (metis inverse eq divide real arch inverse)
show ∃M . ∀m≥M . ∀n≥M . dist (h m) (h n) < e
proof (rule exI [where x=M ], clarify)
fix m n
assume m: M ≤ m and n: M ≤ n
have e/4>0 using 〈e>0 〉 by auto
then obtain gm gn where gauge gm gauge gn

and gm:
∧
D. D tagged division of cbox a b ∧ gm fine D
=⇒ norm ((

∑
(x ,K ) ∈ D. content K ∗R g m x ) − h m) <

e/4
and gn:

∧
D. D tagged division of cbox a b ∧ gn fine D =⇒

norm ((
∑

(x ,K ) ∈ D. content K ∗R g n x ) − h n) < e/4
using h[unfolded has integral ] by meson

then obtain D where D: D tagged division of cbox a b (λx . gm x ∩ gn x )
fine D

by (metis (full types) fine division exists gauge Int)
have triangle3 : norm (i1 − i2 ) < e
if no: norm(s2 − s1 ) ≤ e/2 norm (s1 − i1 ) < e/4 norm (s2 − i2 ) < e/4

for s1 s2 i1 and i2 :: ′b
proof −
have norm (i1 − i2 ) ≤ norm (i1 − s1 ) + norm (s1 − s2 ) + norm (s2 −

i2 )
using norm triangle ineq [of i1 − s1 s1 − i2 ]
using norm triangle ineq [of s1 − s2 s2 − i2 ]
by (auto simp: algebra simps)

also have . . . < e
using no by (auto simp: algebra simps norm minus commute)

finally show ?thesis .
qed
have finep: gm fine D gn fine D
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using fine Int D by auto
have norm le: norm (g n x − g m x ) ≤ 2 / real M if x : x ∈ cbox a b for x
proof −
have norm (f x − g n x ) + norm (f x − g m x ) ≤ 1 / (real n + 1 ) + 1 /

(real m + 1 )
using g near f [OF x , of n] g near f [OF x , of m] by simp

also have . . . ≤ 1 / (real M ) + 1 / (real M )
using 〈M 6= 0 〉 m n by (intro add mono; force simp: field split simps)

also have . . . = 2 / real M
by auto

finally show norm (g n x − g m x ) ≤ 2 / real M
using norm triangle le[of g n x − f x f x − g m x 2 / real M ]
by (auto simp: algebra simps simp add : norm minus commute)

qed
have norm ((

∑
(x ,K ) ∈ D. content K ∗R g n x ) − (

∑
(x ,K ) ∈ D. content

K ∗R g m x )) ≤ 2 / real M ∗ content (cbox a b)
by (blast intro: norm le rsum diff bound [OF D(1 ), where e=2 / real M ])

also have ... ≤ e/2
using M True
by (auto simp: field simps)

finally have le e2 : norm ((
∑

(x ,K ) ∈ D. content K ∗R g n x ) − (
∑

(x ,K )
∈ D. content K ∗R g m x )) ≤ e/2 .

then show dist (h m) (h n) < e
unfolding dist norm using gm gn D finep by (auto intro!: triangle3 )

qed
qed
then obtain s where s: h −−−−→ s
using convergent eq Cauchy [symmetric] by blast

show ?thesis
unfolding integrable on def has integral

proof (rule tac x=s in exI , clarify)
fix e::real
assume e: 0 < e
then have e/3 > 0 by auto
then obtain N1 where N1 : ∀n≥N1 . norm (h n − s) < e/3
using LIMSEQ D [OF s] by metis

from e True have e/3 / content (cbox a b) > 0
by (auto simp: field simps)

then obtain N2 :: nat
where N2 6= 0 and N2 : 1 / (real N2 ) < e/3 / content (cbox a b)

by (metis inverse eq divide real arch inverse)
obtain g ′ where gauge g ′

and g ′:
∧
D. D tagged division of cbox a b ∧ g ′ fine D =⇒

norm ((
∑

(x ,K ) ∈ D. content K ∗R g (N1 + N2 ) x ) − h (N1 +
N2 )) < e/3

by (metis h has integral 〈e/3 > 0 〉)
have ∗: norm (sf − s) < e

if no: norm (sf − sg) ≤ e/3 norm(h − s) < e/3 norm (sg − h) < e/3 for
sf sg h
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proof −
have norm (sf − s) ≤ norm (sf − sg) + norm (sg − h) + norm (h − s)
using norm triangle ineq [of sf − sg sg − s]
using norm triangle ineq [of sg − h h − s]
by (auto simp: algebra simps)

also have . . . < e
using no by (auto simp: algebra simps norm minus commute)

finally show ?thesis .
qed
{ fix D
assume ptag : D tagged division of (cbox a b) and g ′ fine D
then have norm less: norm ((

∑
(x ,K ) ∈ D. content K ∗R g (N1 + N2 ) x )

− h (N1 + N2 )) < e/3
using g ′ by blast

have content (cbox a b) < e/3 ∗ (of nat N2 )
using 〈N2 6= 0 〉 N2 using True by (auto simp: field split simps)

moreover have e/3 ∗ of nat N2 ≤ e/3 ∗ (of nat (N1 + N2 ) + 1 )
using 〈e>0 〉 by auto

ultimately have content (cbox a b) < e/3 ∗ (of nat (N1 + N2 ) + 1 )
by linarith

then have le e3 : 1 / (real (N1 + N2 ) + 1 ) ∗ content (cbox a b) ≤ e/3
unfolding inverse eq divide
by (auto simp: field simps)

have ne3 : norm (h (N1 + N2 ) − s) < e/3
using N1 by auto

have norm ((
∑

(x ,K ) ∈ D. content K ∗R f x ) − (
∑

(x ,K ) ∈ D. content K
∗R g (N1 + N2 ) x ))

≤ 1 / (real (N1 + N2 ) + 1 ) ∗ content (cbox a b)
by (blast intro: g near f rsum diff bound [OF ptag ])

then have norm ((
∑

(x ,K ) ∈ D. content K ∗R f x ) − s) < e
by (rule ∗[OF order trans [OF le e3 ] ne3 norm less])

}
then show ∃ d . gauge d ∧

(∀D. D tagged division of cbox a b ∧ d fine D −→ norm ((
∑

(x ,K ) ∈
D. content K ∗R f x ) − s) < e)

by (blast intro: g ′ 〈gauge g ′〉)
qed

qed

lemmas integrable uniform limit real = integrable uniform limit [where ′a=real ,
simplified ]

6.15.10 Negligible sets

definition negligible (s:: ′a::euclidean space set) ←→
(∀ a b. ((indicator s :: ′a⇒real) has integral 0 ) (cbox a b))

Negligibility of hyperplane

lemma content doublesplit :
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fixes a :: ′a::euclidean space
assumes 0 < e
and k : k ∈ Basis

obtains d where 0 < d and content (cbox a b ∩ {x . |x ·k − c| ≤ d}) < e
proof cases
assume ∗: a · k ≤ c ∧ c ≤ b · k ∧ (∀ j∈Basis. a · j ≤ b · j )
define a ′ where a ′ d = (

∑
j∈Basis. (if j = k then max (a·j ) (c − d) else a·j )

∗R j ) for d
define b ′ where b ′ d = (

∑
j∈Basis. (if j = k then min (b·j ) (c + d) else b·j )

∗R j ) for d

have ((λd .
∏

j∈Basis. (b ′ d − a ′ d) · j ) −−−→ (
∏

j∈Basis. (b ′ 0 − a ′ 0 ) · j ))
(at right 0 )

by (auto simp: b ′ def a ′ def intro!: tendsto min tendsto max tendsto eq intros)
also have (

∏
j∈Basis. (b ′ 0 − a ′ 0 ) · j ) = 0

using k ∗
by (intro prod zero bexI [OF k ])
(auto simp: b ′ def a ′ def inner diff inner sum left inner not same Basis intro!:

sum.cong)
also have ((λd .

∏
j∈Basis. (b ′ d − a ′ d) · j ) −−−→ 0 ) (at right 0 ) =

((λd . content (cbox a b ∩ {x . |x ·k − c| ≤ d})) −−−→ 0 ) (at right 0 )
proof (intro tendsto cong eventually at rightI )
fix d :: real assume d : d ∈ {0<..<1}
have cbox a b ∩ {x . |x ·k − c| ≤ d} = cbox (a ′ d) (b ′ d) for d

using ∗ d k by (auto simp add : cbox def set eq iff Int def ball conj distrib
abs diff le iff a ′ def b ′ def )

moreover have j ∈ Basis =⇒ a ′ d · j ≤ b ′ d · j for j
using ∗ d k by (auto simp: a ′ def b ′ def )

ultimately show (
∏

j∈Basis. (b ′ d − a ′ d) · j ) = content (cbox a b ∩ {x .
|x ·k − c| ≤ d})

by simp
qed simp
finally have ((λd . content (cbox a b ∩ {x . |x · k − c| ≤ d})) −−−→ 0 ) (at right

0 ) .
from order tendstoD(2 )[OF this 〈0<e〉]
obtain d ′ where 0 < d ′ and d ′:

∧
y . y > 0 =⇒ y < d ′ =⇒ content (cbox a b

∩ {x . |x · k − c| ≤ y}) < e
by (subst (asm) eventually at right [of 1 ]) auto

show ?thesis
by (rule that [of d ′/2 ], insert 〈0<d ′〉 d ′[of d ′/2 ], auto)

next
assume ∗: ¬ (a · k ≤ c ∧ c ≤ b · k ∧ (∀ j∈Basis. a · j ≤ b · j ))
then have (∃ j∈Basis. b · j < a · j ) ∨ (c < a · k ∨ b · k < c)
by (auto simp: not le)

show thesis
proof cases
assume ∃ j∈Basis. b · j < a · j
then have [simp]: cbox a b = {}
using box ne empty(1 )[of a b] by auto

Henstock{_}{\kern 0pt}Kurzweil{_}{\kern 0pt}Integration.html


1798

show ?thesis
by (rule that [of 1 ]) (simp all add : 〈0<e〉)

next
assume ¬ (∃ j∈Basis. b · j < a · j )
with ∗ have c < a · k ∨ b · k < c
by auto

then show thesis
proof
assume c: c < a · k
moreover have x ∈ cbox a b =⇒ c ≤ x · k for x
using k c by (auto simp: cbox def )

ultimately have cbox a b ∩ {x . |x · k − c| ≤ (a · k − c)/2} = {}
using k by (auto simp: cbox def )

with 〈0<e〉 c that [of (a · k − c)/2 ] show ?thesis
by auto

next
assume c: b · k < c
moreover have x ∈ cbox a b =⇒ x · k ≤ c for x
using k c by (auto simp: cbox def )

ultimately have cbox a b ∩ {x . |x · k − c| ≤ (c − b · k)/2} = {}
using k by (auto simp: cbox def )

with 〈0<e〉 c that [of (c − b · k)/2 ] show ?thesis
by auto

qed
qed

qed

proposition negligible standard hyperplane[intro]:
fixes k :: ′a::euclidean space
assumes k : k ∈ Basis
shows negligible {x . x ·k = c}
unfolding negligible def has integral

proof clarsimp
fix a b and e::real assume e > 0
with k obtain d where 0 < d and d : content (cbox a b ∩ {x . |x · k − c| ≤

d}) < e
by (metis content doublesplit)

let ?i = indicator {x :: ′a. x ·k = c} :: ′a⇒real
show ∃ γ. gauge γ ∧

(∀D. D tagged division of cbox a b ∧ γ fine D −→
|
∑

(x ,K ) ∈ D. content K ∗ ?i x | < e)
proof (intro exI , safe)
show gauge (λx . ball x d)
using 〈0 < d 〉 by blast

next
fix D
assume p: D tagged division of (cbox a b) (λx . ball x d) fine D
have content L = content (L ∩ {x . |x · k − c| ≤ d})
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if (x , L) ∈ D ?i x 6= 0 for x L
proof −
have xk : x ·k = c
using that by (simp add : indicator def split : if split asm)

have L ⊆ {x . |x · k − c| ≤ d}
proof
fix y
assume y : y ∈ L
have L ⊆ ball x d
using p(2 ) that(1 ) by auto

then have norm (x − y) < d
by (simp add : dist norm subset iff y)

then have |(x − y) · k | < d
using k norm bound Basis lt by blast

then show y ∈ {x . |x · k − c| ≤ d}
unfolding inner simps xk by auto

qed
then show content L = content (L ∩ {x . |x · k − c| ≤ d})
by (metis inf .orderE )

qed
then have ∗: (

∑
(x ,K )∈D. content K ∗ ?i x ) = (

∑
(x ,K )∈D. content (K ∩

{x . |x ·k − c| ≤ d}) ∗R ?i x )
by (force simp add : split paired all intro!: sum.cong [OF refl ])

note p ′= tagged division ofD [OF p(1 )] and p ′′=division of tagged division[OF
p(1 )]

have (
∑

(x ,K )∈D. content (K ∩ {x . |x · k − c| ≤ d}) ∗ indicator {x . x · k
= c} x ) < e

proof −
have (

∑
(x ,K )∈D. content (K ∩ {x . |x · k − c| ≤ d}) ∗ ?i x ) ≤ (

∑
(x ,K )∈D.

content (K ∩ {x . |x · k − c| ≤ d}))
by (force simp add : indicator def intro!: sum mono)

also have . . . < e
proof (subst sum.over tagged division lemma[OF p(1 )])
fix u v :: ′a
assume box u v = {}
then have ∗: content (cbox u v) = 0
unfolding content eq 0 interior by simp

have cbox u v ∩ {x . |x · k − c| ≤ d} ⊆ cbox u v
by auto

then have content (cbox u v ∩ {x . |x · k − c| ≤ d}) ≤ content (cbox u v)
unfolding interval doublesplit [OF k ] by (rule content subset)

then show content (cbox u v ∩ {x . |x · k − c| ≤ d}) = 0
unfolding ∗ interval doublesplit [OF k ]
by (blast intro: antisym)

next
have (

∑
l∈snd ‘ D. content (l ∩ {x . |x · k − c| ≤ d})) =

sum content ((λl . l ∩ {x . |x · k − c| ≤ d})‘{l∈snd ‘ D. l ∩ {x . |x · k −
c| ≤ d} 6= {}})

proof (subst (2 ) sum.reindex nontrivial)
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fix x y assume x ∈ {l ∈ snd ‘ D. l ∩ {x . |x · k − c| ≤ d} 6= {}} y ∈ {l
∈ snd ‘ D. l ∩ {x . |x · k − c| ≤ d} 6= {}}

x 6= y and eq : x ∩ {x . |x · k − c| ≤ d} = y ∩ {x . |x · k − c| ≤ d}
then obtain x ′ y ′ where (x ′, x ) ∈ D x ∩ {x . |x · k − c| ≤ d} 6= {} (y ′,

y) ∈ D y ∩ {x . |x · k − c| ≤ d} 6= {}
by (auto)

from p ′(5 )[OF 〈(x ′, x ) ∈ D〉 〈(y ′, y) ∈ D〉] 〈x 6= y〉 have interior (x ∩ y)
= {}

by auto
moreover have interior ((x ∩ {x . |x · k − c| ≤ d}) ∩ (y ∩ {x . |x · k −

c| ≤ d})) ⊆ interior (x ∩ y)
by (auto intro: interior mono)

ultimately have interior (x ∩ {x . |x · k − c| ≤ d}) = {}
by (auto simp: eq)

then show content (x ∩ {x . |x · k − c| ≤ d}) = 0
using p ′(4 )[OF 〈(x ′, x ) ∈ D〉] by (auto simp: interval doublesplit [OF k ]

content eq 0 interior simp del : interior Int)
qed (insert p ′(1 ), auto intro!: sum.mono neutral right)
also have . . . ≤ norm (

∑
l∈(λl . l ∩ {x . |x · k − c| ≤ d})‘{l∈snd ‘ D. l ∩

{x . |x · k − c| ≤ d} 6= {}}. content l ∗R 1 ::real)
by simp

also have . . . ≤ 1 ∗ content (cbox a b ∩ {x . |x · k − c| ≤ d})
using division doublesplit [OF p ′′ k , unfolded interval doublesplit [OF k ]]
unfolding interval doublesplit [OF k ] by (intro dsum bound) auto

also have . . . < e
using d by simp

finally show (
∑

K∈snd ‘ D. content (K ∩ {x . |x · k − c| ≤ d})) < e .
qed
finally show (

∑
(x , K )∈D. content (K ∩ {x . |x · k − c| ≤ d}) ∗ ?i x ) < e .

qed
then show |

∑
(x , K )∈D. content K ∗ ?i x | < e

unfolding ∗ by (simp add : sum nonneg split : prod .split)
qed

qed

corollary negligible standard hyperplane cart :
fixes k :: ′a::finite
shows negligible {x . x$k = (0 ::real)}
by (simp add : cart eq inner axis negligible standard hyperplane)

Hence the main theorem about negligible sets

lemma has integral negligible cbox :
fixes f :: ′b::euclidean space ⇒ ′a::real normed vector
assumes negs: negligible S
and 0 :

∧
x . x /∈ S =⇒ f x = 0

shows (f has integral 0 ) (cbox a b)
unfolding has integral

proof clarify
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fix e::real
assume e > 0
then have nn gt0 : e/2 / ((real n+1 ) ∗ (2 ˆ n)) > 0 for n
by simp

then have ∃ γ. gauge γ ∧
(∀D. D tagged division of cbox a b ∧ γ fine D −→
|
∑

(x ,K ) ∈ D. content K ∗R indicator S x |
< e/2 / ((real n + 1 ) ∗ 2 ˆ n)) for n

using negs [unfolded negligible def has integral ] by auto
then obtain γ where
gd :

∧
n. gauge (γ n)

and γ:
∧
n D. [[D tagged division of cbox a b; γ n fine D]]
=⇒ |

∑
(x ,K ) ∈ D. content K ∗R indicator S x | < e/2 / ((real n +

1 ) ∗ 2 ˆ n)
by metis

show ∃ γ. gauge γ ∧
(∀D. D tagged division of cbox a b ∧ γ fine D −→

norm ((
∑

(x ,K ) ∈ D. content K ∗R f x ) − 0 ) < e)
proof (intro exI , safe)
show gauge (λx . γ (nat bnorm (f x )c) x )
using gd by (auto simp: gauge def )

show norm ((
∑

(x ,K ) ∈ D. content K ∗R f x ) − 0 ) < e
if D tagged division of (cbox a b) (λx . γ (nat bnorm (f x )c) x ) fine D for D

proof (cases D = {})
case True with 〈0 < e〉 show ?thesis by simp

next
case False
obtain N where Max ((λ(x , K ). norm (f x )) ‘ D) ≤ real N
using real arch simple by blast

then have N :
∧
x . x ∈ (λ(x , K ). norm (f x )) ‘ D =⇒ x ≤ real N

by (meson Max ge that(1 ) dual order .trans finite imageI tagged division of finite)
have ∀ i . ∃ q . q tagged division of (cbox a b) ∧ (γ i) fine q ∧ (∀ (x ,K ) ∈ D.

K ⊆ (γ i) x −→ (x , K ) ∈ q)
by (auto intro: tagged division finer [OF that(1 ) gd ])

from choice[OF this]
obtain q where q :

∧
n. q n tagged division of cbox a b∧

n. γ n fine q n∧
n x K . [[(x , K ) ∈ D; K ⊆ γ n x ]] =⇒ (x , K ) ∈ q n

by fastforce
have finite D
using that(1 ) by blast

then have sum le inc: [[finite T ;
∧
x y . (x ,y) ∈ T =⇒ (0 ::real) ≤ g(x ,y);∧

y . y∈D =⇒ ∃ x . (x ,y) ∈ T ∧ f (y) ≤ g(x ,y)]] =⇒ sum f D ≤
sum g T for f g T

by (rule sum le included [of D T g snd f ]; force)
have norm (

∑
(x ,K ) ∈ D. content K ∗R f x ) ≤ (

∑
(x ,K ) ∈ D. norm (content

K ∗R f x ))
unfolding split def by (rule norm sum)
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also have ... ≤ (
∑

(i , j ) ∈ Sigma {..N + 1} q .
(real i + 1 ) ∗ (case j of (x , K ) ⇒ content K ∗R indicator S

x ))
proof (rule sum le inc, safe)
show finite (Sigma {..N+1} q)
by (meson finite SigmaI finite atMost tagged division of finite q(1 ))

next
fix x K
assume xk : (x , K ) ∈ D
define n where n = nat bnorm (f x )c
have ∗: norm (f x ) ∈ (λ(x , K ). norm (f x )) ‘ D
using xk by auto

have nfx : real n ≤ norm (f x ) norm (f x ) ≤ real n + 1
unfolding n def by auto

then have n ∈ {0 ..N + 1}
using N [OF ∗] by auto

moreover have K ⊆ γ (nat bnorm (f x )c) x
using that(2 ) xk by auto

moreover then have (x , K ) ∈ q (nat bnorm (f x )c)
by (simp add : q(3 ) xk)

moreover then have (x , K ) ∈ q n
using n def by blast

moreover
have norm (content K ∗R f x ) ≤ (real n + 1 ) ∗ (content K ∗ indicator S x )
proof (cases x ∈ S )
case False
then show ?thesis by (simp add : 0 )

next
case True
have ∗: content K ≥ 0
using tagged division ofD(4 )[OF that(1 ) xk ] by auto

moreover have content K ∗ norm (f x ) ≤ content K ∗ (real n + 1 )
by (simp add : mult left mono nfx (2 ))

ultimately show ?thesis
using nfx True by (auto simp: field simps)

qed
ultimately show ∃ y . (y , x , K ) ∈ (Sigma {..N + 1} q) ∧ norm (content

K ∗R f x ) ≤
(real y + 1 ) ∗ (content K ∗R indicator S x )
by force

qed auto
also have ... = (

∑
i≤N + 1 .

∑
j∈q i . (real i + 1 ) ∗ (case j of (x , K ) ⇒

content K ∗R indicator S x ))
using q(1 ) by (intro sum Sigma product [symmetric]) auto

also have ... ≤ (
∑

i≤N + 1 . (real i + 1 ) ∗ |
∑

(x ,K ) ∈ q i . content K ∗R
indicator S x |)

by (rule sum mono) (simp add : sum distrib left [symmetric])
also have ... ≤ (

∑
i≤N + 1 . e/2/2 ˆ i)

proof (rule sum mono)
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show (real i + 1 ) ∗ |
∑

(x ,K ) ∈ q i . content K ∗R indicator S x | ≤ e/2/2
ˆ i

if i ∈ {..N + 1} for i
using γ[of q i i ] q by (simp add : divide simps mult .left commute)

qed
also have ... = e/2 ∗ (

∑
i≤N + 1 . (1/2 ) ˆ i)

unfolding sum distrib left by (metis divide inverse inverse eq divide power one over)
also have . . . < e/2 ∗ 2
proof (rule mult strict left mono)
have sum (power (1/2 )) {..N + 1} = sum (power (1/2 ::real)) {..<N +

2}
using lessThan Suc atMost by auto

also have ... < 2
by (auto simp: geometric sum)

finally show sum (power (1/2 ::real)) {..N + 1} < 2 .
qed (use 〈0 < e〉 in auto)
finally show ?thesis by auto

qed
qed

qed

proposition has integral negligible:
fixes f :: ′b::euclidean space ⇒ ′a::real normed vector
assumes negs: negligible S
and

∧
x . x ∈ (T − S ) =⇒ f x = 0

shows (f has integral 0 ) T
proof (cases ∃ a b. T = cbox a b)
case True
then have ((λx . if x ∈ T then f x else 0 ) has integral 0 ) T
using assms by (auto intro!: has integral negligible cbox )

then show ?thesis
by (rule has integral eq [rotated ]) auto

next
case False
let ?f = (λx . if x ∈ T then f x else 0 )
have ((λx . if x ∈ T then f x else 0 ) has integral 0 ) T
apply (auto simp: False has integral alt [of ?f ])
apply (rule tac x=1 in exI , auto)
apply (rule tac x=0 in exI , simp add : has integral negligible cbox [OF negs]

assms)
done

then show ?thesis
by (rule tac f=?f in has integral eq) auto

qed

lemma
assumes negligible S
shows integrable negligible: f integrable on S and integral negligible: integral S f
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= 0
using has integral negligible [OF assms]
by (auto simp: has integral iff )

lemma has integral spike:
fixes f :: ′b::euclidean space ⇒ ′a::real normed vector
assumes negligible S
and gf :

∧
x . x ∈ T − S =⇒ g x = f x

and fint : (f has integral y) T
shows (g has integral y) T

proof −
have ∗: (g has integral y) (cbox a b)

if (f has integral y) (cbox a b) ∀ x ∈ cbox a b − S . g x = f x for a b f and
g :: ′b ⇒ ′a and y
proof −
have ((λx . f x + (g x − f x )) has integral (y + 0 )) (cbox a b)

using that by (intro has integral add has integral negligible) (auto intro!:
〈negligible S 〉)

then show ?thesis
by auto

qed
have §:

∧
a b z . [[

∧
x . x ∈ T ∧ x /∈ S =⇒ g x = f x ;

((λx . if x ∈ T then f x else 0 ) has integral z ) (cbox a b)]]
=⇒ ((λx . if x ∈ T then g x else 0 ) has integral z ) (cbox a b)

by (auto dest !: ∗[where f=λx . if x∈T then f x else 0 and g=λx . if x ∈ T
then g x else 0 ])
show ?thesis
using fint gf
apply (subst has integral alt)
apply (subst (asm) has integral alt)
apply (auto split : if split asm)
apply (blast dest : ∗)
using § by meson

qed

lemma has integral spike eq :
assumes negligible S
and gf :

∧
x . x ∈ T − S =⇒ g x = f x

shows (f has integral y) T ←→ (g has integral y) T
using has integral spike [OF 〈negligible S 〉] gf
by metis

lemma integrable spike:
assumes f integrable on T negligible S

∧
x . x ∈ T − S =⇒ g x = f x

shows g integrable on T
using assms unfolding integrable on def by (blast intro: has integral spike)

lemma integral spike:
assumes negligible S
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and
∧
x . x ∈ T − S =⇒ g x = f x

shows integral T f = integral T g
using has integral spike eq [OF assms]
by (auto simp: integral def integrable on def )

6.15.11 Some other trivialities about negligible sets

lemma negligible subset :
assumes negligible s t ⊆ s
shows negligible t
unfolding negligible def
by (metis (no types) Diff iff assms contra subsetD has integral negligible indi-

cator simps(2 ))

lemma negligible diff [intro?]:
assumes negligible s
shows negligible (s − t)
using assms by (meson Diff subset negligible subset)

lemma negligible Int :
assumes negligible s ∨ negligible t
shows negligible (s ∩ t)
using assms negligible subset by force

lemma negligible Un:
assumes negligible S and T : negligible T
shows negligible (S ∪ T )

proof −
have (indicat real (S ∪ T ) has integral 0 ) (cbox a b)
if S0 : (indicat real S has integral 0 ) (cbox a b)
and (indicat real T has integral 0 ) (cbox a b) for a b

proof (subst has integral spike eq [OF T ])
show indicat real S x = indicat real (S ∪ T ) x if x ∈ cbox a b − T for x
by (metis Diff iff Un iff indicator def that)

show (indicat real S has integral 0 ) (cbox a b)
by (simp add : S0 )

qed
with assms show ?thesis
unfolding negligible def by blast

qed

lemma negligible Un eq [simp]: negligible (s ∪ t) ←→ negligible s ∧ negligible t
using negligible Un negligible subset by blast

lemma negligible sing [intro]: negligible {a:: ′a::euclidean space}
using negligible standard hyperplane[OF SOME Basis, of a · (SOME i . i ∈ Ba-

sis)] negligible subset by blast

lemma negligible insert [simp]: negligible (insert a s) ←→ negligible s
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by (metis insert is Un negligible Un eq negligible sing)

lemma negligible empty [iff ]: negligible {}
using negligible insert by blast

Useful in this form for backchaining

lemma empty imp negligible: S = {} =⇒ negligible S
by simp

lemma negligible finite[intro]:
assumes finite s
shows negligible s
using assms by (induct s) auto

lemma negligible Union[intro]:
assumes finite T
and

∧
t . t ∈ T =⇒ negligible t

shows negligible(
⋃
T )

using assms by induct auto

lemma negligible: negligible S ←→ (∀T . (indicat real S has integral 0 ) T )
proof (intro iffI allI )
fix T
assume negligible S
then show (indicator S has integral 0 ) T
by (meson Diff iff has integral negligible indicator simps(2 ))

qed (simp add : negligible def )

6.15.12 Finite case of the spike theorem is quite commonly
needed

lemma has integral spike finite:
assumes finite S
and

∧
x . x ∈ T − S =⇒ g x = f x

and (f has integral y) T
shows (g has integral y) T
using assms has integral spike negligible finite by blast

lemma has integral spike finite eq :
assumes finite S
and

∧
x . x ∈ T − S =⇒ g x = f x

shows ((f has integral y) T ←→ (g has integral y) T )
by (metis assms has integral spike finite)

lemma integrable spike finite:
assumes finite S
and

∧
x . x ∈ T − S =⇒ g x = f x

and f integrable on T
shows g integrable on T
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using assms has integral spike finite by blast

lemma has integral bound spike finite:
fixes f :: ′a::euclidean space ⇒ ′b::real normed vector
assumes 0 ≤ B finite S

and f : (f has integral i) (cbox a b)
and leB :

∧
x . x ∈ cbox a b − S =⇒ norm (f x ) ≤ B

shows norm i ≤ B ∗ content (cbox a b)
proof −
define g where g ≡ (λx . if x ∈ S then 0 else f x )
then have

∧
x . x ∈ cbox a b − S =⇒ norm (g x ) ≤ B

using leB by simp
moreover have (g has integral i) (cbox a b)
using has integral spike finite [OF 〈finite S 〉 f ]
by (simp add : g def )

ultimately show ?thesis
by (simp add : 〈0 ≤ B 〉 g def has integral bound)

qed

corollary has integral bound real :
fixes f :: real ⇒ ′b::real normed vector
assumes 0 ≤ B finite S

and (f has integral i) {a..b}
and

∧
x . x ∈ {a..b} − S =⇒ norm (f x ) ≤ B

shows norm i ≤ B ∗ content {a..b}
by (metis assms box real(2 ) has integral bound spike finite)

6.15.13 In particular, the boundary of an interval is negligi-
ble

lemma negligible frontier interval : negligible(cbox (a:: ′a::euclidean space) b − box
a b)
proof −
let ?A =

⋃
((λk . {x . x ·k = a·k} ∪ {x :: ′a. x ·k = b·k}) ‘ Basis)

have negligible ?A
by (force simp add : negligible Union[OF finite imageI ])

moreover have cbox a b − box a b ⊆ ?A
by (force simp add : mem box )

ultimately show ?thesis
by (rule negligible subset)

qed

lemma has integral spike interior :
assumes f : (f has integral y) (cbox a b) and gf :

∧
x . x ∈ box a b =⇒ g x = f x

shows (g has integral y) (cbox a b)
by (meson Diff iff gf has integral spike[OF negligible frontier interval f ])

lemma has integral spike interior eq :
assumes

∧
x . x ∈ box a b =⇒ g x = f x
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shows (f has integral y) (cbox a b) ←→ (g has integral y) (cbox a b)
by (metis assms has integral spike interior)

lemma integrable spike interior :
assumes

∧
x . x ∈ box a b =⇒ g x = f x

and f integrable on cbox a b
shows g integrable on cbox a b
using assms has integral spike interior eq by blast

6.15.14 Integrability of continuous functions

lemma operative approximableI :
fixes f :: ′b::euclidean space ⇒ ′a::banach
assumes 0 ≤ e
shows operative conj True (λi . ∃ g . (∀ x∈i . norm (f x − g (x :: ′b)) ≤ e) ∧ g

integrable on i)
proof −
interpret comm monoid conj True
by standard auto

show ?thesis
proof (standard , safe)
fix a b :: ′b
show ∃ g . (∀ x∈cbox a b. norm (f x − g x ) ≤ e) ∧ g integrable on cbox a b
if box a b = {} for a b
using assms that
by (metis content eq 0 interior integrable on null interior cbox norm zero

right minus eq)
{
fix c g and k :: ′b
assume fg : ∀ x∈cbox a b. norm (f x − g x ) ≤ e and g : g integrable on cbox

a b
assume k : k ∈ Basis
show ∃ g . (∀ x∈cbox a b ∩ {x . x · k ≤ c}. norm (f x − g x ) ≤ e) ∧ g

integrable on cbox a b ∩ {x . x · k ≤ c}
∃ g . (∀ x∈cbox a b ∩ {x . c ≤ x · k}. norm (f x − g x ) ≤ e) ∧ g integrable on

cbox a b ∩ {x . c ≤ x · k}
using fg g k by auto

}
show ∃ g . (∀ x∈cbox a b. norm (f x − g x ) ≤ e) ∧ g integrable on cbox a b
if fg1 : ∀ x∈cbox a b ∩ {x . x · k ≤ c}. norm (f x − g1 x ) ≤ e
and g1 : g1 integrable on cbox a b ∩ {x . x · k ≤ c}
and fg2 : ∀ x∈cbox a b ∩ {x . c ≤ x · k}. norm (f x − g2 x ) ≤ e
and g2 : g2 integrable on cbox a b ∩ {x . c ≤ x · k}
and k : k ∈ Basis

for c k g1 g2
proof −
let ?g = λx . if x ·k = c then f x else if x ·k ≤ c then g1 x else g2 x
show ∃ g . (∀ x∈cbox a b. norm (f x − g x ) ≤ e) ∧ g integrable on cbox a b
proof (intro exI conjI ballI )
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show norm (f x − ?g x ) ≤ e if x ∈ cbox a b for x
by (auto simp: that assms fg1 fg2 )

show ?g integrable on cbox a b
proof −
have ?g integrable on cbox a b ∩ {x . x · k ≤ c} ?g integrable on cbox a b

∩ {x . x · k ≥ c}
by(rule integrable spike[OF negligible standard hyperplane[of k c]], use

k g1 g2 in auto)+
with has integral split [OF k ] show ?thesis
unfolding integrable on def by blast

qed
qed

qed
qed

qed

lemma comm monoid set F and : comm monoid set .F (∧) True f s ←→ (finite s
−→ (∀ x∈s. f x ))
proof −
interpret bool : comm monoid set 〈(∧)〉 True ..
show ?thesis
by (induction s rule: infinite finite induct) auto

qed

lemma approximable on division:
fixes f :: ′b::euclidean space ⇒ ′a::banach
assumes 0 ≤ e
and d : d division of (cbox a b)
and f : ∀ i∈d . ∃ g . (∀ x∈i . norm (f x − g x ) ≤ e) ∧ g integrable on i

obtains g where ∀ x∈cbox a b. norm (f x − g x ) ≤ e g integrable on cbox a b
proof −
interpret operative conj True λi . ∃ g . (∀ x∈i . norm (f x − g (x :: ′b)) ≤ e) ∧ g

integrable on i
using 〈0 ≤ e〉 by (rule operative approximableI )

from f local .division [OF d ] that show thesis
by auto

qed

lemma integrable continuous:
fixes f :: ′b::euclidean space ⇒ ′a::banach
assumes continuous on (cbox a b) f
shows f integrable on cbox a b

proof (rule integrable uniform limit)
fix e :: real
assume e: e > 0
then obtain d where 0 < d and d :

∧
x x ′. [[x ∈ cbox a b; x ′ ∈ cbox a b; dist

x ′ x < d ]] =⇒ dist (f x ′) (f x ) < e
using compact uniformly continuous[OF assms compact cbox ] unfolding uni-

formly continuous on def by metis
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obtain p where ptag : p tagged division of cbox a b and finep: (λx . ball x d) fine
p

using fine division exists[OF gauge ball [OF 〈0 < d 〉], of a b] .
have ∗: ∀ i∈snd ‘ p. ∃ g . (∀ x∈i . norm (f x − g x ) ≤ e) ∧ g integrable on i
proof (safe, unfold snd conv)
fix x l
assume as: (x , l) ∈ p
obtain a b where l : l = cbox a b
using as ptag by blast

then have x : x ∈ cbox a b
using as ptag by auto

show ∃ g . (∀ x∈l . norm (f x − g x ) ≤ e) ∧ g integrable on l
proof (intro exI conjI strip)
show (λy . f x ) integrable on l
unfolding integrable on def l by blast

next
fix y
assume y : y ∈ l
then have y ∈ ball x d
using as finep by fastforce

then show norm (f y − f x ) ≤ e
using d x y as l

by (metis dist commute dist norm less imp le mem ball ptag subsetCE
tagged division ofD(3 ))

qed
qed
from e have e ≥ 0
by auto

from approximable on division[OF this division of tagged division[OF ptag ] ∗]
show ∃ g . (∀ x∈cbox a b. norm (f x − g x ) ≤ e) ∧ g integrable on cbox a b
by metis

qed

lemma integrable continuous interval :
fixes f :: ′b::ordered euclidean space ⇒ ′a::banach
assumes continuous on {a..b} f
shows f integrable on {a..b}
by (metis assms integrable continuous interval cbox )

lemmas integrable continuous real = integrable continuous interval [where ′b=real ]

lemma integrable continuous closed segment :
fixes f :: real ⇒ ′a::banach
assumes continuous on (closed segment a b) f
shows f integrable on (closed segment a b)
using assms
by (auto intro!: integrable continuous interval simp: closed segment eq real ivl)
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6.15.15 Specialization of additivity to one dimension

6.15.16 A useful lemma allowing us to factor out the content
size

lemma has integral factor content :
(f has integral i) (cbox a b) ←→
(∀ e>0 . ∃ d . gauge d ∧ (∀ p. p tagged division of (cbox a b) ∧ d fine p −→
norm (sum (λ(x ,k). content k ∗R f x ) p − i) ≤ e ∗ content (cbox a b)))

proof (cases content (cbox a b) = 0 )
case True
have

∧
e p. p tagged division of cbox a b =⇒ norm ((

∑
(x , k)∈p. content k ∗R

f x )) ≤ e ∗ content (cbox a b)
unfolding sum content null [OF True] True by force

moreover have i = 0
if

∧
e. e > 0 =⇒ ∃ d . gauge d ∧

(∀ p. p tagged division of cbox a b ∧
d fine p −→
norm ((

∑
(x , k)∈p. content k ∗R f x ) − i) ≤ e ∗ content (cbox a

b))
using that [of 1 ]
by (force simp add : True sum content null [OF True] intro: fine division exists[of
a b])
ultimately show ?thesis
unfolding has integral null eq [OF True]
by (force simp add : )

next
case False
then have F : 0 < content (cbox a b)
using zero less measure iff by blast

let ?P = λe opp. ∃ d . gauge d ∧
(∀ p. p tagged division of (cbox a b) ∧ d fine p −→ opp (norm ((

∑
(x , k)∈p.

content k ∗R f x ) − i)) e)
show ?thesis
proof (subst has integral , safe)
fix e :: real
assume e: e > 0
show ?P (e ∗ content (cbox a b)) (≤) if §[rule format ]: ∀ ε>0 . ?P ε (<)
using § [of e ∗ content (cbox a b)]
by (meson F e less imp le mult pos pos)

show ?P e (<) if §[rule format ]: ∀ ε>0 . ?P (ε ∗ content (cbox a b)) (≤)
using § [of e/2 / content (cbox a b)]
using F e by (force simp add : algebra simps)

qed
qed

lemma has integral factor content real :
(f has integral i) {a..b::real} ←→
(∀ e>0 . ∃ d . gauge d ∧ (∀ p. p tagged division of {a..b} ∧ d fine p −→
norm (sum (λ(x ,k). content k ∗R f x ) p − i) ≤ e ∗ content {a..b} ))

Henstock{_}{\kern 0pt}Kurzweil{_}{\kern 0pt}Integration.html


1812

unfolding box real [symmetric]
by (rule has integral factor content)

6.15.17 Fundamental theorem of calculus

lemma interval bounds real :
fixes q b :: real
assumes a ≤ b
shows Sup {a..b} = b
and Inf {a..b} = a

using assms by auto

theorem fundamental theorem of calculus:
fixes f :: real ⇒ ′a::banach
assumes a ≤ b

and vecd :
∧
x . x ∈ {a..b} =⇒ (f has vector derivative f ′ x ) (at x within {a..b})

shows (f ′ has integral (f b − f a)) {a..b}
unfolding has integral factor content box real [symmetric]

proof safe
fix e :: real
assume e > 0
then have ∀ x . ∃ d>0 . x ∈ {a..b} −→

(∀ y∈{a..b}. norm (y−x ) < d −→ norm (f y − f x − (y−x ) ∗R f ′ x ) ≤ e
∗ norm (y−x ))

using vecd [unfolded has vector derivative def has derivative within alt ] by blast
then obtain d where d :

∧
x . 0 < d x∧

x y . [[x ∈ {a..b}; y ∈ {a..b}; norm (y−x ) < d x ]]
=⇒ norm (f y − f x − (y−x ) ∗R f ′ x ) ≤ e ∗ norm (y−x )

by metis
show ∃ d . gauge d ∧ (∀ p. p tagged division of (cbox a b) ∧ d fine p −→
norm ((

∑
(x , k)∈p. content k ∗R f ′ x ) − (f b − f a)) ≤ e ∗ content (cbox a

b))
proof (rule exI , safe)
show gauge (λx . ball x (d x ))
using d(1 ) gauge ball dependent by blast

next
fix p
assume ptag : p tagged division of cbox a b and finep: (λx . ball x (d x )) fine p
have ba: b − a = (

∑
(x ,K )∈p. Sup K − Inf K ) f b − f a = (

∑
(x ,K )∈p.

f (Sup K ) − f (Inf K ))
using additive tagged division 1 [where f= λx . x ] additive tagged division 1 [where

f= f ]
〈a ≤ b〉 ptag by auto

have norm (
∑

(x , K ) ∈ p. (content K ∗R f ′ x ) − (f (Sup K ) − f (Inf K )))
≤ (

∑
n∈p. e ∗ (case n of (x , k) ⇒ Sup k − Inf k))

proof (rule sum norm le,safe)
fix x K
assume (x , K ) ∈ p
then have x ∈ K and kab: K ⊆ cbox a b
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using ptag by blast+
then obtain u v where k : K = cbox u v and x ∈ K and kab: K ⊆ cbox a b
using ptag 〈(x , K ) ∈ p〉 by auto

have u ≤ v
using 〈x ∈ K 〉 unfolding k by auto

have ball : ∀ y∈K . y ∈ ball x (d x )
using finep 〈(x , K ) ∈ p〉 by blast

have u ∈ K v ∈ K
by (simp all add : 〈u ≤ v 〉 k)

have norm ((v − u) ∗R f ′ x − (f v − f u)) = norm (f u − f x − (u − x )
∗R f ′ x − (f v − f x − (v − x ) ∗R f ′ x ))

by (auto simp add : algebra simps)
also have ... ≤ norm (f u − f x − (u − x ) ∗R f ′ x ) + norm (f v − f x − (v

− x ) ∗R f ′ x )
by (rule norm triangle ineq4 )

finally have norm ((v − u) ∗R f ′ x − (f v − f u)) ≤
norm (f u − f x − (u − x ) ∗R f ′ x ) + norm (f v − f x − (v − x ) ∗R f ′ x ) .
also have . . . ≤ e ∗ norm (u − x ) + e ∗ norm (v − x )
proof (rule add mono)
show norm (f u − f x − (u − x ) ∗R f ′ x ) ≤ e ∗ norm (u − x )
proof (rule d)
show norm (u − x ) < d x
using 〈u ∈ K 〉 ball by (auto simp add : dist real def )

qed (use 〈x ∈ K 〉 〈u ∈ K 〉 kab in auto)
show norm (f v − f x − (v − x ) ∗R f ′ x ) ≤ e ∗ norm (v − x )
proof (rule d)
show norm (v − x ) < d x
using 〈v ∈ K 〉 ball by (auto simp add : dist real def )

qed (use 〈x ∈ K 〉 〈v ∈ K 〉 kab in auto)
qed
also have . . . ≤ e ∗ (Sup K − Inf K )
using 〈x ∈ K 〉 by (auto simp: k interval bounds real [OF 〈u ≤ v 〉] field simps)
finally show norm (content K ∗R f ′ x − (f (Sup K ) − f (Inf K ))) ≤ e ∗

(Sup K − Inf K )
using 〈u ≤ v 〉 by (simp add : k)

qed
with 〈a ≤ b〉 show norm ((

∑
(x , K )∈p. content K ∗R f ′ x ) − (f b − f a)) ≤

e ∗ content (cbox a b)
by (auto simp: ba split def sum subtractf [symmetric] sum distrib left)

qed
qed

lemma ident has integral :
fixes a::real
assumes a ≤ b
shows ((λx . x ) has integral (b2 − a2)/2 ) {a..b}

proof −
have ((λx . x ) has integral inverse 2 ∗ b2 − inverse 2 ∗ a2) {a..b}
unfolding power2 eq square
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by (rule fundamental theorem of calculus [OF assms] derivative eq intros |
simp)+
then show ?thesis
by (simp add : field simps)

qed

lemma integral ident [simp]:
fixes a::real
assumes a ≤ b
shows integral {a..b} (λx . x ) = (if a ≤ b then (b2 − a2)/2 else 0 )
by (metis assms ident has integral integral unique)

lemma ident integrable on:
fixes a::real
shows (λx . x ) integrable on {a..b}

by (metis atLeastatMost empty iff integrable on def has integral empty ident has integral)

lemma integral sin [simp]:
fixes a::real
assumes a ≤ b shows integral {a..b} sin = cos a − cos b

proof −
have (sin has integral (− cos b − − cos a)) {a..b}
proof (rule fundamental theorem of calculus)
show ((λa. − cos a) has vector derivative sin x ) (at x within {a..b}) for x
unfolding has field derivative iff has vector derivative [symmetric]
by (rule derivative eq intros | force)+

qed (use assms in auto)
then show ?thesis
by (simp add : integral unique)

qed

lemma integral cos [simp]:
fixes a::real
assumes a ≤ b shows integral {a..b} cos = sin b − sin a

proof −
have (cos has integral (sin b − sin a)) {a..b}
proof (rule fundamental theorem of calculus)
show (sin has vector derivative cos x ) (at x within {a..b}) for x
unfolding has field derivative iff has vector derivative [symmetric]
by (rule derivative eq intros | force)+

qed (use assms in auto)
then show ?thesis
by (simp add : integral unique)

qed

lemma has integral sin nx : ((λx . sin(real of int n ∗ x )) has integral 0 ) {−pi ..pi}
proof (cases n = 0 )
case False
have ((λx . sin (n ∗ x )) has integral (− cos (n ∗ pi)/n − − cos (n ∗ − pi)/n))
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{−pi ..pi}
proof (rule fundamental theorem of calculus)
show ((λx . − cos (n ∗ x ) / n) has vector derivative sin (n ∗ a)) (at a within

{−pi ..pi})
if a ∈ {−pi ..pi} for a :: real
using that False
unfolding has vector derivative def
by (intro derivative eq intros | force)+

qed auto
then show ?thesis
by simp

qed auto

lemma integral sin nx :
integral {−pi ..pi} (λx . sin(x ∗ real of int n)) = 0
using has integral sin nx [of n] by (force simp: mult .commute)

lemma has integral cos nx :
((λx . cos(real of int n ∗ x )) has integral (if n = 0 then 2 ∗ pi else 0 )) {−pi ..pi}

proof (cases n = 0 )
case True
then show ?thesis
using has integral const real [of 1 ::real −pi pi ] by auto

next
case False
have ((λx . cos (n ∗ x )) has integral (sin (n ∗ pi)/n − sin (n ∗ − pi)/n))
{−pi ..pi}
proof (rule fundamental theorem of calculus)

show ((λx . sin (n ∗ x ) / n) has vector derivative cos (n ∗ x )) (at x within
{−pi ..pi})

if x ∈ {−pi ..pi}
for x :: real
using that False
unfolding has vector derivative def
by (intro derivative eq intros | force)+

qed auto
with False show ?thesis
by (simp add : mult .commute)

qed

lemma integral cos nx :
integral {−pi ..pi} (λx . cos(x ∗ real of int n)) = (if n = 0 then 2 ∗ pi else 0 )
using has integral cos nx [of n] by (force simp: mult .commute)

6.15.18 Taylor series expansion

lemma mvt integral :
fixes f :: ′a::real normed vector⇒ ′b::banach
assumes f ′[derivative intros]:
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∧
x . x ∈ S =⇒ (f has derivative f ′ x ) (at x within S )

assumes line in:
∧
t . t ∈ {0 ..1} =⇒ x + t ∗R y ∈ S

shows f (x + y) − f x = integral {0 ..1} (λt . f ′ (x + t ∗R y) y) (is ?th1 )
proof −
from assms have subset : (λxa. x + xa ∗R y) ‘ {0 ..1} ⊆ S by auto
note [derivative intros] =
has derivative subset [OF subset ]
has derivative in compose[where f=(λxa. x + xa ∗R y) and g = f ]

note [continuous intros] =
continuous on compose2 [where f=(λxa. x + xa ∗R y)]
continuous on subset [OF subset ]

have
∧
t . t ∈ {0 ..1} =⇒

((λt . f (x + t ∗R y)) has vector derivative f ′ (x + t ∗R y) y)
(at t within {0 ..1})
using assms
by (auto simp: has vector derivative def

linear cmul [OF has derivative linear [OF f ′], symmetric]
intro!: derivative eq intros)

from fundamental theorem of calculus[rule format , OF this]
show ?th1
by (auto intro!: integral unique[symmetric])

qed

lemma (in bounded bilinear) sum prod derivatives has vector derivative:
assumes p>0
and f0 : Df 0 = f
and Df :

∧
m t . m < p =⇒ a ≤ t =⇒ t ≤ b =⇒

(Df m has vector derivative Df (Suc m) t) (at t within {a..b})
and g0 : Dg 0 = g
and Dg :

∧
m t . m < p =⇒ a ≤ t =⇒ t ≤ b =⇒

(Dg m has vector derivative Dg (Suc m) t) (at t within {a..b})
and ivl : a ≤ t t ≤ b
shows ((λt .

∑
i<p. (−1 )ˆi ∗R prod (Df i t) (Dg (p − Suc i) t))

has vector derivative
prod (f t) (Dg p t) − (−1 )ˆp ∗R prod (Df p t) (g t))

(at t within {a..b})
using assms

proof cases
assume p: p 6= 1
define p ′ where p ′ = p − 2
from assms p have p ′: {..<p} = {..Suc p ′} p = Suc (Suc p ′)
by (auto simp: p ′ def )

have ∗:
∧
i . i ≤ p ′ =⇒ Suc (Suc p ′ − i) = (Suc (Suc p ′) − i)

by auto
let ?f = λi . (−1 ) ˆ i ∗R (prod (Df i t) (Dg ((p − i)) t))
have (

∑
i<p. (−1 ) ˆ i ∗R (prod (Df i t) (Dg (Suc (p − Suc i)) t) +

prod (Df (Suc i) t) (Dg (p − Suc i) t))) =
(
∑

i≤(Suc p ′). ?f i − ?f (Suc i))
by (auto simp: algebra simps p ′(2 ) numeral 2 eq 2 ∗ lessThan Suc atMost)
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also note sum telescope
finally
have (

∑
i<p. (−1 ) ˆ i ∗R (prod (Df i t) (Dg (Suc (p − Suc i)) t) +

prod (Df (Suc i) t) (Dg (p − Suc i) t)))
= prod (f t) (Dg p t) − (− 1 ) ˆ p ∗R prod (Df p t) (g t)
unfolding p ′[symmetric]
by (simp add : assms)

thus ?thesis
using assms
by (auto intro!: derivative eq intros has vector derivative)

qed (auto intro!: derivative eq intros has vector derivative)

lemma
fixes f ::real⇒ ′a::banach
assumes p>0
and f0 : Df 0 = f
and Df :

∧
m t . m < p =⇒ a ≤ t =⇒ t ≤ b =⇒

(Df m has vector derivative Df (Suc m) t) (at t within {a..b})
and ivl : a ≤ b
defines i ≡ λx . ((b − x ) ˆ (p − 1 ) / fact (p − 1 )) ∗R Df p x
shows Taylor has integral :
(i has integral f b − (

∑
i<p. ((b−a) ˆ i / fact i) ∗R Df i a)) {a..b}

and Taylor integral :
f b = (

∑
i<p. ((b−a) ˆ i / fact i) ∗R Df i a) + integral {a..b} i

and Taylor integrable:
i integrable on {a..b}

proof goal cases
case 1
interpret bounded bilinear scaleR::real⇒ ′a⇒ ′a
by (rule bounded bilinear scaleR)

define g where g s = (b − s)ˆ(p − 1 )/fact (p − 1 ) for s
define Dg where [abs def ]:
Dg n s = (if n < p then (−1 )ˆn ∗ (b − s)ˆ(p − 1 − n) / fact (p − 1 − n)

else 0 ) for n s
have g0 : Dg 0 = g
using 〈p > 0 〉

by (auto simp add : Dg def field split simps g def split : if split asm)
{
fix m
assume p > Suc m
hence p − Suc m = Suc (p − Suc (Suc m))
by auto

hence real (p − Suc m) ∗ fact (p − Suc (Suc m)) = fact (p − Suc m)
by auto

} note fact eq = this
have Dg :

∧
m t . m < p =⇒ a ≤ t =⇒ t ≤ b =⇒

(Dg m has vector derivative Dg (Suc m) t) (at t within {a..b})
unfolding Dg def
by (auto intro!: derivative eq intros simp: has vector derivative def fact eq field split simps)
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let ?sum = λt .
∑

i<p. (− 1 ) ˆ i ∗R Dg i t ∗R Df (p − Suc i) t
from sum prod derivatives has vector derivative[of Dg Df ,

OF 〈p > 0 〉 g0 Dg f0 Df ]
have deriv :

∧
t . a ≤ t =⇒ t ≤ b =⇒

(?sum has vector derivative
g t ∗R Df p t − (− 1 ) ˆ p ∗R Dg p t ∗R f t) (at t within {a..b})

by auto
from fundamental theorem of calculus[rule format , OF 〈a ≤ b〉 deriv ]
have (i has integral ?sum b − ?sum a) {a..b}
using atLeastatMost empty ′[simp del ]
by (simp add : i def g def Dg def )

also
have one: (− 1 ) ˆ p ′ ∗ (− 1 ) ˆ p ′ = (1 ::real)
and {..<p} ∩ {i . p = Suc i} = {p − 1}
for p ′

using 〈p > 0 〉

by (auto simp: power mult distrib[symmetric])
then have ?sum b = f b
using Suc pred ′[OF 〈p > 0 〉]
by (simp add : diff eq eq Dg def power 0 left le Suc eq if distrib

if distribR sum.If cases f0 )
also
have {..<p} = (λx . p − x − 1 ) ‘ {..<p}
proof safe
fix x
assume x < p
thus x ∈ (λx . p − x − 1 ) ‘ {..<p}
by (auto intro!: image eqI [where x = p − x − 1 ])

qed simp
from this
have ?sum a = (

∑
i<p. ((b−a) ˆ i / fact i) ∗R Df i a)

by (rule sum.reindex cong) (auto simp add : inj on def Dg def one)
finally show c: ?case .
case 2 show ?case using c integral unique
by (metis (lifting) add .commute diff eq eq integral unique)

case 3 show ?case using c by force
qed

6.15.19 Only need trivial subintervals if the interval itself is
trivial

proposition division of nontrivial :
fixes D :: ′a::euclidean space set set
assumes sdiv : D division of (cbox a b)

and cont0 : content (cbox a b) 6= 0
shows {k . k ∈ D ∧ content k 6= 0} division of (cbox a b)
using sdiv

proof (induction card D arbitrary : D rule: less induct)
case less
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note D = division ofD [OF less.prems]
{
presume ∗: {k ∈ D. content k 6= 0} 6= D =⇒ ?case
then show ?case
using less.prems by fastforce

}
assume noteq : {k ∈ D. content k 6= 0} 6= D
then obtain K c d where K ∈ D and contk : content K = 0 and keq : K =

cbox c d
using D(4 ) by blast

then have card D > 0
unfolding card gt 0 iff using less by auto

then have card : card (D − {K}) < card D
using less 〈K ∈ D〉 by (simp add : D(1 ))

have closed : closed (
⋃

(D − {K}))
using less.prems by auto

have x islimpt
⋃
(D − {K}) if x ∈ K for x

unfolding islimpt approachable
proof (intro allI impI )
fix e::real
assume e > 0
obtain i where i : c·i = d ·i i∈Basis
using contk D(3 ) [OF 〈K ∈ D〉] unfolding box ne empty keq
by (meson content eq 0 dual order .antisym)

then have xi : x ·i = d ·i
using 〈x ∈ K 〉 unfolding keq mem box by (metis antisym)

define y where y = (
∑

j∈Basis. (if j = i then if c·i ≤ (a·i + b·i)/2 then c·i
+

min e (b·i − c·i)/2 else c·i − min e (c·i − a·i)/2 else x ·j ) ∗R j )
show ∃ x ′∈

⋃
(D − {K}). x ′ 6= x ∧ dist x ′ x < e

proof (intro bexI conjI )
have d ∈ cbox c d
using D(3 )[OF 〈K ∈ D〉] by (simp add : box ne empty(1 ) keq mem box (2 ))

then have d ∈ cbox a b
using D(2 )[OF 〈K ∈ D〉] by (auto simp: keq)

then have di : a · i ≤ d · i ∧ d · i ≤ b · i
using 〈i ∈ Basis〉 mem box (2 ) by blast

then have xyi : y·i 6= x ·i
unfolding y def i xi using 〈e > 0 〉 cont0 〈i ∈ Basis〉

by (auto simp: content eq 0 elim!: ballE [of i ])
then show y 6= x
unfolding euclidean eq iff [where ′a= ′a] using i by auto

have norm (y−x ) ≤ (
∑

b∈Basis. |(y − x ) · b|)
by (rule norm le l1 )

also have ... = |(y − x ) · i | + (
∑

b ∈ Basis − {i}. |(y − x ) · b|)
by (meson finite Basis i(2 ) sum.remove)

also have ... < e + sum (λi . 0 ) Basis
proof (rule add less le mono)
show |(y−x ) · i | < e
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using di 〈e > 0 〉 y def i xi by (auto simp: inner simps)
show (

∑
i∈Basis − {i}. |(y−x ) · i |) ≤ (

∑
i∈Basis. 0 )

unfolding y def by (auto simp: inner simps)
qed
finally have norm (y−x ) < e + sum (λi . 0 ) Basis .
then show dist y x < e
unfolding dist norm by auto

have y /∈ K
unfolding keq mem box using i(1 ) i(2 ) xi xyi by fastforce

moreover have y ∈
⋃
D

using subsetD [OF D(2 )[OF 〈K ∈ D〉] 〈x ∈ K 〉] 〈e > 0 〉 di i
by (auto simp: D mem box y def field simps elim!: ballE [of i ])

ultimately show y ∈
⋃
(D − {K}) by auto

qed
qed
then have K ⊆

⋃
(D − {K})

using closed closed limpt by blast
then have

⋃
(D − {K}) = cbox a b

unfolding D(6 )[symmetric] by auto
then have D − {K} division of cbox a b
by (metis Diff subset less.prems division of subset D(6 ))

then have {ka ∈ D − {K}. content ka 6= 0} division of (cbox a b)
using card less.hyps by blast

moreover have {ka ∈ D − {K}. content ka 6= 0} = {K ∈ D. content K 6= 0}
using contk by auto

ultimately show ?case by auto
qed

6.15.20 Integrability on subintervals

lemma operative integrableI :
fixes f :: ′b::euclidean space ⇒ ′a::banach
assumes 0 ≤ e
shows operative conj True (λi . f integrable on i)

proof −
interpret comm monoid conj True
proof qed
show ?thesis
proof
show

∧
a b. box a b = {} =⇒ (f integrable on cbox a b) = True

by (simp add : content eq 0 interior integrable on null)
show

∧
a b c k .
k ∈ Basis =⇒
(f integrable on cbox a b) ←→
(f integrable on cbox a b ∩ {x . x · k ≤ c} ∧ f integrable on cbox a b ∩

{x . c ≤ x · k})
unfolding integrable on def by (auto intro!: has integral split)

qed
qed
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lemma integrable subinterval :
fixes f :: ′b::euclidean space ⇒ ′a::banach
assumes f : f integrable on cbox a b
and cd : cbox c d ⊆ cbox a b

shows f integrable on cbox c d
proof −
interpret operative conj True λi . f integrable on i
using order refl by (rule operative integrableI )

show ?thesis
proof (cases cbox c d = {})
case True
then show ?thesis
using division [symmetric] f by (auto simp: comm monoid set F and)

next
case False
then show ?thesis
by (metis cd comm monoid set F and division division of finite f partial division extend 1 )

qed
qed

lemma integrable subinterval real :
fixes f :: real ⇒ ′a::banach
assumes f integrable on {a..b}
and {c..d} ⊆ {a..b}

shows f integrable on {c..d}
by (metis assms box real(2 ) integrable subinterval)

6.15.21 Combining adjacent intervals in 1 dimension

lemma has integral combine:
fixes a b c :: real and j :: ′a::banach
assumes a ≤ c

and c ≤ b
and ac: (f has integral i) {a..c}
and cb: (f has integral j ) {c..b}

shows (f has integral (i + j )) {a..b}
proof −
interpret operative real lift option plus Some 0
λi . if f integrable on i then Some (integral i f ) else None
using operative integralI by (rule operative realI )

from 〈a ≤ c〉 〈c ≤ b〉 ac cb coalesce less eq
have ∗: lift option (+)

(if f integrable on {a..c} then Some (integral {a..c} f ) else None)
(if f integrable on {c..b} then Some (integral {c..b} f ) else None) =
(if f integrable on {a..b} then Some (integral {a..b} f ) else None)

by (auto simp: split : if split asm)
then have f integrable on cbox a b
using ac cb by (auto split : if split asm)
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with ∗
show ?thesis
using ac cb by (auto simp add : integrable on def integral unique split : if split asm)

qed

lemma integral combine:
fixes f :: real ⇒ ′a::banach
assumes a ≤ c
and c ≤ b
and ab: f integrable on {a..b}

shows integral {a..c} f + integral {c..b} f = integral {a..b} f
proof −
have (f has integral integral {a..c} f ) {a..c}
using ab 〈c ≤ b〉 integrable subinterval real by fastforce

moreover
have (f has integral integral {c..b} f ) {c..b}
using ab 〈a ≤ c〉 integrable subinterval real by fastforce

ultimately have (f has integral integral {a..c} f + integral {c..b} f ) {a..b}
using 〈a ≤ c〉 〈c ≤ b〉 has integral combine by blast

then show ?thesis
by (simp add : has integral integrable integral)

qed

lemma integrable combine:
fixes f :: real ⇒ ′a::banach
assumes a ≤ c
and c ≤ b
and f integrable on {a..c}
and f integrable on {c..b}

shows f integrable on {a..b}
using assms
unfolding integrable on def
by (auto intro!: has integral combine)

lemma integral minus sets:
fixes f ::real ⇒ ′a::banach
shows c ≤ a =⇒ c ≤ b =⇒ f integrable on {c .. max a b} =⇒
integral {c .. a} f − integral {c .. b} f =
(if a ≤ b then − integral {a .. b} f else integral {b .. a} f )

using integral combine[of c a b f ] integral combine[of c b a f ]
by (auto simp: algebra simps max def )

lemma integral minus sets ′:
fixes f ::real ⇒ ′a::banach
shows c ≥ a =⇒ c ≥ b =⇒ f integrable on {min a b .. c} =⇒
integral {a .. c} f − integral {b .. c} f =
(if a ≤ b then integral {a .. b} f else − integral {b .. a} f )

using integral combine[of b a c f ] integral combine[of a b c f ]
by (auto simp: algebra simps min def )
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6.15.22 Reduce integrability to ”local” integrability

lemma integrable on little subintervals:
fixes f :: ′b::euclidean space ⇒ ′a::banach
assumes ∀ x∈cbox a b. ∃ d>0 . ∀ u v . x ∈ cbox u v ∧ cbox u v ⊆ ball x d ∧ cbox

u v ⊆ cbox a b −→
f integrable on cbox u v

shows f integrable on cbox a b
proof −
interpret operative conj True λi . f integrable on i
using order refl by (rule operative integrableI )

have ∀ x . ∃ d>0 . x∈cbox a b −→ (∀ u v . x ∈ cbox u v ∧ cbox u v ⊆ ball x d ∧
cbox u v ⊆ cbox a b −→

f integrable on cbox u v)
using assms by (metis zero less one)

then obtain d where d :
∧
x . 0 < d x∧

x u v . [[x ∈ cbox a b; x ∈ cbox u v ; cbox u v ⊆ ball x (d x ); cbox u v ⊆ cbox
a b]]

=⇒ f integrable on cbox u v
by metis

obtain p where p: p tagged division of cbox a b (λx . ball x (d x )) fine p
using fine division exists[OF gauge ball dependent ,of d a b] d(1 ) by blast

then have sndp: snd ‘ p division of cbox a b
by (metis division of tagged division)

have f integrable on k if (x , k) ∈ p for x k
using tagged division ofD(2−4 )[OF p(1 ) that ] fineD [OF p(2 ) that ] d [of x ] by

auto
then show ?thesis
unfolding division [symmetric, OF sndp] comm monoid set F and
by auto

qed

6.15.23 Second FTC or existence of antiderivative

lemma integrable const [intro]: (λx . c) integrable on cbox a b
unfolding integrable on def by blast

lemma integral has vector derivative continuous at :
fixes f :: real ⇒ ′a::banach
assumes f : f integrable on {a..b}

and x : x ∈ {a..b} − S
and finite S
and fx : continuous (at x within ({a..b} − S )) f

shows ((λu. integral {a..u} f ) has vector derivative f x ) (at x within ({a..b} −
S ))
proof −
let ?I = λa b. integral {a..b} f
{ fix e::real
assume e > 0
obtain d where d>0 and d :

∧
x ′. [[x ′ ∈ {a..b} − S ; |x ′ − x | < d ]] =⇒ norm(f
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x ′ − f x ) ≤ e
using 〈e>0 〉 fx by (auto simp: continuous within eps delta dist norm less imp le)
have norm (integral {a..y} f − integral {a..x} f − (y−x ) ∗R f x ) ≤ e ∗ |y −

x | (is ?lhs ≤ ?rhs)
if y : y ∈ {a..b} − S and yx : |y − x | < d for y

proof (cases y < x )
case False
have f integrable on {a..y}
using f y by (simp add : integrable subinterval real)

then have Idiff : ?I a y − ?I a x = ?I x y
using False x by (simp add : algebra simps integral combine)

have fux int : ((λu. f u − f x ) has integral integral {x ..y} f − (y−x ) ∗R f x )
{x ..y}

proof (rule has integral diff )
show (f has integral integral {x ..y} f ) {x ..y}
using x y by (auto intro: integrable integral [OF integrable subinterval real

[OF f ]])
show ((λu. f x ) has integral (y − x ) ∗R f x ) {x ..y}
using has integral const real [of f x x y ] False by simp

qed
have ?lhs ≤ e ∗ content {x ..y}
using yx False d x y 〈e>0 〉 assms
by (intro has integral bound real [where f=(λu. f u − f x )]) (auto simp:

Idiff fux int)
also have ... ≤ ?rhs
using False by auto

finally show ?thesis .
next
case True
have f integrable on {a..x}
using f x by (simp add : integrable subinterval real)

then have Idiff : ?I a x − ?I a y = ?I y x
using True x y by (simp add : algebra simps integral combine)

have fux int : ((λu. f u − f x ) has integral integral {y ..x} f − (x − y) ∗R f
x ) {y ..x}

proof (rule has integral diff )
show (f has integral integral {y ..x} f ) {y ..x}
using x y by (auto intro: integrable integral [OF integrable subinterval real

[OF f ]])
show ((λu. f x ) has integral (x − y) ∗R f x ) {y ..x}
using has integral const real [of f x y x ] True by simp

qed
have norm (integral {a..x} f − integral {a..y} f − (x − y) ∗R f x ) ≤ e ∗

content {y ..x}
using yx True d x y 〈e>0 〉 assms
by (intro has integral bound real [where f=(λu. f u − f x )]) (auto simp:

Idiff fux int)
also have ... ≤ e ∗ |y − x |
using True by auto
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finally have norm (integral {a..x} f − integral {a..y} f − (x − y) ∗R f x )
≤ e ∗ |y − x | .

then show ?thesis
by (simp add : algebra simps norm minus commute)

qed
then have ∃ d>0 . ∀ y∈{a..b} − S . |y − x | < d −→ norm (integral {a..y} f

− integral {a..x} f − (y−x ) ∗R f x ) ≤ e ∗ |y − x |
using 〈d>0 〉 by blast

}
then show ?thesis
by (simp add : has vector derivative def has derivative within alt bounded linear scaleR left)

qed

lemma integral has vector derivative:
fixes f :: real ⇒ ′a::banach
assumes continuous on {a..b} f
and x ∈ {a..b}

shows ((λu. integral {a..u} f ) has vector derivative f (x )) (at x within {a..b})
using assms integral has vector derivative continuous at [OF integrable continuous real ]
by (fastforce simp: continuous on eq continuous within)

lemma integral has real derivative:
assumes continuous on {a..b} g
assumes t ∈ {a..b}
shows ((λx . integral {a..x} g) has real derivative g t) (at t within {a..b})
using integral has vector derivative[of a b g t ] assms
by (auto simp: has field derivative iff has vector derivative)

lemma antiderivative continuous:
fixes q b :: real
assumes continuous on {a..b} f
obtains g where

∧
x . x ∈ {a..b} =⇒ (g has vector derivative (f x :: ::banach))

(at x within {a..b})
using integral has vector derivative[OF assms] by auto

6.15.24 Combined fundamental theorem of calculus

lemma antiderivative integral continuous:
fixes f :: real ⇒ ′a::banach
assumes continuous on {a..b} f
obtains g where ∀ u∈{a..b}. ∀ v ∈ {a..b}. u ≤ v −→ (f has integral (g v − g

u)) {u..v}
proof −
obtain g
where g :

∧
x . x ∈ {a..b} =⇒ (g has vector derivative f x ) (at x within {a..b})

using antiderivative continuous[OF assms] by metis
have (f has integral g v − g u) {u..v} if u ∈ {a..b} v ∈ {a..b} u ≤ v for u v
proof −
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have
∧
x . x ∈ cbox u v =⇒ (g has vector derivative f x ) (at x within cbox u v)

by (metis atLeastAtMost iff atLeastatMost subset iff box real(2 ) g
has vector derivative within subset subsetCE that(1 ,2 ))

then show ?thesis
by (metis box real(2 ) that(3 ) fundamental theorem of calculus)

qed
then show ?thesis
using that by blast

qed

6.15.25 General ”twiddling” for interval-to-interval function
image

lemma has integral twiddle:
assumes 0 < r
and hg :

∧
x . h(g x ) = x

and gh:
∧
x . g(h x ) = x

and contg :
∧
x . continuous (at x ) g

and g :
∧
u v . ∃w z . g ‘ cbox u v = cbox w z

and h:
∧
u v . ∃w z . h ‘ cbox u v = cbox w z

and r :
∧
u v . content(g ‘ cbox u v) = r ∗ content (cbox u v)

and intfi : (f has integral i) (cbox a b)
shows ((λx . f (g x )) has integral (1 / r) ∗R i) (h ‘ cbox a b)

proof (cases cbox a b = {})
case True
then show ?thesis
using intfi by auto

next
case False
obtain w z where wz : h ‘ cbox a b = cbox w z
using h by blast

have inj : inj g inj h
using hg gh injI by metis+

from h obtain ha hb where h eq : h ‘ cbox a b = cbox ha hb by blast
have ∃ d . gauge d ∧ (∀ p. p tagged division of h ‘ cbox a b ∧ d fine p

−→ norm ((
∑

(x , k)∈p. content k ∗R f (g x )) − (1 / r) ∗R i) < e)
if e > 0 for e

proof −
have e ∗ r > 0 using that 〈0 < r 〉 by simp
with intfi [unfolded has integral ]
obtain d where gauge d

and d :
∧
p. p tagged division of cbox a b ∧ d fine p

=⇒ norm ((
∑

(x , k)∈p. content k ∗R f x ) − i) < e ∗ r
by metis

define d ′ where d ′ x = g −‘ d (g x ) for x
show ?thesis
proof (rule tac x=d ′ in exI , safe)
show gauge d ′

using 〈gauge d 〉 continuous open vimage[OF contg ] by (auto simp: gauge def
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d ′ def )
next
fix p
assume ptag : p tagged division of h ‘ cbox a b and finep: d ′ fine p
note p = tagged division ofD [OF ptag ]
have gab: g y ∈ cbox a b if y ∈ K (x , K ) ∈ p for x y K
by (metis hg inj (2 ) inj image mem iff p(3 ) subsetCE that that)

have gimp: (λ(x ,K ). (g x , g ‘ K )) ‘ p tagged division of (cbox a b) ∧
d fine (λ(x , k). (g x , g ‘ k)) ‘ p

unfolding tagged division of
proof safe
show finite ((λ(x , k). (g x , g ‘ k)) ‘ p)
using ptag by auto

show d fine (λ(x , k). (g x , g ‘ k)) ‘ p
using finep unfolding fine def d ′ def by auto

next
fix x k
assume xk : (x , k) ∈ p
show g x ∈ g ‘ k
using p(2 )[OF xk ] by auto

show ∃ u v . g ‘ k = cbox u v
using p(4 )[OF xk ] using assms(5−6 ) by auto

fix x ′ K ′ u
assume xk ′: (x ′, K ′) ∈ p and u: u ∈ interior (g ‘ k) u ∈ interior (g ‘ K ′)
have interior k ∩ interior K ′ 6= {}
proof
assume interior k ∩ interior K ′ = {}
moreover have u ∈ g ‘ (interior k ∩ interior K ′)
using interior image subset [OF 〈inj g〉 contg ] u
unfolding image Int [OF inj (1 )] by blast

ultimately show False by blast
qed
then have same: (x , k) = (x ′, K ′)
using ptag xk ′ xk by blast

then show g x = g x ′

by auto
show g u ∈ g ‘ K ′if u ∈ k for u
using that same by auto

show g u ∈ g ‘ k if u ∈ K ′ for u
using that same by auto

next
fix x
assume x ∈ cbox a b
then have h x ∈

⋃
{k . ∃ x . (x , k) ∈ p}

using p(6 ) by auto
then obtain X y where h x ∈ X (y , X ) ∈ p by blast
then show x ∈

⋃
{k . ∃ x . (x , k) ∈ (λ(x , k). (g x , g ‘ k)) ‘ p}

by clarsimp (metis (no types, lifting) gh image eqI pair imageI )
qed (use gab in auto)
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have ∗: inj on (λ(x , k). (g x , g ‘ k)) p
using inj (1 ) unfolding inj on def by fastforce

have (
∑

(x ,K )∈(λ(y ,L). (g y , g ‘ L)) ‘ p. content K ∗R f x )
= (

∑
u∈p. case case u of (x ,K ) ⇒ (g x , g ‘ K ) of (y ,L) ⇒ content L ∗R

f y)
by (metis (mono tags, lifting) ∗ sum.reindex cong)

also have ... = (
∑

(x ,K )∈p. r ∗R content K ∗R f (g x ))
using r by (auto intro!: ∗ sum.cong simp: bij betw def dest !: p(4 ))

finally
have (

∑
(x , K )∈(λ(x ,K ). (g x , g ‘ K )) ‘ p. content K ∗R f x ) − i = r ∗R

(
∑

(x ,K )∈p. content K ∗R f (g x )) − i
by (simp add : scaleR right .sum split def )

also have . . . = r ∗R ((
∑

(x ,K )∈p. content K ∗R f (g x )) − (1 / r) ∗R i)
using 〈0 < r 〉 by (auto simp: scaleR diff right)

finally show norm ((
∑

(x ,K )∈p. content K ∗R f (g x )) − (1 / r) ∗R i) < e
using d [OF gimp] 〈0 < r 〉 by auto

qed
qed
then show ?thesis
by (auto simp: h eq has integral)

qed

6.15.26 Special case of a basic affine transformation

lemma AE lborel inner neq :
assumes k : k ∈ Basis
shows AE x in lborel . x · k 6= c

proof −
interpret finite product sigma finite λ . lborel Basis
proof qed simp
have emeasure lborel {x∈space lborel . x · k = c}

= emeasure (ΠM j :: ′a∈Basis. lborel) (ΠE j∈Basis. if j = k then {c} else
UNIV )

using k
by (auto simp add : lborel eq [where ′a= ′a] emeasure distr intro!: arg cong2 [where

f=emeasure])
(auto simp: space PiM PiE iff extensional def split : if split asm)

also have . . . = (
∏

j∈Basis. emeasure lborel (if j = k then {c} else UNIV ))
by (intro measure times) auto

also have . . . = 0
by (intro prod zero bexI [OF k ]) auto

finally show ?thesis
by (subst AE iff measurable[OF refl ]) auto

qed

lemma content image stretch interval :
fixes m :: ′a::euclidean space ⇒ real
defines s f x ≡ (

∑
k :: ′a∈Basis. (f k ∗ (x ·k)) ∗R k)

shows content (s m ‘ cbox a b) = |
∏

k∈Basis. m k | ∗ content (cbox a b)
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proof cases
have s[measurable]: s f ∈ borel →M borel for f
by (auto simp: s def [abs def ])

assume m: ∀ k∈Basis. m k 6= 0
then have s comp s: s (λk . 1 / m k) ◦ s m = id s m ◦ s (λk . 1 / m k) = id
by (auto simp: s def [abs def ] fun eq iff euclidean representation)

then have inv (s (λk . 1 / m k)) = s m bij (s (λk . 1 / m k))
by (auto intro: inv unique comp o bij )

then have eq : s m ‘ cbox a b = s (λk . 1 / m k) −‘ cbox a b
using bij vimage eq inv image[OF 〈bij (s (λk . 1 / m k))〉, of cbox a b] by auto

show ?thesis
using m unfolding eq measure def
by (subst lborel affine euclidean[where c=m and t=0 ])
(simp all add : emeasure density measurable sets borel [OF s] abs prod nn integral cmult

s def [symmetric] emeasure distr vimage comp s comp s enn2real mult
prod nonneg)
next
assume ¬ (∀ k∈Basis. m k 6= 0 )
then obtain k where k : k ∈ Basis m k = 0 by auto
then have [simp]: (

∏
k∈Basis. m k) = 0

by (intro prod zero) auto
have emeasure lborel {x∈space lborel . x ∈ s m ‘ cbox a b} = 0
proof (rule emeasure eq 0 AE )
show AE x in lborel . x /∈ s m ‘ cbox a b
using AE lborel inner neq [OF 〈k∈Basis〉]

proof eventually elim
show x · k 6= 0 =⇒ x /∈ s m ‘ cbox a b for x
using k by (auto simp: s def [abs def ] cbox def )

qed
qed
then show ?thesis
by (simp add : measure def )

qed

lemma interval image affinity interval :
∃ u v . (λx . m ∗R (x :: ′a::euclidean space) + c) ‘ cbox a b = cbox u v
unfolding image affinity cbox
by auto

lemma content image affinity cbox :
content((λx :: ′a::euclidean space. m ∗R x + c) ‘ cbox a b) =
|m| ˆ DIM ( ′a) ∗ content (cbox a b) (is ?l = ?r)

proof (cases cbox a b = {})
case True then show ?thesis by simp

next
case False
show ?thesis
proof (cases m ≥ 0 )
case True
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with 〈cbox a b 6= {}〉 have cbox (m ∗R a + c) (m ∗R b + c) 6= {}
by (simp add : box ne empty inner left distrib mult left mono)

moreover from True have ∗:
∧
i . (m ∗R b + c) · i − (m ∗R a + c) · i = m

∗R (b−a) · i
by (simp add : inner simps field simps)

ultimately show ?thesis
by (simp add : image affinity cbox True content cbox ′

prod .distrib inner diff left)
next
case False
with 〈cbox a b 6= {}〉 have cbox (m ∗R b + c) (m ∗R a + c) 6= {}
by (simp add : box ne empty inner left distrib mult left mono)

moreover from False have ∗:
∧
i . (m ∗R a + c) · i − (m ∗R b + c) · i =

(−m) ∗R (b−a) · i
by (simp add : inner simps field simps)

ultimately show ?thesis using False
by (simp add : image affinity cbox content cbox ′

prod .distrib[symmetric] inner diff left flip: prod constant)
qed

qed

lemma has integral affinity :
fixes a :: ′a::euclidean space
assumes (f has integral i) (cbox a b)

and m 6= 0
shows ((λx . f (m ∗R x + c)) has integral (1 / (|m| ˆ DIM ( ′a))) ∗R i) ((λx . (1

/ m) ∗R x + −((1 / m) ∗R c)) ‘ cbox a b)
proof (rule has integral twiddle)
show ∃w z . (λx . (1 / m) ∗R x + − ((1 / m) ∗R c)) ‘ cbox u v = cbox w z
∃w z . (λx . m ∗R x + c) ‘ cbox u v = cbox w z for u v

using interval image affinity interval by blast+
show content ((λx . m ∗R x + c) ‘ cbox u v) = |m| ˆ DIM ( ′a) ∗ content (cbox

u v) for u v
using content image affinity cbox by blast

qed (use assms zero less power in 〈auto simp: field simps〉)

lemma integrable affinity :
assumes f integrable on cbox a b
and m 6= 0

shows (λx . f (m ∗R x + c)) integrable on ((λx . (1 / m) ∗R x + −((1/m) ∗R
c)) ‘ cbox a b)
using has integral affinity assms
unfolding integrable on def by blast

lemmas has integral affinity01 = has integral affinity [of 0 1 ::real , simplified ]

lemma integrable on affinity :
assumes m 6= 0 f integrable on (cbox a b)
shows (λx . f (m ∗R x + c)) integrable on ((λx . (1 / m) ∗R x − ((1 / m) ∗R
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c)) ‘ cbox a b)
proof −
from assms obtain I where (f has integral I ) (cbox a b)
by (auto simp: integrable on def )

from has integral affinity [OF this assms(1 ), of c] show ?thesis
by (auto simp: integrable on def )

qed

lemma has integral cmul iff :
assumes c 6= 0
shows ((λx . c ∗R f x ) has integral (c ∗R I )) A ←→ (f has integral I ) A
using assms has integral cmul [of f I A c]

has integral cmul [of λx . c ∗R f x c ∗R I A inverse c] by (auto simp:
field simps)

lemma has integral affinity ′:
fixes a :: ′a::euclidean space
assumes (f has integral i) (cbox a b) and m > 0
shows ((λx . f (m ∗R x + c)) has integral (i /R m ˆ DIM ( ′a)))

(cbox ((a − c) /R m) ((b − c) /R m))
proof (cases cbox a b = {})
case True
hence (cbox ((a − c) /R m) ((b − c) /R m)) = {}
using 〈m > 0 〉 unfolding box eq empty by (auto simp: algebra simps)

with True and assms show ?thesis by simp
next
case False
have ((λx . f (m ∗R x + c)) has integral (1 / |m| ˆ DIM ( ′a)) ∗R i)

((λx . (1 / m) ∗R x + − ((1 / m) ∗R c)) ‘ cbox a b)
using assms by (intro has integral affinity) auto

also have ((λx . (1 / m) ∗R x + − ((1 / m) ∗R c)) ‘ cbox a b) =
((λx . − ((1 / m) ∗R c) + x ) ‘ (λx . (1 / m) ∗R x ) ‘ cbox a b)

by (simp add : image image algebra simps)
also have (λx . (1 / m) ∗R x ) ‘ cbox a b = cbox ((1 / m) ∗R a) ((1 / m) ∗R b)

using 〈m > 0 〉 False
by (subst image smult cbox ) simp all

also have (λx . − ((1 / m) ∗R c) + x ) ‘ . . . = cbox ((a − c) /R m) ((b − c)
/R m)

by (subst cbox translation [symmetric]) (simp add : field simps vector add divide simps)
finally show ?thesis using 〈m > 0 〉 by (simp add : field simps)

qed

lemma has integral affinity iff :
fixes f :: ′a :: euclidean space ⇒ ′b :: real normed vector
assumes m > 0
shows ((λx . f (m ∗R x + c)) has integral (I /R m ˆ DIM ( ′a)))

(cbox ((a − c) /R m) ((b − c) /R m)) ←→
(f has integral I ) (cbox a b) (is ?lhs = ?rhs)

proof
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assume ?lhs
from has integral affinity ′[OF this, of 1 / m −c /R m] and 〈m > 0 〉

show ?rhs by (simp add : vector add divide simps) (simp add : field simps)
next
assume ?rhs
from has integral affinity ′[OF this, of m c] and 〈m > 0 〉

show ?lhs by simp
qed

6.15.27 Special case of stretching coordinate axes separately

lemma has integral stretch:
fixes f :: ′a::euclidean space ⇒ ′b::real normed vector
assumes (f has integral i) (cbox a b)
and ∀ k∈Basis. m k 6= 0

shows ((λx . f (
∑

k∈Basis. (m k ∗ (x ·k))∗R k)) has integral
((1/ |prod m Basis|) ∗R i)) ((λx . (

∑
k∈Basis. (1 / m k ∗ (x ·k))∗R k)) ‘

cbox a b)
apply (rule has integral twiddle[where f=f ])
unfolding zero less abs iff content image stretch interval
unfolding image stretch interval empty as interval euclidean eq iff [where ′a= ′a]
using assms
by auto

lemma has integral stretch real :
fixes f :: real ⇒ ′b::real normed vector
assumes (f has integral i) {a..b} and m 6= 0
shows ((λx . f (m ∗ x )) has integral (1 / |m|) ∗R i) ((λx . x / m) ‘ {a..b})
using has integral stretch [of f i a b λb. m] assms by simp

lemma integrable stretch:
fixes f :: ′a::euclidean space ⇒ ′b::real normed vector
assumes f integrable on cbox a b
and ∀ k∈Basis. m k 6= 0

shows (λx :: ′a. f (
∑

k∈Basis. (m k ∗ (x ·k))∗R k)) integrable on
((λx .

∑
k∈Basis. (1 / m k ∗ (x ·k))∗R k) ‘ cbox a b)

using assms unfolding integrable on def
by (force dest : has integral stretch)

lemma vec lambda eq sum:
(χ k . f k (x $ k)) = (

∑
k∈Basis. (f (axis index k) (x · k)) ∗R k) (is ?lhs =

?rhs)
proof −
have ?lhs = (χ k . f k (x · axis k 1 ))
by (simp add : cart eq inner axis)

also have ... = (
∑

u∈UNIV . f u (x · axis u 1 ) ∗R axis u 1 )
by (simp add : vec eq iff axis def if distrib cong : if cong)

also have ... = ?rhs
by (simp add : Basis vec def UNION singleton eq range sum.reindex axis eq axis
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inj on def )
finally show ?thesis .

qed

lemma has integral stretch cart :
fixes m :: ′n::finite ⇒ real
assumes f : (f has integral i) (cbox a b) and m:

∧
k . m k 6= 0

shows ((λx . f (χ k . m k ∗ x$k)) has integral i /R |prod m UNIV |)
((λx . χ k . x$k / m k) ‘ (cbox a b))

proof −
have ∗: ∀ k :: realˆ ′n ∈ Basis. m (axis index k) 6= 0
using axis index by (simp add : m)

have eqp: (
∏

k :: realˆ ′n ∈ Basis. m (axis index k)) = prod m UNIV
by (simp add : Basis vec def UNION singleton eq range prod .reindex axis eq axis

inj on def )
show ?thesis
using has integral stretch [OF f ∗] vec lambda eq sum [where f=λi x . m i ∗

x ] vec lambda eq sum [where f=λi x . x / m i ]
by (simp add : field simps eqp)

qed

lemma image stretch interval cart :
fixes m :: ′n::finite ⇒ real
shows (λx . χ k . m k ∗ x$k) ‘ cbox a b =

(if cbox a b = {} then {}
else cbox (χ k . min (m k ∗ a$k) (m k ∗ b$k)) (χ k . max (m k ∗ a$k)

(m k ∗ b$k)))
proof −
have ∗: (

∑
k∈Basis. min (m (axis index k) ∗ (a · k)) (m (axis index k) ∗ (b ·

k)) ∗R k)
= (χ k . min (m k ∗ a $ k) (m k ∗ b $ k))

(
∑

k∈Basis. max (m (axis index k) ∗ (a · k)) (m (axis index k) ∗ (b · k))
∗R k)

= (χ k . max (m k ∗ a $ k) (m k ∗ b $ k))
apply (simp all add : Basis vec def cart eq inner axis UNION singleton eq range

sum.reindex axis eq axis inj on def )
apply (simp all add : vec eq iff axis def if distrib cong : if cong)
done

show ?thesis
by (simp add : vec lambda eq sum [where f=λi x . m i ∗ x ] image stretch interval

eq cbox ∗)
qed

6.15.28 even more special cases

lemma uminus interval vector [simp]:
fixes a b :: ′a::euclidean space
shows uminus ‘ cbox a b = cbox (−b) (−a)

proof −
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have x ∈ uminus ‘ cbox a b if x ∈ cbox (− b) (− a) for x
proof −
have −x ∈ cbox a b
using that by (auto simp: mem box )

then show ?thesis
by force

qed
then show ?thesis
by (auto simp: mem box )

qed

lemma has integral reflect lemma[intro]:
assumes (f has integral i) (cbox a b)
shows ((λx . f (−x )) has integral i) (cbox (−b) (−a))
using has integral affinity [OF assms, of −1 0 ]
by auto

lemma has integral reflect lemma real [intro]:
assumes (f has integral i) {a..b::real}
shows ((λx . f (−x )) has integral i) {−b .. −a}
using assms
unfolding box real [symmetric]
by (rule has integral reflect lemma)

lemma has integral reflect [simp]:
((λx . f (−x )) has integral i) (cbox (−b) (−a)) ←→ (f has integral i) (cbox a b)
by (auto dest : has integral reflect lemma)

lemma has integral reflect real [simp]:
fixes a b::real
shows ((λx . f (−x )) has integral i) {−b..−a} ←→ (f has integral i) {a..b}
by (metis has integral reflect interval cbox )

lemma integrable reflect [simp]: (λx . f (−x )) integrable on cbox (−b) (−a) ←→ f
integrable on cbox a b
unfolding integrable on def by auto

lemma integrable reflect real [simp]: (λx . f (−x )) integrable on {−b .. −a} ←→ f
integrable on {a..b::real}
unfolding box real [symmetric]
by (rule integrable reflect)

lemma integral reflect [simp]: integral (cbox (−b) (−a)) (λx . f (−x )) = integral
(cbox a b) f
unfolding integral def by auto

lemma integral reflect real [simp]: integral {−b .. −a} (λx . f (−x )) = integral
{a..b::real} f
unfolding box real [symmetric]
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by (rule integral reflect)

6.15.29 Stronger form of FCT; quite a tedious proof

lemma split minus[simp]: (λ(x , k). f x k) x − (λ(x , k). g x k) x = (λ(x , k). f x k
− g x k) x
by (simp add : split def )

theorem fundamental theorem of calculus interior :
fixes f :: real ⇒ ′a::real normed vector
assumes a ≤ b
and contf : continuous on {a..b} f
and derf :

∧
x . x ∈ {a <..< b} =⇒ (f has vector derivative f ′ x ) (at x )

shows (f ′ has integral (f b − f a)) {a..b}
proof (cases a = b)
case True
then have ∗: cbox a b = {b} f b − f a = 0
by (auto simp add : order antisym)

with True show ?thesis by auto
next
case False
with 〈a ≤ b〉 have ab: a < b by arith
show ?thesis
unfolding has integral factor content real

proof (intro allI impI )
fix e :: real
assume e: e > 0
then have eba8 : (e ∗ (b−a)) / 8 > 0
using ab by (auto simp add : field simps)
note derf exp = derf [unfolded has vector derivative def has derivative at alt ,

THEN conjunct2 , rule format ]
thm derf exp
have bounded :

∧
x . x ∈ {a<..<b} =⇒ bounded linear (λu. u ∗R f ′ x )

by (simp add : bounded linear scaleR left)
have ∀ x ∈ box a b. ∃ d>0 . ∀ y . norm (y−x ) < d −→ norm (f y − f x − (y−x )

∗R f ′ x ) ≤ e/2 ∗ norm (y−x )
(is ∀ x ∈ box a b. ?Q x ) — The explicit quantifier is required by the following

step
proof
fix x assume x ∈ box a b
with e show ?Q x
using derf exp [of x e/2 ] by auto

qed
then obtain d where d :

∧
x . 0 < d x∧

x y . [[x ∈ box a b; norm (y−x ) < d x ]] =⇒ norm (f y − f x − (y−x ) ∗R f ′

x ) ≤ e/2 ∗ norm (y−x )
unfolding bgauge existence lemma by metis

have bounded (f ‘ cbox a b)
using compact cbox assms by (auto simp: compact imp bounded compact continuous image)
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then obtain B
where 0 < B and B :

∧
x . x ∈ f ‘ cbox a b =⇒ norm x ≤ B

unfolding bounded pos by metis
obtain da where 0 < da
and da:

∧
c. [[a ≤ c; {a..c} ⊆ {a..b}; {a..c} ⊆ ball a da]]

=⇒ norm (content {a..c} ∗R f ′ a − (f c − f a)) ≤ (e ∗
(b−a)) / 4

proof −
have continuous (at a within {a..b}) f
using contf continuous on eq continuous within by force

with eba8 obtain k where 0 < k
and k :

∧
x . [[x ∈ {a..b}; 0 < norm (x−a); norm (x−a) < k ]] =⇒ norm (f

x − f a) < e ∗ (b−a) / 8
unfolding continuous within Lim within dist norm by metis

obtain l where l : 0 < l norm (l ∗R f ′ a) ≤ e ∗ (b−a) / 8
proof (cases f ′ a = 0 )
case True with ab e that show ?thesis by auto

next
case False
show ?thesis
proof
show norm ((e ∗ (b − a) / 8 / norm (f ′ a)) ∗R f ′ a) ≤ e ∗ (b − a) / 8

0 < e ∗ (b − a) / 8 / norm (f ′ a)
using False ab e by (auto simp add : field simps)

qed
qed
have norm (content {a..c} ∗R f ′ a − (f c − f a)) ≤ e ∗ (b−a) / 4
if a ≤ c {a..c} ⊆ {a..b} and bmin: {a..c} ⊆ ball a (min k l) for c

proof −
have minkl : |a − x | < min k l if x ∈ {a..c} for x
using bmin dist real def that by auto

then have lel : |c − a| ≤ |l |
using that by force

have norm ((c − a) ∗R f ′ a − (f c − f a)) ≤ norm ((c − a) ∗R f ′ a) +
norm (f c − f a)

by (rule norm triangle ineq4 )
also have . . . ≤ e ∗ (b−a) / 8 + e ∗ (b−a) / 8
proof (rule add mono)
have norm ((c − a) ∗R f ′ a) ≤ norm (l ∗R f ′ a)
by (auto intro: mult right mono [OF lel ])

also have ... ≤ e ∗ (b−a) / 8
by (rule l)

finally show norm ((c − a) ∗R f ′ a) ≤ e ∗ (b−a) / 8 .
next
have norm (f c − f a) < e ∗ (b−a) / 8
proof (cases a = c)
case True then show ?thesis
using eba8 by auto

next
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case False show ?thesis
by (rule k) (use minkl 〈a ≤ c〉 that False in auto)

qed
then show norm (f c − f a) ≤ e ∗ (b−a) / 8 by simp

qed
finally show norm (content {a..c} ∗R f ′ a − (f c − f a)) ≤ e ∗ (b−a) / 4
unfolding content real [OF 〈a ≤ c〉] by auto

qed
then show ?thesis
by (rule tac da=min k l in that) (auto simp: l 〈0 < k 〉)

qed
obtain db where 0 < db
and db:

∧
c. [[c ≤ b; {c..b} ⊆ {a..b}; {c..b} ⊆ ball b db]]

=⇒ norm (content {c..b} ∗R f ′ b − (f b − f c)) ≤ (e ∗ (b−a))
/ 4

proof −
have continuous (at b within {a..b}) f
using contf continuous on eq continuous within by force

with eba8 obtain k
where 0 < k
and k :

∧
x . [[x ∈ {a..b}; 0 < norm(x−b); norm(x−b) < k ]]
=⇒ norm (f b − f x ) < e ∗ (b−a) / 8

unfolding continuous within Lim within dist norm norm minus commute
by metis

obtain l where l : 0 < l norm (l ∗R f ′ b) ≤ (e ∗ (b−a)) / 8
proof (cases f ′ b = 0 )
case True thus ?thesis
using ab e that by auto

next
case False show ?thesis
proof
show norm ((e ∗ (b − a) / 8 / norm (f ′ b)) ∗R f ′ b) ≤ e ∗ (b − a) / 8

0 < e ∗ (b − a) / 8 / norm (f ′ b)
using False ab e by (auto simp add : field simps)

qed
qed
have norm (content {c..b} ∗R f ′ b − (f b − f c)) ≤ e ∗ (b−a) / 4
if c ≤ b {c..b} ⊆ {a..b} and bmin: {c..b} ⊆ ball b (min k l) for c

proof −
have minkl : |b − x | < min k l if x ∈ {c..b} for x
using bmin dist real def that by auto

then have lel : |b − c| ≤ |l |
using that by force
have norm ((b − c) ∗R f ′ b − (f b − f c)) ≤ norm ((b − c) ∗R f ′ b) +

norm (f b − f c)
by (rule norm triangle ineq4 )

also have . . . ≤ e ∗ (b−a) / 8 + e ∗ (b−a) / 8
proof (rule add mono)
have norm ((b − c) ∗R f ′ b) ≤ norm (l ∗R f ′ b)
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by (auto intro: mult right mono [OF lel ])
also have ... ≤ e ∗ (b−a) / 8
by (rule l)

finally show norm ((b − c) ∗R f ′ b) ≤ e ∗ (b−a) / 8 .
next
have norm (f b − f c) < e ∗ (b−a) / 8
proof (cases b = c)
case True with eba8 show ?thesis
by auto

next
case False show ?thesis
by (rule k) (use minkl 〈c ≤ b〉 that False in auto)

qed
then show norm (f b − f c) ≤ e ∗ (b−a) / 8 by simp

qed
finally show norm (content {c..b} ∗R f ′ b − (f b − f c)) ≤ e ∗ (b−a) / 4
unfolding content real [OF 〈c ≤ b〉] by auto

qed
then show ?thesis
by (rule tac db=min k l in that) (auto simp: l 〈0 < k 〉)

qed
let ?d = (λx . ball x (if x=a then da else if x=b then db else d x ))
show ∃ d . gauge d ∧ (∀ p. p tagged division of {a..b} ∧ d fine p −→

norm ((
∑

(x ,K )∈p. content K ∗R f ′ x ) − (f b − f a)) ≤ e ∗ content
{a..b})

proof (rule exI , safe)
show gauge ?d
using ab 〈db > 0 〉 〈da > 0 〉 d(1 ) by (auto intro: gauge ball dependent)

next
fix p
assume ptag : p tagged division of {a..b} and fine: ?d fine p
let ?A = {t . fst t ∈ {a, b}}
note p = tagged division ofD [OF ptag ]
have pA: p = (p ∩ ?A) ∪ (p − ?A) finite (p ∩ ?A) finite (p − ?A) (p ∩ ?A)

∩ (p − ?A) = {}
using ptag fine by auto

have le xz :
∧
w x y z ::real . y ≤ z/2 =⇒ w − x ≤ z/2 =⇒ w + y ≤ x + z

by arith
have non: False if xk : (x ,K ) ∈ p and x 6= a x 6= b
and less: e ∗ (Sup K − Inf K )/2 < norm (content K ∗R f ′ x − (f (Sup

K ) − f (Inf K )))
for x K
proof −
obtain u v where k : K = cbox u v
using p(4 ) xk by blast

then have u ≤ v and uv : {u, v} ⊆ cbox u v
using p(2 )[OF xk ] by auto

then have result : e ∗ (v − u)/2 < norm ((v − u) ∗R f ′ x − (f v − f u))
using less[unfolded k box real interval bounds real content real ] by auto
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then have x ∈ box a b
using p(2 ) p(3 ) 〈x 6= a〉 〈x 6= b〉 xk by fastforce

with d have ∗:
∧
y . norm (y−x ) < d x

=⇒ norm (f y − f x − (y−x ) ∗R f ′ x ) ≤ e/2 ∗ norm (y−x )
by metis

have xd : norm (u − x ) < d x norm (v − x ) < d x
using fineD [OF fine xk ] 〈x 6= a〉 〈x 6= b〉 uv
by (auto simp add : k subset eq dist commute dist real def )

have norm ((v − u) ∗R f ′ x − (f v − f u)) =
norm ((f u − f x − (u − x ) ∗R f ′ x ) − (f v − f x − (v − x ) ∗R f ′ x ))

by (rule arg cong [where f=norm]) (auto simp: scaleR left .diff )
also have . . . ≤ e/2 ∗ norm (u − x ) + e/2 ∗ norm (v − x )
by (metis norm triangle le diff add mono ∗ xd)

also have . . . ≤ e/2 ∗ norm (v − u)
using p(2 )[OF xk ] by (auto simp add : field simps k)

also have . . . < norm ((v − u) ∗R f ′ x − (f v − f u))
using result by (simp add : 〈u ≤ v 〉)

finally have e ∗ (v − u)/2 < e ∗ (v − u)/2
using uv by auto

then show False by auto
qed
have norm (

∑
(x , K )∈p − ?A. content K ∗R f ′ x − (f (Sup K ) − f (Inf

K )))
≤ (

∑
(x , K )∈p − ?A. norm (content K ∗R f ′ x − (f (Sup K ) − f (Inf

K ))))
by (auto intro: sum norm le)

also have ... ≤ (
∑

n∈p − ?A. e ∗ (case n of (x , k) ⇒ Sup k − Inf k)/2 )
using non by (fastforce intro: sum mono)

finally have I : norm (
∑

(x , k)∈p − ?A.
content k ∗R f ′ x − (f (Sup k) − f (Inf k)))

≤ (
∑

n∈p − ?A. e ∗ (case n of (x , k) ⇒ Sup k − Inf k))/2
by (simp add : sum divide distrib)

have II : norm (
∑

(x , k)∈p ∩ ?A. content k ∗R f ′ x − (f (Sup k) − f (Inf
k))) −

(
∑

n∈p ∩ ?A. e ∗ (case n of (x , k) ⇒ Sup k − Inf k))
≤ (

∑
n∈p − ?A. e ∗ (case n of (x , k) ⇒ Sup k − Inf k))/2

proof −
have ge0 : 0 ≤ e ∗ (Sup k − Inf k) if xkp: (x , k) ∈ p ∩ ?A for x k
proof −
obtain u v where uv : k = cbox u v
by (meson Int iff xkp p(4 ))

with p(2 ) that uv have cbox u v 6= {}
by blast

then show 0 ≤ e ∗ ((Sup k) − (Inf k))
unfolding uv using e by (auto simp add : field simps)

qed
let ?B = λx . {t ∈ p. fst t = x ∧ content (snd t) 6= 0}
let ?C = {t ∈ p. fst t ∈ {a, b} ∧ content (snd t) 6= 0}
have norm (

∑
(x , k)∈p ∩ {t . fst t ∈ {a, b}}. content k ∗R f ′ x − (f (Sup
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k) − f (Inf k))) ≤ e ∗ (b−a)/2
proof −
have ∗:

∧
S f e. sum f S = sum f (p ∩ ?C ) =⇒ norm (sum f (p ∩ ?C ))

≤ e =⇒ norm (sum f S ) ≤ e
by auto

have 1 : content K ∗R (f ′ x ) − (f ((Sup K )) − f ((Inf K ))) = 0
if (x ,K ) ∈ p ∩ {t . fst t ∈ {a, b}} − p ∩ ?C for x K

proof −
have xk : (x ,K ) ∈ p and k0 : content K = 0
using that by auto

then obtain u v where uv : K = cbox u v
using p(4 ) by blast

then have u = v
using xk k0 p(2 ) by force

then show content K ∗R (f ′ x ) − (f ((Sup K )) − f ((Inf K ))) = 0
using xk unfolding uv by auto

qed
have 2 : norm(

∑
(x ,K )∈p ∩ ?C . content K ∗R f ′ x − (f (Sup K ) − f

(Inf K ))) ≤ e ∗ (b−a)/2
proof −
have norm le: norm (sum f S ) ≤ e
if

∧
x y . [[x ∈ S ; y ∈ S ]] =⇒ x = y

∧
x . x ∈ S =⇒ norm (f x ) ≤ e e

> 0
for S f and e :: real

proof (cases S = {})
case True
with that show ?thesis by auto

next
case False then obtain x where x ∈ S
by auto

then have S = {x}
using that(1 ) by auto

then show ?thesis
using 〈x ∈ S 〉 that(2 ) by auto

qed
have ∗: p ∩ ?C = ?B a ∪ ?B b
by blast

then have norm (
∑

(x ,K )∈p ∩ ?C . content K ∗R f ′ x − (f (Sup K )
− f (Inf K ))) =

norm (
∑

(x ,K ) ∈ ?B a ∪ ?B b. content K ∗R f ′ x − (f (Sup
K ) − f (Inf K )))

by simp
also have ... = norm ((

∑
(x ,K ) ∈ ?B a. content K ∗R f ′ x − (f (Sup

K ) − f (Inf K ))) +
(
∑

(x ,K ) ∈ ?B b. content K ∗R f ′ x − (f (Sup K ) −
f (Inf K ))))

using p(1 ) ab e by (subst sum.union disjoint) auto
also have ... ≤ e ∗ (b − a) / 4 + e ∗ (b − a) / 4
proof (rule norm triangle le [OF add mono])
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have pa: ∃ v . k = cbox a v ∧ a ≤ v if (a, k) ∈ p for k
using p(2 ) p(3 ) p(4 ) that by fastforce
show norm (

∑
(x ,K ) ∈ ?B a. content K ∗R f ′ x − (f (Sup K ) − f

(Inf K ))) ≤ e ∗ (b − a) / 4
proof (intro norm le; clarsimp)
fix K K ′

assume K : (a, K ) ∈ p (a, K ′) ∈ p and ne0 : content K 6= 0 content
K ′ 6= 0

with pa obtain v v ′ where v : K = cbox a v a ≤ v and v ′: K ′ =
cbox a v ′ a ≤ v ′

by blast
let ?v = min v v ′

have box a ?v ⊆ K ∩ K ′

unfolding v v ′ by (auto simp add : mem box )
then have interior (box a (min v v ′)) ⊆ interior K ∩ interior K ′

using interior Int interior mono by blast
moreover have (a + ?v)/2 ∈ box a ?v
using ne0 unfolding v v ′ content eq 0 not le
by (auto simp add : mem box )

ultimately have (a + ?v)/2 ∈ interior K ∩ interior K ′

unfolding interior open[OF open box ] by auto
then show K = K ′

using p(5 )[OF K ] by auto
next
fix K
assume K : (a, K ) ∈ p and ne0 : content K 6= 0
show norm (content c ∗R f ′ a − (f (Sup c) − f (Inf c))) ∗ 4 ≤ e ∗

(b−a)
if (a, c) ∈ p and ne0 : content c 6= 0 for c

proof −
obtain v where v : c = cbox a v and a ≤ v
using pa[OF 〈(a, c) ∈ p〉] by metis

then have a ∈ {a..v} v ≤ b
using p(3 )[OF 〈(a, c) ∈ p〉] by auto

moreover have {a..v} ⊆ ball a da
using fineD [OF 〈?d fine p〉 〈(a, c) ∈ p〉] by (simp add : v split :

if split asm)
ultimately show ?thesis
unfolding v interval bounds real [OF 〈a ≤ v 〉] box real
using da 〈a ≤ v 〉 by auto

qed
qed (use ab e in auto)

next
have pb: ∃ v . k = cbox v b ∧ b ≥ v if (b, k) ∈ p for k
using p(2 ) p(3 ) p(4 ) that by fastforce
show norm (

∑
(x ,K ) ∈ ?B b. content K ∗R f ′ x − (f (Sup K ) − f

(Inf K ))) ≤ e ∗ (b − a) / 4
proof (intro norm le; clarsimp)
fix K K ′
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assume K : (b, K ) ∈ p (b, K ′) ∈ p and ne0 : content K 6= 0 content
K ′ 6= 0

with pb obtain v v ′ where v : K = cbox v b v ≤ b and v ′: K ′ =
cbox v ′ b v ′ ≤ b

by blast
let ?v = max v v ′

have box ?v b ⊆ K ∩ K ′

unfolding v v ′ by (auto simp: mem box )
then have interior (box (max v v ′) b) ⊆ interior K ∩ interior K ′

using interior Int interior mono by blast
moreover have ((b + ?v)/2 ) ∈ box ?v b

using ne0 unfolding v v ′ content eq 0 not le by (auto simp:
mem box )

ultimately have ((b + ?v)/2 ) ∈ interior K ∩ interior K ′

unfolding interior open[OF open box ] by auto
then show K = K ′

using p(5 )[OF K ] by auto
next
fix K
assume K : (b, K ) ∈ p and ne0 : content K 6= 0
show norm (content c ∗R f ′ b − (f (Sup c) − f (Inf c))) ∗ 4 ≤ e ∗

(b−a)
if (b, c) ∈ p and ne0 : content c 6= 0 for c

proof −
obtain v where v : c = cbox v b and v ≤ b
using 〈(b, c) ∈ p〉 pb by blast

then have v ≥ ab ∈ {v .. b}
using p(3 )[OF 〈(b, c) ∈ p〉] by auto

moreover have {v ..b} ⊆ ball b db
using fineD [OF 〈?d fine p〉 〈(b, c) ∈ p〉] box real(2 ) v False by force
ultimately show ?thesis
using db v by auto

qed
qed (use ab e in auto)

qed
also have ... = e ∗ (b−a)/2
by simp

finally show norm (
∑

(x ,k)∈p ∩ ?C .
content k ∗R f ′ x − (f (Sup k) − f (Inf k))) ≤ e ∗ (b−a)/2 .

qed
show norm (

∑
(x , k)∈p ∩ ?A. content k ∗R f ′ x − (f ((Sup k)) − f ((Inf

k)))) ≤ e ∗ (b−a)/2
apply (rule ∗ [OF sum.mono neutral right [OF pA(2 )]])
using 1 2 by (auto simp: split paired all)

qed
also have ... = (

∑
n∈p. e ∗ (case n of (x , k) ⇒ Sup k − Inf k))/2

unfolding sum distrib left [symmetric]
by (subst additive tagged division 1 [OF 〈a ≤ b〉 ptag ]) auto

finally have norm le: norm (
∑

(x ,K )∈p ∩ {t . fst t ∈ {a, b}}. content K
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∗R f ′ x − (f (Sup K ) − f (Inf K )))
≤ (

∑
n∈p. e ∗ (case n of (x , K ) ⇒ Sup K − Inf K ))/2 .

have le2 :
∧
x s1 s2 ::real . 0 ≤ s1 =⇒ x ≤ (s1 + s2 )/2 =⇒ x − s1 ≤ s2/2

by auto
show ?thesis
apply (rule le2 [OF sum nonneg ])
using ge0 apply force

by (metis (no types, lifting) Diff Diff Int Diff subset norm le p(1 )
sum.subset diff )

qed
note ∗ = additive tagged division 1 [OF assms(1 ) ptag , symmetric]
have norm (

∑
(x ,K )∈p ∩ ?A ∪ (p − ?A). content K ∗R f ′ x − (f (Sup K )

− f (Inf K )))
≤ e ∗ (

∑
(x ,K )∈p ∩ ?A ∪ (p − ?A). Sup K − Inf K )

unfolding sum distrib left
unfolding sum.union disjoint [OF pA(2−)]
using le xz norm triangle le I II by blast

then
show norm ((

∑
(x ,K )∈p. content K ∗R f ′ x ) − (f b − f a)) ≤ e ∗ content

{a..b}
by (simp only : content real [OF 〈a ≤ b〉] ∗[of λx . x ] ∗[of f ] sum subtractf [symmetric]

split minus pA(1 ) [symmetric])
qed

qed
qed

6.15.30 Stronger form with finite number of exceptional points

lemma fundamental theorem of calculus interior strong :
fixes f :: real ⇒ ′a::banach
assumes finite S
and a ≤ b

∧
x . x ∈ {a <..< b} − S =⇒ (f has vector derivative f ′(x )) (at x )

and continuous on {a .. b} f
shows (f ′ has integral (f b − f a)) {a .. b}
using assms

proof (induction arbitrary : a b)
case empty
then show ?case
using fundamental theorem of calculus interior by force

next
case (insert x S )
show ?case
proof (cases x ∈ {a<..<b})
case False then show ?thesis
using insert by blast

next
case True then have a < x x < b
by auto

have (f ′ has integral f x − f a) {a..x} (f ′ has integral f b − f x ) {x ..b}
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using 〈continuous on {a..b} f 〉 〈a < x 〉 〈x < b〉 continuous on subset by (force
simp: intro!: insert)+

then have (f ′ has integral f x − f a + (f b − f x )) {a..b}
using 〈a < x 〉 〈x < b〉 has integral combine less imp le by blast

then show ?thesis
by simp

qed
qed

corollary fundamental theorem of calculus strong :
fixes f :: real ⇒ ′a::banach
assumes finite S
and a ≤ b
and vec:

∧
x . x ∈ {a..b} − S =⇒ (f has vector derivative f ′(x )) (at x )

and continuous on {a..b} f
shows (f ′ has integral (f b − f a)) {a..b}
by (rule fundamental theorem of calculus interior strong [OF 〈finite S 〉]) (force

simp: assms)+

proposition indefinite integral continuous left :
fixes f :: real ⇒ ′a::banach
assumes intf : f integrable on {a..b} and a < c c ≤ b e > 0
obtains d where d > 0
and ∀ t . c − d < t ∧ t ≤ c −→ norm (integral {a..c} f − integral {a..t} f )

< e
proof −
obtain w where w > 0 and w :

∧
t . [[c − w < t ; t < c]] =⇒ norm (f c) ∗

norm(c − t) < e/3
proof (cases f c = 0 )
case False
hence e3 : 0 < e/3 / norm (f c) using 〈e>0 〉 by simp
moreover have norm (f c) ∗ norm (c − t) < e/3
if t < c and c − e/3 / norm (f c) < t for t

proof −
have norm (c − t) < e/3 / norm (f c)
using that by auto

then show norm (f c) ∗ norm (c − t) < e/3
by (metis e3 mult .commute norm not less zero pos less divide eq zero less divide iff )

qed
ultimately show ?thesis
using that by auto

next
case True then show ?thesis
using 〈e > 0 〉 that by auto

qed

let ?SUM = λp. (
∑

(x ,K ) ∈ p. content K ∗R f x )
have e3 : e/3 > 0
using 〈e > 0 〉 by auto
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have f integrable on {a..c}
using 〈a < c〉 〈c ≤ b〉 by (auto intro: integrable subinterval real [OF intf ])

then obtain d1 where gauge d1 and d1 :∧
p. [[p tagged division of {a..c}; d1 fine p]] =⇒ norm (?SUM p − integral

{a..c} f ) < e/3
using integrable integral has integral real e3 by metis

define d where [abs def ]: d x = ball x w ∩ d1 x for x
have gauge d
unfolding d def using 〈w > 0 〉 〈gauge d1 〉 by auto

then obtain k where 0 < k and k : ball c k ⊆ d c
by (meson gauge def open contains ball)

let ?d = min k (c − a)/2
show thesis
proof (intro that [of ?d ] allI impI , safe)
show ?d > 0
using 〈0 < k 〉 〈a < c〉 by auto

next
fix t
assume t : c − ?d < t t ≤ c
show norm (integral ({a..c}) f − integral ({a..t}) f ) < e
proof (cases t < c)
case False with 〈t ≤ c〉 show ?thesis
by (simp add : 〈e > 0 〉)

next
case True
have f integrable on {a..t}
using 〈t < c〉 〈c ≤ b〉 by (auto intro: integrable subinterval real [OF intf ])

then obtain d2 where d2 : gauge d2∧
p. p tagged division of {a..t} ∧ d2 fine p =⇒ norm (?SUM p − integral

{a..t} f ) < e/3
using integrable integral has integral real e3 by metis

define d3 where d3 x = (if x ≤ t then d1 x ∩ d2 x else d1 x ) for x
have gauge d3
using 〈gauge d1 〉 〈gauge d2 〉 unfolding d3 def gauge def by auto

then obtain p where ptag : p tagged division of {a..t} and pfine: d3 fine p
by (metis box real(2 ) fine division exists)

note p ′ = tagged division ofD [OF ptag ]
have pt : (x ,K )∈p =⇒ x ≤ t for x K
by (meson atLeastAtMost iff p ′(2 ) p ′(3 ) subsetCE )

with pfine have d2 fine p
unfolding fine def d3 def by fastforce

then have d2 fin: norm (?SUM p − integral {a..t} f ) < e/3
using d2 (2 ) ptag by auto

have eqs: {a..c} ∩ {x . x ≤ t} = {a..t} {a..c} ∩ {x . x ≥ t} = {t ..c}
using t by (auto simp add : field simps)

have p ∪ {(c, {t ..c})} tagged division of {a..c}
proof (intro tagged division Un interval real)
show {(c, {t ..c})} tagged division of {a..c} ∩ {x . t ≤ x · 1}
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using 〈t ≤ c〉 by (auto simp: eqs tagged division of self real)
qed (auto simp: eqs ptag)
moreover
have d1 fine p ∪ {(c, {t ..c})}
unfolding fine def

proof safe
fix x K y
assume (x ,K ) ∈ p and y ∈ K then show y ∈ d1 x
by (metis Int iff d3 def subsetD fineD pfine)

next
fix x assume x ∈ {t ..c}
then have dist c x < k
using t(1 ) by (auto simp add : field simps dist real def )

with k show x ∈ d1 c
unfolding d def by auto

qed
ultimately have d1 fin: norm (?SUM (p ∪ {(c, {t ..c})}) − integral {a..c}

f ) < e/3
using d1 by metis

have SUMEQ : ?SUM (p ∪ {(c, {t ..c})}) = (c − t) ∗R f c + ?SUM p
proof −
have ?SUM (p ∪ {(c, {t ..c})}) = (content{t ..c} ∗R f c) + ?SUM p
proof (subst sum.union disjoint)
show p ∩ {(c, {t ..c})} = {}
using 〈t < c〉 pt by force

qed (use p ′(1 ) in auto)
also have ... = (c − t) ∗R f c + ?SUM p
using 〈t ≤ c〉 by auto

finally show ?thesis .
qed
have c − k < t
using 〈k>0 〉 t(1 ) by (auto simp add : field simps)

moreover have k ≤ w
proof (rule ccontr)
assume ¬ k ≤ w
then have c + (k + w) / 2 /∈ d c
by (auto simp add : field simps not le not less dist real def d def )

then have c + (k + w) / 2 /∈ ball c k
using k by blast

then show False
using 〈0 < w 〉 〈¬ k ≤ w 〉 dist real def by auto

qed
ultimately have cwt : c − w < t
by (auto simp add : field simps)

have eq : integral {a..c} f − integral {a..t} f = −(((c − t) ∗R f c + ?SUM
p) −

integral {a..c} f ) + (?SUM p − integral {a..t} f ) + (c − t) ∗R f c
by auto

have norm (integral {a..c} f − integral {a..t} f ) < e/3 + e/3 + e/3
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unfolding eq
proof (intro norm triangle lt add strict mono)
show norm (− ((c − t) ∗R f c + ?SUM p − integral {a..c} f )) < e/3
by (metis SUMEQ d1 fin norm minus cancel)

show norm (?SUM p − integral {a..t} f ) < e/3
using d2 fin by blast

show norm ((c − t) ∗R f c) < e/3
using w cwt 〈t < c〉 by simp (simp add : field simps)

qed
then show ?thesis by simp

qed
qed

qed

lemma indefinite integral continuous right :
fixes f :: real ⇒ ′a::banach
assumes f integrable on {a..b}
and a ≤ c
and c < b
and e > 0

obtains d where 0 < d
and ∀ t . c ≤ t ∧ t < c + d −→ norm (integral {a..c} f − integral {a..t} f )

< e
proof −
have intm: (λx . f (− x )) integrable on {−b .. −a} − b < − c − c ≤ − a
using assms by auto

from indefinite integral continuous left [OF intm 〈e>0 〉]
obtain d where 0 < d
and d :

∧
t . [[− c − d < t ; t ≤ −c]]

=⇒ norm (integral {− b..− c} (λx . f (−x )) − integral {− b..t} (λx . f
(−x ))) < e

by metis
let ?d = min d (b − c)
show ?thesis
proof (intro that [of ?d ] allI impI )
show 0 < ?d
using 〈0 < d 〉 〈c < b〉 by auto

fix t :: real
assume t : c ≤ t ∧ t < c + ?d
have ∗: integral {a..c} f = integral {a..b} f − integral {c..b} f

integral {a..t} f = integral {a..b} f − integral {t ..b} f
using assms t by (auto simp: algebra simps integral combine)

have (− c) − d < (− t) − t ≤ − c
using t by auto

from d [OF this] show norm (integral {a..c} f − integral {a..t} f ) < e
by (auto simp add : algebra simps norm minus commute ∗)

qed
qed
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lemma indefinite integral continuous 1 :
fixes f :: real ⇒ ′a::banach
assumes f integrable on {a..b}
shows continuous on {a..b} (λx . integral {a..x} f )

proof −
have ∃ d>0 . ∀ x ′∈{a..b}. dist x ′ x < d −→ dist (integral {a..x ′} f ) (integral
{a..x} f ) < e

if x : x ∈ {a..b} and e > 0 for x e :: real
proof (cases a = b)
case True
with that show ?thesis by force

next
case False
with x have a < b by force
with x consider x = a | x = b | a < x x < b
by force

then show ?thesis
proof cases
case 1 then show ?thesis
by (force simp: dist norm algebra simps intro: indefinite integral continuous right

[OF assms 〈a < b〉 〈e > 0 〉])
next
case 2 then show ?thesis
by (force simp: dist norm norm minus commute algebra simps intro: indef-

inite integral continuous left [OF assms 〈a < b〉 〈e > 0 〉])
next
case 3
obtain d1 where 0 < d1
and d1 :

∧
t . [[x − d1 < t ; t ≤ x ]] =⇒ norm (integral {a..x} f − integral

{a..t} f ) < e
using 3 by (auto intro: indefinite integral continuous left [OF assms 〈a <

x 〉 〈e > 0 〉])
obtain d2 where 0 < d2
and d2 :

∧
t . [[x ≤ t ; t < x + d2 ]] =⇒ norm (integral {a..x} f − integral

{a..t} f ) < e
using 3 by (auto intro: indefinite integral continuous right [OF assms 〈x

< b〉 〈e > 0 〉])
show ?thesis
proof (intro exI ballI conjI impI )
show 0 < min d1 d2
using 〈0 < d1 〉 〈0 < d2 〉 by simp

show dist (integral {a..y} f ) (integral {a..x} f ) < e
if y ∈ {a..b} dist y x < min d1 d2 for y

proof (cases y < x )
case True
with that d1 show ?thesis by (auto simp: dist commute dist norm)

next
case False
with that d2 show ?thesis
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by (auto simp: dist commute dist norm)
qed

qed
qed

qed
then show ?thesis
by (auto simp: continuous on iff )

qed

lemma indefinite integral continuous 1 ′:
fixes f ::real ⇒ ′a::banach
assumes f integrable on {a..b}
shows continuous on {a..b} (λx . integral {x ..b} f )

proof −
have integral {a..b} f − integral {a..x} f = integral {x ..b} f if x ∈ {a..b} for x
using integral combine[OF assms, of x ] that
by (auto simp: algebra simps)

with show ?thesis
by (rule continuous on eq) (auto intro!: continuous intros indefinite integral continuous 1

assms)
qed

theorem integral has vector derivative ′:
fixes f :: real ⇒ ′b::banach
assumes continuous on {a..b} f
and x ∈ {a..b}

shows ((λu. integral {u..b} f ) has vector derivative − f x ) (at x within {a..b})
proof −
have ∗: integral {x ..b} f = integral {a .. b} f − integral {a .. x} f if a ≤ x x ≤

b for x
using integral combine[of a x b for x , OF that integrable continuous real [OF

assms(1 )]]
by (simp add : algebra simps)

show ?thesis
using 〈x ∈ 〉 ∗
by (rule has vector derivative transform)
(auto intro!: derivative eq intros assms integral has vector derivative)

qed

lemma integral has real derivative ′:
assumes continuous on {a..b} g
assumes t ∈ {a..b}
shows ((λx . integral {x ..b} g) has real derivative −g t) (at t within {a..b})
using integral has vector derivative ′[OF assms]
by (auto simp: has field derivative iff has vector derivative)
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6.15.31 This doesn’t directly involve integration, but that
gives an easy proof

lemma has derivative zero unique strong interval :
fixes f :: real ⇒ ′a::banach
assumes finite k
and contf : continuous on {a..b} f
and f a = y
and fder :

∧
x . x ∈ {a..b} − k =⇒ (f has derivative (λh. 0 )) (at x within {a..b})

and x : x ∈ {a..b}
shows f x = y

proof −
have a ≤ b a ≤ x
using assms by auto

have ((λx . 0 :: ′a) has integral f x − f a) {a..x}
proof (rule fundamental theorem of calculus interior strong [OF 〈finite k 〉 〈a ≤

x 〉]; clarify?)
have {a..x} ⊆ {a..b}
using x by auto

then show continuous on {a..x} f
by (rule continuous on subset [OF contf ])

show (f has vector derivative 0 ) (at z ) if z : z ∈ {a<..<x} and notin: z /∈ k
for z

unfolding has vector derivative def
proof (simp add : at within open[OF z , symmetric])
show (f has derivative (λx . 0 )) (at z within {a<..<x})
by (rule has derivative subset [OF fder ]) (use x z notin in auto)

qed
qed
from has integral unique[OF has integral 0 this]
show ?thesis
unfolding assms by auto

qed

6.15.32 Generalize a bit to any convex set

lemma has derivative zero unique strong convex :
fixes f :: ′a::euclidean space ⇒ ′b::banach
assumes convex S finite K
and contf : continuous on S f
and c ∈ S f c = y
and derf :

∧
x . x ∈ S − K =⇒ (f has derivative (λh. 0 )) (at x within S )

and x ∈ S
shows f x = y

proof (cases x = c)
case True with 〈f c = y〉 show ?thesis
by blast

next
case False
let ?ϕ = λu. (1 − u) ∗R c + u ∗R x
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have contf ′: continuous on {0 ..1} (f ◦ ?ϕ)
proof (rule continuous intros continuous on subset [OF contf ])+
show (λu. (1 − u) ∗R c + u ∗R x ) ‘ {0 ..1} ⊆ S
using 〈convex S 〉 〈x ∈ S 〉 〈c ∈ S 〉 by (auto simp add : convex alt algebra simps)

qed
have t = u if ?ϕ t = ?ϕ u for t u
proof −
from that have (t − u) ∗R x = (t − u) ∗R c
by (auto simp add : algebra simps)

then show ?thesis
using 〈x 6= c〉 by auto

qed
then have eq : (SOME t . ?ϕ t = ?ϕ u) = u for u
by blast

then have (?ϕ −‘ K ) ⊆ (λz . SOME t . ?ϕ t = z ) ‘ K
by (clarsimp simp: image iff ) (metis (no types) eq)

then have fin: finite (?ϕ −‘ K )
by (rule finite surj [OF 〈finite K 〉])

have derf ′: ((λu. f (?ϕ u)) has derivative (λh. 0 )) (at t within {0 ..1})
if t ∈ {0 ..1} − {t . ?ϕ t ∈ K} for t

proof −
have df : (f has derivative (λh. 0 )) (at (?ϕ t) within ?ϕ ‘ {0 ..1})
using 〈convex S 〉 〈x ∈ S 〉 〈c ∈ S 〉 that
by (auto simp add : convex alt algebra simps intro: has derivative subset [OF

derf ])
have (f ◦ ?ϕ has derivative (λx . 0 ) ◦ (λz . (0 − z ∗R c) + z ∗R x )) (at t within

{0 ..1})
by (rule derivative eq intros df | simp)+

then show ?thesis
unfolding o def .

qed
have (f ◦ ?ϕ) 1 = y
apply (rule has derivative zero unique strong interval [OF fin contf ′])
unfolding o def using 〈f c = y〉 derf ′ by auto

then show ?thesis
by auto

qed

Also to any open connected set with finite set of exceptions. Could generalize
to locally convex set with limpt-free set of exceptions.

lemma has derivative zero unique strong connected :
fixes f :: ′a::euclidean space ⇒ ′b::banach
assumes connected S
and open S
and finite K
and contf : continuous on S f
and c ∈ S
and f c = y
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and derf :
∧
x . x ∈ S − K =⇒ (f has derivative (λh. 0 )) (at x within S )

and x ∈ S
shows f x = y

proof −
have ∃ e>0 . ball x e ⊆ (S ∩ f −‘ {f x}) if x ∈ S for x
proof −
obtain e where 0 < e and e: ball x e ⊆ S
using 〈x ∈ S 〉 〈open S 〉 open contains ball by blast

have ball x e ⊆ {u ∈ S . f u ∈ {f x}}
proof safe
fix y
assume y : y ∈ ball x e
then show y ∈ S
using e by auto

show f y = f x
proof (rule has derivative zero unique strong convex [OF convex ball 〈finite

K 〉])
show continuous on (ball x e) f
using contf continuous on subset e by blast

show (f has derivative (λh. 0 )) (at u within ball x e)
if u ∈ ball x e − K for u

by (metis Diff iff contra subsetD derf e has derivative subset that)
qed (use y e 〈0 < e〉 in auto)

qed
then show ∃ e>0 . ball x e ⊆ (S ∩ f −‘ {f x})
using 〈0 < e〉 by blast

qed
then have openin (top of set S ) (S ∩ f −‘ {y})
by (auto intro!: open openin trans[OF 〈open S 〉] simp: open contains ball)

moreover have closedin (top of set S ) (S ∩ f −‘ {y})
by (force intro!: continuous closedin preimage [OF contf ])

ultimately have (S ∩ f −‘ {y}) = {} ∨ (S ∩ f −‘ {y}) = S
using 〈connected S 〉 by (simp add : connected clopen)

then show ?thesis
using 〈x ∈ S 〉 〈f c = y〉 〈c ∈ S 〉 by auto

qed

lemma has derivative zero connected constant :
fixes f :: ′a::euclidean space ⇒ ′b::banach
assumes connected S

and open S
and finite k
and continuous on S f
and ∀ x∈(S − k). (f has derivative (λh. 0 )) (at x within S )

obtains c where
∧
x . x ∈ S =⇒ f (x ) = c

proof (cases S = {})
case True
then show ?thesis
by (metis empty iff that)
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next
case False
then obtain c where c ∈ S
by (metis equals0I )

then show ?thesis
by (metis has derivative zero unique strong connected assms that)

qed

lemma DERIV zero connected constant :
fixes f :: ′a::{real normed field ,euclidean space} ⇒ ′a
assumes connected S

and open S
and finite K
and continuous on S f
and ∀ x∈(S − K ). DERIV f x :> 0

obtains c where
∧
x . x ∈ S =⇒ f (x ) = c

using has derivative zero connected constant [OF assms(1−4 )] assms
by (metis DERIV const has derivative const Diff iff at within open frechet derivative at

has field derivative def )

6.15.33 Integrating characteristic function of an interval

lemma has integral restrict open subinterval :
fixes f :: ′a::euclidean space ⇒ ′b::banach
assumes intf : (f has integral i) (cbox c d)
and cb: cbox c d ⊆ cbox a b

shows ((λx . if x ∈ box c d then f x else 0 ) has integral i) (cbox a b)
proof (cases cbox c d = {})
case True
then have box c d = {}
by (metis bot .extremum uniqueI box subset cbox )

then show ?thesis
using True intf by auto

next
case False
then obtain p where pdiv : p division of cbox a b and inp: cbox c d ∈ p
using cb partial division extend 1 by blast

define g where [abs def ]: g x = (if x ∈box c d then f x else 0 ) for x
interpret operative lift option plus Some (0 :: ′b)
λi . if g integrable on i then Some (integral i g) else None
by (fact operative integralI )

note operat = division [OF pdiv , symmetric]
show ?thesis
proof (cases (g has integral i) (cbox a b))
case True then show ?thesis
by (simp add : g def )

next
case False
have iterate:F (λi . if g integrable on i then Some (integral i g) else None) (p
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− {cbox c d}) = Some 0
proof (intro neutral ballI )
fix x
assume x : x ∈ p − {cbox c d}
then have x ∈ p
by auto

then obtain u v where uv : x = cbox u v
using pdiv by blast

have interior x ∩ interior (cbox c d) = {}
using pdiv inp x by blast

then have (g has integral 0 ) x
unfolding uv using has integral spike interior [where f=λx . 0 ]
by (metis (no types, lifting) disjoint iff not equal g def has integral 0 eq

interior cbox )
then show (if g integrable on x then Some (integral x g) else None) = Some

0
by auto

qed
interpret comm monoid set lift option plus Some (0 :: ′b)
by (intro comm monoid set .intro comm monoid lift option add .comm monoid axioms)
have intg : g integrable on cbox c d
using integrable spike interior [where f=f ]
by (meson g def has integral integrable intf )

moreover have integral (cbox c d) g = i
proof (rule has integral unique[OF has integral spike interior intf ])
show

∧
x . x ∈ box c d =⇒ f x = g x

by (auto simp: g def )
show (g has integral integral (cbox c d) g) (cbox c d)
by (rule integrable integral [OF intg ])

qed
ultimately have F (λA. if g integrable on A then Some (integral A g) else

None) p = Some i
by (metis (full types, lifting) division of finite inp iterate pdiv remove right neutral)
then
have (g has integral i) (cbox a b)
by (metis integrable on def integral unique operat option.inject option.simps(3 ))
with False show ?thesis
by blast

qed
qed

lemma has integral restrict closed subinterval :
fixes f :: ′a::euclidean space ⇒ ′b::banach
assumes (f has integral i) (cbox c d)
and cbox c d ⊆ cbox a b

shows ((λx . if x ∈ cbox c d then f x else 0 ) has integral i) (cbox a b)
proof −
note has integral restrict open subinterval [OF assms]
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note ∗ = has integral spike[OF negligible frontier interval this]
show ?thesis
by (rule ∗[of c d ]) (use box subset cbox [of c d ] in auto)

qed

lemma has integral restrict closed subintervals eq :
fixes f :: ′a::euclidean space ⇒ ′b::banach
assumes cbox c d ⊆ cbox a b
shows ((λx . if x ∈ cbox c d then f x else 0 ) has integral i) (cbox a b) ←→ (f

has integral i) (cbox c d)
(is ?l = ?r)

proof (cases cbox c d = {})
case False
let ?g = λx . if x ∈ cbox c d then f x else 0
show ?thesis
proof
assume ?l
then have ?g integrable on cbox c d
using assms has integral integrable integrable subinterval by blast

then have f integrable on cbox c d
by (rule integrable eq) auto

moreover then have i = integral (cbox c d) f
by (meson 〈((λx . if x ∈ cbox c d then f x else 0 ) has integral i) (cbox a b)〉 assms

has integral restrict closed subinterval has integral unique integrable integral)
ultimately show ?r by auto

next
assume ?r then show ?l
by (rule has integral restrict closed subinterval [OF assms])

qed
qed auto

Hence we can apply the limit process uniformly to all integrals.

lemma has integral ′:
fixes f :: ′n::euclidean space ⇒ ′a::banach
shows (f has integral i) S ←→
(∀ e>0 . ∃B>0 . ∀ a b. ball 0 B ⊆ cbox a b −→
(∃ z . ((λx . if x ∈ S then f (x ) else 0 ) has integral z ) (cbox a b) ∧ norm(z −

i) < e))
(is ?l ←→ (∀ e>0 . ?r e))

proof (cases ∃ a b. S = cbox a b)
case False then show ?thesis
by (simp add : has integral alt)

next
case True
then obtain a b where S : S = cbox a b
by blast

obtain B where 0 < B and B :
∧
x . x ∈ cbox a b =⇒ norm x ≤ B

using bounded cbox [unfolded bounded pos] by blast
show ?thesis
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proof safe
fix e :: real
assume ?l and e > 0
have ((λx . if x ∈ S then f x else 0 ) has integral i) (cbox c d)
if ball 0 (B+1 ) ⊆ cbox c d for c d
unfolding S using B that
by (force intro: 〈?l 〉[unfolded S ] has integral restrict closed subinterval)

then show ?r e
by (meson 〈0 < B 〉 〈0 < e〉 add pos pos le less trans zero less one norm pths(2 ))

next
assume as: ∀ e>0 . ?r e
then obtain C
where C :

∧
a b. ball 0 C ⊆ cbox a b =⇒

∃ z . ((λx . if x ∈ S then f x else 0 ) has integral z ) (cbox a b)
by (meson zero less one)

define c :: ′n where c = (
∑

i∈Basis. (− max B C ) ∗R i)
define d :: ′n where d = (

∑
i∈Basis. max B C ∗R i)

have c · i ≤ x · i ∧ x · i ≤ d · i if norm x ≤ B i ∈ Basis for x i
using that and Basis le norm[OF 〈i∈Basis〉, of x ]
by (auto simp add : field simps sum negf c def d def )

then have c d : cbox a b ⊆ cbox c d
by (meson B mem box (2 ) subsetI )

have c · i ≤ x · i ∧ x · i ≤ d · i
if x : norm (0 − x ) < C and i : i ∈ Basis for x i
using Basis le norm[OF i , of x ] x i by (auto simp: sum negf c def d def )

then have ball 0 C ⊆ cbox c d
by (auto simp: mem box dist norm)

with C obtain y where y : (f has integral y) (cbox a b)
using c d has integral restrict closed subintervals eq S by blast

have y = i
proof (rule ccontr)
assume y 6= i
then have 0 < norm (y − i)
by auto

from as[rule format ,OF this]
obtain C where C :

∧
a b. ball 0 C ⊆ cbox a b =⇒

∃ z . ((λx . if x ∈ S then f x else 0 ) has integral z ) (cbox a b) ∧ norm (z−i)
< norm (y−i)

by auto
define c :: ′n where c = (

∑
i∈Basis. (− max B C ) ∗R i)

define d :: ′n where d = (
∑

i∈Basis. max B C ∗R i)
have c · i ≤ x · i ∧ x · i ≤ d · i
if norm x ≤ B and i ∈ Basis for x i
using that Basis le norm[of i x ] by (auto simp add : field simps sum negf

c def d def )
then have c d : cbox a b ⊆ cbox c d
by (simp add : B mem box (2 ) subset eq)

have c · i ≤ x · i ∧ x · i ≤ d · i if norm (0 − x ) < C and i ∈ Basis for x i
using Basis le norm[of i x ] that by (auto simp: sum negf c def d def )
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then have ball 0 C ⊆ cbox c d
by (auto simp: mem box dist norm)

with C obtain z where z : (f has integral z ) (cbox a b) norm (z−i) < norm
(y−i)

using has integral restrict closed subintervals eq [OF c d ] S by blast
moreover then have z = y
by (blast intro: has integral unique[OF y ])

ultimately show False
by auto

qed
then show ?l
using y by (auto simp: S )

qed
qed

lemma has integral le:
fixes f :: ′n::euclidean space ⇒ real
assumes fg : (f has integral i) S (g has integral j ) S
and le:

∧
x . x ∈ S =⇒ f x ≤ g x

shows i ≤ j
using has integral component le[OF fg , of 1 ] le by auto

lemma integral le:
fixes f :: ′n::euclidean space ⇒ real
assumes f integrable on S
and g integrable on S
and

∧
x . x ∈ S =⇒ f x ≤ g x

shows integral S f ≤ integral S g
by (rule has integral le[OF assms(1 ,2 )[unfolded has integral integral ] assms(3 )])

lemma has integral nonneg :
fixes f :: ′n::euclidean space ⇒ real
assumes (f has integral i) S
and

∧
x . x ∈ S =⇒ 0 ≤ f x

shows 0 ≤ i
using has integral component nonneg [of 1 f i S ]
unfolding o def
using assms
by auto

lemma integral nonneg :
fixes f :: ′n::euclidean space ⇒ real
assumes f : f integrable on S and 0 :

∧
x . x ∈ S =⇒ 0 ≤ f x

shows 0 ≤ integral S f
by (rule has integral nonneg [OF f [unfolded has integral integral ] 0 ])

Hence a general restriction property.

lemma has integral restrict [simp]:
fixes f :: ′a :: euclidean space ⇒ ′b :: banach
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assumes S ⊆ T
shows ((λx . if x ∈ S then f x else 0 ) has integral i) T ←→ (f has integral i) S

proof −
have ∗:

∧
x . (if x ∈ T then if x ∈ S then f x else 0 else 0 ) = (if x∈S then f x

else 0 )
using assms by auto

show ?thesis
apply (subst(2 ) has integral ′)
apply (subst has integral ′)
apply (simp add : ∗)

done
qed

corollary has integral restrict UNIV :
fixes f :: ′n::euclidean space ⇒ ′a::banach
shows ((λx . if x ∈ s then f x else 0 ) has integral i) UNIV ←→ (f has integral i)

s
by auto

lemma has integral restrict Int :
fixes f :: ′a :: euclidean space ⇒ ′b :: banach
shows ((λx . if x ∈ S then f x else 0 ) has integral i) T ←→ (f has integral i) (S
∩ T )
proof −
have ((λx . if x ∈ T then if x ∈ S then f x else 0 else 0 ) has integral i) UNIV =

((λx . if x ∈ S ∩ T then f x else 0 ) has integral i) UNIV
by (rule has integral cong) auto

then show ?thesis
using has integral restrict UNIV by fastforce

qed

lemma integral restrict Int :
fixes f :: ′a :: euclidean space ⇒ ′b :: banach
shows integral T (λx . if x ∈ S then f x else 0 ) = integral (S ∩ T ) f
by (metis (no types, lifting) has integral cong has integral restrict Int integrable integral

integral unique not integrable integral)

lemma integrable restrict Int :
fixes f :: ′a :: euclidean space ⇒ ′b :: banach
shows (λx . if x ∈ S then f x else 0 ) integrable on T ←→ f integrable on (S ∩ T )
using has integral restrict Int by fastforce

lemma has integral on superset :
fixes f :: ′n::euclidean space ⇒ ′a::banach
assumes f : (f has integral i) S

and
∧
x . x /∈ S =⇒ f x = 0

and S ⊆ T
shows (f has integral i) T

proof −
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have (λx . if x ∈ S then f x else 0 ) = (λx . if x ∈ T then f x else 0 )
using assms by fastforce

with f show ?thesis
by (simp only : has integral restrict UNIV [symmetric, of f ])

qed

lemma integrable on superset :
fixes f :: ′n::euclidean space ⇒ ′a::banach
assumes f integrable on S
and

∧
x . x /∈ S =⇒ f x = 0

and S ⊆ t
shows f integrable on t
using assms
unfolding integrable on def
by (auto intro:has integral on superset)

lemma integral restrict UNIV :
fixes f :: ′n::euclidean space ⇒ ′a::banach
shows integral UNIV (λx . if x ∈ S then f x else 0 ) = integral S f
by (simp add : integral restrict Int)

lemma integrable restrict UNIV :
fixes f :: ′n::euclidean space ⇒ ′a::banach
shows (λx . if x ∈ s then f x else 0 ) integrable on UNIV ←→ f integrable on s
unfolding integrable on def
by auto

lemma has integral subset component le:
fixes f :: ′n::euclidean space ⇒ ′m::euclidean space
assumes k : k ∈ Basis

and as: S ⊆ T (f has integral i) S (f has integral j ) T
∧
x . x∈T =⇒ 0 ≤

f (x )·k
shows i ·k ≤ j ·k

proof −
have §: ((λx . if x ∈ S then f x else 0 ) has integral i) UNIV

((λx . if x ∈ T then f x else 0 ) has integral j ) UNIV
by (simp all add : assms)

show ?thesis
using as by (force intro!: has integral component le[OF k §])

qed

6.15.34 Integrals on set differences

lemma has integral setdiff :
fixes f :: ′a::euclidean space ⇒ ′b::banach
assumes S : (f has integral i) S and T : (f has integral j ) T
and neg : negligible (T − S )

shows (f has integral (i − j )) (S − T )
proof −
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show ?thesis
unfolding has integral restrict UNIV [symmetric, of f ]

proof (rule has integral spike [OF neg ])
have eq : (λx . (if x ∈ S then f x else 0 ) − (if x ∈ T then f x else 0 )) =

(λx . if x ∈ T − S then − f x else if x ∈ S − T then f x else 0 )
by (force simp add : )

have ((λx . if x ∈ S then f x else 0 ) has integral i) UNIV
((λx . if x ∈ T then f x else 0 ) has integral j ) UNIV
using S T has integral restrict UNIV by auto

from has integral diff [OF this]
show ((λx . if x ∈ T − S then − f x else if x ∈ S − T then f x else 0 )

has integral i−j ) UNIV
by (simp add : eq)

qed force
qed

lemma integral setdiff :
fixes f :: ′a::euclidean space ⇒ ′b::banach
assumes f integrable on S f integrable on T negligible(T − S )
shows integral (S − T ) f = integral S f − integral T f
by (rule integral unique) (simp add : assms has integral setdiff integrable integral)

lemma integrable setdiff :
fixes f :: ′a::euclidean space ⇒ ′b::banach
assumes (f has integral i) S (f has integral j ) T negligible (T − S )
shows f integrable on (S − T )
using has integral setdiff [OF assms]
by (simp add : has integral iff )

lemma negligible setdiff [simp]: T ⊆ S =⇒ negligible (T − S )
by (metis Diff eq empty iff negligible empty)

lemma negligible on intervals: negligible s ←→ (∀ a b. negligible(s ∩ cbox a b)) (is
?l ←→ ?r)
proof
assume R: ?r
show ?l
unfolding negligible def

proof safe
fix a b
have negligible (s ∩ cbox a b)
by (simp add : R)

then show (indicator s has integral 0 ) (cbox a b)
by (meson Diff iff Int iff has integral negligible indicator simps(2 ))

qed
qed (simp add : negligible Int)

lemma negligible translation:
assumes negligible S
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shows negligible ((+) c ‘ S )
proof −
have inj : inj ((+) c)
by simp

show ?thesis
using assms
proof (clarsimp simp: negligible def )
fix a b
assume ∀ x y . (indicator S has integral 0 ) (cbox x y)
then have ∗: (indicator S has integral 0 ) (cbox (a−c) (b−c))
by (meson Diff iff assms has integral negligible indicator simps(2 ))

have eq : indicator ((+) c ‘ S ) = (λx . indicator S (x − c))
by (force simp add : indicator def )

show (indicator ((+) c ‘ S ) has integral 0 ) (cbox a b)
using has integral affinity [OF ∗, of 1 −c]

cbox translation [of c −c+a −c+b]
by (simp add : eq) (simp add : ac simps)

qed
qed

lemma negligible translation rev :
assumes negligible ((+) c ‘ S )
shows negligible S

by (metis negligible translation [OF assms, of −c] translation galois)

lemma has integral spike set eq :
fixes f :: ′n::euclidean space ⇒ ′a::banach
assumes negligible {x ∈ S − T . f x 6= 0} negligible {x ∈ T − S . f x 6= 0}
shows (f has integral y) S ←→ (f has integral y) T

proof −
have ((λx . if x ∈ S then f x else 0 ) has integral y) UNIV =

((λx . if x ∈ T then f x else 0 ) has integral y) UNIV
proof (rule has integral spike eq)
show negligible ({x ∈ S − T . f x 6= 0} ∪ {x ∈ T − S . f x 6= 0})
by (rule negligible Un [OF assms])

qed auto
then show ?thesis
by (simp add : has integral restrict UNIV )

qed

corollary integral spike set :
fixes f :: ′n::euclidean space ⇒ ′a::banach
assumes negligible {x ∈ S − T . f x 6= 0} negligible {x ∈ T − S . f x 6= 0}
shows integral S f = integral T f
using has integral spike set eq [OF assms]
by (metis eq integralD integral unique)

lemma integrable spike set :
fixes f :: ′n::euclidean space ⇒ ′a::banach
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assumes f : f integrable on S and neg : negligible {x ∈ S − T . f x 6= 0} negligible
{x ∈ T − S . f x 6= 0}
shows f integrable on T
using has integral spike set eq [OF neg ] f by blast

lemma integrable spike set eq :
fixes f :: ′n::euclidean space ⇒ ′a::banach
assumes negligible ((S − T ) ∪ (T − S ))
shows f integrable on S ←→ f integrable on T
by (blast intro: integrable spike set assms negligible subset)

lemma integrable on insert iff : f integrable on (insert x X ) ←→ f integrable on X
for f :: ⇒ ′a::banach
by (rule integrable spike set eq) (auto simp: insert Diff if )

lemma has integral interior :
fixes f :: ′a :: euclidean space ⇒ ′b :: banach
shows negligible(frontier S ) =⇒ (f has integral y) (interior S )←→ (f has integral

y) S
by (rule has integral spike set eq [OF empty imp negligible negligible subset ])

(use interior subset in 〈auto simp: frontier def closure def 〉)

lemma has integral closure:
fixes f :: ′a :: euclidean space ⇒ ′b :: banach
shows negligible(frontier S ) =⇒ (f has integral y) (closure S ) ←→ (f has integral

y) S
by (rule has integral spike set eq [OF negligible subset empty imp negligible]) (auto

simp: closure Un frontier )

lemma has integral open interval :
fixes f :: ′a :: euclidean space ⇒ ′b :: banach
shows (f has integral y) (box a b) ←→ (f has integral y) (cbox a b)
unfolding interior cbox [symmetric]
by (metis frontier cbox has integral interior negligible frontier interval)

lemma integrable on open interval :
fixes f :: ′a :: euclidean space ⇒ ′b :: banach
shows f integrable on box a b ←→ f integrable on cbox a b
by (simp add : has integral open interval integrable on def )

lemma integral open interval :
fixes f :: ′a :: euclidean space ⇒ ′b :: banach
shows integral(box a b) f = integral(cbox a b) f
by (metis has integral integrable integral has integral open interval not integrable integral)

6.15.35 More lemmas that are useful later

lemma has integral subset le:
fixes f :: ′n::euclidean space ⇒ real
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assumes s ⊆ t
and (f has integral i) s
and (f has integral j ) t
and ∀ x∈t . 0 ≤ f x

shows i ≤ j
using has integral subset component le[OF assms(1 ), of 1 f i j ]
using assms
by auto

lemma integral subset component le:
fixes f :: ′n::euclidean space ⇒ ′m::euclidean space
assumes k ∈ Basis
and s ⊆ t
and f integrable on s
and f integrable on t
and ∀ x ∈ t . 0 ≤ f x · k

shows (integral s f )·k ≤ (integral t f )·k
by (meson assms has integral subset component le integrable integral)

lemma integral subset le:
fixes f :: ′n::euclidean space ⇒ real
assumes s ⊆ t
and f integrable on s
and f integrable on t
and ∀ x ∈ t . 0 ≤ f x

shows integral s f ≤ integral t f
using assms has integral subset le by blast

lemma has integral alt ′:
fixes f :: ′n::euclidean space ⇒ ′a::banach
shows (f has integral i) s ←→

(∀ a b. (λx . if x ∈ s then f x else 0 ) integrable on cbox a b) ∧
(∀ e>0 . ∃B>0 . ∀ a b. ball 0 B ⊆ cbox a b −→
norm (integral (cbox a b) (λx . if x ∈ s then f x else 0 ) − i) < e)

(is ?l = ?r)
proof
assume rhs: ?r
show ?l
proof (subst has integral ′, intro allI impI )
fix e::real
assume e > 0
from rhs[THEN conjunct2 ,rule format ,OF this]
show ∃B>0 . ∀ a b. ball 0 B ⊆ cbox a b −→

(∃ z . ((λx . if x ∈ s then f x else 0 ) has integral z )
(cbox a b) ∧ norm (z − i) < e)

by (simp add : has integral iff rhs)
qed

next
let ?Φ = λe a b. ∃ z . ((λx . if x ∈ s then f x else 0 ) has integral z ) (cbox a b) ∧
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norm (z − i) < e
assume ?l
then have lhs: ∃B>0 . ∀ a b. ball 0 B ⊆ cbox a b −→ ?Φ e a b if e > 0 for e
using that has integral ′[of f ] by auto

let ?f = λx . if x ∈ s then f x else 0
show ?r
proof (intro conjI allI impI )
fix a b :: ′n
from lhs[OF zero less one]
obtain B where 0 < B and B :

∧
a b. ball 0 B ⊆ cbox a b =⇒ ?Φ 1 a b

by blast
let ?a =

∑
i∈Basis. min (a·i) (−B) ∗R i :: ′n

let ?b =
∑

i∈Basis. max (b·i) B ∗R i :: ′n
show ?f integrable on cbox a b
proof (rule integrable subinterval [of ?a ?b])
have ?a · i ≤ x · i ∧ x · i ≤ ?b · i if norm (0 − x ) < B i ∈ Basis for x i
using Basis le norm[of i x ] that by (auto simp add :field simps)

then have ball 0 B ⊆ cbox ?a ?b
by (auto simp: mem box dist norm)

then show ?f integrable on cbox ?a ?b
unfolding integrable on def using B by blast

show cbox a b ⊆ cbox ?a ?b
by (force simp: mem box )

qed

fix e :: real
assume e > 0
with lhs show ∃B>0 . ∀ a b. ball 0 B ⊆ cbox a b −→
norm (integral (cbox a b) (λx . if x ∈ s then f x else 0 ) − i) < e
by (metis (no types, lifting) has integral integrable integral)

qed
qed

6.15.36 Continuity of the integral (for a 1-dimensional inter-
val)

lemma integrable alt :
fixes f :: ′n::euclidean space ⇒ ′a::banach
shows f integrable on s ←→
(∀ a b. (λx . if x ∈ s then f x else 0 ) integrable on cbox a b) ∧
(∀ e>0 . ∃B>0 . ∀ a b c d . ball 0 B ⊆ cbox a b ∧ ball 0 B ⊆ cbox c d −→
norm (integral (cbox a b) (λx . if x ∈ s then f x else 0 ) −
integral (cbox c d) (λx . if x ∈ s then f x else 0 )) < e)

(is ?l = ?r)
proof
let ?F = λx . if x ∈ s then f x else 0
assume ?l
then obtain y where intF :

∧
a b. ?F integrable on cbox a b

and y :
∧
e. 0 < e =⇒
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∃B>0 . ∀ a b. ball 0 B ⊆ cbox a b −→ norm (integral (cbox a b) ?F −
y) < e

unfolding integrable on def has integral alt ′[of f ] by auto
show ?r
proof (intro conjI allI impI intF )
fix e::real
assume e > 0
then have e/2 > 0
by auto

obtain B where 0 < B
and B :

∧
a b. ball 0 B ⊆ cbox a b =⇒ norm (integral (cbox a b) ?F − y) <

e/2
using 〈0 < e/2 〉 y by blast

show ∃B>0 . ∀ a b c d . ball 0 B ⊆ cbox a b ∧ ball 0 B ⊆ cbox c d −→
norm (integral (cbox a b) ?F − integral (cbox c d) ?F ) < e

proof (intro conjI exI impI allI , rule 〈0 < B 〉)
fix a b c d :: ′n
assume sub: ball 0 B ⊆ cbox a b ∧ ball 0 B ⊆ cbox c d
show norm (integral (cbox a b) ?F − integral (cbox c d) ?F ) < e
using sub by (auto intro: norm triangle half l dest : B)

qed
qed

next
let ?F = λx . if x ∈ s then f x else 0
assume rhs: ?r
let ?cube = λn. cbox (

∑
i∈Basis. − real n ∗R i :: ′n) (

∑
i∈Basis. real n ∗R i)

have Cauchy (λn. integral (?cube n) ?F )
unfolding Cauchy def

proof (intro allI impI )
fix e::real
assume e > 0
with rhs obtain B where 0 < B
and B :

∧
a b c d . ball 0 B ⊆ cbox a b ∧ ball 0 B ⊆ cbox c d

=⇒ norm (integral (cbox a b) ?F − integral (cbox c d) ?F ) < e
by blast

obtain N where N : B ≤ real N
using real arch simple by blast

have ball 0 B ⊆ ?cube n if n: n ≥ N for n
proof −
have sum ((∗R) (− real n)) Basis · i ≤ x · i ∧

x · i ≤ sum ((∗R) (real n)) Basis · i
if norm x < B i ∈ Basis for x i :: ′n

using Basis le norm[of i x ] n N that by (auto simp add : field simps
sum negf )

then show ?thesis
by (auto simp: mem box dist norm)

qed
then show ∃M . ∀m≥M . ∀n≥M . dist (integral (?cube m) ?F ) (integral (?cube

n) ?F ) < e
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by (fastforce simp add : dist norm intro!: B)
qed
then obtain i where i : (λn. integral (?cube n) ?F ) −−−−→ i
using convergent eq Cauchy by blast

have ∃B>0 . ∀ a b. ball 0 B ⊆ cbox a b −→ norm (integral (cbox a b) ?F − i)
< e

if e > 0 for e
proof −
have ∗: e/2 > 0 using that by auto
then obtain N where N :

∧
n. N ≤ n =⇒ norm (i − integral (?cube n) ?F )

< e/2
using i [THEN LIMSEQ D , simplified norm minus commute] by meson

obtain B where 0 < B
and B :

∧
a b c d . [[ball 0 B ⊆ cbox a b; ball 0 B ⊆ cbox c d ]] =⇒
norm (integral (cbox a b) ?F − integral (cbox c d) ?F ) < e/2

using rhs ∗ by meson
let ?B = max (real N ) B
show ?thesis
proof (intro exI conjI allI impI )
show 0 < ?B
using 〈B > 0 〉 by auto

fix a b :: ′n
assume ball 0 ?B ⊆ cbox a b
moreover obtain n where n: max (real N ) B ≤ real n
using real arch simple by blast

moreover have ball 0 B ⊆ ?cube n
proof
fix x :: ′n
assume x : x ∈ ball 0 B
have [[norm (0 − x ) < B ; i ∈ Basis]]

=⇒ sum ((∗R) (−n)) Basis · i≤ x · i ∧ x · i ≤ sum ((∗R) n) Basis ·
i for i

using Basis le norm[of i x ] n by (auto simp add : field simps sum negf )
then show x ∈ ?cube n
using x by (auto simp: mem box dist norm)

qed
ultimately show norm (integral (cbox a b) ?F − i) < e
using norm triangle half l [OF B N ] by force

qed
qed
then show ?l unfolding integrable on def has integral alt ′[of f ]
using rhs by blast

qed

lemma integrable altD :
fixes f :: ′n::euclidean space ⇒ ′a::banach
assumes f integrable on s
shows

∧
a b. (λx . if x ∈ s then f x else 0 ) integrable on cbox a b

and
∧
e. e > 0 =⇒ ∃B>0 . ∀ a b c d . ball 0 B ⊆ cbox a b ∧ ball 0 B ⊆ cbox c
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d −→
norm (integral (cbox a b) (λx . if x ∈ s then f x else 0 ) − integral (cbox c d)

(λx . if x ∈ s then f x else 0 )) < e
using assms[unfolded integrable alt [of f ]] by auto

lemma integrable alt subset :
fixes f :: ′a::euclidean space ⇒ ′b::banach
shows

f integrable on S ←→
(∀ a b. (λx . if x ∈ S then f x else 0 ) integrable on cbox a b) ∧
(∀ e>0 . ∃B>0 . ∀ a b c d .

ball 0 B ⊆ cbox a b ∧ cbox a b ⊆ cbox c d
−→ norm(integral (cbox a b) (λx . if x ∈ S then f x else 0 ) −

integral (cbox c d) (λx . if x ∈ S then f x else 0 )) < e)
(is = ?rhs)

proof −
let ?g = λx . if x ∈ S then f x else 0
have f integrable on S ←→

(∀ a b. ?g integrable on cbox a b) ∧
(∀ e>0 . ∃B>0 . ∀ a b c d . ball 0 B ⊆ cbox a b ∧ ball 0 B ⊆ cbox c d −→

norm (integral (cbox a b) ?g − integral (cbox c d) ?g) < e)
by (rule integrable alt)

also have . . . = ?rhs
proof −
{ fix e :: real
assume e:

∧
e. e>0 =⇒ ∃B>0 . ∀ a b c d . ball 0 B ⊆ cbox a b ∧ cbox a b ⊆

cbox c d −→
norm (integral (cbox a b) ?g − integral (cbox c d) ?g)

< e
and e > 0

obtain B where B > 0
and B :

∧
a b c d . [[ball 0 B ⊆ cbox a b; cbox a b ⊆ cbox c d ]] =⇒

norm (integral (cbox a b) ?g − integral (cbox c d) ?g) < e/2
using 〈e > 0 〉 e [of e/2 ] by force

have ∃B>0 . ∀ a b c d .
ball 0 B ⊆ cbox a b ∧ ball 0 B ⊆ cbox c d −→
norm (integral (cbox a b) ?g − integral (cbox c d) ?g) < e

proof (intro exI allI conjI impI )
fix a b c d :: ′a
let ?α =

∑
i∈Basis. max (a · i) (c · i) ∗R i

let ?β =
∑

i∈Basis. min (b · i) (d · i) ∗R i
show norm (integral (cbox a b) ?g − integral (cbox c d) ?g) < e
if ball : ball 0 B ⊆ cbox a b ∧ ball 0 B ⊆ cbox c d

proof −
have B ′: norm (integral (cbox a b ∩ cbox c d) ?g − integral (cbox x y)

?g) < e/2
if cbox a b ∩ cbox c d ⊆ cbox x y for x y
using B [of ?α ?β x y ] ball that by (simp add : Int interval [symmetric])
show ?thesis
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using B ′ [of a b] B ′ [of c d ] norm triangle half r by blast
qed

qed (use 〈B > 0 〉 in auto)}
then show ?thesis
by force

qed
finally show ?thesis .

qed

lemma integrable on subcbox :
fixes f :: ′n::euclidean space ⇒ ′a::banach
assumes intf : f integrable on S
and sub: cbox a b ⊆ S

shows f integrable on cbox a b
proof −
have (λx . if x ∈ S then f x else 0 ) integrable on cbox a b
by (simp add : intf integrable altD(1 ))

then show ?thesis
by (metis (mono tags) sub integrable restrict Int le inf iff order refl subset antisym)

qed

6.15.37 A straddling criterion for integrability

lemma integrable straddle interval :
fixes f :: ′n::euclidean space ⇒ real
assumes

∧
e. e>0 =⇒ ∃ g h i j . (g has integral i) (cbox a b) ∧ (h has integral j )

(cbox a b) ∧
|i − j | < e ∧ (∀ x∈cbox a b. (g x ) ≤ f x ∧ f x ≤ h x )

shows f integrable on cbox a b
proof −
have ∃ d . gauge d ∧

(∀ p1 p2 . p1 tagged division of cbox a b ∧ d fine p1 ∧
p2 tagged division of cbox a b ∧ d fine p2 −→
|(
∑

(x ,K )∈p1 . content K ∗R f x ) − (
∑

(x ,K )∈p2 . content K ∗R
f x )| < e)

if e > 0 for e
proof −
have e: e/3 > 0
using that by auto

then obtain g h i j where ij : |i − j | < e/3
and (g has integral i) (cbox a b)
and (h has integral j ) (cbox a b)
and fgh:

∧
x . x ∈ cbox a b =⇒ g x ≤ f x ∧ f x ≤ h x

using assms real norm def by metis
then obtain d1 d2 where gauge d1 gauge d2

and d1 :
∧
p. [[p tagged division of cbox a b; d1 fine p]] =⇒
|(
∑

(x ,K )∈p. content K ∗R g x ) − i | < e/3
and d2 :

∧
p. [[p tagged division of cbox a b; d2 fine p]] =⇒
|(
∑

(x ,K ) ∈ p. content K ∗R h x ) − j | < e/3
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by (metis e has integral real norm def )
have |(

∑
(x ,K ) ∈ p1 . content K ∗R f x ) − (

∑
(x ,K ) ∈ p2 . content K ∗R f x )|

< e
if p1 : p1 tagged division of cbox a b and 11 : d1 fine p1 and 21 : d2 fine p1
and p2 : p2 tagged division of cbox a b and 12 : d1 fine p2 and 22 : d2 fine

p2 for p1 p2
proof −
have ∗:

∧
g1 g2 h1 h2 f1 f2 .
[[|g2 − i | < e/3 ; |g1 − i | < e/3 ; |h2 − j | < e/3 ; |h1 − j | < e/3 ;
g1 − h2 ≤ f1 − f2 ; f1 − f2 ≤ h1 − g2 ]]
=⇒ |f1 − f2 | < e

using 〈e > 0 〉 ij by arith
have 0 : (

∑
(x , k)∈p1 . content k ∗R f x ) − (

∑
(x , k)∈p1 . content k ∗R g x )

≥ 0
0 ≤ (

∑
(x , k)∈p2 . content k ∗R h x ) − (

∑
(x , k)∈p2 . content k ∗R f

x )
(
∑

(x , k)∈p2 . content k ∗R f x ) − (
∑

(x , k)∈p2 . content k ∗R g x ) ≥
0

0 ≤ (
∑

(x , k)∈p1 . content k ∗R h x ) − (
∑

(x , k)∈p1 . content k ∗R f
x )

unfolding sum subtractf [symmetric]
apply (auto intro!: sum nonneg)
apply (meson fgh measure nonneg mult left mono tag in interval that

sum nonneg)+
done

show ?thesis
proof (rule ∗)
show |(

∑
(x ,K ) ∈ p2 . content K ∗R g x ) − i | < e/3

by (rule d1 [OF p2 12 ])
show |(

∑
(x ,K ) ∈ p1 . content K ∗R g x ) − i | < e/3

by (rule d1 [OF p1 11 ])
show |(

∑
(x ,K ) ∈ p2 . content K ∗R h x ) − j | < e/3

by (rule d2 [OF p2 22 ])
show |(

∑
(x ,K ) ∈ p1 . content K ∗R h x ) − j | < e/3

by (rule d2 [OF p1 21 ])
qed (use 0 in auto)

qed
then show ?thesis
by (rule tac x=λx . d1 x ∩ d2 x in exI )
(auto simp: fine Int intro: 〈gauge d1 〉 〈gauge d2 〉 d1 d2 )

qed
then show ?thesis
by (simp add : integrable Cauchy)

qed

lemma integrable straddle:
fixes f :: ′n::euclidean space ⇒ real
assumes

∧
e. e>0 =⇒ ∃ g h i j . (g has integral i) s ∧ (h has integral j ) s ∧
|i − j | < e ∧ (∀ x∈s. g x ≤ f x ∧ f x ≤ h x )
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shows f integrable on s
proof −
let ?fs = (λx . if x ∈ s then f x else 0 )
have ?fs integrable on cbox a b for a b
proof (rule integrable straddle interval)
fix e::real
assume e > 0
then have ∗: e/4 > 0
by auto

with assms obtain g h i j where g : (g has integral i) s and h: (h has integral
j ) s

and ij : |i − j | < e/4
and fgh:

∧
x . x ∈ s =⇒ g x ≤ f x ∧ f x ≤ h x

by metis
let ?gs = (λx . if x ∈ s then g x else 0 )
let ?hs = (λx . if x ∈ s then h x else 0 )
obtain Bg where Bg :

∧
a b. ball 0 Bg ⊆ cbox a b =⇒ |integral (cbox a b) ?gs

− i | < e/4
and int g :

∧
a b. ?gs integrable on cbox a b

using g ∗ unfolding has integral alt ′ real norm def by meson
obtain Bh where

Bh:
∧
a b. ball 0 Bh ⊆ cbox a b =⇒ |integral (cbox a b) ?hs − j | < e/4

and int h:
∧
a b. ?hs integrable on cbox a b

using h ∗ unfolding has integral alt ′ real norm def by meson
define c where c = (

∑
i∈Basis. min (a·i) (− (max Bg Bh)) ∗R i)

define d where d = (
∑

i∈Basis. max (b·i) (max Bg Bh) ∗R i)
have [[norm (0 − x ) < Bg ; i ∈ Basis]] =⇒ c · i ≤ x · i ∧ x · i ≤ d · i for x i
using Basis le norm[of i x ] unfolding c def d def by auto

then have ballBg : ball 0 Bg ⊆ cbox c d
by (auto simp: mem box dist norm)

have [[norm (0 − x ) < Bh; i ∈ Basis]] =⇒ c · i ≤ x · i ∧ x · i ≤ d · i for x i
using Basis le norm[of i x ] unfolding c def d def by auto

then have ballBh: ball 0 Bh ⊆ cbox c d
by (auto simp: mem box dist norm)

have ab cd : cbox a b ⊆ cbox c d
by (auto simp: c def d def subset box imp)

have ∗∗:
∧
ch cg ag ah::real . [[|ah − ag | ≤ |ch − cg |; |cg − i | < e/4 ; |ch − j |

< e/4 ]]
=⇒ |ag − ah| < e
using ij by arith

show ∃ g h i j . (g has integral i) (cbox a b) ∧ (h has integral j ) (cbox a b) ∧ |i
− j | < e ∧

(∀ x∈cbox a b. g x ≤ (if x ∈ s then f x else 0 ) ∧
(if x ∈ s then f x else 0 ) ≤ h x )

proof (intro exI ballI conjI )
have eq :

∧
x f g . (if x ∈ s then f x else 0 ) − (if x ∈ s then g x else 0 ) =

(if x ∈ s then f x − g x else (0 ::real))
by auto

have int hg : (λx . if x ∈ s then h x − g x else 0 ) integrable on cbox a b
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(λx . if x ∈ s then h x − g x else 0 ) integrable on cbox c d
by (metis (no types) integrable diff g h has integral integrable integrable altD(1 ))+
show (?gs has integral integral (cbox a b) ?gs) (cbox a b)

(?hs has integral integral (cbox a b) ?hs) (cbox a b)
by (intro integrable integral int g int h)+

then have integral (cbox a b) ?gs ≤ integral (cbox a b) ?hs
using fgh by (force intro: has integral le)

then have 0 ≤ integral (cbox a b) ?hs − integral (cbox a b) ?gs
by simp

then have |integral (cbox a b) ?hs − integral (cbox a b) ?gs|
≤ |integral (cbox c d) ?hs − integral (cbox c d) ?gs|

apply (simp add : integral diff [symmetric] int g int h)
apply (subst abs of nonneg [OF integral nonneg [OF integrable diff , OF int h

int g ]])
using fgh apply (force simp: eq intro!: integral subset le [OF ab cd int hg ])+
done

then show |integral (cbox a b) ?gs − integral (cbox a b) ?hs| < e
using ∗∗ Bg ballBg Bh ballBh by blast

show
∧
x . x ∈ cbox a b =⇒ ?gs x ≤ ?fs x

∧
x . x ∈ cbox a b =⇒ ?fs x ≤ ?hs

x
using fgh by auto

qed
qed
then have int f : ?fs integrable on cbox a b for a b
by simp

have ∃B>0 . ∀ a b c d .
ball 0 B ⊆ cbox a b ∧ ball 0 B ⊆ cbox c d −→
abs (integral (cbox a b) ?fs − integral (cbox c d) ?fs) < e

if 0 < e for e
proof −
have ∗: e/3 > 0
using that by auto

with assms obtain g h i j where g : (g has integral i) s and h: (h has integral
j ) s

and ij : |i − j | < e/3
and fgh:

∧
x . x ∈ s =⇒ g x ≤ f x ∧ f x ≤ h x

by metis
let ?gs = (λx . if x ∈ s then g x else 0 )
let ?hs = (λx . if x ∈ s then h x else 0 )
obtain Bg where Bg > 0

and Bg :
∧
a b. ball 0 Bg ⊆ cbox a b =⇒ |integral (cbox a b) ?gs − i |

< e/3
and int g :

∧
a b. ?gs integrable on cbox a b

using g ∗ unfolding has integral alt ′ real norm def by meson
obtain Bh where Bh > 0

and Bh:
∧
a b. ball 0 Bh ⊆ cbox a b =⇒ |integral (cbox a b) ?hs − j |

< e/3
and int h:

∧
a b. ?hs integrable on cbox a b

using h ∗ unfolding has integral alt ′ real norm def by meson

Henstock{_}{\kern 0pt}Kurzweil{_}{\kern 0pt}Integration.html


1872

{ fix a b c d :: ′n
assume as: ball 0 (max Bg Bh) ⊆ cbox a b ball 0 (max Bg Bh) ⊆ cbox c d
have ∗∗: ball 0 Bg ⊆ ball (0 :: ′n) (max Bg Bh) ball 0 Bh ⊆ ball (0 :: ′n) (max

Bg Bh)
by auto

have ∗:
∧
ga gc ha hc fa fc. [[|ga − i | < e/3 ; |gc − i | < e/3 ; |ha − j | < e/3 ;
|hc − j | < e/3 ; ga ≤ fa; fa ≤ ha; gc ≤ fc; fc ≤ hc]] =⇒

|fa − fc| < e
using ij by arith

have abs (integral (cbox a b) (λx . if x ∈ s then f x else 0 ) − integral (cbox c
d)

(λx . if x ∈ s then f x else 0 )) < e
proof (rule ∗)
show |integral (cbox a b) ?gs − i | < e/3
using ∗∗ Bg as by blast

show |integral (cbox c d) ?gs − i | < e/3
using ∗∗ Bg as by blast

show |integral (cbox a b) ?hs − j | < e/3
using ∗∗ Bh as by blast

show |integral (cbox c d) ?hs − j | < e/3
using ∗∗ Bh as by blast

qed (use int f int g int h fgh in 〈simp all add : integral le〉)
}
then show ?thesis
apply (rule tac x=max Bg Bh in exI )
using 〈Bg > 0 〉 by auto

qed
then show ?thesis
unfolding integrable alt [of f ] real norm def by (blast intro: int f )

qed

6.15.38 Adding integrals over several sets

lemma has integral Un:
fixes f :: ′n::euclidean space ⇒ ′a::banach
assumes f : (f has integral i) S (f has integral j ) T
and neg : negligible (S ∩ T )

shows (f has integral (i + j )) (S ∪ T )
unfolding has integral restrict UNIV [symmetric, of f ]

proof (rule has integral spike[OF neg ])
let ?f = λx . (if x ∈ S then f x else 0 ) + (if x ∈ T then f x else 0 )
show (?f has integral i + j ) UNIV
by (simp add : f has integral add)

qed auto

lemma integral Un [simp]:
fixes f :: ′n::euclidean space ⇒ ′a::banach
assumes f integrable on S f integrable on T negligible (S ∩ T )
shows integral (S ∪ T ) f = integral S f + integral T f
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by (simp add : has integral Un assms integrable integral integral unique)

lemma integrable Un:
fixes f :: ′a::euclidean space ⇒ ′b :: banach
assumes negligible (A ∩ B) f integrable on A f integrable on B
shows f integrable on (A ∪ B)

proof −
from assms obtain y z where (f has integral y) A (f has integral z ) B

by (auto simp: integrable on def )
from has integral Un[OF this assms(1 )] show ?thesis by (auto simp: inte-

grable on def )
qed

lemma integrable Un ′:
fixes f :: ′a::euclidean space ⇒ ′b :: banach
assumes f integrable on A f integrable on B negligible (A ∩ B) C = A ∪ B
shows f integrable on C
using integrable Un[of A B f ] assms by simp

lemma has integral Union:
fixes f :: ′n::euclidean space ⇒ ′a::banach
assumes T : finite T
and int :

∧
S . S ∈ T =⇒ (f has integral (i S )) S

and neg : pairwise (λS S ′. negligible (S ∩ S ′)) T
shows (f has integral (sum i T )) (

⋃
T )

proof −
let ?U = ((λ(a,b). a ∩ b) ‘ {(a,b). a ∈ T ∧ b ∈ {y . y ∈ T ∧ a 6= y}})
have ((λx . if x ∈

⋃
T then f x else 0 ) has integral sum i T ) UNIV

proof (rule has integral spike)
show negligible (

⋃
?U)

proof (rule negligible Union)
have finite (T × T )
by (simp add : T )

moreover have {(a, b). a ∈ T ∧ b ∈ {y ∈ T . a 6= y}} ⊆ T × T
by auto

ultimately show finite ?U
by (blast intro: finite subset [of T × T ])

show
∧
t . t ∈ ?U =⇒ negligible t

using neg unfolding pairwise def by auto
qed

next
show (if x ∈

⋃
T then f x else 0 ) = (

∑
A∈T . if x ∈ A then f x else 0 )

if x ∈ UNIV − (
⋃
?U) for x

proof clarsimp
fix S assume S ∈ T x ∈ S
moreover then have ∀ b∈T . x ∈ b ←→ b = S
using that by blast

ultimately show f x = (
∑

A∈T . if x ∈ A then f x else 0 )
by (simp add : sum.delta[OF T ])
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qed
next
show ((λx .

∑
A∈T . if x ∈ A then f x else 0 ) has integral (

∑
A∈T . i A)) UNIV

using int by (simp add : has integral restrict UNIV has integral sum [OF T ])
qed
then show ?thesis
using has integral restrict UNIV by blast

qed

In particular adding integrals over a division, maybe not of an interval.

lemma has integral combine division:
fixes f :: ′n::euclidean space ⇒ ′a::banach
assumes D division of S
and

∧
k . k ∈ D =⇒ (f has integral (i k)) k

shows (f has integral (sum i D)) S
proof −
note D = division ofD [OF assms(1 )]
have neg : negligible (S ∩ s ′) if S ∈ D s ′ ∈ D S 6= s ′ for S s ′

proof −
obtain a c b D where obt : S = cbox a b s ′ = cbox c D
by (meson 〈S ∈ D〉 〈s ′ ∈ D〉 D(4 ))

from D(5 )[OF that ] show ?thesis
unfolding obt interior cbox

by (metis (no types, lifting) Diff empty Int interval box Int box negligi-
ble frontier interval)
qed
show ?thesis
unfolding D(6 )[symmetric]
by (auto intro: D neg assms has integral Union pairwiseI )

qed

lemma integral combine division bottomup:
fixes f :: ′n::euclidean space ⇒ ′a::banach
assumes D division of S

∧
k . k ∈ D =⇒ f integrable on k

shows integral S f = sum (λi . integral i f ) D
by (meson assms integral unique has integral combine division has integral integrable integral)

lemma has integral combine division topdown:
fixes f :: ′n::euclidean space ⇒ ′a::banach
assumes f : f integrable on S
and D: D division of K
and K ⊆ S

shows (f has integral (sum (λi . integral i f ) D)) K
proof −
have f integrable on L if L ∈ D for L
proof −
have L ⊆ S
using 〈K ⊆ S 〉 D that by blast

then show f integrable on L
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using that by (metis (no types) f D division ofD(4 ) integrable on subcbox )
qed
then show ?thesis
by (meson D has integral combine division has integral integrable integral)

qed

lemma integral combine division topdown:
fixes f :: ′n::euclidean space ⇒ ′a::banach
assumes f integrable on S
and D division of S

shows integral S f = sum (λi . integral i f ) D
using assms has integral combine division topdown by blast

lemma integrable combine division:
fixes f :: ′n::euclidean space ⇒ ′a::banach
assumes D: D division of S
and f :

∧
i . i ∈ D =⇒ f integrable on i

shows f integrable on S
using f unfolding integrable on def by (metis has integral combine division[OF
D])

lemma integrable on subdivision:
fixes f :: ′n::euclidean space ⇒ ′a::banach
assumes D: D division of i
and f : f integrable on S
and i ⊆ S

shows f integrable on i
proof −
have f integrable on i if i ∈ D for i

proof −
have i ⊆ S
using assms that by auto

then show f integrable on i
using that by (metis (no types) D f division ofD(4 ) integrable on subcbox )

qed
then show ?thesis
using D integrable combine division by blast

qed

6.15.39 Also tagged divisions

lemma has integral combine tagged division:
fixes f :: ′n::euclidean space ⇒ ′a::banach
assumes p tagged division of S
and

∧
x k . (x ,k) ∈ p =⇒ (f has integral (i k)) k

shows (f has integral (
∑

(x ,k)∈p. i k)) S
proof −
have ∗: (f has integral (

∑
k∈snd‘p. integral k f )) S

proof −
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have snd ‘ p division of S
by (simp add : assms(1 ) division of tagged division)

with assms show ?thesis
by (metis (mono tags, lifting) has integral combine division has integral integrable integral

imageE prod .collapse)
qed
also have (

∑
k∈snd‘p. integral k f ) = (

∑
(x , k)∈p. integral k f )

by (intro sum.over tagged division lemma[OF assms(1 ), symmetric] integral null)
(simp add : content eq 0 interior)

finally show ?thesis
using assms by (auto simp add : has integral iff intro!: sum.cong)

qed

lemma integral combine tagged division bottomup:
fixes f :: ′n::euclidean space ⇒ ′a::banach
assumes p: p tagged division of (cbox a b)
and f :

∧
x k . (x ,k)∈p =⇒ f integrable on k

shows integral (cbox a b) f = sum (λ(x ,k). integral k f ) p
by (simp add : has integral combine tagged division[OF p] integral unique f inte-

grable integral)

lemma has integral combine tagged division topdown:
fixes f :: ′n::euclidean space ⇒ ′a::banach
assumes f : f integrable on cbox a b
and p: p tagged division of (cbox a b)

shows (f has integral (sum (λ(x ,K ). integral K f ) p)) (cbox a b)
proof −
have (f has integral integral K f ) K if (x ,K ) ∈ p for x K
by (metis assms integrable integral integrable on subcbox tagged division ofD(3 ,4 )

that)
then show ?thesis
by (simp add : has integral combine tagged division p)

qed

lemma integral combine tagged division topdown:
fixes f :: ′n::euclidean space ⇒ ′a::banach
assumes f integrable on cbox a b
and p tagged division of (cbox a b)

shows integral (cbox a b) f = sum (λ(x ,k). integral k f ) p
using assms by (auto intro: integral unique [OF has integral combine tagged division topdown])

6.15.40 Henstock’s lemma

lemma Henstock lemma part1 :
fixes f :: ′n::euclidean space ⇒ ′a::banach
assumes intf : f integrable on cbox a b
and e > 0
and gauge d
and less e:

∧
p. [[p tagged division of (cbox a b); d fine p]] =⇒
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norm (sum (λ(x ,K ). content K ∗R f x ) p − integral(cbox a b) f )
< e

and p: p tagged partial division of (cbox a b) d fine p
shows norm (sum (λ(x ,K ). content K ∗R f x − integral K f ) p) ≤ e (is ?lhs ≤

e)
proof (rule field le epsilon)
fix k :: real
assume k > 0
let ?SUM = λp. (

∑
(x ,K ) ∈ p. content K ∗R f x )

note p ′ = tagged partial division ofD [OF p(1 )]
have

⋃
(snd ‘ p) ⊆ cbox a b

using p ′(3 ) by fastforce
then obtain q where q : snd ‘ p ⊆ q and qdiv : q division of cbox a b
by (meson p(1 ) partial division extend interval partial division of tagged division)
note q ′ = division ofD [OF qdiv ]
define r where r = q − snd ‘ p
have snd ‘ p ∩ r = {}
unfolding r def by auto

have finite r
using q ′ unfolding r def by auto

have ∃ p. p tagged division of i ∧ d fine p ∧
norm (?SUM p − integral i f ) < k / (real (card r) + 1 )

if i∈r for i
proof −
have gt0 : k / (real (card r) + 1 ) > 0 using 〈k > 0 〉 by simp
have i : i ∈ q
using that unfolding r def by auto

then obtain u v where uv : i = cbox u v
using q ′(4 ) by blast

then have cbox u v ⊆ cbox a b
using i q ′(2 ) by auto

then have f integrable on cbox u v
by (rule integrable subinterval [OF intf ])

with integrable integral [OF this, unfolded has integral [of f ]]
obtain dd where gauge dd and dd :∧
D. [[D tagged division of cbox u v ; dd fine D]] =⇒

norm (?SUM D − integral (cbox u v) f ) < k / (real (card r) + 1 )
using gt0 by auto

with gauge Int [OF 〈gauge d 〉 〈gauge dd 〉]
obtain qq where qq : qq tagged division of cbox u v (λx . d x ∩ dd x ) fine qq
using fine division exists by blast

with dd [of qq ] show ?thesis
by (auto simp: fine Int uv)

qed
then obtain qq where qq :

∧
i . i ∈ r =⇒ qq i tagged division of i ∧

d fine qq i ∧ norm (?SUM (qq i) − integral i f ) < k / (real (card r) + 1 )
by metis

let ?p = p ∪
⋃
(qq ‘ r)
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have norm (?SUM ?p − integral (cbox a b) f ) < e
proof (rule less e)
show d fine ?p
by (metis (mono tags, hide lams) qq fine Un fine Union imageE p(2 ))

note ptag = tagged partial division of Union self [OF p(1 )]
have p ∪

⋃
(qq ‘ r) tagged division of

⋃
(snd ‘ p) ∪

⋃
r

proof (rule tagged division Un[OF ptag tagged division Union [OF 〈finite r 〉]])
show

∧
i . i ∈ r =⇒ qq i tagged division of i

using qq by auto
show

∧
i1 i2 . [[i1 ∈ r ; i2 ∈ r ; i1 6= i2 ]] =⇒ interior i1 ∩ interior i2 = {}

by (simp add : q ′(5 ) r def )
show interior (

⋃
(snd ‘ p)) ∩ interior (

⋃
r) = {}

proof (rule Int interior Union intervals [OF 〈finite r 〉])
show open (interior (

⋃
(snd ‘ p)))

by blast
show

∧
T . T ∈ r =⇒ ∃ a b. T = cbox a b

by (simp add : q ′(4 ) r def )
have interior T ∩ interior (

⋃
(snd ‘ p)) = {} if T ∈ r for T

proof (rule Int interior Union intervals)
show

∧
U . U ∈ snd ‘ p =⇒ ∃ a b. U = cbox a b

using q q ′(4 ) by blast
show

∧
U . U ∈ snd ‘ p =⇒ interior T ∩ interior U = {}

by (metis DiffE q q ′(5 ) r def subsetD that)
qed (use p ′ in auto)
then show

∧
T . T ∈ r =⇒ interior (

⋃
(snd ‘ p)) ∩ interior T = {}

by (metis Int commute)
qed

qed
moreover have

⋃
(snd ‘ p) ∪

⋃
r = cbox a b and {qq i |i . i ∈ r} = qq ‘ r

using qdiv q unfolding Union Un distrib[symmetric] r def by auto
ultimately show ?p tagged division of (cbox a b)
by fastforce

qed
then have norm (?SUM p + (?SUM (

⋃
(qq ‘ r))) − integral (cbox a b) f ) < e

proof (subst sum.union inter neutral [symmetric, OF 〈finite p〉], safe)
show content L ∗R f x = 0 if (x , L) ∈ p (x , L) ∈ qq K K ∈ r for x K L
proof −
obtain u v where uv : L = cbox u v
using 〈(x ,L) ∈ p〉 p ′(4 ) by blast

have L ⊆ K
using qq [OF that(3 )] tagged division ofD(3 ) 〈(x ,L) ∈ qq K 〉 by metis

have L ∈ snd ‘ p
using 〈(x ,L) ∈ p〉 image iff by fastforce

then have L ∈ q K ∈ q L 6= K
using that(1 ,3 ) q(1 ) unfolding r def by auto

with q ′(5 ) have interior L = {}
using interior mono[OF 〈L ⊆ K 〉] by blast

then show content L ∗R f x = 0
unfolding uv content eq 0 interior [symmetric] by auto
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qed
show finite (

⋃
(qq ‘ r))

by (meson finite UN qq 〈finite r 〉 tagged division of finite)
qed
moreover have content M ∗R f x = 0

if x : (x ,M ) ∈ qq K (x ,M ) ∈ qq L and KL: qq K 6= qq L and r : K ∈ r L ∈ r
for x M K L

proof −
note kl = tagged division ofD(3 ,4 )[OF qq [THEN conjunct1 ]]
obtain u v where uv : M = cbox u v
using 〈(x , M ) ∈ qq L〉 〈L ∈ r 〉 kl(2 ) by blast

have empty : interior (K ∩ L) = {}
by (metis DiffD1 interior Int q ′(5 ) r def KL r)

have interior M = {}
by (metis (no types, lifting) Int assoc empty inf .absorb iff2 interior Int kl(1 )

subset empty x r)
then show content M ∗R f x = 0
unfolding uv content eq 0 interior [symmetric]
by auto

qed
ultimately have norm (?SUM p + sum ?SUM (qq ‘ r) − integral (cbox a b) f )

< e
apply (subst (asm) sum.Union comp)
using qq by (force simp: split paired all)+

moreover have content M ∗R f x = 0
if K ∈ r L ∈ r K 6= L qq K = qq L (x , M ) ∈ qq K for K L x M

using tagged division ofD(6 ) qq that by (metis (no types, lifting))
ultimately have less e: norm (?SUM p + sum (?SUM ◦ qq) r − integral (cbox

a b) f ) < e
proof (subst (asm) sum.reindex nontrivial [OF 〈finite r 〉])
qed (auto simp: split paired all sum.neutral)

have norm le: norm (cp − ip) ≤ e + k
if norm ((cp + cr) − i) < e norm (cr − ir) < k ip + ir = i
for ir ip i cr cp:: ′a

proof −
from that show ?thesis
using norm triangle le[of cp + cr − i − (cr − ir)]
unfolding that(3 )[symmetric] norm minus cancel
by (auto simp add : algebra simps)

qed

have ?lhs = norm (?SUM p − (
∑

(x , k)∈p. integral k f ))
unfolding split def sum subtractf ..

also have . . . ≤ e + k
proof (rule norm le[OF less e])
have lessk : k ∗ real (card r) / (1 + real (card r)) < k
using 〈k>0 〉 by (auto simp add : field simps)

have norm (sum (?SUM ◦ qq) r − (
∑

k∈r . integral k f )) ≤ (
∑

x∈r . k / (real
(card r) + 1 ))
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unfolding sum subtractf [symmetric] by (force dest : qq intro!: sum norm le)
also have ... < k
by (simp add : lessk add .commute mult .commute)

finally show norm (sum (?SUM ◦ qq) r − (
∑

k∈r . integral k f )) < k .
next
from q(1 ) have [simp]: snd ‘ p ∪ q = q by auto
have integral l f = 0
if inp: (x , l) ∈ p (y , m) ∈ p and ne: (x , l) 6= (y , m) and l = m for x l y m

proof −
obtain u v where uv : l = cbox u v
using inp p ′(4 ) by blast

have content (cbox u v) = 0
unfolding content eq 0 interior using that p(1 ) uv
by (auto dest : tagged partial division ofD)

then show ?thesis
using uv by blast

qed
then have (

∑
(x , K )∈p. integral K f ) = (

∑
K∈snd ‘ p. integral K f )

apply (subst sum.reindex nontrivial [OF 〈finite p〉])
unfolding split paired all split def by auto

then show (
∑

(x , k)∈p. integral k f ) + (
∑

k∈r . integral k f ) = integral (cbox
a b) f

unfolding integral combine division topdown[OF intf qdiv ] r def
using q ′(1 ) p ′(1 ) sum.union disjoint [of snd ‘ p q − snd ‘ p, symmetric]
by simp

qed
finally show ?lhs ≤ e + k .

qed

lemma Henstock lemma part2 :
fixes f :: ′m::euclidean space ⇒ ′n::euclidean space
assumes fed : f integrable on cbox a b e > 0 gauge d
and less e:

∧
D. [[D tagged division of (cbox a b); d fine D]] =⇒
norm (sum (λ(x ,k). content k ∗R f x ) D − integral (cbox a b) f )

< e
and tag : p tagged partial division of (cbox a b)
and d fine p
shows sum (λ(x ,k). norm (content k ∗R f x − integral k f )) p ≤ 2 ∗ real

(DIM ( ′n)) ∗ e
proof −
have finite p
using tag tagged partial division ofD by blast

then show ?thesis
unfolding split def

proof (rule sum norm allsubsets bound)
fix Q
assume Q : Q ⊆ p
then have fine: d fine Q
by (simp add : 〈d fine p〉 fine subset)
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show norm (
∑

x∈Q . content (snd x ) ∗R f (fst x ) − integral (snd x ) f ) ≤ e
apply (rule Henstock lemma part1 [OF fed less e, unfolded split def ])
using Q tag tagged partial division subset by (force simp add : fine)+

qed
qed

lemma Henstock lemma:
fixes f :: ′m::euclidean space ⇒ ′n::euclidean space
assumes intf : f integrable on cbox a b
and e > 0

obtains γ where gauge γ
and

∧
p. [[p tagged partial division of (cbox a b); γ fine p]] =⇒
sum (λ(x ,k). norm(content k ∗R f x − integral k f )) p < e

proof −
have ∗: e/(2 ∗ (real DIM ( ′n) + 1 )) > 0 using 〈e > 0 〉 by simp
with integrable integral [OF intf , unfolded has integral ]
obtain γ where gauge γ
and γ:

∧
D. [[D tagged division of cbox a b; γ fine D]] =⇒

norm ((
∑

(x ,K )∈D. content K ∗R f x ) − integral (cbox a b) f )
< e/(2 ∗ (real DIM ( ′n) + 1 ))

by metis
show thesis
proof (rule that [OF 〈gauge γ〉])
fix p
assume p: p tagged partial division of cbox a b γ fine p
have (

∑
(x ,K )∈p. norm (content K ∗R f x − integral K f ))

≤ 2 ∗ real DIM ( ′n) ∗ (e/(2 ∗ (real DIM ( ′n) + 1 )))
using Henstock lemma part2 [OF intf ∗ 〈gauge γ〉 γ p] by metis

also have ... < e
using 〈e > 0 〉 by (auto simp add : field simps)

finally
show (

∑
(x ,K )∈p. norm (content K ∗R f x − integral K f )) < e .

qed
qed

6.15.41 Monotone convergence (bounded interval first)

lemma bounded increasing convergent :
fixes f :: nat ⇒ real
shows [[bounded (range f );

∧
n. f n ≤ f (Suc n)]] =⇒ ∃ l . f −−−−→ l

using Bseq mono convergent [of f ] incseq Suc iff [of f ]
by (auto simp: image def Bseq eq bounded convergent def incseq def )

lemma monotone convergence interval :
fixes f :: nat ⇒ ′n::euclidean space ⇒ real
assumes intf :

∧
k . (f k) integrable on cbox a b

and le:
∧
k x . x ∈ cbox a b =⇒ (f k x ) ≤ f (Suc k) x

and fg :
∧
x . x ∈ cbox a b =⇒ ((λk . f k x ) −−−→ g x ) sequentially

and bou: bounded (range (λk . integral (cbox a b) (f k)))
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shows g integrable on cbox a b ∧ ((λk . integral (cbox a b) (f k)) −−−→ integral
(cbox a b) g) sequentially
proof (cases content (cbox a b) = 0 )
case True then show ?thesis
by auto

next
case False
have fg1 : (f k x ) ≤ (g x ) if x : x ∈ cbox a b for x k
proof −
have ∀ F j in sequentially . f k x ≤ f j x
proof (rule eventually sequentiallyI [of k ])
show

∧
j . k ≤ j =⇒ f k x ≤ f j x

using le x by (force intro: transitive stepwise le)
qed
then show f k x ≤ g x
using tendsto lowerbound [OF fg ] x trivial limit sequentially by blast

qed
have int inc:

∧
n. integral (cbox a b) (f n) ≤ integral (cbox a b) (f (Suc n))

by (metis integral le intf le)
then obtain i where i : (λk . integral (cbox a b) (f k)) −−−−→ i
using bounded increasing convergent bou by blast

have
∧
k . ∀ F x in sequentially . integral (cbox a b) (f k) ≤ integral (cbox a b) (f

x )
unfolding eventually sequentially
by (force intro: transitive stepwise le int inc)

then have i ′:
∧
k . (integral(cbox a b) (f k)) ≤ i

using tendsto le [OF trivial limit sequentially i ] by blast
have (g has integral i) (cbox a b)
unfolding has integral real norm def

proof clarify
fix e::real
assume e: e > 0
have

∧
k . (∃ γ. gauge γ ∧ (∀D. D tagged division of (cbox a b) ∧ γ fine D −→

abs ((
∑

(x ,K )∈D. content K ∗R f k x ) − integral (cbox a b) (f k)) < e/2 ˆ
(k + 2 )))

using intf e by (auto simp: has integral integral has integral)
then obtain c where c:

∧
x . gauge (c x )∧

x D. [[D tagged division of cbox a b; c x fine D]] =⇒
abs ((

∑
(u,K )∈D. content K ∗R f x u) − integral (cbox a b) (f x ))

< e/2 ˆ (x + 2 )
by metis

have ∃ r . ∀ k≥r . 0 ≤ i − (integral (cbox a b) (f k)) ∧ i − (integral (cbox a b)
(f k)) < e/4

proof −
have e/4 > 0
using e by auto

show ?thesis
using LIMSEQ D [OF i 〈e/4 > 0 〉] i ′ by auto
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qed
then obtain r where r :

∧
k . r ≤ k =⇒ 0 ≤ i − integral (cbox a b) (f k)∧

k . r ≤ k =⇒ i − integral (cbox a b) (f k) < e/4
by metis

have ∃n≥r . ∀ k≥n. 0 ≤ (g x ) − (f k x ) ∧ (g x ) − (f k x ) < e/(4 ∗ content(cbox
a b))

if x ∈ cbox a b for x
proof −
have e/(4 ∗ content (cbox a b)) > 0
by (simp add : False content lt nz e)

with fg that LIMSEQ D
obtain N where ∀n≥N . norm (f n x − g x ) < e/(4 ∗ content (cbox a b))
by metis

then show ∃n≥r . ∀ k≥n. 0 ≤ g x − f k x ∧ g x − f k x < e/(4 ∗ content
(cbox a b))

apply (rule tac x=N + r in exI )
using fg1 [OF that ] by (auto simp add : field simps)

qed
then obtain m where r le m:

∧
x . x ∈ cbox a b =⇒ r ≤ m x

and m:
∧
x k . [[x ∈ cbox a b; m x ≤ k ]]
=⇒ 0 ≤ g x − f k x ∧ g x − f k x < e/(4 ∗ content (cbox a b))

by metis
define d where d x = c (m x ) x for x
show ∃ γ. gauge γ ∧

(∀D. D tagged division of cbox a b ∧
γ fine D −→ abs ((

∑
(x ,K )∈D. content K ∗R g x ) − i) < e)

proof (rule exI , safe)
show gauge d
using c(1 ) unfolding gauge def d def by auto

next
fix D
assume ptag : D tagged division of (cbox a b) and d fine D
note p ′=tagged division ofD [OF ptag ]
obtain s where s:

∧
x . x ∈ D =⇒ m (fst x ) ≤ s

by (metis finite imageI finite nat set iff bounded le p ′(1 ) rev image eqI )
have ∗: |a − d | < e if |a − b| ≤ e/4 |b − c| < e/2 |c − d | < e/4 for a b

c d
using that norm triangle lt [of a − b b − c 3∗ e/4 ]
norm triangle lt [of a − b + (b − c) c − d e]

by (auto simp add : algebra simps)
show |(

∑
(x , k)∈D. content k ∗R g x ) − i | < e

proof (rule ∗)
have |(

∑
(x ,K )∈D. content K ∗R g x ) − (

∑
(x ,K )∈D. content K ∗R f (m

x ) x )|
≤ (

∑
i∈D. |(case i of (x , K ) ⇒ content K ∗R g x ) − (case i of (x ,

K ) ⇒ content K ∗R f (m x ) x )|)
by (metis (mono tags) sum subtractf sum abs)

also have ... ≤ (
∑

(x , k)∈D. content k ∗ (e/(4 ∗ content (cbox a b))))
proof (rule sum mono, simp add : split paired all)
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fix x K
assume xk : (x ,K ) ∈ D
with ptag have x : x ∈ cbox a b
by blast

then have abs (content K ∗ (g x − f (m x ) x )) ≤ content K ∗ (e/(4 ∗
content (cbox a b)))

by (metis m[OF x ] mult nonneg nonneg abs of nonneg less eq real def
measure nonneg mult left mono order refl)

then show |content K ∗ g x − content K ∗ f (m x ) x | ≤ content K ∗
e/(4 ∗ content (cbox a b))

by (simp add : algebra simps)
qed
also have ... = (e/(4 ∗ content (cbox a b))) ∗ (

∑
(x , k)∈D. content k)

by (simp add : sum distrib left sum divide distrib split def mult .commute)
also have ... ≤ e/4
by (metis False additive content tagged division [OF ptag ] nonzero mult divide mult cancel right

order refl times divide eq left)
finally show |(

∑
(x ,K )∈D. content K ∗R g x ) − (

∑
(x ,K )∈D. content K

∗R f (m x ) x )| ≤ e/4 .

next
have norm ((

∑
(x ,K )∈D. content K ∗R f (m x ) x ) − (

∑
(x ,K )∈D. integral

K (f (m x ))))
≤ norm (

∑
j = 0 ..s.

∑
(x ,K )∈{xk ∈ D. m (fst xk) = j}. content K

∗R f (m x ) x − integral K (f (m x )))
apply (subst sum.group)
using s by (auto simp: sum subtractf split def p ′(1 ))

also have . . . < e/2
proof −

have norm (
∑

j = 0 ..s.
∑

(x , k)∈{xk ∈ D. m (fst xk) = j}. content k
∗R f (m x ) x − integral k (f (m x )))

≤ (
∑

i = 0 ..s. e/2 ˆ (i + 2 ))
proof (rule sum norm le)
fix t
assume t ∈ {0 ..s}
have norm (

∑
(x ,k)∈{xk ∈ D. m (fst xk) = t}. content k ∗R f (m x ) x

− integral k (f (m x ))) =
norm (

∑
(x ,k)∈{xk ∈ D. m (fst xk) = t}. content k ∗R f t x −

integral k (f t))
by (force intro!: sum.cong arg cong [where f=norm])

also have ... ≤ e/2 ˆ (t + 2 )
proof (rule Henstock lemma part1 [OF intf ])
show {xk ∈ D. m (fst xk) = t} tagged partial division of cbox a b
proof (rule tagged partial division subset [of D])
show D tagged partial division of cbox a b
using ptag tagged division of def by blast

qed auto
show c t fine {xk ∈ D. m (fst xk) = t}
using 〈d fine D〉 by (auto simp: fine def d def )
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qed (use c e in auto)
finally show norm (

∑
(x ,K )∈{xk ∈ D. m (fst xk) = t}. content K ∗R

f (m x ) x −
integral K (f (m x ))) ≤ e/2 ˆ (t + 2 ) .

qed
also have ... = (e/2/2 ) ∗ (

∑
i = 0 ..s. (1/2 ) ˆ i)

by (simp add : sum distrib left field simps)
also have . . . < e/2
by (simp add : sum gp mult strict left mono[OF e])

finally show norm (
∑

j = 0 ..s.
∑

(x , k)∈{xk ∈ D.
m (fst xk) = j}. content k ∗R f (m x ) x − integral k (f (m x ))) < e/2 .

qed
finally show |(

∑
(x ,K )∈D. content K ∗R f (m x ) x ) − (

∑
(x ,K )∈D.

integral K (f (m x )))| < e/2
by simp

next
have comb: integral (cbox a b) (f y) = (

∑
(x , k)∈D. integral k (f y)) for y

using integral combine tagged division topdown[OF intf ptag ] by metis
have f le:

∧
y m n. [[y ∈ cbox a b; n≥m]] =⇒ f m y ≤ f n y

using le by (auto intro: transitive stepwise le)
have (

∑
(x , k)∈D. integral k (f r)) ≤ (

∑
(x , K )∈D. integral K (f (m x )))

proof (rule sum mono, simp add : split paired all)
fix x K
assume xK : (x , K ) ∈ D
show integral K (f r) ≤ integral K (f (m x ))
proof (rule integral le)
show f r integrable on K
by (metis integrable on subcbox intf p ′(3 ) p ′(4 ) xK )

show f (m x ) integrable on K
by (metis elementary interval integrable on subdivision intf p ′(3 ) p ′(4 )

xK )
show f r y ≤ f (m x ) y if y ∈ K for y
using that r le m[of x ] p ′(2−3 )[OF xK ] f le by auto

qed
qed
moreover have (

∑
(x , K )∈D. integral K (f (m x ))) ≤ (

∑
(x , k)∈D.

integral k (f s))
proof (rule sum mono, simp add : split paired all)
fix x K
assume xK : (x , K ) ∈ D
show integral K (f (m x )) ≤ integral K (f s)
proof (rule integral le)
show f (m x ) integrable on K
by (metis elementary interval integrable on subdivision intf p ′(3 ) p ′(4 )

xK )
show f s integrable on K
by (metis integrable on subcbox intf p ′(3 ) p ′(4 ) xK )

show f (m x ) y ≤ f s y if y ∈ K for y
using that s xK f le p ′(3 ) by fastforce
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qed
qed
moreover have 0 ≤ i − integral (cbox a b) (f r) i − integral (cbox a b) (f

r) < e/4
using r by auto

ultimately show |(
∑

(x ,K )∈D. integral K (f (m x ))) − i | < e/4
using comb i ′[of s] by auto

qed
qed

qed
with i integral unique show ?thesis
by blast

qed

lemma monotone convergence increasing :
fixes f :: nat ⇒ ′n::euclidean space ⇒ real
assumes int f :

∧
k . (f k) integrable on S

and
∧
k x . x ∈ S =⇒ (f k x ) ≤ (f (Suc k) x )

and fg :
∧
x . x ∈ S =⇒ ((λk . f k x ) −−−→ g x ) sequentially

and bou: bounded (range (λk . integral S (f k)))
shows g integrable on S ∧ ((λk . integral S (f k)) −−−→ integral S g) sequentially

proof −
have lem: g integrable on S ∧ ((λk . integral S (f k)) −−−→ integral S g) sequentially
if f0 :

∧
k x . x ∈ S =⇒ 0 ≤ f k x

and int f :
∧
k . (f k) integrable on S

and le:
∧
k x . x ∈ S =⇒ f k x ≤ f (Suc k) x

and lim:
∧
x . x ∈ S =⇒ ((λk . f k x ) −−−→ g x ) sequentially

and bou: bounded (range(λk . integral S (f k)))
for f :: nat ⇒ ′n::euclidean space ⇒ real and g S

proof −
have fg : (f k x ) ≤ (g x ) if x ∈ S for x k
proof −
have

∧
xa. k ≤ xa =⇒ f k x ≤ f xa x

using le by (force intro: transitive stepwise le that)
then show ?thesis

using tendsto lowerbound [OF lim [OF that ]] eventually sequentiallyI by
force

qed
obtain i where i : (λk . integral S (f k)) −−−−→ i
using bounded increasing convergent [OF bou] le int f integral le by blast

have i ′: (integral S (f k)) ≤ i for k
proof −
have

∧
k .

∧
x . x ∈ S =⇒ ∀n≥k . f k x ≤ f n x

using le by (force intro: transitive stepwise le)
then show ?thesis
using tendsto lowerbound [OF i eventually sequentiallyI trivial limit sequentially ]
by (meson int f integral le)

qed
let ?f = (λk x . if x ∈ S then f k x else 0 )
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let ?g = (λx . if x ∈ S then g x else 0 )
have int : ?f k integrable on cbox a b for a b k
by (simp add : int f integrable altD(1 ))

have int ′:
∧
k a b. f k integrable on cbox a b ∩ S

using int by (simp add : Int commute integrable restrict Int)
have g : ?g integrable on cbox a b ∧

(λk . integral (cbox a b) (?f k)) −−−−→ integral (cbox a b) ?g for a b
proof (rule monotone convergence interval)
have norm (integral (cbox a b) (?f k)) ≤ norm (integral S (f k)) for k
proof −
have 0 ≤ integral (cbox a b) (?f k)
by (metis (no types) integral nonneg Int iff f0 inf commute integral restrict Int

int ′)
moreover have 0 ≤ integral S (f k)
by (simp add : integral nonneg f0 int f )

moreover have integral (S ∩ cbox a b) (f k) ≤ integral S (f k)
by (metis f0 inf commute int ′ int f integral subset le le inf iff order refl)

ultimately show ?thesis
by (simp add : integral restrict Int)

qed
moreover obtain B where

∧
x . x ∈ range (λk . integral S (f k)) =⇒ norm

x ≤ B
using bou unfolding bounded iff by blast

ultimately show bounded (range (λk . integral (cbox a b) (?f k)))
unfolding bounded iff by (blast intro: order trans)

qed (use int le lim in auto)
moreover have ∃B>0 . ∀ a b. ball 0 B ⊆ cbox a b −→ norm (integral (cbox a

b) ?g − i) < e
if 0 < e for e

proof −
have e/4>0
using that by auto

with LIMSEQ D [OF i ] obtain N where N :
∧
n. n ≥ N =⇒ norm (integral

S (f n) − i) < e/4
by metis

with int f [of N , unfolded has integral integral has integral alt ′[of f N ]]
obtain B where 0 < B and B :∧

a b. ball 0 B ⊆ cbox a b =⇒ norm (integral (cbox a b) (?f N ) − integral
S (f N )) < e/4

by (meson 〈0 < e/4 〉)
have norm (integral (cbox a b) ?g − i) < e if ab: ball 0 B ⊆ cbox a b for a

b
proof −

obtain M where M :
∧
n. n ≥ M =⇒ abs (integral (cbox a b) (?f n) −

integral (cbox a b) ?g) < e/2
using 〈e > 0 〉 g by (fastforce simp add : dest !: LIMSEQ D [where r =

e/2 ])
have ∗:

∧
α β g . [[|α − i | < e/2 ; |β − g | < e/2 ; α ≤ β; β ≤ i ]] =⇒ |g −

i | < e
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unfolding real inner 1 right by arith
show norm (integral (cbox a b) ?g − i) < e
unfolding real norm def

proof (rule ∗)
show |integral (cbox a b) (?f N ) − i | < e/2
proof (rule abs triangle half l)
show |integral (cbox a b) (?f N ) − integral S (f N )| < e/2/2
using B [OF ab] by simp

show abs (i − integral S (f N )) < e/2/2
using N by (simp add : abs minus commute)

qed
show |integral (cbox a b) (?f (M + N )) − integral (cbox a b) ?g | < e/2
by (metis le add1 M [of M + N ])

show integral (cbox a b) (?f N ) ≤ integral (cbox a b) (?f (M + N ))
proof (intro ballI integral le[OF int int ])
fix x assume x ∈ cbox a b
have (f m x ) ≤ (f n x ) if x ∈ S n ≥ m for m n
proof (rule transitive stepwise le [OF 〈n ≥ m〉 order refl ])
show

∧
u y z . [[f u x ≤ f y x ; f y x ≤ f z x ]] =⇒ f u x ≤ f z x

using dual order .trans by blast
qed (simp add : le 〈x ∈ S 〉)
then show (?f N )x ≤ (?f (M+N ))x
by auto

qed
have integral (cbox a b ∩ S ) (f (M + N )) ≤ integral S (f (M + N ))
by (metis Int lower1 f0 inf commute int ′ int f integral subset le)

then have integral (cbox a b) (?f (M + N )) ≤ integral S (f (M + N ))
by (metis (no types) inf commute integral restrict Int)

also have ... ≤ i
using i ′[of M + N ] by auto

finally show integral (cbox a b) (?f (M + N )) ≤ i .
qed

qed
then show ?thesis
using 〈0 < B 〉 by blast

qed
ultimately have (g has integral i) S
unfolding has integral alt ′ by auto

then show ?thesis
using has integral integrable integral i integral unique by metis

qed

have sub:
∧
k . integral S (λx . f k x − f 0 x ) = integral S (f k) − integral S (f 0 )

by (simp add : integral diff int f )
have ∗:

∧
x m n. x ∈ S =⇒ n≥m =⇒ f m x ≤ f n x

using assms(2 ) by (force intro: transitive stepwise le)
have gf : (λx . g x − f 0 x ) integrable on S ∧ ((λk . integral S (λx . f (Suc k) x −

f 0 x )) −−−→
integral S (λx . g x − f 0 x )) sequentially



Henstock Kurzweil Integration.thy 1889

proof (rule lem)
show

∧
k . (λx . f (Suc k) x − f 0 x ) integrable on S

by (simp add : integrable diff int f )
show (λk . f (Suc k) x − f 0 x ) −−−−→ g x − f 0 x if x ∈ S for x
proof −
have (λn. f (Suc n) x ) −−−−→ g x
using LIMSEQ ignore initial segment [OF fg [OF 〈x ∈ S 〉], of 1 ] by simp

then show ?thesis
by (simp add : tendsto diff )

qed
show bounded (range (λk . integral S (λx . f (Suc k) x − f 0 x )))
proof −
obtain B where B :

∧
k . norm (integral S (f k)) ≤ B

using bou by (auto simp: bounded iff )
then have norm (integral S (λx . f (Suc k) x − f 0 x ))

≤ B + norm (integral S (f 0 )) for k
unfolding sub by (meson add le cancel right norm triangle le diff )

then show ?thesis
unfolding bounded iff by blast

qed
qed (use ∗ in auto)
then have (λx . integral S (λxa. f (Suc x ) xa − f 0 xa) + integral S (f 0 ))

−−−−→ integral S (λx . g x − f 0 x ) + integral S (f 0 )
by (auto simp add : tendsto add)

moreover have (λx . g x − f 0 x + f 0 x ) integrable on S
using gf integrable add int f [of 0 ] by metis

ultimately show ?thesis
by (simp add : integral diff int f LIMSEQ imp Suc sub)

qed

lemma has integral monotone convergence increasing :
fixes f :: nat ⇒ ′a::euclidean space ⇒ real
assumes f :

∧
k . (f k has integral x k) s

assumes
∧
k x . x ∈ s =⇒ f k x ≤ f (Suc k) x

assumes
∧
x . x ∈ s =⇒ (λk . f k x ) −−−−→ g x

assumes x −−−−→ x ′

shows (g has integral x ′) s
proof −
have x eq : x = (λi . integral s (f i))
by (simp add : integral unique[OF f ])

then have x : range(λk . integral s (f k)) = range x
by auto

have ∗: g integrable on s ∧ (λk . integral s (f k)) −−−−→ integral s g
proof (intro monotone convergence increasing allI ballI assms)
show bounded (range(λk . integral s (f k)))
using x convergent imp bounded assms by metis

qed (use f in auto)
then have integral s g = x ′

by (intro LIMSEQ unique[OF 〈x −−−−→ x ′〉]) (simp add : x eq)
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with ∗ show ?thesis
by (simp add : has integral integral)

qed

lemma monotone convergence decreasing :
fixes f :: nat ⇒ ′n::euclidean space ⇒ real
assumes intf :

∧
k . (f k) integrable on S

and le:
∧
k x . x ∈ S =⇒ f (Suc k) x ≤ f k x

and fg :
∧
x . x ∈ S =⇒ ((λk . f k x ) −−−→ g x ) sequentially

and bou: bounded (range(λk . integral S (f k)))
shows g integrable on S ∧ (λk . integral S (f k)) −−−−→ integral S g

proof −
have ∗: range(λk . integral S (λx . − f k x )) = (∗R) (− 1 ) ‘ (range(λk . integral S

(f k)))
by force

have (λx . − g x ) integrable on S ∧ (λk . integral S (λx . − f k x )) −−−−→ integral
S (λx . − g x )
proof (rule monotone convergence increasing)
show

∧
k . (λx . − f k x ) integrable on S

by (blast intro: integrable neg intf )
show

∧
k x . x ∈ S =⇒ − f k x ≤ − f (Suc k) x

by (simp add : le)
show

∧
x . x ∈ S =⇒ (λk . − f k x ) −−−−→ − g x

by (simp add : fg tendsto minus)
show bounded (range(λk . integral S (λx . − f k x )))
using ∗ bou bounded scaling by auto

qed
then show ?thesis
by (force dest : integrable neg tendsto minus)

qed

lemma integral norm bound integral :
fixes f :: ′n::euclidean space ⇒ ′a::banach
assumes int f : f integrable on S
and int g : g integrable on S
and le g :

∧
x . x ∈ S =⇒ norm (f x ) ≤ g x

shows norm (integral S f ) ≤ integral S g
proof −
have norm: norm η ≤ y + e
if norm ζ ≤ x and |x − y | < e/2 and norm (ζ − η) < e/2
for e x y and ζ η :: ′a

proof −
have norm (η − ζ) < e/2
by (metis norm minus commute that(3 ))

moreover have x ≤ y + e/2
using that(2 ) by linarith

ultimately show ?thesis
using that(1 ) le less trans[OF norm triangle sub[of η ζ]] by (auto simp:

less imp le)
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qed
have lem: norm (integral(cbox a b) f ) ≤ integral (cbox a b) g
if f : f integrable on cbox a b
and g : g integrable on cbox a b
and nle:

∧
x . x ∈ cbox a b =⇒ norm (f x ) ≤ g x

for f :: ′n ⇒ ′a and g a b
proof (rule field le epsilon)
fix e :: real
assume e > 0
then have e: e/2 > 0
by auto

with integrable integral [OF f ,unfolded has integral [of f ]]
obtain γ where γ: gauge γ∧

D. D tagged division of cbox a b ∧ γ fine D
=⇒ norm ((

∑
(x , k)∈D. content k ∗R f x ) − integral (cbox a b) f ) < e/2

by meson
moreover
from integrable integral [OF g ,unfolded has integral [of g ]] e
obtain δ where δ: gauge δ∧

D. D tagged division of cbox a b ∧ δ fine D
=⇒ norm ((

∑
(x , k)∈D. content k ∗R g x ) − integral (cbox a b) g) < e/2

by meson
ultimately have gauge (λx . γ x ∩ δ x )
using gauge Int by blast

with fine division exists obtain D
where p: D tagged division of cbox a b (λx . γ x ∩ δ x ) fine D
by metis

have γ fine D δ fine D
using fine Int p(2 ) by blast+

show norm (integral (cbox a b) f ) ≤ integral (cbox a b) g + e
proof (rule norm)
have norm (content K ∗R f x ) ≤ content K ∗R g x if (x , K ) ∈ D for x K
proof−
have K : x ∈ K K ⊆ cbox a b
using 〈(x , K ) ∈ D〉 p(1 ) by blast+

obtain u v where K = cbox u v
using 〈(x , K ) ∈ D〉 p(1 ) by blast

moreover have content K ∗ norm (f x ) ≤ content K ∗ g x
by (meson K (1 ) K (2 ) content pos le mult left mono nle subsetD)

then show ?thesis
by simp

qed
then show norm (

∑
(x , k)∈D. content k ∗R f x ) ≤ (

∑
(x , k)∈D. content k

∗R g x )
by (simp add : sum norm le split def )

show norm ((
∑

(x , k)∈D. content k ∗R f x ) − integral (cbox a b) f ) < e/2
using 〈γ fine D〉 γ p(1 ) by simp

show |(
∑

(x , k)∈D. content k ∗R g x ) − integral (cbox a b) g | < e/2
using 〈δ fine D〉 δ p(1 ) by simp
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qed
qed
show ?thesis
proof (rule field le epsilon)
fix e :: real
assume e > 0
then have e: e/2 > 0
by auto

let ?f = (λx . if x ∈ S then f x else 0 )
let ?g = (λx . if x ∈ S then g x else 0 )
have f : ?f integrable on cbox a b and g : ?g integrable on cbox a b for a b
using int f int g integrable altD by auto

obtain Bf where 0 < Bf
and Bf :

∧
a b. ball 0 Bf ⊆ cbox a b =⇒

∃ z . (?f has integral z ) (cbox a b) ∧ norm (z − integral S f ) < e/2
using integrable integral [OF int f ,unfolded has integral ′[of f ]] e that by blast

obtain Bg where 0 < Bg
and Bg :

∧
a b. ball 0 Bg ⊆ cbox a b =⇒

∃ z . (?g has integral z ) (cbox a b) ∧ norm (z − integral S g) < e/2
using integrable integral [OF int g ,unfolded has integral ′[of g ]] e that by blast

obtain a b:: ′n where ab: ball 0 Bf ∪ ball 0 Bg ⊆ cbox a b
using ball max Un by (metis bounded ball bounded subset cbox symmetric)

have ball 0 Bf ⊆ cbox a b
using ab by auto

with Bf obtain z where int fz : (?f has integral z ) (cbox a b) and z : norm (z
− integral S f ) < e/2

by meson
have ball 0 Bg ⊆ cbox a b
using ab by auto

with Bg obtain w where int gw : (?g has integral w) (cbox a b) and w : norm
(w − integral S g) < e/2

by meson
show norm (integral S f ) ≤ integral S g + e
proof (rule norm)
show norm (integral (cbox a b) ?f ) ≤ integral (cbox a b) ?g
by (simp add : le g lem[OF f g , of a b])

show |integral (cbox a b) ?g − integral S g | < e/2
using int gw integral unique w by auto

show norm (integral (cbox a b) ?f − integral S f ) < e/2
using int fz integral unique z by blast

qed
qed

qed

lemma continuous on imp absolutely integrable on:
fixes f ::real ⇒ ′a::banach
shows continuous on {a..b} f =⇒
norm (integral {a..b} f ) ≤ integral {a..b} (λx . norm (f x ))

by (intro integral norm bound integral integrable continuous real continuous on norm)
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auto

lemma integral bound :
fixes f ::real ⇒ ′a::banach
assumes a ≤ b
assumes continuous on {a .. b} f
assumes

∧
t . t ∈ {a .. b} =⇒ norm (f t) ≤ B

shows norm (integral {a .. b} f ) ≤ B ∗ (b − a)
proof −
note continuous on imp absolutely integrable on[OF assms(2 )]
also have integral {a..b} (λx . norm (f x )) ≤ integral {a..b} (λ . B)
by (rule integral le)
(auto intro!: integrable continuous real continuous intros assms)

also have . . . = B ∗ (b − a) using assms by simp
finally show ?thesis .

qed

lemma integral norm bound integral component :
fixes f :: ′n::euclidean space ⇒ ′a::banach
fixes g :: ′n ⇒ ′b::euclidean space
assumes f : f integrable on S and g : g integrable on S
and fg :

∧
x . x ∈ S =⇒ norm(f x ) ≤ (g x )·k

shows norm (integral S f ) ≤ (integral S g)·k
proof −
have norm (integral S f ) ≤ integral S ((λx . x · k) ◦ g)
using integral norm bound integral [OF f integrable linear [OF g ]]
by (simp add : bounded linear inner left fg)

then show ?thesis
unfolding o def integral component eq [OF g ] .

qed

lemma has integral norm bound integral component :
fixes f :: ′n::euclidean space ⇒ ′a::banach
fixes g :: ′n ⇒ ′b::euclidean space
assumes f : (f has integral i) S
and g : (g has integral j ) S
and

∧
x . x ∈ S =⇒ norm (f x ) ≤ (g x )·k

shows norm i ≤ j ·k
using integral norm bound integral component [of f S g k ]
unfolding integral unique[OF f ] integral unique[OF g ]
using assms
by auto

lemma uniformly convergent improper integral :
fixes f :: ′b ⇒ real ⇒ ′a :: {banach}
assumes deriv :

∧
x . x ≥ a =⇒ (G has field derivative g x ) (at x within {a..})

assumes integrable:
∧
a ′ b x . x ∈ A =⇒ a ′ ≥ a =⇒ b ≥ a ′ =⇒ f x integrable on

{a ′..b}
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assumes G : convergent G
assumes le:

∧
y x . y ∈ A =⇒ x ≥ a =⇒ norm (f y x ) ≤ g x

shows uniformly convergent on A (λb x . integral {a..b} (f x ))
proof (intro Cauchy uniformly convergent uniformly Cauchy onI ′, goal cases)
case (1 ε)
from G have Cauchy G
by (auto intro!: convergent Cauchy)

with 1 obtain M where M : dist (G (real m)) (G (real n)) < ε if m ≥ M n ≥
M for m n

by (force simp: Cauchy def )
define M ′ where M ′ = max (nat dae) M

show ?case
proof (rule exI [of M ′], safe, goal cases)
case (1 x m n)
have M ′: M ′ ≥ a M ′ ≥ M unfolding M ′ def by linarith+
have int g : (g has integral (G (real n) − G (real m))) {real m..real n}
using 1 M ′ by (intro fundamental theorem of calculus)

(auto simp: has field derivative iff has vector derivative [symmetric]

intro!: DERIV subset [OF deriv ])
have int f : f x integrable on {a ′..real n} if a ′ ≥ a for a ′

using that 1 by (cases a ′ ≤ real n) (auto intro: integrable)

have dist (integral {a..real m} (f x )) (integral {a..real n} (f x )) =
norm (integral {a..real n} (f x ) − integral {a..real m} (f x ))

by (simp add : dist norm norm minus commute)
also have integral {a..real m} (f x ) + integral {real m..real n} (f x ) =

integral {a..real n} (f x )
using M ′ and 1 by (intro integral combine int f ) auto

hence integral {a..real n} (f x ) − integral {a..real m} (f x ) =
integral {real m..real n} (f x )

by (simp add : algebra simps)
also have norm . . . ≤ integral {real m..real n} g
using le 1 M ′ int f int g by (intro integral norm bound integral) auto

also from int g have integral {real m..real n} g = G (real n) − G (real m)
by (simp add : has integral iff )

also have . . . ≤ dist (G m) (G n)
by (simp add : dist norm)

also from 1 and M ′ have . . . < ε
by (intro M ) auto

finally show ?case .
qed

qed

lemma uniformly convergent improper integral ′:
fixes f :: ′b ⇒ real ⇒ ′a :: {banach, real normed algebra}
assumes deriv :

∧
x . x ≥ a =⇒ (G has field derivative g x ) (at x within {a..})

assumes integrable:
∧
a ′ b x . x ∈ A =⇒ a ′ ≥ a =⇒ b ≥ a ′ =⇒ f x integrable on
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{a ′..b}
assumes G : convergent G
assumes le: eventually (λx . ∀ y∈A. norm (f y x ) ≤ g x ) at top
shows uniformly convergent on A (λb x . integral {a..b} (f x ))

proof −
from le obtain a ′′ where le:

∧
y x . y ∈ A =⇒ x ≥ a ′′ =⇒ norm (f y x ) ≤ g x

by (auto simp: eventually at top linorder)
define a ′ where a ′ = max a a ′′

have uniformly convergent on A (λb x . integral {a ′..real b} (f x ))
proof (rule uniformly convergent improper integral)
fix t assume t : t ≥ a ′

hence (G has field derivative g t) (at t within {a..})
by (intro deriv) (auto simp: a ′ def )

moreover have {a ′..} ⊆ {a..} unfolding a ′ def by auto
ultimately show (G has field derivative g t) (at t within {a ′..})
by (rule DERIV subset)

qed (insert le, auto simp: a ′ def intro: integrable G)
hence uniformly convergent on A (λb x . integral {a..a ′} (f x ) + integral {a ′..real

b} (f x ))
(is ?P) by (intro uniformly convergent add) auto

also have eventually (λx . ∀ y∈A. integral {a..a ′} (f y) + integral {a ′..x} (f y)
=

integral {a..x} (f y)) sequentially
by (intro eventually mono [OF eventually ge at top[of nat da ′e]] ballI inte-

gral combine)
(auto simp: a ′ def intro: integrable)

hence ?P ←→ ?thesis
by (intro uniformly convergent cong) simp all

finally show ?thesis .
qed

6.15.42 differentiation under the integral sign

lemma integral continuous on param:
fixes f :: ′a::topological space ⇒ ′b::euclidean space ⇒ ′c::banach
assumes cont fx : continuous on (U × cbox a b) (λ(x , t). f x t)
shows continuous on U (λx . integral (cbox a b) (f x ))

proof cases
assume content (cbox a b) 6= 0
then have ne: cbox a b 6= {} by auto

note [continuous intros] =
continuous on compose2 [OF cont fx , where f=λy . Pair x y for x ,
unfolded split beta fst conv snd conv ]

show ?thesis
unfolding continuous on def

proof (safe intro!: tendstoI )
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fix e ′::real and x
assume e ′ > 0
define e where e = e ′ / (content (cbox a b) + 1 )
have e > 0 using 〈e ′> 0 〉 by (auto simp: e def intro!: divide pos pos add nonneg pos)
assume x ∈ U
from continuous on prod compactE [OF cont fx compact cbox 〈x ∈ U 〉 〈0 < e〉]
obtain X0 where X0 : x ∈ X0 open X0
and fx bound :

∧
y t . y ∈ X0 ∩ U =⇒ t ∈ cbox a b =⇒ norm (f y t − f x t)

≤ e
unfolding split beta fst conv snd conv dist norm
by metis

have ∀ F y in at x within U . y ∈ X0 ∩ U
using X0 (1 ) X0 (2 ) eventually at topological by auto
then show ∀ F y in at x within U . dist (integral (cbox a b) (f y)) (integral

(cbox a b) (f x )) < e ′

proof eventually elim
case (elim y)
have dist (integral (cbox a b) (f y)) (integral (cbox a b) (f x )) =
norm (integral (cbox a b) (λt . f y t − f x t))
using elim 〈x ∈ U 〉

unfolding dist norm
by (subst integral diff )

(auto intro!: integrable continuous continuous intros)
also have . . . ≤ e ∗ content (cbox a b)
using elim 〈x ∈ U 〉

by (intro integrable bound)
(auto intro!: fx bound 〈x ∈ U 〉 less imp le[OF 〈0 < e〉]

integrable continuous continuous intros)
also have . . . < e ′

using 〈0 < e ′〉 〈e > 0 〉

by (auto simp: e def field split simps)
finally show dist (integral (cbox a b) (f y)) (integral (cbox a b) (f x )) < e ′ .

qed
qed

qed (auto intro!: continuous on const)

lemma leibniz rule:
fixes f :: ′a::banach ⇒ ′b::euclidean space ⇒ ′c::banach
assumes fx :

∧
x t . x ∈ U =⇒ t ∈ cbox a b =⇒

((λx . f x t) has derivative blinfun apply (fx x t)) (at x within U )
assumes integrable f2 :

∧
x . x ∈ U =⇒ f x integrable on cbox a b

assumes cont fx : continuous on (U × (cbox a b)) (λ(x , t). fx x t)
assumes [intro]: x0 ∈ U
assumes convex U
shows
((λx . integral (cbox a b) (f x )) has derivative integral (cbox a b) (fx x0 )) (at x0

within U )
(is (?F has derivative ?dF ) )

proof cases
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assume content (cbox a b) 6= 0
then have ne: cbox a b 6= {} by auto
note [continuous intros] =
continuous on compose2 [OF cont fx , where f=λy . Pair x y for x ,
unfolded split beta fst conv snd conv ]

show ?thesis
proof (intro has derivativeI bounded linear scaleR left tendstoI , fold norm conv dist)
have cont f1 :

∧
t . t ∈ cbox a b =⇒ continuous on U (λx . f x t)

by (auto simp: continuous on eq continuous within intro!: has derivative continuous
fx )

note [continuous intros] = continuous on compose2 [OF cont f1 ]
fix e ′::real
assume e ′ > 0
define e where e = e ′ / (content (cbox a b) + 1 )
have e > 0 using 〈e ′> 0 〉 by (auto simp: e def intro!: divide pos pos add nonneg pos)
from continuous on prod compactE [OF cont fx compact cbox 〈x0 ∈ U 〉 〈e > 0 〉]
obtain X0 where X0 : x0 ∈ X0 open X0
and fx bound :

∧
x t . x ∈ X0 ∩ U =⇒ t ∈ cbox a b =⇒ norm (fx x t − fx x0

t) ≤ e
unfolding split beta fst conv snd conv
by (metis dist norm)

note eventually closed segment [OF 〈open X0 〉 〈x0 ∈ X0 〉, of U ]
moreover
have ∀ F x in at x0 within U . x ∈ X0
using 〈open X0 〉 〈x0 ∈ X0 〉 eventually at topological by blast

moreover have ∀ F x in at x0 within U . x 6= x0
by (auto simp: eventually at filter)

moreover have ∀ F x in at x0 within U . x ∈ U
by (auto simp: eventually at filter)

ultimately
show ∀ F x in at x0 within U . norm ((?F x − ?F x0 − ?dF (x − x0 )) /R

norm (x − x0 )) < e ′

proof eventually elim
case (elim x )
from elim have 0 < norm (x − x0 ) by simp
have closed segment x0 x ⊆ U
by (rule 〈convex U 〉[unfolded convex contains segment , rule format , OF 〈x0

∈ U 〉 〈x ∈ U 〉])
from elim have [intro]: x ∈ U by auto
have ?F x − ?F x0 − ?dF (x − x0 ) =
integral (cbox a b) (λy . f x y − f x0 y − fx x0 y (x − x0 ))
(is = ?id)
using 〈x 6= x0 〉

by (subst blinfun apply integral integral diff ,
auto intro!: integrable diff integrable f2 continuous intros
intro: integrable continuous)+

also
{
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fix t assume t : t ∈ (cbox a b)
have seg :

∧
t . t ∈ {0 ..1} =⇒ x0 + t ∗R (x − x0 ) ∈ X0 ∩ U

using 〈closed segment x0 x ⊆ U 〉

〈closed segment x0 x ⊆ X0 〉

by (force simp: closed segment def algebra simps)
from t have deriv :
((λx . f x t) has derivative (fx y t)) (at y within X0 ∩ U )
if y ∈ X0 ∩ U for y
unfolding has vector derivative def [symmetric]
using that 〈x ∈ X0 〉

by (intro has derivative subset [OF fx ]) auto
have

∧
x . x ∈ X0 ∩ U =⇒ onorm (blinfun apply (fx x t) − (fx x0 t)) ≤ e

using fx bound t
by (auto simp add : norm blinfun def fun diff def blinfun.bilinear simps[symmetric])
from differentiable bound linearization[OF seg deriv this] X0
have norm (f x t − f x0 t − fx x0 t (x − x0 )) ≤ e ∗ norm (x − x0 )
by (auto simp add : ac simps)

}
then have norm ?id ≤ integral (cbox a b) (λ . e ∗ norm (x − x0 ))
by (intro integral norm bound integral)
(auto intro!: continuous intros integrable diff integrable f2
intro: integrable continuous)

also have . . . = content (cbox a b) ∗ e ∗ norm (x − x0 )
by simp

also have . . . < e ′ ∗ norm (x − x0 )
proof (intro mult strict right mono[OF 〈0 < norm (x − x0 )〉])
show content (cbox a b) ∗ e < e ′

using 〈e ′ > 0 〉 by (simp add : divide simps e def not less)
qed
finally have norm (?F x − ?F x0 − ?dF (x − x0 )) < e ′ ∗ norm (x − x0 ) .
then show ?case
by (auto simp: divide simps)

qed
qed (rule blinfun.bounded linear right)

qed (auto intro!: derivative eq intros simp: blinfun.bilinear simps)

lemma has vector derivative eq has derivative blinfun:
(f has vector derivative f ′) (at x within U ) ←→
(f has derivative blinfun scaleR left f ′) (at x within U )

by (simp add : has vector derivative def )

lemma leibniz rule vector derivative:
fixes f ::real ⇒ ′b::euclidean space ⇒ ′c::banach
assumes fx :

∧
x t . x ∈ U =⇒ t ∈ cbox a b =⇒

((λx . f x t) has vector derivative (fx x t)) (at x within U )
assumes integrable f2 :

∧
x . x ∈ U =⇒ (f x ) integrable on cbox a b

assumes cont fx : continuous on (U × cbox a b) (λ(x , t). fx x t)
assumes U : x0 ∈ U convex U
shows ((λx . integral (cbox a b) (f x )) has vector derivative integral (cbox a b) (fx
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x0 ))
(at x0 within U )

proof −
note [continuous intros] =
continuous on compose2 [OF cont fx , where f=λy . Pair x y for x ,
unfolded split beta fst conv snd conv ]

show ?thesis
unfolding has vector derivative eq has derivative blinfun

proof (rule has derivative eq rhs [OF leibniz rule[OF integrable f2 U ]])
show continuous on (U × cbox a b) (λ(x , t). blinfun scaleR left (fx x t))
using cont fx by (auto simp: split beta intro!: continuous intros)

show blinfun apply (integral (cbox a b) (λt . blinfun scaleR left (fx x0 t))) =
blinfun apply (blinfun scaleR left (integral (cbox a b) (fx x0 )))

by (subst integral linear [symmetric])
(auto simp: has vector derivative def o def
intro!: integrable continuous U continuous intros bounded linear intros)

qed (use fx in 〈auto simp: has vector derivative def 〉)
qed

lemma has field derivative eq has derivative blinfun:
(f has field derivative f ′) (at x within U ) ←→ (f has derivative blinfun mult right

f ′) (at x within U )
by (simp add : has field derivative def )

lemma leibniz rule field derivative:
fixes f :: ′a::{real normed field , banach} ⇒ ′b::euclidean space ⇒ ′a
assumes fx :

∧
x t . x ∈ U =⇒ t ∈ cbox a b =⇒ ((λx . f x t) has field derivative

fx x t) (at x within U )
assumes integrable f2 :

∧
x . x ∈ U =⇒ (f x ) integrable on cbox a b

assumes cont fx : continuous on (U × (cbox a b)) (λ(x , t). fx x t)
assumes U : x0 ∈ U convex U
shows ((λx . integral (cbox a b) (f x )) has field derivative integral (cbox a b) (fx

x0 )) (at x0 within U )
proof −
note [continuous intros] =
continuous on compose2 [OF cont fx , where f=λy . Pair x y for x ,
unfolded split beta fst conv snd conv ]

have ∗: blinfun mult right (integral (cbox a b) (fx x0 )) =
integral (cbox a b) (λt . blinfun mult right (fx x0 t))
by (subst integral linear [symmetric])
(auto simp: has vector derivative def o def
intro!: integrable continuous U continuous intros bounded linear intros)

show ?thesis
unfolding has field derivative eq has derivative blinfun

proof (rule has derivative eq rhs [OF leibniz rule[OF integrable f2 U , where
fx=λx t . blinfun mult right (fx x t)]])

show continuous on (U × cbox a b) (λ(x , t). blinfun mult right (fx x t))
using cont fx by (auto simp: split beta intro!: continuous intros)

show blinfun apply (integral (cbox a b) (λt . blinfun mult right (fx x0 t))) =
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blinfun apply (blinfun mult right (integral (cbox a b) (fx x0 )))
by (subst integral linear [symmetric])
(auto simp: has vector derivative def o def
intro!: integrable continuous U continuous intros bounded linear intros)

qed (use fx in 〈auto simp: has field derivative def 〉)
qed

lemma leibniz rule field differentiable:
fixes f :: ′a::{real normed field , banach} ⇒ ′b::euclidean space ⇒ ′a
assumes

∧
x t . x ∈ U =⇒ t ∈ cbox a b =⇒ ((λx . f x t) has field derivative fx x

t) (at x within U )
assumes

∧
x . x ∈ U =⇒ (f x ) integrable on cbox a b

assumes continuous on (U × (cbox a b)) (λ(x , t). fx x t)
assumes x0 ∈ U convex U
shows (λx . integral (cbox a b) (f x )) field differentiable at x0 within U
using leibniz rule field derivative[OF assms] by (auto simp: field differentiable def )

6.15.43 Exchange uniform limit and integral

lemma uniform limit integral cbox :
fixes f :: ′a ⇒ ′b::euclidean space ⇒ ′c::banach
assumes u: uniform limit (cbox a b) f g F
assumes c:

∧
n. continuous on (cbox a b) (f n)

assumes [simp]: F 6= bot
obtains I J where∧

n. (f n has integral I n) (cbox a b)
(g has integral J ) (cbox a b)
(I −−−→ J ) F

proof −
have fi [simp]: f n integrable on (cbox a b) for n
by (auto intro!: integrable continuous assms)

then obtain I where I :
∧
n. (f n has integral I n) (cbox a b)

by atomize elim (auto simp: integrable on def intro!: choice)

moreover
have gi [simp]: g integrable on (cbox a b)
by (auto intro!: integrable continuous uniform limit theorem[OF u] eventuallyI

c)
then obtain J where J : (g has integral J ) (cbox a b)
by blast

moreover
have (I −−−→ J ) F
proof cases
assume content (cbox a b) = 0
hence I = (λ . 0 ) J = 0
by (auto intro!: has integral unique I J )

thus ?thesis by simp
next
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assume content nonzero: content (cbox a b) 6= 0
show ?thesis
proof (rule tendstoI )
fix e::real
assume e > 0
define e ′ where e ′ = e/2
with 〈e > 0 〉 have e ′ > 0 by simp
then have ∀ F n in F . ∀ x∈cbox a b. norm (f n x − g x ) < e ′ / content (cbox

a b)
using u content nonzero by (auto simp: uniform limit iff dist norm zero less measure iff )
then show ∀ F n in F . dist (I n) J < e
proof eventually elim
case (elim n)
have I n = integral (cbox a b) (f n)

J = integral (cbox a b) g
using I [of n] J by (simp all add : integral unique)

then have dist (I n) J = norm (integral (cbox a b) (λx . f n x − g x ))
by (simp add : integral diff dist norm)

also have . . . ≤ integral (cbox a b) (λx . (e ′ / content (cbox a b)))
using elim
by (intro integral norm bound integral) (auto intro!: integrable diff )

also have . . . < e
using 〈0 < e〉

by (simp add : e ′ def )
finally show ?case .

qed
qed

qed
ultimately show ?thesis ..

qed

lemma uniform limit integral :
fixes f :: ′a ⇒ ′b::ordered euclidean space ⇒ ′c::banach
assumes u: uniform limit {a..b} f g F
assumes c:

∧
n. continuous on {a..b} (f n)

assumes [simp]: F 6= bot
obtains I J where∧

n. (f n has integral I n) {a..b}
(g has integral J ) {a..b}
(I −−−→ J ) F

by (metis interval cbox assms uniform limit integral cbox )

6.15.44 Integration by parts

lemma integration by parts interior strong :
fixes prod :: ⇒ ⇒ ′b :: banach
assumes bilinear : bounded bilinear (prod)
assumes s: finite s and le: a ≤ b
assumes cont [continuous intros]: continuous on {a..b} f continuous on {a..b}
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g
assumes deriv :

∧
x . x∈{a<..<b} − s =⇒ (f has vector derivative f ′ x ) (at x )∧

x . x∈{a<..<b} − s =⇒ (g has vector derivative g ′ x ) (at x )
assumes int : ((λx . prod (f x ) (g ′ x )) has integral

(prod (f b) (g b) − prod (f a) (g a) − y)) {a..b}
shows ((λx . prod (f ′ x ) (g x )) has integral y) {a..b}

proof −
interpret bounded bilinear prod by fact
have ((λx . prod (f x ) (g ′ x ) + prod (f ′ x ) (g x )) has integral

(prod (f b) (g b) − prod (f a) (g a))) {a..b}
using deriv by (intro fundamental theorem of calculus interior strong [OF s le])

(auto intro!: continuous intros continuous on has vector derivative)
from has integral diff [OF this int ] show ?thesis by (simp add : algebra simps)

qed

lemma integration by parts interior :
fixes prod :: ⇒ ⇒ ′b :: banach
assumes bounded bilinear (prod) a ≤ b

continuous on {a..b} f continuous on {a..b} g
assumes

∧
x . x∈{a<..<b} =⇒ (f has vector derivative f ′ x ) (at x )∧

x . x∈{a<..<b} =⇒ (g has vector derivative g ′ x ) (at x )
assumes ((λx . prod (f x ) (g ′ x )) has integral (prod (f b) (g b) − prod (f a) (g

a) − y)) {a..b}
shows ((λx . prod (f ′ x ) (g x )) has integral y) {a..b}
by (rule integration by parts interior strong [of {} f g f ′ g ′]) (insert assms,

simp all)

lemma integration by parts:
fixes prod :: ⇒ ⇒ ′b :: banach
assumes bounded bilinear (prod) a ≤ b

continuous on {a..b} f continuous on {a..b} g
assumes

∧
x . x∈{a..b} =⇒ (f has vector derivative f ′ x ) (at x )∧

x . x∈{a..b} =⇒ (g has vector derivative g ′ x ) (at x )
assumes ((λx . prod (f x ) (g ′ x )) has integral (prod (f b) (g b) − prod (f a) (g

a) − y)) {a..b}
shows ((λx . prod (f ′ x ) (g x )) has integral y) {a..b}
by (rule integration by parts interior [of f g f ′ g ′]) (insert assms, simp all)

lemma integrable by parts interior strong :
fixes prod :: ⇒ ⇒ ′b :: banach
assumes bilinear : bounded bilinear (prod)
assumes s: finite s and le: a ≤ b
assumes cont [continuous intros]: continuous on {a..b} f continuous on {a..b}

g
assumes deriv :

∧
x . x∈{a<..<b} − s =⇒ (f has vector derivative f ′ x ) (at x )∧

x . x∈{a<..<b} − s =⇒ (g has vector derivative g ′ x ) (at x )
assumes int : (λx . prod (f x ) (g ′ x )) integrable on {a..b}
shows (λx . prod (f ′ x ) (g x )) integrable on {a..b}

proof −
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from int obtain I where ((λx . prod (f x ) (g ′ x )) has integral I ) {a..b}
unfolding integrable on def by blast

hence ((λx . prod (f x ) (g ′ x )) has integral (prod (f b) (g b) − prod (f a) (g a) −
(prod (f b) (g b) − prod (f a) (g a) − I ))) {a..b} by simp

from integration by parts interior strong [OF assms(1−7 ) this]
show ?thesis unfolding integrable on def by blast

qed

lemma integrable by parts interior :
fixes prod :: ⇒ ⇒ ′b :: banach
assumes bounded bilinear (prod) a ≤ b

continuous on {a..b} f continuous on {a..b} g
assumes

∧
x . x∈{a<..<b} =⇒ (f has vector derivative f ′ x ) (at x )∧

x . x∈{a<..<b} =⇒ (g has vector derivative g ′ x ) (at x )
assumes (λx . prod (f x ) (g ′ x )) integrable on {a..b}
shows (λx . prod (f ′ x ) (g x )) integrable on {a..b}
by (rule integrable by parts interior strong [of {} f g f ′ g ′]) (insert assms,

simp all)

lemma integrable by parts:
fixes prod :: ⇒ ⇒ ′b :: banach
assumes bounded bilinear (prod) a ≤ b

continuous on {a..b} f continuous on {a..b} g
assumes

∧
x . x∈{a..b} =⇒ (f has vector derivative f ′ x ) (at x )∧

x . x∈{a..b} =⇒ (g has vector derivative g ′ x ) (at x )
assumes (λx . prod (f x ) (g ′ x )) integrable on {a..b}
shows (λx . prod (f ′ x ) (g x )) integrable on {a..b}
by (rule integrable by parts interior strong [of {} f g f ′ g ′]) (insert assms,

simp all)

6.15.45 Integration by substitution

lemma has integral substitution general :
fixes f :: real ⇒ ′a::euclidean space and g :: real ⇒ real
assumes s: finite s and le: a ≤ b

and subset : g ‘ {a..b} ⊆ {c..d}
and f [continuous intros]: continuous on {c..d} f
and g [continuous intros]: continuous on {a..b} g
and deriv [derivative intros]:∧

x . x ∈ {a..b} − s =⇒ (g has field derivative g ′ x ) (at x within {a..b})
shows ((λx . g ′ x ∗R f (g x )) has integral (integral {g a..g b} f − integral {g

b..g a} f )) {a..b}
proof −
let ?F = λx . integral {c..g x} f
have cont int : continuous on {a..b} ?F
by (rule continuous on compose2 [OF g subset ] indefinite integral continuous 1

f integrable continuous real)+
have deriv : (((λx . integral {c..x} f ) ◦ g) has vector derivative g ′ x ∗R f (g x ))

(at x within {a..b}) if x ∈ {a..b} − s for x
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proof (rule has vector derivative eq rhs [OF vector diff chain within refl ])
show (g has vector derivative g ′ x ) (at x within {a..b})
using deriv has field derivative iff has vector derivative that by blast

show ((λx . integral {c..x} f ) has vector derivative f (g x ))
(at (g x ) within g ‘ {a..b})

using that le subset
by (blast intro: has vector derivative within subset integral has vector derivative

f )
qed
have deriv : (?F has vector derivative g ′ x ∗R f (g x ))

(at x ) if x ∈ {a..b} − (s ∪ {a,b}) for x
using deriv [of x ] that by (simp add : at within Icc at o def )

have ((λx . g ′ x ∗R f (g x )) has integral (?F b − ?F a)) {a..b}
using le cont int s deriv cont int
by (intro fundamental theorem of calculus interior strong [of s ∪ {a,b}]) simp all
also
from subset have g x ∈ {c..d} if x ∈ {a..b} for x using that by blast
from this[of a] this[of b] le have cd : c ≤ g a g b ≤ d c ≤ g b g a ≤ d by auto
have integral {c..g b} f − integral {c..g a} f = integral {g a..g b} f − integral
{g b..g a} f
proof cases
assume g a ≤ g b
note le = le this
from cd have integral {c..g a} f + integral {g a..g b} f = integral {c..g b} f
by (intro integral combine integrable continuous real continuous on subset [OF

f ] le) simp all
with le show ?thesis
by (cases g a = g b) (simp all add : algebra simps)

next
assume less: ¬g a ≤ g b
then have g a ≥ g b by simp
note le = le this
from cd have integral {c..g b} f + integral {g b..g a} f = integral {c..g a} f
by (intro integral combine integrable continuous real continuous on subset [OF

f ] le) simp all
with less show ?thesis
by (simp all add : algebra simps)

qed
finally show ?thesis .

qed

lemma has integral substitution strong :
fixes f :: real ⇒ ′a::euclidean space and g :: real ⇒ real
assumes s: finite s and le: a ≤ b g a ≤ g b
and subset : g ‘ {a..b} ⊆ {c..d}
and f [continuous intros]: continuous on {c..d} f
and g [continuous intros]: continuous on {a..b} g
and deriv [derivative intros]:∧
x . x ∈ {a..b} − s =⇒ (g has field derivative g ′ x ) (at x within {a..b})
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shows ((λx . g ′ x ∗R f (g x )) has integral (integral {g a..g b} f )) {a..b}
using has integral substitution general [OF s le(1 ) subset f g deriv ] le(2 )
by (cases g a = g b) auto

lemma has integral substitution:
fixes f :: real ⇒ ′a::euclidean space and g :: real ⇒ real
assumes a ≤ b g a ≤ g b g ‘ {a..b} ⊆ {c..d}

and continuous on {c..d} f
and

∧
x . x ∈ {a..b} =⇒ (g has field derivative g ′ x ) (at x within {a..b})

shows ((λx . g ′ x ∗R f (g x )) has integral (integral {g a..g b} f )) {a..b}
by (intro has integral substitution strong [of {} a b g c d ] assms)

(auto intro: DERIV continuous on assms)

lemma integral shift :
fixes f :: real ⇒ ′a::euclidean space
assumes cont : continuous on {a + c..b + c} f
shows integral {a..b} (f ◦ (λx . x + c)) = integral {a + c..b + c} f

proof (cases a ≤ b)
case True
have ((λx . 1 ∗R f (x + c)) has integral integral {a+c..b+c} f ) {a..b}
using True cont
by (intro has integral substitution[where c = a + c and d = b + c])

(auto intro!: derivative eq intros)
thus ?thesis by (simp add : has integral iff o def )

qed auto

6.15.46 Compute a double integral using iterated integrals
and switching the order of integration

lemma continuous on imp integrable on Pair1 :
fixes f :: ⇒ ′b::banach
assumes con: continuous on (cbox (a,c) (b,d)) f and x : x ∈ cbox a b
shows (λy . f (x , y)) integrable on (cbox c d)

proof −
have f ◦ (λy . (x , y)) integrable on (cbox c d)
proof (intro integrable continuous continuous on compose [OF continuous on subset

[OF con]])
show continuous on (cbox c d) (Pair x )
by (simp add : continuous on Pair)

show Pair x ‘ cbox c d ⊆ cbox (a,c) (b,d)
using x by blast

qed
then show ?thesis
by (simp add : o def )

qed

lemma integral integrable 2dim:
fixes f :: ( ′a::euclidean space ∗ ′b::euclidean space) ⇒ ′c::banach
assumes continuous on (cbox (a,c) (b,d)) f
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shows (λx . integral (cbox c d) (λy . f (x ,y))) integrable on cbox a b
proof (cases content(cbox c d) = 0 )
case True
then show ?thesis
by (simp add : True integrable const)

next
case False
have uc: uniformly continuous on (cbox (a,c) (b,d)) f
by (simp add : assms compact cbox compact uniformly continuous)

{ fix x :: ′a and e::real
assume x : x ∈ cbox a b and e: 0 < e
then have e2 gt : 0 < e/2 / content (cbox c d) and e2 less: e/2 / content

(cbox c d) ∗ content (cbox c d) < e
by (auto simp: False content lt nz e)

then obtain dd
where dd :

∧
x x ′. [[x∈cbox (a, c) (b, d); x ′∈cbox (a, c) (b, d); norm (x ′ − x )

< dd ]]
=⇒ norm (f x ′ − f x ) ≤ e/(2 ∗ content (cbox c d)) dd>0

using uc [unfolded uniformly continuous on def , THEN spec, of e/(2 ∗ content
(cbox c d))]

by (auto simp: dist norm intro: less imp le)
have ∃ delta>0 . ∀ x ′∈cbox a b. norm (x ′ − x ) < delta −→ norm (integral (cbox

c d) (λu. f (x ′, u) − f (x , u))) < e
using dd e2 gt assms x
apply (rule tac x=dd in exI )
apply clarify
apply (rule le less trans [OF integrable bound e2 less])
apply (auto intro: integrable diff continuous on imp integrable on Pair1 )
done

} note ∗ = this
show ?thesis
proof (rule integrable continuous)
show continuous on (cbox a b) (λx . integral (cbox c d) (λy . f (x , y)))
by (simp add : ∗ continuous on iff dist norm integral diff [symmetric] contin-

uous on imp integrable on Pair1 [OF assms])
qed

qed

lemma integral split :
fixes f :: ′a::euclidean space ⇒ ′b::{real normed vector ,complete space}
assumes f : f integrable on (cbox a b)

and k : k ∈ Basis
shows integral (cbox a b) f =

integral (cbox a b ∩ {x . x ·k ≤ c}) f +
integral (cbox a b ∩ {x . x ·k ≥ c}) f

using k f
by (auto simp: has integral integral intro: integral unique [OF has integral split ])

lemma integral swap operativeI :
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fixes f :: ( ′a::euclidean space ∗ ′b::euclidean space) ⇒ ′c::banach
assumes f : continuous on s f and e: 0 < e
shows operative conj True

(λk . ∀ a b c d .
cbox (a,c) (b,d) ⊆ k ∧ cbox (a,c) (b,d) ⊆ s
−→ norm(integral (cbox (a,c) (b,d)) f −

integral (cbox a b) (λx . integral (cbox c d) (λy . f ((x ,y)))))
≤ e ∗ content (cbox (a,c) (b,d)))

proof (standard , auto)
fix a:: ′a and c:: ′b and b:: ′a and d :: ′b and u:: ′a and v :: ′a and w :: ′b and z :: ′b
assume ∗: box (a, c) (b, d) = {}

and cb1 : cbox (u, w) (v , z ) ⊆ cbox (a, c) (b, d)
and cb2 : cbox (u, w) (v , z ) ⊆ s

then have c0 : content (cbox (a, c) (b, d)) = 0
using ∗ unfolding content eq 0 interior by simp

have c0 ′: content (cbox (u, w) (v , z )) = 0
by (fact content 0 subset [OF c0 cb1 ])

show norm (integral (cbox (u,w) (v ,z )) f − integral (cbox u v) (λx . integral
(cbox w z ) (λy . f (x , y))))

≤ e ∗ content (cbox (u,w) (v ,z ))
using content cbox pair eq0 D [OF c0 ′]
by (force simp add : c0 ′)

next
fix a:: ′a and c:: ′b and b:: ′a and d :: ′b
and M ::real and i :: ′a and j :: ′b
and u:: ′a and v :: ′a and w :: ′b and z :: ′b
assume ij : (i ,j ) ∈ Basis

and n1 : ∀ a ′ b ′ c ′ d ′.
cbox (a ′,c ′) (b ′,d ′) ⊆ cbox (a,c) (b,d) ∧
cbox (a ′,c ′) (b ′,d ′) ⊆ {x . x · (i ,j ) ≤ M } ∧ cbox (a ′,c ′) (b ′,d ′) ⊆ s

−→
norm (integral (cbox (a ′,c ′) (b ′,d ′)) f − integral (cbox a ′ b ′) (λx .

integral (cbox c ′ d ′) (λy . f (x ,y))))
≤ e ∗ content (cbox (a ′,c ′) (b ′,d ′))

and n2 : ∀ a ′ b ′ c ′ d ′.
cbox (a ′,c ′) (b ′,d ′) ⊆ cbox (a,c) (b,d) ∧
cbox (a ′,c ′) (b ′,d ′) ⊆ {x . M ≤ x · (i ,j )} ∧ cbox (a ′,c ′) (b ′,d ′) ⊆ s

−→
norm (integral (cbox (a ′,c ′) (b ′,d ′)) f − integral (cbox a ′ b ′) (λx .

integral (cbox c ′ d ′) (λy . f (x ,y))))
≤ e ∗ content (cbox (a ′,c ′) (b ′,d ′))

and subs: cbox (u,w) (v ,z ) ⊆ cbox (a,c) (b,d) cbox (u,w) (v ,z ) ⊆ s
have fcont : continuous on (cbox (u, w) (v , z )) f
using assms(1 ) continuous on subset subs(2 ) by blast

then have fint : f integrable on cbox (u, w) (v , z )
by (metis integrable continuous)

consider i ∈ Basis j=0 | j ∈ Basis i=0 using ij
by (auto simp: Euclidean Space.Basis prod def )

then show norm (integral (cbox (u,w) (v ,z )) f − integral (cbox u v) (λx . integral
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(cbox w z ) (λy . f (x ,y))))
≤ e ∗ content (cbox (u,w) (v ,z )) (is ?normle)

proof cases
case 1
then have e: e ∗ content (cbox (u, w) (v , z )) =

e ∗ (content (cbox u v ∩ {x . x · i ≤ M }) ∗ content (cbox w z )) +
e ∗ (content (cbox u v ∩ {x . M ≤ x · i}) ∗ content (cbox w z ))

by (simp add : content split [where c=M ] content Pair algebra simps)
have ∗: integral (cbox u v) (λx . integral (cbox w z ) (λy . f (x , y))) =

integral (cbox u v ∩ {x . x · i ≤ M }) (λx . integral (cbox w z ) (λy . f
(x , y))) +

integral (cbox u v ∩ {x . M ≤ x · i}) (λx . integral (cbox w z ) (λy . f
(x , y)))

using 1 f subs integral integrable 2dim continuous on subset
by (blast intro: integral split)

show ?normle
apply (rule norm diff2 [OF integral split [where c=M , OF fint ij ] ∗ e])
using 1 subs
apply (simp all add : cbox Pair eq setcomp dot1 [of λu. M≤u] setcomp dot1

[of λu. u≤M ] Sigma Int Paircomp1 )
apply (simp all add : interval split ij flip: cbox Pair eq content Pair)
apply (force simp flip: interval split intro!: n1 [rule format ])
apply (force simp flip: interval split intro!: n2 [rule format ])
done

next
case 2
then have e: e ∗ content (cbox (u, w) (v , z )) =

e ∗ (content (cbox u v) ∗ content (cbox w z ∩ {x . x · j ≤ M })) +
e ∗ (content (cbox u v) ∗ content (cbox w z ∩ {x . M ≤ x · j}))

by (simp add : content split [where c=M ] content Pair algebra simps)
have (λx . integral (cbox w z ∩ {x . x · j ≤ M }) (λy . f (x , y))) integrable on

cbox u v
(λx . integral (cbox w z ∩ {x . M ≤ x · j}) (λy . f (x , y))) integrable on cbox

u v
using 2 subs
apply (simp all add : interval split)
apply (rule integral integrable 2dim [OF continuous on subset [OF f ]]; auto

simp: cbox Pair eq interval split [symmetric])+
done

with 2 have ∗: integral (cbox u v) (λx . integral (cbox w z ) (λy . f (x , y))) =
integral (cbox u v) (λx . integral (cbox w z ∩ {x . x · j ≤ M }) (λy .

f (x , y))) +
integral (cbox u v) (λx . integral (cbox w z ∩ {x . M ≤ x · j}) (λy .

f (x , y)))
by (simp add : integral add [symmetric] integral split [symmetric]

continuous on imp integrable on Pair1 [OF fcont ] cong : integral cong)
show ?normle
apply (rule norm diff2 [OF integral split [where c=M , OF fint ij ] ∗ e])
using 2 subs
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apply (simp all add : cbox Pair eq setcomp dot2 [of λu. M≤u] setcomp dot2
[of λu. u≤M ] Sigma Int Paircomp2 )

apply (simp all add : interval split ij flip: cbox Pair eq content Pair)
apply (force simp flip: interval split intro!: n1 [rule format ])
apply (force simp flip: interval split intro!: n2 [rule format ])
done

qed
qed

lemma integral Pair const :
integral (cbox (a,c) (b,d)) (λx . k) =
integral (cbox a b) (λx . integral (cbox c d) (λy . k))

by (simp add : content Pair)

lemma integral prod continuous:
fixes f :: ( ′a::euclidean space ∗ ′b::euclidean space) ⇒ ′c::banach
assumes continuous on (cbox (a, c) (b, d)) f (is continuous on ?CBOX f )
shows integral (cbox (a, c) (b, d)) f = integral (cbox a b) (λx . integral (cbox

c d) (λy . f (x , y)))
proof (cases content ?CBOX = 0 )
case True
then show ?thesis
by (auto simp: content Pair)

next
case False
then have cbp: content ?CBOX > 0
using content lt nz by blast

have norm (integral ?CBOX f − integral (cbox a b) (λx . integral (cbox c d) (λy .
f (x ,y)))) = 0
proof (rule dense eq0 I , simp)
fix e :: real
assume 0 < e
with 〈content ?CBOX > 0 〉 have 0 < e/content ?CBOX
by simp

have f int acbd : f integrable on ?CBOX
by (rule integrable continuous [OF assms])

{ fix p
assume p: p division of ?CBOX
then have finite p
by blast

define e ′ where e ′ = e/content ?CBOX
with 〈0 < e〉 〈0 < e/content ?CBOX 〉

have 0 < e ′

by simp
interpret operative conj True

λk . ∀ a ′ b ′ c ′ d ′.
cbox (a ′, c ′) (b ′, d ′) ⊆ k ∧ cbox (a ′, c ′) (b ′, d ′) ⊆ ?CBOX
−→ norm (integral (cbox (a ′, c ′) (b ′, d ′)) f −

integral (cbox a ′ b ′) (λx . integral (cbox c ′ d ′) (λy . f ((x , y)))))
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≤ e ′ ∗ content (cbox (a ′, c ′) (b ′, d ′))
using assms 〈0 < e ′〉 by (rule integral swap operativeI )

have norm (integral ?CBOX f − integral (cbox a b) (λx . integral (cbox c d)
(λy . f (x , y))))

≤ e ′ ∗ content ?CBOX
if

∧
t u v w z . t ∈ p =⇒ cbox (u, w) (v , z ) ⊆ t =⇒ cbox (u, w) (v , z ) ⊆

?CBOX
=⇒ norm (integral (cbox (u, w) (v , z )) f −

integral (cbox u v) (λx . integral (cbox w z ) (λy . f (x , y))))
≤ e ′ ∗ content (cbox (u, w) (v , z ))

using that division [of p (a, c) (b, d)] p 〈finite p〉 by (auto simp add :
comm monoid set F and)

with False have norm (integral ?CBOX f − integral (cbox a b) (λx . integral
(cbox c d) (λy . f (x , y))))

≤ e
if

∧
t u v w z . t ∈ p =⇒ cbox (u, w) (v , z ) ⊆ t =⇒ cbox (u, w) (v , z ) ⊆

?CBOX
=⇒ norm (integral (cbox (u, w) (v , z )) f −

integral (cbox u v) (λx . integral (cbox w z ) (λy . f (x , y))))
≤ e ∗ content (cbox (u, w) (v , z )) / content ?CBOX

using that by (simp add : e ′ def )
} note op acbd = this
{ fix k ::real and D and u:: ′a and v w and z :: ′b and t1 t2 l
assume k : 0 < k

and nf :
∧
x y u v .

[[x ∈ cbox a b; y ∈ cbox c d ; u ∈ cbox a b; v∈cbox c d ; norm (u−x ,
v−y) < k ]]

=⇒ norm (f (u,v) − f (x ,y)) < e/(2 ∗ (content ?CBOX ))
and p acbd : D tagged division of cbox (a,c) (b,d)
and fine: (λx . ball x k) fine D ((t1 ,t2 ), l) ∈ D
and uwvz sub: cbox (u,w) (v ,z ) ⊆ l cbox (u,w) (v ,z ) ⊆ cbox (a,c) (b,d)

have t : t1 ∈ cbox a b t2 ∈ cbox c d
by (meson fine p acbd cbox Pair iff tag in interval)+

have ls: l ⊆ ball (t1 ,t2 ) k
using fine by (simp add : fine def Ball def )

{ fix x1 x2
assume xuvwz : x1 ∈ cbox u v x2 ∈ cbox w z
then have x : x1 ∈ cbox a b x2 ∈ cbox c d
using uwvz sub by auto

have norm (x1 − t1 , x2 − t2 ) = norm (t1 − x1 , t2 − x2 )
by (simp add : norm Pair norm minus commute)

also have norm (t1 − x1 , t2 − x2 ) < k
using xuvwz ls uwvz sub unfolding ball def
by (force simp add : cbox Pair eq dist norm )

finally have norm (f (x1 ,x2 ) − f (t1 ,t2 )) ≤ e/content ?CBOX /2
using nf [OF t x ] by simp

} note nf ′ = this
have f int uwvz : f integrable on cbox (u,w) (v ,z )
using f int acbd uwvz sub integrable on subcbox by blast
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have f int uv :
∧
x . x ∈ cbox u v =⇒ (λy . f (x ,y)) integrable on cbox w z

using assms continuous on subset uwvz sub
by (blast intro: continuous on imp integrable on Pair1 )
have 1 : norm (integral (cbox (u,w) (v ,z )) f − integral (cbox (u,w) (v ,z ))

(λx . f (t1 ,t2 )))
≤ e ∗ content (cbox (u,w) (v ,z )) / content ?CBOX /2

using cbp 〈0 < e/content ?CBOX 〉 nf ′

apply (simp only : integral diff [symmetric] f int uwvz integrable const)
apply (auto simp: integrable diff f int uwvz integrable const intro: order trans

[OF integrable bound [of e/content ?CBOX /2 ]])
done

have int integrable: (λx . integral (cbox w z ) (λy . f (x , y))) integrable on cbox
u v

using assms integral integrable 2dim continuous on subset uwvz sub(2 ) by
blast

have normint wz :∧
x . x ∈ cbox u v =⇒

norm (integral (cbox w z ) (λy . f (x , y)) − integral (cbox w z ) (λy . f
(t1 , t2 )))

≤ e ∗ content (cbox w z ) / content (cbox (a, c) (b, d))/2
using cbp 〈0 < e/content ?CBOX 〉 nf ′

apply (simp only : integral diff [symmetric] f int uv integrable const)
apply (auto simp: integrable diff f int uv integrable const intro: order trans

[OF integrable bound [of e/content ?CBOX /2 ]])
done

have norm (integral (cbox u v)
(λx . integral (cbox w z ) (λy . f (x ,y)) − integral (cbox w z ) (λy . f

(t1 ,t2 ))))
≤ e ∗ content (cbox w z ) / content ?CBOX /2 ∗ content (cbox u v)

using cbp 〈0 < e/content ?CBOX 〉

apply (intro integrable bound [OF normint wz ])
apply (auto simp: field split simps integrable diff int integrable integrable const)
done

also have ... ≤ e ∗ content (cbox (u,w) (v ,z )) / content ?CBOX /2
by (simp add : content Pair field split simps)
finally have 2 : norm (integral (cbox u v) (λx . integral (cbox w z ) (λy . f

(x ,y))) −
integral (cbox u v) (λx . integral (cbox w z ) (λy . f (t1 ,t2 ))))

≤ e ∗ content (cbox (u,w) (v ,z )) / content ?CBOX /2
by (simp only : integral diff [symmetric] int integrable integrable const)
have norm xx : [[x ′ = y ′; norm(x − x ′) ≤ e/2 ; norm(y − y ′) ≤ e/2 ]] =⇒

norm(x − y) ≤ e for x :: ′c and y x ′ y ′ e
using norm triangle mono [of x−y ′ e/2 y ′−y e/2 ] field sum of halves
by (simp add : norm minus commute)

have norm (integral (cbox (u,w) (v ,z )) f − integral (cbox u v) (λx . integral
(cbox w z ) (λy . f (x ,y))))

≤ e ∗ content (cbox (u,w) (v ,z )) / content ?CBOX
by (rule norm xx [OF integral Pair const 1 2 ])

} note ∗ = this
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have norm (integral ?CBOX f − integral (cbox a b) (λx . integral (cbox c d)
(λy . f (x ,y)))) ≤ e

if ∀ x∈?CBOX . ∀ x ′∈?CBOX . norm (x ′ − x ) < k −→ norm (f x ′ − f x ) <
e /(2 ∗ content (?CBOX )) 0 < k for k

proof −
obtain p where ptag : p tagged division of cbox (a, c) (b, d)

and fine: (λx . ball x k) fine p
using fine division exists 〈0 < k 〉 by blast

show ?thesis
using that fine ptag 〈0 < k 〉

by (auto simp: ∗ intro: op acbd [OF division of tagged division [OF ptag ]])
qed
then show norm (integral ?CBOX f − integral (cbox a b) (λx . integral (cbox

c d) (λy . f (x ,y)))) ≤ e
using compact uniformly continuous [OF assms compact cbox ]
apply (simp add : uniformly continuous on def dist norm)
apply (drule tac x=e/2 / content?CBOX in spec)
using cbp 〈0 < e〉 by (auto simp: zero less mult iff )

qed
then show ?thesis
by simp

qed

lemma integral swap 2dim:
fixes f :: [ ′a::euclidean space, ′b::euclidean space] ⇒ ′c::banach
assumes continuous on (cbox (a,c) (b,d)) (λ(x ,y). f x y)
shows integral (cbox (a, c) (b, d)) (λ(x , y). f x y) = integral (cbox (c, a) (d ,

b)) (λ(x , y). f y x )
proof −
have ((λ(x , y). f x y) has integral integral (cbox (c, a) (d , b)) (λ(x , y). f y x ))

(prod .swap ‘ (cbox (c, a) (d , b)))
proof (rule has integral twiddle [of 1 prod .swap prod .swap λ(x ,y). f y x integral

(cbox (c, a) (d , b)) (λ(x , y). f y x ), simplified ])
show

∧
u v . content (prod .swap ‘ cbox u v) = content (cbox u v)

by (metis content Pair mult .commute old .prod .exhaust swap cbox Pair)
show ((λ(x , y). f y x ) has integral integral (cbox (c, a) (d , b)) (λ(x , y). f y x ))

(cbox (c, a) (d , b))
by (simp add : assms integrable continuous integrable integral swap continuous)

qed (use isCont swap in 〈fastforce+〉)
then show ?thesis
by force

qed

theorem integral swap continuous:
fixes f :: [ ′a::euclidean space, ′b::euclidean space] ⇒ ′c::banach
assumes continuous on (cbox (a,c) (b,d)) (λ(x ,y). f x y)
shows integral (cbox a b) (λx . integral (cbox c d) (f x )) =

integral (cbox c d) (λy . integral (cbox a b) (λx . f x y))
proof −
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have integral (cbox a b) (λx . integral (cbox c d) (f x )) = integral (cbox (a, c)
(b, d)) (λ(x , y). f x y)

using integral prod continuous [OF assms] by auto
also have ... = integral (cbox (c, a) (d , b)) (λ(x , y). f y x )
by (rule integral swap 2dim [OF assms])

also have ... = integral (cbox c d) (λy . integral (cbox a b) (λx . f x y))
using integral prod continuous [OF swap continuous] assms
by auto

finally show ?thesis .
qed

6.15.47 Definite integrals for exponential and power function

lemma has integral exp minus to infinity :
assumes a: a > 0
shows ((λx ::real . exp (−a∗x )) has integral exp (−a∗c)/a) {c..}

proof −
define f where f = (λk x . if x ∈ {c..real k} then exp (−a∗x ) else 0 )
{
fix k :: nat assume k : of nat k ≥ c
from k a
have ((λx . exp (−a∗x )) has integral (−exp (−a∗real k)/a − (−exp (−a∗c)/a)))

{c..real k}
by (intro fundamental theorem of calculus)

(auto intro!: derivative eq intros
simp: has field derivative iff has vector derivative [symmetric])

hence (f k has integral (exp (−a∗c)/a − exp (−a∗real k)/a)) {c..} unfolding
f def

by (subst has integral restrict) simp all
} note has integral f = this

have [simp]: f k = (λ . 0 ) if of nat k < c for k using that by (auto simp:
fun eq iff f def )
have integral f : integral {c..} (f k) =

(if real k ≥ c then exp (−a∗c)/a − exp (−a∗real k)/a else 0 )
for k using integral unique[OF has integral f [of k ]] by simp

have A: (λx . exp (−a∗x )) integrable on {c..} ∧
(λk . integral {c..} (f k)) −−−−→ integral {c..} (λx . exp (−a∗x ))

proof (intro monotone convergence increasing allI ballI )
fix k ::nat
have (λx . exp (−a∗x )) integrable on {c..of real k} (is ?P)
unfolding f def by (auto intro!: continuous intros integrable continuous real)
hence (f k) integrable on {c..of real k}
by (rule integrable eq) (simp add : f def )

then show f k integrable on {c..}
by (rule integrable on superset) (auto simp: f def )

next
fix x assume x : x ∈ {c..}
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have sequentially ≤ principal {nat dxe..} unfolding at top def by (simp add :
Inf lower)

also have {nat dxe..} ⊆ {k . x ≤ real k} by auto
also have inf (principal . . . ) (principal {k . ¬x ≤ real k}) =

principal ({k . x ≤ real k} ∩ {k . ¬x ≤ real k}) by simp
also have {k . x ≤ real k} ∩ {k . ¬x ≤ real k} = {} by blast
finally have inf sequentially (principal {k . ¬x ≤ real k}) = bot
by (simp add : inf .coboundedI1 bot unique)

with x show (λk . f k x ) −−−−→ exp (−a∗x ) unfolding f def
by (intro filterlim If ) auto

next
have |integral {c..} (f k)| ≤ exp (−a∗c)/a for k
proof (cases c > of nat k)
case False
hence abs (integral {c..} (f k)) = abs (exp (− (a ∗ c)) / a − exp (− (a ∗

real k)) / a)
by (simp add : integral f )

also have abs (exp (− (a ∗ c)) / a − exp (− (a ∗ real k)) / a) =
exp (− (a ∗ c)) / a − exp (− (a ∗ real k)) / a

using False a by (intro abs of nonneg) (simp all add : field simps)
also have . . . ≤ exp (− a ∗ c) / a using a by simp
finally show ?thesis .

qed (insert a, simp all add : integral f )
thus bounded (range(λk . integral {c..} (f k)))
by (intro boundedI [of exp (−a∗c)/a]) auto

qed (auto simp: f def )
have (λk . exp (−a∗c)/a − exp (−a ∗ of nat k)/a) −−−−→ exp (−a∗c)/a − 0/a
by (intro tendsto intros filterlim compose[OF exp at bot ]
filterlim tendsto neg mult at bot [OF tendsto const ] filterlim real sequentially)+
(insert a, simp all)

moreover
from eventually gt at top[of nat dce] have eventually (λk . of nat k > c) sequentially
by eventually elim linarith

hence eventually (λk . exp (−a∗c)/a − exp (−a ∗ of nat k)/a = integral {c..}
(f k)) sequentially

by eventually elim (simp add : integral f )
ultimately have (λk . integral {c..} (f k)) −−−−→ exp (−a∗c)/a − 0/a
by (rule Lim transform eventually)

from LIMSEQ unique[OF conjunct2 [OF A] this]
have integral {c..} (λx . exp (−a∗x )) = exp (−a∗c)/a by simp
with conjunct1 [OF A] show ?thesis
by (simp add : has integral integral)

qed

lemma integrable on exp minus to infinity : a > 0 =⇒ (λx . exp (−a∗x ) :: real)
integrable on {c..}
using has integral exp minus to infinity [of a c] unfolding integrable on def by

blast
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lemma has integral powr from 0 :
assumes a: a > (−1 ::real) and c: c ≥ 0
shows ((λx . x powr a) has integral (c powr (a+1 ) / (a+1 ))) {0 ..c}

proof (cases c = 0 )
case False
define f where f = (λk x . if x ∈ {inverse (of nat (Suc k))..c} then x powr a

else 0 )
define F where F = (λk . if inverse (of nat (Suc k)) ≤ c then

c powr (a+1 )/(a+1 ) − inverse (real (Suc k)) powr
(a+1 )/(a+1 ) else 0 )
{
fix k :: nat
have (f k has integral F k) {0 ..c}
proof (cases inverse (of nat (Suc k)) ≤ c)
case True
{
fix x assume x : x ≥ inverse (1 + real k)
have 0 < inverse (1 + real k) by simp
also note x
finally have x > 0 .

} note x = this
hence ((λx . x powr a) has integral c powr (a + 1 ) / (a + 1 ) −

inverse (real (Suc k)) powr (a + 1 ) / (a + 1 )) {inverse (real (Suc
k))..c}

using True a by (intro fundamental theorem of calculus)
(auto intro!: derivative eq intros continuous on powr ′ continuous on const

simp: has field derivative iff has vector derivative [symmetric])
with True show ?thesis unfolding f def F def by (subst has integral restrict)

simp all
next
case False
thus ?thesis unfolding f def F def by (subst has integral restrict) auto

qed
} note has integral f = this
have integral f : integral {0 ..c} (f k) = F k for k
using has integral f [of k ] by (rule integral unique)

have A: (λx . x powr a) integrable on {0 ..c} ∧
(λk . integral {0 ..c} (f k)) −−−−→ integral {0 ..c} (λx . x powr a)

proof (intro monotone convergence increasing ballI allI )
fix k from has integral f [of k ] show f k integrable on {0 ..c}
by (auto simp: integrable on def )

next
fix k :: nat and x :: real
{
assume x : inverse (real (Suc k)) ≤ x
have inverse (real (Suc (Suc k))) ≤ inverse (real (Suc k)) by (simp add :

field simps)
also note x
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finally have inverse (real (Suc (Suc k))) ≤ x .
}
thus f k x ≤ f (Suc k) x by (auto simp: f def simp del : of nat Suc)

next
fix x assume x : x ∈ {0 ..c}
show (λk . f k x ) −−−−→ x powr a
proof (cases x = 0 )
case False
with x have x > 0 by simp
from order tendstoD(2 )[OF LIMSEQ inverse real of nat this]
have eventually (λk . x powr a = f k x ) sequentially
by eventually elim (insert x , simp add : f def )

moreover have (λ . x powr a) −−−−→ x powr a by simp
ultimately show ?thesis by (blast intro: Lim transform eventually)

qed (simp all add : f def )
next
{
fix k
from a have F k ≤ c powr (a + 1 ) / (a + 1 )
by (auto simp add : F def divide simps)

also from a have F k ≥ 0
by (auto simp: F def divide simps simp del : of nat Suc intro!: powr mono2 )

hence F k = abs (F k) by simp
finally have abs (F k) ≤ c powr (a + 1 ) / (a + 1 ) .

}
thus bounded (range(λk . integral {0 ..c} (f k)))
by (intro boundedI [of c powr (a+1 ) / (a+1 )]) (auto simp: integral f )

qed

from False c have c > 0 by simp
from order tendstoD(2 )[OF LIMSEQ inverse real of nat this]
have eventually (λk . c powr (a + 1 ) / (a + 1 ) − inverse (real (Suc k)) powr

(a+1 ) / (a+1 ) =
integral {0 ..c} (f k)) sequentially

by eventually elim (simp add : integral f F def )
moreover have (λk . c powr (a + 1 ) / (a + 1 ) − inverse (real (Suc k)) powr

(a + 1 ) / (a + 1 ))
−−−−→ c powr (a + 1 ) / (a + 1 ) − 0 powr (a + 1 ) / (a + 1 )

using a by (intro tendsto intros LIMSEQ inverse real of nat) auto
hence (λk . c powr (a + 1 ) / (a + 1 ) − inverse (real (Suc k)) powr (a + 1 ) /

(a + 1 ))
−−−−→ c powr (a + 1 ) / (a + 1 ) by simp

ultimately have (λk . integral {0 ..c} (f k)) −−−−→ c powr (a+1 ) / (a+1 )
by (blast intro: Lim transform eventually)

with A have integral {0 ..c} (λx . x powr a) = c powr (a+1 ) / (a+1 )
by (blast intro: LIMSEQ unique)

with A show ?thesis by (simp add : has integral integral)
qed (simp all add : has integral refl)
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lemma integrable on powr from 0 :
assumes a: a > (−1 ::real) and c: c ≥ 0
shows (λx . x powr a) integrable on {0 ..c}
using has integral powr from 0 [OF assms] unfolding integrable on def by blast

lemma has integral powr to inf :
fixes a e :: real
assumes e < −1 a > 0
shows ((λx . x powr e) has integral −(a powr (e + 1 )) / (e + 1 )) {a..}

proof −
define f :: nat ⇒ real ⇒ real where f = (λn x . if x ∈ {a..n} then x powr e

else 0 )
define F where F = (λx . x powr (e + 1 ) / (e + 1 ))

have has integral f : (f n has integral (F n − F a)) {a..}
if n: n ≥ a for n :: nat

proof −
from n assms have ((λx . x powr e) has integral (F n − F a)) {a..n}
by (intro fundamental theorem of calculus) (auto intro!: derivative eq intros

simp: has field derivative iff has vector derivative [symmetric] F def )
hence (f n has integral (F n − F a)) {a..n}
by (rule has integral eq [rotated ]) (simp add : f def )

thus (f n has integral (F n − F a)) {a..}
by (rule has integral on superset) (auto simp: f def )

qed
have integral f : integral {a..} (f n) = (if n ≥ a then F n − F a else 0 ) for n ::

nat
proof (cases n ≥ a)
case True
with has integral f [OF this] show ?thesis by (simp add : integral unique)

next
case False
have (f n has integral 0 ) {a} by (rule has integral refl)
hence (f n has integral 0 ) {a..}
by (rule has integral on superset) (insert False, simp all add : f def )

with False show ?thesis by (simp add : integral unique)
qed

have ∗: (λx . x powr e) integrable on {a..} ∧
(λn. integral {a..} (f n)) −−−−→ integral {a..} (λx . x powr e)

proof (intro monotone convergence increasing allI ballI )
fix n :: nat
from assms have (λx . x powr e) integrable on {a..n}
by (auto intro!: integrable continuous real continuous intros)

hence f n integrable on {a..n}
by (rule integrable eq) (auto simp: f def )

thus f n integrable on {a..}
by (rule integrable on superset) (auto simp: f def )

next
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fix n :: nat and x :: real
show f n x ≤ f (Suc n) x by (auto simp: f def )

next
fix x :: real assume x : x ∈ {a..}
from filterlim real sequentially
have eventually (λn. real n ≥ x ) at top
by (simp add : filterlim at top)

with x have eventually (λn. f n x = x powr e) at top
by (auto elim!: eventually mono simp: f def )

thus (λn. f n x ) −−−−→ x powr e by (simp add : tendsto eventually)
next
have norm (integral {a..} (f n)) ≤ −F a for n :: nat
proof (cases n ≥ a)
case True
with assms have a powr (e + 1 ) ≥ n powr (e + 1 )
by (intro powr mono2 ′) simp all

with assms show ?thesis by (auto simp: divide simps F def integral f )
qed (insert assms, simp add : integral f F def field split simps)
thus bounded (range(λk . integral {a..} (f k)))
unfolding bounded iff by (intro exI [of −F a]) auto

qed

from filterlim real sequentially
have eventually (λn. real n ≥ a) at top
by (simp add : filterlim at top)

hence eventually (λn. F n − F a = integral {a..} (f n)) at top
by eventually elim (simp add : integral f )

moreover have (λn. F n − F a) −−−−→ 0 / (e + 1 ) − F a unfolding F def
by (insert assms, (rule tendsto intros filterlim compose[OF tendsto neg powr ]

filterlim ident filterlim real sequentially | simp)+)
hence (λn. F n − F a) −−−−→ −F a by simp
ultimately have (λn. integral {a..} (f n)) −−−−→ −F a by (blast intro: Lim transform eventually)
from conjunct2 [OF ∗] and this
have integral {a..} (λx . x powr e) = −F a by (rule LIMSEQ unique)

with conjunct1 [OF ∗] show ?thesis
by (simp add : has integral integral F def )

qed

lemma has integral inverse power to inf :
fixes a :: real and n :: nat
assumes n > 1 a > 0
shows ((λx . 1 / x ˆ n) has integral 1 / (real (n − 1 ) ∗ a ˆ (n − 1 ))) {a..}

proof −
from assms have real of int (−int n) < −1 by simp
note has integral powr to inf [OF this 〈a > 0 〉]
also have − (a powr (real of int (− int n) + 1 )) / (real of int (− int n) + 1 )

=
1 / (real (n − 1 ) ∗ a powr (real (n − 1 ))) using assms

by (simp add : field split simps powr add [symmetric] of nat diff )
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also from assms have a powr (real (n − 1 )) = a ˆ (n − 1 )
by (intro powr realpow)

finally show ?thesis
by (rule has integral eq [rotated ])

(insert assms, simp all add : powr minus powr realpow field split simps)
qed

Adaption to ordered Euclidean spaces and the Cartesian Euclidean
space

lemma integral component eq cart [simp]:
fixes f :: ′n::euclidean space ⇒ realˆ ′m
assumes f integrable on s
shows integral s (λx . f x $ k) = integral s f $ k
using integral linear [OF assms(1 ) bounded linear vec nth,unfolded o def ] .

lemma content closed interval :
fixes a :: ′a::ordered euclidean space
assumes a ≤ b
shows content {a..b} = (

∏
i∈Basis. b·i − a·i)

using content cbox [of a b] assms by (simp add : cbox interval eucl le[where
′a= ′a])

lemma integrable const ivl [intro]:
fixes a:: ′a::ordered euclidean space
shows (λx . c) integrable on {a..b}
unfolding cbox interval [symmetric] by (rule integrable const)

lemma integrable on subinterval :
fixes f :: ′n::ordered euclidean space ⇒ ′a::banach
assumes f integrable on S {a..b} ⊆ S
shows f integrable on {a..b}
using integrable on subcbox [of f S a b] assms by (simp add : cbox interval)

end

6.16 Radon-Nikodým Derivative

theory Radon Nikodym
imports Bochner Integration
begin

definition diff measure :: ′a measure ⇒ ′a measure ⇒ ′a measure
where
diff measure M N = measure of (space M ) (sets M ) (λA. emeasure M A −

emeasure N A)

lemma
shows space diff measure[simp]: space (diff measure M N ) = space M
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and sets diff measure[simp]: sets (diff measure M N ) = sets M
by (auto simp: diff measure def )

lemma emeasure diff measure:
assumes fin: finite measure M finite measure N and sets eq : sets M = sets N
assumes pos:

∧
A. A ∈ sets M =⇒ emeasure N A ≤ emeasure M A and A: A

∈ sets M
shows emeasure (diff measure M N ) A = emeasure M A − emeasure N A (is

= ?µ A)
unfolding diff measure def

proof (rule emeasure measure of sigma)
show sigma algebra (space M ) (sets M ) ..
show positive (sets M ) ?µ
using pos by (simp add : positive def )

show countably additive (sets M ) ?µ
proof (rule countably additiveI )
fix A :: nat ⇒ assume A: range A ⊆ sets M and disjoint family A
then have suminf :
(
∑

i . emeasure M (A i)) = emeasure M (
⋃
i . A i)

(
∑

i . emeasure N (A i)) = emeasure N (
⋃

i . A i)
by (simp all add : suminf emeasure sets eq)

with A have (
∑

i . emeasure M (A i) − emeasure N (A i)) =
(
∑

i . emeasure M (A i)) − (
∑

i . emeasure N (A i))
using fin pos[of A ]
by (intro ennreal suminf minus)

(auto simp: sets eq finite measure.emeasure eq measure suminf emeasure)
then show (

∑
i . emeasure M (A i) − emeasure N (A i)) =

emeasure M (
⋃
i . A i) − emeasure N (

⋃
i . A i)

by (simp add : suminf )
qed

qed fact

An equivalent characterization of sigma-finite spaces is the existence of inte-
grable positive functions (or, still equivalently, the existence of a probability
measure which is in the same measure class as the original measure).

proposition (in sigma finite measure) obtain positive integrable function:
obtains f :: ′a ⇒ real where
f ∈ borel measurable M∧
x . f x > 0∧
x . f x ≤ 1

integrable M f
proof −
obtain A :: nat ⇒ ′a set where range A ⊆ sets M (

⋃
i . A i) = space M

∧
i .

emeasure M (A i) 6= ∞
using sigma finite by auto

then have [measurable]:A n ∈ sets M for n by auto
define g where g = (λx . (

∑
n. (1/2 )ˆ(Suc n) ∗ indicator (A n) x / (1+

measure M (A n))))
have [measurable]: g ∈ borel measurable M unfolding g def by auto
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have ∗: summable (λn. (1/2 )ˆ(Suc n) ∗ indicator (A n) x / (1+ measure M (A
n))) for x

apply (rule summable comparison test ′[of λn. (1/2 )ˆ(Suc n) 0 ])
using power half series summable def by (auto simp add : indicator def di-

vide simps)
have g x ≤ (

∑
n. (1/2 )ˆ(Suc n)) for x unfolding g def

apply (rule suminf le) using ∗ power half series summable def by (auto simp
add : indicator def divide simps)
then have g le 1 : g x ≤ 1 for x using power half series sums unique by fastforce

have g pos: g x > 0 if x ∈ space M for x
unfolding g def proof (subst suminf pos iff [OF ∗[of x ]], auto)
obtain i where x ∈ A i using 〈(

⋃
i . A i) = space M 〉 〈x ∈ space M 〉 by auto

then have 0 < (1 / 2 ) ˆ Suc i ∗ indicator (A i) x / (1 + Sigma Algebra.measure
M (A i))

unfolding indicator def apply (auto simp add : divide simps) using mea-
sure nonneg [of M A i ]

by (auto, meson add nonneg nonneg linorder not le mult nonneg nonneg
zero le numeral zero le one zero le power)

then show ∃ i . 0 < (1 / 2 ) ˆ i ∗ indicator (A i) x / (2 + 2 ∗ Sigma Algebra.measure
M (A i))

by auto
qed

have integrable M g
unfolding g def proof (rule integrable suminf )
fix n
show integrable M (λx . (1 / 2 ) ˆ Suc n ∗ indicator (A n) x / (1 + Sigma Algebra.measure

M (A n)))
using 〈emeasure M (A n) 6= ∞〉

by (auto intro!: integrable mult right integrable divide zero integrable real indicator
simp add : top.not eq extremum)
next
show AE x in M . summable (λn. norm ((1 / 2 ) ˆ Suc n ∗ indicator (A n) x

/ (1 + Sigma Algebra.measure M (A n))))
using ∗ by auto

show summable (λn. (
∫
x . norm ((1 / 2 ) ˆ Suc n ∗ indicator (A n) x / (1 +

Sigma Algebra.measure M (A n))) ∂M ))
apply (rule summable comparison test ′[of λn. (1/2 )ˆ(Suc n) 0 ], auto)
using power half series summable def apply auto[1 ]
apply (auto simp add : field split simps) using measure nonneg [of M ] not less

by fastforce
qed

define f where f = (λx . if x ∈ space M then g x else 1 )
have f x > 0 for x unfolding f def using g pos by auto
moreover have f x ≤ 1 for x unfolding f def using g le 1 by auto
moreover have [measurable]: f ∈ borel measurable M unfolding f def by auto
moreover have integrable M f
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apply (subst integrable cong [of g ]) unfolding f def using 〈integrable M
g〉 by auto
ultimately show (

∧
f . f ∈ borel measurable M =⇒ (

∧
x . 0 < f x ) =⇒ (

∧
x . f x

≤ 1 ) =⇒ integrable M f =⇒ thesis) =⇒ thesis
by (meson that)

qed

lemma (in sigma finite measure) Ex finite integrable function:
∃ h∈borel measurable M . integralN M h 6= ∞ ∧ (∀ x∈space M . 0 < h x ∧ h x <
∞)
proof −
obtain A :: nat ⇒ ′a set where
range[measurable]: range A ⊆ sets M and
space: (

⋃
i . A i) = space M and

measure:
∧
i . emeasure M (A i) 6= ∞ and

disjoint : disjoint family A
using sigma finite disjoint by blast

let ?B = λi . 2ˆSuc i ∗ emeasure M (A i)
have [measurable]:

∧
i . A i ∈ sets M

using range by fastforce+
have ∀ i . ∃ x . 0 < x ∧ x < inverse (?B i)
proof
fix i show ∃ x . 0 < x ∧ x < inverse (?B i)
using measure[of i ]
by (auto intro!: dense simp: ennreal inverse positive ennreal mult eq top iff

power eq top ennreal)
qed
from choice[OF this] obtain n where n:

∧
i . 0 < n i∧

i . n i < inverse (2ˆSuc i ∗ emeasure M (A i)) by auto
{ fix i have 0 ≤ n i using n(1 )[of i ] by auto } note pos = this
let ?h = λx .

∑
i . n i ∗ indicator (A i) x

show ?thesis
proof (safe intro!: bexI [of ?h] del : notI )
have integralN M ?h = (

∑
i . n i ∗ emeasure M (A i)) using pos

by (simp add : nn integral suminf nn integral cmult indicator)
also have . . . ≤ (

∑
i . ennreal ((1/2 )ˆSuc i))

proof (intro suminf le allI )
fix N
have n N ∗ emeasure M (A N ) ≤ inverse (2ˆSuc N ∗ emeasure M (A N ))

∗ emeasure M (A N )
using n[of N ] by (intro mult right mono) auto

also have . . . = (1/2 )ˆSuc N ∗ (inverse (emeasure M (A N )) ∗ emeasure
M (A N ))

using measure[of N ]
by (simp add : ennreal inverse power divide ennreal def ennreal inverse mult

power eq top ennreal less top[symmetric] mult ac
del : power Suc)

also have . . . ≤ inverse (ennreal 2 ) ˆ Suc N
using measure[of N ]
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by (cases emeasure M (A N ); cases emeasure M (A N ) = 0 )
(auto simp: inverse ennreal ennreal mult [symmetric] divide ennreal def

simp del : power Suc)
also have . . . = ennreal (inverse 2 ˆ Suc N )
by (subst ennreal power [symmetric], simp) (simp add : inverse ennreal)

finally show n N ∗ emeasure M (A N ) ≤ ennreal ((1/2 )ˆSuc N )
by simp

qed auto
also have . . . < top
unfolding less top[symmetric]
by (rule ennreal suminf neq top)

(auto simp: summable geometric summable Suc iff simp del : power Suc)
finally show integralN M ?h 6= ∞
by (auto simp: top unique)

next
{ fix x assume x ∈ space M
then obtain i where x ∈ A i using space[symmetric] by auto
with disjoint n have ?h x = n i
by (auto intro!: suminf cmult indicator intro: less imp le)
then show 0 < ?h x and ?h x < ∞ using n[of i ] by (auto simp:

less top[symmetric]) }
note pos = this

qed measurable
qed

6.16.1 Absolutely continuous

definition absolutely continuous :: ′a measure ⇒ ′a measure ⇒ bool where
absolutely continuous M N ←→ null sets M ⊆ null sets N

lemma absolutely continuousI count space: absolutely continuous (count space A)
M
unfolding absolutely continuous def by (auto simp: null sets count space)

lemma absolutely continuousI density :
f ∈ borel measurable M =⇒ absolutely continuous M (density M f )
by (force simp add : absolutely continuous def null sets density iff dest : AE not in)

lemma absolutely continuousI point measure finite:
(
∧
x . [[ x ∈ A ; f x ≤ 0 ]] =⇒ g x ≤ 0 ) =⇒ absolutely continuous (point measure

A f ) (point measure A g)
unfolding absolutely continuous def by (force simp: null sets point measure iff )

lemma absolutely continuousD :
absolutely continuous M N =⇒ A ∈ sets M =⇒ emeasure M A = 0 =⇒ emeasure

N A = 0
by (auto simp: absolutely continuous def null sets def )

lemma absolutely continuous AE :
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assumes sets eq : sets M ′ = sets M
and absolutely continuous M M ′ AE x in M . P x
shows AE x in M ′. P x

proof −
from 〈AE x in M . P x 〉 obtain N where N : N ∈ null sets M {x∈space M . ¬

P x} ⊆ N
unfolding eventually ae filter by auto

show AE x in M ′. P x
proof (rule AE I ′)
show {x∈space M ′. ¬ P x} ⊆ N using sets eq imp space eq [OF sets eq ] N (2 )

by simp
from 〈absolutely continuous M M ′〉 show N ∈ null sets M ′

using N unfolding absolutely continuous def sets eq null sets def by auto
qed

qed

6.16.2 Existence of the Radon-Nikodym derivative

proposition
(in finite measure) Radon Nikodym finite measure:
assumes finite measure N and sets eq [simp]: sets N = sets M
assumes absolutely continuous M N
shows ∃ f ∈ borel measurable M . density M f = N

proof −
interpret N : finite measure N by fact
define G where G = {g ∈ borel measurable M . ∀A∈sets M . (

∫
+x . g x ∗

indicator A x ∂M ) ≤ N A}
have [measurable dest ]: f ∈ G =⇒ f ∈ borel measurable M
and G D :

∧
A. f ∈ G =⇒ A ∈ sets M =⇒ (

∫
+x . f x ∗ indicator A x ∂M ) ≤

N A for f
by (auto simp: G def )

note this[measurable dest ]
have (λx . 0 ) ∈ G unfolding G def by auto
hence G 6= {} by auto
{ fix f g assume f [measurable]: f ∈ G and g [measurable]: g ∈ G
have (λx . max (g x ) (f x )) ∈ G (is ?max ∈ G) unfolding G def
proof safe
let ?A = {x ∈ space M . f x ≤ g x}
have ?A ∈ sets M using f g unfolding G def by auto
fix A assume [measurable]: A ∈ sets M
have union: ((?A ∩ A) ∪ ((space M − ?A) ∩ A)) = A
using sets.sets into space[OF 〈A ∈ sets M 〉] by auto

have
∧
x . x ∈ space M =⇒ max (g x ) (f x ) ∗ indicator A x =

g x ∗ indicator (?A ∩ A) x + f x ∗ indicator ((space M − ?A) ∩ A) x
by (auto simp: indicator def max def )

hence (
∫

+x . max (g x ) (f x ) ∗ indicator A x ∂M ) =
(
∫

+x . g x ∗ indicator (?A ∩ A) x ∂M ) +
(
∫

+x . f x ∗ indicator ((space M − ?A) ∩ A) x ∂M )
by (auto cong : nn integral cong intro!: nn integral add)
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also have . . . ≤ N (?A ∩ A) + N ((space M − ?A) ∩ A)
using f g unfolding G def by (auto intro!: add mono)

also have . . . = N A
using union by (subst plus emeasure) auto

finally show (
∫

+x . max (g x ) (f x ) ∗ indicator A x ∂M ) ≤ N A .
qed auto }

note max in G = this
{ fix f assume incseq f and f :

∧
i . f i ∈ G

then have [measurable]:
∧
i . f i ∈ borel measurable M by (auto simp: G def )

have (λx . SUP i . f i x ) ∈ G unfolding G def
proof safe
show (λx . SUP i . f i x ) ∈ borel measurable M by measurable

next
fix A assume A ∈ sets M
have (

∫
+x . (SUP i . f i x ) ∗ indicator A x ∂M ) =

(
∫

+x . (SUP i . f i x ∗ indicator A x ) ∂M )
by (intro nn integral cong) (simp split : split indicator)

also have . . . = (SUP i . (
∫

+x . f i x ∗ indicator A x ∂M ))
using 〈incseq f 〉 f 〈A ∈ sets M 〉

by (intro nn integral monotone convergence SUP)
(auto simp: G def incseq Suc iff le fun def split : split indicator)

finally show (
∫

+x . (SUP i . f i x ) ∗ indicator A x ∂M ) ≤ N A
using f 〈A ∈ sets M 〉 by (auto intro!: SUP least simp: G D)

qed }
note SUP in G = this
let ?y = SUP g ∈ G . integralN M g
have y le: ?y ≤ N (space M ) unfolding G def
proof (safe intro!: SUP least)
fix g assume ∀A∈sets M . (

∫
+x . g x ∗ indicator A x ∂M ) ≤ N A

from this[THEN bspec, OF sets.top] show integralN M g ≤ N (space M )
by (simp cong : nn integral cong)

qed
from ennreal SUP countable SUP [OF 〈G 6= {}〉, of integralN M ] guess ys ..

note ys = this
then have ∀n. ∃ g . g∈G ∧ integralN M g = ys n
proof safe
fix n assume range ys ⊆ integralN M ‘ G
hence ys n ∈ integralN M ‘ G by auto
thus ∃ g . g∈G ∧ integralN M g = ys n by auto

qed
from choice[OF this] obtain gs where

∧
i . gs i ∈ G

∧
n. integralN M (gs n)

= ys n by auto
hence y eq : ?y = (SUP i . integralN M (gs i)) using ys by auto
let ?g = λi x . Max ((λn. gs n x ) ‘ {..i})
define f where [abs def ]: f x = (SUP i . ?g i x ) for x
let ?F = λA x . f x ∗ indicator A x
have gs not empty :

∧
i x . (λn. gs n x ) ‘ {..i} 6= {} by auto

{ fix i have ?g i ∈ G
proof (induct i)
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case 0 thus ?case by simp fact
next
case (Suc i)
with Suc gs not empty 〈gs (Suc i) ∈ G〉 show ?case
by (auto simp add : atMost Suc intro!: max in G)

qed }
note g in G = this
have incseq ?g using gs not empty
by (auto intro!: incseq SucI le funI simp add : atMost Suc)

from SUP in G [OF this g in G ] have [measurable]: f ∈ G unfolding f def .
then have [measurable]: f ∈ borel measurable M unfolding G def by auto

have integralN M f = (SUP i . integralN M (?g i)) unfolding f def
using g in G 〈incseq ?g〉 by (auto intro!: nn integral monotone convergence SUP

simp: G def )
also have . . . = ?y
proof (rule antisym)
show (SUP i . integralN M (?g i)) ≤ ?y
using g in G by (auto intro: SUP mono)

show ?y ≤ (SUP i . integralN M (?g i)) unfolding y eq
by (auto intro!: SUP mono nn integral mono Max ge)

qed
finally have int f eq y : integralN M f = ?y .

have upper bound : ∀A∈sets M . N A ≤ density M f A
proof (rule ccontr)
assume ¬ ?thesis
then obtain A where A[measurable]: A ∈ sets M and f less N : density M f

A < N A
by (auto simp: not le)

then have pos A: 0 < M A
using 〈absolutely continuous M N 〉[THEN absolutely continuousD , OF A]
by (auto simp: zero less iff neq zero)

define b where b = (N A − density M f A) / M A / 2
with f less N pos A have 0 < b b 6= top
by (auto intro!: diff gr0 ennreal simp: zero less iff neq zero diff eq 0 iff ennreal

ennreal divide eq top iff )

let ?f = λx . f x + b
have nn integral M f 6= top

using 〈f ∈ G〉[THEN G D , of space M ] by (auto simp: top unique cong :
nn integral cong)

with 〈b 6= top〉 interpret Mf : finite measure density M ?f
by (intro finite measureI )

(auto simp: field simps mult indicator subset ennreal mult eq top iff
emeasure density nn integral cmult indicator nn integral add

cong : nn integral cong)
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from unsigned Hahn decomposition[of density M ?f N A]
obtain Y where [measurable]: Y ∈ sets M and [simp]: Y ⊆ A

and Y1 :
∧
C . C ∈ sets M =⇒ C ⊆ Y =⇒ density M ?f C ≤ N C

and Y2 :
∧
C . C ∈ sets M =⇒ C ⊆ A =⇒ C ∩ Y = {} =⇒ N C ≤ density

M ?f C
by auto

let ?f ′ = λx . f x + b ∗ indicator Y x
have M Y 6= 0
proof
assume M Y = 0
then have N Y = 0
using 〈absolutely continuous M N 〉[THEN absolutely continuousD , of Y ] by

auto
then have N A = N (A − Y )
by (subst emeasure Diff ) auto

also have . . . ≤ density M ?f (A − Y )
by (rule Y2 ) auto

also have . . . ≤ density M ?f A − density M ?f Y
by (subst emeasure Diff ) auto

also have . . . ≤ density M ?f A − 0
by (intro ennreal minus mono) auto

also have density M ?f A = b ∗ M A + density M f A
by (simp add : emeasure density field simps mult indicator subset nn integral add

nn integral cmult indicator)
also have . . . < N A
using f less N pos A
by (cases density M f A; cases M A; cases N A)

(auto simp: b def ennreal less iff ennreal minus divide ennreal en-
nreal numeral [symmetric]

ennreal plus[symmetric] ennreal mult [symmetric] field simps
simp del : ennreal numeral ennreal plus)

finally show False
by simp

qed
then have nn integral M f < nn integral M ?f ′

using 〈0 < b〉 〈nn integral M f 6= top〉

by (simp add : nn integral add nn integral cmult indicator ennreal zero less mult iff
zero less iff neq zero)

moreover
have ?f ′ ∈ G
unfolding G def

proof safe
fix X assume [measurable]: X ∈ sets M
have (

∫
+ x . ?f ′ x ∗ indicator X x ∂M ) = density M f (X − Y ) + density

M ?f (X ∩ Y )
by (auto simp add : emeasure density nn integral add [symmetric] split :

split indicator intro!: nn integral cong)
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also have . . . ≤ N (X − Y ) + N (X ∩ Y )
using G D [OF 〈f ∈ G〉] by (intro add mono Y1 ) (auto simp: emea-

sure density)
also have . . . = N X
by (subst plus emeasure) (auto intro!: arg cong2 [where f=emeasure])

finally show (
∫

+ x . ?f ′ x ∗ indicator X x ∂M ) ≤ N X .
qed simp
then have nn integral M ?f ′ ≤ ?y
by (rule SUP upper)

ultimately show False
by (simp add : int f eq y)

qed
show ?thesis
proof (intro bexI [of f ] measure eqI conjI antisym)
fix A assume A ∈ sets (density M f ) then show emeasure (density M f ) A

≤ emeasure N A
by (auto simp: emeasure density intro!: G D [OF 〈f ∈ G〉])

next
fix A assume A: A ∈ sets (density M f ) then show emeasure N A ≤ emeasure

(density M f ) A
using upper bound by auto

qed auto
qed

lemma (in finite measure) split space into finite sets and rest :
assumes ac: absolutely continuous M N and sets eq [simp]: sets N = sets M
shows ∃B ::nat⇒ ′a set . disjoint family B ∧ range B ⊆ sets M ∧ (∀ i . N (B i)
6= ∞) ∧

(∀A∈sets M . A ∩ (
⋃
i . B i) = {} −→ (emeasure M A = 0 ∧ N A = 0 ) ∨

(emeasure M A > 0 ∧ N A = ∞))
proof −
let ?Q = {Q∈sets M . N Q 6= ∞}
let ?a = SUP Q∈?Q . emeasure M Q
have {} ∈ ?Q by auto
then have Q not empty : ?Q 6= {} by blast
have ?a ≤ emeasure M (space M ) using sets.sets into space
by (auto intro!: SUP least emeasure mono)

then have ?a 6= ∞
using finite emeasure space
by (auto simp: less top[symmetric] top unique simp del : SUP eq top iff Sup eq top iff )
from ennreal SUP countable SUP [OF Q not empty , of emeasure M ]
obtain Q ′′ where range Q ′′ ⊆ emeasure M ‘ ?Q and a: ?a = (SUP i ::nat . Q ′′

i)
by auto

then have ∀ i . ∃Q ′. Q ′′ i = emeasure M Q ′ ∧ Q ′ ∈ ?Q by auto
from choice[OF this] obtain Q ′ where Q ′:

∧
i . Q ′′ i = emeasure M (Q ′ i)

∧
i .

Q ′ i ∈ ?Q
by auto

then have a Lim: ?a = (SUP i . emeasure M (Q ′ i)) using a by simp



Radon Nikodym.thy 1929

let ?O = λn.
⋃

i≤n. Q ′ i
have Union: (SUP i . emeasure M (?O i)) = emeasure M (

⋃
i . ?O i)

proof (rule SUP emeasure incseq [of ?O ])
show range ?O ⊆ sets M using Q ′ by auto
show incseq ?O by (fastforce intro!: incseq SucI )

qed
have Q ′ sets[measurable]:

∧
i . Q ′ i ∈ sets M using Q ′ by auto

have O sets:
∧
i . ?O i ∈ sets M using Q ′ by auto

then have O in G :
∧
i . ?O i ∈ ?Q

proof (safe del : notI )
fix i have Q ′ ‘ {..i} ⊆ sets M using Q ′ by auto
then have N (?O i) ≤ (

∑
i≤i . N (Q ′ i))

by (simp add : emeasure subadditive finite)
also have . . . < ∞ using Q ′ by (simp add : less top)
finally show N (?O i) 6= ∞ by simp

qed auto
have O mono:

∧
n. ?O n ⊆ ?O (Suc n) by fastforce

have a eq : ?a = emeasure M (
⋃
i . ?O i) unfolding Union[symmetric]

proof (rule antisym)
show ?a ≤ (SUP i . emeasure M (?O i)) unfolding a Lim
using Q ′ by (auto intro!: SUP mono emeasure mono)

show (SUP i . emeasure M (?O i)) ≤ ?a
proof (safe intro!: Sup mono, unfold bex simps)
fix i
have ∗: (

⋃
(Q ′ ‘ {..i})) = ?O i by auto

then show ∃ x . (x ∈ sets M ∧ N x 6= ∞) ∧
emeasure M (

⋃
(Q ′ ‘ {..i})) ≤ emeasure M x

using O in G [of i ] by (auto intro!: exI [of ?O i ])
qed

qed
let ?O 0 = (

⋃
i . ?O i)

have ?O 0 ∈ sets M using Q ′ by auto
have disjointed Q ′ i ∈ sets M for i
using sets.range disjointed sets[of Q ′ M ] using Q ′ sets by (auto simp: sub-

set eq)
note Q sets = this
show ?thesis
proof (intro bexI exI conjI ballI impI allI )
show disjoint family (disjointed Q ′)
by (rule disjoint family disjointed)

show range (disjointed Q ′) ⊆ sets M
using Q ′ sets by (intro sets.range disjointed sets) auto

{ fix A assume A: A ∈ sets M A ∩ (
⋃

i . disjointed Q ′ i) = {}
then have A1 : A ∩ (

⋃
i . Q ′ i) = {}

unfolding UN disjointed eq by auto
show emeasure M A = 0 ∧ N A = 0 ∨ 0 < emeasure M A ∧ N A = ∞
proof (rule disjCI , simp)
assume ∗: emeasure M A = 0 ∨ N A 6= top
show emeasure M A = 0 ∧ N A = 0
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proof (cases emeasure M A = 0 )
case True
with ac A have N A = 0
unfolding absolutely continuous def by auto

with True show ?thesis by simp
next
case False
with ∗ have N A 6= ∞ by auto
with A have emeasure M ?O 0 + emeasure M A = emeasure M (?O 0 ∪

A)
using Q ′ A1 by (auto intro!: plus emeasure simp: set eq iff )

also have . . . = (SUP i . emeasure M (?O i ∪ A))
proof (rule SUP emeasure incseq [of λi . ?O i ∪ A, symmetric, simplified ])

show range (λi . ?O i ∪ A) ⊆ sets M
using 〈N A 6= ∞〉 O sets A by auto

qed (fastforce intro!: incseq SucI )
also have . . . ≤ ?a
proof (safe intro!: SUP least)
fix i have ?O i ∪ A ∈ ?Q
proof (safe del : notI )
show ?O i ∪ A ∈ sets M using O sets A by auto
from O in G [of i ] have N (?O i ∪ A) ≤ N (?O i) + N A
using emeasure subadditive[of ?O i N A] A O sets by auto

with O in G [of i ] show N (?O i ∪ A) 6= ∞
using 〈N A 6= ∞〉 by (auto simp: top unique)

qed
then show emeasure M (?O i ∪ A) ≤ ?a by (rule SUP upper)

qed
finally have emeasure M A = 0

unfolding a eq using measure nonneg [of M A] by (simp add : emea-
sure eq measure)

with 〈emeasure M A 6= 0 〉 show ?thesis by auto
qed

qed }
{ fix i
have N (disjointed Q ′ i) ≤ N (Q ′ i)
by (auto intro!: emeasure mono simp: disjointed def )

then show N (disjointed Q ′ i) 6= ∞
using Q ′(2 )[of i ] by (auto simp: top unique) }

qed
qed

proposition (in finite measure) Radon Nikodym finite measure infinite:
assumes absolutely continuous M N and sets eq : sets N = sets M
shows ∃ f ∈borel measurable M . density M f = N

proof −
from split space into finite sets and rest [OF assms]
obtain Q :: nat ⇒ ′a set
where Q : disjoint family Q range Q ⊆ sets M
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and in Q0 :
∧
A. A ∈ sets M =⇒ A ∩ (

⋃
i . Q i) = {} =⇒ emeasure M A = 0

∧ N A = 0 ∨ 0 < emeasure M A ∧ N A = ∞
and Q fin:

∧
i . N (Q i) 6= ∞ by force

from Q have Q sets:
∧
i . Q i ∈ sets M by auto

let ?N = λi . density N (indicator (Q i)) and ?M = λi . density M (indicator
(Q i))
have ∀ i . ∃ f ∈borel measurable (?M i). density (?M i) f = ?N i
proof (intro allI finite measure.Radon Nikodym finite measure)
fix i
from Q show finite measure (?M i)
by (auto intro!: finite measureI cong : nn integral cong

simp add : emeasure density subset eq sets eq)
from Q have emeasure (?N i) (space N ) = emeasure N (Q i)
by (simp add : sets eq [symmetric] emeasure density subset eq cong : nn integral cong)
with Q fin show finite measure (?N i)
by (auto intro!: finite measureI )

show sets (?N i) = sets (?M i) by (simp add : sets eq)
have [measurable]:

∧
A. A ∈ sets M =⇒ A ∈ sets N by (simp add : sets eq)

show absolutely continuous (?M i) (?N i)
using 〈absolutely continuous M N 〉 〈Q i ∈ sets M 〉

by (auto simp: absolutely continuous def null sets density iff sets eq
intro!: absolutely continuous AE [OF sets eq ])

qed
from choice[OF this[unfolded Bex def ]]
obtain f where borel :

∧
i . f i ∈ borel measurable M

∧
i x . 0 ≤ f i x

and f density :
∧
i . density (?M i) (f i) = ?N i

by force
{ fix A i assume A: A ∈ sets M

with Q borel have (
∫

+x . f i x ∗ indicator (Q i ∩ A) x ∂M ) = emeasure
(density (?M i) (f i)) A

by (auto simp add : emeasure density nn integral density subset eq
intro!: nn integral cong split : split indicator)

also have . . . = emeasure N (Q i ∩ A)
using A Q by (simp add : f density emeasure restricted subset eq sets eq)

finally have emeasure N (Q i ∩ A) = (
∫

+x . f i x ∗ indicator (Q i ∩ A) x
∂M ) .. }
note integral eq = this
let ?f = λx . (

∑
i . f i x ∗ indicator (Q i) x ) + ∞ ∗ indicator (space M − (

⋃
i .

Q i)) x
show ?thesis
proof (safe intro!: bexI [of ?f ])
show ?f ∈ borel measurable M using borel Q sets
by (auto intro!: measurable If )

show density M ?f = N
proof (rule measure eqI )
fix A assume A ∈ sets (density M ?f )
then have A ∈ sets M by simp
have Qi :

∧
i . Q i ∈ sets M using Q by auto

have [intro,simp]:
∧
i . (λx . f i x ∗ indicator (Q i ∩ A) x ) ∈ borel measurable
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M ∧
i . AE x in M . 0 ≤ f i x ∗ indicator (Q i ∩ A) x

using borel Qi 〈A ∈ sets M 〉 by auto
have (

∫
+x . ?f x ∗ indicator A x ∂M ) = (

∫
+x . (

∑
i . f i x ∗ indicator (Q i

∩ A) x ) + ∞ ∗ indicator ((space M − (
⋃
i . Q i)) ∩ A) x ∂M )

using borel by (intro nn integral cong) (auto simp: indicator def )
also have . . . = (

∫
+x . (

∑
i . f i x ∗ indicator (Q i ∩ A) x ) ∂M ) + ∞ ∗

emeasure M ((space M − (
⋃
i . Q i)) ∩ A)

using borel Qi 〈A ∈ sets M 〉

by (subst nn integral add)
(auto simp add : nn integral cmult indicator sets.Int intro!: suminf 0 le)

also have . . . = (
∑

i . N (Q i ∩ A)) + ∞ ∗ emeasure M ((space M − (
⋃

i .
Q i)) ∩ A)

by (subst integral eq [OF 〈A ∈ sets M 〉], subst nn integral suminf ) auto
finally have (

∫
+x . ?f x ∗ indicator A x ∂M ) = (

∑
i . N (Q i ∩ A)) + ∞ ∗

emeasure M ((space M − (
⋃
i . Q i)) ∩ A) .

moreover have (
∑

i . N (Q i ∩ A)) = N ((
⋃

i . Q i) ∩ A)
using Q Q sets 〈A ∈ sets M 〉

by (subst suminf emeasure) (auto simp: disjoint family on def sets eq)
moreover
have (space M − (

⋃
x . Q x )) ∩ A ∩ (

⋃
x . Q x ) = {}

by auto
then have ∞ ∗ emeasure M ((space M − (

⋃
i . Q i)) ∩ A) = N ((space M

− (
⋃

i . Q i)) ∩ A)
using in Q0 [of (space M − (

⋃
i . Q i)) ∩ A] 〈A ∈ sets M 〉 Q by (auto

simp: ennreal top mult)
moreover have (space M − (

⋃
i . Q i)) ∩ A ∈ sets M ((

⋃
i . Q i) ∩ A) ∈

sets M
using Q sets 〈A ∈ sets M 〉 by auto

moreover have ((
⋃
i . Q i) ∩ A) ∪ ((space M − (

⋃
i . Q i)) ∩ A) = A ((

⋃
i .

Q i) ∩ A) ∩ ((space M − (
⋃
i . Q i)) ∩ A) = {}

using 〈A ∈ sets M 〉 sets.sets into space by auto
ultimately have N A = (

∫
+x . ?f x ∗ indicator A x ∂M )

using plus emeasure[of (
⋃
i . Q i) ∩ A N (space M − (

⋃
i . Q i)) ∩ A] by

(simp add : sets eq)
with 〈A ∈ sets M 〉 borel Q show emeasure (density M ?f ) A = N A
by (auto simp: subset eq emeasure density)

qed (simp add : sets eq)
qed

qed

theorem (in sigma finite measure) Radon Nikodym:
assumes ac: absolutely continuous M N assumes sets eq : sets N = sets M
shows ∃ f ∈ borel measurable M . density M f = N

proof −
from Ex finite integrable function
obtain h where finite: integralN M h 6= ∞ and
borel : h ∈ borel measurable M and
nn:

∧
x . 0 ≤ h x and
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pos:
∧
x . x ∈ space M =⇒ 0 < h x and∧

x . x ∈ space M =⇒ h x < ∞ by auto
let ?T = λA. (

∫
+x . h x ∗ indicator A x ∂M )

let ?MT = density M h
from borel finite nn interpret T : finite measure ?MT
by (auto intro!: finite measureI cong : nn integral cong simp: emeasure density)

have absolutely continuous ?MT N sets N = sets ?MT
proof (unfold absolutely continuous def , safe)
fix A assume A ∈ null sets ?MT
with borel have A ∈ sets M AE x in M . x ∈ A −→ h x ≤ 0
by (auto simp add : null sets density iff )

with pos sets.sets into space have AE x in M . x /∈ A
by (elim eventually mono) (auto simp: not le[symmetric])

then have A ∈ null sets M
using 〈A ∈ sets M 〉 by (simp add : AE iff null sets)

with ac show A ∈ null sets N
by (auto simp: absolutely continuous def )

qed (auto simp add : sets eq)
from T .Radon Nikodym finite measure infinite[OF this]
obtain f where f borel : f ∈ borel measurable M density ?MT f = N by auto
with nn borel show ?thesis
by (auto intro!: bexI [of λx . h x ∗ f x ] simp: density density eq)

qed

6.16.3 Uniqueness of densities

lemma finite density unique:
assumes borel : f ∈ borel measurable M g ∈ borel measurable M
assumes pos: AE x in M . 0 ≤ f x AE x in M . 0 ≤ g x
and fin: integralN M f 6= ∞
shows density M f = density M g ←→ (AE x in M . f x = g x )

proof (intro iffI ballI )
fix A assume eq : AE x in M . f x = g x
with borel show density M f = density M g
by (auto intro: density cong)

next
let ?P = λf A.

∫
+ x . f x ∗ indicator A x ∂M

assume density M f = density M g
with borel have eq : ∀A∈sets M . ?P f A = ?P g A
by (simp add : emeasure density [symmetric])

from this[THEN bspec, OF sets.top] fin
have g fin: integralN M g 6= ∞ by (simp cong : nn integral cong)
{ fix f g assume borel : f ∈ borel measurable M g ∈ borel measurable M

and pos: AE x in M . 0 ≤ f x AE x in M . 0 ≤ g x
and g fin: integralN M g 6= ∞ and eq : ∀A∈sets M . ?P f A = ?P g A

let ?N = {x∈space M . g x < f x}
have N : ?N ∈ sets M using borel by simp
have ?P g ?N ≤ integralN M g using pos
by (intro nn integral mono AE ) (auto split : split indicator)

Radon{_}{\kern 0pt}Nikodym.html


1934

then have Pg fin: ?P g ?N 6= ∞ using g fin by (auto simp: top unique)
have ?P (λx . (f x − g x )) ?N = (

∫
+x . f x ∗ indicator ?N x − g x ∗ indicator

?N x ∂M )
by (auto intro!: nn integral cong simp: indicator def )

also have . . . = ?P f ?N − ?P g ?N
proof (rule nn integral diff )
show (λx . f x ∗ indicator ?N x ) ∈ borel measurable M (λx . g x ∗ indicator

?N x ) ∈ borel measurable M
using borel N by auto

show AE x in M . g x ∗ indicator ?N x ≤ f x ∗ indicator ?N x
using pos by (auto split : split indicator)

qed fact
also have . . . = 0
unfolding eq [THEN bspec, OF N ] using Pg fin by auto

finally have AE x in M . f x ≤ g x
using pos borel nn integral PInf AE [OF borel(2 ) g fin]
by (subst (asm) nn integral 0 iff AE )

(auto split : split indicator simp: not less ennreal minus eq 0 ) }
from this[OF borel pos g fin eq ] this[OF borel(2 ,1 ) pos(2 ,1 ) fin] eq
show AE x in M . f x = g x by auto

qed

lemma (in finite measure) density unique finite measure:
assumes borel : f ∈ borel measurable M f ′ ∈ borel measurable M
assumes pos: AE x in M . 0 ≤ f x AE x in M . 0 ≤ f ′ x
assumes f :

∧
A. A ∈ sets M =⇒ (

∫
+x . f x ∗ indicator A x ∂M ) = (

∫
+x . f ′ x

∗ indicator A x ∂M )
(is

∧
A. A ∈ sets M =⇒ ?P f A = ?P f ′ A)

shows AE x in M . f x = f ′ x
proof −
let ?D = λf . density M f
let ?N = λA. ?P f A and ?N ′ = λA. ?P f ′ A
let ?f = λA x . f x ∗ indicator A x and ?f ′ = λA x . f ′ x ∗ indicator A x

have ac: absolutely continuous M (density M f ) sets (density M f ) = sets M
using borel by (auto intro!: absolutely continuousI density)

from split space into finite sets and rest [OF this]
obtain Q :: nat ⇒ ′a set
where Q : disjoint family Q range Q ⊆ sets M
and in Q0 :

∧
A. A ∈ sets M =⇒ A ∩ (

⋃
i . Q i) = {} =⇒ emeasure M A = 0

∧ ?D f A = 0 ∨ 0 < emeasure M A ∧ ?D f A = ∞
and Q fin:

∧
i . ?D f (Q i) 6= ∞ by force

with borel pos have in Q0 :
∧
A. A ∈ sets M =⇒ A ∩ (

⋃
i . Q i) = {} =⇒

emeasure M A = 0 ∧ ?N A = 0 ∨ 0 < emeasure M A ∧ ?N A = ∞
and Q fin:

∧
i . ?N (Q i) 6= ∞ by (auto simp: emeasure density subset eq)

from Q have Q sets[measurable]:
∧
i . Q i ∈ sets M by auto

let ?D = {x∈space M . f x 6= f ′ x}
have ?D ∈ sets M using borel by auto
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have ∗:
∧
i x A.

∧
y ::ennreal . y ∗ indicator (Q i) x ∗ indicator A x = y ∗ indicator

(Q i ∩ A) x
unfolding indicator def by auto

have ∀ i . AE x in M . ?f (Q i) x = ?f ′ (Q i) x using borel Q fin Q pos
by (intro finite density unique[THEN iffD1 ] allI )

(auto intro!: f measure eqI simp: emeasure density ∗ subset eq)
moreover have AE x in M . ?f (space M − (

⋃
i . Q i)) x = ?f ′ (space M −

(
⋃
i . Q i)) x

proof (rule AE I ′)
{ fix f :: ′a ⇒ ennreal assume borel : f ∈ borel measurable M

and eq :
∧
A. A ∈ sets M =⇒ ?N A = (

∫
+x . f x ∗ indicator A x ∂M )

let ?A = λi . (space M − (
⋃
i . Q i)) ∩ {x ∈ space M . f x < (i ::nat)}

have (
⋃
i . ?A i) ∈ null sets M

proof (rule null sets UN )
fix i ::nat have ?A i ∈ sets M
using borel by auto

have ?N (?A i) ≤ (
∫

+x . (i ::ennreal) ∗ indicator (?A i) x ∂M )
unfolding eq [OF 〈?A i ∈ sets M 〉]
by (auto intro!: nn integral mono simp: indicator def )

also have . . . = i ∗ emeasure M (?A i)
using 〈?A i ∈ sets M 〉 by (auto intro!: nn integral cmult indicator)
also have . . . < ∞ using emeasure real [of ?A i ] by (auto simp: en-

nreal mult less top of nat less top)
finally have ?N (?A i) 6= ∞ by simp
then show ?A i ∈ null sets M using in Q0 [OF 〈?A i ∈ sets M 〉] 〈?A i ∈

sets M 〉 by auto
qed
also have (

⋃
i . ?A i) = (space M − (

⋃
i . Q i)) ∩ {x∈space M . f x 6= ∞}

by (auto simp: ennreal Ex less of nat less top[symmetric])
finally have (space M − (

⋃
i . Q i)) ∩ {x∈space M . f x 6= ∞} ∈ null sets M

by simp }
from this[OF borel(1 ) refl ] this[OF borel(2 ) f ]
have (space M − (

⋃
i . Q i)) ∩ {x∈space M . f x 6= ∞} ∈ null sets M (space

M − (
⋃
i . Q i)) ∩ {x∈space M . f ′ x 6= ∞} ∈ null sets M by simp all

then show ((space M − (
⋃
i . Q i)) ∩ {x∈space M . f x 6= ∞}) ∪ ((space M

− (
⋃
i . Q i)) ∩ {x∈space M . f ′ x 6= ∞}) ∈ null sets M by (rule null sets.Un)

show {x ∈ space M . ?f (space M − (
⋃
i . Q i)) x 6= ?f ′ (space M − (

⋃
i . Q

i)) x} ⊆
((space M − (

⋃
i . Q i)) ∩ {x∈space M . f x 6= ∞}) ∪ ((space M − (

⋃
i . Q

i)) ∩ {x∈space M . f ′ x 6= ∞}) by (auto simp: indicator def )
qed
moreover have AE x in M . (?f (space M − (

⋃
i . Q i)) x = ?f ′ (space M −

(
⋃
i . Q i)) x ) −→ (∀ i . ?f (Q i) x = ?f ′ (Q i) x ) −→
?f (space M ) x = ?f ′ (space M ) x
by (auto simp: indicator def )

ultimately have AE x in M . ?f (space M ) x = ?f ′ (space M ) x
unfolding AE all countable[symmetric]
by eventually elim (auto split : if split asm simp: indicator def )

then show AE x in M . f x = f ′ x by auto
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qed

proposition (in sigma finite measure) density unique:
assumes f : f ∈ borel measurable M
assumes f ′: f ′ ∈ borel measurable M
assumes density eq : density M f = density M f ′

shows AE x in M . f x = f ′ x
proof −
obtain h where h borel : h ∈ borel measurable M
and fin: integralN M h 6= ∞ and pos:

∧
x . x ∈ space M =⇒ 0 < h x ∧ h x <

∞
∧
x . 0 ≤ h x

using Ex finite integrable function by auto
then have h nn: AE x in M . 0 ≤ h x by auto
let ?H = density M h
interpret h: finite measure ?H
using fin h borel pos
by (intro finite measureI ) (simp cong : nn integral cong emeasure density add :

fin)
let ?fM = density M f
let ?f ′M = density M f ′

{ fix A assume A ∈ sets M
then have {x ∈ space M . h x ∗ indicator A x 6= 0} = A
using pos(1 ) sets.sets into space by (force simp: indicator def )

then have (
∫

+x . h x ∗ indicator A x ∂M ) = 0 ←→ A ∈ null sets M
using h borel 〈A ∈ sets M 〉 h nn by (subst nn integral 0 iff ) auto }

note h null sets = this
{ fix A assume A ∈ sets M
have (

∫
+x . f x ∗ (h x ∗ indicator A x ) ∂M ) = (

∫
+x . h x ∗ indicator A x

∂?fM )
using 〈A ∈ sets M 〉 h borel h nn f f ′

by (intro nn integral density [symmetric]) auto
also have . . . = (

∫
+x . h x ∗ indicator A x ∂?f ′M )

by (simp all add : density eq)
also have . . . = (

∫
+x . f ′ x ∗ (h x ∗ indicator A x ) ∂M )

using 〈A ∈ sets M 〉 h borel h nn f f ′

by (intro nn integral density) auto
finally have (

∫
+x . h x ∗ (f x ∗ indicator A x ) ∂M ) = (

∫
+x . h x ∗ (f ′ x ∗

indicator A x ) ∂M )
by (simp add : ac simps)

then have (
∫

+x . (f x ∗ indicator A x ) ∂?H ) = (
∫

+x . (f ′ x ∗ indicator A x )
∂?H )

using 〈A ∈ sets M 〉 h borel h nn f f ′

by (subst (asm) (1 2 ) nn integral density [symmetric]) auto }
then have AE x in ?H . f x = f ′ x using h borel h nn f f ′

by (intro h.density unique finite measure absolutely continuous AE [of M ]) auto
with AE space[of M ] pos show AE x in M . f x = f ′ x
unfolding AE density [OF h borel ] by auto

qed
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lemma (in sigma finite measure) density unique iff :
assumes f : f ∈ borel measurable M and f ′: f ′ ∈ borel measurable M
shows density M f = density M f ′←→ (AE x in M . f x = f ′ x )
using density unique[OF assms] density cong [OF f f ′] by auto

lemma sigma finite density unique:
assumes borel : f ∈ borel measurable M g ∈ borel measurable M
and fin: sigma finite measure (density M f )
shows density M f = density M g ←→ (AE x in M . f x = g x )

proof
assume AE x in M . f x = g x with borel show density M f = density M g
by (auto intro: density cong)

next
assume eq : density M f = density M g
interpret f : sigma finite measure density M f by fact
from f .sigma finite incseq guess A . note cover = this

have AE x in M . ∀ i . x ∈ A i −→ f x = g x
unfolding AE all countable

proof
fix i
have density (density M f ) (indicator (A i)) = density (density M g) (indicator

(A i))
unfolding eq ..

moreover have (
∫

+x . f x ∗ indicator (A i) x ∂M ) 6= ∞
using cover(1 ) cover(3 )[of i ] borel by (auto simp: emeasure density subset eq)
ultimately have AE x in M . f x ∗ indicator (A i) x = g x ∗ indicator (A i) x
using borel cover(1 )
by (intro finite density unique[THEN iffD1 ]) (auto simp: density density eq

subset eq)
then show AE x in M . x ∈ A i −→ f x = g x
by auto

qed
with AE space show AE x in M . f x = g x
apply eventually elim
using cover(2 )[symmetric]
apply auto
done

qed

lemma (in sigma finite measure) sigma finite iff density finite ′:
assumes f : f ∈ borel measurable M
shows sigma finite measure (density M f ) ←→ (AE x in M . f x 6= ∞)
(is sigma finite measure ?N ←→ )

proof
assume sigma finite measure ?N
then interpret N : sigma finite measure ?N .
from N .Ex finite integrable function obtain h where
h: h ∈ borel measurable M integralN ?N h 6= ∞ and

Radon{_}{\kern 0pt}Nikodym.html


1938

fin: ∀ x∈space M . 0 < h x ∧ h x < ∞
by auto

have AE x in M . f x ∗ h x 6= ∞
proof (rule AE I ′)
have integralN ?N h = (

∫
+x . f x ∗ h x ∂M )

using f h by (auto intro!: nn integral density)
then have (

∫
+x . f x ∗ h x ∂M ) 6= ∞

using h(2 ) by simp
then show (λx . f x ∗ h x ) −‘ {∞} ∩ space M ∈ null sets M
using f h(1 ) by (auto intro!: nn integral PInf [unfolded infinity ennreal def ]

borel measurable vimage)
qed auto
then show AE x in M . f x 6= ∞
using fin by (auto elim!: AE Ball mp simp: less top ennreal mult less top)

next
assume AE : AE x in M . f x 6= ∞
from sigma finite guess Q . note Q = this
define A where A i =
f −‘ (case i of 0 ⇒ {∞} | Suc n ⇒ {.. ennreal(of nat (Suc n))}) ∩ space M

for i
{ fix i j have A i ∩ Q j ∈ sets M
unfolding A def using f Q
apply (rule tac sets.Int)
by (cases i) (auto intro: measurable sets[OF f (1 )]) }

note A in sets = this

show sigma finite measure ?N
proof (standard , intro exI conjI ballI )
show countable (range (λ(i , j ). A i ∩ Q j ))
by auto

show range (λ(i , j ). A i ∩ Q j ) ⊆ sets (density M f )
using A in sets by auto

next
have

⋃
(range (λ(i , j ). A i ∩ Q j )) = (

⋃
i j . A i ∩ Q j )

by auto
also have . . . = (

⋃
i . A i) ∩ space M using Q by auto

also have (
⋃

i . A i) = space M
proof safe
fix x assume x : x ∈ space M
show x ∈ (

⋃
i . A i)

proof (cases f x rule: ennreal cases)
case top with x show ?thesis unfolding A def by (auto intro: exI [of 0 ])
next
case (real r)
with ennreal Ex less of nat [of f x ] obtain n :: nat where f x < n
by auto

also have n < (Suc n :: ennreal)
by simp

finally show ?thesis
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using x real by (auto simp: A def ennreal of nat eq real of nat intro!:
exI [of Suc n])

qed
qed (auto simp: A def )
finally show

⋃
(range (λ(i , j ). A i ∩ Q j )) = space ?N by simp

next
fix X assume X ∈ range (λ(i , j ). A i ∩ Q j )
then obtain i j where [simp]:X = A i ∩ Q j by auto
have (

∫
+x . f x ∗ indicator (A i ∩ Q j ) x ∂M ) 6= ∞

proof (cases i)
case 0
have AE x in M . f x ∗ indicator (A i ∩ Q j ) x = 0
using AE by (auto simp: A def 〈i = 0 〉)

from nn integral cong AE [OF this] show ?thesis by simp
next
case (Suc n)
then have (

∫
+x . f x ∗ indicator (A i ∩ Q j ) x ∂M ) ≤

(
∫

+x . (Suc n :: ennreal) ∗ indicator (Q j ) x ∂M )
by (auto intro!: nn integral mono simp: indicator def A def ennreal of nat eq real of nat)
also have . . . = Suc n ∗ emeasure M (Q j )
using Q by (auto intro!: nn integral cmult indicator)

also have . . . < ∞
using Q by (auto simp: ennreal mult less top less top of nat less top)

finally show ?thesis by simp
qed
then show emeasure ?N X 6= ∞
using A in sets Q f by (auto simp: emeasure density)

qed
qed

lemma (in sigma finite measure) sigma finite iff density finite:
f ∈ borel measurable M =⇒ sigma finite measure (density M f ) ←→ (AE x in

M . f x 6= ∞)
by (subst sigma finite iff density finite ′)

(auto simp: max def intro!: measurable If )

6.16.4 Radon-Nikodym derivative

definition RN deriv :: ′a measure ⇒ ′a measure ⇒ ′a ⇒ ennreal where
RN deriv M N =
(if ∃ f . f ∈ borel measurable M ∧ density M f = N

then SOME f . f ∈ borel measurable M ∧ density M f = N
else (λ . 0 ))

lemma RN derivI :
assumes f ∈ borel measurable M density M f = N
shows density M (RN deriv M N ) = N

proof −
have ∗: ∃ f . f ∈ borel measurable M ∧ density M f = N
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using assms by auto
then have density M (SOME f . f ∈ borel measurable M ∧ density M f = N )

= N
by (rule someI2 ex ) auto

with ∗ show ?thesis
by (auto simp: RN deriv def )

qed

lemma borel measurable RN deriv [measurable]: RN deriv M N ∈ borel measurable
M
proof −
{ assume ex : ∃ f . f ∈ borel measurable M ∧ density M f = N
have 1 : (SOME f . f ∈ borel measurable M ∧ density M f = N ) ∈ borel measurable

M
using ex by (rule someI2 ex ) auto }

from this show ?thesis
by (auto simp: RN deriv def )

qed

lemma density RN deriv density :
assumes f : f ∈ borel measurable M
shows density M (RN deriv M (density M f )) = density M f
by (rule RN derivI [OF f ]) simp

lemma (in sigma finite measure) density RN deriv :
absolutely continuous M N =⇒ sets N = sets M =⇒ density M (RN deriv M N )

= N
by (metis RN derivI Radon Nikodym)

lemma (in sigma finite measure) RN deriv nn integral :
assumes N : absolutely continuous M N sets N = sets M
and f : f ∈ borel measurable M

shows integralN N f = (
∫

+x . RN deriv M N x ∗ f x ∂M )
proof −
have integralN N f = integralN (density M (RN deriv M N )) f
using N by (simp add : density RN deriv)

also have . . . = (
∫

+x . RN deriv M N x ∗ f x ∂M )
using f by (simp add : nn integral density)

finally show ?thesis by simp
qed

lemma (in sigma finite measure) RN deriv unique:
assumes f : f ∈ borel measurable M
and eq : density M f = N
shows AE x in M . f x = RN deriv M N x
unfolding eq [symmetric]
by (intro density unique iff [THEN iffD1 ] f borel measurable RN deriv

density RN deriv density [symmetric])
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lemma RN deriv unique sigma finite:
assumes f : f ∈ borel measurable M
and eq : density M f = N and fin: sigma finite measure N
shows AE x in M . f x = RN deriv M N x
using fin unfolding eq [symmetric]
by (intro sigma finite density unique[THEN iffD1 ] f borel measurable RN deriv

density RN deriv density [symmetric])

lemma (in sigma finite measure) RN deriv distr :
fixes T :: ′a ⇒ ′b
assumes T : T ∈ measurable M M ′ and T ′: T ′ ∈ measurable M ′ M
and inv : ∀ x∈space M . T ′ (T x ) = x

and ac[simp]: absolutely continuous (distr M M ′ T ) (distr N M ′ T )
and N : sets N = sets M
shows AE x in M . RN deriv (distr M M ′ T ) (distr N M ′ T ) (T x ) = RN deriv

M N x
proof (rule RN deriv unique)
have [simp]: sets N = sets M by fact
note sets eq imp space eq [OF N , simp]
have measurable N [simp]:

∧
M ′. measurable N M ′ = measurable M M ′ by (auto

simp: measurable def )
{ fix A assume A ∈ sets M
with inv T T ′ sets.sets into space[OF this]
have T −‘ T ′ −‘ A ∩ T −‘ space M ′ ∩ space M = A
by (auto simp: measurable def ) }

note eq = this[simp]
{ fix A assume A ∈ sets M
with inv T T ′ sets.sets into space[OF this]
have (T ′ ◦ T ) −‘ A ∩ space M = A
by (auto simp: measurable def ) }

note eq2 = this[simp]
let ?M ′ = distr M M ′ T and ?N ′ = distr N M ′ T
interpret M ′: sigma finite measure ?M ′

proof
from sigma finite countable guess F .. note F = this
show ∃A. countable A ∧ A ⊆ sets (distr M M ′ T ) ∧

⋃
A = space (distr M M ′

T ) ∧ (∀ a∈A. emeasure (distr M M ′ T ) a 6= ∞)
proof (intro exI conjI ballI )
show ∗: (λA. T ′ −‘ A ∩ space ?M ′) ‘ F ⊆ sets ?M ′

using F T ′ by (auto simp: measurable def )
show

⋃
((λA. T ′ −‘ A ∩ space ?M ′)‘F ) = space ?M ′

using F T ′[THEN measurable space] by (auto simp: set eq iff )
next
fix X assume X ∈ (λA. T ′ −‘ A ∩ space ?M ′)‘F
then obtain A where [simp]: X = T ′ −‘ A ∩ space ?M ′ and A ∈ F by

auto
have X ∈ sets M ′ using F T ′ 〈A∈F 〉 by auto
moreover
have Fi : A ∈ sets M using F 〈A∈F 〉 by auto
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ultimately show emeasure ?M ′ X 6= ∞
using F T T ′ 〈A∈F 〉 by (simp add : emeasure distr)

qed (insert F , auto)
qed
have (RN deriv ?M ′ ?N ′) ◦ T ∈ borel measurable M
using T ac by measurable

then show (λx . RN deriv ?M ′ ?N ′ (T x )) ∈ borel measurable M
by (simp add : comp def )

have N = distr N M (T ′ ◦ T )
by (subst measure of of measure[of N , symmetric])
(auto simp add : distr def sets.sigma sets eq intro!: measure of eq sets.space closed)

also have . . . = distr (distr N M ′ T ) M T ′

using T T ′ by (simp add : distr distr)
also have . . . = distr (density (distr M M ′ T ) (RN deriv (distr M M ′ T ) (distr

N M ′ T ))) M T ′

using ac by (simp add : M ′.density RN deriv)
also have . . . = density M (RN deriv (distr M M ′ T ) (distr N M ′ T ) ◦ T )
by (simp add : distr density distr [OF T T ′, OF inv ])

finally show density M (λx . RN deriv (distr M M ′ T ) (distr N M ′ T ) (T x ))
= N

by (simp add : comp def )
qed

lemma (in sigma finite measure) RN deriv finite:
assumes N : sigma finite measure N and ac: absolutely continuous M N sets N

= sets M
shows AE x in M . RN deriv M N x 6= ∞

proof −
interpret N : sigma finite measure N by fact
from N show ?thesis
using sigma finite iff density finite[OF borel measurable RN deriv , of N ] den-

sity RN deriv [OF ac]
by simp

qed

lemma (in sigma finite measure)
assumes N : sigma finite measure N and ac: absolutely continuous M N sets N

= sets M
and f : f ∈ borel measurable M

shows RN deriv integrable: integrable N f ←→
integrable M (λx . enn2real (RN deriv M N x ) ∗ f x ) (is ?integrable)

and RN deriv integral : integralL N f = (
∫
x . enn2real (RN deriv M N x ) ∗ f x

∂M ) (is ?integral)
proof −
note ac(2 )[simp] and sets eq imp space eq [OF ac(2 ), simp]
interpret N : sigma finite measure N by fact

have eq : density M (RN deriv M N ) = density M (λx . enn2real (RN deriv M N
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x ))
proof (rule density cong)
from RN deriv finite[OF assms(1 ,2 ,3 )]
show AE x in M . RN deriv M N x = ennreal (enn2real (RN deriv M N x ))
by eventually elim (auto simp: less top)

qed (insert ac, auto)

show ?integrable
apply (subst density RN deriv [OF ac, symmetric])
unfolding eq
apply (intro integrable real density f AE I2 enn2real nonneg)
apply (insert ac, auto)
done

show ?integral
apply (subst density RN deriv [OF ac, symmetric])
unfolding eq
apply (intro integral real density f AE I2 enn2real nonneg)
apply (insert ac, auto)
done

qed

proposition (in sigma finite measure) real RN deriv :
assumes finite measure N
assumes ac: absolutely continuous M N sets N = sets M
obtains D where D ∈ borel measurable M
and AE x in M . RN deriv M N x = ennreal (D x )
and AE x in N . 0 < D x
and

∧
x . 0 ≤ D x

proof
interpret N : finite measure N by fact

note RN = borel measurable RN deriv density RN deriv [OF ac]

let ?RN = λt . {x ∈ space M . RN deriv M N x = t}

show (λx . enn2real (RN deriv M N x )) ∈ borel measurable M
using RN by auto

have N (?RN ∞) = (
∫

+ x . RN deriv M N x ∗ indicator (?RN ∞) x ∂M )
using RN (1 ) by (subst RN (2 )[symmetric]) (auto simp: emeasure density)

also have . . . = (
∫

+ x . ∞ ∗ indicator (?RN ∞) x ∂M )
by (intro nn integral cong) (auto simp: indicator def )

also have . . . = ∞ ∗ emeasure M (?RN ∞)
using RN by (intro nn integral cmult indicator) auto

finally have eq : N (?RN ∞) = ∞ ∗ emeasure M (?RN ∞) .
moreover
have emeasure M (?RN ∞) = 0
proof (rule ccontr)
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assume emeasure M {x ∈ space M . RN deriv M N x = ∞} 6= 0
then have 0 < emeasure M {x ∈ space M . RN deriv M N x = ∞}
by (auto simp: zero less iff neq zero)

with eq have N (?RN ∞) = ∞ by (simp add : ennreal mult eq top iff )
with N .emeasure finite[of ?RN ∞] RN show False by auto

qed
ultimately have AE x in M . RN deriv M N x < ∞
using RN by (intro AE iff measurable[THEN iffD2 ]) (auto simp: less top[symmetric])
then show AE x in M . RN deriv M N x = ennreal (enn2real (RN deriv M N

x ))
by auto

then have eq : AE x in N . RN deriv M N x = ennreal (enn2real (RN deriv M
N x ))

using ac absolutely continuous AE by auto

have N (?RN 0 ) = (
∫

+ x . RN deriv M N x ∗ indicator (?RN 0 ) x ∂M )
by (subst RN (2 )[symmetric]) (auto simp: emeasure density)

also have . . . = (
∫

+ x . 0 ∂M )
by (intro nn integral cong) (auto simp: indicator def )

finally have AE x in N . RN deriv M N x 6= 0
using RN by (subst AE iff measurable[OF refl ]) (auto simp: ac cong : sets eq imp space eq)
with eq show AE x in N . 0 < enn2real (RN deriv M N x )
by (auto simp: enn2real positive iff less top[symmetric] zero less iff neq zero)

qed (rule enn2real nonneg)

lemma (in sigma finite measure) RN deriv singleton:
assumes ac: absolutely continuous M N sets N = sets M
and x : {x} ∈ sets M
shows N {x} = RN deriv M N x ∗ emeasure M {x}

proof −
from 〈{x} ∈ sets M 〉

have density M (RN deriv M N ) {x} = (
∫

+w . RN deriv M N x ∗ indicator {x}
w ∂M )

by (auto simp: indicator def emeasure density intro!: nn integral cong)
with x density RN deriv [OF ac] show ?thesis
by (auto simp: max def )

qed

end

theory Set Integral
imports Radon Nikodym

begin

definition set borel measurable M A f ≡ (λx . indicator A x ∗R f x ) ∈ borel measurable
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M

definition set integrable M A f ≡ integrable M (λx . indicator A x ∗R f x )

definition set lebesgue integral M A f ≡ lebesgue integral M (λx . indicator A x
∗R f x )

syntax
ascii set lebesgue integral :: pttrn ⇒ ′a set ⇒ ′a measure ⇒ real ⇒ real
((4LINT ( ):( )/|( )./ ) [0 ,60 ,110 ,61 ] 60 )

translations
LINT x :A|M . f == CONST set lebesgue integral M A (λx . f )

syntax
lebesgue borel integral :: pttrn ⇒ real ⇒ real
((2LBINT ./ ) [0 ,60 ] 60 )

syntax
set lebesgue borel integral :: pttrn ⇒ real set ⇒ real ⇒ real
((3LBINT : ./ ) [0 ,60 ,61 ] 60 )

lemma set integrable cong :
assumes M = M ′ A = A ′ ∧x . x ∈ A =⇒ f x = f ′ x
shows set integrable M A f = set integrable M ′ A ′ f ′

proof −
have (λx . indicator A x ∗R f x ) = (λx . indicator A ′ x ∗R f ′ x )
using assms by (auto simp: indicator def )

thus ?thesis by (simp add : set integrable def assms)
qed

lemma set borel measurable sets:
fixes f :: ⇒ ::real normed vector
assumes set borel measurable M X f B ∈ sets borel X ∈ sets M
shows f −‘ B ∩ X ∈ sets M

proof −
have f ∈ borel measurable (restrict space M X )
using assms unfolding set borel measurable def by (subst borel measurable restrict space iff )

auto
then have f −‘ B ∩ space (restrict space M X ) ∈ sets (restrict space M X )
by (rule measurable sets) fact

with 〈X ∈ sets M 〉 show ?thesis
by (subst (asm) sets restrict space iff ) (auto simp: space restrict space)
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qed

lemma set lebesgue integral zero [simp]: set lebesgue integral M A (λx . 0 ) = 0
by (auto simp: set lebesgue integral def )

lemma set lebesgue integral cong :
assumes A ∈ sets M and ∀ x . x ∈ A −→ f x = g x
shows (LINT x :A|M . f x ) = (LINT x :A|M . g x )
unfolding set lebesgue integral def
using assms
by (metis indicator simps(2 ) real vector .scale zero left)

lemma set lebesgue integral cong AE :
assumes [measurable]: A ∈ sets M f ∈ borel measurable M g ∈ borel measurable

M
assumes AE x ∈ A in M . f x = g x
shows LINT x :A|M . f x = LINT x :A|M . g x

proof−
have AE x in M . indicator A x ∗R f x = indicator A x ∗R g x
using assms by auto

thus ?thesis
unfolding set lebesgue integral def by (intro integral cong AE ) auto

qed

lemma set integrable cong AE :
f ∈ borel measurable M =⇒ g ∈ borel measurable M =⇒
AE x ∈ A in M . f x = g x =⇒ A ∈ sets M =⇒
set integrable M A f = set integrable M A g

unfolding set integrable def
by (rule integrable cong AE ) auto

lemma set integrable subset :
fixes M A B and f :: ⇒ :: {banach, second countable topology}
assumes set integrable M A f B ∈ sets M B ⊆ A
shows set integrable M B f

proof −
have set integrable M B (λx . indicator A x ∗R f x )
using assms integrable mult indicator set integrable def by blast

with 〈B ⊆ A〉 show ?thesis
unfolding set integrable def
by (simp add : indicator inter arith[symmetric] Int absorb2 )

qed

lemma set integrable restrict space:
fixes f :: ′a ⇒ ′b::{banach, second countable topology}
assumes f : set integrable M S f and T : T ∈ sets (restrict space M S )
shows set integrable M T f

proof −
obtain T ′ where T eq : T = S ∩ T ′ and T ′ ∈ sets M
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using T by (auto simp: sets restrict space)
have 〈integrable M (λx . indicator T ′ x ∗R (indicator S x ∗R f x ))〉

using 〈T ′ ∈ sets M 〉 f integrable mult indicator set integrable def by blast
then show ?thesis
unfolding set integrable def
unfolding T eq indicator inter arith by (simp add : ac simps)

qed

lemma set integral scaleR right [simp]: LINT t :A|M . a ∗R f t = a ∗R (LINT
t :A|M . f t)
unfolding set lebesgue integral def
by (subst integral scaleR right [symmetric]) (auto intro!: Bochner Integration.integral cong)

lemma set integral mult right [simp]:
fixes a :: ′a::{real normed field , second countable topology}
shows LINT t :A|M . a ∗ f t = a ∗ (LINT t :A|M . f t)
unfolding set lebesgue integral def
by (subst integral mult right zero[symmetric]) auto

lemma set integral mult left [simp]:
fixes a :: ′a::{real normed field , second countable topology}
shows LINT t :A|M . f t ∗ a = (LINT t :A|M . f t) ∗ a
unfolding set lebesgue integral def
by (subst integral mult left zero[symmetric]) auto

lemma set integral divide zero [simp]:
fixes a :: ′a::{real normed field , field , second countable topology}
shows LINT t :A|M . f t / a = (LINT t :A|M . f t) / a
unfolding set lebesgue integral def
by (subst integral divide zero[symmetric], intro Bochner Integration.integral cong)

(auto split : split indicator)

lemma set integrable scaleR right [simp, intro]:
shows (a 6= 0 =⇒ set integrable M A f ) =⇒ set integrable M A (λt . a ∗R f t)
unfolding set integrable def
unfolding scaleR left commute by (rule integrable scaleR right)

lemma set integrable scaleR left [simp, intro]:
fixes a :: :: {banach, second countable topology}
shows (a 6= 0 =⇒ set integrable M A f ) =⇒ set integrable M A (λt . f t ∗R a)
unfolding set integrable def
using integrable scaleR left [of a M λx . indicator A x ∗R f x ] by simp

lemma set integrable mult right [simp, intro]:
fixes a :: ′a::{real normed field , second countable topology}
shows (a 6= 0 =⇒ set integrable M A f ) =⇒ set integrable M A (λt . a ∗ f t)
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unfolding set integrable def
using integrable mult right [of a M λx . indicator A x ∗R f x ] by simp

lemma set integrable mult right iff [simp]:
fixes a :: ′a::{real normed field , second countable topology}
assumes a 6= 0
shows set integrable M A (λt . a ∗ f t) ←→ set integrable M A f

proof
assume set integrable M A (λt . a ∗ f t)
then have set integrable M A (λt . 1/a ∗ (a ∗ f t))
using set integrable mult right by blast

then show set integrable M A f
using assms by auto

qed auto

lemma set integrable mult left [simp, intro]:
fixes a :: ′a::{real normed field , second countable topology}
shows (a 6= 0 =⇒ set integrable M A f ) =⇒ set integrable M A (λt . f t ∗ a)
unfolding set integrable def
using integrable mult left [of a M λx . indicator A x ∗R f x ] by simp

lemma set integrable mult left iff [simp]:
fixes a :: ′a::{real normed field , second countable topology}
assumes a 6= 0
shows set integrable M A (λt . f t ∗ a) ←→ set integrable M A f
using assms by (subst set integrable mult right iff [symmetric]) (auto simp:

mult .commute)

lemma set integrable divide [simp, intro]:
fixes a :: ′a::{real normed field , field , second countable topology}
assumes a 6= 0 =⇒ set integrable M A f
shows set integrable M A (λt . f t / a)

proof −
have integrable M (λx . indicator A x ∗R f x / a)
using assms unfolding set integrable def by (rule integrable divide zero)

also have (λx . indicator A x ∗R f x / a) = (λx . indicator A x ∗R (f x / a))
by (auto split : split indicator)

finally show ?thesis
unfolding set integrable def .

qed

lemma set integrable mult divide iff [simp]:
fixes a :: ′a::{real normed field , second countable topology}
assumes a 6= 0
shows set integrable M A (λt . f t / a) ←→ set integrable M A f
by (simp add : divide inverse assms)

lemma set integral add [simp, intro]:
fixes f g :: ⇒ :: {banach, second countable topology}
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assumes set integrable M A f set integrable M A g
shows set integrable M A (λx . f x + g x )
and LINT x :A|M . f x + g x = (LINT x :A|M . f x ) + (LINT x :A|M . g x )

using assms unfolding set integrable def set lebesgue integral def by (simp all
add : scaleR add right)

lemma set integral diff [simp, intro]:
assumes set integrable M A f set integrable M A g
shows set integrable M A (λx . f x − g x ) and LINT x :A|M . f x − g x =
(LINT x :A|M . f x ) − (LINT x :A|M . g x )

using assms unfolding set integrable def set lebesgue integral def by (simp all
add : scaleR diff right)

lemma set integral uminus: set integrable M A f =⇒ LINT x :A|M . − f x = −
(LINT x :A|M . f x )
unfolding set integrable def set lebesgue integral def
by (subst integral minus[symmetric]) simp all

lemma set integral complex of real :
LINT x :A|M . complex of real (f x ) = of real (LINT x :A|M . f x )
unfolding set lebesgue integral def
by (subst integral complex of real [symmetric])

(auto intro!: Bochner Integration.integral cong split : split indicator)

lemma set integral mono:
fixes f g :: ⇒ real
assumes set integrable M A f set integrable M A g∧

x . x ∈ A =⇒ f x ≤ g x
shows (LINT x :A|M . f x ) ≤ (LINT x :A|M . g x )
using assms unfolding set integrable def set lebesgue integral def
by (auto intro: integral mono split : split indicator)

lemma set integral mono AE :
fixes f g :: ⇒ real
assumes set integrable M A f set integrable M A g
AE x ∈ A in M . f x ≤ g x

shows (LINT x :A|M . f x ) ≤ (LINT x :A|M . g x )
using assms unfolding set integrable def set lebesgue integral def
by (auto intro: integral mono AE split : split indicator)

lemma set integrable abs: set integrable M A f =⇒ set integrable M A (λx . |f x |
:: real)
using integrable abs[of M λx . f x ∗ indicator A x ]unfolding set integrable def

by (simp add : abs mult ac simps)

lemma set integrable abs iff :
fixes f :: ⇒ real
shows set borel measurable M A f =⇒ set integrable M A (λx . |f x |) = set integrable

M A f
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unfolding set integrable def set borel measurable def
by (subst (2 ) integrable abs iff [symmetric]) (simp all add : abs mult ac simps)

lemma set integrable abs iff ′:
fixes f :: ⇒ real
shows f ∈ borel measurable M =⇒ A ∈ sets M =⇒
set integrable M A (λx . |f x |) = set integrable M A f

by (simp add : set borel measurable def set integrable abs iff )

lemma set integrable discrete difference:
fixes f :: ′a ⇒ ′b::{banach, second countable topology}
assumes countable X
assumes diff : (A − B) ∪ (B − A) ⊆ X
assumes

∧
x . x ∈ X =⇒ emeasure M {x} = 0

∧
x . x ∈ X =⇒ {x} ∈ sets M

shows set integrable M A f ←→ set integrable M B f
unfolding set integrable def

proof (rule integrable discrete difference[where X=X ])
show

∧
x . x ∈ space M =⇒ x /∈ X =⇒ indicator A x ∗R f x = indicator B x ∗R

f x
using diff by (auto split : split indicator)

qed fact+

lemma set integral discrete difference:
fixes f :: ′a ⇒ ′b::{banach, second countable topology}
assumes countable X
assumes diff : (A − B) ∪ (B − A) ⊆ X
assumes

∧
x . x ∈ X =⇒ emeasure M {x} = 0

∧
x . x ∈ X =⇒ {x} ∈ sets M

shows set lebesgue integral M A f = set lebesgue integral M B f
unfolding set lebesgue integral def

proof (rule integral discrete difference[where X=X ])
show

∧
x . x ∈ space M =⇒ x /∈ X =⇒ indicator A x ∗R f x = indicator B x ∗R

f x
using diff by (auto split : split indicator)

qed fact+

lemma set integrable Un:
fixes f g :: ⇒ :: {banach, second countable topology}
assumes f A: set integrable M A f and f B : set integrable M B f
and [measurable]: A ∈ sets M B ∈ sets M

shows set integrable M (A ∪ B) f
proof −
have set integrable M (A − B) f
using f A by (rule set integrable subset) auto

with f B have integrable M (λx . indicator (A − B) x ∗R f x + indicator B x
∗R f x )

unfolding set integrable def using integrable add by blast
then show ?thesis
unfolding set integrable def
by (rule integrable cong [THEN iffD1 , rotated 2 ]) (auto split : split indicator)
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qed

lemma set integrable empty [simp]: set integrable M {} f
by (auto simp: set integrable def )

lemma set integrable UN :
fixes f :: ⇒ :: {banach, second countable topology}
assumes finite I

∧
i . i∈I =⇒ set integrable M (A i) f∧

i . i∈I =⇒ A i ∈ sets M
shows set integrable M (

⋃
i∈I . A i) f

using assms
by (induct I ) (auto simp: set integrable Un sets.finite UN )

lemma set integral Un:
fixes f :: ⇒ :: {banach, second countable topology}
assumes A ∩ B = {}
and set integrable M A f
and set integrable M B f

shows LINT x :A∪B |M . f x = (LINT x :A|M . f x ) + (LINT x :B |M . f x )
using assms
unfolding set integrable def set lebesgue integral def
by (auto simp add : indicator union arith indicator inter arith[symmetric] scaleR add left)

lemma set integral cong set :
fixes f :: ⇒ :: {banach, second countable topology}
assumes set borel measurable M A f set borel measurable M B f
and ae: AE x in M . x ∈ A ←→ x ∈ B

shows LINT x :B |M . f x = LINT x :A|M . f x
unfolding set lebesgue integral def

proof (rule integral cong AE )
show AE x in M . indicator B x ∗R f x = indicator A x ∗R f x
using ae by (auto simp: subset eq split : split indicator)

qed (use assms in 〈auto simp: set borel measurable def 〉)

proposition set borel measurable subset :
fixes f :: ⇒ :: {banach, second countable topology}
assumes [measurable]: set borel measurable M A f B ∈ sets M and B ⊆ A
shows set borel measurable M B f

proof−
have set borel measurable M B (λx . indicator A x ∗R f x )
using assms unfolding set borel measurable def
using borel measurable indicator borel measurable scaleR by blast

moreover have (λx . indicator B x ∗R indicator A x ∗R f x ) = (λx . indicator B
x ∗R f x )

using 〈B ⊆ A〉 by (auto simp: fun eq iff split : split indicator)
ultimately show ?thesis
unfolding set borel measurable def by simp

qed
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lemma set integral Un AE :
fixes f :: ⇒ :: {banach, second countable topology}
assumes ae: AE x in M . ¬ (x ∈ A ∧ x ∈ B) and [measurable]: A ∈ sets M B
∈ sets M
and set integrable M A f
and set integrable M B f
shows LINT x :A∪B |M . f x = (LINT x :A|M . f x ) + (LINT x :B |M . f x )

proof −
have f : set integrable M (A ∪ B) f
by (intro set integrable Un assms)

then have f ′: set borel measurable M (A ∪ B) f
using integrable iff bounded set borel measurable def set integrable def by blast

have LINT x :A∪B |M . f x = LINT x :(A − A ∩ B) ∪ (B − A ∩ B)|M . f x
proof (rule set integral cong set)
show AE x in M . (x ∈ A − A ∩ B ∪ (B − A ∩ B)) = (x ∈ A ∪ B)
using ae by auto

show set borel measurable M (A − A ∩ B ∪ (B − A ∩ B)) f
using f ′ by (rule set borel measurable subset) auto

qed fact
also have . . . = (LINT x :(A − A ∩ B)|M . f x ) + (LINT x :(B − A ∩ B)|M . f

x )
by (auto intro!: set integral Un set integrable subset [OF f ])

also have . . . = (LINT x :A|M . f x ) + (LINT x :B |M . f x )
using ae
by (intro arg cong2 [where f=(+)] set integral cong set)

(auto intro!: set borel measurable subset [OF f ′])
finally show ?thesis .

qed

lemma set integral finite Union:
fixes f :: ⇒ :: {banach, second countable topology}
assumes finite I disjoint family on A I
and

∧
i . i ∈ I =⇒ set integrable M (A i) f

∧
i . i ∈ I =⇒ A i ∈ sets M

shows (LINT x :(
⋃
i∈I . A i)|M . f x ) = (

∑
i∈I . LINT x :A i |M . f x )

using assms
proof induction
case (insert x F )
then have A x ∩

⋃
(A ‘ F ) = {}

by (meson disjoint family on insert)
with insert show ?case
by (simp add : set integral Un set integrable Un set integrable UN disjoint family on insert)

qed (simp add : set lebesgue integral def )

lemma pos integrable to top:
fixes l ::real
assumes

∧
i . A i ∈ sets M mono A

assumes nneg :
∧
x i . x ∈ A i =⇒ 0 ≤ f x

and intgbl :
∧
i ::nat . set integrable M (A i) f
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and lim: (λi ::nat . LINT x :A i |M . f x ) −−−−→ l
shows set integrable M (

⋃
i . A i) f

unfolding set integrable def
apply (rule integrable monotone convergence[where f = λi ::nat . λx . indicator

(A i) x ∗R f x and x = l ])
apply (rule intgbl [unfolded set integrable def ])
prefer 3 apply (rule lim [unfolded set lebesgue integral def ])
apply (rule AE I2 )
using 〈mono A〉 apply (auto simp: mono def nneg split : split indicator) []

proof (rule AE I2 )
{ fix x assume x ∈ space M
show (λi . indicator (A i) x ∗R f x ) −−−−→ indicator (

⋃
i . A i) x ∗R f x

proof cases
assume ∃ i . x ∈ A i
then guess i ..
then have ∗: eventually (λi . x ∈ A i) sequentially
using 〈x ∈ A i 〉 〈mono A〉 by (auto simp: eventually sequentially mono def )

show ?thesis
apply (intro tendsto eventually)
using ∗
apply eventually elim
apply (auto split : split indicator)
done

qed auto }
then show (λx . indicator (

⋃
i . A i) x ∗R f x ) ∈ borel measurable M

apply (rule borel measurable LIMSEQ real)
apply assumption
using intgbl set integrable def by blast

qed

lemma lebesgue integral countable add :
fixes f :: ⇒ ′a :: {banach, second countable topology}
assumes meas[intro]:

∧
i ::nat . A i ∈ sets M

and disj :
∧
i j . i 6= j =⇒ A i ∩ A j = {}

and intgbl : set integrable M (
⋃
i . A i) f

shows LINT x :(
⋃
i . A i)|M . f x = (

∑
i . (LINT x :(A i)|M . f x ))

unfolding set lebesgue integral def
proof (subst integral suminf [symmetric])
show int A: integrable M (λx . indicat real (A i) x ∗R f x ) for i
using intgbl unfolding set integrable def [symmetric]
by (rule set integrable subset) auto

{ fix x assume x ∈ space M
have (λi . indicator (A i) x ∗R f x ) sums (indicator (

⋃
i . A i) x ∗R f x )

by (intro sums scaleR left indicator sums) fact }
note sums = this

have norm f :
∧
i . set integrable M (A i) (λx . norm (f x ))

using int A[THEN integrable norm] unfolding set integrable def by auto
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show AE x in M . summable (λi . norm (indicator (A i) x ∗R f x ))
using disj by (intro AE I2 ) (auto intro!: summable mult2 sums summable[OF

indicator sums])

show summable (λi . LINT x |M . norm (indicator (A i) x ∗R f x ))
proof (rule summableI nonneg bounded)
fix n
show 0 ≤ LINT x |M . norm (indicator (A n) x ∗R f x )
using norm f by (auto intro!: integral nonneg AE )

have (
∑

i<n. LINT x |M . norm (indicator (A i) x ∗R f x )) = (
∑

i<n. LINT
x :A i |M . norm (f x ))

by (simp add : abs mult set lebesgue integral def )
also have . . . = set lebesgue integral M (

⋃
i<n. A i) (λx . norm (f x ))

using norm f
by (subst set integral finite Union) (auto simp: disjoint family on def disj )

also have . . . ≤ set lebesgue integral M (
⋃
i . A i) (λx . norm (f x ))

using intgbl [unfolded set integrable def , THEN integrable norm] norm f
unfolding set lebesgue integral def set integrable def

apply (intro integral mono set integrable UN [of {..<n}, unfolded set integrable def ])
apply (auto split : split indicator)

done
finally show (

∑
i<n. LINT x |M . norm (indicator (A i) x ∗R f x )) ≤

set lebesgue integral M (
⋃

i . A i) (λx . norm (f x ))
by simp

qed
show LINT x |M . indicator (

⋃
(A ‘ UNIV )) x ∗R f x = LINT x |M . (

∑
i .

indicator (A i) x ∗R f x )
apply (rule Bochner Integration.integral cong [OF refl ])
apply (subst suminf scaleR left [OF sums summable[OF indicator sums, OF

disj ], symmetric])
using sums unique[OF indicator sums[OF disj ]]
apply auto
done

qed

lemma set integral cont up:
fixes f :: ⇒ ′a :: {banach, second countable topology}
assumes [measurable]:

∧
i . A i ∈ sets M and A: incseq A

and intgbl : set integrable M (
⋃

i . A i) f
shows (λi . LINT x :(A i)|M . f x ) −−−−→ LINT x :(

⋃
i . A i)|M . f x

unfolding set lebesgue integral def
proof (intro integral dominated convergence[where w=λx . indicator (

⋃
i . A i) x

∗R norm (f x )])
have int A:

∧
i . set integrable M (A i) f

using intgbl by (rule set integrable subset) auto
show

∧
i . (λx . indicator (A i) x ∗R f x ) ∈ borel measurable M

using int A integrable iff bounded set integrable def by blast
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show (λx . indicator (
⋃
(A ‘ UNIV )) x ∗R f x ) ∈ borel measurable M

using integrable iff bounded intgbl set integrable def by blast
show integrable M (λx . indicator (

⋃
i . A i) x ∗R norm (f x ))

using int A intgbl integrable norm unfolding set integrable def
by fastforce

{ fix x i assume x ∈ A i
with A have (λxa. indicator (A xa) x ::real) −−−−→ 1 ←→ (λxa. 1 ::real)

−−−−→ 1
by (intro filterlim cong refl)

(fastforce simp: eventually sequentially incseq def subset eq intro!: exI [of
i ]) }
then show AE x in M . (λi . indicator (A i) x ∗R f x ) −−−−→ indicator (

⋃
i . A

i) x ∗R f x
by (intro AE I2 tendsto intros) (auto split : split indicator)

qed (auto split : split indicator)

lemma set integral cont down:
fixes f :: ⇒ ′a :: {banach, second countable topology}
assumes [measurable]:

∧
i . A i ∈ sets M and A: decseq A

and int0 : set integrable M (A 0 ) f
shows (λi ::nat . LINT x :(A i)|M . f x ) −−−−→ LINT x :(

⋂
i . A i)|M . f x

unfolding set lebesgue integral def
proof (rule integral dominated convergence)
have int A:

∧
i . set integrable M (A i) f

using int0 by (rule set integrable subset) (insert A, auto simp: decseq def )
have integrable M (λc. norm (indicat real (A 0 ) c ∗R f c))
by (metis (no types) int0 integrable norm set integrable def )

then show integrable M (λx . indicator (A 0 ) x ∗R norm (f x ))
by force

have set integrable M (
⋂
i . A i) f

using int0 by (rule set integrable subset) (insert A, auto simp: decseq def )
with int A show (λx . indicat real (

⋂
(A ‘ UNIV )) x ∗R f x ) ∈ borel measurable

M ∧
i . (λx . indicat real (A i) x ∗R f x ) ∈ borel measurable M

by (auto simp: set integrable def )
show

∧
i . AE x in M . norm (indicator (A i) x ∗R f x ) ≤ indicator (A 0 ) x ∗R

norm (f x )
using A by (auto split : split indicator simp: decseq def )

{ fix x i assume x ∈ space M x /∈ A i
with A have (λi . indicator (A i) x ::real) −−−−→ 0 ←→ (λi . 0 ::real) −−−−→ 0
by (intro filterlim cong refl)

(auto split : split indicator simp: eventually sequentially decseq def intro!:
exI [of i ]) }
then show AE x in M . (λi . indicator (A i) x ∗R f x ) −−−−→ indicator (

⋂
i . A

i) x ∗R f x
by (intro AE I2 tendsto intros) (auto split : split indicator)

qed
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lemma set integral at point :
fixes a :: real
assumes set integrable M {a} f
and [simp]: {a} ∈ sets M and (emeasure M ) {a} 6= ∞
shows (LINT x :{a} | M . f x ) = f a ∗ measure M {a}

proof−
have set lebesgue integral M {a} f = set lebesgue integral M {a} (%x . f a)
by (intro set lebesgue integral cong) simp all

then show ?thesis using assms
unfolding set lebesgue integral def by simp

qed

abbreviation complex integrable :: ′a measure ⇒ ( ′a ⇒ complex ) ⇒ bool where
complex integrable M f ≡ integrable M f

abbreviation complex lebesgue integral :: ′a measure ⇒ ( ′a ⇒ complex ) ⇒ com-
plex (integralC) where
integralC M f == integralL M f

syntax
complex lebesgue integral :: pttrn ⇒ complex ⇒ ′a measure ⇒ complex

(
∫

C . ∂ [60 ,61 ] 110 )

translations∫
Cx . f ∂M == CONST complex lebesgue integral M (λx . f )

syntax
ascii complex lebesgue integral :: pttrn ⇒ ′a measure ⇒ real ⇒ real
((3CLINT | . ) [0 ,110 ,60 ] 60 )

translations
CLINT x |M . f == CONST complex lebesgue integral M (λx . f )

lemma complex integrable cnj [simp]:
complex integrable M (λx . cnj (f x )) ←→ complex integrable M f

proof
assume complex integrable M (λx . cnj (f x ))
then have complex integrable M (λx . cnj (cnj (f x )))
by (rule integrable cnj )

then show complex integrable M f
by simp

qed simp

lemma complex of real integrable eq :
complex integrable M (λx . complex of real (f x )) ←→ integrable M f

proof
assume complex integrable M (λx . complex of real (f x ))
then have integrable M (λx . Re (complex of real (f x )))
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by (rule integrable Re)
then show integrable M f
by simp

qed simp

abbreviation complex set integrable :: ′a measure ⇒ ′a set ⇒ ( ′a ⇒ complex ) ⇒
bool where
complex set integrable M A f ≡ set integrable M A f

abbreviation complex set lebesgue integral :: ′a measure ⇒ ′a set ⇒ ( ′a ⇒ com-
plex ) ⇒ complex where
complex set lebesgue integral M A f ≡ set lebesgue integral M A f

syntax
ascii complex set lebesgue integral :: pttrn ⇒ ′a set ⇒ ′a measure ⇒ real ⇒ real
((4CLINT : | . ) [0 ,60 ,110 ,61 ] 60 )

translations
CLINT x :A|M . f == CONST complex set lebesgue integral M A (λx . f )

lemma set measurable continuous on ivl :
assumes continuous on {a..b} (f :: real ⇒ real)
shows set borel measurable borel {a..b} f
unfolding set borel measurable def
by (rule borel measurable continuous on indicator [OF assms]) simp

This notation is from Sbastien Gouzel: His use is not directly in line with
the notations in this file, they are more in line with sum, and more readable
he thinks.

abbreviation set nn integral M A f ≡ nn integral M (λx . f x ∗ indicator A x )

syntax
set nn integral :: pttrn => ′a set => ′a measure => ereal => ereal
((
∫

+(( )∈( )./ )/∂ ) [0 ,60 ,110 ,61 ] 60 )

set lebesgue integral :: pttrn => ′a set => ′a measure => ereal => ereal
((
∫
(( )∈( )./ )/∂ ) [0 ,60 ,110 ,61 ] 60 )

translations∫
+x ∈ A. f ∂M == CONST set nn integral M A (λx . f )∫
x ∈ A. f ∂M == CONST set lebesgue integral M A (λx . f )

lemma nn integral disjoint pair :
assumes [measurable]: f ∈ borel measurable M

B ∈ sets M C ∈ sets M
B ∩ C = {}

shows (
∫

+x ∈ B ∪ C . f x ∂M ) = (
∫

+x ∈ B . f x ∂M ) + (
∫

+x ∈ C . f x ∂M )
proof −
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have mes:
∧
D . D ∈ sets M =⇒ (λx . f x ∗ indicator D x ) ∈ borel measurable M

by simp
have pos:

∧
D . AE x in M . f x ∗ indicator D x ≥ 0 using assms(2 ) by auto

have
∧
x . f x ∗ indicator (B ∪ C ) x = f x ∗ indicator B x + f x ∗ indicator C

x using assms(4 )
by (auto split : split indicator)

then have (
∫

+x . f x ∗ indicator (B ∪ C ) x ∂M ) = (
∫

+x . f x ∗ indicator B x
+ f x ∗ indicator C x ∂M )

by simp
also have ... = (

∫
+x . f x ∗ indicator B x ∂M ) + (

∫
+x . f x ∗ indicator C x

∂M )
by (rule nn integral add) (auto simp add : assms mes pos)

finally show ?thesis by simp
qed

lemma nn integral disjoint pair countspace:
assumes B ∩ C = {}
shows (

∫
+x ∈ B ∪ C . f x ∂count space UNIV ) = (

∫
+x ∈ B . f x ∂count space

UNIV ) + (
∫

+x ∈ C . f x ∂count space UNIV )
by (rule nn integral disjoint pair) (simp all add : assms)

lemma nn integral null delta:
assumes A ∈ sets M B ∈ sets M

(A − B) ∪ (B − A) ∈ null sets M
shows (

∫
+x ∈ A. f x ∂M ) = (

∫
+x ∈ B . f x ∂M )

proof (rule nn integral cong AE , auto simp add : indicator def )
have ∗: AE a in M . a /∈ (A − B) ∪ (B − A)
using assms(3 ) AE not in by blast

then show AE a in M . a /∈ A −→ a ∈ B −→ f a = 0
by auto

show AE x∈A in M . x /∈ B −→ f x = 0
using ∗ by auto

qed

proposition nn integral disjoint family :
assumes [measurable]: f ∈ borel measurable M

∧
(n::nat). B n ∈ sets M

and disjoint family B
shows (

∫
+x ∈ (

⋃
n. B n). f x ∂M ) = (

∑
n. (

∫
+x ∈ B n. f x ∂M ))

proof −
have (

∫
+ x . (

∑
n. f x ∗ indicator (B n) x ) ∂M ) = (

∑
n. (

∫
+ x . f x ∗ indicator

(B n) x ∂M ))
by (rule nn integral suminf ) simp

moreover have (
∑

n. f x ∗ indicator (B n) x ) = f x ∗ indicator (
⋃
n. B n) x

for x
proof (cases)
assume x ∈ (

⋃
n. B n)

then obtain n where x ∈ B n by blast
have a: finite {n} by simp
have

∧
i . i 6= n =⇒ x /∈ B i using 〈x ∈ B n〉 assms(3 ) disjoint family on def
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by (metis IntI UNIV I empty iff )
then have

∧
i . i /∈ {n} =⇒ indicator (B i) x = (0 ::ennreal) using indicator def

by simp
then have b:

∧
i . i /∈ {n} =⇒ f x ∗ indicator (B i) x = (0 ::ennreal) by simp

define h where h = (λi . f x ∗ indicator (B i) x )
then have

∧
i . i /∈ {n} =⇒ h i = 0 using b by simp

then have (
∑

i . h i) = (
∑

i∈{n}. h i)
by (metis sums unique[OF sums finite[OF a]])

then have (
∑

i . h i) = h n by simp
then have (

∑
n. f x ∗ indicator (B n) x ) = f x ∗ indicator (B n) x using

h def by simp
then have (

∑
n. f x ∗ indicator (B n) x ) = f x using 〈x ∈ B n〉 indicator def

by simp
then show ?thesis using 〈x ∈ (

⋃
n. B n)〉 by auto

next
assume x /∈ (

⋃
n. B n)

then have
∧
n. f x ∗ indicator (B n) x = 0 by simp

have (
∑

n. f x ∗ indicator (B n) x ) = 0
by (simp add : 〈

∧
n. f x ∗ indicator (B n) x = 0 〉)

then show ?thesis using 〈x /∈ (
⋃
n. B n)〉 by auto

qed
ultimately show ?thesis by simp

qed

lemma nn set integral add :
assumes [measurable]: f ∈ borel measurable M g ∈ borel measurable M

A ∈ sets M
shows (

∫
+x ∈ A. (f x + g x ) ∂M ) = (

∫
+x ∈ A. f x ∂M ) + (

∫
+x ∈ A. g x

∂M )
proof −
have (

∫
+x ∈ A. (f x + g x ) ∂M ) = (

∫
+x . (f x ∗ indicator A x + g x ∗ indicator

A x ) ∂M )
by (auto simp add : indicator def intro!: nn integral cong)

also have ... = (
∫

+x . f x ∗ indicator A x ∂M ) + (
∫

+x . g x ∗ indicator A x
∂M )

apply (rule nn integral add) using assms(1 ) assms(2 ) by auto
finally show ?thesis by simp

qed

lemma nn set integral cong :
assumes AE x in M . f x = g x
shows (

∫
+x ∈ A. f x ∂M ) = (

∫
+x ∈ A. g x ∂M )

apply (rule nn integral cong AE ) using assms(1 ) by auto

lemma nn set integral set mono:
A ⊆ B =⇒ (

∫
+ x ∈ A. f x ∂M ) ≤ (

∫
+ x ∈ B . f x ∂M )

by (auto intro!: nn integral mono split : split indicator)
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lemma nn set integral mono:
assumes [measurable]: f ∈ borel measurable M g ∈ borel measurable M

A ∈ sets M
and AE x∈A in M . f x ≤ g x

shows (
∫

+x ∈ A. f x ∂M ) ≤ (
∫

+x ∈ A. g x ∂M )
by (auto intro!: nn integral mono AE split : split indicator simp: assms)

lemma nn set integral space [simp]:
shows (

∫
+ x ∈ space M . f x ∂M ) = (

∫
+x . f x ∂M )

by (metis (mono tags, lifting) indicator simps(1 ) mult .right neutral nn integral cong)

lemma nn integral count compose inj :
assumes inj on g A
shows (

∫
+x ∈ A. f (g x ) ∂count space UNIV ) = (

∫
+y ∈ g‘A. f y ∂count space

UNIV )
proof −
have (

∫
+x ∈ A. f (g x ) ∂count space UNIV ) = (

∫
+x . f (g x ) ∂count space A)

by (auto simp add : nn integral count space indicator [symmetric])
also have ... = (

∫
+y . f y ∂count space (g‘A))

by (simp add : assms nn integral bij count space inj on imp bij betw)
also have ... = (

∫
+y ∈ g‘A. f y ∂count space UNIV )

by (auto simp add : nn integral count space indicator [symmetric])
finally show ?thesis by simp

qed

lemma nn integral count compose bij :
assumes bij betw g A B
shows (

∫
+x ∈ A. f (g x ) ∂count space UNIV ) = (

∫
+y ∈ B . f y ∂count space

UNIV )
proof −
have inj on g A using assms bij betw def by auto
then have (

∫
+x ∈ A. f (g x ) ∂count space UNIV ) = (

∫
+y ∈ g‘A. f y ∂count space

UNIV )
by (rule nn integral count compose inj )

then show ?thesis using assms by (simp add : bij betw def )
qed

lemma set integral null delta:
fixes f :: ⇒ :: {banach, second countable topology}
assumes [measurable]: integrable M f A ∈ sets M B ∈ sets M
and null : (A − B) ∪ (B − A) ∈ null sets M

shows (
∫
x ∈ A. f x ∂M ) = (

∫
x ∈ B . f x ∂M )

proof (rule set integral cong set)
have ∗: AE a in M . a /∈ (A − B) ∪ (B − A)
using null AE not in by blast

then show AE x in M . (x ∈ B) = (x ∈ A)
by auto

qed (simp all add : set borel measurable def )
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lemma set integral space:
assumes integrable M f
shows (

∫
x ∈ space M . f x ∂M ) = (

∫
x . f x ∂M )

by (metis (no types, lifting) indicator simps(1 ) integral cong scaleR one set lebesgue integral def )

lemma null if pos func has zero nn int :
fixes f :: ′a ⇒ ennreal
assumes [measurable]: f ∈ borel measurable M A ∈ sets M
and AE x∈A in M . f x > 0 (

∫
+x∈A. f x ∂M ) = 0

shows A ∈ null sets M
proof −
have AE x in M . f x ∗ indicator A x = 0
by (subst nn integral 0 iff AE [symmetric], auto simp add : assms(4 ))

then have AE x∈A in M . False using assms(3 ) by auto
then show A ∈ null sets M using assms(2 ) by (simp add : AE iff null sets)

qed

lemma null if pos func has zero int :
assumes [measurable]: integrable M f A ∈ sets M

and AE x∈A in M . f x > 0 (
∫
x∈A. f x ∂M ) = (0 ::real)

shows A ∈ null sets M
proof −
have AE x in M . indicator A x ∗ f x = 0
apply (subst integral nonneg eq 0 iff AE [symmetric])
using assms integrable mult indicator [OF 〈A ∈ sets M 〉 assms(1 )]
by (auto simp: set lebesgue integral def )

then have AE x∈A in M . f x = 0 by auto
then have AE x∈A in M . False using assms(3 ) by auto
then show A ∈ null sets M using assms(2 ) by (simp add : AE iff null sets)

qed

The next lemma is a variant of density unique. Note that it uses the notation
for nonnegative set integrals introduced earlier.

lemma (in sigma finite measure) density unique2 :
assumes [measurable]: f ∈ borel measurable M f ′ ∈ borel measurable M
assumes density eq :

∧
A. A ∈ sets M =⇒ (

∫
+ x ∈ A. f x ∂M ) = (

∫
+ x ∈ A.

f ′ x ∂M )
shows AE x in M . f x = f ′ x

proof (rule density unique)
show density M f = density M f ′

by (intro measure eqI ) (auto simp: emeasure density intro!: density eq)
qed (auto simp add : assms)

The next lemma implies the same statement for Banach-space valued func-
tions using Hahn-Banach theorem and linear forms. Since they are not yet
easily available, I only formulate it for real-valued functions.

lemma density unique real :
fixes f f ′:: ⇒ real
assumes M [measurable]: integrable M f integrable M f ′
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assumes density eq :
∧
A. A ∈ sets M =⇒ (

∫
x ∈ A. f x ∂M ) = (

∫
x ∈ A. f ′ x

∂M )
shows AE x in M . f x = f ′ x

proof −
define A where A = {x ∈ space M . f x < f ′ x}
then have [measurable]: A ∈ sets M by simp
have (

∫
x ∈ A. (f ′ x − f x ) ∂M ) = (

∫
x ∈ A. f ′ x ∂M ) − (

∫
x ∈ A. f x ∂M )

using 〈A ∈ sets M 〉 M integrable mult indicator set integrable def by blast
then have (

∫
x ∈ A. (f ′ x − f x ) ∂M ) = 0 using assms(3 ) by simp

then have A ∈ null sets M
using A def null if pos func has zero int [where ?f = λx . f ′ x − f x and ?A

= A] assms by auto
then have AE x in M . x /∈ A by (simp add : AE not in)
then have ∗: AE x in M . f ′ x ≤ f x unfolding A def by auto

define B where B = {x ∈ space M . f ′ x < f x}
then have [measurable]: B ∈ sets M by simp
have (

∫
x ∈ B . (f x − f ′ x ) ∂M ) = (

∫
x ∈ B . f x ∂M ) − (

∫
x ∈ B . f ′ x ∂M )

using 〈B ∈ sets M 〉 M integrable mult indicator set integrable def by blast
then have (

∫
x ∈ B . (f x − f ′ x ) ∂M ) = 0 using assms(3 ) by simp

then have B ∈ null sets M
using B def null if pos func has zero int [where ?f = λx . f x − f ′ x and ?A

= B ] assms by auto
then have AE x in M . x /∈ B by (simp add : AE not in)
then have AE x in M . f ′ x ≥ f x unfolding B def by auto
then show ?thesis using ∗ by auto

qed

The next lemma shows that L1 convergence of a sequence of functions fol-
lows from almost everywhere convergence and the weaker condition of the
convergence of the integrated norms (or even just the nontrivial inequality
about them). Useful in a lot of contexts! This statement (or its variations)
are known as Scheffe lemma.

The formalization is more painful as one should jump back and forth between
reals and ereals and justify all the time positivity or integrability (thankfully,
measurability is handled more or less automatically).

proposition Scheffe lemma1 :
assumes

∧
n. integrable M (F n) integrable M f

AE x in M . (λn. F n x ) −−−−→ f x
limsup (λn.

∫
+ x . norm(F n x ) ∂M ) ≤ (

∫
+ x . norm(f x ) ∂M )

shows (λn.
∫

+ x . norm(F n x − f x ) ∂M ) −−−−→ 0
proof −
have [measurable]:

∧
n. F n ∈ borel measurable M f ∈ borel measurable M

using assms(1 ) assms(2 ) by simp all
define G where G = (λn x . norm(f x ) + norm(F n x ) − norm(F n x − f x ))
have [measurable]:

∧
n. G n ∈ borel measurable M unfolding G def by simp

have G pos[simp]:
∧
n x . G n x ≥ 0

unfolding G def by (metis ge iff diff ge 0 norm minus commute norm triangle ineq4 )
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have finint : (
∫

+ x . norm(f x ) ∂M ) 6= ∞
using has bochner integral implies finite norm[OF has bochner integral integrable[OF

〈integrable M f 〉]]
by simp

then have fin2 : 2 ∗ (
∫

+ x . norm(f x ) ∂M ) 6= ∞
by (auto simp: ennreal mult eq top iff )

{
fix x assume ∗: (λn. F n x ) −−−−→ f x
then have (λn. norm(F n x )) −−−−→ norm(f x ) using tendsto norm by blast
moreover have (λn. norm(F n x − f x )) −−−−→ 0 using ∗ Lim null tend-

sto norm zero iff by fastforce
ultimately have a: (λn. norm(F n x ) − norm(F n x − f x )) −−−−→ norm(f

x ) using tendsto diff by fastforce
have (λn. norm(f x ) + (norm(F n x ) − norm(F n x − f x ))) −−−−→ norm(f

x ) + norm(f x )
by (rule tendsto add) (auto simp add : a)

moreover have
∧
n. G n x = norm(f x ) + (norm(F n x ) − norm(F n x − f

x )) unfolding G def by simp
ultimately have (λn. G n x ) −−−−→ 2 ∗ norm(f x ) by simp
then have (λn. ennreal(G n x )) −−−−→ ennreal(2 ∗ norm(f x )) by simp
then have liminf (λn. ennreal(G n x )) = ennreal(2 ∗ norm(f x ))
using sequentially bot tendsto iff Liminf eq Limsup by blast

}
then have AE x in M . liminf (λn. ennreal(G n x )) = ennreal(2 ∗ norm(f x ))

using assms(3 ) by auto
then have (

∫
+ x . liminf (λn. ennreal (G n x )) ∂M ) = (

∫
+ x . 2 ∗ en-

nreal(norm(f x )) ∂M )
by (simp add : nn integral cong AE ennreal mult)

also have ... = 2 ∗ (
∫

+ x . norm(f x ) ∂M ) by (rule nn integral cmult) auto
finally have int liminf : (

∫
+ x . liminf (λn. ennreal (G n x )) ∂M ) = 2 ∗ (

∫
+

x . norm(f x ) ∂M )
by simp

have (
∫

+x . ennreal(norm(f x )) + ennreal(norm(F n x )) ∂M ) = (
∫

+x . norm(f
x ) ∂M ) + (

∫
+x . norm(F n x ) ∂M ) for n

by (rule nn integral add) (auto simp add : assms)
then have limsup (λn. (

∫
+x . ennreal(norm(f x )) + ennreal(norm(F n x )) ∂M ))

=
limsup (λn. (

∫
+x . norm(f x ) ∂M ) + (

∫
+x . norm(F n x ) ∂M ))

by simp
also have ... = (

∫
+x . norm(f x ) ∂M ) + limsup (λn. (

∫
+x . norm(F n x ) ∂M ))

by (rule Limsup const add , auto simp add : finint)
also have ... ≤ (

∫
+x . norm(f x ) ∂M ) + (

∫
+x . norm(f x ) ∂M )

using assms(4 ) by (simp add : add left mono)
also have ... = 2 ∗ (

∫
+x . norm(f x ) ∂M )

unfolding one add one[symmetric] distrib right by simp
ultimately have a: limsup (λn. (

∫
+x . ennreal(norm(f x )) + ennreal(norm(F

n x )) ∂M )) ≤
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2 ∗ (
∫

+x . norm(f x ) ∂M ) by simp

have le: ennreal (norm (F n x − f x )) ≤ ennreal (norm (f x )) + ennreal (norm
(F n x )) for n x

by (simp add : norm minus commute norm triangle ineq4 ennreal minus flip:
ennreal plus)
then have le2 : (

∫
+ x . ennreal (norm (F n x − f x )) ∂M ) ≤ (

∫
+ x . ennreal

(norm (f x )) + ennreal (norm (F n x )) ∂M ) for n
by (rule nn integral mono)

have 2 ∗ (
∫

+ x . norm(f x ) ∂M ) = (
∫

+ x . liminf (λn. ennreal (G n x )) ∂M )
by (simp add : int liminf )

also have . . . ≤ liminf (λn. (
∫

+x . G n x ∂M ))
by (rule nn integral liminf ) auto

also have liminf (λn. (
∫

+x . G n x ∂M )) =
liminf (λn. (

∫
+x . ennreal(norm(f x )) + ennreal(norm(F n x )) ∂M ) − (

∫
+x .

norm(F n x − f x ) ∂M ))
proof (intro arg cong [where f=liminf ] ext)
fix n
have

∧
x . ennreal(G n x ) = ennreal(norm(f x )) + ennreal(norm(F n x )) −

ennreal(norm(F n x − f x ))
unfolding G def by (simp add : ennreal minus flip: ennreal plus)
moreover have (

∫
+x . ennreal(norm(f x )) + ennreal(norm(F n x )) − en-

nreal(norm(F n x − f x )) ∂M )
= (

∫
+x . ennreal(norm(f x )) + ennreal(norm(F n x )) ∂M ) − (

∫
+x .

norm(F n x − f x ) ∂M )
proof (rule nn integral diff )
from le show AE x in M . ennreal (norm (F n x − f x )) ≤ ennreal (norm (f

x )) + ennreal (norm (F n x ))
by simp

from le2 have (
∫

+x . ennreal (norm (F n x − f x )) ∂M ) <∞ using assms(1 )
assms(2 )

by (metis has bochner integral implies finite norm integrable.simps Bochner Integration.integrable diff )
then show (

∫
+x . ennreal (norm (F n x − f x )) ∂M ) 6= ∞ by simp

qed (auto simp add : assms)
ultimately show (

∫
+x . G n x ∂M ) = (

∫
+x . ennreal(norm(f x )) + en-

nreal(norm(F n x )) ∂M ) − (
∫

+x . norm(F n x − f x ) ∂M )
by simp

qed
finally have 2 ∗ (

∫
+ x . norm(f x ) ∂M ) + limsup (λn. (

∫
+x . norm(F n x − f

x ) ∂M )) ≤
liminf (λn. (

∫
+x . ennreal(norm(f x )) + ennreal(norm(F n x )) ∂M ) − (

∫
+x .

norm(F n x − f x ) ∂M )) +
limsup (λn. (

∫
+x . norm(F n x − f x ) ∂M ))

by (intro add mono) auto
also have . . . ≤ (limsup (λn.

∫
+x . ennreal(norm(f x )) + ennreal(norm(F n x ))

∂M ) − limsup (λn.
∫

+x . norm (F n x − f x ) ∂M )) +
limsup (λn. (

∫
+x . norm(F n x − f x ) ∂M ))

by (intro add mono liminf minus ennreal le2 ) auto
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also have . . . = limsup (λn. (
∫

+x . ennreal(norm(f x )) + ennreal(norm(F n x ))
∂M ))

by (intro diff add cancel ennreal Limsup mono always eventually allI le2 )
also have . . . ≤ 2 ∗ (

∫
+x . norm(f x ) ∂M )

by fact
finally have limsup (λn. (

∫
+x . norm(F n x − f x ) ∂M )) = 0

using fin2 by simp
then show ?thesis
by (rule tendsto 0 if Limsup eq 0 ennreal)

qed

proposition Scheffe lemma2 :
fixes F ::nat ⇒ ′a ⇒ ′b::{banach, second countable topology}
assumes

∧
n::nat . F n ∈ borel measurable M integrable M f

AE x in M . (λn. F n x ) −−−−→ f x∧
n. (

∫
+ x . norm(F n x ) ∂M ) ≤ (

∫
+ x . norm(f x ) ∂M )

shows (λn.
∫

+ x . norm(F n x − f x ) ∂M ) −−−−→ 0
proof (rule Scheffe lemma1 )
fix n::nat
have (

∫
+ x . norm(f x ) ∂M ) <∞ using assms(2 ) by (metis has bochner integral implies finite norm

integrable.cases)
then have (

∫
+ x . norm(F n x ) ∂M ) < ∞ using assms(4 )[of n] by auto

then show integrable M (F n) by (subst integrable iff bounded , simp add : assms(1 )[of
n])
qed (auto simp add : assms Limsup bounded)

lemma tendsto set lebesgue integral at right :
fixes a b :: real and f :: real ⇒ ′a :: {banach,second countable topology}
assumes a < b and sets:

∧
a ′. a ′ ∈ {a<..b} =⇒ {a ′..b} ∈ sets M

and set integrable M {a<..b} f
shows ((λa ′. set lebesgue integral M {a ′..b} f ) −−−→

set lebesgue integral M {a<..b} f ) (at right a)
proof (rule tendsto at right sequentially [OF assms(1 )], goal cases)
case (1 S )
have eq : (

⋃
n. {S n..b}) = {a<..b}

proof safe
fix x n assume x ∈ {S n..b}
with 1 (1 ,2 )[of n] show x ∈ {a<..b} by auto

next
fix x assume x ∈ {a<..b}
with order tendstoD [OF 〈S −−−−→ a〉, of x ] show x ∈ (

⋃
n. {S n..b})

by (force simp: eventually at top linorder dest : less imp le)
qed
have (λn. set lebesgue integral M {S n..b} f ) −−−−→ set lebesgue integral M

(
⋃
n. {S n..b}) f
by (rule set integral cont up) (insert assms 1 , auto simp: eq incseq def decseq def

less imp le)
with eq show ?case by simp

qed
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The next lemmas relate convergence of integrals over an interval to improper
integrals.

lemma tendsto set lebesgue integral at left :
fixes a b :: real and f :: real ⇒ ′a :: {banach,second countable topology}
assumes a < b and sets:

∧
b ′. b ′ ∈ {a..<b} =⇒ {a..b ′} ∈ sets M

and set integrable M {a..<b} f
shows ((λb ′. set lebesgue integral M {a..b ′} f ) −−−→

set lebesgue integral M {a..<b} f ) (at left b)
proof (rule tendsto at left sequentially [OF assms(1 )], goal cases)
case (1 S )
have eq : (

⋃
n. {a..S n}) = {a..<b}

proof safe
fix x n assume x ∈ {a..S n}
with 1 (1 ,2 )[of n] show x ∈ {a..<b} by auto

next
fix x assume x ∈ {a..<b}
with order tendstoD [OF 〈S −−−−→ b〉, of x ] show x ∈ (

⋃
n. {a..S n})

by (force simp: eventually at top linorder dest : less imp le)
qed
have (λn. set lebesgue integral M {a..S n} f ) −−−−→ set lebesgue integral M

(
⋃
n. {a..S n}) f
by (rule set integral cont up) (insert assms 1 , auto simp: eq incseq def decseq def

less imp le)
with eq show ?case by simp

qed

proposition tendsto set lebesgue integral at top:
fixes f :: real ⇒ ′a::{banach, second countable topology}
assumes sets:

∧
b. b ≥ a =⇒ {a..b} ∈ sets M

and int : set integrable M {a..} f
shows ((λb. set lebesgue integral M {a..b} f ) −−−→ set lebesgue integral M {a..}

f ) at top
proof (rule tendsto at topI sequentially)
fix X :: nat ⇒ real assume filterlim X at top sequentially
show (λn. set lebesgue integral M {a..X n} f ) −−−−→ set lebesgue integral M
{a..} f

unfolding set lebesgue integral def
proof (rule integral dominated convergence)
show integrable M (λx . indicat real {a..} x ∗R norm (f x ))
using integrable norm[OF int [unfolded set integrable def ]] by simp

show AE x in M . (λn. indicator {a..X n} x ∗R f x ) −−−−→ indicat real {a..}
x ∗R f x

proof
fix x
from 〈filterlim X at top sequentially〉

have eventually (λn. x ≤ X n) sequentially
unfolding filterlim at top ge[where c=x ] by auto

then show (λn. indicator {a..X n} x ∗R f x ) −−−−→ indicat real {a..} x ∗R
f x
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by (intro tendsto eventually) (auto split : split indicator elim!: eventu-
ally mono)

qed
fix n show AE x in M . norm (indicator {a..X n} x ∗R f x ) ≤

indicator {a..} x ∗R norm (f x )
by (auto split : split indicator)

next
from int show (λx . indicat real {a..} x ∗R f x ) ∈ borel measurable M
by (simp add : set integrable def )

next
fix n :: nat
from sets have {a..X n} ∈ sets M by (cases X n ≥ a) auto
with int have set integrable M {a..X n} f
by (rule set integrable subset) auto

thus (λx . indicat real {a..X n} x ∗R f x ) ∈ borel measurable M
by (simp add : set integrable def )

qed
qed

proposition tendsto set lebesgue integral at bot :
fixes f :: real ⇒ ′a::{banach, second countable topology}
assumes sets:

∧
a. a ≤ b =⇒ {a..b} ∈ sets M

and int : set integrable M {..b} f
shows ((λa. set lebesgue integral M {a..b} f ) −−−→ set lebesgue integral M

{..b} f ) at bot
proof (rule tendsto at botI sequentially)
fix X :: nat ⇒ real assume filterlim X at bot sequentially
show (λn. set lebesgue integral M {X n..b} f ) −−−−→ set lebesgue integral M
{..b} f

unfolding set lebesgue integral def
proof (rule integral dominated convergence)
show integrable M (λx . indicat real {..b} x ∗R norm (f x ))
using integrable norm[OF int [unfolded set integrable def ]] by simp

show AE x in M . (λn. indicator {X n..b} x ∗R f x ) −−−−→ indicat real {..b}
x ∗R f x

proof
fix x
from 〈filterlim X at bot sequentially〉

have eventually (λn. x ≥ X n) sequentially
unfolding filterlim at bot le[where c=x ] by auto

then show (λn. indicator {X n..b} x ∗R f x ) −−−−→ indicat real {..b} x ∗R
f x

by (intro tendsto eventually) (auto split : split indicator elim!: eventu-
ally mono)

qed
fix n show AE x in M . norm (indicator {X n..b} x ∗R f x ) ≤

indicator {..b} x ∗R norm (f x )
by (auto split : split indicator)

next
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from int show (λx . indicat real {..b} x ∗R f x ) ∈ borel measurable M
by (simp add : set integrable def )

next
fix n :: nat
from sets have {X n..b} ∈ sets M by (cases X n ≤ b) auto
with int have set integrable M {X n..b} f
by (rule set integrable subset) auto

thus (λx . indicat real {X n..b} x ∗R f x ) ∈ borel measurable M
by (simp add : set integrable def )

qed
qed

end

6.17 Non-Denumerability of the Continuum

theory Continuum Not Denumerable
imports
Complex Main
HOL−Library .Countable Set

begin

6.17.1 Abstract

The following document presents a proof that the Continuum is uncountable.
It is formalised in the Isabelle/Isar theorem proving system.

Theorem: The Continuum IR is not denumerable. In other words, there
does not exist a function f : IN ⇒ IR such that f is surjective.

Outline: An elegant informal proof of this result uses Cantor’s Diagonali-
sation argument. The proof presented here is not this one.

First we formalise some properties of closed intervals, then we prove the
Nested Interval Property. This property relies on the completeness of the
Real numbers and is the foundation for our argument. Informally it states
that an intersection of countable closed intervals (where each successive
interval is a subset of the last) is non-empty. We then assume a surjective
function f : IN ⇒ IR exists and find a real x such that x is not in the range of
f by generating a sequence of closed intervals then using the Nested Interval
Property.

theorem real non denum: @ f :: nat ⇒ real . surj f
proof
assume ∃ f ::nat ⇒ real . surj f
then obtain f :: nat ⇒ real where surj f ..

First we construct a sequence of nested intervals, ignoring range f.

have a < b =⇒ ∃ ka kb. ka < kb ∧ {ka..kb} ⊆ {a..b} ∧ c /∈ {ka..kb} for a b c
:: real
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by (auto simp add : not le cong : conj cong)
(metis dense le less linear less linear less trans order refl)

then obtain i j where ij :
a < b =⇒ i a b c < j a b c
a < b =⇒ {i a b c .. j a b c} ⊆ {a .. b}
a < b =⇒ c /∈ {i a b c .. j a b c}

for a b c :: real
by metis

define ivl where ivl =
rec nat (f 0 + 1 , f 0 + 2 ) (λn x . (i (fst x ) (snd x ) (f n), j (fst x ) (snd x ) (f

n)))
define I where I n = {fst (ivl n) .. snd (ivl n)} for n

have ivl [simp]:
ivl 0 = (f 0 + 1 , f 0 + 2 )∧

n. ivl (Suc n) = (i (fst (ivl n)) (snd (ivl n)) (f n), j (fst (ivl n)) (snd (ivl
n)) (f n))

unfolding ivl def by simp all

This is a decreasing sequence of non-empty intervals.

have less: fst (ivl n) < snd (ivl n) for n
by (induct n) (auto intro!: ij )

have decseq I
unfolding I def decseq Suc iff ivl fst conv snd conv
by (intro ij allI less)

Now we apply the finite intersection property of compact sets.

have I 0 ∩ (
⋂
i . I i) 6= {}

proof (rule compact imp fip image)
fix S :: nat set
assume fin: finite S
have {} ⊂ I (Max (insert 0 S ))
unfolding I def using less[of Max (insert 0 S )] by auto

also have I (Max (insert 0 S )) ⊆ (
⋂
i∈insert 0 S . I i)

using fin decseqD [OF 〈decseq I 〉, of Max (insert 0 S )]
by (auto simp: Max ge iff )

also have (
⋂
i∈insert 0 S . I i) = I 0 ∩ (

⋂
i∈S . I i)

by auto
finally show I 0 ∩ (

⋂
i∈S . I i) 6= {}

by auto
qed (auto simp: I def )
then obtain x where x ∈ I n for n
by blast

moreover from 〈surj f 〉 obtain j where x = f j
by blast

ultimately have f j ∈ I (Suc j )
by blast
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with ij (3 )[OF less] show False
unfolding I def ivl fst conv snd conv by auto

qed

lemma uncountable UNIV real : uncountable (UNIV :: real set)
using real non denum unfolding uncountable def by auto

lemma bij betw open intervals:
fixes a b c d :: real
assumes a < b c < d
shows ∃ f . bij betw f {a<..<b} {c<..<d}

proof −
define f where f a b c d x = (d − c)/(b − a) ∗ (x − a) + c for a b c d x ::

real
{
fix a b c d x :: real
assume ∗: a < b c < d a < x x < b
moreover from ∗ have (d − c) ∗ (x − a) < (d − c) ∗ (b − a)
by (intro mult strict left mono) simp all

moreover from ∗ have 0 < (d − c) ∗ (x − a) / (b − a)
by simp

ultimately have f a b c d x < d c < f a b c d x
by (simp all add : f def field simps)

}
with assms have bij betw (f a b c d) {a<..<b} {c<..<d}
by (intro bij betw byWitness[where f ′=f c d a b]) (auto simp: f def )

then show ?thesis by auto
qed

lemma bij betw tan: bij betw tan {−pi/2<..<pi/2} UNIV
using arctan ubound by (intro bij betw byWitness[where f ′=arctan]) (auto simp:

arctan arctan tan)

lemma uncountable open interval : uncountable {a<..<b} ←→ a < b for a b ::
real
proof
show a < b if uncountable {a<..<b}
using uncountable def that by force

show uncountable {a<..<b} if a < b
proof −
obtain f where bij betw f {a <..< b} {−pi/2<..<pi/2}
using bij betw open intervals[OF 〈a < b〉, of −pi/2 pi/2 ] by auto

then show ?thesis
by (metis bij betw tan uncountable bij betw uncountable UNIV real)

qed
qed

lemma uncountable half open interval 1 : uncountable {a..<b} ←→ a < b for a b
:: real
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apply auto
using atLeastLessThan empty iff
apply fastforce
using uncountable open interval [of a b]
apply (metis countable Un iff ivl disj un singleton(3 ))
done

lemma uncountable half open interval 2 : uncountable {a<..b} ←→ a < b for a b
:: real
apply auto
using atLeastLessThan empty iff
apply fastforce
using uncountable open interval [of a b]
apply (metis countable Un iff ivl disj un singleton(4 ))
done

lemma real interval avoid countable set :
fixes a b :: real and A :: real set
assumes a < b and countable A
shows ∃ x∈{a<..<b}. x /∈ A

proof −
from 〈countable A〉 have ∗: countable (A ∩ {a<..<b})
by auto

with 〈a < b〉 have ¬ countable {a<..<b}
by (simp add : uncountable open interval)

with ∗ have A ∩ {a<..<b} 6= {a<..<b}
by auto

then have A ∩ {a<..<b} ⊂ {a<..<b}
by (intro psubsetI ) auto

then have ∃ x . x ∈ {a<..<b} − A ∩ {a<..<b}
by (rule psubset imp ex mem)

then show ?thesis
by auto

qed

lemma uncountable closed interval : uncountable {a..b} ←→ a < b for a b :: real
apply (rule iffI )
apply (metis atLeastAtMost singleton atLeastatMost empty countable finite fi-

nite.emptyI finite insert linorder neqE linordered idom)
using real interval avoid countable set by fastforce

lemma open minus countable:
fixes S A :: real set
assumes countable A S 6= {} open S
shows ∃ x∈S . x /∈ A

proof −
obtain x where x ∈ S
using 〈S 6= {}〉 by auto

then obtain e where 0 < e {y . dist y x < e} ⊆ S
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using 〈open S 〉 by (auto simp: open dist subset eq)
moreover have {y . dist y x < e} = {x − e <..< x + e}
by (auto simp: dist real def )

ultimately have uncountable (S − A)
using uncountable open interval [of x − e x + e] 〈countable A〉

by (intro uncountable minus countable) (auto dest : countable subset)
then show ?thesis
unfolding uncountable def by auto

qed

end

6.18 Homotopy of Maps

theory Homotopy
imports Path Connected Continuum Not Denumerable Product Topology

begin

definition homotopic with
where
homotopic with P X Y f g ≡
(∃ h. continuous map (prod topology (top of set {0 ..1 ::real}) X ) Y h ∧

(∀ x . h(0 , x ) = f x ) ∧
(∀ x . h(1 , x ) = g x ) ∧
(∀ t ∈ {0 ..1}. P(λx . h(t ,x ))))

p, q are functions X → Y, and the property P restricts all intermediate
maps. We often just want to require that P fixes some subset, but to include
the case of a loop homotopy, it is convenient to have a general property P.

abbreviation homotopic with canon ::
[( ′a::topological space ⇒ ′b::topological space) ⇒ bool , ′a set , ′b set , ′a ⇒ ′b, ′a
⇒ ′b] ⇒ bool
where
homotopic with canon P S T p q ≡ homotopic with P (top of set S ) (top of set
T ) p q

lemma split 01 : {0 ..1 ::real} = {0 ..1/2} ∪ {1/2 ..1}
by force

lemma split 01 prod : {0 ..1 ::real} × X = ({0 ..1/2} × X ) ∪ ({1/2 ..1} × X )
by force

lemma image Pair const : (λx . (x , c)) ‘ A = A × {c}
by auto

lemma fst o paired [simp]: fst ◦ (λ(x ,y). (f x y , g x y)) = (λ(x ,y). f x y)
by auto
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lemma snd o paired [simp]: snd ◦ (λ(x ,y). (f x y , g x y)) = (λ(x ,y). g x y)
by auto

lemma continuous on o Pair : [[continuous on (T × X ) h; t ∈ T ]] =⇒ continu-
ous on X (h ◦ Pair t)
by (fast intro: continuous intros elim!: continuous on subset)

lemma continuous map o Pair :
assumes h: continuous map (prod topology X Y ) Z h and t : t ∈ topspace X
shows continuous map Y Z (h ◦ Pair t)
by (intro continuous map compose [OF h] continuous intros; simp add : t)

6.18.1 Trivial properties

We often want to just localize the ending function equality or whatever.

proposition homotopic with:
assumes

∧
h k . (

∧
x . x ∈ topspace X =⇒ h x = k x ) =⇒ (P h ←→ P k)

shows homotopic with P X Y p q ←→
(∃ h. continuous map (prod topology (subtopology euclideanreal {0 ..1}) X )

Y h ∧
(∀ x ∈ topspace X . h(0 ,x ) = p x ) ∧
(∀ x ∈ topspace X . h(1 ,x ) = q x ) ∧
(∀ t ∈ {0 ..1}. P(λx . h(t , x ))))

unfolding homotopic with def
apply (rule iffI , blast , clarify)
apply (rule tac x=λ(u,v). if v ∈ topspace X then h(u,v) else if u = 0 then p v

else q v in exI )
apply auto
using continuous map eq apply fastforce
apply (drule tac x=t in bspec, force)
apply (subst assms; simp)
done

lemma homotopic with mono:
assumes hom: homotopic with P X Y f g
and Q :

∧
h. [[continuous map X Y h; P h]] =⇒ Q h

shows homotopic with Q X Y f g
using hom unfolding homotopic with def
by (force simp: o def dest : continuous map o Pair intro: Q)

lemma homotopic with imp continuous maps:
assumes homotopic with P X Y f g
shows continuous map X Y f ∧ continuous map X Y g

proof −
obtain h :: real × ′a ⇒ ′b
where conth: continuous map (prod topology (top of set {0 ..1}) X ) Y h
and h: ∀ x . h (0 , x ) = f x ∀ x . h (1 , x ) = g x

using assms by (auto simp: homotopic with def )
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have ∗: t ∈ {0 ..1} =⇒ continuous map X Y (h ◦ (λx . (t ,x ))) for t
by (rule continuous map compose [OF conth]) (simp add : o def continu-

ous map pairwise)
show ?thesis
using h ∗[of 0 ] ∗[of 1 ] by (simp add : continuous map eq)

qed

lemma homotopic with imp continuous:
assumes homotopic with canon P X Y f g
shows continuous on X f ∧ continuous on X g

by (meson assms continuous map subtopology eu homotopic with imp continuous maps)

lemma homotopic with imp property :
assumes homotopic with P X Y f g
shows P f ∧ P g

proof
obtain h where h:

∧
x . h(0 , x ) = f x

∧
x . h(1 , x ) = g x and P :

∧
t . t ∈

{0 ..1 ::real} =⇒ P(λx . h(t ,x ))
using assms by (force simp: homotopic with def )

show P f P g
using P [of 0 ] P [of 1 ] by (force simp: h)+

qed

lemma homotopic with equal :
assumes P f P g and contf : continuous map X Y f and fg :

∧
x . x ∈ topspace

X =⇒ f x = g x
shows homotopic with P X Y f g
unfolding homotopic with def

proof (intro exI conjI allI ballI )
let ?h = λ(t ::real ,x ). if t = 1 then g x else f x
show continuous map (prod topology (top of set {0 ..1}) X ) Y ?h
proof (rule continuous map eq)
show continuous map (prod topology (top of set {0 ..1}) X ) Y (f ◦ snd)
by (simp add : contf continuous map of snd)

qed (auto simp: fg)
show P (λx . ?h (t , x )) if t ∈ {0 ..1} for t
by (cases t = 1 ) (simp all add : assms)

qed auto

lemma homotopic with imp subset1 :
homotopic with canon P X Y f g =⇒ f ‘ X ⊆ Y

by (simp add : homotopic with def image subset iff ) (metis atLeastAtMost iff or-
der refl zero le one)

lemma homotopic with imp subset2 :
homotopic with canon P X Y f g =⇒ g ‘ X ⊆ Y

by (simp add : homotopic with def image subset iff ) (metis atLeastAtMost iff or-
der refl zero le one)
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lemma homotopic with subset left :
[[homotopic with canon P X Y f g ; Z ⊆ X ]] =⇒ homotopic with canon P Z Y

f g
unfolding homotopic with def by (auto elim!: continuous on subset ex forward)

lemma homotopic with subset right :
[[homotopic with canon P X Y f g ; Y ⊆ Z ]] =⇒ homotopic with canon P X Z

f g
unfolding homotopic with def by (auto elim!: continuous on subset ex forward)

6.18.2 Homotopy with P is an equivalence relation

(on continuous functions mapping X into Y that satisfy P, though this only
affects reflexivity)

lemma homotopic with refl [simp]: homotopic with P X Y f f ←→ continuous map
X Y f ∧ P f
by (auto simp: homotopic with imp continuous maps intro: homotopic with equal

dest : homotopic with imp property)

lemma homotopic with symD :
assumes homotopic with P X Y f g
shows homotopic with P X Y g f

proof −
let ?I01 = subtopology euclideanreal {0 ..1}
let ?j = λy . (1 − fst y , snd y)
have 1 : continuous map (prod topology ?I01 X ) (prod topology euclideanreal X )

?j
by (intro continuous intros; simp add : continuous map subtopology fst prod topology subtopology)
have ∗: continuous map (prod topology ?I01 X ) (prod topology ?I01 X ) ?j
proof −
have continuous map (prod topology ?I01 X ) (subtopology (prod topology eu-

clideanreal X ) ({0 ..1} × topspace X )) ?j
by (simp add : continuous map into subtopology [OF 1 ] image subset iff )

then show ?thesis
by (simp add : prod topology subtopology(1 ))

qed
show ?thesis
using assms
apply (clarsimp simp add : homotopic with def )
subgoal for h

by (rule tac x=h ◦ (λy . (1 − fst y , snd y)) in exI ) (simp add : continu-
ous map compose [OF ∗])

done
qed

lemma homotopic with sym:
homotopic with P X Y f g ←→ homotopic with P X Y g f
by (metis homotopic with symD)
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proposition homotopic with trans:
assumes homotopic with P X Y f g homotopic with P X Y g h
shows homotopic with P X Y f h

proof −
let ?X01 = prod topology (subtopology euclideanreal {0 ..1}) X
obtain k1 k2
where contk1 : continuous map ?X01 Y k1 and contk2 : continuous map ?X01

Y k2
and k12 : ∀ x . k1 (1 , x ) = g x ∀ x . k2 (0 , x ) = g x
∀ x . k1 (0 , x ) = f x ∀ x . k2 (1 , x ) = h x
and P : ∀ t∈{0 ..1}. P (λx . k1 (t , x )) ∀ t∈{0 ..1}. P (λx . k2 (t , x ))

using assms by (auto simp: homotopic with def )
define k where k ≡ λy . if fst y ≤ 1/2

then (k1 ◦ (λx . (2 ∗R fst x , snd x ))) y
else (k2 ◦ (λx . (2 ∗R fst x −1 , snd x ))) y

have keq : k1 (2 ∗ u, v) = k2 (2 ∗ u −1 , v) if u = 1/2 for u v
by (simp add : k12 that)

show ?thesis
unfolding homotopic with def

proof (intro exI conjI )
show continuous map ?X01 Y k
unfolding k def

proof (rule continuous map cases le)
show fst : continuous map ?X01 euclideanreal fst
using continuous map fst continuous map in subtopology by blast

show continuous map ?X01 euclideanreal (λx . 1/2 )
by simp

show continuous map (subtopology ?X01 {y ∈ topspace ?X01 . fst y ≤ 1/2})
Y

(k1 ◦ (λx . (2 ∗R fst x , snd x )))
apply (intro fst continuous map compose [OF contk1 ] continuous intros

continuous map into subtopology continuous map from subtopology | simp)+
by (force simp: prod topology subtopology)

show continuous map (subtopology ?X01 {y ∈ topspace ?X01 . 1/2 ≤ fst y})
Y

(k2 ◦ (λx . (2 ∗R fst x −1 , snd x )))
apply (intro fst continuous map compose [OF contk2 ] continuous intros

continuous map into subtopology continuous map from subtopology | simp)+
by (force simp: prod topology subtopology)

show (k1 ◦ (λx . (2 ∗R fst x , snd x ))) y = (k2 ◦ (λx . (2 ∗R fst x −1 , snd
x ))) y

if y ∈ topspace ?X01 and fst y = 1/2 for y
using that by (simp add : keq)

qed
show ∀ x . k (0 , x ) = f x
by (simp add : k12 k def )

show ∀ x . k (1 , x ) = h x
by (simp add : k12 k def )

show ∀ t∈{0 ..1}. P (λx . k (t , x ))
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proof
fix t show t∈{0 ..1} =⇒ P (λx . k (t , x ))
by (cases t ≤ 1/2 ) (auto simp add : k def P)

qed
qed

qed

lemma homotopic with id2 :
(
∧
x . x ∈ topspace X =⇒ g (f x ) = x ) =⇒ homotopic with (λx . True) X X (g ◦

f ) id
by (metis comp apply continuous map id eq id iff homotopic with equal homo-

topic with symD)

6.18.3 Continuity lemmas

lemma homotopic with compose continuous map left :
[[homotopic with p X1 X2 f g ; continuous map X2 X3 h;

∧
j . p j =⇒ q(h ◦ j )]]

=⇒ homotopic with q X1 X3 (h ◦ f ) (h ◦ g)
unfolding homotopic with def
apply clarify
subgoal for k
by (rule tac x=h ◦ k in exI ) (rule conjI continuous map compose | simp add :

o def )+
done

lemma homotopic with compose continuous map right :
assumes hom: homotopic with p X2 X3 f g and conth: continuous map X1 X2

h
and q :

∧
j . p j =⇒ q(j ◦ h)

shows homotopic with q X1 X3 (f ◦ h) (g ◦ h)
proof −
obtain k
where contk : continuous map (prod topology (subtopology euclideanreal {0 ..1})

X2 ) X3 k
and k : ∀ x . k (0 , x ) = f x ∀ x . k (1 , x ) = g x and p:

∧
t . t∈{0 ..1} =⇒ p

(λx . k (t , x ))
using hom unfolding homotopic with def by blast
have hsnd : continuous map (prod topology (subtopology euclideanreal {0 ..1})

X1 ) X2 (h ◦ snd)
by (rule continuous map compose [OF continuous map snd conth])

let ?h = k ◦ (λ(t ,x ). (t ,h x ))
show ?thesis
unfolding homotopic with def

proof (intro exI conjI allI ballI )
have continuous map (prod topology (top of set {0 ..1}) X1 )
(prod topology (top of set {0 ..1 ::real}) X2 ) (λ(t , x ). (t , h x ))
by (metis (mono tags, lifting) case prod beta ′ comp def continuous map eq

continuous map fst continuous map pairedI hsnd)
then show continuous map (prod topology (subtopology euclideanreal {0 ..1})
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X1 ) X3 ?h
by (intro conjI continuous map compose [OF contk ])

show q (λx . ?h (t , x )) if t ∈ {0 ..1} for t
using q [OF p [OF that ]] by (simp add : o def )

qed (auto simp: k)
qed

corollary homotopic compose:
assumes homotopic with (λx . True) X Y f f ′ homotopic with (λx . True) Y Z g

g ′

shows homotopic with (λx . True) X Z (g ◦ f ) (g ′ ◦ f ′)
proof (rule homotopic with trans [where g = g ◦ f ′])
show homotopic with (λx . True) X Z (g ◦ f ) (g ◦ f ′)
using assms by (simp add : homotopic with compose continuous map left ho-

motopic with imp continuous maps)
show homotopic with (λx . True) X Z (g ◦ f ′) (g ′ ◦ f ′)
using assms by (simp add : homotopic with compose continuous map right ho-

motopic with imp continuous maps)
qed

proposition homotopic with compose continuous right :
[[homotopic with canon (λf . p (f ◦ h)) X Y f g ; continuous on W h; h ‘ W ⊆

X ]]
=⇒ homotopic with canon p W Y (f ◦ h) (g ◦ h)

apply (clarsimp simp add : homotopic with def )
subgoal for k
apply (rule tac x=k ◦ (λy . (fst y , h (snd y))) in exI )
by (intro conjI continuous intros continuous on compose2 [where f=snd and

g=h]; fastforce simp: o def elim: continuous on subset)
done

proposition homotopic with compose continuous left :
[[homotopic with canon (λf . p (h ◦ f )) X Y f g ; continuous on Y h; h ‘ Y ⊆

Z ]]
=⇒ homotopic with canon p X Z (h ◦ f ) (h ◦ g)

apply (clarsimp simp add : homotopic with def )
subgoal for k
apply (rule tac x=h ◦ k in exI )
by (intro conjI continuous intros continuous on compose [where f=snd and

g=h, unfolded o def ]; fastforce simp: o def elim: continuous on subset)
done

lemma homotopic from subtopology :
homotopic with P X X ′ f g =⇒ homotopic with P (subtopology X s) X ′ f g
unfolding homotopic with def
by (force simp add : continuous map from subtopology prod topology subtopology(2 )

elim!: ex forward)

lemma homotopic on emptyI :
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assumes topspace X = {} P f P g
shows homotopic with P X X ′ f g

unfolding homotopic with def
proof (intro exI conjI ballI )
show P (λx . (λ(t ,x ). if t = 0 then f x else g x ) (t , x )) if t ∈ {0 ..1} for t ::real
by (cases t = 0 , auto simp: assms)

qed (auto simp: continuous map atin assms)

lemma homotopic on empty :
topspace X = {} =⇒ (homotopic with P X X ′ f g ←→ P f ∧ P g)
using homotopic on emptyI homotopic with imp property by metis

lemma homotopic with canon on empty [simp]: homotopic with canon (λx . True)
{} t f g
by (auto intro: homotopic with equal)

lemma homotopic constant maps:
homotopic with (λx . True) X X ′ (λx . a) (λx . b) ←→
topspace X = {} ∨ path component of X ′ a b (is ?lhs = ?rhs)

proof (cases topspace X = {})
case False
then obtain c where c: c ∈ topspace X
by blast

have ∃ g . continuous map (top of set {0 ..1 ::real}) X ′ g ∧ g 0 = a ∧ g 1 = b
if x ∈ topspace X and hom: homotopic with (λx . True) X X ′ (λx . a) (λx . b)

for x
proof −
obtain h :: real × ′a ⇒ ′b
where conth: continuous map (prod topology (top of set {0 ..1}) X ) X ′ h
and h:

∧
x . h (0 , x ) = a

∧
x . h (1 , x ) = b

using hom by (auto simp: homotopic with def )
have cont : continuous map (top of set {0 ..1}) X ′ (h ◦ (λt . (t , c)))
by (rule continuous map compose [OF conth] continuous intros c | simp)+

then show ?thesis
by (force simp: h)

qed
moreover have homotopic with (λx . True) X X ′ (λx . g 0 ) (λx . g 1 )
if x ∈ topspace X a = g 0 b = g 1 continuous map (top of set {0 ..1}) X ′ g
for x and g :: real ⇒ ′b
unfolding homotopic with def
by (force intro!: continuous map compose continuous intros c that)

ultimately show ?thesis
using False by (auto simp: path component of def pathin def )

qed (simp add : homotopic on empty)

proposition homotopic with eq :
assumes h: homotopic with P X Y f g

and f ′:
∧
x . x ∈ topspace X =⇒ f ′ x = f x

and g ′:
∧
x . x ∈ topspace X =⇒ g ′ x = g x
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and P : (
∧
h k . (

∧
x . x ∈ topspace X =⇒ h x = k x ) =⇒ P h ←→ P k)

shows homotopic with P X Y f ′ g ′

using h unfolding homotopic with def
apply clarify
subgoal for h
apply (rule tac x=λ(u,v). if v ∈ topspace X then h(u,v) else if u = 0 then f ′

v else g ′ v in exI )
apply (simp add : f ′ g ′, safe)
apply (fastforce intro: continuous map eq)
apply (subst P ; fastforce)
done

done

lemma homotopic with prod topology :
assumes homotopic with p X1 Y1 f f ′ and homotopic with q X2 Y2 g g ′

and r :
∧
i j . [[p i ; q j ]] =⇒ r(λ(x ,y). (i x , j y))

shows homotopic with r (prod topology X1 X2 ) (prod topology Y1 Y2 )
(λz . (f (fst z ),g(snd z ))) (λz . (f ′(fst z ), g ′(snd z )))

proof −
obtain h
where h: continuous map (prod topology (subtopology euclideanreal {0 ..1}) X1 )

Y1 h
and h0 :

∧
x . h (0 , x ) = f x

and h1 :
∧
x . h (1 , x ) = f ′ x

and p:
∧
t . [[0 ≤ t ; t ≤ 1 ]] =⇒ p (λx . h (t ,x ))

using assms unfolding homotopic with def by auto
obtain k
where k : continuous map (prod topology (subtopology euclideanreal {0 ..1}) X2 )

Y2 k
and k0 :

∧
x . k (0 , x ) = g x

and k1 :
∧
x . k (1 , x ) = g ′ x

and q :
∧
t . [[0 ≤ t ; t ≤ 1 ]] =⇒ q (λx . k (t ,x ))

using assms unfolding homotopic with def by auto
let ?hk = λ(t ,x ,y). (h(t ,x ), k(t ,y))
show ?thesis
unfolding homotopic with def

proof (intro conjI allI exI )
show continuous map (prod topology (subtopology euclideanreal {0 ..1}) (prod topology

X1 X2 ))
(prod topology Y1 Y2 ) ?hk

unfolding continuous map pairwise case prod unfold
by (rule conjI continuous map pairedI continuous intros continuous map id

[unfolded id def ]
continuous map fst of [unfolded o def ] continuous map snd of [unfolded

o def ]
continuous map compose [OF h, unfolded o def ]
continuous map compose [OF k , unfolded o def ])+

next
fix x



Homotopy.thy 1981

show ?hk (0 , x ) = (f (fst x ), g (snd x )) ?hk (1 , x ) = (f ′ (fst x ), g ′ (snd x ))
by (auto simp: case prod beta h0 k0 h1 k1 )

qed (auto simp: p q r)
qed

lemma homotopic with product topology :
assumes ht :

∧
i . i ∈ I =⇒ homotopic with (p i) (X i) (Y i) (f i) (g i)

and pq :
∧
h. (

∧
i . i ∈ I =⇒ p i (h i)) =⇒ q(λx . (λi∈I . h i (x i)))

shows homotopic with q (product topology X I ) (product topology Y I )
(λz . (λi∈I . (f i) (z i))) (λz . (λi∈I . (g i) (z i)))

proof −
obtain h
where h:

∧
i . i ∈ I =⇒ continuous map (prod topology (subtopology euclidean-

real {0 ..1}) (X i)) (Y i) (h i)
and h0 :

∧
i x . i ∈ I =⇒ h i (0 , x ) = f i x

and h1 :
∧
i x . i ∈ I =⇒ h i (1 , x ) = g i x

and p:
∧
i t . [[i ∈ I ; t ∈ {0 ..1}]] =⇒ p i (λx . h i (t ,x ))

using ht unfolding homotopic with def by metis
show ?thesis
unfolding homotopic with def

proof (intro conjI allI exI )
let ?h = λ(t ,z ). λi∈I . h i (t ,z i)
have continuous map (prod topology (subtopology euclideanreal {0 ..1}) (product topology

X I ))
(Y i) (λx . h i (fst x , snd x i)) if i ∈ I for i

proof −
have §: continuous map (prod topology (top of set {0 ..1}) (product topology

X I )) (X i) (λx . snd x i)
using continuous map componentwise continuous map snd that by fastforce

show ?thesis
unfolding continuous map pairwise case prod unfold
by (intro conjI that § continuous intros continuous map compose [OF h,

unfolded o def ])
qed
then show continuous map (prod topology (subtopology euclideanreal {0 ..1})

(product topology X I ))
(product topology Y I ) ?h

by (auto simp: continuous map componentwise case prod beta)
show ?h (0 , x ) = (λi∈I . f i (x i)) ?h (1 , x ) = (λi∈I . g i (x i)) for x
by (auto simp: case prod beta h0 h1 )

show ∀ t∈{0 ..1}. q (λx . ?h (t , x ))
by (force intro: p pq)

qed
qed

Homotopic triviality implicitly incorporates path-connectedness.

lemma homotopic triviality :
shows (∀ f g . continuous on S f ∧ f ‘ S ⊆ T ∧
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continuous on S g ∧ g ‘ S ⊆ T
−→ homotopic with canon (λx . True) S T f g) ←→

(S = {} ∨ path connected T ) ∧
(∀ f . continuous on S f ∧ f ‘ S ⊆ T −→ (∃ c. homotopic with canon (λx .

True) S T f (λx . c)))
(is ?lhs = ?rhs)

proof (cases S = {} ∨ T = {})
case True then show ?thesis
by (auto simp: homotopic on emptyI )

next
case False show ?thesis
proof
assume LHS [rule format ]: ?lhs
have pab: path component T a b if a ∈ T b ∈ T for a b
proof −
have homotopic with canon (λx . True) S T (λx . a) (λx . b)
by (simp add : LHS image subset iff that)

then show ?thesis
using False homotopic constant maps [of top of set S top of set T a b] by

auto
qed
moreover
have ∃ c. homotopic with canon (λx . True) S T f (λx . c) if continuous on S f

f ‘ S ⊆ T for f
using False LHS continuous on const that by blast

ultimately show ?rhs
by (simp add : path connected component)

next
assume RHS : ?rhs
with False have T : path connected T
by blast

show ?lhs
proof clarify
fix f g
assume continuous on S f f ‘ S ⊆ T continuous on S g g ‘ S ⊆ T
obtain c d where c: homotopic with canon (λx . True) S T f (λx . c) and d :

homotopic with canon (λx . True) S T g (λx . d)
using False 〈continuous on S f 〉 〈f ‘ S ⊆ T 〉 RHS 〈continuous on S g〉 〈g ‘

S ⊆ T 〉 by blast
then have c ∈ T d ∈ T
using False homotopic with imp continuous maps by fastforce+

with T have path component T c d
using path connected component by blast

then have homotopic with canon (λx . True) S T (λx . c) (λx . d)
by (simp add : homotopic constant maps)

with c d show homotopic with canon (λx . True) S T f g
by (meson homotopic with symD homotopic with trans)

qed
qed
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qed

6.18.4 Homotopy of paths, maintaining the same endpoints

definition homotopic paths :: [ ′a set , real ⇒ ′a, real ⇒ ′a::topological space] ⇒
bool
where

homotopic paths s p q ≡
homotopic with canon (λr . pathstart r = pathstart p ∧ pathfinish r = pathfinish

p) {0 ..1} s p q

lemma homotopic paths:
homotopic paths s p q ←→

(∃ h. continuous on ({0 ..1} × {0 ..1}) h ∧
h ‘ ({0 ..1} × {0 ..1}) ⊆ s ∧
(∀ x ∈ {0 ..1}. h(0 ,x ) = p x ) ∧
(∀ x ∈ {0 ..1}. h(1 ,x ) = q x ) ∧
(∀ t ∈ {0 ..1 ::real}. pathstart(h ◦ Pair t) = pathstart p ∧

pathfinish(h ◦ Pair t) = pathfinish p))
by (auto simp: homotopic paths def homotopic with pathstart def pathfinish def )

proposition homotopic paths imp pathstart :
homotopic paths s p q =⇒ pathstart p = pathstart q

by (metis (mono tags, lifting) homotopic paths def homotopic with imp property)

proposition homotopic paths imp pathfinish:
homotopic paths s p q =⇒ pathfinish p = pathfinish q

by (metis (mono tags, lifting) homotopic paths def homotopic with imp property)

lemma homotopic paths imp path:
homotopic paths s p q =⇒ path p ∧ path q

using homotopic paths def homotopic with imp continuous maps path def contin-
uous map subtopology eu by blast

lemma homotopic paths imp subset :
homotopic paths s p q =⇒ path image p ⊆ s ∧ path image q ⊆ s

by (metis (mono tags) continuous map subtopology eu homotopic paths def ho-
motopic with imp continuous maps path image def )

proposition homotopic paths refl [simp]: homotopic paths s p p ←→ path p ∧
path image p ⊆ s
by (simp add : homotopic paths def path def path image def )

proposition homotopic paths sym: homotopic paths s p q =⇒ homotopic paths s
q p
by (metis (mono tags) homotopic paths def homotopic paths imp pathfinish ho-

motopic paths imp pathstart homotopic with symD)

proposition homotopic paths sym eq : homotopic paths s p q ←→ homotopic paths
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s q p
by (metis homotopic paths sym)

proposition homotopic paths trans [trans]:
assumes homotopic paths s p q homotopic paths s q r
shows homotopic paths s p r

proof −
have pathstart q = pathstart p pathfinish q = pathfinish p
using assms by (simp all add : homotopic paths imp pathstart homotopic paths imp pathfinish)
then have homotopic with canon (λf . pathstart f = pathstart p ∧ pathfinish f

= pathfinish p) {0 ..1} s q r
using 〈homotopic paths s q r 〉 homotopic paths def by force

then show ?thesis
using assms homotopic paths def homotopic with trans by blast

qed

proposition homotopic paths eq :
[[path p; path image p ⊆ s;

∧
t . t ∈ {0 ..1} =⇒ p t = q t ]] =⇒ homotopic paths

s p q
unfolding homotopic paths def
by (rule homotopic with eq)

(auto simp: path def pathstart def pathfinish def path image def elim: continu-
ous on eq)

proposition homotopic paths reparametrize:
assumes path p

and pips: path image p ⊆ s
and contf : continuous on {0 ..1} f
and f01 :f ‘ {0 ..1} ⊆ {0 ..1}
and [simp]: f (0 ) = 0 f (1 ) = 1
and q :

∧
t . t ∈ {0 ..1} =⇒ q(t) = p(f t)

shows homotopic paths s p q
proof −
have contp: continuous on {0 ..1} p
by (metis 〈path p〉 path def )

then have continuous on {0 ..1} (p ◦ f )
using contf continuous on compose continuous on subset f01 by blast

then have path q
by (simp add : path def ) (metis q continuous on cong)

have piqs: path image q ⊆ s
by (metis (no types, hide lams) pips f01 image subset iff path image def q)

have fb0 :
∧
a b. [[0 ≤ a; a ≤ 1 ; 0 ≤ b; b ≤ 1 ]] =⇒ 0 ≤ (1 − a) ∗ f b + a ∗ b

using f01 by force
have fb1 : [[0 ≤ a; a ≤ 1 ; 0 ≤ b; b ≤ 1 ]] =⇒ (1 − a) ∗ f b + a ∗ b ≤ 1 for a b
using f01 [THEN subsetD , of f b] by (simp add : convex bound le)

have homotopic paths s q p
proof (rule homotopic paths trans)
show homotopic paths s q (p ◦ f )
using q by (force intro: homotopic paths eq [OF 〈path q〉 piqs])
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next
show homotopic paths s (p ◦ f ) p
using pips [unfolded path image def ]
apply (simp add : homotopic paths def homotopic with def )
apply (rule tac x=p ◦ (λy . (1 − (fst y)) ∗R ((f ◦ snd) y) + (fst y) ∗R snd

y) in exI )
apply (rule conjI contf continuous intros continuous on subset [OF contp] |

simp)+
by (auto simp: fb0 fb1 pathstart def pathfinish def )

qed
then show ?thesis
by (simp add : homotopic paths sym)

qed

lemma homotopic paths subset : [[homotopic paths s p q ; s ⊆ t ]] =⇒ homotopic paths
t p q
unfolding homotopic paths by fast

A slightly ad-hoc but useful lemma in constructing homotopies.

lemma continuous on homotopic join lemma:
fixes q :: [real ,real ] ⇒ ′a::topological space
assumes p: continuous on ({0 ..1} × {0 ..1}) (λy . p (fst y) (snd y)) (is contin-

uous on ?A ?p)
and q : continuous on ({0 ..1} × {0 ..1}) (λy . q (fst y) (snd y)) (is continu-

ous on ?A ?q)
and pf :

∧
t . t ∈ {0 ..1} =⇒ pathfinish(p t) = pathstart(q t)

shows continuous on ({0 ..1} × {0 ..1}) (λy . (p(fst y) +++ q(fst y)) (snd y))
proof −
have §: (λt . p (fst t) (2 ∗ snd t)) = ?p ◦ (λy . (fst y , 2 ∗ snd y))

(λt . q (fst t) (2 ∗ snd t − 1 )) = ?q ◦ (λy . (fst y , 2 ∗ snd y − 1 ))
by force+

show ?thesis
unfolding joinpaths def

proof (rule continuous on cases le)
show continuous on {y ∈ ?A. snd y ≤ 1/2} (λt . p (fst t) (2 ∗ snd t))

continuous on {y ∈ ?A. 1/2 ≤ snd y} (λt . q (fst t) (2 ∗ snd t − 1 ))
continuous on ?A snd

unfolding §
by (rule continuous intros continuous on subset [OF p] continuous on subset

[OF q ] | force)+
qed (use pf in 〈auto simp: mult .commute pathstart def pathfinish def 〉)

qed

Congruence properties of homotopy w.r.t. path-combining operations.

lemma homotopic paths reversepath D :
assumes homotopic paths s p q
shows homotopic paths s (reversepath p) (reversepath q)

using assms
apply (simp add : homotopic paths def homotopic with def , clarify)
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apply (rule tac x=h ◦ (λx . (fst x , 1 − snd x )) in exI )
apply (rule conjI continuous intros)+
apply (auto simp: reversepath def pathstart def pathfinish def elim!: continu-

ous on subset)
done

proposition homotopic paths reversepath:
homotopic paths s (reversepath p) (reversepath q) ←→ homotopic paths s p q

using homotopic paths reversepath D by force

proposition homotopic paths join:
[[homotopic paths s p p ′; homotopic paths s q q ′; pathfinish p = pathstart q ]] =⇒

homotopic paths s (p +++ q) (p ′ +++ q ′)
apply (clarsimp simp add : homotopic paths def homotopic with def )
apply (rename tac k1 k2 )
apply (rule tac x=(λy . ((k1 ◦ Pair (fst y)) +++ (k2 ◦ Pair (fst y))) (snd y))

in exI )
apply (intro conjI continuous intros continuous on homotopic join lemma; force

simp: joinpaths def pathstart def pathfinish def path image def )
done

proposition homotopic paths continuous image:
[[homotopic paths s f g ; continuous on s h; h ‘ s ⊆ t ]] =⇒ homotopic paths t (h

◦ f ) (h ◦ g)
unfolding homotopic paths def
by (simp add : homotopic with compose continuous map left pathfinish compose

pathstart compose)

6.18.5 Group properties for homotopy of paths

So taking equivalence classes under homotopy would give the fundamental
group

proposition homotopic paths rid :
assumes path p path image p ⊆ s
shows homotopic paths s (p +++ linepath (pathfinish p) (pathfinish p)) p

proof −
have §: continuous on {0 ..1} (λt ::real . if t ≤ 1/2 then 2 ∗R t else 1 )
unfolding split 01
by (rule continuous on cases continuous intros | force simp: pathfinish def join-

paths def )+
show ?thesis
apply (rule homotopic paths sym)
using assms unfolding pathfinish def joinpaths def
by (intro § continuous on cases continuous intros homotopic paths reparametrize

[where f = λt . if t ≤ 1/2 then 2 ∗R t else 1 ]; force)
qed

proposition homotopic paths lid :
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[[path p; path image p ⊆ s]] =⇒ homotopic paths s (linepath (pathstart p) (pathstart
p) +++ p) p
using homotopic paths rid [of reversepath p s]
by (metis homotopic paths reversepath path image reversepath path reversepath

pathfinish linepath
pathfinish reversepath reversepath joinpaths reversepath linepath)

proposition homotopic paths assoc:
[[path p; path image p ⊆ s; path q ; path image q ⊆ s; path r ; path image r ⊆ s;

pathfinish p = pathstart q ;
pathfinish q = pathstart r ]]
=⇒ homotopic paths s (p +++ (q +++ r)) ((p +++ q) +++ r)

apply (subst homotopic paths sym)
apply (rule homotopic paths reparametrize

[where f = λt . if t ≤ 1/2 then inverse 2 ∗R t
else if t ≤ 3 / 4 then t − (1 / 4 )
else 2 ∗R t − 1 ])

apply (simp all del : le divide eq numeral1 add : subset path image join)
apply (rule continuous on cases 1 continuous intros | auto simp: joinpaths def )+
done

proposition homotopic paths rinv :
assumes path p path image p ⊆ s
shows homotopic paths s (p +++ reversepath p) (linepath (pathstart p) (pathstart

p))
proof −
have p: continuous on {0 ..1} p
using assms by (auto simp: path def )

let ?A = {0 ..1} × {0 ..1}
have continuous on ?A (λx . (subpath 0 (fst x ) p +++ reversepath (subpath 0

(fst x ) p)) (snd x ))
unfolding joinpaths def subpath def reversepath def path def add 0 right diff 0 right
proof (rule continuous on cases le)
show continuous on {x ∈ ?A. snd x ≤ 1/2} (λt . p (fst t ∗ (2 ∗ snd t)))

continuous on {x ∈ ?A. 1/2 ≤ snd x} (λt . p (fst t ∗ (1 − (2 ∗ snd t −
1 ))))

continuous on ?A snd
by (intro continuous on compose2 [OF p] continuous intros; auto simp add :

mult le one)+
qed (auto simp add : algebra simps)
then show ?thesis
using assms
apply (subst homotopic paths sym eq)
unfolding homotopic paths def homotopic with def
apply (rule tac x=(λy . (subpath 0 (fst y) p +++ reversepath(subpath 0 (fst

y) p)) (snd y)) in exI )
apply (force simp: mult le one path defs joinpaths def subpath def reversepath def )
done

qed
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proposition homotopic paths linv :
assumes path p path image p ⊆ s

shows homotopic paths s (reversepath p +++ p) (linepath (pathfinish p)
(pathfinish p))
using homotopic paths rinv [of reversepath p s] assms by simp

6.18.6 Homotopy of loops without requiring preservation of
endpoints

definition homotopic loops :: ′a::topological space set ⇒ (real ⇒ ′a) ⇒ (real ⇒
′a) ⇒ bool where
homotopic loops s p q ≡

homotopic with canon (λr . pathfinish r = pathstart r) {0 ..1} s p q

lemma homotopic loops:
homotopic loops s p q ←→

(∃ h. continuous on ({0 ..1 ::real} × {0 ..1}) h ∧
image h ({0 ..1} × {0 ..1}) ⊆ s ∧
(∀ x ∈ {0 ..1}. h(0 ,x ) = p x ) ∧
(∀ x ∈ {0 ..1}. h(1 ,x ) = q x ) ∧
(∀ t ∈ {0 ..1}. pathfinish(h ◦ Pair t) = pathstart(h ◦ Pair t)))

by (simp add : homotopic loops def pathstart def pathfinish def homotopic with)

proposition homotopic loops imp loop:
homotopic loops s p q =⇒ pathfinish p = pathstart p ∧ pathfinish q = pathstart

q
using homotopic with imp property homotopic loops def by blast

proposition homotopic loops imp path:
homotopic loops s p q =⇒ path p ∧ path q

unfolding homotopic loops def path def
using homotopic with imp continuous maps continuous map subtopology eu by

blast

proposition homotopic loops imp subset :
homotopic loops s p q =⇒ path image p ⊆ s ∧ path image q ⊆ s

unfolding homotopic loops def path image def
by (meson continuous map subtopology eu homotopic with imp continuous maps)

proposition homotopic loops refl :
homotopic loops s p p ←→
path p ∧ path image p ⊆ s ∧ pathfinish p = pathstart p

by (simp add : homotopic loops def path image def path def )

proposition homotopic loops sym: homotopic loops s p q =⇒ homotopic loops s q
p
by (simp add : homotopic loops def homotopic with sym)
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proposition homotopic loops sym eq : homotopic loops s p q ←→ homotopic loops
s q p
by (metis homotopic loops sym)

proposition homotopic loops trans:
[[homotopic loops s p q ; homotopic loops s q r ]] =⇒ homotopic loops s p r
unfolding homotopic loops def by (blast intro: homotopic with trans)

proposition homotopic loops subset :
[[homotopic loops s p q ; s ⊆ t ]] =⇒ homotopic loops t p q
by (fastforce simp add : homotopic loops)

proposition homotopic loops eq :
[[path p; path image p ⊆ s; pathfinish p = pathstart p;

∧
t . t ∈ {0 ..1} =⇒ p(t)

= q(t)]]
=⇒ homotopic loops s p q

unfolding homotopic loops def path image def path def pathstart def pathfinish def
by (auto intro: homotopic with eq [OF homotopic with refl [where f = p, THEN

iffD2 ]])

proposition homotopic loops continuous image:
[[homotopic loops s f g ; continuous on s h; h ‘ s ⊆ t ]] =⇒ homotopic loops t (h

◦ f ) (h ◦ g)
unfolding homotopic loops def
by (simp add : homotopic with compose continuous map left pathfinish def path-

start def )

6.18.7 Relations between the two variants of homotopy

proposition homotopic paths imp homotopic loops:
[[homotopic paths s p q ; pathfinish p = pathstart p; pathfinish q = pathstart p]]

=⇒ homotopic loops s p q
by (auto simp: homotopic with def homotopic paths def homotopic loops def )

proposition homotopic loops imp homotopic paths null :
assumes homotopic loops s p (linepath a a)
shows homotopic paths s p (linepath (pathstart p) (pathstart p))

proof −
have path p by (metis assms homotopic loops imp path)
have ploop: pathfinish p = pathstart p by (metis assms homotopic loops imp loop)
have pip: path image p ⊆ s by (metis assms homotopic loops imp subset)
let ?A = {0 ..1 ::real} × {0 ..1 ::real}
obtain h where conth: continuous on ?A h

and hs: h ‘ ?A ⊆ s
and [simp]:

∧
x . x ∈ {0 ..1} =⇒ h(0 ,x ) = p x

and [simp]:
∧
x . x ∈ {0 ..1} =⇒ h(1 ,x ) = a

and ends:
∧
t . t ∈ {0 ..1} =⇒ pathfinish (h ◦ Pair t) = pathstart (h ◦

Pair t)
using assms by (auto simp: homotopic loops homotopic with)
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have conth0 : path (λu. h (u, 0 ))
unfolding path def

proof (rule continuous on compose [of h, unfolded o def ])
show continuous on ((λx . (x , 0 )) ‘ {0 ..1}) h
by (force intro: continuous on subset [OF conth])

qed (force intro: continuous intros)
have pih0 : path image (λu. h (u, 0 )) ⊆ s
using hs by (force simp: path image def )

have c1 : continuous on ?A (λx . h (fst x ∗ snd x , 0 ))
proof (rule continuous on compose [of h, unfolded o def ])
show continuous on ((λx . (fst x ∗ snd x , 0 )) ‘ ?A) h
by (force simp: mult le one intro: continuous on subset [OF conth])

qed (force intro: continuous intros)+
have c2 : continuous on ?A (λx . h (fst x − fst x ∗ snd x , 0 ))
proof (rule continuous on compose [of h, unfolded o def ])
show continuous on ((λx . (fst x − fst x ∗ snd x , 0 )) ‘ ?A) h

by (auto simp: algebra simps add increasing2 mult left le intro: continu-
ous on subset [OF conth])
qed (force intro: continuous intros)
have [simp]:

∧
t . [[0 ≤ t ∧ t ≤ 1 ]] =⇒ h (t , 1 ) = h (t , 0 )

using ends by (simp add : pathfinish def pathstart def )
have adhoc le: c ∗ 4 ≤ 1 + c ∗ (d ∗ 4 ) if ¬ d ∗ 4 ≤ 3 0 ≤ c c ≤ 1 for c d ::real
proof −
have c ∗ 3 ≤ c ∗ (d ∗ 4 ) using that less eq real def by auto
with 〈c ≤ 1 〉 show ?thesis by fastforce

qed
have ∗:

∧
p x . [[path p ∧ path(reversepath p);

path image p ⊆ s ∧ path image(reversepath p) ⊆ s;
pathfinish p = pathstart(linepath a a +++ reversepath p) ∧
pathstart(reversepath p) = a ∧ pathstart p = x ]]
=⇒ homotopic paths s (p +++ linepath a a +++ reversepath p)

(linepath x x )
by (metis homotopic paths lid homotopic paths join

homotopic paths trans homotopic paths sym homotopic paths rinv)
have 1 : homotopic paths s p (p +++ linepath (pathfinish p) (pathfinish p))
using 〈path p〉 homotopic paths rid homotopic paths sym pip by blast

moreover have homotopic paths s (p +++ linepath (pathfinish p) (pathfinish
p))

(linepath (pathstart p) (pathstart p) +++ p +++
linepath (pathfinish p) (pathfinish p))

apply (rule homotopic paths sym)
using homotopic paths lid [of p +++ linepath (pathfinish p) (pathfinish p) s]
by (metis 1 homotopic paths imp path homotopic paths imp pathstart homo-

topic paths imp subset)
moreover
have homotopic paths s (linepath (pathstart p) (pathstart p) +++ p +++ linepath

(pathfinish p) (pathfinish p))
((λu. h (u, 0 )) +++ linepath a a +++ reversepath

(λu. h (u, 0 )))
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unfolding homotopic paths def homotopic with def
proof (intro exI strip conjI )
let ?h = λy . (subpath 0 (fst y) (λu. h (u, 0 )) +++ (λu. h (Pair (fst y) u))

+++ subpath (fst y) 0 (λu. h (u, 0 ))) (snd y)
have continuous on ?A ?h

by (intro continuous on homotopic join lemma; simp add : path defs join-
paths def subpath def conth c1 c2 )

moreover have ?h ‘ ?A ⊆ s
unfolding joinpaths def subpath def

by (force simp: algebra simps mult le one mult left le intro: hs [THEN subsetD ]
adhoc le)
ultimately show continuous map (prod topology (top of set {0 ..1}) (top of set
{0 ..1}))

(top of set s) ?h
by (simp add : subpath reversepath)
qed (use ploop in 〈simp all add : reversepath def path defs joinpaths def o def

subpath def conth c1 c2 〉)
moreover have homotopic paths s ((λu. h (u, 0 )) +++ linepath a a +++

reversepath (λu. h (u, 0 )))
(linepath (pathstart p) (pathstart p))

proof (rule ∗; simp add : pih0 pathstart def pathfinish def conth0 )
show a = (linepath a a +++ reversepath (λu. h (u, 0 ))) 0 ∧ reversepath (λu.

h (u, 0 )) 0 = a
by (simp all add : reversepath def joinpaths def )

qed
ultimately show ?thesis
by (blast intro: homotopic paths trans)

qed

proposition homotopic loops conjugate:
fixes s :: ′a::real normed vector set
assumes path p path q and pip: path image p ⊆ s and piq : path image q ⊆ s

and pq : pathfinish p = pathstart q and qloop: pathfinish q = pathstart q
shows homotopic loops s (p +++ q +++ reversepath p) q

proof −
have contp: continuous on {0 ..1} p using 〈path p〉 [unfolded path def ] by blast
have contq : continuous on {0 ..1} q using 〈path q〉 [unfolded path def ] by blast
let ?A = {0 ..1 ::real} × {0 ..1 ::real}
have c1 : continuous on ?A (λx . p ((1 − fst x ) ∗ snd x + fst x ))
proof (rule continuous on compose [of p, unfolded o def ])
show continuous on ((λx . (1 − fst x ) ∗ snd x + fst x ) ‘ ?A) p
by (auto intro: continuous on subset [OF contp] simp: algebra simps add increasing2

mult right le one le sum le prod1 )
qed (force intro: continuous intros)
have c2 : continuous on ?A (λx . p ((fst x − 1 ) ∗ snd x + 1 ))
proof (rule continuous on compose [of p, unfolded o def ])
show continuous on ((λx . (fst x − 1 ) ∗ snd x + 1 ) ‘ ?A) p
by (auto intro: continuous on subset [OF contp] simp: algebra simps add increasing2

mult left le one le)
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qed (force intro: continuous intros)

have ps1 :
∧
a b. [[b ∗ 2 ≤ 1 ; 0 ≤ b; 0 ≤ a; a ≤ 1 ]] =⇒ p ((1 − a) ∗ (2 ∗ b) +

a) ∈ s
using sum le prod1
by (force simp: algebra simps add increasing2 mult left le intro: pip [unfolded

path image def , THEN subsetD ])
have ps2 :

∧
a b. [[¬ 4 ∗ b ≤ 3 ; b ≤ 1 ; 0 ≤ a; a ≤ 1 ]] =⇒ p ((a − 1 ) ∗ (4 ∗ b

− 3 ) + 1 ) ∈ s
apply (rule pip [unfolded path image def , THEN subsetD ])
apply (rule image eqI , blast)
apply (simp add : algebra simps)
by (metis add mono thms linordered semiring(1 ) affine ineq linear mult .commute

mult .left neutral mult right mono
add .commute zero le numeral)

have qs:
∧
a b. [[4 ∗ b ≤ 3 ; ¬ b ∗ 2 ≤ 1 ]] =⇒ q (4 ∗ b − 2 ) ∈ s

using path image def piq by fastforce
have homotopic loops s (p +++ q +++ reversepath p)

(linepath (pathstart q) (pathstart q) +++ q +++ linepath
(pathstart q) (pathstart q))

unfolding homotopic loops def homotopic with def
proof (intro exI strip conjI )
let ?h = (λy . (subpath (fst y) 1 p +++ q +++ subpath 1 (fst y) p) (snd y))
have continuous on ?A (λy . q (snd y))
by (force simp: contq intro: continuous on compose [of q , unfolded o def ]

continuous on id continuous on snd)
then have continuous on ?A ?h
using pq qloop
by (intro continuous on homotopic join lemma) (auto simp: path defs join-

paths def subpath def c1 c2 )
then show continuous map (prod topology (top of set {0 ..1}) (top of set {0 ..1}))

(top of set s) ?h
by (auto simp: joinpaths def subpath def ps1 ps2 qs)
show ?h (1 ,x ) = (linepath (pathstart q) (pathstart q) +++ q +++ linepath

(pathstart q) (pathstart q)) x for x
using pq by (simp add : pathfinish def subpath refl)

qed (auto simp: subpath reversepath)
moreover have homotopic loops s (linepath (pathstart q) (pathstart q) +++ q

+++ linepath (pathstart q) (pathstart q)) q
proof −
have homotopic paths s (linepath (pathfinish q) (pathfinish q) +++ q) q
using 〈path q〉 homotopic paths lid qloop piq by auto

hence 1 :
∧
f . homotopic paths s f q ∨ ¬ homotopic paths s f (linepath (pathfinish

q) (pathfinish q) +++ q)
using homotopic paths trans by blast

hence homotopic paths s (linepath (pathfinish q) (pathfinish q) +++ q +++
linepath (pathfinish q) (pathfinish q)) q

proof −
have homotopic paths s (q +++ linepath (pathfinish q) (pathfinish q)) q
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by (simp add : 〈path q〉 homotopic paths rid piq)
thus ?thesis
by (metis (no types) 1 〈path q〉 homotopic paths join homotopic paths rinv

homotopic paths sym
homotopic paths trans qloop pathfinish linepath piq)

qed
thus ?thesis
by (metis (no types) qloop homotopic loops sym homotopic paths imp homotopic loops

homotopic paths imp pathfinish homotopic paths sym)
qed
ultimately show ?thesis
by (blast intro: homotopic loops trans)

qed

lemma homotopic paths loop parts:
assumes loops: homotopic loops S (p +++ reversepath q) (linepath a a) and

path q
shows homotopic paths S p q

proof −
have paths: homotopic paths S (p +++ reversepath q) (linepath (pathstart p)

(pathstart p))
using homotopic loops imp homotopic paths null [OF loops] by simp

then have path p
using 〈path q〉 homotopic loops imp path loops path join path join path ends

path reversepath by blast
show ?thesis
proof (cases pathfinish p = pathfinish q)
case True
have pipq : path image p ⊆ S path image q ⊆ S

by (metis Un subset iff paths 〈path p〉 〈path q〉 homotopic loops imp subset
homotopic paths imp path loops

path image join path image reversepath path imp reversepath path join eq)+
have homotopic paths S p (p +++ (linepath (pathfinish p) (pathfinish p)))
using 〈path p〉 〈path image p ⊆ S 〉 homotopic paths rid homotopic paths sym

by blast
moreover have homotopic paths S (p +++ (linepath (pathfinish p) (pathfinish

p))) (p +++ (reversepath q +++ q))
by (simp add : True 〈path p〉 〈path q〉 pipq homotopic paths join homo-

topic paths linv homotopic paths sym)
moreover have homotopic paths S (p +++ (reversepath q +++ q)) ((p +++

reversepath q) +++ q)
by (simp add : True 〈path p〉 〈path q〉 homotopic paths assoc pipq)

moreover have homotopic paths S ((p +++ reversepath q) +++ q) (linepath
(pathstart p) (pathstart p) +++ q)

by (simp add : 〈path q〉 homotopic paths join paths pipq)
moreover then have homotopic paths S (linepath (pathstart p) (pathstart p)

+++ q) q
by (metis 〈path q〉 homotopic paths imp path homotopic paths lid linepath trivial

path join path ends pathfinish def pipq(2 ))
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ultimately show ?thesis
using homotopic paths trans by metis

next
case False
then show ?thesis
using 〈path q〉 homotopic loops imp path loops path join path ends by fastforce

qed
qed

6.18.8 Homotopy of ”nearby” function, paths and loops

lemma homotopic with linear :
fixes f g :: ⇒ ′b::real normed vector
assumes contf : continuous on S f

and contg :continuous on S g
and sub:

∧
x . x ∈ S =⇒ closed segment (f x ) (g x ) ⊆ t

shows homotopic with canon (λz . True) S t f g
unfolding homotopic with def
apply (rule tac x=λy . ((1 − (fst y)) ∗R f (snd y) + (fst y) ∗R g(snd y)) in exI )
using sub closed segment def

by (fastforce intro: continuous intros continuous on subset [OF contf ] contin-
uous on compose2 [where g=f ]

continuous on subset [OF contg ] continuous on compose2 [where g=g ])

lemma homotopic paths linear :
fixes g h :: real ⇒ ′a::real normed vector
assumes path g path h pathstart h = pathstart g pathfinish h = pathfinish g∧

t . t ∈ {0 ..1} =⇒ closed segment (g t) (h t) ⊆ S
shows homotopic paths S g h

using assms
unfolding path def
apply (simp add : closed segment def pathstart def pathfinish def homotopic paths def

homotopic with def )
apply (rule tac x=λy . ((1 − (fst y)) ∗R (g ◦ snd) y + (fst y) ∗R (h ◦ snd) y)

in exI )
apply (intro conjI subsetI continuous intros; force)
done

lemma homotopic loops linear :
fixes g h :: real ⇒ ′a::real normed vector
assumes path g path h pathfinish g = pathstart g pathfinish h = pathstart h∧

t x . t ∈ {0 ..1} =⇒ closed segment (g t) (h t) ⊆ S
shows homotopic loops S g h

using assms
unfolding path defs homotopic loops def homotopic with def
apply (rule tac x=λy . ((1 − (fst y)) ∗R g(snd y) + (fst y) ∗R h(snd y)) in exI )
by (force simp: closed segment def intro!: continuous intros intro: continuous on compose2

[where g=g ] continuous on compose2 [where g=h])
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lemma homotopic paths nearby explicit :
assumes §: path g path h pathstart h = pathstart g pathfinish h = pathfinish g

and no:
∧
t x . [[t ∈ {0 ..1}; x /∈ S ]] =⇒ norm(h t − g t) < norm(g t − x )

shows homotopic paths S g h
proof (rule homotopic paths linear [OF §])
show

∧
t . t ∈ {0 ..1} =⇒ closed segment (g t) (h t) ⊆ S

by (metis no segment bound(1 ) subsetI norm minus commute not le)
qed

lemma homotopic loops nearby explicit :
assumes §: path g path h pathfinish g = pathstart g pathfinish h = pathstart h

and no:
∧
t x . [[t ∈ {0 ..1}; x /∈ S ]] =⇒ norm(h t − g t) < norm(g t − x )

shows homotopic loops S g h
proof (rule homotopic loops linear [OF §])
show

∧
t . t ∈ {0 ..1} =⇒ closed segment (g t) (h t) ⊆ S

by (metis no segment bound(1 ) subsetI norm minus commute not le)
qed

lemma homotopic nearby paths:
fixes g h :: real ⇒ ′a::euclidean space
assumes path g open S path image g ⊆ S
shows ∃ e. 0 < e ∧

(∀ h. path h ∧
pathstart h = pathstart g ∧ pathfinish h = pathfinish g ∧
(∀ t ∈ {0 ..1}. norm(h t − g t) < e) −→ homotopic paths S g h)

proof −
obtain e where e > 0 and e:

∧
x y . x ∈ path image g =⇒ y ∈ − S =⇒ e ≤

dist x y
using separate compact closed [of path image g −S ] assms by force

show ?thesis
using e [unfolded dist norm] 〈e > 0 〉

by (fastforce simp: path image def intro!: homotopic paths nearby explicit assms
exI )
qed

lemma homotopic nearby loops:
fixes g h :: real ⇒ ′a::euclidean space
assumes path g open S path image g ⊆ S pathfinish g = pathstart g
shows ∃ e. 0 < e ∧

(∀ h. path h ∧ pathfinish h = pathstart h ∧
(∀ t ∈ {0 ..1}. norm(h t − g t) < e) −→ homotopic loops S g h)

proof −
obtain e where e > 0 and e:

∧
x y . x ∈ path image g =⇒ y ∈ − S =⇒ e ≤

dist x y
using separate compact closed [of path image g −S ] assms by force

show ?thesis
using e [unfolded dist norm] 〈e > 0 〉

by (fastforce simp: path image def intro!: homotopic loops nearby explicit assms
exI )
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qed

6.18.9 Homotopy and subpaths

lemma homotopic join subpaths1 :
assumes path g and pag : path image g ⊆ s

and u: u ∈ {0 ..1} and v : v ∈ {0 ..1} and w : w ∈ {0 ..1} u ≤ v v ≤ w
shows homotopic paths s (subpath u v g +++ subpath v w g) (subpath u w g)

proof −
have 1 : t ∗ 2 ≤ 1 =⇒ u + t ∗ (v ∗ 2 ) ≤ v + t ∗ (u ∗ 2 ) for t
using affine ineq 〈u ≤ v 〉 by fastforce

have 2 : t ∗ 2 > 1 =⇒ u + (2∗t − 1 ) ∗ v ≤ v + (2∗t − 1 ) ∗ w for t
by (metis add mono thms linordered semiring(1 ) diff gt 0 iff gt less eq real def

mult .commute mult right mono 〈u ≤ v 〉 〈v ≤ w 〉)
have t2 :

∧
t ::real . t∗2 = 1 =⇒ t = 1/2 by auto

have homotopic paths (path image g) (subpath u v g +++ subpath v w g) (subpath
u w g)
proof (cases w = u)
case True
then show ?thesis
by (metis 〈path g〉 homotopic paths rinv path image subpath subset path subpath

pathstart subpath reversepath subpath subpath refl u v)
next
case False
let ?f = λt . if t ≤ 1/2 then inverse((w − u)) ∗R (2 ∗ (v − u)) ∗R t

else inverse((w − u)) ∗R ((v − u) + (w − v) ∗R (2 ∗R t
− 1 ))

show ?thesis
proof (rule homotopic paths sym [OF homotopic paths reparametrize [where f

= ?f ]])
show path (subpath u w g)
using assms(1 ) path subpath u w(1 ) by blast

show path image (subpath u w g) ⊆ path image g
by (meson path image subpath subset u w(1 ))

show continuous on {0 ..1} ?f
unfolding split 01
by (rule continuous on cases continuous intros | force simp: pathfinish def

joinpaths def dest !: t2 )+
show ?f ‘ {0 ..1} ⊆ {0 ..1}
using False assms
by (force simp: field simps not le mult left mono affine ineq dest !: 1 2 )
show (subpath u v g +++ subpath v w g) t = subpath u w g (?f t) if t ∈

{0 ..1} for t
using assms

unfolding joinpaths def subpath def by (auto simp add : divide simps
add .commute mult .commute mult .left commute)

qed (use False in auto)
qed
then show ?thesis
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by (rule homotopic paths subset [OF pag ])
qed

lemma homotopic join subpaths2 :
assumes homotopic paths s (subpath u v g +++ subpath v w g) (subpath u w g)
shows homotopic paths s (subpath w v g +++ subpath v u g) (subpath w u g)

by (metis assms homotopic paths reversepath D pathfinish subpath pathstart subpath
reversepath joinpaths reversepath subpath)

lemma homotopic join subpaths3 :
assumes hom: homotopic paths s (subpath u v g +++ subpath v w g) (subpath

u w g)
and path g and pag : path image g ⊆ s
and u: u ∈ {0 ..1} and v : v ∈ {0 ..1} and w : w ∈ {0 ..1}

shows homotopic paths s (subpath v w g +++ subpath w u g) (subpath v u g)
proof −
have homotopic paths s (subpath u w g +++ subpath w v g) ((subpath u v g +++

subpath v w g) +++ subpath w v g)
proof (rule homotopic paths join)
show homotopic paths s (subpath u w g) (subpath u v g +++ subpath v w g)
using hom homotopic paths sym eq by blast

show homotopic paths s (subpath w v g) (subpath w v g)
by (metis 〈path g〉 homotopic paths eq pag path image subpath subset path subpath

subset trans v w)
qed auto
also have homotopic paths s ((subpath u v g +++ subpath v w g) +++ subpath

w v g) (subpath u v g +++ subpath v w g +++ subpath w v g)
by (rule homotopic paths sym [OF homotopic paths assoc])
(use assms in 〈simp all add : path image subpath subset [THEN order trans]〉)

also have homotopic paths s (subpath u v g +++ subpath v w g +++ subpath w
v g)

(subpath u v g +++ linepath (pathfinish (subpath u v g))
(pathfinish (subpath u v g)))
proof (rule homotopic paths join; simp)
show path (subpath u v g) ∧ path image (subpath u v g) ⊆ s
by (metis 〈path g〉 order .trans pag path image subpath subset path subpath u

v)
show homotopic paths s (subpath v w g +++ subpath w v g) (linepath (g v) (g

v))
by (metis (no types, lifting) 〈path g〉 homotopic paths linv order trans pag

path image subpath subset path subpath pathfinish subpath reversepath subpath v w)
qed
also have homotopic paths s (subpath u v g +++ linepath (pathfinish (subpath

u v g)) (pathfinish (subpath u v g))) (subpath u v g)
proof (rule homotopic paths rid)
show path (subpath u v g)
using 〈path g〉 path subpath u v by blast

show path image (subpath u v g) ⊆ s
by (meson 〈path g〉 order .trans pag path image subpath subset u v)
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qed
finally have homotopic paths s (subpath u w g +++ subpath w v g) (subpath u

v g) .
then show ?thesis
using homotopic join subpaths2 by blast

qed

proposition homotopic join subpaths:
[[path g ; path image g ⊆ s; u ∈ {0 ..1}; v ∈ {0 ..1}; w ∈ {0 ..1}]]
=⇒ homotopic paths s (subpath u v g +++ subpath v w g) (subpath u w g)
using le cases3 [of u v w ] homotopic join subpaths1 homotopic join subpaths2

homotopic join subpaths3
by metis

Relating homotopy of trivial loops to path-connectedness.

lemma path component imp homotopic points:
assumes path component S a b
shows homotopic loops S (linepath a a) (linepath b b)

proof −
obtain g :: real ⇒ ′a where g : continuous on {0 ..1} g g ‘ {0 ..1} ⊆ S g 0 = a

g 1 = b
using assms by (auto simp: path defs)

then have continuous on ({0 ..1} × {0 ..1}) (g ◦ fst)
by (fastforce intro!: continuous intros)+

with g show ?thesis
by (auto simp add : homotopic loops def homotopic with def path defs image subset iff )

qed

lemma homotopic loops imp path component value:
[[homotopic loops S p q ; 0 ≤ t ; t ≤ 1 ]]

=⇒ path component S (p t) (q t)
apply (clarsimp simp add : homotopic loops def homotopic with def path defs)
apply (rule tac x=h ◦ (λu. (u, t)) in exI )
apply (fastforce elim!: continuous on subset intro!: continuous intros)
done

lemma homotopic points eq path component :
homotopic loops S (linepath a a) (linepath b b) ←→ path component S a b

by (auto simp: path component imp homotopic points
dest : homotopic loops imp path component value [where t=1 ])

lemma path connected eq homotopic points:
path connected S ←→
(∀ a b. a ∈ S ∧ b ∈ S −→ homotopic loops S (linepath a a) (linepath b b))

by (auto simp: path connected def path component def homotopic points eq path component)

6.18.10 Simply connected sets

defined as ”all loops are homotopic (as loops)
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definition simply connected where
simply connected S ≡

∀ p q . path p ∧ pathfinish p = pathstart p ∧ path image p ⊆ S ∧
path q ∧ pathfinish q = pathstart q ∧ path image q ⊆ S
−→ homotopic loops S p q

lemma simply connected empty [iff ]: simply connected {}
by (simp add : simply connected def )

lemma simply connected imp path connected :
fixes S :: ::real normed vector set
shows simply connected S =⇒ path connected S

by (simp add : simply connected def path connected eq homotopic points)

lemma simply connected imp connected :
fixes S :: ::real normed vector set
shows simply connected S =⇒ connected S

by (simp add : path connected imp connected simply connected imp path connected)

lemma simply connected eq contractible loop any :
fixes S :: ::real normed vector set
shows simply connected S ←→

(∀ p a. path p ∧ path image p ⊆ S ∧ pathfinish p = pathstart p ∧ a ∈ S
−→ homotopic loops S p (linepath a a))

(is ?lhs = ?rhs)
proof
assume ?lhs then show ?rhs
unfolding simply connected def by force

next
assume ?rhs then show ?lhs
unfolding simply connected def
by (metis pathfinish in path image subsetD homotopic loops trans homotopic loops sym)

qed

lemma simply connected eq contractible loop some:
fixes S :: ::real normed vector set
shows simply connected S ←→

path connected S ∧
(∀ p. path p ∧ path image p ⊆ S ∧ pathfinish p = pathstart p
−→ (∃ a. a ∈ S ∧ homotopic loops S p (linepath a a)))

(is ?lhs = ?rhs)
proof
assume ?lhs
then show ?rhs
using simply connected eq contractible loop any by (blast intro: simply connected imp path connected)

next
assume r : ?rhs
note pa = r [THEN conjunct2 , rule format ]
show ?lhs
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proof (clarsimp simp add : simply connected eq contractible loop any)
fix p a
assume path p and path image p ⊆ S pathfinish p = pathstart p
and a ∈ S

with pa [of p] show homotopic loops S p (linepath a a)
using homotopic loops trans path connected eq homotopic points r by blast

qed
qed

lemma simply connected eq contractible loop all :
fixes S :: ::real normed vector set
shows simply connected S ←→

S = {} ∨
(∃ a ∈ S . ∀ p. path p ∧ path image p ⊆ S ∧ pathfinish p = pathstart p

−→ homotopic loops S p (linepath a a))
(is ?lhs = ?rhs)

proof (cases S = {})
case True then show ?thesis by force

next
case False
then obtain a where a ∈ S by blast
show ?thesis
proof
assume simply connected S
then show ?rhs
using 〈a ∈ S 〉 〈simply connected S 〉 simply connected eq contractible loop any
by blast

next
assume ?rhs
then show simply connected S
unfolding simply connected eq contractible loop any

by (meson False homotopic loops refl homotopic loops sym homotopic loops trans

path component imp homotopic points path component refl)
qed

qed

lemma simply connected eq contractible path:
fixes S :: ::real normed vector set
shows simply connected S ←→

path connected S ∧
(∀ p. path p ∧ path image p ⊆ S ∧ pathfinish p = pathstart p
−→ homotopic paths S p (linepath (pathstart p) (pathstart p)))

(is ?lhs = ?rhs)
proof
assume ?lhs
then show ?rhs
unfolding simply connected imp path connected
by (metis simply connected eq contractible loop some homotopic loops imp homotopic paths null)
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next
assume ?rhs
then show ?lhs
using homotopic paths imp homotopic loops simply connected eq contractible loop some

by fastforce
qed

lemma simply connected eq homotopic paths:
fixes S :: ::real normed vector set
shows simply connected S ←→

path connected S ∧
(∀ p q . path p ∧ path image p ⊆ S ∧

path q ∧ path image q ⊆ S ∧
pathstart q = pathstart p ∧ pathfinish q = pathfinish p
−→ homotopic paths S p q)

(is ?lhs = ?rhs)
proof
assume ?lhs
then have pc: path connected S

and ∗:
∧
p. [[path p; path image p ⊆ S ;
pathfinish p = pathstart p]]
=⇒ homotopic paths S p (linepath (pathstart p) (pathstart p))

by (auto simp: simply connected eq contractible path)
have homotopic paths S p q

if path p path image p ⊆ S path q
path image q ⊆ S pathstart q = pathstart p
pathfinish q = pathfinish p for p q

proof −
have homotopic paths S p (p +++ linepath (pathfinish p) (pathfinish p))
by (simp add : homotopic paths rid homotopic paths sym that)

also have homotopic paths S (p +++ linepath (pathfinish p) (pathfinish p))
(p +++ reversepath q +++ q)

using that
by (metis homotopic paths join homotopic paths linv homotopic paths refl

homotopic paths sym eq pathstart linepath)
also have homotopic paths S (p +++ reversepath q +++ q)

((p +++ reversepath q) +++ q)
by (simp add : that homotopic paths assoc)

also have homotopic paths S ((p +++ reversepath q) +++ q)
(linepath (pathstart q) (pathstart q) +++ q)

using ∗ [of p +++ reversepath q ] that
by (simp add : homotopic paths join path image join)

also have homotopic paths S (linepath (pathstart q) (pathstart q) +++ q) q
using that homotopic paths lid by blast

finally show ?thesis .
qed
then show ?rhs
by (blast intro: pc ∗)

next
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assume ?rhs
then show ?lhs
by (force simp: simply connected eq contractible path)

qed

proposition simply connected Times:
fixes S :: ′a::real normed vector set and T :: ′b::real normed vector set
assumes S : simply connected S and T : simply connected T
shows simply connected(S × T )

proof −
have homotopic loops (S × T ) p (linepath (a, b) (a, b))

if path p path image p ⊆ S × T p 1 = p 0 a ∈ S b ∈ T
for p a b

proof −
have path (fst ◦ p)
by (simp add : continuous on fst Path Connected .path continuous image [OF

〈path p〉])
moreover have path image (fst ◦ p) ⊆ S
using that by (force simp add : path image def )

ultimately have p1 : homotopic loops S (fst ◦ p) (linepath a a)
using S that
by (simp add : simply connected eq contractible loop any pathfinish def path-

start def )
have path (snd ◦ p)
by (simp add : continuous on snd Path Connected .path continuous image [OF

〈path p〉])
moreover have path image (snd ◦ p) ⊆ T
using that by (force simp: path image def )

ultimately have p2 : homotopic loops T (snd ◦ p) (linepath b b)
using T that
by (simp add : simply connected eq contractible loop any pathfinish def path-

start def )
show ?thesis
using p1 p2 unfolding homotopic loops
apply clarify
subgoal for h k
by (rule tac x=λz . (h z , k z ) in exI ) (force intro: continuous intros simp:

path defs)
done

qed
with assms show ?thesis

by (simp add : simply connected eq contractible loop any pathfinish def path-
start def )
qed

6.18.11 Contractible sets

definition contractible where
contractible S ≡ ∃ a. homotopic with canon (λx . True) S S id (λx . a)



Homotopy.thy 2003

proposition contractible imp simply connected :
fixes S :: ::real normed vector set
assumes contractible S shows simply connected S

proof (cases S = {})
case True then show ?thesis by force

next
case False
obtain a where a: homotopic with canon (λx . True) S S id (λx . a)
using assms by (force simp: contractible def )

then have a ∈ S
by (metis False homotopic constant maps homotopic with symD homotopic with trans

path component in topspace topspace euclidean subtopology)
have ∀ p. path p ∧

path image p ⊆ S ∧ pathfinish p = pathstart p −→
homotopic loops S p (linepath a a)

using a apply (clarsimp simp add : homotopic loops def homotopic with def
path defs)

apply (rule tac x=(h ◦ (λy . (fst y , (p ◦ snd) y))) in exI )
apply (intro conjI continuous on compose continuous intros; force elim: con-

tinuous on subset)
done

with 〈a ∈ S 〉 show ?thesis
by (auto simp add : simply connected eq contractible loop all False)

qed

corollary contractible imp connected :
fixes S :: ::real normed vector set
shows contractible S =⇒ connected S

by (simp add : contractible imp simply connected simply connected imp connected)

lemma contractible imp path connected :
fixes S :: ::real normed vector set
shows contractible S =⇒ path connected S

by (simp add : contractible imp simply connected simply connected imp path connected)

lemma nullhomotopic through contractible:
fixes S :: ::topological space set
assumes f : continuous on S f f ‘ S ⊆ T

and g : continuous on T g g ‘ T ⊆ U
and T : contractible T

obtains c where homotopic with canon (λh. True) S U (g ◦ f ) (λx . c)
proof −
obtain b where b: homotopic with canon (λx . True) T T id (λx . b)
using assms by (force simp: contractible def )

have homotopic with canon (λf . True) T U (g ◦ id) (g ◦ (λx . b))
by (metis Abstract Topology .continuous map subtopology eu b g homotopic with compose continuous map left)
then have homotopic with canon (λf . True) S U (g ◦ id ◦ f ) (g ◦ (λx . b) ◦ f )
by (simp add : f homotopic with compose continuous map right)
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then show ?thesis
by (simp add : comp def that)

qed

lemma nullhomotopic into contractible:
assumes f : continuous on S f f ‘ S ⊆ T

and T : contractible T
obtains c where homotopic with canon (λh. True) S T f (λx . c)

by (rule nullhomotopic through contractible [OF f , of id T ]) (use assms in auto)

lemma nullhomotopic from contractible:
assumes f : continuous on S f f ‘ S ⊆ T

and S : contractible S
obtains c where homotopic with canon (λh. True) S T f (λx . c)

by (auto simp: comp def intro: nullhomotopic through contractible [OF continu-
ous on id f S ])

lemma homotopic through contractible:
fixes S :: ::real normed vector set
assumes continuous on S f1 f1 ‘ S ⊆ T

continuous on T g1 g1 ‘ T ⊆ U
continuous on S f2 f2 ‘ S ⊆ T
continuous on T g2 g2 ‘ T ⊆ U
contractible T path connected U

shows homotopic with canon (λh. True) S U (g1 ◦ f1 ) (g2 ◦ f2 )
proof −
obtain c1 where c1 : homotopic with canon (λh. True) S U (g1 ◦ f1 ) (λx . c1 )

by (rule nullhomotopic through contractible [of S f1 T g1 U ]) (use assms in
auto)
obtain c2 where c2 : homotopic with canon (λh. True) S U (g2 ◦ f2 ) (λx . c2 )

by (rule nullhomotopic through contractible [of S f2 T g2 U ]) (use assms in
auto)
have S = {} ∨ (∃ t . path connected t ∧ t ⊆ U ∧ c2 ∈ t ∧ c1 ∈ t)
proof (cases S = {})
case True then show ?thesis by force

next
case False
with c1 c2 have c1 ∈ U c2 ∈ U
using homotopic with imp continuous maps by fastforce+

with 〈path connected U 〉 show ?thesis by blast
qed
then have homotopic with canon (λh. True) S U (λx . c2 ) (λx . c1 )
by (simp add : path component homotopic constant maps)

then show ?thesis
using c1 c2 homotopic with symD homotopic with trans by blast

qed

lemma homotopic into contractible:
fixes S :: ′a::real normed vector set and T :: ′b::real normed vector set
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assumes f : continuous on S f f ‘ S ⊆ T
and g : continuous on S g g ‘ S ⊆ T
and T : contractible T

shows homotopic with canon (λh. True) S T f g
using homotopic through contractible [of S f T id T g id ]
by (simp add : assms contractible imp path connected)

lemma homotopic from contractible:
fixes S :: ′a::real normed vector set and T :: ′b::real normed vector set
assumes f : continuous on S f f ‘ S ⊆ T

and g : continuous on S g g ‘ S ⊆ T
and contractible S path connected T

shows homotopic with canon (λh. True) S T f g
using homotopic through contractible [of S id S f T id g ]
by (simp add : assms contractible imp path connected)

6.18.12 Starlike sets

definition starlike S ←→ (∃ a∈S . ∀ x∈S . closed segment a x ⊆ S )

lemma starlike UNIV [simp]: starlike UNIV
by (simp add : starlike def )

lemma convex imp starlike:
convex S =⇒ S 6= {} =⇒ starlike S
unfolding convex contains segment starlike def by auto

lemma starlike convex tweak boundary points:
fixes S :: ′a::euclidean space set
assumes convex S S 6= {} and ST : rel interior S ⊆ T and TS : T ⊆ closure S
shows starlike T

proof −
have rel interior S 6= {}
by (simp add : assms rel interior eq empty)

then obtain a where a: a ∈ rel interior S by blast
with ST have a ∈ T by blast
have

∧
x . x ∈ T =⇒ open segment a x ⊆ rel interior S

by (rule rel interior closure convex segment [OF 〈convex S 〉 a]) (use assms in
auto)
then have ∀ x∈T . a ∈ T ∧ open segment a x ⊆ T
using ST by (blast intro: a 〈a ∈ T 〉 rel interior closure convex segment [OF

〈convex S 〉 a])
then show ?thesis
unfolding starlike def using bexI [OF 〈a ∈ T 〉]
by (simp add : closed segment eq open)

qed

lemma starlike imp contractible gen:
fixes S :: ′a::real normed vector set
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assumes S : starlike S
and P :

∧
a T . [[a ∈ S ; 0 ≤ T ; T ≤ 1 ]] =⇒ P(λx . (1 − T ) ∗R x + T ∗R a)

obtains a where homotopic with canon P S S (λx . x ) (λx . a)
proof −
obtain a where a ∈ S and a:

∧
x . x ∈ S =⇒ closed segment a x ⊆ S

using S by (auto simp: starlike def )
have

∧
t b. 0 ≤ t ∧ t ≤ 1 =⇒
∃ u. (1 − t) ∗R b + t ∗R a = (1 − u) ∗R a + u ∗R b ∧ 0 ≤ u ∧ u ≤ 1

by (metis add diff cancel right ′ diff ge 0 iff ge le add diff inverse pth c(1 ))
then have (λy . (1 − fst y) ∗R snd y + fst y ∗R a) ‘ ({0 ..1} × S ) ⊆ S
using a [unfolded closed segment def ] by force

then have homotopic with canon P S S (λx . x ) (λx . a)
using 〈a ∈ S 〉

unfolding homotopic with def
apply (rule tac x=λy . (1 − (fst y)) ∗R snd y + (fst y) ∗R a in exI )
apply (force simp add : P intro: continuous intros)
done

then show ?thesis
using that by blast

qed

lemma starlike imp contractible:
fixes S :: ′a::real normed vector set
shows starlike S =⇒ contractible S

using starlike imp contractible gen contractible def by (fastforce simp: id def )

lemma contractible UNIV [simp]: contractible (UNIV :: ′a::real normed vector
set)
by (simp add : starlike imp contractible)

lemma starlike imp simply connected :
fixes S :: ′a::real normed vector set
shows starlike S =⇒ simply connected S

by (simp add : contractible imp simply connected starlike imp contractible)

lemma convex imp simply connected :
fixes S :: ′a::real normed vector set
shows convex S =⇒ simply connected S

using convex imp starlike starlike imp simply connected by blast

lemma starlike imp path connected :
fixes S :: ′a::real normed vector set
shows starlike S =⇒ path connected S

by (simp add : simply connected imp path connected starlike imp simply connected)

lemma starlike imp connected :
fixes S :: ′a::real normed vector set
shows starlike S =⇒ connected S

by (simp add : path connected imp connected starlike imp path connected)
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lemma is interval simply connected 1 :
fixes S :: real set
shows is interval S ←→ simply connected S

using convex imp simply connected is interval convex 1 is interval path connected 1
simply connected imp path connected by auto

lemma contractible empty [simp]: contractible {}
by (simp add : contractible def homotopic on emptyI )

lemma contractible convex tweak boundary points:
fixes S :: ′a::euclidean space set
assumes convex S and TS : rel interior S ⊆ T T ⊆ closure S
shows contractible T

proof (cases S = {})
case True
with assms show ?thesis
by (simp add : subsetCE )

next
case False
show ?thesis
by (meson False assms starlike convex tweak boundary points starlike imp contractible)

qed

lemma convex imp contractible:
fixes S :: ′a::real normed vector set
shows convex S =⇒ contractible S
using contractible empty convex imp starlike starlike imp contractible by blast

lemma contractible sing [simp]:
fixes a :: ′a::real normed vector
shows contractible {a}

by (rule convex imp contractible [OF convex singleton])

lemma is interval contractible 1 :
fixes S :: real set
shows is interval S ←→ contractible S

using contractible imp simply connected convex imp contractible is interval convex 1
is interval simply connected 1 by auto

lemma contractible Times:
fixes S :: ′a::euclidean space set and T :: ′b::euclidean space set
assumes S : contractible S and T : contractible T
shows contractible (S × T )

proof −
obtain a h where conth: continuous on ({0 ..1} × S ) h

and hsub: h ‘ ({0 ..1} × S ) ⊆ S
and [simp]:

∧
x . x ∈ S =⇒ h (0 , x ) = x

and [simp]:
∧
x . x ∈ S =⇒ h (1 ::real , x ) = a

Homotopy.html


2008

using S by (auto simp: contractible def homotopic with)
obtain b k where contk : continuous on ({0 ..1} × T ) k

and ksub: k ‘ ({0 ..1} × T ) ⊆ T
and [simp]:

∧
x . x ∈ T =⇒ k (0 , x ) = x

and [simp]:
∧
x . x ∈ T =⇒ k (1 ::real , x ) = b

using T by (auto simp: contractible def homotopic with)
show ?thesis
apply (simp add : contractible def homotopic with)
apply (rule exI [where x=a])
apply (rule exI [where x=b])
apply (rule exI [where x = λz . (h (fst z , fst(snd z )), k (fst z , snd(snd z )))])
using hsub ksub
apply (fastforce intro!: continuous intros continuous on compose2 [OF conth]

continuous on compose2 [OF contk ])
done

qed

6.18.13 Local versions of topological properties in general

definition locally :: ( ′a::topological space set ⇒ bool) ⇒ ′a set ⇒ bool
where
locally P S ≡

∀w x . openin (top of set S ) w ∧ x ∈ w
−→ (∃ u v . openin (top of set S ) u ∧ P v ∧ x ∈ u ∧ u ⊆ v ∧ v ⊆ w)

lemma locallyI :
assumes

∧
w x . [[openin (top of set S ) w ; x ∈ w ]]
=⇒ ∃ u v . openin (top of set S ) u ∧ P v ∧ x ∈ u ∧ u ⊆ v ∧ v ⊆ w

shows locally P S
using assms by (force simp: locally def )

lemma locallyE :
assumes locally P S openin (top of set S ) w x ∈ w
obtains u v where openin (top of set S ) u

P v x ∈ u u ⊆ v v ⊆ w
using assms unfolding locally def by meson

lemma locally mono:
assumes locally P S

∧
T . P T =⇒ Q T

shows locally Q S
by (metis assms locally def )

lemma locally open subset :
assumes locally P S openin (top of set S ) t
shows locally P t

using assms
unfolding locally def
by (elim all forward) (meson dual order .trans openin imp subset openin subset trans

openin trans)
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lemma locally diff closed :
[[locally P S ; closedin (top of set S ) t ]] =⇒ locally P (S − t)

using locally open subset closedin def by fastforce

lemma locally empty [iff ]: locally P {}
by (simp add : locally def openin subtopology)

lemma locally singleton [iff ]:
fixes a :: ′a::metric space
shows locally P {a} ←→ P {a}

proof −
have ∀ x ::real . ¬ 0 < x =⇒ P {a}
using zero less one by blast

then show ?thesis
unfolding locally def
by (auto simp add : openin euclidean subtopology iff subset singleton iff conj disj distribR)

qed

lemma locally iff :
locally P S ←→
(∀T x . open T ∧ x ∈ S ∩ T −→ (∃U . open U ∧ (∃V . P V ∧ x ∈ S ∩ U ∧

S ∩ U ⊆ V ∧ V ⊆ S ∩ T )))
apply (simp add : le inf iff locally def openin open, safe)
apply (metis IntE IntI le inf iff )
apply (metis IntI Int subset iff )
done

lemma locally Int :
assumes S : locally P S and T : locally P T

and P :
∧
S T . P S ∧ P T =⇒ P(S ∩ T )

shows locally P (S ∩ T )
unfolding locally iff

proof clarify
fix A x
assume open A x ∈ A x ∈ S x ∈ T
then obtain U1 V1 U2 V2
where open U1 P V1 x ∈ S ∩ U1 S ∩ U1 ⊆ V1 ∧ V1 ⊆ S ∩ A

open U2 P V2 x ∈ T ∩ U2 T ∩ U2 ⊆ V2 ∧ V2 ⊆ T ∩ A
using S T unfolding locally iff by (meson IntI )

then have S ∩ T ∩ (U1 ∩ U2 ) ⊆ V1 ∩ V2 V1 ∩ V2 ⊆ S ∩ T ∩ A x ∈ S ∩
T ∩ (U1 ∩ U2 )

by blast+
moreover have P (V1 ∩ V2 )
by (simp add : P 〈P V1 〉 〈P V2 〉)

ultimately show ∃U . open U ∧ (∃V . P V ∧ x ∈ S ∩ T ∩ U ∧ S ∩ T ∩ U
⊆ V ∧ V ⊆ S ∩ T ∩ A)

using 〈open U1 〉 〈open U2 〉 by blast
qed
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lemma locally Times:
fixes S :: ( ′a::metric space) set and T :: ( ′b::metric space) set
assumes PS : locally P S and QT : locally Q T and R:

∧
S T . P S ∧ Q T =⇒

R(S × T )
shows locally R (S × T )
unfolding locally def

proof (clarify)
fix W x y
assume W : openin (top of set (S × T )) W and xy : (x , y) ∈ W
then obtain U V where openin (top of set S ) U x ∈ U

openin (top of set T ) V y ∈ V U × V ⊆ W
using Times in interior subtopology by metis

then obtain U1 U2 V1 V2
where opeS : openin (top of set S ) U1 ∧ P U2 ∧ x ∈ U1 ∧ U1 ⊆ U2 ∧

U2 ⊆ U
and opeT : openin (top of set T ) V1 ∧ Q V2 ∧ y ∈ V1 ∧ V1 ⊆ V2 ∧

V2 ⊆ V
by (meson PS QT locallyE )

then have openin (top of set (S × T )) (U1 × V1 )
by (simp add : openin Times)

moreover have R (U2 × V2 )
by (simp add : R opeS opeT )

moreover have U1 × V1 ⊆ U2 × V2 ∧ U2 × V2 ⊆ W
using opeS opeT 〈U × V ⊆ W 〉 by auto

ultimately show ∃U V . openin (top of set (S × T )) U ∧ R V ∧ (x ,y) ∈ U ∧
U ⊆ V ∧ V ⊆ W

using opeS opeT by auto
qed

proposition homeomorphism locally imp:
fixes S :: ′a::metric space set and T :: ′b::t2 space set
assumes S : locally P S and hom: homeomorphism S T f g

and Q :
∧
S S ′. [[P S ; homeomorphism S S ′ f g ]] =⇒ Q S ′

shows locally Q T
proof (clarsimp simp: locally def )
fix W y
assume y ∈ W and openin (top of set T ) W
then obtain A where T : open A W = T ∩ A
by (force simp: openin open)

then have W ⊆ T by auto
have f :

∧
x . x ∈ S =⇒ g(f x ) = x f ‘ S = T continuous on S f

and g :
∧
y . y ∈ T =⇒ f (g y) = y g ‘ T = S continuous on T g

using hom by (auto simp: homeomorphism def )
have gw : g ‘ W = S ∩ f −‘ W
using 〈W ⊆ T 〉 g by force

have ◦: openin (top of set S ) (g ‘ W )
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proof −
have continuous on S f
using f (3 ) by blast

then show openin (top of set S ) (g ‘ W )
by (simp add : gw Collect conj eq 〈openin (top of set T ) W 〉 continuous on open

f (2 ))
qed
then obtain U V
where osu: openin (top of set S ) U and uv : P V g y ∈ U U ⊆ V V ⊆ g ‘ W
using S [unfolded locally def , rule format , of g ‘ W g y ] 〈y ∈ W 〉 by force

have V ⊆ S using uv by (simp add : gw)
have fv : f ‘ V = T ∩ {x . g x ∈ V }
using 〈f ‘ S = T 〉 f 〈V ⊆ S 〉 by auto

have f ‘ V ⊆ W
using uv using Int lower2 gw image subsetI mem Collect eq subset iff by auto

have contvf : continuous on V f
using 〈V ⊆ S 〉 continuous on subset f (3 ) by blast

have contvg : continuous on (f ‘ V ) g
using 〈f ‘ V ⊆ W 〉 〈W ⊆ T 〉 continuous on subset [OF g(3 )] by blast

have V ⊆ g ‘ f ‘ V
by (metis 〈V ⊆ S 〉 hom homeomorphism def homeomorphism of subsets or-

der refl)
then have homv : homeomorphism V (f ‘ V ) f g
using 〈V ⊆ S 〉 f by (auto simp add : homeomorphism def contvf contvg)

have openin (top of set (g ‘ T )) U
using 〈g ‘ T = S 〉 by (simp add : osu)

then have 1 : openin (top of set T ) (T ∩ g −‘ U )
using 〈continuous on T g〉 continuous on open [THEN iffD1 ] by blast

have 2 : ∃V . Q V ∧ y ∈ (T ∩ g −‘ U ) ∧ (T ∩ g −‘ U ) ⊆ V ∧ V ⊆ W
proof (intro exI conjI )
show Q (f ‘ V )
using Q homv 〈P V 〉 by blast

show y ∈ T ∩ g −‘ U
using T (2 ) 〈y ∈ W 〉 〈g y ∈ U 〉 by blast

show T ∩ g −‘ U ⊆ f ‘ V
using g(1 ) image iff uv(3 ) by fastforce

show f ‘ V ⊆ W
using 〈f ‘ V ⊆ W 〉 by blast

qed
show ∃U . openin (top of set T ) U ∧ (∃ v . Q v ∧ y ∈ U ∧ U ⊆ v ∧ v ⊆ W )
by (meson 1 2 )

qed

lemma homeomorphism locally :
fixes f :: ′a::metric space ⇒ ′b::metric space
assumes hom: homeomorphism S T f g

and eq :
∧
S T . homeomorphism S T f g =⇒ (P S ←→ Q T )

shows locally P S ←→ locally Q T
(is ?lhs = ?rhs)
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proof
assume ?lhs
then show ?rhs
using eq hom homeomorphism locally imp by blast

next
assume ?rhs
then show ?lhs
using eq homeomorphism sym homeomorphism symD [OF hom]
by (blast intro: homeomorphism locally imp)

qed

lemma homeomorphic locally :
fixes S :: ′a::metric space set and T :: ′b::metric space set
assumes hom: S homeomorphic T

and iff :
∧
X Y . X homeomorphic Y =⇒ (P X ←→ Q Y )

shows locally P S ←→ locally Q T
proof −
obtain f g where hom: homeomorphism S T f g
using assms by (force simp: homeomorphic def )

then show ?thesis
using homeomorphic def local .iff
by (blast intro!: homeomorphism locally)

qed

lemma homeomorphic local compactness:
fixes S :: ′a::metric space set and T :: ′b::metric space set
shows S homeomorphic T =⇒ locally compact S ←→ locally compact T

by (simp add : homeomorphic compactness homeomorphic locally)

lemma locally translation:
fixes P :: ′a :: real normed vector set ⇒ bool
shows (

∧
S . P ((+) a ‘ S ) = P S ) =⇒ locally P ((+) a ‘ S ) = locally P S

using homeomorphism locally [OF homeomorphism translation]
by (metis (full types) homeomorphism image2 )

lemma locally injective linear image:
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes f : linear f inj f and iff :

∧
S . P (f ‘ S ) ←→ Q S

shows locally P (f ‘ S ) ←→ locally Q S
using homeomorphism locally [of f‘S f ] linear homeomorphism image [OF f ]
by (metis (no types, lifting) homeomorphism image2 iff )

lemma locally open map image:
fixes f :: ′a::real normed vector ⇒ ′b::real normed vector
assumes P : locally P S

and f : continuous on S f
and oo:

∧
T . openin (top of set S ) T =⇒ openin (top of set (f ‘ S )) (f ‘ T )

and Q :
∧
T . [[T ⊆ S ; P T ]] =⇒ Q(f ‘ T )

shows locally Q (f ‘ S )
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proof (clarsimp simp add : locally def )
fix W y
assume oiw : openin (top of set (f ‘ S )) W and y ∈ W
then have W ⊆ f ‘ S by (simp add : openin euclidean subtopology iff )
have oivf : openin (top of set S ) (S ∩ f −‘ W )
by (rule continuous on open [THEN iffD1 , rule format , OF f oiw ])

then obtain x where x ∈ S f x = y
using 〈W ⊆ f ‘ S 〉 〈y ∈ W 〉 by blast

then obtain U V
where openin (top of set S ) U P V x ∈ U U ⊆ V V ⊆ S ∩ f −‘ W
using P [unfolded locally def , rule format , of (S ∩ f −‘ W ) x ] oivf 〈y ∈ W 〉

by auto
then have openin (top of set (f ‘ S )) (f ‘ U )
by (simp add : oo)

then show ∃X . openin (top of set (f ‘ S )) X ∧ (∃Y . Q Y ∧ y ∈ X ∧ X ⊆ Y
∧ Y ⊆ W )

using Q 〈P V 〉 〈U ⊆ V 〉 〈V ⊆ S ∩ f −‘ W 〉 〈f x = y〉 〈x ∈ U 〉 by blast
qed

6.18.14 An induction principle for connected sets

proposition connected induction:
assumes connected S

and opD :
∧
T a. [[openin (top of set S ) T ; a ∈ T ]] =⇒ ∃ z . z ∈ T ∧ P z

and opI :
∧
a. a ∈ S

=⇒ ∃T . openin (top of set S ) T ∧ a ∈ T ∧
(∀ x ∈ T . ∀ y ∈ T . P x ∧ P y ∧ Q x −→ Q y)

and etc: a ∈ S b ∈ S P a P b Q a
shows Q b

proof −
let ?A = {b. ∃T . openin (top of set S ) T ∧ b ∈ T ∧ (∀ x∈T . P x −→ Q x )}
let ?B = {b. ∃T . openin (top of set S ) T ∧ b ∈ T ∧ (∀ x∈T . P x −→ ¬ Q x )}
have 1 : openin (top of set S ) ?A
by (subst openin subopen, blast)

have 2 : openin (top of set S ) ?B
by (subst openin subopen, blast)

have §: ?A ∩ ?B = {}
by (clarsimp simp: set eq iff ) (metis (no types, hide lams) Int iff opD openin Int)
have ∗: S ⊆ ?A ∪ ?B
by clarsimp (meson opI )

have ?A = {} ∨ ?B = {}
using 〈connected S 〉 [unfolded connected openin, simplified , rule format , OF 1

§ ∗ 2 ]
by blast

then show ?thesis
by clarsimp (meson opI etc)

qed

lemma connected equivalence relation gen:
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assumes connected S
and etc: a ∈ S b ∈ S P a P b
and trans:

∧
x y z . [[R x y ; R y z ]] =⇒ R x z

and opD :
∧
T a. [[openin (top of set S ) T ; a ∈ T ]] =⇒ ∃ z . z ∈ T ∧ P z

and opI :
∧
a. a ∈ S

=⇒ ∃T . openin (top of set S ) T ∧ a ∈ T ∧
(∀ x ∈ T . ∀ y ∈ T . P x ∧ P y −→ R x y)

shows R a b
proof −
have

∧
a b c. [[a ∈ S ; P a; b ∈ S ; c ∈ S ; P b; P c; R a b]] =⇒ R a c

apply (rule connected induction [OF 〈connected S 〉 opD ], simp all)
by (meson trans opI )

then show ?thesis by (metis etc opI )
qed

lemma connected induction simple:
assumes connected S

and etc: a ∈ S b ∈ S P a
and opI :

∧
a. a ∈ S

=⇒ ∃T . openin (top of set S ) T ∧ a ∈ T ∧
(∀ x ∈ T . ∀ y ∈ T . P x −→ P y)

shows P b
by (rule connected induction [OF 〈connected S 〉 , where P = λx . True])

(use opI etc in auto)

lemma connected equivalence relation:
assumes connected S

and etc: a ∈ S b ∈ S
and sym:

∧
x y . [[R x y ; x ∈ S ; y ∈ S ]] =⇒ R y x

and trans:
∧
x y z . [[R x y ; R y z ; x ∈ S ; y ∈ S ; z ∈ S ]] =⇒ R x z

and opI :
∧
a. a ∈ S =⇒ ∃T . openin (top of set S ) T ∧ a ∈ T ∧ (∀ x ∈ T .

R a x )
shows R a b

proof −
have

∧
a b c. [[a ∈ S ; b ∈ S ; c ∈ S ; R a b]] =⇒ R a c

apply (rule connected induction simple [OF 〈connected S 〉], simp all)
by (meson local .sym local .trans opI openin imp subset subsetCE )

then show ?thesis by (metis etc opI )
qed

lemma locally constant imp constant :
assumes connected S

and opI :
∧
a. a ∈ S

=⇒ ∃T . openin (top of set S ) T ∧ a ∈ T ∧ (∀ x ∈ T . f x = f a)
shows f constant on S

proof −
have

∧
x y . x ∈ S =⇒ y ∈ S =⇒ f x = f y

apply (rule connected equivalence relation [OF 〈connected S 〉], simp all)
by (metis opI )
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then show ?thesis
by (metis constant on def )

qed

lemma locally constant :
assumes connected S
shows locally (λU . f constant on U ) S ←→ f constant on S (is ?lhs = ?rhs)

proof
assume ?lhs
then have

∧
a. a ∈ S =⇒ ∃T . openin (top of set S ) T ∧ a ∈ T ∧ (∀ x∈T . f x

= f a)
unfolding locally def
by (metis (mono tags, hide lams) constant on def constant on subset openin subtopology self )
then show ?rhs
using assms
by (simp add : locally constant imp constant)

next
assume ?rhs then show ?lhs
using assms by (metis constant on subset locallyI openin imp subset order refl)

qed

6.18.15 Basic properties of local compactness

proposition locally compact :
fixes s :: ′a :: metric space set
shows
locally compact s ←→
(∀ x ∈ s. ∃ u v . x ∈ u ∧ u ⊆ v ∧ v ⊆ s ∧

openin (top of set s) u ∧ compact v)
(is ?lhs = ?rhs)

proof
assume ?lhs
then show ?rhs
by (meson locallyE openin subtopology self )

next
assume r [rule format ]: ?rhs
have ∗: ∃ u v .

openin (top of set s) u ∧
compact v ∧ x ∈ u ∧ u ⊆ v ∧ v ⊆ s ∩ T

if open T x ∈ s x ∈ T for x T
proof −
obtain u v where uv : x ∈ u u ⊆ v v ⊆ s compact v openin (top of set s) u
using r [OF 〈x ∈ s〉] by auto

obtain e where e>0 and e: cball x e ⊆ T
using open contains cball 〈open T 〉 〈x ∈ T 〉 by blast

show ?thesis
apply (rule tac x=(s ∩ ball x e) ∩ u in exI )
apply (rule tac x=cball x e ∩ v in exI )
using that 〈e > 0 〉 e uv
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apply auto
done

qed
show ?lhs
by (rule locallyI ) (metis ∗ Int iff openin open)

qed

lemma locally compactE :
fixes S :: ′a :: metric space set
assumes locally compact S
obtains u v where

∧
x . x ∈ S =⇒ x ∈ u x ∧ u x ⊆ v x ∧ v x ⊆ S ∧
openin (top of set S ) (u x ) ∧ compact (v x )

using assms unfolding locally compact by metis

lemma locally compact alt :
fixes S :: ′a :: heine borel set
shows locally compact S ←→

(∀ x ∈ S . ∃U . x ∈ U ∧
openin (top of set S ) U ∧ compact(closure U ) ∧ closure U ⊆ S )

(is ?lhs = ?rhs)
proof
assume ?lhs
then show ?rhs
by (meson bounded subset closure minimal compact closure compact imp bounded

compact imp closed dual order .trans locally compactE )
next
assume ?rhs then show ?lhs
by (meson closure subset locally compact)

qed

lemma locally compact Int cball :
fixes S :: ′a :: heine borel set
shows locally compact S ←→ (∀ x ∈ S . ∃ e. 0 < e ∧ closed(cball x e ∩ S ))

(is ?lhs = ?rhs)
proof
assume L: ?lhs
then have

∧
x U V e. [[U ⊆ V ; V ⊆ S ; compact V ; 0 < e; cball x e ∩ S ⊆ U ]]

=⇒ closed (cball x e ∩ S )
by (metis compact Int compact cball compact imp closed inf .absorb iff2 inf .assoc

inf .orderE )
with L show ?rhs
by (meson locally compactE openin contains cball)

next
assume R: ?rhs
show ?lhs unfolding locally compact
proof
fix x
assume x ∈ S
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then obtain e where e>0 and e: closed (cball x e ∩ S )
using R by blast

then have compact (cball x e ∩ S )
by (simp add : bounded Int compact eq bounded closed)

moreover have ∀ y∈ball x e ∩ S . ∃ ε>0 . cball y ε ∩ S ⊆ ball x e
by (meson Elementary Metric Spaces.open ball IntD1 le infI1 open contains cball eq)
moreover have openin (top of set S ) (ball x e ∩ S )
by (simp add : inf commute openin open Int)

ultimately show ∃U V . x ∈ U ∧ U ⊆ V ∧ V ⊆ S ∧ openin (top of set S )
U ∧ compact V

by (metis Int iff 〈0 < e〉 〈x ∈ S 〉 ball subset cball centre in ball inf commute
inf le1 inf mono order refl)
qed

qed

lemma locally compact compact :
fixes S :: ′a :: heine borel set
shows locally compact S ←→

(∀K . K ⊆ S ∧ compact K
−→ (∃U V . K ⊆ U ∧ U ⊆ V ∧ V ⊆ S ∧

openin (top of set S ) U ∧ compact V ))
(is ?lhs = ?rhs)

proof
assume ?lhs
then obtain u v where
uv :

∧
x . x ∈ S =⇒ x ∈ u x ∧ u x ⊆ v x ∧ v x ⊆ S ∧

openin (top of set S ) (u x ) ∧ compact (v x )
by (metis locally compactE )

have ∗: ∃U V . K ⊆ U ∧ U ⊆ V ∧ V ⊆ S ∧ openin (top of set S ) U ∧ compact
V

if K ⊆ S compact K for K
proof −
have

∧
C . (∀ c∈C . openin (top of set K ) c) ∧ K ⊆

⋃
C =⇒

∃D⊆C . finite D ∧ K ⊆
⋃

D
using that by (simp add : compact eq openin cover)

moreover have ∀ c ∈ (λx . K ∩ u x ) ‘ K . openin (top of set K ) c
using that by clarify (metis subsetD inf .absorb iff2 openin subset openin subtopology Int subset

topspace euclidean subtopology uv)
moreover have K ⊆

⋃
((λx . K ∩ u x ) ‘ K )

using that by clarsimp (meson subsetCE uv)
ultimately obtain D where D ⊆ (λx . K ∩ u x ) ‘ K finite D K ⊆

⋃
D

by metis
then obtain T where T : T ⊆ K finite T K ⊆

⋃
((λx . K ∩ u x ) ‘ T )

by (metis finite subset image)
have Tuv :

⋃
(u ‘ T ) ⊆

⋃
(v ‘ T )

using T that by (force dest !: uv)
moreover
have openin (top of set S ) (

⋃
(u ‘ T ))

using T that uv by fastforce
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moreover
have compact (

⋃
(v ‘ T ))

by (meson T compact UN subset eq that(1 ) uv)
moreover have

⋃
(v ‘ T ) ⊆ S

by (metis SUP least T (1 ) subset eq that(1 ) uv)
ultimately show ?thesis
using T by auto

qed
show ?rhs
by (blast intro: ∗)

next
assume ?rhs
then show ?lhs
apply (clarsimp simp add : locally compact)
apply (drule tac x={x} in spec, simp)
done

qed

lemma open imp locally compact :
fixes S :: ′a :: heine borel set
assumes open S
shows locally compact S

proof −
have ∗: ∃U V . x ∈ U ∧ U ⊆ V ∧ V ⊆ S ∧ openin (top of set S ) U ∧ compact

V
if x ∈ S for x

proof −
obtain e where e>0 and e: cball x e ⊆ S
using open contains cball assms 〈x ∈ S 〉 by blast

have ope: openin (top of set S ) (ball x e)
by (meson e open ball ball subset cball dual order .trans open subset)

show ?thesis
proof (intro exI conjI )
let ?U = ball x e
let ?V = cball x e
show x ∈ ?U ?U ⊆ ?V ?V ⊆ S compact ?V
using 〈e > 0 〉 e by auto

show openin (top of set S ) ?U
using ope by blast

qed
qed
show ?thesis
unfolding locally compact by (blast intro: ∗)

qed

lemma closed imp locally compact :
fixes S :: ′a :: heine borel set
assumes closed S
shows locally compact S
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proof −
have ∗: ∃U V . x ∈ U ∧ U ⊆ V ∧ V ⊆ S ∧ openin (top of set S ) U ∧ compact

V
if x ∈ S for x

apply (rule tac x = S ∩ ball x 1 in exI , rule tac x = S ∩ cball x 1 in exI )
using 〈x ∈ S 〉 assms by auto

show ?thesis
unfolding locally compact by (blast intro: ∗)

qed

lemma locally compact UNIV : locally compact (UNIV :: ′a :: heine borel set)
by (simp add : closed imp locally compact)

lemma locally compact Int :
fixes S :: ′a :: t2 space set
shows [[locally compact S ; locally compact t ]] =⇒ locally compact (S ∩ t)

by (simp add : compact Int locally Int)

lemma locally compact closedin:
fixes S :: ′a :: heine borel set
shows [[closedin (top of set S ) t ; locally compact S ]]

=⇒ locally compact t
unfolding closedin closed
using closed imp locally compact locally compact Int by blast

lemma locally compact delete:
fixes S :: ′a :: t1 space set
shows locally compact S =⇒ locally compact (S − {a})

by (auto simp: openin delete locally open subset)

lemma locally closed :
fixes S :: ′a :: heine borel set
shows locally closed S ←→ locally compact S

(is ?lhs = ?rhs)
proof
assume ?lhs
then show ?rhs
unfolding locally def
apply (elim all forward imp forward asm rl exE )
apply (rule tac x = u ∩ ball x 1 in exI )
apply (rule tac x = v ∩ cball x 1 in exI )
apply (force intro: openin trans)
done

next
assume ?rhs then show ?lhs
using compact eq bounded closed locally mono by blast

qed

lemma locally compact openin Un:
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fixes S :: ′a::euclidean space set
assumes LCS : locally compact S and LCT :locally compact T

and opS : openin (top of set (S ∪ T )) S
and opT : openin (top of set (S ∪ T )) T

shows locally compact (S ∪ T )
proof −
have ∃ e>0 . closed (cball x e ∩ (S ∪ T )) if x ∈ S for x
proof −
obtain e1 where e1 > 0 and e1 : closed (cball x e1 ∩ S )
using LCS 〈x ∈ S 〉 unfolding locally compact Int cball by blast

moreover obtain e2 where e2 > 0 and e2 : cball x e2 ∩ (S ∪ T ) ⊆ S
by (meson 〈x ∈ S 〉 opS openin contains cball)

then have cball x e2 ∩ (S ∪ T ) = cball x e2 ∩ S
by force

ultimately have closed (cball x (min e1 e2 ) ∩ (S ∪ T ))
by (metis (no types, lifting) cball min Int closed Int closed cball inf assoc

inf commute)
then show ?thesis
by (metis 〈0 < e1 〉 〈0 < e2 〉 min def )

qed
moreover have ∃ e>0 . closed (cball x e ∩ (S ∪ T )) if x ∈ T for x
proof −
obtain e1 where e1 > 0 and e1 : closed (cball x e1 ∩ T )
using LCT 〈x ∈ T 〉 unfolding locally compact Int cball by blast

moreover obtain e2 where e2 > 0 and e2 : cball x e2 ∩ (S ∪ T ) ⊆ T
by (meson 〈x ∈ T 〉 opT openin contains cball)

then have cball x e2 ∩ (S ∪ T ) = cball x e2 ∩ T
by force

moreover have closed (cball x e1 ∩ (cball x e2 ∩ T ))
by (metis closed Int closed cball e1 inf left commute)

ultimately show ?thesis
by (rule tac x=min e1 e2 in exI ) (simp add : 〈0 < e2 〉 cball min Int inf assoc)

qed
ultimately show ?thesis
by (force simp: locally compact Int cball)

qed

lemma locally compact closedin Un:
fixes S :: ′a::euclidean space set
assumes LCS : locally compact S and LCT :locally compact T

and clS : closedin (top of set (S ∪ T )) S
and clT : closedin (top of set (S ∪ T )) T

shows locally compact (S ∪ T )
proof −
have ∃ e>0 . closed (cball x e ∩ (S ∪ T )) if x ∈ S x ∈ T for x
proof −
obtain e1 where e1 > 0 and e1 : closed (cball x e1 ∩ S )
using LCS 〈x ∈ S 〉 unfolding locally compact Int cball by blast

moreover
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obtain e2 where e2 > 0 and e2 : closed (cball x e2 ∩ T )
using LCT 〈x ∈ T 〉 unfolding locally compact Int cball by blast

moreover have closed (cball x (min e1 e2 ) ∩ (S ∪ T ))
proof −
have closed (cball x e1 ∩ (cball x e2 ∩ S ))
by (metis closed Int closed cball e1 inf left commute)

then show ?thesis
by (simp add : Int Un distrib cball min Int closed Int closed Un e2 inf assoc)

qed
ultimately show ?thesis
by (rule tac x=min e1 e2 in exI ) linarith

qed
moreover
have ∃ e>0 . closed (cball x e ∩ (S ∪ T )) if x : x ∈ S x /∈ T for x
proof −
obtain e1 where e1 > 0 and e1 : closed (cball x e1 ∩ S )
using LCS 〈x ∈ S 〉 unfolding locally compact Int cball by blast

moreover
obtain e2 where e2>0 and cball x e2 ∩ (S ∪ T ) ⊆ S − T
using clT x by (fastforce simp: openin contains cball closedin def )

then have closed (cball x e2 ∩ T )
proof −
have {} = T − (T − cball x e2 )
using Diff subset Int Diff 〈cball x e2 ∩ (S ∪ T ) ⊆ S − T 〉 by auto

then show ?thesis
by (simp add : Diff Diff Int inf commute)

qed
with e1 have closed ((cball x e1 ∩ cball x e2 ) ∩ (S ∪ T ))
apply (simp add : inf commute inf sup distrib2 )
by (metis closed Int closed Un closed cball inf assoc inf left commute)

then have closed (cball x (min e1 e2 ) ∩ (S ∪ T ))
by (simp add : cball min Int inf commute)

ultimately show ?thesis
using 〈0 < e2 〉 by (rule tac x=min e1 e2 in exI ) linarith

qed
moreover
have ∃ e>0 . closed (cball x e ∩ (S ∪ T )) if x : x /∈ S x ∈ T for x
proof −
obtain e1 where e1 > 0 and e1 : closed (cball x e1 ∩ T )
using LCT 〈x ∈ T 〉 unfolding locally compact Int cball by blast

moreover
obtain e2 where e2>0 and cball x e2 ∩ (S ∪ T ) ⊆ S ∪ T − S
using clS x by (fastforce simp: openin contains cball closedin def )

then have closed (cball x e2 ∩ S )
by (metis Diff disjoint Int empty right closed empty inf .left commute inf .orderE

inf sup absorb)
with e1 have closed ((cball x e1 ∩ cball x e2 ) ∩ (S ∪ T ))
apply (simp add : inf commute inf sup distrib2 )
by (metis closed Int closed Un closed cball inf assoc inf left commute)

Homotopy.html


2022

then have closed (cball x (min e1 e2 ) ∩ (S ∪ T ))
by (auto simp: cball min Int)

ultimately show ?thesis
using 〈0 < e2 〉 by (rule tac x=min e1 e2 in exI ) linarith

qed
ultimately show ?thesis
by (auto simp: locally compact Int cball)

qed

lemma locally compact Times:
fixes S :: ′a::euclidean space set and T :: ′b::euclidean space set
shows [[locally compact S ; locally compact T ]] =⇒ locally compact (S × T )
by (auto simp: compact Times locally Times)

lemma locally compact compact subopen:
fixes S :: ′a :: heine borel set
shows
locally compact S ←→
(∀K T . K ⊆ S ∧ compact K ∧ open T ∧ K ⊆ T

−→ (∃U V . K ⊆ U ∧ U ⊆ V ∧ U ⊆ T ∧ V ⊆ S ∧
openin (top of set S ) U ∧ compact V ))

(is ?lhs = ?rhs)
proof
assume L: ?lhs
show ?rhs
proof clarify
fix K :: ′a set and T :: ′a set
assume K ⊆ S and compact K and open T and K ⊆ T
obtain U V where K ⊆ U U ⊆ V V ⊆ S compact V

and ope: openin (top of set S ) U
using L unfolding locally compact compact by (meson 〈K ⊆ S 〉 〈compact

K 〉)
show ∃U V . K ⊆ U ∧ U ⊆ V ∧ U ⊆ T ∧ V ⊆ S ∧

openin (top of set S ) U ∧ compact V
proof (intro exI conjI )
show K ⊆ U ∩ T
by (simp add : 〈K ⊆ T 〉 〈K ⊆ U 〉)

show U ∩ T ⊆ closure(U ∩ T )
by (rule closure subset)

show closure (U ∩ T ) ⊆ S
by (metis 〈U ⊆ V 〉 〈V ⊆ S 〉 〈compact V 〉 closure closed closure mono

compact imp closed inf .cobounded1 subset trans)
show openin (top of set S ) (U ∩ T )
by (simp add : 〈open T 〉 ope openin Int open)

show compact (closure (U ∩ T ))
by (meson Int lower1 〈U ⊆ V 〉 〈compact V 〉 bounded subset compact closure

compact eq bounded closed)
qed auto

qed
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next
assume ?rhs then show ?lhs
unfolding locally compact compact
by (metis open openin openin topspace subtopology superset top.extremum topspace euclidean subtopology)

qed

6.18.16 Sura-Bura’s results about compact components of
sets

proposition Sura Bura compact :
fixes S :: ′a::euclidean space set
assumes compact S and C : C ∈ components S
shows C =

⋂
{T . C ⊆ T ∧ openin (top of set S ) T ∧

closedin (top of set S ) T}
(is C =

⋂
?T )

proof
obtain x where x : C = connected component set S x and x ∈ S
using C by (auto simp: components def )

have C ⊆ S
by (simp add : C in components subset)

have
⋂
?T ⊆ connected component set S x

proof (rule connected component maximal)
have x ∈ C
by (simp add : 〈x ∈ S 〉 x )

then show x ∈
⋂
?T

by blast
have clo: closed (

⋂
?T )

by (simp add : 〈compact S 〉 closed Inter closedin compact eq compact imp closed)
have False
if K1 : closedin (top of set (

⋂
?T )) K1 and

K2 : closedin (top of set (
⋂
?T )) K2 and

K12 Int : K1 ∩ K2 = {} and K12 Un: K1 ∪ K2 =
⋂
?T and K1 6= {}

K2 6= {}
for K1 K2

proof −
have closed K1 closed K2
using closedin closed trans clo K1 K2 by blast+

then obtain V1 V2 where open V1 open V2 K1 ⊆ V1 K2 ⊆ V2 and V12 :
V1 ∩ V2 = {}

using separation normal 〈K1 ∩ K2 = {}〉 by metis
have SV12 ne: (S − (V1 ∪ V2 )) ∩ (

⋂
?T ) 6= {}

proof (rule compact imp fip)
show compact (S − (V1 ∪ V2 ))
by (simp add : 〈open V1 〉 〈open V2 〉 〈compact S 〉 compact diff open Un)

show cloT : closed T if T ∈ ?T for T
using that 〈compact S 〉

by (force intro: closedin closed trans simp add : compact imp closed)
show (S − (V1 ∪ V2 )) ∩

⋂
F 6= {} if finite F and F : F ⊆ ?T for F

proof
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assume djo: (S − (V1 ∪ V2 )) ∩
⋂
F = {}

obtain D where opeD : openin (top of set S ) D
and cloD : closedin (top of set S ) D
and C ⊆ D and DV12 : D ⊆ V1 ∪ V2

proof (cases F = {})
case True
with 〈C ⊆ S 〉 djo that show ?thesis
by force

next
case False show ?thesis
proof
show ope: openin (top of set S ) (

⋂
F)

using openin Inter 〈finite F 〉 False F by blast
then show closedin (top of set S ) (

⋂
F)

by (meson cloT F closed Inter closed subset openin imp subset
subset eq)

show C ⊆
⋂
F

using F by auto
show

⋂
F ⊆ V1 ∪ V2

using ope djo openin imp subset by fastforce
qed

qed
have connected C
by (simp add : x )

have closed D
using 〈compact S 〉 cloD closedin closed trans compact imp closed by blast
have cloV1 : closedin (top of set D) (D ∩ closure V1 )
and cloV2 : closedin (top of set D) (D ∩ closure V2 )
by (simp all add : closedin closed Int)

moreover have D ∩ closure V1 = D ∩ V1 D ∩ closure V2 = D ∩ V2
using 〈D ⊆ V1 ∪ V2 〉 〈open V1 〉 〈open V2 〉 V12

by (auto simp add : closure subset [THEN subsetD ] closure iff nhds not empty ,
blast+)

ultimately have cloDV1 : closedin (top of set D) (D ∩ V1 )
and cloDV2 : closedin (top of set D) (D ∩ V2 )

by metis+
then obtain U1 U2 where closed U1 closed U2

and D1 : D ∩ V1 = D ∩ U1 and D2 : D ∩ V2 = D ∩ U2
by (auto simp: closedin closed)

have D ∩ U1 ∩ C 6= {}
proof
assume D ∩ U1 ∩ C = {}
then have ∗: C ⊆ D ∩ V2
using D1 DV12 〈C ⊆ D 〉 by auto

have 1 : openin (top of set S ) (D ∩ V2 )
by (simp add : 〈open V2 〉 opeD openin Int open)

have 2 : closedin (top of set S ) (D ∩ V2 )
using cloD cloDV2 closedin trans by blast

have
⋂

?T ⊆ D ∩ V2
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by (rule Inter lower) (use ∗ 1 2 in simp)
then show False
using K1 V12 〈K1 6= {}〉 〈K1 ⊆ V1 〉 closedin imp subset by blast

qed
moreover have D ∩ U2 ∩ C 6= {}
proof
assume D ∩ U2 ∩ C = {}
then have ∗: C ⊆ D ∩ V1
using D2 DV12 〈C ⊆ D 〉 by auto

have 1 : openin (top of set S ) (D ∩ V1 )
by (simp add : 〈open V1 〉 opeD openin Int open)

have 2 : closedin (top of set S ) (D ∩ V1 )
using cloD cloDV1 closedin trans by blast

have
⋂
?T ⊆ D ∩ V1

by (rule Inter lower) (use ∗ 1 2 in simp)
then show False
using K2 V12 〈K2 6= {}〉 〈K2 ⊆ V2 〉 closedin imp subset by blast

qed
ultimately show False
using 〈connected C 〉 [unfolded connected closed , simplified , rule format ,

of concl : D ∩ U1 D ∩ U2 ]
using 〈C ⊆ D 〉 D1 D2 V12 DV12 〈closed U1 〉 〈closed U2 〉 〈closed D 〉

by blast
qed

qed
show False

by (metis (full types) DiffE UnE Un upper2 SV12 ne 〈K1 ⊆ V1 〉 〈K2 ⊆
V2 〉 disjoint iff not equal subsetCE sup ge1 K12 Un)

qed
then show connected (

⋂
?T )

by (auto simp: connected closedin eq)
show

⋂
?T ⊆ S

by (fastforce simp: C in components subset)
qed
with x show

⋂
?T ⊆ C by simp

qed auto

corollary Sura Bura clopen subset :
fixes S :: ′a::euclidean space set
assumes S : locally compact S and C : C ∈ components S and compact C

and U : open U C ⊆ U
obtains K where openin (top of set S ) K compact K C ⊆ K K ⊆ U

proof (rule ccontr)
assume ¬ thesis
with that have neg : @K . openin (top of set S ) K ∧ compact K ∧ C ⊆ K ∧ K
⊆ U

by metis
obtain V K where C ⊆ V V ⊆ U V ⊆ K K ⊆ S compact K
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and opeSV : openin (top of set S ) V
using S U 〈compact C 〉 by (meson C in components subset locally compact compact subopen)
let ?T = {T . C ⊆ T ∧ openin (top of set K ) T ∧ compact T ∧ T ⊆ K}
have CK : C ∈ components K

by (meson C 〈C ⊆ V 〉 〈K ⊆ S 〉 〈V ⊆ K 〉 components intermediate subset
subset trans)
with 〈compact K 〉

have C =
⋂
{T . C ⊆ T ∧ openin (top of set K ) T ∧ closedin (top of set K )

T}
by (simp add : Sura Bura compact)

then have Ceq : C =
⋂
?T

by (simp add : closedin compact eq 〈compact K 〉)
obtain W where open W and W : V = S ∩ W
using opeSV by (auto simp: openin open)

have −(U ∩ W ) ∩
⋂

?T 6= {}
proof (rule closed imp fip compact)
show − (U ∩ W ) ∩

⋂
F 6= {}

if finite F and F : F ⊆ ?T for F
proof (cases F = {})
case True
have False if U = UNIV W = UNIV
proof −
have V = S
by (simp add : W 〈W = UNIV 〉)

with neg show False
using 〈C ⊆ V 〉 〈K ⊆ S 〉 〈V ⊆ K 〉 〈V ⊆ U 〉 〈compact K 〉 by auto

qed
with True show ?thesis
by auto

next
case False
show ?thesis
proof
assume − (U ∩ W ) ∩

⋂
F = {}

then have FUW :
⋂
F ⊆ U ∩ W

by blast
have C ⊆

⋂
F

using F by auto
moreover have compact (

⋂
F)

by (metis (no types, lifting) compact Inter False mem Collect eq subsetCE
F)

moreover have
⋂
F ⊆ K

using False that(2 ) by fastforce
moreover have opeKF : openin (top of set K ) (

⋂
F)

using False F 〈finite F 〉 by blast
then have opeVF : openin (top of set V ) (

⋂
F)

using W 〈K ⊆ S 〉 〈V ⊆ K 〉 opeKF 〈
⋂
F ⊆ K 〉 FUW openin subset trans

by fastforce
then have openin (top of set S ) (

⋂
F)
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by (metis opeSV openin trans)
moreover have

⋂
F ⊆ U

by (meson 〈V ⊆ U 〉 opeVF dual order .trans openin imp subset)
ultimately show False
using neg by blast

qed
qed

qed (use 〈open W 〉 〈open U 〉 in auto)
with W Ceq 〈C ⊆ V 〉 〈C ⊆ U 〉 show False
by auto

qed

corollary Sura Bura clopen subset alt :
fixes S :: ′a::euclidean space set
assumes S : locally compact S and C : C ∈ components S and compact C

and opeSU : openin (top of set S ) U and C ⊆ U
obtains K where openin (top of set S ) K compact K C ⊆ K K ⊆ U

proof −
obtain V where open V U = S ∩ V
using opeSU by (auto simp: openin open)

with 〈C ⊆ U 〉 have C ⊆ V
by auto

then show ?thesis
using Sura Bura clopen subset [OF S C 〈compact C 〉 〈open V 〉]
by (metis 〈U = S ∩ V 〉 inf .bounded iff openin imp subset that)

qed

corollary Sura Bura:
fixes S :: ′a::euclidean space set
assumes locally compact S C ∈ components S compact C
shows C =

⋂
{K . C ⊆ K ∧ compact K ∧ openin (top of set S ) K}

(is C = ?rhs)
proof
show ?rhs ⊆ C
proof (clarsimp, rule ccontr)
fix x
assume ∗: ∀X . C ⊆ X ∧ compact X ∧ openin (top of set S ) X −→ x ∈ X
and x /∈ C

obtain U V where open U open V {x} ⊆ U C ⊆ V U ∩ V = {}
using separation normal [of {x} C ]
by (metis Int empty left 〈x /∈ C 〉 〈compact C 〉 closed empty closed insert

compact imp closed insert disjoint(1 ))
have x /∈ V
using 〈U ∩ V = {}〉 〈{x} ⊆ U 〉 by blast

then show False
by (meson ∗ Sura Bura clopen subset 〈C ⊆ V 〉 〈open V 〉 assms(1 ) assms(2 )

assms(3 ) subsetCE )
qed
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qed blast

6.18.17 Special cases of local connectedness and path con-
nectedness

lemma locally connected 1 :
assumes∧

V x . [[openin (top of set S ) V ; x ∈ V ]] =⇒ ∃U . openin (top of set S ) U ∧
connected U ∧ x ∈ U ∧ U ⊆ V

shows locally connected S
by (metis assms locally def )

lemma locally connected 2 :
assumes locally connected S

openin (top of set S ) t
x ∈ t

shows openin (top of set S ) (connected component set t x )
proof −
{ fix y :: ′a
let ?SS = top of set S
assume 1 : openin ?SS t

∀w x . openin ?SS w ∧ x ∈ w −→ (∃ u. openin ?SS u ∧ (∃ v . connected
v ∧ x ∈ u ∧ u ⊆ v ∧ v ⊆ w))

and connected component t x y
then have y ∈ t and y : y ∈ connected component set t x
using connected component subset by blast+

obtain F where
∀ x y . (∃w . openin ?SS w ∧ (∃ u. connected u ∧ x ∈ w ∧ w ⊆ u ∧ u ⊆ y))

= (openin ?SS (F x y) ∧ (∃ u. connected u ∧ x ∈ F x y ∧ F x y ⊆ u ∧ u ⊆ y))
by moura

then obtain G where
∀ a A. (∃U . openin ?SS U ∧ (∃V . connected V ∧ a ∈ U ∧ U ⊆ V ∧ V ⊆

A)) = (openin ?SS (F a A) ∧ connected (G a A) ∧ a ∈ F a A ∧ F a A ⊆ G a A
∧ G a A ⊆ A)

by moura
then have ∗: openin ?SS (F y t) ∧ connected (G y t) ∧ y ∈ F y t ∧ F y t ⊆

G y t ∧ G y t ⊆ t
using 1 〈y ∈ t 〉 by presburger

have G y t ⊆ connected component set t y
by (metis (no types) ∗ connected component eq self connected component mono

contra subsetD)
then have ∃A. openin ?SS A ∧ y ∈ A ∧ A ⊆ connected component set t x
by (metis (no types) ∗ connected component eq dual order .trans y)

}
then show ?thesis
using assms openin subopen by (force simp: locally def )

qed

lemma locally connected 3 :
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assumes
∧
t x . [[openin (top of set S ) t ; x ∈ t ]]

=⇒ openin (top of set S )
(connected component set t x )

openin (top of set S ) v x ∈ v
shows ∃ u. openin (top of set S ) u ∧ connected u ∧ x ∈ u ∧ u ⊆ v

using assms connected component subset by fastforce

lemma locally connected :
locally connected S ←→
(∀ v x . openin (top of set S ) v ∧ x ∈ v

−→ (∃ u. openin (top of set S ) u ∧ connected u ∧ x ∈ u ∧ u ⊆ v))
by (metis locally connected 1 locally connected 2 locally connected 3 )

lemma locally connected open connected component :
locally connected S ←→
(∀ t x . openin (top of set S ) t ∧ x ∈ t

−→ openin (top of set S ) (connected component set t x ))
by (metis locally connected 1 locally connected 2 locally connected 3 )

lemma locally path connected 1 :
assumes∧

v x . [[openin (top of set S ) v ; x ∈ v ]]
=⇒ ∃ u. openin (top of set S ) u ∧ path connected u ∧ x ∈ u ∧ u ⊆ v

shows locally path connected S
by (force simp add : locally def dest : assms)

lemma locally path connected 2 :
assumes locally path connected S

openin (top of set S ) t
x ∈ t

shows openin (top of set S ) (path component set t x )
proof −
{ fix y :: ′a
let ?SS = top of set S
assume 1 : openin ?SS t

∀w x . openin ?SS w ∧ x ∈ w −→ (∃ u. openin ?SS u ∧ (∃ v . path connected
v ∧ x ∈ u ∧ u ⊆ v ∧ v ⊆ w))

and path component t x y
then have y ∈ t and y : y ∈ path component set t x
using path component mem(2 ) by blast+

obtain F where
∀ x y . (∃w . openin ?SS w ∧ (∃ u. path connected u ∧ x ∈ w ∧ w ⊆ u ∧ u ⊆

y)) = (openin ?SS (F x y) ∧ (∃ u. path connected u ∧ x ∈ F x y ∧ F x y ⊆ u ∧ u
⊆ y))

by moura
then obtain G where
∀ a A. (∃U . openin ?SS U ∧ (∃V . path connected V ∧ a ∈ U ∧ U ⊆ V ∧

V ⊆ A)) = (openin ?SS (F a A) ∧ path connected (G a A) ∧ a ∈ F a A ∧ F a A
⊆ G a A ∧ G a A ⊆ A)
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by moura
then have ∗: openin ?SS (F y t) ∧ path connected (G y t) ∧ y ∈ F y t ∧ F y

t ⊆ G y t ∧ G y t ⊆ t
using 1 〈y ∈ t 〉 by presburger

have G y t ⊆ path component set t y
using ∗ path component maximal rev subsetD by blast

then have ∃A. openin ?SS A ∧ y ∈ A ∧ A ⊆ path component set t x
by (metis ∗ 〈G y t ⊆ path component set t y〉 dual order .trans path component eq

y)
}
then show ?thesis
using assms openin subopen by (force simp: locally def )

qed

lemma locally path connected 3 :
assumes

∧
t x . [[openin (top of set S ) t ; x ∈ t ]]

=⇒ openin (top of set S ) (path component set t x )
openin (top of set S ) v x ∈ v

shows ∃ u. openin (top of set S ) u ∧ path connected u ∧ x ∈ u ∧ u ⊆ v
proof −
have path component v x x
by (meson assms(3 ) path component refl)

then show ?thesis
by (metis assms mem Collect eq path component subset path connected path component)

qed

proposition locally path connected :
locally path connected S ←→
(∀V x . openin (top of set S ) V ∧ x ∈ V

−→ (∃U . openin (top of set S ) U ∧ path connected U ∧ x ∈ U ∧ U ⊆
V ))
by (metis locally path connected 1 locally path connected 2 locally path connected 3 )

proposition locally path connected open path component :
locally path connected S ←→
(∀ t x . openin (top of set S ) t ∧ x ∈ t

−→ openin (top of set S ) (path component set t x ))
by (metis locally path connected 1 locally path connected 2 locally path connected 3 )

lemma locally connected open component :
locally connected S ←→
(∀ t c. openin (top of set S ) t ∧ c ∈ components t

−→ openin (top of set S ) c)
by (metis components iff locally connected open connected component)

proposition locally connected im kleinen:
locally connected S ←→
(∀ v x . openin (top of set S ) v ∧ x ∈ v
−→ (∃ u. openin (top of set S ) u ∧



Homotopy.thy 2031

x ∈ u ∧ u ⊆ v ∧
(∀ y . y ∈ u −→ (∃ c. connected c ∧ c ⊆ v ∧ x ∈ c ∧ y ∈ c))))

(is ?lhs = ?rhs)
proof
assume ?lhs
then show ?rhs
by (fastforce simp add : locally connected)

next
assume ?rhs
have ∗: ∃T . openin (top of set S ) T ∧ x ∈ T ∧ T ⊆ c

if openin (top of set S ) t and c: c ∈ components t and x ∈ c for t c x
proof −
from that 〈?rhs〉 [rule format , of t x ]
obtain u where u:
openin (top of set S ) u ∧ x ∈ u ∧ u ⊆ t ∧
(∀ y . y ∈ u −→ (∃ c. connected c ∧ c ⊆ t ∧ x ∈ c ∧ y ∈ c))
using in components subset by auto

obtain F :: ′a set ⇒ ′a set ⇒ ′a where
∀ x y . (∃ z . z ∈ x ∧ y = connected component set x z ) = (F x y ∈ x ∧ y =

connected component set x (F x y))
by moura

then have F : F t c ∈ t ∧ c = connected component set t (F t c)
by (meson components iff c)

obtain G :: ′a set ⇒ ′a set ⇒ ′a where
G : ∀ x y . (∃ z . z ∈ y ∧ z /∈ x ) = (G x y ∈ y ∧ G x y /∈ x )

by moura
have G c u /∈ u ∨ G c u ∈ c
using F by (metis (full types) u connected componentI connected component eq

mem Collect eq that(3 ))
then show ?thesis
using G u by auto

qed
show ?lhs
unfolding locally connected open component by (meson ∗ openin subopen)

qed

proposition locally path connected im kleinen:
locally path connected S ←→
(∀ v x . openin (top of set S ) v ∧ x ∈ v
−→ (∃ u. openin (top of set S ) u ∧

x ∈ u ∧ u ⊆ v ∧
(∀ y . y ∈ u −→ (∃ p. path p ∧ path image p ⊆ v ∧

pathstart p = x ∧ pathfinish p = y))))
(is ?lhs = ?rhs)

proof
assume ?lhs
then show ?rhs
apply (simp add : locally path connected path connected def )
apply (erule all forward ex forward imp forward conjE | simp)+
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by (meson dual order .trans)
next
assume ?rhs
have ∗: ∃T . openin (top of set S ) T ∧

x ∈ T ∧ T ⊆ path component set u z
if openin (top of set S ) u and z ∈ u and c: path component u z x for u z x

proof −
have x ∈ u
by (meson c path component mem(2 ))

with that 〈?rhs〉 [rule format , of u x ]
obtain U where U :
openin (top of set S ) U ∧ x ∈ U ∧ U ⊆ u ∧

(∀ y . y ∈ U −→ (∃ p. path p ∧ path image p ⊆ u ∧ pathstart p = x ∧
pathfinish p = y))

by blast
show ?thesis
by (metis U c mem Collect eq path component def path component eq subsetI )

qed
show ?lhs
unfolding locally path connected open path component
using ∗ openin subopen by fastforce

qed

lemma locally path connected imp locally connected :
locally path connected S =⇒ locally connected S

using locally mono path connected imp connected by blast

lemma locally connected components:
[[locally connected S ; c ∈ components S ]] =⇒ locally connected c

by (meson locally connected open component locally open subset openin subtopology self )

lemma locally path connected components:
[[locally path connected S ; c ∈ components S ]] =⇒ locally path connected c

by (meson locally connected open component locally open subset locally path connected imp locally connected
openin subtopology self )

lemma locally path connected connected component :
locally path connected S =⇒ locally path connected (connected component set S

x )
by (metis components iff connected component eq empty locally empty locally path connected components)

lemma open imp locally path connected :
fixes S :: ′a :: real normed vector set
assumes open S
shows locally path connected S

proof (rule locally mono)
show locally convex S
using assms unfolding locally def
by (meson open ball centre in ball convex ball openE open subset openin imp subset
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openin open trans subset trans)
show

∧
T :: ′a set . convex T =⇒ path connected T

using convex imp path connected by blast
qed

lemma open imp locally connected :
fixes S :: ′a :: real normed vector set
shows open S =⇒ locally connected S

by (simp add : locally path connected imp locally connected open imp locally path connected)

lemma locally path connected UNIV : locally path connected (UNIV :: ′a :: real normed vector
set)
by (simp add : open imp locally path connected)

lemma locally connected UNIV : locally connected (UNIV :: ′a :: real normed vector
set)
by (simp add : open imp locally connected)

lemma openin connected component locally connected :
locally connected S
=⇒ openin (top of set S ) (connected component set S x )

by (metis connected component eq empty locally connected 2 openin empty openin subtopology self )

lemma openin components locally connected :
[[locally connected S ; c ∈ components S ]] =⇒ openin (top of set S ) c

using locally connected open component openin subtopology self by blast

lemma openin path component locally path connected :
locally path connected S

=⇒ openin (top of set S ) (path component set S x )
by (metis (no types) empty iff locally path connected 2 openin subopen openin subtopology self
path component eq empty)

lemma closedin path component locally path connected :
assumes locally path connected S
shows closedin (top of set S ) (path component set S x )

proof −
have openin (top of set S ) (

⋃
({path component set S y |y . y ∈ S} − {path component set

S x}))
using locally path connected 2 assms by fastforce

then show ?thesis
by (simp add : closedin def path component subset complement path component Union)

qed

lemma convex imp locally path connected :
fixes S :: ′a:: real normed vector set
assumes convex S
shows locally path connected S

proof (clarsimp simp add : locally path connected)
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fix V x
assume openin (top of set S ) V and x ∈ V
then obtain T e where V = S ∩ T x ∈ S 0 < e ball x e ⊆ T
by (metis Int iff openE openin open)

then have openin (top of set S ) (S ∩ ball x e) path connected (S ∩ ball x e)
by (simp all add : assms convex Int convex imp path connected openin open Int)
then show ∃U . openin (top of set S ) U ∧ path connected U ∧ x ∈ U ∧ U ⊆

V
using 〈0 < e〉 〈V = S ∩ T 〉 〈ball x e ⊆ T 〉 〈x ∈ S 〉 by auto

qed

lemma convex imp locally connected :
fixes S :: ′a:: real normed vector set
shows convex S =⇒ locally connected S
by (simp add : locally path connected imp locally connected convex imp locally path connected)

6.18.18 Relations between components and path components

lemma path component eq connected component :
assumes locally path connected S
shows (path component S x = connected component S x )

proof (cases x ∈ S )
case True
have openin (top of set (connected component set S x )) (path component set S

x )
proof (rule openin subset trans)
show openin (top of set S ) (path component set S x )
by (simp add : True assms locally path connected 2 )

show connected component set S x ⊆ S
by (simp add : connected component subset)

qed (simp add : path component subset connected component)
moreover have closedin (top of set (connected component set S x )) (path component set

S x )
proof (rule closedin subset trans [of S ])

show closedin (top of set S ) (path component set S x )
by (simp add : assms closedin path component locally path connected)

show connected component set S x ⊆ S
by (simp add : connected component subset)

qed (simp add : path component subset connected component)
ultimately have ∗: path component set S x = connected component set S x
by (metis connected connected component connected clopen True path component eq empty)
then show ?thesis
by blast

next
case False then show ?thesis
by (metis Collect empty eq bot connected component eq empty path component eq empty)

qed

lemma path component eq connected component set :
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locally path connected S =⇒ (path component set S x = connected component set
S x )
by (simp add : path component eq connected component)

lemma locally path connected path component :
locally path connected S =⇒ locally path connected (path component set S x )

using locally path connected connected component path component eq connected component
by fastforce

lemma open path connected component :
fixes S :: ′a :: real normed vector set
shows open S =⇒ path component S x = connected component S x

by (simp add : path component eq connected component open imp locally path connected)

lemma open path connected component set :
fixes S :: ′a :: real normed vector set
shows open S =⇒ path component set S x = connected component set S x

by (simp add : open path connected component)

proposition locally connected quotient image:
assumes lcS : locally connected S

and oo:
∧
T . T ⊆ f ‘ S

=⇒ openin (top of set S ) (S ∩ f −‘ T ) ←→
openin (top of set (f ‘ S )) T

shows locally connected (f ‘ S )
proof (clarsimp simp: locally connected open component)
fix U C
assume opefSU : openin (top of set (f ‘ S )) U and C ∈ components U
then have C ⊆ U U ⊆ f ‘ S
by (meson in components subset openin imp subset)+

then have openin (top of set (f ‘ S )) C ←→
openin (top of set S ) (S ∩ f −‘ C )

by (auto simp: oo)
moreover have openin (top of set S ) (S ∩ f −‘ C )
proof (subst openin subopen, clarify)
fix x
assume x ∈ S f x ∈ C
show ∃T . openin (top of set S ) T ∧ x ∈ T ∧ T ⊆ (S ∩ f −‘ C )
proof (intro conjI exI )
show openin (top of set S ) (connected component set (S ∩ f −‘ U ) x )
proof (rule ccontr)
assume ∗∗: ¬ openin (top of set S ) (connected component set (S ∩ f −‘ U )

x )
then have x /∈ (S ∩ f −‘ U )
using 〈U ⊆ f ‘ S 〉 opefSU lcS locally connected 2 oo by blast

with ∗∗ show False
by (metis (no types) connected component eq empty empty iff openin subopen)
qed

next
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show x ∈ connected component set (S ∩ f −‘ U ) x
using 〈C ⊆ U 〉 〈f x ∈ C 〉 〈x ∈ S 〉 by auto

next
have contf : continuous on S f
by (simp add : continuous on open oo openin imp subset)

then have continuous on (connected component set (S ∩ f −‘ U ) x ) f
by (meson connected component subset continuous on subset inf .boundedE )

then have connected (f ‘ connected component set (S ∩ f −‘ U ) x )
by (rule connected continuous image [OF connected connected component ])
moreover have f ‘ connected component set (S ∩ f −‘ U ) x ⊆ U
using connected component in by blast

moreover have C ∩ f ‘ connected component set (S ∩ f −‘ U ) x 6= {}
using 〈C ⊆ U 〉 〈f x ∈ C 〉 〈x ∈ S 〉 by fastforce

ultimately have fC : f ‘ (connected component set (S ∩ f −‘ U ) x ) ⊆ C
by (rule components maximal [OF 〈C ∈ components U 〉])

have cUC : connected component set (S ∩ f −‘ U ) x ⊆ (S ∩ f −‘ C )
using connected component subset fC by blast
have connected component set (S ∩ f −‘ U ) x ⊆ connected component set

(S ∩ f −‘ C ) x
proof −
{ assume x ∈ connected component set (S ∩ f −‘ U ) x
then have ?thesis

using cUC connected component idemp connected component mono by
blast }

then show ?thesis
using connected component eq empty by auto

qed
also have . . . ⊆ (S ∩ f −‘ C )
by (rule connected component subset)

finally show connected component set (S ∩ f −‘ U ) x ⊆ (S ∩ f −‘ C ) .
qed

qed
ultimately show openin (top of set (f ‘ S )) C
by metis

qed

The proof resembles that above but is not identical!

proposition locally path connected quotient image:
assumes lcS : locally path connected S

and oo:
∧
T . T ⊆ f ‘ S

=⇒ openin (top of set S ) (S ∩ f −‘ T ) ←→ openin (top of set (f ‘
S )) T

shows locally path connected (f ‘ S )
proof (clarsimp simp: locally path connected open path component)
fix U y
assume opefSU : openin (top of set (f ‘ S )) U and y ∈ U
then have path component set U y ⊆ U U ⊆ f ‘ S
by (meson path component subset openin imp subset)+

then have openin (top of set (f ‘ S )) (path component set U y) ←→
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openin (top of set S ) (S ∩ f −‘ path component set U y)
proof −
have path component set U y ⊆ f ‘ S
using 〈U ⊆ f ‘ S 〉 〈path component set U y ⊆ U 〉 by blast

then show ?thesis
using oo by blast

qed
moreover have openin (top of set S ) (S ∩ f −‘ path component set U y)
proof (subst openin subopen, clarify)
fix x
assume x ∈ S and Uyfx : path component U y (f x )
then have f x ∈ U
using path component mem by blast

show ∃T . openin (top of set S ) T ∧ x ∈ T ∧ T ⊆ (S ∩ f −‘ path component set
U y)

proof (intro conjI exI )
show openin (top of set S ) (path component set (S ∩ f −‘ U ) x )
proof (rule ccontr)
assume ∗∗: ¬ openin (top of set S ) (path component set (S ∩ f −‘ U ) x )
then have x /∈ (S ∩ f −‘ U )
by (metis (no types, lifting) 〈U ⊆ f ‘ S 〉 opefSU lcS oo locally path connected open path component)
then show False
using ∗∗ 〈path component set U y ⊆ U 〉 〈x ∈ S 〉 〈path component U y (f

x )〉 by blast
qed

next
show x ∈ path component set (S ∩ f −‘ U ) x
by (simp add : 〈f x ∈ U 〉 〈x ∈ S 〉 path component refl)

next
have contf : continuous on S f
by (simp add : continuous on open oo openin imp subset)

then have continuous on (path component set (S ∩ f −‘ U ) x ) f
by (meson Int lower1 continuous on subset path component subset)

then have path connected (f ‘ path component set (S ∩ f −‘ U ) x )
by (simp add : path connected continuous image)

moreover have f ‘ path component set (S ∩ f −‘ U ) x ⊆ U
using path component mem by fastforce

moreover have f x ∈ f ‘ path component set (S ∩ f −‘ U ) x
by (force simp: 〈x ∈ S 〉 〈f x ∈ U 〉 path component refl eq)

ultimately have f ‘ (path component set (S ∩ f −‘ U ) x ) ⊆ path component set
U (f x )

by (meson path component maximal)
also have . . . ⊆ path component set U y
by (simp add : Uyfx path component maximal path component subset path component sym)
finally have fC : f ‘ (path component set (S ∩ f −‘ U ) x ) ⊆ path component set

U y .
have cUC : path component set (S ∩ f −‘ U ) x ⊆ (S ∩ f −‘ path component set

U y)
using path component subset fC by blast
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have path component set (S ∩ f −‘ U ) x ⊆ path component set (S ∩ f −‘
path component set U y) x

proof −
have

∧
a. path component set (path component set (S ∩ f −‘ U ) x ) a ⊆

path component set (S ∩ f −‘ path component set U y) a
using cUC path component mono by blast

then show ?thesis
using path component path component by blast

qed
also have . . . ⊆ (S ∩ f −‘ path component set U y)
by (rule path component subset)

finally show path component set (S ∩ f −‘ U ) x ⊆ (S ∩ f −‘ path component set
U y) .

qed
qed
ultimately show openin (top of set (f ‘ S )) (path component set U y)
by metis

qed

6.18.19 Components, continuity, openin, closedin

lemma continuous on components gen:
fixes f :: ′a::topological space ⇒ ′b::topological space
assumes

∧
C . C ∈ components S =⇒

openin (top of set S ) C ∧ continuous on C f
shows continuous on S f

proof (clarsimp simp: continuous openin preimage eq)
fix t :: ′b set
assume open t
have ∗: S ∩ f −‘ t = (

⋃
c ∈ components S . c ∩ f −‘ t)

by auto
show openin (top of set S ) (S ∩ f −‘ t)
unfolding ∗ using 〈open t 〉 assms continuous openin preimage gen openin trans

openin Union by blast
qed

lemma continuous on components:
fixes f :: ′a::topological space ⇒ ′b::topological space
assumes locally connected S

∧
C . C ∈ components S =⇒ continuous on C f

shows continuous on S f
proof (rule continuous on components gen)
fix C
assume C ∈ components S
then show openin (top of set S ) C ∧ continuous on C f
by (simp add : assms openin components locally connected)

qed

lemma continuous on components eq :
locally connected S
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=⇒ (continuous on S f ←→ (∀ c ∈ components S . continuous on c f ))
by (meson continuous on components continuous on subset in components subset)

lemma continuous on components open:
fixes S :: ′a::real normed vector set
assumes open S∧

c. c ∈ components S =⇒ continuous on c f
shows continuous on S f

using continuous on components open imp locally connected assms by blast

lemma continuous on components open eq :
fixes S :: ′a::real normed vector set
shows open S =⇒ (continuous on S f ←→ (∀ c ∈ components S . continuous on

c f ))
using continuous on subset in components subset
by (blast intro: continuous on components open)

lemma closedin union complement components:
assumes U : locally connected U

and S : closedin (top of set U ) S
and cuS : c ⊆ components(U − S )

shows closedin (top of set U ) (S ∪
⋃
c)

proof −
have di : (

∧
S T . S ∈ c ∧ T ∈ c ′ =⇒ disjnt S T ) =⇒ disjnt (

⋃
c) (

⋃
c ′) for c ′

by (simp add : disjnt def ) blast
have S ⊆ U
using S closedin imp subset by blast

moreover have U − S =
⋃
c ∪

⋃
(components (U − S ) − c)

by (metis Diff partition Union components Union Un distrib assms(3 ))
moreover have disjnt (

⋃
c) (

⋃
(components (U − S ) − c))

apply (rule di)
by (metis di DiffD1 DiffD2 assms(3 ) components nonoverlap disjnt def sub-

setCE )
ultimately have eq : S ∪

⋃
c = U − (

⋃
(components(U − S ) − c))

by (auto simp: disjnt def )
have ∗: openin (top of set U ) (

⋃
(components (U − S ) − c))

proof (rule openin Union [OF openin trans [of U − S ]])
show openin (top of set (U − S )) T if T ∈ components (U − S ) − c for T
using that by (simp add : U S locally diff closed openin components locally connected)
show openin (top of set U ) (U − S ) if T ∈ components (U − S ) − c for T
using that by (simp add : openin diff S )

qed
have closedin (top of set U ) (U −

⋃
(components (U − S ) − c))

by (metis closedin diff closedin topspace topspace euclidean subtopology ∗)
then have openin (top of set U ) (U − (U −

⋃
(components (U − S ) − c)))

by (simp add : openin diff )
then show ?thesis
by (force simp: eq closedin def )

qed
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lemma closed union complement components:
fixes S :: ′a::real normed vector set
assumes S : closed S and c: c ⊆ components(− S )
shows closed(S ∪

⋃
c)

proof −
have closedin (top of set UNIV ) (S ∪

⋃
c)

by (metis Compl eq Diff UNIV S c closed closedin closedin union complement components
locally connected UNIV subtopology UNIV )
then show ?thesis by simp

qed

lemma closedin Un complement component :
fixes S :: ′a::real normed vector set
assumes u: locally connected u

and S : closedin (top of set u) S
and c: c ∈ components(u − S )

shows closedin (top of set u) (S ∪ c)
proof −
have closedin (top of set u) (S ∪

⋃
{c})

using c by (blast intro: closedin union complement components [OF u S ])
then show ?thesis
by simp

qed

lemma closed Un complement component :
fixes S :: ′a::real normed vector set
assumes S : closed S and c: c ∈ components(−S )
shows closed (S ∪ c)

by (metis Compl eq Diff UNIV S c closed closedin closedin Un complement component
locally connected UNIV subtopology UNIV )

6.18.20 Existence of isometry between subspaces of same di-
mension

lemma isometry subset subspace:
fixes S :: ′a::euclidean space set
and T :: ′b::euclidean space set

assumes S : subspace S
and T : subspace T
and d : dim S ≤ dim T

obtains f where linear f f ‘ S ⊆ T
∧
x . x ∈ S =⇒ norm(f x ) = norm x

proof −
obtain B where B ⊆ S and Borth: pairwise orthogonal B

and B1 :
∧
x . x ∈ B =⇒ norm x = 1

and independent B finite B card B = dim S span B = S
by (metis orthonormal basis subspace [OF S ] independent finite)

obtain C where C ⊆ T and Corth: pairwise orthogonal C
and C1 :

∧
x . x ∈ C =⇒ norm x = 1
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and independent C finite C card C = dim T span C = T
by (metis orthonormal basis subspace [OF T ] independent finite)

obtain fb where fb ‘ B ⊆ C inj on fb B
by (metis 〈card B = dim S 〉 〈card C = dim T 〉 〈finite B 〉 〈finite C 〉 card le inj

d)
then have pairwise orth fb: pairwise (λv j . orthogonal (fb v) (fb j )) B
using Corth unfolding pairwise def inj on def
by (blast intro: orthogonal clauses)

obtain f where linear f and ffb:
∧
x . x ∈ B =⇒ f x = fb x

using linear independent extend 〈independent B 〉 by fastforce
have span (f ‘ B) ⊆ span C
by (metis 〈fb ‘ B ⊆ C 〉 ffb image cong span mono)

then have f ‘ S ⊆ T
unfolding 〈span B = S 〉 〈span C = T 〉 span linear image[OF 〈linear f 〉] .

have [simp]:
∧
x . x ∈ B =⇒ norm (fb x ) = norm x

using B1 C1 〈fb ‘ B ⊆ C 〉 by auto
have norm (f x ) = norm x if x ∈ S for x
proof −
interpret linear f by fact
obtain a where x : x = (

∑
v ∈ B . a v ∗R v)

using 〈finite B 〉 〈span B = S 〉 〈x ∈ S 〉 span finite by fastforce
have norm (f x )ˆ2 = norm (

∑
v∈B . a v ∗R fb v)ˆ2 by (simp add : sum scale

ffb x )
also have . . . = (

∑
v∈B . norm ((a v ∗R fb v))ˆ2 )

proof (rule norm sum Pythagorean [OF 〈finite B 〉])
show pairwise (λv j . orthogonal (a v ∗R fb v) (a j ∗R fb j )) B
by (rule pairwise ortho scaleR [OF pairwise orth fb])

qed
also have . . . = norm x ˆ2

by (simp add : x pairwise ortho scaleR Borth norm sum Pythagorean [OF
〈finite B 〉])

finally show ?thesis
by (simp add : norm eq sqrt inner)

qed
then show ?thesis
by (rule that [OF 〈linear f 〉 〈f ‘ S ⊆ T 〉])

qed

proposition isometries subspaces:
fixes S :: ′a::euclidean space set
and T :: ′b::euclidean space set

assumes S : subspace S
and T : subspace T
and d : dim S = dim T

obtains f g where linear f linear g f ‘ S = T g ‘ T = S∧
x . x ∈ S =⇒ norm(f x ) = norm x∧
x . x ∈ T =⇒ norm(g x ) = norm x∧
x . x ∈ S =⇒ g(f x ) = x∧
x . x ∈ T =⇒ f (g x ) = x
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proof −
obtain B where B ⊆ S and Borth: pairwise orthogonal B

and B1 :
∧
x . x ∈ B =⇒ norm x = 1

and independent B finite B card B = dim S span B = S
by (metis orthonormal basis subspace [OF S ] independent finite)

obtain C where C ⊆ T and Corth: pairwise orthogonal C
and C1 :

∧
x . x ∈ C =⇒ norm x = 1

and independent C finite C card C = dim T span C = T
by (metis orthonormal basis subspace [OF T ] independent finite)

obtain fb where bij betw fb B C
by (metis 〈finite B 〉 〈finite C 〉 bij betw iff card 〈card B = dim S 〉 〈card C = dim

T 〉 d)
then have pairwise orth fb: pairwise (λv j . orthogonal (fb v) (fb j )) B
using Corth unfolding pairwise def inj on def bij betw def
by (blast intro: orthogonal clauses)

obtain f where linear f and ffb:
∧
x . x ∈ B =⇒ f x = fb x

using linear independent extend 〈independent B 〉 by fastforce
interpret f : linear f by fact
define gb where gb ≡ inv into B fb
then have pairwise orth gb: pairwise (λv j . orthogonal (gb v) (gb j )) C
using Borth 〈bij betw fb B C 〉 unfolding pairwise def bij betw def by force

obtain g where linear g and ggb:
∧
x . x ∈ C =⇒ g x = gb x

using linear independent extend 〈independent C 〉 by fastforce
interpret g : linear g by fact
have span (f ‘ B) ⊆ span C
by (metis 〈bij betw fb B C 〉 bij betw imp surj on eq iff ffb image cong)

then have f ‘ S ⊆ T
unfolding 〈span B = S 〉 〈span C = T 〉 span linear image[OF 〈linear f 〉] .

have [simp]:
∧
x . x ∈ B =⇒ norm (fb x ) = norm x

using B1 C1 〈bij betw fb B C 〉 bij betw imp surj on by fastforce
have f [simp]: norm (f x ) = norm x g (f x ) = x if x ∈ S for x
proof −
obtain a where x : x = (

∑
v ∈ B . a v ∗R v)

using 〈finite B 〉 〈span B = S 〉 〈x ∈ S 〉 span finite by fastforce
have f x = (

∑
v ∈ B . f (a v ∗R v))

using linear sum [OF 〈linear f 〉] x by auto
also have . . . = (

∑
v ∈ B . a v ∗R f v)

by (simp add : f .sum f .scale)
also have . . . = (

∑
v ∈ B . a v ∗R fb v)

by (simp add : ffb cong : sum.cong)
finally have ∗: f x = (

∑
v∈B . a v ∗R fb v) .

then have (norm (f x ))2 = (norm (
∑

v∈B . a v ∗R fb v))2 by simp
also have . . . = (

∑
v∈B . norm ((a v ∗R fb v))ˆ2 )

proof (rule norm sum Pythagorean [OF 〈finite B 〉])
show pairwise (λv j . orthogonal (a v ∗R fb v) (a j ∗R fb j )) B
by (rule pairwise ortho scaleR [OF pairwise orth fb])

qed
also have . . . = (norm x )2

by (simp add : x pairwise ortho scaleR Borth norm sum Pythagorean [OF
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〈finite B 〉])
finally show norm (f x ) = norm x
by (simp add : norm eq sqrt inner)

have g (f x ) = g (
∑

v∈B . a v ∗R fb v) by (simp add : ∗)
also have . . . = (

∑
v∈B . g (a v ∗R fb v))

by (simp add : g .sum g .scale)
also have . . . = (

∑
v∈B . a v ∗R g (fb v))

by (simp add : g .scale)
also have . . . = (

∑
v∈B . a v ∗R v)

proof (rule sum.cong [OF refl ])
show a x ∗R g (fb x ) = a x ∗R x if x ∈ B for x

using that 〈bij betw fb B C 〉 bij betwE bij betw inv into left gb def ggb by
fastforce

qed
also have . . . = x
using x by blast

finally show g (f x ) = x .
qed
have [simp]:

∧
x . x ∈ C =⇒ norm (gb x ) = norm x

by (metis B1 C1 〈bij betw fb B C 〉 bij betw imp surj on gb def inv into into)
have g [simp]: f (g x ) = x if x ∈ T for x
proof −
obtain a where x : x = (

∑
v ∈ C . a v ∗R v)

using 〈finite C 〉 〈span C = T 〉 〈x ∈ T 〉 span finite by fastforce
have g x = (

∑
v ∈ C . g (a v ∗R v))

by (simp add : x g .sum)
also have . . . = (

∑
v ∈ C . a v ∗R g v)

by (simp add : g .scale)
also have . . . = (

∑
v ∈ C . a v ∗R gb v)

by (simp add : ggb cong : sum.cong)
finally have f (g x ) = f (

∑
v∈C . a v ∗R gb v) by simp

also have . . . = (
∑

v∈C . f (a v ∗R gb v))
by (simp add : f .scale f .sum)

also have . . . = (
∑

v∈C . a v ∗R f (gb v))
by (simp add : f .scale f .sum)

also have . . . = (
∑

v∈C . a v ∗R v)
using 〈bij betw fb B C 〉

by (simp add : bij betw def gb def bij betw inv into right ffb inv into into)
also have . . . = x
using x by blast

finally show f (g x ) = x .
qed
have gim: g ‘ T = S

by (metis (full types) S T 〈f ‘ S ⊆ T 〉 d dim eq span dim image le f (2 )
g .linear axioms

image iff linear subspace image span eq iff subset iff )
have fim: f ‘ S = T
using 〈g ‘ T = S 〉 image iff by fastforce

have [simp]: norm (g x ) = norm x if x ∈ T for x
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using fim that by auto
show ?thesis
by (rule that [OF 〈linear f 〉 〈linear g〉]) (simp all add : fim gim)

qed

corollary isometry subspaces:
fixes S :: ′a::euclidean space set
and T :: ′b::euclidean space set

assumes S : subspace S
and T : subspace T
and d : dim S = dim T

obtains f where linear f f ‘ S = T
∧
x . x ∈ S =⇒ norm(f x ) = norm x

using isometries subspaces [OF assms]
by metis

corollary isomorphisms UNIV UNIV :
assumes DIM ( ′M ) = DIM ( ′N )
obtains f :: ′M ::euclidean space ⇒ ′N ::euclidean space and g
where linear f linear g∧

x . norm(f x ) = norm x
∧
y . norm(g y) = norm y∧

x . g (f x ) = x
∧
y . f (g y) = y

using assms by (auto intro: isometries subspaces [of UNIV :: ′M set UNIV :: ′N
set ])

lemma homeomorphic subspaces:
fixes S :: ′a::euclidean space set
and T :: ′b::euclidean space set

assumes S : subspace S
and T : subspace T
and d : dim S = dim T

shows S homeomorphic T
proof −
obtain f g where linear f linear g f ‘ S = T g ‘ T = S∧

x . x ∈ S =⇒ g(f x ) = x
∧
x . x ∈ T =⇒ f (g x ) = x

by (blast intro: isometries subspaces [OF assms])
then show ?thesis
unfolding homeomorphic def homeomorphism def
apply (rule tac x=f in exI , rule tac x=g in exI )
apply (auto simp: linear continuous on linear conv bounded linear)
done

qed

lemma homeomorphic affine sets:
assumes affine S affine T aff dim S = aff dim T
shows S homeomorphic T

proof (cases S = {} ∨ T = {})
case True with assms aff dim empty homeomorphic empty show ?thesis
by metis

next
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case False
then obtain a b where ab: a ∈ S b ∈ T by auto
then have ss: subspace ((+) (− a) ‘ S ) subspace ((+) (− b) ‘ T )
using affine diffs subspace assms by blast+

have dd : dim ((+) (− a) ‘ S ) = dim ((+) (− b) ‘ T )
using assms ab by (simp add : aff dim eq dim [OF hull inc] image def )

have S homeomorphic ((+) (− a) ‘ S )
by (fact homeomorphic translation)

also have . . . homeomorphic ((+) (− b) ‘ T )
by (rule homeomorphic subspaces [OF ss dd ])

also have . . . homeomorphic T
using homeomorphic translation [of T − b] by (simp add : homeomorphic sym

[of T ])
finally show ?thesis .

qed

6.18.21 Retracts, in a general sense, preserve (co)homotopic
triviality)

locale Retracts =
fixes s h t k
assumes conth: continuous on s h

and imh: h ‘ s = t
and contk : continuous on t k
and imk : k ‘ t ⊆ s
and idhk :

∧
y . y ∈ t =⇒ h(k y) = y

begin

lemma homotopically trivial retraction gen:
assumes P :

∧
f . [[continuous on U f ; f ‘ U ⊆ t ; Q f ]] =⇒ P(k ◦ f )

and Q :
∧
f . [[continuous on U f ; f ‘ U ⊆ s; P f ]] =⇒ Q(h ◦ f )

and Qeq :
∧
h k . (

∧
x . x ∈ U =⇒ h x = k x ) =⇒ Q h = Q k

and hom:
∧
f g . [[continuous on U f ; f ‘ U ⊆ s; P f ;
continuous on U g ; g ‘ U ⊆ s; P g ]]
=⇒ homotopic with canon P U s f g

and contf : continuous on U f and imf : f ‘ U ⊆ t and Qf : Q f
and contg : continuous on U g and img : g ‘ U ⊆ t and Qg : Q g

shows homotopic with canon Q U t f g
proof −
have continuous on U (k ◦ f )
using contf continuous on compose continuous on subset contk imf by blast

moreover have (k ◦ f ) ‘ U ⊆ s
using imf imk by fastforce

moreover have P (k ◦ f )
by (simp add : P Qf contf imf )

moreover have continuous on U (k ◦ g)
using contg continuous on compose continuous on subset contk img by blast

moreover have (k ◦ g) ‘ U ⊆ s
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using img imk by fastforce
moreover have P (k ◦ g)
by (simp add : P Qg contg img)

ultimately have homotopic with canon P U s (k ◦ f ) (k ◦ g)
by (rule hom)

then have homotopic with canon Q U t (h ◦ (k ◦ f )) (h ◦ (k ◦ g))
apply (rule homotopic with compose continuous left [OF homotopic with mono])
using Q by (auto simp: conth imh)

then show ?thesis
proof (rule homotopic with eq ; simp)
show

∧
h k . (

∧
x . x ∈ U =⇒ h x = k x ) =⇒ Q h = Q k

using Qeq topspace euclidean subtopology by blast
show

∧
x . x ∈ U =⇒ f x = h (k (f x ))

∧
x . x ∈ U =⇒ g x = h (k (g x ))

using idhk imf img by auto
qed

qed

lemma homotopically trivial retraction null gen:
assumes P :

∧
f . [[continuous on U f ; f ‘ U ⊆ t ; Q f ]] =⇒ P(k ◦ f )

and Q :
∧
f . [[continuous on U f ; f ‘ U ⊆ s; P f ]] =⇒ Q(h ◦ f )

and Qeq :
∧
h k . (

∧
x . x ∈ U =⇒ h x = k x ) =⇒ Q h = Q k

and hom:
∧
f . [[continuous on U f ; f ‘ U ⊆ s; P f ]]
=⇒ ∃ c. homotopic with canon P U s f (λx . c)

and contf : continuous on U f and imf :f ‘ U ⊆ t and Qf : Q f
obtains c where homotopic with canon Q U t f (λx . c)

proof −
have feq :

∧
x . x ∈ U =⇒ (h ◦ (k ◦ f )) x = f x using idhk imf by auto

have continuous on U (k ◦ f )
using contf continuous on compose continuous on subset contk imf by blast

moreover have (k ◦ f ) ‘ U ⊆ s
using imf imk by fastforce

moreover have P (k ◦ f )
by (simp add : P Qf contf imf )

ultimately obtain c where homotopic with canon P U s (k ◦ f ) (λx . c)
by (metis hom)

then have homotopic with canon Q U t (h ◦ (k ◦ f )) (h ◦ (λx . c))
apply (rule homotopic with compose continuous left [OF homotopic with mono])
using Q by (auto simp: conth imh)

then have homotopic with canon Q U t f (λx . h c)
proof (rule homotopic with eq)
show

∧
x . x ∈ topspace (top of set U ) =⇒ f x = (h ◦ (k ◦ f )) x

using feq by auto
show

∧
h k . (

∧
x . x ∈ topspace (top of set U ) =⇒ h x = k x ) =⇒ Q h = Q k

using Qeq topspace euclidean subtopology by blast
qed auto
then show ?thesis
using that by blast

qed
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lemma cohomotopically trivial retraction gen:
assumes P :

∧
f . [[continuous on t f ; f ‘ t ⊆ U ; Q f ]] =⇒ P(f ◦ h)

and Q :
∧
f . [[continuous on s f ; f ‘ s ⊆ U ; P f ]] =⇒ Q(f ◦ k)

and Qeq :
∧
h k . (

∧
x . x ∈ t =⇒ h x = k x ) =⇒ Q h = Q k

and hom:
∧
f g . [[continuous on s f ; f ‘ s ⊆ U ; P f ;
continuous on s g ; g ‘ s ⊆ U ; P g ]]
=⇒ homotopic with canon P s U f g

and contf : continuous on t f and imf : f ‘ t ⊆ U and Qf : Q f
and contg : continuous on t g and img : g ‘ t ⊆ U and Qg : Q g

shows homotopic with canon Q t U f g
proof −
have feq :

∧
x . x ∈ t =⇒ (f ◦ h ◦ k) x = f x using idhk imf by auto

have geq :
∧
x . x ∈ t =⇒ (g ◦ h ◦ k) x = g x using idhk img by auto

have continuous on s (f ◦ h)
using contf conth continuous on compose imh by blast

moreover have (f ◦ h) ‘ s ⊆ U
using imf imh by fastforce

moreover have P (f ◦ h)
by (simp add : P Qf contf imf )

moreover have continuous on s (g ◦ h)
using contg continuous on compose continuous on subset conth imh by blast

moreover have (g ◦ h) ‘ s ⊆ U
using img imh by fastforce

moreover have P (g ◦ h)
by (simp add : P Qg contg img)

ultimately have homotopic with canon P s U (f ◦ h) (g ◦ h)
by (rule hom)

then have homotopic with canon Q t U (f ◦ h ◦ k) (g ◦ h ◦ k)
apply (rule homotopic with compose continuous right [OF homotopic with mono])
using Q by (auto simp: contk imk)

then show ?thesis
proof (rule homotopic with eq)
show f x = (f ◦ h ◦ k) x g x = (g ◦ h ◦ k) x
if x ∈ topspace (top of set t) for x
using feq geq that by force+

qed (use Qeq topspace euclidean subtopology in blast)
qed

lemma cohomotopically trivial retraction null gen:
assumes P :

∧
f . [[continuous on t f ; f ‘ t ⊆ U ; Q f ]] =⇒ P(f ◦ h)

and Q :
∧
f . [[continuous on s f ; f ‘ s ⊆ U ; P f ]] =⇒ Q(f ◦ k)

and Qeq :
∧
h k . (

∧
x . x ∈ t =⇒ h x = k x ) =⇒ Q h = Q k

and hom:
∧
f g . [[continuous on s f ; f ‘ s ⊆ U ; P f ]]
=⇒ ∃ c. homotopic with canon P s U f (λx . c)

and contf : continuous on t f and imf : f ‘ t ⊆ U and Qf : Q f
obtains c where homotopic with canon Q t U f (λx . c)

proof −
have feq :

∧
x . x ∈ t =⇒ (f ◦ h ◦ k) x = f x using idhk imf by auto

have continuous on s (f ◦ h)
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using contf conth continuous on compose imh by blast
moreover have (f ◦ h) ‘ s ⊆ U
using imf imh by fastforce

moreover have P (f ◦ h)
by (simp add : P Qf contf imf )

ultimately obtain c where homotopic with canon P s U (f ◦ h) (λx . c)
by (metis hom)

then have §: homotopic with canon Q t U (f ◦ h ◦ k) ((λx . c) ◦ k)
proof (rule homotopic with compose continuous right [OF homotopic with mono])
show

∧
h. [[continuous map (top of set s) (top of set U ) h; P h]] =⇒ Q (h ◦ k)

using Q by auto
qed (auto simp: contk imk)
moreover have homotopic with canon Q t U f (λx . c)
using homotopic with eq [OF §] feq Qeq by fastforce

ultimately show ?thesis
using that by blast

qed

end

lemma simply connected retraction gen:
shows [[simply connected S ; continuous on S h; h ‘ S = T ;

continuous on T k ; k ‘ T ⊆ S ;
∧
y . y ∈ T =⇒ h(k y) = y ]]

=⇒ simply connected T
apply (simp add : simply connected def path def path image def homotopic loops def ,
clarify)
apply (rule Retracts.homotopically trivial retraction gen

[of S h k λp. pathfinish p = pathstart p λp. pathfinish p = pathstart p])
apply (simp all add : Retracts def pathfinish def pathstart def )
done

lemma homeomorphic simply connected :
[[S homeomorphic T ; simply connected S ]] =⇒ simply connected T

by (auto simp: homeomorphic def homeomorphism def intro: simply connected retraction gen)

lemma homeomorphic simply connected eq :
S homeomorphic T =⇒ (simply connected S ←→ simply connected T )

by (metis homeomorphic simply connected homeomorphic sym)

6.18.22 Homotopy equivalence

6.18.23 Homotopy equivalence of topological spaces.

definition homotopy equivalent space
(infix homotopy ′ equivalent ′ space 50 )

where X homotopy equivalent space Y ≡
(∃ f g . continuous map X Y f ∧

continuous map Y X g ∧
homotopic with (λx . True) X X (g ◦ f ) id ∧
homotopic with (λx . True) Y Y (f ◦ g) id)
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lemma homeomorphic imp homotopy equivalent space:
X homeomorphic space Y =⇒ X homotopy equivalent space Y
unfolding homeomorphic space def homotopy equivalent space def
apply (erule ex forward)+
by (simp add : homotopic with equal homotopic with sym homeomorphic maps def )

lemma homotopy equivalent space refl :
X homotopy equivalent space X

by (simp add : homeomorphic imp homotopy equivalent space homeomorphic space refl)

lemma homotopy equivalent space sym:
X homotopy equivalent space Y ←→ Y homotopy equivalent space X
by (meson homotopy equivalent space def )

lemma homotopy eqv trans [trans]:
assumes 1 : X homotopy equivalent space Y and 2 : Y homotopy equivalent space

U
shows X homotopy equivalent space U

proof −
obtain f1 g1 where f1 : continuous map X Y f1

and g1 : continuous map Y X g1
and hom1 : homotopic with (λx . True) X X (g1 ◦ f1 ) id

homotopic with (λx . True) Y Y (f1 ◦ g1 ) id
using 1 by (auto simp: homotopy equivalent space def )

obtain f2 g2 where f2 : continuous map Y U f2
and g2 : continuous map U Y g2
and hom2 : homotopic with (λx . True) Y Y (g2 ◦ f2 ) id

homotopic with (λx . True) U U (f2 ◦ g2 ) id
using 2 by (auto simp: homotopy equivalent space def )

have homotopic with (λf . True) X Y (g2 ◦ f2 ◦ f1 ) (id ◦ f1 )
using f1 hom2 (1 ) homotopic with compose continuous map right by metis

then have homotopic with (λf . True) X Y (g2 ◦ (f2 ◦ f1 )) (id ◦ f1 )
by (simp add : o assoc)

then have homotopic with (λx . True) X X
(g1 ◦ (g2 ◦ (f2 ◦ f1 ))) (g1 ◦ (id ◦ f1 ))

by (simp add : g1 homotopic with compose continuous map left)
moreover have homotopic with (λx . True) X X (g1 ◦ id ◦ f1 ) id
using hom1 by simp

ultimately have SS : homotopic with (λx . True) X X (g1 ◦ g2 ◦ (f2 ◦ f1 )) id
by (metis comp assoc homotopic with trans id comp)

have homotopic with (λf . True) U Y (f1 ◦ g1 ◦ g2 ) (id ◦ g2 )
using g2 hom1 (2 ) homotopic with compose continuous map right by fastforce

then have homotopic with (λf . True) U Y (f1 ◦ (g1 ◦ g2 )) (id ◦ g2 )
by (simp add : o assoc)

then have homotopic with (λx . True) U U
(f2 ◦ (f1 ◦ (g1 ◦ g2 ))) (f2 ◦ (id ◦ g2 ))

by (simp add : f2 homotopic with compose continuous map left)
moreover have homotopic with (λx . True) U U (f2 ◦ id ◦ g2 ) id
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using hom2 by simp
ultimately have UU : homotopic with (λx . True) U U (f2 ◦ f1 ◦ (g1 ◦ g2 )) id
by (simp add : fun.map comp hom2 (2 ) homotopic with trans)

show ?thesis
unfolding homotopy equivalent space def
by (blast intro: f1 f2 g1 g2 continuous map compose SS UU )

qed

lemma deformation retraction imp homotopy equivalent space:
[[homotopic with (λx . True) X X (s ◦ r) id ; retraction maps X Y r s]]
=⇒ X homotopy equivalent space Y

unfolding homotopy equivalent space def retraction maps def
using homotopic with id2 by fastforce

lemma deformation retract imp homotopy equivalent space:
[[homotopic with (λx . True) X X r id ; retraction maps X Y r id ]]
=⇒ X homotopy equivalent space Y

using deformation retraction imp homotopy equivalent space by force

lemma deformation retract of space:
S ⊆ topspace X ∧
(∃ r . homotopic with (λx . True) X X id r ∧ retraction maps X (subtopology X

S ) r id) ←→
S retract of space X ∧ (∃ f . homotopic with (λx . True) X X id f ∧ f ‘ (topspace

X ) ⊆ S )
proof (cases S ⊆ topspace X )
case True
moreover have (∃ r . homotopic with (λx . True) X X id r ∧ retraction maps X

(subtopology X S ) r id)
←→ (S retract of space X ∧ (∃ f . homotopic with (λx . True) X X id f

∧ f ‘ topspace X ⊆ S ))
unfolding retract of space def

proof safe
fix f r
assume f : homotopic with (λx . True) X X id f
and fS : f ‘ topspace X ⊆ S
and r : continuous map X (subtopology X S ) r
and req : ∀ x∈S . r x = x

show ∃ r . homotopic with (λx . True) X X id r ∧ retraction maps X (subtopology
X S ) r id

proof (intro exI conjI )
have homotopic with (λx . True) X X f r
proof (rule homotopic with eq)
show homotopic with (λx . True) X X (r ◦ f ) (r ◦ id)

by (metis continuous map into fulltopology f homotopic with compose continuous map left
homotopic with symD r)

show f x = (r ◦ f ) x if x ∈ topspace X for x
using that fS req by auto

qed auto
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then show homotopic with (λx . True) X X id r
by (rule homotopic with trans [OF f ])

next
show retraction maps X (subtopology X S ) r id
by (simp add : r req retraction maps def )

qed
qed (use True in 〈auto simp: retraction maps def topspace subtopology subset

continuous map in subtopology〉)
ultimately show ?thesis by simp

qed (auto simp: retract of space def retraction maps def )

6.18.24 Contractible spaces

The definition (which agrees with ”contractible” on subsets of Euclidean
space) is a little cryptic because we don’t in fact assume that the constant
”a” is in the space. This forces the convention that the empty space / set
is contractible, avoiding some special cases.

definition contractible space where
contractible space X ≡ ∃ a. homotopic with (λx . True) X X id (λx . a)

lemma contractible space top of set [simp]:contractible space (top of set S ) ←→
contractible S
by (auto simp: contractible space def contractible def )

lemma contractible space empty :
topspace X = {} =⇒ contractible space X
unfolding contractible space def homotopic with def
apply (rule tac x=undefined in exI )
apply (rule tac x=λ(t ,x ). if t = 0 then x else undefined in exI )
apply (auto simp: continuous map on empty)
done

lemma contractible space singleton:
topspace X = {a} =⇒ contractible space X
unfolding contractible space def homotopic with def
apply (rule tac x=a in exI )
apply (rule tac x=λ(t ,x ). if t = 0 then x else a in exI )
apply (auto intro: continuous map eq [where f = λz . a])
done

lemma contractible space subset singleton:
topspace X ⊆ {a} =⇒ contractible space X

by (meson contractible space empty contractible space singleton subset singletonD)

lemma contractible space subtopology singleton:
contractible space(subtopology X {a})

by (meson contractible space subset singleton insert subset path connectedin singleton
path connectedin subtopology subsetI )
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lemma contractible space:
contractible space X ←→

topspace X = {} ∨
(∃ a ∈ topspace X . homotopic with (λx . True) X X id (λx . a))

proof (cases topspace X = {})
case False
then show ?thesis
using homotopic with imp continuous maps by (fastforce simp: contractible space def )

qed (simp add : contractible space empty)

lemma contractible imp path connected space:
assumes contractible space X shows path connected space X

proof (cases topspace X = {})
case False
have ∗: path connected space X
if a ∈ topspace X and conth: continuous map (prod topology (top of set {0 ..1})

X ) X h
and h: ∀ x . h (0 , x ) = x ∀ x . h (1 , x ) = a

for a and h :: real × ′a ⇒ ′a
proof −
have path component of X b a if b ∈ topspace X for b
unfolding path component of def

proof (intro exI conjI )
let ?g = h ◦ (λx . (x ,b))
show pathin X ?g
unfolding pathin def

proof (rule continuous map compose [OF conth])
show continuous map (top of set {0 ..1}) (prod topology (top of set {0 ..1})

X ) (λx . (x , b))
using that by (auto intro!: continuous intros)

qed
qed (use h in auto)

then show ?thesis
by (metis path component of equiv path connected space iff path component)

qed
show ?thesis
using assms False by (auto simp: contractible space homotopic with def ∗)

qed (simp add : path connected space topspace empty)

lemma contractible imp connected space:
contractible space X =⇒ connected space X

by (simp add : contractible imp path connected space path connected imp connected space)

lemma contractible space alt :
contractible space X ←→ (∀ a ∈ topspace X . homotopic with (λx . True) X X id

(λx . a)) (is ?lhs = ?rhs)
proof
assume X : ?lhs
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then obtain a where a: homotopic with (λx . True) X X id (λx . a)
by (auto simp: contractible space def )

show ?rhs
proof
show homotopic with (λx . True) X X id (λx . b) if b ∈ topspace X for b
proof (rule homotopic with trans [OF a])
show homotopic with (λx . True) X X (λx . a) (λx . b)
using homotopic constant maps path connected space imp path component of
by (metis (full types) X a continuous map const contractible imp path connected space

homotopic with imp continuous maps that)
qed

qed
next
assume R: ?rhs
then show ?lhs
unfolding contractible space def by (metis equals0I homotopic on emptyI )

qed

lemma compose const [simp]: f ◦ (λx . a) = (λx . f a) (λx . a) ◦ g = (λx . a)
by (simp all add : o def )

lemma nullhomotopic through contractible space:
assumes f : continuous map X Y f and g : continuous map Y Z g and Y : con-

tractible space Y
obtains c where homotopic with (λh. True) X Z (g ◦ f ) (λx . c)

proof −
obtain b where b: homotopic with (λx . True) Y Y id (λx . b)
using Y by (auto simp: contractible space def )

show thesis
using homotopic with compose continuous map right

[OF homotopic with compose continuous map left [OF b g ] f ]
by (force simp add : that)

qed

lemma nullhomotopic into contractible space:
assumes f : continuous map X Y f and Y : contractible space Y
obtains c where homotopic with (λh. True) X Y f (λx . c)
using nullhomotopic through contractible space [OF f Y ]
by (metis continuous map id id comp)

lemma nullhomotopic from contractible space:
assumes f : continuous map X Y f and X : contractible space X
obtains c where homotopic with (λh. True) X Y f (λx . c)
using nullhomotopic through contractible space [OF f X ]
by (metis comp id continuous map id)

lemma homotopy dominated contractibility :
assumes f : continuous map X Y f and g : continuous map Y X g
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and hom: homotopic with (λx . True) Y Y (f ◦ g) id and X : contractible space
X
shows contractible space Y

proof −
obtain c where c: homotopic with (λh. True) X Y f (λx . c)
using nullhomotopic from contractible space [OF f X ] .

have homotopic with (λx . True) Y Y (f ◦ g) (λx . c)
using homotopic with compose continuous map right [OF c g ] by fastforce

then have homotopic with (λx . True) Y Y id (λx . c)
using homotopic with trans [OF hom] homotopic with symD by blast

then show ?thesis
unfolding contractible space def ..

qed

lemma homotopy equivalent space contractibility :
X homotopy equivalent space Y =⇒ (contractible space X ←→ contractible space

Y )
unfolding homotopy equivalent space def
by (blast intro: homotopy dominated contractibility)

lemma homeomorphic space contractibility :
X homeomorphic space Y

=⇒ (contractible space X ←→ contractible space Y )
by (simp add : homeomorphic imp homotopy equivalent space homotopy equivalent space contractibility)

lemma contractible eq homotopy equivalent singleton subtopology :
contractible space X ←→

topspace X = {} ∨ (∃ a ∈ topspace X . X homotopy equivalent space
(subtopology X {a}))(is ?lhs = ?rhs)
proof (cases topspace X = {})
case False
show ?thesis
proof
assume ?lhs
then obtain a where a: homotopic with (λx . True) X X id (λx . a)
by (auto simp: contractible space def )

then have a ∈ topspace X
by (metis False continuous map const homotopic with imp continuous maps)

then have homotopic with (λx . True) (subtopology X {a}) (subtopology X {a})
id (λx . a)

using connectedin absolute connectedin sing contractible space alt contractible space subtopology singleton
by fastforce

then have X homotopy equivalent space subtopology X {a}
unfolding homotopy equivalent space def using 〈a ∈ topspace X 〉

by (metis (full types) a comp id continuous map const continuous map id subt
empty subsetI homotopic with symD

id comp insertI1 insert subset topspace subtopology subset)
with 〈a ∈ topspace X 〉 show ?rhs
by blast
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next
assume ?rhs
then show ?lhs
by (meson False contractible space subtopology singleton homotopy equivalent space contractibility)

qed
qed (simp add : contractible space empty)

lemma contractible space retraction map image:
assumes retraction map X Y f and X : contractible space X
shows contractible space Y

proof −
obtain g where f : continuous map X Y f and g : continuous map Y X g and

fg : ∀ y ∈ topspace Y . f (g y) = y
using assms by (auto simp: retraction map def retraction maps def )

obtain a where a: homotopic with (λx . True) X X id (λx . a)
using X by (auto simp: contractible space def )

have homotopic with (λx . True) Y Y id (λx . f a)
proof (rule homotopic with eq)
show homotopic with (λx . True) Y Y (f ◦ id ◦ g) (f ◦ (λx . a) ◦ g)
using f g a homotopic with compose continuous map left homotopic with compose continuous map right

by metis
qed (use fg in auto)
then show ?thesis
unfolding contractible space def by blast

qed

lemma contractible space prod topology :
contractible space(prod topology X Y ) ←→
topspace X = {} ∨ topspace Y = {} ∨ contractible space X ∧ contractible space

Y
proof (cases topspace X = {} ∨ topspace Y = {})
case True
then have topspace (prod topology X Y ) = {}
by simp

then show ?thesis
by (auto simp: contractible space empty)

next
case False
have contractible space(prod topology X Y ) ←→ contractible space X ∧ con-

tractible space Y
proof safe
assume XY : contractible space (prod topology X Y )
with False have retraction map (prod topology X Y ) X fst
by (auto simp: contractible space False retraction map fst)

then show contractible space X
by (rule contractible space retraction map image [OF XY ])

have retraction map (prod topology X Y ) Y snd
using False XY by (auto simp: contractible space False retraction map snd)

then show contractible space Y
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by (rule contractible space retraction map image [OF XY ])
next
assume contractible space X and contractible space Y
with False obtain a b
where a ∈ topspace X and a: homotopic with (λx . True) X X id (λx . a)
and b ∈ topspace Y and b: homotopic with (λx . True) Y Y id (λx . b)

by (auto simp: contractible space)
with False show contractible space (prod topology X Y )
apply (simp add : contractible space)
apply (rule tac x=a in bexI )
apply (rule tac x=b in bexI )
using homotopic with prod topology [OF a b]
apply (metis (no types, lifting) case prod Pair case prod beta ′ eq id iff )
apply auto
done

qed
with False show ?thesis
by auto

qed

lemma contractible space product topology :
contractible space(product topology X I ) ←→
topspace (product topology X I ) = {} ∨ (∀ i ∈ I . contractible space(X i))

proof (cases topspace (product topology X I ) = {})
case False
have 1 : contractible space (X i)
if XI : contractible space (product topology X I ) and i ∈ I
for i

proof (rule contractible space retraction map image [OF XI ])
show retraction map (product topology X I ) (X i) (λx . x i)
using False by (simp add : retraction map product projection 〈i ∈ I 〉)

qed
have 2 : contractible space (product topology X I )
if x ∈ topspace (product topology X I ) and cs: ∀ i∈I . contractible space (X i)
for x :: ′a ⇒ ′b

proof −
obtain f where f :

∧
i . i∈I =⇒ homotopic with (λx . True) (X i) (X i) id (λx .

f i)
using cs unfolding contractible space def by metis

have homotopic with (λx . True)
(product topology X I ) (product topology X I ) id (λx . restrict f

I )
by (rule homotopic with eq [OF homotopic with product topology [OF f ]])

(auto)
then show ?thesis
by (auto simp: contractible space def )

qed
show ?thesis
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using False 1 2 by blast
qed (simp add : contractible space empty)

lemma contractible space subtopology euclideanreal [simp]:
contractible space(subtopology euclideanreal S ) ←→ is interval S
(is ?lhs = ?rhs)

proof
assume ?lhs
then have path connectedin (subtopology euclideanreal S ) S
using contractible imp path connected space path connectedin topspace path connectedin absolute
by (simp add : contractible imp path connected)

then show ?rhs
by (simp add : is interval path connected 1 )

next
assume ?rhs
then have convex S
by (simp add : is interval convex 1 )

show ?lhs
proof (cases S = {})
case False
then obtain z where z ∈ S
by blast

show ?thesis
unfolding contractible space def homotopic with def

proof (intro exI conjI allI )
note § = convexD [OF 〈convex S 〉, simplified ]

show continuous map (prod topology (top of set {0 ..1}) (top of set S )) (top of set
S )

(λ(t ,x ). (1 − t) ∗ x + t ∗ z )
using 〈z ∈ S 〉

by (auto simp add : case prod unfold intro!: continuous intros §)
qed auto

qed (simp add : contractible space empty)
qed

corollary contractible space euclideanreal : contractible space euclideanreal
proof −
have contractible space (subtopology euclideanreal UNIV )
using contractible space subtopology euclideanreal by blast

then show ?thesis
by simp

qed

abbreviation homotopy eqv :: ′a::topological space set ⇒ ′b::topological space set
⇒ bool

(infix homotopy ′ eqv 50 )
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where S homotopy eqv T ≡ top of set S homotopy equivalent space top of set T

lemma homeomorphic imp homotopy eqv : S homeomorphic T =⇒ S homotopy eqv
T
unfolding homeomorphic def homeomorphism def homotopy equivalent space def
by (metis continuous map subtopology eu homotopic with id2 openin imp subset

openin subtopology self topspace euclidean subtopology)

lemma homotopy eqv inj linear image:
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes linear f inj f
shows (f ‘ S ) homotopy eqv S

by (metis assms homeomorphic sym homeomorphic imp homotopy eqv linear homeomorphic image)

lemma homotopy eqv translation:
fixes S :: ′a::real normed vector set
shows (+) a ‘ S homotopy eqv S
using homeomorphic imp homotopy eqv homeomorphic translation homeomor-

phic sym by blast

lemma homotopy eqv homotopic triviality imp:
fixes S :: ′a::real normed vector set
and T :: ′b::real normed vector set
and U :: ′c::real normed vector set

assumes S homotopy eqv T
and f : continuous on U f f ‘ U ⊆ T
and g : continuous on U g g ‘ U ⊆ T
and homUS :

∧
f g . [[continuous on U f ; f ‘ U ⊆ S ;
continuous on U g ; g ‘ U ⊆ S ]]
=⇒ homotopic with canon (λx . True) U S f g

shows homotopic with canon (λx . True) U T f g
proof −
obtain h k where h: continuous on S h h ‘ S ⊆ T

and k : continuous on T k k ‘ T ⊆ S
and hom: homotopic with canon (λx . True) S S (k ◦ h) id

homotopic with canon (λx . True) T T (h ◦ k) id
using assms by (auto simp: homotopy equivalent space def )

have homotopic with canon (λf . True) U S (k ◦ f ) (k ◦ g)
proof (rule homUS )
show continuous on U (k ◦ f ) continuous on U (k ◦ g)
using continuous on compose continuous on subset f g k by blast+

qed (use f g k in 〈(force simp: o def )+〉 )
then have homotopic with canon (λx . True) U T (h ◦ (k ◦ f )) (h ◦ (k ◦ g))
by (rule homotopic with compose continuous left ; simp add : h)
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moreover have homotopic with canon (λx . True) U T (h ◦ k ◦ f ) (id ◦ f )
by (rule homotopic with compose continuous right [where X=T and Y=T ];

simp add : hom f )
moreover have homotopic with canon (λx . True) U T (h ◦ k ◦ g) (id ◦ g)
by (rule homotopic with compose continuous right [where X=T and Y=T ];

simp add : hom g)
ultimately show homotopic with canon (λx . True) U T f g
unfolding o assoc
by (metis homotopic with trans homotopic with sym id comp)

qed

lemma homotopy eqv homotopic triviality :
fixes S :: ′a::real normed vector set
and T :: ′b::real normed vector set
and U :: ′c::real normed vector set

assumes S homotopy eqv T
shows (∀ f g . continuous on U f ∧ f ‘ U ⊆ S ∧

continuous on U g ∧ g ‘ U ⊆ S
−→ homotopic with canon (λx . True) U S f g) ←→

(∀ f g . continuous on U f ∧ f ‘ U ⊆ T ∧
continuous on U g ∧ g ‘ U ⊆ T
−→ homotopic with canon (λx . True) U T f g)

(is ?lhs = ?rhs)
proof
assume ?lhs
then show ?rhs
by (metis assms homotopy eqv homotopic triviality imp)

next
assume ?rhs
moreover
have T homotopy eqv S
using assms homotopy equivalent space sym by blast

ultimately show ?lhs
by (blast intro: homotopy eqv homotopic triviality imp)

qed

lemma homotopy eqv cohomotopic triviality null imp:
fixes S :: ′a::real normed vector set
and T :: ′b::real normed vector set
and U :: ′c::real normed vector set

assumes S homotopy eqv T
and f : continuous on T f f ‘ T ⊆ U
and homSU :

∧
f . [[continuous on S f ; f ‘ S ⊆ U ]]

=⇒ ∃ c. homotopic with canon (λx . True) S U f (λx . c)
obtains c where homotopic with canon (λx . True) T U f (λx . c)

proof −
obtain h k where h: continuous on S h h ‘ S ⊆ T

and k : continuous on T k k ‘ T ⊆ S
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and hom: homotopic with canon (λx . True) S S (k ◦ h) id
homotopic with canon (λx . True) T T (h ◦ k) id

using assms by (auto simp: homotopy equivalent space def )
obtain c where homotopic with canon (λx . True) S U (f ◦ h) (λx . c)
proof (rule exE [OF homSU ])
show continuous on S (f ◦ h)
using continuous on compose continuous on subset f h by blast

qed (use f h in force)
then have homotopic with canon (λx . True) T U ((f ◦ h) ◦ k) ((λx . c) ◦ k)

by (rule homotopic with compose continuous right [where X=S ]) (use k in
auto)
moreover have homotopic with canon (λx . True) T U (f ◦ id) (f ◦ (h ◦ k))
by (rule homotopic with compose continuous left [where Y=T ])

(use f in 〈auto simp add : hom homotopic with symD 〉)
ultimately show ?thesis
using that homotopic with trans by (fastforce simp add : o def )

qed

lemma homotopy eqv cohomotopic triviality null :
fixes S :: ′a::real normed vector set
and T :: ′b::real normed vector set
and U :: ′c::real normed vector set

assumes S homotopy eqv T
shows (∀ f . continuous on S f ∧ f ‘ S ⊆ U

−→ (∃ c. homotopic with canon (λx . True) S U f (λx . c))) ←→
(∀ f . continuous on T f ∧ f ‘ T ⊆ U
−→ (∃ c. homotopic with canon (λx . True) T U f (λx . c)))

by (rule iffI ; metis assms homotopy eqv cohomotopic triviality null imp homotopy equivalent space sym)

Similar to the proof above

lemma homotopy eqv homotopic triviality null imp:
fixes S :: ′a::real normed vector set
and T :: ′b::real normed vector set
and U :: ′c::real normed vector set

assumes S homotopy eqv T
and f : continuous on U f f ‘ U ⊆ T
and homSU :

∧
f . [[continuous on U f ; f ‘ U ⊆ S ]]

=⇒ ∃ c. homotopic with canon (λx . True) U S f (λx . c)
shows ∃ c. homotopic with canon (λx . True) U T f (λx . c)

proof −
obtain h k where h: continuous on S h h ‘ S ⊆ T

and k : continuous on T k k ‘ T ⊆ S
and hom: homotopic with canon (λx . True) S S (k ◦ h) id

homotopic with canon (λx . True) T T (h ◦ k) id
using assms by (auto simp: homotopy equivalent space def )

obtain c:: ′a where homotopic with canon (λx . True) U S (k ◦ f ) (λx . c)
proof (rule exE [OF homSU [of k ◦ f ]])
show continuous on U (k ◦ f )
using continuous on compose continuous on subset f k by blast
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qed (use f k in force)
then have homotopic with canon (λx . True) U T (h ◦ (k ◦ f )) (h ◦ (λx . c))
by (rule homotopic with compose continuous left [where Y=S ]) (use h in auto)
moreover have homotopic with canon (λx . True) U T (id ◦ f ) ((h ◦ k) ◦ f )
by (rule homotopic with compose continuous right [where X=T ])

(use f in 〈auto simp add : hom homotopic with symD 〉)
ultimately show ?thesis
using homotopic with trans by (fastforce simp add : o def )

qed

lemma homotopy eqv homotopic triviality null :
fixes S :: ′a::real normed vector set
and T :: ′b::real normed vector set
and U :: ′c::real normed vector set

assumes S homotopy eqv T
shows (∀ f . continuous on U f ∧ f ‘ U ⊆ S

−→ (∃ c. homotopic with canon (λx . True) U S f (λx . c))) ←→
(∀ f . continuous on U f ∧ f ‘ U ⊆ T

−→ (∃ c. homotopic with canon (λx . True) U T f (λx . c)))
by (rule iffI ; metis assms homotopy eqv homotopic triviality null imp homotopy equivalent space sym)

lemma homotopy eqv contractible sets:
fixes S :: ′a::real normed vector set
and T :: ′b::real normed vector set

assumes contractible S contractible T S = {} ←→ T = {}
shows S homotopy eqv T

proof (cases S = {})
case True with assms show ?thesis
by (simp add : homeomorphic imp homotopy eqv)

next
case False
with assms obtain a b where a ∈ S b ∈ T
by auto

then show ?thesis
unfolding homotopy equivalent space def
apply (rule tac x=λx . b in exI , rule tac x=λx . a in exI )
apply (intro assms conjI continuous on id ′ homotopic into contractible; force)
done

qed

lemma homotopy eqv empty1 [simp]:
fixes S :: ′a::real normed vector set
shows S homotopy eqv ({}:: ′b::real normed vector set) ←→ S = {} (is ?lhs =

?rhs)
proof
assume ?lhs then show ?rhs
by (metis continuous map subtopology eu empty iff equalityI homotopy equivalent space def

image subset iff subsetI )
qed (simp add : homotopy eqv contractible sets)
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lemma homotopy eqv empty2 [simp]:
fixes S :: ′a::real normed vector set
shows ({}:: ′b::real normed vector set) homotopy eqv S ←→ S = {}
using homotopy equivalent space sym homotopy eqv empty1 by blast

lemma homotopy eqv contractibility :
fixes S :: ′a::real normed vector set and T :: ′b::real normed vector set
shows S homotopy eqv T =⇒ (contractible S ←→ contractible T )
by (meson contractible space top of set homotopy equivalent space contractibility)

lemma homotopy eqv sing :
fixes S :: ′a::real normed vector set and a :: ′b::real normed vector
shows S homotopy eqv {a} ←→ S 6= {} ∧ contractible S

proof (cases S = {})
case False then show ?thesis
by (metis contractible sing empty not insert homotopy eqv contractibility homo-

topy eqv contractible sets)
qed simp

lemma homeomorphic contractible eq :
fixes S :: ′a::real normed vector set and T :: ′b::real normed vector set
shows S homeomorphic T =⇒ (contractible S ←→ contractible T )

by (simp add : homeomorphic imp homotopy eqv homotopy eqv contractibility)

lemma homeomorphic contractible:
fixes S :: ′a::real normed vector set and T :: ′b::real normed vector set
shows [[contractible S ; S homeomorphic T ]] =⇒ contractible T
by (metis homeomorphic contractible eq)

6.18.25 Misc other results

lemma bounded connected Compl real :
fixes S :: real set
assumes bounded S and conn: connected(− S )
shows S = {}

proof −
obtain a b where S ⊆ box a b
by (meson assms bounded subset box symmetric)

then have a /∈ S b /∈ S
by auto

then have ∀ x . a ≤ x ∧ x ≤ b −→ x ∈ − S
by (meson Compl iff conn connected iff interval)

then show ?thesis
using 〈S ⊆ box a b〉 by auto

qed

corollary bounded path connected Compl real :
fixes S :: real set
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assumes bounded S path connected(− S ) shows S = {}
by (simp add : assms bounded connected Compl real path connected imp connected)

lemma bounded connected Compl 1 :
fixes S :: ′a::{euclidean space} set
assumes bounded S and conn: connected(− S ) and 1 : DIM ( ′a) = 1
shows S = {}

proof −
have DIM ( ′a) = DIM (real)
by (simp add : 1 )

then obtain f :: ′a ⇒ real and g
where linear f

∧
x . norm(f x ) = norm x and fg :

∧
x . g(f x ) = x

∧
y . f (g y) =

y
by (rule isomorphisms UNIV UNIV ) blast

with 〈bounded S 〉 have bounded (f ‘ S )
using bounded linear image linear linear by blast

have bij f by (metis fg bijI ′)
have connected (f ‘ (−S ))
using connected linear image assms 〈linear f 〉 by blast

moreover have f ‘ (−S ) = − (f ‘ S )
by (simp add : 〈bij f 〉 bij image Compl eq)

finally have connected (− (f ‘ S ))
by simp

then have f ‘ S = {}
using 〈bounded (f ‘ S )〉 bounded connected Compl real by blast

then show ?thesis
by blast

qed

6.18.26 Some Uncountable Sets

lemma uncountable closed segment :
fixes a :: ′a::real normed vector
assumes a 6= b shows uncountable (closed segment a b)

unfolding path image linepath [symmetric] path image def
using inj on linepath [OF assms] uncountable closed interval [of 0 1 ]

countable image inj on by auto

lemma uncountable open segment :
fixes a :: ′a::real normed vector
assumes a 6= b shows uncountable (open segment a b)
by (simp add : assms open segment def uncountable closed segment uncountable minus countable)

lemma uncountable convex :
fixes a :: ′a::real normed vector
assumes convex S a ∈ S b ∈ S a 6= b
shows uncountable S

proof −
have uncountable (closed segment a b)
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by (simp add : uncountable closed segment assms)
then show ?thesis
by (meson assms convex contains segment countable subset)

qed

lemma uncountable ball :
fixes a :: ′a::euclidean space
assumes r > 0
shows uncountable (ball a r)

proof −
have uncountable (open segment a (a + r ∗R (SOME i . i ∈ Basis)))
by (metis Basis zero SOME Basis add cancel right right assms less le scale eq 0 iff

uncountable open segment)
moreover have open segment a (a + r ∗R (SOME i . i ∈ Basis)) ⊆ ball a r
using assms by (auto simp: in segment algebra simps dist norm SOME Basis)

ultimately show ?thesis
by (metis countable subset)

qed

lemma ball minus countable nonempty :
assumes countable (A :: ′a :: euclidean space set) r > 0
shows ball z r − A 6= {}

proof
assume ∗: ball z r − A = {}
have uncountable (ball z r − A)
by (intro uncountable minus countable assms uncountable ball)

thus False by (subst (asm) ∗) auto
qed

lemma uncountable cball :
fixes a :: ′a::euclidean space
assumes r > 0
shows uncountable (cball a r)
using assms countable subset uncountable ball by auto

lemma pairwise disjnt countable:
fixes N :: nat set set
assumes pairwise disjnt N
shows countable N

proof −
have inj on (λX . SOME n. n ∈ X ) (N − {{}})
by (clarsimp simp: inj on def ) (metis assms disjnt iff pairwiseD some in eq)

then show ?thesis
by (metis countable Diff eq countable def )

qed

lemma pairwise disjnt countable Union:
assumes countable (

⋃
N ) and pwd : pairwise disjnt N

shows countable N
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proof −
obtain f :: ⇒ nat where f : inj on f (

⋃
N )

using assms by blast
then have pairwise disjnt (

⋃
X ∈ N . {f ‘ X })

using assms by (force simp: pairwise def disjnt inj on iff [OF f ])
then have countable (

⋃
X ∈ N . {f ‘ X })

using pairwise disjnt countable by blast
then show ?thesis

by (meson pwd countable image inj on disjoint image f inj on image pair-
wise disjnt countable)
qed

lemma connected uncountable:
fixes S :: ′a::metric space set
assumes connected S a ∈ S b ∈ S a 6= b shows uncountable S

proof −
have continuous on S (dist a)
by (intro continuous intros)

then have connected (dist a ‘ S )
by (metis connected continuous image 〈connected S 〉)

then have closed segment 0 (dist a b) ⊆ (dist a ‘ S )
by (simp add : assms closed segment subset is interval connected 1 is interval convex )
then have uncountable (dist a ‘ S )
by (metis 〈a 6= b〉 countable subset dist eq 0 iff uncountable closed segment)

then show ?thesis
by blast

qed

lemma path connected uncountable:
fixes S :: ′a::metric space set
assumes path connected S a ∈ S b ∈ S a 6= b shows uncountable S
using path connected imp connected assms connected uncountable by metis

lemma connected finite iff sing :
fixes S :: ′a::metric space set
assumes connected S
shows finite S ←→ S = {} ∨ (∃ a. S = {a}) (is = ?rhs)

proof −
have uncountable S if ¬ ?rhs
using connected uncountable assms that by blast

then show ?thesis
using uncountable infinite by auto

qed

lemma connected card eq iff nontrivial :
fixes S :: ′a::metric space set
shows connected S =⇒ uncountable S ←→ ¬(∃ a. S ⊆ {a})
by (metis connected uncountable finite.emptyI finite.insertI rev finite subset sin-

gleton iff subsetI uncountable infinite)
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lemma simple path image uncountable:
fixes g :: real ⇒ ′a::metric space
assumes simple path g
shows uncountable (path image g)

proof −
have g 0 ∈ path image g g (1/2 ) ∈ path image g
by (simp all add : path defs)

moreover have g 0 6= g (1/2 )
using assms by (fastforce simp add : simple path def )

ultimately have ∀ a. ¬ path image g ⊆ {a}
by blast

then show ?thesis
using assms connected simple path image connected uncountable by blast

qed

lemma arc image uncountable:
fixes g :: real ⇒ ′a::metric space
assumes arc g
shows uncountable (path image g)
by (simp add : arc imp simple path assms simple path image uncountable)

6.18.27 Some simple positive connection theorems

proposition path connected convex diff countable:
fixes U :: ′a::euclidean space set
assumes convex U ¬ collinear U countable S
shows path connected(U − S )

proof (clarsimp simp add : path connected def )
fix a b
assume a ∈ U a /∈ S b ∈ U b /∈ S
let ?m = midpoint a b
show ∃ g . path g ∧ path image g ⊆ U − S ∧ pathstart g = a ∧ pathfinish g = b
proof (cases a = b)
case True
then show ?thesis
by (metis DiffI 〈a ∈ U 〉 〈a /∈ S 〉 path component def path component refl)

next
case False
then have a 6= ?m b 6= ?m
using midpoint eq endpoint by fastforce+

have ?m ∈ U
using 〈a ∈ U 〉 〈b ∈ U 〉 〈convex U 〉 convex contains segment by force

obtain c where c ∈ U and nc abc: ¬ collinear {a,b,c}
by (metis False 〈a ∈ U 〉 〈b ∈ U 〉 〈¬ collinear U 〉 collinear triples insert absorb)
have ncoll mca: ¬ collinear {?m,c,a}

by (metis (full types) 〈a 6= ?m〉 collinear 3 trans collinear midpoint in-
sert commute nc abc)

have ncoll mcb: ¬ collinear {?m,c,b}
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by (metis (full types) 〈b 6= ?m〉 collinear 3 trans collinear midpoint in-
sert commute nc abc)

have c 6= ?m
by (metis collinear midpoint insert commute nc abc)

then have closed segment ?m c ⊆ U
by (simp add : 〈c ∈ U 〉 〈?m ∈ U 〉 〈convex U 〉 closed segment subset)

then obtain z where z : z ∈ closed segment ?m c
and disjS : (closed segment a z ∪ closed segment z b) ∩ S = {}

proof −
have False if closed segment ?m c ⊆ {z . (closed segment a z ∪ closed segment

z b) ∩ S 6= {}}
proof −
have closb: closed segment ?m c ⊆

{z ∈ closed segment ?m c. closed segment a z ∩ S 6= {}} ∪ {z ∈
closed segment ?m c. closed segment z b ∩ S 6= {}}

using that by blast
have ∗: countable {z ∈ closed segment ?m c. closed segment z u ∩ S 6= {}}
if u ∈ U u /∈ S and ncoll : ¬ collinear {?m, c, u} for u

proof −
have ∗∗: False if x1 : x1 ∈ closed segment ?m c and x2 : x2 ∈ closed segment

?m c
and x1 6= x2 x1 6= u
and w : w ∈ closed segment x1 u w ∈ closed segment x2 u
and w ∈ S for x1 x2 w

proof −
have x1 ∈ affine hull {?m,c} x2 ∈ affine hull {?m,c}
using segment as ball x1 x2 by auto

then have coll x1 : collinear {x1 , ?m, c} and coll x2 : collinear {?m, c,
x2}

by (simp all add : affine hull 3 imp collinear) (metis affine hull 3 imp collinear
insert commute)

have ¬ collinear {x1 , u, x2}
proof
assume collinear {x1 , u, x2}
then have collinear {?m, c, u}

by (metis (full types) 〈c 6= ?m〉 coll x1 coll x2 collinear 3 trans
insert commute ncoll 〈x1 6= x2 〉)

with ncoll show False ..
qed
then have closed segment x1 u ∩ closed segment u x2 = {u}
by (blast intro!: Int closed segment)

then have w = u
using closed segment commute w by auto

show ?thesis
using 〈u /∈ S 〉 〈w = u〉 that(7 ) by auto

qed
then have disj : disjoint ((

⋃
z∈closed segment ?m c. {closed segment z u

∩ S}))
by (fastforce simp: pairwise def disjnt def )
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have cou: countable ((
⋃
z ∈ closed segment ?m c. {closed segment z u ∩

S}) − {{}})
apply (rule pairwise disjnt countable Union [OF pairwise subset [OF

disj ]])
apply (rule countable subset [OF 〈countable S 〉], auto)
done
define f where f ≡ λX . (THE z . z ∈ closed segment ?m c ∧ X =

closed segment z u ∩ S )
show ?thesis

proof (rule countable subset [OF countable image [OF cou, where f=f ]],
clarify)

fix x
assume x : x ∈ closed segment ?m c closed segment x u ∩ S 6= {}
show x ∈ f ‘ ((

⋃
z∈closed segment ?m c. {closed segment z u ∩ S}) −

{{}})
proof (rule tac x=closed segment x u ∩ S in image eqI )
show x = f (closed segment x u ∩ S )
unfolding f def
by (rule the equality [symmetric]) (use x in 〈auto dest : ∗∗〉)

qed (use x in auto)
qed

qed
have uncountable (closed segment ?m c)
by (metis 〈c 6= ?m〉 uncountable closed segment)

then show False
using closb ∗ [OF 〈a ∈ U 〉 〈a /∈ S 〉 ncoll mca] ∗ [OF 〈b ∈ U 〉 〈b /∈ S 〉

ncoll mcb]
by (simp add : closed segment commute countable subset)

qed
then show ?thesis
by (force intro: that)

qed
show ?thesis
proof (intro exI conjI )
have path image (linepath a z +++ linepath z b) ⊆ U

by (metis 〈a ∈ U 〉 〈b ∈ U 〉 〈closed segment ?m c ⊆ U 〉 z 〈convex U 〉

closed segment subset contra subsetD path image linepath subset path image join)
with disjS show path image (linepath a z +++ linepath z b) ⊆ U − S
by (force simp: path image join)

qed auto
qed

qed

corollary connected convex diff countable:
fixes U :: ′a::euclidean space set
assumes convex U ¬ collinear U countable S
shows connected(U − S )
by (simp add : assms path connected convex diff countable path connected imp connected)
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lemma path connected punctured convex :
assumes convex S and aff : aff dim S 6= 1
shows path connected(S − {a})

proof −
consider aff dim S = −1 | aff dim S = 0 | aff dim S ≥ 2
using assms aff dim geq [of S ] by linarith

then show ?thesis
proof cases
assume aff dim S = −1
then show ?thesis
by (metis aff dim empty empty Diff path connected empty)

next
assume aff dim S = 0
then show ?thesis
by (metis aff dim eq 0 Diff cancel Diff empty Diff insert0 convex empty con-

vex imp path connected path connected singleton singletonD)
next
assume ge2 : aff dim S ≥ 2
then have ¬ collinear S
proof (clarsimp simp add : collinear affine hull)
fix u v
assume S ⊆ affine hull {u, v}
then have aff dim S ≤ aff dim {u, v}
by (metis (no types) aff dim affine hull aff dim subset)

with ge2 show False
by (metis (no types) aff dim 2 antisym aff not numeral le zero one le numeral

order trans)
qed
moreover have countable {a}
by simp

ultimately show ?thesis
by (metis path connected convex diff countable [OF 〈convex S 〉])

qed
qed

lemma connected punctured convex :
shows [[convex S ; aff dim S 6= 1 ]] =⇒ connected(S − {a})
using path connected imp connected path connected punctured convex by blast

lemma path connected complement countable:
fixes S :: ′a::euclidean space set
assumes 2 ≤ DIM ( ′a) countable S
shows path connected(− S )

proof −
have ¬ collinear (UNIV :: ′a set)
using assms by (auto simp: collinear aff dim [of UNIV :: ′a set ])

then have path connected(UNIV − S )
by (simp add : 〈countable S 〉 path connected convex diff countable)
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then show ?thesis
by (simp add : Compl eq Diff UNIV )

qed

proposition path connected openin diff countable:
fixes S :: ′a::euclidean space set
assumes connected S and ope: openin (top of set (affine hull S )) S

and ¬ collinear S countable T
shows path connected(S − T )

proof (clarsimp simp add : path connected component)
fix x y
assume xy : x ∈ S x /∈ T y ∈ S y /∈ T
show path component (S − T ) x y
proof (rule connected equivalence relation gen [OF 〈connected S 〉, where P =

λx . x /∈ T ])
show ∃ z . z ∈ U ∧ z /∈ T if opeU : openin (top of set S ) U and x ∈ U for U

x
proof −
have openin (top of set (affine hull S )) U
using opeU ope openin trans by blast

with 〈x ∈ U 〉 obtain r where Usub: U ⊆ affine hull S and r > 0
and subU : ball x r ∩ affine hull S ⊆ U

by (auto simp: openin contains ball)
with 〈x ∈ U 〉 have x : x ∈ ball x r ∩ affine hull S
by auto

have ¬ S ⊆ {x}
using 〈¬ collinear S 〉 collinear subset by blast

then obtain x ′ where x ′ 6= x x ′ ∈ S
by blast

obtain y where y : y 6= x y ∈ ball x r ∩ affine hull S
proof
show x + (r / 2 / norm(x ′ − x )) ∗R (x ′ − x ) 6= x
using 〈x ′ 6= x 〉 〈r > 0 〉 by auto

show x + (r / 2 / norm (x ′ − x )) ∗R (x ′ − x ) ∈ ball x r ∩ affine hull S
using 〈x ′ 6= x 〉 〈r > 0 〉 〈x ′ ∈ S 〉 x
by (simp add : dist norm mem affine 3 minus hull inc)

qed
have convex (ball x r ∩ affine hull S )
by (simp add : affine imp convex convex Int)

with x y subU have uncountable U
by (meson countable subset uncountable convex )

then have ¬ U ⊆ T
using 〈countable T 〉 countable subset by blast

then show ?thesis by blast
qed
show ∃U . openin (top of set S ) U ∧ x ∈ U ∧

(∀ x∈U . ∀ y∈U . x /∈ T ∧ y /∈ T −→ path component (S − T ) x y)
if x ∈ S for x

proof −
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obtain r where Ssub: S ⊆ affine hull S and r > 0
and subS : ball x r ∩ affine hull S ⊆ S

using ope 〈x ∈ S 〉 by (auto simp: openin contains ball)
then have conv : convex (ball x r ∩ affine hull S )
by (simp add : affine imp convex convex Int)

have ¬ aff dim (affine hull S ) ≤ 1
using 〈¬ collinear S 〉 collinear aff dim by auto

then have ¬ aff dim (ball x r ∩ affine hull S ) ≤ 1
by (metis (no types, hide lams) aff dim convex Int open IntI open ball 〈0

< r 〉 aff dim affine hull affine affine hull affine imp convex centre in ball empty iff
hull subset inf commute subsetCE that)

then have ¬ collinear (ball x r ∩ affine hull S )
by (simp add : collinear aff dim)

then have ∗: path connected ((ball x r ∩ affine hull S ) − T )
by (rule path connected convex diff countable [OF conv 〈countable T 〉])

have ST : ball x r ∩ affine hull S − T ⊆ S − T
using subS by auto

show ?thesis
proof (intro exI conjI )
show x ∈ ball x r ∩ affine hull S
using 〈x ∈ S 〉 〈r > 0 〉 by (simp add : hull inc)

have openin (top of set (affine hull S )) (ball x r ∩ affine hull S )
by (subst inf .commute) (simp add : openin Int open)

then show openin (top of set S ) (ball x r ∩ affine hull S )
by (rule openin subset trans [OF subS Ssub])

qed (use ∗ path component trans in 〈auto simp: path connected component
path component of subset [OF ST ]〉)

qed
qed (use xy path component trans in auto)

qed

corollary connected openin diff countable:
fixes S :: ′a::euclidean space set
assumes connected S and ope: openin (top of set (affine hull S )) S

and ¬ collinear S countable T
shows connected(S − T )

by (metis path connected imp connected path connected openin diff countable [OF
assms])

corollary path connected open diff countable:
fixes S :: ′a::euclidean space set
assumes 2 ≤ DIM ( ′a) open S connected S countable T
shows path connected(S − T )

proof (cases S = {})
case True
then show ?thesis
by (simp)

next
case False
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show ?thesis
proof (rule path connected openin diff countable)
show openin (top of set (affine hull S )) S
by (simp add : assms hull subset open subset)

show ¬ collinear S
using assms False by (simp add : collinear aff dim aff dim open)

qed (simp all add : assms)
qed

corollary connected open diff countable:
fixes S :: ′a::euclidean space set
assumes 2 ≤ DIM ( ′a) open S connected S countable T
shows connected(S − T )

by (simp add : assms path connected imp connected path connected open diff countable)

6.18.28 Self-homeomorphisms shuffling points about

The theorem homeomorphism moving points exists

lemma homeomorphism moving point 1 :
fixes a :: ′a::euclidean space
assumes affine T a ∈ T and u: u ∈ ball a r ∩ T
obtains f g where homeomorphism (cball a r ∩ T ) (cball a r ∩ T ) f g

f a = u
∧
x . x ∈ sphere a r =⇒ f x = x

proof −
have nou: norm (u − a) < r and u ∈ T
using u by (auto simp: dist norm norm minus commute)

then have 0 < r
by (metis DiffD1 Diff Diff Int ball eq empty centre in ball not le u)

define f where f ≡ λx . (1 − norm(x − a) / r) ∗R (u − a) + x
have ∗: False if eq : x + (norm y / r) ∗R u = y + (norm x / r) ∗R u

and nou: norm u < r and yx : norm y < norm x for x y and u:: ′a
proof −
have x = y + (norm x / r − (norm y / r)) ∗R u
using eq by (simp add : algebra simps)

then have norm x = norm (y + ((norm x − norm y) / r) ∗R u)
by (metis diff divide distrib)

also have . . . ≤ norm y + norm(((norm x − norm y) / r) ∗R u)
using norm triangle ineq by blast

also have . . . = norm y + (norm x − norm y) ∗ (norm u / r)
using yx 〈r > 0 〉

by (simp add : field split simps)
also have . . . < norm y + (norm x − norm y) ∗ 1
proof (subst add less cancel left)
show (norm x − norm y) ∗ (norm u / r) < (norm x − norm y) ∗ 1
proof (rule mult strict left mono)
show norm u / r < 1
using 〈0 < r 〉 divide less eq 1 pos nou by blast

qed (simp add : yx )
qed
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also have . . . = norm x
by simp

finally show False by simp
qed
have inj f
unfolding f def

proof (clarsimp simp: inj on def )
fix x y
assume (1 − norm (x − a) / r) ∗R (u − a) + x =

(1 − norm (y − a) / r) ∗R (u − a) + y
then have eq : (x − a) + (norm (y − a) / r) ∗R (u − a) = (y − a) + (norm

(x − a) / r) ∗R (u − a)
by (auto simp: algebra simps)

show x=y
proof (cases norm (x − a) = norm (y − a))
case True
then show ?thesis
using eq by auto

next
case False
then consider norm (x − a) < norm (y − a) | norm (x − a) > norm (y

− a)
by linarith

then have False
proof cases
case 1 show False
using ∗ [OF nou 1 ] eq by simp

next
case 2 with ∗ [OF eq nou] show False
by auto

qed
then show x=y ..

qed
qed
then have inj onf : inj on f (cball a r ∩ T )
using inj on Int by fastforce

have contf : continuous on (cball a r ∩ T ) f
unfolding f def using 〈0 < r 〉 by (intro continuous intros) blast

have fim: f ‘ (cball a r ∩ T ) = cball a r ∩ T
proof
have ∗: norm (y + (1 − norm y / r) ∗R u) ≤ r if norm y ≤ r norm u < r

for y u:: ′a
proof −
have norm (y + (1 − norm y / r) ∗R u) ≤ norm y + norm((1 − norm y /

r) ∗R u)
using norm triangle ineq by blast

also have . . . = norm y + abs(1 − norm y / r) ∗ norm u
by simp

also have . . . ≤ r
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proof −
have (r − norm u) ∗ (r − norm y) ≥ 0
using that by auto

then have r ∗ norm u + r ∗ norm y ≤ r ∗ r + norm u ∗ norm y
by (simp add : algebra simps)

then show ?thesis
using that 〈0 < r 〉 by (simp add : abs if field simps)

qed
finally show ?thesis .

qed
have f ‘ (cball a r) ⊆ cball a r
using ∗ nou
apply (clarsimp simp: dist norm norm minus commute f def )
by (metis diff add eq diff diff add diff diff eq2 norm minus commute)

moreover have f ‘ T ⊆ T
unfolding f def using 〈affine T 〉 〈a ∈ T 〉 〈u ∈ T 〉

by (force simp: add .commute mem affine 3 minus)
ultimately show f ‘ (cball a r ∩ T ) ⊆ cball a r ∩ T
by blast

next
show cball a r ∩ T ⊆ f ‘ (cball a r ∩ T )
proof (clarsimp simp add : dist norm norm minus commute)
fix x
assume x : norm (x − a) ≤ r and x ∈ T
have ∃ v ∈ {0 ..1}. ((1 − v) ∗ r − norm ((x − a) − v ∗R (u − a))) · 1 = 0
by (rule ivt decreasing component on 1 ) (auto simp: x continuous intros)

then obtain v where 0 ≤ v v ≤ 1
and v : (1 − v) ∗ r = norm ((x − a) − v ∗R (u − a))
by auto

then have n: norm (a − (x − v ∗R (u − a))) = r − r ∗ v
by (simp add : field simps norm minus commute)

show x ∈ f ‘ (cball a r ∩ T )
proof (rule image eqI )
show x = f (x − v ∗R (u − a))
using 〈r > 0 〉 v by (simp add : f def ) (simp add : field simps)

have x − v ∗R (u − a) ∈ cball a r
using 〈r > 0 〉〈0 ≤ v 〉

by (simp add : dist norm n)
moreover have x − v ∗R (u − a) ∈ T
by (simp add : f def 〈u ∈ T 〉 〈x ∈ T 〉 assms mem affine 3 minus2 )

ultimately show x − v ∗R (u − a) ∈ cball a r ∩ T
by blast

qed
qed

qed
have compact (cball a r ∩ T )
by (simp add : affine closed compact Int closed 〈affine T 〉)

then obtain g where homeomorphism (cball a r ∩ T ) (cball a r ∩ T ) f g
by (metis homeomorphism compact [OF contf fim inj onf ])
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then show thesis
apply (rule tac f=f in that)
using 〈r > 0 〉 by (simp all add : f def dist norm norm minus commute)

qed

corollary homeomorphism moving point 2 :
fixes a :: ′a::euclidean space
assumes affine T a ∈ T and u: u ∈ ball a r ∩ T and v : v ∈ ball a r ∩ T
obtains f g where homeomorphism (cball a r ∩ T ) (cball a r ∩ T ) f g

f u = v
∧
x . [[x ∈ sphere a r ; x ∈ T ]] =⇒ f x = x

proof −
have 0 < r
by (metis DiffD1 Diff Diff Int ball eq empty centre in ball not le u)

obtain f1 g1 where hom1 : homeomorphism (cball a r ∩ T ) (cball a r ∩ T ) f1
g1

and f1 a = u and f1 :
∧
x . x ∈ sphere a r =⇒ f1 x = x

using homeomorphism moving point 1 [OF 〈affine T 〉 〈a ∈ T 〉 u] by blast
obtain f2 g2 where hom2 : homeomorphism (cball a r ∩ T ) (cball a r ∩ T ) f2

g2
and f2 a = v and f2 :

∧
x . x ∈ sphere a r =⇒ f2 x = x

using homeomorphism moving point 1 [OF 〈affine T 〉 〈a ∈ T 〉 v ] by blast
show ?thesis
proof
show homeomorphism (cball a r ∩ T ) (cball a r ∩ T ) (f2 ◦ g1 ) (f1 ◦ g2 )
by (metis homeomorphism compose homeomorphism symD hom1 hom2 )

have g1 u = a
using 〈0 < r 〉 〈f1 a = u〉 assms hom1 homeomorphism apply1 by fastforce

then show (f2 ◦ g1 ) u = v
by (simp add : 〈f2 a = v 〉)

show
∧
x . [[x ∈ sphere a r ; x ∈ T ]] =⇒ (f2 ◦ g1 ) x = x

using f1 f2 hom1 homeomorphism apply1 by fastforce
qed

qed

corollary homeomorphism moving point 3 :
fixes a :: ′a::euclidean space
assumes affine T a ∈ T and ST : ball a r ∩ T ⊆ S S ⊆ T

and u: u ∈ ball a r ∩ T and v : v ∈ ball a r ∩ T
obtains f g where homeomorphism S S f g

f u = v {x . ¬ (f x = x ∧ g x = x )} ⊆ ball a r ∩ T
proof −
obtain f g where hom: homeomorphism (cball a r ∩ T ) (cball a r ∩ T ) f g

and f u = v and fid :
∧
x . [[x ∈ sphere a r ; x ∈ T ]] =⇒ f x = x

using homeomorphism moving point 2 [OF 〈affine T 〉 〈a ∈ T 〉 u v ] by blast
have gid :

∧
x . [[x ∈ sphere a r ; x ∈ T ]] =⇒ g x = x

using fid hom homeomorphism apply1 by fastforce
define ff where ff ≡ λx . if x ∈ ball a r ∩ T then f x else x
define gg where gg ≡ λx . if x ∈ ball a r ∩ T then g x else x
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show ?thesis
proof
show homeomorphism S S ff gg
proof (rule homeomorphismI )
have continuous on ((cball a r ∩ T ) ∪ (T − ball a r)) ff
unfolding ff def
using homeomorphism cont1 [OF hom]
by (intro continuous on cases) (auto simp: affine closed 〈affine T 〉 fid)

then show continuous on S ff
by (rule continuous on subset) (use ST in auto)

have continuous on ((cball a r ∩ T ) ∪ (T − ball a r)) gg
unfolding gg def
using homeomorphism cont2 [OF hom]
by (intro continuous on cases) (auto simp: affine closed 〈affine T 〉 gid)

then show continuous on S gg
by (rule continuous on subset) (use ST in auto)

show ff ‘ S ⊆ S
proof (clarsimp simp add : ff def )
fix x
assume x ∈ S and x : dist a x < r and x ∈ T
then have f x ∈ cball a r ∩ T
using homeomorphism image1 [OF hom] by force

then show f x ∈ S
using ST (1 ) 〈x ∈ T 〉 gid hom homeomorphism def x by fastforce

qed
show gg ‘ S ⊆ S
proof (clarsimp simp add : gg def )
fix x
assume x ∈ S and x : dist a x < r and x ∈ T
then have g x ∈ cball a r ∩ T
using homeomorphism image2 [OF hom] by force

then have g x ∈ ball a r
using homeomorphism apply2 [OF hom]
by (metis Diff Diff Int Diff iff 〈x ∈ T 〉 cball def fid le less mem Collect eq

mem ball mem sphere x )
then show g x ∈ S
using ST (1 ) 〈g x ∈ cball a r ∩ T 〉 by force

qed
show

∧
x . x ∈ S =⇒ gg (ff x ) = x

unfolding ff def gg def
using homeomorphism apply1 [OF hom] homeomorphism image1 [OF hom]

by simp (metis Int iff homeomorphism apply1 [OF hom] fid image eqI
less eq real def mem cball mem sphere)

show
∧
x . x ∈ S =⇒ ff (gg x ) = x

unfolding ff def gg def
using homeomorphism apply2 [OF hom] homeomorphism image2 [OF hom]
by simp (metis Int iff fid image eqI less eq real def mem cball mem sphere)

qed
show ff u = v
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using u by (auto simp: ff def 〈f u = v 〉)
show {x . ¬ (ff x = x ∧ gg x = x )} ⊆ ball a r ∩ T
by (auto simp: ff def gg def )

qed
qed

proposition homeomorphism moving point :
fixes a :: ′a::euclidean space
assumes ope: openin (top of set (affine hull S )) S

and S ⊆ T
and TS : T ⊆ affine hull S
and S : connected S a ∈ S b ∈ S

obtains f g where homeomorphism T T f g f a = b
{x . ¬ (f x = x ∧ g x = x )} ⊆ S
bounded {x . ¬ (f x = x ∧ g x = x )}

proof −
have 1 : ∃ h k . homeomorphism T T h k ∧ h (f d) = d ∧

{x . ¬ (h x = x ∧ k x = x )} ⊆ S ∧ bounded {x . ¬ (h x = x ∧ k x = x )}
if d ∈ S f d ∈ S and homfg : homeomorphism T T f g
and S : {x . ¬ (f x = x ∧ g x = x )} ⊆ S
and bo: bounded {x . ¬ (f x = x ∧ g x = x )} for d f g

proof (intro exI conjI )
show homgf : homeomorphism T T g f
by (metis homeomorphism symD homfg)

then show g (f d) = d
by (meson 〈S ⊆ T 〉 homeomorphism def subsetD 〈d ∈ S 〉)

show {x . ¬ (g x = x ∧ f x = x )} ⊆ S
using S by blast

show bounded {x . ¬ (g x = x ∧ f x = x )}
using bo by (simp add : conj commute)

qed
have 2 : ∃ f g . homeomorphism T T f g ∧ f x = f2 (f1 x ) ∧

{x . ¬ (f x = x ∧ g x = x )} ⊆ S ∧ bounded {x . ¬ (f x = x ∧ g x =
x )}

if x ∈ S f1 x ∈ S f2 (f1 x ) ∈ S
and hom: homeomorphism T T f1 g1 homeomorphism T T f2 g2
and sub: {x . ¬ (f1 x = x ∧ g1 x = x )} ⊆ S {x . ¬ (f2 x = x ∧ g2 x

= x )} ⊆ S
and bo: bounded {x . ¬ (f1 x = x ∧ g1 x = x )} bounded {x . ¬ (f2 x

= x ∧ g2 x = x )}
for x f1 f2 g1 g2

proof (intro exI conjI )
show homgf : homeomorphism T T (f2 ◦ f1 ) (g1 ◦ g2 )
by (metis homeomorphism compose hom)

then show (f2 ◦ f1 ) x = f2 (f1 x )
by force

show {x . ¬ ((f2 ◦ f1 ) x = x ∧ (g1 ◦ g2 ) x = x )} ⊆ S
using sub by force
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have bounded ({x . ¬(f1 x = x ∧ g1 x = x )} ∪ {x . ¬(f2 x = x ∧ g2 x = x )})
using bo by simp

then show bounded {x . ¬ ((f2 ◦ f1 ) x = x ∧ (g1 ◦ g2 ) x = x )}
by (rule bounded subset) auto

qed
have 3 : ∃U . openin (top of set S ) U ∧

d ∈ U ∧
(∀ x∈U .
∃ f g . homeomorphism T T f g ∧ f d = x ∧

{x . ¬ (f x = x ∧ g x = x )} ⊆ S ∧
bounded {x . ¬ (f x = x ∧ g x = x )})

if d ∈ S for d
proof −
obtain r where r > 0 and r : ball d r ∩ affine hull S ⊆ S
by (metis 〈d ∈ S 〉 ope openin contains ball)

have ∗: ∃ f g . homeomorphism T T f g ∧ f d = e ∧
{x . ¬ (f x = x ∧ g x = x )} ⊆ S ∧
bounded {x . ¬ (f x = x ∧ g x = x )} if e ∈ S e ∈ ball d r for e

apply (rule homeomorphism moving point 3 [of affine hull S d r T d e])
using r 〈S ⊆ T 〉 TS that

apply (auto simp: 〈d ∈ S 〉 〈0 < r 〉 hull inc)
using bounded subset by blast

show ?thesis
by (rule tac x=S ∩ ball d r in exI ) (fastforce simp: openin open Int 〈0 < r 〉

that intro: ∗)
qed
have ∃ f g . homeomorphism T T f g ∧ f a = b ∧

{x . ¬ (f x = x ∧ g x = x )} ⊆ S ∧ bounded {x . ¬ (f x = x ∧ g x = x )}
by (rule connected equivalence relation [OF S ]; blast intro: 1 2 3 )

then show ?thesis
using that by auto

qed

lemma homeomorphism moving points exists gen:
assumes K : finite K

∧
i . i ∈ K =⇒ x i ∈ S ∧ y i ∈ S

pairwise (λi j . (x i 6= x j ) ∧ (y i 6= y j )) K
and 2 ≤ aff dim S
and ope: openin (top of set (affine hull S )) S
and S ⊆ T T ⊆ affine hull S connected S

shows ∃ f g . homeomorphism T T f g ∧ (∀ i ∈ K . f (x i) = y i) ∧
{x . ¬ (f x = x ∧ g x = x )} ⊆ S ∧ bounded {x . ¬ (f x = x ∧ g x = x )}

using assms
proof (induction K )
case empty
then show ?case
by (force simp: homeomorphism ident)

next
case (insert i K )
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then have xney :
∧
j . [[j ∈ K ; j 6= i ]] =⇒ x i 6= x j ∧ y i 6= y j

and pw : pairwise (λi j . x i 6= x j ∧ y i 6= y j ) K
and x i ∈ S y i ∈ S
and xyS :

∧
i . i ∈ K =⇒ x i ∈ S ∧ y i ∈ S

by (simp all add : pairwise insert)
obtain f g where homfg : homeomorphism T T f g and feq :

∧
i . i ∈ K =⇒ f (x

i) = y i
and fg sub: {x . ¬ (f x = x ∧ g x = x )} ⊆ S
and bo fg : bounded {x . ¬ (f x = x ∧ g x = x )}

using insert .IH [OF xyS pw ] insert .prems by (blast intro: that)
then have ∃ f g . homeomorphism T T f g ∧ (∀ i ∈ K . f (x i) = y i) ∧

{x . ¬ (f x = x ∧ g x = x )} ⊆ S ∧ bounded {x . ¬ (f x = x ∧ g x
= x )}

using insert by blast
have aff eq : affine hull (S − y ‘ K ) = affine hull S
proof (rule affine hull Diff [OF ope])
show finite (y ‘ K )
by (simp add : insert .hyps(1 ))

show y ‘ K ⊂ S
using 〈y i ∈ S 〉 insert .hyps(2 ) xney xyS by fastforce

qed
have f in S : f x ∈ S if x ∈ S for x
using homfg fg sub homeomorphism apply1 〈S ⊆ T 〉

proof −
have (f (f x ) 6= f x ∨ g (f x ) 6= f x ) ∨ f x ∈ S
by (metis 〈S ⊆ T 〉 homfg subsetD homeomorphism apply1 that)

then show ?thesis
using fg sub by force

qed
obtain h k where homhk : homeomorphism T T h k and heq : h (f (x i)) = y i

and hk sub: {x . ¬ (h x = x ∧ k x = x )} ⊆ S − y ‘ K
and bo hk : bounded {x . ¬ (h x = x ∧ k x = x )}

proof (rule homeomorphism moving point [of S − y‘K T f (x i) y i ])
show openin (top of set (affine hull (S − y ‘ K ))) (S − y ‘ K )
by (simp add : aff eq openin diff finite imp closedin image subset iff hull inc

insert xyS )
show S − y ‘ K ⊆ T
using 〈S ⊆ T 〉 by auto

show T ⊆ affine hull (S − y ‘ K )
using insert by (simp add : aff eq)

show connected (S − y ‘ K )
proof (rule connected openin diff countable [OF 〈connected S 〉 ope])
show ¬ collinear S
using collinear aff dim 〈2 ≤ aff dim S 〉 by force

show countable (y ‘ K )
using countable finite insert .hyps(1 ) by blast

qed
have

∧
k . [[f (x i) = y k ; k ∈ K ]] =⇒ False

by (metis feq homfg 〈x i ∈ S 〉 homeomorphism def 〈S ⊆ T 〉 〈i /∈ K 〉 subsetCE
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xney xyS )
then show f (x i) ∈ S − y ‘ K
by (auto simp: f in S 〈x i ∈ S 〉)

show y i ∈ S − y ‘ K
using insert .hyps xney by (auto simp: 〈y i ∈ S 〉)

qed blast
show ?case
proof (intro exI conjI )
show homeomorphism T T (h ◦ f ) (g ◦ k)
using homfg homhk homeomorphism compose by blast

show ∀ i ∈ insert i K . (h ◦ f ) (x i) = y i
using feq hk sub by (auto simp: heq)

show {x . ¬ ((h ◦ f ) x = x ∧ (g ◦ k) x = x )} ⊆ S
using fg sub hk sub by force

have bounded ({x . ¬(f x = x ∧ g x = x )} ∪ {x . ¬(h x = x ∧ k x = x )})
using bo fg bo hk bounded Un by blast

then show bounded {x . ¬ ((h ◦ f ) x = x ∧ (g ◦ k) x = x )}
by (rule bounded subset) auto

qed
qed

proposition homeomorphism moving points exists:
fixes S :: ′a::euclidean space set
assumes 2 : 2 ≤ DIM ( ′a) open S connected S S ⊆ T finite K

and KS :
∧
i . i ∈ K =⇒ x i ∈ S ∧ y i ∈ S

and pw : pairwise (λi j . (x i 6= x j ) ∧ (y i 6= y j )) K
and S : S ⊆ T T ⊆ affine hull S connected S

obtains f g where homeomorphism T T f g
∧
i . i ∈ K =⇒ f (x i) = y i

{x . ¬ (f x = x ∧ g x = x )} ⊆ S bounded {x . (¬ (f x = x ∧ g x =
x ))}
proof (cases S = {})
case True
then show ?thesis
using KS homeomorphism ident that by fastforce

next
case False
then have affS : affine hull S = UNIV
by (simp add : affine hull open 〈open S 〉)

then have ope: openin (top of set (affine hull S )) S
using 〈open S 〉 open openin by auto

have 2 ≤ DIM ( ′a) by (rule 2 )
also have . . . = aff dim (UNIV :: ′a set)
by simp

also have . . . ≤ aff dim S
by (metis aff dim UNIV aff dim affine hull aff dim le DIM affS )

finally have 2 ≤ aff dim S
by linarith

then show ?thesis
using homeomorphism moving points exists gen [OF 〈finite K 〉 KS pw ope S ]
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that by fastforce
qed

The theorem homeomorphism grouping points exists

lemma homeomorphism grouping point 1 :
fixes a::real and c::real
assumes a < b c < d
obtains f g where homeomorphism (cbox a b) (cbox c d) f g f a = c f b = d

proof −
define f where f ≡ λx . ((d − c) / (b − a)) ∗ x + (c − a ∗ ((d − c) / (b −

a)))
have ∃ g . homeomorphism (cbox a b) (cbox c d) f g
proof (rule homeomorphism compact)
show continuous on (cbox a b) f
unfolding f def by (intro continuous intros)

have f ‘ {a..b} = {c..d}
unfolding f def image affinity atLeastAtMost
using assms sum sqs eq by (auto simp: field split simps)

then show f ‘ cbox a b = cbox c d
by auto

show inj on f (cbox a b)
unfolding f def inj on def using assms by auto

qed auto
then obtain g where homeomorphism (cbox a b) (cbox c d) f g ..
then show ?thesis
proof
show f a = c
by (simp add : f def )

show f b = d
using assms sum sqs eq [of a b] by (auto simp: f def field split simps)

qed
qed

lemma homeomorphism grouping point 2 :
fixes a::real and w ::real
assumes hom ab: homeomorphism (cbox a b) (cbox u v) f1 g1

and hom bc: homeomorphism (cbox b c) (cbox v w) f2 g2
and b ∈ cbox a c v ∈ cbox u w
and eq : f1 a = u f1 b = v f2 b = v f2 c = w

obtains f g where homeomorphism (cbox a c) (cbox u w) f g f a = u f c = w∧
x . x ∈ cbox a b =⇒ f x = f1 x

∧
x . x ∈ cbox b c =⇒ f x = f2 x

proof −
have le: a ≤ b b ≤ c u ≤ v v ≤ w
using assms by simp all

then have ac: cbox a c = cbox a b ∪ cbox b c and uw : cbox u w = cbox u v ∪
cbox v w

by auto
define f where f ≡ λx . if x ≤ b then f1 x else f2 x
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have ∃ g . homeomorphism (cbox a c) (cbox u w) f g
proof (rule homeomorphism compact)
have cf1 : continuous on (cbox a b) f1
using hom ab homeomorphism cont1 by blast

have cf2 : continuous on (cbox b c) f2
using hom bc homeomorphism cont1 by blast

show continuous on (cbox a c) f
unfolding f def using le eq
by (force intro: continuous on cases le [OF continuous on subset [OF cf1 ]

continuous on subset [OF cf2 ]])
have f ‘ cbox a b = f1 ‘ cbox a b f ‘ cbox b c = f2 ‘ cbox b c
unfolding f def using eq by force+

then show f ‘ cbox a c = cbox u w
unfolding ac uw image Un by (metis hom ab hom bc homeomorphism def )

have neq12 : f1 x 6= f2 y if x : a ≤ x x ≤ b and y : b < y y ≤ c for x y
proof −
have f1 x ∈ cbox u v
by (metis hom ab homeomorphism def image eqI mem box real(2 ) x )

moreover have f2 y ∈ cbox v w
by (metis (full types) hom bc homeomorphism def image subset iff mem box real(2 )

not le not less iff gr or eq order refl y)
moreover have f2 y 6= f2 b

by (metis cancel comm monoid add class.diff cancel diff gt 0 iff gt hom bc
homeomorphism def le(2 ) less imp le less numeral extra(3 ) mem box real(2 ) or-
der refl y)

ultimately show ?thesis
using le eq by simp

qed
have inj on f1 (cbox a b)
by (metis (full types) hom ab homeomorphism def inj onI )

moreover have inj on f2 (cbox b c)
by (metis (full types) hom bc homeomorphism def inj onI )

ultimately show inj on f (cbox a c)
apply (simp (no asm) add : inj on def )
apply (simp add : f def inj on eq iff )
using neq12 by force

qed auto
then obtain g where homeomorphism (cbox a c) (cbox u w) f g ..
then show ?thesis
using eq f def le that by force

qed

lemma homeomorphism grouping point 3 :
fixes a::real
assumes cbox sub: cbox c d ⊆ box a b cbox u v ⊆ box a b

and box ne: box c d 6= {} box u v 6= {}
obtains f g where homeomorphism (cbox a b) (cbox a b) f g f a = a f b = b∧

x . x ∈ cbox c d =⇒ f x ∈ cbox u v
proof −
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have less: a < c a < u d < b v < b c < d u < v cbox c d 6= {}
using assms
by (simp all add : cbox sub subset eq)

obtain f1 g1 where 1 : homeomorphism (cbox a c) (cbox a u) f1 g1
and f1 eq : f1 a = a f1 c = u

using homeomorphism grouping point 1 [OF 〈a < c〉 〈a < u〉] .
obtain f2 g2 where 2 : homeomorphism (cbox c d) (cbox u v) f2 g2

and f2 eq : f2 c = u f2 d = v
using homeomorphism grouping point 1 [OF 〈c < d 〉 〈u < v 〉] .

obtain f3 g3 where 3 : homeomorphism (cbox d b) (cbox v b) f3 g3
and f3 eq : f3 d = v f3 b = b

using homeomorphism grouping point 1 [OF 〈d < b〉 〈v < b〉] .
obtain f4 g4 where 4 : homeomorphism (cbox a d) (cbox a v) f4 g4 and f4 a =

a f4 d = v
and f4 eq :

∧
x . x ∈ cbox a c =⇒ f4 x = f1 x

∧
x . x ∈ cbox c d =⇒

f4 x = f2 x
using homeomorphism grouping point 2 [OF 1 2 ] less by (auto simp: f1 eq

f2 eq)
obtain f g where fg : homeomorphism (cbox a b) (cbox a b) f g f a = a f b = b

and f eq :
∧
x . x ∈ cbox a d =⇒ f x = f4 x

∧
x . x ∈ cbox d b =⇒ f x

= f3 x
using homeomorphism grouping point 2 [OF 4 3 ] less by (auto simp: f4 eq

f3 eq f2 eq f1 eq)
show ?thesis
proof (rule that [OF fg ])
show f x ∈ cbox u v if x ∈ cbox c d for x
using that f4 eq f eq homeomorphism image1 [OF 2 ]
by (metis atLeastAtMost iff box real(2 ) image eqI less(1 ) less eq real def

order trans)
qed

qed

lemma homeomorphism grouping point 4 :
fixes T :: real set
assumes open U open S connected S U 6= {} finite K K ⊆ S U ⊆ S S ⊆ T
obtains f g where homeomorphism T T f g∧

x . x ∈ K =⇒ f x ∈ U {x . (¬ (f x = x ∧ g x = x ))} ⊆ S
bounded {x . (¬ (f x = x ∧ g x = x ))}

proof −
obtain c d where box c d 6= {} cbox c d ⊆ U
proof −
obtain u where u ∈ U
using 〈U 6= {}〉 by blast

then obtain e where e > 0 cball u e ⊆ U
using 〈open U 〉 open contains cball by blast

then show ?thesis
by (rule tac c=u and d=u+e in that) (auto simp: dist norm subset iff )

qed
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have compact K
by (simp add : 〈finite K 〉 finite imp compact)

obtain a b where box a b 6= {} K ⊆ cbox a b cbox a b ⊆ S
proof (cases K = {})
case True then show ?thesis
using 〈box c d 6= {}〉 〈cbox c d ⊆ U 〉 〈U ⊆ S 〉 that by blast

next
case False
then obtain a b where a ∈ K b ∈ K

and a:
∧
x . x ∈ K =⇒ a ≤ x and b:

∧
x . x ∈ K =⇒ x ≤ b

using compact attains inf compact attains sup by (metis 〈compact K 〉)+
obtain e where e > 0 cball b e ⊆ S
using 〈open S 〉 open contains cball
by (metis 〈b ∈ K 〉 〈K ⊆ S 〉 subsetD)

show ?thesis
proof
show box a (b + e) 6= {}
using 〈0 < e〉 〈b ∈ K 〉 a by force

show K ⊆ cbox a (b + e)
using 〈0 < e〉 a b by fastforce

have a ∈ S
using 〈a ∈ K 〉 assms(6 ) by blast

have b + e ∈ S
using 〈0 < e〉 〈cball b e ⊆ S 〉 by (force simp: dist norm)

show cbox a (b + e) ⊆ S
using 〈a ∈ S 〉 〈b + e ∈ S 〉 〈connected S 〉 connected contains Icc by auto

qed
qed
obtain w z where cbox w z ⊆ S and sub wz : cbox a b ∪ cbox c d ⊆ box w z
proof −
have a ∈ S b ∈ S
using 〈box a b 6= {}〉 〈cbox a b ⊆ S 〉 by auto

moreover have c ∈ S d ∈ S
using 〈box c d 6= {}〉 〈cbox c d ⊆ U 〉 〈U ⊆ S 〉 by force+

ultimately have min a c ∈ S max b d ∈ S
by linarith+

then obtain e1 e2 where e1 > 0 cball (min a c) e1 ⊆ S e2 > 0 cball (max
b d) e2 ⊆ S

using 〈open S 〉 open contains cball by metis
then have ∗: min a c − e1 ∈ S max b d + e2 ∈ S
by (auto simp: dist norm)

show ?thesis
proof
show cbox (min a c − e1 ) (max b d+ e2 ) ⊆ S
using ∗ 〈connected S 〉 connected contains Icc by auto

show cbox a b ∪ cbox c d ⊆ box (min a c − e1 ) (max b d + e2 )
using 〈0 < e1 〉 〈0 < e2 〉 by auto

qed
qed
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then
obtain f g where hom: homeomorphism (cbox w z ) (cbox w z ) f g

and f w = w f z = z
and fin:

∧
x . x ∈ cbox a b =⇒ f x ∈ cbox c d

using homeomorphism grouping point 3 [of a b w z c d ]
using 〈box a b 6= {}〉 〈box c d 6= {}〉 by blast

have contfg : continuous on (cbox w z ) f continuous on (cbox w z ) g
using hom homeomorphism def by blast+

define f ′ where f ′ ≡ λx . if x ∈ cbox w z then f x else x
define g ′ where g ′ ≡ λx . if x ∈ cbox w z then g x else x
show ?thesis
proof
have T : cbox w z ∪ (T − box w z ) = T
using 〈cbox w z ⊆ S 〉 〈S ⊆ T 〉 by auto

show homeomorphism T T f ′ g ′

proof
have clo: closedin (top of set (cbox w z ∪ (T − box w z ))) (T − box w z )
by (metis Diff Diff Int Diff subset T closedin def open box openin open Int

topspace euclidean subtopology)
have

∧
x . [[w ≤ x ∧ x ≤ z ; w < x −→ ¬ x < z ]] =⇒ f x = x

using 〈f w = w 〉 〈f z = z 〉 by auto
moreover have

∧
x . [[w ≤ x ∧ x ≤ z ; w < x −→ ¬ x < z ]] =⇒ g x = x

using 〈f w = w 〉 〈f z = z 〉 hom homeomorphism apply1 by fastforce
ultimately
have continuous on (cbox w z ∪ (T − box w z )) f ′ continuous on (cbox w z

∪ (T − box w z )) g ′

unfolding f ′ def g ′ def
by (intro continuous on cases local contfg continuous on id clo; auto simp:

closed subset)+
then show continuous on T f ′ continuous on T g ′

by (simp all only : T )
show f ′ ‘ T ⊆ T
unfolding f ′ def
by clarsimp (metis 〈cbox w z ⊆ S 〉 〈S ⊆ T 〉 subsetD hom homeomorphism def

imageI mem box real(2 ))
show g ′ ‘ T ⊆ T
unfolding g ′ def
by clarsimp (metis 〈cbox w z ⊆ S 〉 〈S ⊆ T 〉 subsetD hom homeomorphism def

imageI mem box real(2 ))
show

∧
x . x ∈ T =⇒ g ′ (f ′ x ) = x

unfolding f ′ def g ′ def
using homeomorphism apply1 [OF hom] homeomorphism image1 [OF hom]

by fastforce
show

∧
y . y ∈ T =⇒ f ′ (g ′ y) = y

unfolding f ′ def g ′ def
using homeomorphism apply2 [OF hom] homeomorphism image2 [OF hom]

by fastforce
qed
show

∧
x . x ∈ K =⇒ f ′ x ∈ U
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using fin sub wz 〈K ⊆ cbox a b〉 〈cbox c d ⊆ U 〉 by (force simp: f ′ def )
show {x . ¬ (f ′ x = x ∧ g ′ x = x )} ⊆ S
using 〈cbox w z ⊆ S 〉 by (auto simp: f ′ def g ′ def )

show bounded {x . ¬ (f ′ x = x ∧ g ′ x = x )}
proof (rule bounded subset [of cbox w z ])
show bounded (cbox w z )
using bounded cbox by blast

show {x . ¬ (f ′ x = x ∧ g ′ x = x )} ⊆ cbox w z
by (auto simp: f ′ def g ′ def )

qed
qed

qed

proposition homeomorphism grouping points exists:
fixes S :: ′a::euclidean space set
assumes open U open S connected S U 6= {} finite K K ⊆ S U ⊆ S S ⊆ T
obtains f g where homeomorphism T T f g {x . (¬ (f x = x ∧ g x = x ))} ⊆ S

bounded {x . (¬ (f x = x ∧ g x = x ))}
∧
x . x ∈ K =⇒ f x ∈ U

proof (cases 2 ≤ DIM ( ′a))
case True
have TS : T ⊆ affine hull S
using affine hull open assms by blast

have infinite U
using 〈open U 〉 〈U 6= {}〉 finite imp not open by blast

then obtain P where P ⊆ U finite P card K = card P
using infinite arbitrarily large by metis

then obtain γ where γ: bij betw γ K P
using 〈finite K 〉 finite same card bij by blast

obtain f g where homeomorphism T T f g
∧
i . i ∈ K =⇒ f (id i) = γ i {x . ¬

(f x = x ∧ g x = x )} ⊆ S bounded {x . ¬ (f x = x ∧ g x = x )}
proof (rule homeomorphism moving points exists [OF True 〈open S 〉 〈connected

S 〉 〈S ⊆ T 〉 〈finite K 〉])
show

∧
i . i ∈ K =⇒ id i ∈ S ∧ γ i ∈ S

using 〈P ⊆ U 〉 〈bij betw γ K P 〉 〈K ⊆ S 〉 〈U ⊆ S 〉 bij betwE by blast
show pairwise (λi j . id i 6= id j ∧ γ i 6= γ j ) K
using γ by (auto simp: pairwise def bij betw def inj on def )

qed (use affine hull open assms that in auto)
then show ?thesis
using γ 〈P ⊆ U 〉 bij betwE by (fastforce simp add : intro!: that)

next
case False
with DIM positive have DIM ( ′a) = 1
by (simp add : dual order .antisym)

then obtain h:: ′a ⇒real and j
where linear h linear j
and noh:

∧
x . norm(h x ) = norm x and noj :

∧
y . norm(j y) = norm y

and hj :
∧
x . j (h x ) = x

∧
y . h(j y) = y

and ranh: surj h
using isomorphisms UNIV UNIV



Homotopy.thy 2087

by (metis (mono tags, hide lams) DIM real UNIV eq I range eqI )
obtain f g where hom: homeomorphism (h ‘ T ) (h ‘ T ) f g

and f :
∧
x . x ∈ h ‘ K =⇒ f x ∈ h ‘ U

and sub: {x . ¬ (f x = x ∧ g x = x )} ⊆ h ‘ S
and bou: bounded {x . ¬ (f x = x ∧ g x = x )}

apply (rule homeomorphism grouping point 4 [of h ‘ U h ‘ S h ‘ K h ‘ T ])
by (simp all add : assms image mono 〈linear h〉 open surjective linear image

connected linear image ranh)
have jf : j (f (h x )) = x ←→ f (h x ) = h x for x
by (metis hj )

have jg : j (g (h x )) = x ←→ g (h x ) = h x for x
by (metis hj )

have cont hj : continuous on X h continuous on Y j for X Y
by (simp all add : 〈linear h〉 〈linear j 〉 linear linear linear continuous on)

show ?thesis
proof
show homeomorphism T T (j ◦ f ◦ h) (j ◦ g ◦ h)
proof
show continuous on T (j ◦ f ◦ h) continuous on T (j ◦ g ◦ h)
using hom homeomorphism def
by (blast intro: continuous on compose cont hj )+

show (j ◦ f ◦ h) ‘ T ⊆ T (j ◦ g ◦ h) ‘ T ⊆ T
by auto (metis (mono tags, hide lams) hj (1 ) hom homeomorphism def

imageE imageI )+
show

∧
x . x ∈ T =⇒ (j ◦ g ◦ h) ((j ◦ f ◦ h) x ) = x

using hj hom homeomorphism apply1 by fastforce
show

∧
y . y ∈ T =⇒ (j ◦ f ◦ h) ((j ◦ g ◦ h) y) = y

using hj hom homeomorphism apply2 by fastforce
qed
show {x . ¬ ((j ◦ f ◦ h) x = x ∧ (j ◦ g ◦ h) x = x )} ⊆ S
proof (clarsimp simp: jf jg hj )
show f (h x ) = h x −→ g (h x ) 6= h x =⇒ x ∈ S for x
using sub [THEN subsetD , of h x ] hj by simp (metis imageE )

qed
have bounded (j ‘ {x . (¬ (f x = x ∧ g x = x ))})
by (rule bounded linear image [OF bou]) (use 〈linear j 〉 linear conv bounded linear

in auto)
moreover
have ∗: {x . ¬((j ◦ f ◦ h) x = x ∧ (j ◦ g ◦ h) x = x )} = j ‘ {x . (¬ (f x = x ∧

g x = x ))}
using hj by (auto simp: jf jg image iff , metis+)

ultimately show bounded {x . ¬ ((j ◦ f ◦ h) x = x ∧ (j ◦ g ◦ h) x = x )}
by metis

show
∧
x . x ∈ K =⇒ (j ◦ f ◦ h) x ∈ U

using f hj by fastforce
qed

qed
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proposition homeomorphism grouping points exists gen:
fixes S :: ′a::euclidean space set
assumes opeU : openin (top of set S ) U

and opeS : openin (top of set (affine hull S )) S
and U 6= {} finite K K ⊆ S and S : S ⊆ T T ⊆ affine hull S connected S

obtains f g where homeomorphism T T f g {x . (¬ (f x = x ∧ g x = x ))} ⊆ S
bounded {x . (¬ (f x = x ∧ g x = x ))}

∧
x . x ∈ K =⇒ f x ∈ U

proof (cases 2 ≤ aff dim S )
case True
have opeU ′: openin (top of set (affine hull S )) U
using opeS opeU openin trans by blast

obtain u where u ∈ U u ∈ S
using 〈U 6= {}〉 opeU openin imp subset by fastforce+

have infinite U
proof (rule infinite openin [OF opeU 〈u ∈ U 〉])
show u islimpt S
using True 〈u ∈ S 〉 assms(8 ) connected imp perfect aff dim by fastforce

qed
then obtain P where P ⊆ U finite P card K = card P
using infinite arbitrarily large by metis

then obtain γ where γ: bij betw γ K P
using 〈finite K 〉 finite same card bij by blast

have ∃ f g . homeomorphism T T f g ∧ (∀ i ∈ K . f (id i) = γ i) ∧
{x . ¬ (f x = x ∧ g x = x )} ⊆ S ∧ bounded {x . ¬ (f x = x ∧ g x = x )}

proof (rule homeomorphism moving points exists gen [OF 〈finite K 〉 True
opeS S ])

show
∧
i . i ∈ K =⇒ id i ∈ S ∧ γ i ∈ S

by (metis id apply opeU openin contains cball subsetCE 〈P ⊆ U 〉 〈bij betw γ
K P 〉 〈K ⊆ S 〉 bij betwE )

show pairwise (λi j . id i 6= id j ∧ γ i 6= γ j ) K
using γ by (auto simp: pairwise def bij betw def inj on def )

qed
then show ?thesis
using γ 〈P ⊆ U 〉 bij betwE by (fastforce simp add : intro!: that)

next
case False
with aff dim geq [of S ] consider aff dim S = −1 | aff dim S = 0 | aff dim S =

1 by linarith
then show ?thesis
proof cases
assume aff dim S = −1
then have S = {}
using aff dim empty by blast

then have False
using 〈U 6= {}〉 〈K ⊆ S 〉 openin imp subset [OF opeU ] by blast

then show ?thesis ..
next
assume aff dim S = 0
then obtain a where S = {a}
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using aff dim eq 0 by blast
then have K ⊆ U
using 〈U 6= {}〉 〈K ⊆ S 〉 openin imp subset [OF opeU ] by blast

show ?thesis
using 〈K ⊆ U 〉 by (intro that [of id id ]) (auto intro: homeomorphismI )

next
assume aff dim S = 1
then have affine hull S homeomorphic (UNIV :: real set)
by (auto simp: homeomorphic affine sets)

then obtain h:: ′a⇒real and j where homhj : homeomorphism (affine hull S )
UNIV h j

using homeomorphic def by blast
then have h:

∧
x . x ∈ affine hull S =⇒ j (h(x )) = x and j :

∧
y . j y ∈ affine

hull S ∧ h(j y) = y
by (auto simp: homeomorphism def )

have connh: connected (h ‘ S )
by (meson Topological Spaces.connected continuous image 〈connected S 〉 home-

omorphism cont1 homeomorphism of subsets homhj hull subset top greatest)
have hUS : h ‘ U ⊆ h ‘ S
by (meson homeomorphism imp open map homeomorphism of subsets homhj

hull subset opeS opeU open UNIV openin open eq)
have opn: openin (top of set (affine hull S )) U =⇒ open (h ‘ U ) for U
using homeomorphism imp open map [OF homhj ] by simp

have open (h ‘ U ) open (h ‘ S )
by (auto intro: opeS opeU openin trans opn)

then obtain f g where hom: homeomorphism (h ‘ T ) (h ‘ T ) f g
and f :

∧
x . x ∈ h ‘ K =⇒ f x ∈ h ‘ U

and sub: {x . ¬ (f x = x ∧ g x = x )} ⊆ h ‘ S
and bou: bounded {x . ¬ (f x = x ∧ g x = x )}

apply (rule homeomorphism grouping points exists [of h ‘ U h ‘ S h ‘ K h ‘
T ])

using assms by (auto simp: connh hUS )
have jf :

∧
x . x ∈ affine hull S =⇒ j (f (h x )) = x ←→ f (h x ) = h x

by (metis h j )
have jg :

∧
x . x ∈ affine hull S =⇒ j (g (h x )) = x ←→ g (h x ) = h x

by (metis h j )
have cont hj : continuous on T h continuous on Y j for Y
proof (rule continuous on subset [OF 〈T ⊆ affine hull S 〉])
show continuous on (affine hull S ) h
using homeomorphism def homhj by blast

qed (meson continuous on subset homeomorphism def homhj top greatest)
define f ′ where f ′ ≡ λx . if x ∈ affine hull S then (j ◦ f ◦ h) x else x
define g ′ where g ′ ≡ λx . if x ∈ affine hull S then (j ◦ g ◦ h) x else x
show ?thesis
proof
show homeomorphism T T f ′ g ′

proof
have continuous on T (j ◦ f ◦ h)
using hom homeomorphism def by (intro continuous on compose cont hj )
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blast
then show continuous on T f ′

apply (rule continuous on eq)
using 〈T ⊆ affine hull S 〉 f ′ def by auto

have continuous on T (j ◦ g ◦ h)
using hom homeomorphism def by (intro continuous on compose cont hj )

blast
then show continuous on T g ′

apply (rule continuous on eq)
using 〈T ⊆ affine hull S 〉 g ′ def by auto

show f ′ ‘ T ⊆ T
proof (clarsimp simp: f ′ def )
fix x assume x ∈ T
then have f (h x ) ∈ h ‘ T
by (metis (no types) hom homeomorphism def image subset iff subset refl)
then show j (f (h x )) ∈ T
using 〈T ⊆ affine hull S 〉 h by auto

qed
show g ′ ‘ T ⊆ T
proof (clarsimp simp: g ′ def )
fix x assume x ∈ T
then have g (h x ) ∈ h ‘ T
by (metis (no types) hom homeomorphism def image subset iff subset refl)
then show j (g (h x )) ∈ T
using 〈T ⊆ affine hull S 〉 h by auto

qed
show

∧
x . x ∈ T =⇒ g ′ (f ′ x ) = x

using h j hom homeomorphism apply1 by (fastforce simp add : f ′ def
g ′ def )

show
∧
y . y ∈ T =⇒ f ′ (g ′ y) = y

using h j hom homeomorphism apply2 by (fastforce simp add : f ′ def
g ′ def )

qed
next
have §:

∧
x y . [[x ∈ affine hull S ; h x = h y ; y ∈ S ]] =⇒ x ∈ S

by (metis h hull inc)
show {x . ¬ (f ′ x = x ∧ g ′ x = x )} ⊆ S
using sub by (simp add : f ′ def g ′ def jf jg) (force elim: §)

next
have compact (j ‘ closure {x . ¬ (f x = x ∧ g x = x )})
using bou by (auto simp: compact continuous image cont hj )

then have bounded (j ‘ {x . ¬ (f x = x ∧ g x = x )})
by (rule bounded closure image [OF compact imp bounded ])

moreover
have ∗: {x ∈ affine hull S . j (f (h x )) 6= x ∨ j (g (h x )) 6= x} = j ‘ {x . (¬ (f

x = x ∧ g x = x ))}
using h j by (auto simp: image iff ; metis)

ultimately have bounded {x ∈ affine hull S . j (f (h x )) 6= x ∨ j (g (h x ))
6= x}
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by metis
then show bounded {x . ¬ (f ′ x = x ∧ g ′ x = x )}
by (simp add : f ′ def g ′ def Collect mono bounded subset)

next
show f ′ x ∈ U if x ∈ K for x
proof −
have U ⊆ S
using opeU openin imp subset by blast

then have j (f (h x )) ∈ U
using f h hull subset that by fastforce

then show f ′ x ∈ U
using 〈K ⊆ S 〉 S f ′ def that by auto

qed
qed

qed
qed

6.18.29 Nullhomotopic mappings

A mapping out of a sphere is nullhomotopic iff it extends to the ball. This
even works out in the degenerate cases when the radius is ≤ 0, and we also
don’t need to explicitly assume continuity since it’s already implicit in both
sides of the equivalence.

lemma nullhomotopic from lemma:
assumes contg : continuous on (cball a r − {a}) g

and fa:
∧
e. 0 < e

=⇒ ∃ d . 0 < d ∧ (∀ x . x 6= a ∧ norm(x − a) < d −→ norm(g x − f
a) < e)

and r :
∧
x . x ∈ cball a r ∧ x 6= a =⇒ f x = g x

shows continuous on (cball a r) f
proof (clarsimp simp: continuous on eq continuous within Ball def )
fix x
assume x : dist a x ≤ r
show continuous (at x within cball a r) f
proof (cases x=a)
case True
then show ?thesis
by (metis continuous within eps delta fa dist norm dist self r)

next
case False
show ?thesis
proof (rule continuous transform within [where f=g and d = norm(x−a)])
have ∃ d>0 . ∀ x ′∈cball a r .

dist x ′ x < d −→ dist (g x ′) (g x ) < e if e>0 for e
proof −
obtain d where d > 0

and d :
∧
x ′. [[dist x ′ a ≤ r ; x ′ 6= a; dist x ′ x < d ]] =⇒

dist (g x ′) (g x ) < e
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using contg False x 〈e>0 〉

unfolding continuous on iff by (fastforce simp add : dist commute intro:
that)

show ?thesis
using 〈d > 0 〉 〈x 6= a〉

by (rule tac x=min d (norm(x − a)) in exI )
(auto simp: dist commute dist norm [symmetric] intro!: d)

qed
then show continuous (at x within cball a r) g
using contg False by (auto simp: continuous within eps delta)

show 0 < norm (x − a)
using False by force

show x ∈ cball a r
by (simp add : x )

show
∧
x ′. [[x ′ ∈ cball a r ; dist x ′ x < norm (x − a)]]

=⇒ g x ′ = f x ′

by (metis dist commute dist norm less le r)
qed

qed
qed

proposition nullhomotopic from sphere extension:
fixes f :: ′M ::euclidean space ⇒ ′a::real normed vector
shows (∃ c. homotopic with canon (λx . True) (sphere a r) S f (λx . c)) ←→

(∃ g . continuous on (cball a r) g ∧ g ‘ (cball a r) ⊆ S ∧
(∀ x ∈ sphere a r . g x = f x ))

(is ?lhs = ?rhs)
proof (cases r 0 ::real rule: linorder cases)
case less
then show ?thesis
by (simp add : homotopic on emptyI )

next
case equal
show ?thesis
proof
assume L: ?lhs
with equal have [simp]: f a ∈ S
using homotopic with imp subset1 by fastforce

obtain h:: real × ′M ⇒ ′a
where h: continuous on ({0 ..1} × {a}) h h ‘ ({0 ..1} × {a}) ⊆ S h (0 , a)

= f a
using L equal by (auto simp: homotopic with)

then have continuous on (cball a r) (λx . h (0 , a)) (λx . h (0 , a)) ‘ cball a r
⊆ S

by (auto simp: equal)
then show ?rhs
using h(3 ) local .equal by force

next
assume ?rhs
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then show ?lhs
using equal continuous on const by (force simp add : homotopic with)

qed
next
case greater
let ?P = continuous on {x . norm(x − a) = r} f ∧ f ‘ {x . norm(x − a) = r}
⊆ S
have ?P if ?lhs using that
proof
fix c
assume c: homotopic with canon (λx . True) (sphere a r) S f (λx . c)
then have contf : continuous on (sphere a r) f
by (metis homotopic with imp continuous)

moreover have fim: f ‘ sphere a r ⊆ S
by (meson continuous map subtopology eu c homotopic with imp continuous maps)
show ?P
using contf fim by (auto simp: sphere def dist norm norm minus commute)

qed
moreover have ?P if ?rhs using that
proof
fix g
assume g : continuous on (cball a r) g ∧ g ‘ cball a r ⊆ S ∧ (∀ xa∈sphere a r .

g xa = f xa)
then have f ‘ {x . norm (x − a) = r} ⊆ S
using sphere cball [of a r ] unfolding image subset iff sphere def
by (metis dist commute dist norm mem Collect eq subset eq)

with g show ?P
by (auto simp: dist norm norm minus commute elim!: continuous on eq [OF

continuous on subset ])
qed
moreover have ?thesis if ?P
proof
assume ?lhs
then obtain c where homotopic with canon (λx . True) (sphere a r) S (λx .

c) f
using homotopic with sym by blast

then obtain h where conth: continuous on ({0 ..1 ::real} × sphere a r) h
and him: h ‘ ({0 ..1} × sphere a r) ⊆ S
and h:

∧
x . h(0 , x ) = c

∧
x . h(1 , x ) = f x

by (auto simp: homotopic with def )
obtain b1 :: ′M where b1 ∈ Basis
using SOME Basis by auto

have c ∈ h ‘ ({0 ..1} × sphere a r)
proof
show c = h (0 , a + r ∗R b1 )
by (simp add : h)

show (0 , a + r ∗R b1 ) ∈ {0 ..1 ::real} × sphere a r
using greater 〈b1 ∈ Basis〉 by (auto simp: dist norm)

qed
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then have c ∈ S
using him by blast

have uconth: uniformly continuous on ({0 ..1 ::real} × (sphere a r)) h
by (force intro: compact Times conth compact uniformly continuous)

let ?g = λx . h (norm (x − a)/r ,
a + (if x = a then r ∗R b1 else (r / norm(x − a)) ∗R (x − a)))

let ?g ′ = λx . h (norm (x − a)/r , a + (r / norm(x − a)) ∗R (x − a))
show ?rhs
proof (intro exI conjI )
have continuous on (cball a r − {a}) ?g ′

using greater
by (force simp: dist norm norm minus commute intro: continuous on compose2

[OF conth] continuous intros)
then show continuous on (cball a r) ?g
proof (rule nullhomotopic from lemma)
show ∃ d>0 . ∀ x . x 6= a ∧ norm (x − a) < d −→ norm (?g ′ x − ?g a) <

e if 0 < e for e
proof −
obtain d where 0 < d
and d :

∧
x x ′. [[x ∈ {0 ..1} × sphere a r ; x ′ ∈ {0 ..1} × sphere a r ; norm

( x ′ − x ) < d ]]
=⇒ norm (h x ′ − h x ) < e

using uniformly continuous onE [OF uconth 〈0 < e〉] by (auto simp:
dist norm)

have ∗: norm (h (norm (x − a) / r ,
a + (r / norm (x − a)) ∗R (x − a)) − h (0 , a + r ∗R b1 ))

< e (is norm (?ha − ?hb) < e)
if x 6= a norm (x − a) < r norm (x − a) < d ∗ r for x

proof −
have norm (?ha − ?hb) = norm (?ha − h (0 , a + (r / norm (x − a))

∗R (x − a)))
by (simp add : h)

also have . . . < e
using greater 〈0 < d 〉 〈b1 ∈ Basis〉 that
by (intro d) (simp all add : dist norm, simp add : field simps)

finally show ?thesis .
qed
show ?thesis
using greater 〈0 < d 〉

by (rule tac x = min r (d ∗ r) in exI ) (auto simp: ∗)
qed
show

∧
x . x ∈ cball a r ∧ x 6= a =⇒ ?g x = ?g ′ x

by auto
qed

next
show ?g ‘ cball a r ⊆ S
using greater him 〈c ∈ S 〉

by (force simp: h dist norm norm minus commute)
next
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show ∀ x∈sphere a r . ?g x = f x
using greater by (auto simp: h dist norm norm minus commute)

qed
next
assume ?rhs
then obtain g where contg : continuous on (cball a r) g

and gim: g ‘ cball a r ⊆ S
and gf : ∀ x ∈ sphere a r . g x = f x

by auto
let ?h = λy . g (a + (fst y) ∗R (snd y − a))
have continuous on ({0 ..1} × sphere a r) ?h
proof (rule continuous on compose2 [OF contg ])
show continuous on ({0 ..1} × sphere a r) (λx . a + fst x ∗R (snd x − a))
by (intro continuous intros)

qed (auto simp: dist norm norm minus commute mult left le one le)
moreover
have ?h ‘ ({0 ..1} × sphere a r) ⊆ S
by (auto simp: dist norm norm minus commute mult left le one le gim [THEN

subsetD ])
moreover
have ∀ x∈sphere a r . ?h (0 , x ) = g a ∀ x∈sphere a r . ?h (1 , x ) = f x
by (auto simp: dist norm norm minus commute mult left le one le gf )

ultimately have homotopic with canon (λx . True) (sphere a r) S (λx . g a) f
by (auto simp: homotopic with)

then show ?lhs
using homotopic with symD by blast

qed
ultimately
show ?thesis by meson

qed

end

6.19 Homeomorphism Theorems

theory Homeomorphism
imports Homotopy
begin

lemma homeomorphic spheres ′:
fixes a :: ′a::euclidean space and b :: ′b::euclidean space
assumes 0 < δ and dimeq : DIM ( ′a) = DIM ( ′b)
shows (sphere a δ) homeomorphic (sphere b δ)

proof −
obtain f :: ′a⇒ ′b and g where linear f linear g

and fg :
∧
x . norm(f x ) = norm x

∧
y . norm(g y) = norm y

∧
x . g(f x ) = x∧

y . f (g y) = y
by (blast intro: isomorphisms UNIV UNIV [OF dimeq ])

then have continuous on UNIV f continuous on UNIV g
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using linear continuous on linear linear by blast+
then show ?thesis
unfolding homeomorphic minimal
apply(rule tac x=λx . b + f (x − a) in exI )
apply(rule tac x=λx . a + g(x − b) in exI )
using assms
apply (force intro: continuous intros

continuous on compose2 [of f ] continuous on compose2 [of g ]
simp: dist commute dist norm fg)

done
qed

lemma homeomorphic spheres gen:
fixes a :: ′a::euclidean space and b :: ′b::euclidean space

assumes 0 < r 0 < s DIM ( ′a::euclidean space) = DIM ( ′b::euclidean space)
shows (sphere a r homeomorphic sphere b s)
using assms homeomorphic trans [OF homeomorphic spheres homeomorphic spheres ′]

by auto

6.19.1 Homeomorphism of all convex compact sets with nonempty
interior

proposition
fixes S :: ′a::euclidean space set
assumes compact S and 0 : 0 ∈ rel interior S

and star :
∧
x . x ∈ S =⇒ open segment 0 x ⊆ rel interior S

shows starlike compact projective1 0 :
S − rel interior S homeomorphic sphere 0 1 ∩ affine hull S
(is ?SMINUS homeomorphic ?SPHER)

and starlike compact projective2 0 :
S homeomorphic cball 0 1 ∩ affine hull S
(is S homeomorphic ?CBALL)

proof −
have starI : (u ∗R x ) ∈ rel interior S if x ∈ S 0 ≤ u u < 1 for x u
proof (cases x=0 ∨ u=0 )
case True with 0 show ?thesis by force

next
case False with that show ?thesis
by (auto simp: in segment intro: star [THEN subsetD ])

qed
have 0 ∈ S using assms rel interior subset by auto
define proj where proj ≡ λx :: ′a. x /R norm x
have eqI : x = y if proj x = proj y norm x = norm y for x y
using that by (force simp: proj def )

then have iff eq :
∧
x y . (proj x = proj y ∧ norm x = norm y) ←→ x = y

by blast
have projI : x ∈ affine hull S =⇒ proj x ∈ affine hull S for x
by (metis 〈0 ∈ S 〉 affine hull span 0 hull inc span mul proj def )

have nproj1 [simp]: x 6= 0 =⇒ norm(proj x ) = 1 for x



Homeomorphism.thy 2097

by (simp add : proj def )
have proj0 iff [simp]: proj x = 0 ←→ x = 0 for x
by (simp add : proj def )

have cont proj : continuous on (UNIV − {0}) proj
unfolding proj def by (rule continuous intros | force)+

have proj spherI :
∧
x . [[x ∈ affine hull S ; x 6= 0 ]] =⇒ proj x ∈ ?SPHER

by (simp add : projI )
have bounded S closed S
using 〈compact S 〉 compact eq bounded closed by blast+

have inj on proj : inj on proj (S − rel interior S )
proof
fix x y
assume x : x ∈ S − rel interior S

and y : y ∈ S − rel interior S and eq : proj x = proj y
then have xynot : x 6= 0 y 6= 0 x ∈ S y ∈ S x /∈ rel interior S y /∈ rel interior

S
using 0 by auto

consider norm x = norm y | norm x < norm y | norm x > norm y by linarith
then show x = y
proof cases
assume norm x = norm y
with iff eq eq show x = y by blast

next
assume ∗: norm x < norm y
have x /R norm x = norm x ∗R (x /R norm x ) /R norm (norm x ∗R (x /R

norm x ))
by force

then have proj ((norm x / norm y) ∗R y) = proj x
by (metis (no types) divide inverse local .proj def eq scaleR scaleR)

then have [simp]: (norm x / norm y) ∗R y = x
by (rule eqI ) (simp add : 〈y 6= 0 〉)

have no: 0 ≤ norm x / norm y norm x / norm y < 1
using ∗ by (auto simp: field split simps)

then show x = y
using starI [OF 〈y ∈ S 〉 no] xynot by auto

next
assume ∗: norm x > norm y
have y /R norm y = norm y ∗R (y /R norm y) /R norm (norm y ∗R (y /R

norm y))
by force

then have proj ((norm y / norm x ) ∗R x ) = proj y
by (metis (no types) divide inverse local .proj def eq scaleR scaleR)

then have [simp]: (norm y / norm x ) ∗R x = y
by (rule eqI ) (simp add : 〈x 6= 0 〉)

have no: 0 ≤ norm y / norm x norm y / norm x < 1
using ∗ by (auto simp: field split simps)

then show x = y
using starI [OF 〈x ∈ S 〉 no] xynot by auto

qed
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qed
have ∃ surf . homeomorphism (S − rel interior S ) ?SPHER proj surf
proof (rule homeomorphism compact)
show compact (S − rel interior S )

using 〈compact S 〉 compact rel boundary by blast
show continuous on (S − rel interior S ) proj
using 0 by (blast intro: continuous on subset [OF cont proj ])

show proj ‘ (S − rel interior S ) = ?SPHER
proof
show proj ‘ (S − rel interior S ) ⊆ ?SPHER
using 0 by (force simp: hull inc projI intro: nproj1 )

show ?SPHER ⊆ proj ‘ (S − rel interior S )
proof (clarsimp simp: proj def )
fix x
assume x ∈ affine hull S and nox : norm x = 1
then have x 6= 0 by auto
obtain d where 0 < d and dx : (d ∗R x ) ∈ rel frontier S
and ri :

∧
e. [[0 ≤ e; e < d ]] =⇒ (e ∗R x ) ∈ rel interior S

using ray to rel frontier [OF 〈bounded S 〉 0 ] 〈x ∈ affine hull S 〉 〈x 6= 0 〉

by auto
show x ∈ (λx . x /R norm x ) ‘ (S − rel interior S )
proof
show x = d ∗R x /R norm (d ∗R x )
using 〈0 < d 〉 by (auto simp: nox )

show d ∗R x ∈ S − rel interior S
using dx 〈closed S 〉 by (auto simp: rel frontier def )

qed
qed

qed
qed (rule inj on proj )
then obtain surf where surf : homeomorphism (S − rel interior S ) ?SPHER

proj surf
by blast

then have cont surf : continuous on (proj ‘ (S − rel interior S )) surf
by (auto simp: homeomorphism def )

have surf nz :
∧
x . x ∈ ?SPHER =⇒ surf x 6= 0

by (metis 0 DiffE homeomorphism def imageI surf )
have cont nosp: continuous on (?SPHER) (λx . norm x ∗R ((surf o proj ) x ))
proof (intro continuous intros)
show continuous on (sphere 0 1 ∩ affine hull S ) proj
by (rule continuous on subset [OF cont proj ], force)

show continuous on (proj ‘ (sphere 0 1 ∩ affine hull S )) surf
by (intro continuous on subset [OF cont surf ]) (force simp: homeomor-

phism image1 [OF surf ] dest : proj spherI )
qed
have surfpS :

∧
x . [[norm x = 1 ; x ∈ affine hull S ]] =⇒ surf (proj x ) ∈ S

by (metis (full types) DiffE 〈0 ∈ S 〉 homeomorphism def image eqI norm zero
proj spherI real vector .scale zero left scaleR one surf )
have ∗: ∃ y . norm y = 1 ∧ y ∈ affine hull S ∧ x = surf (proj y)
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if x ∈ S x /∈ rel interior S for x
proof −
have proj x ∈ ?SPHER
by (metis (full types) 0 hull inc proj spherI that)

moreover have surf (proj x ) = x
by (metis Diff iff homeomorphism def surf that)

ultimately show ?thesis
by (metis 〈

∧
x . x ∈ ?SPHER =⇒ surf x 6= 0 〉 hull inc inverse 1 local .proj def

norm sgn projI scaleR one sgn div norm that(1 ))
qed
have surfp notin:

∧
x . [[norm x = 1 ; x ∈ affine hull S ]] =⇒ surf (proj x ) /∈

rel interior S
by (metis (full types) DiffE one neq zero homeomorphism def image eqI norm zero

proj spherI surf )
have no sp im: (λx . norm x ∗R surf (proj x )) ‘ (?SPHER) = S − rel interior S
by (auto simp: surfpS image def Bex def surfp notin ∗)

have inj spher : inj on (λx . norm x ∗R surf (proj x )) ?SPHER
proof
fix x y
assume xy : x ∈ ?SPHER y ∈ ?SPHER

and eq : norm x ∗R surf (proj x ) = norm y ∗R surf (proj y)
then have norm x = 1 norm y = 1 x ∈ affine hull S y ∈ affine hull S
using 0 by auto

with eq show x = y
by (simp add : proj def ) (metis surf xy homeomorphism def )

qed
have co01 : compact ?SPHER
by (simp add : compact Int closed)

show ?SMINUS homeomorphic ?SPHER
using homeomorphic def surf by blast

have proj scaleR:
∧
a x . 0 < a =⇒ proj (a ∗R x ) = proj x

by (simp add : proj def )
have cont sp0 : continuous on (affine hull S − {0}) (surf o proj )
proof (rule continuous on compose [OF continuous on subset [OF cont proj ]])
show continuous on (proj ‘ (affine hull S − {0})) surf
using homeomorphism image1 proj spherI surf by (intro continuous on subset

[OF cont surf ]) fastforce
qed auto
obtain B where B>0 and B :

∧
x . x ∈ S =⇒ norm x ≤ B

by (metis compact imp bounded 〈compact S 〉 bounded pos less less eq real def )
have cont nosp: continuous (at x within ?CBALL) (λx . norm x ∗R surf (proj

x ))
if norm x ≤ 1 x ∈ affine hull S for x

proof (cases x=0 )
case True
have (norm −−−→ 0 ) (at 0 within cball 0 1 ∩ affine hull S )
by (simp add : tendsto norm zero eventually at)

with True show ?thesis
apply (simp add : continuous within)
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apply (rule lim null scaleR bounded [where B=B ])
using B 〈0 < B 〉 local .proj def projI surfpS by (auto simp: eventually at)

next
case False
then have ∀ F x in at x . (x ∈ affine hull S − {0}) = (x ∈ affine hull S )
by (force simp: False eventually at)

moreover
have continuous (at x within affine hull S − {0}) (λx . surf (proj x ))
using cont sp0 False that by (auto simp add : continuous on eq continuous within)
ultimately have ∗: continuous (at x within affine hull S ) (λx . surf (proj x ))
by (simp add : continuous within Lim transform within set continuous on eq continuous within)
show ?thesis
by (intro continuous within subset [where s = affine hull S , OF Int lower2 ]

continuous intros ∗)
qed
have cont nosp2 : continuous on ?CBALL (λx . norm x ∗R ((surf o proj ) x ))
by (simp add : continuous on eq continuous within cont nosp)

have norm y ∗R surf (proj y) ∈ S if y ∈ cball 0 1 and yaff : y ∈ affine hull S
for y
proof (cases y=0 )
case True then show ?thesis
by (simp add : 〈0 ∈ S 〉)

next
case False
then have norm y ∗R surf (proj y) = norm y ∗R surf (proj (y /R norm y))
by (simp add : proj def )

have norm y ≤ 1 using that by simp
have surf (proj (y /R norm y)) ∈ S
using False local .proj def nproj1 projI surfpS yaff by blast

then have surf (proj y) ∈ S
by (simp add : False proj def )

then show norm y ∗R surf (proj y) ∈ S
by (metis dual order .antisym le less linear norm ge zero rel interior subset

scaleR one
starI subset eq 〈norm y ≤ 1 〉)

qed
moreover have x ∈ (λx . norm x ∗R surf (proj x )) ‘ (?CBALL) if x ∈ S for x
proof (cases x=0 )
case True with that hull inc show ?thesis by fastforce

next
case False
then have psp: proj (surf (proj x )) = proj x
by (metis homeomorphism def hull inc proj spherI surf that)

have nxx : norm x ∗R proj x = x
by (simp add : False local .proj def )

have affineI : (1 / norm (surf (proj x ))) ∗R x ∈ affine hull S
by (metis 〈0 ∈ S 〉 affine hull span 0 hull inc span clauses(4 ) that)

have sproj nz : surf (proj x ) 6= 0
by (metis False proj0 iff psp)
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then have proj x = proj (proj x )
by (metis False nxx proj scaleR zero less norm iff )

moreover have scaleproj :
∧
a r . r ∗R proj a = (r / norm a) ∗R a

by (simp add : divide inverse local .proj def )
ultimately have (norm (surf (proj x )) / norm x ) ∗R x /∈ rel interior S
by (metis (no types) sproj nz divide self if hull inc norm eq zero nproj1 projI

psp scaleR one surfp notin that)
then have (norm (surf (proj x )) / norm x ) ≥ 1
using starI [OF that ] by (meson starI [OF that ] le less linear norm ge zero

zero le divide iff )
then have nole: norm x ≤ norm (surf (proj x ))
by (simp add : le divide eq 1 )

let ?inx = x /R norm (surf (proj x ))
show ?thesis
proof
show x = norm ?inx ∗R surf (proj ?inx )
by (simp add : field simps) (metis inverse eq divide nxx positive imp inverse positive

proj scaleR psp scaleproj sproj nz zero less norm iff )
qed (auto simp: field split simps nole affineI )

qed
ultimately have im cball : (λx . norm x ∗R surf (proj x )) ‘ ?CBALL = S
by blast

have inj cball : inj on (λx . norm x ∗R surf (proj x )) ?CBALL
proof
fix x y
assume x ∈ ?CBALL y ∈ ?CBALL

and eq : norm x ∗R surf (proj x ) = norm y ∗R surf (proj y)
then have x : x ∈ affine hull S and y : y ∈ affine hull S
using 0 by auto

show x = y
proof (cases x=0 ∨ y=0 )
case True then show x = y using eq proj spherI surf nz x y by force

next
case False
with x y have speq : surf (proj x ) = surf (proj y)
by (metis eq homeomorphism apply2 proj scaleR proj spherI surf zero less norm iff )
then have norm x = norm y
by (metis 〈x ∈ affine hull S 〉 〈y ∈ affine hull S 〉 eq proj spherI real vector .scale cancel right

surf nz )
moreover have proj x = proj y
by (metis (no types) False speq homeomorphism apply2 proj spherI surf x y)
ultimately show x = y
using eq eqI by blast

qed
qed
have co01 : compact ?CBALL
by (simp add : compact Int closed)

show S homeomorphic ?CBALL
using homeomorphic compact [OF co01 cont nosp2 [unfolded o def ] im cball

Homeomorphism.html


2102

inj cball ] homeomorphic sym by blast
qed

corollary
fixes S :: ′a::euclidean space set
assumes compact S and a: a ∈ rel interior S

and star :
∧
x . x ∈ S =⇒ open segment a x ⊆ rel interior S

shows starlike compact projective1 :
S − rel interior S homeomorphic sphere a 1 ∩ affine hull S

and starlike compact projective2 :
S homeomorphic cball a 1 ∩ affine hull S

proof −
have 1 : compact ((+) (−a) ‘ S ) by (meson assms compact translation)
have 2 : 0 ∈ rel interior ((+) (−a) ‘ S )
using a rel interior translation [of − a S ] by (simp cong : image cong simp)

have 3 : open segment 0 x ⊆ rel interior ((+) (−a) ‘ S ) if x ∈ ((+) (−a) ‘ S )
for x
proof −
have x+a ∈ S using that by auto
then have open segment a (x+a) ⊆ rel interior S by (metis star)
then show ?thesis using open segment translation [of a 0 x ]

using rel interior translation [of − a S ] by (fastforce simp add : ac simps
image iff cong : image cong simp)
qed
have S − rel interior S homeomorphic ((+) (−a) ‘ S ) − rel interior ((+) (−a)

‘ S )
by (metis rel interior translation translation diff homeomorphic translation)

also have ... homeomorphic sphere 0 1 ∩ affine hull ((+) (−a) ‘ S )
by (rule starlike compact projective1 0 [OF 1 2 3 ])

also have ... = (+) (−a) ‘ (sphere a 1 ∩ affine hull S )
by (metis affine hull translation left minus sphere translation translation Int)

also have ... homeomorphic sphere a 1 ∩ affine hull S
using homeomorphic translation homeomorphic sym by blast

finally show S − rel interior S homeomorphic sphere a 1 ∩ affine hull S .

have S homeomorphic ((+) (−a) ‘ S )
by (metis homeomorphic translation)

also have ... homeomorphic cball 0 1 ∩ affine hull ((+) (−a) ‘ S )
by (rule starlike compact projective2 0 [OF 1 2 3 ])

also have ... = (+) (−a) ‘ (cball a 1 ∩ affine hull S )
by (metis affine hull translation left minus cball translation translation Int)

also have ... homeomorphic cball a 1 ∩ affine hull S
using homeomorphic translation homeomorphic sym by blast

finally show S homeomorphic cball a 1 ∩ affine hull S .
qed

corollary starlike compact projective special :
assumes compact S
and cb01 : cball (0 :: ′a::euclidean space) 1 ⊆ S
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and scale:
∧
x u. [[x ∈ S ; 0 ≤ u; u < 1 ]] =⇒ u ∗R x ∈ S − frontier S

shows S homeomorphic (cball (0 :: ′a::euclidean space) 1 )
proof −
have ball 0 1 ⊆ interior S
using cb01 interior cball interior mono by blast

then have 0 : 0 ∈ rel interior S
by (meson centre in ball subsetD interior subset rel interior le numeral extra(2 )

not le)
have [simp]: affine hull S = UNIV
using 〈ball 0 1 ⊆ interior S 〉 by (auto intro!: affine hull nonempty interior)

have star : open segment 0 x ⊆ rel interior S if x ∈ S for x
proof
fix p assume p ∈ open segment 0 x
then obtain u where x 6= 0 and u: 0 ≤ u u < 1 and p: u ∗R x = p
by (auto simp: in segment)

then show p ∈ rel interior S
using scale [OF that u] closure subset frontier def interior subset rel interior

by fastforce
qed
show ?thesis
using starlike compact projective2 0 [OF 〈compact S 〉 0 star ] by simp

qed

lemma homeomorphic convex lemma:
fixes S :: ′a::euclidean space set and T :: ′b::euclidean space set
assumes convex S compact S convex T compact T

and affeq : aff dim S = aff dim T
shows (S − rel interior S ) homeomorphic (T − rel interior T ) ∧

S homeomorphic T
proof (cases rel interior S = {} ∨ rel interior T = {})
case True
then show ?thesis
by (metis Diff empty affeq 〈convex S 〉 〈convex T 〉 aff dim empty homeomor-

phic empty rel interior eq empty aff dim empty)
next
case False
then obtain a b where a: a ∈ rel interior S and b: b ∈ rel interior T by auto
have starS :

∧
x . x ∈ S =⇒ open segment a x ⊆ rel interior S

using rel interior closure convex segment
a 〈convex S 〉 closure subset subsetCE by blast

have starT :
∧
x . x ∈ T =⇒ open segment b x ⊆ rel interior T

using rel interior closure convex segment
b 〈convex T 〉 closure subset subsetCE by blast

let ?aS = (+) (−a) ‘ S and ?bT = (+) (−b) ‘ T
have 0 : 0 ∈ affine hull ?aS 0 ∈ affine hull ?bT
by (metis a b subsetD hull inc image eqI left minus rel interior subset)+

have subs: subspace (span ?aS ) subspace (span ?bT )
by (rule subspace span)+

moreover
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have dim (span ((+) (− a) ‘ S )) = dim (span ((+) (− b) ‘ T ))
by (metis 0 aff dim translation eq aff dim zero affeq dim span nat int)

ultimately obtain f g where linear f linear g
and fim: f ‘ span ?aS = span ?bT
and gim: g ‘ span ?bT = span ?aS
and fno:

∧
x . x ∈ span ?aS =⇒ norm(f x ) = norm x

and gno:
∧
x . x ∈ span ?bT =⇒ norm(g x ) = norm x

and gf :
∧
x . x ∈ span ?aS =⇒ g(f x ) = x

and fg :
∧
x . x ∈ span ?bT =⇒ f (g x ) = x

by (rule isometries subspaces) blast
have [simp]: continuous on A f for A
using 〈linear f 〉 linear conv bounded linear linear continuous on by blast

have [simp]: continuous on B g for B
using 〈linear g〉 linear conv bounded linear linear continuous on by blast

have eqspanS : affine hull ?aS = span ?aS
by (metis a affine hull span 0 subsetD hull inc image eqI left minus rel interior subset)
have eqspanT : affine hull ?bT = span ?bT
by (metis b affine hull span 0 subsetD hull inc image eqI left minus rel interior subset)
have S homeomorphic cball a 1 ∩ affine hull S
by (rule starlike compact projective2 [OF 〈compact S 〉 a starS ])

also have ... homeomorphic (+) (−a) ‘ (cball a 1 ∩ affine hull S )
by (metis homeomorphic translation)

also have ... = cball 0 1 ∩ (+) (−a) ‘ (affine hull S )
by (auto simp: dist norm)

also have ... = cball 0 1 ∩ span ?aS
using eqspanS affine hull translation by blast

also have ... homeomorphic cball 0 1 ∩ span ?bT
proof (rule homeomorphicI )
show fim1 : f ‘ (cball 0 1 ∩ span ?aS ) = cball 0 1 ∩ span ?bT
proof
show f ‘ (cball 0 1 ∩ span ?aS ) ⊆ cball 0 1 ∩ span ?bT
using fim fno by auto

show cball 0 1 ∩ span ?bT ⊆ f ‘ (cball 0 1 ∩ span ?aS )
by clarify (metis IntI fg gim gno image eqI mem cball 0 )

qed
show g ‘ (cball 0 1 ∩ span ?bT ) = cball 0 1 ∩ span ?aS
proof
show g ‘ (cball 0 1 ∩ span ?bT ) ⊆ cball 0 1 ∩ span ?aS
using gim gno by auto

show cball 0 1 ∩ span ?aS ⊆ g ‘ (cball 0 1 ∩ span ?bT )
by clarify (metis IntI fim1 gf image eqI )

qed
qed (auto simp: fg gf )
also have ... = cball 0 1 ∩ (+) (−b) ‘ (affine hull T )
using eqspanT affine hull translation by blast

also have ... = (+) (−b) ‘ (cball b 1 ∩ affine hull T )
by (auto simp: dist norm)

also have ... homeomorphic (cball b 1 ∩ affine hull T )
by (metis homeomorphic translation homeomorphic sym)
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also have ... homeomorphic T
by (metis starlike compact projective2 [OF 〈compact T 〉 b starT ] homeomor-

phic sym)
finally have 1 : S homeomorphic T .

have S − rel interior S homeomorphic sphere a 1 ∩ affine hull S
by (rule starlike compact projective1 [OF 〈compact S 〉 a starS ])

also have ... homeomorphic (+) (−a) ‘ (sphere a 1 ∩ affine hull S )
by (metis homeomorphic translation)

also have ... = sphere 0 1 ∩ (+) (−a) ‘ (affine hull S )
by (auto simp: dist norm)

also have ... = sphere 0 1 ∩ span ?aS
using eqspanS affine hull translation by blast

also have ... homeomorphic sphere 0 1 ∩ span ?bT
proof (rule homeomorphicI )
show fim1 : f ‘ (sphere 0 1 ∩ span ?aS ) = sphere 0 1 ∩ span ?bT
proof
show f ‘ (sphere 0 1 ∩ span ?aS ) ⊆ sphere 0 1 ∩ span ?bT
using fim fno by auto

show sphere 0 1 ∩ span ?bT ⊆ f ‘ (sphere 0 1 ∩ span ?aS )
by clarify (metis IntI fg gim gno image eqI mem sphere 0 )

qed
show g ‘ (sphere 0 1 ∩ span ?bT ) = sphere 0 1 ∩ span ?aS
proof
show g ‘ (sphere 0 1 ∩ span ?bT ) ⊆ sphere 0 1 ∩ span ?aS
using gim gno by auto

show sphere 0 1 ∩ span ?aS ⊆ g ‘ (sphere 0 1 ∩ span ?bT )
by clarify (metis IntI fim1 gf image eqI )

qed
qed (auto simp: fg gf )
also have ... = sphere 0 1 ∩ (+) (−b) ‘ (affine hull T )
using eqspanT affine hull translation by blast

also have ... = (+) (−b) ‘ (sphere b 1 ∩ affine hull T )
by (auto simp: dist norm)

also have ... homeomorphic (sphere b 1 ∩ affine hull T )
by (metis homeomorphic translation homeomorphic sym)

also have ... homeomorphic T − rel interior T
by (metis starlike compact projective1 [OF 〈compact T 〉 b starT ] homeomor-

phic sym)
finally have 2 : S − rel interior S homeomorphic T − rel interior T .
show ?thesis
using 1 2 by blast

qed

lemma homeomorphic convex compact sets:
fixes S :: ′a::euclidean space set and T :: ′b::euclidean space set
assumes convex S compact S convex T compact T

and affeq : aff dim S = aff dim T
shows S homeomorphic T
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using homeomorphic convex lemma [OF assms] assms
by (auto simp: rel frontier def )

lemma homeomorphic rel frontiers convex bounded sets:
fixes S :: ′a::euclidean space set and T :: ′b::euclidean space set
assumes convex S bounded S convex T bounded T

and affeq : aff dim S = aff dim T
shows rel frontier S homeomorphic rel frontier T

using assms homeomorphic convex lemma [of closure S closure T ]
by (simp add : rel frontier def convex rel interior closure)

6.19.2 Homeomorphisms between punctured spheres and affine
sets

Including the famous stereoscopic projection of the 3-D sphere to the com-
plex plane

The special case with centre 0 and radius 1

lemma homeomorphic punctured affine sphere affine 01 :
assumes b ∈ sphere 0 1 affine T 0 ∈ T b ∈ T affine p

and affT : aff dim T = aff dim p + 1
shows (sphere 0 1 ∩ T ) − {b} homeomorphic p

proof −
have [simp]: norm b = 1 b·b = 1
using assms by (auto simp: norm eq 1 )

have [simp]: T ∩ {v . b·v = 0} 6= {}
using 〈0 ∈ T 〉 by auto

have [simp]: ¬ T ⊆ {v . b·v = 0}
using 〈norm b = 1 〉 〈b ∈ T 〉 by auto

define f where f ≡ λx . 2 ∗R b + (2 / (1 − b·x )) ∗R (x − b)
define g where g ≡ λy . b + (4 / (norm y ˆ 2 + 4 )) ∗R (y − 2 ∗R b)
have fg [simp]:

∧
x . [[x ∈ T ; b·x = 0 ]] =⇒ f (g x ) = x

unfolding f def g def by (simp add : algebra simps field split simps add nonneg eq 0 iff )
have no: (norm (f x ))2 = 4 ∗ (1 + b · x ) / (1 − b · x )
if norm x = 1 and b · x 6= 1 for x
using that sum sqs eq [of 1 b · x ]
apply (simp flip: dot square norm add : norm eq 1 nonzero eq divide eq)
apply (simp add : f def vector add divide simps inner simps)
apply (auto simp add : field split simps inner commute)
done

have [simp]:
∧
u::real . 8 + u ∗ (u ∗ 8 ) = u ∗ 16 ←→ u=1

by algebra
have gf [simp]:

∧
x . [[norm x = 1 ; b · x 6= 1 ]] =⇒ g (f x ) = x

unfolding g def no by (auto simp: f def field split simps)
have g1 : norm (g x ) = 1 if x ∈ T and b · x = 0 for x
using that
apply (simp only : g def )
apply (rule power2 eq imp eq)
apply (simp all add : dot square norm [symmetric] divide simps vector add divide simps)
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apply (simp add : algebra simps inner commute)
done

have ne1 : b · g x 6= 1 if x ∈ T and b · x = 0 for x
using that unfolding g def
apply (simp all add : dot square norm [symmetric] divide simps vector add divide simps

add nonneg eq 0 iff )
apply (auto simp: algebra simps)
done

have subspace T
by (simp add : assms subspace affine)

have gT :
∧
x . [[x ∈ T ; b · x = 0 ]] =⇒ g x ∈ T

unfolding g def
by (blast intro: 〈subspace T 〉 〈b ∈ T 〉 subspace add subspace mul subspace diff )

have f ‘ {x . norm x = 1 ∧ b·x 6= 1} ⊆ {x . b·x = 0}
unfolding f def using 〈norm b = 1 〉 norm eq 1
by (force simp: field simps inner add right inner diff right)

moreover have f ‘ T ⊆ T
unfolding f def using assms 〈subspace T 〉

by (auto simp add : inner add right inner diff right mem affine 3 minus sub-
space mul)
moreover have {x . b·x = 0} ∩ T ⊆ f ‘ ({x . norm x = 1 ∧ b·x 6= 1} ∩ T )
by clarify (metis (mono tags) IntI ne1 fg gT g1 imageI mem Collect eq)

ultimately have imf : f ‘ ({x . norm x = 1 ∧ b·x 6= 1} ∩ T ) = {x . b·x = 0} ∩
T

by blast
have no4 :

∧
y . b·y = 0 =⇒ norm ((y·y + 4 ) ∗R b + 4 ∗R (y − 2 ∗R b)) = y·y

+ 4
apply (rule power2 eq imp eq)
apply (simp all flip: dot square norm)
apply (auto simp: power2 eq square algebra simps inner commute)
done

have [simp]:
∧
x . [[norm x = 1 ; b · x 6= 1 ]] =⇒ b · f x = 0

by (simp add : f def algebra simps field split simps)
have [simp]:

∧
x . [[x ∈ T ; norm x = 1 ; b · x 6= 1 ]] =⇒ f x ∈ T

unfolding f def
by (blast intro: 〈subspace T 〉 〈b ∈ T 〉 subspace add subspace mul subspace diff )

have g ‘ {x . b·x = 0} ⊆ {x . norm x = 1 ∧ b·x 6= 1}
unfolding g def
apply (clarsimp simp: no4 vector add divide simps divide simps add nonneg eq 0 iff

dot square norm [symmetric])
apply (auto simp: algebra simps)
done

moreover have g ‘ T ⊆ T
unfolding g def
by (blast intro: 〈subspace T 〉 〈b ∈ T 〉 subspace add subspace mul subspace diff )

moreover have {x . norm x = 1 ∧ b·x 6= 1} ∩ T ⊆ g ‘ ({x . b·x = 0} ∩ T )
by clarify (metis (mono tags, lifting) IntI gf image iff imf mem Collect eq)

ultimately have img : g ‘ ({x . b·x = 0} ∩ T ) = {x . norm x = 1 ∧ b·x 6= 1}
∩ T
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by blast
have aff : affine ({x . b·x = 0} ∩ T )
by (blast intro: affine hyperplane assms)

have contf : continuous on ({x . norm x = 1 ∧ b·x 6= 1} ∩ T ) f
unfolding f def by (rule continuous intros | force)+

have contg : continuous on ({x . b·x = 0} ∩ T ) g
unfolding g def by (rule continuous intros | force simp: add nonneg eq 0 iff )+
have (sphere 0 1 ∩ T ) − {b} = {x . norm x = 1 ∧ (b·x 6= 1 )} ∩ T
using 〈norm b = 1 〉 by (auto simp: norm eq 1 ) (metis vector eq 〈b·b = 1 〉)

also have ... homeomorphic {x . b·x = 0} ∩ T
by (rule homeomorphicI [OF imf img contf contg ]) auto

also have ... homeomorphic p
proof (rule homeomorphic affine sets [OF aff 〈affine p〉])
show aff dim ({x . b · x = 0} ∩ T ) = aff dim p
by (simp add : Int commute aff dim affine Int hyperplane [OF 〈affine T 〉] affT )

qed
finally show ?thesis .

qed

theorem homeomorphic punctured affine sphere affine:
fixes a :: ′a :: euclidean space
assumes 0 < r b ∈ sphere a r affine T a ∈ T b ∈ T affine p

and aff : aff dim T = aff dim p + 1
shows (sphere a r ∩ T ) − {b} homeomorphic p

proof −
have a 6= b using assms by auto
then have inj : inj (λx :: ′a. x /R norm (a − b))
by (simp add : inj on def )

have ((sphere a r ∩ T ) − {b}) homeomorphic
(+) (−a) ‘ ((sphere a r ∩ T ) − {b})

by (rule homeomorphic translation)
also have ... homeomorphic (∗R) (inverse r) ‘ (+) (− a) ‘ (sphere a r ∩ T −
{b})

by (metis 〈0 < r 〉 homeomorphic scaling inverse inverse eq inverse zero less irrefl)
also have ... = sphere 0 1 ∩ ((∗R) (inverse r) ‘ (+) (− a) ‘ T ) − {(b − a) /R

r}
using assms by (auto simp: dist norm norm minus commute divide simps)

also have ... homeomorphic p
using assms affine translation [symmetric, of − a] aff dim translation eq [of

− a]
by (intro homeomorphic punctured affine sphere affine 01 ) (auto simp: dist norm

norm minus commute affine scaling inj )
finally show ?thesis .

qed

corollary homeomorphic punctured sphere affine:
fixes a :: ′a :: euclidean space
assumes 0 < r and b: b ∈ sphere a r

and affine T and affS : aff dim T + 1 = DIM ( ′a)
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shows (sphere a r − {b}) homeomorphic T
using homeomorphic punctured affine sphere affine [of r b a UNIV T ] assms by

auto

corollary homeomorphic punctured sphere hyperplane:
fixes a :: ′a :: euclidean space
assumes 0 < r and b: b ∈ sphere a r
and c 6= 0

shows (sphere a r − {b}) homeomorphic {x :: ′a. c · x = d}
using assms
by (intro homeomorphic punctured sphere affine) (auto simp: affine hyperplane

of nat diff )

proposition homeomorphic punctured sphere affine gen:
fixes a :: ′a :: euclidean space
assumes convex S bounded S and a: a ∈ rel frontier S

and affine T and affS : aff dim S = aff dim T + 1
shows rel frontier S − {a} homeomorphic T

proof −
obtain U :: ′a set where affine U convex U and affdS : aff dim U = aff dim S
using choose affine subset [OF affine UNIV aff dim geq ]
by (meson aff dim affine hull affine affine hull affine imp convex )

have S 6= {} using assms by auto
then obtain z where z ∈ U
by (metis aff dim negative iff equals0I affdS )

then have bne: ball z 1 ∩ U 6= {} by force
then have [simp]: aff dim(ball z 1 ∩ U ) = aff dim U
using aff dim convex Int open [OF 〈convex U 〉 open ball ]
by (fastforce simp add : Int commute)

have rel frontier S homeomorphic rel frontier (ball z 1 ∩ U )
by (rule homeomorphic rel frontiers convex bounded sets)

(auto simp: 〈affine U 〉 affine imp convex convex Int affdS assms)
also have ... = sphere z 1 ∩ U
using convex affine rel frontier Int [of ball z 1 U ]
by (simp add : 〈affine U 〉 bne)

finally have rel frontier S homeomorphic sphere z 1 ∩ U .
then obtain h k where him: h ‘ rel frontier S = sphere z 1 ∩ U

and kim: k ‘ (sphere z 1 ∩ U ) = rel frontier S
and hcon: continuous on (rel frontier S ) h
and kcon: continuous on (sphere z 1 ∩ U ) k
and kh:

∧
x . x ∈ rel frontier S =⇒ k(h(x )) = x

and hk :
∧
y . y ∈ sphere z 1 ∩ U =⇒ h(k(y)) = y

unfolding homeomorphic def homeomorphism def by auto
have rel frontier S − {a} homeomorphic (sphere z 1 ∩ U ) − {h a}
proof (rule homeomorphicI )
show h: h ‘ (rel frontier S − {a}) = sphere z 1 ∩ U − {h a}
using him a kh by auto metis

show k ‘ (sphere z 1 ∩ U − {h a}) = rel frontier S − {a}
by (force simp: h [symmetric] image comp o def kh)
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qed (auto intro: continuous on subset hcon kcon simp: kh hk)
also have ... homeomorphic T
by (rule homeomorphic punctured affine sphere affine)

(use a him in 〈auto simp: affS affdS 〈affine T 〉 〈affine U 〉 〈z ∈ U 〉〉)
finally show ?thesis .

qed

When dealing with AR, ANR and ANR later, it’s useful to know that every
set is homeomorphic to a closed subset of a convex set, and if the set is
locally compact we can take the convex set to be the universe.

proposition homeomorphic closedin convex :
fixes S :: ′m::euclidean space set
assumes aff dim S < DIM ( ′n)
obtains U and T :: ′n::euclidean space set

where convex U U 6= {} closedin (top of set U ) T
S homeomorphic T

proof (cases S = {})
case True then show ?thesis
by (rule tac U=UNIV and T={} in that) auto

next
case False
then obtain a where a ∈ S by auto
obtain i :: ′n where i : i ∈ Basis i 6= 0
using SOME Basis Basis zero by force

have 0 ∈ affine hull ((+) (− a) ‘ S )
by (simp add : 〈a ∈ S 〉 hull inc)

then have dim ((+) (− a) ‘ S ) = aff dim ((+) (− a) ‘ S )
by (simp add : aff dim zero)

also have ... < DIM ( ′n)
by (simp add : aff dim translation eq subtract assms cong : image cong simp)

finally have dd : dim ((+) (− a) ‘ S ) < DIM ( ′n)
by linarith

have span: span {x . i · x = 0} = {x . i · x = 0}
using span eq iff [symmetric, of {x . i · x = 0}] subspace hyperplane [of i ] by

simp
have dim ((+) (− a) ‘ S ) ≤ dim {x . i · x = 0}
using dd by (simp add : dim hyperplane [OF 〈i 6= 0 〉])

then obtain T where subspace T and Tsub: T ⊆ {x . i · x = 0}
and dimT : dim T = dim ((+) (− a) ‘ S )
by (rule choose subspace of subspace) (simp add : span)

have subspace (span ((+) (− a) ‘ S ))
using subspace span by blast

then obtain h k where linear h linear k
and heq : h ‘ span ((+) (− a) ‘ S ) = T
and keq :k ‘ T = span ((+) (− a) ‘ S )
and hinv [simp]:

∧
x . x ∈ span ((+) (− a) ‘ S ) =⇒ k(h x ) = x

and kinv [simp]:
∧
x . x ∈ T =⇒ h(k x ) = x

by (auto simp: dimT intro: isometries subspaces [OF 〈subspace T 〉] dimT )
have hcont : continuous on A h and kcont : continuous on B k for A B
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using 〈linear h〉 〈linear k 〉 linear continuous on linear conv bounded linear by
blast+
have ihhhh[simp]:

∧
x . x ∈ S =⇒ i · h (x − a) = 0

using Tsub [THEN subsetD ] heq span superset by fastforce
have sphere 0 1 − {i} homeomorphic {x . i · x = 0}
proof (rule homeomorphic punctured sphere affine)
show affine {x . i · x = 0}
by (auto simp: affine hyperplane)

show aff dim {x . i · x = 0} + 1 = int DIM ( ′n)
using i by clarsimp (metis DIM positive Suc pred add .commute of nat Suc)

qed (use i in auto)
then obtain f g where fg : homeomorphism (sphere 0 1 − {i}) {x . i · x = 0}

f g
by (force simp: homeomorphic def )

show ?thesis
proof
have h ‘ (+) (− a) ‘ S ⊆ T
using heq span superset span linear image by blast

then have g ‘ h ‘ (+) (− a) ‘ S ⊆ g ‘ {x . i · x = 0}
using Tsub by (simp add : image mono)

also have ... ⊆ sphere 0 1 − {i}
by (simp add : fg [unfolded homeomorphism def ])

finally have gh sub sph: (g ◦ h) ‘ (+) (− a) ‘ S ⊆ sphere 0 1 − {i}
by (metis image comp)

then have gh sub cb: (g ◦ h) ‘ (+) (− a) ‘ S ⊆ cball 0 1
by (metis Diff subset order trans sphere cball)

have [simp]:
∧
u. u ∈ S =⇒ norm (g (h (u − a))) = 1

using gh sub sph [THEN subsetD ] by (auto simp: o def )
show convex (ball 0 1 ∪ (g ◦ h) ‘ (+) (− a) ‘ S )
by (meson ball subset cball convex intermediate ball gh sub cb sup.bounded iff

sup.cobounded1 )
show closedin (top of set (ball 0 1 ∪ (g ◦ h) ‘ (+) (− a) ‘ S )) ((g ◦ h) ‘ (+)

(− a) ‘ S )
unfolding closedin closed
by (rule tac x=sphere 0 1 in exI ) auto

have ghcont : continuous on ((λx . x − a) ‘ S ) (λx . g (h x ))
by (rule continuous on compose2 [OF homeomorphism cont2 [OF fg ] hcont ],

force)
have kfcont : continuous on ((λx . g (h (x − a))) ‘ S ) (λx . k (f x ))
proof (rule continuous on compose2 [OF kcont ])
show continuous on ((λx . g (h (x − a))) ‘ S ) f
using homeomorphism cont1 [OF fg ] gh sub sph by (fastforce intro: contin-

uous on subset)
qed auto
have S homeomorphic (+) (− a) ‘ S
by (fact homeomorphic translation)

also have . . . homeomorphic (g ◦ h) ‘ (+) (− a) ‘ S
apply (simp add : homeomorphic def homeomorphism def cong : image cong simp)
apply (rule tac x=g ◦ h in exI )
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apply (rule tac x=k ◦ f in exI )
apply (auto simp: ghcont kfcont span base homeomorphism apply2 [OF fg ]

image comp cong : image cong simp)
done

finally show S homeomorphic (g ◦ h) ‘ (+) (− a) ‘ S .
qed auto

qed

6.19.3 Locally compact sets in an open set

Locally compact sets are closed in an open set and are homeomorphic to an
absolutely closed set if we have one more dimension to play with.

lemma locally compact open Int closure:
fixes S :: ′a :: metric space set
assumes locally compact S
obtains T where open T S = T ∩ closure S

proof −
have ∀ x∈S . ∃T v u. u = S ∩ T ∧ x ∈ u ∧ u ⊆ v ∧ v ⊆ S ∧ open T ∧ compact

v
by (metis assms locally compact openin open)

then obtain t v where
tv :

∧
x . x ∈ S

=⇒ v x ⊆ S ∧ open (t x ) ∧ compact (v x ) ∧ (∃ u. x ∈ u ∧ u ⊆ v x ∧
u = S ∩ t x )

by metis
then have o: open (

⋃
(t ‘ S ))

by blast
have S =

⋃
(v ‘ S )

using tv by blast
also have ... =

⋃
(t ‘ S ) ∩ closure S

proof
show

⋃
(v ‘ S ) ⊆

⋃
(t ‘ S ) ∩ closure S

by clarify (meson IntD2 IntI UN I closure subset subsetD tv)
have t x ∩ closure S ⊆ v x if x ∈ S for x
proof −
have t x ∩ closure S ⊆ closure (t x ∩ S )
by (simp add : open Int closure subset that tv)

also have ... ⊆ v x
by (metis Int commute closure minimal compact imp closed that tv)

finally show ?thesis .
qed
then show

⋃
(t ‘ S ) ∩ closure S ⊆

⋃
(v ‘ S )

by blast
qed
finally have e: S =

⋃
(t ‘ S ) ∩ closure S .

show ?thesis
by (rule that [OF o e])

qed
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lemma locally compact closedin open:
fixes S :: ′a :: metric space set
assumes locally compact S
obtains T where open T closedin (top of set T ) S

by (metis locally compact open Int closure [OF assms] closed closure closedin closed Int)

lemma locally compact homeomorphism projection closed :
assumes locally compact S
obtains T and f :: ′a ⇒ ′a :: euclidean space × ′b :: euclidean space
where closed T homeomorphism S T f fst

proof (cases closed S )
case True
show ?thesis
proof
show homeomorphism S (S × {0}) (λx . (x , 0 )) fst
by (auto simp: homeomorphism def continuous intros)

qed (use True closed Times in auto)
next
case False
obtain U where open U and US : U ∩ closure S = S
by (metis locally compact open Int closure [OF assms])

with False have Ucomp: −U 6= {}
using closure eq by auto

have [simp]: closure (− U ) = −U
by (simp add : 〈open U 〉 closed Compl)

define f :: ′a ⇒ ′a × ′b where f ≡ λx . (x , One /R setdist {x} (− U ))
have continuous on U (λx . (x , One /R setdist {x} (− U )))
proof (intro continuous intros continuous on setdist)
show ∀ x∈U . setdist {x} (− U ) 6= 0
by (simp add : Ucomp setdist eq 0 sing 1 )

qed
then have homU : homeomorphism U (f‘U ) f fst
by (auto simp: f def homeomorphism def image iff continuous intros)

have cloS : closedin (top of set U ) S
by (metis US closed closure closedin closed Int)

have cont : isCont ((λx . setdist {x} (− U )) o fst) z for z :: ′a × ′b
by (rule continuous at compose continuous intros continuous at setdist)+

have setdist1D : setdist {a} (− U ) ∗R b = One =⇒ setdist {a} (− U ) 6= 0 for
a:: ′a and b:: ′b

by force
have ∗: r ∗R b = One =⇒ b = (1 / r) ∗R One for r and b:: ′b
by (metis One non 0 nonzero divide eq eq real vector .scale eq 0 iff real vector .scale scale

scaleR one)
have

∧
a b:: ′b. setdist {a} (− U ) ∗R b = One =⇒ (a,b) ∈ (λx . (x , (1 / setdist

{x} (− U )) ∗R One)) ‘ U
by (metis (mono tags, lifting) ∗ ComplI image eqI setdist1D setdist sing in set)
then have f ‘ U = (λz . (setdist {fst z} (− U ) ∗R snd z )) −‘ {One}
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by (auto simp: f def setdist eq 0 sing 1 field simps Ucomp)
then have clfU : closed (f ‘ U )
by (force intro: continuous intros cont [unfolded o def ] continuous closed vimage)
have closed (f ‘ S )
by (metis closedin closed trans [OF clfU ] homeomorphism imp closed map

[OF homU cloS ])
then show ?thesis
by (metis US homU homeomorphism of subsets inf sup ord(1 ) that)

qed

lemma locally compact closed Int open:
fixes S :: ′a :: euclidean space set
shows locally compact S ←→ (∃U V . closed U ∧ open V ∧ S = U ∩ V ) (is

?lhs = ?rhs)
proof
show ?lhs =⇒ ?rhs
by (metis closed closure inf commute locally compact open Int closure)

show ?rhs =⇒ ?lhs
by (meson closed imp locally compact locally compact Int open imp locally compact)

qed

lemma lowerdim embeddings:
assumes DIM ( ′a) < DIM ( ′b)
obtains f :: ′a::euclidean space∗real ⇒ ′b::euclidean space

and g :: ′b ⇒ ′a∗real
and j :: ′b

where linear f linear g
∧
z . g (f z ) = z j ∈ Basis

∧
x . f (x ,0 ) · j = 0

proof −
let ?B = Basis :: ( ′a∗real) set
have b01 : (0 ,1 ) ∈ ?B
by (simp add : Basis prod def )

have DIM ( ′a ∗ real) ≤ DIM ( ′b)
by (simp add : Suc leI assms)

then obtain basf :: ′a∗real ⇒ ′b where sbf : basf ‘ ?B ⊆ Basis and injbf : inj on
basf Basis

by (metis finite Basis card le inj )
define basg :: ′b ⇒ ′a ∗ real where
basg ≡ λi . if i ∈ basf ‘ Basis then inv into Basis basf i else (0 ,1 )

have bgf [simp]: basg (basf i) = i if i ∈ Basis for i
using inv into f f injbf that by (force simp: basg def )

have sbg : basg ‘ Basis ⊆ ?B
by (force simp: basg def injbf b01 )

define f :: ′a∗real ⇒ ′b where f ≡ λu.
∑

j∈Basis. (u · basg j ) ∗R j
define g :: ′b ⇒ ′a∗real where g ≡ λz . (

∑
i∈Basis. (z · basf i) ∗R i)

show ?thesis
proof
show linear f
unfolding f def
by (intro linear compose sum linearI ballI ) (auto simp: algebra simps)
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show linear g
unfolding g def
by (intro linear compose sum linearI ballI ) (auto simp: algebra simps)

have ∗: (
∑

a ∈ Basis. a · basf b ∗ (x · basg a)) = x · b if b ∈ Basis for x b
using sbf that by auto

show gf : g (f x ) = x for x
proof (rule euclidean eqI )
show

∧
b. b ∈ Basis =⇒ g (f x ) · b = x · b

using f def g def sbf by auto
qed
show basf (0 ,1 ) ∈ Basis
using b01 sbf by auto

then show f (x ,0 ) · basf (0 ,1 ) = 0 for x
unfolding f def inner sum left
using b01 inner not same Basis
by (fastforce intro: comm monoid add class.sum.neutral)

qed
qed

proposition locally compact homeomorphic closed :
fixes S :: ′a::euclidean space set
assumes locally compact S and dimlt : DIM ( ′a) < DIM ( ′b)
obtains T :: ′b::euclidean space set where closed T S homeomorphic T

proof −
obtain U :: ( ′a∗real)set and h
where closed U and homU : homeomorphism S U h fst
using locally compact homeomorphism projection closed assms by metis

obtain f :: ′a∗real ⇒ ′b and g :: ′b ⇒ ′a∗real
where linear f linear g and gf [simp]:

∧
z . g (f z ) = z

using lowerdim embeddings [OF dimlt ] by metis
then have inj f
by (metis injI )

have gfU : g ‘ f ‘ U = U
by (simp add : image comp o def )

have S homeomorphic U
using homU homeomorphic def by blast

also have ... homeomorphic f ‘ U
proof (rule homeomorphicI [OF refl gfU ])
show continuous on U f
by (meson 〈inj f 〉 〈linear f 〉 homeomorphism cont2 linear homeomorphism image)
show continuous on (f ‘ U ) g
using 〈linear g〉 linear continuous on linear conv bounded linear by blast

qed (auto simp: o def )
finally show ?thesis
using 〈closed U 〉 〈inj f 〉 〈linear f 〉 closed injective linear image that by blast

qed

lemma homeomorphic convex compact lemma:
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fixes S :: ′a::euclidean space set
assumes convex S
and compact S
and cball 0 1 ⊆ S

shows S homeomorphic (cball (0 :: ′a) 1 )
proof (rule starlike compact projective special [OF assms(2−3 )])
fix x u
assume x ∈ S and 0 ≤ u and u < (1 ::real)
have open (ball (u ∗R x ) (1 − u))
by (rule open ball)

moreover have u ∗R x ∈ ball (u ∗R x ) (1 − u)
unfolding centre in ball using 〈u < 1 〉 by simp

moreover have ball (u ∗R x ) (1 − u) ⊆ S
proof
fix y
assume y ∈ ball (u ∗R x ) (1 − u)
then have dist (u ∗R x ) y < 1 − u
unfolding mem ball .

with 〈u < 1 〉 have inverse (1 − u) ∗R (y − u ∗R x ) ∈ cball 0 1
by (simp add : dist norm inverse eq divide norm minus commute)

with assms(3 ) have inverse (1 − u) ∗R (y − u ∗R x ) ∈ S ..
with assms(1 ) have (1 − u) ∗R ((y − u ∗R x ) /R (1 − u)) + u ∗R x ∈ S
using 〈x ∈ S 〉 〈0 ≤ u〉 〈u < 1 〉 [THEN less imp le] by (rule convexD alt)

then show y ∈ S using 〈u < 1 〉

by simp
qed
ultimately have u ∗R x ∈ interior S ..
then show u ∗R x ∈ S − frontier S
using frontier def and interior subset by auto

qed

proposition homeomorphic convex compact cball :
fixes e :: real
and S :: ′a::euclidean space set

assumes S : convex S compact S interior S 6= {} and e > 0
shows S homeomorphic (cball (b:: ′a) e)

proof (rule homeomorphic trans[OF homeomorphic balls(2 )])
obtain a where a ∈ interior S
using assms by auto

then show S homeomorphic cball (0 :: ′a) 1
by (metis (no types) aff dim cball S compact cball convex cball

homeomorphic convex lemma interior rel interior gen zero less one)
qed (use 〈e>0 〉 in auto)

corollary homeomorphic convex compact :
fixes S :: ′a::euclidean space set
and T :: ′a set

assumes convex S compact S interior S 6= {}
and convex T compact T interior T 6= {}
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shows S homeomorphic T
using assms
by (meson zero less one homeomorphic trans homeomorphic convex compact cball

homeomorphic sym)

lemma homeomorphic closed intervals:
fixes a :: ′a::euclidean space and b and c :: ′a::euclidean space and d
assumes box a b 6= {} and box c d 6= {}
shows (cbox a b) homeomorphic (cbox c d)

by (simp add : assms homeomorphic convex compact)

lemma homeomorphic closed intervals real :
fixes a::real and b and c::real and d
assumes a<b and c<d
shows {a..b} homeomorphic {c..d}
using assms by (auto intro: homeomorphic convex compact)

6.19.4 Covering spaces and lifting results for them

definition covering space
:: ′a::topological space set ⇒ ( ′a ⇒ ′b) ⇒ ′b::topological space set ⇒ bool

where
covering space c p S ≡

continuous on c p ∧ p ‘ c = S ∧
(∀ x ∈ S . ∃T . x ∈ T ∧ openin (top of set S ) T ∧

(∃ v .
⋃
v = c ∩ p −‘ T ∧

(∀ u ∈ v . openin (top of set c) u) ∧
pairwise disjnt v ∧
(∀ u ∈ v . ∃ q . homeomorphism u T p q)))

lemma covering space imp continuous: covering space c p S =⇒ continuous on c
p
by (simp add : covering space def )

lemma covering space imp surjective: covering space c p S =⇒ p ‘ c = S
by (simp add : covering space def )

lemma homeomorphism imp covering space: homeomorphism S T f g =⇒ cover-
ing space S f T
apply (clarsimp simp add : homeomorphism def covering space def )
apply (rule tac x=T in exI , simp)
apply (rule tac x={S} in exI , auto)
done

lemma covering space local homeomorphism:
assumes covering space c p S x ∈ c
obtains T u q where x ∈ T openin (top of set c) T

p x ∈ u openin (top of set S ) u
homeomorphism T u p q
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using assms
by (clarsimp simp add : covering space def ) (metis IntI UnionE vimage eq)

lemma covering space local homeomorphism alt :
assumes p: covering space c p S and y ∈ S
obtains x T U q where p x = y

x ∈ T openin (top of set c) T
y ∈ U openin (top of set S ) U
homeomorphism T U p q

proof −
obtain x where p x = y x ∈ c
using assms covering space imp surjective by blast

show ?thesis
using that 〈p x = y〉 by (auto intro: covering space local homeomorphism [OF

p 〈x ∈ c〉])
qed

proposition covering space open map:
fixes S :: ′a :: metric space set and T :: ′b :: metric space set
assumes p: covering space c p S and T : openin (top of set c) T
shows openin (top of set S ) (p ‘ T )

proof −
have pce: p ‘ c = S
and covs:∧

x . x ∈ S =⇒
∃X VS . x ∈ X ∧ openin (top of set S ) X ∧⋃

VS = c ∩ p −‘ X ∧
(∀ u ∈ VS . openin (top of set c) u) ∧
pairwise disjnt VS ∧
(∀ u ∈ VS . ∃ q . homeomorphism u X p q)

using p by (auto simp: covering space def )
have T ⊆ c by (metis openin euclidean subtopology iff T )
have ∃X . openin (top of set S ) X ∧ y ∈ X ∧ X ⊆ p ‘ T

if y ∈ p ‘ T for y
proof −
have y ∈ S using 〈T ⊆ c〉 pce that by blast
obtain U VS where y ∈ U and U : openin (top of set S ) U

and VS :
⋃
VS = c ∩ p −‘ U

and openVS : ∀V ∈ VS . openin (top of set c) V
and homVS :

∧
V . V ∈ VS =⇒ ∃ q . homeomorphism V U p q

using covs [OF 〈y ∈ S 〉] by auto
obtain x where x ∈ c p x ∈ U x ∈ T p x = y
using T [unfolded openin euclidean subtopology iff ] 〈y ∈ U 〉 〈y ∈ p ‘ T 〉 by

blast
with VS obtain V where x ∈ V V ∈ VS by auto
then obtain q where q : homeomorphism V U p q using homVS by blast
then have ptV : p ‘ (T ∩ V ) = U ∩ q −‘ (T ∩ V )
using VS 〈V ∈ VS 〉 by (auto simp: homeomorphism def )
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have ocv : openin (top of set c) V
by (simp add : 〈V ∈ VS 〉 openVS )

have openin (top of set (q ‘ U )) (T ∩ V )
using q unfolding homeomorphism def
by (metis T inf .absorb iff2 ocv openin imp subset openin subtopology Int

subtopology subtopology)
then have openin (top of set U ) (U ∩ q −‘ (T ∩ V ))
using continuous on open homeomorphism def q by blast

then have os: openin (top of set S ) (U ∩ q −‘ (T ∩ V ))
using openin trans [of U ] by (simp add : Collect conj eq U )

show ?thesis
proof (intro exI conjI )
show openin (top of set S ) (p ‘ (T ∩ V ))
by (simp only : ptV os)

qed (use 〈p x = y〉 〈x ∈ V 〉 〈x ∈ T 〉 in auto)
qed
with openin subopen show ?thesis by blast

qed

lemma covering space lift unique gen:
fixes f :: ′a::topological space ⇒ ′b::topological space
fixes g1 :: ′a ⇒ ′c::real normed vector
assumes cov : covering space c p S

and eq : g1 a = g2 a
and f : continuous on T f f ‘ T ⊆ S
and g1 : continuous on T g1 g1 ‘ T ⊆ c
and fg1 :

∧
x . x ∈ T =⇒ f x = p(g1 x )

and g2 : continuous on T g2 g2 ‘ T ⊆ c
and fg2 :

∧
x . x ∈ T =⇒ f x = p(g2 x )

and u compt : U ∈ components T and a ∈ U x ∈ U
shows g1 x = g2 x

proof −
have U ⊆ T by (rule in components subset [OF u compt ])
define G12 where G12 ≡ {x ∈ U . g1 x − g2 x = 0}
have connected U by (rule in components connected [OF u compt ])
have contu: continuous on U g1 continuous on U g2

using 〈U ⊆ T 〉 continuous on subset g1 g2 by blast+
have o12 : openin (top of set U ) G12
unfolding G12 def
proof (subst openin subopen, clarify)
fix z
assume z : z ∈ U g1 z − g2 z = 0
obtain v w q where g1 z ∈ v and ocv : openin (top of set c) v
and p (g1 z ) ∈ w and osw : openin (top of set S ) w
and hom: homeomorphism v w p q

proof (rule covering space local homeomorphism [OF cov ])
show g1 z ∈ c
using 〈U ⊆ T 〉 〈z ∈ U 〉 g1 (2 ) by blast

qed auto
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have g2 z ∈ v using 〈g1 z ∈ v 〉 z by auto
have gg : U ∩ g −‘ v = U ∩ g −‘ (v ∩ g ‘ U ) for g
by auto

have openin (top of set (g1 ‘ U )) (v ∩ g1 ‘ U )
using ocv 〈U ⊆ T 〉 g1 by (fastforce simp add : openin open)

then have 1 : openin (top of set U ) (U ∩ g1 −‘ v)
unfolding gg by (blast intro: contu continuous on open [THEN iffD1 ,

rule format ])
have openin (top of set (g2 ‘ U )) (v ∩ g2 ‘ U )
using ocv 〈U ⊆ T 〉 g2 by (fastforce simp add : openin open)

then have 2 : openin (top of set U ) (U ∩ g2 −‘ v)
unfolding gg by (blast intro: contu continuous on open [THEN iffD1 ,

rule format ])
let ?T = (U ∩ g1 −‘ v) ∩ (U ∩ g2 −‘ v)
show ∃T . openin (top of set U ) T ∧ z ∈ T ∧ T ⊆ {z ∈ U . g1 z − g2 z = 0}
proof (intro exI conjI )
show openin (top of set U ) ?T
using 1 2 by blast

show z ∈ ?T
using z by (simp add : 〈g1 z ∈ v 〉 〈g2 z ∈ v 〉)

show ?T ⊆ {z ∈ U . g1 z − g2 z = 0}
using hom
by (clarsimp simp: homeomorphism def ) (metis 〈U ⊆ T 〉 fg1 fg2 subsetD)

qed
qed
have c12 : closedin (top of set U ) G12
unfolding G12 def
by (intro continuous intros continuous closedin preimage constant contu)

have G12 = {} ∨ G12 = U
by (intro connected clopen [THEN iffD1 , rule format ] 〈connected U 〉 conjI o12

c12 )
with eq 〈a ∈ U 〉 have

∧
x . x ∈ U =⇒ g1 x − g2 x = 0 by (auto simp: G12 def )

then show ?thesis
using 〈x ∈ U 〉 by force

qed

proposition covering space lift unique:
fixes f :: ′a::topological space ⇒ ′b::topological space
fixes g1 :: ′a ⇒ ′c::real normed vector
assumes covering space c p S

g1 a = g2 a
continuous on T f f ‘ T ⊆ S
continuous on T g1 g1 ‘ T ⊆ c

∧
x . x ∈ T =⇒ f x = p(g1 x )

continuous on T g2 g2 ‘ T ⊆ c
∧
x . x ∈ T =⇒ f x = p(g2 x )

connected T a ∈ T x ∈ T
shows g1 x = g2 x

using covering space lift unique gen [of c p S ] in components self assms ex in conv
by blast
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lemma covering space locally :
fixes p :: ′a::real normed vector ⇒ ′b::real normed vector
assumes loc: locally ϕ C and cov : covering space C p S

and pim:
∧
T . [[T ⊆ C ; ϕ T ]] =⇒ ψ(p ‘ T )

shows locally ψ S
proof −
have locally ψ (p ‘ C )
proof (rule locally open map image [OF loc])
show continuous on C p
using cov covering space imp continuous by blast

show
∧
T . openin (top of set C ) T =⇒ openin (top of set (p ‘ C )) (p ‘ T )

using cov covering space imp surjective covering space open map by blast
qed (simp add : pim)
then show ?thesis
using covering space imp surjective [OF cov ] by metis

qed

proposition covering space locally eq :
fixes p :: ′a::real normed vector ⇒ ′b::real normed vector
assumes cov : covering space C p S

and pim:
∧
T . [[T ⊆ C ; ϕ T ]] =⇒ ψ(p ‘ T )

and qim:
∧
q U . [[U ⊆ S ; continuous on U q ; ψ U ]] =⇒ ϕ(q ‘ U )

shows locally ψ S ←→ locally ϕ C
(is ?lhs = ?rhs)

proof
assume L: ?lhs
show ?rhs
proof (rule locallyI )
fix V x
assume V : openin (top of set C ) V and x ∈ V
have p x ∈ p ‘ C
by (metis IntE V 〈x ∈ V 〉 imageI openin open)

then obtain T V where p x ∈ T
and opeT : openin (top of set S ) T
and veq :

⋃
V = C ∩ p −‘ T

and ope: ∀U∈V. openin (top of set C ) U
and hom: ∀U∈V. ∃ q . homeomorphism U T p q

using cov unfolding covering space def by (blast intro: that)
have x ∈

⋃
V

using V veq 〈p x ∈ T 〉 〈x ∈ V 〉 openin imp subset by fastforce
then obtain U where x ∈ U U ∈ V
by blast

then obtain q where opeU : openin (top of set C ) U and q : homeomorphism
U T p q

using ope hom by blast
with V have openin (top of set C ) (U ∩ V )
by blast

then have UV : openin (top of set S ) (p ‘ (U ∩ V ))

Homeomorphism.html


2122

using cov covering space open map by blast
obtain W W ′ where opeW : openin (top of set S ) W and ψ W ′ p x ∈ W W

⊆ W ′ and W ′sub: W ′ ⊆ p ‘ (U ∩ V )
using locallyE [OF L UV ] 〈x ∈ U 〉 〈x ∈ V 〉 by blast

then have W ⊆ T
by (metis Int lower1 q homeomorphism image1 image Int subset order trans)

show ∃U Z . openin (top of set C ) U ∧
ϕ Z ∧ x ∈ U ∧ U ⊆ Z ∧ Z ⊆ V

proof (intro exI conjI )
have openin (top of set T ) W
by (meson opeW opeT openin imp subset openin subset trans 〈W ⊆ T 〉)

then have openin (top of set U ) (q ‘ W )
by (meson homeomorphism imp open map homeomorphism symD q)

then show openin (top of set C ) (q ‘ W )
using opeU openin trans by blast

show ϕ (q ‘ W ′)
by (metis (mono tags, lifting) Int subset iff UV W ′sub 〈ψ W ′〉 continu-

ous on subset dual order .trans homeomorphism def image Int subset openin imp subset
q qim)

show x ∈ q ‘ W
by (metis 〈p x ∈ W 〉 〈x ∈ U 〉 homeomorphism def imageI q)

show q ‘ W ⊆ q ‘ W ′

using 〈W ⊆ W ′〉 by blast
have W ′ ⊆ p ‘ V
using W ′sub by blast

then show q ‘ W ′ ⊆ V
using W ′sub homeomorphism apply1 [OF q ] by auto

qed
qed

next
assume ?rhs
then show ?lhs
using cov covering space locally pim by blast

qed

lemma covering space locally compact eq :
fixes p :: ′a::real normed vector ⇒ ′b::real normed vector
assumes covering space C p S
shows locally compact S ←→ locally compact C

proof (rule covering space locally eq [OF assms])
show

∧
T . [[T ⊆ C ; compact T ]] =⇒ compact (p ‘ T )

by (meson assms compact continuous image continuous on subset covering space imp continuous)
qed (use compact continuous image in blast)

lemma covering space locally connected eq :
fixes p :: ′a::real normed vector ⇒ ′b::real normed vector
assumes covering space C p S
shows locally connected S ←→ locally connected C

proof (rule covering space locally eq [OF assms])
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show
∧
T . [[T ⊆ C ; connected T ]] =⇒ connected (p ‘ T )

by (meson connected continuous image assms continuous on subset covering space imp continuous)
qed (use connected continuous image in blast)

lemma covering space locally path connected eq :
fixes p :: ′a::real normed vector ⇒ ′b::real normed vector
assumes covering space C p S
shows locally path connected S ←→ locally path connected C

proof (rule covering space locally eq [OF assms])
show

∧
T . [[T ⊆ C ; path connected T ]] =⇒ path connected (p ‘ T )

by (meson path connected continuous image assms continuous on subset cover-
ing space imp continuous)
qed (use path connected continuous image in blast)

lemma covering space locally compact :
fixes p :: ′a::real normed vector ⇒ ′b::real normed vector
assumes locally compact C covering space C p S
shows locally compact S
using assms covering space locally compact eq by blast

lemma covering space locally connected :
fixes p :: ′a::real normed vector ⇒ ′b::real normed vector
assumes locally connected C covering space C p S
shows locally connected S
using assms covering space locally connected eq by blast

lemma covering space locally path connected :
fixes p :: ′a::real normed vector ⇒ ′b::real normed vector
assumes locally path connected C covering space C p S
shows locally path connected S
using assms covering space locally path connected eq by blast

proposition covering space lift homotopy :
fixes p :: ′a::real normed vector ⇒ ′b::real normed vector
and h :: real × ′c::real normed vector ⇒ ′b

assumes cov : covering space C p S
and conth: continuous on ({0 ..1} × U ) h
and him: h ‘ ({0 ..1} × U ) ⊆ S
and heq :

∧
y . y ∈ U =⇒ h (0 ,y) = p(f y)

and contf : continuous on U f and fim: f ‘ U ⊆ C
obtains k where continuous on ({0 ..1} × U ) k

k ‘ ({0 ..1} × U ) ⊆ C∧
y . y ∈ U =⇒ k(0 , y) = f y∧
z . z ∈ {0 ..1} × U =⇒ h z = p(k z )

proof −
have ∃V k . openin (top of set U ) V ∧ y ∈ V ∧

continuous on ({0 ..1} × V ) k ∧ k ‘ ({0 ..1} × V ) ⊆ C ∧
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(∀ z ∈ V . k(0 , z ) = f z ) ∧ (∀ z ∈ {0 ..1} × V . h z = p(k z ))
if y ∈ U for y

proof −
obtain UU where UU :

∧
s. s ∈ S =⇒ s ∈ (UU s) ∧ openin (top of set S )

(UU s) ∧
(∃V.

⋃
V = C ∩ p −‘ UU s ∧

(∀U ∈ V. openin (top of set C ) U ) ∧
pairwise disjnt V ∧

(∀U ∈ V. ∃ q . homeomorphism U (UU s) p q))
using cov unfolding covering space def by (metis (mono tags))

then have ope:
∧
s. s ∈ S =⇒ s ∈ (UU s) ∧ openin (top of set S ) (UU s)

by blast
have ∃ k n i . open k ∧ open n ∧

t ∈ k ∧ y ∈ n ∧ i ∈ S ∧ h ‘ (({0 ..1} ∩ k) × (U ∩ n)) ⊆ UU i if t
∈ {0 ..1} for t

proof −
have hinS : h (t , y) ∈ S
using 〈y ∈ U 〉 him that by blast

then have (t ,y) ∈ ({0 ..1} × U ) ∩ h −‘ UU (h(t , y))
using 〈y ∈ U 〉 〈t ∈ {0 ..1}〉 by (auto simp: ope)

moreover have ope 01U : openin (top of set ({0 ..1} × U )) (({0 ..1} × U )
∩ h −‘ UU (h(t , y)))

using hinS ope continuous on open gen [OF him] conth by blast
ultimately obtain V W where opeV : open V and t ∈ {0 ..1} ∩ V t ∈

{0 ..1} ∩ V
and opeW : open W and y ∈ U y ∈ W
and VW : ({0 ..1} ∩ V ) × (U ∩ W ) ⊆ (({0 ..1} × U ) ∩

h −‘ UU (h(t , y)))
by (rule Times in interior subtopology) (auto simp: openin open)

then show ?thesis
using hinS by blast

qed
then obtain K NN X where

K :
∧
t . t ∈ {0 ..1} =⇒ open (K t)

and NN :
∧
t . t ∈ {0 ..1} =⇒ open (NN t)

and inUS :
∧
t . t ∈ {0 ..1} =⇒ t ∈ K t ∧ y ∈ NN t ∧ X t ∈ S

and him:
∧
t . t ∈ {0 ..1} =⇒ h ‘ (({0 ..1} ∩ K t) × (U ∩ NN t)) ⊆ UU

(X t)
by (metis (mono tags))
obtain T where T ⊆ ((λi . K i × NN i)) ‘ {0 ..1} finite T {0 ::real ..1} × {y}

⊆
⋃
T

proof (rule compactE )
show compact ({0 ::real ..1} × {y})
by (simp add : compact Times)

show {0 ..1} × {y} ⊆ (
⋃

i∈{0 ..1}. K i × NN i)
using K inUS by auto

show
∧
B . B ∈ (λi . K i × NN i) ‘ {0 ..1} =⇒ open B

using K NN by (auto simp: open Times)
qed blast
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then obtain tk where tk ⊆ {0 ..1} finite tk
and tk : {0 ::real ..1} × {y} ⊆ (

⋃
i ∈ tk . K i × NN i)

by (metis (no types, lifting) finite subset image)
then have tk 6= {}
by auto

define n where n =
⋂
(NN ‘ tk)

have y ∈ n open n
using inUS NN 〈tk ⊆ {0 ..1}〉 〈finite tk 〉

by (auto simp: n def open INT subset iff )
obtain δ where 0 < δ and δ:

∧
T . [[T ⊆ {0 ..1}; diameter T < δ]] =⇒ ∃B∈K

‘ tk . T ⊆ B
proof (rule Lebesgue number lemma [of {0 ..1} K ‘ tk ])
show K ‘ tk 6= {}
using 〈tk 6= {}〉 by auto

show {0 ..1} ⊆
⋃
(K ‘ tk)

using tk by auto
show

∧
B . B ∈ K ‘ tk =⇒ open B

using 〈tk ⊆ {0 ..1}〉 K by auto
qed auto
obtain N ::nat where N : N > 1 / δ
using reals Archimedean2 by blast

then have N > 0
using 〈0 < δ〉 order .asym by force

have ∗: ∃V k . openin (top of set U ) V ∧ y ∈ V ∧
continuous on ({0 ..of nat n / N } × V ) k ∧
k ‘ ({0 ..of nat n / N } × V ) ⊆ C ∧
(∀ z∈V . k (0 , z ) = f z ) ∧
(∀ z∈{0 ..of nat n / N } × V . h z = p (k z )) if n ≤ N for n

using that
proof (induction n)
case 0
show ?case
apply (rule tac x=U in exI )
apply (rule tac x=f ◦ snd in exI )
apply (intro conjI 〈y ∈ U 〉 continuous intros continuous on subset [OF

contf ])
using fim apply (auto simp: heq)
done

next
case (Suc n)
then obtain V k where opeUV : openin (top of set U ) V

and y ∈ V
and contk : continuous on ({0 ..n/N } × V ) k
and kim: k ‘ ({0 ..n/N } × V ) ⊆ C
and keq :

∧
z . z ∈ V =⇒ k (0 , z ) = f z

and heq :
∧
z . z ∈ {0 ..n/N } × V =⇒ h z = p (k z )

using Suc leD by auto
have n ≤ N
using Suc.prems by auto
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obtain t where t ∈ tk and t : {n/N .. (1 + real n) / N } ⊆ K t
proof (rule bexE [OF δ])
show {n/N .. (1 + real n) / N } ⊆ {0 ..1}
using Suc.prems by (auto simp: field split simps)

show diameter less: diameter {n/N .. (1 + real n) / N } < δ
using 〈0 < δ〉 N by (auto simp: field split simps)

qed blast
have t01 : t ∈ {0 ..1}
using 〈t ∈ tk 〉 〈tk ⊆ {0 ..1}〉 by blast

obtain V where V:
⋃
V = C ∩ p −‘ UU (X t)

and opeC :
∧
U . U ∈ V =⇒ openin (top of set C ) U

and pairwise disjnt V
and homuu:

∧
U . U ∈ V =⇒ ∃ q . homeomorphism U (UU (X t)) p q

using inUS [OF t01 ] UU by meson
have n div N in: n/N ∈ {n/N .. (1 + real n) / N }
using N by (auto simp: field split simps)

with t have nN in kkt : n/N ∈ K t
by blast

have k (n/N , y) ∈ C ∩ p −‘ UU (X t)
proof (simp, rule conjI )
show k (n/N , y) ∈ C
using 〈y ∈ V 〉 kim keq by force

have p (k (n/N , y)) = h (n/N , y)
by (simp add : 〈y ∈ V 〉 heq)

also have ... ∈ h ‘ (({0 ..1} ∩ K t) × (U ∩ NN t))
using 〈y ∈ V 〉 t01 〈n ≤ N 〉

by (simp add : nN in kkt 〈y ∈ U 〉 inUS field split simps)
also have ... ⊆ UU (X t)
using him t01 by blast

finally show p (k (n/N , y)) ∈ UU (X t) .
qed
with V have k (n/N , y) ∈

⋃
V

by blast
then obtain W where W : k (n/N , y) ∈ W and W ∈ V
by blast

then obtain p ′ where opeC ′: openin (top of set C ) W
and hom ′: homeomorphism W (UU (X t)) p p ′

using homuu opeC by blast
then have W ⊆ C
using openin imp subset by blast

define W ′ where W ′ = UU (X t)
have opeVW : openin (top of set V ) (V ∩ (k ◦ Pair (n / N )) −‘ W )
proof (rule continuous openin preimage [OF opeC ′])
show continuous on V (k ◦ Pair (n/N ))
by (intro continuous intros continuous on subset [OF contk ], auto)

show (k ◦ Pair (n/N )) ‘ V ⊆ C
using kim by (auto simp: 〈y ∈ V 〉 W )

qed
obtain N ′ where opeUN ′: openin (top of set U ) N ′
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and y ∈ N ′ and kimw : k ‘ ({(n/N )} × N ′) ⊆ W
proof
show openin (top of set U ) (V ∩ (k ◦ Pair (n/N )) −‘ W )
using opeUV opeVW openin trans by blast

qed (use 〈y ∈ V 〉 W in 〈force+〉)
obtain Q Q ′ where opeUQ : openin (top of set U ) Q

and cloUQ ′: closedin (top of set U ) Q ′

and y ∈ Q Q ⊆ Q ′

and Q ′: Q ′ ⊆ (U ∩ NN (t)) ∩ N ′ ∩ V
proof −

obtain VO VX where open VO open VX and VO : V = U ∩ VO and
VX : N ′ = U ∩ VX

using opeUV opeUN ′ by (auto simp: openin open)
then have open (NN (t) ∩ VO ∩ VX )
using NN t01 by blast

then obtain e where e > 0 and e: cball y e ⊆ NN (t) ∩ VO ∩ VX
by (metis Int iff 〈N ′ = U ∩ VX 〉 〈V = U ∩ VO 〉 〈y ∈ N ′〉 〈y ∈ V 〉 inUS

open contains cball t01 )
show ?thesis
proof
show openin (top of set U ) (U ∩ ball y e)
by blast

show closedin (top of set U ) (U ∩ cball y e)
using e by (auto simp: closedin closed)

qed (use 〈y ∈ U 〉 〈e > 0 〉 VO VX e in auto)
qed
then have y ∈ Q ′ Q ⊆ (U ∩ NN (t)) ∩ N ′ ∩ V
by blast+

have neq : {0 ..n/N } ∪ {n/N ..(1 + real n) / N } = {0 ..(1 + real n) / N }
apply (auto simp: field split simps)
by (metis not less of nat 0 le iff of nat 0 less iff order trans zero le mult iff )

then have neqQ ′: {0 ..n/N } × Q ′ ∪ {n/N ..(1 + real n) / N } × Q ′ = {0 ..(1
+ real n) / N } × Q ′

by blast
have cont : continuous on ({0 ..(1 + real n) / N } × Q ′) (λx . if x ∈ {0 ..n/N }

× Q ′ then k x else (p ′ ◦ h) x )
unfolding neqQ ′ [symmetric]

proof (rule continuous on cases local , simp all add : neqQ ′ del : comp apply)
have ∃T . closed T ∧ {0 ..n/N } × Q ′ = {0 ..(1+n)/N } × Q ′ ∩ T
using n div N in
by (rule tac x={0 .. n/N } × UNIV in exI ) (auto simp: closed Times)

then show closedin (top of set ({0 ..(1 + real n) / N } × Q ′)) ({0 ..n/N }
× Q ′)

by (simp add : closedin closed)
have ∃T . closed T ∧ {n/N ..(1+n)/N } × Q ′ = {0 ..(1+n)/N } × Q ′ ∩ T
by (rule tac x={n/N ..(1+n)/N } × UNIV in exI ) (auto simp: closed Times

order trans [rotated ])
then show closedin (top of set ({0 ..(1 + real n) / N } × Q ′)) ({n/N ..(1

+ real n) / N } × Q ′)
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by (simp add : closedin closed)
show continuous on ({0 ..n/N } × Q ′) k
using Q ′ by (auto intro: continuous on subset [OF contk ])

have continuous on ({n/N ..(1 + real n) / N } × Q ′) h
proof (rule continuous on subset [OF conth])
show {n/N ..(1 + real n) / N } × Q ′ ⊆ {0 ..1} × U
proof (clarsimp, intro conjI )
fix a b
assume b ∈ Q ′ and a: n/N ≤ a a ≤ (1 + real n) / N
have 0 ≤ n/N (1 + real n) / N ≤ 1
using a Suc.prems by (auto simp: divide simps)

with a show 0 ≤ a a ≤ 1
by linarith+

show b ∈ U
using 〈b ∈ Q ′〉 cloUQ ′ closedin imp subset by blast

qed
qed
moreover have continuous on (h ‘ ({n/N ..(1 + real n) / N } × Q ′)) p ′

proof (rule continuous on subset [OF homeomorphism cont2 [OF hom ′]])
have h ‘ ({n/N ..(1 + real n) / N } × Q ′) ⊆ h ‘ (({0 ..1} ∩ K t) × (U ∩

NN t))
proof (rule image mono)
show {n/N ..(1 + real n) / N } × Q ′ ⊆ ({0 ..1} ∩ K t) × (U ∩ NN t)
proof (clarsimp, intro conjI )
fix a::real and b
assume b ∈ Q ′ n/N ≤ a a ≤ (1 + real n) / N
show 0 ≤ a
by (meson 〈n/N ≤ a〉 divide nonneg nonneg of nat 0 le iff order trans)
show a ≤ 1
using Suc.prems 〈a ≤ (1 + real n) / N 〉 order trans by force

show a ∈ K t
using 〈a ≤ (1 + real n) / N 〉 〈n/N ≤ a〉 t by auto

show b ∈ U
using 〈b ∈ Q ′〉 cloUQ ′ closedin imp subset by blast

show b ∈ NN t
using Q ′ 〈b ∈ Q ′〉 by auto

qed
qed
with him show h ‘ ({n/N ..(1 + real n) / N } × Q ′) ⊆ UU (X t)
using t01 by blast

qed
ultimately show continuous on ({n/N ..(1 + real n) / N } × Q ′) (p ′ ◦ h)
by (rule continuous on compose)

have k (n/N , b) = p ′ (h (n/N , b)) if b ∈ Q ′ for b
proof −
have k (n/N , b) ∈ W
using that Q ′ kimw by force

then have k (n/N , b) = p ′ (p (k (n/N , b)))
by (simp add : homeomorphism apply1 [OF hom ′])
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then show ?thesis
using Q ′ that by (force simp: heq)

qed
then show

∧
x . x ∈ {n/N ..(1 + real n) / N } × Q ′ ∧

x ∈ {0 ..n/N } × Q ′ =⇒ k x = (p ′ ◦ h) x
by auto

qed
have h in UU : h (x , y) ∈ UU (X t) if y ∈ Q ¬ x ≤ n/N 0 ≤ x x ≤ (1 +

real n) / N for x y
proof −
have x ≤ 1
using Suc.prems that order trans by force

moreover have x ∈ K t
by (meson atLeastAtMost iff le less not le subset eq t that)

moreover have y ∈ U
using 〈y ∈ Q 〉 opeUQ openin imp subset by blast

moreover have y ∈ NN t
using Q ′ 〈Q ⊆ Q ′〉 〈y ∈ Q 〉 by auto

ultimately have (x , y) ∈ (({0 ..1} ∩ K t) × (U ∩ NN t))
using that by auto

then have h (x , y) ∈ h ‘ (({0 ..1} ∩ K t) × (U ∩ NN t))
by blast

also have ... ⊆ UU (X t)
by (metis him t01 )

finally show ?thesis .
qed
let ?k = (λx . if x ∈ {0 ..n/N } × Q ′ then k x else (p ′ ◦ h) x )
show ?case
proof (intro exI conjI )
show continuous on ({0 ..real (Suc n) / N } × Q) ?k
using 〈Q ⊆ Q ′〉 by (auto intro: continuous on subset [OF cont ])

have
∧
x y . [[x ≤ n/N ; y ∈ Q ′; 0 ≤ x ]] =⇒ k (x , y) ∈ C

using kim Q ′ by force
moreover have p ′ (h (x , y)) ∈ C if y ∈ Q ¬ x ≤ n/N 0 ≤ x x ≤ (1 +

real n) / N for x y
proof (rule 〈W ⊆ C 〉 [THEN subsetD ])
show p ′ (h (x , y)) ∈ W
using homeomorphism image2 [OF hom ′, symmetric] h in UU Q ′ 〈Q

⊆ Q ′〉 〈W ⊆ C 〉 that by auto
qed
ultimately show ?k ‘ ({0 ..real (Suc n) / N } × Q) ⊆ C
using Q ′ 〈Q ⊆ Q ′〉 by force

show ∀ z∈Q . ?k (0 , z ) = f z
using Q ′ keq 〈Q ⊆ Q ′〉 by auto

show ∀ z ∈ {0 ..real (Suc n) / N } × Q . h z = p(?k z )
using 〈Q ⊆ U ∩ NN t ∩ N ′ ∩ V 〉 heq Q ′ 〈Q ⊆ Q ′〉

by (auto simp: homeomorphism apply2 [OF hom ′] dest : h in UU )
qed (auto simp: 〈y ∈ Q 〉 opeUQ)

qed
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show ?thesis
using ∗[OF order refl ] N 〈0 < δ〉 by (simp add : split : if split asm)

qed
then obtain V fs where opeV :

∧
y . y ∈ U =⇒ openin (top of set U ) (V y)

and V :
∧
y . y ∈ U =⇒ y ∈ V y

and contfs:
∧
y . y ∈ U =⇒ continuous on ({0 ..1} × V y) (fs y)

and ∗:
∧
y . y ∈ U =⇒ (fs y) ‘ ({0 ..1} × V y) ⊆ C ∧

(∀ z ∈ V y . fs y (0 , z ) = f z ) ∧
(∀ z ∈ {0 ..1} × V y . h z = p(fs y z ))

by (metis (mono tags))
then have VU :

∧
y . y ∈ U =⇒ V y ⊆ U

by (meson openin imp subset)
obtain k where contk : continuous on ({0 ..1} × U ) k

and k :
∧
x i . [[i ∈ U ; x ∈ {0 ..1} × U ∩ {0 ..1} × V i ]] =⇒ k x = fs i x

proof (rule pasting lemma exists)
let ?X = top of set ({0 ..1 ::real} × U )
show topspace ?X ⊆ (

⋃
i∈U . {0 ..1} × V i)

using V by force
show

∧
i . i ∈ U =⇒ openin (top of set ({0 ..1} × U )) ({0 ..1} × V i)

by (simp add : Abstract Topology .openin Times opeV )
show

∧
i . i ∈ U =⇒ continuous map
(subtopology (top of set ({0 ..1} × U )) ({0 ..1} × V i)) euclidean (fs i)

by (metis contfs subtopology subtopology continuous map iff continuous Times Int Times
VU inf .absorb iff2 inf .idem)

show fs i x = fs j x if i ∈ U j ∈ U and x : x ∈ topspace ?X ∩ {0 ..1} × V i
∩ {0 ..1} × V j

for i j x
proof −
obtain u y where x = (u, y) y ∈ V i y ∈ V j 0 ≤ u u ≤ 1
using x by auto

show ?thesis
proof (rule covering space lift unique [OF cov , of (0 ,y) {0 ..1} × {y} h])
show fs i (0 , y) = fs j (0 , y)
using∗V by (simp add : 〈y ∈ V i 〉 〈y ∈ V j 〉 that)

show conth y : continuous on ({0 ..1} × {y}) h
using VU 〈y ∈ V j 〉 that by (auto intro: continuous on subset [OF conth])
show h ‘ ({0 ..1} × {y}) ⊆ S
using 〈y ∈ V i 〉 assms(3 ) VU that by fastforce

show continuous on ({0 ..1} × {y}) (fs i)
using continuous on subset [OF contfs] 〈i ∈ U 〉

by (simp add : 〈y ∈ V i 〉 subset iff )
show fs i ‘ ({0 ..1} × {y}) ⊆ C
using ∗ 〈y ∈ V i 〉 〈i ∈ U 〉 by fastforce

show
∧
x . x ∈ {0 ..1} × {y} =⇒ h x = p (fs i x )

using ∗ 〈y ∈ V i 〉 〈i ∈ U 〉 by blast
show continuous on ({0 ..1} × {y}) (fs j )
using continuous on subset [OF contfs] 〈j ∈ U 〉

by (simp add : 〈y ∈ V j 〉 subset iff )
show fs j ‘ ({0 ..1} × {y}) ⊆ C
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using ∗ 〈y ∈ V j 〉 〈j ∈ U 〉 by fastforce
show

∧
x . x ∈ {0 ..1} × {y} =⇒ h x = p (fs j x )

using ∗ 〈y ∈ V j 〉 〈j ∈ U 〉 by blast
show connected ({0 ..1 ::real} × {y})
using connected Icc connected Times connected sing by blast

show (0 , y) ∈ {0 ..1 ::real} × {y}
by force

show x ∈ {0 ..1} × {y}
using 〈x = (u, y)〉 x by blast

qed
qed

qed force
show ?thesis
proof
show k ‘ ({0 ..1} × U ) ⊆ C
using V ∗k VU by fastforce

show
∧
y . y ∈ U =⇒ k (0 , y) = f y

by (simp add : V ∗k)
show

∧
z . z ∈ {0 ..1} × U =⇒ h z = p (k z )

using V ∗k by auto
qed (auto simp: contk)

qed

corollary covering space lift homotopy alt :
fixes p :: ′a::real normed vector ⇒ ′b::real normed vector
and h :: ′c::real normed vector × real ⇒ ′b

assumes cov : covering space C p S
and conth: continuous on (U × {0 ..1}) h
and him: h ‘ (U × {0 ..1}) ⊆ S
and heq :

∧
y . y ∈ U =⇒ h (y ,0 ) = p(f y)

and contf : continuous on U f and fim: f ‘ U ⊆ C
obtains k where continuous on (U × {0 ..1}) k

k ‘ (U × {0 ..1}) ⊆ C∧
y . y ∈ U =⇒ k(y , 0 ) = f y∧
z . z ∈ U × {0 ..1} =⇒ h z = p(k z )

proof −
have continuous on ({0 ..1} × U ) (h ◦ (λz . (snd z , fst z )))
by (intro continuous intros continuous on subset [OF conth]) auto

then obtain k where contk : continuous on ({0 ..1} × U ) k
and kim: k ‘ ({0 ..1} × U ) ⊆ C
and k0 :

∧
y . y ∈ U =⇒ k(0 , y) = f y

and heqp:
∧
z . z ∈ {0 ..1} × U =⇒ (h ◦ (λz . Pair (snd z ) (fst z )))

z = p(k z )
apply (rule covering space lift homotopy [OF cov contf fim])
using him by (auto simp: contf heq)

show ?thesis
proof
show continuous on (U × {0 ..1}) (k ◦ (λz . (snd z , fst z )))
by (intro continuous intros continuous on subset [OF contk ]) auto
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qed (use kim heqp in 〈auto simp: k0 〉)
qed

corollary covering space lift homotopic function:
fixes p :: ′a::real normed vector ⇒ ′b::real normed vector and g :: ′c::real normed vector
⇒ ′a
assumes cov : covering space C p S

and contg : continuous on U g
and gim: g ‘ U ⊆ C
and pgeq :

∧
y . y ∈ U =⇒ p(g y) = f y

and hom: homotopic with canon (λx . True) U S f f ′

obtains g ′ where continuous on U g ′ image g ′ U ⊆ C
∧
y . y ∈ U =⇒ p(g ′

y) = f ′ y
proof −
obtain h where conth: continuous on ({0 ..1 ::real} × U ) h

and him: h ‘ ({0 ..1} × U ) ⊆ S
and h0 :

∧
x . h(0 , x ) = f x

and h1 :
∧
x . h(1 , x ) = f ′ x

using hom by (auto simp: homotopic with def )
have

∧
y . y ∈ U =⇒ h (0 , y) = p (g y)

by (simp add : h0 pgeq)
then obtain k where contk : continuous on ({0 ..1} × U ) k

and kim: k ‘ ({0 ..1} × U ) ⊆ C
and k0 :

∧
y . y ∈ U =⇒ k(0 , y) = g y

and heq :
∧
z . z ∈ {0 ..1} × U =⇒ h z = p(k z )

using covering space lift homotopy [OF cov conth him contg gim] by metis
show ?thesis
proof
show continuous on U (k ◦ Pair 1 )
by (meson contk atLeastAtMost iff continuous on o Pair order refl zero le one)
show (k ◦ Pair 1 ) ‘ U ⊆ C
using kim by auto

show
∧
y . y ∈ U =⇒ p ((k ◦ Pair 1 ) y) = f ′ y

by (auto simp: h1 heq [symmetric])
qed

qed

corollary covering space lift inessential function:
fixes p :: ′a::real normed vector ⇒ ′b::real normed vector and U :: ′c::real normed vector

set
assumes cov : covering space C p S

and hom: homotopic with canon (λx . True) U S f (λx . a)
obtains g where continuous on U g g ‘ U ⊆ C

∧
y . y ∈ U =⇒ p(g y) = f y

proof (cases U = {})
case True
then show ?thesis
using that continuous on empty by blast

next
case False
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then obtain b where b: b ∈ C p b = a
using covering space imp surjective [OF cov ] homotopic with imp subset2 [OF

hom]
by auto

then have gim: (λy . b) ‘ U ⊆ C
by blast

show ?thesis
proof (rule covering space lift homotopic function [OF cov continuous on const

gim])
show

∧
y . y ∈ U =⇒ p b = a

using b by auto
qed (use that homotopic with symD [OF hom] in auto)

qed

6.19.5 Lifting of general functions to covering space

proposition covering space lift path strong :
fixes p :: ′a::real normed vector ⇒ ′b::real normed vector
and f :: ′c::real normed vector ⇒ ′b

assumes cov : covering space C p S and a ∈ C
and path g and pag : path image g ⊆ S and pas: pathstart g = p a

obtains h where path h path image h ⊆ C pathstart h = a
and

∧
t . t ∈ {0 ..1} =⇒ p(h t) = g t

proof −
obtain k :: real × ′c ⇒ ′a
where contk : continuous on ({0 ..1} × {undefined}) k
and kim: k ‘ ({0 ..1} × {undefined}) ⊆ C
and k0 : k (0 , undefined) = a
and pk :

∧
z . z ∈ {0 ..1} × {undefined} =⇒ p(k z ) = (g ◦ fst) z

proof (rule covering space lift homotopy [OF cov , of {undefined} g ◦ fst ])
show continuous on ({0 ..1 ::real} × {undefined :: ′c}) (g ◦ fst)
using 〈path g〉 by (intro continuous intros) (simp add : path def )

show (g ◦ fst) ‘ ({0 ..1} × {undefined}) ⊆ S
using pag by (auto simp: path image def )

show (g ◦ fst) (0 , y) = p a if y ∈ {undefined} for y :: ′c
by (metis comp def fst conv pas pathstart def )

qed (use assms in auto)
show ?thesis
proof
show path (k ◦ (λt . Pair t undefined))
unfolding path def
by (intro continuous on compose continuous intros continuous on subset [OF

contk ]) auto
show path image (k ◦ (λt . (t , undefined))) ⊆ C
using kim by (auto simp: path image def )

show pathstart (k ◦ (λt . (t , undefined))) = a
by (auto simp: pathstart def k0 )

show
∧
t . t ∈ {0 ..1} =⇒ p ((k ◦ (λt . (t , undefined))) t) = g t

by (auto simp: pk)
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qed
qed

corollary covering space lift path:
fixes p :: ′a::real normed vector ⇒ ′b::real normed vector
assumes cov : covering space C p S and path g and pig : path image g ⊆ S
obtains h where path h path image h ⊆ C

∧
t . t ∈ {0 ..1} =⇒ p(h t) = g t

proof −
obtain a where a ∈ C pathstart g = p a
by (metis pig cov covering space imp surjective imageE pathstart in path image

subsetCE )
show ?thesis
using covering space lift path strong [OF cov 〈a ∈ C 〉 〈path g〉 pig ]
by (metis 〈pathstart g = p a〉 that)

qed

proposition covering space lift homotopic paths:
fixes p :: ′a::real normed vector ⇒ ′b::real normed vector
assumes cov : covering space C p S

and path g1 and pig1 : path image g1 ⊆ S
and path g2 and pig2 : path image g2 ⊆ S
and hom: homotopic paths S g1 g2
and path h1 and pih1 : path image h1 ⊆ C and ph1 :

∧
t . t ∈ {0 ..1} =⇒

p(h1 t) = g1 t
and path h2 and pih2 : path image h2 ⊆ C and ph2 :

∧
t . t ∈ {0 ..1} =⇒

p(h2 t) = g2 t
and h1h2 : pathstart h1 = pathstart h2

shows homotopic paths C h1 h2
proof −
obtain h :: real × real ⇒ ′b

where conth: continuous on ({0 ..1} × {0 ..1}) h
and him: h ‘ ({0 ..1} × {0 ..1}) ⊆ S
and h0 :

∧
x . h (0 , x ) = g1 x and h1 :

∧
x . h (1 , x ) = g2 x

and heq0 :
∧
t . t ∈ {0 ..1} =⇒ h (t , 0 ) = g1 0

and heq1 :
∧
t . t ∈ {0 ..1} =⇒ h (t , 1 ) = g1 1

using hom by (auto simp: homotopic paths def homotopic with def pathstart def
pathfinish def )
obtain k where contk : continuous on ({0 ..1} × {0 ..1}) k

and kim: k ‘ ({0 ..1} × {0 ..1}) ⊆ C
and kh2 :

∧
y . y ∈ {0 ..1} =⇒ k (y , 0 ) = h2 0

and hpk :
∧
z . z ∈ {0 ..1} × {0 ..1} =⇒ h z = p (k z )

proof (rule covering space lift homotopy alt [OF cov conth him])
show

∧
y . y ∈ {0 ..1} =⇒ h (y , 0 ) = p (h2 0 )

by (metis atLeastAtMost iff h1h2 heq0 order refl pathstart def ph1 zero le one)
qed (use path image def pih2 in 〈fastforce+〉)
have contg1 : continuous on {0 ..1} g1 and contg2 : continuous on {0 ..1} g2
using 〈path g1 〉 〈path g2 〉 path def by blast+

have g1im: g1 ‘ {0 ..1} ⊆ S and g2im: g2 ‘ {0 ..1} ⊆ S
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using path image def pig1 pig2 by auto
have conth1 : continuous on {0 ..1} h1 and conth2 : continuous on {0 ..1} h2
using 〈path h1 〉 〈path h2 〉 path def by blast+

have h1im: h1 ‘ {0 ..1} ⊆ C and h2im: h2 ‘ {0 ..1} ⊆ C
using path image def pih1 pih2 by auto

show ?thesis
unfolding homotopic paths pathstart def pathfinish def

proof (intro exI conjI ballI )
show keqh1 : k(0 , x ) = h1 x if x ∈ {0 ..1} for x
proof (rule covering space lift unique [OF cov contg1 g1im])
show k (0 ,0 ) = h1 0
by (metis atLeastAtMost iff h1h2 kh2 order refl pathstart def zero le one)

show continuous on {0 ..1} (λa. k (0 , a))
by (intro continuous intros continuous on compose2 [OF contk ]) auto

show
∧
x . x ∈ {0 ..1} =⇒ g1 x = p (k (0 , x ))

by (metis atLeastAtMost iff h0 hpk zero le one mem Sigma iff order refl)
qed (use conth1 h1im kim that in 〈auto simp: ph1 〉)
show k(1 , x ) = h2 x if x ∈ {0 ..1} for x
proof (rule covering space lift unique [OF cov contg2 g2im])
show k (1 ,0 ) = h2 0
by (metis atLeastAtMost iff kh2 order refl zero le one)

show continuous on {0 ..1} (λa. k (1 , a))
by (intro continuous intros continuous on compose2 [OF contk ]) auto

show
∧
x . x ∈ {0 ..1} =⇒ g2 x = p (k (1 , x ))

by (metis atLeastAtMost iff h1 hpk mem Sigma iff order refl zero le one)
qed (use conth2 h2im kim that in 〈auto simp: ph2 〉)
show

∧
t . t ∈ {0 ..1} =⇒ (k ◦ Pair t) 0 = h1 0

by (metis comp apply h1h2 kh2 pathstart def )
show (k ◦ Pair t) 1 = h1 1 if t ∈ {0 ..1} for t
proof (rule covering space lift unique

[OF cov , of λa. (k ◦ Pair a) 1 0 λa. h1 1 {0 ..1} λx . g1 1 ])
show (k ◦ Pair 0 ) 1 = h1 1
using keqh1 by auto

show continuous on {0 ..1} (λa. (k ◦ Pair a) 1 )
by (auto intro!: continuous intros continuous on compose2 [OF contk ])

show
∧
x . x ∈ {0 ..1} =⇒ g1 1 = p ((k ◦ Pair x ) 1 )

using heq1 hpk by auto
qed (use contk kim g1im h1im that in 〈auto simp: ph1 〉)

qed (use contk kim in auto)
qed

corollary covering space monodromy :
fixes p :: ′a::real normed vector ⇒ ′b::real normed vector
assumes cov : covering space C p S

and path g1 and pig1 : path image g1 ⊆ S
and path g2 and pig2 : path image g2 ⊆ S
and hom: homotopic paths S g1 g2
and path h1 and pih1 : path image h1 ⊆ C and ph1 :

∧
t . t ∈ {0 ..1} =⇒
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p(h1 t) = g1 t
and path h2 and pih2 : path image h2 ⊆ C and ph2 :

∧
t . t ∈ {0 ..1} =⇒

p(h2 t) = g2 t
and h1h2 : pathstart h1 = pathstart h2

shows pathfinish h1 = pathfinish h2
using covering space lift homotopic paths [OF assms] homotopic paths imp pathfinish
by blast

corollary covering space lift homotopic path:
fixes p :: ′a::real normed vector ⇒ ′b::real normed vector
assumes cov : covering space C p S

and hom: homotopic paths S f f ′

and path g and pig : path image g ⊆ C
and a: pathstart g = a and b: pathfinish g = b
and pgeq :

∧
t . t ∈ {0 ..1} =⇒ p(g t) = f t

obtains g ′ where path g ′ path image g ′ ⊆ C
pathstart g ′ = a pathfinish g ′ = b

∧
t . t ∈ {0 ..1} =⇒ p(g ′ t) = f ′ t

proof (rule covering space lift path strong [OF cov , of a f ′])
show a ∈ C
using a pig by auto

show path f ′ path image f ′ ⊆ S
using hom homotopic paths imp path homotopic paths imp subset by blast+

show pathstart f ′ = p a
by (metis a atLeastAtMost iff hom homotopic paths imp pathstart order refl

pathstart def pgeq zero le one)
qed (metis (mono tags, lifting) assms cov covering space monodromy hom homo-
topic paths imp path homotopic paths imp subset pgeq pig)

proposition covering space lift general :
fixes p :: ′a::real normed vector ⇒ ′b::real normed vector
and f :: ′c::real normed vector ⇒ ′b

assumes cov : covering space C p S and a ∈ C z ∈ U
and U : path connected U locally path connected U
and contf : continuous on U f and fim: f ‘ U ⊆ S
and feq : f z = p a
and hom:

∧
r . [[path r ; path image r ⊆ U ; pathstart r = z ; pathfinish r = z ]]
=⇒ ∃ q . path q ∧ path image q ⊆ C ∧

pathstart q = a ∧ pathfinish q = a ∧
homotopic paths S (f ◦ r) (p ◦ q)

obtains g where continuous on U g g ‘ U ⊆ C g z = a
∧
y . y ∈ U =⇒ p(g y)

= f y
proof −
have ∗: ∃ g h. path g ∧ path image g ⊆ U ∧

pathstart g = z ∧ pathfinish g = y ∧
path h ∧ path image h ⊆ C ∧ pathstart h = a ∧
(∀ t ∈ {0 ..1}. p(h t) = f (g t))

if y ∈ U for y
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proof −
obtain g where path g path image g ⊆ U and pastg : pathstart g = z

and pafig : pathfinish g = y
using U 〈z ∈ U 〉 〈y ∈ U 〉 by (force simp: path connected def )

obtain h where path h path image h ⊆ C pathstart h = a
and

∧
t . t ∈ {0 ..1} =⇒ p(h t) = (f ◦ g) t

proof (rule covering space lift path strong [OF cov 〈a ∈ C 〉])
show path (f ◦ g)
using 〈path g〉 〈path image g ⊆ U 〉 contf continuous on subset path continuous image

by blast
show path image (f ◦ g) ⊆ S

by (metis 〈path image g ⊆ U 〉 fim image mono path image compose sub-
set trans)

show pathstart (f ◦ g) = p a
by (simp add : feq pastg pathstart compose)

qed auto
then show ?thesis
by (metis 〈path g〉 〈path image g ⊆ U 〉 comp apply pafig pastg)

qed
have ∃ l . ∀ g h. path g ∧ path image g ⊆ U ∧ pathstart g = z ∧ pathfinish g =

y ∧
path h ∧ path image h ⊆ C ∧ pathstart h = a ∧
(∀ t ∈ {0 ..1}. p(h t) = f (g t)) −→ pathfinish h = l for y

proof −
have pathfinish h = pathfinish h ′

if g : path g path image g ⊆ U pathstart g = z pathfinish g = y
and h: path h path image h ⊆ C pathstart h = a
and phg :

∧
t . t ∈ {0 ..1} =⇒ p(h t) = f (g t)

and g ′: path g ′ path image g ′ ⊆ U pathstart g ′ = z pathfinish g ′ = y
and h ′: path h ′ path image h ′ ⊆ C pathstart h ′ = a
and phg ′:

∧
t . t ∈ {0 ..1} =⇒ p(h ′ t) = f (g ′ t)

for g h g ′ h ′

proof −
obtain q where path q and piq : path image q ⊆ C and pastq : pathstart q =

a and pafiq : pathfinish q = a
and homS : homotopic paths S (f ◦ g +++ reversepath g ′) (p ◦ q)

using g g ′ hom [of g +++ reversepath g ′] by (auto simp: subset path image join)
have papq : path (p ◦ q)
using homS homotopic paths imp path by blast

have pipq : path image (p ◦ q) ⊆ S
using homS homotopic paths imp subset by blast

obtain q ′ where path q ′ path image q ′ ⊆ C
and pathstart q ′ = pathstart q pathfinish q ′ = pathfinish q
and pq ′ eq :

∧
t . t ∈ {0 ..1} =⇒ p (q ′ t) = (f ◦ g +++ reversepath

g ′) t
using covering space lift homotopic path [OF cov homotopic paths sym [OF

homS ] 〈path q〉 piq refl refl ]
by auto

have q ′ t = (h ◦ (∗R) 2 ) t if 0 ≤ t t ≤ 1/2 for t
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proof (rule covering space lift unique [OF cov , of q ′ 0 h ◦ (∗R) 2 {0 ..1/2} f
◦ g ◦ (∗R) 2 t ])

show q ′ 0 = (h ◦ (∗R) 2 ) 0
by (metis 〈pathstart q ′ = pathstart q〉 comp def h(3 ) pastq pathstart def

pth 4 (2 ))
show continuous on {0 ..1/2} (f ◦ g ◦ (∗R) 2 )
proof (intro continuous intros continuous on path [OF 〈path g〉] continu-

ous on subset [OF contf ])
show g ‘ (∗R) 2 ‘ {0 ..1/2} ⊆ U
using g path image def by fastforce

qed auto
show (f ◦ g ◦ (∗R) 2 ) ‘ {0 ..1/2} ⊆ S
using g(2 ) path image def fim by fastforce

show (h ◦ (∗R) 2 ) ‘ {0 ..1/2} ⊆ C
using h path image def by fastforce

show q ′ ‘ {0 ..1/2} ⊆ C
using 〈path image q ′ ⊆ C 〉 path image def by fastforce

show
∧
x . x ∈ {0 ..1/2} =⇒ (f ◦ g ◦ (∗R) 2 ) x = p (q ′ x )

by (auto simp: joinpaths def pq ′ eq)
show

∧
x . x ∈ {0 ..1/2} =⇒ (f ◦ g ◦ (∗R) 2 ) x = p ((h ◦ (∗R) 2 ) x )

by (simp add : phg)
show continuous on {0 ..1/2} q ′

by (simp add : continuous on path 〈path q ′〉)
show continuous on {0 ..1/2} (h ◦ (∗R) 2 )
by (intro continuous intros continuous on path [OF 〈path h〉]) auto

qed (use that in auto)
moreover have q ′ t = (reversepath h ′ ◦ (λt . 2 ∗R t − 1 )) t if 1/2 < t t ≤

1 for t
proof (rule covering space lift unique [OF cov , of q ′ 1 reversepath h ′ ◦ (λt . 2

∗R t − 1 ) {1/2<..1} f ◦ reversepath g ′ ◦ (λt . 2 ∗R t − 1 ) t ])
show q ′ 1 = (reversepath h ′ ◦ (λt . 2 ∗R t − 1 )) 1
using h ′ 〈pathfinish q ′ = pathfinish q〉 pafiq
by (simp add : pathstart def pathfinish def reversepath def )

show continuous on {1/2<..1} (f ◦ reversepath g ′ ◦ (λt . 2 ∗R t − 1 ))
proof (intro continuous intros continuous on path 〈path g ′〉 continuous on subset

[OF contf ])
show reversepath g ′ ‘ (λt . 2 ∗R t − 1 ) ‘ {1/2<..1} ⊆ U
using g ′ by (auto simp: path image def reversepath def )

qed (use g ′ in auto)
show (f ◦ reversepath g ′ ◦ (λt . 2 ∗R t − 1 )) ‘ {1/2<..1} ⊆ S
using g ′(2 ) path image def fim by (auto simp: image subset iff path image def

reversepath def )
show q ′ ‘ {1/2<..1} ⊆ C
using 〈path image q ′ ⊆ C 〉 path image def by fastforce

show (reversepath h ′ ◦ (λt . 2 ∗R t − 1 )) ‘ {1/2<..1} ⊆ C
using h ′ by (simp add : path image def reversepath def subset eq)

show
∧
x . x ∈ {1/2<..1} =⇒ (f ◦ reversepath g ′ ◦ (λt . 2 ∗R t − 1 )) x =

p (q ′ x )
by (auto simp: joinpaths def pq ′ eq)
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show
∧
x . x ∈ {1/2<..1} =⇒

(f ◦ reversepath g ′ ◦ (λt . 2 ∗R t − 1 )) x = p ((reversepath h ′ ◦ (λt .
2 ∗R t − 1 )) x )

by (simp add : phg ′ reversepath def )
show continuous on {1/2<..1} q ′

by (auto intro: continuous on path [OF 〈path q ′〉])
show continuous on {1/2<..1} (reversepath h ′ ◦ (λt . 2 ∗R t − 1 ))
by (intro continuous intros continuous on path 〈path h ′〉) (use h ′ in auto)

qed (use that in auto)
ultimately have q ′ t = (h +++ reversepath h ′) t if 0 ≤ t t ≤ 1 for t
using that by (simp add : joinpaths def )

then have path(h +++ reversepath h ′)
by (auto intro: path eq [OF 〈path q ′〉])

then show ?thesis
by (auto simp: 〈path h〉 〈path h ′〉)

qed
then show ?thesis by metis

qed
then obtain l :: ′c ⇒ ′a

where l :
∧
y g h. [[path g ; path image g ⊆ U ; pathstart g = z ; pathfinish g

= y ;
path h; path image h ⊆ C ; pathstart h = a;∧
t . t ∈ {0 ..1} =⇒ p(h t) = f (g t)]] =⇒ pathfinish h = l y

by metis
show ?thesis
proof
show pleq : p (l y) = f y if y ∈ U for y
using∗[OF 〈y ∈ U 〉] by (metis l atLeastAtMost iff order refl pathfinish def

zero le one)
show l z = a
using l [of linepath z z z linepath a a] by (auto simp: assms)

show LC : l ‘ U ⊆ C
by (clarify dest !: ∗) (metis (full types) l pathfinish in path image subsetCE )

have ∃T . openin (top of set U ) T ∧ y ∈ T ∧ T ⊆ U ∩ l −‘ X
if X : openin (top of set C ) X and y ∈ U l y ∈ X for X y

proof −
have X ⊆ C
using X openin euclidean subtopology iff by blast

have f y ∈ S
using fim 〈y ∈ U 〉 by blast

then obtain W V
where WV : f y ∈ W ∧ openin (top of set S ) W ∧

(
⋃
V = C ∩ p −‘ W ∧

(∀U ∈ V. openin (top of set C ) U ) ∧
pairwise disjnt V ∧
(∀U ∈ V. ∃ q . homeomorphism U W p q))

using cov by (force simp: covering space def )
then have l y ∈

⋃
V

using 〈X ⊆ C 〉 pleq that by auto
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then obtain W ′ where l y ∈ W ′ and W ′ ∈ V
by blast

with WV obtain p ′ where opeCW ′: openin (top of set C ) W ′

and homUW ′: homeomorphism W ′ W p p ′

by blast
then have contp ′: continuous on W p ′ and p ′im: p ′ ‘ W ⊆ W ′

using homUW ′ homeomorphism image2 homeomorphism cont2 by fast-
force+

obtain V where y ∈ V y ∈ U and fimW : f ‘ V ⊆ W V ⊆ U
and path connected V and opeUV : openin (top of set U ) V

proof −
have openin (top of set U ) (U ∩ f −‘ W )
using WV contf continuous on open gen fim by auto

then obtain UO where openin (top of set U ) UO ∧ path connected UO ∧
y ∈ UO ∧ UO ⊆ U ∩ f −‘ W

using U WV 〈y ∈ U 〉 unfolding locally path connected by (meson IntI
vimage eq)

then show ?thesis
by (meson 〈y ∈ U 〉 image subset iff subset vimage le inf iff that)

qed
have W ′ ⊆ C W ⊆ S
using opeCW ′ WV openin imp subset by auto

have p ′im: p ′ ‘ W ⊆ W ′

using homUW ′ homeomorphism image2 by fastforce
show ?thesis
proof (intro exI conjI )
have openin (top of set S ) (W ∩ p ′ −‘ (W ′ ∩ X ))
proof (rule openin trans)
show openin (top of set W ) (W ∩ p ′ −‘ (W ′ ∩ X ))

using X 〈W ′ ⊆ C 〉 by (intro continuous openin preimage [OF contp ′

p ′im]) (auto simp: openin open)
show openin (top of set S ) W
using WV by blast

qed
then show openin (top of set U ) (V ∩ (U ∩ (f −‘ (W ∩ (p ′ −‘ (W ′ ∩

X ))))))
by (blast intro: opeUV openin subtopology self continuous openin preimage

[OF contf fim])
have p ′ (f y) ∈ X
using 〈l y ∈ W ′〉 homeomorphism apply1 [OF homUW ′] pleq 〈y ∈ U 〉 〈l y

∈ X 〉 by fastforce
then show y ∈ V ∩ (U ∩ f −‘ (W ∩ p ′ −‘ (W ′ ∩ X )))
using 〈y ∈ U 〉 〈y ∈ V 〉 WV p ′im by auto

show V ∩ (U ∩ f −‘ (W ∩ p ′ −‘ (W ′ ∩ X ))) ⊆ U ∩ l −‘ X
proof (intro subsetI IntI ; clarify)
fix y ′

assume y ′: y ′ ∈ V y ′ ∈ U f y ′ ∈ W p ′ (f y ′) ∈ W ′ p ′ (f y ′) ∈ X
then obtain γ where path γ path image γ ⊆ V pathstart γ = y pathfinish

γ = y ′



Homeomorphism.thy 2141

by (meson 〈path connected V 〉 〈y ∈ V 〉 path connected def )
obtain pp qq where pp: path pp path image pp ⊆ U pathstart pp = z

pathfinish pp = y
and qq : path qq path image qq ⊆ C pathstart qq = a
and pqqeq :

∧
t . t ∈ {0 ..1} =⇒ p(qq t) = f (pp t)

using∗[OF 〈y ∈ U 〉] by blast
have finW :

∧
x . [[0 ≤ x ; x ≤ 1 ]] =⇒ f (γ x ) ∈ W

using 〈path image γ ⊆ V 〉 by (auto simp: image subset iff path image def
fimW [THEN subsetD ])

have pathfinish (qq +++ (p ′ ◦ f ◦ γ)) = l y ′

proof (rule l [of pp +++ γ y ′ qq +++ (p ′ ◦ f ◦ γ)])
show path (pp +++ γ)
by (simp add : 〈path γ〉 〈path pp〉 〈pathfinish pp = y〉 〈pathstart γ = y〉)

show path image (pp +++ γ) ⊆ U
using 〈V ⊆ U 〉 〈path image γ ⊆ V 〉 〈path image pp ⊆ U 〉 not in path image join

by blast
show pathstart (pp +++ γ) = z
by (simp add : 〈pathstart pp = z 〉)

show pathfinish (pp +++ γ) = y ′

by (simp add : 〈pathfinish γ = y ′〉)
have pathfinish qq = l y

using 〈path pp〉 〈path qq〉 〈path image pp ⊆ U 〉 〈path image qq ⊆ C 〉

〈pathfinish pp = y〉 〈pathstart pp = z 〉 〈pathstart qq = a〉 l pqqeq by blast
also have ... = p ′ (f y)

using 〈l y ∈ W ′〉 homUW ′ homeomorphism apply1 pleq that(2 ) by
fastforce

finally have pathfinish qq = p ′ (f y) .
then have paqq : pathfinish qq = pathstart (p ′ ◦ f ◦ γ)
by (simp add : 〈pathstart γ = y〉 pathstart compose)

have continuous on (path image γ) (p ′ ◦ f )
proof (rule continuous on compose)
show continuous on (path image γ) f

using 〈path image γ ⊆ V 〉 〈V ⊆ U 〉 contf continuous on subset by
blast

show continuous on (f ‘ path image γ) p ′

proof (rule continuous on subset [OF contp ′])
show f ‘ path image γ ⊆ W
by (auto simp: path image def pathfinish def pathstart def finW )

qed
qed
then show path (qq +++ (p ′ ◦ f ◦ γ))
using 〈path γ〉 〈path qq〉 paqq path continuous image path join imp by

blast
show path image (qq +++ (p ′ ◦ f ◦ γ)) ⊆ C
proof (rule subset path image join)
show path image qq ⊆ C
by (simp add : 〈path image qq ⊆ C 〉)

show path image (p ′ ◦ f ◦ γ) ⊆ C
by (metis 〈W ′ ⊆ C 〉 〈path image γ ⊆ V 〉 dual order .trans fimW (1 )
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image comp image mono p ′im path image compose)
qed
show pathstart (qq +++ (p ′ ◦ f ◦ γ)) = a
by (simp add : 〈pathstart qq = a〉)

show p ((qq +++ (p ′ ◦ f ◦ γ)) ξ) = f ((pp +++ γ) ξ) if ξ: ξ ∈ {0 ..1}
for ξ

proof (simp add : joinpaths def , safe)
show p (qq (2∗ξ)) = f (pp (2∗ξ)) if ξ∗2 ≤ 1
using 〈ξ ∈ {0 ..1}〉 pqqeq that by auto

show p (p ′ (f (γ (2∗ξ − 1 )))) = f (γ (2∗ξ − 1 )) if ¬ ξ∗2 ≤ 1
using that ξ by (auto intro: homeomorphism apply2 [OF homUW ′

finW ])
qed

qed
with 〈pathfinish γ = y ′〉 〈p ′ (f y ′) ∈ X 〉 show y ′ ∈ l −‘ X
unfolding pathfinish join by (simp add : pathfinish def )

qed
qed

qed
then show continuous on U l
by (metis IntD1 IntD2 vimage eq openin subopen continuous on open gen [OF

LC ])
qed

qed

corollary covering space lift stronger :
fixes p :: ′a::real normed vector ⇒ ′b::real normed vector
and f :: ′c::real normed vector ⇒ ′b

assumes cov : covering space C p S a ∈ C z ∈ U
and U : path connected U locally path connected U
and contf : continuous on U f and fim: f ‘ U ⊆ S
and feq : f z = p a
and hom:

∧
r . [[path r ; path image r ⊆ U ; pathstart r = z ; pathfinish r = z ]]
=⇒ ∃ b. homotopic paths S (f ◦ r) (linepath b b)

obtains g where continuous on U g g ‘ U ⊆ C g z = a
∧
y . y ∈ U =⇒ p(g y)

= f y
proof (rule covering space lift general [OF cov U contf fim feq ])
fix r
assume path r path image r ⊆ U pathstart r = z pathfinish r = z
then obtain b where b: homotopic paths S (f ◦ r) (linepath b b)
using hom by blast

then have f (pathstart r) = b
by (metis homotopic paths imp pathstart pathstart compose pathstart linepath)

then have homotopic paths S (f ◦ r) (linepath (f z ) (f z ))
by (simp add : b 〈pathstart r = z 〉)

then have homotopic paths S (f ◦ r) (p ◦ linepath a a)
by (simp add : o def feq linepath def )

then show ∃ q . path q ∧
path image q ⊆ C ∧
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pathstart q = a ∧ pathfinish q = a ∧ homotopic paths S (f ◦ r) (p
◦ q)

by (force simp: 〈a ∈ C 〉)
qed auto

corollary covering space lift strong :
fixes p :: ′a::real normed vector ⇒ ′b::real normed vector
and f :: ′c::real normed vector ⇒ ′b

assumes cov : covering space C p S a ∈ C z ∈ U
and scU : simply connected U and lpcU : locally path connected U
and contf : continuous on U f and fim: f ‘ U ⊆ S
and feq : f z = p a

obtains g where continuous on U g g ‘ U ⊆ C g z = a
∧
y . y ∈ U =⇒ p(g y)

= f y
proof (rule covering space lift stronger [OF cov lpcU contf fim feq ])
show path connected U
using scU simply connected eq contractible loop some by blast

fix r
assume r : path r path image r ⊆ U pathstart r = z pathfinish r = z
have linepath (f z ) (f z ) = f ◦ linepath z z
by (simp add : o def linepath def )

then have homotopic paths S (f ◦ r) (linepath (f z ) (f z ))
by (metis r contf fim homotopic paths continuous image scU simply connected eq contractible path)
then show ∃ b. homotopic paths S (f ◦ r) (linepath b b)
by blast

qed blast

corollary covering space lift :
fixes p :: ′a::real normed vector ⇒ ′b::real normed vector
and f :: ′c::real normed vector ⇒ ′b

assumes cov : covering space C p S
and U : simply connected U locally path connected U
and contf : continuous on U f and fim: f ‘ U ⊆ S

obtains g where continuous on U g g ‘ U ⊆ C
∧
y . y ∈ U =⇒ p(g y) = f y

proof (cases U = {})
case True
with that show ?thesis by auto

next
case False
then obtain z where z ∈ U by blast
then obtain a where a ∈ C f z = p a
by (metis cov covering space imp surjective fim image iff image subset iff )

then show ?thesis
by (metis that covering space lift strong [OF cov 〈z ∈ U 〉 U contf fim])

qed

6.19.6 Homeomorphisms of arc images

lemma homeomorphism arc:
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fixes g :: real ⇒ ′a::t2 space
assumes arc g
obtains h where homeomorphism {0 ..1} (path image g) g h

using assms by (force simp: arc def homeomorphism compact path def path image def )

lemma homeomorphic arc image interval :
fixes g :: real ⇒ ′a::t2 space and a::real
assumes arc g a < b
shows (path image g) homeomorphic {a..b}

proof −
have (path image g) homeomorphic {0 ..1 ::real}
by (meson assms(1 ) homeomorphic def homeomorphic sym homeomorphism arc)
also have . . . homeomorphic {a..b}
using assms by (force intro: homeomorphic closed intervals real)

finally show ?thesis .
qed

lemma homeomorphic arc images:
fixes g :: real ⇒ ′a::t2 space and h :: real ⇒ ′b::t2 space
assumes arc g arc h
shows (path image g) homeomorphic (path image h)

proof −
have (path image g) homeomorphic {0 ..1 ::real}
by (meson assms homeomorphic def homeomorphic sym homeomorphism arc)

also have . . . homeomorphic (path image h)
by (meson assms homeomorphic def homeomorphism arc)

finally show ?thesis .
qed

end

theory Equivalence Lebesgue Henstock Integration
imports
Lebesgue Measure
Henstock Kurzweil Integration
Complete Measure
Set Integral
Homeomorphism
Cartesian Euclidean Space

begin

lemma LIMSEQ if less: (λk . if i < k then a else b) −−−−→ a
by (rule tac k=Suc i in LIMSEQ offset) auto

Note that the rhs is an implication. This lemma plays a specific role in one
proof.

lemma le left mono: x ≤ y =⇒ y ≤ a −→ x ≤ (a:: ′a::preorder)
by (auto intro: order trans)
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lemma ball trans:
assumes y ∈ ball z q r + q ≤ s shows ball y r ⊆ ball z s
using assms by metric

lemma has integral implies lebesgue measurable cbox :
fixes f :: ′a :: euclidean space ⇒ real
assumes f : (f has integral I ) (cbox x y)
shows f ∈ lebesgue on (cbox x y) →M borel

proof (rule cld measure.borel measurable cld)
let ?L = lebesgue on (cbox x y)
let ?µ = emeasure ?L
let ?µ ′ = outer measure of ?L
interpret L: finite measure ?L
proof
show ?µ (space ?L) 6= ∞
by (simp add : emeasure restrict space space restrict space emeasure lborel cbox eq)

qed

show cld measure ?L
proof
fix B A assume B ⊆ A A ∈ null sets ?L
then show B ∈ sets ?L
using null sets completion subset [OF 〈B ⊆ A〉, of lborel ]
by (auto simp add : null sets restrict space sets restrict space iff intro: )

next
fix A assume A ⊆ space ?L

∧
B . B ∈ sets ?L =⇒ ?µ B < ∞ =⇒ A ∩ B ∈

sets ?L
from this(1 ) this(2 )[of space ?L] show A ∈ sets ?L
by (auto simp: Int absorb2 less top[symmetric])

qed auto
then interpret cld measure ?L
.

have content eq L: A ∈ sets borel =⇒ A ⊆ cbox x y =⇒ content A = measure
?L A for A

by (subst measure restrict space) (auto simp: measure def )

fix E and a b :: real assume E ∈ sets ?L a < b 0 < ?µ E ?µ E < ∞
then obtain M :: real where ?µ E = M 0 < M
by (cases ?µ E ) auto

define e where e = M / (4 + 2 / (b − a))
from 〈a < b〉 〈0<M 〉 have 0 < e
by (auto intro!: divide pos pos simp: field simps e def )

have e < M / (3 + 2 / (b − a))
using 〈a < b〉 〈0 < M 〉

unfolding e def by (intro divide strict left mono add strict right mono mult pos pos)
(auto simp: field simps)
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then have 2 ∗ e < (b − a) ∗ (M − e ∗ 3 )
using 〈0<M 〉 〈0 < e〉 〈a < b〉 by (simp add : field simps)

have e less M : e < M / 1
unfolding e def using 〈a < b〉 〈0<M 〉 by (intro divide strict left mono) (auto

simp: field simps)

obtain d
where gauge d
and integral f : ∀ p. p tagged division of cbox x y ∧ d fine p −→
norm ((

∑
(x ,k) ∈ p. content k ∗R f x ) − I ) < e

using 〈0<e〉 f unfolding has integral by auto

define C where C X m = X ∩ {x . ball x (1/Suc m) ⊆ d x} for X m
have incseq (C X ) for X
unfolding C def [abs def ]
by (intro monoI Collect mono conj mono imp refl le left mono subset ball di-

vide left mono Int mono) auto

{ fix X assume X ⊆ space ?L and eq : ?µ ′ X = ?µ E
have (SUP m. outer measure of ?L (C X m)) = outer measure of ?L (

⋃
m. C

X m)
using 〈X ⊆ space ?L〉 by (intro SUP outer measure of incseq 〈incseq (C X )〉)

(auto simp: C def )
also have (

⋃
m. C X m) = X

proof −
{ fix x
obtain e where 0 < e ball x e ⊆ d x
using gaugeD [OF 〈gauge d 〉, of x ] unfolding open contains ball by auto

moreover
obtain n where 1 / (1 + real n) < e
using reals Archimedean[OF 〈0<e〉] by (auto simp: inverse eq divide)

then have ball x (1 / (1 + real n)) ⊆ ball x e
by (intro subset ball) auto

ultimately have ∃n. ball x (1 / (1 + real n)) ⊆ d x
by blast }

then show ?thesis
by (auto simp: C def )

qed
finally have (SUP m. outer measure of ?L (C X m)) = ?µ E
using eq by auto

also have . . . > M − e
using 〈0 < M 〉 〈?µ E = M 〉 〈0<e〉 by (auto intro!: ennreal lessI )

finally have ∃m. M − e < outer measure of ?L (C X m)
unfolding less SUP iff by auto }

note C = this

let ?E = {x∈E . f x ≤ a} and ?F = {x∈E . b ≤ f x}
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have ¬ (?µ ′ ?E = ?µ E ∧ ?µ ′ ?F = ?µ E )
proof
assume eq : ?µ ′ ?E = ?µ E ∧ ?µ ′ ?F = ?µ E
with C [of ?E ] C [of ?F ] 〈E ∈ sets ?L〉[THEN sets.sets into space] obtain ma

mb
where M − e < outer measure of ?L (C ?E ma) M − e < outer measure of

?L (C ?F mb)
by auto

moreover define m where m = max ma mb
ultimately have M minus e: M − e < outer measure of ?L (C ?E m) M −

e < outer measure of ?L (C ?F m)
using
incseqD [OF 〈incseq (C ?E )〉, of ma m, THEN outer measure of mono]
incseqD [OF 〈incseq (C ?F )〉, of mb m, THEN outer measure of mono]

by (auto intro: less le trans)
define d ′ where d ′ x = d x ∩ ball x (1 / (3 ∗ Suc m)) for x
have gauge d ′

unfolding d ′ def by (intro gauge Int 〈gauge d 〉 gauge ball) auto
then obtain p where p: p tagged division of cbox x y d ′ fine p
by (rule fine division exists)

then have d fine p
unfolding d ′ def [abs def ] fine def by auto

define s where s = {(x :: ′a, k). k ∩ (C ?E m) 6= {} ∧ k ∩ (C ?F m) 6= {}}
define T where T E k = (SOME x . x ∈ k ∩ C E m) for E k
let ?A = (λ(x , k). (T ?E k , k)) ‘ (p ∩ s) ∪ (p − s)
let ?B = (λ(x , k). (T ?F k , k)) ‘ (p ∩ s) ∪ (p − s)

{ fix X assume X eq : X = ?E ∨ X = ?F
let ?T = (λ(x , k). (T X k , k))
let ?p = ?T ‘ (p ∩ s) ∪ (p − s)

have in s: (x , k) ∈ s =⇒ T X k ∈ k ∩ C X m for x k
using someI ex [of λx . x ∈ k ∩ C X m] X eq unfolding ex in conv by

(auto simp: T def s def )

{ fix x k assume (x , k) ∈ p (x , k) ∈ s
have k : k ⊆ ball x (1 / (3 ∗ Suc m))
using 〈d ′ fine p〉[THEN fineD , OF 〈(x , k) ∈ p〉] by (auto simp: d ′ def )

then have x ∈ ball (T X k) (1 / (3 ∗ Suc m))
using in s[OF 〈(x , k) ∈ s〉] by (auto simp: C def subset eq dist commute)

then have ball x (1 / (3 ∗ Suc m)) ⊆ ball (T X k) (1 / Suc m)
by (rule ball trans) (auto simp: field split simps)

with k in s[OF 〈(x , k) ∈ s〉] have k ⊆ d (T X k)
by (auto simp: C def ) }

then have d fine ?p
using 〈d fine p〉 by (auto intro!: fineI )

moreover
have ?p tagged division of cbox x y
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proof (rule tagged division ofI )
show finite ?p
using p(1 ) by auto

next
fix z k assume ∗: (z , k) ∈ ?p
then consider (z , k) ∈ p (z , k) /∈ s
| x ′ where (x ′, k) ∈ p (x ′, k) ∈ s z = T X k
by (auto simp: T def )

then have z ∈ k ∧ k ⊆ cbox x y ∧ (∃ a b. k = cbox a b)
using p(1 ) by cases (auto dest : in s)

then show z ∈ k k ⊆ cbox x y ∃ a b. k = cbox a b
by auto

next
fix z k z ′ k ′ assume (z , k) ∈ ?p (z ′, k ′) ∈ ?p (z , k) 6= (z ′, k ′)
with tagged division ofD(5 )[OF p(1 ), of k k ′]
show interior k ∩ interior k ′ = {}
by (auto simp: T def dest : in s)

next
have {k . ∃ x . (x , k) ∈ ?p} = {k . ∃ x . (x , k) ∈ p}
by (auto simp: T def image iff Bex def )

then show
⋃
{k . ∃ x . (x , k) ∈ ?p} = cbox x y

using p(1 ) by auto
qed
ultimately have I : norm ((

∑
(x ,k) ∈ ?p. content k ∗R f x ) − I ) < e

using integral f by auto

have (
∑

(x ,k) ∈ ?p. content k ∗R f x ) =
(
∑

(x ,k) ∈ ?T ‘ (p ∩ s). content k ∗R f x ) + (
∑

(x ,k) ∈ p − s. content k
∗R f x )

using p(1 )[THEN tagged division ofD(1 )]
by (safe intro!: sum.union inter neutral) (auto simp: s def T def )

also have (
∑

(x ,k) ∈ ?T ‘ (p ∩ s). content k ∗R f x ) = (
∑

(x ,k) ∈ p ∩ s.
content k ∗R f (T X k))

proof (subst sum.reindex nontrivial , safe)
fix x1 x2 k assume 1 : (x1 , k) ∈ p (x1 , k) ∈ s and 2 : (x2 , k) ∈ p (x2 , k)

∈ s
and eq : content k ∗R f (T X k) 6= 0

with tagged division ofD(5 )[OF p(1 ), of x1 k x2 k ] tagged division ofD(4 )[OF
p(1 ), of x1 k ]

show x1 = x2
by (auto simp: content eq 0 interior)

qed (use p in 〈auto intro!: sum.cong〉)
finally have eq : (

∑
(x ,k) ∈ ?p. content k ∗R f x ) =

(
∑

(x ,k) ∈ p ∩ s. content k ∗R f (T X k)) + (
∑

(x ,k) ∈ p − s. content k
∗R f x ) .

have in T : (x , k) ∈ s =⇒ T X k ∈ X for x k
using in s[of x k ] by (auto simp: C def )
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note I eq in T }
note parts = this

have p in L: (x , k) ∈ p =⇒ k ∈ sets ?L for x k
using tagged division ofD(3 , 4 )[OF p(1 ), of x k ] by (auto simp: sets restrict space)

have [simp]: finite p
using tagged division ofD(1 )[OF p(1 )] .

have (M − 3∗e) ∗ (b − a) ≤ (
∑

(x ,k) ∈ p ∩ s. content k) ∗ (b − a)
proof (intro mult right mono)
have fin: ?µ (E ∩

⋃
{k∈snd‘p. k ∩ C X m = {}}) < ∞ for X

using 〈?µ E <∞〉 by (rule le less trans[rotated ]) (auto intro!: emeasure mono
〈E ∈ sets ?L〉)

have sets: (E ∩
⋃
{k∈snd‘p. k ∩ C X m = {}}) ∈ sets ?L for X

using tagged division ofD(1 )[OF p(1 )] by (intro sets.Diff 〈E ∈ sets ?L〉

sets.finite Union sets.Int) (auto intro: p in L)
{ fix X assume X ⊆ E M − e < ?µ ′ (C X m)
have M − e ≤ ?µ ′ (C X m)
by (rule less imp le) fact

also have . . . ≤ ?µ ′ (E − (E ∩
⋃
{k∈snd‘p. k ∩ C X m = {}}))

proof (intro outer measure of mono subsetI )
fix v assume v ∈ C X m
then have v ∈ cbox x y v ∈ E
using 〈E ⊆ space ?L〉 〈X ⊆ E 〉 by (auto simp: space restrict space C def )
then obtain z k where (z , k) ∈ p v ∈ k
using tagged division ofD(6 )[OF p(1 ), symmetric] by auto

then show v ∈ E − E ∩ (
⋃
{k∈snd‘p. k ∩ C X m = {}})

using 〈v ∈ C X m〉 〈v ∈ E 〉 by auto
qed
also have . . . = ?µ E − ?µ (E ∩

⋃
{k∈snd‘p. k ∩ C X m = {}})

using 〈E ∈ sets ?L〉 fin[of X ] sets[of X ] by (auto intro!: emeasure Diff )
finally have ?µ (E ∩

⋃
{k∈snd‘p. k ∩ C X m = {}}) ≤ e

using 〈0 < e〉 e less M
by (cases ?µ (E ∩

⋃
{k∈snd‘p. k ∩ C X m = {}})) (auto simp add : 〈?µ

E = M 〉 ennreal minus ennreal le iff2 )
note this }

note upper bound = this

have ?µ (E ∩
⋃
(snd‘(p − s))) =

?µ ((E ∩
⋃
{k∈snd‘p. k ∩ C ?E m = {}}) ∪ (E ∩

⋃
{k∈snd‘p. k ∩ C ?F

m = {}}))
by (intro arg cong [where f=?µ]) (auto simp: s def image def Bex def )
also have . . . ≤ ?µ (E ∩

⋃
{k∈snd‘p. k ∩ C ?E m = {}}) + ?µ (E ∩⋃

{k∈snd‘p. k ∩ C ?F m = {}})
using sets[of ?E ] sets[of ?F ] M minus e by (intro emeasure subadditive)

auto
also have . . . ≤ e + ennreal e
using upper bound [of ?E ] upper bound [of ?F ] M minus e by (intro add mono)
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auto
finally have ?µ E − 2∗e ≤ ?µ (E − (E ∩

⋃
(snd‘(p − s))))

using 〈0 < e〉 〈E ∈ sets ?L〉 tagged division ofD(1 )[OF p(1 )]
by (subst emeasure Diff )

(auto simp: top unique simp flip: ennreal plus
intro!: sets.Int sets.finite UN ennreal mono minus intro: p in L)

also have . . . ≤ ?µ (
⋃

x∈p ∩ s. snd x )
proof (safe intro!: emeasure mono subsetI )
fix v assume v ∈ E and not : v /∈ (

⋃
x∈p ∩ s. snd x )

then have v ∈ cbox x y
using 〈E ⊆ space ?L〉 by (auto simp: space restrict space)

then obtain z k where (z , k) ∈ p v ∈ k
using tagged division ofD(6 )[OF p(1 ), symmetric] by auto

with not show v ∈
⋃
(snd ‘ (p − s))

by (auto intro!: bexI [of (z , k)] elim: ballE [of (z , k)])
qed (auto intro!: sets.Int sets.finite UN ennreal mono minus intro: p in L)
also have . . . = measure ?L (

⋃
x∈p ∩ s. snd x )

by (auto intro!: emeasure eq ennreal measure)
finally have M − 2 ∗ e ≤ measure ?L (

⋃
x∈p ∩ s. snd x )

unfolding 〈?µ E = M 〉 using 〈0 < e〉 by (simp add : ennreal minus)
also have measure ?L (

⋃
x∈p ∩ s. snd x ) = content (

⋃
x∈p ∩ s. snd x )

using tagged division ofD(1 ,3 ,4 ) [OF p(1 )]
by (intro content eq L[symmetric])

(fastforce intro!: sets.finite UN UN least del : subsetI )+
also have content (

⋃
x∈p ∩ s. snd x ) ≤ (

∑
k∈p ∩ s. content (snd k))

using p(1 ) by (auto simp: emeasure lborel cbox eq intro!: measure subadditive finite
dest !: p(1 )[THEN tagged division ofD(4 )])

finally show M − 3 ∗ e ≤ (
∑

(x , y)∈p ∩ s. content y)
using 〈0 < e〉 by (simp add : split beta)

qed (use 〈a < b〉 in auto)
also have . . . = (

∑
(x ,k) ∈ p ∩ s. content k ∗ (b − a))

by (simp add : sum distrib right split beta ′)
also have . . . ≤ (

∑
(x ,k) ∈ p ∩ s. content k ∗ (f (T ?F k) − f (T ?E k)))

using parts(3 ) by (auto intro!: sum mono mult left mono diff mono)
also have . . . = (

∑
(x ,k) ∈ p ∩ s. content k ∗ f (T ?F k)) − (

∑
(x ,k) ∈ p ∩

s. content k ∗ f (T ?E k))
by (auto intro!: sum.cong simp: field simps sum subtractf [symmetric])

also have . . . = (
∑

(x ,k) ∈ ?B . content k ∗R f x ) − (
∑

(x ,k) ∈ ?A. content
k ∗R f x )

by (subst (1 2 ) parts) auto
also have . . . ≤ norm ((

∑
(x ,k) ∈ ?B . content k ∗R f x ) − (

∑
(x ,k) ∈ ?A.

content k ∗R f x ))
by auto

also have . . . ≤ e + e
using parts(1 )[of ?E ] parts(1 )[of ?F ] by (intro norm diff triangle le[of I ])

auto
finally show False
using 〈2 ∗ e < (b − a) ∗ (M − e ∗ 3 )〉 by (auto simp: field simps)

qed
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moreover have ?µ ′ ?E ≤ ?µ E ?µ ′ ?F ≤ ?µ E
unfolding outer measure of eq [OF 〈E ∈ sets ?L〉, symmetric] by (auto intro!:

outer measure of mono)
ultimately show min (?µ ′ ?E ) (?µ ′ ?F ) < ?µ E
unfolding min less iff disj by (auto simp: less le)

qed

lemma has integral implies lebesgue measurable real :
fixes f :: ′a :: euclidean space ⇒ real
assumes f : (f has integral I ) Ω
shows (λx . f x ∗ indicator Ω x ) ∈ lebesgue →M borel

proof −
define B :: nat ⇒ ′a set where B n = cbox (− real n ∗R One) (real n ∗R One)

for n
show (λx . f x ∗ indicator Ω x ) ∈ lebesgue →M borel
proof (rule measurable piecewise restrict)
have (

⋃
n. box (− real n ∗R One) (real n ∗R One)) ⊆

⋃
(B ‘ UNIV )

unfolding B def by (intro UN mono box subset cbox order refl)
then show countable (range B) space lebesgue ⊆

⋃
(B ‘ UNIV )

by (auto simp: B def UN box eq UNIV )
next
fix Ω ′ assume Ω ′ ∈ range B
then obtain n where Ω ′: Ω ′ = B n by auto
then show Ω ′ ∩ space lebesgue ∈ sets lebesgue
by (auto simp: B def )

have f integrable on Ω
using f by auto

then have (λx . f x ∗ indicator Ω x ) integrable on Ω
by (auto simp: integrable on def cong : has integral cong)

then have (λx . f x ∗ indicator Ω x ) integrable on (Ω ∪ B n)
by (rule integrable on superset) auto

then have (λx . f x ∗ indicator Ω x ) integrable on B n
unfolding B def by (rule integrable on subcbox ) auto

then show (λx . f x ∗ indicator Ω x ) ∈ lebesgue on Ω ′→M borel
unfolding B def Ω ′ by (auto intro: has integral implies lebesgue measurable cbox

simp: integrable on def )
qed

qed

lemma has integral implies lebesgue measurable:
fixes f :: ′a :: euclidean space ⇒ ′b :: euclidean space
assumes f : (f has integral I ) Ω
shows (λx . indicator Ω x ∗R f x ) ∈ lebesgue →M borel

proof (intro borel measurable euclidean space[where ′c= ′b, THEN iffD2 ] ballI )
fix i :: ′b assume i ∈ Basis
have (λx . (f x · i) ∗ indicator Ω x ) ∈ borel measurable (completion lborel)
using has integral linear [OF f bounded linear inner left , of i ]
by (intro has integral implies lebesgue measurable real) (auto simp: comp def )
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then show (λx . indicator Ω x ∗R f x · i) ∈ borel measurable (completion lborel)
by (simp add : ac simps)

qed

6.19.7 Equivalence Lebesgue integral on lborel and HK-integral

lemma has integral measure lborel :
fixes A :: ′a::euclidean space set
assumes A[measurable]: A ∈ sets borel and finite: emeasure lborel A < ∞
shows ((λx . 1 ) has integral measure lborel A) A

proof −
{ fix l u :: ′a
have ((λx . 1 ) has integral measure lborel (box l u)) (box l u)
proof cases
assume ∀ b∈Basis. l · b ≤ u · b
then show ?thesis
using has integral const [of 1 ::real l u]

by (simp flip: has integral restrict [OF box subset cbox ] add : has integral spike interior)
next
assume ¬ (∀ b∈Basis. l · b ≤ u · b)
then have box l u = {}
unfolding box eq empty by (auto simp: not le intro: less imp le)

then show ?thesis
by simp

qed }
note has integral box = this

{ fix a b :: ′a let ?M = λA. measure lborel (A ∩ box a b)
have Int stable (range (λ(a, b). box a b))
by (auto simp: Int stable def box Int box )

moreover have (range (λ(a, b). box a b)) ⊆ Pow UNIV
by auto

moreover have A ∈ sigma sets UNIV (range (λ(a, b). box a b))
using A unfolding borel eq box by simp

ultimately have ((λx . 1 ) has integral ?M A) (A ∩ box a b)
proof (induction rule: sigma sets induct disjoint)
case (basic A) then show ?case
by (auto simp: box Int box has integral box )

next
case empty then show ?case
by simp

next
case (compl A)
then have [measurable]: A ∈ sets borel
by (simp add : borel eq box )

have ((λx . 1 ) has integral ?M (box a b)) (box a b)
by (simp add : has integral box )

moreover have ((λx . if x ∈ A ∩ box a b then 1 else 0 ) has integral ?M A)



Equivalence Lebesgue Henstock Integration.thy 2153

(box a b)
by (subst has integral restrict) (auto intro: compl)

ultimately have ((λx . 1 − (if x ∈ A ∩ box a b then 1 else 0 )) has integral
?M (box a b) − ?M A) (box a b)

by (rule has integral diff )
then have ((λx . (if x ∈ (UNIV − A) ∩ box a b then 1 else 0 )) has integral

?M (box a b) − ?M A) (box a b)
by (rule has integral cong [THEN iffD1 , rotated 1 ]) auto

then have ((λx . 1 ) has integral ?M (box a b) − ?M A) ((UNIV − A) ∩ box
a b)

by (subst (asm) has integral restrict) auto
also have ?M (box a b) − ?M A = ?M (UNIV − A)

by (subst measure Diff [symmetric]) (auto simp: emeasure lborel box eq
Diff Int distrib2 )

finally show ?case .
next
case (union F )
then have [measurable]:

∧
i . F i ∈ sets borel

by (simp add : borel eq box subset eq)
have ((λx . if x ∈

⋃
(F ‘ UNIV ) ∩ box a b then 1 else 0 ) has integral ?M

(
⋃
i . F i)) (box a b)
proof (rule has integral monotone convergence increasing)
let ?f = λk x .

∑
i<k . if x ∈ F i ∩ box a b then 1 else 0 :: real

show
∧
k . (?f k has integral (

∑
i<k . ?M (F i))) (box a b)

using union.IH by (auto intro!: has integral sum simp del : Int iff )
show

∧
k x . ?f k x ≤ ?f (Suc k) x

by (intro sum mono2 ) auto
from union(1 ) have ∗:

∧
x i j . x ∈ F i =⇒ x ∈ F j ←→ j = i

by (auto simp add : disjoint family on def )
show (λk . ?f k x ) −−−−→ (if x ∈

⋃
(F ‘ UNIV ) ∩ box a b then 1 else 0 )

for x
by (auto simp: ∗ sum.If cases Iio Int singleton if distrib LIMSEQ if less

cong : if cong)
have ∗: emeasure lborel ((

⋃
x . F x ) ∩ box a b) ≤ emeasure lborel (box a b)

by (intro emeasure mono) auto

with union(1 ) show (λk .
∑

i<k . ?M (F i)) −−−−→ ?M (
⋃
i . F i)

unfolding sums def [symmetric] UN extend simps
by (intro measure UNION ) (auto simp: disjoint family on def emea-

sure lborel box eq top unique)
qed
then show ?case
by (subst (asm) has integral restrict) auto

qed }
note ∗ = this

show ?thesis
proof (rule has integral monotone convergence increasing)
let ?B = λn::nat . box (− real n ∗R One) (real n ∗R One) :: ′a set
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let ?f = λn::nat . λx . if x ∈ A ∩ ?B n then 1 else 0 :: real
let ?M = λn. measure lborel (A ∩ ?B n)

show
∧
n::nat . (?f n has integral ?M n) A

using ∗ by (subst has integral restrict) simp all
show

∧
k x . ?f k x ≤ ?f (Suc k) x

by (auto simp: box def )
{ fix x assume x ∈ A

moreover have (λk . indicator (A ∩ ?B k) x :: real) −−−−→ indicator
(
⋃
k ::nat . A ∩ ?B k) x

by (intro LIMSEQ indicator incseq) (auto simp: incseq def box def )
ultimately show (λk . if x ∈ A ∩ ?B k then 1 else 0 ::real) −−−−→ 1
by (simp add : indicator def UN box eq UNIV ) }

have (λn. emeasure lborel (A ∩ ?B n)) −−−−→ emeasure lborel (
⋃
n::nat . A ∩

?B n)
by (intro Lim emeasure incseq) (auto simp: incseq def box def )

also have (λn. emeasure lborel (A ∩ ?B n)) = (λn. measure lborel (A ∩ ?B
n))

proof (intro ext emeasure eq ennreal measure)
fix n have emeasure lborel (A ∩ ?B n) ≤ emeasure lborel (?B n)
by (intro emeasure mono) auto

then show emeasure lborel (A ∩ ?B n) 6= top
by (auto simp: top unique)

qed
finally show (λn. measure lborel (A ∩ ?B n)) −−−−→ measure lborel A
using emeasure eq ennreal measure[of lborel A] finite
by (simp add : UN box eq UNIV less top)

qed
qed

lemma nn integral has integral :
fixes f :: ′a::euclidean space ⇒ real
assumes f : f ∈ borel measurable borel

∧
x . 0 ≤ f x (

∫
+x . f x ∂lborel) = ennreal

r 0 ≤ r
shows (f has integral r) UNIV

using f proof (induct f arbitrary : r rule: borel measurable induct real)
case (set A)
then have ((λx . 1 ) has integral measure lborel A) A
by (intro has integral measure lborel) (auto simp: ennreal indicator)

with set show ?case
by (simp add : ennreal indicator measure def ) (simp add : indicator def )

next
case (mult g c)
then have ennreal c ∗ (

∫
+ x . g x ∂lborel) = ennreal r

by (subst nn integral cmult [symmetric]) (auto simp: ennreal mult)
with 〈0 ≤ r 〉 〈0 ≤ c〉

obtain r ′ where (c = 0 ∧ r = 0 ) ∨ (0 ≤ r ′ ∧ (
∫

+ x . ennreal (g x ) ∂lborel) =
ennreal r ′ ∧ r = c ∗ r ′)
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by (cases
∫

+ x . ennreal (g x ) ∂lborel rule: ennreal cases)
(auto split : if split asm simp: ennreal mult top ennreal mult [symmetric])

with mult show ?case
by (auto intro!: has integral cmult real)

next
case (add g h)
then have (

∫
+ x . h x + g x ∂lborel) = (

∫
+ x . h x ∂lborel) + (

∫
+ x . g x

∂lborel)
by (simp add : nn integral add)

with add obtain a b where 0 ≤ a 0 ≤ b (
∫

+ x . h x ∂lborel) = ennreal a (
∫

+

x . g x ∂lborel) = ennreal b r = a + b
by (cases

∫
+ x . h x ∂lborel

∫
+ x . g x ∂lborel rule: ennreal2 cases)

(auto simp: add top nn integral add top add simp flip: ennreal plus)
with add show ?case
by (auto intro!: has integral add)

next
case (seq U )
note seq(1 )[measurable] and f [measurable]

have U le f : U i x ≤ f x for i x
by (metis (no types) LIMSEQ le const UNIV I incseq def le fun def seq .hyps(4 )

seq .hyps(5 ) space borel)

{ fix i
have (

∫
+x . U i x ∂lborel) ≤ (

∫
+x . f x ∂lborel)

using seq(2 ) f (2 ) U le f by (intro nn integral mono) simp
then obtain p where (

∫
+x . U i x ∂lborel) = ennreal p p ≤ r 0 ≤ p

using seq(6 ) 〈0≤r 〉 by (cases
∫

+x . U i x ∂lborel rule: ennreal cases) (auto
simp: top unique)

moreover note seq
ultimately have ∃ p. (

∫
+x . U i x ∂lborel) = ennreal p ∧ 0 ≤ p ∧ p ≤ r ∧

(U i has integral p) UNIV
by auto }

then obtain p where p:
∧
i . (

∫
+x . ennreal (U i x ) ∂lborel) = ennreal (p i)

and bnd :
∧
i . p i ≤ r

∧
i . 0 ≤ p i

and U int :
∧
i .(U i has integral (p i)) UNIV by metis

have int eq :
∧
i . integral UNIV (U i) = p i using U int by (rule integral unique)

have ∗: f integrable on UNIV ∧ (λk . integral UNIV (U k)) −−−−→ integral UNIV
f
proof (rule monotone convergence increasing)
show

∧
k . U k integrable on UNIV using U int by auto

show
∧
k x . x∈UNIV =⇒ U k x ≤ U (Suc k) x using 〈incseq U 〉 by (auto

simp: incseq def le fun def )
then show bounded (range (λk . integral UNIV (U k)))
using bnd int eq by (auto simp: bounded real intro!: exI [of r ])

show
∧
x . x∈UNIV =⇒ (λk . U k x ) −−−−→ f x

using seq by auto
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qed
moreover have (λi . (

∫
+x . U i x ∂lborel)) −−−−→ (

∫
+x . f x ∂lborel)

using seq f (2 ) U le f by (intro nn integral dominated convergence[where
w=f ]) auto
ultimately have integral UNIV f = r
by (auto simp add : bnd int eq p seq intro: LIMSEQ unique)

with ∗ show ?case
by (simp add : has integral integral)

qed

lemma nn integral lborel eq integral :
fixes f :: ′a::euclidean space ⇒ real
assumes f : f ∈ borel measurable borel

∧
x . 0 ≤ f x (

∫
+x . f x ∂lborel) < ∞

shows (
∫

+x . f x ∂lborel) = integral UNIV f
proof −
from f (3 ) obtain r where r : (

∫
+x . f x ∂lborel) = ennreal r 0 ≤ r

by (cases
∫

+x . f x ∂lborel rule: ennreal cases) auto
then show ?thesis
using nn integral has integral [OF f (1 ,2 ) r ] by (simp add : integral unique)

qed

lemma nn integral integrable on:
fixes f :: ′a::euclidean space ⇒ real
assumes f : f ∈ borel measurable borel

∧
x . 0 ≤ f x (

∫
+x . f x ∂lborel) < ∞

shows f integrable on UNIV
proof −
from f (3 ) obtain r where r : (

∫
+x . f x ∂lborel) = ennreal r 0 ≤ r

by (cases
∫

+x . f x ∂lborel rule: ennreal cases) auto
then show ?thesis

by (intro has integral integrable[where i=r ] nn integral has integral [where
r=r ] f )
qed

lemma nn integral has integral lborel :
fixes f :: ′a::euclidean space ⇒ real
assumes f borel : f ∈ borel measurable borel and nonneg :

∧
x . 0 ≤ f x

assumes I : (f has integral I ) UNIV
shows integralN lborel f = I

proof −
from f borel have (λx . ennreal (f x )) ∈ borel measurable lborel by auto
from borel measurable implies simple function sequence ′[OF this]
obtain F where F :

∧
i . simple function lborel (F i) incseq F∧

i x . F i x < top
∧
x . (SUP i . F i x ) = ennreal (f x )

by blast
then have [measurable]:

∧
i . F i ∈ borel measurable lborel

by (metis borel measurable simple function)
let ?B = λi ::nat . box (− (real i ∗R One)) (real i ∗R One) :: ′a set

have 0 ≤ I
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using I by (rule has integral nonneg) (simp add : nonneg)

have F le f : enn2real (F i x ) ≤ f x for i x
using F (3 ,4 )[where x=x ] nonneg SUP upper [of i UNIV λi . F i x ]
by (cases F i x rule: ennreal cases) auto

let ?F = λi x . F i x ∗ indicator (?B i) x
have (

∫
+ x . ennreal (f x ) ∂lborel) = (SUP i . integralN lborel (λx . ?F i x ))

proof (subst nn integral monotone convergence SUP [symmetric])
{ fix x
obtain j where j : x ∈ ?B j
using UN box eq UNIV by auto

have ennreal (f x ) = (SUP i . F i x )
using F (4 )[of x ] nonneg [of x ] by (simp add : max def )

also have . . . = (SUP i . ?F i x )
proof (rule SUP eq)
fix i show ∃ j∈UNIV . F i x ≤ ?F j x
using j F (2 )
by (intro bexI [of max i j ])

(auto split : split max split indicator simp: incseq def le fun def box def )
qed (auto intro!: F split : split indicator)
finally have ennreal (f x ) = (SUP i . ?F i x ) . }

then show (
∫

+ x . ennreal (f x ) ∂lborel) = (
∫

+ x . (SUP i . ?F i x ) ∂lborel)
by simp

qed (insert F , auto simp: incseq def le fun def box def split : split indicator)
also have . . . ≤ ennreal I
proof (rule SUP least)
fix i :: nat
have finite F : (

∫
+ x . ennreal (enn2real (F i x ) ∗ indicator (?B i) x ) ∂lborel)

< ∞
proof (rule nn integral bound simple function)
have emeasure lborel {x ∈ space lborel . ennreal (enn2real (F i x ) ∗ indicator

(?B i) x ) 6= 0} ≤
emeasure lborel (?B i)
by (intro emeasure mono) (auto split : split indicator)
then show emeasure lborel {x ∈ space lborel . ennreal (enn2real (F i x ) ∗

indicator (?B i) x ) 6= 0} < ∞
by (auto simp: less top[symmetric] top unique)

qed (auto split : split indicator
intro!: F simple function compose1 [where g=enn2real ] simple function ennreal)

have int F : (λx . enn2real (F i x ) ∗ indicator (?B i) x ) integrable on UNIV
using F (4 ) finite F

by (intro nn integral integrable on) (auto split : split indicator simp: enn2real nonneg)

have (
∫

+ x . F i x ∗ indicator (?B i) x ∂lborel) =
(
∫

+ x . ennreal (enn2real (F i x ) ∗ indicator (?B i) x ) ∂lborel)
using F (3 ,4 )

by (intro nn integral cong) (auto simp: image iff eq commute split : split indicator)
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also have . . . = ennreal (integral UNIV (λx . enn2real (F i x ) ∗ indicator (?B
i) x ))

using F
by (intro nn integral lborel eq integral [OF finite F ])

(auto split : split indicator intro: enn2real nonneg)
also have . . . ≤ ennreal I

by (auto intro!: has integral le[OF integrable integral [OF int F ] I ] nonneg
F le f

simp: 〈0 ≤ I 〉 split : split indicator )
finally show (

∫
+ x . F i x ∗ indicator (?B i) x ∂lborel) ≤ ennreal I .

qed
finally have (

∫
+ x . ennreal (f x ) ∂lborel) < ∞

by (auto simp: less top[symmetric] top unique)
from nn integral lborel eq integral [OF assms(1 ,2 ) this] I show ?thesis
by (simp add : integral unique)

qed

lemma has integral iff emeasure lborel :
fixes A :: ′a::euclidean space set
assumes A[measurable]: A ∈ sets borel and [simp]: 0 ≤ r
shows ((λx . 1 ) has integral r) A ←→ emeasure lborel A = ennreal r

proof (cases emeasure lborel A = ∞)
case emeasure A: True
have ¬ (λx . 1 ::real) integrable on A
proof
assume int : (λx . 1 ::real) integrable on A
then have (indicator A:: ′a ⇒ real) integrable on UNIV
unfolding indicator def [abs def ] integrable restrict UNIV .

then obtain r where ((indicator A:: ′a⇒real) has integral r) UNIV
by auto

from nn integral has integral lborel [OF this] emeasure A show False
by (simp add : ennreal indicator)

qed
with emeasure A show ?thesis
by auto

next
case False
then have ((λx . 1 ) has integral measure lborel A) A
by (simp add : has integral measure lborel less top)

with False show ?thesis
by (auto simp: emeasure eq ennreal measure has integral unique)

qed

lemma ennreal max 0 : ennreal (max 0 x ) = ennreal x
by (auto simp: max def ennreal neg)

lemma has integral integral real :
fixes f :: ′a::euclidean space ⇒ real
assumes f : integrable lborel f
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shows (f has integral (integralL lborel f )) UNIV
proof −
from integrableE [OF f ] obtain r q
where 0 ≤ r 0 ≤ q
and r : (

∫
+ x . ennreal (max 0 (f x )) ∂lborel) = ennreal r

and q : (
∫

+ x . ennreal (max 0 (− f x )) ∂lborel) = ennreal q
and f : f ∈ borel measurable lborel and eq : integralL lborel f = r − q

unfolding ennreal max 0 by auto
then have ((λx . max 0 (f x )) has integral r) UNIV ((λx . max 0 (− f x ))

has integral q) UNIV
using nn integral has integral [OF r ] nn integral has integral [OF q ] by

auto
note has integral diff [OF this]
moreover have (λx . max 0 (f x ) − max 0 (− f x )) = f
by auto

ultimately show ?thesis
by (simp add : eq)

qed

lemma has integral AE :
assumes ae: AE x in lborel . x ∈ Ω −→ f x = g x
shows (f has integral x ) Ω = (g has integral x ) Ω

proof −
from ae obtain N
where N : N ∈ sets borel emeasure lborel N = 0 {x . ¬ (x ∈ Ω −→ f x = g x )}

⊆ N
by (auto elim!: AE E )

then have not N : AE x in lborel . x /∈ N
by (simp add : AE iff measurable)

show ?thesis
proof (rule has integral spike eq [symmetric])
show

∧
x . x∈Ω − N =⇒ f x = g x using N (3 ) by auto

show negligible N
unfolding negligible def

proof (intro allI )
fix a b :: ′a
let ?F = λx :: ′a. if x ∈ cbox a b then indicator N x else 0 :: real
have integrable lborel ?F = integrable lborel (λx :: ′a. 0 ::real)
using not N N (1 ) by (intro integrable cong AE ) auto

moreover have (LINT x |lborel . ?F x ) = (LINT x :: ′a|lborel . 0 ::real)
using not N N (1 ) by (intro integral cong AE ) auto

ultimately have (?F has integral 0 ) UNIV
using has integral integral real [of ?F ] by simp

then show (indicator N has integral (0 ::real)) (cbox a b)
unfolding has integral restrict UNIV .

qed
qed

qed
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lemma nn integral has integral lebesgue:
fixes f :: ′a::euclidean space ⇒ real
assumes nonneg :

∧
x . 0 ≤ f x and I : (f has integral I ) Ω

shows integralN lborel (λx . indicator Ω x ∗ f x ) = I
proof −
from I have (λx . indicator Ω x ∗R f x ) ∈ lebesgue →M borel
by (rule has integral implies lebesgue measurable)

then obtain f ′ :: ′a ⇒ real
where [measurable]: f ′ ∈ borel →M borel and eq : AE x in lborel . indicator Ω

x ∗ f x = f ′ x
by (auto dest : completion ex borel measurable real)

from I have ((λx . abs (indicator Ω x ∗ f x )) has integral I ) UNIV
using nonneg by (simp add : indicator def if distrib[of λx . x ∗ f y for y ] cong :

if cong)
also have ((λx . abs (indicator Ω x ∗ f x )) has integral I ) UNIV ←→ ((λx . abs

(f ′ x )) has integral I ) UNIV
using eq by (intro has integral AE ) auto

finally have integralN lborel (λx . abs (f ′ x )) = I
by (rule nn integral has integral lborel [rotated 2 ]) auto

also have integralN lborel (λx . abs (f ′ x )) = integralN lborel (λx . abs (indicator
Ω x ∗ f x ))

using eq by (intro nn integral cong AE ) auto
finally show ?thesis
using nonneg by auto

qed

lemma has integral iff nn integral lebesgue:
assumes f :

∧
x . 0 ≤ f x

shows (f has integral r) UNIV ←→ (f ∈ lebesgue →M borel ∧ integralN lebesgue
f = r ∧ 0 ≤ r) (is ?I = ?N )
proof
assume ?I
have 0 ≤ r
using has integral nonneg [OF 〈?I 〉] f by auto

then show ?N
using nn integral has integral lebesgue[OF f 〈?I 〉]
has integral implies lebesgue measurable[OF 〈?I 〉]

by (auto simp: nn integral completion)
next
assume ?N
then obtain f ′ where f ′: f ′ ∈ borel →M borel AE x in lborel . f x = f ′ x
by (auto dest : completion ex borel measurable real)

moreover have (
∫

+ x . ennreal |f ′ x | ∂lborel) = (
∫

+ x . ennreal |f x | ∂lborel)
using f ′ by (intro nn integral cong AE ) auto

moreover have ((λx . |f ′ x |) has integral r) UNIV ←→ ((λx . |f x |) has integral
r) UNIV

using f ′ by (intro has integral AE ) auto
moreover note nn integral has integral [of λx . |f ′ x | r ] 〈?N 〉
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ultimately show ?I
using f by (auto simp: nn integral completion)

qed

context
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space

begin

lemma has integral integral lborel :
assumes f : integrable lborel f
shows (f has integral (integralL lborel f )) UNIV

proof −
have ((λx .

∑
b∈Basis. (f x · b) ∗R b) has integral (

∑
b∈Basis. integralL lborel

(λx . f x · b) ∗R b)) UNIV
using f by (intro has integral sum finite Basis ballI has integral scaleR left

has integral integral real) auto
also have eq f : (λx .

∑
b∈Basis. (f x · b) ∗R b) = f

by (simp add : fun eq iff euclidean representation)
also have (

∑
b∈Basis. integralL lborel (λx . f x · b) ∗R b) = integralL lborel f

using f by (subst (2 ) eq f [symmetric]) simp
finally show ?thesis .

qed

lemma integrable on lborel : integrable lborel f =⇒ f integrable on UNIV
using has integral integral lborel by auto

lemma integral lborel : integrable lborel f =⇒ integral UNIV f = (
∫
x . f x ∂lborel)

using has integral integral lborel by auto

end

context
begin

private lemma has integral integral lebesgue real :
fixes f :: ′a::euclidean space ⇒ real
assumes f : integrable lebesgue f
shows (f has integral (integralL lebesgue f )) UNIV

proof −
obtain f ′ where f ′: f ′ ∈ borel →M borel AE x in lborel . f x = f ′ x

using completion ex borel measurable real [OF borel measurable integrable[OF
f ]] by auto
moreover have (

∫
+ x . ennreal (norm (f x )) ∂lborel) = (

∫
+ x . ennreal (norm

(f ′ x )) ∂lborel)
using f ′ by (intro nn integral cong AE ) auto

ultimately have integrable lborel f ′

using f by (auto simp: integrable iff bounded nn integral completion cong :
nn integral cong AE )
note has integral integral real [OF this]
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moreover have integralL lebesgue f = integralL lebesgue f ′

using f ′ f by (intro integral cong AE ) (auto intro: AE completion measur-
able completion)
moreover have integralL lebesgue f ′ = integralL lborel f ′

using f ′ by (simp add : integral completion)
moreover have (f ′ has integral integralL lborel f ′) UNIV ←→ (f has integral

integralL lborel f ′) UNIV
using f ′ by (intro has integral AE ) auto

ultimately show ?thesis
by auto

qed

lemma has integral integral lebesgue:
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes f : integrable lebesgue f
shows (f has integral (integralL lebesgue f )) UNIV

proof −
have ((λx .

∑
b∈Basis. (f x · b) ∗R b) has integral (

∑
b∈Basis. integralL lebesgue

(λx . f x · b) ∗R b)) UNIV
using f by (intro has integral sum finite Basis ballI has integral scaleR left

has integral integral lebesgue real) auto
also have eq f : (λx .

∑
b∈Basis. (f x · b) ∗R b) = f

by (simp add : fun eq iff euclidean representation)
also have (

∑
b∈Basis. integralL lebesgue (λx . f x · b) ∗R b) = integralL lebesgue

f
using f by (subst (2 ) eq f [symmetric]) simp

finally show ?thesis .
qed

lemma has integral integral lebesgue on:
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes integrable (lebesgue on S ) f S ∈ sets lebesgue
shows (f has integral (integralL (lebesgue on S ) f )) S

proof −
let ?f = λx . if x ∈ S then f x else 0
have integrable lebesgue (λx . indicat real S x ∗R f x )
using indicator scaleR eq if [of S f ] assms

by (metis (full types) integrable restrict space sets.Int space eq2 )
then have integrable lebesgue ?f
using indicator scaleR eq if [of S f ] assms by auto

then have (?f has integral (integralL lebesgue ?f )) UNIV
by (rule has integral integral lebesgue)

then have (f has integral (integralL lebesgue ?f )) S
using has integral restrict UNIV by blast

moreover
have S ∩ space lebesgue ∈ sets lebesgue
by (simp add : assms)

then have (integralL lebesgue ?f ) = (integralL (lebesgue on S ) f )
by (simp add : integral restrict space indicator scaleR eq if )
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ultimately show ?thesis
by auto

qed

lemma lebesgue integral eq integral :
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes integrable (lebesgue on S ) f S ∈ sets lebesgue
shows integralL (lebesgue on S ) f = integral S f
by (metis has integral integral lebesgue on assms integral unique)

lemma integrable on lebesgue:
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
shows integrable lebesgue f =⇒ f integrable on UNIV
using has integral integral lebesgue by auto

lemma integral lebesgue:
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
shows integrable lebesgue f =⇒ integral UNIV f = (

∫
x . f x ∂lebesgue)

using has integral integral lebesgue by auto

end

6.19.8 Absolute integrability (this is the same as Lebesgue
integrability)

translations
LBINT x . f == CONST lebesgue integral CONST lborel (λx . f )

translations
LBINT x :A. f == CONST set lebesgue integral CONST lborel A (λx . f )

lemma set integral reflect :
fixes S and f :: real ⇒ ′a :: {banach, second countable topology}
shows (LBINT x : S . f x ) = (LBINT x : {x . − x ∈ S}. f (− x ))
unfolding set lebesgue integral def
by (subst lborel integral real affine[where c=−1 and t=0 ])

(auto intro!: Bochner Integration.integral cong split : split indicator)

lemma borel integrable atLeastAtMost ′:
fixes f :: real ⇒ ′a::{banach, second countable topology}
assumes f : continuous on {a..b} f
shows set integrable lborel {a..b} f
unfolding set integrable def
by (intro borel integrable compact compact Icc f )

lemma integral FTC atLeastAtMost :
fixes f :: real ⇒ ′a :: euclidean space
assumes a ≤ b
and F :

∧
x . a ≤ x =⇒ x ≤ b =⇒ (F has vector derivative f x ) (at x within {a
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.. b})
and f : continuous on {a .. b} f

shows integralL lborel (λx . indicator {a .. b} x ∗R f x ) = F b − F a
proof −
let ?f = λx . indicator {a .. b} x ∗R f x
have (?f has integral (

∫
x . ?f x ∂lborel)) UNIV

using borel integrable atLeastAtMost ′[OF f ]
unfolding set integrable def by (rule has integral integral lborel)

moreover
have (f has integral F b − F a) {a .. b}
by (intro fundamental theorem of calculus ballI assms) auto

then have (?f has integral F b − F a) {a .. b}
by (subst has integral cong [where g=f ]) auto

then have (?f has integral F b − F a) UNIV
by (intro has integral on superset [where T=UNIV and S={a..b}]) auto

ultimately show integralL lborel ?f = F b − F a
by (rule has integral unique)

qed

lemma set borel integral eq integral :
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes set integrable lborel S f
shows f integrable on S LINT x : S | lborel . f x = integral S f

proof −
let ?f = λx . indicator S x ∗R f x
have (?f has integral LINT x : S | lborel . f x ) UNIV
using assms has integral integral lborel
unfolding set integrable def set lebesgue integral def by blast

hence 1 : (f has integral (set lebesgue integral lborel S f )) S
by (simp add : indicator scaleR eq if )

thus f integrable on S
by (auto simp add : integrable on def )

with 1 have (f has integral (integral S f )) S
by (intro integrable integral , auto simp add : integrable on def )

thus LINT x : S | lborel . f x = integral S f
by (intro has integral unique [OF 1 ])

qed

lemma has integral set lebesgue:
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes f : set integrable lebesgue S f
shows (f has integral (LINT x :S |lebesgue. f x )) S
using has integral integral lebesgue f
by (fastforce simp add : set integrable def set lebesgue integral def indicator def

if distrib[of λx . x ∗R f ] cong : if cong)

lemma set lebesgue integral eq integral :
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes f : set integrable lebesgue S f
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shows f integrable on S LINT x :S | lebesgue. f x = integral S f
using has integral set lebesgue[OF f ] by (auto simp: integral unique integrable on def )

lemma lmeasurable iff has integral :
S ∈ lmeasurable ←→ ((indicator S ) has integral measure lebesgue S ) UNIV
by (subst has integral iff nn integral lebesgue)
(auto simp: ennreal indicator emeasure eq measure2 borel measurable indicator iff

intro!: fmeasurableI )

abbreviation
absolutely integrable on :: ( ′a::euclidean space ⇒ ′b::{banach, second countable topology})
⇒ ′a set ⇒ bool
(infixr absolutely ′ integrable ′ on 46 )
where f absolutely integrable on s ≡ set integrable lebesgue s f

lemma absolutely integrable zero [simp]: (λx . 0 ) absolutely integrable on S
by (simp add : set integrable def )

lemma absolutely integrable on def :
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
shows f absolutely integrable on S ←→ f integrable on S ∧ (λx . norm (f x ))

integrable on S
proof safe
assume f : f absolutely integrable on S
then have nf : integrable lebesgue (λx . norm (indicator S x ∗R f x ))
using integrable norm set integrable def by blast

show f integrable on S
by (rule set lebesgue integral eq integral [OF f ])

have (λx . norm (indicator S x ∗R f x )) = (λx . if x ∈ S then norm (f x ) else 0 )
by auto

with integrable on lebesgue[OF nf ] show (λx . norm (f x )) integrable on S
by (simp add : integrable restrict UNIV )

next
assume f : f integrable on S and nf : (λx . norm (f x )) integrable on S
show f absolutely integrable on S
unfolding set integrable def

proof (rule integrableI bounded)
show (λx . indicator S x ∗R f x ) ∈ borel measurable lebesgue

using f has integral implies lebesgue measurable[of f S ] by (auto simp:
integrable on def )

show (
∫

+ x . ennreal (norm (indicator S x ∗R f x )) ∂lebesgue) < ∞
using nf nn integral has integral lebesgue[of λx . norm (f x ) S ]
by (auto simp: integrable on def nn integral completion)

qed
qed

lemma integrable on lebesgue on:
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
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assumes f : integrable (lebesgue on S ) f and S : S ∈ sets lebesgue
shows f integrable on S

proof −
have integrable lebesgue (λx . indicator S x ∗R f x )
using S f inf top.comm neutral integrable restrict space by blast

then show ?thesis
using absolutely integrable on def set integrable def by blast

qed

lemma absolutely integrable imp integrable:
assumes f absolutely integrable on S S ∈ sets lebesgue
shows integrable (lebesgue on S ) f
by (meson assms integrable restrict space set integrable def sets.Int sets.top)

lemma absolutely integrable on null [intro]:
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
shows content (cbox a b) = 0 =⇒ f absolutely integrable on (cbox a b)
by (auto simp: absolutely integrable on def )

lemma absolutely integrable on open interval :
fixes f :: ′a :: euclidean space ⇒ ′b :: euclidean space
shows f absolutely integrable on box a b ←→

f absolutely integrable on cbox a b
by (auto simp: integrable on open interval absolutely integrable on def )

lemma absolutely integrable restrict UNIV :
(λx . if x ∈ S then f x else 0 ) absolutely integrable on UNIV ←→ f absolutely integrable on

S
unfolding set integrable def

by (intro arg cong2 [where f=integrable]) auto

lemma absolutely integrable onI :
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
shows f integrable on S =⇒ (λx . norm (f x )) integrable on S =⇒ f abso-

lutely integrable on S
unfolding absolutely integrable on def by auto

lemma nonnegative absolutely integrable 1 :
fixes f :: ′a :: euclidean space ⇒ real
assumes f : f integrable on A and

∧
x . x ∈ A =⇒ 0 ≤ f x

shows f absolutely integrable on A
by (rule absolutely integrable onI [OF f ]) (use assms in 〈simp add : integrable eq〉)

lemma absolutely integrable on iff nonneg :
fixes f :: ′a :: euclidean space ⇒ real
assumes

∧
x . x ∈ S =⇒ 0 ≤ f x shows f absolutely integrable on S ←→ f

integrable on S
proof −
{ assume f integrable on S
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then have (λx . if x ∈ S then f x else 0 ) integrable on UNIV
by (simp add : integrable restrict UNIV )

then have (λx . if x ∈ S then f x else 0 ) absolutely integrable on UNIV
using 〈f integrable on S 〉 absolutely integrable restrict UNIV assms nonnega-

tive absolutely integrable 1 by blast
then have f absolutely integrable on S
using absolutely integrable restrict UNIV by blast

}
then show ?thesis
unfolding absolutely integrable on def by auto

qed

lemma absolutely integrable on scaleR iff :
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
shows
(λx . c ∗R f x ) absolutely integrable on S ←→

c = 0 ∨ f absolutely integrable on S
proof (cases c=0 )
case False
then show ?thesis
unfolding absolutely integrable on def
by (simp add : norm mult)

qed auto

lemma absolutely integrable spike:
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes f absolutely integrable on T and S : negligible S

∧
x . x ∈ T − S =⇒ g

x = f x
shows g absolutely integrable on T
using assms integrable spike
unfolding absolutely integrable on def by metis

lemma absolutely integrable negligible:
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes negligible S
shows f absolutely integrable on S
using assms by (simp add : absolutely integrable on def integrable negligible)

lemma absolutely integrable spike eq :
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes negligible S

∧
x . x ∈ T − S =⇒ g x = f x

shows (f absolutely integrable on T ←→ g absolutely integrable on T )
using assms by (blast intro: absolutely integrable spike sym)

lemma absolutely integrable spike set eq :
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes negligible {x ∈ S − T . f x 6= 0} negligible {x ∈ T − S . f x 6= 0}
shows (f absolutely integrable on S ←→ f absolutely integrable on T )

proof −
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have (λx . if x ∈ S then f x else 0 ) absolutely integrable on UNIV ←→
(λx . if x ∈ T then f x else 0 ) absolutely integrable on UNIV

proof (rule absolutely integrable spike eq)
show negligible ({x ∈ S − T . f x 6= 0} ∪ {x ∈ T − S . f x 6= 0})
by (rule negligible Un [OF assms])

qed auto
with absolutely integrable restrict UNIV show ?thesis
by blast

qed

lemma absolutely integrable spike set :
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes f : f absolutely integrable on S and neg : negligible {x ∈ S − T . f x 6=

0} negligible {x ∈ T − S . f x 6= 0}
shows f absolutely integrable on T
using absolutely integrable spike set eq f neg by blast

lemma absolutely integrable reflect [simp]:
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
shows (λx . f (−x )) absolutely integrable on cbox (−b) (−a)←→ f absolutely integrable on

cbox a b
unfolding absolutely integrable on def
by (metis (mono tags, lifting) integrable eq integrable reflect)

lemma absolutely integrable reflect real [simp]:
fixes f :: real ⇒ ′b::euclidean space
shows (λx . f (−x )) absolutely integrable on {−b .. −a} ←→ f absolutely integrable on
{a..b::real}
unfolding box real [symmetric] by (rule absolutely integrable reflect)

lemma absolutely integrable on subcbox :
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
shows [[f absolutely integrable on S ; cbox a b ⊆ S ]] =⇒ f absolutely integrable on

cbox a b
by (meson absolutely integrable on def integrable on subcbox )

lemma absolutely integrable on subinterval :
fixes f :: real ⇒ ′b::euclidean space
shows [[f absolutely integrable on S ; {a..b} ⊆ S ]] =⇒ f absolutely integrable on
{a..b}
using absolutely integrable on subcbox by fastforce

lemma integrable subinterval :
fixes f :: real ⇒ ′a::euclidean space
assumes integrable (lebesgue on {a..b}) f
and {c..d} ⊆ {a..b}

shows integrable (lebesgue on {c..d}) f
proof (rule absolutely integrable imp integrable)
show f absolutely integrable on {c..d}
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proof −
have f integrable on {c..d}
using assms integrable on lebesgue on integrable on subinterval by fastforce

moreover have (λx . norm (f x )) integrable on {c..d}
proof (rule integrable on subinterval)
show (λx . norm (f x )) integrable on {a..b}
by (simp add : assms integrable on lebesgue on)

qed (use assms in auto)
ultimately show ?thesis
by (auto simp: absolutely integrable on def )

qed
qed auto

lemma indefinite integral continuous real :
fixes f :: real ⇒ ′a::euclidean space
assumes integrable (lebesgue on {a..b}) f
shows continuous on {a..b} (λx . integralL (lebesgue on {a..x}) f )

proof −
have f integrable on {a..b}
by (simp add : assms integrable on lebesgue on)

then have continuous on {a..b} (λx . integral {a..x} f )
using indefinite integral continuous 1 by blast

moreover have integralL (lebesgue on {a..x}) f = integral {a..x} f if a ≤ x x
≤ b for x
proof −
have {a..x} ⊆ {a..b}
using that by auto

then have integrable (lebesgue on {a..x}) f
using integrable subinterval assms by blast

then show integralL (lebesgue on {a..x}) f = integral {a..x} f
by (simp add : lebesgue integral eq integral)

qed
ultimately show ?thesis
by (metis (no types, lifting) atLeastAtMost iff continuous on cong)

qed

lemma lmeasurable iff integrable on: S ∈ lmeasurable ←→ (λx . 1 ::real) integrable on
S
by (subst absolutely integrable on iff nonneg [symmetric])

(simp all add : lmeasurable iff integrable set integrable def )

lemma lmeasure integral UNIV : S ∈ lmeasurable =⇒ measure lebesgue S = inte-
gral UNIV (indicator S )
by (simp add : lmeasurable iff has integral integral unique)

lemma lmeasure integral : S ∈ lmeasurable =⇒ measure lebesgue S = integral S
(λx . 1 ::real)
by (fastforce simp add : lmeasure integral UNIV indicator def [abs def ] lmeasur-

able iff integrable on)
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lemma integrable on const : S ∈ lmeasurable =⇒ (λx . c) integrable on S
unfolding lmeasurable iff integrable
by (metis (mono tags, lifting) integrable eq integrable on scaleR left lmeasur-

able iff integrable lmeasurable iff integrable on scaleR one)

lemma integral indicator :
assumes (S ∩ T ) ∈ lmeasurable
shows integral T (indicator S ) = measure lebesgue (S ∩ T )

proof −
have integral UNIV (indicator (S ∩ T )) = integral UNIV (λa. if a ∈ S ∩ T

then 1 ::real else 0 )
by (meson indicator def )
moreover have (indicator (S ∩ T ) has integral measure lebesgue (S ∩ T ))

UNIV
using assms by (simp add : lmeasurable iff has integral)

ultimately have integral UNIV (λx . if x ∈ S ∩ T then 1 else 0 ) = measure
lebesgue (S ∩ T )

by (metis (no types) integral unique)
moreover have integral T (λa. if a ∈ S then 1 ::real else 0 ) = integral (S ∩ T
∩ UNIV ) (λa. 1 )

by (simp add : Henstock Kurzweil Integration.integral restrict Int)
moreover have integral T (indicat real S ) = integral T (λa. if a ∈ S then 1 else

0 )
by (meson indicator def )

ultimately show ?thesis
by (simp add : assms lmeasure integral)

qed

lemma measurable integrable:
fixes S :: ′a::euclidean space set
shows S ∈ lmeasurable ←→ (indicat real S ) integrable on UNIV
by (auto simp: lmeasurable iff integrable absolutely integrable on iff nonneg [symmetric]

set integrable def )

lemma integrable on indicator :
fixes S :: ′a::euclidean space set
shows indicat real S integrable on T ←→ (S ∩ T ) ∈ lmeasurable
unfolding measurable integrable
unfolding integrable restrict UNIV [of T , symmetric]
by (fastforce simp add : indicator def elim: integrable eq)

lemma
assumes D: D division of S
shows lmeasurable division: S ∈ lmeasurable (is ?l)
and content division: (

∑
k∈D. measure lebesgue k) = measure lebesgue S (is

?m)
proof −
{ fix d1 d2 assume ∗: d1 ∈ D d2 ∈ D d1 6= d2
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then obtain a b c d where d1 = cbox a b d2 = cbox c d
using division ofD(4 )[OF D] by blast

with division ofD(5 )[OF D ∗]
have d1 ∈ sets lborel d2 ∈ sets lborel d1 ∩ d2 ⊆ (cbox a b − box a b) ∪ (cbox

c d − box c d)
by auto

moreover have (cbox a b − box a b) ∪ (cbox c d − box c d) ∈ null sets lborel
by (intro null sets.Un null sets cbox Diff box )

ultimately have d1 ∩ d2 ∈ null sets lborel
by (blast intro: null sets subset) }

then show ?l ?m
unfolding division ofD(6 )[OF D, symmetric]
using division ofD(1 ,4 )[OF D]
by (auto intro!: measure Union AE [symmetric] simp: completion.AE iff null sets

Int def [symmetric] pairwise def null sets def )
qed

lemma has measure limit :
assumes S ∈ lmeasurable e > 0
obtains B where B > 0∧

a b. ball 0 B ⊆ cbox a b =⇒ |measure lebesgue (S ∩ cbox a b) − measure
lebesgue S | < e
using assms unfolding lmeasurable iff has integral has integral alt ′

by (force simp: integral indicator integrable on indicator)

lemma lmeasurable iff indicator has integral :
fixes S :: ′a::euclidean space set
shows S ∈ lmeasurable ∧ m = measure lebesgue S ←→ (indicat real S has integral

m) UNIV
by (metis has integral iff lmeasurable iff has integral measurable integrable)

lemma has measure limit iff :
fixes f :: ′n::euclidean space ⇒ ′a::banach
shows S ∈ lmeasurable ∧ m = measure lebesgue S ←→

(∀ e>0 . ∃B>0 . ∀ a b. ball 0 B ⊆ cbox a b −→
(S ∩ cbox a b) ∈ lmeasurable ∧ |measure lebesgue (S ∩ cbox a b) − m|

< e) (is ?lhs = ?rhs)
proof
assume ?lhs then show ?rhs
by (meson has measure limit fmeasurable.Int lmeasurable cbox )

next
assume RHS [rule format ]: ?rhs
then show ?lhs

apply (simp add : lmeasurable iff indicator has integral has integral ′ [where
i=m])

by (metis (full types) integral indicator integrable integral integrable on indicator)
qed
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6.19.9 Applications to Negligibility

lemma negligible iff null sets: negligible S ←→ S ∈ null sets lebesgue
proof
assume negligible S
then have (indicator S has integral (0 ::real)) UNIV
by (auto simp: negligible)

then show S ∈ null sets lebesgue
by (subst (asm) has integral iff nn integral lebesgue)
(auto simp: borel measurable indicator iff nn integral 0 iff AE AE iff null sets

indicator eq 0 iff )
next
assume S : S ∈ null sets lebesgue
show negligible S
unfolding negligible def

proof (safe intro!: has integral iff nn integral lebesgue[THEN iffD2 ]
has integral restrict UNIV [where s=cbox , THEN iffD1 ])

fix a b
show (λx . if x ∈ cbox a b then indicator S x else 0 ) ∈ lebesgue →M borel
using S by (auto intro!: measurable If )

then show (
∫

+ x . ennreal (if x ∈ cbox a b then indicator S x else 0 ) ∂lebesgue)
= ennreal 0

using S [THEN AE not in] by (auto intro!: nn integral 0 iff AE [THEN iffD2 ])
qed auto

qed

corollary eventually ae filter negligible:
eventually P (ae filter lebesgue) ←→ (∃N . negligible N ∧ {x . ¬ P x} ⊆ N )
by (auto simp: completion.AE iff null sets negligible iff null sets null sets completion subset)

lemma starlike negligible:
assumes closed S

and eq1 :
∧
c x . (a + c ∗R x ) ∈ S =⇒ 0 ≤ c =⇒ a + x ∈ S =⇒ c = 1

shows negligible S
proof −
have negligible ((+) (−a) ‘ S )
proof (subst negligible on intervals, intro allI )
fix u v
show negligible ((+) (− a) ‘ S ∩ cbox u v)
using 〈closed S 〉 eq1 by (auto simp add : negligible iff null sets algebra simps
intro!: closed translation subtract starlike negligible compact cong : image cong simp)
(metis add diff eq diff add cancel scale right diff distrib)

qed
then show ?thesis
by (rule negligible translation rev)

qed

lemma starlike negligible strong :
assumes closed S

and star :
∧
c x . [[0 ≤ c; c < 1 ; a+x ∈ S ]] =⇒ a + c ∗R x /∈ S



Equivalence Lebesgue Henstock Integration.thy 2173

shows negligible S
proof −
show ?thesis
proof (rule starlike negligible [OF 〈closed S 〉, of a])
fix c x
assume cx : a + c ∗R x ∈ S 0 ≤ c a + x ∈ S
with star have ¬ (c < 1 ) by auto
moreover have ¬ (c > 1 )
using star [of 1/c c ∗R x ] cx by force

ultimately show c = 1 by arith
qed

qed

lemma negligible hyperplane:
assumes a 6= 0 ∨ b 6= 0 shows negligible {x . a · x = b}

proof −
obtain x where x : a · x 6= b
using assms by (metis euclidean all zero iff inner zero right)

moreover have c = 1 if a · (x + c ∗R w) = b a · (x + w) = b for c w
using that
by (metis (no types, hide lams) add diff eq diff 0 diff minus eq add inner diff right

inner scaleR right mult cancel right2 right minus eq x )
ultimately
show ?thesis
using starlike negligible [OF closed hyperplane, of x ] by simp

qed

lemma negligible lowdim:
fixes S :: ′N :: euclidean space set
assumes dim S < DIM ( ′N )
shows negligible S

proof −
obtain a where a 6= 0 and a: span S ⊆ {x . a · x = 0}
using lowdim subset hyperplane [OF assms] by blast

have negligible (span S )
using 〈a 6= 0 〉 a negligible hyperplane by (blast intro: negligible subset)

then show ?thesis
using span base by (blast intro: negligible subset)

qed

proposition negligible convex frontier :
fixes S :: ′N :: euclidean space set
assumes convex S
shows negligible(frontier S )

proof −
have nf : negligible(frontier S ) if convex S 0 ∈ S for S :: ′N set
proof −
obtain B where B ⊆ S and indB : independent B

and spanB : S ⊆ span B and cardB : card B = dim S
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by (metis basis exists)
consider dim S < DIM ( ′N ) | dim S = DIM ( ′N )
using dim subset UNIV le eq less or eq by auto

then show ?thesis
proof cases
case 1
show ?thesis
by (rule negligible subset [of closure S ])

(simp all add : frontier def negligible lowdim 1 )
next
case 2
obtain a where a ∈ interior (convex hull insert 0 B)
proof (rule interior simplex nonempty [OF indB ])
show finite B
by (simp add : indB independent finite)

show card B = DIM ( ′N )
by (simp add : cardB 2 )

qed
then have a: a ∈ interior S
by (metis 〈B ⊆ S 〉 〈0 ∈ S 〉 〈convex S 〉 insert absorb insert subset interior mono

subset hull)
show ?thesis
proof (rule starlike negligible strong [where a=a])
fix c::real and x
have eq : a + c ∗R x = (a + x ) − (1 − c) ∗R ((a + x ) − a)
by (simp add : algebra simps)

assume 0 ≤ c c < 1 a + x ∈ frontier S
then show a + c ∗R x /∈ frontier S
using eq mem interior closure convex shrink [OF 〈convex S 〉 a, of 1−c]
unfolding frontier def

by (metis Diff iff add diff cancel left ′ add diff eq diff gt 0 iff gt group cancel .rule0
not le)

qed auto
qed

qed
show ?thesis
proof (cases S = {})
case True then show ?thesis by auto

next
case False
then obtain a where a ∈ S by auto
show ?thesis
using nf [of (λx . −a + x ) ‘ S ]

by (metis 〈a ∈ S 〉 add .left inverse assms convex translation eq frontier translation
image eqI negligible translation rev)

qed
qed

corollary negligible sphere: negligible (sphere a e)
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using frontier cball negligible convex frontier convex cball
by (blast intro: negligible subset)

lemma non negligible UNIV [simp]: ¬ negligible UNIV
unfolding negligible iff null sets by (auto simp: null sets def )

lemma negligible interval :
negligible (cbox a b) ←→ box a b = {} negligible (box a b) ←→ box a b = {}
by (auto simp: negligible iff null sets null sets def prod nonneg inner diff left

box eq empty
not le emeasure lborel cbox eq emeasure lborel box eq

intro: eq refl antisym less imp le)

proposition open not negligible:
assumes open S S 6= {}
shows ¬ negligible S

proof
assume neg : negligible S
obtain a where a ∈ S
using 〈S 6= {}〉 by blast

then obtain e where e > 0 cball a e ⊆ S
using 〈open S 〉 open contains cball eq by blast

let ?p = a − (e / DIM ( ′a)) ∗R One let ?q = a + (e / DIM ( ′a)) ∗R One
have cbox ?p ?q ⊆ cball a e
proof (clarsimp simp: mem box dist norm)
fix x
assume ∀ i∈Basis. ?p · i ≤ x · i ∧ x · i ≤ ?q · i
then have ax : |(a − x ) · i | ≤ e / real DIM ( ′a) if i ∈ Basis for i
using that by (auto simp: algebra simps)

have norm (a − x ) ≤ (
∑

i∈Basis. |(a − x ) · i |)
by (rule norm le l1 )

also have . . . ≤ DIM ( ′a) ∗ (e / real DIM ( ′a))
by (intro sum bounded above ax )

also have . . . = e
by simp

finally show norm (a − x ) ≤ e .
qed
then have negligible (cbox ?p ?q)
by (meson 〈cball a e ⊆ S 〉 neg negligible subset)

with 〈e > 0 〉 show False
by (simp add : negligible interval box eq empty algebra simps field split simps

mult le 0 iff )
qed

lemma negligible convex interior :
convex S =⇒ (negligible S ←→ interior S = {})

by (metis Diff empty closure subset frontier def interior subset negligible convex frontier
negligible subset open interior open not negligible)
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lemma measure eq 0 null sets: S ∈ null sets M =⇒ measure M S = 0
by (auto simp: measure def null sets def )

lemma negligible imp measure0 : negligible S =⇒ measure lebesgue S = 0
by (simp add : measure eq 0 null sets negligible iff null sets)

lemma negligible iff emeasure0 : S ∈ sets lebesgue =⇒ (negligible S ←→ emeasure
lebesgue S = 0 )
by (auto simp: measure eq 0 null sets negligible iff null sets)

lemma negligible iff measure0 : S ∈ lmeasurable =⇒ (negligible S ←→ measure
lebesgue S = 0 )

by (metis (full types) completion.null sets outer negligible iff null sets negligi-
ble imp measure0 order refl)

lemma negligible imp sets: negligible S =⇒ S ∈ sets lebesgue
by (simp add : negligible iff null sets null setsD2 )

lemma negligible imp measurable: negligible S =⇒ S ∈ lmeasurable
by (simp add : fmeasurableI null sets negligible iff null sets)

lemma negligible iff measure: negligible S ←→ S ∈ lmeasurable ∧ measure lebesgue
S = 0
by (fastforce simp: negligible iff measure0 negligible imp measurable dest : negli-

gible imp measure0 )

lemma negligible outer :
negligible S ←→ (∀ e>0 . ∃T . S ⊆ T ∧ T ∈ lmeasurable ∧ measure lebesgue T

< e) (is = ?rhs)
proof
assume negligible S then show ?rhs
by (metis negligible iff measure order refl)

next
assume ?rhs then show negligible S
by (meson completion.null sets outer negligible iff null sets)

qed

lemma negligible outer le:
negligible S ←→ (∀ e>0 . ∃T . S ⊆ T ∧ T ∈ lmeasurable ∧ measure lebesgue

T ≤ e) (is = ?rhs)
proof
assume negligible S then show ?rhs
by (metis dual order .strict implies order negligible imp measurable negligible imp measure0

order refl)
next
assume ?rhs then show negligible S
by (metis le less trans negligible outer field lbound gt zero)

qed
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lemma negligible UNIV : negligible S ←→ (indicat real S has integral 0 ) UNIV (is
=?rhs)
by (metis lmeasurable iff indicator has integral negligible iff measure)

lemma sets negligible symdiff :
[[S ∈ sets lebesgue; negligible((S − T ) ∪ (T − S ))]] =⇒ T ∈ sets lebesgue

by (metis Diff Diff Int Int Diff Un inf commute negligible Un eq negligible imp sets
sets.Diff sets.Un)

lemma lmeasurable negligible symdiff :
[[S ∈ lmeasurable; negligible((S − T ) ∪ (T − S ))]] =⇒ T ∈ lmeasurable
using integrable spike set eq lmeasurable iff integrable on by blast

lemma measure Un3 negligible:
assumes meas: S ∈ lmeasurable T ∈ lmeasurable U ∈ lmeasurable
and neg : negligible(S ∩ T ) negligible(S ∩ U ) negligible(T ∩ U ) and V : S ∪ T
∪ U = V
shows measure lebesgue V = measure lebesgue S + measure lebesgue T + measure
lebesgue U
proof −
have [simp]: measure lebesgue (S ∩ T ) = 0
using neg(1 ) negligible imp measure0 by blast

have [simp]: measure lebesgue (S ∩ U ∪ T ∩ U ) = 0
using neg(2 ) neg(3 ) negligible Un negligible imp measure0 by blast

have measure lebesgue V = measure lebesgue (S ∪ T ∪ U )
using V by simp

also have . . . = measure lebesgue S + measure lebesgue T + measure lebesgue
U

by (simp add : measure Un3 meas fmeasurable.Un Int Un distrib2 )
finally show ?thesis .

qed

lemma measure translate add :
assumes meas: S ∈ lmeasurable T ∈ lmeasurable
and U : S ∪ ((+)a ‘ T ) = U and neg : negligible(S ∩ ((+)a ‘ T ))

shows measure lebesgue S + measure lebesgue T = measure lebesgue U
proof −
have [simp]: measure lebesgue (S ∩ (+) a ‘ T ) = 0
using neg negligible imp measure0 by blast

have measure lebesgue (S ∪ ((+)a ‘ T )) = measure lebesgue S + measure lebesgue
T

by (simp add : measure Un3 meas measurable translation measure translation
fmeasurable.Un)
then show ?thesis
using U by auto

qed

lemma measure negligible symdiff :
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assumes S : S ∈ lmeasurable
and neg : negligible (S − T ∪ (T − S ))

shows measure lebesgue T = measure lebesgue S
proof −
have measure lebesgue (S − T ) = 0
using neg negligible Un eq negligible imp measure0 by blast

then show ?thesis
by (metis S Un commute add .right neutral lmeasurable negligible symdiff mea-

sure Un2 neg negligible Un eq negligible imp measure0 )
qed

lemma measure closure:
assumes bounded S and neg : negligible (frontier S )
shows measure lebesgue (closure S ) = measure lebesgue S

proof −
have measure lebesgue (frontier S ) = 0
by (metis neg negligible imp measure0 )

then show ?thesis
by (metis assms lmeasurable iff integrable on eq iff diff eq 0 has integral interior

integrable on def integral unique lmeasurable interior lmeasure integral measure frontier)
qed

lemma measure interior :
[[bounded S ; negligible(frontier S )]] =⇒ measure lebesgue (interior S ) = measure

lebesgue S
using measure closure measure frontier negligible imp measure0 by fastforce

lemma measurable Jordan:
assumes bounded S and neg : negligible (frontier S )
shows S ∈ lmeasurable

proof −
have closure S ∈ lmeasurable
by (metis lmeasurable closure 〈bounded S 〉)

moreover have interior S ∈ lmeasurable
by (simp add : lmeasurable interior 〈bounded S 〉)

moreover have interior S ⊆ S
by (simp add : interior subset)

ultimately show ?thesis
using assms by (metis (full types) closure subset completion.complete sets sandwich fmeasurable

measure closure measure interior)
qed

lemma measurable convex : [[convex S ; bounded S ]] =⇒ S ∈ lmeasurable
by (simp add : measurable Jordan negligible convex frontier)

lemma content cball conv ball : content (cball c r) = content (ball c r)
proof −
have ball c r − cball c r ∪ (cball c r − ball c r) = sphere c r
by auto
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hence measure lebesgue (cball c r) = measure lebesgue (ball c r)
using negligible sphere[of c r ] by (intro measure negligible symdiff ) simp all

thus ?thesis by simp
qed

6.19.10 Negligibility of image under non-injective linear map

lemma negligible Union nat :
assumes

∧
n::nat . negligible(S n)

shows negligible(
⋃
n. S n)

proof −
have negligible (

⋃
m≤k . S m) for k

using assms by blast
then have 0 : integral UNIV (indicat real (

⋃
m≤k . S m)) = 0

and 1 : (indicat real (
⋃
m≤k . S m)) integrable on UNIV for k

by (auto simp: negligible has integral iff )
have 2 :

∧
k x . indicat real (

⋃
m≤k . S m) x ≤ (indicat real (

⋃
m≤Suc k . S m)

x )
by (simp add : indicator def )

have 3 :
∧
x . (λk . indicat real (

⋃
m≤k . S m) x ) −−−−→ (indicat real (

⋃
n. S n)

x )
by (force simp: indicator def eventually sequentially intro: tendsto eventually)

have 4 : bounded (range (λk . integral UNIV (indicat real (
⋃
m≤k . S m))))

by (simp add : 0 )
have ∗: indicat real (

⋃
n. S n) integrable on UNIV ∧

(λk . integral UNIV (indicat real (
⋃
m≤k . S m))) −−−−→ (integral UNIV

(indicat real (
⋃
n. S n)))

by (intro monotone convergence increasing 1 2 3 4 )
then have integral UNIV (indicat real (

⋃
n. S n)) = (0 ::real)

using LIMSEQ unique by (auto simp: 0 )
then show ?thesis
using ∗ by (simp add : negligible UNIV has integral iff )

qed

lemma negligible linear singular image:
fixes f :: ′n::euclidean space ⇒ ′n
assumes linear f ¬ inj f
shows negligible (f ‘ S )

proof −
obtain a where a 6= 0

∧
S . f ‘ S ⊆ {x . a · x = 0}

using assms linear singular image hyperplane by blast
then show negligible (f ‘ S )
by (metis negligible hyperplane negligible subset)

qed

lemma measure negligible finite Union:
assumes finite F
and meas:

∧
S . S ∈ F =⇒ S ∈ lmeasurable
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and djointish: pairwise (λS T . negligible (S ∩ T )) F
shows measure lebesgue (

⋃
F) = (

∑
S∈F . measure lebesgue S )

using assms
proof (induction)
case empty
then show ?case
by auto

next
case (insert S F)
then have S ∈ lmeasurable

⋃
F ∈ lmeasurable pairwise (λS T . negligible (S ∩

T )) F
by (simp all add : fmeasurable.finite Union insert .hyps(1 ) insert .prems(1 ) pair-

wise insert subsetI )
then show ?case
proof (simp add : measure Un3 insert)
have ∗:

∧
T . T ∈ (∩) S ‘ F =⇒ negligible T

using insert by (force simp: pairwise def )
have negligible(S ∩

⋃
F)

unfolding Int Union
by (rule negligible Union) (simp all add : ∗ insert .hyps(1 ))

then show measure lebesgue (S ∩
⋃
F) = 0

using negligible imp measure0 by blast
qed

qed

lemma measure negligible finite Union image:
assumes finite S
and meas:

∧
x . x ∈ S =⇒ f x ∈ lmeasurable

and djointish: pairwise (λx y . negligible (f x ∩ f y)) S
shows measure lebesgue (

⋃
(f ‘ S )) = (

∑
x∈S . measure lebesgue (f x ))

proof −
have measure lebesgue (

⋃
(f ‘ S )) = sum (measure lebesgue) (f ‘ S )

using assms by (auto simp: pairwise mono pairwise image intro: measure negligible finite Union)
also have . . . = sum (measure lebesgue ◦ f ) S
using djointish [unfolded pairwise def ] by (metis inf .idem negligible imp measure0

sum.reindex nontrivial [OF 〈finite S 〉])
also have . . . = (

∑
x∈S . measure lebesgue (f x ))

by simp
finally show ?thesis .

qed

6.19.11 Negligibility of a Lipschitz image of a negligible set

The bound will be eliminated by a sort of onion argument

lemma locally Lipschitz negl bounded :
fixes f :: ′M ::euclidean space ⇒ ′N ::euclidean space
assumes MleN : DIM ( ′M ) ≤ DIM ( ′N ) 0 < B bounded S negligible S

and lips:
∧
x . x ∈ S
=⇒ ∃T . open T ∧ x ∈ T ∧
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(∀ y ∈ S ∩ T . norm(f y − f x ) ≤ B ∗ norm(y − x ))
shows negligible (f ‘ S )
unfolding negligible iff null sets

proof (clarsimp simp: completion.null sets outer)
fix e::real
assume 0 < e
have S ∈ lmeasurable
using 〈negligible S 〉 by (simp add : negligible iff null sets fmeasurableI null sets)

then have S ∈ sets lebesgue
by blast

have e22 : 0 < e/2 / (2 ∗ B ∗ real DIM ( ′M )) ˆ DIM ( ′N )
using 〈0 < e〉 〈0 < B 〉 by (simp add : field split simps)

obtain T where open T S ⊆ T (T − S ) ∈ lmeasurable
measure lebesgue (T − S ) < e/2 / (2 ∗ B ∗ DIM ( ′M )) ˆ DIM ( ′N )

using sets lebesgue outer open [OF 〈S ∈ sets lebesgue〉 e22 ]
by (metis emeasure eq measure2 ennreal leI linorder not le)

then have T : measure lebesgue T ≤ e/2 / (2 ∗ B ∗ DIM ( ′M )) ˆ DIM ( ′N )
using 〈negligible S 〉 by (simp add : measure Diff null set negligible iff null sets)

have ∃ r . 0 < r ∧ r ≤ 1/2 ∧
(x ∈ S −→ (∀ y . norm(y − x ) < r

−→ y ∈ T ∧ (y ∈ S −→ norm(f y − f x ) ≤ B ∗ norm(y − x ))))
for x

proof (cases x ∈ S )
case True
obtain U where open U x ∈ U and U :

∧
y . y ∈ S ∩ U =⇒ norm(f y − f x )

≤ B ∗ norm(y − x )
using lips [OF 〈x ∈ S 〉] by auto

have x ∈ T ∩ U
using 〈S ⊆ T 〉 〈x ∈ U 〉 〈x ∈ S 〉 by auto

then obtain ε where 0 < ε ball x ε ⊆ T ∩ U
by (metis 〈open T 〉 〈open U 〉 openE open Int)

then show ?thesis
by (rule tac x=min (1/2 ) ε in exI ) (simp add : U dist norm norm minus commute

subset iff )
next
case False
then show ?thesis
by (rule tac x=1/4 in exI ) auto

qed
then obtain R where R12 :

∧
x . 0 < R x ∧ R x ≤ 1/2

and RT :
∧
x y . [[x ∈ S ; norm(y − x ) < R x ]] =⇒ y ∈ T

and RB :
∧
x y . [[x ∈ S ; y ∈ S ; norm(y − x ) < R x ]] =⇒ norm(f y

− f x ) ≤ B ∗ norm(y − x )
by metis+

then have gaugeR: gauge (λx . ball x (R x ))
by (simp add : gauge def )

obtain c where c: S ⊆ cbox (−c ∗R One) (c ∗R One) box (−c ∗R One:: ′M )
(c ∗R One) 6= {}
proof −
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obtain B where B :
∧
x . x ∈ S =⇒ norm x ≤ B

using 〈bounded S 〉 bounded iff by blast
show ?thesis
proof (rule tac c = abs B + 1 in that)
show S ⊆ cbox (− (|B | + 1 ) ∗R One) ((|B | + 1 ) ∗R One)
using norm bound Basis le Basis le norm
by (fastforce simp: mem box dest !: B intro: order trans)

show box (− (|B | + 1 ) ∗R One) ((|B | + 1 ) ∗R One) 6= {}
by (simp add : box eq empty(1 ))

qed
qed
obtain D where countable D

and Dsub:
⋃
D ⊆ cbox (−c ∗R One) (c ∗R One)

and cbox :
∧
K . K ∈ D =⇒ interior K 6= {} ∧ (∃ c d . K = cbox c d)

and pw : pairwise (λA B . interior A ∩ interior B = {}) D
and Ksub:

∧
K . K ∈ D =⇒ ∃ x ∈ S ∩ K . K ⊆ (λx . ball x (R x )) x

and exN :
∧
u v . cbox u v ∈ D =⇒ ∃n. ∀ i ∈ Basis. v · i − u · i = (2∗c) /

2ˆn
and S ⊆

⋃
D

using covering lemma [OF c gaugeR] by force
have ∃ u v z . K = cbox u v ∧ box u v 6= {} ∧ z ∈ S ∧ z ∈ cbox u v ∧

cbox u v ⊆ ball z (R z ) if K ∈ D for K
proof −
obtain u v where K = cbox u v
using 〈K ∈ D〉 cbox by blast

with that show ?thesis
by (metis Int iff interior cbox cbox Ksub)

qed
then obtain uf vf zf
where uvz :

∧
K . K ∈ D =⇒

K = cbox (uf K ) (vf K ) ∧ box (uf K ) (vf K ) 6= {} ∧ zf K ∈ S ∧
zf K ∈ cbox (uf K ) (vf K ) ∧ cbox (uf K ) (vf K ) ⊆ ball (zf K ) (R (zf

K ))
by metis

define prj1 where prj1 ≡ λx :: ′M . x · (SOME i . i ∈ Basis)
define fbx where fbx ≡ λD . cbox (f (zf D) − (B ∗ DIM ( ′M ) ∗ (prj1 (vf D − uf

D))) ∗R One:: ′N )
(f (zf D) + (B ∗ DIM ( ′M ) ∗ prj1 (vf D − uf D)) ∗R

One)
have vu pos: 0 < prj1 (vf X − uf X ) if X ∈ D for X

using uvz [OF that ] by (simp add : prj1 def box ne empty SOME Basis in-
ner diff left)
have prj1 idem: prj1 (vf X − uf X ) = (vf X − uf X ) · i if X ∈ D i ∈ Basis

for X i
proof −
have cbox (uf X ) (vf X ) ∈ D
using uvz 〈X ∈ D〉 by auto

with exN obtain n where
∧
i . i ∈ Basis =⇒ vf X · i − uf X · i = (2∗c) /

2ˆn
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by blast
then show ?thesis
by (simp add : 〈i ∈ Basis〉 SOME Basis inner diff prj1 def )

qed
have countbl : countable (fbx ‘ D)
using 〈countable D〉 by blast

have (
∑

k∈fbx‘D ′. measure lebesgue k) ≤ e/2 if D ′ ⊆ D finite D ′ for D ′

proof −
have BM ge0 : 0 ≤ B ∗ (DIM ( ′M ) ∗ prj1 (vf X − uf X )) if X ∈ D ′ for X
using 〈0 < B 〉 〈D ′ ⊆ D〉 that vu pos by fastforce

have {} /∈ D ′

using cbox 〈D ′ ⊆ D〉 interior empty by blast
have (

∑
k∈fbx‘D ′. measure lebesgue k) ≤ sum (measure lebesgue o fbx ) D ′

by (rule sum image le [OF 〈finite D ′〉]) (force simp: fbx def )
also have . . . ≤ (

∑
X∈D ′. (2 ∗ B ∗ DIM ( ′M )) ˆ DIM ( ′N ) ∗ measure lebesgue

X )
proof (rule sum mono)
fix X assume X ∈ D ′

then have X ∈ D using 〈D ′ ⊆ D〉 by blast
then have ufvf : cbox (uf X ) (vf X ) = X
using uvz by blast

have prj1 (vf X − uf X ) ˆ DIM ( ′M ) = (
∏

i :: ′M ∈ Basis. prj1 (vf X − uf
X ))

by (rule prod constant [symmetric])
also have . . . = (

∏
i∈Basis. vf X · i − uf X · i)

by (simp add : 〈X ∈ D〉 inner diff left prj1 idem cong : prod .cong)
finally have prj1 eq : prj1 (vf X − uf X ) ˆ DIM ( ′M ) = (

∏
i∈Basis. vf X ·

i − uf X · i) .
have uf X ∈ cbox (uf X ) (vf X ) vf X ∈ cbox (uf X ) (vf X )
using uvz [OF 〈X ∈ D〉] by (force simp: mem box )+

moreover have cbox (uf X ) (vf X ) ⊆ ball (zf X ) (1/2 )
by (meson R12 order trans subset ball uvz [OF 〈X ∈ D〉])

ultimately have uf X ∈ ball (zf X ) (1/2 ) vf X ∈ ball (zf X ) (1/2 )
by auto

then have dist (vf X ) (uf X ) ≤ 1
unfolding mem ball
by (metis dist commute dist triangle half l dual order .order iff strict)

then have 1 : prj1 (vf X − uf X ) ≤ 1
unfolding prj1 def dist norm using Basis le norm SOME Basis order trans

by fastforce
have 0 : 0 ≤ prj1 (vf X − uf X )
using 〈X ∈ D〉 prj1 def vu pos by fastforce

have (measure lebesgue ◦ fbx ) X ≤ (2 ∗ B ∗ DIM ( ′M )) ˆ DIM ( ′N ) ∗ content
(cbox (uf X ) (vf X ))

apply (simp add : fbx def content cbox cases algebra simps BM ge0 〈X ∈ D ′〉

〈0 < B 〉 flip: prj1 eq)
using MleN 0 1 uvz 〈X ∈ D〉

by (fastforce simp add : box ne empty power decreasing)
also have . . . = (2 ∗ B ∗ DIM ( ′M )) ˆ DIM ( ′N ) ∗ measure lebesgue X
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by (subst (3 ) ufvf [symmetric]) simp
finally show (measure lebesgue ◦ fbx ) X ≤ (2 ∗ B ∗ DIM ( ′M )) ˆ DIM ( ′N )

∗ measure lebesgue X .
qed
also have . . . = (2 ∗ B ∗ DIM ( ′M )) ˆ DIM ( ′N ) ∗ sum (measure lebesgue) D ′

by (simp add : sum distrib left)
also have . . . ≤ e/2
proof −
have

∧
K . K ∈ D ′ =⇒ ∃ a b. K = cbox a b

using cbox that by blast
then have div : D ′ division of

⋃
D ′

using pairwise subset [OF pw 〈D ′ ⊆ D〉] unfolding pairwise def
by (force simp: 〈finite D ′〉 〈{} /∈ D ′〉 division of def )

have le meaT : measure lebesgue (
⋃
D ′) ≤ measure lebesgue T

proof (rule measure mono fmeasurable)
show (

⋃
D ′) ∈ sets lebesgue

using div lmeasurable division by auto
have

⋃
D ′ ⊆

⋃
D

using 〈D ′ ⊆ D〉 by blast
also have ... ⊆ T
proof (clarify)
fix x D
assume x ∈ D D ∈ D
show x ∈ T
using Ksub [OF 〈D ∈ D〉]

by (metis 〈x ∈ D 〉 Int iff dist norm mem ball norm minus commute
subsetD RT )

qed
finally show

⋃
D ′ ⊆ T .

show T ∈ lmeasurable
using 〈S ∈ lmeasurable〉 〈S ⊆ T 〉 〈T − S ∈ lmeasurable〉 fmeasurable Diff D

by blast
qed
have sum (measure lebesgue) D ′ = sum content D ′

using 〈D ′ ⊆ D〉 cbox by (force intro: sum.cong)
then have (2 ∗ B ∗ DIM ( ′M )) ˆ DIM ( ′N ) ∗ sum (measure lebesgue) D ′ =

(2 ∗ B ∗ real DIM ( ′M )) ˆ DIM ( ′N ) ∗ measure lebesgue (
⋃
D ′)

using content division [OF div ] by auto
also have . . . ≤ (2 ∗ B ∗ real DIM ( ′M )) ˆ DIM ( ′N ) ∗ measure lebesgue T
using 〈0 < B 〉

by (intro mult left mono [OF le meaT ]) (force simp add : algebra simps)
also have . . . ≤ e/2
using T 〈0 < B 〉 by (simp add : field simps)

finally show ?thesis .
qed
finally show ?thesis .

qed
then have e2 : sum (measure lebesgue) G ≤ e/2 if G ⊆ fbx ‘ D finite G for G
by (metis finite subset image that)
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show ∃W∈lmeasurable. f ‘ S ⊆ W ∧ measure lebesgue W < e
proof (intro bexI conjI )
have ∃X∈D. f y ∈ fbx X if y ∈ S for y
proof −
obtain X where y ∈ X X ∈ D
using 〈S ⊆

⋃
D〉 〈y ∈ S 〉 by auto

then have y : y ∈ ball(zf X ) (R(zf X ))
using uvz by fastforce

have conj le eq : z − b ≤ y ∧ y ≤ z + b ←→ abs(y − z ) ≤ b for z y b::real
by auto

have yin: y ∈ cbox (uf X ) (vf X ) and zin: (zf X ) ∈ cbox (uf X ) (vf X )
using uvz 〈X ∈ D〉 〈y ∈ X 〉 by auto

have norm (y − zf X ) ≤ (
∑

i∈Basis. |(y − zf X ) · i |)
by (rule norm le l1 )

also have . . . ≤ real DIM ( ′M ) ∗ prj1 (vf X − uf X )
proof (rule sum bounded above)
fix j :: ′M assume j : j ∈ Basis
show |(y − zf X ) · j | ≤ prj1 (vf X − uf X )
using yin zin j
by (fastforce simp add : mem box prj1 idem [OF 〈X ∈ D〉 j ] inner diff left)

qed
finally have nole: norm (y − zf X ) ≤ DIM ( ′M ) ∗ prj1 (vf X − uf X )
by simp

have fle: |f y · i − f (zf X ) · i | ≤ B ∗ DIM ( ′M ) ∗ prj1 (vf X − uf X ) if i ∈
Basis for i

proof −
have |f y · i − f (zf X ) · i | = |(f y − f (zf X )) · i |
by (simp add : algebra simps)

also have . . . ≤ norm (f y − f (zf X ))
by (simp add : Basis le norm that)

also have . . . ≤ B ∗ norm(y − zf X )
by (metis uvz RB 〈X ∈ D〉 dist commute dist norm mem ball 〈y ∈ S 〉 y)

also have . . . ≤ B ∗ real DIM ( ′M ) ∗ prj1 (vf X − uf X )
using 〈0 < B 〉 by (simp add : nole)

finally show ?thesis .
qed
show ?thesis
by (rule tac x=X in bexI )

(auto simp: fbx def prj1 idem mem box conj le eq inner add inner diff fle
〈X ∈ D〉)

qed
then show f ‘ S ⊆ (

⋃
D∈D. fbx D) by auto

next
have 1 :

∧
D . D ∈ D =⇒ fbx D ∈ lmeasurable

by (auto simp: fbx def )
have 2 : I ′ ⊆ D =⇒ finite I ′ =⇒ measure lebesgue (

⋃
D∈I ′. fbx D) ≤ e/2 for

I ′

by (rule order trans[OF measure Union le e2 ]) (auto simp: fbx def )
show (

⋃
D∈D. fbx D) ∈ lmeasurable
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by (intro fmeasurable UN bound [OF 〈countable D〉 1 2 ])
have measure lebesgue (

⋃
D∈D. fbx D) ≤ e/2

by (intro measure UN bound [OF 〈countable D〉 1 2 ])
then show measure lebesgue (

⋃
D∈D. fbx D) < e

using 〈0 < e〉 by linarith
qed

qed

proposition negligible locally Lipschitz image:
fixes f :: ′M ::euclidean space ⇒ ′N ::euclidean space
assumes MleN : DIM ( ′M ) ≤ DIM ( ′N ) negligible S

and lips:
∧
x . x ∈ S
=⇒ ∃T B . open T ∧ x ∈ T ∧

(∀ y ∈ S ∩ T . norm(f y − f x ) ≤ B ∗ norm(y − x ))
shows negligible (f ‘ S )

proof −
let ?S = λn. ({x ∈ S . norm x ≤ n ∧

(∃T . open T ∧ x ∈ T ∧
(∀ y∈S ∩ T . norm (f y − f x ) ≤ (real n + 1 ) ∗ norm (y

− x )))})
have negfn: f ‘ ?S n ∈ null sets lebesgue for n::nat
unfolding negligible iff null sets[symmetric]
apply (rule tac B = real n + 1 in locally Lipschitz negl bounded)
by (auto simp: MleN bounded iff intro: negligible subset [OF 〈negligible S 〉])

have S = (
⋃
n. ?S n)

proof (intro set eqI iffI )
fix x assume x ∈ S
with lips obtain T B where T : open T x ∈ T

and B :
∧
y . y ∈ S ∩ T =⇒ norm(f y − f x ) ≤ B ∗ norm(y

− x )
by metis+

have no: norm (f y − f x ) ≤ (nat dmax B (norm x )e + 1 ) ∗ norm (y − x ) if
y ∈ S ∩ T for y

proof −
have B ∗ norm(y − x ) ≤ (nat dmax B (norm x )e + 1 ) ∗ norm (y − x )
by (meson max .cobounded1 mult right mono nat ceiling le eq nat le iff add

norm ge zero order trans)
then show ?thesis
using B order trans that by blast

qed
have norm x ≤ real (nat dmax B (norm x )e)
by linarith

then have x ∈ ?S (nat (ceiling (max B (norm x ))))
using T no by (force simp: 〈x ∈ S 〉 algebra simps)

then show x ∈ (
⋃

n. ?S n) by force
qed auto
then show ?thesis
by (rule ssubst) (auto simp: image Union negligible iff null sets intro: negfn)

qed
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corollary negligible differentiable image negligible:
fixes f :: ′M ::euclidean space ⇒ ′N ::euclidean space
assumes MleN : DIM ( ′M ) ≤ DIM ( ′N ) negligible S

and diff f : f differentiable on S
shows negligible (f ‘ S )

proof −
have ∃T B . open T ∧ x ∈ T ∧ (∀ y ∈ S ∩ T . norm(f y − f x ) ≤ B ∗ norm(y
− x ))

if x ∈ S for x
proof −
obtain f ′ where linear f ′

and f ′:
∧
e. e>0 =⇒
∃ d>0 . ∀ y∈S . norm (y − x ) < d −→

norm (f y − f x − f ′ (y − x )) ≤ e ∗ norm (y − x )
using diff f 〈x ∈ S 〉

by (auto simp: linear linear differentiable on def differentiable def has derivative within alt)
obtain B where B > 0 and B : ∀ x . norm (f ′ x ) ≤ B ∗ norm x
using linear bounded pos 〈linear f ′〉 by blast

obtain d where d>0
and d :

∧
y . [[y ∈ S ; norm (y − x ) < d ]] =⇒
norm (f y − f x − f ′ (y − x )) ≤ norm (y − x )

using f ′ [of 1 ] by (force simp:)
show ?thesis
proof (intro exI conjI ballI )
show norm (f y − f x ) ≤ (B + 1 ) ∗ norm (y − x )
if y ∈ S ∩ ball x d for y

proof −
have norm (f y − f x ) − B ∗ norm (y − x ) ≤ norm (f y − f x ) − norm

(f ′ (y − x ))
by (simp add : B)

also have . . . ≤ norm (f y − f x − f ′ (y − x ))
by (rule norm triangle ineq2 )

also have ... ≤ norm (y − x )
by (metis IntE d dist norm mem ball norm minus commute that)

finally show ?thesis
by (simp add : algebra simps)

qed
qed (use 〈d>0 〉 in auto)

qed
with negligible locally Lipschitz image assms show ?thesis by metis

qed

corollary negligible differentiable image lowdim:
fixes f :: ′M ::euclidean space ⇒ ′N ::euclidean space
assumes MlessN : DIM ( ′M ) < DIM ( ′N ) and diff f : f differentiable on S
shows negligible (f ‘ S )

proof −
have x ≤ DIM ( ′M ) =⇒ x ≤ DIM ( ′N ) for x
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using MlessN by linarith
obtain lift :: ′M ∗ real ⇒ ′N and drop :: ′N ⇒ ′M ∗ real and j :: ′N
where linear lift linear drop and dropl [simp]:

∧
z . drop (lift z ) = z

and j ∈ Basis and j :
∧
x . lift(x ,0 ) · j = 0

using lowerdim embeddings [OF MlessN ] by metis
have negligible ((λx . lift (x , 0 )) ‘ S )
proof −
have negligible {x . x ·j = 0}
by (metis 〈j ∈ Basis〉 negligible standard hyperplane)

moreover have (λm. lift (m, 0 )) ‘ S ⊆ {n. n · j = 0}
using j by force

ultimately show ?thesis
using negligible subset by auto

qed
moreover
have f ◦ fst ◦ drop differentiable on (λx . lift (x , 0 )) ‘ S
using diff f
apply (clarsimp simp add : differentiable on def )
apply (intro differentiable chain within linear imp differentiable [OF 〈linear

drop〉]
linear imp differentiable [OF linear fst ])

apply (force simp: image comp o def )
done

moreover
have f = f ◦ fst ◦ drop ◦ (λx . lift (x , 0 ))
by (simp add : o def )

ultimately show ?thesis
by (metis (no types) image comp negligible differentiable image negligible or-

der refl)
qed

6.19.12 Measurability of countable unions and intersections
of various kinds.

lemma
assumes S :

∧
n. S n ∈ lmeasurable

and leB :
∧
n. measure lebesgue (S n) ≤ B

and nest :
∧
n. S n ⊆ S (Suc n)

shows measurable nested Union: (
⋃
n. S n) ∈ lmeasurable

and measure nested Union: (λn. measure lebesgue (S n)) −−−−→ measure lebesgue
(
⋃
n. S n) (is ?Lim)

proof −
have indicat real (

⋃
(range S )) integrable on UNIV ∧

(λn. integral UNIV (indicat real (S n)))
−−−−→ integral UNIV (indicat real (

⋃
(range S )))

proof (rule monotone convergence increasing)
show

∧
n. (indicat real (S n)) integrable on UNIV

using S measurable integrable by blast
show

∧
n x :: ′a. indicat real (S n) x ≤ (indicat real (S (Suc n)) x )
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by (simp add : indicator leI nest rev subsetD)
have

∧
x . (∃n. x ∈ S n) −→ (∀ F n in sequentially . x ∈ S n)

by (metis eventually sequentiallyI lift Suc mono le nest subsetCE )
then
show

∧
x . (λn. indicat real (S n) x ) −−−−→ (indicat real (

⋃
(S ‘ UNIV )) x )

by (simp add : indicator def tendsto eventually)
show bounded (range (λn. integral UNIV (indicat real (S n))))
using leB by (auto simp: lmeasure integral UNIV [symmetric] S bounded iff )

qed
then have (

⋃
n. S n) ∈ lmeasurable ∧ ?Lim

by (simp add : lmeasure integral UNIV S cong : conj cong) (simp add : measur-
able integrable)
then show (

⋃
n. S n) ∈ lmeasurable ?Lim

by auto
qed

lemma
assumes S :

∧
n. S n ∈ lmeasurable

and djointish: pairwise (λm n. negligible (S m ∩ S n)) UNIV
and leB :

∧
n. (

∑
k≤n. measure lebesgue (S k)) ≤ B

shows measurable countable negligible Union: (
⋃

n. S n) ∈ lmeasurable
and measure countable negligible Union: (λn. (measure lebesgue (S n))) sums

measure lebesgue (
⋃
n. S n) (is ?Sums)

proof −
have 1 :

⋃
(S ‘ {..n}) ∈ lmeasurable for n

using S by blast
have 2 : measure lebesgue (

⋃
(S ‘ {..n})) ≤ B for n

proof −
have measure lebesgue (

⋃
(S ‘ {..n})) ≤ (

∑
k≤n. measure lebesgue (S k))

by (simp add : S fmeasurableD measure UNION le)
with leB show ?thesis
using order trans by blast

qed
have 3 :

∧
n.

⋃
(S ‘ {..n}) ⊆

⋃
(S ‘ {..Suc n})

by (simp add : SUP subset mono)
have eqS : (

⋃
n. S n) = (

⋃
n.

⋃
(S ‘ {..n}))

using atLeastAtMost iff by blast
also have (

⋃
n.

⋃
(S ‘ {..n})) ∈ lmeasurable

by (intro measurable nested Union [OF 1 2 ] 3 )
finally show (

⋃
n. S n) ∈ lmeasurable .

have eqm: (
∑

i≤n. measure lebesgue (S i)) = measure lebesgue (
⋃

(S ‘ {..n}))
for n

using assms by (simp add : measure negligible finite Union image pairwise mono)
have (λn. (measure lebesgue (S n))) sums measure lebesgue (

⋃
n.

⋃
(S ‘ {..n}))

by (simp add : sums def ′ eqm atLeast0AtMost) (intro measure nested Union
[OF 1 2 ] 3 )
then show ?Sums
by (simp add : eqS )

qed
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lemma negligible countable Union [intro]:
assumes countable F and meas:

∧
S . S ∈ F =⇒ negligible S

shows negligible (
⋃
F)

proof (cases F = {})
case False
then show ?thesis
by (metis from nat into range from nat into assms negligible Union nat)

qed simp

lemma
assumes S :

∧
n. (S n) ∈ lmeasurable

and djointish: pairwise (λm n. negligible (S m ∩ S n)) UNIV
and bo: bounded (

⋃
n. S n)

shows measurable countable negligible Union bounded : (
⋃

n. S n) ∈ lmeasurable
and measure countable negligible Union bounded : (λn. (measure lebesgue (S

n))) sums measure lebesgue (
⋃
n. S n) (is ?Sums)

proof −
obtain a b where ab: (

⋃
n. S n) ⊆ cbox a b

using bo bounded subset cbox symmetric by metis
then have B : (

∑
k≤n. measure lebesgue (S k)) ≤ measure lebesgue (cbox a b)

for n
proof −
have (

∑
k≤n. measure lebesgue (S k)) = measure lebesgue (

⋃
(S ‘ {..n}))

using measure negligible finite Union image [OF pairwise subset ] djointish
by (metis S finite atMost subset UNIV )

also have . . . ≤ measure lebesgue (cbox a b)
proof (rule measure mono fmeasurable)
show

⋃
(S ‘ {..n}) ∈ sets lebesgue using S by blast

qed (use ab in auto)
finally show ?thesis .

qed
show (

⋃
n. S n) ∈ lmeasurable

by (rule measurable countable negligible Union [OF S djointish B ])
show ?Sums
by (rule measure countable negligible Union [OF S djointish B ])

qed

lemma measure countable Union approachable:
assumes countable D e > 0 and measD :

∧
d . d ∈ D =⇒ d ∈ lmeasurable

and B :
∧
D ′. [[D ′ ⊆ D; finite D ′]] =⇒ measure lebesgue (

⋃
D ′) ≤ B

obtains D ′ where D ′ ⊆ D finite D ′ measure lebesgue (
⋃
D) − e < measure

lebesgue (
⋃
D ′)

proof (cases D = {})
case True
then show ?thesis
by (simp add : 〈e > 0 〉 that)

next
case False
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let ?S = λn.
⋃
k ≤ n. from nat into D k

have (λn. measure lebesgue (?S n)) −−−−→ measure lebesgue (
⋃
n. ?S n)

proof (rule measure nested Union)
show ?S n ∈ lmeasurable for n
by (simp add : False fmeasurable.finite UN from nat into measD)

show measure lebesgue (?S n) ≤ B for n
by (metis (mono tags, lifting) B False finite atMost finite imageI from nat into

image iff subsetI )
show ?S n ⊆ ?S (Suc n) for n
by force

qed
then obtain N where N :

∧
n. n ≥ N =⇒ dist (measure lebesgue (?S n))

(measure lebesgue (
⋃
n. ?S n)) < e

using metric LIMSEQ D 〈e > 0 〉 by blast
show ?thesis
proof
show from nat into D ‘ {..N } ⊆ D
by (auto simp: False from nat into)

have eq : (
⋃

n.
⋃
k≤n. from nat into D k) = (

⋃
D)

using 〈countable D〉 False
by (auto intro: from nat into dest : from nat into surj [OF 〈countable D〉])

show measure lebesgue (
⋃
D) − e < measure lebesgue (

⋃
(from nat into D ‘

{..N }))
using N [OF order refl ]
by (auto simp: eq algebra simps dist norm)

qed auto
qed

6.19.13 Negligibility is a local property

lemma locally negligible alt :
negligible S ←→ (∀ x ∈ S . ∃U . openin (top of set S ) U ∧ x ∈ U ∧ negligible

U )
(is = ?rhs)

proof
assume negligible S
then show ?rhs
using openin subtopology self by blast

next
assume ?rhs
then obtain U where ope:

∧
x . x ∈ S =⇒ openin (top of set S ) (U x )

and cov :
∧
x . x ∈ S =⇒ x ∈ U x

and neg :
∧
x . x ∈ S =⇒ negligible (U x )

by metis
obtain F where F ⊆ U ‘ S countable F and eq :

⋃
F =

⋃
(U ‘ S )

using ope by (force intro: Lindelof openin [of U ‘ S S ])
then have negligible (

⋃
F)

by (metis imageE neg negligible countable Union subset eq)
with eq have negligible (

⋃
(U ‘ S ))
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by metis
moreover have S ⊆

⋃
(U ‘ S )

using cov by blast
ultimately show negligible S
using negligible subset by blast

qed

lemma locally negligible: locally negligible S ←→ negligible S
unfolding locally def
by (metis locally negligible alt negligible subset openin imp subset openin subtopology self )

6.19.14 Integral bounds

lemma set integral norm bound :
fixes f :: ⇒ ′a :: {banach, second countable topology}
shows set integrable M k f =⇒ norm (LINT x :k |M . f x ) ≤ LINT x :k |M . norm

(f x )
using integral norm bound [of M λx . indicator k x ∗R f x ] by (simp add : set lebesgue integral def )

lemma set integral finite UN AE :
fixes f :: ⇒ :: {banach, second countable topology}
assumes finite I
and ae:

∧
i j . i ∈ I =⇒ j ∈ I =⇒ AE x in M . (x ∈ A i ∧ x ∈ A j ) −→ i = j

and [measurable]:
∧
i . i ∈ I =⇒ A i ∈ sets M

and f :
∧
i . i ∈ I =⇒ set integrable M (A i) f

shows LINT x :(
⋃
i∈I . A i)|M . f x = (

∑
i∈I . LINT x :A i |M . f x )

using 〈finite I 〉 order refl [of I ]
proof (induction I rule: finite subset induct ′)
case (insert i I ′)
have AE x in M . (∀ j∈I ′. x ∈ A i −→ x /∈ A j )
proof (intro AE ball countable[THEN iffD2 ] ballI )
fix j assume j ∈ I ′

with 〈I ′ ⊆ I 〉 〈i /∈ I ′〉 have i 6= j j ∈ I
by auto

then show AE x in M . x ∈ A i −→ x /∈ A j
using ae[of i j ] 〈i ∈ I 〉 by auto

qed (use 〈finite I ′〉 in 〈rule countable finite〉)
then have AE x∈A i in M . ∀ xa∈I ′. x /∈ A xa
by auto

with insert .hyps insert .IH [symmetric]
show ?case
by (auto intro!: set integral Un AE sets.finite UN f set integrable UN )

qed (simp add : set lebesgue integral def )

lemma set integrable norm:
fixes f :: ′a ⇒ ′b::{banach, second countable topology}
assumes f : set integrable M k f shows set integrable M k (λx . norm (f x ))
using integrable norm f by (force simp add : set integrable def )
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lemma absolutely integrable bounded variation:
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes f : f absolutely integrable on UNIV
obtains B where ∀ d . d division of (

⋃
d) −→ sum (λk . norm (integral k f )) d

≤ B
proof (rule that [of integral UNIV (λx . norm (f x ))]; safe)
fix d :: ′a set set assume d : d division of

⋃
d

have ∗: k ∈ d =⇒ f absolutely integrable on k for k
using f [THEN set integrable subset , of k ] division ofD(2 ,4 )[OF d , of k ] by

auto
note d ′ = division ofD [OF d ]
have (

∑
k∈d . norm (integral k f )) = (

∑
k∈d . norm (LINT x :k |lebesgue. f x ))

by (intro sum.cong refl arg cong [where f=norm] set lebesgue integral eq integral(2 )[symmetric]
∗)
also have . . . ≤ (

∑
k∈d . LINT x :k |lebesgue. norm (f x ))

by (intro sum mono set integral norm bound ∗)
also have . . . = (

∑
k∈d . integral k (λx . norm (f x )))

by (intro sum.cong refl set lebesgue integral eq integral(2 ) set integrable norm
∗)
also have . . . ≤ integral (

⋃
d) (λx . norm (f x ))

using integrable on subdivision[OF d ] assms f unfolding absolutely integrable on def
by (subst integral combine division topdown[OF d ]) auto

also have . . . ≤ integral UNIV (λx . norm (f x ))
using integrable on subdivision[OF d ] assms unfolding absolutely integrable on def
by (intro integral subset le) auto

finally show (
∑

k∈d . norm (integral k f )) ≤ integral UNIV (λx . norm (f x )) .
qed

lemma absdiff norm less:
assumes sum (λx . norm (f x − g x )) S < e
shows |sum (λx . norm(f x )) S − sum (λx . norm(g x )) S | < e (is ?lhs < e)

proof −
have ?lhs ≤ (

∑
i∈S . |norm (f i) − norm (g i)|)

by (metis (no types) sum abs sum subtractf )
also have ... ≤ (

∑
x∈S . norm (f x − g x ))

by (simp add : norm triangle ineq3 sum mono)
also have ... < e
using assms(1 ) by blast

finally show ?thesis .
qed

proposition bounded variation absolutely integrable interval :
fixes f :: ′n::euclidean space ⇒ ′m::euclidean space
assumes f : f integrable on cbox a b
and ∗:

∧
d . d division of (cbox a b) =⇒ sum (λK . norm(integral K f )) d ≤ B

shows f absolutely integrable on cbox a b
proof −
let ?f = λd .

∑
K∈d . norm (integral K f ) and ?D = {d . d division of (cbox a

b)}
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have D 1 : ?D 6= {}
by (rule elementary interval [of a b]) auto

have D 2 : bdd above (?f‘?D)
by (metis ∗ mem Collect eq bdd aboveI2 )

note D = D 1 D 2
let ?S = SUP x∈?D . ?f x
have ∗: ∃ γ. gauge γ ∧

(∀ p. p tagged division of cbox a b ∧
γ fine p −→
norm ((

∑
(x ,k) ∈ p. content k ∗R norm (f x )) − ?S ) < e)

if e: e > 0 for e
proof −
have ?S − e/2 < ?S using 〈e > 0 〉 by simp
then obtain d where d : d division of (cbox a b) ?S − e/2 < (

∑
k∈d . norm

(integral k f ))
unfolding less cSUP iff [OF D ] by auto

note d ′ = division ofD [OF this(1 )]

have ∃ e>0 . ∀ i∈d . x /∈ i −→ ball x e ∩ i = {} for x
proof −
have ∃ d ′>0 . ∀ x ′∈

⋃
{i ∈ d . x /∈ i}. d ′ ≤ dist x x ′

proof (rule separate point closed)
show closed (

⋃
{i ∈ d . x /∈ i})

using d ′ by force
show x /∈

⋃
{i ∈ d . x /∈ i}

by auto
qed
then show ?thesis
by force

qed
then obtain k where k :

∧
x . 0 < k x

∧
i x . [[i ∈ d ; x /∈ i ]] =⇒ ball x (k x ) ∩

i = {}
by metis

have e/2 > 0
using e by auto

with Henstock lemma[OF f ]
obtain γ where g : gauge γ∧

p. [[p tagged partial division of cbox a b; γ fine p]]
=⇒ (

∑
(x ,k) ∈ p. norm (content k ∗R f x − integral k f )) < e/2

by (metis (no types, lifting))
let ?g = λx . γ x ∩ ball x (k x )
show ?thesis
proof (intro exI conjI allI impI )
show gauge ?g
using g(1 ) k(1 ) by (auto simp: gauge def )

next
fix p
assume p tagged division of (cbox a b) ∧ ?g fine p
then have p: p tagged division of cbox a b γ fine p (λx . ball x (k x )) fine p
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by (auto simp: fine Int)
note p ′ = tagged division ofD [OF p(1 )]
define p ′ where p ′ = {(x ,k) | x k . ∃ i l . x ∈ i ∧ i ∈ d ∧ (x ,l) ∈ p ∧ k = i

∩ l}
have gp ′: γ fine p ′

using p(2 ) by (auto simp: p ′ def fine def )
have p ′′: p ′ tagged division of (cbox a b)
proof (rule tagged division ofI )
show finite p ′

proof (rule finite subset)
show p ′ ⊆ (λ(k , x , l). (x , k ∩ l)) ‘ (d × p)
by (force simp: p ′ def image iff )

show finite ((λ(k , x , l). (x , k ∩ l)) ‘ (d × p))
by (simp add : d ′(1 ) p ′(1 ))

qed
next
fix x K
assume (x , K ) ∈ p ′

then have ∃ i l . x ∈ i ∧ i ∈ d ∧ (x , l) ∈ p ∧ K = i ∩ l
unfolding p ′ def by auto

then obtain i l where il : x ∈ i i ∈ d (x , l) ∈ p K = i ∩ l by blast
show x ∈ K and K ⊆ cbox a b
using p ′(2−3 )[OF il(3 )] il by auto

show ∃ a b. K = cbox a b
unfolding il using p ′(4 )[OF il(3 )] d ′(4 )[OF il(2 )] by (meson Int interval)

next
fix x1 K1
assume (x1 , K1 ) ∈ p ′

then have ∃ i l . x1 ∈ i ∧ i ∈ d ∧ (x1 , l) ∈ p ∧ K1 = i ∩ l
unfolding p ′ def by auto

then obtain i1 l1 where il1 : x1 ∈ i1 i1 ∈ d (x1 , l1 ) ∈ p K1 = i1 ∩ l1
by blast

fix x2 K2
assume (x2 ,K2 ) ∈ p ′

then have ∃ i l . x2 ∈ i ∧ i ∈ d ∧ (x2 , l) ∈ p ∧ K2 = i ∩ l
unfolding p ′ def by auto

then obtain i2 l2 where il2 : x2 ∈ i2 i2 ∈ d (x2 , l2 ) ∈ p K2 = i2 ∩ l2
by blast

assume (x1 , K1 ) 6= (x2 , K2 )
then have interior i1 ∩ interior i2 = {} ∨ interior l1 ∩ interior l2 = {}
using d ′(5 )[OF il1 (2 ) il2 (2 )] p ′(5 )[OF il1 (3 ) il2 (3 )] by (auto simp: il1

il2 )
then show interior K1 ∩ interior K2 = {}
unfolding il1 il2 by auto

next
have ∗: ∀ (x , X ) ∈ p ′. X ⊆ cbox a b
unfolding p ′ def using d ′ by blast

show
⋃
{K . ∃ x . (x , K ) ∈ p ′} = cbox a b

proof
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show
⋃
{k . ∃ x . (x , k) ∈ p ′} ⊆ cbox a b

using ∗ by auto
next
show cbox a b ⊆

⋃
{k . ∃ x . (x , k) ∈ p ′}

proof
fix y
assume y : y ∈ cbox a b
obtain x L where xl : (x , L) ∈ p y ∈ L
using y unfolding p ′(6 )[symmetric] by auto

obtain I where i : I ∈ d y ∈ I
using y unfolding d ′(6 )[symmetric] by auto

have x ∈ I
using fineD [OF p(3 ) xl(1 )] using k(2 ) i xl by auto

then show y ∈
⋃
{K . ∃ x . (x , K ) ∈ p ′}

proof −
obtain x l where xl : (x , l) ∈ p y ∈ l
using y unfolding p ′(6 )[symmetric] by auto

obtain i where i : i ∈ d y ∈ i
using y unfolding d ′(6 )[symmetric] by auto

have x ∈ i
using fineD [OF p(3 ) xl(1 )] using k(2 ) i xl by auto

then show ?thesis
unfolding p ′ def by (rule tac X=i ∩ l in UnionI ) (use i xl in auto)

qed
qed

qed
qed
then have sum less e2 : (

∑
(x ,K ) ∈ p ′. norm (content K ∗R f x − integral

K f )) < e/2
using g(2 ) gp ′ tagged division of def by blast

have in p ′: (x , I ∩ L) ∈ p ′ if x : (x , L) ∈ p I ∈ d and y : y ∈ I y ∈ L
for x I L y

proof −
have x ∈ I
using fineD [OF p(3 ) that(1 )] k(2 )[OF 〈I ∈ d 〉] y by auto

with x have (∃ i l . x ∈ i ∧ i ∈ d ∧ (x , l) ∈ p ∧ I ∩ L = i ∩ l)
by blast

then have (x , I ∩ L) ∈ p ′

by (simp add : p ′ def )
with y show ?thesis by auto

qed
moreover
have Ex p p ′: ∃ y i l . (x , K ) = (y , i ∩ l) ∧ (y , l) ∈ p ∧ i ∈ d ∧ i ∩ l 6= {}
if xK : (x ,K ) ∈ p ′ for x K

proof −
obtain i l where il : x ∈ i i ∈ d (x , l) ∈ p K = i ∩ l
using xK unfolding p ′ def by auto

then show ?thesis
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using p ′(2 ) by fastforce
qed
ultimately have p ′alt : p ′ = {(x , I ∩ L) | x I L. (x ,L) ∈ p ∧ I ∈ d ∧ I ∩ L

6= {}}
by auto
have sum p ′: (

∑
(x ,K ) ∈ p ′. norm (integral K f )) = (

∑
k∈snd ‘ p ′. norm

(integral k f ))
proof (rule sum.over tagged division lemma[OF p ′′])
show

∧
u v . box u v = {} =⇒ norm (integral (cbox u v) f ) = 0

by (auto intro: integral null simp: content eq 0 interior)
qed
have snd p div : snd ‘ p division of cbox a b
by (rule division of tagged division[OF p(1 )])

note snd p = division ofD [OF snd p div ]
have fin d sndp: finite (d × snd ‘ p)
by (simp add : d ′(1 ) snd p(1 ))

have ∗:
∧
sni sni ′ sf sf ′. [[|sf ′ − sni ′| < e/2 ; ?S − e/2 < sni ; sni ′ ≤ ?S ;

sni ≤ sni ′; sf ′ = sf ]] =⇒ |sf − ?S | < e
by arith

show norm ((
∑

(x ,k) ∈ p. content k ∗R norm (f x )) − ?S ) < e
unfolding real norm def

proof (rule ∗)
show |(

∑
(x ,K )∈p ′. norm (content K ∗R f x )) − (

∑
(x ,k)∈p ′. norm (integral

k f ))| < e/2
using p ′′ sum less e2 unfolding split def by (force intro!: absdiff norm less)
show (

∑
(x ,k) ∈ p ′. norm (integral k f )) ≤?S

by (auto simp: sum p ′ division of tagged division[OF p ′′] D intro!:
cSUP upper)

show (
∑

k∈d . norm (integral k f )) ≤ (
∑

(x ,k) ∈ p ′. norm (integral k f ))
proof −
have ∗: {k ∩ l | k l . k ∈ d ∧ l ∈ snd ‘ p} = (λ(k ,l). k ∩ l) ‘ (d × snd ‘ p)
by auto

have (
∑

K∈d . norm (integral K f )) ≤ (
∑

i∈d .
∑

l∈snd ‘ p. norm (integral
(i ∩ l) f ))

proof (rule sum mono)
fix K assume k : K ∈ d
from d ′(4 )[OF this] obtain u v where uv : K = cbox u v by metis
define d ′ where d ′ = {cbox u v ∩ l |l . l ∈ snd ‘ p ∧ cbox u v ∩ l 6= {}}
have uvab: cbox u v ⊆ cbox a b
using d(1 ) k uv by blast

have d ′ div : d ′ division of cbox u v
unfolding d ′ def by (rule division inter 1 [OF snd p div uvab])

moreover have norm (
∑

i∈d ′. integral i f ) ≤ (
∑

k∈d ′. norm (integral
k f ))

by (simp add : sum norm le)
moreover have f integrable on K
using f integrable on subcbox uv uvab by blast

moreover have d ′ division of K
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using d ′ div uv by blast
ultimately have norm (integral K f ) ≤ sum (λk . norm (integral k f ))

d ′

by (simp add : integral combine division topdown)
also have . . . = (

∑
I∈{K ∩ L |L. L ∈ snd ‘ p}. norm (integral I f ))

proof (rule sum.mono neutral left)
show finite {K ∩ L |L. L ∈ snd ‘ p}
by (simp add : snd p(1 ))

show ∀ i∈{K ∩ L |L. L ∈ snd ‘ p} − d ′. norm (integral i f ) = 0
d ′ ⊆ {K ∩ L |L. L ∈ snd ‘ p}
using d ′ def image eqI uv by auto

qed
also have . . . = (

∑
l∈snd ‘ p. norm (integral (K ∩ l) f ))

unfolding Setcompr eq image
proof (rule sum.reindex nontrivial [unfolded o def ])
show finite (snd ‘ p)
using snd p(1 ) by blast

show norm (integral (K ∩ l) f ) = 0
if l ∈ snd ‘ p y ∈ snd ‘ p l 6= y K ∩ l = K ∩ y for l y

proof −
have interior (K ∩ l) ⊆ interior (l ∩ y)
by (metis Int lower2 interior mono le inf iff that(4 ))

then have interior (K ∩ l) = {}
by (simp add : snd p(5 ) that)

moreover from d ′(4 )[OF k ] snd p(4 )[OF that(1 )]
obtain u1 v1 u2 v2
where uv : K = cbox u1 u2 l = cbox v1 v2 by metis

ultimately show ?thesis
using that integral null
unfolding uv Int interval content eq 0 interior
by (metis (mono tags, lifting) norm eq zero)

qed
qed
finally show norm (integral K f ) ≤ (

∑
l∈snd ‘ p. norm (integral (K ∩

l) f )) .
qed
also have . . . = (

∑
(i ,l) ∈ d × snd ‘ p. norm (integral (i∩l) f ))

by (simp add : sum.cartesian product)
also have . . . = (

∑
x ∈ d × snd ‘ p. norm (integral (case prod (∩) x ) f ))

by (force simp: split def intro!: sum.cong)
also have . . . = (

∑
k∈{i ∩ l |i l . i ∈ d ∧ l ∈ snd ‘ p}. norm (integral k

f ))
proof −
have eq0 : (integral (l1 ∩ k1 ) f ) = 0
if l1 ∩ k1 = l2 ∩ k2 (l1 , k1 ) 6= (l2 , k2 )

l1 ∈ d (j1 ,k1 ) ∈ p l2 ∈ d (j2 ,k2 ) ∈ p
for l1 l2 k1 k2 j1 j2

proof −
obtain u1 v1 u2 v2 where uv : l1 = cbox u1 u2 k1 = cbox v1 v2
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using 〈(j1 , k1 ) ∈ p〉 〈l1 ∈ d 〉 d ′(4 ) p ′(4 ) by blast
have l1 6= l2 ∨ k1 6= k2
using that by auto
then have interior k1 ∩ interior k2 = {} ∨ interior l1 ∩ interior l2

= {}
by (meson d ′(5 ) old .prod .inject p ′(5 ) that(3 ) that(4 ) that(5 ) that(6 ))
moreover have interior (l1 ∩ k1 ) = interior (l2 ∩ k2 )
by (simp add : that(1 ))

ultimately have interior(l1 ∩ k1 ) = {}
by auto

then show ?thesis
unfolding uv Int interval content eq 0 interior [symmetric] by auto

qed
show ?thesis
unfolding ∗

apply (rule sum.reindex nontrivial [OF fin d sndp, symmetric, unfolded
o def ])

apply clarsimp
by (metis eq0 fst conv snd conv)

qed
also have . . . = (

∑
(x ,k) ∈ p ′. norm (integral k f ))

unfolding sum p ′

proof (rule sum.mono neutral right)
show finite {i ∩ l |i l . i ∈ d ∧ l ∈ snd ‘ p}
by (metis ∗ finite imageI [OF fin d sndp])

show snd ‘ p ′ ⊆ {i ∩ l |i l . i ∈ d ∧ l ∈ snd ‘ p}
by (clarsimp simp: p ′ def ) (metis image eqI snd conv)

show ∀ i∈{i ∩ l |i l . i ∈ d ∧ l ∈ snd ‘ p} − snd ‘ p ′. norm (integral i
f ) = 0

by clarsimp (metis Henstock Kurzweil Integration.integral empty
disjoint iff image eqI in p ′ snd conv)

qed
finally show ?thesis .

qed
show (

∑
(x ,k) ∈ p ′. norm (content k ∗R f x )) = (

∑
(x ,k) ∈ p. content k

∗R norm (f x ))
proof −
let ?S = {(x , i ∩ l) |x i l . (x , l) ∈ p ∧ i ∈ d}
have ∗: ?S = (λ(xl ,i). (fst xl , snd xl ∩ i)) ‘ (p × d)
by force

have fin pd : finite (p × d)
using finite cartesian product [OF p ′(1 ) d ′(1 )] by metis

have (
∑

(x ,k) ∈ p ′. norm (content k ∗R f x )) = (
∑

(x ,k) ∈ ?S . |content
k | ∗ norm (f x ))

unfolding norm scaleR
proof (rule sum.mono neutral left)
show finite {(x , i ∩ l) |x i l . (x , l) ∈ p ∧ i ∈ d}
by (simp add : ∗ fin pd)

qed (use p ′alt in 〈force+〉)
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also have . . . = (
∑

((x ,l),i)∈p × d . |content (l ∩ i)| ∗ norm (f x ))
proof −
have |content (l1 ∩ k1 )| ∗ norm (f x1 ) = 0
if (x1 , l1 ) ∈ p (x2 , l2 ) ∈ p k1 ∈ d k2 ∈ d
x1 = x2 l1 ∩ k1 = l2 ∩ k2 x1 6= x2 ∨ l1 6= l2 ∨ k1 6= k2

for x1 l1 k1 x2 l2 k2
proof −
obtain u1 v1 u2 v2 where uv : k1 = cbox u1 u2 l1 = cbox v1 v2
by (meson 〈(x1 , l1 ) ∈ p〉 〈k1 ∈ d 〉 d(1 ) division ofD(4 ) p ′(4 ))

have l1 6= l2 ∨ k1 6= k2
using that by auto
then have interior k1 ∩ interior k2 = {} ∨ interior l1 ∩ interior l2

= {}
using that p ′(5 ) d ′(5 ) by (metis snd conv)

moreover have interior (l1 ∩ k1 ) = interior (l2 ∩ k2 )
unfolding that ..

ultimately have interior (l1 ∩ k1 ) = {}
by auto

then show |content (l1 ∩ k1 )| ∗ norm (f x1 ) = 0
unfolding uv Int interval content eq 0 interior [symmetric] by auto

qed
then show ?thesis
unfolding ∗
apply (subst sum.reindex nontrivial [OF fin pd ])
unfolding split paired all o def split def prod .inject
by force+

qed
also have . . . = (

∑
(x ,k) ∈ p. content k ∗R norm (f x ))

proof −
have sumeq : (

∑
i∈d . content (l ∩ i) ∗ norm (f x )) = content l ∗ norm

(f x )
if (x , l) ∈ p for x l

proof −
note xl = p ′(2−4 )[OF that ]
then obtain u v where uv : l = cbox u v by blast
have (

∑
i∈d . |content (l ∩ i)|) = (

∑
k∈d . content (k ∩ cbox u v))

by (simp add : Int commute uv)
also have . . . = sum content {k ∩ cbox u v | k . k ∈ d}
proof −
have eq0 : content (k ∩ cbox u v) = 0
if k ∈ d y ∈ d k 6= y and eq : k ∩ cbox u v = y ∩ cbox u v for k y

proof −
from d ′(4 )[OF that(1 )] d ′(4 )[OF that(2 )]
obtain α β where α: k ∩ cbox u v = cbox α β
by (meson Int interval)

have {} = interior ((k ∩ y) ∩ cbox u v)
by (simp add : d ′(5 ) that)

also have . . . = interior (y ∩ (k ∩ cbox u v))
by auto
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also have . . . = interior (k ∩ cbox u v)
unfolding eq by auto

finally show ?thesis
unfolding α content eq 0 interior ..

qed
then show ?thesis
unfolding Setcompr eq image
by (fastforce intro: sum.reindex nontrivial [OF 〈finite d 〉, unfolded

o def , symmetric])
qed
also have . . . = sum content {cbox u v ∩ k |k . k ∈ d ∧ cbox u v ∩ k

6= {}}
proof (rule sum.mono neutral right)
show finite {k ∩ cbox u v |k . k ∈ d}
by (simp add : d ′(1 ))

qed (fastforce simp: inf .commute)+
finally have (

∑
i∈d . |content (l ∩ i)|) = content (cbox u v)

using additive content division[OF division inter 1 [OF d(1 )]] uv xl(2 )
by auto

then show (
∑

i∈d . content (l ∩ i) ∗ norm (f x )) = content l ∗ norm
(f x )

unfolding sum distrib right [symmetric] using uv by auto
qed
show ?thesis
by (subst sum Sigma product [symmetric]) (auto intro!: sumeq sum.cong

p ′ d ′)
qed
finally show ?thesis .

qed
qed (rule d)

qed
qed
then show ?thesis
using absolutely integrable onI [OF f has integral integrable] has integral [of

?S ]
by blast

qed

lemma bounded variation absolutely integrable:
fixes f :: ′n::euclidean space ⇒ ′m::euclidean space
assumes f integrable on UNIV
and ∀ d . d division of (

⋃
d) −→ sum (λk . norm (integral k f )) d ≤ B

shows f absolutely integrable on UNIV
proof (rule absolutely integrable onI , fact)
let ?f = λD .

∑
k∈D . norm (integral k f ) and ?D = {d . d division of (

⋃
d)}

define SDF where SDF ≡ SUP d∈?D . ?f d
have D 1 : ?D 6= {}
by (rule elementary interval) auto
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have D 2 : bdd above (?f‘?D)
using assms(2 ) by auto

have f int :
∧
a b. f absolutely integrable on cbox a b

using assms integrable on subcbox
by (blast intro!: bounded variation absolutely integrable interval)

have ∃B>0 . ∀ a b. ball 0 B ⊆ cbox a b −→
|integral (cbox a b) (λx . norm (f x )) − SDF | < e

if 0 < e for e
proof −
have ∃ y ∈ ?f ‘ ?D . ¬ y ≤ SDF − e
proof (rule ccontr)
assume ¬ ?thesis
then have SDF ≤ SDF − e
unfolding SDF def
by (metis (mono tags) D 1 cSUP least image eqI )

then show False
using that by auto

qed
then obtain d K where ddiv : d division of

⋃
d and K = ?f d SDF − e < K

by (auto simp add : image iff not le)
then have d : SDF − e < ?f d
by auto

note d ′=division ofD [OF ddiv ]
have bounded (

⋃
d)

using ddiv by blast
then obtain K where K : 0 < K ∀ x∈

⋃
d . norm x ≤ K

using bounded pos by blast
show ?thesis
proof (intro conjI impI allI exI )
fix a b :: ′n
assume ab: ball 0 (K + 1 ) ⊆ cbox a b
have ∗:

∧
s s1 . [[SDF − e < s1 ; s1 ≤ s; s < SDF + e]] =⇒ |s − SDF | < e

by arith
show |integral (cbox a b) (λx . norm (f x )) − SDF | < e
unfolding real norm def

proof (rule ∗ [OF d ])
have ?f d ≤ sum (λk . integral k (λx . norm (f x ))) d
proof (intro sum mono)
fix k assume k ∈ d
with d ′(4 ) f int show norm (integral k f ) ≤ integral k (λx . norm (f x ))
by (force simp: absolutely integrable on def integral norm bound integral)

qed
also have . . . = integral (

⋃
d) (λx . norm (f x ))

by (metis (full types) absolutely integrable on def d ′(4 ) ddiv f int inte-
gral combine division bottomup)

also have . . . ≤ integral (cbox a b) (λx . norm (f x ))
proof −
have

⋃
d ⊆ cbox a b

using K (2 ) ab by fastforce
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then show ?thesis
using integrable on subdivision[OF ddiv ] f int [of a b] unfolding abso-

lutely integrable on def
by (auto intro!: integral subset le)

qed
finally show ?f d ≤ integral (cbox a b) (λx . norm (f x )) .

next
have e/2>0
using 〈e > 0 〉 by auto

moreover
have f : f integrable on cbox a b (λx . norm (f x )) integrable on cbox a b
using f int by (auto simp: absolutely integrable on def )

ultimately obtain d1 where gauge d1
and d1 :

∧
p. [[p tagged division of (cbox a b); d1 fine p]] =⇒

norm ((
∑

(x ,k) ∈ p. content k ∗R norm (f x )) − integral (cbox a b) (λx .
norm (f x ))) < e/2

unfolding has integral integral has integral by meson
obtain d2 where gauge d2
and d2 :

∧
p. [[p tagged partial division of (cbox a b); d2 fine p]] =⇒

(
∑

(x ,k) ∈ p. norm (content k ∗R f x − integral k f )) < e/2
by (blast intro: Henstock lemma [OF f (1 ) 〈e/2>0 〉])

obtain p where
p: p tagged division of (cbox a b) d1 fine p d2 fine p
by (rule fine division exists [OF gauge Int [OF 〈gauge d1 〉 〈gauge d2 〉], of

a b])
(auto simp add : fine Int)

have ∗:
∧
sf sf ′ si di . [[sf ′ = sf ; si ≤ SDF ; |sf − si | < e/2 ;
|sf ′ − di | < e/2 ]] =⇒ di < SDF + e

by arith
have integral (cbox a b) (λx . norm (f x )) < SDF + e
proof (rule ∗)
show |(

∑
(x ,k)∈p. norm (content k ∗R f x )) − (

∑
(x ,k)∈p. norm (integral

k f ))| < e/2
unfolding split def

proof (rule absdiff norm less)
show (

∑
p∈p. norm (content (snd p) ∗R f (fst p) − integral (snd p) f ))

< e/2
using d2 [of p] p(1 ,3 ) by (auto simp: tagged division of def split def )

qed
show |(

∑
(x ,k) ∈ p. content k ∗R norm (f x )) − integral (cbox a b) (λx .

norm(f x ))| < e/2
using d1 [OF p(1 ,2 )] by (simp only : real norm def )
show (

∑
(x ,k) ∈ p. content k ∗R norm (f x )) = (

∑
(x ,k) ∈ p. norm

(content k ∗R f x ))
by (auto simp: split paired all sum.cong [OF refl ])

have (
∑

(x ,k) ∈ p. norm (integral k f )) = (
∑

k∈snd ‘ p. norm (integral
k f ))

apply (rule sum.over tagged division lemma[OF p(1 )])
by (metis Henstock Kurzweil Integration.integral empty integral open interval
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norm zero)
also have ... ≤ SDF
using partial division of tagged division[of p cbox a b] p(1 )

by (auto simp: SDF def tagged partial division of def intro!: cSUP upper2
D 1 D 2 )

finally show (
∑

(x ,k) ∈ p. norm (integral k f )) ≤ SDF .
qed
then show integral (cbox a b) (λx . norm (f x )) < SDF + e
by simp

qed
qed (use K in auto)

qed
moreover have

∧
a b. (λx . norm (f x )) integrable on cbox a b

using absolutely integrable on def f int by auto
ultimately
have ((λx . norm (f x )) has integral SDF ) UNIV
by (auto simp: has integral alt ′)

then show (λx . norm (f x )) integrable on UNIV
by blast

qed

6.19.15 Outer and inner approximation of measurable sets
by well-behaved sets.

proposition measurable outer intervals bounded :
assumes S ∈ lmeasurable S ⊆ cbox a b e > 0
obtains D
where countable D∧

K . K ∈ D =⇒ K ⊆ cbox a b ∧ K 6= {} ∧ (∃ c d . K = cbox c d)
pairwise (λA B . interior A ∩ interior B = {}) D∧
u v . cbox u v ∈ D =⇒ ∃n. ∀ i ∈ Basis. v · i − u · i = (b · i − a · i)/2ˆn∧
K . [[K ∈ D; box a b 6= {}]] =⇒ interior K 6= {}

S ⊆
⋃
D

⋃
D ∈ lmeasurable measure lebesgue (

⋃
D) ≤ measure lebesgue S

+ e
proof (cases box a b = {})
case True
show ?thesis
proof (cases cbox a b = {})
case True
with assms have [simp]: S = {}
by auto

show ?thesis
proof
show countable {}
by simp

qed (use 〈e > 0 〉 in auto)
next
case False
show ?thesis
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proof
show countable {cbox a b}
by simp

show
∧
u v . cbox u v ∈ {cbox a b} =⇒ ∃n. ∀ i∈Basis. v · i − u · i = (b · i

− a · i)/2 ˆ n
using False by (force simp: eq cbox intro: exI [where x=0 ])

show measure lebesgue (
⋃
{cbox a b}) ≤ measure lebesgue S + e

using assms by (simp add : sum content .box empty imp [OF True])
qed (use assms 〈cbox a b 6= {}〉 in auto)

qed
next
case False
let ?µ = measure lebesgue
have S ∩ cbox a b ∈ lmeasurable
using 〈S ∈ lmeasurable〉 by blast

then have indS int : (indicator S has integral (?µ S )) (cbox a b)
by (metis integral indicator 〈S ⊆ cbox a b〉 has integral integrable integral

inf .orderE integrable on indicator)
with 〈e > 0 〉 obtain γ where gauge γ and γ:∧

D. [[D tagged division of (cbox a b); γ fine D]] =⇒ norm ((
∑

(x ,K )∈D.
content(K ) ∗R indicator S x ) − ?µ S ) < e

by (force simp: has integral)
have inteq : integral (cbox a b) (indicat real S ) = integral UNIV (indicator S )
using assms by (metis has integral iff indS int lmeasure integral UNIV )

obtain D where D: countable D
⋃
D ⊆ cbox a b

and cbox :
∧
K . K ∈ D =⇒ interior K 6= {} ∧ (∃ c d . K = cbox c d)

and djointish: pairwise (λA B . interior A ∩ interior B = {}) D
and covered :

∧
K . K ∈ D =⇒ ∃ x ∈ S ∩ K . K ⊆ γ x

and close:
∧
u v . cbox u v ∈ D =⇒ ∃n. ∀ i ∈ Basis. v ·i − u·i = (b·i −

a·i)/2ˆn
and covers: S ⊆

⋃
D

using covering lemma [of S a b γ] 〈gauge γ〉 〈box a b 6= {}〉 assms by force
show ?thesis
proof
show

∧
K . K ∈ D =⇒ K ⊆ cbox a b ∧ K 6= {} ∧ (∃ c d . K = cbox c d)

by (meson Sup le iff D(2 ) cbox interior empty)
have negl int : negligible(K ∩ L) if K ∈ D L ∈ D K 6= L for K L
proof −
have interior K ∩ interior L = {}
using djointish pairwiseD that by fastforce

moreover obtain u v x y where K = cbox u v L = cbox x y
using cbox 〈K ∈ D〉 〈L ∈ D〉 by blast

ultimately show ?thesis
by (simp add : Int interval box Int box negligible interval(1 ))

qed
have fincase:

⋃
F ∈ lmeasurable ∧ ?µ (

⋃
F) ≤ ?µ S + e if finite F F ⊆ D

for F
proof −
obtain t where t :

∧
K . K ∈ F =⇒ t K ∈ S ∩ K ∧ K ⊆ γ(t K )
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using covered 〈F ⊆ D〉 subsetD by metis
have ∀K ∈ F . ∀L ∈ F . K 6= L −→ interior K ∩ interior L = {}
using that djointish by (simp add : pairwise def ) (metis subsetD)

with cbox that D have Fdiv : F division of (
⋃
F)

by (fastforce simp: division of def dest : cbox )
then have 1 :

⋃
F ∈ lmeasurable

by blast
have norme:

∧
p. [[p tagged division of cbox a b; γ fine p]]

=⇒ norm ((
∑

(x ,K )∈p. content K ∗ indicator S x ) − integral (cbox a b)
(indicator S )) < e

by (auto simp: lmeasure integral UNIV assms inteq dest : γ)
have ∀ x K y L. (x ,K ) ∈ (λK . (t K ,K )) ‘ F ∧ (y ,L) ∈ (λK . (t K ,K )) ‘ F ∧

(x ,K ) 6= (y ,L) −→ interior K ∩ interior L = {}
using that djointish by (clarsimp simp: pairwise def ) (metis subsetD)

with that D have tagged : (λK . (t K , K )) ‘ F tagged partial division of cbox
a b

by (auto simp: tagged partial division of def dest : t cbox )
have fine: γ fine (λK . (t K , K )) ‘ F
using t by (auto simp: fine def )

have ∗: y ≤ ?µ S =⇒ |x − y | ≤ e =⇒ x ≤ ?µ S + e for x y
by arith

have ?µ (
⋃
F) ≤ ?µ S + e

proof (rule ∗)
have (

∑
K∈F . ?µ (K ∩ S )) = ?µ (

⋃
C∈F . C ∩ S )

proof (rule measure negligible finite Union image [OF 〈finite F 〉, symmetric])
show

∧
K . K ∈ F =⇒ K ∩ S ∈ lmeasurable

using Fdiv 〈S ∈ lmeasurable〉 by blast
show pairwise (λK y . negligible (K ∩ S ∩ (y ∩ S ))) F
unfolding pairwise def
by (metis inf .commute inf sup aci(3 ) negligible Int subsetCE negl int 〈F

⊆ D〉)
qed
also have . . . = ?µ (

⋃
F ∩ S )

by simp
also have . . . ≤ ?µ S
by (simp add : 1 〈S ∈ lmeasurable〉 fmeasurableD measure mono fmeasurable

sets.Int)
finally show (

∑
K∈F . ?µ (K ∩ S )) ≤ ?µ S .

next
have ?µ (

⋃
F) = sum ?µ F

by (metis Fdiv content division)
also have . . . = (

∑
K∈F . content K )

using Fdiv by (force intro: sum.cong)
also have . . . = (

∑
x∈F . content x ∗ indicator S (t x ))

using t by auto
finally have eq1 : ?µ (

⋃
F) = (

∑
x∈F . content x ∗ indicator S (t x )) .

have eq2 : (
∑

K∈F . ?µ (K ∩ S )) = (
∑

K∈F . integral K (indicator S ))
apply (rule sum.cong [OF refl ])

by (metis integral indicator Fdiv 〈S ∈ lmeasurable〉 division ofD(4 )
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fmeasurable.Int inf .commute lmeasurable cbox )
have |

∑
(x ,K )∈(λK . (t K , K )) ‘ F . content K ∗ indicator S x − integral

K (indicator S )| ≤ e
using Henstock lemma part1 [of indicator S :: ′a⇒real , OF 〈e > 0 〉 〈gauge

γ〉 tagged fine]
indS int norme by auto

then show |?µ (
⋃
F) − (

∑
K∈F . ?µ (K ∩ S ))| ≤ e

by (simp add : eq1 eq2 comm monoid add class.sum.reindex inj on def
sum subtractf )

qed
with 1 show ?thesis by blast

qed
have

⋃
D ∈ lmeasurable ∧ ?µ (

⋃
D) ≤ ?µ S + e

proof (cases finite D)
case True
with fincase show ?thesis
by blast

next
case False
let ?T = from nat into D
have T : bij betw ?T UNIV D
by (simp add : False D(1 ) bij betw from nat into)

have TM :
∧
n. ?T n ∈ lmeasurable

by (metis False cbox finite.emptyI from nat into lmeasurable cbox )
have TN :

∧
m n. m 6= n =⇒ negligible (?T m ∩ ?T n)

by (simp add : False D(1 ) from nat into infinite imp nonempty negl int)
have TB : (

∑
k≤n. ?µ (?T k)) ≤ ?µ S + e for n

proof −
have (

∑
k≤n. ?µ (?T k)) = ?µ (

⋃
(?T ‘ {..n}))

by (simp add : pairwise def TM TN measure negligible finite Union image)
also have ?µ (

⋃
(?T ‘ {..n})) ≤ ?µ S + e

using fincase [of ?T ‘ {..n}] T by (auto simp: bij betw def )
finally show ?thesis .

qed
have

⋃
D ∈ lmeasurable

by (metis lmeasurable compact T D(2 ) bij betw def cbox compact cbox
countable Un Int(1 ) fmeasurableD fmeasurableI2 rangeI )

moreover
have ?µ (

⋃
x . from nat into D x ) ≤ ?µ S + e

proof (rule measure countable Union le [OF TM ])
show ?µ (

⋃
x≤n. from nat into D x ) ≤ ?µ S + e for n

by (metis (mono tags, lifting) False fincase finite.emptyI finite atMost
finite imageI from nat into imageE subsetI )

qed
ultimately show ?thesis by (metis T bij betw def )

qed
then show

⋃
D ∈ lmeasurable measure lebesgue (

⋃
D) ≤ ?µ S + e by blast+

qed (use D cbox djointish close covers in auto)
qed
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6.19.16 Transformation of measure by linear maps

lemma emeasure lebesgue ball conv unit ball :
fixes c :: ′a :: euclidean space
assumes r ≥ 0
shows emeasure lebesgue (ball c r) =

ennreal (r ˆ DIM ( ′a)) ∗ emeasure lebesgue (ball (0 :: ′a) 1 )
proof (cases r = 0 )
case False
with assms have r : r > 0 by auto
have emeasure lebesgue ((λx . c + x ) ‘ (λx . r ∗R x ) ‘ ball (0 :: ′a) 1 ) =

r ˆ DIM ( ′a) ∗ emeasure lebesgue (ball (0 :: ′a) 1 )
unfolding image image using emeasure lebesgue affine[of r c ball 0 1 ] assms
by (simp add : add ac)

also have (λx . r ∗R x ) ‘ ball 0 1 = ball (0 :: ′a) r
using r by (subst ball scale) auto

also have (λx . c + x ) ‘ . . . = ball c r
by (subst image add ball) (simp all add : algebra simps)

finally show ?thesis by simp
qed auto

lemma content ball conv unit ball :
fixes c :: ′a :: euclidean space
assumes r ≥ 0
shows content (ball c r) = r ˆ DIM ( ′a) ∗ content (ball (0 :: ′a) 1 )

proof −
have ennreal (content (ball c r)) = emeasure lebesgue (ball c r)
using emeasure lborel ball finite[of c r ] by (subst emeasure eq ennreal measure)

auto
also have . . . = ennreal (r ˆ DIM ( ′a)) ∗ emeasure lebesgue (ball (0 :: ′a) 1 )
using assms by (intro emeasure lebesgue ball conv unit ball) auto

also have . . . = ennreal (r ˆ DIM ( ′a) ∗ content (ball (0 :: ′a) 1 ))
using emeasure lborel ball finite[of 0 :: ′a 1 ] assms
by (subst emeasure eq ennreal measure) (auto simp: ennreal mult ′)

finally show ?thesis
using assms by (subst (asm) ennreal inj ) auto

qed

lemma measurable linear image interval :
linear f =⇒ f ‘ (cbox a b) ∈ lmeasurable

by (metis bounded linear image linear linear bounded cbox closure bounded linear image
closure cbox compact closure lmeasurable compact)

proposition measure linear sufficient :
fixes f :: ′n::euclidean space ⇒ ′n
assumes linear f and S : S ∈ lmeasurable
and im:

∧
a b. measure lebesgue (f ‘ (cbox a b)) = m ∗ measure lebesgue (cbox

a b)
shows f ‘ S ∈ lmeasurable ∧ m ∗ measure lebesgue S = measure lebesgue (f ‘ S )
using le less linear [of 0 m]
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proof
assume m < 0
then show ?thesis
using im [of 0 One] by auto

next
assume m ≥ 0
let ?µ = measure lebesgue
show ?thesis
proof (cases inj f )
case False
then have ?µ (f ‘ S ) = 0

using 〈linear f 〉 negligible imp measure0 negligible linear singular image by
blast

then have m ∗ ?µ (cbox 0 (One)) = 0
by (metis False 〈linear f 〉 cbox borel content unit im measure completion

negligible imp measure0 negligible linear singular image sets lborel)
then show ?thesis
using 〈linear f 〉 negligible linear singular image negligible imp measure0 False
by (auto simp: lmeasurable iff has integral negligible UNIV )

next
case True
then obtain h where linear h and hf :

∧
x . h (f x ) = x and fh:

∧
x . f (h x )

= x
using 〈linear f 〉 linear injective isomorphism by blast

have fBS : (f ‘ S ) ∈ lmeasurable ∧ m ∗ ?µ S = ?µ (f ‘ S )
if bounded S S ∈ lmeasurable for S

proof −
obtain a b where S ⊆ cbox a b
using 〈bounded S 〉 bounded subset cbox symmetric by metis

have fUD : (f ‘
⋃
D) ∈ lmeasurable ∧ ?µ (f ‘

⋃
D) = (m ∗ ?µ (

⋃
D))

if countable D
and cbox :

∧
K . K ∈ D =⇒ K ⊆ cbox a b ∧ K 6= {} ∧ (∃ c d . K = cbox

c d)
and intint : pairwise (λA B . interior A ∩ interior B = {}) D

for D
proof −
have conv :

∧
K . K ∈ D =⇒ convex K

using cbox convex box (1 ) by blast
have neg : negligible (g ‘ K ∩ g ‘ L) if linear g K ∈ D L ∈ D K 6= L
for K L and g :: ′n⇒ ′n

proof (cases inj g)
case True
have negligible (frontier(g ‘ K ∩ g ‘ L) ∪ interior(g ‘ K ∩ g ‘ L))
proof (rule negligible Un)
show negligible (frontier (g ‘ K ∩ g ‘ L))

by (simp add : negligible convex frontier convex Int conv convex linear image
that)

next
have ∀ p N . pairwise p N = (∀Na. (Na:: ′n set) ∈ N −→ (∀Nb. Nb ∈ N
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∧ Na 6= Nb −→ p Na Nb))
by (metis pairwise def )

then have interior K ∩ interior L = {}
using intint that(2 ) that(3 ) that(4 ) by presburger

then show negligible (interior (g ‘ K ∩ g ‘ L))
by (metis True empty imp negligible image Int image empty interior Int

interior injective linear image that(1 ))
qed
moreover have g ‘ K ∩ g ‘ L ⊆ frontier (g ‘ K ∩ g ‘ L) ∪ interior (g ‘

K ∩ g ‘ L)
by (metis Diff partition Int commute calculation closure Un frontier fron-

tier def inf .absorb iff2 inf bot right inf sup absorb negligible Un eq open interior
open not negligible sup commute)

ultimately show ?thesis
by (rule negligible subset)

next
case False
then show ?thesis
by (simp add : negligible Int negligible linear singular image 〈linear g〉)

qed
have negf : negligible ((f ‘ K ) ∩ (f ‘ L))
and negid : negligible (K ∩ L) if K ∈ D L ∈ D K 6= L for K L
using neg [OF 〈linear f 〉] neg [OF linear id ] that by auto

show ?thesis
proof (cases finite D)
case True
then have ?µ (

⋃
x∈D. f ‘ x ) = (

∑
x∈D. ?µ (f ‘ x ))

using 〈linear f 〉 cbox measurable linear image interval negf
by (blast intro: measure negligible finite Union image [unfolded pair-

wise def ])
also have . . . = (

∑
k∈D. m ∗ ?µ k)

by (metis (no types, lifting) cbox im sum.cong)
also have . . . = m ∗ ?µ (

⋃
D)

unfolding sum distrib left [symmetric]
by (metis True cbox lmeasurable cbox measure negligible finite Union

[unfolded pairwise def ] negid)
finally show ?thesis

by (metis True 〈linear f 〉 cbox image Union fmeasurable.finite UN
measurable linear image interval)

next
case False
with 〈countable D〉 obtain X :: nat ⇒ ′n set where S : bij betw X UNIV

D
using bij betw from nat into by blast

then have eq : (
⋃
D) = (

⋃
n. X n) (f ‘

⋃
D) = (

⋃
n. f ‘ X n)

by (auto simp: bij betw def )
have meas:

∧
K . K ∈ D =⇒ K ∈ lmeasurable

using cbox by blast
with S have 1 :

∧
n. X n ∈ lmeasurable
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by (auto simp: bij betw def )
have 2 : pairwise (λm n. negligible (X m ∩ X n)) UNIV

using S unfolding bij betw def pairwise def by (metis injD negid
range eqI )

have bounded (
⋃
D)

by (meson Sup least bounded cbox bounded subset cbox )
then have 3 : bounded (

⋃
n. X n)

using S unfolding bij betw def by blast
have (

⋃
n. X n) ∈ lmeasurable

by (rule measurable countable negligible Union bounded [OF 1 2 3 ])
with S have f1 :

∧
n. f ‘ (X n) ∈ lmeasurable

unfolding bij betw def by (metis assms(1 ) cbox measurable linear image interval
rangeI )

have f2 : pairwise (λm n. negligible (f ‘ (X m) ∩ f ‘ (X n))) UNIV
using S unfolding bij betw def pairwise def by (metis injD negf rangeI )
have bounded (

⋃
D)

by (meson Sup least bounded cbox bounded subset cbox )
then have f3 : bounded (

⋃
n. f ‘ X n)

using S unfolding bij betw def
by (metis bounded linear image linear linear assms(1 ) image Union

range composition)
have (λn. ?µ (X n)) sums ?µ (

⋃
n. X n)

by (rule measure countable negligible Union bounded [OF 1 2 3 ])
have meq : ?µ (

⋃
n. f ‘ X n) = m ∗ ?µ (

⋃
(X ‘ UNIV ))

proof (rule sums unique2 [OF measure countable negligible Union bounded
[OF f1 f2 f3 ]])

have m:
∧
n. ?µ (f ‘ X n) = (m ∗ ?µ (X n))

using S unfolding bij betw def by (metis cbox im rangeI )
show (λn. ?µ (f ‘ X n)) sums (m ∗ ?µ (

⋃
(X ‘ UNIV )))

unfolding m
using measure countable negligible Union bounded [OF 1 2 3 ] sums mult

by blast
qed
show ?thesis
using measurable countable negligible Union bounded [OF f1 f2 f3 ] meq
by (auto simp: eq [symmetric])

qed
qed
show ?thesis
unfolding completion.fmeasurable measure inner outer le

proof (intro conjI allI impI )
fix e :: real
assume e > 0
have 1 : cbox a b − S ∈ lmeasurable
by (simp add : fmeasurable.Diff that)

have 2 : 0 < e / (1 + |m|)
using 〈e > 0 〉 by (simp add : field split simps abs add one gt zero)

obtain D
where countable D
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and cbox :
∧
K . K ∈ D =⇒ K ⊆ cbox a b ∧ K 6= {} ∧ (∃ c d . K = cbox

c d)
and intdisj : pairwise (λA B . interior A ∩ interior B = {}) D
and DD : cbox a b − S ⊆

⋃
D

⋃
D ∈ lmeasurable

and le: ?µ (
⋃
D) ≤ ?µ (cbox a b − S ) + e/(1 + |m|)

by (rule measurable outer intervals bounded [of cbox a b − S a b e/(1 +
|m|)]; use 1 2 pairwise def in force)

show ∃T ∈ lmeasurable. T ⊆ f ‘ S ∧ m ∗ ?µ S − e ≤ ?µ T
proof (intro bexI conjI )
show f ‘ (cbox a b) − f ‘ (

⋃
D) ⊆ f ‘ S

using 〈cbox a b − S ⊆
⋃
D〉 by force

have m ∗ ?µ S − e ≤ m ∗ (?µ S − e / (1 + |m|))
using 〈m ≥ 0 〉 〈e > 0 〉 by (simp add : field simps)

also have . . . ≤ ?µ (f ‘ cbox a b) − ?µ (f ‘ (
⋃
D))

proof −
have ?µ (cbox a b − S ) = ?µ (cbox a b) − ?µ S

by (simp add : measurable measure Diff 〈S ⊆ cbox a b〉 fmeasurableD
that(2 ))

then have (?µ S − e / (1 + m)) ≤ (content (cbox a b) − ?µ (
⋃
D))

using 〈m ≥ 0 〉 le by auto
then show ?thesis
using 〈m ≥ 0 〉 〈e > 0 〉

by (simp add : mult left mono im fUD [OF 〈countable D〉 cbox intdisj ]
flip: right diff distrib)

qed
also have . . . = ?µ (f ‘ cbox a b − f ‘

⋃
D)

proof (rule measurable measure Diff [symmetric])
show f ‘ cbox a b ∈ lmeasurable
by (simp add : assms(1 ) measurable linear image interval)

show f ‘
⋃
D ∈ sets lebesgue

by (simp add : 〈countable D〉 cbox fUD fmeasurableD intdisj )
show f ‘

⋃
D ⊆ f ‘ cbox a b

by (simp add : Sup le iff cbox image mono)
qed
finally show m ∗ ?µ S − e ≤ ?µ (f ‘ cbox a b − f ‘

⋃
D) .

show f ‘ cbox a b − f ‘
⋃
D ∈ lmeasurable

by (simp add : fUD 〈countable D〉 〈linear f 〉 cbox fmeasurable.Diff intdisj
measurable linear image interval)

qed
next
fix e :: real
assume e > 0
have em: 0 < e / (1 + |m|)
using 〈e > 0 〉 by (simp add : field split simps abs add one gt zero)

obtain D
where countable D
and cbox :

∧
K . K ∈ D =⇒ K ⊆ cbox a b ∧ K 6= {} ∧ (∃ c d . K = cbox

c d)
and intdisj : pairwise (λA B . interior A ∩ interior B = {}) D
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and DD : S ⊆
⋃
D

⋃
D ∈ lmeasurable

and le: ?µ (
⋃
D) ≤ ?µ S + e/(1 + |m|)

by (rule measurable outer intervals bounded [of S a b e/(1 + |m|)]; use 〈S
∈ lmeasurable〉 〈S ⊆ cbox a b〉 em in force)

show ∃U ∈ lmeasurable. f ‘ S ⊆ U ∧ ?µ U ≤ m ∗ ?µ S + e
proof (intro bexI conjI )
show f ‘ S ⊆ f ‘ (

⋃
D)

by (simp add : DD(1 ) image mono)
have ?µ (f ‘

⋃
D) ≤ m ∗ (?µ S + e / (1 + |m|))

using 〈m ≥ 0 〉 le mult left mono
by (auto simp: fUD 〈countable D〉 〈linear f 〉 cbox fmeasurable.Diff intdisj

measurable linear image interval)
also have . . . ≤ m ∗ ?µ S + e

using 〈m ≥ 0 〉 〈e > 0 〉 by (simp add : fUD [OF 〈countable D〉 cbox
intdisj ] field simps)

finally show ?µ (f ‘
⋃
D) ≤ m ∗ ?µ S + e .

show f ‘
⋃
D ∈ lmeasurable

by (simp add : 〈countable D〉 cbox fUD intdisj )
qed

qed
qed
show ?thesis
unfolding has measure limit iff

proof (intro allI impI )
fix e :: real
assume e > 0
obtain B where B > 0 and B :∧

a b. ball 0 B ⊆ cbox a b =⇒ |?µ (S ∩ cbox a b) − ?µ S | < e / (1 + |m|)
using has measure limit [OF S ] 〈e > 0 〉 by (metis abs add one gt zero

zero less divide iff )
obtain c d :: ′n where cd : ball 0 B ⊆ cbox c d
by (metis bounded subset cbox symmetric bounded ball)

with B have less: |?µ (S ∩ cbox c d) − ?µ S | < e / (1 + |m|) .
obtain D where D > 0 and D : cbox c d ⊆ ball 0 D
by (metis bounded cbox bounded subset ballD)

obtain C where C > 0 and C :
∧
x . norm (f x ) ≤ C ∗ norm x

using linear bounded pos 〈linear f 〉 by blast
have f ‘ S ∩ cbox a b ∈ lmeasurable ∧

|?µ (f ‘ S ∩ cbox a b) − m ∗ ?µ S | < e
if ball 0 (D∗C ) ⊆ cbox a b for a b

proof −
have bounded (S ∩ h ‘ cbox a b)
by (simp add : bounded linear image linear linear 〈linear h〉 bounded Int)

moreover have Shab: S ∩ h ‘ cbox a b ∈ lmeasurable
by (simp add : S 〈linear h〉 fmeasurable.Int measurable linear image interval)
moreover have fim: f ‘ (S ∩ h ‘ (cbox a b)) = (f ‘ S ) ∩ cbox a b
by (auto simp: hf rev image eqI fh)

ultimately have 1 : (f ‘ S ) ∩ cbox a b ∈ lmeasurable
and 2 : ?µ ((f ‘ S ) ∩ cbox a b) = m ∗ ?µ (S ∩ h ‘ cbox a b)
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using fBS [of S ∩ (h ‘ (cbox a b))] by auto
have ∗: [[|z − m| < e; z ≤ w ; w ≤ m]] =⇒ |w − m| ≤ e
for w z m and e::real by auto

have meas adiff : |?µ (S ∩ h ‘ cbox a b) − ?µ S | ≤ e / (1 + |m|)
proof (rule ∗ [OF less])
show ?µ (S ∩ cbox c d) ≤ ?µ (S ∩ h ‘ cbox a b)
proof (rule measure mono fmeasurable [OF Shab])
have f ‘ ball 0 D ⊆ ball 0 (C ∗ D)
using C 〈C > 0 〉

apply (clarsimp simp: algebra simps)
by (meson le less trans linordered comm semiring strict class.comm mult strict left mono)
then have f ‘ ball 0 D ⊆ cbox a b
by (metis mult .commute order trans that)

have ball 0 D ⊆ h ‘ cbox a b
by (metis 〈f ‘ ball 0 D ⊆ cbox a b〉 hf image subset iff subsetI )

then show S ∩ cbox c d ⊆ S ∩ h ‘ cbox a b
using D by blast

next
show S ∩ cbox c d ∈ sets lebesgue
using S fmeasurable cbox by blast

qed
next
show ?µ (S ∩ h ‘ cbox a b) ≤ ?µ S
by (simp add : S Shab fmeasurableD measure mono fmeasurable)

qed
have |?µ (f ‘ S ∩ cbox a b) − m ∗ ?µ S | ≤ |?µ S − ?µ (S ∩ h ‘ cbox a b)|

∗ m
by (metis 2 〈m ≥ 0 〉 abs minus commute abs mult pos mult .commute

order refl right diff distrib ′)
also have . . . ≤ e / (1 + m) ∗ m
by (metis 〈m ≥ 0 〉 abs minus commute abs of nonneg meas adiff mult .commute

mult left mono)
also have . . . < e
using 〈e > 0 〉 〈m ≥ 0 〉 by (simp add : field simps)

finally have |?µ (f ‘ S ∩ cbox a b) − m ∗ ?µ S | < e .
with 1 show ?thesis by auto

qed
then show ∃B>0 . ∀ a b. ball 0 B ⊆ cbox a b −→

f ‘ S ∩ cbox a b ∈ lmeasurable ∧
|?µ (f ‘ S ∩ cbox a b) − m ∗ ?µ S | < e

using 〈C>0 〉 〈D>0 〉 by (metis mult zero left mult less iff1 )
qed

qed
qed

6.19.17 Lemmas about absolute integrability

lemma absolutely integrable linear :
fixes f :: ′m::euclidean space ⇒ ′n::euclidean space
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and h :: ′n::euclidean space ⇒ ′p::euclidean space
shows f absolutely integrable on s =⇒ bounded linear h =⇒ (h ◦ f ) absolutely integrable on

s
using integrable bounded linear [of h lebesgue λx . indicator s x ∗R f x ]
by (simp add : linear simps[of h] set integrable def )

lemma absolutely integrable sum:
fixes f :: ′a ⇒ ′n::euclidean space ⇒ ′m::euclidean space
assumes finite T and

∧
a. a ∈ T =⇒ (f a) absolutely integrable on S

shows (λx . sum (λa. f a x ) T ) absolutely integrable on S
using assms by induction auto

lemma absolutely integrable integrable bound :
fixes f :: ′n::euclidean space ⇒ ′m::euclidean space
assumes le:

∧
x . x∈S =⇒ norm (f x ) ≤ g x and f : f integrable on S and g : g

integrable on S
shows f absolutely integrable on S
unfolding set integrable def

proof (rule Bochner Integration.integrable bound)
have g absolutely integrable on S
unfolding absolutely integrable on def

proof
show (λx . norm (g x )) integrable on S
using le norm ge zero[of f ]
by (intro integrable spike finite[OF g , of {}])

(auto intro!: abs of nonneg intro: order trans simp del : norm ge zero)
qed fact
then show integrable lebesgue (λx . indicat real S x ∗R g x )
by (simp add : set integrable def )

show (λx . indicat real S x ∗R f x ) ∈ borel measurable lebesgue
using f by (auto intro: has integral implies lebesgue measurable simp: inte-

grable on def )
qed (use le in 〈force intro!: always eventually split : split indicator 〉)

corollary absolutely integrable on const [simp]:
fixes c :: ′a::euclidean space
assumes S ∈ lmeasurable
shows (λx . c) absolutely integrable on S
by (metis (full types) assms absolutely integrable integrable bound integrable on const

order refl)

lemma absolutely integrable continuous:
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
shows continuous on (cbox a b) f =⇒ f absolutely integrable on cbox a b
using absolutely integrable integrable bound
by (simp add : absolutely integrable on def continuous on norm integrable continuous)

lemma absolutely integrable continuous real :
fixes f :: real ⇒ ′b::euclidean space

Equivalence{_}{\kern 0pt}Lebesgue{_}{\kern 0pt}Henstock{_}{\kern 0pt}Integration.html


2216

shows continuous on {a..b} f =⇒ f absolutely integrable on {a..b}
by (metis absolutely integrable continuous box real(2 ))

lemma continuous imp integrable:
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes continuous on (cbox a b) f
shows integrable (lebesgue on (cbox a b)) f

proof −
have f absolutely integrable on cbox a b
by (simp add : absolutely integrable continuous assms)

then show ?thesis
by (simp add : integrable restrict space set integrable def )

qed

lemma continuous imp integrable real :
fixes f :: real ⇒ ′b::euclidean space
assumes continuous on {a..b} f
shows integrable (lebesgue on {a..b}) f
by (metis assms continuous imp integrable interval cbox )

6.19.18 Componentwise

proposition absolutely integrable componentwise iff :
shows f absolutely integrable on A←→ (∀ b∈Basis. (λx . f x · b) absolutely integrable on

A)
proof −
have ∗: (λx . norm (f x )) integrable on A ←→ (∀ b∈Basis. (λx . norm (f x · b))

integrable on A) (is ?lhs = ?rhs)
if f integrable on A

proof
assume ?lhs
then show ?rhs
by (metis absolutely integrable on def Topology Euclidean Space.norm nth le

absolutely integrable integrable bound integrable component that)
next
assume R: ?rhs
have f absolutely integrable on A
proof (rule absolutely integrable integrable bound)
show (λx .

∑
i∈Basis. norm (f x · i)) integrable on A

using R by (force intro: integrable sum)
qed (use that norm le l1 in auto)
then show ?lhs
using absolutely integrable on def by auto

qed
show ?thesis
unfolding absolutely integrable on def
by (simp add : integrable componentwise iff [symmetric] ball conj distrib ∗ cong :

conj cong)
qed
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lemma absolutely integrable componentwise:
shows (

∧
b. b ∈ Basis =⇒ (λx . f x · b) absolutely integrable on A) =⇒ f abso-

lutely integrable on A
using absolutely integrable componentwise iff by blast

lemma absolutely integrable component :
f absolutely integrable on A =⇒ (λx . f x · (b :: ′b :: euclidean space)) abso-

lutely integrable on A
by (drule absolutely integrable linear [OF bounded linear inner left [of b]]) (simp

add : o def )

lemma absolutely integrable scaleR left :
fixes f :: ′n::euclidean space ⇒ ′m::euclidean space
assumes f absolutely integrable on S

shows (λx . c ∗R f x ) absolutely integrable on S
proof −
have (λx . c ∗R x ) o f absolutely integrable on S
by (simp add : absolutely integrable linear assms bounded linear scaleR right)

then show ?thesis
using assms by blast

qed

lemma absolutely integrable scaleR right :
assumes f absolutely integrable on S
shows (λx . f x ∗R c) absolutely integrable on S
using assms by blast

lemma absolutely integrable norm:
fixes f :: ′a :: euclidean space ⇒ ′b :: euclidean space
assumes f absolutely integrable on S
shows (norm o f ) absolutely integrable on S
using assms by (simp add : absolutely integrable on def o def )

lemma absolutely integrable abs:
fixes f :: ′a :: euclidean space ⇒ ′b :: euclidean space
assumes f absolutely integrable on S
shows (λx .

∑
i∈Basis. |f x · i | ∗R i) absolutely integrable on S

(is ?g absolutely integrable on S )
proof −
have ∗: (λy .

∑
j∈Basis. if j = i then y ∗R j else 0 ) ◦

(λx . norm (
∑

j∈Basis. if j = i then (x · i) ∗R j else 0 )) ◦ f
absolutely integrable on S

if i ∈ Basis for i
proof −
have bounded linear (λy .

∑
j∈Basis. if j = i then y ∗R j else 0 )

by (simp add : linear linear algebra simps linearI )
moreover have (λx . norm (

∑
j∈Basis. if j = i then (x · i) ∗R j else 0 )) ◦ f
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absolutely integrable on S
using assms 〈i ∈ Basis〉

unfolding o def
by (intro absolutely integrable norm [unfolded o def ])

(auto simp: algebra simps dest : absolutely integrable component)
ultimately show ?thesis
by (subst comp assoc) (blast intro: absolutely integrable linear)

qed
have eq : ?g =

(λx .
∑

i∈Basis. ((λy .
∑

j∈Basis. if j = i then y ∗R j else 0 ) ◦
(λx . norm(

∑
j∈Basis. if j = i then (x · i) ∗R j else 0 )) ◦ f ) x )

by (simp)
show ?thesis
unfolding eq
by (rule absolutely integrable sum) (force simp: intro!: ∗)+

qed

lemma abs absolutely integrableI 1 :
fixes f :: ′a :: euclidean space ⇒ real
assumes f : f integrable on A and (λx . |f x |) integrable on A
shows f absolutely integrable on A
by (rule absolutely integrable integrable bound [OF assms]) auto

lemma abs absolutely integrableI :
assumes f : f integrable on S and fcomp: (λx .

∑
i∈Basis. |f x · i | ∗R i) inte-

grable on S
shows f absolutely integrable on S

proof −
have (λx . (f x · i) ∗R i) absolutely integrable on S if i ∈ Basis for i
proof −
have (λx . |f x · i |) integrable on S
using assms integrable component [OF fcomp, where y=i ] that by simp

then have (λx . f x · i) absolutely integrable on S
using abs absolutely integrableI 1 f integrable component by blast

then show ?thesis
by (rule absolutely integrable scaleR right)

qed
then have (λx .

∑
i∈Basis. (f x · i) ∗R i) absolutely integrable on S

by (simp add : absolutely integrable sum)
then show ?thesis
by (simp add : euclidean representation)

qed

lemma absolutely integrable abs iff :
f absolutely integrable on S ←→
f integrable on S ∧ (λx .

∑
i∈Basis. |f x · i | ∗R i) integrable on S

(is ?lhs = ?rhs)
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proof
assume ?lhs then show ?rhs
using absolutely integrable abs absolutely integrable on def by blast

next
assume ?rhs
moreover
have (λx . if x ∈ S then

∑
i∈Basis. |f x · i | ∗R i else 0 ) = (λx .

∑
i∈Basis. |(if

x ∈ S then f x else 0 ) · i | ∗R i)
by force

ultimately show ?lhs
by (simp only : absolutely integrable restrict UNIV [of S , symmetric] inte-

grable restrict UNIV [of S , symmetric] abs absolutely integrableI )
qed

lemma absolutely integrable max :
fixes f :: ′n::euclidean space ⇒ ′m::euclidean space
assumes f absolutely integrable on S g absolutely integrable on S
shows (λx .

∑
i∈Basis. max (f x · i) (g x · i) ∗R i)

absolutely integrable on S
proof −
have (λx .

∑
i∈Basis. max (f x · i) (g x · i) ∗R i) =

(λx . (1/2 ) ∗R (f x + g x + (
∑

i∈Basis. |f x · i − g x · i | ∗R i)))
proof (rule ext)
fix x
have (

∑
i∈Basis. max (f x · i) (g x · i) ∗R i) = (

∑
i∈Basis. ((f x · i + g x

· i + |f x · i − g x · i |) / 2 ) ∗R i)
by (force intro: sum.cong)

also have ... = (1 / 2 ) ∗R (
∑

i∈Basis. (f x · i + g x · i + |f x · i − g x · i |)
∗R i)

by (simp add : scaleR right .sum)
also have ... = (1 / 2 ) ∗R (f x + g x + (

∑
i∈Basis. |f x · i − g x · i | ∗R i))

by (simp add : sum.distrib algebra simps euclidean representation)
finally
show (

∑
i∈Basis. max (f x · i) (g x · i) ∗R i) =

(1 / 2 ) ∗R (f x + g x + (
∑

i∈Basis. |f x · i − g x · i | ∗R i)) .
qed
moreover have (λx . (1 / 2 ) ∗R (f x + g x + (

∑
i∈Basis. |f x · i − g x · i | ∗R

i)))
absolutely integrable on S

using absolutely integrable abs [OF set integral diff (1 ) [OF assms]]
by (intro set integral add absolutely integrable scaleR left assms) (simp add :

algebra simps)
ultimately show ?thesis by metis

qed

corollary absolutely integrable max 1 :
fixes f :: ′n::euclidean space ⇒ real
assumes f absolutely integrable on S g absolutely integrable on S
shows (λx . max (f x ) (g x )) absolutely integrable on S
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using absolutely integrable max [OF assms] by simp

lemma absolutely integrable min:
fixes f :: ′n::euclidean space ⇒ ′m::euclidean space
assumes f absolutely integrable on S g absolutely integrable on S
shows (λx .

∑
i∈Basis. min (f x · i) (g x · i) ∗R i)

absolutely integrable on S
proof −
have (λx .

∑
i∈Basis. min (f x · i) (g x · i) ∗R i) =

(λx . (1/2 ) ∗R (f x + g x − (
∑

i∈Basis. |f x · i − g x · i | ∗R i)))
proof (rule ext)
fix x
have (

∑
i∈Basis. min (f x · i) (g x · i) ∗R i) = (

∑
i∈Basis. ((f x · i + g x ·

i − |f x · i − g x · i |) / 2 ) ∗R i)
by (force intro: sum.cong)

also have ... = (1 / 2 ) ∗R (
∑

i∈Basis. (f x · i + g x · i − |f x · i − g x · i |)
∗R i)

by (simp add : scaleR right .sum)
also have ... = (1 / 2 ) ∗R (f x + g x − (

∑
i∈Basis. |f x · i − g x · i | ∗R i))

by (simp add : sum.distrib sum subtractf algebra simps euclidean representation)
finally
show (

∑
i∈Basis. min (f x · i) (g x · i) ∗R i) =

(1 / 2 ) ∗R (f x + g x − (
∑

i∈Basis. |f x · i − g x · i | ∗R i)) .
qed
moreover have (λx . (1 / 2 ) ∗R (f x + g x − (

∑
i∈Basis. |f x · i − g x · i | ∗R

i)))
absolutely integrable on S

using absolutely integrable abs [OF set integral diff (1 ) [OF assms]]
by (intro set integral add set integral diff absolutely integrable scaleR left assms)

(simp add : algebra simps)
ultimately show ?thesis by metis

qed

corollary absolutely integrable min 1 :
fixes f :: ′n::euclidean space ⇒ real
assumes f absolutely integrable on S g absolutely integrable on S
shows (λx . min (f x ) (g x )) absolutely integrable on S
using absolutely integrable min [OF assms] by simp

lemma nonnegative absolutely integrable:
fixes f :: ′a :: euclidean space ⇒ ′b :: euclidean space
assumes f integrable on A and comp:

∧
x b. [[x ∈ A; b ∈ Basis]] =⇒ 0 ≤ f x · b

shows f absolutely integrable on A
proof −
have (λx . (f x · i) ∗R i) absolutely integrable on A if i ∈ Basis for i
proof −
have (λx . f x · i) integrable on A
by (simp add : assms(1 ) integrable component)

then have (λx . f x · i) absolutely integrable on A



Equivalence Lebesgue Henstock Integration.thy 2221

by (metis that comp nonnegative absolutely integrable 1 )
then show ?thesis
by (rule absolutely integrable scaleR right)

qed
then have (λx .

∑
i∈Basis. (f x · i) ∗R i) absolutely integrable on A

by (simp add : absolutely integrable sum)
then show ?thesis
by (simp add : euclidean representation)

qed

lemma absolutely integrable component ubound :
fixes f :: ′a :: euclidean space ⇒ ′b :: euclidean space
assumes f : f integrable on A and g : g absolutely integrable on A

and comp:
∧
x b. [[x ∈ A; b ∈ Basis]] =⇒ f x · b ≤ g x · b

shows f absolutely integrable on A
proof −
have (λx . g x − (g x − f x )) absolutely integrable on A
proof (rule set integral diff [OF g nonnegative absolutely integrable])
show (λx . g x − f x ) integrable on A
using Henstock Kurzweil Integration.integrable diff absolutely integrable on def

f g by blast
qed (simp add : comp inner diff left)
then show ?thesis
by simp

qed

lemma absolutely integrable component lbound :
fixes f :: ′a :: euclidean space ⇒ ′b :: euclidean space
assumes f : f absolutely integrable on A and g : g integrable on A

and comp:
∧
x b. [[x ∈ A; b ∈ Basis]] =⇒ f x · b ≤ g x · b

shows g absolutely integrable on A
proof −
have (λx . f x + (g x − f x )) absolutely integrable on A
proof (rule set integral add [OF f nonnegative absolutely integrable])
show (λx . g x − f x ) integrable on A
using Henstock Kurzweil Integration.integrable diff absolutely integrable on def

f g by blast
qed (simp add : comp inner diff left)
then show ?thesis
by simp

qed

lemma integrable on 1 iff :
fixes f :: ′a::euclidean space ⇒ realˆ1
shows f integrable on S ←→ (λx . f x $ 1 ) integrable on S
by (auto simp: integrable componentwise iff [of f ] Basis vec def cart eq inner axis)

lemma integral on 1 eq :
fixes f :: ′a::euclidean space ⇒ realˆ1

Equivalence{_}{\kern 0pt}Lebesgue{_}{\kern 0pt}Henstock{_}{\kern 0pt}Integration.html


2222

shows integral S f = vec (integral S (λx . f x $ 1 ))
by (cases f integrable on S ) (simp all add : integrable on 1 iff vec eq iff not integrable integral)

lemma absolutely integrable on 1 iff :
fixes f :: ′a::euclidean space ⇒ realˆ1
shows f absolutely integrable on S ←→ (λx . f x $ 1 ) absolutely integrable on S
unfolding absolutely integrable on def
by (auto simp: integrable on 1 iff norm real)

lemma absolutely integrable absolutely integrable lbound :
fixes f :: ′m::euclidean space ⇒ real
assumes f : f integrable on S and g : g absolutely integrable on S
and ∗:

∧
x . x ∈ S =⇒ g x ≤ f x

shows f absolutely integrable on S
by (rule absolutely integrable component lbound [OF g f ]) (simp add : ∗)

lemma absolutely integrable absolutely integrable ubound :
fixes f :: ′m::euclidean space ⇒ real
assumes fg : f integrable on S g absolutely integrable on S
and ∗:

∧
x . x ∈ S =⇒ f x ≤ g x

shows f absolutely integrable on S
by (rule absolutely integrable component ubound [OF fg ]) (simp add : ∗)

lemma has integral vec1 I cbox :
fixes f :: realˆ1 ⇒ ′a::real normed vector
assumes (f has integral y) (cbox a b)
shows ((f ◦ vec) has integral y) {a$1 ..b$1}

proof −
have ((λx . f (vec x )) has integral (1 / 1 ) ∗R y) ((λx . x $ 1 ) ‘ cbox a b)
proof (rule has integral twiddle)
show ∃w z ::realˆ1 . vec ‘ cbox u v = cbox w z

content (vec ‘ cbox u v :: (realˆ1 ) set) = 1 ∗ content (cbox u v) for u v
unfolding vec cbox 1 eq
by (auto simp: content cbox if cart interval eq empty cart)

show ∃w z . (λx . x $ 1 ) ‘ cbox u v = cbox w z for u v :: realˆ1
using vec nth cbox 1 eq by blast

qed (auto simp: continuous vec assms)
then show ?thesis
by (simp add : o def )

qed

lemma has integral vec1 I :
fixes f :: realˆ1 ⇒ ′a::real normed vector
assumes (f has integral y) S
shows (f ◦ vec has integral y) ((λx . x $ 1 ) ‘ S )

proof −
have ∗: ∃ z . ((λx . if x ∈ (λx . x $ 1 ) ‘ S then (f ◦ vec) x else 0 ) has integral z )
{a..b} ∧ norm (z − y) < e

if int :
∧
a b. ball 0 B ⊆ cbox a b =⇒



Equivalence Lebesgue Henstock Integration.thy 2223

(∃ z . ((λx . if x ∈ S then f x else 0 ) has integral z ) (cbox a b) ∧
norm (z − y) < e)

and B : ball 0 B ⊆ {a..b} for e B a b
proof −
have [simp]: (∃ y∈S . x = y $ 1 ) ←→ vec x ∈ S for x
by force

have B ′: ball (0 ::realˆ1 ) B ⊆ cbox (vec a) (vec b)
using B by (simp add : Basis vec def cart eq inner axis [symmetric] mem box

norm real subset iff )
show ?thesis
using int [OF B ′] by (auto simp: image iff o def cong : if cong dest !: has integral vec1 I cbox )

qed
show ?thesis
using assms
apply (subst has integral alt)
apply (subst (asm) has integral alt)
apply (simp add : has integral vec1 I cbox split : if split asm)
subgoal by (metis vector one nth)
subgoal
apply (erule all forward imp forward ex forward asm rl)+
by (blast intro!: ∗)+

done
qed

lemma has integral vec1 nth cbox :
fixes f :: real ⇒ ′a::real normed vector
assumes (f has integral y) {a..b}
shows ((λx ::realˆ1 . f (x$1 )) has integral y) (cbox (vec a) (vec b))

proof −
have ((λx ::realˆ1 . f (x$1 )) has integral (1 / 1 ) ∗R y) (vec ‘ cbox a b)
proof (rule has integral twiddle)
show ∃w z ::real . (λx . x $ 1 ) ‘ cbox u v = cbox w z

content ((λx . x $ 1 ) ‘ cbox u v) = 1 ∗ content (cbox u v) for u v ::realˆ1
unfolding vec cbox 1 eq by (auto simp: content cbox if cart interval eq empty cart)
show ∃w z ::realˆ1 . vec ‘ cbox u v = cbox w z for u v :: real
using vec cbox 1 eq by auto

qed (auto simp: continuous vec assms)
then show ?thesis
using vec cbox 1 eq by auto

qed

lemma has integral vec1 D cbox :
fixes f :: realˆ1 ⇒ ′a::real normed vector
assumes ((f ◦ vec) has integral y) {a$1 ..b$1}
shows (f has integral y) (cbox a b)
by (metis (mono tags, lifting) assms comp apply has integral eq has integral vec1 nth cbox

vector one nth)

lemma has integral vec1 D :
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fixes f :: realˆ1 ⇒ ′a::real normed vector
assumes ((f ◦ vec) has integral y) ((λx . x $ 1 ) ‘ S )
shows (f has integral y) S

proof −
have ∗: ∃ z . ((λx . if x ∈ S then f x else 0 ) has integral z ) (cbox a b) ∧ norm (z
− y) < e

if int :
∧
a b. ball 0 B ⊆ {a..b} =⇒

(∃ z . ((λx . if x ∈ (λx . x $ 1 ) ‘ S then (f ◦ vec) x else 0 )
has integral z ) {a..b} ∧ norm (z − y) < e)

and B : ball 0 B ⊆ cbox a b for e B and a b::realˆ1
proof −
have B ′: ball 0 B ⊆ {a$1 ..b$1}
proof (clarsimp)
fix t
assume |t | < B then show a $ 1 ≤ t ∧ t ≤ b $ 1
using subsetD [OF B ]
by (metis (mono tags, hide lams) mem ball 0 mem box cart(2 ) norm real

vec component)
qed
have eq : (λx . if vec x ∈ S then f (vec x ) else 0 ) = (λx . if x ∈ S then f x else

0 ) ◦ vec
by force

have [simp]: (∃ y∈S . x = y $ 1 ) ←→ vec x ∈ S for x
by force

show ?thesis
using int [OF B ′] by (auto simp: image iff eq cong : if cong dest !: has integral vec1 D cbox )

qed
show ?thesis
using assms
apply (subst has integral alt)
apply (subst (asm) has integral alt)
apply (simp add : has integral vec1 D cbox eq cbox split : if split asm, blast)
apply (intro conjI impI )
subgoal by (metis vector one nth)
apply (erule thin rl)
apply (erule all forward ex forward conj forward)+
by (blast intro!: ∗)+

qed

lemma integral vec1 eq :
fixes f :: realˆ1 ⇒ ′a::real normed vector
shows integral S f = integral ((λx . x $ 1 ) ‘ S ) (f ◦ vec)
using has integral vec1 I [of f ] has integral vec1 D [of f ]
by (metis has integral iff not integrable integral)

lemma absolutely integrable drop:
fixes f :: realˆ1 ⇒ ′b::euclidean space
shows f absolutely integrable on S ←→ (f ◦ vec) absolutely integrable on (λx . x
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$ 1 ) ‘ S
unfolding absolutely integrable on def integrable on def

proof safe
fix y r
assume (f has integral y) S ((λx . norm (f x )) has integral r) S
then show ∃ y . (f ◦ vec has integral y) ((λx . x $ 1 ) ‘ S )

∃ y . ((λx . norm ((f ◦ vec) x )) has integral y) ((λx . x $ 1 ) ‘ S )
by (force simp: o def dest !: has integral vec1 I )+

next
fix y :: ′b and r :: real
assume (f ◦ vec has integral y) ((λx . x $ 1 ) ‘ S )

((λx . norm ((f ◦ vec) x )) has integral r) ((λx . x $ 1 ) ‘ S )
then show ∃ y . (f has integral y) S ∃ y . ((λx . norm (f x )) has integral y) S
by (force simp: o def intro: has integral vec1 D)+

qed

6.19.19 Dominated convergence

lemma dominated convergence:
fixes f :: nat ⇒ ′n::euclidean space ⇒ ′m::euclidean space
assumes f :

∧
k . (f k) integrable on S and h: h integrable on S

and le:
∧
k x . x ∈ S =⇒ norm (f k x ) ≤ h x

and conv :
∧
x . x ∈ S =⇒ (λk . f k x ) −−−−→ g x

shows g integrable on S (λk . integral S (f k)) −−−−→ integral S g
proof −
have 3 : h absolutely integrable on S
unfolding absolutely integrable on def

proof
show (λx . norm (h x )) integrable on S
proof (intro integrable spike finite[OF h, of {}] ballI )
fix x assume x ∈ S − {} then show norm (h x ) = h x
by (metis Diff empty abs of nonneg bot set def le norm ge zero order trans

real norm def )
qed auto

qed fact
have 2 : set borel measurable lebesgue S (f k) for k
unfolding set borel measurable def
using f by (auto intro: has integral implies lebesgue measurable simp: inte-

grable on def )
then have 1 : set borel measurable lebesgue S g
unfolding set borel measurable def
by (rule borel measurable LIMSEQ metric) (use conv in 〈auto split : split indicator 〉)
have 4 : AE x in lebesgue. (λi . indicator S x ∗R f i x ) −−−−→ indicator S x ∗R g

x
AE x in lebesgue. norm (indicator S x ∗R f k x ) ≤ indicator S x ∗R h x for k
using conv le by (auto intro!: always eventually split : split indicator)

have g : g absolutely integrable on S
using 1 2 3 4 unfolding set borel measurable def set integrable def
by (rule integrable dominated convergence)
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then show g integrable on S
by (auto simp: absolutely integrable on def )

have (λk . (LINT x :S |lebesgue. f k x )) −−−−→ (LINT x :S |lebesgue. g x )
unfolding set borel measurable def set lebesgue integral def
using 1 2 3 4 unfolding set borel measurable def set lebesgue integral def

set integrable def
by (rule integral dominated convergence)

then show (λk . integral S (f k)) −−−−→ integral S g
using g absolutely integrable integrable bound [OF le f h]
by (subst (asm) (1 2 ) set lebesgue integral eq integral) auto

qed

lemma has integral dominated convergence:
fixes f :: nat ⇒ ′n::euclidean space ⇒ ′m::euclidean space
assumes

∧
k . (f k has integral y k) S h integrable on S∧

k . ∀ x∈S . norm (f k x ) ≤ h x ∀ x∈S . (λk . f k x ) −−−−→ g x
and x : y −−−−→ x

shows (g has integral x ) S
proof −
have int f :

∧
k . (f k) integrable on S

using assms by (auto simp: integrable on def )
have (g has integral (integral S g)) S
by (metis assms(2−4 ) dominated convergence(1 ) has integral integral int f )

moreover have integral S g = x
proof (rule LIMSEQ unique)
show (λi . integral S (f i)) −−−−→ x
using integral unique[OF assms(1 )] x by simp

show (λi . integral S (f i)) −−−−→ integral S g
by (metis assms(2 ) assms(3 ) assms(4 ) dominated convergence(2 ) int f )

qed
ultimately show ?thesis
by simp

qed

lemma dominated convergence integrable 1 :
fixes f :: nat ⇒ ′n::euclidean space ⇒ real
assumes f :

∧
k . f k absolutely integrable on S

and h: h integrable on S
and normg :

∧
x . x ∈ S =⇒ norm(g x ) ≤ (h x )

and lim:
∧
x . x ∈ S =⇒ (λk . f k x ) −−−−→ g x

shows g integrable on S
proof −
have habs: h absolutely integrable on S
using h normg nonnegative absolutely integrable 1 norm ge zero order trans by

blast
let ?f = λn x . (min (max (− h x ) (f n x )) (h x ))
have h0 : h x ≥ 0 if x ∈ S for x
using normg that by force

have leh: norm (?f k x ) ≤ h x if x ∈ S for k x
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using h0 that by force
have limf : (λk . ?f k x ) −−−−→ g x if x ∈ S for x
proof −
have

∧
e y . |f y x − g x | < e =⇒ |min (max (− h x ) (f y x )) (h x ) − g x | < e

using h0 [OF that ] normg [OF that ] by simp
then show ?thesis
using lim [OF that ] by (auto simp add : tendsto iff dist norm elim!: eventu-

ally mono)
qed
show ?thesis
proof (rule dominated convergence [of ?f S h g ])
have (λx . − h x ) absolutely integrable on S
using habs unfolding set integrable def by auto

then show ?f k integrable on S for k
by (intro set lebesgue integral eq integral absolutely integrable min 1 abso-

lutely integrable max 1 f habs)
qed (use assms leh limf in auto)

qed

lemma dominated convergence integrable:
fixes f :: nat ⇒ ′n::euclidean space ⇒ ′m::euclidean space
assumes f :

∧
k . f k absolutely integrable on S

and h: h integrable on S
and normg :

∧
x . x ∈ S =⇒ norm(g x ) ≤ (h x )

and lim:
∧
x . x ∈ S =⇒ (λk . f k x ) −−−−→ g x

shows g integrable on S
using f
unfolding integrable componentwise iff [of g ] absolutely integrable componentwise iff

[where f = f k for k ]
proof clarify
fix b :: ′m
assume fb [rule format ]:

∧
k . ∀ b∈Basis. (λx . f k x · b) absolutely integrable on

S and b: b ∈ Basis
show (λx . g x · b) integrable on S
proof (rule dominated convergence integrable 1 [OF fb h])
fix x
assume x ∈ S
show norm (g x · b) ≤ h x
using norm nth le 〈x ∈ S 〉 b normg order .trans by blast

show (λk . f k x · b) −−−−→ g x · b
using 〈x ∈ S 〉 b lim tendsto componentwise iff by fastforce

qed (use b in auto)
qed

lemma dominated convergence absolutely integrable:
fixes f :: nat ⇒ ′n::euclidean space ⇒ ′m::euclidean space
assumes f :

∧
k . f k absolutely integrable on S

and h: h integrable on S
and normg :

∧
x . x ∈ S =⇒ norm(g x ) ≤ (h x )
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and lim:
∧
x . x ∈ S =⇒ (λk . f k x ) −−−−→ g x

shows g absolutely integrable on S
proof −
have g integrable on S
by (rule dominated convergence integrable [OF assms])

with assms show ?thesis
by (blast intro: absolutely integrable integrable bound [where g=h])

qed

proposition integral countable UN :
fixes f :: realˆ ′m ⇒ realˆ ′n
assumes f : f absolutely integrable on (

⋃
(range s))

and s:
∧
m. s m ∈ sets lebesgue

shows
∧
n. f absolutely integrable on (

⋃
m≤n. s m)

and (λn. integral (
⋃

m≤n. s m) f ) −−−−→ integral (
⋃
(s ‘ UNIV )) f (is ?F

−−−−→ ?I )
proof −
show fU : f absolutely integrable on (

⋃
m≤n. s m) for n

using assms by (blast intro: set integrable subset [OF f ])
have fint : f integrable on (

⋃
(range s))

using absolutely integrable on def f by blast
let ?h = λx . if x ∈

⋃
(s ‘ UNIV ) then norm(f x ) else 0

have (λn. integral UNIV (λx . if x ∈ (
⋃

m≤n. s m) then f x else 0 ))
−−−−→ integral UNIV (λx . if x ∈

⋃
(s ‘ UNIV ) then f x else 0 )

proof (rule dominated convergence)
show (λx . if x ∈ (

⋃
m≤n. s m) then f x else 0 ) integrable on UNIV for n

unfolding integrable restrict UNIV
using fU absolutely integrable on def by blast

show (λx . if x ∈
⋃
(s ‘ UNIV ) then norm(f x ) else 0 ) integrable on UNIV

by (metis (no types) absolutely integrable on def f integrable restrict UNIV )
show

∧
x . (λn. if x ∈ (

⋃
m≤n. s m) then f x else 0 )

−−−−→ (if x ∈
⋃
(s ‘ UNIV ) then f x else 0 )

by (force intro: tendsto eventually eventually sequentiallyI )
qed auto
then show ?F −−−−→ ?I
by (simp only : integral restrict UNIV )

qed

6.19.20 Fundamental Theorem of Calculus for the Lebesgue
integral

For the positive integral we replace continuity with Borel-measurability.

lemma
fixes f :: real ⇒ real
assumes [measurable]: f ∈ borel measurable borel
assumes f :

∧
x . x ∈ {a..b} =⇒ DERIV F x :> f x

∧
x . x ∈ {a..b} =⇒ 0 ≤ f x

and a ≤ b
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shows nn integral FTC Icc: (
∫

+x . ennreal (f x ) ∗ indicator {a .. b} x ∂lborel)
= F b − F a (is ?nn)

and has bochner integral FTC Icc nonneg :
has bochner integral lborel (λx . f x ∗ indicator {a .. b} x ) (F b − F a) (is

?has)
and integral FTC Icc nonneg : (

∫
x . f x ∗ indicator {a .. b} x ∂lborel) = F b −

F a (is ?eq)
and integrable FTC Icc nonneg : integrable lborel (λx . f x ∗ indicator {a .. b}

x ) (is ?int)
proof −
have ∗: (λx . f x ∗ indicator {a..b} x ) ∈ borel measurable borel

∧
x . 0 ≤ f x ∗

indicator {a..b} x
using f (2 ) by (auto split : split indicator)

have F mono: a ≤ x =⇒ x ≤ y =⇒ y ≤ b=⇒ F x ≤ F y for x y
using f by (intro DERIV nonneg imp nondecreasing [of x y F ]) (auto intro:

order trans)

have (f has integral F b − F a) {a..b}
by (intro fundamental theorem of calculus)

(auto simp: has field derivative iff has vector derivative[symmetric]
intro: has field derivative subset [OF f (1 )] 〈a ≤ b〉)

then have i : ((λx . f x ∗ indicator {a .. b} x ) has integral F b − F a) UNIV
unfolding indicator def if distrib[where f=λx . a ∗ x for a]
by (simp cong del : if weak cong del : atLeastAtMost iff )

then have nn: (
∫

+x . f x ∗ indicator {a .. b} x ∂lborel) = F b − F a
by (rule nn integral has integral lborel [OF ∗])

then show ?has
by (rule has bochner integral nn integral [rotated 3 ]) (simp all add : ∗ F mono

〈a ≤ b〉)
then show ?eq ?int
unfolding has bochner integral iff by auto

show ?nn
by (subst nn[symmetric])

(auto intro!: nn integral cong simp add : ennreal mult f split : split indicator)
qed

lemma
fixes f :: real ⇒ ′a :: euclidean space
assumes a ≤ b
assumes

∧
x . a ≤ x =⇒ x ≤ b =⇒ (F has vector derivative f x ) (at x within {a

.. b})
assumes cont : continuous on {a .. b} f
shows has bochner integral FTC Icc:

has bochner integral lborel (λx . indicator {a .. b} x ∗R f x ) (F b − F a) (is
?has)

and integral FTC Icc: (
∫
x . indicator {a .. b} x ∗R f x ∂lborel) = F b − F a

(is ?eq)
proof −
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let ?f = λx . indicator {a .. b} x ∗R f x
have int : integrable lborel ?f
using borel integrable compact [OF cont ] by auto

have (f has integral F b − F a) {a..b}
using assms(1 ,2 ) by (intro fundamental theorem of calculus) auto

moreover
have (f has integral integralL lborel ?f ) {a..b}
using has integral integral lborel [OF int ]
unfolding indicator def if distrib[where f=λx . x ∗R a for a]
by (simp cong del : if weak cong del : atLeastAtMost iff )

ultimately show ?eq
by (auto dest : has integral unique)

then show ?has
using int by (auto simp: has bochner integral iff )

qed

lemma
fixes f :: real ⇒ real
assumes a ≤ b
assumes deriv :

∧
x . a ≤ x =⇒ x ≤ b =⇒ DERIV F x :> f x

assumes cont :
∧
x . a ≤ x =⇒ x ≤ b =⇒ isCont f x

shows has bochner integral FTC Icc real :
has bochner integral lborel (λx . f x ∗ indicator {a .. b} x ) (F b − F a) (is

?has)
and integral FTC Icc real : (

∫
x . f x ∗ indicator {a .. b} x ∂lborel) = F b − F

a (is ?eq)
proof −
have 1 :

∧
x . a ≤ x =⇒ x ≤ b =⇒ (F has vector derivative f x ) (at x within {a

.. b})
unfolding has field derivative iff has vector derivative[symmetric]
using deriv by (auto intro: DERIV subset)

have 2 : continuous on {a .. b} f
using cont by (intro continuous at imp continuous on) auto

show ?has ?eq
using has bochner integral FTC Icc[OF 〈a ≤ b〉 1 2 ] integral FTC Icc[OF 〈a

≤ b〉 1 2 ]
by (auto simp: mult .commute)

qed

lemma nn integral FTC atLeast :
fixes f :: real ⇒ real
assumes f borel : f ∈ borel measurable borel
assumes f :

∧
x . a ≤ x =⇒ DERIV F x :> f x

assumes nonneg :
∧
x . a ≤ x =⇒ 0 ≤ f x

assumes lim: (F −−−→ T ) at top
shows (

∫
+x . ennreal (f x ) ∗ indicator {a ..} x ∂lborel) = T − F a

proof −
let ?f = λ(i ::nat) (x ::real). ennreal (f x ) ∗ indicator {a..a + real i} x
let ?fR = λx . ennreal (f x ) ∗ indicator {a ..} x
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have F mono: a ≤ x =⇒ x ≤ y =⇒ F x ≤ F y for x y
using f nonneg by (intro DERIV nonneg imp nondecreasing [of x y F ]) (auto

intro: order trans)
then have F le T : a ≤ x =⇒ F x ≤ T for x
by (intro tendsto lowerbound [OF lim])

(auto simp: eventually at top linorder)

have (SUP i . ?f i x ) = ?fR x for x
proof (rule LIMSEQ unique[OF LIMSEQ SUP ])
obtain n where x − a < real n
using reals Archimedean2 [of x − a] ..

then have eventually (λn. ?f n x = ?fR x ) sequentially
by (auto intro!: eventually sequentiallyI [where c=n] split : split indicator)

then show (λn. ?f n x ) −−−−→ ?fR x
by (rule tendsto eventually)

qed (auto simp: nonneg incseq def le fun def split : split indicator)
then have integralN lborel ?fR = (

∫
+ x . (SUP i . ?f i x ) ∂lborel)

by simp
also have . . . = (SUP i . (

∫
+ x . ?f i x ∂lborel))

proof (rule nn integral monotone convergence SUP)
show incseq ?f
using nonneg by (auto simp: incseq def le fun def split : split indicator)

show
∧
i . (?f i) ∈ borel measurable lborel

using f borel by auto
qed
also have . . . = (SUP i . ennreal (F (a + real i) − F a))
by (subst nn integral FTC Icc[OF f borel f nonneg ]) auto

also have . . . = T − F a
proof (rule LIMSEQ unique[OF LIMSEQ SUP ])

have (λx . F (a + real x )) −−−−→ T
by (auto intro: filterlim compose[OF lim filterlim tendsto add at top] filter-

lim real sequentially)
then show (λn. ennreal (F (a + real n) − F a)) −−−−→ ennreal (T − F a)
by (simp add : F mono F le T tendsto diff )

qed (auto simp: incseq def intro!: ennreal le iff [THEN iffD2 ] F mono)
finally show ?thesis .

qed

lemma integral power :
a ≤ b =⇒ (

∫
x . xˆk ∗ indicator {a..b} x ∂lborel) = (bˆSuc k − aˆSuc k) / Suc

k
proof (subst integral FTC Icc real)
fix x show DERIV (λx . xˆSuc k / Suc k) x :> xˆk
by (intro derivative eq intros) auto

qed (auto simp: field simps simp del : of nat Suc)
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6.19.21 Integration by parts

lemma integral by parts integrable:
fixes f g F G ::real ⇒ real
assumes a ≤ b
assumes cont f [intro]: !!x . a ≤x =⇒ x≤b =⇒ isCont f x
assumes cont g [intro]: !!x . a ≤x =⇒ x≤b =⇒ isCont g x
assumes [intro]: !!x . DERIV F x :> f x
assumes [intro]: !!x . DERIV G x :> g x
shows integrable lborel (λx .((F x ) ∗ (g x ) + (f x ) ∗ (G x )) ∗ indicator {a .. b}

x )
by (auto intro!: borel integrable atLeastAtMost continuous intros) (auto intro!:

DERIV isCont)

lemma integral by parts:
fixes f g F G ::real ⇒ real
assumes [arith]: a ≤ b
assumes cont f [intro]: !!x . a ≤x =⇒ x≤b =⇒ isCont f x
assumes cont g [intro]: !!x . a ≤x =⇒ x≤b =⇒ isCont g x
assumes [intro]: !!x . DERIV F x :> f x
assumes [intro]: !!x . DERIV G x :> g x
shows (

∫
x . (F x ∗ g x ) ∗ indicator {a .. b} x ∂lborel)
= F b ∗ G b − F a ∗ G a −

∫
x . (f x ∗ G x ) ∗ indicator {a .. b} x

∂lborel
proof−
have (

∫
x . (F x ∗ g x + f x ∗ G x ) ∗ indicator {a .. b} x ∂lborel)

= LBINT x . F x ∗ g x ∗ indicat real {a..b} x + f x ∗ G x ∗ indicat real {a..b}
x

by (meson vector space over itself .scale left distrib)
also have ... = (

∫
x . (F x ∗ g x ) ∗ indicator {a .. b} x ∂lborel) +

∫
x . (f x ∗ G

x ) ∗ indicator {a .. b} x ∂lborel
proof (intro Bochner Integration.integral add borel integrable atLeastAtMost cont f

cont g continuous intros)
show

∧
x . [[a ≤ x ; x ≤ b]] =⇒ isCont F x

∧
x . [[a ≤ x ; x ≤ b]] =⇒ isCont G x

using DERIV isCont by blast+
qed
finally have (

∫
x . (F x ∗ g x + f x ∗ G x ) ∗ indicator {a .. b} x ∂lborel) =

(
∫
x . (F x ∗ g x ) ∗ indicator {a .. b} x ∂lborel) +

∫
x . (f x ∗ G x ) ∗

indicator {a .. b} x ∂lborel .
moreover have (

∫
x . (F x ∗ g x + f x ∗ G x ) ∗ indicator {a .. b} x ∂lborel) =

F b ∗ G b − F a ∗ G a
proof (intro integral FTC Icc real derivative eq intros cont f cont g continuous intros)
show

∧
x . [[a ≤ x ; x ≤ b]] =⇒ isCont F x

∧
x . [[a ≤ x ; x ≤ b]] =⇒ isCont G x

using DERIV isCont by blast+
qed auto
ultimately show ?thesis by auto

qed

lemma integral by parts ′:
fixes f g F G ::real ⇒ real
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assumes a ≤ b
assumes !!x . a ≤x =⇒ x≤b =⇒ isCont f x
assumes !!x . a ≤x =⇒ x≤b =⇒ isCont g x
assumes !!x . DERIV F x :> f x
assumes !!x . DERIV G x :> g x
shows (

∫
x . indicator {a .. b} x ∗R (F x ∗ g x ) ∂lborel)

= F b ∗ G b − F a ∗ G a −
∫
x . indicator {a .. b} x ∗R (f x ∗ G x )

∂lborel
using integral by parts[OF assms] by (simp add : ac simps)

lemma has bochner integral even function:
fixes f :: real ⇒ ′a :: {banach, second countable topology}
assumes f : has bochner integral lborel (λx . indicator {0 ..} x ∗R f x ) x
assumes even:

∧
x . f (− x ) = f x

shows has bochner integral lborel f (2 ∗R x )
proof −
have indicator :

∧
x ::real . indicator {..0} (− x ) = indicator {0 ..} x

by (auto split : split indicator)
have has bochner integral lborel (λx . indicator {.. 0} x ∗R f x ) x
by (subst lborel has bochner integral real affine iff [where c=−1 and t=0 ])

(auto simp: indicator even f )
with f have has bochner integral lborel (λx . indicator {0 ..} x ∗R f x + indicator
{.. 0} x ∗R f x ) (x + x )

by (rule has bochner integral add)
then have has bochner integral lborel f (x + x )
by (rule has bochner integral discrete difference[where X={0}, THEN iffD1 ,

rotated 4 ])
(auto split : split indicator)

then show ?thesis
by (simp add : scaleR 2 )

qed

lemma has bochner integral odd function:
fixes f :: real ⇒ ′a :: {banach, second countable topology}
assumes f : has bochner integral lborel (λx . indicator {0 ..} x ∗R f x ) x
assumes odd :

∧
x . f (− x ) = − f x

shows has bochner integral lborel f 0
proof −
have indicator :

∧
x ::real . indicator {..0} (− x ) = indicator {0 ..} x

by (auto split : split indicator)
have has bochner integral lborel (λx . − indicator {.. 0} x ∗R f x ) x
by (subst lborel has bochner integral real affine iff [where c=−1 and t=0 ])

(auto simp: indicator odd f )
from has bochner integral minus[OF this]
have has bochner integral lborel (λx . indicator {.. 0} x ∗R f x ) (− x )
by simp

with f have has bochner integral lborel (λx . indicator {0 ..} x ∗R f x + indicator
{.. 0} x ∗R f x ) (x + − x )

by (rule has bochner integral add)
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then have has bochner integral lborel f (x + − x )
by (rule has bochner integral discrete difference[where X={0}, THEN iffD1 ,

rotated 4 ])
(auto split : split indicator)

then show ?thesis
by simp

qed

lemma has integral 0 closure imp 0 :
fixes f :: ′a::euclidean space ⇒ real
assumes f : continuous on (closure S ) f
and nonneg interior :

∧
x . x ∈ S =⇒ 0 ≤ f x

and pos: 0 < emeasure lborel S
and finite: emeasure lborel S < ∞
and regular : emeasure lborel (closure S ) = emeasure lborel S
and opn: open S

assumes int : (f has integral 0 ) (closure S )
assumes x : x ∈ closure S
shows f x = 0

proof −
have zero: emeasure lborel (frontier S ) = 0
using finite closure subset regular
unfolding frontier def
by (subst emeasure Diff ) (auto simp: frontier def interior open 〈open S 〉 )

have nonneg : 0 ≤ f x if x ∈ closure S for x
using continuous ge on closure[OF f that nonneg interior ] by simp

have 0 = integral (closure S ) f
by (blast intro: int sym)

also
note intl = has integral integrable[OF int ]
have af : f absolutely integrable on (closure S )
using nonneg
by (intro absolutely integrable onI intl integrable eq [OF intl ]) simp

then have integral (closure S ) f = set lebesgue integral lebesgue (closure S ) f
by (intro set lebesgue integral eq integral(2 )[symmetric])

also have . . . = 0 ←→ (AE x in lebesgue. indicator (closure S ) x ∗R f x = 0 )
unfolding set lebesgue integral def

proof (rule integral nonneg eq 0 iff AE )
show integrable lebesgue (λx . indicat real (closure S ) x ∗R f x )
by (metis af set integrable def )

qed (use nonneg in 〈auto simp: indicator def 〉)
also have . . . ←→ (AE x in lebesgue. x ∈ {x . x ∈ closure S −→ f x = 0})
by (auto simp: indicator def )

finally have (AE x in lebesgue. x ∈ {x . x ∈ closure S −→ f x = 0}) by simp
moreover have (AE x in lebesgue. x ∈ − frontier S )
using zero
by (auto simp: eventually ae filter null sets def intro!: exI [where x=frontier

S ])
ultimately have ae: AE x ∈ S in lebesgue. x ∈ {x ∈ closure S . f x = 0} (is
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?th)
by eventually elim (use closure subset in 〈auto simp: 〉)

have closed {0 ::real} by simp
with continuous on closed vimage[OF closed closure, of S f ] f
have closed (f −‘ {0} ∩ closure S ) by blast
then have closed {x ∈ closure S . f x = 0} by (auto simp: vimage def Int def

conj commute)
with 〈open S 〉 have x ∈ {x ∈ closure S . f x = 0} if x ∈ S for x using ae that
by (rule mem closed if AE lebesgue open)

then have f x = 0 if x ∈ S for x using that by auto
from continuous constant on closure[OF f this 〈x ∈ closure S 〉]
show f x = 0 .

qed

lemma has integral 0 cbox imp 0 :
fixes f :: ′a::euclidean space ⇒ real
assumes f : continuous on (cbox a b) f
and nonneg interior :

∧
x . x ∈ box a b =⇒ 0 ≤ f x

assumes int : (f has integral 0 ) (cbox a b)
assumes ne: box a b 6= {}
assumes x : x ∈ cbox a b
shows f x = 0

proof −
have 0 < emeasure lborel (box a b)
using ne x unfolding emeasure lborel box eq
by (force intro!: prod pos simp: mem box algebra simps)

then show ?thesis using assms
by (intro has integral 0 closure imp 0 [of box a b f x ])
(auto simp: emeasure lborel box eq emeasure lborel cbox eq algebra simps mem box )

qed

6.19.22 Various common equivalent forms of function mea-
surability

lemma indicator sum eq :
fixes m::real and f :: ′a ⇒ real
assumes |m| ≤ 2 ˆ (2∗n) m/2ˆn ≤ f x f x < (m+1 )/2ˆn m ∈ ZZ
shows (

∑
k ::real | k ∈ ZZ ∧ |k | ≤ 2 ˆ (2∗n).

k/2ˆn ∗ indicator {y . k/2ˆn ≤ f y ∧ f y < (k+1 )/2ˆn} x ) = m/2ˆn
(is sum ?f ?S = )

proof −
have sum ?f ?S = sum (λk . k/2ˆn ∗ indicator {y . k/2ˆn ≤ f y ∧ f y <

(k+1 )/2ˆn} x ) {m}
proof (rule comm monoid add class.sum.mono neutral right)
show finite ?S
by (rule finite abs int segment)

show {m} ⊆ {k ∈ ZZ. |k | ≤ 2 ˆ (2∗n)}
using assms by auto

show ∀ i∈{k ∈ ZZ. |k | ≤ 2 ˆ (2∗n)} − {m}. ?f i = 0
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using assms by (auto simp: indicator def Ints def abs le iff field split simps)
qed
also have . . . = m/2ˆn
using assms by (auto simp: indicator def not less)

finally show ?thesis .
qed

lemma measurable on sf limit lemma1 :
fixes f :: ′a::euclidean space ⇒ real
assumes

∧
a b. {x ∈ S . a ≤ f x ∧ f x < b} ∈ sets (lebesgue on S )

obtains g where
∧
n. g n ∈ borel measurable (lebesgue on S )∧

n. finite(range (g n))∧
x . (λn. g n x ) −−−−→ f x

proof
show (λx . sum (λk ::real . k/2ˆn ∗ indicator {y . k/2ˆn ≤ f y ∧ f y < (k+1 )/2ˆn}

x )
{k ∈ ZZ. |k | ≤ 2 ˆ (2∗n)}) ∈ borel measurable (lebesgue on S )

(is ?g ∈ ) for n
proof −
have

∧
k . [[k ∈ ZZ; |k | ≤ 2 ˆ (2∗n)]]

=⇒ Measurable.pred (lebesgue on S ) (λx . k / (2ˆn) ≤ f x ∧ f x < (k+1 )
/ (2ˆn))

using assms by (force simp: pred def space restrict space)
then show ?thesis
by (simp add : field class.field divide inverse)

qed
show finite (range (?g n)) for n
proof −
have range (?g n) ⊆ (λk . k/2ˆn) ‘ {k ∈ ZZ. |k | ≤ 2 ˆ (2∗n)}
proof clarify
fix x
show ?g n x ∈ (λk . k/2ˆn) ‘ {k ∈ ZZ. |k | ≤ 2 ˆ (2∗n)}
proof (cases ∃ k ::real . k ∈ ZZ ∧ |k | ≤ 2 ˆ (2∗n) ∧ k/2ˆn ≤ (f x ) ∧ (f x ) <

(k+1 )/2ˆn)
case True
then show ?thesis
apply clarify
by (subst indicator sum eq) auto

next
case False
then have ?g n x = 0 by auto
then show ?thesis by force

qed
qed
moreover have finite ((λk ::real . (k/2ˆn)) ‘ {k ∈ ZZ. |k | ≤ 2 ˆ (2∗n)})
by (simp add : finite abs int segment)

ultimately show ?thesis
using finite subset by blast

qed
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show (λn. ?g n x ) −−−−→ f x for x
proof (rule LIMSEQ I )
fix e::real
assume e > 0
obtain N1 where N1 : |f x | < 2 ˆ N1
using real arch pow by fastforce

obtain N2 where N2 : (1/2 ) ˆ N2 < e
using real arch pow inv 〈e > 0 〉 by force

have norm (?g n x − f x ) < e if n: n ≥ max N1 N2 for n
proof −
define m where m ≡ floor(2ˆn ∗ (f x ))
have 1 ≤ |2ˆn| ∗ e

using n N2 〈e > 0 〉 less eq real def less le trans by (fastforce simp add :
field split simps)

then have ∗: [[x ≤ y ; y < x + 1 ]] =⇒ abs(x − y) < |2ˆn| ∗ e for x y ::real
by linarith

have |2ˆn| ∗ |m/2ˆn − f x | = |2ˆn ∗ (m/2ˆn − f x )|
by (simp add : abs mult)

also have . . . = |real of int b2ˆn ∗ f xc − f x ∗ 2ˆn|
by (simp add : algebra simps m def )

also have . . . < |2ˆn| ∗ e
by (rule ∗; simp add : mult .commute)

finally have |2ˆn| ∗ |m/2ˆn − f x | < |2ˆn| ∗ e .
then have me: |m/2ˆn − f x | < e
by simp

have |real of int m| ≤ 2 ˆ (2∗n)
proof (cases f x < 0 )
case True
then have −bf xc ≤ b(2 ::real) ˆ N1 c
using N1 le floor iff minus le iff by fastforce

with n True have |real of intbf xc| ≤ 2 ˆ N1
by linarith

also have . . . ≤ 2ˆn
using n by (simp add : m def )

finally have |real of int bf xc| ∗ 2ˆn ≤ 2ˆn ∗ 2ˆn
by simp

moreover
have |real of int b2ˆn ∗ f xc| ≤ |real of int bf xc| ∗ 2ˆn
proof −
have |real of int b2ˆn ∗ f xc| = − (real of int b2ˆn ∗ f xc)
using True by (simp add : abs if mult less 0 iff )

also have . . . ≤ − (real of int (b(2 ::real) ˆ nc ∗ bf xc))
using le mult floor Ints [of (2 ::real)ˆn] by simp

also have . . . ≤ |real of int bf xc| ∗ 2ˆn
using True
by simp

finally show ?thesis .
qed
ultimately show ?thesis
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by (metis (no types, hide lams) m def order trans power2 eq square
power even eq)

next
case False
with n N1 have f x ≤ 2ˆn
by (simp add : not less) (meson less eq real def one le numeral order trans

power increasing)
moreover have 0 ≤ m
using False m def by force

ultimately show ?thesis
by (metis abs of nonneg floor mono le floor iff m def of int 0 le iff power2 eq square

power mult mult le cancel iff1 zero less numeral mult .commute zero less power)
qed
then have ?g n x = m/2ˆn
by (rule indicator sum eq) (auto simp add : m def field split simps, linarith)

then have norm (?g n x − f x ) = norm (m/2ˆn − f x )
by simp

also have . . . < e
by (simp add : me)

finally show ?thesis .
qed
then show ∃no. ∀n≥no. norm (?g n x − f x ) < e
by blast

qed
qed

lemma borel measurable simple function limit :
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
shows f ∈ borel measurable (lebesgue on S ) ←→

(∃ g . (∀n. (g n) ∈ borel measurable (lebesgue on S )) ∧
(∀n. finite (range (g n))) ∧ (∀ x . (λn. g n x ) −−−−→ f x ))

proof −
have ∃ g . (∀n. (g n) ∈ borel measurable (lebesgue on S )) ∧

(∀n. finite (range (g n))) ∧ (∀ x . (λn. g n x ) −−−−→ f x )
if f :

∧
a i . i ∈ Basis =⇒ {x ∈ S . f x · i < a} ∈ sets (lebesgue on S )

proof −
have ∃ g . (∀n. (g n) ∈ borel measurable (lebesgue on S )) ∧

(∀n. finite(image (g n) UNIV )) ∧
(∀ x . ((λn. g n x ) −−−−→ f x · i)) if i ∈ Basis for i

proof (rule measurable on sf limit lemma1 [of S λx . f x · i ])
show {x ∈ S . a ≤ f x · i ∧ f x · i < b} ∈ sets (lebesgue on S ) for a b
proof −
have {x ∈ S . a ≤ f x · i ∧ f x · i < b} = {x ∈ S . f x · i < b} − {x ∈ S .

a > f x · i}
by auto

also have . . . ∈ sets (lebesgue on S )
using f that by blast

finally show ?thesis .
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qed
qed blast
then obtain g where g :∧

i n. i ∈ Basis =⇒ g i n ∈ borel measurable (lebesgue on S )∧
i n. i ∈ Basis =⇒ finite(range (g i n))∧
i x . i ∈ Basis =⇒ ((λn. g i n x ) −−−−→ f x · i)

by metis
show ?thesis
proof (intro conjI allI exI )
show (λx .

∑
i∈Basis. g i n x ∗R i) ∈ borel measurable (lebesgue on S ) for n

by (intro borel measurable sum borel measurable scaleR) (auto intro: g)
show finite (range (λx .

∑
i∈Basis. g i n x ∗R i)) for n

proof −
have range (λx .

∑
i∈Basis. g i n x ∗R i) ⊆ (λh.

∑
i∈Basis. h i ∗R i) ‘

PiE Basis (λi . range (g i n))
proof clarify
fix x

show (
∑

i∈Basis. g i n x ∗R i) ∈ (λh.
∑

i∈Basis. h i ∗R i) ‘ (ΠE i∈Basis.
range (g i n))

by (rule tac x=λi∈Basis. g i n x in image eqI ) auto
qed
moreover have finite(PiE Basis (λi . range (g i n)))
by (simp add : g finite PiE )

ultimately show ?thesis
by (metis (mono tags, lifting) finite surj )

qed
show (λn.

∑
i∈Basis. g i n x ∗R i) −−−−→ f x for x

proof −
have (λn.

∑
i∈Basis. g i n x ∗R i) −−−−→ (

∑
i∈Basis. (f x · i) ∗R i)

by (auto intro!: tendsto sum tendsto scaleR g)
moreover have (

∑
i∈Basis. (f x · i) ∗R i) = f x

using euclidean representation by blast
ultimately show ?thesis
by metis

qed
qed

qed
moreover have f ∈ borel measurable (lebesgue on S )

if meas g :
∧
n. g n ∈ borel measurable (lebesgue on S )

and fin:
∧
n. finite (range (g n))

and to f :
∧
x . (λn. g n x ) −−−−→ f x for g

by (rule borel measurable LIMSEQ metric [OF meas g to f ])
ultimately show ?thesis
using borel measurable vimage halfspace component lt by blast

qed

6.19.23 Lebesgue sets and continuous images

proposition lebesgue regular inner :
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assumes S ∈ sets lebesgue
obtains K C where negligible K

∧
n::nat . compact(C n) S = (

⋃
n. C n) ∪ K

proof −
have ∃T . closed T ∧ T ⊆ S ∧ (S − T ) ∈ lmeasurable ∧ emeasure lebesgue (S
− T ) < ennreal ((1/2 )ˆn) for n

using sets lebesgue inner closed assms
by (metis sets lebesgue inner closed zero less divide 1 iff zero less numeral zero less power)
then obtain C where clo:

∧
n. closed (C n) and subS :

∧
n. C n ⊆ S

and mea:
∧
n. (S − C n) ∈ lmeasurable

and less:
∧
n. emeasure lebesgue (S − C n) < ennreal ((1/2 )ˆn)

by metis
have ∃F . (∀n::nat . compact(F n)) ∧ (

⋃
n. F n) = C m for m::nat

by (metis clo closed Union compact subsets)
then obtain D :: [nat ,nat ] ⇒ ′a set where D :

∧
m n. compact(D m n)

∧
m.

(
⋃
n. D m n) = C m
by metis

let ?C = from nat into (
⋃

m. range (D m))
have countable (

⋃
m. range (D m))

by blast
have range (from nat into (

⋃
m. range (D m))) = (

⋃
m. range (D m))

using range from nat into by simp
then have CD : ∃m n. ?C k = D m n for k
by (metis (mono tags, lifting) UN iff rangeE range eqI )

show thesis
proof
show negligible (S − (

⋃
n. C n))

proof (clarsimp simp: negligible outer le)
fix e :: real
assume e > 0
then obtain n where n: (1/2 )ˆn < e
using real arch pow inv [of e 1/2 ] by auto

show ∃T . S − (
⋃
n. C n) ⊆ T ∧ T ∈ lmeasurable ∧ measure lebesgue T ≤

e
proof (intro exI conjI )
show S − (

⋃
n. C n) ⊆ S − C n

by blast
show S − C n ∈ lmeasurable
by (simp add : mea)

show measure lebesgue (S − C n) ≤ e
using less [of n] n
by (simp add : emeasure eq measure2 less le mea)

qed
qed
show compact (?C n) for n
using CD D by metis

show S = (
⋃
n. ?C n) ∪ (S − (

⋃
n. C n)) (is = ?rhs)

proof
show S ⊆ ?rhs
using D by fastforce
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show ?rhs ⊆ S
using subS D CD by auto (metis Sup upper range eqI subsetCE )

qed
qed

qed

lemma sets lebesgue continuous image:
assumes T : T ∈ sets lebesgue and contf : continuous on S f
and negim:

∧
T . [[negligible T ; T ⊆ S ]] =⇒ negligible(f ‘ T ) and T ⊆ S

shows f ‘ T ∈ sets lebesgue
proof −
obtain K C where negligible K and com:

∧
n::nat . compact(C n) and Teq : T

= (
⋃
n. C n) ∪ K

using lebesgue regular inner [OF T ] by metis
then have comf :

∧
n::nat . compact(f ‘ C n)

by (metis Un subset iff Union upper 〈T ⊆ S 〉 compact continuous image contf
continuous on subset rangeI )
have ((

⋃
n. f ‘ C n) ∪ f ‘ K ) ∈ sets lebesgue

proof (rule sets.Un)
have K ⊆ S
using Teq 〈T ⊆ S 〉 by blast

show (
⋃
n. f ‘ C n) ∈ sets lebesgue

proof (rule sets.countable Union)
show range (λn. f ‘ C n) ⊆ sets lebesgue
using borel compact comf by (auto simp: borel compact)

qed auto
show f ‘ K ∈ sets lebesgue
by (simp add : 〈K ⊆ S 〉 〈negligible K 〉 negim negligible imp sets)

qed
then show ?thesis
by (simp add : Teq image Un image Union)

qed

lemma differentiable image in sets lebesgue:
fixes f :: ′m::euclidean space ⇒ ′n::euclidean space
assumes S : S ∈ sets lebesgue and dim: DIM ( ′m) ≤ DIM ( ′n) and f : f differ-

entiable on S
shows f‘S ∈ sets lebesgue

proof (rule sets lebesgue continuous image [OF S ])
show continuous on S f
by (meson differentiable imp continuous on f )

show
∧
T . [[negligible T ; T ⊆ S ]] =⇒ negligible (f ‘ T )

using differentiable on subset f
by (auto simp: intro!: negligible differentiable image negligible [OF dim])

qed auto

lemma sets lebesgue on continuous image:
assumes S : S ∈ sets lebesgue and X : X ∈ sets (lebesgue on S ) and contf :

continuous on S f
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and negim:
∧
T . [[negligible T ; T ⊆ S ]] =⇒ negligible(f ‘ T )

shows f ‘ X ∈ sets (lebesgue on (f ‘ S ))
proof −
have X ⊆ S
by (metis S X sets.Int space eq2 sets restrict space iff )

moreover have f ‘ S ∈ sets lebesgue
using S contf negim sets lebesgue continuous image by blast

moreover have f ‘ X ∈ sets lebesgue
by (metis S X contf negim sets lebesgue continuous image sets restrict space iff

space restrict space space restrict space2 )
ultimately show ?thesis
by (auto simp: sets restrict space iff )

qed

lemma differentiable image in sets lebesgue on:
fixes f :: ′m::euclidean space ⇒ ′n::euclidean space
assumes S : S ∈ sets lebesgue and X : X ∈ sets (lebesgue on S ) and dim:

DIM ( ′m) ≤ DIM ( ′n)
and f : f differentiable on S

shows f ‘ X ∈ sets (lebesgue on (f‘S ))
proof (rule sets lebesgue on continuous image [OF S X ])
show continuous on S f
by (meson differentiable imp continuous on f )

show
∧
T . [[negligible T ; T ⊆ S ]] =⇒ negligible (f ‘ T )

using differentiable on subset f
by (auto simp: intro!: negligible differentiable image negligible [OF dim])

qed

6.19.24 Affine lemmas

lemma borel measurable affine:
fixes f :: ′a :: euclidean space ⇒ ′b :: euclidean space
assumes f : f ∈ borel measurable lebesgue and c 6= 0
shows (λx . f (t + c ∗R x )) ∈ borel measurable lebesgue

proof −
{ fix a b
have {x . f x ∈ cbox a b} ∈ sets lebesgue
using f cbox borel lebesgue measurable vimage borel by blast

then have (λx . (x − t) /R c) ‘ {x . f x ∈ cbox a b} ∈ sets lebesgue
proof (rule differentiable image in sets lebesgue)
show (λx . (x − t) /R c) differentiable on {x . f x ∈ cbox a b}
unfolding differentiable on def differentiable def
by (rule 〈c 6= 0 〉 derivative eq intros strip exI | simp)+

qed auto
moreover
have {x . f (t + c ∗R x ) ∈ cbox a b} = (λx . (x−t) /R c) ‘ {x . f x ∈ cbox a b}
using 〈c 6= 0 〉 by (auto simp: image def )

ultimately have {x . f (t + c ∗R x ) ∈ cbox a b} ∈ sets lebesgue
by (auto simp: borel measurable vimage closed interval) }
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then show ?thesis
by (subst lebesgue on UNIV eq [symmetric]; auto simp: borel measurable vimage closed interval)

qed

lemma lebesgue integrable real affine:
fixes f :: real ⇒ ′a :: euclidean space
assumes f : integrable lebesgue f and c 6= 0
shows integrable lebesgue (λx . f (t + c ∗ x ))

proof −
have (λx . norm (f x )) ∈ borel measurable lebesgue
by (simp add : borel measurable integrable f )

then show ?thesis
using assms borel measurable affine [of f c]
unfolding integrable iff bounded
by (subst (asm) nn integral real affine lebesgue[where c=c and t=t ]) (auto

simp: ennreal mult less top)
qed

lemma lebesgue integrable real affine iff :
fixes f :: real ⇒ ′a :: euclidean space
shows c 6= 0 =⇒ integrable lebesgue (λx . f (t + c ∗ x )) ←→ integrable lebesgue f
using lebesgue integrable real affine[of f c t ]

lebesgue integrable real affine[of λx . f (t + c ∗ x ) 1/c −t/c]
by (auto simp: field simps)

lemma lebesgue integral real affine:
fixes f :: real ⇒ ′a :: euclidean space and c :: real
assumes c: c 6= 0 shows (

∫
x . f x ∂ lebesgue) = |c| ∗R (

∫
x . f (t + c ∗ x )

∂lebesgue)
proof cases
have (λx . t + c ∗ x ) ∈ lebesgue →M lebesgue
using lebesgue affine measurable[where c= λx ::real . c] 〈c 6= 0 〉 by simp

moreover
assume integrable lebesgue f
ultimately show ?thesis

by (subst lebesgue real affine[OF c, of t ]) (auto simp: integral density inte-
gral distr)
next
assume ¬ integrable lebesgue f with c show ?thesis
by (simp add : lebesgue integrable real affine iff not integrable integral eq)

qed

lemma has bochner integral lebesgue real affine iff :
fixes i :: ′a :: euclidean space
shows c 6= 0 =⇒
has bochner integral lebesgue f i ←→
has bochner integral lebesgue (λx . f (t + c ∗ x )) (i /R |c|)

unfolding has bochner integral iff lebesgue integrable real affine iff
by (simp all add : lebesgue integral real affine[symmetric] divideR right cong : conj cong)
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lemma has bochner integral reflect real lemma[intro]:
fixes f :: real ⇒ ′a::euclidean space
assumes has bochner integral (lebesgue on {a..b}) f i
shows has bochner integral (lebesgue on {−b..−a}) (λx . f (−x )) i

proof −
have eq : indicat real {a..b} (− x ) ∗R f (− x ) = indicat real {− b..− a} x ∗R

f (− x ) for x
by (auto simp: indicator def )

have i : has bochner integral lebesgue (λx . indicator {a..b} x ∗R f x ) i
using assms by (auto simp: has bochner integral restrict space)

then have has bochner integral lebesgue (λx . indicator {−b..−a} x ∗R f (−x )) i
using has bochner integral lebesgue real affine iff [of −1 (λx . indicator {a..b}

x ∗R f x ) i 0 ]
by (auto simp: eq)

then show ?thesis
by (auto simp: has bochner integral restrict space)

qed

lemma has bochner integral reflect real [simp]:
fixes f :: real ⇒ ′a::euclidean space
shows has bochner integral (lebesgue on {−b..−a}) (λx . f (−x )) i ←→ has bochner integral

(lebesgue on {a..b}) f i
by (auto simp: dest : has bochner integral reflect real lemma)

lemma integrable reflect real [simp]:
fixes f :: real ⇒ ′a::euclidean space
shows integrable (lebesgue on {−b..−a}) (λx . f (−x ))←→ integrable (lebesgue on
{a..b}) f
by (metis has bochner integral iff has bochner integral reflect real)

lemma integral reflect real [simp]:
fixes f :: real ⇒ ′a::euclidean space
shows integralL (lebesgue on {−b .. −a}) (λx . f (−x )) = integralL (lebesgue on
{a..b::real}) f
using has bochner integral reflect real [of b a f ]
by (metis has bochner integral iff not integrable integral eq)

6.19.25 More results on integrability

lemma integrable on all intervals UNIV :
fixes f :: ′a::euclidean space ⇒ ′b::banach
assumes intf :

∧
a b. f integrable on cbox a b

and normf :
∧
x . norm(f x ) ≤ g x and g : g integrable on UNIV

shows f integrable on UNIV
proof −
have intg : (∀ a b. g integrable on cbox a b)

and gle e: ∀ e>0 . ∃B>0 . ∀ a b c d .
ball 0 B ⊆ cbox a b ∧ cbox a b ⊆ cbox c d −→
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|integral (cbox a b) g − integral (cbox c d) g |
< e

using g
by (auto simp: integrable alt subset [of UNIV ] intf )

have le: norm (integral (cbox a b) f − integral (cbox c d) f ) ≤ |integral (cbox a
b) g − integral (cbox c d) g |

if cbox a b ⊆ cbox c d for a b c d
proof −
have norm (integral (cbox a b) f − integral (cbox c d) f ) = norm (integral

(cbox c d − cbox a b) f )
using intf that by (simp add : norm minus commute integral setdiff )

also have . . . ≤ integral (cbox c d − cbox a b) g
proof (rule integral norm bound integral [OF normf ])
show f integrable on cbox c d − cbox a b g integrable on cbox c d − cbox a b

by (meson integrable integral integrable setdiff intf intg negligible setdiff
that)+

qed
also have . . . = integral (cbox c d) g − integral (cbox a b) g
using intg that by (simp add : integral setdiff )

also have . . . ≤ |integral (cbox a b) g − integral (cbox c d) g |
by simp

finally show ?thesis .
qed
show ?thesis
using gle e
apply (simp add : integrable alt subset [of UNIV ] intf )
apply (erule imp forward all forward ex forward asm rl)+
by (meson not less order trans le)

qed

lemma integrable on all intervals integrable bound :
fixes f :: ′a::euclidean space ⇒ ′b::banach
assumes intf :

∧
a b. (λx . if x ∈ S then f x else 0 ) integrable on cbox a b

and normf :
∧
x . x ∈ S =⇒ norm(f x ) ≤ g x and g : g integrable on S

shows f integrable on S
using integrable on all intervals UNIV [OF intf , of (λx . if x ∈ S then g x else

0 )]
by (simp add : g integrable restrict UNIV normf )

lemma measurable bounded lemma:
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes f : f ∈ borel measurable lebesgue and g : g integrable on cbox a b
and normf :

∧
x . x ∈ cbox a b =⇒ norm(f x ) ≤ g x

shows f integrable on cbox a b
proof −
have g absolutely integrable on cbox a b
by (metis (full types) add increasing g le add same cancel1 nonnegative absolutely integrable 1

norm ge zero normf )
then have integrable (lebesgue on (cbox a b)) g
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by (simp add : integrable restrict space set integrable def )
then have integrable (lebesgue on (cbox a b)) f
proof (rule Bochner Integration.integrable bound)
show AE x in lebesgue on (cbox a b). norm (f x ) ≤ norm (g x )
by (rule AE I2 ) (auto intro: normf order trans)

qed (simp add : f measurable restrict space1 )
then show ?thesis
by (simp add : integrable on lebesgue on)

qed

proposition measurable bounded by integrable imp integrable:
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes f : f ∈ borel measurable (lebesgue on S ) and g : g integrable on S
and normf :

∧
x . x ∈ S =⇒ norm(f x ) ≤ g x and S : S ∈ sets lebesgue

shows f integrable on S
proof (rule integrable on all intervals integrable bound [OF normf g ])
show (λx . if x ∈ S then f x else 0 ) integrable on cbox a b for a b
proof (rule measurable bounded lemma)
show (λx . if x ∈ S then f x else 0 ) ∈ borel measurable lebesgue
by (simp add : S borel measurable if f )

show (λx . if x ∈ S then g x else 0 ) integrable on cbox a b
by (simp add : g integrable altD(1 ))

show norm (if x ∈ S then f x else 0 ) ≤ (if x ∈ S then g x else 0 ) for x
using normf by simp

qed
qed

lemma measurable bounded by integrable imp lebesgue integrable:
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes f : f ∈ borel measurable (lebesgue on S ) and g : integrable (lebesgue on

S ) g
and normf :

∧
x . x ∈ S =⇒ norm(f x ) ≤ g x and S : S ∈ sets lebesgue

shows integrable (lebesgue on S ) f
proof −
have f absolutely integrable on S
by (metis (no types) S absolutely integrable integrable bound f g integrable on lebesgue on

measurable bounded by integrable imp integrable normf )
then show ?thesis
by (simp add : S integrable restrict space set integrable def )

qed

lemma measurable bounded by integrable imp integrable real :
fixes f :: ′a::euclidean space ⇒ real
assumes f ∈ borel measurable (lebesgue on S ) g integrable on S

∧
x . x ∈ S =⇒

abs(f x ) ≤ g x S ∈ sets lebesgue
shows f integrable on S
using measurable bounded by integrable imp integrable [of f S g ] assms by simp
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6.19.26 Relation between Borel measurability and integra-
bility.

lemma integrable imp measurable weak :
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes S ∈ sets lebesgue f integrable on S
shows f ∈ borel measurable (lebesgue on S )
by (metis (mono tags, lifting) assms has integral implies lebesgue measurable

borel measurable restrict space iff integrable on def sets.Int space eq2 )

lemma integrable imp measurable:
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes f integrable on S
shows f ∈ borel measurable (lebesgue on S )

proof −
have (UNIV :: ′a set) ∈ sets lborel
by simp

then show ?thesis
by (metis (mono tags, lifting) assms borel measurable if D integrable imp measurable weak

integrable restrict UNIV lebesgue on UNIV eq sets lebesgue on refl)
qed

lemma integrable iff integrable on:
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes S ∈ sets lebesgue (

∫
+ x . ennreal (norm (f x )) ∂lebesgue on S ) < ∞

shows integrable (lebesgue on S ) f ←→ f integrable on S
using assms integrable iff bounded integrable imp measurable integrable on lebesgue on

by blast

lemma absolutely integrable measurable:
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes S ∈ sets lebesgue
shows f absolutely integrable on S ←→ f ∈ borel measurable (lebesgue on S ) ∧

integrable (lebesgue on S ) (norm ◦ f )
(is ?lhs = ?rhs)

proof
assume L: ?lhs
then have f ∈ borel measurable (lebesgue on S )
by (simp add : absolutely integrable on def integrable imp measurable)

then show ?rhs
using assms set integrable norm [of lebesgue S f ] L
by (simp add : integrable restrict space set integrable def )

next
assume ?rhs then show ?lhs
using assms integrable on lebesgue on
by (metis absolutely integrable integrable bound comp def eq iff measurable bounded by integrable imp integrable)

qed

lemma absolutely integrable measurable real :
fixes f :: ′a::euclidean space ⇒ real

Equivalence{_}{\kern 0pt}Lebesgue{_}{\kern 0pt}Henstock{_}{\kern 0pt}Integration.html


2248

assumes S ∈ sets lebesgue
shows f absolutely integrable on S ←→

f ∈ borel measurable (lebesgue on S ) ∧ integrable (lebesgue on S ) (λx . |f x |)
by (simp add : absolutely integrable measurable assms o def )

lemma absolutely integrable measurable real ′:
fixes f :: ′a::euclidean space ⇒ real
assumes S ∈ sets lebesgue
shows f absolutely integrable on S ←→ f ∈ borel measurable (lebesgue on S ) ∧

(λx . |f x |) integrable on S
by (metis abs absolutely integrableI 1 absolutely integrable measurable real assms

measurable bounded by integrable imp integrable order refl real norm def
set integrable abs set lebesgue integral eq integral(1 ))

lemma absolutely integrable imp borel measurable:
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes f absolutely integrable on S S ∈ sets lebesgue
shows f ∈ borel measurable (lebesgue on S )
using absolutely integrable measurable assms by blast

lemma measurable bounded by integrable imp absolutely integrable:
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes f ∈ borel measurable (lebesgue on S ) S ∈ sets lebesgue
and g integrable on S and

∧
x . x ∈ S =⇒ norm(f x ) ≤ (g x )

shows f absolutely integrable on S
using assms absolutely integrable integrable bound measurable bounded by integrable imp integrable

by blast

proposition negligible differentiable vimage:
fixes f :: ′a ⇒ ′a::euclidean space
assumes negligible T
and f ′:

∧
x . x ∈ S =⇒ inj (f ′ x )

and derf :
∧
x . x ∈ S =⇒ (f has derivative f ′ x ) (at x within S )

shows negligible {x ∈ S . f x ∈ T}
proof −
define U where
U ≡ λn::nat . {x ∈ S . ∀ y . y ∈ S ∧ norm(y − x ) < 1/n

−→ norm(y − x ) ≤ n ∗ norm(f y − f x )}
have negligible {x ∈ U n. f x ∈ T} if n > 0 for n
proof (subst locally negligible alt , clarify)
fix a
assume a: a ∈ U n and fa: f a ∈ T
define V where V ≡ {x . x ∈ U n ∧ f x ∈ T} ∩ ball a (1 / n / 2 )
show ∃V . openin (top of set {x ∈ U n. f x ∈ T}) V ∧ a ∈ V ∧ negligible V
proof (intro exI conjI )
have noxy : norm(x − y) ≤ n ∗ norm(f x − f y) if x ∈ V y ∈ V for x y
using that unfolding U def V def mem Collect eq Int iff mem ball dist norm
by (meson norm triangle half r)
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then have inj on f V
by (force simp: inj on def )

then obtain g where g :
∧
x . x ∈ V =⇒ g(f x ) = x

by (metis inv into f f )
have ∃T ′ B . open T ′ ∧ f x ∈ T ′ ∧

(∀ y∈f ‘ V ∩ T ∩ T ′. norm (g y − g (f x )) ≤ B ∗ norm (y − f x ))
if f x ∈ T x ∈ V for x
using that noxy
by (rule tac x = ball (f x ) 1 in exI ) (force simp: g)

then have negligible (g ‘ (f ‘ V ∩ T ))
by (force simp: 〈negligible T 〉 negligible Int intro!: negligible locally Lipschitz image)
moreover have V ⊆ g ‘ (f ‘ V ∩ T )
by (force simp: g image iff V def )

ultimately show negligible V
by (rule negligible subset)

qed (use a fa V def that in auto)
qed
with negligible countable Union have negligible (

⋃
n ∈ {0<..}. {x . x ∈ U n ∧ f

x ∈ T})
by auto

moreover have {x ∈ S . f x ∈ T} ⊆ (
⋃

n ∈ {0<..}. {x . x ∈ U n ∧ f x ∈ T})
proof clarsimp
fix x
assume x ∈ S and f x ∈ T
then obtain inj : inj (f ′ x ) and der : (f has derivative f ′ x ) (at x within S )
using assms by metis

moreover have linear(f ′ x )
and eps:

∧
ε. ε > 0 =⇒ ∃ δ>0 . ∀ y∈S . norm (y − x ) < δ −→
norm (f y − f x − f ′ x (y − x )) ≤ ε ∗ norm (y − x )

using der by (auto simp: has derivative within alt linear linear)
ultimately obtain g where linear g and g : g ◦ f ′ x = id
using linear injective left inverse by metis

then obtain B where B > 0 and B :
∧
z . B ∗ norm z ≤ norm(f ′ x z )

using linear invertible bounded below pos 〈linear (f ′ x )〉 by blast
then obtain i where i 6= 0 and i : 1 / real i < B
by (metis (full types) inverse eq divide real arch invD)

then obtain δ where δ > 0
and δ:

∧
y . [[y∈S ; norm (y − x ) < δ]] =⇒

norm (f y − f x − f ′ x (y − x )) ≤ (B − 1 / real i) ∗ norm (y − x )
using eps [of B − 1/i ] by auto

then obtain j where j 6= 0 and j : inverse (real j ) < δ
using real arch inverse by blast

have norm (y − x )/(max i j ) ≤ norm (f y − f x )
if y ∈ S and less: norm (y − x ) < 1 / (max i j ) for y

proof −
have 1 / real (max i j ) < δ
using j 〈j 6= 0 〉 〈0 < δ〉

by (auto simp: field split simps max mult distrib left of nat max )
then have norm (y − x ) < δ
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using less by linarith
with δ 〈y ∈ S 〉 have le: norm (f y − f x − f ′ x (y − x )) ≤ B ∗ norm (y −

x ) − norm (y − x )/i
by (auto simp: algebra simps)

have norm (y − x ) / real (max i j ) ≤ norm (y − x ) / real i
using 〈i 6= 0 〉 〈j 6= 0 〉 by (simp add : field split simps max mult distrib left

of nat max less max iff disj )
also have ... ≤ norm (f y − f x )
using B [of y−x ] le norm triangle ineq3 [of f y − f x f ′ x (y − x )]
by linarith

finally show ?thesis .
qed
with 〈x ∈ S 〉 〈i 6= 0 〉 〈j 6= 0 〉 show ∃n∈{0<..}. x ∈ U n
by (rule tac x=max i j in bexI ) (auto simp: field simps U def less max iff disj )

qed
ultimately show ?thesis
by (rule negligible subset)

qed

lemma absolutely integrable Un:
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes S : f absolutely integrable on S and T : f absolutely integrable on T
shows f absolutely integrable on (S ∪ T )

proof −
have [simp]: {x . (if x ∈ A then f x else 0 ) 6= 0} = {x ∈ A. f x 6= 0} for A
by auto

let ?ST = {x ∈ S . f x 6= 0} ∩ {x ∈ T . f x 6= 0}
have ?ST ∈ sets lebesgue
proof (rule Sigma Algebra.sets.Int)
have f integrable on S
using S absolutely integrable on def by blast

then have (λx . if x ∈ S then f x else 0 ) integrable on UNIV
by (simp add : integrable restrict UNIV )

then have borel : (λx . if x ∈ S then f x else 0 ) ∈ borel measurable (lebesgue on
UNIV )

using integrable imp measurable lebesgue on UNIV eq by blast
then show {x ∈ S . f x 6= 0} ∈ sets lebesgue
unfolding borel measurable vimage open
by (rule allE [where x = −{0}]) auto

next
have f integrable on T
using T absolutely integrable on def by blast

then have (λx . if x ∈ T then f x else 0 ) integrable on UNIV
by (simp add : integrable restrict UNIV )

then have borel : (λx . if x ∈ T then f x else 0 ) ∈ borel measurable (lebesgue on
UNIV )

using integrable imp measurable lebesgue on UNIV eq by blast
then show {x ∈ T . f x 6= 0} ∈ sets lebesgue
unfolding borel measurable vimage open
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by (rule allE [where x = −{0}]) auto
qed
then have f absolutely integrable on ?ST
by (rule set integrable subset [OF S ]) auto

then have Int : (λx . if x ∈ ?ST then f x else 0 ) absolutely integrable on UNIV
using absolutely integrable restrict UNIV by blast

have (λx . if x ∈ S then f x else 0 ) absolutely integrable on UNIV
(λx . if x ∈ T then f x else 0 ) absolutely integrable on UNIV

using S T absolutely integrable restrict UNIV by blast+
then have (λx . (if x ∈ S then f x else 0 ) + (if x ∈ T then f x else 0 )) abso-

lutely integrable on UNIV
by (rule set integral add)

then have (λx . ((if x ∈ S then f x else 0 ) + (if x ∈ T then f x else 0 )) − (if x
∈ ?ST then f x else 0 )) absolutely integrable on UNIV

using Int by (rule set integral diff )
then have (λx . if x ∈ S ∪ T then f x else 0 ) absolutely integrable on UNIV
by (rule absolutely integrable spike) (auto intro: empty imp negligible)

then show ?thesis
unfolding absolutely integrable restrict UNIV .

qed

lemma absolutely integrable on combine:
fixes f :: real ⇒ ′a::euclidean space
assumes f absolutely integrable on {a..c}
and f absolutely integrable on {c..b}
and a ≤ c
and c ≤ b

shows f absolutely integrable on {a..b}
by (metis absolutely integrable Un assms ivl disj un two touch(4 ))

lemma uniform limit set lebesgue integral at top:
fixes f :: ′a ⇒ real ⇒ ′b::{banach, second countable topology}
and g :: real ⇒ real

assumes bound :
∧
x y . x ∈ A =⇒ y ≥ a =⇒ norm (f x y) ≤ g y

assumes integrable: set integrable M {a..} g
assumes measurable:

∧
x . x ∈ A =⇒ set borel measurable M {a..} (f x )

assumes sets borel ⊆ sets M
shows uniform limit A (λb x . LINT y :{a..b}|M . f x y) (λx . LINT y :{a..}|M .

f x y) at top
proof (cases A = {})
case False
then obtain x where x : x ∈ A by auto
have g nonneg : g y ≥ 0 if y ≥ a for y
proof −
have 0 ≤ norm (f x y) by simp
also have . . . ≤ g y using bound [OF x that ] by simp
finally show ?thesis .

qed
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have integrable ′: set integrable M {a..} (λy . f x y) if x ∈ A for x
unfolding set integrable def

proof (rule Bochner Integration.integrable bound)
show integrable M (λx . indicator {a..} x ∗ g x )
using integrable by (simp add : set integrable def )

show (λy . indicat real {a..} y ∗R f x y) ∈ borel measurable M using measur-
able[OF that ]

by (simp add : set borel measurable def )
show AE y in M . norm (indicat real {a..} y ∗R f x y) ≤ norm (indicat real

{a..} y ∗ g y)
using bound [OF that ] by (intro AE I2 ) (auto simp: indicator def g nonneg)

qed

show ?thesis
proof (rule uniform limitI )
fix e :: real assume e: e > 0
have sets [intro]: A ∈ sets M if A ∈ sets borel for A
using that assms by blast

have ((λb. LINT y :{a..b}|M . g y) −−−→ (LINT y :{a..}|M . g y)) at top
by (intro tendsto set lebesgue integral at top assms sets) auto

with e obtain b0 :: real where b0 : ∀ b≥b0 . |(LINT y :{a..}|M . g y) − (LINT
y :{a..b}|M . g y)| < e

by (auto simp: tendsto iff eventually at top linorder dist real def abs minus commute)
define b where b = max a b0
have a ≤ b by (simp add : b def )
from b0 have |(LINT y :{a..}|M . g y) − (LINT y :{a..b}|M . g y)| < e
by (auto simp: b def )

also have {a..} = {a..b} ∪ {b<..} by (auto simp: b def )
also have |(LINT y :. . . |M . g y) − (LINT y :{a..b}|M . g y)| = |(LINT y :{b<..}|M .

g y)|
using 〈a ≤ b〉 by (subst set integral Un) (auto intro!: set integrable subset [OF

integrable])
also have (LINT y :{b<..}|M . g y) ≥ 0
using g nonneg 〈a ≤ b〉 unfolding set lebesgue integral def
by (intro Bochner Integration.integral nonneg) (auto simp: indicator def )

hence |(LINT y :{b<..}|M . g y)| = (LINT y :{b<..}|M . g y) by simp
finally have less: (LINT y :{b<..}|M . g y) < e .

have eventually (λb. b ≥ b0 ) at top by (rule eventually ge at top)
moreover have eventually (λb. b ≥ a) at top by (rule eventually ge at top)
ultimately show eventually (λb. ∀ x∈A.

dist (LINT y :{a..b}|M . f x y) (LINT y :{a..}|M . f x y) < e)
at top

proof eventually elim
case (elim b)
show ?case
proof
fix x assume x : x ∈ A
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have dist (LINT y :{a..b}|M . f x y) (LINT y :{a..}|M . f x y) =
norm ((LINT y :{a..}|M . f x y) − (LINT y :{a..b}|M . f x y))

by (simp add : dist norm norm minus commute)
also have {a..} = {a..b} ∪ {b<..} using elim by auto
also have (LINT y :. . . |M . f x y) − (LINT y :{a..b}|M . f x y) = (LINT

y :{b<..}|M . f x y)
using elim x

by (subst set integral Un) (auto intro!: set integrable subset [OF integrable ′])
also have norm . . . ≤ (LINT y :{b<..}|M . norm (f x y)) using elim x
by (intro set integral norm bound set integrable subset [OF integrable ′]) auto
also have . . . ≤ (LINT y :{b<..}|M . g y) using elim x bound g nonneg

by (intro set integral mono set integrable norm set integrable subset [OF
integrable ′]

set integrable subset [OF integrable]) auto
also have (LINT y :{b<..}|M . g y) ≥ 0
using g nonneg 〈a ≤ b〉 unfolding set lebesgue integral def
by (intro Bochner Integration.integral nonneg) (auto simp: indicator def )

hence (LINT y :{b<..}|M . g y) = |(LINT y :{b<..}|M . g y)| by simp
also have . . . = |(LINT y :{a..b} ∪ {b<..}|M . g y) − (LINT y :{a..b}|M . g

y)|
using elim by (subst set integral Un) (auto intro!: set integrable subset [OF

integrable])
also have {a..b} ∪ {b<..} = {a..} using elim by auto
also have |(LINT y :{a..}|M . g y) − (LINT y :{a..b}|M . g y)| < e
using b0 elim by blast

finally show dist (LINT y :{a..b}|M . f x y) (LINT y :{a..}|M . f x y) < e .
qed

qed
qed

qed auto

Differentiability of inverse function (most basic form)

proposition has derivative inverse within:
fixes f :: ′a::real normed vector ⇒ ′b::euclidean space
assumes der f : (f has derivative f ′) (at a within S )
and cont g : continuous (at (f a) within f ‘ S ) g
and a ∈ S linear g ′ and id : g ′ ◦ f ′ = id
and gf :

∧
x . x ∈ S =⇒ g(f x ) = x

shows (g has derivative g ′) (at (f a) within f ‘ S )
proof −
have [simp]: g ′ (f ′ x ) = x for x
by (simp add : local .id pointfree idE )

have bounded linear f ′

and f ′:
∧
e. e>0 =⇒ ∃ d>0 . ∀ y∈S . norm (y − a) < d −→

norm (f y − f a − f ′ (y − a)) ≤ e ∗ norm (y − a)
using der f by (auto simp: has derivative within alt)

obtain C where C > 0 and C :
∧
x . norm (g ′ x ) ≤ C ∗ norm x

using linear bounded pos [OF 〈linear g ′〉] by metis
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obtain B k where B > 0 k > 0
and Bk :

∧
x . [[x ∈ S ; norm(f x − f a) < k ]] =⇒ norm(x − a) ≤ B ∗ norm(f

x − f a)
proof −
obtain B where B > 0 and B :

∧
x . B ∗ norm x ≤ norm (f ′ x )

using linear inj bounded below pos [of f ′] 〈linear g ′〉 id der f has derivative linear
linear invertible bounded below pos by blast

then obtain d where d>0
and d :

∧
y . [[y ∈ S ; norm (y − a) < d ]] =⇒
norm (f y − f a − f ′ (y − a)) ≤ B / 2 ∗ norm (y − a)

using f ′ [of B/2 ] by auto
then obtain e where e > 0
and e:

∧
x . [[x ∈ S ; norm (f x − f a) < e]] =⇒ norm (g (f x ) − g (f a)) < d

using cont g by (auto simp: continuous within eps delta dist norm)
show thesis
proof
show 2/B > 0
using 〈B > 0 〉 by simp

show norm (x − a) ≤ 2 / B ∗ norm (f x − f a)
if x ∈ S norm (f x − f a) < e for x

proof −
have xa: norm (x − a) < d
using e [OF that ] gf by (simp add : 〈a ∈ S 〉 that)

have ∗: [[norm(y − f ′) ≤ B / 2 ∗ norm x ; B ∗ norm x ≤ norm f ′]]
=⇒ norm y ≥ B / 2 ∗ norm x for y f ′:: ′b and x :: ′a

using norm triangle ineq3 [of y f ′] by linarith
show ?thesis
using ∗ [OF d [OF 〈x ∈ S 〉 xa] B ] 〈B > 0 〉 by (simp add : field simps)

qed
qed (use 〈e > 0 〉 in auto)

qed
show ?thesis
unfolding has derivative within alt

proof (intro conjI impI allI )
show bounded linear g ′

using 〈linear g ′〉 by (simp add : linear linear)
next
fix e :: real
assume e > 0
then obtain d where d>0
and d :

∧
y . [[y ∈ S ; norm (y − a) < d ]] =⇒
norm (f y − f a − f ′ (y − a)) ≤ e / (B ∗ C ) ∗ norm (y − a)

using f ′ [of e / (B ∗ C )] 〈B > 0 〉 〈C > 0 〉 by auto
have norm (x − a − g ′ (f x − f a)) ≤ e ∗ norm (f x − f a)
if x ∈ S and lt k : norm (f x − f a) < k and lt dB : norm (f x − f a) < d/B

for x
proof −
have norm (x − a) ≤ B ∗ norm(f x − f a)
using Bk lt k 〈x ∈ S 〉 by blast
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also have . . . < d
by (metis 〈0 < B 〉 lt dB mult .commute pos less divide eq)

finally have lt d : norm (x − a) < d .
have norm (x − a − g ′ (f x − f a)) ≤ norm(g ′(f x − f a − (f ′ (x − a))))
by (simp add : linear diff [OF 〈linear g ′〉] norm minus commute)

also have . . . ≤ C ∗ norm (f x − f a − f ′ (x − a))
using C by blast

also have . . . ≤ e ∗ norm (f x − f a)
proof −
have norm (f x − f a − f ′ (x − a)) ≤ e / (B ∗ C ) ∗ norm (x − a)
using d [OF 〈x ∈ S 〉 lt d ] .

also have . . . ≤ (norm (f x − f a) ∗ e) / C
using 〈B > 0 〉 〈C > 0 〉 〈e > 0 〉 by (simp add : field simps Bk lt k 〈x ∈ S 〉)
finally show ?thesis
using 〈C > 0 〉 by (simp add : field simps)

qed
finally show ?thesis .
qed
with 〈k > 0 〉 〈B > 0 〉 〈d > 0 〉 〈a ∈ S 〉

show ∃ d>0 . ∀ y∈f ‘ S .
norm (y − f a) < d −→
norm (g y − g (f a) − g ′ (y − f a)) ≤ e ∗ norm (y − f a)

by (rule tac x=min k (d / B) in exI ) (auto simp: gf )
qed

qed

end

6.20 Complex Analysis Basics

Definitions of analytic and holomorphic functions, limit theorems, complex
differentiation

theory Complex Analysis Basics
imports Derivative HOL−Library .Nonpos Ints

begin

6.20.1 General lemmas

lemma nonneg Reals cmod eq Re: z ∈ IR≥0 =⇒ norm z = Re z
by (simp add : complex nonneg Reals iff cmod eq Re)

lemma fact cancel :
fixes c :: ′a::real field
shows of nat (Suc n) ∗ c / (fact (Suc n)) = c / (fact n)
using of nat neq 0 by force

lemma vector derivative cnj within:
assumes at x within A 6= bot and f differentiable at x within A
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shows vector derivative (λz . cnj (f z )) (at x within A) =
cnj (vector derivative f (at x within A)) (is = cnj ?D)

proof −
let ?D = vector derivative f (at x within A)
from assms have (f has vector derivative ?D) (at x within A)
by (subst (asm) vector derivative works)

hence ((λx . cnj (f x )) has vector derivative cnj ?D) (at x within A)
by (rule has vector derivative cnj )

thus ?thesis using assms by (auto dest : vector derivative within)
qed

lemma vector derivative cnj :
assumes f differentiable at x
shows vector derivative (λz . cnj (f z )) (at x ) = cnj (vector derivative f (at x ))
using assms by (intro vector derivative cnj within) auto

lemma
shows open halfspace Re lt : open {z . Re(z ) < b}
and open halfspace Re gt : open {z . Re(z ) > b}
and closed halfspace Re ge: closed {z . Re(z ) ≥ b}
and closed halfspace Re le: closed {z . Re(z ) ≤ b}
and closed halfspace Re eq : closed {z . Re(z ) = b}
and open halfspace Im lt : open {z . Im(z ) < b}
and open halfspace Im gt : open {z . Im(z ) > b}
and closed halfspace Im ge: closed {z . Im(z ) ≥ b}
and closed halfspace Im le: closed {z . Im(z ) ≤ b}
and closed halfspace Im eq : closed {z . Im(z ) = b}

by (intro open Collect less closed Collect le closed Collect eq continuous on Re
continuous on Im continuous on id continuous on const)+

lemma closed complex Reals: closed (IR :: complex set)
proof −
have (IR :: complex set) = {z . Im z = 0}
by (auto simp: complex is Real iff )

then show ?thesis
by (metis closed halfspace Im eq)

qed

lemma closed Real halfspace Re le: closed (IR ∩ {w . Re w ≤ x})
by (simp add : closed Int closed complex Reals closed halfspace Re le)

lemma closed nonpos Reals complex [simp]: closed (IR≤0 :: complex set)
proof −
have IR≤0 = IR ∩ {z . Re(z ) ≤ 0}
using complex nonpos Reals iff complex is Real iff by auto

then show ?thesis
by (metis closed Real halfspace Re le)

qed
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lemma closed Real halfspace Re ge: closed (IR ∩ {w . x ≤ Re(w)})
using closed halfspace Re ge
by (simp add : closed Int closed complex Reals)

lemma closed nonneg Reals complex [simp]: closed (IR≥0 :: complex set)
proof −
have IR≥0 = IR ∩ {z . Re(z ) ≥ 0}
using complex nonneg Reals iff complex is Real iff by auto

then show ?thesis
by (metis closed Real halfspace Re ge)

qed

lemma closed real abs le: closed {w ∈ IR. |Re w | ≤ r}
proof −
have {w ∈ IR. |Re w | ≤ r} = (IR ∩ {w . Re w ≤ r}) ∩ (IR ∩ {w . Re w ≥ −r})
by auto

then show closed {w ∈ IR. |Re w | ≤ r}
by (simp add : closed Int closed Real halfspace Re ge closed Real halfspace Re le)

qed

lemma real lim:
fixes l ::complex
assumes (f −−−→ l) F and ¬ trivial limit F and eventually P F and

∧
a. P a

=⇒ f a ∈ IR
shows l ∈ IR

proof (rule Lim in closed set [OF closed complex Reals assms(2 ,1 )])
show eventually (λx . f x ∈ IR) F
using assms(3 , 4 ) by (auto intro: eventually mono)

qed

lemma real lim sequentially :
fixes l ::complex
shows (f −−−→ l) sequentially =⇒ (∃N . ∀n≥N . f n ∈ IR) =⇒ l ∈ IR

by (rule real lim [where F=sequentially ]) (auto simp: eventually sequentially)

lemma real series:
fixes l ::complex
shows f sums l =⇒ (

∧
n. f n ∈ IR) =⇒ l ∈ IR

unfolding sums def
by (metis real lim sequentially sum in Reals)

lemma Lim null comparison Re:
assumes eventually (λx . norm(f x ) ≤ Re(g x )) F (g −−−→ 0 ) F shows (f −−−→

0 ) F
by (rule Lim null comparison[OF assms(1 )] tendsto eq intros assms(2 ))+ simp

6.20.2 Holomorphic functions

definition holomorphic on :: [complex ⇒ complex , complex set ] ⇒ bool
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(infixl (holomorphic ′ on) 50 )
where f holomorphic on s ≡ ∀ x∈s. f field differentiable (at x within s)

named theorems holomorphic intros structural introduction rules for holomor-
phic on

lemma holomorphic onI [intro?]: (
∧
x . x ∈ s =⇒ f field differentiable (at x within

s)) =⇒ f holomorphic on s
by (simp add : holomorphic on def )

lemma holomorphic onD [dest?]: [[f holomorphic on s; x ∈ s]] =⇒ f field differentiable
(at x within s)
by (simp add : holomorphic on def )

lemma holomorphic on imp differentiable on:
f holomorphic on s =⇒ f differentiable on s

unfolding holomorphic on def differentiable on def
by (simp add : field differentiable imp differentiable)

lemma holomorphic on imp differentiable at :
[[f holomorphic on s; open s; x ∈ s]] =⇒ f field differentiable (at x )

using at within open holomorphic on def by fastforce

lemma holomorphic on empty [holomorphic intros]: f holomorphic on {}
by (simp add : holomorphic on def )

lemma holomorphic on open:
open s =⇒ f holomorphic on s ←→ (∀ x ∈ s. ∃ f ′. DERIV f x :> f ′)

by (auto simp: holomorphic on def field differentiable def has field derivative def
at within open [of s])

lemma holomorphic on imp continuous on:
f holomorphic on s =⇒ continuous on s f

by (metis field differentiable imp continuous at continuous on eq continuous within
holomorphic on def )

lemma holomorphic on subset [elim]:
f holomorphic on s =⇒ t ⊆ s =⇒ f holomorphic on t

unfolding holomorphic on def
by (metis field differentiable within subset subsetD)

lemma holomorphic transform: [[f holomorphic on s;
∧
x . x ∈ s =⇒ f x = g x ]]

=⇒ g holomorphic on s
by (metis field differentiable transform within linordered field no ub holomorphic on def )

lemma holomorphic cong : s = t ==> (
∧
x . x ∈ s =⇒ f x = g x ) =⇒ f holomor-

phic on s ←→ g holomorphic on t
by (metis holomorphic transform)
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lemma holomorphic on linear [simp, holomorphic intros]: ((∗) c) holomorphic on
s
unfolding holomorphic on def by (metis field differentiable linear)

lemma holomorphic on const [simp, holomorphic intros]: (λz . c) holomorphic on
s
unfolding holomorphic on def by (metis field differentiable const)

lemma holomorphic on ident [simp, holomorphic intros]: (λx . x ) holomorphic on
s
unfolding holomorphic on def by (metis field differentiable ident)

lemma holomorphic on id [simp, holomorphic intros]: id holomorphic on s
unfolding id def by (rule holomorphic on ident)

lemma holomorphic on compose:
f holomorphic on s =⇒ g holomorphic on (f ‘ s) =⇒ (g o f ) holomorphic on s
using field differentiable compose within[of f s g ]
by (auto simp: holomorphic on def )

lemma holomorphic on compose gen:
f holomorphic on s =⇒ g holomorphic on t =⇒ f ‘ s ⊆ t =⇒ (g o f ) holomor-

phic on s
by (metis holomorphic on compose holomorphic on subset)

lemma holomorphic on balls imp entire:
assumes ¬bdd above A

∧
r . r ∈ A =⇒ f holomorphic on ball c r

shows f holomorphic on B
proof (rule holomorphic on subset)
show f holomorphic on UNIV unfolding holomorphic on def
proof
fix z :: complex
from 〈¬bdd above A〉 obtain r where r : r ∈ A r > norm (z − c)
by (meson bdd aboveI not le)

with assms(2 ) have f holomorphic on ball c r by blast
moreover from r have z ∈ ball c r by (auto simp: dist norm norm minus commute)
ultimately show f field differentiable at z
by (auto simp: holomorphic on def at within open[of ball c r ])

qed
qed auto

lemma holomorphic on balls imp entire ′:
assumes

∧
r . r > 0 =⇒ f holomorphic on ball c r

shows f holomorphic on B
proof (rule holomorphic on balls imp entire)
{
fix M :: real
have ∃ x . x > max M 0 by (intro gt ex )
hence ∃ x>0 . x > M by auto

Complex{_}{\kern 0pt}Analysis{_}{\kern 0pt}Basics.html


2260

}
thus ¬bdd above {(0 ::real)<..} unfolding bdd above def
by (auto simp: not le)

qed (insert assms, auto)

lemma holomorphic on minus [holomorphic intros]: f holomorphic on s =⇒ (λz .
−(f z )) holomorphic on s
by (metis field differentiable minus holomorphic on def )

lemma holomorphic on add [holomorphic intros]:
[[f holomorphic on s; g holomorphic on s]] =⇒ (λz . f z + g z ) holomorphic on s
unfolding holomorphic on def by (metis field differentiable add)

lemma holomorphic on diff [holomorphic intros]:
[[f holomorphic on s; g holomorphic on s]] =⇒ (λz . f z − g z ) holomorphic on s
unfolding holomorphic on def by (metis field differentiable diff )

lemma holomorphic on mult [holomorphic intros]:
[[f holomorphic on s; g holomorphic on s]] =⇒ (λz . f z ∗ g z ) holomorphic on s
unfolding holomorphic on def by (metis field differentiable mult)

lemma holomorphic on inverse [holomorphic intros]:
[[f holomorphic on s;

∧
z . z ∈ s =⇒ f z 6= 0 ]] =⇒ (λz . inverse (f z )) holomor-

phic on s
unfolding holomorphic on def by (metis field differentiable inverse)

lemma holomorphic on divide [holomorphic intros]:
[[f holomorphic on s; g holomorphic on s;

∧
z . z ∈ s =⇒ g z 6= 0 ]] =⇒ (λz . f z /

g z ) holomorphic on s
unfolding holomorphic on def by (metis field differentiable divide)

lemma holomorphic on power [holomorphic intros]:
f holomorphic on s =⇒ (λz . (f z )ˆn) holomorphic on s
unfolding holomorphic on def by (metis field differentiable power)

lemma holomorphic on sum [holomorphic intros]:
(
∧
i . i ∈ I =⇒ (f i) holomorphic on s) =⇒ (λx . sum (λi . f i x ) I ) holomorphic on

s
unfolding holomorphic on def by (metis field differentiable sum)

lemma holomorphic on prod [holomorphic intros]:
(
∧
i . i ∈ I =⇒ (f i) holomorphic on s) =⇒ (λx . prod (λi . f i x ) I ) holomorphic on

s
by (induction I rule: infinite finite induct) (auto intro: holomorphic intros)

lemma holomorphic pochhammer [holomorphic intros]:
f holomorphic on A =⇒ (λs. pochhammer (f s) n) holomorphic on A
by (induction n) (auto intro!: holomorphic intros simp: pochhammer Suc)
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lemma holomorphic on scaleR [holomorphic intros]:
f holomorphic on A =⇒ (λx . c ∗R f x ) holomorphic on A
by (auto simp: scaleR conv of real intro!: holomorphic intros)

lemma holomorphic on Un [holomorphic intros]:
assumes f holomorphic on A f holomorphic on B open A open B
shows f holomorphic on (A ∪ B)
using assms by (auto simp: holomorphic on def at within open[of A]

at within open[of B ] at within open[of A ∪ B ] open Un)

lemma holomorphic on If Un [holomorphic intros]:
assumes f holomorphic on A g holomorphic on B open A open B
assumes

∧
z . z ∈ A =⇒ z ∈ B =⇒ f z = g z

shows (λz . if z ∈ A then f z else g z ) holomorphic on (A ∪ B) (is ?h holomor-
phic on )
proof (intro holomorphic on Un)
note 〈f holomorphic on A〉

also have f holomorphic on A ←→ ?h holomorphic on A
by (intro holomorphic cong) auto

finally show . . . .
next
note 〈g holomorphic on B 〉

also have g holomorphic on B ←→ ?h holomorphic on B
using assms by (intro holomorphic cong) auto

finally show . . . .
qed (insert assms, auto)

lemma holomorphic derivI :
[[f holomorphic on S ; open S ; x ∈ S ]]
=⇒ (f has field derivative deriv f x ) (at x within T )

by (metis DERIV deriv iff field differentiable at within open holomorphic on def
has field derivative at within)

lemma complex derivative transform within open:
[[f holomorphic on s; g holomorphic on s; open s; z ∈ s;

∧
w . w ∈ s =⇒ f w = g

w ]]
=⇒ deriv f z = deriv g z
unfolding holomorphic on def
by (rule DERIV imp deriv)
(metis DERIV deriv iff field differentiable has field derivative transform within open

at within open)

lemma holomorphic nonconstant :
assumes holf : f holomorphic on S and open S ξ ∈ S deriv f ξ 6= 0
shows ¬ f constant on S

by (rule nonzero deriv nonconstant [of f deriv f ξ ξ S ])
(use assms in 〈auto simp: holomorphic derivI 〉)
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6.20.3 Analyticity on a set

definition analytic on (infixl (analytic ′ on) 50 )
where f analytic on S ≡ ∀ x ∈ S . ∃ e. 0 < e ∧ f holomorphic on (ball x e)

named theorems analytic intros introduction rules for proving analyticity

lemma analytic imp holomorphic: f analytic on S =⇒ f holomorphic on S
by (simp add : at within open [OF open ball ] analytic on def holomorphic on def )

(metis centre in ball field differentiable at within)

lemma analytic on open: open S =⇒ f analytic on S ←→ f holomorphic on S
apply (auto simp: analytic imp holomorphic)
apply (auto simp: analytic on def holomorphic on def )
by (metis holomorphic on def holomorphic on subset open contains ball)

lemma analytic on imp differentiable at :
f analytic on S =⇒ x ∈ S =⇒ f field differentiable (at x )
apply (auto simp: analytic on def holomorphic on def )
by (metis open ball centre in ball field differentiable within open)

lemma analytic on subset : f analytic on S =⇒ T ⊆ S =⇒ f analytic on T
by (auto simp: analytic on def )

lemma analytic on Un: f analytic on (S ∪ T ) ←→ f analytic on S ∧ f analytic on
T
by (auto simp: analytic on def )

lemma analytic on Union: f analytic on (
⋃
T ) ←→ (∀T ∈ T . f analytic on T )

by (auto simp: analytic on def )

lemma analytic on UN : f analytic on (
⋃
i∈I . S i) ←→ (∀ i∈I . f analytic on (S

i))
by (auto simp: analytic on def )

lemma analytic on holomorphic:
f analytic on S ←→ (∃T . open T ∧ S ⊆ T ∧ f holomorphic on T )
(is ?lhs = ?rhs)

proof −
have ?lhs ←→ (∃T . open T ∧ S ⊆ T ∧ f analytic on T )
proof safe
assume f analytic on S
then show ∃T . open T ∧ S ⊆ T ∧ f analytic on T
apply (simp add : analytic on def )
apply (rule exI [where x=

⋃
{U . open U ∧ f analytic on U }], auto)

apply (metis open ball analytic on open centre in ball)
by (metis analytic on def )

next
fix T
assume open T S ⊆ T f analytic on T
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then show f analytic on S
by (metis analytic on subset)

qed
also have ... ←→ ?rhs
by (auto simp: analytic on open)

finally show ?thesis .
qed

lemma analytic on linear [analytic intros,simp]: ((∗) c) analytic on S
by (auto simp add : analytic on holomorphic)

lemma analytic on const [analytic intros,simp]: (λz . c) analytic on S
by (metis analytic on def holomorphic on const zero less one)

lemma analytic on ident [analytic intros,simp]: (λx . x ) analytic on S
by (simp add : analytic on def gt ex )

lemma analytic on id [analytic intros]: id analytic on S
unfolding id def by (rule analytic on ident)

lemma analytic on compose:
assumes f : f analytic on S

and g : g analytic on (f ‘ S )
shows (g o f ) analytic on S

unfolding analytic on def
proof (intro ballI )
fix x
assume x : x ∈ S
then obtain e where e: 0 < e and fh: f holomorphic on ball x e using f
by (metis analytic on def )

obtain e ′ where e ′: 0 < e ′ and gh: g holomorphic on ball (f x ) e ′ using g
by (metis analytic on def g image eqI x )

have isCont f x
by (metis analytic on imp differentiable at field differentiable imp continuous at

f x )
with e ′ obtain d where d : 0 < d and fd : f ‘ ball x d ⊆ ball (f x ) e ′

by (auto simp: continuous at ball)
have g ◦ f holomorphic on ball x (min d e)
apply (rule holomorphic on compose)
apply (metis fh holomorphic on subset min.bounded iff order refl subset ball)
by (metis fd gh holomorphic on subset image mono min.cobounded1 subset ball)
then show ∃ e>0 . g ◦ f holomorphic on ball x e
by (metis d e min less iff conj )

qed

lemma analytic on compose gen:
f analytic on S =⇒ g analytic on T =⇒ (

∧
z . z ∈ S =⇒ f z ∈ T )

=⇒ g o f analytic on S
by (metis analytic on compose analytic on subset image subset iff )
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lemma analytic on neg [analytic intros]:
f analytic on S =⇒ (λz . −(f z )) analytic on S

by (metis analytic on holomorphic holomorphic on minus)

lemma analytic on add [analytic intros]:
assumes f : f analytic on S

and g : g analytic on S
shows (λz . f z + g z ) analytic on S

unfolding analytic on def
proof (intro ballI )
fix z
assume z : z ∈ S
then obtain e where e: 0 < e and fh: f holomorphic on ball z e using f
by (metis analytic on def )

obtain e ′ where e ′: 0 < e ′ and gh: g holomorphic on ball z e ′ using g
by (metis analytic on def g z )

have (λz . f z + g z ) holomorphic on ball z (min e e ′)
apply (rule holomorphic on add)
apply (metis fh holomorphic on subset min.bounded iff order refl subset ball)
by (metis gh holomorphic on subset min.bounded iff order refl subset ball)

then show ∃ e>0 . (λz . f z + g z ) holomorphic on ball z e
by (metis e e ′ min less iff conj )

qed

lemma analytic on diff [analytic intros]:
assumes f : f analytic on S

and g : g analytic on S
shows (λz . f z − g z ) analytic on S

unfolding analytic on def
proof (intro ballI )
fix z
assume z : z ∈ S
then obtain e where e: 0 < e and fh: f holomorphic on ball z e using f
by (metis analytic on def )

obtain e ′ where e ′: 0 < e ′ and gh: g holomorphic on ball z e ′ using g
by (metis analytic on def g z )

have (λz . f z − g z ) holomorphic on ball z (min e e ′)
apply (rule holomorphic on diff )
apply (metis fh holomorphic on subset min.bounded iff order refl subset ball)
by (metis gh holomorphic on subset min.bounded iff order refl subset ball)

then show ∃ e>0 . (λz . f z − g z ) holomorphic on ball z e
by (metis e e ′ min less iff conj )

qed

lemma analytic on mult [analytic intros]:
assumes f : f analytic on S

and g : g analytic on S
shows (λz . f z ∗ g z ) analytic on S
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unfolding analytic on def
proof (intro ballI )
fix z
assume z : z ∈ S
then obtain e where e: 0 < e and fh: f holomorphic on ball z e using f
by (metis analytic on def )

obtain e ′ where e ′: 0 < e ′ and gh: g holomorphic on ball z e ′ using g
by (metis analytic on def g z )

have (λz . f z ∗ g z ) holomorphic on ball z (min e e ′)
apply (rule holomorphic on mult)
apply (metis fh holomorphic on subset min.bounded iff order refl subset ball)
by (metis gh holomorphic on subset min.bounded iff order refl subset ball)

then show ∃ e>0 . (λz . f z ∗ g z ) holomorphic on ball z e
by (metis e e ′ min less iff conj )

qed

lemma analytic on inverse [analytic intros]:
assumes f : f analytic on S

and nz : (
∧
z . z ∈ S =⇒ f z 6= 0 )

shows (λz . inverse (f z )) analytic on S
unfolding analytic on def
proof (intro ballI )
fix z
assume z : z ∈ S
then obtain e where e: 0 < e and fh: f holomorphic on ball z e using f
by (metis analytic on def )

have continuous on (ball z e) f
by (metis fh holomorphic on imp continuous on)

then obtain e ′ where e ′: 0 < e ′ and nz ′:
∧
y . dist z y < e ′ =⇒ f y 6= 0

by (metis open ball centre in ball continuous on open avoid e z nz )
have (λz . inverse (f z )) holomorphic on ball z (min e e ′)
apply (rule holomorphic on inverse)
apply (metis fh holomorphic on subset min.cobounded2 min.commute sub-

set ball)
by (metis nz ′ mem ball min less iff conj )

then show ∃ e>0 . (λz . inverse (f z )) holomorphic on ball z e
by (metis e e ′ min less iff conj )

qed

lemma analytic on divide [analytic intros]:
assumes f : f analytic on S

and g : g analytic on S
and nz : (

∧
z . z ∈ S =⇒ g z 6= 0 )

shows (λz . f z / g z ) analytic on S
unfolding divide inverse
by (metis analytic on inverse analytic on mult f g nz )

lemma analytic on power [analytic intros]:
f analytic on S =⇒ (λz . (f z ) ˆ n) analytic on S
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by (induct n) (auto simp: analytic on mult)

lemma analytic on sum [analytic intros]:
(
∧
i . i ∈ I =⇒ (f i) analytic on S ) =⇒ (λx . sum (λi . f i x ) I ) analytic on S

by (induct I rule: infinite finite induct) (auto simp: analytic on add)

lemma deriv left inverse:
assumes f holomorphic on S and g holomorphic on T

and open S and open T
and f ‘ S ⊆ T
and [simp]:

∧
z . z ∈ S =⇒ g (f z ) = z

and w ∈ S
shows deriv f w ∗ deriv g (f w) = 1

proof −
have deriv f w ∗ deriv g (f w) = deriv g (f w) ∗ deriv f w
by (simp add : algebra simps)

also have ... = deriv (g o f ) w
using assms
by (metis analytic on imp differentiable at analytic on open deriv chain im-

age subset iff )
also have ... = deriv id w
proof (rule complex derivative transform within open [where s=S ])
show g ◦ f holomorphic on S
by (rule assms holomorphic on compose gen holomorphic intros)+

qed (use assms in auto)
also have ... = 1
by simp

finally show ?thesis .
qed

6.20.4 Analyticity at a point

lemma analytic at ball :
f analytic on {z} ←→ (∃ e. 0<e ∧ f holomorphic on ball z e)

by (metis analytic on def singleton iff )

lemma analytic at :
f analytic on {z} ←→ (∃ s. open s ∧ z ∈ s ∧ f holomorphic on s)

by (metis analytic on holomorphic empty subsetI insert subset)

lemma analytic on analytic at :
f analytic on s ←→ (∀ z ∈ s. f analytic on {z})

by (metis analytic at ball analytic on def )

lemma analytic at two:
f analytic on {z} ∧ g analytic on {z} ←→
(∃ s. open s ∧ z ∈ s ∧ f holomorphic on s ∧ g holomorphic on s)
(is ?lhs = ?rhs)

proof



Complex Analysis Basics.thy 2267

assume ?lhs
then obtain s t
where st : open s z ∈ s f holomorphic on s

open t z ∈ t g holomorphic on t
by (auto simp: analytic at)

show ?rhs
apply (rule tac x=s ∩ t in exI )
using st
apply (auto simp: holomorphic on subset)
done

next
assume ?rhs
then show ?lhs
by (force simp add : analytic at)

qed

6.20.5 Combining theorems for derivative with “analytic at”
hypotheses

lemma
assumes f analytic on {z} g analytic on {z}
shows complex derivative add at : deriv (λw . f w + g w) z = deriv f z + deriv g

z
and complex derivative diff at : deriv (λw . f w − g w) z = deriv f z − deriv g z
and complex derivative mult at : deriv (λw . f w ∗ g w) z =

f z ∗ deriv g z + deriv f z ∗ g z
proof −
obtain s where s: open s z ∈ s f holomorphic on s g holomorphic on s
using assms by (metis analytic at two)

show deriv (λw . f w + g w) z = deriv f z + deriv g z
apply (rule DERIV imp deriv [OF DERIV add ])
using s
apply (auto simp: holomorphic on open field differentiable def DERIV deriv iff field differentiable)
done

show deriv (λw . f w − g w) z = deriv f z − deriv g z
apply (rule DERIV imp deriv [OF DERIV diff ])
using s
apply (auto simp: holomorphic on open field differentiable def DERIV deriv iff field differentiable)
done

show deriv (λw . f w ∗ g w) z = f z ∗ deriv g z + deriv f z ∗ g z
apply (rule DERIV imp deriv [OF DERIV mult ′])
using s
apply (auto simp: holomorphic on open field differentiable def DERIV deriv iff field differentiable)
done

qed

lemma deriv cmult at :
f analytic on {z} =⇒ deriv (λw . c ∗ f w) z = c ∗ deriv f z

by (auto simp: complex derivative mult at)
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lemma deriv cmult right at :
f analytic on {z} =⇒ deriv (λw . f w ∗ c) z = deriv f z ∗ c

by (auto simp: complex derivative mult at)

6.20.6 Complex differentiation of sequences and series

lemma has complex derivative sequence:
fixes S :: complex set
assumes cvs: convex S

and df :
∧
n x . x ∈ S =⇒ (f n has field derivative f ′ n x ) (at x within S )

and conv :
∧
e. 0 < e =⇒ ∃N . ∀n x . n ≥ N −→ x ∈ S −→ norm (f ′ n x −

g ′ x ) ≤ e
and ∃ x l . x ∈ S ∧ ((λn. f n x ) −−−→ l) sequentially

shows ∃ g . ∀ x ∈ S . ((λn. f n x ) −−−→ g x ) sequentially ∧
(g has field derivative (g ′ x )) (at x within S )

proof −
from assms obtain x l where x : x ∈ S and tf : ((λn. f n x ) −−−→ l) sequentially
by blast

{ fix e::real assume e: e > 0
then obtain N where N : ∀n≥N . ∀ x . x ∈ S −→ cmod (f ′ n x − g ′ x ) ≤ e
by (metis conv)

have ∃N . ∀n≥N . ∀ x∈S . ∀ h. cmod (f ′ n x ∗ h − g ′ x ∗ h) ≤ e ∗ cmod h
proof (rule exI [of N ], clarify)
fix n y h
assume N ≤ n y ∈ S
then have cmod (f ′ n y − g ′ y) ≤ e
by (metis N )

then have cmod h ∗ cmod (f ′ n y − g ′ y) ≤ cmod h ∗ e
by (auto simp: antisym conv2 mult le cancel left norm triangle ineq2 )

then show cmod (f ′ n y ∗ h − g ′ y ∗ h) ≤ e ∗ cmod h
by (simp add : norm mult [symmetric] field simps)

qed
} note ∗∗ = this
show ?thesis
unfolding has field derivative def

proof (rule has derivative sequence [OF cvs x ])
show (λn. f n x ) −−−−→ l
by (rule tf )

next show
∧
e. e > 0 =⇒ ∀ F n in sequentially . ∀ x∈S . ∀ h. cmod (f ′ n x ∗ h

− g ′ x ∗ h) ≤ e ∗ cmod h
unfolding eventually sequentially by (blast intro: ∗∗)

qed (metis has field derivative def df )
qed

lemma has complex derivative series:
fixes S :: complex set
assumes cvs: convex S

and df :
∧
n x . x ∈ S =⇒ (f n has field derivative f ′ n x ) (at x within S )
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and conv :
∧
e. 0 < e =⇒ ∃N . ∀n x . n ≥ N −→ x ∈ S

−→ cmod ((
∑

i<n. f ′ i x ) − g ′ x ) ≤ e
and ∃ x l . x ∈ S ∧ ((λn. f n x ) sums l)

shows ∃ g . ∀ x ∈ S . ((λn. f n x ) sums g x ) ∧ ((g has field derivative g ′ x ) (at
x within S ))
proof −
from assms obtain x l where x : x ∈ S and sf : ((λn. f n x ) sums l)
by blast

{ fix e::real assume e: e > 0
then obtain N where N : ∀n x . n ≥ N −→ x ∈ S

−→ cmod ((
∑

i<n. f ′ i x ) − g ′ x ) ≤ e
by (metis conv)

have ∃N . ∀n≥N . ∀ x∈S . ∀ h. cmod ((
∑

i<n. h ∗ f ′ i x ) − g ′ x ∗ h) ≤ e ∗
cmod h

proof (rule exI [of N ], clarify)
fix n y h
assume N ≤ n y ∈ S
then have cmod ((

∑
i<n. f ′ i y) − g ′ y) ≤ e

by (metis N )
then have cmod h ∗ cmod ((

∑
i<n. f ′ i y) − g ′ y) ≤ cmod h ∗ e

by (auto simp: antisym conv2 mult le cancel left norm triangle ineq2 )
then show cmod ((

∑
i<n. h ∗ f ′ i y) − g ′ y ∗ h) ≤ e ∗ cmod h

by (simp add : norm mult [symmetric] field simps sum distrib left)
qed

} note ∗∗ = this
show ?thesis
unfolding has field derivative def
proof (rule has derivative series [OF cvs x ])
fix n x
assume x ∈ S
then show ((f n) has derivative (λz . z ∗ f ′ n x )) (at x within S )
by (metis df has field derivative def mult commute abs)

next show ((λn. f n x ) sums l)
by (rule sf )

next show
∧
e. e>0 =⇒ ∀ F n in sequentially . ∀ x∈S . ∀ h. cmod ((

∑
i<n. h ∗

f ′ i x ) − g ′ x ∗ h) ≤ e ∗ cmod h
unfolding eventually sequentially by (blast intro: ∗∗)

qed
qed

6.20.7 Taylor on Complex Numbers

lemma sum Suc reindex :
fixes f :: nat ⇒ ′a::ab group add
shows sum f {0 ..n} = f 0 − f (Suc n) + sum (λi . f (Suc i)) {0 ..n}

by (induct n) auto

lemma field Taylor :
assumes S : convex S
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and f :
∧
i x . x ∈ S =⇒ i ≤ n =⇒ (f i has field derivative f (Suc i) x ) (at x

within S )
and B :

∧
x . x ∈ S =⇒ norm (f (Suc n) x ) ≤ B

and w : w ∈ S
and z : z ∈ S

shows norm(f 0 z − (
∑

i≤n. f i w ∗ (z−w) ˆ i / (fact i)))
≤ B ∗ norm(z − w)ˆ(Suc n) / fact n

proof −
have wzs: closed segment w z ⊆ S using assms
by (metis convex contains segment)

{ fix u
assume u ∈ closed segment w z
then have u ∈ S
by (metis wzs subsetD)

have (
∑

i≤n. f i u ∗ (− of nat i ∗ (z−u)ˆ(i − 1 )) / (fact i) +
f (Suc i) u ∗ (z−u)ˆi / (fact i)) =

f (Suc n) u ∗ (z−u) ˆ n / (fact n)
proof (induction n)
case 0 show ?case by simp

next
case (Suc n)
have (

∑
i≤Suc n. f i u ∗ (− of nat i ∗ (z−u) ˆ (i − 1 )) / (fact i) +

f (Suc i) u ∗ (z−u) ˆ i / (fact i)) =
f (Suc n) u ∗ (z−u) ˆ n / (fact n) +
f (Suc (Suc n)) u ∗ ((z−u) ∗ (z−u) ˆ n) / (fact (Suc n)) −
f (Suc n) u ∗ ((1 + of nat n) ∗ (z−u) ˆ n) / (fact (Suc n))

using Suc by simp
also have ... = f (Suc (Suc n)) u ∗ (z−u) ˆ Suc n / (fact (Suc n))
proof −
have (fact(Suc n)) ∗

(f (Suc n) u ∗(z−u) ˆ n / (fact n) +
f (Suc(Suc n)) u ∗((z−u) ∗(z−u) ˆ n) / (fact(Suc n)) −
f (Suc n) u ∗((1 + of nat n) ∗(z−u) ˆ n) / (fact(Suc n))) =

((fact(Suc n)) ∗(f (Suc n) u ∗(z−u) ˆ n)) / (fact n) +
((fact(Suc n)) ∗(f (Suc(Suc n)) u ∗((z−u) ∗(z−u) ˆ n)) / (fact(Suc n)))

−
((fact(Suc n)) ∗(f (Suc n) u ∗(of nat(Suc n) ∗(z−u) ˆ n))) / (fact(Suc

n))
by (simp add : algebra simps del : fact Suc)

also have ... = ((fact (Suc n)) ∗ (f (Suc n) u ∗ (z−u) ˆ n)) / (fact n) +
(f (Suc (Suc n)) u ∗ ((z−u) ∗ (z−u) ˆ n)) −
(f (Suc n) u ∗ ((1 + of nat n) ∗ (z−u) ˆ n))

by (simp del : fact Suc)
also have ... = (of nat (Suc n) ∗ (f (Suc n) u ∗ (z−u) ˆ n)) +

(f (Suc (Suc n)) u ∗ ((z−u) ∗ (z−u) ˆ n)) −
(f (Suc n) u ∗ ((1 + of nat n) ∗ (z−u) ˆ n))

by (simp only : fact Suc of nat mult ac simps) simp
also have ... = f (Suc (Suc n)) u ∗ ((z−u) ∗ (z−u) ˆ n)
by (simp add : algebra simps)
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finally show ?thesis
by (simp add : mult left cancel [where c = (fact (Suc n)), THEN iffD1 ]

del : fact Suc)
qed
finally show ?case .

qed
then have ((λv . (

∑
i≤n. f i v ∗ (z − v)ˆi / (fact i)))

has field derivative f (Suc n) u ∗ (z−u) ˆ n / (fact n))
(at u within S )

apply (intro derivative eq intros)
apply (blast intro: assms 〈u ∈ S 〉)
apply (rule refl)+
apply (auto simp: field simps)
done

} note sum deriv = this
{ fix u
assume u: u ∈ closed segment w z
then have us: u ∈ S
by (metis wzs subsetD)

have norm (f (Suc n) u) ∗ norm (z − u) ˆ n ≤ norm (f (Suc n) u) ∗ norm
(u − z ) ˆ n

by (metis norm minus commute order refl)
also have ... ≤ norm (f (Suc n) u) ∗ norm (z − w) ˆ n
by (metis mult left mono norm ge zero power mono segment bound [OF u])

also have ... ≤ B ∗ norm (z − w) ˆ n
by (metis norm ge zero zero le power mult right mono B [OF us])

finally have norm (f (Suc n) u) ∗ norm (z − u) ˆ n ≤ B ∗ norm (z − w) ˆ
n .
} note cmod bound = this
have (

∑
i≤n. f i z ∗ (z − z ) ˆ i / (fact i)) = (

∑
i≤n. (f i z / (fact i)) ∗ 0 ˆ i)

by simp
also have . . . = f 0 z / (fact 0 )
by (subst sum zero power) simp

finally have norm (f 0 z − (
∑

i≤n. f i w ∗ (z − w) ˆ i / (fact i)))
≤ norm ((

∑
i≤n. f i w ∗ (z − w) ˆ i / (fact i)) −

(
∑

i≤n. f i z ∗ (z − z ) ˆ i / (fact i)))
by (simp add : norm minus commute)

also have ... ≤ B ∗ norm (z − w) ˆ n / (fact n) ∗ norm (w − z )
apply (rule field differentiable bound
[where f ′ = λw . f (Suc n) w ∗ (z − w)ˆn / (fact n)

and S = closed segment w z , OF convex closed segment ])
apply (auto simp: DERIV subset [OF sum deriv wzs]

norm divide norm mult norm power divide le cancel cmod bound)
done

also have ... ≤ B ∗ norm (z − w) ˆ Suc n / (fact n)
by (simp add : algebra simps norm minus commute)

finally show ?thesis .
qed
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lemma complex Taylor :
assumes S : convex S

and f :
∧
i x . x ∈ S =⇒ i ≤ n =⇒ (f i has field derivative f (Suc i) x ) (at x

within S )
and B :

∧
x . x ∈ S =⇒ cmod (f (Suc n) x ) ≤ B

and w : w ∈ S
and z : z ∈ S

shows cmod(f 0 z − (
∑

i≤n. f i w ∗ (z−w) ˆ i / (fact i)))
≤ B ∗ cmod(z − w)ˆ(Suc n) / fact n

using assms by (rule field Taylor)

Something more like the traditional MVT for real components

lemma complex mvt line:
assumes

∧
u. u ∈ closed segment w z =⇒ (f has field derivative f ′(u)) (at u)

shows ∃ u. u ∈ closed segment w z ∧ Re(f z ) − Re(f w) = Re(f ′(u) ∗ (z −
w))
proof −
have twz :

∧
t . (1 − t) ∗R w + t ∗R z = w + t ∗R (z − w)

by (simp add : real vector .scale left diff distrib real vector .scale right diff distrib)
note assms[unfolded has field derivative def , derivative intros]
show ?thesis
apply (cut tac mvt simple

[of 0 1 Re o f o (λt . (1 − t) ∗R w + t ∗R z )
λu. Re o (λh. f ′((1 − u) ∗R w + u ∗R z ) ∗ h) o (λt . t ∗R (z −

w))])
apply auto
apply (rule tac x=(1 − x ) ∗R w + x ∗R z in exI )
apply (auto simp: closed segment def twz ) []
apply (intro derivative eq intros has derivative at withinI , simp all)
apply (simp add : fun eq iff real vector .scale right diff distrib)
apply (force simp: twz closed segment def )
done

qed

lemma complex Taylor mvt :
assumes

∧
i x . [[x ∈ closed segment w z ; i ≤ n]] =⇒ ((f i) has field derivative f

(Suc i) x ) (at x )
shows ∃ u. u ∈ closed segment w z ∧

Re (f 0 z ) =
Re ((

∑
i = 0 ..n. f i w ∗ (z − w) ˆ i / (fact i)) +

(f (Suc n) u ∗ (z−u)ˆn / (fact n)) ∗ (z − w))
proof −
{ fix u
assume u: u ∈ closed segment w z
have (

∑
i = 0 ..n.

(f (Suc i) u ∗ (z−u) ˆ i − of nat i ∗ (f i u ∗ (z−u) ˆ (i − Suc 0 ))) /
(fact i)) =

f (Suc 0 ) u −
(f (Suc (Suc n)) u ∗ ((z−u) ˆ Suc n) − (of nat (Suc n)) ∗ (z−u) ˆ n
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∗ f (Suc n) u) /
(fact (Suc n)) +
(
∑

i = 0 ..n.
(f (Suc (Suc i)) u ∗ ((z−u) ˆ Suc i) − of nat (Suc i) ∗ (f (Suc i) u

∗ (z−u) ˆ i)) /
(fact (Suc i)))

by (subst sum Suc reindex ) simp
also have ... = f (Suc 0 ) u −

(f (Suc (Suc n)) u ∗ ((z−u) ˆ Suc n) − (of nat (Suc n)) ∗ (z−u) ˆ n
∗ f (Suc n) u) /

(fact (Suc n)) +
(
∑

i = 0 ..n.
f (Suc (Suc i)) u ∗ ((z−u) ˆ Suc i) / (fact (Suc i)) −
f (Suc i) u ∗ (z−u) ˆ i / (fact i))

by (simp only : diff divide distrib fact cancel ac simps)
also have ... = f (Suc 0 ) u −

(f (Suc (Suc n)) u ∗ (z−u) ˆ Suc n − of nat (Suc n) ∗ (z−u) ˆ n ∗ f
(Suc n) u) /

(fact (Suc n)) +
f (Suc (Suc n)) u ∗ (z−u) ˆ Suc n / (fact (Suc n)) − f (Suc 0 ) u

by (subst sum Suc diff ) auto
also have ... = f (Suc n) u ∗ (z−u) ˆ n / (fact n)
by (simp only : algebra simps diff divide distrib fact cancel)

finally have (
∑

i = 0 ..n. (f (Suc i) u ∗ (z − u) ˆ i
− of nat i ∗ (f i u ∗ (z−u) ˆ (i − Suc 0 ))) / (fact i)) =

f (Suc n) u ∗ (z − u) ˆ n / (fact n) .
then have ((λu.

∑
i = 0 ..n. f i u ∗ (z − u) ˆ i / (fact i)) has field derivative

f (Suc n) u ∗ (z − u) ˆ n / (fact n)) (at u)
apply (intro derivative eq intros)+
apply (force intro: u assms)
apply (rule refl)+
apply (auto simp: ac simps)
done

}
then show ?thesis
apply (cut tac complex mvt line [of w z λu.

∑
i = 0 ..n. f i u ∗ (z−u) ˆ i /

(fact i)
λu. (f (Suc n) u ∗ (z−u)ˆn / (fact n))])

apply (auto simp add : intro: open closed segment)
done

qed

end

6.21 Complex Transcendental Functions

By John Harrison et al. Ported from HOL Light by L C Paulson (2015)
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theory Complex Transcendental
imports
Complex Analysis Basics Summation Tests HOL−Library .Periodic Fun

begin

6.21.1 Mbius transformations

definition moebius a b c d ≡ (λz . (a∗z+b) / (c∗z+d :: ′a :: field))

theorem moebius inverse:
assumes a ∗ d 6= b ∗ c c ∗ z + d 6= 0
shows moebius d (−b) (−c) a (moebius a b c d z ) = z

proof −
from assms have (−c) ∗ moebius a b c d z + a 6= 0 unfolding moebius def
by (simp add : field simps)

with assms show ?thesis
unfolding moebius def by (simp add : moebius def divide simps) (simp add :

algebra simps)?
qed

lemma moebius inverse ′:
assumes a ∗ d 6= b ∗ c c ∗ z − a 6= 0
shows moebius a b c d (moebius d (−b) (−c) a z ) = z
using assms moebius inverse[of d a −b −c z ]
by (auto simp: algebra simps)

lemma cmod add real less:
assumes Im z 6= 0 r 6=0
shows cmod (z + r) < cmod z + |r |

proof (cases z )
case (Complex x y)
then have 0 < y ∗ y
using assms mult neg neg by force

with assms have r ∗ x / |r | < sqrt (x∗x + y∗y)
by (simp add : real less rsqrt power2 eq square)

then show ?thesis using assms Complex
apply (simp add : cmod def )
apply (rule power2 less imp less, auto)
apply (simp add : power2 eq square field simps)
done

qed

lemma cmod diff real less: Im z 6= 0 =⇒ x 6=0 =⇒ cmod (z − x ) < cmod z + |x |
using cmod add real less [of z −x ]
by simp

lemma cmod square less 1 plus:
assumes Im z = 0 =⇒ |Re z | < 1
shows (cmod z )2 < 1 + cmod (1 − z 2)
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proof (cases Im z = 0 ∨ Re z = 0 )
case True
with assms abs square less 1 show ?thesis
by (force simp add : Re power2 Im power2 cmod def )

next
case False
with cmod diff real less [of 1 − z 2 1 ] show ?thesis
by (simp add : norm power Im power2 )

qed

6.21.2 The Exponential Function

lemma norm exp i times [simp]: norm (exp(i ∗ of real y)) = 1
by simp

lemma norm exp imaginary : norm(exp z ) = 1 =⇒ Re z = 0
by simp

lemma field differentiable within exp: exp field differentiable (at z within s)
using DERIV exp field differentiable at within field differentiable def by blast

lemma continuous within exp:
fixes z :: ′a::{real normed field ,banach}
shows continuous (at z within s) exp

by (simp add : continuous at imp continuous within)

lemma holomorphic on exp [holomorphic intros]: exp holomorphic on s
by (simp add : field differentiable within exp holomorphic on def )

lemma holomorphic on exp ′ [holomorphic intros]:
f holomorphic on s =⇒ (λx . exp (f x )) holomorphic on s
using holomorphic on compose[OF holomorphic on exp] by (simp add : o def )

6.21.3 Euler and de Moivre formulas

The sine series times i

lemma sin i eq : (λn. (i ∗ sin coeff n) ∗ zˆn) sums (i ∗ sin z )
proof −
have (λn. i ∗ sin coeff n ∗R zˆn) sums (i ∗ sin z )
using sin converges sums mult by blast

then show ?thesis
by (simp add : scaleR conv of real field simps)

qed

theorem exp Euler : exp(i ∗ z ) = cos(z ) + i ∗ sin(z )
proof −
have (λn. (cos coeff n + i ∗ sin coeff n) ∗ zˆn) = (λn. (i ∗ z ) ˆ n /R (fact n))
proof
fix n
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show (cos coeff n + i ∗ sin coeff n) ∗ zˆn = (i ∗ z ) ˆ n /R (fact n)
by (auto simp: cos coeff def sin coeff def scaleR conv of real field simps elim!:

evenE oddE )
qed
also have ... sums (exp (i ∗ z ))
by (rule exp converges)

finally have (λn. (cos coeff n + i ∗ sin coeff n) ∗ zˆn) sums (exp (i ∗ z )) .
moreover have (λn. (cos coeff n + i ∗ sin coeff n) ∗ zˆn) sums (cos z + i ∗ sin

z )
using sums add [OF cos converges [of z ] sin i eq [of z ]]
by (simp add : field simps scaleR conv of real)

ultimately show ?thesis
using sums unique2 by blast

qed

corollary exp minus Euler : exp(−(i ∗ z )) = cos(z ) − i ∗ sin(z )
using exp Euler [of −z ]
by simp

lemma sin exp eq : sin z = (exp(i ∗ z ) − exp(−(i ∗ z ))) / (2∗i)
by (simp add : exp Euler exp minus Euler)

lemma sin exp eq ′: sin z = i ∗ (exp(−(i ∗ z )) − exp(i ∗ z )) / 2
by (simp add : exp Euler exp minus Euler)

lemma cos exp eq : cos z = (exp(i ∗ z ) + exp(−(i ∗ z ))) / 2
by (simp add : exp Euler exp minus Euler)

theorem Euler : exp(z ) = of real(exp(Re z )) ∗
(of real(cos(Im z )) + i ∗ of real(sin(Im z )))

by (cases z ) (simp add : exp add exp Euler cos of real exp of real sin of real Com-
plex eq)

lemma Re sin: Re(sin z ) = sin(Re z ) ∗ (exp(Im z ) + exp(−(Im z ))) / 2
by (simp add : sin exp eq field simps Re divide Im exp)

lemma Im sin: Im(sin z ) = cos(Re z ) ∗ (exp(Im z ) − exp(−(Im z ))) / 2
by (simp add : sin exp eq field simps Im divide Re exp)

lemma Re cos: Re(cos z ) = cos(Re z ) ∗ (exp(Im z ) + exp(−(Im z ))) / 2
by (simp add : cos exp eq field simps Re divide Re exp)

lemma Im cos: Im(cos z ) = sin(Re z ) ∗ (exp(−(Im z )) − exp(Im z )) / 2
by (simp add : cos exp eq field simps Im divide Im exp)

lemma Re sin pos: 0 < Re z =⇒ Re z < pi =⇒ Re (sin z ) > 0
by (auto simp: Re sin Im sin add pos pos sin gt zero)

lemma Im sin nonneg : Re z = 0 =⇒ 0 ≤ Im z =⇒ 0 ≤ Im (sin z )
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by (simp add : Re sin Im sin algebra simps)

lemma Im sin nonneg2 : Re z = pi =⇒ Im z ≤ 0 =⇒ 0 ≤ Im (sin z )
by (simp add : Re sin Im sin algebra simps)

6.21.4 Relationships between real and complex trigonomet-
ric and hyperbolic functions

lemma real sin eq [simp]: Re(sin(of real x )) = sin x
by (simp add : sin of real)

lemma real cos eq [simp]: Re(cos(of real x )) = cos x
by (simp add : cos of real)

lemma DeMoivre: (cos z + i ∗ sin z ) ˆ n = cos(n ∗ z ) + i ∗ sin(n ∗ z )
by (metis exp Euler [symmetric] exp of nat mult mult .left commute)

lemma exp cnj : cnj (exp z ) = exp (cnj z )
proof −
have (λn. cnj (z ˆ n /R (fact n))) = (λn. (cnj z )ˆn /R (fact n))
by auto

also have ... sums (exp (cnj z ))
by (rule exp converges)

finally have (λn. cnj (z ˆ n /R (fact n))) sums (exp (cnj z )) .
moreover have (λn. cnj (z ˆ n /R (fact n))) sums (cnj (exp z ))
by (metis exp converges sums cnj )

ultimately show ?thesis
using sums unique2
by blast

qed

lemma cnj sin: cnj (sin z ) = sin(cnj z )
by (simp add : sin exp eq exp cnj field simps)

lemma cnj cos: cnj (cos z ) = cos(cnj z )
by (simp add : cos exp eq exp cnj field simps)

lemma field differentiable at sin: sin field differentiable at z
using DERIV sin field differentiable def by blast

lemma field differentiable within sin: sin field differentiable (at z within S )
by (simp add : field differentiable at sin field differentiable at within)

lemma field differentiable at cos: cos field differentiable at z
using DERIV cos field differentiable def by blast

lemma field differentiable within cos: cos field differentiable (at z within S )
by (simp add : field differentiable at cos field differentiable at within)
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lemma holomorphic on sin: sin holomorphic on S
by (simp add : field differentiable within sin holomorphic on def )

lemma holomorphic on cos: cos holomorphic on S
by (simp add : field differentiable within cos holomorphic on def )

lemma holomorphic on sin ′ [holomorphic intros]:
assumes f holomorphic on A
shows (λx . sin (f x )) holomorphic on A
using holomorphic on compose[OF assms holomorphic on sin] by (simp add :

o def )

lemma holomorphic on cos ′ [holomorphic intros]:
assumes f holomorphic on A
shows (λx . cos (f x )) holomorphic on A
using holomorphic on compose[OF assms holomorphic on cos] by (simp add :

o def )

6.21.5 More on the Polar Representation of Complex Num-
bers

lemma exp Complex : exp(Complex r t) = of real(exp r) ∗ Complex (cos t) (sin t)
by (simp add : Complex eq exp add exp Euler exp of real sin of real cos of real)

lemma exp eq 1 : exp z = 1 ←→ Re(z ) = 0 ∧ (∃n::int . Im(z ) = of int (2 ∗ n) ∗
pi)

(is ?lhs = ?rhs)
proof
assume exp z = 1
then have Re z = 0
by (metis exp eq one iff norm exp eq Re norm one)

with 〈?lhs〉 show ?rhs
by (metis Re exp complex Re of int cos one 2pi int exp zero mult .commute

mult numeral 1 numeral One of int mult of int numeral)
next
assume ?rhs then show ?lhs
using Im exp Re exp complex eq iff
by (simp add : cos one 2pi int cos one sin zero mult .commute)

qed

lemma exp eq : exp w = exp z ←→ (∃n::int . w = z + (of int (2 ∗ n) ∗ pi) ∗ i)
(is ?lhs = ?rhs)

proof −
have exp w = exp z ←→ exp (w−z ) = 1
by (simp add : exp diff )

also have ... ←→ (Re w = Re z ∧ (∃n::int . Im w − Im z = of int (2 ∗ n) ∗
pi))

by (simp add : exp eq 1 )
also have ... ←→ ?rhs
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by (auto simp: algebra simps intro!: complex eqI )
finally show ?thesis .

qed

lemma exp complex eqI : |Im w − Im z | < 2∗pi =⇒ exp w = exp z =⇒ w = z
by (auto simp: exp eq abs mult)

lemma exp integer 2pi :
assumes n ∈ ZZ
shows exp((2 ∗ n ∗ pi) ∗ i) = 1

proof −
have exp((2 ∗ n ∗ pi) ∗ i) = exp 0
using assms unfolding Ints def exp eq by auto

also have ... = 1
by simp

finally show ?thesis .
qed

lemma exp plus 2pin [simp]: exp (z + i ∗ (of int n ∗ (of real pi ∗ 2 ))) = exp z
by (simp add : exp eq)

lemma exp integer 2pi plus1 :
assumes n ∈ ZZ
shows exp(((2 ∗ n + 1 ) ∗ pi) ∗ i) = − 1

proof −
from assms obtain n ′ where [simp]: n = of int n ′

by (auto simp: Ints def )
have exp(((2 ∗ n + 1 ) ∗ pi) ∗ i) = exp (pi ∗ i)
using assms by (subst exp eq) (auto intro!: exI [of n ′] simp: algebra simps)

also have ... = − 1
by simp

finally show ?thesis .
qed

lemma inj on exp pi :
fixes z ::complex shows inj on exp (ball z pi)

proof (clarsimp simp: inj on def exp eq)
fix y n
assume dist z (y + 2 ∗ of int n ∗ of real pi ∗ i) < pi

dist z y < pi
then have dist y (y + 2 ∗ of int n ∗ of real pi ∗ i) < pi+pi
using dist commute lessI dist triangle less add by blast

then have norm (2 ∗ of int n ∗ of real pi ∗ i) < 2∗pi
by (simp add : dist norm)

then show n = 0
by (auto simp: norm mult)

qed

lemma cmod add squared :
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fixes r1 r2 ::real
assumes r1 ≥ 0 r2 ≥ 0
shows (cmod (r1 ∗ exp (i ∗ ϑ1 ) + r2 ∗ exp (i ∗ ϑ2 )))2 = r1 2 + r2 2 + 2 ∗ r1
∗ r2 ∗ cos (ϑ1 − ϑ2 ) (is (cmod (?z1 + ?z2 ))2 = ?rhs)
proof −
have (cmod (?z1 + ?z2 ))2 = (?z1 + ?z2 ) ∗ cnj (?z1 + ?z2 )
by (rule complex norm square)

also have . . . = (?z1 ∗ cnj ?z1 + ?z2 ∗ cnj ?z2 ) + (?z1 ∗ cnj ?z2 + cnj ?z1 ∗
?z2 )

by (simp add : algebra simps)
also have . . . = (norm ?z1 )2 + (norm ?z2 )2 + 2 ∗ Re (?z1 ∗ cnj ?z2 )
unfolding complex norm square [symmetric] cnj add mult eq Re by simp

also have . . . = ?rhs
by (simp add : norm mult) (simp add : exp Euler complex is Real iff [THEN

iffD1 ] cos diff algebra simps)
finally show ?thesis
using of real eq iff by blast

qed

lemma cmod diff squared :
fixes r1 r2 ::real
assumes r1 ≥ 0 r2 ≥ 0
shows (cmod (r1 ∗ exp (i ∗ ϑ1 ) − r2 ∗ exp (i ∗ ϑ2 )))2 = r1 2 + r2 2 −

2∗r1∗r2∗cos (ϑ1 − ϑ2 ) (is (cmod (?z1 − ?z2 ))2 = ?rhs)
proof −
have exp (i ∗ (ϑ2 + pi)) = − exp (i ∗ ϑ2 )
by (simp add : exp Euler cos plus pi sin plus pi)

then have (cmod (?z1 − ?z2 ))2 = cmod (?z1 + r2 ∗ exp (i ∗ (ϑ2 + pi))) ˆ2
by simp

also have . . . = r1 2 + r2 2 + 2∗r1∗r2∗cos (ϑ1 − (ϑ2 + pi))
using assms cmod add squared by blast

also have . . . = ?rhs
by (simp add : add .commute diff add eq diff diff swap)

finally show ?thesis .
qed

lemma polar convergence:
fixes R::real
assumes

∧
j . r j > 0 R > 0

shows ((λj . r j ∗ exp (i ∗ ϑ j )) −−−−→ (R ∗ exp (i ∗ Θ))) ←→
(r −−−−→ R) ∧ (∃ k . (λj . ϑ j − of int (k j ) ∗ (2 ∗ pi)) −−−−→ Θ) (is

(?z −−−−→ ?Z ) = ?rhs)
proof
assume L: ?z −−−−→ ?Z
have rR: r −−−−→ R
using tendsto norm [OF L] assms by (auto simp: norm mult abs of pos)

moreover obtain k where (λj . ϑ j − of int (k j ) ∗ (2 ∗ pi)) −−−−→ Θ
proof −
have cos (ϑ j − Θ) = ((r j )2 + R2 − (norm(?z j − ?Z ))2) / (2 ∗ R ∗ r j )
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for j
apply (subst cmod diff squared)
using assms by (auto simp: field split simps less le)

moreover have (λj . ((r j )2 + R2 − (norm(?z j − ?Z ))2) / (2 ∗ R ∗ r j ))
−−−−→ ((R2 + R2 − (norm(?Z − ?Z ))2) / (2 ∗ R ∗ R))

by (intro L rR tendsto intros) (use 〈R > 0 〉 in force)
moreover have ((R2 + R2 − (norm(?Z − ?Z ))2) / (2 ∗ R ∗ R)) = 1
using 〈R > 0 〉 by (simp add : power2 eq square field split simps)

ultimately have (λj . cos (ϑ j − Θ)) −−−−→ 1
by auto

then show ?thesis
using that cos diff limit 1 by blast

qed
ultimately show ?rhs
by metis

next
assume R: ?rhs
show ?z −−−−→ ?Z
proof (rule tendsto mult)
show (λx . complex of real (r x )) −−−−→ of real R
using R by (auto simp: tendsto of real iff )

obtain k where (λj . ϑ j − of int (k j ) ∗ (2 ∗ pi)) −−−−→ Θ
using R by metis

then have (λj . complex of real (ϑ j − of int (k j ) ∗ (2 ∗ pi))) −−−−→ of real
Θ

using tendsto of real iff by force
then have (λj . exp (i ∗ of real (ϑ j − of int (k j ) ∗ (2 ∗ pi)))) −−−−→ exp (i

∗ Θ)
using tendsto mult [OF tendsto const ] isCont exp isCont tendsto compose by

blast
moreover have exp (i ∗ of real (ϑ j − of int (k j ) ∗ (2 ∗ pi))) = exp (i ∗ ϑ

j ) for j
unfolding exp eq
by (rule tac x=− k j in exI ) (auto simp: algebra simps)

ultimately show (λj . exp (i ∗ ϑ j )) −−−−→ exp (i ∗ Θ)
by auto

qed
qed

lemma sin cos eq iff : sin y = sin x ∧ cos y = cos x ←→ (∃n::int . y = x + 2 ∗
pi ∗ n)
proof −
{ assume sin y = sin x cos y = cos x
then have cos (y−x ) = 1
using cos add [of y −x ] by simp

then have ∃n::int . y−x = 2 ∗ pi ∗ n
using cos one 2pi int by auto }

then show ?thesis
apply (auto simp: sin add cos add)
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apply (metis add .commute diff add cancel)
done

qed

lemma exp i ne 1 :
assumes 0 < x x < 2∗pi
shows exp(i ∗ of real x ) 6= 1

proof
assume exp (i ∗ of real x ) = 1
then have exp (i ∗ of real x ) = exp 0
by simp

then obtain n where i ∗ of real x = (of int (2 ∗ n) ∗ pi) ∗ i
by (simp only : Ints def exp eq) auto

then have of real x = (of int (2 ∗ n) ∗ pi)
by (metis complex i not zero mult .commute mult cancel left of real eq iff real scaleR def

scaleR conv of real)
then have x = (of int (2 ∗ n) ∗ pi)
by simp

then show False using assms
by (cases n) (auto simp: zero less mult iff mult less 0 iff )

qed

lemma sin eq 0 :
fixes z ::complex
shows sin z = 0 ←→ (∃n::int . z = of real(n ∗ pi))
by (simp add : sin exp eq exp eq)

lemma cos eq 0 :
fixes z ::complex
shows cos z = 0 ←→ (∃n::int . z = of real(n ∗ pi) + of real pi/2 )
using sin eq 0 [of z − of real pi/2 ]
by (simp add : sin diff algebra simps)

lemma cos eq 1 :
fixes z ::complex
shows cos z = 1 ←→ (∃n::int . z = of real(2 ∗ n ∗ pi))

proof −
have cos z = cos (2∗(z/2 ))
by simp

also have ... = 1 − 2 ∗ sin (z/2 ) ˆ 2
by (simp only : cos double sin)

finally have [simp]: cos z = 1 ←→ sin (z/2 ) = 0
by simp

show ?thesis
by (auto simp: sin eq 0 )

qed

lemma csin eq 1 :
fixes z ::complex
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shows sin z = 1 ←→ (∃n::int . z = of real(2 ∗ n ∗ pi) + of real pi/2 )
using cos eq 1 [of z − of real pi/2 ]
by (simp add : cos diff algebra simps)

lemma csin eq minus1 :
fixes z ::complex
shows sin z = −1 ←→ (∃n::int . z = of real(2 ∗ n ∗ pi) + 3/2∗pi)

(is = ?rhs)
proof −
have sin z = −1 ←→ sin (−z ) = 1
by (simp add : equation minus iff )

also have ... ←→ (∃n::int . −z = of real(2 ∗ n ∗ pi) + of real pi/2 )
by (simp only : csin eq 1 )

also have ... ←→ (∃n::int . z = − of real(2 ∗ n ∗ pi) − of real pi/2 )
by (rule iff exI ) (metis add .inverse inverse add uminus conv diff minus add distrib)
also have ... = ?rhs
apply safe
apply (rule tac [2 ] x=−(x+1 ) in exI )
apply (rule tac x=−(x+1 ) in exI )
apply (simp all add : algebra simps)
done

finally show ?thesis .
qed

lemma ccos eq minus1 :
fixes z ::complex
shows cos z = −1 ←→ (∃n::int . z = of real(2 ∗ n ∗ pi) + pi)
using csin eq 1 [of z − of real pi/2 ]
by (simp add : sin diff algebra simps equation minus iff )

lemma sin eq 1 : sin x = 1 ←→ (∃n::int . x = (2 ∗ n + 1 / 2 ) ∗ pi)
(is = ?rhs)

proof −
have sin x = 1 ←→ sin (complex of real x ) = 1
by (metis of real 1 one complex .simps(1 ) real sin eq sin of real)

also have ... ←→ (∃n::int . complex of real x = of real(2 ∗ n ∗ pi) + of real
pi/2 )

by (simp only : csin eq 1 )
also have ... ←→ (∃n::int . x = of real(2 ∗ n ∗ pi) + of real pi/2 )
by (rule iff exI ) (auto simp: algebra simps intro: injD [OF inj of real [where

′a = complex ]])
also have ... = ?rhs
by (auto simp: algebra simps)

finally show ?thesis .
qed

lemma sin eq minus1 : sin x = −1 ←→ (∃n::int . x = (2∗n + 3/2 ) ∗ pi) (is
= ?rhs)
proof −
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have sin x = −1 ←→ sin (complex of real x ) = −1
by (metis Re complex of real of real def scaleR minus1 left sin of real)

also have ... ←→ (∃n::int . complex of real x = of real(2 ∗ n ∗ pi) + 3/2∗pi)
by (simp only : csin eq minus1 )

also have ... ←→ (∃n::int . x = of real(2 ∗ n ∗ pi) + 3/2∗pi)
by (rule iff exI ) (auto simp: algebra simps intro: injD [OF inj of real [where

′a = complex ]])
also have ... = ?rhs
by (auto simp: algebra simps)

finally show ?thesis .
qed

lemma cos eq minus1 : cos x = −1 ←→ (∃n::int . x = (2∗n + 1 ) ∗ pi)
(is = ?rhs)

proof −
have cos x = −1 ←→ cos (complex of real x ) = −1
by (metis Re complex of real of real def scaleR minus1 left cos of real)

also have ... ←→ (∃n::int . complex of real x = of real(2 ∗ n ∗ pi) + pi)
by (simp only : ccos eq minus1 )

also have ... ←→ (∃n::int . x = of real(2 ∗ n ∗ pi) + pi)
by (rule iff exI ) (auto simp: algebra simps intro: injD [OF inj of real [where

′a = complex ]])
also have ... = ?rhs
by (auto simp: algebra simps)

finally show ?thesis .
qed

lemma dist exp i 1 : norm(exp(i ∗ of real t) − 1 ) = 2 ∗ |sin(t / 2 )|
proof −
have sqrt (2 − cos t ∗ 2 ) = 2 ∗ |sin (t / 2 )|
using cos double sin [of t/2 ] by (simp add : real sqrt mult)

then show ?thesis
by (simp add : exp Euler cmod def power2 diff sin of real cos of real algebra simps)

qed

lemma sin cx 2pi [simp]: [[z = of int m; even m]] =⇒ sin (z ∗ complex of real pi)
= 0
by (simp add : sin eq 0 )

lemma cos cx 2pi [simp]: [[z = of int m; even m]] =⇒ cos (z ∗ complex of real pi)
= 1
using cos eq 1 by auto

lemma complex sin eq :
fixes w :: complex
shows sin w = sin z ←→ (∃n ∈ ZZ. w = z + of real(2∗n∗pi) ∨ w = −z +

of real((2∗n + 1 )∗pi))
(is ?lhs = ?rhs)

proof



Complex Transcendental.thy 2285

assume ?lhs
then have sin w − sin z = 0
by (auto simp: algebra simps)

then have sin ((w − z ) / 2 )∗cos ((w + z ) / 2 ) = 0
by (auto simp: sin diff sin)

then consider sin ((w − z ) / 2 ) = 0 | cos ((w + z ) / 2 ) = 0
using mult eq 0 iff by blast

then show ?rhs
proof cases
case 1
then show ?thesis
by (simp add : sin eq 0 algebra simps) (metis Ints of int of real of int eq)

next
case 2
then show ?thesis
by (simp add : cos eq 0 algebra simps) (metis Ints of int of real of int eq)

qed
next
assume ?rhs
then consider n::int where w = z + of real (2 ∗ of int n ∗ pi)

| n::int where w = −z + of real ((2 ∗ of int n + 1 ) ∗ pi)
using Ints cases by blast

then show ?lhs
proof cases
case 1
then show ?thesis
using Periodic Fun.sin.plus of int [of z n]
by (auto simp: algebra simps)

next
case 2
then show ?thesis
using Periodic Fun.sin.plus of int [of −z n]
apply (simp add : algebra simps)
by (metis add .commute add .inverse inverse add diff cancel left diff add cancel

sin plus pi)
qed

qed

lemma complex cos eq :
fixes w :: complex
shows cos w = cos z ←→ (∃n ∈ ZZ. w = z + of real(2∗n∗pi) ∨ w = −z +

of real(2∗n∗pi))
(is ?lhs = ?rhs)

proof
assume ?lhs
then have cos w − cos z = 0
by (auto simp: algebra simps)

then have sin ((w + z ) / 2 ) ∗ sin ((z − w) / 2 ) = 0
by (auto simp: cos diff cos)
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then consider sin ((w + z ) / 2 ) = 0 | sin ((z − w) / 2 ) = 0
using mult eq 0 iff by blast

then show ?rhs
proof cases
case 1
then obtain n where w + z = of int n ∗ (complex of real pi ∗ 2 )
by (auto simp: sin eq 0 algebra simps)

then have w = −z + of real(2 ∗ of int n ∗ pi)
by (auto simp: algebra simps)

then show ?thesis
using Ints of int by blast

next
case 2
then obtain n where z = w + of int n ∗ (complex of real pi ∗ 2 )
by (auto simp: sin eq 0 algebra simps)

then have w = z + complex of real (2 ∗ of int(−n) ∗ pi)
by (auto simp: algebra simps)

then show ?thesis
using Ints of int by blast

qed
next
assume ?rhs
then obtain n::int where w : w = z + of real (2∗ of int n∗pi) ∨

w = −z + of real(2∗n∗pi)
using Ints cases by (metis of int mult of int numeral)

then show ?lhs
using Periodic Fun.cos.plus of int [of z n]
apply (simp add : algebra simps)
by (metis cos.plus of int cos minus minus add cancel mult .commute)

qed

lemma sin eq :
sin x = sin y ←→ (∃n ∈ ZZ. x = y + 2∗n∗pi ∨ x = −y + (2∗n + 1 )∗pi)
using complex sin eq [of x y ]
by (simp only : sin of real Re complex of real of real add [symmetric] of real minus

[symmetric] of real mult [symmetric] of real eq iff )

lemma cos eq :
cos x = cos y ←→ (∃n ∈ ZZ. x = y + 2∗n∗pi ∨ x = −y + 2∗n∗pi)
using complex cos eq [of x y ]
by (simp only : cos of real Re complex of real of real add [symmetric] of real minus

[symmetric] of real mult [symmetric] of real eq iff )

lemma sinh complex :
fixes z :: complex
shows (exp z − inverse (exp z )) / 2 = −i ∗ sin(i ∗ z )
by (simp add : sin exp eq field split simps exp minus)

lemma sin i times:
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fixes z :: complex
shows sin(i ∗ z ) = i ∗ ((exp z − inverse (exp z )) / 2 )
using sinh complex by auto

lemma sinh real :
fixes x :: real
shows of real((exp x − inverse (exp x )) / 2 ) = −i ∗ sin(i ∗ of real x )
by (simp add : exp of real sin i times)

lemma cosh complex :
fixes z :: complex
shows (exp z + inverse (exp z )) / 2 = cos(i ∗ z )
by (simp add : cos exp eq field split simps exp minus exp of real)

lemma cosh real :
fixes x :: real
shows of real((exp x + inverse (exp x )) / 2 ) = cos(i ∗ of real x )
by (simp add : cos exp eq field split simps exp minus exp of real)

lemmas cos i times = cosh complex [symmetric]

lemma norm cos squared :
norm(cos z ) ˆ 2 = cos(Re z ) ˆ 2 + (exp(Im z ) − inverse(exp(Im z ))) ˆ 2 / 4

proof (cases z )
case (Complex x1 x2 )
then show ?thesis
apply (simp only : cos add cmod power2 cos of real sin of real Complex eq)
apply (simp add : cos exp eq sin exp eq exp minus exp of real Re divide Im divide

power divide)
apply (simp only : left diff distrib [symmetric] power mult distrib sin squared eq)
apply (simp add : power2 eq square field split simps)
done

qed

lemma norm sin squared :
norm(sin z ) ˆ 2 = (exp(2 ∗ Im z ) + inverse(exp(2 ∗ Im z )) − 2 ∗ cos(2 ∗ Re

z )) / 4
proof (cases z )
case (Complex x1 x2 )
then show ?thesis

apply (simp only : sin add cmod power2 cos of real sin of real cos double cos
exp double Complex eq)

apply (simp add : cos exp eq sin exp eq exp minus exp of real Re divide Im divide
power divide)

apply (simp only : left diff distrib [symmetric] power mult distrib cos squared eq)
apply (simp add : power2 eq square field split simps)
done

qed
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lemma exp uminus Im: exp (− Im z ) ≤ exp (cmod z )
using abs Im le cmod linear order trans by fastforce

lemma norm cos le:
fixes z ::complex
shows norm(cos z ) ≤ exp(norm z )

proof −
have Im z ≤ cmod z
using abs Im le cmod abs le D1 by auto

then have exp (− Im z ) + exp (Im z ) ≤ exp (cmod z ) ∗ 2
by (metis exp uminus Im add mono exp le cancel iff mult 2 right)

then show ?thesis
by (force simp add : cos exp eq norm divide intro: order trans [OF norm triangle ineq ])

qed

lemma norm cos plus1 le:
fixes z ::complex
shows norm(1 + cos z ) ≤ 2 ∗ exp(norm z )

proof −
have mono:

∧
u w z ::real . (1 ≤ w | 1 ≤ z ) =⇒ (w ≤ u & z ≤ u) =⇒ 2 + w +

z ≤ 4 ∗ u
by arith

have ∗: Im z ≤ cmod z
using abs Im le cmod abs le D1 by auto

have triangle3 :
∧
x y z . norm(x + y + z ) ≤ norm(x ) + norm(y) + norm(z )

by (simp add : norm add rule thm)
have norm(1 + cos z ) = cmod (1 + (exp (i ∗ z ) + exp (− (i ∗ z ))) / 2 )
by (simp add : cos exp eq)

also have ... = cmod ((2 + exp (i ∗ z ) + exp (− (i ∗ z ))) / 2 )
by (simp add : field simps)

also have ... = cmod (2 + exp (i ∗ z ) + exp (− (i ∗ z ))) / 2
by (simp add : norm divide)

finally show ?thesis
by (metis exp eq one iff exp le cancel iff mult 2 norm cos le norm ge zero norm one

norm triangle mono)
qed

lemma sinh conv sin: sinh z = −i ∗ sin (i∗z )
by (simp add : sinh field def sin i times exp minus)

lemma cosh conv cos: cosh z = cos (i∗z )
by (simp add : cosh field def cos i times exp minus)

lemma tanh conv tan: tanh z = −i ∗ tan (i∗z )
by (simp add : tanh def sinh conv sin cosh conv cos tan def )

lemma sin conv sinh: sin z = −i ∗ sinh (i∗z )
by (simp add : sinh conv sin)
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lemma cos conv cosh: cos z = cosh (i∗z )
by (simp add : cosh conv cos)

lemma tan conv tanh: tan z = −i ∗ tanh (i∗z )
by (simp add : tan def sin conv sinh cos conv cosh tanh def )

lemma sinh complex eq iff :
sinh (z :: complex ) = sinh w ←→

(∃n∈ZZ. z = w − 2 ∗ i ∗ of real n ∗ of real pi ∨
z = −(2 ∗ complex of real n + 1 ) ∗ i ∗ complex of real pi − w) (is

= ?rhs)
proof −
have sinh z = sinh w ←→ sin (i ∗ z ) = sin (i ∗ w)
by (simp add : sinh conv sin)

also have . . . ←→ ?rhs
by (subst complex sin eq) (force simp: field simps complex eq iff )

finally show ?thesis .
qed

6.21.6 Taylor series for complex exponential, sine and cosine

declare power Suc [simp del ]

lemma Taylor exp field :
fixes z :: ′a::{banach,real normed field}
shows norm (exp z − (

∑
i≤n. z ˆ i / fact i)) ≤ exp (norm z ) ∗ (norm z ˆ Suc

n) / fact n
proof (rule field Taylor [of n λk . exp exp (norm z ) 0 z , simplified ])
show convex (closed segment 0 z )
by (rule convex closed segment [of 0 z ])

next
fix k x
assume x ∈ closed segment 0 z k ≤ n
show (exp has field derivative exp x ) (at x within closed segment 0 z )
using DERIV exp DERIV subset by blast

next
fix x
assume x : x ∈ closed segment 0 z
have norm (exp x ) ≤ exp (norm x )
by (rule norm exp)

also have norm x ≤ norm z
using x by (auto simp: closed segment def intro!: mult left le one le)

finally show norm (exp x ) ≤ exp (norm z )
by simp

qed auto

lemma Taylor exp:
norm(exp z − (

∑
k≤n. z ˆ k / (fact k))) ≤ exp|Re z | ∗ (norm z ) ˆ (Suc n) /

(fact n)
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proof (rule complex Taylor [of n λk . exp exp|Re z | 0 z , simplified ])
show convex (closed segment 0 z )
by (rule convex closed segment [of 0 z ])

next
fix k x
assume x ∈ closed segment 0 z k ≤ n
show (exp has field derivative exp x ) (at x within closed segment 0 z )
using DERIV exp DERIV subset by blast

next
fix x
assume x ∈ closed segment 0 z
then obtain u where u: x = complex of real u ∗ z 0 ≤ u u ≤ 1
by (auto simp: closed segment def scaleR conv of real)

then have u ∗ Re z ≤ |Re z |
by (metis abs ge self abs ge zero mult .commute mult .right neutral mult mono)

then show Re x ≤ |Re z |
by (simp add : u)

qed auto

lemma
assumes 0 ≤ u u ≤ 1
shows cmod sin le exp: cmod (sin (u ∗R z )) ≤ exp |Im z |
and cmod cos le exp: cmod (cos (u ∗R z )) ≤ exp |Im z |

proof −
have mono:

∧
u w z ::real . w ≤ u =⇒ z ≤ u =⇒ (w + z )/2 ≤ u

by simp
have ∗: (cmod (exp (i ∗ (u ∗ z ))) + cmod (exp (− (i ∗ (u ∗ z )))) ) / 2 ≤ exp
|Im z |
proof (rule mono)
show cmod (exp (i ∗ (u ∗ z ))) ≤ exp |Im z |
using assms
by (auto simp: abs if mult left le one le not less intro: order trans [of 0 ])

show cmod (exp (− (i ∗ (u ∗ z )))) ≤ exp |Im z |
using assms
by (auto simp: abs if mult left le one le mult nonneg nonpos intro: order trans

[of 0 ])
qed
have cmod (sin (u ∗R z )) = cmod (exp (i ∗ (u ∗ z )) − exp (− (i ∗ (u ∗ z )))) /

2
by (auto simp: scaleR conv of real norm mult norm power sin exp eq norm divide)
also have ... ≤ (cmod (exp (i ∗ (u ∗ z ))) + cmod (exp (− (i ∗ (u ∗ z )))) ) / 2
by (intro divide right mono norm triangle ineq4 ) simp

also have ... ≤ exp |Im z |
by (rule ∗)

finally show cmod (sin (u ∗R z )) ≤ exp |Im z | .
have cmod (cos (u ∗R z )) = cmod (exp (i ∗ (u ∗ z )) + exp (− (i ∗ (u ∗ z )))) /

2
by (auto simp: scaleR conv of real norm mult norm power cos exp eq norm divide)
also have ... ≤ (cmod (exp (i ∗ (u ∗ z ))) + cmod (exp (− (i ∗ (u ∗ z )))) ) / 2
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by (intro divide right mono norm triangle ineq) simp
also have ... ≤ exp |Im z |
by (rule ∗)

finally show cmod (cos (u ∗R z )) ≤ exp |Im z | .
qed

lemma Taylor sin:
norm(sin z − (

∑
k≤n. complex of real (sin coeff k) ∗ z ˆ k))

≤ exp|Im z | ∗ (norm z ) ˆ (Suc n) / (fact n)
proof −
have mono:

∧
u w z ::real . w ≤ u =⇒ z ≤ u =⇒ w + z ≤ u∗2

by arith
have ∗: cmod (sin z −

(
∑

i≤n. (−1 ) ˆ (i div 2 ) ∗ (if even i then sin 0 else cos 0 ) ∗ z ˆ i /
(fact i)))

≤ exp |Im z | ∗ cmod z ˆ Suc n / (fact n)
proof (rule complex Taylor [of closed segment 0 z n

λk x . (−1 )ˆ(k div 2 ) ∗ (if even k then sin x else cos x )
exp|Im z | 0 z , simplified ])

fix k x
show ((λx . (− 1 ) ˆ (k div 2 ) ∗ (if even k then sin x else cos x )) has field derivative

(− 1 ) ˆ (Suc k div 2 ) ∗ (if odd k then sin x else cos x ))
(at x within closed segment 0 z )

apply (auto simp: power Suc)
apply (intro derivative eq intros | simp)+
done

next
fix x
assume x ∈ closed segment 0 z
then show cmod ((− 1 ) ˆ (Suc n div 2 ) ∗ (if odd n then sin x else cos x )) ≤

exp |Im z |
by (auto simp: closed segment def norm mult norm power cmod sin le exp

cmod cos le exp)
qed
have ∗∗:

∧
k . complex of real (sin coeff k) ∗ z ˆ k

= (−1 )ˆ(k div 2 ) ∗ (if even k then sin 0 else cos 0 ) ∗ zˆk / of nat (fact
k)

by (auto simp: sin coeff def elim!: oddE )
show ?thesis
by (simp add : ∗∗ order trans [OF ∗])

qed

lemma Taylor cos:
norm(cos z − (

∑
k≤n. complex of real (cos coeff k) ∗ z ˆ k))

≤ exp|Im z | ∗ (norm z ) ˆ Suc n / (fact n)
proof −
have mono:

∧
u w z ::real . w ≤ u =⇒ z ≤ u =⇒ w + z ≤ u∗2

by arith
have ∗: cmod (cos z −
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(
∑

i≤n. (−1 ) ˆ (Suc i div 2 ) ∗ (if even i then cos 0 else sin 0 ) ∗ z
ˆ i / (fact i)))

≤ exp |Im z | ∗ cmod z ˆ Suc n / (fact n)
proof (rule complex Taylor [of closed segment 0 z n λk x . (−1 )ˆ(Suc k div 2 ) ∗

(if even k then cos x else sin x ) exp|Im z | 0 z ,
simplified ])

fix k x
assume x ∈ closed segment 0 z k ≤ n
show ((λx . (− 1 ) ˆ (Suc k div 2 ) ∗ (if even k then cos x else sin x ))

has field derivative
(− 1 ) ˆ Suc (k div 2 ) ∗ (if odd k then cos x else sin x ))
(at x within closed segment 0 z )

apply (auto simp: power Suc)
apply (intro derivative eq intros | simp)+
done

next
fix x
assume x ∈ closed segment 0 z
then show cmod ((− 1 ) ˆ Suc (n div 2 ) ∗ (if odd n then cos x else sin x )) ≤

exp |Im z |
by (auto simp: closed segment def norm mult norm power cmod sin le exp

cmod cos le exp)
qed
have ∗∗:

∧
k . complex of real (cos coeff k) ∗ z ˆ k

= (−1 )ˆ(Suc k div 2 ) ∗ (if even k then cos 0 else sin 0 ) ∗ zˆk / of nat
(fact k)

by (auto simp: cos coeff def elim!: evenE )
show ?thesis
by (simp add : ∗∗ order trans [OF ∗])

qed

declare power Suc [simp]

32-bit Approximation to e

lemma e approx 32 : |exp(1 ) − 5837465777 / 2147483648 | ≤ (inverse(2 ˆ 32 )::real)
using Taylor exp [of 1 14 ] exp le
apply (simp add : sum distrib right in Reals norm Re exp atMost nat numeral

fact numeral)
apply (simp only : pos le divide eq [symmetric])
done

lemma e less 272 : exp 1 < (272/100 ::real)
using e approx 32
by (simp add : abs if split : if split asm)

lemma ln 272 gt 1 : ln (272/100 ) > (1 ::real)
by (metis e less 272 exp less cancel iff exp ln iff less trans ln exp)

Apparently redundant. But many arguments involve integers.
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lemma ln3 gt 1 : ln 3 > (1 ::real)
by (simp add : less trans [OF ln 272 gt 1 ])

6.21.7 The argument of a complex number (HOL Light ver-
sion)

definition is Arg :: [complex ,real ] ⇒ bool
where is Arg z r ≡ z = of real(norm z ) ∗ exp(i ∗ of real r)

definition Arg2pi :: complex ⇒ real
where Arg2pi z ≡ if z = 0 then 0 else THE t . 0 ≤ t ∧ t < 2∗pi ∧ is Arg z t

lemma is Arg 2pi iff : is Arg z (r + of int k ∗ (2 ∗ pi)) ←→ is Arg z r
by (simp add : algebra simps is Arg def )

lemma is Arg eqI :
assumes r : is Arg z r and s: is Arg z s and rs: abs (r−s) < 2∗pi and z 6= 0
shows r = s

proof −
have zr : z = (cmod z ) ∗ exp (i ∗ r) and zs: z = (cmod z ) ∗ exp (i ∗ s)
using r s by (auto simp: is Arg def )

with 〈z 6= 0 〉 have eq : exp (i ∗ r) = exp (i ∗ s)
by (metis mult eq 0 iff mult left cancel)

have i ∗ r = i ∗ s
by (rule exp complex eqI ) (use rs in 〈auto simp: eq exp complex eqI 〉)

then show ?thesis
by simp

qed

This function returns the angle of a complex number from its representation
in polar coordinates. Due to periodicity, its range is arbitrary. Arg2pi
follows HOL Light in adopting the interval [0 ,2π). But we have the same
periodicity issue with logarithms, and it is usual to adopt the same interval
for the complex logarithm and argument functions. Further on down, we
shall define both functions for the interval (−π,π]. The present version is
provided for compatibility.

lemma Arg2pi 0 [simp]: Arg2pi(0 ) = 0
by (simp add : Arg2pi def )

lemma Arg2pi unique lemma:
assumes z : is Arg z t

and z ′: is Arg z t ′

and t : 0 ≤ t t < 2∗pi
and t ′: 0 ≤ t ′ t ′ < 2∗pi
and nz : z 6= 0

shows t ′ = t
proof −
have [dest ]:

∧
x y z ::real . x≥0 =⇒ x+y < z =⇒ y<z
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by arith
have of real (cmod z ) ∗ exp (i ∗ of real t ′) = of real (cmod z ) ∗ exp (i ∗ of real

t)
by (metis z z ′ is Arg def )

then have exp (i ∗ of real t ′) = exp (i ∗ of real t)
by (metis nz mult left cancel mult zero left z is Arg def )

then have sin t ′ = sin t ∧ cos t ′ = cos t
by (metis cis.simps cis conv exp)

then obtain n::int where n: t ′ = t + 2 ∗ n ∗ pi
by (auto simp: sin cos eq iff )

then have n=0
by (cases n) (use t t ′ in 〈auto simp: mult less 0 iff algebra simps〉)

then show t ′ = t
by (simp add : n)

qed

lemma Arg2pi : 0 ≤ Arg2pi z ∧ Arg2pi z < 2∗pi ∧ is Arg z (Arg2pi z )
proof (cases z=0 )
case True then show ?thesis
by (simp add : Arg2pi def is Arg def )

next
case False
obtain t where t : 0 ≤ t t < 2∗pi

and ReIm: Re z / cmod z = cos t Im z / cmod z = sin t
using sincos total 2pi [OF complex unit circle [OF False]]
by blast

have z : is Arg z t
unfolding is Arg def
using t False ReIm
by (intro complex eqI ) (auto simp: exp Euler sin of real cos of real field split simps)
show ?thesis
apply (simp add : Arg2pi def False)
apply (rule theI [where a=t ])
using t z False
apply (auto intro: Arg2pi unique lemma)
done

qed

corollary
shows Arg2pi ge 0 : 0 ≤ Arg2pi z
and Arg2pi lt 2pi : Arg2pi z < 2∗pi
and Arg2pi eq : z = of real(norm z ) ∗ exp(i ∗ of real(Arg2pi z ))

using Arg2pi is Arg def by auto

lemma complex norm eq 1 exp: norm z = 1 ←→ exp(i ∗ of real (Arg2pi z )) = z
by (metis Arg2pi eq cis conv exp mult .left neutral norm cis of real 1 )

lemma Arg2pi unique: [[of real r ∗ exp(i ∗ of real a) = z ; 0 < r ; 0 ≤ a; a < 2∗pi ]]
=⇒ Arg2pi z = a
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by (rule Arg2pi unique lemma [unfolded is Arg def , OF Arg2pi eq ]) (use Arg2pi
[of z ] in 〈auto simp: norm mult 〉)

lemma cos Arg2pi : cmod z ∗ cos (Arg2pi z ) = Re z and sin Arg2pi : cmod z ∗ sin
(Arg2pi z ) = Im z
using Arg2pi eq [of z ] cis conv exp Re rcis Im rcis unfolding rcis def by metis+

lemma Arg2pi minus:
assumes z 6= 0 shows Arg2pi (−z ) = (if Arg2pi z < pi then Arg2pi z + pi else

Arg2pi z − pi)
apply (rule Arg2pi unique [of norm z , OF complex eqI ])
using cos Arg2pi sin Arg2pi Arg2pi ge 0 Arg2pi lt 2pi [of z ] assms
by (auto simp: Re exp Im exp)

lemma Arg2pi times of real [simp]:
assumes 0 < r shows Arg2pi (of real r ∗ z ) = Arg2pi z

proof (cases z=0 )
case False
show ?thesis
by (rule Arg2pi unique [of r ∗ norm z ]) (use Arg2pi False assms is Arg def in

auto)
qed auto

lemma Arg2pi times of real2 [simp]: 0 < r =⇒ Arg2pi (z ∗ of real r) = Arg2pi z
by (metis Arg2pi times of real mult .commute)

lemma Arg2pi divide of real [simp]: 0 < r =⇒ Arg2pi (z / of real r) = Arg2pi z
by (metis Arg2pi times of real2 less numeral extra(3 ) nonzero eq divide eq of real eq 0 iff )

lemma Arg2pi le pi : Arg2pi z ≤ pi ←→ 0 ≤ Im z
proof (cases z=0 )
case False
have 0 ≤ Im z ←→ 0 ≤ Im (of real (cmod z ) ∗ exp (i ∗ complex of real (Arg2pi

z )))
by (metis Arg2pi eq)

also have ... = (0 ≤ Im (exp (i ∗ complex of real (Arg2pi z ))))
using False by (simp add : zero le mult iff )

also have ... ←→ Arg2pi z ≤ pi
by (simp add : Im exp) (metis Arg2pi ge 0 Arg2pi lt 2pi sin lt zero sin ge zero

not le)
finally show ?thesis
by blast

qed auto

lemma Arg2pi lt pi : 0 < Arg2pi z ∧ Arg2pi z < pi ←→ 0 < Im z
proof (cases z=0 )
case False
have 0 < Im z ←→ 0 < Im (of real (cmod z ) ∗ exp (i ∗ complex of real (Arg2pi

z )))

Complex{_}{\kern 0pt}Transcendental.html


2296

by (metis Arg2pi eq)
also have ... = (0 < Im (exp (i ∗ complex of real (Arg2pi z ))))
using False by (simp add : zero less mult iff )

also have ... ←→ 0 < Arg2pi z ∧ Arg2pi z < pi (is = ?rhs)
proof −
have 0 < sin (Arg2pi z ) =⇒ ?rhs
by (meson Arg2pi ge 0 Arg2pi lt 2pi less le trans not le sin le zero sin x le x )

then show ?thesis
by (auto simp: Im exp sin gt zero)

qed
finally show ?thesis
by blast

qed auto

lemma Arg2pi eq 0 : Arg2pi z = 0 ←→ z ∈ IR ∧ 0 ≤ Re z
proof (cases z=0 )
case False
have z ∈ IR ∧ 0 ≤ Re z ←→ z ∈ IR ∧ 0 ≤ Re (of real (cmod z ) ∗ exp (i ∗

complex of real (Arg2pi z )))
by (metis Arg2pi eq)

also have ... ←→ z ∈ IR ∧ 0 ≤ Re (exp (i ∗ complex of real (Arg2pi z )))
using False by (simp add : zero le mult iff )

also have ... ←→ Arg2pi z = 0
proof −
have [simp]: Arg2pi z = 0 =⇒ z ∈ IR
using Arg2pi eq [of z ] by (auto simp: Reals def )

moreover have [[z ∈ IR; 0 ≤ cos (Arg2pi z )]] =⇒ Arg2pi z = 0
by (metis Arg2pi lt pi Arg2pi ge 0 Arg2pi le pi cos pi complex is Real iff leD

less linear less minus one simps(2 ) minus minus neg less eq nonneg order refl)
ultimately show ?thesis
by (auto simp: Re exp)

qed
finally show ?thesis
by blast

qed auto

corollary Arg2pi gt 0 :
assumes z /∈ IR≥0

shows Arg2pi z > 0
using Arg2pi eq 0 Arg2pi ge 0 assms dual order .strict iff order
unfolding nonneg Reals def by fastforce

lemma Arg2pi eq pi : Arg2pi z = pi ←→ z ∈ IR ∧ Re z < 0
using Arg2pi le pi [of z ] Arg2pi lt pi [of z ] Arg2pi eq 0 [of z ] Arg2pi ge 0 [of

z ]
by (fastforce simp: complex is Real iff )

lemma Arg2pi eq 0 pi : Arg2pi z = 0 ∨ Arg2pi z = pi ←→ z ∈ IR
using Arg2pi eq 0 Arg2pi eq pi not le by auto
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lemma Arg2pi of real : Arg2pi (of real r) = (if r<0 then pi else 0 )
using Arg2pi eq 0 pi Arg2pi eq pi by fastforce

lemma Arg2pi real : z ∈ IR =⇒ Arg2pi z = (if 0 ≤ Re z then 0 else pi)
using Arg2pi eq 0 Arg2pi eq 0 pi by auto

lemma Arg2pi inverse: Arg2pi(inverse z ) = (if z ∈ IR then Arg2pi z else 2∗pi −
Arg2pi z )
proof (cases z=0 )
case False
show ?thesis
apply (rule Arg2pi unique [of inverse (norm z )])
using Arg2pi eq False Arg2pi ge 0 [of z ] Arg2pi lt 2pi [of z ] Arg2pi eq 0 [of z ]
by (auto simp: Arg2pi real in Reals norm exp diff field simps)

qed auto

lemma Arg2pi eq iff :
assumes w 6= 0 z 6= 0

shows Arg2pi w = Arg2pi z ←→ (∃ x . 0 < x & w = of real x ∗ z )
using assms Arg2pi eq [of z ] Arg2pi eq [of w ]
apply auto
apply (rule tac x=norm w / norm z in exI )
apply (simp add : field split simps)
by (metis mult .commute mult .left commute)

lemma Arg2pi inverse eq 0 : Arg2pi(inverse z ) = 0 ←→ Arg2pi z = 0
by (metis Arg2pi eq 0 Arg2pi inverse inverse inverse eq)

lemma Arg2pi divide:
assumes w 6= 0 z 6= 0 Arg2pi w ≤ Arg2pi z
shows Arg2pi(z / w) = Arg2pi z − Arg2pi w

apply (rule Arg2pi unique [of norm(z / w)])
using assms Arg2pi eq Arg2pi ge 0 [of w ] Arg2pi lt 2pi [of z ]
apply (auto simp: exp diff norm divide field simps)
done

lemma Arg2pi le div sum:
assumes w 6= 0 z 6= 0 Arg2pi w ≤ Arg2pi z
shows Arg2pi z = Arg2pi w + Arg2pi(z / w)

by (simp add : Arg2pi divide assms)

lemma Arg2pi le div sum eq :
assumes w 6= 0 z 6= 0
shows Arg2pi w ≤ Arg2pi z ←→ Arg2pi z = Arg2pi w + Arg2pi(z / w)

using assms by (auto simp: Arg2pi ge 0 intro: Arg2pi le div sum)

lemma Arg2pi diff :
assumes w 6= 0 z 6= 0
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shows Arg2pi w − Arg2pi z = (if Arg2pi z ≤ Arg2pi w then Arg2pi(w / z ) else
Arg2pi(w/z ) − 2∗pi)
using assms Arg2pi divide Arg2pi inverse [of w/z ] Arg2pi eq 0 pi
by (force simp add : Arg2pi ge 0 Arg2pi divide not le split : if split asm)

lemma Arg2pi add :
assumes w 6= 0 z 6= 0
shows Arg2pi w + Arg2pi z = (if Arg2pi w + Arg2pi z < 2∗pi then Arg2pi(w

∗ z ) else Arg2pi(w ∗ z ) + 2∗pi)
using assms Arg2pi diff [of w∗z z ] Arg2pi le div sum eq [of z w∗z ]
apply (auto simp: Arg2pi ge 0 Arg2pi divide not le)
apply (metis Arg2pi lt 2pi add .commute)
apply (metis (no types) Arg2pi add .commute diff 0 diff add cancel diff less eq

diff minus eq add not less)
done

lemma Arg2pi times:
assumes w 6= 0 z 6= 0
shows Arg2pi (w ∗ z ) = (if Arg2pi w + Arg2pi z < 2∗pi then Arg2pi w +

Arg2pi z
else (Arg2pi w + Arg2pi z ) − 2∗pi)

using Arg2pi add [OF assms]
by auto

lemma Arg2pi cnj eq inverse: z 6=0 =⇒ Arg2pi (cnj z ) = Arg2pi (inverse z )
apply (simp add : Arg2pi eq iff field split simps complex norm square [symmetric])
by (metis of real power zero less norm iff zero less power)

lemma Arg2pi cnj : Arg2pi(cnj z ) = (if z ∈ IR then Arg2pi z else 2∗pi − Arg2pi
z )
proof (cases z=0 )
case False
then show ?thesis
by (simp add : Arg2pi cnj eq inverse Arg2pi inverse)

qed auto

lemma Arg2pi exp: 0 ≤ Im z =⇒ Im z < 2∗pi =⇒ Arg2pi(exp z ) = Im z
by (rule Arg2pi unique [of exp(Re z )]) (auto simp: exp eq polar)

lemma complex split polar :
obtains r a::real where z = complex of real r ∗ (cos a + i ∗ sin a) 0 ≤ r 0 ≤

a a < 2∗pi
using Arg2pi cis.ctr cis conv exp unfolding Complex eq is Arg def by fastforce

lemma Re Im le cmod : Im w ∗ sin ϕ + Re w ∗ cos ϕ ≤ cmod w
proof (cases w rule: complex split polar)
case (1 r a) with sin cos le1 [of a ϕ] show ?thesis
apply (simp add : norm mult cmod unit one)
by (metis (no types, hide lams) abs le D1 distrib left mult .commute mult .left commute
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mult left le)
qed

6.21.8 Analytic properties of tangent function

lemma cnj tan: cnj (tan z ) = tan(cnj z )
by (simp add : cnj cos cnj sin tan def )

lemma field differentiable at tan: cos z 6= 0 =⇒ tan field differentiable at z
unfolding field differentiable def
using DERIV tan by blast

lemma field differentiable within tan: cos z 6= 0
=⇒ tan field differentiable (at z within s)

using field differentiable at tan field differentiable at within by blast

lemma continuous within tan: cos z 6= 0 =⇒ continuous (at z within s) tan
using continuous at imp continuous within isCont tan by blast

lemma continuous on tan [continuous intros]: (
∧
z . z ∈ s =⇒ cos z 6= 0 ) =⇒

continuous on s tan
by (simp add : continuous at imp continuous on)

lemma holomorphic on tan: (
∧
z . z ∈ s =⇒ cos z 6= 0 ) =⇒ tan holomorphic on s

by (simp add : field differentiable within tan holomorphic on def )

6.21.9 The principal branch of the Complex logarithm

instantiation complex :: ln
begin

definition ln complex :: complex ⇒ complex
where ln complex ≡ λz . THE w . exp w = z & −pi < Im(w) & Im(w) ≤ pi

NOTE: within this scope, the constant Ln is not yet available!

lemma
assumes z 6= 0
shows exp Ln [simp]: exp(ln z ) = z
and mpi less Im Ln: −pi < Im(ln z )
and Im Ln le pi : Im(ln z ) ≤ pi

proof −
obtain ψ where z : z / (cmod z ) = Complex (cos ψ) (sin ψ)
using complex unimodular polar [of z / (norm z )] assms
by (auto simp: norm divide field split simps)

obtain ϕ where ϕ: − pi < ϕ ϕ ≤ pi sin ϕ = sin ψ cos ϕ = cos ψ
using sincos principal value [of ψ] assms
by (auto simp: norm divide field split simps)

have exp(ln z ) = z & −pi < Im(ln z ) & Im(ln z ) ≤ pi unfolding ln complex def
apply (rule theI [where a = Complex (ln(norm z )) ϕ])
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using z assms ϕ
apply (auto simp: field simps exp complex eqI exp eq polar cis.code)
done

then show exp(ln z ) = z −pi < Im(ln z ) Im(ln z ) ≤ pi
by auto

qed

lemma Ln exp [simp]:
assumes −pi < Im(z ) Im(z ) ≤ pi
shows ln(exp z ) = z

proof (rule exp complex eqI )
show |Im (ln (exp z )) − Im z | < 2 ∗ pi
using assms mpi less Im Ln [of exp z ] Im Ln le pi [of exp z ] by auto

qed auto

6.21.10 Relation to Real Logarithm

lemma Ln of real :
assumes 0 < z
shows ln(of real z ::complex ) = of real(ln z )

proof −
have ln(of real (exp (ln z ))::complex ) = ln (exp (of real (ln z )))
by (simp add : exp of real)

also have ... = of real(ln z )
using assms by (subst Ln exp) auto

finally show ?thesis
using assms by simp

qed

corollary Ln in Reals [simp]: z ∈ IR =⇒ Re z > 0 =⇒ ln z ∈ IR
by (auto simp: Ln of real elim: Reals cases)

corollary Im Ln of real [simp]: r > 0 =⇒ Im (ln (of real r)) = 0
by (simp add : Ln of real)

lemma cmod Ln Reals [simp]: z ∈ IR =⇒ 0 < Re z =⇒ cmod (ln z ) = norm (ln
(Re z ))
using Ln of real by force

lemma Ln Reals eq : [[x ∈ IR; Re x > 0 ]] =⇒ ln x = of real (ln (Re x ))
using Ln of real by force

lemma Ln 1 [simp]: ln 1 = (0 ::complex )
proof −
have ln (exp 0 ) = (0 ::complex )
by (simp add : del : exp zero)

then show ?thesis
by simp

qed
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lemma Ln eq zero iff [simp]: x /∈ IR≤0 =⇒ ln x = 0 ←→ x = 1 for x ::complex
by auto (metis exp Ln exp zero nonpos Reals zero I )

instance
by intro classes (rule ln complex def Ln 1 )

end

abbreviation Ln :: complex ⇒ complex
where Ln ≡ ln

lemma Ln eq iff : w 6= 0 =⇒ z 6= 0 =⇒ (Ln w = Ln z ←→ w = z )
by (metis exp Ln)

lemma Ln unique: exp(z ) = w =⇒ −pi < Im(z ) =⇒ Im(z ) ≤ pi =⇒ Ln w = z
using Ln exp by blast

lemma Re Ln [simp]: z 6= 0 =⇒ Re(Ln z ) = ln(norm z )
by (metis exp Ln ln exp norm exp eq Re)

corollary ln cmod le:
assumes z : z 6= 0
shows ln (cmod z ) ≤ cmod (Ln z )

using norm exp [of Ln z , simplified exp Ln [OF z ]]
by (metis Re Ln complex Re le cmod z )

proposition exists complex root :
fixes z :: complex
assumes n 6= 0 obtains w where z = w ˆ n

proof (cases z=0 )
case False
then show ?thesis

by (rule tac w = exp(Ln z / n) in that) (simp add : assms exp of nat mult
[symmetric])
qed (use assms in auto)

corollary exists complex root nonzero:
fixes z ::complex
assumes z 6= 0 n 6= 0
obtains w where w 6= 0 z = w ˆ n
by (metis exists complex root [of n z ] assms power 0 left)

6.21.11 Derivative of Ln away from the branch cut

lemma
assumes z /∈ IR≤0

shows has field derivative Ln: (Ln has field derivative inverse(z )) (at z )

Complex{_}{\kern 0pt}Transcendental.html


2302

and Im Ln less pi : Im (Ln z ) < pi
proof −
have znz [simp]: z 6= 0
using assms by auto

then have Im (Ln z ) 6= pi
by (metis (no types) Im exp Ln in Reals assms complex nonpos Reals iff com-

plex is Real iff exp Ln mult zero right not less pi neq zero sin pi znz )
then show ∗: Im (Ln z ) < pi using assms Im Ln le pi
by (simp add : le neq trans)

let ?U = {w . −pi < Im(w) ∧ Im(w) < pi}
have 1 : open ?U
by (simp add : open Collect conj open halfspace Im gt open halfspace Im lt)
have 2 :

∧
x . x ∈ ?U =⇒ (exp has derivative blinfun apply(Blinfun ((∗) (exp

x )))) (at x )
by (simp add : bounded linear Blinfun apply bounded linear mult right has field derivative imp has derivative)

have 3 : continuous on ?U (λx . Blinfun ((∗) (exp x )))
unfolding blinfun mult right .abs eq [symmetric] by (intro continuous intros)

have 4 : Ln z ∈ ?U
by (auto simp: mpi less Im Ln ∗)

have 5 : Blinfun ((∗) (inverse z )) oL Blinfun ((∗) (exp (Ln z ))) = id blinfun
by (rule blinfun eqI ) (simp add : bounded linear mult right bounded linear Blinfun apply)
obtain U ′ V g g ′ where open U ′ and sub: U ′ ⊆ ?U
and Ln z ∈ U ′ open V z ∈ V
and hom: homeomorphism U ′ V exp g
and g :

∧
y . y ∈ V =⇒ (g has derivative (g ′ y)) (at y)

and g ′:
∧
y . y ∈ V =⇒ g ′ y = inv ((∗) (exp (g y)))

and bij :
∧
y . y ∈ V =⇒ bij ((∗) (exp (g y)))

using inverse function theorem [OF 1 2 3 4 5 ]
by (simp add : bounded linear Blinfun apply bounded linear mult right) blast

show (Ln has field derivative inverse(z )) (at z )
unfolding has field derivative def

proof (rule has derivative transform within open)
show g eq Ln: g y = Ln y if y ∈ V for y
proof −
obtain x where y = exp x x ∈ U ′

using hom homeomorphism image1 that 〈y ∈ V 〉 by blast
then show ?thesis
using sub hom homeomorphism apply1 by fastforce

qed
have 0 /∈ V
by (meson exp not eq zero hom homeomorphism def )

then have
∧
y . y ∈ V =⇒ g ′ y = inv ((∗) y)

by (metis exp Ln g ′ g eq Ln)
then have g ′: g ′ z = (λx . x/z )

by (metis (no types, hide lams) bij 〈z ∈ V 〉 bij inv eq iff exp Ln g eq Ln
nonzero mult div cancel left znz )

show (g has derivative (∗) (inverse z )) (at z )
using g [OF 〈z ∈ V 〉] g ′
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by (simp add : 〈z ∈ V 〉 field class.field divide inverse has derivative imp has field derivative
has field derivative imp has derivative)
qed (auto simp: 〈z ∈ V 〉 〈open V 〉)

qed

declare has field derivative Ln [derivative intros]
declare has field derivative Ln [THEN DERIV chain2 , derivative intros]

lemma field differentiable at Ln: z /∈ IR≤0 =⇒ Ln field differentiable at z
using field differentiable def has field derivative Ln by blast

lemma field differentiable within Ln: z /∈ IR≤0

=⇒ Ln field differentiable (at z within S )
using field differentiable at Ln field differentiable within subset by blast

lemma continuous at Ln: z /∈ IR≤0 =⇒ continuous (at z ) Ln
by (simp add : field differentiable imp continuous at field differentiable within Ln)

lemma isCont Ln ′ [simp,continuous intros]:
[[isCont f z ; f z /∈ IR≤0]] =⇒ isCont (λx . Ln (f x )) z
by (blast intro: isCont o2 [OF continuous at Ln])

lemma continuous within Ln [continuous intros]: z /∈ IR≤0 =⇒ continuous (at z
within S ) Ln
using continuous at Ln continuous at imp continuous within by blast

lemma continuous on Ln [continuous intros]: (
∧
z . z ∈ S =⇒ z /∈ IR≤0) =⇒ con-

tinuous on S Ln
by (simp add : continuous at imp continuous on continuous within Ln)

lemma continuous on Ln ′ [continuous intros]:
continuous on S f =⇒ (

∧
z . z ∈ S =⇒ f z /∈ IR≤0) =⇒ continuous on S (λx . Ln

(f x ))
by (rule continuous on compose2 [OF continuous on Ln, of UNIV − nonpos Reals

S f ]) auto

lemma holomorphic on Ln [holomorphic intros]: (
∧
z . z ∈ S =⇒ z /∈ IR≤0) =⇒

Ln holomorphic on S
by (simp add : field differentiable within Ln holomorphic on def )

lemma holomorphic on Ln ′ [holomorphic intros]:
(
∧
z . z ∈ A =⇒ f z /∈ IR≤0) =⇒ f holomorphic on A =⇒ (λz . Ln (f z )) holomor-

phic on A
using holomorphic on compose gen[OF holomorphic on Ln, of f A − IR≤0]
by (auto simp: o def )

lemma tendsto Ln [tendsto intros]:
fixes L F
assumes (f −−−→ L) F L /∈ IR≤0
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shows ((λx . Ln (f x )) −−−→ Ln L) F
proof −
have nhds L ≥ filtermap f F
using assms(1 ) by (simp add : filterlim def )

moreover have ∀ F y in nhds L. y ∈ − IR≤0

using eventually nhds in open[of − IR≤0 L] assms by (auto simp: open Compl)
ultimately have ∀ F y in filtermap f F . y ∈ − IR≤0 by (rule filter leD)
moreover have continuous on (−IR≤0) Ln by (rule continuous on Ln) auto
ultimately show ?thesis using continuous on tendsto compose[of − IR≤0 Ln f

L F ] assms
by (simp add : eventually filtermap)

qed

lemma divide ln mono:
fixes x y ::real
assumes 3 ≤ x x ≤ y
shows x / ln x ≤ y / ln y

proof (rule exE [OF complex mvt line [of x y λz . z / Ln z λz . 1/(Ln z ) − 1/(Ln
z )ˆ2 ]];

clarsimp simp add : closed segment Reals closed segment eq real ivl assms)
show

∧
u. [[x ≤ u; u ≤ y ]] =⇒ ((λz . z / Ln z ) has field derivative 1 / Ln u −

1 / (Ln u)2) (at u)
using 〈3 ≤ x 〉 by (force intro!: derivative eq intros simp: field simps power eq if )
show x / ln x ≤ y / ln y
if Re (y / Ln y) − Re (x / Ln x ) = (Re (1 / Ln u) − Re (1 / (Ln u)2)) ∗ (y

− x )
and x : x ≤ u u ≤ y for u

proof −
have eq : y / ln y = (1 / ln u − 1 / (ln u)2) ∗ (y − x ) + x / ln x
using that 〈3 ≤ x 〉 by (auto simp: Ln Reals eq in Reals norm group add class.diff eq eq)
show ?thesis
using exp le 〈3 ≤ x 〉 x by (simp add : eq) (simp add : power eq if divide simps

ln ge iff )
qed

qed

theorem Ln series:
fixes z :: complex
assumes norm z < 1
shows (λn. (−1 )ˆSuc n / of nat n ∗ zˆn) sums ln (1 + z ) (is (λn. ?f n ∗ zˆn)

sums )
proof −
let ?F = λz .

∑
n. ?f n ∗ zˆn and ?F ′ = λz .

∑
n. diffs ?f n ∗ zˆn

have r : conv radius ?f = 1
by (intro conv radius ratio limit nonzero[of 1 ])

(simp all add : norm divide LIMSEQ Suc n over n del : of nat Suc)

have ∃ c. ∀ z∈ball 0 1 . ln (1 + z ) − ?F z = c
proof (rule has field derivative zero constant)
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fix z :: complex assume z ′: z ∈ ball 0 1
hence z : norm z < 1 by simp
define t :: complex where t = of real (1 + norm z ) / 2
from z have t : norm z < norm t norm t < 1 unfolding t def
by (simp all add : field simps norm divide del : of real add)

have Re (−z ) ≤ norm (−z ) by (rule complex Re le cmod)
also from z have ... < 1 by simp
finally have ((λz . ln (1 + z )) has field derivative inverse (1+z )) (at z )
by (auto intro!: derivative eq intros simp: complex nonpos Reals iff )

moreover have (?F has field derivative ?F ′ z ) (at z ) using t r
by (intro termdiffs strong [of t ] summable in conv radius) simp all

ultimately have ((λz . ln (1 + z ) − ?F z ) has field derivative (inverse (1 +
z ) − ?F ′ z ))

(at z within ball 0 1 )
by (intro derivative intros) (simp all add : at within open[OF z ′])

also have (λn. of nat n ∗ ?f n ∗ z ˆ (n − Suc 0 )) sums ?F ′ z using t r
by (intro diffs equiv termdiff converges[OF t(1 )] summable in conv radius)

simp all
from sums split initial segment [OF this, of 1 ]

have (λi . (−z ) ˆ i) sums ?F ′ z by (simp add : power minus[of z ] del :
of nat Suc)

hence ?F ′ z = inverse (1 + z ) using z by (simp add : sums iff suminf geometric
divide inverse)

also have inverse (1 + z ) − inverse (1 + z ) = 0 by simp
finally show ((λz . ln (1 + z ) − ?F z ) has field derivative 0 ) (at z within ball

0 1 ) .
qed simp all
then obtain c where c:

∧
z . z ∈ ball 0 1 =⇒ ln (1 + z ) − ?F z = c by blast

from c[of 0 ] have c = 0 by (simp only : powser zero) simp
with c[of z ] assms have ln (1 + z ) = ?F z by simp
moreover have summable (λn. ?f n ∗ zˆn) using assms r
by (intro summable in conv radius) simp all

ultimately show ?thesis by (simp add : sums iff )
qed

lemma Ln series ′: cmod z < 1 =⇒ (λn. − ((−z )ˆn) / of nat n) sums ln (1 + z )
by (drule Ln series) (simp add : power minus ′)

lemma ln series ′:
assumes abs (x ::real) < 1
shows (λn. − ((−x )ˆn) / of nat n) sums ln (1 + x )

proof −
from assms have (λn. − ((−of real x )ˆn) / of nat n) sums ln (1 + com-

plex of real x )
by (intro Ln series ′) simp all

also have (λn. − ((−of real x )ˆn) / of nat n) = (λn. complex of real (− ((−x )ˆn)
/ of nat n))

by (rule ext) simp
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also from assms have ln (1 + complex of real x ) = of real (ln (1 + x ))
by (subst Ln of real [symmetric]) simp all

finally show ?thesis by (subst (asm) sums of real iff )
qed

lemma Ln approx linear :
fixes z :: complex
assumes norm z < 1
shows norm (ln (1 + z ) − z ) ≤ norm zˆ2 / (1 − norm z )

proof −
let ?f = λn. (−1 )ˆSuc n / of nat n
from assms have (λn. ?f n ∗ zˆn) sums ln (1 + z ) using Ln series by simp
moreover have (λn. (if n = 1 then 1 else 0 ) ∗ zˆn) sums z using powser sums if [of

1 ] by simp
ultimately have (λn. (?f n − (if n = 1 then 1 else 0 )) ∗ zˆn) sums (ln (1 +

z ) − z )
by (subst left diff distrib, intro sums diff ) simp all

from sums split initial segment [OF this, of Suc 1 ]
have (λi . (−(zˆ2 )) ∗ inverse (2 + of nat i) ∗ (− z )ˆi) sums (Ln (1 + z ) − z )
by (simp add : power2 eq square mult ac power minus[of z ] divide inverse)

hence (Ln (1 + z ) − z ) = (
∑

i . (−(zˆ2 )) ∗ inverse (of nat (i+2 )) ∗ (−z )ˆi)
by (simp add : sums iff )

also have A: summable (λn. norm zˆ2 ∗ (inverse (real of nat (Suc (Suc n))) ∗
cmod z ˆ n))

by (rule summable mult , rule summable comparison test ev [OF summable geometric[of
norm z ]])

(auto simp: assms field simps intro!: always eventually)
hence norm (

∑
i . (−(zˆ2 )) ∗ inverse (of nat (i+2 )) ∗ (−z )ˆi)

≤ (
∑

i . norm (−(zˆ2 ) ∗ inverse (of nat (i+2 )) ∗ (−z )ˆi))
by (intro summable norm)
(auto simp: norm power norm inverse norm mult mult ac simp del : of nat add

of nat Suc)
also have norm ((−z )ˆ2 ∗ (−z )ˆi) ∗ inverse (of nat (i+2 )) ≤ norm ((−z )ˆ2
∗ (−z )ˆi) ∗ 1 for i

by (intro mult left mono) (simp all add : field split simps)
hence (

∑
i . norm (−(zˆ2 ) ∗ inverse (of nat (i+2 )) ∗ (−z )ˆi))

≤ (
∑

i . norm (−(zˆ2 ) ∗ (−z )ˆi))
using A assms
unfolding norm power norm inverse norm divide norm mult
apply (intro suminf le summable mult summable geometric)
apply (auto simp: norm power field simps simp del : of nat add of nat Suc)
done

also have ... = norm zˆ2 ∗ (
∑

i . norm zˆi) using assms
by (subst suminf mult [symmetric]) (auto intro!: summable geometric simp:

norm mult norm power)
also have (

∑
i . norm zˆi) = inverse (1 − norm z ) using assms

by (subst suminf geometric) (simp all add : divide inverse)
also have norm zˆ2 ∗ ... = norm zˆ2 / (1 − norm z ) by (simp add : di-

vide inverse)
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finally show ?thesis .
qed

6.21.12 Quadrant-type results for Ln

lemma cos lt zero pi : pi/2 < x =⇒ x < 3∗pi/2 =⇒ cos x < 0
using cos minus pi cos gt zero pi [of x−pi ]
by simp

lemma Re Ln pos lt :
assumes z 6= 0
shows |Im(Ln z )| < pi/2 ←→ 0 < Re(z )

proof −
{ fix w
assume w = Ln z
then have w : Im w ≤ pi − pi < Im w
using Im Ln le pi [of z ] mpi less Im Ln [of z ] assms
by auto

have |Im w | < pi/2 ←→ 0 < Re(exp w)
proof
assume |Im w | < pi/2 then show 0 < Re(exp w)
by (auto simp: Re exp cos gt zero pi split : if split asm)

next
assume R: 0 < Re(exp w) then
have |Im w | 6= pi/2
by (metis cos minus cos pi half mult eq 0 iff Re exp abs if order less irrefl)

then show |Im w | < pi/2
using cos lt zero pi [of −(Im w)] cos lt zero pi [of (Im w)] w R
by (force simp: Re exp zero less mult iff abs if not less iff gr or eq)

qed
}
then show ?thesis using assms
by auto

qed

lemma Re Ln pos le:
assumes z 6= 0
shows |Im(Ln z )| ≤ pi/2 ←→ 0 ≤ Re(z )

proof −
{ fix w
assume w = Ln z
then have w : Im w ≤ pi − pi < Im w
using Im Ln le pi [of z ] mpi less Im Ln [of z ] assms
by auto

then have |Im w | ≤ pi/2 ←→ 0 ≤ Re(exp w)
using cos lt zero pi [of − (Im w)] cos lt zero pi [of (Im w)] not le
by (auto simp: Re exp zero le mult iff abs if intro: cos ge zero)

}
then show ?thesis using assms
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by auto
qed

lemma Im Ln pos lt :
assumes z 6= 0
shows 0 < Im(Ln z ) ∧ Im(Ln z ) < pi ←→ 0 < Im(z )

proof −
{ fix w
assume w = Ln z
then have w : Im w ≤ pi − pi < Im w
using Im Ln le pi [of z ] mpi less Im Ln [of z ] assms
by auto

then have 0 < Im w ∧ Im w < pi ←→ 0 < Im(exp w)
using sin gt zero [of − (Im w)] sin gt zero [of (Im w)] less linear
by (fastforce simp add : Im exp zero less mult iff )

}
then show ?thesis using assms
by auto

qed

lemma Im Ln pos le:
assumes z 6= 0
shows 0 ≤ Im(Ln z ) ∧ Im(Ln z ) ≤ pi ←→ 0 ≤ Im(z )

proof −
{ fix w
assume w = Ln z
then have w : Im w ≤ pi − pi < Im w
using Im Ln le pi [of z ] mpi less Im Ln [of z ] assms
by auto

then have 0 ≤ Im w ∧ Im w ≤ pi ←→ 0 ≤ Im(exp w)
using sin ge zero [of − (Im w)] sin ge zero [of abs(Im w)] sin zero pi iff [of

Im w ]
by (force simp: Im exp zero le mult iff sin ge zero) }

then show ?thesis using assms
by auto

qed

lemma Re Ln pos lt imp: 0 < Re(z ) =⇒ |Im(Ln z )| < pi/2
by (metis Re Ln pos lt less irrefl zero complex .simps(1 ))

lemma Im Ln pos lt imp: 0 < Im(z ) =⇒ 0 < Im(Ln z ) ∧ Im(Ln z ) < pi
by (metis Im Ln pos lt not le order refl zero complex .simps(2 ))

A reference to the set of positive real numbers

lemma Im Ln eq 0 : z 6= 0 =⇒ (Im(Ln z ) = 0 ←→ 0 < Re(z ) ∧ Im(z ) = 0 )
by (metis Im complex of real Im exp Ln in Reals Re Ln pos lt Re Ln pos lt imp

Re complex of real complex is Real iff exp Ln exp of real pi gt zero)
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lemma Im Ln eq pi : z 6= 0 =⇒ (Im(Ln z ) = pi ←→ Re(z ) < 0 ∧ Im(z ) = 0 )
by (metis Im Ln eq 0 Im Ln pos le Im Ln pos lt add .left neutral complex eq less eq real def

mult zero right not less iff gr or eq pi ge zero pi neq zero rcis zero arg rcis zero mod)

6.21.13 More Properties of Ln

lemma cnj Ln: assumes z /∈ IR≤0 shows cnj (Ln z ) = Ln(cnj z )
proof (cases z=0 )
case False
show ?thesis
proof (rule exp complex eqI )
have |Im (cnj (Ln z )) − Im (Ln (cnj z ))| ≤ |Im (cnj (Ln z ))| + |Im (Ln (cnj

z ))|
by (rule abs triangle ineq4 )

also have ... < pi + pi
proof −
have |Im (cnj (Ln z ))| < pi
by (simp add : False Im Ln less pi abs if assms minus less iff mpi less Im Ln)
moreover have |Im (Ln (cnj z ))| ≤ pi
by (meson abs le iff complex cnj zero iff less eq real def minus less iff False

Im Ln le pi mpi less Im Ln)
ultimately show ?thesis
by simp

qed
finally show |Im (cnj (Ln z )) − Im (Ln (cnj z ))| < 2 ∗ pi
by simp

show exp (cnj (Ln z )) = exp (Ln (cnj z ))
by (metis False complex cnj zero iff exp Ln exp cnj )

qed
qed (use assms in auto)

lemma Ln inverse: assumes z /∈ IR≤0 shows Ln(inverse z ) = −(Ln z )
proof (cases z=0 )
case False
show ?thesis
proof (rule exp complex eqI )
have |Im (Ln (inverse z )) − Im (− Ln z )| ≤ |Im (Ln (inverse z ))| + |Im (−

Ln z )|
by (rule abs triangle ineq4 )

also have ... < pi + pi
proof −
have |Im (Ln (inverse z ))| < pi
by (simp add : False Im Ln less pi abs if assms minus less iff mpi less Im Ln)
moreover have |Im (− Ln z )| ≤ pi
using False Im Ln le pi mpi less Im Ln by fastforce

ultimately show ?thesis
by simp

qed
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finally show |Im (Ln (inverse z )) − Im (− Ln z )| < 2 ∗ pi
by simp

show exp (Ln (inverse z )) = exp (− Ln z )
by (simp add : False exp minus)

qed
qed (use assms in auto)

lemma Ln minus1 [simp]: Ln(−1 ) = i ∗ pi
proof (rule exp complex eqI )
show |Im (Ln (− 1 )) − Im (i ∗ pi)| < 2 ∗ pi
using Im Ln le pi [of −1 ] mpi less Im Ln [of −1 ] by auto

qed auto

lemma Ln ii [simp]: Ln i = i ∗ of real pi/2
using Ln exp [of i ∗ (of real pi/2 )]
unfolding exp Euler
by simp

lemma Ln minus ii [simp]: Ln(−i) = − (i ∗ pi/2 )
proof −
have Ln(−i) = Ln(inverse i) by simp
also have ... = − (Ln i) using Ln inverse by blast
also have ... = − (i ∗ pi/2 ) by simp
finally show ?thesis .

qed

lemma Ln times:
assumes w 6= 0 z 6= 0
shows Ln(w ∗ z ) =

(if Im(Ln w + Ln z ) ≤ −pi then (Ln(w) + Ln(z )) + i ∗ of real(2∗pi)
else if Im(Ln w + Ln z ) > pi then (Ln(w) + Ln(z )) − i ∗ of real(2∗pi)
else Ln(w) + Ln(z ))

using pi ge zero Im Ln le pi [of w ] Im Ln le pi [of z ]
using assms mpi less Im Ln [of w ] mpi less Im Ln [of z ]
by (auto simp: exp add exp diff sin double cos double exp Euler intro!: Ln unique)

corollary Ln times simple:
[[w 6= 0 ; z 6= 0 ; −pi < Im(Ln w) + Im(Ln z ); Im(Ln w) + Im(Ln z ) ≤ pi ]]

=⇒ Ln(w ∗ z ) = Ln(w) + Ln(z )
by (simp add : Ln times)

corollary Ln times of real :
[[r > 0 ; z 6= 0 ]] =⇒ Ln(of real r ∗ z ) = ln r + Ln(z )

using mpi less Im Ln Im Ln le pi
by (force simp: Ln times)

corollary Ln times Reals:
[[r ∈ Reals; Re r > 0 ; z 6= 0 ]] =⇒ Ln(r ∗ z ) = ln (Re r) + Ln(z )

using Ln Reals eq Ln times of real by fastforce
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corollary Ln divide of real :
[[r > 0 ; z 6= 0 ]] =⇒ Ln(z / of real r) = Ln(z ) − ln r

using Ln times of real [of inverse r z ]
by (simp add : ln inverse Ln of real mult .commute divide inverse of real inverse
[symmetric]

del : of real inverse)

corollary Ln prod :
fixes f :: ′a ⇒ complex
assumes finite A

∧
x . x ∈ A =⇒ f x 6= 0

shows ∃n. Ln (prod f A) = (
∑

x ∈ A. Ln (f x ) + (of int (n x ) ∗ (2 ∗ pi)) ∗ i)
using assms

proof (induction A)
case (insert x A)
then obtain n where n: Ln (prod f A) = (

∑
x∈A. Ln (f x ) + of real (of int

(n x ) ∗ (2 ∗ pi)) ∗ i)
by auto

define D where D ≡ Im (Ln (f x )) + Im (Ln (prod f A))
define q ::int where q ≡ (if D ≤ −pi then 1 else if D > pi then −1 else 0 )
have prod f A 6= 0 f x 6= 0
by (auto simp: insert .hyps insert .prems)

with insert .hyps pi ge zero show ?case
by (rule tac x=n(x :=q) in exI ) (force simp: Ln times q def D def n intro!:

sum.cong)
qed auto

lemma Ln minus:
assumes z 6= 0
shows Ln(−z ) = (if Im(z ) ≤ 0 ∧ ¬(Re(z ) < 0 ∧ Im(z ) = 0 )

then Ln(z ) + i ∗ pi
else Ln(z ) − i ∗ pi) (is = ?rhs)

using Im Ln le pi [of z ] mpi less Im Ln [of z ] assms
Im Ln eq pi [of z ] Im Ln pos lt [of z ]

by (fastforce simp: exp add exp diff exp Euler intro!: Ln unique)

lemma Ln inverse if :
assumes z 6= 0
shows Ln (inverse z ) = (if z ∈ IR≤0 then −(Ln z ) + i ∗ 2 ∗ complex of real

pi else −(Ln z ))
proof (cases z ∈ IR≤0)
case False then show ?thesis
by (simp add : Ln inverse)

next
case True
then have z : Im z = 0 Re z < 0 − z /∈ IR≤0

using assms complex eq iff complex nonpos Reals iff by auto
have Ln(inverse z ) = Ln(− (inverse (−z )))
by simp
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also have ... = Ln (inverse (−z )) + i ∗ complex of real pi
using assms z by (simp add : Ln minus divide less 0 iff )

also have ... = − Ln (− z ) + i ∗ complex of real pi
using z Ln inverse by presburger

also have ... = − (Ln z ) + i ∗ 2 ∗ complex of real pi
using Ln minus assms z by auto

finally show ?thesis by (simp add : True)
qed

lemma Ln times ii :
assumes z 6= 0
shows Ln(i ∗ z ) = (if 0 ≤ Re(z ) | Im(z ) < 0

then Ln(z ) + i ∗ of real pi/2
else Ln(z ) − i ∗ of real(3 ∗ pi/2 ))

using Im Ln le pi [of z ] mpi less Im Ln [of z ] assms
Im Ln eq pi [of z ] Im Ln pos lt [of z ] Re Ln pos le [of z ]

by (simp add : Ln times) auto

lemma Ln of nat [simp]: 0 < n =⇒ Ln (of nat n) = of real (ln (of nat n))
by (subst of real of nat eq [symmetric], subst Ln of real [symmetric]) simp all

lemma Ln of nat over of nat :
assumes m > 0 n > 0
shows Ln (of nat m / of nat n) = of real (ln (of nat m) − ln (of nat n))

proof −
have of nat m / of nat n = (of real (of nat m / of nat n) :: complex ) by simp
also from assms have Ln ... = of real (ln (of nat m / of nat n))
by (simp add : Ln of real [symmetric])

also from assms have ... = of real (ln (of nat m) − ln (of nat n))
by (simp add : ln div)

finally show ?thesis .
qed

6.21.14 The Argument of a Complex Number

Finally: it’s is defined for the same interval as the complex logarithm: (−π,π].
definition Arg :: complex ⇒ real where Arg z ≡ (if z = 0 then 0 else Im (Ln z ))

lemma Arg of real : Arg (of real r) = (if r<0 then pi else 0 )
by (simp add : Im Ln eq pi Arg def )

lemma mpi less Arg : −pi < Arg z
and Arg le pi : Arg z ≤ pi

by (auto simp: Arg def mpi less Im Ln Im Ln le pi)

lemma
assumes z 6= 0
shows Arg eq : z = of real(norm z ) ∗ exp(i ∗ Arg z )
using assms exp Ln exp eq polar
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by (auto simp: Arg def )

lemma is Arg Arg : z 6= 0 =⇒ is Arg z (Arg z )
by (simp add : Arg eq is Arg def )

lemma Argument exists:
assumes z 6= 0 and R: R = {r−pi<..r+pi}
obtains s where is Arg z s s∈R

proof −
let ?rp = r − Arg z + pi
define k where k ≡ b?rp / (2 ∗ pi)c
have (Arg z + of int k ∗ (2 ∗ pi)) ∈ R
using floor divide lower [of 2∗pi ?rp] floor divide upper [of 2∗pi ?rp]
by (auto simp: k def algebra simps R)

then show ?thesis
using Arg eq 〈z 6= 0 〉 is Arg 2pi iff is Arg def that by blast

qed

lemma Argument exists unique:
assumes z 6= 0 and R: R = {r−pi<..r+pi}
obtains s where is Arg z s s∈R

∧
t . [[is Arg z t ; t∈R]] =⇒ s=t

proof −
obtain s where s: is Arg z s s∈R
using Argument exists [OF assms] .

moreover have
∧
t . [[is Arg z t ; t∈R]] =⇒ s=t

using assms s by (auto simp: is Arg eqI )
ultimately show thesis
using that by blast

qed

lemma Argument Ex1 :
assumes z 6= 0 and R: R = {r−pi<..r+pi}
shows ∃ !s. is Arg z s ∧ s ∈ R
using Argument exists unique [OF assms] by metis

lemma Arg divide:
assumes w 6= 0 z 6= 0
shows is Arg (z / w) (Arg z − Arg w)
using Arg eq [of z ] Arg eq [of w ] Arg eq [of norm(z / w)] assms
by (auto simp: is Arg def norm divide field simps exp diff Arg of real)

lemma Arg unique lemma:
assumes z : is Arg z t

and z ′: is Arg z t ′

and t : − pi < t t ≤ pi
and t ′: − pi < t ′ t ′ ≤ pi
and nz : z 6= 0

shows t ′ = t
using Arg2pi unique lemma [of − (inverse z )]
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proof −
have pi − t ′ = pi − t
proof (rule Arg2pi unique lemma [of − (inverse z )])
have − (inverse z ) = − (inverse (of real(norm z ) ∗ exp(i ∗ t)))
by (metis is Arg def z )

also have ... = (cmod (− inverse z )) ∗ exp (i ∗ (pi − t))
by (auto simp: field simps exp diff norm divide)

finally show is Arg (− inverse z ) (pi − t)
unfolding is Arg def .

have − (inverse z ) = − (inverse (of real(norm z ) ∗ exp(i ∗ t ′)))
by (metis is Arg def z ′)

also have ... = (cmod (− inverse z )) ∗ exp (i ∗ (pi − t ′))
by (auto simp: field simps exp diff norm divide)

finally show is Arg (− inverse z ) (pi − t ′)
unfolding is Arg def .

qed (use assms in auto)
then show ?thesis
by simp

qed

lemma complex norm eq 1 exp eq : norm z = 1 ←→ exp(i ∗ (Arg z )) = z
by (metis Arg eq exp not eq zero exp zero mult .left neutral norm zero of real 1

norm exp i times)

lemma Arg unique: [[of real r ∗ exp(i ∗ a) = z ; 0 < r ; −pi < a; a ≤ pi ]] =⇒ Arg
z = a
by (rule Arg unique lemma [unfolded is Arg def , OF Arg eq ])

(use mpi less Arg Arg le pi in 〈auto simp: norm mult 〉)

lemma Arg minus:
assumes z 6= 0
shows Arg (−z ) = (if Arg z ≤ 0 then Arg z + pi else Arg z − pi)

proof −
have [simp]: cmod z ∗ cos (Arg z ) = Re z
using assms Arg eq [of z ] by (metis Re exp exp Ln norm exp eq Re Arg def )

have [simp]: cmod z ∗ sin (Arg z ) = Im z
using assms Arg eq [of z ] by (metis Im exp exp Ln norm exp eq Re Arg def )

show ?thesis
apply (rule Arg unique [of norm z , OF complex eqI ])
using mpi less Arg [of z ] Arg le pi [of z ] assms
by (auto simp: Re exp Im exp)

qed

lemma Arg times of real [simp]:
assumes 0 < r shows Arg (of real r ∗ z ) = Arg z

proof (cases z=0 )
case True
then show ?thesis
by (simp add : Arg def )
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next
case False
with Arg eq assms show ?thesis
by (auto simp: mpi less Arg Arg le pi intro!: Arg unique [of r ∗ norm z ])

qed

lemma Arg times of real2 [simp]: 0 < r =⇒ Arg (z ∗ of real r) = Arg z
by (metis Arg times of real mult .commute)

lemma Arg divide of real [simp]: 0 < r =⇒ Arg (z / of real r) = Arg z
by (metis Arg times of real2 less numeral extra(3 ) nonzero eq divide eq of real eq 0 iff )

lemma Arg less 0 : 0 ≤ Arg z ←→ 0 ≤ Im z
using Im Ln le pi Im Ln pos le
by (simp add : Arg def )

lemma Arg eq pi : Arg z = pi ←→ Re z < 0 ∧ Im z = 0
by (auto simp: Arg def Im Ln eq pi)

lemma Arg lt pi : 0 < Arg z ∧ Arg z < pi ←→ 0 < Im z
using Arg less 0 [of z ] Im Ln pos lt
by (auto simp: order .order iff strict Arg def )

lemma Arg eq 0 : Arg z = 0 ←→ z ∈ IR ∧ 0 ≤ Re z
using complex is Real iff
by (simp add : Arg def Im Ln eq 0 ) (metis less eq real def of real Re of real def

scale zero left)

corollary Arg ne 0 : assumes z /∈ IR≥0 shows Arg z 6= 0
using assms by (auto simp: nonneg Reals def Arg eq 0 )

lemma Arg eq pi iff : Arg z = pi ←→ z ∈ IR ∧ Re z < 0
proof (cases z=0 )
case False
then show ?thesis
using Arg eq 0 [of −z ] Arg eq pi complex is Real iff by blast

qed (simp add : Arg def )

lemma Arg eq 0 pi : Arg z = 0 ∨ Arg z = pi ←→ z ∈ IR
using Arg eq pi iff Arg eq 0 by force

lemma Arg real : z ∈ IR =⇒ Arg z = (if 0 ≤ Re z then 0 else pi)
using Arg eq 0 Arg eq 0 pi by auto

lemma Arg inverse: Arg(inverse z ) = (if z ∈ IR then Arg z else − Arg z )
proof (cases z ∈ IR)
case True
then show ?thesis
by simp (metis Arg2pi inverse Arg2pi real Arg real Reals inverse)
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next
case False
then have z : Arg z < pi z 6= 0
using Arg eq 0 pi Arg le pi by (auto simp: less eq real def )

show ?thesis
apply (rule Arg unique [of inverse (norm z )])
using False z mpi less Arg [of z ] Arg eq [of z ]
by (auto simp: exp minus field simps)

qed

lemma Arg eq iff :
assumes w 6= 0 z 6= 0
shows Arg w = Arg z ←→ (∃ x . 0 < x ∧ w = of real x ∗ z ) (is ?lhs = ?rhs)

proof
assume ?lhs
then have w = complex of real (cmod w / cmod z ) ∗ z
by (metis Arg eq assms divide divide eq right eq divide eq exp not eq zero of real divide)
then show ?rhs
using assms divide pos pos zero less norm iff by blast

qed auto

lemma Arg inverse eq 0 : Arg(inverse z ) = 0 ←→ Arg z = 0
by (metis Arg eq 0 Arg inverse inverse inverse eq)

lemma Arg cnj eq inverse: z 6=0 =⇒ Arg (cnj z ) = Arg (inverse z )
using Arg2pi cnj eq inverse Arg2pi eq iff Arg eq iff by auto

lemma Arg cnj : Arg(cnj z ) = (if z ∈ IR then Arg z else − Arg z )
by (metis Arg cnj eq inverse Arg inverse Reals 0 complex cnj zero)

lemma Arg exp: −pi < Im z =⇒ Im z ≤ pi =⇒ Arg(exp z ) = Im z
by (rule Arg unique [of exp(Re z )]) (auto simp: exp eq polar)

lemma Ln Arg : z 6=0 =⇒ Ln(z ) = ln(norm z ) + i ∗ Arg(z )
by (metis Arg def Re Ln complex eq)

lemma continuous at Arg :
assumes z /∈ IR≤0

shows continuous (at z ) Arg
proof −
have [simp]: (λz . Im (Ln z )) −z→ Arg z
using Arg def assms continuous at by fastforce

show ?thesis
unfolding continuous at

proof (rule Lim transform within open)
show

∧
w . [[w ∈ − IR≤0; w 6= z ]] =⇒ Im (Ln w) = Arg w

by (metis Arg def Compl iff nonpos Reals zero I )
qed (use assms in auto)

qed
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lemma continuous within Arg : z /∈ IR≤0 =⇒ continuous (at z within S ) Arg
using continuous at Arg continuous at imp continuous within by blast

6.21.15 The Unwinding Number and the Ln product For-
mula

Note that in this special case the unwinding number is -1, 0 or 1. But it’s
always an integer.

lemma is Arg exp Im: is Arg (exp z ) (Im z )
using exp eq polar is Arg def norm exp eq Re by auto

lemma is Arg exp diff 2pi :
assumes is Arg (exp z ) ϑ
shows ∃ k . Im z − of int k ∗ (2 ∗ pi) = ϑ

proof (intro exI is Arg eqI )
let ?k = b(Im z − ϑ) / (2 ∗ pi)c
show is Arg (exp z ) (Im z − real of int ?k ∗ (2 ∗ pi))
by (metis diff add cancel is Arg 2pi iff is Arg exp Im)

show |Im z − real of int ?k ∗ (2 ∗ pi) − ϑ| < 2 ∗ pi
using floor divide upper [of 2∗pi Im z − ϑ] floor divide lower [of 2∗pi Im z −

ϑ]
by (auto simp: algebra simps abs if )

qed (auto simp: is Arg exp Im assms)

lemma Arg exp diff 2pi : ∃ k . Im z − of int k ∗ (2 ∗ pi) = Arg (exp z )
using is Arg exp diff 2pi [OF is Arg Arg ] by auto

lemma unwinding in Ints: (z − Ln(exp z )) / (of real(2∗pi) ∗ i) ∈ ZZ
using Arg exp diff 2pi [of z ]
by (force simp: Ints def image def field simps Arg def intro!: complex eqI )

definition unwinding :: complex ⇒ int where
unwinding z ≡ THE k . of int k = (z − Ln(exp z )) / (of real(2∗pi) ∗ i)

lemma unwinding : of int (unwinding z ) = (z − Ln(exp z )) / (of real(2∗pi) ∗ i)
using unwinding in Ints [of z ]
unfolding unwinding def Ints def by force

lemma unwinding 2pi : (2∗pi) ∗ i ∗ unwinding(z ) = z − Ln(exp z )
by (simp add : unwinding)

lemma Ln times unwinding :
w 6= 0 =⇒ z 6= 0 =⇒ Ln(w ∗ z ) = Ln(w) + Ln(z ) − (2∗pi) ∗ i ∗ unwinding(Ln

w + Ln z )
using unwinding 2pi by (simp add : exp add)
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6.21.16 Relation between Ln and Arg2pi, and hence conti-
nuity of Arg2pi

lemma Arg2pi Ln:
assumes 0 < Arg2pi z shows Arg2pi z = Im(Ln(−z )) + pi

proof (cases z = 0 )
case True
with assms show ?thesis
by simp

next
case False
then have z / of real(norm z ) = exp(i ∗ of real(Arg2pi z ))
using Arg2pi [of z ]
by (metis is Arg def abs norm cancel nonzero mult div cancel left norm of real

zero less norm iff )
then have − z / of real(norm z ) = exp (i ∗ (of real (Arg2pi z ) − pi))
using cis conv exp cis pi
by (auto simp: exp diff algebra simps)

then have ln (− z / of real(norm z )) = ln (exp (i ∗ (of real (Arg2pi z ) − pi)))
by simp

also have ... = i ∗ (of real(Arg2pi z ) − pi)
using Arg2pi [of z ] assms pi not less zero
by auto

finally have Arg2pi z = Im (Ln (− z / of real (cmod z ))) + pi
by simp

also have ... = Im (Ln (−z ) − ln (cmod z )) + pi
by (metis diff 0 right minus diff eq zero less norm iff Ln divide of real False)

also have ... = Im (Ln (−z )) + pi
by simp

finally show ?thesis .
qed

lemma continuous at Arg2pi :
assumes z /∈ IR≥0

shows continuous (at z ) Arg2pi
proof −
have ∗: isCont (λz . Im (Ln (− z )) + pi) z
by (rule Complex .isCont Im isCont Ln ′ continuous intros | simp add : assms

complex is Real iff )+
have [simp]: Im x 6= 0 =⇒ Im (Ln (− x )) + pi = Arg2pi x for x
using Arg2pi Ln by (simp add : Arg2pi gt 0 complex nonneg Reals iff )

consider Re z < 0 | Im z 6= 0 using assms
using complex nonneg Reals iff not le by blast

then have [simp]: (λz . Im (Ln (− z )) + pi) −z→ Arg2pi z
using ∗ by (simp add : Arg2pi Ln Arg2pi gt 0 assms continuous within)

show ?thesis
unfolding continuous at

proof (rule Lim transform within open)
show

∧
x . [[x ∈ − IR≥0; x 6= z ]] =⇒ Im (Ln (− x )) + pi = Arg2pi x

by (auto simp add : Arg2pi Ln [OF Arg2pi gt 0 ] complex nonneg Reals iff )
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qed (use assms in auto)
qed

Relation between Arg2pi and arctangent in upper halfplane

lemma Arg2pi arctan upperhalf :
assumes 0 < Im z
shows Arg2pi z = pi/2 − arctan(Re z / Im z )

proof (cases z = 0 )
case False
show ?thesis
proof (rule Arg2pi unique [of norm z ])
show (cmod z ) ∗ exp (i ∗ (pi / 2 − arctan (Re z / Im z ))) = z
apply (rule complex eqI )
using assms norm complex def [of z , symmetric]
unfolding exp Euler cos diff sin diff sin of real cos of real
by (simp all add : field simps real sqrt divide sin arctan cos arctan)

qed (use False arctan [of Re z / Im z ] in auto)
qed (use assms in auto)

lemma Arg2pi eq Im Ln:
assumes 0 ≤ Im z 0 < Re z
shows Arg2pi z = Im (Ln z )

proof (cases Im z = 0 )
case True then show ?thesis
using Arg2pi eq 0 Ln in Reals assms(2 ) complex is Real iff by auto

next
case False
then have ∗: Arg2pi z > 0
using Arg2pi gt 0 complex is Real iff by blast

then have z 6= 0
by auto

with ∗ assms False show ?thesis
by (subst Arg2pi Ln) (auto simp: Ln minus)

qed

lemma continuous within upperhalf Arg2pi :
assumes z 6= 0
shows continuous (at z within {z . 0 ≤ Im z}) Arg2pi

proof (cases z ∈ IR≥0)
case False then show ?thesis
using continuous at Arg2pi continuous at imp continuous within by auto

next
case True
then have z : z ∈ IR 0 < Re z
using assms by (auto simp: complex nonneg Reals iff complex is Real iff com-

plex neq 0 )
then have [simp]: Arg2pi z = 0 Im (Ln z ) = 0
by (auto simp: Arg2pi eq 0 Im Ln eq 0 assms complex is Real iff )

show ?thesis
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proof (clarsimp simp add : continuous within Lim within dist norm)
fix e::real
assume 0 < e
moreover have continuous (at z ) (λx . Im (Ln x ))
using z by (simp add : continuous at Ln complex nonpos Reals iff )

ultimately
obtain d where d : d>0

∧
x . x 6= z =⇒ cmod (x − z ) < d =⇒ |Im (Ln x )|

< e
by (auto simp: continuous within Lim within dist norm)

{ fix x
assume cmod (x − z ) < Re z / 2
then have |Re x − Re z | < Re z / 2
by (metis le less trans abs Re le cmod minus complex .simps(1 ))

then have 0 < Re x
using z by linarith

}
then show ∃ d>0 . ∀ x . 0 ≤ Im x −→ x 6= z ∧ cmod (x − z ) < d −→ |Arg2pi

x | < e
apply (rule tac x=min d (Re z / 2 ) in exI )
using z d by (auto simp: Arg2pi eq Im Ln)

qed
qed

lemma continuous on upperhalf Arg2pi : continuous on ({z . 0 ≤ Im z} − {0})
Arg2pi
unfolding continuous on eq continuous within
by (metis DiffE Diff subset continuous within subset continuous within upperhalf Arg2pi

insertCI )

lemma open Arg2pi2pi less Int :
assumes 0 ≤ s t ≤ 2∗pi
shows open ({y . s < Arg2pi y} ∩ {y . Arg2pi y < t})

proof −
have 1 : continuous on (UNIV − IR≥0) Arg2pi
using continuous at Arg2pi continuous at imp continuous within
by (auto simp: continuous on eq continuous within)

have 2 : open (UNIV − IR≥0 :: complex set) by (simp add : open Diff )
have open ({z . s < z} ∩ {z . z < t})
using open lessThan [of t ] open greaterThan [of s]
by (metis greaterThan def lessThan def open Int)

moreover have {y . s < Arg2pi y} ∩ {y . Arg2pi y < t} ⊆ − IR≥0

using assms by (auto simp: Arg2pi real complex nonneg Reals iff complex is Real iff )
ultimately show ?thesis
using continuous imp open vimage [OF 1 2 , of {z . Re z > s} ∩ {z . Re z <

t}]
by auto

qed

lemma open Arg2pi2pi gt : open {z . t < Arg2pi z}
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proof (cases t < 0 )
case True then have {z . t < Arg2pi z} = UNIV
using Arg2pi ge 0 less le trans by auto

then show ?thesis
by simp

next
case False then show ?thesis
using open Arg2pi2pi less Int [of t 2∗pi ] Arg2pi lt 2pi
by auto

qed

lemma closed Arg2pi2pi le: closed {z . Arg2pi z ≤ t}
using open Arg2pi2pi gt [of t ]
by (simp add : closed def Set .Collect neg eq [symmetric] not le)

6.21.17 Complex Powers

lemma powr to 1 [simp]: z powr 1 = (z ::complex )
by (simp add : powr def )

lemma powr nat :
fixes n::nat and z ::complex shows z powr n = (if z = 0 then 0 else zˆn)
by (simp add : exp of nat mult powr def )

lemma norm powr real : w ∈ IR =⇒ 0 < Re w =⇒ norm(w powr z ) = exp(Re z
∗ ln(Re w))
using Ln Reals eq norm exp eq Re by (auto simp: Im Ln eq 0 powr def norm complex def )

lemma powr complexpow [simp]:
fixes x ::complex shows x 6= 0 =⇒ x powr (of nat n) = xˆn
by (induct n) (auto simp: ac simps powr add)

lemma powr complexnumeral [simp]:
fixes x ::complex shows x 6= 0 =⇒ x powr (numeral n) = x ˆ (numeral n)
by (metis of nat numeral powr complexpow)

lemma cnj powr :
assumes Im a = 0 =⇒ Re a ≥ 0
shows cnj (a powr b) = cnj a powr cnj b

proof (cases a = 0 )
case False
with assms have a /∈ IR≤0 by (auto simp: complex eq iff complex nonpos Reals iff )
with False show ?thesis by (simp add : powr def exp cnj cnj Ln)

qed simp

lemma powr real real :
assumes w ∈ IR z ∈ IR 0 < Re w
shows w powr z = exp(Re z ∗ ln(Re w))

proof −
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have w 6= 0
using assms by auto

with assms show ?thesis
by (simp add : powr def Ln Reals eq of real exp)

qed

lemma powr of real :
fixes x ::real and y ::real
shows 0 ≤ x =⇒ of real x powr (of real y ::complex ) = of real (x powr y)
by (simp all add : powr def exp eq polar)

lemma powr of int :
fixes z ::complex and n::int
assumes z 6=(0 ::complex )
shows z powr of int n = (if n≥0 then zˆnat n else inverse (zˆnat (−n)))
by (metis assms not le of int of nat powr complexpow powr minus)

lemma powr Reals eq : [[x ∈ IR; y ∈ IR; Re x ≥ 0 ]] =⇒ x powr y = of real (Re x
powr Re y)
by (metis of real Re powr of real)

lemma norm powr real mono:
[[w ∈ IR; 1 < Re w ]]
=⇒ cmod(w powr z1 ) ≤ cmod(w powr z2 ) ←→ Re z1 ≤ Re z2

by (auto simp: powr def algebra simps Reals def Ln of real)

lemma powr times real :
[[x ∈ IR; y ∈ IR; 0 ≤ Re x ; 0 ≤ Re y ]]

=⇒ (x ∗ y) powr z = x powr z ∗ y powr z
by (auto simp: Reals def powr def Ln times exp add algebra simps less eq real def

Ln of real)

lemma Re powr le: r ∈ IR≥0 =⇒ Re (r powr z ) ≤ Re r powr Re z
by (auto simp: powr def nonneg Reals def order trans [OF complex Re le cmod ])

lemma
fixes w ::complex
shows Reals powr [simp]: [[w ∈ IR≥0; z ∈ IR]] =⇒ w powr z ∈ IR
and nonneg Reals powr [simp]: [[w ∈ IR≥0; z ∈ IR]] =⇒ w powr z ∈ IR≥0

by (auto simp: nonneg Reals def Reals def powr of real)

lemma powr neg real complex :
(− of real x ) powr a = (−1 ) powr (of real (sgn x ) ∗ a) ∗ of real x powr (a ::

complex )
proof (cases x = 0 )
assume x : x 6= 0
hence (−x ) powr a = exp (a ∗ ln (−of real x )) by (simp add : powr def )
also from x have ln (−of real x ) = Ln (of real x ) + of real (sgn x ) ∗ pi ∗ i
by (simp add : Ln minus Ln of real)



Complex Transcendental.thy 2323

also from x have exp (a ∗ ...) = cis pi powr (of real (sgn x ) ∗ a) ∗ of real x
powr a

by (simp add : powr def exp add algebra simps Ln of real cis conv exp)
also note cis pi
finally show ?thesis by simp

qed simp all

lemma has field derivative powr :
fixes z :: complex
assumes z /∈ IR≤0

shows ((λz . z powr s) has field derivative (s ∗ z powr (s − 1 ))) (at z )
proof (cases z=0 )
case False
then have §: exp (s ∗ Ln z ) ∗ inverse z = exp ((s − 1 ) ∗ Ln z )
by (simp add : divide complex def exp diff left diff distrib ′)

show ?thesis
unfolding powr def

proof (rule has field derivative transform within)
show ((λz . exp (s ∗ Ln z )) has field derivative s ∗ (if z = 0 then 0 else exp ((s

− 1 ) ∗ Ln z )))
(at z )

by (intro derivative eq intros | simp add : assms False §)+
qed (use False in auto)

qed (use assms in auto)

declare has field derivative powr [THEN DERIV chain2 , derivative intros]

lemma has field derivative powr of int :
fixes z :: complex
assumes gderiv :(g has field derivative gd) (at z within S ) and g z 6=0
shows ((λz . g z powr of int n) has field derivative (n ∗ g z powr (of int n − 1 )
∗ gd)) (at z within S )
proof −
define dd where dd = of int n ∗ g z powr (of int (n − 1 )) ∗ gd
obtain e where e>0 and e dist :∀ y∈S . dist z y < e −→ g y 6= 0
using DERIV continuous[OF gderiv ,THEN continuous within avoid ] 〈g z 6=0 〉

by auto
have ?thesis when n≥0
proof −
define dd ′ where dd ′ = of int n ∗ g z ˆ (nat n − 1 ) ∗ gd
have dd=dd ′

proof (cases n=0 )
case False
then have n−1 ≥0 using 〈n≥0 〉 by auto
then have g z powr (of int (n − 1 )) = g z ˆ (nat n − 1 )
using powr of int [OF 〈g z 6=0 〉,of n−1 ] by (simp add : nat diff distrib ′)

then show ?thesis unfolding dd def dd ′ def by simp
qed (simp add :dd def dd ′ def )
then have ((λz . g z powr of int n) has field derivative dd) (at z within S )
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←→ ((λz . g z powr of int n) has field derivative dd ′) (at z within S )
by simp

also have ... ←→ ((λz . g z ˆ nat n) has field derivative dd ′) (at z within S )
proof (rule has field derivative cong eventually)
show ∀ F x in at z within S . g x powr of int n = g x ˆ nat n
unfolding eventually at
apply (rule exI [where x=e])
using powr of int that 〈e>0 〉 e dist by (simp add : dist commute)

qed (use powr of int 〈g z 6=0 〉 that in simp)
also have ... unfolding dd ′ def using gderiv that
by (auto intro!: derivative eq intros)

finally have ((λz . g z powr of int n) has field derivative dd) (at z within S ) .
then show ?thesis unfolding dd def by simp

qed
moreover have ?thesis when n<0
proof −
define dd ′ where dd ′ = of int n / g z ˆ (nat (1 − n)) ∗ gd
have dd=dd ′

proof −
have g z powr of int (n − 1 ) = inverse (g z ˆ nat (1−n))
using powr of int [OF 〈g z 6=0 〉,of n−1 ] that by auto

then show ?thesis
unfolding dd def dd ′ def by (simp add : divide inverse)

qed
then have ((λz . g z powr of int n) has field derivative dd) (at z within S )

←→ ((λz . g z powr of int n) has field derivative dd ′) (at z within S )
by simp

also have ... ←→ ((λz . inverse (g z ˆ nat (−n))) has field derivative dd ′) (at
z within S )

proof (rule has field derivative cong eventually)
show ∀ F x in at z within S . g x powr of int n = inverse (g x ˆ nat (− n))

unfolding eventually at
apply (rule exI [where x=e])
using powr of int that 〈e>0 〉 e dist by (simp add : dist commute)

qed (use powr of int 〈g z 6=0 〉 that in simp)
also have ...
proof −
have nat (− n) + nat (1 − n) − Suc 0 = nat (− n) + nat (− n)
by auto

then show ?thesis
unfolding dd ′ def using gderiv that 〈g z 6=0 〉

by (auto intro!: derivative eq intros simp add :field split simps power add [symmetric])
qed
finally have ((λz . g z powr of int n) has field derivative dd) (at z within S ) .
then show ?thesis unfolding dd def by simp

qed
ultimately show ?thesis by force

qed
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lemma field differentiable powr of int :
fixes z :: complex
assumes gderiv : g field differentiable (at z within S ) and g z 6= 0
shows (λz . g z powr of int n) field differentiable (at z within S )

using has field derivative powr of int assms(2 ) field differentiable def gderiv by
blast

lemma holomorphic on powr of int [holomorphic intros]:
assumes holf : f holomorphic on S and 0 :

∧
z . z∈S =⇒ f z 6= 0

shows (λz . (f z ) powr of int n) holomorphic on S
proof (cases n≥0 )
case True
then have ?thesis ←→ (λz . (f z ) ˆ nat n) holomorphic on S
by (metis (no types, lifting) 0 holomorphic cong powr of int)

moreover have (λz . (f z ) ˆ nat n) holomorphic on S
using holf by (auto intro: holomorphic intros)

ultimately show ?thesis by auto
next
case False
then have ?thesis ←→ (λz . inverse (f z ) ˆ nat (−n)) holomorphic on S
by (metis (no types, lifting) 0 holomorphic cong power inverse powr of int)

moreover have (λz . inverse (f z ) ˆ nat (−n)) holomorphic on S
using assms by (auto intro!:holomorphic intros)

ultimately show ?thesis by auto
qed

lemma has field derivative powr right [derivative intros]:
w 6= 0 =⇒ ((λz . w powr z ) has field derivative Ln w ∗ w powr z ) (at z )

unfolding powr def by (intro derivative eq intros | simp)+

lemma field differentiable powr right [derivative intros]:
fixes w ::complex
shows w 6= 0 =⇒ (λz . w powr z ) field differentiable (at z )

using field differentiable def has field derivative powr right by blast

lemma holomorphic on powr right [holomorphic intros]:
assumes f holomorphic on s
shows (λz . w powr (f z )) holomorphic on s

proof (cases w = 0 )
case False
with assms show ?thesis
unfolding holomorphic on def field differentiable def
by (metis (full types) DERIV chain ′ has field derivative powr right)

qed simp

lemma holomorphic on divide gen [holomorphic intros]:
assumes f : f holomorphic on s and g : g holomorphic on s and 0 :

∧
z z ′. [[z ∈

s; z ′ ∈ s]] =⇒ g z = 0 ←→ g z ′ = 0
shows (λz . f z / g z ) holomorphic on s
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proof (cases ∃ z∈s. g z = 0 )
case True
with 0 have g z = 0 if z ∈ s for z
using that by blast

then show ?thesis
using g holomorphic transform by auto

next
case False
with 0 have g z 6= 0 if z ∈ s for z
using that by blast

with holomorphic on divide show ?thesis
using f g by blast

qed

lemma norm powr real powr :
w ∈ IR =⇒ 0 ≤ Re w =⇒ cmod (w powr z ) = Re w powr Re z
by (metis dual order .order iff strict norm powr real norm zero of real 0 of real Re

powr def )

lemma tendsto powr complex :
fixes f g :: ⇒ complex
assumes a: a /∈ IR≤0

assumes f : (f −−−→ a) F and g : (g −−−→ b) F
shows ((λz . f z powr g z ) −−−→ a powr b) F

proof −
from a have [simp]: a 6= 0 by auto
from f g a have ((λz . exp (g z ∗ ln (f z ))) −−−→ a powr b) F (is ?P)
by (auto intro!: tendsto intros simp: powr def )

also {
have eventually (λz . z 6= 0 ) (nhds a)
by (intro t1 space nhds) simp all

with f have eventually (λz . f z 6= 0 ) F using filterlim iff by blast
}
hence ?P ←→ ((λz . f z powr g z ) −−−→ a powr b) F
by (intro tendsto cong refl) (simp all add : powr def mult ac)

finally show ?thesis .
qed

lemma tendsto powr complex 0 :
fixes f g :: ′a ⇒ complex
assumes f : (f −−−→ 0 ) F and g : (g −−−→ b) F and b: Re b > 0
shows ((λz . f z powr g z ) −−−→ 0 ) F

proof (rule tendsto norm zero cancel)
define h where
h = (λz . if f z = 0 then 0 else exp (Re (g z ) ∗ ln (cmod (f z )) + abs (Im (g

z )) ∗ pi))
{
fix z :: ′a assume z : f z 6= 0
define c where c = abs (Im (g z )) ∗ pi
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from mpi less Im Ln[OF z ] Im Ln le pi [OF z ]
have abs (Im (Ln (f z ))) ≤ pi by simp

from mult left mono[OF this, of abs (Im (g z ))]
have abs (Im (g z ) ∗ Im (ln (f z ))) ≤ c by (simp add : abs mult c def )

hence −Im (g z ) ∗ Im (ln (f z )) ≤ c by simp
hence norm (f z powr g z ) ≤ h z by (simp add : powr def field simps h def

c def )
}
hence le: norm (f z powr g z ) ≤ h z for z by (cases f x = 0 ) (simp all add :

h def )

have g ′: (g −−−→ b) (inf F (principal {z . f z 6= 0}))
by (rule tendsto mono[OF g ]) simp all

have ((λx . norm (f x )) −−−→ 0 ) (inf F (principal {z . f z 6= 0}))
by (subst tendsto norm zero iff , rule tendsto mono[OF f ]) simp all

moreover {
have filterlim (λx . norm (f x )) (principal {0<..}) (principal {z . f z 6= 0})
by (auto simp: filterlim def )

hence filterlim (λx . norm (f x )) (principal {0<..})
(inf F (principal {z . f z 6= 0}))

by (rule filterlim mono) simp all
}
ultimately have norm: filterlim (λx . norm (f x )) (at right 0 ) (inf F (principal
{z . f z 6= 0}))

by (simp add : filterlim inf at within def )

have A: LIM x inf F (principal {z . f z 6= 0}). Re (g x ) ∗ −ln (cmod (f x )) :>
at top

by (rule filterlim tendsto pos mult at top tendsto intros g ′ b
filterlim compose[OF filterlim uminus at top at bot ] filterlim compose[OF

ln at 0 ] norm)+
have B : LIM x inf F (principal {z . f z 6= 0}).

−|Im (g x )| ∗ pi + −(Re (g x ) ∗ ln (cmod (f x ))) :> at top
by (rule filterlim tendsto add at top tendsto intros g ′)+ (insert A, simp all)

have C : (h −−−→ 0 ) F unfolding h def
by (intro filterlim If tendsto const filterlim compose[OF exp at bot ])

(insert B , auto simp: filterlim uminus at bot algebra simps)
show ((λx . norm (f x powr g x )) −−−→ 0 ) F
by (rule Lim null comparison[OF always eventually C ]) (insert le, auto)

qed

lemma tendsto powr complex ′ [tendsto intros]:
fixes f g :: ⇒ complex
assumes a /∈ IR≤0 ∨ (a = 0 ∧ Re b > 0 ) and (f −−−→ a) F (g −−−→ b) F
shows ((λz . f z powr g z ) −−−→ a powr b) F
using assms tendsto powr complex tendsto powr complex 0 by fastforce

lemma tendsto neg powr complex of real :
assumes filterlim f at top F and Re s < 0
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shows ((λx . complex of real (f x ) powr s) −−−→ 0 ) F
proof −
have ((λx . norm (complex of real (f x ) powr s)) −−−→ 0 ) F
proof (rule Lim transform eventually)
from assms(1 ) have eventually (λx . f x ≥ 0 ) F
by (auto simp: filterlim at top)

thus eventually (λx . f x powr Re s = norm (of real (f x ) powr s)) F
by eventually elim (simp add : norm powr real powr)

from assms show ((λx . f x powr Re s) −−−→ 0 ) F
by (intro tendsto neg powr)

qed
thus ?thesis by (simp add : tendsto norm zero iff )

qed

lemma tendsto neg powr complex of nat :
assumes filterlim f at top F and Re s < 0
shows ((λx . of nat (f x ) powr s) −−−→ 0 ) F

proof −
have ((λx . of real (real (f x )) powr s) −−−→ 0 ) F using assms(2 )
by (intro filterlim compose[OF tendsto neg powr complex of real ]

filterlim compose[OF assms(1 )] filterlim real sequentially filterlim ident)
auto
thus ?thesis by simp

qed

lemma continuous powr complex :
assumes f (netlimit F ) /∈ IR≤0 continuous F f continuous F g
shows continuous F (λz . f z powr g z :: complex )
using assms unfolding continuous def by (intro tendsto powr complex ) simp all

lemma isCont powr complex [continuous intros]:
assumes f z /∈ IR≤0 isCont f z isCont g z
shows isCont (λz . f z powr g z :: complex ) z
using assms unfolding isCont def by (intro tendsto powr complex ) simp all

lemma continuous on powr complex [continuous intros]:
assumes A ⊆ {z . Re (f z ) ≥ 0 ∨ Im (f z ) 6= 0}
assumes

∧
z . z ∈ A =⇒ f z = 0 =⇒ Re (g z ) > 0

assumes continuous on A f continuous on A g
shows continuous on A (λz . f z powr g z )
unfolding continuous on def

proof
fix z assume z : z ∈ A
show ((λz . f z powr g z ) −−−→ f z powr g z ) (at z within A)
proof (cases f z = 0 )
case False
from assms(1 ,2 ) z have Re (f z ) ≥ 0 ∨ Im (f z ) 6= 0 f z = 0 −→ Re (g z )

> 0 by auto
with assms(3 ,4 ) z show ?thesis
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by (intro tendsto powr complex ′)
(auto elim!: nonpos Reals cases simp: complex eq iff continuous on def )

next
case True
with assms z show ?thesis
by (auto intro!: tendsto powr complex 0 simp: continuous on def )

qed
qed

6.21.18 Some Limits involving Logarithms

lemma lim Ln over power :
fixes s::complex
assumes 0 < Re s
shows (λn. Ln (of nat n) / of nat n powr s) −−−−→ 0

proof (simp add : lim sequentially dist norm, clarify)
fix e::real
assume e: 0 < e
have ∃ xo>0 . ∀ x≥xo. 0 < e ∗ 2 + (e ∗ Re s ∗ 2 − 2 ) ∗ x + e ∗ (Re s)2 ∗ x 2

proof (rule tac x=2/(e ∗ (Re s)2) in exI , safe)
show 0 < 2 / (e ∗ (Re s)2)
using e assms by (simp add : field simps)

next
fix x ::real
assume x : 2 / (e ∗ (Re s)2) ≤ x
have 2 / (e ∗ (Re s)2) > 0
using e assms by simp

with x have x > 0
by linarith

then have x ∗ 2 ≤ e ∗ (x 2 ∗ (Re s)2)
using e assms x by (auto simp: power2 eq square field simps)

also have ... < e ∗ (2 + (x ∗ (Re s ∗ 2 ) + x 2 ∗ (Re s)2))
using e assms 〈x > 0 〉

by (auto simp: power2 eq square field simps add pos pos)
finally show 0 < e ∗ 2 + (e ∗ Re s ∗ 2 − 2 ) ∗ x + e ∗ (Re s)2 ∗ x 2

by (auto simp: algebra simps)
qed
then have ∃ xo>0 . ∀ x≥xo. x / e < 1 + (Re s ∗ x ) + (1/2 ) ∗ (Re s ∗ x )ˆ2
using e by (simp add : field simps)

then have ∃ xo>0 . ∀ x≥xo. x / e < exp (Re s ∗ x )
using assms
by (force intro: less le trans [OF exp lower Taylor quadratic])

then obtain xo where xo > 0 and xo:
∧
x . x ≥ xo =⇒ x < e ∗ exp (Re s ∗ x )

using e by (auto simp: field simps)
have norm (Ln (of nat n) / of nat n powr s) < e if n ≥ nat dexp xoe for n
proof −
have ln (real n) ≥ xo
using that exp gt zero ln ge iff [of n] nat ceiling le eq by fastforce

then show ?thesis
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using e xo [of ln n] by (auto simp: norm divide norm powr real field split simps)
qed
then show ∃no. ∀n≥no. norm (Ln (of nat n) / of nat n powr s) < e
by blast

qed

lemma lim Ln over n: ((λn. Ln(of nat n) / of nat n) −−−→ 0 ) sequentially
using lim Ln over power [of 1 ] by simp

lemma lim ln over power :
fixes s :: real
assumes 0 < s
shows ((λn. ln n / (n powr s)) −−−→ 0 ) sequentially

proof −
have (λn. ln (Suc n) / (Suc n) powr s) −−−−→ 0
using lim Ln over power [of of real s, THEN filterlim sequentially Suc [THEN

iffD2 ]] assms
by (simp add : lim sequentially dist norm Ln Reals eq norm powr real powr

norm divide)
then show ?thesis
using filterlim sequentially Suc[of λn::nat . ln n / n powr s] by auto

qed

lemma lim ln over n [tendsto intros]: ((λn. ln(real of nat n) / of nat n) −−−→ 0 )
sequentially
using lim ln over power [of 1 ] by auto

lemma lim log over n [tendsto intros]:
(λn. log k n/n) −−−−→ 0

proof −
have ∗: log k n/n = (1/ln k) ∗ (ln n / n) for n
unfolding log def by auto

have (λn. (1/ln k) ∗ (ln n / n)) −−−−→ (1/ln k) ∗ 0
by (intro tendsto intros)

then show ?thesis
unfolding ∗ by auto

qed

lemma lim 1 over complex power :
assumes 0 < Re s
shows (λn. 1 / of nat n powr s) −−−−→ 0

proof (rule Lim null comparison)
have ∀n>0 . 3 ≤ n −→ 1 ≤ ln (real of nat n)
using ln 272 gt 1
by (force intro: order trans [of ln (272/100 )])

then show ∀ F x in sequentially . cmod (1 / of nat x powr s) ≤ cmod (Ln (of nat
x ) / of nat x powr s)

by (auto simp: norm divide field split simps eventually sequentially)
show (λn. cmod (Ln (of nat n) / of nat n powr s)) −−−−→ 0
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using lim Ln over power [OF assms] by (metis tendsto norm zero iff )
qed

lemma lim 1 over real power :
fixes s :: real
assumes 0 < s
shows ((λn. 1 / (of nat n powr s)) −−−→ 0 ) sequentially
using lim 1 over complex power [of of real s, THEN filterlim sequentially Suc

[THEN iffD2 ]] assms
apply (subst filterlim sequentially Suc [symmetric])
by (simp add : lim sequentially dist norm Ln Reals eq norm powr real powr norm divide)

lemma lim 1 over Ln: ((λn. 1 / Ln(of nat n)) −−−→ 0 ) sequentially
proof (clarsimp simp add : lim sequentially dist norm norm divide field split simps)
fix r ::real
assume 0 < r
have ir : inverse (exp (inverse r)) > 0
by simp

obtain n where n: 1 < of nat n ∗ inverse (exp (inverse r))
using ex less of nat mult [of 1 , OF ir ]
by auto

then have exp (inverse r) < of nat n
by (simp add : field split simps)

then have ln (exp (inverse r)) < ln (of nat n)
by (metis exp gt zero less trans ln exp ln less cancel iff )

with 〈0 < r 〉 have 1 < r ∗ ln (real of nat n)
by (simp add : field simps)

moreover have n > 0 using n
using neq0 conv by fastforce

ultimately show ∃no. ∀ k . Ln (of nat k) 6= 0 −→ no ≤ k −→ 1 < r ∗ cmod
(Ln (of nat k))

using n 〈0 < r 〉

by (rule tac x=n in exI ) (force simp: field split simps intro: less le trans)
qed

lemma lim 1 over ln: ((λn. 1 / ln(real of nat n)) −−−→ 0 ) sequentially
using lim 1 over Ln [THEN filterlim sequentially Suc [THEN iffD2 ]]
apply (subst filterlim sequentially Suc [symmetric])
by (simp add : lim sequentially dist norm Ln Reals eq norm powr real powr norm divide)

lemma lim ln1 over ln: (λn. ln(Suc n) / ln n) −−−−→ 1
proof (rule Lim transform eventually)
have (λn. ln(1 + 1/n) / ln n) −−−−→ 0
proof (rule Lim transform bound)
show (inverse o real) −−−−→ 0
by (metis comp def lim inverse n lim explicit)

show ∀ F n in sequentially . norm (ln (1 + 1 / n) / ln n) ≤ norm ((inverse ◦
real) n)

proof
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fix n::nat
assume n: 3 ≤ n
then have ln 3 ≤ ln n and ln0 : 0 ≤ ln n
by auto

with ln3 gt 1 have 1/ ln n ≤ 1
by (simp add : field split simps)

moreover have ln (1 + 1 / real n) ≤ 1/n
by (simp add : ln add one self le self )

ultimately have ln (1 + 1 / real n) ∗ (1 / ln n) ≤ (1/n) ∗ 1
by (intro mult mono) (use n in auto)

then show norm (ln (1 + 1 / n) / ln n) ≤ norm ((inverse ◦ real) n)
by (simp add : field simps ln0 )

qed
qed
then show (λn. 1 + ln(1 + 1/n) / ln n) −−−−→ 1
by (metis (full types) add .right neutral tendsto add const iff )

show ∀ F k in sequentially . 1 + ln (1 + 1 / k) / ln k = ln(Suc k) / ln k
by (simp add : field split simps ln div eventually sequentiallyI [of 2 ])

qed

lemma lim ln over ln1 : (λn. ln n / ln(Suc n)) −−−−→ 1
proof −
have (λn. inverse (ln(Suc n) / ln n)) −−−−→ inverse 1
by (rule tendsto inverse [OF lim ln1 over ln]) auto

then show ?thesis
by simp

qed

6.21.19 Relation between Square Root and exp/ln, hence its
derivative

lemma csqrt exp Ln:
assumes z 6= 0
shows csqrt z = exp(Ln(z ) / 2 )

proof −
have (exp (Ln z / 2 ))2 = (exp (Ln z ))
by (metis exp double nonzero mult div cancel left times divide eq right zero neq numeral)
also have ... = z
using assms exp Ln by blast

finally have csqrt z = csqrt ((exp (Ln z / 2 ))2)
by simp

also have ... = exp (Ln z / 2 )
apply (rule csqrt square)
using cos gt zero pi [of (Im (Ln z ) / 2 )] Im Ln le pi mpi less Im Ln assms
by (fastforce simp: Re exp Im exp )

finally show ?thesis using assms csqrt square
by simp

qed
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lemma csqrt inverse:
assumes z /∈ IR≤0

shows csqrt (inverse z ) = inverse (csqrt z )
proof (cases z=0 )
case False
then show ?thesis
using assms csqrt exp Ln Ln inverse exp minus
by (simp add : csqrt exp Ln Ln inverse exp minus)

qed auto

lemma cnj csqrt :
assumes z /∈ IR≤0

shows cnj (csqrt z ) = csqrt(cnj z )
proof (cases z=0 )
case False
then show ?thesis

by (simp add : assms cnj Ln csqrt exp Ln exp cnj )
qed auto

lemma has field derivative csqrt :
assumes z /∈ IR≤0

shows (csqrt has field derivative inverse(2 ∗ csqrt z )) (at z )
proof −
have z : z 6= 0
using assms by auto

then have ∗: inverse z = inverse (2∗z ) ∗ 2
by (simp add : field split simps)

have [simp]: exp (Ln z / 2 ) ∗ inverse z = inverse (csqrt z )
by (simp add : z field simps csqrt exp Ln [symmetric]) (metis power2 csqrt

power2 eq square)
have Im z = 0 =⇒ 0 < Re z
using assms complex nonpos Reals iff not less by blast

with z have ((λz . exp (Ln z / 2 )) has field derivative inverse (2 ∗ csqrt z )) (at
z )

by (force intro: derivative eq intros ∗ simp add : assms)
then show ?thesis
proof (rule has field derivative transform within)
show

∧
x . dist x z < cmod z =⇒ exp (Ln x / 2 ) = csqrt x

by (metis csqrt exp Ln dist 0 norm less irrefl)
qed (use z in auto)

qed

lemma field differentiable at csqrt :
z /∈ IR≤0 =⇒ csqrt field differentiable at z

using field differentiable def has field derivative csqrt by blast

lemma field differentiable within csqrt :
z /∈ IR≤0 =⇒ csqrt field differentiable (at z within s)

using field differentiable at csqrt field differentiable within subset by blast
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lemma continuous at csqrt :
z /∈ IR≤0 =⇒ continuous (at z ) csqrt

by (simp add : field differentiable within csqrt field differentiable imp continuous at)

corollary isCont csqrt ′ [simp]:
[[isCont f z ; f z /∈ IR≤0]] =⇒ isCont (λx . csqrt (f x )) z
by (blast intro: isCont o2 [OF continuous at csqrt ])

lemma continuous within csqrt :
z /∈ IR≤0 =⇒ continuous (at z within s) csqrt

by (simp add : field differentiable imp continuous at field differentiable within csqrt)

lemma continuous on csqrt [continuous intros]:
(
∧
z . z ∈ s =⇒ z /∈ IR≤0) =⇒ continuous on s csqrt

by (simp add : continuous at imp continuous on continuous within csqrt)

lemma holomorphic on csqrt :
(
∧
z . z ∈ s =⇒ z /∈ IR≤0) =⇒ csqrt holomorphic on s

by (simp add : field differentiable within csqrt holomorphic on def )

lemma continuous within closed nontrivial :
closed s =⇒ a /∈ s ==> continuous (at a within s) f

using open Compl
by (force simp add : continuous def eventually at topological filterlim iff open Collect neg)

lemma continuous within csqrt posreal :
continuous (at z within (IR ∩ {w . 0 ≤ Re(w)})) csqrt

proof (cases z ∈ IR≤0)
case True
have [simp]: Im z = 0 and 0 : Re z < 0 ∨ z = 0

using True cnj .code complex cnj zero iff by (auto simp: Complex eq com-
plex nonpos Reals iff ) fastforce
show ?thesis
using 0

proof
assume Re z < 0
then show ?thesis
by (auto simp: continuous within closed nontrivial [OF closed Real halfspace Re ge])

next
assume z = 0
moreover
have

∧
e. 0 < e

=⇒ ∀ x ′∈IR ∩ {w . 0 ≤ Re w}. cmod x ′ < eˆ2 −→ cmod (csqrt x ′) < e
by (auto simp: Reals def real less lsqrt)

ultimately show ?thesis
using zero less power by (fastforce simp: continuous within eps delta)

qed
qed (blast intro: continuous within csqrt)
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6.21.20 Complex arctangent

The branch cut gives standard bounds in the real case.

definition Arctan :: complex ⇒ complex where
Arctan ≡ λz . (i/2 ) ∗ Ln((1 − i∗z ) / (1 + i∗z ))

lemma Arctan def moebius: Arctan z = i/2 ∗ Ln (moebius (−i) 1 i 1 z )
by (simp add : Arctan def moebius def add ac)

lemma Ln conv Arctan:
assumes z 6= −1
shows Ln z = −2∗i ∗ Arctan (moebius 1 (− 1 ) (− i) (− i) z )

proof −
have Arctan (moebius 1 (− 1 ) (− i) (− i) z ) =

i/2 ∗ Ln (moebius (− i) 1 i 1 (moebius 1 (− 1 ) (− i) (− i) z ))
by (simp add : Arctan def moebius)

also from assms have i ∗ z 6= i ∗ (−1 ) by (subst mult left cancel) simp
hence i ∗ z − −i 6= 0 by (simp add : eq neg iff add eq 0 )
from moebius inverse ′[OF this, of 1 1 ]
have moebius (− i) 1 i 1 (moebius 1 (− 1 ) (− i) (− i) z ) = z by simp

finally show ?thesis by (simp add : field simps)
qed

lemma Arctan 0 [simp]: Arctan 0 = 0
by (simp add : Arctan def )

lemma Im complex div lemma: Im((1 − i∗z ) / (1 + i∗z )) = 0 ←→ Re z = 0
by (auto simp: Im complex div eq 0 algebra simps)

lemma Re complex div lemma: 0 < Re((1 − i∗z ) / (1 + i∗z )) ←→ norm z < 1
by (simp add : Re complex div gt 0 algebra simps cmod def power2 eq square)

lemma tan Arctan:
assumes z 2 6= −1
shows [simp]:tan(Arctan z ) = z

proof −
have 1 + i∗z 6= 0
by (metis assms complex i mult minus i squared minus unique power2 eq square

power2 minus)
moreover
have 1 − i∗z 6= 0
by (metis assms complex i mult minus i squared power2 eq square power2 minus

right minus eq)
ultimately
show ?thesis
by (simp add : Arctan def tan def sin exp eq cos exp eq exp minus csqrt exp Ln

[symmetric]
divide simps power2 eq square [symmetric])

qed
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lemma Arctan tan [simp]:
assumes |Re z | < pi/2
shows Arctan(tan z ) = z

proof −
have Ln ((1 − i ∗ tan z ) / (1 + i ∗ tan z )) = 2 ∗ z / i
proof (rule Ln unique)
have ge pi2 :

∧
n::int . |of int (2∗n + 1 ) ∗ pi/2 | ≥ pi/2

by (case tac n rule: int cases) (auto simp: abs mult)
have exp (i∗z )∗exp (i∗z ) = −1 ←→ exp (2∗i∗z ) = −1
by (metis distrib right exp add mult 2 )

also have ... ←→ exp (2∗i∗z ) = exp (i∗pi)
using cis conv exp cis pi by auto

also have ... ←→ exp (2∗i∗z − i∗pi) = 1
by (metis (no types) diff add cancel diff minus eq add exp add exp minus inverse

mult .commute)
also have ... ←→ Re(i∗2∗z − i∗pi) = 0 ∧ (∃n::int . Im(i∗2∗z − i∗pi) = of int

(2 ∗ n) ∗ pi)
by (simp add : exp eq 1 )

also have ... ←→ Im z = 0 ∧ (∃n::int . 2 ∗ Re z = of int (2∗n + 1 ) ∗ pi)
by (simp add : algebra simps)

also have ... ←→ False
using assms ge pi2
apply (auto simp: algebra simps)
by (metis abs mult pos not less of nat less 0 iff of nat numeral)

finally have exp (i∗z )∗exp (i∗z ) + 1 6= 0
by (auto simp: add .commute minus unique)

then show exp (2 ∗ z / i) = (1 − i ∗ tan z ) / (1 + i ∗ tan z )
apply (simp add : tan def sin exp eq cos exp eq exp minus divide simps)
by (simp add : algebra simps flip: power2 eq square exp double)

qed (use assms in auto)
then show ?thesis
by (auto simp: Arctan def )

qed

lemma
assumes Re z = 0 =⇒ |Im z | < 1
shows Re Arctan bounds: |Re(Arctan z )| < pi/2
and has field derivative Arctan: (Arctan has field derivative inverse(1 + z 2))

(at z )
proof −
have nz0 : 1 + i∗z 6= 0
using assms
by (metis abs one add diff cancel left ′ complex i mult minus diff 0 i squared

imaginary unit .simps
less asym neg equal iff equal)

have z 6= −i using assms
by auto

then have zz : 1 + z ∗ z 6= 0
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by (metis abs one assms i squared imaginary unit .simps less irrefl minus unique
square eq iff )
have nz1 : 1 − i∗z 6= 0
using assms by (force simp add : i times eq iff )

have nz2 : inverse (1 + i∗z ) 6= 0
using assms
by (metis Im complex div lemma Re complex div lemma cmod eq Im divide complex def

less irrefl mult zero right zero complex .simps(1 ) zero complex .simps(2 ))
have nzi : ((1 − i∗z ) ∗ inverse (1 + i∗z )) 6= 0
using nz1 nz2 by auto

have Im ((1 − i∗z ) / (1 + i∗z )) = 0 =⇒ 0 < Re ((1 − i∗z ) / (1 + i∗z ))
apply (simp add : divide complex def )
apply (simp add : divide simps split : if split asm)
using assms
apply (auto simp: algebra simps abs square less 1 [unfolded power2 eq square])
done

then have ∗: ((1 − i∗z ) / (1 + i∗z )) /∈ IR≤0

by (auto simp add : complex nonpos Reals iff )
show |Re(Arctan z )| < pi/2
unfolding Arctan def divide complex def
using mpi less Im Ln [OF nzi ]
by (auto simp: abs if intro!: Im Ln less pi ∗ [unfolded divide complex def ])

show (Arctan has field derivative inverse(1 + z 2)) (at z )
unfolding Arctan def scaleR conv of real
apply (intro derivative eq intros | simp add : nz0 ∗)+
using nz1 zz
apply (simp add : field split simps power2 eq square)
apply algebra
done

qed

lemma field differentiable at Arctan: (Re z = 0 =⇒ |Im z | < 1 ) =⇒ Arctan
field differentiable at z
using has field derivative Arctan
by (auto simp: field differentiable def )

lemma field differentiable within Arctan:
(Re z = 0 =⇒ |Im z | < 1 ) =⇒ Arctan field differentiable (at z within s)

using field differentiable at Arctan field differentiable at within by blast

declare has field derivative Arctan [derivative intros]
declare has field derivative Arctan [THEN DERIV chain2 , derivative intros]

lemma continuous at Arctan:
(Re z = 0 =⇒ |Im z | < 1 ) =⇒ continuous (at z ) Arctan

by (simp add : field differentiable imp continuous at field differentiable within Arctan)

lemma continuous within Arctan:
(Re z = 0 =⇒ |Im z | < 1 ) =⇒ continuous (at z within s) Arctan

Complex{_}{\kern 0pt}Transcendental.html


2338

using continuous at Arctan continuous at imp continuous within by blast

lemma continuous on Arctan [continuous intros]:
(
∧
z . z ∈ s =⇒ Re z = 0 =⇒ |Im z | < 1 ) =⇒ continuous on s Arctan

by (auto simp: continuous at imp continuous on continuous within Arctan)

lemma holomorphic on Arctan:
(
∧
z . z ∈ s =⇒ Re z = 0 =⇒ |Im z | < 1 ) =⇒ Arctan holomorphic on s

by (simp add : field differentiable within Arctan holomorphic on def )

theorem Arctan series:
assumes z : norm (z :: complex ) < 1
defines g ≡ λn. if odd n then −i∗iˆn / n else 0
defines h ≡ λz n. (−1 )ˆn / of nat (2∗n+1 ) ∗ (z ::complex )ˆ(2∗n+1 )
shows (λn. g n ∗ zˆn) sums Arctan z
and h z sums Arctan z

proof −
define G where [abs def ]: G z = (

∑
n. g n ∗ zˆn) for z

have summable: summable (λn. g n ∗ uˆn) if norm u < 1 for u
proof (cases u = 0 )
assume u: u 6= 0
have (λn. ereal (norm (h u n) / norm (h u (Suc n)))) = (λn. ereal (inverse

(norm u)ˆ2 ) ∗
ereal ((2 + inverse (real (Suc n))) / (2 − inverse (real (Suc n)))))

proof
fix n
have ereal (norm (h u n) / norm (h u (Suc n))) =

ereal (inverse (norm u)ˆ2 ) ∗ ereal (((2∗Suc n+1 ) / (Suc n)) /
((2∗Suc n−1 ) / (Suc n)))

by (simp add : h def norm mult norm power norm divide field split simps
power2 eq square eval nat numeral del : of nat add of nat Suc)

also have of nat (2∗Suc n+1 ) / of nat (Suc n) = (2 ::real) + inverse (real
(Suc n))

by (auto simp: field split simps simp del : of nat Suc) simp all?
also have of nat (2∗Suc n−1 ) / of nat (Suc n) = (2 ::real) − inverse (real

(Suc n))
by (auto simp: field split simps simp del : of nat Suc) simp all?
finally show ereal (norm (h u n) / norm (h u (Suc n))) = ereal (inverse

(norm u)ˆ2 ) ∗
ereal ((2 + inverse (real (Suc n))) / (2 − inverse (real (Suc n)))) .

qed
also have . . . −−−−→ ereal (inverse (norm u)ˆ2 ) ∗ ereal ((2 + 0 ) / (2 − 0 ))
by (intro tendsto intros LIMSEQ inverse real of nat) simp all

finally have liminf (λn. ereal (cmod (h u n) / cmod (h u (Suc n)))) = inverse
(norm u)ˆ2

by (intro lim imp Liminf ) simp all
moreover from power strict mono[OF that , of 2 ] u have inverse (norm u)ˆ2

> 1
by (simp add : field split simps)
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ultimately have A: liminf (λn. ereal (cmod (h u n) / cmod (h u (Suc n))))
> 1 by simp

from u have summable (h u)
by (intro summable norm cancel [OF ratio test convergence[OF A]])

(auto simp: h def norm divide norm mult norm power simp del : of nat Suc
intro!: mult pos pos divide pos pos always eventually)

thus summable (λn. g n ∗ uˆn)
by (subst summable mono reindex [of λn. 2∗n+1 , symmetric])

(auto simp: power mult strict mono def g def h def elim!: oddE )
qed (simp add : h def )

have ∃ c. ∀ u∈ball 0 1 . Arctan u − G u = c
proof (rule has field derivative zero constant)
fix u :: complex assume u ∈ ball 0 1
hence u: norm u < 1 by (simp)
define K where K = (norm u + 1 ) / 2
from u and abs Im le cmod [of u] have Im u: |Im u| < 1 by linarith
from u have K : 0 ≤ K norm u < K K < 1 by (simp all add : K def )
hence (G has field derivative (

∑
n. diffs g n ∗ u ˆ n)) (at u) unfolding G def

by (intro termdiffs strong [of of real K ] summable) simp all
also have (λn. diffs g n ∗ uˆn) = (λn. if even n then (i∗u)ˆn else 0 )
by (intro ext) (simp all del : of nat Suc add : g def diffs def power mult distrib)
also have suminf . . . = (

∑
n. (−(uˆ2 ))ˆn)

by (subst suminf mono reindex [of λn. 2∗n, symmetric])
(auto elim!: evenE simp: strict mono def power mult power mult distrib)

also from u have norm uˆ2 < 1ˆ2 by (intro power strict mono) simp all
hence (

∑
n. (−(uˆ2 ))ˆn) = inverse (1 + uˆ2 )

by (subst suminf geometric) (simp all add : norm power inverse eq divide)
finally have (G has field derivative inverse (1 + u2)) (at u) .
from DERIV diff [OF has field derivative Arctan this] Im u u
show ((λu. Arctan u − G u) has field derivative 0 ) (at u within ball 0 1 )
by (simp all add : at within open[OF open ball ])

qed simp all
then obtain c where c:

∧
u. norm u < 1 =⇒ Arctan u − G u = c by auto

from this[of 0 ] have c = 0 by (simp add : G def g def )
with c z have Arctan z = G z by simp
with summable[OF z ] show (λn. g n ∗ zˆn) sums Arctan z unfolding G def

by (simp add : sums iff )
thus h z sums Arctan z by (subst (asm) sums mono reindex [of λn. 2∗n+1 ,

symmetric])
(auto elim!: oddE simp: strict mono def power mult g def

h def )
qed

A quickly-converging series for the logarithm, based on the arctangent.

theorem ln series quadratic:
assumes x : x > (0 ::real)
shows (λn. (2∗((x − 1 ) / (x + 1 )) ˆ (2∗n+1 ) / of nat (2∗n+1 ))) sums ln x

proof −
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define y :: complex where y = of real ((x−1 )/(x+1 ))
from x have x ′: complex of real x 6= of real (−1 ) by (subst of real eq iff ) auto
from x have |x − 1 | < |x + 1 | by linarith
hence norm (complex of real (x − 1 ) / complex of real (x + 1 )) < 1
by (simp add : norm divide del : of real add of real diff )

hence norm (i ∗ y) < 1 unfolding y def by (subst norm mult) simp
hence (λn. (−2∗i) ∗ ((−1 )ˆn / of nat (2∗n+1 ) ∗ (i∗y)ˆ(2∗n+1 ))) sums ((−2∗i)
∗ Arctan (i∗y))

by (intro Arctan series sums mult) simp all
also have (λn. (−2∗i) ∗ ((−1 )ˆn / of nat (2∗n+1 ) ∗ (i∗y)ˆ(2∗n+1 ))) =

(λn. (−2∗i) ∗ ((−1 )ˆn ∗ (i∗y∗(−y2)ˆn)/of nat (2∗n+1 )))
by (intro ext) (simp all add : power mult power mult distrib)

also have . . . = (λn. 2∗y∗ ((−1 ) ∗ (−y2))ˆn/of nat (2∗n+1 ))
by (intro ext , subst power mult distrib) (simp add : algebra simps power mult)

also have . . . = (λn. 2∗yˆ(2∗n+1 ) / of nat (2∗n+1 ))
by (subst power add , subst power mult) (simp add : mult ac)

also have . . . = (λn. of real (2∗((x−1 )/(x+1 ))ˆ(2∗n+1 ) / of nat (2∗n+1 )))
by (intro ext) (simp add : y def )

also have i ∗ y = (of real x − 1 ) / (−i ∗ (of real x + 1 ))
by (subst divide divide eq left [symmetric]) (simp add : y def )

also have . . . = moebius 1 (−1 ) (−i) (−i) (of real x ) by (simp add : moebius def
algebra simps)
also from x ′ have −2∗i∗Arctan . . . = Ln (of real x ) by (intro Ln conv Arctan

[symmetric]) simp all
also from x have . . . = ln x by (rule Ln of real)
finally show ?thesis by (subst (asm) sums of real iff )

qed

6.21.21 Real arctangent

lemma Im Arctan of real [simp]: Im (Arctan (of real x )) = 0
proof −
have ne: 1 + x 2 6= 0
by (metis power one sum power2 eq zero iff zero neq one)

have ne1 : 1 + i ∗ complex of real x 6= 0
using Complex eq complex eq cancel iff2 by fastforce

have Re (Ln ((1 − i ∗ x ) ∗ inverse (1 + i ∗ x ))) = 0
apply (rule norm exp imaginary)
using ne
apply (simp add : ne1 cmod def )
apply (auto simp: field split simps)
apply algebra
done

then show ?thesis
unfolding Arctan def divide complex def by (simp add : complex eq iff )

qed

lemma arctan eq Re Arctan: arctan x = Re (Arctan (of real x ))
proof (rule arctan unique)
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have (1 − i ∗ x ) / (1 + i ∗ x ) /∈ IR≤0

by (auto simp: Im complex div lemma complex nonpos Reals iff )
then show − (pi / 2 ) < Re (Arctan (complex of real x ))
by (simp add : Arctan def Im Ln less pi)

next
have ∗: (1 − i∗x ) / (1 + i∗x ) 6= 0
by (simp add : field split simps) ( simp add : complex eq iff )

show Re (Arctan (complex of real x )) < pi / 2
using mpi less Im Ln [OF ∗]
by (simp add : Arctan def )

next
have tan (Re (Arctan (of real x ))) = Re (tan (Arctan (of real x )))
by (auto simp: tan def Complex .Re divide Re sin Re cos Im sin Im cos field simps

power2 eq square)
also have ... = x
proof −
have (complex of real x )2 6= − 1
by (metis diff 0 right minus diff eq mult zero left not le of real 1 of real eq iff

of real minus of real power power2 eq square real minus mult self le zero less one)
then show ?thesis
by simp

qed
finally show tan (Re (Arctan (complex of real x ))) = x .

qed

lemma Arctan of real : Arctan (of real x ) = of real (arctan x )
unfolding arctan eq Re Arctan divide complex def
by (simp add : complex eq iff )

lemma Arctan in Reals [simp]: z ∈ IR =⇒ Arctan z ∈ IR
by (metis Reals cases Reals of real Arctan of real)

declare arctan one [simp]

lemma arctan less pi4 pos: x < 1 =⇒ arctan x < pi/4
by (metis arctan less iff arctan one)

lemma arctan less pi4 neg : −1 < x =⇒ −(pi/4 ) < arctan x
by (metis arctan less iff arctan minus arctan one)

lemma arctan less pi4 : |x | < 1 =⇒ |arctan x | < pi/4
by (metis abs less iff arctan less pi4 pos arctan minus)

lemma arctan le pi4 : |x | ≤ 1 =⇒ |arctan x | ≤ pi/4
by (metis abs le iff arctan le iff arctan minus arctan one)

lemma abs arctan: |arctan x | = arctan |x |
by (simp add : abs if arctan minus)
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lemma arctan add raw :
assumes |arctan x + arctan y | < pi/2
shows arctan x + arctan y = arctan((x + y) / (1 − x ∗ y))

proof (rule arctan unique [symmetric])
show 12 : − (pi / 2 ) < arctan x + arctan y arctan x + arctan y < pi / 2
using assms by linarith+

show tan (arctan x + arctan y) = (x + y) / (1 − x ∗ y)
using cos gt zero pi [OF 12 ]
by (simp add : arctan tan add)

qed

lemma arctan inverse:
assumes 0 < x
shows arctan(inverse x ) = pi/2 − arctan x

proof −
have arctan(inverse x ) = arctan(inverse(tan(arctan x )))
by (simp add : arctan)

also have ... = arctan (tan (pi / 2 − arctan x ))
by (simp add : tan cot)

also have ... = pi/2 − arctan x
proof −
have 0 < pi − arctan x
using arctan ubound [of x ] pi gt zero by linarith
with assms show ?thesis
by (simp add : Transcendental .arctan tan)

qed
finally show ?thesis .

qed

lemma arctan add small :
assumes |x ∗ y | < 1
shows (arctan x + arctan y = arctan((x + y) / (1 − x ∗ y)))

proof (cases x = 0 ∨ y = 0 )
case False
with assms have |x | < inverse |y |
by (simp add : field split simps abs mult)

with False have |arctan x | < pi / 2 − |arctan y | using assms
by (auto simp add : abs arctan arctan inverse [symmetric] arctan less iff )

then show ?thesis
by (intro arctan add raw) linarith

qed auto

lemma abs arctan le:
fixes x ::real shows |arctan x | ≤ |x |

proof −
have 1 :

∧
x . x ∈ IR =⇒ cmod (inverse (1 + x 2)) ≤ 1

by (simp add : norm divide divide simps in Reals norm complex is Real iff power2 eq square)
have cmod (Arctan w − Arctan z ) ≤ 1 ∗ cmod (w−z ) if w ∈ IR z ∈ IR for w z
apply (rule field differentiable bound [OF convex Reals, of Arctan 1 ])
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apply (rule has field derivative at within [OF has field derivative Arctan])
using 1 that by (auto simp: Reals def )

then have cmod (Arctan (of real x ) − Arctan 0 ) ≤ 1 ∗ cmod (of real x − 0 )
using Reals 0 Reals of real by blast

then show ?thesis
by (simp add : Arctan of real)

qed

lemma arctan le self : 0 ≤ x =⇒ arctan x ≤ x
by (metis abs arctan le abs of nonneg zero le arctan iff )

lemma abs tan ge: |x | < pi/2 =⇒ |x | ≤ |tan x |
by (metis abs arctan le abs less iff arctan tan minus less iff )

lemma arctan bounds:
assumes 0 ≤ x x < 1
shows arctan lower bound :
(
∑

k<2 ∗ n. (− 1 ) ˆ k ∗ (1 / real (k ∗ 2 + 1 ) ∗ x ˆ (k ∗ 2 + 1 ))) ≤ arctan x
(is (

∑
k< . (− 1 )ˆ k ∗ ?a k) ≤ )

and arctan upper bound :
arctan x ≤ (

∑
k<2 ∗ n + 1 . (− 1 ) ˆ k ∗ (1 / real (k ∗ 2 + 1 ) ∗ x ˆ (k ∗ 2

+ 1 )))
proof −
have tendsto zero: ?a −−−−→ 0
proof (rule tendsto eq rhs)
show (λk . 1 / real (k ∗ 2 + 1 ) ∗ x ˆ (k ∗ 2 + 1 )) −−−−→ 0 ∗ 0
using assms
by (intro tendsto mult real tendsto divide at top)
(auto simp: filterlim real sequentially filterlim sequentially iff filterlim real
intro!: real tendsto divide at top tendsto power zero filterlim real sequentially
tendsto eq intros filterlim at top mult tendsto pos filterlim tendsto add at top)

qed simp
have nonneg : 0 ≤ ?a n for n
by (force intro!: divide nonneg nonneg mult nonneg nonneg zero le power assms)
have le: ?a (Suc n) ≤ ?a n for n
by (rule mult mono[OF power decreasing ]) (auto simp: field split simps assms

less imp le)
from summable Leibniz ′(4 )[of ?a, OF tendsto zero nonneg le, of n]
summable Leibniz ′(2 )[of ?a, OF tendsto zero nonneg le, of n]
assms

show (
∑

k<2∗n. (− 1 )ˆ k ∗ ?a k) ≤ arctan x arctan x ≤ (
∑

k<2 ∗ n + 1 . (−
1 )ˆ k ∗ ?a k)

by (auto simp: arctan series)
qed

6.21.22 Bounds on pi using real arctangent

lemma pi machin: pi = 16 ∗ arctan (1 / 5 ) − 4 ∗ arctan (1 / 239 )
using machin by simp
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lemma pi approx : 3 .141592653588 ≤ pi pi ≤ 3 .1415926535899
unfolding pi machin
using arctan bounds[of 1/5 4 ]

arctan bounds[of 1/239 4 ]
by (simp all add : eval nat numeral)

lemma pi gt3 : pi > 3
using pi approx by simp

6.21.23 Inverse Sine

definition Arcsin :: complex ⇒ complex where
Arcsin ≡ λz . −i ∗ Ln(i ∗ z + csqrt(1 − z 2))

lemma Arcsin body lemma: i ∗ z + csqrt(1 − z 2) 6= 0
using power2 csqrt [of 1 − z 2]
by (metis add .inverse inverse complex i mult minus diff 0 diff add cancel diff minus eq add

mult .assoc mult .commute numeral One power2 eq square zero neq numeral)

lemma Arcsin range lemma: |Re z | < 1 =⇒ 0 < Re(i ∗ z + csqrt(1 − z 2))
using Complex .cmod power2 [of z , symmetric]
by (simp add : real less rsqrt algebra simps Re power2 cmod square less 1 plus)

lemma Re Arcsin: Re(Arcsin z ) = Im (Ln (i ∗ z + csqrt(1 − z 2)))
by (simp add : Arcsin def )

lemma Im Arcsin: Im(Arcsin z ) = − ln (cmod (i ∗ z + csqrt (1 − z 2)))
by (simp add : Arcsin def Arcsin body lemma)

lemma one minus z2 notin nonpos Reals:
assumes Im z = 0 =⇒ |Re z | < 1
shows 1 − z 2 /∈ IR≤0

proof (cases Im z = 0 )
case True
with assms show ?thesis
by (simp add : complex nonpos Reals iff flip: abs square less 1 )

next
case False
have ¬ (Im z )2 ≤ − 1
using False power2 less eq zero iff by fastforce

with False show ?thesis
by (auto simp add : complex nonpos Reals iff Re power2 Im power2 )

qed

lemma isCont Arcsin lemma:
assumes le0 : Re (i ∗ z + csqrt (1 − z 2)) ≤ 0 and (Im z = 0 =⇒ |Re z | < 1 )
shows False

proof (cases Im z = 0 )
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case True
then show ?thesis
using assms by (fastforce simp: cmod def abs square less 1 [symmetric])

next
case False
have leim: (cmod (1 − z 2) + (1 − Re (z 2))) / 2 ≤ (Im z )2

using le0 sqrt le D by fastforce
have neq : (cmod z )2 6= 1 + cmod (1 − z 2)
proof (clarsimp simp add : cmod def )
assume (Re z )2 + (Im z )2 = 1 + sqrt ((1 − Re (z 2))2 + (Im (z 2))2)
then have ((Re z )2 + (Im z )2 − 1 )2 = ((1 − Re (z 2))2 + (Im (z 2))2)
by simp

then show False using False
by (simp add : power2 eq square algebra simps)

qed
moreover have 2 : (Im z )2 = (1 + ((Im z )2 + cmod (1 − z 2)) − (Re z )2) / 2
using leim cmod power2 [of z ] norm triangle ineq2 [of zˆ2 1 ]
by (simp add : norm power Re power2 norm minus commute [of 1 ])

ultimately show False
by (simp add : Re power2 Im power2 cmod power2 )

qed

lemma isCont Arcsin:
assumes (Im z = 0 =⇒ |Re z | < 1 )
shows isCont Arcsin z

proof −
have 1 : i ∗ z + csqrt (1 − z 2) /∈ IR≤0

by (metis isCont Arcsin lemma assms complex nonpos Reals iff )
have 2 : 1 − z 2 /∈ IR≤0

by (simp add : one minus z2 notin nonpos Reals assms)
show ?thesis
using assms unfolding Arcsin def by (intro isCont Ln ′ isCont csqrt ′ contin-

uous intros 1 2 )
qed

lemma isCont Arcsin ′ [simp]:
shows isCont f z =⇒ (Im (f z ) = 0 =⇒ |Re (f z )| < 1 ) =⇒ isCont (λx . Arcsin

(f x )) z
by (blast intro: isCont o2 [OF isCont Arcsin])

lemma sin Arcsin [simp]: sin(Arcsin z ) = z
proof −
have i∗z∗2 + csqrt (1 − z 2)∗2 = 0 ←→ (i∗z )∗2 + csqrt (1 − z 2)∗2 = 0
by (simp add : algebra simps) — Cancelling a factor of 2

moreover have ... ←→ (i∗z ) + csqrt (1 − z 2) = 0
by (metis Arcsin body lemma distrib right no zero divisors zero neq numeral)

ultimately show ?thesis
apply (simp add : sin exp eq Arcsin def Arcsin body lemma exp minus divide simps)
apply (simp add : algebra simps)

Complex{_}{\kern 0pt}Transcendental.html


2346

apply (simp add : power2 eq square [symmetric] algebra simps)
done

qed

lemma Re eq pihalf lemma:
|Re z | = pi/2 =⇒ Im z = 0 =⇒
Re ((exp (i∗z ) + inverse (exp (i∗z ))) / 2 ) = 0 ∧ 0 ≤ Im ((exp (i∗z ) + inverse

(exp (i∗z ))) / 2 )
apply (simp add : cos i times [symmetric] Re cos Im cos abs if del : eq divide eq numeral1 )
by (metis cos minus cos pi half )

lemma Re less pihalf lemma:
assumes |Re z | < pi / 2
shows 0 < Re ((exp (i∗z ) + inverse (exp (i∗z ))) / 2 )

proof −
have 0 < cos (Re z ) using assms
using cos gt zero pi by auto

then show ?thesis
by (simp add : cos i times [symmetric] Re cos Im cos add pos pos)

qed

lemma Arcsin sin:
assumes |Re z | < pi/2 ∨ (|Re z | = pi/2 ∧ Im z = 0 )
shows Arcsin(sin z ) = z

proof −
have Arcsin(sin z ) = − (i ∗ Ln (csqrt (1 − (i ∗ (exp (i∗z ) − inverse (exp

(i∗z ))))2 / 4 ) − (inverse (exp (i∗z )) − exp (i∗z )) / 2 ))
by (simp add : sin exp eq Arcsin def exp minus power divide)

also have ... = − (i ∗ Ln (csqrt (((exp (i∗z ) + inverse (exp (i∗z )))/2 )2) −
(inverse (exp (i∗z )) − exp (i∗z )) / 2 ))

by (simp add : field simps power2 eq square)
also have ... = − (i ∗ Ln (((exp (i∗z ) + inverse (exp (i∗z )))/2 ) − (inverse (exp

(i∗z )) − exp (i∗z )) / 2 ))
apply (subst csqrt square)
using assms Re eq pihalf lemma Re less pihalf lemma by auto

also have ... = − (i ∗ Ln (exp (i∗z )))
by (simp add : field simps power2 eq square)

also have ... = z
using assms by (auto simp: abs if simp del : eq divide eq numeral1 split : if split asm)
finally show ?thesis .

qed

lemma Arcsin unique:
[[sin z = w ; |Re z | < pi/2 ∨ (|Re z | = pi/2 ∧ Im z = 0 )]] =⇒ Arcsin w = z

by (metis Arcsin sin)

lemma Arcsin 0 [simp]: Arcsin 0 = 0
by (metis Arcsin sin norm zero pi half gt zero real norm def sin zero zero complex .simps(1 ))
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lemma Arcsin 1 [simp]: Arcsin 1 = pi/2
by (metis Arcsin sin Im complex of real Re complex of real numeral One of real numeral

pi half ge zero real sqrt abs real sqrt pow2 real sqrt power sin of real sin pi half )

lemma Arcsin minus 1 [simp]: Arcsin(−1 ) = − (pi/2 )
by (metis Arcsin 1 Arcsin sin Im complex of real Re complex of real abs of nonneg

of real minus pi half ge zero power2 minus real sqrt abs sin Arcsin sin minus)

lemma has field derivative Arcsin:
assumes Im z = 0 =⇒ |Re z | < 1
shows (Arcsin has field derivative inverse(cos(Arcsin z ))) (at z )

proof −
have (sin (Arcsin z ))2 6= 1
using assms one minus z2 notin nonpos Reals by force

then have cos (Arcsin z ) 6= 0
by (metis diff 0 right power zero numeral sin squared eq)

then show ?thesis
by (rule has field derivative inverse basic [OF DERIV sin open ball [of z

1 ]]) (auto intro: isCont Arcsin assms)
qed

declare has field derivative Arcsin [derivative intros]
declare has field derivative Arcsin [THEN DERIV chain2 , derivative intros]

lemma field differentiable at Arcsin:
(Im z = 0 =⇒ |Re z | < 1 ) =⇒ Arcsin field differentiable at z

using field differentiable def has field derivative Arcsin by blast

lemma field differentiable within Arcsin:
(Im z = 0 =⇒ |Re z | < 1 ) =⇒ Arcsin field differentiable (at z within s)

using field differentiable at Arcsin field differentiable within subset by blast

lemma continuous within Arcsin:
(Im z = 0 =⇒ |Re z | < 1 ) =⇒ continuous (at z within s) Arcsin

using continuous at imp continuous within isCont Arcsin by blast

lemma continuous on Arcsin [continuous intros]:
(
∧
z . z ∈ s =⇒ Im z = 0 =⇒ |Re z | < 1 ) =⇒ continuous on s Arcsin

by (simp add : continuous at imp continuous on)

lemma holomorphic on Arcsin: (
∧
z . z ∈ s =⇒ Im z = 0 =⇒ |Re z | < 1 ) =⇒

Arcsin holomorphic on s
by (simp add : field differentiable within Arcsin holomorphic on def )

6.21.24 Inverse Cosine

definition Arccos :: complex ⇒ complex where
Arccos ≡ λz . −i ∗ Ln(z + i ∗ csqrt(1 − z 2))
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lemma Arccos range lemma: |Re z | < 1 =⇒ 0 < Im(z + i ∗ csqrt(1 − z 2))
using Arcsin range lemma [of −z ] by simp

lemma Arccos body lemma: z + i ∗ csqrt(1 − z 2) 6= 0
using Arcsin body lemma [of z ]
by (metis Arcsin body lemma complex i mult minus diff minus eq add power2 minus

right minus eq)

lemma Re Arccos: Re(Arccos z ) = Im (Ln (z + i ∗ csqrt(1 − z 2)))
by (simp add : Arccos def )

lemma Im Arccos: Im(Arccos z ) = − ln (cmod (z + i ∗ csqrt (1 − z 2)))
by (simp add : Arccos def Arccos body lemma)

A very tricky argument to find!

lemma isCont Arccos lemma:
assumes eq0 : Im (z + i ∗ csqrt (1 − z 2)) = 0 and (Im z = 0 =⇒ |Re z | < 1 )
shows False

proof (cases Im z = 0 )
case True
then show ?thesis
using assms by (fastforce simp add : cmod def abs square less 1 [symmetric])

next
case False
have Imz : Im z = − sqrt ((1 + ((Im z )2 + cmod (1 − z 2)) − (Re z )2) / 2 )
using eq0 abs Re le cmod [of 1−z 2]
by (simp add : Re power2 algebra simps)

have (cmod z )2 − 1 6= cmod (1 − z 2)
proof (clarsimp simp add : cmod def )
assume (Re z )2 + (Im z )2 − 1 = sqrt ((1 − Re (z 2))2 + (Im (z 2))2)
then have ((Re z )2 + (Im z )2 − 1 )2 = ((1 − Re (z 2))2 + (Im (z 2))2)
by simp

then show False using False
by (simp add : power2 eq square algebra simps)

qed
moreover have (Im z )2 = (1 + ((Im z )2 + cmod (1 − z 2)) − (Re z )2) / 2
using abs Re le cmod [of 1−z 2] by (subst Imz ) (simp add : Re power2 )

ultimately show False
by (simp add : cmod power2 )

qed

lemma isCont Arccos:
assumes (Im z = 0 =⇒ |Re z | < 1 )
shows isCont Arccos z

proof −
have z + i ∗ csqrt (1 − z 2) /∈ IR≤0

by (metis complex nonpos Reals iff isCont Arccos lemma assms)
with assms show ?thesis
unfolding Arccos def
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by (simp all add : one minus z2 notin nonpos Reals assms)
qed

lemma isCont Arccos ′ [simp]:
isCont f z =⇒ (Im (f z ) = 0 =⇒ |Re (f z )| < 1 ) =⇒ isCont (λx . Arccos (f x )) z
by (blast intro: isCont o2 [OF isCont Arccos])

lemma cos Arccos [simp]: cos(Arccos z ) = z
proof −
have z∗2 + i ∗ (2 ∗ csqrt (1 − z 2)) = 0 ←→ z∗2 + i ∗ csqrt (1 − z 2)∗2 = 0
by (simp add : algebra simps) — Cancelling a factor of 2

moreover have ... ←→ z + i ∗ csqrt (1 − z 2) = 0
by (metis distrib right mult eq 0 iff zero neq numeral)

ultimately show ?thesis
by (simp add : cos exp eq Arccos def Arccos body lemma exp minus field simps

flip: power2 eq square)
qed

lemma Arccos cos:
assumes 0 < Re z ∧ Re z < pi ∨

Re z = 0 ∧ 0 ≤ Im z ∨
Re z = pi ∧ Im z ≤ 0

shows Arccos(cos z ) = z
proof −
have ∗: ((i − (exp (i ∗ z ))2 ∗ i) / (2 ∗ exp (i ∗ z ))) = sin z
by (simp add : sin exp eq exp minus field simps power2 eq square)

have 1 − (exp (i ∗ z ) + inverse (exp (i ∗ z )))2 / 4 = ((i − (exp (i ∗ z ))2 ∗ i) /
(2 ∗ exp (i ∗ z )))2

by (simp add : field simps power2 eq square)
then have Arccos(cos z ) = − (i ∗ Ln ((exp (i ∗ z ) + inverse (exp (i ∗ z ))) / 2

+
i ∗ csqrt (((i − (exp (i ∗ z ))2 ∗ i) / (2 ∗ exp (i ∗ z )))2)))

by (simp add : cos exp eq Arccos def exp minus power divide)
also have ... = − (i ∗ Ln ((exp (i ∗ z ) + inverse (exp (i ∗ z ))) / 2 +

i ∗ ((i − (exp (i ∗ z ))2 ∗ i) / (2 ∗ exp (i ∗ z )))))
apply (subst csqrt square)
using assms Re sin pos [of z ] Im sin nonneg [of z ] Im sin nonneg2 [of z ]
by (auto simp: ∗ Re sin Im sin)

also have ... = − (i ∗ Ln (exp (i∗z )))
by (simp add : field simps power2 eq square)

also have ... = z
using assms
by (subst Complex Transcendental .Ln exp, auto)

finally show ?thesis .
qed

lemma Arccos unique:
[[cos z = w ;
0 < Re z ∧ Re z < pi ∨
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Re z = 0 ∧ 0 ≤ Im z ∨
Re z = pi ∧ Im z ≤ 0 ]] =⇒ Arccos w = z

using Arccos cos by blast

lemma Arccos 0 [simp]: Arccos 0 = pi/2
by (rule Arccos unique) auto

lemma Arccos 1 [simp]: Arccos 1 = 0
by (rule Arccos unique) auto

lemma Arccos minus1 : Arccos(−1 ) = pi
by (rule Arccos unique) auto

lemma has field derivative Arccos:
assumes (Im z = 0 =⇒ |Re z | < 1 )
shows (Arccos has field derivative − inverse(sin(Arccos z ))) (at z )

proof −
have x 2 6= −1 for x ::real
by (sos ((R<1 + (([∼1 ] ∗ A=0 ) + (R<1 ∗ (R<1 ∗ [x ]ˆ2 ))))))

with assms have (cos (Arccos z ))2 6= 1
by (auto simp: complex eq iff Re power2 Im power2 abs square eq 1 )

then have − sin (Arccos z ) 6= 0
by (metis cos squared eq diff 0 right mult zero left neg 0 equal iff equal power2 eq square)
then have (Arccos has field derivative inverse(− sin(Arccos z ))) (at z )

by (rule has field derivative inverse basic [OF DERIV cos open ball [of z
1 ]])

(auto intro: isCont Arccos assms)
then show ?thesis
by simp

qed

declare has field derivative Arcsin [derivative intros]
declare has field derivative Arcsin [THEN DERIV chain2 , derivative intros]

lemma field differentiable at Arccos:
(Im z = 0 =⇒ |Re z | < 1 ) =⇒ Arccos field differentiable at z

using field differentiable def has field derivative Arccos by blast

lemma field differentiable within Arccos:
(Im z = 0 =⇒ |Re z | < 1 ) =⇒ Arccos field differentiable (at z within s)

using field differentiable at Arccos field differentiable within subset by blast

lemma continuous within Arccos:
(Im z = 0 =⇒ |Re z | < 1 ) =⇒ continuous (at z within s) Arccos

using continuous at imp continuous within isCont Arccos by blast

lemma continuous on Arccos [continuous intros]:
(
∧
z . z ∈ s =⇒ Im z = 0 =⇒ |Re z | < 1 ) =⇒ continuous on s Arccos

by (simp add : continuous at imp continuous on)
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lemma holomorphic on Arccos: (
∧
z . z ∈ s =⇒ Im z = 0 =⇒ |Re z | < 1 ) =⇒

Arccos holomorphic on s
by (simp add : field differentiable within Arccos holomorphic on def )

6.21.25 Upper and Lower Bounds for Inverse Sine and Co-
sine

lemma Arcsin bounds: |Re z | < 1 =⇒ |Re(Arcsin z )| < pi/2
unfolding Re Arcsin
by (blast intro: Re Ln pos lt imp Arcsin range lemma)

lemma Arccos bounds: |Re z | < 1 =⇒ 0 < Re(Arccos z ) ∧ Re(Arccos z ) < pi
unfolding Re Arccos
by (blast intro!: Im Ln pos lt imp Arccos range lemma)

lemma Re Arccos bounds: −pi < Re(Arccos z ) ∧ Re(Arccos z ) ≤ pi
unfolding Re Arccos
by (blast intro!: mpi less Im Ln Im Ln le pi Arccos body lemma)

lemma Re Arccos bound : |Re(Arccos z )| ≤ pi
by (meson Re Arccos bounds abs le iff less eq real def minus less iff )

lemma Im Arccos bound : |Im (Arccos w)| ≤ cmod w
proof −
have (Im (Arccos w))2 ≤ (cmod (cos (Arccos w)))2 − (cos (Re (Arccos w)))2

using norm cos squared [of Arccos w ] real le abs sinh [of Im (Arccos w)]
by (simp only : abs le square iff ) (simp add : field split simps)

also have ... ≤ (cmod w)2

by (auto simp: cmod power2 )
finally show ?thesis
using abs le square iff by force

qed

lemma Re Arcsin bounds: −pi < Re(Arcsin z ) & Re(Arcsin z ) ≤ pi
unfolding Re Arcsin
by (blast intro!: mpi less Im Ln Im Ln le pi Arcsin body lemma)

lemma Re Arcsin bound : |Re(Arcsin z )| ≤ pi
by (meson Re Arcsin bounds abs le iff less eq real def minus less iff )

lemma norm Arccos bounded :
fixes w :: complex
shows norm (Arccos w) ≤ pi + norm w

proof −
have Re: (Re (Arccos w))2 ≤ pi2 (Im (Arccos w))2 ≤ (cmod w)2

using Re Arccos bound [of w ] Im Arccos bound [of w ] abs le square iff by
force+
have Arccos w · Arccos w ≤ pi2 + (cmod w)2
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using Re by (simp add : dot square norm cmod power2 [of Arccos w ])
then have cmod (Arccos w) ≤ pi + cmod (cos (Arccos w))
apply (simp add : norm le square)
by (metis dot square norm norm ge zero norm le square pi ge zero triangle lemma)
then show cmod (Arccos w) ≤ pi + cmod w
by auto

qed

6.21.26 Interrelations between Arcsin and Arccos

lemma cos Arcsin nonzero:
assumes z 2 6= 1 shows cos(Arcsin z ) 6= 0

proof −
have eq : (i ∗ z ∗ (csqrt (1 − z 2)))2 = z 2 ∗ (z 2 − 1 )
by (simp add : algebra simps)

have i ∗ z ∗ (csqrt (1 − z 2)) 6= z 2 − 1
proof
assume i ∗ z ∗ (csqrt (1 − z 2)) = z 2 − 1
then have (i ∗ z ∗ (csqrt (1 − z 2)))2 = (z 2 − 1 )2

by simp
then have z 2 ∗ (z 2 − 1 ) = (z 2 − 1 )∗(z 2 − 1 )
using eq power2 eq square by auto

then show False
using assms by simp

qed
then have 1 + i ∗ z ∗ (csqrt (1 − z ∗ z )) 6= z 2

by (metis add minus cancel power2 eq square uminus add conv diff )
then have 2∗(1 + i ∗ z ∗ (csqrt (1 − z ∗ z ))) 6= 2∗z 2
by (metis mult cancel left zero neq numeral)

then have (i ∗ z + csqrt (1 − z 2))2 6= −1
using assms
apply (simp add : power2 sum)
apply (simp add : power2 eq square algebra simps)
done

then show ?thesis
apply (simp add : cos exp eq Arcsin def exp minus)
apply (simp add : divide simps Arcsin body lemma)
apply (metis add .commute minus unique power2 eq square)
done

qed

lemma sin Arccos nonzero:
assumes z 2 6= 1 shows sin(Arccos z ) 6= 0

proof −
have eq : (i ∗ z ∗ (csqrt (1 − z 2)))2 = −(z 2) ∗ (1 − z 2)
by (simp add : algebra simps)

have i ∗ z ∗ (csqrt (1 − z 2)) 6= 1 − z 2

proof
assume i ∗ z ∗ (csqrt (1 − z 2)) = 1 − z 2
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then have (i ∗ z ∗ (csqrt (1 − z 2)))2 = (1 − z 2)2

by simp
then have −(z 2) ∗ (1 − z 2) = (1 − z 2)∗(1 − z 2)
using eq power2 eq square by auto

then have −(z 2) = (1 − z 2)
using assms
by (metis add .commute add .right neutral diff add cancel mult right cancel)

then show False
using assms by simp

qed
then have z 2 + i ∗ z ∗ (csqrt (1 − z 2)) 6= 1
by (simp add : algebra simps)

then have 2∗(z 2 + i ∗ z ∗ (csqrt (1 − z 2))) 6= 2∗1
by (metis mult cancel left2 zero neq numeral)

then have (z + i ∗ csqrt (1 − z 2))2 6= 1
using assms
by (metis Arccos def add .commute add .left neutral cancel comm monoid add class.diff cancel

cos Arccos csqrt 0 mult zero right)
then show ?thesis
apply (simp add : sin exp eq Arccos def exp minus)
apply (simp add : divide simps Arccos body lemma)
apply (simp add : power2 eq square)
done

qed

lemma cos sin csqrt :
assumes 0 < cos(Re z ) ∨ cos(Re z ) = 0 ∧ Im z ∗ sin(Re z ) ≤ 0
shows cos z = csqrt(1 − (sin z )2)

proof (rule csqrt unique [THEN sym])
show (cos z )2 = 1 − (sin z )2

by (simp add : cos squared eq)
qed (use assms in 〈auto simp: Re cos Im cos add pos pos mult le 0 iff zero le mult iff 〉)

lemma sin cos csqrt :
assumes 0 < sin(Re z ) ∨ sin(Re z ) = 0 ∧ 0 ≤ Im z ∗ cos(Re z )
shows sin z = csqrt(1 − (cos z )2)

proof (rule csqrt unique [THEN sym])
show (sin z )2 = 1 − (cos z )2

by (simp add : sin squared eq)
qed (use assms in 〈auto simp: Re sin Im sin add pos pos mult le 0 iff zero le mult iff 〉)

lemma Arcsin Arccos csqrt pos:
(0 < Re z | Re z = 0 & 0 ≤ Im z ) =⇒ Arcsin z = Arccos(csqrt(1 − z 2))

by (simp add : Arcsin def Arccos def Complex .csqrt square add .commute)

lemma Arccos Arcsin csqrt pos:
(0 < Re z | Re z = 0 & 0 ≤ Im z ) =⇒ Arccos z = Arcsin(csqrt(1 − z 2))

by (simp add : Arcsin def Arccos def Complex .csqrt square add .commute)
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lemma sin Arccos:
0 < Re z | Re z = 0 & 0 ≤ Im z =⇒ sin(Arccos z ) = csqrt(1 − z 2)

by (simp add : Arccos Arcsin csqrt pos)

lemma cos Arcsin:
0 < Re z | Re z = 0 & 0 ≤ Im z =⇒ cos(Arcsin z ) = csqrt(1 − z 2)

by (simp add : Arcsin Arccos csqrt pos)

6.21.27 Relationship with Arcsin on the Real Numbers

lemma Im Arcsin of real :
assumes |x | ≤ 1
shows Im (Arcsin (of real x )) = 0

proof −
have csqrt (1 − (of real x )2) = (if xˆ2 ≤ 1 then sqrt (1 − xˆ2 ) else i ∗ sqrt

(xˆ2 − 1 ))
by (simp add : of real sqrt del : csqrt of real nonneg)

then have cmod (i ∗ of real x + csqrt (1 − (of real x )2))ˆ2 = 1
using assms abs square le 1
by (force simp add : Complex .cmod power2 )

then have cmod (i ∗ of real x + csqrt (1 − (of real x )2)) = 1
by (simp add : norm complex def )

then show ?thesis
by (simp add : Im Arcsin exp minus)

qed

corollary Arcsin in Reals [simp]: z ∈ IR =⇒ |Re z | ≤ 1 =⇒ Arcsin z ∈ IR
by (metis Im Arcsin of real Re complex of real Reals cases complex is Real iff )

lemma arcsin eq Re Arcsin:
assumes |x | ≤ 1
shows arcsin x = Re (Arcsin (of real x ))

unfolding arcsin def
proof (rule the equality , safe)
show − (pi / 2 ) ≤ Re (Arcsin (complex of real x ))
using Re Ln pos le [OF Arcsin body lemma, of of real x ]
by (auto simp: Complex .in Reals norm Re Arcsin)

next
show Re (Arcsin (complex of real x )) ≤ pi / 2
using Re Ln pos le [OF Arcsin body lemma, of of real x ]
by (auto simp: Complex .in Reals norm Re Arcsin)

next
show sin (Re (Arcsin (complex of real x ))) = x
using Re sin [of Arcsin (of real x )] Arcsin body lemma [of of real x ]
by (simp add : Im Arcsin of real assms)

next
fix x ′

assume − (pi / 2 ) ≤ x ′ x ′ ≤ pi / 2 x = sin x ′

then show x ′ = Re (Arcsin (complex of real (sin x ′)))
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unfolding sin of real [symmetric]
by (subst Arcsin sin) auto

qed

lemma of real arcsin: |x | ≤ 1 =⇒ of real(arcsin x ) = Arcsin(of real x )
by (metis Im Arcsin of real add .right neutral arcsin eq Re Arcsin complex eq mult zero right

of real 0 )

6.21.28 Relationship with Arccos on the Real Numbers

lemma Im Arccos of real :
assumes |x | ≤ 1
shows Im (Arccos (of real x )) = 0

proof −
have csqrt (1 − (of real x )2) = (if xˆ2 ≤ 1 then sqrt (1 − xˆ2 ) else i ∗ sqrt

(xˆ2 − 1 ))
by (simp add : of real sqrt del : csqrt of real nonneg)

then have cmod (of real x + i ∗ csqrt (1 − (of real x )2))ˆ2 = 1
using assms abs square le 1
by (force simp add : Complex .cmod power2 )

then have cmod (of real x + i ∗ csqrt (1 − (of real x )2)) = 1
by (simp add : norm complex def )

then show ?thesis
by (simp add : Im Arccos exp minus)

qed

corollary Arccos in Reals [simp]: z ∈ IR =⇒ |Re z | ≤ 1 =⇒ Arccos z ∈ IR
by (metis Im Arccos of real Re complex of real Reals cases complex is Real iff )

lemma arccos eq Re Arccos:
assumes |x | ≤ 1
shows arccos x = Re (Arccos (of real x ))

unfolding arccos def
proof (rule the equality , safe)
show 0 ≤ Re (Arccos (complex of real x ))
using Im Ln pos le [OF Arccos body lemma, of of real x ]
by (auto simp: Complex .in Reals norm Re Arccos)

next
show Re (Arccos (complex of real x )) ≤ pi
using Im Ln pos le [OF Arccos body lemma, of of real x ]
by (auto simp: Complex .in Reals norm Re Arccos)

next
show cos (Re (Arccos (complex of real x ))) = x
using Re cos [of Arccos (of real x )] Arccos body lemma [of of real x ]
by (simp add : Im Arccos of real assms)

next
fix x ′

assume 0 ≤ x ′ x ′ ≤ pi x = cos x ′

then show x ′ = Re (Arccos (complex of real (cos x ′)))
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unfolding cos of real [symmetric]
by (subst Arccos cos) auto

qed

lemma of real arccos: |x | ≤ 1 =⇒ of real(arccos x ) = Arccos(of real x )
by (metis Im Arccos of real add .right neutral arccos eq Re Arccos complex eq mult zero right

of real 0 )

6.21.29 Some interrelationships among the real inverse trig
functions

lemma arccos arctan:
assumes −1 < x x < 1
shows arccos x = pi/2 − arctan(x / sqrt(1 − x 2))

proof −
have arctan(x / sqrt(1 − x 2)) − (pi/2 − arccos x ) = 0
proof (rule sin eq 0 pi)
show − pi < arctan (x / sqrt (1 − x 2)) − (pi / 2 − arccos x )
using arctan lbound [of x / sqrt(1 − x 2)] arccos bounded [of x ] assms
by (simp add : algebra simps)

next
show arctan (x / sqrt (1 − x 2)) − (pi / 2 − arccos x ) < pi
using arctan ubound [of x / sqrt(1 − x 2)] arccos bounded [of x ] assms
by (simp add : algebra simps)

next
show sin (arctan (x / sqrt (1 − x 2)) − (pi / 2 − arccos x )) = 0
using assms
by (simp add : algebra simps sin diff cos add sin arccos sin arctan cos arctan

power2 eq square square eq 1 iff )
qed
then show ?thesis
by simp

qed

lemma arcsin plus arccos:
assumes −1 ≤ x x ≤ 1
shows arcsin x + arccos x = pi/2

proof −
have arcsin x = pi/2 − arccos x
apply (rule sin inj pi)
using assms arcsin [OF assms] arccos [OF assms]
by (auto simp: algebra simps sin diff )

then show ?thesis
by (simp add : algebra simps)

qed

lemma arcsin arccos eq : −1 ≤ x =⇒ x ≤ 1 =⇒ arcsin x = pi/2 − arccos x
using arcsin plus arccos by force
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lemma arccos arcsin eq : −1 ≤ x =⇒ x ≤ 1 =⇒ arccos x = pi/2 − arcsin x
using arcsin plus arccos by force

lemma arcsin arctan: −1 < x =⇒ x < 1 =⇒ arcsin x = arctan(x / sqrt(1 −
x 2))
by (simp add : arccos arctan arcsin arccos eq)

lemma csqrt 1 diff eq : csqrt (1 − (of real x )2) = (if xˆ2 ≤ 1 then sqrt (1 − xˆ2 )
else i ∗ sqrt (xˆ2 − 1 ))
by ( simp add : of real sqrt del : csqrt of real nonneg)

lemma arcsin arccos sqrt pos: 0 ≤ x =⇒ x ≤ 1 =⇒ arcsin x = arccos(sqrt(1 −
x 2))
apply (simp add : abs square le 1 arcsin eq Re Arcsin arccos eq Re Arccos)
apply (subst Arcsin Arccos csqrt pos)
apply (auto simp: power le one csqrt 1 diff eq)
done

lemma arcsin arccos sqrt neg : −1 ≤ x =⇒ x ≤ 0 =⇒ arcsin x = −arccos(sqrt(1
− x 2))
using arcsin arccos sqrt pos [of −x ]
by (simp add : arcsin minus)

lemma arccos arcsin sqrt pos: 0 ≤ x =⇒ x ≤ 1 =⇒ arccos x = arcsin(sqrt(1 −
x 2))
apply (simp add : abs square le 1 arcsin eq Re Arcsin arccos eq Re Arccos)
apply (subst Arccos Arcsin csqrt pos)
apply (auto simp: power le one csqrt 1 diff eq)
done

lemma arccos arcsin sqrt neg : −1 ≤ x =⇒ x ≤ 0 =⇒ arccos x = pi − arc-
sin(sqrt(1 − x 2))
using arccos arcsin sqrt pos [of −x ]
by (simp add : arccos minus)

6.21.30 Continuity results for arcsin and arccos

lemma continuous on Arcsin real [continuous intros]:
continuous on {w ∈ IR. |Re w | ≤ 1} Arcsin

proof −
have continuous on {w ∈ IR. |Re w | ≤ 1} (λx . complex of real (arcsin (Re x )))

=
continuous on {w ∈ IR. |Re w | ≤ 1} (λx . complex of real (Re (Arcsin (of real

(Re x )))))
by (rule continuous on cong [OF refl ]) (simp add : arcsin eq Re Arcsin)

also have ... = ?thesis
by (rule continuous on cong [OF refl ]) simp

finally show ?thesis
using continuous on arcsin [OF continuous on Re [OF continuous on id ], of
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{w ∈ IR. |Re w | ≤ 1}]
continuous on of real

by fastforce
qed

lemma continuous within Arcsin real :
continuous (at z within {w ∈ IR. |Re w | ≤ 1}) Arcsin

proof (cases z ∈ {w ∈ IR. |Re w | ≤ 1})
case True then show ?thesis
using continuous on Arcsin real continuous on eq continuous within
by blast

next
case False
with closed real abs le [of 1 ] show ?thesis
by (rule continuous within closed nontrivial)

qed

lemma continuous on Arccos real :
continuous on {w ∈ IR. |Re w | ≤ 1} Arccos

proof −
have continuous on {w ∈ IR. |Re w | ≤ 1} (λx . complex of real (arccos (Re x )))

=
continuous on {w ∈ IR. |Re w | ≤ 1} (λx . complex of real (Re (Arccos (of real

(Re x )))))
by (rule continuous on cong [OF refl ]) (simp add : arccos eq Re Arccos)

also have ... = ?thesis
by (rule continuous on cong [OF refl ]) simp

finally show ?thesis
using continuous on arccos [OF continuous on Re [OF continuous on id ], of

{w ∈ IR. |Re w | ≤ 1}]
continuous on of real

by fastforce
qed

lemma continuous within Arccos real :
continuous (at z within {w ∈ IR. |Re w | ≤ 1}) Arccos

proof (cases z ∈ {w ∈ IR. |Re w | ≤ 1})
case True then show ?thesis
using continuous on Arccos real continuous on eq continuous within
by blast

next
case False
with closed real abs le [of 1 ] show ?thesis
by (rule continuous within closed nontrivial)

qed

lemma sinh ln complex : x 6= 0 =⇒ sinh (ln x :: complex ) = (x − inverse x ) / 2
by (simp add : sinh def exp minus scaleR conv of real exp of real)



Complex Transcendental.thy 2359

lemma cosh ln complex : x 6= 0 =⇒ cosh (ln x :: complex ) = (x + inverse x ) / 2
by (simp add : cosh def exp minus scaleR conv of real)

lemma tanh ln complex : x 6= 0 =⇒ tanh (ln x :: complex ) = (x ˆ 2 − 1 ) / (x ˆ
2 + 1 )
by (simp add : tanh def sinh ln complex cosh ln complex divide simps power2 eq square)

6.21.31 Roots of unity

theorem complex root unity :
fixes j ::nat
assumes n 6= 0
shows exp(2 ∗ of real pi ∗ i ∗ of nat j / of nat n)ˆn = 1

proof −
have ∗: of nat j ∗ (complex of real pi ∗ 2 ) = complex of real (2 ∗ real j ∗ pi)
by (simp)

then show ?thesis
apply (simp add : exp of nat mult [symmetric] mult ac exp Euler)
apply (simp only : ∗ cos of real sin of real)
apply simp
done

qed

lemma complex root unity eq :
fixes j ::nat and k ::nat
assumes 1 ≤ n
shows (exp(2 ∗ of real pi ∗ i ∗ of nat j / of nat n) = exp(2 ∗ of real pi ∗ i ∗

of nat k / of nat n)
←→ j mod n = k mod n)

proof −
have (∃ z ::int . i ∗ (of nat j ∗ (of real pi ∗ 2 )) =

i ∗ (of nat k ∗ (of real pi ∗ 2 )) + i ∗ (of int z ∗ (of nat n ∗ (of real pi
∗ 2 )))) ←→

(∃ z ::int . of nat j ∗ (i ∗ (of real pi ∗ 2 )) =
(of nat k + of nat n ∗ of int z ) ∗ (i ∗ (of real pi ∗ 2 )))

by (simp add : algebra simps)
also have ...←→ (∃ z ::int . of nat j = of nat k + of nat n ∗ (of int z :: complex ))

by simp
also have ... ←→ (∃ z ::int . of nat j = of nat k + of nat n ∗ z )
by (metis (mono tags, hide lams) of int add of int eq iff of int mult of int of nat eq)
also have ... ←→ int j mod int n = int k mod int n
by (auto simp: mod eq dvd iff dvd def algebra simps)

also have ... ←→ j mod n = k mod n
by (metis of nat eq iff zmod int)

finally have (∃ z . i ∗ (of nat j ∗ (of real pi ∗ 2 )) =
i ∗ (of nat k ∗ (of real pi ∗ 2 )) + i ∗ (of int z ∗ (of nat n ∗ (of real pi

∗ 2 )))) ←→ j mod n = k mod n .
note ∗ = this
show ?thesis
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using assms
by (simp add : exp eq field split simps ∗)

qed

corollary bij betw roots unity :
bij betw (λj . exp(2 ∗ of real pi ∗ i ∗ of nat j / of nat n))

{..<n} {exp(2 ∗ of real pi ∗ i ∗ of nat j / of nat n) | j . j < n}
by (auto simp: bij betw def inj on def complex root unity eq)

lemma complex root unity eq 1 :
fixes j ::nat and k ::nat
assumes 1 ≤ n
shows exp(2 ∗ of real pi ∗ i ∗ of nat j / of nat n) = 1 ←→ n dvd j

proof −
have 1 = exp(2 ∗ of real pi ∗ i ∗ (of nat n / of nat n))
using assms by simp

then have exp(2 ∗ of real pi ∗ i ∗ (of nat j / of nat n)) = 1 ←→ j mod n = n
mod n

using complex root unity eq [of n j n] assms
by simp

then show ?thesis
by auto

qed

lemma finite complex roots unity explicit :
finite {exp(2 ∗ of real pi ∗ i ∗ of nat j / of nat n) | j ::nat . j < n}

by simp

lemma card complex roots unity explicit :
card {exp(2 ∗ of real pi ∗ i ∗ of nat j / of nat n) | j ::nat . j < n} = n

by (simp add : Finite Set .bij betw same card [OF bij betw roots unity , symmet-
ric])

lemma complex roots unity :
assumes 1 ≤ n
shows {z ::complex . zˆn = 1} = {exp(2 ∗ of real pi ∗ i ∗ of nat j / of nat n) |

j . j < n}
apply (rule Finite Set .card seteq [symmetric])
using assms
apply (auto simp: card complex roots unity explicit finite roots unity complex root unity

card roots unity)
done

lemma card complex roots unity : 1 ≤ n =⇒ card {z ::complex . zˆn = 1} = n
by (simp add : card complex roots unity explicit complex roots unity)

lemma complex not root unity :
1 ≤ n =⇒ ∃ u::complex . norm u = 1 ∧ uˆn 6= 1

apply (rule tac x=exp (of real pi ∗ i ∗ of real (1 / n)) in exI )
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apply (auto simp: Re complex div eq 0 exp of nat mult [symmetric] mult ac exp Euler)
done

end

6.22 Harmonic Numbers

theory Harmonic Numbers
imports
Complex Transcendental
Summation Tests

begin

The definition of the Harmonic Numbers and the Euler-Mascheroni constant.
Also provides a reasonably accurate approximation of ln 2 and the Euler-
Mascheroni constant.

6.22.1 The Harmonic numbers

definition harm :: nat ⇒ ′a :: real normed field where
harm n = (

∑
k=1 ..n. inverse (of nat k))

lemma harm altdef : harm n = (
∑

k<n. inverse (of nat (Suc k)))
unfolding harm def by (induction n) simp all

lemma harm Suc: harm (Suc n) = harm n + inverse (of nat (Suc n))
by (simp add : harm def )

lemma harm nonneg : harm n ≥ (0 :: ′a :: {real normed field ,linordered field})
unfolding harm def by (intro sum nonneg) simp all

lemma harm pos: n > 0 =⇒ harm n > (0 :: ′a :: {real normed field ,linordered field})
unfolding harm def by (intro sum pos) simp all

lemma harm mono: m ≤ n =⇒ harm m ≤ (harm n :: ′a :: {real normed field ,linordered field})
by(simp add : harm def sum mono2 )

lemma of real harm: of real (harm n) = harm n
unfolding harm def by simp

lemma abs harm [simp]: (abs (harm n) :: real) = harm n
using harm nonneg [of n] by (rule abs of nonneg)

lemma norm harm: norm (harm n) = harm n
by (subst of real harm [symmetric]) (simp add : harm nonneg)

lemma harm expand :
harm 0 = 0
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harm (Suc 0 ) = 1
harm (numeral n) = harm (pred numeral n) + inverse (numeral n)

proof −
have numeral n = Suc (pred numeral n) by simp
also have harm . . . = harm (pred numeral n) + inverse (numeral n)
by (subst harm Suc, subst numeral eq Suc[symmetric]) simp

finally show harm (numeral n) = harm (pred numeral n) + inverse (numeral
n) .
qed (simp all add : harm def )

theorem not convergent harm: ¬convergent (harm :: nat ⇒ ′a :: real normed field)
proof −
have convergent (λn. norm (harm n :: ′a)) ←→

convergent (harm :: nat ⇒ real) by (simp add : norm harm)
also have . . . ←→ convergent (λn.

∑
k=Suc 0 ..Suc n. inverse (of nat k) :: real)

unfolding harm def [abs def ] by (subst convergent Suc iff ) simp all
also have ... ←→ convergent (λn.

∑
k≤n. inverse (of nat (Suc k)) :: real)

by (subst sum.shift bounds cl Suc ivl) (simp add : atLeast0AtMost)
also have ... ←→ summable (λn. inverse (of nat n) :: real)
by (subst summable Suc iff [symmetric]) (simp add : summable iff convergent ′)

also have ¬... by (rule not summable harmonic)
finally show ?thesis by (blast dest : convergent norm)

qed

lemma harm pos iff [simp]: harm n > (0 :: ′a :: {real normed field ,linordered field})
←→ n > 0
by (rule iffI , cases n, simp add : harm expand , simp, rule harm pos)

lemma ln diff le inverse:
assumes x ≥ (1 ::real)
shows ln (x + 1 ) − ln x < 1 / x

proof −
from assms have ∃ z>x . z < x + 1 ∧ ln (x + 1 ) − ln x = (x + 1 − x ) ∗

inverse z
by (intro MVT2 ) (auto intro!: derivative eq intros simp: field simps)

then obtain z where z : z > x z < x + 1 ln (x + 1 ) − ln x = inverse z by
auto
have ln (x + 1 ) − ln x = inverse z by fact
also from z (1 ,2 ) assms have . . . < 1 / x by (simp add : field simps)
finally show ?thesis .

qed

lemma ln le harm: ln (real n + 1 ) ≤ (harm n :: real)
proof (induction n)
fix n assume IH : ln (real n + 1 ) ≤ harm n
have ln (real (Suc n) + 1 ) = ln (real n + 1 ) + (ln (real n + 2 ) − ln (real n +

1 )) by simp
also have (ln (real n + 2 ) − ln (real n + 1 )) ≤ 1 / real (Suc n)
using ln diff le inverse[of real n + 1 ] by (simp add : add ac)
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also note IH
also have harm n + 1 / real (Suc n) = harm (Suc n) by (simp add : harm Suc

field simps)
finally show ln (real (Suc n) + 1 ) ≤ harm (Suc n) by − simp

qed (simp all add : harm def )

lemma harm at top: filterlim (harm :: nat ⇒ real) at top sequentially
proof (rule filterlim at top mono)
show eventually (λn. harm n ≥ ln (real (Suc n))) at top
using ln le harm by (intro always eventually allI ) (simp all add : add ac)

show filterlim (λn. ln (real (Suc n))) at top sequentially
by (intro filterlim compose[OF ln at top] filterlim compose[OF filterlim real sequentially ]

filterlim Suc)
qed

6.22.2 The Euler-Mascheroni constant

The limit of the difference between the partial harmonic sum and the natural
logarithm (approximately 0.577216). This value occurs e.g. in the definition
of the Gamma function.

definition euler mascheroni :: ′a :: real normed algebra 1 where
euler mascheroni = of real (lim (λn. harm n − ln (of nat n)))

lemma of real euler mascheroni [simp]: of real euler mascheroni = euler mascheroni
by (simp add : euler mascheroni def )

lemma harm ge ln: harm n ≥ ln (real n + 1 )
proof −
have ln (n + 1 ) = (

∑
j<n. ln (real (Suc j + 1 )) − ln (real (j + 1 )))

by (subst sum lessThan telescope) auto
also have . . . ≤ (

∑
j<n. 1 / (Suc j ))

proof (intro sum mono, clarify)
fix j assume j : j < n
have ∃ ξ. ξ > real j + 1 ∧ ξ < real j + 2 ∧

ln (real j + 2 ) − ln (real j + 1 ) = (real j + 2 − (real j + 1 )) ∗ (1 / ξ)
by (intro MVT2 ) (auto intro!: derivative eq intros)

then obtain ξ :: real
where ξ: ξ ∈ {real j + 1 ..real j + 2} ln (real j + 2 ) − ln (real j + 1 ) = 1

/ ξ
by auto

note ξ(2 )
also have 1 / ξ ≤ 1 / (Suc j )
using ξ(1 ) by (auto simp: field simps)

finally show ln (real (Suc j + 1 )) − ln (real (j + 1 )) ≤ 1 / (Suc j )
by (simp add : add ac)

qed
also have . . . = harm n
by (simp add : harm altdef field simps)

finally show ?thesis by (simp add : add ac)
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qed

lemma decseq harm diff ln: decseq (λn. harm (Suc n) − ln (Suc n))
proof (rule decseq SucI )
fix m :: nat
define n where n = Suc m
have n > 0 by (simp add : n def )
have convex on {0<..} (λx :: real . −ln x )
by (rule convex on realI [where f ′ = λx . −1/x ])

(auto intro!: derivative eq intros simp: field simps)
hence (−1 / (n + 1 )) ∗ (real n − real (n + 1 )) ≤ (− ln (real n)) − (−ln (real

(n + 1 )))
using 〈n > 0 〉 by (intro convex on imp above tangent [where A = {0<..}])

(auto intro!: derivative eq intros simp: interior open)
thus harm (Suc n) − ln (Suc n) ≤ harm n − ln n
by (auto simp: harm Suc field simps)

qed

lemma euler mascheroni sequence nonneg :
assumes n > 0
shows harm n − ln (real n) ≥ (0 :: real)

proof −
have ln (real n) ≤ ln (real n + 1 )
using assms by simp

also have . . . ≤ harm n
by (rule harm ge ln)

finally show ?thesis by simp
qed

lemma euler mascheroni convergent : convergent (λn. harm n − ln n)
proof −
have harm (Suc n) − ln (real (Suc n)) ≥ 0 for n :: nat
using euler mascheroni sequence nonneg [of Suc n] by simp

hence convergent (λn. harm (Suc n) − ln (Suc n))
by (intro Bseq monoseq convergent decseq bounded [of 0 ] decseq harm diff ln

decseq imp monoseq)
auto

thus ?thesis
by (subst (asm) convergent Suc iff )

qed

lemma euler mascheroni sequence decreasing :
m > 0 =⇒ m ≤ n =⇒ harm n − ln (of nat n) ≤ harm m − ln (of nat m ::

real)
using decseqD [OF decseq harm diff ln, of m − 1 n − 1 ] by simp

lemma euler mascheroni LIMSEQ :
(λn. harm n − ln (of nat n) :: real) −−−−→ euler mascheroni
unfolding euler mascheroni def
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by (simp add : convergent LIMSEQ iff [symmetric] euler mascheroni convergent)

lemma euler mascheroni LIMSEQ of real :
(λn. of real (harm n − ln (of nat n))) −−−−→

(euler mascheroni :: ′a :: {real normed algebra 1 , topological space})
proof −
have (λn. of real (harm n − ln (of nat n))) −−−−→ (of real (euler mascheroni)

:: ′a)
by (intro tendsto of real euler mascheroni LIMSEQ)

thus ?thesis by simp
qed

lemma euler mascheroni sum real :
(λn. inverse (of nat (n+1 )) + ln (of nat (n+1 )) − ln (of nat (n+2 )) :: real)

sums euler mascheroni
using sums add [OF telescope sums[OF LIMSEQ Suc[OF euler mascheroni LIMSEQ ]]

telescope sums ′[OF LIMSEQ inverse real of nat ]]
by (simp all add : harm def algebra simps)

lemma euler mascheroni sum:
(λn. inverse (of nat (n+1 )) + of real (ln (of nat (n+1 ))) − of real (ln (of nat

(n+2 ))))
sums (euler mascheroni :: ′a :: {banach, real normed field})

proof −
have (λn. of real (inverse (of nat (n+1 )) + ln (of nat (n+1 )) − ln (of nat

(n+2 ))))
sums (of real euler mascheroni :: ′a :: {banach, real normed field})

by (subst sums of real iff ) (rule euler mascheroni sum real)
thus ?thesis by simp

qed

theorem alternating harmonic series sums: (λk . (−1 )ˆk / real of nat (Suc k))
sums ln 2
proof −
let ?f = λn. harm n − ln (real of nat n)
let ?g = λn. if even n then 0 else (2 ::real)
let ?em = λn. harm n − ln (real of nat n)
have eventually (λn. ?em (2∗n) − ?em n + ln 2 = (

∑
k<2∗n. (−1 )ˆk /

real of nat (Suc k))) at top
using eventually gt at top[of 0 ::nat ]

proof eventually elim
fix n :: nat assume n: n > 0
have (

∑
k<2∗n. (−1 )ˆk / real of nat (Suc k)) =
(
∑

k<2∗n. ((−1 )ˆk + ?g k) / of nat (Suc k)) − (
∑

k<2∗n. ?g k /
of nat (Suc k))

by (simp add : sum.distrib algebra simps divide inverse)
also have (

∑
k<2∗n. ((−1 )ˆk + ?g k) / real of nat (Suc k)) = harm (2∗n)

unfolding harm altdef by (intro sum.cong) (auto simp: field simps)
also have (

∑
k<2∗n. ?g k / real of nat (Suc k)) = (

∑
k |k<2∗n ∧ odd k . ?g
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k / of nat (Suc k))
by (intro sum.mono neutral right) auto

also have . . . = (
∑

k |k<2∗n ∧ odd k . 2 / (real of nat (Suc k)))
by (intro sum.cong) auto

also have (
∑

k |k<2∗n ∧ odd k . 2 / (real of nat (Suc k))) = harm n
unfolding harm altdef
by (intro sum.reindex cong [of λn. 2∗n+1 ]) (auto simp: inj on def field simps

elim!: oddE )
also have harm (2∗n) − harm n = ?em (2∗n) − ?em n + ln 2 using n
by (simp all add : algebra simps ln mult)

finally show ?em (2∗n) − ?em n + ln 2 = (
∑

k<2∗n. (−1 )ˆk / real of nat
(Suc k)) ..
qed
moreover have (λn. ?em (2∗n) − ?em n + ln (2 ::real))

−−−−→ euler mascheroni − euler mascheroni + ln 2
by (intro tendsto intros euler mascheroni LIMSEQ filterlim compose[OF eu-

ler mascheroni LIMSEQ ]
filterlim subseq) (auto simp: strict mono def )

hence (λn. ?em (2∗n) − ?em n + ln (2 ::real)) −−−−→ ln 2 by simp
ultimately have (λn. (

∑
k<2∗n. (−1 )ˆk / real of nat (Suc k))) −−−−→ ln 2

by (blast intro: Lim transform eventually)

moreover have summable (λk . (−1 )ˆk ∗ inverse (real of nat (Suc k)))
using LIMSEQ inverse real of nat
by (intro summable Leibniz (1 ) decseq imp monoseq decseq SucI ) simp all

hence A: (λn.
∑

k<n. (−1 )ˆk / real of nat (Suc k)) −−−−→ (
∑

k . (−1 )ˆk /
real of nat (Suc k))

by (simp add : summable sums iff divide inverse sums def )
from filterlim compose[OF this filterlim subseq [of (∗) (2 ::nat)]]
have (λn.

∑
k<2∗n. (−1 )ˆk / real of nat (Suc k)) −−−−→ (

∑
k . (−1 )ˆk /

real of nat (Suc k))
by (simp add : strict mono def )
ultimately have (

∑
k . (− 1 ) ˆ k / real of nat (Suc k)) = ln 2 by (intro

LIMSEQ unique)
with A show ?thesis by (simp add : sums def )

qed

lemma alternating harmonic series sums ′:
(λk . inverse (real of nat (2∗k+1 )) − inverse (real of nat (2∗k+2 ))) sums ln 2

unfolding sums def
proof (rule Lim transform eventually)
show (λn.

∑
k<2∗n. (−1 )ˆk / (real of nat (Suc k))) −−−−→ ln 2

using alternating harmonic series sums unfolding sums def
by (rule filterlim compose) (rule mult nat left at top, simp)

show eventually (λn. (
∑

k<2∗n. (−1 )ˆk / (real of nat (Suc k))) =
(
∑

k<n. inverse (real of nat (2∗k+1 )) − inverse (real of nat (2∗k+2 ))))
sequentially
proof (intro always eventually allI )
fix n :: nat
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show (
∑

k<2∗n. (−1 )ˆk / (real of nat (Suc k))) =
(
∑

k<n. inverse (real of nat (2∗k+1 )) − inverse (real of nat (2∗k+2 )))
by (induction n) (simp all add : inverse eq divide)

qed
qed

6.22.3 Bounds on the Euler-Mascheroni constant

lemma ln inverse approx le:
assumes (x ::real) > 0 a > 0
shows ln (x + a) − ln x ≤ a ∗ (inverse x + inverse (x + a))/2 (is ≤ ?A)

proof −
define f ′ where f ′ = (inverse (x + a) − inverse x )/a
let ?f = λt . (t − x ) ∗ f ′ + inverse x
let ?F = λt . (t − x )ˆ2 ∗ f ′ / 2 + t ∗ inverse x

have deriv : ∃D . ((λx . ?F x − ln x ) has field derivative D) (at ξ) ∧ D ≥ 0
if ξ ≥ x ξ ≤ x + a for ξ

proof −
from that assms have t : 0 ≤ (ξ − x ) / a (ξ − x ) / a ≤ 1 by simp all
have inverse ξ = inverse ((1 − (ξ − x ) / a) ∗R x + ((ξ − x ) / a) ∗R (x +

a)) (is = ?A)
using assms by (simp add : field simps)

also from assms have convex on {x ..x+a} inverse by (intro convex on inverse)
auto

from convex onD Icc[OF this t ] assms
have ?A ≤ (1 − (ξ − x ) / a) ∗ inverse x + (ξ − x ) / a ∗ inverse (x + a)

by simp
also have . . . = (ξ − x ) ∗ f ′ + inverse x using assms
by (simp add : f ′ def divide simps) (simp add : field simps)

finally have ?f ξ − 1 / ξ ≥ 0 by (simp add : field simps)
moreover have ((λx . ?F x − ln x ) has field derivative ?f ξ − 1 / ξ) (at ξ)
using that assms by (auto intro!: derivative eq intros simp: field simps)

ultimately show ?thesis by blast
qed
have ?F x − ln x ≤ ?F (x + a) − ln (x + a)
by (rule DERIV nonneg imp nondecreasing [of x x + a, OF deriv ]) (use assms

in auto)
thus ?thesis

using assms by (simp add : f ′ def divide simps) (simp add : algebra simps
power2 eq square)?
qed

lemma ln inverse approx ge:
assumes (x ::real) > 0 x < y
shows ln y − ln x ≥ 2 ∗ (y − x ) / (x + y) (is ≥ ?A)

proof −
define m where m = (x+y)/2
define f ′ where f ′ = −inverse (mˆ2 )
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from assms have m: m > 0 by (simp add : m def )
let ?F = λt . (t − m)ˆ2 ∗ f ′ / 2 + t / m
let ?f = λt . (t − m) ∗ f ′ + inverse m

have deriv : ∃D . ((λx . ln x − ?F x ) has field derivative D) (at ξ) ∧ D ≥ 0
if ξ ≥ x ξ ≤ y for ξ

proof −
from that assms have inverse ξ − inverse m ≥ f ′ ∗ (ξ − m)
by (intro convex on imp above tangent [of {0<..}] convex on inverse)

(auto simp: m def interior open f ′ def power2 eq square intro!: deriva-
tive eq intros)

hence 1 / ξ − ?f ξ ≥ 0 by (simp add : field simps f ′ def )
moreover have ((λx . ln x − ?F x ) has field derivative 1 / ξ − ?f ξ) (at ξ)
using that assms m by (auto intro!: derivative eq intros simp: field simps)

ultimately show ?thesis by blast
qed
have ln x − ?F x ≤ ln y − ?F y
by (rule DERIV nonneg imp nondecreasing [of x y , OF deriv ]) (use assms in

auto)
hence ln y − ln x ≥ ?F y − ?F x
by (simp add : algebra simps)

also have ?F y − ?F x = ?A
using assms by (simp add : f ′ def m def divide simps) (simp add : algebra simps

power2 eq square)
finally show ?thesis .

qed

lemma euler mascheroni lower :
euler mascheroni ≥ harm (Suc n) − ln (real of nat (n + 2 )) + 1/real of nat

(2 ∗ (n + 2 ))
and euler mascheroni upper :

euler mascheroni ≤ harm (Suc n) − ln (real of nat (n + 2 )) + 1/real of nat
(2 ∗ (n + 1 ))
proof −
define D :: ⇒ real
where D n = inverse (of nat (n+1 )) + ln (of nat (n+1 )) − ln (of nat (n+2 ))

for n
let ?g = λn. ln (of nat (n+2 )) − ln (of nat (n+1 )) − inverse (of nat (n+1 ))

:: real
define inv where [abs def ]: inv n = inverse (real of nat n) for n
fix n :: nat
note summable = sums summable[OF euler mascheroni sum real , folded D def ]
have sums: (λk . (inv (Suc (k + (n+1 ))) − inv (Suc (Suc k + (n+1 ))))/2 )

sums ((inv (Suc (0 + (n+1 ))) − 0 )/2 )
unfolding inv def
by (intro sums divide telescope sums ′ LIMSEQ ignore initial segment LIM-

SEQ inverse real of nat)
have sums ′: (λk . (inv (Suc (k + n)) − inv (Suc (Suc k + n)))/2 ) sums ((inv

(Suc (0 + n)) − 0 )/2 )
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unfolding inv def
by (intro sums divide telescope sums ′ LIMSEQ ignore initial segment LIM-

SEQ inverse real of nat)
from euler mascheroni sum real have euler mascheroni = (

∑
k . D k)

by (simp add : sums iff D def )
also have . . . = (

∑
k . D (k + Suc n)) + (

∑
k≤n. D k)

by (subst suminf split initial segment [OF summable, of Suc n],
subst lessThan Suc atMost) simp

finally have sum: (
∑

k≤n. D k) − euler mascheroni = −(
∑

k . D (k + Suc n))
by simp

note sum
also have . . . ≤ −(

∑
k . (inv (k + Suc n + 1 ) − inv (k + Suc n + 2 )) / 2 )

proof (intro le imp neg le suminf le allI summable ignore initial segment [OF
summable])

fix k ′ :: nat
define k where k = k ′ + Suc n
hence k : k > 0 by (simp add : k def )
have real of nat (k+1 ) > 0 by (simp add : k def )
with ln inverse approx le[OF this zero less one]
have ln (of nat k + 2 ) − ln (of nat k + 1 ) ≤ (inv (k+1 ) + inv (k+2 ))/2
by (simp add : inv def add ac)
hence (inv (k+1 ) − inv (k+2 ))/2 ≤ inv (k+1 ) + ln (of nat (k+1 )) − ln

(of nat (k+2 ))
by (simp add : field simps)

also have . . . = D k unfolding D def inv def ..
finally show D (k ′ + Suc n) ≥ (inv (k ′ + Suc n + 1 ) − inv (k ′ + Suc n +

2 )) / 2
by (simp add : k def )

from sums summable[OF sums]
show summable (λk . (inv (k + Suc n + 1 ) − inv (k + Suc n + 2 ))/2 ) by

simp
qed
also from sums have . . . = −inv (n+2 ) / 2 by (simp add : sums iff )
finally have euler mascheroni ≥ (

∑
k≤n. D k) + 1 / (of nat (2 ∗ (n+2 )))

by (simp add : inv def field simps)
also have (

∑
k≤n. D k) = harm (Suc n) − (

∑
k≤n. ln (real of nat (Suc k+1 ))

− ln (of nat (k+1 )))
unfolding harm altdef D def by (subst lessThan Suc atMost) (simp add :

sum.distrib sum subtractf )
also have (

∑
k≤n. ln (real of nat (Suc k+1 )) − ln (of nat (k+1 ))) = ln (of nat

(n+2 ))
by (subst atLeast0AtMost [symmetric], subst sum Suc diff ) simp all

finally show euler mascheroni ≥ harm (Suc n) − ln (real of nat (n + 2 )) +
1/real of nat (2 ∗ (n + 2 ))

by simp

note sum
also have −(

∑
k . D (k + Suc n)) ≥ −(

∑
k . (inv (Suc (k + n)) − inv (Suc
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(Suc k + n)))/2 )
proof (intro le imp neg le suminf le allI summable ignore initial segment [OF

summable])
fix k ′ :: nat
define k where k = k ′ + Suc n
hence k : k > 0 by (simp add : k def )
have real of nat (k+1 ) > 0 by (simp add : k def )
from ln inverse approx ge[of of nat k + 1 of nat k + 2 ]
have 2 / (2 ∗ real of nat k + 3 ) ≤ ln (of nat (k+2 )) − ln (real of nat (k+1 ))
by (simp add : add ac)

hence D k ≤ 1 / real of nat (k+1 ) − 2 / (2 ∗ real of nat k + 3 )
by (simp add : D def inverse eq divide inv def )
also have . . . = inv ((k+1 )∗(2∗k+3 )) unfolding inv def by (simp add :

field simps)
also have . . . ≤ inv (2∗k∗(k+1 )) unfolding inv def using k
by (intro le imp inverse le)

(simp add : algebra simps, simp del : of nat add)
also have . . . = (inv k − inv (k+1 ))/2 unfolding inv def using k
by (simp add : divide simps del : of nat mult) (simp add : algebra simps)

finally show D k ≤ (inv (Suc (k ′+ n)) − inv (Suc (Suc k ′+ n)))/2 unfolding
k def by simp
next
from sums summable[OF sums ′]
show summable (λk . (inv (Suc (k + n)) − inv (Suc (Suc k + n)))/2 ) by

simp
qed
also from sums ′ have (

∑
k . (inv (Suc (k + n)) − inv (Suc (Suc k + n)))/2 )

= inv (n+1 )/2
by (simp add : sums iff )

finally have euler mascheroni ≤ (
∑

k≤n. D k) + 1 / of nat (2 ∗ (n+1 ))
by (simp add : inv def field simps)

also have (
∑

k≤n. D k) = harm (Suc n) − (
∑

k≤n. ln (real of nat (Suc k+1 ))
− ln (of nat (k+1 )))

unfolding harm altdef D def by (subst lessThan Suc atMost) (simp add :
sum.distrib sum subtractf )
also have (

∑
k≤n. ln (real of nat (Suc k+1 )) − ln (of nat (k+1 ))) = ln (of nat

(n+2 ))
by (subst atLeast0AtMost [symmetric], subst sum Suc diff ) simp all

finally show euler mascheroni ≤ harm (Suc n) − ln (real of nat (n + 2 )) +
1/real of nat (2 ∗ (n + 1 ))

by simp
qed

lemma euler mascheroni pos: euler mascheroni > (0 ::real)
using euler mascheroni lower [of 0 ] ln 2 less 1 by (simp add : harm def )

context
begin
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private lemma ln approx aux :
fixes n :: nat and x :: real
defines y ≡ (x−1 )/(x+1 )
assumes x : x > 0 x 6= 1
shows inverse (2∗yˆ(2∗n+1 )) ∗ (ln x − (

∑
k<n. 2∗yˆ(2∗k+1 ) / of nat (2∗k+1 )))

∈
{0 ..(1 / (1 − yˆ2 ) / of nat (2∗n+1 ))}

proof −
from x have norm y : norm y < 1 unfolding y def by simp
from power strict mono[OF this, of 2 ] have norm y ′: norm yˆ2 < 1 by simp

let ?f = λk . 2 ∗ y ˆ (2∗k+1 ) / of nat (2∗k+1 )
note sums = ln series quadratic[OF x (1 )]
define c where c = inverse (2∗yˆ(2∗n+1 ))
let ?d = c ∗ (ln x − (

∑
k<n. ?f k))

have
∧
k . y2ˆk / of nat (2∗(k+n)+1 ) ≤ y2 ˆ k / of nat (2∗n+1 )

by (intro divide left mono mult right mono mult pos pos zero le power [of yˆ2 ])
simp all
moreover {
have (λk . ?f (k + n)) sums (ln x − (

∑
k<n. ?f k))

using sums split initial segment [OF sums] by (simp add : y def )
hence (λk . c ∗ ?f (k + n)) sums ?d by (rule sums mult)
also have (λk . c ∗ (2∗yˆ(2∗(k+n)+1 ) / of nat (2∗(k+n)+1 ))) =

(λk . (c ∗ (2∗yˆ(2∗n+1 ))) ∗ ((yˆ2 )ˆk / of nat (2∗(k+n)+1 )))
by (simp only : ring distribs power add power mult) (simp add : mult ac)

also from x have c ∗ (2∗yˆ(2∗n+1 )) = 1 by (simp add : c def y def )
finally have (λk . (yˆ2 )ˆk / of nat (2∗(k+n)+1 )) sums ?d by simp

} note sums ′ = this
moreover from norm y ′ have (λk . (yˆ2 )ˆk / of nat (2∗n+1 )) sums (1 / (1
− yˆ2 ) / of nat (2∗n+1 ))

by (intro sums divide geometric sums) (simp all add : norm power)
ultimately have ?d ≤ (1 / (1 − yˆ2 ) / of nat (2∗n+1 )) by (rule sums le)
moreover have c ∗ (ln x − (

∑
k<n. 2 ∗ y ˆ (2 ∗ k + 1 ) / real of nat (2 ∗ k

+ 1 ))) ≥ 0
by (intro sums le[OF sums zero sums ′]) simp all

ultimately show ?thesis unfolding c def by simp
qed

lemma
fixes n :: nat and x :: real
defines y ≡ (x−1 )/(x+1 )
defines approx ≡ (

∑
k<n. 2∗yˆ(2∗k+1 ) / of nat (2∗k+1 ))

defines d ≡ yˆ(2∗n+1 ) / (1 − yˆ2 ) / of nat (2∗n+1 )
assumes x : x > 1
shows ln approx bounds: ln x ∈ {approx ..approx + 2∗d}
and ln approx abs: abs (ln x − (approx + d)) ≤ d

proof −
define c where c = 2∗yˆ(2∗n+1 )
from x have c pos: c > 0 unfolding c def y def
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by (intro mult pos pos zero less power) simp all
have A: inverse c ∗ (ln x − (

∑
k<n. 2∗yˆ(2∗k+1 ) / of nat (2∗k+1 ))) ∈

{0 .. (1 / (1 − yˆ2 ) / of nat (2∗n+1 ))} using assms unfolding y def
c def

by (intro ln approx aux ) simp all
hence inverse c ∗ (ln x − (

∑
k<n. 2∗yˆ(2∗k+1 )/of nat (2∗k+1 ))) ≤ (1 /

(1−yˆ2 ) / of nat (2∗n+1 ))
by simp

hence (ln x − (
∑

k<n. 2∗yˆ(2∗k+1 ) / of nat (2∗k+1 ))) / c ≤ (1 / (1 − yˆ2 )
/ of nat (2∗n+1 ))

by (auto simp add : field split simps)
with c pos have ln x ≤ c / (1 − yˆ2 ) / of nat (2∗n+1 ) + approx
by (subst (asm) pos divide le eq) (simp all add : mult ac approx def )

moreover {
from A c pos have 0 ≤ c ∗ (inverse c ∗ (ln x − (

∑
k<n. 2∗yˆ(2∗k+1 ) /

of nat (2∗k+1 ))))
by (intro mult nonneg nonneg [of c]) simp all
also have . . . = (c ∗ inverse c) ∗ (ln x − (

∑
k<n. 2∗yˆ(2∗k+1 ) / of nat

(2∗k+1 )))
by (simp add : mult ac)

also from c pos have c ∗ inverse c = 1 by simp
finally have ln x ≥ approx by (simp add : approx def )

}
ultimately show ln x ∈ {approx ..approx + 2∗d} by (simp add : c def d def )
thus abs (ln x − (approx + d)) ≤ d by auto

qed

end

lemma euler mascheroni bounds:
fixes n :: nat assumes n ≥ 1 defines t ≡ harm n − ln (of nat (Suc n)) :: real
shows euler mascheroni ∈ {t + inverse (of nat (2∗(n+1 )))..t + inverse (of nat

(2∗n))}
using assms euler mascheroni upper [of n−1 ] euler mascheroni lower [of n−1 ]
unfolding t def by (cases n) (simp all add : harm Suc t def inverse eq divide)

lemma euler mascheroni bounds ′:
fixes n :: nat assumes n ≥ 1 ln (real of nat (Suc n)) ∈ {l<..<u}
shows euler mascheroni ∈

{harm n − u + inverse (of nat (2∗(n+1 )))<..<harm n − l + inverse
(of nat (2∗n))}
using euler mascheroni bounds[OF assms(1 )] assms(2 ) by auto

Approximation of ln (2 :: ′a). The lower bound is accurate to about 0.03; the
upper bound is accurate to about 0.0015.

lemma ln2 ge two thirds: 2/3 ≤ ln (2 ::real)
and ln2 le 25 over 36 : ln (2 ::real) ≤ 25/36
using ln approx bounds[of 2 1 , simplified , simplified eval nat numeral , simplified ]

by simp all
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Approximation of the Euler-Mascheroni constant. The lower bound is accu-
rate to about 0.0015; the upper bound is accurate to about 0.015.

lemma euler mascheroni gt 19 over 33 : (euler mascheroni :: real) > 19/33 (is
?th1 )
and euler mascheroni less 13 over 22 : (euler mascheroni :: real) < 13/22 (is

?th2 )
proof −
have ln (real (Suc 7 )) = 3 ∗ ln 2 by (simp add : ln powr [symmetric])
also from ln approx bounds[of 2 3 ] have . . . ∈ {3∗307/443<..<3∗4615/6658}
by (simp add : eval nat numeral)

finally have ln (real (Suc 7 )) ∈ . . . .
from euler mascheroni bounds ′[OF this] have ?th1 ∧ ?th2 by (simp all add :

harm expand)
thus ?th1 ?th2 by blast+

qed

end

6.23 The Gamma Function

theory Gamma Function
imports
Equivalence Lebesgue Henstock Integration
Summation Tests
Harmonic Numbers
HOL−Library .Nonpos Ints
HOL−Library .Periodic Fun

begin

Several equivalent definitions of the Gamma function and its most impor-
tant properties. Also contains the definition and some properties of the
log-Gamma function and the Digamma function and the other Polygamma
functions.

Based on the Gamma function, we also prove the Weierstraß product form
of the sin function and, based on this, the solution of the Basel problem (the
sum over all 1 / real (n2).

lemma pochhammer eq 0 imp nonpos Int :
pochhammer (x :: ′a::field char 0 ) n = 0 =⇒ x ∈ ZZ≤0

by (auto simp: pochhammer eq 0 iff )

lemma closed nonpos Ints [simp]: closed (ZZ≤0 :: ′a :: real normed algebra 1 set)
proof −
have ZZ≤0 = (of int ‘ {n. n ≤ 0} :: ′a set)
by (auto elim!: nonpos Ints cases intro!: nonpos Ints of int)

also have closed . . . by (rule closed of int image)
finally show ?thesis .

qed
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lemma plus one in nonpos Ints imp: z + 1 ∈ ZZ≤0 =⇒ z ∈ ZZ≤0

using nonpos Ints diff Nats[of z+1 1 ] by simp all

lemma of int in nonpos Ints iff :
(of int n :: ′a :: ring char 0 ) ∈ ZZ≤0 ←→ n ≤ 0
by (auto simp: nonpos Ints def )

lemma one plus of int in nonpos Ints iff :
(1 + of int n :: ′a :: ring char 0 ) ∈ ZZ≤0 ←→ n ≤ −1

proof −
have 1 + of int n = (of int (n + 1 ) :: ′a) by simp
also have . . . ∈ ZZ≤0 ←→ n + 1 ≤ 0 by (subst of int in nonpos Ints iff ) simp all
also have . . . ←→ n ≤ −1 by presburger
finally show ?thesis .

qed

lemma one minus of nat in nonpos Ints iff :
(1 − of nat n :: ′a :: ring char 0 ) ∈ ZZ≤0 ←→ n > 0

proof −
have (1 − of nat n :: ′a) = of int (1 − int n) by simp
also have . . . ∈ ZZ≤0 ←→ n > 0 by (subst of int in nonpos Ints iff ) presburger
finally show ?thesis .

qed

lemma fraction not in ints:
assumes ¬(n dvd m) n 6= 0
shows of int m / of int n /∈ (ZZ :: ′a :: {division ring ,ring char 0} set)

proof
assume of int m / (of int n :: ′a) ∈ ZZ
then obtain k where of int m / of int n = (of int k :: ′a) by (elim Ints cases)
with assms have of int m = (of int (k ∗ n) :: ′a) by (auto simp add : field split simps)
hence m = k ∗ n by (subst (asm) of int eq iff )
hence n dvd m by simp
with assms(1 ) show False by contradiction

qed

lemma fraction not in nats:
assumes ¬n dvd m n 6= 0
shows of int m / of int n /∈ (IN :: ′a :: {division ring ,ring char 0} set)

proof
assume of int m / of int n ∈ (IN :: ′a set)
also note Nats subset Ints
finally have of int m / of int n ∈ (ZZ :: ′a set) .
moreover have of int m / of int n /∈ (ZZ :: ′a set)
using assms by (intro fraction not in ints)

ultimately show False by contradiction
qed



Gamma Function.thy 2375

lemma not in Ints imp not in nonpos Ints: z /∈ ZZ =⇒ z /∈ ZZ≤0

by (auto simp: Ints def nonpos Ints def )

lemma double in nonpos Ints imp:
assumes 2 ∗ (z :: ′a :: field char 0 ) ∈ ZZ≤0

shows z ∈ ZZ≤0 ∨ z + 1/2 ∈ ZZ≤0

proof−
from assms obtain k where k : 2 ∗ z = − of nat k by (elim nonpos Ints cases ′)
thus ?thesis by (cases even k) (auto elim!: evenE oddE simp: field simps)

qed

lemma sin series: (λn. ((−1 )ˆn / fact (2∗n+1 )) ∗R zˆ(2∗n+1 )) sums sin z
proof −
from sin converges[of z ] have (λn. sin coeff n ∗R zˆn) sums sin z .
also have (λn. sin coeff n ∗R zˆn) sums sin z ←→

(λn. ((−1 )ˆn / fact (2∗n+1 )) ∗R zˆ(2∗n+1 )) sums sin z
by (subst sums mono reindex [of λn. 2∗n+1 , symmetric])

(auto simp: sin coeff def strict mono def ac simps elim!: oddE )
finally show ?thesis .

qed

lemma cos series: (λn. ((−1 )ˆn / fact (2∗n)) ∗R zˆ(2∗n)) sums cos z
proof −
from cos converges[of z ] have (λn. cos coeff n ∗R zˆn) sums cos z .
also have (λn. cos coeff n ∗R zˆn) sums cos z ←→

(λn. ((−1 )ˆn / fact (2∗n)) ∗R zˆ(2∗n)) sums cos z
by (subst sums mono reindex [of λn. 2∗n, symmetric])

(auto simp: cos coeff def strict mono def ac simps elim!: evenE )
finally show ?thesis .

qed

lemma sin z over z series:
fixes z :: ′a :: {real normed field ,banach}
assumes z 6= 0
shows (λn. (−1 )ˆn / fact (2∗n+1 ) ∗ zˆ(2∗n)) sums (sin z / z )

proof −
from sin series[of z ] have (λn. z ∗ ((−1 )ˆn / fact (2∗n+1 )) ∗ zˆ(2∗n)) sums

sin z
by (simp add : field simps scaleR conv of real)

from sums mult [OF this, of inverse z ] and assms show ?thesis
by (simp add : field simps)

qed

lemma sin z over z series ′:
fixes z :: ′a :: {real normed field ,banach}
assumes z 6= 0
shows (λn. sin coeff (n+1 ) ∗R zˆn) sums (sin z / z )

proof −
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from sums split initial segment [OF sin converges[of z ], of 1 ]
have (λn. z ∗ (sin coeff (n+1 ) ∗R z ˆ n)) sums sin z by simp
from sums mult [OF this, of inverse z ] assms show ?thesis by (simp add :

field simps)
qed

lemma has field derivative sin z over z :
fixes A :: ′a :: {real normed field ,banach} set
shows ((λz . if z = 0 then 1 else sin z / z ) has field derivative 0 ) (at 0 within A)

(is (?f has field derivative ?f ′) )
proof (rule has field derivative at within)
have ((λz :: ′a.

∑
n. of real (sin coeff (n+1 )) ∗ zˆn)

has field derivative (
∑

n. diffs (λn. of real (sin coeff (n+1 ))) n ∗ 0ˆn))
(at 0 )
proof (rule termdiffs strong)
from summable ignore initial segment [OF sums summable[OF sin converges[of

1 :: ′a]], of 1 ]
show summable (λn. of real (sin coeff (n+1 )) ∗ (1 :: ′a)ˆn) by (simp add :

of real def )
qed simp
also have (λz :: ′a.

∑
n. of real (sin coeff (n+1 )) ∗ zˆn) = ?f

proof
fix z
show (

∑
n. of real (sin coeff (n+1 )) ∗ zˆn) = ?f z

by (cases z = 0 ) (insert sin z over z series ′[of z ],
simp all add : scaleR conv of real sums iff sin coeff def )

qed
also have (

∑
n. diffs (λn. of real (sin coeff (n + 1 ))) n ∗ (0 :: ′a) ˆ n) =

diffs (λn. of real (sin coeff (Suc n))) 0 by simp
also have . . . = 0 by (simp add : sin coeff def diffs def )
finally show ((λz :: ′a. if z = 0 then 1 else sin z / z ) has field derivative 0 ) (at

0 ) .
qed

lemma round Re minimises norm:
norm ((z ::complex ) − of int m) ≥ norm (z − of int (round (Re z )))

proof −
let ?n = round (Re z )
have norm (z − of int ?n) = sqrt ((Re z − of int ?n)2 + (Im z )2)
by (simp add : cmod def )

also have |Re z − of int ?n| ≤ |Re z − of int m| by (rule round diff minimal)
hence sqrt ((Re z − of int ?n)2 + (Im z )2) ≤ sqrt ((Re z − of int m)2 + (Im

z )2)
by (intro real sqrt le mono add mono) (simp all add : abs le square iff )

also have . . . = norm (z − of int m) by (simp add : cmod def )
finally show ?thesis .

qed

lemma Re pos in ball :
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assumes Re z > 0 t ∈ ball z (Re z/2 )
shows Re t > 0

proof −
have Re (z − t) ≤ norm (z − t) by (rule complex Re le cmod)
also from assms have . . . < Re z / 2 by (simp add : dist complex def )
finally show Re t > 0 using assms by simp

qed

lemma no nonpos Int in ball complex :
assumes Re z > 0 t ∈ ball z (Re z/2 )
shows t /∈ ZZ≤0

using Re pos in ball [OF assms] by (force elim!: nonpos Ints cases)

lemma no nonpos Int in ball :
assumes t ∈ ball z (dist z (round (Re z )))
shows t /∈ ZZ≤0

proof
assume t ∈ ZZ≤0

then obtain n where t = of int n by (auto elim!: nonpos Ints cases)
have dist z (of int n) ≤ dist z t + dist t (of int n) by (rule dist triangle)
also from assms have dist z t < dist z (round (Re z )) by simp
also have . . . ≤ dist z (of int n)
using round Re minimises norm[of z ] by (simp add : dist complex def )

finally have dist t (of int n) > 0 by simp
with 〈t = of int n〉 show False by simp

qed

lemma no nonpos Int in ball ′:
assumes (z :: ′a :: {euclidean space,real normed algebra 1}) /∈ ZZ≤0

obtains d where d > 0
∧
t . t ∈ ball z d =⇒ t /∈ ZZ≤0

proof (rule that)
from assms show setdist {z} ZZ≤0 > 0 by (subst setdist gt 0 compact closed)

auto
next
fix t assume t ∈ ball z (setdist {z} ZZ≤0)
thus t /∈ ZZ≤0 using setdist le dist [of z {z} t ZZ≤0] by force

qed

lemma no nonpos Real in ball :
assumes z : z /∈ IR≤0 and t : t ∈ ball z (if Im z = 0 then Re z / 2 else abs (Im

z ) / 2 )
shows t /∈ IR≤0

using z
proof (cases Im z = 0 )
assume A: Im z = 0
with z have Re z > 0 by (force simp add : complex nonpos Reals iff )
with t A Re pos in ball [of z t ] show ?thesis by (force simp add : complex nonpos Reals iff )

next
assume A: Im z 6= 0
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have abs (Im z ) − abs (Im t) ≤ abs (Im z − Im t) by linarith
also have . . . = abs (Im (z − t)) by simp
also have . . . ≤ norm (z − t) by (rule abs Im le cmod)
also from A t have . . . ≤ abs (Im z ) / 2 by (simp add : dist complex def )
finally have abs (Im t) > 0 using A by simp
thus ?thesis by (force simp add : complex nonpos Reals iff )

qed

6.23.1 The Euler form and the logarithmic Gamma function

We define the Gamma function by first defining its multiplicative inverse
rGamma. This is more convenient because rGamma is entire, which makes
proofs of its properties more convenient because one does not have to watch
out for discontinuities. (e.g. rGamma fulfils rGamma z = z ∗ rGamma
(z + 1 ) everywhere, whereas the Γ function does not fulfil the analogous
equation on the non-positive integers)

We define the Γ function (resp. its reciprocale) in the Euler form. This
form has the advantage that it is a relatively simple limit that converges
everywhere. The limit at the poles is 0 (due to division by 0). The functional
equation Gamma (z + 1 ) = z ∗ Gamma z follows immediately from the
definition.

definition Gamma series :: ( ′a :: {banach,real normed field}) ⇒ nat ⇒ ′a where
Gamma series z n = fact n ∗ exp (z ∗ of real (ln (of nat n))) / pochhammer z

(n+1 )

definition Gamma series ′ :: ( ′a :: {banach,real normed field})⇒ nat ⇒ ′a where
Gamma series ′ z n = fact (n − 1 ) ∗ exp (z ∗ of real (ln (of nat n))) / pochham-

mer z n

definition rGamma series :: ( ′a :: {banach,real normed field})⇒ nat ⇒ ′a where
rGamma series z n = pochhammer z (n+1 ) / (fact n ∗ exp (z ∗ of real (ln (of nat

n))))

lemma Gamma series altdef : Gamma series z n = inverse (rGamma series z n)
and rGamma series altdef : rGamma series z n = inverse (Gamma series z n)
unfolding Gamma series def rGamma series def by simp all

lemma rGamma series minus of nat :
eventually (λn. rGamma series (− of nat k) n = 0 ) sequentially
using eventually ge at top[of k ]
by eventually elim (auto simp: rGamma series def pochhammer of nat eq 0 iff )

lemma Gamma series minus of nat :
eventually (λn. Gamma series (− of nat k) n = 0 ) sequentially
using eventually ge at top[of k ]
by eventually elim (auto simp: Gamma series def pochhammer of nat eq 0 iff )
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lemma Gamma series ′ minus of nat :
eventually (λn. Gamma series ′ (− of nat k) n = 0 ) sequentially
using eventually gt at top[of k ]
by eventually elim (auto simp: Gamma series ′ def pochhammer of nat eq 0 iff )

lemma rGamma series nonpos Ints LIMSEQ : z ∈ ZZ≤0 =⇒ rGamma series z −−−−→
0
by (elim nonpos Ints cases ′, hypsubst , subst tendsto cong , rule rGamma series minus of nat ,

simp)

lemma Gamma series nonpos Ints LIMSEQ : z ∈ ZZ≤0 =⇒ Gamma series z −−−−→
0
by (elim nonpos Ints cases ′, hypsubst , subst tendsto cong , rule Gamma series minus of nat ,

simp)

lemma Gamma series ′ nonpos Ints LIMSEQ : z ∈ ZZ≤0 =⇒ Gamma series ′ z −−−−→
0
by (elim nonpos Ints cases ′, hypsubst , subst tendsto cong , rule Gamma series ′ minus of nat ,

simp)

lemma Gamma series Gamma series ′:
assumes z : z /∈ ZZ≤0

shows (λn. Gamma series ′ z n / Gamma series z n) −−−−→ 1
proof (rule Lim transform eventually)
from eventually gt at top[of 0 ::nat ]
show eventually (λn. z / of nat n + 1 = Gamma series ′ z n / Gamma series

z n) sequentially
proof eventually elim
fix n :: nat assume n: n > 0
from n z have Gamma series ′ z n / Gamma series z n = (z + of nat n) /

of nat n
by (cases n, simp)

(auto simp add : Gamma series def Gamma series ′ def pochhammer rec ′

dest : pochhammer eq 0 imp nonpos Int plus of nat eq 0 imp)
also from n have . . . = z / of nat n + 1 by (simp add : field split simps)
finally show z / of nat n + 1 = Gamma series ′ z n / Gamma series z n ..

qed
have (λx . z / of nat x ) −−−−→ 0
by (rule tendsto norm zero cancel)

(insert tendsto mult [OF tendsto const [of norm z ] lim inverse n],
simp add : norm divide inverse eq divide)

from tendsto add [OF this tendsto const [of 1 ]] show (λn. z / of nat n + 1 )
−−−−→ 1 by simp
qed

We now show that the series that defines the Γ function in the Euler form
converges and that the function defined by it is continuous on the complex
halfspace with positive real part.

We do this by showing that the logarithm of the Euler series is continuous
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and converges locally uniformly, which means that the log-Gamma function
defined by its limit is also continuous.

This will later allow us to lift holomorphicity and continuity from the log-
Gamma function to the inverse of the Gamma function, and from that to
the Gamma function itself.

definition ln Gamma series :: ( ′a :: {banach,real normed field ,ln}) ⇒ nat ⇒ ′a
where
ln Gamma series z n = z ∗ ln (of nat n) − ln z − (

∑
k=1 ..n. ln (z / of nat k

+ 1 ))

definition ln Gamma series ′ :: ( ′a :: {banach,real normed field ,ln}) ⇒ nat ⇒ ′a
where
ln Gamma series ′ z n =
− euler mascheroni∗z − ln z + (

∑
k=1 ..n. z / of nat n − ln (z / of nat k +

1 ))

definition ln Gamma :: ( ′a :: {banach,real normed field ,ln}) ⇒ ′a where
ln Gamma z = lim (ln Gamma series z )

We now show that the log-Gamma series converges locally uniformly for all
complex numbers except the non-positive integers. We do this by proving
that the series is locally Cauchy.

context
begin

private lemma ln Gamma series complex converges aux :
fixes z :: complex and k :: nat
assumes z : z 6= 0 and k : of nat k ≥ 2∗norm z k ≥ 2
shows norm (z ∗ ln (1 − 1/of nat k) + ln (z/of nat k + 1 )) ≤ 2∗(norm z +

norm zˆ2 ) / of nat kˆ2
proof −
let ?k = of nat k :: complex and ?z = norm z
have z ∗ln (1 − 1/?k) + ln (z/?k+1 ) = z∗(ln (1 − 1/?k :: complex ) + 1/?k)

+ (ln (1+z/?k) − z/?k)
by (simp add : algebra simps)

also have norm ... ≤ ?z ∗ norm (ln (1−1/?k) + 1/?k :: complex ) + norm (ln
(1+z/?k) − z/?k)

by (subst norm mult [symmetric], rule norm triangle ineq)
also have norm (Ln (1 + −1/?k) − (−1/?k)) ≤ (norm (−1/?k))2 / (1 −

norm(−1/?k))
using k by (intro Ln approx linear) (simp add : norm divide)

hence ?z ∗ norm (ln (1−1/?k) + 1/?k) ≤ ?z ∗ ((norm (1/?k))ˆ2 / (1 − norm
(1/?k)))

by (intro mult left mono) simp all
also have ... ≤ (?z ∗ (of nat k / (of nat k − 1 ))) / of nat kˆ2 using k
by (simp add : field simps power2 eq square norm divide)

also have ... ≤ (?z ∗ 2 ) / of nat kˆ2 using k
by (intro divide right mono mult left mono) (simp all add : field simps)
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also have norm (ln (1+z/?k) − z/?k) ≤ norm (z/?k)ˆ2 / (1 − norm (z/?k))
using k

by (intro Ln approx linear) (simp add : norm divide)
hence norm (ln (1+z/?k) − z/?k) ≤ ?zˆ2 / of nat kˆ2 / (1 − ?z / of nat k)
by (simp add : field simps norm divide)

also have ... ≤ (?zˆ2 ∗ (of nat k / (of nat k − ?z ))) / of nat kˆ2 using k
by (simp add : field simps power2 eq square)

also have ... ≤ (?zˆ2 ∗ 2 ) / of nat kˆ2 using k
by (intro divide right mono mult left mono) (simp all add : field simps)

also note add divide distrib [symmetric]
finally show ?thesis by (simp only : distrib left mult .commute)

qed

lemma ln Gamma series complex converges:
assumes z : z /∈ ZZ≤0

assumes d : d > 0
∧
n. n ∈ ZZ≤0 =⇒ norm (z − of int n) > d

shows uniformly convergent on (ball z d) (λn z . ln Gamma series z n :: complex )
proof (intro Cauchy uniformly convergent uniformly Cauchy onI ′)
fix e :: real assume e: e > 0
define e ′′ where e ′′ = (SUP t∈ball z d . norm t + norm tˆ2 )
define e ′ where e ′ = e / (2∗e ′′)
have bounded ((λt . norm t + norm tˆ2 ) ‘ cball z d)
by (intro compact imp bounded compact continuous image) (auto intro!: con-

tinuous intros)
hence bounded ((λt . norm t + norm tˆ2 ) ‘ ball z d) by (rule bounded subset)

auto
hence bdd : bdd above ((λt . norm t + norm tˆ2 ) ‘ ball z d) by (rule bounded imp bdd above)

with z d(1 ) d(2 )[of −1 ] have e ′′ pos: e ′′ > 0 unfolding e ′′ def
by (subst less cSUP iff ) (auto intro!: add pos nonneg bexI [of z ])

have e ′′: norm t + norm tˆ2 ≤ e ′′ if t ∈ ball z d for t unfolding e ′′ def using
that

by (rule cSUP upper [OF bdd ])
from e z e ′′ pos have e ′: e ′ > 0 unfolding e ′ def
by (intro divide pos pos mult pos pos add pos pos) (simp all add : field simps)

have summable (λk . inverse ((real of nat k)ˆ2 ))
by (rule inverse power summable) simp

from summable partial sum bound [OF this e ′] guess M . note M = this

define N where N = max 2 (max (nat d2 ∗ (norm z + d)e) M )
{
from d have d2 ∗ (cmod z + d)e ≥ d0 ::reale
by (intro ceiling mono mult nonneg nonneg add nonneg nonneg) simp all

hence 2 ∗ (norm z + d) ≤ of nat (nat d2 ∗ (norm z + d)e) unfolding N def
by (simp all)

also have ... ≤ of nat N unfolding N def
by (subst of nat le iff ) (rule max .coboundedI2 , rule max .cobounded1 )

finally have of nat N ≥ 2 ∗ (norm z + d) .
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moreover have N ≥ 2 N ≥ M unfolding N def by simp all
moreover have (

∑
k=m..n. 1/(of nat k)2) < e ′ if m ≥ N for m n

using M [OF order .trans[OF 〈N ≥ M 〉 that ]] unfolding real norm def
by (subst (asm) abs of nonneg) (auto intro: sum nonneg simp: field split simps)
moreover note calculation

} note N = this

show ∃M . ∀ t∈ball z d . ∀m≥M . ∀n>m. dist (ln Gamma series t m) (ln Gamma series
t n) < e

unfolding dist complex def
proof (intro exI [of N ] ballI allI impI )
fix t m n assume t : t ∈ ball z d and mn: m ≥ N n > m
from d(2 )[of 0 ] t have 0 < dist z 0 − dist z t by (simp add : field simps

dist complex def )
also have dist z 0 − dist z t ≤ dist 0 t using dist triangle[of 0 z t ]
by (simp add : dist commute)

finally have t nz : t 6= 0 by auto

have norm t ≤ norm z + norm (t − z ) by (rule norm triangle sub)
also from t have norm (t − z ) < d by (simp add : dist complex def norm minus commute)
also have 2 ∗ (norm z + d) ≤ of nat N by (rule N )
also have N ≤ m by (rule mn)
finally have norm t : 2 ∗ norm t < of nat m by simp

have ln Gamma series t m − ln Gamma series t n =
(−(t ∗ Ln (of nat n)) − (−(t ∗ Ln (of nat m)))) +
((
∑

k=1 ..n. Ln (t / of nat k + 1 )) − (
∑

k=1 ..m. Ln (t / of nat k +
1 )))

by (simp add : ln Gamma series def algebra simps)
also have (

∑
k=1 ..n. Ln (t / of nat k + 1 )) − (

∑
k=1 ..m. Ln (t / of nat k

+ 1 )) =
(
∑

k∈{1 ..n}−{1 ..m}. Ln (t / of nat k + 1 )) using mn
by (simp add : sum diff )

also from mn have {1 ..n}−{1 ..m} = {Suc m..n} by fastforce
also have −(t ∗ Ln (of nat n)) − (−(t ∗ Ln (of nat m))) =

(
∑

k = Suc m..n. t ∗ Ln (of nat (k − 1 )) − t ∗ Ln (of nat k))
using mn

by (subst sum telescope ′′ [symmetric]) simp all
also have ... = (

∑
k = Suc m..n. t ∗ Ln (of nat (k − 1 ) / of nat k)) using

mn N
by (intro sum cong Suc)

(simp all del : of nat Suc add : field simps Ln of nat Ln of nat over of nat)
also have of nat (k − 1 ) / of nat k = 1 − 1 / (of nat k :: complex ) if k ∈

{Suc m..n} for k
using that of nat eq 0 iff [of Suc i for i ] by (cases k) (simp all add : field split simps)
hence (

∑
k = Suc m..n. t ∗ Ln (of nat (k − 1 ) / of nat k)) =

(
∑

k = Suc m..n. t ∗ Ln (1 − 1 / of nat k)) using mn N
by (intro sum.cong) simp all

also note sum.distrib [symmetric]
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also have norm (
∑

k=Suc m..n. t ∗ Ln (1 − 1/of nat k) + Ln (t/of nat k
+ 1 )) ≤

(
∑

k=Suc m..n. 2 ∗ (norm t + (norm t)2) / (real of nat k)2) using t nz
N (2 ) mn norm t

by (intro order .trans[OF norm sum sum mono[OF ln Gamma series complex converges aux ]])
simp all

also have ... ≤ 2 ∗ (norm t + norm tˆ2 ) ∗ (
∑

k=Suc m..n. 1 / (of nat k)2)
by (simp add : sum distrib left)

also have ... < 2 ∗ (norm t + norm tˆ2 ) ∗ e ′ using mn z t nz
by (intro mult strict left mono N mult pos pos add pos pos) simp all

also from e ′′ pos have ... = e ∗ ((cmod t + (cmod t)2) / e ′′)
by (simp add : e ′ def field simps power2 eq square)

also from e ′′[OF t ] e ′′ pos e
have . . . ≤ e ∗ 1 by (intro mult left mono) (simp all add : field simps)
finally show norm (ln Gamma series t m − ln Gamma series t n) < e by

simp
qed

qed

end

lemma ln Gamma series complex converges ′:
assumes z : (z :: complex ) /∈ ZZ≤0

shows ∃ d>0 . uniformly convergent on (ball z d) (λn z . ln Gamma series z n)
proof −
define d ′ where d ′ = Re z
define d where d = (if d ′ > 0 then d ′ / 2 else norm (z − of int (round d ′)) /

2 )
have of int (round d ′) ∈ ZZ≤0 if d ′ ≤ 0 using that
by (intro nonpos Ints of int) (simp all add : round def )

with assms have d pos: d > 0 unfolding d def by (force simp: not less)

have d < cmod (z − of int n) if n ∈ ZZ≤0 for n
proof (cases Re z > 0 )
case True
from nonpos Ints nonpos[OF that ] have n: n ≤ 0 by simp
from True have d = Re z/2 by (simp add : d def d ′ def )
also from n True have . . . < Re (z − of int n) by simp
also have . . . ≤ norm (z − of int n) by (rule complex Re le cmod)
finally show ?thesis .

next
case False
with assms nonpos Ints of int [of round (Re z )]
have z 6= of int (round d ′) by (auto simp: not less)

with False have d < norm (z − of int (round d ′)) by (simp add : d def d ′ def )
also have . . . ≤ norm (z − of int n) unfolding d ′ def by (rule round Re minimises norm)
finally show ?thesis .

qed
hence conv : uniformly convergent on (ball z d) (λn z . ln Gamma series z n)
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by (intro ln Gamma series complex converges d pos z ) simp all
from d pos conv show ?thesis by blast

qed

lemma ln Gamma series complex converges ′′: (z :: complex ) /∈ ZZ≤0 =⇒ conver-
gent (ln Gamma series z )
by (drule ln Gamma series complex converges ′) (auto intro: uniformly convergent imp convergent)

theorem ln Gamma complex LIMSEQ : (z :: complex ) /∈ ZZ≤0 =⇒ ln Gamma series
z −−−−→ ln Gamma z
using ln Gamma series complex converges ′′ by (simp add : convergent LIMSEQ iff

ln Gamma def )

lemma exp ln Gamma series complex :
assumes n > 0 z /∈ ZZ≤0

shows exp (ln Gamma series z n :: complex ) = Gamma series z n
proof −
from assms obtain m where m: n = Suc m by (cases n) blast
from assms have z 6= 0 by (intro notI ) auto
with assms have exp (ln Gamma series z n) =

(of nat n) powr z / (z ∗ (
∏

k=1 ..n. exp (Ln (z / of nat k + 1 ))))
unfolding ln Gamma series def powr def by (simp add : exp diff exp sum)

also from assms have (
∏

k=1 ..n. exp (Ln (z / of nat k + 1 ))) = (
∏

k=1 ..n.
z / of nat k + 1 )

by (intro prod .cong [OF refl ], subst exp Ln) (auto simp: field simps plus of nat eq 0 imp)
also have ... = (

∏
k=1 ..n. z + k) / fact n

by (simp add : fact prod)
(subst prod dividef [symmetric], simp all add : field simps)

also from m have z ∗ ... = (
∏

k=0 ..n. z + k) / fact n
by (simp add : prod .atLeast0 atMost Suc shift prod .atLeast Suc atMost Suc shift

del : prod .cl ivl Suc)
also have (

∏
k=0 ..n. z + k) = pochhammer z (Suc n)

unfolding pochhammer prod
by (simp add : prod .atLeast0 atMost Suc atLeastLessThanSuc atLeastAtMost)

also have of nat n powr z / (pochhammer z (Suc n) / fact n) = Gamma series
z n

unfolding Gamma series def using assms by (simp add : field split simps
powr def )
finally show ?thesis .

qed

lemma ln Gamma series ′ aux :
assumes (z ::complex ) /∈ ZZ≤0

shows (λk . z / of nat (Suc k) − ln (1 + z / of nat (Suc k))) sums
(ln Gamma z + euler mascheroni ∗ z + ln z ) (is ?f sums ?s)

unfolding sums def
proof (rule Lim transform)
show (λn. ln Gamma series z n + of real (harm n − ln (of nat n)) ∗ z + ln z )
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−−−−→ ?s
(is ?g −−−−→ )
by (intro tendsto intros ln Gamma complex LIMSEQ euler mascheroni LIMSEQ of real

assms)

have A: eventually (λn. (
∑

k<n. ?f k) − ?g n = 0 ) sequentially
using eventually gt at top[of 0 ::nat ]

proof eventually elim
fix n :: nat assume n: n > 0
have (

∑
k<n. ?f k) = (

∑
k=1 ..n. z / of nat k − ln (1 + z / of nat k))

by (subst atLeast0LessThan [symmetric], subst sum.shift bounds Suc ivl [symmetric],
subst atLeastLessThanSuc atLeastAtMost) simp all

also have . . . = z ∗ of real (harm n) − (
∑

k=1 ..n. ln (1 + z / of nat k))
by (simp add : harm def sum subtractf sum distrib left divide inverse)

also from n have . . . − ?g n = 0
by (simp add : ln Gamma series def sum subtractf algebra simps)

finally show (
∑

k<n. ?f k) − ?g n = 0 .
qed
show (λn. (

∑
k<n. ?f k) − ?g n) −−−−→ 0 by (subst tendsto cong [OF A])

simp all
qed

lemma uniformly summable deriv ln Gamma:
assumes z : (z :: ′a :: {real normed field ,banach}) 6= 0 and d : d > 0 d ≤ norm

z/2
shows uniformly convergent on (ball z d)

(λk z .
∑

i<k . inverse (of nat (Suc i)) − inverse (z + of nat (Suc i)))
(is uniformly convergent on (λk z .

∑
i<k . ?f i z ))

proof (rule Weierstrass m test ′ ev)
{
fix t assume t : t ∈ ball z d
have norm z = norm (t + (z − t)) by simp
have norm (t + (z − t)) ≤ norm t + norm (z − t) by (rule norm triangle ineq)
also from t d have norm (z − t) < norm z / 2 by (simp add : dist norm)
finally have A: norm t > norm z / 2 using z by (simp add : field simps)

have norm t = norm (z + (t − z )) by simp
also have . . . ≤ norm z + norm (t − z ) by (rule norm triangle ineq)
also from t d have norm (t − z ) ≤ norm z / 2 by (simp add : dist norm

norm minus commute)
also from z have . . . < norm z by simp
finally have B : norm t < 2 ∗ norm z by simp
note A B

} note ball = this

show eventually (λn. ∀ t∈ball z d . norm (?f n t) ≤ 4 ∗ norm z ∗ inverse (of nat
(Suc n)ˆ2 )) sequentially

using eventually gt at top apply eventually elim
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proof safe
fix t :: ′a assume t : t ∈ ball z d
from z ball [OF t ] have t nz : t 6= 0 by auto
fix n :: nat assume n: n > nat d4 ∗ norm ze
from ball [OF t ] t nz have 4 ∗ norm z > 2 ∗ norm t by simp
also from n have . . . < of nat n by linarith
finally have n: of nat n > 2 ∗ norm t .
hence of nat n > norm t by simp
hence t ′: t 6= −of nat (Suc n) by (intro notI ) (simp del : of nat Suc)

with t nz have ?f n t = 1 / (of nat (Suc n) ∗ (1 + of nat (Suc n)/t))
by (simp add : field split simps eq neg iff add eq 0 del : of nat Suc)

also have norm . . . = inverse (of nat (Suc n)) ∗ inverse (norm (of nat (Suc
n)/t + 1 ))

by (simp add : norm divide norm mult field split simps del : of nat Suc)
also {
from z t nz ball [OF t ] have of nat (Suc n) / (4 ∗ norm z ) ≤ of nat (Suc n)

/ (2 ∗ norm t)
by (intro divide left mono mult pos pos) simp all

also have . . . < norm (of nat (Suc n) / t) − norm (1 :: ′a)
using t nz n by (simp add : field simps norm divide del : of nat Suc)

also have . . . ≤ norm (of nat (Suc n)/t + 1 ) by (rule norm diff ineq)
finally have inverse (norm (of nat (Suc n)/t + 1 )) ≤ 4 ∗ norm z / of nat

(Suc n)
using z by (simp add : field split simps norm divide mult ac del : of nat Suc)

}
also have inverse (real of nat (Suc n)) ∗ (4 ∗ norm z / real of nat (Suc n)) =

4 ∗ norm z ∗ inverse (of nat (Suc n)ˆ2 )
by (simp add : field split simps power2 eq square del : of nat Suc)

finally show norm (?f n t) ≤ 4 ∗ norm z ∗ inverse (of nat (Suc n)ˆ2 )
by (simp del : of nat Suc)

qed
next
show summable (λn. 4 ∗ norm z ∗ inverse ((of nat (Suc n))ˆ2 ))
by (subst summable Suc iff ) (simp add : summable mult inverse power summable)

qed

6.23.2 The Polygamma functions

lemma summable deriv ln Gamma:
z 6= (0 :: ′a :: {real normed field ,banach}) =⇒

summable (λn. inverse (of nat (Suc n)) − inverse (z + of nat (Suc n)))
unfolding summable iff convergent
by (rule uniformly convergent imp convergent ,

rule uniformly summable deriv ln Gamma[of z norm z/2 ]) simp all

definition Polygamma :: nat ⇒ ( ′a :: {real normed field ,banach}) ⇒ ′a where
Polygamma n z = (if n = 0 then

(
∑

k . inverse (of nat (Suc k)) − inverse (z + of nat k)) − euler mascheroni
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else
(−1 )ˆSuc n ∗ fact n ∗ (

∑
k . inverse ((z + of nat k)ˆSuc n)))

abbreviation Digamma :: ( ′a :: {real normed field ,banach}) ⇒ ′a where
Digamma ≡ Polygamma 0

lemma Digamma def :
Digamma z = (

∑
k . inverse (of nat (Suc k)) − inverse (z + of nat k)) − eu-

ler mascheroni
by (simp add : Polygamma def )

lemma summable Digamma:
assumes (z :: ′a :: {real normed field ,banach}) 6= 0
shows summable (λn. inverse (of nat (Suc n)) − inverse (z + of nat n))

proof −
have sums: (λn. inverse (z + of nat (Suc n)) − inverse (z + of nat n)) sums

(0 − inverse (z + of nat 0 ))
by (intro telescope sums filterlim compose[OF tendsto inverse 0 ]

tendsto add filterlim at infinity [OF tendsto const ] tendsto of nat)
from summable add [OF summable deriv ln Gamma[OF assms] sums summable[OF

sums]]
show summable (λn. inverse (of nat (Suc n)) − inverse (z + of nat n)) by

simp
qed

lemma summable offset :
assumes summable (λn. f (n + k) :: ′a :: real normed vector)
shows summable f

proof −
from assms have convergent (λm.

∑
n<m. f (n + k))

using summable iff convergent by blast
hence convergent (λm. (

∑
n<k . f n) + (

∑
n<m. f (n + k)))

by (intro convergent add convergent const)
also have (λm. (

∑
n<k . f n) + (

∑
n<m. f (n + k))) = (λm.

∑
n<m+k . f n)

proof
fix m :: nat
have {..<m+k} = {..<k} ∪ {k ..<m+k} by auto
also have (

∑
n∈. . . . f n) = (

∑
n<k . f n) + (

∑
n=k ..<m+k . f n)

by (rule sum.union disjoint) auto
also have (

∑
n=k ..<m+k . f n) = (

∑
n=0 ..<m+k−k . f (n + k))

using sum.shift bounds nat ivl [of f 0 k m] by simp
finally show (

∑
n<k . f n) + (

∑
n<m. f (n + k)) = (

∑
n<m+k . f n) by

(simp add : atLeast0LessThan)
qed
finally have (λa. sum f {..<a}) −−−−→ lim (λm. sum f {..<m + k})
by (auto simp: convergent LIMSEQ iff dest : LIMSEQ offset)

thus ?thesis by (auto simp: summable iff convergent convergent def )
qed
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lemma Polygamma converges:
fixes z :: ′a :: {real normed field ,banach}
assumes z : z 6= 0 and n: n ≥ 2
shows uniformly convergent on (ball z d) (λk z .

∑
i<k . inverse ((z + of nat

i)ˆn))
proof (rule Weierstrass m test ′ ev)
define e where e = (1 + d / norm z )
define m where m = nat dnorm z ∗ ee
{
fix t assume t : t ∈ ball z d
have norm t = norm (z + (t − z )) by simp
also have . . . ≤ norm z + norm (t − z ) by (rule norm triangle ineq)
also from t have norm (t − z ) < d by (simp add : dist norm norm minus commute)
finally have norm t < norm z ∗ e using z by (simp add : divide simps e def )

} note ball = this

show eventually (λk . ∀ t∈ball z d . norm (inverse ((t + of nat k)ˆn)) ≤
inverse (of nat (k − m)ˆn)) sequentially

using eventually gt at top[of m] apply eventually elim
proof (intro ballI )
fix k :: nat and t :: ′a assume k : k > m and t : t ∈ ball z d
from k have real of nat (k − m) = of nat k − of nat m by (simp add :

of nat diff )
also have . . . ≤ norm (of nat k :: ′a) − norm z ∗ e
unfolding m def by (subst norm of nat) linarith

also from ball [OF t ] have . . . ≤ norm (of nat k :: ′a) − norm t by simp
also have . . . ≤ norm (of nat k + t) by (rule norm diff ineq)
finally have inverse ((norm (t + of nat k))ˆn) ≤ inverse (real of nat (k −

m)ˆn) using k n
by (intro le imp inverse le power mono) (simp all add : add ac del : of nat Suc)
thus norm (inverse ((t + of nat k)ˆn)) ≤ inverse (of nat (k − m)ˆn)
by (simp add : norm inverse norm power power inverse)

qed

have summable (λk . inverse ((real of nat k)ˆn))
using inverse power summable[of n] n by simp

hence summable (λk . inverse ((real of nat (k + m − m))ˆn)) by simp
thus summable (λk . inverse ((real of nat (k − m))ˆn)) by (rule summable offset)

qed

lemma Polygamma converges ′:
fixes z :: ′a :: {real normed field ,banach}
assumes z : z 6= 0 and n: n ≥ 2
shows summable (λk . inverse ((z + of nat k)ˆn))
using uniformly convergent imp convergent [OF Polygamma converges[OF assms,

of 1 ], of z ]
by (simp add : summable iff convergent)
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theorem Digamma LIMSEQ :
fixes z :: ′a :: {banach,real normed field}
assumes z : z 6= 0
shows (λm. of real (ln (real m)) − (

∑
n<m. inverse (z + of nat n))) −−−−→

Digamma z
proof −
have (λn. of real (ln (real n / (real (Suc n))))) −−−−→ (of real (ln 1 ) :: ′a)
by (intro tendsto intros LIMSEQ n over Suc n) simp all

hence (λn. of real (ln (real n / (real n + 1 )))) −−−−→ (0 :: ′a) by (simp add :
add ac)
hence lim: (λn. of real (ln (real n)) − of real (ln (real n + 1 ))) −−−−→ (0 :: ′a)
proof (rule Lim transform eventually)
show eventually (λn. of real (ln (real n / (real n + 1 ))) =

of real (ln (real n)) − (of real (ln (real n + 1 )) :: ′a)) at top
using eventually gt at top[of 0 ::nat ] by eventually elim (simp add : ln div)

qed

from summable Digamma[OF z ]
have (λn. inverse (of nat (n+1 )) − inverse (z + of nat n))

sums (Digamma z + euler mascheroni)
by (simp add : Digamma def summable sums)

from sums diff [OF this euler mascheroni sum]
have (λn. of real (ln (real (Suc n) + 1 )) − of real (ln (real n + 1 )) − inverse

(z + of nat n))
sums Digamma z by (simp add : add ac)

hence (λm. (
∑

n<m. of real (ln (real (Suc n) + 1 )) − of real (ln (real n +
1 ))) −

(
∑

n<m. inverse (z + of nat n))) −−−−→ Digamma z
by (simp add : sums def sum subtractf )

also have (λm. (
∑

n<m. of real (ln (real (Suc n) + 1 )) − of real (ln (real n
+ 1 )))) =

(λm. of real (ln (m + 1 )) :: ′a)
by (subst sum lessThan telescope) simp all

finally show ?thesis by (rule Lim transform) (insert lim, simp)
qed

theorem Polygamma LIMSEQ :
fixes z :: ′a :: {banach,real normed field}
assumes z 6= 0 and n > 0
shows (λk . inverse ((z + of nat k)ˆSuc n)) sums ((−1 ) ˆ Suc n ∗ Polygamma

n z / fact n)
using Polygamma converges ′[OF assms(1 ), of Suc n] assms(2 )
by (simp add : sums iff Polygamma def )

theorem has field derivative ln Gamma complex [derivative intros]:
fixes z :: complex
assumes z : z /∈ IR≤0

shows (ln Gamma has field derivative Digamma z ) (at z )
proof −
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have not nonpos Int [simp]: t /∈ ZZ≤0 if Re t > 0 for t
using that by (auto elim!: nonpos Ints cases ′)

from z have z ′: z /∈ ZZ≤0 and z ′′: z 6= 0 using nonpos Ints subset nonpos Reals
nonpos Reals zero I

by blast+
let ?f ′ = λz k . inverse (of nat (Suc k)) − inverse (z + of nat (Suc k))
let ?f = λz k . z / of nat (Suc k) − ln (1 + z / of nat (Suc k)) and ?F ′ = λz .∑
n. ?f ′ z n
define d where d = min (norm z/2 ) (if Im z = 0 then Re z / 2 else abs (Im

z ) / 2 )
from z have d : d > 0 norm z/2 ≥ d by (auto simp add : complex nonpos Reals iff

d def )
have ball : Im t = 0 −→ Re t > 0 if dist z t < d for t
using no nonpos Real in ball [OF z , of t ] that unfolding d def by (force simp

add : complex nonpos Reals iff )
have sums: (λn. inverse (z + of nat (Suc n)) − inverse (z + of nat n)) sums

(0 − inverse (z + of nat 0 ))
by (intro telescope sums filterlim compose[OF tendsto inverse 0 ]

tendsto add filterlim at infinity [OF tendsto const ] tendsto of nat)

have ((λz .
∑

n. ?f z n) has field derivative ?F ′ z ) (at z )
using d z ln Gamma series ′ aux [OF z ′]
apply (intro has field derivative series ′(2 )[of ball z d z ] uniformly summable deriv ln Gamma)
apply (auto intro!: derivative eq intros add pos pos mult pos pos dest !: ball

simp: field simps sums iff nonpos Reals divide of nat iff
simp del : of nat Suc)

apply (auto simp add : complex nonpos Reals iff )
done

with z have ((λz . (
∑

k . ?f z k) − euler mascheroni ∗ z − Ln z ) has field derivative
?F ′ z − euler mascheroni − inverse z ) (at z )

by (force intro!: derivative eq intros simp: Digamma def )
also have ?F ′ z − euler mascheroni − inverse z = (?F ′ z + −inverse z ) −

euler mascheroni by simp
also from sums have −inverse z = (

∑
n. inverse (z + of nat (Suc n)) − inverse

(z + of nat n))
by (simp add : sums iff )

also from sums summable deriv ln Gamma[OF z ′′]
have ?F ′ z + . . . = (

∑
n. inverse (of nat (Suc n)) − inverse (z + of nat n))

by (subst suminf add) (simp all add : add ac sums iff )
also have . . . − euler mascheroni = Digamma z by (simp add : Digamma def )
finally have ((λz . (

∑
k . ?f z k) − euler mascheroni ∗ z − Ln z )

has field derivative Digamma z ) (at z ) .
moreover from eventually nhds ball [OF d(1 ), of z ]
have eventually (λz . ln Gamma z = (

∑
k . ?f z k) − euler mascheroni ∗ z −

Ln z ) (nhds z )
proof eventually elim
fix t assume t ∈ ball z d
hence t /∈ ZZ≤0 by (auto dest !: ball elim!: nonpos Ints cases)
from ln Gamma series ′ aux [OF this]
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show ln Gamma t = (
∑

k . ?f t k) − euler mascheroni ∗ t − Ln t by (simp
add : sums iff )
qed
ultimately show ?thesis by (subst DERIV cong ev [OF refl refl ])

qed

declare has field derivative ln Gamma complex [THEN DERIV chain2 , derivative intros]

lemma Digamma 1 [simp]: Digamma (1 :: ′a :: {real normed field ,banach}) = −
euler mascheroni
by (simp add : Digamma def )

lemma Digamma plus1 :
assumes z 6= 0
shows Digamma (z+1 ) = Digamma z + 1/z

proof −
have sums: (λk . inverse (z + of nat k) − inverse (z + of nat (Suc k)))

sums (inverse (z + of nat 0 ) − 0 )
by (intro telescope sums ′[OF filterlim compose[OF tendsto inverse 0 ]]

tendsto add filterlim at infinity [OF tendsto const ] tendsto of nat)
have Digamma (z+1 ) = (

∑
k . inverse (of nat (Suc k)) − inverse (z + of nat

(Suc k))) −
euler mascheroni (is = suminf ?f − ) by (simp add : Digamma def

add ac)
also have suminf ?f = (

∑
k . inverse (of nat (Suc k)) − inverse (z + of nat k))

+
(
∑

k . inverse (z + of nat k) − inverse (z + of nat (Suc k)))
using summable Digamma[OF assms] sums by (subst suminf add) (simp all

add : add ac sums iff )
also have (

∑
k . inverse (z + of nat k) − inverse (z + of nat (Suc k))) = 1/z

using sums by (simp add : sums iff inverse eq divide)
finally show ?thesis by (simp add : Digamma def [of z ])

qed

theorem Polygamma plus1 :
assumes z 6= 0
shows Polygamma n (z + 1 ) = Polygamma n z + (−1 )ˆn ∗ fact n / (z ˆ Suc

n)
proof (cases n = 0 )
assume n: n 6= 0
let ?f = λk . inverse ((z + of nat k) ˆ Suc n)
have Polygamma n (z + 1 ) = (−1 ) ˆ Suc n ∗ fact n ∗ (

∑
k . ?f (k+1 ))

using n by (simp add : Polygamma def add ac)
also have (

∑
k . ?f (k+1 )) + (

∑
k<1 . ?f k) = (

∑
k . ?f k)

using Polygamma converges ′[OF assms, of Suc n] n
by (subst suminf split initial segment [symmetric]) simp all

hence (
∑

k . ?f (k+1 )) = (
∑

k . ?f k) − inverse (z ˆ Suc n) by (simp add :
algebra simps)
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also have (−1 ) ˆ Suc n ∗ fact n ∗ ((
∑

k . ?f k) − inverse (z ˆ Suc n)) =
Polygamma n z + (−1 )ˆn ∗ fact n / (z ˆ Suc n) using n

by (simp add : inverse eq divide algebra simps Polygamma def )
finally show ?thesis .

qed (insert assms, simp add : Digamma plus1 inverse eq divide)

theorem Digamma of nat :
Digamma (of nat (Suc n) :: ′a :: {real normed field ,banach}) = harm n − eu-

ler mascheroni
proof (induction n)
case (Suc n)
have Digamma (of nat (Suc (Suc n)) :: ′a) = Digamma (of nat (Suc n) + 1 )

by simp
also have . . . = Digamma (of nat (Suc n)) + inverse (of nat (Suc n))
by (subst Digamma plus1 ) (simp all add : inverse eq divide del : of nat Suc)

also have Digamma (of nat (Suc n) :: ′a) = harm n − euler mascheroni by
(rule Suc)
also have . . . + inverse (of nat (Suc n)) = harm (Suc n) − euler mascheroni
by (simp add : harm Suc)

finally show ?case .
qed (simp add : harm def )

lemma Digamma numeral : Digamma (numeral n) = harm (pred numeral n) −
euler mascheroni
by (subst of nat numeral [symmetric], subst numeral eq Suc, subst Digamma of nat)

(rule refl)

lemma Polygamma of real : x 6= 0 =⇒ Polygamma n (of real x ) = of real (Polygamma
n x )
unfolding Polygamma def using summable Digamma[of x ] Polygamma converges ′[of

x Suc n]
by (simp all add : suminf of real)

lemma Polygamma Real : z ∈ IR =⇒ z 6= 0 =⇒ Polygamma n z ∈ IR
by (elim Reals cases, hypsubst , subst Polygamma of real) simp all

lemma Digamma half integer :
Digamma (of nat n + 1/2 :: ′a :: {real normed field ,banach}) =

(
∑

k<n. 2 / (of nat (2∗k+1 ))) − euler mascheroni − of real (2 ∗ ln 2 )
proof (induction n)
case 0
have Digamma (1/2 :: ′a) = of real (Digamma (1/2 )) by (simp add : Polygamma of real

[symmetric])
also have Digamma (1/2 ::real) =

(
∑

k . inverse (of nat (Suc k)) − inverse (of nat k + 1/2 )) −
euler mascheroni

by (simp add : Digamma def add ac)
also have (

∑
k . inverse (of nat (Suc k) :: real) − inverse (of nat k + 1/2 )) =

(
∑

k . inverse (1/2 ) ∗ (inverse (2 ∗ of nat (Suc k)) − inverse (2 ∗
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of nat k + 1 )))
by (simp all add : add ac inverse mult distrib[symmetric] ring distribs del : in-

verse divide)
also have . . . = − 2 ∗ ln 2 using sums minus[OF alternating harmonic series sums ′]
by (subst suminf mult) (simp all add : algebra simps sums iff )

finally show ?case by simp
next
case (Suc n)
have nz : 2 ∗ of nat n + (1 :: ′a) 6= 0

using of nat neq 0 [of 2∗n] by (simp only : of nat Suc) (simp add : add ac)
hence nz ′: of nat n + (1/2 :: ′a) 6= 0 by (simp add : field simps)
have Digamma (of nat (Suc n) + 1/2 :: ′a) = Digamma (of nat n + 1/2 + 1 )

by simp
also from nz ′ have . . . = Digamma (of nat n + 1/2 ) + 1 / (of nat n + 1/2 )
by (rule Digamma plus1 )

also from nz nz ′ have 1 / (of nat n + 1/2 :: ′a) = 2 / (2 ∗ of nat n + 1 )
by (subst divide eq eq) simp all

also note Suc
finally show ?case by (simp add : add ac)

qed

lemma Digamma one half : Digamma (1/2 ) = − euler mascheroni − of real (2
∗ ln 2 )
using Digamma half integer [of 0 ] by simp

lemma Digamma real three halves pos: Digamma (3/2 :: real) > 0
proof −
have −Digamma (3/2 :: real) = −Digamma (of nat 1 + 1/2 ) by simp
also have . . . = 2 ∗ ln 2 + euler mascheroni − 2 by (subst Digamma half integer)

simp
also note euler mascheroni less 13 over 22
also note ln2 le 25 over 36
finally show ?thesis by simp

qed

theorem has field derivative Polygamma [derivative intros]:
fixes z :: ′a :: {real normed field ,euclidean space}
assumes z : z /∈ ZZ≤0

shows (Polygamma n has field derivative Polygamma (Suc n) z ) (at z within A)
proof (rule has field derivative at within, cases n = 0 )
assume n: n = 0
let ?f = λk z . inverse (of nat (Suc k)) − inverse (z + of nat k)
let ?F = λz .

∑
k . ?f k z and ?f ′ = λk z . inverse ((z + of nat k)2)

from no nonpos Int in ball ′[OF z ] guess d . note d = this
from z have summable: summable (λk . inverse (of nat (Suc k)) − inverse (z +

of nat k))
by (intro summable Digamma) force

from z have conv : uniformly convergent on (ball z d) (λk z .
∑

i<k . inverse ((z
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+ of nat i)2))
by (intro Polygamma converges) auto

with d have summable (λk . inverse ((z + of nat k)2)) unfolding summable iff convergent
by (auto dest !: uniformly convergent imp convergent simp: summable iff convergent

)

have (?F has field derivative (
∑

k . ?f ′ k z )) (at z )
proof (rule has field derivative series ′[of ball z d z ])
fix k :: nat and t :: ′a assume t : t ∈ ball z d
from t d(2 )[of t ] show ((λz . ?f k z ) has field derivative ?f ′ k t) (at t within

ball z d)
by (auto intro!: derivative eq intros simp: power2 eq square simp del : of nat Suc

dest !: plus of nat eq 0 imp elim!: nonpos Ints cases)
qed (insert d(1 ) summable conv , (assumption|simp)+)
with z show (Polygamma n has field derivative Polygamma (Suc n) z ) (at z )
unfolding Digamma def [abs def ] Polygamma def [abs def ] using n
by (force simp: power2 eq square intro!: derivative eq intros)

next
assume n: n 6= 0
from z have z ′: z 6= 0 by auto
from no nonpos Int in ball ′[OF z ] guess d . note d = this
define n ′ where n ′ = Suc n
from n have n ′: n ′ ≥ 2 by (simp add : n ′ def )
have ((λz .

∑
k . inverse ((z + of nat k) ˆ n ′)) has field derivative

(
∑

k . − of nat n ′ ∗ inverse ((z + of nat k) ˆ (n ′+1 )))) (at z )
proof (rule has field derivative series ′[of ball z d z ])
fix k :: nat and t :: ′a assume t : t ∈ ball z d
with d have t ′: t /∈ ZZ≤0 t 6= 0 by auto
show ((λa. inverse ((a + of nat k) ˆ n ′)) has field derivative

− of nat n ′ ∗ inverse ((t + of nat k) ˆ (n ′+1 ))) (at t within ball z d)
using t ′

by (fastforce intro!: derivative eq intros simp: divide simps power diff dest :
plus of nat eq 0 imp)
next
have uniformly convergent on (ball z d)

(λk z . (− of nat n ′ :: ′a) ∗ (
∑

i<k . inverse ((z + of nat i) ˆ (n ′+1 ))))
using z ′ n by (intro uniformly convergent mult Polygamma converges) (simp all

add : n ′ def )
thus uniformly convergent on (ball z d)

(λk z .
∑

i<k . − of nat n ′ ∗ inverse ((z + of nat i :: ′a) ˆ (n ′+1 )))
by (subst (asm) sum distrib left) simp

qed (insert Polygamma converges ′[OF z ′ n ′] d , simp all)
also have (

∑
k . − of nat n ′ ∗ inverse ((z + of nat k) ˆ (n ′ + 1 ))) =

(− of nat n ′) ∗ (
∑

k . inverse ((z + of nat k) ˆ (n ′ + 1 )))
using Polygamma converges ′[OF z ′, of n ′+1 ] n ′ by (subst suminf mult) simp all
finally have ((λz .

∑
k . inverse ((z + of nat k) ˆ n ′)) has field derivative

− of nat n ′ ∗ (
∑

k . inverse ((z + of nat k) ˆ (n ′ + 1 )))) (at z ) .
from DERIV cmult [OF this, of (−1 )ˆSuc n ∗ fact n :: ′a]
show (Polygamma n has field derivative Polygamma (Suc n) z ) (at z )
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unfolding n ′ def Polygamma def [abs def ] using n by (simp add : algebra simps)
qed

declare has field derivative Polygamma[THEN DERIV chain2 , derivative intros]

lemma isCont Polygamma [continuous intros]:
fixes f :: ⇒ ′a :: {real normed field ,euclidean space}
shows isCont f z =⇒ f z /∈ ZZ≤0 =⇒ isCont (λx . Polygamma n (f x )) z
by (rule isCont o2 [OF DERIV isCont [OF has field derivative Polygamma]])

lemma continuous on Polygamma:
A ∩ ZZ≤0 = {} =⇒ continuous on A (Polygamma n :: ⇒ ′a :: {real normed field ,euclidean space})
by (intro continuous at imp continuous on isCont Polygamma[OF continuous ident ]

ballI ) blast

lemma isCont ln Gamma complex [continuous intros]:
fixes f :: ′a::t2 space ⇒ complex
shows isCont f z =⇒ f z /∈ IR≤0 =⇒ isCont (λz . ln Gamma (f z )) z
by (rule isCont o2 [OF DERIV isCont [OF has field derivative ln Gamma complex ]])

lemma continuous on ln Gamma complex [continuous intros]:
fixes A :: complex set
shows A ∩ IR≤0 = {} =⇒ continuous on A ln Gamma
by (intro continuous at imp continuous on ballI isCont ln Gamma complex [OF

continuous ident ])
fastforce

lemma deriv Polygamma:
assumes z /∈ ZZ≤0

shows deriv (Polygamma m) z =
Polygamma (Suc m) (z :: ′a :: {real normed field ,euclidean space})

by (intro DERIV imp deriv has field derivative Polygamma assms)
thm has field derivative Polygamma

lemma higher deriv Polygamma:
assumes z /∈ ZZ≤0

shows (deriv ˆˆ n) (Polygamma m) z =
Polygamma (m + n) (z :: ′a :: {real normed field ,euclidean space})

proof −
have eventually (λu. (deriv ˆˆ n) (Polygamma m) u = Polygamma (m + n) u)

(nhds z )
proof (induction n)
case (Suc n)
from Suc.IH have eventually (λz . eventually (λu. (deriv ˆˆ n) (Polygamma

m) u = Polygamma (m + n) u) (nhds z )) (nhds z )
by (simp add : eventually eventually)

hence eventually (λz . deriv ((deriv ˆˆ n) (Polygamma m)) z =
deriv (Polygamma (m + n)) z ) (nhds z )

by eventually elim (intro deriv cong ev refl)
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moreover have eventually (λz . z ∈ UNIV − ZZ≤0) (nhds z ) using assms
by (intro eventually nhds in open open Diff open UNIV ) auto

ultimately show ?case by eventually elim (simp all add : deriv Polygamma)
qed simp all
thus ?thesis by (rule eventually nhds x imp x )

qed

lemma deriv ln Gamma complex :
assumes z /∈ IR≤0

shows deriv ln Gamma z = Digamma (z :: complex )
by (intro DERIV imp deriv has field derivative ln Gamma complex assms)

We define a type class that captures all the fundamental properties of the
inverse of the Gamma function and defines the Gamma function upon that.
This allows us to instantiate the type class both for the reals and for the
complex numbers with a minimal amount of proof duplication.

class Gamma = real normed field + complete space +
fixes rGamma :: ′a ⇒ ′a
assumes rGamma eq zero iff aux : rGamma z = 0 ←→ (∃n. z = − of nat n)
assumes differentiable rGamma aux1 :
(
∧
n. z 6= − of nat n) =⇒

let d = (THE d . (λn.
∑

k<n. inverse (of nat (Suc k)) − inverse (z + of nat
k))

−−−−→ d) − scaleR euler mascheroni 1
in filterlim (λy . (rGamma y − rGamma z + rGamma z ∗ d ∗ (y − z )) /R

norm (y − z )) (nhds 0 ) (at z )
assumes differentiable rGamma aux2 :
let z = − of nat n
in filterlim (λy . (rGamma y − rGamma z − (−1 )ˆn ∗ (prod of nat {1 ..n})

∗ (y − z )) /R
norm (y − z )) (nhds 0 ) (at z )

assumes rGamma series aux : (
∧
n. z 6= − of nat n) =⇒

let fact ′ = (λn. prod of nat {1 ..n});
exp = (λx . THE e. (λn.

∑
k<n. xˆk /R fact k) −−−−→ e);

pochhammer ′ = (λa n. (
∏

n = 0 ..n. a + of nat n))
in filterlim (λn. pochhammer ′ z n / (fact ′ n ∗ exp (z ∗ (ln (of nat n)

∗R 1 ))))
(nhds (rGamma z )) sequentially

begin
subclass banach ..
end

definition Gamma z = inverse (rGamma z )

6.23.3 Basic properties

lemma Gamma nonpos Int : z ∈ ZZ≤0 =⇒ Gamma z = 0
and rGamma nonpos Int : z ∈ ZZ≤0 =⇒ rGamma z = 0
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using rGamma eq zero iff aux [of z ] unfolding Gamma def by (auto elim!: non-
pos Ints cases ′)

lemma Gamma nonzero: z /∈ ZZ≤0 =⇒ Gamma z 6= 0
and rGamma nonzero: z /∈ ZZ≤0 =⇒ rGamma z 6= 0
using rGamma eq zero iff aux [of z ] unfolding Gamma def by (auto elim!: non-

pos Ints cases ′)

lemma Gamma eq zero iff : Gamma z = 0 ←→ z ∈ ZZ≤0

and rGamma eq zero iff : rGamma z = 0 ←→ z ∈ ZZ≤0

using rGamma eq zero iff aux [of z ] unfolding Gamma def by (auto elim!: non-
pos Ints cases ′)

lemma rGamma inverse Gamma: rGamma z = inverse (Gamma z )
unfolding Gamma def by simp

lemma rGamma series LIMSEQ [tendsto intros]:
rGamma series z −−−−→ rGamma z

proof (cases z ∈ ZZ≤0)
case False
hence z 6= − of nat n for n by auto
from rGamma series aux [OF this] show ?thesis
by (simp add : rGamma series def [abs def ] fact prod pochhammer Suc prod

exp def of real def [symmetric] suminf def sums def [abs def ] atLeast0At-
Most)
qed (insert rGamma eq zero iff [of z ], simp all add : rGamma series nonpos Ints LIMSEQ)

theorem Gamma series LIMSEQ [tendsto intros]:
Gamma series z −−−−→ Gamma z

proof (cases z ∈ ZZ≤0)
case False
hence (λn. inverse (rGamma series z n)) −−−−→ inverse (rGamma z )
by (intro tendsto intros) (simp all add : rGamma eq zero iff )

also have (λn. inverse (rGamma series z n)) = Gamma series z
by (simp add : rGamma series def Gamma series def [abs def ])

finally show ?thesis by (simp add : Gamma def )
qed (insert Gamma eq zero iff [of z ], simp all add : Gamma series nonpos Ints LIMSEQ)

lemma Gamma altdef : Gamma z = lim (Gamma series z )
using Gamma series LIMSEQ [of z ] by (simp add : limI )

lemma rGamma 1 [simp]: rGamma 1 = 1
proof −

have A: eventually (λn. rGamma series 1 n = of nat (Suc n) / of nat n)
sequentially

using eventually gt at top[of 0 ::nat ]
by (force elim!: eventually mono simp: rGamma series def exp of real pochham-

mer fact
field split simps pochhammer rec ′ dest !: pochhammer eq 0 imp nonpos Int)
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have rGamma series 1 −−−−→ 1 by (subst tendsto cong [OF A]) (rule LIM-
SEQ Suc n over n)
moreover have rGamma series 1 −−−−→ rGamma 1 by (rule tendsto intros)
ultimately show ?thesis by (intro LIMSEQ unique)

qed

lemma rGamma plus1 : z ∗ rGamma (z + 1 ) = rGamma z
proof −
let ?f = λn. (z + 1 ) ∗ inverse (of nat n) + 1
have eventually (λn. ?f n ∗ rGamma series z n = z ∗ rGamma series (z + 1 )

n) sequentially
using eventually gt at top[of 0 ::nat ]

proof eventually elim
fix n :: nat assume n: n > 0
hence z ∗ rGamma series (z + 1 ) n = inverse (of nat n) ∗

pochhammer z (Suc (Suc n)) / (fact n ∗ exp (z ∗ of real (ln (of nat
n))))

by (subst pochhammer rec) (simp add : rGamma series def field simps exp add
exp of real)

also from n have . . . = ?f n ∗ rGamma series z n
by (subst pochhammer rec ′) (simp all add : field split simps rGamma series def )
finally show ?f n ∗ rGamma series z n = z ∗ rGamma series (z + 1 ) n ..

qed
moreover have (λn. ?f n ∗ rGamma series z n) −−−−→ ((z+1 ) ∗ 0 + 1 ) ∗

rGamma z
by (intro tendsto intros lim inverse n)

hence (λn. ?f n ∗ rGamma series z n) −−−−→ rGamma z by simp
ultimately have (λn. z ∗ rGamma series (z + 1 ) n) −−−−→ rGamma z
by (blast intro: Lim transform eventually)

moreover have (λn. z ∗ rGamma series (z + 1 ) n) −−−−→ z ∗ rGamma (z +
1 )

by (intro tendsto intros)
ultimately show z ∗ rGamma (z + 1 ) = rGamma z using LIMSEQ unique

by blast
qed

lemma pochhammer rGamma: rGamma z = pochhammer z n ∗ rGamma (z +
of nat n)
proof (induction n arbitrary : z )
case (Suc n z )
have rGamma z = pochhammer z n ∗ rGamma (z + of nat n) by (rule Suc.IH )
also note rGamma plus1 [symmetric]
finally show ?case by (simp add : add ac pochhammer rec ′)

qed simp all

theorem Gamma plus1 : z /∈ ZZ≤0 =⇒ Gamma (z + 1 ) = z ∗ Gamma z
using rGamma plus1 [of z ] by (simp add : rGamma inverse Gamma field simps

Gamma eq zero iff )
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theorem pochhammer Gamma: z /∈ ZZ≤0 =⇒ pochhammer z n = Gamma (z +
of nat n) / Gamma z
using pochhammer rGamma[of z ]
by (simp add : rGamma inverse Gamma Gamma eq zero iff field simps)

lemma Gamma 0 [simp]: Gamma 0 = 0
and rGamma 0 [simp]: rGamma 0 = 0
and Gamma neg 1 [simp]: Gamma (− 1 ) = 0
and rGamma neg 1 [simp]: rGamma (− 1 ) = 0
and Gamma neg numeral [simp]: Gamma (− numeral n) = 0
and rGamma neg numeral [simp]: rGamma (− numeral n) = 0
and Gamma neg of nat [simp]: Gamma (− of nat m) = 0
and rGamma neg of nat [simp]: rGamma (− of nat m) = 0
by (simp all add : rGamma eq zero iff Gamma eq zero iff )

lemma Gamma 1 [simp]: Gamma 1 = 1 unfolding Gamma def by simp

theorem Gamma fact : Gamma (1 + of nat n) = fact n
by (simp add : pochhammer fact pochhammer Gamma of nat in nonpos Ints iff

flip: of nat Suc)

lemma Gamma numeral : Gamma (numeral n) = fact (pred numeral n)
by (subst of nat numeral [symmetric], subst numeral eq Suc,

subst of nat Suc, subst Gamma fact) (rule refl)

lemma Gamma of int : Gamma (of int n) = (if n > 0 then fact (nat (n − 1 ))
else 0 )
proof (cases n > 0 )
case True
hence Gamma (of int n) = Gamma (of nat (Suc (nat (n − 1 )))) by (subst

of nat Suc) simp all
with True show ?thesis by (subst (asm) of nat Suc, subst (asm) Gamma fact)

simp
qed (simp all add : Gamma eq zero iff nonpos Ints of int)

lemma rGamma of int : rGamma (of int n) = (if n > 0 then inverse (fact (nat
(n − 1 ))) else 0 )
by (simp add : Gamma of int rGamma inverse Gamma)

lemma Gamma seriesI :
assumes (λn. g n / Gamma series z n) −−−−→ 1
shows g −−−−→ Gamma z

proof (rule Lim transform eventually)
have 1/2 > (0 ::real) by simp
from tendstoD [OF assms, OF this]

show eventually (λn. g n / Gamma series z n ∗ Gamma series z n = g n)
sequentially

by (force elim!: eventually mono simp: dist real def )
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from assms have (λn. g n / Gamma series z n ∗ Gamma series z n) −−−−→ 1
∗ Gamma z

by (intro tendsto intros)
thus (λn. g n / Gamma series z n ∗ Gamma series z n) −−−−→ Gamma z by

simp
qed

lemma Gamma seriesI ′:
assumes f −−−−→ rGamma z
assumes (λn. g n ∗ f n) −−−−→ 1
assumes z /∈ ZZ≤0

shows g −−−−→ Gamma z
proof (rule Lim transform eventually)
have 1/2 > (0 ::real) by simp
from tendstoD [OF assms(2 ), OF this] show eventually (λn. g n ∗ f n / f n =

g n) sequentially
by (force elim!: eventually mono simp: dist real def )

from assms have (λn. g n ∗ f n / f n) −−−−→ 1 / rGamma z
by (intro tendsto divide assms) (simp all add : rGamma eq zero iff )

thus (λn. g n ∗ f n / f n) −−−−→ Gamma z by (simp add : Gamma def di-
vide inverse)
qed

lemma Gamma series ′ LIMSEQ : Gamma series ′ z −−−−→ Gamma z
by (cases z ∈ ZZ≤0) (simp all add : Gamma nonpos Int Gamma seriesI [OF Gamma series Gamma series ′]

Gamma series ′ nonpos Ints LIMSEQ [of z ])

6.23.4 Differentiability

lemma has field derivative rGamma no nonpos int :
assumes z /∈ ZZ≤0

shows (rGamma has field derivative −rGamma z ∗ Digamma z ) (at z within
A)
proof (rule has field derivative at within)
from assms have z 6= − of nat n for n by auto
from differentiable rGamma aux1 [OF this]
show (rGamma has field derivative −rGamma z ∗ Digamma z ) (at z )

unfolding Digamma def suminf def sums def [abs def ]
has field derivative def has derivative def netlimit at

by (simp add : Let def bounded linear mult right mult ac of real def [symmetric])
qed

lemma has field derivative rGamma nonpos int :
(rGamma has field derivative (−1 )ˆn ∗ fact n) (at (− of nat n) within A)
apply (rule has field derivative at within)
using differentiable rGamma aux2 [of n]
unfolding Let def has field derivative def has derivative def netlimit at
by (simp only : bounded linear mult right mult ac of real def [symmetric] fact prod)

simp
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lemma has field derivative rGamma [derivative intros]:
(rGamma has field derivative (if z ∈ ZZ≤0 then (−1 )ˆ(nat bnorm zc) ∗ fact (nat
bnorm zc)

else −rGamma z ∗ Digamma z )) (at z within A)
using has field derivative rGamma no nonpos int [of z A]

has field derivative rGamma nonpos int [of nat bnorm zc A]
by (auto elim!: nonpos Ints cases ′)

declare has field derivative rGamma no nonpos int [THEN DERIV chain2 , deriva-
tive intros]
declare has field derivative rGamma [THEN DERIV chain2 , derivative intros]
declare has field derivative rGamma nonpos int [derivative intros]
declare has field derivative rGamma no nonpos int [derivative intros]
declare has field derivative rGamma [derivative intros]

theorem has field derivative Gamma [derivative intros]:
z /∈ ZZ≤0 =⇒ (Gamma has field derivative Gamma z ∗ Digamma z ) (at z within

A)
unfolding Gamma def [abs def ]
by (fastforce intro!: derivative eq intros simp: rGamma eq zero iff )

declare has field derivative Gamma[THEN DERIV chain2 , derivative intros]

hide fact rGamma eq zero iff aux differentiable rGamma aux1 differentiable rGamma aux2
differentiable rGamma aux2 rGamma series aux Gamma class.rGamma eq zero iff aux

lemma continuous on rGamma [continuous intros]: continuous on A rGamma
by (rule DERIV continuous on has field derivative rGamma)+

lemma continuous on Gamma [continuous intros]: A ∩ ZZ≤0 = {} =⇒ continu-
ous on A Gamma
by (rule DERIV continuous on has field derivative Gamma)+ blast

lemma isCont rGamma [continuous intros]:
isCont f z =⇒ isCont (λx . rGamma (f x )) z
by (rule isCont o2 [OF DERIV isCont [OF has field derivative rGamma]])

lemma isCont Gamma [continuous intros]:
isCont f z =⇒ f z /∈ ZZ≤0 =⇒ isCont (λx . Gamma (f x )) z
by (rule isCont o2 [OF DERIV isCont [OF has field derivative Gamma]])

6.23.5 The complex Gamma function

instantiation complex :: Gamma
begin

definition rGamma complex :: complex ⇒ complex where
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rGamma complex z = lim (rGamma series z )

lemma rGamma series complex converges:
convergent (rGamma series (z :: complex )) (is ?thesis1 )

and rGamma complex altdef :
rGamma z = (if z ∈ ZZ≤0 then 0 else exp (−ln Gamma z )) (is ?thesis2 )

proof −
have ?thesis1 ∧ ?thesis2
proof (cases z ∈ ZZ≤0)
case False
have rGamma series z −−−−→ exp (− ln Gamma z )
proof (rule Lim transform eventually)
from ln Gamma series complex converges ′[OF False] guess d by (elim exE

conjE )
from this(1 ) uniformly convergent imp convergent [OF this(2 ), of z ]

have ln Gamma series z −−−−→ lim (ln Gamma series z ) by (simp add :
convergent LIMSEQ iff )

thus (λn. exp (−ln Gamma series z n)) −−−−→ exp (− ln Gamma z )
unfolding convergent def ln Gamma def by (intro tendsto exp tendsto minus)
from eventually gt at top[of 0 ::nat ] exp ln Gamma series complex False
show eventually (λn. exp (−ln Gamma series z n) = rGamma series z n)

sequentially
by (force elim!: eventually mono simp: exp minus Gamma series def rGamma series def )

qed
with False show ?thesis
by (auto simp: convergent def rGamma complex def intro!: limI )

next
case True
then obtain k where z = − of nat k by (erule nonpos Ints cases ′)
also have rGamma series . . . −−−−→ 0
by (subst tendsto cong [OF rGamma series minus of nat ]) (simp all add : con-

vergent const)
finally show ?thesis using True
by (auto simp: rGamma complex def convergent def intro!: limI )

qed
thus ?thesis1 ?thesis2 by blast+

qed

context
begin

private lemma rGamma complex plus1 : z ∗ rGamma (z + 1 ) = rGamma (z ::
complex )
proof −
let ?f = λn. (z + 1 ) ∗ inverse (of nat n) + 1
have eventually (λn. ?f n ∗ rGamma series z n = z ∗ rGamma series (z + 1 )

n) sequentially
using eventually gt at top[of 0 ::nat ]
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proof eventually elim
fix n :: nat assume n: n > 0
hence z ∗ rGamma series (z + 1 ) n = inverse (of nat n) ∗

pochhammer z (Suc (Suc n)) / (fact n ∗ exp (z ∗ of real (ln (of nat
n))))

by (subst pochhammer rec) (simp add : rGamma series def field simps exp add
exp of real)

also from n have . . . = ?f n ∗ rGamma series z n
by (subst pochhammer rec ′) (simp all add : field split simps rGamma series def

add ac)
finally show ?f n ∗ rGamma series z n = z ∗ rGamma series (z + 1 ) n ..

qed
moreover have (λn. ?f n ∗ rGamma series z n) −−−−→ ((z+1 ) ∗ 0 + 1 ) ∗

rGamma z
using rGamma series complex converges
by (intro tendsto intros lim inverse n)

(simp all add : convergent LIMSEQ iff rGamma complex def )
hence (λn. ?f n ∗ rGamma series z n) −−−−→ rGamma z by simp
ultimately have (λn. z ∗ rGamma series (z + 1 ) n) −−−−→ rGamma z
by (blast intro: Lim transform eventually)

moreover have (λn. z ∗ rGamma series (z + 1 ) n) −−−−→ z ∗ rGamma (z +
1 )

using rGamma series complex converges
by (auto intro!: tendsto mult simp: rGamma complex def convergent LIMSEQ iff )
ultimately show z ∗ rGamma (z + 1 ) = rGamma z using LIMSEQ unique

by blast
qed

private lemma has field derivative rGamma complex no nonpos Int :
assumes (z :: complex ) /∈ ZZ≤0

shows (rGamma has field derivative − rGamma z ∗ Digamma z ) (at z )
proof −
have diff : (rGamma has field derivative − rGamma z ∗ Digamma z ) (at z ) if

Re z > 0 for z
proof (subst DERIV cong ev [OF refl refl ])
from that have eventually (λt . t ∈ ball z (Re z/2 )) (nhds z )
by (intro eventually nhds in nhd) simp all

thus eventually (λt . rGamma t = exp (− ln Gamma t)) (nhds z )
using no nonpos Int in ball complex [OF that ]
by (auto elim!: eventually mono simp: rGamma complex altdef )

next
have z /∈ IR≤0 using that by (simp add : complex nonpos Reals iff )
with that show ((λt . exp (− ln Gamma t)) has field derivative (−rGamma z

∗ Digamma z )) (at z )
by (force elim!: nonpos Ints cases intro!: derivative eq intros simp: rGamma complex altdef )

qed

from assms show (rGamma has field derivative − rGamma z ∗ Digamma z ) (at
z )
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proof (induction nat b1 − Re zc arbitrary : z )
case (Suc n z )
from Suc.prems have z : z 6= 0 by auto
from Suc.hyps have n = nat b− Re zc by linarith
hence A: n = nat b1 − Re (z + 1 )c by simp
from Suc.prems have B : z + 1 /∈ ZZ≤0 by (force dest : plus one in nonpos Ints imp)

have ((λz . z ∗ (rGamma ◦ (λz . z + 1 )) z ) has field derivative
−rGamma (z + 1 ) ∗ (Digamma (z + 1 ) ∗ z − 1 )) (at z )
by (rule derivative eq intros DERIV chain Suc refl A B)+ (simp add : alge-

bra simps)
also have (λz . z ∗ (rGamma ◦ (λz . z + 1 :: complex )) z ) = rGamma
by (simp add : rGamma complex plus1 )

also from z have Digamma (z + 1 ) ∗ z − 1 = z ∗ Digamma z
by (subst Digamma plus1 ) (simp all add : field simps)

also have −rGamma (z + 1 ) ∗ (z ∗ Digamma z ) = −rGamma z ∗ Digamma
z

by (simp add : rGamma complex plus1 [of z , symmetric])
finally show ?case .

qed (intro diff , simp)
qed

private lemma rGamma complex 1 : rGamma (1 :: complex ) = 1
proof −

have A: eventually (λn. rGamma series 1 n = of nat (Suc n) / of nat n)
sequentially

using eventually gt at top[of 0 ::nat ]
by (force elim!: eventually mono simp: rGamma series def exp of real pochham-

mer fact
field split simps pochhammer rec ′ dest !: pochhammer eq 0 imp nonpos Int)

have rGamma series 1 −−−−→ 1 by (subst tendsto cong [OF A]) (rule LIM-
SEQ Suc n over n)
thus rGamma 1 = (1 :: complex ) unfolding rGamma complex def by (rule

limI )
qed

private lemma has field derivative rGamma complex nonpos Int :
(rGamma has field derivative (−1 )ˆn ∗ fact n) (at (− of nat n :: complex ))

proof (induction n)
case 0
have A: (0 ::complex ) + 1 /∈ ZZ≤0 by simp
have ((λz . z ∗ (rGamma ◦ (λz . z + 1 :: complex )) z ) has field derivative 1 ) (at

0 )
by (rule derivative eq intros DERIV chain refl

has field derivative rGamma complex no nonpos Int A)+ (simp add :
rGamma complex 1 )

thus ?case by (simp add : rGamma complex plus1 )
next
case (Suc n)
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hence A: (rGamma has field derivative (−1 )ˆn ∗ fact n)
(at (− of nat (Suc n) + 1 :: complex )) by simp

have ((λz . z ∗ (rGamma ◦ (λz . z + 1 :: complex )) z ) has field derivative
(− 1 ) ˆ Suc n ∗ fact (Suc n)) (at (− of nat (Suc n)))

by (rule derivative eq intros refl A DERIV chain)+
(simp add : algebra simps rGamma complex altdef )

thus ?case by (simp add : rGamma complex plus1 )
qed

instance proof
fix z :: complex show (rGamma z = 0 ) ←→ (∃n. z = − of nat n)
by (auto simp: rGamma complex altdef elim!: nonpos Ints cases ′)

next
fix z :: complex assume

∧
n. z 6= − of nat n

hence z /∈ ZZ≤0 by (auto elim!: nonpos Ints cases ′)
from has field derivative rGamma complex no nonpos Int [OF this]
show let d = (THE d . (λn.

∑
k<n. inverse (of nat (Suc k)) − inverse (z +

of nat k))
−−−−→ d) − euler mascheroni ∗R 1 in (λy . (rGamma y −

rGamma z +
rGamma z ∗ d ∗ (y − z )) /R cmod (y − z )) −z→ 0

by (simp add : has field derivative def has derivative def Digamma def sums def
[abs def ]

of real def [symmetric] suminf def )
next
fix n :: nat
from has field derivative rGamma complex nonpos Int [of n]
show let z = − of nat n in (λy . (rGamma y − rGamma z − (− 1 ) ˆ n ∗ prod

of nat {1 ..n} ∗
(y − z )) /R cmod (y − z )) −z→ 0

by (simp add : has field derivative def has derivative def fact prod Let def )
next
fix z :: complex
from rGamma series complex converges[of z ] have rGamma series z −−−−→

rGamma z
by (simp add : convergent LIMSEQ iff rGamma complex def )

thus let fact ′ = λn. prod of nat {1 ..n};
exp = λx . THE e. (λn.

∑
k<n. x ˆ k /R fact k) −−−−→ e;

pochhammer ′ = λa n.
∏

n = 0 ..n. a + of nat n
in (λn. pochhammer ′ z n / (fact ′ n ∗ exp (z ∗ ln (real of nat n) ∗R 1 )))

−−−−→ rGamma z
by (simp add : fact prod pochhammer Suc prod rGamma series def [abs def ]

exp def
of real def [symmetric] suminf def sums def [abs def ] atLeast0AtMost)

qed

end
end
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lemma Gamma complex altdef :
Gamma z = (if z ∈ ZZ≤0 then 0 else exp (ln Gamma (z :: complex )))
unfolding Gamma def rGamma complex altdef by (simp add : exp minus)

lemma cnj rGamma: cnj (rGamma z ) = rGamma (cnj z )
proof −
have rGamma series (cnj z ) = (λn. cnj (rGamma series z n))
by (intro ext) (simp all add : rGamma series def exp cnj )

also have ... −−−−→ cnj (rGamma z ) by (intro tendsto cnj tendsto intros)
finally show ?thesis unfolding rGamma complex def by (intro sym[OF limI ])

qed

lemma cnj Gamma: cnj (Gamma z ) = Gamma (cnj z )
unfolding Gamma def by (simp add : cnj rGamma)

lemma Gamma complex real :
z ∈ IR =⇒ Gamma z ∈ (IR :: complex set) and rGamma complex real : z ∈ IR

=⇒ rGamma z ∈ IR
by (simp all add : Reals cnj iff cnj Gamma cnj rGamma)

lemma field differentiable rGamma: rGamma field differentiable (at z within A)
using has field derivative rGamma[of z ] unfolding field differentiable def by

blast

lemma holomorphic rGamma [holomorphic intros]: rGamma holomorphic on A
unfolding holomorphic on def by (auto intro!: field differentiable rGamma)

lemma holomorphic rGamma ′ [holomorphic intros]:
assumes f holomorphic on A
shows (λx . rGamma (f x )) holomorphic on A

proof −
have rGamma ◦ f holomorphic on A using assms
by (intro holomorphic on compose assms holomorphic rGamma)

thus ?thesis by (simp only : o def )
qed

lemma analytic rGamma: rGamma analytic on A
unfolding analytic on def by (auto intro!: exI [of 1 ] holomorphic rGamma)

lemma field differentiable Gamma: z /∈ ZZ≤0 =⇒ Gamma field differentiable (at z
within A)
using has field derivative Gamma[of z ] unfolding field differentiable def by auto

lemma holomorphic Gamma [holomorphic intros]: A ∩ ZZ≤0 = {} =⇒ Gamma
holomorphic on A
unfolding holomorphic on def by (auto intro!: field differentiable Gamma)
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lemma holomorphic Gamma ′ [holomorphic intros]:
assumes f holomorphic on A and

∧
x . x ∈ A =⇒ f x /∈ ZZ≤0

shows (λx . Gamma (f x )) holomorphic on A
proof −
have Gamma ◦ f holomorphic on A using assms
by (intro holomorphic on compose assms holomorphic Gamma) auto

thus ?thesis by (simp only : o def )
qed

lemma analytic Gamma: A ∩ ZZ≤0 = {} =⇒ Gamma analytic on A
by (rule analytic on subset [of UNIV − ZZ≤0], subst analytic on open)

(auto intro!: holomorphic Gamma)

lemma field differentiable ln Gamma complex :
z /∈ IR≤0 =⇒ ln Gamma field differentiable (at (z ::complex ) within A)
by (rule field differentiable within subset [of UNIV ])

(force simp: field differentiable def intro!: derivative intros)+

lemma holomorphic ln Gamma [holomorphic intros]: A ∩ IR≤0 = {} =⇒ ln Gamma
holomorphic on A
unfolding holomorphic on def by (auto intro!: field differentiable ln Gamma complex )

lemma analytic ln Gamma: A ∩ IR≤0 = {} =⇒ ln Gamma analytic on A
by (rule analytic on subset [of UNIV − IR≤0], subst analytic on open)

(auto intro!: holomorphic ln Gamma)

lemma has field derivative rGamma complex ′ [derivative intros]:
(rGamma has field derivative (if z ∈ ZZ≤0 then (−1 )ˆ(nat b−Re zc) ∗ fact (nat
b−Re zc) else

−rGamma z ∗ Digamma z )) (at z within A)
using has field derivative rGamma[of z ] by (auto elim!: nonpos Ints cases ′)

declare has field derivative rGamma complex ′[THEN DERIV chain2 , derivative intros]

lemma field differentiable Polygamma:
fixes z :: complex
shows
z /∈ ZZ≤0 =⇒ Polygamma n field differentiable (at z within A)
using has field derivative Polygamma[of z n] unfolding field differentiable def

by auto

lemma holomorphic on Polygamma [holomorphic intros]: A ∩ ZZ≤0 = {} =⇒ Polygamma
n holomorphic on A
unfolding holomorphic on def by (auto intro!: field differentiable Polygamma)

lemma analytic on Polygamma: A ∩ ZZ≤0 = {} =⇒ Polygamma n analytic on A

Gamma{_}{\kern 0pt}Function.html


2408

by (rule analytic on subset [of UNIV − ZZ≤0], subst analytic on open)
(auto intro!: holomorphic on Polygamma)

6.23.6 The real Gamma function

lemma rGamma series real :
eventually (λn. rGamma series x n = Re (rGamma series (of real x ) n)) sequentially
using eventually gt at top[of 0 :: nat ]

proof eventually elim
fix n :: nat assume n: n > 0
have Re (rGamma series (of real x ) n) =

Re (of real (pochhammer x (Suc n)) / (fact n ∗ exp (of real (x ∗ ln
(real of nat n)))))

using n by (simp add : rGamma series def powr def pochhammer of real)
also from n have . . . = Re (of real ((pochhammer x (Suc n)) /

(fact n ∗ (exp (x ∗ ln (real of nat n))))))
by (subst exp of real) simp

also from n have . . . = rGamma series x n
by (subst Re complex of real) (simp add : rGamma series def powr def )

finally show rGamma series x n = Re (rGamma series (of real x ) n) ..
qed

instantiation real :: Gamma
begin

definition rGamma real x = Re (rGamma (of real x :: complex ))

instance proof
fix x :: real
have rGamma x = Re (rGamma (of real x )) by (simp add : rGamma real def )
also have of real . . . = rGamma (of real x :: complex )
by (intro of real Re rGamma complex real) simp all

also have . . . = 0 ←→ x ∈ ZZ≤0 by (simp add : rGamma eq zero iff of real in nonpos Ints iff )
also have . . . ←→ (∃n. x = − of nat n) by (auto elim!: nonpos Ints cases ′)
finally show (rGamma x ) = 0 ←→ (∃n. x = − real of nat n) by simp

next
fix x :: real assume

∧
n. x 6= − of nat n

hence x : complex of real x /∈ ZZ≤0

by (subst of real in nonpos Ints iff ) (auto elim!: nonpos Ints cases ′)
then have x 6= 0 by auto
with x have (rGamma has field derivative − rGamma x ∗ Digamma x ) (at x )
by (fastforce intro!: derivative eq intros has vector derivative real field

simp: Polygamma of real rGamma real def [abs def ])
thus let d = (THE d . (λn.

∑
k<n. inverse (of nat (Suc k)) − inverse (x +

of nat k))
−−−−→ d) − euler mascheroni ∗R 1 in (λy . (rGamma y −

rGamma x +
rGamma x ∗ d ∗ (y − x )) /R norm (y − x )) −x→ 0

by (simp add : has field derivative def has derivative def Digamma def sums def
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[abs def ]
of real def [symmetric] suminf def )

next
fix n :: nat
have (rGamma has field derivative (−1 )ˆn ∗ fact n) (at (− of nat n :: real))
by (fastforce intro!: derivative eq intros has vector derivative real field

simp: Polygamma of real rGamma real def [abs def ])
thus let x = − of nat n in (λy . (rGamma y − rGamma x − (− 1 ) ˆ n ∗ prod

of nat {1 ..n} ∗
(y − x )) /R norm (y − x )) −x ::real→ 0

by (simp add : has field derivative def has derivative def fact prod Let def )
next
fix x :: real
have rGamma series x −−−−→ rGamma x
proof (rule Lim transform eventually)
show (λn. Re (rGamma series (of real x ) n)) −−−−→ rGamma x unfolding

rGamma real def
by (intro tendsto intros)

qed (insert rGamma series real , simp add : eq commute)
thus let fact ′ = λn. prod of nat {1 ..n};

exp = λx . THE e. (λn.
∑

k<n. x ˆ k /R fact k) −−−−→ e;
pochhammer ′ = λa n.

∏
n = 0 ..n. a + of nat n

in (λn. pochhammer ′ x n / (fact ′ n ∗ exp (x ∗ ln (real of nat n) ∗R 1 )))
−−−−→ rGamma x

by (simp add : fact prod pochhammer Suc prod rGamma series def [abs def ]
exp def

of real def [symmetric] suminf def sums def [abs def ] atLeast0AtMost)
qed

end

lemma rGamma complex of real : rGamma (complex of real x ) = complex of real
(rGamma x )
unfolding rGamma real def using rGamma complex real by simp

lemma Gamma complex of real : Gamma (complex of real x ) = complex of real
(Gamma x )
unfolding Gamma def by (simp add : rGamma complex of real)

lemma rGamma real altdef : rGamma x = lim (rGamma series (x :: real))
by (rule sym, rule limI , rule tendsto intros)

lemma Gamma real altdef1 : Gamma x = lim (Gamma series (x :: real))
by (rule sym, rule limI , rule tendsto intros)

lemma Gamma real altdef2 : Gamma x = Re (Gamma (of real x ))
using rGamma complex real [OF Reals of real [of x ]]
by (elim Reals cases)
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(simp only : Gamma def rGamma real def of real inverse[symmetric] Re complex of real)

lemma ln Gamma series complex of real :
x > 0 =⇒ n > 0 =⇒ ln Gamma series (complex of real x ) n = of real (ln Gamma series

x n)
proof −
assume xn: x > 0 n > 0
have Ln (complex of real x / of nat k + 1 ) = of real (ln (x / of nat k + 1 )) if

k ≥ 1 for k
using that xn by (subst Ln of real [symmetric]) (auto intro!: add nonneg pos

simp: field simps)
with xn show ?thesis by (simp add : ln Gamma series def Ln of real)

qed

lemma ln Gamma real converges:
assumes (x ::real) > 0
shows convergent (ln Gamma series x )

proof −
have (λn. ln Gamma series (complex of real x ) n) −−−−→ ln Gamma (of real x )

using assms
by (intro ln Gamma complex LIMSEQ) (auto simp: of real in nonpos Ints iff )

moreover from eventually gt at top[of 0 ::nat ]
have eventually (λn. complex of real (ln Gamma series x n) =

ln Gamma series (complex of real x ) n) sequentially
by eventually elim (simp add : ln Gamma series complex of real assms)

ultimately have (λn. complex of real (ln Gamma series x n)) −−−−→ ln Gamma
(of real x )

by (subst tendsto cong) assumption+
from tendsto Re[OF this] show ?thesis by (auto simp: convergent def )

qed

lemma ln Gamma real LIMSEQ : (x ::real) > 0 =⇒ ln Gamma series x −−−−→
ln Gamma x
using ln Gamma real converges[of x ] unfolding ln Gamma def by (simp add :

convergent LIMSEQ iff )

lemma ln Gamma complex of real : x > 0 =⇒ ln Gamma (complex of real x ) =
of real (ln Gamma x )
proof (unfold ln Gamma def , rule limI , rule Lim transform eventually)
assume x : x > 0
show eventually (λn. of real (ln Gamma series x n) =

ln Gamma series (complex of real x ) n) sequentially
using eventually gt at top[of 0 ::nat ]
by eventually elim (simp add : ln Gamma series complex of real x )

qed (intro tendsto of real , insert ln Gamma real LIMSEQ [of x ], simp add : ln Gamma def )

lemma Gamma real pos exp: x > (0 :: real) =⇒ Gamma x = exp (ln Gamma x )
by (auto simp: Gamma real altdef2 Gamma complex altdef of real in nonpos Ints iff

ln Gamma complex of real exp of real)
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lemma ln Gamma real pos: x > 0 =⇒ ln Gamma x = ln (Gamma x :: real)
unfolding Gamma real pos exp by simp

lemma ln Gamma complex conv fact : n > 0 =⇒ ln Gamma (of nat n :: complex )
= ln (fact (n − 1 ))
using ln Gamma complex of real [of real n] Gamma fact [of n − 1 , where ′a =

real ]
by (simp add : ln Gamma real pos of nat diff Ln of real [symmetric])

lemma ln Gamma real conv fact : n > 0 =⇒ ln Gamma (real n) = ln (fact (n −
1 ))
using Gamma fact [of n − 1 , where ′a = real ]
by (simp add : ln Gamma real pos of nat diff Ln of real [symmetric])

lemma Gamma real pos [simp, intro]: x > (0 ::real) =⇒ Gamma x > 0
by (simp add : Gamma real pos exp)

lemma Gamma real nonneg [simp, intro]: x > (0 ::real) =⇒ Gamma x ≥ 0
by (simp add : Gamma real pos exp)

lemma has field derivative ln Gamma real [derivative intros]:
assumes x : x > (0 ::real)
shows (ln Gamma has field derivative Digamma x ) (at x )

proof (subst DERIV cong ev [OF refl refl ])
from assms show ((Re ◦ ln Gamma ◦ complex of real) has field derivative Digamma

x ) (at x )
by (auto intro!: derivative eq intros has vector derivative real field

simp: Polygamma of real o def )
from eventually nhds in nhd [of x {0<..}] assms
show eventually (λy . ln Gamma y = (Re ◦ ln Gamma ◦ of real) y) (nhds x )
by (auto elim!: eventually mono simp: ln Gamma complex of real interior open)

qed

lemma field differentiable ln Gamma real :
x > 0 =⇒ ln Gamma field differentiable (at (x ::real) within A)
by (rule field differentiable within subset [of UNIV ])

(auto simp: field differentiable def intro!: derivative intros)+

declare has field derivative ln Gamma real [THEN DERIV chain2 , derivative intros]

lemma deriv ln Gamma real :
assumes z > 0
shows deriv ln Gamma z = Digamma (z :: real)
by (intro DERIV imp deriv has field derivative ln Gamma real assms)

lemma has field derivative rGamma real ′ [derivative intros]:
(rGamma has field derivative (if x ∈ ZZ≤0 then (−1 )ˆ(nat b−xc) ∗ fact (nat
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b−xc) else
−rGamma x ∗ Digamma x )) (at x within A)

using has field derivative rGamma[of x ] by (force elim!: nonpos Ints cases ′)

declare has field derivative rGamma real ′[THEN DERIV chain2 , derivative intros]

lemma Polygamma real odd pos:
assumes (x ::real) /∈ ZZ≤0 odd n
shows Polygamma n x > 0

proof −
from assms have x 6= 0 by auto
with assms show ?thesis
unfolding Polygamma def using Polygamma converges ′[of x Suc n]
by (auto simp: zero less power eq simp del : power Suc

dest : plus of nat eq 0 imp intro!: mult pos pos suminf pos)
qed

lemma Polygamma real even neg :
assumes (x ::real) > 0 n > 0 even n
shows Polygamma n x < 0
using assms unfolding Polygamma def using Polygamma converges ′[of x Suc

n]
by (auto intro!: mult pos pos suminf pos)

lemma Polygamma real strict mono:
assumes x > 0 x < (y ::real) even n
shows Polygamma n x < Polygamma n y

proof −
have ∃ ξ. x < ξ ∧ ξ < y ∧ Polygamma n y − Polygamma n x = (y − x ) ∗

Polygamma (Suc n) ξ
using assms by (intro MVT2 derivative intros impI allI ) (auto elim!: non-

pos Ints cases)
then guess ξ by (elim exE conjE ) note ξ = this
note ξ(3 )
also from ξ(1 ,2 ) assms have (y − x ) ∗ Polygamma (Suc n) ξ > 0
by (intro mult pos pos Polygamma real odd pos) (auto elim!: nonpos Ints cases)
finally show ?thesis by simp

qed

lemma Polygamma real strict antimono:
assumes x > 0 x < (y ::real) odd n
shows Polygamma n x > Polygamma n y

proof −
have ∃ ξ. x < ξ ∧ ξ < y ∧ Polygamma n y − Polygamma n x = (y − x ) ∗

Polygamma (Suc n) ξ
using assms by (intro MVT2 derivative intros impI allI ) (auto elim!: non-

pos Ints cases)
then guess ξ by (elim exE conjE ) note ξ = this
note ξ(3 )
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also from ξ(1 ,2 ) assms have (y − x ) ∗ Polygamma (Suc n) ξ < 0
by (intro mult pos neg Polygamma real even neg) simp all

finally show ?thesis by simp
qed

lemma Polygamma real mono:
assumes x > 0 x ≤ (y ::real) even n
shows Polygamma n x ≤ Polygamma n y
using Polygamma real strict mono[OF assms(1 ) assms(3 ), of y ] assms(2 )
by (cases x = y) simp all

lemma Digamma real strict mono: (0 ::real) < x =⇒ x < y =⇒ Digamma x <
Digamma y
by (rule Polygamma real strict mono) simp all

lemma Digamma real mono: (0 ::real) < x =⇒ x ≤ y =⇒ Digamma x ≤ Digamma
y
by (rule Polygamma real mono) simp all

lemma Digamma real ge three halves pos:
assumes x ≥ 3/2
shows Digamma (x :: real) > 0

proof −
have 0 < Digamma (3/2 :: real) by (fact Digamma real three halves pos)
also from assms have . . . ≤ Digamma x by (intro Polygamma real mono)

simp all
finally show ?thesis .

qed

lemma ln Gamma real strict mono:
assumes x ≥ 3/2 x < y
shows ln Gamma (x :: real) < ln Gamma y

proof −
have ∃ ξ. x < ξ ∧ ξ < y ∧ ln Gamma y − ln Gamma x = (y − x ) ∗ Digamma

ξ
using assms by (intro MVT2 derivative intros impI allI ) (auto elim!: non-

pos Ints cases)
then guess ξ by (elim exE conjE ) note ξ = this
note ξ(3 )
also from ξ(1 ,2 ) assms have (y − x ) ∗ Digamma ξ > 0
by (intro mult pos pos Digamma real ge three halves pos) simp all

finally show ?thesis by simp
qed

lemma Gamma real strict mono:
assumes x ≥ 3/2 x < y
shows Gamma (x :: real) < Gamma y

proof −
from Gamma real pos exp[of x ] assms have Gamma x = exp (ln Gamma x ) by
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simp
also have . . . < exp (ln Gamma y) by (intro exp less mono ln Gamma real strict mono

assms)
also from Gamma real pos exp[of y ] assms have . . . = Gamma y by simp
finally show ?thesis .

qed

theorem log convex Gamma real : convex on {0<..} (ln ◦ Gamma :: real ⇒ real)
by (rule convex on realI [of Digamma])

(auto intro!: derivative eq intros Polygamma real mono Gamma real pos
simp: o def Gamma eq zero iff elim!: nonpos Ints cases ′)

6.23.7 The uniqueness of the real Gamma function

The following is a proof of the Bohr–Mollerup theorem, which states that
any log-convex function G on the positive reals that fulfils G(1 ) = 1 and
satisfies the functional equation G(x + 1 ) = x G(x ) must be equal to the
Gamma function. In principle, if G is a holomorphic complex function, one
could then extend this from the positive reals to the entire complex plane
(minus the non-positive integers, where the Gamma function is not defined).

context
fixes G :: real ⇒ real
assumes G 1 : G 1 = 1
assumes G plus1 : x > 0 =⇒ G (x + 1 ) = x ∗ G x
assumes G pos: x > 0 =⇒ G x > 0
assumes log convex G : convex on {0<..} (ln ◦ G)

begin

private lemma G fact : G (of nat n + 1 ) = fact n
using G plus1 [of real n + 1 for n]
by (induction n) (simp all add : G 1 G plus1 )

private definition S :: real ⇒ real ⇒ real where
S x y = (ln (G y) − ln (G x )) / (y − x )

private lemma S eq :
n ≥ 2 =⇒ S (of nat n) (of nat n + x ) = (ln (G (real n + x )) − ln (fact (n −

1 ))) / x
by (subst G fact [symmetric]) (simp add : S def add ac of nat diff )

private lemma G lower :
assumes x : x > 0 and n: n ≥ 1
shows Gamma series x n ≤ G x

proof −
have (ln ◦ G) (real (Suc n)) ≤ ((ln ◦ G) (real (Suc n) + x ) −

(ln ◦ G) (real (Suc n) − 1 )) / (real (Suc n) + x − (real (Suc n) − 1 )) ∗
(real (Suc n) − (real (Suc n) − 1 )) + (ln ◦ G) (real (Suc n) − 1 )

using x n by (intro convex onD Icc ′ convex on subset [OF log convex G ]) auto
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hence S (of nat n) (of nat (Suc n)) ≤ S (of nat (Suc n)) (of nat (Suc n) + x )
unfolding S def using x by (simp add : field simps)

also have S (of nat n) (of nat (Suc n)) = ln (fact n) − ln (fact (n−1 ))
unfolding S def using n
by (subst (1 2 ) G fact [symmetric]) (simp all add : add ac of nat diff )

also have . . . = ln (fact n / fact (n−1 )) by (subst ln div) simp all
also from n have fact n / fact (n − 1 ) = n by (cases n) simp all
finally have x ∗ ln (real n) + ln (fact n) ≤ ln (G (real (Suc n) + x ))
using x n by (subst (asm) S eq) (simp all add : field simps)

also have x ∗ ln (real n) + ln (fact n) = ln (exp (x ∗ ln (real n)) ∗ fact n)
using x by (simp add : ln mult)

finally have exp (x ∗ ln (real n)) ∗ fact n ≤ G (real (Suc n) + x ) using x
by (subst (asm) ln le cancel iff ) (simp all add : G pos)

also have G (real (Suc n) + x ) = pochhammer x (Suc n) ∗ G x
using G plus1 [of real (Suc n) + x for n] G plus1 [of x ] x
by (induction n) (simp all add : pochhammer Suc add ac)

finally show Gamma series x n ≤ G x
using x by (simp add : field simps pochhammer pos Gamma series def )

qed

private lemma G upper :
assumes x : x > 0 x ≤ 1 and n: n ≥ 2
shows G x ≤ Gamma series x n ∗ (1 + x / real n)

proof −
have (ln ◦ G) (real n + x ) ≤ ((ln ◦ G) (real n + 1 ) −

(ln ◦ G) (real n)) / (real n + 1 − (real n)) ∗
((real n + x ) − real n) + (ln ◦ G) (real n)

using x n by (intro convex onD Icc ′ convex on subset [OF log convex G ]) auto
hence S (of nat n) (of nat n + x ) ≤ S (of nat n) (of nat n + 1 )
unfolding S def using x by (simp add : field simps)

also from n have S (of nat n) (of nat n + 1 ) = ln (fact n) − ln (fact (n−1 ))
by (subst (1 2 ) G fact [symmetric]) (simp add : S def add ac of nat diff )

also have . . . = ln (fact n / (fact (n−1 ))) using n by (subst ln div) simp all
also from n have fact n / fact (n − 1 ) = n by (cases n) simp all
finally have ln (G (real n + x )) ≤ x ∗ ln (real n) + ln (fact (n − 1 ))
using x n by (subst (asm) S eq) (simp all add : field simps)

also have . . . = ln (exp (x ∗ ln (real n)) ∗ fact (n − 1 )) using x
by (simp add : ln mult)

finally have G (real n + x ) ≤ exp (x ∗ ln (real n)) ∗ fact (n − 1 ) using x
by (subst (asm) ln le cancel iff ) (simp all add : G pos)

also have G (real n + x ) = pochhammer x n ∗ G x
using G plus1 [of real n + x for n] x
by (induction n) (simp all add : pochhammer Suc add ac)

finally have G x ≤ exp (x ∗ ln (real n)) ∗ fact (n− 1 ) / pochhammer x n
using x by (simp add : field simps pochhammer pos)

also from n have fact (n − 1 ) = fact n / n by (cases n) simp all
also have exp (x ∗ ln (real n)) ∗ . . . / pochhammer x n =

Gamma series x n ∗ (1 + x / real n) using n x
by (simp add : Gamma series def divide simps pochhammer Suc)
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finally show ?thesis .
qed

private lemma G eq Gamma aux :
assumes x : x > 0 x ≤ 1
shows G x = Gamma x

proof (rule antisym)
show G x ≥ Gamma x
proof (rule tendsto upperbound)
from G lower [of x ] show eventually (λn. Gamma series x n ≤ G x ) sequentially
using x by (auto intro: eventually mono[OF eventually ge at top[of 1 ::nat ]])

qed (simp all add : Gamma series LIMSEQ)
next
show G x ≤ Gamma x
proof (rule tendsto lowerbound)
have (λn. Gamma series x n ∗ (1 + x / real n)) −−−−→ Gamma x ∗ (1 + 0 )
by (rule tendsto intros real tendsto divide at top

Gamma series LIMSEQ filterlim real sequentially)+
thus (λn. Gamma series x n ∗ (1 + x / real n)) −−−−→ Gamma x by simp

next
from G upper [of x ] show eventually (λn. Gamma series x n ∗ (1 + x / real

n) ≥ G x ) sequentially
using x by (auto intro: eventually mono[OF eventually ge at top[of 2 ::nat ]])

qed simp all
qed

theorem Gamma pos real unique:
assumes x : x > 0
shows G x = Gamma x

proof −
have G eq : G (real n + x ) = Gamma (real n + x ) if x ∈ {0<..1} for n x using

that
proof (induction n)
case (Suc n)
from Suc have x + real n > 0 by simp
hence x + real n /∈ ZZ≤0 by auto
with Suc show ?case using G plus1 [of real n + x ] Gamma plus1 [of real n +

x ]
by (auto simp: add ac)

qed (simp all add : G eq Gamma aux )

show ?thesis
proof (cases frac x = 0 )
case True
hence x = of int (floor x ) by (simp add : frac def )
with x have x eq : x = of nat (nat (floor x ) − 1 ) + 1 by simp
show ?thesis by (subst (1 2 ) x eq , rule G eq) simp all

next
case False
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from assms have x eq : x = of nat (nat (floor x )) + frac x
by (simp add : frac def )

have frac le 1 : frac x ≤ 1 unfolding frac def by linarith
show ?thesis
by (subst (1 2 ) x eq , rule G eq , insert False frac le 1 ) simp all

qed
qed

end

6.23.8 The Beta function

definition Beta where Beta a b = Gamma a ∗ Gamma b / Gamma (a + b)

lemma Beta altdef : Beta a b = Gamma a ∗ Gamma b ∗ rGamma (a + b)
by (simp add : inverse eq divide Beta def Gamma def )

lemma Beta commute: Beta a b = Beta b a
unfolding Beta def by (simp add : ac simps)

lemma has field derivative Beta1 [derivative intros]:
assumes x /∈ ZZ≤0 x + y /∈ ZZ≤0

shows ((λx . Beta x y) has field derivative (Beta x y ∗ (Digamma x − Digamma
(x + y))))

(at x within A) unfolding Beta altdef
by (rule DERIV cong , (rule derivative intros assms)+) (simp add : algebra simps)

lemma Beta pole1 : x ∈ ZZ≤0 =⇒ Beta x y = 0
by (auto simp add : Beta def elim!: nonpos Ints cases ′)

lemma Beta pole2 : y ∈ ZZ≤0 =⇒ Beta x y = 0
by (auto simp add : Beta def elim!: nonpos Ints cases ′)

lemma Beta zero: x + y ∈ ZZ≤0 =⇒ Beta x y = 0
by (auto simp add : Beta def elim!: nonpos Ints cases ′)

lemma has field derivative Beta2 [derivative intros]:
assumes y /∈ ZZ≤0 x + y /∈ ZZ≤0

shows ((λy . Beta x y) has field derivative (Beta x y ∗ (Digamma y − Digamma
(x + y))))

(at y within A)
using has field derivative Beta1 [of y x A] assms by (simp add : Beta commute

add ac)

theorem Beta plus1 plus1 :
assumes x /∈ ZZ≤0 y /∈ ZZ≤0

shows Beta (x + 1 ) y + Beta x (y + 1 ) = Beta x y
proof −
have Beta (x + 1 ) y + Beta x (y + 1 ) =
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(Gamma (x + 1 ) ∗ Gamma y + Gamma x ∗ Gamma (y + 1 )) ∗ rGamma
((x + y) + 1 )

by (simp add : Beta altdef add divide distrib algebra simps)
also have . . . = (Gamma x ∗ Gamma y) ∗ ((x + y) ∗ rGamma ((x + y) + 1 ))
by (subst assms[THEN Gamma plus1 ])+ (simp add : algebra simps)

also from assms have . . . = Beta x y unfolding Beta altdef by (subst rGamma plus1 )
simp
finally show ?thesis .

qed

theorem Beta plus1 left :
assumes x /∈ ZZ≤0

shows (x + y) ∗ Beta (x + 1 ) y = x ∗ Beta x y
proof −
have (x + y) ∗ Beta (x + 1 ) y = Gamma (x + 1 ) ∗ Gamma y ∗ ((x + y) ∗

rGamma ((x + y) + 1 ))
unfolding Beta altdef by (simp only : ac simps)

also have . . . = x ∗ Beta x y unfolding Beta altdef
by (subst assms[THEN Gamma plus1 ] rGamma plus1 )+ (simp only : ac simps)

finally show ?thesis .
qed

theorem Beta plus1 right :
assumes y /∈ ZZ≤0

shows (x + y) ∗ Beta x (y + 1 ) = y ∗ Beta x y
using Beta plus1 left [of y x ] assms by (simp all add : Beta commute add .commute)

lemma Gamma Gamma Beta:
assumes x + y /∈ ZZ≤0

shows Gamma x ∗ Gamma y = Beta x y ∗ Gamma (x + y)
unfolding Beta altdef using assms Gamma eq zero iff [of x+y ]
by (simp add : rGamma inverse Gamma)

6.23.9 Legendre duplication theorem

context
begin

private lemma Gamma legendre duplication aux :
fixes z :: ′a :: Gamma
assumes z /∈ ZZ≤0 z + 1/2 /∈ ZZ≤0

shows Gamma z ∗ Gamma (z + 1/2 ) = exp ((1 − 2∗z ) ∗ of real (ln 2 )) ∗
Gamma (1/2 ) ∗ Gamma (2∗z )
proof −
let ?powr = λb a. exp (a ∗ of real (ln (of nat b)))
let ?h = λn. (fact (n−1 ))2 / fact (2∗n−1 ) ∗ of nat (2ˆ(2∗n)) ∗

exp (1/2 ∗ of real (ln (real of nat n)))
{
fix z :: ′a assume z : z /∈ ZZ≤0 z + 1/2 /∈ ZZ≤0
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let ?g = λn. ?powr 2 (2∗z ) ∗ Gamma series ′ z n ∗ Gamma series ′ (z + 1/2 )
n /

Gamma series ′ (2∗z ) (2∗n)
have eventually (λn. ?g n = ?h n) sequentially using eventually gt at top
proof eventually elim
fix n :: nat assume n: n > 0
let ?f = fact (n − 1 ) :: ′a and ?f ′ = fact (2∗n − 1 ) :: ′a
have A: exp t ∗ exp t = exp (2∗t :: ′a) for t by (subst exp add [symmetric])

simp
have A: Gamma series ′ z n ∗ Gamma series ′ (z + 1/2 ) n = ?fˆ2 ∗ ?powr

n (2∗z + 1/2 ) /
(pochhammer z n ∗ pochhammer (z + 1/2 ) n)

by (simp add : Gamma series ′ def exp add ring distribs power2 eq square A
mult ac)

have B : Gamma series ′ (2∗z ) (2∗n) =
?f ′ ∗ ?powr 2 (2∗z ) ∗ ?powr n (2∗z ) /
(of nat (2ˆ(2∗n)) ∗ pochhammer z n ∗ pochhammer (z+1/2 )

n) using n
by (simp add : Gamma series ′ def ln mult exp add ring distribs pochham-

mer double)
from z have pochhammer z n 6= 0 by (auto dest : pochhammer eq 0 imp nonpos Int)

moreover from z have pochhammer (z + 1/2 ) n 6= 0 by (auto dest :
pochhammer eq 0 imp nonpos Int)

ultimately have ?powr 2 (2∗z ) ∗ (Gamma series ′ z n ∗ Gamma series ′ (z
+ 1/2 ) n) / Gamma series ′ (2∗z ) (2∗n) =

?fˆ2 / ?f ′ ∗ of nat (2ˆ(2∗n)) ∗ (?powr n ((4∗z + 1 )/2 ) ∗ ?powr n (−2∗z ))
using n unfolding A B by (simp add : field split simps exp minus)

also have ?powr n ((4∗z + 1 )/2 ) ∗ ?powr n (−2∗z ) = ?powr n (1/2 )
by (simp add : algebra simps exp add [symmetric] add divide distrib)

finally show ?g n = ?h n by (simp only : mult ac)
qed

moreover from z double in nonpos Ints imp[of z ] have 2 ∗ z /∈ ZZ≤0 by auto
hence ?g −−−−→ ?powr 2 (2∗z ) ∗ Gamma z ∗ Gamma (z+1/2 ) / Gamma

(2∗z )
using LIMSEQ subseq LIMSEQ [OF Gamma series ′ LIMSEQ , of (∗)2 2∗z ]
by (intro tendsto intros Gamma series ′ LIMSEQ)

(simp all add : o def strict mono def Gamma eq zero iff )
ultimately have ?h −−−−→ ?powr 2 (2∗z ) ∗ Gamma z ∗ Gamma (z+1/2 ) /

Gamma (2∗z )
by (blast intro: Lim transform eventually)

} note lim = this

from assms double in nonpos Ints imp[of z ] have z ′: 2 ∗ z /∈ ZZ≤0 by auto
from fraction not in ints[of 2 1 ] have (1/2 :: ′a) /∈ ZZ≤0

by (intro not in Ints imp not in nonpos Ints) simp all
with lim[of 1/2 :: ′a] have ?h −−−−→ 2 ∗ Gamma (1/2 :: ′a) by (simp add :

exp of real)
from LIMSEQ unique[OF this lim[OF assms]] z ′ show ?thesis
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by (simp add : field split simps Gamma eq zero iff ring distribs exp diff exp of real)
qed

The following lemma is somewhat annoying. With a little bit of complex
analysis (Cauchy’s integral theorem, to be exact), this would be completely
trivial. However, we want to avoid depending on the complex analysis session
at this point, so we prove it the hard way.

private lemma Gamma reflection aux :
defines h ≡ λz ::complex . if z ∈ ZZ then 0 else

(of real pi ∗ cot (of real pi∗z ) + Digamma z − Digamma (1 − z ))
defines a ≡ complex of real pi
obtains h ′ where continuous on UNIV h ′ ∧z . (h has field derivative (h ′ z )) (at

z )
proof −
define f where f n = a ∗ of real (cos coeff (n+1 ) − sin coeff (n+2 )) for n
define F where F z = (if z = 0 then 0 else (cos (a∗z ) − sin (a∗z )/(a∗z )) / z )

for z
define g where g n = complex of real (sin coeff (n+1 )) for n
define G where G z = (if z = 0 then 1 else sin (a∗z )/(a∗z )) for z
have a nz : a 6= 0 unfolding a def by simp

have (λn. f n ∗ (a∗z )ˆn) sums (F z ) ∧ (λn. g n ∗ (a∗z )ˆn) sums (G z )
if abs (Re z ) < 1 for z

proof (cases z = 0 ; rule conjI )
assume z 6= 0
note z = this that

from z have sin nz : sin (a∗z ) 6= 0 unfolding a def by (auto simp: sin eq 0 )
have (λn. of real (sin coeff n) ∗ (a∗z )ˆn) sums (sin (a∗z )) using sin converges[of

a∗z ]
by (simp add : scaleR conv of real)

from sums split initial segment [OF this, of 1 ]
have (λn. (a∗z ) ∗ of real (sin coeff (n+1 )) ∗ (a∗z )ˆn) sums (sin (a∗z )) by

(simp add : mult ac)
from sums mult [OF this, of inverse (a∗z )] z a nz
have A: (λn. g n ∗ (a∗z )ˆn) sums (sin (a∗z )/(a∗z ))
by (simp add : field simps g def )

with z show (λn. g n ∗ (a∗z )ˆn) sums (G z ) by (simp add : G def )
from A z a nz sin nz have g nz : (

∑
n. g n ∗ (a∗z )ˆn) 6= 0 by (simp add :

sums iff g def )

have [simp]: sin coeff (Suc 0 ) = 1 by (simp add : sin coeff def )
from sums split initial segment [OF sums diff [OF cos converges[of a∗z ] A], of

1 ]
have (λn. z ∗ f n ∗ (a∗z )ˆn) sums (cos (a∗z ) − sin (a∗z ) / (a∗z ))
by (simp add : mult ac scaleR conv of real ring distribs f def g def )

from sums mult [OF this, of inverse z ] z assms
show (λn. f n ∗ (a∗z )ˆn) sums (F z ) by (simp add : divide simps mult ac

f def F def )
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next
assume z : z = 0
have (λn. f n ∗ (a ∗ z ) ˆ n) sums f 0 using powser sums zero[of f ] z by simp
with z show (λn. f n ∗ (a ∗ z ) ˆ n) sums (F z )
by (simp add : f def F def sin coeff def cos coeff def )

have (λn. g n ∗ (a ∗ z ) ˆ n) sums g 0 using powser sums zero[of g ] z by simp
with z show (λn. g n ∗ (a ∗ z ) ˆ n) sums (G z )
by (simp add : g def G def sin coeff def cos coeff def )

qed
note sums = conjunct1 [OF this] conjunct2 [OF this]

define h2 where [abs def ]:
h2 z = (

∑
n. f n ∗ (a∗z )ˆn) / (

∑
n. g n ∗ (a∗z )ˆn) + Digamma (1 + z ) −

Digamma (1 − z ) for z
define POWSER where [abs def ]: POWSER f z = (

∑
n. f n ∗ (zˆn :: complex ))

for f z
define POWSER ′ where [abs def ]: POWSER ′ f z = (

∑
n. diffs f n ∗ (zˆn)) for

f and z :: complex
define h2 ′ where [abs def ]:
h2 ′ z = a ∗ (POWSER g (a∗z ) ∗ POWSER ′ f (a∗z ) − POWSER f (a∗z ) ∗

POWSER ′ g (a∗z )) /
(POWSER g (a∗z ))ˆ2 + Polygamma 1 (1 + z ) + Polygamma 1 (1 − z ) for

z

have h eq : h t = h2 t if abs (Re t) < 1 for t
proof −
from that have t : t ∈ ZZ ←→ t = 0 by (auto elim!: Ints cases)
hence h t = a∗cot (a∗t) − 1/t + Digamma (1 + t) − Digamma (1 − t)
unfolding h def using Digamma plus1 [of t ] by (force simp: field simps a def )
also have a∗cot (a∗t) − 1/t = (F t) / (G t)
using t by (auto simp add : divide simps sin eq 0 cot def a def F def G def )

also have . . . = (
∑

n. f n ∗ (a∗t)ˆn) / (
∑

n. g n ∗ (a∗t)ˆn)
using sums[of t ] that by (simp add : sums iff )

finally show h t = h2 t by (simp only : h2 def )
qed

let ?A = {z . abs (Re z ) < 1}
have open ({z . Re z < 1} ∩ {z . Re z > −1})
using open halfspace Re gt open halfspace Re lt by auto

also have ({z . Re z < 1} ∩ {z . Re z > −1}) = {z . abs (Re z ) < 1} by auto
finally have open A: open ?A .
hence [simp]: interior ?A = ?A by (simp add : interior open)

have summable f : summable (λn. f n ∗ zˆn) for z
by (rule powser inside, rule sums summable, rule sums[of i ∗ of real (norm z

+ 1 ) / a])
(simp all add : norm mult a def del : of real add)

have summable g : summable (λn. g n ∗ zˆn) for z
by (rule powser inside, rule sums summable, rule sums[of i ∗ of real (norm z
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+ 1 ) / a])
(simp all add : norm mult a def del : of real add)

have summable fg ′: summable (λn. diffs f n ∗ zˆn) summable (λn. diffs g n ∗
zˆn) for z

by (intro termdiff converges all summable f summable g)+
have (POWSER f has field derivative (POWSER ′ f z )) (at z )

(POWSER g has field derivative (POWSER ′ g z )) (at z ) for z
unfolding POWSER def POWSER ′ def
by (intro termdiffs strong converges everywhere summable f summable g)+

note derivs = this[THEN DERIV chain2 [OF DERIV cmult [OF DERIV ident ]],
unfolded POWSER def ]
have isCont (POWSER f ) z isCont (POWSER g) z isCont (POWSER ′ f ) z

isCont (POWSER ′ g) z
for z unfolding POWSER def POWSER ′ def
by (intro isCont powser converges everywhere summable f summable g summable fg ′)+

note cont = this[THEN isCont o2 [rotated ], unfolded POWSER def POWSER ′ def ]

{
fix z :: complex assume z : abs (Re z ) < 1
define d where d = i ∗ of real (norm z + 1 )
have d : abs (Re d) < 1 norm z < norm d by (simp all add : d def norm mult

del : of real add)
have eventually (λz . h z = h2 z ) (nhds z )
using eventually nhds in nhd [of z ?A] using h eq z
by (auto elim!: eventually mono)

moreover from sums(2 )[OF z ] z have nz : (
∑

n. g n ∗ (a ∗ z ) ˆ n) 6= 0
unfolding G def by (auto simp: sums iff sin eq 0 a def )

have A: z ∈ ZZ ←→ z = 0 using z by (auto elim!: Ints cases)
have no int : 1 + z ∈ ZZ ←→ z = 0 using z Ints diff [of 1+z 1 ] A
by (auto elim!: nonpos Ints cases)

have no int ′: 1 − z ∈ ZZ ←→ z = 0 using z Ints diff [of 1 1−z ] A
by (auto elim!: nonpos Ints cases)

from no int no int ′ have no int : 1 − z /∈ ZZ≤0 1 + z /∈ ZZ≤0 by auto
have (h2 has field derivative h2 ′ z ) (at z ) unfolding h2 def
by (rule DERIV cong , (rule derivative intros refl derivs[unfolded POWSER def ]

nz no int)+)
(auto simp: h2 ′ def POWSER def field simps power2 eq square)

ultimately have deriv : (h has field derivative h2 ′ z ) (at z )
by (subst DERIV cong ev [OF refl refl ])

from sums(2 )[OF z ] z have (
∑

n. g n ∗ (a ∗ z ) ˆ n) 6= 0
unfolding G def by (auto simp: sums iff a def sin eq 0 )
hence isCont h2 ′ z using no int unfolding h2 ′ def [abs def ] POWSER def

POWSER ′ def
by (intro continuous intros cont

continuous on compose2 [OF continuous on Polygamma[of {z . Re z >
0}]]) auto

note deriv and this
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} note A = this

interpret h: periodic fun simple ′ h
proof
fix z :: complex
show h (z + 1 ) = h z
proof (cases z ∈ ZZ)
assume z : z /∈ ZZ
hence A: z + 1 /∈ ZZ z 6= 0 using Ints diff [of z+1 1 ] by auto
hence Digamma (z + 1 ) − Digamma (−z ) = Digamma z − Digamma (−z

+ 1 )
by (subst (1 2 ) Digamma plus1 ) simp all

with A z show h (z + 1 ) = h z
by (simp add : h def sin plus pi cos plus pi ring distribs cot def )

qed (simp add : h def )
qed

have h2 ′ eq : h2 ′ (z − 1 ) = h2 ′ z if z : Re z > 0 Re z < 1 for z
proof −
have ((λz . h (z − 1 )) has field derivative h2 ′ (z − 1 )) (at z )
by (rule DERIV cong , rule DERIV chain ′[OF A(1 )])

(insert z , auto intro!: derivative eq intros)
hence (h has field derivative h2 ′ (z − 1 )) (at z ) by (subst (asm) h.minus 1 )
moreover from z have (h has field derivative h2 ′ z ) (at z ) by (intro A)

simp all
ultimately show h2 ′ (z − 1 ) = h2 ′ z by (rule DERIV unique)

qed

define h2 ′′ where h2 ′′ z = h2 ′ (z − of int bRe zc) for z
have deriv : (h has field derivative h2 ′′ z ) (at z ) for z
proof −
fix z :: complex
have B : |Re z − real of int bRe zc| < 1 by linarith
have ((λt . h (t − of int bRe zc)) has field derivative h2 ′′ z ) (at z )
unfolding h2 ′′ def by (rule DERIV cong , rule DERIV chain ′[OF A(1 )])

(insert B , auto intro!: derivative intros)
thus (h has field derivative h2 ′′ z ) (at z ) by (simp add : h.minus of int)

qed

have cont : continuous on UNIV h2 ′′

proof (intro continuous at imp continuous on ballI )
fix z :: complex
define r where r = bRe zc
define A where A = {t . of int r − 1 < Re t ∧ Re t < of int r + 1}
have continuous on A (λt . h2 ′ (t − of int r)) unfolding A def

by (intro continuous at imp continuous on isCont o2 [OF A(2 )] ballI con-
tinuous intros)

(simp all add : abs real def )
moreover have h2 ′′ t = h2 ′ (t − of int r) if t : t ∈ A for t
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proof (cases Re t ≥ of int r)
case True
from t have of int r − 1 < Re t Re t < of int r + 1 by (simp all add :

A def )
with True have bRe tc = bRe zc unfolding r def by linarith
thus ?thesis by (auto simp: r def h2 ′′ def )

next
case False
from t have t : of int r − 1 < Re t Re t < of int r + 1 by (simp all add :

A def )
with False have t ′: bRe tc = bRe zc − 1 unfolding r def by linarith
moreover from t False have h2 ′ (t − of int r + 1 − 1 ) = h2 ′ (t − of int

r + 1 )
by (intro h2 ′ eq) simp all

ultimately show ?thesis by (auto simp: r def h2 ′′ def algebra simps t ′)
qed
ultimately have continuous on A h2 ′′ by (subst continuous on cong [OF refl ])
moreover {
have open ({t . of int r − 1 < Re t} ∩ {t . of int r + 1 > Re t})
by (intro open Int open halfspace Re gt open halfspace Re lt)

also have {t . of int r − 1 < Re t} ∩ {t . of int r + 1 > Re t} = A
unfolding A def by blast

finally have open A .
}
ultimately have C : isCont h2 ′′ t if t ∈ A for t using that
by (subst (asm) continuous on eq continuous at) auto

have of int r − 1 < Re z Re z < of int r + 1 unfolding r def by linarith+
thus isCont h2 ′′ z by (intro C ) (simp all add : A def )

qed

from that [OF cont deriv ] show ?thesis .
qed

lemma Gamma reflection complex :
fixes z :: complex
shows Gamma z ∗ Gamma (1 − z ) = of real pi / sin (of real pi ∗ z )

proof −
let ?g = λz ::complex . Gamma z ∗ Gamma (1 − z ) ∗ sin (of real pi ∗ z )
define g where [abs def ]: g z = (if z ∈ ZZ then of real pi else ?g z ) for z ::

complex
let ?h = λz ::complex . (of real pi ∗ cot (of real pi∗z ) + Digamma z − Digamma

(1 − z ))
define h where [abs def ]: h z = (if z ∈ ZZ then 0 else ?h z ) for z :: complex

— g is periodic with period 1.
interpret g : periodic fun simple ′ g
proof
fix z :: complex
show g (z + 1 ) = g z
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proof (cases z ∈ ZZ)
case False
hence z ∗ g z = z ∗ Beta z (− z + 1 ) ∗ sin (of real pi ∗ z ) by (simp add :

g def Beta def )
also have z ∗ Beta z (− z + 1 ) = (z + 1 + −z ) ∗ Beta (z + 1 ) (− z + 1 )
using False Ints diff [of 1 1 − z ] nonpos Ints subset Ints
by (subst Beta plus1 left [symmetric]) auto

also have . . . ∗ sin (of real pi ∗ z ) = z ∗ (Beta (z + 1 ) (−z ) ∗ sin (of real
pi ∗ (z + 1 )))

using False Ints diff [of z+1 1 ] Ints minus[of −z ] nonpos Ints subset Ints
by (subst Beta plus1 right) (auto simp: ring distribs sin plus pi)

also from False have Beta (z + 1 ) (−z ) ∗ sin (of real pi ∗ (z + 1 )) = g (z
+ 1 )

using Ints diff [of z+1 1 ] by (auto simp: g def Beta def )
finally show g (z + 1 ) = g z using False by (subst (asm) mult left cancel)

auto
qed (simp add : g def )

qed

— g is entire.
have g g ′: (g has field derivative (h z ∗ g z )) (at z ) for z :: complex
proof (cases z ∈ ZZ)
let ?h ′ = λz . Beta z (1 − z ) ∗ ((Digamma z − Digamma (1 − z )) ∗ sin (z ∗

of real pi) +
of real pi ∗ cos (z ∗ of real pi))

case False
from False have eventually (λt . t ∈ UNIV − ZZ) (nhds z )
by (intro eventually nhds in open) (auto simp: open Diff )

hence eventually (λt . g t = ?g t) (nhds z ) by eventually elim (simp add : g def )
moreover {
from False Ints diff [of 1 1−z ] have 1 − z /∈ ZZ by auto
hence (?g has field derivative ?h ′ z ) (at z ) using nonpos Ints subset Ints
by (auto intro!: derivative eq intros simp: algebra simps Beta def )

also from False have sin (of real pi ∗ z ) 6= 0 by (subst sin eq 0 ) auto
hence ?h ′ z = h z ∗ g z

using False unfolding g def h def cot def by (simp add : field simps
Beta def )

finally have (?g has field derivative (h z ∗ g z )) (at z ) .
}
ultimately show ?thesis by (subst DERIV cong ev [OF refl refl ])

next
case True
then obtain n where z : z = of int n by (auto elim!: Ints cases)
let ?t = (λz ::complex . if z = 0 then 1 else sin z / z ) ◦ (λz . of real pi ∗ z )
have deriv 0 : (g has field derivative 0 ) (at 0 )
proof (subst DERIV cong ev [OF refl refl ])
show eventually (λz . g z = of real pi ∗ Gamma (1 + z ) ∗ Gamma (1 − z )

∗ ?t z ) (nhds 0 )
using eventually nhds ball [OF zero less one, of 0 ::complex ]
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proof eventually elim
fix z :: complex assume z : z ∈ ball 0 1
show g z = of real pi ∗ Gamma (1 + z ) ∗ Gamma (1 − z ) ∗ ?t z
proof (cases z = 0 )
assume z ′: z 6= 0
with z have z ′′: z /∈ ZZ≤0 z /∈ ZZ by (auto elim!: Ints cases)
from Gamma plus1 [OF this(1 )] have Gamma z = Gamma (z + 1 ) / z

by simp
with z ′′ z ′ show ?thesis by (simp add : g def ac simps)

qed (simp add : g def )
qed
have (?t has field derivative (0 ∗ of real pi)) (at 0 )
using has field derivative sin z over z [of UNIV :: complex set ]
by (intro DERIV chain) simp all

thus ((λz . of real pi ∗ Gamma (1 + z ) ∗ Gamma (1 − z ) ∗ ?t z ) has field derivative
0 ) (at 0 )

by (auto intro!: derivative eq intros simp: o def )
qed

have ((g ◦ (λx . x − of int n)) has field derivative 0 ∗ 1 ) (at (of int n))
using deriv 0 by (intro DERIV chain) (auto intro!: derivative eq intros)

also have g ◦ (λx . x − of int n) = g by (intro ext) (simp add : g .minus of int)
finally show (g has field derivative (h z ∗ g z )) (at z ) by (simp add : z h def )

qed

have g eq : g (z/2 ) ∗ g ((z+1 )/2 ) = Gamma (1/2 )ˆ2 ∗ g z if Re z > −1 Re z
< 2 for z
proof (cases z ∈ ZZ)
case True
with that have z = 0 ∨ z = 1 by (force elim!: Ints cases)
moreover have g 0 ∗ g (1/2 ) = Gamma (1/2 )ˆ2 ∗ g 0
using fraction not in ints[where ′a = complex , of 2 1 ] by (simp add : g def

power2 eq square)
moreover have g (1/2 ) ∗ g 1 = Gamma (1/2 )ˆ2 ∗ g 1

using fraction not in ints[where ′a = complex , of 2 1 ]
by (simp add : g def power2 eq square Beta def algebra simps)

ultimately show ?thesis by force
next
case False
hence z : z/2 /∈ ZZ (z+1 )/2 /∈ ZZ using Ints diff [of z+1 1 ] by (auto elim!:

Ints cases)
hence z ′: z/2 /∈ ZZ≤0 (z+1 )/2 /∈ ZZ≤0 by (auto elim!: nonpos Ints cases)
from z have 1−z/2 /∈ ZZ 1−((z+1 )/2 ) /∈ ZZ
using Ints diff [of 1 1−z/2 ] Ints diff [of 1 1−((z+1 )/2 )] by auto

hence z ′′: 1−z/2 /∈ ZZ≤0 1−((z+1 )/2 ) /∈ ZZ≤0 by (auto elim!: nonpos Ints cases)
from z have g (z/2 ) ∗ g ((z+1 )/2 ) =
(Gamma (z/2 ) ∗ Gamma ((z+1 )/2 )) ∗ (Gamma (1−z/2 ) ∗ Gamma (1−((z+1 )/2 )))

∗
(sin (of real pi ∗ z/2 ) ∗ sin (of real pi ∗ (z+1 )/2 ))
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by (simp add : g def )
also from z ′ Gamma legendre duplication aux [of z/2 ]
have Gamma (z/2 ) ∗ Gamma ((z+1 )/2 ) = exp ((1−z ) ∗ of real (ln 2 )) ∗

Gamma (1/2 ) ∗ Gamma z
by (simp add : add divide distrib)

also from z ′′ Gamma legendre duplication aux [of 1−(z+1 )/2 ]
have Gamma (1−z/2 ) ∗ Gamma (1−(z+1 )/2 ) =

Gamma (1−z ) ∗ Gamma (1/2 ) ∗ exp (z ∗ of real (ln 2 ))
by (simp add : add divide distrib ac simps)

finally have g (z/2 ) ∗ g ((z+1 )/2 ) = Gamma (1/2 )ˆ2 ∗ (Gamma z ∗ Gamma
(1−z ) ∗

(2 ∗ (sin (of real pi∗z/2 ) ∗ sin (of real pi∗(z+1 )/2 ))))
by (simp add : add ac power2 eq square exp add ring distribs exp diff exp of real)
also have sin (of real pi∗(z+1 )/2 ) = cos (of real pi∗z/2 )
using cos sin eq [of − of real pi ∗ z/2 , symmetric]
by (simp add : ring distribs add divide distrib ac simps)

also have 2 ∗ (sin (of real pi∗z/2 ) ∗ cos (of real pi∗z/2 )) = sin (of real pi ∗
z )

by (subst sin times cos) (simp add : field simps)
also have Gamma z ∗ Gamma (1 − z ) ∗ sin (complex of real pi ∗ z ) = g z
using 〈z /∈ ZZ〉 by (simp add : g def )

finally show ?thesis .
qed
have g eq : g (z/2 ) ∗ g ((z+1 )/2 ) = Gamma (1/2 )ˆ2 ∗ g z for z
proof −
define r where r = bRe z / 2 c
have Gamma (1/2 )ˆ2 ∗ g z = Gamma (1/2 )ˆ2 ∗ g (z − of int (2∗r)) by

(simp only : g .minus of int)
also have of int (2∗r) = 2 ∗ of int r by simp
also have Re z − 2 ∗ of int r > −1 Re z − 2 ∗ of int r < 2 unfolding r def

by linarith+
hence Gamma (1/2 )ˆ2 ∗ g (z − 2 ∗ of int r) =

g ((z − 2 ∗ of int r)/2 ) ∗ g ((z − 2 ∗ of int r + 1 )/2 )
unfolding r def by (intro g eq [symmetric]) simp all

also have (z − 2 ∗ of int r) / 2 = z/2 − of int r by simp
also have g . . . = g (z/2 ) by (rule g .minus of int)
also have (z − 2 ∗ of int r + 1 ) / 2 = (z + 1 )/2 − of int r by simp
also have g . . . = g ((z+1 )/2 ) by (rule g .minus of int)
finally show ?thesis ..

qed

have g nz [simp]: g z 6= 0 for z :: complex
unfolding g def using Ints diff [of 1 1 − z ]
by (auto simp: Gamma eq zero iff sin eq 0 dest !: nonpos Ints Int)

have h eq : h z = (h (z/2 ) + h ((z+1 )/2 )) / 2 for z
proof −
have ((λt . g (t/2 ) ∗ g ((t+1 )/2 )) has field derivative

(g (z/2 ) ∗ g ((z+1 )/2 )) ∗ ((h (z/2 ) + h ((z+1 )/2 )) / 2 )) (at
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z )
by (auto intro!: derivative eq intros g g ′[THEN DERIV chain2 ] simp: field simps)
hence ((λt . Gamma (1/2 )ˆ2 ∗ g t) has field derivative

Gamma (1/2 )ˆ2 ∗ g z ∗ ((h (z/2 ) + h ((z+1 )/2 )) / 2 )) (at z )
by (subst (1 2 ) g eq [symmetric]) simp

from DERIV cmult [OF this, of inverse ((Gamma (1/2 ))ˆ2 )]
have (g has field derivative (g z ∗ ((h (z/2 ) + h ((z+1 )/2 ))/2 ))) (at z )
using fraction not in ints[where ′a = complex , of 2 1 ]

by (simp add : divide simps Gamma eq zero iff not in Ints imp not in nonpos Ints)
moreover have (g has field derivative (g z ∗ h z )) (at z )
using g g ′[of z ] by (simp add : ac simps)

ultimately have g z ∗ h z = g z ∗ ((h (z/2 ) + h ((z+1 )/2 ))/2 )
by (intro DERIV unique)

thus h z = (h (z/2 ) + h ((z+1 )/2 )) / 2 by simp
qed

obtain h ′ where h ′ cont : continuous on UNIV h ′ and
h h ′:

∧
z . (h has field derivative h ′ z ) (at z )

unfolding h def by (erule Gamma reflection aux )

have h ′ eq : h ′ z = (h ′ (z/2 ) + h ′ ((z+1 )/2 )) / 4 for z
proof −
have ((λt . (h (t/2 ) + h ((t+1 )/2 )) / 2 ) has field derivative

((h ′ (z/2 ) + h ′ ((z+1 )/2 )) / 4 )) (at z )
by (fastforce intro!: derivative eq intros h h ′[THEN DERIV chain2 ])

hence (h has field derivative ((h ′ (z/2 ) + h ′ ((z+1 )/2 ))/4 )) (at z )
by (subst (asm) h eq [symmetric])
from h h ′ and this show h ′ z = (h ′ (z/2 ) + h ′ ((z+1 )/2 )) / 4 by (rule

DERIV unique)
qed

have h ′ zero: h ′ z = 0 for z
proof −
define m where m = max 1 |Re z |
define B where B = {t . abs (Re t) ≤ m ∧ abs (Im t) ≤ abs (Im z )}
have closed ({t . Re t ≥ −m} ∩ {t . Re t ≤ m} ∩

{t . Im t ≥ −|Im z |} ∩ {t . Im t ≤ |Im z |})
(is closed ?B) by (intro closed Int closed halfspace Re ge closed halfspace Re le

closed halfspace Im ge closed halfspace Im le)
also have ?B = B unfolding B def by fastforce
finally have closed B .
moreover have bounded B unfolding bounded iff
proof (intro ballI exI )
fix t assume t : t ∈ B
have norm t ≤ |Re t | + |Im t | by (rule cmod le)
also from t have |Re t | ≤ m unfolding B def by blast
also from t have |Im t | ≤ |Im z | unfolding B def by blast
finally show norm t ≤ m + |Im z | by − simp

qed
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ultimately have compact : compact B by (subst compact eq bounded closed)
blast

define M where M = (SUP z∈B . norm (h ′ z ))
have compact (h ′ ‘ B)
by (intro compact continuous image continuous on subset [OF h ′ cont ] com-

pact) blast+
hence bdd : bdd above ((λz . norm (h ′ z )) ‘ B)

using bdd above norm[of h ′ ‘ B ] by (simp add : image comp o def com-
pact imp bounded)

have norm (h ′ z ) ≤ M unfolding M def by (intro cSUP upper bdd) (simp all
add : B def m def )

also have M ≤ M /2
proof (subst M def , subst cSUP le iff )
have z ∈ B unfolding B def m def by simp
thus B 6= {} by auto

next
show ∀ z∈B . norm (h ′ z ) ≤ M /2
proof
fix t :: complex assume t : t ∈ B
from h ′ eq [of t ] t have h ′ t = (h ′ (t/2 ) + h ′ ((t+1 )/2 )) / 4 by (simp)
also have norm . . . = norm (h ′ (t/2 ) + h ′ ((t+1 )/2 )) / 4 by simp
also have norm (h ′ (t/2 ) + h ′ ((t+1 )/2 )) ≤ norm (h ′ (t/2 )) + norm (h ′

((t+1 )/2 ))
by (rule norm triangle ineq)

also from t have abs (Re ((t + 1 )/2 )) ≤ m unfolding m def B def by
auto

with t have t/2 ∈ B (t+1 )/2 ∈ B unfolding B def by auto
hence norm (h ′ (t/2 )) + norm (h ′ ((t+1 )/2 )) ≤ M + M unfolding M def

by (intro add mono cSUP upper bdd) (auto simp: B def )
also have (M + M ) / 4 = M / 2 by simp
finally show norm (h ′ t) ≤ M /2 by − simp all

qed
qed (insert bdd , auto)
hence M ≤ 0 by simp
finally show h ′ z = 0 by simp

qed
have h h ′ 2 : (h has field derivative 0 ) (at z ) for z
using h h ′[of z ] h ′ zero[of z ] by simp

have g real : g z ∈ IR if z ∈ IR for z
unfolding g def using that by (auto intro!: Reals mult Gamma complex real)

have h real : h z ∈ IR if z ∈ IR for z
unfolding h def using that by (auto intro!: Reals mult Reals add Reals diff

Polygamma Real)
have g nz : g z 6= 0 for z unfolding g def using Ints diff [of 1 1−z ]
by (auto simp: Gamma eq zero iff sin eq 0 )

from h ′ zero h h ′ 2 have ∃ c. ∀ z∈UNIV . h z = c
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by (intro has field derivative zero constant) (simp all add : dist 0 norm)
then obtain c where c:

∧
z . h z = c by auto

have ∃ u. u ∈ closed segment 0 1 ∧ Re (g 1 ) − Re (g 0 ) = Re (h u ∗ g u ∗ (1
− 0 ))

by (intro complex mvt line g g ′)
then obtain u where u: u ∈ closed segment 0 1 Re (g 1 ) − Re (g 0 ) = Re (h

u ∗ g u)
by auto

from u(1 ) have u ′: u ∈ IR unfolding closed segment def
by (auto simp: scaleR conv of real)

from u ′ g real [of u] g nz [of u] have Re (g u) 6= 0 by (auto elim!: Reals cases)
with u(2 ) c[of u] g real [of u] g nz [of u] u ′

have Re c = 0 by (simp add : complex is Real iff g .of 1 )
with h real [of 0 ] c[of 0 ] have c = 0 by (auto elim!: Reals cases)
with c have A: h z ∗ g z = 0 for z by simp
hence (g has field derivative 0 ) (at z ) for z using g g ′[of z ] by simp
hence ∃ c ′. ∀ z∈UNIV . g z = c ′ by (intro has field derivative zero constant)

simp all
then obtain c ′ where c:

∧
z . g z = c ′ by (force)

from this[of 0 ] have c ′ = pi unfolding g def by simp
with c have g z = pi by simp

show ?thesis
proof (cases z ∈ ZZ)
case False
with 〈g z = pi 〉 show ?thesis by (auto simp: g def divide simps)

next
case True
then obtain n where n: z = of int n by (elim Ints cases)
with sin eq 0 [of of real pi ∗ z ] have sin (of real pi ∗ z ) = 0 by force
moreover have of int (1 − n) ∈ ZZ≤0 if n > 0 using that by (intro non-

pos Ints of int) simp
ultimately show ?thesis using n
by (cases n ≤ 0 ) (auto simp: Gamma eq zero iff nonpos Ints of int)

qed
qed

lemma rGamma reflection complex :
rGamma z ∗ rGamma (1 − z :: complex ) = sin (of real pi ∗ z ) / of real pi
using Gamma reflection complex [of z ]
by (simp add : Gamma def field split simps split : if split asm)

lemma rGamma reflection complex ′:
rGamma z ∗ rGamma (− z :: complex ) = −z ∗ sin (of real pi ∗ z ) / of real pi

proof −
have rGamma z ∗ rGamma (−z ) = −z ∗ (rGamma z ∗ rGamma (1 − z ))
using rGamma plus1 [of −z , symmetric] by simp

also have rGamma z ∗ rGamma (1 − z ) = sin (of real pi ∗ z ) / of real pi
by (rule rGamma reflection complex )
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finally show ?thesis by simp
qed

lemma Gamma reflection complex ′:
Gamma z ∗ Gamma (− z :: complex ) = − of real pi / (z ∗ sin (of real pi ∗ z ))
using rGamma reflection complex ′[of z ] by (force simp add : Gamma def field split simps)

lemma Gamma one half real : Gamma (1/2 :: real) = sqrt pi
proof −
from Gamma reflection complex [of 1/2 ] fraction not in ints[where ′a = com-

plex , of 2 1 ]
have Gamma (1/2 :: complex )ˆ2 = of real pi by (simp add : power2 eq square)
hence of real pi = Gamma (complex of real (1/2 ))ˆ2 by simp
also have . . . = of real ((Gamma (1/2 ))ˆ2 ) by (subst Gamma complex of real)

simp all
finally have Gamma (1/2 )ˆ2 = pi by (subst (asm) of real eq iff ) simp all
moreover have Gamma (1/2 :: real) ≥ 0 using Gamma real pos[of 1/2 ] by

simp
ultimately show ?thesis by (rule real sqrt unique [symmetric])

qed

lemma Gamma one half complex : Gamma (1/2 :: complex ) = of real (sqrt pi)
proof −
have Gamma (1/2 :: complex ) = Gamma (of real (1/2 )) by simp
also have . . . = of real (sqrt pi) by (simp only : Gamma complex of real Gamma one half real)
finally show ?thesis .

qed

theorem Gamma legendre duplication:
fixes z :: complex
assumes z /∈ ZZ≤0 z + 1/2 /∈ ZZ≤0

shows Gamma z ∗ Gamma (z + 1/2 ) =
exp ((1 − 2∗z ) ∗ of real (ln 2 )) ∗ of real (sqrt pi) ∗ Gamma (2∗z )

using Gamma legendre duplication aux [OF assms] by (simp add : Gamma one half complex )

end

6.23.10 Limits and residues

The inverse of the Gamma function has simple zeros:

lemma rGamma zeros:
(λz . rGamma z / (z + of nat n)) − (− of nat n) → ((−1 )ˆn ∗ fact n :: ′a ::

Gamma)
proof (subst tendsto cong)
let ?f = λz . pochhammer z n ∗ rGamma (z + of nat (Suc n)) :: ′a
from eventually at ball ′[OF zero less one, of − of nat n :: ′a UNIV ]
show eventually (λz . rGamma z / (z + of nat n) = ?f z ) (at (− of nat n))
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by (subst pochhammer rGamma[of Suc n])
(auto elim!: eventually mono simp: field split simps pochhammer rec ′ eq neg iff add eq 0 )

have isCont ?f (− of nat n) by (intro continuous intros)
thus ?f − (− of nat n) → (− 1 ) ˆ n ∗ fact n unfolding isCont def
by (simp add : pochhammer same)

qed

The simple zeros of the inverse of the Gamma function correspond to simple
poles of the Gamma function, and their residues can easily be computed
from the limit we have just proven:

lemma Gamma poles: filterlim Gamma at infinity (at (− of nat n :: ′a :: Gamma))
proof −
from eventually at ball ′[OF zero less one, of − of nat n :: ′a UNIV ]
have eventually (λz . rGamma z 6= (0 :: ′a)) (at (− of nat n))
by (auto elim!: eventually mono nonpos Ints cases ′

simp: rGamma eq zero iff dist of nat dist minus)
with isCont rGamma[of − of nat n :: ′a, OF continuous ident ]
have filterlim (λz . inverse (rGamma z ) :: ′a) at infinity (at (− of nat n))
unfolding isCont def by (intro filterlim compose[OF filterlim inverse at infinity ])

(simp all add : filterlim at)
moreover have (λz . inverse (rGamma z ) :: ′a) = Gamma
by (intro ext) (simp add : rGamma inverse Gamma)

ultimately show ?thesis by (simp only : )
qed

lemma Gamma residues:
(λz . Gamma z ∗ (z + of nat n)) − (− of nat n) → ((−1 )ˆn / fact n :: ′a ::

Gamma)
proof (subst tendsto cong)
let ?c = (− 1 ) ˆ n / fact n :: ′a
from eventually at ball ′[OF zero less one, of − of nat n :: ′a UNIV ]
show eventually (λz . Gamma z ∗ (z + of nat n) = inverse (rGamma z / (z

+ of nat n)))
(at (− of nat n))

by (auto elim!: eventually mono simp: field split simps rGamma inverse Gamma)
have (λz . inverse (rGamma z / (z + of nat n))) − (− of nat n) →

inverse ((− 1 ) ˆ n ∗ fact n :: ′a)
by (intro tendsto intros rGamma zeros) simp all

also have inverse ((− 1 ) ˆ n ∗ fact n) = ?c
by (simp all add : field simps flip: power mult distrib)

finally show (λz . inverse (rGamma z / (z + of nat n))) − (− of nat n) → ?c .
qed

6.23.11 Alternative definitions

Variant of the Euler form

definition Gamma series euler ′ where
Gamma series euler ′ z n =



Gamma Function.thy 2433

inverse z ∗ (
∏

k=1 ..n. exp (z ∗ of real (ln (1 + inverse (of nat k)))) / (1 +
z / of nat k))

context
begin
private lemma Gamma euler ′ aux1 :
fixes z :: ′a :: {real normed field ,banach}
assumes n: n > 0
shows exp (z ∗ of real (ln (of nat n + 1 ))) = (

∏
k=1 ..n. exp (z ∗ of real (ln

(1 + 1 / of nat k))))
proof −
have (

∏
k=1 ..n. exp (z ∗ of real (ln (1 + 1 / of nat k)))) =

exp (z ∗ of real (
∑

k = 1 ..n. ln (1 + 1 / real of nat k)))
by (subst exp sum [symmetric]) (simp all add : sum distrib left)

also have (
∑

k=1 ..n. ln (1 + 1 / of nat k) :: real) = ln (
∏

k=1 ..n. 1 + 1 /
real of nat k)

by (subst ln prod [symmetric]) (auto intro!: add pos nonneg)
also have (

∏
k=1 ..n. 1 + 1 / of nat k :: real) = (

∏
k=1 ..n. (of nat k + 1 ) /

of nat k)
by (intro prod .cong) (simp all add : field split simps)

also have (
∏

k=1 ..n. (of nat k + 1 ) / of nat k :: real) = of nat n + 1
by (induction n) (simp all add : prod .nat ivl Suc ′ field split simps)

finally show ?thesis ..
qed

theorem Gamma series euler ′:
assumes z : (z :: ′a :: Gamma) /∈ ZZ≤0

shows (λn. Gamma series euler ′ z n) −−−−→ Gamma z
proof (rule Gamma seriesI , rule Lim transform eventually)
let ?f = λn. fact n ∗ exp (z ∗ of real (ln (of nat n + 1 ))) / pochhammer z (n

+ 1 )
let ?r = λn. ?f n / Gamma series z n
let ?r ′ = λn. exp (z ∗ of real (ln (of nat (Suc n) / of nat n)))
from z have z ′: z 6= 0 by auto

have eventually (λn. ?r ′ n = ?r n) sequentially
using z by (auto simp: field split simps Gamma series def ring distribs exp diff

ln div
intro: eventually mono eventually gt at top[of 0 ::nat ] dest :

pochhammer eq 0 imp nonpos Int)
moreover have ?r ′ −−−−→ exp (z ∗ of real (ln 1 ))
by (intro tendsto intros LIMSEQ Suc n over n) simp all

ultimately show ?r −−−−→ 1 by (force intro: Lim transform eventually)

from eventually gt at top[of 0 ::nat ]
show eventually (λn. ?r n = Gamma series euler ′ z n / Gamma series z n)

sequentially
proof eventually elim
fix n :: nat assume n: n > 0
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from n z ′ have Gamma series euler ′ z n =
exp (z ∗ of real (ln (of nat n + 1 ))) / (z ∗ (

∏
k=1 ..n. (1 + z / of nat k)))

by (subst Gamma euler ′ aux1 )
(simp all add : Gamma series euler ′ def prod .distrib

prod inversef [symmetric] divide inverse)
also have (

∏
k=1 ..n. (1 + z / of nat k)) = pochhammer (z + 1 ) n / fact n

proof (cases n)
case (Suc n ′)
then show ?thesis
unfolding pochhammer prod fact prod
by (simp add : atLeastLessThanSuc atLeastAtMost field simps prod dividef

prod .atLeast Suc atMost Suc shift del : prod .cl ivl Suc)
qed auto
also have z ∗ . . . = pochhammer z (Suc n) / fact n by (simp add : pochham-

mer rec)
finally show ?r n = Gamma series euler ′ z n / Gamma series z n by simp

qed
qed

end

Weierstrass form

definition Gamma series Weierstrass :: ′a :: {banach,real normed field} ⇒ nat ⇒
′a where
Gamma series Weierstrass z n =

exp (−euler mascheroni ∗ z ) / z ∗ (
∏

k=1 ..n. exp (z / of nat k) / (1 + z /
of nat k))

definition
rGamma series Weierstrass :: ′a :: {banach,real normed field} ⇒ nat ⇒ ′a where
rGamma series Weierstrass z n =

exp (euler mascheroni ∗ z ) ∗ z ∗ (
∏

k=1 ..n. (1 + z / of nat k) ∗ exp (−z /
of nat k))

lemma Gamma series Weierstrass nonpos Ints:
eventually (λk . Gamma series Weierstrass (− of nat n) k = 0 ) sequentially
using eventually ge at top[of n] by eventually elim (auto simp: Gamma series Weierstrass def )

lemma rGamma series Weierstrass nonpos Ints:
eventually (λk . rGamma series Weierstrass (− of nat n) k = 0 ) sequentially
using eventually ge at top[of n] by eventually elim (auto simp: rGamma series Weierstrass def )

theorem Gamma Weierstrass complex : Gamma series Weierstrass z −−−−→ Gamma
(z :: complex )
proof (cases z ∈ ZZ≤0)
case True
then obtain n where z = − of nat n by (elim nonpos Ints cases ′)
also from True have Gamma series Weierstrass . . . −−−−→ Gamma z
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by (simp add : tendsto cong [OF Gamma series Weierstrass nonpos Ints] Gamma nonpos Int)
finally show ?thesis .

next
case False
hence z : z 6= 0 by auto
let ?f = (λx .

∏
x = Suc 0 ..x . exp (z / of nat x ) / (1 + z / of nat x ))

have A: exp (ln (1 + z / of nat n)) = (1 + z / of nat n) if n ≥ 1 for n :: nat
using False that by (subst exp Ln) (auto simp: field simps dest !: plus of nat eq 0 imp)
have (λn.

∑
k=1 ..n. z / of nat k − ln (1 + z / of nat k)) −−−−→ ln Gamma

z + euler mascheroni ∗ z + ln z
using ln Gamma series ′ aux [OF False]
by (simp only : atLeastLessThanSuc atLeastAtMost [symmetric] One nat def

sum.shift bounds Suc ivl sums def atLeast0LessThan)
from tendsto exp[OF this] False z have ?f −−−−→ z ∗ exp (euler mascheroni ∗

z ) ∗ Gamma z
by (simp add : exp add exp sum exp diff mult ac Gamma complex altdef A)

from tendsto mult [OF tendsto const [of exp (−euler mascheroni ∗ z ) / z ] this] z
show Gamma series Weierstrass z −−−−→ Gamma z
by (simp add : exp minus field split simps Gamma series Weierstrass def [abs def ])

qed

lemma tendsto complex of real iff : ((λx . complex of real (f x )) −−−→ of real c) F
= (f −−−→ c) F
by (rule tendsto of real iff )

lemma Gamma Weierstrass real : Gamma series Weierstrass x −−−−→ Gamma (x
:: real)
using Gamma Weierstrass complex [of of real x ] unfolding Gamma series Weierstrass def [abs def ]
by (subst tendsto complex of real iff [symmetric])

(simp all add : exp of real [symmetric] Gamma complex of real)

lemma rGamma Weierstrass complex : rGamma series Weierstrass z −−−−→ rGamma
(z :: complex )
proof (cases z ∈ ZZ≤0)
case True
then obtain n where z = − of nat n by (elim nonpos Ints cases ′)
also from True have rGamma series Weierstrass . . . −−−−→ rGamma z
by (simp add : tendsto cong [OF rGamma series Weierstrass nonpos Ints] rGamma nonpos Int)
finally show ?thesis .

next
case False
have rGamma series Weierstrass z = (λn. inverse (Gamma series Weierstrass

z n))
by (simp add : rGamma series Weierstrass def [abs def ] Gamma series Weierstrass def

exp minus divide inverse prod inversef [symmetric] mult ac)
also from False have . . . −−−−→ inverse (Gamma z )
by (intro tendsto intros Gamma Weierstrass complex ) (simp add : Gamma eq zero iff )
finally show ?thesis by (simp add : Gamma def )

qed
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Binomial coefficient form

lemma Gamma gbinomial :
(λn. ((z + of nat n) gchoose n) ∗ exp (−z ∗ of real (ln (of nat n)))) −−−−→

rGamma (z+1 )
proof (cases z = 0 )
case False
show ?thesis
proof (rule Lim transform eventually)
let ?powr = λa b. exp (b ∗ of real (ln (of nat a)))
show eventually (λn. rGamma series z n / z =

((z + of nat n) gchoose n) ∗ ?powr n (−z )) sequentially
proof (intro always eventually allI )
fix n :: nat
from False have ((z + of nat n) gchoose n) = pochhammer z (Suc n) / z /

fact n
by (simp add : gbinomial pochhammer ′ pochhammer rec)

also have pochhammer z (Suc n) / z / fact n ∗ ?powr n (−z ) = rGamma series
z n / z

by (simp add : rGamma series def field split simps exp minus)
finally show rGamma series z n / z = ((z + of nat n) gchoose n) ∗ ?powr

n (−z ) ..
qed

from False have (λn. rGamma series z n / z ) −−−−→ rGamma z / z by (intro
tendsto intros)

also from False have rGamma z / z = rGamma (z + 1 ) using rGamma plus1 [of
z ]

by (simp add : field simps)
finally show (λn. rGamma series z n / z ) −−−−→ rGamma (z+1 ) .

qed
qed (simp all add : binomial gbinomial [symmetric])

lemma gbinomial minus ′: (a + of nat b) gchoose b = (− 1 ) ˆ b ∗ (− (a + 1 )
gchoose b)
by (subst gbinomial minus) (simp add : power mult distrib [symmetric])

lemma gbinomial asymptotic:
fixes z :: ′a :: Gamma
shows (λn. (z gchoose n) / ((−1 )ˆn / exp ((z+1 ) ∗ of real (ln (real n)))))
−−−−→

inverse (Gamma (− z ))
unfolding rGamma inverse Gamma [symmetric] using Gamma gbinomial [of

−z−1 ]
by (subst (asm) gbinomial minus ′)

(simp add : add ac mult ac divide inverse power inverse [symmetric])

lemma fact binomial limit :
(λn. of nat ((k + n) choose n) / of nat (n ˆ k) :: ′a :: Gamma) −−−−→ 1 / fact

k
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proof (rule Lim transform eventually)
have (λn. of nat ((k + n) choose n) / of real (exp (of nat k ∗ ln (real of nat

n))))
−−−−→ 1 / Gamma (of nat (Suc k) :: ′a) (is ?f −−−−→ )

using Gamma gbinomial [of of nat k :: ′a]
by (simp add : binomial gbinomial Gamma def field split simps exp of real [symmetric]

exp minus)
also have Gamma (of nat (Suc k)) = fact k by (simp add : Gamma fact)
finally show ?f −−−−→ 1 / fact k .

show eventually (λn. ?f n = of nat ((k + n) choose n) / of nat (n ˆ k))
sequentially

using eventually gt at top[of 0 ::nat ]
proof eventually elim
fix n :: nat assume n: n > 0
from n have exp (real of nat k ∗ ln (real of nat n)) = real of nat (nˆk)
by (simp add : exp of nat mult)

thus ?f n = of nat ((k + n) choose n) / of nat (n ˆ k) by simp
qed

qed

lemma binomial asymptotic ′:
(λn. of nat ((k + n) choose n) / (of nat (n ˆ k) / fact k) :: ′a :: Gamma) −−−−→

1
using tendsto mult [OF fact binomial limit [of k ] tendsto const [of fact k :: ′a]] by

simp

lemma gbinomial Beta:
assumes z + 1 /∈ ZZ≤0

shows ((z :: ′a::Gamma) gchoose n) = inverse ((z + 1 ) ∗ Beta (z − of nat n
+ 1 ) (of nat n + 1 ))
using assms
proof (induction n arbitrary : z )
case 0
hence z + 2 /∈ ZZ≤0

using plus one in nonpos Ints imp[of z+1 ] by (auto simp: add .commute)
with 0 show ?case
by (auto simp: Beta def Gamma eq zero iff Gamma plus1 [symmetric] add .commute)

next
case (Suc n z )
show ?case
proof (cases z ∈ ZZ≤0)
case True
with Suc.prems have z = 0
by (auto elim!: nonpos Ints cases simp: algebra simps one plus of int in nonpos Ints iff )
show ?thesis
proof (cases n = 0 )
case True
with 〈z = 0 〉 show ?thesis
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by (simp add : Beta def Gamma eq zero iff Gamma plus1 [symmetric])
next
case False
with 〈z = 0 〉 show ?thesis
by (simp all add : Beta pole1 one minus of nat in nonpos Ints iff )

qed
next
case False
have (z gchoose (Suc n)) = ((z − 1 + 1 ) gchoose (Suc n)) by simp
also have . . . = (z − 1 gchoose n) ∗ ((z − 1 ) + 1 ) / of nat (Suc n)
by (subst gbinomial factors) (simp add : field simps)
also from False have . . . = inverse (of nat (Suc n) ∗ Beta (z − of nat n)

(of nat (Suc n)))
(is = inverse ?x ) by (subst Suc.IH ) (simp all add : field simps Beta pole1 )

also have of nat (Suc n) /∈ (ZZ≤0 :: ′a set) by (subst of nat in nonpos Ints iff )
simp all

hence ?x = (z + 1 ) ∗ Beta (z − of nat (Suc n) + 1 ) (of nat (Suc n) + 1 )
by (subst Beta plus1 right [symmetric]) simp all

finally show ?thesis .
qed

qed

theorem gbinomial Gamma:
assumes z + 1 /∈ ZZ≤0

shows (z gchoose n) = Gamma (z + 1 ) / (fact n ∗ Gamma (z − of nat n +
1 ))
proof −
have (z gchoose n) = Gamma (z + 2 ) / (z + 1 ) / (fact n ∗ Gamma (z − of nat

n + 1 ))
by (subst gbinomial Beta[OF assms]) (simp all add : Beta def Gamma fact

[symmetric] add ac)
also from assms have Gamma (z + 2 ) / (z + 1 ) = Gamma (z + 1 )
using Gamma plus1 [of z+1 ] by (auto simp add : field split simps)

finally show ?thesis .
qed

Integral form

lemma integrable on powr from 0 ′:
assumes a: a > (−1 ::real) and c: c ≥ 0
shows (λx . x powr a) integrable on {0<..c}

proof −
from c have ∗: {0<..c} − {0 ..c} = {} {0 ..c} − {0<..c} = {0} by auto
show ?thesis
by (rule integrable spike set [OF integrable on powr from 0 [OF a c]]) (simp all

add : ∗)
qed

lemma absolutely integrable Gamma integral :
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assumes Re z > 0 a > 0
shows (λt . complex of real t powr (z − 1 ) / of real (exp (a ∗ t)))

absolutely integrable on {0<..} (is ?f absolutely integrable on )
proof −
have ((λx . (Re z − 1 ) ∗ (ln x / x )) −−−→ (Re z − 1 ) ∗ 0 ) at top
by (intro tendsto intros ln x over x tendsto 0 )

hence ((λx . ((Re z − 1 ) ∗ ln x ) / x ) −−−→ 0 ) at top by simp
from order tendstoD(2 )[OF this, of a/2 ] and 〈a > 0 〉

have eventually (λx . (Re z − 1 ) ∗ ln x / x < a/2 ) at top by simp
from eventually conj [OF this eventually gt at top[of 0 ]]
obtain x0 where ∀ x≥x0 . (Re z − 1 ) ∗ ln x / x < a/2 ∧ x > 0
by (auto simp: eventually at top linorder)

hence x0 > 0 by simp
have x powr (Re z − 1 ) / exp (a ∗ x ) < exp (−(a/2 ) ∗ x ) if x ≥ x0 for x
proof −
from that and 〈∀ x≥x0 . 〉 have x : (Re z − 1 ) ∗ ln x / x < a / 2 x > 0 by

auto
have x powr (Re z − 1 ) = exp ((Re z − 1 ) ∗ ln x )
using 〈x > 0 〉 by (simp add : powr def )

also from x have (Re z − 1 ) ∗ ln x < (a ∗ x ) / 2 by (simp add : field simps)
finally show ?thesis by (simp add : field simps exp add [symmetric])

qed
note x0 = 〈x0 > 0 〉 this

have ?f absolutely integrable on ({0<..x0} ∪ {x0 ..})
proof (rule set integrable Un)
show ?f absolutely integrable on {0<..x0}
unfolding set integrable def

proof (rule Bochner Integration.integrable bound [OF AE I2 ])
show integrable lebesgue (λx . indicat real {0<..x0} x ∗R x powr (Re z − 1 ))

using x0 (1 ) assms
by (intro nonnegative absolutely integrable 1 [unfolded set integrable def ]

integrable on powr from 0 ′) auto
show (λx . indicat real {0<..x0} x ∗R (x powr (z − 1 ) / exp (a ∗ x ))) ∈

borel measurable lebesgue
by (intro measurable completion)

(auto intro!: borel measurable continuous on indicator continuous intros)
fix x :: real
have x powr (Re z − 1 ) / exp (a ∗ x ) ≤ x powr (Re z − 1 ) / 1 if x ≥ 0
using that assms by (intro divide left mono) auto

thus norm (indicator {0<..x0} x ∗R ?f x ) ≤
norm (indicator {0<..x0} x ∗R x powr (Re z − 1 ))

by (simp all add : norm divide norm powr real powr indicator def )
qed

next
show ?f absolutely integrable on {x0 ..}
unfolding set integrable def

proof (rule Bochner Integration.integrable bound [OF AE I2 ])
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show integrable lebesgue (λx . indicat real {x0 ..} x ∗R exp (− (a / 2 ) ∗ x ))
using assms

by (intro nonnegative absolutely integrable 1 [unfolded set integrable def ]
integrable on exp minus to infinity) auto

show (λx . indicat real {x0 ..} x ∗R (x powr (z − 1 ) / exp (a ∗ x ))) ∈
borel measurable lebesgue using x0 (1 )

by (intro measurable completion)
(auto intro!: borel measurable continuous on indicator continuous intros)

fix x :: real
show norm (indicator {x0 ..} x ∗R ?f x ) ≤

norm (indicator {x0 ..} x ∗R exp (−(a/2 ) ∗ x )) using x0
by (auto simp: norm divide norm powr real powr indicator def less imp le)

qed
qed auto
also have {0<..x0} ∪ {x0 ..} = {0<..} using x0 (1 ) by auto
finally show ?thesis .

qed

lemma integrable Gamma integral bound :
fixes a c :: real
assumes a: a > −1 and c: c ≥ 0
defines f ≡ λx . if x ∈ {0 ..c} then x powr a else exp (−x/2 )
shows f integrable on {0 ..}

proof −
have f integrable on {0 ..c}
by (rule integrable spike finite[of {}, OF integrable on powr from 0 [of a c]])

(insert a c, simp all add : f def )
moreover have A: (λx . exp (−x/2 )) integrable on {c..}
using integrable on exp minus to infinity [of 1/2 ] by simp

have f integrable on {c..}
by (rule integrable spike finite[of {c}, OF A]) (simp all add : f def )

ultimately show f integrable on {0 ..}
by (rule integrable Un ′) (insert c, auto simp: max def )

qed

theorem Gamma integral complex :
assumes z : Re z > 0
shows ((λt . of real t powr (z − 1 ) / of real (exp t)) has integral Gamma z )
{0 ..}
proof −
have A: ((λt . (of real t) powr (z − 1 ) ∗ of real ((1 − t) ˆ n))

has integral (fact n / pochhammer z (n+1 ))) {0 ..1}
if Re z > 0 for n z using that

proof (induction n arbitrary : z )
case 0
have ((λt . complex of real t powr (z − 1 )) has integral

(of real 1 powr z / z − of real 0 powr z / z )) {0 ..1} using 0
by (intro fundamental theorem of calculus interior)
(auto intro!: continuous intros derivative eq intros has vector derivative real field)
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thus ?case by simp
next
case (Suc n)
let ?f = λt . complex of real t powr z / z
let ?f ′ = λt . complex of real t powr (z − 1 )
let ?g = λt . (1 − complex of real t) ˆ Suc n
let ?g ′ = λt . − ((1 − complex of real t) ˆ n) ∗ of nat (Suc n)
have ((λt . ?f ′ t ∗ ?g t) has integral

(of nat (Suc n)) ∗ fact n / pochhammer z (n+2 )) {0 ..1}
(is ( has integral ?I ) )

proof (rule integration by parts interior [where f ′ = ?f ′ and g = ?g ])
from Suc.prems show continuous on {0 ..1} ?f continuous on {0 ..1} ?g
by (auto intro!: continuous intros)

next
fix t :: real assume t : t ∈ {0<..<1}
show (?f has vector derivative ?f ′ t) (at t) using t Suc.prems
by (auto intro!: derivative eq intros has vector derivative real field)

show (?g has vector derivative ?g ′ t) (at t)
by (rule has vector derivative real field derivative eq intros refl)+ simp all

next
from Suc.prems have [simp]: z 6= 0 by auto
from Suc.prems have A: Re (z + of nat n) > 0 for n by simp
have [simp]: z + of nat n 6= 0 z + 1 + of nat n 6= 0 for n

using A[of n] A[of Suc n] by (auto simp add : add .assoc simp del :
plus complex .sel)

have ((λx . of real x powr z ∗ of real ((1 − x ) ˆ n) ∗ (− of nat (Suc n) / z ))
has integral

fact n / pochhammer (z+1 ) (n+1 ) ∗ (− of nat (Suc n) / z )) {0 ..1}
(is (?A has integral ?B) )
using Suc.IH [of z+1 ] Suc.prems by (intro has integral mult left) (simp all

add : add ac pochhammer rec)
also have ?A = (λt . ?f t ∗ ?g ′ t) by (intro ext) (simp all add : field simps)
also have ?B = − (of nat (Suc n) ∗ fact n / pochhammer z (n+2 ))
by (simp add : field split simps pochhammer rec

prod .shift bounds cl Suc ivl del : of nat Suc)
finally show ((λt . ?f t ∗ ?g ′ t) has integral (?f 1 ∗ ?g 1 − ?f 0 ∗ ?g 0 −

?I )) {0 ..1}
by simp

qed (simp all add : bounded bilinear mult)
thus ?case by simp

qed

have B : ((λt . if t ∈ {0 ..of nat n} then
of real t powr (z − 1 ) ∗ (1 − of real t / of nat n) ˆ n else 0 )

has integral (of nat n powr z ∗ fact n / pochhammer z (n+1 ))) {0 ..} for
n
proof (cases n > 0 )
case [simp]: True
hence [simp]: n 6= 0 by auto
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with has integral affinity01 [OF A[OF z , of n], of inverse (of nat n) 0 ]
have ((λx . (of nat n − of real x ) ˆ n ∗ (of real x / of nat n) powr (z − 1 ) /

of nat n ˆ n)
has integral fact n ∗ of nat n / pochhammer z (n+1 )) ((λx . real n ∗

x )‘{0 ..1})
(is (?f has integral ?I ) ?ivl) by (simp add : field simps scaleR conv of real)

also from True have ((λx . real n∗x )‘{0 ..1}) = {0 ..real n}
by (subst image mult atLeastAtMost) simp all

also have ?f = (λx . (of real x / of nat n) powr (z − 1 ) ∗ (1 − of real x /
of nat n) ˆ n)

using True by (intro ext) (simp add : field simps)
finally have ((λx . (of real x / of nat n) powr (z − 1 ) ∗ (1 − of real x / of nat

n) ˆ n)
has integral ?I ) {0 ..real n} (is ?P) .

also have ?P ←→ ((λx . exp ((z − 1 ) ∗ of real (ln (x / of nat n))) ∗ (1 −
of real x / of nat n) ˆ n)

has integral ?I ) {0 ..real n}
by (intro has integral spike finite eq [of {0}]) (auto simp: powr def Ln of real

[symmetric])
also have . . . ←→ ((λx . exp ((z − 1 ) ∗ of real (ln x − ln (of nat n))) ∗ (1 −

of real x / of nat n) ˆ n)
has integral ?I ) {0 ..real n}

by (intro has integral spike finite eq [of {0}]) (simp all add : ln div)
finally have . . . .
note B = has integral mult right [OF this, of exp ((z − 1 ) ∗ ln (of nat n))]
have ((λx . exp ((z − 1 ) ∗ of real (ln x )) ∗ (1 − of real x / of nat n) ˆ n)

has integral (?I ∗ exp ((z − 1 ) ∗ ln (of nat n)))) {0 ..real n} (is ?P)
by (insert B , subst (asm) mult .assoc [symmetric], subst (asm) exp add

[symmetric])
(simp add : algebra simps)

also have ?P ←→ ((λx . of real x powr (z − 1 ) ∗ (1 − of real x / of nat n) ˆ
n)

has integral (?I ∗ exp ((z − 1 ) ∗ ln (of nat n)))) {0 ..real n}
by (intro has integral spike finite eq [of {0}]) (simp all add : powr def Ln of real)
also have fact n ∗ of nat n / pochhammer z (n+1 ) ∗ exp ((z − 1 ) ∗ Ln (of nat

n)) =
(of nat n powr z ∗ fact n / pochhammer z (n+1 ))

by (auto simp add : powr def algebra simps exp diff exp of real)
finally show ?thesis by (subst has integral restrict) simp all

next
case False
thus ?thesis by (subst has integral restrict) (simp all add : has integral refl)

qed

have eventually (λn. Gamma series z n =
of nat n powr z ∗ fact n / pochhammer z (n+1 )) sequentially

using eventually gt at top[of 0 ::nat ]
by eventually elim (simp add : powr def algebra simps Gamma series def )

from this and Gamma series LIMSEQ [of z ]



Gamma Function.thy 2443

have C : (λk . of nat k powr z ∗ fact k / pochhammer z (k+1 )) −−−−→ Gamma
z

by (blast intro: Lim transform eventually)
{
fix x :: real assume x : x ≥ 0
have lim exp: (λk . (1 − x / real k) ˆ k) −−−−→ exp (−x )
using tendsto exp limit sequentially [of −x ] by simp

have (λk . of real x powr (z − 1 ) ∗ of real ((1 − x / of nat k) ˆ k))
−−−−→ of real x powr (z − 1 ) ∗ of real (exp (−x )) (is ?P)

by (intro tendsto intros lim exp)
also from eventually gt at top[of nat dxe]
have eventually (λk . of nat k > x ) sequentially by eventually elim linarith

hence ?P ←→ (λk . if x ≤ of nat k then
of real x powr (z − 1 ) ∗ of real ((1 − x / of nat k) ˆ k) else 0 )
−−−−→ of real x powr (z − 1 ) ∗ of real (exp (−x ))

by (intro tendsto cong) (auto elim!: eventually mono)
finally have . . . .

}
hence D : ∀ x∈{0 ..}. (λk . if x ∈ {0 ..real k} then

of real x powr (z − 1 ) ∗ (1 − of real x / of nat k) ˆ k else 0 )
−−−−→ of real x powr (z − 1 ) / of real (exp x )

by (simp add : exp minus field simps cong : if cong)

have ((λx . (Re z − 1 ) ∗ (ln x / x )) −−−→ (Re z − 1 ) ∗ 0 ) at top
by (intro tendsto intros ln x over x tendsto 0 )

hence ((λx . ((Re z − 1 ) ∗ ln x ) / x ) −−−→ 0 ) at top by simp
from order tendstoD(2 )[OF this, of 1/2 ]
have eventually (λx . (Re z − 1 ) ∗ ln x / x < 1/2 ) at top by simp

from eventually conj [OF this eventually gt at top[of 0 ]]
obtain x0 where ∀ x≥x0 . (Re z − 1 ) ∗ ln x / x < 1/2 ∧ x > 0
by (auto simp: eventually at top linorder)

hence x0 : x0 > 0
∧
x . x ≥ x0 =⇒ (Re z − 1 ) ∗ ln x < x / 2 by auto

define h where h = (λx . if x ∈ {0 ..x0} then x powr (Re z − 1 ) else exp (−x/2 ))
have le h: x powr (Re z − 1 ) ∗ exp (−x ) ≤ h x if x : x ≥ 0 for x
proof (cases x > x0 )
case True
from True x0 (1 ) have x powr (Re z − 1 ) ∗ exp (−x ) = exp ((Re z − 1 ) ∗ ln

x − x )
by (simp add : powr def exp diff exp minus field simps exp add)

also from x0 (2 )[of x ] True have . . . < exp (−x/2 )
by (simp add : field simps)

finally show ?thesis using True by (auto simp add : h def )
next
case False
from x have x powr (Re z − 1 ) ∗ exp (− x ) ≤ x powr (Re z − 1 ) ∗ 1
by (intro mult left mono) simp all

with False show ?thesis by (auto simp add : h def )
qed
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have E : ∀ x∈{0 ..}. cmod (if x ∈ {0 ..real k} then of real x powr (z − 1 ) ∗
(1 − complex of real x / of nat k) ˆ k else 0 ) ≤ h x

(is ∀ x∈ . ?f x ≤ ) for k
proof safe
fix x :: real assume x : x ≥ 0
{
fix x :: real and n :: nat assume x : x ≤ of nat n
have (1 − complex of real x / of nat n) = complex of real ((1 − x / of nat

n)) by simp
also have norm . . . = |(1 − x / real n)| by (subst norm of real) (rule refl)
also from x have . . . = (1 − x / real n) by (intro abs of nonneg) (simp all

add : field split simps)
finally have cmod (1 − complex of real x / of nat n) = 1 − x / real n .

} note D = this
from D [of x k ] x
have ?f x ≤ (if of nat k ≥ x ∧ k > 0 then x powr (Re z − 1 ) ∗ (1 − x /

real k) ˆ k else 0 )
by (auto simp: norm mult norm powr real powr norm power intro!: mult nonneg nonneg)
also have . . . ≤ x powr (Re z − 1 ) ∗ exp (−x )
by (auto intro!: mult left mono exp ge one minus x over n power n)

also from x have . . . ≤ h x by (rule le h)
finally show ?f x ≤ h x .

qed

have F : h integrable on {0 ..} unfolding h def
by (rule integrable Gamma integral bound) (insert assms x0 (1 ), simp all)

show ?thesis
by (rule has integral dominated convergence[OF B F E D C ])

qed

lemma Gamma integral real :
assumes x : x > (0 :: real)
shows ((λt . t powr (x − 1 ) / exp t) has integral Gamma x ) {0 ..}

proof −
have A: ((λt . complex of real t powr (complex of real x − 1 ) /

complex of real (exp t)) has integral complex of real (Gamma x )) {0 ..}
using Gamma integral complex [of x ] assms by (simp all add : Gamma complex of real

powr of real)
have ((λt . complex of real (t powr (x − 1 ) / exp t)) has integral of real (Gamma

x )) {0 ..}
by (rule has integral eq [OF A]) (simp all add : powr of real [symmetric])

from has integral linear [OF this bounded linear Re] show ?thesis by (simp add :
o def )
qed

lemma absolutely integrable Gamma integral ′:
assumes Re z > 0
shows (λt . complex of real t powr (z − 1 ) / of real (exp t)) absolutely integrable on
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{0<..}
using absolutely integrable Gamma integral [OF assms zero less one] by simp

lemma Gamma integral complex ′:
assumes z : Re z > 0
shows ((λt . of real t powr (z − 1 ) / of real (exp t)) has integral Gamma z )
{0<..}
proof −
have ((λt . of real t powr (z − 1 ) / of real (exp t)) has integral Gamma z ) {0 ..}
by (rule Gamma integral complex ) fact+

hence ((λt . if t ∈ {0<..} then of real t powr (z − 1 ) / of real (exp t) else 0 )
has integral Gamma z ) {0 ..}

by (rule has integral spike [of {0}, rotated 2 ]) auto
also have ?this = ?thesis
by (subst has integral restrict) auto

finally show ?thesis .
qed

lemma Gamma conv nn integral real :
assumes s > (0 ::real)
shows Gamma s = nn integral lborel (λt . ennreal (indicator {0 ..} t ∗ t powr

(s − 1 ) / exp t))
using nn integral has integral lebesgue[OF Gamma integral real [OF assms]] by

simp

lemma integrable Beta:
assumes a > 0 b > (0 ::real)
shows set integrable lborel {0 ..1} (λt . t powr (a − 1 ) ∗ (1 − t) powr (b − 1 ))

proof −
define C where C = max 1 ((1/2 ) powr (b − 1 ))
define D where D = max 1 ((1/2 ) powr (a − 1 ))
have C : (1 − x ) powr (b − 1 ) ≤ C if x ∈ {0 ..1/2} for x
proof (cases b < 1 )
case False
with that have (1 − x ) powr (b − 1 ) ≤ (1 powr (b − 1 )) by (intro

powr mono2 ) auto
thus ?thesis by (auto simp: C def )
qed (insert that , auto simp: max .coboundedI1 max .coboundedI2 powr mono2 ′

powr mono2 C def )
have D : x powr (a − 1 ) ≤ D if x ∈ {1/2 ..1} for x
proof (cases a < 1 )
case False
with that have x powr (a − 1 ) ≤ (1 powr (a − 1 )) by (intro powr mono2 )

auto
thus ?thesis by (auto simp: D def )

next
case True
qed (insert that , auto simp: max .coboundedI1 max .coboundedI2 powr mono2 ′

powr mono2 D def )

Gamma{_}{\kern 0pt}Function.html


2446

have [simp]: C ≥ 0 D ≥ 0 by (simp all add : C def D def )

have I1 : set integrable lborel {0 ..1/2} (λt . t powr (a − 1 ) ∗ (1 − t) powr (b −
1 ))

unfolding set integrable def
proof (rule Bochner Integration.integrable bound [OF AE I2 ])
have (λt . t powr (a − 1 )) integrable on {0 ..1/2}
by (rule integrable on powr from 0 ) (use assms in auto)

hence (λt . t powr (a − 1 )) absolutely integrable on {0 ..1/2}
by (subst absolutely integrable on iff nonneg) auto

from integrable mult right [OF this [unfolded set integrable def ], of C ]
show integrable lborel (λx . indicat real {0 ..1/2} x ∗R (C ∗ x powr (a − 1 )))
by (subst (asm) integrable completion) (auto simp: mult ac)

next
fix x :: real
have x powr (a − 1 ) ∗ (1 − x ) powr (b − 1 ) ≤ x powr (a − 1 ) ∗ C if x ∈

{0 ..1/2}
using that by (intro mult left mono powr mono2 C ) auto

thus norm (indicator {0 ..1/2} x ∗R (x powr (a − 1 ) ∗ (1 − x ) powr (b −
1 ))) ≤

norm (indicator {0 ..1/2} x ∗R (C ∗ x powr (a − 1 )))
by (auto simp: indicator def abs mult mult ac)

qed (auto intro!: AE I2 simp: indicator def )

have I2 : set integrable lborel {1/2 ..1} (λt . t powr (a − 1 ) ∗ (1 − t) powr (b −
1 ))

unfolding set integrable def
proof (rule Bochner Integration.integrable bound [OF AE I2 ])
have (λt . t powr (b − 1 )) integrable on {0 ..1/2}
by (rule integrable on powr from 0 ) (use assms in auto)

hence (λt . t powr (b − 1 )) integrable on (cbox 0 (1/2 )) by simp
from integrable affinity [OF this, of −1 1 ]
have (λt . (1 − t) powr (b − 1 )) integrable on {1/2 ..1} by simp

hence (λt . (1 − t) powr (b − 1 )) absolutely integrable on {1/2 ..1}
by (subst absolutely integrable on iff nonneg) auto

from integrable mult right [OF this [unfolded set integrable def ], of D ]
show integrable lborel (λx . indicat real {1/2 ..1} x ∗R (D ∗ (1 − x ) powr (b

− 1 )))
by (subst (asm) integrable completion) (auto simp: mult ac)

next
fix x :: real
have x powr (a − 1 ) ∗ (1 − x ) powr (b − 1 ) ≤ D ∗ (1 − x ) powr (b − 1 ) if

x ∈ {1/2 ..1}
using that by (intro mult right mono powr mono2 D) auto

thus norm (indicator {1/2 ..1} x ∗R (x powr (a − 1 ) ∗ (1 − x ) powr (b −
1 ))) ≤

norm (indicator {1/2 ..1} x ∗R (D ∗ (1 − x ) powr (b − 1 )))
by (auto simp: indicator def abs mult mult ac)

qed (auto intro!: AE I2 simp: indicator def )
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have set integrable lborel ({0 ..1/2} ∪ {1/2 ..1}) (λt . t powr (a − 1 ) ∗ (1 − t)
powr (b − 1 ))

by (intro set integrable Un I1 I2 ) auto
also have {0 ..1/2} ∪ {1/2 ..1} = {0 ..(1 ::real)} by auto
finally show ?thesis .

qed

lemma integrable Beta ′:
assumes a > 0 b > (0 ::real)
shows (λt . t powr (a − 1 ) ∗ (1 − t) powr (b − 1 )) integrable on {0 ..1}
using integrable Beta[OF assms] by (rule set borel integral eq integral)

theorem has integral Beta real :
assumes a: a > 0 and b: b > (0 :: real)
shows ((λt . t powr (a − 1 ) ∗ (1 − t) powr (b − 1 )) has integral Beta a b)
{0 ..1}
proof −
define B where B = integral {0 ..1} (λx . x powr (a − 1 ) ∗ (1 − x ) powr (b −

1 ))
have [simp]: B ≥ 0 unfolding B def using a b
by (intro integral nonneg integrable Beta ′) auto

from a b have ennreal (Gamma a ∗ Gamma b) =
(
∫

+ t . ennreal (indicator {0 ..} t ∗ t powr (a − 1 ) / exp t) ∂lborel) ∗
(
∫

+ t . ennreal (indicator {0 ..} t ∗ t powr (b − 1 ) / exp t) ∂lborel)
by (subst ennreal mult ′) (simp all add : Gamma conv nn integral real)

also have . . . = (
∫

+t .
∫

+u. ennreal (indicator {0 ..} t ∗ t powr (a − 1 ) / exp
t) ∗

ennreal (indicator {0 ..} u ∗ u powr (b − 1 ) / exp u) ∂lborel
∂lborel)

by (simp add : nn integral cmult nn integral multc)
also have . . . = (

∫
+t .

∫
+u. ennreal (indicator ({0 ..}×{0 ..}) (t ,u) ∗ t powr (a

− 1 ) ∗ u powr (b − 1 )
/ exp (t + u)) ∂lborel ∂lborel)

by (intro nn integral cong)
(auto simp: indicator def divide ennreal ennreal mult ′ [symmetric] exp add)

also have . . . = (
∫

+t .
∫

+u. ennreal (indicator ({0 ..}×{t ..}) (t ,u) ∗ t powr (a
− 1 ) ∗

(u − t) powr (b − 1 ) / exp u) ∂lborel ∂lborel)
proof (rule nn integral cong , goal cases)
case (1 t)
have (

∫
+u. ennreal (indicator ({0 ..}×{0 ..}) (t ,u) ∗ t powr (a − 1 ) ∗

u powr (b − 1 ) / exp (t + u)) ∂distr lborel borel ((+)
(−t))) =

(
∫

+u. ennreal (indicator ({0 ..}×{t ..}) (t ,u) ∗ t powr (a − 1 ) ∗
(u − t) powr (b − 1 ) / exp u) ∂lborel)

by (subst nn integral distr) (auto intro!: nn integral cong simp: indicator def )
thus ?case by (subst (asm) lborel distr plus)

qed
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also have . . . = (
∫

+u.
∫

+t . ennreal (indicator ({0 ..}×{t ..}) (t ,u) ∗ t powr (a
− 1 ) ∗

(u − t) powr (b − 1 ) / exp u) ∂lborel ∂lborel)
by (subst lborel pair .Fubini ′)

(auto simp: case prod unfold indicator def cong : measurable cong sets)
also have . . . = (

∫
+u.

∫
+t . ennreal (indicator {0 ..u} t ∗ t powr (a − 1 ) ∗ (u

− t) powr (b − 1 )) ∗
ennreal (indicator {0 ..} u / exp u) ∂lborel ∂lborel)

by (intro nn integral cong) (auto simp: indicator def ennreal mult ′ [symmetric])
also have . . . = (

∫
+u. (

∫
+t . ennreal (indicator {0 ..u} t ∗ t powr (a − 1 ) ∗ (u

− t) powr (b − 1 ))
∂lborel) ∗ ennreal (indicator {0 ..} u / exp u) ∂lborel)

by (subst nn integral multc [symmetric]) auto
also have . . . = (

∫
+u. (

∫
+t . ennreal (indicator {0 ..u} t ∗ t powr (a − 1 ) ∗ (u

− t) powr (b − 1 ))
∂lborel) ∗ ennreal (indicator {0<..} u / exp u) ∂lborel)

by (intro nn integral cong AE eventually mono[OF AE lborel singleton[of 0 ]])
(auto simp: indicator def )

also have . . . = (
∫

+u. ennreal B ∗ ennreal (indicator {0 ..} u / exp u ∗ u powr
(a + b − 1 )) ∂lborel)
proof (intro nn integral cong , goal cases)
case (1 u)
show ?case
proof (cases u > 0 )
case True
have (

∫
+t . ennreal (indicator {0 ..u} t ∗ t powr (a − 1 ) ∗ (u − t) powr (b

− 1 )) ∂lborel) =
(
∫

+t . ennreal (indicator {0 ..1} t ∗ (u ∗ t) powr (a − 1 ) ∗ (u − u ∗
t) powr (b − 1 ))

∂distr lborel borel ((∗) (1 / u))) (is = nn integral ?f )
using True
by (subst nn integral distr) (auto simp: indicator def field simps intro!:

nn integral cong)
also have distr lborel borel ((∗) (1 / u)) = density lborel (λ . u)
using 〈u > 0 〉 by (subst lborel distr mult) auto

also have nn integral . . . ?f = (
∫

+x . ennreal (indicator {0 ..1} x ∗ (u ∗ (u
∗ x ) powr (a − 1 ) ∗

(u ∗ (1 − x )) powr (b − 1 ))) ∂lborel) using
〈u > 0 〉

by (subst nn integral density) (auto simp: ennreal mult ′ [symmetric] alge-
bra simps)

also have . . . = (
∫

+x . ennreal (u powr (a + b − 1 )) ∗
ennreal (indicator {0 ..1} x ∗ x powr (a − 1 ) ∗

(1 − x ) powr (b − 1 )) ∂lborel) using 〈u > 0 〉 a b
by (intro nn integral cong)

(auto simp: indicator def powr mult powr add powr diff mult ac en-
nreal mult ′ [symmetric])

also have . . . = ennreal (u powr (a + b − 1 )) ∗
(
∫

+x . ennreal (indicator {0 ..1} x ∗ x powr (a − 1 ) ∗
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(1 − x ) powr (b − 1 )) ∂lborel)
by (subst nn integral cmult) auto

also have ((λx . x powr (a − 1 ) ∗ (1 − x ) powr (b − 1 )) has integral
integral {0 ..1} (λx . x powr (a − 1 ) ∗ (1 − x ) powr (b − 1 )))

{0 ..1}
using a b by (intro integrable integral integrable Beta ′)

from nn integral has integral lebesgue[OF this] a b
have (

∫
+x . ennreal (indicator {0 ..1} x ∗ x powr (a − 1 ) ∗

(1 − x ) powr (b − 1 )) ∂lborel) = B by (simp add : mult ac
B def )

finally show ?thesis using 〈u > 0 〉 by (simp add : ennreal mult ′ [symmetric]
mult ac)

qed auto
qed
also have . . . = ennreal B ∗ ennreal (Gamma (a + b))
using a b by (subst nn integral cmult) (auto simp: Gamma conv nn integral real)
also have . . . = ennreal (B ∗ Gamma (a + b))

by (subst (1 2 ) mult .commute, intro ennreal mult ′ [symmetric]) (use a b in
auto)
finally have B = Beta a b using a b Gamma real pos[of a + b]
by (subst (asm) ennreal inj ) (auto simp: field simps Beta def Gamma eq zero iff )
moreover have (λt . t powr (a − 1 ) ∗ (1 − t) powr (b − 1 )) integrable on
{0 ..1}

by (intro integrable Beta ′ a b)
ultimately show ?thesis by (simp add : has integral iff B def )

qed

6.23.12 The Weierstraß product formula for the sine

theorem sin product formula complex :
fixes z :: complex
shows (λn. of real pi ∗ z ∗ (

∏
k=1 ..n. 1 − zˆ2 / of nat kˆ2 )) −−−−→ sin (of real

pi ∗ z )
proof −
let ?f = rGamma series Weierstrass
have (λn. (− of real pi ∗ inverse z ) ∗ (?f z n ∗ ?f (− z ) n))

−−−−→ (− of real pi ∗ inverse z ) ∗ (rGamma z ∗ rGamma (− z ))
by (intro tendsto intros rGamma Weierstrass complex )

also have (λn. (− of real pi ∗ inverse z ) ∗ (?f z n ∗ ?f (−z ) n)) =
(λn. of real pi ∗ z ∗ (

∏
k=1 ..n. 1 − zˆ2 / of nat k ˆ 2 ))

proof
fix n :: nat
have (− of real pi ∗ inverse z ) ∗ (?f z n ∗ ?f (−z ) n) =

of real pi ∗ z ∗ (
∏

k=1 ..n. (of nat k − z ) ∗ (of nat k + z ) / of nat k
ˆ 2 )

by (simp add : rGamma series Weierstrass def mult ac exp minus
divide simps prod .distrib[symmetric] power2 eq square)

also have (
∏

k=1 ..n. (of nat k − z ) ∗ (of nat k + z ) / of nat k ˆ 2 ) =
(
∏

k=1 ..n. 1 − zˆ2 / of nat k ˆ 2 )
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by (intro prod .cong) (simp all add : power2 eq square field simps)
finally show (− of real pi ∗ inverse z ) ∗ (?f z n ∗ ?f (−z ) n) = of real pi ∗ z

∗ . . .
by (simp add : field split simps)

qed
also have (− of real pi ∗ inverse z ) ∗ (rGamma z ∗ rGamma (− z )) = sin

(of real pi ∗ z )
by (subst rGamma reflection complex ′) (simp add : field split simps)

finally show ?thesis .
qed

lemma sin product formula real :
(λn. pi ∗ (x ::real) ∗ (

∏
k=1 ..n. 1 − xˆ2 / of nat kˆ2 )) −−−−→ sin (pi ∗ x )

proof −
from sin product formula complex [of of real x ]
have (λn. of real pi ∗ of real x ∗ (

∏
k=1 ..n. 1 − (of real x )ˆ2 / (of nat k)ˆ2 ))

−−−−→ sin (of real pi ∗ of real x :: complex ) (is ?f −−−−→ ?y) .
also have ?f = (λn. of real (pi ∗ x ∗ (

∏
k=1 ..n. 1 − xˆ2 / (of nat kˆ2 )))) by

simp
also have ?y = of real (sin (pi ∗ x )) by (simp only : sin of real [symmetric]

of real mult)
finally show ?thesis by (subst (asm) tendsto of real iff )

qed

lemma sin product formula real ′:
assumes x 6= (0 ::real)
shows (λn. (

∏
k=1 ..n. 1 − xˆ2 / of nat kˆ2 )) −−−−→ sin (pi ∗ x ) / (pi ∗ x )

using tendsto divide[OF sin product formula real [of x ] tendsto const [of pi ∗ x ]]
assms
by simp

theorem wallis: (λn.
∏

k=1 ..n. (4∗real kˆ2 ) / (4∗real kˆ2 − 1 )) −−−−→ pi / 2
proof −
from tendsto inverse[OF tendsto mult [OF

sin product formula real [of 1/2 ] tendsto const [of 2/pi ]]]
have (λn. (

∏
k=1 ..n. inverse (1 − (1/2 )2 / (real k)2))) −−−−→ pi/2

by (simp add : prod inversef [symmetric])
also have (λn. (

∏
k=1 ..n. inverse (1 − (1/2 )2 / (real k)2))) =

(λn. (
∏

k=1 ..n. (4∗real kˆ2 )/(4∗real kˆ2 − 1 )))
by (intro ext prod .cong refl) (simp add : field split simps)

finally show ?thesis .
qed

6.23.13 The Solution to the Basel problem

theorem inverse squares sums: (λn. 1 / (n + 1 )2) sums (pi2 / 6 )
proof −
define P where P x n = (

∏
k=1 ..n. 1 − xˆ2 / of nat kˆ2 ) for x :: real and n

define K where K = (
∑

n. inverse (real of nat (Suc n))ˆ2 )
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define f where [abs def ]: f x = (
∑

n. P x n / of nat (Suc n)ˆ2 ) for x
define g where [abs def ]: g x = (1 − sin (pi ∗ x ) / (pi ∗ x )) for x

have sums: (λn. P x n / of nat (Suc n)ˆ2 ) sums (if x = 0 then K else g x /
xˆ2 ) for x
proof (cases x = 0 )
assume x : x = 0
have summable (λn. inverse ((real of nat (Suc n))2))
using inverse power summable[of 2 ] by (subst summable Suc iff ) simp

thus ?thesis by (simp add : x g def P def K def inverse eq divide power divide
summable sums)
next
assume x : x 6= 0
have (λn. P x n − P x (Suc n)) sums (P x 0 − sin (pi ∗ x ) / (pi ∗ x ))
unfolding P def using x by (intro telescope sums ′ sin product formula real ′)
also have (λn. P x n − P x (Suc n)) = (λn. (xˆ2 / of nat (Suc n)ˆ2 ) ∗ P x

n)
unfolding P def by (simp add : prod .nat ivl Suc ′ algebra simps)

also have P x 0 = 1 by (simp add : P def )
finally have (λn. x 2 / (of nat (Suc n))2 ∗ P x n) sums (1 − sin (pi ∗ x ) /

(pi ∗ x )) .
from sums divide[OF this, of xˆ2 ] x show ?thesis unfolding g def by simp

qed

have continuous on (ball 0 1 ) f
proof (rule uniform limit theorem; (intro always eventually allI )?)

show uniform limit (ball 0 1 ) (λn x .
∑

k<n. P x k / of nat (Suc k)ˆ2 ) f
sequentially

proof (unfold f def , rule Weierstrass m test)
fix n :: nat and x :: real assume x : x ∈ ball 0 1
{
fix k :: nat assume k : k ≥ 1
from x have xˆ2 < 1 by (auto simp: abs square less 1 )
also from k have . . . ≤ of nat kˆ2 by simp
finally have (1 − xˆ2 / of nat kˆ2 ) ∈ {0 ..1} using k
by (simp all add : field simps del : of nat Suc)

}
hence (

∏
k=1 ..n. abs (1 − xˆ2 / of nat kˆ2 )) ≤ (

∏
k=1 ..n. 1 ) by (intro

prod mono) simp
thus norm (P x n / (of nat (Suc n)ˆ2 )) ≤ 1 / of nat (Suc n)ˆ2
unfolding P def by (simp add : field simps abs prod del : of nat Suc)

qed (subst summable Suc iff , insert inverse power summable[of 2 ], simp add :
inverse eq divide)
qed (auto simp: P def intro!: continuous intros)
hence isCont f 0 by (subst (asm) continuous on eq continuous at) simp all
hence (f − 0 → f 0 ) by (simp add : isCont def )
also have f 0 = K unfolding f def P def K def by (simp add : inverse eq divide

power divide)
finally have f − 0 → K .
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moreover have f − 0 → piˆ2 / 6
proof (rule Lim transform eventually)
define f ′ where [abs def ]: f ′ x = (

∑
n. − sin coeff (n+3 ) ∗ pi ˆ (n+2 ) ∗

xˆn) for x
have eventually (λx . x 6= (0 ::real)) (at 0 )
by (auto simp add : eventually at intro!: exI [of 1 ])

thus eventually (λx . f ′ x = f x ) (at 0 )
proof eventually elim
fix x :: real assume x : x 6= 0
have sin coeff 1 = (1 :: real) sin coeff 2 = (0 ::real) by (simp all add :

sin coeff def )
with sums split initial segment [OF sums minus[OF sin converges], of 3 pi∗x ]
have (λn. − (sin coeff (n+3 ) ∗ (pi∗x )ˆ(n+3 ))) sums (pi ∗ x − sin (pi∗x ))
by (simp add : eval nat numeral)

from sums divide[OF this, of xˆ3 ∗ pi ] x
have (λn. − (sin coeff (n+3 ) ∗ piˆ(n+2 ) ∗ xˆn)) sums ((1 − sin (pi∗x )

/ (pi∗x )) / xˆ2 )
by (simp add : field split simps eval nat numeral)

with x have (λn. − (sin coeff (n+3 ) ∗ piˆ(n+2 ) ∗ xˆn)) sums (g x / xˆ2 )
by (simp add : g def )

hence f ′ x = g x / xˆ2 by (simp add : sums iff f ′ def )
also have . . . = f x using sums[of x ] x by (simp add : sums iff g def f def )
finally show f ′ x = f x .

qed

have isCont f ′ 0 unfolding f ′ def
proof (intro isCont powser converges everywhere)
fix x :: real show summable (λn. −sin coeff (n+3 ) ∗ piˆ(n+2 ) ∗ xˆn)
proof (cases x = 0 )
assume x : x 6= 0

from summable divide[OF sums summable[OF sums split initial segment [OF
sin converges[of pi∗x ]], of 3 ], of −pi∗xˆ3 ] x

show ?thesis by (simp add : field split simps eval nat numeral)
qed (simp only : summable 0 powser)

qed
hence f ′ − 0 → f ′ 0 by (simp add : isCont def )
also have f ′ 0 = pi ∗ pi / fact 3 unfolding f ′ def
by (subst powser zero) (simp add : sin coeff def )

finally show f ′ − 0 → piˆ2 / 6 by (simp add : eval nat numeral)
qed

ultimately have K = piˆ2 / 6 by (rule LIM unique)
moreover from inverse power summable[of 2 ]
have summable (λn. (inverse (real of nat (Suc n)))2)
by (subst summable Suc iff ) (simp add : power inverse)

ultimately show ?thesis unfolding K def
by (auto simp add : sums iff power divide inverse eq divide)

qed
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end

theory Interval Integral
imports Equivalence Lebesgue Henstock Integration

begin

definition einterval a b = {x . a < ereal x ∧ ereal x < b}

lemma einterval eq [simp]:
shows einterval eq Icc: einterval (ereal a) (ereal b) = {a <..< b}
and einterval eq Ici : einterval (ereal a) ∞ = {a <..}
and einterval eq Iic: einterval (− ∞) (ereal b) = {..< b}
and einterval eq UNIV : einterval (− ∞) ∞ = UNIV

by (auto simp: einterval def )

lemma einterval same: einterval a a = {}
by (auto simp: einterval def )

lemma einterval iff : x ∈ einterval a b ←→ a < ereal x ∧ ereal x < b
by (simp add : einterval def )

lemma einterval nonempty : a < b =⇒ ∃ c. c ∈ einterval a b
by (cases a b rule: ereal2 cases, auto simp: einterval def intro!: dense gt ex lt ex )

lemma open einterval [simp]: open (einterval a b)
by (cases a b rule: ereal2 cases)

(auto simp: einterval def intro!: open Collect conj open Collect less continu-
ous intros)

lemma borel einterval [measurable]: einterval a b ∈ sets borel
unfolding einterval def by measurable

6.23.14 Approximating a (possibly infinite) interval

lemma filterlim sup1 : (LIM x F . f x :> G1 ) =⇒ (LIM x F . f x :> (sup G1 G2 ))
unfolding filterlim def by (auto intro: le supI1 )

lemma ereal incseq approx :
fixes a b :: ereal
assumes a < b
obtains X :: nat ⇒ real where incseq X

∧
i . a < X i

∧
i . X i < b X −−−−→ b

proof (cases b)
case PInf
with 〈a < b〉 have a = −∞ ∨ (∃ r . a = ereal r)
by (cases a) auto

moreover have (λx . ereal (real (Suc x ))) −−−−→ ∞
by (simp add : Lim PInfty filterlim sequentially Suc) (metis le SucI of nat Suc
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of nat mono order trans real arch simple)
moreover have

∧
r . (λx . ereal (r + real (Suc x ))) −−−−→ ∞

by (simp add : filterlim sequentially Suc Lim PInfty) (metis add .commute diff le eq
nat ceiling le eq)
ultimately show thesis
by (intro that [of λi . real of ereal a + Suc i ])

(auto simp: incseq def PInf )
next
case (real b ′)
define d where d = b ′ − (if a = −∞ then b ′ − 1 else real of ereal a)
with 〈a < b〉 have a ′: 0 < d
by (cases a) (auto simp: real)

moreover
have

∧
i r . r < b ′ =⇒ (b ′ − r) ∗ 1 < (b ′ − r) ∗ real (Suc (Suc i))

by (intro mult strict left mono) auto
with 〈a < b〉 a ′ have

∧
i . a < ereal (b ′ − d / real (Suc (Suc i)))

by (cases a) (auto simp: real d def field simps)
moreover
have (λi . b ′ − d / real i) −−−−→ b ′

by (force intro: tendsto eq intros tendsto divide 0 [OF tendsto const ] filter-
lim sup1

simp: at infinity eq at top bot filterlim real sequentially)
then have (λi . b ′ − d / Suc (Suc i)) −−−−→ b ′

by (blast intro: dest : filterlim sequentially Suc [THEN iffD2 ])
ultimately show thesis
by (intro that [of λi . b ′ − d / Suc (Suc i)])

(auto simp: real incseq def intro!: divide left mono)
qed (insert 〈a < b〉, auto)

lemma ereal decseq approx :
fixes a b :: ereal
assumes a < b
obtains X :: nat ⇒ real where
decseq X

∧
i . a < X i

∧
i . X i < b X −−−−→ a

proof −
have −b < −a using 〈a < b〉 by simp
from ereal incseq approx [OF this] guess X .
then show thesis
apply (intro that [of λi . − X i ])
apply (auto simp: decseq def incseq def simp flip: uminus ereal .simps)
apply (metis ereal minus less minus ereal uminus uminus ereal Lim uminus)+
done

qed

proposition einterval Icc approximation:
fixes a b :: ereal
assumes a < b
obtains u l :: nat ⇒ real where
einterval a b = (

⋃
i . {l i .. u i})



Interval Integral.thy 2455

incseq u decseq l
∧
i . l i < u i

∧
i . a < l i

∧
i . u i < b

l −−−−→ a u −−−−→ b
proof −
from dense[OF 〈a < b〉] obtain c where a < c c < b by safe
from ereal incseq approx [OF 〈c < b〉] guess u . note u = this
from ereal decseq approx [OF 〈a < c〉] guess l . note l = this
{ fix i from less trans[OF 〈l i < c〉 〈c < u i 〉] have l i < u i by simp }
have einterval a b = (

⋃
i . {l i .. u i})

proof (auto simp: einterval iff )
fix x assume a < ereal x ereal x < b
have eventually (λi . ereal (l i) < ereal x ) sequentially
using l(4 ) 〈a < ereal x 〉 by (rule order tendstoD)

moreover
have eventually (λi . ereal x < ereal (u i)) sequentially
using u(4 ) 〈ereal x< b〉 by (rule order tendstoD)

ultimately have eventually (λi . l i < x ∧ x < u i) sequentially
by eventually elim auto

then show ∃ i . l i ≤ x ∧ x ≤ u i
by (auto intro: less imp le simp: eventually sequentially)

next
fix x i assume l i ≤ x x ≤ u i
with 〈a < ereal (l i)〉 〈ereal (u i) < b〉

show a < ereal x ereal x < b
by (auto simp flip: ereal less eq(3 ))

qed
show thesis
by (intro that) fact+

qed

definition interval lebesgue integral :: real measure ⇒ ereal ⇒ ereal ⇒ (real ⇒
′a) ⇒ ′a::{banach, second countable topology} where
interval lebesgue integral M a b f =
(if a ≤ b then (LINT x :einterval a b|M . f x ) else − (LINT x :einterval b a|M .

f x ))

syntax
ascii interval lebesgue integral :: pttrn ⇒ real ⇒ real ⇒ real measure ⇒ real ⇒

real
((5LINT = .. | . ) [0 ,60 ,60 ,61 ,100 ] 60 )

translations
LINT x=a..b|M . f == CONST interval lebesgue integral M a b (λx . f )

definition interval lebesgue integrable :: real measure ⇒ ereal ⇒ ereal ⇒ (real ⇒
′a::{banach, second countable topology}) ⇒ bool where
interval lebesgue integrable M a b f =
(if a ≤ b then set integrable M (einterval a b) f else set integrable M (einterval

b a) f )
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syntax
ascii interval lebesgue borel integral :: pttrn ⇒ real ⇒ real ⇒ real ⇒ real
((4LBINT = .. . ) [0 ,60 ,60 ,61 ] 60 )

translations
LBINT x=a..b. f == CONST interval lebesgue integral CONST lborel a b (λx .

f )

6.23.15 Basic properties of integration over an interval

lemma interval lebesgue integral cong :
a ≤ b =⇒ (

∧
x . x ∈ einterval a b =⇒ f x = g x ) =⇒ einterval a b ∈ sets M =⇒

interval lebesgue integral M a b f = interval lebesgue integral M a b g
by (auto intro: set lebesgue integral cong simp: interval lebesgue integral def )

lemma interval lebesgue integral cong AE :
f ∈ borel measurable M =⇒ g ∈ borel measurable M =⇒
a ≤ b =⇒ AE x ∈ einterval a b in M . f x = g x =⇒ einterval a b ∈ sets M

=⇒
interval lebesgue integral M a b f = interval lebesgue integral M a b g

by (auto intro: set lebesgue integral cong AE simp: interval lebesgue integral def )

lemma interval integrable mirror :
shows interval lebesgue integrable lborel a b (λx . f (−x )) ←→
interval lebesgue integrable lborel (−b) (−a) f

proof −
have ∗: indicator (einterval a b) (− x ) = (indicator (einterval (−b) (−a)) x ::

real)
for a b :: ereal and x :: real
by (cases a b rule: ereal2 cases) (auto simp: einterval def split : split indicator)

show ?thesis
unfolding interval lebesgue integrable def
using lborel integrable real affine iff [symmetric, of −1 λx . indicator (einterval
) x ∗R f x 0 ]
by (simp add : ∗ set integrable def )

qed

lemma interval lebesgue integral add [intro, simp]:
fixes M a b f
assumes interval lebesgue integrable M a b f interval lebesgue integrable M a b g
shows interval lebesgue integrable M a b (λx . f x + g x ) and
interval lebesgue integral M a b (λx . f x + g x ) =
interval lebesgue integral M a b f + interval lebesgue integral M a b g

using assms by (auto simp: interval lebesgue integral def interval lebesgue integrable def
field simps)

lemma interval lebesgue integral diff [intro, simp]:
fixes M a b f
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assumes interval lebesgue integrable M a b f
interval lebesgue integrable M a b g

shows interval lebesgue integrable M a b (λx . f x − g x ) and
interval lebesgue integral M a b (λx . f x − g x ) =
interval lebesgue integral M a b f − interval lebesgue integral M a b g

using assms by (auto simp: interval lebesgue integral def interval lebesgue integrable def
field simps)

lemma interval lebesgue integrable mult right [intro, simp]:
fixes M a b c and f :: real ⇒ ′a::{banach, real normed field , second countable topology}
shows (c 6= 0 =⇒ interval lebesgue integrable M a b f ) =⇒
interval lebesgue integrable M a b (λx . c ∗ f x )

by (simp add : interval lebesgue integrable def )

lemma interval lebesgue integrable mult left [intro, simp]:
fixes M a b c and f :: real ⇒ ′a::{banach, real normed field , second countable topology}
shows (c 6= 0 =⇒ interval lebesgue integrable M a b f ) =⇒
interval lebesgue integrable M a b (λx . f x ∗ c)

by (simp add : interval lebesgue integrable def )

lemma interval lebesgue integrable divide [intro, simp]:
fixes M a b c and f :: real ⇒ ′a::{banach, real normed field , field , second countable topology}
shows (c 6= 0 =⇒ interval lebesgue integrable M a b f ) =⇒
interval lebesgue integrable M a b (λx . f x / c)

by (simp add : interval lebesgue integrable def )

lemma interval lebesgue integral mult right [simp]:
fixes M a b c and f :: real ⇒ ′a::{banach, real normed field , second countable topology}
shows interval lebesgue integral M a b (λx . c ∗ f x ) =
c ∗ interval lebesgue integral M a b f

by (simp add : interval lebesgue integral def )

lemma interval lebesgue integral mult left [simp]:
fixes M a b c and f :: real ⇒ ′a::{banach, real normed field , second countable topology}
shows interval lebesgue integral M a b (λx . f x ∗ c) =
interval lebesgue integral M a b f ∗ c

by (simp add : interval lebesgue integral def )

lemma interval lebesgue integral divide [simp]:
fixes M a b c and f :: real ⇒ ′a::{banach, real normed field , field , second countable topology}
shows interval lebesgue integral M a b (λx . f x / c) =
interval lebesgue integral M a b f / c

by (simp add : interval lebesgue integral def )

lemma interval lebesgue integral uminus:
interval lebesgue integral M a b (λx . − f x ) = − interval lebesgue integral M a b

f
by (auto simp: interval lebesgue integral def interval lebesgue integrable def set lebesgue integral def )
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lemma interval lebesgue integral of real :
interval lebesgue integral M a b (λx . complex of real (f x )) =
of real (interval lebesgue integral M a b f )

unfolding interval lebesgue integral def
by (auto simp: interval lebesgue integral def set integral complex of real)

lemma interval lebesgue integral le eq :
fixes a b f
assumes a ≤ b
shows interval lebesgue integral M a b f = (LINT x : einterval a b | M . f x )
using assms by (auto simp: interval lebesgue integral def )

lemma interval lebesgue integral gt eq :
fixes a b f
assumes a > b
shows interval lebesgue integral M a b f = −(LINT x : einterval b a | M . f x )

using assms by (auto simp: interval lebesgue integral def less imp le einterval def )

lemma interval lebesgue integral gt eq ′:
fixes a b f
assumes a > b
shows interval lebesgue integral M a b f = − interval lebesgue integral M b a f

using assms by (auto simp: interval lebesgue integral def less imp le einterval def )

lemma interval integral endpoints same [simp]: (LBINT x=a..a. f x ) = 0
by (simp add : interval lebesgue integral def set lebesgue integral def einterval same)

lemma interval integral endpoints reverse: (LBINT x=a..b. f x ) = −(LBINT x=b..a.
f x )
by (cases a b rule: linorder cases) (auto simp: interval lebesgue integral def set lebesgue integral def

einterval same)

lemma interval integrable endpoints reverse:
interval lebesgue integrable lborel a b f ←→
interval lebesgue integrable lborel b a f
by (cases a b rule: linorder cases) (auto simp: interval lebesgue integrable def

einterval same)

lemma interval integral reflect :
(LBINT x=a..b. f x ) = (LBINT x=−b..−a. f (−x ))

proof (induct a b rule: linorder wlog)
case (sym a b) then show ?case
by (auto simp: interval lebesgue integral def interval integrable endpoints reverse

split : if split asm)
next
case (le a b)
have LBINT x :{x . − x ∈ einterval a b}. f (− x ) = LBINT x :einterval (− b)

(− a). f (− x )
unfolding interval lebesgue integrable def set lebesgue integral def
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apply (rule Bochner Integration.integral cong [OF refl ])
by (auto simp: einterval iff ereal uminus le reorder ereal uminus less reorder

not less
simp flip: uminus ereal .simps
split : split indicator)

then show ?case
unfolding interval lebesgue integral def
by (subst set integral reflect) (simp add : le)

qed

lemma interval lebesgue integral 0 infty :
interval lebesgue integrable M 0 ∞ f ←→ set integrable M {0<..} f
interval lebesgue integral M 0 ∞ f = (LINT x :{0<..}|M . f x )
unfolding zero ereal def
by (auto simp: interval lebesgue integral le eq interval lebesgue integrable def )

lemma interval integral to infinity eq : (LINT x=ereal a..∞ | M . f x ) = (LINT x
: {a<..} | M . f x )
unfolding interval lebesgue integral def by auto

proposition interval integrable to infinity eq : (interval lebesgue integrable M a ∞
f ) =
(set integrable M {a<..} f )
unfolding interval lebesgue integrable def by auto

6.23.16 Basic properties of integration over an interval wrt
lebesgue measure

lemma interval integral zero [simp]:
fixes a b :: ereal
shows LBINT x=a..b. 0 = 0

unfolding interval lebesgue integral def set lebesgue integral def einterval eq
by simp

lemma interval integral const [intro, simp]:
fixes a b c :: real
shows interval lebesgue integrable lborel a b (λx . c) and LBINT x=a..b. c = c
∗ (b − a)
unfolding interval lebesgue integral def interval lebesgue integrable def einterval eq
by (auto simp: less imp le field simps measure def set integrable def set lebesgue integral def )

lemma interval integral cong AE :
assumes [measurable]: f ∈ borel measurable borel g ∈ borel measurable borel
assumes AE x ∈ einterval (min a b) (max a b) in lborel . f x = g x
shows interval lebesgue integral lborel a b f = interval lebesgue integral lborel a

b g
using assms

proof (induct a b rule: linorder wlog)
case (sym a b) then show ?case
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by (simp add : min.commute max .commute interval integral endpoints reverse[of
a b])
next
case (le a b) then show ?case
by (auto simp: interval lebesgue integral def max def min def

intro!: set lebesgue integral cong AE )
qed

lemma interval integral cong :
assumes

∧
x . x ∈ einterval (min a b) (max a b) =⇒ f x = g x

shows interval lebesgue integral lborel a b f = interval lebesgue integral lborel a
b g
using assms

proof (induct a b rule: linorder wlog)
case (sym a b) then show ?case
by (simp add : min.commute max .commute interval integral endpoints reverse[of

a b])
next
case (le a b) then show ?case
by (auto simp: interval lebesgue integral def max def min def

intro!: set lebesgue integral cong)
qed

lemma interval lebesgue integrable cong AE :
f ∈ borel measurable lborel =⇒ g ∈ borel measurable lborel =⇒
AE x ∈ einterval (min a b) (max a b) in lborel . f x = g x =⇒
interval lebesgue integrable lborel a b f = interval lebesgue integrable lborel a b g

apply (simp add : interval lebesgue integrable def )
apply (intro conjI impI set integrable cong AE )
apply (auto simp: min def max def )
done

lemma interval integrable abs iff :
fixes f :: real ⇒ real
shows f ∈ borel measurable lborel =⇒
interval lebesgue integrable lborel a b (λx . |f x |) = interval lebesgue integrable

lborel a b f
unfolding interval lebesgue integrable def
by (subst (1 2 ) set integrable abs iff ′) simp all

lemma interval integral Icc:
fixes a b :: real
shows a ≤ b =⇒ (LBINT x=a..b. f x ) = (LBINT x : {a..b}. f x )
by (auto intro!: set integral discrete difference[where X={a, b}]

simp add : interval lebesgue integral def )

lemma interval integral Icc ′:
a ≤ b =⇒ (LBINT x=a..b. f x ) = (LBINT x : {x . a ≤ ereal x ∧ ereal x ≤ b}. f

x )
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by (auto intro!: set integral discrete difference[where X={real of ereal a, real of ereal
b}]

simp add : interval lebesgue integral def einterval iff )

lemma interval integral Ioc:
a ≤ b =⇒ (LBINT x=a..b. f x ) = (LBINT x : {a<..b}. f x )
by (auto intro!: set integral discrete difference[where X={a, b}]

simp add : interval lebesgue integral def einterval iff )

lemma interval integral Ioc ′:
a ≤ b =⇒ (LBINT x=a..b. f x ) = (LBINT x : {x . a < ereal x ∧ ereal x ≤ b}. f

x )
by (auto intro!: set integral discrete difference[where X={real of ereal a, real of ereal

b}]
simp add : interval lebesgue integral def einterval iff )

lemma interval integral Ico:
a ≤ b =⇒ (LBINT x=a..b. f x ) = (LBINT x : {a..<b}. f x )
by (auto intro!: set integral discrete difference[where X={a, b}]

simp add : interval lebesgue integral def einterval iff )

lemma interval integral Ioi :
|a| < ∞ =⇒ (LBINT x=a..∞. f x ) = (LBINT x : {real of ereal a <..}. f x )
by (auto simp: interval lebesgue integral def einterval iff )

lemma interval integral Ioo:
a ≤ b =⇒ |a| < ∞ ==> |b| < ∞ =⇒ (LBINT x=a..b. f x ) = (LBINT x :
{real of ereal a <..< real of ereal b}. f x )
by (auto simp: interval lebesgue integral def einterval iff )

lemma interval integral discrete difference:
fixes f :: real ⇒ ′b::{banach, second countable topology} and a b :: ereal
assumes countable X
and eq :

∧
x . a ≤ b =⇒ a < x =⇒ x < b =⇒ x /∈ X =⇒ f x = g x

and anti eq :
∧
x . b ≤ a =⇒ b < x =⇒ x < a =⇒ x /∈ X =⇒ f x = g x

assumes
∧
x . x ∈ X =⇒ emeasure M {x} = 0

∧
x . x ∈ X =⇒ {x} ∈ sets M

shows interval lebesgue integral M a b f = interval lebesgue integral M a b g
unfolding interval lebesgue integral def set lebesgue integral def
apply (intro if cong refl arg cong [where f=λx . − x ] integral discrete difference[of

X ] assms)
apply (auto simp: eq anti eq einterval iff split : split indicator)
done

lemma interval integral sum:
fixes a b c :: ereal
assumes integrable: interval lebesgue integrable lborel (min a (min b c)) (max a

(max b c)) f
shows (LBINT x=a..b. f x ) + (LBINT x=b..c. f x ) = (LBINT x=a..c. f x )
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proof −
let ?I = λa b. LBINT x=a..b. f x
{ fix a b c :: ereal assume interval lebesgue integrable lborel a c f a ≤ b b ≤ c
then have ord : a ≤ b b ≤ c a ≤ c and f ′: set integrable lborel (einterval a c)

f
by (auto simp: interval lebesgue integrable def )

then have f : set borel measurable borel (einterval a c) f
unfolding set integrable def set borel measurable def
by (drule tac borel measurable integrable) simp

have (LBINT x :einterval a c. f x ) = (LBINT x :einterval a b ∪ einterval b c. f
x )

proof (rule set integral cong set)
show AE x in lborel . (x ∈ einterval a b ∪ einterval b c) = (x ∈ einterval a c)
using AE lborel singleton[of real of ereal b] ord
by (cases a b c rule: ereal3 cases) (auto simp: einterval iff )
show set borel measurable lborel (einterval a c) f set borel measurable lborel

(einterval a b ∪ einterval b c) f
unfolding set borel measurable def
using ord by (auto simp: einterval iff intro!: set borel measurable subset [OF

f , unfolded set borel measurable def ])
qed
also have . . . = (LBINT x :einterval a b. f x ) + (LBINT x :einterval b c. f x )
using ord
by (intro set integral Un AE ) (auto intro!: set integrable subset [OF f ′] simp:

einterval iff not less)
finally have ?I a b + ?I b c = ?I a c
using ord by (simp add : interval lebesgue integral def )

} note 1 = this
{ fix a b c :: ereal assume interval lebesgue integrable lborel a c f a ≤ b b ≤ c
from 1 [OF this] have ?I b c + ?I a b = ?I a c
by (metis add .commute)

} note 2 = this
have 3 :

∧
a b. b ≤ a =⇒ (LBINT x=a..b. f x ) = − (LBINT x=b..a. f x )

by (rule interval integral endpoints reverse)
show ?thesis
using integrable
by (cases a b b c a c rule: linorder le cases[case product linorder le cases

linorder cases])
(simp all add : min absorb1 min absorb2 max absorb1 max absorb2 field simps

1 2 3 )
qed

lemma interval integrable isCont :
fixes a b and f :: real ⇒ ′a::{banach, second countable topology}
shows (

∧
x . min a b ≤ x =⇒ x ≤ max a b =⇒ isCont f x ) =⇒

interval lebesgue integrable lborel a b f
proof (induct a b rule: linorder wlog)
case (le a b) then show ?case
unfolding interval lebesgue integrable def set integrable def
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by (auto simp: interval lebesgue integrable def
intro!: set integrable subset [unfolded set integrable def , OF borel integrable compact [of

{a .. b}]]
continuous at imp continuous on)

qed (auto intro: interval integrable endpoints reverse[THEN iffD1 ])

lemma interval integrable continuous on:
fixes a b :: real and f
assumes a ≤ b and continuous on {a..b} f
shows interval lebesgue integrable lborel a b f

using assms unfolding interval lebesgue integrable def apply simp
by (rule set integrable subset , rule borel integrable atLeastAtMost ′ [of a b], auto)

lemma interval integral eq integral :
fixes f :: real ⇒ ′a::euclidean space
shows a ≤ b =⇒ set integrable lborel {a..b} f =⇒ LBINT x=a..b. f x = integral
{a..b} f
by (subst interval integral Icc, simp) (rule set borel integral eq integral)

lemma interval integral eq integral ′:
fixes f :: real ⇒ ′a::euclidean space
shows a ≤ b =⇒ set integrable lborel (einterval a b) f =⇒ LBINT x=a..b. f x

= integral (einterval a b) f
by (subst interval lebesgue integral le eq , simp) (rule set borel integral eq integral)

6.23.17 General limit approximation arguments

proposition interval integral Icc approx nonneg :
fixes a b :: ereal
assumes a < b
fixes u l :: nat ⇒ real
assumes approx : einterval a b = (

⋃
i . {l i .. u i})

incseq u decseq l
∧
i . l i < u i

∧
i . a < l i

∧
i . u i < b

l −−−−→ a u −−−−→ b
fixes f :: real ⇒ real
assumes f integrable:

∧
i . set integrable lborel {l i ..u i} f

assumes f nonneg : AE x in lborel . a < ereal x −→ ereal x < b −→ 0 ≤ f x
assumes f measurable: set borel measurable lborel (einterval a b) f
assumes lbint lim: (λi . LBINT x=l i .. u i . f x ) −−−−→ C
shows
set integrable lborel (einterval a b) f
(LBINT x=a..b. f x ) = C

proof −
have 1 [unfolded set integrable def ]:

∧
i . set integrable lborel {l i ..u i} f by (rule

f integrable)
have 2 : AE x in lborel . mono (λn. indicator {l n..u n} x ∗R f x )
proof −

from f nonneg have AE x in lborel . ∀ i . l i ≤ x −→ x ≤ u i −→ 0 ≤ f x
by eventually elim
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(metis approx (5 ) approx (6 ) dual order .strict trans1 ereal less eq(3 ) le less trans)
then show ?thesis
apply eventually elim
apply (auto simp: mono def split : split indicator)
apply (metis approx (3 ) decseqD order trans)
apply (metis approx (2 ) incseqD order trans)
done

qed
have 3 : AE x in lborel . (λi . indicator {l i ..u i} x ∗R f x ) −−−−→ indicator

(einterval a b) x ∗R f x
proof −
{ fix x i assume l i ≤ x x ≤ u i
then have eventually (λi . l i ≤ x ∧ x ≤ u i) sequentially
apply (auto simp: eventually sequentially intro!: exI [of i ])
apply (metis approx (3 ) decseqD order trans)
apply (metis approx (2 ) incseqD order trans)
done

then have eventually (λi . f x ∗ indicator {l i ..u i} x = f x ) sequentially
by eventually elim auto }

then show ?thesis
unfolding approx (1 ) by (auto intro!: AE I2 tendsto eventually split : split indicator)

qed
have 4 : (λi .

∫
x . indicator {l i ..u i} x ∗R f x ∂lborel) −−−−→ C

using lbint lim by (simp add : interval integral Icc [unfolded set lebesgue integral def ]
approx less imp le)
have 5 : (λx . indicat real (einterval a b) x ∗R f x ) ∈ borel measurable lborel
using f measurable set borel measurable def by blast

have (LBINT x=a..b. f x ) = lebesgue integral lborel (λx . indicator (einterval a
b) x ∗R f x )

using assms by (simp add : interval lebesgue integral def set lebesgue integral def
less imp le)
also have . . . = C
by (rule integral monotone convergence [OF 1 2 3 4 5 ])

finally show (LBINT x=a..b. f x ) = C .
show set integrable lborel (einterval a b) f
unfolding set integrable def
by (rule integrable monotone convergence[OF 1 2 3 4 5 ])

qed

proposition interval integral Icc approx integrable:
fixes u l :: nat ⇒ real and a b :: ereal
fixes f :: real ⇒ ′a::{banach, second countable topology}
assumes a < b
assumes approx : einterval a b = (

⋃
i . {l i .. u i})

incseq u decseq l
∧
i . l i < u i

∧
i . a < l i

∧
i . u i < b

l −−−−→ a u −−−−→ b
assumes f integrable: set integrable lborel (einterval a b) f
shows (λi . LBINT x=l i .. u i . f x ) −−−−→ (LBINT x=a..b. f x )

proof −
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have (λi . LBINT x :{l i .. u i}. f x ) −−−−→ (LBINT x :einterval a b. f x )
unfolding set lebesgue integral def

proof (rule integral dominated convergence)
show integrable lborel (λx . norm (indicator (einterval a b) x ∗R f x ))
using f integrable integrable norm set integrable def by blast

show (λx . indicat real (einterval a b) x ∗R f x ) ∈ borel measurable lborel
using f integrable by (simp add : set integrable def )

then show
∧
i . (λx . indicat real {l i ..u i} x ∗R f x ) ∈ borel measurable lborel

by (rule set borel measurable subset [unfolded set borel measurable def ]) (auto
simp: approx )

show
∧
i . AE x in lborel . norm (indicator {l i ..u i} x ∗R f x ) ≤ norm (indicator

(einterval a b) x ∗R f x )
by (intro AE I2 ) (auto simp: approx split : split indicator)
show AE x in lborel . (λi . indicator {l i ..u i} x ∗R f x ) −−−−→ indicator

(einterval a b) x ∗R f x
proof (intro AE I2 tendsto intros tendsto eventually)
fix x
{ fix i assume l i ≤ x x ≤ u i
with 〈incseq u〉[THEN incseqD , of i ] 〈decseq l 〉[THEN decseqD , of i ]
have eventually (λi . l i ≤ x ∧ x ≤ u i) sequentially

by (auto simp: eventually sequentially decseq def incseq def intro: or-
der trans) }

then show eventually (λxa. indicator {l xa..u xa} x = (indicator (einterval
a b) x ::real)) sequentially

using approx order tendstoD(2 )[OF 〈l −−−−→ a〉, of x ] order tendstoD(1 )[OF
〈u −−−−→ b〉, of x ]

by (auto split : split indicator)
qed

qed
with 〈a < b〉 〈

∧
i . l i < u i 〉 show ?thesis

by (simp add : interval lebesgue integral le eq [symmetric] interval integral Icc
less imp le)
qed

6.23.18 A slightly stronger Fundamental Theorem of Calcu-
lus

Three versions: first, for finite intervals, and then two versions for arbitrary
intervals.

lemma interval integral FTC finite:
fixes f F :: real ⇒ ′a::euclidean space and a b :: real
assumes f : continuous on {min a b..max a b} f
assumes F :

∧
x . min a b ≤ x =⇒ x ≤ max a b =⇒ (F has vector derivative (f

x )) (at x within
{min a b..max a b})

shows (LBINT x=a..b. f x ) = F b − F a
proof (cases a ≤ b)
case True
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have (LBINT x=a..b. f x ) = (LBINT x . indicat real {a..b} x ∗R f x )
by (simp add : True interval integral Icc set lebesgue integral def )

also have . . . = F b − F a
proof (rule integral FTC atLeastAtMost [OF True])
show continuous on {a..b} f
using True f by linarith

show
∧
x . [[a ≤ x ; x ≤ b]] =⇒ (F has vector derivative f x ) (at x within {a..b})

by (metis F True max .commute max absorb1 min def )
qed
finally show ?thesis .

next
case False
then have b ≤ a
by simp
have − interval lebesgue integral lborel (ereal b) (ereal a) f = − (LBINT x .

indicat real {b..a} x ∗R f x )
by (simp add : 〈b ≤ a〉 interval integral Icc set lebesgue integral def )

also have . . . = F b − F a
proof (subst integral FTC atLeastAtMost [OF 〈b ≤ a〉])
show continuous on {b..a} f
using False f by linarith

show
∧
x . [[b ≤ x ; x ≤ a]]

=⇒ (F has vector derivative f x ) (at x within {b..a})
by (metis F False max def min def )

qed auto
finally show ?thesis
by (metis interval integral endpoints reverse)

qed

lemma interval integral FTC nonneg :
fixes f F :: real ⇒ real and a b :: ereal
assumes a < b
assumes F :

∧
x . a < ereal x =⇒ ereal x < b =⇒ DERIV F x :> f x

assumes f :
∧
x . a < ereal x =⇒ ereal x < b =⇒ isCont f x

assumes f nonneg : AE x in lborel . a < ereal x −→ ereal x < b −→ 0 ≤ f x
assumes A: ((F ◦ real of ereal) −−−→ A) (at right a)
assumes B : ((F ◦ real of ereal) −−−→ B) (at left b)
shows
set integrable lborel (einterval a b) f
(LBINT x=a..b. f x ) = B − A

proof −
obtain u l where approx :
einterval a b = (

⋃
i . {l i .. u i})

incseq u decseq l
∧
i . l i < u i

∧
i . a < l i

∧
i . u i < b

l −−−−→ a u −−−−→ b
by (blast intro: einterval Icc approximation[OF 〈a < b〉])

have [simp]:
∧
x i . l i ≤ x =⇒ a < ereal x

by (rule order less le trans, rule approx , force)
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have [simp]:
∧
x i . x ≤ u i =⇒ ereal x < b

by (rule order le less trans, subst ereal less eq(3 ), assumption, rule approx )
have FTCi :

∧
i . (LBINT x=l i ..u i . f x ) = F (u i) − F (l i)

using assms approx apply (intro interval integral FTC finite)
apply (auto simp: less imp le min def max def
has field derivative iff has vector derivative[symmetric])

apply (rule continuous at imp continuous on, auto intro!: f )
by (rule DERIV subset [OF F ], auto)

have 1 :
∧
i . set integrable lborel {l i ..u i} f

proof −
fix i show set integrable lborel {l i .. u i} f
using 〈a < l i 〉 〈u i < b〉 unfolding set integrable def
by (intro borel integrable compact f continuous at imp continuous on com-

pact Icc ballI )
(auto simp flip: ereal less eq)

qed
have 2 : set borel measurable lborel (einterval a b) f
unfolding set borel measurable def
by (auto simp del : real scaleR def intro!: borel measurable continuous on indicator

simp: continuous on eq continuous at einterval iff f )
have 3 : (λi . LBINT x=l i ..u i . f x ) −−−−→ B − A
apply (subst FTCi)
apply (intro tendsto intros)
using B approx unfolding tendsto at iff sequentially comp def
using tendsto at iff sequentially [where ′a=real ]
apply (elim allE [of λi . ereal (u i)], auto)
using A approx unfolding tendsto at iff sequentially comp def
by (elim allE [of λi . ereal (l i)], auto)

show (LBINT x=a..b. f x ) = B − A
by (rule interval integral Icc approx nonneg [OF 〈a < b〉 approx 1 f nonneg 2

3 ])
show set integrable lborel (einterval a b) f
by (rule interval integral Icc approx nonneg [OF 〈a < b〉 approx 1 f nonneg 2

3 ])
qed

theorem interval integral FTC integrable:
fixes f F :: real ⇒ ′a::euclidean space and a b :: ereal
assumes a < b
assumes F :

∧
x . a < ereal x =⇒ ereal x < b =⇒ (F has vector derivative f x )

(at x )
assumes f :

∧
x . a < ereal x =⇒ ereal x < b =⇒ isCont f x

assumes f integrable: set integrable lborel (einterval a b) f
assumes A: ((F ◦ real of ereal) −−−→ A) (at right a)
assumes B : ((F ◦ real of ereal) −−−→ B) (at left b)
shows (LBINT x=a..b. f x ) = B − A

proof −
obtain u l where approx :
einterval a b = (

⋃
i . {l i .. u i})
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incseq u decseq l
∧
i . l i < u i

∧
i . a < l i

∧
i . u i < b

l −−−−→ a u −−−−→ b
by (blast intro: einterval Icc approximation[OF 〈a < b〉])

have [simp]:
∧
x i . l i ≤ x =⇒ a < ereal x

by (rule order less le trans, rule approx , force)
have [simp]:

∧
x i . x ≤ u i =⇒ ereal x < b

by (rule order le less trans, subst ereal less eq(3 ), assumption, rule approx )
have FTCi :

∧
i . (LBINT x=l i ..u i . f x ) = F (u i) − F (l i)

using assms approx
by (auto simp: less imp le min def max def

intro!: f continuous at imp continuous on interval integral FTC finite
intro: has vector derivative at within)

have (λi . LBINT x=l i ..u i . f x ) −−−−→ B − A
unfolding FTCi

proof (intro tendsto intros)
show (λx . F (l x )) −−−−→ A
using A approx unfolding tendsto at iff sequentially comp def
by (elim allE [of λi . ereal (l i)], auto)

show (λx . F (u x )) −−−−→ B
using B approx unfolding tendsto at iff sequentially comp def
by (elim allE [of λi . ereal (u i)], auto)

qed
moreover have (λi . LBINT x=l i ..u i . f x ) −−−−→ (LBINT x=a..b. f x )
by (rule interval integral Icc approx integrable [OF 〈a < b〉 approx f integrable])
ultimately show ?thesis
by (elim LIMSEQ unique)

qed

theorem interval integral FTC2 :
fixes a b c :: real and f :: real ⇒ ′a::euclidean space
assumes a ≤ c c ≤ b
and contf : continuous on {a..b} f
fixes x :: real
assumes a ≤ x and x ≤ b
shows ((λu. LBINT y=c..u. f y) has vector derivative (f x )) (at x within {a..b})

proof −
let ?F = (λu. LBINT y=a..u. f y)
have intf : set integrable lborel {a..b} f
by (rule borel integrable atLeastAtMost ′, rule contf )

have ((λu. integral {a..u} f ) has vector derivative f x ) (at x within {a..b})
using 〈a ≤ x 〉 〈x ≤ b〉

by (auto intro: integral has vector derivative continuous on subset [OF contf ])
then have ((λu. integral {a..u} f ) has vector derivative (f x )) (at x within {a..b})
by simp

then have (?F has vector derivative (f x )) (at x within {a..b})
by (rule has vector derivative weaken)
(auto intro!: assms interval integral eq integral [symmetric] set integrable subset
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[OF intf ])
then have ((λx . (LBINT y=c..a. f y) + ?F x ) has vector derivative (f x )) (at x

within {a..b})
by (auto intro!: derivative eq intros)

then show ?thesis
proof (rule has vector derivative weaken)
fix u assume u ∈ {a .. b}
then show (LBINT y=c..a. f y) + (LBINT y=a..u. f y) = (LBINT y=c..u. f

y)
using assms
apply (intro interval integral sum)
apply (auto simp: interval lebesgue integrable def simp del : real scaleR def )
by (rule set integrable subset [OF intf ], auto simp: min def max def )

qed (insert assms, auto)
qed

proposition einterval antiderivative:
fixes a b :: ereal and f :: real ⇒ ′a::euclidean space
assumes a < b and contf :

∧
x :: real . a < x =⇒ x < b =⇒ isCont f x

shows ∃F . ∀ x :: real . a < x −→ x < b −→ (F has vector derivative f x ) (at x )
proof −
from einterval nonempty [OF 〈a < b〉] obtain c :: real where [simp]: a < c c

< b
by (auto simp: einterval def )

let ?F = (λu. LBINT y=c..u. f y)
show ?thesis
proof (rule exI , clarsimp)
fix x :: real
assume [simp]: a < x x < b
have 1 : a < min c x by simp
from einterval nonempty [OF 1 ] obtain d :: real where [simp]: a < d d < c

d < x
by (auto simp: einterval def )

have 2 : max c x < b by simp
from einterval nonempty [OF 2 ] obtain e :: real where [simp]: c < e x < e

e < b
by (auto simp: einterval def )

have (?F has vector derivative f x ) (at x within {d<..<e})
proof (rule has vector derivative within subset [of {d ..e}])
have continuous on {d ..e} f
proof (intro continuous at imp continuous on ballI contf ; clarsimp)
show

∧
x . [[d ≤ x ; x ≤ e]] =⇒ a < ereal x

using 〈a < ereal d 〉 ereal less ereal Ex by auto
show

∧
x . [[d ≤ x ; x ≤ e]] =⇒ ereal x < b

using 〈ereal e < b〉 ereal less eq(3 ) le less trans by blast
qed
then show (?F has vector derivative f x ) (at x within {d ..e})
by (intro interval integral FTC2 ) (use 〈d < c〉 〈c < e〉 〈d < x 〉 〈x < e〉 in

〈linarith+〉)
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qed auto
then show (?F has vector derivative f x ) (at x )
by (force simp: has vector derivative within open [of {d<..<e}])

qed
qed

6.23.19 The substitution theorem

Once again, three versions: first, for finite intervals, and then two versions
for arbitrary intervals.

theorem interval integral substitution finite:
fixes a b :: real and f :: real ⇒ ′a::euclidean space
assumes a ≤ b
and derivg :

∧
x . a ≤ x =⇒ x ≤ b =⇒ (g has real derivative (g ′ x )) (at x within

{a..b})
and contf : continuous on (g ‘ {a..b}) f
and contg ′: continuous on {a..b} g ′

shows LBINT x=a..b. g ′ x ∗R f (g x ) = LBINT y=g a..g b. f y
proof−
have v derivg :

∧
x . a ≤ x =⇒ x ≤ b =⇒ (g has vector derivative (g ′ x )) (at x

within {a..b})
using derivg unfolding has field derivative iff has vector derivative .

then have contg [simp]: continuous on {a..b} g
by (rule continuous on vector derivative) auto

have 1 : ∃ x∈{a..b}. u = g x if min (g a) (g b) ≤ u u ≤ max (g a) (g b) for u
by (cases g a ≤ g b) (use that assms IVT ′ [of g a u b] IVT2 ′ [of g b u a] in

〈auto simp: min def max def 〉)
obtain c d where g im: g ‘ {a..b} = {c..d} and c ≤ d
by (metis continuous image closed interval contg 〈a ≤ b〉)

obtain F where derivF :∧
x . [[a ≤ x ; x ≤ b]] =⇒ (F has vector derivative (f (g x ))) (at (g x ) within

(g ‘ {a..b}))
using continuous on subset [OF contf ] g im
by (metis antiderivative continuous atLeastAtMost iff image subset iff set eq subset)

have contfg : continuous on {a..b} (λx . f (g x ))
by (blast intro: continuous on compose2 contf contg)

have LBINT x . indicat real {a..b} x ∗R g ′ x ∗R f (g x ) = F (g b) − F (g a)
apply (rule integral FTC atLeastAtMost

[OF 〈a ≤ b〉 vector diff chain within[OF v derivg derivF , unfolded
comp def ]])

apply (auto intro!: continuous on scaleR contg ′ contfg)
done

then have LBINT x=a..b. g ′ x ∗R f (g x ) = F (g b) − F (g a)
by (simp add : assms interval integral Icc set lebesgue integral def )

moreover have LBINT y=(g a)..(g b). f y = F (g b) − F (g a)
proof (rule interval integral FTC finite)
show continuous on {min (g a) (g b)..max (g a) (g b)} f
by (rule continuous on subset [OF contf ]) (auto simp: image def 1 )

show (F has vector derivative f y) (at y within {min (g a) (g b)..max (g a) (g
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b)})
if y : min (g a) (g b) ≤ y y ≤ max (g a) (g b) for y

proof −
obtain x where a ≤ x x ≤ b y = g x
using 1 y by force

then show ?thesis
by (auto simp: image def intro!: 1 has vector derivative within subset [OF

derivF ])
qed

qed
ultimately show ?thesis by simp

qed

theorem interval integral substitution integrable:
fixes f :: real ⇒ ′a::euclidean space and a b u v :: ereal
assumes a < b
and deriv g :

∧
x . a < ereal x =⇒ ereal x < b =⇒ DERIV g x :> g ′ x

and contf :
∧
x . a < ereal x =⇒ ereal x < b =⇒ isCont f (g x )

and contg ′:
∧
x . a < ereal x =⇒ ereal x < b =⇒ isCont g ′ x

and g ′ nonneg :
∧
x . a ≤ ereal x =⇒ ereal x ≤ b =⇒ 0 ≤ g ′ x

and A: ((ereal ◦ g ◦ real of ereal) −−−→ A) (at right a)
and B : ((ereal ◦ g ◦ real of ereal) −−−→ B) (at left b)
and integrable: set integrable lborel (einterval a b) (λx . g ′ x ∗R f (g x ))
and integrable2 : set integrable lborel (einterval A B) (λx . f x )
shows (LBINT x=A..B . f x ) = (LBINT x=a..b. g ′ x ∗R f (g x ))

proof −
obtain u l where approx [simp]:
einterval a b = (

⋃
i . {l i .. u i})

incseq u decseq l
∧
i . l i < u i

∧
i . a < l i

∧
i . u i < b

l −−−−→ a u −−−−→ b
by (blast intro: einterval Icc approximation[OF 〈a < b〉])

note less imp le [simp]
have [simp]:

∧
x i . l i ≤ x =⇒ a < ereal x

by (rule order less le trans, rule approx , force)
have [simp]:

∧
x i . x ≤ u i =⇒ ereal x < b

by (rule order le less trans, subst ereal less eq(3 ), assumption, rule approx )
then have lessb[simp]:

∧
i . l i < b

using approx (4 ) less eq real def by blast
have [simp]:

∧
i . a < u i

by (rule order less trans, rule approx , auto, rule approx )
have lle[simp]:

∧
i j . i ≤ j =⇒ l j ≤ l i by (rule decseqD , rule approx )

have [simp]:
∧
i j . i ≤ j =⇒ u i ≤ u j by (rule incseqD , rule approx )

have g nondec [simp]: g x ≤ g y if a < x x ≤ y y < b for x y
proof (rule DERIV nonneg imp nondecreasing [OF 〈x ≤ y〉], intro exI conjI )
show

∧
u. x ≤ u =⇒ u ≤ y =⇒ (g has real derivative g ′ u) (at u)

by (meson deriv g ereal less eq(3 ) le less trans less le trans that)
show

∧
u. x ≤ u =⇒ u ≤ y =⇒ 0 ≤ g ′ u
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by (meson assms(5 ) dual order .trans le ereal le less imp le order refl that)
qed
have A ≤ B and un: einterval A B = (

⋃
i . {g(l i)<..<g(u i)})

proof −
have A2 : (λi . g (l i)) −−−−→ A
using A apply (auto simp: einterval def tendsto at iff sequentially comp def )
by (drule tac x = λi . ereal (l i) in spec, auto)

hence A3 :
∧
i . g (l i) ≥ A

by (intro decseq ge, auto simp: decseq def )
have B2 : (λi . g (u i)) −−−−→ B
using B apply (auto simp: einterval def tendsto at iff sequentially comp def )
by (drule tac x = λi . ereal (u i) in spec, auto)

hence B3 :
∧
i . g (u i) ≤ B

by (intro incseq le, auto simp: incseq def )
have ereal (g (l 0 )) ≤ ereal (g (u 0 ))
by auto

then show A ≤ B
by (meson A3 B3 order .trans)

{ fix x :: real
assume A < x and x < B
then have eventually (λi . ereal (g (l i)) < x ∧ x < ereal (g (u i))) sequentially

by (fast intro: eventually conj order tendstoD A2 B2 )
hence ∃ i . g (l i) < x ∧ x < g (u i)
by (simp add : eventually sequentially , auto)

} note AB = this
show einterval A B = (

⋃
i . {g(l i)<..<g(u i)})

proof
show einterval A B ⊆ (

⋃
i . {g(l i)<..<g(u i)})

by (auto simp: einterval def AB)
show (

⋃
i . {g(l i)<..<g(u i)}) ⊆ einterval A B

proof (clarsimp simp add : einterval def , intro conjI )
show

∧
x i . [[g (l i) < x ; x < g (u i)]] =⇒ A < ereal x

using A3 le ereal less by blast
show

∧
x i . [[g (l i) < x ; x < g (u i)]] =⇒ ereal x < B

using B3 ereal le less by blast
qed

qed
qed

have eq1 : (LBINT x=l i .. u i . g ′ x ∗R f (g x )) = (LBINT y=g (l i)..g (u i). f
y) for i

apply (rule interval integral substitution finite [OF DERIV subset [OF de-
riv g ]])

unfolding has field derivative iff has vector derivative[symmetric]
apply (auto intro!: continuous at imp continuous on contf contg ′)

done
have (λi . LBINT x=l i ..u i . g ′ x ∗R f (g x )) −−−−→ (LBINT x=a..b. g ′ x ∗R f

(g x ))
apply (rule interval integral Icc approx integrable [OF 〈a < b〉 approx ])
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by (rule assms)
hence 2 : (λi . (LBINT y=g (l i)..g (u i). f y)) −−−−→ (LBINT x=a..b. g ′ x ∗R

f (g x ))
by (simp add : eq1 )

have incseq : incseq (λi . {g (l i)<..<g (u i)})
apply (auto simp: incseq def )
using lessb lle approx (5 ) g nondec le less trans apply blast
by (force intro: less le trans)

have (λi . set lebesgue integral lborel {g (l i)<..<g (u i)} f )
−−−−→ set lebesgue integral lborel (einterval A B) f

unfolding un by (rule set integral cont up) (use incseq integrable2 un in
auto)
then have (λi . (LBINT y=g (l i)..g (u i). f y)) −−−−→ (LBINT x = A..B . f x )
by (simp add : interval lebesgue integral le eq 〈A ≤ B 〉)

thus ?thesis by (intro LIMSEQ unique [OF 2 ])
qed

theorem interval integral substitution nonneg :
fixes f g g ′:: real ⇒ real and a b u v :: ereal
assumes a < b
and deriv g :

∧
x . a < ereal x =⇒ ereal x < b =⇒ DERIV g x :> g ′ x

and contf :
∧
x . a < ereal x =⇒ ereal x < b =⇒ isCont f (g x )

and contg ′:
∧
x . a < ereal x =⇒ ereal x < b =⇒ isCont g ′ x

and f nonneg :
∧
x . a < ereal x =⇒ ereal x < b =⇒ 0 ≤ f (g x )

and g ′ nonneg :
∧
x . a ≤ ereal x =⇒ ereal x ≤ b =⇒ 0 ≤ g ′ x

and A: ((ereal ◦ g ◦ real of ereal) −−−→ A) (at right a)
and B : ((ereal ◦ g ◦ real of ereal) −−−→ B) (at left b)
and integrable fg : set integrable lborel (einterval a b) (λx . f (g x ) ∗ g ′ x )
shows
set integrable lborel (einterval A B) f
(LBINT x=A..B . f x ) = (LBINT x=a..b. (f (g x ) ∗ g ′ x ))

proof −
from einterval Icc approximation[OF 〈a < b〉] guess u l . note approx [simp]

= this
note less imp le [simp]
have aless[simp]:

∧
x i . l i ≤ x =⇒ a < ereal x

by (rule order less le trans, rule approx , force)
have lessb[simp]:

∧
x i . x ≤ u i =⇒ ereal x < b

by (rule order le less trans, subst ereal less eq(3 ), assumption, rule approx )
have llb[simp]:

∧
i . l i < b

using lessb approx (4 ) less eq real def by blast
have alu[simp]:

∧
i . a < u i

by (rule order less trans, rule approx , auto, rule approx )
have [simp]:

∧
i j . i ≤ j =⇒ l j ≤ l i by (rule decseqD , rule approx )

have uleu[simp]:
∧
i j . i ≤ j =⇒ u i ≤ u j by (rule incseqD , rule approx )

have g nondec [simp]: g x ≤ g y if a < x x ≤ y y < b for x y
proof (rule DERIV nonneg imp nondecreasing [OF 〈x ≤ y〉], intro exI conjI )
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show
∧
u. x ≤ u =⇒ u ≤ y =⇒ (g has real derivative g ′ u) (at u)

by (meson deriv g ereal less eq(3 ) le less trans less le trans that)
show

∧
u. x ≤ u =⇒ u ≤ y =⇒ 0 ≤ g ′ u

by (meson g ′ nonneg less ereal .simps(1 ) less trans not less that)
qed
have A ≤ B and un: einterval A B = (

⋃
i . {g(l i)<..<g(u i)})

proof −
have A2 : (λi . g (l i)) −−−−→ A
using A apply (auto simp: einterval def tendsto at iff sequentially comp def )
by (drule tac x = λi . ereal (l i) in spec, auto)

hence A3 :
∧
i . g (l i) ≥ A

by (intro decseq ge, auto simp: decseq def )
have B2 : (λi . g (u i)) −−−−→ B
using B apply (auto simp: einterval def tendsto at iff sequentially comp def )
by (drule tac x = λi . ereal (u i) in spec, auto)

hence B3 :
∧
i . g (u i) ≤ B

by (intro incseq le, auto simp: incseq def )
have ereal (g (l 0 )) ≤ ereal (g (u 0 ))
by auto

then show A ≤ B
by (meson A3 B3 order .trans)

{ fix x :: real
assume A < x and x < B
then have eventually (λi . ereal (g (l i)) < x ∧ x < ereal (g (u i))) sequentially

by (fast intro: eventually conj order tendstoD A2 B2 )
hence ∃ i . g (l i) < x ∧ x < g (u i)
by (simp add : eventually sequentially , auto)

} note AB = this
show einterval A B = (

⋃
i . {g(l i)<..<g(u i)})

proof
show einterval A B ⊆ (

⋃
i . {g (l i)<..<g (u i)})

by (auto simp: einterval def AB)
show (

⋃
i . {g (l i)<..<g (u i)}) ⊆ einterval A B

apply (clarsimp simp: einterval def , intro conjI )
using A3 le ereal less apply blast
using B3 ereal le less by blast

qed
qed

have eq1 : (LBINT x=l i .. u i . (f (g x ) ∗ g ′ x )) = (LBINT y=g (l i)..g (u i). f
y) for i
proof −
have (LBINT x=l i .. u i . g ′ x ∗R f (g x )) = (LBINT y=g (l i)..g (u i). f y)

apply (rule interval integral substitution finite [OF DERIV subset [OF
deriv g ]])

unfolding has field derivative iff has vector derivative[symmetric]
apply (auto intro!: continuous at imp continuous on contf contg ′)

done
then show ?thesis
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by (simp add : ac simps)
qed
have incseq : incseq (λi . {g (l i)<..<g (u i)})
apply (clarsimp simp add : incseq def , intro conjI )
apply (meson llb antimono def approx (3 ) approx (5 ) g nondec le less trans)
using alu uleu approx (6 ) g nondec less le trans by blast

have img : ∃ c ≥ l i . c ≤ u i ∧ x = g c if g (l i) ≤ x x ≤ g (u i) for x i
proof −
have continuous on {l i ..u i} g
by (force intro!: DERIV isCont deriv g continuous at imp continuous on)

with that show ?thesis
using IVT ′ [of g ] approx (4 ) dual order .strict implies order by blast

qed
have continuous on {g (l i)..g (u i)} f for i
apply (intro continuous intros continuous at imp continuous on)
using contf img by force

then have int f :
∧
i . set integrable lborel {g (l i)<..<g (u i)} f

by (rule set integrable subset [OF borel integrable atLeastAtMost ′]) (auto intro:
less imp le)
have integrable: set integrable lborel (

⋃
i . {g (l i)<..<g (u i)}) f

proof (intro pos integrable to top incseq int f )
let ?l = (LBINT x=a..b. f (g x ) ∗ g ′ x )
have (λi . LBINT x=l i ..u i . f (g x ) ∗ g ′ x ) −−−−→ ?l
by (intro assms interval integral Icc approx integrable [OF 〈a < b〉 approx ])

hence (λi . (LBINT y=g (l i)..g (u i). f y)) −−−−→ ?l
by (simp add : eq1 )

then show (λi . set lebesgue integral lborel {g (l i)<..<g (u i)} f ) −−−−→ ?l
unfolding interval lebesgue integral def by auto

have
∧
x i . g (l i) ≤ x =⇒ x ≤ g (u i) =⇒ 0 ≤ f x

using aless f nonneg img lessb by blast
then show

∧
x i . x ∈ {g (l i)<..<g (u i)} =⇒ 0 ≤ f x

using less eq real def by auto
qed (auto simp: greaterThanLessThan borel)
thus set integrable lborel (einterval A B) f
by (simp add : un)

have (LBINT x=A..B . f x ) = (LBINT x=a..b. g ′ x ∗R f (g x ))
proof (rule interval integral substitution integrable)
show set integrable lborel (einterval a b) (λx . g ′ x ∗R f (g x ))
using integrable fg by (simp add : ac simps)

qed fact+
then show (LBINT x=A..B . f x ) = (LBINT x=a..b. (f (g x ) ∗ g ′ x ))
by (simp add : ac simps)

qed

syntax complex lebesgue borel integral :: pttrn ⇒ real ⇒ complex
((2CLBINT . ) [0 ,60 ] 60 )
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translations CLBINT x . f == CONST complex lebesgue integral CONST lborel
(λx . f )

syntax complex set lebesgue borel integral :: pttrn ⇒ real set ⇒ real ⇒ complex
((3CLBINT : . ) [0 ,60 ,61 ] 60 )

translations
CLBINT x :A. f == CONST complex set lebesgue integral CONST lborel A (λx .

f )

abbreviation complex interval lebesgue integral ::
real measure ⇒ ereal ⇒ ereal ⇒ (real ⇒ complex ) ⇒ complex where

complex interval lebesgue integral M a b f ≡ interval lebesgue integral M a b f

abbreviation complex interval lebesgue integrable ::
real measure ⇒ ereal ⇒ ereal ⇒ (real ⇒ complex ) ⇒ bool where
complex interval lebesgue integrable M a b f ≡ interval lebesgue integrable M a b

f

syntax
ascii complex interval lebesgue borel integral :: pttrn ⇒ ereal ⇒ ereal ⇒ real ⇒

complex
((4CLBINT = .. . ) [0 ,60 ,60 ,61 ] 60 )

translations
CLBINT x=a..b. f == CONST complex interval lebesgue integral CONST lborel

a b (λx . f )

proposition interval integral norm:
fixes f :: real ⇒ ′a :: {banach, second countable topology}
shows interval lebesgue integrable lborel a b f =⇒ a ≤ b =⇒
norm (LBINT t=a..b. f t) ≤ LBINT t=a..b. norm (f t)

using integral norm bound [of lborel λx . indicator (einterval a b) x ∗R f x ]
by (auto simp: interval lebesgue integral def interval lebesgue integrable def set lebesgue integral def )

proposition interval integral norm2 :
interval lebesgue integrable lborel a b f =⇒
norm (LBINT t=a..b. f t) ≤ |LBINT t=a..b. norm (f t)|

proof (induct a b rule: linorder wlog)
case (sym a b) then show ?case
by (simp add : interval integral endpoints reverse[of a b] interval integrable endpoints reverse[of

a b])
next
case (le a b)
then have |LBINT t=a..b. norm (f t)| = LBINT t=a..b. norm (f t)
using integrable norm[of lborel λx . indicator (einterval a b) x ∗R f x ]
by (auto simp: interval lebesgue integral def interval lebesgue integrable def set lebesgue integral def

intro!: integral nonneg AE abs of nonneg)
then show ?case
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using le by (simp add : interval integral norm)
qed

lemma integral cos: t 6= 0 =⇒ LBINT x=a..b. cos (t ∗ x ) = sin (t ∗ b) / t −
sin (t ∗ a) / t
apply (intro interval integral FTC finite continuous intros)
by (auto intro!: derivative eq intros simp: has field derivative iff has vector derivative[symmetric])

end

6.24 Integration by Substition for the Lebesgue
Integral

theory Lebesgue Integral Substitution
imports Interval Integral
begin

lemma nn integral substitution aux :
fixes f :: real ⇒ ennreal
assumes Mf : f ∈ borel measurable borel
assumes nonnegf :

∧
x . f x ≥ 0

assumes derivg :
∧
x . x ∈ {a..b} =⇒ (g has real derivative g ′ x ) (at x )

assumes contg ′: continuous on {a..b} g ′

assumes derivg nonneg :
∧
x . x ∈ {a..b} =⇒ g ′ x ≥ 0

assumes a < b
shows (

∫
+x . f x ∗ indicator {g a..g b} x ∂lborel) =

(
∫

+x . f (g x ) ∗ g ′ x ∗ indicator {a..b} x ∂lborel)
proof−
from 〈a < b〉 have [simp]: a ≤ b by simp
from derivg have contg : continuous on {a..b} g by (rule has real derivative imp continuous on)
from this and contg ′ have Mg : set borel measurable borel {a..b} g and

Mg ′: set borel measurable borel {a..b} g ′

by (simp all only : set measurable continuous on ivl)
from derivg have derivg ′:

∧
x . x ∈ {a..b} =⇒ (g has vector derivative g ′ x ) (at

x )
by (simp only : has field derivative iff has vector derivative)

have real ind [simp]:
∧
A x . enn2real (indicator A x ) = indicator A x

by (auto split : split indicator)
have ennreal ind [simp]:

∧
A x . ennreal (indicator A x ) = indicator A x

by (auto split : split indicator)
have [simp]:

∧
x A. indicator A (g x ) = indicator (g −‘ A) x

by (auto split : split indicator)

from derivg derivg nonneg have monog :
∧
x y . a ≤ x =⇒ x ≤ y =⇒ y ≤ b =⇒

g x ≤ g y
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by (rule deriv nonneg imp mono) simp all
with monog have [simp]: g a ≤ g b by (auto intro: mono onD)

show ?thesis
proof (induction rule: borel measurable induct [OF Mf , case names cong set mult

add sup])
case (cong f1 f2 )
from cong .hyps(3 ) have f1 = f2 by auto
with cong show ?case by simp

next
case (set A)
from set .hyps show ?case
proof (induction rule: borel set induct)
case empty
thus ?case by simp

next
case (interval c d)
{
fix u v :: real assume asm: {u..v} ⊆ {g a..g b} u ≤ v

obtain u ′ v ′ where u ′v ′: {a..b} ∩ g−‘{u..v} = {u ′..v ′} u ′ ≤ v ′ g u ′ = u g
v ′ = v

using asm by (rule tac continuous interval vimage Int [OF contg monog ,
of u v ]) simp all

hence {u ′..v ′} ⊆ {a..b} {u ′..v ′} ⊆ g −‘ {u..v} by blast+
with u ′v ′(2 ) have u ′ ∈ g −‘ {u..v} v ′ ∈ g −‘ {u..v} by auto
from u ′v ′(1 ) have [simp]: {a..b} ∩ g −‘ {u..v} ∈ sets borel by simp

have A: continuous on {min u ′ v ′..max u ′ v ′} g ′

by (simp only : u ′v ′ max absorb2 min absorb1 )
(intro continuous on subset [OF contg ′], insert u ′v ′, auto)

have
∧
x . x ∈ {u ′..v ′} =⇒ (g has real derivative g ′ x ) (at x within {u ′..v ′})

using asm by (intro has field derivative subset [OF derivg ] subsetD [OF
〈{u ′..v ′} ⊆ {a..b}〉]) auto

hence B :
∧
x . min u ′ v ′ ≤ x =⇒ x ≤ max u ′ v ′ =⇒

(g has vector derivative g ′ x ) (at x within {min u ′ v ′..max u ′ v ′})
by (simp only : u ′v ′ max absorb2 min absorb1 )

(auto simp: has field derivative iff has vector derivative)
have integrable lborel (λx . indicator ({a..b} ∩ g −‘ {u..v}) x ∗R g ′ x )
using set integrable subset borel integrable atLeastAtMost ′[OF contg ′]
by (metis 〈{u ′..v ′} ⊆ {a..b}〉 eucl ivals(5 ) set integrable def sets lborel

u ′v ′(1 ))
hence (

∫
+x . ennreal (g ′ x ) ∗ indicator ({a..b} ∩ g−‘ {u..v}) x ∂lborel) =
LBINT x :{a..b} ∩ g−‘{u..v}. g ′ x

unfolding set lebesgue integral def
by (subst nn integral eq integral [symmetric])

(auto intro!: derivg nonneg nn integral cong split : split indicator)
also from interval integral FTC finite[OF A B ]

have LBINT x :{a..b} ∩ g−‘{u..v}. g ′ x = v − u
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by (simp add : u ′v ′ interval integral Icc 〈u ≤ v 〉)
finally have (

∫
+ x . ennreal (g ′ x ) ∗ indicator ({a..b} ∩ g −‘ {u..v}) x

∂lborel) =
ennreal (v − u) .

} note A = this

have (
∫

+x . indicator {c..d} (g x ) ∗ ennreal (g ′ x ) ∗ indicator {a..b} x
∂lborel) =

(
∫

+ x . ennreal (g ′ x ) ∗ indicator ({a..b} ∩ g −‘ {c..d}) x ∂lborel)
by (intro nn integral cong) (simp split : split indicator)

also have {a..b} ∩ g−‘{c..d} = {a..b} ∩ g−‘{max (g a) c..min (g b) d}
using 〈a ≤ b〉 〈c ≤ d 〉

by (auto intro!: monog intro: order .trans)
also have (

∫
+ x . ennreal (g ′ x ) ∗ indicator ... x ∂lborel) =

(if max (g a) c ≤ min (g b) d then min (g b) d − max (g a) c else 0 )
using 〈c ≤ d 〉 by (simp add : A)

also have ... = (
∫

+ x . indicator ({g a..g b} ∩ {c..d}) x ∂lborel)
by (subst nn integral indicator) (auto intro!: measurable sets Mg simp:)

also have ... = (
∫

+ x . indicator {c..d} x ∗ indicator {g a..g b} x ∂lborel)
by (intro nn integral cong) (auto split : split indicator)

finally show ?case ..

next

case (compl A)
note 〈A ∈ sets borel 〉[measurable]
from emeasure mono[of A ∩ {g a..g b} {g a..g b} lborel ]
have [simp]: emeasure lborel (A ∩ {g a..g b}) 6= top by (auto simp: top unique)
have [simp]: g −‘ A ∩ {a..b} ∈ sets borel
by (rule set borel measurable sets[OF Mg ]) auto

have [simp]: g −‘ (−A) ∩ {a..b} ∈ sets borel
by (rule set borel measurable sets[OF Mg ]) auto

have (
∫

+x . indicator (−A) x ∗ indicator {g a..g b} x ∂lborel) =
(
∫

+x . indicator (−A ∩ {g a..g b}) x ∂lborel)
by (rule nn integral cong) (simp split : split indicator)
also from compl have ... = emeasure lborel ({g a..g b} − A) using de-

rivg nonneg
by (simp add : vimage Compl diff eq Int commute[of −A])

also have {g a..g b} − A = {g a..g b} − A ∩ {g a..g b} by blast
also have emeasure lborel ... = g b − g a − emeasure lborel (A ∩ {g a..g b})

using 〈A ∈ sets borel 〉 by (subst emeasure Diff ) (auto simp: )
also have emeasure lborel (A ∩ {g a..g b}) =∫

+x . indicator A x ∗ indicator {g a..g b} x ∂lborel
using 〈A ∈ sets borel 〉

by (subst nn integral indicator [symmetric], simp, intro nn integral cong)
(simp split : split indicator)

also have ... =
∫

+ x . indicator (g−‘A ∩ {a..b}) x ∗ ennreal (g ′ x ∗ indicator
{a..b} x ) ∂lborel (is = ?I )
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by (subst compl .IH , intro nn integral cong) (simp split : split indicator)
also have g b − g a = LBINT x :{a..b}. g ′ x using derivg ′

unfolding set lebesgue integral def
by (intro integral FTC atLeastAtMost [symmetric])
(auto intro: continuous on subset [OF contg ′] has field derivative subset [OF

derivg ]
has vector derivative at within)

also have ennreal ... =
∫

+ x . g ′ x ∗ indicator {a..b} x ∂lborel
using borel integrable atLeastAtMost ′[OF contg ′] unfolding set lebesgue integral def
by (subst nn integral eq integral)

(simp all add : mult .commute derivg nonneg set integrable def split :
split indicator)

also have Mg ′′: (λx . indicator (g −‘ A ∩ {a..b}) x ∗ ennreal (g ′ x ∗ indicator
{a..b} x ))

∈ borel measurable borel using Mg ′

by (intro borel measurable times ennreal borel measurable indicator)
(simp all add : mult .commute set borel measurable def )

have le: (
∫

+x . indicator (g−‘A ∩ {a..b}) x ∗ ennreal (g ′ x ∗ indicator {a..b}
x ) ∂lborel) ≤

(
∫

+x . ennreal (g ′ x ) ∗ indicator {a..b} x ∂lborel)
by (intro nn integral mono) (simp split : split indicator add : derivg nonneg)

note integrable = borel integrable atLeastAtMost ′[OF contg ′]
with le have notinf : (

∫
+x . indicator (g−‘A ∩ {a..b}) x ∗ ennreal (g ′ x ∗

indicator {a..b} x ) ∂lborel) 6= top
by (auto simp: real integrable def nn integral set ennreal mult .commute

top unique set integrable def )
have (

∫
+ x . g ′ x ∗ indicator {a..b} x ∂lborel) − ?I =∫

+ x . ennreal (g ′ x ∗ indicator {a..b} x ) −
indicator (g −‘ A ∩ {a..b}) x ∗ ennreal (g ′ x ∗ indicator {a..b}

x ) ∂lborel
apply (intro nn integral diff [symmetric])
apply (insert Mg ′, simp add : mult .commute set borel measurable def ) []
apply (insert Mg ′′, simp) []
apply (simp split : split indicator add : derivg nonneg)
apply (rule notinf )
apply (simp split : split indicator add : derivg nonneg)
done

also have ... =
∫

+ x . indicator (−A) (g x ) ∗ ennreal (g ′ x ) ∗ indicator {a..b}
x ∂lborel

by (intro nn integral cong) (simp split : split indicator)
finally show ?case .

next
case (union f )
then have [simp]:

∧
i . {a..b} ∩ g −‘ f i ∈ sets borel

by (subst Int commute, intro set borel measurable sets[OF Mg ]) auto
have g −‘ (

⋃
i . f i) ∩ {a..b} = (

⋃
i . {a..b} ∩ g −‘ f i) by auto

hence g −‘ (
⋃
i . f i) ∩ {a..b} ∈ sets borel by (auto simp del : UN simps)
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have (
∫

+x . indicator (
⋃
i . f i) x ∗ indicator {g a..g b} x ∂lborel) =∫

+x . indicator (
⋃
i . {g a..g b} ∩ f i) x ∂lborel

by (intro nn integral cong) (simp split : split indicator)
also from union have ... = emeasure lborel (

⋃
i . {g a..g b} ∩ f i) by simp

also from union have ... = (
∑

i . emeasure lborel ({g a..g b} ∩ f i))
by (intro suminf emeasure[symmetric]) (auto simp: disjoint family on def )

also from union have ... = (
∑

i .
∫

+x . indicator ({g a..g b} ∩ f i) x ∂lborel)
by simp

also have (λi .
∫

+x . indicator ({g a..g b} ∩ f i) x ∂lborel) =
(λi .

∫
+x . indicator (f i) x ∗ indicator {g a..g b} x ∂lborel)

by (intro ext nn integral cong) (simp split : split indicator)
also from union.IH have (

∑
i .

∫
+x . indicator (f i) x ∗ indicator {g a..g b}

x ∂lborel) =
(
∑

i .
∫

+ x . indicator (f i) (g x ) ∗ ennreal (g ′ x ) ∗ indicator {a..b} x
∂lborel) by simp

also have (λi .
∫

+ x . indicator (f i) (g x ) ∗ ennreal (g ′ x ) ∗ indicator {a..b}
x ∂lborel) =

(λi .
∫

+ x . ennreal (g ′ x ∗ indicator {a..b} x ) ∗ indicator
({a..b} ∩ g −‘ f i) x ∂lborel)

by (intro ext nn integral cong) (simp split : split indicator)
also have (

∑
i . ... i) =

∫
+ x . (

∑
i . ennreal (g ′ x ∗ indicator {a..b} x ) ∗

indicator ({a..b} ∩ g −‘ f i) x ) ∂lborel
using Mg ′

apply (intro nn integral suminf [symmetric])
apply (rule borel measurable times ennreal , simp add : mult .commute set borel measurable def )
apply (rule borel measurable indicator , subst sets lborel)
apply (simp all split : split indicator add : derivg nonneg)
done

also have (λx i . ennreal (g ′ x ∗ indicator {a..b} x ) ∗ indicator ({a..b} ∩ g
−‘ f i) x ) =

(λx i . ennreal (g ′ x ∗ indicator {a..b} x ) ∗ indicator (g −‘ f i) x )
by (intro ext) (simp split : split indicator)

also have (
∫

+ x . (
∑

i . ennreal (g ′ x ∗ indicator {a..b} x ) ∗ indicator (g −‘
f i) x ) ∂lborel) =∫

+ x . ennreal (g ′ x ∗ indicator {a..b} x ) ∗ (
∑

i . indicator (g −‘
f i) x ) ∂lborel

by (intro nn integral cong) (auto split : split indicator simp: derivg nonneg)
also from union have (λx .

∑
i . indicator (g −‘ f i) x :: ennreal) = (λx .

indicator (
⋃
i . g −‘ f i) x )

by (intro ext suminf indicator) (auto simp: disjoint family on def )
also have (

∫
+x . ennreal (g ′ x ∗ indicator {a..b} x ) ∗ ... x ∂lborel) =

(
∫

+x . indicator (
⋃
i . f i) (g x ) ∗ ennreal (g ′ x ) ∗ indicator {a..b}

x ∂lborel)
by (intro nn integral cong) (simp split : split indicator)
finally show ?case .

qed

next
case (mult f c)
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note Mf [measurable] = 〈f ∈ borel measurable borel 〉

let ?I = indicator {a..b}
have (λx . f (g x ∗ ?I x ) ∗ ennreal (g ′ x ∗ ?I x )) ∈ borel measurable borel using

Mg Mg ′

by (intro borel measurable times ennreal measurable compose[OF Mf ])
(simp all add : mult .commute set borel measurable def )

also have (λx . f (g x ∗ ?I x ) ∗ ennreal (g ′ x ∗ ?I x )) = (λx . f (g x ) ∗ ennreal
(g ′ x ) ∗ ?I x )

by (intro ext) (simp split : split indicator)
finally have Mf ′: (λx . f (g x ) ∗ ennreal (g ′ x ) ∗ ?I x ) ∈ borel measurable borel

.
with mult show ?case

by (subst (1 2 3 ) mult ac, subst (1 2 ) nn integral cmult) (simp all add :
mult ac)

next
case (add f2 f1 )
let ?I = indicator {a..b}
{
fix f :: real ⇒ ennreal assume Mf : f ∈ borel measurable borel
have (λx . f (g x ∗ ?I x ) ∗ ennreal (g ′ x ∗ ?I x )) ∈ borel measurable borel

using Mg Mg ′

by (intro borel measurable times ennreal measurable compose[OF Mf ])
(simp all add : mult .commute set borel measurable def )

also have (λx . f (g x ∗ ?I x ) ∗ ennreal (g ′ x ∗ ?I x )) = (λx . f (g x ) ∗ ennreal
(g ′ x ) ∗ ?I x )

by (intro ext) (simp split : split indicator)
finally have (λx . f (g x ) ∗ ennreal (g ′ x ) ∗ ?I x ) ∈ borel measurable borel .

} note Mf ′= this[OF 〈f1 ∈ borel measurable borel 〉] this[OF 〈f2 ∈ borel measurable
borel 〉]

have (
∫

+ x . (f1 x + f2 x ) ∗ indicator {g a..g b} x ∂lborel) =
(
∫

+ x . f1 x ∗ indicator {g a..g b} x + f2 x ∗ indicator {g a..g b} x
∂lborel)

by (intro nn integral cong) (simp split : split indicator)
also from add have ... = (

∫
+ x . f1 (g x ) ∗ ennreal (g ′ x ) ∗ indicator {a..b}

x ∂lborel) +
(
∫

+ x . f2 (g x ) ∗ ennreal (g ′ x ) ∗ indicator {a..b} x
∂lborel)

by (simp all add : nn integral add)
also from add have ... = (

∫
+ x . f1 (g x ) ∗ ennreal (g ′ x ) ∗ indicator {a..b}

x +
f2 (g x ) ∗ ennreal (g ′ x ) ∗ indicator {a..b} x ∂lborel)

by (intro nn integral add [symmetric])
(auto simp add : Mf ′ derivg nonneg split : split indicator)

also have ... =
∫

+ x . (f1 (g x ) + f2 (g x )) ∗ ennreal (g ′ x ) ∗ indicator {a..b}
x ∂lborel

by (intro nn integral cong) (simp split : split indicator add : distrib right)
finally show ?case .
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next
case (sup F )
{
fix i
let ?I = indicator {a..b}
have (λx . F i (g x ∗ ?I x ) ∗ ennreal (g ′ x ∗ ?I x )) ∈ borel measurable borel

using Mg Mg ′

by (rule tac borel measurable times ennreal , rule tac measurable compose[OF
sup.hyps(1 )])

(simp all add : mult .commute set borel measurable def )
also have (λx . F i (g x ∗ ?I x ) ∗ ennreal (g ′ x ∗ ?I x )) = (λx . F i (g x ) ∗

ennreal (g ′ x ) ∗ ?I x )
by (intro ext) (simp split : split indicator)
finally have ... ∈ borel measurable borel .

} note Mf ′ = this

have (
∫

+x . (SUP i . F i x ) ∗ indicator {g a..g b} x ∂lborel) =∫
+x . (SUP i . F i x∗ indicator {g a..g b} x ) ∂lborel

by (intro nn integral cong) (simp split : split indicator)
also from sup have ... = (SUP i .

∫
+x . F i x∗ indicator {g a..g b} x ∂lborel)

by (intro nn integral monotone convergence SUP)
(auto simp: incseq def le fun def split : split indicator)

also from sup have ... = (SUP i .
∫

+x . F i (g x ) ∗ ennreal (g ′ x ) ∗ indicator
{a..b} x ∂lborel)

by simp
also from sup have ... =

∫
+x . (SUP i . F i (g x ) ∗ ennreal (g ′ x ) ∗ indicator

{a..b} x ) ∂lborel
by (intro nn integral monotone convergence SUP [symmetric])

(auto simp: incseq def le fun def derivg nonneg Mf ′ split : split indicator
intro!: mult right mono)

also from sup have ... =
∫

+x . (SUP i . F i (g x )) ∗ ennreal (g ′ x ) ∗ indicator
{a..b} x ∂lborel

by (subst mult .assoc, subst mult .commute, subst SUP mult left ennreal)
(auto split : split indicator simp: derivg nonneg mult ac)

finally show ?case by (simp add : image comp)
qed

qed

theorem nn integral substitution:
fixes f :: real ⇒ real
assumes Mf [measurable]: set borel measurable borel {g a..g b} f
assumes derivg :

∧
x . x ∈ {a..b} =⇒ (g has real derivative g ′ x ) (at x )

assumes contg ′: continuous on {a..b} g ′

assumes derivg nonneg :
∧
x . x ∈ {a..b} =⇒ g ′ x ≥ 0

assumes a ≤ b
shows (

∫
+x . f x ∗ indicator {g a..g b} x ∂lborel) =

(
∫

+x . f (g x ) ∗ g ′ x ∗ indicator {a..b} x ∂lborel)
proof (cases a = b)
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assume a 6= b
with 〈a ≤ b〉 have a < b by auto
let ?f ′ = λx . f x ∗ indicator {g a..g b} x

from derivg derivg nonneg have monog :
∧
x y . a ≤ x =⇒ x ≤ y =⇒ y ≤ b =⇒

g x ≤ g y
by (rule deriv nonneg imp mono) simp all

have bounds:
∧
x . x ≥ a =⇒ x ≤ b =⇒ g x ≥ g a

∧
x . x ≥ a =⇒ x ≤ b =⇒ g

x ≤ g b
by (auto intro: monog)

from derivg nonneg have nonneg :∧
f x . x ≥ a =⇒ x ≤ b =⇒ g ′ x 6= 0 =⇒ f x ∗ ennreal (g ′ x ) ≥ 0 =⇒ f x ≥ 0

by (force simp: field simps)
have nonneg ′:

∧
x . a ≤ x =⇒ x ≤ b =⇒ ¬ 0 ≤ f (g x ) =⇒ 0 ≤ f (g x ) ∗ g ′ x

=⇒ g ′ x = 0
by (metis atLeastAtMost iff derivg nonneg eq iff mult eq 0 iff mult le 0 iff )

have (
∫

+x . f x ∗ indicator {g a..g b} x ∂lborel) =
(
∫

+x . ennreal (?f ′ x ) ∗ indicator {g a..g b} x ∂lborel)
by (intro nn integral cong)

(auto split : split indicator split max simp: zero ennreal .rep eq ennreal neg)
also have ... =

∫
+ x . ?f ′ (g x ) ∗ ennreal (g ′ x ) ∗ indicator {a..b} x ∂lborel

using Mf
by (subst nn integral substitution aux [OF derivg contg ′ derivg nonneg 〈a <

b〉])
(auto simp add : mult .commute set borel measurable def )

also have ... =
∫

+ x . f (g x ) ∗ ennreal (g ′ x ) ∗ indicator {a..b} x ∂lborel
by (intro nn integral cong) (auto split : split indicator simp: max def dest :

bounds)
also have ... =

∫
+x . ennreal (f (g x ) ∗ g ′ x ∗ indicator {a..b} x ) ∂lborel

by (intro nn integral cong) (auto simp: mult .commute derivg nonneg ennreal mult ′

split : split indicator)
finally show ?thesis .

qed auto

theorem integral substitution:
assumes integrable: set integrable lborel {g a..g b} f
assumes derivg :

∧
x . x ∈ {a..b} =⇒ (g has real derivative g ′ x ) (at x )

assumes contg ′: continuous on {a..b} g ′

assumes derivg nonneg :
∧
x . x ∈ {a..b} =⇒ g ′ x ≥ 0

assumes a ≤ b
shows set integrable lborel {a..b} (λx . f (g x ) ∗ g ′ x )
and (LBINT x . f x ∗ indicator {g a..g b} x ) = (LBINT x . f (g x ) ∗ g ′ x ∗

indicator {a..b} x )
proof−
from derivg have contg : continuous on {a..b} g by (rule has real derivative imp continuous on)
with contg ′ have Mg : set borel measurable borel {a..b} g
and Mg ′: set borel measurable borel {a..b} g ′
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by (simp all only : set measurable continuous on ivl)
from derivg derivg nonneg have monog :

∧
x y . a ≤ x =⇒ x ≤ y =⇒ y ≤ b =⇒

g x ≤ g y
by (rule deriv nonneg imp mono) simp all

have (λx . ennreal (f x ) ∗ indicator {g a..g b} x ) =
(λx . ennreal (f x ∗ indicator {g a..g b} x ))

by (intro ext) (simp split : split indicator)
with integrable have M1 : (λx . f x ∗ indicator {g a..g b} x ) ∈ borel measurable

borel
by (force simp: mult .commute set integrable def )

from integrable have M2 : (λx . −f x ∗ indicator {g a..g b} x ) ∈ borel measurable
borel

by (force simp: mult .commute set integrable def )

have LBINT x . (f x :: real) ∗ indicator {g a..g b} x =
enn2real (

∫
+ x . ennreal (f x ) ∗ indicator {g a..g b} x ∂lborel) −

enn2real (
∫

+ x . ennreal (− (f x )) ∗ indicator {g a..g b} x ∂lborel) using
integrable

unfolding set integrable def
by (subst real lebesgue integral def ) (simp all add : nn integral set ennreal mult .commute)
also have ∗: (

∫
+x . ennreal (f x ) ∗ indicator {g a..g b} x ∂lborel) =

(
∫

+x . ennreal (f x ∗ indicator {g a..g b} x ) ∂lborel)
by (intro nn integral cong) (simp split : split indicator)

also from M1 ∗ have A: (
∫

+ x . ennreal (f x ∗ indicator {g a..g b} x ) ∂lborel)
=

(
∫

+ x . ennreal (f (g x ) ∗ g ′ x ∗ indicator {a..b} x ) ∂lborel)
by (subst nn integral substitution[OF derivg contg ′ derivg nonneg 〈a ≤ b〉])

(auto simp: nn integral set ennreal mult .commute set borel measurable def )
also have ∗∗: (

∫
+ x . ennreal (− (f x )) ∗ indicator {g a..g b} x ∂lborel) =

(
∫

+ x . ennreal (− (f x ) ∗ indicator {g a..g b} x ) ∂lborel)
by (intro nn integral cong) (simp split : split indicator)

also from M2 ∗∗ have B : (
∫

+ x . ennreal (− (f x ) ∗ indicator {g a..g b} x )
∂lborel) =

(
∫

+ x . ennreal (− (f (g x )) ∗ g ′ x ∗ indicator {a..b} x ) ∂lborel)
by (subst nn integral substitution[OF derivg contg ′ derivg nonneg 〈a ≤ b〉])

(auto simp: nn integral set ennreal mult .commute set borel measurable def )

also {
from integrable have Mf : set borel measurable borel {g a..g b} f
unfolding set borel measurable def set integrable def by simp

from measurable compose Mg Mf Mg ′ borel measurable times
have (λx . f (g x ∗ indicator {a..b} x ) ∗ indicator {g a..g b} (g x ∗ indicator

{a..b} x ) ∗
(g ′ x ∗ indicator {a..b} x )) ∈ borel measurable borel (is ?f ∈ )

by (simp add : mult .commute set borel measurable def )
also have ?f = (λx . f (g x ) ∗ g ′ x ∗ indicator {a..b} x )
using monog by (intro ext) (auto split : split indicator)

finally show set integrable lborel {a..b} (λx . f (g x ) ∗ g ′ x )
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using A B integrable unfolding real integrable def set integrable def
by (simp all add : nn integral set ennreal mult .commute)

} note integrable ′ = this

have enn2real (
∫

+ x . ennreal (f (g x ) ∗ g ′ x ∗ indicator {a..b} x ) ∂lborel) −
enn2real (

∫
+ x . ennreal (−f (g x ) ∗ g ′ x ∗ indicator {a..b} x )

∂lborel) =
(LBINT x . f (g x ) ∗ g ′ x ∗ indicator {a..b} x )

using integrable ′ unfolding set integrable def
by (subst real lebesgue integral def ) (simp all add : field simps)

finally show (LBINT x . f x ∗ indicator {g a..g b} x ) =
(LBINT x . f (g x ) ∗ g ′ x ∗ indicator {a..b} x ) .

qed

theorem interval integral substitution:
assumes integrable: set integrable lborel {g a..g b} f
assumes derivg :

∧
x . x ∈ {a..b} =⇒ (g has real derivative g ′ x ) (at x )

assumes contg ′: continuous on {a..b} g ′

assumes derivg nonneg :
∧
x . x ∈ {a..b} =⇒ g ′ x ≥ 0

assumes a ≤ b
shows set integrable lborel {a..b} (λx . f (g x ) ∗ g ′ x )
and (LBINT x=g a..g b. f x ) = (LBINT x=a..b. f (g x ) ∗ g ′ x )

apply (rule integral substitution[OF assms], simp, simp)
apply (subst (1 2 ) interval integral Icc, fact)
apply (rule deriv nonneg imp mono[OF derivg derivg nonneg ], simp, simp, fact)
using integral substitution(2 )[OF assms]
apply (simp add : mult .commute set lebesgue integral def )
done

lemma set borel integrable singleton[simp]: set integrable lborel {x} (f :: real ⇒
real)
unfolding set integrable def
by (subst integrable discrete difference[where X={x} and g=λ . 0 ]) auto

end

6.25 The Volume of an n-Dimensional Ball

theory Ball Volume
imports Gamma Function Lebesgue Integral Substitution

begin

We define the volume of the unit ball in terms of the Gamma function.
Note that the dimension need not be an integer; we also allow fractional
dimensions, although we do not use this case or prove anything about it for
now.

definition unit ball vol :: real ⇒ real where
unit ball vol n = pi powr (n / 2 ) / Gamma (n / 2 + 1 )
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lemma unit ball vol pos [simp]: n ≥ 0 =⇒ unit ball vol n > 0
by (force simp: unit ball vol def intro: divide nonneg pos)

lemma unit ball vol nonneg [simp]: n ≥ 0 =⇒ unit ball vol n ≥ 0
by (simp add : dual order .strict implies order)

We first need the value of the following integral, which is at the core of
computing the measure of an n + 1 -dimensional ball in terms of the measure
of an n-dimensional one.

lemma emeasure cball aux integral :
(
∫

+x . indicator {−1 ..1} x ∗ sqrt (1 − x 2) ˆ n ∂lborel) =
ennreal (Beta (1 / 2 ) (real n / 2 + 1 ))

proof −
have ((λt . t powr (−1 / 2 ) ∗ (1 − t) powr (real n / 2 )) has integral

Beta (1 / 2 ) (real n / 2 + 1 )) {0 ..1}
using has integral Beta real [of 1/2 n / 2 + 1 ] by simp

from nn integral has integral lebesgue[OF this] have
ennreal (Beta (1 / 2 ) (real n / 2 + 1 )) =
nn integral lborel (λt . ennreal (t powr (−1 / 2 ) ∗ (1 − t) powr (real n / 2 )

∗
indicator {0ˆ2 ..1ˆ2} t))

by (simp add : mult ac ennreal mult ′ ennreal indicator)
also have . . . = (

∫
+ x . ennreal (x 2 powr − (1 / 2 ) ∗ (1 − x 2) powr (real n /

2 ) ∗ (2 ∗ x ) ∗
indicator {0 ..1} x ) ∂lborel)

by (subst nn integral substitution[where g = λx . x ˆ 2 and g ′ = λx . 2 ∗ x ])
(auto intro!: derivative eq intros continuous intros simp: set borel measurable def )

also have . . . = (
∫

+ x . 2 ∗ ennreal ((1 − x 2) powr (real n / 2 ) ∗ indicator
{0 ..1} x ) ∂lborel)

by (intro nn integral cong AE AE I [of {0}])
(auto simp: indicator def powr minus powr half sqrt field split simps en-

nreal mult ′)
also have . . . = (

∫
+ x . ennreal ((1 − x 2) powr (real n / 2 ) ∗ indicator {0 ..1}

x ) ∂lborel) +
(
∫

+ x . ennreal ((1 − x 2) powr (real n / 2 ) ∗ indicator {0 ..1} x )
∂lborel)

(is = ?I + ) by (simp add : mult 2 nn integral add)
also have ?I = (

∫
+ x . ennreal ((1 − x 2) powr (real n / 2 ) ∗ indicator {−1 ..0}

x ) ∂lborel)
by (subst nn integral real affine[of −1 0 ])

(auto simp: indicator def intro!: nn integral cong)
hence ?I + ?I = . . . + ?I by simp
also have . . . = (

∫
+ x . ennreal ((1 − x 2) powr (real n / 2 ) ∗

(indicator {−1 ..0} x + indicator{0 ..1} x )) ∂lborel)
by (subst nn integral add [symmetric]) (auto simp: algebra simps)

also have . . . = (
∫

+ x . ennreal ((1 − x 2) powr (real n / 2 ) ∗ indicator {−1 ..1}
x ) ∂lborel)

by (intro nn integral cong AE AE I [of {0}]) (auto simp: indicator def )
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also have . . . = (
∫

+ x . ennreal (indicator {−1 ..1} x ∗ sqrt (1 − x 2) ˆ n)
∂lborel)

by (intro nn integral cong AE AE I [of {1 , −1}])
(auto simp: powr half sqrt [symmetric] indicator def abs square le 1
abs square eq 1 powr def exp of nat mult [symmetric] emeasure lborel countable)

finally show ?thesis ..
qed

lemma real sqrt le iff ′: x ≥ 0 =⇒ y ≥ 0 =⇒ sqrt x ≤ y ←→ x ≤ y ˆ 2
using real le lsqrt sqrt le D by blast

lemma power2 le iff abs le: y ≥ 0 =⇒ (x ::real) ˆ 2 ≤ y ˆ 2 ←→ abs x ≤ y
by (subst real sqrt le iff ′ [symmetric]) auto

Isabelle’s type system makes it very difficult to do an induction over the
dimension of a Euclidean space type, because the type would change in the
inductive step. To avoid this problem, we instead formulate the problem in
a more concrete way by unfolding the definition of the Euclidean norm.

lemma emeasure cball aux :
assumes finite A r > 0
shows emeasure (PiM A (λ . lborel))

({f . sqrt (
∑

i∈A. (f i)2) ≤ r} ∩ space (PiM A (λ . lborel))) =
ennreal (unit ball vol (real (card A)) ∗ r ˆ card A)

using assms
proof (induction arbitrary : r)
case (empty r)
thus ?case
by (simp add : unit ball vol def space PiM )

next
case (insert i A r)
interpret product sigma finite λ . lborel
by standard

have emeasure (PiM (insert i A) (λ . lborel))
({f . sqrt (

∑
i∈insert i A. (f i)2) ≤ r} ∩ space (PiM (insert i A) (λ .

lborel))) =
nn integral (PiM (insert i A) (λ . lborel))
(indicator ({f . sqrt (

∑
i∈insert i A. (f i)2) ≤ r} ∩

space (PiM (insert i A) (λ . lborel))))
by (subst nn integral indicator) auto

also have . . . = (
∫

+ y .
∫

+ x . indicator ({f . sqrt ((f i)2 + (
∑

i∈A. (f i)2)) ≤
r} ∩

space (PiM (insert i A) (λ . lborel))) (x (i := y))
∂PiM A (λ . lborel) ∂lborel)

using insert .prems insert .hyps by (subst product nn integral insert rev) auto
also have . . . = (

∫
+ (y ::real).

∫
+ x . indicator {−r ..r} y ∗ indicator ({f . sqrt

((
∑

i∈A. (f i)2)) ≤
sqrt (r ˆ 2 − y ˆ 2 )} ∩ space (PiM A (λ . lborel))) x ∂PiM A (λ .

lborel) ∂lborel)
proof (intro nn integral cong , goal cases)
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case (1 y f )
have ∗: y ∈ {−r ..r} if y ˆ 2 + c ≤ r ˆ 2 c ≥ 0 for c
proof −
have y ˆ 2 ≤ y ˆ 2 + c using that by simp
also have . . . ≤ r ˆ 2 by fact
finally show ?thesis
using 〈r > 0 〉 by (simp add : power2 le iff abs le abs if split : if splits)

qed
have (

∑
x∈A. (if x = i then y else f x )2) = (

∑
x∈A. (f x )2)

using insert .hyps by (intro sum.cong) auto
thus ?case using 1 〈r > 0 〉

by (auto simp: sum nonneg real sqrt le iff ′ indicator def PiE def space PiM
dest !: ∗)
qed
also have . . . = (

∫
+ (y ::real). indicator {−r ..r} y ∗ (

∫
+ x . indicator ({f . sqrt

((
∑

i∈A. (f i)2))
≤ sqrt (r ˆ 2 − y ˆ 2 )} ∩ space (PiM A (λ . lborel))) x

∂PiM A (λ . lborel)) ∂lborel) by (subst nn integral cmult) auto
also have . . . = (

∫
+ (y ::real). indicator {−r ..r} y ∗ emeasure (PiM A (λ .

lborel))
({f . sqrt ((

∑
i∈A. (f i)2)) ≤ sqrt (r ˆ 2 − y ˆ 2 )} ∩ space (PiM A (λ .

lborel))) ∂lborel)
using 〈finite A〉 by (intro nn integral cong , subst nn integral indicator) auto

also have . . . = (
∫

+ (y ::real). indicator {−r ..r} y ∗ ennreal (unit ball vol (real
(card A)) ∗

(sqrt (r ˆ 2 − y ˆ 2 )) ˆ card A) ∂lborel)
proof (intro nn integral cong AE , goal cases)
case 1
have AE y in lborel . y /∈ {−r ,r}
by (intro AE not in countable imp null set lborel) auto

thus ?case
proof eventually elim
case (elim y)
show ?case
proof (cases y ∈ {−r<..<r})
case True
hence y2 < r2 by (subst real sqrt less iff [symmetric]) auto
thus ?thesis by (subst insert .IH ) (auto)

qed (insert elim, auto)
qed

qed
also have . . . = ennreal (unit ball vol (real (card A))) ∗

(
∫

+ (y ::real). indicator {−r ..r} y ∗ (sqrt (r ˆ 2 − y ˆ 2 )) ˆ card
A ∂lborel)

by (subst nn integral cmult [symmetric])
(auto simp: mult ac ennreal mult ′ [symmetric] indicator def intro!: nn integral cong)

also have (
∫

+ (y ::real). indicator {−r ..r} y ∗ (sqrt (r ˆ 2 − y ˆ 2 )) ˆ card A
∂lborel) =

(
∫

+ (y ::real). r ˆ card A ∗ indicator {−1 ..1} y ∗ (sqrt (1 − y ˆ 2 ))
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ˆ card A
∂(distr lborel borel ((∗) (1/r)))) using 〈r > 0 〉

by (subst nn integral distr)
(auto simp: indicator def field simps real sqrt divide intro!: nn integral cong)

also have . . . = (
∫

+ x . ennreal (r ˆ Suc (card A)) ∗
(indicator {− 1 ..1} x ∗ sqrt (1 − x 2) ˆ card A) ∂lborel) using 〈r > 0 〉

by (subst lborel distr mult) (auto simp: nn integral density ennreal mult ′ [symmetric]
mult ac)
also have . . . = ennreal (r ˆ Suc (card A)) ∗ (

∫
+ x . indicator {− 1 ..1} x ∗

sqrt (1 − x 2) ˆ card A ∂lborel)
by (subst nn integral cmult) auto

also note emeasure cball aux integral
also have ennreal (unit ball vol (real (card A))) ∗ (ennreal (r ˆ Suc (card A)) ∗

ennreal (Beta (1/2 ) (card A / 2 + 1 ))) =
ennreal (unit ball vol (card A) ∗ Beta (1/2 ) (card A / 2 + 1 ) ∗ r ˆ

Suc (card A))
using 〈r > 0 〉 by (simp add : ennreal mult ′ [symmetric] mult ac)

also have unit ball vol (card A) ∗ Beta (1/2 ) (card A / 2 + 1 ) = unit ball vol
(Suc (card A))

by (auto simp: unit ball vol def Beta def Gamma eq zero iff field simps
Gamma one half real powr half sqrt [symmetric] powr add [symmetric])

also have Suc (card A) = card (insert i A) using insert .hyps by simp
finally show ?case .

qed

We now get the main theorem very easily by just applying the above lemma.

context
fixes c :: ′a :: euclidean space and r :: real
assumes r : r ≥ 0

begin

theorem emeasure cball :
emeasure lborel (cball c r) = ennreal (unit ball vol (DIM ( ′a)) ∗ r ˆ DIM ( ′a))

proof (cases r = 0 )
case False
with r have r : r > 0 by simp
have (lborel :: ′a measure) =

distr (PiM Basis (λ . lborel)) borel (λf .
∑

b∈Basis. f b ∗R b)
by (rule lborel eq)

also have emeasure . . . (cball 0 r) =
emeasure (PiM Basis (λ . lborel))
({y . dist 0 (

∑
b∈Basis. y b ∗R b :: ′a) ≤ r} ∩ space (PiM Basis (λ .

lborel)))
by (subst emeasure distr) (auto simp: cball def )

also have {f . dist 0 (
∑

b∈Basis. f b ∗R b :: ′a) ≤ r} = {f . sqrt (
∑

i∈Basis. (f
i)2) ≤ r}

by (subst euclidean dist l2 ) (auto simp: L2 set def )
also have emeasure (PiM Basis (λ . lborel)) (. . . ∩ space (PiM Basis (λ .

lborel))) =
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ennreal (unit ball vol (real DIM ( ′a)) ∗ r ˆ DIM ( ′a))
using r by (subst emeasure cball aux ) simp all

also have emeasure lborel (cball 0 r :: ′a set) =
emeasure (distr lborel borel (λx . c + x )) (cball c r)

by (subst emeasure distr) (auto simp: cball def dist norm norm minus commute)
also have distr lborel borel (λx . c + x ) = lborel
using lborel affine[of 1 c] by (simp add : density 1 )

finally show ?thesis .
qed auto

corollary content cball :
content (cball c r) = unit ball vol (DIM ( ′a)) ∗ r ˆ DIM ( ′a)
by (simp add : measure def emeasure cball r)

corollary emeasure ball :
emeasure lborel (ball c r) = ennreal (unit ball vol (DIM ( ′a)) ∗ r ˆ DIM ( ′a))

proof −
from negligible sphere[of c r ] have sphere c r ∈ null sets lborel
by (auto simp: null sets completion iff negligible iff null sets negligible convex frontier)
hence emeasure lborel (ball c r ∪ sphere c r :: ′a set) = emeasure lborel (ball c

r :: ′a set)
by (intro emeasure Un null set) auto

also have ball c r ∪ sphere c r = (cball c r :: ′a set) by auto
also have emeasure lborel . . . = ennreal (unit ball vol (real DIM ( ′a)) ∗ r ˆ

DIM ( ′a))
by (rule emeasure cball)

finally show ?thesis ..
qed

corollary content ball :
content (ball c r) = unit ball vol (DIM ( ′a)) ∗ r ˆ DIM ( ′a)
by (simp add : measure def r emeasure ball)

end

Lastly, we now prove some nicer explicit formulas for the volume of the unit
balls in the cases of even and odd integer dimensions.

lemma unit ball vol even:
unit ball vol (real (2 ∗ n)) = pi ˆ n / fact n
by (simp add : unit ball vol def add ac powr realpow Gamma fact)

lemma unit ball vol odd ′:
unit ball vol (real (2 ∗ n + 1 )) = pi ˆ n / pochhammer (1 / 2 ) (Suc n)

and unit ball vol odd :
unit ball vol (real (2 ∗ n + 1 )) =

(2 ˆ (2 ∗ Suc n) ∗ fact (Suc n)) / fact (2 ∗ Suc n) ∗ pi ˆ n
proof −
have unit ball vol (real (2 ∗ n + 1 )) =

pi powr (real n + 1 / 2 ) / Gamma (1 / 2 + real (Suc n))
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by (simp add : unit ball vol def field simps)
also have pochhammer (1 / 2 ) (Suc n) = Gamma (1 / 2 + real (Suc n)) /

Gamma (1 / 2 )
by (intro pochhammer Gamma) auto

hence Gamma (1 / 2 + real (Suc n)) = sqrt pi ∗ pochhammer (1 / 2 ) (Suc n)
by (simp add : Gamma one half real)

also have pi powr (real n + 1 / 2 ) / . . . = pi ˆ n / pochhammer (1 / 2 ) (Suc
n)

by (simp add : powr add powr half sqrt powr realpow)
finally show unit ball vol (real (2 ∗ n + 1 )) = . . . .
also have pochhammer (1 / 2 :: real) (Suc n) =

fact (2 ∗ Suc n) / (2 ˆ (2 ∗ Suc n) ∗ fact (Suc n))
using fact double[of Suc n, where ? ′a = real ] by (simp add : divide simps

mult ac)
also have pi ˆn / . . . = (2 ˆ (2 ∗ Suc n) ∗ fact (Suc n)) / fact (2 ∗ Suc n) ∗

pi ˆ n
by simp

finally show unit ball vol (real (2 ∗ n + 1 )) = . . . .
qed

lemma unit ball vol numeral :
unit ball vol (numeral (Num.Bit0 n)) = pi ˆ numeral n / fact (numeral n) (is

?th1 )
unit ball vol (numeral (Num.Bit1 n)) = 2 ˆ (2 ∗ Suc (numeral n)) ∗ fact (Suc

(numeral n)) /
fact (2 ∗ Suc (numeral n)) ∗ pi ˆ numeral n (is ?th2 )

proof −
have numeral (Num.Bit0 n) = (2 ∗ numeral n :: nat)
by (simp only : numeral Bit0 mult 2 ring distribs)

also have unit ball vol . . . = pi ˆ numeral n / fact (numeral n)
by (rule unit ball vol even)

finally show ?th1 by simp
next
have numeral (Num.Bit1 n) = (2 ∗ numeral n + 1 :: nat)
by (simp only : numeral Bit1 mult 2 )

also have unit ball vol . . . = 2 ˆ (2 ∗ Suc (numeral n)) ∗ fact (Suc (numeral
n)) /

fact (2 ∗ Suc (numeral n)) ∗ pi ˆ numeral n
by (rule unit ball vol odd)

finally show ?th2 by simp
qed

lemmas eval unit ball vol = unit ball vol numeral fact numeral

Just for fun, we compute the volume of unit balls for a few dimensions.

lemma unit ball vol 0 [simp]: unit ball vol 0 = 1
using unit ball vol even[of 0 ] by simp

lemma unit ball vol 1 [simp]: unit ball vol 1 = 2
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using unit ball vol odd [of 0 ] by simp

corollary
unit ball vol 2 : unit ball vol 2 = pi

and unit ball vol 3 : unit ball vol 3 = 4 / 3 ∗ pi
and unit ball vol 4 : unit ball vol 4 = pi2 / 2
and unit ball vol 5 : unit ball vol 5 = 8 / 15 ∗ pi2

by (simp all add : eval unit ball vol)

corollary circle area:
r ≥ 0 =⇒ content (ball c r :: (real ˆ 2 ) set) = r ˆ 2 ∗ pi
by (simp add : content ball unit ball vol 2 )

corollary sphere volume:
r ≥ 0 =⇒ content (ball c r :: (real ˆ 3 ) set) = 4 / 3 ∗ r ˆ 3 ∗ pi
by (simp add : content ball unit ball vol 3 )

Useful equivalent forms

corollary content ball eq 0 iff [simp]: content (ball c r) = 0 ←→ r ≤ 0
proof −
have r > 0 =⇒ content (ball c r) > 0
by (simp add : content ball unit ball vol def )

then show ?thesis
by (fastforce simp: ball empty)

qed

corollary content ball gt 0 iff [simp]: 0 < content (ball z r) ←→ 0 < r
by (auto simp: zero less measure iff )

corollary content cball eq 0 iff [simp]: content (cball c r) = 0 ←→ r ≤ 0
proof (cases r = 0 )
case False
moreover have r > 0 =⇒ content (cball c r) > 0
by (simp add : content cball unit ball vol def )

ultimately show ?thesis
by fastforce

qed auto

corollary content cball gt 0 iff [simp]: 0 < content (cball z r) ←→ 0 < r
by (auto simp: zero less measure iff )

end

6.26 Integral Test for Summability

theory Integral Test
imports Henstock Kurzweil Integration
begin
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The integral test for summability. We show here that for a decreasing non-
negative function, the infinite sum over that function evaluated at the nat-
ural numbers converges iff the corresponding integral converges.

As a useful side result, we also provide some results on the difference between
the integral and the partial sum. (This is useful e.g. for the definition of
the Euler-Mascheroni constant)

locale antimono fun sum integral diff =
fixes f :: real ⇒ real
assumes dec:

∧
x y . x ≥ 0 =⇒ x ≤ y =⇒ f x ≥ f y

assumes nonneg :
∧
x . x ≥ 0 =⇒ f x ≥ 0

assumes cont : continuous on {0 ..} f
begin

definition sum integral diff series n = (
∑

k≤n. f (of nat k)) − (integral {0 ..of nat
n} f )

lemma sum integral diff series nonneg :
sum integral diff series n ≥ 0

proof −
note int = integrable continuous real [OF continuous on subset [OF cont ]]
let ?int = λa b. integral {of nat a..of nat b} f
have −sum integral diff series n = ?int 0 n − (

∑
k≤n. f (of nat k))

by (simp add : sum integral diff series def )
also have ?int 0 n = (

∑
k<n. ?int k (Suc k))

proof (induction n)
case (Suc n)
have ?int 0 (Suc n) = ?int 0 n + ?int n (Suc n)
by (intro integral combine[symmetric] int) simp all

with Suc show ?case by simp
qed simp all
also have ... ≤ (

∑
k<n. integral {of nat k ..of nat (Suc k)} (λ ::real . f (of nat

k)))
by (intro sum mono integral le int) (auto intro: dec)

also have ... = (
∑

k<n. f (of nat k)) by simp
also have . . . − (

∑
k≤n. f (of nat k)) = −(

∑
k∈{..n} − {..<n}. f (of nat k))

by (subst sum diff ) auto
also have . . . ≤ 0 by (auto intro!: sum nonneg nonneg)
finally show sum integral diff series n ≥ 0 by simp

qed

lemma sum integral diff series antimono:
assumes m ≤ n
shows sum integral diff series m ≥ sum integral diff series n

proof −
let ?int = λa b. integral {of nat a..of nat b} f
note int = integrable continuous real [OF continuous on subset [OF cont ]]
have d mono: sum integral diff series (Suc n) ≤ sum integral diff series n for n
proof −
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fix n :: nat
have sum integral diff series (Suc n) − sum integral diff series n =

f (of nat (Suc n)) + (?int 0 n − ?int 0 (Suc n))
unfolding sum integral diff series def by (simp add : algebra simps)

also have ?int 0 n − ?int 0 (Suc n) = −?int n (Suc n)
by (subst integral combine [symmetric, of of nat 0 of nat n of nat (Suc n)])

(auto intro!: int simp: algebra simps)
also have ?int n (Suc n) ≥ integral {of nat n..of nat (Suc n)} (λ ::real . f

(of nat (Suc n)))
by (intro integral le int) (auto intro: dec)

hence f (of nat (Suc n)) + −?int n (Suc n) ≤ 0 by (simp add : algebra simps)
finally show sum integral diff series (Suc n) ≤ sum integral diff series n by

simp
qed
with assms show ?thesis
by (induction rule: inc induct) (auto intro: order .trans[OF d mono])

qed

lemma sum integral diff series Bseq : Bseq sum integral diff series
proof −
from sum integral diff series nonneg and sum integral diff series antimono
have norm (sum integral diff series n) ≤ sum integral diff series 0 for n by

simp
thus Bseq sum integral diff series by (rule BseqI ′)

qed

lemma sum integral diff series monoseq : monoseq sum integral diff series
using sum integral diff series antimono unfolding monoseq def by blast

lemma sum integral diff series convergent : convergent sum integral diff series
using sum integral diff series Bseq sum integral diff series monoseq
by (blast intro!: Bseq monoseq convergent)

theorem integral test :
summable (λn. f (of nat n)) ←→ convergent (λn. integral {0 ..of nat n} f )

proof −
have summable (λn. f (of nat n)) ←→ convergent (λn.

∑
k≤n. f (of nat k))

by (simp add : summable iff convergent ′)
also have ... ←→ convergent (λn. integral {0 ..of nat n} f )
proof
assume convergent (λn.

∑
k≤n. f (of nat k))

from convergent diff [OF this sum integral diff series convergent ]
show convergent (λn. integral {0 ..of nat n} f )
unfolding sum integral diff series def by simp

next
assume convergent (λn. integral {0 ..of nat n} f )
from convergent add [OF this sum integral diff series convergent ]
show convergent (λn.

∑
k≤n. f (of nat k)) unfolding sum integral diff series def

by simp
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qed
finally show ?thesis by simp

qed

end

end

6.27 Continuity of the indefinite integral; improper
integral theorem

theory Improper Integral
imports Equivalence Lebesgue Henstock Integration

begin

6.27.1 Equiintegrability

The definition here only really makes sense for an elementary set. We just
use compact intervals in applications below.

definition equiintegrable on (infixr equiintegrable ′ on 46 )
where F equiintegrable on I ≡

(∀ f ∈ F . f integrable on I ) ∧
(∀ e > 0 . ∃ γ. gauge γ ∧

(∀ f D. f ∈ F ∧ D tagged division of I ∧ γ fine D
−→ norm ((

∑
(x ,K ) ∈ D. content K ∗R f x ) − integral I f )

< e))

lemma equiintegrable on integrable:
[[F equiintegrable on I ; f ∈ F ]] =⇒ f integrable on I

using equiintegrable on def by metis

lemma equiintegrable on sing [simp]:
{f } equiintegrable on cbox a b ←→ f integrable on cbox a b

by (simp add : equiintegrable on def has integral integral has integral integrable on def )

lemma equiintegrable on subset : [[F equiintegrable on I ; G ⊆ F ]] =⇒ G equiinte-
grable on I
unfolding equiintegrable on def Ball def
by (erule conj forward imp forward all forward ex forward | blast)+

lemma equiintegrable on Un:
assumes F equiintegrable on I G equiintegrable on I
shows (F ∪ G) equiintegrable on I
unfolding equiintegrable on def

proof (intro conjI impI allI )
show ∀ f ∈F ∪ G . f integrable on I
using assms unfolding equiintegrable on def by blast

show ∃ γ. gauge γ ∧
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(∀ f D. f ∈ F ∪ G ∧
D tagged division of I ∧ γ fine D −→
norm ((

∑
(x ,K ) ∈ D. content K ∗R f x ) − integral I f ) < ε)

if ε > 0 for ε
proof −
obtain γ1 where gauge γ1
and γ1 :

∧
f D. f ∈ F ∧ D tagged division of I ∧ γ1 fine D
=⇒ norm ((

∑
(x ,K ) ∈ D. content K ∗R f x ) − integral I f ) < ε

using assms 〈ε > 0 〉 unfolding equiintegrable on def by auto
obtain γ2 where gauge γ2
and γ2 :

∧
f D. f ∈ G ∧ D tagged division of I ∧ γ2 fine D
=⇒ norm ((

∑
(x ,K ) ∈ D. content K ∗R f x ) − integral I f ) < ε

using assms 〈ε > 0 〉 unfolding equiintegrable on def by auto
have gauge (λx . γ1 x ∩ γ2 x )
using 〈gauge γ1 〉 〈gauge γ2 〉 by blast

moreover have ∀ f D. f ∈ F ∪ G ∧ D tagged division of I ∧ (λx . γ1 x ∩ γ2
x ) fine D −→

norm ((
∑

(x ,K ) ∈ D. content K ∗R f x ) − integral I f ) < ε
using γ1 γ2 by (auto simp: fine Int)

ultimately show ?thesis
by (intro exI conjI ) assumption+

qed
qed

lemma equiintegrable on insert :
assumes f integrable on cbox a b F equiintegrable on cbox a b
shows (insert f F ) equiintegrable on cbox a b
by (metis assms equiintegrable on Un equiintegrable on sing insert is Un)

lemma equiintegrable cmul :
assumes F : F equiintegrable on I
shows (

⋃
c ∈ {−k ..k}.

⋃
f ∈ F . {(λx . c ∗R f x )}) equiintegrable on I

unfolding equiintegrable on def
proof (intro conjI impI allI ballI )
show f integrable on I
if f ∈ (

⋃
c∈{− k ..k}.

⋃
f ∈F . {λx . c ∗R f x})

for f :: ′a ⇒ ′b
using that assms equiintegrable on integrable integrable cmul by blast

show ∃ γ. gauge γ ∧ (∀ f D. f ∈ (
⋃
c∈{− k ..k}.

⋃
f ∈F . {λx . c ∗R f x}) ∧ D

tagged division of I
∧ γ fine D −→ norm ((

∑
(x , K )∈D. content K ∗R f x ) − integral I f ) <

ε)
if ε > 0 for ε

proof −
obtain γ where gauge γ
and γ:

∧
f D. [[f ∈ F ; D tagged division of I ; γ fine D]]
=⇒ norm ((

∑
(x ,K ) ∈ D. content K ∗R f x ) − integral I f ) < ε
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/ (|k | + 1 )
using assms 〈ε > 0 〉 unfolding equiintegrable on def

by (metis add .commute add .right neutral add strict mono divide pos pos
norm eq zero real norm def zero less norm iff zero less one)

moreover have norm ((
∑

(x , K )∈D. content K ∗R c ∗R (f x )) − integral I
(λx . c ∗R f x )) < ε

if c: c ∈ {− k ..k}
and f ∈ F D tagged division of I γ fine D

for D c f
proof −
have norm ((

∑
x∈D. case x of (x , K ) ⇒ content K ∗R c ∗R f x ) − integral

I (λx . c ∗R f x ))
= |c| ∗ norm ((

∑
x∈D. case x of (x , K ) ⇒ content K ∗R f x ) − integral

I f )
by (simp add : algebra simps scale sum right case prod unfold flip: norm scaleR)
also have . . . ≤ (|k | + 1 ) ∗ norm ((

∑
x∈D. case x of (x , K ) ⇒ content K

∗R f x ) − integral I f )
using c by (auto simp: mult right mono)

also have . . . < (|k | + 1 ) ∗ (ε / (|k | + 1 ))
by (rule mult strict left mono) (use γ less eq real def that in auto)

also have . . . = ε
by auto

finally show ?thesis .
qed
ultimately show ?thesis
by (rule tac x=γ in exI ) auto

qed
qed

lemma equiintegrable add :
assumes F : F equiintegrable on I and G : G equiintegrable on I
shows (

⋃
f ∈ F .

⋃
g ∈ G . {(λx . f x + g x )}) equiintegrable on I

unfolding equiintegrable on def
proof (intro conjI impI allI ballI )
show f integrable on I
if f ∈ (

⋃
f ∈F .

⋃
g∈G . {λx . f x + g x}) for f

using that equiintegrable on integrable assms by (auto intro: integrable add)
show ∃ γ. gauge γ ∧ (∀ f D. f ∈ (

⋃
f ∈F .

⋃
g∈G . {λx . f x + g x}) ∧ D

tagged division of I
∧ γ fine D −→ norm ((

∑
(x , K )∈D. content K ∗R f x ) − integral I f ) <

ε)
if ε > 0 for ε

proof −
obtain γ1 where gauge γ1
and γ1 :

∧
f D. [[f ∈ F ; D tagged division of I ; γ1 fine D]]
=⇒ norm ((

∑
(x ,K ) ∈ D. content K ∗R f x ) − integral I f ) < ε/2

using assms 〈ε > 0 〉 unfolding equiintegrable on def by (meson half gt zero iff )
obtain γ2 where gauge γ2
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and γ2 :
∧
g D. [[g ∈ G ; D tagged division of I ; γ2 fine D]]
=⇒ norm ((

∑
(x ,K ) ∈ D. content K ∗R g x ) − integral I g) < ε/2

using assms 〈ε > 0 〉 unfolding equiintegrable on def by (meson half gt zero iff )
have gauge (λx . γ1 x ∩ γ2 x )
using 〈gauge γ1 〉 〈gauge γ2 〉 by blast

moreover have norm ((
∑

(x ,K ) ∈ D. content K ∗R h x ) − integral I h) < ε
if h: h ∈ (

⋃
f ∈F .

⋃
g∈G . {λx . f x + g x})

and D: D tagged division of I and fine: (λx . γ1 x ∩ γ2 x ) fine D
for h D

proof −
obtain f g where f ∈ F g ∈ G and heq : h = (λx . f x + g x )
using h by blast

then have int : f integrable on I g integrable on I
using F G equiintegrable on def by blast+

have norm ((
∑

(x ,K ) ∈ D. content K ∗R h x ) − integral I h)
= norm ((

∑
(x ,K ) ∈ D. content K ∗R f x + content K ∗R g x ) − (integral

I f + integral I g))
by (simp add : heq algebra simps integral add int)

also have . . . = norm (((
∑

(x ,K ) ∈ D. content K ∗R f x ) − integral I f +
(
∑

(x ,K ) ∈ D. content K ∗R g x ) − integral I g))
by (simp add : sum.distrib algebra simps case prod unfold)

also have . . . ≤ norm ((
∑

(x ,K ) ∈ D. content K ∗R f x ) − integral I f ) +
norm ((

∑
(x ,K ) ∈ D. content K ∗R g x ) − integral I g)

by (metis (mono tags) add diff eq norm triangle ineq)
also have . . . < ε/2 + ε/2
using γ1 [OF 〈f ∈ F 〉 D] γ2 [OF 〈g ∈ G〉 D] fine by (simp add : fine Int)

finally show ?thesis by simp
qed
ultimately show ?thesis
by meson

qed
qed

lemma equiintegrable minus:
assumes F equiintegrable on I
shows (

⋃
f ∈ F . {(λx . − f x )}) equiintegrable on I

by (force intro: equiintegrable on subset [OF equiintegrable cmul [OF assms, of
1 ]])

lemma equiintegrable diff :
assumes F : F equiintegrable on I and G : G equiintegrable on I
shows (

⋃
f ∈ F .

⋃
g ∈ G . {(λx . f x − g x )}) equiintegrable on I

by (rule equiintegrable on subset [OF equiintegrable add [OF F equiintegrable minus
[OF G ]]]) auto

lemma equiintegrable sum:
fixes F :: ( ′a::euclidean space ⇒ ′b::euclidean space) set
assumes F equiintegrable on cbox a b
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shows (
⋃
I ∈ Collect finite.

⋃
c ∈ {c. (∀ i ∈ I . c i ≥ 0 ) ∧ sum c I = 1}.⋃

f ∈ I → F . {(λx . sum (λi :: ′j . c i ∗R f i x ) I )}) equiintegrable on cbox
a b

(is ?G equiintegrable on )
unfolding equiintegrable on def

proof (intro conjI impI allI ballI )
show f integrable on cbox a b if f ∈ ?G for f

using that assms by (auto simp: equiintegrable on def intro!: integrable sum
integrable cmul)
show ∃ γ. gauge γ

∧ (∀ g D. g ∈ ?G ∧ D tagged division of cbox a b ∧ γ fine D
−→ norm ((

∑
(x ,K ) ∈ D. content K ∗R g x ) − integral (cbox a b) g)

< ε)
if ε > 0 for ε

proof −
obtain γ where gauge γ
and γ:

∧
f D. [[f ∈ F ; D tagged division of cbox a b; γ fine D]]

=⇒ norm ((
∑

(x ,K ) ∈ D. content K ∗R f x ) − integral (cbox a
b) f ) < ε / 2

using assms 〈ε > 0 〉 unfolding equiintegrable on def by (meson half gt zero iff )
moreover have norm ((

∑
(x ,K ) ∈ D. content K ∗R g x ) − integral (cbox a

b) g) < ε
if g : g ∈ ?G
and D: D tagged division of cbox a b
and fine: γ fine D

for D g
proof −
obtain I c f where finite I and 0 :

∧
i :: ′j . i ∈ I =⇒ 0 ≤ c i

and 1 : sum c I = 1 and f : f ∈ I → F and geq : g = (λx .
∑

i∈I . c i ∗R f
i x )

using g by auto
have fi int : f i integrable on cbox a b if i ∈ I for i
by (metis Pi iff assms equiintegrable on def f that)

have ∗: integral (cbox a b) (λx . c i ∗R f i x ) = (
∑

(x , K )∈D. integral K (λx .
c i ∗R f i x ))

if i ∈ I for i
proof −
have f i integrable on cbox a b
by (metis Pi iff assms equiintegrable on def f that)

then show ?thesis
by (intro D integrable cmul integral combine tagged division topdown)

qed
have finite D
using D by blast

have swap: (
∑

(x ,K )∈D. content K ∗R (
∑

i∈I . c i ∗R f i x ))
= (

∑
i∈I . c i ∗R (

∑
(x ,K )∈D. content K ∗R f i x ))

by (simp add : scale sum right case prod unfold algebra simps) (rule sum.swap)
have norm ((

∑
(x , K )∈D. content K ∗R g x ) − integral (cbox a b) g)

= norm ((
∑

i∈I . c i ∗R ((
∑

(x ,K )∈D. content K ∗R f i x ) − integral
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(cbox a b) (f i))))
unfolding geq swap

by (simp add : scaleR right .sum algebra simps integral sum fi int inte-
grable cmul 〈finite I 〉 sum subtractf flip: sum diff )

also have . . . ≤ (
∑

i∈I . c i ∗ ε / 2 )
proof (rule sum norm le)
show norm (c i ∗R ((

∑
(xa, K )∈D. content K ∗R f i xa) − integral (cbox

a b) (f i))) ≤ c i ∗ ε / 2
if i ∈ I for i

proof −
have norm ((

∑
(x , K )∈D. content K ∗R f i x ) − integral (cbox a b) (f

i)) ≤ ε/2
using γ [OF D fine, of f i ] funcset mem [OF f ] that by auto

then show ?thesis
using that by (auto simp: 0 mult .assoc intro: mult left mono)

qed
qed
also have . . . < ε
using 1 〈ε > 0 〉 by (simp add : flip: sum divide distrib sum distrib right)

finally show ?thesis .
qed
ultimately show ?thesis
by (rule tac x=γ in exI ) auto

qed
qed

corollary equiintegrable sum real :
fixes F :: (real ⇒ ′b::euclidean space) set
assumes F equiintegrable on {a..b}
shows (

⋃
I ∈ Collect finite.

⋃
c ∈ {c. (∀ i ∈ I . c i ≥ 0 ) ∧ sum c I = 1}.⋃

f ∈ I → F . {(λx . sum (λi . c i ∗R f i x ) I )})
equiintegrable on {a..b}

using equiintegrable sum [of F a b] assms by auto

Basic combining theorems for the interval of integration.

lemma equiintegrable on null [simp]:
content(cbox a b) = 0 =⇒ F equiintegrable on cbox a b
unfolding equiintegrable on def
by (metis diff zero gauge trivial integrable on null integral null norm zero sum content null)

Main limit theorem for an equiintegrable sequence.

theorem equiintegrable limit :
fixes g :: ′a :: euclidean space ⇒ ′b :: banach
assumes feq : range f equiintegrable on cbox a b

and to g :
∧
x . x ∈ cbox a b =⇒ (λn. f n x ) −−−−→ g x

shows g integrable on cbox a b ∧ (λn. integral (cbox a b) (f n)) −−−−→ integral
(cbox a b) g
proof −
have Cauchy (λn. integral(cbox a b) (f n))
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proof (clarsimp simp add : Cauchy def )
fix e::real
assume 0 < e
then have e3 : 0 < e/3
by simp

then obtain γ where gauge γ
and γ:

∧
n D. [[D tagged division of cbox a b; γ fine D]]
=⇒ norm((

∑
(x ,K ) ∈ D. content K ∗R f n x ) − integral (cbox

a b) (f n)) < e/3
using feq unfolding equiintegrable on def
by (meson image eqI iso tuple UNIV I )

obtain D where D: D tagged division of (cbox a b) and γ fine D finite D
by (meson 〈gauge γ〉 fine division exists tagged division of finite)

with γ have δT :
∧
n. dist ((

∑
(x ,K )∈D. content K ∗R f n x )) (integral (cbox

a b) (f n)) < e/3
by (force simp: dist norm)

have (λn.
∑

(x ,K )∈D. content K ∗R f n x ) −−−−→ (
∑

(x ,K )∈D. content K
∗R g x )

using D to g by (auto intro!: tendsto sum tendsto scaleR)
then have Cauchy (λn.

∑
(x ,K )∈D. content K ∗R f n x )

by (meson convergent eq Cauchy)
with e3 obtain M where

M :
∧
m n. [[m≥M ; n≥M ]] =⇒ dist (

∑
(x ,K )∈D. content K ∗R f m x )

(
∑

(x ,K )∈D. content K ∗R f n x )
< e/3

unfolding Cauchy def by blast
have

∧
m n. [[m≥M ; n≥M ;

dist (
∑

(x ,K )∈D. content K ∗R f m x ) (
∑

(x ,K )∈D. content K ∗R
f n x ) < e/3 ]]

=⇒ dist (integral (cbox a b) (f m)) (integral (cbox a b) (f n)) < e
by (metis δT dist commute dist triangle third [OF δT ])

then show ∃M . ∀m≥M . ∀n≥M . dist (integral (cbox a b) (f m)) (integral
(cbox a b) (f n)) < e

using M by auto
qed
then obtain L where L: (λn. integral (cbox a b) (f n)) −−−−→ L
by (meson convergent eq Cauchy)

have (g has integral L) (cbox a b)
proof (clarsimp simp: has integral)
fix e::real assume 0 < e
then have e2 : 0 < e/2
by simp

then obtain γ where gauge γ
and γ:

∧
n D. [[D tagged division of cbox a b; γ fine D]]

=⇒ norm((
∑

(x ,K )∈D. content K ∗R f n x ) − integral (cbox a
b) (f n)) < e/2

using feq unfolding equiintegrable on def
by (meson image eqI iso tuple UNIV I )

moreover
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have norm ((
∑

(x ,K )∈D. content K ∗R g x ) − L) < e
if D tagged division of cbox a b γ fine D for D

proof −
have norm ((

∑
(x ,K )∈D. content K ∗R g x ) − L) ≤ e/2

proof (rule Lim norm ubound)
show (λn. (

∑
(x ,K )∈D. content K ∗R f n x ) − integral (cbox a b) (f n))

−−−−→ (
∑

(x ,K )∈D. content K ∗R g x ) − L
using to g that L

by (intro tendsto diff tendsto sum) (auto simp: tag in interval tend-
sto scaleR)

show ∀ F n in sequentially .
norm ((

∑
(x ,K ) ∈ D. content K ∗R f n x ) − integral (cbox a b) (f

n)) ≤ e/2
by (intro eventuallyI less imp le γ that)

qed auto
with 〈0 < e〉 show ?thesis
by linarith

qed
ultimately
show ∃ γ. gauge γ ∧

(∀D. D tagged division of cbox a b ∧ γ fine D −→
norm ((

∑
(x ,K )∈D. content K ∗R g x ) − L) < e)

by meson
qed
with L show ?thesis
by (simp add : 〈(λn. integral (cbox a b) (f n)) −−−−→ L〉 has integral integrable integral)

qed

lemma equiintegrable reflect :
assumes F equiintegrable on cbox a b
shows (λf . f ◦ uminus) ‘ F equiintegrable on cbox (−b) (−a)

proof −
have §: ∃ γ. gauge γ ∧

(∀ f D. f ∈ (λf . f ◦ uminus) ‘ F ∧ D tagged division of cbox (− b) (−
a) ∧ γ fine D −→

norm ((
∑

(x ,K ) ∈ D. content K ∗R f x ) − integral (cbox (− b)
(− a)) f ) < e)

if gauge γ and
γ:

∧
f D. [[f ∈ F ; D tagged division of cbox a b; γ fine D]] =⇒

norm ((
∑

(x ,K ) ∈ D. content K ∗R f x ) − integral (cbox a b) f )
< e for e γ
proof (intro exI , safe)
show gauge (λx . uminus ‘ γ (−x ))
by (metis 〈gauge γ〉 gauge reflect)

show norm ((
∑

(x ,K ) ∈ D. content K ∗R (f ◦ uminus) x ) − integral (cbox
(− b) (− a)) (f ◦ uminus)) < e

if f ∈ F and tag : D tagged division of cbox (− b) (− a)
and fine: (λx . uminus ‘ γ (− x )) fine D for f D
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proof −
have 1 : (λ(x ,K ). (− x , uminus ‘ K )) ‘ D tagged partial division of cbox a b
if D tagged partial division of cbox (− b) (− a)

proof −
have − y ∈ cbox a b
if

∧
x K . (x ,K ) ∈ D =⇒ x ∈ K ∧ K ⊆ cbox (− b) (− a) ∧ (∃ a b. K =

cbox a b)
(x , Y ) ∈ D y ∈ Y for x Y y

proof −
have y ∈ uminus ‘ cbox a b
using that by auto

then show − y ∈ cbox a b
by force

qed
with that show ?thesis

by (fastforce simp: tagged partial division of def interior negations im-
age iff )

qed
have 2 : ∃K . (∃ x . (x ,K ) ∈ (λ(x ,K ). (− x , uminus ‘ K )) ‘ D) ∧ x ∈ K

if
⋃
{K . ∃ x . (x ,K ) ∈ D} = cbox (− b) (− a) x ∈ cbox a b for x

proof −
have xm: x ∈ uminus ‘

⋃
{A. ∃ a. (a, A) ∈ D}

by (simp add : that)
then obtain a X where −x ∈ X (a, X ) ∈ D
by auto

then show ?thesis
by (metis (no types, lifting) add .inverse inverse image iff pair imageI )

qed
have 3 :

∧
x X y . [[D tagged partial division of cbox (− b) (− a); (x , X ) ∈ D;

y ∈ X ]] =⇒ − y ∈ cbox a b
by (metis (no types, lifting) equation minus iff imageE subsetD tagged partial division ofD(3 )

uminus interval vector)
have tag ′: (λ(x ,K ). (− x , uminus ‘ K )) ‘ D tagged division of cbox a b
using tag by (auto simp: tagged division of def dest : 1 2 3 )

have fine ′: γ fine (λ(x ,K ). (− x , uminus ‘ K )) ‘ D
using fine by (fastforce simp: fine def )

have inj : inj on (λ(x ,K ). (− x , uminus ‘ K )) D
unfolding inj on def by force

have eq : content (uminus ‘ I ) = content I
if I : (x , I ) ∈ D and fnz : f (− x ) 6= 0 for x I

proof −
obtain a b where I = cbox a b
using tag I that by (force simp: tagged division of def tagged partial division of def )
then show ?thesis
using content image affinity cbox [of −1 0 ] by auto

qed
have (

∑
(x ,K ) ∈ (λ(x ,K ). (− x , uminus ‘ K )) ‘ D. content K ∗R f x ) =

(
∑

(x ,K ) ∈ D. content K ∗R f (− x ))
by (auto simp add : eq sum.reindex [OF inj ] intro!: sum.cong)
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then show ?thesis
using γ [OF 〈f ∈ F 〉 tag ′ fine ′] integral reflect
by (metis (mono tags, lifting) Henstock Kurzweil Integration.integral cong

comp apply split def sum.cong)
qed

qed
show ?thesis
using assms
apply (auto simp: equiintegrable on def )
subgoal for f
by (metis (mono tags, lifting) comp apply integrable eq integrable reflect)

using § by fastforce
qed

6.27.2 Subinterval restrictions for equiintegrable families

First, some technical lemmas about minimizing a ”flat” part of a sum over
a division.

lemma lemma0 :
assumes i ∈ Basis

shows content (cbox u v) / (interval upperbound (cbox u v) · i − inter-
val lowerbound (cbox u v) · i) =

(if content (cbox u v) = 0 then 0
else

∏
j ∈ Basis − {i}. interval upperbound (cbox u v) · j − inter-

val lowerbound (cbox u v) · j )
proof (cases content (cbox u v) = 0 )
case True
then show ?thesis by simp

next
case False
then show ?thesis
using prod .subset diff [of {i} Basis] assms
by (force simp: content cbox if divide simps split : if split asm)

qed

lemma content division lemma1 :
assumes div : D division of S and S : S ⊆ cbox a b and i : i ∈ Basis

and mt :
∧
K . K ∈ D =⇒ content K 6= 0

and disj : (∀K ∈ D. K ∩ {x . x · i = a · i} 6= {}) ∨ (∀K ∈ D. K ∩ {x . x ·
i = b · i} 6= {})

shows (b · i − a · i) ∗ (
∑

K∈D. content K / (interval upperbound K · i −
interval lowerbound K · i))

≤ content(cbox a b) (is ?lhs ≤ ?rhs)
proof −
have finite D
using div by blast

define extend where
extend ≡ λK . cbox (

∑
j ∈ Basis. if j = i then (a · i) ∗R i else (interval lowerbound
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K · j ) ∗R j )
(
∑

j ∈ Basis. if j = i then (b · i) ∗R i else (interval upperbound
K · j ) ∗R j )
have div subset cbox :

∧
K . K ∈ D =⇒ K ⊆ cbox a b

using S div by auto
have

∧
K . K ∈ D =⇒ K 6= {}

using div by blast
have extend cbox :

∧
K . K ∈ D =⇒ ∃ a b. extend K = cbox a b

using extend def by blast
have extend : extend K 6= {} extend K ⊆ cbox a b if K : K ∈ D for K
proof −
obtain u v where K : K = cbox u v K 6= {} K ⊆ cbox a b
using K cbox division memE [OF div ] by (meson div subset cbox )

with i show extend K ⊆ cbox a b
by (auto simp: extend def subset box box ne empty)

have a · i ≤ b · i
using K by (metis bot .extremum uniqueI box ne empty(1 ) i)

with K show extend K 6= {}
by (simp add : extend def i box ne empty)

qed
have int extend disjoint :

interior(extend K1 ) ∩ interior(extend K2 ) = {} if K : K1 ∈ D K2 ∈ D K1
6= K2 for K1 K2
proof −
obtain u v where K1 : K1 = cbox u v K1 6= {} K1 ⊆ cbox a b
using K cbox division memE [OF div ] by (meson div subset cbox )

obtain w z where K2 : K2 = cbox w z K2 6= {} K2 ⊆ cbox a b
using K cbox division memE [OF div ] by (meson div subset cbox )

have cboxes: cbox u v ∈ D cbox w z ∈ D cbox u v 6= cbox w z
using K1 K2 that by auto

with div have interior (cbox u v) ∩ interior (cbox w z ) = {}
by blast

moreover
have ∃ x . x ∈ box u v ∧ x ∈ box w z

if x ∈ interior (extend K1 ) x ∈ interior (extend K2 ) for x
proof −
have a · i < x · i x · i < b · i
and ux :

∧
k . k ∈ Basis − {i} =⇒ u · k < x · k

and xv :
∧
k . k ∈ Basis − {i} =⇒ x · k < v · k

and wx :
∧
k . k ∈ Basis − {i} =⇒ w · k < x · k

and xz :
∧
k . k ∈ Basis − {i} =⇒ x · k < z · k

using that K1 K2 i by (auto simp: extend def box ne empty mem box )
have box u v 6= {} box w z 6= {}
using cboxes interior cbox by (auto simp: content eq 0 interior dest : mt)

then obtain q s
where q :

∧
k . k ∈ Basis =⇒ w · k < q · k ∧ q · k < z · k

and s:
∧
k . k ∈ Basis =⇒ u · k < s · k ∧ s · k < v · k

by (meson all not in conv mem box (1 ))
show ?thesis using disj
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proof
assume ∀K∈D. K ∩ {x . x · i = a · i} 6= {}
then have uva: (cbox u v) ∩ {x . x · i = a · i} 6= {}

and wza: (cbox w z ) ∩ {x . x · i = a · i} 6= {}
using cboxes by (auto simp: content eq 0 interior)

then obtain r t where r · i = a · i and r :
∧
k . k ∈ Basis =⇒ w · k ≤ r

· k ∧ r · k ≤ z · k
and t · i = a · i and t :

∧
k . k ∈ Basis =⇒ u · k ≤ t · k ∧ t ·

k ≤ v · k
by (fastforce simp: mem box )

have u: u · i < q · i
using i K2 (1 ) K2 (3 ) 〈t · i = a · i 〉 q s t [OF i ] by (force simp: subset box )
have w : w · i < s · i
using i K1 (1 ) K1 (3 ) 〈r · i = a · i 〉 s r [OF i ] by (force simp: subset box )

define ξ where ξ ≡ (
∑

j ∈ Basis. if j = i then min (q · i) (s · i) ∗R i else
(x · j ) ∗R j )

have [simp]: ξ · j = (if j = i then min (q · j ) (s · j ) else x · j ) if j ∈ Basis
for j

unfolding ξ def
by (intro sum if inner that 〈i ∈ Basis〉)

show ?thesis
proof (intro exI conjI )
have min (q · i) (s · i) < v · i
using i s by fastforce

with 〈i ∈ Basis〉 s u ux xv
show ξ ∈ box u v
by (force simp: mem box )

have min (q · i) (s · i) < z · i
using i q by force

with 〈i ∈ Basis〉 q w wx xz
show ξ ∈ box w z
by (force simp: mem box )

qed
next
assume ∀K∈D. K ∩ {x . x · i = b · i} 6= {}
then have uva: (cbox u v) ∩ {x . x · i = b · i} 6= {}

and wza: (cbox w z ) ∩ {x . x · i = b · i} 6= {}
using cboxes by (auto simp: content eq 0 interior)

then obtain r t where r · i = b · i and r :
∧
k . k ∈ Basis =⇒ w · k ≤ r

· k ∧ r · k ≤ z · k
and t · i = b · i and t :

∧
k . k ∈ Basis =⇒ u · k ≤ t · k ∧ t ·

k ≤ v · k
by (fastforce simp: mem box )

have z : s · i < z · i
using K1 (1 ) K1 (3 ) 〈r · i = b · i 〉 r [OF i ] i s by (force simp: subset box )
have v : q · i < v · i
using K2 (1 ) K2 (3 ) 〈t · i = b · i 〉 t [OF i ] i q by (force simp: subset box )
define ξ where ξ ≡ (

∑
j ∈ Basis. if j = i then max (q · i) (s · i) ∗R i

else (x · j ) ∗R j )
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have [simp]: ξ · j = (if j = i then max (q · j ) (s · j ) else x · j ) if j ∈ Basis
for j

unfolding ξ def
by (intro sum if inner that 〈i ∈ Basis〉)

show ?thesis
proof (intro exI conjI )
show ξ ∈ box u v
using 〈i ∈ Basis〉 s by (force simp: mem box ux v xv)

show ξ ∈ box w z
using 〈i ∈ Basis〉 q by (force simp: mem box wx xz z )

qed
qed

qed
ultimately show ?thesis by auto

qed
define interv diff where interv diff ≡ λK . λi :: ′a. interval upperbound K · i −

interval lowerbound K · i
have ?lhs = (

∑
K∈D. (b · i − a · i) ∗ content K / (interv diff K i))

by (simp add : sum distrib left interv diff def )
also have . . . = sum (content ◦ extend) D
proof (rule sum.cong [OF refl ])
fix K assume K ∈ D
then obtain u v where K : K = cbox u v cbox u v 6= {} K ⊆ cbox a b
using cbox division memE [OF div ] div subset cbox by metis

then have uv : u · i < v · i
using mt [OF 〈K ∈ D〉] 〈i ∈ Basis〉 content eq 0 by fastforce

have insert i (Basis ∩ −{i}) = Basis
using 〈i ∈ Basis〉 by auto

then have (b · i − a · i) ∗ content K / (interv diff K i)
= (b · i − a · i) ∗ (

∏
i ∈ insert i (Basis ∩ −{i}). v · i − u · i) /

(interv diff (cbox u v) i)
using K box ne empty(1 ) content cbox by fastforce

also have ... = (
∏

x∈Basis. if x = i then b · x − a · x
else (interval upperbound (cbox u v) − interval lowerbound (cbox

u v)) · x )
using 〈i ∈ Basis〉 K uv by (simp add : prod .If cases interv diff def ) (simp

add : algebra simps)
also have ... = (

∏
k∈Basis.

(
∑

j∈Basis. if j = i then (b · i − a · i) ∗R i
else ((interval upperbound (cbox u v) − interval lowerbound

(cbox u v)) · j ) ∗R j ) · k)
using 〈i ∈ Basis〉 by (subst prod .cong [OF refl sum if inner ]; simp)

also have ... = (
∏

k∈Basis.
(
∑

j∈Basis. if j = i then (b · i) ∗R i else (interval upperbound
(cbox u v) · j ) ∗R j ) · k −

(
∑

j∈Basis. if j = i then (a · i) ∗R i else (interval lowerbound
(cbox u v) · j ) ∗R j ) · k)

using 〈i ∈ Basis〉

by (intro prod .cong [OF refl ]) (subst sum if inner ; simp add : algebra simps)+



Improper Integral.thy 2509

also have ... = (content ◦ extend) K
using 〈i ∈ Basis〉 K box ne empty 〈K ∈ D〉 extend(1 )
by (auto simp add : extend def content cbox if )
finally show (b · i − a · i) ∗ content K / (interv diff K i) = (content ◦

extend) K .
qed
also have ... = sum content (extend ‘ D)
proof −

have [[K1 ∈ D; K2 ∈ D; K1 6= K2 ; extend K1 = extend K2 ]] =⇒ content
(extend K1 ) = 0 for K1 K2

using int extend disjoint [of K1 K2 ] extend def by (simp add : content eq 0 interior)
then show ?thesis
by (simp add : comm monoid add class.sum.reindex nontrivial [OF 〈finite D〉])

qed
also have ... ≤ ?rhs
proof (rule subadditive content division)
show extend ‘ D division of

⋃
(extend ‘ D)

using int extend disjoint by (auto simp: division of def 〈finite D〉 extend
extend cbox )

show
⋃

(extend ‘ D) ⊆ cbox a b
using extend by fastforce

qed
finally show ?thesis .

qed

proposition sum content area over thin division:
assumes div : D division of S and S : S ⊆ cbox a b and i : i ∈ Basis
and a · i ≤ c c ≤ b · i
and nonmt :

∧
K . K ∈ D =⇒ K ∩ {x . x · i = c} 6= {}

shows (b · i − a · i) ∗ (
∑

K∈D. content K / (interval upperbound K · i −
interval lowerbound K · i))

≤ 2 ∗ content(cbox a b)
proof (cases content(cbox a b) = 0 )
case True
have (

∑
K∈D. content K / (interval upperbound K · i − interval lowerbound K

· i)) = 0
using S div by (force intro!: sum.neutral content 0 subset [OF True])

then show ?thesis
by (auto simp: True)

next
case False
then have content(cbox a b) > 0
using zero less measure iff by blast

then have a · i < b · i if i ∈ Basis for i
using content pos lt eq that by blast

have finite D
using div by blast

define Dlec where Dlec ≡ {L ∈ (λL. L ∩ {x . x · i ≤ c}) ‘ D. content L 6= 0}
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define Dgec where Dgec ≡ {L ∈ (λL. L ∩ {x . x · i ≥ c}) ‘ D. content L 6= 0}
define a ′ where a ′ ≡ (

∑
j∈Basis. (if j = i then c else a · j ) ∗R j )

define b ′ where b ′ ≡ (
∑

j∈Basis. (if j = i then c else b · j ) ∗R j )
define interv diff where interv diff ≡ λK . λi :: ′a. interval upperbound K · i −

interval lowerbound K · i
have Dlec cbox :

∧
K . K ∈ Dlec =⇒ ∃ a b. K = cbox a b

using interval split [OF i ] div by (fastforce simp: Dlec def division of def )
then have lec is cbox : [[content (L ∩ {x . x · i ≤ c}) 6= 0 ; L ∈ D]] =⇒ ∃ a b. L
∩ {x . x · i ≤ c} = cbox a b for L

using Dlec def by blast
have Dgec cbox :

∧
K . K ∈ Dgec =⇒ ∃ a b. K = cbox a b

using interval split [OF i ] div by (fastforce simp: Dgec def division of def )
then have gec is cbox : [[content (L ∩ {x . x · i ≥ c}) 6= 0 ; L ∈ D]] =⇒ ∃ a b. L
∩ {x . x · i ≥ c} = cbox a b for L

using Dgec def by blast

have zero left :
∧
x y . [[x ∈ D; y ∈ D; x 6= y ; x ∩ {x . x · i ≤ c} = y ∩ {x . x · i

≤ c}]]
=⇒ content (y ∩ {x . x · i ≤ c}) = 0

by (metis division split left inj [OF div ] lec is cbox content eq 0 interior)
have zero right :

∧
x y . [[x ∈ D; y ∈ D; x 6= y ; x ∩ {x . c ≤ x · i} = y ∩ {x . c

≤ x · i}]]
=⇒ content (y ∩ {x . c ≤ x · i}) = 0

by (metis division split right inj [OF div ] gec is cbox content eq 0 interior)

have (b ′ · i − a · i) ∗ (
∑

K∈Dlec. content K / interv diff K i) ≤ content(cbox
a b ′)

unfolding interv diff def
proof (rule content division lemma1 )
show Dlec division of

⋃
Dlec

unfolding division of def
proof (intro conjI ballI Dlec cbox )
show

∧
K1 K2 . [[K1 ∈ Dlec; K2 ∈ Dlec]] =⇒ K1 6= K2 −→ interior K1 ∩

interior K2 = {}
by (clarsimp simp: Dlec def ) (use div in auto)

qed (use 〈finite D〉 Dlec def in auto)
show

⋃
Dlec ⊆ cbox a b ′

using Dlec def div S by (auto simp: b ′ def division of def mem box )
show (∀K∈Dlec. K ∩ {x . x · i = a · i} 6= {}) ∨ (∀K∈Dlec. K ∩ {x . x · i =

b ′ · i} 6= {})
using nonmt by (fastforce simp: Dlec def b ′ def i)

qed (use i Dlec def in auto)
moreover
have (

∑
K∈Dlec. content K / (interv diff K i)) = (

∑
K∈(λK . K ∩ {x . x · i

≤ c}) ‘ D. content K / interv diff K i)
unfolding Dlec def using 〈finite D〉 by (auto simp: sum.mono neutral left)

moreover have ... =
(
∑

K∈D. ((λK . content K / (interv diff K i)) ◦ ((λK . K ∩ {x . x · i ≤
c}))) K )
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by (simp add : zero left sum.reindex nontrivial [OF 〈finite D〉])
moreover have (b ′ · i − a · i) = (c − a · i)
by (simp add : b ′ def i)

ultimately
have lec: (c − a · i) ∗ (

∑
K∈D. ((λK . content K / (interv diff K i)) ◦ ((λK .

K ∩ {x . x · i ≤ c}))) K )
≤ content(cbox a b ′)

by simp

have (b · i − a ′ · i) ∗ (
∑

K∈Dgec. content K / (interv diff K i)) ≤ content(cbox
a ′ b)

unfolding interv diff def
proof (rule content division lemma1 )
show Dgec division of

⋃
Dgec

unfolding division of def
proof (intro conjI ballI Dgec cbox )
show

∧
K1 K2 . [[K1 ∈ Dgec; K2 ∈ Dgec]] =⇒ K1 6= K2 −→ interior K1 ∩

interior K2 = {}
by (clarsimp simp: Dgec def ) (use div in auto)

qed (use 〈finite D〉 Dgec def in auto)
show

⋃
Dgec ⊆ cbox a ′ b

using Dgec def div S by (auto simp: a ′ def division of def mem box )
show (∀K∈Dgec. K ∩ {x . x · i = a ′ · i} 6= {}) ∨ (∀K∈Dgec. K ∩ {x . x · i

= b · i} 6= {})
using nonmt by (fastforce simp: Dgec def a ′ def i)

qed (use i Dgec def in auto)
moreover
have (

∑
K∈Dgec. content K / (interv diff K i)) = (

∑
K∈(λK . K ∩ {x . c ≤ x

· i}) ‘ D.
content K / interv diff K i)

unfolding Dgec def using 〈finite D〉 by (auto simp: sum.mono neutral left)
moreover have . . . =

(
∑

K∈D. ((λK . content K / (interv diff K i)) ◦ ((λK . K ∩ {x . x · i ≥
c}))) K )

by (simp add : zero right sum.reindex nontrivial [OF 〈finite D〉])
moreover have (b · i − a ′ · i) = (b · i − c)
by (simp add : a ′ def i)

ultimately
have gec: (b · i − c) ∗ (

∑
K∈D. ((λK . content K / (interv diff K i)) ◦ ((λK .

K ∩ {x . x · i ≥ c}))) K )
≤ content(cbox a ′ b)

by simp

show ?thesis
proof (cases c = a · i ∨ c = b · i)
case True
then show ?thesis
proof
assume c: c = a · i
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moreover
have (

∑
j∈Basis. (if j = i then a · i else a · j ) ∗R j ) = a

using euclidean representation [of a] sum.cong [OF refl , of Basis λi . (a ·
i) ∗R i ] by presburger

ultimately have a ′ = a
by (simp add : i a ′ def cong : if cong)

then have content (cbox a ′ b) ≤ 2 ∗ content (cbox a b) by simp
moreover
have eq : (

∑
K∈D. content (K ∩ {x . a · i ≤ x · i}) / interv diff (K ∩ {x .

a · i ≤ x · i}) i)
= (

∑
K∈D. content K / interv diff K i)

(is sum ?f = sum ?g )
proof (rule sum.cong [OF refl ])
fix K assume K ∈ D
then have a · i ≤ x · i if x ∈ K for x
by (metis S UnionI div division ofD(6 ) i mem box (2 ) subsetCE that)

then have K ∩ {x . a · i ≤ x · i} = K
by blast

then show ?f K = ?g K
by simp

qed
ultimately show ?thesis
using gec c eq interv diff def by auto

next
assume c: c = b · i
moreover have (

∑
j∈Basis. (if j = i then b · i else b · j ) ∗R j ) = b

using euclidean representation [of b] sum.cong [OF refl , of Basis λi . (b · i)
∗R i ] by presburger

ultimately have b ′ = b
by (simp add : i b ′ def cong : if cong)

then have content (cbox a b ′) ≤ 2 ∗ content (cbox a b) by simp
moreover
have eq : (

∑
K∈D. content (K ∩ {x . x · i ≤ b · i}) / interv diff (K ∩ {x . x

· i ≤ b · i}) i)
= (

∑
K∈D. content K / interv diff K i)

(is sum ?f = sum ?g )
proof (rule sum.cong [OF refl ])
fix K assume K ∈ D
then have x · i ≤ b · i if x ∈ K for x
by (metis S UnionI div division ofD(6 ) i mem box (2 ) subsetCE that)

then have K ∩ {x . x · i ≤ b · i} = K
by blast

then show ?f K = ?g K
by simp

qed
ultimately show ?thesis
using lec c eq interv diff def by auto

qed
next
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case False
have prod if : (

∏
k∈Basis ∩ − {i}. f k) = (

∏
k∈Basis. f k) / f i if f i 6=

(0 ::real) for f
proof −
have f i ∗ prod f (Basis ∩ − {i}) = prod f Basis
using that mk disjoint insert [OF i ]

by (metis Int insert left if0 finite Basis finite insert le iff inf order refl
prod .insert subset Compl singleton)

then show ?thesis
by (metis nonzero mult div cancel left that)

qed
have abc: a · i < c c < b · i
using False assms by auto

then have (
∑

K∈D. ((λK . content K / (interv diff K i)) ◦ ((λK . K ∩ {x . x
· i ≤ c}))) K )

≤ content(cbox a b ′) / (c − a · i)
(
∑

K∈D. ((λK . content K / (interv diff K i)) ◦ ((λK . K ∩ {x . x · i
≥ c}))) K )

≤ content(cbox a ′ b) / (b · i − c)
using lec gec by (simp all add : field split simps)

moreover
have (

∑
K∈D. content K / (interv diff K i))

≤ (
∑

K∈D. ((λK . content K / (interv diff K i)) ◦ ((λK . K ∩ {x . x · i
≤ c}))) K ) +

(
∑

K∈D. ((λK . content K / (interv diff K i)) ◦ ((λK . K ∩ {x . x · i ≥
c}))) K )

(is ?lhs ≤ ?rhs)
proof −
have ?lhs ≤

(
∑

K∈D. ((λK . content K / (interv diff K i)) ◦ ((λK . K ∩ {x . x · i ≤
c}))) K +

((λK . content K / (interv diff K i)) ◦ ((λK . K ∩ {x . x · i ≥ c})))
K )

(is sum ?f ≤ sum ?g )
proof (rule sum mono)
fix K assume K ∈ D
then obtain u v where uv : K = cbox u v
using div by blast

obtain u ′ v ′ where uv ′: cbox u v ∩ {x . x · i ≤ c} = cbox u v ′

cbox u v ∩ {x . c ≤ x · i} = cbox u ′ v∧
k . k ∈ Basis =⇒ u ′ · k = (if k = i then max (u · i) c

else u · k) ∧
k . k ∈ Basis =⇒ v ′ · k = (if k = i then min (v · i) c

else v · k)
using i by (auto simp: interval split)
have ∗: [[content (cbox u v ′) = 0 ; content (cbox u ′ v) = 0 ]] =⇒ content

(cbox u v) = 0
content (cbox u ′ v) 6= 0 =⇒ content (cbox u v) 6= 0
content (cbox u v ′) 6= 0 =⇒ content (cbox u v) 6= 0
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using i uv uv ′ by (auto simp: content eq 0 le max iff disj min le iff disj
split : if split asm intro: order trans)

have uniq :
∧
j . [[j ∈ Basis; ¬ u · j ≤ v · j ]] =⇒ j = i

by (metis 〈K ∈ D〉 box ne empty(1 ) div division of def uv)
show ?f K ≤ ?g K

using i uv uv ′ by (auto simp add : interv diff def lemma0 dest : uniq ∗
intro!: prod nonneg)

qed
also have ... = ?rhs
by (simp add : sum.distrib)

finally show ?thesis .
qed
moreover have content (cbox a b ′) / (c − a · i) = content (cbox a b) / (b · i

− a · i)
using i abc
apply (simp add : field simps a ′ def b ′ def measure lborel cbox eq inner diff )
apply (auto simp: if distrib if distrib [of λf . f x for x ] prod .If cases [of Basis

λx . x = i , simplified ] prod if field simps)
done

moreover have content (cbox a ′ b) / (b · i − c) = content (cbox a b) / (b · i
− a · i)

using i abc
apply (simp add : field simps a ′ def b ′ def measure lborel cbox eq inner diff )
apply (auto simp: if distrib prod .If cases [of Basis λx . x = i , simplified ]

prod if field simps)
done

ultimately
have (

∑
K∈D. content K / (interv diff K i)) ≤ 2 ∗ content (cbox a b) / (b ·

i − a · i)
by linarith

then show ?thesis
using abc interv diff def by (simp add : field split simps)

qed
qed

proposition bounded equiintegral over thin tagged partial division:
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes F : F equiintegrable on cbox a b and f : f ∈ F and 0 < ε

and norm f :
∧
h x . [[h ∈ F ; x ∈ cbox a b]] =⇒ norm(h x ) ≤ norm(f x )

obtains γ where gauge γ∧
c i S h. [[c ∈ cbox a b; i ∈ Basis; S tagged partial division of cbox a b;

γ fine S ; h ∈ F ;
∧
x K . (x ,K ) ∈ S =⇒ (K ∩ {x . x · i = c ·

i} 6= {})]]
=⇒ (

∑
(x ,K ) ∈ S . norm (integral K h)) < ε

proof (cases content(cbox a b) = 0 )
case True
show ?thesis
proof
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show gauge (λx . ball x 1 )
by (simp add : gauge trivial)

show (
∑

(x ,K ) ∈ S . norm (integral K h)) < ε
if S tagged partial division of cbox a b (λx . ball x 1 ) fine S for S and h::

′a ⇒ ′b
proof −
have (

∑
(x ,K ) ∈ S . norm (integral K h)) = 0

using that True content 0 subset
by (fastforce simp: tagged partial division of def intro: sum.neutral)

with 〈0 < ε〉 show ?thesis
by simp

qed
qed

next
case False
then have contab gt0 : content(cbox a b) > 0
by (simp add : zero less measure iff )

then have a less b:
∧
i . i ∈ Basis =⇒ a·i < b·i

by (auto simp: content pos lt eq)
obtain γ0 where gauge γ0

and γ0 :
∧
S h. [[S tagged partial division of cbox a b; γ0 fine S ; h ∈ F ]]

=⇒ (
∑

(x ,K ) ∈ S . norm (content K ∗R h x − integral K
h)) < ε/2
proof −
obtain γ where gauge γ

and γ:
∧
f D. [[f ∈ F ; D tagged division of cbox a b; γ fine D]]

=⇒ norm ((
∑

(x ,K ) ∈ D. content K ∗R f x ) − integral
(cbox a b) f )

< ε/(5 ∗ (Suc DIM ( ′b)))
proof −
have e5 : ε/(5 ∗ (Suc DIM ( ′b))) > 0
using 〈ε > 0 〉 by auto

then show ?thesis
using F that by (auto simp: equiintegrable on def )

qed
show ?thesis
proof
show gauge γ
by (rule 〈gauge γ〉)

show (
∑

(x ,K ) ∈ S . norm (content K ∗R h x − integral K h)) < ε/2
if S tagged partial division of cbox a b γ fine S h ∈ F for S h

proof −
have (

∑
(x ,K ) ∈ S . norm (content K ∗R h x − integral K h)) ≤ 2 ∗ real

DIM ( ′b) ∗ (ε/(5 ∗ Suc DIM ( ′b)))
proof (rule Henstock lemma part2 [of h a b])
show h integrable on cbox a b
using that F equiintegrable on def by metis

show gauge γ
by (rule 〈gauge γ〉)
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qed (use that 〈ε > 0 〉 γ in auto)
also have ... < ε/2
using 〈ε > 0 〉 by (simp add : divide simps)

finally show ?thesis .
qed

qed
qed
define γ where γ ≡ λx . γ0 x ∩

ball x ((ε/8 / (norm(f x ) + 1 )) ∗ (INF m∈Basis. b · m − a
· m) / content(cbox a b))
define interv diff where interv diff ≡ λK . λi :: ′a. interval upperbound K · i −

interval lowerbound K · i
have 8 ∗ content (cbox a b) + norm (f x ) ∗ (8 ∗ content (cbox a b)) > 0 for x
by (metis add .right neutral add pos pos contab gt0 mult pos pos mult zero left

norm eq zero zero less norm iff zero less numeral)
then have gauge (λx . ball x

(ε ∗ (INF m∈Basis. b · m − a · m) / ((8 ∗ norm (f x ) + 8 ) ∗
content (cbox a b))))

using 〈0 < content (cbox a b)〉 〈0 < ε〉 a less b
by (auto simp add : gauge def field split simps add nonneg eq 0 iff finite less Inf iff )
then have gauge γ
unfolding γ def using 〈gauge γ0 〉 gauge Int by auto

moreover
have (

∑
(x ,K ) ∈ S . norm (integral K h)) < ε

if c ∈ cbox a b i ∈ Basis and S : S tagged partial division of cbox a b
and γ fine S h ∈ F and ne:

∧
x K . (x ,K ) ∈ S =⇒ K ∩ {x . x · i = c ·

i} 6= {} for c i S h
proof −
have cbox c b ⊆ cbox a b
by (meson mem box (2 ) order refl subset box (1 ) that(1 ))

have finite S
using S unfolding tagged partial division of def by blast

have γ0 fine S and fineS :
(λx . ball x (ε ∗ (INF m∈Basis. b · m − a · m) / ((8 ∗ norm (f x ) + 8 ) ∗

content (cbox a b)))) fine S
using 〈γ fine S 〉 by (auto simp: γ def fine Int)

then have (
∑

(x ,K ) ∈ S . norm (content K ∗R h x − integral K h)) < ε/2
by (intro γ0 that fineS )

moreover have (
∑

(x ,K ) ∈ S . norm (integral K h) − norm (content K ∗R h
x − integral K h)) ≤ ε/2

proof −
have (

∑
(x ,K ) ∈ S . norm (integral K h) − norm (content K ∗R h x −

integral K h))
≤ (

∑
(x ,K ) ∈ S . norm (content K ∗R h x ))

proof (clarify intro!: sum mono)
fix x K
assume xK : (x ,K ) ∈ S
have norm (integral K h) − norm (content K ∗R h x − integral K h) ≤

norm (integral K h − (integral K h − content K ∗R h x ))
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by (metis norm minus commute norm triangle ineq2 )
also have ... ≤ norm (content K ∗R h x )
by simp

finally show norm (integral K h) − norm (content K ∗R h x − integral K
h) ≤ norm (content K ∗R h x ) .

qed
also have ... ≤ (

∑
(x ,K ) ∈ S . ε/4 ∗ (b · i − a · i) / content (cbox a b) ∗

content K / interv diff K i)
proof (clarify intro!: sum mono)
fix x K
assume xK : (x ,K ) ∈ S
then have x : x ∈ cbox a b
using S unfolding tagged partial division of def by (meson subset iff )

show norm (content K ∗R h x ) ≤ ε/4 ∗ (b · i − a · i) / content (cbox a
b) ∗ content K / interv diff K i

proof (cases content K = 0 )
case True
then show ?thesis by simp

next
case False
then have Kgt0 : content K > 0
using zero less measure iff by blast

moreover
obtain u v where uv : K = cbox u v
using S 〈(x ,K ) ∈ S 〉 unfolding tagged partial division of def by blast

then have u less v :
∧
i . i ∈ Basis =⇒ u · i < v · i

using content pos lt eq uv Kgt0 by blast
then have dist uv : dist u v > 0
using that by auto

ultimately have norm (h x ) ≤ (ε ∗ (b · i − a · i)) / (4 ∗ content (cbox
a b) ∗ interv diff K i)

proof −
have dist x u < ε ∗ (INF m∈Basis. b · m − a · m) / (4 ∗ (norm (f x )

+ 1 ) ∗ content (cbox a b)) / 2
dist x v < ε ∗ (INF m∈Basis. b · m − a · m) / (4 ∗ (norm (f x ) +

1 ) ∗ content (cbox a b)) / 2
using fineS u less v uv xK
by (force simp: fine def mem box field simps dest !: bspec)+

moreover have ε ∗ (INF m∈Basis. b · m − a · m) / (4 ∗ (norm (f x )
+ 1 ) ∗ content (cbox a b)) / 2

≤ ε ∗ (b · i − a · i) / (4 ∗ (norm (f x ) + 1 ) ∗ content (cbox a b))
/ 2

proof (intro mult left mono divide right mono)
show (INF m∈Basis. b · m − a · m) ≤ b · i − a · i
using 〈i ∈ Basis〉 by (auto intro!: cInf le finite)

qed (use 〈0 < ε〉 in auto)
ultimately
have dist x u < ε ∗ (b · i − a · i) / (4 ∗ (norm (f x ) + 1 ) ∗ content

(cbox a b)) / 2
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dist x v < ε ∗ (b · i − a · i) / (4 ∗ (norm (f x ) + 1 ) ∗ content (cbox
a b)) / 2

by linarith+
then have duv : dist u v < ε ∗ (b · i − a · i) / (4 ∗ (norm (f x ) + 1 ) ∗

content (cbox a b))
using dist triangle half r by blast

have uvi : |v · i − u · i | ≤ norm (v − u)
by (metis inner commute inner diff right 〈i ∈ Basis〉 Basis le norm)

have norm (h x ) ≤ norm (f x )
using x that by (auto simp: norm f )

also have ... < (norm (f x ) + 1 )
by simp

also have ... < ε ∗ (b · i − a · i) / dist u v / (4 ∗ content (cbox a b))
proof −
have 0 < norm (f x ) + 1
by (simp add : add .commute add pos nonneg)

then show ?thesis
using duv dist uv contab gt0
by (simp only : mult ac divide simps) auto

qed
also have ... = ε ∗ (b · i − a · i) / norm (v − u) / (4 ∗ content (cbox

a b))
by (simp add : dist norm norm minus commute)

also have ... ≤ ε ∗ (b · i − a · i) / |v · i − u · i | / (4 ∗ content (cbox
a b))

proof (intro mult right mono divide left mono divide right mono uvi)
show norm (v − u) ∗ |v · i − u · i | > 0
using u less v [OF 〈i ∈ Basis〉]
by (auto simp: less eq real def zero less mult iff that)

show ε ∗ (b · i − a · i) ≥ 0
using a less b 〈0 < ε〉 〈i ∈ Basis〉 by force

qed auto
also have ... = ε ∗ (b · i − a · i) / (4 ∗ content (cbox a b) ∗ interv diff

K i)
using uv False that(2 ) u less v interv diff def by fastforce

finally show ?thesis by simp
qed
with Kgt0 have norm (content K ∗R h x ) ≤ content K ∗ ((ε/4 ∗ (b · i

− a · i) / content (cbox a b)) / interv diff K i)
using mult left mono by fastforce

also have ... = ε/4 ∗ (b · i − a · i) / content (cbox a b) ∗ content K /
interv diff K i

by (simp add : field split simps)
finally show ?thesis .

qed
qed
also have ... = (

∑
K∈snd ‘ S . ε/4 ∗ (b · i − a · i) / content (cbox a b) ∗

content K / interv diff K i)
unfolding interv diff def
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apply (rule sum.over tagged division lemma [OF tagged partial division of Union self
[OF S ]])

apply (simp add : box eq empty(1 ) content eq 0 )
done

also have ... = ε/2 ∗ ((b · i − a · i) / (2 ∗ content (cbox a b)) ∗ (
∑

K∈snd
‘ S . content K / interv diff K i))

by (simp add : interv diff def sum distrib left mult .assoc)
also have ... ≤ (ε/2 ) ∗ 1
proof (rule mult left mono)
have (b · i − a · i) ∗ (

∑
K∈snd ‘ S . content K / interv diff K i) ≤ 2 ∗

content (cbox a b)
unfolding interv diff def

proof (rule sum content area over thin division)
show snd ‘ S division of

⋃
(snd ‘ S )

by (auto intro: S tagged partial division of Union self division of tagged division)
show

⋃
(snd ‘ S ) ⊆ cbox a b

using S unfolding tagged partial division of def by force
show a · i ≤ c · i c · i ≤ b · i
using mem box (2 ) that by blast+

qed (use that in auto)
then show (b · i − a · i) / (2 ∗ content (cbox a b)) ∗ (

∑
K∈snd ‘ S .

content K / interv diff K i) ≤ 1
by (simp add : contab gt0 )

qed (use 〈0 < ε〉 in auto)
finally show ?thesis by simp

qed
then have (

∑
(x ,K ) ∈ S . norm (integral K h)) − (

∑
(x ,K ) ∈ S . norm (content

K ∗R h x − integral K h)) ≤ ε/2
by (simp add : Groups Big .sum subtractf [symmetric])

ultimately show (
∑

(x ,K ) ∈ S . norm (integral K h)) < ε
by linarith

qed
ultimately show ?thesis using that by auto

qed

proposition equiintegrable halfspace restrictions le:
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes F : F equiintegrable on cbox a b and f : f ∈ F
and norm f :

∧
h x . [[h ∈ F ; x ∈ cbox a b]] =⇒ norm(h x ) ≤ norm(f x )

shows (
⋃
i ∈ Basis.

⋃
c.

⋃
h ∈ F . {(λx . if x · i ≤ c then h x else 0 )})

equiintegrable on cbox a b
proof (cases content(cbox a b) = 0 )
case True
then show ?thesis by simp

next
case False
then have content(cbox a b) > 0
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using zero less measure iff by blast
then have a · i < b · i if i ∈ Basis for i
using content pos lt eq that by blast

have int F : f integrable on cbox a b if f ∈ F for f
using F that by (simp add : equiintegrable on def )

let ?CI = λK h x . content K ∗R h x − integral K h
show ?thesis
unfolding equiintegrable on def

proof (intro conjI ; clarify)
show int lec: [[i ∈ Basis; h ∈ F ]] =⇒ (λx . if x · i ≤ c then h x else 0 )

integrable on cbox a b for i c h
using integrable restrict Int [of {x . x · i ≤ c} h]
by (simp add : inf commute int F integrable split(1 ))

show ∃ γ. gauge γ ∧
(∀ f T . f ∈ (

⋃
i∈Basis.

⋃
c.

⋃
h∈F . {λx . if x · i ≤ c then h x else 0})

∧
T tagged division of cbox a b ∧ γ fine T −→
norm ((

∑
(x ,K ) ∈ T . content K ∗R f x ) − integral (cbox a b) f )

< ε)
if ε > 0 for ε

proof −
obtain γ0 where gauge γ0 and γ0 :∧

c i S h. [[c ∈ cbox a b; i ∈ Basis; S tagged partial division of cbox a b;
γ0 fine S ; h ∈ F ;

∧
x K . (x ,K ) ∈ S =⇒ (K ∩ {x . x · i = c ·

i} 6= {})]]
=⇒ (

∑
(x ,K ) ∈ S . norm (integral K h)) < ε/12

proof (rule bounded equiintegral over thin tagged partial division [OF F f , of
〈ε/12 〉])

show
∧
h x . [[h ∈ F ; x ∈ cbox a b]] =⇒ norm (h x ) ≤ norm (f x )

by (auto simp: norm f )
qed (use 〈ε > 0 〉 in auto)
obtain γ1 where gauge γ1
and γ1 :

∧
h T . [[h ∈ F ; T tagged division of cbox a b; γ1 fine T ]]

=⇒ norm ((
∑

(x ,K ) ∈ T . content K ∗R h x ) − integral
(cbox a b) h)

< ε/(7 ∗ (Suc DIM ( ′b)))
proof −
have e5 : ε/(7 ∗ (Suc DIM ( ′b))) > 0
using 〈ε > 0 〉 by auto

then show ?thesis
using F that by (auto simp: equiintegrable on def )

qed
have h less3 : (

∑
(x ,K ) ∈ T . norm (?CI K h x )) < ε/3

if T tagged partial division of cbox a b γ1 fine T h ∈ F for T h
proof −
have (

∑
(x ,K ) ∈ T . norm (?CI K h x )) ≤ 2 ∗ real DIM ( ′b) ∗ (ε/(7 ∗ Suc

DIM ( ′b)))
proof (rule Henstock lemma part2 [of h a b])
show h integrable on cbox a b
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using that F equiintegrable on def by metis
qed (use that 〈ε > 0 〉 〈gauge γ1 〉 γ1 in auto)
also have ... < ε/3
using 〈ε > 0 〉 by (simp add : divide simps)

finally show ?thesis .
qed
have ∗: norm ((

∑
(x ,K ) ∈ T . content K ∗R f x ) − integral (cbox a b) f ) < ε

if f : f = (λx . if x · i ≤ c then h x else 0 )
and T : T tagged division of cbox a b
and fine: (λx . γ0 x ∩ γ1 x ) fine T and i ∈ Basis h ∈ F for f T i c h

proof (cases a · i ≤ c ∧ c ≤ b · i)
case True
have finite T
using T by blast

define T ′ where T ′ ≡ {(x ,K ) ∈ T . K ∩ {x . x · i ≤ c} 6= {}}
then have T ′ ⊆ T
by auto

then have finite T ′

using 〈finite T 〉 infinite super by blast
have T ′ tagged : T ′ tagged partial division of cbox a b
by (meson T 〈T ′ ⊆ T 〉 tagged division of def tagged partial division subset)
have fine ′: γ0 fine T ′ γ1 fine T ′

using 〈T ′ ⊆ T 〉 fine Int fine subset fine by blast+
have int KK ′: (

∑
(x ,K ) ∈ T . integral K f ) = (

∑
(x ,K ) ∈ T ′. integral K f )

proof (rule sum.mono neutral right [OF 〈finite T 〉 〈T ′ ⊆ T 〉])
show ∀ i ∈ T − T ′. (case i of (x , K ) ⇒ integral K f ) = 0
using f 〈finite T 〉 〈T ′ ⊆ T 〉 integral restrict Int [of {x . x · i ≤ c} h]
by (auto simp: T ′ def Int commute)

qed
have (

∑
(x ,K ) ∈ T . content K ∗R f x ) = (

∑
(x ,K ) ∈ T ′. content K ∗R f

x )
proof (rule sum.mono neutral right [OF 〈finite T 〉 〈T ′ ⊆ T 〉])
show ∀ i ∈ T − T ′. (case i of (x , K ) ⇒ content K ∗R f x ) = 0
using T f 〈finite T 〉 〈T ′ ⊆ T 〉 by (force simp: T ′ def )

qed
moreover have norm ((

∑
(x ,K ) ∈ T ′. content K ∗R f x ) − integral (cbox

a b) f ) < ε
proof −
have ∗: norm y < ε if norm x < ε/3 norm(x − y) ≤ 2 ∗ ε/3 for x y :: ′b
proof −
have norm y ≤ norm x + norm(x − y)
by (metis norm minus commute norm triangle sub)

also have . . . < ε/3 + 2∗ε/3
using that by linarith

also have ... = ε
by simp

finally show ?thesis .
qed
have norm (

∑
(x ,K ) ∈ T ′. ?CI K h x )
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≤ (
∑

(x ,K ) ∈ T ′. norm (?CI K h x ))
by (simp add : norm sum split def )

also have ... < ε/3
by (intro h less3 T ′ tagged fine ′ that)

finally have norm (
∑

(x ,K ) ∈ T ′. ?CI K h x ) < ε/3 .
moreover have integral (cbox a b) f = (

∑
(x ,K ) ∈ T . integral K f )

using int lec that by (auto simp: integral combine tagged division topdown)
moreover have norm (

∑
(x ,K ) ∈ T ′. ?CI K h x − ?CI K f x )

≤ 2∗ε/3
proof −
define T ′′ where T ′′ ≡ {(x ,K ) ∈ T ′. ¬ (K ⊆ {x . x · i ≤ c})}
then have T ′′ ⊆ T ′

by auto
then have finite T ′′

using 〈finite T ′〉 infinite super by blast
have T ′′ tagged : T ′′ tagged partial division of cbox a b
using T ′ tagged 〈T ′′ ⊆ T ′〉 tagged partial division subset by blast

have fine ′′: γ0 fine T ′′ γ1 fine T ′′

using 〈T ′′ ⊆ T ′〉 fine ′ by (blast intro: fine subset)+
have (

∑
(x ,K ) ∈ T ′. ?CI K h x − ?CI K f x )

= (
∑

(x ,K ) ∈ T ′′. ?CI K h x − ?CI K f x )
proof (clarify intro!: sum.mono neutral right [OF 〈finite T ′〉 〈T ′′ ⊆ T ′〉])

fix x K
assume (x ,K ) ∈ T ′ (x ,K ) /∈ T ′′

then have x ∈ K x · i ≤ c {x . x · i ≤ c} ∩ K = K
using T ′′ def T ′ tagged tagged partial division of def by blast+

then show ?CI K h x − ?CI K f x = 0
using integral restrict Int [of {x . x · i ≤ c} h] by (auto simp: f )

qed
moreover have norm (

∑
(x ,K ) ∈ T ′′. ?CI K h x − ?CI K f x ) ≤ 2∗ε/3

proof −
define A where A ≡ {(x ,K ) ∈ T ′′. x · i ≤ c}
define B where B ≡ {(x ,K ) ∈ T ′′. x · i > c}
then have A ⊆ T ′′ B ⊆ T ′′ and disj : A ∩ B = {} and T ′′ eq : T ′′

= A ∪ B
by (auto simp: A def B def )

then have finite A finite B
using 〈finite T ′′〉 by (auto intro: finite subset)

have A tagged : A tagged partial division of cbox a b
using T ′′ tagged 〈A ⊆ T ′′〉 tagged partial division subset by blast

have fineA: γ0 fine A γ1 fine A
using 〈A ⊆ T ′′〉 fine ′′ by (blast intro: fine subset)+

have B tagged : B tagged partial division of cbox a b
using T ′′ tagged 〈B ⊆ T ′′〉 tagged partial division subset by blast

have fineB : γ0 fine B γ1 fine B
using 〈B ⊆ T ′′〉 fine ′′ by (blast intro: fine subset)+

have norm (
∑

(x ,K ) ∈ T ′′. ?CI K h x − ?CI K f x )
≤ (

∑
(x ,K ) ∈ T ′′. norm (?CI K h x − ?CI K f x ))

by (simp add : norm sum split def )
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also have ... = (
∑

(x ,K ) ∈ A. norm (?CI K h x − ?CI K f x )) +
(
∑

(x ,K ) ∈ B . norm (?CI K h x − ?CI K f x ))
by (simp add : sum.union disjoint T ′′ eq disj 〈finite A〉 〈finite B 〉)

also have ... = (
∑

(x ,K ) ∈ A. norm (integral K h − integral K f )) +
(
∑

(x ,K ) ∈ B . norm (?CI K h x + integral K f ))
by (auto simp: A def B def f norm minus commute intro!: sum.cong

arg cong2 [where f= (+)])
also have ... ≤ (

∑
(x ,K )∈A. norm (integral K h)) +

(
∑

(x ,K )∈(λ(x ,K ). (x ,K ∩ {x . x · i ≤ c})) ‘ A. norm
(integral K h))

+ ((
∑

(x ,K )∈B . norm (?CI K h x )) +
(
∑

(x ,K )∈B . norm (integral K h)) +
(
∑

(x ,K )∈(λ(x ,K ). (x ,K ∩ {x . c ≤ x · i})) ‘ B . norm
(integral K h)))

proof (rule add mono)
show (

∑
(x ,K )∈A. norm (integral K h − integral K f ))

≤ (
∑

(x ,K )∈A. norm (integral K h)) +
(
∑

(x ,K )∈(λ(x ,K ). (x ,K ∩ {x . x · i ≤ c})) ‘ A.
norm (integral K h))

proof (subst sum.reindex nontrivial [OF 〈finite A〉], clarsimp)
fix x K L
assume (x ,K ) ∈ A (x ,L) ∈ A
and int ne0 : integral (L ∩ {x . x · i ≤ c}) h 6= 0
and eq : K ∩ {x . x · i ≤ c} = L ∩ {x . x · i ≤ c}

have False if K 6= L
proof −
obtain u v where uv : L = cbox u v

using T ′ tagged 〈(x , L) ∈ A〉 〈A ⊆ T ′′〉 〈T ′′ ⊆ T ′〉 by (blast
dest : tagged partial division ofD)

have interior (K ∩ {x . x · i ≤ c}) = {}
proof (rule tagged division split left inj [OF 〈(x ,K ) ∈ A〉 〈(x ,L)

∈ A〉])
show A tagged division of

⋃
(snd ‘ A)

using A tagged tagged partial division of Union self by auto
show K ∩ {x . x · i ≤ c} = L ∩ {x . x · i ≤ c}
using eq 〈i ∈ Basis〉 by auto

qed (use that in auto)
then show False
using interval split [OF 〈i ∈ Basis〉] int ne0 content eq 0 interior

eq uv by fastforce
qed
then show K = L by blast

next
show (

∑
(x ,K ) ∈ A. norm (integral K h − integral K f ))

≤ (
∑

(x ,K ) ∈ A. norm (integral K h)) +
sum ((λ(x ,K ). norm (integral K h)) ◦ (λ(x ,K ). (x ,K ∩ {x .

x · i ≤ c}))) A
using integral restrict Int [of {x . x · i ≤ c} h] f

by (auto simp: Int commute A def [symmetric] sum.distrib
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[symmetric] intro!: sum mono norm triangle ineq4 )
qed

next
show (

∑
(x ,K )∈B . norm (?CI K h x + integral K f ))
≤ (

∑
(x ,K )∈B . norm (?CI K h x )) + (

∑
(x ,K )∈B . norm

(integral K h)) +
(
∑

(x ,K )∈(λ(x ,K ). (x ,K ∩ {x . c ≤ x · i})) ‘ B . norm (integral
K h))

proof (subst sum.reindex nontrivial [OF 〈finite B 〉], clarsimp)
fix x K L
assume (x ,K ) ∈ B (x ,L) ∈ B
and int ne0 : integral (L ∩ {x . c ≤ x · i}) h 6= 0
and eq : K ∩ {x . c ≤ x · i} = L ∩ {x . c ≤ x · i}

have False if K 6= L
proof −
obtain u v where uv : L = cbox u v

using T ′ tagged 〈(x , L) ∈ B 〉 〈B ⊆ T ′′〉 〈T ′′ ⊆ T ′〉 by (blast
dest : tagged partial division ofD)

have interior (K ∩ {x . c ≤ x · i}) = {}
proof (rule tagged division split right inj [OF 〈(x ,K ) ∈ B 〉 〈(x ,L)

∈ B 〉])
show B tagged division of

⋃
(snd ‘ B)

using B tagged tagged partial division of Union self by auto
show K ∩ {x . c ≤ x · i} = L ∩ {x . c ≤ x · i}
using eq 〈i ∈ Basis〉 by auto

qed (use that in auto)
then show False
using interval split [OF 〈i ∈ Basis〉] int ne0
content eq 0 interior eq uv by fastforce

qed
then show K = L by blast

next
show (

∑
(x ,K ) ∈ B . norm (?CI K h x + integral K f ))

≤ (
∑

(x ,K ) ∈ B . norm (?CI K h x )) +
(
∑

(x ,K ) ∈ B . norm (integral K h)) + sum ((λ(x ,K ). norm
(integral K h)) ◦ (λ(x ,K ). (x ,K ∩ {x . c ≤ x · i}))) B

proof (clarsimp simp: B def [symmetric] sum.distrib [symmetric]
intro!: sum mono)

fix x K
assume (x ,K ) ∈ B
have ∗: i = i1 + i2 =⇒ norm(c + i1 ) ≤ norm c + norm i +

norm(i2 )
for i :: ′b and c i1 i2
by (metis add .commute add .left commute add diff cancel right ′

dual order .refl norm add rule thm norm triangle ineq4 )
obtain u v where uv : K = cbox u v

using T ′ tagged 〈(x ,K ) ∈ B 〉 〈B ⊆ T ′′〉 〈T ′′ ⊆ T ′〉 by (blast
dest : tagged partial division ofD)

have huv : h integrable on cbox u v
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proof (rule integrable on subcbox )
show cbox u v ⊆ cbox a b

using B tagged 〈(x ,K ) ∈ B 〉 uv by (blast dest : tagged partial division ofD)
show h integrable on cbox a b
by (simp add : int F 〈h ∈ F 〉)

qed
have integral K h = integral K f + integral (K ∩ {x . c ≤ x · i}) h
using integral restrict Int [of {x . x · i ≤ c} h] f uv 〈i ∈ Basis〉

by (simp add : Int commute integral split [OF huv 〈i ∈ Basis〉])
then show norm (?CI K h x + integral K f )

≤ norm (?CI K h x ) + norm (integral K h) + norm
(integral (K ∩ {x . c ≤ x · i}) h)

by (rule ∗)
qed

qed
qed
also have ... ≤ 2∗ε/3
proof −
have overlap: K ∩ {x . x · i = c} 6= {} if (x ,K ) ∈ T ′′ for x K
proof −
obtain y y ′ where y : y ′ ∈ K c < y ′ · i y ∈ K y · i ≤ c
using that T ′′ def T ′ def 〈(x ,K ) ∈ T ′′〉 by fastforce

obtain u v where uv : K = cbox u v
using T ′′ tagged 〈(x ,K ) ∈ T ′′〉 by (blast dest : tagged partial division ofD)

then have connected K
by (simp add : is interval connected)

then have (∃ z ∈ K . z · i = c)
using y connected ivt component by fastforce

then show ?thesis
by fastforce

qed
have ∗∗: [[x < ε/12 ; y < ε/12 ; z ≤ ε/2 ]] =⇒ x + y + z ≤ 2 ∗ ε/3

for x y z
by auto

show ?thesis
proof (rule ∗∗)

have cb ab: (
∑

j ∈ Basis. if j = i then c ∗R i else (a · j ) ∗R j ) ∈
cbox a b

using 〈i ∈ Basis〉 True 〈
∧
i . i ∈ Basis =⇒ a · i < b · i 〉

by (force simp add : mem box sum if inner [where f = λj . c])
show (

∑
(x ,K ) ∈ A. norm (integral K h)) < ε/12

using 〈i ∈ Basis〉 〈A ⊆ T ′′〉 overlap
by (force simp add : sum if inner [where f = λj . c]

intro!: γ0 [OF cb ab 〈i ∈ Basis〉 A tagged fineA(1 ) 〈h ∈ F 〉])
let ?F = λ(x ,K ). (x , K ∩ {x . x · i ≤ c})
have 1 : ?F ‘ A tagged partial division of cbox a b
unfolding tagged partial division of def

proof (intro conjI strip)
show

∧
x K . (x , K ) ∈ ?F ‘ A =⇒ ∃ a b. K = cbox a b
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using A tagged interval split(1 ) [OF 〈i ∈ Basis〉, of c]
by (force dest : tagged partial division ofD(4 ))

show
∧
x K . (x , K ) ∈ ?F ‘ A =⇒ x ∈ K

using A def A tagged by (fastforce dest : tagged partial division ofD)
qed (use A tagged in 〈fastforce dest : tagged partial division ofD 〉)+
have 2 : γ0 fine (λ(x ,K ). (x ,K ∩ {x . x · i ≤ c})) ‘ A
using fineA(1 ) fine def by fastforce

show (
∑

(x ,K ) ∈ (λ(x ,K ). (x ,K ∩ {x . x · i ≤ c})) ‘ A. norm (integral
K h)) < ε/12

using 〈i ∈ Basis〉 〈A ⊆ T ′′〉 overlap
by (force simp add : sum if inner [where f = λj . c]

intro!: γ0 [OF cb ab 〈i ∈ Basis〉 1 2 〈h ∈ F 〉])
have ∗: [[x < ε/3 ; y < ε/12 ; z < ε/12 ]] =⇒ x + y + z ≤ ε/2 for x

y z
by auto

show (
∑

(x ,K ) ∈ B . norm (?CI K h x )) +
(
∑

(x ,K ) ∈ B . norm (integral K h)) +
(
∑

(x ,K ) ∈ (λ(x ,K ). (x ,K ∩ {x . c ≤ x · i})) ‘ B . norm (integral
K h))

≤ ε/2
proof (rule ∗)
show (

∑
(x ,K ) ∈ B . norm (?CI K h x )) < ε/3

by (intro h less3 B tagged fineB that)
show (

∑
(x ,K ) ∈ B . norm (integral K h)) < ε/12

using 〈i ∈ Basis〉 〈B ⊆ T ′′〉 overlap
by (force simp add : sum if inner [where f = λj . c]

intro!: γ0 [OF cb ab 〈i ∈ Basis〉 B tagged fineB(1 ) 〈h ∈ F 〉])
let ?F = λ(x ,K ). (x , K ∩ {x . c ≤ x · i})
have 1 : ?F ‘ B tagged partial division of cbox a b
unfolding tagged partial division of def

proof (intro conjI strip)
show

∧
x K . (x , K ) ∈ ?F ‘ B =⇒ ∃ a b. K = cbox a b

using B tagged interval split(2 ) [OF 〈i ∈ Basis〉, of c]
by (force dest : tagged partial division ofD(4 ))

show
∧
x K . (x , K ) ∈ ?F ‘ B =⇒ x ∈ K

using B def B tagged by (fastforce dest : tagged partial division ofD)
qed (use B tagged in 〈fastforce dest : tagged partial division ofD 〉)+
have 2 : γ0 fine (λ(x ,K ). (x ,K ∩ {x . c ≤ x · i})) ‘ B
using fineB(1 ) fine def by fastforce
show (

∑
(x ,K ) ∈ (λ(x ,K ). (x ,K ∩ {x . c ≤ x · i})) ‘ B . norm

(integral K h)) < ε/12
using 〈i ∈ Basis〉 〈A ⊆ T ′′〉 overlap
by (force simp add : B def sum if inner [where f = λj . c]

intro!: γ0 [OF cb ab 〈i ∈ Basis〉 1 2 〈h ∈ F 〉])
qed

qed
qed
finally show ?thesis .

qed
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ultimately show ?thesis by metis
qed
ultimately show ?thesis
by (simp add : sum subtractf [symmetric] int KK ′ ∗)

qed
ultimately show ?thesis by metis

next
case False
then consider c < a · i | b · i < c
by auto

then show ?thesis
proof cases
case 1
then have f0 : f x = 0 if x ∈ cbox a b for x
using that f 〈i ∈ Basis〉 mem box (2 ) by force

then have int f0 : integral (cbox a b) f = 0
by (simp add : integral cong)

have f0 tag : f x = 0 if (x ,K ) ∈ T for x K
using T f0 that by (meson tag in interval)

then have (
∑

(x ,K ) ∈ T . content K ∗R f x ) = 0
by (metis (mono tags, lifting) real vector .scale eq 0 iff split conv

sum.neutral surj pair)
then show ?thesis
using 〈0 < ε〉 by (simp add : int f0 )

next
case 2
then have fh: f x = h x if x ∈ cbox a b for x
using that f 〈i ∈ Basis〉 mem box (2 ) by force

then have int f : integral (cbox a b) f = integral (cbox a b) h
using integral cong by blast

have fh tag : f x = h x if (x ,K ) ∈ T for x K
using T fh that by (meson tag in interval)

then have fh: (
∑

(x ,K ) ∈ T . content K ∗R f x ) = (
∑

(x ,K ) ∈ T . content
K ∗R h x )

by (metis (mono tags, lifting) split cong sum.cong)
show ?thesis
unfolding fh int f

proof (rule less trans [OF γ1 ])
show γ1 fine T
by (meson fine fine Int)

show ε / (7 ∗ Suc DIM ( ′b)) < ε
using 〈0 < ε〉 by (force simp: divide simps)+

qed (use that in auto)
qed

qed
have gauge (λx . γ0 x ∩ γ1 x )
by (simp add : 〈gauge γ0 〉 〈gauge γ1 〉 gauge Int)

then show ?thesis
by (auto intro: ∗)
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qed
qed

qed

corollary equiintegrable halfspace restrictions ge:
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes F : F equiintegrable on cbox a b and f : f ∈ F
and norm f :

∧
h x . [[h ∈ F ; x ∈ cbox a b]] =⇒ norm(h x ) ≤ norm(f x )

shows (
⋃
i ∈ Basis.

⋃
c.

⋃
h ∈ F . {(λx . if x · i ≥ c then h x else 0 )})

equiintegrable on cbox a b
proof −
have ∗: (

⋃
i∈Basis.

⋃
c.

⋃
h∈(λf . f ◦ uminus) ‘ F . {λx . if x · i ≤ c then h x

else 0})
equiintegrable on cbox (− b) (− a)

proof (rule equiintegrable halfspace restrictions le)
show (λf . f ◦ uminus) ‘ F equiintegrable on cbox (− b) (− a)
using F equiintegrable reflect by blast

show f ◦ uminus ∈ (λf . f ◦ uminus) ‘ F
using f by auto

show
∧
h x . [[h ∈ (λf . f ◦ uminus) ‘ F ; x ∈ cbox (− b) (− a)]] =⇒ norm (h

x ) ≤ norm ((f ◦ uminus) x )
using f unfolding comp def image iff

by (metis (no types, lifting) equation minus iff imageE norm f uminus interval vector)
qed
have eq : (λf . f ◦ uminus) ‘

(
⋃

i∈Basis.
⋃
c.

⋃
h∈F . {λx . if x · i ≤ c then (h ◦ uminus) x else 0})

=
(
⋃
i∈Basis.

⋃
c.

⋃
h∈F . {λx . if c ≤ x · i then h x else 0}) (is ?lhs =

?rhs)
proof
show ?lhs ⊆ ?rhs
using minus le iff by fastforce

show ?rhs ⊆ ?lhs
apply clarsimp
apply (rule tac x=λx . if c ≤ (−x ) · i then h(−x ) else 0 in image eqI )
using le minus iff by fastforce+

qed
show ?thesis
using equiintegrable reflect [OF ∗] by (auto simp: eq)

qed

corollary equiintegrable halfspace restrictions lt :
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes F : F equiintegrable on cbox a b and f : f ∈ F
and norm f :

∧
h x . [[h ∈ F ; x ∈ cbox a b]] =⇒ norm(h x ) ≤ norm(f x )

shows (
⋃

i ∈ Basis.
⋃
c.

⋃
h ∈ F . {(λx . if x · i < c then h x else 0 )}) equiin-

tegrable on cbox a b
(is ?G equiintegrable on cbox a b)
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proof −
have ∗: (

⋃
i∈Basis.

⋃
c.

⋃
h∈F . {λx . if c ≤ x · i then h x else 0}) equiinte-

grable on cbox a b
using equiintegrable halfspace restrictions ge [OF F f ] norm f by auto

have (λx . if x · i < c then h x else 0 ) = (λx . h x − (if c ≤ x · i then h x else
0 ))

if i ∈ Basis h ∈ F for i c h
using that by force

then show ?thesis
by (blast intro: equiintegrable on subset [OF equiintegrable diff [OF F ∗]])

qed

corollary equiintegrable halfspace restrictions gt :
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes F : F equiintegrable on cbox a b and f : f ∈ F
and norm f :

∧
h x . [[h ∈ F ; x ∈ cbox a b]] =⇒ norm(h x ) ≤ norm(f x )

shows (
⋃
i ∈ Basis.

⋃
c.

⋃
h ∈ F . {(λx . if x · i > c then h x else 0 )}) equiin-

tegrable on cbox a b
(is ?G equiintegrable on cbox a b)

proof −
have ∗: (

⋃
i∈Basis.

⋃
c.

⋃
h∈F . {λx . if c ≥ x · i then h x else 0}) equiinte-

grable on cbox a b
using equiintegrable halfspace restrictions le [OF F f ] norm f by auto

have (λx . if x · i > c then h x else 0 ) = (λx . h x − (if c ≥ x · i then h x else
0 ))

if i ∈ Basis h ∈ F for i c h
using that by force

then show ?thesis
by (blast intro: equiintegrable on subset [OF equiintegrable diff [OF F ∗]])

qed

proposition equiintegrable closed interval restrictions:
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes f : f integrable on cbox a b
shows (

⋃
c d . {(λx . if x ∈ cbox c d then f x else 0 )}) equiintegrable on cbox a b

proof −
let ?g = λB c d x . if ∀ i∈B . c · i ≤ x · i ∧ x · i ≤ d · i then f x else 0
have ∗: insert f (

⋃
c d . {?g B c d}) equiintegrable on cbox a b if B ⊆ Basis for

B
proof −
have finite B
using finite Basis finite subset 〈B ⊆ Basis〉 by blast

then show ?thesis using 〈B ⊆ Basis〉

proof (induction B)
case empty
with f show ?case by auto

next
case (insert i B)
then have i ∈ Basis B ⊆ Basis
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by auto
have ∗: norm (h x ) ≤ norm (f x )
if h ∈ insert f (

⋃
c d . {?g B c d}) x ∈ cbox a b for h x

using that by auto
define F where F ≡ (

⋃
i∈Basis.⋃

ξ.
⋃
h∈insert f (

⋃
i∈Basis.

⋃
ψ.

⋃
h∈insert f (

⋃
c d . {?g B c d}).

{λx . if x · i ≤ ψ then h x else 0}).
{λx . if ξ ≤ x · i then h x else 0})

show ?case
proof (rule equiintegrable on subset)
have F equiintegrable on cbox a b
unfolding F def

proof (rule equiintegrable halfspace restrictions ge)
show insert f (

⋃
i∈Basis.

⋃
ξ.

⋃
h∈insert f (

⋃
c d . {?g B c d}).

{λx . if x · i ≤ ξ then h x else 0}) equiintegrable on cbox a b
by (intro ∗ f equiintegrable on insert equiintegrable halfspace restrictions le

[OF insert .IH insertI1 ] 〈B ⊆ Basis〉)
show norm(h x ) ≤ norm(f x )
if h ∈ insert f (

⋃
i∈Basis.

⋃
ξ.

⋃
h∈insert f (

⋃
c d . {?g B c d}). {λx .

if x · i ≤ ξ then h x else 0})
x ∈ cbox a b for h x

using that by auto
qed auto
then show insert f F

equiintegrable on cbox a b
by (blast intro: f equiintegrable on insert)

show insert f (
⋃
c d . {λx . if ∀ j∈insert i B . c · j ≤ x · j ∧ x · j ≤ d · j

then f x else 0})
⊆ insert f F

using 〈i ∈ Basis〉

apply clarify
apply (simp add : F def )
apply (drule tac x=i in bspec, assumption)
apply (drule tac x=c · i in spec, clarify)
apply (drule tac x=i in bspec, assumption)
apply (drule tac x=d · i in spec)
apply (clarsimp simp: fun eq iff )
apply (drule tac x=c in spec)
apply (drule tac x=d in spec)
apply (simp split : if split asm)
done

qed
qed

qed
show ?thesis
by (rule equiintegrable on subset [OF ∗ [OF subset refl ]]) (auto simp: mem box )

qed
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6.27.3 Continuity of the indefinite integral

proposition indefinite integral continuous:
fixes f :: ′a :: euclidean space ⇒ ′b :: euclidean space
assumes int f : f integrable on cbox a b

and c: c ∈ cbox a b and d : d ∈ cbox a b 0 < ε
obtains δ where 0 < δ∧

c ′ d ′. [[c ′ ∈ cbox a b; d ′ ∈ cbox a b; norm(c ′ − c) ≤ δ; norm(d ′ −
d) ≤ δ]]

=⇒ norm(integral(cbox c ′ d ′) f − integral(cbox c d) f ) < ε
proof −
{ assume ∃ c ′ d ′. c ′ ∈ cbox a b ∧ d ′ ∈ cbox a b ∧ norm(c ′ − c) ≤ δ ∧ norm(d ′

− d) ≤ δ ∧
norm(integral(cbox c ′ d ′) f − integral(cbox c d) f ) ≥ ε
(is ∃ c ′ d ′. ?Φ c ′ d ′ δ) if 0 < δ for δ

then have ∃ c ′ d ′. ?Φ c ′ d ′ (1 / Suc n) for n
by simp

then obtain u v where
∧
n. ?Φ (u n) (v n) (1 / Suc n)

by metis
then have u: u n ∈ cbox a b and norm u: norm(u n − c) ≤ 1 / Suc n

and v : v n ∈ cbox a b and norm v : norm(v n − d) ≤ 1 / Suc n
and ε: ε ≤ norm (integral (cbox (u n) (v n)) f − integral (cbox c d) f ) for

n
by blast+

then have False
proof −
have uvn: cbox (u n) (v n) ⊆ cbox a b for n
by (meson u v mem box (2 ) subset box (1 ))

define S where S ≡
⋃
i ∈ Basis. {x . x · i = c · i} ∪ {x . x · i = d · i}

have negligible S
unfolding S def by force

then have int f ′: (λx . if x ∈ S then 0 else f x ) integrable on cbox a b
by (force intro: integrable spike assms)

have get n: ∃n. ∀m≥n. x ∈ cbox (u m) (v m) ←→ x ∈ cbox c d if x : x /∈ S
for x

proof −
define ε where ε ≡ Min ((λi . min |x · i − c · i | |x · i − d · i |) ‘ Basis)
have ε > 0
using 〈x /∈ S 〉 by (auto simp: S def ε def )

then obtain n where n 6= 0 and n: 1 / (real n) < ε
by (metis inverse eq divide real arch inverse)

have emin: ε ≤ min |x · i − c · i | |x · i − d · i | if i ∈ Basis for i
unfolding ε def
by (meson Min.coboundedI euclidean space class.finite Basis finite imageI

image iff that)
have 1 / real (Suc n) < ε
using n 〈n 6= 0 〉 〈ε > 0 〉 by (simp add : field simps)

have x ∈ cbox (u m) (v m) ←→ x ∈ cbox c d if m ≥ n for m
proof −
have ∗: [[|u − c| ≤ n; |v − d | ≤ n; N < |x − c|; N < |x − d |; n ≤ N ]]
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=⇒ u ≤ x ∧ x ≤ v ←→ c ≤ x ∧ x ≤ d for N n u v c d and x ::real
by linarith

have (u m · i ≤ x · i ∧ x · i ≤ v m · i) = (c · i ≤ x · i ∧ x · i ≤ d · i)
if i ∈ Basis for i

proof (rule ∗)
show |u m · i − c · i | ≤ 1 / Suc m
using norm u [of m]

by (metis (full types) order trans Basis le norm inner commute
inner diff right that)

show |v m · i − d · i | ≤ 1 / real (Suc m)
using norm v [of m]

by (metis (full types) order trans Basis le norm inner commute
inner diff right that)

show 1/n < |x · i − c · i | 1/n < |x · i − d · i |
using n 〈n 6= 0 〉 emin [OF 〈i ∈ Basis〉]
by (simp all add : inverse eq divide)

show 1 / real (Suc m) ≤ 1 / real n
using 〈n 6= 0 〉 〈m ≥ n〉 by (simp add : field split simps)

qed
then show ?thesis by (simp add : mem box )

qed
then show ?thesis by blast

qed
have 1 : range (λn x . if x ∈ cbox (u n) (v n) then if x ∈ S then 0 else f x else

0 ) equiintegrable on cbox a b
by (blast intro: equiintegrable on subset [OF equiintegrable closed interval restrictions

[OF int f ′]])
have 2 : (λn. if x ∈ cbox (u n) (v n) then if x ∈ S then 0 else f x else 0 )

−−−−→ (if x ∈ cbox c d then if x ∈ S then 0 else f x else 0 ) for x
by (fastforce simp: dest : get n intro: tendsto eventually eventually sequentiallyI )
have [simp]: cbox c d ∩ cbox a b = cbox c d
using c d by (force simp: mem box )

have [simp]: cbox (u n) (v n) ∩ cbox a b = cbox (u n) (v n) for n
using u v by (fastforce simp: mem box intro: order .trans)

have
∧
y A. y ∈ A − S =⇒ f y = (λx . if x ∈ S then 0 else f x ) y

by simp
then have

∧
A. integral A (λx . if x ∈ S then 0 else f (x )) = integral A (λx .

f (x ))
by (blast intro: integral spike [OF 〈negligible S 〉])

moreover
obtain N where dist (integral (cbox (u N ) (v N )) (λx . if x ∈ S then 0 else

f x ))
(integral (cbox c d) (λx . if x ∈ S then 0 else f x )) < ε

using equiintegrable limit [OF 1 2 ] 〈0 < ε〉 by (force simp: integral restrict Int
lim sequentially)

ultimately have dist (integral (cbox (u N ) (v N )) f ) (integral (cbox c d) f )
< ε

by simp
then show False
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by (metis dist norm not le ε)
qed

}
then show ?thesis
by (meson not le that)

qed

corollary indefinite integral uniformly continuous:
fixes f :: ′a :: euclidean space ⇒ ′b :: euclidean space
assumes f integrable on cbox a b
shows uniformly continuous on (cbox (Pair a a) (Pair b b)) (λy . integral (cbox

(fst y) (snd y)) f )
proof −
show ?thesis
proof (rule compact uniformly continuous, clarsimp simp add : continuous on iff )
fix c d and ε::real
assume c: c ∈ cbox a b and d : d ∈ cbox a b and 0 < ε
obtain δ where 0 < δ and δ:∧

c ′ d ′. [[c ′ ∈ cbox a b; d ′ ∈ cbox a b; norm(c ′ − c) ≤ δ; norm(d ′ −
d) ≤ δ]]

=⇒ norm(integral(cbox c ′ d ′) f −
integral(cbox c d) f ) < ε

using indefinite integral continuous 〈0 < ε〉 assms c d by blast
show ∃ δ > 0 . ∀ x ′ ∈ cbox (a, a) (b, b).

dist x ′ (c, d) < δ −→
dist (integral (cbox (fst x ′) (snd x ′)) f )

(integral (cbox c d) f )
< ε

using 〈0 < δ〉

by (force simp: dist norm intro: δ order trans [OF norm fst le] order trans
[OF norm snd le] less imp le)
qed auto

qed

corollary bounded integrals over subintervals:
fixes f :: ′a :: euclidean space ⇒ ′b :: euclidean space
assumes f integrable on cbox a b
shows bounded {integral (cbox c d) f |c d . cbox c d ⊆ cbox a b}

proof −
have bounded ((λy . integral (cbox (fst y) (snd y)) f ) ‘ cbox (a, a) (b, b))

(is bounded ?I )
by (blast intro: bounded cbox bounded uniformly continuous image indefinite integral uniformly continuous

[OF assms])
then obtain B where B > 0 and B :

∧
x . x ∈ ?I =⇒ norm x ≤ B

by (auto simp: bounded pos)
have norm x ≤ B if x = integral (cbox c d) f cbox c d ⊆ cbox a b for x c d
proof (cases cbox c d = {})
case True
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with 〈0 < B 〉 that show ?thesis by auto
next
case False
then have ∃ x ∈ cbox (a,a) (b,b). integral (cbox c d) f = integral (cbox (fst

x ) (snd x )) f
using that by (metis cbox Pair iff interval subset is interval is interval cbox

prod .sel)
then show ?thesis
using B that(1 ) by blast

qed
then show ?thesis
by (blast intro: boundedI )

qed

An existence theorem for ”improper” integrals. Hake’s theorem implies
that if the integrals over subintervals have a limit, the integral exists. We
only need to assume that the integrals are bounded, and we get absolute
integrability, but we also need a (rather weak) bound assumption on the
function.

theorem absolutely integrable improper :
fixes f :: ′M ::euclidean space ⇒ ′N ::euclidean space
assumes int f :

∧
c d . cbox c d ⊆ box a b =⇒ f integrable on cbox c d

and bo: bounded {integral (cbox c d) f |c d . cbox c d ⊆ box a b}
and absi :

∧
i . i ∈ Basis

=⇒ ∃ g . g absolutely integrable on cbox a b ∧
((∀ x ∈ cbox a b. f x · i ≤ g x ) ∨ (∀ x ∈ cbox a b. f x · i ≥ g x ))

shows f absolutely integrable on cbox a b
proof (cases content(cbox a b) = 0 )
case True
then show ?thesis
by auto

next
case False
then have pos: content(cbox a b) > 0
using zero less measure iff by blast

show ?thesis
unfolding absolutely integrable componentwise iff [where f = f ]

proof
fix j :: ′N
assume j ∈ Basis
then obtain g where absint g : g absolutely integrable on cbox a b

and g : (∀ x ∈ cbox a b. f x · j ≤ g x ) ∨ (∀ x ∈ cbox a b. f x · j ≥
g x )

using absi by blast
have int gab: g integrable on cbox a b
using absint g set lebesgue integral eq integral(1 ) by blast

define α where α ≡ λk . a + (b − a) /R real k
define β where β ≡ λk . b − (b − a) /R real k
define I where I ≡ λk . cbox (α k) (β k)
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have ISuc box : I (Suc n) ⊆ box a b for n
using pos unfolding I def
by (intro subset box imp) (auto simp: α def β def content pos lt eq alge-

bra simps)
have ISucSuc: I (Suc n) ⊆ I (Suc (Suc n)) for n
proof −
have

∧
i . i ∈ Basis
=⇒ a · i / Suc n + b · i / (real n + 2 ) ≤ b · i / Suc n + a · i /

(real n + 2 )
using pos
by (simp add : content pos lt eq divide simps) (auto simp: algebra simps)

then show ?thesis
unfolding I def
by (intro subset box imp) (auto simp: algebra simps inverse eq divide α def

β def )
qed
have getN : ∃N ::nat . ∀ k . k ≥ N −→ x ∈ I k
if x : x ∈ box a b for x

proof −
define ∆ where ∆ ≡ (

⋃
i ∈ Basis. {((x − a) · i) / ((b − a) · i), (b − x ) ·

i / ((b − a) · i)})
obtain N where N : real N > 1 / Inf ∆
using reals Archimedean2 by blast

moreover have ∆: Inf ∆ > 0
using that by (auto simp: ∆ def finite less Inf iff mem box algebra simps

divide simps)
ultimately have N > 0
using of nat 0 less iff by fastforce

show ?thesis
proof (intro exI impI allI )
fix k assume N ≤ k
with 〈0 < N 〉 have k > 0
by linarith

have xa gt : (x − a) · i > ((b − a) · i) / (real k) if i ∈ Basis for i
proof −
have ∗: Inf ∆ ≤ ((x − a) · i) / ((b − a) · i)
unfolding ∆ def using that by (force intro: cInf le finite)

have 1 / Inf ∆ ≥ ((b − a) · i) / ((x − a) · i)
using le imp inverse le [OF ∗ ∆]
by (simp add : field simps)

with N have k > ((b − a) · i) / ((x − a) · i)
using 〈N ≤ k 〉 by linarith

with x that show ?thesis
by (auto simp: mem box algebra simps field split simps)

qed
have bx gt : (b − x ) · i > ((b − a) · i) / k if i ∈ Basis for i
proof −
have ∗: Inf ∆ ≤ ((b − x ) · i) / ((b − a) · i)
using that unfolding ∆ def by (force intro: cInf le finite)
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have 1 / Inf ∆ ≥ ((b − a) · i) / ((b − x ) · i)
using le imp inverse le [OF ∗ ∆]
by (simp add : field simps)

with N have k > ((b − a) · i) / ((b − x ) · i)
using 〈N ≤ k 〉 by linarith

with x that show ?thesis
by (auto simp: mem box algebra simps field split simps)

qed
show x ∈ I k
using that ∆ 〈k > 0 〉 unfolding I def
by (auto simp: α def β def mem box algebra simps divide inverse dest :

xa gt bx gt)
qed

qed
obtain Bf where Bf :

∧
c d . cbox c d ⊆ box a b =⇒ norm (integral (cbox c

d) f ) ≤ Bf
using bo unfolding bounded iff by blast

obtain Bg where Bg :
∧
c d . cbox c d ⊆ cbox a b =⇒ |integral (cbox c d) g | ≤

Bg
using bounded integrals over subintervals [OF int gab] unfolding bounded iff

real norm def by blast
show (λx . f x · j ) absolutely integrable on cbox a b
using g

proof — A lot of duplication in the two proofs
assume fg [rule format ]: ∀ x∈cbox a b. f x · j ≤ g x
have (λx . (f x · j )) = (λx . g x − (g x − (f x · j )))
by simp

moreover have (λx . g x − (g x − (f x · j ))) integrable on cbox a b
proof (rule Henstock Kurzweil Integration.integrable diff [OF int gab])
define ϕ where ϕ ≡ λk x . if x ∈ I (Suc k) then g x − f x · j else 0
have (λx . g x − f x · j ) integrable on box a b
proof (rule monotone convergence increasing [of ϕ, THEN conjunct1 ])
have ∗: I (Suc k) ∩ box a b = I (Suc k) for k
using box subset cbox ISuc box by fastforce

show ϕ k integrable on box a b for k
proof −
have I (Suc k) ⊆ cbox a b
using ∗ box subset cbox by blast

moreover have (λm. f m · j ) integrable on I (Suc k)
by (metis ISuc box I def int f integrable component)

ultimately have (λm. g m − f m · j ) integrable on I (Suc k)
by (metis Henstock Kurzweil Integration.integrable diff I def int gab

integrable on subcbox )
then show ?thesis
by (simp add : ∗ ϕ def integrable restrict Int)

qed
show ϕ k x ≤ ϕ (Suc k) x if x ∈ box a b for k x
using ISucSuc box subset cbox that by (force simp: ϕ def intro!: fg)

show (λk . ϕ k x ) −−−−→ g x − f x · j if x : x ∈ box a b for x
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proof (rule tendsto eventually)
obtain N ::nat where N :

∧
k . k ≥ N =⇒ x ∈ I k

using getN [OF x ] by blast
show ∀ F k in sequentially . ϕ k x = g x − f x · j
proof
fix k ::nat assume N ≤ k
have x ∈ I (Suc k)
by (metis 〈N ≤ k 〉 le Suc eq N )

then show ϕ k x = g x − f x · j
by (simp add : ϕ def )

qed
qed
have |integral (box a b) (λx . if x ∈ I (Suc k) then g x − f x · j else 0 )| ≤

Bg + Bf for k
proof −
have ABK def [simp]: I (Suc k) ∩ box a b = I (Suc k)
using ISuc box by (simp add : Int absorb2 )

have int fI : f integrable on I (Suc k)
using ISuc box I def int f by auto

moreover
have |integral (I (Suc k)) (λx . f x · j )| ≤ norm (integral (I (Suc k)) f )
by (simp add : Basis le norm int fI 〈j ∈ Basis〉)

with ISuc box ABK def have |integral (I (Suc k)) (λx . f x · j )| ≤ Bf
by (metis Bf I def 〈j ∈ Basis〉 int fI integral component eq norm bound Basis le)

ultimately
have |integral (I (Suc k)) g − integral (I (Suc k)) (λx . f x · j )| ≤ Bg

+ Bf
using ∗ box subset cbox unfolding I def
by (blast intro: Bg add mono order trans [OF abs triangle ineq4 ])

moreover have g integrable on I (Suc k)
by (metis ISuc box I def int gab integrable on open interval inte-

grable on subcbox )
moreover have (λx . f x · j ) integrable on I (Suc k)
using int fI by (simp add : integrable component)

ultimately show ?thesis
by (simp add : integral restrict Int integral diff )

qed
then show bounded (range (λk . integral (box a b) (ϕ k)))
by (auto simp add : bounded iff ϕ def )

qed
then show (λx . g x − f x · j ) integrable on cbox a b
by (simp add : integrable on open interval)

qed
ultimately have (λx . f x · j ) integrable on cbox a b
by auto

then show ?thesis
using absolutely integrable component ubound [OF absint g ] fg by force

next
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assume gf [rule format ]: ∀ x∈cbox a b. g x ≤ f x · j
have (λx . (f x · j )) = (λx . ((f x · j ) − g x ) + g x )
by simp

moreover have (λx . (f x · j − g x ) + g x ) integrable on cbox a b
proof (rule Henstock Kurzweil Integration.integrable add [OF int gab])
let ?ϕ = λk x . if x ∈ I (Suc k) then f x · j − g x else 0
have (λx . f x · j − g x ) integrable on box a b
proof (rule monotone convergence increasing [of ?ϕ, THEN conjunct1 ])
have ∗: I (Suc k) ∩ box a b = I (Suc k) for k
using box subset cbox ISuc box by fastforce

show ?ϕ k integrable on box a b for k
proof (simp add : integrable restrict Int integral restrict Int ∗)
show (λx . f x · j − g x ) integrable on I (Suc k)

by (metis ISuc box Henstock Kurzweil Integration.integrable diff I def int f
int gab integrable component integrable on open interval integrable on subcbox )

qed
show ?ϕ k x ≤ ?ϕ (Suc k) x if x ∈ box a b for k x
using ISucSuc box subset cbox that by (force simp: I def intro!: gf )

show (λk . ?ϕ k x ) −−−−→ f x · j − g x if x : x ∈ box a b for x
proof (rule tendsto eventually)
obtain N ::nat where N :

∧
k . k ≥ N =⇒ x ∈ I k

using getN [OF x ] by blast
then show ∀ F k in sequentially . ?ϕ k x = f x · j − g x
by (metis (no types, lifting) eventually at top linorderI le Suc eq)

qed
have |integral (box a b)

(λx . if x ∈ I (Suc k) then f x · j − g x else 0 )| ≤ Bf + Bg for k
proof −
define ABK where ABK ≡ cbox (a + (b − a) /R (1 + real k)) (b −

(b − a) /R (1 + real k))
have ABK eq [simp]: ABK ∩ box a b = ABK
using ∗ I def α def β def ABK def by auto

have int fI : f integrable on ABK
unfolding ABK def
using ISuc box I def α def β def int f by force

then have (λx . f x · j ) integrable on ABK
by (simp add : integrable component)

moreover have g integrable on ABK
by (metis ABK def ABK eq IntE box subset cbox int gab inte-

grable on subcbox subset eq)
moreover
have |integral ABK (λx . f x · j )| ≤ norm (integral ABK f )
by (simp add : Basis le norm int fI 〈j ∈ Basis〉)

then have |integral ABK (λx . f x · j )| ≤ Bf
by (metis ABK eq ABK def Bf IntE dual order .trans subset eq)

ultimately show ?thesis
using ∗ box subset cbox
apply (simp add : integral restrict Int integral diff ABK def I def α def

β def )
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by (blast intro: Bg add mono order trans [OF abs triangle ineq4 ])
qed
then show bounded (range (λk . integral (box a b) (?ϕ k)))
by (auto simp add : bounded iff )

qed
then show (λx . f x · j − g x ) integrable on cbox a b
by (simp add : integrable on open interval)

qed
ultimately have (λx . f x · j ) integrable on cbox a b
by auto

then show ?thesis
using absint g absolutely integrable absolutely integrable lbound gf by blast

qed
qed

qed

6.27.4 Second mean value theorem and corollaries

lemma level approx :
fixes f :: real ⇒ real and n::nat
assumes f :

∧
x . x ∈ S =⇒ 0 ≤ f x ∧ f x ≤ 1 and x ∈ S n 6= 0

shows |f x − (
∑

k = Suc 0 ..n. if k / n ≤ f x then inverse n else 0 )| < inverse n
(is ?lhs < )

proof −
have n ∗ f x ≥ 0
using assms by auto

then obtain m::nat where m: floor(n ∗ f x ) = int m
using nonneg int cases zero le floor by blast

then have kn: real k / real n ≤ f x ←→ k ≤ m for k
using 〈n 6= 0 〉 by (simp add : field split simps) linarith

then have Suc n / real n ≤ f x ←→ Suc n ≤ m
by blast

have real n ∗ f x ≤ real n
by (simp add : 〈x ∈ S 〉 f mult left le)

then have m ≤ n
using m by linarith

have ?lhs = |f x − (
∑

k ∈ {Suc 0 ..n} ∩ {..m}. inverse n)|
by (subst sum.inter restrict) (auto simp: kn)

also have . . . < inverse n
using 〈m ≤ n〉 〈n 6= 0 〉 m
by (simp add : min absorb2 field split simps) linarith

finally show ?thesis .
qed

lemma SMVT lemma2 :
fixes f :: real ⇒ real
assumes f : f integrable on {a..b}
and g :

∧
x y . x ≤ y =⇒ g x ≤ g y
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shows (
⋃
y ::real . {λx . if g x ≥ y then f x else 0}) equiintegrable on {a..b}

proof −
have ffab: {f } equiintegrable on {a..b}
by (metis equiintegrable on sing f interval cbox )

then have ff : {f } equiintegrable on (cbox a b)
by simp

have ge: (
⋃
c. {λx . if x ≥ c then f x else 0}) equiintegrable on {a..b}

using equiintegrable halfspace restrictions ge [OF ff ] by auto
have gt : (

⋃
c. {λx . if x > c then f x else 0}) equiintegrable on {a..b}

using equiintegrable halfspace restrictions gt [OF ff ] by auto
have 0 : {(λx . 0 )} equiintegrable on {a..b}
by (metis box real(2 ) equiintegrable on sing integrable 0 )

have †: (λx . if g x ≥ y then f x else 0 ) ∈ {(λx . 0 ), f } ∪ (
⋃
z . {λx . if z < x then

f x else 0}) ∪ (
⋃
z . {λx . if z ≤ x then f x else 0})

for y
proof (cases (∀ x . g x ≥ y) ∨ (∀ x . ¬ (g x ≥ y)))
let ?µ = Inf {x . g x ≥ y}
case False
have lower : ?µ ≤ x if g x ≥ y for x
proof (rule cInf lower)
show x ∈ {x . y ≤ g x}
using False by (auto simp: that)

show bdd below {x . y ≤ g x}
by (metis False bdd belowI dual order .trans g linear mem Collect eq)

qed
have greatest : ?µ ≥ z if (

∧
x . g x ≥ y =⇒ z ≤ x ) for z

by (metis False cInf greatest empty iff mem Collect eq that)
show ?thesis
proof (cases g ?µ ≥ y)
case True
then obtain ζ where ζ:

∧
x . g x ≥ y ←→ x ≥ ζ

by (metis g lower order .trans) — in fact y is Inf {x . y ≤ g x}
then show ?thesis
by (force simp: ζ)

next
case False
have (y ≤ g x ) ←→ (?µ < x ) for x
proof
show ?µ < x if y ≤ g x
using that False less eq real def lower by blast

show y ≤ g x if ?µ < x
by (metis g greatest le less trans that less le trans linear not less)

qed
then obtain ζ where ζ:

∧
x . g x ≥ y ←→ x > ζ ..

then show ?thesis
by (force simp: ζ)

qed
qed auto
show ?thesis
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using † by (simp add : UN subset iff equiintegrable on subset [OF equiinte-
grable on Un [OF gt equiintegrable on Un [OF ge equiintegrable on Un [OF ffab
0 ]]]])
qed

lemma SMVT lemma4 :
fixes f :: real ⇒ real
assumes f : f integrable on {a..b}
and a ≤ b
and g :

∧
x y . x ≤ y =⇒ g x ≤ g y

and 01 :
∧
x . [[a ≤ x ; x ≤ b]] =⇒ 0 ≤ g x ∧ g x ≤ 1

obtains c where a ≤ c c ≤ b ((λx . g x ∗R f x ) has integral integral {c..b} f )
{a..b}
proof −
have connected ((λx . integral {x ..b} f ) ‘ {a..b})
by (simp add : f indefinite integral continuous 1 ′ connected continuous image)

moreover have compact ((λx . integral {x ..b} f ) ‘ {a..b})
by (simp add : compact continuous image f indefinite integral continuous 1 ′)
ultimately obtain m M where int fab: (λx . integral {x ..b} f ) ‘ {a..b} =

{m..M }
using connected compact interval 1 by meson

have ∃ c. c ∈ {a..b} ∧
integral {c..b} f =
integral {a..b} (λx . (

∑
k = 1 ..n. if g x ≥ real k / real n then inverse

n ∗R f x else 0 )) for n
proof (cases n=0 )
case True
then show ?thesis
using 〈a ≤ b〉 by auto

next
case False
have (

⋃
c::real . {λx . if g x ≥ c then f x else 0}) equiintegrable on {a..b}

using SMVT lemma2 [OF f g ] .
then have int : (λx . if g x ≥ c then f x else 0 ) integrable on {a..b} for c
by (simp add : equiintegrable on def )

have int ′: (λx . if g x ≥ c then u ∗ f x else 0 ) integrable on {a..b} for c u
proof −
have (λx . if g x ≥ c then u ∗ f x else 0 ) = (λx . u ∗ (if g x ≥ c then f x else

0 ))
by (force simp: if distrib)

then show ?thesis
using integrable on cmult left [OF int ] by simp

qed
have ∃ d . d ∈ {a..b} ∧ integral {a..b} (λx . if g x ≥ y then f x else 0 ) = integral

{d ..b} f for y
proof −
let ?X = {x . g x ≥ y}
have ∗: ∃ a. ?X = {a..} ∨ ?X = {a<..}
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if 1 : ?X 6= {} and 2 : ?X 6= UNIV
proof −
let ?µ = Inf {x . g x ≥ y}
have lower : ?µ ≤ x if g x ≥ y for x
proof (rule cInf lower)
show x ∈ {x . y ≤ g x}
using 1 2 by (auto simp: that)

show bdd below {x . y ≤ g x}
unfolding bdd below def
by (metis 2 UNIV eq I dual order .trans g less eq real def mem Collect eq

not le)
qed
have greatest : ?µ ≥ z if

∧
x . g x ≥ y =⇒ z ≤ x for z

by (metis cInf greatest mem Collect eq that 1 )
show ?thesis
proof (cases g ?µ ≥ y)
case True
then obtain ζ where ζ:

∧
x . g x ≥ y ←→ x ≥ ζ

by (metis g lower order .trans) — in fact y is Inf {x . y ≤ g x}
then show ?thesis
by (force simp: ζ)

next
case False
have (y ≤ g x ) = (?µ < x ) for x
proof
show ?µ < x if y ≤ g x
using that False less eq real def lower by blast

show y ≤ g x if ?µ < x
by (metis g greatest le less trans that less le trans linear not less)

qed
then obtain ζ where ζ:

∧
x . g x ≥ y ←→ x > ζ ..

then show ?thesis
by (force simp: ζ)

qed
qed
then consider ?X = {} | ?X = UNIV | (intv) d where ?X = {d ..} ∨ ?X

= {d<..}
by metis

then have ∃ d . d ∈ {a..b} ∧ integral {a..b} (λx . if x ∈ ?X then f x else 0 )
= integral {d ..b} f

proof cases
case (intv d)
show ?thesis
proof (cases d < a)
case True
with intv have integral {a..b} (λx . if y ≤ g x then f x else 0 ) = integral

{a..b} f
by (intro Henstock Kurzweil Integration.integral cong) force

then show ?thesis
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by (rule tac x=a in exI ) (simp add : 〈a ≤ b〉)
next
case False
show ?thesis
proof (cases b < d)
case True
have integral {a..b} (λx . if x ∈ {x . y ≤ g x} then f x else 0 ) = integral

{a..b} (λx . 0 )
by (rule Henstock Kurzweil Integration.integral cong) (use intv True in

fastforce)
then show ?thesis
using 〈a ≤ b〉 by auto

next
case False
with 〈¬ d < a〉 have eq : {d ..} ∩ {a..b} = {d ..b} {d<..} ∩ {a..b} =

{d<..b}
by force+

moreover have integral {d<..b} f = integral {d ..b} f
by (rule integral spike set [OF empty imp negligible negligible subset

[OF negligible sing [of d ]]]) auto
ultimately
have integral {a..b} (λx . if x ∈ {x . y ≤ g x} then f x else 0 ) = integral

{d ..b} f
unfolding integral restrict Int using intv by presburger

moreover have d ∈ {a..b}
using 〈¬ d < a〉 〈a ≤ b〉 False by auto

ultimately show ?thesis
by auto

qed
qed

qed (use 〈a ≤ b〉 in auto)
then show ?thesis
by auto

qed
then have ∀ k . ∃ d . d ∈ {a..b} ∧ integral {a..b} (λx . if real k / real n ≤ g x

then f x else 0 ) = integral {d ..b} f
by meson

then obtain d where dab:
∧
k . d k ∈ {a..b}

and deq :
∧
k ::nat . integral {a..b} (λx . if k/n ≤ g x then f x else 0 ) = integral

{d k ..b} f
by metis

have (
∑

k = 1 ..n. integral {a..b} (λx . if real k / real n ≤ g x then f x else 0 ))
/R n ∈ {m..M }

unfolding scaleR right .sum
proof (intro conjI allI impI convex [THEN iffD1 , rule format ])
show integral {a..b} (λxa. if real k / real n ≤ g xa then f xa else 0 ) ∈ {m..M }

for k
by (metis (no types, lifting) deq image eqI int fab dab)

qed (use 〈n 6= 0 〉 in auto)
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then have ∃ c. c ∈ {a..b} ∧
integral {c..b} f = inverse n ∗R (

∑
k = 1 ..n. integral {a..b} (λx . if g

x ≥ real k / real n then f x else 0 ))
by (metis (no types, lifting) int fab imageE )

then show ?thesis
by (simp add : sum distrib left if distrib integral sum int ′ flip: integral mult right

cong : if cong)
qed
then obtain c where cab:

∧
n. c n ∈ {a..b}

and c:
∧
n. integral {c n..b} f = integral {a..b} (λx . (

∑
k = 1 ..n. if g x ≥

real k / real n then f x /R n else 0 ))
by metis

obtain d and σ :: nat⇒nat
where d ∈ {a..b} and σ: strict mono σ and d : (c ◦ σ) −−−−→ d and non0 :∧

n. σ n ≥ Suc 0
proof −
have compact{a..b}
by auto

with cab obtain d and s0
where d ∈ {a..b} and s0 : strict mono s0 and tends: (c ◦ s0 ) −−−−→ d
unfolding compact def
using that by blast

show thesis
proof
show d ∈ {a..b}
by fact

show strict mono (s0 ◦ Suc)
using s0 by (auto simp: strict mono def )

show (c ◦ (s0 ◦ Suc)) −−−−→ d
by (metis tends LIMSEQ subseq LIMSEQ Suc less eq comp assoc strict mono def )
show

∧
n. (s0 ◦ Suc) n ≥ Suc 0

by (metis comp apply le0 not less eq eq old .nat .exhaust s0 seq suble)
qed

qed
define ϕ where ϕ ≡ λn x .

∑
k = Suc 0 ..σ n. if k/(σ n) ≤ g x then f x /R (σ

n) else 0
define ψ where ψ ≡ λn x .

∑
k = Suc 0 ..σ n. if k/(σ n) ≤ g x then inverse (σ

n) else 0
have ∗∗: (λx . g x ∗R f x ) integrable on cbox a b ∧

(λn. integral (cbox a b) (ϕ n)) −−−−→ integral (cbox a b) (λx . g x ∗R f x )
proof (rule equiintegrable limit)
have †: ((λn. λx . (

∑
k = Suc 0 ..n. if k / n ≤ g x then inverse n ∗R f x else

0 )) ‘ {Suc 0 ..}) equiintegrable on {a..b}
proof −
have ∗: (

⋃
c::real . {λx . if g x ≥ c then f x else 0}) equiintegrable on {a..b}

using SMVT lemma2 [OF f g ] .
show ?thesis

apply (rule equiintegrable on subset [OF equiintegrable sum real [OF ∗]],
clarify)
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apply (rule tac a={Suc 0 ..n} in UN I , force)
apply (rule tac a=λk . inverse n in UN I , auto)
apply (rule tac x=λk x . if real k / real n ≤ g x then f x else 0 in bexI )
apply (force intro: sum.cong)+
done

qed
show range ϕ equiintegrable on cbox a b
unfolding ϕ def
by (auto simp: non0 intro: equiintegrable on subset [OF †])

show (λn. ϕ n x ) −−−−→ g x ∗R f x
if x : x ∈ cbox a b for x

proof −
have eq : ϕ n x = ψ n x ∗R f x for n
by (auto simp: ϕ def ψ def sum distrib right if distrib intro: sum.cong)

show ?thesis
unfolding eq

proof (rule tendsto scaleR [OF tendsto const ])
show (λn. ψ n x ) −−−−→ g x
unfolding lim sequentially dist real def

proof (intro allI impI )
fix e :: real
assume e > 0
then obtain N where N 6= 0 0 < inverse (real N ) and N : inverse (real

N ) < e
using real arch inverse by metis

moreover have |ψ n x − g x | < inverse (real N ) if n≥N for n
proof −
have |g x − ψ n x | < inverse (real (σ n))
unfolding ψ def

proof (rule level approx [of {a..b} g ])
show σ n 6= 0
by (metis Suc n not le n non0 )

qed (use x 01 non0 in auto)
also have . . . ≤ inverse N
using seq suble [OF σ] 〈N 6= 0 〉 non0 that by (auto intro: order trans

simp: field split simps)
finally show ?thesis
by linarith

qed
ultimately show ∃N . ∀n≥N . |ψ n x − g x | < e
using less trans by blast

qed
qed

qed
qed
show thesis
proof
show a ≤ d d ≤ b
using 〈d ∈ {a..b}〉 atLeastAtMost iff by blast+
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show ((λx . g x ∗R f x ) has integral integral {d ..b} f ) {a..b}
unfolding has integral iff

proof
show (λx . g x ∗R f x ) integrable on {a..b}
using ∗∗ by simp

show integral {a..b} (λx . g x ∗R f x ) = integral {d ..b} f
proof (rule tendsto unique)
show (λn. integral {c(σ n)..b} f ) −−−−→ integral {a..b} (λx . g x ∗R f x )
using ∗∗ by (simp add : c ϕ def )

have continuous (at d within {a..b}) (λx . integral {x ..b} f )
using indefinite integral continuous 1 ′ [OF f ] 〈d ∈ {a..b}〉
by (simp add : continuous on eq continuous within)

then show (λn. integral {c(σ n)..b} f ) −−−−→ integral {d ..b} f
using d cab unfolding o def
by (simp add : continuous within sequentially o def )

qed auto
qed

qed
qed

theorem second mean value theorem full :
fixes f :: real ⇒ real
assumes f : f integrable on {a..b} and a ≤ b
and g :

∧
x y . [[a ≤ x ; x ≤ y ; y ≤ b]] =⇒ g x ≤ g y

obtains c where c ∈ {a..b}
and ((λx . g x ∗ f x ) has integral (g a ∗ integral {a..c} f + g b ∗ integral {c..b}

f )) {a..b}
proof −
have gab: g a ≤ g b
using 〈a ≤ b〉 g by blast

then consider g a < g b | g a = g b
by linarith

then show thesis
proof cases
case 1
define h where h ≡ λx . if x < a then 0 else if b < x then 1

else (g x − g a) / (g b − g a)
obtain c where a ≤ c c ≤ b and c: ((λx . h x ∗R f x ) has integral integral

{c..b} f ) {a..b}
proof (rule SMVT lemma4 [OF f 〈a ≤ b〉, of h])
show h x ≤ h y 0 ≤ h x ∧ h x ≤ 1 if x ≤ y for x y
using that gab by (auto simp: divide simps g h def )

qed
show ?thesis
proof
show c ∈ {a..b}
using 〈a ≤ c〉 〈c ≤ b〉 by auto

have I : ((λx . g x ∗ f x − g a ∗ f x ) has integral (g b − g a) ∗ integral {c..b}
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f ) {a..b}
proof (subst has integral cong)
show g x ∗ f x − g a ∗ f x = (g b − g a) ∗ h x ∗R f x
if x ∈ {a..b} for x
using 1 that by (simp add : h def field split simps)
show ((λx . (g b − g a) ∗ h x ∗R f x ) has integral (g b − g a) ∗ integral

{c..b} f ) {a..b}
using has integral mult right [OF c, of g b − g a] .

qed
have II : ((λx . g a ∗ f x ) has integral g a ∗ integral {a..b} f ) {a..b}

using has integral mult right [where c = g a, OF integrable integral [OF
f ]] .

have ((λx . g x ∗ f x ) has integral (g b − g a) ∗ integral {c..b} f + g a ∗
integral {a..b} f ) {a..b}

using has integral add [OF I II ] by simp
then show ((λx . g x ∗ f x ) has integral g a ∗ integral {a..c} f + g b ∗ integral

{c..b} f ) {a..b}
by (simp add : algebra simps flip: integral combine [OF 〈a ≤ c〉 〈c ≤ b〉 f ])

qed
next
case 2
show ?thesis
proof
show a ∈ {a..b}
by (simp add : 〈a ≤ b〉)

have ((λx . g x ∗ f x ) has integral g a ∗ integral {a..b} f ) {a..b}
proof (rule has integral eq)
show ((λx . g a ∗ f x ) has integral g a ∗ integral {a..b} f ) {a..b}
using f has integral mult right by blast

show g a ∗ f x = g x ∗ f x
if x ∈ {a..b} for x
by (metis atLeastAtMost iff g less eq real def not le that 2 )

qed
then show ((λx . g x ∗ f x ) has integral g a ∗ integral {a..a} f + g b ∗ integral

{a..b} f ) {a..b}
by (simp add : 2 )

qed
qed

qed

corollary second mean value theorem:
fixes f :: real ⇒ real
assumes f : f integrable on {a..b} and a ≤ b
and g :

∧
x y . [[a ≤ x ; x ≤ y ; y ≤ b]] =⇒ g x ≤ g y

obtains c where c ∈ {a..b}
integral {a..b} (λx . g x ∗ f x ) = g a ∗ integral {a..c} f + g b ∗

integral {c..b} f
using second mean value theorem full [where g=g , OF assms]
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by (metis (full types) integral unique)

end

6.28 Continuous Extensions of Functions

theory Continuous Extension
imports Starlike
begin

6.28.1 Partitions of unity subordinate to locally finite open
coverings

A difference from HOL Light: all summations over infinite sets equal zero,
so the ”support” must be made explicit in the summation below!

proposition subordinate partition of unity :
fixes S :: ′a::metric space set
assumes S ⊆

⋃
C and opC :

∧
T . T ∈ C =⇒ open T

and fin:
∧
x . x ∈ S =⇒ ∃V . open V ∧ x ∈ V ∧ finite {U ∈ C. U ∩ V 6=

{}}
obtains F :: [ ′a set , ′a] ⇒ real
where

∧
U . U ∈ C =⇒ continuous on S (F U ) ∧ (∀ x ∈ S . 0 ≤ F U x )

and
∧
x U . [[U ∈ C; x ∈ S ; x /∈ U ]] =⇒ F U x = 0

and
∧
x . x ∈ S =⇒ supp sum (λW . F W x ) C = 1

and
∧
x . x ∈ S =⇒ ∃V . open V ∧ x ∈ V ∧ finite {U ∈ C. ∃ x∈V . F U x

6= 0}
proof (cases ∃W . W ∈ C ∧ S ⊆ W )
case True
then obtain W where W ∈ C S ⊆ W by metis
then show ?thesis

by (rule tac F = λV x . if V = W then 1 else 0 in that) (auto simp:
supp sum def support on def )
next
case False
have nonneg : 0 ≤ supp sum (λV . setdist {x} (S − V )) C for x
by (simp add : supp sum def sum nonneg)

have sd pos: 0 < setdist {x} (S − V ) if V ∈ C x ∈ S x ∈ V for V x
proof −
have closedin (top of set S ) (S − V )
by (simp add : Diff Diff Int closedin def opC openin open Int 〈V ∈ C〉)

with that False setdist pos le [of {x} S − V ]
show ?thesis
using setdist gt 0 closedin by fastforce

qed
have ss pos: 0 < supp sum (λV . setdist {x} (S − V )) C if x ∈ S for x
proof −
obtain U where U ∈ C x ∈ U using 〈x ∈ S 〉 〈S ⊆

⋃
C〉

by blast
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obtain V where open V x ∈ V finite {U ∈ C. U ∩ V 6= {}}
using 〈x ∈ S 〉 fin by blast

then have ∗: finite {A ∈ C. ¬ S ⊆ A ∧ x /∈ closure (S − A)}
using closure def that by (blast intro: rev finite subset)

have x /∈ closure (S − U )
using 〈U ∈ C〉 〈x ∈ U 〉 opC open Int closure eq empty by fastforce

then show ?thesis
apply (simp add : setdist eq 0 sing 1 supp sum def support on def )
apply (rule ordered comm monoid add class.sum pos2 [OF ∗, of U ])
using 〈U ∈ C〉 〈x ∈ U 〉 False
apply (auto simp: sd pos that)
done

qed
define F where
F ≡ λW x . if x ∈ S then setdist {x} (S − W ) / supp sum (λV . setdist {x}

(S − V )) C else 0
show ?thesis
proof (rule tac F = F in that)
have continuous on S (F U ) if U ∈ C for U
proof −
have ∗: continuous on S (λx . supp sum (λV . setdist {x} (S − V )) C)
proof (clarsimp simp add : continuous on eq continuous within)
fix x assume x ∈ S
then obtain X where open X and x : x ∈ S ∩ X and finX : finite {U

∈ C. U ∩ X 6= {}}
using assms by blast

then have OSX : openin (top of set S ) (S ∩ X ) by blast
have sumeq :

∧
x . x ∈ S ∩ X =⇒

(
∑

V | V ∈ C ∧ V ∩ X 6= {}. setdist {x} (S − V ))
= supp sum (λV . setdist {x} (S − V )) C

apply (simp add : supp sum def )
apply (rule sum.mono neutral right [OF finX ])
apply (auto simp: setdist eq 0 sing 1 support on def subset iff )
apply (meson DiffI closure subset disjoint iff not equal subsetCE )
done
show continuous (at x within S ) (λx . supp sum (λV . setdist {x} (S −

V )) C)
apply (rule continuous transform within openin

[where f = λx . (sum (λV . setdist {x} (S − V )) {V ∈ C. V ∩
X 6= {}})

and S =S ∩ X ])
apply (rule continuous intros continuous at setdist continuous at imp continuous at within

OSX x )+
apply (simp add : sumeq)
done

qed
show ?thesis
apply (simp add : F def )
apply (rule continuous intros ∗)+
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using ss pos apply force
done

qed
moreover have [[U ∈ C; x ∈ S ]] =⇒ 0 ≤ F U x for U x
using nonneg [of x ] by (simp add : F def field split simps)

ultimately show
∧
U . U ∈ C =⇒ continuous on S (F U ) ∧ (∀ x∈S . 0 ≤ F

U x )
by metis

next
show

∧
x U . [[U ∈ C; x ∈ S ; x /∈ U ]] =⇒ F U x = 0

by (simp add : setdist eq 0 sing 1 closure def F def )
next
show supp sum (λW . F W x ) C = 1 if x ∈ S for x
using that ss pos [OF that ]
by (simp add : F def field split simps supp sum divide distrib [symmetric])

next
show ∃V . open V ∧ x ∈ V ∧ finite {U ∈ C. ∃ x∈V . F U x 6= 0} if x ∈ S

for x
using fin [OF that ] that

by (fastforce simp: setdist eq 0 sing 1 closure def F def elim!: rev finite subset)
qed

qed

6.28.2 Urysohn’s Lemma for Euclidean Spaces

For Euclidean spaces the proof is easy using distances.

lemma Urysohn both ne:
assumes US : closedin (top of set U ) S

and UT : closedin (top of set U ) T
and S ∩ T = {} S 6= {} T 6= {} a 6= b

obtains f :: ′a::euclidean space ⇒ ′b::real normed vector
where continuous on U f∧

x . x ∈ U =⇒ f x ∈ closed segment a b∧
x . x ∈ U =⇒ (f x = a ←→ x ∈ S )∧
x . x ∈ U =⇒ (f x = b ←→ x ∈ T )

proof −
have S0 :

∧
x . x ∈ U =⇒ setdist {x} S = 0 ←→ x ∈ S

using 〈S 6= {}〉 US setdist eq 0 closedin by auto
have T0 :

∧
x . x ∈ U =⇒ setdist {x} T = 0 ←→ x ∈ T

using 〈T 6= {}〉 UT setdist eq 0 closedin by auto
have sdpos: 0 < setdist {x} S + setdist {x} T if x ∈ U for x
proof −
have ¬ (setdist {x} S = 0 ∧ setdist {x} T = 0 )
using assms by (metis IntI empty iff setdist eq 0 closedin that)

then show ?thesis
by (metis add .left neutral add .right neutral add pos pos linorder neqE linordered idom

not le setdist pos le)
qed
define f where f ≡ λx . a + (setdist {x} S / (setdist {x} S + setdist {x} T ))
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∗R (b − a)
show ?thesis
proof (rule tac f = f in that)
show continuous on U f
using sdpos unfolding f def
by (intro continuous intros | force)+

show f x ∈ closed segment a b if x ∈ U for x
unfolding f def

apply (simp add : closed segment def )
apply (rule tac x=(setdist {x} S / (setdist {x} S + setdist {x} T )) in exI )
using sdpos that apply (simp add : algebra simps)
done

show
∧
x . x ∈ U =⇒ (f x = a ←→ x ∈ S )

using S0 〈a 6= b〉 f def sdpos by force
show (f x = b ←→ x ∈ T ) if x ∈ U for x
proof −
have f x = b ←→ (setdist {x} S / (setdist {x} S + setdist {x} T )) = 1
unfolding f def
apply (rule iffI )

apply (metis 〈a 6= b〉 add diff cancel left ′ eq iff diff eq 0 pth 1 real vector .scale right imp eq ,
force)

done
also have ... ←→ setdist {x} T = 0 ∧ setdist {x} S 6= 0
using sdpos that
by (simp add : field split simps) linarith

also have ... ←→ x ∈ T
using 〈S 6= {}〉 〈T 6= {}〉 〈S ∩ T = {}〉 that
by (force simp: S0 T0 )

finally show ?thesis .
qed

qed
qed

proposition Urysohn local strong :
assumes US : closedin (top of set U ) S

and UT : closedin (top of set U ) T
and S ∩ T = {} a 6= b

obtains f :: ′a::euclidean space ⇒ ′b::euclidean space
where continuous on U f∧

x . x ∈ U =⇒ f x ∈ closed segment a b∧
x . x ∈ U =⇒ (f x = a ←→ x ∈ S )∧
x . x ∈ U =⇒ (f x = b ←→ x ∈ T )

proof (cases S = {})
case True show ?thesis
proof (cases T = {})
case True show ?thesis
proof (rule tac f = λx . midpoint a b in that)
show continuous on U (λx . midpoint a b)
by (intro continuous intros)
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show midpoint a b ∈ closed segment a b
using csegment midpoint subset by blast

show (midpoint a b = a) = (x ∈ S ) for x
using 〈S = {}〉 〈a 6= b〉 by simp

show (midpoint a b = b) = (x ∈ T ) for x
using 〈T = {}〉 〈a 6= b〉 by simp

qed
next
case False
show ?thesis
proof (cases T = U )
case True with 〈S = {}〉 〈a 6= b〉 show ?thesis
by (rule tac f = λx . b in that) (auto)

next
case False
with UT closedin subset obtain c where c: c ∈ U c /∈ T
by fastforce

obtain f where f : continuous on U f∧
x . x ∈ U =⇒ f x ∈ closed segment (midpoint a b) b∧
x . x ∈ U =⇒ (f x = midpoint a b ←→ x = c)∧
x . x ∈ U =⇒ (f x = b ←→ x ∈ T )

apply (rule Urysohn both ne [of U {c} T midpoint a b b])
using c 〈T 6= {}〉 assms apply simp all
done

show ?thesis
apply (rule tac f=f in that)
using 〈S = {}〉 〈T 6= {}〉 f csegment midpoint subset notin segment midpoint

[OF 〈a 6= b〉]
apply force+
done

qed
qed

next
case False
show ?thesis
proof (cases T = {})
case True show ?thesis
proof (cases S = U )
case True with 〈T = {}〉 〈a 6= b〉 show ?thesis
by (rule tac f = λx . a in that) (auto)

next
case False
with US closedin subset obtain c where c: c ∈ U c /∈ S
by fastforce

obtain f where f : continuous on U f∧
x . x ∈ U =⇒ f x ∈ closed segment a (midpoint a b)∧
x . x ∈ U =⇒ (f x = midpoint a b ←→ x = c)∧
x . x ∈ U =⇒ (f x = a ←→ x ∈ S )

apply (rule Urysohn both ne [of U S {c} a midpoint a b])
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using c 〈S 6= {}〉 assms apply simp all
apply (metis midpoint eq endpoint)
done

show ?thesis
apply (rule tac f=f in that)
using 〈S 6= {}〉 〈T = {}〉 f 〈a 6= b〉

apply simp all
apply (metis (no types) closed segment commute csegment midpoint subset

midpoint sym subset iff )
apply (metis closed segment commute midpoint sym notin segment midpoint)
done

qed
next
case False
show ?thesis
using Urysohn both ne [OF US UT 〈S ∩ T = {}〉 〈S 6= {}〉 〈T 6= {}〉 〈a 6=

b〉] that
by blast

qed
qed

lemma Urysohn local :
assumes US : closedin (top of set U ) S

and UT : closedin (top of set U ) T
and S ∩ T = {}

obtains f :: ′a::euclidean space ⇒ ′b::euclidean space
where continuous on U f∧

x . x ∈ U =⇒ f x ∈ closed segment a b∧
x . x ∈ S =⇒ f x = a∧
x . x ∈ T =⇒ f x = b

proof (cases a = b)
case True then show ?thesis
by (rule tac f = λx . b in that) (auto)

next
case False
then show ?thesis
apply (rule Urysohn local strong [OF assms])
apply (erule that , assumption)
apply (meson US closedin singleton closedin trans)
apply (meson UT closedin singleton closedin trans)
done

qed

lemma Urysohn strong :
assumes US : closed S

and UT : closed T
and S ∩ T = {} a 6= b

obtains f :: ′a::euclidean space ⇒ ′b::euclidean space
where continuous on UNIV f
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∧
x . f x ∈ closed segment a b∧
x . f x = a ←→ x ∈ S∧
x . f x = b ←→ x ∈ T

using assms by (auto intro: Urysohn local strong [of UNIV S T ])

proposition Urysohn:
assumes US : closed S

and UT : closed T
and S ∩ T = {}

obtains f :: ′a::euclidean space ⇒ ′b::euclidean space
where continuous on UNIV f∧

x . f x ∈ closed segment a b∧
x . x ∈ S =⇒ f x = a∧
x . x ∈ T =⇒ f x = b

using assms by (auto intro: Urysohn local [of UNIV S T a b])

6.28.3 Dugundji’s Extension Theorem and Tietze Variants

See [2].

lemma convex supp sum:
assumes convex S and 1 : supp sum u I = 1

and
∧
i . i ∈ I =⇒ 0 ≤ u i ∧ (u i = 0 ∨ f i ∈ S )

shows supp sum (λi . u i ∗R f i) I ∈ S
proof −
have fin: finite {i ∈ I . u i 6= 0}
using 1 sum.infinite by (force simp: supp sum def support on def )

then have supp sum (λi . u i ∗R f i) I = sum (λi . u i ∗R f i) {i ∈ I . u i 6= 0}
by (force intro: sum.mono neutral left simp: supp sum def support on def )

also have ... ∈ S
using 1 assms by (force simp: supp sum def support on def intro: convex sum

[OF fin 〈convex S 〉])
finally show ?thesis .

qed

theorem Dugundji :
fixes f :: ′a::{metric space,second countable topology} ⇒ ′b::real inner
assumes convex C C 6= {}

and cloin: closedin (top of set U ) S
and contf : continuous on S f and f ‘ S ⊆ C

obtains g where continuous on U g g ‘ U ⊆ C∧
x . x ∈ S =⇒ g x = f x

proof (cases S = {})
case True then show thesis
apply (rule tac g=λx . SOME y . y ∈ C in that)
apply (rule continuous intros)
apply (meson all not in conv 〈C 6= {}〉 image subsetI someI ex , simp)
done

next
case False
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then have sd pos:
∧
x . [[x ∈ U ; x /∈ S ]] =⇒ 0 < setdist {x} S

using setdist eq 0 closedin [OF cloin] le less setdist pos le by fastforce
define B where B = {ball x (setdist {x} S / 2 ) |x . x ∈ U − S}
have [simp]:

∧
T . T ∈ B =⇒ open T

by (auto simp: B def )
have USS : U − S ⊆

⋃
B

by (auto simp: sd pos B def )
obtain C where USsub: U − S ⊆

⋃
C

and nbrhd :
∧
U . U ∈ C =⇒ open U ∧ (∃T . T ∈ B ∧ U ⊆ T )

and fin:
∧
x . x ∈ U − S =⇒ ∃V . open V ∧ x ∈ V ∧ finite {U . U ∈ C ∧

U ∩ V 6= {}}
by (rule paracompact [OF USS ]) auto

have ∃ v a. v ∈ U ∧ v /∈ S ∧ a ∈ S ∧
T ⊆ ball v (setdist {v} S / 2 ) ∧
dist v a ≤ 2 ∗ setdist {v} S if T ∈ C for T

proof −
obtain v where v : T ⊆ ball v (setdist {v} S / 2 ) v ∈ U v /∈ S
using 〈T ∈ C〉 nbrhd by (force simp: B def )

then obtain a where a ∈ S dist v a < 2 ∗ setdist {v} S
using setdist ltE [of {v} S 2 ∗ setdist {v} S ]
using False sd pos by force

with v show ?thesis
apply (rule tac x=v in exI )
apply (rule tac x=a in exI , auto)
done

qed
then obtain V A where
VA:

∧
T . T ∈ C =⇒ V T ∈ U ∧ V T /∈ S ∧ A T ∈ S ∧
T ⊆ ball (V T ) (setdist {V T} S / 2 ) ∧
dist (V T ) (A T ) ≤ 2 ∗ setdist {V T} S

by metis
have sdle: setdist {V T} S ≤ 2 ∗ setdist {v} S if T ∈ C v ∈ T for T v
using setdist Lipschitz [of V T S v ] VA [OF 〈T ∈ C〉] 〈v ∈ T 〉 by auto

have d6 : dist a (A T ) ≤ 6 ∗ dist a v if T ∈ C v ∈ T a ∈ S for T v a
proof −
have dist (V T ) v < setdist {V T} S / 2
using that VA mem ball by blast

also have . . . ≤ setdist {v} S
using sdle [OF 〈T ∈ C〉 〈v ∈ T 〉] by simp

also have vS : setdist {v} S ≤ dist a v
by (simp add : setdist le dist setdist sym 〈a ∈ S 〉)

finally have VTV : dist (V T ) v < dist a v .
have VTS : setdist {V T} S ≤ 2 ∗ dist a v
using sdle that vS by force

have dist a (A T ) ≤ dist a v + dist v (V T ) + dist (V T ) (A T )
by (metis add .commute add le cancel left dist commute dist triangle2 dist triangle le)
also have . . . ≤ dist a v + dist a v + dist (V T ) (A T )
using VTV by (simp add : dist commute)

also have . . . ≤ 2 ∗ dist a v + 2 ∗ setdist {V T} S
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using VA [OF 〈T ∈ C〉] by auto
finally show ?thesis
using VTS by linarith

qed
obtain H :: [ ′a set , ′a] ⇒ real
where Hcont :

∧
Z . Z ∈ C =⇒ continuous on (U−S ) (H Z )

and Hge0 :
∧
Z x . [[Z ∈ C; x ∈ U−S ]] =⇒ 0 ≤ H Z x

and Heq0 :
∧
x Z . [[Z ∈ C; x ∈ U−S ; x /∈ Z ]] =⇒ H Z x = 0

and H1 :
∧
x . x ∈ U−S =⇒ supp sum (λW . H W x ) C = 1

and Hfin:
∧
x . x ∈ U−S =⇒ ∃V . open V ∧ x ∈ V ∧ finite {U ∈ C. ∃ x∈V .

H U x 6= 0}
apply (rule subordinate partition of unity [OF USsub fin])
using nbrhd by auto

define g where g ≡ λx . if x ∈ S then f x else supp sum (λT . H T x ∗R f (A
T )) C
show ?thesis
proof (rule that)
show continuous on U g
proof (clarsimp simp: continuous on eq continuous within)
fix a assume a ∈ U
show continuous (at a within U ) g
proof (cases a ∈ S )
case True show ?thesis
proof (clarsimp simp add : continuous within topological)
fix W
assume open W g a ∈ W
then obtain e where 0 < e and e: ball (f a) e ⊆ W
using openE True g def by auto

have continuous (at a within S ) f
using True contf continuous on eq continuous within by blast

then obtain d where 0 < d
and d :

∧
x . [[x ∈ S ; dist x a < d ]] =⇒ dist (f x ) (f a) < e

using continuous within eps delta 〈0 < e〉 by force
have g y ∈ ball (f a) e if y ∈ U and y : y ∈ ball a (d / 6 ) for y
proof (cases y ∈ S )
case True
then have dist (f a) (f y) < e
by (metis ball divide subset numeral dist commute in mono mem ball y

d)
then show ?thesis
by (simp add : True g def )

next
case False
have ∗: dist (f (A T )) (f a) < e if T ∈ C H T y 6= 0 for T
proof −
have y ∈ T
using Heq0 that False 〈y ∈ U 〉 by blast

have dist (A T ) a < d
using d6 [OF 〈T ∈ C〉 〈y ∈ T 〉 〈a ∈ S 〉] y
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by (simp add : dist commute mult .commute)
then show ?thesis
using VA [OF 〈T ∈ C〉] by (auto simp: d)

qed
have supp sum (λT . H T y ∗R f (A T )) C ∈ ball (f a) e
apply (rule convex supp sum [OF convex ball ])
apply (simp all add : False H1 Hge0 〈y ∈ U 〉)
by (metis dist commute ∗)

then show ?thesis
by (simp add : False g def )

qed
then show ∃A. open A ∧ a ∈ A ∧ (∀ y∈U . y ∈ A −→ g y ∈ W )
apply (rule tac x = ball a (d / 6 ) in exI )
using e 〈0 < d 〉 by fastforce

qed
next
case False
obtain N where N : open N a ∈ N

and finN : finite {U ∈ C. ∃ a∈N . H U a 6= 0}
using Hfin False 〈a ∈ U 〉 by auto

have oUS : openin (top of set U ) (U − S )
using cloin by (simp add : openin diff )

have HcontU : continuous (at a within U ) (H T ) if T ∈ C for T
using Hcont [OF 〈T ∈ C〉] False 〈a ∈ U 〉 〈T ∈ C〉

apply (simp add : continuous on eq continuous within continuous within)
apply (rule Lim transform within set)
using oUS
apply (force simp: eventually at openin contains ball dist commute dest !:

bspec)+
done

show ?thesis
proof (rule continuous transform within openin [OF oUS ])
show continuous (at a within U ) (λx . supp sum (λT . H T x ∗R f (A T ))

C)
proof (rule continuous transform within openin)
show continuous (at a within U )

(λx .
∑

T∈{U ∈ C. ∃ x∈N . H U x 6= 0}. H T x ∗R f (A T ))
by (force intro: continuous intros HcontU )+

next
show openin (top of set U ) ((U − S ) ∩ N )
using N oUS openin trans by blast

next
show a ∈ (U − S ) ∩ N using False 〈a ∈ U 〉 N by blast

next
show

∧
x . x ∈ (U − S ) ∩ N =⇒
(
∑

T ∈ {U ∈ C. ∃ x∈N . H U x 6= 0}. H T x ∗R f (A T ))
= supp sum (λT . H T x ∗R f (A T )) C

by (auto simp: supp sum def support on def
intro: sum.mono neutral right [OF finN ])
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qed
next
show a ∈ U − S using False 〈a ∈ U 〉 by blast

next
show

∧
x . x ∈ U − S =⇒ supp sum (λT . H T x ∗R f (A T )) C = g x

by (simp add : g def )
qed

qed
qed
show g ‘ U ⊆ C
using 〈f ‘ S ⊆ C 〉 VA
by (fastforce simp: g def Hge0 intro!: convex supp sum [OF 〈convex C 〉] H1 )

show
∧
x . x ∈ S =⇒ g x = f x

by (simp add : g def )
qed

qed

corollary Tietze:
fixes f :: ′a::{metric space,second countable topology} ⇒ ′b::real inner
assumes continuous on S f
and closedin (top of set U ) S
and 0 ≤ B
and

∧
x . x ∈ S =⇒ norm(f x ) ≤ B

obtains g where continuous on U g
∧
x . x ∈ S =⇒ g x = f x∧

x . x ∈ U =⇒ norm(g x ) ≤ B
using assms by (auto simp: image subset iff intro: Dugundji [of cball 0 B U S

f ])

corollary Tietze closed interval :
fixes f :: ′a::{metric space,second countable topology} ⇒ ′b::euclidean space
assumes continuous on S f
and closedin (top of set U ) S
and cbox a b 6= {}
and

∧
x . x ∈ S =⇒ f x ∈ cbox a b

obtains g where continuous on U g
∧
x . x ∈ S =⇒ g x = f x∧

x . x ∈ U =⇒ g x ∈ cbox a b
apply (rule Dugundji [of cbox a b U S f ])
using assms by auto

corollary Tietze closed interval 1 :
fixes f :: ′a::{metric space,second countable topology} ⇒ real
assumes continuous on S f
and closedin (top of set U ) S
and a ≤ b
and

∧
x . x ∈ S =⇒ f x ∈ cbox a b

obtains g where continuous on U g
∧
x . x ∈ S =⇒ g x = f x∧

x . x ∈ U =⇒ g x ∈ cbox a b
apply (rule Dugundji [of cbox a b U S f ])
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using assms by (auto simp: image subset iff )

corollary Tietze open interval :
fixes f :: ′a::{metric space,second countable topology} ⇒ ′b::euclidean space
assumes continuous on S f
and closedin (top of set U ) S
and box a b 6= {}
and

∧
x . x ∈ S =⇒ f x ∈ box a b

obtains g where continuous on U g
∧
x . x ∈ S =⇒ g x = f x∧

x . x ∈ U =⇒ g x ∈ box a b
apply (rule Dugundji [of box a b U S f ])
using assms by auto

corollary Tietze open interval 1 :
fixes f :: ′a::{metric space,second countable topology} ⇒ real
assumes continuous on S f
and closedin (top of set U ) S
and a < b
and no:

∧
x . x ∈ S =⇒ f x ∈ box a b

obtains g where continuous on U g
∧
x . x ∈ S =⇒ g x = f x∧

x . x ∈ U =⇒ g x ∈ box a b
apply (rule Dugundji [of box a b U S f ])
using assms by (auto simp: image subset iff )

corollary Tietze unbounded :
fixes f :: ′a::{metric space,second countable topology} ⇒ ′b::real inner
assumes continuous on S f
and closedin (top of set U ) S

obtains g where continuous on U g
∧
x . x ∈ S =⇒ g x = f x

apply (rule Dugundji [of UNIV U S f ])
using assms by auto

end

6.29 Equivalence Between Classical Borel Measur-
ability and HOL Light’s

theory Equivalence Measurable On Borel
imports Equivalence Lebesgue Henstock Integration Improper Integral Continu-

ous Extension
begin

abbreviation sym diff :: ′a set ⇒ ′a set ⇒ ′a set where
sym diff A B ≡ ((A − B) ∪ (B−A))
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6.29.1 Austin’s Lemma

lemma Austin Lemma:
fixes D :: ′a::euclidean space set set
assumes finite D and D:

∧
D . D ∈ D =⇒ ∃ k a b. D = cbox a b ∧ (∀ i ∈ Basis.

b·i − a·i = k)
obtains C where C ⊆ D pairwise disjnt C

measure lebesgue (
⋃
C) ≥ measure lebesgue (

⋃
D) / 3 ˆ (DIM ( ′a))

using assms
proof (induction card D arbitrary : D thesis rule: less induct)
case less
show ?case
proof (cases D = {})
case True
then show thesis
using less by auto

next
case False
then have Max (Sigma Algebra.measure lebesgue ‘ D) ∈ Sigma Algebra.measure

lebesgue ‘ D
using Max in finite imageI 〈finite D〉 by blast
then obtain D where D ∈ D and measure lebesgue D = Max (measure

lebesgue ‘ D)
by auto

then have D :
∧
C . C ∈ D =⇒ measure lebesgue C ≤ measure lebesgue D

by (simp add : 〈finite D〉)
let ?E = {C . C ∈ D − {D} ∧ disjnt C D}
obtain D ′ where D ′sub: D ′ ⊆ ?E and D ′dis: pairwise disjnt D ′

and D ′m: measure lebesgue (
⋃
D ′) ≥ measure lebesgue (

⋃
?E) / 3 ˆ (DIM ( ′a))

proof (rule less.hyps)
have ∗: ?E ⊂ D
using 〈D ∈ D〉 by auto

then show card ?E < card D finite ?E
by (auto simp: 〈finite D〉 psubset card mono)

show ∃ k a b. D = cbox a b ∧ (∀ i∈Basis. b · i − a · i = k) if D ∈ ?E for D
using less.prems(3 ) that by auto

qed
then have [simp]:

⋃
D ′ − D =

⋃
D ′

by (auto simp: disjnt iff )
show ?thesis
proof (rule less.prems)
show insert D D ′ ⊆ D
using D ′sub 〈D ∈ D〉 by blast

show disjoint (insert D D ′)
using D ′dis D ′sub by (fastforce simp add : pairwise def disjnt sym)
obtain a3 b3 where m3 : content (cbox a3 b3 ) = 3 ˆ DIM ( ′a) ∗ measure

lebesgue D
and sub3 :

∧
C . [[C ∈ D; ¬ disjnt C D ]] =⇒ C ⊆ cbox a3 b3

proof −
obtain k a b where ab: D = cbox a b and k :

∧
i . i ∈ Basis =⇒ b·i − a·i
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= k
using less.prems 〈D ∈ D〉 by meson

then have eqk :
∧
i . i ∈ Basis =⇒ a · i ≤ b · i ←→ k ≥ 0

by force
show thesis
proof
let ?a = (a + b) /R 2 − (3/2 ) ∗R (b − a)
let ?b = (a + b) /R 2 + (3/2 ) ∗R (b − a)
have eq : (

∏
i∈Basis. b · i ∗ 3 − a · i ∗ 3 ) = (

∏
i∈Basis. b · i − a · i)

∗ 3 ˆ DIM ( ′a)
by (simp add : comm monoid mult class.prod .distrib flip: left diff distrib

inner diff left)
show content (cbox ?a ?b) = 3 ˆ DIM ( ′a) ∗ measure lebesgue D
by (simp add : content cbox if box eq empty algebra simps eq ab k)

show C ⊆ cbox ?a ?b if C ∈ D and CD : ¬ disjnt C D for C
proof −
obtain k ′ a ′ b ′ where ab ′: C = cbox a ′ b ′ and k ′:

∧
i . i ∈ Basis =⇒

b ′·i − a ′·i = k ′

using less.prems 〈C ∈ D〉 by meson
then have eqk ′:

∧
i . i ∈ Basis =⇒ a ′ · i ≤ b ′ · i ←→ k ′ ≥ 0

by force
show ?thesis
proof (clarsimp simp add : disjoint interval disjnt def ab ab ′ not less

subset box algebra simps)
show a · i ∗ 2 ≤ a ′ · i + b · i ∧ a · i + b ′ · i ≤ b · i ∗ 2
if ∗ [rule format ]: ∀ j∈Basis. a ′ · j ≤ b ′ · j and i ∈ Basis for i

proof −
have a ′ · i ≤ b ′ · i ∧ a · i ≤ b · i ∧ a · i ≤ b ′ · i ∧ a ′ · i ≤ b · i
using 〈i ∈ Basis〉 CD by (simp all add : disjoint interval disjnt def

ab ab ′ not less)
then show ?thesis
using D [OF 〈C ∈ D〉] 〈i ∈ Basis〉

apply (simp add : ab ab ′ k k ′ eqk eqk ′ content cbox cases)
using k k ′ by fastforce

qed
qed

qed
qed

qed
have Dlm:

∧
D . D ∈ D =⇒ D ∈ lmeasurable

using less.prems(3 ) by blast
have measure lebesgue (

⋃
D) ≤ measure lebesgue (cbox a3 b3 ∪ (

⋃
D − cbox

a3 b3 ))
proof (rule measure mono fmeasurable)
show

⋃
D ∈ sets lebesgue

using Dlm 〈finite D〉 by blast
show cbox a3 b3 ∪ (

⋃
D − cbox a3 b3 ) ∈ lmeasurable

by (simp add : Dlm fmeasurable.Un fmeasurable.finite Union less.prems(2 )
subset eq)
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qed auto
also have . . . = content (cbox a3 b3 ) + measure lebesgue (

⋃
D − cbox a3

b3 )
by (simp add : Dlm fmeasurable.finite Union less.prems(2 ) measure Un2

subsetI )
also have . . . ≤ (measure lebesgue D + measure lebesgue (

⋃
D ′)) ∗ 3 ˆ

DIM ( ′a)
proof −
have (

⋃
D − cbox a3 b3 ) ⊆

⋃
?E

using sub3 by fastforce
then have measure lebesgue (

⋃
D − cbox a3 b3 ) ≤ measure lebesgue (

⋃
?E)

proof (rule measure mono fmeasurable)
show

⋃
D − cbox a3 b3 ∈ sets lebesgue

by (simp add : Dlm fmeasurableD less.prems(2 ) sets.Diff sets.finite Union
subsetI )

show
⋃
{C ∈ D − {D}. disjnt C D} ∈ lmeasurable

using Dlm less.prems(2 ) by auto
qed
then have measure lebesgue (

⋃
D − cbox a3 b3 ) / 3 ˆ DIM ( ′a) ≤ measure

lebesgue (
⋃
D ′)

using D ′m by (simp add : field split simps)
then show ?thesis
by (simp add : m3 field simps)

qed
also have . . . ≤ measure lebesgue (

⋃
(insert D D ′)) ∗ 3 ˆ DIM ( ′a)

proof (simp add : Dlm 〈D ∈ D〉)
show measure lebesgue D + measure lebesgue (

⋃
D ′) ≤ measure lebesgue

(D ∪
⋃
D ′)

proof (subst measure Un2 )
show

⋃
D ′ ∈ lmeasurable

by (meson Dlm 〈insert D D ′ ⊆ D〉 fmeasurable.finite Union less.prems(2 )
finite subset subset eq subset insertI )

show measure lebesgue D + measure lebesgue (
⋃
D ′) ≤ measure lebesgue

D + measure lebesgue (
⋃
D ′ − D)

using 〈insert D D ′ ⊆ D〉 infinite super less.prems(2 ) by force
qed (simp add : Dlm 〈D ∈ D〉)

qed
finally show measure lebesgue (

⋃
D) / 3 ˆ DIM ( ′a) ≤ measure lebesgue

(
⋃
(insert D D ′))

by (simp add : field split simps)
qed

qed
qed

6.29.2 A differentiability-like property of the indefinite inte-
gral.

proposition integrable ccontinuous explicit :
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
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assumes
∧
a b:: ′a. f integrable on cbox a b

obtains N where
negligible N∧
x e. [[x /∈ N ; 0 < e]] =⇒

∃ d>0 . ∀ h. 0 < h ∧ h < d −→
norm(integral (cbox x (x + h ∗R One)) f /R h ˆ DIM ( ′a) − f

x ) < e
proof −
define BOX where BOX ≡ λh. λx :: ′a. cbox x (x + h ∗R One)
define BOX2 where BOX2 ≡ λh. λx :: ′a. cbox (x − h ∗R One) (x + h ∗R One)
define i where i ≡ λh x . integral (BOX h x ) f /R h ˆ DIM ( ′a)
define Ψ where Ψ ≡ λx r . ∀ d>0 . ∃ h. 0 < h ∧ h < d ∧ r ≤ norm(i h x − f

x )
let ?N = {x . ∃ e>0 . Ψ x e}
have ∃N . negligible N ∧ (∀ x e. x /∈ N ∧ 0 < e −→ ¬ Ψ x e)
proof (rule exI ; intro conjI allI impI )
let ?M =

⋃
n. {x . Ψ x (inverse(real n + 1 ))}

have negligible ({x . Ψ x µ} ∩ cbox a b)
if µ > 0 for a b µ

proof (cases negligible(cbox a b))
case True
then show ?thesis
by (simp add : negligible Int)

next
case False
then have box a b 6= {}
by (simp add : negligible interval)

then have ab:
∧
i . i ∈ Basis =⇒ a·i < b·i

by (simp add : box ne empty)
show ?thesis
unfolding negligible outer le

proof (intro allI impI )
fix e::real
let ?ee = (e ∗ µ) / 2 / 6 ˆ (DIM ( ′a))
assume e > 0
then have gt0 : ?ee > 0
using 〈µ > 0 〉 by auto

have f ′: f integrable on cbox (a − One) (b + One)
using assms by blast

obtain γ where gauge γ
and γ:

∧
p. [[p tagged partial division of (cbox (a − One) (b + One)); γ

fine p]]
=⇒ (

∑
(x , k)∈p. norm (content k ∗R f x − integral k f )) < ?ee

using Henstock lemma [OF f ′ gt0 ] that by auto
let ?E = {x . x ∈ cbox a b ∧ Ψ x µ}
have ∃ h>0 . BOX h x ⊆ γ x ∧

BOX h x ⊆ cbox (a − One) (b + One) ∧ µ ≤ norm (i h x − f x )
if x ∈ cbox a b Ψ x µ for x

proof −
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obtain d where d > 0 and d : ball x d ⊆ γ x
using gaugeD [OF 〈gauge γ〉, of x ] openE by blast

then obtain h where 0 < h h < 1 and hless: h < d / real DIM ( ′a)
and mule: µ ≤ norm (i h x − f x )

using 〈Ψ x µ〉 [unfolded Ψ def , rule format , of min 1 (d / DIM ( ′a))]
by auto

show ?thesis
proof (intro exI conjI )
show 0 < h µ ≤ norm (i h x − f x ) by fact+
have BOX h x ⊆ ball x d
proof (clarsimp simp: BOX def mem box dist norm algebra simps)
fix y
assume ∀ i∈Basis. x · i ≤ y · i ∧ y · i ≤ h + x · i
then have lt : |(x − y) · i | < d / real DIM ( ′a) if i ∈ Basis for i
using hless that by (force simp: inner diff left)

have norm (x − y) ≤ (
∑

i∈Basis. |(x − y) · i |)
using norm le l1 by blast

also have . . . < d
using sum bounded above strict [of Basis λi . |(x − y) · i | d / DIM ( ′a),

OF lt ]
by auto

finally show norm (x − y) < d .
qed
with d show BOX h x ⊆ γ x
by blast

show BOX h x ⊆ cbox (a − One) (b + One)
using that 〈h < 1 〉

by (force simp: BOX def mem box algebra simps intro: subset box imp)
qed

qed
then obtain η where h0 :

∧
x . x ∈ ?E =⇒ η x > 0

and BOX γ:
∧
x . x ∈ ?E =⇒ BOX (η x ) x ⊆ γ x

and
∧
x . x ∈ ?E =⇒ BOX (η x ) x ⊆ cbox (a − One) (b + One) ∧ µ ≤

norm (i (η x ) x − f x )
by simp metis

then have BOX cbox :
∧
x . x ∈ ?E =⇒ BOX (η x ) x ⊆ cbox (a − One) (b

+ One)
and µ le:

∧
x . x ∈ ?E =⇒ µ ≤ norm (i (η x ) x − f x )

by blast+
define γ ′ where γ ′ ≡ λx . if x ∈ cbox a b ∧ Ψ x µ then ball x (η x ) else γ x
have gauge γ ′

using 〈gauge γ〉 by (auto simp: h0 gauge def γ ′ def )
obtain D where countable D
and D:

⋃
D ⊆ cbox a b∧

K . K ∈ D =⇒ interior K 6= {} ∧ (∃ c d . K = cbox c d)
and Dcovered :

∧
K . K ∈ D =⇒ ∃ x . x ∈ cbox a b ∧ Ψ x µ ∧ x ∈ K ∧ K

⊆ γ ′ x
and subUD : ?E ⊆

⋃
D

by (rule covering lemma [of ?E a b γ ′]) (simp all add : Bex def 〈box a b 6=
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{}〉 〈gauge γ ′〉)
then have D ⊆ sets lebesgue
by fastforce

show ∃T . {x . Ψ x µ} ∩ cbox a b ⊆ T ∧ T ∈ lmeasurable ∧ measure lebesgue
T ≤ e

proof (intro exI conjI )
show {x . Ψ x µ} ∩ cbox a b ⊆

⋃
D

apply auto
using subUD by auto

have mUE : measure lebesgue (
⋃
E) ≤ measure lebesgue (cbox a b)

if E ⊆ D finite E for E
proof (rule measure mono fmeasurable)
show

⋃
E ⊆ cbox a b

using D(1 ) that(1 ) by blast
show

⋃
E ∈ sets lebesgue

by (metis D(2 ) fmeasurable.finite Union fmeasurableD lmeasurable cbox
subset eq that)

qed auto
then show

⋃
D ∈ lmeasurable

by (metis D(2 ) 〈countable D〉 fmeasurable Union bound lmeasurable cbox )
then have leab: measure lebesgue (

⋃
D) ≤ measure lebesgue (cbox a b)

by (meson D(1 ) fmeasurableD lmeasurable cbox measure mono fmeasurable)
obtain F where F ⊆ D finite F
and F : measure lebesgue (

⋃
D) ≤ 2 ∗ measure lebesgue (

⋃
F)

proof (cases measure lebesgue (
⋃
D) = 0 )

case True
then show ?thesis
by (force intro: that [where F = {}])

next
case False
obtain F where F ⊆ D finite F
and F : measure lebesgue (

⋃
D)/2 < measure lebesgue (

⋃
F)

proof (rule measure countable Union approachable [of D measure lebesgue
(
⋃
D) / 2 content (cbox a b)])

show countable D
by fact

show 0 < measure lebesgue (
⋃
D) / 2

using False by (simp add : zero less measure iff )
show Dlm: D ∈ lmeasurable if D ∈ D for D
using D(2 ) that by blast

show measure lebesgue (
⋃
F) ≤ content (cbox a b)

if F ⊆ D finite F for F
proof −
have measure lebesgue (

⋃
F) ≤ measure lebesgue (

⋃
D)

proof (rule measure mono fmeasurable)
show

⋃
F ⊆

⋃
D

by (simp add : Sup subset mono 〈F ⊆ D〉)
show

⋃
F ∈ sets lebesgue

by (meson Dlm fmeasurableD sets.finite Union subset eq that)
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show
⋃
D ∈ lmeasurable

by fact
qed
also have . . . ≤ measure lebesgue (cbox a b)
proof (rule measure mono fmeasurable)
show

⋃
D ∈ sets lebesgue

by (simp add : 〈
⋃
D ∈ lmeasurable〉 fmeasurableD)

qed (auto simp:D(1 ))
finally show ?thesis
by simp

qed
qed auto
then show ?thesis
using that by auto

qed
obtain tag where tag in E :

∧
D . D ∈ D =⇒ tag D ∈ ?E

and tag in self :
∧
D . D ∈ D =⇒ tag D ∈ D

and tag sub:
∧
D . D ∈ D =⇒ D ⊆ γ ′ (tag D)

using Dcovered by simp metis
then have sub ball tag :

∧
D . D ∈ D =⇒ D ⊆ ball (tag D) (η (tag D))

by (simp add : γ ′ def )
define Φ where Φ ≡ λD . BOX (η(tag D)) (tag D)
define Φ2 where Φ2 ≡ λD . BOX2 (η(tag D)) (tag D)
obtain C where C ⊆ Φ2 ‘ F pairwise disjnt C
measure lebesgue (

⋃
C) ≥ measure lebesgue (

⋃
(Φ2‘F)) / 3 ˆ (DIM ( ′a))

proof (rule Austin Lemma)
show finite (Φ2‘F)
using 〈finite F 〉 by blast

have ∃ k a b. Φ2 D = cbox a b ∧ (∀ i∈Basis. b · i − a · i = k) if D ∈
F for D

apply (rule tac x=2 ∗ η(tag D) in exI )
apply (rule tac x=tag D − η(tag D) ∗R One in exI )
apply (rule tac x=tag D + η(tag D) ∗R One in exI )
using that
apply (auto simp: Φ2 def BOX2 def algebra simps)
done

then show
∧
D . D ∈ Φ2 ‘ F =⇒ ∃ k a b. D = cbox a b ∧ (∀ i∈Basis. b

· i − a · i = k)
by blast

qed auto
then obtain G where G ⊆ F and disj : pairwise disjnt (Φ2 ‘ G)
and measure lebesgue (

⋃
(Φ2 ‘ G)) ≥ measure lebesgue (

⋃
(Φ2‘F)) / 3

ˆ (DIM ( ′a))
unfolding Φ2 def subset image iff
by (meson empty subsetI equals0D pairwise imageI )

moreover
have measure lebesgue (

⋃
(Φ2 ‘ G)) ∗ 3 ˆ DIM ( ′a) ≤ e/2

proof −
have finite G
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using 〈finite F 〉 〈G ⊆ F 〉 infinite super by blast
have BOX2 m:

∧
x . x ∈ tag ‘ G =⇒ BOX2 (η x ) x ∈ lmeasurable

by (auto simp: BOX2 def )
have BOX m:

∧
x . x ∈ tag ‘ G =⇒ BOX (η x ) x ∈ lmeasurable

by (auto simp: BOX def )
have BOX sub: BOX (η x ) x ⊆ BOX2 (η x ) x for x
by (auto simp: BOX def BOX2 def subset box algebra simps)

have DISJ2 : BOX2 (η (tag X )) (tag X ) ∩ BOX2 (η (tag Y )) (tag Y )
= {}

if X ∈ G Y ∈ G tag X 6= tag Y for X Y
proof −
obtain i where i : i ∈ Basis tag X · i 6= tag Y · i
using 〈tag X 6= tag Y 〉 by (auto simp: euclidean eq iff [of tag X ])

have XY : X ∈ D Y ∈ D
using 〈F ⊆ D〉 〈G ⊆ F 〉 that by auto

then have 0 ≤ η (tag X ) 0 ≤ η (tag Y )
by (meson h0 le cases not le tag in E )+

with XY i have BOX2 (η (tag X )) (tag X ) 6= BOX2 (η (tag Y )) (tag
Y )

unfolding eq iff
by (fastforce simp add : BOX2 def subset box algebra simps)

then show ?thesis
using disj that by (auto simp: pairwise def disjnt def Φ2 def )

qed
then have BOX2 disj : pairwise (λx y . negligible (BOX2 (η x ) x ∩ BOX2

(η y) y)) (tag ‘ G)
by (simp add : pairwise imageI )

then have BOX disj : pairwise (λx y . negligible (BOX (η x ) x ∩ BOX
(η y) y)) (tag ‘ G)

proof (rule pairwise mono)
show negligible (BOX (η x ) x ∩ BOX (η y) y)
if negligible (BOX2 (η x ) x ∩ BOX2 (η y) y) for x y

by (metis (no types, hide lams) that Int mono negligible subset
BOX sub)

qed auto

have eq :
∧
box . (λD . box (η (tag D)) (tag D)) ‘ G = (λt . box (η t) t) ‘

tag ‘ G
by (simp add : image comp)

have measure lebesgue (BOX2 (η t) t) ∗ 3 ˆ DIM ( ′a)
= measure lebesgue (BOX (η t) t) ∗ (2∗3 ) ˆ DIM ( ′a)

if t ∈ tag ‘ G for t
proof −
have content (cbox (t − η t ∗R One) (t + η t ∗R One))

= content (cbox t (t + η t ∗R One)) ∗ 2 ˆ DIM ( ′a)
using that by (simp add : algebra simps content cbox if box eq empty)
then show ?thesis
by (simp add : BOX2 def BOX def flip: power mult distrib)

qed
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then have measure lebesgue (
⋃
(Φ2 ‘ G)) ∗ 3 ˆ DIM ( ′a) = measure

lebesgue (
⋃
(Φ ‘ G)) ∗ 6 ˆ DIM ( ′a)
unfolding Φ def Φ2 def eq
by (simp add : measure negligible finite Union image

〈finite G〉 BOX2 m BOX m BOX2 disj BOX disj sum distrib right
del : UN simps)

also have . . . ≤ e/2
proof −
have µ ∗ measure lebesgue (

⋃
D∈G. Φ D) ≤ µ ∗ (

∑
D ∈ Φ‘G. measure

lebesgue D)
using 〈µ > 0 〉 〈finite G〉 by (force simp: BOX m Φ def fmeasurableD

intro: measure Union le)
also have . . . = (

∑
D ∈ Φ‘G. measure lebesgue D ∗ µ)

by (metis mult .commute sum distrib right)
also have . . . ≤ (

∑
(x , K ) ∈ (λD . (tag D , Φ D)) ‘ G. norm (content

K ∗R f x − integral K f ))
proof (rule sum le included ; clarify?)
fix D
assume D ∈ G
then have η (tag D) > 0
using 〈F ⊆ D〉 〈G ⊆ F 〉 h0 tag in E by auto

then have m Φ: measure lebesgue (Φ D) > 0
by (simp add : Φ def BOX def algebra simps)

have µ ≤ norm (i (η(tag D)) (tag D) − f (tag D))
using µ le 〈D ∈ G〉 〈F ⊆ D〉 〈G ⊆ F 〉 tag in E by auto
also have . . . = norm ((content (Φ D) ∗R f (tag D) − integral (Φ

D) f ) /R measure lebesgue (Φ D))
using m Φ
unfolding i def Φ def BOX def

by (simp add : algebra simps content cbox plus norm minus commute)
finally have measure lebesgue (Φ D) ∗ µ ≤ norm (content (Φ D) ∗R

f (tag D) − integral (Φ D) f )
using m Φ by simp (simp add : field simps)

then show ∃ y∈(λD . (tag D , Φ D)) ‘ G.
snd y = Φ D ∧ measure lebesgue (Φ D) ∗ µ ≤ (case y of (x ,

k) ⇒ norm (content k ∗R f x − integral k f ))
using 〈D ∈ G〉 by auto

qed (use 〈finite G〉 in auto)
also have . . . < ?ee
proof (rule γ)

show (λD . (tag D , Φ D)) ‘ G tagged partial division of cbox (a −
One) (b + One)

unfolding tagged partial division of def
proof (intro conjI allI impI ; clarify ?)
show tag D ∈ Φ D
if D ∈ G for D
using that 〈F ⊆ D〉 〈G ⊆ F 〉 h0 tag in E

by (auto simp: Φ def BOX def mem box algebra simps
eucl less le not le in mono)
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show y ∈ cbox (a − One) (b + One) if D ∈ G y ∈ Φ D for D y
using that BOX cbox Φ def 〈F ⊆ D〉 〈G ⊆ F 〉 tag in E by blast

show tag D = tag E ∧ Φ D = Φ E
if D ∈ G E ∈ G and ne: interior (Φ D) ∩ interior (Φ E ) 6= {}

for D E
proof −
have BOX2 (η (tag D)) (tag D) ∩ BOX2 (η (tag E )) (tag E ) =

{} ∨ tag E = tag D
using DISJ2 〈D ∈ G〉 〈E ∈ G〉 by force

then have BOX (η (tag D)) (tag D) ∩ BOX (η (tag E )) (tag E )
= {} ∨ tag E = tag D

using BOX sub by blast
then show tag D = tag E ∧ Φ D = Φ E
by (metis Φ def interior Int interior empty ne)

qed
qed (use 〈finite G〉 Φ def BOX def in auto)
show γ fine (λD . (tag D , Φ D)) ‘ G
unfolding fine def Φ def using BOX γ 〈F ⊆ D〉 〈G ⊆ F 〉 tag in E

by blast
qed
finally show ?thesis
using 〈µ > 0 〉 by (auto simp: field split simps)

qed
finally show ?thesis .

qed
moreover
have measure lebesgue (

⋃
F) ≤ measure lebesgue (

⋃
(Φ2‘F))

proof (rule measure mono fmeasurable)
have D ⊆ ball (tag D) (η(tag D)) if D ∈ F for D
using 〈F ⊆ D〉 sub ball tag that by blast

moreover have ball (tag D) (η(tag D)) ⊆ BOX2 (η (tag D)) (tag D) if
D ∈ F for D

proof (clarsimp simp: Φ2 def BOX2 def mem box algebra simps dist norm)
fix x and i :: ′a
assume norm (tag D − x ) < η (tag D) and i ∈ Basis
then have |tag D · i − x · i | ≤ η (tag D)

by (metis eucl less le not le inner commute inner diff right norm bound Basis le)
then show tag D · i ≤ x · i + η (tag D) ∧ x · i ≤ η (tag D) + tag D

· i
by (simp add : abs diff le iff )

qed
ultimately show

⋃
F ⊆

⋃
(Φ2‘F)

by (force simp: Φ2 def )
show

⋃
F ∈ sets lebesgue

using 〈finite F 〉 〈D ⊆ sets lebesgue〉 〈F ⊆ D〉 by blast
show

⋃
(Φ2‘F) ∈ lmeasurable

unfolding Φ2 def BOX2 def using 〈finite F 〉 by blast
qed
ultimately
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have measure lebesgue (
⋃
F) ≤ e/2

by (auto simp: field split simps)
then show measure lebesgue (

⋃
D) ≤ e

using F by linarith
qed

qed
qed
then have

∧
j . negligible {x . Ψ x (inverse(real j + 1 ))}

using negligible on intervals
by (metis (full types) inverse positive iff positive le add same cancel1 linorder not le

nat le real less not add less1 of nat 0 )
then have negligible ?M
by auto

moreover have ?N ⊆ ?M
proof (clarsimp simp: dist norm)
fix y e
assume 0 < e
and ye [rule format ]: Ψ y e

then obtain k where k : 0 < k inverse (real k + 1 ) < e
by (metis One nat def add .commute less add same cancel2 less imp inverse less

less trans neq0 conv of nat 1 of nat Suc reals Archimedean zero less one)
with ye show ∃n. Ψ y (inverse (real n + 1 ))
apply (rule tac x=k in exI )
unfolding Ψ def
by (force intro: less le trans)

qed
ultimately show negligible ?N
by (blast intro: negligible subset)

show ¬ Ψ x e if x /∈ ?N ∧ 0 < e for x e
using that by blast

qed
with that show ?thesis
unfolding i def BOX def Ψ def by (fastforce simp add : not le)

qed

6.29.3 HOL Light measurability

definition measurable on :: ( ′a::euclidean space ⇒ ′b::real normed vector) ⇒ ′a
set ⇒ bool
(infixr measurable ′ on 46 )
where f measurable on S ≡

∃N g . negligible N ∧
(∀n. continuous on UNIV (g n)) ∧
(∀ x . x /∈ N −→ (λn. g n x ) −−−−→ (if x ∈ S then f x else 0 ))

lemma measurable on UNIV :
(λx . if x ∈ S then f x else 0 ) measurable on UNIV ←→ f measurable on S
by (auto simp: measurable on def )
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lemma measurable on spike set :
assumes f : f measurable on S and neg : negligible ((S − T ) ∪ (T − S ))
shows f measurable on T

proof −
obtain N and F
where N : negligible N
and conF :

∧
n. continuous on UNIV (F n)

and tendsF :
∧
x . x /∈ N =⇒ (λn. F n x ) −−−−→ (if x ∈ S then f x else 0 )

using f by (auto simp: measurable on def )
show ?thesis
unfolding measurable on def

proof (intro exI conjI allI impI )
show continuous on UNIV (λx . F n x ) for n
by (intro conF continuous intros)

show negligible (N ∪ (S − T ) ∪ (T − S ))
by (metis (full types) N neg negligible Un eq)

show (λn. F n x ) −−−−→ (if x ∈ T then f x else 0 )
if x /∈ (N ∪ (S − T ) ∪ (T − S )) for x
using that tendsF [of x ] by auto

qed
qed

Various common equivalent forms of function measurability.

lemma measurable on 0 [simp]: (λx . 0 ) measurable on S
unfolding measurable on def

proof (intro exI conjI allI impI )
show (λn. 0 ) −−−−→ (if x ∈ S then 0 :: ′b else 0 ) for x
by force

qed auto

lemma measurable on scaleR const :
assumes f : f measurable on S
shows (λx . c ∗R f x ) measurable on S

proof −
obtain NF and F
where NF : negligible NF
and conF :

∧
n. continuous on UNIV (F n)

and tendsF :
∧
x . x /∈ NF =⇒ (λn. F n x ) −−−−→ (if x ∈ S then f x else 0 )

using f by (auto simp: measurable on def )
show ?thesis
unfolding measurable on def

proof (intro exI conjI allI impI )
show continuous on UNIV (λx . c ∗R F n x ) for n
by (intro conF continuous intros)

show (λn. c ∗R F n x ) −−−−→ (if x ∈ S then c ∗R f x else 0 )
if x /∈ NF for x
using tendsto scaleR [OF tendsto const tendsF , of x ] that by auto

qed (auto simp: NF )
qed
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lemma measurable on cmul :
fixes c :: real
assumes f measurable on S
shows (λx . c ∗ f x ) measurable on S
using measurable on scaleR const [OF assms] by simp

lemma measurable on cdivide:
fixes c :: real
assumes f measurable on S
shows (λx . f x / c) measurable on S

proof (cases c=0 )
case False
then show ?thesis
using measurable on cmul [of f S 1/c]
by (simp add : assms)

qed auto

lemma measurable on minus:
f measurable on S =⇒ (λx . −(f x )) measurable on S
using measurable on scaleR const [of f S −1 ] by auto

lemma continuous imp measurable on:
continuous on UNIV f =⇒ f measurable on UNIV
unfolding measurable on def
apply (rule tac x={} in exI )
apply (rule tac x=λn. f in exI , auto)
done

proposition integrable subintervals imp measurable:
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes

∧
a b. f integrable on cbox a b

shows f measurable on UNIV
proof −
define BOX where BOX ≡ λh. λx :: ′a. cbox x (x + h ∗R One)
define i where i ≡ λh x . integral (BOX h x ) f /R h ˆ DIM ( ′a)
obtain N where negligible N
and k :

∧
x e. [[x /∈ N ; 0 < e]]

=⇒ ∃ d>0 . ∀ h. 0 < h ∧ h < d −→
norm (integral (cbox x (x + h ∗R One)) f /R h ˆ DIM ( ′a) − f x )

< e
using integrable ccontinuous explicit assms by blast

show ?thesis
unfolding measurable on def

proof (intro exI conjI allI impI )
show continuous on UNIV ((λn x . i (inverse(Suc n)) x ) n) for n
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proof (clarsimp simp: continuous on iff )
show ∃ d>0 . ∀ x ′. dist x ′ x < d −→ dist (i (inverse (1 + real n)) x ′) (i

(inverse (1 + real n)) x ) < e
if 0 < e
for x e

proof −
let ?e = e / (1 + real n) ˆ DIM ( ′a)
have ?e > 0
using 〈e > 0 〉 by auto

moreover have x ∈ cbox (x − 2 ∗R One) (x + 2 ∗R One)
by (simp add : mem box inner diff left inner left distrib)

moreover have x + One /R real (Suc n) ∈ cbox (x − 2 ∗R One) (x + 2
∗R One)

by (auto simp: mem box inner diff left inner left distrib field simps)
ultimately obtain δ where δ > 0
and δ:

∧
c ′ d ′. [[c ′ ∈ cbox (x − 2 ∗R One) (x + 2 ∗R One);

d ′ ∈ cbox (x − 2 ∗R One) (x + 2 ∗R One);
norm(c ′ − x ) ≤ δ; norm(d ′ − (x + One /R Suc n)) ≤ δ]]
=⇒ norm(integral(cbox c ′ d ′) f − integral(cbox x (x + One

/R Suc n)) f ) < ?e
by (blast intro: indefinite integral continuous [of f x ] assms)

show ?thesis
proof (intro exI impI conjI allI )
show min δ 1 > 0
using 〈δ > 0 〉 by auto

show dist (i (inverse (1 + real n)) y) (i (inverse (1 + real n)) x ) < e
if dist y x < min δ 1 for y

proof −
have no: norm (y − x ) < 1
using that by (auto simp: dist norm)

have le1 : inverse (1 + real n) ≤ 1
by (auto simp: field split simps)

have norm (integral (cbox y (y + One /R real (Suc n))) f
− integral (cbox x (x + One /R real (Suc n))) f )
< e / (1 + real n) ˆ DIM ( ′a)

proof (rule δ)
show y ∈ cbox (x − 2 ∗R One) (x + 2 ∗R One)
using no by (auto simp: mem box algebra simps dest : Basis le norm

[of y−x ])
show y + One /R real (Suc n) ∈ cbox (x − 2 ∗R One) (x + 2 ∗R

One)
proof (simp add : dist norm mem box algebra simps, intro ballI conjI )
fix i :: ′a
assume i ∈ Basis
then have 1 : |y · i − x · i | < 1
by (metis inner commute inner diff right no norm bound Basis lt)

moreover have . . . < (2 + inverse (1 + real n)) 1 ≤ 2 − inverse
(1 + real n)

by (auto simp: field simps)
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ultimately show x · i ≤ y · i + (2 + inverse (1 + real n))
y · i + inverse (1 + real n) ≤ x · i + 2

by linarith+
qed
show norm (y − x ) ≤ δ norm (y + One /R real (Suc n) − (x + One

/R real (Suc n))) ≤ δ
using that by (auto simp: dist norm)

qed
then show ?thesis
using that by (simp add : dist norm i def BOX def flip: scaleR diff right)

(simp add : field simps)
qed

qed
qed

qed
show negligible N
by (simp add : 〈negligible N 〉)

show (λn. i (inverse (Suc n)) x ) −−−−→ (if x ∈ UNIV then f x else 0 )
if x /∈ N for x
unfolding lim sequentially

proof clarsimp
show ∃no. ∀n≥no. dist (i (inverse (1 + real n)) x ) (f x ) < e
if 0 < e for e

proof −
obtain d where d > 0
and d :

∧
h. [[0 < h; h < d ]] =⇒

norm (integral (cbox x (x + h ∗R One)) f /R h ˆ DIM ( ′a) − f x ) < e
using k [of x e] 〈x /∈ N 〉 〈0 < e〉 by blast

then obtain M where M : M 6= 0 0 < inverse (real M ) inverse (real M )
< d

using real arch invD by auto
show ?thesis
proof (intro exI allI impI )
show dist (i (inverse (1 + real n)) x ) (f x ) < e
if M ≤ n for n

proof −
have ∗: 0 < inverse (1 + real n) inverse (1 + real n) ≤ inverse M
using that 〈M 6= 0 〉 by auto

show ?thesis
using that M
apply (simp add : i def BOX def dist norm)
apply (blast intro: le less trans ∗ d)
done

qed
qed

qed
qed

qed
qed
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6.29.4 Composing continuous and measurable functions; a
few variants

lemma measurable on compose continuous:
assumes f : f measurable on UNIV and g : continuous on UNIV g
shows (g ◦ f ) measurable on UNIV

proof −
obtain N and F
where negligible N
and conF :

∧
n. continuous on UNIV (F n)

and tendsF :
∧
x . x /∈ N =⇒ (λn. F n x ) −−−−→ f x

using f by (auto simp: measurable on def )
show ?thesis
unfolding measurable on def

proof (intro exI conjI allI impI )
show negligible N
by fact

show continuous on UNIV (g ◦ (F n)) for n
using conF continuous on compose continuous on subset g by blast

show (λn. (g ◦ F n) x ) −−−−→ (if x ∈ UNIV then (g ◦ f ) x else 0 )
if x /∈ N for x :: ′a
using that g tendsF by (auto simp: continuous on def intro: tendsto compose)

qed
qed

lemma measurable on compose continuous 0 :
assumes f : f measurable on S and g : continuous on UNIV g and g 0 = 0
shows (g ◦ f ) measurable on S

proof −
have f ′: (λx . if x ∈ S then f x else 0 ) measurable on UNIV
using f measurable on UNIV by blast

show ?thesis
using measurable on compose continuous [OF f ′ g ]
by (simp add : measurable on UNIV o def if distrib 〈g 0 = 0 〉 cong : if cong)

qed

lemma measurable on compose continuous box :
assumes fm: f measurable on UNIV and fab:

∧
x . f x ∈ box a b

and contg : continuous on (box a b) g
shows (g ◦ f ) measurable on UNIV

proof −
have ∃ γ. (∀n. continuous on UNIV (γ n)) ∧ (∀ x . x /∈ N −→ (λn. γ n x )
−−−−→ g (f x ))

if negligible N
and conth [rule format ]: ∀n. continuous on UNIV (λx . h n x )
and tends [rule format ]: ∀ x . x /∈ N −→ (λn. h n x ) −−−−→ f x

for N and h :: nat ⇒ ′a ⇒ ′b
proof −
define ϑ where ϑ ≡ λn x . (

∑
i∈Basis. (max (a·i + (b·i − a·i) / real (n+2 ))
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(min ((h n x )·i)
(b·i − (b·i − a·i) / real (n+2 )))) ∗R i)

have aibi :
∧
i . i ∈ Basis =⇒ a · i < b · i

using box ne empty(2 ) fab by auto
then have ∗:

∧
i n. i ∈ Basis =⇒ a · i + real n ∗ (a · i) < b · i + real n ∗

(b · i)
by (meson add mono thms linordered field(3 ) less eq real def mult left mono

of nat 0 le iff )
show ?thesis
proof (intro exI conjI allI impI )
show continuous on UNIV (g ◦ (ϑ n)) for n :: nat
unfolding ϑ def
apply (intro continuous on compose2 [OF contg ] continuous intros conth)

apply (auto simp: aibi ∗ mem box less max iff disj min less iff disj field split simps)
done

show (λn. (g ◦ ϑ n) x ) −−−−→ g (f x )
if x /∈ N for x
unfolding o def

proof (rule isCont tendsto compose [where g=g ])
show isCont g (f x )
using contg fab continuous on eq continuous at by blast

have (λn. ϑ n x ) −−−−→ (
∑

i∈Basis. max (a · i) (min (f x · i) (b · i)) ∗R
i)

unfolding ϑ def
proof (intro tendsto intros 〈x /∈ N 〉 tends)
fix i :: ′b
assume i ∈ Basis
have a: (λn. a · i + (b · i − a · i) / real n) −−−−→ a·i + 0
by (intro tendsto add lim const over n tendsto const)

show (λn. a · i + (b · i − a · i) / real (n + 2 )) −−−−→ a · i
using LIMSEQ ignore initial segment [where k=2 , OF a] by simp

have b: (λn. b·i − (b · i − a · i) / (real n)) −−−−→ b·i − 0
by (intro tendsto diff lim const over n tendsto const)

show (λn. b · i − (b · i − a · i) / real (n + 2 )) −−−−→ b · i
using LIMSEQ ignore initial segment [where k=2 , OF b] by simp

qed
also have (

∑
i∈Basis. max (a · i) (min (f x · i) (b · i)) ∗R i) = (

∑
i∈Basis.

(f x · i) ∗R i)
apply (rule sum.cong)
using fab
apply auto
apply (intro order antisym)
apply (auto simp: mem box )
using less imp le apply blast
by (metis (full types) linear max less iff conj min.bounded iff not le)

also have . . . = f x
using euclidean representation by blast

finally show (λn. ϑ n x ) −−−−→ f x .
qed
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qed
qed
then show ?thesis
using fm by (auto simp: measurable on def )

qed

lemma measurable on Pair :
assumes f : f measurable on S and g : g measurable on S
shows (λx . (f x , g x )) measurable on S

proof −
obtain NF and F
where NF : negligible NF
and conF :

∧
n. continuous on UNIV (F n)

and tendsF :
∧
x . x /∈ NF =⇒ (λn. F n x ) −−−−→ (if x ∈ S then f x else 0 )

using f by (auto simp: measurable on def )
obtain NG and G
where NG : negligible NG
and conG :

∧
n. continuous on UNIV (G n)

and tendsG :
∧
x . x /∈ NG =⇒ (λn. G n x ) −−−−→ (if x ∈ S then g x else 0 )

using g by (auto simp: measurable on def )
show ?thesis
unfolding measurable on def

proof (intro exI conjI allI impI )
show negligible (NF ∪ NG)
by (simp add : NF NG)

show continuous on UNIV (λx . (F n x , G n x )) for n
using conF conG continuous on Pair by blast

show (λn. (F n x , G n x )) −−−−→ (if x ∈ S then (f x , g x ) else 0 )
if x /∈ NF ∪ NG for x
using tendsto Pair [OF tendsF tendsG , of x x ] that unfolding zero prod def
by (simp add : split : if split asm)

qed
qed

lemma measurable on combine:
assumes f : f measurable on S and g : g measurable on S
and h: continuous on UNIV (λx . h (fst x ) (snd x )) and h 0 0 = 0

shows (λx . h (f x ) (g x )) measurable on S
proof −
have ∗: (λx . h (f x ) (g x )) = (λx . h (fst x ) (snd x )) ◦ (λx . (f x , g x ))
by auto

show ?thesis
unfolding ∗ by (auto simp: measurable on compose continuous 0 measur-

able on Pair assms)
qed

lemma measurable on add :
assumes f : f measurable on S and g : g measurable on S
shows (λx . f x + g x ) measurable on S
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by (intro continuous intros measurable on combine [OF assms]) auto

lemma measurable on diff :
assumes f : f measurable on S and g : g measurable on S
shows (λx . f x − g x ) measurable on S
by (intro continuous intros measurable on combine [OF assms]) auto

lemma measurable on scaleR:
assumes f : f measurable on S and g : g measurable on S
shows (λx . f x ∗R g x ) measurable on S
by (intro continuous intros measurable on combine [OF assms]) auto

lemma measurable on sum:
assumes finite I

∧
i . i ∈ I =⇒ f i measurable on S

shows (λx . sum (λi . f i x ) I ) measurable on S
using assms by (induction I ) (auto simp: measurable on add)

lemma measurable on spike:
assumes f : f measurable on T and negligible S and gf :

∧
x . x ∈ T − S =⇒ g

x = f x
shows g measurable on T

proof −
obtain NF and F
where NF : negligible NF
and conF :

∧
n. continuous on UNIV (F n)

and tendsF :
∧
x . x /∈ NF =⇒ (λn. F n x ) −−−−→ (if x ∈ T then f x else 0 )

using f by (auto simp: measurable on def )
show ?thesis
unfolding measurable on def

proof (intro exI conjI allI impI )
show negligible (NF ∪ S )
by (simp add : NF 〈negligible S 〉)

show
∧
x . x /∈ NF ∪ S =⇒ (λn. F n x ) −−−−→ (if x ∈ T then g x else 0 )

by (metis (full types) Diff iff Un iff gf tendsF )
qed (auto simp: conF )

qed

proposition indicator measurable on:
assumes S ∈ sets lebesgue
shows indicat real S measurable on UNIV

proof −
{ fix n::nat
let ?ε = (1 ::real) / (2 ∗ 2ˆn)
have ε: ?ε > 0
by auto
obtain T where closed T T ⊆ S S−T ∈ lmeasurable and ST : emeasure

lebesgue (S − T ) < ?ε
by (meson ε assms sets lebesgue inner closed)

obtain U where open U S ⊆ U (U − S ) ∈ lmeasurable and US : emeasure
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lebesgue (U − S ) < ?ε
by (meson ε assms sets lebesgue outer open)

have eq : −T ∩ U = (S−T ) ∪ (U − S )
using 〈T ⊆ S 〉 〈S ⊆ U 〉 by auto

have emeasure lebesgue ((S−T ) ∪ (U − S )) ≤ emeasure lebesgue (S − T ) +
emeasure lebesgue (U − S )

using 〈S − T ∈ lmeasurable〉 〈U − S ∈ lmeasurable〉 emeasure subadditive
by blast

also have . . . < ?ε + ?ε
using ST US add mono ennreal by metis

finally have le: emeasure lebesgue (−T ∩ U ) < ennreal (1 / 2ˆn)
by (simp add : eq)

have 1 : continuous on (T ∪ −U ) (indicat real S )
unfolding indicator def

proof (rule continuous on cases [OF 〈closed T 〉])
show closed (− U )
using 〈open U 〉 by blast

show continuous on T (λx . 1 ::real) continuous on (− U ) (λx . 0 ::real)
by (auto simp: continuous on)

show ∀ x . x ∈ T ∧ x /∈ S ∨ x ∈ − U ∧ x ∈ S −→ (1 ::real) = 0
using 〈T ⊆ S 〉 〈S ⊆ U 〉 by auto

qed
have 2 : closedin (top of set UNIV ) (T ∪ −U )
using 〈closed T 〉 〈open U 〉 by auto

obtain g where continuous on UNIV g
∧
x . x ∈ T ∪ −U =⇒ g x = indicat real

S x
∧
x . norm(g x ) ≤ 1

by (rule Tietze [OF 1 2 , of 1 ]) auto
with le have ∃ g E . continuous on UNIV g ∧ (∀ x ∈ −E . g x = indicat real S

x ) ∧
(∀ x . norm(g x ) ≤ 1 ) ∧ E ∈ sets lebesgue ∧ emeasure lebesgue

E < ennreal (1 / 2ˆn)
apply (rule tac x=g in exI )
apply (rule tac x=−T ∩ U in exI )
using 〈S − T ∈ lmeasurable〉 〈U − S ∈ lmeasurable〉 eq by auto

}
then obtain g E where cont :

∧
n. continuous on UNIV (g n)

and geq :
∧
n x . x ∈ − E n =⇒ g n x = indicat real S x

and ng1 :
∧
n x . norm(g n x ) ≤ 1

and Eset :
∧
n. E n ∈ sets lebesgue

and Em:
∧
n. emeasure lebesgue (E n) < ennreal (1 / 2ˆn)

by metis
have null : limsup E ∈ null sets lebesgue
proof (rule borel cantelli limsup1 [OF Eset ])
show emeasure lebesgue (E n) < ∞ for n
by (metis Em infinity ennreal def order .asym top.not eq extremum)

show summable (λn. measure lebesgue (E n))
proof (rule summable comparison test ′ [OF summable geometric, of 1/2 0 ])
show norm (measure lebesgue (E n)) ≤ (1/2 ) ˆ n for n
using Em [of n] by (simp add : measure def enn2real leI power one over)
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qed auto
qed
have tends: (λn. g n x ) −−−−→ indicat real S x if x /∈ limsup E for x
proof −
have ∀ F n in sequentially . x ∈ − E n
using that by (simp add : mem limsup iff not frequently)

then show ?thesis
unfolding tendsto iff dist real def
by (simp add : eventually mono geq)

qed
show ?thesis
unfolding measurable on def

proof (intro exI conjI allI impI )
show negligible (limsup E )
using negligible iff null sets null by blast

show continuous on UNIV (g n) for n
using cont by blast

qed (use tends in auto)
qed

lemma measurable on restrict :
assumes f : f measurable on UNIV and S : S ∈ sets lebesgue
shows (λx . if x ∈ S then f x else 0 ) measurable on UNIV

proof −
have indicat real S measurable on UNIV
by (simp add : S indicator measurable on)

then show ?thesis
using measurable on scaleR [OF f , of indicat real S ]
by (simp add : indicator scaleR eq if )

qed

lemma measurable on const UNIV : (λx . k) measurable on UNIV
by (simp add : continuous imp measurable on)

lemma measurable on const [simp]: S ∈ sets lebesgue =⇒ (λx . k) measurable on
S
using measurable on UNIV measurable on const UNIV measurable on restrict by

blast

lemma simple function indicator representation real :
fixes f :: ′a ⇒ real
assumes f : simple function M f and x : x ∈ space M and nn:

∧
x . f x ≥ 0

shows f x = (
∑

y ∈ f ‘ space M . y ∗ indicator (f −‘ {y} ∩ space M ) x )
proof −
have f ′: simple function M (ennreal ◦ f )
by (simp add : f )

have ∗: f x =
enn2real
(
∑

y∈ ennreal ‘ f ‘ space M .
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y ∗ indicator ((ennreal ◦ f ) −‘ {y} ∩ space M ) x )
using arg cong [OF simple function indicator representation [OF f ′ x ], of

enn2real , simplified nn o def ] nn
unfolding o def image comp
by (metis enn2real ennreal)

have enn2real (
∑

y∈ennreal ‘ f ‘ space M . if ennreal (f x ) = y ∧ x ∈ space M
then y else 0 )

= sum (enn2real ◦ (λy . if ennreal (f x ) = y ∧ x ∈ space M then y else 0 ))
(ennreal ‘ f ‘ space M )

by (rule enn2real sum) auto
also have . . . = sum (enn2real ◦ (λy . if ennreal (f x ) = y ∧ x ∈ space M then

y else 0 ) ◦ ennreal)
(f ‘ space M )

by (rule sum.reindex ) (use nn in 〈auto simp: inj on def intro: sum.cong〉)
also have . . . = (

∑
y∈f ‘ space M . if f x = y ∧ x ∈ space M then y else 0 )

using nn
by (auto simp: inj on def intro: sum.cong)

finally show ?thesis
by (subst ∗) (simp add : enn2real sum indicator def if distrib cong : if cong)

qed

lemma simple function induct real
[consumes 1 , case names cong set mult add , induct set : simple function]:

fixes u :: ′a ⇒ real
assumes u: simple function M u
assumes cong :

∧
f g . simple function M f =⇒ simple function M g =⇒ (AE x

in M . f x = g x ) =⇒ P f =⇒ P g
assumes set :

∧
A. A ∈ sets M =⇒ P (indicator A)

assumes mult :
∧
u c. P u =⇒ P (λx . c ∗ u x )

assumes add :
∧
u v . P u =⇒ P v =⇒ P (λx . u x + v x )

and nn:
∧
x . u x ≥ 0

shows P u
proof (rule cong)
from AE space show AE x in M . (

∑
y∈u ‘ space M . y ∗ indicator (u −‘ {y}

∩ space M ) x ) = u x
proof eventually elim
fix x assume x : x ∈ space M
from simple function indicator representation real [OF u x ] nn
show (

∑
y∈u ‘ space M . y ∗ indicator (u −‘ {y} ∩ space M ) x ) = u x

by metis
qed

next
from u have finite (u ‘ space M )
unfolding simple function def by auto

then show P (λx .
∑

y∈u ‘ space M . y ∗ indicator (u −‘ {y} ∩ space M ) x )
proof induct
case empty
then show ?case
using set [of {}] by (simp add : indicator def [abs def ])
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next
case (insert a F )
have eq :

∑
{y . u x = y ∧ (y = a ∨ y ∈ F ) ∧ x ∈ space M }

= (if u x = a ∧ x ∈ space M then a else 0 ) +
∑
{y . u x = y ∧ y ∈ F

∧ x ∈ space M } for x
proof (cases x ∈ space M )
case True
have ∗: {y . u x = y ∧ (y = a ∨ y ∈ F )} = {y . u x = a ∧ y = a} ∪ {y . u x

= y ∧ y ∈ F}
by auto

show ?thesis
using insert by (simp add : ∗ True)

qed auto
have a: P (λx . a ∗ indicator (u −‘ {a} ∩ space M ) x )
proof (intro mult set)
show u −‘ {a} ∩ space M ∈ sets M
using u by auto

qed
show ?case
using nn insert a
by (simp add : eq indicator times eq if [where f = λx . a] add)

qed
next
show simple function M (λx . (

∑
y∈u ‘ space M . y ∗ indicator (u −‘ {y} ∩ space

M ) x ))
apply (subst simple function cong)
apply (rule simple function indicator representation real [symmetric])
apply (auto intro: u nn)
done

qed fact

proposition simple function measurable on UNIV :
fixes f :: ′a::euclidean space ⇒ real
assumes f : simple function lebesgue f and nn:

∧
x . f x ≥ 0

shows f measurable on UNIV
using f

proof (induction f )
case (cong f g)
then obtain N where negligible N {x . g x 6= f x} ⊆ N
by (auto simp: eventually ae filter negligible eq commute)

then show ?case
by (blast intro: measurable on spike cong)

next
case (set S )
then show ?case
by (simp add : indicator measurable on)

next
case (mult u c)
then show ?case
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by (simp add : measurable on cmul)
case (add u v)
then show ?case
by (simp add : measurable on add)

qed (auto simp: nn)

lemma simple function lebesgue if :
fixes f :: ′a::euclidean space ⇒ real
assumes f : simple function lebesgue f and S : S ∈ sets lebesgue
shows simple function lebesgue (λx . if x ∈ S then f x else 0 )

proof −
have ffin: finite (range f ) and fsets: ∀ x . f −‘ {f x} ∈ sets lebesgue
using f by (auto simp: simple function def )

have finite (f ‘ S )
by (meson finite subset subset image iff ffin top greatest)

moreover have finite ((λx . 0 ::real) ‘ T ) for T :: ′a set
by (auto simp: image def )

moreover have if sets: (λx . if x ∈ S then f x else 0 ) −‘ {f a} ∈ sets lebesgue
for a
proof −
have ∗: (λx . if x ∈ S then f x else 0 ) −‘ {f a}

= (if f a = 0 then −S ∪ f −‘ {f a} else (f −‘ {f a}) ∩ S )
by (auto simp: split : if split asm)

show ?thesis
unfolding ∗ by (metis Compl in sets lebesgue S sets.Int sets.Un fsets)

qed
moreover have (λx . if x ∈ S then f x else 0 ) −‘ {0} ∈ sets lebesgue
proof (cases 0 ∈ range f )
case True
then show ?thesis
by (metis (no types, lifting) if sets rangeE )

next
case False
then have (λx . if x ∈ S then f x else 0 ) −‘ {0} = −S
by auto

then show ?thesis
by (simp add : Compl in sets lebesgue S )

qed
ultimately show ?thesis
by (auto simp: simple function def )

qed

corollary simple function measurable on:
fixes f :: ′a::euclidean space ⇒ real
assumes f : simple function lebesgue f and nn:

∧
x . f x ≥ 0 and S : S ∈ sets

lebesgue
shows f measurable on S
by (simp add : measurable on UNIV [symmetric, of f ] S f simple function lebesgue if

nn simple function measurable on UNIV )
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lemma
fixes f :: ′a::euclidean space ⇒ ′b::ordered euclidean space
assumes f : f measurable on S and g : g measurable on S
shows measurable on sup: (λx . sup (f x ) (g x )) measurable on S
and measurable on inf : (λx . inf (f x ) (g x )) measurable on S

proof −
obtain NF and F
where NF : negligible NF
and conF :

∧
n. continuous on UNIV (F n)

and tendsF :
∧
x . x /∈ NF =⇒ (λn. F n x ) −−−−→ (if x ∈ S then f x else 0 )

using f by (auto simp: measurable on def )
obtain NG and G
where NG : negligible NG
and conG :

∧
n. continuous on UNIV (G n)

and tendsG :
∧
x . x /∈ NG =⇒ (λn. G n x ) −−−−→ (if x ∈ S then g x else 0 )

using g by (auto simp: measurable on def )
show (λx . sup (f x ) (g x )) measurable on S
unfolding measurable on def

proof (intro exI conjI allI impI )
show continuous on UNIV (λx . sup (F n x ) (G n x )) for n
unfolding sup max eucl sup by (intro conF conG continuous intros)

show (λn. sup (F n x ) (G n x )) −−−−→ (if x ∈ S then sup (f x ) (g x ) else 0 )
if x /∈ NF ∪ NG for x
using tendsto sup [OF tendsF tendsG , of x x ] that by auto

qed (simp add : NF NG)
show (λx . inf (f x ) (g x )) measurable on S
unfolding measurable on def

proof (intro exI conjI allI impI )
show continuous on UNIV (λx . inf (F n x ) (G n x )) for n
unfolding inf min eucl inf by (intro conF conG continuous intros)

show (λn. inf (F n x ) (G n x )) −−−−→ (if x ∈ S then inf (f x ) (g x ) else 0 )
if x /∈ NF ∪ NG for x
using tendsto inf [OF tendsF tendsG , of x x ] that by auto

qed (simp add : NF NG)
qed

proposition measurable on componentwise UNIV :
f measurable on UNIV ←→ (∀ i∈Basis. (λx . (f x · i) ∗R i) measurable on UNIV )
(is ?lhs = ?rhs)

proof
assume L: ?lhs
show ?rhs
proof
fix i :: ′b
assume i ∈ Basis
have cont : continuous on UNIV (λx . (x · i) ∗R i)
by (intro continuous intros)

show (λx . (f x · i) ∗R i) measurable on UNIV



Equivalence Measurable On Borel.thy 2585

using measurable on compose continuous [OF L cont ]
by (simp add : o def )

qed
next
assume ?rhs
then have ∃N g . negligible N ∧

(∀n. continuous on UNIV (g n)) ∧
(∀ x . x /∈ N −→ (λn. g n x ) −−−−→ (f x · i) ∗R i)

if i ∈ Basis for i
by (simp add : measurable on def that)

then obtain N g where N :
∧
i . i ∈ Basis =⇒ negligible (N i)

and cont :
∧
i n. i ∈ Basis =⇒ continuous on UNIV (g i n)

and tends:
∧
i x . [[i ∈ Basis; x /∈ N i ]] =⇒ (λn. g i n x ) −−−−→ (f x · i) ∗R

i
by metis

show ?lhs
unfolding measurable on def

proof (intro exI conjI allI impI )
show negligible (

⋃
i ∈ Basis. N i)

using N eucl .finite Basis by blast
show continuous on UNIV (λx . (

∑
i∈Basis. g i n x )) for n

by (intro continuous intros cont)
next
fix x
assume x /∈ (

⋃
i ∈ Basis. N i)

then have
∧
i . i ∈ Basis =⇒ x /∈ N i

by auto
then have (λn. (

∑
i∈Basis. g i n x )) −−−−→ (

∑
i∈Basis. (f x · i) ∗R i)

by (intro tends tendsto intros)
then show (λn. (

∑
i∈Basis. g i n x )) −−−−→ (if x ∈ UNIV then f x else 0 )

by (simp add : euclidean representation)
qed

qed

corollary measurable on componentwise:
f measurable on S ←→ (∀ i∈Basis. (λx . (f x · i) ∗R i) measurable on S )
apply (subst measurable on UNIV [symmetric])
apply (subst measurable on componentwise UNIV )
apply (simp add : measurable on UNIV if distrib [of λx . inner x ] if distrib [of

λx . scaleR x ] cong : if cong)
done

lemma borel measurable implies simple function sequence real :
fixes u :: ′a ⇒ real
assumes u[measurable]: u ∈ borel measurable M and nn:

∧
x . u x ≥ 0

shows ∃ f . incseq f ∧ (∀ i . simple function M (f i)) ∧ (∀ x . bdd above (range (λi .
f i x ))) ∧
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(∀ i x . 0 ≤ f i x ) ∧ u = (SUP i . f i)
proof −
define f where [abs def ]:
f i x = real of int (floor ((min i (u x )) ∗ 2ˆi)) / 2ˆi for i x

have [simp]: 0 ≤ f i x for i x
by (auto simp: f def intro!: divide nonneg nonneg mult nonneg nonneg nn)

have ∗: 2ˆn ∗ real of int x = real of int (2ˆn ∗ x ) for n x
by simp

have real of int breal i ∗ 2 ˆ ic = real of int bi ∗ 2 ˆ ic for i
by (intro arg cong [where f=real of int ]) simp

then have [simp]: real of int breal i ∗ 2 ˆ ic = i ∗ 2 ˆ i for i
unfolding floor of nat by simp

have bdd : bdd above (range (λi . f i x )) for x
by (rule bdd aboveI [where M = u x ]) (auto simp: f def field simps min def )

have incseq f
proof (intro monoI le funI )
fix m n :: nat and x assume m ≤ n
moreover
{ fix d :: nat
have b2ˆd ::realc ∗ b2ˆm ∗ (min (of nat m) (u x ))c ≤ b2ˆd ∗ (2ˆm ∗ (min

(of nat m) (u x )))c
by (rule le mult floor) (auto simp: nn)

also have . . . ≤ b2ˆd ∗ (2ˆm ∗ (min (of nat d + of nat m) (u x )))c
by (intro floor mono mult mono min.mono)

(auto simp: nn min less iff disj of nat less top)
finally have f m x ≤ f (m + d) x
unfolding f def
by (auto simp: field simps power add ∗ simp del : of int mult) }

ultimately show f m x ≤ f n x
by (auto simp: le iff add)

qed
then have inc f : incseq (λi . f i x ) for x
by (auto simp: incseq def le fun def )

moreover
have simple function M (f i) for i
proof (rule simple function borel measurable)
have b(min (of nat i) (u x )) ∗ 2 ˆ ic ≤ bint i ∗ 2 ˆ ic for x
by (auto split : split min intro!: floor mono)

then have f i ‘ space M ⊆ (λn. real of int n / 2ˆi) ‘ {0 .. of nat i ∗ 2ˆi}
unfolding floor of int by (auto simp: f def nn intro!: imageI )

then show finite (f i ‘ space M )
by (rule finite subset) auto

show f i ∈ borel measurable M
unfolding f def enn2real def by measurable



Equivalence Measurable On Borel.thy 2587

qed
moreover
{ fix x
have (SUP i . (f i x )) = u x
proof −
obtain n where u x ≤ of nat n using real arch simple by auto
then have min eq r : ∀ F i in sequentially . min (real i) (u x ) = u x
by (auto simp: eventually sequentially intro!: exI [of n] split : split min)

have (λi . real of int bmin (real i) (u x ) ∗ 2ˆic / 2ˆi) −−−−→ u x
proof (rule tendsto sandwich)
show (λn. u x − (1/2 )ˆn) −−−−→ u x
by (auto intro!: tendsto eq intros LIMSEQ power zero)

show ∀ F n in sequentially . real of int bmin (real n) (u x ) ∗ 2 ˆ nc / 2 ˆ n
≤ u x

using min eq r by eventually elim (auto simp: field simps)
have ∗: u x ∗ (2 ˆ n ∗ 2 ˆ n) ≤ 2ˆn + 2ˆn ∗ real of int bu x ∗ 2 ˆ nc for n

using real of int floor ge diff one[of u x ∗ 2ˆn, THEN mult left mono, of
2ˆn]

by (auto simp: field simps)
show ∀ F n in sequentially . u x − (1/2 )ˆn ≤ real of int bmin (real n) (u

x ) ∗ 2 ˆ nc / 2 ˆ n
using min eq r by eventually elim (insert ∗, auto simp: field simps)

qed auto
then have (λi . (f i x )) −−−−→ u x
by (simp add : f def )

from LIMSEQ unique LIMSEQ incseq SUP [OF bdd inc f ] this
show ?thesis
by blast

qed }
ultimately show ?thesis
by (intro exI [of λi x . f i x ]) (auto simp: 〈incseq f 〉 bdd image comp)

qed

lemma homeomorphic open interval UNIV :
fixes a b:: real
assumes a < b
shows {a<..<b} homeomorphic (UNIV ::real set)

proof −
have {a<..<b} = ball ((b+a) / 2 ) ((b−a) / 2 )
using assms
by (auto simp: dist real def abs if field split simps split : if split asm)

then show ?thesis
by (simp add : homeomorphic ball UNIV assms)

qed

proposition homeomorphic box UNIV :
fixes a b:: ′a::euclidean space
assumes box a b 6= {}
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shows box a b homeomorphic (UNIV :: ′a set)
proof −
have {a · i <..<b · i} homeomorphic (UNIV ::real set) if i ∈ Basis for i
using assms box ne empty that by (blast intro: homeomorphic open interval UNIV )
then have ∃ f g . (∀ x . a · i < x ∧ x < b · i −→ g (f x ) = x ) ∧

(∀ y . a · i < g y ∧ g y < b · i ∧ f (g y) = y) ∧
continuous on {a · i<..<b · i} f ∧
continuous on (UNIV ::real set) g

if i ∈ Basis for i
using that by (auto simp: homeomorphic minimal mem box Ball def )

then obtain f g where gf :
∧
i x . [[i ∈ Basis; a · i < x ; x < b · i ]] =⇒ g i (f i

x ) = x
and fg :

∧
i y . i ∈ Basis =⇒ a · i < g i y ∧ g i y < b · i ∧ f i (g i y)

= y
and contf :

∧
i . i ∈ Basis =⇒ continuous on {a · i<..<b · i} (f i)

and contg :
∧
i . i ∈ Basis =⇒ continuous on (UNIV ::real set) (g i)

by metis
define F where F ≡ λx .

∑
i∈Basis. (f i (x · i)) ∗R i

define G where G ≡ λx .
∑

i∈Basis. (g i (x · i)) ∗R i
show ?thesis
unfolding homeomorphic minimal

proof (intro exI conjI ballI )
show G y ∈ box a b for y
using fg by (simp add : G def mem box )

show G (F x ) = x if x ∈ box a b for x
using that by (simp add : F def G def gf mem box euclidean representation)

show F (G y) = y for y
by (simp add : F def G def fg mem box euclidean representation)

show continuous on (box a b) F
unfolding F def
proof (intro continuous intros continuous on compose2 [OF contf continu-

ous on inner ])
show (λx . x · i) ‘ box a b ⊆ {a · i<..<b · i} if i ∈ Basis for i
using that by (auto simp: mem box )

qed
show continuous on UNIV G
unfolding G def

by (intro continuous intros continuous on compose2 [OF contg continu-
ous on inner ]) auto
qed auto

qed

lemma diff null sets lebesgue: [[N ∈ null sets (lebesgue on S ); X−N ∈ sets (lebesgue on
S ); N ⊆ X ]]

=⇒ X ∈ sets (lebesgue on S )
by (metis Int Diff Un inf .commute inf .orderE null setsD2 sets.Un)
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lemma borel measurable diff null :
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes N : N ∈ null sets (lebesgue on S ) and S : S ∈ sets lebesgue
shows f ∈ borel measurable (lebesgue on (S−N )) ←→ f ∈ borel measurable

(lebesgue on S )
unfolding in borel measurable space lebesgue on sets restrict UNIV

proof (intro ball cong iffI )
show f −‘ T ∩ S ∈ sets (lebesgue on S )
if f −‘ T ∩ (S−N ) ∈ sets (lebesgue on (S−N )) for T

proof −
have N ∩ S = N
by (metis N S inf .orderE null sets restrict space)

moreover have N ∩ S ∈ sets lebesgue
by (metis N S inf .orderE null setsD2 null sets restrict space)

moreover have f −‘ T ∩ S ∩ (f −‘ T ∩ N ) ∈ sets lebesgue
by (metis N S completion.complete inf .absorb2 inf le2 inf mono null sets restrict space)
ultimately show ?thesis
by (metis Diff Int distrib Int Diff Un S inf le2 sets.Diff sets.Un sets restrict space iff

space lebesgue on space restrict space that)
qed
show f −‘ T ∩ (S−N ) ∈ sets (lebesgue on (S−N ))
if f −‘ T ∩ S ∈ sets (lebesgue on S ) for T

proof −
have (S − N ) ∩ f −‘ T = (S − N ) ∩ (f −‘ T ∩ S )
by blast

then have (S − N ) ∩ f −‘ T ∈ sets.restricted space lebesgue (S − N )
by (metis S image iff sets.Int space eq2 sets restrict space iff that)

then show ?thesis
by (simp add : inf .commute sets restrict space)

qed
qed auto

lemma lebesgue measurable diff null :
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes N ∈ null sets lebesgue
shows f ∈ borel measurable (lebesgue on (−N ))←→ f ∈ borel measurable lebesgue
by (simp add : Compl eq Diff UNIV assms borel measurable diff null lebesgue on UNIV eq)

proposition measurable on imp borel measurable lebesgue UNIV :
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes f measurable on UNIV
shows f ∈ borel measurable lebesgue

proof −
obtain N and F
where NF : negligible N
and conF :

∧
n. continuous on UNIV (F n)

and tendsF :
∧
x . x /∈ N =⇒ (λn. F n x ) −−−−→ f x
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using assms by (auto simp: measurable on def )
obtain N where N ∈ null sets lebesgue f ∈ borel measurable (lebesgue on (−N ))
proof
show f ∈ borel measurable (lebesgue on (− N ))
proof (rule borel measurable LIMSEQ metric)
show F i ∈ borel measurable (lebesgue on (− N )) for i
by (meson Compl in sets lebesgue NF conF continuous imp measurable on sets lebesgue

continuous on subset negligible imp sets subset UNIV )
show (λi . F i x ) −−−−→ f x if x ∈ space (lebesgue on (− N )) for x
using that
by (simp add : tendsF )

qed
show N ∈ null sets lebesgue
using NF negligible iff null sets by blast

qed
then show ?thesis
using lebesgue measurable diff null by blast

qed

corollary measurable on imp borel measurable lebesgue:
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes f measurable on S and S : S ∈ sets lebesgue
shows f ∈ borel measurable (lebesgue on S )

proof −
have (λx . if x ∈ S then f x else 0 ) measurable on UNIV
using assms(1 ) measurable on UNIV by blast

then show ?thesis
by (simp add : borel measurable if D measurable on imp borel measurable lebesgue UNIV )

qed

proposition measurable on limit :
fixes f :: nat ⇒ ′a::euclidean space ⇒ ′b::euclidean space
assumes f :

∧
n. f n measurable on S and N : negligible N

and lim:
∧
x . x ∈ S − N =⇒ (λn. f n x ) −−−−→ g x

shows g measurable on S
proof −
have box (0 :: ′b) One homeomorphic (UNIV :: ′b set)
by (simp add : homeomorphic box UNIV )

then obtain h h ′:: ′b⇒ ′b where hh ′:
∧
x . x ∈ box 0 One =⇒ h (h ′ x ) = x

and h ′im: h ′ ‘ box 0 One = UNIV
and conth: continuous on UNIV h
and conth ′: continuous on (box 0 One) h ′

and h ′h:
∧
y . h ′ (h y) = y

and rangeh: range h = box 0 One
by (auto simp: homeomorphic def homeomorphism def )

have norm y ≤ DIM ( ′b) if y : y ∈ box 0 One for y :: ′b
proof −
have y01 : 0 < y · i y · i < 1 if i ∈ Basis for i
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using that y by (auto simp: mem box )
have norm y ≤ (

∑
i∈Basis. |y · i |)

using norm le l1 by blast
also have . . . ≤ (

∑
i :: ′b∈Basis. 1 )

proof (rule sum mono)
show |y · i | ≤ 1 if i ∈ Basis for i
using y01 that by fastforce

qed
also have . . . ≤ DIM ( ′b)
by auto

finally show ?thesis .
qed
then have norm le: norm(h y) ≤ DIM ( ′b) for y
by (metis UNIV I image eqI rangeh)

have (h ′ ◦ (h ◦ (λx . if x ∈ S then g x else 0 ))) measurable on UNIV
proof (rule measurable on compose continuous box )
let ?χ = h ◦ (λx . if x ∈ S then g x else 0 )
let ?f = λn. h ◦ (λx . if x ∈ S then f n x else 0 )
show ?χ measurable on UNIV
proof (rule integrable subintervals imp measurable)
show ?χ integrable on cbox a b for a b
proof (rule integrable spike set)
show ?χ integrable on (cbox a b − N )
proof (rule dominated convergence integrable)
show const : (λx . DIM ( ′b)) integrable on cbox a b − N

by (simp add : N has integral iff integrable const integrable negligible
integrable setdiff negligible diff )

show norm ((h ◦ (λx . if x ∈ S then g x else 0 )) x ) ≤ DIM ( ′b) if x ∈ cbox
a b − N for x

using that norm le by (simp add : o def )
show (λk . ?f k x ) −−−−→ ?χ x if x ∈ cbox a b − N for x
using that lim [of x ] conth
by (auto simp: continuous on def intro: tendsto compose)

show (?f n) absolutely integrable on cbox a b − N for n
proof (rule measurable bounded by integrable imp absolutely integrable)
show ?f n ∈ borel measurable (lebesgue on (cbox a b − N ))
proof (rule measurable on imp borel measurable lebesgue [OF measur-

able on spike set ])
show ?f n measurable on cbox a b
unfolding measurable on UNIV [symmetric, of cbox a b]

proof (rule measurable on restrict)
have f ′: (λx . if x ∈ S then f n x else 0 ) measurable on UNIV
by (simp add : f measurable on UNIV )

show ?f n measurable on UNIV
using measurable on compose continuous [OF f ′ conth] by auto

qed auto
show negligible (sym diff (cbox a b) (cbox a b − N ))
by (auto intro: negligible subset [OF N ])

show cbox a b − N ∈ sets lebesgue
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by (simp add : N negligible imp sets sets.Diff )
qed
show cbox a b − N ∈ sets lebesgue
by (simp add : N negligible imp sets sets.Diff )

show norm (?f n x ) ≤ DIM ( ′b)
if x ∈ cbox a b − N for x
using that local .norm le by simp

qed (auto simp: const)
qed
show negligible {x ∈ cbox a b − N − cbox a b. ?χ x 6= 0}
by (auto simp: empty imp negligible)

have {x ∈ cbox a b − (cbox a b − N ). ?χ x 6= 0} ⊆ N
by auto

then show negligible {x ∈ cbox a b − (cbox a b − N ). ?χ x 6= 0}
using N negligible subset by blast

qed
qed
show ?χ x ∈ box 0 One for x
using rangeh by auto

show continuous on (box 0 One) h ′

by (rule conth ′)
qed
then show ?thesis
by (simp add : o def h ′h measurable on UNIV )

qed

lemma measurable on if simple function limit :
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
shows [[

∧
n. g n measurable on UNIV ;

∧
n. finite (range (g n));

∧
x . (λn. g n

x ) −−−−→ f x ]]
=⇒ f measurable on UNIV
by (force intro: measurable on limit [where N={}])

lemma lebesgue measurable imp measurable on nnreal UNIV :
fixes u :: ′a::euclidean space ⇒ real
assumes u: u ∈ borel measurable lebesgue and nn:

∧
x . u x ≥ 0

shows u measurable on UNIV
proof −
obtain f where incseq f and f : ∀ i . simple function lebesgue (f i)
and bdd :

∧
x . bdd above (range (λi . f i x ))

and nnf :
∧
i x . 0 ≤ f i x and ∗: u = (SUP i . f i)

using borel measurable implies simple function sequence real nn u by metis
show ?thesis
unfolding ∗

proof (rule measurable on if simple function limit [of concl : Sup (range f )])
show (f i) measurable on UNIV for i
by (simp add : f nnf simple function measurable on UNIV )
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show finite (range (f i)) for i
by (metis f simple function def space borel space completion space lborel)

show (λi . f i x ) −−−−→ Sup (range f ) x for x
proof −
have incseq (λi . f i x )
using 〈incseq f 〉 apply (auto simp: incseq def )
by (simp add : le funD)

then show ?thesis
by (metis SUP apply bdd LIMSEQ incseq SUP)

qed
qed

qed

lemma lebesgue measurable imp measurable on nnreal :
fixes u :: ′a::euclidean space ⇒ real
assumes u ∈ borel measurable lebesgue

∧
x . u x ≥ 0S ∈ sets lebesgue

shows u measurable on S
unfolding measurable on UNIV [symmetric, of u]
using assms
by (auto intro: lebesgue measurable imp measurable on nnreal UNIV )

lemma lebesgue measurable imp measurable on real :
fixes u :: ′a::euclidean space ⇒ real
assumes u: u ∈ borel measurable lebesgue and S : S ∈ sets lebesgue
shows u measurable on S

proof −
let ?f = λx . |u x | + u x
let ?g = λx . |u x | − u x
have ?f measurable on S ?g measurable on S
using S u by (auto intro: lebesgue measurable imp measurable on nnreal)

then have (λx . (?f x − ?g x ) / 2 ) measurable on S
using measurable on cdivide measurable on diff by blast

then show ?thesis
by auto

qed

proposition lebesgue measurable imp measurable on:
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes f : f ∈ borel measurable lebesgue and S : S ∈ sets lebesgue
shows f measurable on S
unfolding measurable on componentwise [of f ]

proof
fix i :: ′b
assume i ∈ Basis
have (λx . (f x · i)) ∈ borel measurable lebesgue
using 〈i ∈ Basis〉 borel measurable euclidean space f by blast

then have (λx . (f x · i)) measurable on S
using S lebesgue measurable imp measurable on real by blast
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then show (λx . (f x · i) ∗R i) measurable on S
by (intro measurable on scaleR measurable on const S )

qed

proposition measurable on iff borel measurable:
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes S ∈ sets lebesgue
shows f measurable on S ←→ f ∈ borel measurable (lebesgue on S ) (is ?lhs =

?rhs)
proof
show f ∈ borel measurable (lebesgue on S )
if f measurable on S
using that by (simp add : assms measurable on imp borel measurable lebesgue)

next
assume f ∈ borel measurable (lebesgue on S )
then have (λa. if a ∈ S then f a else 0 ) measurable on UNIV
by (simp add : assms borel measurable if lebesgue measurable imp measurable on)
then show f measurable on S
using measurable on UNIV by blast

qed

6.29.5 Measurability on generalisations of the binary prod-
uct

lemma measurable on bilinear :
fixes h :: ′a::euclidean space ⇒ ′b::euclidean space ⇒ ′c::euclidean space
assumes h: bilinear h and f : f measurable on S and g : g measurable on S
shows (λx . h (f x ) (g x )) measurable on S

proof (rule measurable on combine [where h = h])
show continuous on UNIV (λx . h (fst x ) (snd x ))
by (simp add : bilinear continuous on compose [OF continuous on fst continu-

ous on snd h])
show h 0 0 = 0
by (simp add : bilinear lzero h)

qed (auto intro: assms)

lemma borel measurable bilinear :
fixes h :: ′a::euclidean space ⇒ ′b::euclidean space ⇒ ′c::euclidean space
assumes bilinear h f ∈ borel measurable (lebesgue on S ) g ∈ borel measurable

(lebesgue on S )
and S : S ∈ sets lebesgue

shows (λx . h (f x ) (g x )) ∈ borel measurable (lebesgue on S )
using assms measurable on bilinear [of h f S g ]
by (simp flip: measurable on iff borel measurable)

lemma absolutely integrable bounded measurable product :
fixes h :: ′a::euclidean space ⇒ ′b::euclidean space ⇒ ′c::euclidean space
assumes bilinear h and f : f ∈ borel measurable (lebesgue on S ) S ∈ sets lebesgue
and bou: bounded (f ‘ S ) and g : g absolutely integrable on S
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shows (λx . h (f x ) (g x )) absolutely integrable on S
proof −
obtain B where B > 0 and B :

∧
x y . norm (h x y) ≤ B ∗ norm x ∗ norm y

using bilinear bounded pos 〈bilinear h〉 by blast
obtain C where C > 0 and C :

∧
x . x ∈ S =⇒ norm (f x ) ≤ C

using bounded pos by (metis bou imageI )
show ?thesis
proof (rule measurable bounded by integrable imp absolutely integrable [OF 〈S
∈ sets lebesgue〉])

show norm (h (f x ) (g x )) ≤ B ∗ C ∗ norm(g x ) if x ∈ S for x
by (meson less le mult left mono mult right mono norm ge zero order trans

that 〈B > 0 〉 B C )
show (λx . h (f x ) (g x )) ∈ borel measurable (lebesgue on S )
using 〈bilinear h〉 f g

by (blast intro: borel measurable bilinear dest : absolutely integrable measurable)
show (λx . B ∗ C ∗ norm(g x )) integrable on S
using 〈0 < B 〉 〈0 < C 〉 absolutely integrable on def g by auto

qed
qed

lemma absolutely integrable bounded measurable product real :
fixes f :: real ⇒ real
assumes f ∈ borel measurable (lebesgue on S ) S ∈ sets lebesgue

and bounded (f ‘ S ) and g absolutely integrable on S
shows (λx . f x ∗ g x ) absolutely integrable on S
using absolutely integrable bounded measurable product bilinear times assms by

blast

lemma borel measurable AE :
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes f ∈ borel measurable lebesgue and ae: AE x in lebesgue. f x = g x
shows g ∈ borel measurable lebesgue

proof −
obtain N where N : N ∈ null sets lebesgue

∧
x . x /∈ N =⇒ f x = g x

using ae unfolding completion.AE iff null sets by auto
have f measurable on UNIV
by (simp add : assms lebesgue measurable imp measurable on)

then have g measurable on UNIV
by (metis Diff iff N measurable on spike negligible iff null sets)

then show ?thesis
using measurable on imp borel measurable lebesgue UNIV by blast

qed

lemma has bochner integral combine:
fixes f :: real ⇒ ′a::euclidean space
assumes a ≤ c c ≤ b
and ac: has bochner integral (lebesgue on {a..c}) f i
and cb: has bochner integral (lebesgue on {c..b}) f j
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shows has bochner integral (lebesgue on {a..b}) f (i + j )
proof −
have i : has bochner integral lebesgue (λx . indicator {a..c} x ∗R f x ) i
and j : has bochner integral lebesgue (λx . indicator {c..b} x ∗R f x ) j
using assms by (auto simp: has bochner integral restrict space)

have AE : AE x in lebesgue. indicat real {a..c} x ∗R f x + indicat real {c..b} x
∗R f x = indicat real {a..b} x ∗R f x
proof (rule AE I ′)
have eq : indicat real {a..c} x ∗R f x + indicat real {c..b} x ∗R f x = indicat real

{a..b} x ∗R f x if x 6= c for x
using assms that by (auto simp: indicator def )
then show {x ∈ space lebesgue. indicat real {a..c} x ∗R f x + indicat real

{c..b} x ∗R f x 6= indicat real {a..b} x ∗R f x} ⊆ {c}
by auto

qed auto
have has bochner integral lebesgue (λx . indicator {a..b} x ∗R f x ) (i + j )
proof (rule has bochner integralI AE [OF has bochner integral add [OF i j ]

AE ])
have eq : indicat real {a..c} x ∗R f x + indicat real {c..b} x ∗R f x = indicat real

{a..b} x ∗R f x if x 6= c for x
using assms that by (auto simp: indicator def )

show (λx . indicat real {a..b} x ∗R f x ) ∈ borel measurable lebesgue
proof (rule borel measurable AE [OF borel measurable add AE ])
show (λx . indicator {a..c} x ∗R f x ) ∈ borel measurable lebesgue

(λx . indicator {c..b} x ∗R f x ) ∈ borel measurable lebesgue
using i j by auto

qed
qed
then show ?thesis
by (simp add : has bochner integral restrict space)

qed

lemma integrable combine:
fixes f :: real ⇒ ′a::euclidean space
assumes integrable (lebesgue on {a..c}) f integrable (lebesgue on {c..b}) f
and a ≤ c c ≤ b

shows integrable (lebesgue on {a..b}) f
using assms has bochner integral combine has bochner integral iff by blast

lemma integral combine:
fixes f :: real ⇒ ′a::euclidean space
assumes f : integrable (lebesgue on {a..b}) f and a ≤ c c ≤ b
shows integralL (lebesgue on {a..b}) f = integralL (lebesgue on {a..c}) f +

integralL (lebesgue on {c..b}) f
proof −
have i : has bochner integral (lebesgue on {a..c}) f (integralL (lebesgue on {a..c})

f )
using integrable subinterval 〈c ≤ b〉 f has bochner integral iff by fastforce

have j : has bochner integral (lebesgue on {c..b}) f (integralL (lebesgue on {c..b})
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f )
using integrable subinterval 〈a ≤ c〉 f has bochner integral iff by fastforce

show ?thesis
by (meson 〈a ≤ c〉 〈c ≤ b〉 has bochner integral combine has bochner integral iff

i j )
qed

lemma has bochner integral null [intro]:
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes N ∈ null sets lebesgue
shows has bochner integral (lebesgue on N ) f 0
unfolding has bochner integral iff — strange that the proof’s so long

proof
show integrable (lebesgue on N ) f
proof (subst integrable restrict space)
show N ∩ space lebesgue ∈ sets lebesgue
using assms by force

show integrable lebesgue (λx . indicat real N x ∗R f x )
proof (rule integrable cong AE imp)
show integrable lebesgue (λx . 0 )
by simp

show ∗: AE x in lebesgue. 0 = indicat real N x ∗R f x
using assms
by (simp add : indicator def completion.null sets iff AE eventually mono)

show (λx . indicat real N x ∗R f x ) ∈ borel measurable lebesgue
by (auto intro: borel measurable AE [OF ∗])

qed
qed
show integralL (lebesgue on N ) f = 0
proof (rule integral eq zero AE )
show AE x in lebesgue on N . f x = 0
by (rule AE I ′ [where N=N ]) (auto simp: assms null setsD2 null sets restrict space)

qed
qed

lemma has bochner integral null eq [simp]:
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes N ∈ null sets lebesgue
shows has bochner integral (lebesgue on N ) f i ←→ i = 0
using assms has bochner integral eq by blast

end

6.30 Embedding Measure Spaces with a Function

theory Embed Measure
imports Binary Product Measure
begin
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Given a measure space on some carrier set Ω and a function f, we can define
a push-forward measure on the carrier set f (Ω) whose σ-algebra is the one
generated by mapping f over the original sigma algebra.

This is useful e. g. when f is injective, i. e. it is some kind of “tagging”
function. For instance, suppose we have some algebraaic datatype of values
with various constructors, including a constructor RealVal for real numbers.
Then embed measure allows us to lift a measure on real numbers to the
appropriate subset of that algebraic datatype.

definition embed measure :: ′a measure ⇒ ( ′a ⇒ ′b) ⇒ ′b measure where
embed measure M f = measure of (f ‘ space M ) {f ‘ A |A. A ∈ sets M }

(λA. emeasure M (f −‘ A ∩ space M ))

lemma space embed measure: space (embed measure M f ) = f ‘ space M
unfolding embed measure def
by (subst space measure of ) (auto dest : sets.sets into space)

lemma sets embed measure ′:
assumes inj : inj on f (space M )
shows sets (embed measure M f ) = {f ‘ A |A. A ∈ sets M }
unfolding embed measure def

proof (intro sigma algebra.sets measure of eq sigma algebra iff2 [THEN iffD2 ] conjI
allI ballI impI )
fix s assume s ∈ {f ‘ A |A. A ∈ sets M }
then obtain s ′ where s ′ props: s = f ‘ s ′ s ′ ∈ sets M by auto
hence f ‘ space M − s = f ‘ (space M − s ′) using inj
by (auto dest : inj onD sets.sets into space)

also have ... ∈ {f ‘ A |A. A ∈ sets M } using s ′ props by auto
finally show f ‘ space M − s ∈ {f ‘ A |A. A ∈ sets M } .

next
fix A :: nat ⇒ assume range A ⊆ {f ‘ A |A. A ∈ sets M }
then obtain A ′ where A ′:

∧
i . A i = f ‘ A ′ i

∧
i . A ′ i ∈ sets M

by (auto simp: subset eq choice iff )
then have (

⋃
x . f ‘ A ′ x ) = f ‘ (

⋃
x . A ′ x ) by blast

with A ′ show (
⋃
i . A i) ∈ {f ‘ A |A. A ∈ sets M }

by simp blast
qed (auto dest : sets.sets into space)

lemma the inv into vimage:
inj on f X =⇒ A ⊆ X =⇒ the inv into X f −‘ A ∩ (f‘X ) = f ‘ A
by (auto simp: the inv into f f )

lemma sets embed eq vimage algebra:
assumes inj on f (space M )
shows sets (embed measure M f ) = sets (vimage algebra (f‘space M ) (the inv into

(space M ) f ) M )
by (auto simp: sets embed measure ′[OF assms] Pi iff the inv into f f assms sets vimage algebra2

Setcompr eq image
dest : sets.sets into space
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intro!: image cong the inv into vimage[symmetric])

lemma sets embed measure:
assumes inj : inj f
shows sets (embed measure M f ) = {f ‘ A |A. A ∈ sets M }
using assms by (subst sets embed measure ′) (auto intro!: inj onI dest : injD)

lemma in sets embed measure: A ∈ sets M =⇒ f ‘ A ∈ sets (embed measure M f )
unfolding embed measure def
by (intro in measure of ) (auto dest : sets.sets into space)

lemma measurable embed measure1 :
assumes g : (λx . g (f x )) ∈ measurable M N
shows g ∈ measurable (embed measure M f ) N
unfolding measurable def

proof safe
fix A assume A ∈ sets N
with g have (λx . g (f x )) −‘ A ∩ space M ∈ sets M
by (rule measurable sets)

then have f ‘ ((λx . g (f x )) −‘ A ∩ space M ) ∈ sets (embed measure M f )
by (rule in sets embed measure)

also have f ‘ ((λx . g (f x )) −‘ A ∩ space M ) = g −‘ A ∩ space (embed measure
M f )

by (auto simp: space embed measure)
finally show g −‘ A ∩ space (embed measure M f ) ∈ sets (embed measure M f )

.
qed (insert measurable space[OF assms], auto simp: space embed measure)

lemma measurable embed measure2 ′:
assumes inj on f (space M )
shows f ∈ measurable M (embed measure M f )

proof−
{
fix A assume A: A ∈ sets M
also from A have A = A ∩ space M by auto
also have ... = f −‘ f ‘ A ∩ space M using A assms
by (auto dest : inj onD sets.sets into space)

finally have f −‘ f ‘ A ∩ space M ∈ sets M .
}
thus ?thesis using assms unfolding embed measure def
by (intro measurable measure of ) (auto dest : sets.sets into space)

qed

lemma measurable embed measure2 :
assumes [simp]: inj f shows f ∈ measurable M (embed measure M f )
by (auto simp: inj vimage image eq embed measure def

intro!: measurable measure of dest : sets.sets into space)

lemma embed measure eq distr ′:
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assumes inj on f (space M )
shows embed measure M f = distr M (embed measure M f ) f

proof−
have distr M (embed measure M f ) f =

measure of (f ‘ space M ) {f ‘ A |A. A ∈ sets M }
(λA. emeasure M (f −‘ A ∩ space M )) unfolding distr def

by (simp add : space embed measure sets embed measure ′[OF assms])
also have ... = embed measure M f unfolding embed measure def ..
finally show ?thesis ..

qed

lemma embed measure eq distr :
inj f =⇒ embed measure M f = distr M (embed measure M f ) f

by (rule embed measure eq distr ′) (auto intro!: inj onI dest : injD)

lemma nn integral embed measure ′:
inj on f (space M ) =⇒ g ∈ borel measurable (embed measure M f ) =⇒
nn integral (embed measure M f ) g = nn integral M (λx . g (f x ))
apply (subst embed measure eq distr ′, simp)
apply (subst nn integral distr)
apply (simp all add : measurable embed measure2 ′)
done

lemma nn integral embed measure:
inj f =⇒ g ∈ borel measurable (embed measure M f ) =⇒
nn integral (embed measure M f ) g = nn integral M (λx . g (f x ))
by(erule nn integral embed measure ′[OF subset inj on]) simp

lemma emeasure embed measure ′:
assumes inj on f (space M ) A ∈ sets (embed measure M f )
shows emeasure (embed measure M f ) A = emeasure M (f −‘ A ∩ space M )

by (subst embed measure eq distr ′[OF assms(1 )])
(simp add : emeasure distr [OF measurable embed measure2 ′[OF assms(1 )] assms(2 )])

lemma emeasure embed measure:
assumes inj f A ∈ sets (embed measure M f )
shows emeasure (embed measure M f ) A = emeasure M (f −‘ A ∩ space M )

using assms by (intro emeasure embed measure ′) (auto intro!: inj onI dest : injD)

lemma embed measure comp:
assumes [simp]: inj f inj g
shows embed measure (embed measure M f ) g = embed measure M (g ◦ f )

proof−
have [simp]: inj (λx . g (f x )) by (subst o def [symmetric]) (auto intro: inj compose)
note measurable embed measure2 [measurable]
have embed measure (embed measure M f ) g =

distr M (embed measure (embed measure M f ) g) (g ◦ f )
by (subst (1 2 ) embed measure eq distr)

(simp all add : distr distr sets embed measure cong : distr cong)
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also have ... = embed measure M (g ◦ f )
by (subst (3 ) embed measure eq distr , simp add : o def , rule distr cong)

(auto simp: sets embed measure o def image image[symmetric]
intro: inj compose cong : distr cong)

finally show ?thesis .
qed

lemma sigma finite embed measure:
assumes sigma finite measure M and inj : inj f
shows sigma finite measure (embed measure M f )

proof −
from assms(1 ) interpret sigma finite measure M .
from sigma finite countable obtain A where

A props: countable A A ⊆ sets M
⋃
A = space M

∧
X . X∈A =⇒ emeasure

M X 6= ∞ by blast
from A props have countable ((‘) f‘A) by auto
moreover
from inj and A props have (‘) f‘A ⊆ sets (embed measure M f )
by (auto simp: sets embed measure)

moreover
from A props and inj have

⋃
((‘) f‘A) = space (embed measure M f )

by (auto simp: space embed measure intro!: imageI )
moreover
from A props and inj have ∀ a∈(‘) f ‘ A. emeasure (embed measure M f ) a 6=
∞

by (intro ballI , subst emeasure embed measure)
(auto simp: inj vimage image eq intro: in sets embed measure)

ultimately show ?thesis by − (standard , blast)
qed

lemma embed measure count space ′:
inj on f A =⇒ embed measure (count space A) f = count space (f‘A)

apply (subst distr bij count space[of f A f‘A, symmetric])
apply (simp add : inj on def bij betw def )
apply (subst embed measure eq distr ′)
apply simp
apply(auto 4 3 intro!: measure eqI imageI simp add : sets embed measure ′ sub-

set image iff )
apply (subst (1 2 ) emeasure distr)
apply (auto simp: space embed measure sets embed measure ′)
done

lemma embed measure count space:
inj f =⇒ embed measure (count space A) f = count space (f‘A)

by(rule embed measure count space ′)(erule subset inj on, simp)

lemma sets embed measure alt :
inj f =⇒ sets (embed measure M f ) = ((‘) f ) ‘ sets M

by (auto simp: sets embed measure)
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lemma emeasure embed measure image ′:
assumes inj on f (space M ) X ∈ sets M
shows emeasure (embed measure M f ) (f‘X ) = emeasure M X

proof−
from assms have emeasure (embed measure M f ) (f‘X ) = emeasure M (f −‘ f

‘ X ∩ space M )
by (subst emeasure embed measure ′) (auto simp: sets embed measure ′)
also from assms have f −‘ f ‘ X ∩ space M = X by (auto dest : inj onD

sets.sets into space)
finally show ?thesis .

qed

lemma emeasure embed measure image:
inj f =⇒ X ∈ sets M =⇒ emeasure (embed measure M f ) (f‘X ) = emeasure

M X
by (simp all add : emeasure embed measure in sets embed measure inj vimage image eq)

lemma embed measure eq iff :
assumes inj f
shows embed measure A f = embed measure B f ←→ A = B (is ?M = ?N ←→
)
proof
from assms have I : inj ((‘) f ) by (auto intro: injI dest : injD)
assume asm: ?M = ?N
hence sets (embed measure A f ) = sets (embed measure B f ) by simp
with assms have sets A = sets B by (simp only : I inj image eq iff sets embed measure alt)
moreover {
fix X assume X ∈ sets A
from asm have emeasure ?M (f‘X ) = emeasure ?N (f‘X ) by simp
with 〈X ∈ sets A〉 and 〈sets A = sets B 〉 and assms
have emeasure A X = emeasure B X by (simp add : emeasure embed measure image)

}
ultimately show A = B by (rule measure eqI )

qed simp

lemma the inv into in Pi : inj on f A =⇒ the inv into A f ∈ f ‘ A → A
by (auto simp: the inv into f f )

lemma map prod image: map prod f g ‘ (A × B) = (f‘A) × (g‘B)
using map prod surj on[OF refl refl ] .

lemma map prod vimage: map prod f g −‘ (A × B) = (f−‘A) × (g−‘B)
by auto

lemma embed measure prod :
assumes f : inj f and g : inj g and [simp]: sigma finite measure M sigma finite measure

N
shows embed measure M f

⊗
M embed measure N g = embed measure (M

⊗
M
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N ) (λ(x , y). (f x , g y))
(is ?L = )

unfolding map prod def [symmetric]
proof (rule pair measure eqI )
have fg [simp]:

∧
A. inj on (map prod f g) A

∧
A. inj on f A

∧
A. inj on g A

using f g by (auto simp: inj on def )

note complete lattice class.Sup insert [simp del ] ccSup insert [simp del ]
ccSUP insert [simp del ]

show sets: sets ?L = sets (embed measure (M
⊗

M N ) (map prod f g))
unfolding map prod def [symmetric]
apply (simp add : sets pair eq sets fst snd sets embed eq vimage algebra
cong : vimage algebra cong)

apply (subst sets vimage Sup eq [where Y=space (M
⊗

M N )])
apply (simp all add : space pair measure[symmetric])
apply (auto simp add : the inv into f f

simp del : map prod simp
del : prod fun imageE ) []

apply auto []
apply (subst (1 2 3 4 ) vimage algebra vimage algebra eq)
apply (simp all add : the inv into in Pi Pi iff [of snd ] Pi iff [of fst ] space pair measure)
apply (simp all add : Pi iff [of snd ] Pi iff [of fst ] the inv into in Pi vimage algebra vimage algebra eq

space pair measure[symmetric] map prod image[symmetric])
apply (intro arg cong [where f=sets] arg cong [where f=Sup] arg cong2 [where

f=insert ] vimage algebra cong)
apply (auto simp: map prod image the inv into f f

simp del : map prod simp del : prod fun imageE )
apply (simp all add : the inv into f f space pair measure)
done

note measurable embed measure2 [measurable]
fix A B assume AB : A ∈ sets (embed measure M f ) B ∈ sets (embed measure

N g)
moreover have f −‘ A × g −‘ B ∩ space (M

⊗
M N ) = (f −‘ A ∩ space M )

× (g −‘ B ∩ space N )
by (auto simp: space pair measure)

ultimately show emeasure (embed measure M f ) A ∗ emeasure (embed measure
N g) B =

emeasure (embed measure (M
⊗

M N ) (map prod f g)) (A × B)
by (simp add : map prod vimage sets[symmetric] emeasure embed measure

sigma finite measure.emeasure pair measure Times)
qed (insert assms, simp all add : sigma finite embed measure)

lemma mono embed measure:
space M = space M ′ =⇒ sets M ⊆ sets M ′ =⇒ sets (embed measure M f ) ⊆

sets (embed measure M ′ f )
unfolding embed measure def
apply (subst (1 2 ) sets measure of )
apply (blast dest : sets.sets into space)
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apply (blast dest : sets.sets into space)
apply simp
apply (intro sigma sets mono ′)
apply safe
apply (simp add : subset eq)
apply metis
done

lemma density embed measure:
assumes inj : inj f and Mg [measurable]: g ∈ borel measurable (embed measure

M f )
shows density (embed measure M f ) g = embed measure (density M (g ◦ f )) f

(is ?M1 = ?M2 )
proof (rule measure eqI )
fix X assume X : X ∈ sets ?M1
from inj have Mf [measurable]: f ∈ measurable M (embed measure M f )
by (rule measurable embed measure2 )

from Mg and X have emeasure ?M1 X =
∫

+ x . g x ∗ indicator X x ∂em-
bed measure M f

by (subst emeasure density) simp all
also from X have ... =

∫
+ x . g (f x ) ∗ indicator X (f x ) ∂M

by (subst embed measure eq distr [OF inj ], subst nn integral distr) auto
also have ... =

∫
+ x . g (f x ) ∗ indicator (f −‘ X ∩ space M ) x ∂M

by (intro nn integral cong) (auto split : split indicator)
also from X have ... = emeasure (density M (g ◦ f )) (f −‘ X ∩ space M )
by (subst emeasure density) (simp all add : measurable comp[OF Mf Mg ] mea-

surable sets[OF Mf ])
also from X and inj have ... = emeasure ?M2 X
by (subst emeasure embed measure) (simp all add : sets embed measure)

finally show emeasure ?M1 X = emeasure ?M2 X .
qed (simp all add : sets embed measure inj )

lemma density embed measure ′:
assumes inj : inj f and inv :

∧
x . f ′ (f x ) = x and Mg [measurable]: g ∈ borel measurable

M
shows density (embed measure M f ) (g ◦ f ′) = embed measure (density M g) f

proof−
have density (embed measure M f ) (g ◦ f ′) = embed measure (density M (g ◦

f ′ ◦ f )) f
by (rule density embed measure[OF inj ])

(rule measurable comp, rule measurable embed measure1 , subst measur-
able cong ,

rule inv , rule measurable ident sets, simp, rule Mg)
also have density M (g ◦ f ′ ◦ f ) = density M g
by (intro density cong) (subst measurable cong , simp add : o def inv , simp all

add : Mg inv)
finally show ?thesis .

qed
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lemma inj on image subset iff :
assumes inj on f C A ⊆ C B ⊆ C
shows f ‘ A ⊆ f ‘ B ←→ A ⊆ B

proof (intro iffI subsetI )
fix x assume A: f ‘ A ⊆ f ‘ B and B : x ∈ A
from B have f x ∈ f ‘ A by blast
with A have f x ∈ f ‘ B by blast
then obtain y where f x = f y and y ∈ B by blast
with assms and B have x = y by (auto dest : inj onD)
with 〈y ∈ B 〉 show x ∈ B by simp

qed auto

lemma AE embed measure ′:
assumes inj : inj on f (space M )
shows (AE x in embed measure M f . P x ) ←→ (AE x in M . P (f x ))

proof
let ?M = embed measure M f
assume AE x in ?M . P x
then obtain A where A props: A ∈ sets ?M emeasure ?M A = 0 {x∈space ?M .
¬P x} ⊆ A

by (force elim: AE E )
then obtain A ′ where A ′ props: A = f ‘ A ′ A ′ ∈ sets M by (auto simp:

sets embed measure ′ inj )
moreover have B : {x∈space ?M . ¬P x} = f ‘ {x∈space M . ¬P (f x )}
by (auto simp: inj space embed measure)

from A props(3 ) have {x∈space M . ¬P (f x )} ⊆ A ′

by (subst (asm) B , subst (asm) A ′ props, subst (asm) inj on image subset iff [OF
inj ])

(insert A ′ props, auto dest : sets.sets into space)
moreover from A props A ′ props have emeasure M A ′ = 0
by (simp add : emeasure embed measure image ′ inj )

ultimately show AE x in M . P (f x ) by (intro AE I )
next
let ?M = embed measure M f
assume AE x in M . P (f x )
then obtain A where A props: A ∈ sets M emeasure M A = 0 {x∈space M .
¬P (f x )} ⊆ A

by (force elim: AE E )
hence f‘A ∈ sets ?M emeasure ?M (f‘A) = 0 {x∈space ?M . ¬P x} ⊆ f‘A
by (auto simp: space embed measure emeasure embed measure image ′ sets embed measure ′

inj )
thus AE x in ?M . P x by (intro AE I )

qed

lemma AE embed measure:
assumes inj : inj f
shows (AE x in embed measure M f . P x ) ←→ (AE x in M . P (f x ))
using assms by (intro AE embed measure ′) (auto intro!: inj onI dest : injD)
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lemma nn integral monotone convergence SUP countable:
fixes f :: ′a ⇒ ′b ⇒ ennreal
assumes nonempty : Y 6= {}
and chain: Complete Partial Order .chain (≤) (f ‘ Y )
and countable: countable B
shows (

∫
+ x . (SUP i∈Y . f i x ) ∂count space B) = (SUP i∈Y . (

∫
+ x . f i x

∂count space B))
(is ?lhs = ?rhs)

proof −
let ?f = (λi x . f i (from nat into B x ) ∗ indicator (to nat on B ‘ B) x )
have ?lhs =

∫
+ x . (SUP i∈Y . f i (from nat into B (to nat on B x ))) ∂count space

B
by(rule nn integral cong)(simp add : countable)
also have . . . =

∫
+ x . (SUP i∈Y . f i (from nat into B x )) ∂count space

(to nat on B ‘ B)
by(simp add : embed measure count space ′[symmetric] inj on to nat on count-

able nn integral embed measure ′ measurable embed measure1 )
also have . . . =

∫
+ x . (SUP i∈Y . ?f i x ) ∂count space UNIV

by(simp add : nn integral count space indicator ennreal indicator [symmetric]
SUP mult right ennreal nonempty)
also have . . . = (SUP i∈Y .

∫
+ x . ?f i x ∂count space UNIV )

proof(rule nn integral monotone convergence SUP nat)
show Complete Partial Order .chain (≤) (?f ‘ Y )
by(rule chain imageI [OF chain, unfolded image image])(auto intro!: le funI

split : split indicator dest : le funD)
qed fact
also have . . . = (SUP i∈Y .

∫
+ x . f i (from nat into B x ) ∂count space (to nat on

B ‘ B))
by(simp add : nn integral count space indicator)
also have . . . = (SUP i∈Y .

∫
+ x . f i (from nat into B (to nat on B x ))

∂count space B)
by(simp add : embed measure count space ′[symmetric] inj on to nat on count-

able nn integral embed measure ′ measurable embed measure1 )
also have . . . = ?rhs
by(intro arg cong2 [where f = λA f . Sup (f ‘ A)] ext nn integral cong AE )(simp all

add : AE count space countable)
finally show ?thesis .

qed

end

6.31 Brouwer’s Fixed Point Theorem

theory Brouwer Fixpoint
imports Homeomorphism Derivative

begin
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6.31.1 Retractions

lemma retract of contractible:
assumes contractible T S retract of T
shows contractible S

using assms
apply (clarsimp simp add : retract of def contractible def retraction def homotopic with)
apply (rule tac x=r a in exI )
apply (rule tac x=r ◦ h in exI )
apply (intro conjI continuous intros continuous on compose)
apply (erule continuous on subset | force)+
done

lemma retract of path connected :
[[path connected T ; S retract of T ]] =⇒ path connected S

by (metis path connected continuous image retract of def retraction)

lemma retract of simply connected :
[[simply connected T ; S retract of T ]] =⇒ simply connected S

apply (simp add : retract of def retraction def , clarify)
apply (rule simply connected retraction gen)
apply (force elim!: continuous on subset)+
done

lemma retract of homotopically trivial :
assumes ts: T retract of S

and hom:
∧
f g . [[continuous on U f ; f ‘ U ⊆ S ;
continuous on U g ; g ‘ U ⊆ S ]]
=⇒ homotopic with canon (λx . True) U S f g

and continuous on U f f ‘ U ⊆ T
and continuous on U g g ‘ U ⊆ T

shows homotopic with canon (λx . True) U T f g
proof −
obtain r where r ‘ S ⊆ S continuous on S r ∀ x∈S . r (r x ) = r x T = r ‘ S
using ts by (auto simp: retract of def retraction)

then obtain k where Retracts S r T k
unfolding Retracts def
by (metis continuous on subset dual order .trans image iff image mono)

then show ?thesis
apply (rule Retracts.homotopically trivial retraction gen)
using assms
apply (force simp: hom)+
done

qed

lemma retract of homotopically trivial null :
assumes ts: T retract of S

and hom:
∧
f . [[continuous on U f ; f ‘ U ⊆ S ]]
=⇒ ∃ c. homotopic with canon (λx . True) U S f (λx . c)

and continuous on U f f ‘ U ⊆ T
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obtains c where homotopic with canon (λx . True) U T f (λx . c)
proof −
obtain r where r ‘ S ⊆ S continuous on S r ∀ x∈S . r (r x ) = r x T = r ‘ S
using ts by (auto simp: retract of def retraction)

then obtain k where Retracts S r T k
unfolding Retracts def
by (metis continuous on subset dual order .trans image iff image mono)

then show ?thesis
apply (rule Retracts.homotopically trivial retraction null gen)
apply (rule TrueI refl assms that | assumption)+
done

qed

lemma retraction openin vimage iff :
openin (top of set S ) (S ∩ r −‘ U ) ←→ openin (top of set T ) U
if retraction: retraction S T r and U ⊆ T
using retraction apply (rule retractionE )
apply (rule continuous right inverse imp quotient map [where g=r ])
using 〈U ⊆ T 〉 apply (auto elim: continuous on subset)
done

lemma retract of locally compact :
fixes S :: ′a :: {heine borel ,real normed vector} set
shows [[ locally compact S ; T retract of S ]] =⇒ locally compact T

by (metis locally compact closedin closedin retract)

lemma homotopic into retract :
[[f ‘ S ⊆ T ; g ‘ S ⊆ T ; T retract of U ; homotopic with canon (λx . True) S U f

g ]]
=⇒ homotopic with canon (λx . True) S T f g

apply (subst (asm) homotopic with def )
apply (simp add : homotopic with retract of def retraction def , clarify)
apply (rule tac x=r ◦ h in exI )
apply (rule conjI continuous intros | erule continuous on subset | force simp: im-
age subset iff )+
done

lemma retract of locally connected :
assumes locally connected T S retract of T
shows locally connected S
using assms
by (auto simp: idempotent imp retraction intro!: retraction openin vimage iff elim!:

locally connected quotient image retract ofE )

lemma retract of locally path connected :
assumes locally path connected T S retract of T
shows locally path connected S
using assms
by (auto simp: idempotent imp retraction intro!: retraction openin vimage iff elim!:
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locally path connected quotient image retract ofE )

A few simple lemmas about deformation retracts

lemma deformation retract imp homotopy eqv :
fixes S :: ′a::euclidean space set
assumes homotopic with canon (λx . True) S S id r and r : retraction S T r
shows S homotopy eqv T

proof −
have homotopic with canon (λx . True) S S (id ◦ r) id
by (simp add : assms(1 ) homotopic with symD)

moreover have homotopic with canon (λx . True) T T (r ◦ id) id
using r unfolding retraction def
by (metis eq id iff homotopic with id2 topspace euclidean subtopology)

ultimately
show ?thesis
unfolding homotopy equivalent space def
by (metis (no types, lifting) continuous map subtopology eu continuous on id ′

id def image id r retraction def )
qed

lemma deformation retract :
fixes S :: ′a::euclidean space set
shows (∃ r . homotopic with canon (λx . True) S S id r ∧ retraction S T r) ←→

T retract of S ∧ (∃ f . homotopic with canon (λx . True) S S id f ∧ f ‘ S
⊆ T )

(is ?lhs = ?rhs)
proof
assume ?lhs
then show ?rhs
by (auto simp: retract of def retraction def )

next
assume ?rhs
then show ?lhs
apply (clarsimp simp add : retract of def retraction def )
apply (rule tac x=r in exI , simp)
apply (rule homotopic with trans, assumption)
apply (rule tac f = r ◦ f and g=r ◦ id in homotopic with eq)

apply (rule tac Y=S in homotopic with compose continuous left)
apply (auto simp: homotopic with sym)

done
qed

lemma deformation retract of contractible sing :
fixes S :: ′a::euclidean space set
assumes contractible S a ∈ S
obtains r where homotopic with canon (λx . True) S S id r retraction S {a} r

proof −
have {a} retract of S
by (simp add : 〈a ∈ S 〉)
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moreover have homotopic with canon (λx . True) S S id (λx . a)
using assms
by (auto simp: contractible def homotopic into contractible image subset iff )

moreover have (λx . a) ‘ S ⊆ {a}
by (simp add : image subsetI )

ultimately show ?thesis
using that deformation retract by metis

qed

lemma continuous on compact surface projection aux :
fixes S :: ′a::t2 space set
assumes compact S S ⊆ T image q T ⊆ S

and contp: continuous on T p
and

∧
x . x ∈ S =⇒ q x = x

and [simp]:
∧
x . x ∈ T =⇒ q(p x ) = q x

and
∧
x . x ∈ T =⇒ p(q x ) = p x

shows continuous on T q
proof −
have ∗: image p T = image p S
using assms by auto (metis imageI subset iff )

have contp ′: continuous on S p
by (rule continuous on subset [OF contp 〈S ⊆ T 〉])

have continuous on (p ‘ T ) q
by (simp add : ∗ assms(1 ) assms(2 ) assms(5 ) continuous on inv contp ′ rev subsetD)
then have continuous on T (q ◦ p)
by (rule continuous on compose [OF contp])

then show ?thesis
by (rule continuous on eq [of q ◦ p]) (simp add : o def )

qed

lemma continuous on compact surface projection:
fixes S :: ′a::real normed vector set
assumes compact S

and S : S ⊆ V − {0} and cone V
and iff :

∧
x k . x ∈ V − {0} =⇒ 0 < k ∧ (k ∗R x ) ∈ S ←→ d x = k

shows continuous on (V − {0}) (λx . d x ∗R x )
proof (rule continuous on compact surface projection aux [OF 〈compact S 〉 S ])
show (λx . d x ∗R x ) ‘ (V − {0}) ⊆ S
using iff by auto

show continuous on (V − {0}) (λx . inverse(norm x ) ∗R x )
by (intro continuous intros) force

show
∧
x . x ∈ S =⇒ d x ∗R x = x

by (metis S zero less one local .iff scaleR one subset eq)
show d (x /R norm x ) ∗R (x /R norm x ) = d x ∗R x if x ∈ V − {0} for x
using iff [of inverse(norm x ) ∗R x norm x ∗ d x , symmetric] iff that 〈cone V 〉

by (simp add : field simps cone def zero less mult iff )
show d x ∗R x /R norm (d x ∗R x ) = x /R norm x if x ∈ V − {0} for x
proof −
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have 0 < d x
using local .iff that by blast

then show ?thesis
by simp

qed
qed

6.31.2 Kuhn Simplices

lemma bij betw singleton eq :
assumes f : bij betw f A B and g : bij betw g A B and a: a ∈ A
assumes eq : (

∧
x . x ∈ A =⇒ x 6= a =⇒ f x = g x )

shows f a = g a
proof −
have f ‘ (A − {a}) = g ‘ (A − {a})
by (intro image cong) (simp all add : eq)

then have B − {f a} = B − {g a}
using f g a by (auto simp: bij betw def inj on image set diff set eq iff )

moreover have f a ∈ B g a ∈ B
using f g a by (auto simp: bij betw def )

ultimately show ?thesis
by auto

qed

lemma swap image:
Fun.swap i j f ‘ A = (if i ∈ A then (if j ∈ A then f ‘ A else f ‘ ((A − {i}) ∪
{j}))

else (if j ∈ A then f ‘ ((A − {j}) ∪ {i}) else f ‘ A))
by (auto simp: swap def cong : image cong simp)

lemmas swap apply1 = swap apply(1 )
lemmas swap apply2 = swap apply(2 )

lemma pointwise minimal pointwise maximal :
fixes s :: (nat ⇒ nat) set
assumes finite s
and s 6= {}
and ∀ x∈s. ∀ y∈s. x ≤ y ∨ y ≤ x

shows ∃ a∈s. ∀ x∈s. a ≤ x
and ∃ a∈s. ∀ x∈s. x ≤ a

using assms
proof (induct s rule: finite ne induct)
case (insert b s)
assume ∗: ∀ x∈insert b s. ∀ y∈insert b s. x ≤ y ∨ y ≤ x
then obtain u l where l ∈ s ∀ b∈s. l ≤ b u ∈ s ∀ b∈s. b ≤ u
using insert by auto

with ∗ show ∃ a∈insert b s. ∀ x∈insert b s. a ≤ x ∃ a∈insert b s. ∀ x∈insert b
s. x ≤ a

using ∗[rule format , of b u] ∗[rule format , of b l ] by (metis insert iff or-
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der .trans)+
qed auto

lemma kuhn labelling lemma:
fixes P Q :: ′a::euclidean space ⇒ bool
assumes ∀ x . P x −→ P (f x )
and ∀ x . P x −→ (∀ i∈Basis. Q i −→ 0 ≤ x ·i ∧ x ·i ≤ 1 )

shows ∃ l . (∀ x .∀ i∈Basis. l x i ≤ (1 ::nat)) ∧
(∀ x .∀ i∈Basis. P x ∧ Q i ∧ (x ·i = 0 ) −→ (l x i = 0 )) ∧
(∀ x .∀ i∈Basis. P x ∧ Q i ∧ (x ·i = 1 ) −→ (l x i = 1 )) ∧
(∀ x .∀ i∈Basis. P x ∧ Q i ∧ (l x i = 0 ) −→ x ·i ≤ f x ·i) ∧
(∀ x .∀ i∈Basis. P x ∧ Q i ∧ (l x i = 1 ) −→ f x ·i ≤ x ·i)

proof −
{ fix x i
let ?R = λy . (P x ∧ Q i ∧ x · i = 0 −→ y = (0 ::nat)) ∧

(P x ∧ Q i ∧ x · i = 1 −→ y = 1 ) ∧
(P x ∧ Q i ∧ y = 0 −→ x · i ≤ f x · i) ∧
(P x ∧ Q i ∧ y = 1 −→ f x · i ≤ x · i)

{ assume P x Q i i ∈ Basis with assms have 0 ≤ f x · i ∧ f x · i ≤ 1 by
auto }

then have i ∈ Basis =⇒ ?R 0 ∨ ?R 1 by auto }
then show ?thesis
unfolding all conj distrib[symmetric] Ball def
by (subst choice iff [symmetric])+ blast

qed

The key ”counting” observation, somewhat abstracted

lemma kuhn counting lemma:
fixes bnd compo compo ′ face S F
defines nF s == card {f ∈F . face f s ∧ compo ′ f }
assumes [simp, intro]: finite F — faces and [simp, intro]: finite S — simplices
and

∧
f . f ∈ F =⇒ bnd f =⇒ card {s∈S . face f s} = 1

and
∧
f . f ∈ F =⇒ ¬ bnd f =⇒ card {s∈S . face f s} = 2

and
∧
s. s ∈ S =⇒ compo s =⇒ nF s = 1

and
∧
s. s ∈ S =⇒ ¬ compo s =⇒ nF s = 0 ∨ nF s = 2

and odd (card {f ∈F . compo ′ f ∧ bnd f })
shows odd (card {s∈S . compo s})

proof −
have (

∑
s | s ∈ S ∧ ¬ compo s. nF s) + (

∑
s | s ∈ S ∧ compo s. nF s) =

(
∑

s∈S . nF s)
by (subst sum.union disjoint [symmetric]) (auto intro!: sum.cong)

also have . . . = (
∑

s∈S . card {f ∈ {f ∈F . compo ′ f ∧ bnd f }. face f s}) +
(
∑

s∈S . card {f ∈ {f ∈F . compo ′ f ∧ ¬ bnd f }. face f s})
unfolding sum.distrib[symmetric]
by (subst card Un disjoint [symmetric])

(auto simp: nF def intro!: sum.cong arg cong [where f=card ])
also have . . . = 1 ∗ card {f ∈F . compo ′ f ∧ bnd f } + 2 ∗ card {f ∈F . compo ′ f
∧ ¬ bnd f }
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using assms(4 ,5 ) by (fastforce intro!: arg cong2 [where f=(+)] sum multicount)
finally have odd ((

∑
s | s ∈ S ∧ ¬ compo s. nF s) + card {s∈S . compo s})

using assms(6 ,8 ) by simp
moreover have (

∑
s | s ∈ S ∧ ¬ compo s. nF s) =

(
∑

s | s ∈ S ∧ ¬ compo s ∧ nF s = 0 . nF s) + (
∑

s | s ∈ S ∧ ¬ compo s ∧
nF s = 2 . nF s)

using assms(7 ) by (subst sum.union disjoint [symmetric]) (fastforce intro!:
sum.cong)+
ultimately show ?thesis
by auto

qed

The odd/even result for faces of complete vertices, generalized

lemma kuhn complete lemma:
assumes [simp]: finite simplices
and face:

∧
f s. face f s ←→ (∃ a∈s. f = s − {a})

and card s[simp]:
∧
s. s ∈ simplices =⇒ card s = n + 2

and rl bd :
∧
s. s ∈ simplices =⇒ rl ‘ s ⊆ {..Suc n}

and bnd :
∧
f s. s ∈ simplices =⇒ face f s =⇒ bnd f =⇒ card {s∈simplices.

face f s} = 1
and nbnd :

∧
f s. s ∈ simplices =⇒ face f s =⇒ ¬ bnd f =⇒ card {s∈simplices.

face f s} = 2
and odd card : odd (card {f . (∃ s∈simplices. face f s) ∧ rl ‘ f = {..n} ∧ bnd f })

shows odd (card {s∈simplices. (rl ‘ s = {..Suc n})})
proof (rule kuhn counting lemma)
have finite s[simp]:

∧
s. s ∈ simplices =⇒ finite s

by (metis add is 0 zero neq numeral card .infinite assms(3 ))

let ?F = {f . ∃ s∈simplices. face f s}
have F eq : ?F = (

⋃
s∈simplices.

⋃
a∈s. {s − {a}})

by (auto simp: face)
show finite ?F
using 〈finite simplices〉 unfolding F eq by auto

show card {s ∈ simplices. face f s} = 1 if f ∈ ?F bnd f for f
using bnd that by auto

show card {s ∈ simplices. face f s} = 2 if f ∈ ?F ¬ bnd f for f
using nbnd that by auto

show odd (card {f ∈ {f . ∃ s∈simplices. face f s}. rl ‘ f = {..n} ∧ bnd f })
using odd card by simp

fix s assume s[simp]: s ∈ simplices
let ?S = {f ∈ {f . ∃ s∈simplices. face f s}. face f s ∧ rl ‘ f = {..n}}
have ?S = (λa. s − {a}) ‘ {a∈s. rl ‘ (s − {a}) = {..n}}
using s by (fastforce simp: face)

then have card S : card ?S = card {a∈s. rl ‘ (s − {a}) = {..n}}
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by (auto intro!: card image inj onI )

{ assume rl : rl ‘ s = {..Suc n}
then have inj rl : inj on rl s
by (intro eq card imp inj on) auto

moreover obtain a where rl a = Suc n a ∈ s
by (metis atMost iff image iff le Suc eq rl)

ultimately have n: {..n} = rl ‘ (s − {a})
by (auto simp: inj on image set diff rl)

have {a∈s. rl ‘ (s − {a}) = {..n}} = {a}
using inj rl 〈a ∈ s〉 by (auto simp: n inj on image eq iff [OF inj rl ])

then show card ?S = 1
unfolding card S by simp }

{ assume rl : rl ‘ s 6= {..Suc n}
show card ?S = 0 ∨ card ?S = 2
proof cases
assume ∗: {..n} ⊆ rl ‘ s
with rl rl bd [OF s] have rl s: rl ‘ s = {..n}
by (auto simp: atMost Suc subset insert iff split : if split asm)

then have ¬ inj on rl s
by (intro pigeonhole) simp

then obtain a b where ab: a ∈ s b ∈ s rl a = rl b a 6= b
by (auto simp: inj on def )

then have eq : rl ‘ (s − {a}) = rl ‘ s
by auto

with ab have inj : inj on rl (s − {a})
by (intro eq card imp inj on) (auto simp: rl s card Diff singleton if )

{ fix x assume x ∈ s x /∈ {a, b}
then have rl ‘ s − {rl x} = rl ‘ ((s − {a}) − {x})
by (auto simp: eq inj on image set diff [OF inj ])

also have . . . = rl ‘ (s − {x})
using ab 〈x /∈ {a, b}〉 by auto

also assume . . . = rl ‘ s
finally have False
using 〈x∈s〉 by auto }

moreover
{ fix x assume x ∈ {a, b} with ab have x ∈ s ∧ rl ‘ (s − {x}) = rl ‘ s

by (simp add : set eq iff image iff Bex def ) metis }
ultimately have {a∈s. rl ‘ (s − {a}) = {..n}} = {a, b}
unfolding rl s[symmetric] by fastforce

with 〈a 6= b〉 show card ?S = 0 ∨ card ?S = 2
unfolding card S by simp

next
assume ¬ {..n} ⊆ rl ‘ s
then have

∧
x . rl ‘ (s − {x}) 6= {..n}

by auto
then show card ?S = 0 ∨ card ?S = 2
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unfolding card S by simp
qed }

qed fact

locale kuhn simplex =
fixes p n and base upd and s :: (nat ⇒ nat) set
assumes base: base ∈ {..< n} → {..< p}
assumes base out :

∧
i . n ≤ i =⇒ base i = p

assumes upd : bij betw upd {..< n} {..< n}
assumes s pre: s = (λi j . if j ∈ upd‘{..< i} then Suc (base j ) else base j ) ‘ {..

n}
begin

definition enum i j = (if j ∈ upd‘{..< i} then Suc (base j ) else base j )

lemma s eq : s = enum ‘ {.. n}
unfolding s pre enum def [abs def ] ..

lemma upd space: i < n =⇒ upd i < n
using upd by (auto dest !: bij betwE )

lemma s space: s ⊆ {..< n} → {.. p}
proof −
{ fix i assume i ≤ n then have enum i ∈ {..< n} → {.. p}
proof (induct i)
case 0 then show ?case
using base by (auto simp: Pi iff less imp le enum def )

next
case (Suc i) with base show ?case
by (auto simp: Pi iff Suc le eq less imp le enum def intro: upd space)

qed }
then show ?thesis
by (auto simp: s eq)

qed

lemma inj upd : inj on upd {..< n}
using upd by (simp add : bij betw def )

lemma inj enum: inj on enum {.. n}
proof −
{ fix x y :: nat assume x 6= y x ≤ n y ≤ n
with upd have upd ‘ {..< x} 6= upd ‘ {..< y}
by (subst inj on image eq iff [where C={..< n}]) (auto simp: bij betw def )

then have enum x 6= enum y
by (auto simp: enum def fun eq iff ) }

then show ?thesis
by (auto simp: inj on def )

qed
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lemma enum 0 : enum 0 = base
by (simp add : enum def [abs def ])

lemma base in s: base ∈ s
unfolding s eq by (subst enum 0 [symmetric]) auto

lemma enum in: i ≤ n =⇒ enum i ∈ s
unfolding s eq by auto

lemma one step:
assumes a: a ∈ s j < n
assumes ∗:

∧
a ′. a ′ ∈ s =⇒ a ′ 6= a =⇒ a ′ j = p ′

shows a j 6= p ′

proof
assume a j = p ′

with ∗ a have
∧
a ′. a ′ ∈ s =⇒ a ′ j = p ′

by auto
then have

∧
i . i ≤ n =⇒ enum i j = p ′

unfolding s eq by auto
from this[of 0 ] this[of n] have j /∈ upd ‘ {..< n}
by (auto simp: enum def fun eq iff split : if split asm)

with upd 〈j < n〉 show False
by (auto simp: bij betw def )

qed

lemma upd inj : i < n =⇒ j < n =⇒ upd i = upd j ←→ i = j
using upd by (auto simp: bij betw def inj on eq iff )

lemma upd surj : upd ‘ {..< n} = {..< n}
using upd by (auto simp: bij betw def )

lemma in upd image: A ⊆ {..< n} =⇒ i < n =⇒ upd i ∈ upd ‘ A ←→ i ∈ A
using inj on image mem iff [of upd {..< n}] upd
by (auto simp: bij betw def )

lemma enum inj : i ≤ n =⇒ j ≤ n =⇒ enum i = enum j ←→ i = j
using inj enum by (auto simp: inj on eq iff )

lemma in enum image: A ⊆ {.. n} =⇒ i ≤ n =⇒ enum i ∈ enum ‘ A ←→ i ∈ A
using inj on image mem iff [OF inj enum] by auto

lemma enum mono: i ≤ n =⇒ j ≤ n =⇒ enum i ≤ enum j ←→ i ≤ j
by (auto simp: enum def le fun def in upd image Ball def [symmetric])

lemma enum strict mono: i ≤ n =⇒ j ≤ n =⇒ enum i < enum j ←→ i < j
using enum mono[of i j ] enum inj [of i j ] by (auto simp: le less)

lemma chain: a ∈ s =⇒ b ∈ s =⇒ a ≤ b ∨ b ≤ a
by (auto simp: s eq enum mono)
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lemma less: a ∈ s =⇒ b ∈ s =⇒ a i < b i =⇒ a < b
using chain[of a b] by (auto simp: less fun def le fun def not le[symmetric])

lemma enum 0 bot : a ∈ s =⇒ a = enum 0 ←→ (∀ a ′∈s. a ≤ a ′)
unfolding s eq by (auto simp: enum mono Ball def )

lemma enum n top: a ∈ s =⇒ a = enum n ←→ (∀ a ′∈s. a ′ ≤ a)
unfolding s eq by (auto simp: enum mono Ball def )

lemma enum Suc: i < n =⇒ enum (Suc i) = (enum i)(upd i := Suc (enum i
(upd i)))
by (auto simp: fun eq iff enum def upd inj )

lemma enum eq p: i ≤ n =⇒ n ≤ j =⇒ enum i j = p
by (induct i) (auto simp: enum Suc enum 0 base out upd space not less[symmetric])

lemma out eq p: a ∈ s =⇒ n ≤ j =⇒ a j = p
unfolding s eq by (auto simp: enum eq p)

lemma s le p: a ∈ s =⇒ a j ≤ p
using out eq p[of a j ] s space by (cases j < n) auto

lemma le Suc base: a ∈ s =⇒ a j ≤ Suc (base j )
unfolding s eq by (auto simp: enum def )

lemma base le: a ∈ s =⇒ base j ≤ a j
unfolding s eq by (auto simp: enum def )

lemma enum le p: i ≤ n =⇒ j < n =⇒ enum i j ≤ p
using enum in[of i ] s space by auto

lemma enum less: a ∈ s =⇒ i < n =⇒ enum i < a ←→ enum (Suc i) ≤ a
unfolding s eq by (auto simp: enum strict mono enum mono)

lemma ksimplex 0 :
n = 0 =⇒ s = {(λx . p)}
using s eq enum def base out by auto

lemma replace 0 :
assumes j < n a ∈ s and p: ∀ x∈s − {a}. x j = 0 and x ∈ s
shows x ≤ a

proof cases
assume x 6= a
have a j 6= 0
using assms by (intro one step[where a=a]) auto

with less[OF 〈x∈s〉 〈a∈s〉, of j ] p[rule format , of x ] 〈x ∈ s〉 〈x 6= a〉

show ?thesis
by auto

Brouwer{_}{\kern 0pt}Fixpoint.html


2618

qed simp

lemma replace 1 :
assumes j < n a ∈ s and p: ∀ x∈s − {a}. x j = p and x ∈ s
shows a ≤ x

proof cases
assume x 6= a
have a j 6= p
using assms by (intro one step[where a=a]) auto

with enum le p[of j ] 〈j < n〉 〈a∈s〉

have a j < p
by (auto simp: less le s eq)

with less[OF 〈a∈s〉 〈x∈s〉, of j ] p[rule format , of x ] 〈x ∈ s〉 〈x 6= a〉

show ?thesis
by auto

qed simp

end

locale kuhn simplex pair = s: kuhn simplex p n b s u s s + t : kuhn simplex p n
b t u t t
for p n b s u s s b t u t t

begin

lemma enum eq :
assumes l : i ≤ l l ≤ j and j + d ≤ n
assumes eq : s.enum ‘ {i .. j} = t .enum ‘ {i + d .. j + d}
shows s.enum l = t .enum (l + d)

using l proof (induct l rule: dec induct)
case base
then have s: s.enum i ∈ t .enum ‘ {i + d .. j + d} and t : t .enum (i + d) ∈

s.enum ‘ {i .. j}
using eq by auto

from t 〈i ≤ j 〉 〈j + d ≤ n〉 have s.enum i ≤ t .enum (i + d)
by (auto simp: s.enum mono)

moreover from s 〈i ≤ j 〉 〈j + d ≤ n〉 have t .enum (i + d) ≤ s.enum i
by (auto simp: t .enum mono)

ultimately show ?case
by auto

next
case (step l)
moreover from step.prems 〈j + d ≤ n〉 have

s.enum l < s.enum (Suc l)
t .enum (l + d) < t .enum (Suc l + d)

by (simp all add : s.enum strict mono t .enum strict mono)
moreover have

s.enum (Suc l) ∈ t .enum ‘ {i + d .. j + d}
t .enum (Suc l + d) ∈ s.enum ‘ {i .. j}

using step 〈j + d ≤ n〉 eq by (auto simp: s.enum inj t .enum inj )
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ultimately have s.enum (Suc l) = t .enum (Suc (l + d))
using 〈j + d ≤ n〉

by (intro antisym s.enum less[THEN iffD1 ] t .enum less[THEN iffD1 ])
(auto intro!: s.enum in t .enum in)

then show ?case by simp
qed

lemma ksimplex eq bot :
assumes a: a ∈ s

∧
a ′. a ′ ∈ s =⇒ a ≤ a ′

assumes b: b ∈ t
∧
b ′. b ′ ∈ t =⇒ b ≤ b ′

assumes eq : s − {a} = t − {b}
shows s = t

proof cases
assume n = 0 with s.ksimplex 0 t .ksimplex 0 show ?thesis by simp

next
assume n 6= 0
have s.enum 0 = (s.enum (Suc 0 )) (u s 0 := s.enum (Suc 0 ) (u s 0 ) − 1 )

t .enum 0 = (t .enum (Suc 0 )) (u t 0 := t .enum (Suc 0 ) (u t 0 ) − 1 )
using 〈n 6= 0 〉 by (simp all add : s.enum Suc t .enum Suc)

moreover have e0 : a = s.enum 0 b = t .enum 0
using a b by (simp all add : s.enum 0 bot t .enum 0 bot)

moreover
{ fix j assume 0 < j j ≤ n
moreover have s − {a} = s.enum ‘ {Suc 0 .. n} t − {b} = t .enum ‘ {Suc 0

.. n}
unfolding s.s eq t .s eq e0 by (auto simp: s.enum inj t .enum inj )

ultimately have s.enum j = t .enum j
using enum eq [of 1 j n 0 ] eq by auto }

note enum eq = this
then have s.enum (Suc 0 ) = t .enum (Suc 0 )
using 〈n 6= 0 〉 by auto

moreover
{ fix j assume Suc j < n
with enum eq [of Suc j ] enum eq [of Suc (Suc j )]
have u s (Suc j ) = u t (Suc j )
using s.enum Suc[of Suc j ] t .enum Suc[of Suc j ]
by (auto simp: fun eq iff split : if split asm) }

then have
∧
j . 0 < j =⇒ j < n =⇒ u s j = u t j

by (auto simp: gr0 conv Suc)
with 〈n 6= 0 〉 have u t 0 = u s 0
by (intro bij betw singleton eq [OF t .upd s.upd , of 0 ]) auto

ultimately have a = b
by simp

with assms show s = t
by auto

qed

lemma ksimplex eq top:
assumes a: a ∈ s

∧
a ′. a ′ ∈ s =⇒ a ′ ≤ a
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assumes b: b ∈ t
∧
b ′. b ′ ∈ t =⇒ b ′ ≤ b

assumes eq : s − {a} = t − {b}
shows s = t

proof (cases n)
assume n = 0 with s.ksimplex 0 t .ksimplex 0 show ?thesis by simp

next
case (Suc n ′)
have s.enum n = (s.enum n ′) (u s n ′ := Suc (s.enum n ′ (u s n ′)))

t .enum n = (t .enum n ′) (u t n ′ := Suc (t .enum n ′ (u t n ′)))
using Suc by (simp all add : s.enum Suc t .enum Suc)

moreover have en: a = s.enum n b = t .enum n
using a b by (simp all add : s.enum n top t .enum n top)

moreover
{ fix j assume j < n
moreover have s − {a} = s.enum ‘ {0 .. n ′} t − {b} = t .enum ‘ {0 .. n ′}
unfolding s.s eq t .s eq en by (auto simp: s.enum inj t .enum inj Suc)

ultimately have s.enum j = t .enum j
using enum eq [of 0 j n ′ 0 ] eq Suc by auto }

note enum eq = this
then have s.enum n ′ = t .enum n ′

using Suc by auto
moreover
{ fix j assume j < n ′

with enum eq [of j ] enum eq [of Suc j ]
have u s j = u t j
using s.enum Suc[of j ] t .enum Suc[of j ]
by (auto simp: Suc fun eq iff split : if split asm) }

then have
∧
j . j < n ′ =⇒ u s j = u t j

by (auto simp: gr0 conv Suc)
then have u t n ′ = u s n ′

by (intro bij betw singleton eq [OF t .upd s.upd , of n ′]) (auto simp: Suc)
ultimately have a = b
by simp

with assms show s = t
by auto

qed

end

inductive ksimplex for p n :: nat where
ksimplex : kuhn simplex p n base upd s =⇒ ksimplex p n s

lemma finite ksimplexes: finite {s. ksimplex p n s}
proof (rule finite subset)
{ fix a s assume ksimplex p n s a ∈ s
then obtain b u where kuhn simplex p n b u s by (auto elim: ksimplex .cases)
then interpret kuhn simplex p n b u s .
from s space 〈a ∈ s〉 out eq p[OF 〈a ∈ s〉]
have a ∈ (λf x . if n ≤ x then p else f x ) ‘ ({..< n} →E {.. p})
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by (auto simp: image iff subset eq Pi iff split : if split asm
intro!: bexI [of restrict a {..< n}]) }

then show {s. ksimplex p n s} ⊆ Pow ((λf x . if n ≤ x then p else f x ) ‘ ({..<
n} →E {.. p}))

by auto
qed (simp add : finite PiE )

lemma ksimplex card :
assumes ksimplex p n s shows card s = Suc n

using assms proof cases
case (ksimplex u b)
then interpret kuhn simplex p n u b s .
show ?thesis
by (simp add : card image s eq inj enum)

qed

lemma simplex top face:
assumes 0 < p ∀ x∈s ′. x n = p
shows ksimplex p n s ′←→ (∃ s a. ksimplex p (Suc n) s ∧ a ∈ s ∧ s ′ = s − {a})
using assms

proof safe
fix s a assume ksimplex p (Suc n) s and a: a ∈ s and na: ∀ x∈s − {a}. x n =

p
then show ksimplex p n (s − {a})
proof cases
case (ksimplex base upd)
then interpret kuhn simplex p Suc n base upd s .

have a n < p
using one step[of a n p] na 〈a∈s〉 s space by (auto simp: less le)

then have a = enum 0
using 〈a ∈ s〉 na by (subst enum 0 bot) (auto simp: le less intro!: less[of a

n])
then have s eq : s − {a} = enum ‘ Suc ‘ {.. n}
using s eq by (simp add : atMost Suc eq insert 0 insert ident in enum image

subset eq)
then have enum 1 ∈ s − {a}
by auto

then have upd 0 = n
using 〈a n < p〉 〈a = enum 0 〉 na[rule format , of enum 1 ]
by (auto simp: fun eq iff enum Suc split : if split asm)

then have bij betw upd (Suc ‘ {..< n}) {..< n}
using upd
by (subst notIn Un bij betw3 [where b=0 ])

(auto simp: lessThan Suc[symmetric] lessThan Suc eq insert 0 )
then have bij betw (upd◦Suc) {..<n} {..<n}
by (rule bij betw trans[rotated ]) (auto simp: bij betw def )

have a n = p − 1
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using enum Suc[of 0 ] na[rule format , OF 〈enum 1 ∈ s − {a}〉] 〈a = enum
0 〉 by (auto simp: 〈upd 0 = n〉)

show ?thesis
proof (rule ksimplex .intros, standard)
show bij betw (upd◦Suc) {..< n} {..< n} by fact
show base(n := p) ∈ {..<n} → {..<p}

∧
i . n≤i =⇒ (base(n := p)) i = p

using base base out by (auto simp: Pi iff )

have
∧
i . Suc ‘ {..< i} = {..< Suc i} − {0}

by (auto simp: image iff Ball def ) arith
then have upd Suc:

∧
i . i ≤ n =⇒ (upd◦Suc) ‘ {..< i} = upd ‘ {..< Suc i}

− {n}
using 〈upd 0 = n〉 upd inj by (auto simp add : image iff less Suc eq 0 disj )

have n in upd :
∧
i . n ∈ upd ‘ {..< Suc i}

using 〈upd 0 = n〉 by auto

define f ′ where f ′ i j =
(if j ∈ (upd◦Suc)‘{..< i} then Suc ((base(n := p)) j ) else (base(n := p)) j )

for i j
{ fix x i
assume i [arith]: i ≤ n
with upd Suc have (upd ◦ Suc) ‘ {..<i} = upd ‘ {..<Suc i} − {n} .
with 〈a n < p〉 〈a = enum 0 〉 〈upd 0 = n〉 〈a n = p − 1 〉

have enum (Suc i) x = f ′ i x
by (auto simp add : f ′ def enum def ) }

then show s − {a} = f ′ ‘ {.. n}
unfolding s eq image comp by (intro image cong) auto

qed
qed

next
assume ksimplex p n s ′ and ∗: ∀ x∈s ′. x n = p
then show ∃ s a. ksimplex p (Suc n) s ∧ a ∈ s ∧ s ′ = s − {a}
proof cases
case (ksimplex base upd)
then interpret kuhn simplex p n base upd s ′ .
define b where b = base (n := p − 1 )
define u where u i = (case i of 0 ⇒ n | Suc i ⇒ upd i) for i

have ksimplex p (Suc n) (s ′ ∪ {b})
proof (rule ksimplex .intros, standard)
show b ∈ {..<Suc n} → {..<p}
using base 〈0 < p〉 unfolding lessThan Suc b def by (auto simp: PiE iff )

show
∧
i . Suc n ≤ i =⇒ b i = p

using base out by (auto simp: b def )

have bij betw u (Suc ‘ {..< n} ∪ {0}) ({..<n} ∪ {u 0})
using upd
by (intro notIn Un bij betw) (auto simp: u def bij betw def image comp



Brouwer Fixpoint.thy 2623

comp def inj on def )
then show bij betw u {..<Suc n} {..<Suc n}
by (simp add : u def lessThan Suc[symmetric] lessThan Suc eq insert 0 )

define f ′ where f ′ i j = (if j ∈ u‘{..< i} then Suc (b j ) else b j ) for i j

have u eq :
∧
i . i ≤ n =⇒ u ‘ {..< Suc i} = upd ‘ {..< i} ∪ { n }

by (auto simp: u def image iff upd inj Ball def split : nat .split) arith

{ fix x have x ≤ n =⇒ n /∈ upd ‘ {..<x}
using upd space by (simp add : image iff neq iff ) }

note n not upd = this

have ∗: f ′ ‘ {.. Suc n} = f ′ ‘ (Suc ‘ {.. n} ∪ {0})
unfolding atMost Suc eq insert 0 by simp

also have . . . = (f ′ ◦ Suc) ‘ {.. n} ∪ {b}
by (auto simp: f ′ def )

also have (f ′ ◦ Suc) ‘ {.. n} = s ′

using 〈0 < p〉 base out [of n]
unfolding s eq enum def [abs def ] f ′ def [abs def ] upd space
by (intro image cong) (simp all add : u eq b def fun eq iff n not upd)

finally show s ′ ∪ {b} = f ′ ‘ {.. Suc n} ..
qed
moreover have b /∈ s ′

using ∗ 〈0 < p〉 by (auto simp: b def )
ultimately show ?thesis by auto

qed
qed

lemma ksimplex replace 0 :
assumes s: ksimplex p n s and a: a ∈ s
assumes j : j < n and p: ∀ x∈s − {a}. x j = 0
shows card {s ′. ksimplex p n s ′ ∧ (∃ b∈s ′. s ′ − {b} = s − {a})} = 1
using s

proof cases
case (ksimplex b s u s)

{ fix t b assume ksimplex p n t
then obtain b t u t where kuhn simplex p n b t u t t
by (auto elim: ksimplex .cases)

interpret kuhn simplex pair p n b s u s s b t u t t
by intro locales fact+

assume b: b ∈ t t − {b} = s − {a}
with a j p s.replace 0 [of a] t .replace 0 [of b] have s = t
by (intro ksimplex eq top[of a b]) auto }

then have {s ′. ksimplex p n s ′ ∧ (∃ b∈s ′. s ′ − {b} = s − {a})} = {s}
using s 〈a ∈ s〉 by auto

then show ?thesis
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by simp
qed

lemma ksimplex replace 1 :
assumes s: ksimplex p n s and a: a ∈ s
assumes j : j < n and p: ∀ x∈s − {a}. x j = p
shows card {s ′. ksimplex p n s ′ ∧ (∃ b∈s ′. s ′ − {b} = s − {a})} = 1
using s

proof cases
case (ksimplex b s u s)

{ fix t b assume ksimplex p n t
then obtain b t u t where kuhn simplex p n b t u t t
by (auto elim: ksimplex .cases)

interpret kuhn simplex pair p n b s u s s b t u t t
by intro locales fact+

assume b: b ∈ t t − {b} = s − {a}
with a j p s.replace 1 [of a] t .replace 1 [of b] have s = t
by (intro ksimplex eq bot [of a b]) auto }

then have {s ′. ksimplex p n s ′ ∧ (∃ b∈s ′. s ′ − {b} = s − {a})} = {s}
using s 〈a ∈ s〉 by auto

then show ?thesis
by simp

qed

lemma ksimplex replace 2 :
assumes s: ksimplex p n s and a ∈ s and n 6= 0
and lb: ∀ j<n. ∃ x∈s − {a}. x j 6= 0
and ub: ∀ j<n. ∃ x∈s − {a}. x j 6= p

shows card {s ′. ksimplex p n s ′ ∧ (∃ b∈s ′. s ′ − {b} = s − {a})} = 2
using s

proof cases
case (ksimplex base upd)
then interpret kuhn simplex p n base upd s .

from 〈a ∈ s〉 obtain i where i ≤ n a = enum i
unfolding s eq by auto

from 〈i ≤ n〉 have i = 0 ∨ i = n ∨ (0 < i ∧ i < n)
by linarith

then have ∃ !s ′. s ′ 6= s ∧ ksimplex p n s ′ ∧ (∃ b∈s ′. s − {a} = s ′− {b})
proof (elim disjE conjE )
assume i = 0
define rot where [abs def ]: rot i = (if i + 1 = n then 0 else i + 1 ) for i
let ?upd = upd ◦ rot

have rot : bij betw rot {..< n} {..< n}
by (auto simp: bij betw def inj on def image iff Ball def rot def )
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arith+
from rot upd have bij betw ?upd {..<n} {..<n}
by (rule bij betw trans)

define f ′ where [abs def ]: f ′ i j =
(if j ∈ ?upd‘{..< i} then Suc (enum (Suc 0 ) j ) else enum (Suc 0 ) j ) for i j

interpret b: kuhn simplex p n enum (Suc 0 ) upd ◦ rot f ′ ‘ {.. n}
proof
from 〈a = enum i 〉 ub 〈n 6= 0 〉 〈i = 0 〉

obtain i ′ where i ′ ≤ n enum i ′ 6= enum 0 enum i ′ (upd 0 ) 6= p
unfolding s eq by (auto intro: upd space simp: enum inj )

then have enum 1 ≤ enum i ′ enum i ′ (upd 0 ) < p
using enum le p[of i ′ upd 0 ] by (auto simp: enum inj enum mono upd space)
then have enum 1 (upd 0 ) < p
by (auto simp: le fun def intro: le less trans)

then show enum (Suc 0 ) ∈ {..<n} → {..<p}
using base 〈n 6= 0 〉 by (auto simp: enum 0 enum Suc PiE iff extensional def

upd space)

{ fix i assume n ≤ i then show enum (Suc 0 ) i = p
using 〈n 6= 0 〉 by (auto simp: enum eq p) }

show bij betw ?upd {..<n} {..<n} by fact
qed (simp add : f ′ def )
have ks f ′: ksimplex p n (f ′ ‘ {.. n})
by rule unfold locales

have b enum: b.enum = f ′ unfolding f ′ def b.enum def [abs def ] ..
with b.inj enum have inj f ′: inj on f ′ {.. n} by simp

have f ′ eq enum: f ′ j = enum (Suc j ) if j < n for j
proof −
from that have rot ‘ {..< j} = {0 <..< Suc j}
by (auto simp: rot def image Suc lessThan cong : image cong simp)

with that 〈n 6= 0 〉 show ?thesis
by (simp only : f ′ def enum def fun eq iff image comp [symmetric])
(auto simp add : upd inj )

qed
then have enum ‘ Suc ‘ {..< n} = f ′ ‘ {..< n}
by (force simp: enum inj )

also have Suc ‘ {..< n} = {.. n} − {0}
by (auto simp: image iff Ball def ) arith

also have {..< n} = {.. n} − {n}
by auto

finally have eq : s − {a} = f ′ ‘ {.. n} − {f ′ n}
unfolding s eq 〈a = enum i 〉 〈i = 0 〉

by (simp add : inj on image set diff [OF inj enum] inj on image set diff [OF
inj f ′])
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have enum 0 < f ′ 0
using 〈n 6= 0 〉 by (simp add : enum strict mono f ′ eq enum)

also have . . . < f ′ n
using 〈n 6= 0 〉 b.enum strict mono[of 0 n] unfolding b enum by simp

finally have a 6= f ′ n
using 〈a = enum i 〉 〈i = 0 〉 by auto

{ fix t c assume ksimplex p n t c ∈ t and eq sma: s − {a} = t − {c}
obtain b u where kuhn simplex p n b u t
using 〈ksimplex p n t 〉 by (auto elim: ksimplex .cases)

then interpret t : kuhn simplex p n b u t .

{ fix x assume x ∈ s x 6= a
then have x (upd 0 ) = enum (Suc 0 ) (upd 0 )
by (auto simp: 〈a = enum i 〉 〈i = 0 〉 s eq enum def enum inj ) }

then have eq upd0 : ∀ x∈t−{c}. x (upd 0 ) = enum (Suc 0 ) (upd 0 )
unfolding eq sma[symmetric] by auto

then have c (upd 0 ) 6= enum (Suc 0 ) (upd 0 )
using 〈n 6= 0 〉 by (intro t .one step[OF 〈c∈t 〉 ]) (auto simp: upd space)

then have c (upd 0 ) < enum (Suc 0 ) (upd 0 ) ∨ c (upd 0 ) > enum (Suc 0 )
(upd 0 )

by auto
then have t = s ∨ t = f ′ ‘ {..n}
proof (elim disjE conjE )
assume ∗: c (upd 0 ) < enum (Suc 0 ) (upd 0 )
interpret st : kuhn simplex pair p n base upd s b u t ..
{ fix x assume x ∈ t with ∗ 〈c∈t 〉 eq upd0 [rule format , of x ] have c ≤ x

by (auto simp: le less intro!: t .less[of upd 0 ]) }
note top = this
have s = t
using 〈a = enum i 〉 〈i = 0 〉 〈c ∈ t 〉

by (intro st .ksimplex eq bot [OF eq sma])
(auto simp: s eq enum mono t .s eq t .enum mono top)

then show ?thesis by simp
next
assume ∗: c (upd 0 ) > enum (Suc 0 ) (upd 0 )
interpret st : kuhn simplex pair p n enum (Suc 0 ) upd ◦ rot f ′ ‘ {.. n} b u

t ..
have eq : f ′ ‘ {..n} − {f ′ n} = t − {c}
using eq sma eq by simp

{ fix x assume x ∈ t with ∗ 〈c∈t 〉 eq upd0 [rule format , of x ] have x ≤ c
by (auto simp: le less intro!: t .less[of upd 0 ]) }

note top = this
have f ′ ‘ {..n} = t
using 〈a = enum i 〉 〈i = 0 〉 〈c ∈ t 〉

by (intro st .ksimplex eq top[OF eq ])
(auto simp: b.s eq b.enum mono t .s eq t .enum mono b enum[symmetric]

top)
then show ?thesis by simp
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qed }
with ks f ′ eq 〈a 6= f ′ n〉 〈n 6= 0 〉 show ?thesis
apply (intro ex1I [of f ′ ‘ {.. n}])
apply auto []
apply metis
done

next
assume i = n
from 〈n 6= 0 〉 obtain n ′ where n ′: n = Suc n ′

by (cases n) auto

define rot where rot i = (case i of 0 ⇒ n ′ | Suc i ⇒ i) for i
let ?upd = upd ◦ rot

have rot : bij betw rot {..< n} {..< n}
by (auto simp: bij betw def inj on def image iff Bex def rot def n ′ split :

nat .splits)
arith

from rot upd have bij betw ?upd {..<n} {..<n}
by (rule bij betw trans)

define b where b = base (upd n ′ := base (upd n ′) − 1 )
define f ′ where [abs def ]: f ′ i j = (if j ∈ ?upd‘{..< i} then Suc (b j ) else b

j ) for i j

interpret b: kuhn simplex p n b upd ◦ rot f ′ ‘ {.. n}
proof
{ fix i assume n ≤ i then show b i = p

using base out [of i ] upd space[of n ′] by (auto simp: b def n ′) }
show b ∈ {..<n} → {..<p}
using base 〈n 6= 0 〉 upd space[of n ′]
by (auto simp: b def PiE def Pi iff Ball def upd space extensional def n ′)

show bij betw ?upd {..<n} {..<n} by fact
qed (simp add : f ′ def )
have f ′: b.enum = f ′ unfolding f ′ def b.enum def [abs def ] ..
have ks f ′: ksimplex p n (b.enum ‘ {.. n})
unfolding f ′ by rule unfold locales

have 0 < n
using 〈n 6= 0 〉 by auto

{ from 〈a = enum i 〉 〈n 6= 0 〉 〈i = n〉 lb upd space[of n ′]
obtain i ′ where i ′ ≤ n enum i ′ 6= enum n 0 < enum i ′ (upd n ′)
unfolding s eq by (auto simp: enum inj n ′)

moreover have enum i ′ (upd n ′) = base (upd n ′)
unfolding enum def using 〈i ′ ≤ n〉 〈enum i ′ 6= enum n〉 by (auto simp: n ′

upd inj enum inj )
ultimately have 0 < base (upd n ′)
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by auto }
then have benum1 : b.enum (Suc 0 ) = base
unfolding b.enum Suc[OF 〈0<n〉] b.enum 0 by (auto simp: b def rot def )

have [simp]:
∧
j . Suc j < n =⇒ rot ‘ {..< Suc j} = {n ′} ∪ {..< j}

by (auto simp: rot def image iff Ball def split : nat .splits)
have rot simps:

∧
j . rot (Suc j ) = j rot 0 = n ′

by (simp all add : rot def )

{ fix j assume j : Suc j ≤ n then have b.enum (Suc j ) = enum j
by (induct j ) (auto simp: benum1 enum 0 b.enum Suc enum Suc rot simps)

}
note b enum eq enum = this
then have enum ‘ {..< n} = b.enum ‘ Suc ‘ {..< n}
by (auto simp: image comp intro!: image cong)

also have Suc ‘ {..< n} = {.. n} − {0}
by (auto simp: image iff Ball def ) arith

also have {..< n} = {.. n} − {n}
by auto

finally have eq : s − {a} = b.enum ‘ {.. n} − {b.enum 0}
unfolding s eq 〈a = enum i 〉 〈i = n〉

using inj on image set diff [OF inj enum Diff subset , of {n}]
inj on image set diff [OF b.inj enum Diff subset , of {0}]

by (simp add : comp def )

have b.enum 0 ≤ b.enum n
by (simp add : b.enum mono)

also have b.enum n < enum n
using 〈n 6= 0 〉 by (simp add : enum strict mono b enum eq enum n ′)

finally have a 6= b.enum 0
using 〈a = enum i 〉 〈i = n〉 by auto

{ fix t c assume ksimplex p n t c ∈ t and eq sma: s − {a} = t − {c}
obtain b ′ u where kuhn simplex p n b ′ u t
using 〈ksimplex p n t 〉 by (auto elim: ksimplex .cases)

then interpret t : kuhn simplex p n b ′ u t .

{ fix x assume x ∈ s x 6= a
then have x (upd n ′) = enum n ′ (upd n ′)

by (auto simp: 〈a = enum i 〉 n ′ 〈i = n〉 s eq enum def enum inj
in upd image) }

then have eq upd0 : ∀ x∈t−{c}. x (upd n ′) = enum n ′ (upd n ′)
unfolding eq sma[symmetric] by auto

then have c (upd n ′) 6= enum n ′ (upd n ′)
using 〈n 6= 0 〉 by (intro t .one step[OF 〈c∈t 〉 ]) (auto simp: n ′ upd space[unfolded

n ′])
then have c (upd n ′) < enum n ′ (upd n ′) ∨ c (upd n ′) > enum n ′ (upd n ′)
by auto

then have t = s ∨ t = b.enum ‘ {..n}
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proof (elim disjE conjE )
assume ∗: c (upd n ′) > enum n ′ (upd n ′)
interpret st : kuhn simplex pair p n base upd s b ′ u t ..
{ fix x assume x ∈ t with ∗ 〈c∈t 〉 eq upd0 [rule format , of x ] have x ≤ c

by (auto simp: le less intro!: t .less[of upd n ′]) }
note top = this
have s = t
using 〈a = enum i 〉 〈i = n〉 〈c ∈ t 〉

by (intro st .ksimplex eq top[OF eq sma])
(auto simp: s eq enum mono t .s eq t .enum mono top)

then show ?thesis by simp
next
assume ∗: c (upd n ′) < enum n ′ (upd n ′)
interpret st : kuhn simplex pair p n b upd ◦ rot f ′ ‘ {.. n} b ′ u t ..
have eq : f ′ ‘ {..n} − {b.enum 0} = t − {c}
using eq sma eq f ′ by simp

{ fix x assume x ∈ t with ∗ 〈c∈t 〉 eq upd0 [rule format , of x ] have c ≤ x
by (auto simp: le less intro!: t .less[of upd n ′]) }

note bot = this
have f ′ ‘ {..n} = t
using 〈a = enum i 〉 〈i = n〉 〈c ∈ t 〉

by (intro st .ksimplex eq bot [OF eq ])
(auto simp: b.s eq b.enum mono t .s eq t .enum mono bot)

with f ′ show ?thesis by simp
qed }

with ks f ′ eq 〈a 6= b.enum 0 〉 〈n 6= 0 〉 show ?thesis
apply (intro ex1I [of b.enum ‘ {.. n}])
apply auto []
apply metis
done

next
assume i : 0 < i i < n
define i ′ where i ′ = i − 1
with i have Suc i ′ < n
by simp

with i have Suc i ′: Suc i ′ = i
by (simp add : i ′ def )

let ?upd = Fun.swap i ′ i upd
from i upd have bij betw ?upd {..< n} {..< n}
by (subst bij betw swap iff ) (auto simp: i ′ def )

define f ′ where [abs def ]: f ′ i j = (if j ∈ ?upd‘{..< i} then Suc (base j ) else
base j )

for i j
interpret b: kuhn simplex p n base ?upd f ′ ‘ {.. n}
proof
show base ∈ {..<n} → {..<p} by (rule base)
{ fix i assume n ≤ i then show base i = p by (rule base out) }
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show bij betw ?upd {..<n} {..<n} by fact
qed (simp add : f ′ def )
have f ′: b.enum = f ′ unfolding f ′ def b.enum def [abs def ] ..
have ks f ′: ksimplex p n (b.enum ‘ {.. n})
unfolding f ′ by rule unfold locales

have {i} ⊆ {..n}
using i by auto

{ fix j assume j ≤ n
moreover have j < i ∨ i = j ∨ i < j by arith
moreover note i
ultimately have enum j = b.enum j ←→ j 6= i
unfolding enum def [abs def ] b.enum def [abs def ]
by (auto simp: fun eq iff swap image i ′ def

in upd image inj on image set diff [OF inj upd ]) }
note enum eq benum = this
then have enum ‘ ({.. n} − {i}) = b.enum ‘ ({.. n} − {i})
by (intro image cong) auto

then have eq : s − {a} = b.enum ‘ {.. n} − {b.enum i}
unfolding s eq 〈a = enum i 〉

using inj on image set diff [OF inj enum Diff subset 〈{i} ⊆ {..n}〉]
inj on image set diff [OF b.inj enum Diff subset 〈{i} ⊆ {..n}〉]

by (simp add : comp def )

have a 6= b.enum i
using 〈a = enum i 〉 enum eq benum i by auto

{ fix t c assume ksimplex p n t c ∈ t and eq sma: s − {a} = t − {c}
obtain b ′ u where kuhn simplex p n b ′ u t
using 〈ksimplex p n t 〉 by (auto elim: ksimplex .cases)

then interpret t : kuhn simplex p n b ′ u t .
have enum i ′ ∈ s − {a} enum (i + 1 ) ∈ s − {a}
using 〈a = enum i 〉 i enum in by (auto simp: enum inj i ′ def )

then obtain l k where
l : t .enum l = enum i ′ l ≤ n t .enum l 6= c and
k : t .enum k = enum (i + 1 ) k ≤ n t .enum k 6= c
unfolding eq sma by (auto simp: t .s eq)

with i have t .enum l < t .enum k
by (simp add : enum strict mono i ′ def )

with 〈l ≤ n〉 〈k ≤ n〉 have l < k
by (simp add : t .enum strict mono)

{ assume Suc l = k
have enum (Suc (Suc i ′)) = t .enum (Suc l)
using i by (simp add : k 〈Suc l = k 〉 i ′ def )

then have False
using 〈l < k 〉 〈k ≤ n〉 〈Suc i ′ < n〉

by (auto simp: t .enum Suc enum Suc l upd inj fun eq iff split : if split asm)
(metis Suc lessD n not Suc n upd inj ) }

with 〈l < k 〉 have Suc l < k
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by arith
have c eq : c = t .enum (Suc l)
proof (rule ccontr)
assume c 6= t .enum (Suc l)
then have t .enum (Suc l) ∈ s − {a}
using 〈l < k 〉 〈k ≤ n〉 by (simp add : t .s eq eq sma)

then obtain j where t .enum (Suc l) = enum j j ≤ n enum j 6= enum i
unfolding s eq 〈a = enum i 〉 by auto

with i have t .enum (Suc l) ≤ t .enum l ∨ t .enum k ≤ t .enum (Suc l)
by (auto simp: i ′ def enum mono enum inj l k)

with 〈Suc l < k 〉 〈k ≤ n〉 show False
by (simp add : t .enum mono)

qed

{ have t .enum (Suc (Suc l)) ∈ s − {a}
unfolding eq sma c eq t .s eq using 〈Suc l < k 〉 〈k ≤ n〉 by (auto simp:

t .enum inj )
then obtain j where eq : t .enum (Suc (Suc l)) = enum j and j ≤ n j 6= i
by (auto simp: s eq 〈a = enum i 〉)

moreover have enum i ′ < t .enum (Suc (Suc l))
unfolding l(1 )[symmetric] using 〈Suc l < k 〉 〈k ≤ n〉 by (auto simp:

t .enum strict mono)
ultimately have i ′ < j
using i by (simp add : enum strict mono i ′ def )

with 〈j 6= i 〉 〈j ≤ n〉 have t .enum k ≤ t .enum (Suc (Suc l))
unfolding i ′ def by (simp add : enum mono k eq)

then have k ≤ Suc (Suc l)
using 〈k ≤ n〉 〈Suc l < k 〉 by (simp add : t .enum mono) }

with 〈Suc l < k 〉 have Suc (Suc l) = k by simp
then have enum (Suc (Suc i ′)) = t .enum (Suc (Suc l))
using i by (simp add : k i ′ def )
also have . . . = (enum i ′) (u l := Suc (enum i ′ (u l)), u (Suc l) := Suc

(enum i ′ (u (Suc l))))
using 〈Suc l < k 〉 〈k ≤ n〉 by (simp add : t .enum Suc l t .upd inj )

finally have (u l = upd i ′ ∧ u (Suc l) = upd (Suc i ′)) ∨
(u l = upd (Suc i ′) ∧ u (Suc l) = upd i ′)
using 〈Suc i ′ < n〉 by (auto simp: enum Suc fun eq iff split : if split asm)

then have t = s ∨ t = b.enum ‘ {..n}
proof (elim disjE conjE )
assume u: u l = upd i ′

have c = t .enum (Suc l) unfolding c eq ..
also have t .enum (Suc l) = enum (Suc i ′)
using u 〈l < k 〉 〈k ≤ n〉 〈Suc i ′ < n〉 by (simp add : enum Suc t .enum Suc

l)
also have . . . = a
using 〈a = enum i 〉 i by (simp add : i ′ def )

finally show ?thesis
using eq sma 〈a ∈ s〉 〈c ∈ t 〉 by auto
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next
assume u: u l = upd (Suc i ′)
define B where B = b.enum ‘ {..n}
have b.enum i ′ = enum i ′

using enum eq benum[of i ′] i by (auto simp: i ′ def gr0 conv Suc)
have c = t .enum (Suc l) unfolding c eq ..
also have t .enum (Suc l) = b.enum (Suc i ′)
using u 〈l < k 〉 〈k ≤ n〉 〈Suc i ′ < n〉

by (simp all add : enum Suc t .enum Suc l b.enum Suc 〈b.enum i ′ = enum
i ′〉)

(simp add : Suc i ′)
also have . . . = b.enum i
using i by (simp add : i ′ def )

finally have c = b.enum i .
then have t − {c} = B − {c} c ∈ B
unfolding eq sma[symmetric] eq B def using i by auto

with 〈c ∈ t 〉 have t = B
by auto

then show ?thesis
by (simp add : B def )

qed }
with ks f ′ eq 〈a 6= b.enum i 〉 〈n 6= 0 〉 〈i ≤ n〉 show ?thesis
apply (intro ex1I [of b.enum ‘ {.. n}])
apply auto []
apply metis
done

qed
then show ?thesis
using s 〈a ∈ s〉 by (simp add : card 2 iff ′ Ex1 def ) metis

qed

Hence another step towards concreteness.

lemma kuhn simplex lemma:
assumes ∀ s. ksimplex p (Suc n) s −→ rl ‘ s ⊆ {.. Suc n}
and odd (card {f . ∃ s a. ksimplex p (Suc n) s ∧ a ∈ s ∧ (f = s − {a}) ∧
rl ‘ f = {..n} ∧ ((∃ j≤n. ∀ x∈f . x j = 0 ) ∨ (∃ j≤n. ∀ x∈f . x j = p))})

shows odd (card {s. ksimplex p (Suc n) s ∧ rl ‘ s = {..Suc n}})
proof (rule kuhn complete lemma[OF finite ksimplexes refl , unfolded mem Collect eq ,

where bnd=λf . (∃ j∈{..n}. ∀ x∈f . x j = 0 ) ∨ (∃ j∈{..n}. ∀ x∈f . x j = p)],
safe del : notI )

have ∗:
∧
x y . x = y =⇒ odd (card x ) =⇒ odd (card y)

by auto
show odd (card {f . (∃ s∈{s. ksimplex p (Suc n) s}. ∃ a∈s. f = s − {a}) ∧
rl ‘ f = {..n} ∧ ((∃ j∈{..n}. ∀ x∈f . x j = 0 ) ∨ (∃ j∈{..n}. ∀ x∈f . x j = p))})
apply (rule ∗[OF assms(2 )])
apply (auto simp: atLeast0AtMost)
done
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next

fix s assume s: ksimplex p (Suc n) s
then show card s = n + 2
by (simp add : ksimplex card)

fix a assume a: a ∈ s then show rl a ≤ Suc n
using assms(1 ) s by (auto simp: subset eq)

let ?S = {t . ksimplex p (Suc n) t ∧ (∃ b∈t . s − {a} = t − {b})}
{ fix j assume j : j ≤ n ∀ x∈s − {a}. x j = 0
with s a show card ?S = 1
using ksimplex replace 0 [of p n + 1 s a j ]
by (subst eq commute) simp }

{ fix j assume j : j ≤ n ∀ x∈s − {a}. x j = p
with s a show card ?S = 1
using ksimplex replace 1 [of p n + 1 s a j ]
by (subst eq commute) simp }

{ assume card ?S 6= 2 ¬ (∃ j∈{..n}. ∀ x∈s − {a}. x j = p)
with s a show ∃ j∈{..n}. ∀ x∈s − {a}. x j = 0
using ksimplex replace 2 [of p n + 1 s a]
by (subst (asm) eq commute) auto }

qed

Reduced labelling

definition reduced :: nat ⇒ (nat ⇒ nat) ⇒ nat where reduced n x = (LEAST
k . k = n ∨ x k 6= 0 )

lemma reduced labelling :
shows reduced n x ≤ n
and ∀ i<reduced n x . x i = 0
and reduced n x = n ∨ x (reduced n x ) 6= 0

proof −
show reduced n x ≤ n
unfolding reduced def by (rule LeastI2 wellorder [where a=n]) auto

show ∀ i<reduced n x . x i = 0
unfolding reduced def by (rule LeastI2 wellorder [where a=n]) fastforce+

show reduced n x = n ∨ x (reduced n x ) 6= 0
unfolding reduced def by (rule LeastI2 wellorder [where a=n]) fastforce+

qed

lemma reduced labelling unique:
r ≤ n =⇒ ∀ i<r . x i = 0 =⇒ r = n ∨ x r 6= 0 =⇒ reduced n x = r
unfolding reduced def by (rule LeastI2 wellorder [where a=n]) (metis le less

not le)+

Brouwer{_}{\kern 0pt}Fixpoint.html


2634

lemma reduced labelling zero: j < n =⇒ x j = 0 =⇒ reduced n x 6= j
using reduced labelling [of n x ] by auto

lemma reduce labelling zero[simp]: reduced 0 x = 0
by (rule reduced labelling unique) auto

lemma reduced labelling nonzero: j < n =⇒ x j 6= 0 =⇒ reduced n x ≤ j
using reduced labelling [of n x ] by (elim allE [where x=j ]) auto

lemma reduced labelling Suc: reduced (Suc n) x 6= Suc n =⇒ reduced (Suc n) x
= reduced n x
using reduced labelling [of Suc n x ]
by (intro reduced labelling unique[symmetric]) auto

lemma complete face top:
assumes ∀ x∈f . ∀ j≤n. x j = 0 −→ lab x j = 0
and ∀ x∈f . ∀ j≤n. x j = p −→ lab x j = 1
and eq : (reduced (Suc n) ◦ lab) ‘ f = {..n}

shows ((∃ j≤n. ∀ x∈f . x j = 0 ) ∨ (∃ j≤n. ∀ x∈f . x j = p)) ←→ (∀ x∈f . x n =
p)
proof (safe del : disjCI )
fix x j assume j : j ≤ n ∀ x∈f . x j = 0
{ fix x assume x ∈ f with assms j have reduced (Suc n) (lab x ) 6= j

by (intro reduced labelling zero) auto }
moreover have j ∈ (reduced (Suc n) ◦ lab) ‘ f
using j eq by auto

ultimately show x n = p
by force

next
fix x j assume j : j ≤ n ∀ x∈f . x j = p and x : x ∈ f
have j = n
proof (rule ccontr)
assume ¬ ?thesis
{ fix x assume x ∈ f
with assms j have reduced (Suc n) (lab x ) ≤ j
by (intro reduced labelling nonzero) auto

then have reduced (Suc n) (lab x ) 6= n
using 〈j 6= n〉 〈j ≤ n〉 by simp }

moreover
have n ∈ (reduced (Suc n) ◦ lab) ‘ f
using eq by auto

ultimately show False
by force

qed
moreover have j ∈ (reduced (Suc n) ◦ lab) ‘ f
using j eq by auto

ultimately show x n = p
using j x by auto

qed auto
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Hence we get just about the nice induction.

lemma kuhn induction:
assumes 0 < p
and lab 0 : ∀ x . ∀ j≤n. (∀ j . x j ≤ p) ∧ x j = 0 −→ lab x j = 0
and lab 1 : ∀ x . ∀ j≤n. (∀ j . x j ≤ p) ∧ x j = p −→ lab x j = 1
and odd : odd (card {s. ksimplex p n s ∧ (reduced n◦lab) ‘ s = {..n}})

shows odd (card {s. ksimplex p (Suc n) s ∧ (reduced (Suc n)◦lab) ‘ s = {..Suc
n}})
proof −
let ?rl = reduced (Suc n) ◦ lab and ?ext = λf v . ∃ j≤n. ∀ x∈f . x j = v
let ?ext = λs. (∃ j≤n. ∀ x∈s. x j = 0 ) ∨ (∃ j≤n. ∀ x∈s. x j = p)
have ∀ s. ksimplex p (Suc n) s −→ ?rl ‘ s ⊆ {..Suc n}
by (simp add : reduced labelling subset eq)

moreover
have {s. ksimplex p n s ∧ (reduced n ◦ lab) ‘ s = {..n}} =

{f . ∃ s a. ksimplex p (Suc n) s ∧ a ∈ s ∧ f = s − {a} ∧ ?rl ‘ f = {..n} ∧
?ext f }
proof (intro set eqI , safe del : disjCI equalityI disjE )
fix s assume s: ksimplex p n s and rl : (reduced n ◦ lab) ‘ s = {..n}
from s obtain u b where kuhn simplex p n u b s by (auto elim: ksimplex .cases)
then interpret kuhn simplex p n u b s .
have all eq p: ∀ x∈s. x n = p
by (auto simp: out eq p)

moreover
{ fix x assume x ∈ s
with lab 1 [rule format , of n x ] all eq p s le p[of x ]
have ?rl x ≤ n
by (auto intro!: reduced labelling nonzero)

then have ?rl x = reduced n (lab x )
by (auto intro!: reduced labelling Suc) }

then have ?rl ‘ s = {..n}
using rl by (simp cong : image cong)

moreover
obtain t a where ksimplex p (Suc n) t a ∈ t s = t − {a}
using s unfolding simplex top face[OF 〈0 < p〉 all eq p] by auto

ultimately
show ∃ t a. ksimplex p (Suc n) t ∧ a ∈ t ∧ s = t − {a} ∧ ?rl ‘ s = {..n} ∧

?ext s
by auto

next
fix x s a assume s: ksimplex p (Suc n) s and rl : ?rl ‘ (s − {a}) = {.. n}
and a: a ∈ s and ?ext (s − {a})
from s obtain u b where kuhn simplex p (Suc n) u b s by (auto elim:

ksimplex .cases)
then interpret kuhn simplex p Suc n u b s .
have all eq p: ∀ x∈s. x (Suc n) = p
by (auto simp: out eq p)

{ fix x assume x ∈ s − {a}
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then have ?rl x ∈ ?rl ‘ (s − {a})
by auto

then have ?rl x ≤ n
unfolding rl by auto

then have ?rl x = reduced n (lab x )
by (auto intro!: reduced labelling Suc) }

then show rl ′: (reduced n◦lab) ‘ (s − {a}) = {..n}
unfolding rl [symmetric] by (intro image cong) auto

from 〈?ext (s − {a})〉
have all eq p: ∀ x∈s − {a}. x n = p
proof (elim disjE exE conjE )
fix j assume j ≤ n ∀ x∈s − {a}. x j = 0
with lab 0 [rule format , of j ] all eq p s le p
have

∧
x . x ∈ s − {a} =⇒ reduced (Suc n) (lab x ) 6= j

by (intro reduced labelling zero) auto
moreover have j ∈ ?rl ‘ (s − {a})
using 〈j ≤ n〉 unfolding rl by auto

ultimately show ?thesis
by force

next
fix j assume j ≤ n and eq p: ∀ x∈s − {a}. x j = p
show ?thesis
proof cases
assume j = n with eq p show ?thesis by simp

next
assume j 6= n
{ fix x assume x : x ∈ s − {a}
have reduced n (lab x ) ≤ j
proof (rule reduced labelling nonzero)
show lab x j 6= 0
using lab 1 [rule format , of j x ] x s le p[of x ] eq p 〈j ≤ n〉 by auto

show j < n
using 〈j ≤ n〉 〈j 6= n〉 by simp

qed
then have reduced n (lab x ) 6= n
using 〈j ≤ n〉 〈j 6= n〉 by simp }

moreover have n ∈ (reduced n◦lab) ‘ (s − {a})
unfolding rl ′ by auto

ultimately show ?thesis
by force

qed
qed
show ksimplex p n (s − {a})
unfolding simplex top face[OF 〈0 < p〉 all eq p] using s a by auto

qed
ultimately show ?thesis
using assms by (intro kuhn simplex lemma) auto

qed
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And so we get the final combinatorial result.

lemma ksimplex 0 : ksimplex p 0 s ←→ s = {(λx . p)}
proof
assume ksimplex p 0 s then show s = {(λx . p)}
by (blast dest : kuhn simplex .ksimplex 0 elim: ksimplex .cases)

next
assume s: s = {(λx . p)}
show ksimplex p 0 s
proof (intro ksimplex , unfold locales)
show (λ . p) ∈ {..<0 ::nat} → {..<p} by auto
show bij betw id {..<0} {..<0}
by simp

qed (auto simp: s)
qed

lemma kuhn combinatorial :
assumes 0 < p
and ∀ x j . (∀ j . x j ≤ p) ∧ j < n ∧ x j = 0 −→ lab x j = 0
and ∀ x j . (∀ j . x j ≤ p) ∧ j < n ∧ x j = p −→ lab x j = 1

shows odd (card {s. ksimplex p n s ∧ (reduced n◦lab) ‘ s = {..n}})
(is odd (card (?M n)))

using assms
proof (induct n)
case 0 then show ?case
by (simp add : ksimplex 0 cong : conj cong)

next
case (Suc n)
then have odd (card (?M n))
by force

with Suc show ?case
using kuhn induction[of p n] by (auto simp: comp def )

qed

lemma kuhn lemma:
fixes n p :: nat
assumes 0 < p
and ∀ x . (∀ i<n. x i ≤ p) −→ (∀ i<n. label x i = (0 ::nat) ∨ label x i = 1 )
and ∀ x . (∀ i<n. x i ≤ p) −→ (∀ i<n. x i = 0 −→ label x i = 0 )
and ∀ x . (∀ i<n. x i ≤ p) −→ (∀ i<n. x i = p −→ label x i = 1 )

obtains q where ∀ i<n. q i < p
and ∀ i<n. ∃ r s. (∀ j<n. q j ≤ r j ∧ r j ≤ q j + 1 ) ∧ (∀ j<n. q j ≤ s j ∧ s j

≤ q j + 1 ) ∧ label r i 6= label s i
proof −
let ?rl = reduced n ◦ label
let ?A = {s. ksimplex p n s ∧ ?rl ‘ s = {..n}}
have odd (card ?A)
using assms by (intro kuhn combinatorial [of p n label ]) auto

then have ?A 6= {}
by (rule odd card imp not empty)
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then obtain s b u where kuhn simplex p n b u s and rl : ?rl ‘ s = {..n}
by (auto elim: ksimplex .cases)

interpret kuhn simplex p n b u s by fact

show ?thesis
proof (intro that [of b] allI impI )
fix i
assume i < n
then show b i < p
using base by auto

next
fix i
assume i < n
then have i ∈ {.. n} Suc i ∈ {.. n}
by auto

then obtain u v where u: u ∈ s Suc i = ?rl u and v : v ∈ s i = ?rl v
unfolding rl [symmetric] by blast

have label u i 6= label v i
using reduced labelling [of n label u] reduced labelling [of n label v ]
u(2 )[symmetric] v(2 )[symmetric] 〈i < n〉

by auto
moreover
have b j ≤ u j u j ≤ b j + 1 b j ≤ v j v j ≤ b j + 1 if j < n for j
using that base le[OF 〈u∈s〉] le Suc base[OF 〈u∈s〉] base le[OF 〈v∈s〉] le Suc base[OF

〈v∈s〉]
by auto

ultimately show ∃ r s. (∀ j<n. b j ≤ r j ∧ r j ≤ b j + 1 ) ∧
(∀ j<n. b j ≤ s j ∧ s j ≤ b j + 1 ) ∧ label r i 6= label s i

by blast
qed

qed

Main result for the unit cube

lemma kuhn labelling lemma ′:
assumes (∀ x ::nat⇒real . P x −→ P (f x ))
and ∀ x . P x −→ (∀ i ::nat . Q i −→ 0 ≤ x i ∧ x i ≤ 1 )

shows ∃ l . (∀ x i . l x i ≤ (1 ::nat)) ∧
(∀ x i . P x ∧ Q i ∧ x i = 0 −→ l x i = 0 ) ∧
(∀ x i . P x ∧ Q i ∧ x i = 1 −→ l x i = 1 ) ∧
(∀ x i . P x ∧ Q i ∧ l x i = 0 −→ x i ≤ f x i) ∧
(∀ x i . P x ∧ Q i ∧ l x i = 1 −→ f x i ≤ x i)

proof −
have and forall thm:

∧
P Q . (∀ x . P x ) ∧ (∀ x . Q x ) ←→ (∀ x . P x ∧ Q x )

by auto
have ∗: ∀ x y ::real . 0 ≤ x ∧ x ≤ 1 ∧ 0 ≤ y ∧ y ≤ 1 −→ x 6= 1 ∧ x ≤ y ∨ x
6= 0 ∧ y ≤ x

by auto
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show ?thesis
unfolding and forall thm
apply (subst choice iff [symmetric])+
apply rule
apply rule

proof −
fix x x ′

let ?R = λy ::nat .
(P x ∧ Q x ′ ∧ x x ′ = 0 −→ y = 0 ) ∧
(P x ∧ Q x ′ ∧ x x ′ = 1 −→ y = 1 ) ∧
(P x ∧ Q x ′ ∧ y = 0 −→ x x ′ ≤ (f x ) x ′) ∧
(P x ∧ Q x ′ ∧ y = 1 −→ (f x ) x ′ ≤ x x ′)

have 0 ≤ f x x ′ ∧ f x x ′ ≤ 1 if P x Q x ′

using assms(2 )[rule format ,of f x x ′] that
apply (drule tac assms(1 )[rule format ])
apply auto
done

then have ?R 0 ∨ ?R 1
by auto

then show ∃ y≤1 . ?R y
by auto

qed
qed

6.31.3 Brouwer’s fixed point theorem

We start proving Brouwer’s fixed point theorem for the unit cube = cbox 0
One.

lemma brouwer cube:
fixes f :: ′a::euclidean space ⇒ ′a
assumes continuous on (cbox 0 One) f
and f ‘ cbox 0 One ⊆ cbox 0 One

shows ∃ x∈cbox 0 One. f x = x
proof (rule ccontr)
define n where n = DIM ( ′a)
have n: 1 ≤ n 0 < n n 6= 0
unfolding n def by (auto simp: Suc le eq)

assume ¬ ?thesis
then have ∗: ¬ (∃ x∈cbox 0 One. f x − x = 0 )
by auto

obtain d where
d : d > 0

∧
x . x ∈ cbox 0 One =⇒ d ≤ norm (f x − x )

apply (rule brouwer compactness lemma[OF compact cbox ∗])
apply (rule continuous intros assms)+
apply blast
done

have ∗: ∀ x . x ∈ cbox 0 One −→ f x ∈ cbox 0 One
∀ x . x ∈ (cbox 0 One:: ′a set) −→ (∀ i∈Basis. True −→ 0 ≤ x · i ∧ x · i ≤ 1 )
using assms(2 )[unfolded image subset iff Ball def ]
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unfolding cbox def
by auto

obtain label :: ′a ⇒ ′a ⇒ nat where label [rule format ]:
∀ x . ∀ i∈Basis. label x i ≤ 1
∀ x . ∀ i∈Basis. x ∈ cbox 0 One ∧ x · i = 0 −→ label x i = 0
∀ x . ∀ i∈Basis. x ∈ cbox 0 One ∧ x · i = 1 −→ label x i = 1
∀ x . ∀ i∈Basis. x ∈ cbox 0 One ∧ label x i = 0 −→ x · i ≤ f x · i
∀ x . ∀ i∈Basis. x ∈ cbox 0 One ∧ label x i = 1 −→ f x · i ≤ x · i
using kuhn labelling lemma[OF ∗] by auto

note label = this [rule format ]
have lem1 : ∀ x∈cbox 0 One. ∀ y∈cbox 0 One. ∀ i∈Basis. label x i 6= label y i −→
|f x · i − x · i | ≤ norm (f y − f x ) + norm (y − x )

proof safe
fix x y :: ′a
assume x : x ∈ cbox 0 One and y : y ∈ cbox 0 One
fix i
assume i : label x i 6= label y i i ∈ Basis
have ∗:

∧
x y fx fy :: real . x ≤ fx ∧ fy ≤ y ∨ fx ≤ x ∧ y ≤ fy =⇒

|fx − x | ≤ |fy − fx | + |y − x | by auto
have |(f x − x ) · i | ≤ |(f y − f x )·i | + |(y − x )·i |
proof (cases label x i = 0 )
case True
then have fxy : ¬ f y · i ≤ y · i =⇒ f x · i ≤ x · i
by (metis True i label(1 ) label(5 ) le antisym less one not le imp less y)

show ?thesis
unfolding inner simps
by (rule ∗) (auto simp: True i label x y fxy)

next
case False
then show ?thesis
using label [OF 〈i ∈ Basis〉] i(1 ) x y
apply (auto simp: inner diff left le Suc eq)
by (metis ∗)

qed
also have . . . ≤ norm (f y − f x ) + norm (y − x )
by (simp add : add mono i(2 ) norm bound Basis le)

finally show |f x · i − x · i | ≤ norm (f y − f x ) + norm (y − x )
unfolding inner simps .

qed
have ∃ e>0 . ∀ x∈cbox 0 One. ∀ y∈cbox 0 One. ∀ z∈cbox 0 One. ∀ i∈Basis.
norm (x − z ) < e −→ norm (y − z ) < e −→ label x i 6= label y i −→
|(f (z ) − z )·i | < d / (real n)

proof −
have d ′: d / real n / 8 > 0
using d(1 ) by (simp add : n def )

have ∗: uniformly continuous on (cbox 0 One) f
by (rule compact uniformly continuous[OF assms(1 ) compact cbox ])

obtain e where e:
e > 0
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∧
x x ′. x ∈ cbox 0 One =⇒
x ′ ∈ cbox 0 One =⇒
norm (x ′ − x ) < e =⇒
norm (f x ′ − f x ) < d / real n / 8

using ∗[unfolded uniformly continuous on def ,rule format ,OF d ′]
unfolding dist norm
by blast

show ?thesis
proof (intro exI conjI ballI impI )
show 0 < min (e / 2 ) (d / real n / 8 )
using d ′ e by auto

fix x y z i
assume as:
x ∈ cbox 0 One y ∈ cbox 0 One z ∈ cbox 0 One
norm (x − z ) < min (e / 2 ) (d / real n / 8 )
norm (y − z ) < min (e / 2 ) (d / real n / 8 )
label x i 6= label y i

assume i : i ∈ Basis
have ∗:

∧
z fz x fx n1 n2 n3 n4 d4 d :: real . |fx − x | ≤ n1 + n2 =⇒

|fx − fz | ≤ n3 =⇒ |x − z | ≤ n4 =⇒
n1 < d4 =⇒ n2 < 2 ∗ d4 =⇒ n3 < d4 =⇒ n4 < d4 =⇒
(8 ∗ d4 = d) =⇒ |fz − z | < d
by auto

show |(f z − z ) · i | < d / real n
unfolding inner simps

proof (rule ∗)
show |f x · i − x · i | ≤ norm (f y −f x ) + norm (y − x )
using as(1 ) as(2 ) as(6 ) i lem1 by blast

show norm (f x − f z ) < d / real n / 8
using d ′ e as by auto

show |f x · i − f z · i | ≤ norm (f x − f z ) |x · i − z · i | ≤ norm (x − z )
unfolding inner diff left [symmetric]
by (rule Basis le norm[OF i ])+

have tria: norm (y − x ) ≤ norm (y − z ) + norm (x − z )
using dist triangle[of y x z , unfolded dist norm]
unfolding norm minus commute
by auto

also have . . . < e / 2 + e / 2
using as(4 ) as(5 ) by auto

finally show norm (f y − f x ) < d / real n / 8
using as(1 ) as(2 ) e(2 ) by auto

have norm (y − z ) + norm (x − z ) < d / real n / 8 + d / real n / 8
using as(4 ) as(5 ) by auto

with tria show norm (y − x ) < 2 ∗ (d / real n / 8 )
by auto

qed (use as in auto)
qed

qed
then
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obtain e where e:
e > 0∧
x y z i . x ∈ cbox 0 One =⇒
y ∈ cbox 0 One =⇒
z ∈ cbox 0 One =⇒
i ∈ Basis =⇒
norm (x − z ) < e ∧ norm (y − z ) < e ∧ label x i 6= label y i =⇒
|(f z − z ) · i | < d / real n

by blast
obtain p :: nat where p: 1 + real n / e ≤ real p
using real arch simple ..

have 1 + real n / e > 0
using e(1 ) n by (simp add : add pos pos)

then have p > 0
using p by auto

obtain b :: nat ⇒ ′a where b: bij betw b {..< n} Basis
by atomize elim (auto simp: n def intro!: finite same card bij )

define b ′ where b ′ = inv into {..< n} b
then have b ′: bij betw b ′ Basis {..< n}
using bij betw inv into[OF b] by auto

then have b ′ Basis:
∧
i . i ∈ Basis =⇒ b ′ i ∈ {..< n}

unfolding bij betw def by (auto simp: set eq iff )
have bb ′[simp]:

∧
i . i ∈ Basis =⇒ b (b ′ i) = i

unfolding b ′ def
using b
by (auto simp: f inv into f bij betw def )

have b ′b[simp]:
∧
i . i < n =⇒ b ′ (b i) = i

unfolding b ′ def
using b
by (auto simp: inv into f eq bij betw def )

have ∗:
∧
x :: nat . x = 0 ∨ x = 1 ←→ x ≤ 1

by auto
have b ′′:

∧
j . j < n =⇒ b j ∈ Basis

using b unfolding bij betw def by auto
have q1 : 0 < p ∀ x . (∀ i<n. x i ≤ p) −→
(∀ i<n. (label (

∑
i∈Basis. (real (x (b ′ i)) / real p) ∗R i) ◦ b) i = 0 ∨

(label (
∑

i∈Basis. (real (x (b ′ i)) / real p) ∗R i) ◦ b) i = 1 )
unfolding ∗
using 〈p > 0 〉 〈n > 0 〉

using label(1 )[OF b ′′]
by auto

{ fix x :: nat ⇒ nat and i assume ∀ i<n. x i ≤ p i < n x i = p ∨ x i = 0
then have (

∑
i∈Basis. (real (x (b ′ i)) / real p) ∗R i) ∈ (cbox 0 One:: ′a set)

using b ′ Basis
by (auto simp: cbox def bij betw def zero le divide iff divide le eq 1 ) }

note cube = this
have q2 : ∀ x . (∀ i<n. x i ≤ p) −→ (∀ i<n. x i = 0 −→

(label (
∑

i∈Basis. (real (x (b ′ i)) / real p) ∗R i) ◦ b) i = 0 )
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unfolding o def using cube 〈p > 0 〉 by (intro allI impI label(2 )) (auto simp:
b ′′)
have q3 : ∀ x . (∀ i<n. x i ≤ p) −→ (∀ i<n. x i = p −→

(label (
∑

i∈Basis. (real (x (b ′ i)) / real p) ∗R i) ◦ b) i = 1 )
using cube 〈p > 0 〉 unfolding o def by (intro allI impI label(3 )) (auto simp:

b ′′)
obtain q where q :
∀ i<n. q i < p
∀ i<n.
∃ r s. (∀ j<n. q j ≤ r j ∧ r j ≤ q j + 1 ) ∧

(∀ j<n. q j ≤ s j ∧ s j ≤ q j + 1 ) ∧
(label (

∑
i∈Basis. (real (r (b ′ i)) / real p) ∗R i) ◦ b) i 6=

(label (
∑

i∈Basis. (real (s (b ′ i)) / real p) ∗R i) ◦ b) i
by (rule kuhn lemma[OF q1 q2 q3 ])

define z :: ′a where z = (
∑

i∈Basis. (real (q (b ′ i)) / real p) ∗R i)
have ∃ i∈Basis. d / real n ≤ |(f z − z )·i |
proof (rule ccontr)
have ∀ i∈Basis. q (b ′ i) ∈ {0 ..p}
using q(1 ) b ′

by (auto intro: less imp le simp: bij betw def )
then have z ∈ cbox 0 One
unfolding z def cbox def
using b ′ Basis
by (auto simp: bij betw def zero le divide iff divide le eq 1 )

then have d fz z : d ≤ norm (f z − z )
by (rule d)

assume ¬ ?thesis
then have as: ∀ i∈Basis. |f z · i − z · i | < d / real n
using 〈n > 0 〉

by (auto simp: not le inner diff )
have norm (f z − z ) ≤ (

∑
i∈Basis. |f z · i − z · i |)

unfolding inner diff left [symmetric]
by (rule norm le l1 )

also have . . . < (
∑

(i :: ′a) ∈ Basis. d / real n)
by (meson as finite Basis nonempty Basis sum strict mono)

also have . . . = d
using DIM positive[where ′a= ′a] by (auto simp: n def )

finally show False
using d fz z by auto

qed
then obtain i where i : i ∈ Basis d / real n ≤ |(f z − z ) · i | ..
have ∗: b ′ i < n
using i and b ′[unfolded bij betw def ]
by auto

obtain r s where rs:∧
j . j < n =⇒ q j ≤ r j ∧ r j ≤ q j + 1∧
j . j < n =⇒ q j ≤ s j ∧ s j ≤ q j + 1

(label (
∑

i∈Basis. (real (r (b ′ i)) / real p) ∗R i) ◦ b) (b ′ i) 6=
(label (

∑
i∈Basis. (real (s (b ′ i)) / real p) ∗R i) ◦ b) (b ′ i)
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using q(2 )[rule format ,OF ∗] by blast
have b ′ im:

∧
i . i ∈ Basis =⇒ b ′ i < n

using b ′ unfolding bij betw def by auto
define r ′ :: ′a where r ′ = (

∑
i∈Basis. (real (r (b ′ i)) / real p) ∗R i)

have
∧
i . i ∈ Basis =⇒ r (b ′ i) ≤ p

apply (rule order trans)
apply (rule rs(1 )[OF b ′ im,THEN conjunct2 ])
using q(1 )[rule format ,OF b ′ im]
apply (auto simp: Suc le eq)
done

then have r ′ ∈ cbox 0 One
unfolding r ′ def cbox def
using b ′ Basis
by (auto simp: bij betw def zero le divide iff divide le eq 1 )

define s ′ :: ′a where s ′ = (
∑

i∈Basis. (real (s (b ′ i)) / real p) ∗R i)
have

∧
i . i ∈ Basis =⇒ s (b ′ i) ≤ p

using b ′ im q(1 ) rs(2 ) by fastforce
then have s ′ ∈ cbox 0 One
unfolding s ′ def cbox def
using b ′ Basis by (auto simp: bij betw def zero le divide iff divide le eq 1 )

have z ∈ cbox 0 One
unfolding z def cbox def
using b ′ Basis q(1 )[rule format ,OF b ′ im] 〈p > 0 〉

by (auto simp: bij betw def zero le divide iff divide le eq 1 less imp le)
{
have (

∑
i∈Basis. |real (r (b ′ i)) − real (q (b ′ i))|) ≤ (

∑
(i :: ′a)∈Basis. 1 )

by (rule sum mono) (use rs(1 )[OF b ′ im] in force)
also have . . . < e ∗ real p
using p 〈e > 0 〉 〈p > 0 〉

by (auto simp: field simps n def )
finally have (

∑
i∈Basis. |real (r (b ′ i)) − real (q (b ′ i))|) < e ∗ real p .

}
moreover
{
have (

∑
i∈Basis. |real (s (b ′ i)) − real (q (b ′ i))|) ≤ (

∑
(i :: ′a)∈Basis. 1 )

by (rule sum mono) (use rs(2 )[OF b ′ im] in force)
also have . . . < e ∗ real p
using p 〈e > 0 〉 〈p > 0 〉

by (auto simp: field simps n def )
finally have (

∑
i∈Basis. |real (s (b ′ i)) − real (q (b ′ i))|) < e ∗ real p .

}
ultimately
have norm (r ′ − z ) < e and norm (s ′ − z ) < e
unfolding r ′ def s ′ def z def
using 〈p > 0 〉

apply (rule tac[!] le less trans[OF norm le l1 ])
apply (auto simp: field simps sum divide distrib[symmetric] inner diff left)
done

then have |(f z − z ) · i | < d / real n
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using rs(3 ) i
unfolding r ′ def [symmetric] s ′ def [symmetric] o def bb ′

by (intro e(2 )[OF 〈r ′∈cbox 0 One〉 〈s ′∈cbox 0 One〉 〈z∈cbox 0 One〉]) auto
then show False
using i by auto

qed

Next step is to prove it for nonempty interiors.

lemma brouwer weak :
fixes f :: ′a::euclidean space ⇒ ′a
assumes compact S
and convex S
and interior S 6= {}
and continuous on S f
and f ‘ S ⊆ S

obtains x where x ∈ S and f x = x
proof −
let ?U = cbox 0 One :: ′a set
have

∑
Basis /R 2 ∈ interior ?U

proof (rule interiorI )
let ?I = (

⋂
i∈Basis. {x :: ′a. 0 < x · i} ∩ {x . x · i < 1})

show open ?I
by (intro open INT finite Basis ballI open Int , auto intro: open Collect less

simp: continuous on inner)
show

∑
Basis /R 2 ∈ ?I

by simp
show ?I ⊆ cbox 0 One
unfolding cbox def by force

qed
then have ∗: interior ?U 6= {} by fast
have ∗: ?U homeomorphic S
using homeomorphic convex compact [OF convex box (1 ) compact cbox ∗ assms(2 ,1 ,3 )]

.
have ∀ f . continuous on ?U f ∧ f ‘ ?U ⊆ ?U −→
(∃ x∈?U . f x = x )
using brouwer cube by auto

then show ?thesis
unfolding homeomorphic fixpoint property [OF ∗]
using assms
by (auto intro: that)

qed

Then the particular case for closed balls.

lemma brouwer ball :
fixes f :: ′a::euclidean space ⇒ ′a
assumes e > 0
and continuous on (cball a e) f
and f ‘ cball a e ⊆ cball a e

obtains x where x ∈ cball a e and f x = x

Brouwer{_}{\kern 0pt}Fixpoint.html


2646

using brouwer weak [OF compact cball convex cball , of a e f ]
unfolding interior cball ball eq empty
using assms by auto

And finally we prove Brouwer’s fixed point theorem in its general version.

theorem brouwer :
fixes f :: ′a::euclidean space ⇒ ′a
assumes S : compact S convex S S 6= {}
and contf : continuous on S f
and fim: f ‘ S ⊆ S

obtains x where x ∈ S and f x = x
proof −
have ∃ e>0 . S ⊆ cball 0 e
using compact imp bounded [OF 〈compact S 〉] unfolding bounded pos
by auto

then obtain e where e: e > 0 S ⊆ cball 0 e
by blast

have ∃ x∈ cball 0 e. (f ◦ closest point S ) x = x
proof (rule tac brouwer ball [OF e(1 )])
show continuous on (cball 0 e) (f ◦ closest point S )
apply (rule continuous on compose)
using S compact eq bounded closed continuous on closest point apply blast

by (meson S contf closest point in set compact imp closed continuous on subset
image subsetI )

show (f ◦ closest point S ) ‘ cball 0 e ⊆ cball 0 e
by clarsimp (metis S fim closest point exists(1 ) compact eq bounded closed

e(2 ) image subset iff mem cball 0 subsetCE )
qed (use assms in auto)
then obtain x where x : x ∈ cball 0 e (f ◦ closest point S ) x = x ..
have x ∈ S

by (metis closest point in set comp apply compact imp closed fim image eqI
S (1 ) S (3 ) subset iff x (2 ))
then have ∗: closest point S x = x
by (rule closest point self )

show thesis
proof
show closest point S x ∈ S
by (simp add : ∗ 〈x ∈ S 〉)

show f (closest point S x ) = closest point S x
using ∗ x (2 ) by auto

qed
qed

6.31.4 Applications

So we get the no-retraction theorem.

corollary no retraction cball :
fixes a :: ′a::euclidean space
assumes e > 0
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shows ¬ (frontier (cball a e) retract of (cball a e))
proof
assume ∗: frontier (cball a e) retract of (cball a e)
have ∗∗:

∧
xa. a − (2 ∗R a − xa) = − (a − xa)

using scaleR left distrib[of 1 1 a] by auto
obtain x where x : x ∈ {x . norm (a − x ) = e} 2 ∗R a − x = x
proof (rule retract fixpoint property [OF ∗, of λx . scaleR 2 a − x ])
show continuous on (frontier (cball a e)) ((−) (2 ∗R a))
by (intro continuous intros)

show (−) (2 ∗R a) ‘ frontier (cball a e) ⊆ frontier (cball a e)
by clarsimp (metis ∗∗ dist norm norm minus cancel)

qed (auto simp: dist norm intro: brouwer ball [OF assms])
then have scaleR 2 a = scaleR 1 x + scaleR 1 x
by (auto simp: algebra simps)

then have a = x
unfolding scaleR left distrib[symmetric]
by auto

then show False
using x assms by auto

qed

corollary contractible sphere:
fixes a :: ′a::euclidean space
shows contractible(sphere a r) ←→ r ≤ 0

proof (cases 0 < r)
case True
then show ?thesis
unfolding contractible def nullhomotopic from sphere extension
using no retraction cball [OF True, of a]
by (auto simp: retract of def retraction def )

next
case False
then show ?thesis
unfolding contractible def nullhomotopic from sphere extension
using less eq real def by auto

qed

corollary connected sphere eq :
fixes a :: ′a :: euclidean space
shows connected(sphere a r) ←→ 2 ≤ DIM ( ′a) ∨ r ≤ 0
(is ?lhs = ?rhs)

proof (cases r 0 ::real rule: linorder cases)
case less
then show ?thesis by auto

next
case equal
then show ?thesis by auto

next
case greater
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show ?thesis
proof
assume L: ?lhs
have False if 1 : DIM ( ′a) = 1
proof −
obtain x y where xy : sphere a r = {x ,y} x 6= y
using sphere 1D doubleton [OF 1 greater ]
by (metis dist self greater insertI1 less add same cancel1 mem sphere mult 2

not le zero le dist)
then have finite (sphere a r)
by auto

with L 〈r > 0 〉 xy show False
using connected finite iff sing by auto

qed
with greater show ?rhs
by (metis DIM ge Suc0 One nat def Suc 1 le antisym not less eq eq)

next
assume ?rhs
then show ?lhs
using connected sphere greater by auto

qed
qed

corollary path connected sphere eq :
fixes a :: ′a :: euclidean space
shows path connected(sphere a r) ←→ 2 ≤ DIM ( ′a) ∨ r ≤ 0

(is ?lhs = ?rhs)
proof
assume ?lhs
then show ?rhs
using connected sphere eq path connected imp connected by blast

next
assume R: ?rhs
then show ?lhs
by (auto simp: contractible imp path connected contractible sphere path connected sphere)

qed

proposition frontier subset retraction:
fixes S :: ′a::euclidean space set
assumes bounded S and fros: frontier S ⊆ T

and contf : continuous on (closure S ) f
and fim: f ‘ S ⊆ T
and fid :

∧
x . x ∈ T =⇒ f x = x

shows S ⊆ T
proof (rule ccontr)
assume ¬ S ⊆ T
then obtain a where a ∈ S a /∈ T by blast
define g where g ≡ λz . if z ∈ closure S then f z else z
have continuous on (closure S ∪ closure(−S )) g
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unfolding g def
apply (rule continuous on cases)
using fros fid frontier closures by (auto simp: contf )

moreover have closure S ∪ closure(− S ) = UNIV
using closure Un by fastforce

ultimately have contg : continuous on UNIV g by metis
obtain B where 0 < B and B : closure S ⊆ ball a B
using 〈bounded S 〉 bounded subset ballD by blast

have notga: g x 6= a for x
unfolding g def using fros fim 〈a /∈ T 〉

apply (auto simp: frontier def )
using fid interior subset apply fastforce
by (simp add : 〈a ∈ S 〉 closure def )

define h where h ≡ (λy . a + (B / norm(y − a)) ∗R (y − a)) ◦ g
have ¬ (frontier (cball a B) retract of (cball a B))
by (metis no retraction cball 〈0 < B 〉)

then have
∧
k . ¬ retraction (cball a B) (frontier (cball a B)) k

by (simp add : retract of def )
moreover have retraction (cball a B) (frontier (cball a B)) h
unfolding retraction def

proof (intro conjI ballI )
show frontier (cball a B) ⊆ cball a B
by force

show continuous on (cball a B) h
unfolding h def
by (intro continuous intros) (use contg continuous on subset notga in auto)

show h ‘ cball a B ⊆ frontier (cball a B)
using 〈0 < B 〉 by (auto simp: h def notga dist norm)

show
∧
x . x ∈ frontier (cball a B) =⇒ h x = x

apply (auto simp: h def algebra simps)
apply (simp add : vector add divide simps notga)
by (metis (no types, hide lams) B add .commute dist commute dist norm g def

mem ball not less iff gr or eq subset eq)
qed
ultimately show False by simp

qed

Punctured affine hulls, etc

lemma rel frontier deformation retract of punctured convex :
fixes S :: ′a::euclidean space set
assumes convex S convex T bounded S

and arelS : a ∈ rel interior S
and relS : rel frontier S ⊆ T
and affS : T ⊆ affine hull S

obtains r where homotopic with canon (λx . True) (T − {a}) (T − {a}) id r
retraction (T − {a}) (rel frontier S ) r

proof −
have ∃ d . 0 < d ∧ (a + d ∗R l) ∈ rel frontier S ∧
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(∀ e. 0 ≤ e ∧ e < d −→ (a + e ∗R l) ∈ rel interior S )
if (a + l) ∈ affine hull S l 6= 0 for l

apply (rule ray to rel frontier [OF 〈bounded S 〉 arelS ])
apply (rule that)+
by metis

then obtain dd
where dd1 :

∧
l . [[(a + l) ∈ affine hull S ; l 6= 0 ]] =⇒ 0 < dd l ∧ (a + dd l ∗R

l) ∈ rel frontier S
and dd2 :

∧
l e. [[(a + l) ∈ affine hull S ; e < dd l ; 0 ≤ e; l 6= 0 ]]
=⇒ (a + e ∗R l) ∈ rel interior S

by metis+
have aaffS : a ∈ affine hull S
by (meson arelS subsetD hull inc rel interior subset)

have ((λz . z − a) ‘ (affine hull S − {a})) = ((λz . z − a) ‘ (affine hull S )) −
{0}

by auto
moreover have continuous on (((λz . z − a) ‘ (affine hull S )) − {0}) (λx . dd x
∗R x )
proof (rule continuous on compact surface projection)
show compact (rel frontier ((λz . z − a) ‘ S ))
by (simp add : 〈bounded S 〉 bounded translation minus compact rel frontier bounded)
have releq : rel frontier ((λz . z − a) ‘ S ) = (λz . z − a) ‘ rel frontier S
using rel frontier translation [of −a] add .commute by simp

also have . . . ⊆ (λz . z − a) ‘ (affine hull S ) − {0}
using rel frontier affine hull arelS rel frontier def by fastforce

finally show rel frontier ((λz . z − a) ‘ S ) ⊆ (λz . z − a) ‘ (affine hull S ) −
{0} .

show cone ((λz . z − a) ‘ (affine hull S ))
by (rule subspace imp cone)
(use aaffS in 〈simp add : subspace affine image comp o def affine translation aux

[of a]〉)
show (0 < k ∧ k ∗R x ∈ rel frontier ((λz . z − a) ‘ S )) ←→ (dd x = k)

if x : x ∈ (λz . z − a) ‘ (affine hull S ) − {0} for k x
proof
show dd x = k =⇒ 0 < k ∧ k ∗R x ∈ rel frontier ((λz . z − a) ‘ S )
using dd1 [of x ] that image iff by (fastforce simp add : releq)

next
assume k : 0 < k ∧ k ∗R x ∈ rel frontier ((λz . z − a) ‘ S )
have False if dd x < k
proof −
have k 6= 0 a + k ∗R x ∈ closure S
using k closure translation [of −a]
by (auto simp: rel frontier def cong : image cong simp)

then have segsub: open segment a (a + k ∗R x ) ⊆ rel interior S
by (metis rel interior closure convex segment [OF 〈convex S 〉 arelS ])

have x 6= 0 and xaffS : a + x ∈ affine hull S
using x by auto

then have 0 < dd x and inS : a + dd x ∗R x ∈ rel frontier S
using dd1 by auto
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moreover have a + dd x ∗R x ∈ open segment a (a + k ∗R x )
using k 〈x 6= 0 〉 〈0 < dd x 〉

apply (simp add : in segment)
apply (rule tac x = dd x / k in exI )
apply (simp add : field simps that)
apply (simp add : vector add divide simps algebra simps)
done

ultimately show ?thesis
using segsub by (auto simp: rel frontier def )

qed
moreover have False if k < dd x
using x k that rel frontier def
by (fastforce simp: algebra simps releq dest !: dd2 )

ultimately show dd x = k
by fastforce

qed
qed
ultimately have ∗: continuous on ((λz . z − a) ‘ (affine hull S − {a})) (λx . dd

x ∗R x )
by auto

have continuous on (affine hull S − {a}) ((λx . a + dd x ∗R x ) ◦ (λz . z − a))
by (intro ∗ continuous intros continuous on compose)

with affS have contdd : continuous on (T − {a}) ((λx . a + dd x ∗R x ) ◦ (λz .
z − a))

by (blast intro: continuous on subset)
show ?thesis
proof
show homotopic with canon (λx . True) (T − {a}) (T − {a}) id (λx . a + dd

(x − a) ∗R (x − a))
proof (rule homotopic with linear)
show continuous on (T − {a}) id
by (intro continuous intros continuous on compose)

show continuous on (T − {a}) (λx . a + dd (x − a) ∗R (x − a))
using contdd by (simp add : o def )

show closed segment (id x ) (a + dd (x − a) ∗R (x − a)) ⊆ T − {a}
if x ∈ T − {a} for x

proof (clarsimp simp: in segment , intro conjI )
fix u::real assume u: 0 ≤ u u ≤ 1
have a + dd (x − a) ∗R (x − a) ∈ T
by (metis DiffD1 DiffD2 add .commute add .right neutral affS dd1 diff add cancel

relS singletonI subsetCE that)
then show (1 − u) ∗R x + u ∗R (a + dd (x − a) ∗R (x − a)) ∈ T
using convexD [OF 〈convex T 〉] that u by simp

have iff : (1 − u) ∗R x + u ∗R (a + d ∗R (x − a)) = a ←→
(1 − u + u ∗ d) ∗R (x − a) = 0 for d

by (auto simp: algebra simps)
have x ∈ T x 6= a using that by auto
then have axa: a + (x − a) ∈ affine hull S

by (metis (no types) add .commute affS diff add cancel rev subsetD)
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then have ¬ dd (x − a) ≤ 0 ∧ a + dd (x − a) ∗R (x − a) ∈ rel frontier S
using 〈x 6= a〉 dd1 by fastforce

with 〈x 6= a〉 show (1 − u) ∗R x + u ∗R (a + dd (x − a) ∗R (x − a)) 6= a
apply (auto simp: iff )
using less eq real def mult le 0 iff not less u by fastforce

qed
qed
show retraction (T − {a}) (rel frontier S ) (λx . a + dd (x − a) ∗R (x − a))
proof (simp add : retraction def , intro conjI ballI )
show rel frontier S ⊆ T − {a}
using arelS relS rel frontier def by fastforce

show continuous on (T − {a}) (λx . a + dd (x − a) ∗R (x − a))
using contdd by (simp add : o def )

show (λx . a + dd (x − a) ∗R (x − a)) ‘ (T − {a}) ⊆ rel frontier S
apply (auto simp: rel frontier def )
apply (metis Diff subset add .commute affS dd1 diff add cancel eq iff diff eq 0

rel frontier def subset iff )
by (metis DiffE add .commute affS dd1 diff add cancel eq iff diff eq 0 rel frontier def

rev subsetD)
show a + dd (x − a) ∗R (x − a) = x if x : x ∈ rel frontier S for x
proof −
have x 6= a
using that arelS by (auto simp: rel frontier def )

have False if dd (x − a) < 1
proof −
have x ∈ closure S
using x by (auto simp: rel frontier def )

then have segsub: open segment a x ⊆ rel interior S
by (metis rel interior closure convex segment [OF 〈convex S 〉 arelS ])

have xaffS : x ∈ affine hull S
using affS relS x by auto
then have 0 < dd (x − a) and inS : a + dd (x − a) ∗R (x − a) ∈

rel frontier S
using dd1 by (auto simp: 〈x 6= a〉)

moreover have a + dd (x − a) ∗R (x − a) ∈ open segment a x
using 〈x 6= a〉 〈0 < dd (x − a)〉

apply (simp add : in segment)
apply (rule tac x = dd (x − a) in exI )
apply (simp add : algebra simps that)
done

ultimately show ?thesis
using segsub by (auto simp: rel frontier def )

qed
moreover have False if 1 < dd (x − a)
using x that dd2 [of x − a 1 ] 〈x 6= a〉 closure affine hull
by (auto simp: rel frontier def )

ultimately have dd (x − a) = 1 — similar to another proof above
by fastforce

with that show ?thesis
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by (simp add : rel frontier def )
qed

qed
qed

qed

corollary rel frontier retract of punctured affine hull :
fixes S :: ′a::euclidean space set
assumes bounded S convex S a ∈ rel interior S
shows rel frontier S retract of (affine hull S − {a})

apply (rule rel frontier deformation retract of punctured convex [of S affine hull S
a])
apply (auto simp: affine imp convex rel frontier affine hull retract of def assms)
done

corollary rel boundary retract of punctured affine hull :
fixes S :: ′a::euclidean space set
assumes compact S convex S a ∈ rel interior S
shows (S − rel interior S ) retract of (affine hull S − {a})

by (metis assms closure closed compact eq bounded closed rel frontier def
rel frontier retract of punctured affine hull)

lemma homotopy eqv rel frontier punctured convex :
fixes S :: ′a::euclidean space set
assumes convex S bounded S a ∈ rel interior S convex T rel frontier S ⊆ T T
⊆ affine hull S
shows (rel frontier S ) homotopy eqv (T − {a})
apply (rule rel frontier deformation retract of punctured convex [of S T ])
using assms
apply auto
using deformation retract imp homotopy eqv homotopy equivalent space sym by

blast

lemma homotopy eqv rel frontier punctured affine hull :
fixes S :: ′a::euclidean space set
assumes convex S bounded S a ∈ rel interior S
shows (rel frontier S ) homotopy eqv (affine hull S − {a})

apply (rule homotopy eqv rel frontier punctured convex )
using assms rel frontier affine hull by force+

lemma path connected sphere gen:
assumes convex S bounded S aff dim S 6= 1
shows path connected(rel frontier S )

proof (cases rel interior S = {})
case True
then show ?thesis
by (simp add : 〈convex S 〉 convex imp path connected rel frontier def )

next
case False
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then show ?thesis
by (metis aff dim affine hull affine affine hull affine imp convex all not in conv

assms path connected punctured convex rel frontier retract of punctured affine hull
retract of path connected)
qed

lemma connected sphere gen:
assumes convex S bounded S aff dim S 6= 1
shows connected(rel frontier S )
by (simp add : assms path connected imp connected path connected sphere gen)

Borsuk-style characterization of separation

lemma continuous on Borsuk map:
a /∈ s =⇒ continuous on s (λx . inverse(norm (x − a)) ∗R (x − a))

by (rule continuous intros | force)+

lemma Borsuk map into sphere:
(λx . inverse(norm (x − a)) ∗R (x − a)) ‘ s ⊆ sphere 0 1 ←→ (a /∈ s)
by auto (metis eq iff diff eq 0 left inverse norm eq zero)

lemma Borsuk maps homotopic in path component :
assumes path component (− s) a b
shows homotopic with canon (λx . True) s (sphere 0 1 )

(λx . inverse(norm(x − a)) ∗R (x − a))
(λx . inverse(norm(x − b)) ∗R (x − b))

proof −
obtain g where path g path image g ⊆ −s pathstart g = a pathfinish g = b
using assms by (auto simp: path component def )

then show ?thesis
apply (simp add : path def path image def pathstart def pathfinish def homo-

topic with def )
apply (rule tac x = λz . inverse(norm(snd z − (g ◦ fst)z )) ∗R (snd z − (g ◦

fst)z ) in exI )
apply (intro conjI continuous intros)
apply (rule continuous intros | erule continuous on subset | fastforce simp:

divide simps sphere def )+
done

qed

lemma non extensible Borsuk map:
fixes a :: ′a :: euclidean space
assumes compact s and cin: c ∈ components(− s) and boc: bounded c and a
∈ c

shows ¬ (∃ g . continuous on (s ∪ c) g ∧
g ‘ (s ∪ c) ⊆ sphere 0 1 ∧
(∀ x ∈ s. g x = inverse(norm(x − a)) ∗R (x − a)))

proof −
have closed s using assms by (simp add : compact imp closed)
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have c ⊆ −s
using assms by (simp add : in components subset)

with 〈a ∈ c〉 have a /∈ s by blast
then have ceq : c = connected component set (− s) a
by (metis 〈a ∈ c〉 cin components iff connected component eq)

then have bounded (s ∪ connected component set (− s) a)
using 〈compact s〉 boc compact imp bounded by auto

with bounded subset ballD obtain r where 0 < r and r : (s ∪ connected component set
(− s) a) ⊆ ball a r

by blast
{ fix g
assume continuous on (s ∪ c) g

g ‘ (s ∪ c) ⊆ sphere 0 1
and [simp]:

∧
x . x ∈ s =⇒ g x = (x − a) /R norm (x − a)

then have [simp]:
∧
x . x ∈ s ∪ c =⇒ norm (g x ) = 1

by force
have cb eq : cball a r = (s ∪ connected component set (− s) a) ∪

(cball a r − connected component set (− s) a)
using ball subset cball [of a r ] r by auto

have cont1 : continuous on (s ∪ connected component set (− s) a)
(λx . a + r ∗R g x )

apply (rule continuous intros)+
using 〈continuous on (s ∪ c) g〉 ceq by blast

have cont2 : continuous on (cball a r − connected component set (− s) a)
(λx . a + r ∗R ((x − a) /R norm (x − a)))

by (rule continuous intros | force simp: 〈a /∈ s〉)+
have 1 : continuous on (cball a r)

(λx . if connected component (− s) a x
then a + r ∗R g x
else a + r ∗R ((x − a) /R norm (x − a)))

apply (subst cb eq)
apply (rule continuous on cases [OF cont1 cont2 ])
using ceq cin

apply (auto intro: closed Un complement component
simp: 〈closed s〉 open Compl open connected component)

done
have 2 : (λx . a + r ∗R g x ) ‘ (cball a r ∩ connected component set (− s) a)

⊆ sphere a r
using 〈0 < r 〉 by (force simp: dist norm ceq)

have retraction (cball a r) (sphere a r)
(λx . if x ∈ connected component set (− s) a

then a + r ∗R g x
else a + r ∗R ((x − a) /R norm (x − a)))

using 〈0 < r 〉

apply (simp add : retraction def dist norm 1 2 , safe)
apply (force simp: dist norm abs if mult less 0 iff divide simps 〈a /∈ s〉)
using r
by (auto simp: dist norm norm minus commute)

then have False
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using no retraction cball
[OF 〈0 < r 〉, of a, unfolded retract of def , simplified , rule format ,
of λx . if x ∈ connected component set (− s) a

then a + r ∗R g x
else a + r ∗R inverse(norm(x − a)) ∗R (x − a)]

by blast
}
then show ?thesis
by blast

qed

Proving surjectivity via Brouwer fixpoint theorem

lemma brouwer surjective:
fixes f :: ′n::euclidean space ⇒ ′n
assumes compact T
and convex T
and T 6= {}
and continuous on T f
and

∧
x y . [[x∈S ; y∈T ]] =⇒ x + (y − f y) ∈ T

and x ∈ S
shows ∃ y∈T . f y = x

proof −
have ∗:

∧
x y . f y = x ←→ x + (y − f y) = y

by (auto simp add : algebra simps)
show ?thesis
unfolding ∗
apply (rule brouwer [OF assms(1−3 ), of λy . x + (y − f y)])
apply (intro continuous intros)
using assms
apply auto
done

qed

lemma brouwer surjective cball :
fixes f :: ′n::euclidean space ⇒ ′n
assumes continuous on (cball a e) f
and e > 0
and x ∈ S
and

∧
x y . [[x∈S ; y∈cball a e]] =⇒ x + (y − f y) ∈ cball a e

shows ∃ y∈cball a e. f y = x
apply (rule brouwer surjective)
apply (rule compact cball convex cball)+
unfolding cball eq empty
using assms
apply auto
done
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Inverse function theorem

See Sussmann: ”Multidifferential calculus”, Theorem 2.1.1

lemma sussmann open mapping :
fixes f :: ′a::real normed vector ⇒ ′b::euclidean space
assumes open S
and contf : continuous on S f
and x ∈ S
and derf : (f has derivative f ′) (at x )
and bounded linear g ′ f ′ ◦ g ′ = id
and T ⊆ S
and x : x ∈ interior T

shows f x ∈ interior (f ‘ T )
proof −
interpret f ′: bounded linear f ′

using assms unfolding has derivative def by auto
interpret g ′: bounded linear g ′

using assms by auto
obtain B where B : 0 < B ∀ x . norm (g ′ x ) ≤ norm x ∗ B
using bounded linear .pos bounded [OF assms(5 )] by blast

hence ∗: 1 / (2 ∗ B) > 0 by auto
obtain e0 where e0 :

0 < e0
∀ y . norm (y − x ) < e0 −→ norm (f y − f x − f ′ (y − x )) ≤ 1 / (2 ∗ B) ∗

norm (y − x )
using derf unfolding has derivative at alt
using ∗ by blast

obtain e1 where e1 : 0 < e1 cball x e1 ⊆ T
using mem interior cball x by blast

have ∗: 0 < e0 / B 0 < e1 / B using e0 e1 B by auto
obtain e where e: 0 < e e < e0 / B e < e1 / B
using field lbound gt zero[OF ∗] by blast

have lem: ∃ y∈cball (f x ) e. f (x + g ′ (y − f x )) = z if z∈cball (f x ) (e / 2 )
for z
proof (rule brouwer surjective cball)
have z : z ∈ S if as: y ∈cball (f x ) e z = x + (g ′ y − g ′ (f x )) for y z
proof−
have dist x z = norm (g ′ (f x ) − g ′ y)
unfolding as(2 ) and dist norm by auto

also have . . . ≤ norm (f x − y) ∗ B
by (metis B(2 ) g ′.diff )

also have . . . ≤ e ∗ B
by (metis B(1 ) dist norm mem cball mult le cancel iff1 that(1 ))

also have . . . ≤ e1
using B(1 ) e(3 ) pos less divide eq by fastforce

finally have z ∈ cball x e1
by force

then show z ∈ S
using e1 assms(7 ) by auto
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qed
show continuous on (cball (f x ) e) (λy . f (x + g ′ (y − f x )))
unfolding g ′.diff

proof (rule continuous on compose2 [OF order refl , of f ])
show continuous on ((λy . x + (g ′ y − g ′ (f x ))) ‘ cball (f x ) e) f
by (rule continuous on subset [OF contf ]) (use z in blast)

show continuous on (cball (f x ) e) (λy . x + (g ′ y − g ′ (f x )))
by (intro continuous intros linear continuous on[OF 〈bounded linear g ′〉])

qed
next
fix y z
assume y : y ∈ cball (f x ) (e / 2 ) and z : z ∈ cball (f x ) e
have norm (g ′ (z − f x )) ≤ norm (z − f x ) ∗ B
using B by auto

also have . . . ≤ e ∗ B
by (metis B(1 ) z dist norm mem cball norm minus commute mult le cancel iff1 )
also have . . . < e0
using B(1 ) e(2 ) pos less divide eq by blast

finally have ∗: norm (x + g ′ (z − f x ) − x ) < e0
by auto

have ∗∗: f x + f ′ (x + g ′ (z − f x ) − x ) = z
using assms(6 )[unfolded o def id def ,THEN cong ]
by auto

have norm (f x − (y + (z − f (x + g ′ (z − f x ))))) ≤
norm (f (x + g ′ (z − f x )) − z ) + norm (f x − y)

using norm triangle ineq [of f (x + g ′(z − f x )) − z f x − y ]
by (auto simp add : algebra simps)

also have . . . ≤ 1 / (B ∗ 2 ) ∗ norm (g ′ (z − f x )) + norm (f x − y)
using e0 (2 )[rule format , OF ∗]
by (simp only : algebra simps ∗∗) auto

also have . . . ≤ 1 / (B ∗ 2 ) ∗ norm (g ′ (z − f x )) + e/2
using y by (auto simp: dist norm)

also have . . . ≤ 1 / (B ∗ 2 ) ∗ B ∗ norm (z − f x ) + e/2
using ∗ B by (auto simp add : field simps)

also have . . . ≤ 1 / 2 ∗ norm (z − f x ) + e/2
by auto

also have . . . ≤ e/2 + e/2
using B(1 ) 〈norm (z − f x ) ∗ B ≤ e ∗ B 〉 by auto

finally show y + (z − f (x + g ′ (z − f x ))) ∈ cball (f x ) e
by (auto simp: dist norm)

qed (use e that in auto)
show ?thesis
unfolding mem interior

proof (intro exI conjI subsetI )
fix y
assume y ∈ ball (f x ) (e / 2 )
then have ∗: y ∈ cball (f x ) (e / 2 )
by auto

obtain z where z : z ∈ cball (f x ) e f (x + g ′ (z − f x )) = y
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using lem ∗ by blast
then have norm (g ′ (z − f x )) ≤ norm (z − f x ) ∗ B
using B
by (auto simp add : field simps)

also have . . . ≤ e ∗ B
by (metis B(1 ) dist norm mem cball norm minus commute mult le cancel iff1

z (1 ))
also have . . . ≤ e1
using e B unfolding less divide eq by auto

finally have x + g ′(z − f x ) ∈ T
by (metis add diff cancel diff diff add dist norm e1 (2 ) mem cball norm minus commute

subset eq)
then show y ∈ f ‘ T
using z by auto

qed (use e in auto)
qed

Hence the following eccentric variant of the inverse function theorem. This
has no continuity assumptions, but we do need the inverse function. We
could put f ′ ◦ g = I but this happens to fit with the minimal linear algebra
theory I’ve set up so far.

lemma has derivative inverse strong :
fixes f :: ′n::euclidean space ⇒ ′n
assumes open S
and x ∈ S
and contf : continuous on S f
and gf :

∧
x . x ∈ S =⇒ g (f x ) = x

and derf : (f has derivative f ′) (at x )
and id : f ′ ◦ g ′ = id

shows (g has derivative g ′) (at (f x ))
proof −
have linf : bounded linear f ′

using derf unfolding has derivative def by auto
then have ling : bounded linear g ′

unfolding linear conv bounded linear [symmetric]
using id right inverse linear by blast

moreover have g ′ ◦ f ′ = id
using id linf ling
unfolding linear conv bounded linear [symmetric]
using linear inverse left
by auto

moreover have ∗:
∧
T . [[T ⊆ S ; x ∈ interior T ]] =⇒ f x ∈ interior (f ‘ T )

apply (rule sussmann open mapping)
apply (rule assms ling)+
apply auto
done

have continuous (at (f x )) g
unfolding continuous at Lim at

proof (rule, rule)

Brouwer{_}{\kern 0pt}Fixpoint.html


2660

fix e :: real
assume e > 0
then have f x ∈ interior (f ‘ (ball x e ∩ S ))
using ∗[rule format ,of ball x e ∩ S ] 〈x ∈ S 〉

by (auto simp add : interior open[OF open ball ] interior open[OF assms(1 )])
then obtain d where d : 0 < d ball (f x ) d ⊆ f ‘ (ball x e ∩ S )
unfolding mem interior by blast

show ∃ d>0 . ∀ y . 0 < dist y (f x ) ∧ dist y (f x ) < d −→ dist (g y) (g (f x ))
< e

proof (intro exI allI impI conjI )
fix y
assume 0 < dist y (f x ) ∧ dist y (f x ) < d
then have g y ∈ g ‘ f ‘ (ball x e ∩ S )
by (metis d(2 ) dist commute mem ball rev image eqI subset iff )

then show dist (g y) (g (f x )) < e
using gf [OF 〈x ∈ S 〉]
by (simp add : assms(4 ) dist commute image iff )

qed (use d in auto)
qed
moreover have f x ∈ interior (f ‘ S )
apply (rule sussmann open mapping)
apply (rule assms ling)+
using interior open[OF assms(1 )] and 〈x ∈ S 〉

apply auto
done

moreover have f (g y) = y if y ∈ interior (f ‘ S ) for y
by (metis gf imageE interiorE subsetD that)

ultimately show ?thesis using assms
by (metis has derivative inverse basic x open interior)

qed

A rewrite based on the other domain.

lemma has derivative inverse strong x :
fixes f :: ′a::euclidean space ⇒ ′a
assumes open S
and g y ∈ S
and continuous on S f
and

∧
x . x ∈ S =⇒ g (f x ) = x

and (f has derivative f ′) (at (g y))
and f ′ ◦ g ′ = id
and f (g y) = y

shows (g has derivative g ′) (at y)
using has derivative inverse strong [OF assms(1−6 )]
unfolding assms(7 )
by simp

On a region.

theorem has derivative inverse on:
fixes f :: ′n::euclidean space ⇒ ′n
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assumes open S
and derf :

∧
x . x ∈ S =⇒ (f has derivative f ′(x )) (at x )

and
∧
x . x ∈ S =⇒ g (f x ) = x

and f ′ x ◦ g ′ x = id
and x ∈ S

shows (g has derivative g ′(x )) (at (f x ))
proof (rule has derivative inverse strong [where g ′=g ′ x and f=f ])
show continuous on S f
unfolding continuous on eq continuous at [OF 〈open S 〉]
using derf has derivative continuous by blast

qed (use assms in auto)

end

6.32 Fashoda Meet Theorem

theory Fashoda Theorem
imports Brouwer Fixpoint Path Connected Cartesian Euclidean Space
begin

6.32.1 Bijections between intervals

definition interval bij :: ′a × ′a ⇒ ′a × ′a ⇒ ′a ⇒ ′a::euclidean space
where interval bij =
(λ(a, b) (u, v) x . (

∑
i∈Basis. (u·i + (x ·i − a·i) / (b·i − a·i) ∗ (v ·i − u·i))

∗R i))

lemma interval bij affine:
interval bij (a,b) (u,v) = (λx . (

∑
i∈Basis. ((v ·i − u·i) / (b·i − a·i) ∗ (x ·i))

∗R i) +
(
∑

i∈Basis. (u·i − (v ·i − u·i) / (b·i − a·i) ∗ (a·i)) ∗R i))
by (auto simp add : interval bij def sum.distrib [symmetric] scaleR add left [symmetric]
fun eq iff intro!: sum.cong)
(simp add : algebra simps diff divide distrib [symmetric])

lemma continuous interval bij :
fixes a b :: ′a::euclidean space
shows continuous (at x ) (interval bij (a, b) (u, v))
by (auto simp add : divide inverse interval bij def intro!: continuous sum contin-

uous intros)

lemma continuous on interval bij : continuous on s (interval bij (a, b) (u, v))
apply(rule continuous at imp continuous on)
apply (rule, rule continuous interval bij )
done

lemma in interval interval bij :
fixes a b u v x :: ′a::euclidean space
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assumes x ∈ cbox a b
and cbox u v 6= {}

shows interval bij (a, b) (u, v) x ∈ cbox u v
apply (simp only : interval bij def split conv mem box inner sum left Basis cong :

ball cong)
apply safe

proof −
fix i :: ′a
assume i : i ∈ Basis
have cbox a b 6= {}
using assms by auto

with i have ∗: a·i ≤ b·i u·i ≤ v ·i
using assms(2 ) by (auto simp add : box eq empty)

have x : a·i≤x ·i x ·i≤b·i
using assms(1 )[unfolded mem box ] using i by auto

have 0 ≤ (x · i − a · i) / (b · i − a · i) ∗ (v · i − u · i)
using ∗ x by auto

then show u · i ≤ u · i + (x · i − a · i) / (b · i − a · i) ∗ (v · i − u · i)
using ∗ by auto

have ((x · i − a · i) / (b · i − a · i)) ∗ (v · i − u · i) ≤ 1 ∗ (v · i − u · i)
apply (rule mult right mono)
unfolding divide le eq 1
using ∗ x
apply auto
done

then show u · i + (x · i − a · i) / (b · i − a · i) ∗ (v · i − u · i) ≤ v · i
using ∗ by auto

qed

lemma interval bij bij :
∀ (i :: ′a::euclidean space)∈Basis. a·i < b·i ∧ u·i < v ·i =⇒
interval bij (a, b) (u, v) (interval bij (u, v) (a, b) x ) = x

by (auto simp: interval bij def euclidean eq iff [where ′a= ′a])

lemma interval bij bij cart : fixes x ::realˆ ′n assumes ∀ i . a$i < b$i ∧ u$i < v$i
shows interval bij (a,b) (u,v) (interval bij (u,v) (a,b) x ) = x
using assms by (intro interval bij bij ) (auto simp: Basis vec def inner axis)

6.32.2 Fashoda meet theorem

lemma infnorm 2 :
fixes x :: realˆ2
shows infnorm x = max |x$1 | |x$2 |
unfolding infnorm cart UNIV 2 by (rule cSup eq) auto

lemma infnorm eq 1 2 :
fixes x :: realˆ2
shows infnorm x = 1 ←→
|x$1 | ≤ 1 ∧ |x$2 | ≤ 1 ∧ (x$1 = −1 ∨ x$1 = 1 ∨ x$2 = −1 ∨ x$2 = 1 )
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unfolding infnorm 2 by auto

lemma infnorm eq 1 imp:
fixes x :: realˆ2
assumes infnorm x = 1
shows |x$1 | ≤ 1 and |x$2 | ≤ 1
using assms unfolding infnorm eq 1 2 by auto

proposition fashoda unit :
fixes f g :: real ⇒ realˆ2
assumes f ‘ {−1 .. 1} ⊆ cbox (−1 ) 1
and g ‘ {−1 .. 1} ⊆ cbox (−1 ) 1
and continuous on {−1 .. 1} f
and continuous on {−1 .. 1} g
and f (− 1 )$1 = − 1
and f 1$1 = 1 g (− 1 ) $2 = −1
and g 1 $2 = 1

shows ∃ s∈{−1 .. 1}. ∃ t∈{−1 .. 1}. f s = g t
proof (rule ccontr)
assume ¬ ?thesis
note as = this[unfolded bex simps,rule format ]
define sqprojection
where [abs def ]: sqprojection z = (inverse (infnorm z )) ∗R z for z :: realˆ2

define negatex :: realˆ2 ⇒ realˆ2
where negatex x = (vector [−(x$1 ), x$2 ]) for x

have lem1 : ∀ z ::realˆ2 . infnorm (negatex z ) = infnorm z
unfolding negatex def infnorm 2 vector 2 by auto

have lem2 : ∀ z . z 6= 0 −→ infnorm (sqprojection z ) = 1
unfolding sqprojection def infnorm mul [unfolded scalar mult eq scaleR]
by (simp add : real abs infnorm infnorm eq 0 )

let ?F = λw ::realˆ2 . (f ◦ (λx . x$1 )) w − (g ◦ (λx . x$2 )) w
have ∗:

∧
i . (λx ::realˆ2 . x $ i) ‘ cbox (− 1 ) 1 = {−1 ..1}

proof
show (λx ::realˆ2 . x $ i) ‘ cbox (− 1 ) 1 ⊆ {−1 ..1} for i
by (auto simp: mem box cart)

show {−1 ..1} ⊆ (λx ::realˆ2 . x $ i) ‘ cbox (− 1 ) 1 for i
by (clarsimp simp: image iff mem box cart Bex def ) (metis (no types, hide lams)

vec component)
qed
{
fix x
assume x ∈ (λw . (f ◦ (λx . x $ 1 )) w − (g ◦ (λx . x $ 2 )) w) ‘ (cbox (− 1 )

(1 ::realˆ2 ))
then obtain w :: realˆ2 where w :

w ∈ cbox (− 1 ) 1
x = (f ◦ (λx . x $ 1 )) w − (g ◦ (λx . x $ 2 )) w

unfolding image iff ..
then have x 6= 0
using as[of w$1 w$2 ]
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unfolding mem box cart atLeastAtMost iff
by auto

} note x0 = this
have 1 : box (− 1 ) (1 ::realˆ2 ) 6= {}
unfolding interval eq empty cart by auto

have negatex (x + y) $ i = (negatex x + negatex y) $ i ∧ negatex (c ∗R x ) $ i
= (c ∗R negatex x ) $ i

for i x y c
using exhaust 2 [of i ] by (auto simp: negatex def )

then have bounded linear negatex
by (simp add : bounded linearI ′ vec eq iff )

then have 2 : continuous on (cbox (− 1 ) 1 ) (negatex ◦ sqprojection ◦ ?F )
apply (intro continuous intros continuous on component)
unfolding ∗ sqprojection def
apply (intro assms continuous intros)+
apply (simp all add : infnorm eq 0 x0 linear continuous on)
done

have 3 : (negatex ◦ sqprojection ◦ ?F ) ‘ cbox (−1 ) 1 ⊆ cbox (−1 ) 1
unfolding subset eq

proof (rule, goal cases)
case (1 x )
then obtain y :: realˆ2 where y :

y ∈ cbox (− 1 ) 1
x = (negatex ◦ sqprojection ◦ (λw . (f ◦ (λx . x $ 1 )) w − (g ◦ (λx . x $ 2 ))

w)) y
unfolding image iff ..

have ?F y 6= 0
by (rule x0 ) (use y in auto)

then have ∗: infnorm (sqprojection (?F y)) = 1
unfolding y o def
by − (rule lem2 [rule format ])

have inf1 : infnorm x = 1
unfolding ∗[symmetric] y o def
by (rule lem1 [rule format ])

show x ∈ cbox (−1 ) 1
unfolding mem box cart interval cbox cart infnorm 2

proof
fix i
show (− 1 ) $ i ≤ x $ i ∧ x $ i ≤ 1 $ i
using exhaust 2 [of i ] inf1 by (auto simp: infnorm 2 )

qed
qed
obtain x :: realˆ2 where x :

x ∈ cbox (− 1 ) 1
(negatex ◦ sqprojection ◦ (λw . (f ◦ (λx . x $ 1 )) w − (g ◦ (λx . x $ 2 )) w)) x

= x
apply (rule brouwer weak [of cbox (− 1 ) (1 ::realˆ2 ) negatex ◦ sqprojection ◦

?F ])
apply (rule compact cbox convex box )+
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unfolding interior cbox
apply (rule 1 2 3 )+
apply blast
done

have ?F x 6= 0
by (rule x0 ) (use x in auto)

then have ∗: infnorm (sqprojection (?F x )) = 1
unfolding o def
by (rule lem2 [rule format ])

have nx : infnorm x = 1
apply (subst x (2 )[symmetric])
unfolding ∗[symmetric] o def
apply (rule lem1 [rule format ])
done

have iff : 0 < sqprojection x$i ←→ 0 < x$i sqprojection x$i < 0 ←→ x$i < 0
if x 6= 0 for x i
proof −
have inverse (infnorm x ) > 0
by (simp add : infnorm pos lt that)

then show (0 < sqprojection x $ i) = (0 < x $ i)
and (sqprojection x $ i < 0 ) = (x $ i < 0 )
unfolding sqprojection def vector component simps vector scaleR component

real scaleR def
unfolding zero less mult iff mult less 0 iff
by (auto simp add : field simps)

qed
have x1 : x $ 1 ∈ {− 1 ..1 ::real} x $ 2 ∈ {− 1 ..1 ::real}
using x (1 ) unfolding mem box cart by auto

then have nz : f (x $ 1 ) − g (x $ 2 ) 6= 0
using as by auto

consider x $ 1 = −1 | x $ 1 = 1 | x $ 2 = −1 | x $ 2 = 1
using nx unfolding infnorm eq 1 2 by auto

then show False
proof cases
case 1
then have ∗: f (x $ 1 ) $ 1 = − 1
using assms(5 ) by auto

have sqprojection (f (x$1 ) − g (x$2 )) $ 1 > 0
using x (2 )[unfolded o def vec eq iff ,THEN spec[where x=1 ]]
by (auto simp: negatex def 1 )

moreover
from x1 have g (x $ 2 ) ∈ cbox (−1 ) 1
using assms(2 ) by blast

ultimately show False
unfolding iff [OF nz ] vector component simps ∗ mem box cart
using not le by auto

next
case 2
then have ∗: f (x $ 1 ) $ 1 = 1
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using assms(6 ) by auto
have sqprojection (f (x$1 ) − g (x$2 )) $ 1 < 0
using x (2 )[unfolded o def vec eq iff ,THEN spec[where x=1 ]] 2
by (auto simp: negatex def )

moreover have g (x $ 2 ) ∈ cbox (−1 ) 1
using assms(2 ) x1 by blast

ultimately show False
unfolding iff [OF nz ] vector component simps ∗ mem box cart
using not le by auto

next
case 3
then have ∗: g (x $ 2 ) $ 2 = − 1
using assms(7 ) by auto

have sqprojection (f (x$1 ) − g (x$2 )) $ 2 < 0
using x (2 )[unfolded o def vec eq iff ,THEN spec[where x=2 ]] 3 by (auto

simp: negatex def )
moreover
from x1 have f (x $ 1 ) ∈ cbox (−1 ) 1
using assms(1 ) by blast

ultimately show False
unfolding iff [OF nz ] vector component simps ∗ mem box cart
by (erule tac x=2 in allE ) auto

next
case 4
then have ∗: g (x $ 2 ) $ 2 = 1
using assms(8 ) by auto

have sqprojection (f (x$1 ) − g (x$2 )) $ 2 > 0
using x (2 )[unfolded o def vec eq iff ,THEN spec[where x=2 ]] 4 by (auto

simp: negatex def )
moreover
from x1 have f (x $ 1 ) ∈ cbox (−1 ) 1
using assms(1 ) by blast

ultimately show False
unfolding iff [OF nz ] vector component simps ∗ mem box cart
by (erule tac x=2 in allE ) auto

qed
qed

proposition fashoda unit path:
fixes f g :: real ⇒ realˆ2
assumes path f
and path g
and path image f ⊆ cbox (−1 ) 1
and path image g ⊆ cbox (−1 ) 1
and (pathstart f )$1 = −1
and (pathfinish f )$1 = 1
and (pathstart g)$2 = −1
and (pathfinish g)$2 = 1

obtains z where z ∈ path image f and z ∈ path image g
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proof −
note assms=assms[unfolded path def pathstart def pathfinish def path image def ]
define iscale where [abs def ]: iscale z = inverse 2 ∗R (z + 1 ) for z :: real
have isc: iscale ‘ {− 1 ..1} ⊆ {0 ..1}
unfolding iscale def by auto

have ∃ s∈{− 1 ..1}. ∃ t∈{− 1 ..1}. (f ◦ iscale) s = (g ◦ iscale) t
proof (rule fashoda unit)
show (f ◦ iscale) ‘ {− 1 ..1} ⊆ cbox (− 1 ) 1 (g ◦ iscale) ‘ {− 1 ..1} ⊆ cbox

(− 1 ) 1
using isc and assms(3−4 ) by (auto simp add : image comp [symmetric])

have ∗: continuous on {− 1 ..1} iscale
unfolding iscale def by (rule continuous intros)+

show continuous on {− 1 ..1} (f ◦ iscale) continuous on {− 1 ..1} (g ◦ iscale)
apply −
apply (rule tac[!] continuous on compose[OF ∗])
apply (rule tac[!] continuous on subset [OF isc])
apply (rule assms)+
done

have ∗: (1 / 2 ) ∗R (1 + (1 ::realˆ1 )) = 1
unfolding vec eq iff by auto

show (f ◦ iscale) (− 1 ) $ 1 = − 1
and (f ◦ iscale) 1 $ 1 = 1
and (g ◦ iscale) (− 1 ) $ 2 = −1
and (g ◦ iscale) 1 $ 2 = 1
unfolding o def iscale def
using assms
by (auto simp add : ∗)

qed
then obtain s t where st :

s ∈ {− 1 ..1}
t ∈ {− 1 ..1}
(f ◦ iscale) s = (g ◦ iscale) t

by auto
show thesis
apply (rule tac z = f (iscale s) in that)
using st
unfolding o def path image def image iff
apply −
apply (rule tac x=iscale s in bexI )
prefer 3
apply (rule tac x=iscale t in bexI )
using isc[unfolded subset eq , rule format ]
apply auto
done

qed

theorem fashoda:
fixes b :: realˆ2
assumes path f
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and path g
and path image f ⊆ cbox a b
and path image g ⊆ cbox a b
and (pathstart f )$1 = a$1
and (pathfinish f )$1 = b$1
and (pathstart g)$2 = a$2
and (pathfinish g)$2 = b$2

obtains z where z ∈ path image f and z ∈ path image g
proof −
fix P Q S
presume P ∨ Q ∨ S P =⇒ thesis and Q =⇒ thesis and S =⇒ thesis
then show thesis
by auto

next
have cbox a b 6= {}
using assms(3 ) using path image nonempty [of f ] by auto

then have a ≤ b
unfolding interval eq empty cart less eq vec def by (auto simp add : not less)

then show a$1 = b$1 ∨ a$2 = b$2 ∨ (a$1 < b$1 ∧ a$2 < b$2 )
unfolding less eq vec def forall 2 by auto

next
assume as: a$1 = b$1
have ∃ z∈path image g . z$2 = (pathstart f )$2
apply (rule connected ivt component cart)
apply (rule connected path image assms)+
apply (rule pathstart in path image)
apply (rule pathfinish in path image)
unfolding assms using assms(3 )[unfolded path image def subset eq ,rule format ,of

f 0 ]
unfolding pathstart def
apply (auto simp add : less eq vec def mem box cart)
done

then obtain z :: realˆ2 where z : z ∈ path image g z $ 2 = pathstart f $ 2 ..
have z ∈ cbox a b
using z (1 ) assms(4 )
unfolding path image def
by blast

then have z = f 0
unfolding vec eq iff forall 2
unfolding z (2 ) pathstart def
using assms(3 )[unfolded path image def subset eq mem box cart ,rule format ,of

f 0 1 ]
unfolding mem box cart
apply (erule tac x=1 in allE )
using as
apply auto
done

then show thesis
apply −
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apply (rule that [OF z (1 )])
unfolding path image def
apply auto
done

next
assume as: a$2 = b$2
have ∃ z∈path image f . z$1 = (pathstart g)$1
apply (rule connected ivt component cart)
apply (rule connected path image assms)+
apply (rule pathstart in path image)
apply (rule pathfinish in path image)
unfolding assms
using assms(4 )[unfolded path image def subset eq ,rule format ,of g 0 ]
unfolding pathstart def
apply (auto simp add : less eq vec def mem box cart)
done

then obtain z where z : z ∈ path image f z $ 1 = pathstart g $ 1 ..
have z ∈ cbox a b
using z (1 ) assms(3 )
unfolding path image def
by blast

then have z = g 0
unfolding vec eq iff forall 2
unfolding z (2 ) pathstart def
using assms(4 )[unfolded path image def subset eq mem box cart ,rule format ,of

g 0 2 ]
unfolding mem box cart
apply (erule tac x=2 in allE )
using as
apply auto
done

then show thesis
apply −
apply (rule that [OF z (1 )])
unfolding path image def
apply auto
done

next
assume as: a $ 1 < b $ 1 ∧ a $ 2 < b $ 2
have int nem: cbox (−1 ) (1 ::realˆ2 ) 6= {}
unfolding interval eq empty cart by auto

obtain z :: realˆ2 where z :
z ∈ (interval bij (a, b) (− 1 , 1 ) ◦ f ) ‘ {0 ..1}
z ∈ (interval bij (a, b) (− 1 , 1 ) ◦ g) ‘ {0 ..1}

apply (rule fashoda unit path[of interval bij (a,b) (− 1 ,1 ) ◦ f interval bij (a,b)
(− 1 ,1 ) ◦ g ])

unfolding path def path image def pathstart def pathfinish def
apply (rule tac[1−2 ] continuous on compose)
apply (rule assms[unfolded path def ] continuous on interval bij )+
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unfolding subset eq
apply(rule tac[1−2 ] ballI )

proof −
fix x
assume x ∈ (interval bij (a, b) (− 1 , 1 ) ◦ f ) ‘ {0 ..1}
then obtain y where y :

y ∈ {0 ..1}
x = (interval bij (a, b) (− 1 , 1 ) ◦ f ) y

unfolding image iff ..
show x ∈ cbox (− 1 ) 1
unfolding y o def
apply (rule in interval interval bij )
using y(1 )
using assms(3 )[unfolded path image def subset eq ] int nem
apply auto
done

next
fix x
assume x ∈ (interval bij (a, b) (− 1 , 1 ) ◦ g) ‘ {0 ..1}
then obtain y where y :

y ∈ {0 ..1}
x = (interval bij (a, b) (− 1 , 1 ) ◦ g) y

unfolding image iff ..
show x ∈ cbox (− 1 ) 1
unfolding y o def
apply (rule in interval interval bij )
using y(1 )
using assms(4 )[unfolded path image def subset eq ] int nem
apply auto
done

next
show (interval bij (a, b) (− 1 , 1 ) ◦ f ) 0 $ 1 = −1
and (interval bij (a, b) (− 1 , 1 ) ◦ f ) 1 $ 1 = 1
and (interval bij (a, b) (− 1 , 1 ) ◦ g) 0 $ 2 = −1
and (interval bij (a, b) (− 1 , 1 ) ◦ g) 1 $ 2 = 1
using assms as

by (simp all add : cart eq inner axis pathstart def pathfinish def interval bij def )
(simp all add : inner axis)

qed
from z (1 ) obtain zf where zf :

zf ∈ {0 ..1}
z = (interval bij (a, b) (− 1 , 1 ) ◦ f ) zf

unfolding image iff ..
from z (2 ) obtain zg where zg :

zg ∈ {0 ..1}
z = (interval bij (a, b) (− 1 , 1 ) ◦ g) zg

unfolding image iff ..
have ∗: ∀ i . (− 1 ) $ i < (1 ::realˆ2 ) $ i ∧ a $ i < b $ i
unfolding forall 2
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using as
by auto

show thesis
proof (rule tac z=interval bij (− 1 ,1 ) (a,b) z in that)
show interval bij (− 1 , 1 ) (a, b) z ∈ path image f
using zf by (simp add : interval bij bij cart [OF ∗] path image def )

show interval bij (− 1 , 1 ) (a, b) z ∈ path image g
using zg by (simp add : interval bij bij cart [OF ∗] path image def )

qed
qed

6.32.3 Some slightly ad hoc lemmas I use below

lemma segment vertical :
fixes a :: realˆ2
assumes a$1 = b$1
shows x ∈ closed segment a b ←→
x$1 = a$1 ∧ x$1 = b$1 ∧ (a$2 ≤ x$2 ∧ x$2 ≤ b$2 ∨ b$2 ≤ x$2 ∧ x$2 ≤

a$2 )
(is = ?R)

proof −
let ?L = ∃ u. (x $ 1 = (1 − u) ∗ a $ 1 + u ∗ b $ 1 ∧ x $ 2 = (1 − u) ∗ a $ 2

+ u ∗ b $ 2 ) ∧ 0 ≤ u ∧ u ≤ 1
{
presume ?L =⇒ ?R and ?R =⇒ ?L
then show ?thesis
unfolding closed segment def mem Collect eq

unfolding vec eq iff forall 2 scalar mult eq scaleR[symmetric] vector component simps
by blast

}
{
assume ?L
then obtain u where u:

x $ 1 = (1 − u) ∗ a $ 1 + u ∗ b $ 1
x $ 2 = (1 − u) ∗ a $ 2 + u ∗ b $ 2
0 ≤ u
u ≤ 1

by blast
{ fix b a
assume b + u ∗ a > a + u ∗ b
then have (1 − u) ∗ b > (1 − u) ∗ a
by (auto simp add :field simps)

then have b ≥ a
apply (drule tac mult left less imp less)
using u
apply auto
done

then have u ∗ a ≤ u ∗ b
apply −
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apply (rule mult left mono[OF u(3 )])
using u(3−4 )
apply (auto simp add : field simps)
done

} note ∗ = this
{
fix a b
assume u ∗ b > u ∗ a
then have (1 − u) ∗ a ≤ (1 − u) ∗ b
apply −
apply (rule mult left mono)
apply (drule mult left less imp less)
using u
apply auto
done

then have a + u ∗ b ≤ b + u ∗ a
by (auto simp add : field simps)

} note ∗∗ = this
then show ?R
unfolding u assms
using u
by (auto simp add :field simps not le intro: ∗ ∗∗)

}
{
assume ?R
then show ?L
proof (cases x$2 = b$2 )
case True
then show ?L
apply (rule tac x=(x$2 − a$2 ) / (b$2 − a$2 ) in exI )
unfolding assms True using 〈?R〉 apply (auto simp add : field simps)
done

next
case False
then show ?L
apply (rule tac x=1 − (x$2 − b$2 ) / (a$2 − b$2 ) in exI )
unfolding assms using 〈?R〉 apply (auto simp add : field simps)
done

qed
}

qed

lemma segment horizontal :
fixes a :: realˆ2
assumes a$2 = b$2
shows x ∈ closed segment a b ←→
x$2 = a$2 ∧ x$2 = b$2 ∧ (a$1 ≤ x$1 ∧ x$1 ≤ b$1 ∨ b$1 ≤ x$1 ∧ x$1 ≤

a$1 )
(is = ?R)
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proof −
let ?L = ∃ u. (x $ 1 = (1 − u) ∗ a $ 1 + u ∗ b $ 1 ∧ x $ 2 = (1 − u) ∗ a $ 2

+ u ∗ b $ 2 ) ∧ 0 ≤ u ∧ u ≤ 1
{
presume ?L =⇒ ?R and ?R =⇒ ?L
then show ?thesis
unfolding closed segment def mem Collect eq

unfolding vec eq iff forall 2 scalar mult eq scaleR[symmetric] vector component simps
by blast

}
{
assume ?L
then obtain u where u:

x $ 1 = (1 − u) ∗ a $ 1 + u ∗ b $ 1
x $ 2 = (1 − u) ∗ a $ 2 + u ∗ b $ 2
0 ≤ u
u ≤ 1

by blast
{
fix b a
assume b + u ∗ a > a + u ∗ b
then have (1 − u) ∗ b > (1 − u) ∗ a
by (auto simp add : field simps)

then have b ≥ a
apply (drule tac mult left less imp less)
using u
apply auto
done

then have u ∗ a ≤ u ∗ b
apply −
apply (rule mult left mono[OF u(3 )])
using u(3−4 )
apply (auto simp add : field simps)
done

} note ∗ = this
{
fix a b
assume u ∗ b > u ∗ a
then have (1 − u) ∗ a ≤ (1 − u) ∗ b
apply −
apply (rule mult left mono)
apply (drule mult left less imp less)
using u
apply auto
done

then have a + u ∗ b ≤ b + u ∗ a
by (auto simp add : field simps)

} note ∗∗ = this
then show ?R
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unfolding u assms
using u
by (auto simp add : field simps not le intro: ∗ ∗∗)

}
{
assume ?R
then show ?L
proof (cases x$1 = b$1 )
case True
then show ?L
apply (rule tac x=(x$1 − a$1 ) / (b$1 − a$1 ) in exI )
unfolding assms True
using 〈?R〉

apply (auto simp add : field simps)
done

next
case False
then show ?L
apply (rule tac x=1 − (x$1 − b$1 ) / (a$1 − b$1 ) in exI )
unfolding assms
using 〈?R〉

apply (auto simp add : field simps)
done

qed
}

qed

6.32.4 Useful Fashoda corollary pointed out to me by Tom
Hales

corollary fashoda interlace:
fixes a :: realˆ2
assumes path f
and path g
and paf : path image f ⊆ cbox a b
and pag : path image g ⊆ cbox a b
and (pathstart f )$2 = a$2
and (pathfinish f )$2 = a$2
and (pathstart g)$2 = a$2
and (pathfinish g)$2 = a$2
and (pathstart f )$1 < (pathstart g)$1
and (pathstart g)$1 < (pathfinish f )$1
and (pathfinish f )$1 < (pathfinish g)$1

obtains z where z ∈ path image f and z ∈ path image g
proof −
have cbox a b 6= {}
using path image nonempty [of f ] using assms(3 ) by auto

note ab=this[unfolded interval eq empty cart not ex forall 2 not less]
have pathstart f ∈ cbox a b
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and pathfinish f ∈ cbox a b
and pathstart g ∈ cbox a b
and pathfinish g ∈ cbox a b
using pathstart in path image pathfinish in path image
using assms(3−4 )
by auto

note startfin = this[unfolded mem box cart forall 2 ]
let ?P1 = linepath (vector [a$1 − 2 , a$2 − 2 ]) (vector [(pathstart f )$1 ,a$2 −

2 ]) +++
linepath(vector [(pathstart f )$1 ,a$2 − 2 ])(pathstart f ) +++ f +++
linepath(pathfinish f )(vector [(pathfinish f )$1 ,a$2 − 2 ]) +++
linepath(vector [(pathfinish f )$1 ,a$2 − 2 ])(vector [b$1 + 2 ,a$2 − 2 ])

let ?P2 = linepath(vector [(pathstart g)$1 , (pathstart g)$2 − 3 ])(pathstart g)
+++ g +++

linepath(pathfinish g)(vector [(pathfinish g)$1 ,a$2 − 1 ]) +++
linepath(vector [(pathfinish g)$1 ,a$2 − 1 ])(vector [b$1 + 1 ,a$2 − 1 ]) +++
linepath(vector [b$1 + 1 ,a$2 − 1 ])(vector [b$1 + 1 ,b$2 + 3 ])

let ?a = vector [a$1 − 2 , a$2 − 3 ]
let ?b = vector [b$1 + 2 , b$2 + 3 ]
have P1P2 : path image ?P1 = path image (linepath (vector [a$1 − 2 , a$2 −

2 ]) (vector [(pathstart f )$1 ,a$2 − 2 ])) ∪
path image (linepath(vector [(pathstart f )$1 ,a$2 − 2 ])(pathstart f )) ∪ path image

f ∪
path image (linepath(pathfinish f )(vector [(pathfinish f )$1 ,a$2 − 2 ])) ∪
path image (linepath(vector [(pathfinish f )$1 ,a$2 − 2 ])(vector [b$1 + 2 ,a$2

− 2 ]))
path image ?P2 = path image(linepath(vector [(pathstart g)$1 , (pathstart g)$2

− 3 ])(pathstart g)) ∪ path image g ∪
path image(linepath(pathfinish g)(vector [(pathfinish g)$1 ,a$2 − 1 ])) ∪
path image(linepath(vector [(pathfinish g)$1 ,a$2 − 1 ])(vector [b$1 + 1 ,a$2 −

1 ])) ∪
path image(linepath(vector [b$1 + 1 ,a$2 − 1 ])(vector [b$1 + 1 ,b$2 + 3 ]))

using assms(1−2 )
by(auto simp add : path image join)

have abab: cbox a b ⊆ cbox ?a ?b
unfolding interval cbox cart [symmetric]
by (auto simp add :less eq vec def forall 2 )

obtain z where
z ∈ path image

(linepath (vector [a $ 1 − 2 , a $ 2 − 2 ]) (vector [pathstart f $ 1 , a $ 2
− 2 ]) +++

linepath (vector [pathstart f $ 1 , a $ 2 − 2 ]) (pathstart f ) +++
f +++
linepath (pathfinish f ) (vector [pathfinish f $ 1 , a $ 2 − 2 ]) +++
linepath (vector [pathfinish f $ 1 , a $ 2 − 2 ]) (vector [b $ 1 + 2 , a $ 2

− 2 ]))
z ∈ path image

(linepath (vector [pathstart g $ 1 , pathstart g $ 2 − 3 ]) (pathstart g) +++
g +++
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linepath (pathfinish g) (vector [pathfinish g $ 1 , a $ 2 − 1 ]) +++
linepath (vector [pathfinish g $ 1 , a $ 2 − 1 ]) (vector [b $ 1 + 1 , a $ 2

− 1 ]) +++
linepath (vector [b $ 1 + 1 , a $ 2 − 1 ]) (vector [b $ 1 + 1 , b $ 2 + 3 ]))

apply (rule fashoda[of ?P1 ?P2 ?a ?b])
unfolding pathstart join pathfinish join pathstart linepath pathfinish linepath

vector 2
proof −
show path ?P1 and path ?P2
using assms by auto

show path image ?P1 ⊆ cbox ?a ?b path image ?P2 ⊆ cbox ?a ?b
unfolding P1P2 path image linepath using startfin paf pag
by (auto simp: mem box cart segment horizontal segment vertical forall 2 )

show a $ 1 − 2 = a $ 1 − 2
and b $ 1 + 2 = b $ 1 + 2
and pathstart g $ 2 − 3 = a $ 2 − 3
and b $ 2 + 3 = b $ 2 + 3
by (auto simp add : assms)

qed
note z=this[unfolded P1P2 path image linepath]
show thesis
proof (rule that [of z ])
have (z ∈ closed segment (vector [a $ 1 − 2 , a $ 2 − 2 ]) (vector [pathstart f

$ 1 , a $ 2 − 2 ]) ∨
z ∈ closed segment (vector [pathstart f $ 1 , a $ 2 − 2 ]) (pathstart f )) ∨
z ∈ closed segment (pathfinish f ) (vector [pathfinish f $ 1 , a $ 2 − 2 ]) ∨
z ∈ closed segment (vector [pathfinish f $ 1 , a $ 2 − 2 ]) (vector [b $ 1 + 2 ,

a $ 2 − 2 ]) =⇒
(((z ∈ closed segment (vector [pathstart g $ 1 , pathstart g $ 2 − 3 ]) (pathstart

g)) ∨
z ∈ closed segment (pathfinish g) (vector [pathfinish g $ 1 , a $ 2 − 1 ])) ∨
z ∈ closed segment (vector [pathfinish g $ 1 , a $ 2 − 1 ]) (vector [b $ 1 + 1 ,

a $ 2 − 1 ])) ∨
z ∈ closed segment (vector [b $ 1 + 1 , a $ 2 − 1 ]) (vector [b $ 1 + 1 , b $

2 + 3 ]) =⇒ False
proof (simp only : segment vertical segment horizontal vector 2 , goal cases)
case prems: 1
have pathfinish f ∈ cbox a b
using assms(3 ) pathfinish in path image[of f ] by auto

then have 1 + b $ 1 ≤ pathfinish f $ 1 =⇒ False
unfolding mem box cart forall 2 by auto

then have z$1 6= pathfinish f $1
using prems(2 )
using assms ab
by (auto simp add : field simps)

moreover have pathstart f ∈ cbox a b
using assms(3 ) pathstart in path image[of f ]
by auto

then have 1 + b $ 1 ≤ pathstart f $ 1 =⇒ False
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unfolding mem box cart forall 2
by auto

then have z$1 6= pathstart f $1
using prems(2 ) using assms ab
by (auto simp add : field simps)

ultimately have ∗: z$2 = a$2 − 2
using prems(1 ) by auto

have z$1 6= pathfinish g$1
using prems(2 ) assms ab
by (auto simp add : field simps ∗)

moreover have pathstart g ∈ cbox a b
using assms(4 ) pathstart in path image[of g ]
by auto

note this[unfolded mem box cart forall 2 ]
then have z$1 6= pathstart g$1
using prems(1 ) assms ab
by (auto simp add : field simps ∗)

ultimately have a $ 2 − 1 ≤ z $ 2 ∧ z $ 2 ≤ b $ 2 + 3 ∨ b $ 2 + 3 ≤ z
$ 2 ∧ z $ 2 ≤ a $ 2 − 1

using prems(2 ) unfolding ∗ assms by (auto simp add : field simps)
then show False
unfolding ∗ using ab by auto

qed
then have z ∈ path image f ∨ z ∈ path image g
using z unfolding Un iff by blast

then have z ′: z ∈ cbox a b
using assms(3−4 ) by auto

have a $ 2 = z $ 2 =⇒ (z $ 1 = pathstart f $ 1 ∨ z $ 1 = pathfinish f $ 1 )
=⇒

z = pathstart f ∨ z = pathfinish f
unfolding vec eq iff forall 2 assms
by auto

with z ′ show z ∈ path image f
using z (1 )
unfolding Un iff mem box cart forall 2
by (simp only : segment vertical segment horizontal vector 2 ) (auto simp:

assms)
have a $ 2 = z $ 2 =⇒ (z $ 1 = pathstart g $ 1 ∨ z $ 1 = pathfinish g $ 1 )

=⇒
z = pathstart g ∨ z = pathfinish g
unfolding vec eq iff forall 2 assms
by auto

with z ′ show z ∈ path image g
using z (2 )
unfolding Un iff mem box cart forall 2
by (simp only : segment vertical segment horizontal vector 2 ) (auto simp:

assms)
qed

qed
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end

6.33 Vector Cross Products in 3 Dimensions

theory Cross3
imports Determinants Cartesian Euclidean Space

begin

context includes no Set Product syntax
begin — locally disable syntax for set product, to avoid warnings

definition cross3 :: [realˆ3 , realˆ3 ] ⇒ realˆ3 (infixr × 80 )
where a × b ≡
vector [a$2 ∗ b$3 − a$3 ∗ b$2 ,

a$3 ∗ b$1 − a$1 ∗ b$3 ,
a$1 ∗ b$2 − a$2 ∗ b$1 ]

end

bundle cross3 syntax begin
notation cross3 (infixr × 80 )
no notation Product Type.Times (infixr × 80 )
end

bundle no cross3 syntax begin
no notation cross3 (infixr × 80 )
notation Product Type.Times (infixr × 80 )
end

unbundle cross3 syntax

6.33.1 Basic lemmas

lemmas cross3 simps = cross3 def inner vec def sum 3 det 3 vec eq iff vector def
algebra simps

lemma dot cross self : x · (x × y) = 0 x · (y × x ) = 0 (x × y) · y = 0 (y × x )
· y = 0
by (simp all add : orthogonal def cross3 simps)

lemma orthogonal cross: orthogonal (x × y) x orthogonal (x × y) y
orthogonal y (x × y) orthogonal (x × y) x

by (simp all add : orthogonal def dot cross self )

lemma cross zero left [simp]: 0 × x = 0 and cross zero right [simp]: x × 0 = 0
for x ::realˆ3
by (simp all add : cross3 simps)
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lemma cross skew : (x × y) = −(y × x ) for x ::realˆ3
by (simp add : cross3 simps)

lemma cross refl [simp]: x × x = 0 for x ::realˆ3
by (simp add : cross3 simps)

lemma cross add left : (x + y) × z = (x × z ) + (y × z ) for x ::realˆ3
by (simp add : cross3 simps)

lemma cross add right : x × (y + z ) = (x × y) + (x × z ) for x ::realˆ3
by (simp add : cross3 simps)

lemma cross mult left : (c ∗R x ) × y = c ∗R (x × y) for x ::realˆ3
by (simp add : cross3 simps)

lemma cross mult right : x × (c ∗R y) = c ∗R (x × y) for x ::realˆ3
by (simp add : cross3 simps)

lemma cross minus left [simp]: (−x ) × y = − (x × y) for x ::realˆ3
by (simp add : cross3 simps)

lemma cross minus right [simp]: x × −y = − (x × y) for x ::realˆ3
by (simp add : cross3 simps)

lemma left diff distrib: (x − y) × z = x × z − y × z for x ::realˆ3
by (simp add : cross3 simps)

lemma right diff distrib: x × (y − z ) = x × y − x × z for x ::realˆ3
by (simp add : cross3 simps)

hide fact (open) left diff distrib right diff distrib

proposition Jacobi : x × (y × z ) + y × (z × x ) + z × (x × y) = 0 for x ::realˆ3
by (simp add : cross3 simps)

proposition Lagrange: x × (y × z ) = (x · z ) ∗R y − (x · y) ∗R z
by (simp add : cross3 simps) (metis (full types) exhaust 3 )

proposition cross triple: (x × y) · z = (y × z ) · x
by (simp add : cross3 def inner vec def sum 3 vec eq iff algebra simps)

lemma cross components:
(x × y)$1 = x$2 ∗ y$3 − y$2 ∗ x$3 (x × y)$2 = x$3 ∗ y$1 − y$3 ∗ x$1 (x

× y)$3 = x$1 ∗ y$2 − y$1 ∗ x$2
by (simp all add : cross3 def inner vec def sum 3 vec eq iff algebra simps)

lemma cross basis: (axis 1 1 ) × (axis 2 1 ) = axis 3 1 (axis 2 1 ) × (axis 1 1 ) =
−(axis 3 1 )

(axis 2 1 ) × (axis 3 1 ) = axis 1 1 (axis 3 1 ) × (axis 2 1 ) = −(axis
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1 1 )
(axis 3 1 ) × (axis 1 1 ) = axis 2 1 (axis 1 1 ) × (axis 3 1 ) = −(axis

2 1 )
using exhaust 3
by (force simp add : axis def cross3 simps)+

lemma cross basis nonzero:
u 6= 0 =⇒ u × axis 1 1 6= 0 ∨ u × axis 2 1 6= 0 ∨ u × axis 3 1 6= 0
by (clarsimp simp add : axis def cross3 simps) (metis exhaust 3 )

lemma cross dot cancel :
fixes x ::realˆ3
assumes deq : x · y = x · z and veq : x × y = x × z and x : x 6= 0
shows y = z

proof −
have x · x 6= 0
by (simp add : x )

then have y − z = 0
using veq
by (metis (no types, lifting) Cross3 .right diff distrib Lagrange deq eq iff diff eq 0

inner diff right scale eq 0 iff )
then show ?thesis
using eq iff diff eq 0 by blast

qed

lemma norm cross dot : (norm (x × y))2 + (x · y)2 = (norm x ∗ norm y)2

unfolding power2 norm eq inner power mult distrib
by (simp add : cross3 simps power2 eq square)

lemma dot cross det : x · (y × z ) = det(vector [x ,y ,z ])
by (simp add : cross3 simps)

lemma cross cross det : (w × x ) × (y × z ) = det(vector [w ,x ,z ]) ∗R y − det(vector [w ,x ,y ])
∗R z
using exhaust 3 by (force simp add : cross3 simps)

proposition dot cross: (w × x ) · (y × z ) = (w · y) ∗ (x · z ) − (w · z ) ∗ (x · y)
by (force simp add : cross3 simps)

proposition norm cross: (norm (x × y))2 = (norm x )2 ∗ (norm y)2 − (x · y)2
unfolding power2 norm eq inner power mult distrib
by (simp add : cross3 simps power2 eq square)

lemma cross eq 0 : x × y = 0 ←→ collinear{0 ,x ,y}
proof −
have x × y = 0 ←→ norm (x × y) = 0
by simp

also have ... ←→ (norm x ∗ norm y)2 = (x · y)2
using norm cross [of x y ] by (auto simp: power mult distrib)
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also have ... ←→ |x · y | = norm x ∗ norm y
using power2 eq iff
by (metis (mono tags, hide lams) abs minus abs norm cancel abs power2 norm mult

power abs real norm def )
also have ... ←→ collinear {0 , x , y}
by (rule norm cauchy schwarz equal)

finally show ?thesis .
qed

lemma cross eq self : x × y = x ←→ x = 0 x × y = y ←→ y = 0
apply (metis cross zero left dot cross self (1 ) inner eq zero iff )
by (metis cross zero right dot cross self (2 ) inner eq zero iff )

lemma norm and cross eq 0 :
x · y = 0 ∧ x × y = 0 ←→ x = 0 ∨ y = 0 (is ?lhs = ?rhs)

proof
assume ?lhs
then show ?rhs
by (metis cross dot cancel cross zero right inner zero right)

qed auto

lemma bilinear cross: bilinear(×)
apply (auto simp add : bilinear def linear def )
apply unfold locales
apply (simp add : cross add right)
apply (simp add : cross mult right)
apply (simp add : cross add left)
apply (simp add : cross mult left)
done

6.33.2 Preservation by rotation, or other orthogonal trans-
formation up to sign

lemma cross matrix mult : transpose A ∗v ((A ∗v x ) × (A ∗v y)) = det A ∗R (x
× y)
apply (simp add : vec eq iff )
apply (simp add : vector matrix mult def matrix vector mult def forall 3 cross3 simps)
done

lemma cross orthogonal matrix :
assumes orthogonal matrix A
shows (A ∗v x ) × (A ∗v y) = det A ∗R (A ∗v (x × y))

proof −
have mat 1 = transpose (A ∗∗ transpose A)
by (metis (no types) assms orthogonal matrix def transpose mat)

then show ?thesis
by (metis (no types) vector matrix mul rid vector transpose matrix cross matrix mult

matrix vector mul assoc matrix vector mult scaleR)
qed
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lemma cross rotation matrix : rotation matrix A =⇒ (A ∗v x ) × (A ∗v y) = A
∗v (x × y)
by (simp add : rotation matrix def cross orthogonal matrix )

lemma cross rotoinversion matrix : rotoinversion matrix A =⇒ (A ∗v x ) × (A ∗v
y) = − A ∗v (x × y)
by (simp add : rotoinversion matrix def cross orthogonal matrix scaleR matrix vector assoc)

lemma cross orthogonal transformation:
assumes orthogonal transformation f
shows (f x ) × (f y) = det(matrix f ) ∗R f (x × y)

proof −
have orth: orthogonal matrix (matrix f )
using assms orthogonal transformation matrix by blast

have matrix f ∗v z = f z for z
using assms orthogonal transformation matrix by force

with cross orthogonal matrix [OF orth] show ?thesis
by simp

qed

lemma cross linear image:
[[linear f ;

∧
x . norm(f x ) = norm x ; det(matrix f ) = 1 ]]

=⇒ (f x ) × (f y) = f (x × y)
by (simp add : cross orthogonal transformation orthogonal transformation)

6.33.3 Continuity

lemma continuous cross: [[continuous F f ; continuous F g ]] =⇒ continuous F (λx .
(f x ) × (g x ))
apply (subst continuous componentwise)
apply (clarsimp simp add : cross3 simps)
apply (intro continuous intros; simp)
done

lemma continuous on cross:
fixes f :: ′a::t2 space ⇒ realˆ3
shows [[continuous on S f ; continuous on S g ]] =⇒ continuous on S (λx . (f x ) ×

(g x ))
by (simp add : continuous on eq continuous within continuous cross)

unbundle no cross3 syntax

end

6.34 Bounded Continuous Functions

theory Bounded Continuous Function
imports
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Topology Euclidean Space
Uniform Limit

begin

6.34.1 Definition

definition bcontfun = {f . continuous on UNIV f ∧ bounded (range f )}

typedef (overloaded) ( ′a, ′b) bcontfun (( ⇒C / ) [22 , 21 ] 21 ) =
bcontfun::( ′a::topological space ⇒ ′b::metric space) set
morphisms apply bcontfun Bcontfun
by (auto intro: continuous intros simp: bounded def bcontfun def )

declare [[coercion apply bcontfun :: ( ′a::topological space ⇒C
′b::metric space) ⇒

′a ⇒ ′b]]

setup lifting type definition bcontfun

lemma continuous on apply bcontfun[intro, simp]: continuous on T (apply bcontfun
x )
and bounded apply bcontfun[intro, simp]: bounded (range (apply bcontfun x ))
using apply bcontfun[of x ]
by (auto simp: bcontfun def intro: continuous on subset)

lemma bcontfun eqI : (
∧
x . apply bcontfun f x = apply bcontfun g x ) =⇒ f = g

by transfer auto

lemma bcontfunE :
assumes f ∈ bcontfun
obtains g where f = apply bcontfun g
by (blast intro: apply bcontfun cases assms )

lemma const bcontfun: (λx . b) ∈ bcontfun
by (auto simp: bcontfun def image def )

lift definition const bcontfun:: ′b::metric space ⇒ ( ′a::topological space ⇒C
′b) is

λc . c
by (rule const bcontfun)

instantiation bcontfun :: (topological space, metric space) metric space
begin

lift definition dist bcontfun :: ′a ⇒C
′b ⇒ ′a ⇒C

′b ⇒ real
is λf g . (SUP x . dist (f x ) (g x )) .

definition uniformity bcontfun :: ( ′a ⇒C
′b × ′a ⇒C

′b) filter
where uniformity bcontfun = (INF e∈{0 <..}. principal {(x , y). dist x y < e})
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definition open bcontfun :: ( ′a ⇒C
′b) set ⇒ bool

where open bcontfun S = (∀ x∈S . ∀ F (x ′, y) in uniformity . x ′ = x −→ y ∈ S )

lemma bounded dist le SUP dist :
bounded (range f ) =⇒ bounded (range g) =⇒ dist (f x ) (g x ) ≤ (SUP x . dist (f

x ) (g x ))
by (auto intro!: cSUP upper bounded imp bdd above bounded dist comp)

lemma dist bounded :
fixes f g :: ′a ⇒C

′b
shows dist (f x ) (g x ) ≤ dist f g
by transfer (auto intro!: bounded dist le SUP dist simp: bcontfun def )

lemma dist bound :
fixes f g :: ′a ⇒C

′b
assumes

∧
x . dist (f x ) (g x ) ≤ b

shows dist f g ≤ b
using assms
by transfer (auto intro!: cSUP least)

lemma dist fun lt imp dist val lt :
fixes f g :: ′a ⇒C

′b
assumes dist f g < e
shows dist (f x ) (g x ) < e
using dist bounded assms by (rule le less trans)

instance
proof
fix f g h :: ′a ⇒C

′b
show dist f g = 0 ←→ f = g
proof
have

∧
x . dist (f x ) (g x ) ≤ dist f g

by (rule dist bounded)
also assume dist f g = 0
finally show f = g
by (auto simp: apply bcontfun inject [symmetric])

qed (auto simp: dist bcontfun def intro!: cSup eq)
show dist f g ≤ dist f h + dist g h
proof (rule dist bound)
fix x
have dist (f x ) (g x ) ≤ dist (f x ) (h x ) + dist (g x ) (h x )
by (rule dist triangle2 )

also have dist (f x ) (h x ) ≤ dist f h
by (rule dist bounded)

also have dist (g x ) (h x ) ≤ dist g h
by (rule dist bounded)

finally show dist (f x ) (g x ) ≤ dist f h + dist g h
by simp

qed
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qed (rule open bcontfun def uniformity bcontfun def )+

end

lift definition PiC :: ′a::topological space set ⇒ ( ′a ⇒ ′b set)⇒ ( ′a ⇒C
′b::metric space)

set
is λI X . Pi I X ∩ bcontfun
by auto

lemma mem PiC iff : x ∈ PiC I X ←→ apply bcontfun x ∈ Pi I X
by transfer simp

lemmas mem PiCD = mem PiC iff [THEN iffD1 ]
and mem PiCI = mem PiC iff [THEN iffD2 ]

lemma tendsto bcontfun uniform limit :
fixes f :: ′i ⇒ ′a::topological space ⇒C

′b::metric space
assumes (f −−−→ l) F
shows uniform limit UNIV f l F

proof (rule uniform limitI )
fix e::real assume e > 0
from tendstoD [OF assms this] have ∀ F x in F . dist (f x ) l < e .
then show ∀ F n in F . ∀ x∈UNIV . dist ((f n) x ) (l x ) < e
by eventually elim (auto simp: dist fun lt imp dist val lt)

qed

lemma uniform limit tendsto bcontfun:
fixes f :: ′i ⇒ ′a::topological space ⇒C

′b::metric space
and l :: ′a::topological space ⇒C

′b::metric space
assumes uniform limit UNIV f l F
shows (f −−−→ l) F

proof (rule tendstoI )
fix e::real assume e > 0
then have e / 2 > 0 by simp
from uniform limitD [OF assms this]
have ∀ F i in F . ∀ x . dist (f i x ) (l x ) < e / 2 by simp
then have ∀ F x in F . dist (f x ) l ≤ e / 2
by eventually elim (blast intro: dist bound less imp le)

then show ∀ F x in F . dist (f x ) l < e
by eventually elim (use 〈0 < e〉 in auto)

qed

lemma uniform limit bcontfunE :
fixes f :: ′i ⇒ ′a::topological space ⇒C

′b::metric space
and l :: ′a::topological space ⇒ ′b::metric space

assumes uniform limit UNIV f l F F 6= bot
obtains l ′:: ′a::topological space ⇒C

′b::metric space
where l = l ′ (f −−−→ l ′) F
by (metis (mono tags, lifting) always eventually apply bcontfun apply bcontfun cases
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assms
bcontfun def mem Collect eq uniform limit bounded uniform limit tendsto bcontfun
uniform limit theorem)

lemma closed PiC :
fixes I :: ′a::metric space set
and X :: ′a ⇒ ′b::complete space set

assumes
∧
i . i ∈ I =⇒ closed (X i)

shows closed (PiC I X )
unfolding closed sequential limits

proof safe
fix f l
assume seq : ∀n. f n ∈ PiC I X and lim: f −−−−→ l
show l ∈ PiC I X
proof (safe intro!: mem PiCI )
fix x assume x ∈ I
then have closed (X x )
using assms by simp

moreover have eventually (λi . f i x ∈ X x ) sequentially
using seq 〈x ∈ I 〉

by (auto intro!: eventuallyI dest !: mem PiCD simp: Pi iff )
moreover note sequentially bot
moreover have (λn. (f n) x ) −−−−→ l x
using tendsto bcontfun uniform limit [OF lim]
by (rule tendsto uniform limitI ) simp

ultimately show l x ∈ X x
by (rule Lim in closed set)

qed
qed

6.34.2 Complete Space

instance bcontfun :: (metric space, complete space) complete space
proof
fix f :: nat ⇒ ( ′a, ′b) bcontfun
assume Cauchy f — Cauchy equals uniform convergence
then obtain g where uniform limit UNIV f g sequentially
using uniformly convergent eq cauchy [of λ . True f ]
unfolding Cauchy def uniform limit sequentially iff
by (metis dist fun lt imp dist val lt)

from uniform limit bcontfunE [OF this sequentially bot ]
obtain l ′ where g = apply bcontfun l ′ (f −−−−→ l ′) by metis
then show convergent f
by (intro convergentI )

qed

6.34.3 Supremum norm for a normed vector space

instantiation bcontfun :: (topological space, real normed vector) real vector
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begin

lemma uminus cont : f ∈ bcontfun =⇒ (λx . − f x ) ∈ bcontfun for f :: ′a ⇒ ′b
by (auto simp: bcontfun def intro!: continuous intros)

lemma plus cont : f ∈ bcontfun =⇒ g ∈ bcontfun =⇒ (λx . f x + g x ) ∈ bcontfun
for f g :: ′a ⇒ ′b
by (auto simp: bcontfun def intro!: continuous intros bounded plus comp)

lemma minus cont : f ∈ bcontfun =⇒ g ∈ bcontfun =⇒ (λx . f x − g x ) ∈ bcontfun
for f g :: ′a ⇒ ′b
by (auto simp: bcontfun def intro!: continuous intros bounded minus comp)

lemma scaleR cont : f ∈ bcontfun =⇒ (λx . a ∗R f x ) ∈ bcontfun for f :: ′a ⇒ ′b
by (auto simp: bcontfun def intro!: continuous intros bounded scaleR comp)

lemma bcontfun normI : continuous on UNIV f =⇒ (
∧
x . norm (f x ) ≤ b) =⇒ f

∈ bcontfun
by (auto simp: bcontfun def intro: boundedI )

lift definition uminus bcontfun::( ′a ⇒C
′b) ⇒ ′a ⇒C

′b is λf x . − f x
by (rule uminus cont)

lift definition plus bcontfun::( ′a ⇒C
′b) ⇒ ( ′a ⇒C

′b) ⇒ ′a ⇒C
′b is λf g x . f

x + g x
by (rule plus cont)

lift definition minus bcontfun::( ′a ⇒C
′b) ⇒ ( ′a ⇒C

′b) ⇒ ′a ⇒C
′b is λf g x .

f x − g x
by (rule minus cont)

lift definition zero bcontfun:: ′a ⇒C
′b is λ . 0

by (rule const bcontfun)

lemma const bcontfun 0 eq 0 [simp]: const bcontfun 0 = 0
by transfer simp

lift definition scaleR bcontfun::real ⇒ ( ′a ⇒C
′b) ⇒ ′a ⇒C

′b is λr g x . r ∗R g
x
by (rule scaleR cont)

lemmas [simp] =
const bcontfun.rep eq
uminus bcontfun.rep eq
plus bcontfun.rep eq
minus bcontfun.rep eq
zero bcontfun.rep eq
scaleR bcontfun.rep eq
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instance
by standard (auto intro!: bcontfun eqI simp: algebra simps)

end

lemma bounded norm le SUP norm:
bounded (range f ) =⇒ norm (f x ) ≤ (SUP x . norm (f x ))
by (auto intro!: cSUP upper bounded imp bdd above simp: bounded norm comp)

instantiation bcontfun :: (topological space, real normed vector) real normed vector
begin

definition norm bcontfun :: ( ′a, ′b) bcontfun ⇒ real
where norm bcontfun f = dist f 0

definition sgn (f ::( ′a, ′b) bcontfun) = f /R norm f

instance
proof
fix a :: real
fix f g :: ( ′a, ′b) bcontfun
show dist f g = norm (f − g)
unfolding norm bcontfun def
by transfer (simp add : dist norm)

show norm (f + g) ≤ norm f + norm g
unfolding norm bcontfun def
by transfer
(auto intro!: cSUP least norm triangle le add mono bounded norm le SUP norm

simp: dist norm bcontfun def )
show norm (a ∗R f ) = |a| ∗ norm f
unfolding norm bcontfun def
apply transfer
by (rule trans[OF continuous at Sup mono[symmetric]])
(auto intro!: monoI mult left mono continuous intros bounded imp bdd above
simp: bounded norm comp bcontfun def image comp)

qed (auto simp: norm bcontfun def sgn bcontfun def )

end

lemma norm bounded :
fixes f :: ( ′a::topological space, ′b::real normed vector) bcontfun
shows norm (apply bcontfun f x ) ≤ norm f
using dist bounded [of f x 0 ]
by (simp add : dist norm)

lemma norm bound :
fixes f :: ( ′a::topological space, ′b::real normed vector) bcontfun
assumes

∧
x . norm (apply bcontfun f x ) ≤ b



Lindelof Spaces.thy 2689

shows norm f ≤ b
using dist bound [of f 0 b] assms
by (simp add : dist norm)

6.34.4 (bounded) continuous extenstion

lemma continuous on cbox bcontfunE :
fixes f :: ′a::euclidean space ⇒ ′b::metric space
assumes continuous on (cbox a b) f
obtains g :: ′a ⇒C

′b where∧
x . x ∈ cbox a b =⇒ g x = f x∧
x . g x = f (clamp a b x )

proof −
define g where g ≡ ext cont f a b
have g ∈ bcontfun
using assms
by (auto intro!: continuous on ext cont simp: g def bcontfun def )
(auto simp: g def ext cont def
intro!: clamp bounded compact imp bounded [OF compact continuous image]

assms)
then obtain h where h: g = apply bcontfun h by (rule bcontfunE )
then have h x = f x if x ∈ cbox a b for x
by (auto simp: h[symmetric] g def that)

moreover
have h x = f (clamp a b x ) for x
by (auto simp: h[symmetric] g def ext cont def )

ultimately show ?thesis ..
qed

lifting update bcontfun.lifting
lifting forget bcontfun.lifting

end

6.35 Lindelöf spaces

theory Lindelof Spaces
imports T1 Spaces
begin

definition Lindelof space where
Lindelof space X ≡

∀U . (∀U ∈ U . openin X U ) ∧
⋃
U = topspace X

−→ (∃V. countable V ∧ V ⊆ U ∧
⋃
V = topspace X )

lemma Lindelof spaceD :
[[Lindelof space X ;

∧
U . U ∈ U =⇒ openin X U ;

⋃
U = topspace X ]]

=⇒ ∃V. countable V ∧ V ⊆ U ∧
⋃
V = topspace X

by (auto simp: Lindelof space def )
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lemma Lindelof space alt :
Lindelof space X ←→

(∀U . (∀U ∈ U . openin X U ) ∧ topspace X ⊆
⋃
U

−→ (∃V. countable V ∧ V ⊆ U ∧ topspace X ⊆
⋃
V))

unfolding Lindelof space def
using openin subset by fastforce

lemma compact imp Lindelof space:
compact space X =⇒ Lindelof space X
unfolding Lindelof space def compact space
by (meson uncountable infinite)

lemma Lindelof space topspace empty :
topspace X = {} =⇒ Lindelof space X
using compact imp Lindelof space compact space topspace empty by blast

lemma Lindelof space Union:
assumes U : countable U and lin:

∧
U . U ∈ U =⇒ Lindelof space (subtopology

X U )
shows Lindelof space (subtopology X (

⋃
U))

proof −
have ∃V. countable V ∧ V ⊆ F ∧

⋃
U ∩

⋃
V = topspace X ∩

⋃
U

if F : F ⊆ Collect (openin X ) and UF :
⋃
U ∩

⋃
F = topspace X ∩

⋃
U

for F
proof −
have

∧
U . [[U ∈ U ; U ∩

⋃
F = topspace X ∩ U ]]

=⇒ ∃V. countable V ∧ V ⊆ F ∧ U ∩
⋃
V = topspace X ∩ U

using lin F
unfolding Lindelof space def openin subtopology alt Ball def subset iff [symmetric]
by (simp add : all subset image imp conjL ex countable subset image)

then obtain g where g :
∧
U . [[U ∈ U ; U ∩

⋃
F = topspace X ∩ U ]]

=⇒ countable (g U ) ∧ (g U ) ⊆ F ∧ U ∩
⋃

(g U ) =
topspace X ∩ U

by metis
show ?thesis
proof (intro exI conjI )
show countable (

⋃
(g ‘ U))

using Int commute UF g by (fastforce intro: countable UN [OF U ])
show

⋃
(g ‘ U) ⊆ F

using g UF by blast
show

⋃
U ∩

⋃
(
⋃
(g ‘ U)) = topspace X ∩

⋃
U

proof
show

⋃
U ∩

⋃
(
⋃
(g ‘ U)) ⊆ topspace X ∩

⋃
U

using g UF by blast
show topspace X ∩

⋃
U ⊆

⋃
U ∩

⋃
(
⋃
(g ‘ U))

proof clarsimp
show ∃ y∈U . ∃W∈g y . x ∈ W
if x ∈ topspace X x ∈ V V ∈ U for x V
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proof −
have V ∩

⋃
F = topspace X ∩ V

using UF 〈V ∈ U 〉 by blast
with that g [OF 〈V ∈ U 〉] show ?thesis by blast

qed
qed

qed
qed

qed
then show ?thesis
unfolding Lindelof space def openin subtopology alt Ball def subset iff [symmetric]
by (simp add : all subset image imp conjL ex countable subset image)

qed

lemma countable imp Lindelof space:
assumes countable(topspace X )
shows Lindelof space X

proof −
have Lindelof space (subtopology X (

⋃
x ∈ topspace X . {x}))

proof (rule Lindelof space Union)
show countable ((λx . {x}) ‘ topspace X )
using assms by blast

show Lindelof space (subtopology X U )
if U ∈ (λx . {x}) ‘ topspace X for U

proof −
have compactin X U
using that by force

then show ?thesis
by (meson compact imp Lindelof space compact space subtopology)

qed
qed
then show ?thesis
by simp

qed
lemma Lindelof space subtopology :

Lindelof space(subtopology X S ) ←→
(∀U . (∀U ∈ U . openin X U ) ∧ topspace X ∩ S ⊆

⋃
U

−→ (∃V . countable V ∧ V ⊆ U ∧ topspace X ∩ S ⊆
⋃
V ))

proof −
have ∗: (S ∩

⋃
U = topspace X ∩ S ) = (topspace X ∩ S ⊆

⋃
U)

if
∧
x . x ∈ U =⇒ openin X x for U

by (blast dest : openin subset [OF that ])
moreover have (V ⊆ U ∧ S ∩

⋃
V = topspace X ∩ S ) = (V ⊆ U ∧ topspace X

∩ S ⊆
⋃
V)

if ∀ x . x ∈ U −→ openin X x topspace X ∩ S ⊆
⋃
U countable V for U V

using that ∗ by blast
ultimately show ?thesis
unfolding Lindelof space def openin subtopology alt Ball def
apply (simp add : all subset image imp conjL ex countable subset image flip:
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subset iff )
apply (intro all cong1 imp cong ex cong , auto)
done

qed

lemma Lindelof space subtopology subset :
S ⊆ topspace X

=⇒ (Lindelof space(subtopology X S ) ←→
(∀U . (∀U ∈ U . openin X U ) ∧ S ⊆

⋃
U

−→ (∃V . countable V ∧ V ⊆ U ∧ S ⊆
⋃

V )))
by (metis Lindelof space subtopology topspace subtopology topspace subtopology subset)

lemma Lindelof space closedin subtopology :
assumes X : Lindelof space X and clo: closedin X S
shows Lindelof space (subtopology X S )

proof −
have S ⊆ topspace X
by (simp add : clo closedin subset)

then show ?thesis
proof (clarsimp simp add : Lindelof space subtopology subset)
show ∃V . countable V ∧ V ⊆ F ∧ S ⊆

⋃
V

if ∀U∈F . openin X U and S ⊆
⋃
F for F

proof −
have ∃V. countable V ∧ V ⊆ insert (topspace X − S ) F ∧

⋃
V = topspace X

proof (rule Lindelof spaceD [OF X , of insert (topspace X − S ) F ])
show openin X U
if U ∈ insert (topspace X − S ) F for U
using that 〈∀U∈F . openin X U 〉 clo by blast

show
⋃
(insert (topspace X − S ) F) = topspace X

apply auto
apply (meson in mono openin closedin eq that(1 ))
using UnionE 〈S ⊆

⋃
F 〉 by auto

qed
then obtain V where countable V V ⊆ insert (topspace X − S ) F

⋃
V =

topspace X
by metis

with 〈S ⊆ topspace X 〉

show ?thesis
by (rule tac x=(V − {topspace X − S}) in exI ) auto

qed
qed

qed

lemma Lindelof space continuous map image:
assumes X : Lindelof space X and f : continuous map X Y f and fim: f ‘

(topspace X ) = topspace Y
shows Lindelof space Y

proof −
have ∃V. countable V ∧ V ⊆ U ∧

⋃
V = topspace Y
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if U :
∧
U . U ∈ U =⇒ openin Y U and UU :

⋃
U = topspace Y for U

proof −
define V where V ≡ (λU . {x ∈ topspace X . f x ∈ U }) ‘ U
have

∧
V . V ∈ V =⇒ openin X V

unfolding V def using U continuous map f by fastforce
moreover have

⋃
V = topspace X

unfolding V def using UU fim by fastforce
ultimately have ∃W. countable W ∧ W ⊆ V ∧

⋃
W = topspace X

using X by (simp add : Lindelof space def )
then obtain C where countable C C ⊆ U and C: (

⋃
U∈C. {x ∈ topspace X . f

x ∈ U }) = topspace X
by (metis (no types, lifting) V def countable subset image)

moreover have
⋃
C = topspace Y

proof
show

⋃
C ⊆ topspace Y

using UU C 〈C ⊆ U 〉 by fastforce
have y ∈

⋃
C if y ∈ topspace Y for y

proof −
obtain x where x ∈ topspace X y = f x
using that fim by (metis 〈y ∈ topspace Y 〉 imageE )

with C show ?thesis by auto
qed
then show topspace Y ⊆

⋃
C by blast

qed
ultimately show ?thesis
by blast

qed
then show ?thesis
unfolding Lindelof space def
by auto

qed

lemma Lindelof space quotient map image:
[[quotient map X Y q ; Lindelof space X ]] =⇒ Lindelof space Y
by (meson Lindelof space continuous map image quotient imp continuous map

quotient imp surjective map)

lemma Lindelof space retraction map image:
[[retraction map X Y r ; Lindelof space X ]] =⇒ Lindelof space Y

using Abstract Topology .retraction imp quotient map Lindelof space quotient map image
by blast

lemma locally finite cover of Lindelof space:
assumes X : Lindelof space X and UU : topspace X ⊆

⋃
U and fin: locally finite in

X U
shows countable U

proof −
have UU eq :

⋃
U = topspace X

by (meson UU fin locally finite in def subset antisym)
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obtain T where T :
∧
x . x ∈ topspace X =⇒ openin X (T x ) ∧ x ∈ T x ∧ finite

{U ∈ U . U ∩ T x 6= {}}
using fin unfolding locally finite in def by metis

then obtain I where countable I I ⊆ topspace X and I : topspace X ⊆
⋃

(T ‘
I )

using X unfolding Lindelof space alt
by (drule tac x=image T (topspace X ) in spec) (auto simp: ex countable subset image)
show ?thesis
proof (rule countable subset)
have

∧
i . i ∈ I =⇒ countable {U ∈ U . U ∩ T i 6= {}}

using T
by (meson 〈I ⊆ topspace X 〉 in mono uncountable infinite)

then show countable (insert {} (
⋃
i∈I . {U ∈ U . U ∩ T i 6= {}}))

by (simp add : 〈countable I 〉)
qed (use UU eq I in auto)

qed

lemma Lindelof space proper map preimage:
assumes f : proper map X Y f and Y : Lindelof space Y
shows Lindelof space X

proof (clarsimp simp: Lindelof space alt)
show ∃V. countable V ∧ V ⊆ U ∧ topspace X ⊆

⋃
V

if U : ∀U∈U . openin X U and sub UU : topspace X ⊆
⋃
U for U

proof −
have ∃V. finite V ∧ V ⊆ U ∧ {x ∈ topspace X . f x = y} ⊆

⋃
V if y ∈ topspace

Y for y
proof (rule compactinD)
show compactin X {x ∈ topspace X . f x = y}
using f proper map def that by fastforce

qed (use sub UU U in auto)
then obtain V where V:

∧
y . y ∈ topspace Y =⇒ finite (V y) ∧ V y ⊆ U ∧

{x ∈ topspace X . f x = y} ⊆
⋃

(V y)
by meson

define W where W ≡ (λy . topspace Y − image f (topspace X −
⋃
(V y))) ‘

topspace Y
have ∀U ∈ W. openin Y U
using f U V unfolding W def proper map def closed map def
by (simp add : closedin diff openin Union openin diff subset iff )

moreover have topspace Y ⊆
⋃
W

using V unfolding W def by clarsimp fastforce
ultimately have ∃V. countable V ∧ V ⊆ W ∧ topspace Y ⊆

⋃
V

using Y by (simp add : Lindelof space alt)
then obtain I where countable I I ⊆ topspace Y
and I : topspace Y ⊆ (

⋃
i∈I . topspace Y − f ‘ (topspace X −

⋃
(V i)))

unfolding W def ex countable subset image by metis
show ?thesis
proof (intro exI conjI )
have

∧
i . i ∈ I =⇒ countable (V i)
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by (meson V 〈I ⊆ topspace Y 〉 in mono uncountable infinite)
with 〈countable I 〉 show countable (

⋃
(V ‘ I ))

by auto
show

⋃
(V ‘ I ) ⊆ U

using V 〈I ⊆ topspace Y 〉 by fastforce
show topspace X ⊆

⋃
(
⋃
(V ‘ I ))

proof
show x ∈

⋃
(
⋃

(V ‘ I )) if x ∈ topspace X for x
proof −
have f x ∈ topspace Y
by (meson f image subset iff proper map imp subset topspace that)

then show ?thesis
using that I by auto

qed
qed

qed
qed

qed

lemma Lindelof space perfect map image:
[[Lindelof space X ; perfect map X Y f ]] =⇒ Lindelof space Y
using Lindelof space quotient map image perfect imp quotient map by blast

lemma Lindelof space perfect map image eq :
perfect map X Y f =⇒ Lindelof space X ←→ Lindelof space Y
using Lindelof space perfect map image Lindelof space proper map preimage per-

fect map def by blast

end

6.36 Infinite Products

theory Infinite Products
imports Topology Euclidean Space Complex Transcendental

begin

6.36.1 Preliminaries

lemma sum le prod :
fixes f :: ′a ⇒ ′b :: linordered semidom
assumes

∧
x . x ∈ A =⇒ f x ≥ 0

shows sum f A ≤ (
∏

x∈A. 1 + f x )
using assms

proof (induction A rule: infinite finite induct)
case (insert x A)
from insert .hyps have sum f A + f x ∗ (

∏
x∈A. 1 ) ≤ (

∏
x∈A. 1 + f x ) + f x

∗ (
∏

x∈A. 1 + f x )
by (intro add mono insert mult left mono prod mono) (auto intro: insert .prems)
with insert .hyps show ?case by (simp add : algebra simps)
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qed simp all

lemma prod le exp sum:
fixes f :: ′a ⇒ real
assumes

∧
x . x ∈ A =⇒ f x ≥ 0

shows prod (λx . 1 + f x ) A ≤ exp (sum f A)
using assms

proof (induction A rule: infinite finite induct)
case (insert x A)
have (1 + f x ) ∗ (

∏
x∈A. 1 + f x ) ≤ exp (f x ) ∗ exp (sum f A)

using insert .prems by (intro mult mono insert prod nonneg exp ge add one self )
auto
with insert .hyps show ?case by (simp add : algebra simps exp add)

qed simp all

lemma lim ln 1 plus x over x at 0 : (λx ::real . ln (1 + x ) / x ) −0→ 1
proof (rule lhopital)
show (λx ::real . ln (1 + x )) −0→ 0
by (rule tendsto eq intros refl | simp)+

have eventually (λx ::real . x ∈ {−1/2<..<1/2}) (nhds 0 )
by (rule eventually nhds in open) auto

hence ∗: eventually (λx ::real . x ∈ {−1/2<..<1/2}) (at 0 )
by (rule filter leD [rotated ]) (simp all add : at within def )

show eventually (λx ::real . ((λx . ln (1 + x )) has field derivative inverse (1 +
x )) (at x )) (at 0 )

using ∗ by eventually elim (auto intro!: derivative eq intros simp: field simps)
show eventually (λx ::real . ((λx . x ) has field derivative 1 ) (at x )) (at 0 )
using ∗ by eventually elim (auto intro!: derivative eq intros simp: field simps)

show ∀ F x in at 0 . x 6= 0 by (auto simp: at within def eventually inf principal)
show (λx ::real . inverse (1 + x ) / 1 ) −0→ 1
by (rule tendsto eq intros refl | simp)+

qed auto

6.36.2 Definitions and basic properties

definition raw has prod :: [nat ⇒ ′a::{t2 space, comm semiring 1}, nat , ′a] ⇒
bool
where raw has prod f M p ≡ (λn.

∏
i≤n. f (i+M )) −−−−→ p ∧ p 6= 0

The nonzero and zero cases, as in Complex Analysis by Joseph Bak and
Donald J.Newman, page 241

definition
has prod :: (nat ⇒ ′a::{t2 space, comm semiring 1})⇒ ′a ⇒ bool (infixr has ′ prod

80 )
where f has prod p ≡ raw has prod f 0 p ∨ (∃ i q . p = 0 ∧ f i = 0 ∧ raw has prod

f (Suc i) q)

definition convergent prod :: (nat ⇒ ′a :: {t2 space,comm semiring 1}) ⇒ bool
where
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convergent prod f ≡ ∃M p. raw has prod f M p

definition prodinf :: (nat ⇒ ′a::{t2 space, comm semiring 1}) ⇒ ′a
(binder

∏
10 )

where prodinf f = (THE p. f has prod p)

lemmas prod defs = raw has prod def has prod def convergent prod def prodinf def

lemma has prod subst [trans]: f = g =⇒ g has prod z =⇒ f has prod z
by simp

lemma has prod cong : (
∧
n. f n = g n) =⇒ f has prod c ←→ g has prod c

by presburger

lemma raw has prod nonzero [simp]: ¬ raw has prod f M 0
by (simp add : raw has prod def )

lemma raw has prod eq 0 :
fixes f :: nat ⇒ ′a::{semidom,t2 space}
assumes p: raw has prod f m p and i : f i = 0 i ≥ m
shows p = 0

proof −
have eq0 : (

∏
k≤n. f (k+m)) = 0 if i − m ≤ n for n

proof −
have ∃ k≤n. f (k + m) = 0
using i that by auto

then show ?thesis
by auto

qed
have (λn.

∏
i≤n. f (i + m)) −−−−→ 0

by (rule LIMSEQ offset [where k = i−m]) (simp add : eq0 )
with p show ?thesis
unfolding raw has prod def

using LIMSEQ unique by blast
qed

lemma raw has prod Suc:
raw has prod f (Suc M ) a ←→ raw has prod (λn. f (Suc n)) M a
unfolding raw has prod def by auto

lemma has prod 0 iff : f has prod 0 ←→ (∃ i . f i = 0 ∧ (∃ p. raw has prod f (Suc
i) p))
by (simp add : has prod def )

lemma has prod unique2 :
fixes f :: nat ⇒ ′a::{semidom,t2 space}
assumes f has prod a f has prod b shows a = b
using assms
by (auto simp: has prod def raw has prod eq 0 ) (meson raw has prod def sequen-
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tially bot tendsto unique)

lemma has prod unique:
fixes f :: nat ⇒ ′a :: {semidom,t2 space}
shows f has prod s =⇒ s = prodinf f
by (simp add : has prod unique2 prodinf def the equality)

lemma convergent prod altdef :
fixes f :: nat ⇒ ′a :: {t2 space,comm semiring 1}
shows convergent prod f ←→ (∃M L. (∀n≥M . f n 6= 0 ) ∧ (λn.

∏
i≤n. f (i+M ))

−−−−→ L ∧ L 6= 0 )
proof
assume convergent prod f
then obtain M L where ∗: (λn.

∏
i≤n. f (i+M )) −−−−→ L L 6= 0

by (auto simp: prod defs)
have f i 6= 0 if i ≥ M for i
proof
assume f i = 0
have ∗∗: eventually (λn. (

∏
i≤n. f (i+M )) = 0 ) sequentially

using eventually ge at top[of i − M ]
proof eventually elim
case (elim n)
with 〈f i = 0 〉 and 〈i ≥ M 〉 show ?case
by (auto intro!: bexI [of i − M ] prod zero)

qed
have (λn. (

∏
i≤n. f (i+M ))) −−−−→ 0

unfolding filterlim iff
by (auto dest !: eventually nhds x imp x intro!: eventually mono[OF ∗∗])

from tendsto unique[OF this ∗(1 )] and ∗(2 )
show False by simp

qed
with ∗ show (∃M L. (∀n≥M . f n 6= 0 ) ∧ (λn.

∏
i≤n. f (i+M )) −−−−→ L ∧

L 6= 0 )
by blast

qed (auto simp: prod defs)

6.36.3 Absolutely convergent products

definition abs convergent prod :: (nat ⇒ ) ⇒ bool where
abs convergent prod f ←→ convergent prod (λi . 1 + norm (f i − 1 ))

lemma abs convergent prodI :
assumes convergent (λn.

∏
i≤n. 1 + norm (f i − 1 ))

shows abs convergent prod f
proof −
from assms obtain L where L: (λn.

∏
i≤n. 1 + norm (f i − 1 )) −−−−→ L

by (auto simp: convergent def )
have L ≥ 1
proof (rule tendsto le)
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show eventually (λn. (
∏

i≤n. 1 + norm (f i − 1 )) ≥ 1 ) sequentially
proof (intro always eventually allI )
fix n
have (

∏
i≤n. 1 + norm (f i − 1 )) ≥ (

∏
i≤n. 1 )

by (intro prod mono) auto
thus (

∏
i≤n. 1 + norm (f i − 1 )) ≥ 1 by simp

qed
qed (use L in simp all)
hence L 6= 0 by auto
with L show ?thesis unfolding abs convergent prod def prod defs
by (intro exI [of 0 ::nat ] exI [of L]) auto

qed

lemma
fixes f :: nat ⇒ ′a :: {topological semigroup mult ,t2 space,idom}
assumes convergent prod f
shows convergent prod imp convergent : convergent (λn.

∏
i≤n. f i)

and convergent prod to zero iff [simp]: (λn.
∏

i≤n. f i) −−−−→ 0 ←→ (∃ i .
f i = 0 )
proof −
from assms obtain M L
where M :

∧
n. n ≥ M =⇒ f n 6= 0 and (λn.

∏
i≤n. f (i + M )) −−−−→ L

and L 6= 0
by (auto simp: convergent prod altdef )

note this(2 )
also have (λn.

∏
i≤n. f (i + M )) = (λn.

∏
i=M ..M+n. f i)

by (intro ext prod .reindex bij witness[of λn. n − M λn. n + M ]) auto
finally have (λn. (

∏
i<M . f i) ∗ (

∏
i=M ..M+n. f i)) −−−−→ (

∏
i<M . f i) ∗

L
by (intro tendsto mult tendsto const)

also have (λn. (
∏

i<M . f i) ∗ (
∏

i=M ..M+n. f i)) = (λn. (
∏

i∈{..<M }∪{M ..M+n}.
f i))

by (subst prod .union disjoint) auto
also have (λn. {..<M } ∪ {M ..M+n}) = (λn. {..n+M }) by auto
finally have lim: (λn. prod f {..n}) −−−−→ prod f {..<M } ∗ L
by (rule LIMSEQ offset)

thus convergent (λn.
∏

i≤n. f i)
by (auto simp: convergent def )

show (λn.
∏

i≤n. f i) −−−−→ 0 ←→ (∃ i . f i = 0 )
proof
assume ∃ i . f i = 0
then obtain i where f i = 0 by auto
moreover with M have i < M by (cases i < M ) auto
ultimately have (

∏
i<M . f i) = 0 by auto

with lim show (λn.
∏

i≤n. f i) −−−−→ 0 by simp
next
assume (λn.

∏
i≤n. f i) −−−−→ 0

from tendsto unique[OF this lim] and 〈L 6= 0 〉
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show ∃ i . f i = 0 by auto
qed

qed

lemma convergent prod iff nz lim:
fixes f :: nat ⇒ ′a :: {topological semigroup mult ,t2 space,idom}
assumes

∧
i . f i 6= 0

shows convergent prod f ←→ (∃L. (λn.
∏

i≤n. f i) −−−−→ L ∧ L 6= 0 )
(is ?lhs ←→ ?rhs)

proof
assume ?lhs then show ?rhs
using assms convergentD convergent prod imp convergent convergent prod to zero iff

by blast
next
assume ?rhs then show ?lhs
unfolding prod defs
by (rule tac x=0 in exI ) auto

qed

lemma convergent prod iff convergent :
fixes f :: nat ⇒ ′a :: {topological semigroup mult ,t2 space,idom}
assumes

∧
i . f i 6= 0

shows convergent prod f ←→ convergent (λn.
∏

i≤n. f i) ∧ lim (λn.
∏

i≤n. f
i) 6= 0
by (force simp: convergent prod iff nz lim assms convergent def limI )

lemma bounded imp convergent prod :
fixes a :: nat ⇒ real
assumes 1 :

∧
n. a n ≥ 1 and bounded :

∧
n. (

∏
i≤n. a i) ≤ B

shows convergent prod a
proof −
have bdd above (range(λn.

∏
i≤n. a i))

by (meson bdd aboveI2 bounded)
moreover have incseq (λn.

∏
i≤n. a i)

unfolding mono def by (metis 1 prod mono2 atMost subset iff dual order .trans
finite atMost zero le one)
ultimately obtain p where p: (λn.

∏
i≤n. a i) −−−−→ p

using LIMSEQ incseq SUP by blast
then have p 6= 0
by (metis 1 not one le zero prod ge 1 LIMSEQ le const)

with 1 p show ?thesis
by (metis convergent prod iff nz lim not one le zero)

qed

lemma abs convergent prod altdef :
fixes f :: nat ⇒ ′a :: {one,real normed vector}
shows abs convergent prod f ←→ convergent (λn.

∏
i≤n. 1 + norm (f i − 1 ))

proof
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assume abs convergent prod f
thus convergent (λn.

∏
i≤n. 1 + norm (f i − 1 ))

by (auto simp: abs convergent prod def intro!: convergent prod imp convergent)
qed (auto intro: abs convergent prodI )

lemma Weierstrass prod ineq :
fixes f :: ′a ⇒ real
assumes

∧
x . x ∈ A =⇒ f x ∈ {0 ..1}

shows 1 − sum f A ≤ (
∏

x∈A. 1 − f x )
using assms

proof (induction A rule: infinite finite induct)
case (insert x A)
from insert .hyps and insert .prems
have 1 − sum f A + f x ∗ (

∏
x∈A. 1 − f x ) ≤ (

∏
x∈A. 1 − f x ) + f x ∗

(
∏

x∈A. 1 )
by (intro insert .IH add mono mult left mono prod mono) auto

with insert .hyps show ?case by (simp add : algebra simps)
qed simp all

lemma norm prod minus1 le prod minus1 :
fixes f :: nat ⇒ ′a :: {real normed div algebra,comm ring 1}
shows norm (prod (λn. 1 + f n) A − 1 ) ≤ prod (λn. 1 + norm (f n)) A − 1

proof (induction A rule: infinite finite induct)
case (insert x A)
from insert .hyps have
norm ((

∏
n∈insert x A. 1 + f n) − 1 ) =

norm ((
∏

n∈A. 1 + f n) − 1 + f x ∗ (
∏

n∈A. 1 + f n))
by (simp add : algebra simps)

also have . . . ≤ norm ((
∏

n∈A. 1 + f n) − 1 ) + norm (f x ∗ (
∏

n∈A. 1 + f
n))

by (rule norm triangle ineq)
also have norm (f x ∗ (

∏
n∈A. 1 + f n)) = norm (f x ) ∗ (

∏
x∈A. norm (1 +

f x ))
by (simp add : prod norm norm mult)

also have (
∏

x∈A. norm (1 + f x )) ≤ (
∏

x∈A. norm (1 :: ′a) + norm (f x ))
by (intro prod mono norm triangle ineq ballI conjI ) auto

also have norm (1 :: ′a) = 1 by simp
also note insert .IH
also have (

∏
n∈A. 1 + norm (f n)) − 1 + norm (f x ) ∗ (

∏
x∈A. 1 + norm (f

x )) =
(
∏

n∈insert x A. 1 + norm (f n)) − 1
using insert .hyps by (simp add : algebra simps)

finally show ?case by − (simp all add : mult left mono)
qed simp all

lemma convergent prod imp ev nonzero:
fixes f :: nat ⇒ ′a :: {t2 space,comm semiring 1}
assumes convergent prod f
shows eventually (λn. f n 6= 0 ) sequentially
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using assms by (auto simp: eventually at top linorder convergent prod altdef )

lemma convergent prod imp LIMSEQ :
fixes f :: nat ⇒ ′a :: {real normed field}
assumes convergent prod f
shows f −−−−→ 1

proof −
from assms obtain M L where L: (λn.

∏
i≤n. f (i+M )) −−−−→ L

∧
n. n ≥

M =⇒ f n 6= 0 L 6= 0
by (auto simp: convergent prod altdef )

hence L ′: (λn.
∏

i≤Suc n. f (i+M )) −−−−→ L by (subst filterlim sequentially Suc)
have (λn. (

∏
i≤Suc n. f (i+M )) / (

∏
i≤n. f (i+M ))) −−−−→ L / L

using L L ′ by (intro tendsto divide) simp all
also from L have L / L = 1 by simp
also have (λn. (

∏
i≤Suc n. f (i+M )) / (

∏
i≤n. f (i+M ))) = (λn. f (n + Suc

M ))
using assms L by (auto simp: fun eq iff atMost Suc)

finally show ?thesis by (rule LIMSEQ offset)
qed

lemma abs convergent prod imp summable:
fixes f :: nat ⇒ ′a :: real normed div algebra
assumes abs convergent prod f
shows summable (λi . norm (f i − 1 ))

proof −
from assms have convergent (λn.

∏
i≤n. 1 + norm (f i − 1 ))

unfolding abs convergent prod def by (rule convergent prod imp convergent)
then obtain L where L: (λn.

∏
i≤n. 1 + norm (f i − 1 )) −−−−→ L

unfolding convergent def by blast
have convergent (λn.

∑
i≤n. norm (f i − 1 ))

proof (rule Bseq monoseq convergent)
have eventually (λn. (

∏
i≤n. 1 + norm (f i − 1 )) < L + 1 ) sequentially

using L(1 ) by (rule order tendstoD) simp all
hence ∀ F x in sequentially . norm (

∑
i≤x . norm (f i − 1 )) ≤ L + 1

proof eventually elim
case (elim n)
have norm (

∑
i≤n. norm (f i − 1 )) = (

∑
i≤n. norm (f i − 1 ))

unfolding real norm def by (intro abs of nonneg sum nonneg) simp all
also have . . . ≤ (

∏
i≤n. 1 + norm (f i − 1 )) by (rule sum le prod) auto

also have . . . < L + 1 by (rule elim)
finally show ?case by simp

qed
thus Bseq (λn.

∑
i≤n. norm (f i − 1 )) by (rule BfunI )

next
show monoseq (λn.

∑
i≤n. norm (f i − 1 ))

by (rule mono SucI1 ) auto
qed
thus summable (λi . norm (f i − 1 )) by (simp add : summable iff convergent ′)

qed
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lemma summable imp abs convergent prod :
fixes f :: nat ⇒ ′a :: real normed div algebra
assumes summable (λi . norm (f i − 1 ))
shows abs convergent prod f

proof (intro abs convergent prodI Bseq monoseq convergent)
show monoseq (λn.

∏
i≤n. 1 + norm (f i − 1 ))

by (intro mono SucI1 )
(auto simp: atMost Suc algebra simps intro!: mult nonneg nonneg prod nonneg)

next
show Bseq (λn.

∏
i≤n. 1 + norm (f i − 1 ))

proof (rule Bseq eventually mono)
show eventually (λn. norm (

∏
i≤n. 1 + norm (f i − 1 )) ≤

norm (exp (
∑

i≤n. norm (f i − 1 )))) sequentially
by (intro always eventually allI ) (auto simp: abs prod exp sum intro!: prod mono)

next
from assms have (λn.

∑
i≤n. norm (f i − 1 )) −−−−→ (

∑
i . norm (f i − 1 ))

using sums def le by blast
hence (λn. exp (

∑
i≤n. norm (f i − 1 ))) −−−−→ exp (

∑
i . norm (f i − 1 ))

by (rule tendsto exp)
hence convergent (λn. exp (

∑
i≤n. norm (f i − 1 )))

by (rule convergentI )
thus Bseq (λn. exp (

∑
i≤n. norm (f i − 1 )))

by (rule convergent imp Bseq)
qed

qed

theorem abs convergent prod conv summable:
fixes f :: nat ⇒ ′a :: real normed div algebra
shows abs convergent prod f ←→ summable (λi . norm (f i − 1 ))
by (blast intro: abs convergent prod imp summable summable imp abs convergent prod)

lemma abs convergent prod imp LIMSEQ :
fixes f :: nat ⇒ ′a :: {comm ring 1 ,real normed div algebra}
assumes abs convergent prod f
shows f −−−−→ 1

proof −
from assms have summable (λn. norm (f n − 1 ))
by (rule abs convergent prod imp summable)

from summable LIMSEQ zero[OF this] have (λn. f n − 1 ) −−−−→ 0
by (simp add : tendsto norm zero iff )

from tendsto add [OF this tendsto const [of 1 ]] show ?thesis by simp
qed

lemma abs convergent prod imp ev nonzero:
fixes f :: nat ⇒ ′a :: {comm ring 1 ,real normed div algebra}
assumes abs convergent prod f
shows eventually (λn. f n 6= 0 ) sequentially

proof −
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from assms have f −−−−→ 1
by (rule abs convergent prod imp LIMSEQ)

hence eventually (λn. dist (f n) 1 < 1 ) at top
by (auto simp: tendsto iff )

thus ?thesis by eventually elim auto
qed

6.36.4 Ignoring initial segments

lemma convergent prod offset :
assumes convergent prod (λn. f (n + m))
shows convergent prod f

proof −
from assms obtain M L where (λn.

∏
k≤n. f (k + (M + m))) −−−−→ L L 6=

0
by (auto simp: prod defs add .assoc)

thus convergent prod f
unfolding prod defs by blast

qed

lemma abs convergent prod offset :
assumes abs convergent prod (λn. f (n + m))
shows abs convergent prod f
using assms unfolding abs convergent prod def by (rule convergent prod offset)

lemma raw has prod ignore initial segment :
fixes f :: nat ⇒ ′a :: real normed field
assumes raw has prod f M p N ≥ M
obtains q where raw has prod f N q

proof −
have p: (λn.

∏
k≤n. f (k + M )) −−−−→ p and p 6= 0

using assms by (auto simp: raw has prod def )
then have nz :

∧
n. n ≥ M =⇒ f n 6= 0

using assms by (auto simp: raw has prod eq 0 )
define C where C = (

∏
k<N−M . f (k + M ))

from nz have [simp]: C 6= 0
by (auto simp: C def )

from p have (λi .
∏

k≤i + (N−M ). f (k + M )) −−−−→ p
by (rule LIMSEQ ignore initial segment)

also have (λi .
∏

k≤i + (N−M ). f (k + M )) = (λn. C ∗ (
∏

k≤n. f (k + N )))
proof (rule ext , goal cases)
case (1 n)
have {..n+(N−M )} = {..<(N−M )} ∪ {(N−M )..n+(N−M )} by auto
also have (

∏
k∈. . . . f (k + M )) = C ∗ (

∏
k=(N−M )..n+(N−M ). f (k +

M ))
unfolding C def by (rule prod .union disjoint) auto

also have (
∏

k=(N−M )..n+(N−M ). f (k + M )) = (
∏

k≤n. f (k + (N−M )
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+ M ))
by (intro ext prod .reindex bij witness[of λk . k + (N−M ) λk . k − (N−M )])

auto
finally show ?case
using 〈N ≥ M 〉 by (simp add : add ac)

qed
finally have (λn. C ∗ (

∏
k≤n. f (k + N )) / C ) −−−−→ p / C

by (intro tendsto divide tendsto const) auto
hence (λn.

∏
k≤n. f (k + N )) −−−−→ p / C by simp

moreover from 〈p 6= 0 〉 have p / C 6= 0 by simp
ultimately show ?thesis
using raw has prod def that by blast

qed

corollary convergent prod ignore initial segment :
fixes f :: nat ⇒ ′a :: real normed field
assumes convergent prod f
shows convergent prod (λn. f (n + m))
using assms
unfolding convergent prod def
apply clarify
apply (erule tac N=M+m in raw has prod ignore initial segment)
apply (auto simp add : raw has prod def add ac)
done

corollary convergent prod ignore nonzero segment :
fixes f :: nat ⇒ ′a :: real normed field
assumes f : convergent prod f and nz :

∧
i . i ≥ M =⇒ f i 6= 0

shows ∃ p. raw has prod f M p
using convergent prod ignore initial segment [OF f ]
by (metis convergent LIMSEQ iff convergent prod iff convergent le add same cancel2

nz prod defs(1 ) zero order(1 ))

corollary abs convergent prod ignore initial segment :
assumes abs convergent prod f
shows abs convergent prod (λn. f (n + m))
using assms unfolding abs convergent prod def
by (rule convergent prod ignore initial segment)

6.36.5 More elementary properties

theorem abs convergent prod imp convergent prod :
fixes f :: nat ⇒ ′a :: {real normed div algebra,complete space,comm ring 1}
assumes abs convergent prod f
shows convergent prod f

proof −
from assms have eventually (λn. f n 6= 0 ) sequentially
by (rule abs convergent prod imp ev nonzero)

then obtain N where N : f n 6= 0 if n ≥ N for n
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by (auto simp: eventually at top linorder)
let ?P = λn.

∏
i≤n. f (i + N ) and ?Q = λn.

∏
i≤n. 1 + norm (f (i + N )

− 1 )

have Cauchy ?P
proof (rule CauchyI ′, goal cases)
case (1 ε)
from assms have abs convergent prod (λn. f (n + N ))
by (rule abs convergent prod ignore initial segment)

hence Cauchy ?Q
unfolding abs convergent prod def
by (intro convergent Cauchy convergent prod imp convergent)

from CauchyD [OF this 1 ] obtain M where M : norm (?Q m − ?Q n) < ε if
m ≥ M n ≥ M for m n

by blast
show ?case
proof (rule exI [of M ], safe, goal cases)
case (1 m n)
have dist (?P m) (?P n) = norm (?P n − ?P m)
by (simp add : dist norm norm minus commute)

also from 1 have {..n} = {..m} ∪ {m<..n} by auto
hence norm (?P n − ?P m) = norm (?P m ∗ (

∏
k∈{m<..n}. f (k + N ))

− ?P m)
by (subst prod .union disjoint [symmetric]) (auto simp: algebra simps)

also have . . . = norm (?P m ∗ ((
∏

k∈{m<..n}. f (k + N )) − 1 ))
by (simp add : algebra simps)

also have . . . = (
∏

k≤m. norm (f (k + N ))) ∗ norm ((
∏

k∈{m<..n}. f (k
+ N )) − 1 )

by (simp add : norm mult prod norm)
also have . . . ≤ ?Q m ∗ ((

∏
k∈{m<..n}. 1 + norm (f (k + N ) − 1 )) − 1 )

using norm prod minus1 le prod minus1 [of λk . f (k + N ) − 1 {m<..n}]
norm triangle ineq [of 1 f k − 1 for k ]

by (intro mult mono prod mono ballI conjI norm prod minus1 le prod minus1
prod nonneg) auto

also have . . . = ?Q m ∗ (
∏

k∈{m<..n}. 1 + norm (f (k + N ) − 1 )) − ?Q
m

by (simp add : algebra simps)
also have ?Q m ∗ (

∏
k∈{m<..n}. 1 + norm (f (k + N ) − 1 )) =

(
∏

k∈{..m}∪{m<..n}. 1 + norm (f (k + N ) − 1 ))
by (rule prod .union disjoint [symmetric]) auto

also from 1 have {..m}∪{m<..n} = {..n} by auto
also have ?Q n − ?Q m ≤ norm (?Q n − ?Q m) by simp
also from 1 have . . . < ε by (intro M ) auto
finally show ?case .

qed
qed
hence conv : convergent ?P by (rule Cauchy convergent)
then obtain L where L: ?P −−−−→ L
by (auto simp: convergent def )
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have L 6= 0
proof
assume [simp]: L = 0
from tendsto norm[OF L] have limit : (λn.

∏
k≤n. norm (f (k + N ))) −−−−→

0
by (simp add : prod norm)

from assms have (λn. f (n + N )) −−−−→ 1
by (intro abs convergent prod imp LIMSEQ abs convergent prod ignore initial segment)
hence eventually (λn. norm (f (n + N ) − 1 ) < 1 ) sequentially
by (auto simp: tendsto iff dist norm)

then obtain M0 where M0 : norm (f (n + N ) − 1 ) < 1 if n ≥ M0 for n
by (auto simp: eventually at top linorder)

{
fix M assume M : M ≥ M0
with M0 have M : norm (f (n + N ) − 1 ) < 1 if n ≥ M for n using that

by simp

have (λn.
∏

k≤n. 1 − norm (f (k+M+N ) − 1 )) −−−−→ 0
proof (rule tendsto sandwich)

show eventually (λn. (
∏

k≤n. 1 − norm (f (k+M+N ) − 1 )) ≥ 0 )
sequentially

using M by (intro always eventually prod nonneg allI ballI ) (auto intro:
less imp le)

have norm (1 :: ′a) − norm (f (i + M + N ) − 1 ) ≤ norm (f (i + M +
N )) for i

using norm triangle ineq3 [of f (i + M + N ) 1 ] by simp
thus eventually (λn. (

∏
k≤n. 1 − norm (f (k+M+N ) − 1 )) ≤ (

∏
k≤n.

norm (f (k+M+N )))) at top
using M by (intro always eventually allI prod mono ballI conjI ) (auto

intro: less imp le)

define C where C = (
∏

k<M . norm (f (k + N )))
from N have [simp]: C 6= 0 by (auto simp: C def )
from L have (λn. norm (

∏
k≤n+M . f (k + N ))) −−−−→ 0

by (intro LIMSEQ ignore initial segment) (simp add : tendsto norm zero iff )
also have (λn. norm (

∏
k≤n+M . f (k + N ))) = (λn. C ∗ (

∏
k≤n. norm

(f (k + M + N ))))
proof (rule ext , goal cases)
case (1 n)
have {..n+M } = {..<M } ∪ {M ..n+M } by auto
also have norm (

∏
k∈. . . . f (k + N )) = C ∗ norm (

∏
k=M ..n+M . f (k

+ N ))
unfolding C def by (subst prod .union disjoint) (auto simp: norm mult

prod norm)
also have (

∏
k=M ..n+M . f (k + N )) = (

∏
k≤n. f (k + N + M ))

by (intro prod .reindex bij witness[of λi . i + M λi . i − M ]) auto
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finally show ?case by (simp add : add ac prod norm)
qed
finally have (λn. C ∗ (

∏
k≤n. norm (f (k + M + N ))) / C ) −−−−→ 0 /

C
by (intro tendsto divide tendsto const) auto

thus (λn.
∏

k≤n. norm (f (k + M + N ))) −−−−→ 0 by simp
qed simp all

have 1 − (
∑

i . norm (f (i + M + N ) − 1 )) ≤ 0
proof (rule tendsto le)
show eventually (λn. 1 − (

∑
k≤n. norm (f (k+M+N ) − 1 )) ≤

(
∏

k≤n. 1 − norm (f (k+M+N ) − 1 ))) at top
using M by (intro always eventually allI Weierstrass prod ineq) (auto

intro: less imp le)
show (λn.

∏
k≤n. 1 − norm (f (k+M+N ) − 1 )) −−−−→ 0 by fact

show (λn. 1 − (
∑

k≤n. norm (f (k + M + N ) − 1 )))
−−−−→ 1 − (

∑
i . norm (f (i + M + N ) − 1 ))

by (intro tendsto intros summable LIMSEQ ′ summable ignore initial segment

abs convergent prod imp summable assms)
qed simp all
hence (

∑
i . norm (f (i + M + N ) − 1 )) ≥ 1 by simp

also have . . . + (
∑

i<M . norm (f (i + N ) − 1 )) = (
∑

i . norm (f (i + N )
− 1 ))

by (intro suminf split initial segment [symmetric] summable ignore initial segment
abs convergent prod imp summable assms)

finally have 1 + (
∑

i<M . norm (f (i + N ) − 1 )) ≤ (
∑

i . norm (f (i +
N ) − 1 )) by simp

} note ∗ = this

have 1 + (
∑

i . norm (f (i + N ) − 1 )) ≤ (
∑

i . norm (f (i + N ) − 1 ))
proof (rule tendsto le)
show (λM . 1 + (

∑
i<M . norm (f (i + N ) − 1 ))) −−−−→ 1 + (

∑
i . norm

(f (i + N ) − 1 ))
by (intro tendsto intros summable LIMSEQ summable ignore initial segment

abs convergent prod imp summable assms)
show eventually (λM . 1 + (

∑
i<M . norm (f (i + N ) − 1 )) ≤ (

∑
i . norm

(f (i + N ) − 1 ))) at top
using eventually ge at top[of M0 ] by eventually elim (use ∗ in auto)

qed simp all
thus False by simp

qed
with L show ?thesis by (auto simp: prod defs)

qed

lemma raw has prod cases:
fixes f :: nat ⇒ ′a :: {idom,topological semigroup mult ,t2 space}
assumes raw has prod f M p
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obtains i where i<M f i = 0 | p where raw has prod f 0 p
proof −
have (λn.

∏
i≤n. f (i + M )) −−−−→ p p 6= 0

using assms unfolding raw has prod def by blast+
then have (λn. prod f {..<M } ∗ (

∏
i≤n. f (i + M ))) −−−−→ prod f {..<M } ∗

p
by (metis tendsto mult left)

moreover have prod f {..<M } ∗ (
∏

i≤n. f (i + M )) = prod f {..n+M } for n
proof −
have {..n+M } = {..<M } ∪ {M ..n+M }
by auto

then have prod f {..n+M } = prod f {..<M } ∗ prod f {M ..n+M }
by simp (subst prod .union disjoint ; force)

also have . . . = prod f {..<M } ∗ (
∏

i≤n. f (i + M ))
by (metis (mono tags, lifting) add .left neutral atMost atLeast0 prod .shift bounds cl nat ivl)
finally show ?thesis by metis

qed
ultimately have (λn. prod f {..n}) −−−−→ prod f {..<M } ∗ p
by (auto intro: LIMSEQ offset [where k=M ])

then have raw has prod f 0 (prod f {..<M } ∗ p) if ∀ i<M . f i 6= 0
using 〈p 6= 0 〉 assms that by (auto simp: raw has prod def )

then show thesis
using that by blast

qed

corollary convergent prod offset 0 :
fixes f :: nat ⇒ ′a :: {idom,topological semigroup mult ,t2 space}
assumes convergent prod f

∧
i . f i 6= 0

shows ∃ p. raw has prod f 0 p
using assms convergent prod def raw has prod cases by blast

lemma prodinf eq lim:
fixes f :: nat ⇒ ′a :: {idom,topological semigroup mult ,t2 space}
assumes convergent prod f

∧
i . f i 6= 0

shows prodinf f = lim (λn.
∏

i≤n. f i)
using assms convergent prod offset 0 [OF assms]
by (simp add : prod defs lim def ) (metis (no types) assms(1 ) convergent prod to zero iff )

lemma has prod one[simp, intro]: (λn. 1 ) has prod 1
unfolding prod defs by auto

lemma convergent prod one[simp, intro]: convergent prod (λn. 1 )
unfolding prod defs by auto

lemma prodinf cong : (
∧
n. f n = g n) =⇒ prodinf f = prodinf g

by presburger

lemma convergent prod cong :
fixes f g :: nat ⇒ ′a::{field ,topological semigroup mult ,t2 space}
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assumes ev : eventually (λx . f x = g x ) sequentially and f :
∧
i . f i 6= 0 and g :∧

i . g i 6= 0
shows convergent prod f = convergent prod g

proof −
from assms obtain N where N : ∀n≥N . f n = g n
by (auto simp: eventually at top linorder)

define C where C = (
∏

k<N . f k / g k)
with g have C 6= 0
by (simp add : f )

have ∗: eventually (λn. prod f {..n} = C ∗ prod g {..n}) sequentially
using eventually ge at top[of N ]

proof eventually elim
case (elim n)
then have {..n} = {..<N } ∪ {N ..n}
by auto

also have prod f . . . = prod f {..<N } ∗ prod f {N ..n}
by (intro prod .union disjoint) auto

also from N have prod f {N ..n} = prod g {N ..n}
by (intro prod .cong) simp all
also have prod f {..<N } ∗ prod g {N ..n} = C ∗ (prod g {..<N } ∗ prod g

{N ..n})
unfolding C def by (simp add : g prod dividef )

also have prod g {..<N } ∗ prod g {N ..n} = prod g ({..<N } ∪ {N ..n})
by (intro prod .union disjoint [symmetric]) auto

also from elim have {..<N } ∪ {N ..n} = {..n}
by auto

finally show prod f {..n} = C ∗ prod g {..n} .
qed
then have cong : convergent (λn. prod f {..n}) = convergent (λn. C ∗ prod g
{..n})

by (rule convergent cong)
show ?thesis
proof
assume cf : convergent prod f
then have ¬ (λn. prod g {..n}) −−−−→ 0
using tendsto mult left ∗ convergent prod to zero iff f filterlim cong by fastforce
then show convergent prod g
by (metis convergent mult const iff 〈C 6= 0 〉 cong cf convergent LIMSEQ iff

convergent prod iff convergent convergent prod imp convergent g)
next
assume cg : convergent prod g
have ∃ a. C ∗ a 6= 0 ∧ (λn. prod g {..n}) −−−−→ a

by (metis (no types) 〈C 6= 0 〉 cg convergent prod iff nz lim divide eq 0 iff g
nonzero mult div cancel right)

then show convergent prod f
using ∗ tendsto mult left filterlim cong
by (fastforce simp add : convergent prod iff nz lim f )

qed
qed
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lemma has prod finite:
fixes f :: nat ⇒ ′a::{semidom,t2 space}
assumes [simp]: finite N
and f :

∧
n. n /∈ N =⇒ f n = 1

shows f has prod (
∏

n∈N . f n)
proof −
have eq : prod f {..n + Suc (Max N )} = prod f N for n
proof (rule prod .mono neutral right)
show N ⊆ {..n + Suc (Max N )}
by (auto simp: le Suc eq trans le add2 )

show ∀ i∈{..n + Suc (Max N )} − N . f i = 1
using f by blast

qed auto
show ?thesis
proof (cases ∀n∈N . f n 6= 0 )
case True
then have prod f N 6= 0
by simp

moreover have (λn. prod f {..n}) −−−−→ prod f N
by (rule LIMSEQ offset [of Suc (Max N )]) (simp add : eq atLeast0LessThan

del : add Suc right)
ultimately show ?thesis
by (simp add : raw has prod def has prod def )

next
case False
then obtain k where k ∈ N f k = 0
by auto

let ?Z = {n ∈ N . f n = 0}
have maxge: Max ?Z ≥ n if f n = 0 for n
using Max ge [of ?Z ] 〈finite N 〉 〈f n = 0 〉

by (metis (mono tags) Collect mem eq f finite Collect conjI mem Collect eq
zero neq one)

let ?q = prod f {Suc (Max ?Z )..Max N }
have [simp]: ?q 6= 0
using maxge Suc n not le n le trans by force

have eq : (
∏

i≤n + Max N . f (Suc (i + Max ?Z ))) = ?q for n
proof −
have (

∏
i≤n + Max N . f (Suc (i + Max ?Z ))) = prod f {Suc (Max ?Z )..n

+ Max N + Suc (Max ?Z )}
proof (rule prod .reindex cong [where l = λi . i + Suc (Max ?Z ), THEN

sym])
show {Suc (Max ?Z )..n + Max N + Suc (Max ?Z )} = (λi . i + Suc (Max

?Z )) ‘ {..n + Max N }
using le Suc ex by fastforce

qed (auto simp: inj on def )
also have . . . = ?q
by (rule prod .mono neutral right)

(use Max .coboundedI [OF 〈finite N 〉] f in 〈force+〉)
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finally show ?thesis .
qed
have q : raw has prod f (Suc (Max ?Z )) ?q
proof (simp add : raw has prod def )
show (λn.

∏
i≤n. f (Suc (i + Max ?Z ))) −−−−→ ?q

by (rule LIMSEQ offset [of (Max N )]) (simp add : eq)
qed
show ?thesis
unfolding has prod def

proof (intro disjI2 exI conjI )
show prod f N = 0
using 〈f k = 0 〉 〈k ∈ N 〉 〈finite N 〉 prod zero by blast

show f (Max ?Z ) = 0
using Max in [of ?Z ] 〈finite N 〉 〈f k = 0 〉 〈k ∈ N 〉 by auto

qed (use q in auto)
qed

qed

corollary has prod 0 :
fixes f :: nat ⇒ ′a::{semidom,t2 space}
assumes

∧
n. f n = 1

shows f has prod 1
by (simp add : assms has prod cong)

lemma prodinf zero[simp]: prodinf (λn. 1 :: ′a::real normed field) = 1
using has prod unique by force

lemma convergent prod finite:
fixes f :: nat ⇒ ′a::{idom,t2 space}
assumes finite N

∧
n. n /∈ N =⇒ f n = 1

shows convergent prod f
proof −
have ∃n p. raw has prod f n p
using assms has prod def has prod finite by blast

then show ?thesis
by (simp add : convergent prod def )

qed

lemma has prod If finite set :
fixes f :: nat ⇒ ′a::{idom,t2 space}
shows finite A =⇒ (λr . if r ∈ A then f r else 1 ) has prod (

∏
r∈A. f r)

using has prod finite[of A (λr . if r ∈ A then f r else 1 )]
by simp

lemma has prod If finite:
fixes f :: nat ⇒ ′a::{idom,t2 space}
shows finite {r . P r} =⇒ (λr . if P r then f r else 1 ) has prod (

∏
r | P r . f r)

using has prod If finite set [of {r . P r}] by simp
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lemma convergent prod If finite set [simp, intro]:
fixes f :: nat ⇒ ′a::{idom,t2 space}
shows finite A =⇒ convergent prod (λr . if r ∈ A then f r else 1 )
by (simp add : convergent prod finite)

lemma convergent prod If finite[simp, intro]:
fixes f :: nat ⇒ ′a::{idom,t2 space}
shows finite {r . P r} =⇒ convergent prod (λr . if P r then f r else 1 )
using convergent prod def has prod If finite has prod def by fastforce

lemma has prod single:
fixes f :: nat ⇒ ′a::{idom,t2 space}
shows (λr . if r = i then f r else 1 ) has prod f i
using has prod If finite[of λr . r = i ] by simp

context
fixes f :: nat ⇒ ′a :: real normed field

begin

lemma convergent prod imp has prod :
assumes convergent prod f
shows ∃ p. f has prod p

proof −
obtain M p where p: raw has prod f M p
using assms convergent prod def by blast

then have p 6= 0
using raw has prod nonzero by blast

with p have fnz : f i 6= 0 if i ≥ M for i
using raw has prod eq 0 that by blast

define C where C = (
∏

n<M . f n)
show ?thesis
proof (cases ∀n≤M . f n 6= 0 )
case True
then have C 6= 0
by (simp add : C def )

then show ?thesis
by (meson True assms convergent prod offset 0 fnz has prod def nat le linear)

next
case False
let ?N = GREATEST n. f n = 0
have 0 : f ?N = 0
using fnz False
by (metis (mono tags, lifting) GreatestI ex nat nat le linear)

have f i 6= 0 if i > ?N for i
by (metis (mono tags, lifting) Greatest le nat fnz leD linear that)

then have ∃ p. raw has prod f (Suc ?N ) p
using assms by (auto simp: intro!: convergent prod ignore nonzero segment)

then show ?thesis
unfolding has prod def using 0 by blast
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qed
qed

lemma convergent prod has prod [intro]:
shows convergent prod f =⇒ f has prod (prodinf f )
unfolding prodinf def
by (metis convergent prod imp has prod has prod unique theI ′)

lemma convergent prod LIMSEQ :
shows convergent prod f =⇒ (λn.

∏
i≤n. f i) −−−−→ prodinf f

by (metis convergent LIMSEQ iff convergent prod has prod convergent prod imp convergent

convergent prod to zero iff raw has prod eq 0 has prod def prodinf eq lim zero le)

theorem has prod iff : f has prod x ←→ convergent prod f ∧ prodinf f = x
proof
assume f has prod x
then show convergent prod f ∧ prodinf f = x
apply safe
using convergent prod def has prod def apply blast
using has prod unique by blast

qed auto

lemma convergent prod has prod iff : convergent prod f ←→ f has prod prodinf f
by (auto simp: has prod iff convergent prod has prod)

lemma prodinf finite:
assumes N : finite N
and f :

∧
n. n /∈ N =⇒ f n = 1

shows prodinf f = (
∏

n∈N . f n)
using has prod finite[OF assms, THEN has prod unique] by simp

end

6.36.6 Infinite products on ordered topological monoids

lemma LIMSEQ prod 0 :
fixes f :: nat ⇒ ′a::{semidom,topological space}
assumes f i = 0
shows (λn. prod f {..n}) −−−−→ 0

proof (subst tendsto cong)
show ∀ F n in sequentially . prod f {..n} = 0
proof
show prod f {..n} = 0 if n ≥ i for n
using that assms by auto

qed
qed auto

lemma LIMSEQ prod nonneg :
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fixes f :: nat ⇒ ′a::{linordered semidom,linorder topology}
assumes 0 :

∧
n. 0 ≤ f n and a: (λn. prod f {..n}) −−−−→ a

shows a ≥ 0
by (simp add : 0 prod nonneg LIMSEQ le const [OF a])

context
fixes f :: nat ⇒ ′a::{linordered semidom,linorder topology}

begin

lemma has prod le:
assumes f : f has prod a and g : g has prod b and le:

∧
n. 0 ≤ f n ∧ f n ≤ g n

shows a ≤ b
proof (cases a=0 ∨ b=0 )
case True
then show ?thesis
proof
assume [simp]: a=0
have b ≥ 0
proof (rule LIMSEQ prod nonneg)
show (λn. prod g {..n}) −−−−→ b
using g by (auto simp: has prod def raw has prod def LIMSEQ prod 0 )

qed (use le order trans in auto)
then show ?thesis
by auto

next
assume [simp]: b=0
then obtain i where g i = 0
using g by (auto simp: prod defs)

then have f i = 0
using antisym le by force

then have a=0
using f by (auto simp: prod defs LIMSEQ prod 0 LIMSEQ unique)

then show ?thesis
by auto

qed
next
case False
then show ?thesis
using assms
unfolding has prod def raw has prod def
by (force simp: LIMSEQ prod 0 intro!: LIMSEQ le prod mono)

qed

lemma prodinf le:
assumes f : f has prod a and g : g has prod b and le:

∧
n. 0 ≤ f n ∧ f n ≤ g n

shows prodinf f ≤ prodinf g
using has prod le [OF assms] has prod unique f g by blast
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end

lemma prod le prodinf :
fixes f :: nat ⇒ ′a::{linordered idom,linorder topology}
assumes f has prod a

∧
i . 0 ≤ f i

∧
i . i≥n =⇒ 1 ≤ f i

shows prod f {..<n} ≤ prodinf f
by(rule has prod le[OF has prod If finite set ]) (use assms has prod unique in

auto)

lemma prodinf nonneg :
fixes f :: nat ⇒ ′a::{linordered idom,linorder topology}
assumes f has prod a

∧
i . 1 ≤ f i

shows 1 ≤ prodinf f
using prod le prodinf [of f a 0 ] assms
by (metis order trans prod ge 1 zero le one)

lemma prodinf le const :
fixes f :: nat ⇒ real
assumes convergent prod f

∧
n. prod f {..<n} ≤ x

shows prodinf f ≤ x
by (metis lessThan Suc atMost assms convergent prod LIMSEQ LIMSEQ le const2 )

lemma prodinf eq one iff [simp]:
fixes f :: nat ⇒ real
assumes f : convergent prod f and ge1 :

∧
n. 1 ≤ f n

shows prodinf f = 1 ←→ (∀n. f n = 1 )
proof
assume prodinf f = 1
then have (λn.

∏
i<n. f i) −−−−→ 1

using convergent prod LIMSEQ [of f ] assms by (simp add : LIMSEQ lessThan iff atMost)
then have

∧
i . (

∏
n∈{i}. f n) ≤ 1

proof (rule LIMSEQ le const)
have 1 ≤ prod f n for n
by (simp add : ge1 prod ge 1 )

have prod f {..<n} = 1 for n
by (metis 〈

∧
n. 1 ≤ prod f n〉 〈prodinf f = 1 〉 antisym f convergent prod has prod

ge1 order trans prod le prodinf zero le one)
then have (

∏
n∈{i}. f n) ≤ prod f {..<n} if n ≥ Suc i for i n

by (metis mult .left neutral order refl prod .cong prod .neutral const prod .lessThan Suc)
then show ∃N . ∀n≥N . (

∏
n∈{i}. f n) ≤ prod f {..<n} for i

by blast
qed
with ge1 show ∀n. f n = 1
by (auto intro!: antisym)

qed (metis prodinf zero fun eq iff )

lemma prodinf pos iff :
fixes f :: nat ⇒ real
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assumes convergent prod f
∧
n. 1 ≤ f n

shows 1 < prodinf f ←→ (∃ i . 1 < f i)
using prod le prodinf [of f 1 ] prodinf eq one iff
by (metis convergent prod has prod assms less le prodinf nonneg)

lemma less 1 prodinf2 :
fixes f :: nat ⇒ real
assumes convergent prod f

∧
n. 1 ≤ f n 1 < f i

shows 1 < prodinf f
proof −
have 1 < (

∏
n<Suc i . f n)

using assms by (intro less 1 prod2 [where i=i ]) auto
also have . . . ≤ prodinf f
by (intro prod le prodinf ) (use assms order trans zero le one in 〈blast+〉)

finally show ?thesis .
qed

lemma less 1 prodinf :
fixes f :: nat ⇒ real
shows [[convergent prod f ;

∧
n. 1 < f n]] =⇒ 1 < prodinf f

by (intro less 1 prodinf2 [where i=1 ]) (auto intro: less imp le)

lemma prodinf nonzero:
fixes f :: nat ⇒ ′a :: {idom,topological semigroup mult ,t2 space}
assumes convergent prod f

∧
i . f i 6= 0

shows prodinf f 6= 0
by (metis assms convergent prod offset 0 has prod unique raw has prod def has prod def )

lemma less 0 prodinf :
fixes f :: nat ⇒ real
assumes f : convergent prod f and 0 :

∧
i . f i > 0

shows 0 < prodinf f
proof −
have prodinf f 6= 0
by (metis assms less irrefl prodinf nonzero)

moreover have 0 < (
∏

n<i . f n) for i
by (simp add : 0 prod pos)

then have prodinf f ≥ 0
using convergent prod LIMSEQ [OF f ] LIMSEQ prod nonneg 0 less le by blast

ultimately show ?thesis
by auto

qed

lemma prod less prodinf2 :
fixes f :: nat ⇒ real
assumes f : convergent prod f and 1 :

∧
m. m≥n =⇒ 1 ≤ f m and 0 :

∧
m. 0 <

f m and i : n ≤ i 1 < f i
shows prod f {..<n} < prodinf f

proof −
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have prod f {..<n} ≤ prod f {..<i}
by (rule prod mono2 ) (use assms less le in auto)

then have prod f {..<n} < f i ∗ prod f {..<i}
using mult less le imp less[of 1 f i prod f {..<n} prod f {..<i}] assms
by (simp add : prod pos)

moreover have prod f {..<Suc i} ≤ prodinf f
using prod le prodinf [of f Suc i ]
by (meson 0 1 Suc leD convergent prod has prod f 〈n ≤ i 〉 le trans less eq real def )
ultimately show ?thesis
by (metis le less trans mult .commute not le prod .lessThan Suc)

qed

lemma prod less prodinf :
fixes f :: nat ⇒ real
assumes f : convergent prod f and 1 :

∧
m. m≥n =⇒ 1 < f m and 0 :

∧
m. 0 <

f m
shows prod f {..<n} < prodinf f
by (meson 0 1 f le less prod less prodinf2 )

lemma raw has prodI bounded :
fixes f :: nat ⇒ real
assumes pos:

∧
n. 1 ≤ f n

and le:
∧
n. (

∏
i<n. f i) ≤ x

shows ∃ p. raw has prod f 0 p
unfolding raw has prod def add 0 right

proof (rule exI LIMSEQ incseq SUP conjI )+
show bdd above (range (λn. prod f {..n}))
by (metis bdd aboveI2 le lessThan Suc atMost)

then have (SUP i . prod f {..i}) > 0
by (metis UNIV I cSUP upper less le trans pos prod pos zero less one)

then show (SUP i . prod f {..i}) 6= 0
by auto

show incseq (λn. prod f {..n})
using pos order trans [OF zero le one] by (auto simp: mono def intro!: prod mono2 )

qed

lemma convergent prodI nonneg bounded :
fixes f :: nat ⇒ real
assumes

∧
n. 1 ≤ f n

∧
n. (

∏
i<n. f i) ≤ x

shows convergent prod f
using convergent prod def raw has prodI bounded [OF assms] by blast

6.36.7 Infinite products on topological spaces

context
fixes f g :: nat ⇒ ′a::{t2 space,topological semigroup mult ,idom}

begin

lemma raw has prod mult : [[raw has prod f M a; raw has prod g M b]] =⇒ raw has prod
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(λn. f n ∗ g n) M (a ∗ b)
by (force simp add : prod .distrib tendsto mult raw has prod def )

lemma has prod mult nz : [[f has prod a; g has prod b; a 6= 0 ; b 6= 0 ]] =⇒ (λn. f n
∗ g n) has prod (a ∗ b)
by (simp add : raw has prod mult has prod def )

end

context
fixes f g :: nat ⇒ ′a::real normed field

begin

lemma has prod mult :
assumes f : f has prod a and g : g has prod b
shows (λn. f n ∗ g n) has prod (a ∗ b)
using f [unfolded has prod def ]

proof (elim disjE exE conjE )
assume f0 : raw has prod f 0 a
show ?thesis
using g [unfolded has prod def ]

proof (elim disjE exE conjE )
assume g0 : raw has prod g 0 b
with f0 show ?thesis
by (force simp add : has prod def prod .distrib tendsto mult raw has prod def )

next
fix j q
assume b = 0 and g j = 0 and q : raw has prod g (Suc j ) q
obtain p where p: raw has prod f (Suc j ) p
using f0 raw has prod ignore initial segment by blast

then have Ex (raw has prod (λn. f n ∗ g n) (Suc j ))
using q raw has prod mult by blast

then show ?thesis
using 〈b = 0 〉 〈g j = 0 〉 has prod 0 iff by fastforce

qed
next
fix i p
assume a = 0 and f i = 0 and p: raw has prod f (Suc i) p
show ?thesis
using g [unfolded has prod def ]

proof (elim disjE exE conjE )
assume g0 : raw has prod g 0 b
obtain q where q : raw has prod g (Suc i) q
using g0 raw has prod ignore initial segment by blast

then have Ex (raw has prod (λn. f n ∗ g n) (Suc i))
using raw has prod mult p by blast

then show ?thesis
using 〈a = 0 〉 〈f i = 0 〉 has prod 0 iff by fastforce
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next
fix j q
assume b = 0 and g j = 0 and q : raw has prod g (Suc j ) q
obtain p ′ where p ′: raw has prod f (Suc (max i j )) p ′

by (metis raw has prod ignore initial segment max Suc Suc max def p)
moreover
obtain q ′ where q ′: raw has prod g (Suc (max i j )) q ′

by (metis raw has prod ignore initial segment max .cobounded2 max Suc Suc
q)

ultimately show ?thesis
using 〈b = 0 〉 by (simp add : has prod def ) (metis 〈f i = 0 〉 〈g j = 0 〉

raw has prod mult max def )
qed

qed

lemma convergent prod mult :
assumes f : convergent prod f and g : convergent prod g
shows convergent prod (λn. f n ∗ g n)
unfolding convergent prod def

proof −
obtain M p N q where p: raw has prod f M p and q : raw has prod g N q
using convergent prod def f g by blast+

then obtain p ′ q ′ where p ′: raw has prod f (max M N ) p ′ and q ′: raw has prod
g (max M N ) q ′

by (meson raw has prod ignore initial segment max .cobounded1 max .cobounded2 )
then show ∃M p. raw has prod (λn. f n ∗ g n) M p
using raw has prod mult by blast

qed

lemma prodinf mult : convergent prod f =⇒ convergent prod g =⇒ prodinf f ∗
prodinf g = (

∏
n. f n ∗ g n)

by (intro has prod unique has prod mult convergent prod has prod)

end

context
fixes f :: ′i ⇒ nat ⇒ ′a::real normed field
and I :: ′i set

begin

lemma has prod prod : (
∧
i . i ∈ I =⇒ (f i) has prod (x i)) =⇒ (λn.

∏
i∈I . f i n)

has prod (
∏

i∈I . x i)
by (induct I rule: infinite finite induct) (auto intro!: has prod mult)

lemma prodinf prod : (
∧
i . i ∈ I =⇒ convergent prod (f i)) =⇒ (

∏
n.

∏
i∈I . f i

n) = (
∏

i∈I .
∏

n. f i n)
using has prod unique[OF has prod prod , OF convergent prod has prod ] by simp

lemma convergent prod prod : (
∧
i . i ∈ I =⇒ convergent prod (f i)) =⇒ conver-
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gent prod (λn.
∏

i∈I . f i n)
using convergent prod has prod iff has prod prod prodinf prod by force

end

6.36.8 Infinite summability on real normed fields

context
fixes f :: nat ⇒ ′a::real normed field

begin

lemma raw has prod Suc iff : raw has prod f M (a ∗ f M ) ←→ raw has prod (λn.
f (Suc n)) M a ∧ f M 6= 0
proof −
have raw has prod f M (a ∗ f M ) ←→ (λi .

∏
j≤Suc i . f (j+M )) −−−−→ a ∗ f

M ∧ a ∗ f M 6= 0
by (subst filterlim sequentially Suc) (simp add : raw has prod def )

also have . . . ←→ (λi . (
∏

j≤i . f (Suc j + M )) ∗ f M ) −−−−→ a ∗ f M ∧ a ∗ f
M 6= 0

by (simp add : ac simps atMost Suc eq insert 0 image Suc atMost prod .atLeast1 atMost eq
lessThan Suc atMost

del : prod .cl ivl Suc)
also have . . . ←→ raw has prod (λn. f (Suc n)) M a ∧ f M 6= 0
proof safe
assume tends: (λi . (

∏
j≤i . f (Suc j + M )) ∗ f M ) −−−−→ a ∗ f M and 0 : a

∗ f M 6= 0
with tendsto divide[OF tends tendsto const , of f M ]
show raw has prod (λn. f (Suc n)) M a
by (simp add : raw has prod def )

qed (auto intro: tendsto mult right simp: raw has prod def )
finally show ?thesis .

qed

lemma has prod Suc iff :
assumes f 0 6= 0 shows (λn. f (Suc n)) has prod a ←→ f has prod (a ∗ f 0 )

proof (cases a = 0 )
case True
then show ?thesis
proof (simp add : has prod def , safe)
fix i x
assume f (Suc i) = 0 and raw has prod (λn. f (Suc n)) (Suc i) x
then obtain y where raw has prod f (Suc (Suc i)) y

by (metis (no types) raw has prod eq 0 Suc n not le n raw has prod Suc iff
raw has prod ignore initial segment raw has prod nonzero linear)

then show ∃ i . f i = 0 ∧ Ex (raw has prod f (Suc i))
using 〈f (Suc i) = 0 〉 by blast

next
fix i x
assume f i = 0 and x : raw has prod f (Suc i) x
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then obtain j where j : i = Suc j
by (metis assms not0 implies Suc)

moreover have ∃ y . raw has prod (λn. f (Suc n)) i y
using x by (auto simp: raw has prod def )

then show ∃ i . f (Suc i) = 0 ∧ Ex (raw has prod (λn. f (Suc n)) (Suc i))
using 〈f i = 0 〉 j by blast

qed
next
case False
then show ?thesis
by (auto simp: has prod def raw has prod Suc iff assms)

qed

lemma convergent prod Suc iff [simp]:
shows convergent prod (λn. f (Suc n)) = convergent prod f

proof
assume convergent prod f
then obtain M L where M nz :∀n≥M . f n 6= 0 and

M L:(λn.
∏

i≤n. f (i + M )) −−−−→ L and L 6= 0
unfolding convergent prod altdef by auto

have (λn.
∏

i≤n. f (Suc (i + M ))) −−−−→ L / f M
proof −
have (λn.

∏
i∈{0 ..Suc n}. f (i + M )) −−−−→ L

using M L
apply (subst (asm) filterlim sequentially Suc[symmetric])
using atLeast0AtMost by auto

then have (λn. f M ∗ (
∏

i∈{0 ..n}. f (Suc (i + M )))) −−−−→ L
apply (subst (asm) prod .atLeast0 atMost Suc shift)
by simp

then have (λn. (
∏

i∈{0 ..n}. f (Suc (i + M )))) −−−−→ L/f M
apply (drule tac tendsto divide)
using M nz [rule format ,of M ,simplified ] by auto

then show ?thesis unfolding atLeast0AtMost .
qed
then show convergent prod (λn. f (Suc n)) unfolding convergent prod altdef
apply (rule tac exI [where x=M ])
apply (rule tac exI [where x=L/f M ])
using M nz 〈L6=0 〉 by auto

next
assume convergent prod (λn. f (Suc n))
then obtain M where ∃L. (∀n≥M . f (Suc n) 6= 0 ) ∧ (λn.

∏
i≤n. f (Suc (i

+ M ))) −−−−→ L ∧ L 6= 0
unfolding convergent prod altdef by auto

then show convergent prod f unfolding convergent prod altdef
apply (rule tac exI [where x=Suc M ])
using Suc le D by auto

qed

lemma raw has prod inverse:
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assumes raw has prod f M a shows raw has prod (λn. inverse (f n)) M (inverse
a)
using assms unfolding raw has prod def by (auto dest : tendsto inverse simp:

prod inversef [symmetric])

lemma has prod inverse:
assumes f has prod a shows (λn. inverse (f n)) has prod (inverse a)

using assms raw has prod inverse unfolding has prod def by auto

lemma convergent prod inverse:
assumes convergent prod f
shows convergent prod (λn. inverse (f n))
using assms unfolding convergent prod def by (blast intro: raw has prod inverse

elim: )

end

context
fixes f :: nat ⇒ ′a::real normed field

begin

lemma raw has prod Suc iff ′: raw has prod f M a ←→ raw has prod (λn. f (Suc
n)) M (a / f M ) ∧ f M 6= 0
by (metis raw has prod eq 0 add .commute add .left neutral raw has prod Suc iff

raw has prod nonzero le add1 nonzero mult div cancel right times divide eq left)

lemma has prod divide: f has prod a =⇒ g has prod b =⇒ (λn. f n / g n) has prod
(a / b)
unfolding divide inverse by (intro has prod inverse has prod mult)

lemma convergent prod divide:
assumes f : convergent prod f and g : convergent prod g
shows convergent prod (λn. f n / g n)
using f g has prod divide has prod iff by blast

lemma prodinf divide: convergent prod f =⇒ convergent prod g =⇒ prodinf f /
prodinf g = (

∏
n. f n / g n)

by (intro has prod unique has prod divide convergent prod has prod)

lemma prodinf inverse: convergent prod f =⇒ (
∏

n. inverse (f n)) = inverse (
∏

n.
f n)
by (intro has prod unique [symmetric] has prod inverse convergent prod has prod)

lemma has prod Suc imp:
assumes (λn. f (Suc n)) has prod a
shows f has prod (a ∗ f 0 )

proof −
have f has prod (a ∗ f 0 ) when raw has prod (λn. f (Suc n)) 0 a
apply (cases f 0=0 )
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using that unfolding has prod def raw has prod Suc
by (auto simp add : raw has prod Suc iff )

moreover have f has prod (a ∗ f 0 ) when
(∃ i q . a = 0 ∧ f (Suc i) = 0 ∧ raw has prod (λn. f (Suc n)) (Suc i) q)

proof −
from that
obtain i q where a = 0 f (Suc i) = 0 raw has prod (λn. f (Suc n)) (Suc i) q
by auto

then show ?thesis unfolding has prod def
by (auto intro!:exI [where x=Suc i ] simp:raw has prod Suc)

qed
ultimately show f has prod (a ∗ f 0 ) using assms unfolding has prod def by

auto
qed

lemma has prod iff shift :
assumes

∧
i . i < n =⇒ f i 6= 0

shows (λi . f (i + n)) has prod a ←→ f has prod (a ∗ (
∏

i<n. f i))
using assms

proof (induct n arbitrary : a)
case 0
then show ?case by simp

next
case (Suc n)
then have (λi . f (Suc i + n)) has prod a ←→ (λi . f (i + n)) has prod (a ∗ f

n)
by (subst has prod Suc iff ) auto

with Suc show ?case
by (simp add : ac simps)

qed

corollary has prod iff shift ′:
assumes

∧
i . i < n =⇒ f i 6= 0

shows (λi . f (i + n)) has prod (a / (
∏

i<n. f i)) ←→ f has prod a
by (simp add : assms has prod iff shift)

lemma has prod one iff shift :
assumes

∧
i . i < n =⇒ f i = 1

shows (λi . f (i+n)) has prod a ←→ (λi . f i) has prod a
by (simp add : assms has prod iff shift)

lemma convergent prod iff shift [simp]:
shows convergent prod (λi . f (i + n)) ←→ convergent prod f
apply safe
using convergent prod offset apply blast
using convergent prod ignore initial segment convergent prod def by blast

lemma has prod split initial segment :
assumes f has prod a

∧
i . i < n =⇒ f i 6= 0
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shows (λi . f (i + n)) has prod (a / (
∏

i<n. f i))
using assms has prod iff shift ′ by blast

lemma prodinf divide initial segment :
assumes convergent prod f

∧
i . i < n =⇒ f i 6= 0

shows (
∏

i . f (i + n)) = (
∏

i . f i) / (
∏

i<n. f i)
by (rule has prod unique[symmetric]) (auto simp: assms has prod iff shift)

lemma prodinf split initial segment :
assumes convergent prod f

∧
i . i < n =⇒ f i 6= 0

shows prodinf f = (
∏

i . f (i + n)) ∗ (
∏

i<n. f i)
by (auto simp add : assms prodinf divide initial segment)

lemma prodinf split head :
assumes convergent prod f f 0 6= 0
shows (

∏
n. f (Suc n)) = prodinf f / f 0

using prodinf split initial segment [of 1 ] assms by simp

end

context
fixes f :: nat ⇒ ′a::real normed field

begin

lemma convergent prod inverse iff [simp]: convergent prod (λn. inverse (f n))←→
convergent prod f
by (auto dest : convergent prod inverse)

lemma convergent prod const iff [simp]:
fixes c :: ′a :: {real normed field}
shows convergent prod (λ . c) ←→ c = 1

proof
assume convergent prod (λ . c)
then show c = 1
using convergent prod imp LIMSEQ LIMSEQ unique by blast

next
assume c = 1
then show convergent prod (λ . c)
by auto

qed

lemma has prod power : f has prod a =⇒ (λi . f i ˆ n) has prod (a ˆ n)
by (induction n) (auto simp: has prod mult)

lemma convergent prod power : convergent prod f =⇒ convergent prod (λi . f i ˆ
n)
by (induction n) (auto simp: convergent prod mult)

lemma prodinf power : convergent prod f =⇒ prodinf (λi . f i ˆ n) = prodinf f ˆ n
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by (metis has prod unique convergent prod imp has prod has prod power)

end

6.36.9 Exponentials and logarithms

context
fixes f :: nat ⇒ ′a::{real normed field ,banach}

begin

lemma sums imp has prod exp:
assumes f sums s
shows raw has prod (λi . exp (f i)) 0 (exp s)
using assms continuous on exp [of UNIV λx :: ′a. x ]
using continuous on tendsto compose [of UNIV exp (λn. sum f {..n}) s]
by (simp add : prod defs sums def le exp sum)

lemma convergent prod exp:
assumes summable f
shows convergent prod (λi . exp (f i))
using sums imp has prod exp assms unfolding summable def convergent prod def

by blast

lemma prodinf exp:
assumes summable f
shows prodinf (λi . exp (f i)) = exp (suminf f )

proof −
have f sums suminf f
using assms by blast

then have (λi . exp (f i)) has prod exp (suminf f )
by (simp add : has prod def sums imp has prod exp)

then show ?thesis
by (rule has prod unique [symmetric])

qed

end

theorem convergent prod iff summable real :
fixes a :: nat ⇒ real
assumes

∧
n. a n > 0

shows convergent prod (λk . 1 + a k) ←→ summable a (is ?lhs = ?rhs)
proof
assume ?lhs
then obtain p where raw has prod (λk . 1 + a k) 0 p
by (metis assms add less same cancel2 convergent prod offset 0 not one less zero)
then have to p: (λn.

∏
k≤n. 1 + a k) −−−−→ p

by (auto simp: raw has prod def )
moreover have le: (

∑
k≤n. a k) ≤ (

∏
k≤n. 1 + a k) for n

by (rule sum le prod) (use assms less le in force)
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have (
∏

k≤n. 1 + a k) ≤ p for n
proof (rule incseq le [OF to p])
show incseq (λn.

∏
k≤n. 1 + a k)

using assms by (auto simp: mono def order .strict implies order intro!:
prod mono2 )
qed
with le have (

∑
k≤n. a k) ≤ p for n

by (metis order trans)
with assms bounded imp summable show ?rhs
by (metis not less order .asym)

next
assume R: ?rhs
have (

∏
k≤n. 1 + a k) ≤ exp (suminf a) for n

proof −
have (

∏
k≤n. 1 + a k) ≤ exp (

∑
k≤n. a k) for n

by (rule prod le exp sum) (use assms less le in force)
moreover have exp (

∑
k≤n. a k) ≤ exp (suminf a) for n

unfolding exp le cancel iff
by (meson sum le suminf R assms finite atMost less eq real def )

ultimately show ?thesis
by (meson order trans)

qed
then obtain L where L: (λn.

∏
k≤n. 1 + a k) −−−−→ L

by (metis assms bounded imp convergent prod convergent prod iff nz lim le add same cancel1
le add same cancel2 less le not le zero le one)
moreover have L 6= 0
proof
assume L = 0
with L have (λn.

∏
k≤n. 1 + a k) −−−−→ 0

by simp
moreover have (

∏
k≤n. 1 + a k) > 1 for n

by (simp add : assms less 1 prod)
ultimately show False
by (meson Lim bounded2 not one le zero less imp le)

qed
ultimately show ?lhs
using assms convergent prod iff nz lim
by (metis add less same cancel1 less le not le zero less one)

qed

lemma exp suminf prodinf real :
fixes f :: nat ⇒ real
assumes ge0 :

∧
n. f n ≥ 0 and ac: abs convergent prod (λn. exp (f n))

shows prodinf (λi . exp (f i)) = exp (suminf f )
proof −
have summable f
using ac unfolding abs convergent prod conv summable

proof (elim summable comparison test ′)
fix n
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have |f n| = f n
by (simp add : ge0 )

also have . . . ≤ exp (f n) − 1
by (metis diff diff add exp ge add one self ge iff diff ge 0 )

finally show norm (f n) ≤ norm (exp (f n) − 1 )
by simp

qed
then show ?thesis
by (simp add : prodinf exp)

qed

lemma has prod imp sums ln real :
fixes f :: nat ⇒ real
assumes raw has prod f 0 p and 0 :

∧
x . f x > 0

shows (λi . ln (f i)) sums (ln p)
proof −
have p > 0
using assms unfolding prod defs by (metis LIMSEQ prod nonneg less eq real def )
then show ?thesis
using assms continuous on ln [of {0<..} λx . x ]
using continuous on tendsto compose [of {0<..} ln (λn. prod f {..n}) p]
by (auto simp: prod defs sums def le ln prod order tendstoD)

qed

lemma summable ln real :
fixes f :: nat ⇒ real
assumes f : convergent prod f and 0 :

∧
x . f x > 0

shows summable (λi . ln (f i))
proof −
obtain M p where raw has prod f M p
using f convergent prod def by blast

then consider i where i<M f i = 0 | p where raw has prod f 0 p
using raw has prod cases by blast

then show ?thesis
proof cases
case 1
with 0 show ?thesis
by (metis less irrefl)

next
case 2
then show ?thesis
using 0 has prod imp sums ln real summable def by blast

qed
qed

lemma suminf ln real :
fixes f :: nat ⇒ real
assumes f : convergent prod f and 0 :

∧
x . f x > 0

shows suminf (λi . ln (f i)) = ln (prodinf f )
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proof −
have f has prod prodinf f
by (simp add : f has prod iff )

then have raw has prod f 0 (prodinf f )
by (metis 0 has prod def less irrefl)

then have (λi . ln (f i)) sums ln (prodinf f )
using 0 has prod imp sums ln real by blast

then show ?thesis
by (rule sums unique [symmetric])

qed

lemma prodinf exp real :
fixes f :: nat ⇒ real
assumes f : convergent prod f and 0 :

∧
x . f x > 0

shows prodinf f = exp (suminf (λi . ln (f i)))
by (simp add : 0 f less 0 prodinf suminf ln real)

theorem Ln prodinf complex :
fixes z :: nat ⇒ complex
assumes z :

∧
j . z j 6= 0 and ξ: ξ 6= 0

shows ((λn.
∏

j≤n. z j ) −−−−→ ξ) ←→ (∃ k . (λn. (
∑

j≤n. Ln (z j ))) −−−−→
Ln ξ + of int k ∗ (of real(2∗pi) ∗ i)) (is ?lhs = ?rhs)
proof
assume L: ?lhs
have pnz : (

∏
j≤n. z j ) 6= 0 for n

using z by auto
define Θ where Θ ≡ Arg ξ + 2∗pi
then have Θ > pi
using Arg def mpi less Im Ln by fastforce

have ξ eq : ξ = cmod ξ ∗ exp (i ∗ Θ)
using Arg def Arg eq ξ unfolding Θ def by (simp add : algebra simps exp add)
define ϑ where ϑ ≡ λn. THE t . is Arg (

∏
j≤n. z j ) t ∧ t ∈ {Θ−pi<..Θ+pi}

have uniq : ∃ !s. is Arg (
∏

j≤n. z j ) s ∧ s ∈ {Θ−pi<..Θ+pi} for n
using Argument exists unique [OF pnz ] by metis

have ϑ: is Arg (
∏

j≤n. z j ) (ϑ n) and ϑ interval : ϑ n ∈ {Θ−pi<..Θ+pi} for n
unfolding ϑ def
using theI ′ [OF uniq ] by metis+

have ϑ pos:
∧
j . ϑ j > 0

using ϑ interval 〈Θ > pi 〉 by simp (meson diff gt 0 iff gt less trans)
have (

∏
j≤n. z j ) = cmod (

∏
j≤n. z j ) ∗ exp (i ∗ ϑ n) for n

using ϑ by (auto simp: is Arg def )
then have eq : (λn.

∏
j≤n. z j ) = (λn. cmod (

∏
j≤n. z j ) ∗ exp (i ∗ ϑ n))

by simp
then have (λn. (cmod (

∏
j≤n. z j )) ∗ exp (i ∗ (ϑ n))) −−−−→ ξ

using L by force
then obtain k where k : (λj . ϑ j − of int (k j ) ∗ (2 ∗ pi)) −−−−→ Θ
using L by (subst (asm) ξ eq) (auto simp add : eq z ξ polar convergence)

moreover have ∀ F n in sequentially . k n = 0
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proof −
have ∗: kj = 0 if dist (vj − real of int kj ∗ 2 ) V < 1 vj ∈ {V − 1<..V +

1} for kj vj V
using that by (auto simp: dist norm)

have ∀ F j in sequentially . dist (ϑ j − of int (k j ) ∗ (2 ∗ pi)) Θ < pi
using tendstoD [OF k ] pi gt zero by blast

then show ?thesis
proof (rule eventually mono)
fix j
assume d : dist (ϑ j − real of int (k j ) ∗ (2 ∗ pi)) Θ < pi
show k j = 0
by (rule ∗ [of ϑ j/pi Θ/pi ])

(use ϑ interval [of j ] d in 〈simp all add : divide simps dist norm〉)
qed

qed
ultimately have ϑtoΘ: ϑ −−−−→ Θ
apply (simp only : tendsto def )
apply (erule all forward imp forward asm rl)+
apply (drule (1 ) eventually conj )
apply (auto elim: eventually mono)
done

then have to0 : (λn. |ϑ (Suc n) − ϑ n|) −−−−→ 0
by (metis (full types) diff self filterlim sequentially Suc tendsto diff tendsto rabs zero)
have ∃ k . Im (

∑
j≤n. Ln (z j )) − of int k ∗ (2∗pi) = ϑ n for n

proof (rule is Arg exp diff 2pi)
show is Arg (exp (

∑
j≤n. Ln (z j ))) (ϑ n)

using pnz ϑ by (simp add : is Arg def exp sum prod norm)
qed
then have ∃ k . (

∑
j≤n. Im (Ln (z j ))) = ϑ n + of int k ∗ (2∗pi) for n

by (simp add : algebra simps)
then obtain k where k :

∧
n. (

∑
j≤n. Im (Ln (z j ))) = ϑ n + of int (k n) ∗

(2∗pi)
by metis

obtain K where ∀ F n in sequentially . k n = K
proof −
have k le: (2∗pi) ∗ |k (Suc n) − k n| ≤ |ϑ (Suc n) − ϑ n| + |Im (Ln (z (Suc

n)))| for n
proof −
have (

∑
j≤Suc n. Im (Ln (z j ))) − (

∑
j≤n. Im (Ln (z j ))) = Im (Ln (z

(Suc n)))
by simp

then show ?thesis
using k [of Suc n] k [of n] by (auto simp: abs if algebra simps)

qed
have z −−−−→ 1
using L ξ convergent prod iff nz lim z by (blast intro: convergent prod imp LIMSEQ)
with z have (λn. Ln (z n)) −−−−→ Ln 1
using isCont tendsto compose [OF continuous at Ln] nonpos Reals one I by

blast
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then have (λn. Ln (z n)) −−−−→ 0
by simp

then have (λn. |Im (Ln (z (Suc n)))|) −−−−→ 0
by (metis LIMSEQ unique 〈z −−−−→ 1 〉 continuous at Ln filterlim sequentially Suc

isCont tendsto compose nonpos Reals one I tendsto Im tendsto rabs zero iff zero complex .simps(2 ))
then have ∀ F n in sequentially . |Im (Ln (z (Suc n)))| < 1
by (simp add : order tendsto iff )

moreover have ∀ F n in sequentially . |ϑ (Suc n) − ϑ n| < 1
using to0 by (simp add : order tendsto iff )

ultimately have ∀ F n in sequentially . (2∗pi) ∗ |k (Suc n) − k n| < 1 + 1
proof (rule eventually elim2 )
fix n
assume |Im (Ln (z (Suc n)))| < 1 and |ϑ (Suc n) − ϑ n| < 1
with k le [of n] show 2 ∗ pi ∗ real of int |k (Suc n) − k n| < 1 + 1
by linarith

qed
then have ∀ F n in sequentially . real of int |k (Suc n) − k n| < 1
proof (rule eventually mono)
fix n :: nat
assume 2 ∗ pi ∗ |k (Suc n) − k n| < 1 + 1
then have |k (Suc n) − k n| < 2 / (2∗pi)
by (simp add : field simps)

also have ... < 1
using pi ge two by auto

finally show real of int |k (Suc n) − k n| < 1 .
qed

then obtain N where N :
∧
n. n≥N =⇒ |k (Suc n) − k n| = 0

using eventually sequentially less irrefl of int abs by fastforce
have k (N+i) = k N for i
proof (induction i)
case (Suc i)
with N [of N+i ] show ?case
by auto

qed simp
then have

∧
n. n≥N =⇒ k n = k N

using le Suc ex by auto
then show ?thesis
by (force simp add : eventually sequentially intro: that)

qed
with ϑtoΘ have (λn. (

∑
j≤n. Im (Ln (z j )))) −−−−→ Θ + of int K ∗ (2∗pi)

by (simp add : k tendsto add tendsto mult tendsto eventually)
moreover have (λn. (

∑
k≤n. Re (Ln (z k)))) −−−−→ Re (Ln ξ)

using assms continuous imp tendsto [OF isCont ln tendsto norm [OF L]]
by (simp add : o def flip: prod norm ln prod)

ultimately show ?rhs
by (rule tac x=K+1 in exI ) (auto simp: tendsto complex iff Θ def Arg def

assms algebra simps)
next
assume ?rhs
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then obtain r where r : (λn. (
∑

k≤n. Ln (z k))) −−−−→ Ln ξ + of int r ∗
(of real(2∗pi) ∗ i) ..
have (λn. exp (

∑
k≤n. Ln (z k))) −−−−→ ξ

using assms continuous imp tendsto [OF isCont exp r ] exp integer 2pi [of r ]
by (simp add : o def exp add algebra simps)

moreover have exp (
∑

k≤n. Ln (z k)) = (
∏

k≤n. z k) for n
by (simp add : exp sum add eq 0 iff assms)

ultimately show ?lhs
by auto

qed

Prop 17.2 of Bak and Newman, Complex Analysis, p.242

proposition convergent prod iff summable complex :
fixes z :: nat ⇒ complex
assumes

∧
k . z k 6= 0

shows convergent prod (λk . z k) ←→ summable (λk . Ln (z k)) (is ?lhs = ?rhs)
proof
assume ?lhs
then obtain p where p: (λn.

∏
k≤n. z k) −−−−→ p and p 6= 0

using convergent prod LIMSEQ prodinf nonzero add eq 0 iff assms by fastforce
then show ?rhs
using Ln prodinf complex assms
by (auto simp: prodinf nonzero summable def sums def le)

next
assume R: ?rhs
have (

∏
k≤n. z k) = exp (

∑
k≤n. Ln (z k)) for n

by (simp add : exp sum add eq 0 iff assms)
then have (λn.

∏
k≤n. z k) −−−−→ exp (suminf (λk . Ln (z k)))

using continuous imp tendsto [OF isCont exp summable LIMSEQ ′ [OF R]] by
(simp add : o def )
then show ?lhs
by (subst convergent prod iff convergent) (auto simp: convergent def tendsto Lim

assms add eq 0 iff )
qed

Prop 17.3 of Bak and Newman, Complex Analysis

proposition summable imp convergent prod complex :
fixes z :: nat ⇒ complex
assumes z : summable (λk . norm (z k)) and non0 :

∧
k . z k 6= −1

shows convergent prod (λk . 1 + z k)
proof −
note if cong [cong ] power Suc [simp del ]
obtain N where N :

∧
k . k≥N =⇒ norm (z k) < 1/2

using summable LIMSEQ zero [OF z ]
by (metis diff zero dist norm half gt zero iff less numeral extra(1 ) lim sequentially

tendsto norm zero iff )
have norm (Ln (1 + z k)) ≤ 2 ∗ norm (z k) if k ≥ N for k
proof (cases z k = 0 )
case False
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let ?f = λi . cmod ((− 1 ) ˆ i ∗ z k ˆ i / of nat (Suc i))
have normf : norm (?f n) ≤ (1 / 2 ) ˆ n for n
proof −
have norm (?f n) = cmod (z k) ˆ n / cmod (1 + of nat n)
by (auto simp: norm divide norm mult norm power)

also have . . . ≤ cmod (z k) ˆ n
by (auto simp: field split simps mult le cancel left1 in Reals norm)

also have . . . ≤ (1 / 2 ) ˆ n
using N [OF that ] by (simp add : power mono)

finally show norm (?f n) ≤ (1 / 2 ) ˆ n .
qed
have summablef : summable ?f
by (intro normf summable comparison test ′ [OF summable geometric [of 1/2 ]])

auto
have (λn. (− 1 ) ˆ Suc n / of nat n ∗ z k ˆ n) sums Ln (1 + z k)
using Ln series [of z k ] N that by fastforce

then have ∗: (λi . z k ∗ (((− 1 ) ˆ i ∗ z k ˆ i) / (Suc i))) sums Ln (1 + z k)
using sums split initial segment [where n= 1 ] by (force simp: power Suc

mult ac)
then have norm (Ln (1 + z k)) = norm (suminf (λi . z k ∗ (((− 1 ) ˆ i ∗ z k

ˆ i) / (Suc i))))
using sums unique by force

also have . . . = norm (z k ∗ suminf (λi . ((− 1 ) ˆ i ∗ z k ˆ i) / (Suc i)))
apply (subst suminf mult)
using ∗ False
by (auto simp: sums summable intro: summable mult D [of z k ])

also have . . . = norm (z k) ∗ norm (suminf (λi . ((− 1 ) ˆ i ∗ z k ˆ i) / (Suc
i)))

by (simp add : norm mult)
also have . . . ≤ norm (z k) ∗ suminf (λi . norm (((− 1 ) ˆ i ∗ z k ˆ i) / (Suc

i)))
by (intro mult left mono summable norm summablef ) auto

also have . . . ≤ norm (z k) ∗ suminf (λi . (1/2 ) ˆ i)
by (intro mult left mono suminf le) (use summable geometric [of 1/2 ] summablef

normf in auto)
also have . . . ≤ norm (z k) ∗ 2
using suminf geometric [of 1/2 ::real ] by simp

finally show ?thesis
by (simp add : mult ac)

qed simp
then have summable (λk . Ln (1 + z k))
by (metis summable comparison test summable mult z )

with non0 show ?thesis
by (simp add : add eq 0 iff convergent prod iff summable complex )

qed

lemma summable Ln complex :
fixes z :: nat ⇒ complex
assumes convergent prod z

∧
k . z k 6= 0
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shows summable (λk . Ln (z k))
using convergent prod def assms convergent prod iff summable complex by blast

6.36.10 Embeddings from the reals into some complete real
normed field

lemma tendsto eq of real lim:
assumes (λn. of real (f n) :: ′a::{complete space,real normed field}) −−−−→ q
shows q = of real (lim f )

proof −
have convergent (λn. of real (f n) :: ′a)
using assms convergent def by blast

then have convergent f
unfolding convergent def
by (simp add : convergent eq Cauchy Cauchy def )

then show ?thesis
by (metis LIMSEQ unique assms convergentD sequentially bot tendsto Lim tend-

sto of real)
qed

lemma tendsto eq of real :
assumes (λn. of real (f n) :: ′a::{complete space,real normed field}) −−−−→ q
obtains r where q = of real r
using tendsto eq of real lim assms by blast

lemma has prod of real iff [simp]:
(λn. of real (f n) :: ′a::{complete space,real normed field}) has prod of real c ←→

f has prod c
(is ?lhs = ?rhs)

proof
assume ?lhs
then show ?rhs
apply (auto simp: prod defs LIMSEQ prod 0 tendsto of real iff simp flip: of real prod)
using tendsto eq of real
by (metis of real 0 tendsto of real iff )

next
assume ?rhs
with tendsto of real iff show ?lhs
by (fastforce simp: prod defs simp flip: of real prod)

qed

end

6.37 Sums over Infinite Sets

theory Infinite Set Sum
imports Set Integral

begin



Infinite Set Sum.thy 2735

lemma sets eq countable:
assumes countable A space M = A

∧
x . x ∈ A =⇒ {x} ∈ sets M

shows sets M = Pow A
proof (intro equalityI subsetI )
fix X assume X ∈ Pow A
hence (

⋃
x∈X . {x}) ∈ sets M

by (intro sets.countable UN ′ countable subset [OF assms(1 )]) (auto intro!:
assms(3 ))
also have (

⋃
x∈X . {x}) = X by auto

finally show X ∈ sets M .
next
fix X assume X ∈ sets M
from sets.sets into space[OF this] and assms
show X ∈ Pow A by simp

qed

lemma measure eqI countable ′:
assumes spaces: space M = A space N = A
assumes sets:

∧
x . x ∈ A =⇒ {x} ∈ sets M

∧
x . x ∈ A =⇒ {x} ∈ sets N

assumes A: countable A
assumes eq :

∧
a. a ∈ A =⇒ emeasure M {a} = emeasure N {a}

shows M = N
proof (rule measure eqI countable)
show sets M = Pow A
by (intro sets eq countable assms)

show sets N = Pow A
by (intro sets eq countable assms)

qed fact+

lemma count space PiM finite:
fixes B :: ′a ⇒ ′b set
assumes finite A

∧
i . countable (B i)

shows PiM A (λi . count space (B i)) = count space (PiE A B)
proof (rule measure eqI countable ′)
show space (PiM A (λi . count space (B i))) = PiE A B
by (simp add : space PiM )

show space (count space (PiE A B)) = PiE A B by simp
next
fix f assume f : f ∈ PiE A B
hence PiE A (λx . {f x}) ∈ sets (PiM A (λi . count space (B i)))
by (intro sets PiM I finite assms) auto

also from f have PiE A (λx . {f x}) = {f }
by (intro PiE singleton) (auto simp: PiE def )

finally show {f } ∈ sets (PiM A (λi . count space (B i))) .
next
interpret product sigma finite (λi . count space (B i))
by (intro product sigma finite.intro sigma finite measure count space countable

assms)
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thm sigma finite measure count space
fix f assume f : f ∈ PiE A B
hence {f } = PiE A (λx . {f x})
by (intro PiE singleton [symmetric]) (auto simp: PiE def )

also have emeasure (PiM A (λi . count space (B i))) . . . =
(
∏

i∈A. emeasure (count space (B i)) {f i})
using f assms by (subst emeasure PiM ) auto

also have . . . = (
∏

i∈A. 1 )
by (intro prod .cong refl , subst emeasure count space finite) (use f in auto)

also have . . . = emeasure (count space (PiE A B)) {f }
using f by (subst emeasure count space finite) auto

finally show emeasure (PiM A (λi . count space (B i))) {f } =
emeasure (count space (PiE A B)) {f } .

qed (simp all add : countable PiE assms)

definition abs summable on ::
( ′a ⇒ ′b :: {banach, second countable topology}) ⇒ ′a set ⇒ bool
(infix abs ′ summable ′ on 50 )

where
f abs summable on A ←→ integrable (count space A) f

definition infsetsum ::
( ′a ⇒ ′b :: {banach, second countable topology}) ⇒ ′a set ⇒ ′b

where
infsetsum f A = lebesgue integral (count space A) f

syntax (ASCII )
infsetsum :: pttrn ⇒ ′a set ⇒ ′b ⇒ ′b::{banach, second countable topology}
((3INFSETSUM : ./ ) [0 , 51 , 10 ] 10 )

syntax
infsetsum :: pttrn ⇒ ′a set ⇒ ′b ⇒ ′b::{banach, second countable topology}
((2

∑
a ∈ ./ ) [0 , 51 , 10 ] 10 )

translations — Beware of argument permutation!∑
ai∈A. b 
 CONST infsetsum (λi . b) A

syntax (ASCII )
uinfsetsum :: pttrn ⇒ ′a set ⇒ ′b ⇒ ′b::{banach, second countable topology}
((3INFSETSUM : ./ ) [0 , 51 , 10 ] 10 )

syntax
uinfsetsum :: pttrn ⇒ ′b ⇒ ′b::{banach, second countable topology}
((2

∑
a ./ ) [0 , 10 ] 10 )

translations — Beware of argument permutation!∑
ai . b 
 CONST infsetsum (λi . b) (CONST UNIV )

syntax (ASCII )
qinfsetsum :: pttrn ⇒ bool ⇒ ′a ⇒ ′a::{banach, second countable topology}
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((3INFSETSUM |/ ./ ) [0 , 0 , 10 ] 10 )
syntax

qinfsetsum :: pttrn ⇒ bool ⇒ ′a ⇒ ′a::{banach, second countable topology}
((2

∑
a | ( )./ ) [0 , 0 , 10 ] 10 )

translations∑
ax |P . t => CONST infsetsum (λx . t) {x . P}

print translation 〈

let
fun sum tr ′ [Abs (x , Tx , t), Const (const syntax 〈Collect 〉, ) $ Abs (y , Ty , P)]

=
if x <> y then raise Match
else
let
val x ′ = Syntax Trans.mark bound body (x , Tx );
val t ′ = subst bound (x ′, t);
val P ′ = subst bound (x ′, P);

in
Syntax .const syntax const 〈 qinfsetsum〉 $ Syntax Trans.mark bound abs

(x , Tx ) $ P ′ $ t ′

end
| sum tr ′ = raise Match;

in [(const syntax 〈infsetsum〉, K sum tr ′)] end
〉

lemma restrict count space subset :
A ⊆ B =⇒ restrict space (count space B) A = count space A
by (subst restrict count space) (simp all add : Int absorb2 )

lemma abs summable on restrict :
fixes f :: ′a ⇒ ′b :: {banach, second countable topology}
assumes A ⊆ B
shows f abs summable on A ←→ (λx . indicator A x ∗R f x ) abs summable on

B
proof −
have count space A = restrict space (count space B) A
by (rule restrict count space subset [symmetric]) fact+

also have integrable . . . f ←→ set integrable (count space B) A f
by (simp add : integrable restrict space set integrable def )

finally show ?thesis
unfolding abs summable on def set integrable def .

qed

lemma abs summable on altdef : f abs summable on A←→ set integrable (count space
UNIV ) A f
unfolding abs summable on def set integrable def
by (metis (no types) inf top.right neutral integrable restrict space restrict count space

sets UNIV )
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lemma abs summable on altdef ′:
A ⊆ B =⇒ f abs summable on A ←→ set integrable (count space B) A f
unfolding abs summable on def set integrable def
by (metis (no types) Pow iff abs summable on def inf .orderE integrable restrict space

restrict count space subset sets count space space count space)

lemma abs summable on norm iff [simp]:
(λx . norm (f x )) abs summable on A ←→ f abs summable on A
by (simp add : abs summable on def integrable norm iff )

lemma abs summable on normI : f abs summable on A =⇒ (λx . norm (f x )) abs summable on
A
by simp

lemma abs summable complex of real [simp]: (λn. complex of real (f n)) abs summable on
A ←→ f abs summable on A
by (simp add : abs summable on def complex of real integrable eq)

lemma abs summable on comparison test :
assumes g abs summable on A
assumes

∧
x . x ∈ A =⇒ norm (f x ) ≤ norm (g x )

shows f abs summable on A
using assms Bochner Integration.integrable bound [of count space A g f ]
unfolding abs summable on def by (auto simp: AE count space)

lemma abs summable on comparison test ′:
assumes g abs summable on A
assumes

∧
x . x ∈ A =⇒ norm (f x ) ≤ g x

shows f abs summable on A
proof (rule abs summable on comparison test [OF assms(1 ), of f ])
fix x assume x ∈ A
with assms(2 ) have norm (f x ) ≤ g x .
also have . . . ≤ norm (g x ) by simp
finally show norm (f x ) ≤ norm (g x ) .

qed

lemma abs summable on cong [cong ]:
(
∧
x . x ∈ A =⇒ f x = g x ) =⇒ A = B =⇒ (f abs summable on A) ←→ (g

abs summable on B)
unfolding abs summable on def by (intro integrable cong) auto

lemma abs summable on cong neutral :
assumes

∧
x . x ∈ A − B =⇒ f x = 0

assumes
∧
x . x ∈ B − A =⇒ g x = 0

assumes
∧
x . x ∈ A ∩ B =⇒ f x = g x

shows f abs summable on A ←→ g abs summable on B
unfolding abs summable on altdef set integrable def using assms
by (intro Bochner Integration.integrable cong refl)
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(auto simp: indicator def split : if splits)

lemma abs summable on restrict ′:
fixes f :: ′a ⇒ ′b :: {banach, second countable topology}
assumes A ⊆ B
shows f abs summable on A←→ (λx . if x ∈ A then f x else 0 ) abs summable on

B
by (subst abs summable on restrict [OF assms]) (intro abs summable on cong ,

auto)

lemma abs summable on nat iff :
f abs summable on (A :: nat set) ←→ summable (λn. if n ∈ A then norm (f n)

else 0 )
proof −
have f abs summable on A ←→ summable (λx . norm (if x ∈ A then f x else 0 ))
by (subst abs summable on restrict ′[of UNIV ])

(simp all add : abs summable on def integrable count space nat iff )
also have (λx . norm (if x ∈ A then f x else 0 )) = (λx . if x ∈ A then norm (f

x ) else 0 )
by auto

finally show ?thesis .
qed

lemma abs summable on nat iff ′:
f abs summable on (UNIV :: nat set) ←→ summable (λn. norm (f n))
by (subst abs summable on nat iff ) auto

lemma nat abs summable on comparison test :
fixes f :: nat ⇒ ′a :: {banach, second countable topology}
assumes g abs summable on I
assumes

∧
n. [[n≥N ; n ∈ I ]] =⇒ norm (f n) ≤ g n

shows f abs summable on I
using assms by (fastforce simp add : abs summable on nat iff intro: summable comparison test ′)

lemma abs summable comparison test ev :
assumes g abs summable on I
assumes eventually (λx . x ∈ I −→ norm (f x ) ≤ g x ) sequentially
shows f abs summable on I
by (metis (no types, lifting) nat abs summable on comparison test eventually at top linorder

assms)

lemma abs summable on Cauchy :
f abs summable on (UNIV :: nat set) ←→ (∀ e>0 . ∃N . ∀m≥N . ∀n. (

∑
x =

m..<n. norm (f x )) < e)
by (simp add : abs summable on nat iff ′ summable Cauchy sum nonneg)

lemma abs summable on finite [simp]: finite A =⇒ f abs summable on A
unfolding abs summable on def by (rule integrable count space)
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lemma abs summable on empty [simp, intro]: f abs summable on {}
by simp

lemma abs summable on subset :
assumes f abs summable on B and A ⊆ B
shows f abs summable on A
unfolding abs summable on altdef
by (rule set integrable subset) (insert assms, auto simp: abs summable on altdef )

lemma abs summable on union [intro]:
assumes f abs summable on A and f abs summable on B
shows f abs summable on (A ∪ B)
using assms unfolding abs summable on altdef by (intro set integrable Un)

auto

lemma abs summable on insert iff [simp]:
f abs summable on insert x A ←→ f abs summable on A

proof safe
assume f abs summable on insert x A
thus f abs summable on A
by (rule abs summable on subset) auto

next
assume f abs summable on A
from abs summable on union[OF this, of {x}]
show f abs summable on insert x A by simp

qed

lemma abs summable sum:
assumes

∧
x . x ∈ A =⇒ f x abs summable on B

shows (λy .
∑

x∈A. f x y) abs summable on B
using assms unfolding abs summable on def by (intro Bochner Integration.integrable sum)

lemma abs summable Re: f abs summable on A =⇒ (λx . Re (f x )) abs summable on
A
by (simp add : abs summable on def )

lemma abs summable Im: f abs summable on A =⇒ (λx . Im (f x )) abs summable on
A
by (simp add : abs summable on def )

lemma abs summable on finite diff :
assumes f abs summable on A A ⊆ B finite (B − A)
shows f abs summable on B

proof −
have f abs summable on (A ∪ (B − A))
by (intro abs summable on union assms abs summable on finite)

also from assms have A ∪ (B − A) = B by blast
finally show ?thesis .

qed
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lemma abs summable on reindex bij betw :
assumes bij betw g A B
shows (λx . f (g x )) abs summable on A ←→ f abs summable on B

proof −
have ∗: count space B = distr (count space A) (count space B) g
by (rule distr bij count space [symmetric]) fact

show ?thesis unfolding abs summable on def
by (subst ∗, subst integrable distr eq [of count space B ])

(insert assms, auto simp: bij betw def )
qed

lemma abs summable on reindex :
assumes (λx . f (g x )) abs summable on A
shows f abs summable on (g ‘ A)

proof −
define g ′ where g ′ = inv into A g
from assms have (λx . f (g x )) abs summable on (g ′ ‘ g ‘ A)
by (rule abs summable on subset) (auto simp: g ′ def inv into into)

also have ?this ←→ (λx . f (g (g ′ x ))) abs summable on (g ‘ A) unfolding g ′ def
by (intro abs summable on reindex bij betw [symmetric] inj on imp bij betw

inj on inv into) auto
also have . . . ←→ f abs summable on (g ‘ A)
by (intro abs summable on cong refl) (auto simp: g ′ def f inv into f )

finally show ?thesis .
qed

lemma abs summable on reindex iff :
inj on g A =⇒ (λx . f (g x )) abs summable on A ←→ f abs summable on (g ‘ A)
by (intro abs summable on reindex bij betw inj on imp bij betw)

lemma abs summable on Sigma project2 :
fixes A :: ′a set and B :: ′a ⇒ ′b set
assumes f abs summable on (Sigma A B) x ∈ A
shows (λy . f (x , y)) abs summable on (B x )

proof −
from assms(2 ) have f abs summable on (Sigma {x} B)
by (intro abs summable on subset [OF assms(1 )]) auto

also have ?this ←→ (λz . f (x , snd z )) abs summable on (Sigma {x} B)
by (rule abs summable on cong) auto

finally have (λy . f (x , y)) abs summable on (snd ‘ Sigma {x} B)
by (rule abs summable on reindex )

also have snd ‘ Sigma {x} B = B x
using assms by (auto simp: image iff )

finally show ?thesis .
qed

lemma abs summable on Times swap:
f abs summable on A × B ←→ (λ(x ,y). f (y ,x )) abs summable on B × A
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proof −
have bij : bij betw (λ(x ,y). (y ,x )) (B × A) (A × B)
by (auto simp: bij betw def inj on def )

show ?thesis
by (subst abs summable on reindex bij betw [OF bij , of f , symmetric])

(simp all add : case prod unfold)
qed

lemma abs summable on 0 [simp, intro]: (λ . 0 ) abs summable on A
by (simp add : abs summable on def )

lemma abs summable on uminus [intro]:
f abs summable on A =⇒ (λx . −f x ) abs summable on A
unfolding abs summable on def by (rule Bochner Integration.integrable minus)

lemma abs summable on add [intro]:
assumes f abs summable on A and g abs summable on A
shows (λx . f x + g x ) abs summable on A
using assms unfolding abs summable on def by (rule Bochner Integration.integrable add)

lemma abs summable on diff [intro]:
assumes f abs summable on A and g abs summable on A
shows (λx . f x − g x ) abs summable on A
using assms unfolding abs summable on def by (rule Bochner Integration.integrable diff )

lemma abs summable on scaleR left [intro]:
assumes c 6= 0 =⇒ f abs summable on A
shows (λx . f x ∗R c) abs summable on A
using assms unfolding abs summable on def by (intro Bochner Integration.integrable scaleR left)

lemma abs summable on scaleR right [intro]:
assumes c 6= 0 =⇒ f abs summable on A
shows (λx . c ∗R f x ) abs summable on A
using assms unfolding abs summable on def by (intro Bochner Integration.integrable scaleR right)

lemma abs summable on cmult right [intro]:
fixes f :: ′a ⇒ ′b :: {banach, real normed algebra, second countable topology}
assumes c 6= 0 =⇒ f abs summable on A
shows (λx . c ∗ f x ) abs summable on A
using assms unfolding abs summable on def by (intro Bochner Integration.integrable mult right)

lemma abs summable on cmult left [intro]:
fixes f :: ′a ⇒ ′b :: {banach, real normed algebra, second countable topology}
assumes c 6= 0 =⇒ f abs summable on A
shows (λx . f x ∗ c) abs summable on A
using assms unfolding abs summable on def by (intro Bochner Integration.integrable mult left)

lemma abs summable on prod PiE :
fixes f :: ′a ⇒ ′b ⇒ ′c :: {real normed field ,banach,second countable topology}
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assumes finite: finite A and countable:
∧
x . x ∈ A =⇒ countable (B x )

assumes summable:
∧
x . x ∈ A =⇒ f x abs summable on B x

shows (λg .
∏

x∈A. f x (g x )) abs summable on PiE A B
proof −
define B ′ where B ′ = (λx . if x ∈ A then B x else {})
from assms have [simp]: countable (B ′ x ) for x
by (auto simp: B ′ def )

then interpret product sigma finite count space ◦ B ′

unfolding o def by (intro product sigma finite.intro sigma finite measure count space countable)
from assms have integrable (PiM A (count space ◦ B ′)) (λg .

∏
x∈A. f x (g x ))

by (intro product integrable prod) (auto simp: abs summable on def B ′ def )
also have PiM A (count space ◦ B ′) = count space (PiE A B ′)
unfolding o def using finite by (intro count space PiM finite) simp all

also have PiE A B ′ = PiE A B by (intro PiE cong) (simp all add : B ′ def )
finally show ?thesis by (simp add : abs summable on def )

qed

lemma not summable infsetsum eq :
¬f abs summable on A =⇒ infsetsum f A = 0
by (simp add : abs summable on def infsetsum def not integrable integral eq)

lemma infsetsum altdef :
infsetsum f A = set lebesgue integral (count space UNIV ) A f
unfolding set lebesgue integral def
by (subst integral restrict space [symmetric])

(auto simp: restrict count space subset infsetsum def )

lemma infsetsum altdef ′:
A ⊆ B =⇒ infsetsum f A = set lebesgue integral (count space B) A f
unfolding set lebesgue integral def
by (subst integral restrict space [symmetric])

(auto simp: restrict count space subset infsetsum def )

lemma nn integral conv infsetsum:
assumes f abs summable on A

∧
x . x ∈ A =⇒ f x ≥ 0

shows nn integral (count space A) f = ennreal (infsetsum f A)
using assms unfolding infsetsum def abs summable on def
by (subst nn integral eq integral) auto

lemma infsetsum conv nn integral :
assumes nn integral (count space A) f 6= ∞

∧
x . x ∈ A =⇒ f x ≥ 0

shows infsetsum f A = enn2real (nn integral (count space A) f )
unfolding infsetsum def using assms
by (subst integral eq nn integral) auto

lemma infsetsum cong [cong ]:
(
∧
x . x ∈ A =⇒ f x = g x ) =⇒ A = B =⇒ infsetsum f A = infsetsum g B
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unfolding infsetsum def by (intro Bochner Integration.integral cong) auto

lemma infsetsum 0 [simp]: infsetsum (λ . 0 ) A = 0
by (simp add : infsetsum def )

lemma infsetsum all 0 : (
∧
x . x ∈ A =⇒ f x = 0 ) =⇒ infsetsum f A = 0

by simp

lemma infsetsum nonneg : (
∧
x . x ∈ A =⇒ f x ≥ (0 ::real)) =⇒ infsetsum f A ≥ 0

unfolding infsetsum def by (rule Bochner Integration.integral nonneg) auto

lemma sum infsetsum:
assumes

∧
x . x ∈ A =⇒ f x abs summable on B

shows (
∑

x∈A.
∑

ay∈B . f x y) = (
∑

ay∈B .
∑

x∈A. f x y)
using assms by (simp add : infsetsum def abs summable on def Bochner Integration.integral sum)

lemma Re infsetsum: f abs summable on A =⇒ Re (infsetsum f A) = (
∑

ax∈A.
Re (f x ))
by (simp add : infsetsum def abs summable on def )

lemma Im infsetsum: f abs summable on A =⇒ Im (infsetsum f A) = (
∑

ax∈A.
Im (f x ))
by (simp add : infsetsum def abs summable on def )

lemma infsetsum of real :
shows infsetsum (λx . of real (f x )

:: ′a :: {real normed algebra 1 ,banach,second countable topology ,real inner})
A =

of real (infsetsum f A)
unfolding infsetsum def
by (rule integral bounded linear ′[OF bounded linear of real bounded linear inner left [of

1 ]]) auto

lemma infsetsum finite [simp]: finite A =⇒ infsetsum f A = (
∑

x∈A. f x )
by (simp add : infsetsum def lebesgue integral count space finite)

lemma infsetsum nat :
assumes f abs summable on A
shows infsetsum f A = (

∑
n. if n ∈ A then f n else 0 )

proof −
from assms have infsetsum f A = (

∑
n. indicator A n ∗R f n)

unfolding infsetsum altdef abs summable on altdef set lebesgue integral def set integrable def
by (subst integral count space nat) auto
also have (λn. indicator A n ∗R f n) = (λn. if n ∈ A then f n else 0 )
by auto

finally show ?thesis .
qed

lemma infsetsum nat ′:
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assumes f abs summable on UNIV
shows infsetsum f UNIV = (

∑
n. f n)

using assms by (subst infsetsum nat) auto

lemma sums infsetsum nat :
assumes f abs summable on A
shows (λn. if n ∈ A then f n else 0 ) sums infsetsum f A

proof −
from assms have summable (λn. if n ∈ A then norm (f n) else 0 )
by (simp add : abs summable on nat iff )

also have (λn. if n ∈ A then norm (f n) else 0 ) = (λn. norm (if n ∈ A then f
n else 0 ))

by auto
finally have summable (λn. if n ∈ A then f n else 0 )
by (rule summable norm cancel)

with assms show ?thesis
by (auto simp: sums iff infsetsum nat)

qed

lemma sums infsetsum nat ′:
assumes f abs summable on UNIV
shows f sums infsetsum f UNIV
using sums infsetsum nat [OF assms] by simp

lemma infsetsum Un disjoint :
assumes f abs summable on A f abs summable on B A ∩ B = {}
shows infsetsum f (A ∪ B) = infsetsum f A + infsetsum f B
using assms unfolding infsetsum altdef abs summable on altdef
by (subst set integral Un) auto

lemma infsetsum Diff :
assumes f abs summable on B A ⊆ B
shows infsetsum f (B − A) = infsetsum f B − infsetsum f A

proof −
have infsetsum f ((B − A) ∪ A) = infsetsum f (B − A) + infsetsum f A

using assms(2 ) by (intro infsetsum Un disjoint abs summable on subset [OF
assms(1 )]) auto
also from assms(2 ) have (B − A) ∪ A = B
by auto

ultimately show ?thesis
by (simp add : algebra simps)

qed

lemma infsetsum Un Int :
assumes f abs summable on (A ∪ B)
shows infsetsum f (A ∪ B) = infsetsum f A + infsetsum f B − infsetsum f (A
∩ B)
proof −
have A ∪ B = A ∪ (B − A ∩ B)
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by auto
also have infsetsum f . . . = infsetsum f A + infsetsum f (B − A ∩ B)
by (intro infsetsum Un disjoint abs summable on subset [OF assms]) auto

also have infsetsum f (B − A ∩ B) = infsetsum f B − infsetsum f (A ∩ B)
by (intro infsetsum Diff abs summable on subset [OF assms]) auto

finally show ?thesis
by (simp add : algebra simps)

qed

lemma infsetsum reindex bij betw :
assumes bij betw g A B
shows infsetsum (λx . f (g x )) A = infsetsum f B

proof −
have ∗: count space B = distr (count space A) (count space B) g
by (rule distr bij count space [symmetric]) fact

show ?thesis unfolding infsetsum def
by (subst ∗, subst integral distr [of count space B ])

(insert assms, auto simp: bij betw def )
qed

theorem infsetsum reindex :
assumes inj on g A
shows infsetsum f (g ‘ A) = infsetsum (λx . f (g x )) A
by (intro infsetsum reindex bij betw [symmetric] inj on imp bij betw assms)

lemma infsetsum cong neutral :
assumes

∧
x . x ∈ A − B =⇒ f x = 0

assumes
∧
x . x ∈ B − A =⇒ g x = 0

assumes
∧
x . x ∈ A ∩ B =⇒ f x = g x

shows infsetsum f A = infsetsum g B
unfolding infsetsum altdef set lebesgue integral def using assms
by (intro Bochner Integration.integral cong refl)

(auto simp: indicator def split : if splits)

lemma infsetsum mono neutral :
fixes f g :: ′a ⇒ real
assumes f abs summable on A and g abs summable on B
assumes

∧
x . x ∈ A =⇒ f x ≤ g x

assumes
∧
x . x ∈ A − B =⇒ f x ≤ 0

assumes
∧
x . x ∈ B − A =⇒ g x ≥ 0

shows infsetsum f A ≤ infsetsum g B
using assms unfolding infsetsum altdef set lebesgue integral def abs summable on altdef

set integrable def
by (intro Bochner Integration.integral mono) (auto simp: indicator def )

lemma infsetsum mono neutral left :
fixes f g :: ′a ⇒ real
assumes f abs summable on A and g abs summable on B
assumes

∧
x . x ∈ A =⇒ f x ≤ g x
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assumes A ⊆ B
assumes

∧
x . x ∈ B − A =⇒ g x ≥ 0

shows infsetsum f A ≤ infsetsum g B
using 〈A ⊆ B 〉 by (intro infsetsum mono neutral assms) auto

lemma infsetsum mono neutral right :
fixes f g :: ′a ⇒ real
assumes f abs summable on A and g abs summable on B
assumes

∧
x . x ∈ A =⇒ f x ≤ g x

assumes B ⊆ A
assumes

∧
x . x ∈ A − B =⇒ f x ≤ 0

shows infsetsum f A ≤ infsetsum g B
using 〈B ⊆ A〉 by (intro infsetsum mono neutral assms) auto

lemma infsetsum mono:
fixes f g :: ′a ⇒ real
assumes f abs summable on A and g abs summable on A
assumes

∧
x . x ∈ A =⇒ f x ≤ g x

shows infsetsum f A ≤ infsetsum g A
by (intro infsetsum mono neutral assms) auto

lemma norm infsetsum bound :
norm (infsetsum f A) ≤ infsetsum (λx . norm (f x )) A
unfolding abs summable on def infsetsum def
by (rule Bochner Integration.integral norm bound)

theorem infsetsum Sigma:
fixes A :: ′a set and B :: ′a ⇒ ′b set
assumes [simp]: countable A and

∧
i . countable (B i)

assumes summable: f abs summable on (Sigma A B)
shows infsetsum f (Sigma A B) = infsetsum (λx . infsetsum (λy . f (x , y)) (B

x )) A
proof −
define B ′ where B ′ = (

⋃
i∈A. B i)

have [simp]: countable B ′

unfolding B ′ def by (intro countable UN assms)
interpret pair sigma finite count space A count space B ′

by (intro pair sigma finite.intro sigma finite measure count space countable)
fact+

have integrable (count space (A × B ′)) (λz . indicator (Sigma A B) z ∗R f z )
using summable
by (metis (mono tags, lifting) abs summable on altdef abs summable on def

integrable cong integrable mult indicator set integrable def sets UNIV )
also have ?this ←→ integrable (count space A

⊗
M count space B ′) (λ(x , y).

indicator (B x ) y ∗R f (x , y))
by (intro Bochner Integration.integrable cong)

(auto simp: pair measure countable indicator def split : if splits)
finally have integrable: . . . .
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have infsetsum (λx . infsetsum (λy . f (x , y)) (B x )) A =
(
∫
x . infsetsum (λy . f (x , y)) (B x ) ∂count space A)

unfolding infsetsum def by simp
also have . . . = (

∫
x .

∫
y . indicator (B x ) y ∗R f (x , y) ∂count space B ′

∂count space A)
proof (rule Bochner Integration.integral cong [OF refl ])
show

∧
x . x ∈ space (count space A) =⇒

(
∑

ay∈B x . f (x , y)) = LINT y |count space B ′. indicat real (B x ) y ∗R f
(x , y)

using infsetsum altdef ′[of B ′]
unfolding set lebesgue integral def B ′ def
by auto

qed
also have . . . = (

∫
(x ,y). indicator (B x ) y ∗R f (x , y) ∂(count space A

⊗
M

count space B ′))
by (subst integral fst [OF integrable]) auto

also have . . . = (
∫
z . indicator (Sigma A B) z ∗R f z ∂count space (A × B ′))

by (intro Bochner Integration.integral cong)
(auto simp: pair measure countable indicator def split : if splits)

also have . . . = infsetsum f (Sigma A B)
unfolding set lebesgue integral def [symmetric]
by (rule infsetsum altdef ′ [symmetric]) (auto simp: B ′ def )

finally show ?thesis ..
qed

lemma infsetsum Sigma ′:
fixes A :: ′a set and B :: ′a ⇒ ′b set
assumes [simp]: countable A and

∧
i . countable (B i)

assumes summable: (λ(x ,y). f x y) abs summable on (Sigma A B)
shows infsetsum (λx . infsetsum (λy . f x y) (B x )) A = infsetsum (λ(x ,y). f x

y) (Sigma A B)
using assms by (subst infsetsum Sigma) auto

lemma infsetsum Times:
fixes A :: ′a set and B :: ′b set
assumes [simp]: countable A and countable B
assumes summable: f abs summable on (A × B)
shows infsetsum f (A × B) = infsetsum (λx . infsetsum (λy . f (x , y)) B) A
using assms by (subst infsetsum Sigma) auto

lemma infsetsum Times ′:
fixes A :: ′a set and B :: ′b set
fixes f :: ′a ⇒ ′b ⇒ ′c :: {banach, second countable topology}
assumes [simp]: countable A and [simp]: countable B
assumes summable: (λ(x ,y). f x y) abs summable on (A × B)
shows infsetsum (λx . infsetsum (λy . f x y) B) A = infsetsum (λ(x ,y). f x y)

(A × B)
using assms by (subst infsetsum Times) auto



Infinite Set Sum.thy 2749

lemma infsetsum swap:
fixes A :: ′a set and B :: ′b set
fixes f :: ′a ⇒ ′b ⇒ ′c :: {banach, second countable topology}
assumes [simp]: countable A and [simp]: countable B
assumes summable: (λ(x ,y). f x y) abs summable on A × B
shows infsetsum (λx . infsetsum (λy . f x y) B) A = infsetsum (λy . infsetsum

(λx . f x y) A) B
proof −
from summable have summable ′: (λ(x ,y). f y x ) abs summable on B × A
by (subst abs summable on Times swap) auto

have bij : bij betw (λ(x , y). (y , x )) (B × A) (A × B)
by (auto simp: bij betw def inj on def )

have infsetsum (λx . infsetsum (λy . f x y) B) A = infsetsum (λ(x ,y). f x y) (A
× B)

using summable by (subst infsetsum Times) auto
also have . . . = infsetsum (λ(x ,y). f y x ) (B × A)
by (subst infsetsum reindex bij betw [OF bij , of λ(x ,y). f x y , symmetric])

(simp all add : case prod unfold)
also have . . . = infsetsum (λy . infsetsum (λx . f x y) A) B
using summable ′ by (subst infsetsum Times) auto

finally show ?thesis .
qed

theorem abs summable on Sigma iff :
assumes [simp]: countable A and

∧
x . x ∈ A =⇒ countable (B x )

shows f abs summable on Sigma A B ←→
(∀ x∈A. (λy . f (x , y)) abs summable on B x ) ∧
((λx . infsetsum (λy . norm (f (x , y))) (B x )) abs summable on A)

proof safe
define B ′ where B ′ = (

⋃
x∈A. B x )

have [simp]: countable B ′

unfolding B ′ def using assms by auto
interpret pair sigma finite count space A count space B ′

by (intro pair sigma finite.intro sigma finite measure count space countable)
fact+
{
assume ∗: f abs summable on Sigma A B
thus (λy . f (x , y)) abs summable on B x if x ∈ A for x
using that by (rule abs summable on Sigma project2 )

have set integrable (count space (A × B ′)) (Sigma A B) (λz . norm (f z ))
using abs summable on normI [OF ∗]
by (subst abs summable on altdef ′ [symmetric]) (auto simp: B ′ def )

also have count space (A × B ′) = count space A
⊗

M count space B ′

by (simp add : pair measure countable)
finally have integrable (count space A)

(λx . lebesgue integral (count space B ′)
(λy . indicator (Sigma A B) (x , y) ∗R norm (f (x , y))))
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unfolding set integrable def by (rule integrable fst ′)
also have ?this ←→ integrable (count space A)

(λx . lebesgue integral (count space B ′)
(λy . indicator (B x ) y ∗R norm (f (x , y))))

by (intro integrable cong refl) (simp all add : indicator def )
also have . . . ←→ integrable (count space A) (λx . infsetsum (λy . norm (f (x ,

y))) (B x ))
unfolding set lebesgue integral def [symmetric]

by (intro integrable cong refl infsetsum altdef ′ [symmetric]) (auto simp:
B ′ def )

also have . . . ←→ (λx . infsetsum (λy . norm (f (x , y))) (B x )) abs summable on
A

by (simp add : abs summable on def )
finally show . . . .

}
{
assume ∗: ∀ x∈A. (λy . f (x , y)) abs summable on B x
assume (λx .

∑
ay∈B x . norm (f (x , y))) abs summable on A

also have ?this ←→ (λx .
∫
y∈B x . norm (f (x , y)) ∂count space B ′) abs summable on

A
by (intro abs summable on cong refl infsetsum altdef ′) (auto simp: B ′ def )

also have . . . ←→ (λx .
∫
y . indicator (Sigma A B) (x , y) ∗R norm (f (x , y))

∂count space B ′)
abs summable on A (is ←→ ?h abs summable on )

unfolding set lebesgue integral def
by (intro abs summable on cong) (auto simp: indicator def )

also have . . . ←→ integrable (count space A) ?h
by (simp add : abs summable on def )

finally have ∗∗: . . . .

have integrable (count space A
⊗

M count space B ′) (λz . indicator (Sigma A
B) z ∗R f z )

proof (rule Fubini integrable, goal cases)
case 3
{
fix x assume x : x ∈ A
with ∗ have (λy . f (x , y)) abs summable on B x
by blast

also have ?this ←→ integrable (count space B ′)
(λy . indicator (B x ) y ∗R f (x , y))

unfolding set integrable def [symmetric]
using x by (intro abs summable on altdef ′) (auto simp: B ′ def )
also have (λy . indicator (B x ) y ∗R f (x , y)) =

(λy . indicator (Sigma A B) (x , y) ∗R f (x , y))
using x by (auto simp: indicator def )

finally have integrable (count space B ′)
(λy . indicator (Sigma A B) (x , y) ∗R f (x , y)) .

}
thus ?case by (auto simp: AE count space)
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qed (insert ∗∗, auto simp: pair measure countable)
moreover have count space A

⊗
M count space B ′ = count space (A × B ′)

by (simp add : pair measure countable)
moreover have set integrable (count space (A × B ′)) (Sigma A B) f ←→

f abs summable on Sigma A B
by (rule abs summable on altdef ′ [symmetric]) (auto simp: B ′ def )

ultimately show f abs summable on Sigma A B
by (simp add : set integrable def )

}
qed

lemma abs summable on Sigma project1 :
assumes (λ(x ,y). f x y) abs summable on Sigma A B
assumes [simp]: countable A and

∧
x . x ∈ A =⇒ countable (B x )

shows (λx . infsetsum (λy . norm (f x y)) (B x )) abs summable on A
using assms by (subst (asm) abs summable on Sigma iff ) auto

lemma abs summable on Sigma project1 ′:
assumes (λ(x ,y). f x y) abs summable on Sigma A B
assumes [simp]: countable A and

∧
x . x ∈ A =⇒ countable (B x )

shows (λx . infsetsum (λy . f x y) (B x )) abs summable on A
by (intro abs summable on comparison test ′ [OF abs summable on Sigma project1 [OF

assms]]
norm infsetsum bound)

theorem infsetsum prod PiE :
fixes f :: ′a ⇒ ′b ⇒ ′c :: {real normed field ,banach,second countable topology}
assumes finite: finite A and countable:

∧
x . x ∈ A =⇒ countable (B x )

assumes summable:
∧
x . x ∈ A =⇒ f x abs summable on B x

shows infsetsum (λg .
∏

x∈A. f x (g x )) (PiE A B) = (
∏

x∈A. infsetsum (f
x ) (B x ))
proof −
define B ′ where B ′ = (λx . if x ∈ A then B x else {})
from assms have [simp]: countable (B ′ x ) for x
by (auto simp: B ′ def )

then interpret product sigma finite count space ◦ B ′

unfolding o def by (intro product sigma finite.intro sigma finite measure count space countable)
have infsetsum (λg .

∏
x∈A. f x (g x )) (PiE A B) =

(
∫
g . (

∏
x∈A. f x (g x )) ∂count space (PiE A B))

by (simp add : infsetsum def )
also have PiE A B = PiE A B ′

by (intro PiE cong) (simp all add : B ′ def )
hence count space (PiE A B) = count space (PiE A B ′)
by simp

also have . . . = PiM A (count space ◦ B ′)
unfolding o def using finite by (intro count space PiM finite [symmetric])

simp all
also have (

∫
g . (

∏
x∈A. f x (g x )) ∂. . . ) = (

∏
x∈A. infsetsum (f x ) (B ′ x ))

by (subst product integral prod)
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(insert summable finite, simp all add : infsetsum def B ′ def abs summable on def )
also have . . . = (

∏
x∈A. infsetsum (f x ) (B x ))

by (intro prod .cong refl) (simp all add : B ′ def )
finally show ?thesis .

qed

lemma infsetsum uminus: infsetsum (λx . −f x ) A = −infsetsum f A
unfolding infsetsum def abs summable on def
by (rule Bochner Integration.integral minus)

lemma infsetsum add :
assumes f abs summable on A and g abs summable on A
shows infsetsum (λx . f x + g x ) A = infsetsum f A + infsetsum g A
using assms unfolding infsetsum def abs summable on def
by (rule Bochner Integration.integral add)

lemma infsetsum diff :
assumes f abs summable on A and g abs summable on A
shows infsetsum (λx . f x − g x ) A = infsetsum f A − infsetsum g A
using assms unfolding infsetsum def abs summable on def
by (rule Bochner Integration.integral diff )

lemma infsetsum scaleR left :
assumes c 6= 0 =⇒ f abs summable on A
shows infsetsum (λx . f x ∗R c) A = infsetsum f A ∗R c
using assms unfolding infsetsum def abs summable on def
by (rule Bochner Integration.integral scaleR left)

lemma infsetsum scaleR right :
infsetsum (λx . c ∗R f x ) A = c ∗R infsetsum f A
unfolding infsetsum def abs summable on def
by (subst Bochner Integration.integral scaleR right) auto

lemma infsetsum cmult left :
fixes f :: ′a ⇒ ′b :: {banach, real normed algebra, second countable topology}
assumes c 6= 0 =⇒ f abs summable on A
shows infsetsum (λx . f x ∗ c) A = infsetsum f A ∗ c
using assms unfolding infsetsum def abs summable on def
by (rule Bochner Integration.integral mult left)

lemma infsetsum cmult right :
fixes f :: ′a ⇒ ′b :: {banach, real normed algebra, second countable topology}
assumes c 6= 0 =⇒ f abs summable on A
shows infsetsum (λx . c ∗ f x ) A = c ∗ infsetsum f A
using assms unfolding infsetsum def abs summable on def
by (rule Bochner Integration.integral mult right)

lemma infsetsum cdiv :
fixes f :: ′a ⇒ ′b :: {banach, real normed field , second countable topology}
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assumes c 6= 0 =⇒ f abs summable on A
shows infsetsum (λx . f x / c) A = infsetsum f A / c
using assms unfolding infsetsum def abs summable on def by auto

lemma
fixes f :: ′a ⇒ ′c :: {banach, real normed field , second countable topology}
assumes [simp]: countable A and [simp]: countable B
assumes f abs summable on A and g abs summable on B
shows abs summable on product : (λ(x ,y). f x ∗ g y) abs summable on A × B
and infsetsum product : infsetsum (λ(x ,y). f x ∗ g y) (A × B) =

infsetsum f A ∗ infsetsum g B
proof −
from assms show (λ(x ,y). f x ∗ g y) abs summable on A × B
by (subst abs summable on Sigma iff )
(auto intro!: abs summable on cmult right simp: norm mult infsetsum cmult right)

with assms show infsetsum (λ(x ,y). f x ∗ g y) (A × B) = infsetsum f A ∗
infsetsum g B

by (subst infsetsum Sigma)
(auto simp: infsetsum cmult left infsetsum cmult right)

qed

end

6.38 Faces, Extreme Points, Polytopes, Polyhedra
etc

Ported from HOL Light by L C Paulson

theory Polytope
imports Cartesian Euclidean Space Path Connected
begin

6.38.1 Faces of a (usually convex) set

definition face of :: [ ′a::real vector set , ′a set ] ⇒ bool (infixr (face ′ of ) 50 )
where
T face of S ←→

T ⊆ S ∧ convex T ∧
(∀ a ∈ S . ∀ b ∈ S . ∀ x ∈ T . x ∈ open segment a b −→ a ∈ T ∧ b ∈ T )

lemma face ofD : [[T face of S ; x ∈ open segment a b; a ∈ S ; b ∈ S ; x ∈ T ]] =⇒
a ∈ T ∧ b ∈ T
unfolding face of def by blast

lemma face of translation eq [simp]:
((+) a ‘ T face of (+) a ‘ S ) ←→ T face of S
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proof −
have ∗:

∧
a T S . T face of S =⇒ ((+) a ‘ T face of (+) a ‘ S )

by (simp add : face of def )
show ?thesis
by (force simp: image comp o def dest : ∗ [where a = −a] intro: ∗)

qed

lemma face of linear image:
assumes linear f inj f
shows (f ‘ c face of f ‘ S ) ←→ c face of S

by (simp add : face of def inj image subset iff inj image mem iff open segment linear image
assms)

lemma face of refl : convex S =⇒ S face of S
by (auto simp: face of def )

lemma face of refl eq : S face of S ←→ convex S
by (auto simp: face of def )

lemma empty face of [iff ]: {} face of S
by (simp add : face of def )

lemma face of empty [simp]: S face of {} ←→ S = {}
by (meson empty face of face of def subset empty)

lemma face of trans [trans]: [[S face of T ; T face of u]] =⇒ S face of u
unfolding face of def by (safe; blast)

lemma face of face: T face of S =⇒ (f face of T ←→ f face of S ∧ f ⊆ T )
unfolding face of def by (safe; blast)

lemma face of subset : [[F face of S ; F ⊆ T ; T ⊆ S ]] =⇒ F face of T
unfolding face of def by (safe; blast)

lemma face of slice: [[F face of S ; convex T ]] =⇒ (F ∩ T ) face of (S ∩ T )
unfolding face of def by (blast intro: convex Int)

lemma face of Int : [[t1 face of S ; t2 face of S ]] =⇒ (t1 ∩ t2 ) face of S
unfolding face of def by (blast intro: convex Int)

lemma face of Inter : [[A 6= {};
∧
T . T ∈ A =⇒ T face of S ]] =⇒ (

⋂
A) face of S

unfolding face of def by (blast intro: convex Inter)

lemma face of Int Int : [[F face of T ; F ′ face of t ′]] =⇒ (F ∩ F ′) face of (T ∩ t ′)
unfolding face of def by (blast intro: convex Int)

lemma face of imp subset : T face of S =⇒ T ⊆ S
unfolding face of def by blast
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proposition face of imp eq affine Int :
fixes S :: ′a::euclidean space set
assumes S : convex S and T : T face of S
shows T = (affine hull T ) ∩ S

proof −
have convex T using T by (simp add : face of def )
have ∗: False if x : x ∈ affine hull T and x ∈ S x /∈ T and y : y ∈ rel interior

T for x y
proof −
obtain e where e>0 and e: cball y e ∩ affine hull T ⊆ T
using y by (auto simp: rel interior cball)

have y 6= x y ∈ S y ∈ T
using face of imp subset rel interior subset T that by blast+

then have zne:
∧
u. [[u ∈ {0<..<1}; (1 − u) ∗R y + u ∗R x ∈ T ]] =⇒ False

using 〈x ∈ S 〉 〈x /∈ T 〉 〈T face of S 〉 unfolding face of def
by (meson greaterThanLessThan iff in segment(2 ))

have in01 : min (1/2 ) (e / norm (x − y)) ∈ {0<..<1}
using 〈y 6= x 〉 〈e > 0 〉 by simp

have §: norm (min (1/2 ) (e / norm (x − y)) ∗R y − min (1/2 ) (e / norm
(x − y)) ∗R x ) ≤ e

using 〈e > 0 〉

by (simp add : scaleR diff right [symmetric] norm minus commute min mult distrib right)
show False
apply (rule zne [OF in01 e [THEN subsetD ]])
using 〈y ∈ T 〉

apply (simp add : hull inc mem affine x )
by (simp add : dist norm algebra simps §)

qed
show ?thesis
proof (rule subset antisym)
show T ⊆ affine hull T ∩ S
using assms by (simp add : hull subset face of imp subset)

show affine hull T ∩ S ⊆ T
using ∗ 〈convex T 〉 rel interior eq empty by fastforce

qed
qed

lemma face of imp closed :
fixes S :: ′a::euclidean space set
assumes convex S closed S T face of S shows closed T

by (metis affine affine hull affine closed closed Int face of imp eq affine Int assms)

lemma face of Int supporting hyperplane le strong :
assumes convex (S ∩ {x . a · x = b}) and aleb:

∧
x . x ∈ S =⇒ a · x ≤ b

shows (S ∩ {x . a · x = b}) face of S
proof −
have ∗: a · u = a · x if x ∈ open segment u v u ∈ S v ∈ S and b: b = a · x

for u v x
proof (rule antisym)
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show a · u ≤ a · x
using aleb 〈u ∈ S 〉 〈b = a · x 〉 by blast

next
obtain ξ where b = a · ((1 − ξ) ∗R u + ξ ∗R v) 0 < ξ ξ < 1
using 〈b = a · x 〉 〈x ∈ open segment u v 〉 in segment
by (auto simp: open segment image interval split : if split asm)

then have b + ξ ∗ (a · u) ≤ a · u + ξ ∗ b
using aleb [OF 〈v ∈ S 〉] by (simp add : algebra simps)

then have (1 − ξ) ∗ b ≤ (1 − ξ) ∗ (a · u)
by (simp add : algebra simps)

then have b ≤ a · u
using 〈ξ < 1 〉 by auto

with b show a · x ≤ a · u by simp
qed
show ?thesis
using ∗ open segment commute by (fastforce simp add : face of def assms)

qed

lemma face of Int supporting hyperplane ge strong :
[[convex (S ∩ {x . a · x = b});

∧
x . x ∈ S =⇒ a · x ≥ b]]

=⇒ (S ∩ {x . a · x = b}) face of S
using face of Int supporting hyperplane le strong [of S −a −b] by simp

lemma face of Int supporting hyperplane le:
[[convex S ;

∧
x . x ∈ S =⇒ a · x ≤ b]] =⇒ (S ∩ {x . a · x = b}) face of S

by (simp add : convex Int convex hyperplane face of Int supporting hyperplane le strong)

lemma face of Int supporting hyperplane ge:
[[convex S ;

∧
x . x ∈ S =⇒ a · x ≥ b]] =⇒ (S ∩ {x . a · x = b}) face of S

by (simp add : convex Int convex hyperplane face of Int supporting hyperplane ge strong)

lemma face of imp convex : T face of S =⇒ convex T
using face of def by blast

lemma face of imp compact :
fixes S :: ′a::euclidean space set
shows [[convex S ; compact S ; T face of S ]] =⇒ compact T

by (meson bounded subset compact eq bounded closed face of imp closed face of imp subset)

lemma face of Int subface:
[[A ∩ B face of A; A ∩ B face of B ; C face of A; D face of B ]]
=⇒ (C ∩ D) face of C ∧ (C ∩ D) face of D

by (meson face of Int Int face of face inf le1 inf le2 )

lemma subset of face of :
fixes S :: ′a::real normed vector set
assumes T face of S u ⊆ S T ∩ (rel interior u) 6= {}
shows u ⊆ T

proof
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fix c
assume c ∈ u
obtain b where b ∈ T b ∈ rel interior u using assms by auto
then obtain e where e>0 b ∈ u and e: cball b e ∩ affine hull u ⊆ u
by (auto simp: rel interior cball)

show c ∈ T
proof (cases b=c)
case True with 〈b ∈ T 〉 show ?thesis by blast

next
case False
define d where d = b + (e / norm(b − c)) ∗R (b − c)
have d ∈ cball b e ∩ affine hull u
using 〈e > 0 〉 〈b ∈ u〉 〈c ∈ u〉

by (simp add : d def dist norm hull inc mem affine 3 minus False)
with e have d ∈ u by blast
have nbc: norm (b − c) + e > 0 using 〈e > 0 〉

by (metis add .commute le less trans less add same cancel2 norm ge zero)
then have [simp]: d 6= c using False scaleR cancel left [of 1 + (e / norm (b

− c)) b c]
by (simp add : algebra simps d def ) (simp add : field split simps)

have [simp]: ((e − e ∗ e / (e + norm (b − c))) / norm (b − c)) = (e / (e +
norm (b − c)))

using False nbc
by (simp add : divide simps) (simp add : algebra simps)

have b ∈ open segment d c
apply (simp add : open segment image interval)
apply (simp add : d def algebra simps image def )
apply (rule tac x=e / (e + norm (b − c)) in bexI )
using False nbc 〈0 < e〉 by (auto simp: algebra simps)

then have d ∈ T ∧ c ∈ T
by (meson 〈b ∈ T 〉 〈c ∈ u〉 〈d ∈ u〉 assms face ofD subset iff )

then show ?thesis ..
qed

qed

lemma face of eq :
fixes S :: ′a::real normed vector set
assumes T face of S U face of S (rel interior T ) ∩ (rel interior U ) 6= {}
shows T = U

using assms
unfolding disjoint iff not equal
by (metis IntI empty iff face of imp subset mem rel interior ball subset antisym

subset of face of )

lemma face of disjoint rel interior :
fixes S :: ′a::real normed vector set
assumes T face of S T 6= S
shows T ∩ rel interior S = {}

by (meson assms subset of face of face of imp subset order refl subset antisym)
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lemma face of disjoint interior :
fixes S :: ′a::real normed vector set
assumes T face of S T 6= S
shows T ∩ interior S = {}

proof −
have T ∩ interior S ⊆ rel interior S
by (meson inf sup ord(2 ) interior subset rel interior order .trans)

thus ?thesis
by (metis (no types) Int greatest assms face of disjoint rel interior inf sup ord(1 )

subset empty)
qed

lemma face of subset rel boundary :
fixes S :: ′a::real normed vector set
assumes T face of S T 6= S
shows T ⊆ (S − rel interior S )

by (meson DiffI assms disjoint iff not equal face of disjoint rel interior face of imp subset
rev subsetD subsetI )

lemma face of subset rel frontier :
fixes S :: ′a::real normed vector set
assumes T face of S T 6= S
shows T ⊆ rel frontier S

using assms closure subset face of disjoint rel interior face of imp subset rel frontier def
by fastforce

lemma face of aff dim lt :
fixes S :: ′a::euclidean space set
assumes convex S T face of S T 6= S
shows aff dim T < aff dim S

proof −
have aff dim T ≤ aff dim S
by (simp add : face of imp subset aff dim subset assms)

moreover have aff dim T 6= aff dim S
proof (cases T = {})
case True then show ?thesis
by (metis aff dim empty 〈T 6= S 〉)

next case False then show ?thesis
by (metis Set .set insert assms convex rel frontier aff dim dual order .irrefl face of imp convex

face of subset rel frontier insert not empty subsetI )
qed
ultimately show ?thesis
by simp

qed

lemma subset of face of affine hull :
fixes S :: ′a::euclidean space set

assumes T : T face of S and convex S U ⊆ S and dis: ¬ disjnt (affine hull T )
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(rel interior U )
shows U ⊆ T

proof (rule subset of face of [OF T 〈U ⊆ S 〉])
show T ∩ rel interior U 6= {}
using face of imp eq affine Int [OF 〈convex S 〉 T ] rel interior subset [of U ] dis

〈U ⊆ S 〉 disjnt def
by fastforce

qed

lemma affine hull face of disjoint rel interior :
fixes S :: ′a::euclidean space set

assumes convex S F face of S F 6= S
shows affine hull F ∩ rel interior S = {}
by (metis assms disjnt def face of imp subset order refl subset antisym subset of face of affine hull)

lemma affine diff divide:
assumes affine S k 6= 0 k 6= 1 and xy : x ∈ S y /R (1 − k) ∈ S
shows (x − y) /R k ∈ S

proof −
have inverse(k) ∗R (x − y) = (1 − inverse k) ∗R inverse(1 − k) ∗R y +

inverse(k) ∗R x
using assms
by (simp add : algebra simps) (simp add : scaleR left distrib [symmetric] field split simps)
then show ?thesis
using 〈affine S 〉 xy by (auto simp: affine alt)

qed

proposition face of convex hulls:
assumes S : finite S T ⊆ S and disj : affine hull T ∩ convex hull (S − T ) =

{}
shows (convex hull T ) face of (convex hull S )

proof −
have fin: finite T finite (S − T ) using assms
by (auto simp: finite subset)

have ∗: x ∈ convex hull T
if x : x ∈ convex hull S and y : y ∈ convex hull S and w : w ∈ convex hull

T w ∈ open segment x y
for x y w

proof −
have waff : w ∈ affine hull T
using convex hull subset affine hull w by blast

obtain a b where a:
∧
i . i ∈ S =⇒ 0 ≤ a i and asum: sum a S = 1 and

aeqx : (
∑

i∈S . a i ∗R i) = x
and b:

∧
i . i ∈ S =⇒ 0 ≤ b i and bsum: sum b S = 1 and beqy :

(
∑

i∈S . b i ∗R i) = y
using x y by (auto simp: assms convex hull finite)

obtain u where (1 − u) ∗R x + u ∗R y ∈ convex hull T x 6= y and weq : w
= (1 − u) ∗R x + u ∗R y

and u01 : 0 < u u < 1
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using w by (auto simp: open segment image interval split : if split asm)
define c where c i = (1 − u) ∗ a i + u ∗ b i for i
have cge0 :

∧
i . i ∈ S =⇒ 0 ≤ c i

using a b u01 by (simp add : c def )
have sumc1 : sum c S = 1
by (simp add : c def sum.distrib sum distrib left [symmetric] asum bsum)

have sumci xy : (
∑

i∈S . c i ∗R i) = (1 − u) ∗R x + u ∗R y
apply (simp add : c def sum.distrib scaleR left distrib)
by (simp only : scaleR scaleR [symmetric] Real Vector Spaces.scaleR right .sum

[symmetric] aeqx beqy)
show ?thesis
proof (cases sum c (S − T ) = 0 )
case True
have ci0 :

∧
i . i ∈ (S − T ) =⇒ c i = 0

using True cge0 fin(2 ) sum nonneg eq 0 iff by auto
have a0 : a i = 0 if i ∈ (S − T ) for i
using ci0 [OF that ] u01 a [of i ] b [of i ] that

by (simp add : c def Groups.ordered comm monoid add class.add nonneg eq 0 iff )
have [simp]: sum a T = 1
using assms by (metis sum.mono neutral cong right a0 asum)

show ?thesis
apply (simp add : convex hull finite 〈finite T 〉)
apply (rule tac x=a in exI )
using a0 assms
apply (auto simp: cge0 a aeqx [symmetric] sum.mono neutral right)
done

next
case False
define k where k = sum c (S − T )
have k > 0 using False
unfolding k def by (metis DiffD1 antisym conv cge0 sum nonneg not less)

have weq sumsum: w = sum (λx . c x ∗R x ) T + sum (λx . c x ∗R x ) (S −
T )

by (metis (no types) add .commute S (1 ) S (2 ) sum.subset diff sumci xy weq)
show ?thesis
proof (cases k = 1 )
case True
then have sum c T = 0
by (simp add : S k def sum diff sumc1 )

then have [simp]: sum c (S − T ) = 1
by (simp add : S sum diff sumc1 )

have ci0 :
∧
i . i ∈ T =⇒ c i = 0

by (meson 〈finite T 〉 〈sum c T = 0 〉 〈T ⊆ S 〉 cge0 sum nonneg eq 0 iff
subsetCE )

then have [simp]: (
∑

i∈S−T . c i ∗R i) = w
by (simp add : weq sumsum)

have w ∈ convex hull (S − T )
apply (simp add : convex hull finite fin)
apply (rule tac x=c in exI )
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apply (auto simp: cge0 weq True k def )
done

then show ?thesis
using disj waff by blast

next
case False
then have sumcf : sum c T = 1 − k
by (simp add : S k def sum diff sumc1 )

have ge0 :
∧
x . x ∈ T =⇒ 0 ≤ inverse (1 − k) ∗ c x

by (metis 〈T ⊆ S 〉 cge0 inverse nonnegative iff nonnegative mult nonneg nonneg
subsetD sum nonneg sumcf )

have eq1 : (
∑

x∈T . inverse (1 − k) ∗ c x ) = 1
by (metis False eq iff diff eq 0 mult .commute right inverse sum distrib left

sumcf )
have (

∑
i∈T . c i ∗R i) /R (1 − k) ∈ convex hull T

apply (simp add : convex hull finite fin)
apply (rule tac x=λi . inverse (1−k) ∗ c i in exI )

by (metis (mono tags, lifting) eq1 ge0 scaleR scaleR scale sum right
sum.cong)

with 〈0 < k 〉 have inverse(k) ∗R (w − sum (λi . c i ∗R i) T ) ∈ affine hull
T

by (simp add : affine diff divide [OF affine affine hull ] False waff con-
vex hull subset affine hull [THEN subsetD ])

moreover have inverse(k) ∗R (w − sum (λx . c x ∗R x ) T ) ∈ convex hull
(S − T )

apply (simp add : weq sumsum convex hull finite fin)
apply (rule tac x=λi . inverse k ∗ c i in exI )
using 〈k > 0 〉 cge0
apply (auto simp: scaleR right .sum sum distrib left [symmetric] k def

[symmetric])
done

ultimately show ?thesis
using disj by blast

qed
qed

qed
have [simp]: convex hull T ⊆ convex hull S
by (simp add : 〈T ⊆ S 〉 hull mono)

show ?thesis
using open segment commute by (auto simp: face of def intro: ∗)

qed

proposition face of convex hull insert :
assumes finite S a /∈ affine hull S and T : T face of convex hull S
shows T face of convex hull insert a S

proof −
have convex hull S face of convex hull insert a S
by (simp add : assms face of convex hulls insert Diff if subset insertI )

then show ?thesis
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using T face of trans by blast
qed

proposition face of affine trivial :
assumes affine S T face of S
shows T = {} ∨ T = S

proof (rule ccontr , clarsimp)
assume T 6= {} T 6= S
then obtain a where a ∈ T by auto
then have a ∈ S
using 〈T face of S 〉 face of imp subset by blast

have S ⊆ T
proof
fix b assume b ∈ S
show b ∈ T
proof (cases a = b)
case True with 〈a ∈ T 〉 show ?thesis by auto

next
case False
then have a 6= 2 ∗R a − b
by (simp add : scaleR 2 )
with False have a ∈ open segment (2 ∗R a − b) b
apply (clarsimp simp: open segment def closed segment def )
apply (rule tac x=1/2 in exI )
by (simp add : algebra simps)

moreover have 2 ∗R a − b ∈ S
by (rule mem affine [OF 〈affine S 〉 〈a ∈ S 〉 〈b ∈ S 〉, of 2 −1 , simplified ])

moreover note 〈b ∈ S 〉 〈a ∈ T 〉

ultimately show ?thesis
by (rule face ofD [OF 〈T face of S 〉, THEN conjunct2 ])

qed
qed
then show False
using 〈T 6= S 〉 〈T face of S 〉 face of imp subset by blast

qed

lemma face of affine eq :
affine S =⇒ (T face of S ←→ T = {} ∨ T = S )

using affine imp convex face of affine trivial face of refl by auto

proposition Inter faces finite altbound :
fixes T :: ′a::euclidean space set set
assumes cfaI :

∧
c. c ∈ T =⇒ c face of S

shows ∃F ′. finite F ′ ∧ F ′ ⊆ T ∧ card F ′ ≤ DIM ( ′a) + 2 ∧
⋂

F ′ =
⋂

T
proof (cases ∀F ′. finite F ′ ∧ F ′ ⊆ T ∧ card F ′ ≤ DIM ( ′a) + 2 −→ (∃ c. c ∈ T
∧ c ∩ (

⋂
F ′) ⊂ (

⋂
F ′)))

case True
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then obtain c where c:∧
F ′. [[finite F ′; F ′ ⊆ T ; card F ′ ≤ DIM ( ′a) + 2 ]] =⇒ c F ′ ∈ T ∧ c F ′ ∩

(
⋂
F ′) ⊂ (

⋂
F ′)

by metis
define d where d = rec nat {c{}} (λn r . insert (c r) r)
have [simp]: d 0 = {c {}}
by (simp add : d def )

have dSuc [simp]:
∧
n. d (Suc n) = insert (c (d n)) (d n)

by (simp add : d def )
have dn notempty : d n 6= {} for n
by (induction n) auto

have dn le Suc: d n ⊆ T ∧ finite(d n) ∧ card(d n) ≤ Suc n if n ≤ DIM ( ′a) +
2 for n
using that
proof (induction n)
case 0
then show ?case by (simp add : c)

next
case (Suc n)
then show ?case by (auto simp: c card insert if )

qed
have aff dim le: aff dim(

⋂
(d n)) ≤ DIM ( ′a) − int n if n ≤ DIM ( ′a) + 2 for

n
using that
proof (induction n)
case 0
then show ?case
by (simp add : aff dim le DIM )

next
case (Suc n)
have fs:

⋂
(d (Suc n)) face of S

by (meson Suc.prems cfaI dn le Suc dn notempty face of Inter subsetCE )
have condn: convex (

⋂
(d n))

using Suc.prems nat le linear not less eq eq
by (blast intro: face of imp convex cfaI convex Inter dest : dn le Suc)

have fdn:
⋂
(d (Suc n)) face of

⋂
(d n)

by (metis (no types, lifting) Inter anti mono Suc.prems dSuc cfaI dn le Suc
dn notempty face of Inter face of imp subset face of subset subset iff subset insertI )

have ne:
⋂
(d (Suc n)) 6=

⋂
(d n)

by (metis (no types, lifting) Suc.prems Suc leD c complete lattice class.Inf insert
dSuc dn le Suc less irrefl order .trans)

have ∗:
∧
m::int .

∧
d .

∧
d ′::int . d < d ′ ∧ d ′≤ m − n =⇒ d ≤ m − of nat(n+1 )

by arith
have aff dim (

⋂
(d (Suc n))) < aff dim (

⋂
(d n))

by (rule face of aff dim lt [OF condn fdn ne])
moreover have aff dim (

⋂
(d n)) ≤ int (DIM ( ′a)) − int n

using Suc by auto
ultimately
have aff dim (

⋂
(d (Suc n))) ≤ int (DIM ( ′a)) − (n+1 ) by arith
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then show ?case by linarith
qed
have aff dim (

⋂
(d (DIM ( ′a) + 2 ))) ≤ −2

using aff dim le [OF order refl ] by simp
with aff dim geq [of

⋂
(d (DIM ( ′a) + 2 ))] show ?thesis

using order .trans by fastforce
next
case False
then show ?thesis
apply simp
apply (erule ex forward)
by blast

qed

lemma faces of translation:
{F . F face of image (λx . a + x ) S} = image (image (λx . a + x )) {F . F face of

S}
proof −
have

∧
F . F face of (+) a ‘ S =⇒ ∃G . G face of S ∧ F = (+) a ‘ G

by (metis face of imp subset face of translation eq subset imageE )
then show ?thesis
by (auto simp: image iff )

qed

proposition face of Times:
assumes F face of S and F ′ face of S ′

shows (F × F ′) face of (S × S ′)
proof −
have F × F ′ ⊆ S × S ′

using assms [unfolded face of def ] by blast
moreover
have convex (F × F ′)
using assms [unfolded face of def ] by (blast intro: convex Times)

moreover
have a ∈ F ∧ a ′ ∈ F ′ ∧ b ∈ F ∧ b ′ ∈ F ′

if a ∈ S b ∈ S a ′ ∈ S ′ b ′ ∈ S ′ x ∈ F × F ′ x ∈ open segment (a,a ′) (b,b ′)
for a b a ′ b ′ x

proof (cases b=a ∨ b ′=a ′)
case True with that show ?thesis
using assms
by (force simp: in segment dest : face ofD)

next
case False with assms [unfolded face of def ] that show ?thesis
by (blast dest !: open segment PairD)

qed
ultimately show ?thesis
unfolding face of def by blast

qed
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corollary face of Times decomp:
fixes S :: ′a::euclidean space set and S ′ :: ′b::euclidean space set
shows C face of (S × S ′) ←→ (∃F F ′. F face of S ∧ F ′ face of S ′ ∧ C = F

× F ′)
(is ?lhs = ?rhs)

proof
assume C : ?lhs
show ?rhs
proof (cases C = {})
case True then show ?thesis by auto

next
case False
have 1 : fst ‘ C ⊆ S snd ‘ C ⊆ S ′

using C face of imp subset by fastforce+
have convex C
using C by (metis face of imp convex )

have conv : convex (fst ‘ C ) convex (snd ‘ C )
by (simp all add : 〈convex C 〉 convex linear image linear fst linear snd)

have fstab: a ∈ fst ‘ C ∧ b ∈ fst ‘ C
if a ∈ S b ∈ S x ∈ open segment a b (x ,x ′) ∈ C for a b x x ′

proof −
have ∗: (x ,x ′) ∈ open segment (a,x ′) (b,x ′)
using that by (auto simp: in segment)

show ?thesis
using face ofD [OF C ∗] that face of imp subset [OF C ] by force

qed
have fst : fst ‘ C face of S
by (force simp: face of def 1 conv fstab)

have sndab: a ′ ∈ snd ‘ C ∧ b ′ ∈ snd ‘ C
if a ′ ∈ S ′ b ′ ∈ S ′ x ′ ∈ open segment a ′ b ′ (x ,x ′) ∈ C for a ′ b ′ x x ′

proof −
have ∗: (x ,x ′) ∈ open segment (x ,a ′) (x ,b ′)
using that by (auto simp: in segment)

show ?thesis
using face ofD [OF C ∗] that face of imp subset [OF C ] by force

qed
have snd : snd ‘ C face of S ′

by (force simp: face of def 1 conv sndab)
have cc: rel interior C ⊆ rel interior (fst ‘ C ) × rel interior (snd ‘ C )

by (force simp: face of Times rel interior Times conv fst snd 〈convex C 〉

linear fst linear snd rel interior convex linear image [symmetric])
have C = fst ‘ C × snd ‘ C
proof (rule face of eq [OF C ])
show fst ‘ C × snd ‘ C face of S × S ′

by (simp add : face of Times rel interior Times conv fst snd)
show rel interior C ∩ rel interior (fst ‘ C × snd ‘ C ) 6= {}
using False rel interior eq empty 〈convex C 〉 cc
by (auto simp: face of Times rel interior Times conv fst)

qed
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with fst snd show ?thesis by metis
qed

next
assume ?rhs with face of Times show ?lhs by auto

qed

lemma face of Times eq :
fixes S :: ′a::euclidean space set and S ′ :: ′b::euclidean space set
shows (F × F ′) face of (S × S ′) ←→

F = {} ∨ F ′ = {} ∨ F face of S ∧ F ′ face of S ′

by (auto simp: face of Times decomp times eq iff )

lemma hyperplane face of halfspace le: {x . a · x = b} face of {x . a · x ≤ b}
proof −
have {x . a · x ≤ b} ∩ {x . a · x = b} = {x . a · x = b}
by auto

with face of Int supporting hyperplane le [OF convex halfspace le [of a b], of a b]
show ?thesis by auto

qed

lemma hyperplane face of halfspace ge: {x . a · x = b} face of {x . a · x ≥ b}
proof −
have {x . a · x ≥ b} ∩ {x . a · x = b} = {x . a · x = b}
by auto

with face of Int supporting hyperplane ge [OF convex halfspace ge [of b a], of b
a]
show ?thesis by auto

qed

lemma face of halfspace le:
fixes a :: ′n::euclidean space
shows F face of {x . a · x ≤ b} ←→

F = {} ∨ F = {x . a · x = b} ∨ F = {x . a · x ≤ b}
(is ?lhs = ?rhs)

proof (cases a = 0 )
case True then show ?thesis
using face of affine eq affine UNIV by auto

next
case False
then have ine: interior {x . a · x ≤ b} 6= {}
using halfspace eq empty lt interior halfspace le by blast

show ?thesis
proof
assume L: ?lhs
have F face of {x . a · x = b} if F 6= {x . a · x ≤ b}
proof −
have F face of rel frontier {x . a · x ≤ b}
proof (rule face of subset [OF L])
show F ⊆ rel frontier {x . a · x ≤ b}
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by (simp add : L face of subset rel frontier that)
qed (force simp: rel frontier def closed halfspace le)
then show ?thesis
using False
by (simp add : frontier halfspace le rel frontier nonempty interior [OF ine])

qed
with L show ?rhs
using affine hyperplane face of affine eq by blast

next
assume ?rhs
then show ?lhs
by (metis convex halfspace le empty face of face of refl hyperplane face of halfspace le)

qed
qed

lemma face of halfspace ge:
fixes a :: ′n::euclidean space
shows F face of {x . a · x ≥ b} ←→

F = {} ∨ F = {x . a · x = b} ∨ F = {x . a · x ≥ b}
using face of halfspace le [of F −a −b] by simp

6.38.2 Exposed faces

That is, faces that are intersection with supporting hyperplane

definition exposed face of :: [ ′a::euclidean space set , ′a set ] ⇒ bool
(infixr (exposed ′ face ′ of ) 50 )

where T exposed face of S ←→
T face of S ∧ (∃ a b. S ⊆ {x . a · x ≤ b} ∧ T = S ∩ {x . a · x = b})

lemma empty exposed face of [iff ]: {} exposed face of S
apply (simp add : exposed face of def )
apply (rule tac x=0 in exI )
apply (rule tac x=1 in exI , force)
done

lemma exposed face of refl eq [simp]: S exposed face of S ←→ convex S
proof
assume S : convex S
have S ⊆ {x . 0 · x ≤ 0} ∧ S = S ∩ {x . 0 · x = 0}
by auto

with S show S exposed face of S
using exposed face of def face of refl eq by blast

qed (simp add : exposed face of def face of refl eq)

lemma exposed face of refl : convex S =⇒ S exposed face of S
by simp

lemma exposed face of :
T exposed face of S ←→
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T face of S ∧
(T = {} ∨ T = S ∨
(∃ a b. a 6= 0 ∧ S ⊆ {x . a · x ≤ b} ∧ T = S ∩ {x . a · x = b}))

proof (cases T = {})
case True then show ?thesis
by simp

next
case False
show ?thesis
proof (cases T = S )
case True then show ?thesis
by (simp add : face of refl eq)

next
case False
with 〈T 6= {}〉 show ?thesis
apply (auto simp: exposed face of def )
apply (metis inner zero left)
done

qed
qed

lemma exposed face of Int supporting hyperplane le:
[[convex S ;

∧
x . x ∈ S =⇒ a · x ≤ b]] =⇒ (S ∩ {x . a · x = b}) exposed face of

S
by (force simp: exposed face of def face of Int supporting hyperplane le)

lemma exposed face of Int supporting hyperplane ge:
[[convex S ;

∧
x . x ∈ S =⇒ a · x ≥ b]] =⇒ (S ∩ {x . a · x = b}) exposed face of

S
using exposed face of Int supporting hyperplane le [of S −a −b] by simp

proposition exposed face of Int :
assumes T exposed face of S

and u exposed face of S
shows (T ∩ u) exposed face of S

proof −
obtain a b where T : S ∩ {x . a · x = b} face of S

and S : S ⊆ {x . a · x ≤ b}
and teq : T = S ∩ {x . a · x = b}

using assms by (auto simp: exposed face of def )
obtain a ′ b ′ where u: S ∩ {x . a ′ · x = b ′} face of S

and s ′: S ⊆ {x . a ′ · x ≤ b ′}
and ueq : u = S ∩ {x . a ′ · x = b ′}

using assms by (auto simp: exposed face of def )
have tu: T ∩ u face of S
using T teq u ueq by (simp add : face of Int)

have ss: S ⊆ {x . (a + a ′) · x ≤ b + b ′}
using S s ′ by (force simp: inner left distrib)

show ?thesis
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apply (simp add : exposed face of def tu)
apply (rule tac x=a+a ′ in exI )
apply (rule tac x=b+b ′ in exI )
using S s ′

apply (fastforce simp: ss inner left distrib teq ueq)
done

qed

proposition exposed face of Inter :
fixes P :: ′a::euclidean space set set

assumes P 6= {}
and

∧
T . T ∈ P =⇒ T exposed face of S

shows
⋂
P exposed face of S

proof −
obtain Q where finite Q and QsubP : Q ⊆ P card Q ≤ DIM ( ′a) + 2 and

IntQ :
⋂

Q =
⋂
P

using Inter faces finite altbound [of P S ] assms [unfolded exposed face of ]
by force

show ?thesis
proof (cases Q = {})
case True then show ?thesis
by (metis IntQ Inter UNIV conv(2 ) assms(1 ) assms(2 ) ex in conv)

next
case False
have Q ⊆ {T . T exposed face of S}
using QsubP assms by blast

moreover have Q ⊆ {T . T exposed face of S} =⇒
⋂
Q exposed face of S

using 〈finite Q 〉 False
by (induction Q rule: finite induct ; use exposed face of Int in fastforce)

ultimately show ?thesis
by (simp add : IntQ)

qed
qed

proposition exposed face of sums:
assumes convex S and convex T

and F exposed face of {x + y | x y . x ∈ S ∧ y ∈ T}
(is F exposed face of ?ST )

obtains k l
where k exposed face of S l exposed face of T

F = {x + y | x y . x ∈ k ∧ y ∈ l}
proof (cases F = {})
case True then show ?thesis
using that by blast

next
case False
show ?thesis
proof (cases F = ?ST )
case True then show ?thesis
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using assms exposed face of refl eq that by blast
next
case False
obtain p where p ∈ F using 〈F 6= {}〉 by blast
moreover
obtain u z where T : ?ST ∩ {x . u · x = z} face of ?ST

and S : ?ST ⊆ {x . u · x ≤ z}
and feq : F = ?ST ∩ {x . u · x = z}

using assms by (auto simp: exposed face of def )
ultimately obtain a0 b0

where p: p = a0 + b0 and a0 ∈ S b0 ∈ T and z : u · p = z
by auto

have lez : u · (x + y) ≤ z if x ∈ S y ∈ T for x y
using S that by auto

have sef : S ∩ {x . u · x = u · a0} exposed face of S
proof (rule exposed face of Int supporting hyperplane le [OF 〈convex S 〉])
show

∧
x . x ∈ S =⇒ u · x ≤ u · a0

by (metis p z add le cancel right inner right distrib lez [OF 〈b0 ∈ T 〉])
qed
have tef : T ∩ {x . u · x = u · b0} exposed face of T
proof (rule exposed face of Int supporting hyperplane le [OF 〈convex T 〉])
show

∧
x . x ∈ T =⇒ u · x ≤ u · b0

by (metis p z add .commute add le cancel right inner right distrib lez [OF
〈a0 ∈ S 〉])

qed
have {x + y |x y . x ∈ S ∧ u · x = u · a0 ∧ y ∈ T ∧ u · y = u · b0} ⊆ F
by (auto simp: feq) (metis inner right distrib p z )

moreover have F ⊆ {x + y |x y . x ∈ S ∧ u · x = u · a0 ∧ y ∈ T ∧ u · y
= u · b0}

proof −
have

∧
x y . [[z = u · (x + y); x ∈ S ; y ∈ T ]]

=⇒ u · x = u · a0 ∧ u · y = u · b0
using z p 〈a0 ∈ S 〉 〈b0 ∈ T 〉

apply (simp add : inner right distrib)
apply (metis add le cancel right antisym lez [unfolded inner right distrib]

add .commute)
done

then show ?thesis
using feq by blast

qed
ultimately have F = {x + y |x y . x ∈ S ∩ {x . u · x = u · a0} ∧ y ∈ T ∩

{x . u · x = u · b0}}
by blast

then show ?thesis
by (rule that [OF sef tef ])

qed
qed

proposition exposed face of parallel :
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T exposed face of S ←→
T face of S ∧
(∃ a b. S ⊆ {x . a · x ≤ b} ∧ T = S ∩ {x . a · x = b} ∧

(T 6= {} −→ T 6= S −→ a 6= 0 ) ∧
(T 6= S −→ (∀w ∈ affine hull S . (w + a) ∈ affine hull S )))

(is ?lhs = ?rhs)
proof
assume ?lhs then show ?rhs
proof (clarsimp simp: exposed face of def )
fix a b
assume faceS : S ∩ {x . a · x = b} face of S and Ssub: S ⊆ {x . a · x ≤ b}
show ∃ c d . S ⊆ {x . c · x ≤ d} ∧

S ∩ {x . a · x = b} = S ∩ {x . c · x = d} ∧
(S ∩ {x . a · x = b} 6= {} −→ S ∩ {x . a · x = b} 6= S −→ c 6= 0 ) ∧
(S ∩ {x . a · x = b} 6= S −→ (∀w ∈ affine hull S . w + c ∈ affine

hull S ))
proof (cases affine hull S ∩ {x . −a · x ≤ −b} = {} ∨ affine hull S ⊆ {x . −

a · x ≤ − b})
case True
then show ?thesis
proof
assume affine hull S ∩ {x . − a · x ≤ − b} = {}
then show ?thesis
apply (rule tac x=0 in exI )
apply (rule tac x=1 in exI )
using hull subset by fastforce

next
assume affine hull S ⊆ {x . − a · x ≤ − b}
then show ?thesis

apply (rule tac x=0 in exI )
apply (rule tac x=0 in exI )
using Ssub hull subset by fastforce

qed
next
case False
then obtain a ′ b ′ where a ′ 6= 0
and le: affine hull S ∩ {x . a ′ · x ≤ b ′} = affine hull S ∩ {x . − a · x ≤ − b}
and eq : affine hull S ∩ {x . a ′ · x = b ′} = affine hull S ∩ {x . − a · x = − b}
and mem:

∧
w . w ∈ affine hull S =⇒ w + a ′ ∈ affine hull S

using affine parallel slice affine affine hull by metis
show ?thesis
proof (intro conjI impI allI ballI exI )
have ∗: S ⊆ − (affine hull S ∩ {x . P x}) ∪ affine hull S ∩ {x . Q x} =⇒ S

⊆ {x . ¬ P x ∨ Q x}
for P Q
using hull subset by fastforce

have S ⊆ {x . ¬ (a ′ · x ≤ b ′) ∨ a ′ · x = b ′}
by (rule ∗) (use le eq Ssub in auto)

then show S ⊆ {x . − a ′ · x ≤ − b ′}
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by auto
show S ∩ {x . a · x = b} = S ∩ {x . − a ′ · x = − b ′}
using eq hull subset [of S affine] by force

show [[S ∩ {x . a · x = b} 6= {}; S ∩ {x . a · x = b} 6= S ]] =⇒ − a ′ 6= 0
using 〈a ′ 6= 0 〉 by auto

show w + − a ′ ∈ affine hull S
if S ∩ {x . a · x = b} 6= S w ∈ affine hull S for w

proof −
have w + 1 ∗R (w − (w + a ′)) ∈ affine hull S
using affine affine hull mem mem affine 3 minus that(2 ) by blast

then show ?thesis by simp
qed

qed
qed

qed
next
assume ?rhs then show ?lhs
unfolding exposed face of def by blast

qed

6.38.3 Extreme points of a set: its singleton faces

definition extreme point of :: [ ′a::real vector , ′a set ] ⇒ bool
(infixr (extreme ′ point ′ of ) 50 )

where x extreme point of S ←→
x ∈ S ∧ (∀ a ∈ S . ∀ b ∈ S . x /∈ open segment a b)

lemma extreme point of stillconvex :
convex S =⇒ (x extreme point of S ←→ x ∈ S ∧ convex (S − {x}))

by (fastforce simp add : convex contains segment extreme point of def open segment def )

lemma face of singleton:
{x} face of S ←→ x extreme point of S

by (fastforce simp add : extreme point of def face of def )

lemma extreme point not in REL INTERIOR:
fixes S :: ′a::real normed vector set
shows [[x extreme point of S ; S 6= {x}]] =⇒ x /∈ rel interior S

by (metis disjoint iff face of disjoint rel interior face of singleton insertI1 )

lemma extreme point not in interior :
fixes S :: ′a::{real normed vector , perfect space} set
assumes x extreme point of S shows x /∈ interior S

proof (cases S = {x})
case False
then show ?thesis
by (meson assms subsetD extreme point not in REL INTERIOR interior subset rel interior)

qed (simp add : empty interior finite)
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lemma extreme point of face:
F face of S =⇒ v extreme point of F ←→ v extreme point of S ∧ v ∈ F

by (meson empty subsetI face of face face of singleton insert subset)

lemma extreme point of convex hull :
x extreme point of (convex hull S ) =⇒ x ∈ S
using hull minimal [of S (convex hull S ) − {x} convex ]
using hull subset [of S convex ]
by (force simp add : extreme point of stillconvex )

proposition extreme points of convex hull :
{x . x extreme point of (convex hull S )} ⊆ S
using extreme point of convex hull by auto

lemma extreme point of empty [simp]: ¬ (x extreme point of {})
by (simp add : extreme point of def )

lemma extreme point of singleton [iff ]: x extreme point of {a} ←→ x = a
using extreme point of stillconvex by auto

lemma extreme point of translation eq :
(a + x ) extreme point of (image (λx . a + x ) S ) ←→ x extreme point of S

by (auto simp: extreme point of def )

lemma extreme points of translation:
{x . x extreme point of (image (λx . a + x ) S )} =
(λx . a + x ) ‘ {x . x extreme point of S}

using extreme point of translation eq
by auto (metis (no types, lifting) image iff mem Collect eq minus add cancel)

lemma extreme points of translation subtract :
{x . x extreme point of (image (λx . x − a) S )} =
(λx . x − a) ‘ {x . x extreme point of S}

using extreme points of translation [of − a S ]
by simp

lemma extreme point of Int :
[[x extreme point of S ; x extreme point of T ]] =⇒ x extreme point of (S ∩ T )

by (simp add : extreme point of def )

lemma extreme point of Int supporting hyperplane le:
[[S ∩ {x . a · x = b} = {c};

∧
x . x ∈ S =⇒ a · x ≤ b]] =⇒ c extreme point of S

by (metis convex singleton face of Int supporting hyperplane le strong face of singleton)

lemma extreme point of Int supporting hyperplane ge:
[[S ∩ {x . a · x = b} = {c};

∧
x . x ∈ S =⇒ a · x ≥ b]] =⇒ c extreme point of S

using extreme point of Int supporting hyperplane le [of S −a −b c]
by simp
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lemma exposed point of Int supporting hyperplane le:
[[S ∩ {x . a · x = b} = {c};

∧
x . x ∈ S =⇒ a · x ≤ b]] =⇒ {c} exposed face of S

unfolding exposed face of def
by (force simp: face of singleton extreme point of Int supporting hyperplane le)

lemma exposed point of Int supporting hyperplane ge:
[[S ∩ {x . a · x = b} = {c};

∧
x . x ∈ S =⇒ a · x ≥ b]] =⇒ {c} exposed face of S

using exposed point of Int supporting hyperplane le [of S −a −b c]
by simp

lemma extreme point of convex hull insert :
assumes finite S a /∈ convex hull S
shows a extreme point of (convex hull (insert a S ))

proof (cases a ∈ S )
case False
then show ?thesis
using face of convex hulls [of insert a S {a}] assms
by (auto simp: face of singleton hull same)

qed (use assms in 〈simp add : hull inc〉)

6.38.4 Facets

definition facet of :: [ ′a::euclidean space set , ′a set ] ⇒ bool
(infixr (facet ′ of ) 50 )

where F facet of S ←→ F face of S ∧ F 6= {} ∧ aff dim F = aff dim S − 1

lemma facet of empty [simp]: ¬ S facet of {}
by (simp add : facet of def )

lemma facet of irrefl [simp]: ¬ S facet of S
by (simp add : facet of def )

lemma facet of imp face of : F facet of S =⇒ F face of S
by (simp add : facet of def )

lemma facet of imp subset : F facet of S =⇒ F ⊆ S
by (simp add : face of imp subset facet of def )

lemma hyperplane facet of halfspace le:
a 6= 0 =⇒ {x . a · x = b} facet of {x . a · x ≤ b}

unfolding facet of def hyperplane eq empty
by (auto simp: hyperplane face of halfspace ge hyperplane face of halfspace le

Suc leI of nat diff aff dim halfspace le)

lemma hyperplane facet of halfspace ge:
a 6= 0 =⇒ {x . a · x = b} facet of {x . a · x ≥ b}

unfolding facet of def hyperplane eq empty
by (auto simp: hyperplane face of halfspace le hyperplane face of halfspace ge

Suc leI of nat diff aff dim halfspace ge)
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lemma facet of halfspace le:
F facet of {x . a · x ≤ b} ←→ a 6= 0 ∧ F = {x . a · x = b}
(is ?lhs = ?rhs)

proof
assume c: ?lhs
with c facet of irrefl show ?rhs
by (force simp: aff dim halfspace le facet of def face of halfspace le cong : conj cong

split : if split asm)
next
assume ?rhs then show ?lhs
by (simp add : hyperplane facet of halfspace le)

qed

lemma facet of halfspace ge:
F facet of {x . a · x ≥ b} ←→ a 6= 0 ∧ F = {x . a · x = b}

using facet of halfspace le [of F −a −b] by simp

6.38.5 Edges: faces of affine dimension 1

definition edge of :: [ ′a::euclidean space set , ′a set ]⇒ bool (infixr (edge ′ of ) 50 )
where e edge of S ←→ e face of S ∧ aff dim e = 1

lemma edge of imp subset :
S edge of T =⇒ S ⊆ T

by (simp add : edge of def face of imp subset)

6.38.6 Existence of extreme points

proposition different norm 3 collinear points:
fixes a :: ′a::euclidean space
assumes x ∈ open segment a b norm(a) = norm(b) norm(x ) = norm(b)
shows False

proof −
obtain u where norm ((1 − u) ∗R a + u ∗R b) = norm b

and a 6= b
and u01 : 0 < u u < 1

using assms by (auto simp: open segment image interval if splits)
then have (1 − u) ∗R a · (1 − u) ∗R a + ((1 − u) ∗ 2 ) ∗R a · u ∗R b =

(1 − u ∗ u) ∗R (a · a)
using assms by (simp add : norm eq algebra simps inner commute)

then have (1 − u) ∗R ((1 − u) ∗R a · a + (2 ∗ u) ∗R a · b) =
(1 − u) ∗R ((1 + u) ∗R (a · a))

by (simp add : algebra simps)
then have (1 − u) ∗R (a · a) + (2 ∗ u) ∗R (a · b) = (1 + u) ∗R (a · a)
using u01 by auto

then have a · b = a · a
using u01 by (simp add : algebra simps)

then have a = b
using 〈norm(a) = norm(b)〉 norm eq vector eq by fastforce
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then show ?thesis
using 〈a 6= b〉 by force

qed

proposition extreme point exists convex :
fixes S :: ′a::euclidean space set
assumes compact S convex S S 6= {}
obtains x where x extreme point of S

proof −
obtain x where x ∈ S and xsup:

∧
y . y ∈ S =⇒ norm y ≤ norm x

using distance attains sup [of S 0 ] assms by auto
have False if a ∈ S b ∈ S and x : x ∈ open segment a b for a b
proof −
have noax : norm a ≤ norm x and nobx : norm b ≤ norm x using xsup that

by auto
have a 6= b
using empty iff open segment idem x by auto

show False
by (metis dist 0 norm dist decreases open segment noax nobx not le x )

qed
then show ?thesis
by (meson 〈x ∈ S 〉 extreme point of def that)

qed

6.38.7 Krein-Milman, the weaker form

proposition Krein Milman:
fixes S :: ′a::euclidean space set
assumes compact S convex S
shows S = closure(convex hull {x . x extreme point of S})

proof (cases S = {})
case True then show ?thesis by simp

next
case False
have closed S
by (simp add : 〈compact S 〉 compact imp closed)

have closure (convex hull {x . x extreme point of S}) ⊆ S
by (simp add : 〈closed S 〉 assms closure minimal extreme point of def hull minimal)
moreover have u ∈ closure (convex hull {x . x extreme point of S})

if u ∈ S for u
proof (rule ccontr)
assume unot : u /∈ closure(convex hull {x . x extreme point of S})
then obtain a b where a · u < b

and ab:
∧
x . x ∈ closure(convex hull {x . x extreme point of S}) =⇒ b <

a · x
using separating hyperplane closed point [of closure(convex hull {x . x ex-

treme point of S})]
by blast

have continuous on S ((·) a)
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by (rule continuous intros)+
then obtain m where m ∈ S and m:

∧
y . y ∈ S =⇒ a · m ≤ a · y

using continuous attains inf [of S λx . a · x ] 〈compact S 〉 〈u ∈ S 〉

by auto
define T where T = S ∩ {x . a · x = a · m}
have m ∈ T
by (simp add : T def 〈m ∈ S 〉)

moreover have compact T
by (simp add : T def compact Int closed [OF 〈compact S 〉 closed hyperplane])

moreover have convex T
by (simp add : T def convex Int [OF 〈convex S 〉 convex hyperplane])

ultimately obtain v where v : v extreme point of T
using extreme point exists convex [of T ] by auto

then have {v} face of T
by (simp add : face of singleton)

also have T face of S
by (simp add : T def m face of Int supporting hyperplane ge [OF 〈convex S 〉])

finally have v extreme point of S
by (simp add : face of singleton)

then have b < a · v
using closure subset by (simp add : closure hull hull inc ab)

then show False
using 〈a · u < b〉 〈{v} face of T 〉 face of imp subset m T def that by fastforce

qed
ultimately show ?thesis
by blast

qed

Now the sharper form.

lemma Krein Milman Minkowski aux :
fixes S :: ′a::euclidean space set
assumes n: dim S = n and S : compact S convex S 0 ∈ S
shows 0 ∈ convex hull {x . x extreme point of S}

using n S
proof (induction n arbitrary : S rule: less induct)
case (less n S ) show ?case
proof (cases 0 ∈ rel interior S )
case True with Krein Milman less.prems
show ?thesis
by (metis subsetD convex convex hull convex rel interior closure rel interior subset)

next
case False
have rel interior S 6= {}
by (simp add : rel interior convex nonempty aux less)

then obtain c where c: c ∈ rel interior S by blast
obtain a where a 6= 0

and le ay :
∧
y . y ∈ S =⇒ a · 0 ≤ a · y

and less ay :
∧
y . y ∈ rel interior S =⇒ a · 0 < a · y

by (blast intro: supporting hyperplane rel boundary intro!: less False)
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have face: S ∩ {x . a · x = 0} face of S
using face of Int supporting hyperplane ge le ay 〈convex S 〉 by auto

then have co: compact (S ∩ {x . a · x = 0}) convex (S ∩ {x . a · x = 0})
using less.prems by (blast intro: face of imp compact face of imp convex )+

have a · y = 0 if y ∈ span (S ∩ {x . a · x = 0}) for y
proof −
have y ∈ span {x . a · x = 0}
by (metis inf .cobounded2 span mono subsetCE that)

then show ?thesis
by (blast intro: span induct [OF subspace hyperplane])

qed
then have dim (S ∩ {x . a · x = 0}) < n
by (metis (no types) less ay c subsetD dim eq span inf .strict order iff

inf le1 〈dim S = n〉 not le rel interior subset span 0 span base)
then have 0 ∈ convex hull {x . x extreme point of (S ∩ {x . a · x = 0})}
by (rule less.IH ) (auto simp: co less.prems)

then show ?thesis
by (metis (mono tags, lifting) Collect mono iff face extreme point of face

hull mono subset iff )
qed

qed

theorem Krein Milman Minkowski :
fixes S :: ′a::euclidean space set
assumes compact S convex S
shows S = convex hull {x . x extreme point of S}

proof
show S ⊆ convex hull {x . x extreme point of S}
proof
fix a assume [simp]: a ∈ S
have 1 : compact ((+) (− a) ‘ S )
by (simp add : 〈compact S 〉 compact translation subtract cong : image cong simp)
have 2 : convex ((+) (− a) ‘ S )
by (simp add : 〈convex S 〉 compact translation subtract)

show a invex : a ∈ convex hull {x . x extreme point of S}
using Krein Milman Minkowski aux [OF refl 1 2 ]

convex hull translation [of −a]
by (auto simp: extreme points of translation subtract translation assoc cong :

image cong simp)
qed

next
show convex hull {x . x extreme point of S} ⊆ S
proof −
have {a. a extreme point of S} ⊆ S
using extreme point of def by blast

then show ?thesis
by (simp add : 〈convex S 〉 hull minimal)

qed
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qed

6.38.8 Applying it to convex hulls of explicitly indicated fi-
nite sets

corollary Krein Milman polytope:
fixes S :: ′a::euclidean space set
shows
finite S

=⇒ convex hull S =
convex hull {x . x extreme point of (convex hull S )}

by (simp add : Krein Milman Minkowski finite imp compact convex hull)

lemma extreme points of convex hull eq :
fixes S :: ′a::euclidean space set
shows
[[compact S ;

∧
T . T ⊂ S =⇒ convex hull T 6= convex hull S ]]

=⇒ {x . x extreme point of (convex hull S )} = S
by (metis (full types) Krein Milman Minkowski compact convex hull convex convex hull
extreme points of convex hull psubsetI )

lemma extreme point of convex hull eq :
fixes S :: ′a::euclidean space set
shows
[[compact S ;

∧
T . T ⊂ S =⇒ convex hull T 6= convex hull S ]]

=⇒ (x extreme point of (convex hull S ) ←→ x ∈ S )
using extreme points of convex hull eq by auto

lemma extreme point of convex hull convex independent :
fixes S :: ′a::euclidean space set
assumes compact S and S :

∧
a. a ∈ S =⇒ a /∈ convex hull (S − {a})

shows (x extreme point of (convex hull S ) ←→ x ∈ S )
proof −
have convex hull T 6= convex hull S if T ⊂ S for T
proof −
obtain a where T ⊆ S a ∈ S a /∈ T using 〈T ⊂ S 〉 by blast
then show ?thesis

by (metis (full types) Diff eq empty iff Diff insert0 S hull mono hull subset
insert Diff single subsetCE )
qed
then show ?thesis
by (rule extreme point of convex hull eq [OF 〈compact S 〉])

qed

lemma extreme point of convex hull affine independent :
fixes S :: ′a::euclidean space set
shows
¬ affine dependent S
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=⇒ (x extreme point of (convex hull S ) ←→ x ∈ S )
by (metis aff independent finite affine dependent def affine hull convex hull extreme point of convex hull convex independent
finite imp compact hull inc)

Elementary proofs exist, not requiring Euclidean spaces and all this devel-
opment

lemma extreme point of convex hull 2 :
fixes x :: ′a::euclidean space
shows x extreme point of (convex hull {a,b}) ←→ x = a ∨ x = b

proof −
have x extreme point of (convex hull {a,b}) ←→ x ∈ {a,b}
by (intro extreme point of convex hull affine independent affine independent 2 )

then show ?thesis
by simp

qed

lemma extreme point of segment :
fixes x :: ′a::euclidean space
shows
x extreme point of closed segment a b ←→ x = a ∨ x = b

by (simp add : extreme point of convex hull 2 segment convex hull)

lemma face of convex hull subset :
fixes S :: ′a::euclidean space set
assumes compact S and T : T face of (convex hull S )
obtains s ′ where s ′ ⊆ S T = convex hull s ′

proof
show {x . x extreme point of T} ⊆ S
using T extreme point of convex hull extreme point of face by blast

show T = convex hull {x . x extreme point of T}
proof (rule Krein Milman Minkowski)
show compact T
using T assms compact convex hull face of imp compact by auto

show convex T
using T face of imp convex by blast

qed
qed

lemma face of convex hull aux :
assumes eq : x ∗R p = u ∗R a + v ∗R b + w ∗R c
and x : u + v + w = x x 6= 0 and S : affine S a ∈ S b ∈ S c ∈ S

shows p ∈ S
proof −
have p = (u ∗R a + v ∗R b + w ∗R c) /R x
by (metis 〈x 6= 0 〉 eq mult .commute right inverse scaleR one scaleR scaleR)

moreover have affine hull {a,b,c} ⊆ S
by (simp add : S hull minimal)

moreover have (u ∗R a + v ∗R b + w ∗R c) /R x ∈ affine hull {a,b,c}
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apply (simp add : affine hull 3 )
apply (rule tac x=u/x in exI )
apply (rule tac x=v/x in exI )
apply (rule tac x=w/x in exI )
using x apply (auto simp: field split simps)
done

ultimately show ?thesis by force
qed

proposition face of convex hull insert eq :
fixes a :: ′a :: euclidean space
assumes finite S and a: a /∈ affine hull S
shows (F face of (convex hull (insert a S )) ←→

F face of (convex hull S ) ∨
(∃F ′. F ′ face of (convex hull S ) ∧ F = convex hull (insert a F ′)))
(is F face of ?CAS ←→ )

proof safe
assume F : F face of ?CAS
and ∗: @F ′. F ′ face of convex hull S ∧ F = convex hull insert a F ′

obtain T where T : T ⊆ insert a S and FeqT : F = convex hull T
by (metis F 〈finite S 〉 compact insert finite imp compact face of convex hull subset)
show F face of convex hull S
proof (cases a ∈ T )
case True
have F = convex hull insert a (convex hull T ∩ convex hull S )
proof
have T ⊆ insert a (convex hull T ∩ convex hull S )
using T hull subset by fastforce

then show F ⊆ convex hull insert a (convex hull T ∩ convex hull S )
by (simp add : FeqT hull mono)

show convex hull insert a (convex hull T ∩ convex hull S ) ⊆ F
by (simp add : FeqT True hull inc hull minimal)

qed
moreover have convex hull T ∩ convex hull S face of convex hull S

by (metis F FeqT convex convex hull face of slice hull mono inf .absorb iff2
subset insertI )

ultimately show ?thesis
using ∗ by force

next
case False
then show ?thesis
by (metis FeqT F T face of subset hull mono subset insert subset insertI )

qed
next
assume F face of convex hull S
show F face of ?CAS
by (simp add : 〈F face of convex hull S 〉 a face of convex hull insert 〈finite S 〉)

next
fix F
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assume F : F face of convex hull S
show convex hull insert a F face of ?CAS
proof (cases S = {})
case True
then show ?thesis
using F face of affine eq by auto

next
case False
have anotc: a /∈ convex hull S
by (metis (no types) a affine hull convex hull hull inc)

show ?thesis
proof (cases F = {})
case True show ?thesis
using anotc by (simp add : 〈F = {}〉 〈finite S 〉 extreme point of convex hull insert

face of singleton)
next
case False
have convex hull insert a F ⊆ ?CAS

by (simp add : F a 〈finite S 〉 convex hull subset face of convex hull insert
face of imp subset hull inc)

moreover
have (∃ y v . (1 − ub) ∗R a + ub ∗R b = (1 − v) ∗R a + v ∗R y ∧

0 ≤ v ∧ v ≤ 1 ∧ y ∈ F ) ∧
(∃ x u. (1 − uc) ∗R a + uc ∗R c = (1 − u) ∗R a + u ∗R x ∧

0 ≤ u ∧ u ≤ 1 ∧ x ∈ F )
if ∗: (1 − ux ) ∗R a + ux ∗R x

∈ open segment ((1 − ub) ∗R a + ub ∗R b) ((1 − uc) ∗R a + uc ∗R
c)

and 0 ≤ ub ub ≤ 1 0 ≤ uc uc ≤ 1 0 ≤ ux ux ≤ 1
and b: b ∈ convex hull S and c: c ∈ convex hull S and x ∈ F

for b c ub uc ux x
proof −
have xah: x ∈ affine hull S
using F convex hull subset affine hull face of imp subset 〈x ∈ F 〉 by blast

have ah: b ∈ affine hull S c ∈ affine hull S
using b c convex hull subset affine hull by blast+

obtain v where ne: (1 − ub) ∗R a + ub ∗R b 6= (1 − uc) ∗R a + uc ∗R c
and eq : (1 − ux ) ∗R a + ux ∗R x =

(1 − v) ∗R ((1 − ub) ∗R a + ub ∗R b) + v ∗R ((1 − uc) ∗R a +
uc ∗R c)

and 0 < v v < 1
using ∗ by (auto simp: in segment)

then have 0 : ((1 − ux ) − ((1 − v) ∗ (1 − ub) + v ∗ (1 − uc))) ∗R a +
(ux ∗R x − (((1 − v) ∗ ub) ∗R b + (v ∗ uc) ∗R c)) = 0

by (auto simp: algebra simps)
then have ((1 − ux ) − ((1 − v) ∗ (1 − ub) + v ∗ (1 − uc))) ∗R a =

((1 − v) ∗ ub) ∗R b + (v ∗ uc) ∗R c + (−ux ) ∗R x
by (auto simp: algebra simps)

then have a ∈ affine hull S if 1 − ux − ((1 − v) ∗ (1 − ub) + v ∗ (1 −
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uc)) 6= 0
by (rule face of convex hull aux ) (use b c xah ah that in 〈auto simp:

algebra simps〉)
then have 1 − ux − ((1 − v) ∗ (1 − ub) + v ∗ (1 − uc)) = 0
using a by blast

with 0 have equx : (1 − v) ∗ ub + v ∗ uc = ux
and uxx : ux ∗R x = (((1 − v) ∗ ub) ∗R b + (v ∗ uc) ∗R c)
by auto (auto simp: algebra simps)

show ?thesis
proof (cases uc = 0 )
case True
then show ?thesis
using equx 〈0 ≤ ub〉 〈ub ≤ 1 〉 〈v < 1 〉 uxx 〈x ∈ F 〉 by force

next
case False
show ?thesis
proof (cases ub = 0 )
case True
then show ?thesis
using equx 〈0 ≤ uc〉 〈uc ≤ 1 〉 〈0 < v 〉 uxx 〈x ∈ F 〉 by force

next
case False
then have 0 < ub 0 < uc
using 〈uc 6= 0 〉 〈0 ≤ ub〉 〈0 ≤ uc〉 by auto

then have (1 − v) ∗ ub > 0 v ∗ uc > 0
by (simp all add : 〈0 < uc〉 〈0 < v 〉 〈v < 1 〉)

then have ux 6= 0
using equx 〈0 < v 〉 by auto

have b ∈ F ∧ c ∈ F
proof (cases b = c)
case True
then show ?thesis

by (metis 〈ux 6= 0 〉 equx real vector .scale cancel left scaleR add left
uxx 〈x ∈ F 〉)

next
case False
have x = (((1 − v) ∗ ub) ∗R b + (v ∗ uc) ∗R c) /R ux

by (metis 〈ux 6= 0 〉 uxx mult .commute right inverse scaleR one
scaleR scaleR)

also have ... = (1 − v ∗ uc / ux ) ∗R b + (v ∗ uc / ux ) ∗R c
using 〈ux 6= 0 〉 equx apply (auto simp: field split simps)
by (metis add .commute add diff eq add divide distrib diff add cancel

scaleR add left)
finally have x = (1 − v ∗ uc / ux ) ∗R b + (v ∗ uc / ux ) ∗R c .
then have x ∈ open segment b c
apply (simp add : in segment 〈b 6= c〉)
apply (rule tac x=(v ∗ uc) / ux in exI )
using 〈0 ≤ ux 〉 〈ux 6= 0 〉 〈0 < uc〉 〈0 < v 〉 〈0 < ub〉 〈v < 1 〉 equx
apply (force simp: field split simps)
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done
then show ?thesis
by (rule face ofD [OF F b c 〈x ∈ F 〉])

qed
with 〈0 ≤ ub〉 〈ub ≤ 1 〉 〈0 ≤ uc〉 〈uc ≤ 1 〉 show ?thesis by blast

qed
qed

qed
moreover have convex hull F = F
by (meson F convex hull eq face of imp convex )

ultimately show ?thesis
unfolding face of def by (fastforce simp: convex hull insert alt 〈S 6= {}〉 〈F

6= {}〉)
qed

qed
qed

lemma face of convex hull insert2 :
fixes a :: ′a :: euclidean space
assumes S : finite S and a: a /∈ affine hull S and F : F face of convex hull S
shows convex hull (insert a F ) face of convex hull (insert a S )
by (metis F face of convex hull insert eq [OF S a])

proposition face of convex hull affine independent :
fixes S :: ′a::euclidean space set
assumes ¬ affine dependent S
shows (T face of (convex hull S ) ←→ (∃ c. c ⊆ S ∧ T = convex hull c))

(is ?lhs = ?rhs)
proof
assume ?lhs
then show ?rhs
by (meson 〈T face of convex hull S 〉 aff independent finite assms face of convex hull subset

finite imp compact)
next
assume ?rhs
then obtain c where c ⊆ S and T : T = convex hull c
by blast

have affine hull c ∩ affine hull (S − c) = {}
by (intro disjoint affine hull [OF assms 〈c ⊆ S 〉], auto)

then have affine hull c ∩ convex hull (S − c) = {}
using convex hull subset affine hull by fastforce

then show ?lhs
by (metis face of convex hulls 〈c ⊆ S 〉 aff independent finite assms T )

qed

lemma facet of convex hull affine independent :
fixes S :: ′a::euclidean space set
assumes ¬ affine dependent S
shows T facet of (convex hull S ) ←→
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T 6= {} ∧ (∃ u. u ∈ S ∧ T = convex hull (S − {u}))
(is ?lhs = ?rhs)

proof
assume ?lhs
then have T face of (convex hull S ) T 6= {}

and afft : aff dim T = aff dim (convex hull S ) − 1
by (auto simp: facet of def )

then obtain c where c ⊆ S and c: T = convex hull c
by (auto simp: face of convex hull affine independent [OF assms])

then have affs: aff dim S = aff dim c + 1
by (metis aff dim convex hull afft eq diff eq)

have ¬ affine dependent c
using 〈c ⊆ S 〉 affine dependent subset assms by blast

with affs have card (S − c) = 1
apply (simp add : aff dim affine independent [symmetric] aff dim convex hull)
by (metis aff dim affine independent aff independent finite One nat def 〈c ⊆

S 〉 add .commute
add diff cancel right ′ assms card Diff subset card mono of nat 1

of nat diff of nat eq iff )
then obtain u where u: u ∈ S − c
by (metis DiffI 〈c ⊆ S 〉 aff independent finite assms cancel comm monoid add class.diff cancel

card Diff subset subsetI subset antisym zero neq one)
then have u: S = insert u c
by (metis Diff subset 〈c ⊆ S 〉 〈card (S − c) = 1 〉 card 1 singletonE double diff

insert Diff insert subset singletonD)
have T = convex hull (c − {u})

by (metis Diff empty Diff insert0 〈T facet of convex hull S 〉 c facet of irrefl
insert absorb u)
with 〈T 6= {}〉 show ?rhs
using c u by auto

next
assume ?rhs
then obtain u where T 6= {} u ∈ S and u: T = convex hull (S − {u})
by (force simp: facet of def )

then have ¬ S ⊆ {u}
using 〈T 6= {}〉 u by auto

have aff dim (S − {u}) = aff dim S − 1
using assms 〈u ∈ S 〉

unfolding affine dependent def
by (metis add diff cancel right ′ aff dim insert insert Diff [of u S ])

then have aff dim (convex hull (S − {u})) = aff dim (convex hull S ) − 1
by (simp add : aff dim convex hull)

then show ?lhs
by (metis Diff subset 〈T 6= {}〉 assms face of convex hull affine independent

facet of def u)
qed

lemma facet of convex hull affine independent alt :
fixes S :: ′a::euclidean space set
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assumes ¬ affine dependent S
shows (T facet of (convex hull S ) ←→ 2 ≤ card S ∧ (∃ u. u ∈ S ∧ T = convex

hull (S − {u})))
(is ?lhs = ?rhs)

proof
assume L: ?lhs
then obtain x where
x ∈ S and x : T = convex hull (S − {x}) and finite S
using assms facet of convex hull affine independent aff independent finite by

blast
moreover have Suc (Suc 0 ) ≤ card S
using L x 〈x ∈ S 〉 〈finite S 〉

by (metis Suc leI assms card .remove convex hull eq empty card gt 0 iff facet of convex hull affine independent
finite Diff not less eq eq)
ultimately show ?rhs
by auto

next
assume ?rhs then show ?lhs
using assms
by (auto simp: facet of convex hull affine independent Set .subset singleton iff )

qed

lemma segment face of :
assumes (closed segment a b) face of S
shows a extreme point of S b extreme point of S

proof −
have as: {a} face of S
by (metis (no types) assms convex hull singleton empty iff extreme point of convex hull insert

face of face face of singleton finite.emptyI finite.insertI insert absorb insert iff seg-
ment convex hull)
moreover have {b} face of S
proof −
have b ∈ convex hull {a} ∨ b extreme point of convex hull {b, a}
by (meson extreme point of convex hull insert finite.emptyI finite.insertI )

moreover have closed segment a b = convex hull {b, a}
using closed segment commute segment convex hull by blast

ultimately show ?thesis
by (metis as assms face of face convex hull singleton empty iff face of singleton

insertE )
qed

ultimately show a extreme point of S b extreme point of S
using face of singleton by blast+

qed

proposition Krein Milman frontier :
fixes S :: ′a::euclidean space set
assumes convex S compact S
shows S = convex hull (frontier S )
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(is ?lhs = ?rhs)
proof
have ?lhs ⊆ convex hull {x . x extreme point of S}
using Krein Milman Minkowski assms by blast

also have ... ⊆ ?rhs
proof (rule hull mono)
show {x . x extreme point of S} ⊆ frontier S
using closure subset
by (auto simp: frontier def extreme point not in interior extreme point of def )

qed
finally show ?lhs ⊆ ?rhs .

next
have ?rhs ⊆ convex hull S
by (metis Diff subset 〈compact S 〉 closure closed compact eq bounded closed fron-

tier def hull mono)
also have ... ⊆ ?lhs
by (simp add : 〈convex S 〉 hull same)

finally show ?rhs ⊆ ?lhs .
qed

6.38.9 Polytopes

definition polytope where
polytope S ≡ ∃ v . finite v ∧ S = convex hull v

lemma polytope translation eq : polytope (image (λx . a + x ) S ) ←→ polytope S
proof −
have

∧
a A. polytope A =⇒ polytope ((+) a ‘ A)

by (metis (no types) convex hull translation finite imageI polytope def )
then show ?thesis
by (metis (no types) add .left inverse image add 0 translation assoc)

qed

lemma polytope linear image: [[linear f ; polytope p]] =⇒ polytope(image f p)
unfolding polytope def using convex hull linear image by blast

lemma polytope empty : polytope {}
using convex hull empty polytope def by blast

lemma polytope convex hull : finite S =⇒ polytope(convex hull S )
using polytope def by auto

lemma polytope Times: [[polytope S ; polytope T ]] =⇒ polytope(S × T )
unfolding polytope def
by (metis finite cartesian product convex hull Times)

lemma face of polytope polytope:
fixes S :: ′a::euclidean space set
shows [[polytope S ; F face of S ]] =⇒ polytope F
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unfolding polytope def
by (meson face of convex hull subset finite imp compact finite subset)

lemma finite polytope faces:
fixes S :: ′a::euclidean space set
assumes polytope S
shows finite {F . F face of S}

proof −
obtain v where finite v S = convex hull v
using assms polytope def by auto

have finite ((hull) convex ‘ {T . T ⊆ v})
by (simp add : 〈finite v 〉)

moreover have {F . F face of S} ⊆ ((hull) convex ‘ {T . T ⊆ v})
by (metis (no types, lifting) 〈finite v 〉 〈S = convex hull v 〉 face of convex hull subset

finite imp compact image eqI mem Collect eq subsetI )
ultimately show ?thesis
by (blast intro: finite subset)

qed

lemma finite polytope facets:
assumes polytope S
shows finite {T . T facet of S}

by (simp add : assms facet of def finite polytope faces)

lemma polytope scaling :
assumes polytope S shows polytope (image (λx . c ∗R x ) S )

by (simp add : assms polytope linear image)

lemma polytope imp compact :
fixes S :: ′a::real normed vector set
shows polytope S =⇒ compact S

by (metis finite imp compact convex hull polytope def )

lemma polytope imp convex : polytope S =⇒ convex S
by (metis convex convex hull polytope def )

lemma polytope imp closed :
fixes S :: ′a::real normed vector set
shows polytope S =⇒ closed S

by (simp add : compact imp closed polytope imp compact)

lemma polytope imp bounded :
fixes S :: ′a::real normed vector set
shows polytope S =⇒ bounded S

by (simp add : compact imp bounded polytope imp compact)

lemma polytope interval : polytope(cbox a b)
unfolding polytope def by (meson closed interval as convex hull)
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lemma polytope sing : polytope {a}
using polytope def by force

lemma face of polytope insert :
[[polytope S ; a /∈ affine hull S ; F face of S ]] =⇒ F face of convex hull (insert a

S )
by (metis (no types, lifting) affine hull convex hull face of convex hull insert hull insert

polytope def )

proposition face of polytope insert2 :
fixes a :: ′a :: euclidean space
assumes polytope S a /∈ affine hull S F face of S
shows convex hull (insert a F ) face of convex hull (insert a S )

proof −
obtain V where finite V S = convex hull V
using assms by (auto simp: polytope def )

then have convex hull (insert a F ) face of convex hull (insert a V )
using affine hull convex hull assms face of convex hull insert2 by blast

then show ?thesis
by (metis 〈S = convex hull V 〉 hull insert)

qed

6.38.10 Polyhedra

definition polyhedron where
polyhedron S ≡

∃F . finite F ∧
S =

⋂
F ∧

(∀ h ∈ F . ∃ a b. a 6= 0 ∧ h = {x . a · x ≤ b})

lemma polyhedron Int [intro,simp]:
[[polyhedron S ; polyhedron T ]] =⇒ polyhedron (S ∩ T )
apply (clarsimp simp add : polyhedron def )
subgoal for F G
by (rule tac x=F ∪ G in exI , auto)

done

lemma polyhedron UNIV [iff ]: polyhedron UNIV
unfolding polyhedron def
by (rule tac x={} in exI ) auto

lemma polyhedron Inter [intro,simp]:
[[finite F ;

∧
S . S ∈ F =⇒ polyhedron S ]] =⇒ polyhedron(

⋂
F )

by (induction F rule: finite induct) auto

lemma polyhedron empty [iff ]: polyhedron ({} :: ′a :: euclidean space set)
proof −
define i :: ′a where (i ≡ SOME i . i ∈ Basis)
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have ∃ a. a 6= 0 ∧ (∃ b. {x . i · x ≤ −1} = {x . a · x ≤ b})
by (rule tac x=i in exI ) (force simp: i def SOME Basis nonzero Basis)

moreover have ∃ a b. a 6= 0 ∧ {x . −i · x ≤ − 1} = {x . a · x ≤ b}
apply (rule tac x=−i in exI )
apply (rule tac x=−1 in exI )
apply (simp add : i def SOME Basis nonzero Basis)
done

ultimately show ?thesis
unfolding polyhedron def
by (rule tac x={{x . i · x ≤ −1}, {x . −i · x ≤ −1}} in exI ) force

qed

lemma polyhedron halfspace le:
fixes a :: ′a :: euclidean space
shows polyhedron {x . a · x ≤ b}

proof (cases a = 0 )
case True then show ?thesis by auto

next
case False
then show ?thesis
unfolding polyhedron def
by (rule tac x={{x . a · x ≤ b}} in exI ) auto

qed

lemma polyhedron halfspace ge:
fixes a :: ′a :: euclidean space
shows polyhedron {x . a · x ≥ b}

using polyhedron halfspace le [of −a −b] by simp

lemma polyhedron hyperplane:
fixes a :: ′a :: euclidean space
shows polyhedron {x . a · x = b}

proof −
have {x . a · x = b} = {x . a · x ≤ b} ∩ {x . a · x ≥ b}
by force

then show ?thesis
by (simp add : polyhedron halfspace ge polyhedron halfspace le)

qed

lemma affine imp polyhedron:
fixes S :: ′a :: euclidean space set
shows affine S =⇒ polyhedron S

by (metis affine hull eq polyhedron Inter polyhedron hyperplane affine hull finite intersection hyperplanes
[of S ])

lemma polyhedron imp closed :
fixes S :: ′a :: euclidean space set
shows polyhedron S =⇒ closed S
by (metis closed Inter closed halfspace le polyhedron def )
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lemma polyhedron imp convex :
fixes S :: ′a :: euclidean space set
shows polyhedron S =⇒ convex S
by (metis convex Inter convex halfspace le polyhedron def )

lemma polyhedron affine hull :
fixes S :: ′a :: euclidean space set
shows polyhedron(affine hull S )

by (simp add : affine imp polyhedron)

6.38.11 Canonical polyhedron representation making facial
structure explicit

proposition polyhedron Int affine:
fixes S :: ′a :: euclidean space set
shows polyhedron S ←→

(∃F . finite F ∧ S = (affine hull S ) ∩
⋂

F ∧
(∀ h ∈ F . ∃ a b. a 6= 0 ∧ h = {x . a · x ≤ b}))

(is ?lhs = ?rhs)
proof
assume ?lhs then show ?rhs
using hull subset polyhedron def by fastforce

next
assume ?rhs then show ?lhs
by (metis polyhedron Int polyhedron Inter polyhedron affine hull polyhedron halfspace le)

qed

proposition rel interior polyhedron explicit :
assumes finite F

and seq : S = affine hull S ∩
⋂
F

and faceq :
∧
h. h ∈ F =⇒ a h 6= 0 ∧ h = {x . a h · x ≤ b h}

and psub:
∧
F ′. F ′ ⊂ F =⇒ S ⊂ affine hull S ∩

⋂
F ′

shows rel interior S = {x ∈ S . ∀ h ∈ F . a h · x < b h}
proof −
have rels:

∧
x . x ∈ rel interior S =⇒ x ∈ S

by (meson IntE mem rel interior)
moreover have a i · x < b i if x : x ∈ rel interior S and i ∈ F for x i
proof −
have fif : F − {i} ⊂ F
using 〈i ∈ F 〉 Diff insert absorb Diff subset set insert psubsetI by blast

then have S ⊂ affine hull S ∩
⋂
(F − {i})

by (rule psub)
then obtain z where ssub: S ⊆

⋂
(F − {i}) and zint : z ∈

⋂
(F − {i})

and z /∈ S and zaff : z ∈ affine hull S
by auto

have z 6= x
using 〈z /∈ S 〉 rels x by blast

have z /∈ affine hull S ∩
⋂
F
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using 〈z /∈ S 〉 seq by auto
then have aiz : a i · z > b i
using faceq zint zaff by fastforce

obtain e where e > 0 x ∈ S and e: ball x e ∩ affine hull S ⊆ S
using x by (auto simp: mem rel interior ball)

then have ins:
∧
y . [[norm (x − y) < e; y ∈ affine hull S ]] =⇒ y ∈ S

by (metis IntI subsetD dist norm mem ball)
define ξ where ξ = min (1/2 ) (e / 2 / norm(z − x ))
have norm (ξ ∗R x − ξ ∗R z ) = norm (ξ ∗R (x − z ))
by (simp add : ξ def algebra simps norm mult)

also have ... = ξ ∗ norm (x − z )
using 〈e > 0 〉 by (simp add : ξ def )

also have ... < e
using 〈z 6= x 〉 〈e > 0 〉 by (simp add : ξ def min def field split simps norm minus commute)
finally have lte: norm (ξ ∗R x − ξ ∗R z ) < e .
have ξ aff : ξ ∗R z + (1 − ξ) ∗R x ∈ affine hull S

by (metis 〈x ∈ S 〉 add .commute affine affine hull diff add cancel hull inc
mem affine zaff )

have ξ ∗R z + (1 − ξ) ∗R x ∈ S
using ins [OF ξ aff ] by (simp add : algebra simps lte)

then obtain l where l : 0 < l l < 1 and ls: (l ∗R z + (1 − l) ∗R x ) ∈ S
using 〈e > 0 〉 〈z 6= x 〉

by (rule tac l = ξ in that) (auto simp: ξ def )
then have i : l ∗R z + (1 − l) ∗R x ∈ i
using seq 〈i ∈ F 〉 by auto

have b i ∗ l + (a i · x ) ∗ (1 − l) < a i · (l ∗R z + (1 − l) ∗R x )
using l by (simp add : algebra simps aiz )

also have . . . ≤ b i using i l
using faceq mem Collect eq 〈i ∈ F 〉 by blast

finally have (a i · x ) ∗ (1 − l) < b i ∗ (1 − l)
by (simp add : algebra simps)

with l show ?thesis
by simp

qed
moreover have x ∈ rel interior S

if x ∈ S and less:
∧
h. h ∈ F =⇒ a h · x < b h for x

proof −
have 1 :

∧
h. h ∈ F =⇒ x ∈ interior h

by (metis interior halfspace le mem Collect eq less faceq)
have 2 :

∧
y . [[∀ h∈F . y ∈ interior h; y ∈ affine hull S ]] =⇒ y ∈ S

by (metis IntI Inter iff subsetD interior subset seq)
show ?thesis
apply (simp add : rel interior 〈x ∈ S 〉)
apply (rule tac x=

⋂
h∈F . interior h in exI )

apply (auto simp: 〈finite F 〉 open INT 1 2 )
done

qed
ultimately show ?thesis by blast

qed
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lemma polyhedron Int affine parallel :
fixes S :: ′a :: euclidean space set
shows polyhedron S ←→

(∃F . finite F ∧
S = (affine hull S ) ∩ (

⋂
F ) ∧

(∀ h ∈ F . ∃ a b. a 6= 0 ∧ h = {x . a · x ≤ b} ∧
(∀ x ∈ affine hull S . (x + a) ∈ affine hull S )))

(is ?lhs = ?rhs)
proof
assume ?lhs
then obtain F where finite F and seq : S = (affine hull S ) ∩

⋂
F

and faces:
∧
h. h ∈ F =⇒ ∃ a b. a 6= 0 ∧ h = {x . a · x ≤ b}

by (fastforce simp add : polyhedron Int affine)
then obtain a b where ab:

∧
h. h ∈ F =⇒ a h 6= 0 ∧ h = {x . a h · x ≤ b h}

by metis
show ?rhs
proof −
have ∃ a ′ b ′. a ′ 6= 0 ∧

affine hull S ∩ {x . a ′ · x ≤ b ′} = affine hull S ∩ h ∧
(∀w ∈ affine hull S . (w + a ′) ∈ affine hull S )

if h ∈ F ¬(affine hull S ⊆ h) for h
proof −
have a h 6= 0 and h = {x . a h · x ≤ b h} h ∩

⋂
F =

⋂
F

using 〈h ∈ F 〉 ab by auto
then have (affine hull S ) ∩ {x . a h · x ≤ b h} 6= {}
by (metis (no types) affine hull eq empty inf .absorb iff2 inf assoc inf bot right

inf commute seq that(2 ))
moreover have ¬ (affine hull S ⊆ {x . a h · x ≤ b h})
using 〈h = {x . a h · x ≤ b h}〉 that(2 ) by blast

ultimately show ?thesis
using affine parallel slice [of affine hull S ]
by (metis 〈h = {x . a h · x ≤ b h}〉 affine affine hull)

qed
then obtain a b

where ab:
∧
h. [[h ∈ F ; ¬ (affine hull S ⊆ h)]]

=⇒ a h 6= 0 ∧
affine hull S ∩ {x . a h · x ≤ b h} = affine hull S ∩ h ∧
(∀w ∈ affine hull S . (w + a h) ∈ affine hull S )

by metis
have seq2 : S = affine hull S ∩ (

⋂
h∈{h ∈ F . ¬ affine hull S ⊆ h}. {x . a h ·

x ≤ b h})
by (subst seq) (auto simp: ab INT extend simps)

show ?thesis
apply (rule tac x=(λh. {x . a h · x ≤ b h}) ‘ {h. h ∈ F ∧ ¬(affine hull S ⊆

h)} in exI )
apply (intro conjI seq2 )
using 〈finite F 〉 apply force
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using ab apply blast
done

qed
next
assume ?rhs then show ?lhs
by (metis polyhedron Int affine)

qed

proposition polyhedron Int affine parallel minimal :
fixes S :: ′a :: euclidean space set
shows polyhedron S ←→

(∃F . finite F ∧
S = (affine hull S ) ∩ (

⋂
F ) ∧

(∀ h ∈ F . ∃ a b. a 6= 0 ∧ h = {x . a · x ≤ b} ∧
(∀ x ∈ affine hull S . (x + a) ∈ affine hull S )) ∧

(∀F ′. F ′ ⊂ F −→ S ⊂ (affine hull S ) ∩ (
⋂

F ′)))
(is ?lhs = ?rhs)

proof
assume ?lhs
then obtain f0

where f0 : finite f0
S = (affine hull S ) ∩ (

⋂
f0 )

(is ?P f0 )
∀ h ∈ f0 . ∃ a b. a 6= 0 ∧ h = {x . a · x ≤ b} ∧

(∀ x ∈ affine hull S . (x + a) ∈ affine hull S )
(is ?Q f0 )

by (force simp: polyhedron Int affine parallel)
define n where n = (LEAST n. ∃F . card F = n ∧ finite F ∧ ?P F ∧ ?Q F )
have nf : ∃F . card F = n ∧ finite F ∧ ?P F ∧ ?Q F
apply (simp add : n def )
apply (rule LeastI [where k = card f0 ])
using f0 apply auto
done

then obtain F where F : card F = n finite F and seq : ?P F and aff : ?Q F
by blast

then have ¬ (finite g ∧ ?P g ∧ ?Q g) if card g < n for g
using that by (auto simp: n def dest !: not less Least)

then have ∗: ¬ (?P g ∧ ?Q g) if g ⊂ F for g
using that 〈finite F 〉 psubset card mono 〈card F = n〉

by (metis finite Int inf .strict order iff )
have 1 :

∧
F ′. F ′ ⊂ F =⇒ S ⊆ affine hull S ∩

⋂
F ′

by (subst seq) blast
have 2 : S 6= affine hull S ∩

⋂
F ′ if F ′ ⊂ F for F ′

using ∗ [OF that ] by (metis IntE aff inf .strict order iff that)
show ?rhs
by (metis 〈finite F 〉 seq aff psubsetI 1 2 )

next
assume ?rhs then show ?lhs
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by (auto simp: polyhedron Int affine parallel)
qed

lemma polyhedron Int affine minimal :
fixes S :: ′a :: euclidean space set
shows polyhedron S ←→

(∃F . finite F ∧ S = (affine hull S ) ∩
⋂

F ∧
(∀ h ∈ F . ∃ a b. a 6= 0 ∧ h = {x . a · x ≤ b}) ∧
(∀F ′. F ′ ⊂ F −→ S ⊂ (affine hull S ) ∩

⋂
F ′))

(is ?lhs = ?rhs)
proof
assume ?lhs
then show ?rhs
by (force simp: polyhedron Int affine parallel minimal elim!: ex forward)

qed (auto simp: polyhedron Int affine elim!: ex forward)

proposition facet of polyhedron explicit :
assumes finite F

and seq : S = affine hull S ∩
⋂
F

and faceq :
∧
h. h ∈ F =⇒ a h 6= 0 ∧ h = {x . a h · x ≤ b h}

and psub:
∧
F ′. F ′ ⊂ F =⇒ S ⊂ affine hull S ∩

⋂
F ′

shows C facet of S ←→ (∃ h. h ∈ F ∧ C = S ∩ {x . a h · x = b h})
proof (cases S = {})
case True with psub show ?thesis by force

next
case False
have polyhedron S
unfolding polyhedron Int affine by (metis 〈finite F 〉 faceq seq)

then have convex S
by (rule polyhedron imp convex )

with False rel interior eq empty have rel interior S 6= {} by blast
then obtain x where x ∈ rel interior S by auto
then obtain T where open T x ∈ T x ∈ S T ∩ affine hull S ⊆ S
by (force simp: mem rel interior)

then have xaff : x ∈ affine hull S and xint : x ∈
⋂

F
using seq hull inc by auto

have rel interior S = {x ∈ S . ∀ h∈F . a h · x < b h}
by (rule rel interior polyhedron explicit [OF 〈finite F 〉 seq faceq psub])

with 〈x ∈ rel interior S 〉

have [simp]:
∧
h. h∈F =⇒ a h · x < b h by blast

have ∗: (S ∩ {x . a h · x = b h}) facet of S if h ∈ F for h
proof −
have S ⊂ affine hull S ∩

⋂
(F − {h})

using psub that by (metis Diff disjoint Diff subset insert disjoint(2 ) psubsetI )
then obtain z where zaff : z ∈ affine hull S and zint : z ∈

⋂
(F − {h}) and

z /∈ S
by force

then have z 6= x z /∈ h using seq 〈x ∈ S 〉 by auto
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have x ∈ h using that xint by auto
then have able: a h · x ≤ b h
using faceq that by blast

also have ... < a h · z using 〈z /∈ h〉 faceq [OF that ] xint by auto
finally have xltz : a h · x < a h · z .
define l where l = (b h − a h · x ) / (a h · z − a h · x )
define w where w = (1 − l) ∗R x + l ∗R z
have 0 < l l < 1
using able xltz 〈b h < a h · z 〉 〈h ∈ F 〉

by (auto simp: l def field split simps)
have awlt : a i · w < b i if i ∈ F i 6= h for i
proof −
have (1 − l) ∗ (a i · x ) < (1 − l) ∗ b i
by (simp add : 〈l < 1 〉 〈i ∈ F 〉)

moreover have l ∗ (a i · z ) ≤ l ∗ b i
proof (rule mult left mono)
show a i · z ≤ b i
by (metis Diff insert absorb Inter iff Set .set insert 〈h ∈ F 〉 faceq insertE

mem Collect eq that zint)
qed (use 〈0 < l 〉 in auto)
ultimately show ?thesis by (simp add : w def algebra simps)

qed
have weq : a h · w = b h
using xltz unfolding w def l def
by (simp add : algebra simps) (simp add : field simps)

have faceS : S ∩ {x . a h · x = b h} face of S
proof (rule face of Int supporting hyperplane le)
show

∧
x . x ∈ S =⇒ a h · x ≤ b h

using faceq seq that by fastforce
qed fact
have w ∈ affine hull S
by (simp add : w def mem affine xaff zaff )

moreover have w ∈
⋂
F

using 〈a h · w = b h〉 awlt faceq less eq real def by blast
ultimately have w ∈ S
using seq by blast

with weq have ne: S ∩ {x . a h · x = b h} 6= {} by blast
moreover have affine hull (S ∩ {x . a h · x = b h}) = (affine hull S ) ∩ {x . a

h · x = b h}
proof
show affine hull (S ∩ {x . a h · x = b h}) ⊆ affine hull S ∩ {x . a h · x = b

h}
apply (intro Int greatest hull mono Int lower1 )
apply (metis affine hull eq affine hyperplane hull mono inf le2 )
done

next
show affine hull S ∩ {x . a h · x = b h} ⊆ affine hull (S ∩ {x . a h · x = b

h})
proof
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fix y
assume yaff : y ∈ affine hull S ∩ {y . a h · y = b h}
obtain T where 0 < T

and T :
∧
j . [[j ∈ F ; j 6= h]] =⇒ T ∗ (a j · y − a j · w) ≤ b j − a j

· w
proof (cases F − {h} = {})
case True then show ?thesis
by (rule tac T=1 in that) auto

next
case False
then obtain h ′ where h ′: h ′ ∈ F − {h} by auto
let ?body = (λj . if 0 < a j · y − a j · w

then (b j − a j · w) / (a j · y − a j · w) else 1 ) ‘ (F − {h})
define inff where inff = Inf ?body
from 〈finite F 〉 have finite ?body
by blast

moreover from h ′ have ?body 6= {}
by blast

moreover have j > 0 if j ∈ ?body for j
proof −
from that obtain x where x ∈ F and x 6= h and ∗: j =
(if 0 < a x · y − a x · w
then (b x − a x · w) / (a x · y − a x · w) else 1 )

by blast
with awlt [of x ] have a x · w < b x
by simp

with ∗ show ?thesis
by simp

qed
ultimately have 0 < inff
by (simp all add : finite less Inf iff inff def )

moreover have inff ∗ (a j · y − a j · w) ≤ b j − a j · w
if j ∈ F j 6= h for j

proof (cases a j · w < a j · y)
case True
then have inff ≤ (b j − a j · w) / (a j · y − a j · w)
unfolding inff def

using 〈finite F 〉 by (auto intro: cInf le finite simp add : that split :
if split asm)

then show ?thesis
using 〈0 < inff 〉 awlt [OF that ] mult strict left mono
by (fastforce simp add : field split simps split : if split asm)

next
case False
with 〈0 < inff 〉 have inff ∗ (a j · y − a j · w) ≤ 0
by (simp add : mult le 0 iff )

also have ... < b j − a j · w
by (simp add : awlt that)

finally show ?thesis by simp

Polytope.html


2798

qed
ultimately show ?thesis
by (blast intro: that)

qed
define C where C = (1 − T ) ∗R w + T ∗R y
have (1 − T ) ∗R w + T ∗R y ∈ j if j ∈ F for j
proof (cases j = h)
case True
have (1 − T ) ∗R w + T ∗R y ∈ {x . a h · x ≤ b h}
using weq yaff by (auto simp: algebra simps)

with True faceq [OF that ] show ?thesis by metis
next
case False
with T that have (1 − T ) ∗R w + T ∗R y ∈ {x . a j · x ≤ b j}
by (simp add : algebra simps)

with faceq [OF that ] show ?thesis by simp
qed
moreover have (1 − T ) ∗R w + T ∗R y ∈ affine hull S
using yaff 〈w ∈ affine hull S 〉 affine affine hull affine alt by blast

ultimately have C ∈ S
using seq by (force simp: C def )

moreover have a h · C = b h
using yaff by (force simp: C def algebra simps weq)

ultimately have caff : C ∈ affine hull (S ∩ {y . a h · y = b h})
by (simp add : hull inc)

have waff : w ∈ affine hull (S ∩ {y . a h · y = b h})
using 〈w ∈ S 〉 weq by (blast intro: hull inc)

have yeq : y = (1 − inverse T ) ∗R w + C /R T
using 〈0 < T 〉 by (simp add : C def algebra simps)

show y ∈ affine hull (S ∩ {y . a h · y = b h})
by (metis yeq affine affine hull [simplified affine alt , rule format , OF waff

caff ])
qed

qed
ultimately have aff dim (affine hull (S ∩ {x . a h · x = b h})) = aff dim S

− 1
using 〈b h < a h · z 〉 zaff by (force simp: aff dim affine Int hyperplane)

then show ?thesis
by (simp add : ne faceS facet of def )

qed
show ?thesis
proof
show ∃ h. h ∈ F ∧ C = S ∩ {x . a h · x = b h} =⇒ C facet of S
using ∗ by blast

next
assume C facet of S
then have C face of S convex C C 6= {} and affc: aff dim C = aff dim S − 1
by (auto simp: facet of def face of imp convex )

then obtain x where x : x ∈ rel interior C
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by (force simp: rel interior eq empty)
then have x ∈ C
by (meson subsetD rel interior subset)

then have x ∈ S
using 〈C facet of S 〉 facet of imp subset by blast

have rels: rel interior S = {x ∈ S . ∀ h∈F . a h · x < b h}
by (rule rel interior polyhedron explicit [OF assms])

have C 6= S
using 〈C facet of S 〉 facet of irrefl by blast

then have x /∈ rel interior S
by (metis IntI empty iff 〈x ∈ C 〉 〈C 6= S 〉 〈C face of S 〉 face of disjoint rel interior)
with rels 〈x ∈ S 〉 obtain i where i ∈ F and i : a i · x ≥ b i
by force

have x ∈ {u. a i · u ≤ b i}
by (metis IntD2 InterE 〈i ∈ F 〉 〈x ∈ S 〉 faceq seq)

then have a i · x ≤ b i by simp
then have a i · x = b i using i by auto
have C ⊆ S ∩ {x . a i · x = b i}
proof (rule subset of face of [of S ])
show S ∩ {x . a i · x = b i} face of S
by (simp add : ∗ 〈i ∈ F 〉 facet of imp face of )

show C ⊆ S
by (simp add : 〈C face of S 〉 face of imp subset)

show S ∩ {x . a i · x = b i} ∩ rel interior C 6= {}
using 〈a i · x = b i 〉 〈x ∈ S 〉 x by blast

qed
then have cface: C face of (S ∩ {x . a i · x = b i})
by (meson 〈C face of S 〉 face of subset inf le1 )

have con: convex (S ∩ {x . a i · x = b i})
by (simp add : 〈convex S 〉 convex Int convex hyperplane)

show ∃ h. h ∈ F ∧ C = S ∩ {x . a h · x = b h}
apply (rule tac x=i in exI )
by (metis (no types) ∗ 〈i ∈ F 〉 affc facet of def less irrefl face of aff dim lt

[OF con cface])
qed

qed

lemma face of polyhedron subset explicit :
fixes S :: ′a :: euclidean space set
assumes finite F

and seq : S = affine hull S ∩
⋂
F

and faceq :
∧
h. h ∈ F =⇒ a h 6= 0 ∧ h = {x . a h · x ≤ b h}

and psub:
∧
F ′. F ′ ⊂ F =⇒ S ⊂ affine hull S ∩

⋂
F ′

and C : C face of S and C 6= {} C 6= S
obtains h where h ∈ F C ⊆ S ∩ {x . a h · x = b h}

proof −
have C ⊆ S using 〈C face of S 〉

by (simp add : face of imp subset)
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have polyhedron S
by (metis 〈finite F 〉 faceq polyhedron Int polyhedron Inter polyhedron affine hull

polyhedron halfspace le seq)
then have convex S
by (simp add : polyhedron imp convex )

then have ∗: (S ∩ {x . a h · x = b h}) face of S if h ∈ F for h
using faceq seq face of Int supporting hyperplane le that by fastforce

have rel interior C 6= {}
using C 〈C 6= {}〉 face of imp convex rel interior eq empty by blast

then obtain x where x ∈ rel interior C by auto
have rels: rel interior S = {x ∈ S . ∀ h∈F . a h · x < b h}
by (rule rel interior polyhedron explicit [OF 〈finite F 〉 seq faceq psub])

then have xnot : x /∈ rel interior S
by (metis IntI 〈x ∈ rel interior C 〉 C 〈C 6= S 〉 contra subsetD empty iff

face of disjoint rel interior rel interior subset)
then have x ∈ S
using 〈C ⊆ S 〉 〈x ∈ rel interior C 〉 rel interior subset by auto

then have xint : x ∈
⋂
F

using seq by blast
have F 6= {} using assms
by (metis affine Int affine Inter affine affine hull ex in conv face of affine trivial)
then obtain i where i ∈ F ¬ (a i · x < b i)
using 〈x ∈ S 〉 rels xnot by auto

with xint have a i · x = b i
by (metis eq iff mem Collect eq not le Inter iff faceq)

have face: S ∩ {x . a i · x = b i} face of S
by (simp add : ∗ 〈i ∈ F 〉)

show ?thesis
proof
show C ⊆ S ∩ {x . a i · x = b i}
using subset of face of [OF face 〈C ⊆ S 〉] 〈a i · x = b i 〉 〈x ∈ rel interior C 〉

〈x ∈ S 〉 by blast
qed fact

qed

Initial part of proof duplicates that above

proposition face of polyhedron explicit :
fixes S :: ′a :: euclidean space set
assumes finite F

and seq : S = affine hull S ∩
⋂
F

and faceq :
∧
h. h ∈ F =⇒ a h 6= 0 ∧ h = {x . a h · x ≤ b h}

and psub:
∧
F ′. F ′ ⊂ F =⇒ S ⊂ affine hull S ∩

⋂
F ′

and C : C face of S and C 6= {} C 6= S
shows C =

⋂
{S ∩ {x . a h · x = b h} | h. h ∈ F ∧ C ⊆ S ∩ {x . a h · x = b

h}}
proof −
let ?ab = λh. {x . a h · x = b h}
have C ⊆ S using 〈C face of S 〉

by (simp add : face of imp subset)
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have polyhedron S
by (metis 〈finite F 〉 faceq polyhedron Int polyhedron Inter polyhedron affine hull

polyhedron halfspace le seq)
then have convex S
by (simp add : polyhedron imp convex )

then have ∗: (S ∩ ?ab h) face of S if h ∈ F for h
using faceq seq face of Int supporting hyperplane le that by fastforce

have rel interior C 6= {}
using C 〈C 6= {}〉 face of imp convex rel interior eq empty by blast

then obtain z where z : z ∈ rel interior C by auto
have rels: rel interior S = {z ∈ S . ∀ h∈F . a h · z < b h}
by (rule rel interior polyhedron explicit [OF 〈finite F 〉 seq faceq psub])

then have xnot : z /∈ rel interior S
by (metis IntI 〈z ∈ rel interior C 〉 C 〈C 6= S 〉 contra subsetD empty iff

face of disjoint rel interior rel interior subset)
then have z ∈ S
using 〈C ⊆ S 〉 〈z ∈ rel interior C 〉 rel interior subset by auto

with seq have xint : z ∈
⋂
F by blast

have open (
⋂
h∈{h ∈ F . a h · z < b h}. {w . a h · w < b h})

by (auto simp: 〈finite F 〉 open halfspace lt open INT )
then obtain e where 0 < e

ball z e ⊆ (
⋂
h∈{h ∈ F . a h · z < b h}. {w . a h · w < b h})

by (auto intro: openE [of z ])
then have e:

∧
h. [[h ∈ F ; a h · z < b h]] =⇒ ball z e ⊆ {w . a h · w < b h}

by blast
have C ⊆ (S ∩ ?ab h) ←→ z ∈ S ∩ ?ab h if h ∈ F for h
proof
show z ∈ S ∩ ?ab h =⇒ C ⊆ S ∩ ?ab h
by (metis ∗ Collect cong IntI 〈C ⊆ S 〉 empty iff subset of face of that z )

next
show C ⊆ S ∩ ?ab h =⇒ z ∈ S ∩ ?ab h
using 〈z ∈ rel interior C 〉 rel interior subset by force

qed
then have ∗∗: {S ∩ ?ab h | h. h ∈ F ∧ C ⊆ S ∧ C ⊆ ?ab h} =

{S ∩ ?ab h |h. h ∈ F ∧ z ∈ S ∩ ?ab h}
by blast

have bsub: ball z e ∩ affine hull
⋂
{S ∩ ?ab h |h. h ∈ F ∧ a h · z = b h}

⊆ affine hull S ∩
⋂
F ∩

⋂
{?ab h |h. h ∈ F ∧ a h · z = b h}

if i ∈ F and i : a i · z = b i for i
proof −
have sub: ball z e ∩

⋂
{?ab h |h. h ∈ F ∧ a h · z = b h} ⊆ j

if j ∈ F for j
proof −
have a j · z ≤ b j using faceq that xint by auto
then consider a j · z < b j | a j · z = b j by linarith
then have ∃G . G ∈ {?ab h |h. h ∈ F ∧ a h · z = b h} ∧ ball z e ∩ G ⊆ j
proof cases
assume a j · z < b j
then have ball z e ∩ {x . a i · x = b i} ⊆ j
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using e [OF 〈j ∈ F 〉] faceq that
by (fastforce simp: ball def )

then show ?thesis
by (rule tac x={x . a i · x = b i} in exI ) (force simp: 〈i ∈ F 〉 i)

next
assume eq : a j · z = b j
with faceq that show ?thesis
by (rule tac x={x . a j · x = b j} in exI ) (fastforce simp add : 〈j ∈ F 〉)

qed
then show ?thesis by blast

qed
have 1 : affine hull

⋂
{S ∩ ?ab h |h. h ∈ F ∧ a h · z = b h} ⊆ affine hull S

using that 〈z ∈ S 〉 by (intro hull mono) auto
have 2 : affine hull

⋂
{S ∩ ?ab h |h. h ∈ F ∧ a h · z = b h}

⊆
⋂
{?ab h |h. h ∈ F ∧ a h · z = b h}

by (rule hull minimal) (auto intro: affine hyperplane)
have 3 : ball z e ∩

⋂
{?ab h |h. h ∈ F ∧ a h · z = b h} ⊆

⋂
F

by (iprover intro: sub Inter greatest)
have ∗: [[A ⊆ (B :: ′a set); A ⊆ C ; E ∩ C ⊆ D ]] =⇒ E ∩ A ⊆ (B ∩ D) ∩ C

for A B C D E by blast
show ?thesis by (intro ∗ 1 2 3 )

qed
have ∃ h. h ∈ F ∧ C ⊆ ?ab h
using assms
by (metis face of polyhedron subset explicit [OF 〈finite F 〉 seq faceq psub] le inf iff )
then have fac:

⋂
{S ∩ ?ab h |h. h ∈ F ∧ C ⊆ S ∩ ?ab h} face of S

using ∗ by (force simp: 〈C ⊆ S 〉 intro: face of Inter)
have red : (

∧
a. P a =⇒ T ⊆ S ∩

⋂
{F X |X . P X }) =⇒ T ⊆

⋂
{S ∩ F X

|X :: ′a set . P X } for P T F
by blast

have ball z e ∩ affine hull
⋂
{S ∩ ?ab h |h. h ∈ F ∧ a h · z = b h}

⊆
⋂
{S ∩ ?ab h |h. h ∈ F ∧ a h · z = b h}

by (rule red) (metis seq bsub)
with 〈0 < e〉 have zinrel : z ∈ rel interior

(
⋂
{S ∩ ?ab h |h. h ∈ F ∧ z ∈ S ∧ a h · z = b h})

by (auto simp: mem rel interior ball 〈z ∈ S 〉)
show ?thesis
using z zinrel
by (intro face of eq [OF C fac]) (force simp: ∗∗)

qed

6.38.12 More general corollaries from the explicit represen-
tation

corollary facet of polyhedron:
assumes polyhedron S and C facet of S
obtains a b where a 6= 0 S ⊆ {x . a · x ≤ b} C = S ∩ {x . a · x = b}

proof −
obtain F where finite F and seq : S = affine hull S ∩

⋂
F
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and faces:
∧
h. h ∈ F =⇒ ∃ a b. a 6= 0 ∧ h = {x . a · x ≤ b}

and min:
∧
F ′. F ′ ⊂ F =⇒ S ⊂ (affine hull S ) ∩

⋂
F ′

using assms by (simp add : polyhedron Int affine minimal) meson
then obtain a b where ab:

∧
h. h ∈ F =⇒ a h 6= 0 ∧ h = {x . a h · x ≤ b h}

by metis
obtain i where i ∈ F and C : C = S ∩ {x . a i · x = b i}
using facet of polyhedron explicit [OF 〈finite F 〉 seq ab min] assms
by force

moreover have ssub: S ⊆ {x . a i · x ≤ b i}
using 〈i ∈ F 〉 ab by (subst seq) auto

ultimately show ?thesis
by (rule tac a = a i and b = b i in that) (simp all add : ab)

qed

corollary face of polyhedron:
assumes polyhedron S and C face of S and C 6= {} and C 6= S
shows C =

⋂
{F . F facet of S ∧ C ⊆ F}

proof −
obtain F where finite F and seq : S = affine hull S ∩

⋂
F

and faces:
∧
h. h ∈ F =⇒ ∃ a b. a 6= 0 ∧ h = {x . a · x ≤ b}

and min:
∧
F ′. F ′ ⊂ F =⇒ S ⊂ (affine hull S ) ∩

⋂
F ′

using assms by (simp add : polyhedron Int affine minimal) meson
then obtain a b where ab:

∧
h. h ∈ F =⇒ a h 6= 0 ∧ h = {x . a h · x ≤ b h}

by metis
show ?thesis
apply (subst face of polyhedron explicit [OF 〈finite F 〉 seq ab min])
apply (auto simp: assms facet of polyhedron explicit [OF 〈finite F 〉 seq ab min]

cong : Collect cong)
done

qed

lemma face of polyhedron subset facet :
assumes polyhedron S and C face of S and C 6= {} and C 6= S
obtains F where F facet of S C ⊆ F
using face of polyhedron assms
by (metis (no types, lifting) Inf greatest antisym conv face of imp subset mem Collect eq)

lemma exposed face of polyhedron:
assumes polyhedron S
shows F exposed face of S ←→ F face of S

proof
show F exposed face of S =⇒ F face of S
by (simp add : exposed face of def )

next
assume F face of S
show F exposed face of S
proof (cases F = {} ∨ F = S )
case True then show ?thesis
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using 〈F face of S 〉 exposed face of by blast
next
case False
then have {g . g facet of S ∧ F ⊆ g} 6= {}
by (metis Collect empty eq bot 〈F face of S 〉 assms empty def face of polyhedron subset facet)
moreover have

∧
T . [[T facet of S ; F ⊆ T ]] =⇒ T exposed face of S

by (metis assms exposed face of facet of imp face of facet of polyhedron)
ultimately have

⋂
{G . G facet of S ∧ F ⊆ G} exposed face of S

by (metis (no types, lifting) mem Collect eq exposed face of Inter)
then show ?thesis
using False 〈F face of S 〉 assms face of polyhedron by fastforce

qed
qed

lemma face of polyhedron polyhedron:
fixes S :: ′a :: euclidean space set
assumes polyhedron S c face of S shows polyhedron c

by (metis assms face of imp eq affine Int polyhedron Int polyhedron affine hull poly-
hedron imp convex )

lemma finite polyhedron faces:
fixes S :: ′a :: euclidean space set
assumes polyhedron S
shows finite {F . F face of S}

proof −
obtain F where finite F and seq : S = affine hull S ∩

⋂
F

and faces:
∧
h. h ∈ F =⇒ ∃ a b. a 6= 0 ∧ h = {x . a · x ≤ b}

and min:
∧
F ′. F ′ ⊂ F =⇒ S ⊂ (affine hull S ) ∩

⋂
F ′

using assms by (simp add : polyhedron Int affine minimal) meson
then obtain a b where ab:

∧
h. h ∈ F =⇒ a h 6= 0 ∧ h = {x . a h · x ≤ b h}

by metis
have finite {

⋂
{S ∩ {x . a h · x = b h} |h. h ∈ F ′}| F ′. F ′ ∈ Pow F}

by (simp add : 〈finite F 〉)
moreover have {F . F face of S} − {{}, S} ⊆ {

⋂
{S ∩ {x . a h · x = b h} |h.

h ∈ F ′}| F ′. F ′ ∈ Pow F}
apply clarify
apply (rename tac c)
apply (drule face of polyhedron explicit [OF 〈finite F 〉 seq ab min, simplified ],

simp all)
apply (rule tac x={h ∈ F . c ⊆ S ∩ {x . a h · x = b h}} in exI , auto)
done

ultimately show ?thesis
by (meson finite.emptyI finite.insertI finite Diff2 finite subset)

qed

lemma finite polyhedron exposed faces:
polyhedron S =⇒ finite {F . F exposed face of S}

using exposed face of polyhedron finite polyhedron faces by fastforce
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lemma finite polyhedron extreme points:
fixes S :: ′a :: euclidean space set
assumes polyhedron S shows finite {v . v extreme point of S}

proof −
have finite {v . {v} face of S}
using assms by (intro finite subset [OF finite vimageI [OF finite polyhedron faces]],

auto)
then show ?thesis
by (simp add : face of singleton)

qed

lemma finite polyhedron facets:
fixes S :: ′a :: euclidean space set
shows polyhedron S =⇒ finite {F . F facet of S}
unfolding facet of def
by (blast intro: finite subset [OF finite polyhedron faces])

proposition rel interior of polyhedron:
fixes S :: ′a :: euclidean space set
assumes polyhedron S
shows rel interior S = S −

⋃
{F . F facet of S}

proof −
obtain F where finite F and seq : S = affine hull S ∩

⋂
F

and faces:
∧
h. h ∈ F =⇒ ∃ a b. a 6= 0 ∧ h = {x . a · x ≤ b}

and min:
∧
F ′. F ′ ⊂ F =⇒ S ⊂ (affine hull S ) ∩

⋂
F ′

using assms by (simp add : polyhedron Int affine minimal) meson
then obtain a b where ab:

∧
h. h ∈ F =⇒ a h 6= 0 ∧ h = {x . a h · x ≤ b h}

by metis
have facet : (c facet of S ) ←→ (∃ h. h ∈ F ∧ c = S ∩ {x . a h · x = b h}) for c
by (rule facet of polyhedron explicit [OF 〈finite F 〉 seq ab min])

have rel : rel interior S = {x ∈ S . ∀ h∈F . a h · x < b h}
by (rule rel interior polyhedron explicit [OF 〈finite F 〉 seq ab min])

have a h · x < b h if x ∈ S h ∈ F and xnot : x /∈
⋃
{F . F facet of S} for x h

proof −
have x ∈

⋂
F using seq that by force

with 〈h ∈ F 〉 ab have a h · x ≤ b h by auto
then consider a h · x < b h | a h · x = b h by linarith
then show ?thesis
proof cases
case 1 then show ?thesis .

next
case 2
have Collect ((∈) x ) /∈ Collect ((∈) (

⋃
{A. A facet of S}))

using xnot by fastforce
then have F /∈ Collect ((∈) h)
using 2 〈x ∈ S 〉 facet by blast

with 2 that 〈x ∈
⋂
F 〉 show ?thesis

by blast
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qed
qed
moreover have ∃ h∈F . a h · x ≥ b h if x ∈

⋃
{F . F facet of S} for x

using that by (force simp: facet)
ultimately show ?thesis
by (force simp: rel)

qed

lemma rel boundary of polyhedron:
fixes S :: ′a :: euclidean space set
assumes polyhedron S
shows S − rel interior S =

⋃
{F . F facet of S}

using facet of imp subset by (fastforce simp add : rel interior of polyhedron assms)

lemma rel frontier of polyhedron:
fixes S :: ′a :: euclidean space set
assumes polyhedron S
shows rel frontier S =

⋃
{F . F facet of S}

by (simp add : assms rel frontier def polyhedron imp closed rel boundary of polyhedron)

lemma rel frontier of polyhedron alt :
fixes S :: ′a :: euclidean space set
assumes polyhedron S
shows rel frontier S =

⋃
{F . F face of S ∧ F 6= S}

proof
show rel frontier S ⊆

⋃
{F . F face of S ∧ F 6= S}

by (force simp: rel frontier of polyhedron facet of def assms)
qed (use face of subset rel frontier in fastforce)

A characterization of polyhedra as having finitely many faces

proposition polyhedron eq finite exposed faces:
fixes S :: ′a :: euclidean space set
shows polyhedron S ←→ closed S ∧ convex S ∧ finite {F . F exposed face of S}

(is ?lhs = ?rhs)
proof
assume ?lhs
then show ?rhs
by (auto simp: polyhedron imp closed polyhedron imp convex finite polyhedron exposed faces)

next
assume ?rhs
then have closed S convex S and fin: finite {F . F exposed face of S} by auto
show ?lhs
proof (cases S = {})
case True then show ?thesis by auto

next
case False
define F where F = {h. h exposed face of S ∧ h 6= {} ∧ h 6= S}
have finite F by (simp add : fin F def )
have hface: h face of S
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and ∃ a b. a 6= 0 ∧ S ⊆ {x . a · x ≤ b} ∧ h = S ∩ {x . a · x = b}
if h ∈ F for h
using exposed face of F def that by blast+

then obtain a b where ab:∧
h. h ∈ F =⇒ a h 6= 0 ∧ S ⊆ {x . a h · x ≤ b h} ∧ h = S ∩ {x . a h · x =

b h}
by metis

have ∗: False
if paff : p ∈ affine hull S and p /∈ S
and pint : p ∈

⋂
{{x . a h · x ≤ b h} |h. h ∈ F} for p

proof −
have rel interior S 6= {}
by (simp add : 〈S 6= {}〉 〈convex S 〉 rel interior eq empty)

then obtain c where c: c ∈ rel interior S by auto
with rel interior subset have c ∈ S by blast
have ccp: closed segment c p ⊆ affine hull S

by (meson affine affine hull affine imp convex c closed segment subset
hull subset paff rel interior subset subsetCE )

have oS : openin (top of set (closed segment c p)) (closed segment c p ∩
rel interior S )

by (force simp: openin rel interior openin Int intro: openin subtopology Int subset
[OF ccp])

obtain x where xcl : x ∈ closed segment c p and x ∈ S and xnot : x /∈
rel interior S

using connected openin [of closed segment c p]
apply simp
apply (drule tac x=closed segment c p ∩ rel interior S in spec)
apply (drule mp [OF oS ])
apply (drule tac x=closed segment c p ∩ (− S ) in spec)
using rel interior subset 〈closed S 〉 c 〈p /∈ S 〉 apply blast
done

then obtain µ where 0 ≤ µ µ ≤ 1 and xeq : x = (1 − µ) ∗R c + µ ∗R p
by (auto simp: in segment)

show False
proof (cases µ=0 ∨ µ=1 )
case True with xeq c xnot 〈x ∈ S 〉 〈p /∈ S 〉

show False by auto
next
case False
then have xos: x ∈ open segment c p
using 〈x ∈ S 〉 c open segment def that(2 ) xcl xnot by auto

have xclo: x ∈ closure S
using 〈x ∈ S 〉 closure subset by blast

obtain d where d 6= 0
and dle:

∧
y . y ∈ closure S =⇒ d · x ≤ d · y

and dless:
∧
y . y ∈ rel interior S =⇒ d · x < d · y

by (metis supporting hyperplane relative frontier [OF 〈convex S 〉 xclo xnot ])
have sex : S ∩ {y . d · y = d · x} exposed face of S
by (simp add : 〈closed S 〉 dle exposed face of Int supporting hyperplane ge
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[OF 〈convex S 〉])
have sne: S ∩ {y . d · y = d · x} 6= {}
using 〈x ∈ S 〉 by blast

have sns: S ∩ {y . d · y = d · x} 6= S
by (metis (mono tags) Int Collect c subsetD dless not le order refl

rel interior subset)
obtain h where h ∈ F x ∈ h
using F def 〈x ∈ S 〉 sex sns by blast

have abface: {y . a h · y = b h} face of {y . a h · y ≤ b h}
using hyperplane face of halfspace le by blast

then have c ∈ h
using face ofD [OF abface xos] 〈c ∈ S 〉 〈h ∈ F 〉 ab pint 〈x ∈ h〉 by blast

with c have h ∩ rel interior S 6= {} by blast
then show False
using 〈h ∈ F 〉 F def face of disjoint rel interior hface by auto

qed
qed
have S ⊆ affine hull S ∩

⋂
{{x . a h · x ≤ b h} |h. h ∈ F}

using ab by (auto simp: hull subset)
moreover have affine hull S ∩

⋂
{{x . a h · x ≤ b h} |h. h ∈ F} ⊆ S

using ∗ by blast
ultimately have S = affine hull S ∩

⋂
{{x . a h · x ≤ b h} |h. h ∈ F} ..

then show ?thesis
apply (rule ssubst)
apply (force intro: polyhedron affine hull polyhedron halfspace le simp: 〈finite

F 〉)
done

qed
qed

corollary polyhedron eq finite faces:
fixes S :: ′a :: euclidean space set
shows polyhedron S ←→ closed S ∧ convex S ∧ finite {F . F face of S}

(is ?lhs = ?rhs)
proof
assume ?lhs
then show ?rhs
by (simp add : finite polyhedron faces polyhedron imp closed polyhedron imp convex )

next
assume ?rhs
then show ?lhs
by (force simp: polyhedron eq finite exposed faces exposed face of intro: finite subset)

qed

lemma polyhedron linear image eq :
fixes h :: ′a :: euclidean space ⇒ ′b :: euclidean space
assumes linear h bij h
shows polyhedron (h ‘ S ) ←→ polyhedron S

proof −
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have ∗: {f . P f } = (image h) ‘ {f . P (h ‘ f )} for P
apply safe
apply (rule tac x=inv h ‘ x in image eqI )
apply (auto simp: 〈bij h〉 bij is surj image f inv f )
done

have inj h using bij is inj assms by blast
then have injim: inj on ((‘) h) A for A
by (simp add : inj on def inj image eq iff )

show ?thesis
using 〈linear h〉 〈inj h〉

apply (simp add : polyhedron eq finite faces closed injective linear image eq)
apply (simp add : ∗ face of linear image [of h S , symmetric] finite image iff

injim)
done

qed

lemma polyhedron negations:
fixes S :: ′a :: euclidean space set
shows polyhedron S =⇒ polyhedron(image uminus S )
by (subst polyhedron linear image eq) (auto simp: bij uminus intro!: linear uminus)

6.38.13 Relation between polytopes and polyhedra

proposition polytope eq bounded polyhedron:
fixes S :: ′a :: euclidean space set
shows polytope S ←→ polyhedron S ∧ bounded S

(is ?lhs = ?rhs)
proof
assume ?lhs
then show ?rhs
by (simp add : finite polytope faces polyhedron eq finite faces

polytope imp closed polytope imp convex polytope imp bounded)
next
assume R: ?rhs
then have finite {v . v extreme point of S}
by (simp add : finite polyhedron extreme points)

moreover have S = convex hull {v . v extreme point of S}
using R by (simp add : Krein Milman Minkowski compact eq bounded closed

polyhedron imp closed polyhedron imp convex )
ultimately show ?lhs
unfolding polytope def by blast

qed

lemma polytope Int :
fixes S :: ′a :: euclidean space set
shows [[polytope S ; polytope T ]] =⇒ polytope(S ∩ T )

by (simp add : polytope eq bounded polyhedron bounded Int)
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lemma polytope Int polyhedron:
fixes S :: ′a :: euclidean space set
shows [[polytope S ; polyhedron T ]] =⇒ polytope(S ∩ T )
by (simp add : bounded Int polytope eq bounded polyhedron)

lemma polyhedron Int polytope:
fixes S :: ′a :: euclidean space set
shows [[polyhedron S ; polytope T ]] =⇒ polytope(S ∩ T )
by (simp add : bounded Int polytope eq bounded polyhedron)

lemma polytope imp polyhedron:
fixes S :: ′a :: euclidean space set
shows polytope S =⇒ polyhedron S
by (simp add : polytope eq bounded polyhedron)

lemma polytope facet exists:
fixes p :: ′a :: euclidean space set
assumes polytope p 0 < aff dim p
obtains F where F facet of p

proof (cases p = {})
case True with assms show ?thesis by auto

next
case False
then obtain v where v extreme point of p
using extreme point exists convex
by (blast intro: 〈polytope p〉 polytope imp compact polytope imp convex )

then
show ?thesis
by (metis face of polyhedron subset facet polytope imp polyhedron aff dim sing

all not in conv assms face of singleton less irrefl singletonI that)
qed

lemma polyhedron interval [iff ]: polyhedron(cbox a b)
by (metis polytope imp polyhedron polytope interval)

lemma polyhedron convex hull :
fixes S :: ′a :: euclidean space set
shows finite S =⇒ polyhedron(convex hull S )

by (simp add : polytope convex hull polytope imp polyhedron)

6.38.14 Relative and absolute frontier of a polytope

lemma rel boundary of convex hull :
fixes S :: ′a::euclidean space set
assumes ¬ affine dependent S
shows (convex hull S ) − rel interior(convex hull S ) = (

⋃
a∈S . convex hull

(S − {a}))
proof −
have finite S by (metis assms aff independent finite)
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then consider card S = 0 | card S = 1 | 2 ≤ card S by arith
then show ?thesis
proof cases
case 1 then have S = {} by (simp add : 〈finite S 〉)
then show ?thesis by simp

next
case 2 show ?thesis
by (auto intro: card 1 singletonE [OF 〈card S = 1 〉])

next
case 3
with assms show ?thesis
by (auto simp: polyhedron convex hull rel boundary of polyhedron facet of convex hull affine independent alt

〈finite S 〉)
qed

qed

proposition frontier of convex hull :
fixes S :: ′a::euclidean space set
assumes card S = Suc (DIM ( ′a))
shows frontier(convex hull S ) =

⋃
{convex hull (S − {a}) | a. a ∈ S}

proof (cases affine dependent S )
case True
have [iff ]: finite S
using assms using card .infinite by force

then have ccs: closed (convex hull S )
by (simp add : compact imp closed finite imp compact convex hull)

{ fix x T
assume int (card T ) ≤ aff dim S + 1 finite T T ⊆ Sx ∈ convex hull T
then have S 6= T
using True 〈finite S 〉 aff dim le card affine independent iff card by fastforce

then obtain a where a ∈ S a /∈ T
using 〈T ⊆ S 〉 by blast

then have ∃ y∈S . x ∈ convex hull (S − {y})
using True affine independent iff card [of S ]
by (metis (no types, hide lams) Diff eq empty iff Diff insert0 〈a /∈ T 〉 〈T ⊆

S 〉 〈x ∈ convex hull T 〉 hull mono insert Diff single subsetCE )
} note ∗ = this
have 1 : convex hull S ⊆ (

⋃
a∈S . convex hull (S − {a}))

by (subst caratheodory aff dim) (blast dest : ∗)
have 2 :

⋃
((λa. convex hull (S − {a})) ‘ S ) ⊆ convex hull S

by (rule Union least) (metis (no types, lifting) Diff subset hull mono imageE )
show ?thesis using True
apply (simp add : segment convex hull frontier def )
using interior convex hull eq empty [OF assms]
apply (simp add : closure closed [OF ccs])
using 1 2 by auto

next
case False
then have frontier (convex hull S ) = closure (convex hull S ) − interior (convex
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hull S )
by (simp add : rel boundary of convex hull frontier def )

also have . . . = (convex hull S ) − rel interior(convex hull S )
by (metis False aff independent finite assms closure convex hull finite imp compact convex hull

hull hull interior convex hull eq empty rel interior nonempty interior)
also have . . . =

⋃
{convex hull (S − {a}) |a. a ∈ S}

proof −
have convex hull S − rel interior (convex hull S ) = rel frontier (convex hull S )
by (simp add : False aff independent finite polyhedron convex hull rel boundary of polyhedron

rel frontier of polyhedron)
then show ?thesis
by (simp add : False rel frontier convex hull cases)

qed
finally show ?thesis .

qed

6.38.15 Special case of a triangle

proposition frontier of triangle:
fixes a :: ′a::euclidean space
assumes DIM ( ′a) = 2
shows frontier(convex hull {a,b,c}) = closed segment a b ∪ closed segment b c

∪ closed segment c a
(is ?lhs = ?rhs)

proof (cases b = a ∨ c = a ∨ c = b)
case True then show ?thesis
by (auto simp: assms segment convex hull frontier def empty interior convex hull

insert commute card insert le m1 hull inc insert absorb)
next
case False then have [simp]: card {a, b, c} = Suc (DIM ( ′a))
by (simp add : card .insert remove Set .insert Diff if assms)

show ?thesis
proof
show ?lhs ⊆ ?rhs
using False
by (force simp: segment convex hull frontier of convex hull insert Diff if in-

sert commute split : if split asm)
show ?rhs ⊆ ?lhs
using False
apply (simp add : frontier of convex hull segment convex hull)
apply (intro conjI subsetI )
apply (rule tac X=convex hull {a,b} in UnionI ; force simp: Set .insert Diff if )
apply (rule tac X=convex hull {b,c} in UnionI ; force)
apply (rule tac X=convex hull {a,c} in UnionI ; force simp: insert commute

Set .insert Diff if )
done

qed
qed
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corollary inside of triangle:
fixes a :: ′a::euclidean space
assumes DIM ( ′a) = 2
shows inside (closed segment a b ∪ closed segment b c ∪ closed segment c a)

= interior(convex hull {a,b,c})
by (metis assms frontier of triangle bounded empty bounded insert convex convex hull
inside frontier eq interior bounded convex hull)

corollary interior of triangle:
fixes a :: ′a::euclidean space
assumes DIM ( ′a) = 2
shows interior(convex hull {a,b,c}) =

convex hull {a,b,c} − (closed segment a b ∪ closed segment b c ∪
closed segment c a)
using interior subset
by (force simp: frontier of triangle [OF assms, symmetric] frontier def Diff Diff Int)

6.38.16 Subdividing a cell complex

lemma subdivide interval :
fixes x ::real
assumes a < |x − y | 0 < a
obtains n where n ∈ ZZ x < n ∗ a ∧ n ∗ a < y ∨ y < n ∗ a ∧ n ∗ a < x

proof −
consider a + x < y | a + y < x
using assms by linarith

then show ?thesis
proof cases
case 1
let ?n = of int (floor (x/a)) + 1
have x : x < ?n ∗ a
by (meson 〈0 < a〉 divide less eq floor eq iff )

have ?n ∗ a ≤ a + x
apply (simp add : algebra simps)
by (metis assms(2 ) floor divide lower mult .commute)

also have ... < y
by (rule 1 )

finally have ?n ∗ a < y .
with x show ?thesis
using Ints 1 Ints add Ints of int that by blast

next
case 2
let ?n = of int (floor (y/a)) + 1
have y : y < ?n ∗ a
by (meson 〈0 < a〉 divide less eq floor eq iff )

have ?n ∗ a ≤ a + y
apply (simp add : algebra simps)
by (metis assms(2 ) floor divide lower mult .commute)

also have ... < x
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by (rule 2 )
finally have ?n ∗ a < x .
then show ?thesis
using Ints 1 Ints add Ints of int that y by blast

qed
qed

lemma cell subdivision lemma:
assumes finite F

and
∧
X . X ∈ F =⇒ polytope X

and
∧
X . X ∈ F =⇒ aff dim X ≤ d

and
∧
X Y . [[X ∈ F ; Y ∈ F ]] =⇒ (X ∩ Y ) face of X

and finite I
shows ∃G.

⋃
G =

⋃
F ∧

finite G ∧
(∀C ∈ G. ∃D . D ∈ F ∧ C ⊆ D) ∧
(∀C ∈ F . ∀ x ∈ C . ∃D . D ∈ G ∧ x ∈ D ∧ D ⊆ C ) ∧
(∀X ∈ G. polytope X ) ∧
(∀X ∈ G. aff dim X ≤ d) ∧
(∀X ∈ G. ∀Y ∈ G. X ∩ Y face of X ) ∧
(∀X ∈ G. ∀ x ∈ X . ∀ y ∈ X . ∀ a b.

(a,b) ∈ I −→ a · x ≤ b ∧ a · y ≤ b ∨
a · x ≥ b ∧ a · y ≥ b)

using 〈finite I 〉

proof induction
case empty
then show ?case
by (rule tac x=F in exI ) (auto simp: assms)

next
case (insert ab I )
then obtain G where eq :

⋃
G =

⋃
F and finite G

and sub1 :
∧
C . C ∈ G =⇒ ∃D . D ∈ F ∧ C ⊆ D

and sub2 :
∧
C x . C ∈ F ∧ x ∈ C =⇒ ∃D . D ∈ G ∧ x ∈ D ∧ D

⊆ C
and poly :

∧
X . X ∈ G =⇒ polytope X

and aff :
∧
X . X ∈ G =⇒ aff dim X ≤ d

and face:
∧
X Y . [[X ∈ G; Y ∈ G]] =⇒ X ∩ Y face of X

and I :
∧
X x y a b. [[X ∈ G; x ∈ X ; y ∈ X ; (a,b) ∈ I ]] =⇒

a · x ≤ b ∧ a · y ≤ b ∨ a · x ≥ b ∧ a · y ≥ b
by (auto simp: that)

obtain a b where ab = (a,b)
by fastforce

let ?G = (λX . X ∩ {x . a · x ≤ b}) ‘ G ∪ (λX . X ∩ {x . a · x ≥ b}) ‘ G
have eqInt : (S ∩ Collect P) ∩ (T ∩ Collect Q) = (S ∩ T ) ∩ (Collect P ∩ Collect

Q) for S T :: ′a set and P Q
by blast

show ?case
proof (intro conjI exI )
show

⋃
?G =

⋃
F
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by (force simp: eq [symmetric])
show finite ?G
using 〈finite G〉 by force

show ∀X ∈ ?G. polytope X
by (force simp: poly polytope Int polyhedron polyhedron halfspace le polyhe-

dron halfspace ge)
show ∀X ∈ ?G. aff dim X ≤ d
by (auto; metis order trans aff aff dim subset inf le1 )

show ∀X ∈ ?G. ∀ x ∈ X . ∀ y ∈ X . ∀ a b.
(a,b) ∈ insert ab I −→ a · x ≤ b ∧ a · y ≤ b ∨

a · x ≥ b ∧ a · y ≥ b
using 〈ab = (a, b)〉 I by fastforce

show ∀X ∈ ?G. ∀Y ∈ ?G. X ∩ Y face of X
by (auto simp: eqInt halfspace Int eq face of Int Int face face of halfspace le

face of halfspace ge)
show ∀C ∈ ?G. ∃D . D ∈ F ∧ C ⊆ D
using sub1 by force

show ∀C∈F . ∀ x∈C . ∃D . D ∈ ?G ∧ x ∈ D ∧ D ⊆ C
proof (intro ballI )
fix C z
assume C ∈ F z ∈ C
with sub2 obtain D where D : D ∈ G z ∈ D D ⊆ C by blast
have D ∈ G ∧ z ∈ D ∩ {x . a · x ≤ b} ∧ D ∩ {x . a · x ≤ b} ⊆ C ∨

D ∈ G ∧ z ∈ D ∩ {x . a · x ≥ b} ∧ D ∩ {x . a · x ≥ b} ⊆ C
using linorder class.linear [of a · z b] D by blast

then show ∃D . D ∈ ?G ∧ z ∈ D ∧ D ⊆ C
by blast

qed
qed

qed

proposition cell complex subdivision exists:
fixes F :: ′a::euclidean space set set
assumes 0 < e finite F

and poly :
∧
X . X ∈ F =⇒ polytope X

and aff :
∧
X . X ∈ F =⇒ aff dim X ≤ d

and face:
∧
X Y . [[X ∈ F ; Y ∈ F ]] =⇒ X ∩ Y face of X

obtains F ′ where finite F ′ ⋃F ′ =
⋃
F

∧
X . X ∈ F ′ =⇒ diameter X < e∧

X . X ∈ F ′ =⇒ polytope X
∧
X . X ∈ F ′ =⇒ aff dim X ≤ d∧

X Y . [[X ∈ F ′; Y ∈ F ′]] =⇒ X ∩ Y face of X∧
C . C ∈ F ′ =⇒ ∃D . D ∈ F ∧ C ⊆ D∧
C x . C ∈ F ∧ x ∈ C =⇒ ∃D . D ∈ F ′ ∧ x ∈ D ∧ D ⊆ C

proof −
have bounded(

⋃
F)

by (simp add : 〈finite F 〉 poly bounded Union polytope imp bounded)
then obtain B where B > 0 and B :

∧
x . x ∈

⋃
F =⇒ norm x < B

by (meson bounded pos less)
define C where C ≡ {z ∈ ZZ. |z ∗ e / 2 / real DIM ( ′a)| ≤ B}
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define I where I ≡
⋃
i ∈ Basis.

⋃
j ∈ C . { (i :: ′a, j ∗ e / 2 / DIM ( ′a)) }

have C ⊆ {x ∈ ZZ. − B / (e / 2 / real DIM ( ′a)) ≤ x ∧ x ≤ B / (e / 2 / real
DIM ( ′a))}

using 〈0 < e〉 by (auto simp: field split simps C def )
then have finite C
using finite int segment finite subset by blast

then have finite I
by (simp add : I def )

obtain F ′ where eq :
⋃
F ′ =

⋃
F and finite F ′

and poly :
∧
X . X ∈ F ′ =⇒ polytope X

and aff :
∧
X . X ∈ F ′ =⇒ aff dim X ≤ d

and face:
∧
X Y . [[X ∈ F ′; Y ∈ F ′]] =⇒ X ∩ Y face of X

and I :
∧
X x y a b. [[X ∈ F ′; x ∈ X ; y ∈ X ; (a,b) ∈ I ]] =⇒

a · x ≤ b ∧ a · y ≤ b ∨ a · x ≥ b ∧ a · y ≥ b
and sub1 :

∧
C . C ∈ F ′ =⇒ ∃D . D ∈ F ∧ C ⊆ D

and sub2 :
∧
C x . C ∈ F ∧ x ∈ C =⇒ ∃D . D ∈ F ′ ∧ x ∈ D ∧ D ⊆ C

apply (rule exE [OF cell subdivision lemma])
using assms 〈finite I 〉 by auto

show ?thesis
proof (rule tac F ′=F ′ in that)
show diameter X < e if X ∈ F ′ for X
proof −
have diameter X ≤ e/2
proof (rule diameter le)
show norm (x − y) ≤ e / 2 if x ∈ X y ∈ X for x y
proof −
have norm x < B norm y < B
using B 〈X ∈ F ′〉 eq that by blast+

have norm (x − y) ≤ (
∑

b∈Basis. |(x−y) · b|)
by (rule norm le l1 )

also have ... ≤ of nat (DIM ( ′a)) ∗ (e / 2 / DIM ( ′a))
proof (rule sum bounded above)
fix i :: ′a
assume i ∈ Basis
then have I ′:

∧
z b. [[z ∈ C ; b = z ∗ e / (2 ∗ real DIM ( ′a))]] =⇒ i · x

≤ b ∧ i · y ≤ b ∨ i · x ≥ b ∧ i · y ≥ b
using I [of X x y ] 〈X ∈ F ′〉 that unfolding I def by auto

show |(x − y) · i | ≤ e / 2 / real DIM ( ′a)
proof (rule ccontr)
assume ¬ |(x − y) · i | ≤ e / 2 / real DIM ( ′a)
then have xyi : |i · x − i · y | > e / 2 / real DIM ( ′a)
by (simp add : inner commute inner diff right)

obtain n where n ∈ ZZ and n: i · x < n ∗ (e / 2 / real DIM ( ′a)) ∧
n ∗ (e / 2 / real DIM ( ′a)) < i · y ∨ i · y < n ∗ (e / 2 / real DIM ( ′a)) ∧ n ∗ (e
/ 2 / real DIM ( ′a)) < i · x

using subdivide interval [OF xyi ] DIM positive 〈0 < e〉

by (auto simp: zero less divide iff )
have |i · x | < B

by (metis 〈i ∈ Basis〉 〈norm x < B 〉 inner commute norm bound Basis lt)
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have |i · y | < B
by (metis 〈i ∈ Basis〉 〈norm y < B 〉 inner commute norm bound Basis lt)
have ∗: |n ∗ e| ≤ B ∗ (2 ∗ real DIM ( ′a))

if |ix | < B |iy | < B
and ix : ix ∗ (2 ∗ real DIM ( ′a)) < n ∗ e
and iy : n ∗ e < iy ∗ (2 ∗ real DIM ( ′a)) for ix iy

proof (rule abs leI )
have iy ∗ (2 ∗ real DIM ( ′a)) ≤ B ∗ (2 ∗ real DIM ( ′a))
by (rule mult right mono) (use 〈|iy | < B 〉 in linarith)+

then show n ∗ e ≤ B ∗ (2 ∗ real DIM ( ′a))
using iy by linarith

next
have − ix ∗ (2 ∗ real DIM ( ′a)) ≤ B ∗ (2 ∗ real DIM ( ′a))
by (rule mult right mono) (use 〈|ix | < B 〉 in linarith)+

then show − (n ∗ e) ≤ B ∗ (2 ∗ real DIM ( ′a))
using ix by linarith

qed
have n ∈ C
using 〈n ∈ ZZ〉 n by (auto simp: C def divide simps intro: ∗ 〈|i · x |

< B 〉 〈|i · y | < B 〉)
show False
using I ′ [OF 〈n ∈ C 〉 refl ] n by auto

qed
qed
also have ... = e / 2
by simp

finally show ?thesis .
qed

qed (use 〈0 < e〉 in force)
also have ... < e
by (simp add : 〈0 < e〉)

finally show ?thesis .
qed

qed (auto simp: eq poly aff face sub1 sub2 〈finite F ′〉)
qed

6.38.17 Simplexes

The notion of n-simplex for integer − (1 :: ′a) ≤ n

definition simplex :: int ⇒ ′a::euclidean space set ⇒ bool (infix simplex 50 )
where n simplex S ≡ ∃C . ¬ affine dependent C ∧ int(card C ) = n + 1 ∧ S =

convex hull C

lemma simplex :
n simplex S ←→ (∃C . finite C ∧

¬ affine dependent C ∧
int(card C ) = n + 1 ∧
S = convex hull C )

by (auto simp add : simplex def intro: aff independent finite)
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lemma simplex convex hull :
¬ affine dependent C ∧ int(card C ) = n + 1 =⇒ n simplex (convex hull C )
by (auto simp add : simplex def )

lemma convex simplex : n simplex S =⇒ convex S
by (metis convex convex hull simplex def )

lemma compact simplex : n simplex S =⇒ compact S
unfolding simplex
using finite imp compact convex hull by blast

lemma closed simplex : n simplex S =⇒ closed S
by (simp add : compact imp closed compact simplex )

lemma simplex imp polytope:
n simplex S =⇒ polytope S
unfolding simplex def polytope def
using aff independent finite by blast

lemma simplex imp polyhedron:
n simplex S =⇒ polyhedron S
by (simp add : polytope imp polyhedron simplex imp polytope)

lemma simplex dim ge: n simplex S =⇒ −1 ≤ n
by (metis (no types, hide lams) aff dim geq affine independent iff card diff add cancel

diff diff eq2 simplex def )

lemma simplex empty [simp]: n simplex {} ←→ n = −1
proof
assume n simplex {}
then show n = −1
unfolding simplex by (metis card .empty convex hull eq empty diff 0 diff eq eq

of nat 0 )
next
assume n = −1 then show n simplex {}
by (fastforce simp: simplex )

qed

lemma simplex minus 1 [simp]: −1 simplex S ←→ S = {}
by (metis simplex cancel comm monoid add class.diff cancel card 0 eq diff minus eq add

of nat eq 0 iff simplex empty)

lemma aff dim simplex :
n simplex S =⇒ aff dim S = n

by (metis simplex add .commute add diff cancel left ′ aff dim convex hull affine independent iff card)

lemma zero simplex sing : 0 simplex {a}
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apply (simp add : simplex def )
using affine independent 1 card 1 singleton iff convex hull singleton by blast

lemma simplex sing [simp]: n simplex {a} ←→ n = 0
using aff dim simplex aff dim sing zero simplex sing by blast

lemma simplex zero: 0 simplex S ←→ (∃ a. S = {a})
by (metis aff dim eq 0 aff dim simplex simplex sing)

lemma one simplex segment : a 6= b =⇒ 1 simplex closed segment a b
unfolding simplex def
by (rule tac x={a,b} in exI ) (auto simp: segment convex hull)

lemma simplex segment cases:
(if a = b then 0 else 1 ) simplex closed segment a b
by (auto simp: one simplex segment)

lemma simplex segment :
∃n. n simplex closed segment a b
using simplex segment cases by metis

lemma polytope lowdim imp simplex :
assumes polytope P aff dim P ≤ 1
obtains n where n simplex P

proof (cases P = {})
case True
then show ?thesis
by (simp add : that)

next
case False
then show ?thesis
by (metis assms compact convex collinear segment collinear aff dim polytope imp compact

polytope imp convex simplex segment cases that)
qed

lemma simplex insert dimplus1 :
fixes n::int
assumes n simplex S and a: a /∈ affine hull S
shows (n+1 ) simplex (convex hull (insert a S ))

proof −
obtain C where C : finite C ¬ affine dependent C int(card C ) = n+1 and S :

S = convex hull C
using assms unfolding simplex by force

show ?thesis
unfolding simplex

proof (intro exI conjI )
have aff dim S = n
using aff dim simplex assms(1 ) by blast

moreover have a /∈ affine hull C
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using S a affine hull convex hull by blast
moreover have a /∈ C

using S a hull inc by fastforce
ultimately show ¬ affine dependent (insert a C )
by (simp add : C S aff dim convex hull aff dim insert affine independent iff card)

next
have a /∈ C
using S a hull inc by fastforce

then show int (card (insert a C )) = n + 1 + 1
by (simp add : C )

next
show convex hull insert a S = convex hull (insert a C )
by (simp add : S convex hull insert segments)

qed (use C in auto)
qed

6.38.18 Simplicial complexes and triangulations

definition simplicial complex where
simplicial complex C ≡

finite C ∧
(∀S ∈ C. ∃n. n simplex S ) ∧
(∀F S . S ∈ C ∧ F face of S −→ F ∈ C) ∧
(∀S S ′. S ∈ C ∧ S ′ ∈ C −→ (S ∩ S ′) face of S )

definition triangulation where
triangulation T ≡

finite T ∧
(∀T ∈ T . ∃n. n simplex T ) ∧
(∀T T ′. T ∈ T ∧ T ′ ∈ T −→ (T ∩ T ′) face of T )

6.38.19 Refining a cell complex to a simplicial complex

proposition convex hull insert Int eq :
fixes z :: ′a :: euclidean space
assumes z : z ∈ rel interior S

and T : T ⊆ rel frontier S
and U : U ⊆ rel frontier S
and convex S convex T convex U

shows convex hull (insert z T ) ∩ convex hull (insert z U ) = convex hull (insert
z (T ∩ U ))

(is ?lhs = ?rhs)
proof
show ?lhs ⊆ ?rhs
proof (cases T={} ∨ U={})
case True then show ?thesis by auto

next
case False
then have T 6= {} U 6= {} by auto
have TU : convex (T ∩ U )
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by (simp add : 〈convex T 〉 〈convex U 〉 convex Int)
have (

⋃
x∈T . closed segment z x ) ∩ (

⋃
x∈U . closed segment z x )

⊆ (if T ∩ U = {} then {z} else
⋃

((closed segment z ) ‘ (T ∩ U ))) (is
⊆ ?IF )

proof clarify
fix x t u
assume xt : x ∈ closed segment z t
and xu: x ∈ closed segment z u
and t ∈ T u ∈ U

then have ne: t 6= z u 6= z
using T U z unfolding rel frontier def by blast+

show x ∈ ?IF
proof (cases x = z )
case True then show ?thesis by auto

next
case False
have t : t ∈ closure S
using T 〈t ∈ T 〉 rel frontier def by auto

have u: u ∈ closure S
using U 〈u ∈ U 〉 rel frontier def by auto

show ?thesis
proof (cases t = u)
case True
then show ?thesis
using 〈t ∈ T 〉 〈u ∈ U 〉 xt by auto

next
case False
have tnot : t /∈ closed segment u z
proof −
have t ∈ closure S − rel interior S
using T 〈t ∈ T 〉 rel frontier def by blast

then have t /∈ open segment z u
by (meson DiffD2 rel interior closure convex segment [OF 〈convex S 〉

z u] subsetD)
then show ?thesis
by (simp add : 〈t 6= u〉 〈t 6= z 〉 open segment commute open segment def )

qed
moreover have u /∈ closed segment z t
using rel interior closure convex segment [OF 〈convex S 〉 z t ] 〈u ∈ U 〉 〈u

6= z 〉

U [unfolded rel frontier def ] tnot
by (auto simp: closed segment eq open)

ultimately
have ¬(between (t ,u) z | between (u,z ) t | between (z ,t) u) if x 6= z
using that xt xu

by (meson between antisym between mem segment between trans 2
ends in segment(2 ))

then have ¬ collinear {t , z , u} if x 6= z
by (auto simp: that collinear between cases between commute)
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moreover have collinear {t , z , x}
by (metis closed segment commute collinear 2 collinear closed segment

collinear triples ends in segment(1 ) insert absorb insert absorb2 xt)
moreover have collinear {z , x , u}

by (metis closed segment commute collinear 2 collinear closed segment
collinear triples ends in segment(1 ) insert absorb insert absorb2 xu)

ultimately have False
using collinear 3 trans [of t z x u] 〈x 6= z 〉 by blast

then show ?thesis by metis
qed

qed
qed
then show ?thesis
using False 〈convex T 〉 〈convex U 〉 TU
by (simp add : convex hull insert segments hull same split : if split asm)

qed
show ?rhs ⊆ ?lhs
by (metis inf greatest hull mono inf .cobounded1 inf .cobounded2 insert mono)

qed

lemma simplicial subdivision aux :
assumes finite M

and
∧
C . C ∈ M =⇒ polytope C

and
∧
C . C ∈ M =⇒ aff dim C ≤ of nat n

and
∧
C F . [[C ∈ M; F face of C ]] =⇒ F ∈ M

and
∧
C1 C2 . [[C1 ∈ M; C2 ∈ M]] =⇒ C1 ∩ C2 face of C1

shows ∃ T . simplicial complex T ∧
(∀K ∈ T . aff dim K ≤ of nat n) ∧⋃
T =

⋃
M ∧

(∀C ∈ M. ∃F . finite F ∧ F ⊆ T ∧ C =
⋃

F ) ∧
(∀K ∈ T . ∃C . C ∈ M ∧ K ⊆ C )

using assms
proof (induction n arbitrary :M rule: less induct)
case (less n)
then have polyM:

∧
C . C ∈ M =⇒ polytope C

and affM:
∧
C . C ∈ M =⇒ aff dim C ≤ of nat n

and faceM:
∧
C F . [[C ∈ M; F face of C ]] =⇒ F ∈ M

and intfaceM:
∧
C1 C2 . [[C1 ∈ M; C2 ∈ M]] =⇒ C1 ∩ C2 face of C1

by metis+
show ?case
proof (cases n ≤ 1 )
case True
have

∧
s. [[n ≤ 1 ; s ∈ M]] =⇒ ∃m. m simplex s

using polyM affM by (force intro: polytope lowdim imp simplex )
then show ?thesis
unfolding simplicial complex def using True
by (rule tac x=M in exI ) (auto simp: less.prems)

next
case False
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define S where S ≡ {C ∈ M. aff dim C < n}
have finite S

∧
C . C ∈ S =⇒ polytope C

∧
C . C ∈ S =⇒ aff dim C ≤ int (n

− 1 )∧
C1 C2 . [[C1 ∈ S; C2 ∈ S]] =⇒ C1 ∩ C2 face of C1

using less.prems by (auto simp: S def )
moreover have §:

∧
C F . [[C ∈ S; F face of C ]] =⇒ F ∈ S

using less.prems unfolding S def
by (metis (no types, lifting) mem Collect eq aff dim subset face of imp subset

less le not le)
ultimately obtain U where simplicial complex U
and aff dimU :

∧
K . K ∈ U =⇒ aff dim K ≤ int (n − 1 )

and
⋃
U =

⋃
S

and finU :
∧
C . C ∈ S =⇒ ∃F . finite F ∧ F ⊆ U ∧ C =

⋃
F

and CU :
∧
K . K ∈ U =⇒ ∃C . C ∈ S ∧ K ⊆ C

using less.IH [of n−1 S] False by auto
then have finite U
and simplU :

∧
S . S ∈ U =⇒ ∃n. n simplex S

and faceU :
∧
F S . [[S ∈ U ; F face of S ]] =⇒ F ∈ U

and faceIU :
∧
S S ′. [[S ∈ U ; S ′ ∈ U ]] =⇒ (S ∩ S ′) face of S

by (auto simp: simplicial complex def )
define N where N ≡ {C ∈ M. aff dim C = n}
have finite N
by (simp add : N def less.prems(1 ))

have polyN :
∧
C . C ∈ N =⇒ polytope C

and convexN :
∧
C . C ∈ N =⇒ convex C

and closedN :
∧
C . C ∈ N =⇒ closed C

by (auto simp: N def polyM polytope imp convex polytope imp closed)
have in rel interior : (SOME z . z ∈ rel interior C ) ∈ rel interior C if C ∈ N

for C
using that polyM polytope imp convex rel interior aff dim some in eq by

(fastforce simp: N def )
have ∗: ∃T . ¬ affine dependent T ∧ card T ≤ n ∧ aff dim K < n ∧ K =

convex hull T
if K ∈ U for K

proof −
obtain r where r : r simplex K
using 〈K ∈ U 〉 simplU by blast

have r = aff dim K
using 〈r simplex K 〉 aff dim simplex by blast

with r
show ?thesis
unfolding simplex def
using False 〈

∧
K . K ∈ U =⇒ aff dim K ≤ int (n − 1 )〉 that by fastforce

qed
have ahK C disjoint : affine hull K ∩ rel interior C = {}
if C ∈ N K ∈ U K ⊆ rel frontier C for C K

proof −
have convex C closed C
by (auto simp: convexN closedN 〈C ∈ N 〉)
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obtain F where F : F face of C and F 6= C K ⊆ F
proof −
obtain L where L ∈ S K ⊆ L
using 〈K ∈ U 〉 CU by blast

have K ≤ rel frontier C
by (simp add : 〈K ⊆ rel frontier C 〉)

also have ... ≤ C
by (simp add : 〈closed C 〉 rel frontier def subset iff )

finally have K ⊆ C .
have L ∩ C face of C
using N def S def 〈C ∈ N 〉 〈L ∈ S〉 intfaceM by (simp add : inf commute)
moreover have L ∩ C 6= C
using 〈C ∈ N 〉 〈L ∈ S〉

by (metis (mono tags, lifting) N def S def intfaceM mem Collect eq
not le order refl §)

moreover have K ⊆ L ∩ C
using 〈C ∈ N 〉 〈L ∈ S〉 〈K ⊆ C 〉 〈K ⊆ L〉 by (auto simp: N def S def )

ultimately show ?thesis using that by metis
qed
have affine hull F ∩ rel interior C = {}
by (rule affine hull face of disjoint rel interior [OF 〈convex C 〉 F 〈F 6= C 〉])
with hull mono [OF 〈K ⊆ F 〉]
show affine hull K ∩ rel interior C = {}
by fastforce

qed
let ?T = (

⋃
C ∈ N .

⋃
K ∈ U ∩ Pow (rel frontier C ).

{convex hull (insert (SOME z . z ∈ rel interior C ) K )})
have ∃ T . simplicial complex T ∧

(∀K ∈ T . aff dim K ≤ of nat n) ∧
(∀C ∈ M. ∃F . F ⊆ T ∧ C =

⋃
F ) ∧

(∀K ∈ T . ∃C . C ∈ M ∧ K ⊆ C )
proof (rule exI , intro conjI ballI )
show simplicial complex (U ∪ ?T )
unfolding simplicial complex def

proof (intro conjI impI ballI allI )
show finite (U ∪ ?T )
using 〈finite U 〉 〈finite N 〉 by simp

show ∃n. n simplex S if S ∈ U ∪ ?T for S
using that ahK C disjoint in rel interior simplU simplex insert dimplus1

by fastforce
show F ∈ U ∪ ?T if S : S ∈ U ∪ ?T ∧ F face of S for F S
proof −
have F ∈ U if S ∈ U
using S faceU that by blast

moreover have F ∈ U ∪ ?T
if F face of S C ∈ N K ∈ U and K ⊆ rel frontier C
and S : S = convex hull insert (SOME z . z ∈ rel interior C ) K for C

K
proof −
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let ?z = SOME z . z ∈ rel interior C
have ?z ∈ rel interior C
by (simp add : in rel interior 〈C ∈ N 〉)

moreover
obtain I where ¬ affine dependent I card I ≤ n aff dim K < int n K

= convex hull I
using ∗ [OF 〈K ∈ U 〉] by auto

ultimately have ?z /∈ affine hull I
using ahK C disjoint affine hull convex hull that by blast

have compact I finite I
by (auto simp: 〈¬ affine dependent I 〉 aff independent finite fi-

nite imp compact)
moreover have F face of convex hull insert ?z I

by (metis S 〈F face of S 〉 〈K = convex hull I 〉 convex hull eq empty
convex hull insert segments hull hull)

ultimately obtain J where J ⊆ insert ?z I F = convex hull J
using face of convex hull subset [of insert ?z I F ] by auto

show ?thesis
proof (cases ?z ∈ J )
case True
have F ∈ (

⋃
K∈U ∩ Pow (rel frontier C ). {convex hull insert ?z K})

proof
have convex hull (J − {?z}) face of K

by (metis True 〈J ⊆ insert ?z I 〉 〈K = convex hull I 〉 〈¬ affine dependent
I 〉 face of convex hull affine independent subset insert iff )

then have convex hull (J − {?z}) ∈ U
by (rule faceU [OF 〈K ∈ U 〉])

moreover
have

∧
x . x ∈ convex hull (J − {?z}) =⇒ x ∈ rel frontier C

by (metis True 〈J ⊆ insert ?z I 〉 〈K = convex hull I 〉 subsetD
hull mono subset insert iff that(4 ))

ultimately show convex hull (J − {?z}) ∈ U ∩ Pow (rel frontier
C ) by auto

let ?F = convex hull insert ?z (convex hull (J − {?z}))
have F ⊆ ?F
apply (clarsimp simp: 〈F = convex hull J 〉)
by (metis True subsetD hull mono hull subset subset insert iff )

moreover have ?F ⊆ F
apply (clarsimp simp: 〈F = convex hull J 〉)

by (metis (no types, lifting) True convex hull eq empty con-
vex hull insert segments hull hull insert Diff )

ultimately
show F ∈ {?F} by auto

qed
with 〈C∈N 〉 show ?thesis by auto

next
case False
then have F ∈ U
using face of convex hull affine independent [OF 〈¬ affine dependent
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I 〉]
by (metis Int absorb2 Int insert right if0 〈F = convex hull J 〉 〈J ⊆

insert ?z I 〉 〈K = convex hull I 〉 faceU inf le2 〈K ∈ U 〉)
then show F ∈ U ∪ ?T
by blast

qed
qed
ultimately show ?thesis
using that by auto

qed
have §: X ∩ Y face of X ∧ X ∩ Y face of Y
if XY : X ∈ U Y ∈ ?T for X Y

proof −
obtain C K
where C ∈ N K ∈ U K ⊆ rel frontier C
and Y : Y = convex hull insert (SOME z . z ∈ rel interior C ) K

using XY by blast
have convex C
by (simp add : 〈C ∈ N 〉 convexN )

have K ⊆ C
by (metis DiffE 〈C ∈ N 〉 〈K ⊆ rel frontier C 〉 closedN closure closed

rel frontier def subset iff )
let ?z = (SOME z . z ∈ rel interior C )
have z : ?z ∈ rel interior C
using 〈C ∈ N 〉 in rel interior by blast

obtain D where D ∈ S X ⊆ D
using CU 〈X ∈ U 〉 by blast

have D ∩ rel interior C = (C ∩ D) ∩ rel interior C
using rel interior subset by blast

also have (C ∩ D) ∩ rel interior C = {}
proof (rule face of disjoint rel interior)
show C ∩ D face of C
using N def S def 〈C ∈ N 〉 〈D ∈ S〉 intfaceM by blast

show C ∩ D 6= C
by (metis (mono tags, lifting) Int lower2 N def S def 〈C ∈ N 〉 〈D ∈

S〉 aff dim subset mem Collect eq not le)
qed
finally have DC : D ∩ rel interior C = {} .
have eq : X ∩ convex hull (insert ?z K ) = X ∩ convex hull K
proof (rule Int convex hull insert rel exterior [OF 〈convex C 〉 〈K ⊆ C 〉

z ])
show disjnt X (rel interior C )
using DC by (meson 〈X ⊆ D 〉 disjnt def disjnt subset1 )

qed
obtain I where I : ¬ affine dependent I
and Keq : K = convex hull I and [simp]: convex hull K = K
using ∗ 〈K ∈ U 〉 by force

then have ?z /∈ affine hull I
using ahK C disjoint 〈C ∈ N 〉 〈K ∈ U 〉 〈K ⊆ rel frontier C 〉 affine hull convex hull
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z by blast
have X ∩ K face of K
by (simp add : XY (1 ) 〈K ∈ U 〉 faceIU inf commute)

also have ... face of convex hull insert ?z K
by (metis I Keq 〈?z /∈ affine hull I 〉 aff independent finite convex convex hull

face of convex hull insert face of refl hull insert)
finally have X ∩ K face of convex hull insert ?z K .
then show ?thesis
by (simp add : XY (1 ) Y 〈K ∈ U 〉 eq faceIU)

qed

show S ∩ S ′ face of S
if S ∈ U ∪ ?T ∧ S ′ ∈ U ∪ ?T for S S ′

using that
proof (elim conjE UnE )
fix X Y
assume X ∈ U and Y ∈ U
then show X ∩ Y face of X
by (simp add : faceIU)

next
fix X Y
assume XY : X ∈ U Y ∈ ?T
then show X ∩ Y face of X Y ∩ X face of Y
using § [OF XY ] by (auto simp: Int commute)

next
fix X Y
assume XY : X ∈ ?T Y ∈ ?T
show X ∩ Y face of X
proof −
obtain C K D L
where C ∈ N K ∈ U K ⊆ rel frontier C
and X : X = convex hull insert (SOME z . z ∈ rel interior C ) K
and D ∈ N L ∈ U L ⊆ rel frontier D
and Y : Y = convex hull insert (SOME z . z ∈ rel interior D) L

using XY by blast
let ?z = (SOME z . z ∈ rel interior C )
have z : ?z ∈ rel interior C
using 〈C ∈ N 〉 in rel interior by blast

have convex C
by (simp add : 〈C ∈ N 〉 convexN )

have convex K
using ∗ 〈K ∈ U 〉 by blast

have convex L
by (meson 〈L ∈ U 〉 convex simplex simplU)

show ?thesis
proof (cases D=C )
case True
then have L ⊆ rel frontier C
using 〈L ⊆ rel frontier D 〉 by auto
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have convex hull insert (SOME z . z ∈ rel interior C ) (K ∩ L) face of
convex hull insert (SOME z . z ∈ rel interior C ) K

by (metis face of polytope insert2 ∗ IntI 〈C ∈ N 〉 aff independent finite
ahK C disjoint empty iff faceIU polytope def z 〈K ∈ U 〉 〈L ∈ U 〉〈K ⊆ rel frontier
C 〉)

then show ?thesis
using True X Y 〈K ⊆ rel frontier C 〉 〈L ⊆ rel frontier C 〉 〈convex C 〉

〈convex K 〉 〈convex L〉 convex hull insert Int eq z by force
next
case False
have convex D
by (simp add : 〈D ∈ N 〉 convexN )

have K ⊆ C
by (metis DiffE 〈C ∈ N 〉 〈K ⊆ rel frontier C 〉 closedN closure closed

rel frontier def subset eq)
have L ⊆ D
by (metis DiffE 〈D ∈ N 〉 〈L ⊆ rel frontier D 〉 closedN closure closed

rel frontier def subset eq)
let ?w = (SOME w . w ∈ rel interior D)
have w : ?w ∈ rel interior D
using 〈D ∈ N 〉 in rel interior by blast

have C ∩ rel interior D = (D ∩ C ) ∩ rel interior D
using rel interior subset by blast

also have (D ∩ C ) ∩ rel interior D = {}
proof (rule face of disjoint rel interior)
show D ∩ C face of D
using N def 〈C ∈ N 〉 〈D ∈ N 〉 intfaceM by blast

have D ∈ M ∧ aff dim D = int n
using N def 〈D ∈ N 〉 by blast

moreover have C ∈ M ∧ aff dim C = int n
using N def 〈C ∈ N 〉 by blast

ultimately show D ∩ C 6= D
by (metis Int commute False face of aff dim lt inf .idem inf le1

intfaceM not le polyM polytope imp convex )
qed
finally have CD : C ∩ (rel interior D) = {} .
have zKC : (convex hull insert ?z K ) ⊆ C
by (metis DiffE 〈C ∈ N 〉 〈K ⊆ rel frontier C 〉 closedN closure closed

convexN hull minimal insert subset rel frontier def rel interior subset subset iff z )
have disjnt (convex hull insert (SOME z . z ∈ rel interior C ) K )

(rel interior D)
using zKC CD by (force simp: disjnt def )

then have eq : convex hull (insert ?z K ) ∩ convex hull (insert ?w L) =
convex hull (insert ?z K ) ∩ convex hull L

by (rule Int convex hull insert rel exterior [OF 〈convex D 〉 〈L ⊆ D 〉

w ])
have ch id : convex hull K = K convex hull L = L
using ∗ 〈K ∈ U 〉 〈L ∈ U 〉 hull same by auto

have convex C
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by (simp add : 〈C ∈ N 〉 convexN )
have convex hull (insert ?z K ) ∩ L = L ∩ convex hull (insert ?z K )
by blast

also have ... = convex hull K ∩ L
proof (subst Int convex hull insert rel exterior [OF 〈convex C 〉 〈K ⊆

C 〉 z ])
have (C ∩ D) ∩ rel interior C = {}
proof (rule face of disjoint rel interior)
show C ∩ D face of C
using N def 〈C ∈ N 〉 〈D ∈ N 〉 intfaceM by blast

have D ∈ M aff dim D = int n
using N def 〈D ∈ N 〉 by fastforce+

moreover have C ∈ M aff dim C = int n
using N def 〈C ∈ N 〉 by fastforce+

ultimately have aff dim D + − 1 ∗ aff dim C ≤ 0
by fastforce

then have ¬ C face of D
using False 〈convex D 〉 face of aff dim lt by fastforce

show C ∩ D 6= C
by (metis inf commute 〈C ∈ M〉 〈D ∈ M〉 〈¬ C face of D 〉

intfaceM)
qed
then have D ∩ rel interior C = {}
by (metis inf .absorb iff2 inf assoc inf sup aci(1 ) rel interior subset)
then show disjnt L (rel interior C )
by (meson 〈L ⊆ D 〉 disjnt def disjnt subset1 )

next
show L ∩ convex hull K = convex hull K ∩ L
by force

qed
finally have chKL: convex hull (insert ?z K ) ∩ L = convex hull K ∩

L .
have convex hull insert ?z K ∩ convex hull L face of K
by (simp add : 〈K ∈ U 〉 〈L ∈ U 〉 ch id chKL faceIU)

also have ... face of convex hull insert ?z K
proof −
obtain I where I : ¬ affine dependent I K = convex hull I
using ∗ [OF 〈K ∈ U 〉] by auto

then have
∧
a. a /∈ rel interior C ∨ a /∈ affine hull I

using ahK C disjoint 〈C ∈ N 〉 〈K ∈ U 〉 〈K ⊆ rel frontier C 〉

affine hull convex hull by blast
then show ?thesis

by (metis I affine independent insert face of convex hull affine independent
hull insert subset insertI z )

qed
finally have 1 : convex hull insert ?z K ∩ convex hull L face of convex

hull insert ?z K .
have convex hull insert ?z K ∩ convex hull L face of L
by (metis 〈K ∈ U 〉 〈L ∈ U 〉 chKL ch id faceIU inf commute)
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also have ... face of convex hull insert ?w L
proof −
obtain I where I : ¬ affine dependent I L = convex hull I
using ∗ [OF 〈L ∈ U 〉] by auto

then have
∧
a. a /∈ rel interior D ∨ a /∈ affine hull I

using 〈D ∈ N 〉 〈L ∈ U 〉 〈L ⊆ rel frontier D 〉 affine hull convex hull
ahK C disjoint by blast

then show ?thesis
by (metis I aff independent finite convex convex hull face of convex hull insert

face of refl hull insert w)
qed
finally have 2 : convex hull insert ?z K ∩ convex hull L face of convex

hull insert ?w L .
show ?thesis
by (simp add : X Y eq 1 2 )

qed
qed

qed
qed
show ∃F ⊆ U ∪ ?T . C =

⋃
F if C ∈ M for C

proof (cases C ∈ S)
case True
then show ?thesis
by (meson UnCI finU subsetD subsetI )

next
case False
then have C ∈ N
by (simp add : N def S def affM less le that)

let ?z = SOME z . z ∈ rel interior C
have z : ?z ∈ rel interior C
using 〈C ∈ N 〉 in rel interior by blast

let ?F =
⋃
K ∈ U ∩ Pow (rel frontier C ). {convex hull (insert ?z K )}

have ?F ⊆ ?T
using 〈C ∈ N 〉 by blast

moreover have C ⊆
⋃
?F

proof
fix x
assume x ∈ C
have convex C
using 〈C ∈ N 〉 convexN by blast

have bounded C
using 〈C ∈ N 〉 by (simp add : polyM polytope imp bounded that)

have polytope C
using 〈C ∈ N 〉 polyN by auto

have ¬ (?z = x ∧ C = {?z})
using 〈C ∈ N 〉 aff dim sing [of ?z ] 〈¬ n ≤ 1 〉 by (force simp: N def )

then obtain y where y : y ∈ rel frontier C and xzy : x ∈ closed segment
?z y

and sub: open segment ?z y ⊆ rel interior C
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by (blast intro: segment to rel frontier [OF 〈convex C 〉 〈bounded C 〉 z 〈x
∈ C 〉])

then obtain F where y ∈ F F face of C F 6= C
by (auto simp: rel frontier of polyhedron alt [OF polytope imp polyhedron

[OF 〈polytope C 〉]])
then obtain G where finite G G ⊆ U F =

⋃
G

by (metis (mono tags, lifting) S def 〈C ∈ M〉 〈convex C 〉 affM faceM
face of aff dim lt finU le less trans mem Collect eq not less)

then obtain K where y ∈ K K ∈ G
using 〈y ∈ F 〉 by blast

moreover have x : x ∈ convex hull {?z ,y}
using segment convex hull xzy by auto

moreover have convex hull {?z ,y} ⊆ convex hull insert ?z K
by (metis (full types) 〈y ∈ K 〉 hull mono empty subsetI insertCI in-

sert subset)
moreover have K ∈ U
using 〈K ∈ G〉 〈G ⊆ U 〉 by blast

moreover have K ⊆ rel frontier C
using 〈F =

⋃
G〉 〈F 6= C 〉 〈F face of C 〉 〈K ∈ G〉 face of subset rel frontier

by fastforce
ultimately show x ∈

⋃
?F

by force
qed
moreover
have convex hull insert (SOME z . z ∈ rel interior C ) K ⊆ C
if K ∈ U K ⊆ rel frontier C for K

proof (rule hull minimal)
show insert (SOME z . z ∈ rel interior C ) K ⊆ C
using that 〈C ∈ N 〉 in rel interior rel interior subset
by (force simp: closure eq rel frontier def closedN )

show convex C
by (simp add : 〈C ∈ N 〉 convexN )

qed
then have

⋃
?F ⊆ C

by auto
ultimately show ?thesis
by blast

qed
have (∃C . C ∈ M ∧ L ⊆ C ) ∧ aff dim L ≤ int n if L ∈ U ∪ ?T for L
using that

proof
assume L ∈ U
then show ?thesis
using CU S def ∗ by fastforce

next
assume L ∈ ?T
then obtain C K where C ∈ N
and L: L = convex hull insert (SOME z . z ∈ rel interior C ) K
and K : K ∈ U K ⊆ rel frontier C
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by auto
then have convex hull C = C
by (meson convexN convex hull eq)

then have convex C
by (metis (no types) convex convex hull)

have rel frontier C ⊆ C
by (metis DiffE closedN 〈C ∈ N 〉 closure closed rel frontier def subsetI )

have K ⊆ C
using K 〈rel frontier C ⊆ C 〉 by blast

have C ∈ M
using N def 〈C ∈ N 〉 by auto

moreover have L ⊆ C
using K L 〈C ∈ N 〉

by (metis 〈K ⊆ C 〉 〈convex hull C = C 〉 contra subsetD hull mono
in rel interior insert subset rel interior subset)

ultimately show ?thesis
using 〈rel frontier C ⊆ C 〉 〈L ⊆ C 〉 affM aff dim subset 〈C ∈ M〉

dual order .trans by blast
qed
then show ∃C . C ∈ M ∧ L ⊆ C aff dim L ≤ int n if L ∈ U ∪ ?T for L
using that by auto

qed
then show ?thesis
apply (rule ex forward , safe)
apply (meson Union iff subsetCE , fastforce)

by (meson infinite super simplicial complex def )
qed

qed

lemma simplicial subdivision of cell complex lowdim:
assumes finite M

and poly :
∧
C . C ∈ M =⇒ polytope C

and face:
∧
C1 C2 . [[C1 ∈ M; C2 ∈ M]] =⇒ C1 ∩ C2 face of C1

and aff :
∧
C . C ∈ M =⇒ aff dim C ≤ d

obtains T where simplicial complex T
∧
K . K ∈ T =⇒ aff dim K ≤ d⋃

T =
⋃
M∧

C . C ∈ M =⇒ ∃F . finite F ∧ F ⊆ T ∧ C =
⋃
F∧

K . K ∈ T =⇒ ∃C . C ∈ M ∧ K ⊆ C
proof (cases d ≥ 0 )
case True
then obtain n where n: d = of nat n
using zero le imp eq int by blast

have ∃ T . simplicial complex T ∧
(∀K∈T . aff dim K ≤ int n) ∧⋃
T =

⋃
(
⋃
C∈M. {F . F face of C}) ∧

(∀C∈
⋃
C∈M. {F . F face of C}.

∃F . finite F ∧ F ⊆ T ∧ C =
⋃

F ) ∧
(∀K∈T . ∃C . C ∈ (

⋃
C∈M. {F . F face of C}) ∧ K ⊆ C )
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proof (rule simplicial subdivision aux )
show finite (

⋃
C∈M. {F . F face of C})

using 〈finite M〉 poly polyhedron eq finite faces polytope imp polyhedron by
fastforce

show polytope F if F ∈ (
⋃
C∈M. {F . F face of C}) for F

using poly that face of polytope polytope by blast
show aff dim F ≤ int n if F ∈ (

⋃
C∈M. {F . F face of C}) for F

using that
by clarify (metis n aff dim subset aff face of imp subset order trans)

show F ∈ (
⋃
C∈M. {F . F face of C})

if G ∈ (
⋃
C∈M. {F . F face of C}) and F face of G for F G

using that face of trans by blast
next
fix F1 F2
assume F1 ∈ (

⋃
C∈M. {F . F face of C}) and F2 ∈ (

⋃
C∈M. {F . F face of

C})
then obtain C1 C2 where C1 ∈ M C2 ∈ M and F : F1 face of C1 F2 face of

C2
by auto

show F1 ∩ F2 face of F1
using face of Int subface [OF F ]
by (metis 〈C1 ∈ M〉 〈C2 ∈ M〉 face inf commute)

qed
moreover
have

⋃
(
⋃
C∈M. {F . F face of C}) =

⋃
M

using face of imp subset face by blast
ultimately show ?thesis
using face of imp subset n
by (fastforce intro!: that simp add : poly face of refl polytope imp convex )

next
case False
then have m1 :

∧
C . C ∈ M =⇒ aff dim C = −1

by (metis aff aff dim empty eq aff dim negative iff dual order .trans not less)
then have faceM:

∧
F S . [[S ∈ M; F face of S ]] =⇒ F ∈ M

by (metis aff dim empty face of empty)
show ?thesis
proof
have

∧
S . S ∈ M =⇒ ∃n. n simplex S

by (metis (no types) m1 aff dim empty simplex minus 1 )
then show simplicial complex M
by (auto simp: simplicial complex def 〈finite M〉 face intro: faceM)

show aff dim K ≤ d if K ∈ M for K
by (simp add : that aff )

show ∃F . finite F ∧ F ⊆ M ∧ C =
⋃
F if C ∈ M for C

using 〈C ∈ M〉 equals0I by auto
show ∃C . C ∈ M ∧ K ⊆ C if K ∈ M for K
using 〈K ∈ M〉 by blast

qed auto
qed
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proposition simplicial subdivision of cell complex :
assumes finite M

and poly :
∧
C . C ∈ M =⇒ polytope C

and face:
∧
C1 C2 . [[C1 ∈ M; C2 ∈ M]] =⇒ C1 ∩ C2 face of C1

obtains T where simplicial complex T⋃
T =

⋃
M∧

C . C ∈ M =⇒ ∃F . finite F ∧ F ⊆ T ∧ C =
⋃
F∧

K . K ∈ T =⇒ ∃C . C ∈ M ∧ K ⊆ C
by (blast intro: simplicial subdivision of cell complex lowdim [OF assms aff dim le DIM ])

corollary fine simplicial subdivision of cell complex :
assumes 0 < e finite M

and poly :
∧
C . C ∈ M =⇒ polytope C

and face:
∧
C1 C2 . [[C1 ∈ M; C2 ∈ M]] =⇒ C1 ∩ C2 face of C1

obtains T where simplicial complex T∧
K . K ∈ T =⇒ diameter K < e⋃
T =

⋃
M∧

C . C ∈ M =⇒ ∃F . finite F ∧ F ⊆ T ∧ C =
⋃
F∧

K . K ∈ T =⇒ ∃C . C ∈ M ∧ K ⊆ C
proof −
obtain N where N : finite N

⋃
N =

⋃
M

and diapoly :
∧
X . X ∈ N =⇒ diameter X < e

∧
X . X ∈ N =⇒

polytope X
and

∧
X Y . [[X ∈ N ; Y ∈ N ]] =⇒ X ∩ Y face of X

and N covers:
∧
C x . C ∈ M ∧ x ∈ C =⇒ ∃D . D ∈ N ∧ x ∈ D ∧

D ⊆ C
and N covered :

∧
C . C ∈ N =⇒ ∃D . D ∈ M ∧ C ⊆ D

by (blast intro: cell complex subdivision exists [OF 〈0 < e〉 〈finite M〉 poly
aff dim le DIM face])
then obtain T where T : simplicial complex T

⋃
T =

⋃
N

and T covers:
∧
C . C ∈ N =⇒ ∃F . finite F ∧ F ⊆ T ∧ C =

⋃
F

and T covered :
∧
K . K ∈ T =⇒ ∃C . C ∈ N ∧ K ⊆ C

using simplicial subdivision of cell complex [OF 〈finite N 〉] by metis
show ?thesis
proof
show simplicial complex T
by (rule T )

show diameter K < e if K ∈ T for K
by (metis le less trans diapoly T covered diameter subset polytope imp bounded

that)
show

⋃
T =

⋃
M

by (simp add : N (2 ) 〈
⋃
T =

⋃
N 〉)

show ∃F . finite F ∧ F ⊆ T ∧ C =
⋃

F if C ∈ M for C
proof −
{ fix x
assume x ∈ C
then obtain D where D ∈ T x ∈ D D ⊆ C
using N covers 〈C ∈ M〉 T covers by force
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then have ∃X∈T ∩ Pow C . x ∈ X
using 〈D ∈ T 〉 〈D ⊆ C 〉 〈x ∈ D 〉 by blast

}
moreover
have finite (T ∩ Pow C )
using 〈simplicial complex T 〉 simplicial complex def by auto

ultimately show ?thesis
by (rule tac x=(T ∩ Pow C ) in exI ) auto

qed
show ∃C . C ∈ M ∧ K ⊆ C if K ∈ T for K
by (meson N covered T covered order trans that)

qed
qed

6.38.20 Some results on cell division with full-dimensional
cells only

lemma convex Union fulldim cells:
assumes finite S and clo:

∧
C . C ∈ S =⇒ closed C and con:

∧
C . C ∈ S =⇒

convex C
and eq :

⋃
S = Uand convex U

shows
⋃
{C ∈ S. aff dim C = aff dim U } = U (is ?lhs = U )

proof −
have closed U
using 〈finite S〉 clo eq by blast

have ?lhs ⊆ U
using eq by blast

moreover have U ⊆ ?lhs
proof (cases ∀C ∈ S. aff dim C = aff dim U )
case True
then show ?thesis
using eq by blast

next
case False
have closed ?lhs
by (simp add : 〈finite S〉 clo closed Union)

moreover have U ⊆ closure ?lhs
proof −
have U ⊆ closure(

⋂
{U − C |C . C ∈ S ∧ aff dim C < aff dim U })

proof (rule Baire [OF 〈closed U 〉])
show countable {U − C |C . C ∈ S ∧ aff dim C < aff dim U }
using 〈finite S〉 uncountable infinite by fastforce

have
∧
C . C ∈ S =⇒ openin (top of set U ) (U−C )

by (metis Sup upper clo closed limpt closedin limpt eq openin diff openin subtopology self )
then show openin (top of set U ) T ∧ U ⊆ closure T
if T ∈ {U − C |C . C ∈ S ∧ aff dim C < aff dim U } for T
using that dense complement convex closed 〈closed U 〉 〈convex U 〉 by auto

qed
also have ... ⊆ closure ?lhs

Polytope.html


2836

proof −
obtain C where C ∈ S aff dim C < aff dim U
by (metis False Sup upper aff dim subset eq eq iff not le)

have ∃X . X ∈ S ∧ aff dim X = aff dim U ∧ x ∈ X
if

∧
V . (∃C . V = U − C ∧ C ∈ S ∧ aff dim C < aff dim U ) =⇒ x ∈

V for x
proof −
have x ∈ U ∧ x ∈

⋃
S

using 〈C ∈ S〉 〈aff dim C < aff dim U 〉 eq that by blast
then show ?thesis

by (metis Diff iff Sup upper Union iff aff dim subset dual order .order iff strict
eq that)

qed
then show ?thesis
by (auto intro!: closure mono)

qed
finally show ?thesis .

qed
ultimately show ?thesis
using closure subset eq by blast

qed
ultimately show ?thesis by blast

qed

proposition fine triangular subdivision of cell complex :
assumes 0 < e finite M

and poly :
∧
C . C ∈ M =⇒ polytope C

and aff :
∧
C . C ∈ M =⇒ aff dim C = d

and face:
∧
C1 C2 . [[C1 ∈ M; C2 ∈ M]] =⇒ C1 ∩ C2 face of C1

obtains T where triangulation T
∧
k . k ∈ T =⇒ diameter k < e∧

k . k ∈ T =⇒ aff dim k = d
⋃
T =

⋃
M∧

C . C ∈ M =⇒ ∃ f . finite f ∧ f ⊆ T ∧ C =
⋃
f∧

k . k ∈ T =⇒ ∃C . C ∈ M ∧ k ⊆ C
proof −
obtain T where simplicial complex T

and diaT :
∧
K . K ∈ T =⇒ diameter K < e

and
⋃
T =

⋃
M

and inM:
∧
C . C ∈ M =⇒ ∃F . finite F ∧ F ⊆ T ∧ C =

⋃
F

and inT :
∧
K . K ∈ T =⇒ ∃C . C ∈ M ∧ K ⊆ C

by (blast intro: fine simplicial subdivision of cell complex [OF 〈e > 0 〉 〈finite
M〉 poly face])
let ?T = {K ∈ T . aff dim K = d}
show thesis
proof
show triangulation ?T
using 〈simplicial complex T 〉 by (auto simp: triangulation def simplicial complex def )
show diameter L < e if L ∈ {K ∈ T . aff dim K = d} for L
using that by (auto simp: diaT )

show aff dim L = d if L ∈ {K ∈ T . aff dim K = d} for L
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using that by auto
show ∃F . finite F ∧ F ⊆ {K ∈ T . aff dim K = d} ∧ C =

⋃
F if C ∈ M

for C
proof −
obtain F where finite F F ⊆ T C =

⋃
F

using inM [OF 〈C ∈ M〉] by auto
show ?thesis
proof (intro exI conjI )
show finite {K ∈ F . aff dim K = d}
by (simp add : 〈finite F 〉)

show {K ∈ F . aff dim K = d} ⊆ {K ∈ T . aff dim K = d}
using 〈F ⊆ T 〉 by blast

have d = aff dim C
by (simp add : aff that)

moreover have
∧
K . K ∈ F =⇒ closed K ∧ convex K

using 〈simplicial complex T 〉 〈F ⊆ T 〉

unfolding simplicial complex def by (metis subsetCE 〈F ⊆ T 〉 closed simplex
convex simplex )

moreover have convex (
⋃
F )

using 〈C =
⋃
F 〉 poly polytope imp convex that by blast

ultimately show C =
⋃
{K ∈ F . aff dim K = d}

by (simp add : convex Union fulldim cells 〈C =
⋃

F 〉 〈finite F 〉)
qed

qed
then show

⋃
{K ∈ T . aff dim K = d} =

⋃
M

by auto (meson inT subsetCE )
show ∃C . C ∈ M ∧ L ⊆ C
if L ∈ {K ∈ T . aff dim K = d} for L
using that by (auto simp: inT )

qed
qed

end

6.39 Arcwise-Connected Sets

theory Arcwise Connected
imports Path Connected Ordered Euclidean Space HOL−Computational Algebra.Primes
begin

lemma path connected interval [simp]:
fixes a b:: ′a::ordered euclidean space
shows path connected {a..b}
using is interval cc is interval path connected by blast

lemma segment to closest point :
fixes S :: ′a :: euclidean space set
shows [[closed S ; S 6= {}]] =⇒ open segment a (closest point S a) ∩ S = {}
unfolding disjoint iff
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by (metis closest point le dist commute dist in open segment not le)

lemma segment to point exists:
fixes S :: ′a :: euclidean space set
assumes closed S S 6= {}
obtains b where b ∈ S open segment a b ∩ S = {}

by (metis assms segment to closest point closest point exists that)

6.39.1 The Brouwer reduction theorem

theorem Brouwer reduction theorem gen:
fixes S :: ′a::euclidean space set
assumes closed S ϕ S

and ϕ:
∧
F . [[

∧
n. closed(F n);

∧
n. ϕ(F n);

∧
n. F (Suc n) ⊆ F n]] =⇒

ϕ(
⋂
(range F ))

obtains T where T ⊆ S closed T ϕ T
∧
U . [[U ⊆ S ; closed U ; ϕ U ]] =⇒ ¬ (U

⊂ T )
proof −
obtain B :: nat ⇒ ′a set
where inj B

∧
n. open(B n) and open cov :

∧
S . open S =⇒ ∃K . S =

⋃
(B ‘

K )
by (metis Setcompr eq image that univ second countable sequence)

define A where A ≡ rec nat S (λn a. if ∃U . U ⊆ a ∧ closed U ∧ ϕ U ∧ U ∩
(B n) = {}

then SOME U . U ⊆ a ∧ closed U ∧ ϕ U ∧ U ∩
(B n) = {}

else a)
have [simp]: A 0 = S
by (simp add : A def )

have ASuc: A(Suc n) = (if ∃U . U ⊆ A n ∧ closed U ∧ ϕ U ∧ U ∩ (B n) =
{}

then SOME U . U ⊆ A n ∧ closed U ∧ ϕ U ∧ U ∩ (B n) = {}
else A n) for n

by (auto simp: A def )
have sub:

∧
n. A(Suc n) ⊆ A n

by (auto simp: ASuc dest !: someI ex )
have subS : A n ⊆ S for n
by (induction n) (use sub in auto)

have clo: closed (A n) ∧ ϕ (A n) for n
by (induction n) (auto simp: assms ASuc dest !: someI ex )

show ?thesis
proof
show

⋂
(range A) ⊆ S

using 〈
∧
n. A n ⊆ S 〉 by blast

show closed (
⋂
(A ‘ UNIV ))

using clo by blast
show ϕ (

⋂
(A ‘ UNIV ))

by (simp add : clo ϕ sub)
show ¬ U ⊂

⋂
(A ‘ UNIV ) if U ⊆ S closed U ϕ U for U
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proof −
have ∃ y . x /∈ A y if x /∈ U and Usub: U ⊆ (

⋂
x . A x ) for x

proof −
obtain e where e > 0 and e: ball x e ⊆ −U
using 〈closed U 〉 〈x /∈ U 〉 openE [of −U ] by blast

moreover obtain K where K : ball x e =
⋃
(B ‘ K )

using open cov [of ball x e] by auto
ultimately have

⋃
(B ‘ K ) ⊆ −U

by blast
have K 6= {}
using 〈0 < e〉 〈ball x e =

⋃
(B ‘ K )〉 by auto

then obtain n where n ∈ K x ∈ B n
by (metis K UN E 〈0 < e〉 centre in ball)

then have U ∩ B n = {}
using K e by auto

show ?thesis
proof (cases ∃U⊆A n. closed U ∧ ϕ U ∧ U ∩ B n = {})
case True
then show ?thesis
apply (rule tac x=Suc n in exI )
apply (simp add : ASuc)
apply (erule someI2 ex )
using 〈x ∈ B n〉 by blast

next
case False
then show ?thesis

by (meson Inf lower Usub 〈U ∩ B n = {}〉 〈ϕ U 〉 〈closed U 〉 range eqI
subset trans)

qed
qed
with that show ?thesis
by (meson Inter iff psubsetE rangeI subsetI )

qed
qed

qed

corollary Brouwer reduction theorem:
fixes S :: ′a::euclidean space set
assumes compact S ϕ S S 6= {}

and ϕ:
∧
F . [[

∧
n. compact(F n);

∧
n. F n 6= {};

∧
n. ϕ(F n);

∧
n. F (Suc n)

⊆ F n]] =⇒ ϕ(
⋂
(range F ))

obtains T where T ⊆ S compact T T 6= {} ϕ T∧
U . [[U ⊆ S ; closed U ; U 6= {}; ϕ U ]] =⇒ ¬ (U ⊂ T )

proof (rule Brouwer reduction theorem gen [of S λT . T 6= {} ∧ T ⊆ S ∧ ϕ T ])
fix F
assume cloF :

∧
n. closed (F n)

and F :
∧
n. F n 6= {} ∧ F n ⊆ S ∧ ϕ (F n) and Fsub:

∧
n. F (Suc n) ⊆ F n

show
⋂
(F ‘ UNIV ) 6= {} ∧

⋂
(F ‘ UNIV ) ⊆ S ∧ ϕ (

⋂
(F ‘ UNIV ))

proof (intro conjI )
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show
⋂

(F ‘ UNIV ) 6= {}
by (metis F Fsub 〈compact S 〉 cloF closed Int compact compact nest inf .orderE

lift Suc antimono le)
show

⋂
(F ‘ UNIV ) ⊆ S

using F by blast
show ϕ (

⋂
(F ‘ UNIV ))

by (metis F Fsub ϕ 〈compact S 〉 cloF closed Int compact inf .orderE )
qed

next
show S 6= {} ∧ S ⊆ S ∧ ϕ S
by (simp add : assms)

qed (meson assms compact imp closed seq compact closed subset seq compact eq compact)+

6.39.2 Arcwise Connections

6.39.3 Density of points with dyadic rational coordinates

proposition closure dyadic rationals:
closure (

⋃
k .

⋃
f ∈ Basis → ZZ.

{
∑

i :: ′a :: euclidean space ∈ Basis. (f i / 2ˆk) ∗R i }) = UNIV
proof −
have x ∈ closure (

⋃
k .

⋃
f ∈ Basis → ZZ. {

∑
i ∈ Basis. (f i / 2ˆk) ∗R i}) for

x :: ′a
proof (clarsimp simp: closure approachable)
fix e::real
assume e > 0
then obtain k where k : (1/2 )ˆk < e/DIM ( ′a)
by (meson DIM positive divide less eq 1 pos of nat 0 less iff one less numeral iff

real arch pow inv semiring norm(76 ) zero less divide iff zero less numeral)
have dist (

∑
i∈Basis. (real of int b2ˆk∗(x · i)c / 2ˆk) ∗R i) x =

dist (
∑

i∈Basis. (real of int b2ˆk∗(x · i)c / 2ˆk) ∗R i) (
∑

i∈Basis. (x ·
i) ∗R i)

by (simp add : euclidean representation)
also have ... = norm ((

∑
i∈Basis. (real of int b2ˆk∗(x · i)c / 2ˆk) ∗R i − (x

· i) ∗R i))
by (simp add : dist norm sum subtractf )

also have ... ≤ DIM ( ′a)∗((1/2 )ˆk)
proof (rule sum norm bound , simp add : algebra simps)
fix i :: ′a
assume i ∈ Basis
then have norm ((real of int bx · i∗2ˆkc / 2ˆk) ∗R i − (x · i) ∗R i) =

|real of int bx · i∗2ˆkc / 2ˆk − x · i |
by (simp add : scaleR left diff distrib [symmetric])

also have ... ≤ (1/2 ) ˆ k
by (simp add : divide simps) linarith

finally show norm ((real of int bx · i∗2ˆkc / 2ˆk) ∗R i − (x · i) ∗R i) ≤
(1/2 ) ˆ k .

qed
also have ... < DIM ( ′a)∗(e/DIM ( ′a))
using DIM positive k linordered comm semiring strict class.comm mult strict left mono
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of nat 0 less iff by blast
also have ... = e
by simp

finally have dist (
∑

i∈Basis. (b2ˆk∗(x · i)c / 2ˆk) ∗R i) x < e .
with Ints of int
show ∃ k . ∃ f ∈ Basis → ZZ. dist (

∑
b∈Basis. (f b / 2ˆk) ∗R b) x < e

by fastforce
qed
then show ?thesis by auto

qed

corollary closure rational coordinates:
closure (

⋃
f ∈ Basis → Q . {

∑
i :: ′a :: euclidean space ∈ Basis. f i ∗R i })

= UNIV
proof −
have ∗: (

⋃
k .

⋃
f ∈ Basis → ZZ. {

∑
i :: ′a ∈ Basis. (f i / 2ˆk) ∗R i })

⊆ (
⋃
f ∈ Basis → Q . {

∑
i ∈ Basis. f i ∗R i })

proof clarsimp
fix k and f :: ′a ⇒ real
assume f : f ∈ Basis → ZZ
show ∃ x ∈ Basis → Q . (

∑
i ∈ Basis. (f i / 2ˆk) ∗R i) = (

∑
i ∈ Basis. x i

∗R i)
apply (rule tac x=λi . f i / 2ˆk in bexI )
using Ints subset Rats f by auto

qed
show ?thesis
using closure dyadic rationals closure mono [OF ∗] by blast

qed

lemma closure dyadic rationals in convex set :
[[convex S ; interior S 6= {}]]

=⇒ closure(S ∩
(
⋃
k .

⋃
f ∈ Basis → ZZ.

{
∑

i :: ′a :: euclidean space ∈ Basis. (f i / 2ˆk) ∗R i })) =
closure S

by (simp add : closure dyadic rationals closure convex Int superset)

lemma closure rationals in convex set :
[[convex S ; interior S 6= {}]]
=⇒ closure(S ∩ (

⋃
f ∈ Basis → Q . {

∑
i :: ′a :: euclidean space ∈ Basis. f i

∗R i })) =
closure S

by (simp add : closure rational coordinates closure convex Int superset)

Every path between distinct points contains an arc, and hence path con-
nection is equivalent to arcwise connection for distinct points. The proof is
based on Whyburn’s ”Topological Analysis”.

lemma closure dyadic rationals in convex set pos 1 :
fixes S :: real set
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assumes convex S and intnz : interior S 6= {} and pos:
∧
x . x ∈ S =⇒ 0 ≤ x

shows closure(S ∩ (
⋃

k m. {of nat m / 2ˆk})) = closure S
proof −
have ∃m. f 1/2ˆk = real m / 2ˆk if (f 1 ) / 2ˆk ∈ S f 1 ∈ ZZ for k and f ::

real ⇒ real
using that by (force simp: Ints def zero le divide iff power le zero eq dest : pos

zero le imp eq int)
then have S ∩ (

⋃
k m. {real m / 2ˆk}) = S ∩

(
⋃
k .

⋃
f ∈Basis → ZZ. {

∑
i∈Basis. (f i / 2ˆk) ∗R i})

by force
then show ?thesis
using closure dyadic rationals in convex set [OF 〈convex S 〉 intnz ] by simp

qed

definition dyadics :: ′a::field char 0 set where dyadics ≡
⋃
k m. {of nat m /

2ˆk}

lemma real in dyadics [simp]: real m ∈ dyadics
by (simp add : dyadics def ) (metis divide numeral 1 numeral One power 0 )

lemma nat neq 4k1 : of nat m 6= (4 ∗ of nat k + 1 ) / (2 ∗ 2ˆn :: ′a::field char 0 )
proof
assume of nat m = (4 ∗ of nat k + 1 ) / (2 ∗ 2ˆn :: ′a)
then have of nat (m ∗ (2 ∗ 2ˆn)) = (of nat (Suc (4 ∗ k)) :: ′a)
by (simp add : field split simps)

then have m ∗ (2 ∗ 2ˆn) = Suc (4 ∗ k)
using of nat eq iff by blast

then have odd (m ∗ (2 ∗ 2ˆn))
by simp

then show False
by simp

qed

lemma nat neq 4k3 : of nat m 6= (4 ∗ of nat k + 3 ) / (2 ∗ 2ˆn :: ′a::field char 0 )
proof
assume of nat m = (4 ∗ of nat k + 3 ) / (2 ∗ 2ˆn :: ′a)
then have of nat (m ∗ (2 ∗ 2ˆn)) = (of nat (4 ∗ k + 3 ) :: ′a)
by (simp add : field split simps)

then have m ∗ (2 ∗ 2ˆn) = (4 ∗ k) + 3
using of nat eq iff by blast

then have odd (m ∗ (2 ∗ 2ˆn))
by simp

then show False
by simp

qed

lemma iff 4k :
assumes r = real k odd k
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shows (4 ∗ real m + r) / (2 ∗ 2ˆn) = (4 ∗ real m ′ + r) / (2 ∗ 2 ˆ n ′) ←→
m=m ′ ∧ n=n ′

proof −
{ assume (4 ∗ real m + r) / (2 ∗ 2ˆn) = (4 ∗ real m ′ + r) / (2 ∗ 2 ˆ n ′)
then have real ((4 ∗ m + k) ∗ (2 ∗ 2 ˆ n ′)) = real ((4 ∗ m ′ + k) ∗ (2 ∗ 2ˆn))
using assms by (auto simp: field simps)

then have (4 ∗ m + k) ∗ (2 ∗ 2 ˆ n ′) = (4 ∗ m ′ + k) ∗ (2 ∗ 2ˆn)
using of nat eq iff by blast

then have (4 ∗ m + k) ∗ (2 ˆ n ′) = (4 ∗ m ′ + k) ∗ (2ˆn)
by linarith

then obtain 4∗m + k = 4∗m ′ + k n=n ′

using prime power cancel2 [OF two is prime nat ] assms
by (metis even mult iff even numeral odd add)

then have m=m ′ n=n ′

by auto
}
then show ?thesis by blast

qed

lemma neq 4k1 k43 : (4 ∗ real m + 1 ) / (2 ∗ 2ˆn) 6= (4 ∗ real m ′ + 3 ) / (2 ∗ 2
ˆ n ′)
proof
assume (4 ∗ real m + 1 ) / (2 ∗ 2ˆn) = (4 ∗ real m ′ + 3 ) / (2 ∗ 2 ˆ n ′)
then have real (Suc (4 ∗ m) ∗ (2 ∗ 2 ˆ n ′)) = real ((4 ∗ m ′ + 3 ) ∗ (2 ∗ 2ˆn))
by (auto simp: field simps)

then have Suc (4 ∗ m) ∗ (2 ∗ 2 ˆ n ′) = (4 ∗ m ′ + 3 ) ∗ (2 ∗ 2ˆn)
using of nat eq iff by blast

then have Suc (4 ∗ m) ∗ (2 ˆ n ′) = (4 ∗ m ′ + 3 ) ∗ (2ˆn)
by linarith

then have Suc (4 ∗ m) = (4 ∗ m ′ + 3 )
by (rule prime power cancel2 [OF two is prime nat ]) auto

then have 1 + 2 ∗ m ′ = 2 ∗ m
using 〈Suc (4 ∗ m) = 4 ∗ m ′ + 3 〉 by linarith

then show False
using even Suc by presburger

qed

lemma dyadic 413 cases:
obtains (of nat m:: ′a::field char 0 ) / 2ˆk ∈ Nats
| m ′ k ′ where k ′ < k (of nat m:: ′a) / 2ˆk = of nat (4∗m ′ + 1 ) / 2ˆSuc k ′

| m ′ k ′ where k ′ < k (of nat m:: ′a) / 2ˆk = of nat (4∗m ′ + 3 ) / 2ˆSuc k ′

proof (cases m>0 )
case False
then have m=0 by simp
with that show ?thesis by auto

next
case True
obtain k ′ m ′ where m ′: odd m ′ and k ′: m = m ′ ∗ 2ˆk ′

using prime power canonical [OF two is prime nat True] by blast
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then obtain q r where q : m ′ = 4∗q + r and r : r < 4
by (metis not add less2 split div zero neq numeral)

show ?thesis
proof (cases k ≤ k ′)
case True
have (of nat m:: ′a) / 2ˆk = of nat m ′ ∗ (2 ˆ k ′ / 2ˆk)
using k ′ by (simp add : field simps)

also have ... = (of nat m ′:: ′a) ∗ 2 ˆ (k ′−k)
using k ′ True by (simp add : power diff )

also have ... ∈ IN
by (metis Nats mult of nat in Nats of nat numeral of nat power)

finally show ?thesis by (auto simp: that)
next
case False
then obtain kd where kd : Suc kd = k − k ′

using Suc diff Suc not less by blast
have (of nat m:: ′a) / 2ˆk = of nat m ′ ∗ (2 ˆ k ′ / 2ˆk)
using k ′ by (simp add : field simps)

also have ... = (of nat m ′:: ′a) / 2 ˆ (k−k ′)
using k ′ False by (simp add : power diff )

also have ... = ((of nat r + 4 ∗ of nat q):: ′a) / 2 ˆ (k−k ′)
using q by force

finally have meq : (of nat m:: ′a) / 2ˆk = (of nat r + 4 ∗ of nat q) / 2 ˆ (k
− k ′) .

have r 6= 0 r 6= 2
using q m ′ by presburger+

with r consider r = 1 | r = 3
by linarith

then show ?thesis
proof cases
assume r = 1
with meq kd that(2 ) [of kd q ] show ?thesis
by simp

next
assume r = 3
with meq kd that(3 ) [of kd q ] show ?thesis
by simp

qed
qed

qed

lemma dyadics iff :
(dyadics :: ′a::field char 0 set) =
Nats ∪ (

⋃
k m. {of nat (4∗m + 1 ) / 2ˆSuc k}) ∪ (

⋃
k m. {of nat (4∗m + 3 )

/ 2ˆSuc k})
(is = ?rhs)

proof
show dyadics ⊆ ?rhs
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unfolding dyadics def
apply clarify
apply (rule dyadic 413 cases, force+)
done

next
have range of nat ⊆ (

⋃
k m. {(of nat m:: ′a) / 2 ˆ k})

by clarsimp (metis divide numeral 1 numeral One power 0 )
moreover have

∧
k m. ∃ k ′ m ′. ((1 :: ′a) + 4 ∗ of nat m) / 2 ˆ Suc k = of nat

m ′ / 2 ˆ k ′

by (metis (no types) of nat Suc of nat mult of nat numeral)
moreover have

∧
k m. ∃ k ′ m ′. (4 ∗ of nat m + (3 :: ′a)) / 2 ˆ Suc k = of nat

m ′ / 2 ˆ k ′

by (metis of nat add of nat mult of nat numeral)
ultimately show ?rhs ⊆ dyadics
by (auto simp: dyadics def Nats def )

qed

function (domintros) dyad rec :: [nat ⇒ ′a, ′a⇒ ′a, ′a⇒ ′a, real ] ⇒ ′a where
dyad rec b l r (real m) = b m
| dyad rec b l r ((4 ∗ real m + 1 ) / 2 ˆ (Suc n)) = l (dyad rec b l r ((2∗m + 1 )

/ 2ˆn))
| dyad rec b l r ((4 ∗ real m + 3 ) / 2 ˆ (Suc n)) = r (dyad rec b l r ((2∗m +

1 ) / 2ˆn))
| x /∈ dyadics =⇒ dyad rec b l r x = undefined
using iff 4k [of 1 ] iff 4k [of 3 ]

apply (simp all add : nat neq 4k1 nat neq 4k3 neq 4k1 k43 dyadics iff
Nats def )
by (fastforce simp: field simps)+

lemma dyadics levels: dyadics = (
⋃
K .

⋃
k<K .

⋃
m. {of nat m / 2ˆk})

unfolding dyadics def by auto

lemma dyad rec level termination:
assumes k < K
shows dyad rec dom(b, l , r , real m / 2ˆk)
using assms

proof (induction K arbitrary : k m)
case 0
then show ?case by auto

next
case (Suc K )
then consider k = K | k < K
using less antisym by blast

then show ?case
proof cases
assume k = K
show ?case
proof (rule dyadic 413 cases [of m k , where ′a=real ])
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show real m / 2ˆk ∈ IN =⇒ dyad rec dom (b, l , r , real m / 2ˆk)
by (force simp: Nats def nat neq 4k1 nat neq 4k3 intro: dyad rec.domintros)
show ?case if k ′ < k and eq : real m / 2ˆk = real (4 ∗ m ′ + 1 ) / 2ˆSuc k ′

for m ′ k ′

proof −
have dyad rec dom (b, l , r , (4 ∗ real m ′ + 1 ) / 2ˆSuc k ′)
proof (rule dyad rec.domintros)
fix m n
assume (4 ∗ real m ′ + 1 ) / (2 ∗ 2 ˆ k ′) = (4 ∗ real m + 1 ) / (2 ∗ 2ˆn)
then have m ′ = m k ′ = n using iff 4k [of 1 ]
by auto

have dyad rec dom (b, l , r , real (2 ∗ m + 1 ) / 2 ˆ k ′)
using Suc.IH 〈k = K 〉 〈k ′ < k 〉 by blast

then show dyad rec dom (b, l , r , (2 ∗ real m + 1 ) / 2ˆn)
using 〈k ′ = n〉 by (auto simp: algebra simps)

next
fix m n
assume (4 ∗ real m ′ + 1 ) / (2 ∗ 2 ˆ k ′) = (4 ∗ real m + 3 ) / (2 ∗ 2ˆn)
then have False
by (metis neq 4k1 k43 )

then show dyad rec dom (b, l , r , (2 ∗ real m + 1 ) / 2ˆn) ..
qed
then show ?case by (simp add : eq add ac)

qed
show ?case if k ′ < k and eq : real m / 2ˆk = real (4 ∗ m ′ + 3 ) / 2ˆSuc k ′

for m ′ k ′

proof −
have dyad rec dom (b, l , r , (4 ∗ real m ′ + 3 ) / 2ˆSuc k ′)
proof (rule dyad rec.domintros)
fix m n
assume (4 ∗ real m ′ + 3 ) / (2 ∗ 2 ˆ k ′) = (4 ∗ real m + 1 ) / (2 ∗ 2ˆn)
then have False
by (metis neq 4k1 k43 )

then show dyad rec dom (b, l , r , (2 ∗ real m + 1 ) / 2ˆn) ..
next
fix m n
assume (4 ∗ real m ′ + 3 ) / (2 ∗ 2 ˆ k ′) = (4 ∗ real m + 3 ) / (2 ∗ 2ˆn)
then have m ′ = m k ′ = n using iff 4k [of 3 ]
by auto

have dyad rec dom (b, l , r , real (2 ∗ m + 1 ) / 2 ˆ k ′)
using Suc.IH 〈k = K 〉 〈k ′ < k 〉 by blast

then show dyad rec dom (b, l , r , (2 ∗ real m + 1 ) / 2ˆn)
using 〈k ′ = n〉 by (auto simp: algebra simps)

qed
then show ?case by (simp add : eq add ac)

qed
qed

next
assume k < K
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then show ?case
using Suc.IH by blast

qed
qed

lemma dyad rec termination: x ∈ dyadics =⇒ dyad rec dom(b,l ,r ,x )
by (auto simp: dyadics levels intro: dyad rec level termination)

lemma dyad rec of nat [simp]: dyad rec b l r (real m) = b m
by (simp add : dyad rec.psimps dyad rec termination)

lemma dyad rec 41 [simp]: dyad rec b l r ((4 ∗ real m + 1 ) / 2 ˆ (Suc n)) = l
(dyad rec b l r ((2∗m + 1 ) / 2ˆn))
proof (rule dyad rec.psimps)
show dyad rec dom (b, l , r , (4 ∗ real m + 1 ) / 2 ˆ Suc n)
by (metis add .commute dyad rec level termination lessI of nat Suc of nat mult

of nat numeral)
qed

lemma dyad rec 43 [simp]: dyad rec b l r ((4 ∗ real m + 3 ) / 2 ˆ (Suc n)) = r
(dyad rec b l r ((2∗m + 1 ) / 2ˆn))
proof (rule dyad rec.psimps)
show dyad rec dom (b, l , r , (4 ∗ real m + 3 ) / 2 ˆ Suc n)
by (metis dyad rec level termination lessI of nat add of nat mult of nat numeral)

qed

lemma dyad rec 41 times2 :
assumes n > 0
shows dyad rec b l r (2 ∗ ((4 ∗ real m + 1 ) / 2ˆSuc n)) = l (dyad rec b l r (2

∗ (2 ∗ real m + 1 ) / 2ˆn))
proof −
obtain n ′ where n ′: n = Suc n ′

using assms not0 implies Suc by blast
have dyad rec b l r (2 ∗ ((4 ∗ real m + 1 ) / 2ˆSuc n)) = dyad rec b l r ((2 ∗

(4 ∗ real m + 1 )) / (2 ∗ 2ˆn))
by auto

also have ... = dyad rec b l r ((4 ∗ real m + 1 ) / 2ˆn)
by (subst mult divide mult cancel left) auto

also have ... = l (dyad rec b l r ((2 ∗ real m + 1 ) / 2 ˆ n ′))
by (simp add : add .commute [of 1 ] n ′ del : power Suc)

also have ... = l (dyad rec b l r ((2 ∗ (2 ∗ real m + 1 )) / (2 ∗ 2 ˆ n ′)))
by (subst mult divide mult cancel left) auto

also have ... = l (dyad rec b l r (2 ∗ (2 ∗ real m + 1 ) / 2ˆn))
by (simp add : add .commute n ′)

finally show ?thesis .
qed

lemma dyad rec 43 times2 :
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assumes n > 0
shows dyad rec b l r (2 ∗ ((4 ∗ real m + 3 ) / 2ˆSuc n)) = r (dyad rec b l r

(2 ∗ (2 ∗ real m + 1 ) / 2ˆn))
proof −
obtain n ′ where n ′: n = Suc n ′

using assms not0 implies Suc by blast
have dyad rec b l r (2 ∗ ((4 ∗ real m + 3 ) / 2ˆSuc n)) = dyad rec b l r ((2 ∗

(4 ∗ real m + 3 )) / (2 ∗ 2ˆn))
by auto

also have ... = dyad rec b l r ((4 ∗ real m + 3 ) / 2ˆn)
by (subst mult divide mult cancel left) auto

also have ... = r (dyad rec b l r ((2 ∗ real m + 1 ) / 2 ˆ n ′))
by (simp add : n ′ del : power Suc)

also have ... = r (dyad rec b l r ((2 ∗ (2 ∗ real m + 1 )) / (2 ∗ 2 ˆ n ′)))
by (subst mult divide mult cancel left) auto

also have ... = r (dyad rec b l r (2 ∗ (2 ∗ real m + 1 ) / 2ˆn))
by (simp add : n ′)

finally show ?thesis .
qed

definition dyad rec2
where dyad rec2 u v lc rc x =

dyad rec (λz . (u,v)) (λ(a,b). (a, lc a b (midpoint a b))) (λ(a,b). (rc a b
(midpoint a b), b)) (2∗x )

abbreviation leftrec where leftrec u v lc rc x ≡ fst (dyad rec2 u v lc rc x )
abbreviation rightrec where rightrec u v lc rc x ≡ snd (dyad rec2 u v lc rc x )

lemma leftrec base: leftrec u v lc rc (real m / 2 ) = u
by (simp add : dyad rec2 def )

lemma leftrec 41 : n > 0 =⇒ leftrec u v lc rc ((4 ∗ real m + 1 ) / 2 ˆ (Suc n)) =
leftrec u v lc rc ((2 ∗ real m + 1 ) / 2ˆn)
unfolding dyad rec2 def dyad rec 41 times2
by (simp add : case prod beta)

lemma leftrec 43 : n > 0 =⇒
leftrec u v lc rc ((4 ∗ real m + 3 ) / 2 ˆ (Suc n)) =

rc (leftrec u v lc rc ((2 ∗ real m + 1 ) / 2ˆn)) (rightrec u v lc rc ((2
∗ real m + 1 ) / 2ˆn))

(midpoint (leftrec u v lc rc ((2 ∗ real m + 1 ) / 2ˆn)) (rightrec u v lc
rc ((2 ∗ real m + 1 ) / 2ˆn)))
unfolding dyad rec2 def dyad rec 43 times2
by (simp add : case prod beta)

lemma rightrec base: rightrec u v lc rc (real m / 2 ) = v
by (simp add : dyad rec2 def )

lemma rightrec 41 : n > 0 =⇒
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rightrec u v lc rc ((4 ∗ real m + 1 ) / 2 ˆ (Suc n)) =
lc (leftrec u v lc rc ((2 ∗ real m + 1 ) / 2ˆn)) (rightrec u v lc rc ((2

∗ real m + 1 ) / 2ˆn))
(midpoint (leftrec u v lc rc ((2 ∗ real m + 1 ) / 2ˆn)) (rightrec u v lc

rc ((2 ∗ real m + 1 ) / 2ˆn)))
unfolding dyad rec2 def dyad rec 41 times2
by (simp add : case prod beta)

lemma rightrec 43 : n > 0 =⇒ rightrec u v lc rc ((4 ∗ real m + 3 ) / 2 ˆ (Suc n))
= rightrec u v lc rc ((2 ∗ real m + 1 ) / 2ˆn)
unfolding dyad rec2 def dyad rec 43 times2
by (simp add : case prod beta)

lemma dyadics in open unit interval :
{0<..<1} ∩ (

⋃
k m. {real m / 2ˆk}) = (

⋃
k .

⋃
m ∈ {0<..<2ˆk}. {real m /

2ˆk})
by (auto simp: field split simps)

theorem homeomorphic monotone image interval :
fixes f :: real ⇒ ′a::{real normed vector ,complete space}
assumes cont f : continuous on {0 ..1} f

and conn:
∧
y . connected ({0 ..1} ∩ f −‘ {y})

and f 1not0 : f 1 6= f 0
shows (f ‘ {0 ..1}) homeomorphic {0 ..1 ::real}

proof −
have ∃ c d . a ≤ c ∧ c ≤ m ∧ m ≤ d ∧ d ≤ b ∧

(∀ x ∈ {c..d}. f x = f m) ∧
(∀ x ∈ {a..<c}. (f x 6= f m)) ∧
(∀ x ∈ {d<..b}. (f x 6= f m)) ∧
(∀ x ∈ {a..<c}. ∀ y ∈ {d<..b}. f x 6= f y)

if m: m ∈ {a..b} and ab01 : {a..b} ⊆ {0 ..1} for a b m
proof −
have comp: compact (f −‘ {f m} ∩ {0 ..1})
by (simp add : compact eq bounded closed bounded Int closed vimage Int cont f )
obtain c0 d0 where cd0 : {0 ..1} ∩ f −‘ {f m} = {c0 ..d0}
using connected compact interval 1 [of {0 ..1} ∩ f −‘ {f m}] conn comp
by (metis Int commute)

with that have m ∈ cbox c0 d0
by auto

obtain c d where cd : {a..b} ∩ f −‘ {f m} = {c..d}
using ab01 cd0
by (rule tac c=max a c0 and d=min b d0 in that) auto

then have cdab: {c..d} ⊆ {a..b}
by blast

show ?thesis
proof (intro exI conjI ballI )
show a ≤ c d ≤ b
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using cdab cd m by auto
show c ≤ m m ≤ d
using cd m by auto

show
∧
x . x ∈ {c..d} =⇒ f x = f m

using cd by blast
show f x 6= f m if x ∈ {a..<c} for x
using that m cd [THEN equalityD1 , THEN subsetD ] 〈c ≤ m〉 by force

show f x 6= f m if x ∈ {d<..b} for x
using that m cd [THEN equalityD1 , THEN subsetD , of x ] 〈m ≤ d 〉 by force
show f x 6= f y if x ∈ {a..<c} y ∈ {d<..b} for x y
proof (cases f x = f m ∨ f y = f m)
case True
then show ?thesis
using 〈

∧
x . x ∈ {a..<c} =⇒ f x 6= f m〉 that by auto

next
case False
have False if f x = f y
proof −
have x ≤ m m ≤ y
using 〈c ≤ m〉 〈x ∈ {a..<c}〉 〈m ≤ d 〉 〈y ∈ {d<..b}〉 by auto

then have x ∈ ({0 ..1} ∩ f −‘ {f y}) y ∈ ({0 ..1} ∩ f −‘ {f y})
using 〈x ∈ {a..<c}〉 〈y ∈ {d<..b}〉 ab01 by (auto simp: that)

then have m ∈ ({0 ..1} ∩ f −‘ {f y})
by (meson 〈m ≤ y〉 〈x ≤ m〉 is interval connected 1 conn [of f y ]

is interval 1 )
with False show False by auto

qed
then show ?thesis by auto

qed
qed

qed
then obtain leftcut rightcut where LR:∧

a b m. [[m ∈ {a..b}; {a..b} ⊆ {0 ..1}]] =⇒
(a ≤ leftcut a b m ∧ leftcut a b m ≤ m ∧ m ≤ rightcut a b m ∧ rightcut

a b m ≤ b ∧
(∀ x ∈ {leftcut a b m..rightcut a b m}. f x = f m) ∧
(∀ x ∈ {a..<leftcut a b m}. f x 6= f m) ∧
(∀ x ∈ {rightcut a b m<..b}. f x 6= f m) ∧
(∀ x ∈ {a..<leftcut a b m}. ∀ y ∈ {rightcut a b m<..b}. f x 6= f y))

apply atomize
apply (clarsimp simp only : imp conjL [symmetric] choice iff choice iff ′)
apply (rule that , blast)
done

then have left right :
∧
a b m. [[m ∈ {a..b}; {a..b} ⊆ {0 ..1}]] =⇒ a ≤ leftcut a

b m ∧ rightcut a b m ≤ b
and left right m:

∧
a b m. [[m ∈ {a..b}; {a..b} ⊆ {0 ..1}]] =⇒ leftcut a b m

≤ m ∧ m ≤ rightcut a b m
by auto

have left neq : [[a ≤ x ; x < leftcut a b m; a ≤ m; m ≤ b; {a..b} ⊆ {0 ..1}]] =⇒
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f x 6= f m
and right neq : [[rightcut a b m < x ; x ≤ b; a ≤ m; m ≤ b; {a..b} ⊆ {0 ..1}]]

=⇒ f x 6= f m
and left right neq : [[a ≤ x ; x < leftcut a b m; rightcut a b m < y ; y ≤ b; a ≤

m; m ≤ b; {a..b} ⊆ {0 ..1}]] =⇒ f x 6= f m
and feqm: [[leftcut a b m ≤ x ; x ≤ rightcut a b m; a ≤ m; m ≤ b; {a..b} ⊆

{0 ..1}]]
=⇒ f x = f m for a b m x y

by (meson atLeastAtMost iff greaterThanAtMost iff atLeastLessThan iff LR)+
have f eqI :

∧
a b m x y . [[leftcut a b m ≤ x ; x ≤ rightcut a b m; leftcut a b m ≤

y ; y ≤ rightcut a b m;
a ≤ m; m ≤ b; {a..b} ⊆ {0 ..1}]] =⇒ f x = f y

by (metis feqm)
define u where u ≡ rightcut 0 1 0
have lc[simp]: leftcut 0 1 0 = 0 and u01 : 0 ≤ u u ≤ 1
using LR [of 0 0 1 ] by (auto simp: u def )

have f0u:
∧
x . x ∈ {0 ..u} =⇒ f x = f 0

using LR [of 0 0 1 ] unfolding u def [symmetric]
by (metis 〈leftcut 0 1 0 = 0 〉 atLeastAtMost iff order refl zero le one)

have fu1 :
∧
x . x ∈ {u<..1} =⇒ f x 6= f 0

using LR [of 0 0 1 ] unfolding u def [symmetric] by fastforce
define v where v ≡ leftcut u 1 1
have rc[simp]: rightcut u 1 1 = 1 and v01 : u ≤ v v ≤ 1
using LR [of 1 u 1 ] u01 by (auto simp: v def )

have fuv :
∧
x . x ∈ {u..<v} =⇒ f x 6= f 1

using LR [of 1 u 1 ] u01 v def by fastforce
have f0v :

∧
x . x ∈ {0 ..<v} =⇒ f x 6= f 1

by (metis f 1not0 atLeastAtMost iff atLeastLessThan iff f0u fuv linear)
have fv1 :

∧
x . x ∈ {v ..1} =⇒ f x = f 1

using LR [of 1 u 1 ] u01 v def by (metis atLeastAtMost iff atLeastatMost subset iff
order refl rc)
define a where a ≡ leftrec u v leftcut rightcut
define b where b ≡ rightrec u v leftcut rightcut
define c where c ≡ λx . midpoint (a x ) (b x )
have a real [simp]: a (real j ) = u for j
using a def leftrec base
by (metis nonzero mult div cancel right of nat mult of nat numeral zero neq numeral)
have b real [simp]: b (real j ) = v for j
using b def rightrec base
by (metis nonzero mult div cancel right of nat mult of nat numeral zero neq numeral)
have a41 : a ((4 ∗ real m + 1 ) / 2ˆSuc n) = a ((2 ∗ real m + 1 ) / 2ˆn) if n

> 0 for m n
using that a def leftrec 41 by blast

have b41 : b ((4 ∗ real m + 1 ) / 2ˆSuc n) =
leftcut (a ((2 ∗ real m + 1 ) / 2ˆn))

(b ((2 ∗ real m + 1 ) / 2ˆn))
(c ((2 ∗ real m + 1 ) / 2ˆn)) if n > 0 for m n

using that a def b def c def rightrec 41 by blast
have a43 : a ((4 ∗ real m + 3 ) / 2ˆSuc n) =
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rightcut (a ((2 ∗ real m + 1 ) / 2ˆn))
(b ((2 ∗ real m + 1 ) / 2ˆn))
(c ((2 ∗ real m + 1 ) / 2ˆn)) if n > 0 for m n

using that a def b def c def leftrec 43 by blast
have b43 : b ((4 ∗ real m + 3 ) / 2ˆSuc n) = b ((2 ∗ real m + 1 ) / 2ˆn) if n >

0 for m n
using that b def rightrec 43 by blast

have uabv : u ≤ a (real m / 2 ˆ n) ∧ a (real m / 2 ˆ n) ≤ b (real m / 2 ˆ n) ∧
b (real m / 2 ˆ n) ≤ v for m n
proof (induction n arbitrary : m)
case 0
then show ?case by (simp add : v01 )

next
case (Suc n p)
show ?case
proof (cases even p)
case True
then obtain m where p = 2∗m by (metis evenE )
then show ?thesis
by (simp add : Suc.IH )

next
case False
then obtain m where m: p = 2∗m + 1 by (metis oddE )
show ?thesis
proof (cases n)
case 0
then show ?thesis
by (simp add : a def b def leftrec base rightrec base v01 )

next
case (Suc n ′)
then have n > 0 by simp
have a le c: a (real m / 2ˆn) ≤ c (real m / 2ˆn) for m
unfolding c def by (metis Suc.IH ge midpoint 1 )

have c le b: c (real m / 2ˆn) ≤ b (real m / 2ˆn) for m
unfolding c def by (metis Suc.IH le midpoint 1 )

have c ge u: c (real m / 2ˆn) ≥ u for m
using Suc.IH a le c order trans by blast

have c le v : c (real m / 2ˆn) ≤ v for m
using Suc.IH c le b order trans by blast

have a ge 0 : 0 ≤ a (real m / 2ˆn) for m
using Suc.IH order trans u01 (1 ) by blast

have b le 1 : b (real m / 2ˆn) ≤ 1 for m
using Suc.IH order trans v01 (2 ) by blast

have left le: leftcut (a ((real m) / 2ˆn)) (b ((real m) / 2ˆn)) (c ((real m) /
2ˆn)) ≤ c ((real m) / 2ˆn) for m

by (simp add : LR a ge 0 a le c b le 1 c le b)
have right ge: rightcut (a ((real m) / 2ˆn)) (b ((real m) / 2ˆn)) (c ((real

m) / 2ˆn)) ≥ c ((real m) / 2ˆn) for m
by (simp add : LR a ge 0 a le c b le 1 c le b)
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show ?thesis
proof (cases even m)
case True
then obtain r where r : m = 2∗r by (metis evenE )
show ?thesis
using order trans [OF left le c le v , of 1+2∗r ] Suc.IH [of m+1 ]
using a le c [of m+1 ] c le b [of m+1 ] a ge 0 [of m+1 ] b le 1 [of m+1 ]

left right 〈n > 0 〉

by (simp all add : r m add .commute [of 1 ] a41 b41 del : power Suc)
next
case False
then obtain r where r : m = 2∗r + 1 by (metis oddE )
show ?thesis
using order trans [OF c ge u right ge, of 1+2∗r ] Suc.IH [of m]
using a le c [of m] c le b [of m] a ge 0 [of m] b le 1 [of m] left right 〈n

> 0 〉

apply (simp all add : r m add .commute [of 3 ] a43 b43 del : power Suc)
by (simp add : add .commute)

qed
qed

qed
qed
have a ge 0 [simp]: 0 ≤ a(m / 2ˆn) and b le 1 [simp]: b(m / 2ˆn) ≤ 1 for

m::nat and n
using uabv order trans u01 v01 by blast+

then have b ge 0 [simp]: 0 ≤ b(m / 2ˆn) and a le 1 [simp]: a(m / 2ˆn) ≤ 1
for m::nat and n

using uabv order trans by blast+
have alec [simp]: a(m / 2ˆn) ≤ c(m / 2ˆn) and cleb [simp]: c(m / 2ˆn) ≤ b(m

/ 2ˆn) for m::nat and n
by (auto simp: c def ge midpoint 1 le midpoint 1 uabv)

have c ge 0 [simp]: 0 ≤ c(m / 2ˆn) and c le 1 [simp]: c(m / 2ˆn) ≤ 1 for
m::nat and n

using a ge 0 alec b le 1 cleb order trans by blast+
have [[d = m−n; odd j ; |real i / 2ˆm − real j / 2ˆn| < 1/2 ˆ n]]

=⇒ (a(j / 2ˆn)) ≤ (c(i / 2ˆm)) ∧ (c(i / 2ˆm)) ≤ (b(j / 2ˆn)) for d i j m
n
proof (induction d arbitrary : j n rule: less induct)
case (less d j n)
show ?case
proof (cases m ≤ n)
case True
have |2ˆn| ∗ |real i / 2ˆm − real j / 2ˆn| = 0
proof (rule Ints nonzero abs less1 )
have (real i ∗ 2ˆn − real j ∗ 2ˆm) / 2ˆm = (real i ∗ 2ˆn) / 2ˆm − (real j

∗ 2ˆm) / 2ˆm
using diff divide distrib by blast

also have ... = (real i ∗ 2 ˆ (n−m)) − (real j )
using True by (auto simp: power diff field simps)
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also have ... ∈ ZZ
by simp

finally have (real i ∗ 2ˆn − real j ∗ 2ˆm) / 2ˆm ∈ ZZ .
with True Ints abs show |2ˆn| ∗ |real i / 2ˆm − real j / 2ˆn| ∈ ZZ
by (fastforce simp: field split simps)

show ||2ˆn| ∗ |real i / 2ˆm − real j / 2ˆn|| < 1
using less.prems by (auto simp: field split simps)

qed
then have real i / 2ˆm = real j / 2ˆn
by auto

then show ?thesis
by auto

next
case False
then have n < m by auto
obtain k where k : j = Suc (2∗k)
using 〈odd j 〉 oddE by fastforce

show ?thesis
proof (cases n > 0 )
case False
then have a (real j / 2ˆn) = u
by simp

also have ... ≤ c (real i / 2ˆm)
using alec uabv by (blast intro: order trans)

finally have ac: a (real j / 2ˆn) ≤ c (real i / 2ˆm) .
have c (real i / 2ˆm) ≤ v
using cleb uabv by (blast intro: order trans)

also have ... = b (real j / 2ˆn)
using False by simp

finally show ?thesis
by (auto simp: ac)

next
case True show ?thesis
proof (cases i / 2ˆm j / 2ˆn rule: linorder cases)
case less
moreover have real (4 ∗ k + 1 ) / 2 ˆ Suc n + 1 / (2 ˆ Suc n) = real j

/ 2 ˆ n
using k by (force simp: field split simps)

moreover have |real i / 2 ˆ m − j / 2 ˆ n| < 2 / (2 ˆ Suc n)
using less.prems by simp

ultimately have closer : |real i / 2 ˆ m − real (4 ∗ k + 1 ) / 2 ˆ Suc n|
< 1 / (2 ˆ Suc n)

using less.prems by linarith
have a (real (4 ∗ k + 1 ) / 2 ˆ Suc n) ≤ c (i / 2 ˆ m) ∧

c (real i / 2 ˆ m) ≤ b (real (4 ∗ k + 1 ) / 2 ˆ Suc n)
proof (rule less.IH [OF refl ])
show m − Suc n < d
using 〈n < m〉 diff less mono2 less.prems(1 ) lessI by presburger

show |real i / 2 ˆ m − real (4 ∗ k + 1 ) / 2 ˆ Suc n| < 1 / 2 ˆ Suc n
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using closer 〈n < m〉 〈d = m − n〉 by (auto simp: field split simps 〈n
< m〉 diff less mono2 )

qed auto
then show ?thesis

using LR [of c((2∗k + 1 ) / 2ˆn) a((2∗k + 1 ) / 2ˆn) b((2∗k + 1 ) /
2ˆn)]

using alec [of 2∗k+1 ] cleb [of 2∗k+1 ] a ge 0 [of 2∗k+1 ] b le 1 [of
2∗k+1 ]

using k a41 b41 〈0 < n〉

by (simp add : add .commute)
next
case equal then show ?thesis by simp

next
case greater
moreover have real (4 ∗ k + 3 ) / 2 ˆ Suc n − 1 / (2 ˆ Suc n) = real j

/ 2 ˆ n
using k by (force simp: field split simps)

moreover have |real i / 2 ˆ m − real j / 2 ˆ n| < 2 ∗ 1 / (2 ˆ Suc n)
using less.prems by simp

ultimately have closer : |real i / 2 ˆ m − real (4 ∗ k + 3 ) / 2 ˆ Suc n|
< 1 / (2 ˆ Suc n)

using less.prems by linarith
have a (real (4 ∗ k + 3 ) / 2 ˆ Suc n) ≤ c (real i / 2 ˆ m) ∧

c (real i / 2 ˆ m) ≤ b (real (4 ∗ k + 3 ) / 2 ˆ Suc n)
proof (rule less.IH [OF refl ])
show m − Suc n < d
using 〈n < m〉 diff less mono2 less.prems(1 ) by blast

show |real i / 2 ˆ m − real (4 ∗ k + 3 ) / 2 ˆ Suc n| < 1 / 2 ˆ Suc n
using closer 〈n < m〉 〈d = m − n〉 by (auto simp: field split simps 〈n

< m〉 diff less mono2 )
qed auto
then show ?thesis

using LR [of c((2∗k + 1 ) / 2ˆn) a((2∗k + 1 ) / 2ˆn) b((2∗k + 1 ) /
2ˆn)]

using alec [of 2∗k+1 ] cleb [of 2∗k+1 ] a ge 0 [of 2∗k+1 ] b le 1 [of
2∗k+1 ]

using k a43 b43 〈0 < n〉

by (simp add : add .commute)
qed

qed
qed

qed
then have aj le ci : a (real j / 2 ˆ n) ≤ c (real i / 2 ˆ m)
and ci le bj : c (real i / 2 ˆ m) ≤ b (real j / 2 ˆ n) if odd j |real i / 2ˆm −

real j / 2ˆn| < 1/2 ˆ n for i j m n
using that by blast+

have close ab: odd m =⇒ |a (real m / 2 ˆ n) − b (real m / 2 ˆ n)| ≤ 2 / 2ˆn
for m n
proof (induction n arbitrary : m)
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case 0
with u01 v01 show ?case by auto

next
case (Suc n m)
with oddE obtain k where k : m = Suc (2∗k) by fastforce
show ?case
proof (cases n > 0 )
case False
with u01 v01 show ?thesis
by (simp add : a def b def leftrec base rightrec base)

next
case True
show ?thesis
proof (cases even k)
case True
then obtain j where j : k = 2∗j by (metis evenE )
have |a ((2 ∗ real j + 1 ) / 2 ˆ n) − (b ((2 ∗ real j + 1 ) / 2 ˆ n))| ≤ 2/2

ˆ n
proof −
have odd (Suc k)
using True by auto

then show ?thesis
by (metis (no types) Groups.add ac(2 ) Suc.IH j of nat Suc of nat mult

of nat numeral)
qed
moreover have a ((2 ∗ real j + 1 ) / 2 ˆ n) ≤

leftcut (a ((2 ∗ real j + 1 ) / 2 ˆ n)) (b ((2 ∗ real j + 1 ) / 2 ˆ
n)) (c ((2 ∗ real j + 1 ) / 2 ˆ n))

using alec [of 2∗j+1 ] cleb [of 2∗j+1 ] a ge 0 [of 2∗j+1 ] b le 1 [of 2∗j+1 ]
by (auto simp: add .commute left right)

moreover have leftcut (a ((2 ∗ real j + 1 ) / 2 ˆ n)) (b ((2 ∗ real j + 1 )
/ 2 ˆ n)) (c ((2 ∗ real j + 1 ) / 2 ˆ n)) ≤

c ((2 ∗ real j + 1 ) / 2 ˆ n)
using alec [of 2∗j+1 ] cleb [of 2∗j+1 ] a ge 0 [of 2∗j+1 ] b le 1 [of 2∗j+1 ]
by (auto simp: add .commute left right m)

ultimately have |a ((2 ∗ real j + 1 ) / 2 ˆ n) −
leftcut (a ((2 ∗ real j + 1 ) / 2 ˆ n)) (b ((2 ∗ real j + 1 ) / 2

ˆ n)) (c ((2 ∗ real j + 1 ) / 2 ˆ n))|
≤ 2/2 ˆ Suc n

by (simp add : c def midpoint def )
with j k 〈n > 0 〉 show ?thesis
by (simp add : add .commute [of 1 ] a41 b41 del : power Suc)

next
case False
then obtain j where j : k = 2∗j + 1 by (metis oddE )
have |a ((2 ∗ real j + 1 ) / 2 ˆ n) − (b ((2 ∗ real j + 1 ) / 2 ˆ n))| ≤ 2/2

ˆ n
using Suc.IH [OF False] j by (auto simp: algebra simps)

moreover have c ((2 ∗ real j + 1 ) / 2 ˆ n) ≤
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rightcut (a ((2 ∗ real j + 1 ) / 2 ˆ n)) (b ((2 ∗ real j + 1 ) / 2
ˆ n)) (c ((2 ∗ real j + 1 ) / 2 ˆ n))

using alec [of 2∗j+1 ] cleb [of 2∗j+1 ] a ge 0 [of 2∗j+1 ] b le 1 [of 2∗j+1 ]
by (auto simp: add .commute left right m)

moreover have rightcut (a ((2 ∗ real j + 1 ) / 2 ˆ n)) (b ((2 ∗ real j +
1 ) / 2 ˆ n)) (c ((2 ∗ real j + 1 ) / 2 ˆ n)) ≤

b ((2 ∗ real j + 1 ) / 2 ˆ n)
using alec [of 2∗j+1 ] cleb [of 2∗j+1 ] a ge 0 [of 2∗j+1 ] b le 1 [of 2∗j+1 ]
by (auto simp: add .commute left right)

ultimately have |rightcut (a ((2 ∗ real j + 1 ) / 2 ˆ n)) (b ((2 ∗ real j +
1 ) / 2 ˆ n)) (c ((2 ∗ real j + 1 ) / 2 ˆ n)) −

b ((2 ∗ real j + 1 ) / 2 ˆ n)| ≤ 2/2 ˆ Suc n
by (simp add : c def midpoint def )

with j k 〈n > 0 〉 show ?thesis
by (simp add : add .commute [of 3 ] a43 b43 del : power Suc)

qed
qed

qed
have m1 to 3 : 4 ∗ real k − 1 = real (4 ∗ (k−1 )) + 3 if 0 < k for k
using that by auto

have fb eq fa: [[0 < j ; 2∗j < 2 ˆ n]] =⇒ f (b((2 ∗ real j − 1 ) / 2ˆn)) = f (a((2
∗ real j + 1 ) / 2ˆn)) for n j
proof (induction n arbitrary : j )
case 0
then show ?case by auto

next
case (Suc n j ) show ?case
proof (cases n > 0 )
case False
with Suc.prems show ?thesis by auto

next
case True
show ?thesis proof (cases even j )
case True
then obtain k where k : j = 2∗k by (metis evenE )
with 〈0 < j 〉 have k > 0 2 ∗ k < 2 ˆ n
using Suc.prems(2 ) k by auto

with k 〈0 < n〉 Suc.IH [of k ] show ?thesis
by (simp add : m1 to 3 a41 b43 del : power Suc) (auto simp: of nat diff )

next
case False
then obtain k where k : j = 2∗k + 1 by (metis oddE )
have f (leftcut (a ((2 ∗ k + 1 ) / 2ˆn)) (b ((2 ∗ k + 1 ) / 2ˆn)) (c ((2 ∗ k

+ 1 ) / 2ˆn)))
= f (c ((2 ∗ k + 1 ) / 2ˆn))

f (c ((2 ∗ k + 1 ) / 2ˆn))
= f (rightcut (a ((2 ∗ k + 1 ) / 2ˆn)) (b ((2 ∗ k + 1 ) / 2ˆn)) (c ((2

∗ k + 1 ) / 2ˆn)))
using alec [of 2∗k+1 n] cleb [of 2∗k+1 n] a ge 0 [of 2∗k+1 n] b le 1 [of
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2∗k+1 n] k
using left right m [of c((2∗k + 1 ) / 2ˆn) a((2∗k + 1 ) / 2ˆn) b((2∗k +

1 ) / 2ˆn)]
by (auto simp: add .commute feqm [OF order refl ] feqm [OF order refl ,

symmetric])
then
show ?thesis
by (simp add : k add .commute [of 1 ] add .commute [of 3 ] a43 b41 〈0 < n〉

del : power Suc)
qed

qed
qed
have f eq fc: [[0 < j ; j < 2 ˆ n]]

=⇒ f (b((2∗j − 1 ) / 2 ˆ (Suc n))) = f (c(j / 2ˆn)) ∧
f (a((2∗j + 1 ) / 2 ˆ (Suc n))) = f (c(j / 2ˆn)) for n and j ::nat

proof (induction n arbitrary : j )
case 0
then show ?case by auto

next
case (Suc n)
show ?case
proof (cases even j )
case True
then obtain k where k : j = 2∗k by (metis evenE )
then have less2n: k < 2 ˆ n
using Suc.prems(2 ) by auto

have 0 < k using 〈0 < j 〉 k by linarith
then have m1 to 3 : real (4 ∗ k − Suc 0 ) = real (4 ∗ (k−1 )) + 3
by auto

then show ?thesis
using Suc.IH [of k ] k 〈0 < k 〉

by (simp add : less2n add .commute [of 1 ] m1 to 3 a41 b43 del : power Suc)
(auto simp: of nat diff )

next
case False
then obtain k where k : j = 2∗k + 1 by (metis oddE )
with Suc.prems have k < 2ˆn by auto
show ?thesis
using alec [of 2∗k+1 Suc n] cleb [of 2∗k+1 Suc n] a ge 0 [of 2∗k+1 Suc

n] b le 1 [of 2∗k+1 Suc n] k
using left right m [of c((2∗k + 1 ) / 2 ˆ Suc n) a((2∗k + 1 ) / 2 ˆ Suc n)

b((2∗k + 1 ) / 2 ˆ Suc n)]
apply (simp add : add .commute [of 1 ] add .commute [of 3 ] m1 to 3 b41 a43

del : power Suc)
apply (force intro: feqm)
done

qed
qed
define D01 where D01 ≡ {0<..<1} ∩ (

⋃
k m. {real m / 2ˆk})
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have cloD01 [simp]: closure D01 = {0 ..1}
unfolding D01 def
by (subst closure dyadic rationals in convex set pos 1 ) auto

have uniformly continuous on D01 (f ◦ c)
proof (clarsimp simp: uniformly continuous on def )
fix e::real
assume 0 < e
have ucontf : uniformly continuous on {0 ..1} f
by (simp add : compact uniformly continuous [OF cont f ])

then obtain d where 0 < d and d :
∧
x x ′. [[x ∈ {0 ..1}; x ′ ∈ {0 ..1}; norm

(x ′ − x ) < d ]] =⇒ norm (f x ′ − f x ) < e/2
unfolding uniformly continuous on def dist norm
by (metis 〈0 < e〉 less divide eq numeral1 (1 ) mult zero left)

obtain n where n: 1/2ˆn < min d 1
by (metis 〈0 < d 〉 divide less eq 1 less numeral extra(1 ) min def one less numeral iff

power one over real arch pow inv semiring norm(76 ) zero less numeral)
with gr0I have n > 0
by (force simp: field split simps)

show ∃ d>0 . ∀ x∈D01 . ∀ x ′∈D01 . dist x ′ x < d −→ dist (f (c x ′)) (f (c x ))
< e

proof (intro exI ballI impI conjI )
show (0 ::real) < 1/2ˆn by auto

next
have dist fc close: dist (f (c(real i / 2ˆm))) (f (c(real j / 2ˆn))) < e/2
if i : 0 < i i < 2 ˆ m and j : 0 < j j < 2 ˆ n and clo: abs(i / 2ˆm − j /

2ˆn) < 1/2 ˆ n for i j m
proof −
have abs3 : |x − a| < e =⇒ x = a ∨ |x − (a − e/2 )| < e/2 ∨ |x − (a +

e/2 )| < e/2 for x a e::real
by linarith

consider i / 2 ˆ m = j / 2 ˆ n
| |i / 2 ˆ m − (2 ∗ j − 1 ) / 2 ˆ Suc n| < 1/2 ˆ Suc n
| |i / 2 ˆ m − (2 ∗ j + 1 ) / 2 ˆ Suc n| < 1/2 ˆ Suc n
using abs3 [OF clo] j by (auto simp: field simps of nat diff )

then show ?thesis
proof cases
case 1 with 〈0 < e〉 show ?thesis by auto

next
case 2
have ∗: abs(a − b) ≤ 1/2 ˆ n ∧ 1/2 ˆ n < d ∧ a ≤ c ∧ c ≤ b =⇒ b −

c < d for a b c
by auto

have norm (c (real i / 2 ˆ m) − b (real (2 ∗ j − 1 ) / 2 ˆ Suc n)) < d
using 2 j n close ab [of 2∗j−1 Suc n]
using b ge 0 [of 2∗j−1 Suc n] b le 1 [of 2∗j−1 Suc n]
using aj le ci [of 2∗j−1 i m Suc n]
using ci le bj [of 2∗j−1 i m Suc n]
apply (simp add : divide simps of nat diff del : power Suc)
apply (auto simp: divide simps intro!: ∗)
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done
moreover have f (c(j / 2ˆn)) = f (b ((2∗j − 1 ) / 2 ˆ (Suc n)))
using f eq fc [OF j ] by metis

ultimately show ?thesis
by (metis dist norm atLeastAtMost iff b ge 0 b le 1 c ge 0 c le 1 d)

next
case 3
have ∗: abs(a − b) ≤ 1/2 ˆ n ∧ 1/2 ˆ n < d ∧ a ≤ c ∧ c ≤ b =⇒ c −

a < d for a b c
by auto

have norm (c (real i / 2 ˆ m) − a (real (2 ∗ j + 1 ) / 2 ˆ Suc n)) < d
using 3 j n close ab [of 2∗j+1 Suc n]
using b ge 0 [of 2∗j+1 Suc n] b le 1 [of 2∗j+1 Suc n]
using aj le ci [of 2∗j+1 i m Suc n]
using ci le bj [of 2∗j+1 i m Suc n]
apply (simp add : divide simps of nat diff del : power Suc)
apply (auto simp: divide simps intro!: ∗)
done

moreover have f (c(j / 2ˆn)) = f (a ((2∗j + 1 ) / 2 ˆ (Suc n)))
using f eq fc [OF j ] by metis

ultimately show ?thesis
by (metis dist norm a ge 0 atLeastAtMost iff a ge 0 a le 1 c ge 0 c le 1

d)
qed

qed
show dist (f (c x ′)) (f (c x )) < e
if x ∈ D01 x ′ ∈ D01 dist x ′ x < 1/2ˆn for x x ′

using that unfolding D01 def dyadics in open unit interval
proof clarsimp
fix i k ::nat and m p
assume i : 0 < i i < 2 ˆ m and k : 0<k k < 2 ˆ p
assume clo: dist (real k / 2 ˆ p) (real i / 2 ˆ m) < 1/2 ˆ n
obtain j ::nat where 0 < j j < 2 ˆ n
and clo ij : abs(i / 2ˆm − j / 2ˆn) < 1/2 ˆ n
and clo kj : abs(k / 2ˆp − j / 2ˆn) < 1/2 ˆ n

proof −
have max (2ˆn ∗ i / 2ˆm) (2ˆn ∗ k / 2ˆp) ≥ 0
by (auto simp: le max iff disj )

then obtain j where floor (max (2ˆn∗i / 2ˆm) (2ˆn∗k / 2ˆp)) = int j
using zero le floor zero le imp eq int by blast

then have j le: real j ≤ max (2ˆn ∗ i / 2ˆm) (2ˆn ∗ k / 2ˆp)
and less j1 : max (2ˆn ∗ i / 2ˆm) (2ˆn ∗ k / 2ˆp) < real j + 1

using floor correct [of max (2ˆn ∗ i / 2ˆm) (2ˆn ∗ k / 2ˆp)] by linarith+
show thesis
proof (cases j = 0 )
case True
show thesis
proof
show (1 ::nat) < 2 ˆ n
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by (metis Suc 1 〈0 < n〉 lessI one less power)
show |real i / 2 ˆ m − real 1/2 ˆ n| < 1/2 ˆ n
using i less j1 by (simp add : dist norm field simps True)

show |real k / 2 ˆ p − real 1/2 ˆ n| < 1/2 ˆ n
using k less j1 by (simp add : dist norm field simps True)

qed simp
next
case False
have 1 : real j ∗ 2 ˆ m < real i ∗ 2 ˆ n
if j : real j ∗ 2 ˆ p ≤ real k ∗ 2 ˆ n and k : real k ∗ 2 ˆ m < real i ∗ 2

ˆ p
for i k m p

proof −
have real j ∗ 2 ˆ p ∗ 2 ˆ m ≤ real k ∗ 2 ˆ n ∗ 2 ˆ m
using j by simp

moreover have real k ∗ 2 ˆ m ∗ 2 ˆ n < real i ∗ 2 ˆ p ∗ 2 ˆ n
using k by simp

ultimately have real j ∗ 2 ˆ p ∗ 2 ˆ m < real i ∗ 2 ˆ p ∗ 2 ˆ n
by (simp only : mult ac)

then show ?thesis
by simp

qed
have 2 : real j ∗ 2 ˆ m < 2 ˆ m + real i ∗ 2 ˆ n
if j : real j ∗ 2 ˆ p ≤ real k ∗ 2 ˆ n and k : real k ∗ (2 ˆ m ∗ 2 ˆ n) <

2 ˆ m ∗ 2 ˆ p + real i ∗ (2 ˆ n ∗ 2 ˆ p)
for i k m p

proof −
have real j ∗ 2 ˆ p ∗ 2 ˆ m ≤ real k ∗ (2 ˆ m ∗ 2 ˆ n)
using j by simp

also have ... < 2 ˆ m ∗ 2 ˆ p + real i ∗ (2 ˆ n ∗ 2 ˆ p)
by (rule k)

finally have (real j ∗ 2 ˆ m) ∗ 2 ˆ p < (2 ˆ m + real i ∗ 2 ˆ n) ∗ 2 ˆ p
by (simp add : algebra simps)

then show ?thesis
by simp

qed
have 3 : real j ∗ 2 ˆ p < 2 ˆ p + real k ∗ 2 ˆ n
if j : real j ∗ 2 ˆ m ≤ real i ∗ 2 ˆ n and i : real i ∗ 2 ˆ p ≤ real k ∗ 2 ˆ

m
proof −
have real j ∗ 2 ˆ m ∗ 2 ˆ p ≤ real i ∗ 2 ˆ n ∗ 2 ˆ p
using j by simp

moreover have real i ∗ 2 ˆ p ∗ 2 ˆ n ≤ real k ∗ 2 ˆ m ∗ 2 ˆ n
using i by simp

ultimately have real j ∗ 2 ˆ m ∗ 2 ˆ p ≤ real k ∗ 2 ˆ m ∗ 2 ˆ n
by (simp only : mult ac)

then have real j ∗ 2 ˆ p ≤ real k ∗ 2 ˆ n
by simp

also have ... < 2 ˆ p + real k ∗ 2 ˆ n
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by auto
finally show ?thesis by simp

qed
show ?thesis
proof
have 2 ˆ n ∗ real i / 2 ˆ m < 2 ˆ n 2 ˆ n ∗ real k / 2 ˆ p < 2 ˆ n
using i k by (auto simp: field simps)

then have max (2ˆn ∗ i / 2ˆm) (2ˆn ∗ k / 2ˆp) < 2ˆn
by simp

with j le have real j < 2 ˆ n by linarith
then show j < 2 ˆ n
by auto

have |real i ∗ 2 ˆ n − real j ∗ 2 ˆ m| < 2 ˆ m
using clo less j1 j le
by (auto simp: le max iff disj field split simps dist norm abs if split :

if split asm dest : 1 2 )
then show |real i / 2 ˆ m − real j / 2 ˆ n| < 1/2 ˆ n
by (auto simp: field split simps)

have |real k ∗ 2 ˆ n − real j ∗ 2 ˆ p| < 2 ˆ p
using clo less j1 j le
by (auto simp: le max iff disj field split simps dist norm abs if split :

if split asm dest : 3 2 )
then show |real k / 2 ˆ p − real j / 2 ˆ n| < 1/2 ˆ n
by (auto simp: le max iff disj field split simps dist norm)

qed (use False in simp)
qed

qed
show dist (f (c (real k / 2 ˆ p))) (f (c (real i / 2 ˆ m))) < e
proof (rule dist triangle half l)
show dist (f (c (real k / 2 ˆ p))) (f (c(j / 2ˆn))) < e/2
using 〈0 < j 〉 〈j < 2 ˆ n〉 k clo kj
by (intro dist fc close) auto

show dist (f (c (real i / 2 ˆ m))) (f (c (real j / 2 ˆ n))) < e/2
using 〈0 < j 〉 〈j < 2 ˆ n〉 i clo ij
by (intro dist fc close) auto

qed
qed

qed
qed
then obtain h where ucont h: uniformly continuous on {0 ..1} h
and fc eq :

∧
x . x ∈ D01 =⇒ (f ◦ c) x = h x

proof (rule uniformly continuous on extension on closure [of D01 f ◦ c])
qed (use closure subset [of D01 ] in 〈auto intro!: that 〉)
then have cont h: continuous on {0 ..1} h
using uniformly continuous imp continuous by blast

have h eq : h (real k / 2 ˆ m) = f (c (real k / 2 ˆ m)) if 0 < k k < 2ˆm for k m
using fc eq that by (force simp: D01 def )

have h ‘ {0 ..1} = f ‘ {0 ..1}
proof
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have h ‘ (closure D01 ) ⊆ f ‘ {0 ..1}
proof (rule image closure subset)
show continuous on (closure D01 ) h
using cont h by simp

show closed (f ‘ {0 ..1})
using compact continuous image [OF cont f ] compact imp closed by blast

show h ‘ D01 ⊆ f ‘ {0 ..1}
by (force simp: dyadics in open unit interval D01 def h eq)

qed
with cloD01 show h ‘ {0 ..1} ⊆ f ‘ {0 ..1} by simp
have a12 [simp]: a (1/2 ) = u
by (metis a def leftrec base numeral One of nat numeral)

have b12 [simp]: b (1/2 ) = v
by (metis b def rightrec base numeral One of nat numeral)

have f ‘ {0 ..1} ⊆ closure(h ‘ D01 )
proof (clarsimp simp: closure approachable dyadics in open unit interval D01 def )

fix x e::real
assume 0 ≤ x x ≤ 1 0 < e
have ucont f : uniformly continuous on {0 ..1} f
using compact uniformly continuous cont f by blast

then obtain δ where δ > 0
and δ:

∧
x x ′. [[x ∈ {0 ..1}; x ′ ∈ {0 ..1}; dist x ′ x < δ]] =⇒ norm (f x ′ − f

x ) < e
using 〈0 < e〉 by (auto simp: uniformly continuous on def dist norm)

have ∗: ∃m::nat . ∃ y . odd m ∧ 0 < m ∧ m < 2 ˆ n ∧ y ∈ {a(m / 2ˆn) ..
b(m / 2ˆn)} ∧ f y = f x

if n 6= 0 for n
using that

proof (induction n)
case 0 then show ?case by auto

next
case (Suc n)
show ?case
proof (cases n=0 )
case True
consider x ∈ {0 ..u} | x ∈ {u..v} | x ∈ {v ..1}
using 〈0 ≤ x 〉 〈x ≤ 1 〉 by force

then have ∃ y≥a (real 1/2 ). y ≤ b (real 1/2 ) ∧ f y = f x
proof cases
case 1
then show ?thesis
using uabv [of 1 1 ] f0u [of u] f0u [of x ] by force

next
case 2
then show ?thesis
by (rule tac x=x in exI ) auto

next
case 3
then show ?thesis
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using uabv [of 1 1 ] fv1 [of v ] fv1 [of x ] by force
qed
with 〈n=0 〉 show ?thesis
by (rule tac x=1 in exI ) auto

next
case False
with Suc obtain m y
where odd m 0 < m and mless: m < 2 ˆ n
and y : y ∈ {a (real m / 2 ˆ n)..b (real m / 2 ˆ n)} and feq : f y = f x

by metis
then obtain j where j : m = 2∗j + 1 by (metis oddE )
have j4 : 4 ∗ j + 1 < 2 ˆ Suc n
using mless j by (simp add : algebra simps)

consider y ∈ {a((2∗j + 1 ) / 2ˆn) .. b((4∗j + 1 ) / 2 ˆ (Suc n))}
| y ∈ {b((4∗j + 1 ) / 2 ˆ (Suc n)) .. a((4∗j + 3 ) / 2 ˆ (Suc n))}
| y ∈ {a((4∗j + 3 ) / 2 ˆ (Suc n)) .. b((2∗j + 1 ) / 2ˆn)}
using y j by force

then show ?thesis
proof cases
case 1
show ?thesis
proof (intro exI conjI )
show y ∈ {a (real (4 ∗ j + 1 ) / 2 ˆ Suc n)..b (real (4 ∗ j + 1 ) / 2 ˆ

Suc n)}
using mless j 〈n 6= 0 〉 1 by (simp add : a41 b41 add .commute [of 1 ]

del : power Suc)
qed (use feq j4 in auto)

next
case 2
show ?thesis
proof (intro exI conjI )
show b (real (4 ∗ j + 1 ) / 2 ˆ Suc n) ∈ {a (real (4 ∗ j + 1 ) / 2 ˆ

Suc n)..b (real (4 ∗ j + 1 ) / 2 ˆ Suc n)}
using 〈n 6= 0 〉 alec [of 2∗j+1 n] cleb [of 2∗j+1 n] a ge 0 [of 2∗j+1

n] b le 1 [of 2∗j+1 n]
using left right [of c((2∗j + 1 ) / 2ˆn) a((2∗j + 1 ) / 2ˆn) b((2∗j

+ 1 ) / 2ˆn)]
by (simp add : a41 b41 add .commute [of 1 ] del : power Suc)

show f (b (real (4 ∗ j + 1 ) / 2 ˆ Suc n)) = f x
using 〈n 6= 0 〉 2
using alec [of 2∗j+1 n] cleb [of 2∗j+1 n] a ge 0 [of 2∗j+1 n] b le 1

[of 2∗j+1 n]
by (force simp add : b41 a43 add .commute [of 1 ] feq [symmetric] simp

del : power Suc intro: f eqI )
qed (use j4 in auto)

next
case 3
show ?thesis
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proof (intro exI conjI )
show 4 ∗ j + 3 < 2 ˆ Suc n
using mless j by simp

show f y = f x
by fact

show y ∈ {a (real (4 ∗ j + 3 ) / 2 ˆ Suc n) .. b (real (4 ∗ j + 3 ) / 2
ˆ Suc n)}

using 3 False b43 [of n j ] by (simp add : add .commute)
qed (use 3 in auto)

qed
qed

qed
obtain n where n: 1/2ˆn < min (δ / 2 ) 1

by (metis 〈0 < δ〉 divide less eq 1 less numeral extra(1 ) min less iff conj
one less numeral iff power one over real arch pow inv semiring norm(76 ) zero less divide iff
zero less numeral)

with gr0I have n 6= 0
by fastforce

with ∗ obtain m::nat and y
where odd m 0 < m and mless: m < 2 ˆ n
and y : a(m / 2ˆn) ≤ y ∧ y ≤ b(m / 2ˆn) and feq : f x = f y

by (metis atLeastAtMost iff )
then have 0 ≤ y y ≤ 1
by (meson a ge 0 b le 1 order .trans)+

moreover have y < δ + c (real m / 2 ˆ n) c (real m / 2 ˆ n) < δ + y
using y alec [of m n] cleb [of m n] n field sum of halves close ab [OF 〈odd

m〉, of n]
by linarith+

moreover note 〈0 < m〉 mless 〈0 ≤ x 〉 〈x ≤ 1 〉

ultimately have dist (h (real m / 2 ˆ n)) (f x ) < e
by (auto simp: dist norm h eq feq δ)

then show ∃ k . ∃m∈{0<..<2 ˆ k}. dist (h (real m / 2 ˆ k)) (f x ) < e
using 〈0 < m〉 greaterThanLessThan iff mless by blast

qed
also have ... ⊆ h ‘ {0 ..1}
proof (rule closure minimal)
show h ‘ D01 ⊆ h ‘ {0 ..1}
using cloD01 closure subset by blast

show closed (h ‘ {0 ..1})
using compact continuous image [OF cont h] compact imp closed by auto

qed
finally show f ‘ {0 ..1} ⊆ h ‘ {0 ..1} .

qed
moreover have inj on h {0 ..1}
proof −
have u < v
by (metis atLeastAtMost iff f0u f 1not0 fv1 order .not eq order implies strict

u01 (1 ) u01 (2 ) v01 (1 ))
have f not fu:

∧
x . [[u < x ; x ≤ v ]] =⇒ f x 6= f u
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by (metis atLeastAtMost iff f0u fu1 greaterThanAtMost iff order refl or-
der trans u01 (1 ) v01 (2 ))

have f not fv :
∧
x . [[u ≤ x ; x < v ]] =⇒ f x 6= f v

by (metis atLeastAtMost iff order refl order trans v01 (2 ) atLeastLessThan iff
fuv fv1 )

have a less b:
a(j / 2ˆn) < b(j / 2ˆn) ∧
(∀ x . a(j / 2ˆn) < x −→ x ≤ b(j / 2ˆn) −→ f x 6= f (a(j / 2ˆn))) ∧
(∀ x . a(j / 2ˆn) ≤ x −→ x < b(j / 2ˆn) −→ f x 6= f (b(j / 2ˆn))) for n

and j ::nat
proof (induction n arbitrary : j )
case 0 then show ?case
by (simp add : 〈u < v 〉 f not fu f not fv)

next
case (Suc n j ) show ?case
proof (cases n > 0 )
case False then show ?thesis
by (auto simp: a def b def leftrec base rightrec base 〈u < v 〉 f not fu f not fv)

next
case True show ?thesis
proof (cases even j )
case True
with 〈0 < n〉 Suc.IH show ?thesis
by (auto elim!: evenE )

next
case False
then obtain k where k : j = 2∗k + 1 by (metis oddE )
then show ?thesis
proof (cases even k)
case True
then obtain m where m: k = 2∗m by (metis evenE )
have fleft : f (leftcut (a ((2∗m + 1 ) / 2ˆn)) (b ((2∗m + 1 ) / 2ˆn)) (c

((2∗m + 1 ) / 2ˆn))) =
f (c((2∗m + 1 ) / 2ˆn))

using alec [of 2∗m+1 n] cleb [of 2∗m+1 n] a ge 0 [of 2∗m+1 n] b le 1
[of 2∗m+1 n]

using left right m [of c((2∗m + 1 ) / 2ˆn) a((2∗m + 1 ) / 2ˆn) b((2∗m
+ 1 ) / 2ˆn)]

by (auto intro: f eqI )
show ?thesis
proof (intro conjI impI notI allI )
have False if b (real j / 2 ˆ Suc n) ≤ a (real j / 2 ˆ Suc n)
proof −
have f (c ((1 + real m ∗ 2 ) / 2 ˆ n)) = f (a ((1 + real m ∗ 2 ) / 2

ˆ n))
using k m 〈0 < n〉 fleft that a41 [of n m] b41 [of n m]
using alec [of 2∗m+1 n] cleb [of 2∗m+1 n] a ge 0 [of 2∗m+1 n]

b le 1 [of 2∗m+1 n]
using left right [of c((2∗m + 1 ) / 2ˆn) a((2∗m + 1 ) / 2ˆn) b((2∗m
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+ 1 ) / 2ˆn)]
by (auto simp: algebra simps)
moreover have a (real (1 + m ∗ 2 ) / 2 ˆ n) < c (real (1 + m ∗

2 ) / 2 ˆ n)
using Suc.IH [of 1 + m ∗ 2 ] by (simp add : c def midpoint def )
moreover have c (real (1 + m ∗ 2 ) / 2 ˆ n) ≤ b (real (1 + m ∗

2 ) / 2 ˆ n)
using cleb by blast

ultimately show ?thesis
using Suc.IH [of 1 + m ∗ 2 ] by force

qed
then show a (real j / 2 ˆ Suc n) < b (real j / 2 ˆ Suc n) by force

next
fix x
assume a (real j / 2 ˆ Suc n) < x x ≤ b (real j / 2 ˆ Suc n) f x = f

(a (real j / 2 ˆ Suc n))
then show False
using Suc.IH [of 1 + m ∗ 2 , THEN conjunct2 , THEN conjunct1 ]
using k m 〈0 < n〉 a41 [of n m] b41 [of n m]
using alec [of 2∗m+1 n] cleb [of 2∗m+1 n] a ge 0 [of 2∗m+1 n]

b le 1 [of 2∗m+1 n]
using left right m [of c((2∗m + 1 ) / 2ˆn) a((2∗m + 1 ) / 2ˆn)

b((2∗m + 1 ) / 2ˆn)]
by (auto simp: algebra simps)

next
fix x
assume a (real j / 2 ˆ Suc n) ≤ x x < b (real j / 2 ˆ Suc n) f x = f

(b (real j / 2 ˆ Suc n))
then show False
using k m 〈0 < n〉 a41 [of n m] b41 [of n m] fleft left neq
using alec [of 2∗m+1 n] cleb [of 2∗m+1 n] a ge 0 [of 2∗m+1 n]

b le 1 [of 2∗m+1 n]
by (auto simp: algebra simps)

qed
next
case False
with oddE obtain m where m: k = Suc (2∗m) by fastforce
have fright : f (rightcut (a ((2∗m + 1 ) / 2ˆn)) (b ((2∗m + 1 ) / 2ˆn))

(c ((2∗m + 1 ) / 2ˆn))) = f (c((2∗m + 1 ) / 2ˆn))
using alec [of 2∗m+1 n] cleb [of 2∗m+1 n] a ge 0 [of 2∗m+1 n] b le 1

[of 2∗m+1 n]
using left right m [of c((2∗m + 1 ) / 2ˆn) a((2∗m + 1 ) / 2ˆn) b((2∗m

+ 1 ) / 2ˆn)]
by (auto intro: f eqI [OF order refl ])

show ?thesis
proof (intro conjI impI notI allI )
have False if b (real j / 2 ˆ Suc n) ≤ a (real j / 2 ˆ Suc n)
proof −
have f (c ((1 + real m ∗ 2 ) / 2 ˆ n)) = f (b ((1 + real m ∗ 2 ) / 2
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ˆ n))
using k m 〈0 < n〉 fright that a43 [of n m] b43 [of n m]
using alec [of 2∗m+1 n] cleb [of 2∗m+1 n] a ge 0 [of 2∗m+1 n]

b le 1 [of 2∗m+1 n]
using left right [of c((2∗m + 1 ) / 2ˆn) a((2∗m + 1 ) / 2ˆn) b((2∗m

+ 1 ) / 2ˆn)]
by (auto simp: algebra simps)
moreover have a (real (1 + m ∗ 2 ) / 2 ˆ n) ≤ c (real (1 + m ∗

2 ) / 2 ˆ n)
using alec by blast
moreover have c (real (1 + m ∗ 2 ) / 2 ˆ n) < b (real (1 + m ∗

2 ) / 2 ˆ n)
using Suc.IH [of 1 + m ∗ 2 ] by (simp add : c def midpoint def )

ultimately show ?thesis
using Suc.IH [of 1 + m ∗ 2 ] by force

qed
then show a (real j / 2 ˆ Suc n) < b (real j / 2 ˆ Suc n) by force

next
fix x
assume a (real j / 2 ˆ Suc n) < x x ≤ b (real j / 2 ˆ Suc n) f x = f

(a (real j / 2 ˆ Suc n))
then show False
using k m 〈0 < n〉 a43 [of n m] b43 [of n m] fright right neq
using alec [of 2∗m+1 n] cleb [of 2∗m+1 n] a ge 0 [of 2∗m+1 n]

b le 1 [of 2∗m+1 n]
by (auto simp: algebra simps)

next
fix x
assume a (real j / 2 ˆ Suc n) ≤ x x < b (real j / 2 ˆ Suc n) f x = f

(b (real j / 2 ˆ Suc n))
then show False
using Suc.IH [of 1 + m ∗ 2 , THEN conjunct2 , THEN conjunct2 ]
using k m 〈0 < n〉 a43 [of n m] b43 [of n m]
using alec [of 2∗m+1 n] cleb [of 2∗m+1 n] a ge 0 [of 2∗m+1 n]

b le 1 [of 2∗m+1 n]
using left right m [of c((2∗m + 1 ) / 2ˆn) a((2∗m + 1 ) / 2ˆn)

b((2∗m + 1 ) / 2ˆn)]
by (auto simp: algebra simps fright simp del : power Suc)

qed
qed

qed
qed

qed
have c gt 0 [simp]: 0 < c(m / 2ˆn) and c less 1 [simp]: c(m / 2ˆn) < 1 for

m::nat and n
using a less b [of m n] apply (simp all add : c def midpoint def )
using a ge 0 [of m n] b le 1 [of m n] by linarith+

have approx : ∃ j n. odd j ∧ n 6= 0 ∧
real i / 2ˆm ≤ real j / 2ˆn ∧
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real j / 2ˆn ≤ real k / 2ˆp ∧
|real i / 2 ˆ m − real j / 2 ˆ n| < 1/2ˆn ∧
|real k / 2 ˆ p − real j / 2 ˆ n| < 1/2ˆn

if 0 < i i < 2 ˆ m 0 < k k < 2 ˆ p i / 2ˆm < k / 2ˆp m + p = N for N m
p i k

using that
proof (induction N arbitrary : m p i k rule: less induct)
case (less N )
then consider i / 2ˆm ≤ 1/2 1/2 ≤ k / 2ˆp | k / 2ˆp < 1/2 | k / 2ˆp ≥

1/2 1/2 < i / 2ˆm
by linarith

then show ?case
proof cases
case 1
with less.prems show ?thesis
by (rule tac x=1 in exI )+ (fastforce simp: field split simps)

next
case 2 show ?thesis
proof (cases m)
case 0 with less.prems show ?thesis
by auto

next
case (Suc m ′) show ?thesis
proof (cases p)
case 0 with less.prems show ?thesis by auto

next
case (Suc p ′)
have §: False if real i ∗ 2 ˆ p ′ < real k ∗ 2 ˆ m ′ k < 2 ˆ p ′ 2 ˆ m ′ ≤ i
proof −
have real k ∗ 2 ˆ m ′ < 2 ˆ p ′ ∗ 2 ˆ m ′

using that by simp
then have real i ∗ 2 ˆ p ′ < 2 ˆ p ′ ∗ 2 ˆ m ′

using that by linarith
with that show ?thesis by simp

qed
moreover have ∗: real i / 2 ˆ m ′ < real k / 2ˆp ′ k < 2 ˆ p ′

using less.prems 〈m = Suc m ′〉 2 Suc by (force simp: field split simps)+
moreover have i < 2 ˆ m ′

using § ∗ by (clarsimp simp: divide simps linorder not le) (meson
linorder not le)

ultimately show ?thesis
using less.IH [of m ′+p ′ i m ′ k p ′] less.prems 〈m = Suc m ′〉 2 Suc
by (force simp: field split simps)

qed
qed

next
case 3 show ?thesis
proof (cases m)
case 0 with less.prems show ?thesis

Arcwise{_}{\kern 0pt}Connected.html


2870

by auto
next
case (Suc m ′) show ?thesis
proof (cases p)
case 0 with less.prems show ?thesis by auto

next
case (Suc p ′)
have real (i − 2 ˆ m ′) / 2 ˆ m ′ < real (k − 2 ˆ p ′) / 2 ˆ p ′

using less.prems 〈m = Suc m ′〉 Suc 3 by (auto simp: field simps
of nat diff )

moreover have k − 2 ˆ p ′ < 2 ˆ p ′ i − 2 ˆ m ′ < 2 ˆ m ′

using less.prems Suc 〈m = Suc m ′〉 by auto
moreover
have 2 ˆ p ′ ≤ k 2 ˆ p ′ 6= k
using less.prems 〈m = Suc m ′〉 Suc 3 by auto

then have 2 ˆ p ′ < k
by linarith

ultimately show ?thesis
using less.IH [of m ′+p ′ i − 2ˆm ′ m ′ k − 2 ˆ p ′ p ′] less.prems 〈m =

Suc m ′〉 Suc 3
apply (clarsimp simp: field simps of nat diff )
apply (rule tac x=2 ˆ n + j in exI , simp)
apply (rule tac x=Suc n in exI )
apply (auto simp: field simps)
done

qed
qed

qed
qed
have clec: c(real i / 2ˆm) ≤ c(real j / 2ˆn)
if i : 0 < i i < 2 ˆ m and j : 0 < j j < 2 ˆ n and ij : i / 2ˆm < j / 2ˆn for

m i n j
proof −
obtain j ′ n ′ where odd j ′ n ′ 6= 0
and i le j : real i / 2 ˆ m ≤ real j ′ / 2 ˆ n ′

and j le j : real j ′ / 2 ˆ n ′ ≤ real j / 2 ˆ n
and clo ij : |real i / 2 ˆ m − real j ′ / 2 ˆ n ′| < 1/2 ˆ n ′

and clo jj : |real j / 2 ˆ n − real j ′ / 2 ˆ n ′| < 1/2 ˆ n ′

using approx [of i m j n m+n] that i j ij by auto
with oddE obtain q where q : j ′ = Suc (2∗q) by fastforce
have c (real i / 2 ˆ m) ≤ c((2∗q + 1 ) / 2ˆn ′)
proof (cases i / 2ˆm = (2∗q + 1 ) / 2ˆn ′)
case True then show ?thesis by simp

next
case False
with i le j clo ij q have |real i / 2 ˆ m − real (4 ∗ q + 1 ) / 2 ˆ Suc n ′| <

1 / 2 ˆ Suc n ′

by (auto simp: field split simps)
then have c(i / 2ˆm) ≤ b(real(4 ∗ q + 1 ) / 2 ˆ (Suc n ′))
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by (meson ci le bj even mult iff even numeral even plus one iff )
then show ?thesis

using alec [of 2∗q+1 n ′] cleb [of 2∗q+1 n ′] a ge 0 [of 2∗q+1 n ′] b le 1
[of 2∗q+1 n ′] b41 [of n ′ q ] 〈n ′ 6= 0 〉

using left right m [of c((2∗q + 1 ) / 2ˆn ′) a((2∗q + 1 ) / 2ˆn ′) b((2∗q +
1 ) / 2ˆn ′)]

by (auto simp: algebra simps)
qed
also have ... ≤ c(real j / 2ˆn)
proof (cases j / 2ˆn = (2∗q + 1 ) / 2ˆn ′)
case True
then show ?thesis by simp

next
case False
with j le j q have less: (2∗q + 1 ) / 2ˆn ′ < j / 2ˆn
by auto

have ∗: [[q < i ; abs(i − q) < s∗2 ; r = q + s]] =⇒ abs(i − r) < s for i q s
r ::real

by auto
have |real j / 2 ˆ n − real (4 ∗ q + 3 ) / 2 ˆ Suc n ′| < 1 / 2 ˆ Suc n ′

by (rule ∗ [OF less]) (use j le j clo jj q in 〈auto simp: field split simps〉)
then have a(real(4∗q + 3 ) / 2 ˆ (Suc n ′)) ≤ c(j / 2ˆn)

by (metis Suc3 eq add 3 add .commute aj le ci even Suc even mult iff
even numeral)

then show ?thesis
using alec [of 2∗q+1 n ′] cleb [of 2∗q+1 n ′] a ge 0 [of 2∗q+1 n ′] b le 1

[of 2∗q+1 n ′] a43 [of n ′ q ] 〈n ′ 6= 0 〉

using left right m [of c((2∗q + 1 ) / 2ˆn ′) a((2∗q + 1 ) / 2ˆn ′) b((2∗q +
1 ) / 2ˆn ′)]

by (auto simp: algebra simps)
qed
finally show ?thesis .

qed
have x = y if 0 ≤ x x ≤ 1 0 ≤ y y ≤ 1 h x = h y for x y
using that

proof (induction x y rule: linorder class.linorder less wlog)
case (less x1 x2 )
obtain m n where m: 0 < m m < 2 ˆ n
and x12 : x1 < m / 2ˆn m / 2ˆn < x2
and neq : h x1 6= h (real m / 2ˆn)

proof −
have (x1 + x2 ) / 2 ∈ closure D01
using cloD01 less.hyps less.prems by auto

with less obtain y where y ∈ D01 and dist y : dist y ((x1 + x2 ) / 2 ) <
(x2 − x1 ) / 64

unfolding closure approachable
by (metis diff gt 0 iff gt less divide eq numeral1 (1 ) mult zero left)

obtain m n where m: 0 < m m < 2 ˆ n
and clo: |real m / 2 ˆ n − (x1 + x2 ) / 2 | < (x2 − x1 ) / 64
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and n: 1/2ˆn < (x2 − x1 ) / 128
proof −
have min 1 ((x2 − x1 ) / 128 ) > 0 1/2 < (1 ::real)
using less by auto

then obtain N where N : 1/2ˆN < min 1 ((x2 − x1 ) / 128 )
by (metis power one over real arch pow inv)

then have N > 0
using less divide eq 1 by force

obtain p q where p: p < 2 ˆ q p 6= 0 and yeq : y = real p / 2 ˆ q
using 〈y ∈ D01 〉 by (auto simp: zero less divide iff D01 def )

show ?thesis
proof
show 0 < 2ˆN ∗ p
using p by auto

show 2 ˆ N ∗ p < 2 ˆ (N+q)
by (simp add : p power add)

have |real (2 ˆ N ∗ p) / 2 ˆ (N + q) − (x1 + x2 ) / 2 | = |real p / 2 ˆ
q − (x1 + x2 ) / 2 |

by (simp add : power add)
also have ... = |y − (x1 + x2 ) / 2 |
by (simp add : yeq)

also have ... < (x2 − x1 ) / 64
using dist y by (simp add : dist norm)

finally show |real (2 ˆ N ∗ p) / 2 ˆ (N + q) − (x1 + x2 ) / 2 | < (x2
− x1 ) / 64 .

have (1 ::real) / 2 ˆ (N + q) ≤ 1/2ˆN
by (simp add : field simps)

also have ... < (x2 − x1 ) / 128
using N by force

finally show 1/2 ˆ (N + q) < (x2 − x1 ) / 128 .
qed

qed
obtain m ′ n ′ m ′′ n ′′ where 0 < m ′ m ′ < 2 ˆ n ′ x1 < m ′ / 2ˆn ′ m ′ / 2ˆn ′

< x2
and 0 < m ′′ m ′′ < 2 ˆ n ′′ x1 < m ′′ / 2ˆn ′′ m ′′ / 2ˆn ′′ < x2
and neq : h (real m ′′ / 2ˆn ′′) 6= h (real m ′ / 2ˆn ′)

proof
show 0 < Suc (2∗m)
by simp

show m21 : Suc (2∗m) < 2 ˆ Suc n
using m by auto

show x1 < real (Suc (2 ∗ m)) / 2 ˆ Suc n
using clo by (simp add : field simps abs if split : if split asm)

show real (Suc (2 ∗ m)) / 2 ˆ Suc n < x2
using n clo by (simp add : field simps abs if split : if split asm)

show 0 < 4∗m + 3
by simp

have m+1 ≤ 2 ˆ n
using m by simp
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then have 4 ∗ (m+1 ) ≤ 4 ∗ (2 ˆ n)
by simp

then show m43 : 4∗m + 3 < 2 ˆ (n+2 )
by (simp add : algebra simps)

show x1 < real (4 ∗ m + 3 ) / 2 ˆ (n + 2 )
using clo by (simp add : field simps abs if split : if split asm)

show real (4 ∗ m + 3 ) / 2 ˆ (n + 2 ) < x2
using n clo by (simp add : field simps abs if split : if split asm)

have c fold : midpoint (a ((2 ∗ real m + 1 ) / 2 ˆ Suc n)) (b ((2 ∗ real m
+ 1 ) / 2 ˆ Suc n)) = c ((2 ∗ real m + 1 ) / 2 ˆ Suc n)

by (simp add : c def )
define R where R ≡ rightcut (a ((2 ∗ real m + 1 ) / 2 ˆ Suc n)) (b ((2

∗ real m + 1 ) / 2 ˆ Suc n)) (c ((2 ∗ real m + 1 ) / 2 ˆ Suc n))
have R < b ((2 ∗ real m + 1 ) / 2 ˆ Suc n)

unfolding R def using a less b [of 4∗m + 3 n+2 ] a43 [of Suc n m]
b43 [of Suc n m]

by simp
then have Rless: R < midpoint R (b ((2 ∗ real m + 1 ) / 2 ˆ Suc n))
by (simp add : midpoint def )

have midR le: midpoint R (b ((2 ∗ real m + 1 ) / 2 ˆ Suc n)) ≤ b ((2 ∗
real m + 1 ) / (2 ∗ 2 ˆ n))

using 〈R < b ((2 ∗ real m + 1 ) / 2 ˆ Suc n)〉

by (simp add : midpoint def )
have (real (Suc (2 ∗ m)) / 2 ˆ Suc n) ∈ D01 real (4 ∗ m + 3 ) / 2 ˆ (n

+ 2 ) ∈ D01
by (simp all add : D01 def m21 m43 del : power Suc of nat Suc of nat add

add 2 eq Suc ′) blast+
then show h (real (4 ∗ m + 3 ) / 2 ˆ (n + 2 )) 6= h (real (Suc (2 ∗ m))

/ 2 ˆ Suc n)
using a less b [of 4∗m + 3 n+2 , THEN conjunct1 ]
using a43 [of Suc n m] b43 [of Suc n m]
using alec [of 2∗m+1 Suc n] cleb [of 2∗m+1 Suc n] a ge 0 [of 2∗m+1

Suc n] b le 1 [of 2∗m+1 Suc n]
apply (simp add : fc eq [symmetric] c def del : power Suc)
apply (simp only : add .commute [of 1 ] c fold R def [symmetric])
apply (rule right neq)
using Rless apply (simp add : R def )

apply (rule midR le, auto)
done

qed
then show ?thesis by (metis that)

qed
have m div : 0 < m / 2ˆn m / 2ˆn < 1
using m by (auto simp: field split simps)

have closure0m: {0 ..m / 2ˆn} = closure ({0<..< m / 2ˆn} ∩ (
⋃

k m. {real
m / 2 ˆ k}))

by (subst closure dyadic rationals in convex set pos 1 , simp all add : not le
m)

have 2ˆn > m
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by (simp add : m(2 ) not le)
then have closurem1 : {m / 2ˆn .. 1} = closure ({m / 2ˆn <..< 1} ∩ (

⋃
k

m. {real m / 2 ˆ k}))
using closure dyadic rationals in convex set pos 1 m div(1 ) by fastforce
have cont h ′: continuous on (closure ({u<..<v} ∩ (

⋃
k m. {real m / 2 ˆ

k}))) h
if 0 ≤ u v ≤ 1 for u v
using that by (intro continuous on subset [OF cont h] closure minimal [OF

subsetI ]) auto
have closed f ′: closed (f ‘ {u..v}) if 0 ≤ u v ≤ 1 for u v

by (metis compact continuous image cont f compact interval atLeastat-
Most subset iff

compact imp closed continuous on subset that)
have less 2I :

∧
k i . real i / 2 ˆ k < 1 =⇒ i < 2 ˆ k

by simp
have h ‘ ({0<..<m / 2 ˆ n} ∩ (

⋃
q p. {real p / 2 ˆ q})) ⊆ f ‘ {0 ..c (m / 2

ˆ n)}
proof clarsimp
fix p q
assume p: 0 < real p / 2 ˆ q real p / 2 ˆ q < real m / 2 ˆ n
then have [simp]: 0 < p
by (simp add : field split simps)

have [simp]: p < 2 ˆ q
by (blast intro: p less 2I m div less trans)

have f (c (real p / 2 ˆ q)) ∈ f ‘ {0 ..c (real m / 2 ˆ n)}
by (auto simp: clec p m)

then show h (real p / 2 ˆ q) ∈ f ‘ {0 ..c (real m / 2 ˆ n)}
by (simp add : h eq)

qed
with m div have h ‘ {0 .. m / 2ˆn} ⊆ f ‘ {0 .. c(m / 2ˆn)}
apply (subst closure0m)
by (rule image closure subset [OF cont h ′ closed f ′]) auto

then have hx1 : h x1 ∈ f ‘ {0 .. c(m / 2ˆn)}
using x12 less.prems(1 ) by auto

then obtain t1 where t1 : h x1 = f t1 0 ≤ t1 t1 ≤ c (m / 2 ˆ n)
by auto

have h ‘ ({m / 2 ˆ n<..<1} ∩ (
⋃
q p. {real p / 2 ˆ q})) ⊆ f ‘ {c (m / 2 ˆ

n)..1}
proof clarsimp
fix p q
assume p: real m / 2 ˆ n < real p / 2 ˆ q and [simp]: p < 2 ˆ q
then have [simp]: 0 < p
using gr zeroI m div by fastforce

have f (c (real p / 2 ˆ q)) ∈ f ‘ {c (m / 2 ˆ n)..1}
by (auto simp: clec p m)

then show h (real p / 2 ˆ q) ∈ f ‘ {c (real m / 2 ˆ n)..1}
by (simp add : h eq)

qed
with m have h ‘ {m / 2ˆn .. 1} ⊆ f ‘ {c(m / 2ˆn) .. 1}



Arcwise Connected.thy 2875

apply (subst closurem1 )
by (rule image closure subset [OF cont h ′ closed f ′]) auto

then have hx2 : h x2 ∈ f ‘ {c(m / 2ˆn)..1}
using x12 less.prems by auto

then obtain t2 where t2 : h x2 = f t2 c (m / 2 ˆ n) ≤ t2 t2 ≤ 1
by auto

with t1 less neq have False
using conn [of h x2 , unfolded is interval connected 1 [symmetric] is interval 1 ,

rule format , of t1 t2 c(m / 2ˆn)]
by (simp add : h eq m)

then show ?case by blast
qed auto
then show ?thesis
by (auto simp: inj on def )

qed
ultimately have {0 ..1 ::real} homeomorphic f ‘ {0 ..1}
using homeomorphic compact [OF cont h] by blast

then show ?thesis
using homeomorphic sym by blast

qed

theorem path contains arc:
fixes p :: real ⇒ ′a::{complete space,real normed vector}
assumes path p and a: pathstart p = a and b: pathfinish p = b and a 6= b
obtains q where arc q path image q ⊆ path image p pathstart q = a pathfinish

q = b
proof −
have ucont p: uniformly continuous on {0 ..1} p
using 〈path p〉 unfolding path def
by (metis compact Icc compact uniformly continuous)

define ϕ where ϕ ≡ λS . S ⊆ {0 ..1} ∧ 0 ∈ S ∧ 1 ∈ S ∧
(∀ x ∈ S . ∀ y ∈ S . open segment x y ∩ S = {} −→ p x = p y)

obtain T where closed T ϕ T and T :
∧
U . [[closed U ; ϕ U ]] =⇒ ¬ (U ⊂ T )

proof (rule Brouwer reduction theorem gen [of {0 ..1} ϕ])
have ∗: {x<..<y} ∩ {0 ..1} = {x<..<y} if 0 ≤ x y ≤ 1 x ≤ y for x y ::real
using that by auto

show ϕ {0 ..1}
by (auto simp: ϕ def open segment eq real ivl ∗)

show ϕ (
⋂
(F ‘ UNIV ))

if
∧
n. closed (F n) and ϕ:

∧
n. ϕ (F n) and Fsub:

∧
n. F (Suc n) ⊆ F n

for F
proof −
have F01 :

∧
n. F n ⊆ {0 ..1} ∧ 0 ∈ F n ∧ 1 ∈ F n

and peq :
∧
n x y . [[x ∈ F n; y ∈ F n; open segment x y ∩ F n = {}]] =⇒ p

x = p y
by (metis ϕ ϕ def )+

have pqF : False if ∀ u. x ∈ F u ∀ x . y ∈ F x open segment x y ∩ (
⋂
x . F x )

= {} and neg : p x 6= p y
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for x y
using that

proof (induction x y rule: linorder class.linorder less wlog)
case (less x y)
have xy : x ∈ {0 ..1} y ∈ {0 ..1}
by (metis less.prems subsetCE F01 )+

have norm(p x − p y) / 2 > 0
using less by auto

then obtain e where e > 0
and e:

∧
u v . [[u ∈ {0 ..1}; v ∈ {0 ..1}; dist v u < e]] =⇒ dist (p v) (p u)

< norm(p x − p y) / 2
by (metis uniformly continuous onE [OF ucont p])

have minxy : min e (y − x ) < (y − x ) ∗ (3 / 2 )
by (subst min less iff disj ) (simp add : less)

define w where w ≡ x + (min e (y − x ) / 3 )
define z where z ≡y − (min e (y − x ) / 3 )
have w < z and w : w ∈ {x<..<y} and z : z ∈ {x<..<y}
and wxe: norm(w − x ) < e and zye: norm(z − y) < e
using minxy 〈0 < e〉 less unfolding w def z def by auto

have Fclo:
∧
T . T ∈ range F =⇒ closed T

by (metis 〈
∧
n. closed (F n)〉 image iff )

have eq : {w ..z} ∩
⋂
(F ‘ UNIV ) = {}

using less w z by (simp add : open segment eq real ivl disjoint iff )
then obtain K where finite K and K : {w ..z} ∩ (

⋂
(F ‘ K )) = {}

by (metis finite subset image compact imp fip [OF compact interval Fclo])
then have K 6= {}
using 〈w < z 〉 〈{w ..z} ∩

⋂
(F ‘ K ) = {}〉 by auto

define n where n ≡ Max K
have n ∈ K unfolding n def by (metis 〈K 6= {}〉 〈finite K 〉 Max in)
have F n ⊆

⋂
(F ‘ K )

unfolding n def by (metis Fsub Max ge 〈K 6= {}〉 〈finite K 〉 cINF greatest
lift Suc antimono le)

with K have wzF null : {w ..z} ∩ F n = {}
by (metis disjoint iff not equal subset eq)

obtain u where u: u ∈ F n u ∈ {x ..w} ({u..w} − {u}) ∩ F n = {}
proof (cases w ∈ F n)
case True
then show ?thesis

by (metis wzF null 〈w < z 〉 atLeastAtMost iff disjoint iff not equal
less eq real def )

next
case False
obtain u where u ∈ F n u ∈ {x ..w} {u<..<w} ∩ F n = {}
proof (rule segment to point exists [of F n ∩ {x ..w} w ])
show closed (F n ∩ {x ..w})
by (metis 〈

∧
n. closed (F n)〉 closed Int closed real atLeastAtMost)

show F n ∩ {x ..w} 6= {}
by (metis atLeastAtMost iff disjoint iff not equal greaterThanLessThan iff

less.prems(1 ) less eq real def w)
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qed (auto simp: open segment eq real ivl intro!: that)
with False show thesis
by (auto simp add : disjoint iff less eq real def intro!: that)

qed
obtain v where v : v ∈ F n v ∈ {z ..y} ({z ..v} − {v}) ∩ F n = {}
proof (cases z ∈ F n)
case True
have z ∈ {w ..z}
using 〈w < z 〉 by auto

then show ?thesis
by (metis wzF null Int iff True empty iff )

next
case False
show ?thesis
proof (rule segment to point exists [of F n ∩ {z ..y} z ])
show closed (F n ∩ {z ..y})
by (metis 〈

∧
n. closed (F n)〉 closed Int closed atLeastAtMost)

show F n ∩ {z ..y} 6= {}
by (metis atLeastAtMost iff disjoint iff not equal greaterThanLessThan iff

less.prems(2 ) less eq real def z )
show

∧
b. [[b ∈ F n ∩ {z ..y}; open segment z b ∩ (F n ∩ {z ..y}) = {}]]

=⇒ thesis
proof
show

∧
b. [[b ∈ F n ∩ {z ..y}; open segment z b ∩ (F n ∩ {z ..y}) = {}]]

=⇒ ({z ..b} − {b}) ∩ F n = {}
using False by (auto simp: open segment eq real ivl less eq real def )

qed auto
qed

qed
obtain u v where u ∈ {0 ..1} v ∈ {0 ..1} norm(u − x ) < e norm(v − y)

< e p u = p v
proof
show u ∈ {0 ..1} v ∈ {0 ..1}
by (metis F01 〈u ∈ F n〉 〈v ∈ F n〉 subsetD)+

show norm(u − x ) < e norm (v − y) < e
using 〈u ∈ {x ..w}〉 〈v ∈ {z ..y}〉 atLeastAtMost iff real norm def wxe zye

by auto
show p u = p v
proof (rule peq)
show u ∈ F n v ∈ F n
by (auto simp: u v)

have False if ξ ∈ F n u < ξ ξ < v for ξ
proof −
have ξ /∈ {z ..v}

by (metis DiffI disjoint iff not equal less irrefl singletonD that(1 ,3 )
v(3 ))

moreover have ξ /∈ {w ..z} ∩ F n
by (metis equals0D wzF null)

ultimately have ξ ∈ {u..w}
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using that by auto
then show ?thesis
by (metis DiffI disjoint iff not equal less eq real def not le singletonD

that(1 ,2 ) u(3 ))
qed
moreover
have [[ξ ∈ F n; v < ξ; ξ < u]] =⇒ False for ξ
using 〈u ∈ {x ..w}〉 〈v ∈ {z ..y}〉 〈w < z 〉 by simp

ultimately
show open segment u v ∩ F n = {}
by (force simp: open segment eq real ivl)

qed
qed
then show ?case
using e [of x u] e [of y v ] xy
by (metis dist norm dist triangle half r order less irrefl)

qed (auto simp: open segment commute)
show ?thesis
unfolding ϕ def by (metis (no types, hide lams) INT I Inf lower2 rangeI

that(3 ) F01 subsetCE pqF )
qed
show closed {0 ..1 ::real} by auto

qed (meson ϕ def )
then have T ⊆ {0 ..1} 0 ∈ T 1 ∈ T
and peq :

∧
x y . [[x ∈ T ; y ∈ T ; open segment x y ∩ T = {}]] =⇒ p x = p y

unfolding ϕ def by metis+
then have T 6= {} by auto
define h where h ≡ λx . p(SOME y . y ∈ T ∧ open segment x y ∩ T = {})
have p y = p z if y ∈ T z ∈ T and xyT : open segment x y ∩ T = {} and xzT :

open segment x z ∩ T = {}
for x y z

proof (cases x ∈ T )
case True
with that show ?thesis by (metis 〈ϕ T 〉 ϕ def )

next
case False
have insert x (open segment x y ∪ open segment x z ) ∩ T = {}
by (metis False Int Un distrib2 Int insert left Un empty right xyT xzT )
moreover have open segment y z ∩ T ⊆ insert x (open segment x y ∪

open segment x z ) ∩ T
by (auto simp: open segment eq real ivl)

ultimately have open segment y z ∩ T = {}
by blast

with that peq show ?thesis by metis
qed
then have h eq p gen: h x = p y if y ∈ T open segment x y ∩ T = {} for x y
using that unfolding h def
by (metis (mono tags, lifting) some eq ex )

then have h eq p:
∧
x . x ∈ T =⇒ h x = p x
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by simp
have disjoint :

∧
x . ∃ y . y ∈ T ∧ open segment x y ∩ T = {}

by (meson 〈T 6= {}〉 〈closed T 〉 segment to point exists)
have heq : h x = h x ′ if open segment x x ′ ∩ T = {} for x x ′

proof (cases x ∈ T ∨ x ′ ∈ T )
case True
then show ?thesis
by (metis h eq p h eq p gen open segment commute that)

next
case False
obtain y y ′ where y ∈ T open segment x y ∩ T = {} h x = p y
y ′ ∈ T open segment x ′ y ′ ∩ T = {} h x ′ = p y ′

by (meson disjoint h eq p gen)
moreover have open segment y y ′ ⊆ (insert x (insert x ′ (open segment x y ∪

open segment x ′ y ′ ∪ open segment x x ′)))
by (auto simp: open segment eq real ivl)

ultimately show ?thesis
using False that by (fastforce simp add : h eq p intro!: peq)

qed
have h ‘ {0 ..1} homeomorphic {0 ..1 ::real}
proof (rule homeomorphic monotone image interval)
show continuous on {0 ..1} h
proof (clarsimp simp add : continuous on iff )
fix u ε::real
assume 0 < ε 0 ≤ u u ≤ 1
then obtain δ where δ > 0 and δ:

∧
v . v ∈ {0 ..1} =⇒ dist v u < δ −→

dist (p v) (p u) < ε / 2
using ucont p [unfolded uniformly continuous on def ]
by (metis atLeastAtMost iff half gt zero iff )

then have dist (h v) (h u) < ε if v ∈ {0 ..1} dist v u < δ for v
proof (cases open segment u v ∩ T = {})
case True
then show ?thesis
using 〈0 < ε〉 heq by auto

next
case False
have uvT : closed (closed segment u v ∩ T ) closed segment u v ∩ T 6= {}
using False open closed segment by (auto simp: 〈closed T 〉 closed Int)

obtain w where w ∈ T and w : w ∈ closed segment u v open segment u w
∩ T = {}

proof (rule segment to point exists [OF uvT ])
fix b
assume b ∈ closed segment u v ∩ T open segment u b ∩ (closed segment

u v ∩ T ) = {}
then show thesis

by (metis IntD1 IntD2 ends in segment(1 ) inf .orderE inf assoc sub-
set oc segment that)

qed
then have puw : dist (p u) (p w) < ε / 2
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by (metis (no types) 〈T ⊆ {0 ..1}〉 〈dist v u < δ〉 δ dist commute
dist in closed segment le less trans subsetCE )

obtain z where z ∈ T and z : z ∈ closed segment u v open segment v z ∩
T = {}

proof (rule segment to point exists [OF uvT ])
fix b
assume b ∈ closed segment u v ∩ T open segment v b ∩ (closed segment

u v ∩ T ) = {}
then show thesis

by (metis IntD1 IntD2 ends in segment(2 ) inf .orderE inf assoc sub-
set oc segment that)

qed
then have dist (p u) (p z ) < ε / 2
by (metis 〈T ⊆ {0 ..1}〉 〈dist v u < δ〉 δ dist commute dist in closed segment

le less trans subsetCE )
then show ?thesis
using puw by (metis (no types) 〈w ∈ T 〉 〈z ∈ T 〉 dist commute dist triangle half l

h eq p gen w(2 ) z (2 ))
qed
with 〈0 < δ〉 show ∃ δ>0 . ∀ v∈{0 ..1}. dist v u < δ −→ dist (h v) (h u) < ε

by blast
qed
show connected ({0 ..1} ∩ h −‘ {z}) for z
proof (clarsimp simp add : connected iff connected component)
fix u v
assume huv eq : h v = h u and uv : 0 ≤ u u ≤ 1 0 ≤ v v ≤ 1
have ∃T . connected T ∧ T ⊆ {0 ..1} ∧ T ⊆ h −‘ {h u} ∧ u ∈ T ∧ v ∈ T
proof (intro exI conjI )
show connected (closed segment u v)
by simp

show closed segment u v ⊆ {0 ..1}
by (simp add : uv closed segment eq real ivl)

have pxy : p x = p y
if T ⊆ {0 ..1} 0 ∈ T 1 ∈ T x ∈ T y ∈ T
and disjT : open segment x y ∩ (T − open segment u v) = {}
and xynot : x /∈ open segment u v y /∈ open segment u v
for x y

proof (cases open segment x y ∩ open segment u v = {})
case True
then show ?thesis
by (metis Diff Int distrib Diff empty peq disjT 〈x ∈ T 〉 〈y ∈ T 〉)

next
case False
then have open segment x u ∪ open segment y v ⊆ open segment x y −

open segment u v ∨
open segment y u ∪ open segment x v ⊆ open segment x y −

open segment u v (is ?xuyv ∨ ?yuxv)
using xynot by (fastforce simp add : open segment eq real ivl not le

not less split : if split asm)
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then show p x = p y
proof
assume ?xuyv
then have open segment x u ∩ T = {} open segment y v ∩ T = {}
using disjT by auto

then have h x = h y
using heq huv eq by auto

then show ?thesis
using h eq p 〈x ∈ T 〉 〈y ∈ T 〉 by auto

next
assume ?yuxv
then have open segment y u ∩ T = {} open segment x v ∩ T = {}
using disjT by auto

then have h x = h y
using heq [of y u] heq [of x v ] huv eq by auto

then show ?thesis
using h eq p 〈x ∈ T 〉 〈y ∈ T 〉 by auto

qed
qed
have ¬ T − open segment u v ⊂ T
proof (rule T )
show closed (T − open segment u v)
by (simp add : closed Diff [OF 〈closed T 〉] open segment eq real ivl)

have 0 /∈ open segment u v 1 /∈ open segment u v
using open segment eq real ivl uv by auto

then show ϕ (T − open segment u v)
using 〈T ⊆ {0 ..1}〉 〈0 ∈ T 〉 〈1 ∈ T 〉

by (auto simp: ϕ def ) (meson peq pxy)
qed
then have open segment u v ∩ T = {}
by blast

then show closed segment u v ⊆ h −‘ {h u}
by (force intro: heq simp: open segment eq real ivl closed segment eq real ivl

split : if split asm)+
qed auto
then show connected component ({0 ..1} ∩ h −‘ {h u}) u v
by (simp add : connected component def )

qed
show h 1 6= h 0
by (metis 〈ϕ T 〉 ϕ def a 〈a 6= b〉 b h eq p pathfinish def pathstart def )

qed
then obtain f and g :: real ⇒ ′a
where gfeq : (∀ x∈h ‘ {0 ..1}. (g(f x ) = x )) and fhim: f ‘ h ‘ {0 ..1} = {0 ..1}

and contf : continuous on (h ‘ {0 ..1}) f
and fgeq : (∀ y∈{0 ..1}. (f (g y) = y)) and pag : path image g = h ‘ {0 ..1} and

contg : continuous on {0 ..1} g
by (auto simp: homeomorphic def homeomorphism def path image def )

then have arc g
by (metis arc def path def inj on def )
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obtain u v where u ∈ {0 ..1} a = g u v ∈ {0 ..1} b = g v
by (metis (mono tags, hide lams) 〈ϕ T 〉 ϕ def a b fhim gfeq h eq p imageI

path image def pathfinish def pathfinish in path image pathstart def pathstart in path image)
then have a ∈ path image g b ∈ path image g
using path image def by blast+

have ph: path image h ⊆ path image p
by (metis image mono image subset iff path image def disjoint h eq p gen 〈T ⊆

{0 ..1}〉)
show ?thesis
proof
show pathstart (subpath u v g) = a pathfinish (subpath u v g) = b
by (simp all add : 〈a = g u〉 〈b = g v 〉)

show path image (subpath u v g) ⊆ path image p
by (metis 〈u ∈ {0 ..1}〉 〈v ∈ {0 ..1}〉 order trans pag path image def path image subpath subset

ph)
show arc (subpath u v g)
using 〈arc g〉 〈a = g u〉 〈b = g v 〉 〈u ∈ {0 ..1}〉 〈v ∈ {0 ..1}〉 arc subpath arc 〈a

6= b〉 by blast
qed

qed

corollary path connected arcwise:
fixes S :: ′a::{complete space,real normed vector} set
shows path connected S ←→

(∀ x ∈ S . ∀ y ∈ S . x 6= y −→ (∃ g . arc g ∧ path image g ⊆ S ∧ pathstart g
= x ∧ pathfinish g = y))

(is ?lhs = ?rhs)
proof (intro iffI impI ballI )
fix x y
assume path connected S x ∈ S y ∈ S x 6= y
then obtain p where p: path p path image p ⊆ S pathstart p = x pathfinish p

= y
by (force simp: path connected def )

then show ∃ g . arc g ∧ path image g ⊆ S ∧ pathstart g = x ∧ pathfinish g = y
by (metis 〈x 6= y〉 order trans path contains arc)

next
assume R [rule format ]: ?rhs
show ?lhs
unfolding path connected def

proof (intro ballI )
fix x y
assume x ∈ S y ∈ S
show ∃ g . path g ∧ path image g ⊆ S ∧ pathstart g = x ∧ pathfinish g = y
proof (cases x = y)
case True with 〈x ∈ S 〉 path component def path component refl show ?thesis

by blast
next
case False with R [OF 〈x ∈ S 〉 〈y ∈ S 〉] show ?thesis
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by (auto intro: arc imp path)
qed

qed
qed

corollary arc connected trans:
fixes g :: real ⇒ ′a::{complete space,real normed vector}
assumes arc g arc h pathfinish g = pathstart h pathstart g 6= pathfinish h
obtains i where arc i path image i ⊆ path image g ∪ path image h

pathstart i = pathstart g pathfinish i = pathfinish h
by (metis (no types, hide lams) arc imp path assms path contains arc path image join

path join pathfinish join pathstart join)

6.39.4 Accessibility of frontier points

lemma dense accessible frontier points:
fixes S :: ′a::{complete space,real normed vector} set
assumes open S and opeSV : openin (top of set (frontier S )) V and V 6= {}
obtains g where arc g g ‘ {0 ..<1} ⊆ S pathstart g ∈ S pathfinish g ∈ V

proof −
obtain z where z ∈ V
using 〈V 6= {}〉 by auto

then obtain r where r > 0 and r : ball z r ∩ frontier S ⊆ V
by (metis openin contains ball opeSV )

then have z ∈ frontier S
using 〈z ∈ V 〉 opeSV openin contains ball by blast

then have z ∈ closure S z /∈ S
by (simp all add : frontier def assms interior open)

with 〈r > 0 〉 have infinite (S ∩ ball z r)
by (auto simp: closure def islimpt eq infinite ball)

then obtain y where y ∈ S and y : y ∈ ball z r
using infinite imp nonempty by force

then have y /∈ frontier S
by (meson 〈open S 〉 disjoint iff not equal frontier disjoint eq)

have y 6= z
using 〈y ∈ S 〉 〈z /∈ S 〉 by blast

have path connected(ball z r)
by (simp add : convex imp path connected)

with y 〈r > 0 〉 obtain g where arc g and pig : path image g ⊆ ball z r
and g : pathstart g = y pathfinish g = z

using 〈y 6= z 〉 by (force simp: path connected arcwise)
have continuous on {0 ..1} g
using 〈arc g〉 arc imp path path def by blast

then have compact (g −‘ frontier S ∩ {0 ..1})
by (simp add : bounded Int closed Diff closed vimage Int compact eq bounded closed)
moreover have g −‘ frontier S ∩ {0 ..1} 6= {}
proof −
have ∃ r . r ∈ g −‘ frontier S ∧ r ∈ {0 ..1}
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by (metis 〈z ∈ frontier S 〉 g(2 ) imageE path image def pathfinish in path image
vimageI2 )

then show ?thesis
by blast

qed
ultimately obtain t where gt : g t ∈ frontier S and 0 ≤ t t ≤ 1

and t :
∧
u. [[g u ∈ frontier S ; 0 ≤ u; u ≤ 1 ]] =⇒ t ≤ u

by (force simp: dest !: compact attains inf )
moreover have t 6= 0
by (metis 〈y /∈ frontier S 〉 g(1 ) gt pathstart def )

ultimately have t01 : 0 < t t ≤ 1
by auto

have V ⊆ frontier S
using opeSV openin contains ball by blast

show ?thesis
proof
show arc (subpath 0 t g)
by (simp add : 〈0 ≤ t 〉 〈t ≤ 1 〉 〈arc g〉 〈t 6= 0 〉 arc subpath arc)

have g 0 ∈ S
by (metis 〈y ∈ S 〉 g(1 ) pathstart def )

then show pathstart (subpath 0 t g) ∈ S
by auto

have g t ∈ V
by (metis IntI atLeastAtMost iff gt image eqI path image def pig r subsetCE

〈0 ≤ t 〉 〈t ≤ 1 〉)
then show pathfinish (subpath 0 t g) ∈ V
by auto

then have inj on (subpath 0 t g) {0 ..1}
using t01 〈arc (subpath 0 t g)〉 arc imp inj on by blast

then have subpath 0 t g ‘ {0 ..<1} ⊆ subpath 0 t g ‘ {0 ..1} − {subpath 0 t g
1}

by (force simp: dest : inj onD)
moreover have False if subpath 0 t g ‘ ({0 ..<1}) − S 6= {}
proof −
have contg : continuous on {0 ..1} g
using 〈arc g〉 by (auto simp: arc def path def )

have subpath 0 t g ‘ {0 ..<1} ∩ frontier S 6= {}
proof (rule connected Int frontier [OF that ])
show connected (subpath 0 t g ‘ {0 ..<1})
proof (rule connected continuous image)
show continuous on {0 ..<1} (subpath 0 t g)

by (meson 〈arc (subpath 0 t g)〉 arc def atLeastLessThan subseteq atLeastAtMost iff
continuous on subset order refl path def )

qed auto
show subpath 0 t g ‘ {0 ..<1} ∩ S 6= {}
using 〈y ∈ S 〉 g(1 ) by (force simp: subpath def image def pathstart def )

qed
then obtain x where x ∈ subpath 0 t g ‘ {0 ..<1} x ∈ frontier S
by blast
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with t01 〈0 ≤ t 〉 mult le one t show False
by (fastforce simp: subpath def )

qed
then have subpath 0 t g ‘ {0 ..1} − {subpath 0 t g 1} ⊆ S
using subsetD by fastforce

ultimately show subpath 0 t g ‘ {0 ..<1} ⊆ S
by auto

qed
qed

lemma dense accessible frontier points connected :
fixes S :: ′a::{complete space,real normed vector} set
assumes open S connected S x ∈ S V 6= {}

and ope: openin (top of set (frontier S )) V
obtains g where arc g g ‘ {0 ..<1} ⊆ S pathstart g = x pathfinish g ∈ V

proof −
have V ⊆ frontier S
using ope openin imp subset by blast

with 〈open S 〉 〈x ∈ S 〉 have x /∈ V
using interior open by (auto simp: frontier def )

obtain g where arc g and g : g ‘ {0 ..<1} ⊆ S pathstart g ∈ S pathfinish g ∈ V
by (metis dense accessible frontier points [OF 〈open S 〉 ope 〈V 6= {}〉])

then have path connected S
by (simp add : assms connected open path connected)

with 〈pathstart g ∈ S 〉 〈x ∈ S 〉 have path component S x (pathstart g)
by (simp add : path connected component)

then obtain f where path f and f : path image f ⊆ S pathstart f = x pathfinish
f = pathstart g

by (auto simp: path component def )
then have path (f +++ g)
by (simp add : 〈arc g〉 arc imp path)

then obtain h where arc h
and h: path image h ⊆ path image (f +++ g) pathstart h = x

pathfinish h = pathfinish g
using path contains arc [of f +++ g x pathfinish g ] 〈x /∈ V 〉 〈pathfinish g ∈ V 〉

f
by (metis pathfinish join pathstart join)

have path image h ⊆ path image f ∪ path image g
using h(1 ) path image join subset by auto

then have h ‘ {0 ..1} − {h 1} ⊆ S
using f g h
apply (simp add : path image def pathfinish def subset iff image def Bex def )
by (metis le less)

then have h ‘ {0 ..<1} ⊆ S
using 〈arc h〉 by (force simp: arc def dest : inj onD)

then show thesis
using 〈arc h〉 g(3 ) h that by presburger

qed
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lemma dense access fp aux :
fixes S :: ′a::{complete space,real normed vector} set
assumes S : open S connected S

and opeSU : openin (top of set (frontier S )) U
and opeSV : openin (top of set (frontier S )) V
and V 6= {} ¬ U ⊆ V

obtains g where arc g pathstart g ∈ U pathfinish g ∈ V g ‘ {0<..<1} ⊆ S
proof −
have S 6= {}
using opeSV 〈V 6= {}〉 by (metis frontier empty openin subtopology empty)

then obtain x where x ∈ S by auto
obtain g where arc g and g : g ‘ {0 ..<1} ⊆ S pathstart g = x pathfinish g ∈ V
using dense accessible frontier points connected [OF S 〈x ∈ S 〉 〈V 6= {}〉 opeSV ]

by blast
obtain h where arc h and h: h ‘ {0 ..<1} ⊆ S pathstart h = x pathfinish h ∈ U
− {pathfinish g}
proof (rule dense accessible frontier points connected [OF S 〈x ∈ S 〉])
show U − {pathfinish g} 6= {}
using 〈pathfinish g ∈ V 〉 〈¬ U ⊆ V 〉 by blast

show openin (top of set (frontier S )) (U − {pathfinish g})
by (simp add : opeSU openin delete)

qed auto
obtain γ where arc γ

and γ: path image γ ⊆ path image (reversepath h +++ g)
pathstart γ = pathfinish h pathfinish γ = pathfinish g

proof (rule path contains arc [of (reversepath h +++ g) pathfinish h pathfinish
g ])

show path (reversepath h +++ g)
by (simp add : 〈arc g〉 〈arc h〉 〈pathstart g = x 〉 〈pathstart h = x 〉 arc imp path)
show pathstart (reversepath h +++ g) = pathfinish h

pathfinish (reversepath h +++ g) = pathfinish g
by auto

show pathfinish h 6= pathfinish g
using 〈pathfinish h ∈ U − {pathfinish g}〉 by auto

qed auto
show ?thesis
proof
show arc γ pathstart γ ∈ U pathfinish γ ∈ V
using γ 〈arc γ〉 〈pathfinish h ∈ U − {pathfinish g}〉 〈pathfinish g ∈ V 〉 by

auto
have path image γ ⊆ path image h ∪ path image g

by (metis γ(1 ) g(2 ) h(2 ) path image join path image reversepath pathfin-
ish reversepath)

then have γ ‘ {0 ..1} − {γ 0 , γ 1} ⊆ S
using γ g h
apply (simp add : path image def pathstart def pathfinish def subset iff im-

age def Bex def )
by (metis linorder neqE linordered idom not less)
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then show γ ‘ {0<..<1} ⊆ S
using 〈arc h〉 〈arc γ〉

by (metis arc imp simple path path image def pathfinish def pathstart def sim-
ple path endless)
qed

qed

lemma dense accessible frontier point pairs:
fixes S :: ′a::{complete space,real normed vector} set
assumes S : open S connected S

and opeSU : openin (top of set (frontier S )) U
and opeSV : openin (top of set (frontier S )) V
and U 6= {} V 6= {} U 6= V

obtains g where arc g pathstart g ∈ U pathfinish g ∈ V g ‘ {0<..<1} ⊆ S
proof −
consider ¬ U ⊆ V | ¬ V ⊆ U
using 〈U 6= V 〉 by blast

then show ?thesis
proof cases
case 1 then show ?thesis
using assms dense access fp aux [OF S opeSU opeSV ] that by blast

next
case 2
obtain g where arc g and g : pathstart g ∈ V pathfinish g ∈ U g ‘ {0<..<1}

⊆ S
using assms dense access fp aux [OF S opeSV opeSU ] 2 by blast

show ?thesis
proof
show arc (reversepath g)
by (simp add : 〈arc g〉 arc reversepath)

show pathstart (reversepath g) ∈ U pathfinish (reversepath g) ∈ V
using g by auto

show reversepath g ‘ {0<..<1} ⊆ S
using g by (auto simp: reversepath def )

qed
qed

qed

end

6.40 Absolute Retracts, Absolute Neighbourhood
Retracts and Euclidean Neighbourhood Re-
tracts

theory Retracts
imports
Brouwer Fixpoint
Continuous Extension
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begin

Absolute retracts (AR), absolute neighbourhood retracts (ANR) and also
Euclidean neighbourhood retracts (ENR). We define AR and ANR by spe-
cializing the standard definitions for a set to embedding in spaces of higher
dimension.

John Harrison writes: ”This turns out to be sufficient (since any set in IRn

can be embedded as a closed subset of a convex subset of IRn+1) to derive the
usual definitions, but we need to split them into two implications because of
the lack of type quantifiers. Then ENR turns out to be equivalent to ANR
plus local compactness.”

definition AR :: ′a::topological space set ⇒ bool where
AR S ≡ ∀U . ∀S ′::( ′a ∗ real) set .
S homeomorphic S ′ ∧ closedin (top of set U ) S ′ −→ S ′ retract of U

definition ANR :: ′a::topological space set ⇒ bool where
ANR S ≡ ∀U . ∀S ′::( ′a ∗ real) set .
S homeomorphic S ′ ∧ closedin (top of set U ) S ′

−→ (∃T . openin (top of set U ) T ∧ S ′ retract of T )

definition ENR :: ′a::topological space set ⇒ bool where
ENR S ≡ ∃U . open U ∧ S retract of U

First, show that we do indeed get the ”usual” properties of ARs and ANRs.

lemma AR imp absolute extensor :
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes AR S and contf : continuous on T f and f ‘ T ⊆ S

and cloUT : closedin (top of set U ) T
obtains g where continuous on U g g ‘ U ⊆ S

∧
x . x ∈ T =⇒ g x = f x

proof −
have aff dim S < int (DIM ( ′b × real))
using aff dim le DIM [of S ] by simp

then obtain C and S ′ :: ( ′b ∗ real) set
where C : convex C C 6= {}
and cloCS : closedin (top of set C ) S ′

and hom: S homeomorphic S ′

by (metis that homeomorphic closedin convex )
then have S ′ retract of C
using 〈AR S 〉 by (simp add : AR def )

then obtain r where S ′ ⊆ C and contr : continuous on C r
and r ‘ C ⊆ S ′ and rid :

∧
x . x∈S ′ =⇒ r x = x

by (auto simp: retraction def retract of def )
obtain g h where homeomorphism S S ′ g h
using hom by (force simp: homeomorphic def )

then have continuous on (f ‘ T ) g
by (meson 〈f ‘ T ⊆ S 〉 continuous on subset homeomorphism def )

then have contgf : continuous on T (g ◦ f )
by (metis continuous on compose contf )
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have gfTC : (g ◦ f ) ‘ T ⊆ C
proof −
have g ‘ S = S ′

by (metis (no types) 〈homeomorphism S S ′ g h〉 homeomorphism def )
with 〈S ′ ⊆ C 〉 〈f ‘ T ⊆ S 〉 show ?thesis by force

qed
obtain f ′ where f ′: continuous on U f ′ f ′ ‘ U ⊆ C∧

x . x ∈ T =⇒ f ′ x = (g ◦ f ) x
by (metis Dugundji [OF C cloUT contgf gfTC ])

show ?thesis
proof (rule tac g = h ◦ r ◦ f ′ in that)
show continuous on U (h ◦ r ◦ f ′)
proof (intro continuous on compose f ′)
show continuous on (f ′ ‘ U ) r
using continuous on subset contr f ′ by blast

show continuous on (r ‘ f ′ ‘ U ) h
using 〈homeomorphism S S ′ g h〉 〈f ′ ‘ U ⊆ C 〉

unfolding homeomorphism def
by (metis 〈r ‘ C ⊆ S ′〉 continuous on subset image mono)

qed
show (h ◦ r ◦ f ′) ‘ U ⊆ S
using 〈homeomorphism S S ′ g h〉 〈r ‘ C ⊆ S ′〉 〈f ′ ‘ U ⊆ C 〉

by (fastforce simp: homeomorphism def )
show

∧
x . x ∈ T =⇒ (h ◦ r ◦ f ′) x = f x

using 〈homeomorphism S S ′ g h〉 〈f ‘ T ⊆ S 〉 f ′

by (auto simp: rid homeomorphism def )
qed

qed

lemma AR imp absolute retract :
fixes S :: ′a::euclidean space set and S ′ :: ′b::euclidean space set
assumes AR S S homeomorphic S ′

and clo: closedin (top of set U ) S ′

shows S ′ retract of U
proof −
obtain g h where hom: homeomorphism S S ′ g h
using assms by (force simp: homeomorphic def )

obtain h: continuous on S ′ h h ‘ S ′ ⊆ S
using hom homeomorphism def by blast

obtain h ′ where h ′: continuous on U h ′ h ′ ‘ U ⊆ S
and h ′h:

∧
x . x ∈ S ′ =⇒ h ′ x = h x

by (blast intro: AR imp absolute extensor [OF 〈AR S 〉 h clo])
have [simp]: S ′ ⊆ U using clo closedin limpt by blast
show ?thesis
proof (simp add : retraction def retract of def , intro exI conjI )
show continuous on U (g ◦ h ′)

by (meson continuous on compose continuous on subset h ′ hom homeomor-
phism cont1 )

show (g ◦ h ′) ‘ U ⊆ S ′
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using h ′ by clarsimp (metis hom subsetD homeomorphism def imageI )
show ∀ x∈S ′. (g ◦ h ′) x = x
by clarsimp (metis h ′h hom homeomorphism def )

qed
qed

lemma AR imp absolute retract UNIV :
fixes S :: ′a::euclidean space set and S ′ :: ′b::euclidean space set
assumes AR S S homeomorphic S ′ closed S ′

shows S ′ retract of UNIV
using AR imp absolute retract assms by fastforce

lemma absolute extensor imp AR:
fixes S :: ′a::euclidean space set
assumes

∧
f :: ′a ∗ real ⇒ ′a.∧

U T . [[continuous on T f ; f ‘ T ⊆ S ;
closedin (top of set U ) T ]]
=⇒ ∃ g . continuous on U g ∧ g ‘ U ⊆ S ∧ (∀ x ∈ T . g x = f x )

shows AR S
proof (clarsimp simp: AR def )
fix U and T :: ( ′a ∗ real) set
assume S homeomorphic T and clo: closedin (top of set U ) T
then obtain g h where hom: homeomorphism S T g h
by (force simp: homeomorphic def )

obtain h: continuous on T h h ‘ T ⊆ S
using hom homeomorphism def by blast

obtain h ′ where h ′: continuous on U h ′ h ′ ‘ U ⊆ S
and h ′h: ∀ x∈T . h ′ x = h x

using assms [OF h clo] by blast
have [simp]: T ⊆ U
using clo closedin imp subset by auto

show T retract of U
proof (simp add : retraction def retract of def , intro exI conjI )
show continuous on U (g ◦ h ′)

by (meson continuous on compose continuous on subset h ′ hom homeomor-
phism cont1 )

show (g ◦ h ′) ‘ U ⊆ T
using h ′ by clarsimp (metis hom subsetD homeomorphism def imageI )

show ∀ x∈T . (g ◦ h ′) x = x
by clarsimp (metis h ′h hom homeomorphism def )

qed
qed

lemma AR eq absolute extensor :
fixes S :: ′a::euclidean space set
shows AR S ←→

(∀ f :: ′a ∗ real ⇒ ′a.
∀U T . continuous on T f −→ f ‘ T ⊆ S −→

closedin (top of set U ) T −→
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(∃ g . continuous on U g ∧ g ‘ U ⊆ S ∧ (∀ x ∈ T . g x = f x )))
by (metis (mono tags, hide lams) AR imp absolute extensor absolute extensor imp AR)

lemma AR imp retract :
fixes S :: ′a::euclidean space set
assumes AR S ∧ closedin (top of set U ) S
shows S retract of U

using AR imp absolute retract assms homeomorphic refl by blast

lemma AR homeomorphic AR:
fixes S :: ′a::euclidean space set and T :: ′b::euclidean space set
assumes AR T S homeomorphic T
shows AR S

unfolding AR def
by (metis assms AR imp absolute retract homeomorphic trans [of S ] homeomor-
phic sym)

lemma homeomorphic AR iff AR:
fixes S :: ′a::euclidean space set and T :: ′b::euclidean space set
shows S homeomorphic T =⇒ AR S ←→ AR T

by (metis AR homeomorphic AR homeomorphic sym)

lemma ANR imp absolute neighbourhood extensor :
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes ANR S and contf : continuous on T f and f ‘ T ⊆ S

and cloUT : closedin (top of set U ) T
obtains V g where T ⊆ V openin (top of set U ) V

continuous on V g
g ‘ V ⊆ S

∧
x . x ∈ T =⇒ g x = f x

proof −
have aff dim S < int (DIM ( ′b × real))
using aff dim le DIM [of S ] by simp

then obtain C and S ′ :: ( ′b ∗ real) set
where C : convex C C 6= {}
and cloCS : closedin (top of set C ) S ′

and hom: S homeomorphic S ′

by (metis that homeomorphic closedin convex )
then obtain D where opD : openin (top of set C ) D and S ′ retract of D
using 〈ANR S 〉 by (auto simp: ANR def )

then obtain r where S ′ ⊆ D and contr : continuous on D r
and r ‘ D ⊆ S ′ and rid :

∧
x . x ∈ S ′ =⇒ r x = x

by (auto simp: retraction def retract of def )
obtain g h where homgh: homeomorphism S S ′ g h
using hom by (force simp: homeomorphic def )

have continuous on (f ‘ T ) g
by (meson 〈f ‘ T ⊆ S 〉 continuous on subset homeomorphism def homgh)

then have contgf : continuous on T (g ◦ f )
by (intro continuous on compose contf )

Retracts.html


2892

have gfTC : (g ◦ f ) ‘ T ⊆ C
proof −
have g ‘ S = S ′

by (metis (no types) homeomorphism def homgh)
then show ?thesis

by (metis (no types) assms(3 ) cloCS closedin def image comp image mono
order .trans topspace euclidean subtopology)
qed
obtain f ′ where contf ′: continuous on U f ′

and f ′ ‘ U ⊆ C
and eq :

∧
x . x ∈ T =⇒ f ′ x = (g ◦ f ) x

by (metis Dugundji [OF C cloUT contgf gfTC ])
show ?thesis
proof (rule tac V = U ∩ f ′ −‘ D and g = h ◦ r ◦ f ′ in that)
show T ⊆ U ∩ f ′ −‘ D

using cloUT closedin imp subset 〈S ′ ⊆ D 〉 〈f ‘ T ⊆ S 〉 eq homeomor-
phism image1 homgh

by fastforce
show ope: openin (top of set U ) (U ∩ f ′ −‘ D)
using 〈f ′ ‘ U ⊆ C 〉 by (auto simp: opD contf ′ continuous openin preimage)

have conth: continuous on (r ‘ f ′ ‘ (U ∩ f ′ −‘ D)) h
proof (rule continuous on subset [of S ′])
show continuous on S ′ h
using homeomorphism def homgh by blast

qed (use 〈r ‘ D ⊆ S ′〉 in blast)
show continuous on (U ∩ f ′ −‘ D) (h ◦ r ◦ f ′)
by (blast intro: continuous on compose conth continuous on subset [OF contr ]

continuous on subset [OF contf ′])
show (h ◦ r ◦ f ′) ‘ (U ∩ f ′ −‘ D) ⊆ S
using 〈homeomorphism S S ′ g h〉 〈f ′ ‘ U ⊆ C 〉 〈r ‘ D ⊆ S ′〉

by (auto simp: homeomorphism def )
show

∧
x . x ∈ T =⇒ (h ◦ r ◦ f ′) x = f x

using 〈homeomorphism S S ′ g h〉 〈f ‘ T ⊆ S 〉 eq
by (auto simp: rid homeomorphism def )

qed
qed

corollary ANR imp absolute neighbourhood retract :
fixes S :: ′a::euclidean space set and S ′ :: ′b::euclidean space set
assumes ANR S S homeomorphic S ′

and clo: closedin (top of set U ) S ′

obtains V where openin (top of set U ) V S ′ retract of V
proof −
obtain g h where hom: homeomorphism S S ′ g h
using assms by (force simp: homeomorphic def )

obtain h: continuous on S ′ h h ‘ S ′ ⊆ S
using hom homeomorphism def by blast
from ANR imp absolute neighbourhood extensor [OF 〈ANR S 〉 h clo]
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obtain V h ′ where S ′ ⊆ V and opUV : openin (top of set U ) V
and h ′: continuous on V h ′ h ′ ‘ V ⊆ S
and h ′h:

∧
x . x ∈ S ′ =⇒ h ′ x = h x

by (blast intro: ANR imp absolute neighbourhood extensor [OF 〈ANR S 〉 h clo])
have S ′ retract of V
proof (simp add : retraction def retract of def , intro exI conjI 〈S ′ ⊆ V 〉)
show continuous on V (g ◦ h ′)

by (meson continuous on compose continuous on subset h ′(1 ) h ′(2 ) hom
homeomorphism cont1 )

show (g ◦ h ′) ‘ V ⊆ S ′

using h ′ by clarsimp (metis hom subsetD homeomorphism def imageI )
show ∀ x∈S ′. (g ◦ h ′) x = x
by clarsimp (metis h ′h hom homeomorphism def )

qed
then show ?thesis
by (rule that [OF opUV ])

qed

corollary ANR imp absolute neighbourhood retract UNIV :
fixes S :: ′a::euclidean space set and S ′ :: ′b::euclidean space set
assumes ANR S and hom: S homeomorphic S ′ and clo: closed S ′

obtains V where open V S ′ retract of V
using ANR imp absolute neighbourhood retract [OF 〈ANR S 〉 hom]

by (metis clo closed closedin open openin subtopology UNIV )

corollary neighbourhood extension into ANR:
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes contf : continuous on S f and fim: f ‘ S ⊆ T and ANR T closed S
obtains V g where S ⊆ V open V continuous on V g

g ‘ V ⊆ T
∧
x . x ∈ S =⇒ g x = f x

using ANR imp absolute neighbourhood extensor [OF 〈ANR T 〉 contf fim]
by (metis 〈closed S 〉 closed closedin open openin subtopology UNIV )

lemma absolute neighbourhood extensor imp ANR:
fixes S :: ′a::euclidean space set
assumes

∧
f :: ′a ∗ real ⇒ ′a.∧

U T . [[continuous on T f ; f ‘ T ⊆ S ;
closedin (top of set U ) T ]]
=⇒ ∃V g . T ⊆ V ∧ openin (top of set U ) V ∧

continuous on V g ∧ g ‘ V ⊆ S ∧ (∀ x ∈ T . g x = f x )
shows ANR S

proof (clarsimp simp: ANR def )
fix U and T :: ( ′a ∗ real) set
assume S homeomorphic T and clo: closedin (top of set U ) T
then obtain g h where hom: homeomorphism S T g h
by (force simp: homeomorphic def )

obtain h: continuous on T h h ‘ T ⊆ S
using hom homeomorphism def by blast

obtain V h ′ where T ⊆ V and opV : openin (top of set U ) V
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and h ′: continuous on V h ′ h ′ ‘ V ⊆ S
and h ′h: ∀ x∈T . h ′ x = h x

using assms [OF h clo] by blast
have [simp]: T ⊆ U
using clo closedin imp subset by auto

have T retract of V
proof (simp add : retraction def retract of def , intro exI conjI 〈T ⊆ V 〉)
show continuous on V (g ◦ h ′)

by (meson continuous on compose continuous on subset h ′ hom homeomor-
phism cont1 )

show (g ◦ h ′) ‘ V ⊆ T
using h ′ by clarsimp (metis hom subsetD homeomorphism def imageI )

show ∀ x∈T . (g ◦ h ′) x = x
by clarsimp (metis h ′h hom homeomorphism def )

qed
then show ∃V . openin (top of set U ) V ∧ T retract of V
using opV by blast

qed

lemma ANR eq absolute neighbourhood extensor :
fixes S :: ′a::euclidean space set
shows ANR S ←→

(∀ f :: ′a ∗ real ⇒ ′a.
∀U T . continuous on T f −→ f ‘ T ⊆ S −→

closedin (top of set U ) T −→
(∃V g . T ⊆ V ∧ openin (top of set U ) V ∧

continuous on V g ∧ g ‘ V ⊆ S ∧ (∀ x ∈ T . g x = f x ))) (is
= ?rhs)
proof
assume ANR S then show ?rhs
by (metis ANR imp absolute neighbourhood extensor)

qed (simp add : absolute neighbourhood extensor imp ANR)

lemma ANR imp neighbourhood retract :
fixes S :: ′a::euclidean space set
assumes ANR S closedin (top of set U ) S
obtains V where openin (top of set U ) V S retract of V

using ANR imp absolute neighbourhood retract assms homeomorphic refl by blast

lemma ANR imp absolute closed neighbourhood retract :
fixes S :: ′a::euclidean space set and S ′ :: ′b::euclidean space set
assumes ANR S S homeomorphic S ′ and US ′: closedin (top of set U ) S ′

obtains V W
where openin (top of set U ) V

closedin (top of set U ) W
S ′ ⊆ V V ⊆ W S ′ retract of W

proof −
obtain Z where openin (top of set U ) Z and S ′Z : S ′ retract of Z
by (blast intro: assms ANR imp absolute neighbourhood retract)
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then have UUZ : closedin (top of set U ) (U − Z )
by auto

have S ′ ∩ (U − Z ) = {}
using 〈S ′ retract of Z 〉 closedin retract closedin subtopology by fastforce

then obtain V W
where openin (top of set U ) V
and openin (top of set U ) W
and S ′ ⊆ V U − Z ⊆ W V ∩ W = {}

using separation normal local [OF US ′ UUZ ] by auto
moreover have S ′ retract of U − W
proof (rule retract of subset [OF S ′Z ])
show S ′ ⊆ U − W
using US ′ 〈S ′ ⊆ V 〉 〈V ∩ W = {}〉 closedin subset by fastforce

show U − W ⊆ Z
using Diff subset conv 〈U − Z ⊆ W 〉 by blast

qed
ultimately show ?thesis
by (metis Diff subset conv Diff triv Int Diff Un Int absorb1 openin closedin eq

that topspace euclidean subtopology)
qed

lemma ANR imp closed neighbourhood retract :
fixes S :: ′a::euclidean space set
assumes ANR S closedin (top of set U ) S
obtains V W where openin (top of set U ) V

closedin (top of set U ) W
S ⊆ V V ⊆ W S retract of W

by (meson ANR imp absolute closed neighbourhood retract assms homeomorphic refl)

lemma ANR homeomorphic ANR:
fixes S :: ′a::euclidean space set and T :: ′b::euclidean space set
assumes ANR T S homeomorphic T
shows ANR S

unfolding ANR def
by (metis assms ANR imp absolute neighbourhood retract homeomorphic trans [of
S ] homeomorphic sym)

lemma homeomorphic ANR iff ANR:
fixes S :: ′a::euclidean space set and T :: ′b::euclidean space set
shows S homeomorphic T =⇒ ANR S ←→ ANR T

by (metis ANR homeomorphic ANR homeomorphic sym)

6.40.1 Analogous properties of ENRs

lemma ENR imp absolute neighbourhood retract :
fixes S :: ′a::euclidean space set and S ′ :: ′b::euclidean space set
assumes ENR S and hom: S homeomorphic S ′

and S ′ ⊆ U
obtains V where openin (top of set U ) V S ′ retract of V
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proof −
obtain X where open X S retract of X
using 〈ENR S 〉 by (auto simp: ENR def )

then obtain r where retraction X S r
by (auto simp: retract of def )

have locally compact S ′

using retract of locally compact open imp locally compact
homeomorphic local compactness 〈S retract of X 〉 〈open X 〉 hom by blast

then obtain W where UW : openin (top of set U ) W
and WS ′: closedin (top of set W ) S ′

apply (rule locally compact closedin open)
by (meson Int lower2 assms(3 ) closedin imp subset closedin subset trans le inf iff

openin open)
obtain f g where hom: homeomorphism S S ′ f g
using assms by (force simp: homeomorphic def )

have contg : continuous on S ′ g
using hom homeomorphism def by blast

moreover have g ‘ S ′ ⊆ S by (metis hom equalityE homeomorphism def )
ultimately obtain h where conth: continuous on W h and hg :

∧
x . x ∈ S ′ =⇒

h x = g x
using Tietze unbounded [of S ′ g W ] WS ′ by blast

have W ⊆ U using UW openin open by auto
have S ′ ⊆ W using WS ′ closedin closed by auto
have him:

∧
x . x ∈ S ′ =⇒ h x ∈ X

by (metis (no types) 〈S retract of X 〉 hg hom homeomorphism def image insert
insert absorb insert iff retract of imp subset subset eq)
have S ′ retract of (W ∩ h −‘ X )
proof (simp add : retraction def retract of def , intro exI conjI )
show S ′ ⊆ W S ′ ⊆ h −‘ X
using him WS ′ closedin imp subset by blast+

show continuous on (W ∩ h −‘ X ) (f ◦ r ◦ h)
proof (intro continuous on compose)
show continuous on (W ∩ h −‘ X ) h
by (meson conth continuous on subset inf le1 )

show continuous on (h ‘ (W ∩ h −‘ X )) r
proof −
have h ‘ (W ∩ h −‘ X ) ⊆ X
by blast

then show continuous on (h ‘ (W ∩ h −‘ X )) r
by (meson 〈retraction X S r 〉 continuous on subset retraction)

qed
show continuous on (r ‘ h ‘ (W ∩ h −‘ X )) f
proof (rule continuous on subset [of S ])
show continuous on S f
using hom homeomorphism def by blast

show r ‘ h ‘ (W ∩ h −‘ X ) ⊆ S
by (metis 〈retraction X S r 〉 image mono image subset iff subset vimage

inf le2 retraction)
qed
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qed
show (f ◦ r ◦ h) ‘ (W ∩ h −‘ X ) ⊆ S ′

using 〈retraction X S r 〉 hom
by (auto simp: retraction def homeomorphism def )

show ∀ x∈S ′. (f ◦ r ◦ h) x = x
using 〈retraction X S r 〉 hom by (auto simp: retraction def homeomorphism def

hg)
qed
then show ?thesis
using UW 〈open X 〉 conth continuous openin preimage eq openin trans that by

blast
qed

corollary ENR imp absolute neighbourhood retract UNIV :
fixes S :: ′a::euclidean space set and S ′ :: ′b::euclidean space set
assumes ENR S S homeomorphic S ′

obtains T ′ where open T ′ S ′ retract of T ′

by (metis ENR imp absolute neighbourhood retract UNIV I assms(1 ) assms(2 ) open openin
subsetI subtopology UNIV )

lemma ENR homeomorphic ENR:
fixes S :: ′a::euclidean space set and T :: ′b::euclidean space set
assumes ENR T S homeomorphic T
shows ENR S

unfolding ENR def
by (meson ENR imp absolute neighbourhood retract UNIV assms homeomorphic sym)

lemma homeomorphic ENR iff ENR:
fixes S :: ′a::euclidean space set and T :: ′b::euclidean space set
assumes S homeomorphic T
shows ENR S ←→ ENR T

by (meson ENR homeomorphic ENR assms homeomorphic sym)

lemma ENR translation:
fixes S :: ′a::euclidean space set
shows ENR(image (λx . a + x ) S ) ←→ ENR S

by (meson homeomorphic sym homeomorphic translation homeomorphic ENR iff ENR)

lemma ENR linear image eq :
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes linear f inj f
shows ENR (image f S ) ←→ ENR S
by (meson assms homeomorphic ENR iff ENR linear homeomorphic image)

Some relations among the concepts. We also relate AR to being a retract of
UNIV, which is often a more convenient proxy in the closed case.

lemma AR imp ANR: AR S =⇒ ANR S
using ANR def AR def by fastforce
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lemma ENR imp ANR:
fixes S :: ′a::euclidean space set
shows ENR S =⇒ ANR S
by (meson ANR def ENR imp absolute neighbourhood retract closedin imp subset)

lemma ENR ANR:
fixes S :: ′a::euclidean space set
shows ENR S ←→ ANR S ∧ locally compact S

proof
assume ENR S
then have locally compact S
using ENR def open imp locally compact retract of locally compact by auto

then show ANR S ∧ locally compact S
using ENR imp ANR 〈ENR S 〉 by blast

next
assume ANR S ∧ locally compact S
then have ANR S locally compact S by auto
then obtain T :: ( ′a ∗ real) set where closed T S homeomorphic T
using locally compact homeomorphic closed
by (metis DIM prod DIM real Suc eq plus1 lessI )

then show ENR S
using 〈ANR S 〉

by (meson ANR imp absolute neighbourhood retract UNIV ENR def ENR homeomorphic ENR)
qed

lemma AR ANR:
fixes S :: ′a::euclidean space set
shows AR S ←→ ANR S ∧ contractible S ∧ S 6= {}

(is ?lhs = ?rhs)
proof
assume ?lhs
have aff dim S < int DIM ( ′a × real)

using aff dim le DIM [of S ] by auto
then obtain C and S ′ :: ( ′a ∗ real) set
where convex C C 6= {} closedin (top of set C ) S ′ S homeomorphic S ′

using homeomorphic closedin convex by blast
with 〈AR S 〉 have contractible S

by (meson AR def convex imp contractible homeomorphic contractible eq re-
tract of contractible)
with 〈AR S 〉 show ?rhs
using AR imp ANR AR imp retract by fastforce

next
assume ?rhs
then obtain a and h:: real × ′a ⇒ ′a

where conth: continuous on ({0 ..1} × S ) h
and hS : h ‘ ({0 ..1} × S ) ⊆ S
and [simp]:

∧
x . h(0 , x ) = x

and [simp]:
∧
x . h(1 , x ) = a
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and ANR S S 6= {}
by (auto simp: contractible def homotopic with def )

then have a ∈ S
by (metis all not in conv atLeastAtMost iff image subset iff mem Sigma iff or-

der refl zero le one)
have ∃ g . continuous on W g ∧ g ‘ W ⊆ S ∧ (∀ x∈T . g x = f x )

if f : continuous on T f f ‘ T ⊆ S
and WT : closedin (top of set W ) T

for W T and f :: ′a × real ⇒ ′a
proof −
obtain U g
where T ⊆ U and WU : openin (top of set W ) U
and contg : continuous on U g
and g ‘ U ⊆ S and gf :

∧
x . x ∈ T =⇒ g x = f x

using iffD1 [OF ANR eq absolute neighbourhood extensor 〈ANR S 〉, rule format ,
OF f WT ]

by auto
have WWU : closedin (top of set W ) (W − U )
using WU closedin diff by fastforce

moreover have (W − U ) ∩ T = {}
using 〈T ⊆ U 〉 by auto

ultimately obtain V V ′

where WV ′: openin (top of set W ) V ′

and WV : openin (top of set W ) V
and W − U ⊆ V ′ T ⊆ V V ′ ∩ V = {}

using separation normal local [of W W−U T ] WT by blast
then have WVT : T ∩ (W − V ) = {}
by auto

have WWV : closedin (top of set W ) (W − V )
using WV closedin diff by fastforce

obtain j :: ′a × real ⇒ real
where contj : continuous on W j
and j :

∧
x . x ∈ W =⇒ j x ∈ {0 ..1}

and j0 :
∧
x . x ∈ W − V =⇒ j x = 1

and j1 :
∧
x . x ∈ T =⇒ j x = 0

by (rule Urysohn local [OF WT WWV WVT , of 0 1 ::real ]) (auto simp:
in segment)

have Weq : W = (W − V ) ∪ (W − V ′)
using 〈V ′ ∩ V = {}〉 by force

show ?thesis
proof (intro conjI exI )
have ∗: continuous on (W − V ′) (λx . h (j x , g x ))
proof (rule continuous on compose2 [OF conth continuous on Pair ])
show continuous on (W − V ′) j
by (rule continuous on subset [OF contj Diff subset ])

show continuous on (W − V ′) g
by (metis Diff subset conv 〈W − U ⊆ V ′〉 contg continuous on subset

Un commute)
show (λx . (j x , g x )) ‘ (W − V ′) ⊆ {0 ..1} × S
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using j 〈g ‘ U ⊆ S 〉 〈W − U ⊆ V ′〉 by fastforce
qed
show continuous on W (λx . if x ∈ W − V then a else h (j x , g x ))
proof (subst Weq , rule continuous on cases local)
show continuous on (W − V ′) (λx . h (j x , g x ))
using ∗ by blast

qed (use WWV WV ′ Weq j0 j1 in auto)
next
have h (j (x , y), g (x , y)) ∈ S if (x , y) ∈ W (x , y) ∈ V for x y
proof −
have j (x , y) ∈ {0 ..1}
using j that by blast

moreover have g(x , y) ∈ S
using 〈V ′ ∩ V = {}〉 〈W − U ⊆ V ′〉 〈g ‘ U ⊆ S 〉 that by fastforce

ultimately show ?thesis
using hS by blast

qed
with 〈a ∈ S 〉 〈g ‘ U ⊆ S 〉

show (λx . if x ∈ W − V then a else h (j x , g x )) ‘ W ⊆ S
by auto

next
show ∀ x∈T . (if x ∈ W − V then a else h (j x , g x )) = f x
using 〈T ⊆ V 〉 by (auto simp: j0 j1 gf )

qed
qed
then show ?lhs
by (simp add : AR eq absolute extensor)

qed

lemma ANR retract of ANR:
fixes S :: ′a::euclidean space set
assumes ANR T and ST : S retract of T
shows ANR S

proof (clarsimp simp add : ANR eq absolute neighbourhood extensor)
fix f :: ′a × real ⇒ ′a and U W
assume W : continuous on W f f ‘ W ⊆ S closedin (top of set U ) W
then obtain r where S ⊆ T and r : continuous on T r r ‘ T ⊆ S ∀ x∈S . r x

= x continuous on W f f ‘ W ⊆ S
closedin (top of set U ) W

by (meson ST retract of def retraction def )
then have f ‘ W ⊆ T
by blast

with W obtain V g where V : W ⊆ V openin (top of set U ) V continuous on
V g g ‘ V ⊆ T ∀ x∈W . g x = f x

by (metis ANR imp absolute neighbourhood extensor 〈ANR T 〉)
with r have continuous on V (r ◦ g) ∧ (r ◦ g) ‘ V ⊆ S ∧ (∀ x∈W . (r ◦ g) x

= f x )
by (metis (no types, lifting) comp apply continuous on compose continuous on subset
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image subset iff )
then show ∃V . W ⊆ V ∧ openin (top of set U ) V ∧ (∃ g . continuous on V g
∧ g ‘ V ⊆ S ∧ (∀ x∈W . g x = f x ))

by (meson V )
qed

lemma AR retract of AR:
fixes S :: ′a::euclidean space set
shows [[AR T ; S retract of T ]] =⇒ AR S

using ANR retract of ANR AR ANR retract of contractible by fastforce

lemma ENR retract of ENR:
[[ENR T ; S retract of T ]] =⇒ ENR S

by (meson ENR def retract of trans)

lemma retract of UNIV :
fixes S :: ′a::euclidean space set
shows S retract of UNIV ←→ AR S ∧ closed S

by (metis AR ANR AR imp retract ENR def ENR imp ANR closed UNIV closed closedin
contractible UNIV empty not UNIV open UNIV retract of closed retract of contractible
retract of empty(1 ) subtopology UNIV )

lemma compact AR:
fixes S :: ′a::euclidean space set
shows compact S ∧ AR S ←→ compact S ∧ S retract of UNIV

using compact imp closed retract of UNIV by blast

More properties of ARs, ANRs and ENRs

lemma not AR empty [simp]: ¬ AR({})
by (auto simp: AR def )

lemma ENR empty [simp]: ENR {}
by (simp add : ENR def )

lemma ANR empty [simp]: ANR ({} :: ′a::euclidean space set)
by (simp add : ENR imp ANR)

lemma convex imp AR:
fixes S :: ′a::euclidean space set
shows [[convex S ; S 6= {}]] =⇒ AR S
by (metis (mono tags, lifting) Dugundji absolute extensor imp AR)

lemma convex imp ANR:
fixes S :: ′a::euclidean space set
shows convex S =⇒ ANR S

using ANR empty AR imp ANR convex imp AR by blast

lemma ENR convex closed :
fixes S :: ′a::euclidean space set

Retracts.html


2902

shows [[closed S ; convex S ]] =⇒ ENR S
using ENR def ENR empty convex imp AR retract of UNIV by blast

lemma AR UNIV [simp]: AR (UNIV :: ′a::euclidean space set)
using retract of UNIV by auto

lemma ANR UNIV [simp]: ANR (UNIV :: ′a::euclidean space set)
by (simp add : AR imp ANR)

lemma ENR UNIV [simp]:ENR UNIV
using ENR def by blast

lemma AR singleton:
fixes a :: ′a::euclidean space
shows AR {a}

using retract of UNIV by blast

lemma ANR singleton:
fixes a :: ′a::euclidean space
shows ANR {a}

by (simp add : AR imp ANR AR singleton)

lemma ENR singleton: ENR {a}
using ENR def by blast

ARs closed under union

lemma AR closed Un local aux :
fixes U :: ′a::euclidean space set
assumes closedin (top of set U ) S

closedin (top of set U ) T
AR S AR T AR(S ∩ T )

shows (S ∪ T ) retract of U
proof −
have S ∩ T 6= {}
using assms AR def by fastforce

have S ⊆ U T ⊆ U
using assms by (auto simp: closedin imp subset)

define S ′ where S ′ ≡ {x ∈ U . setdist {x} S ≤ setdist {x} T}
define T ′ where T ′ ≡ {x ∈ U . setdist {x} T ≤ setdist {x} S}
define W where W ≡ {x ∈ U . setdist {x} S = setdist {x} T}
have US ′: closedin (top of set U ) S ′

using continuous closedin preimage [of U λx . setdist {x} S − setdist {x} T
{..0}]

by (simp add : S ′ def vimage def Collect conj eq continuous on diff continu-
ous on setdist)
have UT ′: closedin (top of set U ) T ′

using continuous closedin preimage [of U λx . setdist {x} T − setdist {x} S
{..0}]

by (simp add : T ′ def vimage def Collect conj eq continuous on diff continu-
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ous on setdist)
have S ⊆ S ′

using S ′ def 〈S ⊆ U 〉 setdist sing in set by fastforce
have T ⊆ T ′

using T ′ def 〈T ⊆ U 〉 setdist sing in set by fastforce
have S ∩ T ⊆ W W ⊆ U
using 〈S ⊆ U 〉 by (auto simp: W def setdist sing in set)

have (S ∩ T ) retract of W
proof (rule AR imp absolute retract [OF 〈AR(S ∩ T )〉])
show S ∩ T homeomorphic S ∩ T
by (simp add : homeomorphic refl)

show closedin (top of set W ) (S ∩ T )
by (meson 〈S ∩ T ⊆ W 〉 〈W ⊆ U 〉 assms closedin Int closedin subset trans)

qed
then obtain r0
where S ∩ T ⊆ W and contr0 : continuous on W r0
and r0 ‘ W ⊆ S ∩ T
and r0 [simp]:

∧
x . x ∈ S ∩ T =⇒ r0 x = x

by (auto simp: retract of def retraction def )
have ST : x ∈ W =⇒ x ∈ S ←→ x ∈ T for x
using setdist eq 0 closedin 〈S ∩ T 6= {}〉 assms
by (force simp: W def setdist sing in set)

have S ′ ∩ T ′ = W
by (auto simp: S ′ def T ′ def W def )

then have cloUW : closedin (top of set U ) W
using closedin Int US ′ UT ′ by blast

define r where r ≡ λx . if x ∈ W then r0 x else x
have contr : continuous on (W ∪ (S ∪ T )) r
unfolding r def
proof (rule continuous on cases local [OF contr0 continuous on id ])
show closedin (top of set (W ∪ (S ∪ T ))) W
using 〈S ⊆ U 〉 〈T ⊆ U 〉 〈W ⊆ U 〉 〈closedin (top of set U ) W 〉 closedin subset trans

by fastforce
show closedin (top of set (W ∪ (S ∪ T ))) (S ∪ T )
by (meson 〈S ⊆ U 〉 〈T ⊆ U 〉 〈W ⊆ U 〉 assms closedin Un closedin subset trans

sup.bounded iff sup.cobounded2 )
show

∧
x . x ∈ W ∧ x /∈ W ∨ x ∈ S ∪ T ∧ x ∈ W =⇒ r0 x = x

by (auto simp: ST )
qed
have rim: r ‘ (W ∪ S ) ⊆ S r ‘ (W ∪ T ) ⊆ T
using 〈r0 ‘ W ⊆ S ∩ T 〉 r def by auto

have cloUWS : closedin (top of set U ) (W ∪ S )
by (simp add : cloUW assms closedin Un)

obtain g where contg : continuous on U g
and g ‘ U ⊆ S and geqr :

∧
x . x ∈ W ∪ S =⇒ g x = r x

proof (rule AR imp absolute extensor [OF 〈AR S 〉 cloUWS ])
show continuous on (W ∪ S ) r
using continuous on subset contr sup assoc by blast

qed (use rim in auto)
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have cloUWT : closedin (top of set U ) (W ∪ T )
by (simp add : cloUW assms closedin Un)

obtain h where conth: continuous on U h
and h ‘ U ⊆ T and heqr :

∧
x . x ∈ W ∪ T =⇒ h x = r x

proof (rule AR imp absolute extensor [OF 〈AR T 〉 cloUWT ])
show continuous on (W ∪ T ) r
using continuous on subset contr sup assoc by blast

qed (use rim in auto)
have U : U = S ′ ∪ T ′

by (force simp: S ′ def T ′ def )
have cont : continuous on U (λx . if x ∈ S ′ then g x else h x )
unfolding U
apply (rule continuous on cases local)
using US ′ UT ′ 〈S ′ ∩ T ′ = W 〉 〈U = S ′ ∪ T ′〉

contg conth continuous on subset geqr heqr by auto
have UST : (λx . if x ∈ S ′ then g x else h x ) ‘ U ⊆ S ∪ T
using 〈g ‘ U ⊆ S 〉 〈h ‘ U ⊆ T 〉 by auto

show ?thesis
apply (simp add : retract of def retraction def 〈S ⊆ U 〉 〈T ⊆ U 〉)
apply (rule tac x=λx . if x ∈ S ′ then g x else h x in exI )
using ST UST 〈S ⊆ S ′〉 〈S ′ ∩ T ′ = W 〉 〈T ⊆ T ′〉 cont geqr heqr r def by auto

qed

lemma AR closed Un local :
fixes S :: ′a::euclidean space set
assumes STS : closedin (top of set (S ∪ T )) S

and STT : closedin (top of set (S ∪ T )) T
and AR S AR T AR(S ∩ T )

shows AR(S ∪ T )
proof −
have C retract of U

if hom: S ∪ T homeomorphic C and UC : closedin (top of set U ) C
for U and C :: ( ′a ∗ real) set

proof −
obtain f g where hom: homeomorphism (S ∪ T ) C f g
using hom by (force simp: homeomorphic def )

have US : closedin (top of set U ) (C ∩ g −‘ S )
by (metis STS continuous on imp closedin hom homeomorphism def closedin trans

[OF UC ])
have UT : closedin (top of set U ) (C ∩ g −‘ T )
by (metis STT continuous on closed hom homeomorphism def closedin trans

[OF UC ])
have homeomorphism (C ∩ g −‘ S ) S g f
using hom
apply (auto simp: homeomorphism def elim!: continuous on subset)
apply (rule tac x=f x in image eqI , auto)
done

then have ARS : AR (C ∩ g −‘ S )
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using 〈AR S 〉 homeomorphic AR iff AR homeomorphic def by blast
have homeomorphism (C ∩ g −‘ T ) T g f
using hom
apply (auto simp: homeomorphism def elim!: continuous on subset)
apply (rule tac x=f x in image eqI , auto)
done

then have ART : AR (C ∩ g −‘ T )
using 〈AR T 〉 homeomorphic AR iff AR homeomorphic def by blast

have homeomorphism (C ∩ g −‘ S ∩ (C ∩ g −‘ T )) (S ∩ T ) g f
using hom
apply (auto simp: homeomorphism def elim!: continuous on subset)
apply (rule tac x=f x in image eqI , auto)
done

then have ARI : AR ((C ∩ g −‘ S ) ∩ (C ∩ g −‘ T ))
using 〈AR (S ∩ T )〉 homeomorphic AR iff AR homeomorphic def by blast

have C = (C ∩ g −‘ S ) ∪ (C ∩ g −‘ T )
using hom by (auto simp: homeomorphism def )

then show ?thesis
by (metis AR closed Un local aux [OF US UT ARS ART ARI ])

qed
then show ?thesis
by (force simp: AR def )

qed

corollary AR closed Un:
fixes S :: ′a::euclidean space set
shows [[closed S ; closed T ; AR S ; AR T ; AR (S ∩ T )]] =⇒ AR (S ∪ T )

by (metis AR closed Un local aux closed closedin retract of UNIV subtopology UNIV )

ANRs closed under union

lemma ANR closed Un local aux :
fixes U :: ′a::euclidean space set
assumes US : closedin (top of set U ) S

and UT : closedin (top of set U ) T
and ANR S ANR T ANR(S ∩ T )

obtains V where openin (top of set U ) V (S ∪ T ) retract of V
proof (cases S = {} ∨ T = {})
case True with assms that show ?thesis
by (metis ANR imp neighbourhood retract Un commute inf bot right sup inf absorb)

next
case False
then have [simp]: S 6= {} T 6= {} by auto
have S ⊆ U T ⊆ U
using assms by (auto simp: closedin imp subset)

define S ′ where S ′ ≡ {x ∈ U . setdist {x} S ≤ setdist {x} T}
define T ′ where T ′ ≡ {x ∈ U . setdist {x} T ≤ setdist {x} S}
define W where W ≡ {x ∈ U . setdist {x} S = setdist {x} T}
have cloUS ′: closedin (top of set U ) S ′

using continuous closedin preimage [of U λx . setdist {x} S − setdist {x} T

Retracts.html


2906

{..0}]
by (simp add : S ′ def vimage def Collect conj eq continuous on diff continu-

ous on setdist)
have cloUT ′: closedin (top of set U ) T ′

using continuous closedin preimage [of U λx . setdist {x} T − setdist {x} S
{..0}]

by (simp add : T ′ def vimage def Collect conj eq continuous on diff continu-
ous on setdist)
have S ⊆ S ′

using S ′ def 〈S ⊆ U 〉 setdist sing in set by fastforce
have T ⊆ T ′

using T ′ def 〈T ⊆ U 〉 setdist sing in set by fastforce
have S ′ ∪ T ′ = U
by (auto simp: S ′ def T ′ def )

have W ⊆ S ′

by (simp add : Collect mono S ′ def W def )
have W ⊆ T ′

by (simp add : Collect mono T ′ def W def )
have ST W : S ∩ T ⊆ W and W ⊆ U
using 〈S ⊆ U 〉 by (force simp: W def setdist sing in set)+

have S ′ ∩ T ′ = W
by (auto simp: S ′ def T ′ def W def )

then have cloUW : closedin (top of set U ) W
using closedin Int cloUS ′ cloUT ′ by blast

obtain W ′ W0 where openin (top of set W ) W ′

and cloWW0 : closedin (top of set W ) W0
and S ∩ T ⊆ W ′ W ′ ⊆ W0
and ret : (S ∩ T ) retract of W0

by (meson ANR imp closed neighbourhood retract ST W US UT 〈W ⊆ U 〉

〈ANR(S ∩ T )〉 closedin Int closedin subset trans)
then obtain U0 where opeUU0 : openin (top of set U ) U0

and U0 : S ∩ T ⊆ U0 U0 ∩ W ⊆ W0
unfolding openin open using 〈W ⊆ U 〉 by blast

have W0 ⊆ U
using 〈W ⊆ U 〉 cloWW0 closedin subset by fastforce

obtain r0
where S ∩ T ⊆ W0 and contr0 : continuous on W0 r0 and r0 ‘ W0 ⊆ S ∩ T
and r0 [simp]:

∧
x . x ∈ S ∩ T =⇒ r0 x = x

using ret by (force simp: retract of def retraction def )
have ST : x ∈ W =⇒ x ∈ S ←→ x ∈ T for x
using assms by (auto simp: W def setdist sing in set dest !: setdist eq 0 closedin)
define r where r ≡ λx . if x ∈ W0 then r0 x else x
have r ‘ (W0 ∪ S ) ⊆ S r ‘ (W0 ∪ T ) ⊆ T
using 〈r0 ‘ W0 ⊆ S ∩ T 〉 r def by auto

have contr : continuous on (W0 ∪ (S ∪ T )) r
unfolding r def
proof (rule continuous on cases local [OF contr0 continuous on id ])
show closedin (top of set (W0 ∪ (S ∪ T ))) W0
using closedin subset trans [of U ]
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by (metis le sup iff order refl cloWW0 cloUW closedin trans 〈W0 ⊆ U 〉 〈S ⊆
U 〉 〈T ⊆ U 〉)

show closedin (top of set (W0 ∪ (S ∪ T ))) (S ∪ T )
by (meson 〈S ⊆ U 〉 〈T ⊆ U 〉 〈W0 ⊆ U 〉 assms closedin Un closedin subset trans

sup.bounded iff sup.cobounded2 )
show

∧
x . x ∈ W0 ∧ x /∈ W0 ∨ x ∈ S ∪ T ∧ x ∈ W0 =⇒ r0 x = x

using ST cloWW0 closedin subset by fastforce
qed
have cloS ′WS : closedin (top of set S ′) (W0 ∪ S )
by (meson closedin subset trans US cloUS ′ 〈S ⊆ S ′〉 〈W ⊆ S ′〉 cloUW cloWW0

closedin Un closedin imp subset closedin trans)
obtain W1 g where W0 ∪ S ⊆ W1 and contg : continuous on W1 g

and opeSW1 : openin (top of set S ′) W1
and g ‘ W1 ⊆ S and geqr :

∧
x . x ∈ W0 ∪ S =⇒ g x = r x

proof (rule ANR imp absolute neighbourhood extensor [OF 〈ANR S 〉 〈r ‘ (W0
∪ S ) ⊆ S 〉 cloS ′WS ])

show continuous on (W0 ∪ S ) r
using continuous on subset contr sup assoc by blast

qed auto
have cloT ′WT : closedin (top of set T ′) (W0 ∪ T )
by (meson closedin subset trans UT cloUT ′ 〈T ⊆ T ′〉 〈W ⊆ T ′〉 cloUW cloWW0

closedin Un closedin imp subset closedin trans)
obtain W2 h where W0 ∪ T ⊆ W2 and conth: continuous on W2 h

and opeSW2 : openin (top of set T ′) W2
and h ‘ W2 ⊆ T and heqr :

∧
x . x ∈ W0 ∪ T =⇒ h x = r x

proof (rule ANR imp absolute neighbourhood extensor [OF 〈ANR T 〉 〈r ‘ (W0
∪ T ) ⊆ T 〉 cloT ′WT ])

show continuous on (W0 ∪ T ) r
using continuous on subset contr sup assoc by blast

qed auto
have S ′ ∩ T ′ = W
by (force simp: S ′ def T ′ def W def )

obtain O1 O2 where O12 : open O1 W1 = S ′ ∩ O1 open O2 W2 = T ′ ∩ O2
using opeSW1 opeSW2 by (force simp: openin open)

show ?thesis
proof
have eq : W1 − (W − U0 ) ∪ (W2 − (W − U0 ))

= ((U − T ′) ∩ O1 ∪ (U − S ′) ∩ O2 ∪ U ∩ O1 ∩ O2 ) − (W − U0 )
(is ?WW1 ∪ ?WW2 = ?rhs)

using 〈U0 ∩ W ⊆ W0 〉 〈W0 ∪ S ⊆ W1 〉 〈W0 ∪ T ⊆ W2 〉

by (auto simp: 〈S ′ ∪ T ′ = U 〉 [symmetric] 〈S ′ ∩ T ′ = W 〉 [symmetric] 〈W1
= S ′ ∩ O1 〉 〈W2 = T ′ ∩ O2 〉)

show openin (top of set U ) (?WW1 ∪ ?WW2 )
by (simp add : eq 〈open O1 〉 〈open O2 〉 cloUS ′ cloUT ′ cloUW closedin diff

opeUU0 openin Int open openin Un openin diff )
obtain SU ′ where closed SU ′ S ′ = U ∩ SU ′

using cloUS ′ by (auto simp add : closedin closed)
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moreover have ?WW1 = (?WW1 ∪ ?WW2 ) ∩ SU ′

using 〈S ′ = U ∩ SU ′〉 〈W1 = S ′ ∩ O1 〉 〈S ′ ∪ T ′ = U 〉 〈W2 = T ′ ∩ O2 〉

〈S ′ ∩ T ′ = W 〉 〈W0 ∪ S ⊆ W1 〉 U0
by auto

ultimately have cloW1 : closedin (top of set (W1 − (W − U0 ) ∪ (W2 − (W
− U0 )))) (W1 − (W − U0 ))

by (metis closedin closed Int)
obtain TU ′ where closed TU ′ T ′ = U ∩ TU ′

using cloUT ′ by (auto simp add : closedin closed)
moreover have ?WW2 = (?WW1 ∪ ?WW2 ) ∩ TU ′

using 〈T ′ = U ∩ TU ′〉 〈W1 = S ′ ∩ O1 〉 〈S ′ ∪ T ′ = U 〉 〈W2 = T ′ ∩ O2 〉

〈S ′ ∩ T ′ = W 〉 〈W0 ∪ T ⊆ W2 〉 U0
by auto

ultimately have cloW2 : closedin (top of set (?WW1 ∪ ?WW2 )) ?WW2
by (metis closedin closed Int)

let ?gh = λx . if x ∈ S ′ then g x else h x
have ∃ r . continuous on (?WW1 ∪ ?WW2 ) r ∧ r ‘ (?WW1 ∪ ?WW2 ) ⊆ S ∪

T ∧ (∀ x∈S ∪ T . r x = x )
proof (intro exI conjI )
show ∀ x∈S ∪ T . ?gh x = x
using ST 〈S ′ ∩ T ′ = W 〉 geqr heqr O12

by (metis Int iff Un iff 〈W0 ∪ S ⊆ W1 〉 〈W0 ∪ T ⊆ W2 〉 r0 r def
sup.order iff )

have
∧
x . x ∈ ?WW1 ∧ x /∈ S ′ ∨ x ∈ ?WW2 ∧ x ∈ S ′ =⇒ g x = h x

using O12
by (metis (full types) DiffD1 DiffD2 DiffI IntE IntI U0 (2 ) UnCI 〈S ′ ∩ T ′

= W 〉 geqr heqr in mono)
then show continuous on (?WW1 ∪ ?WW2 ) ?gh
using continuous on cases local [OF cloW1 cloW2 continuous on subset [OF

contg ] continuous on subset [OF conth]]
by simp

show ?gh ‘ (?WW1 ∪ ?WW2 ) ⊆ S ∪ T
using 〈W1 = S ′ ∩ O1 〉 〈W2 = T ′ ∩ O2 〉 〈S ′ ∩ T ′ = W 〉 〈g ‘ W1 ⊆ S 〉 〈h

‘ W2 ⊆ T 〉 〈U0 ∩ W ⊆ W0 〉 〈W0 ∪ S ⊆ W1 〉

by (auto simp add : image subset iff )
qed
then show S ∪ T retract of ?WW1 ∪ ?WW2
using 〈W0 ∪ S ⊆ W1 〉 〈W0 ∪ T ⊆ W2 〉 ST opeUU0 U0
by (auto simp: retract of def retraction def )

qed
qed

lemma ANR closed Un local :
fixes S :: ′a::euclidean space set
assumes STS : closedin (top of set (S ∪ T )) S

and STT : closedin (top of set (S ∪ T )) T
and ANR S ANR T ANR(S ∩ T )

shows ANR(S ∪ T )
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proof −
have ∃T . openin (top of set U ) T ∧ C retract of T

if hom: S ∪ T homeomorphic C and UC : closedin (top of set U ) C
for U and C :: ( ′a ∗ real) set

proof −
obtain f g where hom: homeomorphism (S ∪ T ) C f g
using hom by (force simp: homeomorphic def )

have US : closedin (top of set U ) (C ∩ g −‘ S )
by (metis STS UC closedin trans continuous on imp closedin hom homeomor-

phism def )
have UT : closedin (top of set U ) (C ∩ g −‘ T )
by (metis STT UC closedin trans continuous on imp closedin hom homeomor-

phism def )
have homeomorphism (C ∩ g −‘ S ) S g f
using hom
apply (auto simp: homeomorphism def elim!: continuous on subset)
by (rule tac x=f x in image eqI , auto)

then have ANRS : ANR (C ∩ g −‘ S )
using 〈ANR S 〉 homeomorphic ANR iff ANR homeomorphic def by blast

have homeomorphism (C ∩ g −‘ T ) T g f
using hom apply (auto simp: homeomorphism def elim!: continuous on subset)
by (rule tac x=f x in image eqI , auto)

then have ANRT : ANR (C ∩ g −‘ T )
using 〈ANR T 〉 homeomorphic ANR iff ANR homeomorphic def by blast

have homeomorphism (C ∩ g −‘ S ∩ (C ∩ g −‘ T )) (S ∩ T ) g f
using hom
apply (auto simp: homeomorphism def elim!: continuous on subset)
by (rule tac x=f x in image eqI , auto)

then have ANRI : ANR ((C ∩ g −‘ S ) ∩ (C ∩ g −‘ T ))
using 〈ANR (S ∩ T )〉 homeomorphic ANR iff ANR homeomorphic def by

blast
have C = (C ∩ g −‘ S ) ∪ (C ∩ g −‘ T )
using hom by (auto simp: homeomorphism def )

then show ?thesis
by (metis ANR closed Un local aux [OF US UT ANRS ANRT ANRI ])

qed
then show ?thesis
by (auto simp: ANR def )

qed

corollary ANR closed Un:
fixes S :: ′a::euclidean space set
shows [[closed S ; closed T ; ANR S ; ANR T ; ANR (S ∩ T )]] =⇒ ANR (S ∪ T )

by (simp add : ANR closed Un local closedin def diff eq open Compl openin open Int)

lemma ANR openin:
fixes S :: ′a::euclidean space set
assumes ANR T and opeTS : openin (top of set T ) S
shows ANR S
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proof (clarsimp simp only : ANR eq absolute neighbourhood extensor)
fix f :: ′a × real ⇒ ′a and U C
assume contf : continuous on C f and fim: f ‘ C ⊆ S

and cloUC : closedin (top of set U ) C
have f ‘ C ⊆ T
using fim opeTS openin imp subset by blast

obtain W g where C ⊆ W
and UW : openin (top of set U ) W
and contg : continuous on W g
and gim: g ‘ W ⊆ T
and geq :

∧
x . x ∈ C =⇒ g x = f x

using ANR imp absolute neighbourhood extensor [OF 〈ANR T 〉 contf 〈f ‘ C ⊆
T 〉 cloUC ] fim by auto
show ∃V g . C ⊆ V ∧ openin (top of set U ) V ∧ continuous on V g ∧ g ‘ V ⊆

S ∧ (∀ x∈C . g x = f x )
proof (intro exI conjI )
show C ⊆ W ∩ g −‘ S
using 〈C ⊆ W 〉 fim geq by blast

show openin (top of set U ) (W ∩ g −‘ S )
by (metis (mono tags, lifting) UW contg continuous openin preimage gim

opeTS openin trans)
show continuous on (W ∩ g −‘ S ) g
by (blast intro: continuous on subset [OF contg ])

show g ‘ (W ∩ g −‘ S ) ⊆ S
using gim by blast

show ∀ x∈C . g x = f x
using geq by blast

qed
qed

lemma ENR openin:
fixes S :: ′a::euclidean space set
assumes ENR T openin (top of set T ) S
shows ENR S

by (meson ANR openin ENR ANR assms locally open subset)

lemma ANR neighborhood retract :
fixes S :: ′a::euclidean space set
assumes ANR U S retract of T openin (top of set U ) T
shows ANR S

using ANR openin ANR retract of ANR assms by blast

lemma ENR neighborhood retract :
fixes S :: ′a::euclidean space set
assumes ENR U S retract of T openin (top of set U ) T
shows ENR S

using ENR openin ENR retract of ENR assms by blast

lemma ANR rel interior :
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fixes S :: ′a::euclidean space set
shows ANR S =⇒ ANR(rel interior S )
by (blast intro: ANR openin openin set rel interior)

lemma ANR delete:
fixes S :: ′a::euclidean space set
shows ANR S =⇒ ANR(S − {a})
by (blast intro: ANR openin openin delete openin subtopology self )

lemma ENR rel interior :
fixes S :: ′a::euclidean space set
shows ENR S =⇒ ENR(rel interior S )
by (blast intro: ENR openin openin set rel interior)

lemma ENR delete:
fixes S :: ′a::euclidean space set
shows ENR S =⇒ ENR(S − {a})
by (blast intro: ENR openin openin delete openin subtopology self )

lemma open imp ENR: open S =⇒ ENR S
using ENR def by blast

lemma open imp ANR:
fixes S :: ′a::euclidean space set
shows open S =⇒ ANR S

by (simp add : ENR imp ANR open imp ENR)

lemma ANR ball [iff ]:
fixes a :: ′a::euclidean space
shows ANR(ball a r)

by (simp add : convex imp ANR)

lemma ENR ball [iff ]: ENR(ball a r)
by (simp add : open imp ENR)

lemma AR ball [simp]:
fixes a :: ′a::euclidean space
shows AR(ball a r) ←→ 0 < r

by (auto simp: AR ANR convex imp contractible)

lemma ANR cball [iff ]:
fixes a :: ′a::euclidean space
shows ANR(cball a r)

by (simp add : convex imp ANR)

lemma ENR cball :
fixes a :: ′a::euclidean space
shows ENR(cball a r)

using ENR convex closed by blast
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lemma AR cball [simp]:
fixes a :: ′a::euclidean space
shows AR(cball a r) ←→ 0 ≤ r

by (auto simp: AR ANR convex imp contractible)

lemma ANR box [iff ]:
fixes a :: ′a::euclidean space
shows ANR(cbox a b) ANR(box a b)

by (auto simp: convex imp ANR open imp ANR)

lemma ENR box [iff ]:
fixes a :: ′a::euclidean space
shows ENR(cbox a b) ENR(box a b)

by (simp all add : ENR convex closed closed cbox open box open imp ENR)

lemma AR box [simp]:
AR(cbox a b) ←→ cbox a b 6= {} AR(box a b) ←→ box a b 6= {}

by (auto simp: AR ANR convex imp contractible)

lemma ANR interior :
fixes S :: ′a::euclidean space set
shows ANR(interior S )

by (simp add : open imp ANR)

lemma ENR interior :
fixes S :: ′a::euclidean space set
shows ENR(interior S )

by (simp add : open imp ENR)

lemma AR imp contractible:
fixes S :: ′a::euclidean space set
shows AR S =⇒ contractible S

by (simp add : AR ANR)

lemma ENR imp locally compact :
fixes S :: ′a::euclidean space set
shows ENR S =⇒ locally compact S

by (simp add : ENR ANR)

lemma ANR imp locally path connected :
fixes S :: ′a::euclidean space set
assumes ANR S
shows locally path connected S

proof −
obtain U and T :: ( ′a × real) set

where convex U U 6= {}
and UT : closedin (top of set U ) T and S homeomorphic T

proof (rule homeomorphic closedin convex )
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show aff dim S < int DIM ( ′a × real)
using aff dim le DIM [of S ] by auto

qed auto
then have locally path connected T
by (meson ANR imp absolute neighbourhood retract
assms convex imp locally path connected locally open subset retract of locally path connected)

then have S : locally path connected S
if openin (top of set U ) V T retract of V U 6= {} for V

using 〈S homeomorphic T 〉 homeomorphic locally homeomorphic path connectedness
by blast
obtain Ta where (openin (top of set U ) Ta ∧ T retract of Ta)
using ANR def UT 〈S homeomorphic T 〉 assms by moura

then show ?thesis
using S 〈U 6= {}〉 by blast

qed

lemma ANR imp locally connected :
fixes S :: ′a::euclidean space set
assumes ANR S
shows locally connected S

using locally path connected imp locally connected ANR imp locally path connected
assms by auto

lemma AR imp locally path connected :
fixes S :: ′a::euclidean space set
assumes AR S
shows locally path connected S

by (simp add : ANR imp locally path connected AR imp ANR assms)

lemma AR imp locally connected :
fixes S :: ′a::euclidean space set
assumes AR S
shows locally connected S

using ANR imp locally connected AR ANR assms by blast

lemma ENR imp locally path connected :
fixes S :: ′a::euclidean space set
assumes ENR S
shows locally path connected S

by (simp add : ANR imp locally path connected ENR imp ANR assms)

lemma ENR imp locally connected :
fixes S :: ′a::euclidean space set
assumes ENR S
shows locally connected S

using ANR imp locally connected ENR ANR assms by blast

lemma ANR Times:
fixes S :: ′a::euclidean space set and T :: ′b::euclidean space set
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assumes ANR S ANR T shows ANR(S × T )
proof (clarsimp simp only : ANR eq absolute neighbourhood extensor)
fix f :: ( ′a × ′b) × real ⇒ ′a × ′b and U C
assume continuous on C f and fim: f ‘ C ⊆ S × T

and cloUC : closedin (top of set U ) C
have contf1 : continuous on C (fst ◦ f )
by (simp add : 〈continuous on C f 〉 continuous on fst)

obtain W1 g where C ⊆ W1
and UW1 : openin (top of set U ) W1
and contg : continuous on W1 g
and gim: g ‘ W1 ⊆ S
and geq :

∧
x . x ∈ C =⇒ g x = (fst ◦ f ) x

proof (rule ANR imp absolute neighbourhood extensor [OF 〈ANR S 〉 contf1
cloUC ])

show (fst ◦ f ) ‘ C ⊆ S
using fim by auto

qed auto
have contf2 : continuous on C (snd ◦ f )
by (simp add : 〈continuous on C f 〉 continuous on snd)

obtain W2 h where C ⊆ W2
and UW2 : openin (top of set U ) W2
and conth: continuous on W2 h
and him: h ‘ W2 ⊆ T
and heq :

∧
x . x ∈ C =⇒ h x = (snd ◦ f ) x

proof (rule ANR imp absolute neighbourhood extensor [OF 〈ANR T 〉 contf2
cloUC ])

show (snd ◦ f ) ‘ C ⊆ T
using fim by auto

qed auto
show ∃V g . C ⊆ V ∧

openin (top of set U ) V ∧
continuous on V g ∧ g ‘ V ⊆ S × T ∧ (∀ x∈C . g x = f x )

proof (intro exI conjI )
show C ⊆ W1 ∩ W2
by (simp add : 〈C ⊆ W1 〉 〈C ⊆ W2 〉)

show openin (top of set U ) (W1 ∩ W2 )
by (simp add : UW1 UW2 openin Int)

show continuous on (W1 ∩ W2 ) (λx . (g x , h x ))
by (metis (no types) contg conth continuous on Pair continuous on subset

inf commute inf le1 )
show (λx . (g x , h x )) ‘ (W1 ∩ W2 ) ⊆ S × T
using gim him by blast

show (∀ x∈C . (g x , h x ) = f x )
using geq heq by auto

qed
qed

lemma AR Times:
fixes S :: ′a::euclidean space set and T :: ′b::euclidean space set
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assumes AR S AR T shows AR(S × T )
using assms by (simp add : AR ANR ANR Times contractible Times)

6.40.2 More advanced properties of ANRs and ENRs

lemma ENR rel frontier convex :
fixes S :: ′a::euclidean space set
assumes bounded S convex S
shows ENR(rel frontier S )

proof (cases S = {})
case True then show ?thesis
by simp

next
case False
with assms have rel interior S 6= {}
by (simp add : rel interior eq empty)

then obtain a where a: a ∈ rel interior S
by auto

have ahS : affine hull S − {a} ⊆ {x . closest point (affine hull S ) x 6= a}
by (auto simp: closest point self )

have rel frontier S retract of affine hull S − {a}
by (simp add : assms a rel frontier retract of punctured affine hull)

also have . . . retract of {x . closest point (affine hull S ) x 6= a}
unfolding retract of def retraction def ahS
apply (rule tac x=closest point (affine hull S ) in exI )
apply (auto simp: False closest point self affine imp convex closest point in set

continuous on closest point)
done

finally have rel frontier S retract of {x . closest point (affine hull S ) x 6= a} .
moreover have openin (top of set UNIV ) (UNIV ∩ closest point (affine hull

S ) −‘ (− {a}))
by (intro continuous openin preimage gen) (auto simp: False affine imp convex

continuous on closest point)
ultimately show ?thesis
by (meson ENR convex closed ENR delete ENR retract of ENR 〈rel frontier S

retract of affine hull S − {a}〉
closed affine hull convex affine hull)

qed

lemma ANR rel frontier convex :
fixes S :: ′a::euclidean space set

assumes bounded S convex S
shows ANR(rel frontier S )

by (simp add : ENR imp ANR ENR rel frontier convex assms)

lemma ENR closedin Un local :
fixes S :: ′a::euclidean space set
shows [[ENR S ; ENR T ; ENR(S ∩ T );

closedin (top of set (S ∪ T )) S ; closedin (top of set (S ∪ T )) T ]]
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=⇒ ENR(S ∪ T )
by (simp add : ENR ANR ANR closed Un local locally compact closedin Un)

lemma ENR closed Un:
fixes S :: ′a::euclidean space set
shows [[closed S ; closed T ; ENR S ; ENR T ; ENR(S ∩ T )]] =⇒ ENR(S ∪ T )

by (auto simp: closed subset ENR closedin Un local)

lemma absolute retract Un:
fixes S :: ′a::euclidean space set
shows [[S retract of UNIV ; T retract of UNIV ; (S ∩ T ) retract of UNIV ]]

=⇒ (S ∪ T ) retract of UNIV
by (meson AR closed Un local aux closed subset retract of UNIV retract of imp subset)

lemma retract from Un Int :
fixes S :: ′a::euclidean space set
assumes clS : closedin (top of set (S ∪ T )) S

and clT : closedin (top of set (S ∪ T )) T
and Un: (S ∪ T ) retract of U and Int : (S ∩ T ) retract of T

shows S retract of U
proof −
obtain r where r : continuous on T r r ‘ T ⊆ S ∩ T ∀ x∈S ∩ T . r x = x
using Int by (auto simp: retraction def retract of def )

have S retract of S ∪ T
unfolding retraction def retract of def

proof (intro exI conjI )
show continuous on (S ∪ T ) (λx . if x ∈ S then x else r x )
using r by (intro continuous on cases local [OF clS clT ]) auto

qed (use r in auto)
also have . . . retract of U
by (rule Un)

finally show ?thesis .
qed

lemma AR from Un Int local :
fixes S :: ′a::euclidean space set
assumes clS : closedin (top of set (S ∪ T )) S

and clT : closedin (top of set (S ∪ T )) T
and Un: AR(S ∪ T ) and Int : AR(S ∩ T )

shows AR S
by (meson AR imp retract AR retract of AR Un assms closedin closed subset

local .Int
retract from Un Int retract of refl sup ge2 )

lemma AR from Un Int local ′:
fixes S :: ′a::euclidean space set
assumes closedin (top of set (S ∪ T )) S

and closedin (top of set (S ∪ T )) T
and AR(S ∪ T ) AR(S ∩ T )
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shows AR T
using AR from Un Int local [of T S ] assms by (simp add : Un commute Int commute)

lemma AR from Un Int :
fixes S :: ′a::euclidean space set
assumes clo: closed S closed T and Un: AR(S ∪ T ) and Int : AR(S ∩ T )
shows AR S
by (metis AR from Un Int local [OF Un Int ] Un commute clo closed closedin

closedin closed subset inf sup absorb subtopology UNIV top greatest)

lemma ANR from Un Int local :
fixes S :: ′a::euclidean space set
assumes clS : closedin (top of set (S ∪ T )) S

and clT : closedin (top of set (S ∪ T )) T
and Un: ANR(S ∪ T ) and Int : ANR(S ∩ T )

shows ANR S
proof −
obtain V where clo: closedin (top of set (S ∪ T )) (S ∩ T )

and ope: openin (top of set (S ∪ T )) V
and ret : S ∩ T retract of V

using ANR imp neighbourhood retract [OF Int ] by (metis clS clT closedin Int)
then obtain r where r : continuous on V r and rim: r ‘ V ⊆ S ∩ T and req :
∀ x∈S ∩ T . r x = x

by (auto simp: retraction def retract of def )
have Vsub: V ⊆ S ∪ T
by (meson ope openin contains cball)

have Vsup: S ∩ T ⊆ V
by (simp add : retract of imp subset ret)

then have eq : S ∪ V = ((S ∪ T ) − T ) ∪ V
by auto

have eq ′: S ∪ V = S ∪ (V ∩ T )
using Vsub by blast

have continuous on (S ∪ V ∩ T ) (λx . if x ∈ S then x else r x )
proof (rule continuous on cases local)
show closedin (top of set (S ∪ V ∩ T )) S
using clS closedin subset trans inf .boundedE by blast

show closedin (top of set (S ∪ V ∩ T )) (V ∩ T )
using clT Vsup by (auto simp: closedin closed)

show continuous on (V ∩ T ) r
by (meson Int lower1 continuous on subset r)

qed (use req continuous on id in auto)
with rim have S retract of S ∪ V
unfolding retraction def retract of def using eq ′ by fastforce

then show ?thesis
using ANR neighborhood retract [OF Un]
using 〈S ∪ V = S ∪ T − T ∪ V 〉 clT ope by fastforce

qed

lemma ANR from Un Int :
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fixes S :: ′a::euclidean space set
assumes clo: closed S closed T and Un: ANR(S ∪ T ) and Int : ANR(S ∩ T )
shows ANR S
by (metis ANR from Un Int local [OF Un Int ] Un commute clo closed closedin

closedin closed subset inf sup absorb subtopology UNIV top greatest)

lemma ANR finite Union convex closed :
fixes T :: ′a::euclidean space set set
assumes T : finite T and clo:

∧
C . C ∈ T =⇒ closed C and con:

∧
C . C ∈ T

=⇒ convex C
shows ANR(

⋃
T )

proof −
have ANR(

⋃
T ) if card T < n for n

using assms that
proof (induction n arbitrary : T )
case 0 then show ?case by simp

next
case (Suc n)
have ANR(

⋃
U) if finite U U ⊆ T for U

using that
proof (induction U)
case empty
then show ?case by simp

next
case (insert C U)
have ANR (C ∪

⋃
U)

proof (rule ANR closed Un)
show ANR (C ∩

⋃
U)

unfolding Int Union
proof (rule Suc)
show finite ((∩) C ‘ U)
by (simp add : insert .hyps(1 ))

show
∧
Ca. Ca ∈ (∩) C ‘ U =⇒ closed Ca

by (metis (no types, hide lams) Suc.prems(2 ) closed Int subsetD imageE
insert .prems insertI1 insertI2 )

show
∧
Ca. Ca ∈ (∩) C ‘ U =⇒ convex Ca

by (metis (mono tags, lifting) Suc.prems(3 ) convex Int imageE in-
sert .prems insert subset subsetCE )

show card ((∩) C ‘ U) < n
proof −
have card T ≤ n
by (meson Suc.prems(4 ) not less not less eq)

then show ?thesis
by (metis Suc.prems(1 ) card image le card seteq insert .hyps insert .prems

insert subset le trans not less)
qed

qed
show closed (

⋃
U)

using Suc.prems(2 ) insert .hyps(1 ) insert .prems by blast
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qed (use Suc.prems convex imp ANR insert .prems insert .IH in auto)
then show ?case
by simp

qed
then show ?case
using Suc.prems(1 ) by blast

qed
then show ?thesis
by blast

qed

lemma finite imp ANR:
fixes S :: ′a::euclidean space set
assumes finite S
shows ANR S

proof −
have ANR(

⋃
x ∈ S . {x})

by (blast intro: ANR finite Union convex closed assms)
then show ?thesis
by simp

qed

lemma ANR insert :
fixes S :: ′a::euclidean space set
assumes ANR S closed S
shows ANR(insert a S )
by (metis ANR closed Un ANR empty ANR singleton Diff disjoint Diff insert absorb

assms closed singleton insert absorb insert is Un)

lemma ANR path component ANR:
fixes S :: ′a::euclidean space set
shows ANR S =⇒ ANR(path component set S x )
using ANR imp locally path connected ANR openin openin path component locally path connected

by blast

lemma ANR connected component ANR:
fixes S :: ′a::euclidean space set
shows ANR S =⇒ ANR(connected component set S x )
by (metis ANR openin openin connected component locally connected ANR imp locally connected)

lemma ANR component ANR:
fixes S :: ′a::euclidean space set
assumes ANR S c ∈ components S
shows ANR c
by (metis ANR connected component ANR assms componentsE )
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6.40.3 Original ANR material, now for ENRs

lemma ENR bounded :
fixes S :: ′a::euclidean space set
assumes bounded S
shows ENR S ←→ (∃U . open U ∧ bounded U ∧ S retract of U )

(is ?lhs = ?rhs)
proof
obtain r where 0 < r and r : S ⊆ ball 0 r
using bounded subset ballD assms by blast

assume ?lhs
then show ?rhs
by (meson ENR def Elementary Metric Spaces.open ball bounded Int bounded ball

inf le2 le inf iff
open Int r retract of imp subset retract of subset)

next
assume ?rhs
then show ?lhs
using ENR def by blast

qed

lemma absolute retract imp AR gen:
fixes S :: ′a::euclidean space set and S ′ :: ′b::euclidean space set
assumes S retract of T convex T T 6= {} S homeomorphic S ′ closedin (top of set

U ) S ′

shows S ′ retract of U
proof −
have AR T
by (simp add : assms convex imp AR)

then have AR S
using AR retract of AR assms by auto

then show ?thesis
using assms AR imp absolute retract by metis

qed

lemma absolute retract imp AR:
fixes S :: ′a::euclidean space set and S ′ :: ′b::euclidean space set
assumes S retract of UNIV S homeomorphic S ′ closed S ′

shows S ′ retract of UNIV
using AR imp absolute retract UNIV assms retract of UNIV by blast

lemma homeomorphic compact arness:
fixes S :: ′a::euclidean space set and S ′ :: ′b::euclidean space set
assumes S homeomorphic S ′

shows compact S ∧ S retract of UNIV ←→ compact S ′ ∧ S ′ retract of UNIV
using assms homeomorphic compactness
by (metis compact AR homeomorphic AR iff AR)

lemma absolute retract from Un Int :
fixes S :: ′a::euclidean space set
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assumes (S ∪ T ) retract of UNIV (S ∩ T ) retract of UNIV closed S closed T
shows S retract of UNIV
using AR from Un Int assms retract of UNIV by auto

lemma ENR from Un Int gen:
fixes S :: ′a::euclidean space set
assumes closedin (top of set (S ∪ T )) S closedin (top of set (S ∪ T )) T ENR(S
∪ T ) ENR(S ∩ T )
shows ENR S
by (meson ANR from Un Int local ANR imp neighbourhood retract ENR ANR

ENR neighborhood retract assms)

lemma ENR from Un Int :
fixes S :: ′a::euclidean space set
assumes closed S closed T ENR(S ∪ T ) ENR(S ∩ T )
shows ENR S
by (meson ENR from Un Int gen assms closed subset sup ge1 sup ge2 )

lemma ENR finite Union convex closed :
fixes T :: ′a::euclidean space set set
assumes T : finite T and clo:

∧
C . C ∈ T =⇒ closed C and con:

∧
C . C ∈ T

=⇒ convex C
shows ENR(

⋃
T )

by (simp add : ENR ANR ANR finite Union convex closed T clo closed Union
closed imp locally compact con)

lemma finite imp ENR:
fixes S :: ′a::euclidean space set
shows finite S =⇒ ENR S
by (simp add : ENR ANR finite imp ANR finite imp closed closed imp locally compact)

lemma ENR insert :
fixes S :: ′a::euclidean space set
assumes closed S ENR S
shows ENR(insert a S )

proof −
have ENR ({a} ∪ S )
by (metis ANR insert ENR ANR Un commute Un insert right assms closed imp locally compact

closed insert sup bot right)
then show ?thesis
by auto

qed

lemma ENR path component ENR:
fixes S :: ′a::euclidean space set
assumes ENR S
shows ENR(path component set S x )
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by (metis ANR imp locally path connected ENR empty ENR imp ANR ENR openin
assms

locally path connected 2 openin subtopology self path component eq empty)

6.40.4 Finally, spheres are ANRs and ENRs

lemma absolute retract homeomorphic convex compact :
fixes S :: ′a::euclidean space set and U :: ′b::euclidean space set
assumes S homeomorphic U S 6= {} S ⊆ T convex U compact U
shows S retract of T
by (metis UNIV I assms compact AR convex imp AR homeomorphic AR iff AR

homeomorphic compactness homeomorphic empty(1 ) retract of subset subsetI )

lemma frontier retract of punctured universe:
fixes S :: ′a::euclidean space set
assumes convex S bounded S a ∈ interior S
shows (frontier S ) retract of (− {a})
using rel frontier retract of punctured affine hull
by (metis Compl eq Diff UNIV affine hull nonempty interior assms empty iff

rel frontier frontier rel interior nonempty interior)

lemma sphere retract of punctured universe gen:
fixes a :: ′a::euclidean space
assumes b ∈ ball a r
shows sphere a r retract of (− {b})

proof −
have frontier (cball a r) retract of (− {b})
using assms frontier retract of punctured universe interior cball by blast

then show ?thesis
by simp

qed

lemma sphere retract of punctured universe:
fixes a :: ′a::euclidean space
assumes 0 < r
shows sphere a r retract of (− {a})
by (simp add : assms sphere retract of punctured universe gen)

lemma ENR sphere:
fixes a :: ′a::euclidean space
shows ENR(sphere a r)

proof (cases 0 < r)
case True
then have sphere a r retract of −{a}
by (simp add : sphere retract of punctured universe)

with open delete show ?thesis
by (auto simp: ENR def )

next
case False
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then show ?thesis
using finite imp ENR
by (metis finite insert infinite imp nonempty less linear sphere eq empty sphere trivial)

qed

corollary ANR sphere:
fixes a :: ′a::euclidean space
shows ANR(sphere a r)
by (simp add : ENR imp ANR ENR sphere)

6.40.5 Spheres are connected, etc

lemma locally path connected sphere gen:
fixes S :: ′a::euclidean space set
assumes bounded S and convex S
shows locally path connected (rel frontier S )

proof (cases rel interior S = {})
case True
with assms show ?thesis
by (simp add : rel interior eq empty)

next
case False
then obtain a where a: a ∈ rel interior S
by blast

show ?thesis
proof (rule retract of locally path connected)
show locally path connected (affine hull S − {a})
by (meson convex affine hull convex imp locally path connected locally open subset

openin delete openin subtopology self )
show rel frontier S retract of affine hull S − {a}
using a assms rel frontier retract of punctured affine hull by blast

qed
qed

lemma locally connected sphere gen:
fixes S :: ′a::euclidean space set
assumes bounded S and convex S
shows locally connected (rel frontier S )
by (simp add : ANR imp locally connected ANR rel frontier convex assms)

lemma locally path connected sphere:
fixes a :: ′a::euclidean space
shows locally path connected (sphere a r)
using ENR imp locally path connected ENR sphere by blast

lemma locally connected sphere:
fixes a :: ′a::euclidean space
shows locally connected(sphere a r)
using ANR imp locally connected ANR sphere by blast
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6.40.6 Borsuk homotopy extension theorem

It’s only this late so we can use the concept of retraction, saying that the
domain sets or range set are ENRs.

theorem Borsuk homotopy extension homotopic:
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes cloTS : closedin (top of set T ) S

and anr : (ANR S ∧ ANR T ) ∨ ANR U
and contf : continuous on T f
and f ‘ T ⊆ U
and homotopic with canon (λx . True) S U f g

obtains g ′ where homotopic with canon (λx . True) T U f g ′

continuous on T g ′ image g ′ T ⊆ U∧
x . x ∈ S =⇒ g ′ x = g x

proof −
have S ⊆ T using assms closedin imp subset by blast
obtain h where conth: continuous on ({0 ..1} × S ) h

and him: h ‘ ({0 ..1} × S ) ⊆ U
and [simp]:

∧
x . h(0 , x ) = f x

∧
x . h(1 ::real , x ) = g x

using assms by (auto simp: homotopic with def )
define h ′ where h ′ ≡ λz . if snd z ∈ S then h z else (f ◦ snd) z
define B where B ≡ {0 ::real} × T ∪ {0 ..1} × S
have clo0T : closedin (top of set ({0 ..1} × T )) ({0 ::real} × T )
by (simp add : Abstract Topology .closedin Times)

moreover have cloT1S : closedin (top of set ({0 ..1} × T )) ({0 ..1} × S )
by (simp add : Abstract Topology .closedin Times assms)

ultimately have clo0TB :closedin (top of set ({0 ..1} × T )) B
by (auto simp: B def )

have cloBS : closedin (top of set B) ({0 ..1} × S )
by (metis (no types) Un subset iff B def closedin subset trans [OF cloT1S ]

clo0TB closedin imp subset closedin self )
moreover have cloBT : closedin (top of set B) ({0} × T )
using 〈S ⊆ T 〉 closedin subset trans [OF clo0T ]
by (metis B def Un upper1 clo0TB closedin closed inf le1 )

moreover have continuous on ({0} × T ) (f ◦ snd)
proof (rule continuous intros)+
show continuous on (snd ‘ ({0} × T )) f
by (simp add : contf )

qed
ultimately have continuous on ({0 ..1} × S ∪ {0} × T ) (λx . if snd x ∈ S then

h x else (f ◦ snd) x )
by (auto intro!: continuous on cases local conth simp: B def Un commute [of

{0} × T ])
then have conth ′: continuous on B h ′

by (simp add : h ′ def B def Un commute [of {0} × T ])
have image h ′ B ⊆ U
using 〈f ‘ T ⊆ U 〉 him by (auto simp: h ′ def B def )

obtain V k where B ⊆ V and opeTV : openin (top of set ({0 ..1} × T )) V
and contk : continuous on V k and kim: k ‘ V ⊆ U
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and keq :
∧
x . x ∈ B =⇒ k x = h ′ x

using anr
proof
assume ST : ANR S ∧ ANR T
have eq : ({0} × T ∩ {0 ..1} × S ) = {0 ::real} × S
using 〈S ⊆ T 〉 by auto

have ANR B
unfolding B def

proof (rule ANR closed Un local)
show closedin (top of set ({0} × T ∪ {0 ..1} × S )) ({0 ::real} × T )
by (metis cloBT B def )

show closedin (top of set ({0} × T ∪ {0 ..1} × S )) ({0 ..1 ::real} × S )
by (metis Un commute cloBS B def )

qed (simp all add : ANR Times convex imp ANR ANR singleton ST eq)
note Vk = that
have ∗: thesis if openin (top of set ({0 ..1 ::real} × T )) V

retraction V B r for V r
proof −
have continuous on V (h ′ ◦ r)
using conth ′ continuous on compose retractionE that(2 ) by blast

moreover have (h ′ ◦ r) ‘ V ⊆ U
by (metis 〈h ′ ‘ B ⊆ U 〉 image comp retractionE that(2 ))

ultimately show ?thesis
using Vk [of V h ′ ◦ r ] by (metis comp apply retraction that)

qed
show thesis
by (meson ∗ ANR imp neighbourhood retract 〈ANR B 〉 clo0TB retract of def )

next
assume ANR U
with ANR imp absolute neighbourhood extensor 〈h ′ ‘ B ⊆ U 〉 clo0TB conth ′

that
show ?thesis by blast

qed
define S ′ where S ′ ≡ {x . ∃ u::real . u ∈ {0 ..1} ∧ (u, x :: ′a) ∈ {0 ..1} × T −

V }
have closedin (top of set T ) S ′

unfolding S ′ def using closedin self opeTV
by (blast intro: closedin compact projection)

have S ′ def : S ′ = {x . ∃ u::real . (u, x :: ′a) ∈ {0 ..1} × T − V }
by (auto simp: S ′ def )

have cloTS ′: closedin (top of set T ) S ′

using S ′ def 〈closedin (top of set T ) S ′〉 by blast
have S ∩ S ′ = {}
using S ′ def B def 〈B ⊆ V 〉 by force

obtain a :: ′a ⇒ real where conta: continuous on T a
and

∧
x . x ∈ T =⇒ a x ∈ closed segment 1 0

and a1 :
∧
x . x ∈ S =⇒ a x = 1

and a0 :
∧
x . x ∈ S ′ =⇒ a x = 0

by (rule Urysohn local [OF cloTS cloTS ′ 〈S ∩ S ′ = {}〉, of 1 0 ], blast)
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then have ain:
∧
x . x ∈ T =⇒ a x ∈ {0 ..1}

using closed segment eq real ivl by auto
have inV : (u ∗ a t , t) ∈ V if t ∈ T 0 ≤ u u ≤ 1 for t u
proof (rule ccontr)
assume (u ∗ a t , t) /∈ V
with ain [OF 〈t ∈ T 〉] have a t = 0
apply simp

by (metis (no types, lifting) a0 DiffI S ′ def SigmaI atLeastAtMost iff mem Collect eq
mult le one mult nonneg nonneg that)

show False
using B def 〈(u ∗ a t , t) /∈ V 〉 〈B ⊆ V 〉 〈a t = 0 〉 that by auto

qed
show ?thesis
proof
show hom: homotopic with canon (λx . True) T U f (λx . k (a x , x ))
proof (simp add : homotopic with, intro exI conjI )
show continuous on ({0 ..1} × T ) (k ◦ (λz . (fst z ∗R (a ◦ snd) z , snd z )))
apply (intro continuous on compose continuous intros)

apply (force intro: inV continuous on subset [OF contk ] continuous on subset
[OF conta])+

done
show (k ◦ (λz . (fst z ∗R (a ◦ snd) z , snd z ))) ‘ ({0 ..1} × T ) ⊆ U
using inV kim by auto

show ∀ x∈T . (k ◦ (λz . (fst z ∗R (a ◦ snd) z , snd z ))) (0 , x ) = f x
by (simp add : B def h ′ def keq)

show ∀ x∈T . (k ◦ (λz . (fst z ∗R (a ◦ snd) z , snd z ))) (1 , x ) = k (a x , x )
by auto

qed
show continuous on T (λx . k (a x , x ))
using homotopic with imp continuous maps [OF hom] by auto

show (λx . k (a x , x )) ‘ T ⊆ U
proof clarify
fix t
assume t ∈ T
show k (a t , t) ∈ U
by (metis 〈t ∈ T 〉 image subset iff inV kim not one le zero linear mult cancel right1 )

qed
show

∧
x . x ∈ S =⇒ k (a x , x ) = g x

by (simp add : B def a1 h ′ def keq)
qed

qed

corollary nullhomotopic into ANR extension:
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes closed S

and contf : continuous on S f
and ANR T
and fim: f ‘ S ⊆ T
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and S 6= {}
shows (∃ c. homotopic with canon (λx . True) S T f (λx . c)) ←→

(∃ g . continuous on UNIV g ∧ range g ⊆ T ∧ (∀ x ∈ S . g x = f x ))
(is ?lhs = ?rhs)

proof
assume ?lhs
then obtain c where c: homotopic with canon (λx . True) S T (λx . c) f
by (blast intro: homotopic with symD)

have closedin (top of set UNIV ) S
using 〈closed S 〉 closed closedin by fastforce

then obtain g where continuous on UNIV g range g ⊆ T∧
x . x ∈ S =⇒ g x = f x

proof (rule Borsuk homotopy extension homotopic)
show range (λx . c) ⊆ T
using 〈S 6= {}〉 c homotopic with imp subset1 by fastforce

qed (use assms c in auto)
then show ?rhs by blast

next
assume ?rhs
then obtain g where continuous on UNIV g range g ⊆ T

∧
x . x∈S =⇒ g x =

f x
by blast

then obtain c where homotopic with canon (λh. True) UNIV T g (λx . c)
using nullhomotopic from contractible [of UNIV g T ] contractible UNIV by

blast
then have homotopic with canon (λx . True) S T g (λx . c)
by (simp add : homotopic from subtopology)

then show ?lhs
by (force elim: homotopic with eq [of g λx . c] simp: 〈

∧
x . x ∈ S =⇒ g x

= f x 〉)
qed

corollary nullhomotopic into rel frontier extension:
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes closed S

and contf : continuous on S f
and convex T bounded T
and fim: f ‘ S ⊆ rel frontier T
and S 6= {}

shows (∃ c. homotopic with canon (λx . True) S (rel frontier T ) f (λx . c)) ←→
(∃ g . continuous on UNIV g ∧ range g ⊆ rel frontier T ∧ (∀ x ∈ S . g x =

f x ))
by (simp add : nullhomotopic into ANR extension assms ANR rel frontier convex )

corollary nullhomotopic into sphere extension:
fixes f :: ′a::euclidean space ⇒ ′b :: euclidean space
assumes closed S and contf : continuous on S f

and S 6= {} and fim: f ‘ S ⊆ sphere a r
shows ((∃ c. homotopic with canon (λx . True) S (sphere a r) f (λx . c)) ←→
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(∃ g . continuous on UNIV g ∧ range g ⊆ sphere a r ∧ (∀ x ∈ S . g x = f
x )))

(is ?lhs = ?rhs)
proof (cases r = 0 )
case True with fim show ?thesis
by (metis ANR sphere 〈closed S 〉 〈S 6= {}〉 contf nullhomotopic into ANR extension)

next
case False
then have eq : sphere a r = rel frontier (cball a r) by simp
show ?thesis
using fim nullhomotopic into rel frontier extension [OF 〈closed S 〉 contf con-

vex cball bounded cball ]
by (simp add : 〈S 6= {}〉 eq)

qed

proposition Borsuk map essential bounded component :
fixes a :: ′a :: euclidean space
assumes compact S and a /∈ S
shows bounded (connected component set (− S ) a) ←→

¬(∃ c. homotopic with canon (λx . True) S (sphere 0 1 )
(λx . inverse(norm(x − a)) ∗R (x − a)) (λx . c))

(is ?lhs = ?rhs)
proof (cases S = {})
case True then show ?thesis
by simp

next
case False
have closed S bounded S
using 〈compact S 〉 compact eq bounded closed by auto

have s01 : (λx . (x − a) /R norm (x − a)) ‘ S ⊆ sphere 0 1
using 〈a /∈ S 〉 by clarsimp (metis dist eq 0 iff dist norm mult .commute right inverse)
have aincc: a ∈ connected component set (− S ) a
by (simp add : 〈a /∈ S 〉)

obtain r where r>0 and r : S ⊆ ball 0 r
using bounded subset ballD 〈bounded S 〉 by blast

have ¬ ?rhs ←→ ¬ ?lhs
proof
assume notr : ¬ ?rhs
have nog : @ g . continuous on (S ∪ connected component set (− S ) a) g ∧

g ‘ (S ∪ connected component set (− S ) a) ⊆ sphere 0 1 ∧
(∀ x∈S . g x = (x − a) /R norm (x − a))

if bounded (connected component set (− S ) a)
using non extensible Borsuk map [OF 〈compact S 〉 componentsI aincc] 〈a /∈

S 〉 that by auto
obtain g where range g ⊆ sphere 0 1 continuous on UNIV g∧

x . x ∈ S =⇒ g x = (x − a) /R norm (x − a)
using notr
by (auto simp: nullhomotopic into sphere extension

[OF 〈closed S 〉 continuous on Borsuk map [OF 〈a /∈ S 〉] False s01 ])
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with 〈a /∈ S 〉 show ¬ ?lhs
by (metis UNIV I continuous on subset image subset iff nog subsetI )

next
assume ¬ ?lhs
then obtain b where b: b ∈ connected component set (− S ) a and r ≤ norm

b
using bounded iff linear by blast

then have bnot : b /∈ ball 0 r
by simp

have homotopic with canon (λx . True) S (sphere 0 1 ) (λx . (x − a) /R norm
(x − a))

(λx . (x − b) /R norm (x − b))
proof −
have path component (− S ) a b
by (metis (full types) 〈closed S 〉 b mem Collect eq open Compl open path connected component)
then show ?thesis
using Borsuk maps homotopic in path component by blast

qed
moreover
obtain c where homotopic with canon (λx . True) (ball 0 r) (sphere 0 1 )

(λx . inverse (norm (x − b)) ∗R (x − b)) (λx . c)
proof (rule nullhomotopic from contractible)
show contractible (ball (0 :: ′a) r)
by (metis convex imp contractible convex ball)

show continuous on (ball 0 r) (λx . inverse(norm (x − b)) ∗R (x − b))
by (rule continuous on Borsuk map [OF bnot ])

show (λx . (x − b) /R norm (x − b)) ‘ ball 0 r ⊆ sphere 0 1
using bnot Borsuk map into sphere by blast

qed blast
ultimately have homotopic with canon (λx . True) S (sphere 0 1 ) (λx . (x −

a) /R norm (x − a)) (λx . c)
by (meson homotopic with subset left homotopic with trans r)

then show ¬ ?rhs
by blast

qed
then show ?thesis by blast

qed

lemma homotopic Borsuk maps in bounded component :
fixes a :: ′a :: euclidean space
assumes compact S and a /∈ Sand b /∈ S

and boc: bounded (connected component set (− S ) a)
and hom: homotopic with canon (λx . True) S (sphere 0 1 )

(λx . (x − a) /R norm (x − a))
(λx . (x − b) /R norm (x − b))

shows connected component (− S ) a b
proof (rule ccontr)
assume notcc: ¬ connected component (− S ) a b
let ?T = S ∪ connected component set (− S ) a
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have @ g . continuous on (S ∪ connected component set (− S ) a) g ∧
g ‘ (S ∪ connected component set (− S ) a) ⊆ sphere 0 1 ∧
(∀ x∈S . g x = (x − a) /R norm (x − a))

by (simp add : 〈a /∈ S 〉 componentsI non extensible Borsuk map [OF 〈compact
S 〉 boc])
moreover obtain g where continuous on (S ∪ connected component set (− S )

a) g
g ‘ (S ∪ connected component set (− S ) a) ⊆ sphere 0 1∧
x . x ∈ S =⇒ g x = (x − a) /R norm (x − a)

proof (rule Borsuk homotopy extension homotopic)
show closedin (top of set ?T ) S
by (simp add : 〈compact S 〉 closed subset compact imp closed)

show continuous on ?T (λx . (x − b) /R norm (x − b))
by (simp add : 〈b /∈ S 〉 notcc continuous on Borsuk map)

show (λx . (x − b) /R norm (x − b)) ‘ ?T ⊆ sphere 0 1
by (simp add : 〈b /∈ S 〉 notcc Borsuk map into sphere)

show homotopic with canon (λx . True) S (sphere 0 1 )
(λx . (x − b) /R norm (x − b)) (λx . (x − a) /R norm (x − a))

by (simp add : hom homotopic with symD)
qed (auto simp: ANR sphere intro: that)

ultimately show False by blast
qed

lemma Borsuk maps homotopic in connected component eq :
fixes a :: ′a :: euclidean space
assumes S : compact S a /∈ S b /∈ S and 2 : 2 ≤ DIM ( ′a)
shows (homotopic with canon (λx . True) S (sphere 0 1 )

(λx . (x − a) /R norm (x − a))
(λx . (x − b) /R norm (x − b)) ←→

connected component (− S ) a b)
(is ?lhs = ?rhs)

proof
assume L: ?lhs
show ?rhs
proof (cases bounded(connected component set (− S ) a))
case True
show ?thesis
by (rule homotopic Borsuk maps in bounded component [OF S True L])

next
case not bo a: False
show ?thesis
proof (cases bounded(connected component set (− S ) b))
case True
show ?thesis
using homotopic Borsuk maps in bounded component [OF S ]

by (simp add : L True assms connected component sym homotopic Borsuk maps in bounded component
homotopic with sym)

next
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case False
then show ?thesis

using cobounded unique unbounded component [of −S a b] 〈compact S 〉

not bo a
by (auto simp: compact eq bounded closed assms connected component eq eq)

qed
qed

next
assume R: ?rhs
then have path component (− S ) a b
using assms(1 ) compact eq bounded closed open Compl open path connected component set

by fastforce
then show ?lhs
by (simp add : Borsuk maps homotopic in path component)

qed

6.40.7 More extension theorems

lemma extension from clopen:
assumes ope: openin (top of set S ) T

and clo: closedin (top of set S ) T
and contf : continuous on T f and fim: f ‘ T ⊆ U and null : U = {} =⇒ S

= {}
obtains g where continuous on S g g ‘ S ⊆ U

∧
x . x ∈ T =⇒ g x = f x

proof (cases U = {})
case True
then show ?thesis
by (simp add : null that)

next
case False
then obtain a where a ∈ U
by auto

let ?g = λx . if x ∈ T then f x else a
have Seq : S = T ∪ (S − T )
using clo closedin imp subset by fastforce

show ?thesis
proof
have continuous on (T ∪ (S − T )) ?g
using Seq clo ope by (intro continuous on cases local) (auto simp: contf )

with Seq show continuous on S ?g
by metis

show ?g ‘ S ⊆ U
using 〈a ∈ U 〉 fim by auto

show
∧
x . x ∈ T =⇒ ?g x = f x

by auto
qed

qed
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lemma extension from component :
fixes f :: ′a :: euclidean space ⇒ ′b :: euclidean space
assumes S : locally connected S ∨ compact S and ANR U
and C : C ∈ components S and contf : continuous on C f and fim: f ‘ C ⊆ U

obtains g where continuous on S g g ‘ S ⊆ U
∧
x . x ∈ C =⇒ g x = f x

proof −
obtain T g where ope: openin (top of set S ) T

and clo: closedin (top of set S ) T
and C ⊆ T and contg : continuous on T g and gim: g ‘ T ⊆ U
and gf :

∧
x . x ∈ C =⇒ g x = f x

using S
proof
assume locally connected S
show ?thesis
by (metis C 〈locally connected S 〉 openin components locally connected closedin component

contf fim order refl that)
next
assume compact S
then obtain W g where C ⊆ W and opeW : openin (top of set S ) W

and contg : continuous on W g
and gim: g ‘ W ⊆ U and gf :

∧
x . x ∈ C =⇒ g x = f x

using ANR imp absolute neighbourhood extensor [of U C f S ] C 〈ANR U 〉

closedin component contf fim by blast
then obtain V where open V and V : W = S ∩ V
by (auto simp: openin open)

moreover have locally compact S
by (simp add : 〈compact S 〉 closed imp locally compact compact imp closed)

ultimately obtain K where opeK : openin (top of set S ) K and compact K
C ⊆ K K ⊆ V

by (metis C Int subset iff 〈C ⊆W 〉 〈compact S 〉 compact components Sura Bura clopen subset)
show ?thesis
proof
show closedin (top of set S ) K
by (meson 〈compact K 〉 〈compact S 〉 closedin compact eq opeK openin imp subset)
show continuous on K g

by (metis Int subset iff V 〈K ⊆ V 〉 contg continuous on subset opeK
openin subtopology subset eq)

show g ‘ K ⊆ U
using V 〈K ⊆ V 〉 gim opeK openin imp subset by fastforce

qed (use opeK gf 〈C ⊆ K 〉 in auto)
qed
obtain h where continuous on S h h ‘ S ⊆ U

∧
x . x ∈ T =⇒ h x = g x

using extension from clopen
by (metis C bot .extremum uniqueI clo contg gim fim image is empty in components nonempty

ope)
then show ?thesis
by (metis 〈C ⊆ T 〉 gf subset eq that)

qed
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lemma tube lemma:
fixes S :: ′a::euclidean space set and T :: ′b::euclidean space set
assumes compact S and S : S 6= {} (λx . (x ,a)) ‘ S ⊆ U

and ope: openin (top of set (S × T )) U
obtains V where openin (top of set T ) V a ∈ V S × V ⊆ U

proof −
let ?W = {y . ∃ x . x ∈ S ∧ (x , y) ∈ (S × T − U )}
have U ⊆ S × T closedin (top of set (S × T )) (S × T − U )
using ope by (auto simp: openin closedin eq)

then have closedin (top of set T ) ?W
using 〈compact S 〉 closedin compact projection by blast

moreover have a ∈ T − ?W
using 〈U ⊆ S × T 〉 S by auto

moreover have S × (T − ?W ) ⊆ U
by auto

ultimately show ?thesis
by (metis (no types, lifting) Sigma cong closedin def that topspace euclidean subtopology)

qed

lemma tube lemma gen:
fixes S :: ′a::euclidean space set and T :: ′b::euclidean space set
assumes compact S S 6= {} T ⊆ T ′ S × T ⊆ U

and ope: openin (top of set (S × T ′)) U
obtains V where openin (top of set T ′) V T ⊆ V S × V ⊆ U

proof −
have

∧
x . x ∈ T =⇒ ∃V . openin (top of set T ′) V ∧ x ∈ V ∧ S × V ⊆ U

using assms by (auto intro: tube lemma [OF 〈compact S 〉])
then obtain F where F :

∧
x . x ∈ T =⇒ openin (top of set T ′) (F x ) ∧ x ∈ F

x ∧ S × F x ⊆ U
by metis

show ?thesis
proof
show openin (top of set T ′) (

⋃
(F ‘ T ))

using F by blast
show T ⊆

⋃
(F ‘ T )

using F by blast
show S ×

⋃
(F ‘ T ) ⊆ U

using F by auto
qed

qed

proposition homotopic neighbourhood extension:
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes contf : continuous on S f and fim: f ‘ S ⊆ U

and contg : continuous on S g and gim: g ‘ S ⊆ U
and clo: closedin (top of set S ) T
and ANR U and hom: homotopic with canon (λx . True) T U f g

obtains V where T ⊆ V openin (top of set S ) V
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homotopic with canon (λx . True) V U f g
proof −
have T ⊆ S
using clo closedin imp subset by blast

obtain h where conth: continuous on ({0 ..1 ::real} × T ) h
and him: h ‘ ({0 ..1} × T ) ⊆ U
and h0 :

∧
x . h(0 , x ) = f x and h1 :

∧
x . h(1 , x ) = g x

using hom by (auto simp: homotopic with def )
define h ′ where h ′ ≡ λz . if fst z ∈ {0} then f (snd z )

else if fst z ∈ {1} then g(snd z )
else h z

let ?S0 = {0 ::real} × S and ?S1 = {1 ::real} × S
have continuous on(?S0 ∪ (?S1 ∪ {0 ..1} × T )) h ′

unfolding h ′ def
proof (intro continuous on cases local)
show closedin (top of set (?S0 ∪ (?S1 ∪ {0 ..1} × T ))) ?S0

closedin (top of set (?S1 ∪ {0 ..1} × T )) ?S1
using 〈T ⊆ S 〉 by (force intro: closedin Times closedin subset trans [of {0 ..1}

× S ])+
show closedin (top of set (?S0 ∪ (?S1 ∪ {0 ..1} × T ))) (?S1 ∪ {0 ..1} × T )

closedin (top of set (?S1 ∪ {0 ..1} × T )) ({0 ..1} × T )
using 〈T ⊆ S 〉 by (force intro: clo closedin Times closedin subset trans [of

{0 ..1} × S ])+
show continuous on (?S0 ) (λx . f (snd x ))
by (intro continuous intros continuous on compose2 [OF contf ]) auto

show continuous on (?S1 ) (λx . g (snd x ))
by (intro continuous intros continuous on compose2 [OF contg ]) auto

qed (use h0 h1 conth in auto)
then have continuous on ({0 ,1} × S ∪ ({0 ..1} × T )) h ′

by (metis Sigma Un distrib1 Un assoc insert is Un)
moreover have h ′ ‘ ({0 ,1} × S ∪ {0 ..1} × T ) ⊆ U
using fim gim him 〈T ⊆ S 〉 unfolding h ′ def by force

moreover have closedin (top of set ({0 ..1 ::real} × S )) ({0 ,1} × S ∪ {0 ..1 ::real}
× T )

by (intro closedin Times closedin Un clo) (simp all add : closed subset)
ultimately
obtain W k where W : ({0 ,1} × S ) ∪ ({0 ..1} × T ) ⊆ W

and opeW : openin (top of set ({0 ..1} × S )) W
and contk : continuous on W k
and kim: k ‘ W ⊆ U
and kh ′:

∧
x . x ∈ ({0 ,1} × S ) ∪ ({0 ..1} × T ) =⇒ k x = h ′ x

by (metis ANR imp absolute neighbourhood extensor [OF 〈ANR U 〉, of ({0 ,1}
× S ) ∪ ({0 ..1} × T ) h ′ {0 ..1} × S ])
obtain T ′ where opeT ′: openin (top of set S ) T ′

and T ⊆ T ′ and TW : {0 ..1} × T ′ ⊆ W
using tube lemma gen [of {0 ..1 ::real} T S W ] W 〈T ⊆ S 〉 opeW by auto

moreover have homotopic with canon (λx . True) T ′ U f g
proof (simp add : homotopic with, intro exI conjI )
show continuous on ({0 ..1} × T ′) k
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using TW continuous on subset contk by auto
show k ‘ ({0 ..1} × T ′) ⊆ U
using TW kim by fastforce

have T ′ ⊆ S
by (meson opeT ′ subsetD openin imp subset)

then show ∀ x∈T ′. k (0 , x ) = f x ∀ x∈T ′. k (1 , x ) = g x
by (auto simp: kh ′ h ′ def )

qed
ultimately show ?thesis
by (blast intro: that)

qed

Homotopy on a union of closed-open sets.

proposition homotopic on clopen Union:
fixes F :: ′a::euclidean space set set
assumes

∧
S . S ∈ F =⇒ closedin (top of set (

⋃
F)) S

and
∧
S . S ∈ F =⇒ openin (top of set (

⋃
F)) S

and
∧
S . S ∈ F =⇒ homotopic with canon (λx . True) S T f g

shows homotopic with canon (λx . True) (
⋃
F) T f g

proof −
obtain V where V ⊆ F countable V and eqU :

⋃
V =

⋃
F

using Lindelof openin assms by blast
show ?thesis
proof (cases V = {})
case True
then show ?thesis
by (metis Union empty eqU homotopic with canon on empty)

next
case False
then obtain V :: nat ⇒ ′a set where V : range V = V
using range from nat into 〈countable V〉 by metis

with 〈V ⊆ F 〉 have clo:
∧
n. closedin (top of set (

⋃
F)) (V n)

and ope:
∧
n. openin (top of set (

⋃
F)) (V n)

and hom:
∧
n. homotopic with canon (λx . True) (V n) T f g

using assms by auto
then obtain h where conth:

∧
n. continuous on ({0 ..1 ::real} × V n) (h n)

and him:
∧
n. h n ‘ ({0 ..1} × V n) ⊆ T

and h0 :
∧
n.

∧
x . x ∈ V n =⇒ h n (0 , x ) = f x

and h1 :
∧
n.

∧
x . x ∈ V n =⇒ h n (1 , x ) = g x

by (simp add : homotopic with) metis
have wop: b ∈ V x =⇒ ∃ k . b ∈ V k ∧ (∀ j<k . b /∈ V j ) for b x

using nat less induct [where P = λi . b /∈ V i ] by meson
obtain ζ where cont : continuous on ({0 ..1} ×

⋃
(V ‘ UNIV )) ζ

and eq :
∧
x i . [[x ∈ {0 ..1} ×

⋃
(V ‘ UNIV ) ∩

{0 ..1} × (V i − (
⋃

m<i . V m))]] =⇒ ζ x = h i x
proof (rule pasting lemma exists)
let ?X = top of set ({0 ..1 ::real} ×

⋃
(range V ))

show topspace ?X ⊆ (
⋃
i . {0 ..1 ::real} × (V i − (

⋃
m<i . V m)))

by (force simp: Ball def dest : wop)
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show openin (top of set ({0 ..1} ×
⋃

(V ‘ UNIV )))
({0 ..1 ::real} × (V i − (

⋃
m<i . V m))) for i

proof (intro openin Times openin subtopology self openin diff )
show openin (top of set (

⋃
(V ‘ UNIV ))) (V i)

using ope V eqU by auto
show closedin (top of set (

⋃
(V ‘ UNIV ))) (

⋃
m<i . V m)

using V clo eqU by (force intro: closedin Union)
qed
show continuous map (subtopology ?X ({0 ..1} × (V i −

⋃
(V ‘ {..<i}))))

euclidean (h i) for i
by (auto simp add : subtopology subtopology intro!: continuous on subset [OF

conth])
show

∧
i j x . x ∈ topspace ?X ∩ {0 ..1} × (V i − (

⋃
m<i . V m)) ∩ {0 ..1}

× (V j − (
⋃
m<j . V m))

=⇒ h i x = h j x
by clarsimp (metis lessThan iff linorder neqE nat)

qed auto
show ?thesis
proof (simp add : homotopic with eqU [symmetric], intro exI conjI ballI )
show continuous on ({0 ..1} ×

⋃
V) ζ

using V eqU by (blast intro!: continuous on subset [OF cont ])
show ζ‘ ({0 ..1} ×

⋃
V) ⊆ T

proof clarsimp
fix t :: real and y :: ′a and X :: ′a set
assume y ∈ X X ∈ V and t : 0 ≤ t t ≤ 1
then obtain k where y ∈ V k and j : ∀ j<k . y /∈ V j
by (metis image iff V wop)

with him t show ζ(t , y) ∈ T
by (subst eq) force+

qed
fix X y
assume X ∈ V y ∈ X
then obtain k where y ∈ V k and j : ∀ j<k . y /∈ V j
by (metis image iff V wop)

then show ζ(0 , y) = f y and ζ(1 , y) = g y
by (subst eq [where i=k ]; force simp: h0 h1 )+

qed
qed

qed

lemma homotopic on components eq :
fixes S :: ′a :: euclidean space set and T :: ′b :: euclidean space set
assumes S : locally connected S ∨ compact S and ANR T
shows homotopic with canon (λx . True) S T f g ←→

(continuous on S f ∧ f ‘ S ⊆ T ∧ continuous on S g ∧ g ‘ S ⊆ T ) ∧
(∀C ∈ components S . homotopic with canon (λx . True) C T f g)

(is ?lhs ←→ ?C ∧ ?rhs)
proof −
have continuous on S f f ‘ S ⊆ T continuous on S g g ‘ S ⊆ T if ?lhs
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using homotopic with imp continuous homotopic with imp subset1 homotopic with imp subset2
that by blast+
moreover have ?lhs ←→ ?rhs
if contf : continuous on S f and fim: f ‘ S ⊆ T and contg : continuous on S g

and gim: g ‘ S ⊆ T
proof
assume ?lhs
with that show ?rhs
by (simp add : homotopic with subset left in components subset)

next
assume R: ?rhs
have ∃U . C ⊆ U ∧ closedin (top of set S ) U ∧

openin (top of set S ) U ∧
homotopic with canon (λx . True) U T f g if C : C ∈ components S for

C
proof −
have C ⊆ S
by (simp add : in components subset that)

show ?thesis
using S

proof
assume locally connected S
show ?thesis
proof (intro exI conjI )
show closedin (top of set S ) C
by (simp add : closedin component that)

show openin (top of set S ) C
by (simp add : 〈locally connected S 〉 openin components locally connected

that)
show homotopic with canon (λx . True) C T f g
by (simp add : R that)

qed auto
next
assume compact S
have hom: homotopic with canon (λx . True) C T f g
using R that by blast

obtain U where C ⊆ U and opeU : openin (top of set S ) U
and hom: homotopic with canon (λx . True) U T f g

using homotopic neighbourhood extension [OF contf fim contg gim 〈ANR
T 〉 hom]

〈C ∈ components S 〉 closedin component by blast
then obtain V where open V and V : U = S ∩ V
by (auto simp: openin open)

moreover have locally compact S
by (simp add : 〈compact S 〉 closed imp locally compact compact imp closed)
ultimately obtain K where opeK : openin (top of set S ) K and compact

K C ⊆ K K ⊆ V
by (metis C Int subset iff Sura Bura clopen subset 〈C ⊆ U 〉 〈compact S 〉

compact components)
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show ?thesis
proof (intro exI conjI )
show closedin (top of set S ) K

by (meson 〈compact K 〉 〈compact S 〉 closedin compact eq opeK openin imp subset)
show homotopic with canon (λx . True) K T f g
using V 〈K ⊆ V 〉 hom homotopic with subset left opeK openin imp subset

by fastforce
qed (use opeK 〈C ⊆ K 〉 in auto)

qed
qed
then obtain ϕ where ϕ:

∧
C . C ∈ components S =⇒ C ⊆ ϕ C

and cloϕ:
∧
C . C ∈ components S =⇒ closedin (top of set S ) (ϕ C )

and opeϕ:
∧
C . C ∈ components S =⇒ openin (top of set S ) (ϕ C )

and homϕ:
∧
C . C ∈ components S =⇒ homotopic with canon (λx .

True) (ϕ C ) T f g
by metis

have Seq : S =
⋃

(ϕ ‘ components S )
proof
show S ⊆

⋃
(ϕ ‘ components S )

by (metis Sup mono Union components ϕ imageI )
show

⋃
(ϕ ‘ components S ) ⊆ S

using opeϕ openin imp subset by fastforce
qed
show ?lhs
apply (subst Seq)
using Seq cloϕ opeϕ homϕ by (intro homotopic on clopen Union) auto

qed
ultimately show ?thesis by blast

qed

lemma cohomotopically trivial on components:
fixes S :: ′a :: euclidean space set and T :: ′b :: euclidean space set
assumes S : locally connected S ∨ compact S and ANR T
shows
(∀ f g . continuous on S f −→ f ‘ S ⊆ T −→ continuous on S g −→ g ‘ S ⊆ T

−→
homotopic with canon (λx . True) S T f g)

←→
(∀C∈components S .
∀ f g . continuous on C f −→ f ‘ C ⊆ T −→ continuous on C g −→ g ‘ C ⊆

T −→
homotopic with canon (λx . True) C T f g)

(is ?lhs = ?rhs)
proof
assume L[rule format ]: ?lhs
show ?rhs
proof clarify
fix C f g
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assume contf : continuous on C f and fim: f ‘ C ⊆ T
and contg : continuous on C g and gim: g ‘ C ⊆ T and C : C ∈ components

S
obtain f ′ where contf ′: continuous on S f ′ and f ′im: f ′ ‘ S ⊆ T and f ′f :∧

x . x ∈ C =⇒ f ′ x = f x
using extension from component [OF S 〈ANR T 〉 C contf fim] by metis

obtain g ′ where contg ′: continuous on S g ′ and g ′im: g ′ ‘ S ⊆ T and g ′g :∧
x . x ∈ C =⇒ g ′ x = g x

using extension from component [OF S 〈ANR T 〉 C contg gim] by metis
have homotopic with canon (λx . True) C T f ′ g ′

using L [OF contf ′ f ′im contg ′ g ′im] homotopic with subset left C in components subset
by fastforce

then show homotopic with canon (λx . True) C T f g
using f ′f g ′g homotopic with eq by force

qed
next
assume R [rule format ]: ?rhs
show ?lhs
proof clarify
fix f g
assume contf : continuous on S f and fim: f ‘ S ⊆ T
and contg : continuous on S g and gim: g ‘ S ⊆ T

moreover have homotopic with canon (λx . True) C T f g if C ∈ components
S for C

using R [OF that ]
by (meson contf contg continuous on subset fim gim image mono in components subset

order .trans that)
ultimately show homotopic with canon (λx . True) S T f g
by (subst homotopic on components eq [OF S 〈ANR T 〉]) auto

qed
qed

6.40.8 The complement of a set and path-connectedness

Complement in dimension N ¿ 1 of set homeomorphic to any interval in
any dimension is (path-)connected. This naively generalizes the argument
in Ryuji Maehara’s paper ”The Jordan curve theorem via the Brouwer fixed
point theorem”, American Mathematical Monthly 1984.

lemma unbounded components complement absolute retract :
fixes S :: ′a::euclidean space set
assumes C : C ∈ components(− S ) and S : compact S AR S
shows ¬ bounded C

proof −
obtain y where y : C = connected component set (− S ) y and y /∈ S
using C by (auto simp: components def )

have open(− S )
using S by (simp add : closed open compact eq bounded closed)

have S retract of UNIV
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using S compact AR by blast
then obtain r where contr : continuous on UNIV r and ontor : range r ⊆ S

and r :
∧
x . x ∈ S =⇒ r x = x

by (auto simp: retract of def retraction def )
show ?thesis
proof
assume bounded C
have connected component set (− S ) y ⊆ S
proof (rule frontier subset retraction)
show bounded (connected component set (− S ) y)
using 〈bounded C 〉 y by blast

show frontier (connected component set (− S ) y) ⊆ S
using C 〈compact S 〉 compact eq bounded closed frontier of components closed complement

y by blast
show continuous on (closure (connected component set (− S ) y)) r
by (blast intro: continuous on subset [OF contr ])

qed (use ontor r in auto)
with 〈y /∈ S 〉 show False by force

qed
qed

lemma connected complement absolute retract :
fixes S :: ′a::euclidean space set
assumes S : compact S AR S and 2 : 2 ≤ DIM ( ′a)
shows connected(− S )

proof −
have S retract of UNIV
using S compact AR by blast

show ?thesis
proof (clarsimp simp: connected iff connected component eq)
have ¬ bounded (connected component set (− S ) x ) if x /∈ S for x
by (meson Compl iff assms componentsI that unbounded components complement absolute retract)
then show connected component set (− S ) x = connected component set (−

S ) y
if x /∈ S y /∈ S for x y
using cobounded unique unbounded component [OF 2 ]
by (metis 〈compact S 〉 compact imp bounded double compl that)

qed
qed

lemma path connected complement absolute retract :
fixes S :: ′a::euclidean space set
assumes compact S AR S 2 ≤ DIM ( ′a)
shows path connected(− S )

using connected complement absolute retract [OF assms]
using 〈compact S 〉 compact eq bounded closed connected open path connected by

blast

theorem connected complement homeomorphic convex compact :
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fixes S :: ′a::euclidean space set and T :: ′b::euclidean space set
assumes hom: S homeomorphic T and T : convex T compact T and 2 : 2 ≤

DIM ( ′a)
shows connected(− S )

proof (cases S = {})
case True
then show ?thesis
by (simp add : connected UNIV )

next
case False
show ?thesis
proof (rule connected complement absolute retract)
show compact S
using 〈compact T 〉 hom homeomorphic compactness by auto

show AR S
by (meson AR ANR False 〈convex T 〉 convex imp ANR convex imp contractible

hom homeomorphic ANR iff ANR homeomorphic contractible eq)
qed (rule 2 )

qed

corollary path connected complement homeomorphic convex compact :
fixes S :: ′a::euclidean space set and T :: ′b::euclidean space set
assumes hom: S homeomorphic T convex T compact T 2 ≤ DIM ( ′a)
shows path connected(− S )

using connected complement homeomorphic convex compact [OF assms]
using 〈compact T 〉 compact eq bounded closed connected open path connected hom

homeomorphic compactness by blast

lemma path connected complement homeomorphic interval :
fixes S :: ′a::euclidean space set
assumes S homeomorphic cbox a b 2 ≤ DIM ( ′a)
shows path connected(−S )
using assms compact cbox convex box (1 ) path connected complement homeomorphic convex compact

by blast

lemma connected complement homeomorphic interval :
fixes S :: ′a::euclidean space set
assumes S homeomorphic cbox a b 2 ≤ DIM ( ′a)
shows connected(−S )
using assms path connected complement homeomorphic interval path connected imp connected

by blast

end

6.41 Extending Continous Maps, Invariance of Do-
main, etc

Ported from HOL Light (moretop.ml) by L C Paulson
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theory Further Topology
imports Weierstrass Theorems Polytope Complex Transcendental Equivalence Lebesgue Henstock Integration

Retracts
begin

6.41.1 A map from a sphere to a higher dimensional sphere
is nullhomotopic

lemma spheremap lemma1 :
fixes f :: ′a::euclidean space ⇒ ′a::euclidean space
assumes subspace S subspace T and dimST : dim S < dim T

and S ⊆ T
and diff f : f differentiable on sphere 0 1 ∩ S

shows f ‘ (sphere 0 1 ∩ S ) 6= sphere 0 1 ∩ T
proof
assume fim: f ‘ (sphere 0 1 ∩ S ) = sphere 0 1 ∩ T
have inS :

∧
x . [[x ∈ S ; x 6= 0 ]] =⇒ (x /R norm x ) ∈ S

using subspace mul 〈subspace S 〉 by blast
have subS01 : (λx . x /R norm x ) ‘ (S − {0}) ⊆ sphere 0 1 ∩ S
using 〈subspace S 〉 subspace mul by fastforce

then have diff f ′: f differentiable on (λx . x /R norm x ) ‘ (S − {0})
by (rule differentiable on subset [OF diff f ])

define g where g ≡ λx . norm x ∗R f (inverse(norm x ) ∗R x )
have gdiff : g differentiable on S − {0}
unfolding g def
by (rule diff f ′ derivative intros differentiable on compose [where f=f ] | force)+
have geq : g ‘ (S − {0}) = T − {0}
proof
have

∧
u. [[u ∈ S ; norm u ∗R f (u /R norm u) /∈ T ]] =⇒ u = 0

by (metis (mono tags, lifting) DiffI subS01 subspace mul [OF 〈subspace T 〉]
fim image subset iff inf le2 singletonD)

then have g ‘ (S − {0}) ⊆ T
using g def by blast

moreover have g ‘ (S − {0}) ⊆ UNIV − {0}
proof (clarsimp simp: g def )
fix y
assume y ∈ S and f0 : f (y /R norm y) = 0
then have y 6= 0 =⇒ y /R norm y ∈ sphere 0 1 ∩ S
by (auto simp: subspace mul [OF 〈subspace S 〉])

then show y = 0
by (metis fim f0 Int iff image iff mem sphere 0 norm eq zero zero neq one)

qed
ultimately show g ‘ (S − {0}) ⊆ T − {0}
by auto

next
have ∗: sphere 0 1 ∩ T ⊆ f ‘ (sphere 0 1 ∩ S )
using fim by (simp add : image subset iff )

have x ∈ (λx . norm x ∗R f (x /R norm x )) ‘ (S − {0})
if x ∈ T x 6= 0 for x
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proof −
have x /R norm x ∈ T
using 〈subspace T 〉 subspace mul that by blast

then obtain u where u: f u ∈ T x /R norm x = f u norm u = 1 u ∈ S
using ∗ [THEN subsetD , of x /R norm x ] 〈x 6= 0 〉 by auto

with that have [simp]: norm x ∗R f u = x
by (metis divideR right norm eq zero)

moreover have norm x ∗R u ∈ S − {0}
using 〈subspace S 〉 subspace scale that(2 ) u by auto

with u show ?thesis
by (simp add : image eqI [where x=norm x ∗R u])

qed
then have T − {0} ⊆ (λx . norm x ∗R f (x /R norm x )) ‘ (S − {0})
by force

then show T − {0} ⊆ g ‘ (S − {0})
by (simp add : g def )

qed
define T ′ where T ′ ≡ {y . ∀ x ∈ T . orthogonal x y}
have subspace T ′

by (simp add : subspace orthogonal to vectors T ′ def )
have dim eq : dim T ′ + dim T = DIM ( ′a)
using dim subspace orthogonal to vectors [of T UNIV ] 〈subspace T 〉

by (simp add : T ′ def )
have ∃ v1 v2 . v1 ∈ span T ∧ (∀w ∈ span T . orthogonal v2 w) ∧ x = v1 + v2

for x
by (force intro: orthogonal subspace decomp exists [of T x ])

then obtain p1 p2 where p1span: p1 x ∈ span T
and

∧
w . w ∈ span T =⇒ orthogonal (p2 x ) w

and eq : p1 x + p2 x = x for x
by metis

then have p1 :
∧
z . p1 z ∈ T and ortho:

∧
w . w ∈ T =⇒ orthogonal (p2 x ) w

for x
using span eq iff 〈subspace T 〉 by blast+

then have p2 :
∧
z . p2 z ∈ T ′

by (simp add : T ′ def orthogonal commute)
have p12 eq :

∧
x y . [[x ∈ T ; y ∈ T ′]] =⇒ p1 (x + y) = x ∧ p2 (x + y) = y

proof (rule orthogonal subspace decomp unique [OF eq p1span, where T=T ′])
show

∧
x y . [[x ∈ T ; y ∈ T ′]] =⇒ p2 (x + y) ∈ span T ′

using span eq iff p2 〈subspace T ′〉 by blast
show

∧
a b. [[a ∈ T ; b ∈ T ′]] =⇒ orthogonal a b

using T ′ def by blast
qed (auto simp: span base)
then have

∧
c x . p1 (c ∗R x ) = c ∗R p1 x ∧ p2 (c ∗R x ) = c ∗R p2 x

proof −
fix c :: real and x :: ′a
have f1 : c ∗R x = c ∗R p1 x + c ∗R p2 x
by (metis eq pth 6 )

have f2 : c ∗R p2 x ∈ T ′

by (simp add : 〈subspace T ′〉 p2 subspace scale)
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have c ∗R p1 x ∈ T
by (metis (full types) assms(2 ) p1span span eq iff subspace scale)

then show p1 (c ∗R x ) = c ∗R p1 x ∧ p2 (c ∗R x ) = c ∗R p2 x
using f2 f1 p12 eq by presburger

qed
moreover have lin add :

∧
x y . p1 (x + y) = p1 x + p1 y ∧ p2 (x + y) = p2

x + p2 y
proof (rule orthogonal subspace decomp unique [OF p1span, where T=T ′])
show

∧
x y . p1 (x + y) + p2 (x + y) = p1 x + p1 y + (p2 x + p2 y)

by (simp add : add .assoc add .left commute eq)
show

∧
a b. [[a ∈ T ; b ∈ T ′]] =⇒ orthogonal a b

using T ′ def by blast
qed (auto simp: p1span p2 span base span add)
ultimately have linear p1 linear p2
by unfold locales auto

have g differentiable on p1 ‘ {x + y |x y . x ∈ S − {0} ∧ y ∈ T ′}
using p12 eq 〈S ⊆ T 〉 by (force intro: differentiable on subset [OF gdiff ])

then have (λz . g (p1 z )) differentiable on {x + y |x y . x ∈ S − {0} ∧ y ∈ T ′}
by (rule differentiable on compose [OF linear imp differentiable on [OF 〈linear

p1 〉]])
then have diff : (λx . g (p1 x ) + p2 x ) differentiable on {x + y |x y . x ∈ S −
{0} ∧ y ∈ T ′}

by (intro derivative intros linear imp differentiable on [OF 〈linear p2 〉])
have dim {x + y |x y . x ∈ S − {0} ∧ y ∈ T ′} ≤ dim {x + y |x y . x ∈ S ∧ y
∈ T ′}

by (blast intro: dim subset)
also have ... = dim S + dim T ′ − dim (S ∩ T ′)
using dim sums Int [OF 〈subspace S 〉 〈subspace T ′〉]
by (simp add : algebra simps)

also have ... < DIM ( ′a)
using dimST dim eq by auto

finally have neg : negligible {x + y |x y . x ∈ S − {0} ∧ y ∈ T ′}
by (rule negligible lowdim)

have negligible ((λx . g (p1 x ) + p2 x ) ‘ {x + y |x y . x ∈ S − {0} ∧ y ∈ T ′})
by (rule negligible differentiable image negligible [OF order refl neg diff ])

then have negligible {x + y |x y . x ∈ g ‘ (S − {0}) ∧ y ∈ T ′}
proof (rule negligible subset)
have [[t ′ ∈ T ′; s ∈ S ; s 6= 0 ]]

=⇒ g s + t ′ ∈ (λx . g (p1 x ) + p2 x ) ‘
{x + t ′ |x t ′. x ∈ S ∧ x 6= 0 ∧ t ′ ∈ T ′} for t ′ s

using 〈S ⊆ T 〉 p12 eq by (rule tac x=s + t ′ in image eqI ) auto
then show {x + y |x y . x ∈ g ‘ (S − {0}) ∧ y ∈ T ′}

⊆ (λx . g (p1 x ) + p2 x ) ‘ {x + y |x y . x ∈ S − {0} ∧ y ∈ T ′}
by auto

qed
moreover have − T ′ ⊆ {x + y |x y . x ∈ g ‘ (S − {0}) ∧ y ∈ T ′}
proof clarsimp
fix z assume z /∈ T ′

show ∃ x y . z = x + y ∧ x ∈ g ‘ (S − {0}) ∧ y ∈ T ′
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by (metis Diff iff 〈z /∈ T ′〉 add .left neutral eq geq p1 p2 singletonD)
qed
ultimately have negligible (−T ′)
using negligible subset by blast

moreover have negligible T ′

using negligible lowdim
by (metis add .commute assms(3 ) diff add inverse2 diff self eq 0 dim eq le add1

le antisym linordered semidom class.add diff inverse not less0 )
ultimately have negligible (−T ′ ∪ T ′)
by (metis negligible Un eq)

then show False
using negligible Un eq non negligible UNIV by simp

qed

lemma spheremap lemma2 :
fixes f :: ′a::euclidean space ⇒ ′a::euclidean space
assumes ST : subspace S subspace T dim S < dim T

and S ⊆ T
and contf : continuous on (sphere 0 1 ∩ S ) f
and fim: f ‘ (sphere 0 1 ∩ S ) ⊆ sphere 0 1 ∩ T

shows ∃ c. homotopic with canon (λx . True) (sphere 0 1 ∩ S ) (sphere 0 1 ∩
T ) f (λx . c)
proof −
have [simp]:

∧
x . [[norm x = 1 ; x ∈ S ]] =⇒ norm (f x ) = 1

using fim by (simp add : image subset iff )
have compact (sphere 0 1 ∩ S )
by (simp add : 〈subspace S 〉 closed subspace compact Int closed)

then obtain g where pfg : polynomial function g and gim: g ‘ (sphere 0 1 ∩ S )
⊆ T

and g12 :
∧
x . x ∈ sphere 0 1 ∩ S =⇒ norm(f x − g x ) < 1/2

apply (rule Stone Weierstrass polynomial function subspace [OF contf 〈subspace
T 〉, of 1/2 ])

using fim by auto
have gnz : g x 6= 0 if x ∈ sphere 0 1 ∩ S for x
proof −
have norm (f x ) = 1
using fim that by (simp add : image subset iff )

then show ?thesis
using g12 [OF that ] by auto

qed
have diffg : g differentiable on sphere 0 1 ∩ S
by (metis pfg differentiable on polynomial function)

define h where h ≡ λx . inverse(norm(g x )) ∗R g x
have h: x ∈ sphere 0 1 ∩ S =⇒ h x ∈ sphere 0 1 ∩ T for x
unfolding h def
using gnz [of x ]
by (auto simp: subspace mul [OF 〈subspace T 〉] subsetD [OF gim])

have diffh: h differentiable on sphere 0 1 ∩ S
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unfolding h def using gnz
by (fastforce intro: derivative intros diffg differentiable on compose [OF diffg ])

have homfg : homotopic with canon (λz . True) (sphere 0 1 ∩ S ) (T − {0}) f g
proof (rule homotopic with linear [OF contf ])
show continuous on (sphere 0 1 ∩ S ) g
using pfg by (simp add : differentiable imp continuous on diffg)

next
have non0fg : 0 /∈ closed segment (f x ) (g x ) if norm x = 1 x ∈ S for x
proof −
have f x ∈ sphere 0 1
using fim that by (simp add : image subset iff )

moreover have norm(f x − g x ) < 1/2
using g12 that by auto

ultimately show ?thesis
by (auto simp: norm minus commute dest : segment bound)

qed
show closed segment (f x ) (g x ) ⊆ T − {0} if x ∈ sphere 0 1 ∩ S for x
proof −
have convex T
by (simp add : 〈subspace T 〉 subspace imp convex )

then have convex hull {f x , g x} ⊆ T
by (metis IntD2 closed segment subset fim gim image subset iff segment convex hull

that)
then show ?thesis
using that non0fg segment convex hull by fastforce

qed
qed
obtain d where d : d ∈ (sphere 0 1 ∩ T ) − h ‘ (sphere 0 1 ∩ S )
using h spheremap lemma1 [OF ST 〈S ⊆ T 〉 diffh] by force

then have non0hd : 0 /∈ closed segment (h x ) (− d) if norm x = 1 x ∈ S for x
using midpoint between [of 0 h x −d ] that h [of x ]
by (auto simp: between mem segment midpoint def )

have conth: continuous on (sphere 0 1 ∩ S ) h
using differentiable imp continuous on diffh by blast

have hom hd : homotopic with canon (λz . True) (sphere 0 1 ∩ S ) (T − {0}) h
(λx . −d)
proof (rule homotopic with linear [OF conth continuous on const ])
fix x
assume x : x ∈ sphere 0 1 ∩ S
have convex hull {h x , − d} ⊆ T
proof (rule hull minimal)
show {h x , − d} ⊆ T
using h d x by (force simp: subspace neg [OF 〈subspace T 〉])

qed (simp add : subspace imp convex [OF 〈subspace T 〉])
with x segment convex hull show closed segment (h x ) (− d) ⊆ T − {0}
by (auto simp add : subset Diff insert non0hd)

qed
have conT0 : continuous on (T − {0}) (λy . inverse(norm y) ∗R y)
by (intro continuous intros) auto
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have sub0T : (λy . y /R norm y) ‘ (T − {0}) ⊆ sphere 0 1 ∩ T
by (fastforce simp: assms(2 ) subspace mul)
obtain c where homhc: homotopic with canon (λz . True) (sphere 0 1 ∩ S )

(sphere 0 1 ∩ T ) h (λx . c)
proof
show homotopic with canon (λz . True) (sphere 0 1 ∩ S ) (sphere 0 1 ∩ T ) h

(λx . − d)
using d
by (force simp: h def

intro: homotopic with eq homotopic with compose continuous left [OF
hom hd conT0 sub0T ])
qed
have homotopic with canon (λx . True) (sphere 0 1 ∩ S ) (sphere 0 1 ∩ T ) f h
by (force simp: h def

intro: homotopic with eq homotopic with compose continuous left [OF
homfg conT0 sub0T ])
then show ?thesis
by (metis homotopic with trans [OF homhc])

qed

lemma spheremap lemma3 :
assumes bounded S convex S subspace U and affSU : aff dim S ≤ dim U
obtains T where subspace T T ⊆ U S 6= {} =⇒ aff dim T = aff dim S

(rel frontier S ) homeomorphic (sphere 0 1 ∩ T )
proof (cases S = {})
case True
with 〈subspace U 〉 subspace 0 show ?thesis
by (rule tac T = {0} in that) auto

next
case False
then obtain a where a ∈ S
by auto

then have affS : aff dim S = int (dim ((λx . −a+x ) ‘ S ))
by (metis hull inc aff dim eq dim)

with affSU have dim ((λx . −a+x ) ‘ S ) ≤ dim U
by linarith

with choose subspace of subspace
obtain T where subspace T T ⊆ span U and dimT : dim T = dim ((λx . −a+x )

‘ S ) .
show ?thesis
proof (rule that [OF 〈subspace T 〉])
show T ⊆ U
using span eq iff 〈subspace U 〉 〈T ⊆ span U 〉 by blast

show aff dim T = aff dim S
using dimT 〈subspace T 〉 affS aff dim subspace by fastforce

show rel frontier S homeomorphic sphere 0 1 ∩ T
proof −
have aff dim (ball 0 1 ∩ T ) = aff dim (T )
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by (metis IntI interior ball 〈subspace T 〉 aff dim convex Int nonempty interior
centre in ball empty iff inf commute subspace 0 subspace imp convex zero less one)

then have affS eq : aff dim S = aff dim (ball 0 1 ∩ T )
using 〈aff dim T = aff dim S 〉 by simp

have rel frontier S homeomorphic rel frontier(ball 0 1 ∩ T )
proof (rule homeomorphic rel frontiers convex bounded sets [OF 〈convex S 〉

〈bounded S 〉])
show convex (ball 0 1 ∩ T )
by (simp add : 〈subspace T 〉 convex Int subspace imp convex )

show bounded (ball 0 1 ∩ T )
by (simp add : bounded Int)

show aff dim S = aff dim (ball 0 1 ∩ T )
by (rule affS eq)

qed
also have ... = frontier (ball 0 1 ) ∩ T
proof (rule convex affine rel frontier Int [OF convex ball ])
show affine T
by (simp add : 〈subspace T 〉 subspace imp affine)

show interior (ball 0 1 ) ∩ T 6= {}
using 〈subspace T 〉 subspace 0 by force

qed
also have ... = sphere 0 1 ∩ T
by auto

finally show ?thesis .
qed

qed
qed

proposition inessential spheremap lowdim gen:
fixes f :: ′M ::euclidean space ⇒ ′a::euclidean space
assumes convex S bounded S convex T bounded T

and affST : aff dim S < aff dim T
and contf : continuous on (rel frontier S ) f
and fim: f ‘ (rel frontier S ) ⊆ rel frontier T

obtains c where homotopic with canon (λz . True) (rel frontier S ) (rel frontier
T ) f (λx . c)
proof (cases S = {})
case True
then show ?thesis
by (simp add : that)

next
case False
then show ?thesis
proof (cases T = {})
case True
then show ?thesis
using fim that by auto

next
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case False
obtain T ′:: ′a set
where subspace T ′ and affT ′: aff dim T ′ = aff dim T
and homT : rel frontier T homeomorphic sphere 0 1 ∩ T ′

apply (rule spheremap lemma3 [OF 〈bounded T 〉 〈convex T 〉 subspace UNIV ,
where ′b= ′a])

using 〈T 6= {}〉 by (auto simp add : aff dim le DIM )
with homeomorphic imp homotopy eqv
have relT : sphere 0 1 ∩ T ′ homotopy eqv rel frontier T
using homotopy equivalent space sym by blast

have aff dim S ≤ int (dim T ′)
using affT ′ 〈subspace T ′〉 affST aff dim subspace by force

with spheremap lemma3 [OF 〈bounded S 〉 〈convex S 〉 〈subspace T ′〉] 〈S 6= {}〉
obtain S ′:: ′a set where subspace S ′ S ′ ⊆ T ′

and affS ′: aff dim S ′ = aff dim S
and homT : rel frontier S homeomorphic sphere 0 1 ∩ S ′

by metis
with homeomorphic imp homotopy eqv
have relS : sphere 0 1 ∩ S ′ homotopy eqv rel frontier S
using homotopy equivalent space sym by blast

have dimST ′: dim S ′ < dim T ′

by (metis 〈S ′ ⊆ T ′〉 〈subspace S ′〉 〈subspace T ′〉 affS ′ affST affT ′ less irrefl
not le subspace dim equal)

have ∃ c. homotopic with canon (λz . True) (rel frontier S ) (rel frontier T ) f
(λx . c)

apply (rule homotopy eqv homotopic triviality null imp [OF relT contf fim])
apply (rule homotopy eqv cohomotopic triviality null [OF relS , THEN iffD1 ,

rule format ])
apply (metis dimST ′ 〈subspace S ′〉 〈subspace T ′〉 〈S ′⊆ T ′〉 spheremap lemma2 ,

blast)
done

with that show ?thesis by blast
qed

qed

lemma inessential spheremap lowdim:
fixes f :: ′M ::euclidean space ⇒ ′a::euclidean space
assumes
DIM ( ′M ) < DIM ( ′a) and f : continuous on (sphere a r) f f ‘ (sphere a r) ⊆

(sphere b s)
obtains c where homotopic with canon (λz . True) (sphere a r) (sphere b s) f

(λx . c)
proof (cases s ≤ 0 )
case True then show ?thesis
by (meson nullhomotopic into contractible f contractible sphere that)

next
case False
show ?thesis
proof (cases r ≤ 0 )
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case True then show ?thesis
by (meson f nullhomotopic from contractible contractible sphere that)

next
case False
with 〈¬ s ≤ 0 〉 have r > 0 s > 0 by auto
show thesis
apply (rule inessential spheremap lowdim gen [of cball a r cball b s f ])
using 〈0 < r 〉 〈0 < s〉 assms(1 ) that by (simp all add : f aff dim cball)

qed
qed

6.41.2 Some technical lemmas about extending maps from
cell complexes

lemma extending maps Union aux :
assumes fin: finite F

and
∧
S . S ∈ F =⇒ closed S

and
∧
S T . [[S ∈ F ; T ∈ F ; S 6= T ]] =⇒ S ∩ T ⊆ K

and
∧
S . S ∈ F =⇒ ∃ g . continuous on S g ∧ g ‘ S ⊆ T ∧ (∀ x ∈ S ∩ K . g

x = h x )
shows ∃ g . continuous on (

⋃
F) g ∧ g ‘ (

⋃
F) ⊆ T ∧ (∀ x ∈

⋃
F ∩ K . g x =

h x )
using assms
proof (induction F)
case empty show ?case by simp

next
case (insert S F)
then obtain f where contf : continuous on (S ) f and fim: f ‘ S ⊆ T and feq :
∀ x ∈ S ∩ K . f x = h x

by (meson insertI1 )
obtain g where contg : continuous on (

⋃
F) g and gim: g ‘

⋃
F ⊆ T and geq :

∀ x ∈
⋃
F ∩ K . g x = h x

using insert by auto
have fg : f x = g x if x ∈ T T ∈ F x ∈ S for x T
proof −
have T ∩ S ⊆ K ∨ S = T
using that by (metis (no types) insert .prems(2 ) insertCI )

then show ?thesis
using UnionI feq geq 〈S /∈ F 〉 subsetD that by fastforce

qed
show ?case
apply (rule tac x=λx . if x ∈ S then f x else g x in exI , simp)
apply (intro conjI continuous on cases)
using fim gim feq geq
apply (force simp: insert closed Union contf contg inf commute intro: fg)+
done

qed

lemma extending maps Union:
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assumes fin: finite F
and

∧
S . S ∈ F =⇒ ∃ g . continuous on S g ∧ g ‘ S ⊆ T ∧ (∀ x ∈ S ∩ K . g

x = h x )
and

∧
S . S ∈ F =⇒ closed S

and K :
∧
X Y . [[X ∈ F ; Y ∈ F ; ¬ X ⊆ Y ; ¬ Y ⊆ X ]] =⇒ X ∩ Y ⊆ K

shows ∃ g . continuous on (
⋃
F) g ∧ g ‘ (

⋃
F) ⊆ T ∧ (∀ x ∈

⋃
F ∩ K . g x =

h x )
apply (simp flip: Union maximal sets [OF fin])
apply (rule extending maps Union aux )
apply (simp all add : Union maximal sets [OF fin] assms)
by (metis K psubsetI )

lemma extend map lemma:
assumes finite F G ⊆ F convex T bounded T

and poly :
∧
X . X ∈ F =⇒ polytope X

and aff :
∧
X . X ∈ F − G =⇒ aff dim X < aff dim T

and face:
∧
S T . [[S ∈ F ; T ∈ F ]] =⇒ (S ∩ T ) face of S

and contf : continuous on (
⋃
G) f and fim: f ‘ (

⋃
G) ⊆ rel frontier T

obtains g where continuous on (
⋃
F) g g ‘ (

⋃
F) ⊆ rel frontier T

∧
x . x ∈

⋃
G

=⇒ g x = f x
proof (cases F − G = {})
case True
show ?thesis
proof
show continuous on (

⋃
F) f

using True 〈G ⊆ F 〉 contf by auto
show f ‘

⋃
F ⊆ rel frontier T

using True fim by auto
qed auto

next
case False
then have 0 ≤ aff dim T

by (metis aff aff dim empty aff dim geq aff dim negative iff all not in conv
not less)
then obtain i ::nat where i : int i = aff dim T
by (metis nonneg eq int)

have Union empty eq :
⋃
{D . D = {} ∧ P D} = {} for P :: ′a set ⇒ bool

by auto
have face ′:

∧
S T . [[S ∈ F ; T ∈ F ]] =⇒ (S ∩ T ) face of S ∧ (S ∩ T ) face of T

by (metis face inf commute)
have extendf : ∃ g . continuous on (

⋃
(G ∪ {D . ∃C ∈ F . D face of C ∧ aff dim

D < i})) g ∧
g ‘ (

⋃
(G ∪ {D . ∃C ∈ F . D face of C ∧ aff dim D < i})) ⊆

rel frontier T ∧
(∀ x ∈

⋃
G. g x = f x )

if i ≤ aff dim T for i ::nat
using that
proof (induction i)
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case 0
show ?case
using 0 contf fim by (auto simp add : Union empty eq)

next
case (Suc p)
with 〈bounded T 〉 have rel frontier T 6= {}
by (auto simp: rel frontier eq empty affine bounded eq lowdim [of T ])

then obtain t where t : t ∈ rel frontier T by auto
have ple: int p ≤ aff dim T using Suc.prems by force
obtain h where conth: continuous on (

⋃
(G ∪ {D . ∃C ∈ F . D face of C ∧

aff dim D < p})) h
and him: h ‘ (

⋃
(G ∪ {D . ∃C ∈ F . D face of C ∧ aff dim D < p}))

⊆ rel frontier T
and heq :

∧
x . x ∈

⋃
G =⇒ h x = f x

using Suc.IH [OF ple] by auto
let ?Faces = {D . ∃C ∈ F . D face of C ∧ aff dim D ≤ p}
have extendh: ∃ g . continuous on D g ∧

g ‘ D ⊆ rel frontier T ∧
(∀ x ∈ D ∩

⋃
(G ∪ {D . ∃C ∈ F . D face of C ∧ aff dim D <

p}). g x = h x )
if D : D ∈ G ∪ ?Faces for D

proof (cases D ⊆
⋃

(G ∪ {D . ∃C ∈ F . D face of C ∧ aff dim D < p}))
case True
have continuous on D h
using True conth continuous on subset by blast

moreover have h ‘ D ⊆ rel frontier T
using True him by blast

ultimately show ?thesis
by blast

next
case False
note notDsub = False
show ?thesis
proof (cases ∃ a. D = {a})
case True
then obtain a where D = {a} by auto
with notDsub t show ?thesis
by (rule tac x=λx . t in exI ) simp

next
case False
have D 6= {} using notDsub by auto
have Dnotin: D /∈ G ∪ {D . ∃C ∈ F . D face of C ∧ aff dim D < p}
using notDsub by auto

then have D /∈ G by simp
have D ∈ ?Faces − {D . ∃C ∈ F . D face of C ∧ aff dim D < p}
using Dnotin that by auto

then obtain C where C ∈ F D face of C and affD : aff dim D = int p
by auto

then have bounded D
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using face of polytope polytope poly polytope imp bounded by blast
then have [simp]: ¬ affine D
using affine bounded eq trivial False 〈D 6= {}〉 〈bounded D 〉 by blast

have {F . F facet of D} ⊆ {E . E face of C ∧ aff dim E < int p}
by clarify (metis 〈D face of C 〉 affD eq iff face of trans facet of def

zle diff1 eq)
moreover have polyhedron D
using 〈C ∈ F 〉 〈D face of C 〉 face of polytope polytope poly polytope imp polyhedron

by auto
ultimately have relf sub: rel frontier D ⊆

⋃
{E . E face of C ∧ aff dim E

< p}
by (simp add : rel frontier of polyhedron Union mono)

then have him relf : h ‘ rel frontier D ⊆ rel frontier T
using 〈C ∈ F 〉 him by blast

have convex D
by (simp add : 〈polyhedron D 〉 polyhedron imp convex )

have affD lessT : aff dim D < aff dim T
using Suc.prems affD by linarith

have contDh: continuous on (rel frontier D) h
using 〈C ∈ F 〉 relf sub by (blast intro: continuous on subset [OF conth])
then have ∗: (∃ c. homotopic with canon (λx . True) (rel frontier D)

(rel frontier T ) h (λx . c)) =
(∃ g . continuous on UNIV g ∧ range g ⊆ rel frontier T ∧

(∀ x∈rel frontier D . g x = h x ))
by (simp add : assms rel frontier eq empty him relf nullhomotopic into rel frontier extension

[OF closed rel frontier ])
have (∃ c. homotopic with canon (λx . True) (rel frontier D) (rel frontier T )

h (λx . c))
by (metis inessential spheremap lowdim gen

[OF 〈convex D 〉 〈bounded D 〉 〈convex T 〉 〈bounded T 〉 affD lessT
contDh him relf ])

then obtain g where contg : continuous on UNIV g
and gim: range g ⊆ rel frontier T
and gh:

∧
x . x ∈ rel frontier D =⇒ g x = h x

by (metis ∗)
have D ∩ E ⊆ rel frontier D

if E ∈ G ∪ {D . Bex F ((face of ) D) ∧ aff dim D < int p} for E
proof (rule face of subset rel frontier)
show D ∩ E face of D
using that

proof safe
assume E ∈ G
then show D ∩ E face of D

by (meson 〈C ∈ F 〉 〈D face of C 〉 assms(2 ) face ′ face of Int subface
face of refl eq poly polytope imp convex subsetD)

next
fix x
assume aff dim E < int p x ∈ F E face of x
then show D ∩ E face of D
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by (meson 〈C ∈ F 〉 〈D face of C 〉 face ′ face of Int subface that)
qed
show D ∩ E 6= D
using that notDsub by auto

qed
moreover have continuous on D g
using contg continuous on subset by blast

ultimately show ?thesis
by (rule tac x=g in exI ) (use gh gim in fastforce)

qed
qed
have intle: i < 1 + int j ←→ i ≤ int j for i j
by auto

have finite G
using 〈finite F 〉 〈G ⊆ F 〉 rev finite subset by blast

moreover have finite (?Faces)
proof −
have §: finite (

⋃
{{D . D face of C} |C . C ∈ F})

by (auto simp: 〈finite F 〉 finite polytope faces poly)
show ?thesis
by (auto intro: finite subset [OF §])

qed
ultimately have fin: finite (G ∪ ?Faces)
by simp

have clo: closed S if S ∈ G ∪ ?Faces for S
using that 〈G ⊆ F 〉 face of polytope polytope poly polytope imp closed by blast
have K : X ∩ Y ⊆

⋃
(G ∪ {D . ∃C∈F . D face of C ∧ aff dim D < int p})

if X ∈ G ∪ ?Faces Y ∈ G ∪ ?Faces ¬ Y ⊆ X for X Y
proof −
have ff : X ∩ Y face of X ∧ X ∩ Y face of Y
if XY : X face of D Y face of E and DE : D ∈ F E ∈ F for D E
by (rule face of Int subface [OF XY ]) (auto simp: face ′ DE )

show ?thesis
using that
apply auto
apply (drule tac x=X ∩ Y in spec, safe)
using ff face of imp convex [of X ] face of imp convex [of Y ]
apply (fastforce dest : face of aff dim lt)
by (meson face of trans ff )

qed
obtain g where continuous on (

⋃
(G ∪ ?Faces)) g

g ‘
⋃
(G ∪ ?Faces) ⊆ rel frontier T

(∀ x ∈
⋃
(G ∪ ?Faces) ∩⋃

(G ∪ {D . ∃C∈F . D face of C ∧ aff dim D < p}). g x = h
x )

by (rule exE [OF extending maps Union [OF fin extendh clo K ]], blast+)
then show ?case
by (simp add : intle local .heq [symmetric], blast)

qed
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have eq :
⋃
(G ∪ {D . ∃C ∈ F . D face of C ∧ aff dim D < i}) =

⋃
F

proof
show

⋃
(G ∪ {D . ∃C∈F . D face of C ∧ aff dim D < int i}) ⊆

⋃
F

using 〈G ⊆ F 〉 face of imp subset by fastforce
show

⋃
F ⊆

⋃
(G ∪ {D . ∃C∈F . D face of C ∧ aff dim D < i})

proof (rule Union mono)
show F ⊆ G ∪ {D . ∃C∈F . D face of C ∧ aff dim D < int i}
using face by (fastforce simp: aff i)

qed
qed
have int i ≤ aff dim T by (simp add : i)
then show ?thesis
using extendf [of i ] unfolding eq by (metis that)

qed

lemma extend map lemma cofinite0 :
assumes finite F

and pairwise (λS T . S ∩ T ⊆ K ) F
and

∧
S . S ∈ F =⇒ ∃ a g . a /∈ U ∧ continuous on (S − {a}) g ∧ g ‘ (S −

{a}) ⊆ T ∧ (∀ x ∈ S ∩ K . g x = h x )
and

∧
S . S ∈ F =⇒ closed S

shows ∃C g . finite C ∧ disjnt C U ∧ card C ≤ card F ∧
continuous on (

⋃
F − C ) g ∧ g ‘ (

⋃
F − C ) ⊆ T

∧ (∀ x ∈ (
⋃
F − C ) ∩ K . g x = h x )

using assms
proof induction
case empty then show ?case
by force

next
case (insert X F)
then have closed X and clo:

∧
X . X ∈ F =⇒ closed X

and F :
∧
S . S ∈ F =⇒ ∃ a g . a /∈ U ∧ continuous on (S − {a}) g ∧ g ‘

(S − {a}) ⊆ T ∧ (∀ x ∈ S ∩ K . g x = h x )
and pwX :

∧
Y . Y ∈ F ∧ Y 6= X −→ X ∩ Y ⊆ K ∧ Y ∩ X ⊆ K

and pwF : pairwise (λ S T . S ∩ T ⊆ K ) F
by (simp all add : pairwise insert)

obtain C g where C : finite C disjnt C U card C ≤ card F
and contg : continuous on (

⋃
F − C ) g

and gim: g ‘ (
⋃
F − C ) ⊆ T

and gh:
∧
x . x ∈ (

⋃
F − C ) ∩ K =⇒ g x = h x

using insert .IH [OF pwF F clo] by auto
obtain a f where a /∈ U

and contf : continuous on (X − {a}) f
and fim: f ‘ (X − {a}) ⊆ T
and fh: (∀ x ∈ X ∩ K . f x = h x )

using insert .prems by (meson insertI1 )
show ?case
proof (intro exI conjI )
show finite (insert a C )
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by (simp add : C )
show disjnt (insert a C ) U
using C 〈a /∈ U 〉 by simp

show card (insert a C ) ≤ card (insert X F)
by (simp add : C card insert if insert .hyps le SucI )

have closed (
⋃
F)

using clo insert .hyps by blast
have continuous on (X − insert a C ) f
using contf by (force simp: elim: continuous on subset)

moreover have continuous on (
⋃
F − insert a C ) g

using contg by (force simp: elim: continuous on subset)
ultimately
have continuous on (X − insert a C ∪ (

⋃
F − insert a C )) (λx . if x ∈ X then

f x else g x )
apply (intro continuous on cases local ; simp add : closedin closed)
using 〈closed X 〉 apply blast
using 〈closed (

⋃
F)〉 apply blast

using fh gh insert .hyps pwX by fastforce
then show continuous on (

⋃
(insert X F) − insert a C ) (λa. if a ∈ X then f

a else g a)
by (blast intro: continuous on subset)

show ∀ x∈(
⋃
(insert X F) − insert a C ) ∩ K . (if x ∈ X then f x else g x ) =

h x
using gh by (auto simp: fh)

show (λa. if a ∈ X then f a else g a) ‘ (
⋃

(insert X F) − insert a C ) ⊆ T
using fim gim by auto force

qed
qed

lemma extend map lemma cofinite1 :
assumes finite F

and F :
∧
X . X ∈ F =⇒ ∃ a g . a /∈ U ∧ continuous on (X − {a}) g ∧ g ‘ (X

− {a}) ⊆ T ∧ (∀ x ∈ X ∩ K . g x = h x )
and clo:

∧
X . X ∈ F =⇒ closed X

and K :
∧
X Y . [[X ∈ F ; Y ∈ F ; ¬ X ⊆ Y ; ¬ Y ⊆ X ]] =⇒ X ∩ Y ⊆ K

obtains C g where finite C disjnt C U card C ≤ card F continuous on (
⋃
F

− C ) g
g ‘ (

⋃
F − C ) ⊆ T∧

x . x ∈ (
⋃
F − C ) ∩ K =⇒ g x = h x

proof −
let ?F = {X ∈ F . ∀Y∈F . ¬ X ⊂ Y }
have [simp]:

⋃
?F =

⋃
F

by (simp add : Union maximal sets assms)
have fin: finite ?F
by (force intro: finite subset [OF 〈finite F 〉])

have pw : pairwise (λ S T . S ∩ T ⊆ K ) ?F
by (simp add : pairwise def ) (metis K psubsetI )

have card {X ∈ F . ∀Y∈F . ¬ X ⊂ Y } ≤ card F
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by (simp add : 〈finite F 〉 card mono)
moreover
obtain C g where finite C ∧ disjnt C U ∧ card C ≤ card ?F ∧

continuous on (
⋃
?F − C ) g ∧ g ‘ (

⋃
?F − C ) ⊆ T

∧ (∀ x ∈ (
⋃

?F − C ) ∩ K . g x = h x )
using extend map lemma cofinite0 [OF fin pw , of U T h] by (fastforce intro!:

clo F)
ultimately show ?thesis
by (rule tac C=C and g=g in that) auto

qed

lemma extend map lemma cofinite:
assumes finite F G ⊆ F and T : convex T bounded T

and poly :
∧
X . X ∈ F =⇒ polytope X

and contf : continuous on (
⋃
G) f and fim: f ‘ (

⋃
G) ⊆ rel frontier T

and face:
∧
X Y . [[X ∈ F ; Y ∈ F ]] =⇒ (X ∩ Y ) face of X

and aff :
∧
X . X ∈ F − G =⇒ aff dim X ≤ aff dim T

obtains C g where
finite C disjnt C (

⋃
G) card C ≤ card F continuous on (

⋃
F − C ) g

g ‘ (
⋃
F − C ) ⊆ rel frontier T

∧
x . x ∈

⋃
G =⇒ g x = f x

proof −
define H where H ≡ G ∪ {D . ∃C ∈ F − G. D face of C ∧ aff dim D < aff dim

T}
have finite G
using assms finite subset by blast

have ∗: finite (
⋃
{{D . D face of C} |C . C ∈ F})

using finite polytope faces poly 〈finite F 〉 by force
then have finite H
by (auto simp: H def 〈finite G〉 intro: finite subset [OF ∗])

have face ′:
∧
S T . [[S ∈ F ; T ∈ F ]] =⇒ (S ∩ T ) face of S ∧ (S ∩ T ) face of T

by (metis face inf commute)
have ∗:

∧
X Y . [[X ∈ H; Y ∈ H]] =⇒ X ∩ Y face of X

unfolding H def
using subsetD [OF 〈G ⊆ F 〉] apply (auto simp add : face)
apply (meson face ′ face of Int subface face of refl eq poly polytope imp convex )+
done

obtain h where conth: continuous on (
⋃
H) h and him: h ‘ (

⋃
H) ⊆ rel frontier

T
and hf :

∧
x . x ∈

⋃
G =⇒ h x = f x

proof (rule extend map lemma [OF 〈finite H〉 [unfolded H def ] Un upper1 T ])
show

∧
X . [[X ∈ G ∪ {D . ∃C∈F − G. D face of C ∧ aff dim D < aff dim T}]]

=⇒ polytope X
using 〈G ⊆ F 〉 face of polytope polytope poly by fastforce

qed (use ∗ H def contf fim in auto)
have bounded (

⋃
G)

using 〈finite G〉 〈G ⊆ F 〉 poly polytope imp bounded by blast
then have

⋃
G 6= UNIV

by auto
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then obtain a where a: a /∈
⋃
G

by blast
have F : ∃ a g . a /∈

⋃
G ∧ continuous on (D − {a}) g ∧

g ‘ (D − {a}) ⊆ rel frontier T ∧ (∀ x ∈ D ∩
⋃
H. g x = h x )

if D ∈ F for D
proof (cases D ⊆

⋃
H)

case True
then have h ‘ (D − {a}) ⊆ rel frontier T continuous on (D − {a}) h
using him by (blast intro!: 〈a /∈

⋃
G〉 continuous on subset [OF conth])+

then show ?thesis
using a by blast

next
case False
note D not subset = False
show ?thesis
proof (cases D ∈ G)
case True
with D not subset show ?thesis
by (auto simp: H def )

next
case False
then have affD : aff dim D ≤ aff dim T
by (simp add : 〈D ∈ F 〉 aff )

show ?thesis
proof (cases rel interior D = {})
case True
with 〈D ∈ F 〉 poly a show ?thesis
by (force simp: rel interior eq empty polytope imp convex )

next
case False
then obtain b where brelD : b ∈ rel interior D
by blast

have polyhedron D
by (simp add : poly polytope imp polyhedron that)

have rel frontier D retract of affine hull D − {b}
by (simp add : rel frontier retract of punctured affine hull poly poly-

tope imp bounded polytope imp convex that brelD)
then obtain r where relfD : rel frontier D ⊆ affine hull D − {b}

and contr : continuous on (affine hull D − {b}) r
and rim: r ‘ (affine hull D − {b}) ⊆ rel frontier D
and rid :

∧
x . x ∈ rel frontier D =⇒ r x = x

by (auto simp: retract of def retraction def )
show ?thesis
proof (intro exI conjI ballI )
show b /∈

⋃
G

proof clarify
fix E
assume b ∈ E E ∈ G
then have E ∩ D face of E ∧ E ∩ D face of D
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using 〈G ⊆ F 〉 face ′ that by auto
with face of subset rel frontier 〈E ∈ G〉 〈b ∈ E 〉 brelD rel interior subset

[of D ]
D not subset rel frontier def H def

show False
by blast

qed
have r ‘ (D − {b}) ⊆ r ‘ (affine hull D − {b})
by (simp add : Diff mono hull subset image mono)

also have ... ⊆ rel frontier D
by (rule rim)

also have ... ⊆
⋃
{E . E face of D ∧ aff dim E < aff dim T}

using affD
by (force simp: rel frontier of polyhedron [OF 〈polyhedron D 〉] facet of def )
also have ... ⊆

⋃
(H)

using D not subset H def that by fastforce
finally have rsub: r ‘ (D − {b}) ⊆

⋃
(H) .

show continuous on (D − {b}) (h ◦ r)
proof (rule continuous on compose)
show continuous on (D − {b}) r
by (meson Diff mono continuous on subset contr hull subset order refl)
show continuous on (r ‘ (D − {b})) h

by (simp add : Diff mono hull subset continuous on subset [OF conth
rsub])

qed
show (h ◦ r) ‘ (D − {b}) ⊆ rel frontier T
using brelD him rsub by fastforce

show (h ◦ r) x = h x if x : x ∈ D ∩
⋃
H for x

proof −
consider A where x ∈ D A ∈ G x ∈ A
| A B where x ∈ D A face of B B ∈ F B /∈ G aff dim A < aff dim

T x ∈ A
using x by (auto simp: H def )

then have xrel : x ∈ rel frontier D
proof cases
case 1 show ?thesis
proof (rule face of subset rel frontier [THEN subsetD ])
show D ∩ A face of D
using 〈A ∈ G〉 〈G ⊆ F 〉 face 〈D ∈ F 〉 by blast

show D ∩ A 6= D
using 〈A ∈ G〉 D not subset H def by blast

qed (auto simp: 1 )
next
case 2 show ?thesis
proof (rule face of subset rel frontier [THEN subsetD ])
have D face of D
by (simp add : 〈polyhedron D 〉 polyhedron imp convex face of refl)

then show D ∩ A face of D
by (meson 2 (2 ) 2 (3 ) 〈D ∈ F 〉 face ′ face of Int Int face of face)
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show D ∩ A 6= D
using 2 D not subset H def by blast

qed (auto simp: 2 )
qed
show ?thesis
by (simp add : rid xrel)

qed
qed

qed
qed

qed
have clo:

∧
S . S ∈ F =⇒ closed S

by (simp add : poly polytope imp closed)
obtain C g where finite C disjnt C (

⋃
G) card C ≤ card F continuous on (

⋃
F

− C ) g
g ‘ (

⋃
F − C ) ⊆ rel frontier T

and gh:
∧
x . x ∈ (

⋃
F − C ) ∩

⋃
H =⇒ g x = h x

proof (rule extend map lemma cofinite1 [OF 〈finite F 〉 F clo])
show X ∩ Y ⊆

⋃
H if XY : X ∈ F Y ∈ F and ¬ X ⊆ Y ¬ Y ⊆ X for X Y

proof (cases X ∈ G)
case True
then show ?thesis
by (auto simp: H def )

next
case False
have X ∩ Y 6= X
using 〈¬ X ⊆ Y 〉 by blast

with XY
show ?thesis
by (clarsimp simp: H def )

(metis Diff iff Int iff aff antisym conv face face of aff dim lt face of refl
not le poly polytope imp convex )

qed
qed (blast)+
with 〈G ⊆ F 〉 show ?thesis

by (rule tac C=C and g=g in that) (auto simp: disjnt def hf [symmetric]
H def intro!: gh)
qed

The next two proofs are similar

theorem extend map cell complex to sphere:
assumes finite F and S : S ⊆

⋃
F closed S and T : convex T bounded T

and poly :
∧
X . X ∈ F =⇒ polytope X

and aff :
∧
X . X ∈ F =⇒ aff dim X < aff dim T

and face:
∧
X Y . [[X ∈ F ; Y ∈ F ]] =⇒ (X ∩ Y ) face of X

and contf : continuous on S f and fim: f ‘ S ⊆ rel frontier T
obtains g where continuous on (

⋃
F) g

g ‘ (
⋃
F) ⊆ rel frontier T

∧
x . x ∈ S =⇒ g x = f x

proof −
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obtain V g where S ⊆ V open V continuous on V g and gim: g ‘ V ⊆ rel frontier
T and gf :

∧
x . x ∈ S =⇒ g x = f x

using neighbourhood extension into ANR [OF contf fim 〈closed S 〉] ANR rel frontier convex
T by blast
have compact S
by (meson assms compact Union poly polytope imp compact seq compact closed subset

seq compact eq compact)
then obtain d where d > 0 and d :

∧
x y . [[x ∈ S ; y ∈ − V ]] =⇒ d ≤ dist x y

using separate compact closed [of S −V ] 〈open V 〉 〈S ⊆ V 〉 by force
obtain G where finite G

⋃
G =

⋃
F

and diaG :
∧
X . X ∈ G =⇒ diameter X < d

and polyG :
∧
X . X ∈ G =⇒ polytope X

and affG :
∧
X . X ∈ G =⇒ aff dim X ≤ aff dim T − 1

and faceG :
∧
X Y . [[X ∈ G; Y ∈ G]] =⇒ X ∩ Y face of X

proof (rule cell complex subdivision exists [OF 〈d>0 〉 〈finite F 〉 poly face])
show

∧
X . X ∈ F =⇒ aff dim X ≤ aff dim T − 1

by (simp add : aff )
qed auto
obtain h where conth: continuous on (

⋃
G) h and him: h ‘

⋃
G ⊆ rel frontier

T and hg :
∧
x . x ∈

⋃
(G ∩ Pow V ) =⇒ h x = g x

proof (rule extend map lemma [of G G ∩ Pow V T g ])
show continuous on (

⋃
(G ∩ Pow V )) g

by (metis Union Int subset Union Pow eq 〈continuous on V g〉 continu-
ous on subset le inf iff )
qed (use 〈finite G〉 T polyG affG faceG gim in fastforce)+
show ?thesis
proof
show continuous on (

⋃
F) h

using 〈
⋃
G =

⋃
F 〉 conth by auto

show h ‘
⋃
F ⊆ rel frontier T

using 〈
⋃
G =

⋃
F 〉 him by auto

show h x = f x if x ∈ S for x
proof −
have x ∈

⋃
G

using 〈
⋃
G =

⋃
F 〉 〈S ⊆

⋃
F 〉 that by auto

then obtain X where x ∈ X X ∈ G by blast
then have diameter X < d bounded X
by (auto simp: diaG 〈X ∈ G〉 polyG polytope imp bounded)
then have X ⊆ V using d [OF 〈x ∈ S 〉] diameter bounded bound [OF

〈bounded X 〉 〈x ∈ X 〉]
by fastforce

have h x = g x
using 〈X ∈ G〉 〈X ⊆ V 〉 〈x ∈ X 〉 hg by auto

also have ... = f x
by (simp add : gf that)

finally show h x = f x .
qed

qed
qed
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theorem extend map cell complex to sphere cofinite:
assumes finite F and S : S ⊆

⋃
F closed S and T : convex T bounded T

and poly :
∧
X . X ∈ F =⇒ polytope X

and aff :
∧
X . X ∈ F =⇒ aff dim X ≤ aff dim T

and face:
∧
X Y . [[X ∈ F ; Y ∈ F ]] =⇒ (X ∩ Y ) face of X

and contf : continuous on S f and fim: f ‘ S ⊆ rel frontier T
obtains C g where finite C disjnt C S continuous on (

⋃
F − C ) g

g ‘ (
⋃
F − C ) ⊆ rel frontier T

∧
x . x ∈ S =⇒ g x = f x

proof −
obtain V g where S ⊆ V open V continuous on V g and gim: g ‘ V ⊆ rel frontier

T and gf :
∧
x . x ∈ S =⇒ g x = f x

using neighbourhood extension into ANR [OF contf fim 〈closed S 〉] ANR rel frontier convex
T by blast
have compact S
by (meson assms compact Union poly polytope imp compact seq compact closed subset

seq compact eq compact)
then obtain d where d > 0 and d :

∧
x y . [[x ∈ S ; y ∈ − V ]] =⇒ d ≤ dist x y

using separate compact closed [of S −V ] 〈open V 〉 〈S ⊆ V 〉 by force
obtain G where finite G

⋃
G =

⋃
F

and diaG :
∧
X . X ∈ G =⇒ diameter X < d

and polyG :
∧
X . X ∈ G =⇒ polytope X

and affG :
∧
X . X ∈ G =⇒ aff dim X ≤ aff dim T

and faceG :
∧
X Y . [[X ∈ G; Y ∈ G]] =⇒ X ∩ Y face of X

by (rule cell complex subdivision exists [OF 〈d>0 〉 〈finite F 〉 poly aff face]) auto
obtain C h where finite C and dis: disjnt C (

⋃
(G ∩ Pow V ))

and card : card C ≤ card G and conth: continuous on (
⋃
G − C ) h

and him: h ‘ (
⋃
G − C ) ⊆ rel frontier T

and hg :
∧
x . x ∈

⋃
(G ∩ Pow V ) =⇒ h x = g x

proof (rule extend map lemma cofinite [of G G ∩ Pow V T g ])
show continuous on (

⋃
(G ∩ Pow V )) g

by (metis Union Int subset Union Pow eq 〈continuous on V g〉 continu-
ous on subset le inf iff )

show g ‘
⋃
(G ∩ Pow V ) ⊆ rel frontier T

using gim by force
qed (auto intro: 〈finite G〉 T polyG affG dest : faceG)
have Ssub: S ⊆

⋃
(G ∩ Pow V )

proof
fix x
assume x ∈ S
then have x ∈

⋃
G

using 〈
⋃
G =

⋃
F 〉 〈S ⊆

⋃
F 〉 by auto

then obtain X where x ∈ X X ∈ G by blast
then have diameter X < d bounded X
by (auto simp: diaG 〈X ∈ G〉 polyG polytope imp bounded)

then have X ⊆ V using d [OF 〈x ∈ S 〉] diameter bounded bound [OF 〈bounded
X 〉 〈x ∈ X 〉]

by fastforce
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then show x ∈
⋃
(G ∩ Pow V )

using 〈X ∈ G〉 〈x ∈ X 〉 by blast
qed
show ?thesis
proof
show continuous on (

⋃
F−C ) h

using 〈
⋃
G =

⋃
F 〉 conth by auto

show h ‘ (
⋃
F − C ) ⊆ rel frontier T

using 〈
⋃
G =

⋃
F 〉 him by auto

show h x = f x if x ∈ S for x
proof −
have h x = g x
using Ssub hg that by blast

also have ... = f x
by (simp add : gf that)

finally show h x = f x .
qed
show disjnt C S
using dis Ssub by (meson disjnt iff subset eq)

qed (intro 〈finite C 〉)
qed

6.41.3 Special cases and corollaries involving spheres

lemma disjnt Diff1 : X ⊆ Y ′ =⇒ disjnt (X − Y ) (X ′ − Y ′)
by (auto simp: disjnt def )

proposition extend map affine to sphere cofinite simple:
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes compact S convex U bounded U

and aff : aff dim T ≤ aff dim U
and S ⊆ T and contf : continuous on S f
and fim: f ‘ S ⊆ rel frontier U

obtains K g where finite K K ⊆ T disjnt K S continuous on (T − K ) g
g ‘ (T − K ) ⊆ rel frontier U∧
x . x ∈ S =⇒ g x = f x

proof −
have ∃K g . finite K ∧ disjnt K S ∧ continuous on (T − K ) g ∧

g ‘ (T − K ) ⊆ rel frontier U ∧ (∀ x ∈ S . g x = f x )
if affine T S ⊆ T and aff : aff dim T ≤ aff dim U for T

proof (cases S = {})
case True
show ?thesis
proof (cases rel frontier U = {})
case True
with 〈bounded U 〉 have aff dim U ≤ 0
using affine bounded eq lowdim rel frontier eq empty by auto

with aff have aff dim T ≤ 0 by auto
then obtain a where T ⊆ {a}
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using 〈affine T 〉 affine bounded eq lowdim affine bounded eq trivial by auto
then show ?thesis
using 〈S = {}〉 fim

by (metis Diff cancel contf disjnt empty2 finite.emptyI finite insert fi-
nite subset)

next
case False
then obtain a where a ∈ rel frontier U
by auto

then show ?thesis
using continuous on const [of a] 〈S = {}〉 by force

qed
next
case False
have bounded S
by (simp add : 〈compact S 〉 compact imp bounded)

then obtain b where b: S ⊆ cbox (−b) b
using bounded subset cbox symmetric by blast

define bbox where bbox ≡ cbox (−(b+One)) (b+One)
have cbox (−b) b ⊆ bbox
by (auto simp: bbox def algebra simps intro!: subset box imp)

with b 〈S ⊆ T 〉 have S ⊆ bbox ∩ T
by auto

then have Ssub: S ⊆
⋃
{bbox ∩ T}

by auto
then have aff dim (bbox ∩ T ) ≤ aff dim U
by (metis aff aff dim subset inf commute inf le1 order trans)

obtain K g where K : finite K disjnt K S
and contg : continuous on (

⋃
{bbox ∩ T} − K ) g

and gim: g ‘ (
⋃
{bbox ∩ T} − K ) ⊆ rel frontier U

and gf :
∧
x . x ∈ S =⇒ g x = f x

proof (rule extend map cell complex to sphere cofinite
[OF Ssub 〈convex U 〉 〈bounded U 〉 contf fim])

show closed S
using 〈compact S 〉 compact eq bounded closed by auto

show poly :
∧
X . X ∈ {bbox ∩ T} =⇒ polytope X

by (simp add : polytope Int polyhedron bbox def polytope interval affine imp polyhedron
〈affine T 〉)

show
∧
X Y . [[X ∈ {bbox ∩ T}; Y ∈ {bbox ∩ T}]] =⇒ X ∩ Y face of X

by (simp add :poly face of refl polytope imp convex )
show

∧
X . X ∈ {bbox ∩ T} =⇒ aff dim X ≤ aff dim U

by (simp add : 〈aff dim (bbox ∩ T ) ≤ aff dim U 〉)
qed auto
define fro where fro ≡ λd . frontier(cbox (−(b + d ∗R One)) (b + d ∗R One))
obtain d where d12 : 1/2 ≤ d d ≤ 1 and dd : disjnt K (fro d)
proof (rule disjoint family elem disjnt [OF 〈finite K 〉])
show infinite {1/2 ..1 ::real}
by (simp add : infinite Icc)

have dis1 : disjnt (fro x ) (fro y) if x<y for x y
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by (auto simp: algebra simps that subset box imp disjnt Diff1 frontier def
fro def )

then show disjoint family on fro {1/2 ..1}
by (auto simp: disjoint family on def disjnt def neq iff )

qed auto
define c where c ≡ b + d ∗R One
have cbsub: cbox (−b) b ⊆ box (−c) c cbox (−b) b ⊆ cbox (−c) c cbox (−c)

c ⊆ bbox
using d12 by (auto simp: algebra simps subset box imp c def bbox def )

have clo cbT : closed (cbox (− c) c ∩ T )
by (simp add : affine closed closed Int closed cbox 〈affine T 〉)

have cpT ne: cbox (− c) c ∩ T 6= {}
using 〈S 6= {}〉 b cbsub(2 ) 〈S ⊆ T 〉 by fastforce

have closest point (cbox (− c) c ∩ T ) x /∈ K if x ∈ T x /∈ K for x
proof (cases x ∈ cbox (−c) c)
case True with that show ?thesis
by (simp add : closest point self )

next
case False
have int ne: interior (cbox (−c) c) ∩ T 6= {}
using 〈S 6= {}〉 〈S ⊆ T 〉 b 〈cbox (− b) b ⊆ box (− c) c〉 by force

have convex T
by (meson 〈affine T 〉 affine imp convex )

then have x ∈ affine hull (cbox (− c) c ∩ T )
by (metis Int commute Int iff 〈S 6= {}〉 〈S ⊆ T 〉 cbsub(1 ) 〈x ∈ T 〉

affine hull convex Int nonempty interior all not in conv b hull inc inf .orderE inte-
rior cbox )

then have x ∈ affine hull (cbox (− c) c ∩ T ) − rel interior (cbox (− c) c
∩ T )

by (meson DiffI False Int iff rel interior subset subsetCE )
then have closest point (cbox (− c) c ∩ T ) x ∈ rel frontier (cbox (− c) c ∩

T )
by (rule closest point in rel frontier [OF clo cbT cpT ne])

moreover have (rel frontier (cbox (− c) c ∩ T )) ⊆ fro d
by (subst convex affine rel frontier Int [OF 〈affine T 〉 int ne]) (auto simp:

fro def c def )
ultimately show ?thesis
using dd by (force simp: disjnt def )

qed
then have cpt subset : closest point (cbox (− c) c ∩ T ) ‘ (T − K ) ⊆

⋃
{bbox

∩ T} − K
using closest point in set [OF clo cbT cpT ne] cbsub(3 ) by force

show ?thesis
proof (intro conjI ballI exI )
have continuous on (T − K ) (closest point (cbox (− c) c ∩ T ))
proof (rule continuous on closest point)
show convex (cbox (− c) c ∩ T )
by (simp add : affine imp convex convex Int 〈affine T 〉)

show closed (cbox (− c) c ∩ T )
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using clo cbT by blast
show cbox (− c) c ∩ T 6= {}
using 〈S 6= {}〉 cbsub(2 ) b that by auto

qed
then show continuous on (T − K ) (g ◦ closest point (cbox (− c) c ∩ T ))
by (metis continuous on compose continuous on subset [OF contg cpt subset ])
have (g ◦ closest point (cbox (− c) c ∩ T )) ‘ (T − K ) ⊆ g ‘ (

⋃
{bbox ∩ T}

− K )
by (metis image comp image mono cpt subset)

also have ... ⊆ rel frontier U
by (rule gim)

finally show (g ◦ closest point (cbox (− c) c ∩ T )) ‘ (T − K ) ⊆ rel frontier
U .

show (g ◦ closest point (cbox (− c) c ∩ T )) x = f x if x ∈ S for x
proof −
have (g ◦ closest point (cbox (− c) c ∩ T )) x = g x
unfolding o def
by (metis IntI 〈S ⊆ T 〉 b cbsub(2 ) closest point self subset eq that)

also have ... = f x
by (simp add : that gf )

finally show ?thesis .
qed

qed (auto simp: K )
qed
then obtain K g where finite K disjnt K S

and contg : continuous on (affine hull T − K ) g
and gim: g ‘ (affine hull T − K ) ⊆ rel frontier U
and gf :

∧
x . x ∈ S =⇒ g x = f x

by (metis aff affine affine hull aff dim affine hull
order trans [OF 〈S ⊆ T 〉 hull subset [of T affine]])

then obtain K g where finite K disjnt K S
and contg : continuous on (T − K ) g
and gim: g ‘ (T − K ) ⊆ rel frontier U
and gf :

∧
x . x ∈ S =⇒ g x = f x

by (rule tac K=K and g=g in that) (auto simp: hull inc elim: continu-
ous on subset)
then show ?thesis
by (rule tac K=K ∩ T and g=g in that) (auto simp: disjnt iff Diff Int contg)

qed

6.41.4 Extending maps to spheres

lemma extend map affine to sphere1 :
fixes f :: ′a::euclidean space ⇒ ′b::topological space
assumes finite K affine U and contf : continuous on (U − K ) f

and fim: f ‘ (U − K ) ⊆ T
and comps:

∧
C . [[C ∈ components(U − S ); C ∩ K 6= {}]] =⇒ C ∩ L 6= {}

and clo: closedin (top of set U ) S and K : disjnt K S K ⊆ U
obtains g where continuous on (U − L) g g ‘ (U − L) ⊆ T

∧
x . x ∈ S =⇒ g
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x = f x
proof (cases K = {})
case True
then show ?thesis
by (metis Diff empty Diff subset contf fim continuous on subset image subsetI

rev image eqI subset iff that)
next
case False
have S ⊆ U
using clo closedin limpt by blast

then have (U − S ) ∩ K 6= {}
by (metis Diff triv False Int Diff K disjnt def inf .absorb iff2 inf commute)

then have
⋃
(components (U − S )) ∩ K 6= {}

using Union components by simp
then obtain C0 where C0 : C0 ∈ components (U − S ) C0 ∩ K 6= {}
by blast

have convex U
by (simp add : affine imp convex 〈affine U 〉)

then have locally connected U
by (rule convex imp locally connected)

have ∃ a g . a ∈ C ∧ a ∈ L ∧ continuous on (S ∪ (C − {a})) g ∧
g ‘ (S ∪ (C − {a})) ⊆ T ∧ (∀ x ∈ S . g x = f x )

if C : C ∈ components (U − S ) and CK : C ∩ K 6= {} for C
proof −
have C ⊆ U−S C ∩ L 6= {}
by (simp all add : in components subset comps that)

then obtain a where a: a ∈ C a ∈ L by auto
have opeUC : openin (top of set U ) C
proof (rule openin trans)
show openin (top of set (U−S )) C
by (simp add : 〈locally connected U 〉 clo locally diff closed openin components locally connected

[OF C ])
show openin (top of set U ) (U − S )
by (simp add : clo openin diff )

qed
then obtain d where C ⊆ U 0 < d and d : cball a d ∩ U ⊆ C
using openin contains cball by (metis 〈a ∈ C 〉)

then have ball a d ∩ U ⊆ C
by auto

obtain h k where homhk : homeomorphism (S ∪ C ) (S ∪ C ) h k
and subC : {x . (¬ (h x = x ∧ k x = x ))} ⊆ C
and bou: bounded {x . (¬ (h x = x ∧ k x = x ))}
and hin:

∧
x . x ∈ C ∩ K =⇒ h x ∈ ball a d ∩ U

proof (rule homeomorphism grouping points exists gen [of C ball a d ∩ U C ∩
K S ∪ C ])

show openin (top of set C ) (ball a d ∩ U )
by (metis open ball 〈C ⊆ U 〉 〈ball a d ∩ U ⊆ C 〉 inf .absorb iff2 inf .orderE

inf assoc open openin openin subtopology)
show openin (top of set (affine hull C )) C
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by (metis 〈a ∈ C 〉 〈openin (top of set U ) C 〉 affine hull eq affine hull openin
all not in conv 〈affine U 〉)

show ball a d ∩ U 6= {}
using 〈0 < d 〉 〈C ⊆ U 〉 〈a ∈ C 〉 by force

show finite (C ∩ K )
by (simp add : 〈finite K 〉)

show S ∪ C ⊆ affine hull C
by (metis 〈C ⊆ U 〉 〈S ⊆ U 〉 〈a ∈ C 〉 opeUC affine hull eq affine hull openin

all not in conv assms(2 ) sup.bounded iff )
show connected C
by (metis C in components connected)

qed auto
have a BU : a ∈ ball a d ∩ U
using 〈0 < d 〉 〈C ⊆ U 〉 〈a ∈ C 〉 by auto

have rel frontier (cball a d ∩ U ) retract of (affine hull (cball a d ∩ U ) − {a})
proof (rule rel frontier retract of punctured affine hull)
show bounded (cball a d ∩ U ) convex (cball a d ∩ U )
by (auto simp: 〈convex U 〉 convex Int)

show a ∈ rel interior (cball a d ∩ U )
by (metis 〈affine U 〉 convex cball empty iff interior cball a BU rel interior convex Int affine)

qed
moreover have rel frontier (cball a d ∩ U ) = frontier (cball a d) ∩ U
by (metis a BU 〈affine U 〉 convex affine rel frontier Int convex cball equals0D

interior cball)
moreover have affine hull (cball a d ∩ U ) = U
by (metis 〈convex U 〉 a BU affine hull convex Int nonempty interior affine hull eq

〈affine U 〉 equals0D inf .commute interior cball)
ultimately have frontier (cball a d) ∩ U retract of (U − {a})
by metis

then obtain r where contr : continuous on (U − {a}) r
and rim: r ‘ (U − {a}) ⊆ sphere a d r ‘ (U − {a}) ⊆ U
and req :

∧
x . x ∈ sphere a d ∩ U =⇒ r x = x

using 〈affine U 〉 by (auto simp: retract of def retraction def hull same)
define j where j ≡ λx . if x ∈ ball a d then r x else x
have kj :

∧
x . x ∈ S =⇒ k (j x ) = x

using 〈C ⊆ U − S 〉 〈S ⊆ U 〉 〈ball a d ∩ U ⊆ C 〉 j def subC by auto
have Uaeq : U − {a} = (cball a d − {a}) ∩ U ∪ (U − ball a d)
using 〈0 < d 〉 by auto

have jim: j ‘ (S ∪ (C − {a})) ⊆ (S ∪ C ) − ball a d
proof clarify
fix y assume y ∈ S ∪ (C − {a})
then have y ∈ U − {a}
using 〈C ⊆ U − S 〉 〈S ⊆ U 〉 〈a ∈ C 〉 by auto

then have r y ∈ sphere a d
using rim by auto

then show j y ∈ S ∪ C − ball a d
unfolding j def
using 〈r y ∈ sphere a d 〉 〈y ∈ U − {a}〉 〈y ∈ S ∪ (C − {a})〉 d rim
by (metis Diff iff Int iff Un iff subsetD cball diff eq sphere image subset iff )
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qed
have contj : continuous on (U − {a}) j
unfolding j def Uaeq
proof (intro continuous on cases local continuous on id , simp all add : req

closedin closed Uaeq [symmetric])
show ∃T . closed T ∧ (cball a d − {a}) ∩ U = (U − {a}) ∩ T
using affine closed 〈affine U 〉 by (rule tac x=(cball a d) ∩ U in exI ) blast

show ∃T . closed T ∧ U − ball a d = (U − {a}) ∩ T
using 〈0 < d 〉 〈affine U 〉

by (rule tac x=U − ball a d in exI ) (force simp: affine closed)
show continuous on ((cball a d − {a}) ∩ U ) r
by (force intro: continuous on subset [OF contr ])

qed
have fT : x ∈ U − K =⇒ f x ∈ T for x
using fim by blast

show ?thesis
proof (intro conjI exI )
show continuous on (S ∪ (C − {a})) (f ◦ k ◦ j )
proof (intro continuous on compose)
have S ∪ (C − {a}) ⊆ U − {a}
using 〈C ⊆ U − S 〉 〈S ⊆ U 〉 〈a ∈ C 〉 by force

then show continuous on (S ∪ (C − {a})) j
by (rule continuous on subset [OF contj ])

have j ‘ (S ∪ (C − {a})) ⊆ S ∪ C
using jim 〈C ⊆ U − S 〉 〈S ⊆ U 〉 〈ball a d ∩ U ⊆ C 〉 j def by blast

then show continuous on (j ‘ (S ∪ (C − {a}))) k
by (rule continuous on subset [OF homeomorphism cont2 [OF homhk ]])

show continuous on (k ‘ j ‘ (S ∪ (C − {a}))) f
proof (clarify intro!: continuous on subset [OF contf ])
fix y assume y ∈ S ∪ (C − {a})
have ky : k y ∈ S ∪ C

using homeomorphism image2 [OF homhk ] 〈y ∈ S ∪ (C − {a})〉 by
blast

have jy : j y ∈ S ∪ C − ball a d
using Un iff 〈y ∈ S ∪ (C − {a})〉 jim by auto

have k (j y) ∈ U
using 〈C ⊆ U 〉 〈S ⊆ U 〉 homeomorphism image2 [OF homhk ] jy by

blast
moreover have k (j y) /∈ K
using K unfolding disjnt iff
by (metis DiffE Int iff Un iff hin homeomorphism def homhk image eqI

jy)
ultimately show k (j y) ∈ U − K
by blast

qed
qed
have ST :

∧
x . x ∈ S =⇒ (f ◦ k ◦ j ) x ∈ T

proof (simp add : kj )
show

∧
x . x ∈ S =⇒ f x ∈ T
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using K unfolding disjnt iff by (metis DiffI 〈S ⊆ U 〉 subsetD fim
image subset iff )

qed
moreover have (f ◦ k ◦ j ) x ∈ T if x ∈ C x 6= a x /∈ S for x
proof −
have rx : r x ∈ sphere a d
using 〈C ⊆ U 〉 rim that by fastforce

have jj : j x ∈ S ∪ C − ball a d
using jim that by blast

have k (j x ) = j x −→ k (j x ) ∈ C ∨ j x ∈ C
by (metis Diff iff Int iff Un iff 〈S ⊆ U 〉 subsetD d j def jj rx sphere cball

that(1 ))
then have kj : k (j x ) ∈ C
using homeomorphism apply2 [OF homhk , of j x ] 〈C ⊆ U 〉 〈S ⊆ U 〉 a rx
by (metis (mono tags, lifting) Diff iff subsetD jj mem Collect eq subC )

then show ?thesis
by (metis DiffE DiffI IntD1 IntI 〈C ⊆ U 〉 comp apply fT hin homeomor-

phism apply2 homhk jj kj subset eq)
qed
ultimately show (f ◦ k ◦ j ) ‘ (S ∪ (C − {a})) ⊆ T
by force

show ∀ x∈S . (f ◦ k ◦ j ) x = f x using kj by simp
qed (auto simp: a)

qed
then obtain a h where
ah:

∧
C . [[C ∈ components (U − S ); C ∩ K 6= {}]]
=⇒ a C ∈ C ∧ a C ∈ L ∧ continuous on (S ∪ (C − {a C})) (h C ) ∧

h C ‘ (S ∪ (C − {a C})) ⊆ T ∧ (∀ x ∈ S . h C x = f x )
using that by metis

define F where F ≡ {C ∈ components (U − S ). C ∩ K 6= {}}
define G where G ≡ {C ∈ components (U − S ). C ∩ K = {}}
define UF where UF ≡ (

⋃
C∈F . C − {a C})

have C0 ∈ F
by (auto simp: F def C0 )

have finite F
proof (subst finite image iff [of λC . C ∩ K F , symmetric])
show inj on (λC . C ∩ K ) F
unfolding F def inj on def
using components nonoverlap by blast

show finite ((λC . C ∩ K ) ‘ F )
unfolding F def
by (rule finite subset [of Pow K ]) (auto simp: 〈finite K 〉)

qed
obtain g where contg : continuous on (S ∪ UF ) g

and gh:
∧
x i . [[i ∈ F ; x ∈ (S ∪ UF ) ∩ (S ∪ (i − {a i}))]]
=⇒ g x = h i x

proof (rule pasting lemma exists closed [OF 〈finite F 〉])
let ?X = top of set (S ∪ UF )
show topspace ?X ⊆ (

⋃
C∈F . S ∪ (C − {a C}))
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using 〈C0 ∈ F 〉 by (force simp: UF def )
show closedin (top of set (S ∪ UF )) (S ∪ (C − {a C}))

if C ∈ F for C
proof (rule closedin closed subset [of U S ∪ C ])
have C ∈ components (U − S )
using F def that by blast

then show closedin (top of set U ) (S ∪ C )
by (rule closedin Un complement component [OF 〈locally connected U 〉 clo])

next
have x = a C ′ if C ′ ∈ F x ∈ C ′ x /∈ U for x C ′

proof −
have ∀A. x ∈

⋃
A ∨ C ′ /∈ A

using 〈x ∈ C ′〉 by blast
with that show x = a C ′

by (metis (lifting) DiffD1 F def Union components mem Collect eq)
qed
then show S ∪ UF ⊆ U
using 〈S ⊆ U 〉 by (force simp: UF def )

next
show S ∪ (C − {a C}) = (S ∪ C ) ∩ (S ∪ UF )
using F def UF def components nonoverlap that by auto

qed
show continuous map (subtopology ?X (S ∪ (C ′ − {a C ′}))) euclidean (h C ′)

if C ′ ∈ F for C ′

proof −
have C ′: C ′ ∈ components (U − S ) C ′ ∩ K 6= {}
using F def that by blast+

show ?thesis
using ah [OF C ′] by (auto simp: F def subtopology subtopology intro:

continuous on subset)
qed
show

∧
i j x . [[i ∈ F ; j ∈ F ;

x ∈ topspace ?X ∩ (S ∪ (i − {a i})) ∩ (S ∪ (j − {a j}))]]
=⇒ h i x = h j x

using components eq by (fastforce simp: components eq F def ah)
qed auto
have SU ′: S ∪

⋃
G ∪ (S ∪ UF ) ⊆ U

using 〈S ⊆ U 〉 in components subset by (auto simp: F def G def UF def )
have clo1 : closedin (top of set (S ∪

⋃
G ∪ (S ∪ UF ))) (S ∪

⋃
G)

proof (rule closedin closed subset [OF SU ′])
have ∗:

∧
C . C ∈ F =⇒ openin (top of set U ) C

unfolding F def
by clarify (metis (no types, lifting) 〈locally connected U 〉 clo closedin def lo-

cally diff closed openin components locally connected openin trans topspace euclidean subtopology)
show closedin (top of set U ) (U − UF )
unfolding UF def
by (force intro: openin delete ∗)

show S ∪
⋃
G = (U − UF ) ∩ (S ∪

⋃
G ∪ (S ∪ UF ))

using 〈S ⊆ U 〉 apply (auto simp: F def G def UF def )
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apply (metis Diff iff UnionI Union components)
apply (metis DiffD1 UnionI Union components)
by (metis (no types, lifting) IntI components nonoverlap empty iff )

qed
have clo2 : closedin (top of set (S ∪

⋃
G ∪ (S ∪ UF ))) (S ∪ UF )

proof (rule closedin closed subset [OF SU ′])
show closedin (top of set U ) (

⋃
C∈F . S ∪ C )

proof (rule closedin Union)
show

∧
T . T ∈ (∪) S ‘ F =⇒ closedin (top of set U ) T

using F def 〈locally connected U 〉 clo closedin Un complement component
by blast

qed (simp add : 〈finite F 〉)
show S ∪ UF = (

⋃
C∈F . S ∪ C ) ∩ (S ∪

⋃
G ∪ (S ∪ UF ))

using 〈S ⊆ U 〉 apply (auto simp: F def G def UF def )
using C0 apply blast
by (metis components nonoverlap disjoint iff )

qed
have SUG : S ∪

⋃
G ⊆ U − K

using 〈S ⊆ U 〉 K apply (auto simp: G def disjnt iff )
by (meson Diff iff subsetD in components subset)

then have contf ′: continuous on (S ∪
⋃
G) f

by (rule continuous on subset [OF contf ])
have contg ′: continuous on (S ∪ UF ) g
by (simp add : contg)

have
∧
x . [[S ⊆ U ; x ∈ S ]] =⇒ f x = g x

by (subst gh) (auto simp: ah C0 intro: 〈C0 ∈ F 〉)
then have f eq g :

∧
x . x ∈ S ∪ UF ∧ x ∈ S ∪

⋃
G =⇒ f x = g x

using 〈S ⊆ U 〉 apply (auto simp: F def G def UF def dest : in components subset)
using components eq by blast

have cont : continuous on (S ∪
⋃
G ∪ (S ∪ UF )) (λx . if x ∈ S ∪

⋃
G then f x

else g x )
by (blast intro: continuous on cases local [OF clo1 clo2 contf ′ contg ′ f eq g , of

λx . x ∈ S ∪
⋃

G ])
show ?thesis
proof
have UF :

⋃
F − L ⊆ UF

unfolding F def UF def using ah by blast
have U − S − L =

⋃
(components (U − S )) − L

by simp
also have ... =

⋃
F ∪

⋃
G − L

unfolding F def G def by blast
also have ... ⊆ UF ∪

⋃
G

using UF by blast
finally have U − L ⊆ S ∪

⋃
G ∪ (S ∪ UF )

by blast
then show continuous on (U − L) (λx . if x ∈ S ∪

⋃
G then f x else g x )

by (rule continuous on subset [OF cont ])
have ((U − L) ∩ {x . x /∈ S ∧ (∀ xa∈G . x /∈ xa)}) ⊆ ((U − L) ∩ (−S ∩ UF ))
using 〈U − L ⊆ S ∪

⋃
G ∪ (S ∪ UF )〉 by auto
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moreover have g ‘ ((U − L) ∩ (−S ∩ UF )) ⊆ T
proof −
have g x ∈ T if x ∈ U x /∈ L x /∈ S C ∈ F x ∈ C x 6= a C for x C
proof (subst gh)
show x ∈ (S ∪ UF ) ∩ (S ∪ (C − {a C}))
using that by (auto simp: UF def )

show h C x ∈ T
using ah that by (fastforce simp add : F def )

qed (rule that)
then show ?thesis
by (force simp: UF def )

qed
ultimately have g ‘ ((U − L) ∩ {x . x /∈ S ∧ (∀ xa∈G . x /∈ xa)}) ⊆ T
using image mono order trans by blast

moreover have f ‘ ((U − L) ∩ (S ∪
⋃
G)) ⊆ T

using fim SUG by blast
ultimately show (λx . if x ∈ S ∪

⋃
G then f x else g x ) ‘ (U − L) ⊆ T

by force
show

∧
x . x ∈ S =⇒ (if x ∈ S ∪

⋃
G then f x else g x ) = f x

by (simp add : F def G def )
qed

qed

lemma extend map affine to sphere2 :
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes compact S convex U bounded U affine T S ⊆ T

and affTU : aff dim T ≤ aff dim U
and contf : continuous on S f
and fim: f ‘ S ⊆ rel frontier U
and ovlap:

∧
C . C ∈ components(T − S ) =⇒ C ∩ L 6= {}

obtains K g where finite K K ⊆ L K ⊆ T disjnt K S
continuous on (T − K ) g g ‘ (T − K ) ⊆ rel frontier U∧
x . x ∈ S =⇒ g x = f x

proof −
obtain K g where K : finite K K ⊆ T disjnt K S

and contg : continuous on (T − K ) g
and gim: g ‘ (T − K ) ⊆ rel frontier U
and gf :

∧
x . x ∈ S =⇒ g x = f x

using assms extend map affine to sphere cofinite simple by metis
have (∃ y C . C ∈ components (T − S ) ∧ x ∈ C ∧ y ∈ C ∧ y ∈ L) if x ∈ K

for x
proof −
have x ∈ T−S
using 〈K ⊆ T 〉 〈disjnt K S 〉 disjnt def that by fastforce

then obtain C where C ∈ components(T − S ) x ∈ C
by (metis UnionE Union components)

with ovlap [of C ] show ?thesis
by blast
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qed
then obtain ξ where ξ:

∧
x . x ∈ K =⇒ ∃C . C ∈ components (T − S ) ∧ x ∈

C ∧ ξ x ∈ C ∧ ξ x ∈ L
by metis

obtain h where conth: continuous on (T − ξ ‘ K ) h
and him: h ‘ (T − ξ ‘ K ) ⊆ rel frontier U
and hg :

∧
x . x ∈ S =⇒ h x = g x

proof (rule extend map affine to sphere1 [OF 〈finite K 〉 〈affine T 〉 contg gim, of
S ξ ‘ K ])

show cloTS : closedin (top of set T ) S
by (simp add : 〈compact S 〉 〈S ⊆ T 〉 closed subset compact imp closed)

show
∧
C . [[C ∈ components (T − S ); C ∩ K 6= {}]] =⇒ C ∩ ξ ‘ K 6= {}

using ξ components eq by blast
qed (use K in auto)
show ?thesis
proof
show ∗: ξ ‘ K ⊆ L
using ξ by blast

show finite (ξ ‘ K )
by (simp add : K )

show ξ ‘ K ⊆ T
by clarify (meson ξ Diff iff contra subsetD in components subset)

show continuous on (T − ξ ‘ K ) h
by (rule conth)

show disjnt (ξ ‘ K ) S
using K ξ in components subset by (fastforce simp: disjnt def )

qed (simp all add : him hg gf )
qed

proposition extend map affine to sphere cofinite gen:
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes SUT : compact S convex U bounded U affine T S ⊆ T

and aff : aff dim T ≤ aff dim U
and contf : continuous on S f
and fim: f ‘ S ⊆ rel frontier U
and dis:

∧
C . [[C ∈ components(T − S ); bounded C ]] =⇒ C ∩ L 6= {}

obtains K g where finite K K ⊆ L K ⊆ T disjnt K S continuous on (T − K ) g
g ‘ (T − K ) ⊆ rel frontier U∧
x . x ∈ S =⇒ g x = f x

proof (cases S = {})
case True
show ?thesis
proof (cases rel frontier U = {})
case True
with aff have aff dim T ≤ 0
using affine bounded eq lowdim 〈bounded U 〉 order trans
by (auto simp add : rel frontier eq empty)

with aff dim geq [of T ] consider aff dim T = −1 | aff dim T = 0
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by linarith
then show ?thesis
proof cases
assume aff dim T = −1
then have T = {}
by (simp add : aff dim empty)

then show ?thesis
by (rule tac K={} in that) auto

next
assume aff dim T = 0
then obtain a where T = {a}
using aff dim eq 0 by blast

then have a ∈ L
using dis [of {a}] 〈S = {}〉 by (auto simp: in components self )

with 〈S = {}〉 〈T = {a}〉 show ?thesis
by (rule tac K={a} and g=f in that) auto

qed
next
case False
then obtain y where y ∈ rel frontier U
by auto

with 〈S = {}〉 show ?thesis
by (rule tac K={} and g=λx . y in that) (auto)

qed
next
case False
have bounded S
by (simp add : assms compact imp bounded)

then obtain b where b: S ⊆ cbox (−b) b
using bounded subset cbox symmetric by blast

define LU where LU ≡ L ∪ (
⋃
{C ∈ components (T − S ). ¬bounded C} −

cbox (−(b+One)) (b+One))
obtain K g where finite K K ⊆ LU K ⊆ T disjnt K S

and contg : continuous on (T − K ) g
and gim: g ‘ (T − K ) ⊆ rel frontier U
and gf :

∧
x . x ∈ S =⇒ g x = f x

proof (rule extend map affine to sphere2 [OF SUT aff contf fim])
show C ∩ LU 6= {} if C ∈ components (T − S ) for C
proof (cases bounded C )
case True
with dis that show ?thesis
unfolding LU def by fastforce

next
case False
then have ¬ bounded (

⋃
{C ∈ components (T − S ). ¬ bounded C})

by (metis (no types, lifting) Sup upper bounded subset mem Collect eq that)
then show ?thesis
apply (clarsimp simp: LU def Int Un distrib Diff Int distrib Int UN distrib)
by (metis (no types, lifting) False Sup upper bounded cbox bounded subset
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inf .orderE mem Collect eq that)
qed

qed blast
have ∗: False if x ∈ cbox (− b − m ∗R One) (b + m ∗R One)

x /∈ box (− b − n ∗R One) (b + n ∗R One)
0 ≤ m m < n n ≤ 1 for m n x

using that by (auto simp: mem box algebra simps)
have disjoint family on (λd . frontier (cbox (− b − d ∗R One) (b + d ∗R One)))
{1 / 2 ..1}

by (auto simp: disjoint family on def neq iff frontier def dest : ∗)
then obtain d where d12 : 1/2 ≤ d d ≤ 1

and ddis: disjnt K (frontier (cbox (−(b + d ∗R One)) (b + d ∗R
One)))

using disjoint family elem disjnt [of {1/2 ..1 ::real} K λd . frontier (cbox (−(b
+ d ∗R One)) (b + d ∗R One))]

by (auto simp: 〈finite K 〉)
define c where c ≡ b + d ∗R One
have cbsub: cbox (−b) b ⊆ box (−c) c

cbox (−b) b ⊆ cbox (−c) c
cbox (−c) c ⊆ cbox (−(b+One)) (b+One)

using d12 by (simp all add : subset box c def inner diff left inner left distrib)
have clo cT : closed (cbox (− c) c ∩ T )
using affine closed 〈affine T 〉 by blast

have cT ne: cbox (− c) c ∩ T 6= {}
using 〈S 6= {}〉 〈S ⊆ T 〉 b cbsub by fastforce

have S sub cc: S ⊆ cbox (− c) c
using 〈cbox (− b) b ⊆ cbox (− c) c〉 b by auto

show ?thesis
proof
show finite (K ∩ cbox (−(b+One)) (b+One))
using 〈finite K 〉 by blast

show K ∩ cbox (− (b + One)) (b + One) ⊆ L
using 〈K ⊆ LU 〉 by (auto simp: LU def )

show K ∩ cbox (− (b + One)) (b + One) ⊆ T
using 〈K ⊆ T 〉 by auto

show disjnt (K ∩ cbox (− (b + One)) (b + One)) S
using 〈disjnt K S 〉 by (simp add : disjnt def disjoint eq subset Compl inf .coboundedI1 )
have cloTK : closest point (cbox (− c) c ∩ T ) x ∈ T − K

if x ∈ T and Knot : x ∈ K −→ x /∈ cbox (− b − One) (b + One)
for x

proof (cases x ∈ cbox (− c) c)
case True
with 〈x ∈ T 〉 show ?thesis
using cbsub(3 ) Knot by (force simp: closest point self )

next
case False
have clo in rf : closest point (cbox (− c) c ∩ T ) x ∈ rel frontier (cbox (− c)

c ∩ T )
proof (intro closest point in rel frontier [OF clo cT cT ne] DiffI notI )
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have T ∩ interior (cbox (− c) c) 6= {}
using 〈S 6= {}〉 〈S ⊆ T 〉 b cbsub(1 ) by fastforce

then show x ∈ affine hull (cbox (− c) c ∩ T )
by (simp add : Int commute affine hull affine Int nonempty interior 〈affine

T 〉 hull inc that(1 ))
next
show False if x ∈ rel interior (cbox (− c) c ∩ T )
proof −
have interior (cbox (− c) c) ∩ T 6= {}
using 〈S 6= {}〉 〈S ⊆ T 〉 b cbsub(1 ) by fastforce

then have affine hull (T ∩ cbox (− c) c) = T
using affine hull convex Int nonempty interior [of T cbox (− c) c]
by (simp add : affine imp convex 〈affine T 〉 inf commute)

then show ?thesis
by (meson subsetD le inf iff rel interior subset that False)

qed
qed
have closest point (cbox (− c) c ∩ T ) x /∈ K
proof
assume inK : closest point (cbox (− c) c ∩ T ) x ∈ K
have

∧
x . x ∈ K =⇒ x /∈ frontier (cbox (− (b + d ∗R One)) (b + d ∗R

One))
by (metis ddis disjnt iff )

then show False
by (metis DiffI Int iff 〈affine T 〉 cT ne c def clo cT clo in rf clos-

est point in set
convex affine rel frontier Int convex box (1 ) empty iff frontier cbox

inK interior cbox )
qed
then show ?thesis
using cT ne clo cT closest point in set by blast

qed
show continuous on (T − K ∩ cbox (− (b + One)) (b + One)) (g ◦ closest point

(cbox (−c) c ∩ T ))
using cloTK

apply (intro continuous on compose continuous on closest point continu-
ous on subset [OF contg ])

by (auto simp add : clo cT affine imp convex 〈affine T 〉 convex Int cT ne)
have g (closest point (cbox (− c) c ∩ T ) x ) ∈ rel frontier U

if x ∈ T x ∈ K −→ x /∈ cbox (− b − One) (b + One) for x
using gim [THEN subsetD ] that cloTK by blast

then show (g ◦ closest point (cbox (− c) c ∩ T )) ‘ (T − K ∩ cbox (− (b +
One)) (b + One))

⊆ rel frontier U
by force

show
∧
x . x ∈ S =⇒ (g ◦ closest point (cbox (− c) c ∩ T )) x = f x

by simp (metis (mono tags, lifting) IntI 〈S ⊆ T 〉 cT ne clo cT closest point refl
gf subsetD S sub cc)
qed
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qed

corollary extend map affine to sphere cofinite:
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes SUT : compact S affine T S ⊆ T

and aff : aff dim T ≤ DIM ( ′b) and 0 ≤ r
and contf : continuous on S f
and fim: f ‘ S ⊆ sphere a r
and dis:

∧
C . [[C ∈ components(T − S ); bounded C ]] =⇒ C ∩ L 6= {}

obtains K g where finite K K ⊆ L K ⊆ T disjnt K S continuous on (T − K )
g

g ‘ (T − K ) ⊆ sphere a r
∧
x . x ∈ S =⇒ g x = f x

proof (cases r = 0 )
case True
with fim show ?thesis
by (rule tac K={} and g = λx . a in that) (auto)

next
case False
with assms have 0 < r by auto
then have aff dim T ≤ aff dim (cball a r)
by (simp add : aff aff dim cball)

then show ?thesis
apply (rule extend map affine to sphere cofinite gen

[OF 〈compact S 〉 convex cball bounded cball 〈affine T 〉 〈S ⊆ T 〉 contf ])
using fim apply (auto simp: assms False that dest : dis)
done

qed

corollary extend map UNIV to sphere cofinite:
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes DIM ( ′a) ≤ DIM ( ′b) and 0 ≤ r

and compact S
and continuous on S f
and f ‘ S ⊆ sphere a r
and

∧
C . [[C ∈ components(− S ); bounded C ]] =⇒ C ∩ L 6= {}

obtains K g where finite K K ⊆ L disjnt K S continuous on (− K ) g
g ‘ (− K ) ⊆ sphere a r

∧
x . x ∈ S =⇒ g x = f x

using extend map affine to sphere cofinite
[OF 〈compact S 〉 affine UNIV subset UNIV ] assms

by (metis Compl eq Diff UNIV aff dim UNIV of nat le iff )

corollary extend map UNIV to sphere no bounded component :
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes aff : DIM ( ′a) ≤ DIM ( ′b) and 0 ≤ r

and SUT : compact S
and contf : continuous on S f
and fim: f ‘ S ⊆ sphere a r
and dis:

∧
C . C ∈ components(− S ) =⇒ ¬ bounded C
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obtains g where continuous on UNIV g g ‘ UNIV ⊆ sphere a r
∧
x . x ∈ S =⇒

g x = f x
apply (rule extend map UNIV to sphere cofinite [OF aff 〈0 ≤ r 〉 〈compact S 〉

contf fim, of {}])
apply (auto dest : dis)

done

theorem Borsuk separation theorem gen:
fixes S :: ′a::euclidean space set
assumes compact S
shows (∀ c ∈ components(− S ). ¬bounded c) ←→

(∀ f . continuous on S f ∧ f ‘ S ⊆ sphere (0 :: ′a) 1
−→ (∃ c. homotopic with canon (λx . True) S (sphere 0 1 ) f (λx . c)))

(is ?lhs = ?rhs)
proof
assume L [rule format ]: ?lhs
show ?rhs
proof clarify
fix f :: ′a ⇒ ′a
assume contf : continuous on S f and fim: f ‘ S ⊆ sphere 0 1
obtain g where contg : continuous on UNIV g and gim: range g ⊆ sphere 0 1

and gf :
∧
x . x ∈ S =⇒ g x = f x

by (rule extend map UNIV to sphere no bounded component [OF 〈compact
S 〉 contf fim L]) auto

then obtain c where c: homotopic with canon (λh. True) UNIV (sphere 0 1 )
g (λx . c)

using contractible UNIV nullhomotopic from contractible by blast
then show ∃ c. homotopic with canon (λx . True) S (sphere 0 1 ) f (λx . c)
by (metis assms compact imp closed contf contg contractible empty fim gf gim

nullhomotopic from contractible nullhomotopic into sphere extension)
qed

next
assume R [rule format ]: ?rhs
show ?lhs
unfolding components def

proof clarify
fix a
assume a /∈ S and a: bounded (connected component set (− S ) a)
have ∀ x∈S . norm (x − a) 6= 0
using 〈a /∈ S 〉 by auto

then have cont : continuous on S (λx . inverse(norm(x − a)) ∗R (x − a))
by (intro continuous intros)

have im: (λx . inverse(norm(x − a)) ∗R (x − a)) ‘ S ⊆ sphere 0 1
by clarsimp (metis 〈a /∈ S 〉 eq iff diff eq 0 left inverse norm eq zero)

show False
using R cont im Borsuk map essential bounded component [OF 〈compact S 〉

〈a /∈ S 〉] a by blast
qed

qed
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corollary Borsuk separation theorem:
fixes S :: ′a::euclidean space set
assumes compact S and 2 : 2 ≤ DIM ( ′a)
shows connected(− S ) ←→

(∀ f . continuous on S f ∧ f ‘ S ⊆ sphere (0 :: ′a) 1
−→ (∃ c. homotopic with canon (λx . True) S (sphere 0 1 ) f (λx . c)))

(is ?lhs = ?rhs)
proof
assume L: ?lhs
show ?rhs
proof (cases S = {})
case True
then show ?thesis by auto

next
case False
then have (∀ c∈components (− S ). ¬ bounded c)
by (metis L assms(1 ) bounded empty cobounded imp unbounded compact imp bounded

in components maximal order refl)
then show ?thesis
by (simp add : Borsuk separation theorem gen [OF 〈compact S 〉])

qed
next
assume R: ?rhs
then show ?lhs
apply (simp add : Borsuk separation theorem gen [OF 〈compact S 〉, symmetric])
apply (auto simp: components def connected iff eq connected component set)
using connected component in apply fastforce
using cobounded unique unbounded component [OF 2 , of −S ] 〈compact S 〉

compact eq bounded closed by fastforce
qed

lemma homotopy eqv separation:
fixes S :: ′a::euclidean space set and T :: ′a set
assumes S homotopy eqv T and compact S and compact T
shows connected(− S ) ←→ connected(− T )

proof −
consider DIM ( ′a) = 1 | 2 ≤ DIM ( ′a)
by (metis DIM ge Suc0 One nat def Suc 1 dual order .antisym not less eq eq)

then show ?thesis
proof cases
case 1
then show ?thesis
using bounded connected Compl 1 compact imp bounded homotopy eqv empty1

homotopy eqv empty2 assms by metis
next
case 2
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with assms show ?thesis
by (simp add : Borsuk separation theorem homotopy eqv cohomotopic triviality null)

qed
qed

proposition Jordan Brouwer separation:
fixes S :: ′a::euclidean space set and a:: ′a
assumes hom: S homeomorphic sphere a r and 0 < r
shows ¬ connected(− S )

proof −
have − sphere a r ∩ ball a r 6= {}
using 〈0 < r 〉 by (simp add : Int absorb1 subset eq)

moreover
have eq : − sphere a r − ball a r = − cball a r
by auto

have − cball a r 6= {}
proof −
have frontier (cball a r) 6= {}
using 〈0 < r 〉 by auto

then show ?thesis
by (metis frontier complement frontier empty)

qed
with eq have − sphere a r − ball a r 6= {}
by auto

moreover
have connected (− S ) = connected (− sphere a r)
proof (rule homotopy eqv separation)
show S homotopy eqv sphere a r
using hom homeomorphic imp homotopy eqv by blast

show compact (sphere a r)
by simp

then show compact S
using hom homeomorphic compactness by blast

qed
ultimately show ?thesis
using connected Int frontier [of − sphere a r ball a r ] by (auto simp: 〈0 < r 〉)

qed

proposition Jordan Brouwer frontier :
fixes S :: ′a::euclidean space set and a:: ′a
assumes S : S homeomorphic sphere a r and T : T ∈ components(− S ) and 2 :

2 ≤ DIM ( ′a)
shows frontier T = S

proof (cases r rule: linorder cases)
assume r < 0
with S T show ?thesis by auto

next
assume r = 0
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with S T card eq SucD obtain b where S = {b}
by (auto simp: homeomorphic finite [of {a} S ])

have components (− {b}) = { −{b}}
using T 〈S = {b}〉 by (auto simp: components eq sing iff connected punctured universe

2 )
with T show ?thesis
by (metis 〈S = {b}〉 cball trivial frontier cball frontier complement singletonD

sphere trivial)
next
assume r > 0
have compact S
using homeomorphic compactness compact sphere S by blast

show ?thesis
proof (rule frontier minimal separating closed)
show closed S
using 〈compact S 〉 compact eq bounded closed by blast

show ¬ connected (− S )
using Jordan Brouwer separation S 〈0 < r 〉 by blast

obtain f g where hom: homeomorphism S (sphere a r) f g
using S by (auto simp: homeomorphic def )

show connected (− T ) if closed T T ⊂ S for T
proof −
have f ‘ T ⊆ sphere a r
using 〈T ⊂ S 〉 hom homeomorphism image1 by blast

moreover have f ‘ T 6= sphere a r
using 〈T ⊂ S 〉 hom

by (metis homeomorphism image2 homeomorphism of subsets order refl
psubsetE )

ultimately have f ‘ T ⊂ sphere a r by blast
then have connected (− f ‘ T )
by (rule psubset sphere Compl connected [OF 〈0 < r 〉 2 ])

moreover have compact T
using 〈compact S 〉 bounded subset compact eq bounded closed that by blast

moreover then have compact (f ‘ T )
by (meson compact continuous image continuous on subset hom homeomor-

phism def psubsetE 〈T ⊂ S 〉)
moreover have T homotopy eqv f ‘ T
by (meson 〈f ‘ T ⊆ sphere a r 〉 dual order .strict implies order hom homeomor-

phic def homeomorphic imp homotopy eqv homeomorphism of subsets 〈T ⊂ S 〉)
ultimately show ?thesis
using homotopy eqv separation [of T f‘T ] by blast

qed
qed (rule T )

qed

proposition Jordan Brouwer nonseparation:
fixes S :: ′a::euclidean space set and a:: ′a
assumes S : S homeomorphic sphere a r and T ⊂ S and 2 : 2 ≤ DIM ( ′a)
shows connected(− T )
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proof −
have ∗: connected(C ∪ (S − T )) if C ∈ components(− S ) for C
proof (rule connected intermediate closure)
show connected C
using in components connected that by auto

have S = frontier C
using 2 Jordan Brouwer frontier S that by blast

with closure subset show C ∪ (S − T ) ⊆ closure C
by (auto simp: frontier def )

qed auto
have components(− S ) 6= {}
by (metis S bounded empty cobounded imp unbounded compact eq bounded closed

compact sphere
components eq empty homeomorphic compactness)

then have − T = (
⋃
C ∈ components(− S ). C ∪ (S − T ))

using Union components [of −S ] 〈T ⊂ S 〉 by auto
moreover have connected ...
using 〈T ⊂ S 〉 by (intro connected Union) (auto simp: ∗)

ultimately show ?thesis
by simp

qed

6.41.5 Invariance of domain and corollaries

lemma invariance of domain ball :
fixes f :: ′a ⇒ ′a::euclidean space
assumes contf : continuous on (cball a r) f and 0 < r

and inj : inj on f (cball a r)
shows open(f ‘ ball a r)

proof (cases DIM ( ′a) = 1 )
case True
obtain h:: ′a⇒real and k
where linear h linear k h ‘ UNIV = UNIV k ‘ UNIV = UNIV∧

x . norm(h x ) = norm x
∧
x . norm(k x ) = norm x

and kh:
∧
x . k(h x ) = x and

∧
x . h(k x ) = x

proof (rule isomorphisms UNIV UNIV )
show DIM ( ′a) = DIM (real)
using True by force

qed (metis UNIV I UNIV eq I imageI )
have cont : continuous on S h continuous on T k for S T

by (simp all add : 〈linear h〉 〈linear k 〉 linear continuous on linear linear)
have continuous on (h ‘ cball a r) (h ◦ f ◦ k)
by (intro continuous on compose cont continuous on subset [OF contf ]) (auto

simp: kh)
moreover have is interval (h ‘ cball a r)

by (simp add : is interval connected 1 〈linear h〉 linear continuous on lin-
ear linear connected continuous image)

moreover have inj on (h ◦ f ◦ k) (h ‘ cball a r)
using inj by (simp add : inj on def ) (metis 〈

∧
x . k (h x ) = x 〉)
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ultimately have ∗:
∧
T . [[open T ; T ⊆ h ‘ cball a r ]] =⇒ open ((h ◦ f ◦ k) ‘

T )
using injective eq 1d open map UNIV by blast

have open ((h ◦ f ◦ k) ‘ (h ‘ ball a r))
by (rule ∗) (auto simp: 〈linear h〉 〈range h = UNIV 〉 open surjective linear image)
then have open ((h ◦ f ) ‘ ball a r)
by (simp add : image comp 〈

∧
x . k (h x ) = x 〉 cong : image cong)

then show ?thesis
unfolding image comp [symmetric]
by (metis open bijective linear image eq 〈linear h〉 kh 〈range h = UNIV 〉 bijI

inj on def )
next
case False
then have 2 : DIM ( ′a) ≥ 2
by (metis DIM ge Suc0 One nat def Suc 1 antisym not less eq eq)

have fimsub: f ‘ ball a r ⊆ − f ‘ sphere a r
using inj by clarsimp (metis inj onD less eq real def mem cball order less irrefl)
have hom: f ‘ sphere a r homeomorphic sphere a r
by (meson compact sphere contf continuous on subset homeomorphic compact

homeomorphic sym inj inj on subset sphere cball)
then have nconn: ¬ connected (− f ‘ sphere a r)
by (rule Jordan Brouwer separation) (auto simp: 〈0 < r 〉)

have bounded (f ‘ sphere a r)
by (meson compact imp bounded compact continuous image eq compact sphere

contf inj sphere cball)
then obtain C where C : C ∈ components (− f ‘ sphere a r) and bounded C
using cobounded has bounded component [OF nconn] 2 by auto

moreover have f ‘ (ball a r) = C
proof
have C 6= {}
by (rule in components nonempty [OF C ])

show C ⊆ f ‘ ball a r
proof (rule ccontr)
assume nonsub: ¬ C ⊆ f ‘ ball a r
have − f ‘ cball a r ⊆ C
proof (rule components maximal [OF C ])
have f ‘ cball a r homeomorphic cball a r
using compact cball contf homeomorphic compact homeomorphic sym inj

by blast
then show connected (− f ‘ cball a r)
by (auto intro: connected complement homeomorphic convex compact 2 )

show − f ‘ cball a r ⊆ − f ‘ sphere a r
by auto

then show C ∩ − f ‘ cball a r 6= {}
using 〈C 6= {}〉 in components subset [OF C ] nonsub
using image iff by fastforce

qed
then have bounded (− f ‘ cball a r)
using bounded subset 〈bounded C 〉 by auto
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then have ¬ bounded (f ‘ cball a r)
using cobounded imp unbounded by blast

then show False
using compact continuous image [OF contf ] compact cball compact imp bounded

by blast
qed
with 〈C 6= {}〉 have C ∩ f ‘ ball a r 6= {}
by (simp add : inf .absorb iff1 )

then show f ‘ ball a r ⊆ C
by (metis components maximal [OF C fimsub] connected continuous image

ball subset cball connected ball contf continuous on subset)
qed
moreover have open (− f ‘ sphere a r)
using hom compact eq bounded closed compact sphere homeomorphic compactness

by blast
ultimately show ?thesis
using open components by blast

qed

Proved by L. E. J. Brouwer (1912)

theorem invariance of domain:
fixes f :: ′a ⇒ ′a::euclidean space
assumes continuous on S f open S inj on f S
shows open(f ‘ S )

unfolding open subopen [of f‘S ]
proof clarify
fix a
assume a ∈ S
obtain δ where δ > 0 and δ: cball a δ ⊆ S
using 〈open S 〉 〈a ∈ S 〉 open contains cball eq by blast

show ∃T . open T ∧ f a ∈ T ∧ T ⊆ f ‘ S
proof (intro exI conjI )
show open (f ‘ (ball a δ))
by (meson δ 〈0 < δ〉 assms continuous on subset inj on subset invariance of domain ball)
show f a ∈ f ‘ ball a δ
by (simp add : 〈0 < δ〉)

show f ‘ ball a δ ⊆ f ‘ S
using δ ball subset cball by blast

qed
qed

lemma inv of domain ss0 :
fixes f :: ′a ⇒ ′a::euclidean space
assumes contf : continuous on U f and injf : inj on f U and fim: f ‘ U ⊆ S

and subspace S and dimS : dim S = DIM ( ′b::euclidean space)
and ope: openin (top of set S ) U

shows openin (top of set S ) (f ‘ U )
proof −
have U ⊆ S
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using ope openin imp subset by blast
have (UNIV :: ′b set) homeomorphic S
by (simp add : 〈subspace S 〉 dimS homeomorphic subspaces)

then obtain h k where homhk : homeomorphism (UNIV :: ′b set) S h k
using homeomorphic def by blast

have homkh: homeomorphism S (k ‘ S ) k h
using homhk homeomorphism image2 homeomorphism sym by fastforce

have open ((k ◦ f ◦ h) ‘ k ‘ U )
proof (rule invariance of domain)
show continuous on (k ‘ U ) (k ◦ f ◦ h)
proof (intro continuous intros)
show continuous on (k ‘ U ) h

by (meson continuous on subset [OF homeomorphism cont1 [OF homhk ]]
top greatest)

have h ‘ k ‘ U ⊆ U
by (metis 〈U ⊆ S 〉 dual order .eq iff homeomorphism image2 homeomor-

phism of subsets homkh)
then show continuous on (h ‘ k ‘ U ) f
by (rule continuous on subset [OF contf ])

have f ‘ h ‘ k ‘ U ⊆ S
using 〈h ‘ k ‘ U ⊆ U 〉 fim by blast

then show continuous on (f ‘ h ‘ k ‘ U ) k
by (rule continuous on subset [OF homeomorphism cont2 [OF homhk ]])

qed
have ope iff :

∧
T . open T ←→ openin (top of set (k ‘ S )) T

using homhk homeomorphism image2 open openin by fastforce
show open (k ‘ U )
by (simp add : ope iff homeomorphism imp open map [OF homkh ope])

show inj on (k ◦ f ◦ h) (k ‘ U )
apply (clarsimp simp: inj on def )
by (metis 〈U ⊆ S 〉 fim homeomorphism apply2 homhk image subset iff inj onD

injf subsetD)
qed
moreover
have eq : f ‘ U = h ‘ (k ◦ f ◦ h ◦ k) ‘ U
unfolding image comp [symmetric] using 〈U ⊆ S 〉 fim
by (metis homeomorphism image2 homeomorphism of subsets homkh subset image iff )
ultimately show ?thesis

by (metis (no types, hide lams) homeomorphism imp open map homhk im-
age comp open openin subtopology UNIV )
qed

lemma inv of domain ss1 :
fixes f :: ′a ⇒ ′a::euclidean space
assumes contf : continuous on U f and injf : inj on f U and fim: f ‘ U ⊆ S

and subspace S
and ope: openin (top of set S ) U

shows openin (top of set S ) (f ‘ U )
proof −
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define S ′ where S ′ ≡ {y . ∀ x ∈ S . orthogonal x y}
have subspace S ′

by (simp add : S ′ def subspace orthogonal to vectors)
define g where g ≡ λz :: ′a∗ ′a. ((f ◦ fst)z , snd z )
have openin (top of set (S × S ′)) (g ‘ (U × S ′))
proof (rule inv of domain ss0 )
show continuous on (U × S ′) g
unfolding g def
by (auto intro!: continuous intros continuous on compose2 [OF contf contin-

uous on fst ])
show g ‘ (U × S ′) ⊆ S × S ′

using fim by (auto simp: g def )
show inj on g (U × S ′)
using injf by (auto simp: g def inj on def )

show subspace (S × S ′)
by (simp add : 〈subspace S ′〉 〈subspace S 〉 subspace Times)

show openin (top of set (S × S ′)) (U × S ′)
by (simp add : openin Times [OF ope])

have dim (S × S ′) = dim S + dim S ′

by (simp add : 〈subspace S ′〉 〈subspace S 〉 dim Times)
also have ... = DIM ( ′a)
using dim subspace orthogonal to vectors [OF 〈subspace S 〉 subspace UNIV ]
by (simp add : add .commute S ′ def )

finally show dim (S × S ′) = DIM ( ′a) .
qed
moreover have g ‘ (U × S ′) = f ‘ U × S ′

by (auto simp: g def image iff )
moreover have 0 ∈ S ′

using 〈subspace S ′〉 subspace affine by blast
ultimately show ?thesis
by (auto simp: openin Times eq)

qed

corollary invariance of domain subspaces:
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes ope: openin (top of set U ) S

and subspace U subspace V and VU : dim V ≤ dim U
and contf : continuous on S f and fim: f ‘ S ⊆ V
and injf : inj on f S

shows openin (top of set V ) (f ‘ S )
proof −
obtain V ′ where subspace V ′ V ′ ⊆ U dim V ′ = dim V
using choose subspace of subspace [OF VU ]
by (metis span eq iff 〈subspace U 〉)

then have V homeomorphic V ′

by (simp add : 〈subspace V 〉 homeomorphic subspaces)
then obtain h k where homhk : homeomorphism V V ′ h k
using homeomorphic def by blast
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have eq : f ‘ S = k ‘ (h ◦ f ) ‘ S
proof −
have k ‘ h ‘ f ‘ S = f ‘ S

by (meson fim homeomorphism def homeomorphism of subsets homhk sub-
set refl)

then show ?thesis
by (simp add : image comp)

qed
show ?thesis
unfolding eq

proof (rule homeomorphism imp open map)
show homkh: homeomorphism V ′ V k h
by (simp add : homeomorphism symD homhk)

have hfV ′: (h ◦ f ) ‘ S ⊆ V ′

using fim homeomorphism image1 homhk by fastforce
moreover have openin (top of set U ) ((h ◦ f ) ‘ S )
proof (rule inv of domain ss1 )
show continuous on S (h ◦ f )

by (meson contf continuous on compose continuous on subset fim homeo-
morphism cont1 homhk)

show inj on (h ◦ f ) S
apply (clarsimp simp: inj on def )
by (metis fim homeomorphism apply2 [OF homkh] image subset iff inj onD

injf )
show (h ◦ f ) ‘ S ⊆ U
using 〈V ′ ⊆ U 〉 hfV ′ by auto

qed (auto simp: assms)
ultimately show openin (top of set V ′) ((h ◦ f ) ‘ S )
using openin subset trans 〈V ′ ⊆ U 〉 by force

qed
qed

corollary invariance of dimension subspaces:
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes ope: openin (top of set U ) S

and subspace U subspace V
and contf : continuous on S f and fim: f ‘ S ⊆ V
and injf : inj on f S and S 6= {}

shows dim U ≤ dim V
proof −
have False if dim V < dim U
proof −
obtain T where subspace T T ⊆ U dim T = dim V
using choose subspace of subspace [of dim V U ]
by (metis 〈dim V < dim U 〉 assms(2 ) order .strict implies order span eq iff )

then have V homeomorphic T
by (simp add : 〈subspace V 〉 homeomorphic subspaces)

then obtain h k where homhk : homeomorphism V T h k
using homeomorphic def by blast
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have continuous on S (h ◦ f )
by (meson contf continuous on compose continuous on subset fim homeomor-

phism cont1 homhk)
moreover have (h ◦ f ) ‘ S ⊆ U
using 〈T ⊆ U 〉 fim homeomorphism image1 homhk by fastforce

moreover have inj on (h ◦ f ) S
apply (clarsimp simp: inj on def )
by (metis fim homeomorphism apply1 homhk image subset iff inj onD injf )

ultimately have ope hf : openin (top of set U ) ((h ◦ f ) ‘ S )
using invariance of domain subspaces [OF ope 〈subspace U 〉 〈subspace U 〉] by

blast
have (h ◦ f ) ‘ S ⊆ T
using fim homeomorphism image1 homhk by fastforce

then have dim ((h ◦ f ) ‘ S ) ≤ dim T
by (rule dim subset)

also have dim ((h ◦ f ) ‘ S ) = dim U
using 〈S 6= {}〉 〈subspace U 〉

by (blast intro: dim openin ope hf )
finally show False
using 〈dim V < dim U 〉 〈dim T = dim V 〉 by simp

qed
then show ?thesis
using not less by blast

qed

corollary invariance of domain affine sets:
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes ope: openin (top of set U ) S

and aff : affine U affine V aff dim V ≤ aff dim U
and contf : continuous on S f and fim: f ‘ S ⊆ V
and injf : inj on f S

shows openin (top of set V ) (f ‘ S )
proof (cases S = {})
case True
then show ?thesis by auto

next
case False
obtain a b where a ∈ S a ∈ U b ∈ V
using False fim ope openin contains cball by fastforce

have openin (top of set ((+) (− b) ‘ V )) (((+) (− b) ◦ f ◦ (+) a) ‘ (+) (− a)
‘ S )
proof (rule invariance of domain subspaces)
show openin (top of set ((+) (− a) ‘ U )) ((+) (− a) ‘ S )

by (metis ope homeomorphism imp open map homeomorphism translation
translation galois)

show subspace ((+) (− a) ‘ U )
by (simp add : 〈a ∈ U 〉 affine diffs subspace subtract 〈affine U 〉 cong : im-

age cong simp)
show subspace ((+) (− b) ‘ V )
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by (simp add : 〈b ∈ V 〉 affine diffs subspace subtract 〈affine V 〉 cong : im-
age cong simp)

show dim ((+) (− b) ‘ V ) ≤ dim ((+) (− a) ‘ U )
by (metis 〈a ∈ U 〉 〈b ∈ V 〉 aff dim eq dim affine hull eq aff of nat le iff )

show continuous on ((+) (− a) ‘ S ) ((+) (− b) ◦ f ◦ (+) a)
by (metis contf continuous on compose homeomorphism cont2 homeomor-

phism translation translation galois)
show ((+) (− b) ◦ f ◦ (+) a) ‘ (+) (− a) ‘ S ⊆ (+) (− b) ‘ V
using fim by auto

show inj on ((+) (− b) ◦ f ◦ (+) a) ((+) (− a) ‘ S )
by (auto simp: inj on def ) (meson inj onD injf )

qed
then show ?thesis
by (metis (no types, lifting) homeomorphism imp open map homeomorphism translation

image comp translation galois)
qed

corollary invariance of dimension affine sets:
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes ope: openin (top of set U ) S

and aff : affine U affine V
and contf : continuous on S f and fim: f ‘ S ⊆ V
and injf : inj on f S and S 6= {}

shows aff dim U ≤ aff dim V
proof −
obtain a b where a ∈ S a ∈ U b ∈ V
using 〈S 6= {}〉 fim ope openin contains cball by fastforce

have dim ((+) (− a) ‘ U ) ≤ dim ((+) (− b) ‘ V )
proof (rule invariance of dimension subspaces)
show openin (top of set ((+) (− a) ‘ U )) ((+) (− a) ‘ S )

by (metis ope homeomorphism imp open map homeomorphism translation
translation galois)

show subspace ((+) (− a) ‘ U )
by (simp add : 〈a ∈ U 〉 affine diffs subspace subtract 〈affine U 〉 cong : im-

age cong simp)
show subspace ((+) (− b) ‘ V )

by (simp add : 〈b ∈ V 〉 affine diffs subspace subtract 〈affine V 〉 cong : im-
age cong simp)

show continuous on ((+) (− a) ‘ S ) ((+) (− b) ◦ f ◦ (+) a)
by (metis contf continuous on compose homeomorphism cont2 homeomor-

phism translation translation galois)
show ((+) (− b) ◦ f ◦ (+) a) ‘ (+) (− a) ‘ S ⊆ (+) (− b) ‘ V
using fim by auto

show inj on ((+) (− b) ◦ f ◦ (+) a) ((+) (− a) ‘ S )
by (auto simp: inj on def ) (meson inj onD injf )

qed (use 〈S 6= {}〉 in auto)
then show ?thesis
by (metis 〈a ∈ U 〉 〈b ∈ V 〉 aff dim eq dim affine hull eq aff of nat le iff )

qed
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corollary invariance of dimension:
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes contf : continuous on S f and open S

and injf : inj on f S and S 6= {}
shows DIM ( ′a) ≤ DIM ( ′b)

using invariance of dimension subspaces [of UNIV S UNIV f ] assms
by auto

corollary continuous injective image subspace dim le:
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes subspace S subspace T

and contf : continuous on S f and fim: f ‘ S ⊆ T
and injf : inj on f S

shows dim S ≤ dim T
using invariance of dimension subspaces [of S S f ] assms by (auto simp: sub-

space affine)

lemma invariance of dimension convex domain:
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes convex S

and contf : continuous on S f and fim: f ‘ S ⊆ affine hull T
and injf : inj on f S

shows aff dim S ≤ aff dim T
proof (cases S = {})
case True
then show ?thesis by (simp add : aff dim geq)

next
case False
have aff dim (affine hull S ) ≤ aff dim (affine hull T )
proof (rule invariance of dimension affine sets)
show openin (top of set (affine hull S )) (rel interior S )
by (simp add : openin rel interior)

show continuous on (rel interior S ) f
using contf continuous on subset rel interior subset by blast

show f ‘ rel interior S ⊆ affine hull T
using fim rel interior subset by blast

show inj on f (rel interior S )
using inj on subset injf rel interior subset by blast

show rel interior S 6= {}
by (simp add : False 〈convex S 〉 rel interior eq empty)

qed auto
then show ?thesis
by simp

qed

lemma homeomorphic convex sets le:
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assumes convex S S homeomorphic T
shows aff dim S ≤ aff dim T

proof −
obtain h k where homhk : homeomorphism S T h k
using homeomorphic def assms by blast

show ?thesis
proof (rule invariance of dimension convex domain [OF 〈convex S 〉])
show continuous on S h
using homeomorphism def homhk by blast

show h ‘ S ⊆ affine hull T
by (metis homeomorphism def homhk hull subset)

show inj on h S
by (meson homeomorphism apply1 homhk inj on inverseI )

qed
qed

lemma homeomorphic convex sets:
assumes convex S convex T S homeomorphic T
shows aff dim S = aff dim T
by (meson assms dual order .antisym homeomorphic convex sets le homeomor-

phic sym)

lemma homeomorphic convex compact sets eq :
assumes convex S compact S convex T compact T
shows S homeomorphic T ←→ aff dim S = aff dim T
by (meson assms homeomorphic convex compact sets homeomorphic convex sets)

lemma invariance of domain gen:
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes open S continuous on S f inj on f S DIM ( ′b) ≤ DIM ( ′a)
shows open(f ‘ S )

using invariance of domain subspaces [of UNIV S UNIV f ] assms by auto

lemma injective into 1d imp open map UNIV :
fixes f :: ′a::euclidean space ⇒ real
assumes open T continuous on S f inj on f S T ⊆ S
shows open (f ‘ T )

apply (rule invariance of domain gen [OF 〈open T 〉])
using assms by (auto simp: elim: continuous on subset subset inj on)

lemma continuous on inverse open:
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes open S continuous on S f DIM ( ′b) ≤ DIM ( ′a) and gf :

∧
x . x ∈ S =⇒

g(f x ) = x
shows continuous on (f ‘ S ) g

proof (clarsimp simp add : continuous openin preimage eq)
fix T :: ′a set
assume open T
have eq : f ‘ S ∩ g −‘ T = f ‘ (S ∩ T )
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by (auto simp: gf )
have open (f ‘ S )
by (rule invariance of domain gen) (use assms inj on inverseI in auto)

moreover have open (f ‘ (S ∩ T ))
using assms
by (metis 〈open T 〉 continuous on subset inj onI inj on subset invariance of domain gen

openin open openin open eq)
ultimately show openin (top of set (f ‘ S )) (f ‘ S ∩ g −‘ T )
unfolding eq by (auto intro: open openin trans)

qed

lemma invariance of domain homeomorphism:
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes open S continuous on S f DIM ( ′b) ≤ DIM ( ′a) inj on f S
obtains g where homeomorphism S (f ‘ S ) f g

proof
show homeomorphism S (f ‘ S ) f (inv into S f )
by (simp add : assms continuous on inverse open homeomorphism def )

qed

corollary invariance of domain homeomorphic:
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes open S continuous on S f DIM ( ′b) ≤ DIM ( ′a) inj on f S
shows S homeomorphic (f ‘ S )
using invariance of domain homeomorphism [OF assms]
by (meson homeomorphic def )

lemma continuous image subset interior :
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes continuous on S f inj on f S DIM ( ′b) ≤ DIM ( ′a)
shows f ‘ (interior S ) ⊆ interior(f ‘ S )

proof −
have open (f ‘ interior S )
using assms
by (intro invariance of domain gen) (auto simp: subset inj on interior subset

continuous on subset)
then show ?thesis
by (simp add : image mono interior maximal interior subset)

qed

lemma homeomorphic interiors same dimension:
fixes S :: ′a::euclidean space set and T :: ′b::euclidean space set
assumes S homeomorphic T and dimeq : DIM ( ′a) = DIM ( ′b)
shows (interior S ) homeomorphic (interior T )
using assms [unfolded homeomorphic minimal ]
unfolding homeomorphic def

proof (clarify elim!: ex forward)
fix f g
assume S : ∀ x∈S . f x ∈ T ∧ g (f x ) = x and T : ∀ y∈T . g y ∈ S ∧ f (g y) = y
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and contf : continuous on S f and contg : continuous on T g
then have fST : f ‘ S = T and gTS : g ‘ T = S and inj on f S inj on g T
by (auto simp: inj on def intro: rev image eqI ) metis+

have fim: f ‘ interior S ⊆ interior T
using continuous image subset interior [OF contf 〈inj on f S 〉] dimeq fST by

simp
have gim: g ‘ interior T ⊆ interior S
using continuous image subset interior [OF contg 〈inj on g T 〉] dimeq gTS by

simp
show homeomorphism (interior S ) (interior T ) f g
unfolding homeomorphism def

proof (intro conjI ballI )
show

∧
x . x ∈ interior S =⇒ g (f x ) = x

by (meson 〈∀ x∈S . f x ∈ T ∧ g (f x ) = x 〉 subsetD interior subset)
have interior T ⊆ f ‘ interior S
proof
fix x assume x ∈ interior T
then have g x ∈ interior S
using gim by blast

then show x ∈ f ‘ interior S
by (metis T 〈x ∈ interior T 〉 image iff interior subset subsetCE )

qed
then show f ‘ interior S = interior T
using fim by blast

show continuous on (interior S ) f
by (metis interior subset continuous on subset contf )

show
∧
y . y ∈ interior T =⇒ f (g y) = y

by (meson T subsetD interior subset)
have interior S ⊆ g ‘ interior T
proof
fix x assume x ∈ interior S
then have f x ∈ interior T
using fim by blast

then show x ∈ g ‘ interior T
by (metis S 〈x ∈ interior S 〉 image iff interior subset subsetCE )

qed
then show g ‘ interior T = interior S
using gim by blast

show continuous on (interior T ) g
by (metis interior subset continuous on subset contg)

qed
qed

lemma homeomorphic open imp same dimension:
fixes S :: ′a::euclidean space set and T :: ′b::euclidean space set
assumes S homeomorphic T open S S 6= {} open T T 6= {}
shows DIM ( ′a) = DIM ( ′b)
using assms
apply (simp add : homeomorphic minimal)
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apply (rule order antisym; metis inj onI invariance of dimension)
done

proposition homeomorphic interiors:
fixes S :: ′a::euclidean space set and T :: ′b::euclidean space set
assumes S homeomorphic T interior S = {} ←→ interior T = {}
shows (interior S ) homeomorphic (interior T )

proof (cases interior T = {})
case True
with assms show ?thesis by auto

next
case False
then have DIM ( ′a) = DIM ( ′b)
using assms
apply (simp add : homeomorphic minimal)
apply (rule order antisym; metis continuous on subset inj onI inj on subset

interior subset invariance of dimension open interior)
done

then show ?thesis
by (rule homeomorphic interiors same dimension [OF 〈S homeomorphic T 〉])

qed

lemma homeomorphic frontiers same dimension:
fixes S :: ′a::euclidean space set and T :: ′b::euclidean space set
assumes S homeomorphic T closed S closed T and dimeq : DIM ( ′a) = DIM ( ′b)
shows (frontier S ) homeomorphic (frontier T )
using assms [unfolded homeomorphic minimal ]
unfolding homeomorphic def

proof (clarify elim!: ex forward)
fix f g
assume S : ∀ x∈S . f x ∈ T ∧ g (f x ) = x and T : ∀ y∈T . g y ∈ S ∧ f (g y) = y

and contf : continuous on S f and contg : continuous on T g
then have fST : f ‘ S = T and gTS : g ‘ T = S and inj on f S inj on g T
by (auto simp: inj on def intro: rev image eqI ) metis+

have g ‘ interior T ⊆ interior S
using continuous image subset interior [OF contg 〈inj on g T 〉] dimeq gTS by

simp
then have fim: f ‘ frontier S ⊆ frontier T
unfolding frontier def
using continuous image subset interior assms(2 ) assms(3 ) S by auto

have f ‘ interior S ⊆ interior T
using continuous image subset interior [OF contf 〈inj on f S 〉] dimeq fST by

simp
then have gim: g ‘ frontier T ⊆ frontier S
unfolding frontier def
using continuous image subset interior T assms(2 ) assms(3 ) by auto

show homeomorphism (frontier S ) (frontier T ) f g
unfolding homeomorphism def

proof (intro conjI ballI )
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show gf :
∧
x . x ∈ frontier S =⇒ g (f x ) = x

by (simp add : S assms(2 ) frontier def )
show fg :

∧
y . y ∈ frontier T =⇒ f (g y) = y

by (simp add : T assms(3 ) frontier def )
have frontier T ⊆ f ‘ frontier S
proof
fix x assume x ∈ frontier T
then have g x ∈ frontier S
using gim by blast

then show x ∈ f ‘ frontier S
by (metis fg 〈x ∈ frontier T 〉 imageI )

qed
then show f ‘ frontier S = frontier T
using fim by blast

show continuous on (frontier S ) f
by (metis Diff subset assms(2 ) closure eq contf continuous on subset fron-

tier def )
have frontier S ⊆ g ‘ frontier T
proof
fix x assume x ∈ frontier S
then have f x ∈ frontier T
using fim by blast

then show x ∈ g ‘ frontier T
by (metis gf 〈x ∈ frontier S 〉 imageI )

qed
then show g ‘ frontier T = frontier S
using gim by blast

show continuous on (frontier T ) g
by (metis Diff subset assms(3 ) closure closed contg continuous on subset

frontier def )
qed

qed

lemma homeomorphic frontiers:
fixes S :: ′a::euclidean space set and T :: ′b::euclidean space set
assumes S homeomorphic T closed S closed T

interior S = {} ←→ interior T = {}
shows (frontier S ) homeomorphic (frontier T )

proof (cases interior T = {})
case True
then show ?thesis
by (metis Diff empty assms closure eq frontier def )

next
case False
then have DIM ( ′a) = DIM ( ′b)
using assms homeomorphic interiors homeomorphic open imp same dimension

by blast
then show ?thesis
using assms homeomorphic frontiers same dimension by blast
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qed

lemma continuous image subset rel interior :
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes contf : continuous on S f and injf : inj on f S and fim: f ‘ S ⊆ T

and TS : aff dim T ≤ aff dim S
shows f ‘ (rel interior S ) ⊆ rel interior(f ‘ S )

proof (rule rel interior maximal)
show f ‘ rel interior S ⊆ f ‘ S
by(simp add : image mono rel interior subset)

show openin (top of set (affine hull f ‘ S )) (f ‘ rel interior S )
proof (rule invariance of domain affine sets)
show openin (top of set (affine hull S )) (rel interior S )
by (simp add : openin rel interior)

show aff dim (affine hull f ‘ S ) ≤ aff dim (affine hull S )
by (metis aff dim affine hull aff dim subset fim TS order trans)

show f ‘ rel interior S ⊆ affine hull f ‘ S
by (meson 〈f ‘ rel interior S ⊆ f ‘ S 〉 hull subset order trans)

show continuous on (rel interior S ) f
using contf continuous on subset rel interior subset by blast

show inj on f (rel interior S )
using inj on subset injf rel interior subset by blast

qed auto
qed

lemma homeomorphic rel interiors same dimension:
fixes S :: ′a::euclidean space set and T :: ′b::euclidean space set
assumes S homeomorphic T and aff : aff dim S = aff dim T
shows (rel interior S ) homeomorphic (rel interior T )
using assms [unfolded homeomorphic minimal ]
unfolding homeomorphic def

proof (clarify elim!: ex forward)
fix f g
assume S : ∀ x∈S . f x ∈ T ∧ g (f x ) = x and T : ∀ y∈T . g y ∈ S ∧ f (g y) = y

and contf : continuous on S f and contg : continuous on T g
then have fST : f ‘ S = T and gTS : g ‘ T = S and inj on f S inj on g T
by (auto simp: inj on def intro: rev image eqI ) metis+

have fim: f ‘ rel interior S ⊆ rel interior T
by (metis 〈inj on f S 〉 aff contf continuous image subset rel interior fST or-

der refl)
have gim: g ‘ rel interior T ⊆ rel interior S
by (metis 〈inj on g T 〉 aff contg continuous image subset rel interior gTS or-

der refl)
show homeomorphism (rel interior S ) (rel interior T ) f g
unfolding homeomorphism def

proof (intro conjI ballI )
show gf :

∧
x . x ∈ rel interior S =⇒ g (f x ) = x

using S rel interior subset by blast
show fg :

∧
y . y ∈ rel interior T =⇒ f (g y) = y
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using T mem rel interior ball by blast
have rel interior T ⊆ f ‘ rel interior S
proof
fix x assume x ∈ rel interior T
then have g x ∈ rel interior S
using gim by blast

then show x ∈ f ‘ rel interior S
by (metis fg 〈x ∈ rel interior T 〉 imageI )

qed
moreover have f ‘ rel interior S ⊆ rel interior T
by (metis 〈inj on f S 〉 aff contf continuous image subset rel interior fST or-

der refl)
ultimately show f ‘ rel interior S = rel interior T
by blast

show continuous on (rel interior S ) f
using contf continuous on subset rel interior subset by blast

have rel interior S ⊆ g ‘ rel interior T
proof
fix x assume x ∈ rel interior S
then have f x ∈ rel interior T
using fim by blast

then show x ∈ g ‘ rel interior T
by (metis gf 〈x ∈ rel interior S 〉 imageI )

qed
then show g ‘ rel interior T = rel interior S
using gim by blast

show continuous on (rel interior T ) g
using contg continuous on subset rel interior subset by blast

qed
qed

lemma homeomorphic aff dim le:
fixes S :: ′a::euclidean space set
assumes S homeomorphic T rel interior S 6= {}
shows aff dim (affine hull S ) ≤ aff dim (affine hull T )

proof −
obtain f g
where S : ∀ x∈S . f x ∈ T ∧ g (f x ) = x and T : ∀ y∈T . g y ∈ S ∧ f (g y) = y
and contf : continuous on S f and contg : continuous on T g

using assms [unfolded homeomorphic minimal ] by auto
show ?thesis
proof (rule invariance of dimension affine sets)
show continuous on (rel interior S ) f
using contf continuous on subset rel interior subset by blast

show f ‘ rel interior S ⊆ affine hull T
by (meson S hull subset image subsetI rel interior subset rev subsetD)

show inj on f (rel interior S )
by (metis S inj on inverseI inj on subset rel interior subset)
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qed (simp all add : openin rel interior assms)
qed

lemma homeomorphic rel interiors:
fixes S :: ′a::euclidean space set and T :: ′b::euclidean space set
assumes S homeomorphic T rel interior S = {} ←→ rel interior T = {}
shows (rel interior S ) homeomorphic (rel interior T )

proof (cases rel interior T = {})
case True
with assms show ?thesis by auto

next
case False
have aff dim (affine hull S ) ≤ aff dim (affine hull T )
using False assms homeomorphic aff dim le by blast

moreover have aff dim (affine hull T ) ≤ aff dim (affine hull S )
using False assms(1 ) homeomorphic aff dim le homeomorphic sym by auto

ultimately have aff dim S = aff dim T by force
then show ?thesis

by (rule homeomorphic rel interiors same dimension [OF 〈S homeomorphic
T 〉])
qed

lemma homeomorphic rel boundaries same dimension:
fixes S :: ′a::euclidean space set and T :: ′b::euclidean space set
assumes S homeomorphic T and aff : aff dim S = aff dim T
shows (S − rel interior S ) homeomorphic (T − rel interior T )
using assms [unfolded homeomorphic minimal ]
unfolding homeomorphic def

proof (clarify elim!: ex forward)
fix f g
assume S : ∀ x∈S . f x ∈ T ∧ g (f x ) = x and T : ∀ y∈T . g y ∈ S ∧ f (g y) = y

and contf : continuous on S f and contg : continuous on T g
then have fST : f ‘ S = T and gTS : g ‘ T = S and inj on f S inj on g T
by (auto simp: inj on def intro: rev image eqI ) metis+

have fim: f ‘ rel interior S ⊆ rel interior T
by (metis 〈inj on f S 〉 aff contf continuous image subset rel interior fST or-

der refl)
have gim: g ‘ rel interior T ⊆ rel interior S
by (metis 〈inj on g T 〉 aff contg continuous image subset rel interior gTS or-

der refl)
show homeomorphism (S − rel interior S ) (T − rel interior T ) f g
unfolding homeomorphism def

proof (intro conjI ballI )
show gf :

∧
x . x ∈ S − rel interior S =⇒ g (f x ) = x

using S rel interior subset by blast
show fg :

∧
y . y ∈ T − rel interior T =⇒ f (g y) = y

using T mem rel interior ball by blast
show f ‘ (S − rel interior S ) = T − rel interior T
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using S fST fim gim by auto
show continuous on (S − rel interior S ) f
using contf continuous on subset rel interior subset by blast

show g ‘ (T − rel interior T ) = S − rel interior S
using T gTS gim fim by auto

show continuous on (T − rel interior T ) g
using contg continuous on subset rel interior subset by blast

qed
qed

lemma homeomorphic rel boundaries:
fixes S :: ′a::euclidean space set and T :: ′b::euclidean space set
assumes S homeomorphic T rel interior S = {} ←→ rel interior T = {}
shows (S − rel interior S ) homeomorphic (T − rel interior T )

proof (cases rel interior T = {})
case True
with assms show ?thesis by auto

next
case False
obtain f g
where S : ∀ x∈S . f x ∈ T ∧ g (f x ) = x and T : ∀ y∈T . g y ∈ S ∧ f (g y) = y
and contf : continuous on S f and contg : continuous on T g

using assms [unfolded homeomorphic minimal ] by auto
have aff dim (affine hull S ) ≤ aff dim (affine hull T )
using False assms homeomorphic aff dim le by blast

moreover have aff dim (affine hull T ) ≤ aff dim (affine hull S )
by (meson False assms(1 ) homeomorphic aff dim le homeomorphic sym)

ultimately have aff dim S = aff dim T by force
then show ?thesis
by (rule homeomorphic rel boundaries same dimension [OF 〈S homeomorphic

T 〉])
qed

proposition uniformly continuous homeomorphism UNIV trivial :
fixes f :: ′a::euclidean space ⇒ ′a
assumes contf : uniformly continuous on S f and hom: homeomorphism S UNIV

f g
shows S = UNIV

proof (cases S = {})
case True
then show ?thesis
by (metis UNIV I hom empty iff homeomorphism def image eqI )

next
case False
have inj g
by (metis UNIV I hom homeomorphism apply2 injI )

then have open (g ‘ UNIV )
by (blast intro: invariance of domain hom homeomorphism cont2 )

then have open S
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using hom homeomorphism image2 by blast
moreover have complete S
unfolding complete def

proof clarify
fix σ
assume σ: ∀n. σ n ∈ S and Cauchy σ
have Cauchy (f o σ)
using uniformly continuous imp Cauchy continuous 〈Cauchy σ〉 σ contf by

blast
then obtain l where (f ◦ σ) −−−−→ l
by (auto simp: convergent eq Cauchy [symmetric])

show ∃ l∈S . σ −−−−→ l
proof
show g l ∈ S
using hom homeomorphism image2 by blast

have (g ◦ (f ◦ σ)) −−−−→ g l
by (meson UNIV I 〈(f ◦ σ) −−−−→ l 〉 continuous on sequentially hom

homeomorphism cont2 )
then show σ −−−−→ g l
proof −
have ∀n. σ n = (g ◦ (f ◦ σ)) n
by (metis (no types) σ comp eq dest lhs hom homeomorphism apply1 )

then show ?thesis
by (metis (no types) LIMSEQ iff 〈(g ◦ (f ◦ σ)) −−−−→ g l 〉)

qed
qed

qed
then have closed S
by (simp add : complete eq closed)

ultimately show ?thesis
using clopen [of S ] False by simp

qed

6.41.6 Formulation of loop homotopy in terms of maps out
of type complex

lemma homotopic circlemaps imp homotopic loops:
assumes homotopic with canon (λh. True) (sphere 0 1 ) S f g
shows homotopic loops S (f ◦ exp ◦ (λt . 2 ∗ of real pi ∗ of real t ∗ i))

(g ◦ exp ◦ (λt . 2 ∗ of real pi ∗ of real t ∗ i))
proof −
have homotopic with canon (λf . True) {z . cmod z = 1} S f g
using assms by (auto simp: sphere def )

moreover have continuous on {0 ..1} (exp ◦ (λt . 2 ∗ of real pi ∗ of real t ∗ i))
by (intro continuous intros)

moreover have (exp ◦ (λt . 2 ∗ of real pi ∗ of real t ∗ i)) ‘ {0 ..1} ⊆ {z . cmod
z = 1}

by (auto simp: norm mult)
ultimately
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show ?thesis
apply (simp add : homotopic loops def comp assoc)
apply (rule homotopic with compose continuous right)
apply (auto simp: pathstart def pathfinish def )

done
qed

lemma homotopic loops imp homotopic circlemaps:
assumes homotopic loops S p q
shows homotopic with canon (λh. True) (sphere 0 1 ) S

(p ◦ (λz . (Arg2pi z / (2 ∗ pi))))
(q ◦ (λz . (Arg2pi z / (2 ∗ pi))))

proof −
obtain h where conth: continuous on ({0 ..1 ::real} × {0 ..1}) h

and him: h ‘ ({0 ..1} × {0 ..1}) ⊆ S
and h0 : (∀ x . h (0 , x ) = p x )
and h1 : (∀ x . h (1 , x ) = q x )
and h01 : (∀ t∈{0 ..1}. h (t , 1 ) = h (t , 0 ))

using assms
by (auto simp: homotopic loops def sphere def homotopic with def pathstart def

pathfinish def )
define j where j ≡ λz . if 0 ≤ Im (snd z )

then h (fst z , Arg2pi (snd z ) / (2 ∗ pi))
else h (fst z , 1 − Arg2pi (cnj (snd z )) / (2 ∗ pi))

have Arg2pi eq : 1 − Arg2pi (cnj y) / (2 ∗ pi) = Arg2pi y / (2 ∗ pi) ∨ Arg2pi
y = 0 ∧ Arg2pi (cnj y) = 0 if cmod y = 1 for y

using that Arg2pi eq 0 pi Arg2pi eq pi by (force simp: Arg2pi cnj field split simps)
show ?thesis
proof (simp add : homotopic with; intro conjI ballI exI )
show continuous on ({0 ..1} × sphere 0 1 ) (λw . h (fst w , Arg2pi (snd w) / (2

∗ pi)))
proof (rule continuous on eq)
show j : j x = h (fst x , Arg2pi (snd x ) / (2 ∗ pi)) if x ∈ {0 ..1} × sphere 0

1 for x
using Arg2pi eq that h01 by (force simp: j def )

have eq : S = S ∩ (UNIV × {z . 0 ≤ Im z}) ∪ S ∩ (UNIV × {z . Im z ≤
0}) for S :: (real∗complex )set

by auto
have c1 : continuous on ({0 ..1} × sphere 0 1 ∩ UNIV × {z . 0 ≤ Im z})

(λx . h (fst x , Arg2pi (snd x ) / (2 ∗ pi)))
apply (intro continuous intros continuous on compose2 [OF conth] contin-

uous on compose2 [OF continuous on upperhalf Arg2pi ])
apply (auto simp: Arg2pi)

apply (meson Arg2pi lt 2pi linear not le)
done
have c2 : continuous on ({0 ..1} × sphere 0 1 ∩ UNIV × {z . Im z ≤ 0})

(λx . h (fst x , 1 − Arg2pi (cnj (snd x )) / (2 ∗ pi)))
apply (intro continuous intros continuous on compose2 [OF conth] contin-

uous on compose2 [OF continuous on upperhalf Arg2pi ])
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apply (auto simp: Arg2pi)
apply (meson Arg2pi lt 2pi linear not le)
done

show continuous on ({0 ..1} × sphere 0 1 ) j
apply (simp add : j def )
apply (subst eq)
apply (rule continuous on cases local)
using Arg2pi eq h01

by (force simp add : eq [symmetric] closedin closed Int closed Times closed halfspace Im le
closed halfspace Im ge c1 c2 )+

qed
have (λw . h (fst w , Arg2pi (snd w) / (2 ∗ pi))) ‘ ({0 ..1} × sphere 0 1 ) ⊆ h ‘

({0 ..1} × {0 ..1})
by (auto simp: Arg2pi ge 0 Arg2pi lt 2pi less imp le)

also have ... ⊆ S
using him by blast

finally show (λw . h (fst w , Arg2pi (snd w) / (2 ∗ pi))) ‘ ({0 ..1} × sphere 0
1 ) ⊆ S .
qed (auto simp: h0 h1 )

qed

lemma simply connected homotopic loops:
simply connected S ←→

(∀ p q . homotopic loops S p p ∧ homotopic loops S q q −→ homotopic loops
S p q)
unfolding simply connected def using homotopic loops refl by metis

lemma simply connected eq homotopic circlemaps1 :
fixes f :: complex ⇒ ′a::topological space and g :: complex ⇒ ′a
assumes S : simply connected S

and contf : continuous on (sphere 0 1 ) f and fim: f ‘ (sphere 0 1 ) ⊆ S
and contg : continuous on (sphere 0 1 ) g and gim: g ‘ (sphere 0 1 ) ⊆ S

shows homotopic with canon (λh. True) (sphere 0 1 ) S f g
proof −
have homotopic loops S (f ◦ exp ◦ (λt . of real(2 ∗ pi ∗ t) ∗ i)) (g ◦ exp ◦ (λt .

of real(2 ∗ pi ∗ t) ∗ i))
apply (rule S [unfolded simply connected homotopic loops, rule format ])
apply (simp add : homotopic circlemaps imp homotopic loops contf fim contg

gim)
done

then show ?thesis
apply (rule homotopic with eq [OF homotopic loops imp homotopic circlemaps])

apply (auto simp: o def complex norm eq 1 exp mult .commute)
done

qed

lemma simply connected eq homotopic circlemaps2a:
fixes h :: complex ⇒ ′a::topological space
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assumes conth: continuous on (sphere 0 1 ) h and him: h ‘ (sphere 0 1 ) ⊆ S
and hom:

∧
f g ::complex ⇒ ′a.

[[continuous on (sphere 0 1 ) f ; f ‘ (sphere 0 1 ) ⊆ S ;
continuous on (sphere 0 1 ) g ; g ‘ (sphere 0 1 ) ⊆ S ]]
=⇒ homotopic with canon (λh. True) (sphere 0 1 ) S f g

shows ∃ a. homotopic with canon (λh. True) (sphere 0 1 ) S h (λx . a)
apply (rule tac x=h 1 in exI )
apply (rule hom)
using assms by (auto)

lemma simply connected eq homotopic circlemaps2b:
fixes S :: ′a::real normed vector set
assumes

∧
f g ::complex ⇒ ′a.
[[continuous on (sphere 0 1 ) f ; f ‘ (sphere 0 1 ) ⊆ S ;
continuous on (sphere 0 1 ) g ; g ‘ (sphere 0 1 ) ⊆ S ]]
=⇒ homotopic with canon (λh. True) (sphere 0 1 ) S f g

shows path connected S
proof (clarsimp simp add : path connected eq homotopic points)
fix a b
assume a ∈ S b ∈ S
then show homotopic loops S (linepath a a) (linepath b b)
using homotopic circlemaps imp homotopic loops [OF assms [of λx . a λx . b]]
by (auto simp: o def linepath def )

qed

lemma simply connected eq homotopic circlemaps3 :
fixes h :: complex ⇒ ′a::real normed vector
assumes path connected S

and hom:
∧
f ::complex ⇒ ′a.

[[continuous on (sphere 0 1 ) f ; f ‘(sphere 0 1 ) ⊆ S ]]
=⇒ ∃ a. homotopic with canon (λh. True) (sphere 0 1 ) S f (λx . a)

shows simply connected S
proof (clarsimp simp add : simply connected eq contractible loop some assms)
fix p
assume p: path p path image p ⊆ S pathfinish p = pathstart p
then have homotopic loops S p p
by (simp add : homotopic loops refl)

then obtain a where homp: homotopic with canon (λh. True) (sphere 0 1 ) S
(p ◦ (λz . Arg2pi z / (2 ∗ pi))) (λx . a)

by (metis homotopic with imp subset2 homotopic loops imp homotopic circlemaps
homotopic with imp continuous hom)
show ∃ a. a ∈ S ∧ homotopic loops S p (linepath a a)
proof (intro exI conjI )
show a ∈ S
using homotopic with imp subset2 [OF homp]
by (metis dist 0 norm image subset iff mem sphere norm one)

have teq :
∧
t . [[0 ≤ t ; t ≤ 1 ]]

=⇒ t = Arg2pi (exp (2 ∗ of real pi ∗ of real t ∗ i)) / (2 ∗ pi) ∨ t=1
∧ Arg2pi (exp (2 ∗ of real pi ∗ of real t ∗ i)) = 0
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using Arg2pi of real [of 1 ] by (force simp: Arg2pi exp)
have homotopic loops S p (p ◦ (λz . Arg2pi z / (2 ∗ pi)) ◦ exp ◦ (λt . 2 ∗

complex of real pi ∗ complex of real t ∗ i))
using p teq by (fastforce simp: pathfinish def pathstart def intro: homo-

topic loops eq [OF p])
then show homotopic loops S p (linepath a a)
by (simp add : linepath refl homotopic loops trans [OF homotopic circlemaps imp homotopic loops

[OF homp, simplified K record comp]])
qed

qed

proposition simply connected eq homotopic circlemaps:
fixes S :: ′a::real normed vector set
shows simply connected S ←→

(∀ f g ::complex ⇒ ′a.
continuous on (sphere 0 1 ) f ∧ f ‘ (sphere 0 1 ) ⊆ S ∧
continuous on (sphere 0 1 ) g ∧ g ‘ (sphere 0 1 ) ⊆ S
−→ homotopic with canon (λh. True) (sphere 0 1 ) S f g)

apply (rule iffI )
apply (blast dest : simply connected eq homotopic circlemaps1 )

by (simp add : simply connected eq homotopic circlemaps2a simply connected eq homotopic circlemaps2b
simply connected eq homotopic circlemaps3 )

proposition simply connected eq contractible circlemap:
fixes S :: ′a::real normed vector set
shows simply connected S ←→

path connected S ∧
(∀ f ::complex ⇒ ′a.

continuous on (sphere 0 1 ) f ∧ f ‘(sphere 0 1 ) ⊆ S
−→ (∃ a. homotopic with canon (λh. True) (sphere 0 1 ) S f (λx . a)))

apply (rule iffI )
apply (simp add : simply connected eq homotopic circlemaps1 simply connected eq homotopic circlemaps2a

simply connected eq homotopic circlemaps2b)
using simply connected eq homotopic circlemaps3 by blast

corollary homotopy eqv simple connectedness:
fixes S :: ′a::real normed vector set and T :: ′b::real normed vector set
shows S homotopy eqv T =⇒ simply connected S ←→ simply connected T
by (simp add : simply connected eq homotopic circlemaps homotopy eqv homotopic triviality)

6.41.7 Homeomorphism of simple closed curves to circles

proposition homeomorphic simple path image circle:
fixes a :: complex and γ :: real ⇒ ′a::t2 space
assumes simple path γ and loop: pathfinish γ = pathstart γ and 0 < r
shows (path image γ) homeomorphic sphere a r

proof −
have homotopic loops (path image γ) γ γ
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by (simp add : assms homotopic loops refl simple path imp path)
then have hom: homotopic with canon (λh. True) (sphere 0 1 ) (path image γ)

(γ ◦ (λz . Arg2pi z / (2∗pi))) (γ ◦ (λz . Arg2pi z / (2∗pi)))
by (rule homotopic loops imp homotopic circlemaps)
have ∃ g . homeomorphism (sphere 0 1 ) (path image γ) (γ ◦ (λz . Arg2pi z /

(2∗pi))) g
proof (rule homeomorphism compact)
show continuous on (sphere 0 1 ) (γ ◦ (λz . Arg2pi z / (2∗pi)))
using hom homotopic with imp continuous by blast

show inj on (γ ◦ (λz . Arg2pi z / (2∗pi))) (sphere 0 1 )
proof
fix x y
assume xy : x ∈ sphere 0 1 y ∈ sphere 0 1

and eq : (γ ◦ (λz . Arg2pi z / (2∗pi))) x = (γ ◦ (λz . Arg2pi z / (2∗pi))) y
then have (Arg2pi x / (2∗pi)) = (Arg2pi y / (2∗pi))
proof −
have (Arg2pi x / (2∗pi)) ∈ {0 ..1} (Arg2pi y / (2∗pi)) ∈ {0 ..1}
using Arg2pi ge 0 Arg2pi lt 2pi dual order .strict iff order by fastforce+

with eq show ?thesis
using 〈simple path γ〉 Arg2pi lt 2pi unfolding simple path def o def
by (metis eq divide eq 1 not less iff gr or eq)

qed
with xy show x = y
by (metis is Arg def Arg2pi Arg2pi 0 dist 0 norm divide cancel right dual order .strict iff order

mem sphere)
qed
have

∧
z . cmod z = 1 =⇒ ∃ x∈{0 ..1}. γ (Arg2pi z / (2∗pi)) = γ x

by (metis Arg2pi ge 0 Arg2pi lt 2pi atLeastAtMost iff divide less eq 1 less eq real def
zero less mult iff pi gt zero zero le divide iff zero less numeral)

moreover have ∃ z∈sphere 0 1 . γ x = γ (Arg2pi z / (2∗pi)) if 0 ≤ x x ≤ 1
for x

proof (cases x=1 )
case True
with Arg2pi of real [of 1 ] loop show ?thesis
by (rule tac x=1 in bexI ) (auto simp: pathfinish def pathstart def 〈0 ≤ x 〉)

next
case False
then have ∗: (Arg2pi (exp (i∗(2∗ of real pi∗ of real x ))) / (2∗pi)) = x
using that by (auto simp: Arg2pi exp field split simps)

show ?thesis
by (rule tac x=exp(i ∗ of real(2∗pi∗x )) in bexI ) (auto simp: ∗)

qed
ultimately show (γ ◦ (λz . Arg2pi z / (2∗pi))) ‘ sphere 0 1 = path image γ
by (auto simp: path image def image iff )

qed auto
then have path image γ homeomorphic sphere (0 ::complex ) 1
using homeomorphic def homeomorphic sym by blast

also have ... homeomorphic sphere a r
by (simp add : assms homeomorphic spheres)
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finally show ?thesis .
qed

lemma homeomorphic simple path images:
fixes γ1 :: real ⇒ ′a::t2 space and γ2 :: real ⇒ ′b::t2 space
assumes simple path γ1 and loop: pathfinish γ1 = pathstart γ1
assumes simple path γ2 and loop: pathfinish γ2 = pathstart γ2
shows (path image γ1 ) homeomorphic (path image γ2 )
by (meson assms homeomorphic simple path image circle homeomorphic sym home-

omorphic trans loop pi gt zero)

6.41.8 Dimension-based conditions for various homeomor-
phisms

lemma homeomorphic subspaces eq :
fixes S :: ′a::euclidean space set and T :: ′b::euclidean space set
assumes subspace S subspace T
shows S homeomorphic T ←→ dim S = dim T

proof
assume S homeomorphic T
then obtain f g where hom: homeomorphism S T f g
using homeomorphic def by blast

show dim S = dim T
proof (rule order antisym)
show dim S ≤ dim T
by (metis assms dual order .refl inj onI homeomorphism cont1 [OF hom] home-

omorphism apply1 [OF hom] homeomorphism image1 [OF hom] continuous injective image subspace dim le)
show dim T ≤ dim S
by (metis assms dual order .refl inj onI homeomorphism cont2 [OF hom] home-

omorphism apply2 [OF hom] homeomorphism image2 [OF hom] continuous injective image subspace dim le)
qed

next
assume dim S = dim T
then show S homeomorphic T
by (simp add : assms homeomorphic subspaces)

qed

lemma homeomorphic affine sets eq :
fixes S :: ′a::euclidean space set and T :: ′b::euclidean space set
assumes affine S affine T
shows S homeomorphic T ←→ aff dim S = aff dim T

proof (cases S = {} ∨ T = {})
case True
then show ?thesis
using assms homeomorphic affine sets by force

next
case False
then obtain a b where a ∈ S b ∈ T
by blast
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then have subspace ((+) (− a) ‘ S ) subspace ((+) (− b) ‘ T )
using affine diffs subspace assms by blast+

then show ?thesis
by (metis affine imp convex assms homeomorphic affine sets homeomorphic convex sets)

qed

lemma homeomorphic hyperplanes eq :
fixes a :: ′a::euclidean space and c :: ′b::euclidean space
assumes a 6= 0 c 6= 0
shows ({x . a · x = b} homeomorphic {x . c · x = d} ←→ DIM ( ′a) = DIM ( ′b))
apply (auto simp: homeomorphic affine sets eq affine hyperplane assms)
by (metis DIM positive Suc pred)

lemma homeomorphic UNIV UNIV :
shows (UNIV :: ′a set) homeomorphic (UNIV :: ′b set) ←→
DIM ( ′a::euclidean space) = DIM ( ′b::euclidean space)

by (simp add : homeomorphic subspaces eq)

lemma simply connected sphere gen:
assumes convex S bounded S and 3 : 3 ≤ aff dim S
shows simply connected(rel frontier S )

proof −
have pa: path connected (rel frontier S )
using assms by (simp add : path connected sphere gen)

show ?thesis
proof (clarsimp simp add : simply connected eq contractible circlemap pa)
fix f
assume f : continuous on (sphere (0 ::complex ) 1 ) f f ‘ sphere 0 1 ⊆ rel frontier

S
have eq : sphere (0 ::complex ) 1 = rel frontier(cball 0 1 )
by simp

have convex (cball (0 ::complex ) 1 )
by (rule convex cball)

then obtain c where homotopic with canon (λz . True) (sphere (0 ::complex )
1 ) (rel frontier S ) f (λx . c)

apply (rule inessential spheremap lowdim gen [OF bounded cball 〈convex S 〉

〈bounded S 〉, where f=f ])
using f 3

apply (auto simp: aff dim cball)
done

then show ∃ a. homotopic with canon (λh. True) (sphere 0 1 ) (rel frontier S )
f (λx . a)

by blast
qed

qed

6.41.9 more invariance of domain

proposition invariance of domain sphere affine set gen:
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fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes contf : continuous on S f and injf : inj on f S and fim: f ‘ S ⊆ T

and U : bounded U convex U
and affine T and affTU : aff dim T < aff dim U
and ope: openin (top of set (rel frontier U )) S

shows openin (top of set T ) (f ‘ S )
proof (cases rel frontier U = {})
case True
then show ?thesis
using ope openin subset by force

next
case False
obtain b c where b: b ∈ rel frontier U and c: c ∈ rel frontier U and b 6= c

using 〈bounded U 〉 rel frontier not sing [of U ] subset singletonD False by
fastforce
obtain V :: ′a set where affine V and affV : aff dim V = aff dim U − 1
proof (rule choose affine subset [OF affine UNIV ])
show − 1 ≤ aff dim U − 1
by (metis aff dim empty aff dim geq aff dim negative iff affTU diff 0 diff right mono

not le)
show aff dim U − 1 ≤ aff dim (UNIV :: ′a set)
by (metis aff dim UNIV aff dim le DIM le cases not le zle diff1 eq)

qed auto
have SU : S ⊆ rel frontier U
using ope openin imp subset by auto

have homb: rel frontier U − {b} homeomorphic V
and homc: rel frontier U − {c} homeomorphic V
using homeomorphic punctured sphere affine gen [of U V ]
by (simp all add : 〈affine V 〉 affV U b c)

then obtain g h j k
where gh: homeomorphism (rel frontier U − {b}) V g h
and jk : homeomorphism (rel frontier U − {c}) V j k

by (auto simp: homeomorphic def )
with SU have hgsub: (h ‘ g ‘ (S − {b})) ⊆ S and kjsub: (k ‘ j ‘ (S − {c})) ⊆ S
by (simp all add : homeomorphism def subset eq)

have [simp]: aff dim T ≤ aff dim V
by (simp add : affTU affV )

have openin (top of set T ) ((f ◦ h) ‘ g ‘ (S − {b}))
proof (rule invariance of domain affine sets [OF 〈affine V 〉])
have openin (top of set (rel frontier U − {b})) (S − {b})

by (meson Diff mono Diff subset SU ope openin delete openin subset trans
order refl)

then show openin (top of set V ) (g ‘ (S − {b}))
by (rule homeomorphism imp open map [OF gh])

show continuous on (g ‘ (S − {b})) (f ◦ h)
proof (rule continuous on compose)
show continuous on (g ‘ (S − {b})) h
by (meson Diff mono SU homeomorphism def homeomorphism of subsets gh

set eq subset)
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qed (use contf continuous on subset hgsub in blast)
show inj on (f ◦ h) (g ‘ (S − {b}))
using kjsub
apply (clarsimp simp add : inj on def )
by (metis SU b homeomorphism def inj onD injf insert Diff insert iff gh

rev subsetD)
show (f ◦ h) ‘ g ‘ (S − {b}) ⊆ T
by (metis fim image comp image mono hgsub subset trans)

qed (auto simp: assms)
moreover
have openin (top of set T ) ((f ◦ k) ‘ j ‘ (S − {c}))
proof (rule invariance of domain affine sets [OF 〈affine V 〉])
show openin (top of set V ) (j ‘ (S − {c}))

by (meson Diff mono Diff subset SU ope openin delete openin subset trans
order refl homeomorphism imp open map [OF jk ])

show continuous on (j ‘ (S − {c})) (f ◦ k)
proof (rule continuous on compose)
show continuous on (j ‘ (S − {c})) k
by (meson Diff mono SU homeomorphism def homeomorphism of subsets jk

set eq subset)
qed (use contf continuous on subset kjsub in blast)
show inj on (f ◦ k) (j ‘ (S − {c}))
using kjsub
apply (clarsimp simp add : inj on def )
by (metis SU c homeomorphism def inj onD injf insert Diff insert iff jk

rev subsetD)
show (f ◦ k) ‘ j ‘ (S − {c}) ⊆ T
by (metis fim image comp image mono kjsub subset trans)

qed (auto simp: assms)
ultimately have openin (top of set T ) ((f ◦ h) ‘ g ‘ (S − {b}) ∪ ((f ◦ k) ‘ j ‘

(S − {c})))
by (rule openin Un)

moreover have (f ◦ h) ‘ g ‘ (S − {b}) = f ‘ (S − {b})
proof −
have h ‘ g ‘ (S − {b}) = (S − {b})
proof
show h ‘ g ‘ (S − {b}) ⊆ S − {b}
using homeomorphism apply1 [OF gh] SU
by (fastforce simp add : image iff image subset iff )

show S − {b} ⊆ h ‘ g ‘ (S − {b})
apply clarify
by (metis SU subsetD homeomorphism apply1 [OF gh] image iff mem-

ber remove remove def )
qed
then show ?thesis
by (metis image comp)

qed
moreover have (f ◦ k) ‘ j ‘ (S − {c}) = f ‘ (S − {c})
proof −
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have k ‘ j ‘ (S − {c}) = (S − {c})
proof
show k ‘ j ‘ (S − {c}) ⊆ S − {c}
using homeomorphism apply1 [OF jk ] SU
by (fastforce simp add : image iff image subset iff )

show S − {c} ⊆ k ‘ j ‘ (S − {c})
apply clarify
by (metis SU subsetD homeomorphism apply1 [OF jk ] image iff mem-

ber remove remove def )
qed
then show ?thesis
by (metis image comp)

qed
moreover have f ‘ (S − {b}) ∪ f ‘ (S − {c}) = f ‘ (S )
using 〈b 6= c〉 by blast

ultimately show ?thesis
by simp

qed

lemma invariance of domain sphere affine set :
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes contf : continuous on S f and injf : inj on f S and fim: f ‘ S ⊆ T

and r 6= 0 affine T and affTU : aff dim T < DIM ( ′a)
and ope: openin (top of set (sphere a r)) S

shows openin (top of set T ) (f ‘ S )
proof (cases sphere a r = {})
case True
then show ?thesis
using ope openin subset by force

next
case False
show ?thesis
proof (rule invariance of domain sphere affine set gen [OF contf injf fim bounded cball

convex cball 〈affine T 〉])
show aff dim T < aff dim (cball a r)
by (metis False affTU aff dim cball assms(4 ) linorder cases sphere empty)

show openin (top of set (rel frontier (cball a r))) S
by (simp add : 〈r 6= 0 〉 ope)

qed
qed

lemma no embedding sphere lowdim:
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes contf : continuous on (sphere a r) f and injf : inj on f (sphere a r)

and r > 0
shows DIM ( ′a) ≤ DIM ( ′b)

proof −
have False if DIM ( ′a) > DIM ( ′b)
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proof −
have compact (f ‘ sphere a r)
using compact continuous image
by (simp add : compact continuous image contf )

then have ¬ open (f ‘ sphere a r)
using compact open
by (metis assms(3 ) image is empty not less iff gr or eq sphere eq empty)

then show False
using invariance of domain sphere affine set [OF contf injf subset UNIV ] 〈r

> 0 〉

by (metis aff dim UNIV affine UNIV less irrefl of nat less iff open openin
openin subtopology self subtopology UNIV that)
qed
then show ?thesis
using not less by blast

qed

lemma simply connected sphere:
fixes a :: ′a::euclidean space
assumes 3 ≤ DIM ( ′a)
shows simply connected(sphere a r)

proof (cases rule: linorder cases [of r 0 ])
case less
then show ?thesis by simp

next
case equal
then show ?thesis by (auto simp: convex imp simply connected)

next
case greater
then show ?thesis
using simply connected sphere gen [of cball a r ] assms
by (simp add : aff dim cball)

qed

lemma simply connected sphere eq :
fixes a :: ′a::euclidean space
shows simply connected(sphere a r) ←→ 3 ≤ DIM ( ′a) ∨ r ≤ 0 (is ?lhs = ?rhs)

proof (cases r ≤ 0 )
case True
have simply connected (sphere a r)
using True less eq real def by (auto intro: convex imp simply connected)

with True show ?thesis by auto
next
case False
show ?thesis
proof
assume L: ?lhs
have False if DIM ( ′a) = 1 ∨ DIM ( ′a) = 2
using that
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proof
assume DIM ( ′a) = 1
with L show False
using connected sphere eq simply connected imp connected
by (metis False Suc 1 not less eq eq order refl)

next
assume DIM ( ′a) = 2
then have sphere a r homeomorphic sphere (0 ::complex ) 1
by (metis DIM complex False homeomorphic spheres gen not less zero less one)
then have simply connected(sphere (0 ::complex ) 1 )
using L homeomorphic simply connected eq by blast

then obtain a::complex where homotopic with canon (λh. True) (sphere 0
1 ) (sphere 0 1 ) id (λx . a)

by (metis continuous on id ′ id apply image id subset refl simply connected eq contractible circlemap)
then show False
using contractible sphere contractible def not one le zero by blast

qed
with False show ?rhs
apply simp

by (metis DIM ge Suc0 le antisym not less eq eq numeral 2 eq 2 numeral 3 eq 3 )
next
assume ?rhs
with False show ?lhs by (simp add : simply connected sphere)

qed
qed

lemma simply connected punctured universe eq :
fixes a :: ′a::euclidean space
shows simply connected(− {a}) ←→ 3 ≤ DIM ( ′a)

proof −
have [simp]: a ∈ rel interior (cball a 1 )
by (simp add : rel interior nonempty interior)

have [simp]: affine hull cball a 1 − {a} = −{a}
by (metis Compl eq Diff UNIV aff dim cball aff dim lt full not less iff gr or eq

zero less one)
have sphere a 1 homotopy eqv − {a}
using homotopy eqv rel frontier punctured affine hull [of cball a 1 a] by auto

then have simply connected(− {a}) ←→ simply connected(sphere a 1 )
using homotopy eqv simple connectedness by blast

also have ... ←→ 3 ≤ DIM ( ′a)
by (simp add : simply connected sphere eq)

finally show ?thesis .
qed

lemma not simply connected circle:
fixes a :: complex
shows 0 < r =⇒ ¬ simply connected(sphere a r)

by (simp add : simply connected sphere eq)
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proposition simply connected punctured convex :
fixes a :: ′a::euclidean space
assumes convex S and 3 : 3 ≤ aff dim S
shows simply connected(S − {a})

proof (cases a ∈ rel interior S )
case True
then obtain e where a ∈ S 0 < e and e: cball a e ∩ affine hull S ⊆ S
by (auto simp: rel interior cball)

have con: convex (cball a e ∩ affine hull S )
by (simp add : convex Int)

have bo: bounded (cball a e ∩ affine hull S )
by (simp add : bounded Int)

have affine hull S ∩ interior (cball a e) 6= {}
using 〈0 < e〉 〈a ∈ S 〉 hull subset by fastforce

then have 3 ≤ aff dim (affine hull S ∩ cball a e)
by (simp add : 3 aff dim convex Int nonempty interior [OF convex affine hull ])

also have ... = aff dim (cball a e ∩ affine hull S )
by (simp add : Int commute)

finally have 3 ≤ aff dim (cball a e ∩ affine hull S ) .
moreover have rel frontier (cball a e ∩ affine hull S ) homotopy eqv S − {a}
proof (rule homotopy eqv rel frontier punctured convex )
show a ∈ rel interior (cball a e ∩ affine hull S )
by (meson IntI Int mono 〈a ∈ S 〉 〈0 < e〉 e 〈cball a e ∩ affine hull S ⊆ S 〉

ball subset cball centre in cball dual order .strict implies order hull inc hull mono mem rel interior ball)
have closed (cball a e ∩ affine hull S )
by blast

then show rel frontier (cball a e ∩ affine hull S ) ⊆ S
by (metis Diff subset closure closed dual order .trans e rel frontier def )

show S ⊆ affine hull (cball a e ∩ affine hull S )
by (metis (no types, lifting) IntI 〈a ∈ S 〉 〈0 < e〉 affine hull convex Int nonempty interior

centre in ball convex affine hull empty iff hull subset inf commute interior cball sub-
setCE subsetI )

qed (auto simp: assms con bo)
ultimately show ?thesis
using homotopy eqv simple connectedness simply connected sphere gen [OF con

bo]
by blast

next
case False
then have rel interior S ⊆ S − {a}
by (simp add : False rel interior subset subset Diff insert)

moreover have S − {a} ⊆ closure S
by (meson Diff subset closure subset subset trans)

ultimately show ?thesis
by (metis contractible imp simply connected contractible convex tweak boundary points

[OF 〈convex S 〉])
qed
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corollary simply connected punctured universe:
fixes a :: ′a::euclidean space
assumes 3 ≤ DIM ( ′a)
shows simply connected(− {a})

proof −
have [simp]: affine hull cball a 1 = UNIV
by (simp add : aff dim cball affine hull UNIV )

have a ∈ rel interior (cball a 1 )
by (simp add : rel interior interior)

then
have simply connected (rel frontier (cball a 1 )) = simply connected (affine hull

cball a 1 − {a})
using homotopy eqv rel frontier punctured affine hull homotopy eqv simple connectedness

by blast
then show ?thesis
using simply connected sphere [of a 1 , OF assms] by (auto simp: Compl eq Diff UNIV )

qed

6.41.10 The power, squaring and exponential functions as
covering maps

proposition covering space power punctured plane:
assumes 0 < n
shows covering space (− {0}) (λz ::complex . zˆn) (− {0})

proof −
consider n = 1 | 2 ≤ n using assms by linarith
then obtain e where 0 < e

and e:
∧
w z . cmod(w − z ) < e ∗ cmod z =⇒ (wˆn = zˆn ←→ w =

z )
proof cases
assume n = 1 then show ?thesis
by (rule tac e=1 in that) auto

next
assume 2 ≤ n
have eq if pow eq :

w = z if lt : cmod (w − z ) < 2 ∗ sin (pi / real n) ∗ cmod z
and eq : wˆn = zˆn for w z

proof (cases z = 0 )
case True with eq assms show ?thesis by (auto simp: power 0 left)

next
case False
then have z 6= 0 by auto
have (w/z )ˆn = 1
by (metis False divide self if eq power divide power one)

then obtain j where j : w / z = exp (2 ∗ of real pi ∗ i ∗ j / n) and j < n
using Suc leI assms 〈2 ≤ n〉 complex roots unity [THEN eqset imp iff , of n

w/z ]
by force
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have cmod (w/z − 1 ) < 2 ∗ sin (pi / real n)
using lt assms 〈z 6= 0 〉 by (simp add : field split simps norm divide)

then have cmod (exp (i ∗ of real (2 ∗ pi ∗ j / n)) − 1 ) < 2 ∗ sin (pi / real
n)

by (simp add : j field simps)
then have 2 ∗ |sin((2 ∗ pi ∗ j / n) / 2 )| < 2 ∗ sin (pi / real n)
by (simp only : dist exp i 1 )

then have sin less: sin((pi ∗ j / n)) < sin (pi / real n)
by (simp add : field simps)

then have w / z = 1
proof (cases j = 0 )
case True then show ?thesis by (auto simp: j )

next
case False
then have sin (pi / real n) ≤ sin((pi ∗ j / n))
proof (cases j / n ≤ 1/2 )
case True
show ?thesis
using 〈j 6= 0 〉 〈j < n〉 True
by (intro sin monotone 2pi le) (auto simp: field simps intro: order trans

[of 0 ])
next
case False
then have seq : sin(pi ∗ j / n) = sin(pi ∗ (n − j ) / n)
using 〈j < n〉 by (simp add : algebra simps diff divide distrib of nat diff )
show ?thesis
unfolding seq
using 〈j < n〉 False
by (intro sin monotone 2pi le) (auto simp: field simps intro: order trans

[of 0 ])
qed
with sin less show ?thesis by force

qed
then show ?thesis by simp

qed
show ?thesis
proof
show 0 < 2 ∗ sin (pi / real n)
by (force simp: 〈2 ≤ n〉 sin pi divide n gt 0 )

qed (meson eq if pow eq)
qed
have zn1 : continuous on (− {0}) (λz ::complex . zˆn)
by (rule continuous intros)+

have zn2 : (λz ::complex . zˆn) ‘ (− {0}) = − {0}
using assms by (auto simp: image def elim: exists complex root nonzero [where

n = n])
have zn3 : ∃T . zˆn ∈ T ∧ open T ∧ 0 /∈ T ∧

(∃ v .
⋃
v = −{0} ∩ (λz . z ˆ n) −‘ T ∧

(∀ u∈v . open u ∧ 0 /∈ u) ∧
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pairwise disjnt v ∧
(∀ u∈v . Ex (homeomorphism u T (λz . zˆn))))

if z 6= 0 for z ::complex
proof −
define d where d ≡ min (1/2 ) (e/4 ) ∗ norm z
have 0 < d
by (simp add : d def 〈0 < e〉 〈z 6= 0 〉)

have iff x eq y : xˆn = yˆn ←→ x = y
if eq : wˆn = zˆn and x : x ∈ ball w d and y : y ∈ ball w d for w x y

proof −
have [simp]: norm z = norm w using that
by (simp add : assms power eq imp eq norm)

show ?thesis
proof (cases w = 0 )
case True with 〈z 6= 0 〉 assms eq
show ?thesis by (auto simp: power 0 left)

next
case False
have cmod (x − y) < 2∗d
using x y

by (simp add : dist norm [symmetric]) (metis dist commute mult 2
dist triangle less add)

also have ... ≤ 2 ∗ e / 4 ∗ norm w
using 〈e > 0 〉 by (simp add : d def min mult distrib right)

also have ... = e ∗ (cmod w / 2 )
by simp

also have ... ≤ e ∗ cmod y
proof (rule mult left mono)
have cmod (w − y) < cmod w / 2 =⇒ cmod w / 2 ≤ cmod y

by (metis (no types) dist 0 norm dist norm norm triangle half l not le
order less irrefl)

then show cmod w / 2 ≤ cmod y
using y by (simp add : dist norm d def min mult distrib right)

qed (use 〈e > 0 〉 in auto)
finally have cmod (x − y) < e ∗ cmod y .
then show ?thesis by (rule e)

qed
qed
then have inj : inj on (λw . wˆn) (ball z d)
by (simp add : inj on def )

have cont : continuous on (ball z d) (λw . w ˆ n)
by (intro continuous intros)

have noncon: ¬ (λw ::complex . wˆn) constant on UNIV
by (metis UNIV I assms constant on def power one zero neq one zero power)

have im eq : (λw . wˆn) ‘ ball z ′ d = (λw . wˆn) ‘ ball z d
if z ′: z ′̂ n = zˆn for z ′

proof −
have nz ′: norm z ′ = norm z using that assms power eq imp eq norm by blast
have (w ∈ (λw . wˆn) ‘ ball z ′ d) = (w ∈ (λw . wˆn) ‘ ball z d) for w
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proof (cases w=0 )
case True with assms show ?thesis
by (simp add : image def ball def nz ′)

next
case False
have z ′ 6= 0 using 〈z 6= 0 〉 nz ′ by force
have 1 : (z∗x / z ′)ˆn = xˆn if x 6= 0 for x
using z ′ that by (simp add : field simps 〈z 6= 0 〉)

have 2 : cmod (z − z ∗ x / z ′) = cmod (z ′ − x ) if x 6= 0 for x
proof −
have cmod (z − z ∗ x / z ′) = cmod z ∗ cmod (1 − x / z ′)

by (metis (no types) ab semigroup mult class.mult ac(1 ) divide complex def
mult .right neutral norm mult right diff distrib ′)

also have ... = cmod z ′ ∗ cmod (1 − x / z ′)
by (simp add : nz ′)

also have ... = cmod (z ′ − x )
by (simp add : 〈z ′ 6= 0 〉 diff divide eq iff norm divide)

finally show ?thesis .
qed
have 3 : (z ′∗x / z )ˆn = xˆn if x 6= 0 for x
using z ′ that by (simp add : field simps 〈z 6= 0 〉)

have 4 : cmod (z ′ − z ′ ∗ x / z ) = cmod (z − x ) if x 6= 0 for x
proof −
have cmod (z ∗ (1 − x ∗ inverse z )) = cmod (z − x )

by (metis 〈z 6= 0 〉 diff divide distrib divide complex def divide self if
nonzero eq divide eq semiring normalization rules(7 ))

then show ?thesis
by (metis (no types) mult .assoc divide complex def mult .right neutral

norm mult nz ′ right diff distrib ′)
qed
show ?thesis
by (simp add : set eq iff image def ball def ) (metis 1 2 3 4 diff zero dist norm

nz ′)
qed
then show ?thesis by blast

qed

have ex ball : ∃B . (∃ z ′. B = ball z ′ d ∧ z ′̂ n = zˆn) ∧ x ∈ B
if x 6= 0 and eq : xˆn = wˆn and dzw : dist z w < d for x w

proof −
have w 6= 0 by (metis assms power eq 0 iff that(1 ) that(2 ))
have [simp]: cmod x = cmod w
using assms power eq imp eq norm eq by blast

have [simp]: cmod (x ∗ z / w − x ) = cmod (z − w)
proof −
have cmod (x ∗ z / w − x ) = cmod x ∗ cmod (z / w − 1 )

by (metis (no types) mult .right neutral norm mult right diff distrib ′

times divide eq right)
also have ... = cmod w ∗ cmod (z / w − 1 )
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by simp
also have ... = cmod (z − w)
by (simp add : 〈w 6= 0 〉 divide diff eq iff nonzero norm divide)

finally show ?thesis .
qed
show ?thesis
proof (intro exI conjI )
show (z / w ∗ x ) ˆ n = z ˆ n
by (metis 〈w 6= 0 〉 eq nonzero eq divide eq power mult distrib)

show x ∈ ball (z / w ∗ x ) d
using 〈d > 0 〉 that
by (simp add : ball eq ball iff 〈z 6= 0 〉 〈w 6= 0 〉 field simps) (simp add :

dist norm)
qed auto

qed

show ?thesis
proof (rule exI , intro conjI )
show z ˆ n ∈ (λw . w ˆ n) ‘ ball z d
using 〈d > 0 〉 by simp

show open ((λw . w ˆ n) ‘ ball z d)
by (rule invariance of domain [OF cont open ball inj ])

show 0 /∈ (λw . w ˆ n) ‘ ball z d
using 〈z 6= 0 〉 assms by (force simp: d def )

show ∃ v .
⋃
v = − {0} ∩ (λz . z ˆ n) −‘ (λw . w ˆ n) ‘ ball z d ∧

(∀ u∈v . open u ∧ 0 /∈ u) ∧
disjoint v ∧
(∀ u∈v . Ex (homeomorphism u ((λw . w ˆ n) ‘ ball z d) (λz . z ˆ n)))

proof (rule exI , intro ballI conjI )
show

⋃
{ball z ′ d |z ′. z ′̂ n = zˆn} = − {0} ∩ (λz . z ˆ n) −‘ (λw . w ˆ n)

‘ ball z d (is ?l = ?r)
proof
have

∧
z ′. cmod z ′ < d =⇒ z ′ ˆ n 6= z ˆ n

by (auto simp add : assms d def power eq imp eq norm that)
then show ?l ⊆ ?r
by auto (metis im eq image eqI mem ball)

show ?r ⊆ ?l
by auto (meson ex ball)

qed
show

∧
u. u ∈ {ball z ′ d |z ′. z ′ ˆ n = z ˆ n} =⇒ 0 /∈ u

by (force simp add : assms d def power eq imp eq norm that)

show disjoint {ball z ′ d |z ′. z ′ ˆ n = z ˆ n}
proof (clarsimp simp add : pairwise def disjnt iff )
fix ξ ζ x
assume ξˆn = zˆn ζˆn = zˆn ball ξ d 6= ball ζ d
and dist ξ x < d dist ζ x < d

then have dist ξ ζ < d+d
using dist triangle less add by blast
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then have cmod (ξ − ζ) < 2∗d
by (simp add : dist norm)

also have ... ≤ e ∗ cmod z
using mult right mono 〈0 < e〉 that by (auto simp: d def )

finally have cmod (ξ − ζ) < e ∗ cmod z .
with e have ξ = ζ
by (metis 〈ξˆn = zˆn〉 〈ζˆn = zˆn〉 assms power eq imp eq norm)

then show False
using 〈ball ξ d 6= ball ζ d 〉 by blast

qed
show Ex (homeomorphism u ((λw . w ˆ n) ‘ ball z d) (λz . z ˆ n))
if u ∈ {ball z ′ d |z ′. z ′ ˆ n = z ˆ n} for u

proof (rule invariance of domain homeomorphism [of u λz . zˆn])
show open u
using that by auto

show continuous on u (λz . z ˆ n)
by (intro continuous intros)

show inj on (λz . z ˆ n) u
using that by (auto simp: iff x eq y inj on def )
show

∧
g . homeomorphism u ((λz . z ˆ n) ‘ u) (λz . z ˆ n) g =⇒ Ex

(homeomorphism u ((λw . w ˆ n) ‘ ball z d) (λz . z ˆ n))
using im eq that by clarify metis

qed auto
qed auto

qed
qed
show ?thesis
using assms
apply (simp add : covering space def zn1 zn2 )
apply (subst zn2 [symmetric])
apply (simp add : openin open eq open Compl zn3 )
done

qed

corollary covering space square punctured plane:
covering space (− {0}) (λz ::complex . zˆ2 ) (− {0})
by (simp add : covering space power punctured plane)

proposition covering space exp punctured plane:
covering space UNIV (λz ::complex . exp z ) (− {0})

proof (simp add : covering space def , intro conjI ballI )
show continuous on UNIV (λz ::complex . exp z )
by (rule continuous on exp [OF continuous on id ])

show range exp = − {0 ::complex}
by auto (metis exp Ln range eqI )

show ∃T . z ∈ T ∧ openin (top of set (− {0})) T ∧
(∃ v .

⋃
v = exp −‘ T ∧ (∀ u∈v . open u) ∧ disjoint v ∧

(∀ u∈v . ∃ q . homeomorphism u T exp q))
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if z ∈ − {0 ::complex} for z
proof −
have z 6= 0
using that by auto

have ball (Ln z ) 1 ⊆ ball (Ln z ) pi
using pi ge two by (simp add : ball subset ball iff )

then have inj exp: inj on exp (ball (Ln z ) 1 )
using inj on exp pi inj on subset by blast
define V where V ≡ range (λn. (λx . x + of real (2 ∗ of int n ∗ pi) ∗ i) ‘

(ball(Ln z ) 1 ))
show ?thesis
proof (intro exI conjI )
show z ∈ exp ‘ (ball(Ln z ) 1 )
by (metis 〈z 6= 0 〉 centre in ball exp Ln rev image eqI zero less one)

have open (− {0 ::complex})
by blast

with inj exp show openin (top of set (− {0})) (exp ‘ ball (Ln z ) 1 )
by (auto simp: openin open eq invariance of domain continuous on exp [OF

continuous on id ])
show

⋃
V = exp −‘ exp ‘ ball (Ln z ) 1

by (force simp: V def Complex Transcendental .exp eq image iff )
show ∀V∈V. open V
by (auto simp: V def inj on def continuous intros invariance of domain)

have xy : 2 ≤ cmod (2 ∗ of int x ∗ of real pi ∗ i − 2 ∗ of int y ∗ of real pi ∗
i)

if x < y for x y
proof −
have 1 ≤ abs (x − y)
using that by linarith

then have 1 ≤ cmod (of int x − of int y) ∗ 1
by (metis mult .right neutral norm of int of int 1 le iff of int abs of int diff )
also have ... ≤ cmod (of int x − of int y) ∗ of real pi
using pi ge two
by (intro mult left mono) auto

also have ... ≤ cmod ((of int x − of int y) ∗ of real pi ∗ i)
by (simp add : norm mult)

also have ... ≤ cmod (of int x ∗ of real pi ∗ i − of int y ∗ of real pi ∗ i)
by (simp add : algebra simps)

finally have 1 ≤ cmod (of int x ∗ of real pi ∗ i − of int y ∗ of real pi ∗ i) .
then have 2 ∗ 1 ≤ cmod (2 ∗ (of int x ∗ of real pi ∗ i − of int y ∗ of real

pi ∗ i))
by (metis mult le cancel left pos norm mult numeral1 zero less numeral)

then show ?thesis
by (simp add : algebra simps)

qed
show disjoint V
apply (clarsimp simp add : V def pairwise def disjnt def add .commute [of

x∗y for x y ]
ball eq ball iff intro!: disjoint ballI )
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apply (auto simp: dist norm neq iff )
by (metis norm minus commute xy)+

show ∀ u∈V. ∃ q . homeomorphism u (exp ‘ ball (Ln z ) 1 ) exp q
proof
fix u
assume u ∈ V
then obtain n where n: u = (λx . x + of real (2 ∗ of int n ∗ pi) ∗ i) ‘

(ball(Ln z ) 1 )
by (auto simp: V def )

have compact (cball (Ln z ) 1 )
by simp

moreover have continuous on (cball (Ln z ) 1 ) exp
by (rule continuous on exp [OF continuous on id ])

moreover have inj on exp (cball (Ln z ) 1 )
apply (rule inj on subset [OF inj on exp pi [of Ln z ]])
using pi ge two by (simp add : cball subset ball iff )

ultimately obtain γ where hom: homeomorphism (cball (Ln z ) 1 ) (exp ‘
cball (Ln z ) 1 ) exp γ

using homeomorphism compact by blast
have eq1 : exp ‘ u = exp ‘ ball (Ln z ) 1
apply (auto simp: algebra simps n)
apply (rule tac x = + i ∗ (of int n ∗ (of real pi ∗ 2 )) in image eqI )
apply (auto simp: image iff )
done

have γexp: γ (exp x ) + 2 ∗ of int n ∗ of real pi ∗ i = x if x ∈ u for x
proof −
have exp x = exp (x − 2 ∗ of int n ∗ of real pi ∗ i)
by (simp add : exp eq)

then have γ (exp x ) = γ (exp (x − 2 ∗ of int n ∗ of real pi ∗ i))
by simp

also have ... = x − 2 ∗ of int n ∗ of real pi ∗ i
using 〈x ∈ u〉 by (auto simp: n intro: homeomorphism apply1 [OF hom])
finally show ?thesis
by simp

qed
have exp2n: exp (γ (exp x ) + 2 ∗ of int n ∗ complex of real pi ∗ i) = exp x

if dist (Ln z ) x < 1 for x
using that by (auto simp: exp eq homeomorphism apply1 [OF hom])

have continuous on (exp ‘ ball (Ln z ) 1 ) γ
by (meson ball subset cball continuous on subset hom homeomorphism cont2

image mono)
then have cont : continuous on (exp ‘ ball (Ln z ) 1 ) (λx . γ x + 2 ∗ of int

n ∗ complex of real pi ∗ i)
by (intro continuous intros)

show ∃ q . homeomorphism u (exp ‘ ball (Ln z ) 1 ) exp q
apply (rule tac x=(λx . x + of real(2 ∗ n ∗ pi) ∗ i) ◦ γ in exI )
unfolding homeomorphism def
apply (intro conjI ballI eq1 continuous on exp [OF continuous on id ])

apply (auto simp: γexp exp2n cont n)
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apply (force simp: image iff homeomorphism apply1 [OF hom])+
done

qed
qed

qed
qed

6.41.11 Hence the Borsukian results about mappings into
circles

lemma inessential eq continuous logarithm:
fixes f :: ′a::real normed vector ⇒ complex
shows (∃ a. homotopic with canon (λh. True) S (−{0}) f (λt . a)) ←→

(∃ g . continuous on S g ∧ (∀ x ∈ S . f x = exp(g x )))
(is ?lhs ←→ ?rhs)

proof
assume ?lhs thus ?rhs
by (metis covering space lift inessential function covering space exp punctured plane)

next
assume ?rhs
then obtain g where contg : continuous on S g and f :

∧
x . x ∈ S =⇒ f x =

exp(g x )
by metis

obtain a where homotopic with canon (λh. True) S (− {of real 0}) (exp ◦ g)
(λx . a)
proof (rule nullhomotopic through contractible [OF contg subset UNIV con-

tractible UNIV ])
show continuous on (UNIV ::complex set) exp
by (intro continuous intros)

show range exp ⊆ − {0}
by auto

qed force
then have homotopic with canon (λh. True) S (− {0}) f (λt . a)
using f homotopic with eq by fastforce

then show ?lhs ..
qed

corollary inessential imp continuous logarithm circle:
fixes f :: ′a::real normed vector ⇒ complex
assumes homotopic with canon (λh. True) S (sphere 0 1 ) f (λt . a)
obtains g where continuous on S g and

∧
x . x ∈ S =⇒ f x = exp(g x )

proof −
have homotopic with canon (λh. True) S (− {0}) f (λt . a)
using assms homotopic with subset right by fastforce

then show ?thesis
by (metis inessential eq continuous logarithm that)

qed
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lemma inessential eq continuous logarithm circle:
fixes f :: ′a::real normed vector ⇒ complex
shows (∃ a. homotopic with canon (λh. True) S (sphere 0 1 ) f (λt . a)) ←→

(∃ g . continuous on S g ∧ (∀ x ∈ S . f x = exp(i ∗ of real(g x ))))
(is ?lhs ←→ ?rhs)

proof
assume L: ?lhs
then obtain g where contg : continuous on S g and g :

∧
x . x ∈ S =⇒ f x =

exp(g x )
using inessential imp continuous logarithm circle by blast

have f ‘ S ⊆ sphere 0 1
by (metis L homotopic with imp subset1 )

then have
∧
x . x ∈ S =⇒ Re (g x ) = 0

using g by auto
then show ?rhs
by (rule tac x=Im ◦ g in exI ) (auto simp: Euler g intro: contg continuous intros)

next
assume ?rhs
then obtain g where contg : continuous on S g and g :

∧
x . x ∈ S =⇒ f x =

exp(i∗ of real(g x ))
by metis

obtain a where homotopic with canon (λh. True) S (sphere 0 1 ) ((exp ◦ (λz .
i∗z )) ◦ (of real ◦ g)) (λx . a)
proof (rule nullhomotopic through contractible)
show continuous on S (complex of real ◦ g)
by (intro conjI contg continuous intros)

show (complex of real ◦ g) ‘ S ⊆ IR
by auto

show continuous on IR (exp ◦ (∗)i)
by (intro continuous intros)

show (exp ◦ (∗)i) ‘ IR ⊆ sphere 0 1
by (auto simp: complex is Real iff )

qed (auto simp: convex Reals convex imp contractible)
moreover have

∧
x . x ∈ S =⇒ (exp ◦ (∗)i ◦ (complex of real ◦ g)) x = f x

by (simp add : g)
ultimately have homotopic with canon (λh. True) S (sphere 0 1 ) f (λt . a)
using homotopic with eq by force

then show ?lhs ..
qed

proposition homotopic with sphere times:
fixes f :: ′a::real normed vector ⇒ complex
assumes hom: homotopic with canon (λx . True) S (sphere 0 1 ) f g and conth:

continuous on S h
and hin:

∧
x . x ∈ S =⇒ h x ∈ sphere 0 1

shows homotopic with canon (λx . True) S (sphere 0 1 ) (λx . f x ∗ h x ) (λx . g
x ∗ h x )
proof −
obtain k where contk : continuous on ({0 ..1 ::real} × S ) k
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and kim: k ‘ ({0 ..1} × S ) ⊆ sphere 0 1
and k0 :

∧
x . k(0 , x ) = f x

and k1 :
∧
x . k(1 , x ) = g x

using hom by (auto simp: homotopic with def )
show ?thesis
apply (simp add : homotopic with)
apply (rule tac x=λz . k z∗(h ◦ snd)z in exI )
using kim hin by (fastforce simp: conth norm mult k0 k1 intro!: contk contin-

uous intros)+
qed

proposition homotopic circlemaps divide:
fixes f :: ′a::real normed vector ⇒ complex
shows homotopic with canon (λx . True) S (sphere 0 1 ) f g ←→

continuous on S f ∧ f ‘ S ⊆ sphere 0 1 ∧
continuous on S g ∧ g ‘ S ⊆ sphere 0 1 ∧
(∃ c. homotopic with canon (λx . True) S (sphere 0 1 ) (λx . f x / g x ) (λx .

c))
proof −
have homotopic with canon (λx . True) S (sphere 0 1 ) (λx . f x / g x ) (λx . 1 )

if homotopic with canon (λx . True) S (sphere 0 1 ) (λx . f x / g x ) (λx . c)
for c
proof −
have S = {} ∨ path component (sphere 0 1 ) 1 c
using homotopic with imp subset2 [OF that ] path connected sphere [of 0 ::complex

1 ]
by (auto simp: path connected component)

then have homotopic with canon (λx . True) S (sphere 0 1 ) (λx . 1 ) (λx . c)
by (simp add : homotopic constant maps)

then show ?thesis
using homotopic with symD homotopic with trans that by blast

qed
then have ∗: (∃ c. homotopic with canon (λx . True) S (sphere 0 1 ) (λx . f x / g

x ) (λx . c)) ←→
homotopic with canon (λx . True) S (sphere 0 1 ) (λx . f x / g x ) (λx .

1 )
by auto

have homotopic with canon (λx . True) S (sphere 0 1 ) f g ←→
continuous on S f ∧ f ‘ S ⊆ sphere 0 1 ∧
continuous on S g ∧ g ‘ S ⊆ sphere 0 1 ∧
homotopic with canon (λx . True) S (sphere 0 1 ) (λx . f x / g x ) (λx . 1 )

(is ?lhs ←→ ?rhs)
proof
assume L: ?lhs
have geq1 [simp]:

∧
x . x ∈ S =⇒ cmod (g x ) = 1

using homotopic with imp subset2 [OF L]
by (simp add : image subset iff )

have cont : continuous on S (inverse ◦ g)
proof (rule continuous intros)

Further{_}{\kern 0pt}Topology.html


3026

show continuous on S g
using homotopic with imp continuous [OF L] by blast

show continuous on (g ‘ S ) inverse
by (rule continuous on subset [of sphere 0 1 , OF continuous on inverse])

auto
qed
have [simp]:

∧
x . x ∈ S =⇒ g x 6= 0

using geq1 by fastforce
have homotopic with canon (λx . True) S (sphere 0 1 ) (λx . f x / g x ) (λx . 1 )
apply (rule homotopic with eq [OF homotopic with sphere times [OF L cont ]])
by (auto simp: divide inverse norm inverse)

with L show ?rhs
by (auto simp: homotopic with imp continuous dest : homotopic with imp subset1

homotopic with imp subset2 )
next
assume ?rhs then show ?lhs
by (elim conjE homotopic with eq [OF homotopic with sphere times]; force)

qed
then show ?thesis
by (simp add : ∗)

qed

6.41.12 Upper and lower hemicontinuous functions

And relation in the case of preimage map to open and closed maps, and fact
that upper and lower hemicontinuity together imply continuity in the sense
of the Hausdorff metric (at points where the function gives a bounded and
nonempty set).

Many similar proofs below.

lemma upper hemicontinuous:
assumes

∧
x . x ∈ S =⇒ f x ⊆ T

shows ((∀U . openin (top of set T ) U
−→ openin (top of set S ) {x ∈ S . f x ⊆ U }) ←→

(∀U . closedin (top of set T ) U
−→ closedin (top of set S ) {x ∈ S . f x ∩ U 6= {}}))

(is ?lhs = ?rhs)
proof (intro iffI allI impI )
fix U
assume ∗ [rule format ]: ?lhs and closedin (top of set T ) U
then have openin (top of set T ) (T − U )
by (simp add : openin diff )

then have openin (top of set S ) {x ∈ S . f x ⊆ T − U }
using ∗ [of T−U ] by blast

moreover have S − {x ∈ S . f x ⊆ T − U } = {x ∈ S . f x ∩ U 6= {}}
using assms by blast

ultimately show closedin (top of set S ) {x ∈ S . f x ∩ U 6= {}}
by (simp add : openin closedin eq)

next
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fix U
assume ∗ [rule format ]: ?rhs and openin (top of set T ) U
then have closedin (top of set T ) (T − U )
by (simp add : closedin diff )

then have closedin (top of set S ) {x ∈ S . f x ∩ (T − U ) 6= {}}
using ∗ [of T−U ] by blast

moreover have {x ∈ S . f x ∩ (T − U ) 6= {}} = S − {x ∈ S . f x ⊆ U }
using assms by auto

ultimately show openin (top of set S ) {x ∈ S . f x ⊆ U }
by (simp add : openin closedin eq)

qed

lemma lower hemicontinuous:
assumes

∧
x . x ∈ S =⇒ f x ⊆ T

shows ((∀U . closedin (top of set T ) U
−→ closedin (top of set S ) {x ∈ S . f x ⊆ U }) ←→

(∀U . openin (top of set T ) U
−→ openin (top of set S ) {x ∈ S . f x ∩ U 6= {}}))

(is ?lhs = ?rhs)
proof (intro iffI allI impI )
fix U
assume ∗ [rule format ]: ?lhs and openin (top of set T ) U
then have closedin (top of set T ) (T − U )
by (simp add : closedin diff )

then have closedin (top of set S ) {x ∈ S . f x ⊆ T−U }
using ∗ [of T−U ] by blast

moreover have {x ∈ S . f x ⊆ T−U } = S − {x ∈ S . f x ∩ U 6= {}}
using assms by auto

ultimately show openin (top of set S ) {x ∈ S . f x ∩ U 6= {}}
by (simp add : openin closedin eq)

next
fix U
assume ∗ [rule format ]: ?rhs and closedin (top of set T ) U
then have openin (top of set T ) (T − U )
by (simp add : openin diff )

then have openin (top of set S ) {x ∈ S . f x ∩ (T − U ) 6= {}}
using ∗ [of T−U ] by blast

moreover have S − {x ∈ S . f x ∩ (T − U ) 6= {}} = {x ∈ S . f x ⊆ U }
using assms by blast

ultimately show closedin (top of set S ) {x ∈ S . f x ⊆ U }
by (simp add : openin closedin eq)

qed

lemma open map iff lower hemicontinuous preimage:
assumes f ‘ S ⊆ T
shows ((∀U . openin (top of set S ) U

−→ openin (top of set T ) (f ‘ U )) ←→
(∀U . closedin (top of set S ) U
−→ closedin (top of set T ) {y ∈ T . {x . x ∈ S ∧ f x = y} ⊆ U }))
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(is ?lhs = ?rhs)
proof (intro iffI allI impI )
fix U
assume ∗ [rule format ]: ?lhs and closedin (top of set S ) U
then have openin (top of set S ) (S − U )
by (simp add : openin diff )

then have openin (top of set T ) (f ‘ (S − U ))
using ∗ [of S−U ] by blast

moreover have T − (f ‘ (S − U )) = {y ∈ T . {x ∈ S . f x = y} ⊆ U }
using assms by blast

ultimately show closedin (top of set T ) {y ∈ T . {x ∈ S . f x = y} ⊆ U }
by (simp add : openin closedin eq)

next
fix U
assume ∗ [rule format ]: ?rhs and opeSU : openin (top of set S ) U
then have closedin (top of set S ) (S − U )
by (simp add : closedin diff )

then have closedin (top of set T ) {y ∈ T . {x ∈ S . f x = y} ⊆ S − U }
using ∗ [of S−U ] by blast

moreover have {y ∈ T . {x ∈ S . f x = y} ⊆ S − U } = T − (f ‘ U )
using assms openin imp subset [OF opeSU ] by auto

ultimately show openin (top of set T ) (f ‘ U )
using assms openin imp subset [OF opeSU ] by (force simp: openin closedin eq)

qed

lemma closed map iff upper hemicontinuous preimage:
assumes f ‘ S ⊆ T
shows ((∀U . closedin (top of set S ) U

−→ closedin (top of set T ) (f ‘ U )) ←→
(∀U . openin (top of set S ) U
−→ openin (top of set T ) {y ∈ T . {x . x ∈ S ∧ f x = y} ⊆ U }))

(is ?lhs = ?rhs)
proof (intro iffI allI impI )
fix U
assume ∗ [rule format ]: ?lhs and opeSU : openin (top of set S ) U
then have closedin (top of set S ) (S − U )
by (simp add : closedin diff )

then have closedin (top of set T ) (f ‘ (S − U ))
using ∗ [of S−U ] by blast

moreover have f ‘ (S − U ) = T − {y ∈ T . {x . x ∈ S ∧ f x = y} ⊆ U }
using assms openin imp subset [OF opeSU ] by auto

ultimately show openin (top of set T ) {y ∈ T . {x . x ∈ S ∧ f x = y} ⊆ U }
using assms openin imp subset [OF opeSU ] by (force simp: openin closedin eq)

next
fix U
assume ∗ [rule format ]: ?rhs and cloSU : closedin (top of set S ) U
then have openin (top of set S ) (S − U )
by (simp add : openin diff )

then have openin (top of set T ) {y ∈ T . {x ∈ S . f x = y} ⊆ S − U }
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using ∗ [of S−U ] by blast
moreover have (f ‘ U ) = T − {y ∈ T . {x ∈ S . f x = y} ⊆ S − U }
using assms closedin imp subset [OF cloSU ] by auto

ultimately show closedin (top of set T ) (f ‘ U )
by (simp add : openin closedin eq)

qed

proposition upper lower hemicontinuous explicit :
fixes T :: ( ′b::{real normed vector ,heine borel}) set
assumes fST :

∧
x . x ∈ S =⇒ f x ⊆ T

and ope:
∧
U . openin (top of set T ) U
=⇒ openin (top of set S ) {x ∈ S . f x ⊆ U }

and clo:
∧
U . closedin (top of set T ) U
=⇒ closedin (top of set S ) {x ∈ S . f x ⊆ U }

and x ∈ S 0 < e and bofx : bounded(f x ) and fx ne: f x 6= {}
obtains d where 0 < d∧

x ′. [[x ′ ∈ S ; dist x x ′ < d ]]
=⇒ (∀ y ∈ f x . ∃ y ′. y ′ ∈ f x ′ ∧ dist y y ′ < e) ∧

(∀ y ′ ∈ f x ′. ∃ y . y ∈ f x ∧ dist y ′ y < e)
proof −
have openin (top of set T ) (T ∩ (

⋃
a∈f x .

⋃
b∈ball 0 e. {a + b}))

by (auto simp: open sums openin open Int)
with ope have openin (top of set S )

{u ∈ S . f u ⊆ T ∩ (
⋃

a∈f x .
⋃
b∈ball 0 e. {a + b})} by blast

with 〈0 < e〉 〈x ∈ S 〉 obtain d1 where d1 > 0 and
d1 :

∧
x ′. [[x ′ ∈ S ; dist x ′ x < d1 ]] =⇒ f x ′ ⊆ T ∧ f x ′ ⊆ (

⋃
a ∈ f x .

⋃
b ∈

ball 0 e. {a + b})
by (force simp: openin euclidean subtopology iff dest : fST )

have oo:
∧
U . openin (top of set T ) U =⇒
openin (top of set S ) {x ∈ S . f x ∩ U 6= {}}

apply (rule lower hemicontinuous [THEN iffD1 , rule format ])
using fST clo by auto

have compact (closure(f x ))
by (simp add : bofx )

moreover have closure(f x ) ⊆ (
⋃
a ∈ f x . ball a (e/2 ))

using 〈0 < e〉 by (force simp: closure approachable simp del : divide const simps)
ultimately obtain C where C ⊆ f x finite C closure(f x ) ⊆ (

⋃
a ∈ C . ball a

(e/2 ))
apply (rule compactE , force)
by (metis finite subset image)

then have fx cover : f x ⊆ (
⋃
a ∈ C . ball a (e/2 ))

by (meson closure subset order trans)
with fx ne have C 6= {}
by blast

have xin: x ∈ (
⋂
a ∈ C . {x ∈ S . f x ∩ T ∩ ball a (e/2 ) 6= {}})

using 〈x ∈ S 〉 〈0 < e〉 fST 〈C ⊆ f x 〉 by force
have openin (top of set S ) {x ∈ S . f x ∩ (T ∩ ball a (e/2 )) 6= {}} for a
by (simp add : openin open Int oo)

then have openin (top of set S ) (
⋂
a ∈ C . {x ∈ S . f x ∩ T ∩ ball a (e/2 ) 6=
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{}})
by (simp add : Int assoc openin INT2 [OF 〈finite C 〉 〈C 6= {}〉])

with xin obtain d2 where d2>0
and d2 :

∧
u v . [[u ∈ S ; dist u x < d2 ; v ∈ C ]] =⇒ f u ∩ T ∩ ball v

(e/2 ) 6= {}
unfolding openin euclidean subtopology iff using xin by fastforce

show ?thesis
proof (intro that conjI ballI )
show 0 < min d1 d2
using 〈0 < d1 〉 〈0 < d2 〉 by linarith

next
fix x ′ y
assume x ′ ∈ S dist x x ′ < min d1 d2 y ∈ f x
then have dd2 : dist x ′ x < d2
by (auto simp: dist commute)

obtain a where a ∈ C y ∈ ball a (e/2 )
using fx cover 〈y ∈ f x 〉 by auto

then show ∃ y ′. y ′ ∈ f x ′ ∧ dist y y ′ < e
using d2 [OF 〈x ′ ∈ S 〉 dd2 ] dist triangle half r by fastforce

next
fix x ′ y ′

assume x ′ ∈ S dist x x ′ < min d1 d2 y ′ ∈ f x ′

then have dist x ′ x < d1
by (auto simp: dist commute)

then have y ′ ∈ (
⋃
a∈f x .

⋃
b∈ball 0 e. {a + b})

using d1 [OF 〈x ′ ∈ S 〉] 〈y ′ ∈ f x ′〉 by force
then show ∃ y . y ∈ f x ∧ dist y ′ y < e
by clarsimp (metis add diff cancel left ′ dist norm)

qed
qed

6.41.13 Complex logs exist on various ”well-behaved” sets

lemma continuous logarithm on contractible:
fixes f :: ′a::real normed vector ⇒ complex
assumes continuous on S f contractible S

∧
z . z ∈ S =⇒ f z 6= 0

obtains g where continuous on S g
∧
x . x ∈ S =⇒ f x = exp(g x )

proof −
obtain c where hom: homotopic with canon (λh. True) S (−{0}) f (λx . c)
using nullhomotopic from contractible assms
by (metis imageE subset Compl singleton)

then show ?thesis
by (metis inessential eq continuous logarithm that)

qed

lemma continuous logarithm on simply connected :
fixes f :: ′a::real normed vector ⇒ complex
assumes contf : continuous on S f and S : simply connected S locally path connected

S
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and f :
∧
z . z ∈ S =⇒ f z 6= 0

obtains g where continuous on S g
∧
x . x ∈ S =⇒ f x = exp(g x )

using covering space lift [OF covering space exp punctured plane S contf ]
by (metis (full types) f imageE subset Compl singleton)

lemma continuous logarithm on cball :
fixes f :: ′a::real normed vector ⇒ complex
assumes continuous on (cball a r) f and

∧
z . z ∈ cball a r =⇒ f z 6= 0

obtains h where continuous on (cball a r) h
∧
z . z ∈ cball a r =⇒ f z = exp(h

z )
using assms continuous logarithm on contractible convex imp contractible by blast

lemma continuous logarithm on ball :
fixes f :: ′a::real normed vector ⇒ complex
assumes continuous on (ball a r) f and

∧
z . z ∈ ball a r =⇒ f z 6= 0

obtains h where continuous on (ball a r) h
∧
z . z ∈ ball a r =⇒ f z = exp(h z )

using assms continuous logarithm on contractible convex imp contractible by blast

lemma continuous sqrt on contractible:
fixes f :: ′a::real normed vector ⇒ complex
assumes continuous on S f contractible S

and
∧
z . z ∈ S =⇒ f z 6= 0

obtains g where continuous on S g
∧
x . x ∈ S =⇒ f x = (g x ) ˆ 2

proof −
obtain g where contg : continuous on S g and feq :

∧
x . x ∈ S =⇒ f x = exp(g

x )
using continuous logarithm on contractible [OF assms] by blast

show ?thesis
proof
show continuous on S (λz . exp (g z / 2 ))
by (rule continuous on compose2 [of UNIV exp]; intro continuous intros contg

subset UNIV ) auto
show

∧
x . x ∈ S =⇒ f x = (exp (g x / 2 ))2

by (metis exp double feq nonzero mult div cancel left times divide eq right
zero neq numeral)
qed

qed

lemma continuous sqrt on simply connected :
fixes f :: ′a::real normed vector ⇒ complex
assumes contf : continuous on S f and S : simply connected S locally path connected

S
and f :

∧
z . z ∈ S =⇒ f z 6= 0

obtains g where continuous on S g
∧
x . x ∈ S =⇒ f x = (g x ) ˆ 2

proof −
obtain g where contg : continuous on S g and feq :

∧
x . x ∈ S =⇒ f x = exp(g

x )
using continuous logarithm on simply connected [OF assms] by blast

show ?thesis
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proof
show continuous on S (λz . exp (g z / 2 ))
by (rule continuous on compose2 [of UNIV exp]; intro continuous intros contg

subset UNIV ) auto
show

∧
x . x ∈ S =⇒ f x = (exp (g x / 2 ))2

by (metis exp double feq nonzero mult div cancel left times divide eq right
zero neq numeral)
qed

qed

6.41.14 Another simple case where sphere maps are nullho-
motopic

lemma inessential spheremap 2 aux :
fixes f :: ′a::euclidean space ⇒ complex
assumes 2 : 2 < DIM ( ′a) and contf : continuous on (sphere a r) f

and fim: f ‘(sphere a r) ⊆ (sphere 0 1 )
obtains c where homotopic with canon (λz . True) (sphere a r) (sphere 0 1 ) f

(λx . c)
proof −
obtain g where contg : continuous on (sphere a r) g

and feq :
∧
x . x ∈ sphere a r =⇒ f x = exp(g x )

proof (rule continuous logarithm on simply connected [OF contf ])
show simply connected (sphere a r)
using 2 by (simp add : simply connected sphere eq)

show locally path connected (sphere a r)
by (simp add : locally path connected sphere)

show
∧
z . z ∈ sphere a r =⇒ f z 6= 0

using fim by force
qed auto
have ∃ g . continuous on (sphere a r) g ∧ (∀ x∈sphere a r . f x = exp (i ∗ com-

plex of real (g x )))
proof (intro exI conjI )
show continuous on (sphere a r) (Im ◦ g)
by (intro contg continuous intros continuous on compose)

show ∀ x∈sphere a r . f x = exp (i ∗ complex of real ((Im ◦ g) x ))
using exp eq polar feq fim norm exp eq Re by auto

qed
with inessential eq continuous logarithm circle that show ?thesis
by metis

qed

lemma inessential spheremap 2 :
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes a2 : 2 < DIM ( ′a) and b2 : DIM ( ′b) = 2

and contf : continuous on (sphere a r) f and fim: f ‘(sphere a r) ⊆ (sphere b
s)
obtains c where homotopic with canon (λz . True) (sphere a r) (sphere b s) f

(λx . c)
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proof (cases s ≤ 0 )
case True
then show ?thesis
using contf contractible sphere fim nullhomotopic into contractible that by blast

next
case False
then have sphere b s homeomorphic sphere (0 ::complex ) 1
using assms by (simp add : homeomorphic spheres gen)

then obtain h k where hk : homeomorphism (sphere b s) (sphere (0 ::complex )
1 ) h k

by (auto simp: homeomorphic def )
then have conth: continuous on (sphere b s) h

and contk : continuous on (sphere 0 1 ) k
and him: h ‘ sphere b s ⊆ sphere 0 1
and kim: k ‘ sphere 0 1 ⊆ sphere b s

by (simp all add : homeomorphism def )
obtain c where homotopic with canon (λz . True) (sphere a r) (sphere 0 1 ) (h
◦ f ) (λx . c)
proof (rule inessential spheremap 2 aux [OF a2 ])
show continuous on (sphere a r) (h ◦ f )
by (meson continuous on compose [OF contf ] conth continuous on subset fim)
show (h ◦ f ) ‘ sphere a r ⊆ sphere 0 1
using fim him by force

qed auto
then have homotopic with canon (λf . True) (sphere a r) (sphere b s) (k ◦ (h ◦

f )) (k ◦ (λx . c))
by (rule homotopic with compose continuous left [OF contk kim])

then have homotopic with canon (λz . True) (sphere a r) (sphere b s) f (λx . k
c)

apply (rule homotopic with eq , auto)
by (metis fim hk homeomorphism def image subset iff mem sphere)

then show ?thesis
by (metis that)

qed

6.41.15 Holomorphic logarithms and square roots

lemma g imp holomorphic log :
assumes holf : f holomorphic on S

and contg : continuous on S g and feq :
∧
x . x ∈ S =⇒ f x = exp (g x )

and fnz :
∧
z . z ∈ S =⇒ f z 6= 0

obtains g where g holomorphic on S
∧
z . z ∈ S =⇒ f z = exp(g z )

proof −
have contf : continuous on S f
by (simp add : holf holomorphic on imp continuous on)

have g field differentiable at z within S if f field differentiable at z within S z ∈
S for z
proof −
obtain f ′ where f ′: ((λy . (f y − f z ) / (y − z )) −−−→ f ′) (at z within S )
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using 〈f field differentiable at z within S 〉 by (auto simp: field differentiable def
has field derivative iff )

then have ee: ((λx . (exp(g x ) − exp(g z )) / (x − z )) −−−→ f ′) (at z within S )
by (simp add : feq 〈z ∈ S 〉 Lim transform within [OF zero less one])

have (((λy . if y = g z then exp (g z ) else (exp y − exp (g z )) / (y − g z )) ◦
g) −−−→ exp (g z ))

(at z within S )
proof (rule tendsto compose at)
show (g −−−→ g z ) (at z within S )
using contg continuous on 〈z ∈ S 〉 by blast

show (λy . if y = g z then exp (g z ) else (exp y − exp (g z )) / (y − g z )) −g
z→ exp (g z )

by (simp add : LIM offset zero iff DERIV D cong : if cong Lim cong within)
qed auto

then have dd : ((λx . if g x = g z then exp(g z ) else (exp(g x ) − exp(g z )) / (g
x − g z )) −−−→ exp(g z )) (at z within S )

by (simp add : o def )
have continuous (at z within S ) g
using contg continuous on eq continuous within 〈z ∈ S 〉 by blast

then have (∀ F x in at z within S . dist (g x ) (g z ) < 2∗pi)
by (simp add : continuous within tendsto iff )

then have ∀ F x in at z within S . exp (g x ) = exp (g z ) −→ g x 6= g z −→ x
= z

by (rule eventually mono) (auto simp: exp eq dist norm norm mult)
then have ((λy . (g y − g z ) / (y − z )) −−−→ f ′ / exp (g z )) (at z within S )
by (auto intro!: Lim transform eventually [OF tendsto divide [OF ee dd ]])

then show ?thesis
by (auto simp: field differentiable def has field derivative iff )

qed
then have g holomorphic on S
using holf holomorphic on def by auto

then show ?thesis
using feq that by auto

qed

lemma contractible imp holomorphic log :
assumes holf : f holomorphic on S

and S : contractible S
and fnz :

∧
z . z ∈ S =⇒ f z 6= 0

obtains g where g holomorphic on S
∧
z . z ∈ S =⇒ f z = exp(g z )

proof −
have contf : continuous on S f
by (simp add : holf holomorphic on imp continuous on)

obtain g where contg : continuous on S g and feq :
∧
x . x ∈ S =⇒ f x = exp (g

x )
by (metis continuous logarithm on contractible [OF contf S fnz ])

then show thesis
using fnz g imp holomorphic log holf that by blast

qed
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lemma simply connected imp holomorphic log :
assumes holf : f holomorphic on S

and S : simply connected S locally path connected S
and fnz :

∧
z . z ∈ S =⇒ f z 6= 0

obtains g where g holomorphic on S
∧
z . z ∈ S =⇒ f z = exp(g z )

proof −
have contf : continuous on S f
by (simp add : holf holomorphic on imp continuous on)

obtain g where contg : continuous on S g and feq :
∧
x . x ∈ S =⇒ f x = exp (g

x )
by (metis continuous logarithm on simply connected [OF contf S fnz ])

then show thesis
using fnz g imp holomorphic log holf that by blast

qed

lemma contractible imp holomorphic sqrt :
assumes holf : f holomorphic on S

and S : contractible S
and fnz :

∧
z . z ∈ S =⇒ f z 6= 0

obtains g where g holomorphic on S
∧
z . z ∈ S =⇒ f z = g z ˆ 2

proof −
obtain g where holg : g holomorphic on S and feq :

∧
z . z ∈ S =⇒ f z = exp(g

z )
using contractible imp holomorphic log [OF assms] by blast

show ?thesis
proof
show exp ◦ (λz . z / 2 ) ◦ g holomorphic on S
by (intro holomorphic on compose holg holomorphic intros) auto

show
∧
z . z ∈ S =⇒ f z = ((exp ◦ (λz . z / 2 ) ◦ g) z )2

by (simp add : feq flip: exp double)
qed

qed

lemma simply connected imp holomorphic sqrt :
assumes holf : f holomorphic on S

and S : simply connected S locally path connected S
and fnz :

∧
z . z ∈ S =⇒ f z 6= 0

obtains g where g holomorphic on S
∧
z . z ∈ S =⇒ f z = g z ˆ 2

proof −
obtain g where holg : g holomorphic on S and feq :

∧
z . z ∈ S =⇒ f z = exp(g

z )
using simply connected imp holomorphic log [OF assms] by blast

show ?thesis
proof
show exp ◦ (λz . z / 2 ) ◦ g holomorphic on S
by (intro holomorphic on compose holg holomorphic intros) auto

show
∧
z . z ∈ S =⇒ f z = ((exp ◦ (λz . z / 2 ) ◦ g) z )2

by (simp add : feq flip: exp double)
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qed
qed

Related theorems about holomorphic inverse cosines.

lemma contractible imp holomorphic arccos:
assumes holf : f holomorphic on S and S : contractible S

and non1 :
∧
z . z ∈ S =⇒ f z 6= 1 ∧ f z 6= −1

obtains g where g holomorphic on S
∧
z . z ∈ S =⇒ f z = cos(g z )

proof −
have hol1f : (λz . 1 − f z ˆ 2 ) holomorphic on S
by (intro holomorphic intros holf )

obtain g where holg : g holomorphic on S and eq :
∧
z . z ∈ S =⇒ 1 − (f z )2 =

(g z )2

using contractible imp holomorphic sqrt [OF hol1f S ]
by (metis eq iff diff eq 0 non1 power2 eq 1 iff )

have holfg : (λz . f z + i∗g z ) holomorphic on S
by (intro holf holg holomorphic intros)

have
∧
z . z ∈ S =⇒ f z + i∗g z 6= 0

by (metis Arccos body lemma eq add .commute add .inverse unique complex i mult minus
power2 csqrt power2 eq iff )
then obtain h where holh: h holomorphic on S and fgeq :

∧
z . z ∈ S =⇒ f z +

i∗g z = exp (h z )
using contractible imp holomorphic log [OF holfg S ] by metis

show ?thesis
proof
show (λz . −i∗h z ) holomorphic on S
by (intro holh holomorphic intros)

show f z = cos (− i∗h z ) if z ∈ S for z
proof −
have (f z + i∗g z )∗(f z − i∗g z ) = 1
using that eq by (auto simp: algebra simps power2 eq square)

then have f z − i∗g z = inverse (f z + i∗g z )
using inverse unique by force

also have ... = exp (− h z )
by (simp add : exp minus fgeq that)

finally have f z = exp (− h z ) + i∗g z
by (simp add : diff eq eq)

then show ?thesis
apply (simp add : cos exp eq)
by (metis fgeq add .assoc mult 2 right that)

qed
qed

qed

lemma contractible imp holomorphic arccos bounded :
assumes holf : f holomorphic on S and S : contractible S and a ∈ S

and non1 :
∧
z . z ∈ S =⇒ f z 6= 1 ∧ f z 6= −1

obtains g where g holomorphic on S norm(g a) ≤ pi + norm(f a)
∧
z . z ∈ S
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=⇒ f z = cos(g z )
proof −
obtain g where holg : g holomorphic on S and feq :

∧
z . z ∈ S =⇒ f z = cos (g

z )
using contractible imp holomorphic arccos [OF holf S non1 ] by blast

obtain b where cos b = f a norm b ≤ pi + norm (f a)
using cos Arccos norm Arccos bounded by blast

then have cos b = cos (g a)
by (simp add : 〈a ∈ S 〉 feq)

then consider n where n ∈ ZZ b = g a + of real(2∗n∗pi) | n where n ∈ ZZ b
= −g a + of real(2∗n∗pi)

by (auto simp: complex cos eq)
then show ?thesis
proof cases
case 1
show ?thesis
proof
show (λz . g z + of real(2∗n∗pi)) holomorphic on S
by (intro holomorphic intros holg)

show cmod (g a + of real(2∗n∗pi)) ≤ pi + cmod (f a)
using 1 〈cmod b ≤ pi + cmod (f a)〉 by blast

show
∧
z . z ∈ S =⇒ f z = cos (g z + complex of real (2∗n∗pi))

by (metis 〈n ∈ ZZ〉 complex cos eq feq)
qed

next
case 2
show ?thesis
proof
show (λz . −g z + of real(2∗n∗pi)) holomorphic on S
by (intro holomorphic intros holg)

show cmod (−g a + of real(2∗n∗pi)) ≤ pi + cmod (f a)
using 2 〈cmod b ≤ pi + cmod (f a)〉 by blast

show
∧
z . z ∈ S =⇒ f z = cos (−g z + complex of real (2∗n∗pi))

by (metis 〈n ∈ ZZ〉 complex cos eq feq)
qed

qed
qed

6.41.16 The ”Borsukian” property of sets

This doesn’t have a standard name. Kuratowski uses “contractible with
respect to [S 1]” while Whyburn uses “property b”. It’s closely related to
unicoherence.

definition Borsukian where
Borsukian S ≡
∀ f . continuous on S f ∧ f ‘ S ⊆ (− {0 ::complex})
−→ (∃ a. homotopic with canon (λh. True) S (− {0}) f (λx . a))

lemma Borsukian retraction gen:
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assumes Borsukian S continuous on S h h ‘ S = T
continuous on T k k ‘ T ⊆ S

∧
y . y ∈ T =⇒ h(k y) = y

shows Borsukian T
proof −
interpret R: Retracts S h T k
using assms by (simp add : Retracts.intro)

show ?thesis
using assms
apply (clarsimp simp add : Borsukian def )
apply (rule R.cohomotopically trivial retraction null gen [OF TrueI TrueI refl ,

of −{0}], auto)
done

qed

lemma retract of Borsukian: [[Borsukian T ; S retract of T ]] =⇒ Borsukian S
apply (auto simp: retract of def retraction def )
apply (erule (1 ) Borsukian retraction gen)
apply (meson retraction retraction def )
apply (auto)
done

lemma homeomorphic Borsukian: [[Borsukian S ; S homeomorphic T ]] =⇒ Bor-
sukian T
using Borsukian retraction gen order refl
by (fastforce simp add : homeomorphism def homeomorphic def )

lemma homeomorphic Borsukian eq :
S homeomorphic T =⇒ Borsukian S ←→ Borsukian T
by (meson homeomorphic Borsukian homeomorphic sym)

lemma Borsukian translation:
fixes S :: ′a::real normed vector set
shows Borsukian (image (λx . a + x ) S ) ←→ Borsukian S
using homeomorphic Borsukian eq homeomorphic translation by blast

lemma Borsukian injective linear image:
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes linear f inj f
shows Borsukian(f ‘ S ) ←→ Borsukian S

using assms homeomorphic Borsukian eq linear homeomorphic image by blast

lemma homotopy eqv Borsukianness:
fixes S :: ′a::real normed vector set
and T :: ′b::real normed vector set
assumes S homotopy eqv T
shows (Borsukian S ←→ Borsukian T )

by (meson Borsukian def assms homotopy eqv cohomotopic triviality null)

lemma Borsukian alt :
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fixes S :: ′a::real normed vector set
shows
Borsukian S ←→

(∀ f g . continuous on S f ∧ f ‘ S ⊆ −{0} ∧
continuous on S g ∧ g ‘ S ⊆ −{0}
−→ homotopic with canon (λh. True) S (− {0 ::complex}) f g)

unfolding Borsukian def homotopic triviality
by (simp add : path connected punctured universe)

lemma Borsukian continuous logarithm:
fixes S :: ′a::real normed vector set
shows Borsukian S ←→

(∀ f . continuous on S f ∧ f ‘ S ⊆ (− {0 ::complex})
−→ (∃ g . continuous on S g ∧ (∀ x ∈ S . f x = exp(g x ))))

by (simp add : Borsukian def inessential eq continuous logarithm)

lemma Borsukian continuous logarithm circle:
fixes S :: ′a::real normed vector set
shows Borsukian S ←→

(∀ f . continuous on S f ∧ f ‘ S ⊆ sphere (0 ::complex ) 1
−→ (∃ g . continuous on S g ∧ (∀ x ∈ S . f x = exp(g x ))))

(is ?lhs = ?rhs)
proof
assume ?lhs then show ?rhs
by (force simp: Borsukian continuous logarithm)

next
assume RHS [rule format ]: ?rhs
show ?lhs
proof (clarsimp simp: Borsukian continuous logarithm)
fix f :: ′a ⇒ complex
assume contf : continuous on S f and 0 : 0 /∈ f ‘ S
then have continuous on S (λx . f x / complex of real (cmod (f x )))
by (intro continuous intros) auto

moreover have (λx . f x / complex of real (cmod (f x ))) ‘ S ⊆ sphere 0 1
using 0 by (auto simp: norm divide)

ultimately obtain g where contg : continuous on S g
and fg : ∀ x ∈ S . f x / complex of real (cmod (f x )) = exp(g x )

using RHS [of λx . f x / of real(norm(f x ))] by auto
show ∃ g . continuous on S g ∧ (∀ x∈S . f x = exp (g x ))
proof (intro exI ballI conjI )
show continuous on S (λx . (Ln ◦ of real ◦ norm ◦ f )x + g x )
by (intro continuous intros contf contg conjI ) (use 0 in auto)

show f x = exp ((Ln ◦ complex of real ◦ cmod ◦ f ) x + g x ) if x ∈ S for x
using 0 that
apply (simp add : exp add)

by (metis div by 0 exp Ln exp not eq zero fg mult .commute nonzero eq divide eq)
qed

qed
qed
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lemma Borsukian continuous logarithm circle real :
fixes S :: ′a::real normed vector set
shows Borsukian S ←→

(∀ f . continuous on S f ∧ f ‘ S ⊆ sphere (0 ::complex ) 1
−→ (∃ g . continuous on S (complex of real ◦ g) ∧ (∀ x ∈ S . f x = exp(i

∗ of real(g x )))))
(is ?lhs = ?rhs)

proof
assume LHS : ?lhs
show ?rhs
proof (clarify)
fix f :: ′a ⇒ complex
assume continuous on S f and f01 : f ‘ S ⊆ sphere 0 1
then obtain g where contg : continuous on S g and

∧
x . x ∈ S =⇒ f x =

exp(g x )
using LHS by (auto simp: Borsukian continuous logarithm circle)

then have ∀ x∈S . f x = exp (i ∗ complex of real ((Im ◦ g) x ))
using f01 exp eq polar norm exp eq Re by auto

then show ∃ g . continuous on S (complex of real ◦ g) ∧ (∀ x∈S . f x = exp (i
∗ complex of real (g x )))

by (rule tac x=Im ◦ g in exI ) (force intro: continuous intros contg)
qed

next
assume RHS [rule format ]: ?rhs
show ?lhs
proof (clarsimp simp: Borsukian continuous logarithm circle)
fix f :: ′a ⇒ complex
assume continuous on S f and f01 : f ‘ S ⊆ sphere 0 1
then obtain g where contg : continuous on S (complex of real ◦ g) and

∧
x .

x ∈ S =⇒ f x = exp(i ∗ of real(g x ))
by (metis RHS )

then show ∃ g . continuous on S g ∧ (∀ x∈S . f x = exp (g x ))
by (rule tac x=λx . i∗ of real(g x ) in exI ) (auto simp: continuous intros contg)

qed
qed

lemma Borsukian circle:
fixes S :: ′a::real normed vector set
shows Borsukian S ←→

(∀ f . continuous on S f ∧ f ‘ S ⊆ sphere (0 ::complex ) 1
−→ (∃ a. homotopic with canon (λh. True) S (sphere (0 ::complex ) 1 )

f (λx . a)))
by (simp add : inessential eq continuous logarithm circle Borsukian continuous logarithm circle real)

lemma contractible imp Borsukian: contractible S =⇒ Borsukian S
by (meson Borsukian def nullhomotopic from contractible)
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lemma simply connected imp Borsukian:
fixes S :: ′a::real normed vector set
shows [[simply connected S ; locally path connected S ]] =⇒ Borsukian S
by (metis (no types, lifting) Borsukian continuous logarithm continuous logarithm on simply connected

image eqI subset Compl singleton)

lemma starlike imp Borsukian:
fixes S :: ′a::real normed vector set
shows starlike S =⇒ Borsukian S
by (simp add : contractible imp Borsukian starlike imp contractible)

lemma Borsukian empty : Borsukian {}
by (auto simp: contractible imp Borsukian)

lemma Borsukian UNIV : Borsukian (UNIV :: ′a::real normed vector set)
by (auto simp: contractible imp Borsukian)

lemma convex imp Borsukian:
fixes S :: ′a::real normed vector set
shows convex S =⇒ Borsukian S
by (meson Borsukian def convex imp contractible nullhomotopic from contractible)

proposition Borsukian sphere:
fixes a :: ′a::euclidean space
shows 3 ≤ DIM ( ′a) =⇒ Borsukian (sphere a r)
using ENR sphere
by (blast intro: simply connected imp Borsukian ENR imp locally path connected

simply connected sphere)

lemma Borsukian Un lemma:
fixes S :: ′a::real normed vector set
assumes BS : Borsukian S and BT : Borsukian T and ST : connected(S ∩ T )
and ∗:

∧
f g :: ′a ⇒ complex .
[[continuous on S f ; continuous on T g ;

∧
x . x ∈ S ∧ x ∈ T =⇒ f x

= g x ]]
=⇒ continuous on (S ∪ T ) (λx . if x ∈ S then f x else g x )

shows Borsukian(S ∪ T )
proof (clarsimp simp add : Borsukian continuous logarithm)
fix f :: ′a ⇒ complex
assume contf : continuous on (S ∪ T ) f and 0 : 0 /∈ f ‘ (S ∪ T )
then have contfS : continuous on S f and contfT : continuous on T f
using continuous on subset by auto

have [[continuous on S f ; f ‘ S ⊆ −{0}]] =⇒ ∃ g . continuous on S g ∧ (∀ x ∈ S .
f x = exp(g x ))

using BS by (auto simp: Borsukian continuous logarithm)
then obtain g where contg : continuous on S g and fg :

∧
x . x ∈ S =⇒ f x =

exp(g x )
using 0 contfS by blast

have [[continuous on T f ; f ‘ T ⊆ −{0}]] =⇒ ∃ g . continuous on T g ∧ (∀ x ∈
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T . f x = exp(g x ))
using BT by (auto simp: Borsukian continuous logarithm)

then obtain h where conth: continuous on T h and fh:
∧
x . x ∈ T =⇒ f x =

exp(h x )
using 0 contfT by blast

show ∃ g . continuous on (S ∪ T ) g ∧ (∀ x∈S ∪ T . f x = exp (g x ))
proof (cases S ∩ T = {})
case True
show ?thesis
proof (intro exI conjI )
show continuous on (S ∪ T ) (λx . if x ∈ S then g x else h x )
using True ∗ [OF contg conth]
by (meson disjoint iff )

show ∀ x∈S ∪ T . f x = exp (if x ∈ S then g x else h x )
using fg fh by auto

qed
next
case False
have (λx . g x − h x ) constant on S ∩ T
proof (rule continuous discrete range constant [OF ST ])
show continuous on (S ∩ T ) (λx . g x − h x )
proof (intro continuous intros)
show continuous on (S ∩ T ) g
by (meson contg continuous on subset inf le1 )

show continuous on (S ∩ T ) h
by (meson conth continuous on subset inf sup ord(2 ))

qed
show ∃ e>0 . ∀ y . y ∈ S ∩ T ∧ g y − h y 6= g x − h x −→ e ≤ cmod (g y

− h y − (g x − h x ))
if x ∈ S ∩ T for x

proof −
have g y − g x = h y − h x

if y ∈ S y ∈ T cmod (g y − g x − (h y − h x )) < 2 ∗ pi for y
proof (rule exp complex eqI )
have |Im (g y − g x ) − Im (h y − h x )| ≤ cmod (g y − g x − (h y − h

x ))
by (metis abs Im le cmod minus complex .simps(2 ))

then show |Im (g y − g x ) − Im (h y − h x )| < 2 ∗ pi
using that by linarith

have exp (g x ) = exp (h x ) exp (g y) = exp (h y)
using fg fh that 〈x ∈ S ∩ T 〉 by fastforce+

then show exp (g y − g x ) = exp (h y − h x )
by (simp add : exp diff )

qed
then show ?thesis
by (rule tac x=2∗pi in exI ) (fastforce simp add : algebra simps)

qed
qed
then obtain a where a:

∧
x . x ∈ S ∩ T =⇒ g x − h x = a
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by (auto simp: constant on def )
with False have exp a = 1
by (metis IntI disjoint iff not equal divide self if exp diff exp not eq zero fg fh)
with a show ?thesis
apply (rule tac x=λx . if x ∈ S then g x else a + h x in exI )
apply (intro ∗ contg conth continuous intros conjI )
apply (auto simp: algebra simps fg fh exp add)
done

qed
qed

proposition Borsukian open Un:
fixes S :: ′a::real normed vector set
assumes opeS : openin (top of set (S ∪ T )) S

and opeT : openin (top of set (S ∪ T )) T
and BS : Borsukian S and BT : Borsukian T and ST : connected(S ∩ T )

shows Borsukian(S ∪ T )
by (force intro: Borsukian Un lemma [OF BS BT ST ] continuous on cases local open

[OF opeS opeT ])

lemma Borsukian closed Un:
fixes S :: ′a::real normed vector set
assumes cloS : closedin (top of set (S ∪ T )) S

and cloT : closedin (top of set (S ∪ T )) T
and BS : Borsukian S and BT : Borsukian T and ST : connected(S ∩ T )

shows Borsukian(S ∪ T )
by (force intro: Borsukian Un lemma [OF BS BT ST ] continuous on cases local

[OF cloS cloT ])

lemma Borsukian separation compact :
fixes S :: complex set
assumes compact S
shows Borsukian S ←→ connected(− S )

by (simp add : Borsuk separation theorem Borsukian circle assms)

lemma Borsukian monotone image compact :
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes Borsukian S and contf : continuous on S f and fim: f ‘ S = T

and compact S and conn:
∧
y . y ∈ T =⇒ connected {x . x ∈ S ∧ f x = y}

shows Borsukian T
proof (clarsimp simp add : Borsukian continuous logarithm)
fix g :: ′b ⇒ complex
assume contg : continuous on T g and 0 : 0 /∈ g ‘ T
have continuous on S (g ◦ f )
using contf contg continuous on compose fim by blast

moreover have (g ◦ f ) ‘ S ⊆ −{0}
using fim 0 by auto

ultimately obtain h where conth: continuous on S h and gfh:
∧
x . x ∈ S =⇒

(g ◦ f ) x = exp(h x )
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using 〈Borsukian S 〉 by (auto simp: Borsukian continuous logarithm)
have

∧
y . ∃ x . y ∈ T −→ x ∈ S ∧ f x = y

using fim by auto
then obtain f ′ where f ′:

∧
y . y ∈ T −→ f ′ y ∈ S ∧ f (f ′ y) = y

by metis
have ∗: (λx . h x − h(f ′ y)) constant on {x . x ∈ S ∧ f x = y} if y ∈ T for y
proof (rule continuous discrete range constant [OF conn [OF that ], of λx . h x
− h (f ′ y)], simp all add : algebra simps)

show continuous on {x ∈ S . f x = y} (λx . h x − h (f ′ y))
by (intro continuous intros continuous on subset [OF conth]) auto

show ∃ e>0 . ∀ u. u ∈ S ∧ f u = y ∧ h u 6= h x −→ e ≤ cmod (h u − h x )
if x : x ∈ S ∧ f x = y for x

proof −
have h u = h x if u ∈ S f u = y cmod (h u − h x ) < 2 ∗ pi for u
proof (rule exp complex eqI )
have |Im (h u) − Im (h x )| ≤ cmod (h u − h x )
by (metis abs Im le cmod minus complex .simps(2 ))

then show |Im (h u) − Im (h x )| < 2 ∗ pi
using that by linarith

show exp (h u) = exp (h x )
by (simp add : gfh [symmetric] x that)

qed
then show ?thesis
by (rule tac x=2∗pi in exI ) (fastforce simp add : algebra simps)

qed
qed
show ∃ h. continuous on T h ∧ (∀ x∈T . g x = exp (h x ))
proof (intro exI conjI )
show continuous on T (h ◦ f ′)
proof (rule continuous from closed graph [of h ‘ S ])
show compact (h ‘ S )
by (simp add : 〈compact S 〉 compact continuous image conth)

show (h ◦ f ′) ‘ T ⊆ h ‘ S
by (auto simp: f ′)

have h x = h (f ′ (f x )) if x ∈ S for x
using ∗ [of f x ] fim that unfolding constant on def by clarsimp (metis f ′

imageI right minus eq)
moreover have

∧
x . x ∈ T =⇒ ∃ u. u ∈ S ∧ x = f u ∧ h (f ′ x ) = h u

using f ′ by fastforce
ultimately
have eq : ((λx . (x , (h ◦ f ′) x )) ‘ T ) =

{p. ∃ x . x ∈ S ∧ (x , p) ∈ (S × UNIV ) ∩ ((λz . snd z − ((f ◦ fst) z ,
(h ◦ fst) z )) −‘ {0})}

using fim by (auto simp: image iff )
moreover have closed . . .
apply (intro closed compact projection [OF 〈compact S 〉] continuous closed preimage

continuous intros continuous on subset [OF contf ] continu-
ous on subset [OF conth])

by (auto simp: 〈compact S 〉 closed Times compact imp closed)
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ultimately show closed ((λx . (x , (h ◦ f ′) x )) ‘ T )
by simp

qed
qed (use f ′ gfh in fastforce)

qed

lemma Borsukian open map image compact :
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes Borsukian S and contf : continuous on S f and fim: f ‘ S = T and

compact S
and ope:

∧
U . openin (top of set S ) U
=⇒ openin (top of set T ) (f ‘ U )

shows Borsukian T
proof (clarsimp simp add : Borsukian continuous logarithm circle real)
fix g :: ′b ⇒ complex
assume contg : continuous on T g and gim: g ‘ T ⊆ sphere 0 1
have continuous on S (g ◦ f )
using contf contg continuous on compose fim by blast

moreover have (g ◦ f ) ‘ S ⊆ sphere 0 1
using fim gim by auto

ultimately obtain h where cont cxh: continuous on S (complex of real ◦ h)
and gfh:

∧
x . x ∈ S =⇒ (g ◦ f ) x = exp(i ∗ of real(h x ))

using 〈Borsukian S 〉 Borsukian continuous logarithm circle real by metis
then have conth: continuous on S h
by simp

have ∃ x . x ∈ S ∧ f x = y ∧ (∀ x ′ ∈ S . f x ′ = y −→ h x ≤ h x ′) if y ∈ T for y
proof −
have 1 : compact (h ‘ {x ∈ S . f x = y})
proof (rule compact continuous image)
show continuous on {x ∈ S . f x = y} h
by (rule continuous on subset [OF conth]) auto

have compact (S ∩ f −‘ {y})
by (rule proper map from compact [OF contf 〈compact S 〉, of T ]) (simp all

add : fim that)
then show compact {x ∈ S . f x = y}
by (auto simp: vimage def Int def )

qed
have 2 : h ‘ {x ∈ S . f x = y} 6= {}
using fim that by auto

have ∃ s ∈ h ‘ {x ∈ S . f x = y}. ∀ t ∈ h ‘ {x ∈ S . f x = y}. s ≤ t
using compact attains inf [OF 1 2 ] by blast

then show ?thesis by auto
qed
then obtain k where kTS :

∧
y . y ∈ T =⇒ k y ∈ S

and fk :
∧
y . y ∈ T =⇒ f (k y) = y

and hle:
∧
x ′ y . [[y ∈ T ; x ′ ∈ S ; f x ′ = y ]] =⇒ h (k y) ≤ h x ′

by metis
have continuous on T (h ◦ k)
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proof (clarsimp simp add : continuous on iff )
fix y and e::real
assume y ∈ T 0 < e
moreover have uniformly continuous on S (complex of real ◦ h)
using 〈compact S 〉 cont cxh compact uniformly continuous by blast

ultimately obtain d where 0 < d
and d :

∧
x x ′. [[x∈S ; x ′∈S ; dist x ′ x < d ]] =⇒ dist (h x ′) (h x ) < e

by (force simp: uniformly continuous on def )
obtain δ where 0 < δ and δ:∧

x ′. [[x ′ ∈ T ; dist y x ′ < δ]]
=⇒ (∀ v ∈ {z ∈ S . f z = y}. ∃ v ′. v ′ ∈ {z ∈ S . f z = x ′} ∧ dist v v ′

< d) ∧
(∀ v ′ ∈ {z ∈ S . f z = x ′}. ∃ v . v ∈ {z ∈ S . f z = y} ∧ dist v ′ v < d)

proof (rule upper lower hemicontinuous explicit [of T λy . {z ∈ S . f z = y} S ])
show

∧
U . openin (top of set S ) U
=⇒ openin (top of set T ) {x ∈ T . {z ∈ S . f z = x} ⊆ U }

using closed map iff upper hemicontinuous preimage [OF fim [THEN equal-
ityD1 ]]

by (simp add : Abstract Topology 2 .continuous imp closed map 〈compact S 〉

contf fim)
show

∧
U . closedin (top of set S ) U =⇒
closedin (top of set T ) {x ∈ T . {z ∈ S . f z = x} ⊆ U }

using ope open map iff lower hemicontinuous preimage [OF fim [THEN
equalityD1 ]]

by meson
show bounded {z ∈ S . f z = y}
by (metis (no types, lifting) compact imp bounded [OF 〈compact S 〉] bounded subset

mem Collect eq subsetI )
qed (use 〈y ∈ T 〉 〈0 < d 〉 fk kTS in 〈force+〉)
have dist (h (k y ′)) (h (k y)) < e if y ′ ∈ T dist y y ′ < δ for y ′

proof −
have k1 : k y ∈ S f (k y) = y and k2 : k y ′ ∈ S f (k y ′) = y ′

by (auto simp: 〈y ∈ T 〉 〈y ′ ∈ T 〉 kTS fk)
have 1 :

∧
v . [[v ∈ S ; f v = y ]] =⇒ ∃ v ′. v ′ ∈ {z ∈ S . f z = y ′} ∧ dist v v ′ < d

and 2 :
∧
v ′. [[v ′ ∈ S ; f v ′ = y ′]] =⇒ ∃ v . v ∈ {z ∈ S . f z = y} ∧ dist v ′ v <

d
using δ [OF that ] by auto

then obtain w ′ w where w ′ ∈ S f w ′ = y ′ dist (k y) w ′ < d
and w ∈ S f w = y dist (k y ′) w < d
using 1 [OF k1 ] 2 [OF k2 ] by auto

then show ?thesis
using d [of w k y ′] d [of w ′ k y ] k1 k2 〈y ′ ∈ T 〉 〈y ∈ T 〉 hle
by (fastforce simp: dist norm abs diff less iff algebra simps)

qed
then show ∃ d>0 . ∀ x ′∈T . dist x ′ y < d −→ dist (h (k x ′)) (h (k y)) < e
using 〈0 < δ〉 by (auto simp: dist commute)

qed
then show ∃ h. continuous on T h ∧ (∀ x∈T . g x = exp (i ∗ complex of real (h

x )))
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using fk gfh kTS by force
qed

If two points are separated by a closed set, there’s a minimal one.

proposition closed irreducible separator :
fixes a :: ′a::real normed vector
assumes closed S and ab: ¬ connected component (− S ) a b
obtains T where T ⊆ S closed T T 6= {} ¬ connected component (− T ) a b∧

U . U ⊂ T =⇒ connected component (− U ) a b
proof (cases a ∈ S ∨ b ∈ S )
case True
then show ?thesis
proof
assume ∗: a ∈ S
show ?thesis
proof
show {a} ⊆ S
using ∗ by blast

show ¬ connected component (− {a}) a b
using connected component in by auto

show
∧
U . U ⊂ {a} =⇒ connected component (− U ) a b

by (metis connected component UNIV UNIV I compl bot eq connected component eq eq
less le not le subset singletonD)

qed auto
next
assume ∗: b ∈ S
show ?thesis
proof
show {b} ⊆ S
using ∗ by blast

show ¬ connected component (− {b}) a b
using connected component in by auto

show
∧
U . U ⊂ {b} =⇒ connected component (− U ) a b

by (metis connected component UNIV UNIV I compl bot eq connected component eq eq
less le not le subset singletonD)

qed auto
qed

next
case False
define A where A ≡ connected component set (− S ) a
define B where B ≡ connected component set (− (closure A)) b
have a ∈ A
using False A def by auto

have b ∈ B
unfolding A def B def closure Un frontier
using ab False 〈closed S 〉 frontier complement frontier of connected component subset

frontier subset closed by force
have frontier B ⊆ frontier (connected component set (− closure A) b)
using B def by blast
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also have frsub: ... ⊆ frontier A
proof −
have

∧
A. closure (− closure (− A)) ⊆ closure A

by (metis (no types) closure mono closure subset compl le compl iff dou-
ble compl)

then show ?thesis
by (metis (no types) closure closure double compl frontier closures fron-

tier of connected component subset le inf iff subset trans)
qed
finally have frBA: frontier B ⊆ frontier A .
show ?thesis
proof
show frontier B ⊆ S
proof −
have frontier S ⊆ S
by (simp add : 〈closed S 〉 frontier subset closed)

then show ?thesis
using frsub frontier complement frontier of connected component subset
unfolding A def B def by blast

qed
show closed (frontier B)
by simp

show ¬ connected component (− frontier B) a b
unfolding connected component def

proof clarify
fix T
assume connected T and TB : T ⊆ − frontier B and a ∈ T and b ∈ T
have a /∈ B
by (metis A def B def ComplD 〈a ∈ A〉 assms(1 ) closed open connected component subset

in closure connected component subsetD)
have T ∩ B 6= {}
using 〈b ∈ B 〉 〈b ∈ T 〉 by blast

moreover have T − B 6= {}
using 〈a /∈ B 〉 〈a ∈ T 〉 by blast

ultimately show False
using connected Int frontier [of T B ] TB 〈connected T 〉 by blast

qed
moreover have connected component (− frontier B) a b if frontier B = {}
using connected component eq UNIV that by auto

ultimately show frontier B 6= {}
by blast

show connected component (− U ) a b if U ⊂ frontier B for U
proof −
obtain p where Usub: U ⊆ frontier B and p: p ∈ frontier B p /∈ U
using 〈U ⊂ frontier B 〉 by blast

show ?thesis
unfolding connected component def

proof (intro exI conjI )
have connected ((insert p A) ∪ (insert p B))
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proof (rule connected Un)
show connected (insert p A)
by (metis A def IntD1 frBA 〈p ∈ frontier B 〉 closure insert closure subset

connected connected component connected intermediate closure frontier closures in-
sert absorb subsetCE subset insertI )

show connected (insert p B)
by (metis B def IntD1 〈p ∈ frontier B 〉 closure insert closure subset con-

nected connected component connected intermediate closure frontier closures insert absorb
subset insertI )

qed blast
then show connected (insert p (B ∪ A))
by (simp add : sup.commute)

have A ⊆ − U
using A def Usub 〈frontier B ⊆ S 〉 connected component subset by fastforce
moreover have B ⊆ − U

using B def Usub connected component subset frBA frontier closures by
fastforce

ultimately show insert p (B ∪ A) ⊆ − U
using p by auto

qed (auto simp: 〈a ∈ A〉 〈b ∈ B 〉)
qed

qed
qed

lemma frontier minimal separating closed pointwise:
fixes S :: ′a::real normed vector set
assumes S : closed S a /∈ S and nconn: ¬ connected component (− S ) a b

and conn:
∧
T . [[closed T ; T ⊂ S ]] =⇒ connected component (− T ) a b

shows frontier(connected component set (− S ) a) = S (is ?F = S )
proof −
have ?F ⊆ S
by (simp add : S componentsI frontier of components closed complement)

moreover have False if ?F ⊂ S
proof −
have connected component (− ?F ) a b
by (simp add : conn that)

then obtain T where connected T T ⊆ −?F a ∈ T b ∈ T
by (auto simp: connected component def )

moreover have T ∩ ?F 6= {}
proof (rule connected Int frontier [OF 〈connected T 〉])
show T ∩ connected component set (− S ) a 6= {}
using 〈a /∈ S 〉 〈a ∈ T 〉 by fastforce

show T − connected component set (− S ) a 6= {}
using 〈b ∈ T 〉 nconn by blast

qed
ultimately show ?thesis
by blast

qed
ultimately show ?thesis
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by blast
qed

6.41.17 Unicoherence (closed)

definition unicoherent where
unicoherent U ≡
∀S T . connected S ∧ connected T ∧ S ∪ T = U ∧

closedin (top of set U ) S ∧ closedin (top of set U ) T
−→ connected (S ∩ T )

lemma unicoherentI [intro?]:
assumes

∧
S T . [[connected S ; connected T ; U = S ∪ T ; closedin (top of set U )

S ; closedin (top of set U ) T ]]
=⇒ connected (S ∩ T )

shows unicoherent U
using assms unfolding unicoherent def by blast

lemma unicoherentD :
assumes unicoherent U connected S connected T U = S ∪ T closedin (top of set

U ) S closedin (top of set U ) T
shows connected (S ∩ T )
using assms unfolding unicoherent def by blast

proposition homeomorphic unicoherent :
assumes ST : S homeomorphic T and S : unicoherent S
shows unicoherent T

proof −
obtain f g where gf :

∧
x . x ∈ S =⇒ g (f x ) = x and fim: T = f ‘ S and gfim:

g ‘ f ‘ S = S
and contf : continuous on S f and contg : continuous on (f ‘ S ) g
using ST by (auto simp: homeomorphic def homeomorphism def )

show ?thesis
proof
fix U V
assume connected U connected V and T : T = U ∪ V
and cloU : closedin (top of set T ) U
and cloV : closedin (top of set T ) V

have f ‘ (g ‘ U ∩ g ‘ V ) ⊆ U f ‘ (g ‘ U ∩ g ‘ V ) ⊆ V
using gf fim T by auto (metis UnCI image iff )+

moreover have U ∩ V ⊆ f ‘ (g ‘ U ∩ g ‘ V )
using gf fim by (force simp: image iff T )

ultimately have U ∩ V = f ‘ (g ‘ U ∩ g ‘ V ) by blast
moreover have connected (f ‘ (g ‘ U ∩ g ‘ V ))
proof (rule connected continuous image)
show continuous on (g ‘ U ∩ g ‘ V ) f

using T fim gfim by (metis Un upper1 contf continuous on subset im-
age mono inf le1 )

show connected (g ‘ U ∩ g ‘ V )
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proof (intro conjI unicoherentD [OF S ])
show connected (g ‘ U ) connected (g ‘ V )
using 〈connected U 〉 cloU 〈connected V 〉 cloV

by (metis Topological Spaces.connected continuous image closedin imp subset
contg continuous on subset fim)+

show S = g ‘ U ∪ g ‘ V
using T fim gfim by auto

have hom: homeomorphism T S g f
by (simp add : contf contg fim gf gfim homeomorphism def )

have closedin (top of set T ) U closedin (top of set T ) V
by (simp all add : cloU cloV )

then show closedin (top of set S ) (g ‘ U )
closedin (top of set S ) (g ‘ V )

by (blast intro: homeomorphism imp closed map [OF hom])+
qed

qed
ultimately show connected (U ∩ V ) by metis

qed
qed

lemma homeomorphic unicoherent eq :
S homeomorphic T =⇒ (unicoherent S ←→ unicoherent T )
by (meson homeomorphic sym homeomorphic unicoherent)

lemma unicoherent translation:
fixes S :: ′a::real normed vector set
shows
unicoherent (image (λx . a + x ) S ) ←→ unicoherent S
using homeomorphic translation homeomorphic unicoherent eq by blast

lemma unicoherent injective linear image:
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes linear f inj f
shows (unicoherent(f ‘ S ) ←→ unicoherent S )
using assms homeomorphic unicoherent eq linear homeomorphic image by blast

lemma Borsukian imp unicoherent :
fixes U :: ′a::euclidean space set
assumes Borsukian U shows unicoherent U
unfolding unicoherent def

proof clarify
fix S T
assume connected S connected T U = S ∪ T

and cloS : closedin (top of set (S ∪ T )) S
and cloT : closedin (top of set (S ∪ T )) T

show connected (S ∩ T )
unfolding connected closedin eq
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proof clarify
fix V W
assume closedin (top of set (S ∩ T )) V

and closedin (top of set (S ∩ T )) W
and VW : V ∪ W = S ∩ T V ∩ W = {} and V 6= {} W 6= {}

then have cloV : closedin (top of set U ) V and cloW : closedin (top of set U )
W

using 〈U = S ∪ T 〉 cloS cloT closedin trans by blast+
obtain q where contq : continuous on U q

and q01 :
∧
x . x ∈ U =⇒ q x ∈ {0 ..1 ::real}

and qV :
∧
x . x ∈ V =⇒ q x = 0 and qW :

∧
x . x ∈ W =⇒ q x = 1

by (rule Urysohn local [OF cloV cloW 〈V ∩ W = {}〉, of 0 1 ])
(fastforce simp: closed segment eq real ivl)

let ?h = λx . if x ∈ S then exp(pi ∗ i ∗ q x ) else 1 / exp(pi ∗ i ∗ q x )
have eqST : exp(pi ∗ i ∗ q x ) = 1 / exp(pi ∗ i ∗ q x ) if x ∈ S ∩ T for x
proof −
have x ∈ V ∪ W
using that 〈V ∪ W = S ∩ T 〉 by blast

with qV qW show ?thesis by force
qed
obtain g where contg : continuous on U g
and circle: g ‘ U ⊆ sphere 0 1
and S :

∧
x . x ∈ S =⇒ g x = exp(pi ∗ i ∗ q x )

and T :
∧
x . x ∈ T =⇒ g x = 1 / exp(pi ∗ i ∗ q x )

proof
show continuous on U ?h
unfolding 〈U = S ∪ T 〉

proof (rule continuous on cases local [OF cloS cloT ])
show continuous on S (λx . exp (pi ∗ i ∗ q x ))
proof (intro continuous intros)
show continuous on S q
using 〈U = S ∪ T 〉 continuous on subset contq by blast

qed
show continuous on T (λx . 1 / exp (pi ∗ i ∗ q x ))
proof (intro continuous intros)
show continuous on T q
using 〈U = S ∪ T 〉 continuous on subset contq by auto

qed auto
qed (use eqST in auto)

qed (use eqST in 〈auto simp: norm divide〉)
then obtain h where conth: continuous on U h and heq :

∧
x . x ∈ U =⇒ g x

= exp (h x )
by (metis Borsukian continuous logarithm circle assms)

obtain v w where v ∈ V w ∈ W
using 〈V 6= {}〉 〈W 6= {}〉 by blast

then have vw : v ∈ S ∩ T w ∈ S ∩ T
using VW by auto

have iff : 2 ∗ pi ≤ cmod (2 ∗ of int m ∗ of real pi ∗ i − 2 ∗ of int n ∗ of real
pi ∗ i)
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←→ 1 ≤ abs (m − n) for m n
proof −
have 2 ∗ pi ≤ cmod (2 ∗ of int m ∗ of real pi ∗ i − 2 ∗ of int n ∗ of real pi

∗ i)
←→ 2 ∗ pi ≤ cmod ((2 ∗ pi ∗ i) ∗ (of int m − of int n))

by (simp add : algebra simps)
also have ... ←→ 2 ∗ pi ≤ 2 ∗ pi ∗ cmod (of int m − of int n)
by (simp add : norm mult)

also have ... ←→ 1 ≤ abs (m − n)
by simp (metis norm of int of int 1 le iff of int abs of int diff )

finally show ?thesis .
qed
have ∗: ∃n::int . h x − (pi ∗ i ∗ q x ) = (of int(2∗n) ∗ pi) ∗ i if x ∈ S for x
using that S 〈U = S ∪ T 〉 heq exp eq [symmetric] by (simp add : algebra simps)
moreover have (λx . h x − (pi ∗ i ∗ q x )) constant on S
proof (rule continuous discrete range constant [OF 〈connected S 〉])
have continuous on S h continuous on S q
using 〈U = S ∪ T 〉 continuous on subset conth contq by blast+

then show continuous on S (λx . h x − (pi ∗ i ∗ q x ))
by (intro continuous intros)

have 2∗pi ≤ cmod (h y − (pi ∗ i ∗ q y) − (h x − (pi ∗ i ∗ q x )))
if x ∈ S y ∈ S and ne: h y − (pi ∗ i ∗ q y) 6= h x − (pi ∗ i ∗ q x ) for x y
using ∗ [OF 〈x ∈ S 〉] ∗ [OF 〈y ∈ S 〉] ne by (auto simp: iff )

then show
∧
x . x ∈ S =⇒

∃ e>0 . ∀ y . y ∈ S ∧ h y − (pi ∗ i ∗ q y) 6= h x − (pi ∗ i ∗ q x ) −→
e ≤ cmod (h y − (pi ∗ i ∗ q y) − (h x − (pi ∗ i ∗ q x )))

by (rule tac x=2∗pi in exI ) auto
qed
ultimately
obtain m where m:

∧
x . x ∈ S =⇒ h x − (pi ∗ i ∗ q x ) = (of int(2∗m) ∗ pi)

∗ i
using vw by (force simp: constant on def )

have ∗: ∃n::int . h x = − (pi ∗ i ∗ q x ) + (of int(2∗n) ∗ pi) ∗ i if x ∈ T for x
unfolding exp eq [symmetric]
using that T 〈U = S ∪ T 〉 by (simp add : exp minus field simps heq

[symmetric])
moreover have (λx . h x + (pi ∗ i ∗ q x )) constant on T
proof (rule continuous discrete range constant [OF 〈connected T 〉])
have continuous on T h continuous on T q
using 〈U = S ∪ T 〉 continuous on subset conth contq by blast+

then show continuous on T (λx . h x + (pi ∗ i ∗ q x ))
by (intro continuous intros)

have 2∗pi ≤ cmod (h y + (pi ∗ i ∗ q y) − (h x + (pi ∗ i ∗ q x )))
if x ∈ T y ∈ T and ne: h y + (pi ∗ i ∗ q y) 6= h x + (pi ∗ i ∗ q x ) for x y
using ∗ [OF 〈x ∈ T 〉] ∗ [OF 〈y ∈ T 〉] ne by (auto simp: iff )

then show
∧
x . x ∈ T =⇒

∃ e>0 . ∀ y . y ∈ T ∧ h y + (pi ∗ i ∗ q y) 6= h x + (pi ∗ i ∗ q x ) −→
e ≤ cmod (h y + (pi ∗ i ∗ q y) − (h x + (pi ∗ i ∗ q x )))

by (rule tac x=2∗pi in exI ) auto
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qed
ultimately
obtain n where n:

∧
x . x ∈ T =⇒ h x + (pi ∗ i ∗ q x ) = (of int(2∗n) ∗ pi)

∗ i
using vw by (force simp: constant on def )

show False
using m [of v ] m [of w ] n [of v ] n [of w ] vw
by (auto simp: algebra simps 〈v ∈ V 〉 〈w ∈ W 〉 qV qW )

qed
qed

corollary contractible imp unicoherent :
fixes U :: ′a::euclidean space set
assumes contractible U shows unicoherent U
by (simp add : Borsukian imp unicoherent assms contractible imp Borsukian)

corollary convex imp unicoherent :
fixes U :: ′a::euclidean space set
assumes convex U shows unicoherent U
by (simp add : Borsukian imp unicoherent assms convex imp Borsukian)

If the type class constraint can be relaxed, I don’t know how!

corollary unicoherent UNIV : unicoherent (UNIV :: ′a :: euclidean space set)
by (simp add : convex imp unicoherent)

lemma unicoherent monotone image compact :
fixes T :: ′b :: t2 space set
assumes S : unicoherent S compact S and contf : continuous on S f and fim: f

‘ S = T
and conn:

∧
y . y ∈ T =⇒ connected (S ∩ f −‘ {y})

shows unicoherent T
proof
fix U V
assume UV : connected U connected V T = U ∪ V

and cloU : closedin (top of set T ) U
and cloV : closedin (top of set T ) V

moreover have compact T
using 〈compact S 〉 compact continuous image contf fim by blast

ultimately have closed U closed V
by (auto simp: closedin closed eq compact imp closed)

let ?SUV = (S ∩ f −‘ U ) ∩ (S ∩ f −‘ V )
have UV eq : f ‘ ?SUV = U ∩ V
using 〈T = U ∪ V 〉 fim by force+

have connected (f ‘ ?SUV )
proof (rule connected continuous image)
show continuous on ?SUV f
by (meson contf continuous on subset inf le1 )
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show connected ?SUV
proof (rule unicoherentD [OF 〈unicoherent S 〉, of S ∩ f −‘ U S ∩ f −‘ V ])
have

∧
C . closedin (top of set S ) C =⇒ closedin (top of set T ) (f ‘ C )

by (metis 〈compact S 〉 closed subset closedin compact closedin imp subset
compact continuous image compact imp closed contf continuous on subset fim im-
age mono)

then show connected (S ∩ f −‘ U ) connected (S ∩ f −‘ V )
using UV by (auto simp: conn intro: connected closed monotone preimage

[OF contf fim])
show S = (S ∩ f −‘ U ) ∪ (S ∩ f −‘ V )
using UV fim by blast

show closedin (top of set S ) (S ∩ f −‘ U )
closedin (top of set S ) (S ∩ f −‘ V )

by (auto simp: continuous on imp closedin cloU cloV contf fim)
qed

qed
with UV eq show connected (U ∩ V )
by simp

qed

6.41.18 Several common variants of unicoherence

lemma connected frontier simple:
fixes S :: ′a :: euclidean space set
assumes connected S connected(− S ) shows connected(frontier S )
unfolding frontier closures
by (rule unicoherentD [OF unicoherent UNIV ]; simp add : assms connected imp connected closure

flip: closure Un)

lemma connected frontier component complement :
fixes S :: ′a :: euclidean space set
assumes connected S C ∈ components(− S ) shows connected(frontier C )
by (meson assms component complement connected connected frontier simple in components connected)

lemma connected frontier disjoint :
fixes S :: ′a :: euclidean space set
assumes connected S connected T disjnt S T and ST : frontier S ⊆ frontier T
shows connected(frontier S )

proof (cases S = UNIV )
case True then show ?thesis
by simp

next
case False
then have −S 6= {}
by blast

then obtain C where C : C ∈ components(− S ) and T ⊆ C
by (metis ComplI disjnt iff subsetI exists component superset 〈disjnt S T 〉

〈connected T 〉)
moreover have frontier S = frontier C
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proof −
have frontier C ⊆ frontier S
using C frontier complement frontier of components subset by blast

moreover have x ∈ frontier C if x ∈ frontier S for x
proof −
have x ∈ closure C
using that unfolding frontier def
by (metis (no types) Diff eq ST 〈T ⊆ C 〉 closure mono contra subsetD

frontier def le inf iff that)
moreover have x /∈ interior C
using that unfolding frontier def
by (metis C Compl eq Diff UNIV Diff iff subsetD in components subset

interior diff interior mono)
ultimately show ?thesis
by (auto simp: frontier def )

qed
ultimately show ?thesis
by blast

qed
ultimately show ?thesis
using 〈connected S 〉 connected frontier component complement by auto

qed

6.41.19 Some separation results

lemma separation by component closed pointwise:
fixes S :: ′a :: euclidean space set
assumes closed S ¬ connected component (− S ) a b
obtains C where C ∈ components S ¬ connected component(− C ) a b

proof (cases a ∈ S ∨ b ∈ S )
case True
then show ?thesis
using connected component in componentsI that by fastforce

next
case False
obtain T where T ⊆ S closed T T 6= {}

and nab: ¬ connected component (− T ) a b
and conn:

∧
U . U ⊂ T =⇒ connected component (− U ) a b

using closed irreducible separator [OF assms] by metis
moreover have connected T
proof −
have ab: frontier(connected component set (− T ) a) = T frontier(connected component set

(− T ) b) = T
using frontier minimal separating closed pointwise
by (metis False 〈T ⊆ S 〉 〈closed T 〉 connected component sym conn con-

nected component eq empty connected component intermediate subset empty subsetI
nab)+

have connected (frontier (connected component set (− T ) a))
proof (rule connected frontier disjoint)
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show disjnt (connected component set (− T ) a) (connected component set (−
T ) b)

unfolding disjnt iff
by (metis connected component eq connected component eq empty con-

nected component idemp mem Collect eq nab)
show frontier (connected component set (− T ) a) ⊆ frontier (connected component set

(− T ) b)
by (simp add : ab)

qed auto
with ab 〈closed T 〉 show ?thesis
by simp

qed
ultimately obtain C where C ∈ components S T ⊆ C
using exists component superset [of T S ] by blast

then show ?thesis
by (meson Compl anti mono connected component of subset nab that)

qed

lemma separation by component closed :
fixes S :: ′a :: euclidean space set
assumes closed S ¬ connected(− S )
obtains C where C ∈ components S ¬ connected(− C )

proof −
obtain x y where closed S x /∈ S y /∈ S and ¬ connected component (− S ) x y
using assms by (auto simp: connected iff connected component)

then obtain C where C ∈ components S ¬ connected component(− C ) x y
using separation by component closed pointwise by metis

then show thesis
by (metis Compl iff 〈x /∈ S 〉 〈y /∈ S 〉 connected component eq self in components subset

mem Collect eq subsetD that)
qed

lemma separation by Un closed pointwise:
fixes S :: ′a :: euclidean space set
assumes ST : closed S closed T S ∩ T = {}

and conS : connected component (− S ) a b and conT : connected component
(− T ) a b

shows connected component (− (S ∪ T )) a b
proof (rule ccontr)
have a /∈ S b /∈ S a /∈ T b /∈ T
using conS conT connected component in by auto

assume ¬ connected component (− (S ∪ T )) a b
then obtain C where C ∈ components (S ∪ T ) and C : ¬ connected component(−

C ) a b
using separation by component closed pointwise assms by blast

then have C ⊆ S ∨ C ⊆ T
proof −
have connected C C ⊆ S ∪ T
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using 〈C ∈ components (S ∪ T )〉 in components subset by (blast elim:
componentsE )+

moreover then have C ∩ T = {} ∨ C ∩ S = {}
by (metis Int empty right ST inf .commute connected closed)

ultimately show ?thesis
by blast

qed
then show False
by (meson Compl anti mono C conS conT connected component of subset)

qed

lemma separation by Un closed :
fixes S :: ′a :: euclidean space set
assumes ST : closed S closed T S ∩ T = {} and conS : connected(− S ) and

conT : connected(− T )
shows connected(− (S ∪ T ))
using assms separation by Un closed pointwise
by (fastforce simp add : connected iff connected component)

lemma open unicoherent UNIV :
fixes S :: ′a :: euclidean space set
assumes open S open T connected S connected T S ∪ T = UNIV
shows connected(S ∩ T )

proof −
have connected(− (−S ∪ −T ))
by (metis closed Compl compl sup compl top eq double compl separation by Un closed

assms)
then show ?thesis
by simp

qed

lemma separation by component open aux :
fixes S :: ′a :: euclidean space set
assumes ST : closed S closed T S ∩ T = {}

and S 6= {} T 6= {}
obtains C where C ∈ components(−(S ∪ T )) C 6= {} frontier C ∩ S 6= {}

frontier C ∩ T 6= {}
proof (rule ccontr)
let ?S = S ∪

⋃
{C ∈ components(− (S ∪ T )). frontier C ⊆ S}

let ?T = T ∪
⋃
{C ∈ components(− (S ∪ T )). frontier C ⊆ T}

assume ¬ thesis
with that have ∗: frontier C ∩ S = {} ∨ frontier C ∩ T = {}

if C : C ∈ components (− (S ∪ T )) C 6= {} for C
using C by blast

have ∃A B :: ′a set . closed A ∧ closed B ∧ UNIV ⊆ A ∪ B ∧ A ∩ B = {} ∧ A
6= {} ∧ B 6= {}
proof (intro exI conjI )
have frontier (

⋃
{C ∈ components (− S ∩ − T ). frontier C ⊆ S}) ⊆ S

using subset trans [OF frontier Union subset closure]
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by (metis (no types, lifting) SUP least 〈closed S 〉 closure minimal mem Collect eq)
then have frontier ?S ⊆ S
by (simp add : frontier subset eq assms subset trans [OF frontier Un subset ])

then show closed ?S
using frontier subset eq by fastforce

have frontier (
⋃
{C ∈ components (− S ∩ − T ). frontier C ⊆ T}) ⊆ T

using subset trans [OF frontier Union subset closure]
by (metis (no types, lifting) SUP least 〈closed T 〉 closure minimal mem Collect eq)
then have frontier ?T ⊆ T
by (simp add : frontier subset eq assms subset trans [OF frontier Un subset ])

then show closed ?T
using frontier subset eq by fastforce

have UNIV ⊆ (S ∪ T ) ∪
⋃
(components(− (S ∪ T )))

using Union components by blast
also have ... ⊆ ?S ∪ ?T
proof −
have C ∈ components (−(S ∪ T )) ∧ frontier C ⊆ S ∨

C ∈ components (−(S ∪ T )) ∧ frontier C ⊆ T
if C ∈ components (− (S ∪ T )) C 6= {} for C
using ∗ [OF that ] that
by clarify (metis (no types, lifting) UnE 〈closed S 〉 〈closed T 〉 closed Un

disjoint iff not equal frontier of components closed complement subsetCE )
then show ?thesis
by blast

qed
finally show UNIV ⊆ ?S ∪ ?T .
have

⋃
{C ∈ components (− (S ∪ T )). frontier C ⊆ S} ∪⋃
{C ∈ components (− (S ∪ T )). frontier C ⊆ T} ⊆ − (S ∪ T )

using in components subset by fastforce
moreover have

⋃
{C ∈ components (− (S ∪ T )). frontier C ⊆ S} ∩⋃

{C ∈ components (− (S ∪ T )). frontier C ⊆ T} = {}
proof −
have C ∩ C ′ = {} if C ∈ components (− (S ∪ T )) frontier C ⊆ S

C ′ ∈ components (− (S ∪ T )) frontier C ′ ⊆ T for C C ′

proof −
have NUN : − S ∩ − T 6= UNIV
using 〈T 6= {}〉 by blast

have C 6= C ′

proof
assume C = C ′

with that have frontier C ′ ⊆ S ∩ T
by simp

also have ... = {}
using 〈S ∩ T = {}〉 by blast

finally have C ′ = {} ∨ C ′ = UNIV
using frontier eq empty by auto

then show False
using 〈C = C ′〉 NUN that by (force simp: dest : in components nonempty

in components subset)
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qed
with that show ?thesis
by (simp add : components nonoverlap [of −(S ∪ T )])

qed
then show ?thesis
by blast

qed
ultimately show ?S ∩ ?T = {}
using ST by blast

show ?S 6= {} ?T 6= {}
using 〈S 6= {}〉 〈T 6= {}〉 by blast+

qed
then show False

by (metis Compl disjoint connected UNIV compl bot eq compl unique con-
nected closedD inf sup absorb sup compl top left1 top.extremum uniqueI )
qed

proposition separation by component open:
fixes S :: ′a :: euclidean space set
assumes open S and non: ¬ connected(− S )
obtains C where C ∈ components S ¬ connected(− C )

proof −
obtain T U
where closed T closed U and TU : T ∪ U = − S T ∩ U = {} T 6= {} U 6=

{}
using assms by (auto simp: connected closed set closed def )

then obtain C where C : C ∈ components(−(T ∪ U )) C 6= {}
and frontier C ∩ T 6= {} frontier C ∩ U 6= {}

using separation by component open aux [OF 〈closed T 〉 〈closed U 〉 〈T ∩ U =
{}〉] by force
show thesis
proof
show C ∈ components S
using C (1 ) TU (1 ) by auto

show ¬ connected (− C )
proof
assume connected (− C )
then have connected (frontier C )
using connected frontier simple [of C ] 〈C ∈ components S 〉 in components connected

by blast
then show False
unfolding connected closed
by (metis C (1 ) TU (2 ) 〈closed T 〉 〈closed U 〉 〈frontier C ∩ T 6= {}〉 〈frontier

C ∩ U 6= {}〉 closed Un frontier of components closed complement inf bot right
inf commute)

qed
qed

qed
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lemma separation by Un open:
fixes S :: ′a :: euclidean space set
assumes open S open T S ∩ T = {} and cS : connected(−S ) and cT : con-

nected(−T )
shows connected(− (S ∪ T ))

using assms unicoherent UNIV unfolding unicoherent def by force

lemma nonseparation by component eq :
fixes S :: ′a :: euclidean space set
assumes open S ∨ closed S
shows ((∀C ∈ components S . connected(−C )) ←→ connected(− S )) (is ?lhs =

?rhs)
proof
assume ?lhs with assms show ?rhs
by (meson separation by component closed separation by component open)

next
assume ?rhs with assms show ?lhs
using component complement connected by force

qed

Another interesting equivalent of an inessential mapping into C-0

proposition inessential eq extensible:
fixes f :: ′a::euclidean space ⇒ complex
assumes closed S
shows (∃ a. homotopic with canon (λh. True) S (−{0}) f (λt . a)) ←→

(∃ g . continuous on UNIV g ∧ (∀ x ∈ S . g x = f x ) ∧ (∀ x . g x 6= 0 ))
(is ?lhs = ?rhs)

proof
assume ?lhs
then obtain a where a: homotopic with canon (λh. True) S (−{0}) f (λt . a)

..
show ?rhs
proof (cases S = {})
case True
with a show ?thesis by force

next
case False
have anr : ANR (−{0 ::complex})
by (simp add : ANR delete open Compl open imp ANR)

obtain g where contg : continuous on UNIV g and gim: g ‘ UNIV ⊆ −{0}
and gf :

∧
x . x ∈ S =⇒ g x = f x

proof (rule Borsuk homotopy extension homotopic [OF continuous on const
homotopic with symD [OF a]])

show closedin (top of set UNIV ) S
using assms by auto

show range (λt . a) ⊆ − {0}
using a homotopic with imp subset2 False by blast
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qed (use anr that in 〈force+〉)
then show ?thesis
by force

qed
next
assume ?rhs
then obtain g where contg : continuous on UNIV g

and gf :
∧
x . x ∈ S =⇒ g x = f x and non0 :

∧
x . g x 6= 0

by metis
obtain h k :: ′a⇒ ′a where hk : homeomorphism (ball 0 1 ) UNIV h k
using homeomorphic ball01 UNIV homeomorphic def by blast

then have continuous on (ball 0 1 ) (g ◦ h)
by (meson contg continuous on compose continuous on subset homeomorphism cont1

top greatest)
then obtain j where contj : continuous on (ball 0 1 ) j

and j :
∧
z . z ∈ ball 0 1 =⇒ exp(j z ) = (g ◦ h) z

by (metis (mono tags, hide lams) continuous logarithm on ball comp apply
non0 )
have [simp]:

∧
x . x ∈ S =⇒ h (k x ) = x

using hk homeomorphism apply2 by blast
have ∃ ζ. continuous on S ζ∧ (∀ x∈S . f x = exp (ζ x ))
proof (intro exI conjI ballI )
show continuous on S (j ◦ k)
proof (rule continuous on compose)
show continuous on S k
by (meson continuous on subset hk homeomorphism cont2 top greatest)

show continuous on (k ‘ S ) j
by (auto intro: continuous on subset [OF contj ] simp flip: homeomor-

phism image2 [OF hk ])
qed
show f x = exp ((j ◦ k) x ) if x ∈ S for x
proof −
have f x = (g ◦ h) (k x )
by (simp add : gf that)

also have ... = exp (j (k x ))
by (metis rangeI homeomorphism image2 [OF hk ] j )

finally show ?thesis by simp
qed

qed
then show ?lhs
by (simp add : inessential eq continuous logarithm)

qed

lemma inessential on clopen Union:
fixes F :: ′a::euclidean space set set
assumes T : path connected T

and
∧
S . S ∈ F =⇒ closedin (top of set (

⋃
F)) S

and
∧
S . S ∈ F =⇒ openin (top of set (

⋃
F)) S

and hom:
∧
S . S ∈ F =⇒ ∃ a. homotopic with canon (λx . True) S T f (λx .
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a)
obtains a where homotopic with canon (λx . True) (

⋃
F) T f (λx . a)

proof (cases
⋃
F = {})

case True
with that show ?thesis
by force

next
case False
then obtain C where C ∈ F C 6= {}
by blast

then obtain a where clo: closedin (top of set (
⋃
F)) C

and ope: openin (top of set (
⋃
F)) C

and homotopic with canon (λx . True) C T f (λx . a)
using assms by blast

with 〈C 6= {}〉 have f ‘ C ⊆ T a ∈ T
using homotopic with imp subset1 homotopic with imp subset2 by blast+

have homotopic with canon (λx . True) (
⋃
F) T f (λx . a)

proof (rule homotopic on clopen Union)
show

∧
S . S ∈ F =⇒ closedin (top of set (

⋃
F)) S∧

S . S ∈ F =⇒ openin (top of set (
⋃
F)) S

by (simp all add : assms)
show homotopic with canon (λx . True) S T f (λx . a) if S ∈ F for S
proof (cases S = {})
case True
then show ?thesis
by auto

next
case False
then obtain b where b ∈ S
by blast

obtain c where c: homotopic with canon (λx . True) S T f (λx . c)
using 〈S ∈ F 〉 hom by blast

then have c ∈ T
using 〈b ∈ S 〉 homotopic with imp subset2 by blast

then have homotopic with canon (λx . True) S T (λx . a) (λx . c)
using T 〈a ∈ T 〉 homotopic constant maps path connected component
by (simp add : homotopic constant maps path connected component)

then show ?thesis
using c homotopic with symD homotopic with trans by blast

qed
qed
then show ?thesis ..

qed

proposition Janiszewski dual :
fixes S :: complex set
assumes
compact S compact T connected S connected T connected(− (S ∪ T ))

shows connected(S ∩ T )
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proof −
have ST : compact (S ∪ T )
by (simp add : assms compact Un)

with Borsukian imp unicoherent [of S ∪ T ] ST assms
show ?thesis
by (auto simp: closed subset compact imp closed Borsukian separation compact

unicoherent def )
qed

end

6.42 The Jordan Curve Theorem and Applications

theory Jordan Curve
imports Arcwise Connected Further Topology

begin

6.42.1 Janiszewski’s theorem

lemma Janiszewski weak :
fixes a b::complex
assumes compact S compact T and conST : connected(S ∩ T )

and ccS : connected component (− S ) a b and ccT : connected component (−
T ) a b

shows connected component (− (S ∪ T )) a b
proof −
have [simp]: a /∈ S a /∈ T b /∈ S b /∈ T
by (meson ComplD ccS ccT connected component in)+

have clo: closedin (top of set (S ∪ T )) S closedin (top of set (S ∪ T )) T
by (simp all add : assms closed subset compact imp closed)

obtain g where contg : continuous on S g
and g :

∧
x . x ∈ S =⇒ exp (i∗ of real (g x )) = (x − a) /R cmod (x −

a) / ((x − b) /R cmod (x − b))
using ccS 〈compact S 〉

apply (simp add : Borsuk maps homotopic in connected component eq [symmetric])
apply (subst (asm) homotopic circlemaps divide)
apply (auto simp: inessential eq continuous logarithm circle)
done

obtain h where conth: continuous on T h
and h:

∧
x . x ∈ T =⇒ exp (i∗ of real (h x )) = (x − a) /R cmod (x −

a) / ((x − b) /R cmod (x − b))
using ccT 〈compact T 〉

apply (simp add : Borsuk maps homotopic in connected component eq [symmetric])
apply (subst (asm) homotopic circlemaps divide)
apply (auto simp: inessential eq continuous logarithm circle)
done

have continuous on (S ∪ T ) (λx . (x − a) /R cmod (x − a)) continuous on (S
∪ T ) (λx . (x − b) /R cmod (x − b))

by (intro continuous intros; force)+
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moreover have (λx . (x − a) /R cmod (x − a)) ‘ (S ∪ T ) ⊆ sphere 0 1 (λx .
(x − b) /R cmod (x − b)) ‘ (S ∪ T ) ⊆ sphere 0 1

by (auto simp: divide simps)
moreover have ∃ g . continuous on (S ∪ T ) g ∧

(∀ x∈S ∪ T . (x − a) /R cmod (x − a) / ((x − b) /R cmod (x −
b)) = exp (i∗complex of real (g x )))
proof (cases S ∩ T = {})
case True
have continuous on (S ∪ T ) (λx . if x ∈ S then g x else h x )
apply (rule continuous on cases local [OF clo contg conth])
using True by auto

then show ?thesis
by (rule tac x=(λx . if x ∈ S then g x else h x ) in exI ) (auto simp: g h)

next
case False
have diffpi : ∃n. g x = h x + 2∗ of int n∗pi if x ∈ S ∩ T for x
proof −
have exp (i∗ of real (g x )) = exp (i∗ of real (h x ))
using that by (simp add : g h)
then obtain n where complex of real (g x ) = complex of real (h x ) + 2∗

of int n∗complex of real pi
apply (auto simp: exp eq)
by (metis complex i not zero distrib left mult .commute mult cancel left)

then show ?thesis
apply (rule tac x=n in exI )
using of real eq iff by fastforce

qed
have contgh: continuous on (S ∩ T ) (λx . g x − h x )
by (intro continuous intros continuous on subset [OF contg ] continuous on subset

[OF conth]) auto
moreover have disc:

∃ e>0 . ∀ y . y ∈ S ∩ T ∧ g y − h y 6= g x − h x −→ e ≤ norm ((g y − h
y) − (g x − h x ))

if x ∈ S ∩ T for x
proof −
obtain nx where nx : g x = h x + 2∗ of int nx∗pi
using 〈x ∈ S ∩ T 〉 diffpi by blast

have 2∗pi ≤ norm (g y − h y − (g x − h x )) if y : y ∈ S ∩ T and neq : g y
− h y 6= g x − h x for y

proof −
obtain ny where ny : g y = h y + 2∗ of int ny∗pi
using 〈y ∈ S ∩ T 〉 diffpi by blast

{ assume nx 6= ny
then have 1 ≤ |real of int ny − real of int nx |
by linarith

then have (2∗pi)∗1 ≤ (2∗pi)∗|real of int ny − real of int nx |
by simp

also have ... = |2∗real of int ny∗pi − 2∗real of int nx∗pi |
by (simp add : algebra simps abs if )
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finally have 2∗pi ≤ |2∗real of int ny∗pi − 2∗real of int nx∗pi | by simp
}
with neq show ?thesis
by (simp add : nx ny)

qed
then show ?thesis
by (rule tac x=2∗pi in exI ) auto

qed
ultimately have (λx . g x − h x ) constant on S ∩ T
using continuous discrete range constant [OF conST contgh] by blast

then obtain z where z :
∧
x . x ∈ S ∩ T =⇒ g x − h x = z

by (auto simp: constant on def )
obtain w where exp(i ∗ of real(h w)) = exp (i ∗ of real(z + h w))
using disc z False
by auto (metis diff add cancel g h of real add)

then have [simp]: exp (i∗ of real z ) = 1
by (metis cis conv exp cis mult exp not eq zero mult cancel right1 )

show ?thesis
proof (intro exI conjI )
show continuous on (S ∪ T ) (λx . if x ∈ S then g x else z + h x )

apply (intro continuous intros continuous on cases local [OF clo contg ]
conth)

using z by fastforce
qed (auto simp: g h algebra simps exp add)

qed
ultimately have ∗: homotopic with canon (λx . True) (S ∪ T ) (sphere 0 1 )

(λx . (x − a) /R cmod (x − a)) (λx . (x − b) /R cmod (x −
b))

by (subst homotopic circlemaps divide) (auto simp: inessential eq continuous logarithm circle)
show ?thesis
apply (rule Borsuk maps homotopic in connected component eq [THEN iffD1 ])
using assms by (auto simp: ∗)

qed

theorem Janiszewski :
fixes a b :: complex
assumes compact S closed T and conST : connected (S ∩ T )

and ccS : connected component (− S ) a b and ccT : connected component (−
T ) a b

shows connected component (− (S ∪ T )) a b
proof −
have path component(− T ) a b
by (simp add : 〈closed T 〉 ccT open Compl open path connected component)

then obtain g where g : path g path image g ⊆ − T pathstart g = a pathfinish
g = b

by (auto simp: path component def )
obtain C where C : compact C connected C a ∈ C b ∈ C C ∩ T = {}
proof
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show compact (path image g)
by (simp add : 〈path g〉 compact path image)

show connected (path image g)
by (simp add : 〈path g〉 connected path image)

qed (use g in auto)
obtain r where 0 < r and r : C ∪ S ⊆ ball 0 r
by (metis 〈compact C 〉 〈compact S 〉 bounded Un compact imp bounded bounded subset ballD)
have connected component (− (S ∪ (T ∩ cball 0 r ∪ sphere 0 r))) a b
proof (rule Janiszewski weak [OF 〈compact S 〉])
show comT ′: compact ((T ∩ cball 0 r) ∪ sphere 0 r)
by (simp add : 〈closed T 〉 closed Int compact compact Un)

have S ∩ (T ∩ cball 0 r ∪ sphere 0 r) = S ∩ T
using r by auto

with conST show connected (S ∩ (T ∩ cball 0 r ∪ sphere 0 r))
by simp

show connected component (− (T ∩ cball 0 r ∪ sphere 0 r)) a b
using conST C r
apply (simp add : connected component def )
apply (rule tac x=C in exI )
by auto

qed (simp add : ccS )
then obtain U where U : connected U U ⊆ − S U ⊆ − T ∪ − cball 0 r U ⊆
− sphere 0 r a ∈ U b ∈ U

by (auto simp: connected component def )
show ?thesis
unfolding connected component def

proof (intro exI conjI )
show U ⊆ − (S ∪ T )
using U r 〈0 < r 〉 〈a ∈ C 〉 connected Int frontier [of U cball 0 r ]
apply simp

by (metis ball subset cball compl inf disjoint eq subset Compl disjoint iff not equal
inf .orderE inf sup aci(3 ) subsetCE )
qed (auto simp: U )

qed

lemma Janiszewski connected :
fixes S :: complex set
assumes ST : compact S closed T connected(S ∩ T )

and notST : connected (− S ) connected (− T )
shows connected(− (S ∪ T ))

using Janiszewski [OF ST ]
by (metis IntD1 IntD2 notST compl sup connected iff connected component)

6.42.2 The Jordan Curve theorem

lemma exists double arc:
fixes g :: real ⇒ ′a::real normed vector
assumes simple path g pathfinish g = pathstart g a ∈ path image g b ∈ path image

g a 6= b
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obtains u d where arc u arc d pathstart u = a pathfinish u = b
pathstart d = b pathfinish d = a
(path image u) ∩ (path image d) = {a,b}
(path image u) ∪ (path image d) = path image g

proof −
obtain u where u: 0 ≤ u u ≤ 1 g u = a
using assms by (auto simp: path image def )

define h where h ≡ shiftpath u g
have simple path h
using 〈simple path g〉 simple path shiftpath 〈0 ≤ u〉 〈u ≤ 1 〉 assms(2 ) h def by

blast
have pathstart h = g u
by (simp add : 〈u ≤ 1 〉 h def pathstart shiftpath)

have pathfinish h = g u
by (simp add : 〈0 ≤ u〉 assms h def pathfinish shiftpath)

have pihg : path image h = path image g
by (simp add : 〈0 ≤ u〉 〈u ≤ 1 〉 assms h def path image shiftpath)

then obtain v where v : 0 ≤ v v ≤ 1 h v = b
using assms by (metis (mono tags, lifting) atLeastAtMost iff imageE path image def )
show ?thesis
proof
show arc (subpath 0 v h)
by (metis (no types) 〈pathstart h = g u〉 〈simple path h〉 arc simple path subpath

〈a 6= b〉 atLeastAtMost iff zero le one order refl pathstart def u(3 ) v)
show arc (subpath v 1 h)
by (metis (no types) 〈pathfinish h = g u〉 〈simple path h〉 arc simple path subpath

〈a 6= b〉 atLeastAtMost iff zero le one order refl pathfinish def u(3 ) v)
show pathstart (subpath 0 v h) = a
by (metis 〈pathstart h = g u〉 pathstart def pathstart subpath u(3 ))

show pathfinish (subpath 0 v h) = b pathstart (subpath v 1 h) = b
by (simp all add : v(3 ))

show pathfinish (subpath v 1 h) = a
by (metis 〈pathfinish h = g u〉 pathfinish def pathfinish subpath u(3 ))

show path image (subpath 0 v h) ∩ path image (subpath v 1 h) = {a, b}
proof
show path image (subpath 0 v h) ∩ path image (subpath v 1 h) ⊆ {a, b}
using v 〈pathfinish (subpath v 1 h) = a〉 〈simple path h〉

apply (auto simp: simple path def path image subpath image iff Ball def )
by (metis (full types) less eq real def less irrefl less le trans)

show {a, b} ⊆ path image (subpath 0 v h) ∩ path image (subpath v 1 h)
using v 〈pathstart (subpath 0 v h) = a〉 〈pathfinish (subpath v 1 h) = a〉

apply (auto simp: path image subpath image iff )
by (metis atLeastAtMost iff order refl)

qed
show path image (subpath 0 v h) ∪ path image (subpath v 1 h) = path image g
using v apply (simp add : path image subpath pihg [symmetric])
using path image def by fastforce

qed
qed
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theorem Jordan curve:
fixes c :: real ⇒ complex
assumes simple path c and loop: pathfinish c = pathstart c
obtains inner outer where

inner 6= {} open inner connected inner
outer 6= {} open outer connected outer
bounded inner ¬ bounded outer inner ∩ outer = {}
inner ∪ outer = − path image c
frontier inner = path image c
frontier outer = path image c

proof −
have path c
by (simp add : assms simple path imp path)

have hom: (path image c) homeomorphic (sphere(0 ::complex ) 1 )
by (simp add : assms homeomorphic simple path image circle)

with Jordan Brouwer separation have ¬ connected (− (path image c))
by fastforce

then obtain inner where inner : inner ∈ components (− path image c) and
bounded inner

using cobounded has bounded component [of − (path image c)]
using 〈¬ connected (− path image c)〉 〈simple path c〉 bounded simple path image

by force
obtain outer where outer : outer ∈ components (− path image c) and ¬ bounded

outer
using cobounded unbounded components [of − (path image c)]
using 〈path c〉 bounded path image by auto

show ?thesis
proof
show inner 6= {}
using inner in components nonempty by auto

show open inner
by (meson 〈simple path c〉 compact imp closed compact simple path image

inner open Compl open components)
show connected inner
using in components connected inner by blast

show outer 6= {}
using outer in components nonempty by auto

show open outer
by (meson 〈simple path c〉 compact imp closed compact simple path image

outer open Compl open components)
show connected outer
using in components connected outer by blast

show inner ∩ outer = {}
by (meson 〈¬ bounded outer 〉 〈bounded inner 〉 〈connected outer 〉 bounded subset

components maximal in components subset inner outer)
show fro inner : frontier inner = path image c
by (simp add : Jordan Brouwer frontier [OF hom inner ])
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show fro outer : frontier outer = path image c
by (simp add : Jordan Brouwer frontier [OF hom outer ])

have False if m: middle ∈ components (− path image c) and middle 6= inner
middle 6= outer for middle

proof −
have frontier middle = path image c
by (simp add : Jordan Brouwer frontier [OF hom] that)

have middle: open middle connected middle middle 6= {}
apply (meson 〈simple path c〉 compact imp closed compact simple path image

m open Compl open components)
using in components connected in components nonempty m by blast+

obtain a0 b0 where a0 ∈ path image c b0 ∈ path image c a0 6= b0
using simple path image uncountable [OF 〈simple path c〉]
by (metis Diff cancel countable Diff eq countable empty insert iff subsetI

subset singleton iff )
obtain a b g where ab: a ∈ path image c b ∈ path image c a 6= b

and arc g pathstart g = a pathfinish g = b
and pag sub: path image g − {a,b} ⊆ middle

proof (rule dense accessible frontier point pairs [OF 〈open middle〉 〈connected
middle〉, of path image c ∩ ball a0 (dist a0 b0 ) path image c ∩ ball b0 (dist a0
b0 )])

show openin (top of set (frontier middle)) (path image c ∩ ball a0 (dist a0
b0 ))

openin (top of set (frontier middle)) (path image c ∩ ball b0 (dist a0
b0 ))

by (simp all add : 〈frontier middle = path image c〉 openin open Int)
show path image c ∩ ball a0 (dist a0 b0 ) 6= path image c ∩ ball b0 (dist a0

b0 )
using 〈a0 6= b0 〉 〈b0 ∈ path image c〉 by auto

show path image c ∩ ball a0 (dist a0 b0 ) 6= {}
using 〈a0 ∈ path image c〉 〈a0 6= b0 〉 by auto

show path image c ∩ ball b0 (dist a0 b0 ) 6= {}
using 〈b0 ∈ path image c〉 〈a0 6= b0 〉 by auto

qed (use arc distinct ends arc imp simple path simple path endless that in
fastforce)

obtain u d where arc u arc d
and pathstart u = a pathfinish u = b pathstart d = b pathfinish d

= a
and ud ab: (path image u) ∩ (path image d) = {a,b}
and ud Un: (path image u) ∪ (path image d) = path image c

using exists double arc [OF assms ab] by blast
obtain x y where x ∈ inner y ∈ outer
using 〈inner 6= {}〉 〈outer 6= {}〉 by auto

have inner ∩ middle = {} middle ∩ outer = {}
using components nonoverlap inner outer m that by blast+

have connected component (− (path image u ∪ path image g ∪ (path image
d ∪ path image g))) x y

proof (rule Janiszewski)
show compact (path image u ∪ path image g)
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by (simp add : 〈arc g〉 〈arc u〉 compact Un compact arc image)
show closed (path image d ∪ path image g)
by (simp add : 〈arc d 〉 〈arc g〉 closed Un closed arc image)

show connected ((path image u ∪ path image g) ∩ (path image d ∪ path image
g))

by (metis Un Diff cancel 〈arc g〉 〈path image u ∩ path image d = {a,
b}〉 〈pathfinish g = b〉 〈pathstart g = a〉 connected arc image insert Diff1 pathfin-
ish in path image pathstart in path image sup bot .right neutral sup commute sup inf distrib1 )

show connected component (− (path image u ∪ path image g)) x y
unfolding connected component def

proof (intro exI conjI )
have connected ((inner ∪ (path image c − path image u)) ∪ (outer ∪

(path image c − path image u)))
proof (rule connected Un)
show connected (inner ∪ (path image c − path image u))
apply (rule connected intermediate closure [OF 〈connected inner 〉])
using fro inner [symmetric] apply (auto simp: closure subset fron-

tier def )
done

show connected (outer ∪ (path image c − path image u))
apply (rule connected intermediate closure [OF 〈connected outer 〉])
using fro outer [symmetric] apply (auto simp: closure subset fron-

tier def )
done

have (inner ∩ outer) ∪ (path image c − path image u) 6= {}
by (metis 〈arc d 〉 ud ab Diff Int Diff cancel Un Diff 〈inner ∩

outer = {}〉 〈pathfinish d = a〉 〈pathstart d = b〉 arc simple path insert commute
nonempty simple path endless sup bot left ud Un)

then show (inner ∪ (path image c − path image u)) ∩ (outer ∪
(path image c − path image u)) 6= {}

by auto
qed
then show connected (inner ∪ outer ∪ (path image c − path image u))
by (metis sup.right idem sup assoc sup commute)

have inner ⊆ − path image u outer ⊆ − path image u
using in components subset inner outer ud Un by auto

moreover have inner ⊆ − path image g outer ⊆ − path image g
using 〈inner ∩ middle = {}〉 〈inner ⊆ − path image u〉

using 〈middle ∩ outer = {}〉 〈outer ⊆ − path image u〉 pag sub ud ab
by fastforce+

moreover have path image c − path image u ⊆ − path image g
using in components subset m pag sub ud ab by fastforce
ultimately show inner ∪ outer ∪ (path image c − path image u) ⊆ −

(path image u ∪ path image g)
by force

show x ∈ inner ∪ outer ∪ (path image c − path image u)
by (auto simp: 〈x ∈ inner 〉)

show y ∈ inner ∪ outer ∪ (path image c − path image u)
by (auto simp: 〈y ∈ outer 〉)
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qed
show connected component (− (path image d ∪ path image g)) x y
unfolding connected component def

proof (intro exI conjI )
have connected ((inner ∪ (path image c − path image d)) ∪ (outer ∪

(path image c − path image d)))
proof (rule connected Un)
show connected (inner ∪ (path image c − path image d))
apply (rule connected intermediate closure [OF 〈connected inner 〉])
using fro inner [symmetric] apply (auto simp: closure subset fron-

tier def )
done

show connected (outer ∪ (path image c − path image d))
apply (rule connected intermediate closure [OF 〈connected outer 〉])
using fro outer [symmetric] apply (auto simp: closure subset fron-

tier def )
done

have (inner ∩ outer) ∪ (path image c − path image d) 6= {}
using 〈arc u〉 〈pathfinish u = b〉 〈pathstart u = a〉 arc imp simple path

nonempty simple path endless ud Un ud ab by fastforce
then show (inner ∪ (path image c − path image d)) ∩ (outer ∪

(path image c − path image d)) 6= {}
by auto

qed
then show connected (inner ∪ outer ∪ (path image c − path image d))
by (metis sup.right idem sup assoc sup commute)

have inner ⊆ − path image d outer ⊆ − path image d
using in components subset inner outer ud Un by auto

moreover have inner ⊆ − path image g outer ⊆ − path image g
using 〈inner ∩ middle = {}〉 〈inner ⊆ − path image d 〉

using 〈middle ∩ outer = {}〉 〈outer ⊆ − path image d 〉 pag sub ud ab
by fastforce+

moreover have path image c − path image d ⊆ − path image g
using in components subset m pag sub ud ab by fastforce
ultimately show inner ∪ outer ∪ (path image c − path image d) ⊆ −

(path image d ∪ path image g)
by force

show x ∈ inner ∪ outer ∪ (path image c − path image d)
by (auto simp: 〈x ∈ inner 〉)

show y ∈ inner ∪ outer ∪ (path image c − path image d)
by (auto simp: 〈y ∈ outer 〉)

qed
qed

then have connected component (− (path image u ∪ path image d ∪ path image
g)) x y

by (simp add : Un ac)
moreover have ¬(connected component (− (path image c)) x y)
by (metis (no types, lifting) 〈¬ bounded outer 〉 〈bounded inner 〉 〈x ∈ inner 〉

〈y ∈ outer 〉 componentsE connected component eq inner mem Collect eq outer)
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ultimately show False
by (auto simp: ud Un [symmetric] connected component def )

qed
then have components (− path image c) = {inner ,outer}
using inner outer by blast

then have Union (components (− path image c)) = inner ∪ outer
by simp

then show inner ∪ outer = − path image c
by auto

qed (auto simp: 〈bounded inner 〉 〈¬ bounded outer 〉)
qed

corollary Jordan disconnected :
fixes c :: real ⇒ complex
assumes simple path c pathfinish c = pathstart c
shows ¬ connected(− path image c)

using Jordan curve [OF assms]
by (metis Jordan Brouwer separation assms homeomorphic simple path image circle

zero less one)

corollary Jordan inside outside:
fixes c :: real ⇒ complex
assumes simple path c pathfinish c = pathstart c
shows inside(path image c) 6= {} ∧

open(inside(path image c)) ∧
connected(inside(path image c)) ∧
outside(path image c) 6= {} ∧
open(outside(path image c)) ∧
connected(outside(path image c)) ∧
bounded(inside(path image c)) ∧
¬ bounded(outside(path image c)) ∧
inside(path image c) ∩ outside(path image c) = {} ∧
inside(path image c) ∪ outside(path image c) =
− path image c ∧
frontier(inside(path image c)) = path image c ∧
frontier(outside(path image c)) = path image c

proof −
obtain inner outer
where ∗: inner 6= {} open inner connected inner

outer 6= {} open outer connected outer
bounded inner ¬ bounded outer inner ∩ outer = {}
inner ∪ outer = − path image c
frontier inner = path image c
frontier outer = path image c

using Jordan curve [OF assms] by blast
then have inner : inside(path image c) = inner
by (metis dual order .antisym inside subset interior eq interior inside frontier)
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have outer : outside(path image c) = outer
using 〈inner ∪ outer = − path image c〉 〈inside (path image c) = inner 〉

outside inside 〈inner ∩ outer = {}〉 by auto
show ?thesis
using ∗ by (auto simp: inner outer)

qed

Triple-curve or ”theta-curve” theorem

Proof that there is no fourth component taken from Kuratowski’s Topology
vol 2, para 61, II.

theorem split inside simple closed curve:
fixes c :: real ⇒ complex
assumes simple path c1 and c1 : pathstart c1 = a pathfinish c1 = b

and simple path c2 and c2 : pathstart c2 = a pathfinish c2 = b
and simple path c and c: pathstart c = a pathfinish c = b
and a 6= b
and c1c2 : path image c1 ∩ path image c2 = {a,b}
and c1c: path image c1 ∩ path image c = {a,b}
and c2c: path image c2 ∩ path image c = {a,b}
and ne 12 : path image c ∩ inside(path image c1 ∪ path image c2 ) 6= {}

obtains inside(path image c1 ∪ path image c) ∩ inside(path image c2 ∪ path image
c) = {}

inside(path image c1 ∪ path image c) ∪ inside(path image c2 ∪ path image
c) ∪

(path image c − {a,b}) = inside(path image c1 ∪ path image c2 )
proof −
let ?Θ = path image c let ?Θ1 = path image c1 let ?Θ2 = path image c2
have sp: simple path (c1 +++ reversepath c2 ) simple path (c1 +++ reversepath

c) simple path (c2 +++ reversepath c)
using assms by (auto simp: simple path join loop eq arc simple path sim-

ple path reversepath)
then have op in12 : open (inside (?Θ1 ∪ ?Θ2 ))

and op out12 : open (outside (?Θ1 ∪ ?Θ2 ))
and op in1c: open (inside (?Θ1 ∪ ?Θ))
and op in2c: open (inside (?Θ2 ∪ ?Θ))
and op out1c: open (outside (?Θ1 ∪ ?Θ))
and op out2c: open (outside (?Θ2 ∪ ?Θ))
and co in1c: connected (inside (?Θ1 ∪ ?Θ))
and co in2c: connected (inside (?Θ2 ∪ ?Θ))
and co out12c: connected (outside (?Θ1 ∪ ?Θ2 ))
and co out1c: connected (outside (?Θ1 ∪ ?Θ))
and co out2c: connected (outside (?Θ2 ∪ ?Θ))
and pa c: ?Θ − {pathstart c, pathfinish c} ⊆ − ?Θ1

?Θ − {pathstart c, pathfinish c} ⊆ − ?Θ2
and pa c1 : ?Θ1 − {pathstart c1 , pathfinish c1} ⊆ − ?Θ2

?Θ1 − {pathstart c1 , pathfinish c1} ⊆ − ?Θ
and pa c2 : ?Θ2 − {pathstart c2 , pathfinish c2} ⊆ − ?Θ1

?Θ2 − {pathstart c2 , pathfinish c2} ⊆ − ?Θ
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and co c: connected(?Θ − {pathstart c,pathfinish c})
and co c1 : connected(?Θ1 − {pathstart c1 ,pathfinish c1})
and co c2 : connected(?Θ2 − {pathstart c2 ,pathfinish c2})
and fr in: frontier(inside(?Θ1 ∪ ?Θ2 )) = ?Θ1 ∪ ?Θ2

frontier(inside(?Θ2 ∪ ?Θ)) = ?Θ2 ∪ ?Θ
frontier(inside(?Θ1 ∪ ?Θ)) = ?Θ1 ∪ ?Θ

and fr out : frontier(outside(?Θ1 ∪ ?Θ2 )) = ?Θ1 ∪ ?Θ2
frontier(outside(?Θ2 ∪ ?Θ)) = ?Θ2 ∪ ?Θ
frontier(outside(?Θ1 ∪ ?Θ)) = ?Θ1 ∪ ?Θ

using Jordan inside outside [of c1 +++ reversepath c2 ]
using Jordan inside outside [of c1 +++ reversepath c]
using Jordan inside outside [of c2 +++ reversepath c] assms

apply (simp all add : path image join closed Un closed simple path image
open inside open outside)

apply (blast elim: | metis connected simple path endless)+
done

have inout 12 : inside (?Θ1 ∪ ?Θ2 ) ∩ (?Θ − {pathstart c, pathfinish c}) 6= {}
by (metis (no types, lifting) c c1c ne 12 Diff Int distrib Diff empty Int empty right

Int left commute inf sup absorb inf sup aci(1 ) inside no overlap)
have pi disjoint : ?Θ ∩ outside(?Θ1 ∪ ?Θ2 ) = {}
proof (rule ccontr)
assume ?Θ ∩ outside (?Θ1 ∪ ?Θ2 ) 6= {}
then show False
using connectedD [OF co c, of inside(?Θ1 ∪ ?Θ2 ) outside(?Θ1 ∪ ?Θ2 )]
using c c1c2 pa c op in12 op out12 inout 12
apply auto
apply (metis Un Diff cancel2 Un iff compl sup disjoint insert(1 ) inf commute

inf compl bot left2 inside Un outside mk disjoint insert sup inf absorb)
done

qed
have out sub12 : outside(?Θ1 ∪ ?Θ2 ) ⊆ outside(?Θ1 ∪ ?Θ) outside(?Θ1 ∪ ?Θ2 )
⊆ outside(?Θ2 ∪ ?Θ)

by (metis Un commute pi disjoint outside Un outside Un)+
have pa1 disj in2 : ?Θ1 ∩ inside (?Θ2 ∪ ?Θ) = {}
proof (rule ccontr)
assume ne: ?Θ1 ∩ inside (?Θ2 ∪ ?Θ) 6= {}
have 1 : inside (?Θ ∪ ?Θ2 ) ∩ ?Θ = {}
by (metis (no types) Diff Int distrib Diff cancel inf sup absorb inf sup aci(3 )

inside no overlap)
have 2 : outside (?Θ ∪ ?Θ2 ) ∩ ?Θ = {}

by (metis (no types) Int empty right Int left commute inf sup absorb out-
side no overlap)

have outside (?Θ2 ∪ ?Θ) ⊆ outside (?Θ1 ∪ ?Θ2 )
apply (subst Un commute, rule outside Un outside Un)
using connectedD [OF co c1 , of inside(?Θ2 ∪ ?Θ) outside(?Θ2 ∪ ?Θ)]
pa c1 op in2c op out2c ne c1 c2c 1 2 by (auto simp: inf sup aci)

with out sub12
have outside(?Θ1 ∪ ?Θ2 ) = outside(?Θ2 ∪ ?Θ) by blast
then have frontier(outside(?Θ1 ∪ ?Θ2 )) = frontier(outside(?Θ2 ∪ ?Θ))
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by simp
then show False
using inout 12 pi disjoint c c1c c2c fr out by auto

qed
have pa2 disj in1 : ?Θ2 ∩ inside(?Θ1 ∪ ?Θ) = {}
proof (rule ccontr)
assume ne: ?Θ2 ∩ inside (?Θ1 ∪ ?Θ) 6= {}
have 1 : inside (?Θ ∪ ?Θ1 ) ∩ ?Θ = {}
by (metis (no types) Diff Int distrib Diff cancel inf sup absorb inf sup aci(3 )

inside no overlap)
have 2 : outside (?Θ ∪ ?Θ1 ) ∩ ?Θ = {}

by (metis (no types) Int empty right Int left commute inf sup absorb out-
side no overlap)

have outside (?Θ1 ∪ ?Θ) ⊆ outside (?Θ1 ∪ ?Θ2 )
apply (rule outside Un outside Un)
using connectedD [OF co c2 , of inside(?Θ1 ∪ ?Θ) outside(?Θ1 ∪ ?Θ)]
pa c2 op in1c op out1c ne c2 c1c 1 2 by (auto simp: inf sup aci)

with out sub12
have outside(?Θ1 ∪ ?Θ2 ) = outside(?Θ1 ∪ ?Θ)
by blast

then have frontier(outside(?Θ1 ∪ ?Θ2 )) = frontier(outside(?Θ1 ∪ ?Θ))
by simp

then show False
using inout 12 pi disjoint c c1c c2c fr out by auto

qed
have in sub in1 : inside(?Θ1 ∪ ?Θ) ⊆ inside(?Θ1 ∪ ?Θ2 )
using pa2 disj in1 out sub12 by (auto simp: inside outside)

have in sub in2 : inside(?Θ2 ∪ ?Θ) ⊆ inside(?Θ1 ∪ ?Θ2 )
using pa1 disj in2 out sub12 by (auto simp: inside outside)

have in sub out12 : inside(?Θ1 ∪ ?Θ) ⊆ outside(?Θ2 ∪ ?Θ)
proof
fix x
assume x : x ∈ inside (?Θ1 ∪ ?Θ)
then have xnot : x /∈ ?Θ
by (simp add : inside def )

obtain z where zim: z ∈ ?Θ1 and zout : z ∈ outside(?Θ2 ∪ ?Θ)
apply (auto simp: outside inside)
using nonempty simple path endless [OF 〈simple path c1 〉]
by (metis Diff Diff Int Diff iff ex in conv c1 c1c c1c2 pa1 disj in2 )

obtain e where e > 0 and e: ball z e ⊆ outside(?Θ2 ∪ ?Θ)
using zout op out2c open contains ball eq by blast

have z ∈ frontier (inside (?Θ1 ∪ ?Θ))
using zim by (auto simp: fr in)

then obtain w where w1 : w ∈ inside (?Θ1 ∪ ?Θ) and dwz : dist w z < e
using zim 〈e > 0 〉 by (auto simp: frontier def closure approachable)

then have w2 : w ∈ outside (?Θ2 ∪ ?Θ)
by (metis e dist commute mem ball subsetCE )

then have connected component (− ?Θ2 ∩ − ?Θ) z w
apply (simp add : connected component def )
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apply (rule tac x = outside(?Θ2 ∪ ?Θ) in exI )
using zout apply (auto simp: co out2c)
apply (simp all add : outside inside)
done

moreover have connected component (− ?Θ2 ∩ − ?Θ) w x
unfolding connected component def
using pa2 disj in1 co in1c x w1 union with outside by fastforce

ultimately have eq : connected component set (− ?Θ2 ∩ − ?Θ) x =
connected component set (− ?Θ2 ∩ − ?Θ) z

by (metis (mono tags, lifting) connected component eq mem Collect eq)
show x ∈ outside (?Θ2 ∪ ?Θ)
using zout x pa2 disj in1 by (auto simp: outside def eq xnot)

qed
have in sub out21 : inside(?Θ2 ∪ ?Θ) ⊆ outside(?Θ1 ∪ ?Θ)
proof
fix x
assume x : x ∈ inside (?Θ2 ∪ ?Θ)
then have xnot : x /∈ ?Θ
by (simp add : inside def )

obtain z where zim: z ∈ ?Θ2 and zout : z ∈ outside(?Θ1 ∪ ?Θ)
apply (auto simp: outside inside)
using nonempty simple path endless [OF 〈simple path c2 〉]
by (metis (no types, hide lams) Diff Diff Int Diff iff c1c2 c2 c2c ex in conv

pa2 disj in1 )
obtain e where e > 0 and e: ball z e ⊆ outside(?Θ1 ∪ ?Θ)
using zout op out1c open contains ball eq by blast

have z ∈ frontier (inside (?Θ2 ∪ ?Θ))
using zim by (auto simp: fr in)

then obtain w where w2 : w ∈ inside (?Θ2 ∪ ?Θ) and dwz : dist w z < e
using zim 〈e > 0 〉 by (auto simp: frontier def closure approachable)

then have w1 : w ∈ outside (?Θ1 ∪ ?Θ)
by (metis e dist commute mem ball subsetCE )

then have connected component (− ?Θ1 ∩ − ?Θ) z w
apply (simp add : connected component def )
apply (rule tac x = outside(?Θ1 ∪ ?Θ) in exI )
using zout apply (auto simp: co out1c)
apply (simp all add : outside inside)
done

moreover have connected component (− ?Θ1 ∩ − ?Θ) w x
unfolding connected component def
using pa1 disj in2 co in2c x w2 union with outside by fastforce

ultimately have eq : connected component set (− ?Θ1 ∩ − ?Θ) x =
connected component set (− ?Θ1 ∩ − ?Θ) z

by (metis (no types, lifting) connected component eq mem Collect eq)
show x ∈ outside (?Θ1 ∪ ?Θ)
using zout x pa1 disj in2 by (auto simp: outside def eq xnot)

qed
show ?thesis
proof
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show inside (?Θ1 ∪ ?Θ) ∩ inside (?Θ2 ∪ ?Θ) = {}
by (metis Int Un distrib in sub out12 bot eq sup iff disjoint eq subset Compl

outside inside)
have ∗: outside (?Θ1 ∪ ?Θ) ∩ outside (?Θ2 ∪ ?Θ) ⊆ outside (?Θ1 ∪ ?Θ2 )
proof (rule components maximal)
show out in: outside (?Θ1 ∪ ?Θ2 ) ∈ components (− (?Θ1 ∪ ?Θ2 ))
apply (simp only : outside in components co out12c)
by (metis bounded empty fr out(1 ) frontier empty unbounded outside)

have conn U : connected (− (closure (inside (?Θ1 ∪ ?Θ)) ∪ closure (inside
(?Θ2 ∪ ?Θ))))

proof (rule Janiszewski connected , simp all)
show bounded (inside (?Θ1 ∪ ?Θ))
by (simp add : 〈simple path c1 〉 〈simple path c〉 bounded inside bounded simple path image)
have if1 : − (inside (?Θ1 ∪ ?Θ) ∪ frontier (inside (?Θ1 ∪ ?Θ))) = − ?Θ1

∩ − ?Θ ∩ − inside (?Θ1 ∪ ?Θ)
by (metis (no types, lifting) Int commute Jordan inside outside c c1

compl sup path image join path image reversepath pathfinish join pathfinish reversepath
pathstart join pathstart reversepath sp(2 ) closure Un frontier fr out(3 ))

then show connected (− closure (inside (?Θ1 ∪ ?Θ)))
by (metis Compl Un outside inside co out1c closure Un frontier)

have if2 : − (inside (?Θ2 ∪ ?Θ) ∪ frontier (inside (?Θ2 ∪ ?Θ))) = − ?Θ2
∩ − ?Θ ∩ − inside (?Θ2 ∪ ?Θ)

by (metis (no types, lifting) Int commute Jordan inside outside c c2
compl sup path image join path image reversepath pathfinish join pathfinish reversepath
pathstart join pathstart reversepath sp(3 ) closure Un frontier fr out(2 ))

then show connected (− closure (inside (?Θ2 ∪ ?Θ)))
by (metis Compl Un outside inside co out2c closure Un frontier)

have connected(?Θ)
by (metis 〈simple path c〉 connected simple path image)

moreover
have closure (inside (?Θ1 ∪ ?Θ)) ∩ closure (inside (?Θ2 ∪ ?Θ)) = ?Θ
(is ?lhs = ?rhs)

proof
show ?lhs ⊆ ?rhs
proof clarify
fix x
assume x : x ∈ closure (inside (?Θ1 ∪ ?Θ)) x ∈ closure (inside (?Θ2 ∪

?Θ))
then have x /∈ inside (?Θ1 ∪ ?Θ)

by (meson closure iff nhds not empty in sub out12 inside Int outside
op in1c)

with fr in x show x ∈ ?Θ
by (metis c1c c1c2 closure Un frontier pa1 disj in2 Int iff Un iff

insert disjoint(2 ) insert subset subsetI subset antisym)
qed
show ?rhs ⊆ ?lhs
using if1 if2 closure Un frontier by fastforce

qed
ultimately
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show connected (closure (inside (?Θ1 ∪ ?Θ)) ∩ closure (inside (?Θ2 ∪
?Θ)))

by auto
qed
show connected (outside (?Θ1 ∪ ?Θ) ∩ outside (?Θ2 ∪ ?Θ))

using fr in conn U by (simp add : closure Un frontier outside inside
Un commute)

show outside (?Θ1 ∪ ?Θ) ∩ outside (?Θ2 ∪ ?Θ) ⊆ − (?Θ1 ∪ ?Θ2 )
by clarify (metis Diff Compl Diff iff Un iff inf sup absorb outside inside)

show outside (?Θ1 ∪ ?Θ2 ) ∩
(outside (?Θ1 ∪ ?Θ) ∩ outside (?Θ2 ∪ ?Θ)) 6= {}
by (metis Int assoc out in inf .orderE out sub12 (1 ) out sub12 (2 ) out-

side in components)
qed
show inside (?Θ1 ∪ ?Θ) ∪ inside (?Θ2 ∪ ?Θ) ∪ (?Θ − {a, b}) = inside (?Θ1

∪ ?Θ2 )
(is ?lhs = ?rhs)

proof
show ?lhs ⊆ ?rhs
apply (simp add : in sub in1 in sub in2 )
using c1c c2c inside outside pi disjoint by fastforce

have inside (?Θ1 ∪ ?Θ2 ) ⊆ inside (?Θ1 ∪ ?Θ) ∪ inside (?Θ2 ∪ ?Θ) ∪ (?Θ)
using Compl anti mono [OF ∗] by (force simp: inside outside)

moreover have inside (?Θ1 ∪ ?Θ2 ) ⊆ −{a,b}
using c1 union with outside by fastforce

ultimately show ?rhs ⊆ ?lhs by auto
qed

qed
qed

end

6.43 Polynomial Functions: Extremal Behaviour
and Root Counts

theory Poly Roots
imports Complex Main
begin

6.43.1 Basics about polynomial functions: extremal behaviour
and root counts

lemma sub polyfun:
fixes x :: ′a::{comm ring ,monoid mult}
shows (

∑
i≤n. a i ∗ xˆi) − (

∑
i≤n. a i ∗ yˆi) =

(x − y) ∗ (
∑

j<n.
∑

k= Suc j ..n. a k ∗ yˆ(k − Suc j ) ∗ xˆj )
proof −
have (

∑
i≤n. a i ∗ xˆi) − (

∑
i≤n. a i ∗ yˆi) =
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(
∑

i≤n. a i ∗ (xˆi − yˆi))
by (simp add : algebra simps sum subtractf [symmetric])

also have ... = (
∑

i≤n. a i ∗ (x − y) ∗ (
∑

j<i . yˆ(i − Suc j ) ∗ xˆj ))
by (simp add : power diff sumr2 ac simps)

also have ... = (x − y) ∗ (
∑

i≤n. (
∑

j<i . a i ∗ yˆ(i − Suc j ) ∗ xˆj ))
by (simp add : sum distrib left ac simps)

also have ... = (x − y) ∗ (
∑

j<n. (
∑

i=Suc j ..n. a i ∗ yˆ(i − Suc j ) ∗ xˆj ))
by (simp add : sum.nested swap ′)

finally show ?thesis .
qed

lemma sub polyfun alt :
fixes x :: ′a::{comm ring ,monoid mult}
shows (

∑
i≤n. a i ∗ xˆi) − (

∑
i≤n. a i ∗ yˆi) =

(x − y) ∗ (
∑

j<n.
∑

k<n−j . a (j+k+1 ) ∗ yˆk ∗ xˆj )
proof −
{ fix j
have (

∑
k = Suc j ..n. a k ∗ yˆ(k − Suc j ) ∗ xˆj ) =

(
∑

k <n − j . a (Suc (j + k)) ∗ yˆk ∗ xˆj )
by (rule sum.reindex bij witness[where i=λi . i + Suc j and j=λi . i − Suc

j ]) auto }
then show ?thesis
by (simp add : sub polyfun)

qed

lemma polyfun linear factor :
fixes a :: ′a::{comm ring ,monoid mult}
shows ∃ b. ∀ z . (

∑
i≤n. c i ∗ zˆi) =

(z−a) ∗ (
∑

i<n. b i ∗ zˆi) + (
∑

i≤n. c i ∗ aˆi)
proof −
{ fix z
have (

∑
i≤n. c i ∗ zˆi) − (

∑
i≤n. c i ∗ aˆi) =

(z − a) ∗ (
∑

j<n. (
∑

k = Suc j ..n. c k ∗ aˆ(k − Suc j )) ∗ zˆj )
by (simp add : sub polyfun sum distrib right)

then have (
∑

i≤n. c i ∗ zˆi) =
(z − a) ∗ (

∑
j<n. (

∑
k = Suc j ..n. c k ∗ aˆ(k − Suc j )) ∗ zˆj )

+ (
∑

i≤n. c i ∗ aˆi)
by (simp add : algebra simps) }

then show ?thesis
by (intro exI allI )

qed

lemma polyfun linear factor root :
fixes a :: ′a::{comm ring ,monoid mult}
assumes (

∑
i≤n. c i ∗ aˆi) = 0

shows ∃ b. ∀ z . (
∑

i≤n. c i ∗ zˆi) = (z−a) ∗ (
∑

i<n. b i ∗ zˆi)
using polyfun linear factor [of c n a] assms
by simp
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lemma adhoc norm triangle: a + norm(y) ≤ b ==> norm(x ) ≤ a ==> norm(x
+ y) ≤ b
by (metis norm triangle mono order .trans order refl)

proposition polyfun extremal lemma:
fixes c :: nat ⇒ ′a::real normed div algebra
assumes e > 0
shows ∃M . ∀ z . M ≤ norm z −→ norm(

∑
i≤n. c i ∗ zˆi) ≤ e ∗ norm(z ) ˆ

Suc n
proof (induction n)
case 0
show ?case
by (rule exI [where x=norm (c 0 ) / e]) (auto simp: mult .commute pos divide le eq

assms)
next
case (Suc n)
then obtain M where M : ∀ z . M ≤ norm z −→ norm (

∑
i≤n. c i ∗ zˆi) ≤ e

∗ norm z ˆ Suc n ..
show ?case
proof (rule exI [where x=max 1 (max M ((e + norm(c(Suc n))) / e))], clarify)
fix z :: ′a
assume max 1 (max M ((e + norm (c (Suc n))) / e)) ≤ norm z
then have norm1 : 0 < norm z M ≤ norm z (e + norm (c (Suc n))) / e ≤

norm z
by auto

then have norm2 : (e + norm (c (Suc n))) ≤ e ∗ norm z (norm z ∗ norm z
ˆ n) > 0

apply (metis assms less divide eq mult .commute not le)
using norm1 apply (metis mult pos pos zero less power)
done

have e ∗ (norm z ∗ norm z ˆ n) + norm (c (Suc n) ∗ (z ∗ z ˆ n)) =
(e + norm (c (Suc n))) ∗ (norm z ∗ norm z ˆ n)

by (simp add : norm mult norm power algebra simps)
also have ... ≤ (e ∗ norm z ) ∗ (norm z ∗ norm z ˆ n)
using norm2
using assms mult mono by fastforce

also have ... = e ∗ (norm z ∗ (norm z ∗ norm z ˆ n))
by (simp add : algebra simps)

finally have e ∗ (norm z ∗ norm z ˆ n) + norm (c (Suc n) ∗ (z ∗ z ˆ n))
≤ e ∗ (norm z ∗ (norm z ∗ norm z ˆ n)) .

then show norm (
∑

i≤Suc n. c i ∗ zˆi) ≤ e ∗ norm z ˆ Suc (Suc n) using
M norm1

by (drule tac x=z in spec) (auto simp: intro!: adhoc norm triangle)
qed

qed

lemma norm lemma xy : assumes |b| + 1 ≤ norm(y) − a norm(x ) ≤ a shows
b ≤ norm(x + y)
proof −
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have b ≤ norm y − norm x
using assms by linarith

then show ?thesis
by (metis (no types) add .commute norm diff ineq order trans)

qed

proposition polyfun extremal :
fixes c :: nat ⇒ ′a::real normed div algebra
assumes ∃ k . k 6= 0 ∧ k ≤ n ∧ c k 6= 0
shows eventually (λz . norm(

∑
i≤n. c i ∗ zˆi) ≥ B) at infinity

using assms
proof (induction n)
case 0 then show ?case
by simp

next
case (Suc n)
show ?case
proof (cases c (Suc n) = 0 )
case True
with Suc show ?thesis
by auto (metis diff is 0 eq diffs0 imp equal less Suc eq le not less eq)

next
case False
with polyfun extremal lemma [of norm(c (Suc n)) / 2 c n]
obtain M where M :

∧
z . M ≤ norm z =⇒

norm (
∑

i≤n. c i ∗ zˆi) ≤ norm (c (Suc n)) / 2 ∗ norm z ˆ Suc n
by auto

show ?thesis
unfolding eventually at infinity
proof (rule exI [where x=max M (max 1 ((|B | + 1 ) / (norm (c (Suc n)) /

2 )))], clarsimp)
fix z :: ′a
assume les: M ≤ norm z 1 ≤ norm z (|B | ∗ 2 + 2 ) / norm (c (Suc n)) ≤

norm z
then have |B | ∗ 2 + 2 ≤ norm z ∗ norm (c (Suc n))
by (metis False pos divide le eq zero less norm iff )

then have |B | ∗ 2 + 2 ≤ norm z ˆ (Suc n) ∗ norm (c (Suc n))
by (metis 〈1 ≤ norm z 〉 order .trans mult right mono norm ge zero self le power

zero less Suc)
then show B ≤ norm ((

∑
i≤n. c i ∗ zˆi) + c (Suc n) ∗ (z ∗ z ˆ n)) using

M les
apply auto
apply (rule norm lemma xy [where a = norm (c (Suc n)) ∗ norm z ˆ (Suc

n) / 2 ])
apply (simp all add : norm mult norm power)
done

qed
qed

qed
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proposition polyfun rootbound :
fixes c :: nat ⇒ ′a::{comm ring ,real normed div algebra}
assumes ∃ k . k ≤ n ∧ c k 6= 0
shows finite {z . (

∑
i≤n. c i ∗ zˆi) = 0} ∧ card {z . (

∑
i≤n. c i ∗ zˆi) = 0}

≤ n
using assms
proof (induction n arbitrary : c)
case (Suc n) show ?case
proof (cases {z . (

∑
i≤Suc n. c i ∗ zˆi) = 0} = {})

case False
then obtain a where a: (

∑
i≤Suc n. c i ∗ aˆi) = 0

by auto
from polyfun linear factor root [OF this]
obtain b where

∧
z . (

∑
i≤Suc n. c i ∗ zˆi) = (z − a) ∗ (

∑
i< Suc n. b i ∗

zˆi)
by auto

then have b:
∧
z . (

∑
i≤Suc n. c i ∗ zˆi) = (z − a) ∗ (

∑
i≤n. b i ∗ zˆi)

by (metis lessThan Suc atMost)
then have ins ab: {z . (

∑
i≤Suc n. c i ∗ zˆi) = 0} = insert a {z . (

∑
i≤n. b i

∗ zˆi) = 0}
by auto

have c0 : c 0 = − (a ∗ b 0 ) using b [of 0 ]
by simp

then have extr prem: ¬ (∃ k≤n. b k 6= 0 ) =⇒ ∃ k . k 6= 0 ∧ k ≤ Suc n ∧ c k
6= 0

by (metis Suc.prems le0 minus zero mult zero right)
have ∃ k≤n. b k 6= 0
apply (rule ccontr)
using polyfun extremal [OF extr prem, of 1 ]
apply (auto simp: eventually at infinity b simp del : sum.atMost Suc)
apply (drule tac x=of real ba in spec, simp)
done

then show ?thesis using Suc.IH [of b] ins ab
by (auto simp: card insert if )

qed simp
qed simp

corollary
fixes c :: nat ⇒ ′a::{comm ring ,real normed div algebra}
assumes ∃ k . k ≤ n ∧ c k 6= 0
shows polyfun rootbound finite: finite {z . (

∑
i≤n. c i ∗ zˆi) = 0}

and polyfun rootbound card : card {z . (
∑

i≤n. c i ∗ zˆi) = 0} ≤ n
using polyfun rootbound [OF assms] by auto

proposition polyfun finite roots:
fixes c :: nat ⇒ ′a::{comm ring ,real normed div algebra}
shows finite {z . (

∑
i≤n. c i ∗ zˆi) = 0} ←→ (∃ k . k ≤ n ∧ c k 6= 0 )

proof (cases ∃ k≤n. c k 6= 0 )
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case True then show ?thesis
by (blast intro: polyfun rootbound finite)

next
case False then show ?thesis
by (auto simp: infinite UNIV char 0 )

qed

lemma polyfun eq 0 :
fixes c :: nat ⇒ ′a::{comm ring ,real normed div algebra}
shows (∀ z . (

∑
i≤n. c i ∗ zˆi) = 0 ) ←→ (∀ k . k ≤ n −→ c k = 0 )

proof (cases (∀ z . (
∑

i≤n. c i ∗ zˆi) = 0 ))
case True
then have ¬ finite {z . (

∑
i≤n. c i ∗ zˆi) = 0}

by (simp add : infinite UNIV char 0 )
with True show ?thesis
by (metis (poly guards query) polyfun rootbound finite)

next
case False
then show ?thesis
by auto

qed

theorem polyfun eq const :
fixes c :: nat ⇒ ′a::{comm ring ,real normed div algebra}
shows (∀ z . (

∑
i≤n. c i ∗ zˆi) = k) ←→ c 0 = k ∧ (∀ k . k 6= 0 ∧ k ≤ n −→

c k = 0 )
proof −
{fix z
have (

∑
i≤n. c i ∗ zˆi) = (

∑
i≤n. (if i = 0 then c 0 − k else c i) ∗ zˆi) + k

by (induct n) auto
} then
have (∀ z . (

∑
i≤n. c i ∗ zˆi) = k) ←→ (∀ z . (

∑
i≤n. (if i = 0 then c 0 − k

else c i) ∗ zˆi) = 0 )
by auto

also have ... ←→ c 0 = k ∧ (∀ k . k 6= 0 ∧ k ≤ n −→ c k = 0 )
by (auto simp: polyfun eq 0 )

finally show ?thesis .
qed

end

6.44 Generalised Binomial Theorem

The proof of the Generalised Binomial Theorem and related results. We
prove the generalised binomial theorem for complex numbers, following the
proof at: https://proofwiki.org/wiki/Binomial Theorem/General Binomial
Theorem

theory Generalised Binomial Theorem

https://proofwiki.org/wiki/Binomial_Theorem/General_Binomial_Theorem
https://proofwiki.org/wiki/Binomial_Theorem/General_Binomial_Theorem
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imports
Complex Main
Complex Transcendental
Summation Tests

begin

lemma gbinomial ratio limit :
fixes a :: ′a :: real normed field
assumes a /∈ IN
shows (λn. (a gchoose n) / (a gchoose Suc n)) −−−−→ −1

proof (rule Lim transform eventually)
let ?f = λn. inverse (a / of nat (Suc n) − of nat n / of nat (Suc n))
from eventually gt at top[of 0 ::nat ]
show eventually (λn. ?f n = (a gchoose n) /(a gchoose Suc n)) sequentially

proof eventually elim
fix n :: nat assume n: n > 0
then obtain q where q : n = Suc q by (cases n) blast
let ?P =

∏
i=0 ..<n. a − of nat i

from n have (a gchoose n) / (a gchoose Suc n) = (of nat (Suc n) :: ′a) ∗
(?P / (

∏
i=0 ..n. a − of nat i))

by (simp add : gbinomial prod rev atLeastLessThanSuc atLeastAtMost)
also from q have (

∏
i=0 ..n. a − of nat i) = ?P ∗ (a − of nat n)

by (simp add : prod .atLeast0 atMost Suc atLeastLessThanSuc atLeastAtMost)
also have ?P / . . . = (?P / ?P) / (a − of nat n) by (rule divide divide eq left [symmetric])
also from assms have ?P / ?P = 1 by auto
also have of nat (Suc n) ∗ (1 / (a − of nat n)) =

inverse (inverse (of nat (Suc n)) ∗ (a − of nat n)) by (simp add :
field simps)

also have inverse (of nat (Suc n)) ∗ (a − of nat n) = a / of nat (Suc n) −
of nat n / of nat (Suc n)

by (simp add : field simps del : of nat Suc)
finally show ?f n = (a gchoose n) / (a gchoose Suc n) by simp

qed

have (λn. norm a / (of nat (Suc n))) −−−−→ 0
unfolding divide inverse
by (intro tendsto mult right zero LIMSEQ inverse real of nat)

hence (λn. a / of nat (Suc n)) −−−−→ 0
by (subst tendsto norm zero iff [symmetric]) (simp add : norm divide del : of nat Suc)
hence ?f −−−−→ inverse (0 − 1 )
by (intro tendsto inverse tendsto diff LIMSEQ n over Suc n) simp all

thus ?f −−−−→ −1 by simp
qed

lemma conv radius gchoose:
fixes a :: ′a :: {real normed field ,banach}
shows conv radius (λn. a gchoose n) = (if a ∈ IN then ∞ else 1 )

proof (cases a ∈ IN)
assume a: a ∈ IN
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have eventually (λn. (a gchoose n) = 0 ) sequentially
using eventually gt at top[of nat bnorm ac]
by eventually elim (insert a, auto elim!: Nats cases simp: binomial gbinomial [symmetric])
from conv radius cong ′[OF this] a show ?thesis by simp

next
assume a: a /∈ IN
from tendsto norm[OF gbinomial ratio limit [OF this]]
have conv radius (λn. a gchoose n) = 1
by (intro conv radius ratio limit nonzero[of 1 ]) (simp all add : norm divide)

with a show ?thesis by simp
qed

theorem gen binomial complex :
fixes z :: complex
assumes norm z < 1
shows (λn. (a gchoose n) ∗ zˆn) sums (1 + z ) powr a

proof −
define K where K = 1 − (1 − norm z ) / 2
from assms have K : K > 0 K < 1 norm z < K

unfolding K def by (auto simp: field simps intro!: add pos nonneg)
let ?f = λn. a gchoose n and ?f ′ = diffs (λn. a gchoose n)
have summable strong : summable (λn. ?f n ∗ z ˆ n) if norm z < 1 for z using

that
by (intro summable in conv radius) (simp all add : conv radius gchoose)

with K have summable: summable (λn. ?f n ∗ z ˆ n) if norm z < K for z
using that by auto
hence summable ′: summable (λn. ?f ′ n ∗ z ˆ n) if norm z < K for z using

that
by (intro termdiff converges[of K ]) simp all

define f f ′ where [abs def ]: f z = (
∑

n. ?f n ∗ z ˆ n) f ′ z = (
∑

n. ?f ′ n ∗ z ˆ
n) for z
{
fix z :: complex assume z : norm z < K
from summable mult2 [OF summable ′[OF z ], of z ]
have summable1 : summable (λn. ?f ′ n ∗ z ˆ Suc n) by (simp add : mult ac)

hence summable2 : summable (λn. of nat n ∗ ?f n ∗ zˆn)
unfolding diffs def by (subst (asm) summable Suc iff )

have (1 + z ) ∗ f ′ z = (
∑

n. ?f ′ n ∗ zˆn) + (
∑

n. ?f ′ n ∗ zˆSuc n)
unfolding f f ′ def using summable ′ z by (simp add : algebra simps sum-

inf mult)
also have (

∑
n. ?f ′ n ∗ zˆn) = (

∑
n. of nat (Suc n) ∗ ?f (Suc n) ∗ zˆn)

by (intro suminf cong) (simp add : diffs def )
also have (

∑
n. ?f ′ n ∗ zˆSuc n) = (

∑
n. of nat n ∗ ?f n ∗ z ˆ n)

using summable1 suminf split initial segment [OF summable1 ] unfolding
diffs def

by (subst suminf split head , subst (asm) summable Suc iff ) simp all
also have (

∑
n. of nat (Suc n) ∗ ?f (Suc n) ∗ zˆn) + (

∑
n. of nat n ∗ ?f n
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∗ zˆn) =
(
∑

n. a ∗ ?f n ∗ zˆn)
by (subst gbinomial mult 1 , subst suminf add)

(insert summable ′[OF z ] summable2 ,
simp all add : summable powser split head algebra simps diffs def )

also have . . . = a ∗ f z unfolding f f ′ def
by (subst suminf mult [symmetric]) (simp all add : summable[OF z ] mult ac)

finally have a ∗ f z = (1 + z ) ∗ f ′ z by simp
} note deriv = this

have [derivative intros]: (f has field derivative f ′ z ) (at z ) if norm z < of real K
for z

unfolding f f ′ def using K that
by (intro termdiffs strong [of ?f K z ] summable strong) simp all

have f 0 = (
∑

n. if n = 0 then 1 else 0 ) unfolding f f ′ def by (intro sum-
inf cong) simp
also have . . . = 1 using sums single[of 0 λ . 1 ::complex ] unfolding sums iff

by simp
finally have [simp]: f 0 = 1 .

have ∃ c. ∀ z∈ball 0 K . f z ∗ (1 + z ) powr (−a) = c
proof (rule has field derivative zero constant)
fix z :: complex assume z ′: z ∈ ball 0 K
hence z : norm z < K by simp
with K have nz : 1 + z 6= 0 by (auto dest !: minus unique)
from z K have norm z < 1 by simp
hence (1 + z ) /∈ IR≤0 by (cases z ) (auto simp: Complex eq complex nonpos Reals iff )
hence ((λz . f z ∗ (1 + z ) powr (−a)) has field derivative

f ′ z ∗ (1 + z ) powr (−a) − a ∗ f z ∗ (1 + z ) powr (−a−1 )) (at z )
using z

by (auto intro!: derivative eq intros)
also from z have a ∗ f z = (1 + z ) ∗ f ′ z by (rule deriv)
finally show ((λz . f z ∗ (1 + z ) powr (−a)) has field derivative 0 ) (at z within

ball 0 K )
using nz by (simp add : field simps powr diff at within open[OF z ′])

qed simp all
then obtain c where c:

∧
z . z ∈ ball 0 K =⇒ f z ∗ (1 + z ) powr (−a) = c by

blast
from c[of 0 ] and K have c = 1 by simp
with c[of z ] have f z = (1 + z ) powr a using K
by (simp add : powr minus field simps dist complex def )

with summable K show ?thesis unfolding f f ′ def by (simp add : sums iff )
qed

lemma gen binomial complex ′:
fixes x y :: real and a :: complex
assumes |x | < |y |
shows (λn. (a gchoose n) ∗ of real xˆn ∗ of real y powr (a − of nat n)) sums

of real (x + y) powr a (is ?P x y)
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proof −
{
fix x y :: real assume xy : |x | < |y | y ≥ 0
hence y > 0 by simp
note xy = xy this
from xy have (λn. (a gchoose n) ∗ of real (x / y) ˆ n) sums (1 + of real (x

/ y)) powr a
by (intro gen binomial complex ) (simp add : norm divide)

hence (λn. (a gchoose n) ∗ of real (x / y) ˆ n ∗ y powr a) sums
((1 + of real (x / y)) powr a ∗ y powr a)

by (rule sums mult2 )
also have (1 + complex of real (x / y)) = complex of real (1 + x/y) by simp
also from xy have . . . powr a ∗ of real y powr a = (. . . ∗ y) powr a
by (subst powr times real [symmetric]) (simp all add : field simps)

also from xy have complex of real (1 + x / y) ∗ complex of real y = of real
(x + y)

by (simp add : field simps)
finally have ?P x y using xy by (simp add : field simps powr diff powr nat)

} note A = this

show ?thesis
proof (cases y < 0 )
assume y : y < 0
with assms have xy : x + y < 0 by simp
with assms have |−x | < |−y | −y ≥ 0 by simp all
note A[OF this]
also have complex of real (−x + −y) = − complex of real (x + y) by simp
also from xy assms have ... powr a = (−1 ) powr −a ∗ of real (x + y) powr a
by (subst powr neg real complex ) (simp add : abs real def split : if split asm)

also {
fix n :: nat
from y have (a gchoose n) ∗ of real (−x ) ˆ n ∗ of real (−y) powr (a −

of nat n) =
(a gchoose n) ∗ (−of real x / −of real y) ˆ n ∗ (− of real y)

powr a
by (subst power divide) (simp add : powr diff powr nat)

also from y have (− of real y) powr a = (−1 ) powr −a ∗ of real y powr a
by (subst powr neg real complex ) simp
also have −complex of real x / −complex of real y = complex of real x /

complex of real y
by simp

also have ... ˆ n = of real x ˆ n / of real y ˆ n by (simp add : power divide)
also have (a gchoose n) ∗ ... ∗ ((−1 ) powr −a ∗ of real y powr a) =

(−1 ) powr −a ∗ ((a gchoose n) ∗ of real x ˆ n ∗ of real y powr (a
− n))

by (simp add : algebra simps powr diff powr nat)
finally have (a gchoose n) ∗ of real (− x ) ˆ n ∗ of real (− y) powr (a −

of nat n) =
(−1 ) powr −a ∗ ((a gchoose n) ∗ of real x ˆ n ∗ of real y powr
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(a − of nat n)) .
}
note sums cong [OF this]
finally show ?thesis by (simp add : sums mult iff )

qed (insert A[of x y ] assms, simp all add : not less)
qed

lemma gen binomial complex ′′:
fixes x y :: real and a :: complex
assumes |y | < |x |
shows (λn. (a gchoose n) ∗ of real x powr (a − of nat n) ∗ of real y ˆ n) sums

of real (x + y) powr a
using gen binomial complex ′[OF assms] by (simp add : mult ac add .commute)

lemma gen binomial real :
fixes z :: real
assumes |z | < 1
shows (λn. (a gchoose n) ∗ zˆn) sums (1 + z ) powr a

proof −
from assms have norm (of real z :: complex ) < 1 by simp
from gen binomial complex [OF this]
have (λn. (of real a gchoose n :: complex ) ∗ of real z ˆ n) sums

(of real (1 + z )) powr (of real a) by simp
also have (of real (1 + z ) :: complex ) powr (of real a) = of real ((1 + z ) powr

a)
using assms by (subst powr of real) simp all

also have (of real a gchoose n :: complex ) = of real (a gchoose n) for n
by (simp add : gbinomial prod rev)

hence (λn. (of real a gchoose n :: complex ) ∗ of real z ˆ n) =
(λn. of real ((a gchoose n) ∗ z ˆ n)) by (intro ext) simp

finally show ?thesis by (simp only : sums of real iff )
qed

lemma gen binomial real ′:
fixes x y a :: real
assumes |x | < y
shows (λn. (a gchoose n) ∗ xˆn ∗ y powr (a − of nat n)) sums (x + y) powr a

proof −
from assms have y > 0 by simp
note xy = this assms
from assms have |x / y | < 1 by simp
hence (λn. (a gchoose n) ∗ (x / y) ˆ n) sums (1 + x / y) powr a
by (rule gen binomial real)

hence (λn. (a gchoose n) ∗ (x / y) ˆ n ∗ y powr a) sums ((1 + x / y) powr a
∗ y powr a)

by (rule sums mult2 )
with xy show ?thesis
by (simp add : field simps powr divide powr diff powr realpow)

qed
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lemma one plus neg powr powser :
fixes z s :: complex
assumes norm (z :: complex ) < 1
shows (λn. (−1 )ˆn ∗ ((s + n − 1 ) gchoose n) ∗ zˆn) sums (1 + z ) powr (−s)
using gen binomial complex [OF assms, of −s] by (simp add : gbinomial minus)

lemma gen binomial real ′′:
fixes x y a :: real
assumes |y | < x
shows (λn. (a gchoose n) ∗ x powr (a − of nat n) ∗ yˆn) sums (x + y) powr a
using gen binomial real ′[OF assms] by (simp add : mult ac add .commute)

lemma sqrt series ′:
|z | < a =⇒ (λn. ((1/2 ) gchoose n) ∗ a powr (1/2 − real of nat n) ∗ z ˆ n) sums

sqrt (a + z :: real)
using gen binomial real ′′[of z a 1/2 ] by (simp add : powr half sqrt)

lemma sqrt series:
|z | < 1 =⇒ (λn. ((1/2 ) gchoose n) ∗ z ˆ n) sums sqrt (1 + z )
using gen binomial real [of z 1/2 ] by (simp add : powr half sqrt)

end

6.45 Vitali Covering Theorem and an Application
to Negligibility

theory Vitali Covering Theorem
imports Equivalence Lebesgue Henstock Integration HOL−Library .Permutations

begin

lemma stretch Galois:
fixes x :: realˆ ′n
shows (

∧
k . m k 6= 0 ) =⇒ ((y = (χ k . m k ∗ x$k)) ←→ (χ k . y$k / m k) = x )

by auto

lemma lambda swap Galois:
(x = (χ i . y $ Fun.swap m n id i) ←→ (χ i . x $ Fun.swap m n id i) = y)
by (auto; simp add : pointfree idE vec eq iff )

lemma lambda add Galois:
fixes x :: realˆ ′n
shows m 6= n =⇒ (x = (χ i . if i = m then y$m + y$n else y$i) ←→ (χ i . if i

= m then x$m − x$n else x$i) = y)
by (safe; simp add : vec eq iff )
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lemma Vitali covering lemma cballs balls:
fixes a :: ′a ⇒ ′b::euclidean space
assumes

∧
i . i ∈ K =⇒ 0 < r i ∧ r i ≤ B

obtains C where countable C C ⊆ K
pairwise (λi j . disjnt (cball (a i) (r i)) (cball (a j ) (r j ))) C∧
i . i ∈ K =⇒ ∃ j . j ∈ C ∧

¬ disjnt (cball (a i) (r i)) (cball (a j ) (r j )) ∧
cball (a i) (r i) ⊆ ball (a j ) (5 ∗ r j )

proof (cases K = {})
case True
with that show ?thesis
by auto

next
case False
then have B > 0
using assms less le trans by auto

have rgt0 [simp]:
∧
i . i ∈ K =⇒ 0 < r i

using assms by auto
let ?djnt = pairwise (λi j . disjnt (cball (a i) (r i)) (cball (a j ) (r j )))
have ∃C . ∀n. (C n ⊆ K ∧

(∀ i ∈ C n. B/2 ˆ n ≤ r i) ∧ ?djnt (C n) ∧
(∀ i ∈ K . B/2 ˆ n < r i
−→ (∃ j . j ∈ C n ∧

¬ disjnt (cball (a i) (r i)) (cball (a j ) (r j )) ∧
cball (a i) (r i) ⊆ ball (a j ) (5 ∗ r j )))) ∧ (C n ⊆ C (Suc n))

proof (rule dependent nat choice, safe)
fix C n
define D where D ≡ {i ∈ K . B/2 ˆ Suc n < r i ∧ (∀ j∈C . disjnt (cball(a

i)(r i)) (cball (a j ) (r j )))}
let ?cover ar = λi j . ¬ disjnt (cball (a i) (r i)) (cball (a j ) (r j )) ∧

cball (a i) (r i) ⊆ ball (a j ) (5 ∗ r j )
assume C ⊆ K
and Ble: ∀ i∈C . B/2 ˆ n ≤ r i
and djntC : ?djnt C
and cov n: ∀ i∈K . B/2 ˆ n < r i −→ (∃ j . j ∈ C ∧ ?cover ar i j )

have ∗: ∀C∈chains {C . C ⊆ D ∧ ?djnt C}.
⋃

C ∈ {C . C ⊆ D ∧ ?djnt C}
proof (clarsimp simp: chains def )
fix C
assume C : C ⊆ {C . C ⊆ D ∧ ?djnt C} and chain⊆ C
show

⋃
C ⊆ D ∧ ?djnt (

⋃
C )

unfolding pairwise def
proof (intro ballI conjI impI )
show

⋃
C ⊆ D

using C by blast
next
fix x y
assume x ∈

⋃
C and y ∈

⋃
C and x 6= y

then obtain X Y where XY : x ∈ X X ∈ C y ∈ Y Y ∈ C
by blast
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then consider X ⊆ Y | Y ⊆ X
by (meson 〈chain⊆ C 〉 chain subset def )

then show disjnt (cball (a x ) (r x )) (cball (a y) (r y))
proof cases
case 1
with C XY 〈x 6= y〉 show ?thesis
unfolding pairwise def by blast

next
case 2
with C XY 〈x 6= y〉 show ?thesis
unfolding pairwise def by blast

qed
qed

qed
obtain E where E ⊆ D and djntE : ?djnt E and maximalE :

∧
X . [[X ⊆ D ;

?djnt X ; E ⊆ X ]] =⇒ X = E
using Zorn Lemma [OF ∗] by safe blast

show ∃L. (L ⊆ K ∧
(∀ i∈L. B/2 ˆ Suc n ≤ r i) ∧ ?djnt L ∧
(∀ i∈K . B/2 ˆ Suc n < r i −→ (∃ j . j ∈ L ∧ ?cover ar i j ))) ∧ C ⊆ L

proof (intro exI conjI ballI )
show C ∪ E ⊆ K
using D def 〈C ⊆ K 〉 〈E ⊆ D 〉 by blast

show B/2 ˆ Suc n ≤ r i if i : i ∈ C ∪ E for i
using i

proof
assume i ∈ C
have B/2 ˆ Suc n ≤ B/2 ˆ n
using 〈B > 0 〉 by (simp add : field split simps)

also have . . . ≤ r i
using Ble 〈i ∈ C 〉 by blast

finally show ?thesis .
qed (use D def 〈E ⊆ D 〉 in auto)
show ?djnt (C ∪ E )
using D def 〈C ⊆ K 〉 〈E ⊆ D 〉 djntC djntE
unfolding pairwise def disjnt def by blast

next
fix i
assume i ∈ K
show B/2 ˆ Suc n < r i −→ (∃ j . j ∈ C ∪ E ∧ ?cover ar i j )
proof (cases r i ≤ B/2ˆn)
case False
then show ?thesis
using cov n 〈i ∈ K 〉 by auto

next
case True
have cball (a i) (r i) ⊆ ball (a j ) (5 ∗ r j )
if less: B/2 ˆ Suc n < r i and j : j ∈ C ∪ E
and nondis: ¬ disjnt (cball (a i) (r i)) (cball (a j ) (r j )) for j
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proof −
obtain x where x : dist (a i) x ≤ r i dist (a j ) x ≤ r j
using nondis by (force simp: disjnt def )

have dist (a i) (a j ) ≤ dist (a i) x + dist x (a j )
by (simp add : dist triangle)

also have . . . ≤ r i + r j
by (metis add mono thms linordered semiring(1 ) dist commute x )

finally have aij : dist (a i) (a j ) + r i < 5 ∗ r j if r i < 2 ∗ r j
using that by auto

show ?thesis
using j

proof
assume j ∈ C
have B/2ˆn < 2 ∗ r j
using Ble True 〈j ∈ C 〉 less by auto

with aij True show cball (a i) (r i) ⊆ ball (a j ) (5 ∗ r j )
by (simp add : cball subset ball iff )

next
assume j ∈ E
then have B/2 ˆ n < 2 ∗ r j
using D def 〈E ⊆ D 〉 by auto

with True have r i < 2 ∗ r j
by auto

with aij show cball (a i) (r i) ⊆ ball (a j ) (5 ∗ r j )
by (simp add : cball subset ball iff )

qed
qed

moreover have ∃ j . j ∈ C ∪ E ∧ ¬ disjnt (cball (a i) (r i)) (cball (a j ) (r
j ))

if B/2 ˆ Suc n < r i
proof (rule classical)
assume NON : ¬ ?thesis
show ?thesis
proof (cases i ∈ D)
case True
have insert i E = E
proof (rule maximalE )
show insert i E ⊆ D
by (simp add : True 〈E ⊆ D 〉)

show pairwise (λi j . disjnt (cball (a i) (r i)) (cball (a j ) (r j ))) (insert
i E )

using False NON by (auto simp: pairwise insert djntE disjnt sym)
qed auto
then show ?thesis
using 〈i ∈ K 〉 assms by fastforce

next
case False
with that show ?thesis
by (auto simp: D def disjnt def 〈i ∈ K 〉)
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qed
qed
ultimately
show B/2 ˆ Suc n < r i −→

(∃ j . j ∈ C ∪ E ∧
¬ disjnt (cball (a i) (r i)) (cball (a j ) (r j )) ∧
cball (a i) (r i) ⊆ ball (a j ) (5 ∗ r j ))

by blast
qed

qed auto
qed (use assms in force)
then obtain F where FK :

∧
n. F n ⊆ K

and Fle:
∧
n i . i ∈ F n =⇒ B/2 ˆ n ≤ r i

and Fdjnt :
∧
n. ?djnt (F n)

and FF :
∧
n i . [[i ∈ K ; B/2 ˆ n < r i ]]

=⇒ ∃ j . j ∈ F n ∧ ¬ disjnt (cball (a i) (r i)) (cball (a j ) (r j ))
∧

cball (a i) (r i) ⊆ ball (a j ) (5 ∗ r j )
and inc:

∧
n. F n ⊆ F (Suc n)

by (force simp: all conj distrib)
show thesis
proof
have ∗: countable I
if I ⊆ K and pw : pairwise (λi j . disjnt (cball (a i) (r i)) (cball (a j ) (r j )))

I for I
proof −
show ?thesis
proof (rule countable image inj on [of λi . cball(a i)(r i)])
show countable ((λi . cball (a i) (r i)) ‘ I )
proof (rule countable disjoint nonempty interior subsets)
show disjoint ((λi . cball (a i) (r i)) ‘ I )
by (auto simp: dest : pairwiseD [OF pw ] intro: pairwise imageI )

show
∧
S . [[S ∈ (λi . cball (a i) (r i)) ‘ I ; interior S = {}]] =⇒ S = {}

using 〈I ⊆ K 〉

by (auto simp: not less [symmetric])
qed

next
have

∧
x y . [[x ∈ I ; y ∈ I ; a x = a y ; r x = r y ]] =⇒ x = y

using pw 〈I ⊆ K 〉 assms
apply (clarsimp simp: pairwise def disjnt def )
by (metis assms centre in cball subsetD empty iff inf .idem less eq real def )
then show inj on (λi . cball (a i) (r i)) I
using 〈I ⊆ K 〉 by (fastforce simp: inj on def cball eq cball iff dest : assms)

qed
qed
show (Union(range F )) ⊆ K
using FK by blast
moreover show pairwise (λi j . disjnt (cball (a i) (r i)) (cball (a j ) (r j )))

(Union(range F ))
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proof (rule pairwise chain Union)
show chain⊆ (range F )

unfolding chain subset def by clarify (meson inc lift Suc mono le linear
subsetCE )

qed (use Fdjnt in blast)
ultimately show countable (Union(range F ))
by (blast intro: ∗)

next
fix i assume i ∈ K
then obtain n where (1/2 ) ˆ n < r i / B
using 〈B > 0 〉 assms real arch pow inv by fastforce

then have B2 : B/2 ˆ n < r i
using 〈B > 0 〉 by (simp add : field split simps)

have 0 < r i r i ≤ B
by (auto simp: 〈i ∈ K 〉 assms)

show ∃ j . j ∈ (Union(range F )) ∧
¬ disjnt (cball (a i) (r i)) (cball (a j ) (r j )) ∧
cball (a i) (r i) ⊆ ball (a j ) (5 ∗ r j )

using FF [OF 〈i ∈ K 〉 B2 ] by auto
qed

qed

6.45.1 Vitali covering theorem

lemma Vitali covering lemma cballs:
fixes a :: ′a ⇒ ′b::euclidean space
assumes S : S ⊆ (

⋃
i∈K . cball (a i) (r i))

and r :
∧
i . i ∈ K =⇒ 0 < r i ∧ r i ≤ B

obtains C where countable C C ⊆ K
pairwise (λi j . disjnt (cball (a i) (r i)) (cball (a j ) (r j ))) C
S ⊆ (

⋃
i∈C . cball (a i) (5 ∗ r i))

proof −
obtain C where C : countable C C ⊆ K

pairwise (λi j . disjnt (cball (a i) (r i)) (cball (a j ) (r j ))) C
and cov :

∧
i . i ∈ K =⇒ ∃ j . j ∈ C ∧ ¬ disjnt (cball (a i) (r i)) (cball (a

j ) (r j )) ∧
cball (a i) (r i) ⊆ ball (a j ) (5 ∗ r j )

by (rule Vitali covering lemma cballs balls [OF r , where a=a]) (blast intro:
that)+
show ?thesis
proof
have (

⋃
i∈K . cball (a i) (r i)) ⊆ (

⋃
i∈C . cball (a i) (5 ∗ r i))

using cov subset iff by fastforce
with S show S ⊆ (

⋃
i∈C . cball (a i) (5 ∗ r i))

by blast
qed (use C in auto)

qed

lemma Vitali covering lemma balls:
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fixes a :: ′a ⇒ ′b::euclidean space
assumes S : S ⊆ (

⋃
i∈K . ball (a i) (r i))

and r :
∧
i . i ∈ K =⇒ 0 < r i ∧ r i ≤ B

obtains C where countable C C ⊆ K
pairwise (λi j . disjnt (ball (a i) (r i)) (ball (a j ) (r j ))) C
S ⊆ (

⋃
i∈C . ball (a i) (5 ∗ r i))

proof −
obtain C where C : countable C C ⊆ K

and pw : pairwise (λi j . disjnt (cball (a i) (r i)) (cball (a j ) (r j ))) C
and cov :

∧
i . i ∈ K =⇒ ∃ j . j ∈ C ∧ ¬ disjnt (cball (a i) (r i)) (cball (a

j ) (r j )) ∧
cball (a i) (r i) ⊆ ball (a j ) (5 ∗ r j )

by (rule Vitali covering lemma cballs balls [OF r , where a=a]) (blast intro:
that)+
show ?thesis
proof
have (

⋃
i∈K . ball (a i) (r i)) ⊆ (

⋃
i∈C . ball (a i) (5 ∗ r i))

using cov subset iff
by clarsimp (meson less imp le mem ball mem cball subset eq)

with S show S ⊆ (
⋃
i∈C . ball (a i) (5 ∗ r i))

by blast
show pairwise (λi j . disjnt (ball (a i) (r i)) (ball (a j ) (r j ))) C
using pw
by (clarsimp simp: pairwise def ) (meson ball subset cball disjnt subset1 dis-

jnt subset2 )
qed (use C in auto)

qed

theorem Vitali covering theorem cballs:
fixes a :: ′a ⇒ ′n::euclidean space
assumes r :

∧
i . i ∈ K =⇒ 0 < r i

and S :
∧
x d . [[x ∈ S ; 0 < d ]]

=⇒ ∃ i . i ∈ K ∧ x ∈ cball (a i) (r i) ∧ r i < d
obtains C where countable C C ⊆ K

pairwise (λi j . disjnt (cball (a i) (r i)) (cball (a j ) (r j ))) C
negligible(S − (

⋃
i ∈ C . cball (a i) (r i)))

proof −
let ?µ = measure lebesgue
have ∗: ∃C . countable C ∧ C ⊆ K ∧

pairwise (λi j . disjnt (cball (a i) (r i)) (cball (a j ) (r j ))) C ∧
negligible(S − (

⋃
i ∈ C . cball (a i) (r i)))

if r01 :
∧
i . i ∈ K =⇒ 0 < r i ∧ r i ≤ 1

and Sd :
∧
x d . [[x ∈ S ; 0 < d ]] =⇒ ∃ i . i ∈ K ∧ x ∈ cball (a i) (r i) ∧ r i

< d
for K r and a :: ′a ⇒ ′n

proof −
obtain C where C : countable C C ⊆ K
and pwC : pairwise (λi j . disjnt (cball (a i) (r i)) (cball (a j ) (r j ))) C
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and cov :
∧
i . i ∈ K =⇒ ∃ j . j ∈ C ∧ ¬ disjnt (cball (a i) (r i)) (cball (a j )

(r j )) ∧
cball (a i) (r i) ⊆ ball (a j ) (5 ∗ r j )

by (rule Vitali covering lemma cballs balls [of K r 1 a]) (auto simp: r01 )
have ar injective:

∧
x y . [[x ∈ C ; y ∈ C ; a x = a y ; r x = r y ]] =⇒ x = y

using 〈C ⊆ K 〉 pwC cov
by (force simp: pairwise def disjnt def )

show ?thesis
proof (intro exI conjI )
show negligible (S − (

⋃
i∈C . cball (a i) (r i)))

proof (clarsimp simp: negligible on intervals [of S−T for T ])
fix l u
show negligible ((S − (

⋃
i∈C . cball (a i) (r i))) ∩ cbox l u)

unfolding negligible outer le
proof (intro allI impI )
fix e::real
assume e > 0
define D where D ≡ {i ∈ C . ¬ disjnt (ball(a i) (5 ∗ r i)) (cbox l u)}
then have D ⊆ C
by auto

have countable D
unfolding D def using 〈countable C 〉 by simp

have UD : (
⋃
i∈D . cball (a i) (r i)) ∈ lmeasurable

proof (rule fmeasurableI2 )
show cbox (l − 6 ∗R One) (u + 6 ∗R One) ∈ lmeasurable
by blast

have y ∈ cbox (l − 6 ∗R One) (u + 6 ∗R One)
if i ∈ C and x : x ∈ cbox l u and ai : dist (a i) y ≤ r i dist (a i) x <

5 ∗ r i
for i x y

proof −
have d6 : dist y x < 6 ∗ r i
using dist triangle3 [of y x a i ] that by linarith

show ?thesis
proof (clarsimp simp: mem box algebra simps)
fix j :: ′n
assume j : j ∈ Basis
then have xyj : |x · j − y · j | ≤ dist y x
by (metis Basis le norm dist commute dist norm inner diff left)

have l · j ≤ x · j
using 〈j ∈ Basis〉 mem box 〈x ∈ cbox l u〉 by blast

also have . . . ≤ y · j + 6 ∗ r i
using d6 xyj by (auto simp: algebra simps)

also have . . . ≤ y · j + 6
using r01 [of i ] 〈C ⊆ K 〉 〈i ∈ C 〉 by auto

finally have l : l · j ≤ y · j + 6 .
have y · j ≤ x · j + 6 ∗ r i
using d6 xyj by (auto simp: algebra simps)

also have . . . ≤ u · j + 6 ∗ r i
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using j x by (auto simp: mem box )
also have . . . ≤ u · j + 6
using r01 [of i ] 〈C ⊆ K 〉 〈i ∈ C 〉 by auto

finally have u: y · j ≤ u · j + 6 .
show l · j ≤ y · j + 6 ∧ y · j ≤ u · j + 6
using l u by blast

qed
qed
then show (

⋃
i∈D . cball (a i) (r i)) ⊆ cbox (l − 6 ∗R One) (u + 6 ∗R

One)
by (force simp: D def disjnt def )

show (
⋃
i∈D . cball (a i) (r i)) ∈ sets lebesgue

using 〈countable D 〉 by auto
qed
obtain D1 where D1 ⊆ D finite D1

and measD1 : ?µ (
⋃

i∈D . cball (a i) (r i)) − e / 5 ˆ DIM ( ′n) < ?µ
(
⋃
i∈D1 . cball (a i) (r i))

proof (rule measure countable Union approachable [where e = e / 5 ˆ
(DIM ( ′n))])

show countable ((λi . cball (a i) (r i)) ‘ D)
using 〈countable D 〉 by auto

show
∧
d . d ∈ (λi . cball (a i) (r i)) ‘ D =⇒ d ∈ lmeasurable

by auto
show

∧
D ′. [[D ′ ⊆ (λi . cball (a i) (r i)) ‘ D ; finite D ′]] =⇒ ?µ (

⋃
D ′) ≤

?µ (
⋃
i∈D . cball (a i) (r i))

by (fastforce simp add : intro!: measure mono fmeasurable UD)
qed (use 〈e > 0 〉 in 〈auto dest : finite subset image〉)
show ∃T . (S − (

⋃
i∈C . cball (a i) (r i))) ∩

cbox l u ⊆ T ∧ T ∈ lmeasurable ∧ ?µ T ≤ e
proof (intro exI conjI )
show (S − (

⋃
i∈C . cball (a i) (r i))) ∩ cbox l u ⊆ (

⋃
i∈D − D1 . ball

(a i) (5 ∗ r i))
proof clarify
fix x
assume x : x ∈ cbox l u x ∈ S x /∈ (

⋃
i∈C . cball (a i) (r i))

have closed (
⋃

i∈D1 . cball (a i) (r i))
using 〈finite D1 〉 by blast

moreover have x /∈ (
⋃

j∈D1 . cball (a j ) (r j ))
using x 〈D1 ⊆ D 〉 unfolding D def by blast
ultimately obtain q where q > 0 and q : ball x q ⊆ − (

⋃
i∈D1 .

cball (a i) (r i))
by (metis (no types, lifting) ComplI open contains ball closed def )

obtain i where i ∈ K and xi : x ∈ cball (a i) (r i) and ri : r i < q/2
using Sd [OF 〈x ∈ S 〉] 〈q > 0 〉 half gt zero by blast

then obtain j where j ∈ C
and nondisj : ¬ disjnt (cball (a i) (r i)) (cball (a j ) (r j ))
and sub5j : cball (a i) (r i) ⊆ ball (a j ) (5 ∗ r j )

using cov [OF 〈i ∈ K 〉] by metis
show x ∈ (

⋃
i∈D − D1 . ball (a i) (5 ∗ r i))
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proof
show j ∈ D − D1
proof
show j ∈ D

using 〈j ∈ C 〉 sub5j 〈x ∈ cbox l u〉 xi by (auto simp: D def
disjnt def )

obtain y where yi : dist (a i) y ≤ r i and yj : dist (a j ) y ≤ r j
using disjnt def nondisj by fastforce

have dist x y ≤ r i + r i
by (metis add mono dist commute dist triangle le mem cball xi yi)
also have . . . < q
using ri by linarith

finally have y ∈ ball x q
by simp

with yj q show j /∈ D1
by (auto simp: disjoint UN iff )

qed
show x ∈ ball (a j ) (5 ∗ r j )
using xi sub5j by blast

qed
qed
have 3 : ?µ (

⋃
i∈D2 . ball (a i) (5 ∗ r i)) ≤ e

if D2 : D2 ⊆ D − D1 and finite D2 for D2
proof −
have rgt0 : 0 < r i if i ∈ D2 for i
using 〈C ⊆ K 〉 D def 〈i ∈ D2 〉 D2 r01
by (simp add : subset iff )

then have inj : inj on (λi . ball (a i) (5 ∗ r i)) D2
using 〈C ⊆ K 〉 D2 by (fastforce simp: inj on def D def ball eq ball iff

intro: ar injective)
have ?µ (

⋃
i∈D2 . ball (a i) (5 ∗ r i)) ≤ sum (?µ) ((λi . ball (a i) (5

∗ r i)) ‘ D2 )
using that by (force intro: measure Union le)

also have . . . = (
∑

i∈D2 . ?µ (ball (a i) (5 ∗ r i)))
by (simp add : comm monoid add class.sum.reindex [OF inj ])

also have . . . = (
∑

i∈D2 . 5 ˆ DIM ( ′n) ∗ ?µ (ball (a i) (r i)))
proof (rule sum.cong [OF refl ])
fix i assume i ∈ D2
thus ?µ (ball (a i) (5 ∗ r i)) = 5 ˆ DIM ( ′n) ∗ ?µ (ball (a i) (r i))
using content ball conv unit ball [of 5 ∗ r i a i ]

content ball conv unit ball [of r i a i ] rgt0 [of i ] by auto
qed
also have . . . = (

∑
i∈D2 . ?µ (ball (a i) (r i))) ∗ 5 ˆ DIM ( ′n)

by (simp add : sum distrib left mult .commute)
finally have ?µ (

⋃
i∈D2 . ball (a i) (5 ∗ r i)) ≤ (

∑
i∈D2 . ?µ (ball (a

i) (r i))) ∗ 5 ˆ DIM ( ′n) .
moreover have (

∑
i∈D2 . ?µ (ball (a i) (r i))) ≤ e / 5 ˆ DIM ( ′n)

proof −
have D12 dis: ((

⋃
x∈D1 . cball (a x ) (r x )) ∩ (

⋃
x∈D2 . cball (a x )
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(r x ))) ≤ {}
proof clarify
fix w d1 d2
assume d1 ∈ D1 w d1 d2 ∈ cball (a d1 ) (r d1 ) d2 ∈ D2 w d1 d2

∈ cball (a d2 ) (r d2 )
then show w d1 d2 ∈ {}
by (metis DiffE disjnt iff subsetCE D2 〈D1 ⊆ D 〉 〈D ⊆ C 〉 pairwiseD

[OF pwC , of d1 d2 ])
qed
have inj : inj on (λi . cball (a i) (r i)) D2
using rgt0 D2 〈D ⊆ C 〉 by (force simp: inj on def cball eq cball iff

intro!: ar injective)
have ds: disjoint ((λi . cball (a i) (r i)) ‘ D2 )
using D2 〈D ⊆ C 〉 by (auto intro: pairwiseI pairwiseD [OF pwC ])
have (

∑
i∈D2 . ?µ (ball (a i) (r i))) = (

∑
i∈D2 . ?µ (cball (a i) (r

i)))
by (simp add : content cball conv ball)

also have . . . = sum ?µ ((λi . cball (a i) (r i)) ‘ D2 )
by (simp add : comm monoid add class.sum.reindex [OF inj ])

also have . . . = ?µ (
⋃
i∈D2 . cball (a i) (r i))

by (auto intro: measure Union ′ [symmetric] ds simp add : 〈finite D2 〉)
finally have ?µ (

⋃
i∈D1 . cball (a i) (r i)) + (

∑
i∈D2 . ?µ (ball (a

i) (r i))) =
?µ (

⋃
i∈D1 . cball (a i) (r i)) + ?µ (

⋃
i∈D2 . cball (a i)

(r i))
by simp

also have . . . = ?µ (
⋃
i ∈ D1 ∪ D2 . cball (a i) (r i))

using D12 dis by (simp add : measure Un3 〈finite D1 〉 〈finite D2 〉

fmeasurable.finite UN )
also have . . . ≤ ?µ (

⋃
i∈D . cball (a i) (r i))

using D2 〈D1 ⊆ D 〉 by (fastforce intro!: measure mono fmeasurable
[OF UD ] 〈finite D1 〉 〈finite D2 〉)

finally have ?µ (
⋃

i∈D1 . cball (a i) (r i)) + (
∑

i∈D2 . ?µ (ball (a
i) (r i))) ≤ ?µ (

⋃
i∈D . cball (a i) (r i)) .

with measD1 show ?thesis
by simp

qed
ultimately show ?thesis
by (simp add : field split simps)

qed
have co: countable (D − D1 )
by (simp add : 〈countable D 〉)

show (
⋃
i∈D − D1 . ball (a i) (5 ∗ r i)) ∈ lmeasurable

using 〈e > 0 〉 by (auto simp: fmeasurable UN bound [OF co 3 ])
show ?µ (

⋃
i∈D − D1 . ball (a i) (5 ∗ r i)) ≤ e

using 〈e > 0 〉 by (auto simp: measure UN bound [OF co 3 ])
qed

qed
qed
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qed (use C pwC in auto)
qed
define K ′ where K ′ ≡ {i ∈ K . r i ≤ 1}
have 1 :

∧
i . i ∈ K ′ =⇒ 0 < r i ∧ r i ≤ 1

using K ′ def r by auto
have 2 : ∃ i . i ∈ K ′ ∧ x ∈ cball (a i) (r i) ∧ r i < d
if x ∈ S ∧ 0 < d for x d
using that by (auto simp: K ′ def dest !: S [where d = min d 1 ])

have K ′ ⊆ K
using K ′ def by auto

then show thesis
using ∗ [OF 1 2 ] that by fastforce

qed

theorem Vitali covering theorem balls:
fixes a :: ′a ⇒ ′b::euclidean space
assumes S :

∧
x d . [[x ∈ S ; 0 < d ]] =⇒ ∃ i . i ∈ K ∧ x ∈ ball (a i) (r i) ∧ r i <

d
obtains C where countable C C ⊆ K

pairwise (λi j . disjnt (ball (a i) (r i)) (ball (a j ) (r j ))) C
negligible(S − (

⋃
i ∈ C . ball (a i) (r i)))

proof −
have 1 : ∃ i . i ∈ {i ∈ K . 0 < r i} ∧ x ∈ cball (a i) (r i) ∧ r i < d

if xd : x ∈ S d > 0 for x d
by (metis (mono tags, lifting) assms ball eq empty less eq real def mem Collect eq

mem ball mem cball not le xd(1 ) xd(2 ))
obtain C where C : countable C C ⊆ K

and pw : pairwise (λi j . disjnt (cball (a i) (r i)) (cball (a j ) (r j ))) C
and neg : negligible(S − (

⋃
i ∈ C . cball (a i) (r i)))

by (rule Vitali covering theorem cballs [of {i ∈ K . 0 < r i} r S a, OF 1 ])
auto
show thesis
proof
show pairwise (λi j . disjnt (ball (a i) (r i)) (ball (a j ) (r j ))) C
apply (rule pairwise mono [OF pw ])
apply (auto simp: disjnt def )
by (meson disjoint iff not equal less imp le mem cball)

have negligible (
⋃
i∈C . sphere (a i) (r i))

by (auto intro: negligible sphere 〈countable C 〉)
then have negligible (S − (

⋃
i ∈ C . cball(a i)(r i)) ∪ (

⋃
i ∈ C . sphere (a i)

(r i)))
by (rule negligible Un [OF neg ])

then show negligible (S − (
⋃
i∈C . ball (a i) (r i)))

by (rule negligible subset) force
qed (use C in auto)

qed
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lemma negligible eq zero density alt :
negligible S ←→
(∀ x ∈ S . ∀ e > 0 .
∃ d U . 0 < d ∧ d ≤ e ∧ S ∩ ball x d ⊆ U ∧

U ∈ lmeasurable ∧ measure lebesgue U < e ∗ measure lebesgue (ball x
d))

(is = (∀ x ∈ S . ∀ e > 0 . ?Q x e))
proof (intro iffI ballI allI impI )
fix x and e :: real
assume negligible S and x ∈ S and e > 0
then
show ∃ d U . 0 < d ∧ d ≤ e ∧ S ∩ ball x d ⊆ U ∧ U ∈ lmeasurable ∧

measure lebesgue U < e ∗ measure lebesgue (ball x d)
apply (rule tac x=e in exI )
apply (rule tac x=S ∩ ball x e in exI )
apply (auto simp: negligible imp measurable negligible Int negligible imp measure0

zero less measure iff
intro: mult pos pos content ball pos)

done
next
assume R [rule format ]: ∀ x ∈ S . ∀ e > 0 . ?Q x e
let ?µ = measure lebesgue
have ∃U . openin (top of set S ) U ∧ z ∈ U ∧ negligible U
if z ∈ S for z

proof (intro exI conjI )
show openin (top of set S ) (S ∩ ball z 1 )
by (simp add : openin open Int)

show z ∈ S ∩ ball z 1
using 〈z ∈ S 〉 by auto

show negligible (S ∩ ball z 1 )
proof (clarsimp simp: negligible outer le)
fix e :: real
assume e > 0
let ?K = {(x ,d). x ∈ S ∧ 0 < d ∧ ball x d ⊆ ball z 1 ∧

(∃U . S ∩ ball x d ⊆ U ∧ U ∈ lmeasurable ∧
?µ U < e / ?µ (ball z 1 ) ∗ ?µ (ball x d))}

obtain C where countable C and Csub: C ⊆ ?K
and pwC : pairwise (λi j . disjnt (ball (fst i) (snd i)) (ball (fst j ) (snd j ))) C
and negC : negligible((S ∩ ball z 1 ) − (

⋃
i ∈ C . ball (fst i) (snd i)))

proof (rule Vitali covering theorem balls [of S ∩ ball z 1 ?K fst snd ])
fix x and d :: real
assume x : x ∈ S ∩ ball z 1 and d > 0
obtain k where k > 0 and k : ball x k ⊆ ball z 1
by (meson Int iff open ball openE x )

let ?ε = min (e / ?µ (ball z 1 ) / 2 ) (min (d / 2 ) k)
obtain r U where r : r > 0 r ≤ ?ε and U : S ∩ ball x r ⊆ U U ∈ lmeasurable

and mU : ?µ U < ?ε ∗ ?µ (ball x r)
using R [of x ?ε] 〈d > 0 〉 〈e > 0 〉 〈k > 0 〉 x by (auto simp: content ball pos)
show ∃ i . i ∈ ?K ∧ x ∈ ball (fst i) (snd i) ∧ snd i < d



Vitali Covering Theorem.thy 3103

proof (rule exI [of (x ,r)], simp, intro conjI exI )
have ball x r ⊆ ball x k
using r by (simp add : ball subset ball iff )

also have . . . ⊆ ball z 1
using ball subset ball iff k by auto

finally show ball x r ⊆ ball z 1 .
have ?ε ∗ ?µ (ball x r) ≤ e ∗ content (ball x r) / content (ball z 1 )

using r 〈e > 0 〉 by (simp add : ord class.min def field split simps
content ball pos)

with mU show ?µ U < e ∗ content (ball x r) / content (ball z 1 )
by auto

qed (use r U x in auto)
qed
have ∃U . case p of (x ,d) ⇒ S ∩ ball x d ⊆ U ∧

U ∈ lmeasurable ∧ ?µ U < e / ?µ (ball z 1 ) ∗ ?µ (ball x d)
if p ∈ C for p
using that Csub unfolding case prod unfold by blast

then obtain U where U :∧
p. p ∈ C =⇒

case p of (x ,d) ⇒ S ∩ ball x d ⊆ U p ∧
U p ∈ lmeasurable ∧ ?µ (U p) < e / ?µ (ball z 1 ) ∗ ?µ (ball x d)

by (rule that [OF someI ex ])
let ?T = ((S ∩ ball z 1 ) − (

⋃
(x ,d)∈C . ball x d)) ∪

⋃
(U ‘ C )

show ∃T . S ∩ ball z 1 ⊆ T ∧ T ∈ lmeasurable ∧ ?µ T ≤ e
proof (intro exI conjI )
show S ∩ ball z 1 ⊆ ?T
using U by fastforce

{ have Um: U i ∈ lmeasurable if i ∈ C for i
using that U by blast

have lee: ?µ (
⋃

i∈I . U i) ≤ e if I ⊆ C finite I for I
proof −
have ?µ (

⋃
(x ,d)∈I . ball x d) ≤ ?µ (ball z 1 )

apply (rule measure mono fmeasurable)
using 〈I ⊆ C 〉 〈finite I 〉 Csub by (force simp: prod .case eq if

sets.finite UN )+
then have le1 : (?µ (

⋃
(x ,d)∈I . ball x d) / ?µ (ball z 1 )) ≤ 1

by (simp add : content ball pos)
have ?µ (

⋃
i∈I . U i) ≤ (

∑
i∈I . ?µ (U i))

using that U by (blast intro: measure UNION le)
also have . . . ≤ (

∑
(x ,r)∈I . e / ?µ (ball z 1 ) ∗ ?µ (ball x r))

by (rule sum mono) (use 〈I ⊆ C 〉 U in force)
also have . . . = (e / ?µ (ball z 1 )) ∗ (

∑
(x ,r)∈I . ?µ (ball x r))

by (simp add : case prod app prod .case distrib sum distrib left)
also have . . . = e ∗ (?µ (

⋃
(x ,r)∈I . ball x r) / ?µ (ball z 1 ))

apply (subst measure UNION ′)
using that pwC by (auto simp: case prod unfold elim: pairwise mono)

also have . . . ≤ e
by (metis mult .commute mult .left neutral mult le cancel iff1 〈e > 0 〉

le1 )
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finally show ?thesis .
qed
have

⋃
(U ‘ C ) ∈ lmeasurable ?µ (

⋃
(U ‘ C )) ≤ e

using 〈e > 0 〉 Um lee
by(auto intro!: fmeasurable UN bound [OF 〈countable C 〉] measure UN bound

[OF 〈countable C 〉])
}
moreover have ?µ ?T = ?µ (

⋃
(U ‘ C ))

proof (rule measure negligible symdiff [OF 〈
⋃
(U ‘ C ) ∈ lmeasurable〉])

show negligible((
⋃
(U ‘ C ) − ?T ) ∪ (?T −

⋃
(U ‘ C )))

by (force intro!: negligible subset [OF negC ])
qed
ultimately show ?T ∈ lmeasurable ?µ ?T ≤ e
by (simp all add : fmeasurable.Un negC negligible imp measurable split def )

qed
qed

qed
with locally negligible alt show negligible S
by metis

qed

proposition negligible eq zero density :
negligible S ←→
(∀ x∈S . ∀ r>0 . ∀ e>0 . ∃ d . 0 < d ∧ d ≤ r ∧

(∃U . S ∩ ball x d ⊆ U ∧ U ∈ lmeasurable ∧ measure lebesgue U
< e ∗ measure lebesgue (ball x d)))
proof −
let ?Q = λx d e. ∃U . S ∩ ball x d ⊆ U ∧ U ∈ lmeasurable ∧ measure lebesgue

U < e ∗ content (ball x d)
have (∀ e>0 . ∃ d>0 . d ≤ e ∧ ?Q x d e) = (∀ r>0 . ∀ e>0 . ∃ d>0 . d ≤ r ∧ ?Q

x d e)
if x ∈ S for x

proof (intro iffI allI impI )
fix r :: real and e :: real
assume L [rule format ]: ∀ e>0 . ∃ d>0 . d ≤ e ∧ ?Q x d e and r > 0 e > 0
show ∃ d>0 . d ≤ r ∧ ?Q x d e
using L [of min r e] apply (rule ex forward)
using 〈r > 0 〉 〈e > 0 〉 by (auto intro: less le trans elim!: ex forward simp:

content ball pos)
qed auto
then show ?thesis
by (force simp: negligible eq zero density alt)

qed

end

6.46 Change of Variables Theorems

theory Change Of Vars
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imports Vitali Covering Theorem Determinants

begin

6.46.1 Measurable Shear and Stretch

proposition
fixes a :: realˆ ′n
assumes m 6= n and ab ne: cbox a b 6= {} and an: 0 ≤ a$n
shows measurable shear interval : (λx . χ i . if i = m then x$m + x$n else x$i) ‘

(cbox a b) ∈ lmeasurable
(is ?f ‘ ∈ )

and measure shear interval : measure lebesgue ((λx . χ i . if i = m then x$m +
x$n else x$i) ‘ cbox a b)

= measure lebesgue (cbox a b) (is ?Q)
proof −
have lin: linear ?f
by (rule linearI ) (auto simp: plus vec def scaleR vec def algebra simps)

show fab: ?f ‘ cbox a b ∈ lmeasurable
by (simp add : lin measurable linear image interval)

let ?c = χ i . if i = m then b$m + b$n else b$i
let ?mn = axis m 1 − axis n (1 ::real)
have eq1 : measure lebesgue (cbox a ?c)

= measure lebesgue (?f ‘ cbox a b)
+ measure lebesgue (cbox a ?c ∩ {x . ?mn · x ≤ a$m})
+ measure lebesgue (cbox a ?c ∩ {x . ?mn · x ≥ b$m})

proof (rule measure Un3 negligible)
show cbox a ?c ∩ {x . ?mn · x ≤ a$m} ∈ lmeasurable cbox a ?c ∩ {x . ?mn · x

≥ b$m} ∈ lmeasurable
by (auto simp: convex Int convex halfspace le convex halfspace ge bounded Int

measurable convex )
have negligible {x . ?mn · x = a$m}
by (metis 〈m 6= n〉 axis index axis eq iff diff eq 0 negligible hyperplane)

moreover have ?f ‘ cbox a b ∩ (cbox a ?c ∩ {x . ?mn · x ≤ a $ m}) ⊆ {x .
?mn · x = a$m}

using 〈m 6= n〉 antisym conv by (fastforce simp: algebra simps mem box cart
inner axis ′)

ultimately show negligible ((?f ‘ cbox a b) ∩ (cbox a ?c ∩ {x . ?mn · x ≤ a $
m}))

by (rule negligible subset)
have negligible {x . ?mn · x = b$m}
by (metis 〈m 6= n〉 axis index axis eq iff diff eq 0 negligible hyperplane)

moreover have (?f ‘ cbox a b) ∩ (cbox a ?c ∩ {x . ?mn · x ≥ b$m}) ⊆ {x .
?mn · x = b$m}

using 〈m 6= n〉 antisym conv by (fastforce simp: algebra simps mem box cart
inner axis ′)

ultimately show negligible (?f ‘ cbox a b ∩ (cbox a ?c ∩ {x . ?mn · x ≥ b$m}))
by (rule negligible subset)

have negligible {x . ?mn · x = b$m}
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by (metis 〈m 6= n〉 axis index axis eq iff diff eq 0 negligible hyperplane)
moreover have (cbox a ?c ∩ {x . ?mn · x ≤ a $ m} ∩ (cbox a ?c ∩ {x . ?mn

· x ≥ b$m})) ⊆ {x . ?mn · x = b$m}
using 〈m 6= n〉 ab ne
apply (auto simp: algebra simps mem box cart inner axis ′)
apply (drule tac x=m in spec)+
apply simp
done

ultimately show negligible (cbox a ?c ∩ {x . ?mn · x ≤ a $ m} ∩ (cbox a ?c
∩ {x . ?mn · x ≥ b$m}))

by (rule negligible subset)
show ?f ‘ cbox a b ∪ cbox a ?c ∩ {x . ?mn · x ≤ a $ m} ∪ cbox a ?c ∩ {x .

?mn · x ≥ b$m} = cbox a ?c (is ?lhs = )
proof
show ?lhs ⊆ cbox a ?c

by (auto simp: mem box cart add mono) (meson add increasing2 an or-
der trans)

show cbox a ?c ⊆ ?lhs
apply (auto simp: algebra simps image iff inner axis ′ lambda add Galois

[OF 〈m 6= n〉])
apply (auto simp: mem box cart split : if split asm)
done

qed
qed (fact fab)
let ?d = χ i . if i = m then a $ m − b $ m else 0
have eq2 : measure lebesgue (cbox a ?c ∩ {x . ?mn · x ≤ a $ m}) + measure

lebesgue (cbox a ?c ∩ {x . ?mn · x ≥ b$m})
= measure lebesgue (cbox a (χ i . if i = m then a $ m + b $ n else b $ i))

proof (rule measure translate add [of cbox a ?c ∩ {x . ?mn · x ≤ a$m} cbox a ?c
∩ {x . ?mn · x ≥ b$m}

(χ i . if i = m then a$m − b$m else 0 ) cbox a (χ i . if i = m then a$m + b$n
else b$i)])

show (cbox a ?c ∩ {x . ?mn · x ≤ a$m}) ∈ lmeasurable
cbox a ?c ∩ {x . ?mn · x ≥ b$m} ∈ lmeasurable
by (auto simp: convex Int convex halfspace le convex halfspace ge bounded Int

measurable convex )
have

∧
x . [[x $ n + a $ m ≤ x $ m]]

=⇒ x ∈ (+) (χ i . if i = m then a $ m − b $ m else 0 ) ‘ {x . x $ n + b $
m ≤ x $ m}

using 〈m 6= n〉

by (rule tac x=x − (χ i . if i = m then a$m − b$m else 0 ) in image eqI )
(simp all add : mem box cart)

then have imeq : (+) ?d ‘ {x . b $ m ≤ ?mn · x} = {x . a $ m ≤ ?mn · x}
using 〈m 6= n〉 by (auto simp: mem box cart inner axis ′ algebra simps)

have
∧
x . [[0 ≤ a $ n; x $ n + a $ m ≤ x $ m;
∀ i . i 6= m −→ a $ i ≤ x $ i ∧ x $ i ≤ b $ i ]]

=⇒ a $ m ≤ x $ m
using 〈m 6= n〉 by force

then have (+) ?d ‘ (cbox a ?c ∩ {x . b $ m ≤ ?mn · x})
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= cbox a (χ i . if i = m then a $ m + b $ n else b $ i) ∩ {x . a $ m ≤
?mn · x}

using an ab ne
apply (simp add : cbox translation [symmetric] translation Int interval ne empty cart

imeq)
apply (auto simp: mem box cart inner axis ′ algebra simps if distrib all if distrib)
by (metis (full types) add mono mult 2 right)

then show cbox a ?c ∩ {x . ?mn · x ≤ a $ m} ∪
(+) ?d ‘ (cbox a ?c ∩ {x . b $ m ≤ ?mn · x}) =
cbox a (χ i . if i = m then a $ m + b $ n else b $ i) (is ?lhs = ?rhs)

using an 〈m 6= n〉

apply (auto simp: mem box cart inner axis ′ algebra simps if distrib all if distrib,
force)

apply (drule tac x=n in spec)+
by (meson ab ne add mono thms linordered semiring(3 ) dual order .trans in-

terval ne empty cart(1 ))
have negligible{x . ?mn · x = a$m}
by (metis 〈m 6= n〉 axis index axis eq iff diff eq 0 negligible hyperplane)

moreover have (cbox a ?c ∩ {x . ?mn · x ≤ a $ m} ∩
(+) ?d ‘ (cbox a ?c ∩ {x . b $ m ≤ ?mn · x})) ⊆ {x .

?mn · x = a$m}
using 〈m 6= n〉 antisym conv by (fastforce simp: algebra simps mem box cart

inner axis ′)
ultimately show negligible (cbox a ?c ∩ {x . ?mn · x ≤ a $ m} ∩

(+) ?d ‘ (cbox a ?c ∩ {x . b $ m ≤ ?mn · x}))
by (rule negligible subset)

qed
have ac ne: cbox a ?c 6= {}
using ab ne an
by (clarsimp simp: interval eq empty cart) (meson add less same cancel1 le less linear

less le trans)
have ax ne: cbox a (χ i . if i = m then a $ m + b $ n else b $ i) 6= {}
using ab ne an
by (clarsimp simp: interval eq empty cart) (meson add less same cancel1 le less linear

less le trans)
have eq3 : measure lebesgue (cbox a ?c) = measure lebesgue (cbox a (χ i . if i =

m then a$m + b$n else b$i)) + measure lebesgue (cbox a b)
by (simp add : content cbox if cart ab ne ac ne ax ne algebra simps prod .delta remove

if distrib [of λu. u − z for z ] prod .remove)
show ?Q
using eq1 eq2 eq3
by (simp add : algebra simps)

qed

proposition
fixes S :: (realˆ ′n) set
assumes S ∈ lmeasurable
shows measurable stretch: ((λx . χ k . m k ∗ x$k) ‘ S ) ∈ lmeasurable (is ?f ‘ S
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∈ )
and measure stretch: measure lebesgue ((λx . χ k . m k ∗ x$k) ‘ S ) = |prod m

UNIV | ∗ measure lebesgue S
(is ?MEQ)

proof −
have (?f ‘ S ) ∈ lmeasurable ∧ ?MEQ
proof (cases ∀ k . m k 6= 0 )
case True
have m0 : 0 < |prod m UNIV |
using True by simp

have (indicat real (?f ‘ S ) has integral |prod m UNIV | ∗ measure lebesgue S )
UNIV

proof (clarsimp simp add : has integral alt [where i=UNIV ])
fix e :: real
assume e > 0
have (indicat real S has integral (measure lebesgue S )) UNIV
using assms lmeasurable iff has integral by blast

then obtain B where B>0
and B :

∧
a b. ball 0 B ⊆ cbox a b =⇒
∃ z . (indicat real S has integral z ) (cbox a b) ∧
|z − measure lebesgue S | < e / |prod m UNIV |

by (simp add : has integral alt [where i=UNIV ]) (metis (full types) di-
vide pos pos m0 m0 〈e > 0 〉)

show ∃B>0 . ∀ a b. ball 0 B ⊆ cbox a b −→
(∃ z . (indicat real (?f ‘ S ) has integral z ) (cbox a b) ∧
|z − |prod m UNIV | ∗ measure lebesgue S | < e)

proof (intro exI conjI allI )
let ?C = Max (range (λk . |m k |)) ∗ B
show ?C > 0
using True 〈B > 0 〉 by (simp add : Max gr iff )

show ball 0 ?C ⊆ cbox u v −→
(∃ z . (indicat real (?f ‘ S ) has integral z ) (cbox u v) ∧
|z − |prod m UNIV | ∗ measure lebesgue S | < e) for u v

proof
assume uv : ball 0 ?C ⊆ cbox u v
with 〈?C > 0 〉 have cbox ne: cbox u v 6= {}
using centre in ball by blast

let ?α = λk . u$k / m k
let ?β = λk . v$k / m k
have invm0 :

∧
k . inverse (m k) 6= 0

using True by auto
have ball 0 B ⊆ (λx . χ k . x $ k / m k) ‘ ball 0 ?C
proof clarsimp
fix x :: realˆ ′n
assume x : norm x < B
have [simp]: |Max (range (λk . |m k |))| = Max (range (λk . |m k |))

by (meson Max ge abs ge zero abs of nonneg finite finite imageI
order trans rangeI )

have norm (χ k . m k ∗ x $ k) ≤ norm (Max (range (λk . |m k |)) ∗R x )
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by (rule norm le componentwise cart) (auto simp: abs mult intro:
mult right mono)

also have . . . < ?C
using x 〈0 < (MAX k . |m k |) ∗ B 〉 〈0 < B 〉 zero less mult pos2 by

fastforce
finally have norm (χ k . m k ∗ x $ k) < ?C .
then show x ∈ (λx . χ k . x $ k / m k) ‘ ball 0 ?C

using stretch Galois [of inverse ◦ m] True by (auto simp: image iff
field simps)

qed
then have Bsub: ball 0 B ⊆ cbox (χ k . min (?α k) (?β k)) (χ k . max (?α

k) (?β k))
using cbox ne uv image stretch interval cart [of inverse ◦ m u v , symmetric]

by (force simp: field simps)
obtain z where zint : (indicat real S has integral z ) (cbox (χ k . min (?α

k) (?β k)) (χ k . max (?α k) (?β k)))
and zless: |z − measure lebesgue S | < e / |prod m UNIV |

using B [OF Bsub] by blast
have ind : indicat real (?f ‘ S ) = (λx . indicator S (χ k . x$k / m k))
using True stretch Galois [of m] by (force simp: indicator def )

show ∃ z . (indicat real (?f ‘ S ) has integral z ) (cbox u v) ∧
|z − |prod m UNIV | ∗ measure lebesgue S | < e

proof (simp add : ind , intro conjI exI )
have ((λx . indicat real S (χ k . x $ k/ m k)) has integral z ∗R |prod m

UNIV |)
((λx . χ k . x $ k ∗ m k) ‘ cbox (χ k . min (?α k) (?β k)) (χ k . max

(?α k) (?β k)))
using True has integral stretch cart [OF zint , of inverse ◦ m]
by (simp add : field simps prod dividef )
moreover have ((λx . χ k . x $ k ∗ m k) ‘ cbox (χ k . min (?α k) (?β

k)) (χ k . max (?α k) (?β k))) = cbox u v
using True image stretch interval cart [of inverse ◦ m u v , symmetric]
image stretch interval cart [of λk . 1 u v , symmetric] 〈cbox u v 6= {}〉

by (simp add : field simps image comp o def )
ultimately show ((λx . indicat real S (χ k . x $ k/ m k)) has integral z

∗R |prod m UNIV |) (cbox u v)
by simp

have |z ∗R |prod m UNIV | − |prod m UNIV | ∗ measure lebesgue S |
= |prod m UNIV | ∗ |z − measure lebesgue S |
by (metis (no types, hide lams) abs abs abs scaleR mult .commute

real scaleR def right diff distrib ′)
also have . . . < e
using zless True by (simp add : field simps)

finally show |z ∗R |prod m UNIV | − |prod m UNIV | ∗ measure lebesgue
S | < e .

qed
qed

qed
qed
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then show ?thesis
by (auto simp: has integral integrable integral unique lmeasure integral UNIV

measurable integrable)
next
case False
then obtain k where m k = 0 and prm: prod m UNIV = 0
by auto

have nfS : negligible (?f ‘ S )
by (rule negligible subset [OF negligible standard hyperplane cart ]) (use 〈m k

= 0 〉 in auto)
then have (?f ‘ S ) ∈ lmeasurable
by (simp add : negligible iff measure)

with nfS show ?thesis
by (simp add : prm negligible iff measure0 )

qed
then show (?f ‘ S ) ∈ lmeasurable ?MEQ
by metis+

qed

proposition
fixes f :: realˆ ′n::{finite,wellorder} ⇒ realˆ ′n::
assumes linear f S ∈ lmeasurable
shows measurable linear image: (f ‘ S ) ∈ lmeasurable
and measure linear image: measure lebesgue (f ‘ S ) = |det (matrix f )| ∗ measure

lebesgue S (is ?Q f S )
proof −
have ∀S ∈ lmeasurable. (f ‘ S ) ∈ lmeasurable ∧ ?Q f S
proof (rule induct linear elementary [OF 〈linear f 〉]; intro ballI )
fix f g and S :: (real , ′n) vec set
assume linear f and linear g
and f [rule format ]: ∀S ∈ lmeasurable. f ‘ S ∈ lmeasurable ∧ ?Q f S
and g [rule format ]: ∀S ∈ lmeasurable. g ‘ S ∈ lmeasurable ∧ ?Q g S
and S : S ∈ lmeasurable

then have gS : g ‘ S ∈ lmeasurable
by blast

show (f ◦ g) ‘ S ∈ lmeasurable ∧ ?Q (f ◦ g) S
using f [OF gS ] g [OF S ] matrix compose [OF 〈linear g〉 〈linear f 〉]
by (simp add : o def image comp abs mult det mul)

next
fix f :: realˆ ′n:: ⇒ realˆ ′n:: and i and S :: (realˆ ′n:: ) set
assume linear f and 0 :

∧
x . f x $ i = 0 and S ∈ lmeasurable

then have ¬ inj f
by (metis (full types) linear injective imp surjective one neq zero surjE vec component)
have detf : det (matrix f ) = 0
using 〈¬ inj f 〉 det nz iff inj [OF 〈linear f 〉] by blast

show f ‘ S ∈ lmeasurable ∧ ?Q f S
proof
show f ‘ S ∈ lmeasurable
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using lmeasurable iff indicator has integral 〈linear f 〉 〈¬ inj f 〉 negligible UNIV
negligible linear singular image by blast

have measure lebesgue (f ‘ S ) = 0
by (meson 〈¬ inj f 〉 〈linear f 〉 negligible imp measure0 negligible linear singular image)
also have . . . = |det (matrix f )| ∗ measure lebesgue S
by (simp add : detf )

finally show ?Q f S .
qed

next
fix c and S :: (realˆ ′n:: ) set
assume S ∈ lmeasurable
show (λa. χ i . c i ∗ a $ i) ‘ S ∈ lmeasurable ∧ ?Q (λa. χ i . c i ∗ a $ i) S
proof
show (λa. χ i . c i ∗ a $ i) ‘ S ∈ lmeasurable
by (simp add : 〈S ∈ lmeasurable〉 measurable stretch)

show ?Q (λa. χ i . c i ∗ a $ i) S
by (simp add : measure stretch [OF 〈S ∈ lmeasurable〉, of c] axis def matrix def

det diagonal)
qed

next
fix m :: ′n and n :: ′n and S :: (real , ′n) vec set
assume m 6= n and S ∈ lmeasurable
let ?h = λv ::(real , ′n) vec. χ i . v $ Fun.swap m n id i
have lin: linear ?h
by (rule linearI ) (simp all add : plus vec def scaleR vec def )

have meq : measure lebesgue ((λv ::(real , ′n) vec. χ i . v $ Fun.swap m n id i) ‘
cbox a b)

= measure lebesgue (cbox a b) for a b
proof (cases cbox a b = {})
case True then show ?thesis
by simp

next
case False
then have him: ?h ‘ (cbox a b) 6= {}
by blast

have eq : ?h ‘ (cbox a b) = cbox (?h a) (?h b)
by (auto simp: image iff lambda swap Galois mem box cart) (metis swap id eq)+
show ?thesis
using him prod .permute [OF permutes swap id , where S=UNIV and g=λi .

(b − a)$i , symmetric]
by (simp add : eq content cbox cart False)

qed
have (χ i j . if Fun.swap m n id i = j then 1 else 0 ) = (χ i j . if j = Fun.swap

m n id i then 1 else (0 ::real))
by (auto intro!: Cart lambda cong)

then have matrix ?h = transpose(χ i j . mat 1 $ i $ Fun.swap m n id j )
by (auto simp: matrix eq transpose def axis def mat def matrix def )

then have 1 : |det (matrix ?h)| = 1
by (simp add : det permute columns permutes swap id sign swap id abs mult)
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show ?h ‘ S ∈ lmeasurable ∧ ?Q ?h S
proof
show ?h ‘ S ∈ lmeasurable ?Q ?h S
using measure linear sufficient [OF lin 〈S ∈ lmeasurable〉] meq 1 by force+

qed
next
fix m n :: ′n and S :: (real , ′n) vec set
assume m 6= n and S ∈ lmeasurable
let ?h = λv ::(real , ′n) vec. χ i . if i = m then v $ m + v $ n else v $ i
have lin: linear ?h
by (rule linearI ) (auto simp: algebra simps plus vec def scaleR vec def vec eq iff )
consider m < n | n < m
using 〈m 6= n〉 less linear by blast

then have 1 : det(matrix ?h) = 1
proof cases
assume m < n
have ∗: matrix ?h $ i $ j = (0 ::real) if j < i for i j :: ′n
proof −
have axis j 1 = (χ n. if n = j then 1 else (0 ::real))
using axis def by blast

then have (χ p q . if p = m then axis q 1 $ m + axis q 1 $ n else axis q 1
$ p) $ i $ j = (0 ::real)

using 〈j < i 〉 axis def 〈m < n〉 by auto
with 〈m < n〉 show ?thesis
by (auto simp: matrix def axis def cong : if cong)

qed
show ?thesis
using 〈m 6= n〉 by (subst det upperdiagonal [OF ∗]) (auto simp: matrix def

axis def cong : if cong)
next
assume n < m
have ∗: matrix ?h $ i $ j = (0 ::real) if j > i for i j :: ′n
proof −
have axis j 1 = (χ n. if n = j then 1 else (0 ::real))
using axis def by blast

then have (χ p q . if p = m then axis q 1 $ m + axis q 1 $ n else axis q 1
$ p) $ i $ j = (0 ::real)

using 〈j > i 〉 axis def 〈m > n〉 by auto
with 〈m > n〉 show ?thesis
by (auto simp: matrix def axis def cong : if cong)

qed
show ?thesis
using 〈m 6= n〉

by (subst det lowerdiagonal [OF ∗]) (auto simp: matrix def axis def cong :
if cong)

qed
have meq : measure lebesgue (?h ‘ (cbox a b)) = measure lebesgue (cbox a b)

for a b
proof (cases cbox a b = {})
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case True then show ?thesis by simp
next
case False
then have ne: (+) (χ i . if i = n then − a $ n else 0 ) ‘ cbox a b 6= {}
by auto

let ?v = χ i . if i = n then − a $ n else 0
have ?h ‘ cbox a b

= (+) (χ i . if i = m ∨ i = n then a $ n else 0 ) ‘ ?h ‘ (+) ?v ‘ (cbox a b)
using 〈m 6= n〉 unfolding image comp o def by (force simp: vec eq iff )

then have measure lebesgue (?h ‘ (cbox a b))
= measure lebesgue ((λv . χ i . if i = m then v $ m + v $ n else v $ i) ‘

(+) ?v ‘ cbox a b)
by (rule ssubst) (rule measure translation)
also have . . . = measure lebesgue ((λv . χ i . if i = m then v $ m + v $ n

else v $ i) ‘ cbox (?v +a) (?v + b))
by (metis (no types, lifting) cbox translation)

also have . . . = measure lebesgue ((+) (χ i . if i = n then − a $ n else 0 ) ‘
cbox a b)

apply (subst measure shear interval)
using 〈m 6= n〉 ne apply auto
apply (simp add : cbox translation)
by (metis cbox borel cbox translation measure completion sets lborel)

also have . . . = measure lebesgue (cbox a b)
by (rule measure translation)
finally show ?thesis .

qed
show ?h ‘ S ∈ lmeasurable ∧ ?Q ?h S
using measure linear sufficient [OF lin 〈S ∈ lmeasurable〉] meq 1 by force

qed
with assms show (f ‘ S ) ∈ lmeasurable ?Q f S
by metis+

qed

lemma
fixes f :: realˆ ′n::{finite,wellorder} ⇒ realˆ ′n::
assumes f : orthogonal transformation f and S : S ∈ lmeasurable
shows measurable orthogonal image: f ‘ S ∈ lmeasurable
and measure orthogonal image: measure lebesgue (f ‘ S ) = measure lebesgue S

proof −
have linear f
by (simp add : f orthogonal transformation linear)

then show f ‘ S ∈ lmeasurable
by (metis S measurable linear image)

show measure lebesgue (f ‘ S ) = measure lebesgue S
by (simp add : measure linear image 〈linear f 〉 S f )

qed

proposition measure semicontinuous with hausdist explicit :
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assumes bounded S and neg : negligible(frontier S ) and e > 0
obtains d where d > 0∧

T . [[T ∈ lmeasurable;
∧
y . y ∈ T =⇒ ∃ x . x ∈ S ∧ dist x y < d ]]

=⇒ measure lebesgue T < measure lebesgue S + e
proof (cases S = {})
case True
with that 〈e > 0 〉 show ?thesis by force

next
case False
then have frS : frontier S 6= {}
using 〈bounded S 〉 frontier eq empty not bounded UNIV by blast

have S ∈ lmeasurable
by (simp add : 〈bounded S 〉 measurable Jordan neg)

have null : (frontier S ) ∈ null sets lebesgue
by (metis neg negligible iff null sets)

have frontier S ∈ lmeasurable and mS0 : measure lebesgue (frontier S ) = 0
using neg negligible imp measurable negligible iff measure by blast+

with 〈e > 0 〉 sets lebesgue outer open
obtain U where open U
and U : frontier S ⊆ U U − frontier S ∈ lmeasurable emeasure lebesgue (U −

frontier S ) < e
by (metis fmeasurableD)

with null have U ∈ lmeasurable
by (metis borel open measurable Diff null set sets completionI sets sets lborel)

have measure lebesgue (U − frontier S ) = measure lebesgue U
using mS0 by (simp add : 〈U ∈ lmeasurable〉 fmeasurableD measure Diff null set

null)
with U have mU : measure lebesgue U < e
by (simp add : emeasure eq measure2 ennreal less iff )

show ?thesis
proof
have U 6= UNIV
using 〈U ∈ lmeasurable〉 by auto

then have − U 6= {}
by blast

with 〈open U 〉 〈frontier S ⊆ U 〉 show setdist (frontier S ) (− U ) > 0
by (auto simp: 〈bounded S 〉 open closed compact frontier bounded setdist gt 0 compact closed

frS )
fix T
assume T ∈ lmeasurable
and T :

∧
t . t ∈ T =⇒ ∃ y . y ∈ S ∧ dist y t < setdist (frontier S ) (− U )

then have measure lebesgue T − measure lebesgue S ≤ measure lebesgue (T
− S )

by (simp add : 〈S ∈ lmeasurable〉 measure diff le measure setdiff )
also have . . . ≤ measure lebesgue U
proof −
have T − S ⊆ U
proof clarify
fix x



Change Of Vars.thy 3115

assume x ∈ T and x /∈ S
then obtain y where y ∈ S and y : dist y x < setdist (frontier S ) (− U )
using T by blast

have closed segment x y ∩ frontier S 6= {}
using connected Int frontier 〈x /∈ S 〉 〈y ∈ S 〉 by blast

then obtain z where z : z ∈ closed segment x y z ∈ frontier S
by auto

with y have dist z x < setdist(frontier S ) (− U )
by (auto simp: dist commute dest !: dist in closed segment)

with z have False if x ∈ −U
using setdist le dist [OF 〈z ∈ frontier S 〉 that ] by auto

then show x ∈ U
by blast

qed
then show ?thesis

by (simp add : 〈S ∈ lmeasurable〉 〈T ∈ lmeasurable〉 〈U ∈ lmeasurable〉

fmeasurableD measure mono fmeasurable sets.Diff )
qed
finally have measure lebesgue T − measure lebesgue S ≤ measure lebesgue U

.
with mU show measure lebesgue T < measure lebesgue S + e
by linarith

qed
qed

proposition
fixes f :: realˆ ′n::{finite,wellorder} ⇒ realˆ ′n::
assumes S : S ∈ lmeasurable
and deriv :

∧
x . x ∈ S =⇒ (f has derivative f ′ x ) (at x within S )

and int : (λx . |det (matrix (f ′ x ))|) integrable on S
and bounded :

∧
x . x ∈ S =⇒ |det (matrix (f ′ x ))| ≤ B

shows measurable bounded differentiable image:
f ‘ S ∈ lmeasurable

and measure bounded differentiable image:
measure lebesgue (f ‘ S ) ≤ B ∗ measure lebesgue S (is ?M )

proof −
have f ‘ S ∈ lmeasurable ∧ measure lebesgue (f ‘ S ) ≤ B ∗ measure lebesgue S
proof (cases B < 0 )
case True
then have S = {}
by (meson abs ge zero bounded empty iff equalityI less le trans linorder not less

subsetI )
then show ?thesis
by auto

next
case False
then have B ≥ 0
by arith

let ?µ = measure lebesgue
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have f diff : f differentiable on S
using deriv by (auto simp: differentiable on def differentiable def )

have eps: f ‘ S ∈ lmeasurable ?µ (f ‘ S ) ≤ (B+e) ∗ ?µ S (is ?ME )
if e > 0 for e

proof −
have eps d : f ‘ S ∈ lmeasurable ?µ (f ‘ S ) ≤ (B+e) ∗ (?µ S + d) (is ?MD)

if d > 0 for d
proof −

obtain T where T : open T S ⊆ T and TS : (T−S ) ∈ lmeasurable and
emeasure lebesgue (T−S ) < ennreal d

using S 〈d > 0 〉 sets lebesgue outer open by blast
then have ?µ (T−S ) < d
by (metis emeasure eq measure2 ennreal leI not less)

with S T TS have T ∈ lmeasurable and Tless: ?µ T < ?µ S + d
by (auto simp: measurable measure Diff dest !: fmeasurable Diff D)

have ∃ r . 0 < r ∧ r < d ∧ ball x r ⊆ T ∧ f ‘ (S ∩ ball x r) ∈ lmeasurable ∧
?µ (f ‘ (S ∩ ball x r)) ≤ (B + e) ∗ ?µ (ball x r)

if x ∈ S d > 0 for x d
proof −
have lin: linear (f ′ x )
and lim0 : ((λy . (f y − (f x + f ′ x (y − x ))) /R norm(y − x )) −−−→ 0 )

(at x within S )
using deriv 〈x ∈ S 〉 by (auto simp: has derivative within bounded linear .linear

field simps)
have bo: bounded (f ′ x ‘ ball 0 1 )
by (simp add : bounded linear image linear linear lin)

have neg : negligible (frontier (f ′ x ‘ ball 0 1 ))
using deriv has derivative linear 〈x ∈ S 〉

by (auto intro!: negligible convex frontier [OF convex linear image])
let ?unit vol = content (ball (0 :: real ˆ ′n :: {finite, wellorder}) 1 )
have 0 : 0 < e ∗ ?unit vol
using 〈e > 0 〉 by (simp add : content ball pos)

obtain k where k > 0 and k :∧
U . [[U ∈ lmeasurable;

∧
y . y ∈ U =⇒ ∃ z . z ∈ f ′ x ‘ ball 0 1 ∧

dist z y < k ]]
=⇒ ?µ U < ?µ (f ′ x ‘ ball 0 1 ) + e ∗ ?unit vol

using measure semicontinuous with hausdist explicit [OF bo neg 0 ] by
blast

obtain l where l > 0 and l : ball x l ⊆ T
using 〈x ∈ S 〉 〈open T 〉 〈S ⊆ T 〉 openE by blast

obtain ζ where 0 < ζ
and ζ:

∧
y . [[y ∈ S ; y 6= x ; dist y x < ζ]]
=⇒ norm (f y − (f x + f ′ x (y − x ))) / norm (y − x ) < k

using lim0 〈k > 0 〉 by (simp add : Lim within) (auto simp add : field simps)
define r where r ≡ min (min l (ζ/2 )) (min 1 (d/2 ))
show ?thesis
proof (intro exI conjI )
show r > 0 r < d
using 〈l > 0 〉 〈ζ > 0 〉 〈d > 0 〉 by (auto simp: r def )
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have r ≤ l
by (auto simp: r def )

with l show ball x r ⊆ T
by auto

have ex lessK : ∃ x ′ ∈ ball 0 1 . dist (f ′ x x ′) ((f y − f x ) /R r) < k
if y ∈ S and dist x y < r for y

proof (cases y = x )
case True
with lin linear 0 〈k > 0 〉 that show ?thesis
by (rule tac x=0 in bexI ) (auto simp: linear 0 )

next
case False
then show ?thesis
proof (rule tac x=(y − x ) /R r in bexI )
have f ′ x ((y − x ) /R r) = f ′ x (y − x ) /R r
by (simp add : lin linear scale)

then have dist (f ′ x ((y − x ) /R r)) ((f y − f x ) /R r) = norm (f ′

x (y − x ) /R r − (f y − f x ) /R r)
by (simp add : dist norm)

also have . . . = norm (f ′ x (y − x ) − (f y − f x )) / r
using 〈r > 0 〉 by (simp add : divide simps scale right diff distrib

[symmetric])
also have . . . ≤ norm (f y − (f x + f ′ x (y − x ))) / norm (y − x )
using that 〈r > 0 〉 False by (simp add : field split simps dist norm

norm minus commute mult right mono)
also have . . . < k
using that 〈0 < ζ〉 by (simp add : dist commute r def ζ [OF 〈y ∈

S 〉 False])
finally show dist (f ′ x ((y − x ) /R r)) ((f y − f x ) /R r) < k .
show (y − x ) /R r ∈ ball 0 1

using that 〈r > 0 〉 by (simp add : dist norm divide simps
norm minus commute)

qed
qed
let ?rfs = (λx . x /R r) ‘ (+) (− f x ) ‘ f ‘ (S ∩ ball x r)
have rfs mble: ?rfs ∈ lmeasurable
proof (rule bounded set imp lmeasurable)
have f differentiable on S ∩ ball x r
using f diff by (auto simp: fmeasurableD differentiable on subset)

with S show ?rfs ∈ sets lebesgue
by (auto simp: sets.Int intro!: lebesgue sets translation differen-

tiable image in sets lebesgue)
let ?B = (λ(x , y). x + y) ‘ (f ′ x ‘ ball 0 1 × ball 0 k)
have bounded ?B
by (simp add : bounded plus [OF bo])

moreover have ?rfs ⊆ ?B
apply (auto simp: dist norm image iff dest !: ex lessK )

by (metis (no types, hide lams) add .commute diff add cancel dist 0 norm
dist commute dist norm mem ball)
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ultimately show bounded (?rfs)
by (rule bounded subset)

qed
then have (λx . r ∗R x ) ‘ ?rfs ∈ lmeasurable
by (simp add : measurable linear image)

with 〈r > 0 〉 have (+) (− f x ) ‘ f ‘ (S ∩ ball x r) ∈ lmeasurable
by (simp add : image comp o def )

then have (+) (f x ) ‘ (+) (− f x ) ‘ f ‘ (S ∩ ball x r) ∈ lmeasurable
using measurable translation by blast

then show fsb: f ‘ (S ∩ ball x r) ∈ lmeasurable
by (simp add : image comp o def )

have ?µ (f ‘ (S ∩ ball x r)) = ?µ (?rfs) ∗ r ˆ CARD( ′n)
using 〈r > 0 〉 fsb

by (simp add : measure linear image measure translation subtract
measurable translation subtract field simps cong : image cong simp)

also have . . . ≤ (|det (matrix (f ′ x ))| ∗ ?unit vol + e ∗ ?unit vol) ∗ r
ˆ CARD( ′n)

proof −
have ?µ (?rfs) < ?µ (f ′ x ‘ ball 0 1 ) + e ∗ ?unit vol
using rfs mble by (force intro: k dest !: ex lessK )

then have ?µ (?rfs) < |det (matrix (f ′ x ))| ∗ ?unit vol + e ∗ ?unit vol
by (simp add : lin measure linear image [of f ′ x ])

with 〈r > 0 〉 show ?thesis
by auto

qed
also have . . . ≤ (B + e) ∗ ?µ (ball x r)
using bounded [OF 〈x ∈ S 〉] 〈r > 0 〉

by (simp add : algebra simps content ball conv unit ball [of r ] con-
tent ball pos)

finally show ?µ (f ‘ (S ∩ ball x r)) ≤ (B + e) ∗ ?µ (ball x r) .
qed

qed
then obtain r where
r0d :

∧
x d . [[x ∈ S ; d > 0 ]] =⇒ 0 < r x d ∧ r x d < d

and rT :
∧
x d . [[x ∈ S ; d > 0 ]] =⇒ ball x (r x d) ⊆ T

and r :
∧
x d . [[x ∈ S ; d > 0 ]] =⇒

(f ‘ (S ∩ ball x (r x d))) ∈ lmeasurable ∧
?µ (f ‘ (S ∩ ball x (r x d))) ≤ (B + e) ∗ ?µ (ball x (r x d))

by metis
obtain C where countable C and Csub: C ⊆ {(x ,r x t) |x t . x ∈ S ∧ 0 <

t}
and pwC : pairwise (λi j . disjnt (ball (fst i) (snd i)) (ball (fst j ) (snd j )))

C
and negC : negligible(S − (

⋃
i ∈ C . ball (fst i) (snd i)))

apply (rule Vitali covering theorem balls [of S {(x ,r x t) |x t . x ∈ S ∧ 0
< t} fst snd ])

apply auto
by (metis dist eq 0 iff r0d)

let ?UB = (
⋃
(x ,s) ∈ C . ball x s)
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have eq : f ‘ (S ∩ ?UB) = (
⋃
(x ,s) ∈ C . f ‘ (S ∩ ball x s))

by auto
have mle: ?µ (

⋃
(x ,s) ∈ K . f ‘ (S ∩ ball x s)) ≤ (B + e) ∗ (?µ S + d) (is

?l ≤ ?r)
if K ⊆ C and finite K for K

proof −
have gt0 : b > 0 if (a, b) ∈ K for a b
using Csub that 〈K ⊆ C 〉 r0d by auto

have inj : inj on (λ(x , y). ball x y) K
by (force simp: inj on def ball eq ball iff dest : gt0 )

have disjnt : disjoint ((λ(x , y). ball x y) ‘ K )
using pwC that
apply (clarsimp simp: pairwise def case prod unfold ball eq ball iff )
by (metis subsetD fst conv snd conv)

have ?l ≤ (
∑

i∈K . ?µ (case i of (x , s) ⇒ f ‘ (S ∩ ball x s)))
proof (rule measure UNION le [OF 〈finite K 〉], clarify)
fix x r
assume (x ,r) ∈ K
then have x ∈ S
using Csub 〈K ⊆ C 〉 by auto

show f ‘ (S ∩ ball x r) ∈ sets lebesgue
by (meson Int lower1 S differentiable on subset f diff fmeasurableD

lmeasurable ball order refl sets.Int differentiable image in sets lebesgue)
qed
also have . . . ≤ (

∑
(x ,s) ∈ K . (B + e) ∗ ?µ (ball x s))

apply (rule sum mono)
using Csub r 〈K ⊆ C 〉 by auto

also have . . . = (B + e) ∗ (
∑

(x ,s) ∈ K . ?µ (ball x s))
by (simp add : prod .case distrib sum distrib left)

also have . . . = (B + e) ∗ sum ?µ ((λ(x , y). ball x y) ‘ K )
using 〈B ≥ 0 〉 〈e > 0 〉 by (simp add : inj sum.reindex prod .case distrib)

also have . . . = (B + e) ∗ ?µ (
⋃

(x ,s) ∈ K . ball x s)
using 〈B ≥ 0 〉 〈e > 0 〉 that
by (subst measure Union ′) (auto simp: disjnt measure Union ′)

also have . . . ≤ (B + e) ∗ ?µ T
using 〈B ≥ 0 〉 〈e > 0 〉 that apply simp
apply (rule measure mono fmeasurable [OF 〈T ∈ lmeasurable〉])
using Csub rT by force+

also have . . . ≤ (B + e) ∗ (?µ S + d)
using 〈B ≥ 0 〉 〈e > 0 〉 Tless by simp

finally show ?thesis .
qed
have fSUB mble: (f ‘ (S ∩ ?UB)) ∈ lmeasurable
unfolding eq using Csub r False 〈e > 0 〉 that
by (auto simp: intro!: fmeasurable UN bound [OF 〈countable C 〉 mle])

have fSUB meas: ?µ (f ‘ (S ∩ ?UB)) ≤ (B + e) ∗ (?µ S + d) (is ?MUB)
unfolding eq using Csub r False 〈e > 0 〉 that
by (auto simp: intro!: measure UN bound [OF 〈countable C 〉 mle])

have neg : negligible ((f ‘ (S ∩ ?UB) − f ‘ S ) ∪ (f ‘ S − f ‘ (S ∩ ?UB)))
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proof (rule negligible subset [OF negligible differentiable image negligible
[OF order refl negC , where f=f ]])

show f differentiable on S − (
⋃
i∈C . ball (fst i) (snd i))

by (meson DiffE differentiable on subset subsetI f diff )
qed force
show f ‘ S ∈ lmeasurable
by (rule lmeasurable negligible symdiff [OF fSUB mble neg ])

show ?MD
using fSUB meas measure negligible symdiff [OF fSUB mble neg ] by simp

qed
show f ‘ S ∈ lmeasurable
using eps d [of 1 ] by simp

show ?ME
proof (rule field le epsilon)
fix δ :: real
assume 0 < δ
then show ?µ (f ‘ S ) ≤ (B + e) ∗ ?µ S + δ
using eps d [of δ / (B+e)] 〈e > 0 〉 〈B ≥ 0 〉 by (auto simp: divide simps

mult ac)
qed

qed
show ?thesis
proof (cases ?µ S = 0 )
case True
with eps have ?µ (f ‘ S ) = 0
by (metis mult zero right not le zero less measure iff )

then show ?thesis
using eps [of 1 ] by (simp add : True)

next
case False
have ?µ (f ‘ S ) ≤ B ∗ ?µ S
proof (rule field le epsilon)
fix e :: real
assume e > 0
then show ?µ (f ‘ S ) ≤ B ∗ ?µ S + e
using eps [of e / ?µ S ] False by (auto simp: algebra simps zero less measure iff )
qed
with eps [of 1 ] show ?thesis by auto

qed
qed
then show f ‘ S ∈ lmeasurable ?M by blast+

qed

lemma m diff image weak :
fixes f :: realˆ ′n::{finite,wellorder} ⇒ realˆ ′n::
assumes S : S ∈ lmeasurable
and deriv :

∧
x . x ∈ S =⇒ (f has derivative f ′ x ) (at x within S )

and int : (λx . |det (matrix (f ′ x ))|) integrable on S
shows f ‘ S ∈ lmeasurable ∧ measure lebesgue (f ‘ S ) ≤ integral S (λx . |det
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(matrix (f ′ x ))|)
proof −
let ?µ = measure lebesgue
have aint S : (λx . |det (matrix (f ′ x ))|) absolutely integrable on S
using int unfolding absolutely integrable on def by auto

define m where m ≡ integral S (λx . |det (matrix (f ′ x ))|)
have ∗: f ‘ S ∈ lmeasurable ?µ (f ‘ S ) ≤ m + e ∗ ?µ S
if e > 0 for e

proof −
define T where T ≡ λn. {x ∈ S . n ∗ e ≤ |det (matrix (f ′ x ))| ∧

|det (matrix (f ′ x ))| < (Suc n) ∗ e}
have meas t : T n ∈ lmeasurable for n
proof −
have ∗: (λx . |det (matrix (f ′ x ))|) ∈ borel measurable (lebesgue on S )
using aint S by (simp add : S borel measurable restrict space iff fmeasurableD

set integrable def )
have [intro]: x ∈ sets (lebesgue on S ) =⇒ x ∈ sets lebesgue for x
using S sets restrict space subset by blast

have {x ∈ S . real n ∗ e ≤ |det (matrix (f ′ x ))|} ∈ sets lebesgue
using ∗ by (auto simp: borel measurable iff halfspace ge space restrict space)
then have 1 : {x ∈ S . real n ∗ e ≤ |det (matrix (f ′ x ))|} ∈ lmeasurable
using S by (simp add : fmeasurableI2 )

have {x ∈ S . |det (matrix (f ′ x ))| < (1 + real n) ∗ e} ∈ sets lebesgue
using ∗ by (auto simp: borel measurable iff halfspace less space restrict space)
then have 2 : {x ∈ S . |det (matrix (f ′ x ))| < (1 + real n) ∗ e} ∈ lmeasurable
using S by (simp add : fmeasurableI2 )

show ?thesis
using fmeasurable.Int [OF 1 2 ] by (simp add : T def Int def cong : conj cong)

qed
have aint T :

∧
k . (λx . |det (matrix (f ′ x ))|) absolutely integrable on T k

using set integrable subset [OF aint S ] meas t T def by blast
have Seq : S = (

⋃
n. T n)

apply (auto simp: T def )
apply (rule tac x=nat(floor(abs(det(matrix (f ′ x ))) / e)) in exI )
using that apply auto
using of int floor le pos le divide eq apply blast
by (metis add .commute pos divide less eq real of int floor add one gt)

have meas ft : f ‘ T n ∈ lmeasurable for n
proof (rule measurable bounded differentiable image)
show T n ∈ lmeasurable
by (simp add : meas t)

next
fix x :: (real , ′n) vec
assume x ∈ T n
show (f has derivative f ′ x ) (at x within T n)
by (metis (no types, lifting) 〈x ∈ T n〉 deriv has derivative subset mem Collect eq

subsetI T def )
show |det (matrix (f ′ x ))| ≤ (Suc n) ∗ e
using 〈x ∈ T n〉 T def by auto
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next
show (λx . |det (matrix (f ′ x ))|) integrable on T n
using aint T absolutely integrable on def by blast

qed
have disT : disjoint (range T )
unfolding disjoint def

proof clarsimp
show T m ∩ T n = {} if T m 6= T n for m n
using that

proof (induction m n rule: linorder less wlog)
case (less m n)
with 〈e > 0 〉 show ?case
unfolding T def
proof (clarsimp simp add : Collect conj eq [symmetric])
fix x
assume e > 0 m < n n ∗ e ≤ |det (matrix (f ′ x ))| |det (matrix (f ′

x ))| < (1 + real m) ∗ e
then have n < 1 + real m

by (metis (no types, hide lams) less le trans mult .commute not le
mult le cancel iff2 )

then show False
using less.hyps by linarith

qed
qed auto

qed
have injT : inj on T ({n. T n 6= {}})
unfolding inj on def

proof clarsimp
show m = n if T m = T n T n 6= {} for m n
using that

proof (induction m n rule: linorder less wlog)
case (less m n)
have False if T n ⊆ T m x ∈ T n for x
using 〈e > 0 〉 〈m < n〉 that
apply (auto simp: T def mult .commute intro: less le trans dest !: subsetD)

by (metis add .commute less le trans nat less real le not le mult le cancel iff2 )
then show ?case
using less.prems by blast

qed auto
qed
have sum eq Tim: (

∑
k≤n. f (T k)) = sum f (T ‘ {..n}) if f {} = 0 for f ::

⇒ real and n
proof (subst sum.reindex nontrivial)
fix i j assume i ∈ {..n} j ∈ {..n} i 6= j T i = T j
with that injT [unfolded inj on def ] show f (T i) = 0
by simp metis

qed (use atMost atLeast0 in auto)
let ?B = m + e ∗ ?µ S
have (

∑
k≤n. ?µ (f ‘ T k)) ≤ ?B for n
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proof −
have (

∑
k≤n. ?µ (f ‘ T k)) ≤ (

∑
k≤n. ((k+1 ) ∗ e) ∗ ?µ(T k))

proof (rule sum mono [OF measure bounded differentiable image])
show (f has derivative f ′ x ) (at x within T k) if x ∈ T k for k x
using that unfolding T def by (blast intro: deriv has derivative subset)

show (λx . |det (matrix (f ′ x ))|) integrable on T k for k
using absolutely integrable on def aint T by blast

show |det (matrix (f ′ x ))| ≤ real (k + 1 ) ∗ e if x ∈ T k for k x
using T def that by auto

qed (use meas t in auto)
also have . . . ≤ (

∑
k≤n. (k ∗ e) ∗ ?µ(T k)) + (

∑
k≤n. e ∗ ?µ(T k))

by (simp add : algebra simps sum.distrib)
also have . . . ≤ ?B
proof (rule add mono)
have (

∑
k≤n. real k ∗ e ∗ ?µ (T k)) = (

∑
k≤n. integral (T k) (λx . k ∗ e))

by (simp add : lmeasure integral [OF meas t ]
flip: integral mult right integral mult left)

also have . . . ≤ (
∑

k≤n. integral (T k) (λx . (abs (det (matrix (f ′ x ))))))
proof (rule sum mono)
fix k
assume k ∈ {..n}
show integral (T k) (λx . k ∗ e) ≤ integral (T k) (λx . |det (matrix (f ′

x ))|)
proof (rule integral le [OF integrable on const [OF meas t ]])
show (λx . |det (matrix (f ′ x ))|) integrable on T k
using absolutely integrable on def aint T by blast

next
fix x assume x ∈ T k
show k ∗ e ≤ |det (matrix (f ′ x ))|
using 〈x ∈ T k 〉 T def by blast

qed
qed
also have . . . = sum (λT . integral T (λx . |det (matrix (f ′ x ))|)) (T ‘ {..n})

by (auto intro: sum eq Tim)
also have . . . = integral (

⋃
k≤n. T k) (λx . |det (matrix (f ′ x ))|)

proof (rule integral unique [OF has integral Union, symmetric])
fix S assume S ∈ T ‘ {..n}
then show ((λx . |det (matrix (f ′ x ))|) has integral integral S (λx . |det

(matrix (f ′ x ))|)) S
using absolutely integrable on def aint T by blast

next
show pairwise (λS S ′. negligible (S ∩ S ′)) (T ‘ {..n})

using disT unfolding disjnt iff by (auto simp: pairwise def intro!:
empty imp negligible)

qed auto
also have . . . ≤ m
unfolding m def

proof (rule integral subset le)
have (λx . |det (matrix (f ′ x ))|) absolutely integrable on (

⋃
k≤n. T k)
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apply (rule set integrable subset [OF aint S ])
apply (intro measurable meas t fmeasurableD)
apply (force simp: Seq)
done

then show (λx . |det (matrix (f ′ x ))|) integrable on (
⋃
k≤n. T k)

using absolutely integrable on def by blast
qed (use Seq int in auto)
finally show (

∑
k≤n. real k ∗ e ∗ ?µ (T k)) ≤ m .

next
have (

∑
k≤n. ?µ (T k)) = sum ?µ (T ‘ {..n})

by (auto intro: sum eq Tim)
also have . . . = ?µ (

⋃
k≤n. T k)

using S disT by (auto simp: pairwise def meas t intro: measure Union ′

[symmetric])
also have . . . ≤ ?µ S
using S by (auto simp: Seq intro: meas t fmeasurableD measure mono fmeasurable)
finally have (

∑
k≤n. ?µ (T k)) ≤ ?µ S .

then show (
∑

k≤n. e ∗ ?µ (T k)) ≤ e ∗ ?µ S
by (metis less eq real def ordered comm semiring class.comm mult left mono

sum distrib left that)
qed
finally show (

∑
k≤n. ?µ (f ‘ T k)) ≤ ?B .

qed
moreover have measure lebesgue (

⋃
k≤n. f ‘ T k) ≤ (

∑
k≤n. ?µ (f ‘ T k))

for n
by (simp add : fmeasurableD meas ft measure UNION le)

ultimately have B ge m: ?µ (
⋃

k≤n. (f ‘ T k)) ≤ ?B for n
by (meson order trans)

have (
⋃
n. f ‘ T n) ∈ lmeasurable

by (rule fmeasurable countable Union [OF meas ft B ge m])
moreover have ?µ (

⋃
n. f ‘ T n) ≤ m + e ∗ ?µ S

by (rule measure countable Union le [OF meas ft B ge m])
ultimately show f ‘ S ∈ lmeasurable ?µ (f ‘ S ) ≤ m + e ∗ ?µ S
by (auto simp: Seq image Union)

qed
show ?thesis
proof
show f ‘ S ∈ lmeasurable
using ∗ linordered field no ub by blast

let ?x = m − ?µ (f ‘ S )
have False if ?µ (f ‘ S ) > integral S (λx . |det (matrix (f ′ x ))|)
proof −
have ml : m < ?µ (f ‘ S )
using m def that by blast

then have ?µ S 6= 0
using ∗(2 ) bgauge existence lemma by fastforce

with ml have 0 : 0 < − (m − ?µ (f ‘ S ))/2 / ?µ S
using that zero less measure iff by force

then show ?thesis
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using ∗ [OF 0 ] that by (auto simp: field split simps m def split : if split asm)
qed
then show ?µ (f ‘ S ) ≤ integral S (λx . |det (matrix (f ′ x ))|)
by fastforce

qed
qed

theorem
fixes f :: realˆ ′n::{finite,wellorder} ⇒ realˆ ′n::
assumes S : S ∈ sets lebesgue
and deriv :

∧
x . x ∈ S =⇒ (f has derivative f ′ x ) (at x within S )

and int : (λx . |det (matrix (f ′ x ))|) integrable on S
shows measurable differentiable image: f ‘ S ∈ lmeasurable
and measure differentiable image:

measure lebesgue (f ‘ S ) ≤ integral S (λx . |det (matrix (f ′ x ))|) (is ?M )
proof −
let ?I = λn::nat . cbox (vec (−n)) (vec n) ∩ S
let ?µ = measure lebesgue
have x ∈ cbox (vec (− real (nat dnorm xe))) (vec (real (nat dnorm xe))) for x

:: realˆ ′n::
apply (auto simp: mem box cart)
apply (metis abs le iff component le norm cart minus le iff of nat ceiling or-

der .trans)
by (meson abs le D1 norm bound component le cart real nat ceiling ge)

then have Seq : S = (
⋃
n. ?I n)

by auto
have fIn: f ‘ ?I n ∈ lmeasurable

and mfIn: ?µ (f ‘ ?I n) ≤ integral S (λx . |det (matrix (f ′ x ))|) (is ?MN )
for n
proof −
have In: ?I n ∈ lmeasurable
by (simp add : S bounded Int bounded set imp lmeasurable sets.Int)

moreover have
∧
x . x ∈ ?I n =⇒ (f has derivative f ′ x ) (at x within ?I n)

by (meson Int iff deriv has derivative subset subsetI )
moreover have int In: (λx . |det (matrix (f ′ x ))|) integrable on ?I n
proof −
have (λx . |det (matrix (f ′ x ))|) absolutely integrable on S
using int absolutely integrable integrable bound by force

then have (λx . |det (matrix (f ′ x ))|) absolutely integrable on ?I n
by (metis (no types) Int lower1 In fmeasurableD inf commute set integrable subset)
then show ?thesis
using absolutely integrable on def by blast

qed
ultimately have f ‘ ?I n ∈ lmeasurable ?µ (f ‘ ?I n) ≤ integral (?I n) (λx .

|det (matrix (f ′ x ))|)
using m diff image weak by metis+

moreover have integral (?I n) (λx . |det (matrix (f ′ x ))|) ≤ integral S (λx .
|det (matrix (f ′ x ))|)
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by (simp add : int In int integral subset le)
ultimately show f ‘ ?I n ∈ lmeasurable ?MN
by auto

qed
have ?I k ⊆ ?I n if k ≤ n for k n
by (rule Int mono) (use that in 〈auto simp: subset interval imp cart 〉)

then have (
⋃
k≤n. f ‘ ?I k) = f ‘ ?I n for n

by (fastforce simp add :)
with mfIn have ?µ (

⋃
k≤n. f ‘ ?I k) ≤ integral S (λx . |det (matrix (f ′ x ))|)

for n
by simp

then have (
⋃
n. f ‘ ?I n) ∈ lmeasurable ?µ (

⋃
n. f ‘ ?I n) ≤ integral S (λx . |det

(matrix (f ′ x ))|)
by (rule fmeasurable countable Union [OF fIn] measure countable Union le [OF

fIn])+
then show f ‘ S ∈ lmeasurable ?M
by (metis Seq image UN )+

qed

lemma borel measurable simple function limit increasing :
fixes f :: ′a::euclidean space ⇒ real
shows (f ∈ borel measurable lebesgue ∧ (∀ x . 0 ≤ f x )) ←→

(∃ g . (∀n x . 0 ≤ g n x ∧ g n x ≤ f x ) ∧ (∀n x . g n x ≤ (g(Suc n) x )) ∧
(∀n. g n ∈ borel measurable lebesgue) ∧ (∀n. finite(range (g n))) ∧
(∀ x . (λn. g n x ) −−−−→ f x ))

(is ?lhs = ?rhs)
proof
assume f : ?lhs
have leb f : {x . a ≤ f x ∧ f x < b} ∈ sets lebesgue for a b
proof −
have {x . a ≤ f x ∧ f x < b} = {x . f x < b} − {x . f x < a}
by auto

also have . . . ∈ sets lebesgue
using borel measurable vimage halfspace component lt [of f UNIV ] f by auto

finally show ?thesis .
qed
have g n x ≤ f x

if inc g :
∧
n x . 0 ≤ g n x ∧ g n x ≤ g (Suc n) x

and meas g :
∧
n. g n ∈ borel measurable lebesgue

and fin:
∧
n. finite(range (g n)) and lim:

∧
x . (λn. g n x ) −−−−→ f x for

g n x
proof −
have ∃ r>0 . ∀N . ∃n≥N . dist (g n x ) (f x ) ≥ r if g n x > f x
proof −
have g : g n x ≤ g (N + n) x for N
by (rule transitive stepwise le) (use inc g in auto)

have ∃na≥N . g n x − f x ≤ dist (g na x ) (f x ) for N
apply (rule tac x=N+n in exI )
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using g [of N ] by (auto simp: dist norm)
with that show ?thesis
using diff gt 0 iff gt by blast

qed
with lim show ?thesis
apply (auto simp: lim sequentially)
by (meson less le not le not le imp less)

qed
moreover
let ?Ω = λn k . indicator {y . k/2ˆn ≤ f y ∧ f y < (k+1 )/2ˆn}
let ?g = λn x . (

∑
k ::real | k ∈ ZZ ∧ |k | ≤ 2 ˆ (2∗n). k/2ˆn ∗ ?Ω n k x )

have ∃ g . (∀n x . 0 ≤ g n x ∧ g n x ≤ (g(Suc n) x )) ∧
(∀n. g n ∈ borel measurable lebesgue) ∧ (∀n. finite(range (g n))) ∧(∀ x .

(λn. g n x ) −−−−→ f x )
proof (intro exI allI conjI )
show 0 ≤ ?g n x for n x
proof (clarify intro!: ordered comm monoid add class.sum nonneg)
fix k ::real
assume k ∈ ZZ and k : |k | ≤ 2 ˆ (2∗n)
show 0 ≤ k/2ˆn ∗ ?Ω n k x
using f 〈k ∈ ZZ〉 apply (auto simp: indicator def field split simps Ints def )
apply (drule spec [where x=x ])
using zero le power [of 2 ::real n] mult nonneg nonneg [of f x 2ˆn]
by linarith

qed
show ?g n x ≤ ?g (Suc n) x for n x
proof −
have ?g n x =

(
∑

k | k ∈ ZZ ∧ |k | ≤ 2 ˆ (2∗n).
k/2ˆn ∗ (indicator {y . k/2ˆn ≤ f y ∧ f y < (k+1/2 )/2ˆn} x +
indicator {y . (k+1/2 )/2ˆn ≤ f y ∧ f y < (k+1 )/2ˆn} x ))

by (rule sum.cong [OF refl ]) (simp add : indicator def field split simps)
also have . . . = (

∑
k | k ∈ ZZ ∧ |k | ≤ 2 ˆ (2∗n). k/2ˆn ∗ indicator {y .

k/2ˆn ≤ f y ∧ f y < (k+1/2 )/2ˆn} x ) +
(
∑

k | k ∈ ZZ ∧ |k | ≤ 2 ˆ (2∗n). k/2ˆn ∗ indicator {y .
(k+1/2 )/2ˆn ≤ f y ∧ f y < (k+1 )/2ˆn} x )

by (simp add : comm monoid add class.sum.distrib algebra simps)
also have . . . = (

∑
k | k ∈ ZZ ∧ |k | ≤ 2 ˆ (2∗n). (2 ∗ k)/2 ˆ Suc n ∗

indicator {y . (2 ∗ k)/2 ˆ Suc n ≤ f y ∧ f y < (2 ∗ k+1 )/2 ˆ Suc n} x ) +
(
∑

k | k ∈ ZZ ∧ |k | ≤ 2 ˆ (2∗n). (2 ∗ k)/2 ˆ Suc n ∗ indicator
{y . (2 ∗ k+1 )/2 ˆ Suc n ≤ f y ∧ f y < ((2 ∗ k+1 ) + 1 )/2 ˆ Suc n} x )

by (force simp: field simps indicator def intro: sum.cong)
also have . . . ≤ (

∑
k | k ∈ ZZ ∧ |k | ≤ 2 ˆ (2 ∗ Suc n). k/2 ˆ Suc n ∗

(indicator {y . k/2 ˆ Suc n ≤ f y ∧ f y < (k+1 )/2 ˆ Suc n} x ))
(is ?a + ≤ ?b)

proof −
have ∗: [[sum f I ≤ sum h I ; a + sum h I ≤ b]] =⇒ a + sum f I ≤ b for I

a b f and h :: real⇒real
by linarith
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let ?h = λk . (2∗k+1 )/2 ˆ Suc n ∗
(indicator {y . (2 ∗ k+1 )/2 ˆ Suc n ≤ f y ∧ f y < ((2∗k+1 ) +

1 )/2 ˆ Suc n} x )
show ?thesis
proof (rule ∗)
show (

∑
k | k ∈ ZZ ∧ |k | ≤ 2 ˆ (2∗n).

2 ∗ k/2 ˆ Suc n ∗ indicator {y . (2 ∗ k+1 )/2 ˆ Suc n ≤ f y ∧ f y
< (2 ∗ k+1 + 1 )/2 ˆ Suc n} x )

≤ sum ?h {k ∈ ZZ. |k | ≤ 2 ˆ (2∗n)}
by (rule sum mono) (simp add : indicator def field split simps)

next
have α: ?a = (

∑
k ∈ (∗)2 ‘ {k ∈ ZZ. |k | ≤ 2 ˆ (2∗n)}.

k/2 ˆ Suc n ∗ indicator {y . k/2 ˆ Suc n ≤ f y ∧ f y < (k+1 )/2
ˆ Suc n} x )

by (auto simp: inj on def field simps comm monoid add class.sum.reindex )
have β: sum ?h {k ∈ ZZ. |k | ≤ 2 ˆ (2∗n)}

= (
∑

k ∈ (λx . 2∗x + 1 ) ‘ {k ∈ ZZ. |k | ≤ 2 ˆ (2∗n)}.
k/2 ˆ Suc n ∗ indicator {y . k/2 ˆ Suc n ≤ f y ∧ f y < (k+1 )/2

ˆ Suc n} x )
by (auto simp: inj on def field simps comm monoid add class.sum.reindex )
have 0 : (∗) 2 ‘ {k ∈ ZZ. P k} ∩ (λx . 2 ∗ x + 1 ) ‘ {k ∈ ZZ. P k} = {} for

P :: real ⇒ bool
proof −
have 2 ∗ i 6= 2 ∗ j + 1 for i j :: int by arith
thus ?thesis
unfolding Ints def by auto (use of int eq iff in fastforce)

qed
have ?a + sum ?h {k ∈ ZZ. |k | ≤ 2 ˆ (2∗n)}

= (
∑

k ∈ (∗)2 ‘ {k ∈ ZZ. |k | ≤ 2 ˆ (2∗n)} ∪ (λx . 2∗x + 1 ) ‘ {k ∈
ZZ. |k | ≤ 2 ˆ (2∗n)}.

k/2 ˆ Suc n ∗ indicator {y . k/2 ˆ Suc n ≤ f y ∧ f y < (k+1 )/2 ˆ
Suc n} x )

unfolding α β
using finite abs int segment [of 2 ˆ (2∗n)]
by (subst sum Un) (auto simp: 0 )

also have . . . ≤ ?b
proof (rule sum mono2 )
show finite {k ::real . k ∈ ZZ ∧ |k | ≤ 2 ˆ (2 ∗ Suc n)}
by (rule finite abs int segment)

show (∗) 2 ‘ {k ::real . k ∈ ZZ ∧ |k | ≤ 2ˆ(2∗n)} ∪ (λx . 2∗x + 1 ) ‘ {k ∈
ZZ. |k | ≤ 2ˆ(2∗n)} ⊆ {k ∈ ZZ. |k | ≤ 2 ˆ (2 ∗ Suc n)}

apply auto
using one le power [of 2 ::real 2∗n] by linarith

have ∗: [[x ∈ (S ∪ T ) − U ;
∧
x . x ∈ S =⇒ x ∈ U ;

∧
x . x ∈ T =⇒ x ∈

U ]] =⇒ P x for S T U P
by blast

have 0 ≤ b if b ∈ ZZ f x ∗ (2 ∗ 2ˆn) < b + 1 for b
proof −
have 0 ≤ f x ∗ (2 ∗ 2ˆn)
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by (simp add : f )
also have . . . < b+1
by (simp add : that)

finally show 0 ≤ b
using 〈b ∈ ZZ〉 by (auto simp: elim!: Ints cases)

qed
then show 0 ≤ b/2 ˆ Suc n ∗ indicator {y . b/2 ˆ Suc n ≤ f y ∧ f y <

(b + 1 )/2 ˆ Suc n} x
if b ∈ {k ∈ ZZ. |k | ≤ 2 ˆ (2 ∗ Suc n)} −

((∗) 2 ‘ {k ∈ ZZ. |k | ≤ 2 ˆ (2∗n)} ∪ (λx . 2∗x + 1 ) ‘ {k ∈ ZZ.
|k | ≤ 2 ˆ (2∗n)}) for b

using that by (simp add : indicator def divide simps)
qed
finally show ?a + sum ?h {k ∈ ZZ. |k | ≤ 2 ˆ (2∗n)} ≤ ?b .

qed
qed
finally show ?thesis .

qed
show ?g n ∈ borel measurable lebesgue for n
apply (intro borel measurable indicator borel measurable times borel measurable sum)
using leb f sets restrict UNIV by auto

show finite (range (?g n)) for n
proof −
have (

∑
k | k ∈ ZZ ∧ |k | ≤ 2 ˆ (2∗n). k/2ˆn ∗ ?Ω n k x )

∈ (λk . k/2ˆn) ‘ {k ∈ ZZ. |k | ≤ 2 ˆ (2∗n)} for x
proof (cases ∃ k . k ∈ ZZ ∧ |k | ≤ 2 ˆ (2∗n) ∧ k/2ˆn ≤ f x ∧ f x < (k+1 )/2ˆn)

case True
then show ?thesis
by (blast intro: indicator sum eq)

next
case False
then have (

∑
k | k ∈ ZZ ∧ |k | ≤ 2 ˆ (2∗n). k/2ˆn ∗ ?Ω n k x ) = 0

by auto
then show ?thesis by force

qed
then have range (?g n) ⊆ ((λk . (k/2ˆn)) ‘ {k . k ∈ ZZ ∧ |k | ≤ 2 ˆ (2∗n)})
by auto

moreover have finite ((λk ::real . (k/2ˆn)) ‘ {k ∈ ZZ. |k | ≤ 2 ˆ (2∗n)})
by (intro finite imageI finite abs int segment)

ultimately show ?thesis
by (rule finite subset)

qed
show (λn. ?g n x ) −−−−→ f x for x
proof (clarsimp simp add : lim sequentially)
fix e::real
assume e > 0
obtain N1 where N1 : 2 ˆ N1 > abs(f x )
using real arch pow by fastforce

obtain N2 where N2 : (1/2 ) ˆ N2 < e
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using real arch pow inv 〈e > 0 〉 by fastforce
have dist (

∑
k | k ∈ ZZ ∧ |k | ≤ 2 ˆ (2∗n). k/2ˆn ∗ ?Ω n k x ) (f x ) < e if

N1 + N2 ≤ n for n
proof −
let ?m = real of int b2ˆn ∗ f xc
have |?m| ≤ 2ˆn ∗ 2ˆN1
using N1 apply (simp add : f )

by (meson floor mono le floor iff less le not le mult le cancel left pos
zero less numeral zero less power)

also have . . . ≤ 2 ˆ (2∗n)
by (metis that add leD1 add le cancel left mult .commute mult 2 right

one less numeral iff
power add power increasing iff semiring norm(76 ))

finally have m le: |?m| ≤ 2 ˆ (2∗n) .
have ?m/2ˆn ≤ f x f x < (?m + 1 )/2ˆn
by (auto simp: mult .commute pos divide le eq mult imp less div pos)

then have eq : dist (
∑

k | k ∈ ZZ ∧ |k | ≤ 2 ˆ (2∗n). k/2ˆn ∗ ?Ω n k x ) (f
x )

= dist (?m/2ˆn) (f x )
by (subst indicator sum eq [of ?m]) (auto simp: m le)

have |2ˆn| ∗ |?m/2ˆn − f x | = |2ˆn ∗ (?m/2ˆn − f x )|
by (simp add : abs mult)

also have . . . < 2 ˆ N2 ∗ e
using N2 by (simp add : divide simps mult .commute) linarith

also have . . . ≤ |2ˆn| ∗ e
using that 〈e > 0 〉 by auto

finally have dist (?m/2ˆn) (f x ) < e
by (simp add : dist norm)

then show ?thesis
using eq by linarith

qed
then show ∃no. ∀n≥no. dist (

∑
k | k ∈ ZZ ∧ |k | ≤ 2 ˆ (2∗n). k ∗ ?Ω n k

x/2ˆn) (f x ) < e
by force

qed
qed
ultimately show ?rhs
by metis

next
assume RHS : ?rhs
with borel measurable simple function limit [of f UNIV , unfolded lebesgue on UNIV eq ]
show ?lhs
by (blast intro: order trans)

qed

6.46.2 Borel measurable Jacobian determinant

lemma lemma partial derivatives0 :
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
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assumes linear f and lim0 : ((λx . f x /R norm x ) −−−→ 0 ) (at 0 within S )
and lb:

∧
v . v 6= 0 =⇒ (∃ k>0 . ∀ e>0 . ∃ x . x ∈ S − {0} ∧ norm x < e ∧ k ∗

norm x ≤ |v · x |)
shows f x = 0

proof −
interpret linear f by fact
have dim {x . f x = 0} ≤ DIM ( ′a)
by (rule dim subset UNIV )

moreover have False if less: dim {x . f x = 0} < DIM ( ′a)
proof −
obtain d where d 6= 0 and d :

∧
y . f y = 0 =⇒ d · y = 0

using orthogonal to subspace exists [OF less] orthogonal def
by (metis (mono tags, lifting) mem Collect eq span base)

then obtain k where k > 0
and k :

∧
e. e > 0 =⇒ ∃ y . y ∈ S − {0} ∧ norm y < e ∧ k ∗ norm y ≤ |d ·

y |
using lb by blast

have ∃ h. ∀n. ((h n ∈ S ∧ h n 6= 0 ∧ k ∗ norm (h n) ≤ |d · h n|) ∧ norm (h
n) < 1 / real (Suc n)) ∧

norm (h (Suc n)) < norm (h n)
proof (rule dependent nat choice)
show ∃ y . (y ∈ S ∧ y 6= 0 ∧ k ∗ norm y ≤ |d · y |) ∧ norm y < 1 / real

(Suc 0 )
by simp (metis DiffE insertCI k not less not one le zero)

qed (use k [of min (norm x ) (1/(Suc n + 1 )) for x n] in auto)
then obtain α where α:

∧
n. α n ∈ S − {0} and kd :

∧
n. k ∗ norm(α n) ≤

|d · α n|
and norm lt :

∧
n. norm(α n) < 1/(Suc n)

by force
let ?β = λn. α n /R norm (α n)
have com:

∧
g . (∀n. g n ∈ sphere (0 :: ′a) 1 )

=⇒ ∃ l ∈ sphere 0 1 . ∃ %::nat⇒nat . strict mono % ∧ (g ◦ %) −−−−→ l
using compact sphere compact def by metis

moreover have ∀n. ?β n ∈ sphere 0 1
using α by auto

ultimately obtain l :: ′a and %::nat⇒nat
where l : l ∈ sphere 0 1 and strict mono % and to l : (?β ◦ %) −−−−→ l
by meson

moreover have continuous (at l) (λx . (|d · x | − k))
by (intro continuous intros)

ultimately have lim dl : ((λx . (|d · x | − k)) ◦ (?β ◦ %)) −−−−→ (|d · l | − k)
by (meson continuous imp tendsto)

have ∀ F i in sequentially . 0 ≤ ((λx . |d · x | − k) ◦ ((λn. α n /R norm (α n))
◦ %)) i

using α kd by (auto simp: field split simps)
then have k ≤ |d · l |
using tendsto lowerbound [OF lim dl , of 0 ] by auto

moreover have d · l = 0
proof (rule d)
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show f l = 0
proof (rule LIMSEQ unique [of f ◦ ?β ◦ %])
have isCont f l
using 〈linear f 〉 linear continuous at linear conv bounded linear by blast

then show (f ◦ (λn. α n /R norm (α n)) ◦ %) −−−−→ f l
unfolding comp assoc
using to l continuous imp tendsto by blast

have α −−−−→ 0
using norm lt LIMSEQ norm 0 by metis

with 〈strict mono %〉 have (α ◦ %) −−−−→ 0
by (metis LIMSEQ subseq LIMSEQ)

with lim0 α have ((λx . f x /R norm x ) ◦ (α ◦ %)) −−−−→ 0
by (force simp: tendsto at iff sequentially)

then show (f ◦ (λn. α n /R norm (α n)) ◦ %) −−−−→ 0
by (simp add : o def scale)

qed
qed
ultimately show False
using 〈k > 0 〉 by auto

qed
ultimately have dim: dim {x . f x = 0} = DIM ( ′a)
by force

then show ?thesis
using dim eq full
by (metis (mono tags, lifting) eq 0 on span eucl .span Basis linear axioms lin-

ear eq stdbasis
mem Collect eq module hom zero span base span raw def )

qed

lemma lemma partial derivatives:
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes linear f and lim: ((λx . f (x − a) /R norm (x − a)) −−−→ 0 ) (at a

within S )
and lb:

∧
v . v 6= 0 =⇒ (∃ k>0 . ∀ e>0 . ∃ x ∈ S − {a}. norm(a − x ) < e ∧ k

∗ norm(a − x ) ≤ |v · (x − a)|)
shows f x = 0

proof −
have ((λx . f x /R norm x ) −−−→ 0 ) (at 0 within (λx . x−a) ‘ S )
using lim by (simp add : Lim within dist norm)

then show ?thesis
proof (rule lemma partial derivatives0 [OF 〈linear f 〉])
fix v :: ′a
assume v : v 6= 0
show ∃ k>0 . ∀ e>0 . ∃ x . x ∈ (λx . x − a) ‘ S − {0} ∧ norm x < e ∧ k ∗ norm

x ≤ |v · x |
using lb [OF v ] by (force simp: norm minus commute)

qed
qed
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proposition borel measurable partial derivatives:
fixes f :: realˆ ′m::{finite,wellorder} ⇒ realˆ ′n
assumes S : S ∈ sets lebesgue
and f :

∧
x . x ∈ S =⇒ (f has derivative f ′ x ) (at x within S )

shows (λx . (matrix (f ′ x )$m$n)) ∈ borel measurable (lebesgue on S )
proof −
have contf : continuous on S f
using continuous on eq continuous within f has derivative continuous by blast

have {x ∈ S . (matrix (f ′ x )$m$n) ≤ b} ∈ sets lebesgue for b
proof (rule sets negligible symdiff )
let ?T = {x ∈ S . ∀ e>0 . ∃ d>0 . ∃A. A$m$n < b ∧ (∀ i j . A$i$j ∈ Q) ∧

(∀ y ∈ S . norm(y − x ) < d −→ norm(f y − f x − A ∗v (y −
x )) ≤ e ∗ norm(y − x ))}

let ?U = S ∩
(
⋂

e ∈ {e ∈ Q . e > 0}.⋃
A ∈ {A. A$m$n < b ∧ (∀ i j . A$i$j ∈ Q)}.⋃
d ∈ {d ∈ Q . 0 < d}.
S ∩ (

⋂
y ∈ S . {x ∈ S . norm(y − x ) < d −→ norm(f y − f x −

A ∗v (y − x )) ≤ e ∗ norm(y − x )}))
have ?T = ?U
proof (intro set eqI iffI )
fix x
assume xT : x ∈ ?T
then show x ∈ ?U
proof (clarsimp simp add :)
fix q :: real
assume q ∈ Q q > 0
then obtain d A where d > 0 and A: A $ m $ n < b

∧
i j . A $ i $ j ∈ Q∧

y . [[y∈S ; norm (y − x ) < d ]] =⇒ norm (f y − f x − A ∗v (y − x )) ≤
q ∗ norm (y − x )

using xT by auto
then obtain δ where d > δ δ > 0 δ ∈ Q
using Rats dense in real by blast

with A show ∃A. A $ m $ n < b ∧ (∀ i j . A $ i $ j ∈ Q) ∧
(∃ s. s ∈ Q ∧ 0 < s ∧ (∀ y∈S . norm (y − x ) < s −→ norm

(f y − f x − A ∗v (y − x )) ≤ q ∗ norm (y − x )))
by force

qed
next
fix x
assume xU : x ∈ ?U
then show x ∈ ?T
proof clarsimp
fix e :: real
assume e > 0
then obtain ε where ε: e > ε ε > 0 ε ∈ Q
using Rats dense in real by blast

with xU obtain A r where x ∈ S and Ar : A $ m $ n < b ∀ i j . A $ i $
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j ∈ Q r ∈ Q r > 0
and ∀ y∈S . norm (y − x ) < r −→ norm (f y − f x − A ∗v (y − x )) ≤ ε

∗ norm (y − x )
by (auto simp: split : if split asm)
then have ∀ y∈S . norm (y − x ) < r −→ norm (f y − f x − A ∗v (y −

x )) ≤ e ∗ norm (y − x )
by (meson 〈e > ε〉 less eq real def mult right mono norm ge zero order trans)
then show ∃ d>0 . ∃A. A $ m $ n < b ∧ (∀ i j . A $ i $ j ∈ Q) ∧ (∀ y∈S .

norm (y − x ) < d −→ norm (f y − f x − A ∗v (y − x )) ≤ e ∗ norm (y − x ))
using 〈x ∈ S 〉 Ar by blast

qed
qed
moreover have ?U ∈ sets lebesgue
proof −
have coQ : countable {e ∈ Q . 0 < e}
using countable Collect countable rat by blast

have ne: {e ∈ Q . (0 ::real) < e} 6= {}
using zero less one Rats 1 by blast

have coA: countable {A. A $ m $ n < b ∧ (∀ i j . A $ i $ j ∈ Q)}
proof (rule countable subset)
show countable {A. ∀ i j . A $ i $ j ∈ Q}

using countable vector [OF countable vector , of λi j . Q] by (simp add :
countable rat)

qed blast
have ∗: [[U 6= {} =⇒ closedin (top of set S ) (S ∩

⋂
U )]]

=⇒ closedin (top of set S ) (S ∩
⋂

U ) for U
by fastforce

have eq : {x ::(real , ′m)vec. P x ∧ (Q x −→ R x )} = {x . P x ∧ ¬ Q x} ∪ {x .
P x ∧ R x} for P Q R

by auto
have sets: S ∩ (

⋂
y∈S . {x ∈ S . norm (y − x ) < d −→ norm (f y − f x −

A ∗v (y − x )) ≤ e ∗ norm (y − x )})
∈ sets lebesgue for e A d

proof −
have clo: closedin (top of set S )

{x ∈ S . norm (y − x ) < d −→ norm (f y − f x − A ∗v (y −
x )) ≤ e ∗ norm (y − x )}

for y
proof −
have cont1 : continuous on S (λx . norm (y − x ))
and cont2 : continuous on S (λx . e ∗ norm (y − x ) − norm (f y − f x

− (A ∗v y − A ∗v x )))
by (force intro: contf continuous intros)+

have clo1 : closedin (top of set S ) {x ∈ S . d ≤ norm (y − x )}
using continuous closedin preimage [OF cont1 , of {d ..}] by (simp add :

vimage def Int def )
have clo2 : closedin (top of set S )

{x ∈ S . norm (f y − f x − (A ∗v y − A ∗v x )) ≤ e ∗ norm (y
− x )}
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using continuous closedin preimage [OF cont2 , of {0 ..}] by (simp add :
vimage def Int def )

show ?thesis
by (auto simp: eq not less matrix vector mult diff distrib intro: clo1 clo2 )

qed
show ?thesis
by (rule lebesgue closedin [of S ]) (force intro: ∗ S clo)+

qed
show ?thesis
by (intro sets sets.Int S sets.countable UN ′′ sets.countable INT ′′ coQ coA)

auto
qed
ultimately show ?T ∈ sets lebesgue
by simp

let ?M = (?T − {x ∈ S . matrix (f ′ x ) $ m $ n ≤ b} ∪ ({x ∈ S . matrix (f ′

x ) $ m $ n ≤ b} − ?T ))
let ?Θ = λx v . ∀ ξ>0 . ∃ e>0 . ∀ y ∈ S−{x}. norm (x − y) < e −→ |v · (y −

x )| < ξ ∗ norm (x − y)
have nN : negligible {x ∈ S . ∃ v 6=0 . ?Θ x v}
unfolding negligible eq zero density

proof clarsimp
fix x v and r e :: real
assume x ∈ S v 6= 0 r > 0 e > 0
and Theta [rule format ]: ?Θ x v
moreover have (norm v ∗ e / 2 ) / CARD( ′m) ˆ CARD( ′m) > 0
by (simp add : 〈v 6= 0 〉 〈e > 0 〉)

ultimately obtain d where d > 0
and dless:

∧
y . [[y ∈ S − {x}; norm (x − y) < d ]] =⇒
|v · (y − x )| < ((norm v ∗ e / 2 ) / CARD( ′m) ˆ CARD( ′m))

∗ norm (x − y)
by metis

let ?W = ball x (min d r) ∩ {y . |v · (y − x )| < (norm v ∗ e/2 ∗ min d r)
/ CARD( ′m) ˆ CARD( ′m)}

have open {x . |v · (x − a)| < b} for a b
by (intro open Collect less continuous intros)

show ∃ d>0 . d ≤ r ∧
(∃U . {x ′ ∈ S . ∃ v 6=0 . ?Θ x ′ v} ∩ ball x d ⊆ U ∧

U ∈ lmeasurable ∧ measure lebesgue U < e ∗ content (ball x d))
proof (intro exI conjI )
show 0 < min d r min d r ≤ r
using 〈r > 0 〉 〈d > 0 〉 by auto

show {x ′ ∈ S . ∃ v . v 6= 0 ∧ (∀ ξ>0 . ∃ e>0 . ∀ z∈S − {x ′}. norm (x ′ − z )
< e −→ |v · (z − x ′)| < ξ ∗ norm (x ′ − z ))} ∩ ball x (min d r) ⊆ ?W

proof (clarsimp simp: dist norm norm minus commute)
fix y w
assume y ∈ S w 6= 0
and less [rule format ]:

∀ ξ>0 . ∃ e>0 . ∀ z∈S − {y}. norm (y − z ) < e −→ |w · (z − y)|
< ξ ∗ norm (y − z )
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and d : norm (y − x ) < d and r : norm (y − x ) < r
show |v · (y − x )| < norm v ∗ e ∗ min d r / (2 ∗ real CARD( ′m) ˆ

CARD( ′m))
proof (cases y = x )
case True
with 〈r > 0 〉 〈d > 0 〉 〈e > 0 〉 〈v 6= 0 〉 show ?thesis
by simp

next
case False
have |v · (y − x )| < norm v ∗ e / 2 / real (CARD( ′m) ˆ CARD( ′m))

∗ norm (x − y)
apply (rule dless)
using False 〈y ∈ S 〉 d by (auto simp: norm minus commute)
also have . . . ≤ norm v ∗ e ∗ min d r / (2 ∗ real CARD( ′m) ˆ

CARD( ′m))
using d r 〈e > 0 〉 by (simp add : field simps norm minus commute

mult left mono)
finally show ?thesis .

qed
qed
show ?W ∈ lmeasurable
by (simp add : fmeasurable Int fmeasurable borel open)

obtain k :: ′m where True
by metis

obtain T where T : orthogonal transformation T and v : v = T (norm v
∗R axis k (1 ::real))

using rotation rightward line by metis
define b where b ≡ norm v
have b > 0
using 〈v 6= 0 〉 by (auto simp: b def )
obtain eqb: inv T v = b ∗R axis k (1 ::real) and inj T bij T and invT :

orthogonal transformation (inv T )
by (metis UNIV I b def T v bij betw inv into left orthogonal transformation inj

orthogonal transformation bij orthogonal transformation inv)
let ?v = χ i . min d r / CARD( ′m)
let ?v ′ = χ i . if i = k then (e/2 ∗ min d r) / CARD( ′m) ˆ CARD( ′m)

else min d r
let ?x ′ = inv T x
let ?W ′ = (ball ?x ′ (min d r) ∩ {y . |(y − ?x ′)$k | < e ∗ min d r / (2 ∗

CARD( ′m) ˆ CARD( ′m))})
have abs: x − e ≤ y ∧ y ≤ x + e ←→ abs(y − x ) ≤ e for x y e::real
by auto

have ?W = T ‘ ?W ′

proof −
have 1 : T ‘ (ball (inv T x ) (min d r)) = ball x (min d r)

by (simp add : T image orthogonal transformation ball orthogo-
nal transformation surj surj f inv f )

have 2 : {y . |v · (y − x )| < b ∗ e ∗ min d r / (2 ∗ real CARD( ′m) ˆ
CARD( ′m))} =
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T ‘ {y . |y $ k − ?x ′ $ k | < e ∗ min d r / (2 ∗ real CARD( ′m)
ˆ CARD( ′m))}

proof −
have ∗: |T (b ∗R axis k 1 ) · (y − x )| = b ∗ |inv T y $ k − ?x ′ $ k |

for y
proof −
have |T (b ∗R axis k 1 ) · (y − x )| = |(b ∗R axis k 1 ) · inv T (y − x )|

by (metis (no types, hide lams) b def eqb invT orthogonal transformation def
v)

also have . . . = b ∗ |(axis k 1 ) · inv T (y − x )|
using 〈b > 0 〉 by (simp add : abs mult)

also have . . . = b ∗ |inv T y $ k − ?x ′ $ k |
using orthogonal transformation linear [OF invT ]
by (simp add : inner axis ′ linear diff )

finally show ?thesis
by simp

qed
show ?thesis
using v b def [symmetric]

using 〈b > 0 〉 by (simp add : ∗ bij image Collect eq [OF 〈bij T 〉]
mult less cancel left pos times divide eq right [symmetric] del : times divide eq right)

qed
show ?thesis
using 〈b > 0 〉 by (simp add : image Int 〈inj T 〉 1 2 b def [symmetric])

qed
moreover have ?W ′ ∈ lmeasurable
by (auto intro: fmeasurable Int fmeasurable)

ultimately have measure lebesgue ?W = measure lebesgue ?W ′

by (metis measure orthogonal image T )
also have . . . ≤ measure lebesgue (cbox (?x ′ − ?v ′) (?x ′ + ?v ′))
proof (rule measure mono fmeasurable)
show ?W ′ ⊆ cbox (?x ′ − ?v ′) (?x ′ + ?v ′)

apply (clarsimp simp add : mem box cart abs dist norm norm minus commute
simp del : min less iff conj min.bounded iff )

by (metis component le norm cart less eq real def le less trans vec-
tor minus component)

qed auto
also have . . . ≤ e/2 ∗ measure lebesgue (cbox (?x ′ − ?v) (?x ′ + ?v))
proof −
have cbox (?x ′ − ?v) (?x ′ + ?v) 6= {}

using 〈r > 0 〉 〈d > 0 〉 by (auto simp: interval eq empty cart di-
vide less 0 iff )

with 〈r > 0 〉 〈d > 0 〉 〈e > 0 〉 show ?thesis
apply (simp add : content cbox if cart mem box cart)
apply (auto simp: prod nonneg)
apply (simp add : abs if distrib prod .delta remove field simps power diff

split : if split asm)
done

qed
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also have . . . ≤ e/2 ∗ measure lebesgue (cball ?x ′ (min d r))
proof (rule mult left mono [OF measure mono fmeasurable])
have ∗: norm (?x ′ − y) ≤ min d r
if y :

∧
i . |?x ′ $ i − y $ i | ≤ min d r / real CARD( ′m) for y

proof −
have norm (?x ′ − y) ≤ (

∑
i∈UNIV . |(?x ′ − y) $ i |)

by (rule norm le l1 cart)
also have . . . ≤ real CARD( ′m) ∗ (min d r / real CARD( ′m))
by (rule sum bounded above) (use y in auto)

finally show ?thesis
by simp

qed
show cbox (?x ′ − ?v) (?x ′ + ?v) ⊆ cball ?x ′ (min d r)
apply (clarsimp simp only : mem box cart dist norm mem cball intro!:

∗)
by (simp add : abs diff le iff abs minus commute)

qed (use 〈e > 0 〉 in auto)
also have . . . < e ∗ content (cball ?x ′ (min d r))
using 〈r > 0 〉 〈d > 0 〉 〈e > 0 〉 by (auto intro: content cball pos)

also have . . . = e ∗ content (ball x (min d r))
using 〈r > 0 〉 〈d > 0 〉 content ball conv unit ball [of min d r inv T x ]

content ball conv unit ball [of min d r x ]
by (simp add : content cball conv ball)

finally show measure lebesgue ?W < e ∗ content (ball x (min d r)) .
qed

qed
have ∗: (

∧
x . (x /∈ S ) =⇒ (x ∈ T ←→ x ∈ U )) =⇒ (T − U ) ∪ (U − T ) ⊆

S for S T U :: (real , ′m) vec set
by blast

have MN : ?M ⊆ {x ∈ S . ∃ v 6=0 . ?Θ x v}
proof (rule ∗)
fix x
assume x : x /∈ {x ∈ S . ∃ v 6=0 . ?Θ x v}
show (x ∈ ?T ) ←→ (x ∈ {x ∈ S . matrix (f ′ x ) $ m $ n ≤ b})
proof (cases x ∈ S )
case True
then have x : ¬ ?Θ x v if v 6= 0 for v
using x that by force

show ?thesis
proof (rule iffI ; clarsimp)
assume b: ∀ e>0 . ∃ d>0 . ∃A. A $ m $ n < b ∧ (∀ i j . A $ i $ j ∈ Q) ∧

(∀ y∈S . norm (y − x ) < d −→ norm (f y − f x − A
∗v (y − x )) ≤ e ∗ norm (y − x ))

(is ∀ e>0 . ∃ d>0 . ∃A. ?Φ e d A)
then have ∀ k . ∃ d>0 . ∃A. ?Φ (1 / Suc k) d A

by (metis (no types, hide lams) less Suc eq 0 disj of nat 0 less iff
zero less divide 1 iff )

then obtain δ A where δ:
∧
k . δ k > 0

and Ab:
∧
k . A k $ m $ n < b
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and A:
∧
k y . [[y ∈ S ; norm (y − x ) < δ k ]] =⇒
norm (f y − f x − A k ∗v (y − x )) ≤ 1/(Suc k)

∗ norm (y − x )
by metis

have ∀ i j . ∃ a. (λn. A n $ i $ j ) −−−−→ a
proof (intro allI )
fix i j
have vax : (A n ∗v axis j 1 ) $ i = A n $ i $ j for n
by (metis cart eq inner axis matrix vector mul component)

let ?CA = {x . Cauchy (λn. (A n) ∗v x )}
have subspace ?CA
unfolding subspace def convergent eq Cauchy [symmetric]
by (force simp: algebra simps intro: tendsto intros)

then have CA eq : ?CA = span ?CA
by (metis span eq iff )

also have . . . = UNIV
proof −
have dim ?CA ≤ CARD( ′m)
using dim subset UNIV [of ?CA]
by auto

moreover have False if less: dim ?CA < CARD( ′m)
proof −
obtain d where d 6= 0 and d :

∧
y . y ∈ span ?CA =⇒ orthogonal d y

using less by (force intro: orthogonal to subspace exists [of ?CA])
with x [OF 〈d 6= 0 〉] obtain ξ where ξ > 0

and ξ:
∧
e. e > 0 =⇒ ∃ y ∈ S − {x}. norm (x − y) < e ∧ ξ ∗

norm (x − y) ≤ |d · (y − x )|
by (fastforce simp: not le Bex def )

obtain γ z where γSx :
∧
i . γ i ∈ S − {x}

and γle:
∧
i . ξ ∗ norm(γ i − x ) ≤ |d · (γ i − x )|

and γx : γ −−−−→ x
and z : (λn. (γ n − x ) /R norm (γ n − x )) −−−−→ z

proof −
have ∃ γ. (∀ i . (γ i ∈ S − {x} ∧

ξ ∗ norm(γ i − x ) ≤ |d · (γ i − x )| ∧ norm(γ i − x )
< 1/Suc i) ∧

norm(γ(Suc i) − x ) < norm(γ i − x ))
proof (rule dependent nat choice)

show ∃ y . y ∈ S − {x} ∧ ξ ∗ norm (y − x ) ≤ |d · (y − x )| ∧
norm (y − x ) < 1 / Suc 0

using ξ [of 1 ] by (auto simp: dist norm norm minus commute)
next
fix y i
assume y ∈ S − {x} ∧ ξ ∗ norm (y − x ) ≤ |d · (y − x )| ∧ norm

(y − x ) < 1/Suc i
then have min (norm(y − x )) (1/((Suc i) + 1 )) > 0
by auto
then obtain y ′ where y ′ ∈ S − {x} and y ′: norm (x − y ′) <

min (norm (y − x )) (1/((Suc i) + 1 ))
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ξ ∗ norm (x − y ′) ≤ |d · (y ′ − x )|
using ξ by metis

with ξ show ∃ y ′. (y ′ ∈ S − {x} ∧ ξ ∗ norm (y ′ − x ) ≤ |d · (y ′

− x )| ∧
norm (y ′ − x ) < 1/(Suc (Suc i))) ∧ norm (y ′ − x ) <

norm (y − x )
by (auto simp: dist norm norm minus commute)

qed
then obtain γ where

γSx :
∧
i . γ i ∈ S − {x}

and γle:
∧
i . ξ ∗ norm(γ i − x ) ≤ |d · (γ i − x )|

and γconv :
∧
i . norm(γ i − x ) < 1/(Suc i)

by blast
let ?f = λi . (γ i − x ) /R norm (γ i − x )
have ?f i ∈ sphere 0 1 for i
using γSx by auto

then obtain l % where l ∈ sphere 0 1 strict mono % and l : (?f ◦
%) −−−−→ l

using compact sphere [of 0 ::(real , ′m) vec 1 ] unfolding compact def
by meson

show thesis
proof
show (γ ◦ %) i ∈ S − {x} ξ ∗ norm ((γ ◦ %) i − x ) ≤ |d · ((γ ◦

%) i − x )| for i
using γSx γle by auto

have γ −−−−→ x
proof (clarsimp simp add : LIMSEQ def dist norm)
fix r :: real
assume r > 0
with real arch invD obtain no where no 6= 0 real no > 1/r
by (metis divide less 0 1 iff not less iff gr or eq of nat 0 eq iff

reals Archimedean2 )
with γconv show ∃no. ∀n≥no. norm (γ n − x ) < r
by (metis 〈r > 0 〉 add .commute divide inverse inverse inverse eq

inverse less imp less less trans mult .left neutral nat le real less of nat Suc)
qed
with 〈strict mono %〉 show (γ ◦ %) −−−−→ x
by (metis LIMSEQ subseq LIMSEQ)

show (λn. ((γ ◦ %) n − x ) /R norm ((γ ◦ %) n − x )) −−−−→ l
using l by (auto simp: o def )

qed
qed
have isCont (λx . (|d · x | − ξ)) z
by (intro continuous intros)

from isCont tendsto compose [OF this z ]
have lim: (λy . |d · ((γ y − x ) /R norm (γ y − x ))| − ξ) −−−−→ |d

· z | − ξ
by auto

moreover have ∀ F i in sequentially . 0 ≤ |d · ((γ i − x ) /R norm
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(γ i − x ))| − ξ
proof (rule eventuallyI )
fix n
show 0 ≤ |d · ((γ n − x ) /R norm (γ n − x ))| − ξ
using γle [of n] γSx by (auto simp: abs mult divide simps)

qed
ultimately have ξ ≤ |d · z |
using tendsto lowerbound [where a=0 ] by fastforce

have Cauchy (λn. (A n) ∗v z )
proof (clarsimp simp add : Cauchy def )
fix ε :: real
assume 0 < ε
then obtain N ::nat where N > 0 and N : ε/2 > 1/N
by (metis half gt zero inverse eq divide neq0 conv real arch inverse)
show ∃M . ∀m≥M . ∀n≥M . dist (A m ∗v z ) (A n ∗v z ) < ε
proof (intro exI allI impI )
fix i j
assume ij : N ≤ i N ≤ j
let ?V = λi k . A i ∗v ((γ k − x ) /R norm (γ k − x ))
have ∀ F k in sequentially . dist (γ k) x < min (δ i) (δ j )
using γx [unfolded tendsto iff ] by (meson min less iff conj δ)

then have even: ∀ F k in sequentially . norm (?V i k − ?V j k) −
2 / N ≤ 0

proof (rule eventually mono, clarsimp)
fix p
assume p: dist (γ p) x < δ i dist (γ p) x < δ j
let ?C = λk . f (γ p) − f x − A k ∗v (γ p − x )
have norm ((A i − A j ) ∗v (γ p − x )) = norm (?C j − ?C i)
by (simp add : algebra simps)

also have . . . ≤ norm (?C j ) + norm (?C i)
using norm triangle ineq4 by blast
also have . . . ≤ 1/(Suc j ) ∗ norm (γ p − x ) + 1/(Suc i) ∗

norm (γ p − x )
by (metis A Diff iff γSx dist norm p add mono)

also have . . . ≤ 1/N ∗ norm (γ p − x ) + 1/N ∗ norm (γ p −
x )

apply (intro add mono mult right mono)
using ij 〈N > 0 〉 by (auto simp: field simps)

also have . . . = 2 / N ∗ norm (γ p − x )
by simp

finally have no le: norm ((A i − A j ) ∗v (γ p − x )) ≤ 2 / N
∗ norm (γ p − x ) .

have norm (?V i p − ?V j p) =
norm ((A i − A j ) ∗v ((γ p − x ) /R norm (γ p − x )))

by (simp add : algebra simps)
also have . . . = norm ((A i − A j ) ∗v (γ p − x )) / norm (γ p

− x )
by (simp add : divide inverse matrix vector mult scaleR)

also have . . . ≤ 2 / N
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using no le by (auto simp: field split simps)
finally show norm (?V i p − ?V j p) ≤ 2 / N .

qed
have isCont (λw . (norm(A i ∗v w − A j ∗v w) − 2 / N )) z
by (intro continuous intros)

from isCont tendsto compose [OF this z ]
have lim: (λw . norm (A i ∗v ((γ w − x ) /R norm (γ w − x )) −

A j ∗v ((γ w − x ) /R norm (γ w − x ))) − 2 / N )
−−−−→ norm (A i ∗v z − A j ∗v z ) − 2 / N

by auto
have dist (A i ∗v z ) (A j ∗v z ) ≤ 2 / N

using tendsto upperbound [OF lim even] by (auto simp: dist norm)
with N show dist (A i ∗v z ) (A j ∗v z ) < ε
by linarith

qed
qed
then have d · z = 0
using CA eq d orthogonal def by auto

then show False
using 〈0 < ξ〉 〈ξ ≤ |d · z |〉 by auto

qed
ultimately show ?thesis
using dim eq full by fastforce

qed
finally have ?CA = UNIV .
then have Cauchy (λn. (A n) ∗v axis j 1 )
by auto

then obtain L where (λn. A n ∗v axis j 1 ) −−−−→ L
by (auto simp: Cauchy convergent iff convergent def )

then have (λx . (A x ∗v axis j 1 ) $ i) −−−−→ L $ i
by (rule tendsto vec nth)

then show ∃ a. (λn. A n $ i $ j ) −−−−→ a
by (force simp: vax )

qed
then obtain B where B :

∧
i j . (λn. A n $ i $ j ) −−−−→ B $ i $ j

by (auto simp: lambda skolem)
have lin df : linear (f ′ x )

and lim df : ((λy . (1 / norm (y − x )) ∗R (f y − (f x + f ′ x (y −
x )))) −−−→ 0 ) (at x within S )

using 〈x ∈ S 〉 assms by (auto simp: has derivative within linear linear)
moreover
interpret linear f ′ x by fact
have (matrix (f ′ x ) − B) ∗v w = 0 for w
proof (rule lemma partial derivatives [of (∗v) (matrix (f ′ x ) − B)])
show linear ((∗v) (matrix (f ′ x ) − B))
by (rule matrix vector mul linear)

have ((λy . ((f x + f ′ x (y − x )) − f y) /R norm (y − x )) −−−→ 0 ) (at
x within S )

using tendsto minus [OF lim df ] by (simp add : field split simps)
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then show ((λy . (matrix (f ′ x ) − B) ∗v (y − x ) /R norm (y − x ))
−−−→ 0 ) (at x within S )

proof (rule Lim transform)
have ((λy . ((f y + B ∗v x − (f x + B ∗v y)) /R norm (y − x ))) −−−→

0 ) (at x within S )
proof (clarsimp simp add : Lim within dist norm)
fix e :: real
assume e > 0
then obtain q ::nat where q 6= 0 and qe2 : 1/q < e/2

by (metis divide pos pos inverse eq divide real arch inverse
zero less numeral)

let ?g = λp. sum (λi . sum (λj . abs((A p − B)$i$j )) UNIV ) UNIV
have (λk . onorm (λy . (A k − B) ∗v y)) −−−−→ 0
proof (rule Lim null comparison)
show ∀ F k in sequentially . norm (onorm (λy . (A k − B) ∗v y)) ≤

?g k
proof (rule eventually sequentiallyI )
fix k :: nat
assume 0 ≤ k
have 0 ≤ onorm ((∗v) (A k − B))
using matrix vector mul bounded linear
by (rule onorm pos le)
then show norm (onorm ((∗v) (A k − B))) ≤ (

∑
i∈UNIV .∑

j∈UNIV . |(A k − B) $ i $ j |)
by (simp add : onorm le matrix component sum del : vec-

tor minus component)
qed

next
show ?g −−−−→ 0

using B Lim null tendsto rabs zero iff by (fastforce intro!:
tendsto null sum)

qed
with 〈e > 0 〉 obtain p where

∧
n. n ≥ p =⇒ |onorm ((∗v) (A n −

B))| < e/2
unfolding lim sequentially by (metis diff zero dist real def di-

vide pos pos zero less numeral)
then have pqe2 : |onorm ((∗v) (A (p + q) − B))| < e/2
using le add1 by blast

show ∃ d>0 . ∀ y∈S . y 6= x ∧ norm (y − x ) < d −→
inverse (norm (y − x )) ∗ norm (f y + B ∗v x − (f x + B

∗v y)) < e
proof (intro exI , safe)
show 0 < δ(p + q)
by (simp add : δ)

next
fix y
assume y : y ∈ S norm (y − x ) < δ(p + q) and y 6= x

have ∗: [[norm(b − c) < e − d ; norm(y − x − b) ≤ d ]] =⇒ norm(y
− x − c) < e
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for b c d e x and y :: realˆ ′n
using norm triangle ineq2 [of y − x − c y − x − b] by simp

have norm (f y − f x − B ∗v (y − x )) < e ∗ norm (y − x )
proof (rule ∗)
show norm (f y − f x − A (p + q) ∗v (y − x )) ≤ norm (y − x )

/ (Suc (p + q))
using A [OF y ] by simp

have norm (A (p + q) ∗v (y − x ) − B ∗v (y − x )) ≤ onorm(λx .
(A(p + q) − B) ∗v x ) ∗ norm(y − x )

by (metis linear linear matrix vector mul linear matrix vector mult diff rdistrib
onorm)

also have . . . < (e/2 ) ∗ norm (y − x )
using 〈y 6= x 〉 pqe2 by auto

also have . . . ≤ (e − 1 / (Suc (p + q))) ∗ norm (y − x )
proof (rule mult right mono)
have 1 / Suc (p + q) ≤ 1 / q
using 〈q 6= 0 〉 by (auto simp: field split simps)

also have . . . < e/2
using qe2 by auto

finally show e / 2 ≤ e − 1 / real (Suc (p + q))
by linarith

qed auto
finally show norm (A (p + q) ∗v (y − x ) − B ∗v (y − x )) < e

∗ norm (y − x ) − norm (y − x ) / real (Suc (p + q))
by (simp add : algebra simps)

qed
then show inverse (norm (y − x )) ∗ norm (f y + B ∗v x − (f x

+ B ∗v y)) < e
using 〈y 6= x 〉 by (simp add : field split simps algebra simps)

qed
qed
then show ((λy . (matrix (f ′ x ) − B) ∗v (y − x ) /R

norm (y − x ) − (f x + f ′ x (y − x ) − f y) /R norm (y −
x )) −−−→ 0 )

(at x within S )
by (simp add : algebra simps diff lin df scalar mult eq scaleR)

qed
qed (use x in 〈simp; auto simp: not less〉)
ultimately have f ′ x = (∗v) B
by (force simp: algebra simps scalar mult eq scaleR)

show matrix (f ′ x ) $ m $ n ≤ b
proof (rule tendsto upperbound [of λi . (A i $ m $ n) sequentially ])
show (λi . A i $ m $ n) −−−−→ matrix (f ′ x ) $ m $ n
by (simp add : B 〈f ′ x = (∗v) B 〉)

show ∀ F i in sequentially . A i $ m $ n ≤ b
by (simp add : Ab less eq real def )

qed auto
next
fix e :: real
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assume x ∈ S and b: matrix (f ′ x ) $ m $ n ≤ b and e > 0
then obtain d where d>0
and d :

∧
y . y∈S =⇒ 0 < dist y x ∧ dist y x < d −→ norm (f y − f x

− f ′ x (y − x )) / (norm (y − x ))
< e/2

using f [OF 〈x ∈ S 〉]
by (simp add : Deriv .has derivative at within Lim within)
(auto simp add : field simps dest : spec [of e/2 ])

let ?A = matrix (f ′ x ) − (χ i j . if i = m ∧ j = n then e / 4 else 0 )
obtain B where BRats:

∧
i j . B$i$j ∈ Q and Bo e6 : onorm((∗v) (?A

− B)) < e/6
using matrix rational approximation 〈e > 0 〉

by (metis zero less divide iff zero less numeral)
show ∃ d>0 . ∃A. A $ m $ n < b ∧ (∀ i j . A $ i $ j ∈ Q) ∧

(∀ y∈S . norm (y − x ) < d −→ norm (f y − f x − A ∗v (y − x )) ≤
e ∗ norm (y − x ))

proof (intro exI conjI ballI allI impI )
show d>0
by (rule 〈d>0 〉)

show B $ m $ n < b
proof −
have |matrix ((∗v) (?A − B)) $ m $ n| ≤ onorm ((∗v) (?A − B))

using component le onorm [OF matrix vector mul linear , of m n]
by metis

then show ?thesis
using b Bo e6 by simp

qed
show B $ i $ j ∈ Q for i j
using BRats by auto

show norm (f y − f x − B ∗v (y − x )) ≤ e ∗ norm (y − x )
if y ∈ S and y : norm (y − x ) < d for y

proof (cases y = x )
case True then show ?thesis
by simp

next
case False
have ∗: norm(d ′ − d) ≤ e/2 =⇒ norm(y − (x + d ′)) < e/2 =⇒

norm(y − x − d) ≤ e for d d ′ e and x y ::realˆ ′n
using norm triangle le [of d ′ − d y − (x + d ′)] by simp

show ?thesis
proof (rule ∗)
have split246 : [[norm y ≤ e / 6 ; norm(x − y) ≤ e / 4 ]] =⇒ norm x

≤ e/2 if e > 0 for e and x y :: realˆ ′n
using norm triangle le [of y x−y e/2 ] 〈e > 0 〉 by simp

have linear (f ′ x )
using True f has derivative linear by blast
then have norm (f ′ x (y − x ) − B ∗v (y − x )) = norm ((matrix

(f ′ x ) − B) ∗v (y − x ))
by (simp add : matrix vector mult diff rdistrib)
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also have . . . ≤ (e ∗ norm (y − x )) / 2
proof (rule split246 )
have norm ((?A − B) ∗v (y − x )) / norm (y − x ) ≤ onorm(λx .

(?A − B) ∗v x )
by (rule le onorm) auto

also have . . . < e/6
by (rule Bo e6 )

finally have norm ((?A − B) ∗v (y − x )) / norm (y − x ) < e /
6 .

then show norm ((?A − B) ∗v (y − x )) ≤ e ∗ norm (y − x ) / 6
by (simp add : field split simps False)

have norm ((matrix (f ′ x ) − B) ∗v (y − x ) − ((?A − B) ∗v (y −
x ))) = norm ((χ i j . if i = m ∧ j = n then e / 4 else 0 ) ∗v (y − x ))

by (simp add : algebra simps)
also have . . . = norm((e/4 ) ∗R (y − x )$n ∗R axis m (1 ::real))
proof −
have (

∑
j∈UNIV . (if i = m ∧ j = n then e / 4 else 0 ) ∗ (y $ j

− x $ j )) ∗ 4 = e ∗ (y $ n − x $ n) ∗ axis m 1 $ i for i
proof (cases i=m)
case True then show ?thesis
by (auto simp: if distrib [of λz . z ∗ ] cong : if cong)

next
case False then show ?thesis
by (simp add : axis def )

qed
then have (χ i j . if i = m ∧ j = n then e / 4 else 0 ) ∗v (y − x )

= (e/4 ) ∗R (y − x )$n ∗R axis m (1 ::real)
by (auto simp: vec eq iff matrix vector mult def )

then show ?thesis
by metis

qed
also have . . . ≤ e ∗ norm (y − x ) / 4
using 〈e > 0 〉 apply (simp add : norm mult abs mult)
by (metis component le norm cart vector minus component)

finally show norm ((matrix (f ′ x ) − B) ∗v (y − x ) − ((?A − B)
∗v (y − x ))) ≤ e ∗ norm (y − x ) / 4 .

show 0 < e ∗ norm (y − x )
by (simp add : False 〈e > 0 〉)

qed
finally show norm (f ′ x (y − x ) − B ∗v (y − x )) ≤ (e ∗ norm (y

− x )) / 2 .
show norm (f y − (f x + f ′ x (y − x ))) < (e ∗ norm (y − x )) / 2
using False d [OF 〈y ∈ S 〉] y by (simp add : dist norm field simps)

qed
qed

qed
qed

qed auto
qed
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show negligible ?M
using negligible subset [OF nN MN ] .

qed
then show ?thesis
by (simp add : borel measurable vimage halfspace component le sets restrict space iff

assms)
qed

theorem borel measurable det Jacobian:
fixes f :: realˆ ′n::{finite,wellorder} ⇒ realˆ ′n::
assumes S : S ∈ sets lebesgue and f :

∧
x . x ∈ S =⇒ (f has derivative f ′ x ) (at

x within S )
shows (λx . det(matrix (f ′ x ))) ∈ borel measurable (lebesgue on S )
unfolding det def
by (intro measurable) (auto intro: f borel measurable partial derivatives [OF S ])

The localisation wrt S uses the same argument for many similar results.

theorem borel measurable lebesgue on preimage borel :
fixes f :: ′a::euclidean space ⇒ ′b::euclidean space
assumes S ∈ sets lebesgue
shows f ∈ borel measurable (lebesgue on S ) ←→

(∀T . T ∈ sets borel −→ {x ∈ S . f x ∈ T} ∈ sets lebesgue)
proof −
have {x . (if x ∈ S then f x else 0 ) ∈ T} ∈ sets lebesgue ←→ {x ∈ S . f x ∈ T}
∈ sets lebesgue

if T ∈ sets borel for T
proof (cases 0 ∈ T )
case True
then have {x ∈ S . f x ∈ T} = {x . (if x ∈ S then f x else 0 ) ∈ T} ∩ S

{x . (if x ∈ S then f x else 0 ) ∈ T} = {x ∈ S . f x ∈ T} ∪ −S
by auto

then show ?thesis
by (metis (no types, lifting) Compl in sets lebesgue assms sets.Int sets.Un)

next
case False
then have {x . (if x ∈ S then f x else 0 ) ∈ T} = {x ∈ S . f x ∈ T}
by auto

then show ?thesis
by auto

qed
then show ?thesis

unfolding borel measurable lebesgue preimage borel borel measurable if [OF
assms, symmetric]

by blast
qed

lemma sets lebesgue almost borel :
assumes S ∈ sets lebesgue
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obtains B N where B ∈ sets borel negligible N B ∪ N = S
proof −
obtain T N N ′ where S = T ∪ N N ⊆ N ′ N ′ ∈ null sets lborel T ∈ sets borel
using sets completionE [OF assms] by auto

then show thesis
by (metis negligible iff null sets negligible subset null sets completionI that)

qed

lemma double lebesgue sets:
assumes S : S ∈ sets lebesgue and T : T ∈ sets lebesgue and fim: f ‘ S ⊆ T
shows (∀U . U ∈ sets lebesgue ∧ U ⊆ T −→ {x ∈ S . f x ∈ U } ∈ sets lebesgue)
←→

f ∈ borel measurable (lebesgue on S ) ∧
(∀U . negligible U ∧ U ⊆ T −→ {x ∈ S . f x ∈ U } ∈ sets lebesgue)
(is ?lhs ←→ ∧ ?rhs)

unfolding borel measurable lebesgue on preimage borel [OF S ]
proof (intro iffI allI conjI impI , safe)
fix V :: ′b set
assume ∗: ∀U . U ∈ sets lebesgue ∧ U ⊆ T −→ {x ∈ S . f x ∈ U } ∈ sets lebesgue
and V ∈ sets borel

then have V : V ∈ sets lebesgue
by simp

have {x ∈ S . f x ∈ V } = {x ∈ S . f x ∈ T ∩ V }
using fim by blast

also have {x ∈ S . f x ∈ T ∩ V } ∈ sets lebesgue
using T V ∗ le inf iff by blast

finally show {x ∈ S . f x ∈ V } ∈ sets lebesgue .
next
fix U :: ′b set
assume ∀U . U ∈ sets lebesgue ∧ U ⊆ T −→ {x ∈ S . f x ∈ U } ∈ sets lebesgue

negligible U U ⊆ T
then show {x ∈ S . f x ∈ U } ∈ sets lebesgue
using negligible imp sets by blast

next
fix U :: ′b set
assume 1 [rule format ]: (∀T . T ∈ sets borel −→ {x ∈ S . f x ∈ T} ∈ sets

lebesgue)
and 2 [rule format ]: ∀U . negligible U ∧ U ⊆ T −→ {x ∈ S . f x ∈ U } ∈ sets

lebesgue
and U ∈ sets lebesgue U ⊆ T

then obtain C N where C : C ∈ sets borel ∧ negligible N ∧ C ∪ N = U
using sets lebesgue almost borel
by metis

then have {x ∈ S . f x ∈ C} ∈ sets lebesgue
by (blast intro: 1 )

moreover have {x ∈ S . f x ∈ N } ∈ sets lebesgue
using C 〈U ⊆ T 〉 by (blast intro: 2 )

moreover have {x ∈ S . f x ∈ C ∪ N } = {x ∈ S . f x ∈ C} ∪ {x ∈ S . f x ∈ N }
by auto
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ultimately show {x ∈ S . f x ∈ U } ∈ sets lebesgue
using C by auto

qed

6.46.3 Simplest case of Sard’s theorem (we don’t need con-
tinuity of derivative)

lemma Sard lemma00 :
fixes P :: ′b::euclidean space set
assumes a ≥ 0 and a: a ∗R i 6= 0 and i : i ∈ Basis
and P : P ⊆ {x . a ∗R i · x = 0}
and 0 ≤ m 0 ≤ e

obtains S where S ∈ lmeasurable
and {z . norm z ≤ m ∧ (∃ t ∈ P . norm(z − t) ≤ e)} ⊆ S
and measure lebesgue S ≤ (2 ∗ e) ∗ (2 ∗ m) ˆ (DIM ( ′b) − 1 )

proof −
have a > 0
using assms by simp

let ?v = (
∑

j∈Basis. (if j = i then e else m) ∗R j )
show thesis
proof
have − e ≤ x · i x · i ≤ e
if t ∈ P norm (x − t) ≤ e for x t
using 〈a > 0 〉 that Basis le norm [of i x−t ] P i
by (auto simp: inner commute algebra simps)

moreover have − m ≤ x · j x · j ≤ m
if norm x ≤ m t ∈ P norm (x − t) ≤ e j ∈ Basis and j 6= i
for x t j
using that Basis le norm [of j x ] by auto

ultimately
show {z . norm z ≤ m ∧ (∃ t∈P . norm (z − t) ≤ e)} ⊆ cbox (−?v) ?v
by (auto simp: mem box )

have ∗: ∀ k∈Basis. − ?v · k ≤ ?v · k
using 〈0 ≤ m〉 〈0 ≤ e〉 by (auto simp: inner Basis)

have 2 : 2 ˆ DIM ( ′b) = 2 ∗ 2 ˆ (DIM ( ′b) − Suc 0 )
by (metis DIM positive Suc pred power Suc)

show measure lebesgue (cbox (−?v) ?v) ≤ 2 ∗ e ∗ (2 ∗ m) ˆ (DIM ( ′b) − 1 )
using 〈i ∈ Basis〉

by (simp add : content cbox [OF ∗] prod .distrib prod .If cases Diff eq [symmetric]
2 )
qed blast

qed

As above, but reorienting the vector (HOL Light’s @textGEOM BASIS MULTIPLE TAC)

lemma Sard lemma0 :
fixes P :: (realˆ ′n::{finite,wellorder}) set
assumes a 6= 0
and P : P ⊆ {x . a · x = 0} and 0 ≤ m 0 ≤ e

obtains S where S ∈ lmeasurable
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and {z . norm z ≤ m ∧ (∃ t ∈ P . norm(z − t) ≤ e)} ⊆ S
and measure lebesgue S ≤ (2 ∗ e) ∗ (2 ∗ m) ˆ (CARD( ′n) − 1 )

proof −
obtain T and k :: ′n where T : orthogonal transformation T and a: a = T (norm

a ∗R axis k (1 ::real))
using rotation rightward line by metis

have Tinv [simp]: T (inv T x ) = x for x
by (simp add : T orthogonal transformation surj surj f inv f )

obtain S where S : S ∈ lmeasurable
and subS : {z . norm z ≤ m ∧ (∃ t ∈ T−‘P . norm(z − t) ≤ e)} ⊆ S
and mS : measure lebesgue S ≤ (2 ∗ e) ∗ (2 ∗ m) ˆ (CARD( ′n) − 1 )

proof (rule Sard lemma00 [of norm a axis k (1 ::real) T−‘P m e])
have norm a ∗R axis k 1 · x = 0 if T x ∈ P for x
proof −
have a · T x = 0
using P that by blast

then show ?thesis
by (metis (no types, lifting) T a orthogonal orthogonal transformation

orthogonal def )
qed
then show T −‘ P ⊆ {x . norm a ∗R axis k 1 · x = 0}
by auto

qed (use assms T in auto)
show thesis
proof
show T ‘ S ∈ lmeasurable
using S measurable orthogonal image T by blast

have {z . norm z ≤ m ∧ (∃ t∈P . norm (z − t) ≤ e)} ⊆ T ‘ {z . norm z ≤ m
∧ (∃ t∈T −‘ P . norm (z − t) ≤ e)}

proof clarsimp
fix x t
assume norm x ≤ m t ∈ P norm (x − t) ≤ e
then have norm (inv T x ) ≤ m

using orthogonal transformation inv [OF T ] by (simp add : orthogo-
nal transformation norm)

moreover have ∃ t∈T −‘ P . norm (inv T x − t) ≤ e
proof
have T (inv T x − inv T t) = x − t
using T linear diff orthogonal transformation def
by (metis (no types, hide lams) Tinv)

then have norm (inv T x − inv T t) = norm (x − t)
by (metis T orthogonal transformation norm)

then show norm (inv T x − inv T t) ≤ e
using 〈norm (x − t) ≤ e〉 by linarith

next
show inv T t ∈ T −‘ P
using 〈t ∈ P 〉 by force

qed
ultimately show x ∈ T ‘ {z . norm z ≤ m ∧ (∃ t∈T −‘ P . norm (z − t) ≤
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e)}
by force

qed
then show {z . norm z ≤ m ∧ (∃ t∈P . norm (z − t) ≤ e)} ⊆ T ‘ S
using image mono [OF subS ] by (rule order trans)

show measure lebesgue (T ‘ S ) ≤ 2 ∗ e ∗ (2 ∗ m) ˆ (CARD( ′n) − 1 )
using mS T by (simp add : S measure orthogonal image)

qed
qed

As above, but translating the sets (HOL Light’s @textGEN GEOM ORIGIN TAC)

lemma Sard lemma1 :
fixes P :: (realˆ ′n::{finite,wellorder}) set
assumes P : dim P < CARD( ′n) and 0 ≤ m 0 ≤ e

obtains S where S ∈ lmeasurable
and {z . norm(z − w) ≤ m ∧ (∃ t ∈ P . norm(z − w − t) ≤ e)} ⊆ S
and measure lebesgue S ≤ (2 ∗ e) ∗ (2 ∗ m) ˆ (CARD( ′n) − 1 )

proof −
obtain a where a 6= 0 P ⊆ {x . a · x = 0}
using lowdim subset hyperplane [of P ] P span base by auto

then obtain S where S : S ∈ lmeasurable
and subS : {z . norm z ≤ m ∧ (∃ t ∈ P . norm(z − t) ≤ e)} ⊆ S
and mS : measure lebesgue S ≤ (2 ∗ e) ∗ (2 ∗ m) ˆ (CARD( ′n) − 1 )
by (rule Sard lemma0 [OF 〈0 ≤ m〉 〈0 ≤ e〉])

show thesis
proof
show (+)w ‘ S ∈ lmeasurable
by (metis measurable translation S )

show {z . norm (z − w) ≤ m ∧ (∃ t∈P . norm (z − w − t) ≤ e)} ⊆ (+)w ‘ S
using subS by force

show measure lebesgue ((+)w ‘ S ) ≤ 2 ∗ e ∗ (2 ∗ m) ˆ (CARD( ′n) − 1 )
by (metis measure translation mS )

qed
qed

lemma Sard lemma2 :
fixes f :: realˆ ′m::{finite,wellorder} ⇒ realˆ ′n::{finite,wellorder}
assumes mlen: CARD( ′m) ≤ CARD( ′n) (is ?m ≤ ?n)
and B > 0 bounded S
and derS :

∧
x . x ∈ S =⇒ (f has derivative f ′ x ) (at x within S )

and rank :
∧
x . x ∈ S =⇒ rank(matrix (f ′ x )) < CARD( ′n)

and B :
∧
x . x ∈ S =⇒ onorm(f ′ x ) ≤ B

shows negligible(f ‘ S )
proof −
have lin f ′:

∧
x . x ∈ S =⇒ linear(f ′ x )

using derS has derivative linear by blast
show ?thesis
proof (clarsimp simp add : negligible outer le)
fix e :: real

Change{_}{\kern 0pt}Of{_}{\kern 0pt}Vars.html


3152

assume e > 0
obtain c where csub: S ⊆ cbox (− (vec c)) (vec c) and c > 0
proof −
obtain b where b:

∧
x . x ∈ S =⇒ norm x ≤ b

using 〈bounded S 〉 by (auto simp: bounded iff )
show thesis
proof
have − |b| − 1 ≤ x $ i ∧ x $ i ≤ |b| + 1 if x ∈ S for x i
using component le norm cart [of x i ] b [OF that ] by auto

then show S ⊆ cbox (− vec (|b| + 1 )) (vec (|b| + 1 ))
by (auto simp: mem box cart)

qed auto
qed
then have box cc: box (− (vec c)) (vec c) 6= {} and cbox cc: cbox (− (vec c))

(vec c) 6= {}
by (auto simp: interval eq empty cart)

obtain d where d > 0 d ≤ B
and d : (d ∗ 2 ) ∗ (4 ∗ B) ˆ (?n − 1 ) ≤ e / (2∗c) ˆ ?m / ?m ˆ ?m

apply (rule that [of min B (e / (2∗c) ˆ ?m / ?m ˆ ?m / (4 ∗ B) ˆ (?n −
1 ) / 2 )])

using 〈B > 0 〉 〈c > 0 〉 〈e > 0 〉

by (simp all add : divide simps min mult distrib right)
have ∃ r . 0 < r ∧ r ≤ 1/2 ∧

(x ∈ S
−→ (∀ y . y ∈ S ∧ norm(y − x ) < r

−→ norm(f y − f x − f ′ x (y − x )) ≤ d ∗ norm(y − x ))) for x
proof (cases x ∈ S )
case True
then obtain r where r > 0

and
∧
y . [[y ∈ S ; norm (y − x ) < r ]]
=⇒ norm (f y − f x − f ′ x (y − x )) ≤ d ∗ norm (y − x )

using derS 〈d > 0 〉 by (force simp: has derivative within alt)
then show ?thesis
by (rule tac x=min r (1/2 ) in exI ) simp

next
case False
then show ?thesis
by (rule tac x=1/2 in exI ) simp

qed
then obtain r where r12 :

∧
x . 0 < r x ∧ r x ≤ 1/2

and r :
∧
x y . [[x ∈ S ; y ∈ S ; norm(y − x ) < r x ]]
=⇒ norm(f y − f x − f ′ x (y − x )) ≤ d ∗ norm(y − x )

by metis
then have ga: gauge (λx . ball x (r x ))
by (auto simp: gauge def )

obtain D where D: countable D and sub cc:
⋃
D ⊆ cbox (− vec c) (vec c)

and cbox :
∧
K . K ∈ D =⇒ interior K 6= {} ∧ (∃ u v . K = cbox u v)

and djointish: pairwise (λA B . interior A ∩ interior B = {}) D
and covered :

∧
K . K ∈ D =⇒ ∃ x ∈ S ∩ K . K ⊆ ball x (r x )
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and close:
∧
u v . cbox u v ∈ D =⇒ ∃n. ∀ i :: ′m. v $ i − u $ i = 2∗c / 2ˆn

and covers: S ⊆
⋃
D

apply (rule covering lemma [OF csub box cc ga])
apply (auto simp: Basis vec def cart eq inner axis [symmetric])
done

let ?µ = measure lebesgue
have ∃T . T ∈ lmeasurable ∧ f ‘ (K ∩ S ) ⊆ T ∧ ?µ T ≤ e / (2∗c) ˆ ?m ∗

?µ K
if K ∈ D for K

proof −
obtain u v where uv : K = cbox u v
using cbox 〈K ∈ D〉 by blast

then have uv ne: cbox u v 6= {}
using cbox that by fastforce

obtain x where x : x ∈ S ∩ cbox u v cbox u v ⊆ ball x (r x )
using 〈K ∈ D〉 covered uv by blast

then have dim (range (f ′ x )) < ?n
using rank dim range [of matrix (f ′ x )] x rank [of x ]
by (auto simp: matrix works scalar mult eq scaleR lin f ′)

then obtain T where T : T ∈ lmeasurable
and subT : {z . norm(z − f x ) ≤ (2 ∗ B) ∗ norm(v − u) ∧ (∃ t ∈ range

(f ′ x ). norm(z − f x − t) ≤ d ∗ norm(v − u))} ⊆ T
and measT : ?µ T ≤ (2 ∗ (d ∗ norm(v − u))) ∗ (2 ∗ ((2 ∗ B) ∗ norm(v

− u))) ˆ (?n − 1 )
(is ≤ ?DVU )

apply (rule Sard lemma1 [of range (f ′ x ) (2 ∗ B) ∗ norm(v − u) d ∗
norm(v − u) f x ])

using 〈B > 0 〉 〈d > 0 〉 by simp all
show ?thesis
proof (intro exI conjI )
have f ‘ (K ∩ S ) ⊆ {z . norm(z − f x ) ≤ (2 ∗ B) ∗ norm(v − u) ∧ (∃ t ∈

range (f ′ x ). norm(z − f x − t) ≤ d ∗ norm(v − u))}
unfolding uv

proof (clarsimp simp: mult .assoc, intro conjI )
fix y
assume y : y ∈ cbox u v and y ∈ S
then have norm (y − x ) < r x
by (metis dist norm mem ball norm minus commute subsetCE x (2 ))

then have le dyx : norm (f y − f x − f ′ x (y − x )) ≤ d ∗ norm (y − x )
using r [of x y ] x 〈y ∈ S 〉 by blast

have yx le: norm (y − x ) ≤ norm (v − u)
proof (rule norm le componentwise cart)
show norm ((y − x ) $ i) ≤ norm ((v − u) $ i) for i
using x y by (force simp: mem box cart dest !: spec [where x=i ])

qed
have ∗: [[norm(y − x − z ) ≤ d ; norm z ≤ B ; d ≤ B ]] =⇒ norm(y − x )

≤ 2 ∗ B
for x y z :: realˆ ′n:: and d B
using norm triangle ineq2 [of y − x z ] by auto
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show norm (f y − f x ) ≤ 2 ∗ (B ∗ norm (v − u))
proof (rule ∗ [OF le dyx ])
have norm (f ′ x (y − x )) ≤ onorm (f ′ x ) ∗ norm (y − x )
using onorm [of f ′ x y−x ] by (meson IntE lin f ′ linear linear x (1 ))

also have . . . ≤ B ∗ norm (v − u)
proof (rule mult mono)
show onorm (f ′ x ) ≤ B
using B x by blast

qed (use 〈B > 0 〉 yx le in auto)
finally show norm (f ′ x (y − x )) ≤ B ∗ norm (v − u) .
show d ∗ norm (y − x ) ≤ B ∗ norm (v − u)
using 〈B > 0 〉 by (auto intro: mult mono [OF 〈d ≤ B 〉 yx le])

qed
show ∃ t . norm (f y − f x − f ′ x t) ≤ d ∗ norm (v − u)
apply (rule tac x=y−x in exI )
using 〈d > 0 〉 yx le le dyx mult left mono [where c=d ]
by (meson order trans mult le cancel iff2 )

qed
with subT show f ‘ (K ∩ S ) ⊆ T by blast
show ?µ T ≤ e / (2∗c) ˆ ?m ∗ ?µ K
proof (rule order trans [OF measT ])
have ?DVU = (d ∗ 2 ∗ (4 ∗ B) ˆ (?n − 1 )) ∗ norm (v − u)ˆ?n
using 〈c > 0 〉

apply (simp add : algebra simps)
by (metis Suc pred power Suc zero less card finite)

also have . . . ≤ (e / (2∗c) ˆ ?m / (?m ˆ ?m)) ∗ norm(v − u) ˆ ?n
by (rule mult right mono [OF d ]) auto

also have . . . ≤ e / (2∗c) ˆ ?m ∗ ?µ K
proof −
have u ∈ ball (x ) (r x ) v ∈ ball x (r x )

using box ne empty(1 ) contra subsetD [OF x (2 )] mem box (2 ) uv ne
by fastforce+

moreover have r x ≤ 1/2
using r12 by auto

ultimately have norm (v − u) ≤ 1
using norm triangle half r [of x u 1 v ]
by (metis (no types, hide lams) dist commute dist norm less eq real def

less le trans mem ball)
then have norm (v − u) ˆ ?n ≤ norm (v − u) ˆ ?m
by (simp add : power decreasing [OF mlen])

also have . . . ≤ ?µ K ∗ real (?m ˆ ?m)
proof −
obtain n where n:

∧
i . v$i − u$i = 2 ∗ c / 2ˆn

using close [of u v ] 〈K ∈ D〉 uv by blast
have norm (v − u) ˆ ?m ≤ (

∑
i∈UNIV . |(v − u) $ i |) ˆ ?m

by (intro norm le l1 cart power mono) auto
also have . . . ≤ (

∏
i∈UNIV . v $ i − u $ i) ∗ real CARD( ′m) ˆ

CARD( ′m)
by (simp add : n field simps 〈c > 0 〉 less eq real def )
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also have . . . = ?µ K ∗ real (?m ˆ ?m)
by (simp add : uv uv ne content cbox cart)

finally show ?thesis .
qed
finally have ∗: 1 / real (?m ˆ ?m) ∗ norm (v − u) ˆ ?n ≤ ?µ K
by (simp add : field split simps)

show ?thesis
using mult left mono [OF ∗, of e / (2∗c) ˆ ?m] 〈c > 0 〉 〈e > 0 〉 by

auto
qed
finally show ?DVU ≤ e / (2∗c) ˆ ?m ∗ ?µ K .

qed
qed (use T in auto)

qed
then obtain g where meas g :

∧
K . K ∈ D =⇒ g K ∈ lmeasurable

and sub g :
∧
K . K ∈ D =⇒ f ‘ (K ∩ S ) ⊆ g K

and le g :
∧
K . K ∈ D =⇒ ?µ (g K ) ≤ e / (2∗c)ˆ?m ∗ ?µ K

by metis
have le e: ?µ (

⋃
i∈F . g i) ≤ e

if F ⊆ D finite F for F
proof −
have ?µ (

⋃
i∈F . g i) ≤ (

∑
i∈F . ?µ (g i))

using meas g 〈F ⊆ D〉 by (auto intro: measure UNION le [OF 〈finite F 〉])
also have . . . ≤ (

∑
K∈F . e / (2∗c) ˆ ?m ∗ ?µ K )

using 〈F ⊆ D〉 sum mono [OF le g ] by (meson le g subsetCE sum mono)
also have . . . = e / (2∗c) ˆ ?m ∗ (

∑
K∈F . ?µ K )

by (simp add : sum distrib left)
also have . . . ≤ e
proof −
have F division of

⋃
F

proof (rule division ofI )
show K ⊆

⋃
F K 6= {} ∃ a b. K = cbox a b if K ∈ F for K

using 〈K ∈ F 〉 covered cbox 〈F ⊆ D〉 by (auto simp: Union upper)
show interior K ∩ interior L = {} if K ∈ F and L ∈ F and K 6= L for

K L
by (metis (mono tags, lifting) 〈F ⊆ D〉 pairwiseD djointish pairwise subset

that)
qed (use that in auto)
then have sum ?µ F ≤ ?µ (

⋃
F)

by (simp add : content division)
also have . . . ≤ ?µ (cbox (− vec c) (vec c) :: (real , ′m) vec set)
proof (rule measure mono fmeasurable)
show

⋃
F ⊆ cbox (− vec c) (vec c)

by (meson Sup subset mono sub cc order trans 〈F ⊆ D〉)
qed (use 〈F division of

⋃
F 〉 lmeasurable division in auto)

also have . . . = content (cbox (− vec c) (vec c) :: (real , ′m) vec set)
by simp

also have . . . ≤ (2 ˆ ?m ∗ c ˆ ?m)
using 〈c > 0 〉 by (simp add : content cbox if cart)
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finally have sum ?µ F ≤ (2 ˆ ?m ∗ c ˆ ?m) .
then show ?thesis
using 〈e > 0 〉 〈c > 0 〉 by (auto simp: field split simps)

qed
finally show ?thesis .

qed
show ∃T . f ‘ S ⊆ T ∧ T ∈ lmeasurable ∧ ?µ T ≤ e
proof (intro exI conjI )
show f ‘ S ⊆

⋃
(g ‘ D)

using covers sub g by force
show

⋃
(g ‘ D) ∈ lmeasurable

by (rule fmeasurable UN bound [OF 〈countable D〉 meas g le e])
show ?µ (

⋃
(g ‘ D)) ≤ e

by (rule measure UN bound [OF 〈countable D〉 meas g le e])
qed

qed
qed

theorem baby Sard :
fixes f :: realˆ ′m::{finite,wellorder} ⇒ realˆ ′n::{finite,wellorder}
assumes mlen: CARD( ′m) ≤ CARD( ′n)
and der :

∧
x . x ∈ S =⇒ (f has derivative f ′ x ) (at x within S )

and rank :
∧
x . x ∈ S =⇒ rank(matrix (f ′ x )) < CARD( ′n)

shows negligible(f ‘ S )
proof −
let ?U = λn. {x ∈ S . norm(x ) ≤ n ∧ onorm(f ′ x ) ≤ real n}
have

∧
x . x ∈ S =⇒ ∃n. norm x ≤ real n ∧ onorm (f ′ x ) ≤ real n

by (meson linear order trans real arch simple)
then have eq : S = (

⋃
n. ?U n)

by auto
have negligible (f ‘ ?U n) for n
proof (rule Sard lemma2 [OF mlen])
show 0 < real n + 1
by auto

show bounded (?U n)
using bounded iff by blast

show (f has derivative f ′ x ) (at x within ?U n) if x ∈ ?U n for x
using der that by (force intro: has derivative subset)

qed (use rank in auto)
then show ?thesis
by (subst eq) (simp add : image Union negligible Union nat)

qed

6.46.4 A one-way version of change-of-variables not assum-
ing injectivity.

lemma integral on image ubound weak :
fixes f :: realˆ ′n::{finite,wellorder} ⇒ real
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assumes S : S ∈ sets lebesgue
and f : f ∈ borel measurable (lebesgue on (g ‘ S ))
and nonneg fg :

∧
x . x ∈ S =⇒ 0 ≤ f (g x )

and der g :
∧
x . x ∈ S =⇒ (g has derivative g ′ x ) (at x within S )

and det int fg : (λx . |det (matrix (g ′ x ))| ∗ f (g x )) integrable on S
and meas gim:

∧
T . [[T ⊆ g ‘ S ; T ∈ sets lebesgue]] =⇒ {x ∈ S . g x ∈ T} ∈

sets lebesgue
shows f integrable on (g ‘ S ) ∧

integral (g ‘ S ) f ≤ integral S (λx . |det (matrix (g ′ x ))| ∗ f (g x ))
(is ∧ ≤ ?b)

proof −
let ?D = λx . |det (matrix (g ′ x ))|
have cont g : continuous on S g
using der g has derivative continuous on by blast

have [simp]: space (lebesgue on S ) = S
by (simp add : S )

have gS in sets leb: g ‘ S ∈ sets lebesgue
apply (rule differentiable image in sets lebesgue)
using der g by (auto simp: S differentiable def differentiable on def )

obtain h where nonneg h:
∧
n x . 0 ≤ h n x

and h le f :
∧
n x . x ∈ S =⇒ h n (g x ) ≤ f (g x )

and h inc:
∧
n x . h n x ≤ h (Suc n) x

and h meas:
∧
n. h n ∈ borel measurable lebesgue

and fin R:
∧
n. finite(range (h n))

and lim:
∧
x . x ∈ g ‘ S =⇒ (λn. h n x ) −−−−→ f x

proof −
let ?f = λx . if x ∈ g ‘ S then f x else 0
have ?f ∈ borel measurable lebesgue ∧ (∀ x . 0 ≤ ?f x )
by (auto simp: gS in sets leb f nonneg fg measurable restrict space iff [symmetric])
then show ?thesis
apply (clarsimp simp add : borel measurable simple function limit increasing)
apply (rename tac h)
by (rule tac h=h in that) (auto split : if split asm)

qed
have h lmeas: {t . h n (g t) = y} ∩ S ∈ sets lebesgue for y n
proof −
have space (lebesgue on (UNIV ::(real , ′n) vec set)) = UNIV
by simp

then have ((h n) −‘{y} ∩ g ‘ S ) ∈ sets (lebesgue on (g ‘ S ))
by (metis Int commute borel measurable vimage h meas image eqI inf top.right neutral

sets restrict space space borel space completion space lborel)
then have ({u. h n u = y} ∩ g ‘ S ) ∈ sets lebesgue
using gS in sets leb
by (simp add : integral indicator fmeasurableI2 sets restrict space iff vim-

age def )
then have {x ∈ S . g x ∈ ({u. h n u = y} ∩ g ‘ S )} ∈ sets lebesgue
using meas gim[of ({u. h n u = y} ∩ g ‘ S )] by force

moreover have {t . h n (g t) = y} ∩ S = {x ∈ S . g x ∈ ({u. h n u = y} ∩ g
‘ S )}

Change{_}{\kern 0pt}Of{_}{\kern 0pt}Vars.html


3158

by blast
ultimately show ?thesis
by auto

qed
have hint : h n integrable on g ‘ S ∧ integral (g ‘ S ) (h n) ≤ integral S (λx . ?D

x ∗ h n (g x ))
(is ?INT ∧ ?lhs ≤ ?rhs) for n

proof −
let ?R = range (h n)
have hn eq : h n = (λx .

∑
y∈?R. y ∗ indicat real {x . h n x = y} x )

by (simp add : indicator def if distrib fin R cong : if cong)
have yind : (λt . y ∗ indicator{x . h n x = y} t) integrable on (g ‘ S ) ∧

(integral (g ‘ S ) (λt . y ∗ indicator {x . h n x = y} t))
≤ integral S (λt . |det (matrix (g ′ t))| ∗ y ∗ indicator {x . h n x =

y} (g t))
if y : y ∈ ?R for y ::real

proof (cases y=0 )
case True
then show ?thesis using gS in sets leb integrable 0 by force

next
case False
with that have y > 0
using less eq real def nonneg h by fastforce

have (λx . if x ∈ {t . h n (g t) = y} then ?D x else 0 ) integrable on S
proof (rule measurable bounded by integrable imp integrable)
have (λx . ?D x ) ∈ borel measurable (lebesgue on ({t . h n (g t) = y} ∩ S ))

apply (intro borel measurable abs borel measurable det Jacobian [OF
h lmeas, where f=g ])

by (meson der g IntD2 has derivative subset inf le2 )
then have (λx . if x ∈ {t . h n (g t) = y} ∩ S then ?D x else 0 ) ∈

borel measurable lebesgue
by (rule borel measurable if I [OF h lmeas])

then show (λx . if x ∈ {t . h n (g t) = y} then ?D x else 0 ) ∈ borel measurable
(lebesgue on S )

by (simp add : if if eq conj Int commute borel measurable if [OF S , sym-
metric])

show (λx . ?D x ∗R f (g x ) /R y) integrable on S
by (rule integrable cmul) (use det int fg in auto)

show norm (if x ∈ {t . h n (g t) = y} then ?D x else 0 ) ≤ ?D x ∗R f (g x )
/R y

if x ∈ S for x
using nonneg h [of n x ] 〈y > 0 〉 nonneg fg [of x ] h le f [of x n] that
by (auto simp: divide simps mult left mono)

qed (use S in auto)
then have int det : (λt . |det (matrix (g ′ t))|) integrable on ({t . h n (g t) =

y} ∩ S )
using integrable restrict Int by force

have (g ‘ ({t . h n (g t) = y} ∩ S )) ∈ lmeasurable
apply (rule measurable differentiable image [OF h lmeas])
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apply (blast intro: has derivative subset [OF der g ])
apply (rule int det)
done

moreover have g ‘ ({t . h n (g t) = y} ∩ S ) = {x . h n x = y} ∩ g ‘ S
by blast

moreover have measure lebesgue (g ‘ ({t . h n (g t) = y} ∩ S ))
≤ integral ({t . h n (g t) = y} ∩ S ) (λt . |det (matrix (g ′ t))|)

apply (rule measure differentiable image [OF h lmeas int det ])
apply (blast intro: has derivative subset [OF der g ])
done

ultimately show ?thesis
using 〈y > 0 〉 integral restrict Int [of S {t . h n (g t) = y} λt . |det (matrix

(g ′ t))| ∗ y ]
apply (simp add : integrable on indicator integral indicator)
apply (simp add : indicator def if distrib cong : if cong)
done

qed
have hn int : h n integrable on g ‘ S
apply (subst hn eq)
using yind by (force intro: integrable sum [OF fin R])

then show ?thesis
proof
have ?lhs = integral (g ‘ S ) (λx .

∑
y∈range (h n). y ∗ indicat real {x . h n

x = y} x )
by (metis hn eq)

also have . . . = (
∑

y∈range (h n). integral (g ‘ S ) (λx . y ∗ indicat real {x .
h n x = y} x ))

by (rule integral sum [OF fin R]) (use yind in blast)
also have . . . ≤ (

∑
y∈range (h n). integral S (λu. |det (matrix (g ′ u))| ∗ y

∗ indicat real {x . h n x = y} (g u)))
using yind by (force intro: sum mono)

also have . . . = integral S (λu.
∑

y∈range (h n). |det (matrix (g ′ u))| ∗ y
∗ indicat real {x . h n x = y} (g u))

proof (rule integral sum [OF fin R, symmetric])
fix y assume y : y ∈ ?R
with nonneg h have y ≥ 0
by auto
show (λu. |det (matrix (g ′ u))| ∗ y ∗ indicat real {x . h n x = y} (g u))

integrable on S
proof (rule measurable bounded by integrable imp integrable)
have (λx . indicat real {x . h n x = y} (g x )) ∈ borel measurable (lebesgue on

S )
using h lmeas S

by (auto simp: indicator vimage [symmetric] borel measurable indicator iff
sets restrict space iff )

then show (λu. |det (matrix (g ′ u))| ∗ y ∗ indicat real {x . h n x = y} (g
u)) ∈ borel measurable (lebesgue on S )

by (intro borel measurable times borel measurable abs borel measurable const
borel measurable det Jacobian [OF S der g ])
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next
fix x
assume x ∈ S
have y ∗ indicat real {x . h n x = y} (g x ) ≤ f (g x )

by (metis (full types) 〈x ∈ S 〉 h le f indicator def mem Collect eq
mult .right neutral mult zero right nonneg fg)

with 〈y ≥ 0 〉 show norm (?D x ∗ y ∗ indicat real {x . h n x = y} (g x ))
≤ ?D x ∗ f (g x )

by (simp add : abs mult mult .assoc mult left mono)
qed (use S det int fg in auto)

qed
also have . . . = integral S (λT . |det (matrix (g ′ T ))| ∗

(
∑

y∈range (h n). y ∗ indicat real {x . h n x = y}
(g T )))

by (simp add : sum distrib left mult .assoc)
also have . . . = ?rhs
by (metis hn eq)

finally show integral (g ‘ S ) (h n) ≤ ?rhs .
qed

qed
have le: integral S (λT . |det (matrix (g ′ T ))| ∗ h n (g T )) ≤ ?b for n
proof (rule integral le)
show (λT . |det (matrix (g ′ T ))| ∗ h n (g T )) integrable on S
proof (rule measurable bounded by integrable imp integrable)
have (λT . |det (matrix (g ′ T ))| ∗R h n (g T )) ∈ borel measurable (lebesgue on

S )
proof (intro borel measurable scaleR borel measurable abs borel measurable det Jacobian

〈S ∈ sets lebesgue〉)
have eq : {x ∈ S . f x ≤ a} = (

⋃
b ∈ (f ‘ S ) ∩ atMost a. {x . f x = b} ∩ S )

for f and a::real
by auto

have finite ((λx . h n (g x )) ‘ S ∩ {..a}) for a
by (force intro: finite subset [OF fin R])

with h lmeas [of n] show (λx . h n (g x )) ∈ borel measurable (lebesgue on
S )

apply (simp add : borel measurable vimage halfspace component le 〈S ∈
sets lebesgue〉 sets restrict space iff eq)

by (metis (mono tags) SUP inf sets.finite UN )
qed (use der g in blast)
then show (λT . |det (matrix (g ′ T ))| ∗ h n (g T )) ∈ borel measurable

(lebesgue on S )
by simp

show norm (?D x ∗ h n (g x )) ≤ ?D x ∗R f (g x )
if x ∈ S for x
by (simp add : h le f mult left mono nonneg h that)

qed (use S det int fg in auto)
show ?D x ∗ h n (g x ) ≤ ?D x ∗ f (g x ) if x ∈ S for x
by (simp add : 〈x ∈ S 〉 h le f mult left mono)

show (λx . ?D x ∗ f (g x )) integrable on S
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using det int fg by blast
qed
have f integrable on g ‘ S ∧ (λk . integral (g ‘ S ) (h k)) −−−−→ integral (g ‘ S ) f
proof (rule monotone convergence increasing)
have |integral (g ‘ S ) (h n)| ≤ integral S (λx . ?D x ∗ f (g x )) for n
proof −
have |integral (g ‘ S ) (h n)| = integral (g ‘ S ) (h n)
using hint by (simp add : integral nonneg nonneg h)

also have . . . ≤ integral S (λx . ?D x ∗ f (g x ))
using hint le by (meson order trans)

finally show ?thesis .
qed
then show bounded (range (λk . integral (g ‘ S ) (h k)))
by (force simp: bounded iff )

qed (use h inc lim hint in auto)
moreover have integral (g ‘ S ) (h n) ≤ integral S (λx . ?D x ∗ f (g x )) for n
using hint by (blast intro: le order trans)

ultimately show ?thesis
by (auto intro: Lim bounded)

qed

lemma integral on image ubound nonneg :
fixes f :: realˆ ′n::{finite,wellorder} ⇒ real
assumes nonneg fg :

∧
x . x ∈ S =⇒ 0 ≤ f (g x )

and der g :
∧
x . x ∈ S =⇒ (g has derivative g ′ x ) (at x within S )

and intS : (λx . |det (matrix (g ′ x ))| ∗ f (g x )) integrable on S
shows f integrable on (g ‘ S ) ∧ integral (g ‘ S ) f ≤ integral S (λx . |det (matrix

(g ′ x ))| ∗ f (g x ))
(is ∧ ≤ ?b)

proof −
let ?D = λx . det (matrix (g ′ x ))
define S ′ where S ′ ≡ {x ∈ S . ?D x ∗ f (g x ) 6= 0}
then have der gS ′:

∧
x . x ∈ S ′ =⇒ (g has derivative g ′ x ) (at x within S ′)

by (metis (mono tags, lifting) der g has derivative subset mem Collect eq sub-
set iff )
have (λx . if x ∈ S then |?D x | ∗ f (g x ) else 0 ) integrable on UNIV
by (simp add : integrable restrict UNIV intS )

then have Df borel : (λx . if x ∈ S then |?D x | ∗ f (g x ) else 0 ) ∈ borel measurable
lebesgue

using integrable imp measurable lebesgue on UNIV eq by force
have S ′: S ′ ∈ sets lebesgue
proof −
from Df borel borel measurable vimage open [of UNIV ]
have {x . (if x ∈ S then |?D x | ∗ f (g x ) else 0 ) ∈ T} ∈ sets lebesgue
if open T for T
using that unfolding lebesgue on UNIV eq
by (fastforce simp add : dest !: spec)

then have {x . (if x ∈ S then |?D x | ∗ f (g x ) else 0 ) ∈ −{0}} ∈ sets lebesgue
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using open Compl by blast
then show ?thesis
by (simp add : S ′ def conj ac split : if split asm cong : conj cong)

qed
then have gS ′: g ‘ S ′ ∈ sets lebesgue
proof (rule differentiable image in sets lebesgue)
show g differentiable on S ′

using der g unfolding S ′ def differentiable def differentiable on def
by (blast intro: has derivative subset)

qed auto
have f : f ∈ borel measurable (lebesgue on (g ‘ S ′))
proof (clarsimp simp add : borel measurable vimage open)
fix T :: real set
assume open T
have {x ∈ g ‘ S ′. f x ∈ T} = g ‘ {x ∈ S ′. f (g x ) ∈ T}
by blast

moreover have g ‘ {x ∈ S ′. f (g x ) ∈ T} ∈ sets lebesgue
proof (rule differentiable image in sets lebesgue)
let ?h = λx . |?D x | ∗ f (g x ) /R |?D x |
have (λx . if x ∈ S ′ then |?D x | ∗ f (g x ) else 0 ) = (λx . if x ∈ S then |?D x |

∗ f (g x ) else 0 )
by (auto simp: S ′ def )

also have . . . ∈ borel measurable lebesgue
by (rule Df borel)

finally have ∗: (λx . |?D x | ∗ f (g x )) ∈ borel measurable (lebesgue on S ′)
by (simp add : borel measurable if D)

have ?h ∈ borel measurable (lebesgue on S ′)
by (intro ∗ S ′ der gS ′ borel measurable det Jacobian measurable) (blast intro:

der gS ′)
moreover have ?h x = f (g x ) if x ∈ S ′ for x
using that by (auto simp: S ′ def )

ultimately have (λx . f (g x )) ∈ borel measurable (lebesgue on S ′)
by (metis (no types, lifting) measurable lebesgue cong)

then show {x ∈ S ′. f (g x ) ∈ T} ∈ sets lebesgue
by (simp add : 〈S ′ ∈ sets lebesgue〉 〈open T 〉 borel measurable vimage open

sets restrict space iff )
show g differentiable on {x ∈ S ′. f (g x ) ∈ T}
using der g unfolding S ′ def differentiable def differentiable on def
by (blast intro: has derivative subset)

qed auto
ultimately have {x ∈ g ‘ S ′. f x ∈ T} ∈ sets lebesgue
by metis

then show {x ∈ g ‘ S ′. f x ∈ T} ∈ sets (lebesgue on (g ‘ S ′))
by (simp add : 〈g ‘ S ′ ∈ sets lebesgue〉 sets restrict space iff )

qed
have intS ′: (λx . |?D x | ∗ f (g x )) integrable on S ′

using intS
by (rule integrable spike set) (auto simp: S ′ def intro: empty imp negligible)

have lebS ′: {x ∈ S ′. g x ∈ T} ∈ sets lebesgue if T ⊆ g ‘ S ′ T ∈ sets lebesgue
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for T
proof −
have g ∈ borel measurable (lebesgue on S ′)
using der gS ′ has derivative continuous on S ′

by (blast intro: continuous imp measurable on sets lebesgue)
moreover have {x ∈ S ′. g x ∈ U } ∈ sets lebesgue if negligible U U ⊆ g ‘ S ′

for U
proof (intro negligible imp sets negligible differentiable vimage that)
fix x
assume x : x ∈ S ′

then have linear (g ′ x )
using der gS ′ has derivative linear by blast

with x show inj (g ′ x )
by (auto simp: S ′ def det nz iff inj )

qed (use der gS ′ in auto)
ultimately show ?thesis
using double lebesgue sets [OF S ′ gS ′ order refl ] that by blast

qed
have int gS ′: f integrable on g ‘ S ′ ∧ integral (g ‘ S ′) f ≤ integral S ′ (λx . |?D x |
∗ f (g x ))

using integral on image ubound weak [OF S ′ f nonneg fg der gS ′ intS ′ lebS ′]
S ′ def by blast
have negligible (g ‘ {x ∈ S . det(matrix (g ′ x )) = 0})
proof (rule baby Sard , simp all)
fix x
assume x : x ∈ S ∧ det (matrix (g ′ x )) = 0
then show (g has derivative g ′ x ) (at x within {x ∈ S . det (matrix (g ′ x )) =

0})
by (metis (no types, lifting) der g has derivative subset mem Collect eq sub-

setI )
then show rank (matrix (g ′ x )) < CARD( ′n)
using det nz iff inj matrix vector mul linear x
by (fastforce simp add : less rank noninjective)

qed
then have negg : negligible (g ‘ S − g ‘ {x ∈ S . ?D x 6= 0})
by (rule negligible subset) (auto simp: S ′ def )

have null : g ‘ {x ∈ S . ?D x 6= 0} − g ‘ S = {}
by (auto simp: S ′ def )

let ?F = {x ∈ S . f (g x ) 6= 0}
have eq : g ‘ S ′ = g ‘ ?F ∩ g ‘ {x ∈ S . ?D x 6= 0}
by (auto simp: S ′ def image iff )

show ?thesis
proof
have ((λx . if x ∈ g ‘ ?F then f x else 0 ) integrable on g ‘ {x ∈ S . ?D x 6= 0})
using int gS ′ eq integrable restrict Int [where f=f ]
by simp

then have f integrable on g ‘ {x ∈ S . ?D x 6= 0}
by (auto simp: image iff elim!: integrable eq)

then show f integrable on g ‘ S
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apply (rule integrable spike set [OF empty imp negligible negligible subset ])
using negg null by auto

have integral (g ‘ S ) f = integral (g ‘ {x ∈ S . ?D x 6= 0}) f
using negg by (auto intro: negligible subset integral spike set)

also have . . . = integral (g ‘ {x ∈ S . ?D x 6= 0}) (λx . if x ∈ g ‘ ?F then f x
else 0 )

by (auto simp: image iff intro!: integral cong)
also have . . . = integral (g ‘ S ′) f
using eq integral restrict Int by simp

also have . . . ≤ integral S ′ (λx . |?D x | ∗ f (g x ))
by (metis int gS ′)

also have . . . ≤ ?b
by (rule integral subset le [OF intS ′ intS ]) (use nonneg fg S ′ def in auto)

finally show integral (g ‘ S ) f ≤ ?b .
qed

qed

lemma absolutely integrable on image real :
fixes f :: realˆ ′n::{finite,wellorder} ⇒ real and g :: realˆ ′n:: ⇒ realˆ ′n::
assumes der g :

∧
x . x ∈ S =⇒ (g has derivative g ′ x ) (at x within S )

and intS : (λx . |det (matrix (g ′ x ))| ∗ f (g x )) absolutely integrable on S
shows f absolutely integrable on (g ‘ S )

proof −
let ?D = λx . |det (matrix (g ′ x ))| ∗ f (g x )
let ?N = {x ∈ S . f (g x ) < 0} and ?P = {x ∈ S . f (g x ) > 0}
have eq : {x . (if x ∈ S then ?D x else 0 ) > 0} = {x ∈ S . ?D x > 0}

{x . (if x ∈ S then ?D x else 0 ) < 0} = {x ∈ S . ?D x < 0}
by auto

have ?D integrable on S
using intS absolutely integrable on def by blast

then have (λx . if x ∈ S then ?D x else 0 ) integrable on UNIV
by (simp add : integrable restrict UNIV )

then have D borel : (λx . if x ∈ S then ?D x else 0 ) ∈ borel measurable (lebesgue on
UNIV )

using integrable imp measurable lebesgue on UNIV eq by blast
then have Dlt : {x ∈ S . ?D x < 0} ∈ sets lebesgue
unfolding borel measurable vimage halfspace component lt
by (drule tac x=0 in spec) (auto simp: eq)

from D borel have Dgt : {x ∈ S . ?D x > 0} ∈ sets lebesgue
unfolding borel measurable vimage halfspace component gt
by (drule tac x=0 in spec) (auto simp: eq)

have dfgbm: ?D ∈ borel measurable (lebesgue on S )
using intS absolutely integrable on def integrable imp measurable by blast

have der gN : (g has derivative g ′ x ) (at x within ?N ) if x ∈ ?N for x
using der g has derivative subset that by force

have (λx . − f x ) integrable on g ‘ ?N ∧
integral (g ‘ ?N ) (λx . − f x ) ≤ integral ?N (λx . |det (matrix (g ′ x ))| ∗ −
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f (g x ))
proof (rule integral on image ubound nonneg [OF der gN ])
have 1 : ?D integrable on {x ∈ S . ?D x < 0}
using Dlt
by (auto intro: set lebesgue integral eq integral [OF set integrable subset ] intS )
have uminus ◦ (λx . |det (matrix (g ′ x ))| ∗ − f (g x )) integrable on ?N

by (simp add : o def mult less 0 iff empty imp negligible integrable spike set
[OF 1 ])

then show (λx . |det (matrix (g ′ x ))| ∗ − f (g x )) integrable on ?N
by (simp add : integrable neg iff o def )

qed auto
then have f integrable on g ‘ ?N
by (simp add : integrable neg iff )

moreover have g ‘ ?N = {y ∈ g ‘ S . f y < 0}
by auto

ultimately have f integrable on {y ∈ g ‘ S . f y < 0}
by simp

then have N : f absolutely integrable on {y ∈ g ‘ S . f y < 0}
by (rule absolutely integrable absolutely integrable ubound) auto

have der gP : (g has derivative g ′ x ) (at x within ?P) if x ∈ ?P for x
using der g has derivative subset that by force

have f integrable on g ‘ ?P ∧ integral (g ‘ ?P) f ≤ integral ?P ?D
proof (rule integral on image ubound nonneg [OF der gP ])
have ?D integrable on {x ∈ S . 0 < ?D x}
using Dgt
by (auto intro: set lebesgue integral eq integral [OF set integrable subset ] intS )
then show ?D integrable on ?P
apply (rule integrable spike set)
by (auto simp: zero less mult iff empty imp negligible)

qed auto
then have f integrable on g ‘ ?P
by metis

moreover have g ‘ ?P = {y ∈ g ‘ S . f y > 0}
by auto

ultimately have f integrable on {y ∈ g ‘ S . f y > 0}
by simp

then have P : f absolutely integrable on {y ∈ g ‘ S . f y > 0}
by (rule absolutely integrable absolutely integrable lbound) auto

have (λx . if x ∈ g ‘ S ∧ f x < 0 ∨ x ∈ g ‘ S ∧ 0 < f x then f x else 0 ) = (λx .
if x ∈ g ‘ S then f x else 0 )

by auto
then show ?thesis

using absolutely integrable Un [OF N P ] absolutely integrable restrict UNIV
[symmetric, where f=f ]

by simp
qed
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proposition absolutely integrable on image:
fixes f :: realˆ ′m::{finite,wellorder} ⇒ realˆ ′n and g :: realˆ ′m:: ⇒ realˆ ′m::
assumes der g :

∧
x . x ∈ S =⇒ (g has derivative g ′ x ) (at x within S )

and intS : (λx . |det (matrix (g ′ x ))| ∗R f (g x )) absolutely integrable on S
shows f absolutely integrable on (g ‘ S )
apply (rule absolutely integrable componentwise [OF absolutely integrable on image real

[OF der g ]])
using absolutely integrable component [OF intS ] by auto

proposition integral on image ubound :
fixes f :: realˆ ′n::{finite,wellorder} ⇒ real and g :: realˆ ′n:: ⇒ realˆ ′n::
assumes

∧
x . x ∈ S =⇒ 0 ≤ f (g x )

and
∧
x . x ∈ S =⇒ (g has derivative g ′ x ) (at x within S )

and (λx . |det (matrix (g ′ x ))| ∗ f (g x )) integrable on S
shows integral (g ‘ S ) f ≤ integral S (λx . |det (matrix (g ′ x ))| ∗ f (g x ))
using integral on image ubound nonneg [OF assms] by simp

6.46.5 Change-of-variables theorem

The classic change-of-variables theorem. We have two versions with quite
general hypotheses, the first that the transforming function has a continuous
inverse, the second that the base set is Lebesgue measurable.

lemma cov invertible nonneg le:
fixes f :: realˆ ′n::{finite,wellorder} ⇒ real and g :: realˆ ′n:: ⇒ realˆ ′n::
assumes der g :

∧
x . x ∈ S =⇒ (g has derivative g ′ x ) (at x within S )

and der h:
∧
y . y ∈ T =⇒ (h has derivative h ′ y) (at y within T )

and f0 :
∧
y . y ∈ T =⇒ 0 ≤ f y

and hg :
∧
x . x ∈ S =⇒ g x ∈ T ∧ h(g x ) = x

and gh:
∧
y . y ∈ T =⇒ h y ∈ S ∧ g(h y) = y

and id :
∧
y . y ∈ T =⇒ h ′ y ◦ g ′(h y) = id

shows f integrable on T ∧ (integral T f ) ≤ b ←→
(λx . |det (matrix (g ′ x ))| ∗ f (g x )) integrable on S ∧
integral S (λx . |det (matrix (g ′ x ))| ∗ f (g x )) ≤ b

(is ?lhs = ?rhs)
proof −
have Teq : T = g‘S and Seq : S = h‘T
using hg gh image iff by fastforce+

have gS : g differentiable on S
by (meson der g differentiable def differentiable on def )

let ?D = λx . |det (matrix (g ′ x ))| ∗ f (g x )
show ?thesis
proof
assume ?lhs
then have fT : f integrable on T and intf : integral T f ≤ b
by blast+

show ?rhs
proof
let ?fgh = λx . |det (matrix (h ′ x ))| ∗ (|det (matrix (g ′ (h x )))| ∗ f (g (h x )))
have ddf : ?fgh x = f x
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if x ∈ T for x
proof −
have matrix (h ′ x ) ∗∗ matrix (g ′ (h x )) = mat 1

using that id [OF that ] der g [of h x ] gh[OF that ] left inverse linear
has derivative linear

by (subst matrix compose[symmetric]) (force simp: matrix id mat 1
has derivative linear)+

then have |det (matrix (h ′ x ))| ∗ |det (matrix (g ′ (h x )))| = 1
by (metis abs 1 abs mult det I det mul)

then show ?thesis
by (simp add : gh that)

qed
have ?D integrable on (h ‘ T )

proof (intro set lebesgue integral eq integral absolutely integrable on image real)
show (λx . ?fgh x ) absolutely integrable on T
proof (subst absolutely integrable on iff nonneg)
show (λx . ?fgh x ) integrable on T
using ddf fT integrable eq by force

qed (simp add : zero le mult iff f0 gh)
qed (use der h in auto)
with Seq show (λx . ?D x ) integrable on S
by simp

have integral S (λx . ?D x ) ≤ integral T (λx . ?fgh x )
unfolding Seq

proof (rule integral on image ubound)
show (λx . ?fgh x ) integrable on T
using ddf fT integrable eq by force

qed (use f0 gh der h in auto)
also have . . . = integral T f
by (force simp: ddf intro: integral cong)

also have . . . ≤ b
by (rule intf )

finally show integral S (λx . ?D x ) ≤ b .
qed

next
assume R: ?rhs
then have f integrable on g ‘ S
using der g f0 hg integral on image ubound nonneg by blast

moreover have integral (g ‘ S ) f ≤ integral S (λx . ?D x )
by (rule integral on image ubound [OF f0 der g ]) (use R Teq in auto)

ultimately show ?lhs
using R by (simp add : Teq)

qed
qed

lemma cov invertible nonneg eq :
fixes f :: realˆ ′n::{finite,wellorder} ⇒ real and g :: realˆ ′n:: ⇒ realˆ ′n::
assumes

∧
x . x ∈ S =⇒ (g has derivative g ′ x ) (at x within S )
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and
∧
y . y ∈ T =⇒ (h has derivative h ′ y) (at y within T )

and
∧
y . y ∈ T =⇒ 0 ≤ f y

and
∧
x . x ∈ S =⇒ g x ∈ T ∧ h(g x ) = x

and
∧
y . y ∈ T =⇒ h y ∈ S ∧ g(h y) = y

and
∧
y . y ∈ T =⇒ h ′ y ◦ g ′(h y) = id

shows ((λx . |det (matrix (g ′ x ))| ∗ f (g x )) has integral b) S ←→ (f has integral
b) T
using cov invertible nonneg le [OF assms]
by (simp add : has integral iff ) (meson eq iff )

lemma cov invertible real :
fixes f :: realˆ ′n::{finite,wellorder} ⇒ real and g :: realˆ ′n:: ⇒ realˆ ′n::
assumes der g :

∧
x . x ∈ S =⇒ (g has derivative g ′ x ) (at x within S )

and der h:
∧
y . y ∈ T =⇒ (h has derivative h ′ y) (at y within T )

and hg :
∧
x . x ∈ S =⇒ g x ∈ T ∧ h(g x ) = x

and gh:
∧
y . y ∈ T =⇒ h y ∈ S ∧ g(h y) = y

and id :
∧
y . y ∈ T =⇒ h ′ y ◦ g ′(h y) = id

shows (λx . |det (matrix (g ′ x ))| ∗ f (g x )) absolutely integrable on S ∧
integral S (λx . |det (matrix (g ′ x ))| ∗ f (g x )) = b ←→

f absolutely integrable on T ∧ integral T f = b
(is ?lhs = ?rhs)

proof −
have Teq : T = g‘S and Seq : S = h‘T
using hg gh image iff by fastforce+

let ?DP = λx . |det (matrix (g ′ x ))| ∗ f (g x ) and ?DN = λx . |det (matrix (g ′

x ))| ∗ −f (g x )
have +: (?DP has integral b) {x ∈ S . f (g x ) > 0} ←→ (f has integral b) {y ∈

T . f y > 0} for b
proof (rule cov invertible nonneg eq)
have ∗: (λx . f (g x )) −‘ Y ∩ {x ∈ S . f (g x ) > 0}

= ((λx . f (g x )) −‘ Y ∩ S ) ∩ {x ∈ S . f (g x ) > 0} for Y
by auto

show (g has derivative g ′ x ) (at x within {x ∈ S . f (g x ) > 0}) if x ∈ {x ∈ S .
f (g x ) > 0} for x

using that der g has derivative subset by fastforce
show (h has derivative h ′ y) (at y within {y ∈ T . f y > 0}) if y ∈ {y ∈ T . f

y > 0} for y
using that der h has derivative subset by fastforce

qed (use gh hg id in auto)
have −: (?DN has integral b) {x ∈ S . f (g x ) < 0} ←→ ((λx . − f x ) has integral

b) {y ∈ T . f y < 0} for b
proof (rule cov invertible nonneg eq)
have ∗: (λx . − f (g x )) −‘ y ∩ {x ∈ S . f (g x ) < 0}

= ((λx . f (g x )) −‘ uminus ‘ y ∩ S ) ∩ {x ∈ S . f (g x ) < 0} for y
using image iff by fastforce

show (g has derivative g ′ x ) (at x within {x ∈ S . f (g x ) < 0}) if x ∈ {x ∈ S .
f (g x ) < 0} for x

using that der g has derivative subset by fastforce
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show (h has derivative h ′ y) (at y within {y ∈ T . f y < 0}) if y ∈ {y ∈ T . f
y < 0} for y

using that der h has derivative subset by fastforce
qed (use gh hg id in auto)
show ?thesis
proof
assume LHS : ?lhs
have eq : {x . (if x ∈ S then ?DP x else 0 ) > 0} = {x ∈ S . ?DP x > 0}
{x . (if x ∈ S then ?DP x else 0 ) < 0} = {x ∈ S . ?DP x < 0}
by auto

have ?DP integrable on S
using LHS absolutely integrable on def by blast

then have (λx . if x ∈ S then ?DP x else 0 ) integrable on UNIV
by (simp add : integrable restrict UNIV )
then have D borel : (λx . if x ∈ S then ?DP x else 0 ) ∈ borel measurable

(lebesgue on UNIV )
using integrable imp measurable lebesgue on UNIV eq by blast

then have SN : {x ∈ S . ?DP x < 0} ∈ sets lebesgue
unfolding borel measurable vimage halfspace component lt
by (drule tac x=0 in spec) (auto simp: eq)

from D borel have SP : {x ∈ S . ?DP x > 0} ∈ sets lebesgue
unfolding borel measurable vimage halfspace component gt
by (drule tac x=0 in spec) (auto simp: eq)

have ?DP absolutely integrable on {x ∈ S . ?DP x > 0}
using LHS by (fast intro!: set integrable subset [OF , of S ] SP)

then have aP : ?DP absolutely integrable on {x ∈ S . f (g x ) > 0}
by (rule absolutely integrable spike set) (auto simp: zero less mult iff empty imp negligible)
have ?DP absolutely integrable on {x ∈ S . ?DP x < 0}
using LHS by (fast intro!: set integrable subset [OF , of S ] SN )

then have aN : ?DP absolutely integrable on {x ∈ S . f (g x ) < 0}
by (rule absolutely integrable spike set) (auto simp: mult less 0 iff empty imp negligible)
have fN : f integrable on {y ∈ T . f y < 0}

integral {y ∈ T . f y < 0} f = integral {x ∈ S . f (g x ) < 0} ?DP
using − [of integral {x ∈ S . f (g x ) < 0} ?DN ] aN

by (auto simp: set lebesgue integral eq integral has integral iff integrable neg iff )
have faN : f absolutely integrable on {y ∈ T . f y < 0}
apply (rule absolutely integrable integrable bound [where g = λx . − f x ])
using fN by (auto simp: integrable neg iff )

have fP : f integrable on {y ∈ T . f y > 0}
integral {y ∈ T . f y > 0} f = integral {x ∈ S . f (g x ) > 0} ?DP

using + [of integral {x ∈ S . f (g x ) > 0} ?DP ] aP
by (auto simp: set lebesgue integral eq integral has integral iff integrable neg iff )
have faP : f absolutely integrable on {y ∈ T . f y > 0}
apply (rule absolutely integrable integrable bound [where g = f ])
using fP by auto

have fa: f absolutely integrable on ({y ∈ T . f y < 0} ∪ {y ∈ T . f y > 0})
by (rule absolutely integrable Un [OF faN faP ])

show ?rhs
proof
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have eq : ((if x ∈ T ∧ f x < 0 ∨ x ∈ T ∧ 0 < f x then 1 else 0 ) ∗ f x )
= (if x ∈ T then 1 else 0 ) ∗ f x for x

by auto
show f absolutely integrable on T
using fa by (simp add : indicator def set integrable def eq)
have [simp]: {y ∈ T . f y < 0} ∩ {y ∈ T . 0 < f y} = {} for T and f ::

(realˆ ′n:: ) ⇒ real
by auto

have integral T f = integral ({y ∈ T . f y < 0} ∪ {y ∈ T . f y > 0}) f
by (intro empty imp negligible integral spike set) (auto simp: eq)

also have . . . = integral {y ∈ T . f y < 0} f + integral {y ∈ T . f y > 0} f
using fN fP by simp

also have . . . = integral {x ∈ S . f (g x ) < 0} ?DP + integral {x ∈ S . 0 <
f (g x )} ?DP

by (simp add : fN fP)
also have . . . = integral ({x ∈ S . f (g x ) < 0} ∪ {x ∈ S . 0 < f (g x )}) ?DP
using aP aN by (simp add : set lebesgue integral eq integral)

also have . . . = integral S ?DP
by (intro empty imp negligible integral spike set) auto

also have . . . = b
using LHS by simp

finally show integral T f = b .
qed

next
assume RHS : ?rhs
have eq : {x . (if x ∈ T then f x else 0 ) > 0} = {x ∈ T . f x > 0}

{x . (if x ∈ T then f x else 0 ) < 0} = {x ∈ T . f x < 0}
by auto

have f integrable on T
using RHS absolutely integrable on def by blast

then have (λx . if x ∈ T then f x else 0 ) integrable on UNIV
by (simp add : integrable restrict UNIV )

then have D borel : (λx . if x ∈ T then f x else 0 ) ∈ borel measurable (lebesgue on
UNIV )

using integrable imp measurable lebesgue on UNIV eq by blast
then have TN : {x ∈ T . f x < 0} ∈ sets lebesgue
unfolding borel measurable vimage halfspace component lt
by (drule tac x=0 in spec) (auto simp: eq)

from D borel have TP : {x ∈ T . f x > 0} ∈ sets lebesgue
unfolding borel measurable vimage halfspace component gt
by (drule tac x=0 in spec) (auto simp: eq)

have aint : f absolutely integrable on {y . y ∈ T ∧ 0 < (f y)}
f absolutely integrable on {y . y ∈ T ∧ (f y) < 0}

and intT : integral T f = b
using set integrable subset [of T ] TP TN RHS
by blast+

show ?lhs
proof
have fN : f integrable on {v ∈ T . f v < 0}
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using absolutely integrable on def aint by blast
then have DN : (?DN has integral integral {y ∈ T . f y < 0} (λx . − f x )) {x

∈ S . f (g x ) < 0}
using − [of integral {y ∈ T . f y < 0} (λx . − f x )]
by (simp add : has integral neg iff integrable integral)

have aDN : ?DP absolutely integrable on {x ∈ S . f (g x ) < 0}
apply (rule absolutely integrable integrable bound [where g = ?DN ])
using DN hg by (fastforce simp: abs mult integrable neg iff )+

have fP : f integrable on {v ∈ T . f v > 0}
using absolutely integrable on def aint by blast

then have DP : (?DP has integral integral {y ∈ T . f y > 0} f ) {x ∈ S . f (g
x ) > 0}

using + [of integral {y ∈ T . f y > 0} f ]
by (simp add : has integral neg iff integrable integral)

have aDP : ?DP absolutely integrable on {x ∈ S . f (g x ) > 0}
apply (rule absolutely integrable integrable bound [where g = ?DP ])
using DP hg by (fastforce simp: integrable neg iff )+

have eq : (if x ∈ S then 1 else 0 ) ∗ ?DP x = (if x ∈ S ∧ f (g x ) < 0 ∨ x ∈
S ∧ f (g x ) > 0 then 1 else 0 ) ∗ ?DP x for x

by force
have ?DP absolutely integrable on ({x ∈ S . f (g x ) < 0} ∪ {x ∈ S . f (g x )

> 0})
by (rule absolutely integrable Un [OF aDN aDP ])

then show I : ?DP absolutely integrable on S
by (simp add : indicator def eq set integrable def )
have [simp]: {y ∈ S . f y < 0} ∩ {y ∈ S . 0 < f y} = {} for S and f ::

(realˆ ′n:: ) ⇒ real
by auto

have integral S ?DP = integral ({x ∈ S . f (g x ) < 0} ∪ {x ∈ S . f (g x ) >
0}) ?DP

by (intro empty imp negligible integral spike set) auto
also have . . . = integral {x ∈ S . f (g x ) < 0} ?DP + integral {x ∈ S . 0 <

f (g x )} ?DP
using aDN aDP by (simp add : set lebesgue integral eq integral)

also have . . . = − integral {y ∈ T . f y < 0} (λx . − f x ) + integral {y ∈ T .
f y > 0} f

using DN DP by (auto simp: has integral iff )
also have . . . = integral ({x ∈ T . f x < 0} ∪ {x ∈ T . 0 < f x}) f
by (simp add : fN fP)

also have . . . = integral T f
by (intro empty imp negligible integral spike set) auto

also have . . . = b
using intT by simp

finally show integral S ?DP = b .
qed

qed
qed
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lemma cv inv version3 :
fixes f :: realˆ ′m::{finite,wellorder} ⇒ realˆ ′n and g :: realˆ ′m:: ⇒ realˆ ′m::
assumes der g :

∧
x . x ∈ S =⇒ (g has derivative g ′ x ) (at x within S )

and der h:
∧
y . y ∈ T =⇒ (h has derivative h ′ y) (at y within T )

and hg :
∧
x . x ∈ S =⇒ g x ∈ T ∧ h(g x ) = x

and gh:
∧
y . y ∈ T =⇒ h y ∈ S ∧ g(h y) = y

and id :
∧
y . y ∈ T =⇒ h ′ y ◦ g ′(h y) = id

shows (λx . |det (matrix (g ′ x ))| ∗R f (g x )) absolutely integrable on S ∧
integral S (λx . |det (matrix (g ′ x ))| ∗R f (g x )) = b

←→ f absolutely integrable on T ∧ integral T f = b
proof −
let ?D = λx . |det (matrix (g ′ x ))| ∗R f (g x )
have ((λx . |det (matrix (g ′ x ))| ∗ f (g x ) $ i) absolutely integrable on S ∧ integral

S (λx . |det (matrix (g ′ x ))| ∗ (f (g x ) $ i)) = b $ i) ←→
((λx . f x $ i) absolutely integrable on T ∧ integral T (λx . f x $ i) = b $ i)

for i
by (rule cov invertible real [OF der g der h hg gh id ])

then have ?D absolutely integrable on S ∧ (?D has integral b) S ←→
f absolutely integrable on T ∧ (f has integral b) T

unfolding absolutely integrable componentwise iff [where f=f ] has integral componentwise iff
[of f ]

absolutely integrable componentwise iff [where f=?D ] has integral componentwise iff
[of ?D ]

by (auto simp: all conj distrib Basis vec def cart eq inner axis [symmetric]
has integral iff set lebesgue integral eq integral)

then show ?thesis
using absolutely integrable on def by blast

qed

lemma cv inv version4 :
fixes f :: realˆ ′m::{finite,wellorder} ⇒ realˆ ′n and g :: realˆ ′m:: ⇒ realˆ ′m::
assumes der g :

∧
x . x ∈ S =⇒ (g has derivative g ′ x ) (at x within S ) ∧ invert-

ible(matrix (g ′ x ))
and hg :

∧
x . x ∈ S =⇒ continuous on (g ‘ S ) h ∧ h(g x ) = x

shows (λx . |det (matrix (g ′ x ))| ∗R f (g x )) absolutely integrable on S ∧
integral S (λx . |det (matrix (g ′ x ))| ∗R f (g x )) = b

←→ f absolutely integrable on (g ‘ S ) ∧ integral (g ‘ S ) f = b
proof −
have ∀ x . ∃ h ′. x ∈ S

−→ (g has derivative g ′ x ) (at x within S ) ∧ linear h ′ ∧ g ′ x ◦ h ′ = id ∧
h ′ ◦ g ′ x = id

using der g matrix invertible has derivative linear by blast
then obtain h ′ where h ′:∧

x . x ∈ S
=⇒ (g has derivative g ′ x ) (at x within S ) ∧

linear (h ′ x ) ∧ g ′ x ◦ (h ′ x ) = id ∧ (h ′ x ) ◦ g ′ x = id
by metis

show ?thesis
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proof (rule cv inv version3 )
show

∧
y . y ∈ g ‘ S =⇒ (h has derivative h ′ (h y)) (at y within g ‘ S )

using h ′ hg
by (force simp: continuous on eq continuous within intro!: has derivative inverse within)

qed (use h ′ hg in auto)
qed

theorem has absolute integral change of variables invertible:
fixes f :: realˆ ′m::{finite,wellorder} ⇒ realˆ ′n and g :: realˆ ′m:: ⇒ realˆ ′m::
assumes der g :

∧
x . x ∈ S =⇒ (g has derivative g ′ x ) (at x within S )

and hg :
∧
x . x ∈ S =⇒ h(g x ) = x

and conth: continuous on (g ‘ S ) h
shows (λx . |det (matrix (g ′ x ))| ∗R f (g x )) absolutely integrable on S ∧ integral

S (λx . |det (matrix (g ′ x ))| ∗R f (g x )) = b ←→
f absolutely integrable on (g ‘ S ) ∧ integral (g ‘ S ) f = b

(is ?lhs = ?rhs)
proof −
let ?S = {x ∈ S . invertible (matrix (g ′ x ))} and ?D = λx . |det (matrix (g ′ x ))|
∗R f (g x )
have ∗: ?D absolutely integrable on ?S ∧ integral ?S ?D = b

←→ f absolutely integrable on (g ‘ ?S ) ∧ integral (g ‘ ?S ) f = b
proof (rule cv inv version4 )
show (g has derivative g ′ x ) (at x within ?S ) ∧ invertible (matrix (g ′ x ))
if x ∈ ?S for x
using der g that has derivative subset that by fastforce

show continuous on (g ‘ ?S ) h ∧ h (g x ) = x
if x ∈ ?S for x
using that continuous on subset [OF conth] by (simp add : hg image mono)

qed
have (g has derivative g ′ x ) (at x within {x ∈ S . rank (matrix (g ′ x )) <

CARD( ′m)}) if x ∈ S for x
by (metis (no types, lifting) der g has derivative subset mem Collect eq subsetI

that)
then have negligible (g ‘ {x ∈ S . ¬ invertible (matrix (g ′ x ))})
by (auto simp: invertible det nz det eq 0 rank intro: baby Sard)

then have neg : negligible {x ∈ g ‘ S . x /∈ g ‘ ?S ∧ f x 6= 0}
by (auto intro: negligible subset)

have [simp]: {x ∈ g ‘ ?S . x /∈ g ‘ S ∧ f x 6= 0} = {}
by auto

have ?D absolutely integrable on ?S ∧ integral ?S ?D = b
←→ ?D absolutely integrable on S ∧ integral S ?D = b
apply (intro conj cong absolutely integrable spike set eq)
apply(auto simp: integral spike set invertible det nz empty imp negligible neg)
done

moreover
have f absolutely integrable on (g ‘ ?S ) ∧ integral (g ‘ ?S ) f = b
←→ f absolutely integrable on (g ‘ S ) ∧ integral (g ‘ S ) f = b
by (auto intro!: conj cong absolutely integrable spike set eq integral spike set
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neg)
ultimately
show ?thesis
using ∗ by blast

qed

theorem has absolute integral change of variables compact :
fixes f :: realˆ ′m::{finite,wellorder} ⇒ realˆ ′n and g :: realˆ ′m:: ⇒ realˆ ′m::
assumes compact S

and der g :
∧
x . x ∈ S =⇒ (g has derivative g ′ x ) (at x within S )

and inj : inj on g S
shows ((λx . |det (matrix (g ′ x ))| ∗R f (g x )) absolutely integrable on S ∧

integral S (λx . |det (matrix (g ′ x ))| ∗R f (g x )) = b
←→ f absolutely integrable on (g ‘ S ) ∧ integral (g ‘ S ) f = b)

proof −
obtain h where hg :

∧
x . x ∈ S =⇒ h(g x ) = x

using inj by (metis the inv into f f )
have conth: continuous on (g ‘ S ) h
by (metis 〈compact S 〉 continuous on inv der g has derivative continuous on hg)
show ?thesis
by (rule has absolute integral change of variables invertible [OF der g hg conth])

qed

lemma has absolute integral change of variables compact family :
fixes f :: realˆ ′m::{finite,wellorder} ⇒ realˆ ′n and g :: realˆ ′m:: ⇒ realˆ ′m::
assumes compact :

∧
n::nat . compact (F n)

and der g :
∧
x . x ∈ (

⋃
n. F n) =⇒ (g has derivative g ′ x ) (at x within (

⋃
n.

F n))
and inj : inj on g (

⋃
n. F n)

shows ((λx . |det (matrix (g ′ x ))| ∗R f (g x )) absolutely integrable on (
⋃
n. F n)

∧
integral (

⋃
n. F n) (λx . |det (matrix (g ′ x ))| ∗R f (g x )) = b

←→ f absolutely integrable on (g ‘ (
⋃

n. F n)) ∧ integral (g ‘ (
⋃
n. F n)) f

= b)
proof −
let ?D = λx . |det (matrix (g ′ x ))| ∗R f (g x )
let ?U = λn.

⋃
m≤n. F m

let ?lift = vec::real⇒realˆ1
have F leb: F m ∈ sets lebesgue for m
by (simp add : compact borel compact)

have iff : (λx . |det (matrix (g ′ x ))| ∗R f (g x )) absolutely integrable on (?U n)
∧

integral (?U n) (λx . |det (matrix (g ′ x ))| ∗R f (g x )) = b
←→ f absolutely integrable on (g ‘ (?U n)) ∧ integral (g ‘ (?U n)) f = b

for n b and f :: realˆ ′m:: ⇒ realˆ ′k
proof (rule has absolute integral change of variables compact)
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show compact (?U n)
by (simp add : compact compact UN )

show (g has derivative g ′ x ) (at x within (?U n))
if x ∈ ?U n for x
using that by (blast intro!: has derivative subset [OF der g ])

show inj on g (?U n)
using inj by (auto simp: inj on def )

qed
show ?thesis
unfolding image UN

proof safe
assume DS : ?D absolutely integrable on (

⋃
n. F n)

and b: b = integral (
⋃
n. F n) ?D

have DU :
∧
n. ?D absolutely integrable on (?U n)

(λn. integral (?U n) ?D) −−−−→ integral (
⋃
n. F n) ?D

using integral countable UN [OF DS F leb] by auto
with iff have fag : f absolutely integrable on g ‘ (?U n)
and fg int : integral (

⋃
m≤n. g ‘ F m) f = integral (?U n) ?D for n

by (auto simp: image UN )
let ?h = λx . if x ∈ (

⋃
m. g ‘ F m) then norm(f x ) else 0

have (λx . if x ∈ (
⋃
m. g ‘ F m) then f x else 0 ) absolutely integrable on UNIV

proof (rule dominated convergence absolutely integrable)
show (λx . if x ∈ (

⋃
m≤k . g ‘ F m) then f x else 0 ) absolutely integrable on

UNIV for k
unfolding absolutely integrable restrict UNIV
using fag by (simp add : image UN )

let ?nf = λn x . if x ∈ (
⋃
m≤n. g ‘ F m) then norm(f x ) else 0

show ?h integrable on UNIV
proof (rule monotone convergence increasing [THEN conjunct1 ])
show ?nf k integrable on UNIV for k
using fag
unfolding integrable restrict UNIV absolutely integrable on def by (simp

add : image UN )
{ fix n
have (norm ◦ ?D) absolutely integrable on ?U n
by (intro absolutely integrable norm DU )

then have integral (g ‘ ?U n) (norm ◦ f ) = integral (?U n) (norm ◦ ?D)
using iff [of n vec ◦ norm ◦ f integral (?U n) (λx . |det (matrix (g ′ x ))|

∗R (?lift ◦ norm ◦ f ) (g x ))]
unfolding absolutely integrable on 1 iff integral on 1 eq by (auto simp:

o def )
}
moreover have bounded (range (λk . integral (?U k) (norm ◦ ?D)))
unfolding bounded iff

proof (rule exI , clarify)
fix k
show norm (integral (?U k) (norm ◦ ?D)) ≤ integral (

⋃
n. F n) (norm

◦ ?D)
unfolding integral restrict UNIV [of norm ◦ ?D , symmetric]
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proof (rule integral norm bound integral)
show (λx . if x ∈

⋃
(F ‘ {..k}) then (norm ◦ ?D) x else 0 ) integrable on

UNIV
(λx . if x ∈ (

⋃
n. F n) then (norm ◦ ?D) x else 0 ) integrable on UNIV

using DU (1 ) DS
unfolding absolutely integrable on def o def integrable restrict UNIV

by auto
qed auto

qed
ultimately show bounded (range (λk . integral UNIV (?nf k)))
by (simp add : integral restrict UNIV image UN [symmetric] o def )

next
show (λk . if x ∈ (

⋃
m≤k . g ‘ F m) then norm (f x ) else 0 )

−−−−→ (if x ∈ (
⋃
m. g ‘ F m) then norm (f x ) else 0 ) for x

by (force intro: tendsto eventually eventually sequentiallyI )
qed auto

next
show (λk . if x ∈ (

⋃
m≤k . g ‘ F m) then f x else 0 )

−−−−→ (if x ∈ (
⋃
m. g ‘ F m) then f x else 0 ) for x

proof clarsimp
fix m y
assume y ∈ F m
show (λk . if ∃ x∈{..k}. g y ∈ g ‘ F x then f (g y) else 0 ) −−−−→ f (g y)
using 〈y ∈ F m〉 by (force intro: tendsto eventually eventually sequentiallyI

[of m])
qed

qed auto
then show fai : f absolutely integrable on (

⋃
m. g ‘ F m)

using absolutely integrable restrict UNIV by blast
show integral ((

⋃
x . g ‘ F x )) f = integral (

⋃
n. F n) ?D

proof (rule LIMSEQ unique)
show (λn. integral (?U n) ?D) −−−−→ integral (

⋃
x . g ‘ F x ) f

unfolding fg int [symmetric]
proof (rule integral countable UN [OF fai ])
show g ‘ F m ∈ sets lebesgue for m
proof (rule differentiable image in sets lebesgue [OF F leb])
show g differentiable on F m

by (meson der g differentiableI UnionI differentiable on def differen-
tiable on subset rangeI subsetI )

qed auto
qed

next
show (λn. integral (?U n) ?D) −−−−→ integral (

⋃
n. F n) ?D

by (rule DU )
qed

next
assume fs: f absolutely integrable on (

⋃
x . g ‘ F x )

and b: b = integral ((
⋃
x . g ‘ F x )) f

have gF leb: g ‘ F m ∈ sets lebesgue for m
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proof (rule differentiable image in sets lebesgue [OF F leb])
show g differentiable on F m
using der g unfolding differentiable def differentiable on def
by (meson Sup upper UNIV I UnionI has derivative subset image eqI )

qed auto
have fgU :

∧
n. f absolutely integrable on (

⋃
m≤n. g ‘ F m)

(λn. integral (
⋃
m≤n. g ‘ F m) f ) −−−−→ integral (

⋃
m. g ‘ F m) f

using integral countable UN [OF fs gF leb] by auto
with iff have DUn: ?D absolutely integrable on ?U n
and D int : integral (?U n) ?D = integral (

⋃
m≤n. g ‘ F m) f for n

by (auto simp: image UN )
let ?h = λx . if x ∈ (

⋃
n. F n) then norm(?D x ) else 0

have (λx . if x ∈ (
⋃
n. F n) then ?D x else 0 ) absolutely integrable on UNIV

proof (rule dominated convergence absolutely integrable)
show (λx . if x ∈ ?U k then ?D x else 0 ) absolutely integrable on UNIV for k
unfolding absolutely integrable restrict UNIV using DUn by simp

let ?nD = λn x . if x ∈ ?U n then norm(?D x ) else 0
show ?h integrable on UNIV
proof (rule monotone convergence increasing [THEN conjunct1 ])
show ?nD k integrable on UNIV for k
using DUn
unfolding integrable restrict UNIV absolutely integrable on def by (simp

add : image UN )
{ fix n::nat
have (norm ◦ f ) absolutely integrable on (

⋃
m≤n. g ‘ F m)

apply (rule absolutely integrable norm)
using fgU by blast

then have integral (?U n) (norm ◦ ?D) = integral (g ‘ ?U n) (norm ◦ f )
using iff [of n ?lift ◦ norm ◦ f integral (g ‘ ?U n) (?lift ◦ norm ◦ f )]
unfolding absolutely integrable on 1 iff integral on 1 eq image UN by

(auto simp: o def )
}
moreover have bounded (range (λk . integral (g ‘ ?U k) (norm ◦ f )))
unfolding bounded iff

proof (rule exI , clarify)
fix k
show norm (integral (g ‘ ?U k) (norm ◦ f )) ≤ integral (g ‘ (

⋃
n. F n))

(norm ◦ f )
unfolding integral restrict UNIV [of norm ◦ f , symmetric]

proof (rule integral norm bound integral)
show (λx . if x ∈ g ‘ ?U k then (norm ◦ f ) x else 0 ) integrable on UNIV

(λx . if x ∈ g ‘ (
⋃
n. F n) then (norm ◦ f ) x else 0 ) integrable on

UNIV
using fgU fs
unfolding absolutely integrable on def o def integrable restrict UNIV
by (auto simp: image UN )

qed auto
qed
ultimately show bounded (range (λk . integral UNIV (?nD k)))
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unfolding integral restrict UNIV image UN [symmetric] o def by simp
next
show (λk . if x ∈ ?U k then norm (?D x ) else 0 ) −−−−→ (if x ∈ (

⋃
n. F n)

then norm (?D x ) else 0 ) for x
by (force intro: tendsto eventually eventually sequentiallyI )

qed auto
next
show (λk . if x ∈ ?U k then ?D x else 0 ) −−−−→ (if x ∈ (

⋃
n. F n) then ?D

x else 0 ) for x
proof clarsimp
fix n
assume x ∈ F n
show (λm. if ∃ j∈{..m}. x ∈ F j then ?D x else 0 ) −−−−→ ?D x
using 〈x ∈ F n〉 by (auto intro!: tendsto eventually eventually sequentiallyI

[of n])
qed

qed auto
then show Dai : ?D absolutely integrable on (

⋃
n. F n)

unfolding absolutely integrable restrict UNIV by simp
show integral (

⋃
n. F n) ?D = integral ((

⋃
x . g ‘ F x )) f

proof (rule LIMSEQ unique)
show (λn. integral (

⋃
m≤n. g ‘ F m) f ) −−−−→ integral (

⋃
x . g ‘ F x ) f

by (rule fgU )
show (λn. integral (

⋃
m≤n. g ‘ F m) f ) −−−−→ integral (

⋃
n. F n) ?D

unfolding D int [symmetric] by (rule integral countable UN [OF Dai F leb])
qed

qed
qed

theorem has absolute integral change of variables:
fixes f :: realˆ ′m::{finite,wellorder} ⇒ realˆ ′n and g :: realˆ ′m:: ⇒ realˆ ′m::
assumes S : S ∈ sets lebesgue
and der g :

∧
x . x ∈ S =⇒ (g has derivative g ′ x ) (at x within S )

and inj : inj on g S
shows (λx . |det (matrix (g ′ x ))| ∗R f (g x )) absolutely integrable on S ∧

integral S (λx . |det (matrix (g ′ x ))| ∗R f (g x )) = b
←→ f absolutely integrable on (g ‘ S ) ∧ integral (g ‘ S ) f = b

proof −
obtain C N where fsigma C and N : N ∈ null sets lebesgue and CNS : C ∪ N

= S and disjnt C N
using lebesgue set almost fsigma [OF S ] .

then obtain F :: nat ⇒ (realˆ ′m:: ) set
where F : range F ⊆ Collect compact and Ceq : C = Union(range F )
using fsigma Union compact by metis

have negligible N
using N by (simp add : negligible iff null sets)

let ?D = λx . |det (matrix (g ′ x ))| ∗R f (g x )
have ?D absolutely integrable on C ∧ integral C ?D = b
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←→ f absolutely integrable on (g ‘ C ) ∧ integral (g ‘ C ) f = b
unfolding Ceq

proof (rule has absolute integral change of variables compact family)
fix n x
assume x ∈

⋃
(F ‘ UNIV )

then show (g has derivative g ′ x ) (at x within
⋃
(F ‘ UNIV ))

using Ceq 〈C ∪ N = S 〉 der g has derivative subset by blast
next
have

⋃
(F ‘ UNIV ) ⊆ S

using Ceq 〈C ∪ N = S 〉 by blast
then show inj on g (

⋃
(F ‘ UNIV ))

using inj by (meson inj on subset)
qed (use F in auto)
moreover
have ?D absolutely integrable on C ∧ integral C ?D = b
←→ ?D absolutely integrable on S ∧ integral S ?D = b

proof (rule conj cong)
have neg : negligible {x ∈ C − S . ?D x 6= 0} negligible {x ∈ S − C . ?D x 6=

0}
using CNS by (blast intro: negligible subset [OF 〈negligible N 〉])+

then show (?D absolutely integrable on C ) = (?D absolutely integrable on S )
by (rule absolutely integrable spike set eq)

show (integral C ?D = b) ←→ (integral S ?D = b)
using integral spike set [OF neg ] by simp

qed
moreover
have f absolutely integrable on (g ‘ C ) ∧ integral (g ‘ C ) f = b
←→ f absolutely integrable on (g ‘ S ) ∧ integral (g ‘ S ) f = b

proof (rule conj cong)
have g differentiable on N
by (metis CNS der g differentiable def differentiable on def differentiable on subset

sup.cobounded2 )
with 〈negligible N 〉

have neg gN : negligible (g ‘ N )
by (blast intro: negligible differentiable image negligible)

have neg : negligible {x ∈ g ‘ C − g ‘ S . f x 6= 0}
negligible {x ∈ g ‘ S − g ‘ C . f x 6= 0}

using CNS by (blast intro: negligible subset [OF neg gN ])+
then show (f absolutely integrable on g ‘ C ) = (f absolutely integrable on g ‘

S )
by (rule absolutely integrable spike set eq)

show (integral (g ‘ C ) f = b) ←→ (integral (g ‘ S ) f = b)
using integral spike set [OF neg ] by simp

qed
ultimately show ?thesis
by simp

qed
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corollary absolutely integrable change of variables:
fixes f :: realˆ ′m::{finite,wellorder} ⇒ realˆ ′n and g :: realˆ ′m:: ⇒ realˆ ′m::
assumes S ∈ sets lebesgue
and

∧
x . x ∈ S =⇒ (g has derivative g ′ x ) (at x within S )

and inj on g S
shows f absolutely integrable on (g ‘ S )
←→ (λx . |det (matrix (g ′ x ))| ∗R f (g x )) absolutely integrable on S

using assms has absolute integral change of variables by blast

corollary integral change of variables:
fixes f :: realˆ ′m::{finite,wellorder} ⇒ realˆ ′n and g :: realˆ ′m:: ⇒ realˆ ′m::
assumes S : S ∈ sets lebesgue
and der g :

∧
x . x ∈ S =⇒ (g has derivative g ′ x ) (at x within S )

and inj : inj on g S
and disj : (f absolutely integrable on (g ‘ S ) ∨

(λx . |det (matrix (g ′ x ))| ∗R f (g x )) absolutely integrable on S )
shows integral (g ‘ S ) f = integral S (λx . |det (matrix (g ′ x ))| ∗R f (g x ))
using has absolute integral change of variables [OF S der g inj ] disj
by blast

lemma has absolute integral change of variables 1 :
fixes f :: real ⇒ realˆ ′n::{finite,wellorder} and g :: real ⇒ real
assumes S : S ∈ sets lebesgue
and der g :

∧
x . x ∈ S =⇒ (g has vector derivative g ′ x ) (at x within S )

and inj : inj on g S
shows (λx . |g ′ x | ∗R f (g x )) absolutely integrable on S ∧

integral S (λx . |g ′ x | ∗R f (g x )) = b
←→ f absolutely integrable on (g ‘ S ) ∧ integral (g ‘ S ) f = b

proof −
let ?lift = vec :: real ⇒ realˆ1
let ?drop = (λx ::realˆ1 . x $ 1 )
have S ′: ?lift ‘ S ∈ sets lebesgue
by (auto intro: differentiable image in sets lebesgue [OF S ] differentiable vec)

have ((λx . vec (g (x $ 1 ))) has derivative (∗R) (g ′ z )) (at (vec z ) within ?lift ‘
S )

if z ∈ S for z
using der g [OF that ]
by (simp add : has vector derivative def has derivative vector 1 )

then have der ′:
∧
x . x ∈ ?lift ‘ S =⇒

(?lift ◦ g ◦ ?drop has derivative (∗R) (g ′ (?drop x ))) (at x within ?lift ‘ S )
by (auto simp: o def )

have inj ′: inj on (vec ◦ g ◦ ?drop) (vec ‘ S )
using inj by (simp add : inj on def )

let ?fg = λx . |g ′ x | ∗R f (g x )
have ((λx . ?fg x $ i) absolutely integrable on S ∧ ((λx . ?fg x $ i) has integral b

$ i) S
←→ (λx . f x $ i) absolutely integrable on g ‘ S ∧ ((λx . f x $ i) has integral b

$ i) (g ‘ S )) for i
using has absolute integral change of variables [OF S ′ der ′ inj ′, of λx . ?lift(f
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(?drop x ) $ i) ?lift (b$i)]
unfolding integrable on 1 iff integral on 1 eq absolutely integrable on 1 iff ab-

solutely integrable drop absolutely integrable on def
by (auto simp: image comp o def integral vec1 eq has integral iff )

then have ?fg absolutely integrable on S ∧ (?fg has integral b) S
←→ f absolutely integrable on (g ‘ S ) ∧ (f has integral b) (g ‘ S )

unfolding has integral componentwise iff [where y=b]
absolutely integrable componentwise iff [where f=f ]
absolutely integrable componentwise iff [where f = ?fg ]

by (force simp: Basis vec def cart eq inner axis)
then show ?thesis
using absolutely integrable on def by blast

qed

corollary absolutely integrable change of variables 1 :
fixes f :: real ⇒ realˆ ′n::{finite,wellorder} and g :: real ⇒ real
assumes S : S ∈ sets lebesgue
and der g :

∧
x . x ∈ S =⇒ (g has vector derivative g ′ x ) (at x within S )

and inj : inj on g S
shows (f absolutely integrable on g ‘ S ←→

(λx . |g ′ x | ∗R f (g x )) absolutely integrable on S )
using has absolute integral change of variables 1 [OF assms] by auto

6.46.6 Change of variables for integrals: special case of linear
function

lemma has absolute integral change of variables linear :
fixes f :: realˆ ′m::{finite,wellorder} ⇒ realˆ ′n and g :: realˆ ′m:: ⇒ realˆ ′m::
assumes linear g
shows (λx . |det (matrix g)| ∗R f (g x )) absolutely integrable on S ∧

integral S (λx . |det (matrix g)| ∗R f (g x )) = b
←→ f absolutely integrable on (g ‘ S ) ∧ integral (g ‘ S ) f = b

proof (cases det(matrix g) = 0 )
case True
then have negligible(g ‘ S )
using assms det nz iff inj negligible linear singular image by blast

with True show ?thesis
by (auto simp: absolutely integrable on def integrable negligible integral negligible)

next
case False
then obtain h where h:

∧
x . x ∈ S =⇒ h (g x ) = x linear h

using assms det nz iff inj linear injective isomorphism by metis
show ?thesis
proof (rule has absolute integral change of variables invertible)
show (g has derivative g) (at x within S ) for x
by (simp add : assms linear imp has derivative)

show continuous on (g ‘ S ) h
using continuous on eq continuous within has derivative continuous linear imp has derivative
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h by blast
qed (use h in auto)

qed

lemma absolutely integrable change of variables linear :
fixes f :: realˆ ′m::{finite,wellorder} ⇒ realˆ ′n and g :: realˆ ′m:: ⇒ realˆ ′m::
assumes linear g
shows (λx . |det (matrix g)| ∗R f (g x )) absolutely integrable on S
←→ f absolutely integrable on (g ‘ S )

using assms has absolute integral change of variables linear by blast

lemma absolutely integrable on linear image:
fixes f :: realˆ ′m::{finite,wellorder} ⇒ realˆ ′n and g :: realˆ ′m:: ⇒ realˆ ′m::
assumes linear g
shows f absolutely integrable on (g ‘ S )
←→ (f ◦ g) absolutely integrable on S ∨ det(matrix g) = 0

unfolding assms absolutely integrable change of variables linear [OF assms, sym-
metric] absolutely integrable on scaleR iff
by (auto simp: set integrable def )

lemma integral change of variables linear :
fixes f :: realˆ ′m::{finite,wellorder} ⇒ realˆ ′n and g :: realˆ ′m:: ⇒ realˆ ′m::
assumes linear g

and f absolutely integrable on (g ‘ S ) ∨ (f ◦ g) absolutely integrable on S
shows integral (g ‘ S ) f = |det (matrix g)| ∗R integral S (f ◦ g)

proof −
have ((λx . |det (matrix g)| ∗R f (g x )) absolutely integrable on S ) ∨ (f abso-

lutely integrable on g ‘ S )
using absolutely integrable on linear image assms by blast

moreover
have ?thesis if ((λx . |det (matrix g)| ∗R f (g x )) absolutely integrable on S ) (f

absolutely integrable on g ‘ S )
using has absolute integral change of variables linear [OF 〈linear g〉] that
by (auto simp: o def )

ultimately show ?thesis
using absolutely integrable change of variables linear [OF 〈linear g〉]
by blast

qed

6.46.7 Change of variable for measure

lemma has measure differentiable image:
fixes f :: realˆ ′n::{finite,wellorder} ⇒ realˆ ′n::
assumes S ∈ sets lebesgue

and
∧
x . x ∈ S =⇒ (f has derivative f ′ x ) (at x within S )

and inj on f S
shows f ‘ S ∈ lmeasurable ∧ measure lebesgue (f ‘ S ) = m
←→ ((λx . |det (matrix (f ′ x ))|) has integral m) S

using has absolute integral change of variables [OF assms, of λx . (1 ::realˆ1 ) vec
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m]
unfolding absolutely integrable on 1 iff integral on 1 eq integrable on 1 iff abso-

lutely integrable on def
by (auto simp: has integral iff lmeasurable iff integrable on lmeasure integral)

lemma measurable differentiable image eq :
fixes f :: realˆ ′n::{finite,wellorder} ⇒ realˆ ′n::
assumes S ∈ sets lebesgue

and
∧
x . x ∈ S =⇒ (f has derivative f ′ x ) (at x within S )

and inj on f S
shows f ‘ S ∈ lmeasurable ←→ (λx . |det (matrix (f ′ x ))|) integrable on S
using has measure differentiable image [OF assms]
by blast

lemma measurable differentiable image alt :
fixes f :: realˆ ′n::{finite,wellorder} ⇒ realˆ ′n::
assumes S ∈ sets lebesgue
and

∧
x . x ∈ S =⇒ (f has derivative f ′ x ) (at x within S )

and inj on f S
shows f ‘ S ∈ lmeasurable ←→ (λx . |det (matrix (f ′ x ))|) absolutely integrable on

S
using measurable differentiable image eq [OF assms]
by (simp only : absolutely integrable on iff nonneg)

lemma measure differentiable image eq :
fixes f :: realˆ ′n::{finite,wellorder} ⇒ realˆ ′n::
assumes S : S ∈ sets lebesgue
and der f :

∧
x . x ∈ S =⇒ (f has derivative f ′ x ) (at x within S )

and inj : inj on f S
and intS : (λx . |det (matrix (f ′ x ))|) integrable on S

shows measure lebesgue (f ‘ S ) = integral S (λx . |det (matrix (f ′ x ))|)
using measurable differentiable image eq [OF S der f inj ]

assms has measure differentiable image by blast

end

6.47 Lipschitz Continuity

theory Lipschitz
imports
Derivative

begin

definition lipschitz on
where lipschitz on C U f ←→ (0 ≤ C ∧ (∀ x ∈ U . ∀ y∈U . dist (f x ) (f y) ≤ C
∗ dist x y))

bundle lipschitz syntax begin
notation lipschitz on ( −lipschitz ′ on [1000 ])
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end
bundle no lipschitz syntax begin
no notation lipschitz on ( −lipschitz ′ on [1000 ])
end

unbundle lipschitz syntax

lemma lipschitz onI : L−lipschitz on X f
if

∧
x y . x ∈ X =⇒ y ∈ X =⇒ dist (f x ) (f y) ≤ L ∗ dist x y 0 ≤ L

using that by (auto simp: lipschitz on def )

lemma lipschitz onD :
dist (f x ) (f y) ≤ L ∗ dist x y
if L−lipschitz on X f x ∈ X y ∈ X
using that by (auto simp: lipschitz on def )

lemma lipschitz on nonneg :
0 ≤ L if L−lipschitz on X f
using that by (auto simp: lipschitz on def )

lemma lipschitz on normD :
norm (f x − f y) ≤ L ∗ norm (x − y)
if lipschitz on L X f x ∈ X y ∈ X
using lipschitz onD [OF that ]
by (simp add : dist norm)

lemma lipschitz on mono: L−lipschitz on D f if M−lipschitz on E f D ⊆ E M ≤
L
using that
by (force simp: lipschitz on def intro: order trans[OF mult right mono])

lemmas lipschitz on subset = lipschitz on mono[OF order refl ]
and lipschitz on le = lipschitz on mono[OF order refl ]

lemma lipschitz on leI :
L−lipschitz on X f
if

∧
x y . x ∈ X =⇒ y ∈ X =⇒ x ≤ y =⇒ dist (f x ) (f y) ≤ L ∗ dist x y

0 ≤ L
for f :: ′a::{linorder topology , ordered real vector , metric space} ⇒ ′b::metric space

proof (rule lipschitz onI )
fix x y assume xy : x ∈ X y ∈ X
consider y ≤ x | x ≤ y
by (rule le cases)

then show dist (f x ) (f y) ≤ L ∗ dist x y
proof cases
case 1
then have dist (f y) (f x ) ≤ L ∗ dist y x
by (auto intro!: that xy)

then show ?thesis
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by (simp add : dist commute)
qed (auto intro!: that xy)

qed fact

lemma lipschitz on concat :
fixes a b c::real
assumes f : L−lipschitz on {a .. b} f
assumes g : L−lipschitz on {b .. c} g
assumes fg : f b = g b
shows lipschitz on L {a .. c} (λx . if x ≤ b then f x else g x )
(is lipschitz on ?f )

proof (rule lipschitz on leI )
fix x y
assume x : x ∈ {a..c} and y : y ∈ {a..c} and xy : x ≤ y
consider x ≤ b ∧ b < y | x ≥ b ∨ y ≤ b by arith
then show dist (?f x ) (?f y) ≤ L ∗ dist x y
proof cases
case 1
have dist (f x ) (g y) ≤ dist (f x ) (f b) + dist (g b) (g y)
unfolding fg by (rule dist triangle)

also have dist (f x ) (f b) ≤ L ∗ dist x b
using 1 x
by (auto intro!: lipschitz onD [OF f ])

also have dist (g b) (g y) ≤ L ∗ dist b y
using 1 x y
by (auto intro!: lipschitz onD [OF g ] lipschitz onD [OF f ])

finally have dist (f x ) (g y) ≤ L ∗ dist x b + L ∗ dist b y
by simp

also have . . . = L ∗ (dist x b + dist b y)
by (simp add : algebra simps)

also have dist x b + dist b y = dist x y
using 1 x y
by (auto simp: dist real def abs real def )

finally show ?thesis
using 1 by simp

next
case 2
with lipschitz onD [OF f , of x y ] lipschitz onD [OF g , of x y ] x y xy
show ?thesis
by (auto simp: fg)

qed
qed (rule lipschitz on nonneg [OF f ])

lemma lipschitz on concat max :
fixes a b c::real
assumes f : L−lipschitz on {a .. b} f
assumes g : M−lipschitz on {b .. c} g
assumes fg : f b = g b
shows (max L M )−lipschitz on {a .. c} (λx . if x ≤ b then f x else g x )
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proof −
have lipschitz on (max L M ) {a .. b} f lipschitz on (max L M ) {b .. c} g
by (auto intro!: lipschitz on mono[OF f order refl ] lipschitz on mono[OF g or-

der refl ])
from lipschitz on concat [OF this fg ] show ?thesis .

qed

Continuity

proposition lipschitz on uniformly continuous:
assumes L−lipschitz on X f
shows uniformly continuous on X f
unfolding uniformly continuous on def

proof safe
fix e::real
assume 0 < e
from assms have l : (L+1 )−lipschitz on X f
by (rule lipschitz on mono) auto

show ∃ d>0 . ∀ x∈X . ∀ x ′∈X . dist x ′ x < d −→ dist (f x ′) (f x ) < e
using lipschitz onD [OF l ] lipschitz on nonneg [OF assms] 〈0 < e〉

by (force intro!: exI [where x=e/(L + 1 )] simp: field simps)
qed

proposition lipschitz on continuous on:
continuous on X f if L−lipschitz on X f
by (rule uniformly continuous imp continuous[OF lipschitz on uniformly continuous[OF

that ]])

lemma lipschitz on continuous within:
continuous (at x within X ) f if L−lipschitz on X f x ∈ X
using lipschitz on continuous on[OF that(1 )] that(2 )
by (auto simp: continuous on eq continuous within)

Differentiable functions

proposition bounded derivative imp lipschitz :
assumes

∧
x . x ∈ X =⇒ (f has derivative f ′ x ) (at x within X )

assumes convex : convex X
assumes

∧
x . x ∈ X =⇒ onorm (f ′ x ) ≤ C 0 ≤ C

shows C−lipschitz on X f
proof (rule lipschitz onI )
show

∧
x y . x ∈ X =⇒ y ∈ X =⇒ dist (f x ) (f y) ≤ C ∗ dist x y

by (auto intro!: assms differentiable bound [unfolded dist norm[symmetric], OF
convex ])
qed fact

Structural introduction rules

named theorems lipschitz intros structural introduction rules for Lipschitz controls
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lemma lipschitz on compose [lipschitz intros]:
(D ∗ C )−lipschitz on U (g o f )
if f : C−lipschitz on U f and g : D−lipschitz on (f‘U ) g

proof (rule lipschitz onI )
show D∗ C ≥ 0 using lipschitz on nonneg [OF f ] lipschitz on nonneg [OF g ] by

auto
fix x y assume H : x ∈ U y ∈ U
have dist (g (f x )) (g (f y)) ≤ D ∗ dist (f x ) (f y)
apply (rule lipschitz onD [OF g ]) using H by auto

also have ... ≤ D ∗ C ∗ dist x y
using mult left mono[OF lipschitz onD(1 )[OF f H ] lipschitz on nonneg [OF g ]]

by auto
finally show dist ((g ◦ f ) x ) ((g ◦ f ) y) ≤ D ∗ C∗ dist x y
unfolding comp def by (auto simp add : mult .commute)

qed

lemma lipschitz on compose2 :
(D ∗ C )−lipschitz on U (λx . g (f x ))
if C−lipschitz on U f D−lipschitz on (f‘U ) g
using lipschitz on compose[OF that ] by (simp add : o def )

lemma lipschitz on cong [cong ]:
C−lipschitz on U g ←→ D−lipschitz on V f
if C = D U = V

∧
x . x ∈ V =⇒ g x = f x

using that by (auto simp: lipschitz on def )

lemma lipschitz on transform:
C−lipschitz on U g
if C−lipschitz on U f∧

x . x ∈ U =⇒ g x = f x
using that
by simp

lemma lipschitz on empty iff [simp]: C−lipschitz on {} f ←→ C ≥ 0
by (auto simp: lipschitz on def )

lemma lipschitz on insert iff [simp]:
C−lipschitz on (insert y X ) f ←→
C−lipschitz on X f ∧ (∀ x ∈ X . dist (f x ) (f y) ≤ C ∗ dist x y)

by (auto simp: lipschitz on def dist commute)

lemma lipschitz on singleton [lipschitz intros]: C ≥ 0 =⇒ C−lipschitz on {x} f
and lipschitz on empty [lipschitz intros]: C ≥ 0 =⇒ C−lipschitz on {} f
by simp all

lemma lipschitz on id [lipschitz intros]: 1−lipschitz on U (λx . x )
by (auto simp: lipschitz on def )

lemma lipschitz on constant [lipschitz intros]: 0−lipschitz on U (λx . c)
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by (auto simp: lipschitz on def )

lemma lipschitz on add [lipschitz intros]:
fixes f :: ′a::metric space ⇒ ′b::real normed vector
assumes C−lipschitz on U f
D−lipschitz on U g

shows (C+D)−lipschitz on U (λx . f x + g x )
proof (rule lipschitz onI )
show C + D ≥ 0
using lipschitz on nonneg [OF assms(1 )] lipschitz on nonneg [OF assms(2 )] by

auto
fix x y assume H : x ∈ U y ∈ U
have dist (f x + g x ) (f y + g y) ≤ dist (f x ) (f y) + dist (g x ) (g y)
by (simp add : dist triangle add)

also have ... ≤ C ∗ dist x y + D ∗ dist x y
using lipschitz onD(1 )[OF assms(1 ) H ] lipschitz onD(1 )[OF assms(2 ) H ] by

auto
finally show dist (f x + g x ) (f y + g y) ≤ (C+D) ∗ dist x y by (auto simp

add : algebra simps)
qed

lemma lipschitz on cmult [lipschitz intros]:
fixes f :: ′a::metric space ⇒ ′b::real normed vector
assumes C−lipschitz on U f
shows (abs(a) ∗ C )−lipschitz on U (λx . a ∗R f x )

proof (rule lipschitz onI )
show abs(a) ∗ C ≥ 0 using lipschitz on nonneg [OF assms(1 )] by auto
fix x y assume H : x ∈ U y ∈ U
have dist (a ∗R f x ) (a ∗R f y) = abs(a) ∗ dist (f x ) (f y)
by (metis dist norm norm scaleR real vector .scale right diff distrib)

also have ... ≤ abs(a) ∗ C ∗ dist x y
using lipschitz onD(1 )[OF assms(1 ) H ] by (simp add : Groups.mult ac(1 )

mult left mono)
finally show dist (a ∗R f x ) (a ∗R f y) ≤ |a| ∗ C ∗ dist x y by auto

qed

lemma lipschitz on cmult real [lipschitz intros]:
fixes f :: ′a::metric space ⇒ real
assumes C−lipschitz on U f
shows (abs(a) ∗ C )−lipschitz on U (λx . a ∗ f x )
using lipschitz on cmult [OF assms] by auto

lemma lipschitz on cmult nonneg [lipschitz intros]:
fixes f :: ′a::metric space ⇒ ′b::real normed vector
assumes C−lipschitz on U f
a ≥ 0

shows (a ∗ C )−lipschitz on U (λx . a ∗R f x )
using lipschitz on cmult [OF assms(1 ), of a] assms(2 ) by auto
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lemma lipschitz on cmult real nonneg [lipschitz intros]:
fixes f :: ′a::metric space ⇒ real
assumes C−lipschitz on U f
a ≥ 0

shows (a ∗ C )−lipschitz on U (λx . a ∗ f x )
using lipschitz on cmult nonneg [OF assms] by auto

lemma lipschitz on cmult upper [lipschitz intros]:
fixes f :: ′a::metric space ⇒ ′b::real normed vector
assumes C−lipschitz on U f
abs(a) ≤ D

shows (D ∗ C )−lipschitz on U (λx . a ∗R f x )
apply (rule lipschitz on mono[OF lipschitz on cmult [OF assms(1 ), of a], of D
∗ C ])
using assms(2 ) lipschitz on nonneg [OF assms(1 )] mult right mono by auto

lemma lipschitz on cmult real upper [lipschitz intros]:
fixes f :: ′a::metric space ⇒ real
assumes C−lipschitz on U f
abs(a) ≤ D

shows (D ∗ C )−lipschitz on U (λx . a ∗ f x )
using lipschitz on cmult upper [OF assms] by auto

lemma lipschitz on minus[lipschitz intros]:
fixes f :: ′a::metric space ⇒ ′b::real normed vector
assumes C−lipschitz on U f
shows C−lipschitz on U (λx . − f x )
by (metis (mono tags, lifting) assms dist minus lipschitz on def )

lemma lipschitz on minus iff [simp]:
L−lipschitz on X (λx . − f x ) ←→ L−lipschitz on X f
L−lipschitz on X (− f ) ←→ L−lipschitz on X f
for f :: ′a::metric space ⇒ ′b::real normed vector
using lipschitz on minus[of L X f ] lipschitz on minus[of L X −f ]
by auto

lemma lipschitz on diff [lipschitz intros]:
fixes f :: ′a::metric space ⇒ ′b::real normed vector
assumes C−lipschitz on U f D−lipschitz on U g
shows (C + D)−lipschitz on U (λx . f x − g x )
using lipschitz on add [OF assms(1 ) lipschitz on minus[OF assms(2 )]] by auto

lemma lipschitz on closure [lipschitz intros]:
assumes C−lipschitz on U f continuous on (closure U ) f
shows C−lipschitz on (closure U ) f

proof (rule lipschitz onI )
show C ≥ 0 using lipschitz on nonneg [OF assms(1 )] by simp
fix x y assume x ∈ closure U y ∈ closure U
obtain u v ::nat ⇒ ′a where ∗:

∧
n. u n ∈ U u −−−−→ x
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∧
n. v n ∈ U v −−−−→ y

using 〈x ∈ closure U 〉 〈y ∈ closure U 〉 unfolding closure sequential by blast
have a: (λn. f (u n)) −−−−→ f x
using ∗(1 ) ∗(2 ) 〈x ∈ closure U 〉 〈continuous on (closure U ) f 〉

unfolding comp def continuous on closure sequentially [of U f ] by auto
have b: (λn. f (v n)) −−−−→ f y
using ∗(3 ) ∗(4 ) 〈y ∈ closure U 〉 〈continuous on (closure U ) f 〉

unfolding comp def continuous on closure sequentially [of U f ] by auto
have l : (λn. C ∗ dist (u n) (v n) − dist (f (u n)) (f (v n))) −−−−→ C ∗ dist x

y − dist (f x ) (f y)
by (intro tendsto intros ∗ a b)

have C ∗ dist (u n) (v n) − dist (f (u n)) (f (v n)) ≥ 0 for n
using lipschitz onD(1 )[OF assms(1 ) 〈u n ∈ U 〉 〈v n ∈ U 〉] by simp

then have C ∗ dist x y − dist (f x ) (f y) ≥ 0 using LIMSEQ le const [OF l , of
0 ] by auto
then show dist (f x ) (f y) ≤ C ∗ dist x y by auto

qed

lemma lipschitz on Pair [lipschitz intros]:
assumes f : L−lipschitz on A f
assumes g : M−lipschitz on A g
shows (sqrt (L2 + M 2))−lipschitz on A (λa. (f a, g a))

proof (rule lipschitz onI , goal cases)
case (1 x y)
have dist (f x , g x ) (f y , g y) = sqrt ((dist (f x ) (f y))2 + (dist (g x ) (g y))2)
by (auto simp add : dist Pair Pair real le lsqrt)

also have . . . ≤ sqrt ((L ∗ dist x y)2 + (M ∗ dist x y)2)
by (auto intro!: real sqrt le mono add mono power mono 1 lipschitz onD f g)

also have . . . ≤ sqrt (L2 + M 2) ∗ dist x y
by (auto simp: power mult distrib ring distribs[symmetric] real sqrt mult)

finally show ?case .
qed simp

lemma lipschitz extend closure:
fixes f ::( ′a::metric space) ⇒ ( ′b::complete space)
assumes C−lipschitz on U f
shows ∃ g . C−lipschitz on (closure U ) g ∧ (∀ x∈U . g x = f x )

proof −
obtain g where g :

∧
x . x ∈ U =⇒ g x = f x uniformly continuous on (closure

U ) g
using uniformly continuous on extension on closure[OF lipschitz on uniformly continuous[OF

assms]] by metis
have C−lipschitz on (closure U ) g
apply (rule lipschitz on closure, rule lipschitz on transform[OF assms])
using g uniformly continuous imp continuous[OF g(2 )] by auto

then show ?thesis using g(1 ) by auto
qed

lemma (in bounded linear) lipschitz boundE :
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obtains B where B−lipschitz on A f
proof −
from nonneg bounded
obtain B where B : B ≥ 0

∧
x . norm (f x ) ≤ B ∗ norm x

by (auto simp: ac simps)
have B−lipschitz on A f
by (auto intro!: lipschitz onI B simp: dist norm diff [symmetric])

thus ?thesis ..
qed

6.47.1 Local Lipschitz continuity

Given a function defined on a real interval, it is Lipschitz-continuous if and
only if it is locally so, as proved in the following lemmas. It is useful es-
pecially for piecewise-defined functions: if each piece is Lipschitz, then so is
the whole function. The same goes for functions defined on geodesic spaces,
or more generally on geodesic subsets in a metric space (for instance convex
subsets in a real vector space), and this follows readily from the real case,
but we will not prove it explicitly.

We give several variations around this statement. This is essentially a con-
nectedness argument.

lemma locally lipschitz imp lipschitz aux :
fixes f ::real ⇒ ( ′a::metric space)
assumes a ≤ b

continuous on {a..b} f∧
x . x ∈ {a..<b} =⇒ ∃ y ∈ {x<..b}. dist (f y) (f x ) ≤ M ∗ (y−x )

shows dist (f b) (f a) ≤ M ∗ (b−a)
proof −
define A where A = {x ∈ {a..b}. dist (f x ) (f a) ≤ M ∗ (x−a)}
have ∗: A = (λx . M ∗ (x−a) − dist (f x ) (f a))−‘{0 ..} ∩ {a..b}
unfolding A def by auto

have a ∈ A unfolding A def using 〈a ≤ b〉 by auto
then have A 6= {} by auto
moreover have bdd above A unfolding A def by auto
moreover have closed A unfolding ∗ by (rule closed vimage Int , auto intro!:

continuous intros assms)
ultimately have Sup A ∈ A by (rule closed contains Sup)
have Sup A = b
proof (rule ccontr)
assume Sup A 6= b
define x where x = Sup A
have I : dist (f x ) (f a) ≤ M ∗ (x−a) using 〈Sup A ∈ A〉 x def A def by auto
have x ∈ {a..<b} unfolding x def using 〈Sup A ∈ A〉 〈Sup A 6= b〉 A def by

auto
then obtain y where J : y ∈ {x<..b} dist (f y) (f x ) ≤ M ∗ (y−x ) using

assms(3 ) by blast
have dist (f y) (f a) ≤ dist (f y) (f x ) + dist (f x ) (f a) by (rule dist triangle)
also have ... ≤ M ∗ (y−x ) + M ∗ (x−a) using I J (2 ) by auto
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finally have dist (f y) (f a) ≤ M ∗ (y−a) by (auto simp add : algebra simps)
then have y ∈ A unfolding A def using 〈y ∈ {x<..b}〉 〈x ∈ {a..<b}〉 by auto
then have y ≤ Sup A by (rule cSup upper , auto simp: A def )
then show False using 〈y ∈ {x<..b}〉 x def by auto

qed
then show ?thesis using 〈Sup A ∈ A〉 A def by auto

qed

lemma locally lipschitz imp lipschitz :
fixes f ::real ⇒ ( ′a::metric space)
assumes continuous on {a..b} f∧

x y . x ∈ {a..<b} =⇒ y > x =⇒ ∃ z ∈ {x<..y}. dist (f z ) (f x ) ≤ M ∗
(z−x )

M ≥ 0
shows lipschitz on M {a..b} f

proof (rule lipschitz onI [OF 〈M ≥ 0 〉])
have ∗: dist (f t) (f s) ≤ M ∗ (t−s) if s ≤ t s ∈ {a..b} t ∈ {a..b} for s t
proof (rule locally lipschitz imp lipschitz aux , simp add : 〈s ≤ t 〉)

show continuous on {s..t} f using continuous on subset [OF assms(1 )] that
by auto

fix x assume x ∈ {s..<t}
then have x ∈ {a..<b} using that by auto
show ∃ z∈{x<..t}. dist (f z ) (f x ) ≤ M ∗ (z − x )
using assms(2 )[OF 〈x ∈ {a..<b}〉, of t ] 〈x ∈ {s..<t}〉 by auto

qed
fix x y assume x ∈ {a..b} y ∈ {a..b}
consider x ≤ y | y ≤ x by linarith
then show dist (f x ) (f y) ≤ M ∗ dist x y
apply (cases)
using ∗[OF 〈x ∈ {a..b}〉 〈y ∈ {a..b}〉] ∗[OF 〈y ∈ {a..b}〉 〈x ∈ {a..b}〉]
by (auto simp add : dist commute dist real def )

qed

We deduce that if a function is Lipschitz on finitely many closed sets on the
real line, then it is Lipschitz on any interval contained in their union. The
difficulty in the proof is to show that any point z in this interval (except the
maximum) has a point arbitrarily close to it on its right which is contained
in a common initial closed set. Otherwise, we show that there is a small
interval (z , T ) which does not intersect any of the initial closed sets, a
contradiction.

proposition lipschitz on closed Union:
assumes

∧
i . i ∈ I =⇒ lipschitz on M (U i) f∧

i . i ∈ I =⇒ closed (U i)
finite I
M ≥ 0
{u..(v ::real)} ⊆ (

⋃
i∈I . U i)

shows lipschitz on M {u..v} f
proof (rule locally lipschitz imp lipschitz [OF 〈M ≥ 0 〉])
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have ∗: continuous on (U i) f if i ∈ I for i
by (rule lipschitz on continuous on[OF assms(1 )[OF 〈i∈ I 〉]])

have continuous on (
⋃
i∈I . U i) f

apply (rule continuous on closed Union) using 〈finite I 〉 ∗ assms(2 ) by auto
then show continuous on {u..v} f
using 〈{u..(v ::real)} ⊆ (

⋃
i∈I . U i)〉 continuous on subset by auto

fix z Z assume z : z ∈ {u..<v} z < Z
then have u ≤ v by auto
define T where T = min Z v
then have T : T > z T ≤ v T ≥ u T ≤ Z using z by auto
define A where A = (

⋃
i∈ I ∩ {i . U i ∩ {z<..T} 6= {}}. U i ∩ {z ..T})

have a: closed A
unfolding A def apply (rule closed UN ) using 〈finite I 〉 〈

∧
i . i ∈ I =⇒ closed

(U i)〉 by auto
have b: bdd below A unfolding A def using 〈finite I 〉 by auto
have ∃ i ∈ I . T ∈ U i using 〈{u..v} ⊆ (

⋃
i∈I . U i)〉 T by auto

then have c: T ∈ A unfolding A def using T by (auto, fastforce)
have Inf A ≥ z
apply (rule cInf greatest , auto) using c unfolding A def by auto

moreover have Inf A ≤ z
proof (rule ccontr)
assume ¬(Inf A ≤ z )
then obtain w where w : w > z w < Inf A by (meson dense not le imp less)
have Inf A ≤ T using a b c by (simp add : cInf lower)
then have w ≤ T using w by auto
then have w ∈ {u..v} using w 〈z ∈ {u..<v}〉 T by auto
then obtain j where j : j ∈ I w ∈ U j using 〈{u..v} ⊆ (

⋃
i∈I . U i)〉 by

fastforce
then have w ∈ U j ∩ {z ..T} U j ∩ {z<..T} 6= {} using j T w 〈w ≤ T 〉 by

auto
then have w ∈ A unfolding A def using 〈j ∈ I 〉 by auto
then have Inf A ≤ w using a b by (simp add : cInf lower)
then show False using w by auto

qed
ultimately have Inf A = z by simp
moreover have Inf A ∈ A
apply (rule closed contains Inf ) using a b c by auto

ultimately have z ∈ A by simp
then obtain i where i : i ∈ I U i ∩ {z<..T} 6= {} z ∈ U i unfolding A def

by auto
then obtain t where t ∈ U i ∩ {z<..T} by blast
then have dist (f t) (f z ) ≤ M ∗ (t − z )
using lipschitz onD(1 )[OF assms(1 )[of i ], of t z ] i dist real def by auto

then show ∃ t∈{z<..Z}. dist (f t) (f z ) ≤ M ∗ (t − z ) using 〈T ≤ Z 〉 〈t ∈ U i
∩ {z<..T}〉 by auto
qed
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6.47.2 Local Lipschitz continuity (uniform for a family of
functions)

definition local lipschitz ::
′a::metric space set ⇒ ′b::metric space set ⇒ ( ′a ⇒ ′b ⇒ ′c::metric space) ⇒

bool
where
local lipschitz T X f ≡ ∀ x ∈ X . ∀ t ∈ T .
∃ u>0 . ∃L. ∀ t ∈ cball t u ∩ T . L−lipschitz on (cball x u ∩ X ) (f t)

lemma local lipschitzI :
assumes

∧
t x . t ∈ T =⇒ x ∈ X =⇒ ∃ u>0 . ∃L. ∀ t ∈ cball t u ∩ T .

L−lipschitz on (cball x u ∩ X ) (f t)
shows local lipschitz T X f
using assms
unfolding local lipschitz def
by auto

lemma local lipschitzE :
assumes local lipschitz : local lipschitz T X f
assumes t ∈ T x ∈ X
obtains u L where u > 0

∧
s. s ∈ cball t u ∩ T =⇒ L−lipschitz on (cball x u

∩ X ) (f s)
using assms local lipschitz def
by metis

lemma local lipschitz continuous on:
assumes local lipschitz : local lipschitz T X f
assumes t ∈ T
shows continuous on X (f t)
unfolding continuous on def

proof safe
fix x assume x ∈ X
from local lipschitzE [OF local lipschitz 〈t ∈ T 〉 〈x ∈ X 〉] obtain u L
where 0 < u
and L:

∧
s. s ∈ cball t u ∩ T =⇒ L−lipschitz on (cball x u ∩ X ) (f s)

by metis
have x ∈ ball x u using 〈0 < u〉 by simp
from lipschitz on continuous on[OF L]
have tendsto: (f t −−−→ f t x ) (at x within cball x u ∩ X )
using 〈0 < u〉 〈x ∈ X 〉 〈t ∈ T 〉

by (auto simp: continuous on def )
moreover have ∀ F xa in at x . (xa ∈ cball x u ∩ X ) = (xa ∈ X )
using eventually at ball [OF 〈0 < u〉, of x UNIV ]
by eventually elim auto

ultimately show (f t −−−→ f t x ) (at x within X )
by (rule Lim transform within set)

qed

lemma
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local lipschitz compose1 :
assumes ll : local lipschitz (g ‘ T ) X (λt . f t)
assumes g : continuous on T g
shows local lipschitz T X (λt . f (g t))

proof (rule local lipschitzI )
fix t x
assume t ∈ T x ∈ X
then have g t ∈ g ‘ T by simp
from local lipschitzE [OF assms(1 ) this 〈x ∈ X 〉]
obtain u L where 0 < u and l : (

∧
s. s ∈ cball (g t) u ∩ g ‘ T =⇒ L−lipschitz on

(cball x u ∩ X ) (f s))
by auto

from g [unfolded continuous on eq continuous within, rule format , OF 〈t ∈ T 〉,
unfolded continuous within eps delta, rule format , OF 〈0 < u〉]

obtain d where d : d>0
∧
x ′. x ′∈T =⇒ dist x ′ t < d =⇒ dist (g x ′) (g t) < u

by (auto)
show ∃ u>0 . ∃L. ∀ t∈cball t u ∩ T . L−lipschitz on (cball x u ∩ X ) (f (g t))
using d 〈0 < u〉

by (fastforce intro: exI [where x=(min d u)/2 ] exI [where x=L]
intro!: less imp le[OF d(2 )] lipschitz on subset [OF l ] simp: dist commute)

qed

context
fixes T :: ′a::metric space set and X f
assumes local lipschitz : local lipschitz T X f

begin

lemma continuous on TimesI :
assumes y :

∧
x . x ∈ X =⇒ continuous on T (λt . f t x )

shows continuous on (T × X ) (λ(t , x ). f t x )
unfolding continuous on iff

proof (safe, simp)
fix a b and e::real
assume H : a ∈ T b ∈ X 0 < e
hence 0 < e/2 by simp
from y [unfolded continuous on iff , OF 〈b ∈ X 〉, rule format , OF 〈a ∈ T 〉 〈0 <

e/2 〉]
obtain d where d : d > 0

∧
t . t ∈ T =⇒ dist t a < d =⇒ dist (f t b) (f a b) <

e/2
by auto

from 〈a : T 〉 〈b ∈ X 〉

obtain u L where u: 0 < u
and L:

∧
t . t ∈ cball a u ∩ T =⇒ L−lipschitz on (cball b u ∩ X ) (f t)

by (erule local lipschitzE [OF local lipschitz ])

have a ∈ cball a u ∩ T by (auto simp: 〈0 < u〉 〈a ∈ T 〉 less imp le)
from lipschitz on nonneg [OF L[OF 〈a ∈ cball ∩ 〉]] have 0 ≤ L .
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let ?d = Min {d , u, (e/2/(L + 1 ))}
show ∃ d>0 . ∀ x∈T . ∀ y∈X . dist (x , y) (a, b) < d −→ dist (f x y) (f a b) < e
proof (rule exI [where x = ?d ], safe)
show 0 < ?d
using 〈0 ≤ L〉 〈0 < u〉 〈0 < e〉 〈0 < d 〉

by (auto intro!: divide pos pos )
fix x y
assume x ∈ T y ∈ X
assume dist less: dist (x , y) (a, b) < ?d
have dist y b ≤ dist (x , y) (a, b)
using dist snd le[of (x , y) (a, b)]
by auto

also
note dist less
also
{
note calculation
also have ?d ≤ u by simp
finally have dist y b < u .

}
have ?d ≤ e/2/(L + 1 ) by simp
also have (L + 1 ) ∗ . . . ≤ e / 2
using 〈0 < e〉 〈L ≥ 0 〉

by (auto simp: field split simps)
finally have le1 : (L + 1 ) ∗ dist y b < e / 2 using 〈L ≥ 0 〉 by simp

have dist x a ≤ dist (x , y) (a, b)
using dist fst le[of (x , y) (a, b)]
by auto

also note dist less
finally have dist x a < ?d .
also have ?d ≤ d by simp
finally have dist x a < d .
note 〈dist x a < ?d 〉

also have ?d ≤ u by simp
finally have dist x a < u .
then have x ∈ cball a u ∩ T
using 〈x ∈ T 〉

by (auto simp: dist commute)
have dist (f x y) (f a b) ≤ dist (f x y) (f x b) + dist (f x b) (f a b)
by (rule dist triangle)

also have (L + 1 )−lipschitz on (cball b u ∩ X ) (f x )
using L[OF 〈x ∈ cball a u ∩ T 〉]
by (rule lipschitz on le) simp

then have dist (f x y) (f x b) ≤ (L + 1 ) ∗ dist y b
apply (rule lipschitz onD)
subgoal
using 〈y ∈ X 〉 〈dist y b < u〉

by (simp add : dist commute)
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subgoal
using 〈0 < u〉 〈b ∈ X 〉

by (simp add : )
done

also have (L + 1 ) ∗ dist y b ≤ e / 2
using le1 〈0 ≤ L〉 by simp

also have dist (f x b) (f a b) < e / 2
by (rule d ; fact)

also have e / 2 + e / 2 = e by simp
finally show dist (f x y) (f a b) < e by simp

qed
qed

lemma local lipschitz compact implies lipschitz :
assumes compact X compact T
assumes cont :

∧
x . x ∈ X =⇒ continuous on T (λt . f t x )

obtains L where
∧
t . t ∈ T =⇒ L−lipschitz on X (f t)

proof −
{
assume ∗:

∧
n::nat . ¬(∀ t∈T . n−lipschitz on X (f t))

{
fix n::nat
from ∗[of n] have ∃ x y t . t ∈ T ∧ x ∈ X ∧ y ∈ X ∧ dist (f t y) (f t x ) > n

∗ dist y x
by (force simp: lipschitz on def )

} then obtain t and x y ::nat ⇒ ′b where xy :
∧
n. x n ∈ X

∧
n. y n ∈ X

and t :
∧
n. t n ∈ T

and d :
∧
n. dist (f (t n) (y n)) (f (t n) (x n)) > n ∗ dist (y n) (x n)

by metis
from xy assms obtain lx rx where lx ′: lx ∈ X strict mono (rx :: nat ⇒ nat)

(x o rx ) −−−−→ lx
by (metis compact def )

with xy have
∧
n. (y o rx ) n ∈ X by auto

with assms obtain ly ry where ly ′: ly ∈ X strict mono (ry :: nat ⇒ nat) ((y
o rx ) o ry) −−−−→ ly

by (metis compact def )
with t have

∧
n. ((t o rx ) o ry) n ∈ T by simp

with assms obtain lt rt where lt ′: lt ∈ T strict mono (rt :: nat ⇒ nat) (((t
o rx ) o ry) o rt) −−−−→ lt

by (metis compact def )
from lx ′ ly ′

have lx : (x o (rx o ry o rt)) −−−−→ lx (is ?x −−−−→ )
and ly : (y o (rx o ry o rt)) −−−−→ ly (is ?y −−−−→ )
and lt : (t o (rx o ry o rt)) −−−−→ lt (is ?t −−−−→ )
subgoal by (simp add : LIMSEQ subseq LIMSEQ o assoc lt ′(2 ))
subgoal by (simp add : LIMSEQ subseq LIMSEQ ly ′(3 ) o assoc lt ′(2 ))
subgoal by (simp add : o assoc lt ′(3 ))
done

hence (λn. dist (?y n) (?x n)) −−−−→ dist ly lx
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by (metis tendsto dist)
moreover
let ?S = (λ(t , x ). f t x ) ‘ (T × X )
have eventually (λn::nat . n > 0 ) sequentially
by (metis eventually at top dense)

hence eventually (λn. norm (dist (?y n) (?x n)) ≤ norm (|diameter ?S | / n)
∗ 1 ) sequentially

proof eventually elim
case (elim n)
have 0 < rx (ry (rt n)) using 〈0 < n〉

by (metis dual order .strict trans1 lt ′(2 ) lx ′(2 ) ly ′(2 ) seq suble)
have compact : compact ?S
by (auto intro!: compact continuous image continuous on subset [OF contin-

uous on TimesI ]
compact Times 〈compact X 〉 〈compact T 〉 cont)

have norm (dist (?y n) (?x n)) = dist (?y n) (?x n) by simp
also
from this elim d [of rx (ry (rt n))]
have . . . < dist (f (?t n) (?y n)) (f (?t n) (?x n)) / rx (ry (rt (n)))
using lx ′(2 ) ly ′(2 ) lt ′(2 ) 〈0 < rx 〉

by (auto simp add : field split simps strict mono def )
also have . . . ≤ diameter ?S / n
proof (rule frac le)
show diameter ?S ≥ 0
using compact compact imp bounded diameter ge 0 by blast

show dist (f (?t n) (?y n)) (f (?t n) (?x n)) ≤ diameter ((λ(t ,x ). f t x ) ‘
(T × X ))

by (metis (no types) compact compact imp bounded diameter bounded bound
image eqI mem Sigma iff o apply split conv t xy(1 ) xy(2 ))

show real n ≤ real (rx (ry (rt n)))
by (meson le trans lt ′(2 ) lx ′(2 ) ly ′(2 ) of nat mono strict mono imp increasing)
qed (use 〈n > 0 〉 in auto)
also have . . . ≤ abs (diameter ?S ) / n
by (auto intro!: divide right mono)

finally show ?case by simp
qed
with have (λn. dist (?y n) (?x n)) −−−−→ 0
by (rule tendsto 0 le)
(metis tendsto divide 0 [OF tendsto const ] filterlim at top imp at infinity
filterlim real sequentially)

ultimately have lx = ly
using LIMSEQ unique by fastforce

with assms lx ′ have lx ∈ X by auto
from 〈lt ∈ T 〉 this obtain u L where L: u > 0

∧
t . t ∈ cball lt u ∩ T =⇒

L−lipschitz on (cball lx u ∩ X ) (f t)
by (erule local lipschitzE [OF local lipschitz ])

hence L ≥ 0 by (force intro!: lipschitz on nonneg 〈lt ∈ T 〉)

from L lt ly lx 〈lx = ly〉
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have
eventually (λn. ?t n ∈ ball lt u) sequentially
eventually (λn. ?y n ∈ ball lx u) sequentially
eventually (λn. ?x n ∈ ball lx u) sequentially
by (auto simp: dist commute Lim)

moreover have eventually (λn. n > L) sequentially
by (metis filterlim at top dense filterlim real sequentially)

ultimately
have eventually (λ . False) sequentially
proof eventually elim
case (elim n)
hence dist (f (?t n) (?y n)) (f (?t n) (?x n)) ≤ L ∗ dist (?y n) (?x n)
using assms xy t
unfolding dist norm[symmetric]
by (intro lipschitz onD [OF L(2 )]) (auto)

also have . . . ≤ n ∗ dist (?y n) (?x n)
using elim by (intro mult right mono) auto

also have . . . ≤ rx (ry (rt n)) ∗ dist (?y n) (?x n)
by (intro mult right mono[OF zero le dist ])

(meson lt ′(2 ) lx ′(2 ) ly ′(2 ) of nat le iff order trans seq suble)
also have . . . < dist (f (?t n) (?y n)) (f (?t n) (?x n))
by (auto intro!: d)

finally show ?case by simp
qed
hence False
by simp

} then obtain L where
∧
t . t ∈ T =⇒ L−lipschitz on X (f t)

by metis
thus ?thesis ..

qed

lemma local lipschitz subset :
assumes S ⊆ T Y ⊆ X
shows local lipschitz S Y f

proof (rule local lipschitzI )
fix t x assume t ∈ S x ∈ Y
then have t ∈ T x ∈ X using assms by auto
from local lipschitzE [OF local lipschitz , OF this]
obtain u L where u: 0 < u and L:

∧
s. s ∈ cball t u ∩ T =⇒ L−lipschitz on

(cball x u ∩ X ) (f s)
by blast

show ∃ u>0 . ∃L. ∀ t∈cball t u ∩ S . L−lipschitz on (cball x u ∩ Y ) (f t)
using assms
by (auto intro: exI [where x=u] exI [where x=L]

intro!: u lipschitz on subset [OF Int mono[OF order refl 〈Y ⊆ X 〉]] L)
qed

end
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lemma local lipschitz minus:
fixes f :: ′a::metric space ⇒ ′b::metric space ⇒ ′c::real normed vector
shows local lipschitz T X (λt x . − f t x ) = local lipschitz T X f
by (auto simp: local lipschitz def lipschitz on minus)

lemma local lipschitz PairI :
assumes f : local lipschitz A B (λa b. f a b)
assumes g : local lipschitz A B (λa b. g a b)
shows local lipschitz A B (λa b. (f a b, g a b))

proof (rule local lipschitzI )
fix t x assume t ∈ A x ∈ B
from local lipschitzE [OF f this] local lipschitzE [OF g this]
obtain u L v M where 0 < u (

∧
s. s ∈ cball t u ∩ A =⇒ L−lipschitz on (cball

x u ∩ B) (f s))
0 < v (

∧
s. s ∈ cball t v ∩ A =⇒ M−lipschitz on (cball x v ∩ B) (g s))

by metis
then show ∃ u>0 . ∃L. ∀ t∈cball t u ∩ A. L−lipschitz on (cball x u ∩ B) (λb. (f

t b, g t b))
by (intro exI [where x=min u v ])
(force intro: lipschitz on subset intro!: lipschitz on Pair)

qed

lemma local lipschitz constI : local lipschitz S T (λt x . f t)
by (auto simp: intro!: local lipschitzI lipschitz on constant intro: exI [where x=1 ])

lemma (in bounded linear) local lipschitzI :
shows local lipschitz A B (λ . f )

proof (rule local lipschitzI , goal cases)
case (1 t x )
from lipschitz boundE [of (cball x 1 ∩ B)] obtain C where C−lipschitz on (cball

x 1 ∩ B) f by auto
then show ?case
by (auto intro: exI [where x=1 ])

qed

proposition c1 implies local lipschitz :
fixes T ::real set and X :: ′a::{banach,heine borel} set
and f ::real ⇒ ′a ⇒ ′a

assumes f ′:
∧
t x . t ∈ T =⇒ x ∈ X =⇒ (f t has derivative blinfun apply (f ′ (t ,

x ))) (at x )
assumes cont f ′: continuous on (T × X ) f ′

assumes open T
assumes open X
shows local lipschitz T X f

proof (rule local lipschitzI )
fix t x
assume t ∈ T x ∈ X
from open contains cball [THEN iffD1 , OF 〈open X 〉, rule format , OF 〈x ∈ X 〉]
obtain u where u: u > 0 cball x u ⊆ X by auto
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moreover
from open contains cball [THEN iffD1 , OF 〈open T 〉, rule format , OF 〈t ∈ T 〉]
obtain v where v : v > 0 cball t v ⊆ T by auto
ultimately
have compact (cball t v × cball x u) cball t v × cball x u ⊆ T × X
by (auto intro!: compact Times)

then have compact (f ′ ‘ (cball t v × cball x u))
by (auto intro!: compact continuous image continuous on subset [OF cont f ′])

then obtain B where B : B > 0
∧
s y . s ∈ cball t v =⇒ y ∈ cball x u =⇒ norm

(f ′ (s, y)) ≤ B
by (auto dest !: compact imp bounded simp: bounded pos)

have lipschitz : B−lipschitz on (cball x (min u v) ∩ X ) (f s) if s: s ∈ cball t v
for s
proof −
note s
also note 〈cball t v ⊆ T 〉

finally
have deriv :

∧
y . y ∈ cball x u =⇒ (f s has derivative blinfun apply (f ′ (s, y)))

(at y within cball x u)
using 〈 ⊆ X 〉

by (auto intro!: has derivative at withinI [OF f ′])
have norm (f s y − f s z ) ≤ B ∗ norm (y − z )
if y ∈ cball x u z ∈ cball x u
for y z
using s that
by (intro differentiable bound [OF convex cball deriv ])
(auto intro!: B simp: norm blinfun.rep eq [symmetric])

then show ?thesis
using 〈0 < B 〉

by (auto intro!: lipschitz onI simp: dist norm)
qed
show ∃ u>0 . ∃L. ∀ t∈cball t u ∩ T . L−lipschitz on (cball x u ∩ X ) (f t)
by (force intro: exI [where x=min u v ] exI [where x=B ] intro!: lipschitz simp:

u v)
qed

end
theory
Multivariate Analysis

imports
Ordered Euclidean Space
Determinants
Cross3
Lipschitz
Starlike

begin

Entry point excluding integration and complex analysis.
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end

6.48 Volume of a Simplex

theory Simplex Content
imports Change Of Vars
begin

lemma fact neq top ennreal [simp]: fact n 6= (top :: ennreal)
by (induction n) (auto simp: ennreal mult eq top iff )

lemma ennreal fact : ennreal (fact n) = fact n
by (induction n) (auto simp: ennreal mult algebra simps ennreal of nat eq real of nat)

context
fixes S :: ′a set ⇒ real ⇒ ( ′a ⇒ real) set
defines S ≡ (λA t . {x . (∀ i∈A. 0 ≤ x i) ∧ sum x A ≤ t})

begin

lemma emeasure std simplex aux step:
assumes b /∈ A finite A
shows x (b := y) ∈ S (insert b A) t ←→ y ∈ {0 ..t} ∧ x ∈ S A (t − y)
using assms sum nonneg [of A x ] unfolding S def
by (force simp: sum delta notmem algebra simps)

lemma emeasure std simplex aux :
fixes t :: real
assumes finite (A :: ′a set) t ≥ 0
shows emeasure (PiM A (λ . lborel))

(S A t ∩ space (PiM A (λ . lborel))) = t ˆ card A / fact (card A)
using assms(1 ,2 )

proof (induction arbitrary : t rule: finite induct)
case (empty t)
thus ?case by (simp add : PiM empty S def )

next
case (insert b A t)
define n where n = Suc (card A)
have n pos: n > 0 by (simp add : n def )
let ?M = λA. (PiM A (λ . lborel))
{
fix A :: ′a set and t :: real assume finite A
have S A t ∩ space (PiM A (λ . lborel)) =

PiE A (λ . {0 ..}) ∩ (λx . sum x A) −‘ {..t} ∩ space (PiM A (λ . lborel))
by (auto simp: S def space PiM )

also have . . . ∈ sets (PiM A (λ . lborel))
using 〈finite A〉 by measurable

finally have S A t ∩ space (PiM A (λ . lborel)) ∈ sets (PiM A (λ . lborel)) .
} note meas [measurable] = this
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interpret product sigma finite λ . lborel
by standard

have emeasure (?M (insert b A)) (S (insert b A) t ∩ space (?M (insert b A)))
=

nn integral (?M (insert b A))
(λx . indicator (S (insert b A) t ∩ space (?M (insert b A))) x )

using insert .hyps by (subst nn integral indicator) auto
also have . . . = (

∫
+ y .

∫
+ x . indicator (S (insert b A) t ∩ space (?M (insert

b A)))
(x (b := y)) ∂?M A ∂lborel)

using insert .prems insert .hyps by (intro product nn integral insert rev) auto
also have . . . = (

∫
+ y .

∫
+ x . indicator {0 ..t} y ∗ indicator (S A (t − y) ∩

space (?M A)) x
∂?M A ∂lborel)

using insert .hyps insert .prems emeasure std simplex aux step[of b A]
by (intro nn integral cong)

(auto simp: fun eq iff indicator def space PiM PiE def extensional def )
also have . . . = (

∫
+ y . indicator {0 ..t} y ∗ (

∫
+ x . indicator (S A (t − y) ∩

space (?M A)) x
∂?M A) ∂lborel) using 〈finite A〉

by (subst nn integral cmult) auto
also have . . . = (

∫
+ y . indicator {0 ..t} y ∗ emeasure (?M A) (S A (t − y) ∩

space (?M A)) ∂lborel)
using 〈finite A〉 by (subst nn integral indicator) auto

also have . . . = (
∫

+ y . indicator {0 ..t} y ∗ (t − y) ˆ card A / ennreal (fact
(card A)) ∂lborel)

using insert .IH by (intro nn integral cong) (auto simp: indicator def divide ennreal)
also have . . . = (

∫
+ y . indicator {0 ..t} y ∗ (t − y) ˆ card A ∂lborel) / ennreal

(fact (card A))
using 〈finite A〉 by (subst nn integral divide) auto

also have (
∫

+ y . indicator {0 ..t} y ∗ (t − y) ˆ card A ∂lborel) =
(
∫

+y∈{0 ..t}. ennreal ((t − y) ˆ (n − 1 )) ∂lborel)
by (intro nn integral cong) (auto simp: indicator def n def )

also have ((λx . − ((t − x ) ˆ n / n)) has real derivative (t − x ) ˆ (n − 1 )) (at
x )

if x ∈ {0 ..t} for x by (rule derivative eq intros refl | simp add : n pos)+
hence (

∫
+y∈{0 ..t}. ennreal ((t − y) ˆ (n − 1 )) ∂lborel) =

ennreal (−((t − t) ˆ n / n) − (−((t − 0 ) ˆ n / n)))
using insert .prems insert .hyps by (intro nn integral FTC Icc) auto

also have . . . = ennreal (t ˆ n / n) using n pos by (simp add : zero power)
also have . . . / ennreal (fact (card A)) = ennreal (t ˆ n / n / fact (card A))
using n pos 〈t ≥ 0 〉 by (subst divide ennreal) auto

also have t ˆ n / n / fact (card A) = t ˆ n / fact n
by (simp add : n def )

also have n = card (insert b A)
using insert .hyps by (subst card .insert remove) (auto simp: n def )

finally show ?case .
qed
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end

lemma emeasure std simplex :
emeasure lborel (convex hull (insert 0 Basis :: ′a :: euclidean space set)) =

ennreal (1 / fact DIM ( ′a))
proof −
have emeasure lborel {x :: ′a. (∀ i∈Basis. 0 ≤ x · i) ∧ sum ((·) x ) Basis ≤ 1} =

emeasure (distr (PiM Basis (λb. lborel)) borel (λf .
∑

b∈Basis. f b ∗R
b))

{x :: ′a. (∀ i∈Basis. 0 ≤ x · i) ∧ sum ((·) x ) Basis ≤ 1}
by (subst lborel eq) simp

also have . . . = emeasure (PiM Basis (λb. lborel))
({y :: ′a ⇒ real . (∀ i∈Basis. 0 ≤ y i) ∧ sum y Basis ≤ 1} ∩
space (PiM Basis (λb. lborel)))

by (subst emeasure distr) auto
also have . . . = ennreal (1 / fact DIM ( ′a))
by (subst emeasure std simplex aux ) auto

finally show ?thesis by (simp only : std simplex )
qed

theorem content std simplex :
measure lborel (convex hull (insert 0 Basis :: ′a :: euclidean space set)) =

1 / fact DIM ( ′a)
by (simp add : measure def emeasure std simplex )

proposition measure lebesgue linear transformation:
fixes A :: (real ˆ ′n :: {finite, wellorder}) set
fixes f :: ⇒ real ˆ ′n :: {finite, wellorder}
assumes bounded A A ∈ sets lebesgue linear f
shows measure lebesgue (f ‘ A) = |det (matrix f )| ∗ measure lebesgue A

proof −
from assms have [intro]: A ∈ lmeasurable
by (intro bounded set imp lmeasurable) auto

hence [intro]: f ‘ A ∈ lmeasurable
by (intro lmeasure integral measurable linear image assms)

have measure lebesgue (f ‘ A) = integral (f ‘ A) (λ . 1 )
by (intro lmeasure integral measurable linear image assms) auto

also have . . . = integral (f ‘ A) (λ . 1 :: real ˆ 1 ) $ 0
by (subst integral component eq cart [symmetric]) (auto intro: integrable on const)
also have . . . = |det (matrix f )| ∗ integral A (λx . 1 :: real ˆ 1 ) $ 0
using assms
by (subst integral change of variables linear)

(auto simp: o def absolutely integrable on def intro: integrable on const)
also have integral A (λx . 1 :: real ˆ 1 ) $ 0 = integral A (λx . 1 )
by (subst integral component eq cart [symmetric]) (auto intro: integrable on const)
also have . . . = measure lebesgue A
by (intro lmeasure integral [symmetric]) auto

finally show ?thesis .



Simplex Content.thy 3205

qed

theorem content simplex :
fixes X :: (real ˆ ′n :: {finite, wellorder}) set and f :: ′n :: ⇒ real ˆ ( ′n :: )
assumes finite X card X = Suc CARD( ′n) and x0 : x0 ∈ X and bij : bij betw f

UNIV (X − {x0})
defines M ≡ (χ i . χ j . f j $ i − x0 $ i)
shows content (convex hull X ) = |det M | / fact (CARD( ′n))

proof −
define g where g = (λx . M ∗v x )
have [simp]: M ∗v axis i 1 = f i − x0 for i :: ′n
by (simp add : M def matrix vector mult basis column def vec eq iff )

define std where std = (convex hull insert 0 Basis :: (real ˆ ′n :: ) set)
have compact : compact std unfolding std def
by (intro finite imp compact convex hull) auto

have measure lebesgue (convex hull X ) = measure lebesgue (((+) (−x0 )) ‘ (convex
hull X ))

by (rule measure translation [symmetric])
also have ((+) (−x0 )) ‘ (convex hull X ) = convex hull (((+) (−x0 )) ‘ X )
by (rule convex hull translation [symmetric])

also have ((+) (−x0 )) ‘ X = insert 0 ((λx . x − x0 ) ‘ (X − {x0}))
using x0 by (auto simp: image iff )

finally have eq : measure lebesgue (convex hull X ) = measure lebesgue (convex
hull . . . ) .

from compact have measure lebesgue (g ‘ std) = |det M | ∗ measure lebesgue std
by (subst measure lebesgue linear transformation)

(auto intro: finite imp bounded convex hull dest : compact imp closed simp:
g def std def )
also have measure lebesgue std = content std using compact
by (intro measure completion) (auto dest : compact imp closed)

also have content std = 1 / fact CARD( ′n) unfolding std def
by (simp add : content std simplex )

also have g ‘ std = convex hull (g ‘ insert 0 Basis) unfolding std def
by (rule convex hull linear image) (auto simp: g def )

also have g ‘ insert 0 Basis = insert 0 (g ‘ Basis)
by (auto simp: g def )

also have g ‘ Basis = (λx . x − x0 ) ‘ range f
by (auto simp: g def Basis vec def image iff )

also have range f = X − {x0} using bij
using bij betw imp surj on by blast

also note eq [symmetric]
finally show ?thesis
using finite imp compact convex hull [OF 〈finite X 〉] by (auto dest : compact imp closed)

qed

theorem content triangle:
fixes A B C :: real ˆ 2
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shows content (convex hull {A, B , C}) =
|(C $ 1 − A $ 1 ) ∗ (B $ 2 − A $ 2 ) − (B $ 1 − A $ 1 ) ∗ (C $ 2 − A

$ 2 )| / 2
proof −
define M :: real ˆ 2 ˆ 2 where M ≡ (χ i . χ j . (if j = 1 then B else C ) $ i −

A $ i)
define g where g = (λx . M ∗v x )
define std where std = (convex hull insert 0 Basis :: (real ˆ 2 ) set)
have [simp]: M ∗v axis i 1 = (if i = 1 then B − A else C − A) for i
by (auto simp: M def matrix vector mult basis column def vec eq iff )

have compact : compact std unfolding std def
by (intro finite imp compact convex hull) auto

have measure lebesgue (convex hull {A, B , C}) =
measure lebesgue (((+) (−A)) ‘ (convex hull {A, B , C}))

by (rule measure translation [symmetric])
also have ((+) (−A)) ‘ (convex hull {A, B , C}) = convex hull (((+) (−A)) ‘
{A, B , C})

by (rule convex hull translation [symmetric])
also have ((+) (−A)) ‘ {A, B , C} = {0 , B − A, C − A}
by (auto simp: image iff )

finally have eq : measure lebesgue (convex hull {A, B , C}) =
measure lebesgue (convex hull {0 , B − A, C − A}) .

from compact have measure lebesgue (g ‘ std) = |det M | ∗ measure lebesgue std
by (subst measure lebesgue linear transformation)

(auto intro: finite imp bounded convex hull dest : compact imp closed simp:
g def std def )
also have measure lebesgue std = content std using compact
by (intro measure completion) (auto dest : compact imp closed)

also have content std = 1 / 2 unfolding std def
by (simp add : content std simplex )

also have g ‘ std = convex hull (g ‘ insert 0 Basis) unfolding std def
by (rule convex hull linear image) (auto simp: g def )

also have g ‘ insert 0 Basis = insert 0 (g ‘ Basis)
by (auto simp: g def )

also have (2 :: 2 ) 6= 1 by auto
hence ¬(∀ y ::2 . y = 1 ) by blast
hence g ‘ Basis = {B − A, C − A}
by (auto simp: g def Basis vec def image iff )

also note eq [symmetric]
finally show ?thesis
using finite imp compact convex hull [of {A, B , C}]
by (auto dest !: compact imp closed simp: det 2 M def )

qed

theorem heron:
fixes A B C :: real ˆ 2
defines a ≡ dist B C and b ≡ dist A C and c ≡ dist A B
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defines s ≡ (a + b + c) / 2
shows content (convex hull {A, B , C}) = sqrt (s ∗ (s − a) ∗ (s − b) ∗ (s −

c))
proof −
have [simp]: (UNIV :: 2 set) = {1 , 2}
using exhaust 2 by auto

have dist eq : dist (A :: real ˆ 2 ) B ˆ 2 = (A $ 1 − B $ 1 ) ˆ 2 + (A $ 2 − B
$ 2 ) ˆ 2

for A B by (simp add : dist vec def dist real def )
have nonneg : s ∗ (s − a) ∗ (s − b) ∗ (s − c) ≥ 0
using dist triangle[of A B C ] dist triangle[of A C B ] dist triangle[of B C A]
by (intro mult nonneg nonneg) (auto simp: s def a def b def c def dist commute)

have 16 ∗ content (convex hull {A, B , C}) ˆ 2 =
4 ∗ ((C $ 1 − A $ 1 ) ∗ (B $ 2 − A $ 2 ) − (B $ 1 − A $ 1 ) ∗ (C $ 2

− A $ 2 )) ˆ 2
by (subst content triangle) (simp add : power divide)

also have . . . = (2 ∗ (dist A B ˆ 2 ∗ dist A C ˆ 2 + dist A B ˆ 2 ∗ dist B C ˆ
2 +

dist A C ˆ 2 ∗ dist B C ˆ 2 ) − (dist A B ˆ 2 ) ˆ 2 − (dist A C ˆ 2 ) ˆ 2 −
(dist B C ˆ 2 ) ˆ 2 )

unfolding dist eq unfolding power2 eq square by algebra
also have . . . = (a + b + c) ∗ ((a + b + c) − 2 ∗ a) ∗ ((a + b + c) − 2 ∗ b)
∗

((a + b + c) − 2 ∗ c)
unfolding power2 eq square by (simp add : s def a def b def c def algebra simps)
also have . . . = 16 ∗ s ∗ (s − a) ∗ (s − b) ∗ (s − c)
by (simp add : s def field split simps)

finally have content (convex hull {A, B , C}) ˆ 2 = s ∗ (s − a) ∗ (s − b) ∗ (s
− c)

by simp
also have . . . = sqrt (s ∗ (s − a) ∗ (s − b) ∗ (s − c)) ˆ 2
by (intro real sqrt pow2 [symmetric] nonneg)

finally show ?thesis using nonneg
by (subst (asm) power2 eq iff nonneg) auto

qed

end

6.49 Convergence of Formal Power Series

theory FPS Convergence
imports
Generalised Binomial Theorem
HOL−Computational Algebra.Formal Power Series

begin

In this theory, we will connect formal power series (which are algebraic ob-
jects) with analytic functions. This will become more important in complex
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analysis, and indeed some of the less trivial results will only be proven there.

6.49.1 Balls with extended real radius

The following is a variant of ball that also allows an infinite radius.

definition eball :: ′a :: metric space ⇒ ereal ⇒ ′a set where
eball z r = {z ′. ereal (dist z z ′) < r}

lemma in eball iff [simp]: z ∈ eball z0 r ←→ ereal (dist z0 z ) < r
by (simp add : eball def )

lemma eball ereal [simp]: eball z (ereal r) = ball z r
by auto

lemma eball inf [simp]: eball z ∞ = UNIV
by auto

lemma eball empty [simp]: r ≤ 0 =⇒ eball z r = {}
proof safe
fix x assume r ≤ 0 x ∈ eball z r
hence dist z x < r by simp
also have . . . ≤ ereal 0 using 〈r ≤ 0 〉 by (simp add : zero ereal def )
finally show x ∈ {} by simp

qed

lemma eball conv UNION balls:
eball z r = (

⋃
r ′∈{r ′. ereal r ′ < r}. ball z r ′)

by (cases r) (use dense gt ex in force)+

lemma eball mono: r ≤ r ′ =⇒ eball z r ≤ eball z r ′

by auto

lemma ball eball mono: ereal r ≤ r ′ =⇒ ball z r ≤ eball z r ′

using eball mono[of ereal r r ′] by simp

lemma open eball [simp, intro]: open (eball z r)
by (cases r) auto

6.49.2 Basic properties of convergent power series

definition fps conv radius :: ′a :: {banach, real normed div algebra} fps ⇒ ereal
where
fps conv radius f = conv radius (fps nth f )

definition eval fps :: ′a :: {banach, real normed div algebra} fps ⇒ ′a ⇒ ′a where
eval fps f z = (

∑
n. fps nth f n ∗ z ˆ n)

lemma norm summable fps:
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fixes f :: ′a :: {banach, real normed div algebra} fps
shows norm z < fps conv radius f =⇒ summable (λn. norm (fps nth f n ∗ z ˆ

n))
by (rule abs summable in conv radius) (simp all add : fps conv radius def )

lemma summable fps:
fixes f :: ′a :: {banach, real normed div algebra} fps
shows norm z < fps conv radius f =⇒ summable (λn. fps nth f n ∗ z ˆ n)
by (rule summable in conv radius) (simp all add : fps conv radius def )

theorem sums eval fps:
fixes f :: ′a :: {banach, real normed div algebra} fps
assumes norm z < fps conv radius f
shows (λn. fps nth f n ∗ z ˆ n) sums eval fps f z
using assms unfolding eval fps def fps conv radius def
by (intro summable sums summable in conv radius) simp all

lemma continuous on eval fps:
fixes f :: ′a :: {banach, real normed div algebra} fps
shows continuous on (eball 0 (fps conv radius f )) (eval fps f )

proof (subst continuous on eq continuous at [OF open eball ], safe)
fix x :: ′a assume x : x ∈ eball 0 (fps conv radius f )
define r where r = (if fps conv radius f = ∞ then norm x + 1 else

(norm x + real of ereal (fps conv radius f )) / 2 )
have r : norm x < r ∧ ereal r < fps conv radius f
using x by (cases fps conv radius f )

(auto simp: r def eball def split : if splits)

have continuous on (cball 0 r) (λx .
∑

i . fps nth f i ∗ (x − 0 ) ˆ i)
by (rule powser continuous suminf ) (insert r , auto simp: fps conv radius def )

hence continuous on (cball 0 r) (eval fps f )
by (simp add : eval fps def )

thus isCont (eval fps f ) x
by (rule continuous on interior) (use r in auto)

qed

lemma continuous on eval fps ′ [continuous intros]:
assumes continuous on A g
assumes g ‘ A ⊆ eball 0 (fps conv radius f )
shows continuous on A (λx . eval fps f (g x ))
using continuous on compose2 [OF continuous on eval fps assms] .

lemma has field derivative powser :
fixes z :: ′a :: {banach, real normed field}
assumes ereal (norm z ) < conv radius f
shows ((λz .

∑
n. f n ∗ z ˆ n) has field derivative (

∑
n. diffs f n ∗ z ˆ n)) (at

z within A)
proof −
define K where K = (if conv radius f = ∞ then norm z + 1
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else (norm z + real of ereal (conv radius f )) / 2 )
have K : norm z < K ∧ ereal K < conv radius f
using assms by (cases conv radius f ) (auto simp: K def )

have 0 ≤ norm z by simp
also from K have . . . < K by simp
finally have K pos: K > 0 by simp

have summable (λn. f n ∗ of real K ˆ n)
using K and K pos by (intro summable in conv radius) auto

moreover from K and K pos have norm z < norm (of real K :: ′a) by auto
ultimately show ?thesis
by (rule has field derivative at within [OF termdiffs strong ])

qed

lemma has field derivative eval fps:
fixes z :: ′a :: {banach, real normed field}
assumes norm z < fps conv radius f
shows (eval fps f has field derivative eval fps (fps deriv f ) z ) (at z within A)

proof −
have (eval fps f has field derivative eval fps (Abs fps (diffs (fps nth f ))) z ) (at z

within A)
using assms unfolding eval fps def fps nth Abs fps fps conv radius def
by (intro has field derivative powser) auto

also have Abs fps (diffs (fps nth f )) = fps deriv f
by (simp add : fps eq iff diffs def )

finally show ?thesis .
qed

lemma holomorphic on eval fps [holomorphic intros]:
fixes z :: ′a :: {banach, real normed field}
assumes A ⊆ eball 0 (fps conv radius f )
shows eval fps f holomorphic on A

proof (rule holomorphic on subset [OF assms])
show eval fps f holomorphic on eball 0 (fps conv radius f )
proof (subst holomorphic on open [OF open eball ], safe, goal cases)
case (1 x )
thus ?case
by (intro exI [of eval fps (fps deriv f ) x ]) (auto intro: has field derivative eval fps)

qed
qed

lemma analytic on eval fps:
fixes z :: ′a :: {banach, real normed field}
assumes A ⊆ eball 0 (fps conv radius f )
shows eval fps f analytic on A

proof (rule analytic on subset [OF assms])
show eval fps f analytic on eball 0 (fps conv radius f )
using holomorphic on eval fps[of eball 0 (fps conv radius f )]
by (subst analytic on open) auto
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qed

lemma continuous eval fps [continuous intros]:
fixes z :: ′a::{real normed field ,banach}
assumes norm z < fps conv radius F
shows continuous (at z within A) (eval fps F )

proof −
from ereal dense2 [OF assms] obtain K :: real where K : norm z < K K <

fps conv radius F
by auto

have 0 ≤ norm z by simp
also have norm z < K by fact
finally have K > 0 .
from K and 〈K > 0 〉 have summable (λn. fps nth F n ∗ of real K ˆ n)
by (intro summable fps) auto

from this have isCont (eval fps F ) z unfolding eval fps def
by (rule isCont powser) (use K in auto)

thus continuous (at z within A) (eval fps F )
by (simp add : continuous at imp continuous within)

qed

6.49.3 Lower bounds on radius of convergence

lemma fps conv radius deriv :
fixes f :: ′a :: {banach, real normed field} fps
shows fps conv radius (fps deriv f ) ≥ fps conv radius f
unfolding fps conv radius def

proof (rule conv radius geI ex )
fix r :: real assume r : r > 0 ereal r < conv radius (fps nth f )
define K where K = (if conv radius (fps nth f ) = ∞ then r + 1

else (real of ereal (conv radius (fps nth f )) + r) / 2 )
have K : r < K ∧ ereal K < conv radius (fps nth f )
using r by (cases conv radius (fps nth f )) (auto simp: K def )

have summable (λn. diffs (fps nth f ) n ∗ of real r ˆ n)
proof (rule termdiff converges)
fix x :: ′a assume norm x < K
hence ereal (norm x ) < ereal K by simp
also have . . . < conv radius (fps nth f ) using K by simp
finally show summable (λn. fps nth f n ∗ x ˆ n)
by (intro summable in conv radius) auto

qed (insert K r , auto)
also have . . . = (λn. fps nth (fps deriv f ) n ∗ of real r ˆ n)
by (simp add : fps deriv def diffs def )

finally show ∃ z :: ′a. norm z = r ∧ summable (λn. fps nth (fps deriv f ) n ∗ z ˆ
n)

using r by (intro exI [of of real r ]) auto
qed

lemma eval fps at 0 : eval fps f 0 = fps nth f 0
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by (simp add : eval fps def )

lemma fps conv radius norm [simp]:
fps conv radius (Abs fps (λn. norm (fps nth f n))) = fps conv radius f
by (simp add : fps conv radius def )

lemma fps conv radius const [simp]: fps conv radius (fps const c) = ∞
proof −
have fps conv radius (fps const c) = conv radius (λ . 0 :: ′a)
unfolding fps conv radius def
by (intro conv radius cong eventually mono[OF eventually gt at top[of 0 ]]) auto
thus ?thesis by simp

qed

lemma fps conv radius 0 [simp]: fps conv radius 0 = ∞
by (simp only : fps const 0 eq 0 [symmetric] fps conv radius const)

lemma fps conv radius 1 [simp]: fps conv radius 1 = ∞
by (simp only : fps const 1 eq 1 [symmetric] fps conv radius const)

lemma fps conv radius numeral [simp]: fps conv radius (numeral n) = ∞
by (simp add : numeral fps const)

lemma fps conv radius fps X power [simp]: fps conv radius (fps X ˆ n) = ∞
proof −
have fps conv radius (fps X ˆ n :: ′a fps) = conv radius (λ . 0 :: ′a)
unfolding fps conv radius def
by (intro conv radius cong eventually mono[OF eventually gt at top[of n]])

(auto simp: fps X power iff )
thus ?thesis by simp

qed

lemma fps conv radius fps X [simp]: fps conv radius fps X = ∞
using fps conv radius fps X power [of 1 ] by (simp only : power one right)

lemma fps conv radius shift [simp]:
fps conv radius (fps shift n f ) = fps conv radius f
by (simp add : fps conv radius def fps shift def conv radius shift)

lemma fps conv radius cmult left :
c 6= 0 =⇒ fps conv radius (fps const c ∗ f ) = fps conv radius f
unfolding fps conv radius def by (simp add : conv radius cmult left)

lemma fps conv radius cmult right :
c 6= 0 =⇒ fps conv radius (f ∗ fps const c) = fps conv radius f
unfolding fps conv radius def by (simp add : conv radius cmult right)

lemma fps conv radius uminus [simp]:
fps conv radius (−f ) = fps conv radius f
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using fps conv radius cmult left [of −1 f ]
by (simp flip: fps const neg)

lemma fps conv radius add : fps conv radius (f + g) ≥ min (fps conv radius f )
(fps conv radius g)
unfolding fps conv radius def using conv radius add ge[of fps nth f fps nth g ]
by simp

lemma fps conv radius diff : fps conv radius (f − g) ≥ min (fps conv radius f )
(fps conv radius g)
using fps conv radius add [of f −g ] by simp

lemma fps conv radius mult : fps conv radius (f ∗ g) ≥ min (fps conv radius f )
(fps conv radius g)
using conv radius mult ge[of fps nth f fps nth g ]
by (simp add : fps mult nth fps conv radius def atLeast0AtMost)

lemma fps conv radius power : fps conv radius (f ˆ n) ≥ fps conv radius f
proof (induction n)
case (Suc n)
hence fps conv radius f ≤ min (fps conv radius f ) (fps conv radius (f ˆ n))
by simp

also have . . . ≤ fps conv radius (f ∗ f ˆ n)
by (rule fps conv radius mult)

finally show ?case by simp
qed simp all

context
begin

lemma natfun inverse bound :
fixes f :: ′a :: {real normed field} fps
assumes fps nth f 0 = 1 and δ > 0

and summable: summable (λn. norm (fps nth f (Suc n)) ∗ δ ˆ Suc n)
and le: (

∑
n. norm (fps nth f (Suc n)) ∗ δ ˆ Suc n) ≤ 1

shows norm (natfun inverse f n) ≤ inverse (δ ˆ n)
proof (induction n rule: less induct)
case (less m)
show ?case
proof (cases m)
case 0
thus ?thesis using assms by (simp add : field split simps norm inverse norm divide)
next
case [simp]: (Suc n)
have norm (natfun inverse f (Suc n)) =

norm (
∑

i = Suc 0 ..Suc n. fps nth f i ∗ natfun inverse f (Suc n − i))
(is = norm ?S ) using assms
by (simp add : field simps norm mult norm divide del : sum.cl ivl Suc)

also have norm ?S ≤ (
∑

i = Suc 0 ..Suc n. norm (fps nth f i ∗ natfun inverse
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f (Suc n − i)))
by (rule norm sum)

also have . . . ≤ (
∑

i = Suc 0 ..Suc n. norm (fps nth f i) / δ ˆ (Suc n − i))
proof (intro sum mono, goal cases)
case (1 i)
have norm (fps nth f i ∗ natfun inverse f (Suc n − i)) =

norm (fps nth f i) ∗ norm (natfun inverse f (Suc n − i))
by (simp add : norm mult)

also have . . . ≤ norm (fps nth f i) ∗ inverse (δ ˆ (Suc n − i))
using 1 by (intro mult left mono less.IH ) auto

also have . . . = norm (fps nth f i) / δ ˆ (Suc n − i)
by (simp add : field split simps)

finally show ?case .
qed
also have . . . = (

∑
i = Suc 0 ..Suc n. norm (fps nth f i) ∗ δ ˆ i) / δ ˆ Suc n

by (subst sum divide distrib, rule sum.cong)
(insert 〈δ > 0 〉, auto simp: field simps power diff )

also have (
∑

i = Suc 0 ..Suc n. norm (fps nth f i) ∗ δ ˆ i) =
(
∑

i=0 ..n. norm (fps nth f (Suc i)) ∗ δ ˆ (Suc i))
by (subst sum.atLeast Suc atMost Suc shift) simp all

also have {0 ..n} = {..<Suc n} by auto
also have (

∑
i< Suc n. norm (fps nth f (Suc i)) ∗ δ ˆ (Suc i)) ≤

(
∑

n. norm (fps nth f (Suc n)) ∗ δ ˆ (Suc n))
using 〈δ > 0 〉 by (intro sum le suminf ballI mult nonneg nonneg zero le power

summable) auto
also have . . . ≤ 1 by fact
finally show ?thesis using 〈δ > 0 〉

by (simp add : divide right mono field split simps)
qed

qed

private lemma fps conv radius inverse pos aux :
fixes f :: ′a :: {banach, real normed field} fps
assumes fps nth f 0 = 1 fps conv radius f > 0
shows fps conv radius (inverse f ) > 0

proof −
let ?R = fps conv radius f
define h where h = Abs fps (λn. norm (fps nth f n))
have [simp]: fps conv radius h = ?R by (simp add : h def )
have continuous on (eball 0 (fps conv radius h)) (eval fps h)
by (intro continuous on eval fps)

hence ∗: open (eval fps h −‘ A ∩ eball 0 ?R) if open A for A
using that by (subst (asm) continuous on open vimage) auto

have open (eval fps h −‘ {..<2} ∩ eball 0 ?R)
by (rule ∗) auto

moreover have 0 ∈ eval fps h −‘ {..<2} ∩ eball 0 ?R
using assms by (auto simp: eball def zero ereal def eval fps at 0 h def )

ultimately obtain ε where ε: ε > 0 ball 0 ε ⊆ eval fps h −‘ {..<2} ∩ eball 0
?R
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by (subst (asm) open contains ball eq) blast+

define δ where δ = real of ereal (min (ereal ε / 2 ) (?R / 2 ))
have δ: 0 < δ ∧ δ < ε ∧ ereal δ < ?R
using 〈ε > 0 〉 and assms by (cases ?R) (auto simp: δ def min def )

have summable: summable (λn. norm (fps nth f n) ∗ δ ˆ n)
using δ by (intro summable in conv radius) (simp all add : fps conv radius def )
hence (λn. norm (fps nth f n) ∗ δ ˆ n) sums eval fps h δ
by (simp add : eval fps def summable sums h def )

hence (λn. norm (fps nth f (Suc n)) ∗ δ ˆ Suc n) sums (eval fps h δ − 1 )
by (subst sums Suc iff ) (auto simp: assms)

moreover {
from δ have δ ∈ ball 0 ε by auto
also have . . . ⊆ eval fps h −‘ {..<2} ∩ eball 0 ?R by fact
finally have eval fps h δ < 2 by simp

}
ultimately have le: (

∑
n. norm (fps nth f (Suc n)) ∗ δ ˆ Suc n) ≤ 1

by (simp add : sums iff )
from summable have summable: summable (λn. norm (fps nth f (Suc n)) ∗ δ ˆ

Suc n)
by (subst summable Suc iff )

have 0 < δ using δ by blast
also have δ = inverse (limsup (λn. ereal (inverse δ)))
using δ by (subst Limsup const) auto

also have . . . ≤ conv radius (natfun inverse f )
unfolding conv radius def

proof (intro ereal inverse antimono Limsup mono
eventually mono[OF eventually gt at top[of 0 ]])

fix n :: nat assume n: n > 0
have root n (norm (natfun inverse f n)) ≤ root n (inverse (δ ˆ n))
using n assms δ le summable
by (intro real root le mono natfun inverse bound) auto

also have . . . = inverse δ
using n δ by (simp add : power inverse [symmetric] real root pos2 )

finally show ereal (inverse δ) ≥ ereal (root n (norm (natfun inverse f n)))
by (subst ereal less eq)

next
have 0 = limsup (λn. 0 ::ereal)
by (rule Limsup const [symmetric]) auto

also have . . . ≤ limsup (λn. ereal (root n (norm (natfun inverse f n))))
by (intro Limsup mono) (auto simp: real root ge zero)

finally show 0 ≤ . . . by simp
qed
also have . . . = fps conv radius (inverse f )
using assms by (simp add : fps conv radius def fps inverse def )

finally show ?thesis by (simp add : zero ereal def )
qed
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lemma fps conv radius inverse pos:
fixes f :: ′a :: {banach, real normed field} fps
assumes fps nth f 0 6= 0 and fps conv radius f > 0
shows fps conv radius (inverse f ) > 0

proof −
let ?c = fps nth f 0
have fps conv radius (inverse f ) = fps conv radius (fps const ?c ∗ inverse f )
using assms by (subst fps conv radius cmult left) auto

also have fps const ?c ∗ inverse f = inverse (fps const (inverse ?c) ∗ f )
using assms by (simp add : fps inverse mult fps const inverse)

also have fps conv radius . . . > 0 using assms
by (intro fps conv radius inverse pos aux )

(auto simp: fps conv radius cmult left)
finally show ?thesis .

qed

end

lemma fps conv radius exp [simp]:
fixes c :: ′a :: {banach, real normed field}
shows fps conv radius (fps exp c) = ∞
unfolding fps conv radius def

proof (rule conv radius inftyI ′′)
fix z :: ′a
have (λn. norm (c ∗ z ) ˆ n /R fact n) sums exp (norm (c ∗ z ))
by (rule exp converges)

also have (λn. norm (c ∗ z ) ˆ n /R fact n) = (λn. norm (fps nth (fps exp c) n
∗ z ˆ n))

by (rule ext) (simp add : norm divide norm mult norm power field split simps)
finally have summable . . . by (simp add : sums iff )
thus summable (λn. fps nth (fps exp c) n ∗ z ˆ n)
by (rule summable norm cancel)

qed

6.49.4 Evaluating power series

theorem eval fps deriv :
assumes norm z < fps conv radius f
shows eval fps (fps deriv f ) z = deriv (eval fps f ) z
by (intro DERIV imp deriv [symmetric] has field derivative eval fps assms)

theorem fps nth conv deriv :
fixes f :: complex fps
assumes fps conv radius f > 0
shows fps nth f n = (deriv ˆˆ n) (eval fps f ) 0 / fact n
using assms

proof (induction n arbitrary : f )
case 0
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thus ?case by (simp add : eval fps def )
next
case (Suc n f )
have (deriv ˆˆ Suc n) (eval fps f ) 0 = (deriv ˆˆ n) (deriv (eval fps f )) 0
unfolding funpow Suc right o def ..

also have eventually (λz ::complex . z ∈ eball 0 (fps conv radius f )) (nhds 0 )
using Suc.prems by (intro eventually nhds in open) (auto simp: zero ereal def )
hence eventually (λz . deriv (eval fps f ) z = eval fps (fps deriv f ) z ) (nhds 0 )
by eventually elim (simp add : eval fps deriv)

hence (deriv ˆˆ n) (deriv (eval fps f )) 0 = (deriv ˆˆ n) (eval fps (fps deriv f ))
0

by (intro higher deriv cong ev refl)
also have . . . / fact n = fps nth (fps deriv f ) n
using Suc.prems fps conv radius deriv [of f ]
by (intro Suc.IH [symmetric]) auto

also have . . . / of nat (Suc n) = fps nth f (Suc n)
by (simp add : fps deriv def del : of nat Suc)

finally show ?case by (simp add : field split simps)
qed

theorem eval fps eqD :
fixes f g :: complex fps
assumes fps conv radius f > 0 fps conv radius g > 0
assumes eventually (λz . eval fps f z = eval fps g z ) (nhds 0 )
shows f = g

proof (rule fps ext)
fix n :: nat
have fps nth f n = (deriv ˆˆ n) (eval fps f ) 0 / fact n
using assms by (intro fps nth conv deriv)

also have (deriv ˆˆ n) (eval fps f ) 0 = (deriv ˆˆ n) (eval fps g) 0
by (intro higher deriv cong ev refl assms)

also have . . . / fact n = fps nth g n
using assms by (intro fps nth conv deriv [symmetric])

finally show fps nth f n = fps nth g n .
qed

lemma eval fps const [simp]:
fixes c :: ′a :: {banach, real normed div algebra}
shows eval fps (fps const c) z = c

proof −
have (λn::nat . if n ∈ {0} then c else 0 ) sums (

∑
n∈{0 ::nat}. c)

by (rule sums If finite set) auto
also have ?this ←→ (λn::nat . fps nth (fps const c) n ∗ z ˆ n) sums (

∑
n∈{0 ::nat}.

c)
by (intro sums cong) auto

also have (
∑

n∈{0 ::nat}. c) = c
by simp

finally show ?thesis
by (simp add : eval fps def sums iff )
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qed

lemma eval fps 0 [simp]:
eval fps (0 :: ′a :: {banach, real normed div algebra} fps) z = 0
by (simp only : fps const 0 eq 0 [symmetric] eval fps const)

lemma eval fps 1 [simp]:
eval fps (1 :: ′a :: {banach, real normed div algebra} fps) z = 1
by (simp only : fps const 1 eq 1 [symmetric] eval fps const)

lemma eval fps numeral [simp]:
eval fps (numeral n :: ′a :: {banach, real normed div algebra} fps) z = numeral

n
by (simp only : numeral fps const eval fps const)

lemma eval fps X power [simp]:
eval fps (fps X ˆ m :: ′a :: {banach, real normed div algebra} fps) z = z ˆ m

proof −
have (λn::nat . if n ∈ {m} then z ˆ n else 0 :: ′a) sums (

∑
n∈{m::nat}. z ˆ n)

by (rule sums If finite set) auto
also have ?this ←→ (λn::nat . fps nth (fps X ˆ m) n ∗ z ˆ n) sums (

∑
n∈{m::nat}.

z ˆ n)
by (intro sums cong) (auto simp: fps X power iff )

also have (
∑

n∈{m::nat}. z ˆ n) = z ˆ m
by simp

finally show ?thesis
by (simp add : eval fps def sums iff )

qed

lemma eval fps X [simp]:
eval fps (fps X :: ′a :: {banach, real normed div algebra} fps) z = z
using eval fps X power [of 1 z ] by (simp only : power one right)

lemma eval fps minus:
fixes f :: ′a :: {banach, real normed div algebra} fps
assumes norm z < fps conv radius f
shows eval fps (−f ) z = −eval fps f z
using assms unfolding eval fps def
by (subst suminf minus [symmetric]) (auto intro!: summable fps)

lemma eval fps add :
fixes f g :: ′a :: {banach, real normed div algebra} fps
assumes norm z < fps conv radius f norm z < fps conv radius g
shows eval fps (f + g) z = eval fps f z + eval fps g z
using assms unfolding eval fps def
by (subst suminf add) (auto simp: ring distribs intro!: summable fps)

lemma eval fps diff :
fixes f g :: ′a :: {banach, real normed div algebra} fps
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assumes norm z < fps conv radius f norm z < fps conv radius g
shows eval fps (f − g) z = eval fps f z − eval fps g z
using assms unfolding eval fps def
by (subst suminf diff ) (auto simp: ring distribs intro!: summable fps)

lemma eval fps mult :
fixes f g :: ′a :: {banach, real normed div algebra, comm ring 1} fps
assumes norm z < fps conv radius f norm z < fps conv radius g
shows eval fps (f ∗ g) z = eval fps f z ∗ eval fps g z

proof −
have eval fps f z ∗ eval fps g z =

(
∑

k .
∑

i≤k . fps nth f i ∗ fps nth g (k − i) ∗ (z ˆ i ∗ z ˆ (k − i)))
unfolding eval fps def

proof (subst Cauchy product)
show summable (λk . norm (fps nth f k ∗ z ˆ k)) summable (λk . norm (fps nth

g k ∗ z ˆ k))
by (rule norm summable fps assms)+

qed (simp all add : algebra simps)
also have (λk .

∑
i≤k . fps nth f i ∗ fps nth g (k − i) ∗ (z ˆ i ∗ z ˆ (k − i))) =

(λk .
∑

i≤k . fps nth f i ∗ fps nth g (k − i) ∗ z ˆ k)
by (intro ext sum.cong refl) (simp add : power add [symmetric])

also have suminf . . . = eval fps (f ∗ g) z
by (simp add : eval fps def fps mult nth atLeast0AtMost sum distrib right)

finally show ?thesis ..
qed

lemma eval fps shift :
fixes f :: ′a :: {banach, real normed div algebra, comm ring 1} fps
assumes n ≤ subdegree f norm z < fps conv radius f
shows eval fps (fps shift n f ) z = (if z = 0 then fps nth f n else eval fps f z /

z ˆ n)
proof (cases z = 0 )
case False
have eval fps (fps shift n f ∗ fps X ˆ n) z = eval fps (fps shift n f ) z ∗ z ˆ n
using assms by (subst eval fps mult) simp all

also from assms have fps shift n f ∗ fps X ˆ n = f
by (simp add : fps shift times fps X power)

finally show ?thesis using False by (simp add : field simps)
qed (simp all add : eval fps at 0 )

lemma eval fps exp [simp]:
fixes c :: ′a :: {banach, real normed field}
shows eval fps (fps exp c) z = exp (c ∗ z ) unfolding eval fps def exp def
by (simp add : eval fps def exp def scaleR conv of real field split simps)

The case of division is more complicated and will therefore not be handled
here. Handling division becomes much more easy using complex analysis,
and we will do so once that is available.
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6.49.5 Power series expansions of analytic functions

This predicate contains the notion that the given formal power series con-
verges in some disc of positive radius around the origin and is equal to the
given complex function there.

This relationship is unique in the sense that no complex function can have
more than one formal power series to which it expands, and if two holo-
morphic functions that are holomorphic on a connected open set around the
origin and have the same power series expansion, they must be equal on that
set.

More concrete statements about the radius of convergence can usually be
made, but for many purposes, the statment that the series converges to the
function in some neighbourhood of the origin is enough, and that can be
shown almost fully automatically in most cases, as there are straightforward
introduction rules to show this.

In particular, when one wants to relate the coefficients of the power series
to the values of the derivatives of the function at the origin, or if one wants
to approximate the coefficients of the series with the singularities of the
function, this predicate is enough.

definition
has fps expansion :: ( ′a :: {banach,real normed div algebra} ⇒ ′a) ⇒ ′a fps ⇒

bool
(infixl has ′ fps ′ expansion 60 )
where (f has fps expansion F ) ←→

fps conv radius F > 0 ∧ eventually (λz . eval fps F z = f z ) (nhds 0 )

named theorems fps expansion intros

lemma fps nth fps expansion:
fixes f :: complex ⇒ complex
assumes f has fps expansion F
shows fps nth F n = (deriv ˆˆ n) f 0 / fact n

proof −
have fps nth F n = (deriv ˆˆ n) (eval fps F ) 0 / fact n
using assms by (intro fps nth conv deriv) (auto simp: has fps expansion def )

also have (deriv ˆˆ n) (eval fps F ) 0 = (deriv ˆˆ n) f 0
using assms by (intro higher deriv cong ev) (auto simp: has fps expansion def )
finally show ?thesis .

qed

lemma has fps expansion imp continuous:
fixes F :: ′a::{real normed field ,banach} fps
assumes f has fps expansion F
shows continuous (at 0 within A) f

proof −
from assms have isCont (eval fps F ) 0
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by (intro continuous eval fps) (auto simp: has fps expansion def zero ereal def )
also have ?this ←→ isCont f 0 using assms
by (intro isCont cong) (auto simp: has fps expansion def )

finally have isCont f 0 .
thus continuous (at 0 within A) f
by (simp add : continuous at imp continuous within)

qed

lemma has fps expansion const [simp, intro, fps expansion intros]:
(λ . c) has fps expansion fps const c
by (auto simp: has fps expansion def )

lemma has fps expansion 0 [simp, intro, fps expansion intros]:
(λ . 0 ) has fps expansion 0
by (auto simp: has fps expansion def )

lemma has fps expansion 1 [simp, intro, fps expansion intros]:
(λ . 1 ) has fps expansion 1
by (auto simp: has fps expansion def )

lemma has fps expansion numeral [simp, intro, fps expansion intros]:
(λ . numeral n) has fps expansion numeral n
by (auto simp: has fps expansion def )

lemma has fps expansion fps X power [fps expansion intros]:
(λx . x ˆ n) has fps expansion (fps X ˆ n)
by (auto simp: has fps expansion def )

lemma has fps expansion fps X [fps expansion intros]:
(λx . x ) has fps expansion fps X
by (auto simp: has fps expansion def )

lemma has fps expansion cmult left [fps expansion intros]:
fixes c :: ′a :: {banach, real normed div algebra, comm ring 1}
assumes f has fps expansion F
shows (λx . c ∗ f x ) has fps expansion fps const c ∗ F

proof (cases c = 0 )
case False
from assms have eventually (λz . z ∈ eball 0 (fps conv radius F )) (nhds 0 )
by (intro eventually nhds in open) (auto simp: has fps expansion def zero ereal def )
moreover from assms have eventually (λz . eval fps F z = f z ) (nhds 0 )
by (auto simp: has fps expansion def )

ultimately have eventually (λz . eval fps (fps const c ∗ F ) z = c ∗ f z ) (nhds
0 )

by eventually elim (simp all add : eval fps mult)
with assms and False show ?thesis
by (auto simp: has fps expansion def fps conv radius cmult left)

qed auto
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lemma has fps expansion cmult right [fps expansion intros]:
fixes c :: ′a :: {banach, real normed div algebra, comm ring 1}
assumes f has fps expansion F
shows (λx . f x ∗ c) has fps expansion F ∗ fps const c

proof −
have F ∗ fps const c = fps const c ∗ F
by (intro fps ext) (auto simp: mult .commute)

with has fps expansion cmult left [OF assms] show ?thesis
by (simp add : mult .commute)

qed

lemma has fps expansion minus [fps expansion intros]:
assumes f has fps expansion F
shows (λx . − f x ) has fps expansion −F

proof −
from assms have eventually (λx . x ∈ eball 0 (fps conv radius F )) (nhds 0 )
by (intro eventually nhds in open) (auto simp: has fps expansion def zero ereal def )
moreover from assms have eventually (λx . eval fps F x = f x ) (nhds 0 )
by (auto simp: has fps expansion def )

ultimately have eventually (λx . eval fps (−F ) x = −f x ) (nhds 0 )
by eventually elim (auto simp: eval fps minus)

thus ?thesis using assms by (auto simp: has fps expansion def )
qed

lemma has fps expansion add [fps expansion intros]:
assumes f has fps expansion F g has fps expansion G
shows (λx . f x + g x ) has fps expansion F + G

proof −
from assms have 0 < min (fps conv radius F ) (fps conv radius G)
by (auto simp: has fps expansion def )

also have . . . ≤ fps conv radius (F + G)
by (rule fps conv radius add)

finally have radius: . . . > 0 .

from assms have eventually (λx . x ∈ eball 0 (fps conv radius F )) (nhds 0 )
eventually (λx . x ∈ eball 0 (fps conv radius G)) (nhds 0 )

by (intro eventually nhds in open; force simp: has fps expansion def zero ereal def )+
moreover have eventually (λx . eval fps F x = f x ) (nhds 0 )

and eventually (λx . eval fps G x = g x ) (nhds 0 )
using assms by (auto simp: has fps expansion def )

ultimately have eventually (λx . eval fps (F + G) x = f x + g x ) (nhds 0 )
by eventually elim (auto simp: eval fps add)

with radius show ?thesis by (auto simp: has fps expansion def )
qed

lemma has fps expansion diff [fps expansion intros]:
assumes f has fps expansion F g has fps expansion G
shows (λx . f x − g x ) has fps expansion F − G
using has fps expansion add [of f F λx . − g x −G ] assms
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by (simp add : has fps expansion minus)

lemma has fps expansion mult [fps expansion intros]:
fixes F G :: ′a :: {banach, real normed div algebra, comm ring 1} fps
assumes f has fps expansion F g has fps expansion G
shows (λx . f x ∗ g x ) has fps expansion F ∗ G

proof −
from assms have 0 < min (fps conv radius F ) (fps conv radius G)
by (auto simp: has fps expansion def )

also have . . . ≤ fps conv radius (F ∗ G)
by (rule fps conv radius mult)

finally have radius: . . . > 0 .

from assms have eventually (λx . x ∈ eball 0 (fps conv radius F )) (nhds 0 )
eventually (λx . x ∈ eball 0 (fps conv radius G)) (nhds 0 )

by (intro eventually nhds in open; force simp: has fps expansion def zero ereal def )+
moreover have eventually (λx . eval fps F x = f x ) (nhds 0 )

and eventually (λx . eval fps G x = g x ) (nhds 0 )
using assms by (auto simp: has fps expansion def )

ultimately have eventually (λx . eval fps (F ∗ G) x = f x ∗ g x ) (nhds 0 )
by eventually elim (auto simp: eval fps mult)

with radius show ?thesis by (auto simp: has fps expansion def )
qed

lemma has fps expansion inverse [fps expansion intros]:
fixes F :: ′a :: {banach, real normed field} fps
assumes f has fps expansion F
assumes fps nth F 0 6= 0
shows (λx . inverse (f x )) has fps expansion inverse F

proof −
have radius: fps conv radius (inverse F ) > 0
using assms unfolding has fps expansion def
by (intro fps conv radius inverse pos) auto

let ?R = min (fps conv radius F ) (fps conv radius (inverse F ))
from assms radius
have eventually (λx . x ∈ eball 0 (fps conv radius F )) (nhds 0 )

eventually (λx . x ∈ eball 0 (fps conv radius (inverse F ))) (nhds 0 )
by (intro eventually nhds in open; force simp: has fps expansion def zero ereal def )+
moreover have eventually (λz . eval fps F z = f z ) (nhds 0 )
using assms by (auto simp: has fps expansion def )

ultimately have eventually (λz . eval fps (inverse F ) z = inverse (f z )) (nhds
0 )
proof eventually elim
case (elim z )
hence eval fps (inverse F ∗ F ) z = eval fps (inverse F ) z ∗ f z
by (subst eval fps mult) auto

also have eval fps (inverse F ∗ F ) z = 1
using assms by (simp add : inverse mult eq 1 )

finally show ?case by (auto simp: field split simps)
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qed
with radius show ?thesis by (auto simp: has fps expansion def )

qed

lemma has fps expansion exp [fps expansion intros]:
fixes c :: ′a :: {banach, real normed field}
shows (λx . exp (c ∗ x )) has fps expansion fps exp c
by (auto simp: has fps expansion def )

lemma has fps expansion exp1 [fps expansion intros]:
(λx :: ′a :: {banach, real normed field}. exp x ) has fps expansion fps exp 1
using has fps expansion exp[of 1 ] by simp

lemma has fps expansion exp neg1 [fps expansion intros]:
(λx :: ′a :: {banach, real normed field}. exp (−x )) has fps expansion fps exp (−1 )
using has fps expansion exp[of −1 ] by simp

lemma has fps expansion deriv [fps expansion intros]:
assumes f has fps expansion F
shows deriv f has fps expansion fps deriv F

proof −
have eventually (λz . z ∈ eball 0 (fps conv radius F )) (nhds 0 )
using assms by (intro eventually nhds in open)

(auto simp: has fps expansion def zero ereal def )
moreover from assms have eventually (λz . eval fps F z = f z ) (nhds 0 )
by (auto simp: has fps expansion def )

then obtain s where open s 0 ∈ s and s:
∧
w . w ∈ s =⇒ eval fps F w = f w

by (auto simp: eventually nhds)
hence eventually (λw . w ∈ s) (nhds 0 )
by (intro eventually nhds in open) auto

ultimately have eventually (λz . eval fps (fps deriv F ) z = deriv f z ) (nhds 0 )
proof eventually elim
case (elim z )
hence eval fps (fps deriv F ) z = deriv (eval fps F ) z
by (simp add : eval fps deriv)

also have eventually (λw . w ∈ s) (nhds z )
using elim and 〈open s〉 by (intro eventually nhds in open) auto

hence eventually (λw . eval fps F w = f w) (nhds z )
by eventually elim (simp add : s)

hence deriv (eval fps F ) z = deriv f z
by (intro deriv cong ev refl)

finally show ?case .
qed
with assms and fps conv radius deriv [of F ] show ?thesis
by (auto simp: has fps expansion def )

qed

lemma fps conv radius binomial :
fixes c :: ′a :: {real normed field ,banach}



FPS Convergence.thy 3225

shows fps conv radius (fps binomial c) = (if c ∈ IN then ∞ else 1 )
unfolding fps conv radius def by (simp add : conv radius gchoose)

lemma fps conv radius ln:
fixes c :: ′a :: {banach, real normed field , field char 0}
shows fps conv radius (fps ln c) = (if c = 0 then ∞ else 1 )

proof (cases c = 0 )
case False
have conv radius (λn. 1 / of nat n :: ′a) = 1
proof (rule conv radius ratio limit nonzero)
show (λn. norm (1 / of nat n :: ′a) / norm (1 / of nat (Suc n) :: ′a)) −−−−→

1
using LIMSEQ Suc n over n by (simp add : norm divide del : of nat Suc)

qed auto
also have conv radius (λn. 1 / of nat n :: ′a) =

conv radius (λn. if n = 0 then 0 else (− 1 ) ˆ (n − 1 ) / of nat n :: ′a)
by (intro conv radius cong eventually mono[OF eventually gt at top[of 0 ]])

(simp add : norm mult norm divide norm power)
finally show ?thesis using False unfolding fps ln def
by (subst fps conv radius cmult left) (simp all add : fps conv radius def )

qed (auto simp: fps ln def )

lemma fps conv radius ln nonzero [simp]:
assumes c 6= (0 :: ′a :: {banach,real normed field ,field char 0})
shows fps conv radius (fps ln c) = 1
using assms by (simp add : fps conv radius ln)

lemma fps conv radius sin [simp]:
fixes c :: ′a :: {banach, real normed field , field char 0}
shows fps conv radius (fps sin c) = ∞

proof (cases c = 0 )
case False
have ∞ = conv radius (λn. of real (sin coeff n) :: ′a)
proof (rule sym, rule conv radius inftyI ′′, rule summable norm cancel , goal cases)
case (1 z )
show ?case using summable norm sin[of z ] by (simp add : norm mult)

qed
also have . . . / norm c = conv radius (λn. c ˆ n ∗ of real (sin coeff n) :: ′a)
using False by (subst conv radius mult power) auto

also have . . . = fps conv radius (fps sin c) unfolding fps conv radius def
by (rule conv radius cong weak) (auto simp add : fps sin def sin coeff def )

finally show ?thesis by simp
qed simp all

lemma fps conv radius cos [simp]:
fixes c :: ′a :: {banach, real normed field , field char 0}
shows fps conv radius (fps cos c) = ∞

proof (cases c = 0 )
case False
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have ∞ = conv radius (λn. of real (cos coeff n) :: ′a)
proof (rule sym, rule conv radius inftyI ′′, rule summable norm cancel , goal cases)
case (1 z )
show ?case using summable norm cos[of z ] by (simp add : norm mult)

qed
also have . . . / norm c = conv radius (λn. c ˆ n ∗ of real (cos coeff n) :: ′a)
using False by (subst conv radius mult power) auto

also have . . . = fps conv radius (fps cos c) unfolding fps conv radius def
by (rule conv radius cong weak) (auto simp add : fps cos def cos coeff def )

finally show ?thesis by simp
qed simp all

lemma eval fps sin [simp]:
fixes z :: ′a :: {banach, real normed field , field char 0}
shows eval fps (fps sin c) z = sin (c ∗ z )

proof −
have (λn. sin coeff n ∗R (c ∗ z ) ˆ n) sums sin (c ∗ z ) by (rule sin converges)
also have (λn. sin coeff n ∗R (c ∗ z ) ˆ n) = (λn. fps nth (fps sin c) n ∗ z ˆ n)
by (rule ext) (auto simp: sin coeff def fps sin def power mult distrib scaleR conv of real)
finally show ?thesis by (simp add : sums iff eval fps def )

qed

lemma eval fps cos [simp]:
fixes z :: ′a :: {banach, real normed field , field char 0}
shows eval fps (fps cos c) z = cos (c ∗ z )

proof −
have (λn. cos coeff n ∗R (c ∗ z ) ˆ n) sums cos (c ∗ z ) by (rule cos converges)
also have (λn. cos coeff n ∗R (c ∗ z ) ˆ n) = (λn. fps nth (fps cos c) n ∗ z ˆ n)
by (rule ext) (auto simp: cos coeff def fps cos def power mult distrib scaleR conv of real)
finally show ?thesis by (simp add : sums iff eval fps def )

qed

lemma cos eq zero imp norm ge:
assumes cos (z :: complex ) = 0
shows norm z ≥ pi / 2

proof −
from assms obtain n where z = complex of real ((of int n + 1 / 2 ) ∗ pi)
by (auto simp: cos eq 0 algebra simps)

also have norm . . . = |real of int n + 1 / 2 | ∗ pi
by (subst norm of real) (simp all add : abs mult)

also have real of int n + 1 / 2 = of int (2 ∗ n + 1 ) / 2 by simp
also have |. . . | = of int |2 ∗ n + 1 | / 2 by (subst abs divide) simp all
also have . . . ∗ pi = of int |2 ∗ n + 1 | ∗ (pi / 2 ) by simp
also have . . . ≥ of int 1 ∗ (pi / 2 )
by (intro mult right mono, subst of int le iff ) (auto simp: abs if )

finally show ?thesis by simp
qed
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lemma eval fps binomial :
fixes c :: complex
assumes norm z < 1
shows eval fps (fps binomial c) z = (1 + z ) powr c
using gen binomial complex [OF assms] by (simp add : sums iff eval fps def )

lemma has fps expansion binomial complex [fps expansion intros]:
fixes c :: complex
shows (λx . (1 + x ) powr c) has fps expansion fps binomial c

proof −
have ∗: eventually (λz ::complex . z ∈ eball 0 1 ) (nhds 0 )
by (intro eventually nhds in open) auto

thus ?thesis
by (auto simp: has fps expansion def eval fps binomial fps conv radius binomial

intro!: eventually mono [OF ∗])
qed

lemma has fps expansion sin [fps expansion intros]:
fixes c :: ′a :: {banach, real normed field , field char 0}
shows (λx . sin (c ∗ x )) has fps expansion fps sin c
by (auto simp: has fps expansion def )

lemma has fps expansion sin ′ [fps expansion intros]:
(λx :: ′a :: {banach, real normed field}. sin x ) has fps expansion fps sin 1
using has fps expansion sin[of 1 ] by simp

lemma has fps expansion cos [fps expansion intros]:
fixes c :: ′a :: {banach, real normed field , field char 0}
shows (λx . cos (c ∗ x )) has fps expansion fps cos c
by (auto simp: has fps expansion def )

lemma has fps expansion cos ′ [fps expansion intros]:
(λx :: ′a :: {banach, real normed field}. cos x ) has fps expansion fps cos 1
using has fps expansion cos[of 1 ] by simp

lemma has fps expansion shift [fps expansion intros]:
fixes F :: ′a :: {banach, real normed field} fps
assumes f has fps expansion F and n ≤ subdegree F
assumes c = fps nth F n
shows (λx . if x = 0 then c else f x / x ˆ n) has fps expansion (fps shift n F )

proof −
have eventually (λx . x ∈ eball 0 (fps conv radius F )) (nhds 0 )
using assms by (intro eventually nhds in open) (auto simp: has fps expansion def

zero ereal def )
moreover have eventually (λx . eval fps F x = f x ) (nhds 0 )
using assms by (auto simp: has fps expansion def )

ultimately have eventually (λx . eval fps (fps shift n F ) x =
(if x = 0 then c else f x / x ˆ n)) (nhds 0 )
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by eventually elim (auto simp: eval fps shift assms)
with assms show ?thesis by (auto simp: has fps expansion def )

qed

lemma has fps expansion divide [fps expansion intros]:
fixes F G :: ′a :: {banach, real normed field} fps
assumes f has fps expansion F and g has fps expansion G and

subdegree G ≤ subdegree F G 6= 0
c = fps nth F (subdegree G) / fps nth G (subdegree G)

shows (λx . if x = 0 then c else f x / g x ) has fps expansion (F / G)
proof −
define n where n = subdegree G
define F ′ and G ′ where F ′ = fps shift n F and G ′ = fps shift n G
have F = F ′ ∗ fps X ˆ n G = G ′ ∗ fps X ˆ n unfolding F ′ def G ′ def n def
by (rule fps shift times fps X power [symmetric] le refl | fact)+

moreover from assms have fps nth G ′ 0 6= 0
by (simp add : G ′ def n def )

ultimately have FG : F / G = F ′ ∗ inverse G ′

by (simp add : fps divide unit)

have (λx . (if x = 0 then fps nth F n else f x / x ˆ n) ∗
inverse (if x = 0 then fps nth G n else g x / x ˆ n)) has fps expansion F

/ G
(is ?h has fps expansion ) unfolding FG F ′ def G ′ def n def using 〈G 6= 0 〉

by (intro has fps expansion mult has fps expansion inverse
has fps expansion shift assms) auto

also have ?h = (λx . if x = 0 then c else f x / g x )
using assms(5 ) unfolding n def
by (intro ext) (auto split : if splits simp: field simps)

finally show ?thesis .
qed

lemma has fps expansion divide ′ [fps expansion intros]:
fixes F G :: ′a :: {banach, real normed field} fps
assumes f has fps expansion F and g has fps expansion G and fps nth G 0 6= 0
shows (λx . f x / g x ) has fps expansion (F / G)

proof −
have (λx . if x = 0 then fps nth F 0 / fps nth G 0 else f x / g x ) has fps expansion

(F / G)
(is ?h has fps expansion ) using assms(3 ) by (intro has fps expansion divide

assms) auto
also from assms have fps nth F 0 = f 0 fps nth G 0 = g 0
by (auto simp: has fps expansion def eval fps at 0 dest : eventually nhds x imp x )
hence ?h = (λx . f x / g x ) by auto
finally show ?thesis .

qed

lemma has fps expansion tan [fps expansion intros]:
fixes c :: ′a :: {banach, real normed field , field char 0}
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shows (λx . tan (c ∗ x )) has fps expansion fps tan c
proof −
have (λx . sin (c ∗ x ) / cos (c ∗ x )) has fps expansion fps sin c / fps cos c
by (intro fps expansion intros) auto

thus ?thesis by (simp add : tan def fps tan def )
qed

lemma has fps expansion tan ′ [fps expansion intros]:
tan has fps expansion fps tan (1 :: ′a :: {banach, real normed field , field char 0})
using has fps expansion tan[of 1 ] by simp

lemma has fps expansion imp holomorphic:
assumes f has fps expansion F
obtains s where open s 0 ∈ s f holomorphic on s

∧
z . z ∈ s =⇒ f z = eval fps

F z
proof −
from assms obtain s where s: open s 0 ∈ s

∧
z . z ∈ s =⇒ eval fps F z = f z

unfolding has fps expansion def eventually nhds by blast
let ?s ′ = eball 0 (fps conv radius F ) ∩ s
have eval fps F holomorphic on ?s ′

by (intro holomorphic intros) auto
also have ?this ←→ f holomorphic on ?s ′

using s by (intro holomorphic cong) auto
finally show ?thesis using s assms
by (intro that [of ?s ′]) (auto simp: has fps expansion def zero ereal def )

qed

end

6.50 Smooth paths

theory Smooth Paths
imports
Retracts

begin

6.50.1 Homeomorphisms of arc images

lemma path connected arc complement :
fixes γ :: real ⇒ ′a::euclidean space
assumes arc γ 2 ≤ DIM ( ′a)
shows path connected(− path image γ)

proof −
have path image γ homeomorphic {0 ..1 ::real}
by (simp add : assms homeomorphic arc image interval)

then
show ?thesis
apply (rule path connected complement homeomorphic convex compact)
apply (auto simp: assms)
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done
qed

lemma connected arc complement :
fixes γ :: real ⇒ ′a::euclidean space
assumes arc γ 2 ≤ DIM ( ′a)
shows connected(− path image γ)
by (simp add : assms path connected arc complement path connected imp connected)

lemma inside arc empty :
fixes γ :: real ⇒ ′a::euclidean space
assumes arc γ
shows inside(path image γ) = {}

proof (cases DIM ( ′a) = 1 )
case True
then show ?thesis
using assms connected arc image connected convex 1 gen inside convex by blast

next
case False
show ?thesis
proof (rule inside bounded complement connected empty)
show connected (− path image γ)
apply (rule connected arc complement [OF assms])
using False

by (metis DIM ge Suc0 One nat def Suc 1 not less eq eq order class.order .antisym)
show bounded (path image γ)
by (simp add : assms bounded arc image)

qed
qed

lemma inside simple curve imp closed :
fixes γ :: real ⇒ ′a::euclidean space
shows [[simple path γ; x ∈ inside(path image γ)]] =⇒ pathfinish γ = pathstart

γ
using arc simple path inside arc empty by blast

6.50.2 Piecewise differentiability of paths

lemma continuous on joinpaths D1 :
continuous on {0 ..1} (g1 +++ g2 ) =⇒ continuous on {0 ..1} g1

apply (rule continuous on eq [of (g1 +++ g2 ) ◦ ((∗)(inverse 2 ))])
apply (rule continuous intros | simp)+
apply (auto elim!: continuous on subset simp: joinpaths def )
done

lemma continuous on joinpaths D2 :
[[continuous on {0 ..1} (g1 +++ g2 ); pathfinish g1 = pathstart g2 ]] =⇒ contin-

uous on {0 ..1} g2
apply (rule continuous on eq [of (g1 +++ g2 ) ◦ (λx . inverse 2∗x + 1/2 )])
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apply (rule continuous intros | simp)+
apply (auto elim!: continuous on subset simp add : joinpaths def pathfinish def

pathstart def Ball def )
done

lemma piecewise differentiable D1 :
assumes (g1 +++ g2 ) piecewise differentiable on {0 ..1}
shows g1 piecewise differentiable on {0 ..1}

proof −
obtain S where cont : continuous on {0 ..1} g1 and finite S
and S :

∧
x . x ∈ {0 ..1} − S =⇒ g1 +++ g2 differentiable at x within {0 ..1}

using assms unfolding piecewise differentiable on def
by (blast dest !: continuous on joinpaths D1 )

show ?thesis
unfolding piecewise differentiable on def

proof (intro exI conjI ballI cont)
show finite (insert 1 (((∗)2 ) ‘ S ))
by (simp add : 〈finite S 〉)

show g1 differentiable at x within {0 ..1} if x ∈ {0 ..1} − insert 1 ((∗) 2 ‘ S )
for x

proof (rule tac d=dist (x/2 ) (1/2 ) in differentiable transform within)
have g1 +++ g2 differentiable at (x / 2 ) within {0 ..1/2}
by (rule differentiable subset [OF S [of x/2 ]] | use that in force)+

then show g1 +++ g2 ◦ (∗) (inverse 2 ) differentiable at x within {0 ..1}
using image affinity atLeastAtMost div [of 2 0 0 ::real 1 ]
by (auto intro: differentiable chain within)

qed (use that in 〈auto simp: joinpaths def 〉)
qed

qed

lemma piecewise differentiable D2 :
assumes (g1 +++ g2 ) piecewise differentiable on {0 ..1} and eq : pathfinish g1

= pathstart g2
shows g2 piecewise differentiable on {0 ..1}

proof −
have [simp]: g1 1 = g2 0
using eq by (simp add : pathfinish def pathstart def )

obtain S where cont : continuous on {0 ..1} g2 and finite S
and S :

∧
x . x ∈ {0 ..1} − S =⇒ g1 +++ g2 differentiable at x within {0 ..1}

using assms unfolding piecewise differentiable on def
by (blast dest !: continuous on joinpaths D2 )

show ?thesis
unfolding piecewise differentiable on def

proof (intro exI conjI ballI cont)
show finite (insert 0 ((λx . 2∗x−1 )‘S ))
by (simp add : 〈finite S 〉)
show g2 differentiable at x within {0 ..1} if x ∈ {0 ..1} − insert 0 ((λx .

2∗x−1 )‘S ) for x
proof (rule tac d=dist ((x+1 )/2 ) (1/2 ) in differentiable transform within)
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have x2 : (x + 1 ) / 2 /∈ S
using that
apply (clarsimp simp: image iff )
by (metis add .commute add diff cancel left ′ mult 2 field sum of halves)

have g1 +++ g2 ◦ (λx . (x+1 ) / 2 ) differentiable at x within {0 ..1}
by (rule differentiable chain within differentiable subset [OF S [of (x+1 )/2 ]]

| use x2 that in force)+
then show g1 +++ g2 ◦ (λx . (x+1 ) / 2 ) differentiable at x within {0 ..1}
by (auto intro: differentiable chain within)

show (g1 +++ g2 ◦ (λx . (x + 1 ) / 2 )) x ′ = g2 x ′ if x ′ ∈ {0 ..1} dist x ′ x
< dist ((x + 1 ) / 2 ) (1/2 ) for x ′

proof −
have [simp]: (2∗x ′+2 )/2 = x ′+1
by (simp add : field split simps)

show ?thesis
using that by (auto simp: joinpaths def )

qed
qed (use that in 〈auto simp: joinpaths def 〉)

qed
qed

lemma piecewise C1 differentiable D1 :
fixes g1 :: real ⇒ ′a::real normed field
assumes (g1 +++ g2 ) piecewise C1 differentiable on {0 ..1}
shows g1 piecewise C1 differentiable on {0 ..1}

proof −
obtain S where finite S

and co12 : continuous on ({0 ..1} − S ) (λx . vector derivative (g1 +++
g2 ) (at x ))

and g12D : ∀ x∈{0 ..1} − S . g1 +++ g2 differentiable at x
using assms by (auto simp: piecewise C1 differentiable on def C1 differentiable on eq)
have g1D : g1 differentiable at x if x ∈ {0 ..1} − insert 1 ((∗) 2 ‘ S ) for x
proof (rule differentiable transform within)
show g1 +++ g2 ◦ (∗) (inverse 2 ) differentiable at x
using that g12D
apply (simp only : joinpaths def )
by (rule differentiable chain at derivative intros | force)+

show
∧
x ′. [[dist x ′ x < dist (x/2 ) (1/2 )]]

=⇒ (g1 +++ g2 ◦ (∗) (inverse 2 )) x ′ = g1 x ′

using that by (auto simp: dist real def joinpaths def )
qed (use that in 〈auto simp: dist real def 〉)
have [simp]: vector derivative (g1 ◦ (∗) 2 ) (at (x/2 )) = 2 ∗R vector derivative

g1 (at x )
if x ∈ {0 ..1} − insert 1 ((∗) 2 ‘ S ) for x

apply (subst vector derivative chain at)
using that
apply (rule derivative eq intros g1D | simp)+
done

have continuous on ({0 ..1/2} − insert (1/2 ) S ) (λx . vector derivative (g1 +++
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g2 ) (at x ))
using co12 by (rule continuous on subset) force

then have coDhalf : continuous on ({0 ..1/2} − insert (1/2 ) S ) (λx . vector derivative
(g1 ◦ (∗)2 ) (at x ))
proof (rule continuous on eq [OF vector derivative at ])
show (g1 +++ g2 has vector derivative vector derivative (g1 ◦ (∗) 2 ) (at x ))

(at x )
if x ∈ {0 ..1/2} − insert (1/2 ) S for x

proof (rule has vector derivative transform within)
show (g1 ◦ (∗) 2 has vector derivative vector derivative (g1 ◦ (∗) 2 ) (at x ))

(at x )
using that
by (force intro: g1D differentiable chain at simp: vector derivative works

[symmetric])
show

∧
x ′. [[dist x ′ x < dist x (1/2 )]] =⇒ (g1 ◦ (∗) 2 ) x ′ = (g1 +++ g2 ) x ′

using that by (auto simp: dist norm joinpaths def )
qed (use that in 〈auto simp: dist norm〉)

qed
have continuous on ({0 ..1} − insert 1 ((∗) 2 ‘ S ))

((λx . 1/2 ∗ vector derivative (g1 ◦ (∗)2 ) (at x )) ◦ (∗)(1/2 ))
apply (rule continuous intros)+
using coDhalf
apply (simp add : scaleR conv of real image set diff image image)
done
then have con g1 : continuous on ({0 ..1} − insert 1 ((∗) 2 ‘ S )) (λx . vec-

tor derivative g1 (at x ))
by (rule continuous on eq) (simp add : scaleR conv of real)

have continuous on {0 ..1} g1
using continuous on joinpaths D1 assms piecewise C1 differentiable on def by

blast
with 〈finite S 〉 show ?thesis
apply (clarsimp simp add : piecewise C1 differentiable on def C1 differentiable on eq)
apply (rule tac x=insert 1 (((∗)2 )‘S ) in exI )
apply (simp add : g1D con g1 )

done
qed

lemma piecewise C1 differentiable D2 :
fixes g2 :: real ⇒ ′a::real normed field
assumes (g1 +++ g2 ) piecewise C1 differentiable on {0 ..1} pathfinish g1 =

pathstart g2
shows g2 piecewise C1 differentiable on {0 ..1}

proof −
obtain S where finite S

and co12 : continuous on ({0 ..1} − S ) (λx . vector derivative (g1 +++
g2 ) (at x ))

and g12D : ∀ x∈{0 ..1} − S . g1 +++ g2 differentiable at x
using assms by (auto simp: piecewise C1 differentiable on def C1 differentiable on eq)
have g2D : g2 differentiable at x if x ∈ {0 ..1} − insert 0 ((λx . 2∗x−1 ) ‘ S ) for
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x
proof (rule differentiable transform within)
show g1 +++ g2 ◦ (λx . (x + 1 ) / 2 ) differentiable at x
using g12D that
apply (simp only : joinpaths def )
apply (drule tac x= (x+1 ) / 2 in bspec, force simp: field split simps)
apply (rule differentiable chain at derivative intros | force)+
done

show
∧
x ′. dist x ′ x < dist ((x + 1 ) / 2 ) (1/2 ) =⇒ (g1 +++ g2 ◦ (λx . (x +

1 ) / 2 )) x ′ = g2 x ′

using that by (auto simp: dist real def joinpaths def field simps)
qed (use that in 〈auto simp: dist norm〉)

have [simp]: vector derivative (g2 ◦ (λx . 2∗x−1 )) (at ((x+1 )/2 )) = 2 ∗R vec-
tor derivative g2 (at x )

if x ∈ {0 ..1} − insert 0 ((λx . 2∗x−1 ) ‘ S ) for x
using that by (auto simp: vector derivative chain at field split simps g2D)

have continuous on ({1/2 ..1} − insert (1/2 ) S ) (λx . vector derivative (g1 +++
g2 ) (at x ))

using co12 by (rule continuous on subset) force
then have coDhalf : continuous on ({1/2 ..1} − insert (1/2 ) S ) (λx . vector derivative

(g2 ◦ (λx . 2∗x−1 )) (at x ))
proof (rule continuous on eq [OF vector derivative at ])
show (g1 +++ g2 has vector derivative vector derivative (g2 ◦ (λx . 2 ∗ x −

1 )) (at x ))
(at x )

if x ∈ {1 / 2 ..1} − insert (1 / 2 ) S for x
proof (rule tac f=g2 ◦ (λx . 2∗x−1 ) and d=dist (3/4 ) ((x+1 )/2 ) in has vector derivative transform within)
show (g2 ◦ (λx . 2 ∗ x − 1 ) has vector derivative vector derivative (g2 ◦ (λx .

2 ∗ x − 1 )) (at x ))
(at x )

using that by (force intro: g2D differentiable chain at simp: vector derivative works
[symmetric])

show
∧
x ′. [[dist x ′ x < dist (3 / 4 ) ((x + 1 ) / 2 )]] =⇒ (g2 ◦ (λx . 2 ∗ x −

1 )) x ′ = (g1 +++ g2 ) x ′

using that by (auto simp: dist norm joinpaths def add divide distrib)
qed (use that in 〈auto simp: dist norm〉)

qed
have [simp]: ((λx . (x+1 ) / 2 ) ‘ ({0 ..1} − insert 0 ((λx . 2 ∗ x − 1 ) ‘ S ))) =

({1/2 ..1} − insert (1/2 ) S )
apply (simp add : image set diff inj on def image image)
apply (auto simp: image affinity atLeastAtMost div add divide distrib)
done

have continuous on ({0 ..1} − insert 0 ((λx . 2∗x−1 ) ‘ S ))
((λx . 1/2 ∗ vector derivative (g2 ◦ (λx . 2∗x−1 )) (at x )) ◦ (λx .

(x+1 )/2 ))
by (rule continuous intros | simp add : coDhalf )+

then have con g2 : continuous on ({0 ..1} − insert 0 ((λx . 2∗x−1 ) ‘ S )) (λx .
vector derivative g2 (at x ))

by (rule continuous on eq) (simp add : scaleR conv of real)
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have continuous on {0 ..1} g2
using continuous on joinpaths D2 assms piecewise C1 differentiable on def by

blast
with 〈finite S 〉 show ?thesis
apply (clarsimp simp add : piecewise C1 differentiable on def C1 differentiable on eq)
apply (rule tac x=insert 0 ((λx . 2 ∗ x − 1 ) ‘ S ) in exI )
apply (simp add : g2D con g2 )

done
qed

6.50.3 Valid paths, and their start and finish

definition valid path :: (real ⇒ ′a :: real normed vector) ⇒ bool
where valid path f ≡ f piecewise C1 differentiable on {0 ..1 ::real}

definition closed path :: (real ⇒ ′a :: real normed vector) ⇒ bool
where closed path g ≡ g 0 = g 1

In particular, all results for paths apply

lemma valid path imp path: valid path g =⇒ path g
by (simp add : path def piecewise C1 differentiable on def valid path def )

lemma connected valid path image: valid path g =⇒ connected(path image g)
by (metis connected path image valid path imp path)

lemma compact valid path image: valid path g =⇒ compact(path image g)
by (metis compact path image valid path imp path)

lemma bounded valid path image: valid path g =⇒ bounded(path image g)
by (metis bounded path image valid path imp path)

lemma closed valid path image: valid path g =⇒ closed(path image g)
by (metis closed path image valid path imp path)

lemma valid path compose:
assumes valid path g

and der :
∧
x . x ∈ path image g =⇒ f field differentiable (at x )

and con: continuous on (path image g) (deriv f )
shows valid path (f ◦ g)

proof −
obtain S where finite S and g diff : g C1 differentiable on {0 ..1} − S
using 〈valid path g〉 unfolding valid path def piecewise C1 differentiable on def

by auto
have f ◦ g differentiable at t when t∈{0 ..1} − S for t
proof (rule differentiable chain at)
show g differentiable at t using 〈valid path g〉

by (meson C1 differentiable on eq 〈g C1 differentiable on {0 ..1} − S 〉 that)
next
have g t∈path image g using that DiffD1 image eqI path image def by metis
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then show f differentiable at (g t)
using der [THEN field differentiable imp differentiable] by auto

qed
moreover have continuous on ({0 ..1} − S ) (λx . vector derivative (f ◦ g) (at

x ))
proof (rule continuous on eq [where f = λx . vector derivative g (at x ) ∗ deriv

f (g x )],
rule continuous intros)

show continuous on ({0 ..1} − S ) (λx . vector derivative g (at x ))
using g diff C1 differentiable on eq by auto

next
have continuous on {0 ..1} (λx . deriv f (g x ))

using continuous on compose[OF con[unfolded path image def ],unfolded
comp def ]

〈valid path g〉 piecewise C1 differentiable on def valid path def
by blast

then show continuous on ({0 ..1} − S ) (λx . deriv f (g x ))
using continuous on subset by blast

next
show vector derivative g (at t) ∗ deriv f (g t) = vector derivative (f ◦ g) (at

t)
when t ∈ {0 ..1} − S for t

proof (rule vector derivative chain at general [symmetric])
show g differentiable at t by (meson C1 differentiable on eq g diff that)

next
have g t∈path image g using that DiffD1 image eqI path image def by

metis
then show f field differentiable at (g t) using der by auto

qed
qed

ultimately have f ◦ g C1 differentiable on {0 ..1} − S
using C1 differentiable on eq by blast

moreover have path (f ◦ g)
apply (rule path continuous image[OF valid path imp path[OF 〈valid path g〉]])
using der
by (simp add : continuous at imp continuous on field differentiable imp continuous at)

ultimately show ?thesis unfolding valid path def piecewise C1 differentiable on def
path def

using 〈finite S 〉 by auto
qed

lemma valid path uminus comp[simp]:
fixes g ::real ⇒ ′a ::real normed field
shows valid path (uminus ◦ g) ←→ valid path g

proof
show valid path g =⇒ valid path (uminus ◦ g) for g ::real ⇒ ′a
by (auto intro!: valid path compose derivative intros)

then show valid path g when valid path (uminus ◦ g)
by (metis fun.map comp group add class.minus comp minus id comp that)
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qed

lemma valid path offset [simp]:
shows valid path (λt . g t − z ) ←→ valid path g

proof
show ∗: valid path (g ::real⇒ ′a) =⇒ valid path (λt . g t − z ) for g z
unfolding valid path def
by (fastforce intro:derivative intros C1 differentiable imp piecewise piecewise C1 differentiable diff )
show valid path (λt . g t − z ) =⇒ valid path g
using ∗[of λt . g t − z −z ,simplified ] .

qed

lemma valid path imp reverse:
assumes valid path g
shows valid path(reversepath g)

proof −
obtain S where finite S and S : g C1 differentiable on ({0 ..1} − S )
using assms by (auto simp: valid path def piecewise C1 differentiable on def )

then have finite ((−) 1 ‘ S )
by auto

moreover have (reversepath g C1 differentiable on ({0 ..1} − (−) 1 ‘ S ))
unfolding reversepath def
apply (rule C1 differentiable compose [of λx ::real . 1−x g , unfolded o def ])
using S
by (force simp: finite vimageI inj on def C1 differentiable on eq elim!: continu-

ous on subset)+
ultimately show ?thesis using assms
by (auto simp: valid path def piecewise C1 differentiable on def path def [symmetric])

qed

lemma valid path reversepath [simp]: valid path(reversepath g) ←→ valid path g
using valid path imp reverse by force

lemma valid path join:
assumes valid path g1 valid path g2 pathfinish g1 = pathstart g2
shows valid path(g1 +++ g2 )

proof −
have g1 1 = g2 0
using assms by (auto simp: pathfinish def pathstart def )

moreover have (g1 ◦ (λx . 2∗x )) piecewise C1 differentiable on {0 ..1/2}
apply (rule piecewise C1 differentiable compose)
using assms
apply (auto simp: valid path def piecewise C1 differentiable on def continu-

ous on joinpaths)
apply (force intro: finite vimageI [where h = (∗)2 ] inj onI )
done

moreover have (g2 ◦ (λx . 2∗x−1 )) piecewise C1 differentiable on {1/2 ..1}
apply (rule piecewise C1 differentiable compose)
using assms unfolding valid path def piecewise C1 differentiable on def
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by (auto intro!: continuous intros finite vimageI [where h = (λx . 2∗x − 1 )]
inj onI

simp: image affinity atLeastAtMost diff continuous on joinpaths)
ultimately show ?thesis
apply (simp only : valid path def continuous on joinpaths joinpaths def )
apply (rule piecewise C1 differentiable cases)
apply (auto simp: o def )
done

qed

lemma valid path join D1 :
fixes g1 :: real ⇒ ′a::real normed field
shows valid path (g1 +++ g2 ) =⇒ valid path g1
unfolding valid path def
by (rule piecewise C1 differentiable D1 )

lemma valid path join D2 :
fixes g2 :: real ⇒ ′a::real normed field
shows [[valid path (g1 +++ g2 ); pathfinish g1 = pathstart g2 ]] =⇒ valid path g2
unfolding valid path def
by (rule piecewise C1 differentiable D2 )

lemma valid path join eq [simp]:
fixes g2 :: real ⇒ ′a::real normed field
shows pathfinish g1 = pathstart g2 =⇒ (valid path(g1 +++ g2 ) ←→ valid path

g1 ∧ valid path g2 )
using valid path join D1 valid path join D2 valid path join by blast

lemma valid path shiftpath [intro]:
assumes valid path g pathfinish g = pathstart g a ∈ {0 ..1}
shows valid path(shiftpath a g)

using assms
apply (auto simp: valid path def shiftpath alt def )
apply (rule piecewise C1 differentiable cases)
apply (auto simp: algebra simps)
apply (rule piecewise C1 differentiable affine [of g 1 a, simplified o def scaleR one])
apply (auto simp: pathfinish def pathstart def elim: piecewise C1 differentiable on subset)
apply (rule piecewise C1 differentiable affine [of g 1 a−1 , simplified o def scaleR one

algebra simps])
apply (auto simp: pathfinish def pathstart def elim: piecewise C1 differentiable on subset)
done

lemma vector derivative linepath within:
x ∈ {0 ..1} =⇒ vector derivative (linepath a b) (at x within {0 ..1}) = b − a

apply (rule vector derivative within cbox [of 0 1 ::real , simplified ])
apply (auto simp: has vector derivative linepath within)
done

lemma vector derivative linepath at [simp]: vector derivative (linepath a b) (at x )
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= b − a
by (simp add : has vector derivative linepath within vector derivative at)

lemma valid path linepath [iff ]: valid path (linepath a b)
apply (simp add : valid path def piecewise C1 differentiable on def C1 differentiable on eq

continuous on linepath)
apply (rule tac x={} in exI )
apply (simp add : differentiable on def differentiable def )
using has vector derivative def has vector derivative linepath within
apply (fastforce simp add : continuous on eq continuous within)
done

lemma valid path subpath:
fixes g :: real ⇒ ′a :: real normed vector
assumes valid path g u ∈ {0 ..1} v ∈ {0 ..1}
shows valid path(subpath u v g)

proof (cases v=u)
case True
then show ?thesis
unfolding valid path def subpath def
by (force intro: C1 differentiable on const C1 differentiable imp piecewise)

next
case False
have (g ◦ (λx . ((v−u) ∗ x + u))) piecewise C1 differentiable on {0 ..1}
apply (rule piecewise C1 differentiable compose)
apply (simp add : C1 differentiable imp piecewise)
apply (simp add : image affinity atLeastAtMost)
using assms False
apply (auto simp: algebra simps valid path def piecewise C1 differentiable on subset)
apply (subst Int commute)
apply (auto simp: inj on def algebra simps crossproduct eq finite vimage IntI )
done

then show ?thesis
by (auto simp: o def valid path def subpath def )

qed

lemma valid path rectpath [simp, intro]: valid path (rectpath a b)
by (simp add : Let def rectpath def )

end

6.51 Neighbourhood bases and Locally path-connected
spaces

theory Locally
imports
Path Connected Function Topology

begin
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6.51.1 Neighbourhood Bases

Useful for ”local” properties of various kinds

definition neighbourhood base at where
neighbourhood base at x P X ≡

∀W . openin X W ∧ x ∈ W
−→ (∃U V . openin X U ∧ P V ∧ x ∈ U ∧ U ⊆ V ∧ V ⊆ W )

definition neighbourhood base of where
neighbourhood base of P X ≡

∀ x ∈ topspace X . neighbourhood base at x P X

lemma neighbourhood base of :
neighbourhood base of P X ←→

(∀W x . openin X W ∧ x ∈ W
−→ (∃U V . openin X U ∧ P V ∧ x ∈ U ∧ U ⊆ V ∧ V ⊆ W ))

unfolding neighbourhood base at def neighbourhood base of def
using openin subset by blast

lemma neighbourhood base at mono:
[[neighbourhood base at x P X ;

∧
S . [[P S ; x ∈ S ]] =⇒ Q S ]] =⇒ neighbour-

hood base at x Q X
unfolding neighbourhood base at def
by (meson subset eq)

lemma neighbourhood base of mono:
[[neighbourhood base of P X ;

∧
S . P S =⇒ Q S ]] =⇒ neighbourhood base of Q X

unfolding neighbourhood base of def
using neighbourhood base at mono by force

lemma open neighbourhood base at :
(
∧
S . [[P S ; x ∈ S ]] =⇒ openin X S )
=⇒ neighbourhood base at x P X ←→ (∀W . openin X W ∧ x ∈ W −→

(∃U . P U ∧ x ∈ U ∧ U ⊆ W ))
unfolding neighbourhood base at def
by (meson subsetD)

lemma open neighbourhood base of :
(∀S . P S −→ openin X S )

=⇒ neighbourhood base of P X ←→ (∀W x . openin X W ∧ x ∈ W −→
(∃U . P U ∧ x ∈ U ∧ U ⊆ W ))
apply (simp add : neighbourhood base of , safe, blast)
by meson

lemma neighbourhood base of open subset :
[[neighbourhood base of P X ; openin X S ]]

=⇒ neighbourhood base of P (subtopology X S )
apply (clarsimp simp add : neighbourhood base of openin subtopology alt image def )
apply (rename tac x V )
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apply (drule tac x=S ∩ V in spec)
apply (simp add : Int ac)
by (metis IntI le infI1 openin Int)

lemma neighbourhood base of topology base:
openin X = arbitrary union of (λW . W ∈ B)

=⇒ neighbourhood base of P X ←→
(∀W x . W ∈ B ∧ x ∈ W −→ (∃U V . openin X U ∧ P V ∧ x ∈ U ∧

U ⊆ V ∧ V ⊆ W ))
apply (auto simp: openin topology base unique neighbourhood base of )
by (meson subset trans)

lemma neighbourhood base at unlocalized :
assumes

∧
S T . [[P S ; openin X T ; x ∈ T ; T ⊆ S ]] =⇒ P T

shows neighbourhood base at x P X
←→ (x ∈ topspace X −→ (∃U V . openin X U ∧ P V ∧ x ∈ U ∧ U ⊆ V ∧

V ⊆ topspace X ))
(is ?lhs = ?rhs)

proof
assume R: ?rhs show ?lhs
unfolding neighbourhood base at def

proof clarify
fix W
assume openin X W x ∈ W
then have x ∈ topspace X
using openin subset by blast

with R obtain U V where openin X U P V x ∈ U U ⊆ V V ⊆ topspace X
by blast

then show ∃U V . openin X U ∧ P V ∧ x ∈ U ∧ U ⊆ V ∧ V ⊆ W
by (metis IntI 〈openin X W 〉 〈x ∈ W 〉 assms inf le1 inf le2 openin Int)

qed
qed (simp add : neighbourhood base at def )

lemma neighbourhood base at with subset :
[[openin X U ; x ∈ U ]]

=⇒ (neighbourhood base at x P X ←→ neighbourhood base at x (λT . T ⊆
U ∧ P T ) X )
apply (simp add : neighbourhood base at def )
apply (metis IntI Int subset iff openin Int)
done

lemma neighbourhood base of with subset :
neighbourhood base of P X ←→ neighbourhood base of (λt . t ⊆ topspace X ∧ P

t) X
using neighbourhood base at with subset
by (fastforce simp add : neighbourhood base of def )
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6.51.2 Locally path-connected spaces

definition weakly locally path connected at
where weakly locally path connected at x X ≡ neighbourhood base at x (path connectedin

X ) X

definition locally path connected at
where locally path connected at x X ≡
neighbourhood base at x (λU . openin X U ∧ path connectedin X U ) X

definition locally path connected space
where locally path connected space X ≡ neighbourhood base of (path connectedin

X ) X

lemma locally path connected space alt :
locally path connected space X ←→ neighbourhood base of (λU . openin X U ∧

path connectedin X U ) X
(is ?P = ?Q)
and locally path connected space eq open path component of :
locally path connected space X ←→

(∀U x . openin X U ∧ x ∈ U −→ openin X (Collect (path component of
(subtopology X U ) x )))
(is ?P = ?R)

proof −
have ?P if ?Q
using locally path connected space def neighbourhood base of mono that by auto
moreover have ?R if P : ?P
proof −
show ?thesis
proof clarify
fix U y
assume openin X U y ∈ U

have ∃T . openin X T ∧ x ∈ T ∧ T ⊆ Collect (path component of (subtopology
X U ) y)

if path component of (subtopology X U ) y x for x

proof −
have x ∈ U
using path component of equiv that topspace subtopology by fastforce

then have ∃Ua. openin X Ua ∧ (∃V . path connectedin X V ∧ x ∈ Ua ∧
Ua ⊆ V ∧ V ⊆ U )

using P
by (simp add : 〈openin X U 〉 locally path connected space def neighbour-

hood base of )
then show ?thesis
by (metis dual order .trans path component of equiv path component of maximal

path connectedin subtopology subset iff that)
qed
then show openin X (Collect (path component of (subtopology X U ) y))
using openin subopen by force
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qed
qed
moreover have ?Q if ?R
using that
apply (simp add : open neighbourhood base of )
by (metis mem Collect eq openin subset path component of refl path connectedin path component of

path connectedin subtopology that topspace subtopology subset)
ultimately show ?P = ?Q ?P = ?R
by blast+

qed

lemma locally path connected space:
locally path connected space X
←→ (∀V x . openin X V ∧ x ∈ V −→ (∃U . openin X U ∧ path connectedin X

U ∧ x ∈ U ∧ U ⊆ V ))
by (simp add : locally path connected space alt open neighbourhood base of )

lemma locally path connected space open path components:
locally path connected space X ←→

(∀U c. openin X U ∧ c ∈ path components of (subtopology X U ) −→ openin
X c)
apply (auto simp: locally path connected space eq open path component of path components of def )
by (metis imageI inf .absorb iff2 openin closedin eq)

lemma openin path component of locally path connected space:
locally path connected space X =⇒ openin X (Collect (path component of X x ))
apply (auto simp: locally path connected space eq open path component of )
by (metis openin empty openin topspace path component of eq empty subtopol-

ogy topspace)

lemma openin path components of locally path connected space:
[[locally path connected space X ; c ∈ path components of X ]] =⇒ openin X c
apply (auto simp: locally path connected space eq open path component of )
by (metis (no types, lifting) imageE openin topspace path components of def subtopol-

ogy topspace)

lemma closedin path components of locally path connected space:
[[locally path connected space X ; c ∈ path components of X ]] =⇒ closedin X c

by (simp add : closedin def complement path components of Union openin path components of locally path connected space
openin clauses(3 ) path components of subset)

lemma closedin path component of locally path connected space:
assumes locally path connected space X
shows closedin X (Collect (path component of X x ))

proof (cases x ∈ topspace X )
case True
then show ?thesis
by (simp add : assms closedin path components of locally path connected space

path component in path components of )
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next
case False
then show ?thesis
by (metis closedin empty path component of eq empty)

qed

lemma weakly locally path connected at :
weakly locally path connected at x X ←→
(∀V . openin X V ∧ x ∈ V

−→ (∃U . openin X U ∧ x ∈ U ∧ U ⊆ V ∧
(∀ y ∈ U . ∃C . path connectedin X C ∧ C ⊆ V ∧ x ∈ C ∧ y ∈ C )))

(is ?lhs = ?rhs)
proof
assume ?lhs then show ?rhs
apply (simp add : weakly locally path connected at def neighbourhood base at def )
by (meson order trans subsetD)

next
have ∗: ∃V . path connectedin X V ∧ U ⊆ V ∧ V ⊆ W
if (∀ y∈U . ∃C . path connectedin X C ∧ C ⊆ W ∧ x ∈ C ∧ y ∈ C )
for W U

proof (intro exI conjI )
let ?V = (Collect (path component of (subtopology X W ) x ))
show path connectedin X (Collect (path component of (subtopology X W ) x ))
by (meson path connectedin path component of path connectedin subtopology)
show U ⊆ ?V
by (auto simp: path component of path connectedin subtopology that)

show ?V ⊆ W
by (meson path connectedin path component of path connectedin subtopology)

qed
assume ?rhs
then show ?lhs

unfolding weakly locally path connected at def neighbourhood base at def by
(metis ∗)
qed

lemma locally path connected space im kleinen:
locally path connected space X ←→

(∀V x . openin X V ∧ x ∈ V
−→ (∃U . openin X U ∧

x ∈ U ∧ U ⊆ V ∧
(∀ y ∈ U . ∃ c. path connectedin X c ∧

c ⊆ V ∧ x ∈ c ∧ y ∈ c)))
apply (simp add : locally path connected space def neighbourhood base of def )
apply (simp add : weakly locally path connected at flip: weakly locally path connected at def )
using openin subset apply force
done

lemma locally path connected space open subset :
[[locally path connected space X ; openin X s]]
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=⇒ locally path connected space (subtopology X s)
apply (simp add : locally path connected space def neighbourhood base of openin open subtopology

path connectedin subtopology)
by (meson order trans)

lemma locally path connected space quotient map image:
assumes f : quotient map X Y f and X : locally path connected space X
shows locally path connected space Y
unfolding locally path connected space open path components

proof clarify
fix V C
assume V : openin Y V and c: C ∈ path components of (subtopology Y V )
then have sub: C ⊆ topspace Y

using path connectedin path components of path connectedin subset topspace
path connectedin subtopology by blast
have openin X {x ∈ topspace X . f x ∈ C}
proof (subst openin subopen, clarify)
fix x
assume x : x ∈ topspace X and f x ∈ C
let ?T = Collect (path component of (subtopology X {z ∈ topspace X . f z ∈

V }) x )
show ∃T . openin X T ∧ x ∈ T ∧ T ⊆ {x ∈ topspace X . f x ∈ C}
proof (intro exI conjI )
have ∃U . openin X U ∧ ?T ∈ path components of (subtopology X U )
proof (intro exI conjI )
show openin X ({z ∈ topspace X . f z ∈ V })
using V f openin subset quotient map def by fastforce
show Collect (path component of (subtopology X {z ∈ topspace X . f z ∈

V }) x )
∈ path components of (subtopology X {z ∈ topspace X . f z ∈ V })
by (metis (no types, lifting) Int iff 〈f x ∈ C 〉 c mem Collect eq path component in path components of

path components of subset topspace subtopology topspace subtopology subset x )
qed
with X show openin X ?T
using locally path connected space open path components by blast

show x : x ∈ ?T
using V 〈f x ∈ C 〉 c openin subset path component of equiv path components of subset

topspace subtopology topspace subtopology subset x
by fastforce

have f ‘ ?T ⊆ C
proof (rule path components of maximal)
show C ∈ path components of (subtopology Y V )
by (simp add : c)

show path connectedin (subtopology Y V ) (f ‘ ?T )
proof −
have quotient map (subtopology X {a ∈ topspace X . f a ∈ V }) (subtopology

Y V ) f
by (simp add : V f quotient map restriction)

then show ?thesis
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by (meson path connectedin continuous map image path connectedin path component of
quotient imp continuous map)

qed
show ¬ disjnt C (f ‘ ?T )
by (metis (no types, lifting) 〈f x ∈ C 〉 x disjnt iff image eqI )

qed
then show ?T ⊆ {x ∈ topspace X . f x ∈ C}
by (force simp: path component of equiv)

qed
qed
then show openin Y C
using f sub by (simp add : quotient map def )

qed

lemma homeomorphic locally path connected space:
assumes X homeomorphic space Y
shows locally path connected space X ←→ locally path connected space Y

proof −
obtain f g where homeomorphic maps X Y f g
using assms homeomorphic space def by fastforce

then show ?thesis
by (metis (no types) homeomorphic map def homeomorphic maps map locally path connected space quotient map image)

qed

lemma locally path connected space retraction map image:
[[retraction map X Y r ; locally path connected space X ]]

=⇒ locally path connected space Y
using Abstract Topology .retraction imp quotient map locally path connected space quotient map image

by blast

lemma locally path connected space euclideanreal : locally path connected space euclideanreal
unfolding locally path connected space def neighbourhood base of
proof clarsimp
fix W and x :: real
assume open W x ∈ W
then obtain e where e > 0 and e:

∧
x ′. |x ′ − x | < e −→ x ′ ∈ W

by (auto simp: open real)
then show ∃U . open U ∧ (∃V . path connected V ∧ x ∈ U ∧ U ⊆ V ∧ V ⊆

W )
by (force intro!: convex imp path connected exI [where x = {x−e<..<x+e}])

qed

lemma locally path connected space discrete topology :
locally path connected space (discrete topology U )
using locally path connected space open path components by fastforce

lemma path component eq connected component of :
assumes locally path connected space X
shows (path component of set X x = connected component of set X x )
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proof (cases x ∈ topspace X )
case True
then show ?thesis
using connectedin connected component of [of X x ]
apply (clarsimp simp add : connectedin def connected space clopen in topspace subtopology subset

cong : conj cong)
apply (drule tac x=path component of set X x in spec)
by (metis assms closedin closed subtopology closedin connected component of

closedin path component of locally path connected space inf .absorb iff2 inf .orderE
openin path component of locally path connected space openin subtopology path component of eq empty
path component subset connected component of )
next
case False
then show ?thesis
using connected component of eq empty path component of eq empty by fastforce

qed

lemma path components eq connected components of :
locally path connected space X =⇒ (path components of X = connected components of

X )
by (simp add : path components of def connected components of def image def

path component eq connected component of )

lemma path connected eq connected space:
locally path connected space X

=⇒ path connected space X ←→ connected space X
by (metis connected components of subset sing path components eq connected components of

path components of subset singleton)

lemma locally path connected space product topology :
locally path connected space(product topology X I ) ←→

topspace(product topology X I ) = {} ∨
finite {i . i ∈ I ∧ ∼path connected space(X i)} ∧
(∀ i ∈ I . locally path connected space(X i))

(is ?lhs ←→ ?empty ∨ ?rhs)
proof (cases ?empty)
case True
then show ?thesis
by (simp add : locally path connected space def neighbourhood base of openin closedin eq)

next
case False
then obtain z where z : z ∈ (ΠE i∈I . topspace (X i))
by auto

have ?rhs if L: ?lhs
proof −
obtain U C where U : openin (product topology X I ) U
and V : path connectedin (product topology X I ) C
and z ∈ U U ⊆ C and Csub: C ⊆ (ΠE i∈I . topspace (X i))
using L apply (clarsimp simp add : locally path connected space def neigh-
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bourhood base of )
by (metis openin topspace topspace product topology z )

then obtain V where finV : finite {i ∈ I . V i 6= topspace (X i)}
and XV :

∧
i . i∈I =⇒ openin (X i) (V i) and z ∈ PiE I V and subU : PiE

I V ⊆ U
by (force simp: openin product topology alt)

show ?thesis
proof (intro conjI ballI )
have path connected space (X i) if i ∈ I V i = topspace (X i) for i
proof −
have pc: path connectedin (X i) ((λx . x i) ‘ C )
apply (rule path connectedin continuous map image [OF V ])
by (simp add : continuous map product projection 〈i ∈ I 〉)

moreover have ((λx . x i) ‘ C ) = topspace (X i)
proof
show (λx . x i) ‘ C ⊆ topspace (X i)
by (simp add : pc path connectedin subset topspace)

have V i ⊆ (λx . x i) ‘ (ΠE i∈I . V i)
by (metis 〈z ∈ PiE I V 〉 empty iff image projection PiE order refl that(1 ))
also have . . . ⊆ (λx . x i) ‘ U
using subU by blast

finally show topspace (X i) ⊆ (λx . x i) ‘ C
using 〈U ⊆ C 〉 that by blast

qed
ultimately show ?thesis
by (simp add : path connectedin topspace)

qed
then have {i ∈ I . ¬ path connected space (X i)} ⊆ {i ∈ I . V i 6= topspace

(X i)}
by blast

with finV show finite {i ∈ I . ¬ path connected space (X i)}
using finite subset by blast

next
show locally path connected space (X i) if i ∈ I for i
apply (rule locally path connected space quotient map image [OF L, where

f = λx . x i ])
by (metis False Abstract Topology .retraction imp quotient map retrac-

tion map product projection that)
qed

qed
moreover have ?lhs if R: ?rhs
proof (clarsimp simp add : locally path connected space def neighbourhood base of )
fix F z
assume openin (product topology X I ) F and z ∈ F
then obtain W where finW : finite {i ∈ I . W i 6= topspace (X i)}

and opeW :
∧
i . i ∈ I =⇒ openin (X i) (W i) and z ∈ PiE I W PiE I

W ⊆ F
by (auto simp: openin product topology alt)

have ∀ i ∈ I . ∃U C . openin (X i) U ∧ path connectedin (X i) C ∧ z i ∈ U ∧
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U ⊆ C ∧ C ⊆ W i ∧
(W i = topspace (X i) ∧

path connected space (X i) −→ U = topspace (X i) ∧ C =
topspace (X i))

(is ∀ i ∈ I . ?Φ i)
proof
fix i assume i ∈ I
have locally path connected space (X i)
by (simp add : R 〈i ∈ I 〉)

moreover have openin (X i) (W i) z i ∈ W i
using 〈z ∈ PiE I W 〉 opeW 〈i ∈ I 〉 by auto

ultimately obtain U C where UC : openin (X i) U path connectedin (X i)
C z i ∈ U U ⊆ C C ⊆ W i

using 〈i ∈ I 〉 by (force simp: locally path connected space def neighbour-
hood base of )

show ?Φ i
proof (cases W i = topspace (X i) ∧ path connected space(X i))
case True
then show ?thesis
using 〈z i ∈ W i 〉 path connectedin topspace by blast

next
case False
then show ?thesis
by (meson UC )

qed
qed
then obtain U C where
∗:

∧
i . i ∈ I =⇒ openin (X i) (U i) ∧ path connectedin (X i) (C i) ∧ z i ∈

(U i) ∧ (U i) ⊆ (C i) ∧ (C i) ⊆ W i ∧
(W i = topspace (X i) ∧ path connected space (X i)
−→ (U i) = topspace (X i) ∧ (C i) = topspace (X i))

by metis
let ?A = {i ∈ I . ¬ path connected space (X i)} ∪ {i ∈ I . W i 6= topspace (X

i)}
have {i ∈ I . U i 6= topspace (X i)} ⊆ ?A
by (clarsimp simp add : ∗)

moreover have finite ?A
by (simp add : that finW )

ultimately have finite {i ∈ I . U i 6= topspace (X i)}
using finite subset by auto

then have openin (product topology X I ) (PiE I U )
using ∗ by (simp add : openin PiE gen)

then show ∃U . openin (product topology X I ) U ∧
(∃V . path connectedin (product topology X I ) V ∧ z ∈ U ∧ U ⊆ V ∧

V ⊆ F )
apply (rule tac x=PiE I U in exI , simp)
apply (rule tac x=PiE I C in exI )
using 〈z ∈ PiE I W 〉 〈PiE I W ⊆ F 〉 ∗

apply (simp add : path connectedin PiE subset PiE PiE iff PiE mono dual order .trans)
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done
qed
ultimately show ?thesis
using False by blast

qed

end

6.52 Euclidean space and n-spheres, as subtopolo-
gies of n-dimensional space

theory Abstract Euclidean Space
imports Homotopy Locally
begin

6.52.1 Euclidean spaces as abstract topologies

definition Euclidean space :: nat ⇒ (nat ⇒ real) topology
where Euclidean space n ≡ subtopology (powertop real UNIV ) {x . ∀ i≥n. x i =

0}

lemma topspace Euclidean space:
topspace(Euclidean space n) = {x . ∀ i≥n. x i = 0}
by (simp add : Euclidean space def )

lemma nonempty Euclidean space: topspace(Euclidean space n) 6= {}
by (force simp: topspace Euclidean space)

lemma subset Euclidean space [simp]:
topspace(Euclidean space m) ⊆ topspace(Euclidean space n) ←→ m ≤ n
apply (simp add : topspace Euclidean space subset iff , safe)
apply (drule tac x=(λi . if i < m then 1 else 0 ) in spec)
apply auto
using not less by fastforce

lemma topspace Euclidean space alt :
topspace(Euclidean space n) = (

⋂
i ∈ {n..}. {x . x ∈ topspace(powertop real

UNIV ) ∧ x i ∈ {0}})
by (auto simp: topspace Euclidean space)

lemma closedin Euclidean space:
closedin (powertop real UNIV ) (topspace(Euclidean space n))

proof −
have closedin (powertop real UNIV ) {x . x i = 0} if n ≤ i for i
proof −
have closedin (powertop real UNIV ) {x ∈ topspace (powertop real UNIV ). x i

∈ {0}}
proof (rule closedin continuous map preimage)
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show continuous map (powertop real UNIV ) euclideanreal (λx . x i)
by (metis UNIV I continuous map product coordinates)

show closedin euclideanreal {0}
by simp

qed
then show ?thesis
by auto

qed
then show ?thesis
unfolding topspace Euclidean space alt
by force

qed

lemma closedin Euclidean imp closed : closedin (Euclidean space m) S =⇒ closed
S
by (metis Euclidean space def closed closedin closedin Euclidean space closedin closed subtopology

euclidean product topology topspace Euclidean space)

lemma closedin Euclidean space iff :
closedin (Euclidean space m) S ←→ closed S ∧ S ⊆ topspace (Euclidean space

m)
(is ?lhs ←→ ?rhs)

proof
show ?lhs =⇒ ?rhs
using closedin closed subtopology topspace Euclidean space
by (fastforce simp: topspace Euclidean space alt closedin Euclidean imp closed)

show ?rhs =⇒ ?lhs
apply (simp add : closedin subtopology Euclidean space def )
by (metis (no types) closed closedin euclidean product topology inf .orderE )

qed

lemma continuous map componentwise Euclidean space:
continuous map X (Euclidean space n) (λx i . if i < n then f x i else 0 ) ←→
(∀ i < n. continuous map X euclideanreal (λx . f x i))

proof −
have ∗: continuous map X euclideanreal (λx . if k < n then f x k else 0 )
if

∧
i . i<n =⇒ continuous map X euclideanreal (λx . f x i) for k

by (intro continuous intros that)
show ?thesis
unfolding Euclidean space def continuous map in subtopology
by (fastforce simp: continuous map componentwise UNIV ∗ elim: continu-

ous map eq)
qed

lemma continuous map Euclidean space add [continuous intros]:
[[continuous map X (Euclidean space n) f ; continuous map X (Euclidean space

n) g ]]
=⇒ continuous map X (Euclidean space n) (λx i . f x i + g x i)

unfolding Euclidean space def continuous map in subtopology
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by (fastforce simp add : continuous map componentwise UNIV continuous map add)

lemma continuous map Euclidean space diff [continuous intros]:
[[continuous map X (Euclidean space n) f ; continuous map X (Euclidean space

n) g ]]
=⇒ continuous map X (Euclidean space n) (λx i . f x i − g x i)

unfolding Euclidean space def continuous map in subtopology
by (fastforce simp add : continuous map componentwise UNIV continuous map diff )

lemma continuous map Euclidean space iff :
continuous map (Euclidean space m) euclidean g
= continuous on (topspace (Euclidean space m)) g

proof
assume continuous map (Euclidean space m) euclidean g
then have continuous map (top of set {f . ∀n≥m. f n = 0}) euclidean g
by (simp add : Euclidean space def euclidean product topology)

then show continuous on (topspace (Euclidean space m)) g
by (metis continuous map subtopology eu subtopology topspace topspace Euclidean space)

next
assume continuous on (topspace (Euclidean space m)) g
then have continuous map (top of set {f . ∀n≥m. f n = 0}) euclidean g
by (metis (lifting) continuous map into fulltopology continuous map subtopology eu

order refl topspace Euclidean space)
then show continuous map (Euclidean space m) euclidean g
by (simp add : Euclidean space def euclidean product topology)

qed

lemma cm Euclidean space iff continuous on:
continuous map (subtopology (Euclidean space m) S ) (Euclidean space n) f
←→ continuous on (topspace (subtopology (Euclidean space m) S )) f ∧
f ‘ (topspace (subtopology (Euclidean space m) S )) ⊆ topspace (Euclidean space

n)
(is ?P ←→ ?Q ∧ ?R)

proof −
have ?Q if ?P
proof −
have

∧
n. Euclidean space n = top of set {f . ∀m≥n. f m = 0}

by (simp add : Euclidean space def euclidean product topology)
with that show ?thesis
by (simp add : subtopology subtopology)

qed
moreover
have ?R if ?P
using that by (simp add : image subset iff continuous map def )

moreover
have ?P if ?Q ?R
proof −
have continuous map (top of set (topspace (subtopology (subtopology (powertop real

UNIV ) {f . ∀n≥m. f n = 0}) S ))) (top of set (topspace (subtopology (powertop real
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UNIV ) {f . ∀na≥n. f na = 0}))) f
using Euclidean space def that by auto

then show ?thesis
by (simp add : Euclidean space def euclidean product topology subtopology subtopology)

qed
ultimately show ?thesis
by auto

qed

lemma homeomorphic Euclidean space product topology :
Euclidean space n homeomorphic space product topology (λi . euclideanreal) {..<n}

proof −
have cm: continuous map (product topology (λi . euclideanreal) {..<n})

euclideanreal (λx . if k < n then x k else 0 ) for k
by (auto intro: continuous map if continuous map product projection)

show ?thesis
unfolding homeomorphic space def homeomorphic maps def
apply (rule tac x=λf . restrict f {..<n} in exI )
apply (rule tac x=λf i . if i < n then f i else 0 in exI )
apply (simp add : Euclidean space def continuous map in subtopology)
apply (intro conjI continuous map from subtopology)
apply (force simp: continuous map componentwise cm intro: continuous map product projection)+
done

qed

lemma contractible Euclidean space [simp]: contractible space (Euclidean space n)
using homeomorphic Euclidean space product topology contractible space euclideanreal
contractible space product topology homeomorphic space contractibility by blast

lemma path connected Euclidean space: path connected space (Euclidean space n)
by (simp add : contractible imp path connected space)

lemma connected Euclidean space: connected space (Euclidean space n)
by (simp add : contractible imp connected space)

lemma locally path connected Euclidean space:
locally path connected space (Euclidean space n)
apply (simp add : homeomorphic locally path connected space [OF homeomor-

phic Euclidean space product topology [of n]]
locally path connected space product topology)

using locally path connected space euclideanreal by auto

lemma compact Euclidean space:
compact space (Euclidean space n) ←→ n = 0

by (auto simp: homeomorphic compact space [OF homeomorphic Euclidean space product topology ]
compact space product topology)

Abstract{_}{\kern 0pt}Euclidean{_}{\kern 0pt}Space.html


3254

6.52.2 n-dimensional spheres

definition nsphere where
nsphere n ≡ subtopology (Euclidean space (Suc n)) { x . (

∑
i≤n. x i ˆ 2 ) = 1 }

lemma nsphere:
nsphere n = subtopology (powertop real UNIV )

{x . (
∑

i≤n. x i ˆ 2 ) = 1 ∧ (∀ i>n. x i = 0 )}
by (simp add : nsphere def Euclidean space def subtopology subtopology Suc le eq

Collect conj eq Int commute)

lemma continuous map nsphere projection: continuous map (nsphere n) euclidean-
real (λx . x k)
unfolding nsphere
by (blast intro: continuous map from subtopology [OF continuous map product projection])

lemma in topspace nsphere: (λn. if n = 0 then 1 else 0 ) ∈ topspace (nsphere n)
by (simp add : nsphere def topspace Euclidean space power2 eq square if distrib

[where f = λx . x ∗ ] cong : if cong)

lemma nonempty nsphere [simp]: ∼ (topspace(nsphere n) = {})
using in topspace nsphere by auto

lemma subtopology nsphere equator :
subtopology (nsphere (Suc n)) {x . x (Suc n) = 0} = nsphere n

proof −
have ({x . (

∑
i≤n. (x i)2) + (x (Suc n))2 = 1 ∧ (∀ i>Suc n. x i = 0 )} ∩ {x . x

(Suc n) = 0})
= {x . (

∑
i≤n. (x i)2) = 1 ∧ (∀ i>n. x i = (0 ::real))}

using Suc lessI [of n] by (fastforce simp: set eq iff )
then show ?thesis
by (simp add : nsphere subtopology subtopology)

qed

lemma topspace nsphere minus1 :
assumes x : x ∈ topspace (nsphere n) and x n = 0
shows x ∈ topspace (nsphere (n − Suc 0 ))

proof (cases n = 0 )
case True
then show ?thesis
using x by auto

next
case False
have subt eq : nsphere (n − Suc 0 ) = subtopology (nsphere n) {x . x n = 0}
by (metis False Suc pred le zero eq not le subtopology nsphere equator)

with x show ?thesis
by (simp add : assms)

qed

lemma continuous map nsphere reflection:
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continuous map (nsphere n) (nsphere n) (λx i . if i = k then −x i else x i)
proof −
have cm: continuous map (powertop real UNIV ) euclideanreal (λx . if j = k then
− x j else x j ) for j
proof (cases j=k)
case True
then show ?thesis
by simp (metis UNIV I continuous map product projection)

next
case False
then show ?thesis
by (auto intro: continuous map product projection)

qed
have eq : (if i = k then x k ∗ x k else x i ∗ x i) = x i ∗ x i for i and x :: nat ⇒

real
by simp

show ?thesis
apply (simp add : nsphere continuous map in subtopology continuous map componentwise UNIV

continuous map from subtopology cm)
apply (intro conjI allI impI continuous intros continuous map from subtopology

continuous map product projection)
apply (auto simp: power2 eq square if distrib [where f = λx . x ∗ ] eq cong :

if cong)
done

qed

proposition contractible space upper hemisphere:
assumes k ≤ n
shows contractible space(subtopology (nsphere n) {x . x k ≥ 0})

proof −
define p:: nat ⇒ real where p ≡ λi . if i = k then 1 else 0
have p ∈ topspace(nsphere n)
using assms
by (simp add : nsphere p def power2 eq square if distrib [where f = λx . x ∗ ]

cong : if cong)
let ?g = λx i . x i / sqrt(

∑
j≤n. x j ˆ 2 )

let ?h = λ(t ,q) i . (1 − t) ∗ q i + t ∗ p i
let ?Y = subtopology (Euclidean space (Suc n)) {x . 0 ≤ x k ∧ (∃ i≤n. x i 6= 0 )}
have continuous map (prod topology (top of set {0 ..1}) (subtopology (nsphere n)
{x . 0 ≤ x k}))

(subtopology (nsphere n) {x . 0 ≤ x k}) (?g ◦ ?h)
proof (rule continuous map compose)
have ∗: [[0 ≤ b k ; (

∑
i≤n. (b i)2) = 1 ; ∀ i>n. b i = 0 ; 0 ≤ a; a ≤ 1 ]]

=⇒ ∃ i . (i = k −→ (1 − a) ∗ b k + a 6= 0 ) ∧
(i 6= k −→ i ≤ n ∧ a 6= 1 ∧ b i 6= 0 ) for a::real and b

apply (cases a 6= 1 ∧ b k = 0 ; simp)
apply (metis (no types, lifting) atMost iff sum.neutral zero power2 )

by (metis add .commute add le same cancel2 diff ge 0 iff ge diff zero less eq real def
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mult eq 0 iff mult nonneg nonneg not le numeral One zero neq numeral)
show continuous map (prod topology (top of set {0 ..1}) (subtopology (nsphere

n) {x . 0 ≤ x k})) ?Y ?h
using assms
apply (auto simp: ∗ nsphere continuous map componentwise UNIV

prod topology subtopology subtopology subtopology case prod unfold
continuous map in subtopology Euclidean space def p def if distrib

[where f = λx . ∗ x ] cong : if cong)
apply (intro continuous map prod snd continuous intros continuous map from subtopology)

apply auto
done

next
have 1 :

∧
x i . [[ i ≤ n; x i 6= 0 ]] =⇒ (

∑
i≤n. (x i / sqrt (

∑
j≤n. (x j )2))2) =

1
by (force simp: sum nonneg sum nonneg eq 0 iff field split simps simp flip:

sum divide distrib)
have cm: continuous map ?Y (nsphere n) (λx i . x i / sqrt (

∑
j≤n. (x j )2))

unfolding Euclidean space def nsphere subtopology subtopology continuous map in subtopology
proof (intro continuous intros conjI )
show continuous map

(subtopology (powertop real UNIV ) ({x . ∀ i≥Suc n. x i = 0} ∩ {x . 0
≤ x k ∧ (∃ i≤n. x i 6= 0 )}))

(powertop real UNIV ) (λx i . x i / sqrt (
∑

j≤n. (x j )2))
unfolding continuous map componentwise
by (intro continuous intros conjI ballI ) (auto simp: sum nonneg eq 0 iff )

qed (auto simp: 1 )
show continuous map ?Y (subtopology (nsphere n) {x . 0 ≤ x k}) (λx i . x i /

sqrt (
∑

j≤n. (x j )2))
by (force simp: cm sum nonneg continuous map in subtopology if distrib

[where f = λx . ∗ x ] cong : if cong)
qed
moreover have (?g ◦ ?h) (0 , x ) = x
if x ∈ topspace (subtopology (nsphere n) {x . 0 ≤ x k}) for x
using that
by (simp add : assms nsphere)

moreover
have (?g ◦ ?h) (1 , x ) = p
if x ∈ topspace (subtopology (nsphere n) {x . 0 ≤ x k}) for x
by (force simp: assms p def power2 eq square if distrib [where f = λx . x ∗ ]

cong : if cong)
ultimately
show ?thesis
apply (simp add : contractible space def homotopic with)
apply (rule tac x=p in exI )
apply (rule tac x=?g ◦ ?h in exI , force)
done

qed
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corollary contractible space lower hemisphere:
assumes k ≤ n
shows contractible space(subtopology (nsphere n) {x . x k ≤ 0})

proof −
have contractible space (subtopology (nsphere n) {x . 0 ≤ x k}) = ?thesis
proof (rule homeomorphic space contractibility)
show subtopology (nsphere n) {x . 0 ≤ x k} homeomorphic space subtopology

(nsphere n) {x . x k ≤ 0}
unfolding homeomorphic space def homeomorphic maps def
apply (rule tac x=λx i . if i = k then −(x i) else x i in exI )+

apply (auto simp: continuous map in subtopology continuous map from subtopology
continuous map nsphere reflection)

done
qed
then show ?thesis
using contractible space upper hemisphere [OF assms] by metis

qed

proposition nullhomotopic nonsurjective sphere map:
assumes f : continuous map (nsphere p) (nsphere p) f
and fim: f ‘ (topspace(nsphere p)) 6= topspace(nsphere p)

obtains a where homotopic with (λx . True) (nsphere p) (nsphere p) f (λx . a)
proof −
obtain a where a: a ∈ topspace(nsphere p) a /∈ f ‘ (topspace(nsphere p))
using fim continuous map image subset topspace f by blast

then have a1 : (
∑

i≤p. (a i)2) = 1 and a0 :
∧
i . i > p =⇒ a i = 0

by (simp all add : nsphere)
have f1 : (

∑
j≤p. (f x j )2) = 1 if x ∈ topspace (nsphere p) for x

proof −
have f x ∈ topspace (nsphere p)
using continuous map image subset topspace f that by blast

then show ?thesis
by (simp add : nsphere)

qed
show thesis
proof
let ?g = λx i . x i / sqrt(

∑
j≤p. x j ˆ 2 )

let ?h = λ(t ,x ) i . (1 − t) ∗ f x i − t ∗ a i
let ?Y = subtopology (Euclidean space(Suc p)) (− {λi . 0})
let ?T01 = top of set {0 ..1 ::real}
have 1 : continuous map (prod topology ?T01 (nsphere p)) (nsphere p) (?g ◦

?h)
proof (rule continuous map compose)
have continuous map (prod topology ?T01 (nsphere p)) euclideanreal ((λx . f

x k) ◦ snd) for k
unfolding nsphere
apply (simp add : continuous map of snd)
apply (rule continuous map compose [of nsphere p f , unfolded o def ])
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using f apply (simp add : nsphere)
by (simp add : continuous map nsphere projection)
then have continuous map (prod topology ?T01 (nsphere p)) euclideanreal

(λr . ?h r k)
for k
unfolding case prod unfold o def
by (intro continuous map into fulltopology [OF continuous map fst ] contin-

uous intros) auto
moreover have ?h ‘ ({0 ..1} × topspace (nsphere p)) ⊆ {x . ∀ i≥Suc p. x i

= 0}
using continuous map image subset topspace [OF f ]
by (auto simp: nsphere image subset iff a0 )

moreover have (λi . 0 ) /∈ ?h ‘ ({0 ..1} × topspace (nsphere p))
proof clarify
fix t b
assume eq : (λi . 0 ) = (λi . (1 − t) ∗ f b i − t ∗ a i) and t ∈ {0 ..1} and

b: b ∈ topspace (nsphere p)
have (1 − t)2 = (

∑
i≤p. ((1 − t) ∗ f b i)ˆ2 )

using f1 [OF b] by (simp add : power mult distrib flip: sum distrib left)
also have . . . = (

∑
i≤p. (t ∗ a i)ˆ2 )

using eq by (simp add : fun eq iff )
also have . . . = t2

using a1 by (simp add : power mult distrib flip: sum distrib left)
finally have 1 − t = t
by (simp add : power2 eq iff )

then have ∗: t = 1/2
by simp

have fba: f b 6= a
using a(2 ) b by blast

then show False
using eq unfolding ∗ by (simp add : fun eq iff )

qed
ultimately show continuous map (prod topology ?T01 (nsphere p)) ?Y ?h
by (simp add : Euclidean space def continuous map in subtopology continu-

ous map componentwise UNIV )
next
have ∗: [[∀ i≥Suc p. x i = 0 ; x 6= (λi . 0 )]] =⇒ (

∑
j≤p. (x j )2) 6= 0 for x ::

nat ⇒ real
by (force simp: fun eq iff not less eq eq sum nonneg eq 0 iff )

show continuous map ?Y (nsphere p) ?g
apply (simp add : Euclidean space def continuous map in subtopology con-

tinuous map componentwise UNIV
nsphere continuous map componentwise subtopology subtopology)

apply (intro conjI allI continuous intros continuous map from subtopology
[OF continuous map product projection])

apply (simp all add : ∗)
apply (force simp: sum nonneg fun eq iff not less eq eq sum nonneg eq 0 iff

power divide simp flip: sum divide distrib)
done
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qed
have 2 : (?g ◦ ?h) (0 , x ) = f x if x ∈ topspace (nsphere p) for x
using that f1 by simp

have 3 : (?g ◦ ?h) (1 , x ) = (λi . − a i) for x
using a by (force simp: field split simps nsphere)

then show homotopic with (λx . True) (nsphere p) (nsphere p) f (λx . (λi . −
a i))

by (force simp: homotopic with intro: 1 2 3 )
qed

qed

lemma Hausdorff Euclidean space:
Hausdorff space (Euclidean space n)
unfolding Euclidean space def
by (rule Hausdorff space subtopology) (metis Hausdorff space euclidean Haus-

dorff space product topology)

end

6.53 Metrics on product spaces

theory Function Metric
imports
Function Topology
Elementary Metric Spaces

begin

In general, the product topology is not metrizable, unless the index set
is countable. When the index set is countable, essentially any (convergent)
combination of the metrics on the factors will do. We use below the simplest
one, based on L1, but L2 would also work, for instance.

What is not completely trivial is that the distance thus defined induces the
same topology as the product topology. This is what we have to prove to
show that we have an instance of metric space.

The proofs below would work verbatim for general countable products of
metric spaces. However, since distances are only implemented in terms of
type classes, we only develop the theory for countable products of the same
space.

instantiation fun :: (countable, metric space) metric space
begin

definition dist fun def :
dist x y = (

∑
n. (1/2 )ˆn ∗ min (dist (x (from nat n)) (y (from nat n))) 1 )

definition uniformity fun def :
(uniformity ::(( ′a ⇒ ′b) × ( ′a ⇒ ′b)) filter) = (INF e∈{0<..}. principal {(x , y).

dist (x ::( ′a⇒ ′b)) y < e})
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Except for the first one, the auxiliary lemmas below are only useful when
proving the instance: once it is proved, they become trivial consequences of
the general theory of metric spaces. It would thus be desirable to hide them
once the instance is proved, but I do not know how to do this.

lemma dist fun le dist first terms:
dist x y ≤ 2 ∗ Max {dist (x (from nat n)) (y (from nat n))|n. n ≤ N } + (1/2 )ˆN

proof −
have (

∑
n. (1 / 2 ) ˆ (n+Suc N ) ∗ min (dist (x (from nat (n+Suc N ))) (y

(from nat (n+Suc N )))) 1 )
= (

∑
n. (1 / 2 ) ˆ (Suc N ) ∗ ((1/2 ) ˆ n ∗ min (dist (x (from nat (n+Suc

N ))) (y (from nat (n+Suc N )))) 1 ))
by (rule suminf cong , simp add : power add)

also have ... = (1/2 )ˆ(Suc N ) ∗ (
∑

n. (1 / 2 ) ˆ n ∗ min (dist (x (from nat
(n+Suc N ))) (y (from nat (n+Suc N )))) 1 )

apply (rule suminf mult)
by (rule summable comparison test ′[of λn. (1/2 )ˆn], auto simp add : summable geometric iff )
also have ... ≤ (1/2 )ˆ(Suc N ) ∗ (

∑
n. (1 / 2 ) ˆ n)

apply (simp, rule suminf le, simp)
by (rule summable comparison test ′[of λn. (1/2 )ˆn], auto simp add : summable geometric iff )
also have ... = (1/2 )ˆ(Suc N ) ∗ 2
using suminf geometric[of 1/2 ] by auto

also have ... = (1/2 )ˆN
by auto

finally have ∗: (
∑

n. (1 / 2 ) ˆ (n+Suc N ) ∗ min (dist (x (from nat (n+Suc
N ))) (y (from nat (n+Suc N )))) 1 ) ≤ (1/2 )ˆN

by simp

define M where M = Max {dist (x (from nat n)) (y (from nat n))|n. n ≤ N }
have dist (x (from nat 0 )) (y (from nat 0 )) ≤ M
unfolding M def by (rule Max ge, auto)

then have [simp]: M ≥ 0 by (meson dual order .trans zero le dist)
have dist (x (from nat n)) (y (from nat n)) ≤ M if n≤N for n
unfolding M def apply (rule Max ge) using that by auto

then have i : min (dist (x (from nat n)) (y (from nat n))) 1 ≤ M if n≤N for
n

using that by force
have (

∑
n< Suc N . (1 / 2 ) ˆ n ∗ min (dist (x (from nat n)) (y (from nat n)))

1 ) ≤
(
∑

n< Suc N . M ∗ (1 / 2 ) ˆ n)
by (rule sum mono, simp add : i)

also have ... = M ∗ (
∑

n<Suc N . (1 / 2 ) ˆ n)
by (rule sum distrib left [symmetric])

also have ... ≤ M ∗ (
∑

n. (1 / 2 ) ˆ n)
by (rule mult left mono, rule sum le suminf , auto simp add : summable geometric iff )
also have ... = M ∗ 2
using suminf geometric[of 1/2 ] by auto

finally have ∗∗: (
∑

n< Suc N . (1 / 2 ) ˆ n ∗ min (dist (x (from nat n)) (y
(from nat n))) 1 ) ≤ 2 ∗ M

by simp
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have dist x y = (
∑

n. (1 / 2 ) ˆ n ∗ min (dist (x (from nat n)) (y (from nat
n))) 1 )

unfolding dist fun def by simp
also have ... = (

∑
n. (1 / 2 ) ˆ (n+Suc N ) ∗ min (dist (x (from nat (n+Suc

N ))) (y (from nat (n+Suc N )))) 1 )
+ (

∑
n<Suc N . (1 / 2 ) ˆ n ∗ min (dist (x (from nat n)) (y

(from nat n))) 1 )
apply (rule suminf split initial segment)
by (rule summable comparison test ′[of λn. (1/2 )ˆn], auto simp add : summable geometric iff )
also have ... ≤ 2 ∗ M + (1/2 )ˆN
using ∗ ∗∗ by auto

finally show ?thesis unfolding M def by simp
qed

lemma open fun contains ball aux :
assumes open (U ::(( ′a ⇒ ′b) set))

x ∈ U
shows ∃ e>0 . {y . dist x y < e} ⊆ U

proof −
have ∗: openin (product topology (λi . euclidean) UNIV ) U
using open fun def assms by auto

obtain X where H : PiE UNIV X ⊆ U∧
i . openin euclidean (X i)

finite {i . X i 6= topspace euclidean}
x ∈ PiE UNIV X

using product topology open contains basis[OF ∗ 〈x ∈ U 〉] by auto
define I where I = {i . X i 6= topspace euclidean}
have finite I unfolding I def using H (3 ) by auto
{
fix i
have x i ∈ X i using 〈x ∈ U 〉 H by auto
then have ∃ e. e>0 ∧ ball (x i) e ⊆ X i
using 〈openin euclidean (X i)〉 open openin open contains ball by blast

then obtain e where e>0 ball (x i) e ⊆ X i by blast
define f where f = min e (1/2 )
have f>0 f<1 unfolding f def using 〈e>0 〉 by auto
moreover have ball (x i) f ⊆ X i unfolding f def using 〈ball (x i) e ⊆ X i 〉

by auto
ultimately have ∃ f . f > 0 ∧ f < 1 ∧ ball (x i) f ⊆ X i by auto

} note ∗ = this
have ∃ e. ∀ i . e i > 0 ∧ e i < 1 ∧ ball (x i) (e i) ⊆ X i
by (rule choice, auto simp add : ∗)

then obtain e where
∧
i . e i > 0

∧
i . e i < 1

∧
i . ball (x i) (e i) ⊆ X i

by blast
define m where m = Min {(1/2 )ˆ(to nat i) ∗ e i |i . i ∈ I }
have m > 0 if I 6={}
unfolding m def Min gr iff using 〈finite I 〉 〈I 6= {}〉 〈

∧
i . e i > 0 〉 by auto

moreover have {y . dist x y < m} ⊆ U
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proof (auto)
fix y assume dist x y < m
have y i ∈ X i if i ∈ I for i
proof −
have ∗: summable (λn. (1/2 )ˆn ∗ min (dist (x (from nat n)) (y (from nat

n))) 1 )
by (rule summable comparison test ′[of λn. (1/2 )ˆn], auto simp add :

summable geometric iff )
define n where n = to nat i
have (1/2 )ˆn ∗ min (dist (x (from nat n)) (y (from nat n))) 1 < m
using 〈dist x y < m〉 unfolding dist fun def using sum le suminf [OF ∗,

of {n}] by auto
then have (1/2 )ˆ(to nat i) ∗ min (dist (x i) (y i)) 1 < m
using 〈n = to nat i 〉 by auto

also have ... ≤ (1/2 )ˆ(to nat i) ∗ e i
unfolding m def apply (rule Min le) using 〈finite I 〉 〈i ∈ I 〉 by auto

ultimately have min (dist (x i) (y i)) 1 < e i
by (auto simp add : field split simps)

then have dist (x i) (y i) < e i
using 〈e i < 1 〉 by auto

then show y i ∈ X i using 〈ball (x i) (e i) ⊆ X i 〉 by auto
qed
then have y ∈ PiE UNIV X using H (1 ) unfolding I def topspace euclidean

by (auto simp add : PiE iff )
then show y ∈ U using 〈PiE UNIV X ⊆ U 〉 by auto

qed
ultimately have ∗: ∃m>0 . {y . dist x y < m} ⊆ U if I 6= {} using that by

auto

have U = UNIV if I = {}
using that H (1 ) unfolding I def topspace euclidean by (auto simp add :

PiE iff )
then have ∃m>0 . {y . dist x y < m} ⊆ U if I = {} using that zero less one

by blast
then show ∃m>0 . {y . dist x y < m} ⊆ U using ∗ by blast

qed

lemma ball fun contains open aux :
fixes x ::( ′a ⇒ ′b) and e::real
assumes e>0
shows ∃U . open U ∧ x ∈ U ∧ U ⊆ {y . dist x y < e}

proof −
have ∃N ::nat . 2ˆN > 8/e
by (simp add : real arch pow)

then obtain N ::nat where 2ˆN > 8/e by auto
define f where f = e/4
have [simp]: e>0 f > 0 unfolding f def using assms by auto
define X ::( ′a ⇒ ′b set) where X = (λi . if (∃n≤N . i = from nat n) then {z .

dist (x i) z < f } else UNIV )
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have {i . X i 6= UNIV } ⊆ from nat‘{0 ..N }
unfolding X def by auto

then have finite {i . X i 6= topspace euclidean}
unfolding topspace euclidean using finite surj by blast

have
∧
i . open (X i)

unfolding X def using metric space class.open ball open UNIV by auto
then have

∧
i . openin euclidean (X i)

using open openin by auto
define U where U = PiE UNIV X
have open U
unfolding open fun def product topology def apply (rule topology generated by Basis)
unfolding U def using 〈

∧
i . openin euclidean (X i)〉 〈finite {i . X i 6= topspace

euclidean}〉
by auto

moreover have x ∈ U
unfolding U def X def by (auto simp add : PiE iff )

moreover have dist x y < e if y ∈ U for y
proof −
have ∗: dist (x (from nat n)) (y (from nat n)) ≤ f if n ≤ N for n
using 〈y ∈ U 〉 unfolding U def apply (auto simp add : PiE iff )
unfolding X def using that by (metis less imp le mem Collect eq)

have ∗∗: Max {dist (x (from nat n)) (y (from nat n))|n. n ≤ N } ≤ f
apply (rule Max .boundedI ) using ∗ by auto

have dist x y ≤ 2 ∗ Max {dist (x (from nat n)) (y (from nat n))|n. n ≤ N }
+ (1/2 )ˆN

by (rule dist fun le dist first terms)
also have ... ≤ 2 ∗ f + e / 8
apply (rule add mono) using ∗∗ 〈2ˆN > 8/e〉 by(auto simp add : field split simps)
also have ... ≤ e/2 + e/8
unfolding f def by auto

also have ... < e
by auto

finally show dist x y < e by simp
qed
ultimately show ?thesis by auto

qed

lemma fun open ball aux :
fixes U ::( ′a ⇒ ′b) set
shows open U ←→ (∀ x∈U . ∃ e>0 . ∀ y . dist x y < e −→ y ∈ U )

proof (auto)
assume open U
fix x assume x ∈ U
then show ∃ e>0 . ∀ y . dist x y < e −→ y ∈ U
using open fun contains ball aux [OF 〈open U 〉 〈x ∈ U 〉] by auto

next
assume H : ∀ x∈U . ∃ e>0 . ∀ y . dist x y < e −→ y ∈ U
define K where K = {V . open V ∧ V ⊆ U }
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{
fix x assume x ∈ U
then obtain e where e: e>0 {y . dist x y < e} ⊆ U using H by blast
then obtain V where V : open V x ∈ V V ⊆ {y . dist x y < e}
using ball fun contains open aux [OF 〈e>0 〉, of x ] by auto

have V ∈ K
unfolding K def using e(2 ) V (1 ) V (3 ) by auto

then have x ∈ (
⋃
K ) using 〈x ∈ V 〉 by auto

}
then have (

⋃
K ) = U

unfolding K def by auto
moreover have open (

⋃
K )

unfolding K def by auto
ultimately show open U by simp

qed

instance proof
fix x y :: ′a ⇒ ′b show (dist x y = 0 ) = (x = y)
proof
assume x = y
then show dist x y = 0 unfolding dist fun def using 〈x = y〉 by auto

next
assume dist x y = 0
have ∗: summable (λn. (1/2 )ˆn ∗ min (dist (x (from nat n)) (y (from nat n)))

1 )
by (rule summable comparison test ′[of λn. (1/2 )ˆn], auto simp add : summable geometric iff )
have (1/2 )ˆn ∗ min (dist (x (from nat n)) (y (from nat n))) 1 = 0 for n
using 〈dist x y = 0 〉 unfolding dist fun def by (simp add : ∗ suminf eq zero iff )
then have dist (x (from nat n)) (y (from nat n)) = 0 for n
by (metis div 0 min def nonzero mult div cancel left power eq 0 iff

zero eq 1 divide iff zero neq numeral)
then have x (from nat n) = y (from nat n) for n
by auto

then have x i = y i for i
by (metis from nat to nat)

then show x = y
by auto

qed
next

The proof of the triangular inequality is trivial, modulo the fact that we are
dealing with infinite series, hence we should justify the convergence at each
step. In this respect, the following simplification rule is extremely handy.

have [simp]: summable (λn. (1/2 )ˆn ∗ min (dist (u (from nat n)) (v (from nat
n))) 1 ) for u v :: ′a ⇒ ′b

by (rule summable comparison test ′[of λn. (1/2 )ˆn], auto simp add : summable geometric iff )
fix x y z :: ′a ⇒ ′b
{
fix n
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have ∗: dist (x (from nat n)) (y (from nat n)) ≤
dist (x (from nat n)) (z (from nat n)) + dist (y (from nat n)) (z (from nat

n))
by (simp add : dist triangle2 )

have 0 ≤ dist (y (from nat n)) (z (from nat n))
using zero le dist by blast

moreover
{
assume min (dist (y (from nat n)) (z (from nat n))) 1 6= dist (y (from nat

n)) (z (from nat n))
then have 1 ≤ min (dist (x (from nat n)) (z (from nat n))) 1 + min (dist

(y (from nat n)) (z (from nat n))) 1
by (metis (no types) diff le eq diff self min def zero le dist zero le one)

}
ultimately have min (dist (x (from nat n)) (y (from nat n))) 1 ≤

min (dist (x (from nat n)) (z (from nat n))) 1 + min (dist (y (from nat
n)) (z (from nat n))) 1

using ∗ by linarith
} note ineq = this
have dist x y = (

∑
n. (1/2 )ˆn ∗ min (dist (x (from nat n)) (y (from nat n)))

1 )
unfolding dist fun def by simp

also have ... ≤ (
∑

n. (1/2 )ˆn ∗ min (dist (x (from nat n)) (z (from nat n))) 1
+ (1/2 )ˆn ∗ min (dist (y (from nat n)) (z (from nat n))) 1 )

apply (rule suminf le)
using ineq apply (metis (no types, hide lams) add .right neutral distrib left
le divide eq numeral1 (1 ) mult 2 right mult left mono zero le one zero le power)
by (auto simp add : summable add)

also have ... = (
∑

n. (1/2 )ˆn ∗ min (dist (x (from nat n)) (z (from nat n)))
1 )

+ (
∑

n. (1/2 )ˆn ∗ min (dist (y (from nat n)) (z (from nat n))) 1 )
by (rule suminf add [symmetric], auto)

also have ... = dist x z + dist y z
unfolding dist fun def by simp

finally show dist x y ≤ dist x z + dist y z
by simp

next

Finally, we show that the topology generated by the distance and the product
topology coincide. This is essentially contained in Lemma fun open ball aux,
except that the condition to prove is expressed with filters. To deal with this,
we copy some mumbo jumbo from Lemma eventually uniformity metric in
~~/src/HOL/Real_Vector_Spaces.thy

fix U ::( ′a ⇒ ′b) set
have eventually P uniformity ←→ (∃ e>0 . ∀ x (y ::( ′a ⇒ ′b)). dist x y < e −→

P (x , y)) for P
unfolding uniformity fun def apply (subst eventually INF base)
by (auto simp: eventually principal subset eq intro: bexI [of min ])

then show open U = (∀ x∈U . ∀ F (x ′, y) in uniformity . x ′ = x −→ y ∈ U )
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unfolding fun open ball aux by simp
qed (simp add : uniformity fun def )

end

Nice properties of spaces are preserved under countable products. In addi-
tion to first countability, second countability and metrizability, as we have
seen above, completeness is also preserved, and therefore being Polish.

instance fun :: (countable, complete space) complete space
proof
fix u::nat ⇒ ( ′a ⇒ ′b) assume Cauchy u
have Cauchy (λn. u n i) for i
unfolding cauchy def proof (intro impI allI )
fix e assume e>(0 ::real)
obtain k where i = from nat k
using from nat to nat [of i ] by metis

have (1/2 )ˆk ∗ min e 1 > 0 using 〈e>0 〉 by auto
then have ∃N . ∀m n. N ≤ m ∧ N ≤ n −→ dist (u m) (u n) < (1/2 )ˆk ∗

min e 1
using 〈Cauchy u〉 unfolding cauchy def by blast

then obtain N ::nat where C : ∀m n. N ≤ m ∧ N ≤ n −→ dist (u m) (u n)
< (1/2 )ˆk ∗ min e 1

by blast
have ∀m n. N ≤ m ∧ N ≤ n −→ dist (u m i) (u n i) < e
proof (auto)
fix m n::nat assume m ≥ N n ≥ N
have (1/2 )ˆk ∗ min (dist (u m i) (u n i)) 1

= sum (λp. (1/2 )ˆp ∗ min (dist (u m (from nat p)) (u n (from nat
p))) 1 ) {k}

using 〈i = from nat k 〉 by auto
also have ... ≤ (

∑
p. (1/2 )ˆp ∗ min (dist (u m (from nat p)) (u n (from nat

p))) 1 )
apply (rule sum le suminf )

by (rule summable comparison test ′[of λn. (1/2 )ˆn], auto simp add :
summable geometric iff )

also have ... = dist (u m) (u n)
unfolding dist fun def by auto

also have ... < (1/2 )ˆk ∗ min e 1
using C 〈m ≥ N 〉 〈n ≥ N 〉 by auto

finally have min (dist (u m i) (u n i)) 1 < min e 1
by (auto simp add : field split simps)

then show dist (u m i) (u n i) < e by auto
qed
then show ∃N . ∀m n. N ≤ m ∧ N ≤ n −→ dist (u m i) (u n i) < e
by blast

qed
then have ∃ x . (λn. u n i) −−−−→ x for i
using Cauchy convergent convergent def by auto

then have ∃ x . ∀ i . (λn. u n i) −−−−→ x i
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using choice by force
then obtain x where ∗:

∧
i . (λn. u n i) −−−−→ x i by blast

have u −−−−→ x
proof (rule metric LIMSEQ I )
fix e assume [simp]: e>(0 ::real)
have i : ∃K . ∀n≥K . dist (u n i) (x i) < e/4 for i
by (rule metric LIMSEQ D , auto simp add : ∗)

have ∃K . ∀ i . ∀n≥K i . dist (u n i) (x i) < e/4
apply (rule choice) using i by auto

then obtain K where K :
∧
i n. n ≥ K i =⇒ dist (u n i) (x i) < e/4

by blast

have ∃N ::nat . 2ˆN > 4/e
by (simp add : real arch pow)

then obtain N ::nat where 2ˆN > 4/e by auto
define L where L = Max {K (from nat n)|n. n ≤ N }
have dist (u k) x < e if k ≥ L for k
proof −
have ∗: dist (u k (from nat n)) (x (from nat n)) ≤ e / 4 if n ≤ N for n
proof −
have K (from nat n) ≤ L
unfolding L def apply (rule Max ge) using 〈n ≤ N 〉 by auto

then have k ≥ K (from nat n) using 〈k ≥ L〉 by auto
then show ?thesis using K less imp le by auto

qed
have ∗∗: Max {dist (u k (from nat n)) (x (from nat n)) |n. n ≤ N } ≤ e/4
apply (rule Max .boundedI ) using ∗ by auto

have dist (u k) x ≤ 2 ∗ Max {dist (u k (from nat n)) (x (from nat n)) |n.
n ≤ N } + (1/2 )ˆN

using dist fun le dist first terms by auto
also have ... ≤ 2 ∗ e/4 + e/4
apply (rule add mono)
using ∗∗ 〈2ˆN > 4/e〉 less imp le by (auto simp add : field split simps)

also have ... < e by auto
finally show ?thesis by simp

qed
then show ∃L. ∀ k≥L. dist (u k) x < e by blast

qed
then show convergent u using convergent def by blast

qed

instance fun :: (countable, polish space) polish space
by standard

end
theory Analysis
imports

Convex

Analysis.html


3268

Determinants

Connected
Abstract Limits

Elementary Normed Spaces
Norm Arith

Convex Euclidean Space
Operator Norm

Line Segment
Derivative
Cartesian Euclidean Space
Weierstrass Theorems

Ball Volume
Integral Test
Improper Integral
Equivalence Measurable On Borel
Lebesgue Integral Substitution
Embed Measure
Complete Measure
Radon Nikodym
Fashoda Theorem
Cross3
Homeomorphism
Bounded Continuous Function
Abstract Topology
Product Topology
Lindelof Spaces
Infinite Products
Infinite Set Sum
Polytope
Jordan Curve
Poly Roots
Generalised Binomial Theorem
Gamma Function
Change Of Vars
Multivariate Analysis
Simplex Content
FPS Convergence
Smooth Paths
Abstract Euclidean Space
Function Metric

begin

end



Bibliography

[1]

[2] J. Dugundji. An extension of Tietze’s theorem. Pacific J. Math.,
1(3):353–367, 1951.

[3] M. Maggesi. A formalization of metric spaces in HOL light. J. Autom.
Reasoning, 60(2):237–254, 2018.

3269


	Linear Algebra
	L2 Norm
	Inner Product Spaces and Gradient Derivative
	Real inner product spaces
	Class instances
	Gradient derivative

	Cartesian Products as Vector Spaces
	Product is a Module
	Product is a Real Vector Space
	Product is a Metric Space
	Product is a Complete Metric Space
	Product is a Normed Vector Space
	Product is Finite Dimensional

	Finite-Dimensional Inner Product Spaces
	Interlude: Some properties of real sets
	Type class of Euclidean spaces
	Subclass relationships
	Class instances
	Locale instances

	Elementary Linear Algebra on Euclidean Spaces
	More interesting properties of the norm
	Substandard Basis
	Orthogonality
	Orthogonality of a transformation
	Bilinear functions
	Adjoints
	Euclidean Spaces as Typeclass
	Linearity and Bilinearity continued
	We continue
	Infinity norm
	Collinearity
	Properties of special hyperplanes
	Orthogonal bases and Gram-Schmidt process
	Decomposing a vector into parts in orthogonal subspaces
	Linear functions are (uniformly) continuous on any set
	Topological properties of linear functions

	Affine Sets
	Affine set and affine hull
	Affine Dependence
	Some Properties of Affine Dependent Sets
	Affine Dimension of a Set

	Convex Sets and Functions
	Convex Sets
	Explicit expressions for convexity in terms of arbitrary sums
	Convex Functions on a Set
	Arithmetic operations on sets preserve convexity
	Convexity of real functions
	Cones
	Connectedness of convex sets
	Convex hull
	Relations among closure notions and corresponding hulls
	Caratheodory's theorem
	Some Properties of subset of standard basis
	Moving and scaling convex hulls
	Convexity of cone hulls
	Radon's theorem
	Helly's theorem
	Epigraphs of convex functions
	A bound within a convex hull

	Definition of Finite Cartesian Product Type
	Finite Cartesian products, with indexing and lambdas
	Cardinality of vectors
	Group operations and class instances
	Basic componentwise operations on vectors
	Real vector space
	Topological space
	Metric space
	Normed vector space
	Inner product space
	Euclidean space
	A naive proof procedure to lift really trivial arithmetic stuff from the basis of the vector space
	Some frequently useful arithmetic lemmas over vectors
	Matrix operations
	Inverse matrices (not necessarily square)

	Linear Algebra on Finite Cartesian Products
	Type 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 (2mu'-2mua, 2mu'-2mun) vec and fields as vector spaces
	Rank of a matrix
	Lemmas for working on 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 real1/2/3/4
	The collapse of the general concepts to dimension one
	Routine results connecting the types 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 (real, 1) vec and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 real
	Explicit vector construction from lists
	lambda skolemization on cartesian products
	Explicit formulas for low dimensions
	Orthogonality of a matrix
	Finding an Orthogonal Matrix
	Scaling and isometry
	Induction on matrix row operations

	Traces and Determinants of Square Matrices
	Trace
	Relation to invertibility
	Cramer's rule
	Rotation, reflection, rotoinversion


	Topology
	Elementary Topology
	Topological Basis
	Countable Basis
	Polish spaces
	Limit Points
	Interior of a Set
	Closure of a Set
	Frontier (also known as boundary)
	Filters and the ``eventually true'' quantifier
	Limits
	Compactness
	Cartesian products
	Continuity
	Homeomorphisms
	On Linorder Topologies

	Operators involving abstract topology
	General notion of a topology as a value
	The discrete topology
	Subspace topology
	The canonical topology from the underlying type class
	Basic "localization" results are handy for connectedness.
	Derived set (set of limit points)
	Closure with respect to a topological space
	Frontier with respect to topological space
	Locally finite collections
	Continuous maps
	Open and closed maps (not a priori assumed continuous)
	Quotient maps
	Separated Sets
	Homeomorphisms
	Relation of homeomorphism between topological spaces
	Connected topological spaces
	Compact sets
	Embedding maps
	Retraction and section maps
	Continuity
	Half-global and completely global cases
	The topology generated by some (open) subsets
	Topology bases and sub-bases
	Pullback topology
	Proper maps (not a priori assumed continuous)
	Perfect maps (proper, continuous and surjective)

	Abstract Topology 2
	Closure
	Frontier
	Compactness
	Continuity
	Equality of continuous functions on closure and related results
	A function constant on a set
	Continuity relative to a union.
	Inverse function property for open/closed maps
	Seperability
	Closed Maps
	Open Maps
	Quotient maps
	Pasting lemmas for functions, for of casewise definitions
	Retractions
	Retractions on a topological space
	Paths and path-connectedness
	Connected components

	Connected Components
	Connectedness
	Connected components, considered as a connectedness relation or a set
	The set of connected components of a set
	Proving a function is constant on a connected set by proving that a level set is open
	Preservation of Connectedness
	Lemmas about components
	Constancy of a function from a connected set into a finite, disconnected or discrete set
	nhdsin and atin
	Limits in a topological space
	Pointwise continuity in topological spaces
	Combining theorems for continuous functions into the reals


	Functional Analysis
	A decision procedure for metric spaces
	Elementary Metric Spaces
	Open and closed balls
	Limit Points
	Perfect Metric Spaces
	?
	Interior
	Frontier
	Limits
	Continuity
	Closure and Limit Characterization
	Boundedness
	Compactness
	Banach fixed point theorem
	Edelstein fixed point theorem
	The diameter of a set
	Metric spaces with the Heine-Borel property
	Completeness
	Finite intersection property
	Properties of Balls and Spheres
	Distance from a Set
	Infimum Distance
	Separation between Points and Sets
	Uniform Continuity
	Continuity on a Compact Domain Implies Uniform Continuity
	Theorems relating continuity and uniform continuity to closures
	With Abstract Topology (TODO: move and remove dependency?)
	Closed Nest
	Making a continuous function avoid some value in a neighbourhood
	Consequences for Real Numbers
	The infimum of the distance between two sets

	Elementary Normed Vector Spaces
	Orthogonal Transformation of Balls
	Various Lemmas Combining Imports
	Support
	Intervals
	Limit Points
	Balls and Spheres in Normed Spaces
	Various Lemmas on Normed Algebras
	Filters
	Trivial Limits
	Limits
	Limit Point of Filter
	Boundedness
	Relations among convergence and absolute convergence for power series
	Normed spaces with the Heine-Borel property
	Intersecting chains of compact sets and the Baire property
	Continuity
	Arithmetic Preserves Topological Properties
	Homeomorphisms
	Discrete
	Completeness of "Isometry" (up to constant bounds)
	Connected Normed Spaces

	Linear Decision Procedure for Normed Spaces

	Vector Analysis
	Elementary Topology in Euclidean Space
	Continuity of the representation WRT an orthogonal basis
	Balls in Euclidean Space
	Boxes
	General Intervals
	Bounded Projections
	Structural rules for pointwise continuity
	Structural rules for setwise continuity
	Openness of halfspaces.
	Closure and Interior of halfspaces and hyperplanes
	Some more convenient intermediate-value theorem formulations
	Limit Component Bounds
	Class Instances
	Compact Boxes
	Componentwise limits and continuity
	Continuous Extension
	Separability
	Diameter
	Relating linear images to open/closed/interior/closure/connected
	"Isometry" (up to constant bounds) of Injective Linear Map
	Some properties of a canonical subspace
	Set Distance

	Convex Sets and Functions on (Normed) Euclidean Spaces
	Topological Properties of Convex Sets and Functions
	Relative interior of a set
	Openness and compactness are preserved by convex hull operation
	Extremal points of a simplex are some vertices
	Closest point of a convex set is unique, with a continuous projection
	More convexity generalities
	Convex set as intersection of halfspaces
	Convexity of general and special intervals
	On 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 real, 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 is_interval, 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 convex and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 connected are all equivalent
	Another intermediate value theorem formulation
	A bound within an interval
	Representation of any interval as a finite convex hull
	Bounded convex function on open set is continuous
	Upper bound on a ball implies upper and lower bounds

	Operator Norm
	Line Segment
	Topological Properties of Convex Sets, Metric Spaces and Functions
	Midpoint
	Open and closed segments
	Betweenness

	Limits on the Extended Real Number Line
	Extended-Real.thy
	Extended-Nonnegative-Real.thy
	monoset
	Relate extended reals and the indicator function

	Radius of Convergence and Summation Tests
	Convergence tests for infinite sums
	Radius of convergence

	Uniform Limit and Uniform Convergence
	Definition
	Exchange limits
	Uniform limit theorem
	Weierstrass M-Test
	Structural introduction rules
	Power series and uniform convergence

	Function Topology
	The product topology
	The Alexander subbase theorem
	Open Pi-sets in the product topology
	Relationship with connected spaces, paths, etc.
	Projections from a function topology to a component

	Bounded Linear Function
	Intro rules for 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 bounded_linear
	declaration of derivative/continuous/tendsto introduction rules for bounded linear functions
	Type of bounded linear functions
	Type class instantiations
	On Euclidean Space
	concrete bounded linear functions
	The strong operator topology on continuous linear operators

	Derivative
	Derivatives
	Derivative with composed bilinear function
	Differentiability
	Frechet derivative and Jacobian matrix
	Differentiability implies continuity
	The chain rule
	Composition rules stated just for differentiability
	Uniqueness of derivative
	Derivatives of local minima and maxima are zero
	One-dimensional mean value theorem
	More general bound theorems
	Differentiability of inverse function (most basic form)
	Uniformly convergent sequence of derivatives
	Differentiation of a series
	Derivative as a vector
	Field differentiability
	Field derivative
	Relation between convexity and derivative
	Partial derivatives
	Differentiable case distinction
	The Inverse Function Theorem
	Piecewise differentiable functions
	The concept of continuously differentiable

	Finite Cartesian Products of Euclidean Spaces
	Closures and interiors of halfspaces
	Bounds on components etc. relative to operator norm
	Convex Euclidean Space
	Derivative
	Routine results connecting the types 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 (real, 1) vec and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 real


	Unsorted
	Shrinking towards the interior of a convex set
	Some obvious but surprisingly hard simplex lemmas
	Relative interior of convex set
	The relative frontier of a set
	Convexity on direct sums
	Explicit formulas for interior and relative interior of convex hull
	Similar results for closure and (relative or absolute) frontier
	Coplanarity, and collinearity in terms of affine hull
	Basic lemmas about hyperplanes and halfspaces
	Use set distance for an easy proof of separation properties
	Connectedness of the intersection of a chain
	Proper maps, including projections out of compact sets
	Trivial fact: convexity equals connectedness for collinear sets
	Some stepping theorems
	General case without assuming closure and getting non-strict separation
	Some results on decomposing convex hulls: intersections, simplicial subdivision
	Lower-dimensional affine subsets are nowhere dense
	Parallel slices, etc
	Paracompactness
	Closed-graph characterization of continuity
	The union of two collinear segments is another segment
	Covering an open set by a countable chain of compact sets
	Orthogonal complement
	A non-injective linear function maps into a hyperplane.

	The binary product topology
	Product Topology
	Definition
	Continuity
	Homeomorphic maps

	T1 and Hausdorff spaces
	T1 spaces with equivalences to many naturally "nice" properties.
	Hausdorff Spaces

	Path-Connectedness
	Paths and Arcs
	Invariance theorems
	Basic lemmas about paths
	Path Images
	Simple paths with the endpoints removed
	The operations on paths
	Some reversed and "if and only if" versions of joining theorems
	The joining of paths is associative
	Subpath
	There is a subpath to the frontier
	Shift Path to Start at Some Given Point
	Straight-Line Paths
	Segments via convex hulls
	Bounding a point away from a path
	Path component
	Path connectedness of a space
	Lemmas about path-connectedness
	Path components
	Path components
	Sphere is path-connected
	Every annulus is a connected set
	Relations between components and path components
	Existence of unbounded components
	The 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 inside and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 outside of a Set
	Condition for an open map's image to contain a ball
	Rectangular paths

	Bernstein-Weierstrass and Stone-Weierstrass
	Bernstein polynomials
	Explicit Bernstein version of the 1D Weierstrass approximation theorem
	General Stone-Weierstrass theorem
	Polynomial functions
	Stone-Weierstrass theorem for polynomial functions
	Polynomial functions as paths


	Measure and Integration Theory
	Sigma Algebra
	Families of sets
	Measure type
	The smallest 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 -algebra regarding a function

	Measurability Prover
	Measurability for (co)inductive predicates

	Measure Spaces
	Relate extended reals and the indicator function
	Extend binary sets
	Properties of a premeasure 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 
	Properties of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 emeasure
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 -null sets
	The almost everywhere filter (i.e. quantifier)
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 -finite Measures
	Measure space induced by distribution of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 (M)-functions
	Real measure values
	Set of measurable sets with finite measure
	Measurable sets formed by unions and intersections
	Measure spaces with 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 emeasure M (space M) < 
	Counting space
	Measure restricted to space
	Null measure
	Scaling a measure
	Complete lattice structure on measures

	Ordered Euclidean Space
	Borel Space
	Generic Borel spaces
	Borel spaces on order topologies
	Borel spaces on topological monoids
	Borel spaces on Euclidean spaces
	Borel measurable operators
	Borel space on the extended reals
	Borel space on the extended non-negative reals
	LIMSEQ is borel measurable

	Lebesgue Integration for Nonnegative Functions
	Approximating functions
	Simple function
	Simple integral
	Integral on nonnegative functions
	Integral under concrete measures

	Binary Product Measure
	Binary products
	Binary products of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 -finite emeasure spaces
	Fubinis theorem
	Products on counting spaces, densities and distributions
	Product of Borel spaces

	Finite Product Measure
	More about Function restricted by 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 extensional
	Finite product spaces
	Measurability

	Caratheodory Extension Theorem
	Characterizations of Measures
	Caratheodory's theorem
	Volumes

	Bochner Integration for Vector-Valued Functions
	Restricted measure spaces
	Measure spaces with an associated density
	Distributions
	Lebesgue integration on 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 count_space
	Point measure
	Lebesgue integration on 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 null_measure
	Legacy lemmas for the real-valued Lebesgue integral
	Product measure

	Complete Measures
	Regularity of Measures
	Lebesgue Measure
	Measures defined by monotonous functions
	Lebesgue-Borel measure
	Borel measurability
	Measurability of continuous functions
	Affine transformation on the Lebesgue-Borel
	Lebesgue measurable sets
	Translation preserves Lebesgue measure
	A nice lemma for negligibility proofs
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 F_sigma and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 G_delta sets.

	Tagged Divisions for Henstock-Kurzweil Integration
	Sundries
	Some useful lemmas about intervals
	Bounds on intervals where they exist
	The notion of a gauge — simply an open set containing the point
	Attempt a systematic general set of "offset" results for components
	Divisions
	Tagged (partial) divisions
	Functions closed on boxes: morphisms from boxes to monoids
	Special case of additivity we need for the FTC
	Fine-ness of a partition w.r.t. a gauge
	Some basic combining lemmas
	The set we're concerned with must be closed
	General bisection principle for intervals; might be useful elsewhere
	Cousin's lemma
	A technical lemma about "refinement" of division
	Division filter

	Henstock-Kurzweil Gauge Integration in Many Dimensions
	Content (length, area, volume...) of an interval
	Gauge integral
	Basic theorems about integrals
	Cauchy-type criterion for integrability
	Additivity of integral on abutting intervals
	A sort of converse, integrability on subintervals
	Bounds on the norm of Riemann sums and the integral itself
	Similar theorems about relationship among components
	Uniform limit of integrable functions is integrable
	Negligible sets
	Some other trivialities about negligible sets
	Finite case of the spike theorem is quite commonly needed
	In particular, the boundary of an interval is negligible
	Integrability of continuous functions
	Specialization of additivity to one dimension
	A useful lemma allowing us to factor out the content size
	Fundamental theorem of calculus
	Taylor series expansion
	Only need trivial subintervals if the interval itself is trivial
	Integrability on subintervals
	Combining adjacent intervals in 1 dimension
	Reduce integrability to "local" integrability
	Second FTC or existence of antiderivative
	Combined fundamental theorem of calculus
	General "twiddling" for interval-to-interval function image
	Special case of a basic affine transformation
	Special case of stretching coordinate axes separately
	even more special cases
	Stronger form of FCT; quite a tedious proof
	Stronger form with finite number of exceptional points
	This doesn't directly involve integration, but that gives an easy proof
	Generalize a bit to any convex set
	Integrating characteristic function of an interval
	Integrals on set differences
	More lemmas that are useful later
	Continuity of the integral (for a 1-dimensional interval)
	A straddling criterion for integrability
	Adding integrals over several sets
	Also tagged divisions
	Henstock's lemma
	Monotone convergence (bounded interval first)
	differentiation under the integral sign
	Exchange uniform limit and integral
	Integration by parts
	Integration by substitution
	Compute a double integral using iterated integrals and switching the order of integration
	Definite integrals for exponential and power function

	Radon-Nikodým Derivative
	Absolutely continuous
	Existence of the Radon-Nikodym derivative
	Uniqueness of densities
	Radon-Nikodym derivative

	Non-Denumerability of the Continuum
	Abstract

	Homotopy of Maps
	Trivial properties
	Homotopy with P is an equivalence relation
	Continuity lemmas
	Homotopy of paths, maintaining the same endpoints
	Group properties for homotopy of paths
	Homotopy of loops without requiring preservation of endpoints
	Relations between the two variants of homotopy
	Homotopy of "nearby" function, paths and loops
	Homotopy and subpaths
	Simply connected sets
	Contractible sets
	Starlike sets
	Local versions of topological properties in general
	An induction principle for connected sets
	Basic properties of local compactness
	Sura-Bura's results about compact components of sets
	Special cases of local connectedness and path connectedness
	Relations between components and path components
	Components, continuity, openin, closedin
	Existence of isometry between subspaces of same dimension
	Retracts, in a general sense, preserve (co)homotopic triviality)
	Homotopy equivalence
	Homotopy equivalence of topological spaces.
	Contractible spaces
	Misc other results
	Some Uncountable Sets
	Some simple positive connection theorems
	Self-homeomorphisms shuffling points about
	Nullhomotopic mappings

	Homeomorphism Theorems
	Homeomorphism of all convex compact sets with nonempty interior
	Homeomorphisms between punctured spheres and affine sets
	Locally compact sets in an open set
	Covering spaces and lifting results for them
	Lifting of general functions to covering space
	Homeomorphisms of arc images
	Equivalence Lebesgue integral on 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 lborel and HK-integral
	Absolute integrability (this is the same as Lebesgue integrability)
	Applications to Negligibility
	Negligibility of image under non-injective linear map
	Negligibility of a Lipschitz image of a negligible set
	Measurability of countable unions and intersections of various kinds.
	Negligibility is a local property
	Integral bounds
	Outer and inner approximation of measurable sets by well-behaved sets.
	Transformation of measure by linear maps
	Lemmas about absolute integrability
	Componentwise
	Dominated convergence
	Fundamental Theorem of Calculus for the Lebesgue integral
	Integration by parts
	Various common equivalent forms of function measurability
	Lebesgue sets and continuous images
	Affine lemmas
	More results on integrability
	Relation between Borel measurability and integrability.

	Complex Analysis Basics
	General lemmas
	Holomorphic functions
	Analyticity on a set
	Analyticity at a point
	Combining theorems for derivative with ``analytic at'' hypotheses
	Complex differentiation of sequences and series
	Taylor on Complex Numbers

	Complex Transcendental Functions
	MÃ¶bius transformations
	The Exponential Function
	Euler and de Moivre formulas
	Relationships between real and complex trigonometric and hyperbolic functions
	More on the Polar Representation of Complex Numbers
	Taylor series for complex exponential, sine and cosine
	The argument of a complex number (HOL Light version)
	Analytic properties of tangent function
	The principal branch of the Complex logarithm
	Relation to Real Logarithm
	Derivative of Ln away from the branch cut
	Quadrant-type results for Ln
	More Properties of Ln
	The Argument of a Complex Number
	The Unwinding Number and the Ln product Formula
	Relation between Ln and Arg2pi, and hence continuity of Arg2pi
	Complex Powers
	Some Limits involving Logarithms
	Relation between Square Root and exp/ln, hence its derivative
	Complex arctangent
	Real arctangent
	Bounds on pi using real arctangent
	Inverse Sine
	Inverse Cosine
	Upper and Lower Bounds for Inverse Sine and Cosine
	Interrelations between Arcsin and Arccos
	Relationship with Arcsin on the Real Numbers
	Relationship with Arccos on the Real Numbers
	Some interrelationships among the real inverse trig functions
	Continuity results for arcsin and arccos
	Roots of unity

	Harmonic Numbers
	The Harmonic numbers
	The Euler-Mascheroni constant
	Bounds on the Euler-Mascheroni constant

	The Gamma Function
	The Euler form and the logarithmic Gamma function
	The Polygamma functions
	Basic properties
	Differentiability
	The complex Gamma function
	The real Gamma function
	The uniqueness of the real Gamma function
	The Beta function
	Legendre duplication theorem
	Limits and residues
	Alternative definitions
	The Weierstraß product formula for the sine
	The Solution to the Basel problem
	Approximating a (possibly infinite) interval
	Basic properties of integration over an interval
	Basic properties of integration over an interval wrt lebesgue measure
	General limit approximation arguments
	A slightly stronger Fundamental Theorem of Calculus
	The substitution theorem

	Integration by Substition for the Lebesgue Integral
	The Volume of an 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 n-Dimensional Ball
	Integral Test for Summability
	Continuity of the indefinite integral; improper integral theorem
	Equiintegrability
	Subinterval restrictions for equiintegrable families
	Continuity of the indefinite integral
	Second mean value theorem and corollaries

	Continuous Extensions of Functions
	Partitions of unity subordinate to locally finite open coverings
	Urysohn's Lemma for Euclidean Spaces
	Dugundji's Extension Theorem and Tietze Variants

	Equivalence Between Classical Borel Measurability and HOL Light's
	Austin's Lemma
	A differentiability-like property of the indefinite integral.
	HOL Light measurability
	Composing continuous and measurable functions; a few variants
	Measurability on generalisations of the binary product

	Embedding Measure Spaces with a Function
	Brouwer's Fixed Point Theorem
	Retractions
	Kuhn Simplices
	Brouwer's fixed point theorem
	Applications

	Fashoda Meet Theorem
	Bijections between intervals
	Fashoda meet theorem
	Some slightly ad hoc lemmas I use below
	Useful Fashoda corollary pointed out to me by Tom Hales

	Vector Cross Products in 3 Dimensions
	Basic lemmas
	Preservation by rotation, or other orthogonal transformation up to sign
	Continuity

	Bounded Continuous Functions
	Definition
	Complete Space
	Supremum norm for a normed vector space
	(bounded) continuous extenstion

	Lindelöf spaces
	Infinite Products
	Preliminaries
	Definitions and basic properties
	Absolutely convergent products
	Ignoring initial segments
	More elementary properties
	Infinite products on ordered topological monoids
	Infinite products on topological spaces
	Infinite summability on real normed fields
	Exponentials and logarithms
	Embeddings from the reals into some complete real normed field

	Sums over Infinite Sets
	Faces, Extreme Points, Polytopes, Polyhedra etc
	Faces of a (usually convex) set
	Exposed faces
	Extreme points of a set: its singleton faces
	Facets
	Edges: faces of affine dimension 1
	Existence of extreme points
	Krein-Milman, the weaker form
	Applying it to convex hulls of explicitly indicated finite sets
	Polytopes
	Polyhedra
	Canonical polyhedron representation making facial structure explicit
	More general corollaries from the explicit representation
	Relation between polytopes and polyhedra
	Relative and absolute frontier of a polytope
	Special case of a triangle
	Subdividing a cell complex
	Simplexes
	Simplicial complexes and triangulations
	Refining a cell complex to a simplicial complex
	Some results on cell division with full-dimensional cells only

	Arcwise-Connected Sets
	The Brouwer reduction theorem
	Arcwise Connections
	Density of points with dyadic rational coordinates
	Accessibility of frontier points

	Absolute Retracts, Absolute Neighbourhood Retracts and Euclidean Neighbourhood Retracts
	Analogous properties of ENRs
	More advanced properties of ANRs and ENRs
	Original ANR material, now for ENRs
	Finally, spheres are ANRs and ENRs
	Spheres are connected, etc
	Borsuk homotopy extension theorem
	More extension theorems
	The complement of a set and path-connectedness

	Extending Continous Maps, Invariance of Domain, etc
	A map from a sphere to a higher dimensional sphere is nullhomotopic
	Some technical lemmas about extending maps from cell complexes
	Special cases and corollaries involving spheres
	Extending maps to spheres
	Invariance of domain and corollaries
	Formulation of loop homotopy in terms of maps out of type complex
	Homeomorphism of simple closed curves to circles
	Dimension-based conditions for various homeomorphisms
	more invariance of domain
	The power, squaring and exponential functions as covering maps
	Hence the Borsukian results about mappings into circles
	Upper and lower hemicontinuous functions
	Complex logs exist on various "well-behaved" sets
	Another simple case where sphere maps are nullhomotopic
	Holomorphic logarithms and square roots
	The "Borsukian" property of sets
	Unicoherence (closed)
	Several common variants of unicoherence
	Some separation results

	The Jordan Curve Theorem and Applications
	Janiszewski's theorem
	The Jordan Curve theorem

	Polynomial Functions: Extremal Behaviour and Root Counts
	Basics about polynomial functions: extremal behaviour and root counts

	Generalised Binomial Theorem
	Vitali Covering Theorem and an Application to Negligibility
	Vitali covering theorem

	Change of Variables Theorems
	Measurable Shear and Stretch
	Borel measurable Jacobian determinant
	Simplest case of Sard's theorem (we don't need continuity of derivative)
	A one-way version of change-of-variables not assuming injectivity.
	Change-of-variables theorem
	Change of variables for integrals: special case of linear function
	Change of variable for measure

	Lipschitz Continuity
	Local Lipschitz continuity
	Local Lipschitz continuity (uniform for a family of functions)

	Volume of a Simplex
	Convergence of Formal Power Series
	Balls with extended real radius
	Basic properties of convergent power series
	Lower bounds on radius of convergence
	Evaluating power series
	Power series expansions of analytic functions

	Smooth paths
	Homeomorphisms of arc images
	Piecewise differentiability of paths
	Valid paths, and their start and finish

	Neighbourhood bases and Locally path-connected spaces
	Neighbourhood Bases
	Locally path-connected spaces

	Euclidean space and n-spheres, as subtopologies of n-dimensional space
	Euclidean spaces as abstract topologies
	n-dimensional spheres

	Metrics on product spaces


